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Preface

Volume XVI of the Transactions on Rough Sets (TRS) includes extensions of
papers from a very successful conference, Rough Sets and Knowledge Technology
(RSKT 2011), held in Banff, Canada, in October 2011 and published in the
Lecture Notes in Artificial Intelligence series as volume 6954. The papers in this
volume were accepted after two rounds of reviewing by at least two reviewers for
each paper. This volume also includes a long paper based on a Ph.D. thesis. This
volume offers a continuation of a number of research streams that have grown
out of the seminal work by Zdzis�law Pawlak1 during the first decade of the 21st
century.

The research streams represented in the papers cover both theory and ap-
plications of rough, fuzzy, and near sets. The following topics are discussed:
generalized probabilistic approximations defined using both rough set theory
and probability theory, an approximation framework based on partial cover-
ing of the universe, theoretical basis for higher order granulations using rough
and near sets, unified mathematical definition of different forms of reducts in
rough sets, investigation of topological structures of rough fuzzy sets, rough set
based c-means clustering using boundary elements, application of an anisotropic
wavelet-based nearness measure in classifying arthritic hand-finger movement
images, semantic clustering of scientific articles related to rough set theory, and
application of maximal clique enumeration in computing near neighbourhoods.

The editors of this special issue would like to express their gratitude to the
authors of all submitted papers. Special thanks are due to the following reviewers:
Jan Bazan, Jerzy Grzyma�la-Busse, Davide Ciucci, Christopher Henry, Andrzej
Janusz, Pawan Lingras, Mikhail Moshkov, Leszek Puzio, Dominik Ślȩzak, Marcin
Szczuka, Surabhi Tiwari, Jaros�law Stepaniuk, Wojciech Rza̧sa, Marcin Wolski,
Wei-Zhi Wu, and Wojciech Ziarko.

The editors and authors of this volume extend their gratitude to Alfred Hof-
mann and the LNCS staff at Springer for their support in making this volume
of the TRS possible.

The Editors-in-Chief were supported by the research grant 2011/01/D/
ST6/06981 from the Polish National Science Centre; grant SP/I/1/77065/10
from the National Centre for Research and Development (NCBiR) in frame
of the Strategic Scientific Research and Experimental Development Program:

1 See, e.g., Pawlak, Z., A Treatise on Rough Sets, Transactions on Rough Sets IV,
(2006), 1–17. See, also, Pawlak, Z., Skowron, A.: Rudiments of rough sets, Informa-
tion Sciences 177 (2007) 3–27; Pawlak, Z., Skowron, A.: Rough sets: Some extensions,
Information Sciences 177 (2007) 28–40; Pawlak, Z., Skowron, A.: Rough sets and
Boolean reasoning, Information Sciences 177 (2007) 41–73.
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“Interdisciplinary System for Interactive Scientific and Scientific-Technical In-
formation”; the individual research grant by the program Homing Plus, edition
3/2011, from the Foundation for Polish Science; the Natural Sciences and En-
gineering Research Council of Canada (NSERC); research grant 185986; the
Canadian Network of Excellence (NCE); and the Canadian Arthritis Network
(CAN) grant SRI-BIO-05.

December 2012 Sheela Ramanna
Zbigniew Suraj

Xin Wang
James F. Peters

Andrzej Skowron
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Roman Świniarski
Shusaku Tsumoto
Guoyin Wang
Marcin Wolski
Wei-Zhi Wu
Yiyu Yao
Ning Zhong
Wojciech Ziarko



Table of Contents

Generalized Probabilistic Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Jerzy W. Grzymala-Busse

An Extension to Rough c-Means Clustering Algorithm Based
on Boundary Area Elements Discrimination . . . . . . . . . . . . . . . . . . . . . . . . . 17

Fan Li and Qihe Liu

Granular Computing: Topological and Categorical Aspects of Near
and Rough Set Approaches to Granulation of Knowledge . . . . . . . . . . . . . . 34

Marcin Wolski

The Concept of Reducts in Pawlak Three-Step Rough Set Analysis . . . . . 53
Yiyu Yao and Rong Fu

Nearness of Subtly Different Digital Images . . . . . . . . . . . . . . . . . . . . . . . . . 73
Leszek Puzio and James F. Peters

Semantic Clustering of Scientific Articles Using Explicit Semantic
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Marcin Szczuka and Andrzej Janusz

Maximal Clique Enumeration in Finding Near Neighbourhoods . . . . . . . . 103
Christopher J. Henry and Sheela Ramanna

On Fuzzy Topological Structures of Rough Fuzzy Sets . . . . . . . . . . . . . . . . 125
Wei-Zhi Wu and You-Hong Xu

Approximation of Sets Based on Partial Covering . . . . . . . . . . . . . . . . . . . . 144
Zoltán Ernő Csajbók
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Generalized Probabilistic Approximations

Jerzy W. Grzymala-Busse1,2

1 Department of Electrical Engineering and Computer Science,
University of Kansas, Lawrence, KS 66045, USA

2 Institute of Computer Science, Polish Academy of Sciences,
01–237 Warsaw, Poland

jerzy@ku.edu

Abstract. We study generalized probabilistic approximations, defined
using both rough set theory and probability theory. The main objective
is to study, for a given subset of the universe U , all such probabilistic ap-
proximations, i.e., for all parameter values. For an approximation space
(U,R), where R is an equivalence relation, there is only one type of such
probabilistic approximations. For an approximation space (U,R), where
R is an arbitrary binary relation, three types of probabilistic approxi-
mations are introduced in this paper: singleton, subset and concept. We
show that for a given concept the number of probabilistic approxima-
tions of given type is not greater than the cardinality of U . Additionally,
we show that singleton probabilistic approximations are not useful for
data mining, since such approximations, in general, are not even locally
definable.

Keywords: Probabilistic approximations, parameterized approximations,
generalization of probabilistic approximations, singleton, subset and con-
cept probabilistic approximations.

1 Introduction

The entire rough set theory is based on ideas of the lower and upper approx-
imations. Complete data sets, presented as decision tables, are well described
by an indiscernibility relation, yet another fundamental idea of rough set the-
ory. The indiscernibility relation is an equivalence relation. Standard lower and
upper approximations were extended, using probability theory, to probabilistic
(parameterized) approximations. Such approximations were studied, among oth-
ers, in [1,2,3,4,5,6,7]. The parameter, called a threshold and associated with the
probabilistic approximation, may be interpreted as a probability. The threshold
is, in general, a real number.

So far probabilistic approximations were usually defined as lower and upper
approximations. As it was observed in [8], the only difference between so called
lower and upper probabilistic approximations is in the choice of the value of the
threshold.

Due to the fact that we explore the set of all probabilistic approximations of a
given type, the distinction between lower and upper approximations is blurred.

J.F. Peters et al. (Eds.): Transactions on Rough Sets XVI, LNCS 7736, pp. 1–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 J.W. Grzymala-Busse

Therefore, we will define only one kind of probabilistic approximations for an
approximation space (U,R), where U is a finite set and R is an equivalence
relation on U .

This paper, for a given decision table and a subset of the universe explores
the set of all probabilistic approximations. It is shown that the number of all
distinct probabilistic approximations is quite limited.

Additionally, this paper generalizes the usual three types of approximations:
singleton, subset and concept, used for approximation spaces (U,R), where R is
an arbitrary binary relation. Similarly as for singleton standard approximations,
a singleton probabilistic approximation of a subset X of the universe U is, in
general, not definable. There are two types of definability, local and global. If
the set X is globally definable, it is locally definable, the converse is, in general,
not true. Sets that is the singleton probabilistic approximation of X are, in
general, not even locally definable. The idea of probabilistic approximations is
applied to incomplete data sets. It is well known [9,10] that incomplete data
sets, i.e., data sets with missing attribute values, are described by characteristic
relations, which are reflexive but, in general, neither symmetric nor transitive.

A preliminary version of this paper was prepared for the 6-th International
Conference on Rough Sets and Knowledge Technology, Banff, Canada, October
9–12, 2011 [11].

2 Equivalence Relations

In this section we will discuss data sets without missing attribute values, i.e.,
complete. Complete data sets are describable by equivalence relations. Then we
will discuss all probabilistic partitions defined over a space approximation (U,R),
where U is a finite set and R is an equivalence relation.

2.1 Complete Data

Many real-life data sets have conflicting cases, characterized by identical values
for all attributes but belonging to different concepts (classes). Data sets with
conflicting cases are called inconsistent. An example of the inconsistent data set
is presented in Table 1. The data set presented in Table 1 is inconsistent since it
contains conflicting cases: the cases 2 and 4 are in conflict with the case 3 and
the case 6 is in conflict with case 8.

In Table 1, the set A of all attributes consists of three variables Temperature,
Headache and Cough. A concept is a set of all cases with the same decision
value. There are two concepts in Table 1, the first one contains cases 1, 2, 4
and 6 and is characterized by the decision value no of decision Flu. The other
concept contains cases 3, 5, 7 and 8 and is characterized by the decision value
yes.

The fact that an attribute a has the value v for the case x will be de-
noted by a(x) = v. The set of all cases will be denoted by U . In Table 1,
U = {1, 2, 3, 4, 5, 6, 7, 8}.
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Table 1. An inconsistent data set

Attributes Decision

Case Temperature Headache Cough Flu

1 normal no yes no

2 normal no no no

3 normal no no yes

4 normal no no no

5 high yes no yes

6 high yes yes no

7 high no yes yes

8 high yes yes yes

For an attribute-value pair (a, v) = t, a block of t, denoted by [t], is a set
of all cases from U such that for attribute a have value v. An indiscernibility
relation R on U is defined for all x, y ∈ U by

xRy if and only if a(x) = a(y) for all a ∈ A.

Equivalence classes of R are called elementary sets of R. An equivalence class
of R containing x is denoted [x]. Any finite union of elementary sets is called
a definable set [12]. Let X be a concept. In general, X is not a definable set.
However, set X may be approximated by two definable sets, the first one is called
a lower approximation of X , denoted by appr(X) and defined as follows

∪ {[x] | x ∈ U, [x] ⊆ X},

The second set is called an upper approximation of X , denoted by appr(X) and
defined as follows

∪ {[x] | x ∈ U, [x] ∩X �= ∅}.

For example, for the concept [(Flu, no)] = {1, 2, 4, 6},

appr({1, 2, 4, 6}) = {1},

and

appr({1, 2, 4, 6}) = {1, 2, 3, 4, 6, 8}.

2.2 Probabilistic Approximations

Let (U,R) be an approximation space, where R is an equivalence relation on U .
A probabilistic approximation of the set X with the threshold α, 0 < α ≤ 1, is
denoted by apprα(X) and defined as follows

∪{[x] | x ∈ U, Pr(X |[x]) ≥ α},
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where [x] is an elementary set of R and Pr(X |[x]) = |X∩[x]|
|[x]| is the conditional

probability of X given [x].
Obviously, the equivalence relationR uniquely defines a partition on U defined

as the family of all elementary sets of R. Such a partition will be denoted by R∗.
For Table 1, R∗ = {{1}, {2, 3, 4}, {5}, {6, 8}, {7}}.

Table 2. Conditional probabilities

[x] {1} {2, 3, 4} {5} {6, 8} {7}

Pr({1, 2, 4, 6} | [x]) 1 0.667 0 0.5 0

The number of distinct probabilistic approximations of the concept X is
smaller than or equal to the number n of distinct thresholds α from the def-
inition of a probabilistic approximation. The number n is equal to the number
of distinct positive conditional probabilities Pr(X |[x]), where x ∈ U . Addition-
ally, the number n is smaller than or equal to the number m of elementary sets [x]
of R. Finally, m ≤ |U |. Thus the number of distinct probabilistic approximations
of the given concept is smaller than or equal to the cardinality of U .

Table 2 shows conditional probabilities for all members of R∗. In Table 2 there
are three positive conditional probabilities: 0.5, 0.667 and 1. Therefore there are
only three probabilistic approximations:

appr0.5({1, 2, 4, 6}) = {1, 2, 3, 4, 6, 8},
appr0.667({1, 2, 4, 6}) = {1, 2, 3, 4},

and

appr1({1, 2, 4, 6}) = {1}.

Obviously, for the concept X , the probabilistic approximation of X computed for
the threshold equal to the smallest positive conditional probability Pr(X | [x])
is equal to the upper approximation of X . Additionally, the probabilistic ap-
proximation of X computed for the threshold equal to 1 is equal to the lower
approximation of X .

2.3 Rule Induction

In this subsection we assume that R is an equivalence relation. We will discuss
how the existing rough set based data mining systems, such as LERS (Learn-
ing from Examples based on Rough Sets), may be used to induce rules using
probabilistic approximations. As we will show, all what is necessary is, for every
concept, to modify the input data set, run LERS, and then edit the induced
rule set. We will illustrate this procedure by inducing a rule set for Table 1
and the concept [(Flu, no)] = {1, 2, 4, 6} using the probabilistic approximation
appr0.667({1, 2, 4, 6}) = {1, 2, 3, 4}. First, a new data set should be created in
which for all cases that are members of the set appr0.667({1, 2, 4, 6}) the decision
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values are copied from the original data set (Table 1) and for all remaining cases,
not being in the set appr0.667({1, 2, 4, 6}), a new decision value is introduced, say
SPECIAL. Thus a new data set is created, see Table 3.

Table 3. A new data set

Attributes Decision

Case Temperature Headache Cough Flu

1 normal no yes no

2 normal no no no

3 normal no no yes

4 normal no no no

5 high yes no SPECIAL

6 high yes yes SPECIAL

7 high no yes SPECIAL

8 high yes yes SPECIAL

The LERS data mining system may be used to induce certain rules (from
lower approximations) or possible rules (from upper approximations) [13]. Any
rule r is characterized by the conditional probability Pr(X |Y ), where X is the
concept and Y is the domain of r (the set of all cases described by the rule
conditions). For a certain rule r, by definition, Pr(X |Y ) = 1. We are interested
in inducing probabilistic rules, with Pr(X |Y > 0, so we need to induce possible
rules. For example, for Table 3,

appr([(Flu, no)]) = appr({1, 2, 4}) = {1},

and

appr([(Flu, no)]) = appr({1, 2, 4}) = {1, 2, 3, 4}.

Therefore, certain rules for [(Flu, no)] will describe only the set {1}, while pos-
sible rules for the same concept will describe all cases from the set {1, 2, 3, 4},
so the obvious choice is to use possible rules.

The data set presented in Table 3 should be inputted to the LERS system,
where first the ordinary upper approximations of all concepts, [(Flu, no)], [(Flu,
yes)] and [(Flu, SPECIAL)] are computed and then the MLEM2 algorithm [14]
is applied. For Table 3, the MLEM2 algorithm will return the following rule set

1, 3, 4
(Temperature, normal) -> (Flu, no),
2, 1, 3
(Temperature, normal) & (Cough, no) -> (Flu, yes),
1, 4, 4
(Temperature, high) -> (Flu, SPECIAL).
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Rules are presented in the LERS format, every rule is associated with three
numbers: the total number of attribute-value pairs on the left-hand side of the
rule, the total number of cases correctly classified by the rule during training,
and the total number of training cases matching the left-hand side of the rule,
i.e., the rule domain size. These numbers are computed by comparing induced
rules with Table 3. In this rule set only rules describing the concept [(Flu, no)]
are useful, the remaining rules should be deleted. Hence, only one rule is useful

1, 3, 4
(Temperature, normal) -> (Flu, no).

This rule describes the set {1, 2, 3, 4}, three cases (1, 2, and 4) truly belong
to the concept.

For the second concept from Table 1, [(Flu, yes)] = {3, 5, 7, 8}, and for the
following probabilistic approximation

appr0.667({3, 5, 7, 8}) = {5, 7},

the corresponding rule set may be induced from the data set presented in
Table 4.

Table 4. A new data set

Attributes Decision

Case Temperature Headache Cough Flu

1 normal no yes SPECIAL

2 normal no no SPECIAL

3 normal no no SPECIAL

4 normal no no SPECIAL

5 high yes no yes

6 high yes yes SPECIAL

7 high no yes yes

8 high yes yes SPECIAL

The MLEM2 algorithm returns the following rule set

1, 4, 4
(Temperature, normal) -> (Flu, SPECIAL),
2, 2, 2
(Headache, yes) & (Cough, yes) -> (Flu, SPECIAL),
2, 1, 1
(Headache, yes) & (Cough, no) -> (Flu, yes),
2, 1, 1
(Temperature, high) & (Headache, no) -> (Flu, yes).

Among these four rules only the following two rules
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2, 1, 1
(Headache, yes) & (Cough, no) -> (Flu, yes),
2, 1, 1
(Temperature, high) & (Headache, no) -> (Flu, yes).

describe the concept [(Flu, yes)]. Finally, the following rule set

1, 3, 4
(Temperature, normal) -> (Flu, no),
2, 1, 1
(Headache, yes) & (Cough, no) -> (Flu, yes),
2, 1, 1
(Temperature, high) & (Headache, no) -> (Flu, yes).

describes both concepts of the probabilistic approximations associated with the
parameter α = 0.667.

3 Arbitrary Binary Relations

In this section, first we will study approximations defined on the approxima-
tions space A = (U,R) where U is a finite nonempty set and R is an arbitrary
binary relation. Then we will extend corresponding definitions to generalized
probabilistic approximations.

3.1 Non-parameterized Approximations

First we will quote some definitions from [15]. Let x be a member of U . The
R-successor set of x, denoted by Rs(x), is defined as follows

Rs(x) = {y | xRy}.

The R-predecessor set of x, denoted by Rp(x), is defined as follows

Rp(x) = {y | yRx}.

For the rest of the paper we will discuss only R-successor sets and corresponding
approximations.

Let X be a subset of U . The R-singleton lower approximation of X , denoted
by apprsingleton(X), is defined as follows

{x | x ∈ U,Rs(x) ⊆ X}.

The singleton lower approximations were studied in many papers, see, e.g.,
[9,10,16,17,18,19,20,21,22,23].

The R-singleton upper approximation of X , denoted by apprsingleton(X), is
defined as follows

{x | x ∈ U,Rs(x) ∩X �= ∅}.
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The singleton upper approximations, like singleton lower approximations, were
also studied in many papers, e.g., [9,10,16,17,20,21,22,23].

The R-subset lower approximation of X , denoted by apprsubset(X), is defined
as follows

∪ {Rs(x) | x ∈ U,Rs(x) ⊆ X}.

The subset lower approximations were introduced in [9,10].
The R-subset upper approximation of X , denoted by apprsubset(X), is defined

as follows

∪ {Rs(x) | x ∈ U,Rs(x) ∩X �= ∅}.

The subset upper approximations were introduced in [9,10].
The R-concept lower approximation of X , denoted by apprconcept(X), is de-

fined as follows

∪ {Rs(x) | x ∈ X,Rs(x) ⊆ X}.

The concept lower approximations were introduced in [9,10].
The R-concept successor upper approximation of X , denoted by

apprconcept(X), is defined as follows

∪ {Rs(x) | x ∈ X,Rs(x) ∩X �= ∅} = ∪ {Rs(x) | x ∈ X}.

The concept upper approximations were studied in [9,10,19].

3.2 Probabilistic Approximations

By analogy with standard approximations defined for arbitrary binary relations,
we will introduce three kinds of probabilistic approximations for such relations:
singleton, subset and concept.

The singleton probabilistic approximation of X with the threshold α, 0 < α ≤
1, denoted by apprsingletonα (X), is defined as follows

{x | x ∈ U, Pr(X |Rs(x)) ≥ α},

where Pr(X |Rs(x)) =
|X∩Rs(x)|
|Rs(x)| is the conditional probability of X given Rs(x).

A subset probabilistic approximation of the set X with the threshold α, 0 <
α ≤ 1, denoted by apprsubsetα (X), is defined as follows

∪{Rs(x) | x ∈ U, Pr(X |Rs(x)) ≥ α},

where Pr(X |Rs(x)) =
|X∩Rs(x)|
|Rs(x)| is the conditional probability of X given Rs(x).

A concept probabilistic approximation of the set X with the threshold α,
0 < α ≤ 1, denoted by apprconceptα (X), is defined as follows



Generalized Probabilistic Approximations 9

∪{Rs(x) | x ∈ X, Pr(X |Rs(x)) ≥ α},

where Pr(X |Rs(x)) =
|X∩Rs(x)|
|Rs(x)| is the conditional probability of X given Rs(x).

It is not difficult to see that the number of different probabilistic approxi-
mations of a given type (singleton, subset or concept) is not greater than the
cardinality of U .

Obviously, for the concept X , the probabilistic approximation of a given type
(singleton, subset or concept) of X computed for the threshold equal to the
smallest positive conditional probability Pr(X | [x]) is equal to the standard
upper approximation of X of the same type. Additionally, the probabilistic ap-
proximation of a given type of X computed for the threshold equal to 1 is equal
to the standard lower approximation of X of the same type.

3.3 Incomplete Data Sets

It is well-known that any incomplete data set is described by a characteristic
relation R, a generalization of the indiscernibility relation. The characteristic
relation is reflexive but, in general, is neither symmetric nor transitive. For in-
complete data sets R-definable sets are called characteristic sets, a generalization
of elementary sets.

We distinguish between two types of missing attribute values: lost (e.g., the
value was erased) and ”do not care” conditions (such a value may be any value
of the attribute), see [9,10].

An example of incomplete data set is presented in Table 5.
For incomplete decision tables the definition of a block of an attribute-value

pair must be modified in the following way:

Table 5. An incomplete data set

Attributes Decision

Case Temperature Headache Cough Flu

1 normal no * no

2 ? no no no

3 normal * no yes

4 normal no ? no

5 high yes * yes

6 high yes yes no

7 high ? yes yes

8 high yes yes yes
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– If for an attribute a there exists a case x such that a(x) =?, i.e., the corre-
sponding value is lost, then the case x should not be included in any blocks
[(a, v)] for all values v of attribute a,

– If for an attribute a there exists a case x such that the corresponding value is
a ”do not care” condition, i.e., a(x) = ∗, then the case x should be included
in blocks [(a, v)] for all specified values v of attribute a.

For a case x ∈ U the characteristic set KB(x) is defined as the intersection of
the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in the following
way:

– If a(x) is specified, then K(x, a) is the block [(a, a(x))] of attribute a and its
value a(x),

– If a(x) =? or a(x) = ∗ then the set K(x, a) = U .

The characteristic setKB(x) may be interpreted as the set of cases that are indis-
tinguishable from x using all attributes from B and using a given interpretation
of missing attribute values.

For the data set from Table 5, the set of blocks of attribute-value pairs is
[(Temperature, normal)] = {1, 3, 4},
[(Temperature, high)] = {5, 6, 7, 8},
[(Headache, no)] = {1, 2, 3, 4},
[(Headache, yes)] = {3, 5, 6, 8},
[(Cough, no)] = {1, 2, 3, 5},
[(Cough, yes)] = {1, 5, 6, 7, 8}.

The corresponding characteristic sets are

KA(1) = KA(4) = {1, 3, 4},
KA(2) = {1, 2, 3},
KA(3) = {1, 3},
KA(5) = KA(6) = KA(8) = {5, 6, 8},
KA(7) = {5, 6, 7, 8}.

Conditional probabilities of the concept {1, 2, 4, 6} given a characteristic set
KA(x) are presented in Table 6.

For Table 5, all probabilistic approximations (singleton, subset and concept)
are

Table 6. Conditional probabilities

KA(x) {1, 3, 4} {1, 2, 3} {1, 3} {5, 6, 8} {5, 6, 7, 8}

Pr({1, 2, 4, 6} | KA(x)) 0.667 0.667 0.5 0.333 0.25
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apprsingleton0.25 ({1, 2, 4, 6}) = U,

apprsingleton0.333 ({1, 2, 4, 6}) = {1, 2, 3, 4, 5, 6, 8},

apprsingleton0.5 ({1, 2, 4, 6}) = {1, 2, 3, 4},

apprsingleton0.667 ({1, 2, 4, 6}) = {1, 2, 4},

apprsingleton1 ({1, 2, 4, 6}) = ∅,

apprsubset0.25 ({1, 2, 4, 6}) = U,

apprsubset0.333 ({1, 2, 4, 6}) = {1, 2, 3, 4, 5, 6, 8},

apprsubset0.5 ({1, 2, 4, 6}) = {1, 2, 3, 4},

apprsubset0.667 ({1, 2, 4, 6}) = {1, 2, 3, 4},

apprsubset1 ({1, 2, 4, 6}) = ∅,

apprconcept0.25 ({1, 2, 4, 6}) = {1, 2, 3, 4, 5, 6, 8},

apprconcept0.333 ({1, 2, 4, 6}) = {1, 2, 3, 4, 5, 6, 8},

apprconcept0.5 ({1, 2, 4, 6}) = {1, 2, 3, 4},

apprconcept0.667 ({1, 2, 4, 6}) = {1, 2, 3, 4},

apprconcept1 ({1, 2, 4, 6}) = ∅.

3.4 Definability

Definability for completely specified decision tables should be modified to fit
into incomplete decision tables. For incomplete decision tables, a union of some
intersections of attribute-value pair blocks, where such attributes are members
of B and are distinct, will be called B-locally definable sets. A union of char-
acteristic sets KB(x), where x ∈ X ⊆ U will be called a B-globally definable
set. Any set X that is B -globally definable is B -locally definable, the con-
verse is not true. For example, the set {1} is A-locally definable since {1} =
[(Temperature, normal)]∩[(Cough, yes)]. However, the set {1} is not A-globally
definable. On the other hand, the set {1, 2, 4} = apprsingleton0.667 ({1, 2, 4, 6}) is not
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even locally definable since in all blocks of attribute-value pairs containing the
case 4 contain also the case 3 as well. Obviously, if a set is not B-locally definable
then it cannot be expressed by rule sets using attributes from B. This is why
it is so important to distinguish between B-locally definable sets and those that
are not B-locally definable. In general, subset and concept probabilistic approx-
imations are globally definable while singleton probabilistic approximations are
not even locally definable.

3.5 Rule Induction

We will study how to adapt the LERS data mining system for rule induction from
probabilistic approximations of the given concept. We will use a similar technique
as in Subsection 3.3, i.e., for a concept and the probabilistic approximation of
the concept we will create a new decision table. However, we have more choices
since we may use a few different types of approximations.

Let us say that we want to induce rules for the concept [(Flu, no)] and the
concept probabilistic approximation with the parameter α = 0.5. The prelimi-
nary modified data set, constructed in the same way as described in Subsection
2.3, is presented in Table 7.

Table 7. A preliminary modified data set

Attributes Decision

Case Temperature Headache Cough Flu

1 normal no * no

2 ? no no no

3 normal * no yes

4 normal no ? no

5 high yes * SPECIAL

6 high yes yes SPECIAL

7 high ? yes SPECIAL

8 high yes yes SPECIAL

This data set is inputted to the LERS data mining system, see Figure 1. The
LERS system computes the upper concept approximation of the set {1, 2, 4, 6},
in our example it is {1, 2, 3, 4}, and the corresponding final modified data set.
The MLEM2 algorithm induces the following preliminary rule set from the final
modified data sets
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1, 3, 4
(Headache, no) -> (Flu, no),
2, 1, 2
(Temperature, normal) & (Cough, no) -> (Flu, yes),
1, 4, 4
(Temperature, high) -> (Flu, SPECIAL).

where the three numbers that precede every rule are computed from Table 7.
Obviously, only the first rule

1, 3, 4
(Headache, no) -> (Flu, no),

should be saved and the remaining two rules should be deleted in computing the
final rule set.

Note that, in general, the result of computing the upper concept approxima-
tion by LERS results in the set

∪ {KA(y) | y ∈ ∪ {KA(x) | x ∈ X, Pr(X |KA(x)) ≥ α}}

which is a superset of the concept probabilistic approximation of X . For some
data sets, for example for incomplete data sets with only lost values, both sets
are identical. Nevertheless, in the preliminary rule set the three numbers that
precede every rule are adjusted taking into account the preliminary modified
data set. Thus during classification of unseen cases by the LERS classification
system rules describe the original concept probabilistic approximation of the
concept X .

4 Conclusions

In this paper we study a set of all probabilistic approximations, first for the
approximation space (U,R), where U is a nonempty finite set and R is an equiv-
alence relation, and then for the approximation space (U,R), where R is an
arbitrary binary relation. For an arbitrary binary relation R standard defini-
tions of singleton, subset and concept approximations are generalized to prob-
abilistic approximations. It is shown that the set of such probabilistic approx-
imations, even if R is an arbitrary binary relation, is finite and quite limited.
Moreover, singleton probabilistic approximations of a subset X of the universe
U is, in general, not even locally definable, so X is not expressible by a rule set.
Therefore, singleton probabilistic approximations should not be used for data
mining.

Acknowledgement. The author would like to thank the anonymous referees
for all their valuable suggestions.
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Abstract. Rough c-means algorithm has gained increasing attention in
recent years. However, the original Rough c-means algorithm does not
distinguish data points in the boundary area while computing the new
centroid of each cluster. In this paper, we consider the distinction be-
tween data points in the boundary area and present an extended Rough
c-means algorithm which benefits from this information. The distinction
is reflected by the degree of the data point in the boundary area be-
ing close to its corresponding lower approximation. This information is
utilized in the step of calculating the new centroid of each cluster. The
algorithm is tested on four UCI machine learning repository data sets.
Experimental results indicate that the proposed algorithm yields more
desirable clustering results than the original Rough c-means algorithm.

Keywords: Rough c-means algorithm, Rough Sets, Lower approxima-
tion, Upper approximation, Boundary area.

1 Introduction

Clustering plays an important role in various areas [1, 2]. It can be viewed as the
problem of dividing a potentially large data (patterns) set X of n data points
in p-dimensional space, i.e. X = {x1,x2...,xn} ⊂ Rp, into a few c < n compact
subsets C1, C2, · · · , Cc. Those data points within each cluster are more closely
related to one another than data points assigned to different clusters. In the
past years, a large number of different clustering algorithms were proposed to
handle this problem, such as c-means [3, 4], fuzzy c-means (FCM) [5, 6], spectral
clustering [7, 8] hierarchical clustering [9, 10], and model based clustering [11, 12].

Recently, Rough Sets theory [13, 14] has been incorporated in the famous c-
means framework to develop Rough c-means (RCM) algorithm [15] (For
more aspects of Rough Sets theory and its applications, please refer to [16–29]).
Since its introduction, RCM has gained increasing attention. Further researches
include parameter selection [30], method extension and modification [31–36], and
applications for real-life problems [15, 37–39].

J.F. Peters et al. (Eds.): Transactions on Rough Sets XVI, LNCS 7736, pp. 17–33, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Roughly speaking, clustering algorithms can be divided into two types: par-
titional and hierarchical. Like c-means, RCM can be classified into the parti-
tional clustering methods. In c-means, c clusters construct a partition of X , i.e.
Ci ∩ Cj = φ if i �= j. This might not be appropriate in many real-life scenar-
ios. FCM uses the membership value to make it possible to assign a data point
to potentially all clusters. RCM can also assign a data point to more than one
cluster, but uses more restrictions. In RCM, each cluster is represented by its
lower and upper approximations. A data point may be assigned to the lower ap-
proximation of a certain cluster (and hence in the upper approximation of this
cluster) or the boundary areas of two or more clusters (and hence in the upper
approximations of these clusters) according to its distances to cluster centroids.
RCM iteratively updates cluster centroids and the assignment of all data points
until a certain termination criterion has been satisfied [15, 33].

In this paper, we present an extended RCM algorithm, which intends to cap-
ture the distinction between data points in the boundary area and uses this
information in the clustering procedure (the preliminary results of this paper
were presented in [36]). According to the definition in Rough Sets theory, data
points in the boundary area of a cluster possibly (but not definitely) belong
to this cluster. So distinguishing these data points according to the degree of
possibility may be useful for clustering. On the other hand, by the definition
of the lower approximation, data points in the lower approximation of a cluster
all belong to this cluster with certainty. Thus it is not necessary to distinguish
these data points. In this way, the presented algorithm is more descriptive than
the original RCM, but less descriptive than FCM.

This idea is motivated by several works (e.g. [31, 39]). But there are important
distinctions between approaches discussed in these works and ours. Firstly, in [31,
39], when computing the new centroid of a cluster, the membership value is used
to reflect the difference between all data points in the lower approximation and
boundary area. This membership value is calculated by using the distances of a
data point to all cluster centroids. But these distances may be close, which means
some data points in the boundary area may not be distinguished effectively. In
our approach, the distances of a data point in the boundary area to its closet
neighbors in the corresponding lower approximations are used. Secondly, in [31,
39] when computing the new centroid of each cluster, the membership value of
each data point in the lower approximation is also used. In our approach, data
points in the lower approximation are not distinguished. (see section 3.1 for more
details).

Four UCI data sets are employed to compare the performance of RCM and the
presented algorithm. We use the modified DB index [31] to evaluate the perfor-
mance of the both algorithms. Experimental results indicate that the presented
algorithm provides superior clustering results contrasted with the original RCM,
both for the overall performance and the optimal performance.

The rest of this paper is organized as follows. Section 2 briefly reviews the
basic notions. Section 3 presents the motivations and the algorithm framework.
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Section 4 presents the experiment process and lists the results. Finally, Section 5
presents the conclusion and some future research perspectives.

2 Basic Concepts

In this section, we briefly review the basic notions of Rough Sets and RCM.

2.1 Rough Sets

Let U be a nonempty finite set of objects and R an equivalence relation on U. R
constitutes a partition of U , denoted by U/R. Let [x]R denotes the equivalence
class of x, then U/R = {[x]R : x ∈ U}.

The R-lower and R-upper approximations of a set X ⊆ U are defined as
follows [13, 14, 40]:

R(X) = {x ∈ U : [x]R ⊆ X}, (1)

R(X) = {x ∈ U : [x]R ∩X �= ∅}. (2)

R(X) is the set of objects that belong to X with certainty, whereas R(X) is the
set of objects that possibly belong to X .

The boundary area of the set X is defined as:

bnR(X) = R(X)−R(X). (3)

The properties of Rough Sets can be found in [13, 14, 40]. RCM does not verify
all of these properties but only uses the following rules to assign each data point.

1. R(Xi) ⊆ R(Xi) ⊆ U, ∀Xi ⊆ U .
2. R(Xi) ∩R(Xj) = φ, ∀Xi, Xj ⊆ U, i �= j.
3. R(Xi) ∩R(Xj) = φ, ∀Xi, Xj ⊆ U, i �= j.
4. If an object x ∈ U is not a part of any lower approximations, then it must

belong to the boundary areas of two or more clusters, and hence belongs to
the upper approximations of these clusters.

2.2 Rough c-Means Algorithm

Let X = {x1,x2, · · · ,xn} ⊂ Rp be a data set, which is to be partitioned to c
clusters C1, C2, · · · , Cc. The centroid (mean) of the i-th cluster Ci is denoted
by vi, i = 1, 2, · · · , c. The distance between xi and vk is denoted by d(xi,vk),
d(xi,vk) = ‖ xi − vk ‖. In the rest of this paper, the cardinality of a set C is
denoted by |C|.

In RCM, the equivalence relation R is not constructed explicitly. So in the
rest of this paper, R(Ci), R(Ci) and bnR(Ci) are denoted by Ci, Ci and bn(Ci),
respectively.
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A cluster Ci is denoted by a pair (Ci, Ci) in RCM. The assignment criteria
to determine whether a data point belongs to the upper approximation or the
lower approximation of a certain cluster are as follows.

∀xi ∈ X , let d(xi,vh) = mink=1,··· ,cd(xi,vk). vh is the closest centroid to xi.
Then, the index set of all centroids that are also close to xi is found:

J = {j : d(xi,vj)− d(xi,vh) ≤ ε ∧ j �= h}, (4)

where ε is a predefined threshold. If J = ∅, which means vh is the only cen-
troid similar to xi. So xi is assigned to Ch, and hence belongs to Ch. On the
other hand, if J �= ∅, which means xi is similar to two or more centroids. Ac-
cording to the properties described in section 2.1, xi cannot be assigned to any
lower approximations, but assigned to the upper approximations of all clusters
determined by set J .

In [33], the formula which decides the centroids close to xi (Eq. (4)) is replaced
by:

J = {j : d(xi,vj)

d(xi,vh)
≤ 1 + ε ∧ j �= h}. (5)

By using Eq. (5), RCM shows a superior performance (see [33] for more details).
So in the rest of this paper we use this equation to decide all centroids close to
a data point (both in RCM and our extended method).

According to the result of data points assignment, RCM uses the following
equation to determine the new centroid of each cluster.

vi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
wl

∑
xk∈Ci

xk

|Ci| + wb

∑
xk∈bn(Ci)

xk

|bn(Ci)| , if Ci �= ∅ ∧ bn(Ci) �= ∅
∑

xk∈bn(Ci)
xk

|bn(Ci)| , if Ci = ∅ ∧ bn(Ci) �= ∅
∑

xk∈Ci
xk

|Ci| , otherwise.

(6)

RCM iteratively updates the assignment of all data points and cluster centroids
until a certain termination criterion has been met.

The original form of RCM algorithm [15, 33] is outlined in Algorithm 1.
In Eq. (6), the parameters wl and wb define the importance of the lower

approximation and the boundary area during clustering, respectively, satisfying
wl + wb = 1 and 0.5 < wl < 1.

In line 1 of RCM (and our extended method in Section 3.3), the initial cen-
troids are assigned by randomly choosing c data points in X. The benefit of this
choice is that every cluster has at least one point in its lower approximation,
which avoids invalid initial assignment.

3 The Extended Rough c-Means Algorithm

In this section, we propose the extended algorithm based on boundary area
elements discrimination. First, we show the basic ideas and motivations. Then
we describe the technical details of the proposed approach. Finally we present
all steps of the proposed algorithm.
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Algorithm 1: RCM algorithm

input : The given data set X = {x1,x2, · · · ,xn}, c, wl, ε
output: Clustering result: (C1, C1), · · · , (Cc, Cc)

1 randomly assign the initial centroid vi for Ci, i = 1, 2, · · · , c;
2 repeat
3 for i ← 1 to n do
4 for a data point xi, determine its closest centroid vh: d(xi,vh) =

mink=1,...,cd(xi,vk);

5 assign xi to the upper approximation of the cluster h, i.e. xi ∈ Ch;
6 using Eq. (5) to determine the set J ;
7 if J = ∅ then
8 assign xi to the lower approximation of the cluster h, i.e. xi ∈ Ch;
9 else

10 assign xi to the upper approximations of the clusters determined by

J, i.e. xi ∈ Cj ,∀j ∈ J ;

11 end

12 end
13 calculate the new centroid for each cluster using Eq. (6);

14 until the termination criterion is met ;

Table 1. An illustrative data set

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

x 0.1 0.0 0.0 0.0 0.15 0.1 0.7 0.8 1.0 0.24 0.75
y 0.0 0.0 0.2 0.4 0.5 0.2 1.0 0.75 0.8 0.68 0.1

3.1 Discriminating Boundary Area Elements

Here, we employ an example to illustrate the motivations involved in the pro-
posed method.

Example 1: A two-dimensional data set X = {x1,x2...,x11} is listed in Table
1. With the following parameter setting: initial mean=

(
0.0 0.8
0.0 0.8

)
, c = 2, wl = 0.9,

wb = 0.1 and ε = 0.25, the result of RCM is shown in Fig.1. For cluster C1, C1 =
{x1,x2,x3,x4,x5,x6}, bn(C1) = {x10,x11}. For cluster C2, C2 = {x7,x8,x9},
bn(C2) = {x10,x11}.

Although in RCM, the equivalence relation is not constructed explicitly, two
data points can be regarded as similar according to their distances to cluster

centroids. For example, x10 and x11 are similar since d(x10,v2)
d(x10,v1)

≤ 1 + ε and
d(x11,v2)
d(x11,v1)

≤ 1 + ε hold. So in RCM, x10 and x11 are assigned to bn(C1) and

bn(C2) (and hence in C1 and C2) without any difference. And in Eq. (6), when
calculating new centroids for C1 and C2, x10 and x11 are also used without any
difference. In other words, they are assigned the same weight in calculating new
centroids for C1 and C2.
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Fig. 1. Clustering result of RCM

On the other hand, there exists obvious difference between x10 and x11. One can
see that x10 is much closer to C1 thanC2. Whereas the distance x11 toC1 is almost
the same as the distance x11 to C2. Thus by using Eq. (6), the information about
the distinction between x10 and x11 (in the sense of the degree of the two data
points being close to their respective lower approximations) cannot be captured.

In general, a good clustering result should have the property that the cluster
label of each data point shows consistency with its neighboring data points. For
example, in the local learning approach [41, 42], for a given data point, a model
is constructed by using its neighboring data points as training data, and then
the label of the given data point is predicted by this model. It has been reported
that local learning algorithms often show good performance. So it is useful to
consider the neighboring information.

From this point of view, the neighboring information indicates that although
x10 and x11 all possibly belong to C1 and C2, the degrees of x10 and x11 belong
to C1 and C2 are different. Specifically, x10 is more likely to be in C1 than in C2,
and the degrees ofx11 to be inC1 andC2 are almost equal. This information should
be used in clustering procedure.More specifically, in Eq. (6), when calculating new
centroids forC1 andC2,x10 andx11 are all weighted bywl to reflect their similarity.
And at the same time, x10 and x11 should also be assigned different coefficients to
reflect neighboring information.Thus intuitively, there is a need for a newapproach
to reflect the distinction between data points in the boundary area.

On the other hand, it is not necessary to distinguish data points in the lower
approximation. Firstly, according to the definition in Rough Sets theory, these
data points all belong to the corresponding cluster with certainty. Secondly, if
these points should be distinguished, the distances of theses points to cluster
prototypes (centroids) would be used. This means the difference between these
points is relatively small. At last, from the practical perspective, a data point in
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the lower approximation shows consistency with its neighboring data points on
the cluster label, apart from some special cases (e.g. outliers).

3.2 Calculating New Centroids

The typical case is shown in Fig. 2. xk is in both bn(C1), bn(C2), · · · , bn(Cm).
According to property 4 described in Section 2.1, xk belongs to C1, C2, · · · , Cm.

Let d1k, d2k, · · · , dmk denote the distances of xk to its closest data point in
C1, C2, · · · , Cm, respectively. We use d1k, d2k, · · · , dmk to calculate a measure to
evaluate the degree of xk being close to C1, C2, · · · , Cm.
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v
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d
mk
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d
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Fig. 2. Calculating new centroids

Formally, let Fk be the index set such that Fk = {i : xk ∈ Ci}. With the
properties described in Section 2.1 we know that if |Fk| > 1, ∀j ∈ Fk, xk ∈
bn(Cj). The degree of xk being close to the lower approximation of Ci is denoted
as uik and calculated by:

uik =
1∑

j∈Fk
( dik

djk
)

2
m−1

, (7)

where the exponent m > 1 is called a fuzzifier, and ∀j ∈ Fk,

djk =

⎧⎨⎩minxl∈Cj ‖xk − xl ‖, if Cj �= ∅,

‖xk −
∑

xp∈Cj
xp

|Cj | ‖, if Cj = ∅.
(8)

We note that Eq. (7) is a variation of the equation used in FCM to calculate the
membership value of a data point belonging to a certain cluster.

This idea is motivated by [31, 39]. But in these researches the membership
value is calculated by using the distances of a data point to all cluster centroids.
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For example, in the case shown in Fig. 2, the membership values are determined
by d(xk,v1), d(xk,v2), · · · , d(xk,vm). Since these distances are close, it is not
effective to distinguish data points in the boundary area.

The new centroid for each cluster is calculated as follows:

vi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
wl

∑
xk∈Ci

xk

|Ci| + wb

∑
xk∈bn(Ci)

um
ikxk

∑
xk∈bn(Ci)

um
ik

, if Ci �= ∅ ∧ bn(Ci) �= ∅
∑

xk∈bn(Ci)
um
ikxk

∑
xk∈bn(Ci)

um
ik

, if Ci = ∅ ∧ bn(Ci) �= ∅
∑

xk∈Ci
xk

|Ci| , otherwise.

(9)

We note that from Eq. (9) one can see that according to the motivation in
section 3.1, data points in the lower approximation are not distinguished when
calculating the centroid of each cluster. This is also different with the previous
works in [31, 39].

3.3 Algorithm Descriptions

The extended RCM (ERCM hereafter) is shown in Algorithm 2. Lines 13 to 19
contain the key code of this framework. One can design different degree measures
to obtain respective algorithms.

The termination criterion in line 21 of ERCM is that there are no more new
assignments of data points, or the algorithm does not converge in Smax iterations.

The time complexity of ERCM is determined by calculating uil. The overall
time complexity of ERCM is O(n2pT ), where T is the number of iterations and
p is the dimension of data points.

Example 2: For the data set given by Table 1, the clustering result of ERCM
is shown in Fig. 3. For cluster C1: C1 = {x1, x2, x3, x4, x5, x6, x10}, bn(C1) =
{x11}. For cluster C2, C2 = {x7,x8,x9}, bn(C2) = {x11}. In this result, x10

is assigned to the lower approximation of C1 rather than being assigned to the
upper approximations of both clusters. One can see that this result is more
appropriate than the result depicted in Fig. 1.

4 Experimental Results

In this section, we conduct two sets of experiments. The first one aims at com-
paring the performance of ERCM and RCM. The second one is the sensitivity
studies of the parameter m. In all experiments, we use four data sets in the UCI
Machine Learning repository [43]: Iris, Wine, Wisconsin breast cancer (Wdbc)
and Haberman. The characteristic of the four data sets is summarized in Table
2. We set c equal to the class number of each data set for ERCM and RCM. All
data in the four data sets are normalized to the interval [0, 1].

In all experiments, we use the following parameter setting: wl = 0.94, Smax =
100. And we use the Davies-Bouldin index [44] (DB index hereafter) to eval-
uate the performance of ERCM and RCM. DB index is a widely used cluster
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Algorithm 2: ERCM algorithm

input : The given data set X = {x1,x2, · · · ,xn}, c, wl, ε, m
output: Clustering result: (C1, C1), · · · , (Cc, Cc)

1 randomly assign the initial centroid vi for Ci, i = 1, 2, · · · , c;
2 repeat
3 for i ← 1 to n do
4 for a data point xi, determine its closest centroid vh: d(xi,vh) =

mink=1,...,cd(xi,vk);

5 assign xi to the upper approximation of the cluster h, i.e. xi ∈ Ch;
6 using Eq. (5) to determine the set J ;
7 if J = ∅ then
8 assign xi to the lower approximation of the cluster h, i.e. xi ∈ Ch;
9 else

10 assign xi to the upper approximations of the clusters determined by

J, i.e. xi ∈ Cj ,∀j ∈ J ;

11 end

12 end
13 determine the boundary area L = X − (C1 ∪ C2 ∪ · · · ∪ Cc);
14 for l ← 1 to |L| do
15 For xl ∈ L, determine the set Fl;
16 foreach i ∈ Fl do
17 calculate uil using Eq. (7)
18 end

19 end
20 calculate the new centroid for each cluster using Eq. (9);

21 until the termination criterion is met ;

validity index, but the original form of DB index is designed for crisp cluster-
ing algorithms. So we use the extended form of DB index [31] for performance
evaluation. The extended DB index is defined as:

DB =
1

c

c∑
i=1

maxj �=i

(
Sr(Ci) + Sr(Cj)

d(vi,vj)

)
, (10)

where Sr(Ci) is the intra-cluster distance, and d(vi,vj) =‖vi−vj ‖ denotes the
inter-cluster separation.

Sr(Ci) is defined as follows:

Sr(Ci) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
wl

∑
xk∈Ci

‖xk−vi‖2

|Ci| + wb

∑
xk∈bn(Ci)

‖xk−vi‖2

|bn(Ci)| , if Ci �= ∅ ∧ bn(Ci) �= ∅
∑

xk∈bn(Ci)
‖xk−vi‖2

|bn(Ci)| , if Ci = ∅ ∧ bn(Ci) �= ∅
∑

xk∈Ci
‖xk−vi‖2

|Ci| . otherwise.

(11)
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Fig. 3. Clustering result of ERCM

Table 2. Characteristics of the data sets used in the experiments

Dataset �Dimension �Sample �Class

Iris 4 150 3
Wine 13 178 3
Wdbc 30 569 2
Haberman 3 306 2

A small value of DB index means a good clustering result, in which clusters
are compact and well separated.

4.1 Performance Comparison

In this section, we apply ERCM and RCM to the four data sets and compare the
performance for different values of ε, ε = 0.005, 0.01, · · · , 0.1. In this experiment,
m is set to 2.0 for ERCM. The following criteria are used in the comparison:

1. For a value of ε, RCM and ERCM start from the same randomly chosen
center initialization, and DB index is calculated and compared when ERCM
and RCM stop. This experiment is repeated 100 times. According to the
comparison of DB index, the number that ERCM outperforms RCM or RCM
outperforms ERCM in the 100 runs is recorded and denoted asNb. The larger
this value, the better the performance. This criterion aims at the overall
performance comparison.
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2. For a value of ε, the best DB index of RCM and ERCM in the 100 runs
is recorded and denoted as DBbest. The smaller this value, the better the
performance. This criterion aims at the optimal performance comparison.
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Fig. 4. Performance comparison based on Nb

The results of criterion 1 is depicted in Fig. 4. One can see that:

1. For Iris dataset, ERCM outperforms RCM in 90.9% cases (ε = 0.01 – 0.10).
RCM shows performance equivalent to ERCM in ε = 0.005.

2. For Wine dataset, ERCM outperforms RCM in 72.7% cases (ε = 0.005, 0.01
– 0.03, 0.07 – 0.10). RCM outperforms ERCM in 27.3% cases (ε = 0.04, 0.05,
0.06).

3. For Wdbc dataset, ERCM outperforms RCM in 81.8% cases (ε = 0.01 –
0.06, 0.08 – 0.10). RCM outperforms ERCM in 9.1% cases (ε = 0.07). RCM
shows performance equivalent to ERCM in ε = 0.005.

4. For Haberman dataset, ERCM outperforms RCM in 81.8% cases (ε = 0.005,
0.01, 0.02, 0.05 – 0.10). RCM outperforms ERCM in 9.1% cases (ε = 0.03).
RCM shows performance equivalent to ERCM in ε = 0.04.
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Obviously, although RCM outperforms ERCM on few values of ε, ERCM shows
better performance than RCM for the four tested data sets.

Table 3. Statistical results of DB index

ε m&v
Iris Wine Wdbc Haberman

RCM ERCM RCM ERCM RCM ERCM RCM ERCM

0.005
mean 1.912E-1 1.912E-1 7.444E-1 7.399E-1 8.266E-1 8.266E-1 3.295E-1 3.293E-1

variance 1.792E-4 1.792E-4 9.663E-4 5.165E-5 2.440E-30 2.440E-30 9.388E-5 9.288E-5

0.01
mean 1.926E-1 1.923E-1 7.693E-1 7.669E-1 8.981E-1 8.796E-1 3.356E-1 3.223E-1

variance 2.133E-4 2.052E-4 2.126E-3 1.300E-3 6.047E-3 4.086E-3 1.942E-4 3.282E-13

0.02
mean 1.973E-1 1.971E-1 7.834E-1 7.650E-1 9.563E-1 9.543E-1 3.354E-1 3.366E-1

variance 2.199E-4 2.195E-4 1.130E-3 1.520E-5 1.475E-4 3.187E-8 1.819E-4 2.240E-4

0.03
mean 1.923E-1 1.913E-1 7.907E-1 7.881E-1 9.578E-1 9.552E-1 3.220E-1 3.220E-1

variance 2.052E-4 1.929E-4 2.213E-3 2.059E-3 1.555E-4 2.193E-6 4.482E-31 2.530E-13

0.04
mean 1.959E-1 1.939E-1 7.739E-1 7.770E-1 9.077E-1 9.067E-1 3.220E-1 3.220E-1

variance 2.745E-4 2.994E-4 3.874E-4 7.195E-4 5.617E-5 3.765E-5 4.482E-31 4.482E-31

0.05
mean 1.912E-1 1.866E-1 7.587E-1 7.599E-1 8.934E-1 8.933E-1 3.361E-1 3.329E-1

variance 1.792E-4 1.528E-4 1.189E-3 1.259E-3 2.604E-5 2.484E-5 1.833E-4 1.422E-4

0.06
mean 1.997E-1 1.909E-1 7.652E-1 7.737E-1 8.850E-1 8.838E-1 3.550E-1 3.541E-1

variance 2.309E-4 2.958E-4 2.838E-4 7.189E-4 1.161E-5 3.234E-6 1.083E-4 3.823E-5

0.07
mean 2.088E-1 2.007E-1 7.551E-1 7.506E-1 8.755E-1 8.779E-1 3.346E-1 3.336E-1

variance 1.666E-4 2.318E-4 5.286E-3 1.480E-3 4.528E-6 1.171E-6 2.641E-6 1.224E-5

0.08
mean 2.088E-1 2.008E-1 7.432E-1 7.407E-1 9.281E-1 9.236E-1 3.354E-1 3.335E-1

variance 2.083E-4 2.919E-4 1.392E-3 3.929E-4 5.228E-5 3.733E-5 2.798E-6 6.816E-6

0.09
mean 2.004E-1 1.955E-1 7.458E-1 7.422E-1 9.307E-1 9.250E-1 3.354E-1 3.296E-1

variance 1.698E-4 3.491E-4 1.785E-3 1.340E-3 4.703E-5 4.938E-7 1.525E-5 3.382E-6

0.10
mean 2.020E-1 1.968E-1 7.458E-1 7.392E-1 9.252E-1 9.224E-1 3.315E-1 3.281E-1

variance 4.613E-4 3.362E-4 2.904E-3 1.325E-3 1.407E-6 2.104E-7 1.001E-5 4.224E-6

The statistical results of DB index are shown in Table 3. One can see that:

1. If the mean of DB index is used for overall performance comparison, the
result is almost the same as the result shown in Fig.4.

2. For the Iris dataset, there are 45.5% cases that VERCM < VRCM and
VRCM < VERCM , where VERCM and VRCM denote the variance of DB index
for ERCM and RCM, respectively.

3. For the Wine dataset, there are 72.7% cases that VERCM < VRCM and 27.3%
cases that VRCM < VERCM .

4. For the Wdbc dataset, there are 90.9% cases that VERCM < VRCM . VRCM <
VERCM does not happen.

5. For the Haberman dataset, there are 54.5% cases that VERCM < VRCM and
36.4% cases that VRCM < VERCM .

Thus, the statistical results also show that ERCM yields superior clustering
results in comparison with RCM.

The results of criterion 2 is depicted in Fig. 5. One can see that:

1. For Iris dataset, ERCM outperforms RCM in 63.6% cases (ε = 0.04 – 0.10).
RCM does not outperforms ERCM. RCM shows performance equivalent to
ERCM in ε = 0.005, 0.01 – 0.03.
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Fig. 5. Performance comparison based on DBbest.

2. For Wine dataset, ERCM outperforms RCM in 63.6% cases (ε = 0.01, 0.03,
0.04, 0.06, 0.08 – 0.10). RCM outperforms ERCM in 9.1% cases (ε = 0.07).
RCM shows performance equivalent to ERCM in ε = 0.005, 0.02, 0.05.

3. For Wdbc dataset, ERCM outperforms RCM in 27.3% cases (ε = 0.08 –
0.10). RCM outperforms ERCM in 18.2% cases(ε = 0.02, 0.03). RCM shows
performance equivalent to ERCM in ε = 0.005, 0.01, 0.04 – 0.07.

4. For Haberman dataset, ERCM outperforms RCM in 45.5% cases (ε = 0.06
– 0.10). RCM does ont outperforms ERCM. RCM shows performance equiv-
alent to ERCM in ε = 0.005, 0.01 – 0.05.

Thus, the optimal clustering results are closer than the overall clustering re-
sults, especially for the Wdbc data set. But in general, ERCM still shows better
performance than RCM for the four tested data sets.
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Fig. 6. DBbest in dependency of m

4.2 Sensitivity Studies of Parameter m

The second experiment aims at checking whether ERCM is sensitive to changes
of m. To this end, we compare the performance of ERCM based on DBbest by
using different values of m, m = 1.5, 1.6, · · · , 2.5.

The results of the second experiment are depicted in Fig.6. For every dataset,
the maximum variance of DBbest and its corresponding value of ε is listed in
Table 4.

One can see that for the four data sets, the clustering results are not sensitive
to small changes of the value of m. So in general, choosing an ordinary value of
m (e.g. m = 2.0) is sufficient. In contrast, ε must be chosen more carefully.
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Table 4. Maximum variance of DBbest

Dataset Maximum variance

Iris 1.9298E-7 (ε = 0.08)
Wine 6.0699E-5 (ε = 0.02)
Wdbc 4.4418E-6 (ε = 0.08)
Haberman 7.8288E-10 (ε = 0.08)

5 Conclusion

Rough c-means algorithm is becoming popular because of its moderate description
and restriction in representing clusters. In this paper, we propose an extension to
Rough c-means clustering algorithm. In the proposed algorithm, the distinction
between data points in the boundary area is captured by using the degree of a data
point in the boundary area being close to its corresponding lower approximation.
This information is utilized in calculating each cluster’s new centroid.

We apply the extended RCM to four data sets from the UCI Machine Learning
repository. Experimental results show that contrasted with the original RCM,
the proposed algorithm provides superior clustering results.

There exist several issues deserving further investigation. For example, finding
the optimal parameters is still a troublesome problem that needs to be solved.
And we plan to further investigate the usage of local learning methods within
RCM to improve the performance, as well as to test our approach with more
empirical studies.
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Therefore in the paper we introduce the concept of a separating completion of a
pregauge structure. This notion allows us to build a non-trivial topology on the
set of perceptual elementary granules of a perceptual system (or an information
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1 Introduction

Generally speaking the present paper is concerned with higher order granulation of ob-
jects described by basic systems of rough set theory and near set theory: information
systems and perceptual systems. The term higher order granulation means, intuitively,
granulation of (basic) granules. It is one of the fundamental problems of a new emerging
discipline of computer science called granular computing, e.g. [11]. The main scientific
effort in granular computing has been devoted mainly to two areas: fuzzy sets (e.g. [19])
and rough sets (e.g. [10]); in the paper we are adding another area, namely, near sets
(e.g. [12]). A basic information granule in rough set theory (and to a large extent in near
set theory) is an equivalence class [x]E of some indiscernibility relation E derived from
an information system (or perceptual system). The problem of higher order granulation
is how to collect the basic granules into “meaningful” concepts (i.e. granules of gran-
ules). We are interested in the (purely) theoretical foundations of a such granulation.1

Near set theory, introduced by J. Peters [12], is an approach to processing the percep-
tual information about objects. In the near set approach perceptual information about
objects (objects descriptions) is given with respect to probe functions, i.e. real valued
functions which represent features of a physical object. Simple examples of probe func-
tions are the size or weight of an object. A set of objects equipped with a family of
probe functions is called a perceptual system. The rough set approach, introduced by
Z. Pawlak [8], starts, in turn, with the concept of an information system, where objects
are described by means of attributes (which are not necessarily real valued functions);
for example, the colour of an object may assign to an object the value “red”. Each set
of attributes (from an information system) induces an indiscernibility relation E among
objects: two objects are indiscernible if they have the same description in terms of these
attributes. Thus, a perceptual system is a special kind of information system. On the
other hand, due to the area of speciality (perceptual information), near set theory has
also some conceptual and methodological autonomy: e.g., the notion of nearness not
only differs from indiscernibility but is a more general concept and in consequence all
basic notions of rough sets can be obtained within the near set framework. Summing
up, although both theories are interrelated, in the course of time, they have also become
more independent from each other.

From the perspective of metric topology, both theories share the same root. Actually,
each probe function can be regarded as a pseudometric and, in consequence, the starting
point of this theory is a family of pseudometrics. The same metric structure can be
found in rough set theory too. Although attributes may not be real valued functions, an
information system is usually converted into an approximation space: a set of objects
U provided with the indiscernibility relation E induced by the set of all attributes. As
is well-known, when we define d(x, y) = 0 if xEy (and 1 otherwise), then d will be a
pseudometric induced by the equivalence relation E. Thus, rough sets are also based on
a family of pseudometrics. On the other hand, by putting xEy if d(x, y) = 0, we define
an equivalence relation induced by a pseudometric d. Thus, both theories also share the
families of equivalence relations as starting points. (In what follows, we shall keep track
of both types of families.) Given a family of pseudometrics, one may produce a topology

1 The paper is an extension of [18] which was presented at RSKT’2011.
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over a given set. This family is often called a pregauge structure and all completely
regular spaces can be obtained from pregauges. Of course, it follows that perceptual
systems and approximation spaces can be regarded as both pregauge structures and
completely regular topological spaces. In actual fact, all topological results concerning
near sets and rough sets can be obtained in this framework.

Interestingly, we can extend a pregauge structure (a family of pseudometrics) along
with a corresponding indiscernibility relation E to richer mathematical objects e.g.
abelian groups or vector spaces. As already said, E is the intersection of all equiva-
lence relations ei induced by pseudometrics di by the rule xeiy only if di(x, y) = 0.
Thus E is defined solely in terms of the value 0 and other possible values are actually
regarded as a wild card. In consequence, an abelian group or a vector space extending
a given pregauge structure, induces exactly the same indiscernibility relation E. Such
extensions provide new means to represent some modifications of data, e.g. the change
of contrast of a given picture may be represented as a scalar multiplication. Of course,
such extensions no longer consist of pseudometrics, but rather of real valued functions
f : U × U → R. Given that, once can immediately notice that these functions give
rise to a subsheaf of the standard sheaf FD assigning to each (open) set X functions
f : X → D. In this way, we can give simple category theoretic representation of
pregauge structures and their extensions.

For a mathematician a pregauge structure or a completely regular topological space is
mainly an introduction to a richer structure. If the family of pseudometrics distinguishes
all points, then it is called a gauge structure and the corresponding topological spaces
are called gauge spaces [3]. Gauge spaces viewed as topological spaces have very strong
separation properties: they are Hausdorff completely regular spaces. As is well-known,
probe functions or attributes usually do not distinguish all objects and thus do not form
a gauge space. The simplest solution seems to add to the family D(F) of pseudometrics
induced by a set of probe functions F a pseudometric d (let us call it completion), such
that {d} ∪ D(F) will become a gauge structure. However, it is quite hard to find a
working example of a such completion. On the level of equivalence relations, the things
look a bit better. We can introduce a relational completion of a pregauge D(F). That
is, the pregauge is regarded as a family E of equivalence relations, and a completion
of E is a relation R which, added to E , makes this family separating all points of U :
for all x, y ∈ U , if xeiy (for all ei ∈ E) and xRy, then x = y. Of course, if R is an
equivalence relation, then the family of pseudometrics corresponding to E ∪R will be a
gauge structure. However, in both cases we obtain Hausdorff topological spaces whose
separating properties are very strong: if the set of objects is finite (a standard case in
data analysis), then the space will be discrete.

Therefore, in order to solve this problem, we shall build two separate topologies: the
first one induced by the separating completion R of a (perceptual) indiscernibility rela-
tion; the second defined on the quotient set induced by this (perceptual) indiscernibility
relation. To be more precise, the second topology is defined in terms of the first one
by means of a standard topological procedure. Interestingly, they are strongly linked:
one can define a local homeomorphism between them (furthermore, classes of R are
of special importance). Thus, a separating completion gives us a means of defining a
higher order granulation of objects. Furthermore, due to the completion requirement,
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we can provide also a simple category theoretic description of relations between these
two spaces by means of sheaves. In this way, the problem of higher order granulation
would be analysed in terms of rich category theory. To complete our considerations we
shall also present how these abstract topological structures can be applied to the anal-
ysis of perceptual systems provided with an additional relation, namely a preclusivity
relation which has been already examined in the context of rough sets [2].

2 Mathematical Preliminaries

In this section we shortly introduce basic concepts from near set theory [12,13,14],
rough set theory [8,9,10] and topology (gauge spaces). We shall present only material
which is relevant to our study.

2.1 Rough Set Theory

In this section we present basic concepts from rough set theory introduced by Z. Pawlak
[8,9,10]. We recall also a simple topological characterisation of approximation spaces
[15,17].

Definition 1 (Information System). A quadruple I = (U, Att, V al, f) is called an
information system, where:

– U is a non-empty finite set of objects;
– Att is a non-empty finite set of attributes;
– V al =

⋃
A∈Att V alA, where V alA is the value-domain of the attribute A;

– f : U × Att → V al is an information function, such that for all A ∈ Att and
x ∈ U it holds that f(x, A) ∈ V alA.

If f is a total function, i.e. f(x, A) is defined for all x ∈ U and A ∈ Att, then the
information system I is called complete; otherwise, it is called incomplete.

In what follows, we restrict our attention to complete information systems; thus, when-
ever we write about an information system, we mean a complete information system.
The reader interested in foundations of information systems may consult, e.g., [7].

Each subset of attributes S ⊆ Att determines an equivalence relation IND(S) ⊆
U × U defined as follows:

IND(S) = {(x, y) : for all A ∈ S, f(x, A) = f(y, A)}.
As usual, IND(S) is called an indiscernibility relation induced by S, the partition in-
duced by the relation IND(S) is denoted by U/IND(S), and [x]S denotes the equiva-
lence class of IND(S) defined by x ∈ U . Obviously, U/IND(Att) refines every other
partition U/IND(S), where S ⊆ Att. So, one can start with a pair (U, E) and assume
that E = IND(Att) for some I = (U, Att, V al, f). The simple generalisation of this
observation is given by:

Definition 2 (Approximation Space). A pair (U, E), where U is a non-empty set and
E is an equivalence relation on U , is called an approximation space. A subset X ⊆ U
is called definable if X =

⋃B for some B ⊆ U/E, where U/E is the family of
equivalence classes of E.
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Definition 3 (Approximation Operators). Let (U, E) be an approximation space. For
every concept X ⊆ U , its E-lower and E-upper approximations are defined as follows,
respectively:

X = {x ∈ U : [x]E ⊆ X},
X = {x ∈ U : [x]E ∩ X �= ∅}.

Let P(U) denote the powerset of U . Then, by the usual abuse of language and notation,
the operator : P(U) → P(U) sending X to X will be called the lower approxima-
tion operator, whereas the operator : P(U) → P(U) sending X to X will be called
the upper approximation operator.

Definition 4 (Approximation Topological Space). A topological space (U, τE) where
U/E, the family of all equivalence classes of E, is a subbasis of τE and Int is given by

Int(X) =
⋃

{[x]E ∈ U/E : x ∈ U and [x]E ⊆ X}

is called an approximation topological space.

On this view, a set X ⊆ U is definable only if X ∈ τE . It is worth emphasising that
every topological approximation space satisfies the following clopen set property: every
closed set is open and every open set is closed [15,17].

2.2 Near Set Theory

Near sets were introduced by J. Peters [12]. The algebraic properties of near sets are
described in [14].

Definition 5 (Perceptual System). A perceptual system is a pair 〈U, F〉, where U is a
non-empty finite set of perceptual objects and F is a countable set of probe functions
φi : U → R.

The probe functions describes physical features of objects and usually are regarded as
sensors. They also give rise to a number of relations between objects. Let |α−β| denote
the absolute value of the difference of α, β ∈ R. Then one can formulate:

Definition 6 (Perceptual Indiscernibility Relation). Let 〈U, F〉 be a perceptual sys-
tem. For every B ⊆ F, the perceptual indiscernibility relation ∼B is defined as follows:

∼B= {(x, y) ∈ U × U : for all φi ∈ B, φi(x) − φi(y) = 0}.
Of course, this relation is the counterpart of the original indiscernibility relation given
by Pawlak in [8]. This induces perceptual elementary sets of the following form:

[x]∼B = {x′ ∈ X | x′ ∼B x}.
Now, one can define perceptual approximation operators as in Definition 3. However,
the theory of near sets is actually focused on weaker relations.
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Definition 7 (Perceptual Weak Indiscernibility Relation). Let 〈U, F〉 be a perceptual
system. For every B ⊆ F, the perceptual weak indiscernibility relation �B is defined as
follows:

�B= {(x, y) ∈ U × U : for some φi ∈ B, φi(x) − φi(y) = 0}.
Definition 8 (Perceptual Tolerance Relation). Let 〈U, F〉 be a perceptual system and
let ε ∈ R. For every B ⊆ F, the perceptual tolerance relation ∼=B is defined as follows:

∼=B,ε= {(x, y) ∈ U × U : for all φi ∈ B, |φi(x) − φi(y)| ≤ ε}.
For notational convenience, this relation is often denoted by ∼=B instead of ∼=B,ε with
the assumption that ε is inherent to the definition of the tolerance relation. Note that the
sets of the form x/∼=B cover U instead of partitioning it.

Instead of using the standard relational image of a point x, namely, {y ∈ U : xRy},
where R represent a tolerance relation, it is better to use preclasses and classes.

Definition 9 (Preclass, Class). X ⊆ U is called a preclass of ∼=B iff, for all x, y ∈ X ,
it holds that x ∼=B y. A preclass X is called a class, if it is a maximal preclass.

2.3 Gauge Spaces

Now, we recall those topological notions which are specific to the theory of gauge
spaces [3].

Definition 10 (Pseudometric, Premetric). A function d : U × U → [0,∞) such that:

1. d(x, y) ≥ 0,
2. d(x, x) = 0,
3. d(x, y) = d(y, x),
4. d(x, z) ≤ d(x, y) + d(y, z),

for all x, y ∈ U , is called a pseudometric. Dropping the last two axioms leads to the
notion of a premetric.

Of course, for any φ : U → R, the map dφ : U × U → R, defined by

dφ(x, y) = |φ(x) − φ(y)|
is a pseudometric. Thus, any probe function induces a pseudometric. An arbitrary fam-
ily of pseudometric is called a pregauge structure.

Definition 11 (Topology from a Pregauge). Let D = {di : i ∈ I} be a pregauge
structure on U . The topology τ(D) having for subbasis a set of balls

B(D) = {B(x, di, ε) : x ∈ U, di ∈ D, ε > 0}, B(x, di, ε) = {y : d(x, y) < ε}
is called the topology in U induced by D.

Definition 12 (Separating Family of Premetrics). A family D = {di : i ∈ I} of
premetrics on U is called separating if, for each pair of points x �= y, there exists
di ∈ D such that di(x, y) �= 0.
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Definition 13 (Gauge Structure, Gauge Space). If a pregauge structure D = {di :
i ∈ I} is separating, then D is called a gauge structure. A topological space (U, τ) that
admits a gauge structure, i.e., τ = τ(D), is called a gauge space.

Definition 14 (Regular Space). (U, τ) is regular if, given any point x ∈ U and closed
set F ⊆ U , if x �∈ F , then they are separated by neighbourhoods. In fact, in a regular
space, any such x and F will also be separated by closed neighbourhoods.

Definition 15 (Completely Regular Space). (U, τ) is completely regular if, given any
point x ∈ U and closed set F ⊆ U , if x �∈ F , then they are separated by a function.

Of course every completely regular space is regular. The concept of a completely regular
space as any other separating axiom needs a special caution. The above definitions come
from [16]. However, many authors require that to call a space completely regular space
it must additionally be T0 and hence Hausdorff, e.g. [3,4]. On the other hand, a number
of authors additionally call such spaces Tychonoff, e.g. [4]:

Definition 16 (Tychonoff Space). (U, τ) is Tychonoff, or completely T3, if it is both T0

and completely regular.

Let us emphasise once again: in the paper we use the latter convention and distinguish
completely regular spaces from Tychonoff ones, as it is done in [16], contrary to [3,4].

Proposition 1. A space (U, τ) is a gauge space if and only if it is Tychonoff.

The proof can be found e.g. in [3]; however, as noted above, in [3] Tychonoff spaces
are called completely regular spaces.

Corollary 1. If D is pregauge structure, then τ(D) is a completely regular topological
space. If D is a gauge structure, then τ(D) is additionally Hausdorff (i.e. it is Tychonoff)
and when D consists of a single pseudometric d, then d must be a metric.

For a proof see [3].

Corollary 2. An approximation topological space (U, τE) is completely regular.

As usual, E may be converted into a pseudometric d by the rule: d(x, y) = 0 iff xEy,
otherwise d(x, y) = 1. On the one hand, for every x and ε > 1, the ball B(x, d, ε) = U .
On the other hand, if ε ≤ 1, then for every x the ball B(x, d, ε) = [x]E . Thus, every
approximation topological space (UτE) is induced by the subbasis of balls B(x, d, ε),
and hence is completely regular.

Of course, for a given perceptual system 〈U, F〉, D(F) = {dφi : φi ∈ F}, where
dφi(x, y) = |φi(x)− φi(y)|, is a family of pseudometrics which usually does not sepa-
rate all points of U . Thus, the corresponding topological space is completely regular as
well.

Summing up, pregauge structures underlie both near set theory and rough set theory.
In topology, this concept is strengthened by adding the condition of separating all points
of a given space. In the next section, we examine how this condition can be applied to
data analysis.
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2.4 Bits of Category Theory

In order to make the presentation self-contained we present here the very basic defini-
tions from category theory. However, we confine ourselves to necessary ones to make
our categorical remarks intuitively clear for the reader not familiar with category theory.
For a quick introduction to this area see for instance [1].

Definition 17 (Category). A category C consists of:

– a class of objects denoted by |C|,
– a class of arrows (or morphisms) from a to b, denoted by C(a,b), for all a,b ∈ |C|,
– a composition operation ◦ : C(b, c) × C(a,b) → C(a, c), for all a,b, c ∈ |C|,
– the identity arrows ida ∈ C(a, a), for all a ∈ |C|,

such that for all f ∈ C(a,b), g ∈ C(b, c), h ∈ C(c,d) the following equations are
satisfied:

h ◦ (g ◦ f) = (h ◦ g) ◦ f

f ◦ ida = f = idb ◦ f

If C is a category then its dual, denoted by Cop, has the same objects as C but its
morphisms are reversed. A category C is small if |C| is a set in the sense of Gödel-
Bernays set theory. C is called locally small if C(a,b) is a set for all its objects a,b.
An arrow f ∈ C(a,b) is an isomorphism or iso if there exists g ∈ C(b, a) such that
g ◦ f = ida and f ◦ g = idb.

A standard example of a category is Set which has sets as objects and total functions
as arrows. Let us recall that for any topological space (U, τ) its open sets are partially
ordered by the set inclusion ⊆. Now, we can regard τ as a small category where there is
an arrow from X ∈ τ to Y ∈ τ iff X ⊆ Y . Such a category will be denoted by C(τ).

Definition 18 (Functor). A functor F from a category A to a category B consists of:

– a mapping |A| → |B| of objects; the image of a ∈ |A| is denoted by Fa,
– a mapping A(a,b) → B(Fa,Fb) of arrows, for all a,b ∈ |A|; the image of f ∈

A(a,b) is denoted Ff ,

such that for all a,b, c ∈ |A|, f ∈ A(a,b), g ∈ A(b, c), the following conditions are
satisfied:

F(g ◦ f) = Fg ◦ Ff and Fida = idFa.

To give an example, let C(τ1) and C(τ2) be two categories defined above. Then a func-
tor F : C(τ1) → C(τ2) is an order preserving function.

Definition 19 (Presheaf). Let (U, τ) be a topological space and A be a category; a
presheaf F on U with values in A is a functor from C(τ)op to A.

In other words, a presheaf F assigns to each open set X of U an object FX of A, and if
X ⊆ Y , where X and Y are open sets of U , then there exists a morphisms in A, often
denoted by ρY

X and called a restriction map, which takes FY to FX , in such a way that
for all open sets X, Y, Z of U if

X ⊆ Y ⊆ Z then ρZ
X = ρY

X ◦ ρZ
Y .
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Thus ρY
X ∈ A(FY,FX). For any X ∈ τ elements of FX are called sections over X and

ρY
X(s), for s ∈ FX , is usually denoted by s|X . The standard practise is to take Set as

A, and often a presheaf is defined explicitly as a functor from C(τ)op to Set.
Let {Xi}i∈I be an open covering of X ∈ τ , that is each set Xi is an element of τ

and
⋃

i∈I Xi = X . A family of sections {si}i∈I such that every si belongs to F(Xi) is
a coherent family on {Xi}i∈I if si|Xi∩Xj

= sj |Xi∩Xj |.

Definition 20 (Sheaf). A presheaf F is a sheaf if for every open covering {Xi}i∈I of X
and every coherent family {si}i∈I on {Xi}i∈I , there exists a unique element s of FX
such that s|Xi

= si.

Sheaf is a special kind of a presheaf which allows to reconstruct an object from local
data about this object. Simple examples relevant to our study are as follows:

Given a topological space (U, τ) and an arbitrary (plain) set D let FDX (where
X ∈ τ ) be a set of all functions from X to D; the restriction functions ρY

X are standard
restrictions of functions. Then FD is a sheaf. If D is a topological space, then one can
define FCX to be the set of all continuous functions from X to D. Once again we
obtain a sheaf. If p : V → U is a continuous function of topological spaces, then one
can define a sheaf Fp on U : its sections FpX over X (of U ) are continuous functions
s : X → V such that p ◦ s = idX , where idX is, as usual, the identity function on X .

3 Pregauges and Completions in the Near Set Framework

Let us recall that we are interested in granulation of granules. Such a higher order
granulation is important when dealing with complex concepts which cannot be eas-
ily described as a subset of a given universe U . In rough set theory this higher order
granulation is trivial in the following technical sense:

Definition 21 (Quotient Topology). The quotient topology on a set V (generated by a
map f : U → V and a topology τ on U ) is the collection τf = {Y ⊆ V : f−1(Y ) ∈ τ}
of all subsets of V whose preimages are open in U .

Proposition 2. An approximation space (U, τE) induces a discrete quotient topology
on the set U/E via the projection p : U → U/E sending x ∈ U to [x]E ∈ U/E.

Firstly, X ⊆ U/E is open provided that p−1(X) is open. Since U/E forms a basis
of τE , and every equivalence class [x]E is a point of U/E, the set U/E is, obviously,
equipped by p with a discrete topology. In other words, we classify an undefinable
concept X by means of the discrete topological space (U/E,P(U/E)). It follows that:

Proposition 3. Let (U, τE) be an approximation space. Then:

X = p−1(p(X)),

for all X ⊆ U .
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Since (U, τ) satisfies the clopen-set property, every closed set Y ∈ τ is a sum of equiv-
alence classes (i.e. elements of the basis) induced by its elements. Here, we deal with
X and p−1(p(X)) is, in actual fact, this sum.

As usual, an indiscernibility relation E expresses the distinguishing power of our
knowledge (encoded by an information system or a perceptual system), and equivalence
classes form basic information granules. It would seem, that apart from the quotient
topology construction used in rough set theory, there is left no mathematical means to
provide U/E with other topology which in some sense would be induced or related to
E. So, the process of granulation would be seen as an idempotent one:

granulation(granulation(U)) = granulation(U).

The main idea of this paper is to apply the intuitions staying behind pregauge and gauge
structures to obtain a non-discrete topology on U/E which would be (in some way)
induced by E. Of course, U/E “consumes” all pieces of knowledge encoded by E and
therefore to define a non-discrete topology on U/E we must use some sophisticated
approach, which is dealing with E in an indirect way. As one can guess, a pregauge
structure and its completions bring solution to this problem. Interestingly, the main
theoretical results presented in the paper nicely fit the framework of near set theory. As
presented in Section 2.4, near set theory is based on relational structures, therefore, we
shall mainly consider equivalence relations corresponding to pseudometrics. Although
in this way we “forget” some information conveyed by pseudometrics, we gain however
“freedom” to extend a given perceptual system to richer mathematical structures such
as an abelian group or a vector space. So, as usual, this approach has some pros and
cons.

Given a perceptual system 〈U, F〉 and D(F) = {dφi : φi ∈ F}, two points x �= y
are not separated only if, for all φi ∈ F , dφi(x, y) = 0. As an easy consequence one
obtains:

Proposition 4. For a perceptual system 〈U, F〉, the family D(F) = {dφi : φi ∈ F} of
pseudometrics on U does not distinguish two points x �= y iff x ∼F y.

Let us recall that family of pseudometrics distinguishes two points x and y if it includes
a pseudometric d such that d(x, y) > 0. So, it does not distinguish these points only if,
for all its pseudometrics d, it holds that d(x, y) = 0, which is the very definition of ∼F.
In other words, if the family D(F) distinguishes all points, then ∼F is the identity. As
said in the Introduction, our idea is to add to D(F) a gauge (a pseudometric) d such that
D(F) ∪ {d} will become a separating family.

Definition 22 (Corresponding Relation). Let d be a premetric, then:

E = {(x, y) : d(x, y) = 0}
is called the relation corresponding to d.

Proposition 5. Let D = {di : i ∈ I} be a separating family of pseudometrics on U ,
and let ei denote the relation corresponding to di. Then

ED =
⋂

{ei : i ∈ I}
is the identity.
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The result is quite straightforward. Of course, for every di ∈ D, we have di(x, x) = 0
and (x, x) ∈ ei, for all x ∈ U . Since D is separating, for every x and y, such that x �= y,
there exists dj , for which dj(x, y) > 0. Hence, (x, y) �∈ ej .

Definition 23 (Corresponding Pseudometric). Let E be an equivalence relation de-
fined on U , then

d(x, y) =
{

0, if xEy,
1, otherwise,

for any x, y ∈ U , is called the pseudometric corresponding to E.

Proposition 6. Let E = {ei : i ∈ I} be a family of equivalence relations on U such
that

E =
⋂

{ei : i ∈ I}
is the identity. Then D = {di : i ∈ I}, where di is the pseudometric corresponding to
ei, is a separating family of pseudometrics on U .

It is also quite easy to prove. Since E is the identity, for every x and y, such that x �= y,
there must be ei, which does not include (x, y). So, for the corresponding di, it must
hold di(x, y) > 0, which means that D is a separating family.

Proposition 7. Let 〈U, F〉 be a perceptual system and let D(F) not be separating. If
D(F) ∪ {d} is separating then it holds that:

if x ∼F y and xey then x = y, (1)

for all x, y ∈ U , where e is the relation corresponding to d.

As earlier, if D(F) is not separating, then ∼F is not the identity relation. Since D(F) ∪
{d} is a separating family, by previous propositions, it holds that ∼F ∩ e is the identity,
which amounts to (1).

Thus, we can speak about families of pseudometrics in terms of equivalence rela-
tions (what, as noted, has some pros and cons). Let us for a moment discuss pros.
Each pseudometric d ∈ D(F) is a function from U × U to the set of non-negative real
numbers R

+. Since U is finite, each d can be regarded as a square n × n matrix md,
where n is the number of elements in U , and the entry dij in each matrix md is equal
to d(xi, xj), for xi, xj ∈ U and d ∈ D(F). For a finite set U , there is a one-to-one
correspondence between functions f : U × U → R and matrices mf . Therefore, in
what follows, by the standard abuse of language and notation, we do not make any
distinction between a function f : U × U → R and its matrix mf . When a matrix
md of a pseudometric d is viewed from the perspective of ∼F, then the only important
entries are 0s, whereas other values actually do not contribute to E and can be repre-
sented by a wild card ∗. For simplicity, suppose that n = 3, U = {x1, x2, x3} and
∼F= {(x1, x1), (x2, x2), (x3, x3), (x2, x3), (x3, x2)}; then each matrix md, d ∈ D(F),
viewed through ∼F has the form depicted by Eq. 2.

md =

⎛⎝d11 = 0 d12 = ∗ d13 = ∗
d21 = ∗ d22 = 0 d23 = 0
d31 = ∗ d32 = 0 d33 = 0

⎞⎠ (2)
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Since ∗ is a wild card, which actually can represent any value from R, the relation ∼F

can see no difference between pregauge structure D(F) and the set M of all functions
f : U × U → R such that f(x, y) = 0 iff x ∼F y.

As one can guess, M is closed under some operations. It is obvious that the matrix
addition ⊕ of two matrices from M returns a matrix from M. Furthermore, the inverse
−md of a matrix md from M, which is obtained by replacing each non-zero entry r ∈ R

of md by−r ∈ R, is also a member of M. Thus, the set M is closed under the operations
of addition and taking inverses.

Definition 24 (Abelian Group). An abelian group (U, +) is a set U equipped with a
binary operation + : U × U → U such that for all x, y ∈ U :

– Closure: if x and y are two elements in U , then the product x + y is also in U .
– Associativity: the operation + is associative, i.e., for all x, y, x in U , (x+ y)+ z =

x + (y + z).
– Identity: There is an identity element I that I + x = x + I = x for every element

x in U .
– Inverse: There must be an inverse of each element: for every x in U , the set U

contains an element y = x−1 such that x + x−1 = x−1 + x = I .

Hence (M,⊕) is an abelian group, where ⊕ is the standard matrix addition and I is an
n×n matrix m0 whose all entries are 0’s. Another simple operation, which M is closed
under, is multiplication by scalars.

Definition 25 (Vector Space). Let F be a field (of which addition and multiplication
is denoted by + and ∗ respectively). A vector space is an abelian group (U,⊕), whose
operation ⊕ is called vector addition, equipped with the scalar multiplication � : U ×
U → F , such that

– Distributivity of scalar multiplication with respect to vector addition:

r � (v ⊕ w) = r � v ⊕ r � w.

– Distributivity of scalar multiplication with respect to field addition:

(r + k) � v = r � v + k � v.

– Compatibility of scalar multiplication with field multiplication:

r ∗ (b � v) = (a ∗ b) � v.

– Identity element of scalar multiplication 1 � v = v, where 1 is the multiplicative
identity in F .

As the reader may know, matrices provide classic examples of vector spaces: vector
addition ⊕ is just matrix addition and scalar multiplication � is defined in the obvious
way (by multiplying each entry by the same scalar). The zero vector is just the zero
matrix m0. Thus, (M,⊕,�) is a vector space over the field R. As said earlier, ∼F does
regard D(F) and M as the same structure, therefore we can enrich M to a vector space
safely.

Define xi ∼m xj iff for every matrix m in M the entry dij = 0.
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Proposition 8. For a perceptual system 〈U, F〉 and M, or its abelian group (M,⊕), or
its vector space (M,⊕,�), it holds that

∼F=∼m .

Straightforward: by the definition of M, for every f ∈ M it holds that f(x, y) = 0 iff
x ∼F y; and by the definition of ∼m, we get x ∼m y iff for every f ∈ M it holds that
f(x, y) = 0. Thus x ∼F y iff x ∼m y.

Summing up, the indiscernibility relation ∼F is preserved under the extending of
D(F) to some richer structures. Of course, not every m in M represents a pseudomet-
ric. Such an extension can be useful when dealing with problems for which mathemat-
ical means offered by near set theory or rough set theory are too restrictive. E.g. the
change of contrast of a given picture could be represented by a multiplication of (some)
probe functions by scalars. It is worth to observe that such a change would infect the
perceptual tolerance relation and in consequence change the classification induced by
this relation. However, the perceptual indiscernibility relation is preserved under a such
operation, which (the operation) can additionally be represented in (M,⊕,�).

From category theory perspective the family M is just a set of functions from U ×U
to R, which additionally satisfies the condition that f(x, y) = 0 iff x ∼F y. Similar
families where considered in Section 2.4 as examples of sheaves: FD assigning to every
open set X all functions from X to D, or FR assigning to every open set X the set of
all continuous functions f : X → R. So, in order to define a functor M : C(τ)op → Set
in terms of M we need a topology τ on U × U . Now, we assume the discrete topology
τ ; later, having defined some other topologies, we shall return to this sheaf.

Proposition 9. Let (U × U, τ) be a discrete topological space. Define M(U × U) to be
M, and for every X ⊆ U × U , M(X) to be the set of standard restrictions of functions
from M to X . Then M is a functor from C(τ)op to Set, which is a sheaf.

Actually, there is not much to prove: M is obviously a subsheaf of FD : C(τ)op → Set,
where F(X) is a set of all functions from X to R. Since τ is discrete, M is also a subsheaf
of FC , assigning to each open set X a set of continuous functions f : X → R. Hence
M, for a category theorist, is a simple sheaf. As said, it would be good to find more
interesting topology on U × U than the discrete one. In order to do so, we must return
to a pregauge D(F) and its completions.

So far we have been dealing with pseudometrics and corresponding equivalence rela-
tions. However, it is very difficult for a given pregauge D(F) to find a completion being
an equivalence relation E, which would still be applicable to data. (It’s not by accident
that new extensions of rough set theory deal with weaker relations than equivalence
relations.) Therefore, we shall generalise this relation to a tolerance relation.

Definition 26 (Separating Completion). Let 〈U, F〉 be a perceptual system such that
D(F) is not a separating family on U . Then a tolerance relation R on U satisfying (1)
from Proposition 7 will be called a separating completion of D(F).

However, there are other (theoretical) shortcomings concerning both equivalence rela-
tions and tolerance relations.
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Corollary 3. Let 〈U, F〉 be a perceptual system and let D(F) not be separating. If an
equivalence relation E is a separating completion of D(F), then D(F) ∪ {dE}, where
dE is the pseudometric corresponding to E, is a gauge structure. Of course, the induced
gauge space is discrete.

Since E is a separating completion of D(F), whenever D(F) does not distinguish two
different points x and y (x �= y), that is, x ∼F y, by (1) we get (x, y) �∈ E, which means
dE(x, y) > 0. Otherwise, (x, y) would be an element of ∼F ∩ E and in consequence
∼F ∩ E would differ from the identity. Thus, by the very definition, D(F) ∪ {dE} is a
gauge space.

Corollary 4. Let 〈U, F〉 be a perceptual system defined as above. Assume also that R
is a separating completion of D(F), a topology τ is induced by a subbasis {ei(x) :
x ∈ U}, ei(x) = {y ∈ U : xeiy}, where ei is either the relation corresponding to
di ∈ D(F) or R. Then τ is discrete.

This is actually trivial. Since R is a separating completion of D(F),
⋂

ei is the identity
and hence

⋂
ei(x) = {x}. Given that from a subbasis we make a basis by taking all

finite intersections (let us recall that U is finite), {x} belongs to the basis, for every
x ∈ U , and in consequence τ is discrete.

Thus, finite topologies induced by separating families of relations (or pseudometrics)
are discrete, and hence not applicable to data analysis. Therefore, in what follows, we
consider separately a topology induced by a pregauge structure D(F) and its separat-
ing completion. So, we actually pose a new problem: given a perceptual system (or an
information system) to find a separating completion which fits the data. It is worth to
observe that the separating capabilities of a pregauge structureD(F), induced by a given
perceptual system, are encoded by ∼F (which is an analogue of E). Thus, a separating
completion is indirectly and non-deterministically induced by ∼F (or E). Below we fo-
cus on pure theory and present properties fulfilled by any completion. Interestingly, due
to the completion requirement, the two topologies are strictly connected. Furthermore,
this relationship may be expressed by means of concepts from near set theory.

As usual, when one deals with an equivalence relation E on U , one is interested in
the canonical projection p : U → U/E sending x ∈ U to [x]E .

Proposition 10. Let be given a perceptual system 〈U, F〉, such that D(F) is not sepa-
rating family on U , and let R be a separating completion of D(F). For every class X
of R, it holds that the restriction of p : U → U/ED(F) to X , denoted by p|X , is a 1 − 1
correspondence.

The proposition follows from the completion requirement which enforces that every
member of a class must be assigned a unique equivalence class of ED . Otherwise,
∼F ∩R would differ from the identity. It also means that for a class X and its image
p(X) under p, the function p is bijective.

The standard practice is to use the canonical map p to obtain a quotient topology. Let
us recall that in rough set theory this construction brings a discrete topological space.
Our aim here is to obtain a non-trivial topology.

Due to Proposition 10 it would be good to have classes of R as open sets.
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Proposition 11. Let X be a class for R. Define x ≤ y iff R(x) ⊆ R(y). Then ≤ is
a preorder and X is an up-set of ≤:

X = {y ∈ U : x ≤ y for some x ∈ X}.

Since X is a class and x ∈ X , we must have X ⊆ R(x). Assume that x ≤ y, then,
by previous observation and the definition of ≤, it holds that X ⊆ R(y); that is, y is
R-related to all members of X . Given that R is a tolerance relation and that X is a
maximal preclass, we obtain y ∈ X . Of course, not every up-set of ≤ is a class of R.

Definition 27 (Alexandrov Topological Space). A topological space (U, τ) is Alexan-
drov only if its topology is closed under arbitrary intersections.

As is well-known, given a preorder one can form an Alexandrov topological space in
the standard way.

Definition 28 (Alexandrov Topology). The Alexandrov topology τ on a preordered set
(U,≤) is the family of up-sets of ≤:

τ = {X ⊆ U : for all x, y ∈ U if x ∈ X and x ≤ y then y ∈ X}.

Corollary 5. Let be given a perceptual system 〈U, F〉, such that D(F) is not a separat-
ing family on U , and let R be a separating completion of D(F). As above, define x ≤ y
iff R(x) ⊆ R(y). Then every class of R is an open set in the Alexandrov topology τ≤
induced by ≤.

Straightforward: every class is an up-set, and every up-set is open.
Thus, we have just obtained a topology τ on U for which classes of R are open sets.

Now, we can define the quotient topology on U/ED(F) (see Definition 21).

Proposition 12. Let be given a perceptual system 〈U, F〉 as defined in Proposition 5,
and let X be a class of R. Then p(X) ∈ τp, where τp is the quotient topology on
U/ED(F) induced by τ≤ and the canonical projection p : U → U/ED(F).

As noted earlier, any class X is an open set and p|X is a 1 − 1 correspondence, thus
p(X) must be open in the quotient topology.

Definition 29 (Local Homeomorphism). A map f : U → W of topological spaces U
and W is a local homeomorphism, if each x ∈ U has an open neighbourhood Y such
that f homeomorphically maps Y onto an open subspace f(Y ) of W .

Proposition 13. Let be given a perceptual system 〈U, F〉 defined as above. Further-
more, let (U, τ≤) be the Alexandrov topological space generated by ≤ defined as above,
and (U/ED(F), τp) be the quotient topology induced by τ≤ and p : U → U/ED(F) .
Then p : U → U/ED(F) is a local homeomorphism.

Of course, an open neighbourhood is given by a class of R.
Let us briefly comment the above results in the context of the main topic of this

paper: granulation of granulation. As in the framework of rough sets, we deal with a an
approximation space (U,∼F) induced however by a perceptual system (U, F). As in the
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case of rough sets, we build the quotient set U/ ∼F. Since ∼F was “eaten” by U/ ∼F, it
cannot be directly used to define a topology on U/ ∼F. That is why in rough set theory
U/ ∼F is given a discrete topology. Our proposal is to take a separating completion
R of ∼F. Firstly, R is not arbitrary relation, but it must fit ∼F. Thus to an extent our
knowledge encoded by ∼F restricts possible candidates for R. Secondly, since R is not
defined a priori, but must be “discovered” from data, the being offered solution seems
flexible enough to be applicable.

Before we go further into theoretical considerations, let us consider a simple appli-
cation of the above concepts. As already noted, the main construction can be reduced
to the case of two relations: ∼F and R. In the rough set literature, apart from the in-
discernibility (or similarity) relation, there are also considered dissimilarity relations
and measures, e.g. A. Gomolińska [5] extends similarity-based approximation spaces
by a relation of dissimilarity of objects, or G. Cattaneo [2] introduces an irreflexive and
symmetric binary relation called a discernibility or preclusivity relation. In other words,
instead of working with a single indiscernibility relation, it becomes more common to
use at least two separate relations (as we do). Suppose that we are given a perceptual
system 〈U, F〉 and independently we are given a preclusivity relation P . Now we would
like to show how to apply the concept of separating completion (together with above
topologies) in order to reason about data using both relations. Firstly, a preclusivity re-
lation is the complement of a reflexive and symmetric relation called a compatibility or
tolerance relation. In what follows, R will denote the complement of P .

The perceptual indiscernibility relation ∼F induces a pregauge {d}, where d is the
pseudometric corresponding to ∼F. To define a separating completion Rc of {d}, we
use the complement of the preclusivity relation P , that is R:

C = {(x, y) : x, y ∈ U, [x]∼F
�= [y]∼F

and xRy} (3)

Now, define Rc as the reflexive closure of C, i.e., Rc = C ∪ {(x, x) : x ∈ U}.

Proposition 14. Let be given a perceptual system 〈U, F〉 together with a preclusivity
relation P ; as above, R is the complement of P . Then the reflexive closure Rc of the
relation C defined by (3) is a separating completion of D(F).

Of course, Rc is a tolerance relation. Assume that for x and y, such that x �= y, we have
x ∼F y. It means that [x]∼F

= [y]∼F
. Then by (3) (x, y) �∈ C. Thus, wherever D(F)

does not distinguishes two points x and y, dRc does it.
Let us recall that starting from a tolerance relation Rc, we can obtain a preorder

≤ as follows: x ≤ y iff Rc(x) ⊆ Rc(y). As said earlier, given a preorder ≤, we
can produce the Alexandrov topological space (U, τ≤), which allows us to define the
quotient topology on U/ ∼F.

Definition 30 (Approximation Operators). Let 〈U, F〉 be perceptual system equipped
with a preclusivity relation P , and let (U, τ∼F

) be the approximation space induced by
the perceptual indiscernibility relation ∼F. Define:

X = p−1(Cl(p(X))),

for all X ⊆ U , where p : U → U/∼F, Cl is the closure operator of (U/∼F, τ), and τ
is induced by the Alexandrov topological space (U, τ≤) and p.
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Proposition 15. Let 〈U, F〉 be a perceptual system equipped with a total preclusivity

relation P = {(x, y) : x, y ∈ U}. Then X = X for all X ⊆ U .

If P is total, then R will be the empty relation and Rc will become the identity and
the induced Alexandrov space will be discrete. In consequence, Cl(p(X)) = p(X),
for all X ⊆ U , which gives Proposition 3. In other words, in the case of a complete
system, we shall obtain the standard approximation operators. Thus, these operators can
be regarded as generalisations of operators introduced by Z. Pawlak.

Needless to say, Rc can be replaced by any relation which satisfies the completion
requirement. We decided to use the relations already used in rough set theory to show
that here and there two relations had been already applied to the framework of rough
sets, and so, our proposal is actually an application of this idea by means of completions
of pregauge structures.

Now, let us come back to the sheaf M : C(τ)op → Set, which was defined for the
discrete topology τ on U × U . As said then, it would be good to change this topology
for a non-trivial one. We have just defined above an Alexandrov topology τ≤ for U ,
which is locally homeomorphic to a quotient topology τ on U/E. Let us recall that for
a Cartesian product U1 × U2 of two spaces (U1, τ1) and (U2, τ2), the product topology
ν on U1 × U2 is the topology in which a subset X ⊆ U1 × U2 is open only if pi(X)
is open for each i, where pi(x1, x2) = xi. So, the final sheaf would have the following
form: M : C(ν)op → Set, where ν is the product topology of two copies of (U, τ≤),
and

M(U × U) = {f : U × U → R : f(x, y) = 0 iff x ∼F y},
where R (for simplicity) is regarded as a set (i.e. without a topology). The other com-
ponents of definition work as in FD; that is, M is a subsheaf of FD, where D is R.
Interestingly, the underlying topological space (U × U, ν), has a subspace which is
locally homeomorphic to (U/ ∼F, τ). It comes straightforwardly from the basic topo-
logical characteristic of product topologies that each space (Ui, τi) is homeomorphic to
a subspace of (U × U, ν). So, we have passed to a richer structure which still in some
sense has a linkage to ∼F.

On the other hand, we can also define a sheaf on (U/ ∼F, τ). As is well known,
e.g. [6], given a local homeomorphism p : U → V of topological spaces (U, τ1) and
(V, τ2), we can associate with it a sheaf F of cross-sections:

Γ (X, U) = {s : X → U |p ◦ s = idX}

where s is a continuous function and X ⊆ V . Now, the assignment F defined by FX =
Γ (X, U) is a functor from C(τ2)op to Set, where for Y ⊆ X , s ∈ FX is taken to the
standard restriction of the function s, i.e. s|Y ∈ FY . In actual fact, up to isomorphism,
every sheaf on V is of the form Γ (−, U), for some local homeomorphism p : U →
V . As stated above, for a perceptual system 〈U, F〉 (or for an information system) the
canonical projection p : U → U/ED(F) sending x ∈ U to the corresponding perceptual
elementary set is a local homeomorphism between the topological space (U, τ≤), where
≤ is defined in terms of separating completion R of ∼F, and the family of perceptual
elementary sets equipped with the quotient topology (U/ED(F), τp).
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Summing up, we can construct two sheaves: the sheaf M on the product topological
space (U × U, ν) and the sheaf F on the quotient topological space (U/ ∼F, τ). Both
shaves take into account the granulation induced by ∼F and the Alexandrov topology
obtained from a tolerance relation R, which is a separating completion of D(F). As
said at the beginning of the paper, we are interested in theoretical foundations of higher
order granulations; therefore our aim is to give mathematical structures which provide
a means to perform such granulations.

4 Conclusions

The starting point of both near set theory and rough set theory is given by a family of
pseudometrics (a pregauge structure) or, considered from a different angle, by a family
of equivalence relations. In metric topology, pregauge structures are used to describe
the class of completely regular spaces. When a pregauge separates all points, then it
is called a gauge structure and the corresponding Hausdorff completely regular space
is called a gauge space. In the paper, we have discussed the idea of a completion of a
pregauge structure. To make the consideration more flexible (and thus applicable), we
have introduced the concept of a relational completion. In the case of a completion being
an equivalence relation, we can obtain a gauge space. However, it is quite hard to find
a working example of a gauge space in data analysis. In the paper, we have shown how
a completion (defined as a tolerance relation) can be used to provide a topology on the
family of perceptual elementary sets (that is a higher order granulation of objects). Due
to the completion requirement such a granulation can be analysed in terms of sheaves.
The paper has also presented a simple application of these very abstract concepts to a
perceptual system (or an information system) equipped with an additional preclusivity
relation which was already examined in the context of rough sets.
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Abstract. Rough set approaches to data analysis involve removing re-
dundant attributes, redundant attribute-value pairs, and redundant rules
in order to obtain a minimal set of simple and general rules. Pawlak ar-
ranges these tasks into a three-step sequential process based on a central
notion of reducts. However, reducts used in different steps are defined
and formulated differently. Such an inconsistency in formulation may
unnecessarily affect the elegancy of the approach. Therefore, this paper
introduces a generic definition of reducts of a set, uniformly defines vari-
ous reducts used in rough set analysis, and examines several mathemat-
ically equivalent, but differently formulated, definitions of reducts. Each
definition captures a different aspect of a reduct and their integration
provides new insights.

Keywords: Pawlak three-step analysis, reducts, rough set analysis.

1 Introduction

In his seminal book, Rough Sets: Theoretical Aspects of Reasoning About Data,
Pawlak [13] provided a simple and elegant method for analyzing data represented
in a tabular form. The method can be applied to decision table simplification
and rule learning. In our previous paper [21], with a slightly different formula-
tion, we reviewed Pawlak approach and examined several of its variations. More
specifically, we introduced a generic notion of a reduct of a set and an explicit
expression of a concept by a pair of intension and extension of the concept.
We formulated Pawlak approach as a three-step method for analyzing an infor-
mation table. Our objective was to show that the three steps use three types
of reducts, namely, attribute reducts of the table with respect to decision at-
tributes, attribute reducts of an object with respect to decision attributes, and
rule reducts. However, due to space limitation, we were only able to provide an
outline of our argument. The objective of this paper is to expand our outline
into a more complete and thorough investigation.

This paper is different from and complementary to many other studies. It is
not intent on proposing a new method nor comparing different methods. The
main contribution is to provide a new interpretation of Pawlak approach to data
analysis. Our formulation starts with a generic notion of reducts of a set and an
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explicit expression of a concept as a pair of a logic formula (i.e., intension of the
concept) and a set of objects (i.e., the extension of the concept) [18]. We hope
that a reformulation and reinterpretation of Pawlak three-step approach will
offer several new insights. The generic notion of reducts unifies the three steps
and demonstrates the simplicity and reflexibility of Pawlak approach. Instead of
using several forms and definitions of reducts, we use only one general form and
one definition. The explicit expression of concepts, in terms of logic formulas
as intensions and subsets of objects as extensions, offers new understanding of
reducts and rules. In summary, our reformulation, based on a single notion and
a uniform exposition, aims at showing the simplicity, elegancy, and flexibility of
Pawlak three-step approach at a conceptual level, rather than demonstrating its
efficiency at an implementation level. This allows us to focus on the definition
of reducts, instead of designing methods for constructing reducts.

For simplicity and clarity, we restrict our discussion to the basic notion of
reducts in Pawlak’s book. As future work, it will be interesting and worthwhile
to investigate if the same argument, with some modifications, can be applied to
various generalized notions of reducts, including, dynamic reducts [1], associa-
tion reducts [16], approximate reducts [11], decision bireducts [17], and many
others [5,8,9,10,19,24]. The restriction allows us to concentrate on the basic is-
sues without being distracted by minute details of various generalizations. The
results of this paper can be used to relate Pawlak approach to other standard
rule learning algorithms, such as partition-based decision-tree methods [15,25]
and covering-based sequential covering methods [2,3,4,6,7,26]. While other meth-
ods focus mainly on rule learning algorithms, Pawlak approach emphasizes on
a study of intrinsic properties of rules independent of a particular rule learning
algorithm [14].

The rest of this paper is organized as follows. Section 2 presents an overview
of rough set analysis and explicitly expresses such an analysis into a sequential
three-step process. Section 3 introduces a general definition of a reduct of a
set, examines a simpler definition of a reduct when a monotonic evaluation is
used, and investigates an ∩-reduct and an ∪-reduct of a family of subsets of
a set. Section 4 is a critical analysis of Pawlak three-step approach. Based on
the generic definition of a reduct of a set introduced in Section 3, we study
about twenty different definitions of reducts used in rough set analysis. Each
definition interprets a reduct from an unique angle and, pooling together, all
interpretations provide new insights.

2 An Overview of Pawlak Rough Set Analysis

Rough set analysis (RSA) deals with a finite set of objects called the universe, in
which each object is described by values of a finite set of attributes. In his book,
Pawlak first used a subset of objects to represent a concept and a partition of
the universe to represent a classification at an abstract level. More specifically,
he called subsets categories, a partition or equivalently an equivalence relation
(classification) knowledge and a family of equivalence relations a knowledge base.
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Those notions were later explained by using an information table. Although such
a formulation, from abstract notions to concrete examples, provides a more gen-
eral framework, the meanings of various notions are not entirely clear when they
are introduced. For this reason, we start our formulation by directly referring to
an information table.

Definition 1. An information table is the following tuple:

S = (U, At, {Va | a ∈ At}, {Ia | a ∈ At}),

where U is a finite nonempty set of objects called the universe, At is a finite
nonempty set of attributes, Va is a nonempty set of values for a ∈ At, and
Ia : U −→ Va is a complete information function that maps an object of U to
exactly one value in Va.

For an object x ∈ U , Ia(x) denotes the value of x on attribute a ∈ At. For
notational simplicity, for a subset of attributes A ⊆ At, IA(x) denotes the vector
value of x on A.

Definition 2. A classification table or a decision table is an information table
S = (U, At = C ∪ D, {Va | a ∈ At}, {Ia | a ∈ At}), where C is a set of
condition attributes and D is a set of classification or decision attributes. If for
all objects x, y ∈ U , IC(x) = IC(y) implies that ID(x) = ID(y), the table is called
a consistent classification table, and is called an inconsistent table otherwise.

An information table provides all available information about a set of objects. We
analyze attributes and objects based on the information functions in the table.
Pawlak investigated three main tasks of rough set analysis and presented them in
a sequential three steps [13], as shown in Figure 1. We use a naming system that
is slightly different from the one used in Pawlak’s book. More specifically, we use
“attribute reduction” and “attribute reduct” instead of “knowledge reduction”
and “reduct of knowledge,” respectively, and use “attribute-value-pair reduction”
and “attribute-value-pair reduct” instead of “reduction of categories” and “value
reducts,” respectively.

The first step analyzes attribute dependencies with an objective to simplify-
ing a table. The main tasks involving identifying superfluous (i.e., dispensable)
attributes and finding a minimal subset of attributes that preserves the same
information as the entire set of attributes for the purpose of classification. Such
a minimal set of attributes is called an attribute reduct of the table or a relative
attribute reduct of a classification table. There may exist more than one reduct
for each table. With respect to a reduced table with a minimal set of attributes
in a decision table, we can construct a set of decision rules. The left-hand-side
of each decision rule is a conjunction of a set of attribute-value pairs.

The second step analyzes dependencies of attribute values with an objective
to simplifying a decision rule. Similar to the notion of superfluous attribute in
a table, there may exist superfluous attribute-value pairs in the left-hand-side
of a decision rule. The main tasks of the second step are to identify superfluous
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An information table

Attribute reduction

A reduced information table defined by an attribute reduct
(a set of rules)

Attribute-value pair 
reduction for each rule

A set of minimal rules
(A minimal rule is defined by an attribute-value-pair reduct)

Rule reduction

A minimal set of minimal rules defined by a rule reduct

Concepts used:
dispensable attributes,
attribute reducts,
relative attribute reducts;

Concepts used:
dispensable attribute-value pairs,
attribute-value-pair reducts,
relative attribute-value pair reducts;

Concepts used:
dispensable rules,
rule reducts.

Fig. 1. Pawlak three-step rough set analysis

attribute-value pairs and to derive a minimal set of attribute-value pairs for each
decision rule. A minimal set of attribute-value pairs is called a relative attribute-
value-pair reduct. Again, there may exist more than one reduct. The result of
the second step is a set of minimal decision rules.

The third step analyzes dependencies of decision rules with an objective to
simplifying a set of decision rules. There may exist superfluous (i.e., dispens-
able) rules in the set of decision rules obtained in the second step. By removing
superfluous rules, one can obtain a minimal set of rules called a rule reduct.

In Pawlak’s book, the three steps are clearly separated. As pointed out by a
reviewer of this paper, the steps of attribute reduction, attribute-value reduction
and rule reduction do not need to follow each other. In applications they may oc-
cur optionally or independently. For example, attribute-value reduction may be
treated as a special case of attribute reduction, which leads toward merging the
first two above-mentioned steps together. In some cases, rule reduction may be
avoided; one may simply use techniques based on voting to deal with redundant
or conflicting rules.

Although each of the three steps involves different entities or subjects, they
share high-level similarities. All analyze relationships between entities with an
objective to make simplification by removing superfluous entities. More impor-
tantly, the result of simplification is a reduct, namely, an attribute reduct of
a table, an attribute-value-pair reduct of a rule, and a rule reduct of a set of
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rules. This observation suggests that one may unify the three steps. However, in
rough set literature, different forms and definitions are given for different types
of reducts. In rest of this paper, we present a generic definition of reducts and
show that Pawlak three-step analysis may be uniformly formulated based on a
generic definition of reducts.

3 A General Definition of Reducts

We introduce a general definition of reducts of a set and examine basic properties
of reducts.

3.1 Reducts of a Set

Reducts are a fundamental notion of rough set analysis. As showed in the last
section, different types of reducts have been proposed and studied. Consider an
attribute reduct of a table, intuitively speaking, an attribute reduct is a subset
of attributes that preserve the same information or property as the entire set
of attributes (i.e., the sufficiency condition) and at the same time contains no
superfluous attributes (i.e., non-redundancy condition). This interpretation of
an attribute reduct can be generalized into a generic definition of a reduct of
any set. First, we specify a property such that the entire set has the property.
Then, we state the sufficiency and non-redundancy conditions on a subset of the
set for it to be a reduct. The sufficiency condition suggests that a reduct has the
same property as the entire set. The non-redundancy condition requires that a
reduct must be a minimal subset having the property.

Definition 3. Suppose S is a finite set and 2S is the power set of S. Let P

denote a unary predicate on subsets of S, that is, for X ⊆ S, P(X) stands for the
statement that “subset X has the property P.” An evaluation e of P is understood
as a truth assignment for every subset of S: Pe(X) is true if X has property P,
otherwise, it is false.

An evaluation typically depends on a particular data set. For example, an eval-
uation of subsets of attributes is determined by a particular information table.
A reduct of S is therefore defined with respect to a given evaluation. We use a
subscript e to explicitly denote the evaluation.

Definition 4. Given an evaluation e of P, A subset R ⊆ S is called a reduct of
S if it satisfies the following conditions:

(w) Pe(S),
(s) Pe(R),
(n) ∀B ⊂ R, (¬Pe(B)).

Condition (w) requires that the whole set S must have the property P. In many
studies, this condition is typically implicitly assumed or embedded in P. It en-
sures that a reduct of S exists. Condition (s) is a sufficiency condition, stating
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that a reduct R of S is sufficient for preserving property P of S. Condition (n)
is a non-redundancy condition, indicating that none of the proper subsets of R
has the property.

According to Definition 4, it is necessary to check all proper subsets of R
in order to verify if R is a reduct. This imposes an unpractical computational
constraint. In many situations, one can study a special class of property P that
satisfies the monotonicity with respect to set inclusion.

Definition 5. A predicate P is said to be monotonic with respect to set inclusion
if it satisfies the following property:

∀A, B ⊆ S, (A ⊆ B =⇒ (P(A) =⇒ P(B))). (1)

The monotonicity states that if a subset has a property, then a superset of it
also has the property. It is important to point out that, unlike the definition of a
reduct, the monotonicity of P is defined based on all possible evaluations. That is,
the monotonicity must hold for all possible evaluations. In terms of information
tables, each table determines an evaluation and all possible tables determine all
possible evaluations. The monotonicity of a predicate must hold for all possible
information tables. The monotonicity can be equivalently re-expressed as

∀A, B ⊆ S, (A ⊆ B =⇒ (¬P(B) =⇒ ¬P(A))). (2)

That is, if a set does not have the property, then none of its subsets has the
property. Thus, once we know that a set does not have the property, we do not
need to check its subsets. This leads to a simplified definition of reducts.

Definition 6. Suppose P satisfies monotonicity. Given an evaluation e of P, a
subset R ⊆ S is called a reduct of S if it satisfies the following properties:

(w) Pe(S)
(s) Pe(R)
(n) ∀a ∈ R, (¬Pe(R − {a}))

Condition (n) shows that each element a ∈ R is necessary. That is, elements of
R are individually necessary. With the monotonicity, a verification of a reduct
becomes easier, one only needs to check individual elements from S based on
condition (n) instead of all subsets of R. A reduct is always defined with respect
to a particular evaluation. In the rest of this paper, for notational simplicity
we sometimes omit the subscript e by simply writing Pe(X) as P(X) for subset
X ⊆ S. It may be commented that many definitions of reducts in rough set
theory obey the monotonicity.

In the study of reducts, there are two additional important notions. The first
one is superfluous or redundant elements and the second one is core elements. The
concept of superfluous element is only applicable when considering monotonic
evaluations. One can also define generic notions of redundant elements and core
elements.
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Definition 7. Suppose P satisfies monotonicity. Given an evaluation e of P, an
element a is called a redundant element if it satisfies the following properties:

(r1) Pe(S)
(r2) Pe(S − {a})

Condition (r2) states that when removing an element a from the set S, the rest
elements of the set still satisfy the property P. That is to say, the element a
is unnecessary and dispensable for preserving the property P and one can have
a same result without considering the element a in S. Therefore, we say a is
redundant in S.

Definition 8. Suppose P satisfies monotonicity. Given an evaluation e of P, an
element a is called a core element if it satisfies the following properties:

(c1) Pe(S)
(c2) ¬Pe(S − {a})

That is, for a set S satisfying property P, if we remove element a from S, the
rest elements can no longer preserve property P. Therefore, the element a is
necessary and indispensable for keeping property P.

Definition 9. Given a set S, let RED(S) denote the family of all reducts of S,
the set of core elements of S can be defined as follows:

CORE(S) =
⋂

RED(S). (3)

The CORE is the intersection of all reducts, in other words, elements in CORE
are included in every reduct. Therefore, the CORE is the most important subset
that none of its elements can be eliminated for preserving a specific property.

3.2 Reducts of a Family of Subsets of a Set

The proposed definition of reducts is flexible. As an example, we consider a set S
whose elements are subsets of a set. Given a set W , suppose S ⊆ 2W is a family
of subsets of W . According to definition of reducts in Definition 6, we introduce
∩-reducts and ∪-reducts of S.

Definition 10. [13] Suppose W is a finite set and S ⊆ 2W . A set R ⊆ S is
called an ∩-reduct of S if it satisfies the following conditions:

(w) ∩S = ∩S,

(s) ∩R = ∩S,

(n) ∀a ∈ R, (¬(∩(R − {a}) = ∩S)).

A set Q ⊆ S is called an ∪-reduct of S if it satisfies the following conditions:

(w′) ∪S = ∪S,

(s′) ∪Q = ∪S,

(n′) ∀a ∈ Q, (¬(∪(Q − {a}) = ∪S)).
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Conditions (w) and (w′) simply state that S has the property. We explicit list
them to show the connection to Definition 6.

In some situations, we want to use a family of subset S to represent other
subsets of W . This leads to a definition of relative reducts.

Definition 11. [13] Suppose S ⊆ 2W is a family of subsets of a finite set W
and T ⊆ W is a subset of W . An ∩-reduct of S relative to T , or simply an
∩-relative-reduct is defined by the following conditions,

(w) ∩S ⊆ T,

(s) ∩R ⊆ T,

(n) ∀a ∈ R, (¬(∩(R − {a}) ⊆ T )).

Condition (w) states that the family S has the property of ∩S ⊆ T . We will
show later that those reducts form a basis of rough set analysis.

4 A Critical Analysis of Pawlak Three-Step Approach

In this section, we provide a critical analysis of Pawlak three-step approach based
on the notion of reducts introduced in the last section.

4.1 Rough Set Approximations

Rough set theory analyzes an information table based on equivalence relations
(i.e., reflexive, symmetric and transitive relations) induced by subsets of at-
tributes [12,13].

Definition 12. [13] Given an information table, a subset of attributes A ⊆ At
defines an equivalence relation on U as follows:

xEAy ⇐⇒ ∀a ∈ A, (Ia(x) = Ia(y))
⇐⇒ IA(x) = IA(y). (4)

That is, x and y are equivalent if and only if they have the same values on all
attributes in A. The equivalence relation EA induces a partition of the universe
and is denoted by U/EA = {[x]EA | x ∈ U}, where [x]EA = {y | xEAy} is the
equivalence class containing x.

There is a one-to-one correspondence between all equivalence relations on U and
all partitions of U . Therefore, we use equivalence relations and partitions inter-
changeably. An equivalence relation E is a set of pairs, that is, E ⊆ U×U , where
U × U is the cartesian product of U and U . One can apply set-theoretic oper-
ations and relations on equivalence relations. If E1 and E2 are two equivalence
relations, then E1 ∩ E2 is also an equivalence relation.

The standard set inclusion of equivalence relations defines a partial order on
partitions as follows: for two equivalence relations E1 and E2,

U/E1 � U/E2 ⇐⇒ E1 ⊆ E2. (5)
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If U/E1 � U/E2, each block of U/E2 must be a union of some blocks of U/E1,
and the partition U/E1 is called a refinement of U/E2 and U/E2 a coarsening
of U/E1.

With respect to different subsets of attributes, we can establish the following
relationships, for A, B ⊆ At, x ∈ U ,

(1) EA =
⋂
a∈A

E{a},

EA∪B = EA ∩ EB ,

(2) [x]EA =
⋂

a∈A

[x]E{a} ,

[x]EA∪B = [x]EA ∩ [x]EB ,

(3) A ⊆ B ⇒ EB ⊆ EA,

A ⊆ B ⇒ U/EB � U/EA. (6)

Properties (1) and (2) show that the equivalence relation, or the corresponding
partition, defined by a subset of attributes can be constructed from the individual
equivalence relations or partitions defined by singleton subsets of attributes.
Property (3) states that the refinement-coarsening relation � is monotonic with
respect to set inclusion of sets of attributes.

Consider the equivalence relation EA defined by a subset of attributes A ⊆ At.
For a subset X ⊆ U , its lower and upper approximations are defined by [12,13]:

apr(X) =
⋃

{[x]EA ∈ U/EA | [x]EA ⊆ X};
apr(X) =

⋃
{[x]EA ∈ U/EA | [x]EA ∩ X �= ∅}. (7)

That is, the lower approximation apr(X) is the union of those equivalence classes
that are subsets of X , and the upper approximation apr(X) is the union of those
equivalence classes that have nonempty intersection with X . By the lower and
upper approximation, one can divide the universe U into three pair-wise disjoint
regions [12], namely, the positive region POS(X), the boundary region BND(X),
and the negative region NEG(X):

POS(X) = apr(X),
BND(X) = apr(X) − apr(X),
NEG(X) = U − apr(X) = (apr(X))c, (8)

where (·)c denotes the set complement. Some of these regions may be empty. The
pair of lower and upper approximations and the three regions uniquely define
each other. One can formulate the theory of rough sets by using any one of them.

Based on these notions, we are ready to review Pawlak three-step approach
to data analysis.

4.2 Step 1: Analysis of Attribute Dependencies

Pawlak refers to partitions, or equivalently equivalence relations, defined by sub-
sets of attributes as classification knowledge or simply classification. Analysis of
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attribute dependencies is performed through equivalence relations defined by
subsets of attributes.

Reducts of an Information Table. Consider first the notion of reducts of
an information table. Pawlak introduces the notion of a reduct of a family of
partitions or equivalence relations. Since each attribute defines an equivalence
relation, we can use a Pawlak reduct of a family of equivalence relations to define
an attribute reduct of an information table.

Definition 13. Given an information table, consider the family of equivalence
relations defined by singleton subsets of attributes S = {E{a} | a ∈ At}. A reduct
of S is defined as a subset R ⊆ S satisfying the following conditions:

(s1) ∩R = ∩S,

(n1) ∀E ∈ R, (¬(∩(R − {E}) = ∩S)). (9)

In this definition, the condition ∩S = ∩S is not explicitly given. Recall that
an equivalence relation is a set of pairs. It follows that S ⊆ 2U×U . Therefore,
according to Definition 10, a reduct as defined by Definition 13 is in fact an
∩-reduct of S.

There is only a small problem when characterizing an information table by
the family of equivalence relations {E{a} | a ∈ At}. Two different attributes
a, b ∈ At may define the same equivalence relation, that is, E{a} = E{b}. To
resolve the problem, Pawlak treats all those attributes that define the same
equivalence relation as one attribute. According to Definition 6, the following
definition resolves this problem by directly referring to the set of attributes At.

Definition 14. In an information table, an attribute reduct is a subset of at-
tributes R ⊆ At satisfying each of the following equivalent pairs of conditions:

equivalence relation based conditions :
(s2) ER = EAt,

(n2) ∀a ∈ R, (¬(ER−{a} = EAt));
partition based conditions :

(s3) U/ER = U/EAt,

(n3) ∀a ∈ R, (¬(U/ER−{a} = U/EAt));
equivalence class based conditions :

(s4) ∀x ∈ U, ([x]RR = [x]EAt),
(n4) ∀a ∈ R∃x ∈ U, (¬([x]ER−{a} = [x]EAt)). (10)

The definition contains both commonly used conditions based on equivalence
relations or partitions and new conditions based on equivalence classes. Each
pair of conditions provides a different characterization and understanding of
a reduct. That is, a reduct is a minimal set of attributes that defines the same
equivalence relation as EAt. The last pair of conditions is particularly interesting
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and is closely related to the conditions for defining attribute-value-pair reducts.
Again, the first condition of a general reduct is not explicitly stated. For example,
we omit the condition EAt = EAt. By Definition 6, an attribute reduct is an
exapmle of a reduct of the set of attributes At.

Relative Reducts of a Consistent Classification Table. For analyzing a
classification table, Pawlak introduces the notion of a relative reduct. Based on
an equivalence relations defined by subsets of attributes, a classification table
with At = C ∪ D is consistent if

EC ⊆ ED, or equivalently U/EC � U/ED. (11)

For a consistent classification table, similar to Definition 13, a relative reudct
can be defined according to Definition 11.

Definition 15. Consider the set of all equivalence relations defined by singleton
subsets of condition attributes S = {E{a} | a ∈ C}. A reduct of S relative to ED

is a subset R ⊆ S satisfying the following properties:

(w) ∩S ⊆ ED,

(s) ∩R ⊆ ED,

(n) ∀E ∈ R, (¬(∩(R − {E}) ⊆ ED)). (12)

Similar to Definition 14, a relative attribute reduct can also be equivalently
defined by using equivalence relations, partitions, and equivalence classes, re-
spectively.

Definition 16. Given a consistent classification table S = (U, At = C∪D, {Va |
a ∈ At}, {Ia | a ∈ At}), a subset R ⊆ C is called a reduct of C relative to D,
or simply a relative reduct, if R satisfies one of the following equivalent pairs of
conditions:

equivalence relation based conditions :
(s5) ER ⊆ ED,

(n5) ∀a ∈ R, (¬(ER−{a} ⊆ ED));
partition based conditions :

(s6) U/ER � U/ED; ,
(n6) ∀a ∈ R, (¬(U/ER−{a} � U/ED));

equivalence class based conditions :
(s7) ∀x ∈ U, ([x]ER ⊆ [x]ED ),
(n7) ∀a ∈ R∃x ∈ U, (¬([x]ER−{a} ⊆ [x]ED )). (13)

Conditions in the definition suggest that a relative reduct R is a minimal set
of attributes whose partition U/ER is the same or finer than ED. For example,
condition (s7) states that the equivalence class of ER containing x is a subset
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of the equivalence class of ED containing x. That means that one can infer the
equivalence class [x]ED from the equivalence class [x]ER so that it preserves the
descriptive ability for classification. Condition (n7) states that any attribute in
R is necessary for inferring [x]ED .

Relative Reducts of an Inconsistent Classification Table. For an incon-
sistent classification table, Pawlak defines a relative reduct by using the positive
region of the classification U/ED induced by EC :

POSEC (U/ED) =
⋃

{POSEC (K) | K ∈ U/ED}
=
⋃

{apr
EC

(K) | K ∈ U/ED}. (14)

More specifically, a relative reduct of an inconsistent classification table is a
minimal set of attributes that preserves the positive region of U/ED; there is
not consideration of objects not in the positive region.

Definition 17. [13] Given a consistent classification table S = (U, At = C ∪
D, {Va | a ∈ At}, {Ia | a ∈ At}), a subset R ⊆ C is called a reduct of C relative
to D if R satisfies the two conditions:

(s8) POSER(U/ED) = POSEC (U/ED),
(n8) ∀a ∈ R, (¬(POSER−{a}(U/ED) = POSEC (U/ED))).

For a consistent classification table, we have POSEC (U/ED) = U . Pawlak’s
definition is therefore applicable to both consistent and inconsistent classification
tables.

Although Pawlak’s definition is an example of a relative reduct of the set of
condition attribute C, it is very different in form from the definition of a relative
reduct of a consistent classification table as given by Definitions 15 and 16. By
insisting on having the same positive region, a relative reduct does not care
about objects in the boundary region. This observation provides a hint: one can
transform an inconsistent table into a consistent table by focusing on individual
positive regions of equivalence classes of ED so that the definition of a relative
reduct of a consistent table can be used. According to the positive regions of
equivalence classes in U/ED, we can form the following partition:

{POSEC (K) �= ∅ | K ∈ U/ED} ∪ ({∪{BNDEC (K) | K ∈ U/ED}} − {∅}).(15)

Suppose ED′ is the equivalence relation corresponding to this partition, and the
partition can be denoted by U/ED′ . According to the partition U/ED′ , a relative
reduct of an inconsistent table can be defined based on Definition 16.

Definition 18. Given a consistent classification table S = (U, At = C∪D, {Va |
a ∈ At}, {Ia | a ∈ At}), a subset R ⊆ C is called a reduct of C relative to D if
R satisfies any of the following equivalent pairs of conditions:
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equivalence relation based conditions :
(s9) ER ⊆ ED′ ,

(n9) ∀a ∈ R, (¬(ER−{a} ⊆ ED′));
partition based conditions :

(s10) U/ER � U/ED′ ,

(n10) ∀a ∈ R, (¬(U/ER−{a} � U/ED′));
equivalence class based conditions :

(s11) ∀x ∈ U, ([x]ER ⊆ [x]ED′ ),
(n11) ∀a ∈ R∃x ∈ U, (¬([x]R−{a} ⊆ [x]ED′ )). (16)

A consistent table is a special case of inconsistent tables. For a consistent table,
U/ED′ = U/ED and, hence, the definition is also valid for a consistent table.
An advantage of Definition 18 is that it is in a uniform format as relative of a
consistent table. However, we need to construct a partition U/ED′ originally not
in the table. If we examine the Pawlak definition again, we find that keeping the
positive region is equivalent to saying that ∀x ∈ U, ([x]EC ⊆ [x]ED =⇒ [x]ER ⊆
[x]ED ). Based on this observation, we can have another definition of a relative
reduct of an inconsistent table.

Definition 19. Given an inconsistent classification table S = (U, At = C ∪
D, {Va | a ∈ At}, {Ia | a ∈ At}), a subset R ⊆ C is called a reduct of C relative
to D if R satisfies the two conditions:

(s12) ∀x ∈ U, ([x]EC ⊆ [x]ED =⇒ [x]ER ⊆ [x]ED ),
(n12) ∀a ∈ R∃x ∈ U, (¬([x]EC ⊆ [x]ED =⇒ [x]ER−{a} ⊆ [x]ED )). (17)

For a consistent table, [x]EC ⊆ [x]ED is true for all x ∈ U . In this case, con-
ditions (s12) and (n12) are equivalent to conditions (s7) and (n7). Therefore,
Definition 19 is also valid for a consistent table. An advantage of this definition
is that we do not need to introduce any extra structures not given in the table.

Relative Reducts and Attribute Dependencies. The relationship between
the set of condition attributes C and the set of decision attributes D can be
easily extended to a study of dependency of any two sets of attributes in an
information table.

Consider two arbitrary subsets of attributes A, B ⊆ At in an information ta-
ble. The two subsets may have an nonempty intersection. If EA ⊆ EB holds, we
say that B depends on A. In this paper, we only consider two sets of attributes
with a full dependency. This is similar to a consistent classification table with
EC ⊆ ED. By applying the results of a relative reduct of a consistent classi-
fication table, it is straightforward to define a reduct of A relative to B for a
simplified attribute dependency.

Definition 20. For a pairs of subsets of attributes A, B ⊆ At in an information
table with EA ⊆ EB, a subset R ⊆ A is called a reduct of A relative to B if it
satisfies the following conditions:
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(s13) ER ⊆ EB,

(n13) ∀a ∈ R, (¬(ER−{a} ⊆ EB)). (18)

With this definition, we can interpret a reduct R ⊆ At of an information table as
a relative reduct with respect to the entire set of attributes At. Relative reducts
of a consistent classification table are also special cases.

Attribute dependencies can be formally studied through attribute-level rules
in a table [23]. In this way, we can unify notions of attribute reducts and
attribute-value-pair reducts in a common framework of rules. For such a pur-
pose, we need to introduce a decision logic language LA similar to the one used
in Pawlak’s book.

Definition 21. In an information table, a decision logic language LA is recur-
sively defined as follows: an atomic formula is given by =a, where a ∈ At. If p
and q are formulas, then p ∧ q is a formula.

By using language LA, we can express attribute dependency EA ⊆ EB as,∧
a∈A

=a →
∧
b∈B

=b, (19)

or simply,
=A → =B, (20)

where both the left-hand-side and right-hand-side of → are formulas of LA.
Consequently, finding a relative reduct can be viewed as searching for a minimal
set of atomic formulas on the left-hand-side of an attribute-dependency rule.

The meaning of formulas of LA are given by pairs of objects. More specifically,
a pair of objects (x, y) is said to satisfy an atomic formula =a if and only if
Ia(x) = Ia(y). In general, the meanings of formulas can be recursively defined.

Definition 22. The meanings of formulas of LA are recursively computed as
follows:

m(=a) = {(x, y) ∈ U × U | Ia(x) = Ia(y)},
m(p ∧ q) = m(p) ∩ m(q). (21)

A formula may be interpreted as the intension of a concept and the meanings
set is the extension of the concept. In this way, we express a concept jointly by
a pair of a formula and a set. A concept in the context of attribute-level rules is
an equivalence relation. By definition, it follows that,

m(=a) = E{a},

m(
∧

a∈A

=a) = EA. (22)

With respect to the left-hand-side of an attribute dependency rule given by
equation (20), we can define a set of atomic formulas and a set of the meaning
sets of atomic formulas:
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S = {=a| a ∈ A},
m(S) = {m(=a) | a ∈ A}. (23)

In this way, an attribute reduct of A relative to B can be interpreted as a) a
reduct of the set of atomic formulas S relative to the formula =B, and b) a reduct
of the family of equivalence relations m(S) relative to the equivalence relation
EB. According to Definition 6 and Definition 10, we have two more definitions
of a ruduct of an attribute dependency rule.

Definition 23. For an attribute dependency rule =A → =B, a subset R ⊆ S is
reduct of the set of atomic formulas S relative to =B if R satisfies the following
conditions:

(s14) ∩ {m(p) | p ∈ R} ⊆ m(=B),
(n14) ∀q ∈ R, (¬(∩{m(p) | p ∈ (R − {q})} ⊆ m(=B))). (24)

Definition 24. For an attribute dependency rule =A → =B, a subset R′ ⊆
m(S) is reduct of the set of equivalence relations m(S) relative to the equivalence
relation m(=B) if R′ satisfies the following conditions:

(s15) ∩ R′ ⊆ m(=B),
(n15) ∀E ∈ R, (¬(∩(R′ − {E}) ⊆ m(=B))). (25)

Recall that different attributes may define the same equivalence relation, like
Definition 13, Definition 24 is not a very accurate characterization of a reduct
of an attribute dependency rule.

4.3 Step 2: Analysis of Attribute-Value Dependencies

For a classification table with At = C ∪ D, the result of Step 1 analysis is an
attribute reduct R ⊆ C. For an equivalence class [x]ER satisfying the condition
[x]ER ⊆ [x]ED , Pawlak constructs a classification rule showing a dependency
between values of x on attributes R and D, respectively. To represent formally
such classification rules, we consider a sub-language of the decision logic language
used Pawlak [13].

Definition 25. In an information table, a decision logic language LV is recur-
sively defined as follows: an atomic formula is given by a = v, where a ∈ At and
v ∈ Va. If φ and ψ are formulas, then φ ∧ ψ is a formula.

An atomic formula a = v is commonly known as an attribute-value pair, written
(a, v), or a descriptor. By restricting to the logic connective ∧, we only consider
a formula that is the conjunction of a family of atomic formulas. The meaning
of a formula is defined by the set of objects satisfying the formula.

Definition 26. The meanings of formulas of LV are recursively computed as
follows:

m(a = v) = {x ∈ U | Ia(x) = v},
m(φ ∧ ψ) = m(φ) ∩ m(ψ). (26)
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With the introduced logic language LV , a classification rule can be defined as:∧
a∈R

a = Ia(x) →
∧

d∈D

d = Id(x), (27)

or simply,
R = IR(x) → D = ID(x), (28)

The left-hand-side of the rule can be understood as a set of attribute value pairs,
namely, atomic formulas. A classification rule is therefore called an attribute-
value-level rule. Like an attribute-level rule, there may exist superfluous attribute-
value pairs on the left-hand-side of the rule. Pawlak calls m(a = v) a category
and introduces the notion of a reduct of categories to simplify a classification
rule.

By using the same argument for defining a reduct of an attribute dependency
rule, we can define a reduct of an attribute-value dependency rule. For an object
x ∈ U , we have:

m(a = Ia(x)) = [x]E{a} ,

m(
∧

a∈A

a = Ia(x)) = [x]EA . (29)

Based on these results, for rule R = IR(x) → D = ID(x), we introduce two
definitions of an attribute-value-pair reduct relative to [x]ED .

Definition 27. For a classification rule R = IR(x) → D = ID(x), a subset
of attributes R(x) ⊆ R is called an attribute reduct of x relative to D if R(x)
satisfies the two conditions:

(s16) [x]ER(x) ⊆ [x]ED ;
(n16) ∀a ∈ R(x), (¬([x]ER(x)−{a} ⊆ [x]ED )).

Note that (s16) and (n16) are related to (s7) and (n7) of Definition 16. By
comparison, an attribute reduct of an information table must be defined with
respect to all objects in the table and an attribute reduct of a classification rule
is defined with respect to only objects equivalent to x.

Given a classification rule R = IR(x) → D = ID(x), we can construct a set
of attribute-value pairs (i.e., atomic formulas) and the set of their meaning sets,
respectively, as follows:

S(x) = {a = Ia(x) | a ∈ R},
m(S(x)) = {m(a = Ia(x)) | a ∈ R}. (30)

We can use reducts of the two sets to define reducts of of a classification rule in
a similar manner as in Definitions 23 and 24.

Definition 28. For a classification rule R = IR(x) → D = ID(x), a subset
R(x) ⊆ S(x) is called an attribute-value-pair reduct relative to D = ID(x) if
R(x) satisfies the conditions:

(s17) ∩{m(φ) | φ ∈ R(x)} ⊆ m(D = ID(x));
(n17) ∀ψ ∈ R(x), (¬(∩{m(φ) | φ ∈ (R(x) − {ψ})} ⊆ m(D = ID(x)))). (31)
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Definition 29. For a classification rule R = IR(x) → D = ID(x), a subset
R′(x) ⊆ m(S(x)) is called a reduct of m(S(x)) relative to m(D = ID(x)) if
R′(x) satisfies the conditions:

(s18) ∩R′(x) ⊆ m(D = ID(x));
(n18) ∀K ∈ R′(x), (¬(∩(R′(x) − {K}) ⊆ m(D = ID(x)))). (32)

Definition 29 is in fact an ∩-reduct in Definition 11. Different attribute-value
pairs may have the same meaning set, Definition 29 as used by Pawlak is not a
very accurate characterization of a relative attribute-value-pair reduct.

In general, similar to the study of attribute-level rules in Section 4.2, we can
study attribute-value dependencies for any pair of sets of attributes A, B ⊆ At.
For example, one can consider attribute-value dependencies by using the set of
condition attributes C and the set of decision attributes D in a classification
table, instead of using a reduct R ⊆ C from Step 1.

4.4 Step 3: Analysis of Rule Dependencies

After Step 2 analysis, for an attribute reduct R(x) ⊆ R for an object x, we have
[x]ER(x) ⊆ [x]ED , which produces a classification rule:

R(x) = IR(x)(x) → D = ID(x). (33)

The third step of Pawlak data analysis consists of constructing a rule set and
simplifying the rule set by removing redundant rules. Pawlak compiles a set of
simplified rules by choosing one rule defined by an attributive-value-pair reduct
R(x) for each equivalence class [x]R, where R is a relative attribute reduct ob-
tained in Step 1. Let RS denote the rule set obtained in Step 2. There may exist
redundant rules in RS. It is therefore necessary to introduce the notion of a rule
reduct of RS.

For a classification rule c → d, we define its meaning as the set of correctly
classified objects:

m(c → d) = m(c ∧ d) = m(c) ∩ m(d). (34)

Pawlak only considers certain rules derived from the lower approximations. In
this case, we have m(c) ⊆ m(d) and m(c → d) = m(c). In general, this may
not be true. Based on the meaning sets of rules, a rule reduct is related to an
∪-reduct of the following family of subsets of U :

m(RS) = {m(c → d) | (c → d) ∈ RS}. (35)

For an inconsistent table, we have ∪m(RS) = POSEC (U/ED); for a consistent
table we have ∪m(RS) = U . According to Definition 6, we introduce the notion
of a reduct of a rule set.
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Definition 30. A subset of rules R ⊆ RS is called a rule reduct of a set of rules
RS if R satisfies the condition:

(s19) ∪m(R) = ∪m(RS),
(n19) ∀(c → d) ∈ R, (¬(∪m(R − {c → d}) = ∪m(RS))),

where m(R) = {m(c → d) | (c → d) ∈ R}.
Condition (s19) states that rules in R are sufficient for correctly classifying all
objects as the entire rule set RS and condition (n19) states that each rule in R
is necessary.

According to Definition 10, we can directly compute an ∪-reduct of the family
m(RS) to interpret a reduct of the rule set RS. However, since two rules may
have the same meaning set, such an interpretation is not precise.

5 Discussions and Conclusion

In our interpretation and formulations of Pawlak three-step approach, we use a
more general and generic notion of reducts. By exploring the monotonicity of
evaluations, a reduct of a set is defined as a subset of a set satisfying a pair of
conditions, namely, a jointly sufficient condition (s) and an individually necessary
condition (n). In total, we consider about twenty definitions of various reducts.

The unified framework based on reducts has a number of advantages. One
can apply a generic reduct construction algorithm for constructing any of the
three types of reducts. In particular, one may use any of the three classes of
algorithms, deletion, addition-deletion, and addition algorithms [22]. All three
steps of Pawlak analysis can be viewed as different applications of the same data
reduction method. The same framework can be further applied to new situations
where a reduct of a set is of interest.

In our formulation, we explicitly express intension and extension of a concept.
A classification rule is expressed as a pair of two rules, one for extension and the
other for intension: for x ∈ U, R ⊆ C,{

[x]ER ⊆ [x]ED ,∧
a∈R a = Ia(x) → ∧d∈D d = Id(x). (36)

It enables us to see additional insights into Pawlak three-step approach. Steps 1
and 2 use both intensions and extensions. Step 3 only uses extensions.

The Pawlak three-step approach can be modified in several ways. It can be
observed that the first step is not necessary. Thus, a two-step approach can be
derived based only on Steps 2 and 3. In Step 2, attribute-value-pair reducts are
constructed based on both intensions and extensions. One may consider only
extensions of concepts without reference to intensions. This can be formulated
as a search for a reduct of the family of subsets of U given by:

{[x]EA | A ⊆ C, [x]EA ⊆ [x]ED}. (37)
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The results are a new rule learning method [20]. In Step 3, a rule reduct is defined
independent of how a rule set is formed.

This paper contributes to Pawlak three-step rough set analysis by introducing
a generic notion of reducts, providing multiple interpretations of reducts, and
unifying different definitions of reducts in a common framework. We demonstrate
that rough set analysis can be formulated based on the central notion of reducts.
With some modifications, it is possible to investigate various generalized notions
of reducts by using the results from this paper.
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Abstract. The problem considered in this article is how to measure the
nearness or apartness of digital images in cases where it is important to
detect subtle changes in the contour, position, and spatial orientation of
bounded regions. The solution of this problem results from an applica-
tion of anisotropic (direction dependent) wavelets and a tolerance near
set approach to detecting similarities in pairs of images. A wavelet-based
tolerance Nearness Measure (tNM) makes it possible to measure fine-
grained differences in shapes in pairs of images. The application of the
proposed method focuses on image sequences extracted from hand-finger
movement videos. Each image sequence consists of hand-finger move-
ments recorded during rehabilitation exercises. The nearness of pairs of
images from such sequences is measured to check the extent that nor-
mal hand-finger movement differs from arthritic hand-finger movement.
Experimental results of the proposed approach are reported, here. The
contribution of this article is an application of an anisotropic wavelet-
based tNM in classifying arthritic hand-finger movement images in terms
of their degree of nearness to or apartness from normal hand-finger move-
ment images.

Keywords: anisotropic wavelets, arthritis, digital image sequence, near-
ness measure, tolerance near sets.

1 Introduction

This paper considers the problem of how to measure the nearness or apartness
of digital images in cases where it is important to detect subtle changes in the
� This research was supported by Natural Sciences & Engineering Research Council

of Canada (NSERC) grant 185986, Manitoba Center of Excellence Fund (MCEF)
grant, Canadian Network of Excellence (CNE), and Canadian Arthritis Network
(CAN) grant SRI-BIO-05.

J.F. Peters et al. (Eds.): Transactions on Rough Sets XVI, LNCS 7736, pp. 73–82, 2013.
© Springer-Verlag Berlin Heidelberg 2013



74 L. Puzio and J.F. Peters

contour, position, and spatial orientation of bounded regions. The solution to
this problem is given in terms of an anisotropic wavelet-based, tolerance nearness
measure in classifying arthritic hand-finger movement images relative to their
degree of nearness to or apartness from normal hand-finger movement images.

In this work, we utilise near set theory informally introduced in 2002 [1]
and formally introduced in 2007 [2,3]. Near sets were inspired by a study of the
perceptual resemblance of objects during a collaboration between Z. Pawlak and
J.F. Peters [1]. Recent research proves that near set theory can be used effectively
to define distance functions that measure the nearness of digital images [4–20].
The anisotropic wavelet-based tolerance nearness measure [9] is based on recent
work by C. Henry and J.F. Peters [4, 12, 13]. The contribution of this article is
an application of an anisotropic wavelet-based tNM in classifying arthritic hand-
finger movement images in terms of their degree of nearness to or apartness from
normal hand-finger movement images.

This paper has the following organization. Sect. 2 gives the basic mathemat-
ics underlying the proposed classification method. Sect. 3 briefly presents the
nearness measurement method and sample experimental results.

2 Preliminaries: Anisotropic Wavelets and Tolerance
Nearness Measure

An anisotropic wavelet (i.e., dependent on the direction (angle) that is used to
define a wavelet) is constructed in a polar coordinate system as a product of
the Hann window function and the Gaussian wavelet [21]. The Hann window
function is given in (1).

ρ(α) = 0.5(1− cos(α)), α ∈ [0, 2π), (1)

ψ(r) = −2r

(
2

π

)1/4

e−r2. (2)

An anisotropic wavelet ψ(α, r) is a product of a Hann window ρ(α) and trans-
lated by nr Gaussian wavelet ψ(r) represented in (3). By putting (1) and (2)
into (3), we obtain a so-called ‘mother wavelet’, i.e., a wavelet function (4) that
is used to construct a wavelet set. Each wavelet in our set we calculate in (5).

ψ(α, r) = ρ(α)ψ(r), (3)

ψ(α, r) = 0.5(1− cos(α)) (−2r)

(
2

π

)1/4

e−r2 , (4)

ψI(α, r) =
(
1/
√
2πnr/2sα+1

√
2−sr

)
· ψ
(
2sαα− π(nα − 1), 2−sr(r − nr)

)
, (5)

Cψ{f}(. . . ) =
∫ ∫

f(α, r)ψ∗
sα ,sr,nα,nr

(α, r) dα dr. (6)
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where Cψ{f}(. . . ) denotes Cψ{f}(sα, sr, nα, nr), ψ denotes a wavelet with (α, r)
a polar coordinates and where I = {sα, sr, nα, nr} denotes an index set used in
(5) to define a wavelet with an angular scale sα, radial scale sr, an angular
translation nα and a radial translation nr. In particular, it is nα that makes
(5) anisotropic, while nr is a radial distance from the pole (origin of a polar
coordinate system).

Perception-based description of an object x in near set theory is in the form
of feature vectors φ(x) containing probe function values [7, 14]

φ(x) = (φ1(x), φ2(x), . . . , φi(x), . . . , φl(x))
T (7)

where φi : O −→ [0,∞) is a probe function that represents a single object
feature. This leads to the notion of a perceptual information system.

Definition 1. Perceptual information system [7]
A perceptual information system 〈O,F〉 or more concisely, perceptual system is
a real-valued, total deterministic information system where O is a non-empty set
of perceptual objects, while F a countable set of probe functions.

Definition 2. Perceptual tolerance relation [22,23] Let 〈O,F〉 be perceptual
system and put ε ∈ [0,∞). For every B ⊆ F, the perceptual tolerance relation
∼=B,ε is defined as (8).

∼=B,ε= {(x, y) ∈ O ×O, ‖ φ(x)− φ(y) ‖≤ ε} (8)

where ‖ · ‖2 is the L2 norm, φ(x) = [φ1(x) . . . φi(x) . . . φl(x)]
T is a feature vector

obtained using all probe functions φi ∈ B. For simplicity, we write x ∼=B y instead
of x ∼=B,ε y.

Relations with the same formal properties as similarity relations of sensations
considered by Poincaré [24] are nowadays, after Zeeman [25], called tolerance
relations.

H
∼=B,ε

(O)

X

Y

H
∼=B,ε

(X) H
∼=B,ε

(Y )

A B

Fig. 1. Sample Tolerance Near Sets

A tolerance τ on a
set O is a relation τ ⊆
O × O that is reflex-
ive and symmetric. Tran-
sitive tolerance relations
are equivalence relations.
A set O together with
a tolerance τ is called a
tolerance space (denoted
〈O, τ〉). The useful no-
tion of a tolerance pre-
class was first introduced
by M.J. Schroeder and
M.H. Wright [26]. A set
A ⊆ O is a τ-preclass (or briefly preclass when τ is understood) if and only if
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for any x, y ∈ A, (x, y) ∈ τ . The family of all preclasses of a tolerance space is
naturally ordered by set inclusion and preclasses that are maximal with respect
to a set inclusion are called τ-classes or just classes, when τ is understood. The
family of all classes of the space 〈O, τ〉 is denoted by Hτ (O). The family Hτ (O)
is a covering of O.

Definition 3. Tolerance Near Sets [22, 23]
Let 〈O,F〉 be a perceptual system and let X,Y ⊆ O. A set X is perceptually
near a Y within the perceptual system 〈O,F〉 (i.e., (X	


F
Y )) iff there are x ∈ X

and y ∈ Y and there is B ⊆ F such that x ∼=B,ε y. We than say that X,Y are
perceptually near each other in the tolerance sense of nearness in Def.2.

Fig. 1 points to candidate tolerance near sets. Let O denote a set of pixels
inside the rectangle. Further, assume H

∼=B,ε

(O) denotes the family of all tolerance

classes of the space 〈O,∼=B,ε〉 determined by the tolerance relation ∼=B,ε in a
covering of the non-empty set O. Let X,Y ⊂ O be represented by the shaded
ellipses in Fig. 1. In this Figure, tolerance class A ∈ H

∼=B,ε

(X) and tolerance class

B ∈ H
∼=B,ε

(Y ). For simplicity, let the set of probe functions B = {φgr}, where

φgr(o) = intensity for pixel o ∈ O. It is apparent from the greylevel intensities
in classes A and B, that these classes contain pixels with similar descriptions,
i.e., pixels with similar intensities. To determine nearness of tolerance spaces,
we consider the tolerance nearness measure tNM .

Definition 4. Tolerance Nearness Measure (tNM) [4]
The distance D

tNM
: P(O) × P(O) :→ [0,∞) is defined by

DtNM (X,Y ) =

{
1− tNM∼=B,ε

(A,B), if X and Y are not empty,
∞, if X or Y is empty,

where

tNM∼=B,ε
(X,Y ) =

( ∑
C∈H∼=B,ε

(Z)

|C|
)−1

·
∑

C∈H∼=B,ε
(Z)

|C|min(|C ∩X |, |[C ∩ Y |)
max(|C ∩X |, |C ∩ Y |) .

For simplicity, tNM is abbreviated NM . The details concerning NM are given
in [4,8,9,13] and not repeated here.

Nearness measure values range from 0 to 1 (DtNM (X,Y ) = 0 means that sets
X,Y are near (i.e., X,Y have similar descriptions), while D

tNM
(X,Y ) = 1 means

that sets X,Y are far apart (i.e., X,Y have dissimilar descriptions)).

Example 1. Sample image features extraction using wavelet method
We study images resemblance using features obtained using a wavelet-based edge
extraction method [27]. This method is based on a anisotropic wavelet [21]. Each
edge is described by localization, orientation, wavelet coefficient proportional to
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2.1: Original image 2.2: Detected edges

Fig. 2. Wavelet algorithm application result

edge gradient value, object contour number and contour lengths. Fig. 2 presents
example of the use of the wavelet algorithm on an image containing a hand
(Fig. 2.1). Fig. 2.2 contains points where edges were detected using wavelet al-
gorithm.

Table 1 contains wavelet algorithm results presented in Fig. 2.2. The algo-
rithm reveals that hand contour contains 132 edges. We present only part of the
results just to show what value they could take. Each edge has its order number
#, position X, Y, spatial orientation given in radians, and wavelet coefficient
value.

Table 1. Results obtained for sample hand image in scale sr=0

# X Y Orient. Coef.
1 13 5 -0,363 1,113
2 14 8 -0,198 1,007
3 14 11 -0,061 1,012
4 14 14 0,028 0,881
5 14 17 0,031 0,866
...

...
...

...
...

132 95 74 -0,588 0,459

3 Anisotropic Wavelet-Based Tolerance Nearness

This section introduces an an application of the anisotropic wavelet algorithm
from [27] considered in the context of tolerance near sets.

3.1 Image Comparison Methodology

A method that combines the original anisotropic wavelet algorithm [27] and tol-
erance nearness measure tNM is summarised in Alg. 1. In this work, hand-finger
movement video recording are made during rehabilitation exercise. Sequences of



78 L. Puzio and J.F. Peters

3.1: A normal hand 3.2: A rheumatic hand
Fig. 3. Single images from two video hand movement sequences

images are extracted from those videos. For every image in an image sequence,
we extract features such us edge localization, edge spatial orientation, wavelet
coefficient proportional to edge gradient value, objects contour number and con-
tour lengths using a wavelet algorithm. Those features was utilized to nearness
measures evaluation of two images from sequence, i.e., first image with second,
second with third, and so on. Alg. 1 step (4.1) is time consuming because at this
step τ classes are determined. One could find solution to this problem in [28].

Algorithm 1. tNM calculation algorithm of digital images
Input : Img1,Img2 (pair of images), sr (wavelet algorithm scale),

ε (tolerance).
Output: tNM (Tolerance Nearness Measure value).

1 Initialize algorithm parameters:
(1.1) sr ← wavelet scale value;
(1.2) ε ← Nearness Measure tolerance value;
2 Extract Img1, Img2 features using anisotropic wavelets from Sect. 2:
(2.1) Feat1 ← WavAlg(sr, Img1);
(2.2) Feat2 ← WavAlg(sr, Img2);
3 Obtain edge positions from images features:
(3.1) X ← Feat1(x, y);
(3.2) Y ← Feat2(x, y);
4 Compute tNM from Def. 4:
(4.1) tNM ← tNM∼=B,ε(X,Y );

3.2 Experimental Results

To measure the nearness of a pair of digital images, we utilize the tNM measure
from Def. 4. Image features are obtained using the wavelet algorithm from Sect. 2
and [27]. tNM was based on edge localization (i.e., X and Y edge position),
wavelet coefficient value, edge spatial orientation, and object contour length
features.
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4.1: A normal hand
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4.2: A rheumatic hand
Fig. 4. From top: tNM values with ε=0.1, ε=0.05, and ε=0.01 based on edge local-
ization

As was expected tNM values decreases with ε, but DtNM should increase with
decreasing ε. This is illustrated in Fig 4, with the X axis marked a succession of
pairs of images from video sequence. On the Y axis, tNM values are given for
pairs of images. Each plot consists of four data series, because image features was
extracted for a different scale parameter of the wavelet algorithm (sr = 0, 1, 2, 3).
In this example tNM was calculated based on edges localization feature from
rheumatic hand images sequence. Obtained tNM values are only different in
Fig. 4 for normal and arthritic hands when ε equals to 0.01.

Fig. 5 presents calculated tNM values with different ε values based on wavelet
coefficient values. From this figure, one could find that tNM values for normal
and rheumatic hands are very similar.

Fig. 6 shows tNM values when utilized edge spatial orientation as a image
feature. Surprisingly, we obtained the same tNM values for all tolerance values
(ε=0.1, 0.05, 0.01). That is why Fig. 6 contains one figure for normal and one
figure for arthritic hand.

We conclude by our research (some of which we presented in Fig. 4, Fig. 5, and
Fig. 6) that applying such image features as edge spatial orientation, edge wavelet
coefficient value, contour number, or contour length to tNM calculation results
in small difference in obtained tNM values for given images sequences. Fig. 5
and Fig. 6 illustrates this. Both, normal and arthritic hand images sequences
with calculated tNM values are at almost the same level.
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5.1: A normal hand
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5.2: A rheumatic hand

Fig. 5. From top: tNM values with ε=0.1, ε=0.05, and ε=0.01 based on coefficient
values
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6.1: A normal hand
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6.2: A rheumatic hand

Fig. 6. The tNM values with ε=0.01 obtained using spatial orientation feature

In sum, we conclude that the best distinction between normal and arthritic
hand-finger sequences with tNM is based on edge localization as a image feature
in sr scale equals to 0, and with tolerance value ε equals to 0.01.

Figure 7 presents nearness measures values for hand-finger image pairs. It
is clear that tNM values for normal hand sequences are two times bigger (on
average) than arthritic hand sequences. This suggests that this tNM function is
able to distinguish between normal and arthritic hand-finger movements.
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Fig. 7. The tNM of normal and rheumatic hand sequences with sr=0, and ε=0.01

4 Conclusion

This paper presents a number of research results, namely,
(result.i) We are able to apply near sets theory and the tNM measure with

wavelets in image analysis.
(result.ii) The Puzio-Walczak wavelet algorithm has utility in image edge ex-

traction for a number of parameters: position, spatial orientation,
number and length of objects contours.

(result.iii) It is possible to distinguish between normal and arthritic hand-finger
movements using the tNM distance function based on edge position
with ε = 0.01.

Future work will include further work on a family of wavelet-based nearness
distance functions and classification of images containing subtly different shapes.
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Abstract. This paper summarizes our recent research on semantic clus-
tering of scientific articles. We present a case study which was focused
on analysis of papers related to the Rough Sets theory. The proposed
method groups the documents on the basis of their content, with an assis-
tance of the DBpedia knowledge base. The text corpus is first processed
using Natural Language Processing tools in order to produce vector rep-
resentations of the content. In the second step the articles are matched
against a collection of concepts retrieved from DBpedia. As a result, a
new representation that better reflects the semantics of the texts, is con-
structed. With this new representation the documents are hierarchically
clustered in order to form a partitioning of papers into semantically re-
lated groups. The steps in textual data preparation, the utilization of
DBpedia and the employed clustering methods are explained and illus-
trated with experimental results. A quality of the resulting clustering is
then discussed. It is assessed using feedback form human experts com-
bined with typical cluster quality measures. These results are then dis-
cussed in the context of a larger framework that aims to facilitate search
and information extraction from large textual repositories.

Keywords: Text mining, semantic clustering, DBpedia, document
grouping, rough sets.

1 Introduction

In this paper we present results that are an extension of the RSKT 2011 confer-
ence paper [20] and the book chapter [21]. We demonstrate how theses results
have been augmented and extended for the purposes of a larger (SONCA) sys-
tem, that is being developed. The original method was modified and tested on
more extensive data sets, as described in [18] and [8].
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The original RSKT article [20] is focused on a case study of semantic clustering
of scientific articles related to the area of Rough Sets. Our efforts are meant to
answer the demand for developing semantic methods for document processing,
expressed in a major project (SYNAT), that we are involved in.

The SYNAT project (abbreviation of Polish “SYstem NAuki i Techniki”, see
[2]) is a large, national R&D program of Polish government aimed at establish-
ment of a unified network platform for storing and serving digital information in
widely understood areas of science and technology. The project is composed of
nearly 50 modules developed by research teams at 16 leading research institutions
in Poland.1 Within the framework of the larger project we want to design and
implement a solution that will make it possible for a user to search within repos-
itories of scientific information (articles, patents, biographical notes, etc.) using
their semantic content. Our prospective system for doing that is called SONCA
(abbreviation for Search based on ONtologies and Compound Analytics, see
[12,14,15] and Fig. 5).

Ultimately, SONCA should be capable of answering the user query by listing
and presenting the resources (documents, Web pages, et cetera) that correspond
to it semantically. In other words, the system should have some understanding
of the intention of the query and of the contents of documents stored in the
repository as well as the ability to retrieve relevant information with high effi-
cacy. The system should be able to use various knowledge sources related to the
investigated areas of science. It should also allow for independent sources of in-
formation about the analyzed objects, such as, e.g., information about scientists
who may be identified as the stored articles’ authors.

The idea that we pursue in this study is to perform semantic grouping (clus-
tering) of documents based on their associations with concepts drawn from the
DBpedia knowledge base. If done right, such clustering should make a good
start point for, e.g., a system with extended search features, capable of return-
ing results that are topically close to the search terms, not just those that ac-
tually contain the terms from the query (semantic vs. syntactic). It would also
make it possible to associate (tag) documents with meaningful concepts. This
approach is in line with the general trend of finding semantic similarities be-
tween documents with assistance of additional knowledge sources (ontologies,
thesauri, taxonomies, Wikipedia) in order to obtain more meaningful and useful
results. In order to be able to provide semantical relationships between concepts
and documents we employ a method called Explicit Semantic Analysis (ESA)
[5]. This method associates elementary data entities with concepts coming from
knowledge base.

In our initial RSKT 2011 article we have presented a case study using a text
corpus consisting of scientific papers related to Rough Sets. In this way we have
gained some additional insight into our own field of research, verify (positively or
negatively) some hypotheses and common beliefs, and possibly find some new. At
the same time, since we know the document corpus well, we have used our own
expertise to judge the quality of clustering and tagging solution. The experience

1 http://www.synat.pl

http://www.synat.pl
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gained from the case study made it possible to modify, extend and improve the
ESA approach to semantic tagging of scientific documents (articles).

The article is organized as follows. Section 2 describes the methodology and
motivation behind our approach. Then we describe our data set (Section 3)
and DBpedia knowledge base (Section 4), providing some details about their
characteristics and the way they were collected and prepared for experiments.
Section 5 contains description of the actual experiment on rough-set-related
articles and explanation of its results. The results and conclusions from the
experiments (Section 5) led us to constructions of one of the base components of
the SONCA system, that works on other sets of data. An overview of experiments
on various collections of scientific articles, made with modified ESA method, is
provided in Section 6. We finish with conclusions and directions for further work
in Section 7.

2 The Purpose and Methodology of the Study

The purpose of this experimental study is two-fold.

1. We want to test and verify methodology for document grouping (clustering)
based on their semantic content and using a knowledge base. In particular,
we want to identify the best configuration for various steps in the process,
one that is both computationally feasible and produces meaningful clusters
of documents. The goal is to establish a procedure that we will be able
to apply semi-automatically to various future text corpora. Since the area
of Rough Sets is close to us, we are able to better evaluate the results of
experiments on the corpus of texts collected in this field of research. As a
consequence, we can identify strengths and weaknesses of the method under
scope.

2. We want to learn as much as the methodology permits about our corpus of
documents (research papers) related to the area of Rough Sets. Since the
individual documents used for this case study (Section 3) are familiar to us,
we want to discover the semantic structure of the corpus as a whole and draw
some conclusions regarding the features of publications in this scientific area.
In particular, we are interested in identifying the most prevalent concepts
that characterize this corpus.

Figure 1 shows the general layout of the method that we employ in our case study.
The methodology of our was inspired by the Explicit Semantic Analysis (ESA)
approach presented in IJCAI paper [5]. Since this article is quite involved, the
method which it discusses requires more detailed explanation. The data sources,
i.e., collection of documents and DBpedia knowledge base, together with the
NLP2 methods for their pre-processing ("Initial text processing" box in Fig. 1)
are described in Sections 3 and 4, respectively.

In our approach, after initial processing, both collections of texts (the corpus
and the DBpedia abstracts) are converted to the bag-of-words (word-vector)
2 Natural Language Processing (NLP) tools as in [4].
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representation. The bag-of-words representation of a text (document) is a vector
based on vocabulary, i.e., the collection of unique words (stems) in the corpus.

Fig. 1. The general scheme of the experiment

Assume, that after initial processing of a text corpus D = {T1, . . . , TM} we
have collected a vocabulary consisting of N unique terms (e.g. words, stems, n-
grams) w1, . . . , wN . Then, any text (document) Ti (i = 1, . . . , M) in the corpus
can be represented by a vector 〈v1, . . . , vN 〉 ∈ RN

+ , where each coordinate vj

expresses a value of some relatedness measure for j-th term in vocabulary (wj),
relative to this document. The most common measure used to calculate the
weights vj is the tf-idf (term frequency-inverse document frequency) index (see
[4,13]) defined as:

vj = tfi,j × idfj =
ni,j∑N

k=1 ni,k

× log
(

M

|{i : ni,j �= 0}|
)

, (1)



Semantic Clustering of Scientific Articles Using ESA 87

where ni,j is the number of occurrences of the considered word wj in the docu-
ment Ti.

Next, the bag-of-words representation of concept definitions is transformed
into an inverted index that maps words into lists of K concepts described in
the knowledge base. The inverted index is used to speed up the semantic inter-
pretation of documents (Semantic Interpretation in Fig.1). Given a text from a
corpus, it iterates over words from the text, retrieves the corresponding entries
and merges them into a weighted vector of concepts that represents this text.

Let Wi = 〈v1, . . . , vj , . . . , vN 〉 be a bag-of-words representation of an input
text Ti, where vj is the tf-idf index of wj described in (1). Let invj,k be an
inverted index entry for wj . It quantifies the strength of association of the term
wj with a knowledge base concept ck, k ∈ {1, . . . , K}. For convenience, all the
weights invj,k can be arranged in a matrix with N rows and K columns, denoted
by INV , such that INV [j, k] = invj,k for any pair (j, k). This matrix has a
sparse structure, since usually only a relatively small number of words have any
significance in describing a given concept. The new vector representation of Ti

will be denoted by Ci = 〈c1, . . . , cK〉 where:

ck =
∑

j:wj∈Ti

vj × invj,k = Wi ∗ INV [·, k]. (2)

In the above equation ∗ stands for the standard scalar product and INV [·, k]
indicates k-th column of the sparse matrix INV . We will refer to this new vector
representation using a notion of bag-of-concepts of a text Ti.

The new vector (bag-of-concepts) representation makes it possible to examine
relations between concepts and documents, identify and filter key concepts for
the given document corpus, and calculate semantic similarity between texts by
comparing their bag-of-concepts representations. It can also be utilized by a
search engine as a kind of a semantic index for efficient retrieval of relevant
documents.

For technical reasons, in this experimental study, we chose to store all seman-
tic similarity values for pairs of texts in a structure called Similarity Matrix.
Entries in this matrix are used to numerically represent the conformity between
documents (their bag-of-concept representations), which in our case is calculated
using the cosine similarity.

Simcos(Ti, Tj) =
ci ∗ cj

‖ci‖ × ‖cj‖ , (3)

where ∗ is the scalar product of two vectors and ‖ · ‖ is the L2 norm of a vector.
This particular measure is very often used for comparison of texts due to its
robust behaviour in highly dimensional and sparse data domains [4,13].

The fact that we can calculate semantic similarity between documents gives
us the means to perform clustering. Considering that we want to obtain a mean-
ingful grouping of documents we decided to use an agglomerative hierarchi-
cal clustering. In order to decide for how many clusters we should divide our
data we use a cluster quality measure, in particular the silhouette coefficient.
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For detailed description of agglomerative clustering, silhouette coefficient, and
cluster distance refer to [22].

The quality of resulting clusters is evaluated manually with help of experts in
the area of Rough Sets as well as compared with results of a different clustering
method. In order to have a reference point we perform a “classical” agglomerative
clustering on the bag-of-words representation of documents, without any use of
knowledge base. The resulting partition of documents is then compared with
our approach using various measures for cluster consistency as well as manual
evaluation of cluster meaningfulness.

3 Data Acquisition and Preparation

For our case study we have used 349 documents in PDF format. These docu-
ments are selected from the collection of papers published by the members and
associates of the Group of Logic at the University of Warsaw. The subset used
for our experiment is significantly smaller than the entire collection, which con-
sists of over 600 publications. While choosing documents for this subset we have
used the following criteria:

– We restricted publications to those published in last 15 years (between 1996
and 2011) and written in English.

– We have only chosen “regular” articles, i.e., standard journal, book, and
conference papers. They roughly correspond to BibTEX categories: article,
inproceedings, and incollection.

– Papers that are very short (extended abstracts) or unusually long (mini-
monographs) have been left out.

– Some articles have been removed from the study due to technical difficulties
they posed. This was mostly due to problems with incorrect PDF format
and usually concerned older (pre-2003) publications.

There were several reasons for using the above criteria in the process of con-
structing initial data sample for our study. The most important are as follows:

– We wanted the corpus of documents to be relatively regular. Since our ulti-
mate goal is the grouping (clustering), we tried to eliminate outliers early on.
The idea is to have well-comparable documents and then do the clustering on
the basis of their semantic content rather than attributes of their syntactic
composition, such as size, level of complication or number of words.

– We have chosen the collection of documents that were created over the years
in our group in order to have good understanding of the corpus from the very
beginning. Since we know the field and in many cases have direct contact
with authors, we can evaluate the outcome with greater ease and confidence.
This is a big advantage, especially for an initial, explorative study such as
the one that we conduct. It gives us the ability to clearly identify strong and
weak points in our methodology.
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– We have decided to use this particular number of documents (349) because
we wanted to construct a corpus which would be as representative for the
area of Rough Sets as it is possible in the given circumstances. The 349
documents in our collection correspond to roughly 10% of all documents
of this kind listed in the Rough Set Database system (RSDS [6]). At the
moment of writing, the RSDS contains 3641 bibliographical notes that belong
to categories that we are interested in.

– Last, but not the least, we selected this particular document corpus because
we have both access to their PDF versions and the limited copyrights that
allow us to re-use (but not re-distribute) them.

The original PDF documents were first converted to a pure text format with the
use of Python script based on PDFMiner library [17]. All documents were divided
into blocks of plain text. Based on certain text statistics the script extracted only
the text contained in paragraphs, sections and their titles. It has to be underlined
that author names article and page headers, footers, tables, equations and other
parts of text which were irrelevant and could bias further analysis were discarded.
The purpose of this step was to remove various artifacts and clarify text files
before attempting to calculate word frequencies and clustering.

This step, although it may appear simple, proved to be troublesome at times.
Typical problems at this stage are associated with conversion of hyphenated
(broken between lines) words and ligatures (e.g., fi in “classification”) back to
their original (textual) form. These problems were partly resolved with use of an
English dictionary which made it possible to guess the right encoding of some
characters by determining whether words created after substitution of missing
characters were proper English terms. Articles contained also a great amount of
mathematical symbols which were encoded in PDF files in various, sometimes
very unexpected way. These unusual characters were filtered out as well. Addi-
tionally, the bibliography section (references) was removed from each of selected
text files. It was done in order to assure that we perform analysis on actual
semantic content of the document and to reduce the influence of certain words
contained in references, like: publisher, journal name, etc.

The corpus of 349 plain text files was then processed in order to calculate word-
vector (bag of words) representations in the next step. First, stop words were
removed and then we have performed stemming on the set of words contained
in these documents. For stemming of both documents and DBpedia abstracts
(as described in Section 4) we use a version of popular Porter’s algorithm (cf.
[11]). Initially, the corpus contained 35507 unique words (excluding stop words).
After stemming we have obtained 26800 unique words (stems) to work with. On
average a single document in the collection contains 3524 stems, with minimum
of 362 and maximum of 13640.

4 The DBpedia Knowledge Base

According to its creators, the DBpedia (cf. [23,3]) is a community effort to extract
structured information from Wikipedia (cf. [25]) and to make this information
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available on the Web. DBpedia allows to ask queries against Wikipedia data
and structure, and to link other data sets to Wikipedia data. In layman terms,
DBpedia is a snapshot of the original Wikipedia with mostly preserved structure,
but reduced content.

For the purpose of our study we needed to use DBpedia as an enriched dictio-
nary. The version of DBpedia that we use (version 3.5.1 for English Wikipedia)
contains 3,257,133 notions (so called things). Each DBpedia thing represents
a single Wikipedia concept (a single Wikipedia page including disambiguation
pages and lists). Due to the distributed and asynchronous nature of the process
in which the Wikipedia is created by members of its community, there are some
consistency and regularity issues with it. Much of these issues are inherited by
DBpedia, which results in some problems related to conflicting or expired names
for concepts and categories.

In DBpedia, pages from the original Wikipedia are represented only by their
abstracts. For most of the DBpedia concepts there is also additional information
derived from Wikipedia, such as classification to Wikipedia categories. There
are 3,144,262 abstracts available in DBpedia 3.5.1, but they are very diverse in
their length and quality. The length of abstracts vary from empty (0 words) to
quite long ones (the longest has 16850 words), with an average of 101 words
per abstract. Most of those texts are well formatted and structured but there
are exceptions, e.g., some contain only LATEX-styled source code of tables or
figures which were, probably unintentionally, placed in the abstract section of
the corresponding Wikipedia article. There are also cases when a whole text of
Wikipedia page is placed in the abstract which results in considerably longer
DBpedia representations.

Taken altogether, DBpedia 3.5.1 entries constitute a text corpus consisting of
316,631,010 words (after filtration). The number of unique words, before stem-
ming and filtering, is 2,818,483. There are 560,049 categorical notions (Wikipedia
categories) of which 449,140 are direct, i.e., contain some concepts and the rest
are indirect, i.e., they contain only other categories.

5 Experimental Evaluation of the Approach

Our experiment was conducted in three main steps which we implemented in
R System ([16]). First, DBpedia and the selected text collection were prepro-
cessed. Each DBpedia entry and a document was was cleaned, in particular:
its encoding was changed to UTF-8, words that contained special characters
(!@#$%_&*+–=) or numbers were removed, the most common shortcuts were
expanded, and the most common words from a special stop word list3 were
removed. The Porter’s algorithm [11], implemented in the Rstem library, was
used for finding stems of words. The stems that occurred less than three times
in DBpedia were also eliminated from the texts. Finally, the concepts that were
represented by less than 10 unique stems were removed from the knowledge base.
3 A standard stop word list from openNLP library was extended by the 100 most

common words from DBpedia abstracts.
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As a result, the size of the knowledge base was reduced to around 2.5 million
concepts described by approximately 850 thousands of unique stems.

Table 1. List of ten most relevant DBpedia concepts for three exemplary documents,
with degree of association included

(LTF-C): Architecture, Training Algorithm and Applications of New Neural Classifier
[1] 9.19 ”Neural_Lab”
[2] 9.17 ”Echo_state_network”
[3] 8.75 ”Auto-encoder”
[4] 8.30 ”Interneuron”
[5] 8.09 ”Oja’s_rule”
[6] 8.08 ”Multilayer_perceptron”
[7] 8.06 ”Biological_neural_network”
[8] 8.06 ”Artificial_neural_network”
[9] 8.00 ”Artificial_neuron”
[10] 7.84 ”Neuroevolution”

Judgment of satisfiability under incomplete information
[1] 8.21 ”Definable_set”
[2] 8.08 ”Schaefer’s_dichotomy_theorem”
[3] 7.96 ”Formal_semantics_of_programming_languages”
[4] 7.85 ”Empty_domain”
[5] 7.78 ”Tautology_(logic)”
[6] 7.68 ”Equisatisfiability”
[7] 7.54 ”Method_of_analytic_tableaux”
[8] 7.38 ”Conditional_quantifier”
[9] 7.36 ”Model_checking”
[10] 7.32 ”Satisfiability_and_validity”

Combination of Metric-Based and Rule-Based Classification
[1] 8.92 ”K-nearest_neighbor_algorithm”
[2] 6.19 ”Backmarking”
[3] 6.08 ”Wolfe_conditions”
[4] 5.90 ”Evolutionary_data_mining”
[5] 5.66 ”Event_condition_action”
[6] 5.64 ”Transduction_(machine_learning)”
[7] 5.63 ”Soft_independent_modelling_of_class_analogies”
[8] 5.63 ”Ground_truth”
[9] 5.56 ”Proximity_problems”
[10] 5.50 ”Dominating_decision_rule”

In the second step, the bag-of-concepts representations of texts from the rough
set corpus were created using the method described in Section 2. A modified tf-
idf index was used to assess the relevance of words (stems) to documents and to
concepts. For each text, the frequencies of words, i.e., the tf component in tf-idf
formula (1), were smoothed by taking their square root. This modification was
dictated by a fact, that many of the documents which we use are of technical
nature and as such contain many repetitions of specific terms (or single words).
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The strength of bounds between the concepts and the rough set articles was
computed using the equation (2). Following the intuition, that it is meaningless
to associate any document with a large number of specific concepts, we have
restricted the number of concepts associated with each document. We have de-
cided to use no more than 35 most related concepts for characterization of any
given text. This number (35) was selected because it corresponds to around 1%
of the average number of stems appearing in the single document in the corpus,
which in turn gives more compact and comprehensive representation. Table 1
presents associations of top 10 concepts to three exemplary articles from the
corpus.
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Fig. 2. The plot of silhouette coefficient values across clusters used to establish the
optimal number of groups (on the left) and the silhouette coefficient values of individual
documents for the selected clustering (on the right). The results obtained from the
representation by concepts (on the top) is compared to representation by words (at the
bottom).

The last step of our experiment involved computation of distances between
documents from the rough set corpus which we then use for clustering. Due to an
extremely sparse representation of our texts (only 35 non-zero values out of ≈ 2.5
million) the cosine distance was employed, which is a commonly used measure
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in high-dimensional information retrieval tasks ([4],[22]). For the clustering we
utilized an agglomerative hierarchical approach with the “average” as a linking
function (see [22]). The optimal number of groups (clusters) was decided using
the silhouette width coefficient which was additionally penalized for selecting
larger number of clusters. Figure 2 illustrates the values of average silhouette
coefficient w.r.t. the growing number of clusters, along with the silhouette co-
efficient values of individual documents for the selected clustering. From this
picture one can see that the highest cluster separability is achieved when we use
73 of them.

Figure 3 presents the clustering tree corresponding to the partition into 73
groups. Apart from using the silhouette coefficient, quality of the 73 clusters
was also assessed with the aid of human experts. Mutual relatedness of docu-
ments from several groups has been evaluated. In order to gain another point
of reference we have also performed clustering using the original bag-of-words4
representation of texts in the corpus (Figure 4).

The results of this comparison are encouraging. The consecutive partitions
obtained using the bag-of-concepts representation yielded much more stable sil-
houette coefficients than those for the original word-vector (bag-of-words) one.
The optimal number of groups for the latter is two, which corresponds to mean-
ingless grouping of documents. This number is also not very stable as it may
vary wildly between 2 and 157 if we alter the penalty for producing excessive
clusters. Moreover, if with the bag-of-words representation we make the clus-
tering algorithm produce 73 groups (optimal number for the bag-of-concepts),
then brief analysis of this partition reveals a significant imbalance in the size of
clusters (Figure 4). The largest cluster obtained in this way contained 60 papers
and there were 29 singletons (clusters that contained only a single document).
To make things worse, many of the larger groups constructed in this manner
contain semantically unrelated documents and are very difficult to label. In con-
trast, size of the largest group resulting from utilization of the bag-of-concepts
representation was 27 and there were only 19 singletons.

The observation, that employment of domain knowledge improves the qual-
ity of clustering was confirmed by domain experts. For instance, Table 2 shows
members of three exemplary clusters taken from distinct branches in the clus-
tering tree (Figure 3). Labels that briefly summarize contents of those groups
were given by experts. Among 13 papers that belong to the cluster 21, 12 were
recognized by experts as related to the notion of neural computing and artificial
neural networks. The same subset of papers, partitioned based on the bag-of-
words representation, was broken between three different clusters of which only
one was semantically homogeneous and meaningful.

It it also worth mentioning that, even though information about authors and
bibliography was removed from the corpus during the preprocessing phase, 12
out of 14 articles grouped in the cluster 39 were written by a single author
(Anna Gomolińska). In those papers, the author consider a problem of partial

4 For consistency, we used the smoothed tf-idf vector representation.
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Table 2. Members of exemplary partitions, resulting from clustering with the bag-of-
concepts representation. The IDs of branches from the clustering tree are given along
with the labels assigned by domain experts and titles of corresponding documents.

Cluster 21: Neurocomputing and Artificial Neural Networks
[1] (LTF-C): Architecture, Training Algorithm and Applications of New Neural

Classifier
[2] Rough Neurons: Petri Net Models and Applications
[3] Rough-Neural Computing: An Introduction
[4] Toward Rough Neural Computing Based on Rough Membership Functions:

Theory and Application
[5] Rough Neurocomputing: A Survey of Basic Models of Neurocomputation
[6] Design of rough neurons: Rough set foundation and Petri net model
[7] Constructing Extensions of Bayesian Classifiers with use of Normalizing Neural

Networks
[8] Refining decision classes with neural networks
[9] Harnessing Classifier Networks - Toward Hierarchical Concept Construction
[10] Feedforward concept networks
[11] Neural network design: Rough set approach to real-valued data
[12] Hyperplane-based neural networks for real-valued decision tables
[13] Rough Sets and Artificial Neural Networks

Cluster 39: Logical Satisfiability and Validity of Formulas
[1] Judgment of satisfiability under incomplete information
[2] A graded applicability of rules
[3] Toward rough applicability of rules
[4] Satisfiability and meaning in approximation spaces
[5] Satisfiability Judgment Under Incomplete Information
[6] Reasoning Based on Information Changes in Information Maps
[7] Rough validity, confidence, and coverage of rules in approximation spaces
[8] Satisfiability and meaning of formulas and sets of formulas in approximation

spaces
[9] On rough judgment making by socio-cognitive agents
[10] Rauszer’s R-logic for multiagent systems
[11] Rough rule-following by social agents
[12] Satisfiability of formulas from the standpoint of object classification
[13] Construction of rough information granules
[14] Patterns in Information Maps

Cluster 60: Instance-based Learning
[1] Combination of Metric-Based and Rule-Based Classification
[2] Rough Set Approach to CBR
[3] Local Attribute Value Grouping for Lazy Rule Induction
[4] Granulation in Analogy-based Classification

satisfiability and validity of formulas (such as decision rules) under incomplete
or uncertain information.

It seems that with the bag-of-concept representation, the clustering algorithm
was able to conceptually discern them from other research topics of this particular
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author. The articles of the same author that belong to other research direction,
the theory of approximation spaces, are located in another cluster. These articles
(six of them) are placed in the cluster 36 (Figure 3). In comparison, when the rep-
resentation by bag-of-words is used, almost all publications of Anna Gomolińska
from our corpus (21 out of 22) are placed in a single group. That last fact, in our
opinion, is probably due to usage of a characteristic and highly specialized vocab-
ulary that inadvertently biases the bag-of-words representation.

Table 3. Tags (concept labels) for three examples of clusters

Cluster 21: Neurocomputing and Artificial Neural Networks
[1] ”ADALINE”
[2] ”Artificial_neural_network”
[3] ”Artificial_neuron”
[4] ”Auto-encoder”
[5] ”Delta_rule”
[6] ”Multilayer_perceptron”
[7] ”Universal_approximation_theorem”
[8] ”Echo_state_network”
[9] ”Neural_Lab”

Cluster 39: Logical Satisfiability and Validity of Formulas
[1] ”Empty_domain”
[2] ”Formal_theorem”
[3] ”Limit-preserving_function_(order_theory)”
[4] ”Satisfiability_and_validity”
[5] ”Schaefer’s_dichotomy_theorem”
[6] ”Tautology_(logic)”
[7] ”Well-definition”

Cluster 60: Instance-based Learning
[1] ”Attribute_(computing)”
[2] ”Attribute_(network_management)”
[3] ”Integrity_constraints”
[4] ”K-nearest_neighbor_algorithm”
[5] ”Online_machine_learning”
[6] ”Relation_(database)”
[7] ”Structured_SVM”

We have also investigated whether the bag-of-concepts representation may
be used for the purpose of automated tagging (labeling) of clusters. For this
purpose we associated each group (cluster) of articles with DBpedia concepts
that appear in representations of at least 80% of its members. Table 3 presents
these associations for the three exemplary clusters.

From this example one can see that the selected concepts (cluster tags) are
well in line with cluster labels assigned by the experts. Unfortunately, they seem
to be too specific to express the semantic relatedness of the documents in the
cluster by themselves. To overcome this issue, in the future we plan to employ
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knowledge about DBpedia categories and the structure of concepts to construct
more general tags.

6 A More General Framework

The research on automatic tagging and semantic clustering algorithms is a part
of a much larger SYNAT project [2]. The SONCA system [14,15], which we are
developing, is designed to store and process scientific articles acquired from a
wide range of domains and sources. As shown in Fig. 5, the system comprises of
several major components and is organized into several layers.
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Fig. 5. A general architecture of the SONCA system

Our work on semantic clustering and tagging is instrumental in designing a
bridge between the analytic data warehouse used to store structural information
about scientific documents and a collection of indexes stored on a dedicated
server, which are used to quickly retrieve answers (links to documents) that are
semantically relevant to the user query. Information provided by our algorithms
also play an important role in the process of preparing the result for presentation
to the user.
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Using our experience with the corpus analyzed in the presented case study
we were able to design an automatic tagging module for semantic indexing of
scientific articles and assessment of their relatedness. We used this module in
several large-scale experiments on papers from the biomedicine and life sciences
domains obtained from the PubMed Central database5 [18,10]. As a knowledge
base we used the Medical Subject Headings (MeSH 6) – a comprehensive con-
trolled vocabulary for the purpose of indexing journal articles and books in the
life sciences [24].

A large share of documents from the PubMed Central repository was labeled
with pairs of MeSH headings/subheadings by experts from U.S. National Library
of Medicine. For the purpose of our experiments we obtained those labels. It
gave us an opportunity to quantitatively evaluate a quality of tags produced
by our implementation of ESA within the SONCA engine. Table 4 shows three
exemplary documents from PMC with tags assigned by SONCA.

Table 4. Three exemplary PMC documents with tags assigned by SONCA’s imple-
mentation of ESA. The matching tags are bolded.

Document title MeSH tags by MEDLINE MeSH tags by SONCA
Cockroaches (Ectobius
vittientris) in an inten-
sive care unit, Switzer-
land.

Cockroaches*, Insect Con-
trol*, Intensive Care
Units*, Cross Infection,
Insect Vectors

Cockroaches, Intensive
Care Units, Klebsiella In-
fections, Pest Control, Cross
Infection

Serotonin transporter
genotype, morning
cortisol and subse-
quent depression in
adolescents.

Depressive Disorder*, Ge-
netic Predisposition to Disea-
se*, Serotonin Plasma Mem-
brane Transport Proteins*, Ge-
notype, Multilevel Analysis

Depressive Disorder, Ge-
nome-Wide Association Study,
Multilevel Analysis, Cohort
Studies, Adolescent Psychia-
try

Capacity of Thailand
to contain an emerging
influenza pandemic.

Disaster Planning*, Health
Policy*, Disease Outbreaks,
Health Resources, Influenza
Human

Health Care Rationing,
Health Resources, Epi-
demics, Evidence-Based
Medicine, Influenza B virus

On average, recall of MeSH headings assigned by experts in top 30 labels returned
by our system was 0.26. Although this quantity itself is not very high, it is
noticeable that many of the non-conforming labels were still quite reasonable –
such as the Klebsiella Infections for the first title and Influenza B virus for the
third one. Additionally, out further studies show that there is a vital possibility
for improving this result by using supervised learning algorithms for adaptive
tuning the weights from the semantic inverted index [10].

Since our module is fully integrated with the SONCA engine, we were able to
overcome the scalability problem by running the tagging algorithm on a column-
oriented database solution, which is optimized for executing large analytical SQL
5 PMC, see [1].
6 http://www.nlm.nih.gov/pubs/factsheets/mesh.html

http://www.nlm.nih.gov/pubs/factsheets/mesh.html
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queries [12,19]. During the initial tests we found out that, although conceptually
the method performs really well, the underlying data processing, especially the
part performed inside RDBMS, requires introduction of some new techniques.

We have also conducted a different series of experiments related to the uti-
lization of the semantic tagging for clustering of research papers. Their aim was
to verify what impact the automatically generated labels have on performance
of different similarity measures and similarity learning methods, in general [9].
Form those experiments we have learned that tags generated by methods such as
ESA can be successfully used in combination with similarity learning techniques
as semantic features of documents.

Finally, the experience in using ESA for enhancing the document represen-
tation led us toward consideration of a different problem, namely multi-label
classification of textual data [8]. In this task, a categorization of documents is
done in a supervised manner. We wanted to verify whether the limitation of
the semantic representation to K top associated concepts still allows to conduct
accurate multi-label classification. Indeed, this representation appears to be use-
ful for certain document corpora, such as PubMed, for which the corresponding
labels (MeSH sub-headings) can be predicted7.

7 Conclusions and Plans for the Future

The conclusions drawn from this case study, just like the motivations presented
in Section 2, are of two kinds.

Firstly, we can draw conclusions regarding the structure and characteristics
of the corpus of 349 rough set related documents that were used as the basis
for the study. The experimental results confirm that our text corpus is fairly
uniform and focused. It is quite clear, that our articles share a lot of common
concepts at the same time being separable from other research areas. Within the
area of rough sets, the papers can be arranged into groups (clusters) in a really
meaningful manner.

The second conclusion is that the proposed approach to clustering, based on
ESA approach, has a significant potential and shall be seriously considered as an
element in the future studies. During the experiments it was possible to establish
some ground knowledge about features of the method used. That gives us some
confidence about the viability of this approach and its potential to become an
element of the prototype software solution that we are eyeing in the frame of
our main (SYNAT) project. The results of other experiments, as discussed in
Section 6, support the claim that ESA is a well-suited tool for our needs.

As usual with this kind of experimental study, there is a plethora of things
we can do next. In shorter perspective, next steps should include testing more
clustering methods and playing with parameters to obtain more optimal and
versatile solution for the same corpus of documents. Also, it would be very
7 This was exemplified by the results of the data mining competition associated with

the JRS’2012 conference (JRS’2012 Data Mining Contest: Topical Classification of
Biomedical Research Papers) http://tunedit.org/challenge/JRS12Contest, [8].

http://tunedit.org/challenge/JRS12Contest
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interesting to investigate whether including more knowledge from DBpedia, such
as some structural information about categories, helps to improve the overall
results. Another natural next step is to extend the investigated corpus and check
if our findings remain valid for a larger data set. This step, however, requires an
access to a larger sources of PDF documents related to the theory of rough sets.

Another possible direction for a continuation of this study may regard differ-
ent methods for assessment of similarity between pairs of scientific documents.
Currently, only the cosine similarity is being used. This fact restrains our abil-
ity to detect semantically similar texts since it enforces potentially undesirable
properties of a metric on the similarity measure. We believe, that in order to
capture more semantic resemblance of articles, the similarity measure should be
more dependent on a domain from which the documents come from. One way to
achieve that is through utilization of some similarity learning methods, such as
the Rule-based Similarity model described in [7]. Some preliminary experiments
with a adaptation of this similarity model to the unsupervised case have already
been performed and their results seem very promising (cf. [9]).

In a long run, the follow-up of this study should produce a software module
that will serve as a part of SONCA system, supporting development of informa-
tion platform in the SYNAT project. The prototype of such module is currently
being integrated with SONCA platform and tested against various document
corpora and various knowledge bases.
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Abstract. The problem considered in this article stems from the obser-
vation that practical applications of near set theory require efficient de-
termination of all the tolerance classes containing objects from the union
of two disjoints sets. Near set theory consists in extracting perceptually
relevant information from groups of objects based on their descriptions.
Tolerance classes are sets where all the pairs of objects within a set
must satisfy the tolerance relation and the set is maximal with respect
to inclusion. Finding such classes is a computationally complex problem,
especially in the case of large data sets or sets of objects with similar
features. The contributions of this article are the observation that the
problem of finding tolerance classes is equivalent to the MCE problem,
empirical evidence verifying the conjecture from [15] that the extra per-
ceptual information obtained by finding all tolerance classes on a set of
objects obtained from a pair of images improves the CBIR results when
using the tolerance nearness measure, and a new application of MCE to
CBIR.

Keywords: Near sets, maximal clique enumeration, tolerance near sets,
tolerance space, tolerance relation, pre-class, nearness measure, CBIR.

1 Introduction

The problem considered in this article is one of finding all the tolerance classes
on a set of objects. In the proposed application to content-based image retrieval
(CBIR) [36], classes in image covers determined by a tolerance relation provide
the content used in CBIR and a feature-based tolerance space solution to detect-
ing and measuring similarities in digital images. Specifically, the tolerance classes
represent the extracted perceptual information which is used in quantizing the
nearness of sets. The notion of nearness in mathematics and the more general no-
tion of resemblance that is a dominant part of CBIR can be traced back to J.H.
Poincaré [32]. Our approach stems from a recent extension of J.H. Poincaré’s
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representative spaces, tolerance spaces [40,37,31] and near sets introduced by
J.F. Peters in 2007 [26,27], and elaborated in [28,30,7,29,11,39,9,33].

Tolerance classes are sets where all the pairs of objects within a set must
satisfy the tolerance relation and the set is maximal with respect to inclu-
sion. Finding such classes is a computationally complex problem, especially in
CBIR involving sets of objects with similar features [11,13,15,12,10,14]. Previ-
ous work into finding tolerance classes was based on the observation that all
tolerance classes containing an object are a subset of the neighbourhood of that
object [11,13]. Reported algorithms include a serial approach for finding most
tolerance classes using the Fast Library for Approximate Nearest Neighbours
(FLANN) [11,13], and a parallel computing approach for finding all tolerance
classes using NVIDIA’s Compute Unified Device Architecture (CUDA) Graphics
Processing Unit (GPU) [15]. This article presents a new solution to the problem
of finding tolerance classes by observing that this problem can be mapped to the
Maximal Clique Enumeration (MCE) problem. Consequently, the classes can be
found using an algorithm with reduced complexity based in graph theory. In
addition, the MCE approach to performing CBIR introduced in this article is
compared with the well known Earth Movers Distance and Integrated Region
Matching in [16]. Finally, the parallel approach is not considered in this article
since the runtimes of the serial and MCE algorithms are more than 10 times
faster.

The article is organized as follows: First, Section 2 introduces tolerance classes
by way of near set theory, providing the context in which tolerance classes are
used in this article. Next, previously reported algorithms for find tolerance classes
are given in Section 3. Section 4 provides a brief review of the problem of MCE.
Then, a discussion on the multitreaded implementation of each algorithm is
given in Section 5. Section 6 defines tolerance near sets and presents the near-
ness measure used to perform CBIR. Finally, Section 7 presents the results and
discussion. The contributions of this article are the observation that the problem
of finding tolerance classes is equivalent to the MCE problem, empirical evidence
verifying the conjecture from [15] that the extra perceptual information obtained
by finding all tolerance classes on a set of objects obtained from a pair of images
improves the CBIR results when using the tolerance nearness measure, and a
new application of MCE to CBIR.

2 Tolerance Classes

Disjoint sets containing objects with similar descriptions are near sets. Similarity
is determined quantitatively via some description of the objects. Near set theory
provides a formal basis for identifying, comparing, and measuring resemblance
of objects based on their descriptions, i.e. based on the features that describe
the objects. The discovery of near sets begins with identifying feature vectors
for describing and discerning affinities between sample objects. Objects that
have, in some degree, affinities in their features are considered perceptually near
each other. Groups of these objects, extracted from the disjoint sets, provide
information and reveal patterns of interest.



Maximal Clique Enumeration in Finding Near Neighbourhoods 105

Tolerance near sets are near sets defined by a description-based tolerance re-
lation. Tolerance relations provide a view of the world without transitivity [37].
Consequently, tolerance near sets provide a formal foundation for almost so-
lutions, solutions that are valid within some approximation, which is required
for real world problems and applications [37]. In other words, tolerance near
sets provide a basis for a quantitative approach for evaluating the similarity of
objects without requiring object descriptions to be exact.

Let us begin with defining the content of the sets. All sets in near set the-
ory consist of perceptual objects, which is anything in the physical world with
characteristics observable to the senses such that they can be measured and are
knowable to the mind. A feature characterizes some aspect of the makeup of
a perceptual object. A probe function is a real-valued function representing a
feature of a perceptual object [26]. In the context of near set theory, objects in
our visual field are always presented with respect to the selected probe functions,
which is in keeping with the approach to pattern recognition suggested by M.
Pavel [23] where the features of an object are quantified by probe functions. In
other words, probe functions are used to measure characteristics of visual objects
and similarities among perceptual objects.

A perceptual system is a set of perceptual objects, together with a set of
probe functions, i.e. a perceptual system 〈O,F〉 consists of a non-empty set O
of sample perceptual objects and a non-empty set F of real-valued functions
φ ∈ F such that φ : O → R [30]. The notion of a perceptual system admits a
wide variety of different interpretations that result from the selection of sample
perceptual objects contained in a particular sample space O. Two examples of
perceptual systems are: a set of images together with a set of image processing
probe functions, or a set of results from a web query together with some measures
(probe functions) indicating, e.g., relevancy or distance (i.e. geographical or
conceptual distance) between web sources. The description of a perceptual object
within a perceptual system can be defined as follows. Let 〈O,F〉 be a perceptual
system, and let B ⊆ F be a set of probe functions. Then, the description of a
perceptual object x ∈ O is a feature vector given by

φB(x) = (φ1(x), φ2(x), . . . , φi(x), . . . , φl(x)),

where l is the length of the vector φB, and each φi(x) in φB(x) is a probe
function value that is part of the description of the object x ∈ O. Note, the idea
of a feature space is implicitly introduced along with the definition of object
description. An object description is the same as a feature vector as described in
traditional pattern classification [5], yet different from the signature of an object
defined in [24] (due to the use of features instead of attributes1). The description
of an object can be considered a point in an l-dimensional Euclidean space R

l

called a feature space. Thus, the relationship between objects is discovered in a
feature space that is determined by the probe functions in B.

Formally, a tolerance space can be defined as follows [40,37,31]. Let O be a set
of sample perceptual objects, and let ξ be a binary relation (called a tolerance

1 See, [25,27,39] for a discussion on the difference between features and attributes.
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relation) on X (ξ ⊂ X×X) that is reflexive (for all x ∈ X , xξx) and symmetric
(for all x, y ∈ X , if xξy, then yξx) but transitivity of ξ is not required. Then a
tolerance space is defined as 〈X, ξ〉. Considering the tolerance space definition,
a specific tolerance relation [28,29] (see [7,8] for applications in image analysis)
is given as follows. Let 〈O,F〉 be a perceptual system and let ε ∈ R

+
0 . For every

B ⊆ F, the perceptual tolerance relation ∼=B,ε is defined by:

∼=B,ε= {(x, y) ∈ O ×O : ‖ φ(x)− φ(y) ‖
2
≤ ε},

where ‖ · ‖2 is the L2 norm.
Finally, the algorithms presented in Section 3 are based on the propositions

involving neighbourhoods and tolerance classes. Formally, these concepts are
defined as follows. Let 〈O,F〉 be a perceptual system and let x ∈ O. For a set
B ⊆ F and ε ∈ R

+
0 , a neighbourhood is defined as

N(x) = {y ∈ O : x ∼=B,ε y}.

Note, all objects satisfy the tolerance relation with a single object in a neigh-
bourhood. In contrast, all the pairs of objects within a pre-class must satisfy
the tolerance relation. Thus, let 〈O,F〉 be a perceptual system. For B ⊆ F and
ε ∈ R

+
0 , a set X ⊆ O is a pre-class iff x ∼=B,ε y for any pair x, y ∈ X . Similarly,

a maximal pre-class with respect to inclusion is called a tolerance class.

3 Neighbourhood-Based Algorithms

The serial approach [11,13] and the parallel approach [15] to finding tolerance
classes are both based on the propositions (proved in [11]) that all tolerance
classes containing x ∈ O are subsets of the neighbourhood of x, N(x), and that
tolerance classes are formed from the query points of successive neighbourhoods,
i.e. from finding neighbourhoods within neighbourhoods. An illustrative example
of the propositions central to these algorithms is given in Fig. 1, Fig. 1(a) gives
a tolerance class from within a neighbourhood, Fig. 1(b) shows N(20) obtained
using only objects from N(1), and Fig. 1(c) shows successive neighbourhoods
using the objects within grey region as query points.

The serial approach attempted to mitigate the computational complexity of
finding tolerance classes by using FLANN searches to find neighbourhoods, as
well as a simple heuristic to reduce runtime. As a result, the serial approach
produced found most (but not all) tolerance classes (see, e.g. [11]). Algorithm 1
gives the serial approach to finding tolerance classes, where compsub is list of the
objects along the search path (i.e., the objects in the grey region of Fig. 1(c)),
and cand is a list objects that are not in compsub but satisfy the tolerance re-
lation with every object in compsub. Notice the similarity of this approach to
Algorithm 2, a similarity that was discovered independently of the body of litera-
ture devoted to the MCE problem [2,4]. Note, the variable names in Algorithm 1
were introduced here to maintain notational consistency with the algorithm re-
ported in [34]. Lastly, Algorithm 1 produces duplicate classes. Consequently, at
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Fig. 1. Algorithm foundational ideas: a) Neighbourhood N(1) in 2D feature space and
tolerance class shown in orange, b) N(20) found using only objects from N(1), and c)
series of successive neighbourhoods leading to the tolerance class depicted in (a), i.e.
N(3) ⊂ N(16) ⊂ N(15) ⊂ N(6) ⊂ N(10) ⊂ N(20).

Algorithm 1: Serial algorithm for finding tolerance classes

Input : Set of objects O
Output: Set of tolerance classes H∼=B,ε(O)

1 for x ∈ O do
2 for y ∈ N(x) do
3 compsub ← {x, y};
4 cand ← All objects in N(x) that satisfy ∼=B,ε with y;
5 GenerateRemaining(y, compsub, cand);

Procedure GenerateRemaining(y, compsub, cand)

1 if cand = {} then
2 Output compsub

3 else
4 new y ← Object in N(y) that is closest to y;
5 new cand ← All objects in N(y) that satisfy ∼=B,ε with new y;
6 new cs ← compsub ∪ new y;
7 GenerateRemaining(new y, new cs, new cand);

some point in the algorithm, the duplicate classes must be removed. In the case
of Algorithm 1, this step is performed after the for loop in line 1 has completed.

Next, the parallel approach depends on CUDA GPU programming [21,22].
Briefly, a GPU consists of hundreds of cores (processors) and these cores are
organized into groups call streaming multiprocessors that are capable of running
code that is called the kernel. The abstraction used to execute this code is
called a thread. To make full use of the GPU’s stream processors one must
generate 1000s of threads for execution. The parallel algorithm reported in [15]
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consists of the following three stages: Finding object neighbourhoods, finding
pseudo neighbourhoods, deleting duplicate classes and subsets. While the first
and last step are self explanatory, the process of finding pseudo neighbourhoods
consists of initializing sets as neighbourhoods and, during each iteration of the
loop, these sets approach tolerance classes. This structure facilated the GPU
implementation and combined the compsub and cand sets described above, where
the loop iterator indicates the boundary between the two. Note, only the second
stage is executed on the GPU.

While this algorithm finds all the classes, it suffers from prohibitive runtimes.
As reported, using ε = 0.15, the runtime for a single pair of images is 10 seconds.
To generate the results in this article, tolerance classes need to be generated for
405,450 image pairs, giving a runtime of almost 47 days. As a result, the parallel
approach is not considered in this article since the runtimes of the serial and MCE
algorithms are 500 and 100 ms, respectively. Finally, note, a GPU approach to
MCE is reported in [17], however, Jenkins, et al. report an inability to provide
good performance against MCE algorithms that are non-GPU based.

4 Maximal Clique Enumeration Algorithm

The Maximal Clique Enumeration (MCE) problem consists of finding all maxi-
mal cliques among an undirected graph. Briefly, let G = (V,E) denote an undi-
rected graph, where V is a set of vertices and E is set of edges that connect
pairs of distinct vertices from V . A clique is a set of vertices where each pair of
vertices in the clique is connected by an edge in E. A maximal clique in G is a
clique whose vertices are not all contained in some larger clique, i.e. there is no
other vertex that is connected to all the vertices in the clique by edges in E.

The first serial algorithm for MCE was developed by Harary and Ross [6,2].
Since then, two main approaches have been established to solve the MCE prob-
lem [4], namely the greedy approach reported by Bron-Kerbosh [3] (and con-
current discovery by E. Akkoyunlu [1]), and output-sensitive approaches such as
those in [38,19]. The implementation of the MCE algorithm used to generate the
results in this paper is a modification of the one reported in [34], which is scalable
and parallel version of the the Bron-Kerbosh approach. The Bron-Kerbosh algo-
rithm is given in Algorithm 2 (again, we are using the same notation as in [34]).
The general idea is to use a tree structure to find all maximal cliques, where
each call to CliqueEnumerate creates a new child node. Each node in the tree
consists of four items: the current vertex used to make decisions (cur v), a list of
vertices consisting of the (non-maximal) clique formed up to the current node in
the tree (compsub), a list of potential vertices that are connected to every vertex
in compsub (cand), and a list of vertices that are connected to every vertex in
compsub, but, if followed, constitute a redundant path in the search tree. Notice,
in terms of the neighbourhood-based algorithms, that, at any given level in the
tree, new cand is the neighbourhood of cur v using only objects in the list cand.
Also, similar to the neighbourhood-based approach, both algorithms stop when
there are no candidates left to process. Finally, a connection predicate is nec-
essary for the repeated decisions on whether edges exist between vertices [34].
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Options include: A linear search of a linked list of adjacent vertices, a lookup us-
ing an adjacency bit matrix, and a lookup using a hash table of edges. Since the
number of objects generated from each image pair is small (456), the adjacency
matrix was used since it is the fastest. The adjacency matrix was constructed
by creating a |V | × |V | matrix, where a 1 (resp. 0) at position i, j represents the
existence (non-existence) of an edge between the vertices vi and vj .

Algorithm 2: The BK algorithm

Input : A graph G with vertex V and edge set E
Output: MCE for graph G

1 compsub ← {};
2 cand ← V ;
3 not ← {};
4 CliqueEnumerate(compsub, cand, not);

5 Multithreading Approach

As was mentioned, [34] presents a scalable and parallel, multi-threaded approach
to solving the MCE problem. The algorithm is parallel in two different aspects.
First, their algorithm generates multiple processes that communicate using the

Procedure CliqueEnumerate(compsub, cand, not)

1 if cand = {} then
2 if not = {} then
3 Output compsub

4 else
5 fixp ← The vertex in cand that is connected to the greatest number of other

vertices in cand ;
6 cur v ← fixp;
7 while cur v 	= NULL do
8 new not ← All vertices in not that are connected to cur v ;
9 new cand ← All vertices in cand that are connected to cur v ;

10 new cs ← compsub ∪ cur v ;
11 CliqueEnumerate(new cs, new cand, new not);
12 not ← not ∪ cur v ;
13 cand ← cand \ cur v ;
14 if there is a vertex v in cand that is not connected to fixp then
15 cur v ← v;

16 else
17 cur v ← NULL;
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Message Passing Interface (MPI), allowing their algorithm to run on a wide
variety of parallel and networked computers. Second, each process generates
multiple threads. To simplify the implementation, our results were generated
using a single process with multiple threads since the amount of objects ob-
tained from a pair of images in our experiments is 456, compared to the test
sets used by Schmidt et. al in which the number of objects (vertices) range from
3,472 to 193,568. In fact, both the MCE and neighbourhood-based algorithms
used a multi-thread approach to obtain results. The neighbourhood-based ap-
proach consisted of creating a stack of object to be processed. Then, each thread
pops an object from the stack and finds all the tolerance classes containing that
object. Thus, in the multi-threaded algorithm each thread runs an instance of
Algorithm 1, except x is obtained from the stack in line 1 (rather than looping
through all the objects in O). The MCE algorithm also uses a stack of struc-
ture. In this case, it contains the nodes in the tree and each thread process a
single node at a time. The modified version of the algorithm in [34] is given in
Algorithm 3.

Algorithm 3: The Multi-threaded BK algorithm

Input : A graph G with vertex V and edge set E
Output: MCE for graph G

1 for i = 0; i < num threads; i++ do
2 Spawn thread Ti;
3 Have Ti run MCliqueEnumerate();

4 Wait for threads to finish processing;

6 Quantifying Nearness

The following two definitions enunciate the fundamental notion of nearness be-
tween two sets and provide the foundation for applying near set theory to the
problem of CBIR.

Definition 1 Tolerance Nearness Relation [28,29]. Let 〈O,F〉 be a percep-
tual system and let X,Y ⊆ O, ε ∈ R

+
0 . A set X is near to a set Y within the

perceptual system 〈O,F〉 (X	

F
Y ) iff there exists x ∈ X and y ∈ Y and there is

B ⊆ F such that x ∼=B,ε y.

Definition 2 Tolerance Near Sets [28,29]. Let 〈O,F〉 be a perceptual system
and let ε ∈ R

+
0 ,B ⊆ F. Further, let X,Y ⊆ O, denote disjoint sets with cov-

erings determined by the tolerance relation ∼=B,ε, and let H∼=B,ε
(X), H∼=B,ε

(Y )
denote the set of tolerance classes for X,Y , respectively. Sets X,Y are tolerance
near sets iff there are tolerance classes A ∈ H∼=B,ε

(X), B ∈ H∼=B,ε
(Y ) such that

A	

F
B.
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Procedure MCliqueEnumerate

1 foreach vertex vi assigned to the thread do
2 cp ← New candidate path node structure for vi;
3 for vj ∈ V do
4 if connected(vi, vj) then
5 if i < j then
6 Vertex vj is in cp’s cand list;

7 else
8 Vertex vj is in cp’s not list;

9 Push cp onto shared stack;

10 while shared stack is not empty do
11 cur ← Pop a candidate path node structure from stack;
12 if cur ’s cand and not lists are empty then
13 Output cur ’s compsub

14 else
15 Generate all cur ’s children (create child nodes and push onto stack);

Observe that two sets X,Y ⊆ O are tolerance near sets, if they satisfy the
tolerance nearness relation.

The tolerance nearness measure was created out of a need to determine the
degree that near sets resemble each other, a need which arose during the appli-
cation of near set theory to the practical applications of image correspondence
(see, e.g. [7,11]). The tolerance nearness measure between two sets X,Y is based
on the idea that tolerance classes formed from objects in the union Z = X ∪ Y
should be evenly divided among X and Y if these sets are similar, where sim-
ilarity is always determined with respect to the selected probe functions. The
tolerance nearness measure is defined as follows. Let 〈O,F〉 be a perceptual sys-
tem, with ε ∈ R

+
0 , and B ⊆ F. Furthermore, let X and Y be two disjoint sets

and let Z = X∪Y . Then a tolerance nearness measure between two sets is given
by

tNM∼=B,ε(X,Y ) =

1 −
( ∑

C∈H∼=B,ε
(Z)

|C|
)−1

·
∑

C∈H∼=B,ε
(Z)

|C|min(|C ∩X |, |[C ∩ Y |)
max(|C ∩X |, |C ∩ Y |) . (1)

Finally, new measures inspired by the tNM have been reported in [35,20]. A
systematic comparison of the tNM and these measures is outside the scope of
this paper and is left for future work.
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7 Results and Discussion

The algorithms presented here are compared using CBIR, where the goal is to
retrieve images from databases based on the content of an image rather than
on some semantic string or keywords associated with the image. The content of
the image is determined by functions that characterize features such as colour,
texture, shape of objects, and edges. In our approach to CBIR, a search entails
analysis of content, based on the tNM nearness measure (see, e.g. [11]) between
a query image and test image. Moreover, the nearness measure on tolerance
classes of objects derived from two perspective images provides a quantitative
approach for accessing the similarity of images. To generate our results, the
SIMPLIcity image database [18], a database of images containing 10 categories
with 100 images in each category was used (shown in Fig. 2).

The results were generated by partitioning the images into subimages, where
each subimage was considered as an object in the near set sense, i.e. each subim-
age is a perceptual object, and each object description consists of the values
obtained from image processing techniques on the subimage. This technique
of partitioning an image, and assigning feature vectors to each subimage is an
approach that has also been traditionally used in CBIR. Formally, an RGB

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Examples of each category of images. (a) - (d) Categories 0 - 3, and (e) - (i)
categories 5 - 9.
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image is defined as f = {p1,p2, . . . ,pT }, where pi = (c, r, R,G, B)T, c ∈ [1,M ],
r ∈ [1, N ], R,G,B ∈ [0, 255], and M,N respectively denote the width and height
of the image and M ×N = T . Further, define a square subimage as fi ⊂ f such
that fi ∩ fj = {} for i �= j and f1 ∪ f2 . . . ∪ fs = f, where s is the number
of subimages in f . Next, O can be defined as the set of all subimages, i.e.,
O = {f1, . . . , fs}, and F is a set of image processing descriptors or functions
that operate on images. Then, the nearness of two images can be discovered by
partitioning each of the images into subimages and letting these represent ob-
jects in a perceptual system, i.e, let the sets X and Y represent the two images
to be compared where each set consists of the subimages obtained by partition-
ing the images. Then, the set of all objects in this perceptual system is given by
Z = X ∪ Y .

Fig. 3. Example demonstrating the application of near set theory to images, namely
the image is partitioned into subimages where each subimage is considered a perceptual
object, and object descriptions are the results of image processing techniques on the
subimage

The results in this article were obtained using a subimage size of 20× 20 (re-
sulting in 456 objects per image pair) and the 18 features used in [11], namely 4
texture features obtained from the grey-level co-occurrence matrix of a subim-
age, the first and second moments of u and v in the CIELUV colour space, an
edge based feature, and the Zernike moments of order 4, excluding Ã00. More-
over, the results are presented using precision vs. recall plots, where the idea
is to find tNM values between each pair of images in the database. Then, the
measure values are sorted in ascending order, and the smallest value represents
the results of the first query, the second value the results of the second query,
etc. Precision/recall plots are the common metric for evaluating CBIR systems
where precision and recall are defined as

precision =
|{relevant images} ∩ {retrieved images}|

|{retrieved images} ,
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and

recall =
|{relevant images} ∩ {retrieved images}|

|{relevant images} .

In the ideal case, all images from the same category would be retrieved before
any images from other categories. In this case, precision would be 100% until
recall reached 100%, at which point precision would drop to # of images in query
category / # of images in the database. As a result, our final value of precision
will be ∼11% since we used 9 categories each containing 100 images. Note, only
9 categories were used since the category of images shown in Fig. 4 are easy to
retrieve and their inclusion in the test would only increase the runtime of the
experiment.

(a) (b) (c)

Fig. 4. Examples of images from category 4

The results are presented in Fig. 5 - 17, where the average precision vs. recall
plots are given in Fig. 5 & 7, the precision vs. recall results of the best query
image are given in Fig. 6 & 8, and Fig. 9 - 17 are the top 40 retrieved images
from the best search in each category2. These plots present a comparison of
the two approaches described in Sections 3 & 4 respectively: neighbourhood-
based (most tolerance classes) vs. MCE (all tolerance classes.) In the case of the
neighbourhood-based algorithm, only results for ε = 0.2 are given since it was
reported in [11] that this value produces the best results that are achievable with
reasonable runtime. In other words, the optimal value of ε for the neighbourhood
based algorithm on this test and feature set may be greater than ε = 0.2, but,
due to prohibitive runtimes, these experiments were not performed. Recall, in
any given application (regardless of the distance metric), there is always an opti-
mal ε when performing experiments using the perceptual tolerance relation [11].
For instance, a value of ε = 0 produces little or no pairs of objects that satisfy
the perceptual tolerance relation, and a value of ε =

√
l, means that all pairs of

objects satisfy the tolerance relation3. Consequently, ε should be selected such
that the objects that are relatively4 close in feature space satisfy the tolerance

2 The query image is in the top left position, where the images are ranked from the
top down, then left to right.

3 For normalized feature values, the largest distance between two objects occurs in
the interval [0,

√
l], where l is the length of the feature vectors.

4 Here, distance of “objects that are relatively close” will be determined by the appli-
cation.
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(f)

Fig. 5. Average precision versus recall plots grouped by category. (a) - (f) Categories
0 - 6 (excluding category 4).

relation, and the rest of the pairs of objects do not. The selection of ε is straight-
forward when a metric is available for measuring the success of the experiment.
Thus, if runtime were not an issue, the value of ε should be selected based on
the best result of the evaluation metric, which, in the context of CBIR, is the
best results in terms of precision vs. recall.

Next, the following presents some observations of the reported results. First,
notice that some of the curves have a sharp point of inflection (see, e.g., ε = 0.05
at 20% recall in Fig. 5(b)). These points represents the location at which the re-
maining tNM values for a particular query become zero. In the case of Fig. 5 & 7,
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Fig. 6. Best precision versus recall plots grouped by category. (a) - (f) Categories 0 -
6 (excluding category 4).

these points represent the location at which all query images in the category pro-
duce a tNM value of zero. In order to provide this clear demarcation, any images
from the same category as the query image that produced a tNM value of zero
were ranked last in the search5. Next, results are not reported for ε = 0.3 for
images from category 7 (see, e.g. Fig. 2(g)), since the runtime was too large for
some of the images in this category. For instance, some image pairs produced

5 This was not the case in [11], which accounts for some small discrepencies in the
plots of this article near the end of the curve.
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Fig. 7. Average precision versus recall plots grouped by category. (a) - (c) Categories
7 - 9 (excluding category 4).
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Fig. 8. Best precision versus recall plots grouped by category. (a) - (c) Categories 7 -
9 (excluding category 4).
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(a) (b)

Fig. 9. Top 40 retrieved images using ε = 0.2 for category 0. (a) Results obtained using
all classes, and (b) results from using most classes.

(a) (b)

Fig. 10. Top 40 retrieved images using ε = 0.2 for category 1. (a) Results obtained
using all classes, and (b) results from using most classes.
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(a) (b)

Fig. 11. Top 40 retrieved images using ε = 0.2 for category 2. (a) Results obtained
using all classes, and (b) results from using most classes.

(a) (b)

Fig. 12. Top 40 retrieved images using ε = 0.2 for category 3. (a) Results obtained
using all classes, and (b) results from using most classes.
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(a) (b)

Fig. 13. Top 40 retrieved images using ε = 0.2 for category 5. (a) Results obtained
using all classes, and (b) results from using most classes.

(a) (b)

Fig. 14. Top 40 retrieved images using ε = 0.2 for category 6. (a) Results obtained
using all classes, and (b) results from using most classes.
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(a) (b)

Fig. 15. Top 40 retrieved images using ε = 0.2 for category 7. (a) Results obtained
using all classes, and (b) results from using most classes.

(a) (b)

Fig. 16. Top 40 retrieved images using ε = 0.2 for category 8. (a) Results obtained
using all classes, and (b) results from using most classes.
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(a) (b)

Fig. 17. Top 40 retrieved images using ε = 0.2 for category 9. (a) Results obtained
using all classes, and (b) results from using most classes.

in excess of 700,000 tolerance classes (on only 456 objects) and had runtimes of
over 2 hours. Finally, for ε = 0.2, the MCE approach significantly outperforms
the neighbourhood-based approach in all categories except category 7, which is
due to the value of ε. We conjecture the extra tolerance classes produced at
ε ≥ 0.3 would increase the performance due to the addition of more perceptual
information in calculating tNM . This conjecture is substantiated by the results
of every other category in which the extra tolerance classes produced better
precision vs. recall values. While, the results of the neighbourhood-based approah
may also increase with ε, the result from the other categories demonstrate the
additional information obtained using all the classes will produce better results.

8 Conclusion

This article presents results within the context of CBIR, where perceptual in-
formation within the framework of near set theory is used to discern affinities
between pairs of images. Specifically, perceptually relevant information was ex-
tracted from a set objects formed from pairs of images, where each object has
an associated object description. It is the information contained in these fea-
ture vectors that is used to extract perceptual information represented by the
discovered tolerance classes. The conjecture that the use of all tolerance classes
in a covering of image pairs increases the perceptual information available to
make decisions on nearness leading to an improvement of precision and recall
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was substantiated by the results presented here. This article also demonstrates
that discovery of all tolerance classes is equivalent to the MCE problem. Finally,
this article presents a new application of MCE.
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Abstract. A rough fuzzy set is the result of approximation of a fuzzy
set with respect to a crisp approximation space. In this paper, we in-
vestigate topological structures of rough fuzzy sets. We first show that a
reflexive crisp rough approximation space can induce a fuzzy Alexandrov
space. We then prove that the lower and upper rough fuzzy approxima-
tion operators are, respectively, the fuzzy interior operator and fuzzy
closure operator if and only if the binary relation in the crisp approxi-
mation space is reflexive and transitive. We also examine that a similarity
crisp approximation space can produce a fuzzy clopen topological space.
Finally, we present the sufficient and necessary conditions that a fuzzy
interior (closure, respectively) operator derived from a fuzzy topological
space can associate with a reflexive and transitive crisp relation such
that the induced lower (upper, respectively) rough fuzzy approximation
operator is exactly the fuzzy interior (closure, respectively) operator.

Keywords: approximation operators, binary relations, fuzzy topologies,
rough fuzzy sets, rough sets.

1 Introduction

The basic structure of the rough set theory [23] is an approximation space con-
sisting of a universe of discourse and a binary relation imposed on it. Based on
the approximation space, the notions of lower and upper approximation opera-
tors can be induced. Using the concepts of lower and upper approximations in
rough set theory, knowledge hidden in information systems may be unraveled
and expressed in the form of decision rules. Rough set theory can be viewed as
a set-based granular computing method that advances research in this area.

The Pawlak’s rough approximations, originally introduced with reference to
an indiscernibility (equivalence) relation, are useful in the analysis of data pre-
sented in terms of complete information. The equivalence relation in Pawlak’s
rough set model provides the basis of “information granules” for database anal-
ysis. However, the requirement of an equivalence relation in Pawlak’s rough set
model seems to be a very restrictive condition that may limit the applications
of the rough set model. Thus, Pawlak’s rough set approximations may be gener-
alized by using non-equivalence relations. The extensive models have been used
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in reasoning and knowledge acquisition in incomplete information. On the other
hand, data with fuzzy set values are commonly seen in real-world applications.
Fuzzy-set concepts are often used to represent quantitative data expressed in
linguistic terms and membership functions in intelligent systems. Based on this
observation, many authors have generalized rough set model to the fuzzy environ-
ment. The results of these studies lead to the introduction of notions of rough
fuzzy sets (fuzzy sets approximated by a crisp approximation space) [9,34,35]
and fuzzy rough sets (fuzzy or crisp sets approximated by a fuzzy approxima-
tion space) [9,20,21,22,27,33,34,35]. The rough fuzzy set model may be used to
handle knowledge acquisition in information systems with fuzzy decisions while
the fuzzy rough set model may be employed to unravel knowledge hidden in
fuzzy decision systems.

An interesting and important research for rough approximation operators is to
compare themwith the topological properties and structures. Topology is a branch
ofmathematics, whose concepts exist not only in almost all branches ofmathemat-
ics, but also in many real life applications. Topological structure is an important
base for knowledge extraction and processing (see e.g. [1,2,6,13,14,17,30]). For ex-
ample, Koretelainen [13,14] used topologies to detect dependencies of attributes
in information systems with respect to gradual rules. Choudhury and Zaman [6]
applied the mathematical theory of topology to study the evolutionary impact of
learning on social problems. Wu et al. [30] investigated the topological space on
rough sets and the corresponding topological properties, and provided some ap-
plications on image processing and some topological diagram as well as the appli-
cation on knowledge and attribute reduction. Li and Zhang [17] proposed reduc-
tion of subbases of topological spaces in rough set data analysis. The concept of
topological structures and their generalizations are the most powerful notions and
are important bases in data and system analysis.

To improve the applications of topology and rough set theory on uncertain
and incomplete information and to study further the cosmical structure, ori-
gin, and its evolvement, the topological spaces and the topological properties of
rough sets need to be studied. In fact, many authors studied rough set approxi-
mations by comparing them with the topological properties and structures. For
example, Chuchro [7,8], Kondo [11], Lashin et al. [16], Pei et al. [24], Qin et al.
[26], Wiweger [29], Wu et al. [30], Yang and Xu [37], and Zhu [41] studied the
topological structures for crisp rough sets. Boixader et al. [4], Hao and Li [10],
Kortelainen [12], Qin and Pei [25], Thiele [28], Wu [31,32], Wu and Zhou [36],
Zhou and Wu [40], respectively, discussed topological structures of rough sets in
the fuzzy environment. One of the main results is that a reflexive and transitive
approximation space can yield a topology on the same universe, and conversely,
under some conditions, a topology can be associated with a reflexive and tran-
sitive approximation space which produces the same topology. There exists a
one-to-one correspondence between the set of all reflexive, transitive relations
and the set of Alexandrov topologies on an arbitrary universe [10,15,36,39].

In the present paper, we further investigate topological structures of rough
fuzzy sets. In the next section, we review basic concepts related to rough fuzzy
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sets and present some properties of rough fuzzy approximation operators. Sec-
tion 3 provides the axiomatic characterization of rough fuzzy approximation
operators. In Section 4, we introduce some notions and theoretical results of
fuzzy topological spaces. In Section 5, we examine fuzzy topological structures
of rough fuzzy sets. In Section 6, we investigate under which conditions that a
fuzzy topology can be associated with a crisp approximation space which pro-
duces the same fuzzy topology. We then conclude the paper with a summary in
Section 7.

2 Rough Fuzzy Approximation Operators

Throughout this paper, U will be a nonempty set called the universe of discourse
which may be infinite. By a fuzzy set in U we mean a mapping F : U → [0, 1].
The class of all subsets (fuzzy subsets, respectively) of U will be denoted by
P(U) (by F(U), respectively). Zadeh’s fuzzy union and fuzzy intersection will
be denoted by ∪ and ∩, respectively. For A ∈ F(U) , ∼ A will be used to
denote the fuzzy complement of the fuzzy set A in U , i.e. for every x ∈ U ,
(∼ A)(x) = 1 − A(x). For y ∈ U , 1y will denote the fuzzy singleton with value
1 at y and 0 elsewhere; 1M will denote the characteristic function of a crisp set
M ⊆ U , and, for α ∈ [0, 1], α̂ will denote the constant fuzzy set: α̂(x) = α for
all x ∈ U , obviously, 1̂ = 1U and 0̂ = 1∅. We will use the symbols ∨ and ∧ to
denote the supremum and the infimum, respectively.

Definition 1. Let U and W be two nonempty universes of discourse which may
be infinite. A subset R ∈ P(U × W ) is referred to as a (crisp) binary relation
from U to W . The relation R is referred to as serial if for each x ∈ U there exists
y ∈ W such that (x, y) ∈ R; If U = W , R is referred to as a binary relation
on U . R is referred to as reflexive if for all x ∈ U , (x, x) ∈ R; R is referred to
as symmetric if for all x, y ∈ U , (x, y) ∈ R implies (y, x) ∈ R; R is referred to
as transitive if for all x, y, z ∈ U, (x, y) ∈ R and (y, z) ∈ R imply (x, z) ∈ R;
R is referred to as a similarity relation if R is reflexive and symmetric; R is
referred to as a preorder if R is reflexive and transitive; and R is referred to as
an equivalence relation if R is reflexive, symmetric and transitive.

For an arbitrary crisp relation R from U to W , we can define a set-valued
mapping Rs : U → P(W ) by:

Rs(x) = {y ∈ W : (x, y) ∈ R}, x ∈ U. (1)

Rs(x) is referred to as the successor neighborhood of x with respect to (w.r.t.)
R.

A rough fuzzy set is the approximation of a fuzzy set w.r.t. a crisp approxi-
mation space [9,35].

Definition 2. Let U and W be two non-empty universes of discourse and R a
crisp binary relation from U to W , then the triple (U,W,R) is called an approxi-
mation space. For any fuzzy set A ∈ F(W ), the lower and upper approximations
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of A, R(A) and R(A), w.r.t. the approximation space (U,W,R) are fuzzy sets of
U whose membership functions, for each x ∈ U , are, respectively, defined by

R(A)(x) =
∧

y∈Rs(x)

A(y), R(A)(x) =
∨

y∈Rs(x)

A(y). (2)

The pair (R(A), R(A)) is called a generalized rough fuzzy set, and R and R :
F(W ) → F(U) are referred to as the lower and upper rough fuzzy approximation
operators, respectively.

By Definition 2, we can obtain properties of rough fuzzy approximation operators
[33,34,35].

Theorem 1. The lower and upper rough fuzzy approximation operators, R and
R, defined by Eq. (2) satisfy the following properties: For all A,B ∈ F(W ),
Aj ∈ F(W )(∀j ∈ J), J is an index set, and α ∈ [0, 1],

(FL1) R(A) =∼ R(∼ A), (FU1) R(A) =∼ R(∼ A),

(FL2) R(A ∪ α̂) = R(A) ∪ α̂, (FU2) R(A ∩ α̂) = R(A) ∩ α̂;

(FL3) R(
⋂
j∈J

Aj) =
⋂
j∈J

R(Aj), (FU3) R(
⋃
j∈J

Aj) =
⋃
j∈J

R(Aj),

(FL4) A ⊆ B =⇒ R(A) ⊆ R(B), (FU4) A ⊆ B =⇒ R(A) ⊆ R(B),

(FL5) R(
⋃
j∈J

Aj) ⊇
⋃
j∈J

R(Aj), (FU5) R(
⋂
j∈J

Aj) ⊆
⋂
j∈J

R(Aj).

Properties (FL1) and (FU1) show that the rough fuzzy approximation opera-
tors R and R are dual to each other. Properties with the same number may be
regarded as dual properties. Properties (FL3) and (FU3) state that the lower
rough fuzzy approximation operator R is multiplicative, and the upper rough
fuzzy approximation operator R is additive. One may also say that R is dis-
tributive w.r.t. the intersection of fuzzy sets, and R is distributive w.r.t. the
union of fuzzy sets. Properties (FL5) and (FU5) imply that R is not distributive
w.r.t. set union, and R is not distributive w.r.t. set intersection. However, prop-
erties (FL2) and (FU2) show that R is distributive w.r.t. the union of a fuzzy
set and a fuzzy constant set, and R is distributive w.r.t. the intersection of a
fuzzy set and a constant fuzzy set. Evidently, properties (FL2) and (FU2) imply
the following properties:

(FL2)′ R(1W ) = 1U , (FU2)′ R(1∅) = 1∅.

Analogous to Yao’s study in [38], a serial rough fuzzy set model is obtained from
a serial binary relation. The property of a serial relation can be characterized by
the properties of its induced rough fuzzy approximation operators [33,34,35].
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Theorem 2. If R is an arbitrary crisp relation from U to W , and R and R are
the rough fuzzy approximation operators defined by Eq. (2), then

R is serial ⇐⇒ (FL0) R(1∅) = 1∅,
⇐⇒ (FU0) R(1W ) = 1U ,

⇐⇒ (FL0)
′

R(α̂) = α̂, ∀α ∈ [0, 1],

⇐⇒ (FU0)
′
R(α̂) = α̂, ∀α ∈ [0, 1],

⇐⇒ (FLU0) R(A) ⊆ R(A), ∀A ∈ F(W ).

In the case of connections between other special crisp relations and rough fuzzy
approximation operators, we have the following [34,35]

Theorem 3. Let R be an arbitrary crisp relation on U , and R and R the lower
and upper rough fuzzy approximation operators defined by Eq. (2). Then

R is reflexive ⇐⇒ (FL6) R(A) ⊆ A, ∀A ∈ F(U),

⇐⇒ (FU6) A ⊆ R(A), ∀A ∈ F(U).

R is symmetric ⇐⇒ (FL7) R(R(A)) ⊆ A, ∀A ∈ F(U),

⇐⇒ (FU7) A ⊆ R(R(A)), ∀A ∈ F(U),

⇐⇒ (FL7)′ R(1U−{x})(y) = R(1U−{y})(x), ∀(x, y) ∈ U × U,

⇐⇒ (FU7)
′
R(1x)(y) = R(1y)(x), ∀(x, y) ∈ U × U.

R is transitive ⇐⇒ (FL8) R(A) ⊆ R(R(A)), ∀A ∈ F(U),

⇐⇒ (FU8) R(R(A)) ⊆ R(A), ∀A ∈ F(U).

3 Axiomatic Characterization of Rough Fuzzy
Approximation Operators

In the axiomatic approach, rough sets are characterized by abstract operators.
For the case of rough fuzzy sets, the primitive notion is a system (F(U),F(W ),∩,
∪,∼, L,H), where L and H are unary operators from F(W ) to F(U). In this
section, we review the axiomatic characterization of rough fuzzy approximation
operators [34,35].

Definition 3. Let L,H : F(W ) → F(U) be two operators. They are referred to
as dual operators if for all A ∈ F(W ),

(fl1) L(A) =∼ H(∼ A),
(fu1) H(A) =∼ L(∼ A).

By the dual properties of the operators, we only need to define one operator.
For example, one may define the operator H and regard L as an abbreviation of
∼ H ∼. From an operator H : F(W ) → F(U), we define a binary relation RH

from U to W as follows:

RH(x, y) = H(1y)(x), (x, y) ∈ U ×W. (3)

By employing Eq. (3), we can conclude following theorem via the discussion on
the constructive approach in [32,34,35]:
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Theorem 4. Suppose that L,H : F(W ) → F(U) are dual operators. Then there
exists a crisp binary relation RH from U to W such that for all A ∈ F(W )

L(A) = RH(A), and H(A) = RH(A)

iff L satisfies axioms (flc), (fl2), (fl3), or equivalently H satisfies axioms (fuc),
(fu2), (fu3):

(flc) L(1W−{y}) ∈ P(U), ∀y ∈ W,

(fl2) L(A ∪ α̂) = L(A) ∪ α̂, ∀A ∈ F(W ), ∀α ∈ [0, 1];

(fl3) L(
⋂
j∈J

Aj) =
⋂
j∈J

L(Aj), ∀Aj ∈ F(W ), j ∈ J ;

(fuc) H(1y) ∈ P(U), ∀y ∈ W ;

(fu2) H(A ∩ α̂) = H(A) ∩ α̂, ∀A ∈ F(W ), ∀α ∈ [0, 1];

(fu3) H(
⋃
j∈J

Aj) =
⋃
j∈J

H(Aj), ∀Aj ∈ F(W ), j ∈ J.

According to Theorem 4, axioms (flc),(fl1),(fl2), (fl3), or equivalently, axioms
(fuc), (fu1), (fu2), (fu3) are considered to be basic axioms of rough fuzzy ap-
proximation operators. These lead to the following definitions of rough fuzzy set
algebras:

Definition 4. Let L,H : F(W ) → F(U) be a pair of dual operators. If L
satisfies axioms (flc), (fl2), and (fl3), or equivalently H satisfies axioms (fuc),
(fu2), and (fu3), then the system (F(U),F(W ),∩,∪,∼, L,H) is referred to as a
rough fuzzy set algebra, and L and H are referred to as rough fuzzy approxima-
tion operators. When U = W , (F(U),∩,∪,∼, L,H) is also called a rough fuzzy
set algebra, in such a case, if there exists a serial (a reflexive, a symmetric, a
transitive, an equivalence) crisp relation R on U such that L(A) = R(A) and
H(A) = R(A) for all A ∈ F(U), then (F(U),∩,∪,∼, L,H) is referred to as a
serial (a reflexive, a symmetric, a transitive, a Pawlak) rough fuzzy set algebra.

Axiomatic characterization of serial rough fuzzy set algebra is summarized as
the following [32,34,35]

Theorem 5. Suppose that (F(U),F(W ),∩,∪,∼, L,H) is a rough fuzzy set al-
gebra, i.e., L satisfies axioms (flc), (fl1), (fl2) and (fl3), and H satisfies (fuc),
(fu1), (fu2) and (fu3). Then it is a serial rough fuzzy set algebra iff one of fol-
lowing equivalent axioms holds:

(fl0) L(α̂) = α̂, ∀α ∈ [0, 1],
(fu0) H(α̂) = α̂, ∀α ∈ [0, 1],

(fl0)
′

L(1∅) = 1∅,
(fu0)

′
H(1W ) = 1U ,

(flu0)
′
L(A) ⊆ H(A), ∀A ∈ F(W ).

Axiom (flu0)′ states that L(A) is a fuzzy subset of H(A). In such a case,
L,H : F(W ) → F(U) are called the lower and upper rough fuzzy approximation
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operators and the system (F(U),F(W ),∩,∪,∼, L,H) is an interval structure.
Axiomatic characterizations of other special rough fuzzy operators are summa-
rized in the following Theorems 6 and 7 [35]:

Theorem 6. Suppose that (F(U),∩,∪,∼, L,H) is a rough fuzzy set algebra.
Then

(1) it is a reflexive rough fuzzy set algebra iff one of following equivalent axioms
holds:

(fl6) L(A) ⊆ A, ∀A ∈ F(U),
(fu6) A ⊆ H(A), ∀A ∈ F(U).

(2) it is a symmetric rough fuzzy set algebra iff one of the following equivalent
axioms holds:

(fl7)′ L(1U−{x})(y) = L(1U−{y})(x), ∀(x, y) ∈ U × U,

(fu7)
′
H(1x)(y) = H(1y)(x), ∀(x, y) ∈ U × U,

(fl7) ∼ A ⊆ L(∼ L(A)), ∀A ∈ F(U),

(fu7) H(∼ H(A)) ⊆∼ A, ∀A ∈ F(U).

(3) it is a transitive rough fuzzy set algebra iff one of following equivalent axioms
holds:

(fl8) L(A) ⊆ L(L(A)), ∀A ∈ F(U),
(fu8) H(H(A)) ⊆ H(A), ∀A ∈ F(U).

Theorem 6 implies that a rough fuzzy algebra (F(U),∩,∪,∼, L,H) is a reflexive
rough fuzzy algebra iff H is an embedding on F(U) [21,28] and it is a transitive
rough fuzzy algebra iff H is closed on F(U) [21].

Theorem 7. Suppose that (F(U),∩,∪,∼, L,H) is a rough fuzzy set algebra.
Then it is a Pawlak rough fuzzy set algebra iff L satisfies axioms (fl6), (fl7) and
(fl8) or equivalently, H satisfies axioms (fu6), (fu7) and (fu8).

Theorem 7 implies that a rough fuzzy algebra (F(U),∩,∪,∼, L,H) is a Pawlak
rough fuzzy algebra iff H is a symmetric closure operator on F(U) [21].

Theorem 8. Suppose that L,H : F(U) → F(U) are dual operators. Then

H(L(A)) ⊆ A, ∀A ∈ F(U) =⇒ H(1y) ∈ P(U), ∀y ∈ U.

Proof. For any A ∈ F(U), notice that

A =
⋃
y∈U

[
1y ∩
︷︸︸︷
A(y)

]
, (4)

where
︷︸︸︷
A(y) denotes the constant fuzzy set of A(y), i.e.

︷︸︸︷
A(y)(x) = A(y) for all

x ∈ U. Then, by axioms (fu2) and (fu3), we have

H(A) =
⋃
y∈U

[
H(1y) ∩

︷︸︸︷
A(y)
]
. (5)
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According to the dual properties of L and H , we can easily conclude

L(A) =
⋂
y∈U

[
(∼ H(1y)) ∪

︷︸︸︷
A(y)
]
. (6)

For any z ∈ U , let A = 1U−{z}, by Eq. (6), we have

L(A) =
⋂

y∈U

[
(∼ H(1y)) ∪

︷︸︸︷
A(y)

]
=

⋂
y∈U

[
(∼ H(1y)) ∪

︷ ︸︸ ︷
1U−{z}(y)

]
=∼ H(∼ A) =∼ H(1z).

Thence, by employing Eq. (5), we have

HL(A) =
⋃
y∈U

[
H(1y) ∩

︷ ︸︸ ︷
(1−H(1z)(y))

]
. (7)

By the condition, we can obtain that

HL(A)(x) =
∨
y∈U

[
H(1y)(x)∧(1−H(1z)(y))

]
≤ A(x) = 1U−{z}(x), ∀x ∈ U. (8)

By setting x = z in Eq. (8), we then conclude∨
y∈U

[
H(1y)(z) ∧ (1 −H(1z)(y))

]
= 0. (9)

It follows that

H(1y)(z) ∧ (1−H(1z)(y)) = 0, ∀(y, z) ∈ U × U. (10)

Thus H(1y)(z) = 0 or H(1z)(y) = 1. If H(1y)(z) �= 0, then H(1z)(y) = 1, by
Eq. (10), we have

H(1z)(y) ∧ (1 −H(1y)(z)) = 0, (11)

which implies that H(1y)(z) = 1.
Thus we have proved that, for each (y, z) ∈ U×U ,H(1y)(z) = 0 orH(1y)(z) =

1, that is, H(1y) ∈ P(U).

4 Basic Concepts and Properties of Fuzzy Topological
Spaces

In this section, we recall some basic notions and theoretical results of fuzzy
topologies.
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Definition 5. [19] A fuzzy topology on a nonempty set U is a family τ of fuzzy
subsets in U satisfying the following axioms:

(T1) α̂ ∈ τ for all α ∈ [0, 1],
(T2) G1 ∩G2 ∈ τ for any G1, G2 ∈ τ ,
(T3)

⋃
i∈J

Gi ∈ τ for an arbitrary family {Gi : i ∈ J} ⊆ τ , where J is an index

set.
In this case the pair (U, τ) is called a fuzzy topological space and each fuzzy set
in τ is referred to as a fuzzy open set in (U, τ). The complement of a fuzzy open
set in the fuzzy topological space (U, τ) is called a fuzzy closed set in (U, τ).

It should be pointed out that if axiom (T1) in Definition 5 is replaced by axiom
(T′

1) ∅ ∈ τ and U ∈ τ ,
then τ is a fuzzy topology in the sense of Chang [5]. We can see that a fuzzy
topology in the sense of Lowen must be a fuzzy topology in the sense of Chang.
Since a fuzzy topology induced from an approximation space must be in the
sense of Lowen, in the present paper, we only use the Lowen’s fuzzy topology.
For more detail about fuzzy topology, we refer the reader to [18].

Now we define fuzzy closure and interior operations in a fuzzy topological
space.

Definition 6. Let (U, τ) be a fuzzy topological space and A ∈ F(U). The fuzzy
interior int(A) and fuzzy closure cl(A) of A are, respectively, defined as follows:

int(A) = ∪{G : G is a fuzzy open set and G ⊆ A}, (12)

cl(A) = ∩{K : K is a fuzzy closed set and A ⊆ K}, (13)

and int : F(U) → F(U) and cl : F(U) → F(U) are, respectively, called the fuzzy
interior operator and the fuzzy closure operator of τ . And sometimes in order to
distinguish, we denote them by intτ and clτ , respectively.

It can be shown that cl(A) is a fuzzy closed set and int(A) is a fuzzy open set
in (U, τ). A is a fuzzy open set in (U, τ) if and only if int(A) = A, and A is a
fuzzy closed set in (U, τ) if and only if cl(A) = A. Moreover, the fuzzy interior
operator and the fuzzy closure operator derived from the same topological space
(U, τ) are dual with each other, i.e.,

cl(∼ A) =∼ int(A), ∀A ∈ F(U), (14)

int(∼ A) =∼ cl(A), ∀A ∈ F(U). (15)

The fuzzy closure operator can also be defined by axioms which are called the
closure axioms.

Definition 7. A mapping cl : F(U) → F(U) is referred to as a fuzzy closure
operator on U if it satisfies following axioms:

(Cl1) A ⊆ cl(A), ∀A ∈ F(U),
(Cl2) cl(A ∪B) = cl(A) ∪ cl(B), ∀A,B ∈ F(U),
(Cl3) cl(cl(A)) = cl(A), ∀A ∈ F(U),
(Cl4) cl(α̂) = α̂, ∀α ∈ [0, 1].

Similarly, the fuzzy interior operator can be defined by corresponding axioms.
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Definition 8. A mapping int : F(U) → F(U) is referred to as a fuzzy interior
operator on U if it satisfies following axioms:

(Int1) int(A) ⊆ A, ∀A ∈ F(U),
(Int2) int(A ∩B) = int(A) ∩ int(B), ∀A,B ∈ F(U),
(Int3) int(int(A)) = int(A), ∀A ∈ F(U),
(Int4) int(α̂) = α̂, ∀α ∈ [0, 1].

It is easy to show that a fuzzy interior operator int defined in Definition 8
determines a fuzzy topology

τint = {A ∈ F(U) : int(A) = A}. (16)

So, the fuzzy open sets are the fixed points of int. Dually, from a fuzzy closure
operator defined in Definition 7, we can obtain a fuzzy topology on U by setting

τ
cl
= {A ∈ F(U) : cl(∼ A) =∼ A}. (17)

The results are summarized as the following

Theorem 9. (1) If an operator int : F(U) → F(U) satisfies axioms (Int1)-(Int4),
then τint defined in Eq. (16) is a fuzzy topology on U and

intτ
int

= int. (18)

(2) If an operator cl : F(U) → F(U) satisfies axioms (Cl1)-(Cl4), then τ
cl

defined in Eq. (17) is a fuzzy topology on U and

clτ
cl
= cl. (19)

Similar to the crisp Alexandrov topology [3] and crisp clopen topology [11], we
now introduce the concepts of a fuzzy Alexandrov topology and a fuzzy clopen
topology.

Definition 9. A fuzzy topology τ on U is called a fuzzy Alexandrov topology [15]
if the intersection of arbitrarily many fuzzy open sets is still open, or equivalently,
the union of arbitrarily many fuzzy closed sets is still closed. A fuzzy topological
space (U, τ) is said to be a fuzzy Alexandrov space if τ is a fuzzy Alexandrov
topology on U . A fuzzy topology τ on U is called a fuzzy clopen topology if, for
every A ∈ F(U), A is fuzzy open in (U, τ) if and only if A is fuzzy closed in
(U, τ). A fuzzy topological space (U, τ) is said to be a fuzzy clopen space if τ is a
fuzzy clopen topology on U .

Theorem 10. Let int : F(U) → F(U) be a fuzzy interior operator. The the
following two conditions are equivalent:

(1) int satisfies axiom (fl7), i.e., ∼ A ⊆ int(∼ int(A)) for all A ∈ F(U);
(2) τ

int
is fuzzy clopen topology, i.e., for every A ∈ F(U), A is fuzzy open in

(U, τ) if and only if A is fuzzy closed in (U, τ).
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Proof. “(1) ⇒ (2).” Assume that int satisfies axiom (fl7). If A ∈ F(U) is fuzzy
open, that is,

int(A) = A, (20)

then
∼ A =∼ int(A) ⊆ int(∼ int(A)). (21)

Since int is a fuzzy interior operator, by (Int1), we have

int(∼ int(A)) ⊆∼ int(A). (22)

Combining Eqs. (21) and (22), we obtain

int(∼ int(A)) =∼ int(A). (23)

Thus, ∼ int(A) is fuzzy open. By using Eq. (20), we see that ∼ A is fuzzy open,
and hence A is fuzzy closed.

On the other hand, if A ∈ F(U) is fuzzy closed, then ∼ A is fuzzy open.
By employing the above proof, we can observe that ∼ A is fuzzy closed. Hence
A =∼ (∼ A) is fuzzy open.

“(2) ⇒ (1).” For any A ∈ F(U), since int : F(U) → F(U) is a fuzzy interior
operator, int(A) is open. Hence ∼ int(A) is fuzzy closed. Since (U, τ

int
) is a fuzzy

clopen space, therefore ∼ int(A) is fuzzy open. Hence

int(∼ int(A)) =∼ intA. (24)

Since int is a fuzzy interior operator, by (Int1), we have

int(A) ⊆ A. (25)

Therefore, by employing Eq. (24), we conclude

∼ A ⊆∼ int(A) = int(∼ int(A)). (26)

Thus, we have proved that int satisfies axiom (fl7).

5 From Rough Fuzzy Sets to Fuzzy Topologies

In this section we discuss the relationship between fuzzy topological spaces and
rough fuzzy sets. Throughout this section we always assume that U is a nonempty
universe of discourse, R a crisp binary relation on U , and R and R the rough
fuzzy approximation operators defined in Definition 2.

Denote
τ
R
= {A ∈ F(U) : R(A) = A}. (27)

The next theorem shows that any reflexive binary relation determines a fuzzy
Alexandrov topology.
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Theorem 11. If R is a reflexive crisp binary relation on U , then τ
R
defined by

Eq. (27) is a fuzzy Alexandrov topology on U .

Proof. (T1) For any α ∈ [0, 1], since a reflexive binary relation must be serial,
in terms of Theorem 2, we have R(α̂) = α̂, thus α̂ ∈ τR .

(T2) For any A,B ∈ τ
R
, that is, R(A) = A and R(B) = B, by Theorem 1, we

have R(A ∩B) = R(A) ∩R(B) = A ∩B. Thus, A ∩B ∈ τ
R
.

(T3) Assume that Ai ∈ τR , i ∈ J , J is an index set. Since R is reflexive, by
Theorem 3, we have

R(
⋃
i∈J

Ai) ⊆
⋃
i∈J

Ai. (28)

For any x ∈ U , let

α = (
⋃
i∈J

Ai)(x) = sup
i∈J

Ai(x). (29)

Since α = supi∈J Ai(x), we have Ai(x) ≤ α for all i ∈ J , and, on the other hand,
for an arbitrary ε > 0, there exists an i0 ∈ J such that α < Ai0(x) + ε. Since
Ai ∈ τ

R
for all i ∈ J, that is, R(Ai) = Ai for all i ∈ J, we have α < Ai0(x) + ε =

R(Ai0)(x) + ε, then, by (FL5) in Theorem 1, we conclude

α < R(Ai0 )(x) + ε ≤
∨
i∈J

R(Ai)(x) + ε = (
⋃
i∈J

R(Ai))(x) + ε ≤ R(
⋃
i∈J

Ai)(x) + ε.

(30)
Since ε > 0 is arbitrary, it follows that

α ≤ R(
⋃
i∈J

Ai)(x), (31)

that is, ( ⋃
i∈J

Ai

)
(x) ≤ R(

⋃
i∈J

Ai)(x). (32)

Hence ⋃
i∈J

Ai ⊆ R(
⋃
i∈J

Ai). (33)

Combining Eqs. (28) and (33), we obtain⋃
i∈J

Ai = R(
⋃
i∈J

Ai). (34)

Thus, we conclude that
⋃

i∈J Ai ∈ τ
R
.

Therefore, τ
R
is a fuzzy topology on U .

Finally, by (FL3) and (FU3) in Theorem 1, we see that τR defined by Eq. (27)
is a fuzzy Alexandrov topology on U .

Theorem 12. Assume that R is a crisp binary relation on U . Then the follow-
ing statements are equivalent:

(1) R is a preorder, i.e., R is a reflexive and transitive relation;
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(2) the upper rough fuzzy approximation operator R : F(U) → F(U) is a fuzzy
closure operator;

(3) the lower rough fuzzy approximation operator R : F(U) → F(U) is a fuzzy
interior operator.

Proof. By the dual properties of lower and upper rough fuzzy approximation
operators, we can easily conclude that (2) and (3) are equivalent. We only need
to prove that (1) and (2) are equivalent.

“(1)⇒(2)”. Assume that R is a preorder on U . Firstly, by the reflexivity of R
and property (FU6) in Theorem 3, we observe that A ⊆ R(A) for all A ∈ F(U).
Thus R obeys axiom (Cl1). Secondly, according to property (FU3) in Theorem
1, we see that R satisfies axiom (Cl2). Thirdly, since a preorder is reflexive and
transitive, R satisfies properties (FU6) and (FU8) in Theorem 3. On the other
hand, properties (FU6) and (FU8) imply following property

R(A) = R(R(A)), ∀A ∈ F(U). (35)

Thus R obeys axiom (Cl3). Finally, notice that a preorder must be a serial
relation, then by Theorem 2, we conclude that R obeys axiom (Cl4). Therefore,
R is a fuzzy closure operator.

“(2)⇒(1)”. Assume that R : F(U) → F(U) is a fuzzy closure operator. By
axiom (Cl1), we see that

A ⊆ R(A), ∀A ∈ F(U). (36)

Then, by Theorem 3, we conclude that R is a reflexive relation. Moreover, by
axiom (Cl1) again, we have

R(A) ⊆ R(R(A)), ∀A ∈ F(U). (37)

On the other hand, by axiom (Cl3), we observe that

R(R(A)) = R(A), ∀A ∈ F(U). (38)

Hence, in terms of Eqs. (37) and (38), we must have

R(R(A)) ⊆ R(A), ∀A ∈ F(U). (39)

According to Theorem 3, we then conclude that R is a transitive relation. Thus
we have proved that R is a preorder.

Remark 1. According to Theorem 11, an Alexandrov fuzzy topology can be
obtained from a reflexive relationR by using Eq. (27), by Eq. (12) we see that any
topology τ induces an interior operator intτ , which in turn induces a topology
τ
intτ

. Of course, int
τ
is a fuzzy interior operator. It also holds that τ

intτ
= τ .

Now let us take τ
R
, then its interior is int

τR
which produces a fuzzy topology

τintτR
. Since τintτR

= τR , we have:

τR = {A ∈ F(U) : R(A) = A} = {A ∈ F(U) : intτR (A) = A}. (40)
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We should point out that though R and int
τR

produce the same topology, in
general, R �= int

τR
, the reason is that int

τR
is a fuzzy interior operator whereas

R is not. In fact, Theorem 12 tell us that R = intτR if and only if R is a preorder.

Lemma 1. If R is a symmetric crisp binary relation on U , then for all A,B ∈
F(U),

R(A) ⊆ B ⇐⇒ A ⊆ R(B). (41)

Proof. “⇒” Let A,B ∈ F(U), if R(A) ⊆ B, by (FU1) in Theorem 1, we have
∼ R(∼ A) ⊆ B, then, ∼ B ⊆ R(∼ A). By (FU4) in Theorem 1 and (FL7) in
Theorem 3, it follows that

R(∼ B) ⊆ R(R(∼ A)) ⊆∼ A. (42)

Hence

A ⊆∼ R(∼ B) = R(B). (43)

“⇐” Assume that A ⊆ R(B), by (FL1) in Theorem 1, we have A ⊆∼ R(∼ B),
that is, R(∼ B) ⊆∼ A, according to (FL4) in Theorem 1, we then conclude

R(R(∼ B)) ⊆ R(∼ A). (44)

By (FL1) and (FU1) in Theorem 1, it is easy to obtain that

∼ R(R(B)) ⊆ R(∼ A) =∼ R(A). (45)

Consequently, by (FL7) in Theorem 3, we conclude that

R(A) ⊆ R(R(B)) ⊆ B. (46)

Theorem 13. Let R be a similarity crisp binary relation on U , and R and R
the rough fuzzy approximation operators defined in Definition 2. Then R and R
satisfy property (Clop): for A ∈ F(U),

(Clop) R(A) = A ⇐⇒ A = R(A) ⇐⇒ R(∼ A) =∼ A ⇐⇒∼ A = R(∼ A).
(47)

Proof. For A ∈ F(U), assume that R(A) = A. Since R is reflexive, by (FL6)
in Theorem 3, we see that R(A) = A implies A ⊆ R(A). Then, by Lemma 1,
we conclude R(A) ⊆ A. Furthermore, since R is reflexive, in terms of (FU6) in
Theorem 3 we obtain A = R(A). Similarly, we can prove that A = R(A) implies
R(A) = A. Moreover, by using (FL1) and (FU1) in Theorem 1, it is easy to
verify that Eq. (47) holds.

Theorem 14. Let R be a similarity crisp binary relation on U , and R and R
the rough fuzzy approximation operators defined in Definition 2. Then τ

R
defined

in Eq. (27) is a fuzzy clopen topology on U .
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Proof. For A ∈ F(U), since R is a similarity crisp binary relation, by Theorem
13, we have

A is fuzzy open ⇐⇒ A ∈ τ
R

⇐⇒ A = R(A)
⇐⇒∼ A = R(∼ A)
⇐⇒∼ A ∈ τ

R

⇐⇒ A is fuzzy closed.

Thus, τ
R
is a fuzzy clopen topology on U .

Corollary 1. Let R be an equivalent crisp binary relation on U , R and R :
F(U) → F(U) are the rough fuzzy approximation operators of (U,R). Let τ

R
=

{A ∈ F(U) : R(A) = A}, then
(1) R and R : F(U) → F(U) are the fuzzy interior operator and the fuzzy

closure operator of the fuzzy topology τ
R

(2) τ
R
is a fuzzy clopen topology on U .

6 From Fuzzy Topological Spaces to Rough Fuzzy Sets

As can be seen from Section 5, a preorder rough fuzzy algebra yields a fuzzy
topological space such that its fuzzy interior and closure operators are, respec-
tively, the lower and upper rough fuzzy approximation operators of the given
crisp approximation space. In this section, we consider the reverse problem, that
is, under which conditions can a fuzzy topological space be associated with a
crisp approximation space which produces the given fuzzy topological space?

The following Theorem 15 gives the sufficient and necessary conditions that a
fuzzy interior (respectively, a fuzzy closure) operator in a fuzzy topological space
can be associated with a crisp preorder such that the induced lower (respectively,
upper) rough fuzzy approximation operator is exactly the fuzzy interior (respec-
tively, fuzzy closure) operator.

Theorem 15. Let (U, τ) be a fuzzy topological space and cl, int : F(U) → F(U)
its fuzzy closure and interior operators, respectively. Then there exists a preorder
Rτ on U such that

Rτ (A) = cl(A) and Rτ (A) = int(A), ∀A ∈ F(U) (48)

iff the operator cl satisfies axioms (fuc) (fu1) and (fu2), or equivalently, int obeys
axioms, (flc), (fl1) and (fl2), that is,

(fuc) cl(1y) ∈ P(U), ∀y ∈ U.
(fu1) cl(A ∩ α̂) = (cl(A)) ∩ α̂, ∀A ∈ F(U), ∀α ∈ [0, 1].
(fu2) cl(

⋃
i∈J

Ai) =
⋃
i∈J

cl(Ai), Ai ∈ F(U), i ∈ J , J is any index set.

(flC) int(1U−{y}) ∈ P(U), ∀y ∈ U.
(fl1) int(A ∪ α̂) = (int(A)) ∪ α̂ ∀A ∈ F(U), ∀α ∈ [0, 1].
(fl2) int(

⋂
i∈J

Ai) =
⋂
i∈J

int(Ai), Ai ∈ F(U), i ∈ J , J is any index set.



140 W.-Z. Wu and Y.-H. Xu

Proof. “⇒” Assume that there exists a preorder Rτ on U such that Eq. (48)
holds, then, by Theorem 1, it can easily be observed that the operator cl satisfies
axioms (fuc), (fu1), and (fu2), and int obeys axioms (flc), (fl1), and (fl2).

“⇐” If the fuzzy closure operator cl : F(U) → F(U) satisfies axioms (fuc),
(fu1), and (fu2), and the fuzzy interior operator int : F(U) → F(U) obeys
axioms (flc), (fl1), and (fl2), then, by Theorem 4, we can define a binary relation
R

τ
on U by setting

(x, y) ∈ R
τ

⇐⇒ cl(1y)(x) = 1, (x, y) ∈ U × U (49)

such that Eq. (48) holds. Moreover, by Theorem 12, we conclude that R
τ
is a

preorder.
Remark 2. Notice that a fuzzy topological space satisfying axioms (fl2) and
(fu2) is a fuzzy Alexandrov space. Theorem 15 shows that a fuzzy topological
space can be associated with a preorder such that the induced lower and upper
rough fuzzy approximation operators are, respectively, the fuzzy interior and
closure operators of the fuzzy topology if and only if the given topological space
must be a fuzzy Alexandrov space and the fuzzy interior satisfies axioms (flc)
and (fl1), and the closure operators obeys axioms (fuc) and (fu1).

Let R be the set of all crisp preorders on U and T the set of all fuzzy Alexan-
drov spaces on U in which the fuzzy interior operator satisfies axioms (flc) and
(fl1), and the fuzzy closure operator obey axioms (fuc) and (fu1). Then, we can
easily conclude following Theorems 16 and 17.

Theorem 16. (1) If R ∈ R, τ
R

is defined by Eq. (27) and Rτ
R

is defined by
Eq. (49), then Rτ

R
= R.

(2) If τ ∈ T , Rτ is defined by Eq. (49), and τ
Rτ

is defined by Eq. (27), then
τ
Rτ

= τ .

Remark 3. Result (1) in Theorem 16 shows that, for a given crisp preorder R,
the binary relation Rτ

R
, which is defined by the induced fuzzy topology τ

R
of R,

is no other than the given R. And similarly, results (2) in Theorem 16 implies
that, for a given fuzzy topology τ , the topology τ

Rτ
, which is defined by the

induced binary relation Rτ of the given topology τ , is identified with the given
topology τ .

Theorem 17. There exists a one-to-one correspondence between R and T .

Proof. Define a mapping f : R → T as follows:

f(R) = τR , R ∈ R.

Then, by Theorem 16, it is easy to verify that f is a one-to-one correspondences
between R and T .

Theorem 18. Let (U, τ) be a fuzzy topological space and clτ , intτ : F(U) →
F(U) its fuzzy closure and interior operators, respectively. If there exists a crisp
binary Rτ on U such that Eq. (48) holds, then (U, τ) is a fuzzy clopen space if
and only Rτ is an equivalence relation on U .
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Proof. “⇒” If exists a crisp binary Rτ on U such that Eq. (48) holds, then, by
Theorem 12, we conclude that R is a preorder. On the other hand, since (U, τ) is
a fuzzy clopen topological space, according to Theorem 10, we see that the fuzzy
interior operator int

τ
: F(U) → F(U) and fuzzy closure operator cl

τ
: F(U) →

F(U) satisfy axioms (fl7) and (fu7), respectively. That is, R : F(U) → F(U)
and R : F(U) → F(U) obey properties (FL7) and (FU7). Hence, by Theorem 3,
we conclude that R is symmetric. Therefore, R is an equivalence relation on U .

“⇐” It follows immediately from Corollary 1.

7 Conclusion

In this paper we have studied the topological structure of rough fuzzy sets in
infinite universes of discourse. We have shown that a reflexive crisp rough ap-
proximation space can induce a fuzzy Alexandrov space. We have also examined
that the lower and upper rough fuzzy approximation operators are, respectively,
a fuzzy interior operator and a fuzzy closure operator if and only if the binary
relation in the crisp approximation space is reflexive and transitive. We have
further proved that a fuzzy topological space induced from a reflexive and sym-
metric crisp approximation space is a fuzzy clopen topological space. Finally, we
have explored the sufficient and necessary conditions that a fuzzy interior (clo-
sure, respectively) operator derived from a fuzzy topological space can associate
with a reflexive and transitive crisp approximation space such that the induced
lower (upper, respectively) rough fuzzy approximation operator is exactly the
fuzzy interior (closure, respectively) operator.
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Abstract. In classic Pawlakian rough set theory the sets used to approx-
imations are equivalence classes which are pairwise disjoint and cover the
universe. In this article we give up not only the pairwise disjoint property
but also the covering of the universe.

After a historical and philosophical background, we define a general
set theoretic approximation framework. First, we reconstruct the rough
set theory and partly restate its some well–known facts in the language
of this framework.

Next, we present a special approximation scheme. It is based on the
partial covering of the universe which is called the base system and de-
noted by B. B-definable sets and lower and upper B-approximations are
straightforward point–free generalizations of Pawlakian ones. We study
such notions as single–layered base systems, B-representations of B-
definable sets, and the exactness of sets. It is a well–known fact that
the Pawlakian upper and lower approximations form a Galois connec-
tion. We clarify which conditions have to be satisfied by the upper and
lower B-approximations so that they form a (regular) Galois connection.
Excluding the cases when the empty set is the upper B-approximation
of certain nonempty sets gives rise to a partial upper B-approximation
map. We also clear up that a partial upper B-approximation map and a
total lower B-approximation map form a partial Galois connection.

In order to demonstrate the effectiveness of our approach we present
three real–life examples in the last section.

Keywords: Rough set theory, approximation of sets, partial covering,
Galois connections.

Szüleim emlékének, Feleségemnek, Ilonka néninek

1 Introduction

This article is based on my Ph.D. thesis [1]. It incorporates a number of aspects
of an uncommon generalization of rough set theory which relies on the partial
covering of the universe.
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1.1 A Historical Outline

The rough set theory (RST), among others, is a mathematical tool to manage
inexact, uncertain, incomplete and imperfect data. It was invented by the Polish
mathematician, Zdzis�law Pawlak in the early 1980s [2,3].

The starting point is a nonempty finite set U of distinguishable objects, called
the universe of discourse, and an equivalence relation ε on U [4]. The partition
of U generated by ε is denoted by U/ε, and its elements are called ε-elementary
sets (Fig. 1). An ε-elementary set can be viewed as a set of indiscernible objects
characterized by the same available information about them [5,6]. In addition,
any union of ε-elementary sets is referred to as definable set (Fig. 2).

Fig. 1. ε-elementary sets Fig. 2. Definable sets

Any subset X ⊆ U can be naturally approximated by two sets called the lower
and upper ε-approximations of X . The lower ε-approximation of X is the union
of all the ε-elementary sets which are the subsets of X (Fig. 3), whereas the
upper ε-approximation of X is the union of all the ε-elementary sets that have
a nonempty intersection with X (Fig. 4).

Fig. 3. Lower Fig. 4. Upper Fig. 5. Lower-upper

approximation approximation approximation

The difference between upper and lower ε-approximations is called the ε-
boundary of X (Fig. 5). The subset X is ε-crisp (exact), if its ε-boundary is the
empty set, ε-rough (inexact) otherwise.

Let σ(U/ε) denote the extension of U/ε with all the unions of some ε-elementary
sets and the empty set. It is easy to see that σ(U/ε) ⊆ 2U is a σ-algebra gener-
ated by U/ε, i.e., it is nonempty, closed under complementations and countable
unions. In other words, (U, σ(U/ε)) is an Alexandrov topological space with the
basis U/ε. σ(U/ε) is the family of all open and closed sets [7].
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In Pawlak’s theory, the lower and upper ε-approximations can be defined by
three equivalent forms. These three forms are based on elements, ε-elementary
sets and the σ-algebra σ(U/ε) [8,9,10]. In any case, both lower and upper ε-
approximations of any subset X ⊆ U belong to the σ-algebra σ(U/ε).

The three equivalent definitions offer different interpretations of Pawlak’s ap-
proximations. According to the element based formulation, the lower and upper
approximation operators can be interpreted as the necessity and possibility op-
erators of modal logic [11,12,13,14,15,16,17,18,19]. The σ-algebra based formula-
tion relates them to interior and closure operators in topological spaces [20]. The
formulation based on ε-elementary sets has been served as the “pattern” of gran-
ular computing developments [21,22,23,24,25]. Nowadays, granular computing is
a fast developing branch of information technology.

The generalization of Pawlak’s approximations can go along one of the three
equivalent definitions mentioned above. A natural generalization of Pawlak’s idea
via the element based definition is that the equivalence relation is replaced by
any other type of binary relation on U [26,27,28,29,30,31]. Another generalization
can be obtained by using any covering of the universe and the imitation of the
ε-elementary set based definition [20,32].

The case of σ-algebra based definition is a little more complicated. In the
language of Alexandrov topological spaces, the σ-algebra σ(U/ε) is the family
of clopen sets, i.e., the family of open sets coincides with the family of closed
sets. The family of open sets is related to the lower approximation or interior
operator, whereas the family of closed sets is related to the upper approxima-
tion or closure operator. As a possible generalization, one may use two different
subsystems of the powerset of U [33]. A subsystem for the lower approximation
which must be closed under unions and contains the empty set, and another
subsystem for the upper approximation which, in turn, must be closed under
intersections and contains U . Moreover, in order to keep the duality of lower and
upper approximation operators, the elements of two subsystems must be related
to each other through the complementation. In addition, this latter restriction
can also be removed [8].

For the beginning of generalizations of rough set theory, see [5,34,35,36].
A list of some research directions on the rough set foundations and the rough

set based methods can be found in [37].
Rough set theory can be applied among others in the areas of artificial intel-

ligence, cognitive sciences, medicine and economics. It provides a powerful foun-
dation to reveal and discover important structures and patterns in data and to
classify complex objects. One of the main advantages of rough set theory is that
it does not need any preliminary or additional information about data [38,39].
This attractive property of rough set theory is of especial importance for instance
to data mining, machine learning, decision analysis, knowledge management, ex-
pert systems, patter recognition, medicine, engineering, banking, financial and
market analysis [38,39,40].

For some additional recent general work, tutorials and historical review on
rough set theory, see [41,42,43,44,45,46,47,48].
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1.2 Basic Philosophical Background

There is a philosophical interpretation of the rough set theory too. It may
also be seen as a relatively new possible mathematical approach to vagueness
[49,50,37,51]. According to the entry for“vagueness”in the Stanford Encyclopedia
of Philosophy:

There is wide agreement that a term is vague to the extent that it has bor-
derline cases. This makes the notion of a borderline case crucial in accounts of
vagueness. ([52], the two introductory sentences.)

Vagueness is standardly defined as the possession of borderline cases. For ex-
ample, “tall” is vague because a man who is 1.8 meters in height is neither
clearly tall nor clearly non-tall. No amount of conceptual analysis or empirical
investigation can settle whether a 1.8 meter man is tall. ([52], Chapter 1. The
italics are mine.)

Borderline cases are inquiry resistant. Indeed, the inquiry resistance typically
recurses. For in addition to the unclarity of the borderline case, there is nor-
mally unclarity as to where the unclarity begins. In other words “borderline
case” has borderline cases. This higher order vagueness shows that “vague” is
vague. ([52], Chapter 1.)

That is vague terms lack well-defined extensions—there is no sharp boundary
between tall people and the rest [49]. In other words a set of objects is vague
if objects exist that cannot be classified as belonging to either the set or its
complement [5]. It should immediately be noted that in this context the notion
“set” is used in a pre-theoretic sense.

It is an important fact that in rough set theory the extension of a set in ques-
tion is known. Nevertheless, in practice, if we want to determine its extension we
use some tools. In this way, however, the extension of an observed set in general
cannot be determined exactly. Due to the limited nature of the measurement,
the exact attributes which characterize the set in question, i.e., its intension is
not known. Rough set theory uses two sets whose intension, consequently their
extension is exactly known in order to approximate observed sets.

The “vagueness” is a more than two thousand-year-old problem. Its origins
go back to the so–called Sorites paradox [49,53,54,55] attributed to Aristotle’s
contemporary Eubulides of Miletus (4th c. BC), the Megarian logician. The
word “sorites” in Greek means “heap”. (To be more precise, the paradox derives
its name from the Greek word soros.) Note that the far known Liar paradox in
its purest form is also attributed to Eubulides.

One of the forms of the Sorites paradox is the following. Of course, one stone
does not make a heap. Adding only one stone to what is not yet a heap surely
cannot make a heap. Repeating this step adding stones one by one we arrive at
the conclusion that heaps do not exist not even if they consist of more than,
say, 100,000 stones. Then, where do we draw the line between what is a heap of
stones and what is not?
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I agree with Priest [54]: the Sorites is a very hard paradox, possibly harder
than the Liar. For the Liar can be isolated, whereas the Sorites is everywhere
and can take us anywhere. And I agree that the paradox is so hard because
it systematically imposes upon us the existence of unbelievable or otherwise
unacceptable cut-off points. No solution can avoid explaining why this happens.
([55], p. 24. The italics are mine.)

The counter-intuitiveness of Sorites phenomena lies in the fact that there must
be a cut-off, regardless of where exactly it is located in the soritical sequence.
([55], p. 34. The italics are the author’s.)

The Sorites paradox is not mere a curiosity such as R. Keefe and P. Smith
remarked in [56]. To confirm this statement, let us look at the following example
coming from medicine.

Example 1. Let us consider the fasting blood glucose test [57] which is used to
screen for and diagnose diabetes. It is measured on a fast basis, i.e., collected
after an 8 and 10 hours fast. The test measures the amount of glucose in the blood
right at the time of sample collection. On the clinical practice recommendations
of the American Diabetes Association, the fasting glucose level is normal if the
test result is between 3.9 mmol/L and 5.5 mmol/L, and indicates diabetes over
11.1 mmol/L on more than one testing occasion.

Now, for instance, the fasting glucose level 4.5 mmol/L is normal. Plausibly,
increasing the normal fasting glucose level by 0.001 mmol/L (or 0.00001 mmol/L,
if necessary) cannot make a difference. So, if the fasting glucose level 4.0 mmol/L
is normal then 4.0 mmol/L plus 0.001 mmol/L is also normal. Now, since the
fasting glucose level 4.001 mmol/L is normal, 4.001 mmol/L plus 0.001 mmol/L
is also normal; and so on. Consequently, any fasting glucose level is normal, even
if it is greater than, say, 25.0 mmol/L.

The Sorites paradox was not an attractive problem until the late 19th century.
Next, numerous logicians and philosophers dealt with it. The anthology [56]
collects for the first time the most important classical papers in the field.

The vagueness associated with the boundary region approach was first formu-
lated in 1893 by G. Frege [58], next Peirce in 1902 [59].

Pawlak’s fundamental view of vagueness can be characterized as “unable to
classify” [60,37,61,5]. As Pawlak and Skowron wrote in [5]:

In contrast to odd numbers, the notion of a beautiful painting is vague, because
we are unable to classify uniquely all paintings into two classes: beautiful and
not beautiful. Some paintings cannot be decided whether they are beautiful or
not and thus they remain in the doubtful area. Thus, beauty is not a precise
but a vague concept. ([5], p. 5. The italics are mine.)

However, in spite of the fact that vagueness is very interesting phenomenon in
philosophy, it is not allowed within standard mathematics.
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Pawlak’s information-based solution concerning vagueness is the following:1

[...] in the proposed approach, we assume that any vague concept is replaced
by a pair of precise concepts—called the lower and the upper approximation
of the vague concept. The lower approximation consists of all objects which
surely belong to the concept and the upper approximation contains all objects
which possibly belong to the concept. The difference between the upper and
the lower approximation constitutes the boundary region of the vague concept.
Approximations are two basic operations in rough set theory.
Hence, rough set theory expresses vagueness not by means of membership, but
by employing a boundary region of a set. If the boundary region of a set is
empty it means that the set is crisp, otherwise the set is rough (inexact). A
non-empty boundary region of a set means that our knowledge about the set
is not sufficient to define the set precisely. ([5], p. 6. The italics are mine.)

In sum, Pawlak’s approach can be viewed as a specific implementation of Frege’s
idea of vagueness [58], i.e., imprecision is expressed by a boundary region of a
set [5].

1.3 Our Approach

There are many possibilities to generalize the rough set theory. To sum up, our
approach has three main foundation-stones:

1. “unable to classify” as the base of vagueness,
2. its presentation in a point-free manner, and
3. partiality of our knowledge about the universe.

Ad 1. Rough set theory has served as a “pattern” for granular computing (GrC).
However, there are fundamental differences between them. Granular computing
and also rough set theory have three semantic views, in particular, uncertainty
theory, knowledge engineering and how-to-solve/compute-it [64,65]. The most
important difference between the two theories is best illustrated in connection
with the uncertainty theory. Pawlak uses “unable to classify” as the base of un-
certainty, while the granular computing regards a granule as a unit of uncertainty
[65].

Ad 2. The philosophy of rough set theory relies on the assumption that some
information (data, knowledge) are associated with every object of the universe
of discourse. Objects characterized by the same information are indiscernible or
similar in view of the available information about them. A set of all indiscernible
or similar objects form a unit of the basic knowledge. Such a unit can be seen in

1 There is another contemporary information-based solution proposal concerning
vagueness, namely, Zadeh’s fuzzy set theory [62]. “Zadeh’s introduction of fuzzy
sets was not meant to be a contribution to the philosophy of vagueness. It was moti-
vated by the need for a computational representation for linguistic terms appearing
in statements, which are often intended to provide synthetic information about com-
plex situations.” ([63], p. 893). Fuzzy set theory is complementary to rough set theory.
In this article, this aspect is only mentioned here.
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a point-wise manner, i.e., the content of the unit is visible, and in a point-free
manner, i.e., the content of the unit is hidden. We abstract each unit into a
point. Such a collection of points is called the quotient structure. We will work
on quotient structures, in other words we manage units in the point-free manner.

For more details concerning points 1 and 2, see [64,65,21].
Ad 3. In real life, information being at our disposal is generally insufficient.

Consequently, it is natural to assume that there may be objects which we are
unable to characterize at all. Moreover, there are features with which we can
form a set of objects effectively, but we cannot form its complement effectively
at the same time. For instance, the complements of a recursively enumerable set
is not necessarily a recursively enumerable set as well [66].

In rough set theory, the sets used to approximation are the equivalence classes
which are pairwise disjoint and cover the universe of discourse. If we give up the
requirement of the pairwise disjointedness, we get a kind of generalization of the
theory (Fig. 6). Its detailed elaboration can be found in the literature (see, e.g.,
[67] and references therein).

The main question of the article is what would happen if we gave up not only
the pairwise disjoint property but also the covering of the universe (Fig 7). The
resulting system is called the approximation of sets based on partial covering, or
partial approximation of sets for short.

Fig. 6. Giving up the Fig. 7. Giving up the

pairwise disjoint property covering: partial base system

In the article we will examine the properties of the approximation of sets
under these unusual conditions. At the most general abstraction level, we make
the only essential condition that the lower approximation of any set must be
included in its upper approximation [68,69].

Let our starting point be an arbitrary nonempty family B of subsets of a
nonempty universe of discourse U [70,71,72,73]. Its elements are called B-sets.
On the analogy of the definition of the σ-algebra σ(U/ε), let DB denote the
extension of B with the empty set and all the unions of some B-sets. In other
words, DB is closed under arbitrary unions and contains every set in B and the
empty set. However, DB neither covers the universe (i.e., it does not contain U)
nor forms σ-algebra in general. Similarly to the rough set theory, any union of
B-sets is referred to as B-definable set.
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Our notion of lower and upper approximations are straightforward point-
free generalizations of Pawlak’s same approximation operators imitating the ε-
elementary set based formulae and both of them belong to DB. So, our lower
and upper approximation operators are of the form 2U → DB. This approach
corresponds to the a priori attitude in the sense of [74]. Here, DB is the family
of the fundamental sets of our framework which can be seen as the tools which
we use in order to approximate any subset of U . However, we have to emphasize
that DB is just the set of definable sets, not the set of exact sets (in the sense
of Section 5).

Our discussion will be within an overall approximation framework whose scope
ranges from the weak approximation pair of maps on U [68] to the notion of
Galois connection on 2U [75,76,31]. Along this framework, the common features
of both rough set theory and our approach can be treated uniformly. In addition,
most notions of Pawlak’s rough set theory constitute compound ones and they
are split into two or more parts in our approach. This framework helps us to
understand the state of their compound nature and to specify their constituents
in a more general context.

Last but not least, it has been proved that the partial approximation of sets
can be applied to solving practical problems [71,77,78,79].

1.4 An Overview of the Article

The article can be divided into three main parts. (1) Section 1–2 are two intro-
ductory sections; (2) Section 3–6 contain our theoretical results; (3) Section 7
presents different rea–life applications of our approach.

Section 1 is an introduction. It contains a historical outline, a philosophical
background, and a brief summary of our approach.

Section 2 summarizes the basic concepts and notations used throughout the
article.

Section 3 defines two general approximation frameworks, a large–scaled initial
one, called the initial approximation framework, and a finer–scaled one, called
the general set theoretic approximation framework. They allow us to treat the
common features of classic rough set theory and its generalizations uniformly.

Section 4 is devoted to the basic concepts and properties of classic rough set
theory relying on the general set theoretic approximation framework. We partly
restate some well–known facts in the language of our approximation framework
and provide new point–free proofs for a few of them.

Section 5 presents a special approximation framework based on the partial
covering of the universe. It is fully integrated into the general set theoretic ap-
proximation framework. After some introductory remarks, Subsections 5.1 and
5.2 define the most fundamental concepts of our approach, the base system B
and the family of B-definable subsets.

Subsection 5.3 introduces a constrained version of B, called the single-layered
base system. This allows us to prove some properties of our approximation frame-
work which, in a sense, are similar to the properties of classic rough set theory.
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Subsection 5.4 defines the so–called lower and upper B-approximations based
on partial covering of the universe. First, we prove that they fit into the general
set theoretic approximation framework. Lower B-approximation is always con-
tractive, but upper B-approximation is extensive if and only if the base system
B covers the universe. We also show that the B-definable property is gener-
ally not equivalent to the equality of lower and upper B-approximations unlike
Pawlakian rough set theory. The universe, the family of B-definable sets, the
lower and upper B-approximations form a B-approximation space together.

Subsection 5.5 discusses the B-representations of B-definable sets. A subset
D is B-representable, if there exists exactly one family of B-sets in such a way
that its union equals to D. We prove that all B-definable subset of the universe
are B-representable if and only if the base system B is single-layered. We also
give the explicit B-representations of B-definable subsets, among others, the
lower and upper B-approximations, when the base system B is single-layered.

Subsection 5.6 is about a special important notion of approximation spaces,
the exactness. In Pawlakian approximation spaces the notions of “crisp”(i.e., the
exactness) and“definable”are synonymous to each other. However, aB-definable
subset is not necessarily B-crisp. Consequently, the notions of “definable” and
“crisp” are not synonymous to each other in B-approximation spaces.

Last, Subsection 5.7 gives a possible interpretation of our approach.
In Section 6, we investigate what conditions have to be satisfied by the upper

and lower B-approximations so that they form a Galois connection on (2U ,⊆).
In Subsection 6.1, we prove that the upper and lower B-approximations form

a Galois connection on (2U ,⊆) if and only if the base system B is a partition of
the universe U .

Subsection 6.2 deals with partial lower and upper B-approximations. The
empty set may be the lower B-approximation of certain nonempty subsets pro-
vided that all singletons are not B-definable. Excluding to allow that the empty
set to be the lower B-approximation of a nonempty subset, we obtain a partial
variant of the lower B-approximation. We show that under well–defined condi-
tions there exists a unique total extension of the partial lower B-approximation
which is exactly the lower B-approximation.

The empty set may be the upper B-approximation of certain nonempty sub-
sets provided that the base system does not cover the universe. Excluding these
uncommon cases we obtain a partial variant of the upper B-approximation. We
prove that the partial upper B-approximation and the lower B-approximation
form a partial Galois connection in the sense of Miné if and only if the B-sets
are pairwise disjoint.

Section 7, to demonstrate the effectiveness of our approach, presents three
real–life applications.

Subsection 7.1. The first application shows the relationship of our approach
with natural computing via a biological example. In particular, we show how
our approach helps us to understand some behavioral features of the natural
vegetation heritage of Hungary.
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Subsection 7.2. The second example models Intrusion Detection Systems (IDS)
in computer security. Two separated approximation spaces are defined for anoma-
lies and misuses at the same time. Thus, anomalies and misuses can be detected
simultaneously.

Subsection 7.3. It generalizes the method presented in Subsection 7.2. In prac-
tice, two relevant groups of observed objects can be separated. A group whose
elements really possess some features in question and another group whose ele-
ments do not substantially possess the same features. To model this situation,
two separated approximation spaces are defined over the universe. Then, any
collections of the observed objects can simultaneously be approximated in the
two approximation spaces.

2 Basic Concepts

2.1 Basic Notations

Let U be any nonempty set. Let A ⊆ 2U be a family of sets whose elements are
subsets of U .

The union and intersection of A are
⋃
A = {x | ∃A ∈ A(x ∈ A)} and

⋂
A =

{x | ∀A ∈ A(x ∈ A)}, respectively.
If A is empty we define

⋃
∅ = ∅ and

⋂
∅ = U .2

If ε ⊆ U ×U is an arbitrary binary relation on U , let [x]ε denote the ε-related
elements to x, i.e., [x]ε = {y ∈ U | (x, y) ∈ ε}. They are called ε-elementary sets,
and the family of [x]ε is denoted by U/ε.

Binary relations are not necessarily symmetric, so it makes sense to consider
its inverses. If ε−1 denote the inverse of a binary relation ε, we can also define
ε−1-elementary sets [x]ε−1 = {y ∈ U | (y, x) ∈ ε} and U/ε−1 as before.

Let X and Y be nonempty sets and f : X → Y be a map. If domf = X ,
f is total, if domf � X , f is partial. If f is a partial map, then domf = ∅ is
allowed. For the purpose of simplicity we will talk about partial maps without
direct references to their partiality. However, statements with respect to partial
maps always concern their restrictions to their domains.

A nonempty set P together with a partial order ≤ on P is called a partial
ordered set or a poset, in symbol (P,≤) [80,75,81,82,31]. Any subset of a poset
is in itself a poset which is partially ordered by the same (relative or induced)
partial ordering relation.

The elements x, y ∈ P are comparable if x ≤ y or y ≤ x. Otherwise x and y
are incomparable.

Let S ⊆ P . An element m ∈ S is a minimal element of S, if

∀x ∈ S (x ≤ m ⇒ m = x), in other words �x ∈ S (x < m).

2 “The equality
⋂

∅ = U can be interpreted so that every element of U belongs to all
sets in ∅ because the empty family ∅ contains no sets. The equality

⋃
∅ = ∅ is more

obvious since ∅ has no elements.” ([31], p. 402)
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An element M ∈ S is a maximal element of S, if

∀x ∈ S (M ≤ x ⇒ M = x), in other words �x ∈ S (M < x).

Note that minimal and maximal elements, provided they exist, are not necessar-
ily comparable with all the elements of S in general.

A self-map f : P → P on (P,≤) is

– extensive if x ≤ f(x);
– contractive if f(x) ≤ x;
– idempotent if f(f(x)) = f(x);
– normalized if f(m) = m, when the minimal element m ∈ P exists;
– co-normalized if f(M) = M , when the maximal element M ∈ P exists.

If (P,≤P ) and (Q,≤Q) are two posets, a map f : P → Q is monotone or order–
preserving when x ≤P y ⇒ f(x) ≤Q f(y), and antitone or order–reversing when
x ≤P y ⇒ f(y) ≤Q f(x).

A map f : P → Q is the order isomorphism between (P,≤P ) and (Q,≤Q) if
f is a bijection and both f and f−1 are monotone. In this case, it is said that P
and Q are order–isomorphic, or isomorphic for short.

2.2 Galois Connections

Let (P,≤P ) and (Q,≤Q) be two posets. Let the quadruple (P, f, g,Q) denote
the pair of maps f : P → Q and g : Q → P .

Definition 1. The pair of maps (P, f, g,Q) is a (regular) Galois connection
between P and Q, in notation G(P, f, g,Q), if

∀p ∈ P ∀q ∈ Q (f(p) ≤Q q ⇔ p ≤P g(q)).

The map f is called the lower adjoint and g is called the upper adjoint of the
Galois connection.

If P = Q, G(P, f, g, P ) is said a Galois connection on P .

The following theorem gives a useful characterization of Galois connections (see,
e.g., [31], Lemma 79).

Proposition 1. The pair of maps (P, f, g,Q) is a Galois connection between P
and Q if and only if

1. p ≤P g(f(p)) for all p ∈ P and f(g(q)) ≤Q q for all q ∈ Q;
2. the maps f and g are monotone.

Remark 1. Here we adopted the definition of Galois connection in which the
maps are monotone. It is also called a monotone or covariant form. For more
details on Galois connections, see ,e.g., [75,76,81].

Remark 2. Since Galois connections are not necessarily symmetric, the order of
the maps in G(P, f, g, P ) is important.
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Finally, we will need the following notion.

Definition 2 ([83], Definition 2.2.2). A pair of maps (P, f, g,Q) is the par-
tial Galois connection between P and Q, denoted by ∂G(P, f, g,Q), if

1. f : P → Q is a monotone partial map,
2. g : Q → P is a monotone total map,
3. f(g(q)) exists for all q ∈ Q, and
4. ∀p ∈ P and ∀q ∈ Q such that f(p) is defined, f(p) ≤Q q ⇔ p ≤P g(q).

Remark 3. In [83], A. Miné actually introduced the concept of F -partial Galois
connection ∂G(P, f, g,Q) between the concrete domain P and the abstract do-
main Q, where F is a set of concrete operators. We will apply this notion in the
simplest form: P = Q = 2U and F = ∅ which is allowed by Miné’s definition.

3 General Approximation Frameworks

In order to be able to discuss the common features of both rough set theory
and its possible generalizations uniformly, we define two general approximation
frameworks, a large–scaled and a finer–scaled set theoretic one.

3.1 An Initial Approximation Framework

Let U be a nonempty set and 〈l, u〉 be an ordered pair of maps

l, u : 2U → 2U

on (2U ,⊆). Of course, the maps l and u are intended to be the lower and upper
approximations of any subset X ⊆ U , respectively. Hence, the ordered pair 〈l, u〉
is called the approximation pair.

The most essential features of an approximation pair 〈l, u〉 can be summarized
as follows.

0. (Definability) The subsets of a set are approximated by the beforehand given
family of subsets of the set itself. The members of the beforehand given family
of subsets are called well defined. More concretely, the maps l and u are of
the form

l, u : 2U → D(⊆ 2U ),

where D is a family of well defined subsets of U .

Hereupon, the nature of an approximation pair 〈l, u〉 depends on how the lower
and upper approximations are related to each other and the subset itself to be
approximated.

1. (Monotonicity) The maps l and u are monotone with respect to the inclusion
relation ⊆ on 2U .
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2. (Weak approximation property) The approximation pair 〈l, u〉 is a weak ap-
proximation pair on U if

∀X ∈ 2U (l(X) ⊆ u(X)).

3. (Strong approximation property) The approximation pair 〈l, u〉 is a strong
approximation pair on U , if each subset X ∈ 2U is bounded by l(X) and
u(X):

∀X ∈ 2U (l(X) ⊆ X ⊆ u(X)).

4. (Approximation hypothesis) The pair of maps (2U , u, l, 2U) forms a Galois
connection on (2U ,⊆), in notation G(2U , u, l, 2U), if

∀X ∈ 2U ∀Y ∈ 2U (u(X) ⊆ Y ⇔ X ⊆ l(Y )).

Remark 4. Ad (0). It gives the most fundamental characterization of the approx-
imation pair 〈l, u〉.

Ad (1). This property is a common and reasonable assumption.
Ad (2). The constraint l(X) ⊆ u(X) seems to be the weakest condition for a

sensible concept of set approximations [74,68].
Ad (3). This property is meaningful because the domain and codomain of l, u

are the same [74].
Ad (4). In [84], a new hypothesis about approximation has been drawn up

recently. According to this assumption, “[. . . ] the notion of an ‘approximation’
may be mathematically modelled by the notion of a Galois connection” ([84], p.
vii).

A finer–scaled characterization of the nature of set approximations can be ob-
tained with further specifications concerning the family of well defined subsets.
These additional specifications will be performed in the next subsection.

3.2 A General Set Theoretic Approximation Framework

Let U be an arbitrary nonempty set called the universe of discourse.
The first definition gives us the family of fundamental sets of the framework

which can be considered as primary tools.

Definition 3. Let B = {Bi | i ∈ I} ⊆ 2U be a nonempty family of nonempty
subsets of U , where I denotes an index set.

B is called the base system, its members are the B-sets.

Some extensions of the base system B can be defined.

Definition 4. Let DB ⊆ 2U be an extension of B in such a way that

1. B ⊆ DB;
2. ∅ ∈ DB.

The members of DB are called definable, while the members of 2U \ DB are
undefinable.

Any extension DB of B can be seen as derived tools.
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Example 2. The simplest extension of B is DB = B ∪ {∅}.

Example 3. Let DB ⊆ 2U be an extension of B in such a way that

1. ∅ ∈ DB;
2. for any index set I ′ ⊆ I, if B′ = {Bi | i ∈ I ′} ⊆ B, then

⋃
B′ ∈ DB.

Notice that B ⊆ DB, and DB is closed under arbitrary unions.
If the universe U is finite, and B = U/ε, where U/ε is a partition of U

generated by an equivalence relation ε on U , then DB = σ(U/ε). In this case,
this extension procedure is just the scheme which is in Pawlakian rough set
theory.

Example 4. Let DB ⊆ 2U be an extension of B in such a way that

1. ∅ ∈ DB;
2. if B1, B2 ∈ B then a) B1 ∪B2 ∈ DB; b) B1 ∩B2 ∈ DB.

Notice that B ⊆ DB, DB is closed under finite unions and intersections, and⋃
B,

⋂
B ∈ DB do not hold necessarily when the cardinality of I is not finite.

Example 5. If σ(B) is the σ-algebra generated by B then σ(B) is an extension
of B since ∅ ∈ B and B ⊆ σ(B).

We want to approximate any subset S ∈ 2U from“lower side”and“upper side”—
no matter what they mean at this time. We have the only requirement at the
highest level of abstraction that is to let the lower and upper approximations of
subsets S be definable. We look at definable sets as tools to approximate subsets
of the universe U .

If we look at the sets belonging to B as primary tools, it is a highly reasonable
requirement that they should exactly be approximated by themselves from“lower
side”. This property is called the (lower) granularity of B. If we gave it up, the
roles of the primary tools would be depreciated. In Pawlakian rough set theory,
however, not merely the granularity of U/ε but also the granularity of σ(U/ε)
fulfills. It can be proved (cf., Proposition 7, Corollary 2) that if D ∈ σ(U/ε),
then ε(D) = D due to the particular construction of DU/ε and definition of ε.

A lower approximation is called standard if not only the primary tools in B,
but also the derived tools in DB are its fixpoints. In this article, we solely deal
with standard lower approximations.

Remark 5. There is an asymmetry between lower and upper approximations,
especially when they are Pawlakian type (cf., Def. 9). In this case, the lower
approximation of any primary tool is equal to itself, independently of whether
the primary tools are pairwise disjoint or not. However, upper approximations
behave in different ways. If the primary tools are pairwise disjoint, the upper
approximations of primary tools are also equal to themselves, otherwise it is not
reasonable to assume that.

The following definition, at the next level of abstraction, is about the minimum
requirements of lower and upper approximations.
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Definition 5. Let 〈l, u〉 be an approximation pair l, u : 2U → 2U on (2U ,⊆).
It is said that an approximation pair 〈l, u〉 is the weak (generalized) approxi-

mation pair on U if
(C0) l(2U ), u(2U ) ⊆ DB (definability of l and u);3

(C1) l and u are monotone (monotonicity of l and u);
(C2) u(∅) = ∅ (normality of u);
(C3) if D ∈ DB, then l(D) = D ( granularity of DB, i.e., l is standard);
(C4) if S ∈ 2U , then l(S) ⊆ u(S) ( approximation property).

Informally, the intended meaning of the maps l and u, of course, is to express
the lower and upper approximations of any subset of the universe U with the
help of the beforehand given definable sets as tools.

Clearly, if 〈l, u〉 is a weak approximation pair on U , the maps l, u are total
and many-to-one in general.

Proposition 2. Let 〈l, u〉 be a weak approximation pair on U .

1. l(∅) = ∅ (normality of l);
2. ∀X ∈ 2U (l(l(X)) = l(X)) (idempotency of l).
3. S ∈ DB if and only if l(S) = S.
4. u(2U ) ⊆ l(2U ) = DB.

Proof.

1. By definition, ∅ ∈ DB and so l(∅) = ∅ by condition (C3).
2. l(X) ∈ DB and so l(l(X)) = l(X) by condition (C3).
3. (⇒) It is just the same as the condition (C3).

(⇐) Since l(S) ∈ DB by condition (C0), and so l(S) = S ∈ DB.
4. l(2U ) ⊆ DB by condition (C0) and DB ⊆ l(2U ) by condition (C3), thus

l(2U ) = DB.

Let S ∈ u(2U ) ⊆ DB. By the condition (C3), S = l(S) ∈ DB = l(2U ), i.e.,
u(2U ) ⊆ l(2U ).
To show that the inclusion u(2U ) ⊆ l(2U ) may be proper, let
– U = {a, b},
– B = {{a}},
– DB = {∅, {a}, {a, b}},
– and l, u : 2U → DB be as follows:

X �→ l(X) =

⎧⎨⎩
∅, if X = ∅;
{a}, if X = {a};
{a, b}, otherwise.

X �→ u(X) =

{
∅, if X = ∅;
{a, b}, otherwise.

3 As usual, l(2U ), u(2U ) denote the ranges of the maps l and u.
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Conditions (C0)–(C4) can easily be checked, however,

u(2U ) = {∅, {a, b}} � {∅, {a}, {a, b}} = l(2U ) = DB.

�

The following example shows that for a weak approximation pair 〈l, u〉 on U
each condition (C0)–(C4) is independent of the other four.

Example 6. Let U be a nonempty set. Let us assume that there exist B1, B2(�=
∅) ∈ 2U in such a way that neither B1 ⊆ B2 nor B2 ⊆ B1 holds, and there exists
a proper superset S of B1 (i.e., ∅ �= B1 � S �= U).

0. Let B = {B1}, DB = {∅, B1} and l, u be the identity maps, i.e., l, u : 2U →
2U , X �→ X . These l and u trivially satisfy all the five conditions except (C0).

1. Let B = {B1, B2}, DB = {∅, B1, B2, B1 ∪ B2} and l, u : 2U → DB be as
follows:

X �→ l(X) =

⎧⎪⎪⎨⎪⎪⎩
B1, if X = B1;
B2, if X = B2;
B1 ∪B2, if X = B1 ∪B2, U ;
∅, otherwise.

X �→ u(X) =

⎧⎪⎪⎨⎪⎪⎩
∅, if X = ∅;
B1, if X = B1;
B1 ∪B2, if X = B1 ∪B2, U ;
B2, otherwise.

Conditions (C0), (C2), (C3) trivially hold. Let us check the condition (C4):

l(∅) = ∅ ⊆ ∅ = u(∅)
l(B1) = B1 ⊆ B1 = u(B1)

l(B2) = B2 ⊆ B2 = u(B2)

l(B1 ∪B2) = B1 ∪B2 ⊆ B1 ∪B2 = u(B1 ∪B2)

l(U) = B1 ∪B2 ⊆ B1 ∪B2 = u(U)

l(S) = ∅ ⊆ B2 = u(S)

and if S′(�= ∅, B1, B2, B1 ∪B2, S, U) ∈ 2U , then
l(S′) = ∅ ⊆ B2 = u(S′).

That is the condition (C4) also holds. However, in the case B1 � S

l(B1) = B1 �⊆ ∅ = l(S)

u(B1) = B1 �⊆ B2 = u(S).

Therefore, these l and u satisfy all the five conditions except (C1).

2. Let B = {B1}, DB = {∅, B1} and l, u : 2U → DB be as follows:

X �→ l(X) =

{
∅, if X = ∅;
B1, otherwise.
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X �→ u(X) = B1.
Conditions (C0), (C1), (C3) and (C4) hold, but u(∅) = B1 �= ∅.
Therefore, these l and u satisfy all the five conditions except (C2).

3. Let B = {B1}, DB = {∅, B1, B1 ∪B2} and l, u : 2U → DB be as follows:

X �→ l(X) =

⎧⎨⎩
∅, if X = ∅;
B1, if X(�= ∅) ⊆ B2;
B1 ∪B2, otherwise.

X �→ u(X) =

{
∅, if X = ∅;
B1 ∪B2, otherwise.

Conditions (C0), (C1), (C2) trivially hold. Let us check the condition (C4):

l(∅) = ∅ ⊆ ∅ = u(∅)
if S ∈ 2U in such a way that S(�= ∅) ⊆ B2, then

l(S) = B1 ⊆ B1 ∪B1 = u(S)

if S ∈ 2U in such a way that S(�= ∅) �⊆ B2, then
l(S) = B1 ∪B2 ⊆ B1 ∪B2 = u(S).

That is the condition (C4) also holds. However, l(B1) = B1 ∪B2 �= B1.
Therefore, these l and u satisfy all the five conditions except (C3 ).

4. Let B = {B1}, DB = {∅, B1} and l, u : 2U → DB be as follows:

X �→ l(X) =

{
∅, if X = ∅;
B1, otherwise.

X �→ u(X) = ∅.
These l and u trivially satisfy all the five conditions except (C4).

The next definition classifies the approximation pairs as how the lower and upper
approximations of a subset are related to the subset itself to be approximated.

Definition 6. Let 〈l, u〉 be an approximation pair l, u : 2U → DB.
It is said that the approximation pair 〈l, u〉 is
(C5) a lower semi–strong approximation pair on U if it is weak and if S ∈ 2U ,

then l(S) ⊆ S (l is contractive);
(C6) an upper semi–strong approximation pair on U if it is weak and if

S ∈ 2U , then S ⊆ u(S) (u is extensive);
(C7) a strong approximation pair on U if it is lower semi–strong and upper

semi–strong at the same time, i.e., each subset S ∈ 2U is bounded by
l(S) and u(S): ∀S ∈ 2U (l(S) ⊆ S ⊆ u(S)).

If U is a nonempty set, and DB = 2U , it is straightforward that the approxima-
tion pair l, u : 2U → 2U , X �→ X is strong.

The next example shows that there are weak approximation pairs which are
neither lower semi–strong nor upper semi–strong, not lower semi–strong but
upper semi–strong, lower semi–strong but not upper semi–strong.

Example 7. Let U = {a, b} and B = {{a}} be the base system.
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1. Let DB = {∅, {a}}, and the maps l, u : 2U → DB be as follows:

X �→ l(X), u(X) =

{
∅, if X = ∅;
{a}, otherwise.

Conditions (C0)–(C4) can easily be checked:
(C0) l(2U ), u(2U ) = {∅, {a}} = DB.
(C1) l is monotone:

∅ ⊂ {a}, {b}, {a, b} ⇒ l(∅) = ∅ ⊂ {a} = l({a}), l({b}), l({a, b}).
{a}, {b} ⊂ {a, b} ⇒ l({a}), l({b}) = {a} ⊆ {a} = l({a, b}).
The monotonicity of u can be proved in the same way.

(C2) u(∅) = ∅.
(C3) l(∅) = ∅, l({a}) = {a}.
(C4) l and u are the same maps.
However, for {b} ∈ 2U

l({b}) = {a} �⊆ {b}; {b} �⊆ u({b}) = {a}. (1)

Therefore, the approximation pair 〈l, u〉 is neither lower semi–strong nor up-
per semi–strong.

2. Let DB = {∅, {a}, {a, b}}, and the maps l, u : 2U → DB be as follows:

X �→ l(X), u(X) =

⎧⎨⎩
∅, if X = ∅;
{a}, if X = {a};
{a, b}, otherwise.

Conditions (C0)–(C4) can easily be checked:
(C0) l(2U ), u(2U ) = {∅, {a}, {a, b}} = DB.
(C1) l is monotone:

∅ ⊂ {a} ⇒ l(∅) = ∅ ⊂ {a} = l({a}).
∅ ⊂ {b}, {a, b} ⇒ l(∅) = ∅ ⊂ {a, b} = l({b}), l({a, b}).
{a} ⊂ {a, b} ⇒ l({a}) = {a} ⊂ {a, b} = l({a, b}).
{b} ⊂ {a, b} ⇒ l({b}) = {a, b} ⊆ {a, b} = l({a, b}).
The monotonicity of u can be proved in the same way.

(C2) u(∅) = ∅.
(C3) l(∅) = ∅, l({a}) = {a}, l({a, b}) = {a, b}.
(C4) l and u are the same maps.
Let us check that u is extensive:

– ∅ ⊆ ∅ = u(∅);
– {a} ⊆ {a} = u({a});
– {b} ⊆ {a, b} = u({b});
– {a, b} ⊆ {a, b} = u({a, b}).

However, in the case {b} ∈ 2U ,

l({b}) = {a, b} �⊆ {b}. (2)

Therefore, the approximation pair 〈l, u〉 is not lower semi–strong, but upper
semi–strong.
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3. Let DB = {∅, {a}, {a, b}}, and the maps l, u : 2U → DB be as follows:

X �→ l(X), u(X) =

⎧⎨⎩
∅, if X = ∅, {b};
{a}, if X = {a};
{a, b}, otherwise.

Conditions (C0)–(C4) can easily be checked:
(C0) l(2U ), u(2U ) = {∅, {a}, {a, b}} = DB.
(C1) l is monotone:

∅ ⊂ {a} ⇒ l(∅) = ∅ ⊂ {a} = l({a}),
∅ ⊂ {b} ⇒ l(∅) = ∅ ⊆ ∅ = l({b}),
∅ ⊂ {a, b} ⇒ l(∅) = ∅ ⊂ {a, b} = l({a, b}),
{a} ⊂ {a, b} ⇒ l({a}) = {a} ⊂ {a, b} = l({a, b}),
{b} ⊂ {a, b} ⇒ l({b}) = ∅ ⊂ {a, b} = l({a, b}).
The monotonicity of u can be proved in the same way.

(C2) u(∅) = ∅.
(C3) l(∅) = ∅, l({a}) = {a}, l({a, b}) = {a, b}.
(C4 ) l and u are the same maps.
Let us check that l is contractive:
– l(∅) = ∅ ⊆ ∅;
– l({a}) = {a} ⊆ {a};
– l({b}) = ∅ ⊂ {b};
– l({a, b}) = {a, b} ⊆ {a, b}.

However, in the case {b} ∈ 2U ,

{b} �⊆ ∅ = u({b}). (3)

Therefore, the approximation pair 〈l, u〉 is lower semi–strong, but not upper
semi–strong.

Using the preliminary notations, the notion of the generalized approximation
space can be defined.

Definition 7. The ordered quadruple 〈U,DB, l, u〉 is a weak/lower semi–strong
/upper semi–strong/strong (generalized) approximation space, if the approxima-
tion pair 〈l, u〉 is weak/lower semi–strong/upper semi–strong/strong, respectively.

Proposition 3. Let 〈U,DB, l, u〉 be a generalized approximation space.

1. If 〈U,DB, l, u〉 is weak, then
(a) l(U) ⊆

⋃
DB;

(b) l(U) =
⋃
DB if and only if

⋃
DB ∈ DB.

(c) u(U) ⊆
⋃
DB.

2. If 〈U,DB, l, u〉 is upper semi–strong, then u(U) =
⋃
DB = U .

Proof.

1. (a) By definability of l, l(U) ∈ DB and so l(U) ⊆
⋃
DB.
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(b) (⇒) By definability of l, l(U) =
⋃
DB ∈ DB.

(⇐) Let us assume that
⋃

DB ∈ DB. Since
⋃
DB ⊆ U , then by condi-

tion (C3) and monotonicity of l, l(
⋃
DB) =

⋃
DB ⊆ l(U). Comparing

it with 1/(a), we obtain l(U) =
⋃
DB.

(c) By definability of u, u(U) ∈ DB and so u(U) ⊆
⋃
DB.

2. By point 1/(c), u(U) ⊆
⋃
DB. On the other hand, since u is extensive and

monotone,
⋃

DB ⊆ U implies
⋃
DB ⊆ u(

⋃
DB) ⊆ u(U). Consequently,

u(U) =
⋃
DB.

Clearly, u(U) ⊆ U . Since u is extensive, thus U ⊆ u(U) also holds. There-
fore, u(U) = U . �

In generalized approximation spaces the notion of well approximated sets can be
introduced. These sets are called crisp.

Definition 8. Let 〈U,DB, l, u〉 be a weak generalized approximation space and
S ∈ 2U .

The subset S is crisp, if l(S) = u(S).

Proposition 4. Let 〈U,DB, l, u〉 be a strong generalized approximation space.
If S ∈ 2U is crisp, then S is definable.

Proof. 〈U,DB, l, u〉 is strong, thus l(S) ⊆ S ⊆ u(S). Since S is crisp, therefore
l(S) = S = u(S), and so S ∈ DB by Proposition 2, point 3. �

In general, the crisp property of a set does not imply its definability in not
strong generalized approximation spaces. One can check that in all three cases
of Example 7, the set {b} is crisp (because of l and u are the same maps, and
so l({b}) = u({b}) trivially holds), but {b} is not definable in any cases (i.e.,
{b} �∈ DB). Of course, its lower and upper approximations are definable (i.e.,
l({b}), u({b}) ∈ DB).

4 Fundamentals of Rough Set Theory

The basic concepts and properties of rough set theory can be found, e.g., in
[85,3,4]. Here we will cite only notions and statements which are required in
our subsequent work. Moreover, we partly restate these well–known facts in the
language of the set theoretic approximation framework. On the other hand, we
provide new point-free proofs for a few of them (see, especially, Section 4.2).

4.1 Basic Notions

Let U be a nonempty set and ε be an equivalence relation on U . In Pawlakian
rough set theory the base system is the partition U/ε. Its extensionDU/ε contains
U/ε, the empty set and closed under arbitrary unions. The members of DU/ε are
called ε-definable, while the members of 2U \DU/ε are called ε-undefinable.
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Remark 6. By special structure of U/ε, DU/ε is nonempty, closed under arbi-
trary unions, intersections and complementations. In other words, (U,DU/ε) is
an Alexandrov topological space with the basis U/ε.

Having given the definable sets, the Pawlakian approximation pair 〈ε, ε〉 can be
defined in three equivalent forms [8,9,10] as follows.

Definition 9. Let 〈ε, ε〉 be an approximation pair ε, ε : 2U → 2U on (2U ,⊆).
〈ε, ε〉 is a Pawlakian approximation pair on U , if

the lower ε-approximation of a subset X ∈ 2U is

ε(X) = {x ∈ U | [x]ε ⊆ X} (4a)

=
⋃

{Y | Y ∈ U/ε, Y ⊆ X} (4b)

=
⋃

{D | D ∈ DU/ε, D ⊆ X}, (4c)

and the upper ε-approximation of a subset X ∈ 2U is

ε(X) = {x ∈ U | [x]ε ∩X �= ∅} (5a)

=
⋃

{Y | Y ∈ U/εY ∩X �= ∅} (5b)

=
⋂

{D | D ∈ DU/ε, X ⊆ D}. (5c)

Remark 7. The above equations respectively emphasize the local (Eqs. (4a) and
(5a)), global (Eqs. (4b) and (5b)) and topological (Eqs. (4c) and (5c)) nature of
Pawlakian approximations. From another point of view, the local approach is
point-wise and the two latter ones are point-free in nature.

Our approach relies on the generalization of formulae Eqs. (4b), (5b) when the
base sets are not pairwise disjoint and they do not necessarily cover U .

Proposition 5. Let 〈ε, ε〉 be a Pawlakian approximation pair on U . Then

1. the formulae 4b and 4c are equivalent, i.e.,⋃
{Y | Y ∈ U/ε, Y ⊆ X} =

⋃
{D | D ∈ DU/ε, D ⊆ X};

2. the formulae 5b and 5c are equivalent, i.e.,⋃
{Y | Y ∈ U/ε, Y ∩X �= ∅} =

⋂
{D | D ∈ DU/ε, X ⊆ D}.

Proof. 1. It follows from the fact that every D(⊆ X) ∈ DU/ε is of the form

D =
⋃

{Y | Y ∈ U/ε, Y ⊆ X}.

2. Since Y ∩D = Y or ∅ for any Y ∈ U/ε and D ∈ DU/ε, thus⋃
{Y | Y ∈ U/ε, Y ∩X �= ∅} ⊆

⋃
{Y | Y ∈ U/ε, Y ∩D �= ∅} = D

for any D ∈ DU/ε where X ⊆ D.
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In other words, ⋃
{Y | Y ∈ U/ε, Y ∩X �= ∅} ⊆ D

for all D ∈ {D | D ∈ DU/ε, X ⊆ D}.
In addition, by definition, X ⊆

⋃
{Y | Y ∈ U/ε, Y ∩X �= ∅} ∈ DU/ε, i.e.,⋃

{Y | Y ∈ U/ε, Y ∩X �= ∅} ∈ {D | D ∈ DU/ε, X ⊆ D}.

�

Remark 8. In Eq. (5c), contrary to expectations, the formula⋂
{D | D ∈ DU/ε, X ⊆ D}

cannot be replaced with the formula
⋃
{D | D ∈ DU/ε, X ∩D �= ∅} as the next

example shows.
Let U = {x1, x2}, U/ε = {{x1}, {x2}},DU/ε = {∅, {x1}, {x2}, {x1, x2}}. Then
ε({x1}) =

⋃
{{x1}} = {x1} (according to Eq. (5b)),

ε({x1}) =
⋂
{{x1}, {x1, x2}} = {x1} (according to Eq. (5c)),

however, according to the formula
⋃
{D | D ∈ DU/ε, X ∩ D �= ∅} we do not

obtain the correct result: ε({x1}) �=
⋃
{{x1}, {x1, x2}} = {x1, x2}.

Proposition 6. Let 〈ε, ε〉 be a Pawlakian approximation pair on U . Then

1. ε(2U ), ε(2U ) ⊆ DU/ε (definability of ε and ε), and ε, ε are total and generally
many-to-one.

2. If X ⊆ Y , then ε(X) ⊆ ε(Y ) and ε(X) ⊆ ε(Y ) (ε, ε are monotone).
3. ε(∅) = ε(∅) = ∅ (ε, ε are normalized).
4. ∀X ∈ 2U (ε(X) ⊆ X ⊆ ε(X)) (ε is contractive, ε is extensive).

Proof. Statement 1 is straightforward by Def. 9. Statements 2, 3, 4 are
in [4], Proposition 2.2 (5–6), Proposition 2.2 (2), Proposition 2.2 (1),
respectively. �

According to Proposition 6 (1–4), rough set theory fulfills the conditions (C0),
(C1), (C2), (C4) and (C7) concerning an approximation pair within the general
set theoretic approximation framework.

Proposition 7. ([4], Proposition 2.1 (a)) Let 〈ε, ε〉 be a Pawlakian approxima-
tion pair on U . Then X ∈ DU/ε if and only if ε(X) = ε(X).

Corollary 1. If D ∈ DU/ε, then ε(D) = D.

Proof. It immediately follows from Proposition 6 (4) and Proposition 7.
�

According to Corollary 1, rough set theory fulfills the condition (C3), as well.
Summing up the above results, in the language of the general set theoretic

approximation framework, a Pawlakian approximation pair 〈ε, ε〉 is a strong one.
Consequently, the quadruple 〈U,DU/ε, ε, ε〉 forms a strong approximation space.
It is also called Pawlakian approximation space.
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Remark 9. Note that the idea of approximation space is a bit older than Pawlak’s
initial works. For the evolutionary survey of approximation spaces, see [6].

The next statement is a characteristic feature of rough set theory.

Corollary 2. ε(X) = X if and only if X = ε(X).

Proof. Since ε(X) ∈ DU/ε (ε(X) ∈ DU/ε), then X = ε(X) ∈ DU/ε (X =
ε(X) ∈ DU/ε) by Proposition 6 (4) and Proposition 7, and so X = ε(X) = ε(X)
(X = ε(X) = ε(X)) by Proposition 7. �

The next properties of ε and ε partly follows from Proposition 2. Of course, they
can easily be proved by Def. 9 directly.

Proposition 8. Let 〈U,DU/ε, ε, ε〉 be a Pawlakian approximation space.

1. ε(U) = ε(U) = U (ε, ε are co-normalized).
2. ∀X ∈ 2U (ε(ε(X)) = ε(X) ∧ ε(ε(X)) = ε(X)) (ε, ε are idempotent).
3. ε(2U ) = ε(2U ) = DU/ε.

Proof. Statements 1 and 2 are in [4], Proposition 2.2 (2) and Proposition
2.2 (11–12), respectively. Statement 3 is an immediate consequence of
Proposition 7. �

Definition 10. Let 〈U,DU/ε, ε, ε〉 be a Pawlakian approximation space and X ⊆
U . The ε-boundary of X is

Bε(X) = ε(X) \ ε(X).

X is ε-crisp, if Bε(X) = ∅, otherwise X is ε-rough.

Proposition 9 ([86], Proposition 4.14). Let 〈U,DU/ε, ε, ε〉 be a Pawlakian
approximation space and X ⊆ U .

1. X is ε-crisp if and only if X is ε-definable.
2. X is ε-rough if and only if X is ε-undefinable.

Proof.

1. X is ε-crisp ⇔ Bε(X) = ε(X)\ ε(X) = ∅ ⇔ ε(X) ⊆ ε(X). However, ε(X) ⊆
ε(X) holds for all X ∈ 2U by Proposition 6 (4), and so X is ε-crisp ⇔
ε(X) = ε(X). According to Proposition 7, ε(X) = ε(X) ⇔ X ∈ DU/ε.

2. It is the contrapositive version of (1). �

As a consequence of Proposition 9, in Pawlakian approximation spaces the no-
tions “ε-crisp” and “ε-definable” are synonymous to each other, and so are “ε-
rough” and “ε-undefinable”. However, the notions “ε-crisp” and “ε-definable” are
two different notions, they are inherently one and the same only in Pawlakian
approximation spaces. As we will see, in partial approximation of sets this com-
pound notion splits into two parts.
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4.2 Granularity Aspects of Rough Set Theory

The following statement is elementary, however, in the context of Pawlakian
rough set theory it is an important fact. For the sake of simple reference, it
is formulated in a lemma. It follows from just the fact that the partition U/ε
consists of nonempty pairwise disjoint subsets of U .

Lemma 1. ∀X ∈ 2U/ε ∀X ∈ U/ε (X ⊆
⋃
X ⇔ X ∈ X).4

Proposition 10 ([70], Theorem 8). Let 〈U,DU/ε, ε, ε〉 be a Pawlakian ap-
proximation space.

Then the posets (2U/ε,⊆) and (DU/ε,⊆) are order isomorphic via the map

iε : 2
U/ε → DU/ε,X �→

⋃
X.

Proof. We will show that the map iε is a bijection and both iε and i−1
ε are

monotone.
Let X1,X2 ∈ 2U/ε be in such a way that

⋃
X1 =

⋃
X2 ∈ DU/ε. By Lemma 1,

∀X ∈ U/ε (X ∈ X1 ⇔ X ⊆
⋃

X1 =
⋃

X2 ⇔ X ∈ X2),

i.e., X1 = X2, thus iε is injective. By definition of DU/ε, iε is surjective. Conse-
quently, iε is a bijection.

Clearly, the map iε is monotone, since X1,X2 ∈ 2U/ε, X1 ⊆ X2 immediately
implies

⋃
X1 ⊆

⋃
X2.

Now, let D1, D2 ∈ DU/ε be in such a way that D1 ⊆ D2. Since iε is a bijection,

there exist unique i−1
ε (D1) = X1 ∈ 2U/ε and i−1

ε (D2) = X2 ∈ 2U/ε such that
D1 =

⋃
X1, D2 =

⋃
X2. By Lemma 1, if X ∈ X1, then

X ⊆
⋃

X1 = D1 ⊆ D2 =
⋃

X2 ⇔ X ∈ X2,

i.e., X1 ⊆ X2, and so i−1
ε is also monotone.

�

Corollary 3 ([86], Corollary 3.5). Any ε-definable subset D of U can be
written uniquely in the following form:

D =
⋃

X, where X = {X | X ∈ U/ε,X ⊆ D} ∈ 2U/ε,

that is, there is no other X′ ∈ 2U/ε satisfying D =
⋃

X′.

Proof. Since D ∈ DU/ε, thus D =
⋃
{X | X ∈ U/ε,X ⊆ D} immediately holds.

However, iε is a bijection, and so i−1
ε (D) always exists and

i−1
ε (D) = {X | X ∈ U/ε,X ⊆ D} ∈ 2U/ε

is unique.
�

4 2U/ε denotes the power set of U/ε.
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Proposition 11 ([86], Proposition 3.7). Let 〈U,DU/ε, ε, ε〉 be a Pawlakian
approximation space and X be a subset of U .

Then the sets ε(X), ε(X) can be written uniquely in the following forms:

ε(X) =
⋃

X, where X = {Y | Y ∈ U/ε, Y ⊆ X} ∈ 2U/ε,

ε(X) =
⋃

X, where X = {Y | Y ∈ U/ε, Y ∩X �= ∅} ∈ 2U/ε,

that is, there are no other X′, X ′ ∈ 2U/ε satisfying ε(X) =
⋃
X′ and ε(X) =⋃

X ′.

Proof. According to Eqs. (4b) and (5b) in Def. 9, we only have to prove the
uniqueness.

ε(X), ε(X) ∈ DU/ε, and so, by Proposition 10, i−1
ε (ε(X)) and i−1

ε (ε(X)) are
unique and, by Lemma 1, we get

i−1
ε (ε(X)) = {Y | Y ∈ U/ε, Y ⊆ ε(X)}

= {Y | Y ∈ U/ε, Y ⊆
⋃

{Y ′ | Y ′ ∈ U/ε, Y ′ ⊆ X}}
= {Y | Y ∈ U/ε, Y ∈ {Y ′ | Y ′ ∈ U/ε, Y ′ ⊆ X}}
= {Y | Y ∈ U/ε, Y ⊆ X} = X.

i−1
ε (ε(X)) = {Y | Y ∈ U/ε, Y ⊆ ε(X)}

= {Y | Y ∈ U/ε, Y ⊆
⋃

{Y ′ | Y ′ ∈ U/ε, Y ′ ∩X �= ∅}}

= {Y | Y ∈ U/ε, Y ∈
⋃

{Y ′ | Y ′ ∈ U/ε, Y ′ ∩X �= ∅}}

= {Y | Y ∈ U/ε, Y ∩X �= ∅} = X.

�
4.3 Galois Connection of Upper and Lower Approximations

It is a well known fact that ε and ε form a G(2U , ε, ε, 2U ) Galois connection.
Now, let us investigate this connection in a wider context.

Lower and upper ε-approximations can be generalized via their element based
definitions (4a) and (5a) relying on arbitrary binary relations ε on U [31].

Definition 11. Let ε be an arbitrary binary relation on U and X ∈ 2U .
The lower ε-approximation of X is

ε(X) = {x ∈ U | [x]ε ⊆ X},
and the upper ε-approximation of X is

ε(X) = {x ∈ U | [x]ε ∩X �= ∅}.

If ε−1 denotes the inverse relation of ε, in the same manner one can also define
the lower and upper ε−1 -approximations of X .

Proposition 12. ([85], Proposition 134) Let ε be an arbitrary binary relation
on U . Then G(2U , ε, ε−1 , 2U ) and G(2U , ε−1 , ε, 2U ) are Galois connections on
(2U ,⊆).
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The next corollary is an immediate consequence of Proposition 12.

Corollary 4. Let ε be an arbitrary binary relation on U .
The pair (ε, ε) is a Galois connection on (2U ,⊆) if and only if ε is symmetric.
In particular, if ε is an equivalence relation on U , G(2U , ε, ε, 2U ) is a Galois

connection on 2U .

The next examples show that even if the relation ε is symmetric, it is not sufficient
that the upper and lower ε-approximations relying on point-free definitions form
Galois connection.

Example 8 ([77], Example 3.10). Let U = {x1, x2, x3} and

ε = {(x1, x1), (x1, x2), (x2, x1), (x2, x3), (x3, x2)} ⊂ U × U

be a symmetric binary relation on U .
We define the straightforward generalizations of U/ε and DU/ε as follows.

[x1]ε = {u ∈ U | (x1, u) ∈ ε} = {x1, x2},
[x2]ε = {u ∈ U | (x2, u) ∈ ε} = {x1, x3},
[x3]ε = {u ∈ U | (x3, u) ∈ ε} = {x2},
U/ε = {[x1]ε, [x2]ε, [x3]ε} = {{x1, x2}, {x1, x3}, {x2}},

DU/ε = {∅, [x1]ε, [x2]ε, [x3]ε, [x1]ε ∪ [x2]ε, [x1]ε ∪ [x3]ε, [x2]ε

∪[x3]ε, [x1]ε ∪ [x2]ε ∪ [x3]ε}
= {∅, {x1, x2}, {x1, x3}, {x2}, {x1, x2} ∪ {x1, x3}︸ ︷︷ ︸

{x1,x2,x3}

, {x1, x2} ∪ {x2}︸ ︷︷ ︸
{x1,x2}

,

{x1, x3} ∪ {x2}︸ ︷︷ ︸
{x1,x2,x3}

, {x1, x2} ∪ {x1, x3} ∪ {x2}︸ ︷︷ ︸
{x1,x2,x3}

}

= {∅, {x1, x2}, {x1, x3}, {x2}, {x1, x2, x3}}.

Note that DU/ε ⊆ 2U is a subsystem of 2U which contains the empty set and
closed under unions but is not a σ-algebra [10]. For instance, {x1, x2}∩{x1, x3} =
{x1} �∈ DU/ε.

Case 1. Elementary set based definitions relying on U/ε.
Let us define the lower and upper ε-approximations taking the pattern by Eqs.

(4b) and (5b), respectively:

εe : 2
U → DU/ε, X �→

⋃
{Y | Y ∈ U/ε, Y ⊆ X}.

εe : 2
U → DU/ε, X �→

⋃
{Y | Y ∈ U/ε, Y ∩X �= ∅}.

Clearly, the maps εe and εe are monotone.
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For instance, for the set {x2} ∈ 2U :

εe({x2}) =
⋃

{Y | Y ∈ U/ε, Y ⊆ {x2}} =
⋃

{{x2}} = {x2}.

εe({x2}) =
⋃

{Y | Y ∈ U/ε, Y ∩ {x2} �= ∅}

=
⋃

{{x1, x2}, {x2}} = {x1, x2}.

Do the relations {x2} ⊆ εe(εe({x2})) and/or εe(εe({x2})) ⊆ {x2} hold?

εe(εe({x2})) = εe({x1, x2}) =
⋃

{Y | Y ∈ U/ε, Y ⊆ {x1, x2}}

=
⋃

{{x1, x2}, {x2}} = {x1, x2} ⊇ {x2}.
εe(εe({x2})) = εe({x2}) = {x1, x2} � {x2}.

That is, by Proposition 1, (2U , εe, εe, 2
U ) does not form Galois connection.

Case 2. Subsystem based definitions relying on DU/ε.
Let us define the lower and upper ε-approximations after the pattern of the

Eqs. (4c) and (5c), respectively (note that, DU/ε is closed under unions, but not
closed under intersections):

εs : 2
U → DU/ε, X �→

⋃
{Y | Y ∈ DU/ε, Y ⊆ X},

εs : 2
U → 2U , X �→

⋂
{Y | Y ∈ DU/ε, X ⊆ Y }.

Clearly, the map εs is monotone.
The map εs is also monotone. Namely, let X1 ⊆ X2 be subsets of U .

– If {Y | Y ∈ DU/ε, X1 ⊆ Y } = ∅, then {Y | Y ∈ DU/ε, X2 ⊆ Y } = ∅ also
holds, and so εs(X1) = εs(X2) =

⋂
∅ = U.

– If {Y | Y ∈ DU/ε, X1 ⊆ Y } �= ∅ and {Y | Y ∈ DU/ε, X2 ⊆ Y } = ∅, then
εs(X1) ⊆ εs(X2) =

⋂
∅ = U .

– If {Y | Y ∈ DU/ε, X1 ⊆ Y }, {Y | Y ∈ DU/ε, X2 ⊆ Y } �= ∅, then

{Y | Y ∈ DU/ε, X2 ⊆ Y } ⊆ {Y | Y ∈ DU/ε, X1 ⊆ Y },

and so

εs(X1) =
⋂

{Y | Y ∈ DU/ε, X1 ⊆ Y }

⊆
⋂

{Y | Y ∈ DU/ε, X2 ⊆ Y } = εs(X2).

For instance, for the set {x1}:

εs({x1}) =
⋃

{Y | Y ∈ DU/ε, Y ⊆ {x1}} =
⋃

{∅} = ∅,

εs({x1}) =
⋂

{Y | Y ∈ DU/ε, {x1} ⊆ Y }

=
⋂

{{x1, x2}, {x1, x3}, {x1, x2, x3}} = {x1}.
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Do the relations {x1} ⊆ εs(εs({x1})) and/or εs(εs({x1})) ⊆ {x1} hold?

εs(εs({x1})) = εs({x1}) = ∅ � {x1},
εs(εs({x1})) = εs(∅) =

⋂
{Y | Y ∈ DU/ε, ∅ ⊆ Y } =

⋂
DU/ε = ∅ � {x1}.

That is, by Proposition 1, (2U , εs, εs, 2
U ) does not form a Galois connection.

Case 3. Point-wise definitions. Now let us check that the sets {x1} and {x2}
fulfill the conditions of Proposition 1 in the case of point-wise definitions of the
approximations.

Let us define the lower and upper ε-approximations of {x1} and {x2} in the
point-wise manner due to Eqs. (4a) and (5a):

εp({x1}) = {x ∈ U | [x]ε ⊆ {x1}} = ∅,
εp({x1}) = {x ∈ U | [x]ε ∩ {x1} �= ∅} = {x1, x2},
εp({x2}) = {x ∈ U | [x]ε ⊆ {x2}} = {x3},
εp({x2}) = {x ∈ U | [x]ε ∩ {x2} �= ∅} = {x1, x3}.

Of course, by Corollary 4, the maps εp and εp are monotone. Moreover, the
formulae

{x1} ⊆ εp(εp({x1})) and εp(εp({x1})) ⊆ {x1},
{x2} ⊆ εp(εp({x2})) and εp(εp({x3})) ⊆ {x3}

must hold. Indeed,

{x1} ⊆ εp(εp({x1})) = εp({x1, x2}) = {x ∈ U | [x]ε ⊆ {x1, x2}} = {x1, x3},
εp(εp({x1})) = εp(∅) = {x ∈ U | [x]ε ∩ ∅ �= ∅} = ∅ ⊆ {x1},

and
{x2} ⊆ εp(εp({x2})) = εp({x1, x3}) = {x ∈ U | [x]ε ⊆ {x1, x3}} = {x2},
εp(εp({x2})) = εp({x3}) = {x ∈ U | [x]ε ∩ {x3} �= ∅} = {x2} ⊆ {x2}.

5 Approximation of Sets Based on Partial Covering

5.1 Introduction

In practice, there are objects which cannot be characterized by certain features
directly.

Some illustrative examples:

– Bald men cannot be characterized with the property “color of hair”.
– An infinite set is investigated via a finite family of its finite subsets. For

instance, a number theorist studies the regularities of natural numbers using
computers.
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– Security policies are partial–natured in corporate information security. Typ-
ically some policies may only apply to specific hardware appliances, software
applications or type of information.

Moreover, there are features with which a set and its complement cannot be
treated simultaneously. For instance, complements of recursively enumerable sets
are not necessarily recursively enumerable. The membership of recursively enu-
merable sets can effectively be determined by a finite amount of information,
while the determination of their non-membership requires an infinite amount of
information [66]. That is, the complement of a recursively enumerable set cannot
necessarily be determined effectively. In other words, the recursively enumerable
sets can be managed by computers (e.g., via a special rewriting system, the
Markov algorithm [87]), while its complement not necessarily. Thus, this is an
important practical partial approximation problem: how can we approximate an
arbitrary set with recursively enumerable sets?

Another question is the point-freeness. Let us suppose that we study a collec-
tion of groups of individuals. In some cases it is important to distinguish indi-
viduals in these groups, whereas in other cases the differentiation is irrelevant.
For instance, in genotype-phenotype investigations for understanding evolution
it is reasonable to distinguish individuals (for a generalized point-set topological
theory, see, e.g., [88]). On the other hand, during the investigation of spreading
of different types of floral zones in a given geographical area, the distinction of
the individuals has no relevance.

Moreover, these floral zones overlap each other. In addition they generally do
not cover the entire area, e.g. on lands of desert, or when we investigate the
spreading of woodlands excluding the underwood. As another example, in the
game of go there are two groups of stones, black and white. Black stones are
inherently undistinguishable, so are the white ones. In addition, the black and
white zones overlap each other, and even together they never cover the entire
game table.

Throughout this section let U be a nonempty set called the universe of dis-
course.

5.2 Base Systems

According to the general set theoretic approximation framework, let B ⊆ 2U be
a base system, i.e., a nonempty family of nonempty subsets of U . Its members,
the B-sets, are considered as our primary tools because we want the subsets of
U to be approximated with their help.

Now, let us define our derived tools, i.e., an extension of B as follows.

Definition 12 ([77], Definition 4.1). A nonempty subset X ∈ 2U is B-de-
finable if there exists a family of sets D ⊆ B in such a way that X =

⋃
D,

otherwise X is B-undefinable.
The empty set is considered to be a B-definable set.
Let DB denote the family of B-definable sets of U .
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5.3 Single–Layered Base Systems

Some properties of rough set theory can partly be preserved with the help of the
next constrained version of the base system.

Definition 13 ([77], Definition 4.2). The base system B ⊆ 2U is single–
layered, if

∀B ∈ B ∀B′ ⊆ B \ {B} (B ∩
⋃

B′ �= B),

and one–layered, if

∀B ∈ B ∀B′ ⊆ B \ {B} (B ∩
⋃

B′ = ∅).

Informally, a base system B is single–layered if every nonempty B-definable
subset has at least one element which can be characterized by exactly one pri-
mary tool, whereas B is one–layered if every element of the universe can be
characterized by at most one primary tool.

Remark 10. According to [89], it can be said that a B-set B is semi–reducible
with respect to the base system B, if there exists a B′ ⊆ B in such a way that
B ⊆
⋃
B′, otherwise, B is semi–irreducible. Note that, in [89] Def. 6,

⋃
B = U ,

i.e., the base system is a covering of the universe, and B =
⋃
B′. Clearly, a

B ∈ B is semi–irreducible, if

∀B′ ⊆ B \ {B} (B ∩
⋃

B′ �= B).

In other words, a base systemB is single–layered if everyB-set is semi–irreducible.
See also [90].

An important question is how can we form a single–layered base system from an
arbitrary one. In general, this problem is reduced by the practice to finite base
systems (|B| < ∞).

The simplest way to construct a single/one–layered base system from an ar-
bitrary one is to form its intersection structure as a starting point. Formally, a
nonempty family S of subsets of the universe U is an intersection structure if
∀S′(�= ∅) ⊆ S (

⋂
S′ ∈ S), i.e., it is closed under intersections [75]. Note that

the intersection structure S is a closure system, if U ∈ S.
Let us take an arbitrary base system B and create its intersection structure

C(B) as the smallest set which satisfies the following two properties:

1. B ⊆ C(B);
2. if B,B′ ∈ C(B), then B ∩B′ ∈ C(B).

Note that any intersections of primary tools are also considered primary tools,
i.e., new “combined” primary tools appear in C(B). In other words, the inter-
section structure C(B) is a collection of all original and all possible “combined”
primary tools.
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Having given the intersection structure C(B), first, we can create a single–
layered base system SC(B) as the smallest set which satisfies the following two
properties:

1. SC(B) =
⋂
B is a single–layered base system;

2. if B,B′ ∈ C(B) in such a way that B ⊂ B′, then let B,B′ \B ∈ SC(B).

Next, having given a single–layered base system SC(B), we can create a one–
layered base system OSC(B) as the smallest set which satisfies the following
two properties:

1. OSC(B) =
⋂
B is a one–layered base system;

2. if B,B′ ∈ SC(B) in such a way that B ∩ B′ �= ∅, then let the differences
B \B′, B′ \B ∈ OSC(B).

Proposition 13 ([77], Proposition 4.3). Let B ⊆ 2U be a base system.
Then the map iB : 2B → DB,D �→

⋃
D is a bijection if and only if B is

single–layered.5

Proof. If |B| = 1, the base system B = {B} is single–layered and

iB : {∅, {B}} → {∅, B}, ∅ �→
⋃

∅ = ∅, {B} �→
⋃

{B} = B

is a bijection evidently. Now, let us suppose that |B| > 1.
(⇒) Let us assume, by contradiction, that the base system B is not single–

layered. If so,

∃B ∈ B ∃B′ ⊆ B \ {B} (B ⊆
⋃

B′).

Hence, B′,B′ ∪ {B} ∈ 2B and
⋃
B′ =

⋃
(B′ ∪ {B}) ∈ DB, but B′ �= B′ ∪ {B}

because of B′ ⊆ B \ {B}. This, however, contradicts the assumption that the
map iB is injective.

(⇐) Clearly, by Def. 12, the map iB is onto.
By contradiction, let us suppose that the map iB is not injective. In this case,

∃B1,B2 ⊆ B (B1 �= B2 ∧
⋃

B1 =
⋃

B2).

Since B1 �= B2, there exists B ∈ B in such a way that B is an element of either
one or the other. Without any loss of generality we can assume that B ∈ B1

and B �∈ B2. Clearly, B ⊆
⋃

B1 =
⋃
B2. Hence, B ∈ B, B2 ⊆ B \ {B} but

B∩
⋃
B2 = B, which, however, contradicts the assumption that the base system

B is single–layered. �
The following two statements, provided that the base system is single–layered,
present certain properties that Pawlakian rough set theory has.

Lemma 2 ([77], Lemma 4.3). For a base system B ⊆ 2U

∀B ∈ B∀B′ ⊆ B (B ⊆
⋃

B′ ⇔ B ∈ B′)

if and only if the base system B is single–layered.

5 2B denotes the power set of B.
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Proof. (⇒) Let us suppose, by contradiction, that the base system B is not
single–layered, that is ∃B ∈ B ∧ ∃B′ ⊆ B \ {B}(B ⊆

⋃
B′).

Hence, B ⊆
⋃
B′ but B �∈ B′. This contradicts the assumption that

∀B ∈ B ∀B′ ⊆ B (B ⊆
⋃

B′ ⇒ B ∈ B′).

(⇐) Of course, the statement B ∈ B′ ⇒ B ⊆
⋃
B′ is trivial. Thus we only

have to prove that ∀B ∈ B ∀B′ ⊆ B (B ⊆
⋃
B′ ⇒ B ∈ B′). Contrary to this

statement, let us assume that ∃B ∈ B ∃B′ ⊆ B(B ⊆
⋃
B′ ∧B �∈ B′).

Hence, B′ ⊆ B\ {B} and B ⊆
⋃
B′ which, however, contradicts the assump-

tion that the base system B is single-layered. �
Proposition 14 ([77], Proposition 4.5). Let B ⊆ 2U be a base system.

Then the posets (2B,⊆) and (DB,⊆) are order isomorphic via the map

iB : 2B → DB, X �→
⋃

X

if and only if the base system B is single–layered.

Proof. By Proposition 13, the map iB is a bijection if and only if the base system
B is single–layered.

The monotonicity of iB is trivial. The monotonicity of i−1

B can similarly be
proved to Proposition 10 changing the reference to Lemma 1 for the reference
to Lemma 2. �

5.4 Lower and Upper B-Approximations

Let us define the lower and upper approximations based on partial covering.
Recall that B does not cover the universe necessarily.

Definition 14 ([77], Definition 4.6). Let B ⊆ 2U be a base system and X be
any subset of U .

The lower B-approximation of X (Fig. 8.) is

C�
B(X) =

⋃
{Y | Y ∈ B, Y ⊆ X},

the upper B-approximation of X (Fig. 9.) is

C�
B(X) =

⋃
{Y | Y ∈ B, Y ∩X �= ∅}.

The ordered pair 〈C�
B,C�

B〉 is called a B-approximation pair on U .

Fig. 8. Lower Fig. 9. Upper Fig. 10. Lower and

approximation approximation upper approximations
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Notice that C�
B and C�

B are the straightforward point-free generalizations of
lower and upper ε-approximations relying on ε-elementary sets.

Clearly, C�
B(X),C�

B(X) ∈ DB, and the maps C�
B,C�

B : 2U → DB are total
and generally many-to-one.

Proposition 15. Let 〈C�
B,C�

B〉 be a B-approximation pair on U . Then

1. 〈C�
B,C�

B〉 is a C�
B-semi-strong approximation pair on U ;

2. 〈C�
B,C�

B〉 is a strong approximation pair on U if and only if the base system
B covers the universe U .

In other words, the maps C�
B, C�

B fulfill the following conditions:

(C0) C�
B(2U ),C�

B(2U ) ⊆ DB (definability of C�
B and C�

B).

(C1) C�
B and C�

B are monotone (monotonicity of C�
B and C�

B).

(C2) C�
B(∅) = ∅ (normality of C�

B).
(C3) If D ∈ DB, then C�

B(D) = D (C�
B is standard).

(C4) If S ∈ 2U , then C�
B(S) ⊆ C�

B(S) (approximation property).
(C5) C�

B is contractive.

(C6) C�
B is extensive if and only if B covers the universe U .

Proof. The conditions (C0), (C1), (C2) and (C4), (C5) are straightforward by
Def. 14.

(C3) Clearly, if ∅ ∈ DB, then C�
B(∅) = ∅.

If D(�= ∅) ∈ DB, there exists at least one nonempty family of sets B′ ⊆ B in
such a way that

D =
⋃

B′ =
⋃

{B | B ∈ B′, B ⊆ D} ⊆
⋃

{B | B ∈ B, B ⊆ D} = C�
B(D).

On the other hand, we have C�
B(D) ⊆ D by condition (C5). Thus C�

B(D) = D.

(C6) (⇒) If C�
B is extensive, then

U ⊆ C�
B(U) =

⋃
{B | B ∈ B, B ⊆ U} =

⋃
B.

Of course,
⋃
B ⊆ U , and so

⋃
B = U .

(⇐) If B covers the universe, then ∀S ∈ 2U (S ⊆ U =
⋃
B). Thus we get

S ⊆
⋃

(B \ {B | B ∈ B, B ∩ S = ∅})

=
⋃

{B | B ∈ B, B ∩ S �= ∅} = C�
B(S). �

In the language of the general set theoretic approximation framework, by Propo-
sition 15, 〈2U ,DB,C�

B,C�
B〉 is a lower semi–strong approximation framework,

and it is a strong one if and only if the base system B covers the universe.
The next properties of C�

B and C�
B immediately follow from Proposition 2. Of

course, they can easily be proved by Def. 14 directly.
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Proposition 16. Let 〈C�
B,C�

B〉 be a B-approximation pair on U . Then

1. C�
B(∅) = ∅ (normality of C�

B).
2. ∀S ∈ 2U (C�

B(C�
B(S)) = C�

B(S)) (idempotency of C�
B).

3. C�
B(2U ) = DB (C�

B is surjective).

4. C�
B(2U ) ⊆ C�

B(2U ) = DB.

Proof. We only have to show that in (4), the inclusion C�
B(2U ) ⊆ C�

B(2U ) may be
proper because of the particular constructions of lower and upper approximation
maps.

To do this, let U = {a, b}, B = {{a}, {a, b}} and DB = {∅, {a}, {a, b}}.
Then

C�
B : 2U → DB, X �→ C�

B(X) =

⎧⎨⎩
∅, if X = ∅, {b};
{a}, if X = {a};
{a, b}, if X = {a, b},

and

C�
B : 2U → DB, X �→ C�

B(X) =

{
∅, if X = ∅;
{a, b}, if X = {a}, {b}, {a, b}.

Conditions (C1)–(C5) can easily be checked. However, C�
B in not surjective:

C�
B(2U ) = {∅, {a, b}} � {∅, {a}, {a, b}} = C�

B(2U ) = DB. �

Unlike Pawlakian approximation spaces (cf., Proposition 7), the B-definable

property is generally not equivalent to the condition C�
B(X) = C�

B(X).

Proposition 17 ([77], Proposition 4.7). Let B ⊆ 2U be a base system. Then

1. X ∈ 2U is B-definable if and only if C�
B(X) = X.

2. X ∈ 2U is B-undefinable if and only if C�
B(X) �= X.

Proof.

1. It is straightforward, when X = ∅. Let X �= ∅.
(⇒) If X ∈ DB, there exists at least one nonempty family of sets B′ ⊆ B
in such a way that

X =
⋃

B′ =
⋃

{Y | Y ∈ B′, Y ⊆ X} ⊆
⋃

{Y | Y ∈ B, Y ⊆ X} = C�
B(X).

On the other hand, C�
B(X) ⊆ X , thus X = C�

B(X).
(⇐) X = C�

B(X) ∈ DB.
2. It is the contrapositive version of (1). �

5.5 Representation of Sets

Clearly, for a B-definable subset D ∈ DB, there may exist two or more families
of B-sets such that their unions are equal to D. For instance, let B = {B1, B2}
(B1, B2 ∈ 2U ) be a base system in such a way that B1 � B2. If F1 = {B1, B2},
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F2 = {B2}, then F1 �= F2 but
⋃
F1 =

⋃
F2 = B2. Of course, the same is true for

lower and upper B-approximations in general.
If D ∈ DB is a B-definable set, then let FB(D) ⊆ B denote a possible family

of B-sets so that
⋃
FB(D) = D. FB(D) is called a (possible) B-composition of

D. Unlike Pawlakian approximation spaces, the B-compositions of B-definable
sets are generally not unique.

Definition 15. Let B ⊆ 2U be a base system.
The B-definable set D ∈ DB is B-representable, if there exists exactly one

B-composition FB(D)(⊆ B) of D in such a way that D =
⋃
FB(D).

In this case, it is said that FB(D) is the B-representation of D.

Proposition 18. Let B ⊆ 2U be a base system.
All B-definable subsets D ∈ DB of U are B-representable if and only if the

base system B is single-layered.

Proof. All B-definable subsets of U are B-representable if and only if the map
FB : DB → 2B,

⋃
D �→ D is the inverse of iB : 2B → DB,D �→

⋃
D. A

map has an inverse map if and only if it is a bijection. Consequently, all B-
definable subsets of U are B-representable if and only if the map iB : 2B →
DB,D �→

⋃
D is a bijection. And so, this proposition is just a restatement of

Proposition 13. �

Corollary 5. Let B ⊆ 2U be a base system.
All B-definable subsets D ∈ DB of U are B-representable in the following

form

D =
⋃

FB(D), where FB(D) = {Y | Y ∈ B, Y ⊆ D},

if and only if the base system B is single-layered.

Proof. According to Proposition 18, B is single-layered if and only if all B-
definable subsets are B-representable. And so, we only have to show that the
B-representations of all B-definable subsets are of the form

FB(D) = {Y | Y ∈ B, Y ⊆ D}.

Since, by definition, D =
⋃
{Y | Y ∈ B, Y ⊆ D} satisfies for all B-definable

subsets D ∈ DB, the claim immediately follows from the uniqueness of B-
representation. �

Proposition 19. Let 〈2U ,DB,C�
B,C�

B〉 be a lower semi–strong approximation
space and X be a subset of U .

Then the sets C�
B(X) and C�

B(X) are B-representable in the forms

C�
B(X) =

⋃
F�
B(X), where F�

B(X) = {Y | Y ∈ B, Y ⊆ X},

C�
B(X) =

⋃
F�
B(X), where F�

B(X) = {Y | Y ∈ B, Y ∩X �= ∅},

if and only if the base system B is single–layered.



Approximation of Sets Based on Partial Covering 179

Proof. Since C�
B(X),C�

B(X) ∈ DB, by Corollary 5, they are B-representable if
and only if the base system B is single layered. And so, we only have to show
that FB(C�

B(X)) and FB(C�
B(X)) are of the forms

FB(C�
B(X)) = {Y | Y ∈ B, Y ⊆ X},

FB(C�
B(X)) = {Y | Y ∈ B, Y ∩X �= ∅}.

By Corollary 5 and Lemma 2, we have

FB(C�
B(X)) = {Y | Y ∈ B, Y ⊆ C�

B(X)}
= {Y | Y ∈ B, Y ⊆

⋃
{Y ′ | Y ′ ∈ B, Y ′ ⊆ X}}

= {Y | Y ∈ B, Y ∈ {Y ′ | Y ′ ∈ B, Y ′ ⊆ X}}
= {Y | Y ∈ B, Y ⊆ X},

FB(C�
B(X)) = {Y | Y ∈ B, Y ⊆ C�

B(X)}
= {Y | Y ∈ B, Y ⊆

⋃
{Y ′ | Y ′ ∈ B, Y ′ ∩X �= ∅}}

= {Y | Y ∈ B, Y ∈ {Y ′ | Y ′ ∈ B, Y ′ ∩X �= ∅}}
= {Y | Y ∈ B, Y ∩X �= ∅}.

�

Remark 11. Of course, the equations

C�
B(X) =

⋃
F�
B(X) and C�

B(X) =
⋃

F�
B(X)

trivially satisfy, they are just the definition of lower and upperB-approximations.
Proposition 19, therefore, claims nothing else that there are no other set families
X1,X2 ⊆ B satisfying the equations C�

B(X) =
⋃
X1 and C�

B(X) =
⋃
X2 if and

only if the base system B is single-layered.

5.6 Exactness in B-Approximation Spaces

In Pawlakian approximation spaces, the notions of “ε-crisp”and“ε-definable”are
inherently one and the same, they are are synonymous to each other.

The R-definable sets are those subsets of the universe which can be exactly
defined in the knowledge base K, whereas the R-undefinable sets cannot be
defined in this knowledge base.
The R-definable sets will be also called R-exact sets, and R-undefinable sets
will be also said to be R-inexact or R-rough. ([4], p. 9. The italics are the
author’s. Here, R is an equivalence relation on a finite universe U , pp. 3–4.)

The equivalence of “ε-crisp” and “ε-definable” formally is drawn up by Proposi-
tion 9 (1). Moreover, a subset X ⊆ U is ε-definable, and consequently ε-crisp as
well, if and only if its lower ε-approximation is equal to its upper ε-approximation
according to Proposition 9.

In our approach, however, the compound notion of “crisp” and “definable”
splits into two parts.
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Definition 16. Let 〈2U ,DB,C�
B,C�

B〉 be a lower semi–strong B-approximation
space and X ⊆ U .

The subset X is B-crisp, if C�
B(X) = C�

B(X), otherwise X is B-rough.

Definition 17. Let 〈2U ,DB,C�
B,C�

B〉 be a lower semi–strong B-approximation
space and X ⊆ U .

The set NB(X) = C�
B(X) \ C�

B(X) is called the B-boundary of X.

Unlike Pawlakian rough set theory, the B-boundary NB(X) is not necessarily
B-definable.

The next elementary facts are formulated in propositions for the sake of simple
reference.

Proposition 20. Let 〈2U ,DB,C�
B,C�

B〉 be a lower semi–strong B-approximation
space and X ⊆ U .

The subset X is B-crisp if and only if the B-boundary NB(X) = ∅.

Proof. NB(X) = C�
B(X) \ C�

B(X) = ∅ ⇔ C�
B(X) ⊆ C�

B(X). However, C�
B(X) ⊆

C�
B(X) holds for all X ∈ 2U by approximation property (C4) (cf., Proposition

15), and soNB(X) = ∅ ⇔ C�
B(X) = C�

B(X)⇔X isB-crisp. �

Proposition 21. Let 〈2U ,DB,C�
B,C�

B〉 be a strong B-approximation space and
X ⊆ U .

The subset X is B-crisp if and only if C�
B(X) = C�

B(X) = X.

Proof. In strong B-approximation spaces every subset X ⊆ U is bounded by its
lower and upper B-approximations: C�

B(X) ⊆ X ⊆ C�
B(X). Hence, X is crisp

⇔ C�
B(X) = C�

B(X) ⇔ C�
B(X) = C�

B(X) = X . �

Proposition 22. Let 〈2U ,DB,C�
B,C�

B〉 be a strong B-approximation space and
X ⊆ U . If X is B-crisp, then X is B-definable.

Proof. By Proposition 21, X is B-crisp if and only if C�
B(X) = C�

B(X) = X ,
and X is B-definable if and only if X = C�

B(X) by Proposition 17 (1).

A subset X ∈ 2U is B-definable if and only if X = C�
B(X) by Proposition 17 (1).

However, as the next simple example shows, X = C�
B(X) generally does not

imply X = C�
B(X) even though the B-approximation space is a strong one.

Let B = {B1, B2} be a base system, where B1 � B2 (B1, B2 ∈ 2U ). Then

C�
B(B1) = B1 � B2 = C�

B(B1).
In other words, a B-definable subset is not necessarily B-crisp not even in

strong B-approximation spaces. The converse statement only holds in strong
B-approximation spaces by Proposition 22. Consequently, in our approach, the
notions of “definable” and “crisp” are not synonymous to each other in the sense
of Pawlak.



Approximation of Sets Based on Partial Covering 181

5.7 A Possible Interpretation of Our Approach

Let us suppose that we observe a collection of objects which is modeled as an
abstract set, called the universe of discourse.

In real life, when we observe objects we cannot decide directly whether an
object possesses a certain feature or not. Therefore we need a tool to be at our
disposal with which we are able to judge easily and unambiguously whether an
object possesses a property ascertained by the tool or not. It is expected that all
tools can be used simply and quickly. The objects which are classified by a tool
are modeled as a crisp subset of the universe. With a slight abuse of terminology,
these subsets are simply called tools as well.

In sum, we model an object of interest as the element of an abstract set, called
the universe, and the fact that “it possesses a property” as “it is the element of
a suitable crisp subset of the universe”.

Different tools usually form different subsets, but they are not necessarily
disjoint. Notice that the complement of a tool is not necessarily a tool at the same
time because the complement may not be used simply and quickly. For instance,
let us take the tools being recursively enumerable. However, the complement of
a recursively enumerable set is not necessarily recursively enumerable [66]. This
significant fact confirms the partial nature of our approach [91].

Properties in B are our primary tools which serve as fundamental building
blocks of knowledge about the universe. Properties in DB are our derived tools
which are formed from primary tools. To characterize any subset of the universe
we want to use DB. It is said that a property D ∈ DB characterizes a subset
X of the universe, if D ⊆ X , and X is characterized in terms of DB, if X is
B-definable.

However, apart from the derived tools themselves, any other subsets cannot
be characterized in terms of DB. Therefore, their description is replaced by a
pair of derived tools, in particular, their lower and upper approximations.

The universe can be divided into the following parts by means of lower and
upper approximations concerning a subset X ⊆ U [4,5]:

– B-positive region of X : C�
B(X) =

⋃
{Y | Y ∈ B, Y ⊆ X}, i.e., the lower

B-approximation of X .

{Y | Y ∈ B, Y ⊆ X} is the family of all properties which certainty charac-
terize X with respect to the current derived tools DB.

– Upper B-approximation of X : C�
B(X) =

⋃
{Y | Y ∈ B, Y ∩X �= ∅}.

{Y | Y ∈ B, Y ∩ X �= ∅} is the family of all properties which possibly
characterize X with respect to the current derived tools DB.

– B-negative region of X :
⋃
(DB \ {Y | Y ∈ B, Y ∩X �= ∅}).

DB \ {Y | Y ∈ B, Y ∩X �= ∅} is the family of all properties which certainty
do not characterize X with respect to the current derived tools DB.

– B-borderline region of X :⋃
({Y | Y ∈ B, Y ∩X �= ∅} \ {Y | Y ∈ B, Y ⊆ X}).
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{Y | Y ∈ B, Y ∩X �= ∅}\{Y | Y ∈ B, Y ⊆ X} is the family of all properties
which cannot be classified with certainty either as characterizing X or as not
characterizing X with respect to the current derived tools DB.

6 Galois Connections

Recall that for any arbitrary binary relation ε on U , pairs of maps (2U , ε, ε−1 , 2U )
and (2U , ε−1 , ε, 2U ) are Galois connections (cf., Proposition 12). Especially, when
ε is an equivalence relation on U , the upper and lower ε-approximations form
a G(2U , ε, ε, 2U ) Galois connection. Note that the left adjoint is the upper ε-
approximation ε and the right adjoint is the lower ε-approximation ε. Some
further observations about upper and lower approximations as Galois connection
see, e.g., [92,31,93,84].

Let 〈2U ,DB,C�
B,C�

B〉 be a lower semi–strong B-approximation space. In this
Section we will investigate what conditions have to be satisfied by a lower semi–
strong B-approximation space so that the pair of maps (2U ,C�

B,C�
B, 2U ) forms a

Galois connection on (2U ,⊆). To do this, we take up the assertions of Proposition
1 and examine its conditions under which they hold point by point.

6.1 Regular Galois Connection

Let 〈2U ,DB,C�
B,C�

B〉 be a lower semi–strong B-approximation space.

The maps C�
B and C�

B are trivially monotone, i.e., Proposition 1 (2) immedi-
ately holds. Thus we have to examine only Proposition 1 (1) in detail.

The next proposition answers the first half of Proposition 1 (1).

Proposition 23 ([70], Theorem 20). Let 〈2U ,DB,C�
B,C�

B〉 be a lower semi–
strong B-approximation space.

Then ∀X ∈ 2U (X ⊆ C�
B(C�

B(X))) if and only if
⋃
B = U .

Proof. (⇒) By contradiction, let us assume that
⋃
B �= U . Accordingly, ∃X ′(�=

∅) ⊆ U \
⋃
B. Hence, C�

B(C�
B(X ′)) = ∅, which gives ∅ �= X ′ ⊆ C�

B(C�
B(X ′)) = ∅,

a contradiction.
(⇐) C�

B(X) ∈ DB, and so, by Proposition 16 (3), C�
B(C�

B(X)) = C�
B(X).

Since
⋃
B = U , by condition (C6) (cf., Proposition 15), C�

B is extensive, thus

X ⊆ C�
B(X) = C�

B(C�
B(X)). �

Remark 12. Proposition 23 does not require that the base system B should be
single–layered.

Let us take up the question of the second half of Proposition 1 (1). In general,
it also does not hold.
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Proposition 24 ([70], Theorem 21). Let 〈2U ,DB,C�
B,C�

B〉 be a lower semi–
strong B-approximation space, and let us assume that the base system B is
single–layered.

Then
∀X ∈ 2U (C�

B(C�
B(X)) ⊆ X)

if and only if the B-sets are pairwise disjoint.

Proof. (⇒) Let us suppose, by contradiction, that the B-sets are not pairwise
disjoint. If so,

∃B1, B2 ∈ B (B1 �= B2 ∧B1 ∩B2 �= ∅),
where neither B1 ⊆ B2 nor B2 ⊆ B1 holds because of the base systemB is single-
layered. Hence, e.g., for B1, we get C�

B(C�
B(B1)) = C�

B(B1) ⊇ B1 ∪ B2 � B1, a
contradiction.

(⇐) If X = ∅, then C�
B(C�

B(∅)) = C�
B(∅) = ∅ ⊆ ∅ trivially holds (indepen-

dently of the B-sets are pairwise disjoint or not).
Let ∅ �= X ∈ 2U .
If C�

B(X) = ∅, then C�
B(∅) = ∅ ⊆ X .

Let ∅ �= C�
B(X) =

⋃
B′ ⊆ X for a family of B-sets B′ ⊆ B (such a B′

exists because C�
B(X) is B-definable and C�

B is contractive). Since the B-sets
are pairwise disjoint,

{Y | Y ∈ B, Y ∩ C�
B(X) �= ∅} = {Y | Y ∈ B, Y ⊆

⋃
C�
B(X)}.

Hence, we get

C�
B(C�

B(X)) =
⋃

{Y | Y ∈ B, Y ∩ C�
B(X) �= ∅}

=
⋃

{Y | Y ∈ B, Y ⊆ C�
B(X)}

= C�
B(C�

B(X)) = C�
B(X) ⊆ X. �

Proposition 25 ([70], Theorem 22). Let 〈2U ,DB,C�
B,C�

B〉 be a lower semi–
strong B-approximation space, and let us assume that the base system B is
single–layered.

The pair of maps (2U ,C�
B,C�

B, 2U ) forms a Galois connection on (2U ,⊆) if
and only if the base system B is a partition of U .

Proof. The maps C�
B and C�

B are monotone, and so by Proposition 23 and Propo-
sition 24, the conditions Proposition 1 (1-2) are satisfied. �

According to Proposition 25, Galois connection between the pair of maps
(2U ,C�

B,C�
B, 2U ) was proved under the condition that the base system B is

single-layered. However, as we have seen in Proposition 23 (1), the fulfillment of
the first half of Proposition 1 (1) does not require that the base system B to be
single-layered. Now we examine whether the condition that the base system B
is single–layered can be removed from Proposition 24.

First we need the following lemma.
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Lemma 3 ([77], Lemma 4.11). Let 〈2U ,DB,C�
B,C�

B〉 be a lower semi–strong
B-approximation space. If

∀X ∈ 2U (C�
B(C�

B(X)) ⊆ X),

the base system B is singled-layered.

Proof. Let us suppose, by contradiction, that B is not singled-layered. If so,
∃B ∈ B ∧ ∃B′ ⊆ B \ {B}(B ⊆

⋃
B′). Hence, B ⊆

⋃
B′ but B �∈ B′, and so

there exists at least one B �= B′ ∈ B′ in such a way that B′ ∩B �= ∅.
We have to distinguish three cases:
Case (1) B � B′: C�

B(C�
B(B)) = C�

B(B) ⊇ B′ � B, a contradiction.

Case (2) B′ � B: C�
B(C�

B(B′)) = C�
B(B′) ⊇ B � B′, a contradiction.

Case (3) B′ ∩ B �= ∅, but neither B � B′ nor B′ � B holds: C�
B(C�

B(B′)) =
C�
B(B′) ⊇ B ∪B′ � B′, a contradiction. �

Remark 13. The converse statement in Lemma 3 does not hold. LetB = {B1, B2}
be a base system in such a way that B1∩B2 �= ∅ but B1 �⊆ B2∧B2 �⊆ B1. Clearly,
B is single–layered, and, e.g., C�

B(C�
B(B1)) = C�

B(B1) = B1 ∪B2 �⊆ B1.

Proposition 26 ([77], Proposition 4.13). Let 〈2U ,DB,C�
B,C�

B〉 be a lower
semi–strong B-approximation space.

Then
∀X ∈ 2U (C�

B(C�
B(X)) ⊆ X)

if and only if the B-sets are pairwise disjoint.

Proof. (⇒) The base system B is single–layered by Lemma 3. Hereafter the
proof is the same as in Proposition 24.

(⇐) The B-sets are pairwise disjoint which immediately implies that the base
system B is single-layered. Hereafter the proof is the same as in Proposition 24.

�

Theorem 1 ([77], Theorem 4.14). Let 〈2U ,DB,C�
B,C�

B〉 be a lower semi–
strong B-approximation space.

The pair of maps (2U ,C�
B,C�

B, 2U ) forms a Galois connection on (2U ,⊆) if
and only if the base system B is a partition of U .

Proof. The maps C�
B and C�

B are monotone, and so by Proposition 23 and Propo-
sition 26, the conditions Proposition 1 (1-2) satisfy. �

6.2 Partial Galois Connection

On Partial Lower B-approximations. If a nonempty X ∈ 2U does not
include nonempty B-definable subsets, then C�

B(X) =
⋃
∅ = ∅ ⊆ X holds. How-

ever, the inclusion ∅ ⊆ X(�= ∅) per se does not provide new information about the
relationship between X and B. This phenomenon appears in Pawlakian classic
rough set theory, too.
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Definition 18. Let 〈2U ,DB,C�
B,C�

B〉 be a lower semi–strong B-approximation
space, and X be any subset of U .

The partial lower B-approximation of X is

∂C�
B(X) =

{
C�
B(X), if X = ∅ ∨ (X �= ∅ ∧ C�

B(X) �= ∅);
undefined, otherwise.

(6)

Informally, Eq. (6) excludes that the the empty set to be the lowerB-approximation
of a nonempty subset of U .

Remark 14. If X ∈ 2U is nonempty and its lower B-approximation C�
B(X) is

empty at the same time, then its partial lower B-approximation ∂C�
B(X) is

undefined by Def. 18. This implies that the map ∂C�
B is total only if the base

system B contains all singleton sets {x} (x ∈ U), in other words, if all singletons
are B-definable. This is a rather special situation as well. That is to exclude that
we allow the empty set to be the lower B-approximation of a nonempty subset
of U might be problematic as well.

The formula X = ∅ ∨ (X �= ∅ ∧ C�
B(X) �= ∅) is equal to the formula

X = ∅ ∨ C�
B(X) �= ∅ (7)

In the following the latter is used because it is far simpler.
There exists at least one nonempty B-set B by Def. 12. Then C�

B(B) = B �= ∅
according to Def. 14. Hence, ∂C�

B is defined on at least one nonempty subset of U .
A natural total extension of ∂C�

B is the lower B-approximation C�
B. That is

the map ∂C�
B can be made total if it is allowed that the empty set may be the

lower B-approximation of a nonempty subset of U . Of course, any extension C∗
B

of ∂C�
B also has to be B-definable and contractive, i.e., formally, the condition

∀X ∈ 2U (C∗
B(X) ∈ DB ∧ C∗

B(X) ⊆ X)

has to be fulfilled by C∗
B. Under the previous assumptions, we will show that

any extension of this type is unique.

Proposition 27. Let 〈2U ,DB,C�
B,C�

B〉 be a lower semi–strong B-approxima-
tion space, and X be any subset of U .

The total extension C�
B of ∂C�

B is unique under the conditions that

1. the empty set may be the lower B-approximation of nonempty subsets of U ;
2. ∀X ∈ 2U (C∗

B(X) ∈ DB ∧ C∗
B(X) ⊆ X) has to be fulfilled by any total

extension C∗
B of C�

B.

Proof. It is straightforward that C�
B is a total extension of ∂C�

B from dom ∂C�
B

to 2U , and (1–2) automatically satisfy.
In order to prove the uniqueness, let us suppose, by contradiction, that C∗

B is
an extension of ∂C�

B from dom ∂C�
B to 2U which differs from C�

B and

∀X ∈ 2U (C∗
B(X) ∈ DB ∧ C∗

B(X) ⊆ X)
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holds.
Since C∗

B is an extension of ∂C�
B, thus C∗

B = ∂C�
B = C�

B on dom ∂C�
B, i.e.,

when X = ∅ ∨ C�
B(X) �= ∅ satisfies (see Eq. (7)). On the other hand, C∗

B differs
from C�

B, thus there exists at least one nonempty X ′ ∈ 2U \ dom ∂C�
B in such a

way that C∗
B(X ′) �= C�

B(X ′).
From the formula

X ∈ 2U \ dom ∂C�
B ⇔ ¬(X = ∅ ∨ C�

B(X) �= ∅) ⇔ X �= ∅ ∧ C�
B(X) = ∅,

we get that C�
B(X) = ∅ for every nonempty subset X ∈ 2U \ dom ∂C�

B. In
particular, C∗

B(X ′) �= C�
B(X ′) = ∅.

Since ∅ �= C∗
B(X ′) ∈ DB, there exists a nonempty family of sets B′ ⊆ B in

such a way that C∗
B(X ′) =

⋃
B′ ⊆ X ′. Hence,

∅ �= C∗
B(X ′) =

⋃
B′ =

⋃
{Y | Y ∈ B′, Y ⊆ X ′}

⊆
⋃

{Y | Y ∈ B, Y ⊆ X ′}

= C�
B(X ′) = ∅,

which is a contradiction. �

Partial Upper B-approximations. According to Proposition 15, C�
B is ex-

tensive if and only if the base system B covers the universe. If
⋃
B �= U , for all

subsets X ⊆ U \
⋃
B, C�

B(X) =
⋃
∅ = ∅ hold. In other words, the empty set

may be the upper B-approximation of certain nonempty subsets of U . Indeed,
if C�

B(X) �= ∅, then X �⊆ C�
B(X) is also possible.

Definition 19. X is B-approximable if X ⊆ C�
B(X), otherwise it is said that

X has a B-approximation gap.

The B-approximation gap may be interpreted so that our knowledge about the
universe encoded in the base system is incomplete and not enough to approxi-
mate X . This phenomenon may be natural/necessary or not. In the latter case,

in order to fulfill the inclusion X ⊆ C�
B(X) as far as possible, the base system

B has to be augmented via taking into account additional features concerning
the observed system. In both former and latter cases, another possible solution
is that the upper B-approximation map is defined as a partial one excluding the
B-approximation gaps.

Definition 20. Let 〈2U ,DB,C�
B,C�

B〉 be a lower semi–strong B-approximation
space, and X be any subset of U .

The partial upper B-approximation of X is

∂C�
B(X) =

{
C�
B(X), if X is B-approximable;

undefined, otherwise.
(8)
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There exists at least one nonempty B-set B by Def. 12. Then B ⊆ C�
B(B)

according to Def. 14. Hence, ∂C�
B is defined on at least one nonempty subset of

U .
Notice that C�

B(X) ⊆ X ⊆ ∂C�
B(X) holds provided X is B-approximatable,

i.e., on dom ∂C�
B.

As Theorem 1 shows, the pair of maps (2U ,C�
B,C�

B, 2U ) forms a Galois connec-
tion on (2U ,⊆) if and only if the base system B is a partition of U . The question
naturally arises whether the Galois connection can be generalized so that the
pair of maps (2U , ∂C�

B,C�
B, 2U ) may form a Galois connection in some sense.

Moreover, if the answer is yes, what conditions have to be fulfilled by a lower
semi–strongB-approximation space 〈2U ,DB,C�

B,C�
B〉 so that (2U , ∂C�

B,C�
B, 2U )

forms a Galois connection of this special type. Recall that C�
B is a total map and

∂C�
B is a partial map on 2U , and so the notion of the partial Galois connection

which is drawn up in Def. 2 may be suitable for our purpose. In the following,
we take up the points (1–4) in Definition 2 and examine the conditions under
which they hold point by point.

Clearly, the map ∂C�
B is a monotone partial map and C�

B is a monotone total
map. Hence, the conditions (1–2) in Def. 2 immediately hold. Thus we have to
examine only the conditions (3–4) in Def. 2 in detail.

The next proposition answers the condition (3) in Def. 2.

Proposition 28 ([70], Theorem 25). Let 〈2U ,DB,C�
B,C�

B〉 be a lower semi–
strong B-approximation space.

Then ∂C�
B(C�

B(X)) is defined for all X ∈ 2U .

Proof. Let X ∈ 2U be an arbitrary subset of U . By the idempotency property
of C�

B(X) (cf., Proposition 16 (2)), C�
B(C�

B(X)) = C�
B(X). Thus,

C�
B(X) = C�

B(C�
B(X)) =

⋃
{Y | Y ∈ B, Y ⊆ C�

B(X)}

⊆
⋃

{Y | Y ∈ B, Y ∩ C�
B(X) �= ∅}

= C�
B(C�

B(X)),

that is, by Def. 20, ∂C�
B(C�

B(X)) is defined. �

The next two propositions deal with the condition (4) in Def. 2.

Proposition 29 ([70], Theorem 26). Let 〈2U ,DB,C�
B,C�

B〉 be a lower semi–
strong B-approximation space.

Then for all B-approximable subsets X ∈ 2U and all subsets Y ∈ 2U :

∂C�
B(X) ⊆ Y ⇒ X ⊆ C�

B(Y ).

Proof. LetX,Y ∈ 2U be two subsets of U in such a way thatX isB-approximat-
able, andX ⊆ C�

B(X) = ∂C�
B(X) ⊆ Y . Hence, by the standard and monotonicity

properties of C�
B, we get
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X ⊆ C�
B(X) = C�

B(C�
B(X)) ⊆ C�

B(Y ). �

Lemma 4 ([77], Lemma 4.19). Let 〈2U ,DB,C�
B,C�

B〉 be a lower semi–strong
B-approximation space. If

X ⊆ C�
B(Y ) ⇒ ∂C�

B(X) ⊆ Y

holds for all B-approximable subsets X ∈ 2U and all subsets Y ∈ 2U , the base
system B is singled–layered.

Proof. First, we note that, if for all B-approximable subsets X ∈ 2U and all
subsets Y ∈ 2U , the relationship X ⊆ C�

B(Y ) ⇒ ∂C�
B(X) ⊆ Y is satisfied, then,

of course, for all B-approximable subsets X ∈ 2U ,

X ⊆ C�
B(X) ⇒ ∂C�

B(X) ⊆ X

also has to be satisfied.
Since C�

B is contractive, then C�
B(X) ⊆ X holds for all subsets X ∈ 2U . Thus,

if X ⊆ C�
B(X), then C�

B(X) = X . Consequently, by Proposition 17 (1), X is
B-definable, i.e., X ∈ DB.

On the other hand, for allB-approximable subsetsX ∈ 2U ,X ⊆ C�
B(X). Thus

if for all B-approximable subsets X ∈ 2U , the inclusion ∂C�
B(X) = C�

B(X) ⊆ X

also holds, then X = C�
B(X).

For all these reasons, we can restate the previous statement as follows. For all
B-approximable subsets X ∈ 2U , X ∈ DB ⇒ X = C�

B(X) has to be satisfied.
Now, let us suppose, by contradiction, that B is not singled–layered, that is,

∃B ∈ B ∧ ∃B′ ⊆ B \ {B} (B ⊆
⋃
B′). Hence, B ⊆

⋃
B′, but B �∈ B′, and so

there exists at least one B �= B′ ∈ B′ in such a way that B′ ∩B �= ∅. Of course,
B,B′ ∈ DB, and B ⊆ C�

B(B), B′ ⊆ C�
B(B′), i.e., B,B′ are B-approximable.

We have to distinguish three cases:

Case (1) If B � B′, then C�
B(B) ⊇ B′ � B, a contradiction.

Case (2) If B′ � B, then C�
B(B′) ⊇ B � B′, a contradiction.

Case (3) If B′ ∩B �= ∅, but neither B � B′ nor B′ � B holds, then C�
B(B′) ⊇

B ∪B′ � B′, a contradiction. �

Remark 15. The converse statement does not hold. Let B = {B1, B2} be a base
system such that B1 ∩ B2 �= ∅ but B1 �⊆ B2 ∧ B2 �⊆ B1. Clearly, B is single–
layered. Let X ∈ 2U in such a way that X � B1, X ∩B2 �= ∅ but X � B2. Then

X ⊆ B1 ∪ B2 = C�
B(X), i.e., X is B-approximable. Hence, X ⊆ C�

B(B1) = B1,

but ∂C�
B(X) = C�

B(X) = B1 ∪B2 �⊆ B1.

Proposition 30 ([77], Proposition 4.21). Let 〈2U ,DB,C�
B,C�

B〉 be a lower
semi–strong B-approximation space.

Then for all B-approximable subsets X ∈ 2U and all subsets Y ∈ 2U ,

X ⊆ C�
B(Y ) ⇒ ∂C�

B(X) ⊆ Y,

if and only if the B-sets are pairwise disjoint.
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Proof. (⇒) Let us suppose, by contradiction, that the B-sets are not pairwise
disjoint, If so,

∃B1, B2 ∈ B (B1 �= B2 ∧B1 ∩B2 �= ∅).
By Lemma 4, the base system B is single-layered, and so neither B1 ⊆ B2 nor
B2 ⊆ B1 holds. Clearly, e.g., B1 ⊆ C�

B(B1), i.e., B1 is B-approximable. Hence,
we get

B1 ⊆ C�
B(B1), but ∂C

�
B(B1) = C�

B(B1) ⊇ B1 ∪B2 �⊆ B1,

a contradiction.
(⇐) Let X,Y ∈ 2U in such a way that X is B-approximable and X ⊆ C�

B(Y ).

Then, by the monotonicity of C�
B and Proposition 24,

∂C�
B(X) = C�

B(X) ⊆ C�
B(C�

B(Y )) ⊆ Y.

�

Theorem 2 ([77], Theorem 4.22). Let 〈2U ,DB,C�
B,C�

B〉 be a lower semi–
strong B-approximation space.

The pair of maps (2U , ∂C�
B,C�

B, 2U ) forms a partial Galois connection on
(2U ,⊆) if and only if the B-sets are pairwise disjoint.

Proof. Clearly, ∂C�
B is a monotone partial map, and C�

B is a monotone total
map. Thus the conditions (1–2) in Def. 2 are trivially satisfied. Proposition 28
implies condition (3) in Def. 2, Propositions 29 and 30 implies condition (4) in
Def. 2. �

7 Applications

To demonstrate the effectiveness of our approach let us see three real–life appli-
cations of it.

The first application will demonstrate the relationship of our approach with
natural computing [94] via a biological example.

Natural computing is the field of research that investigates models and com-
putational techniques inspired by nature and, dually, attempts to understand
the world around us in terms of information processing. ([94], p. 72, The italics
are mine.)

In particular, we will show how our approach helps us to understand some behav-
ioral features of the natural vegetation heritage of Hungary. This presentation
is based on the so–called MÉTA program which is a recognition and evalua-
tion system of the state of the natural and semi–natural vegetation heritage of
Hungary [95,96].

The second example models Intrusion Detection Systems (IDS) in computer
security in such a way that two separated approximation spaces are defined
for anomalies and misuses at the same time. In this framework anomalies and
misuses can be detected simultaneously.
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The third application presents a general tool–based approximation framework
which is a generalization of the previous example. The starting point is that we
observe a class of objects and, as usual, we suppose that there are some well–
defined features with which an object possesses or not. In practice, two relevant
groups of objects can be separated. A group whose elements really possess some
features in question and another group whose elements do not substantially
possess the same features.

In general, the features of objects cannot directly be observed. We need tools
to be at our disposal with which we are able to judge easily and unambiguously
whether an object possesses a feature in question or not. However, as a rule, a
property ascertained by a tool never coincides with the feature observed by the
tool completely.

In the framework, the class of objects is modeled as an abstract set called the
universe of discourse. The two separate groups of objects correspond two crisp
subsets of the universe. They are disjoint and, in general, their union does not
add up to the whole universe. For obvious reasons, the former can be marked
with the adjective positive, whereas the latter with negative.

The objects classified by a tool are simply called tools as well. Notice that
the complement of a tool is not necessarily a tool at the same time. We also
distinguish two types of tools: the positive and negative ones. Positive (resp.,
negative) tools provide the opportunity to locate the positive (resp,. negative)
subset. It is a natural assumption that the union of positive tools and the union
of negative tools are disjoint and their union does not add up to the whole
universe.

In the proposed tool–based approximation framework, two approximation
spaces are defined on the same universe, a positive and a negative one with
the base systems consisting of positive tools and negative tools, respectively.
Any proportion of the observed objects can simultaneously be approximated in
the two approximation spaces.

7.1 Natural Computing—A Biological Example

A Brief Outline of the MÉTA Program. The biological example is rely-
ing on the MÉTA program which is a grid-based, landscape-ecology-oriented,
satellite-image supported, field vegetation mapping method of Hungarian habi-
tats [95,97,98,96,99] (MÉTA stands for Magyarországi Élőhelyek Térképi
Adatbázisa: GIS Database of the Hungarian Habitats). Its main goals include
a nationwide survey of the actual state of (semi-)natural vegetation heritage of
Hungary and the evaluation of the present state of Hungarian landscapes from
a vegetation point of view.

The survey in MÉTA program was carried out on three spatial levels which
are nested units of the survey: 1. quadrant, 2. hexagon, 3. habitat type inside
the hexagon.

The basic units of the survey are the hexagons. A hexagon grid consists of
cells of 35 hectares covering the territory of Hungary comprehensively. 267,813
hexagons cover the whole country.
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For organizational reasons around 100 hexagons form a quadrant. Quadrants
are also used for collecting certain vegetation data. The quadrants are the quar-
ters of the base units of the European Flora Survey. Their territory is approxi-
mately 35 km2 and there are 2,834 quadrants in Hungary.

In 1996 a new habitat classification system was developed in Hungary, called
Á-NÉR (the Hungarian abbreviation stands for General National Habitat Clas-
sification System). This system has 112 habitat types, all with detailed and

standardized descriptions [100]. For the MÉTA method the Á-NÉR system was

partly extended and thoroughly revised [101,102]. These Á-NÉR habitat types
are recorded as a list for each hexagon.

The data is mainly collected by a single field survey of the hexagons. The
mapper estimates the actual status on the spot. Hexagons with more than 25%
natural or semi-natural vegetation are compulsory to survey and to be thor-
oughly documented. In most cases satellite images and maps help to decide
whether a hexagon is compulsory or not. During the field mapping each com-
pulsory hexagon has to be examined by thematically travelling through the area
that it covers. Its most dominant habitat type is recorded, as well as those types
covering at least 25% of the hexagon. Moreover, the vegetation patches found“on
the way” should also be recorded. Vegetation data of noncompulsory hexagons
should be documented if these hexagons are crossed by the mapping route or
the data can be derived from the satellite image. Collected data are stored in an
MS-SQL 2000 database and are mainly recorded as codes.

The data for each habitat type collected by the MÉTA method at the hexagon
level are as follows [96]:

– The areal cover of each recorded habitat type has to be given as a proportion
of the hexagon using the categories < 1, 1, 10, 50, 100%. Satellite images help
the observers to make the estimation.

– Spatial pattern of each type should be documented so that it forms only
1-2, 3 or several distinct patches, or it has a diffuse spatial pattern in the
hexagon.

– In order to establish the naturalness-based habitat quality of each vegetation
type in the hexagon, the following standardized naturalness-based habitat
evaluation was used: (1) totally degraded state; (2) heavily degraded state;
(3) moderately degraded state; (4) semi-natural state; (5) natural state.

– In each hexagon for each occurring habitat the most characteristic ones from
the 28 threat types (Th1-Th28) had to be selected that actually threaten

the survival and maintenance of the habitat type in the MÉTA hexagon
in the next 10-15 years [103]. The strength of the threats is not recorded.
The presence of the discernible threats in each case has been documented.
Maximum four threats could be given, others were to be written in notes
column.

The threatening factors are as follows [96]: improper water management,
improper pasturing or mowing, drainage, encroachment of shrubs and trees,
burning, afforestation with improper species, woodland patches managed
homogeneously, improper selection of trees for timber extraction, logging
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trees at low age, inappropriate plantation, keeping high densities of game,
colonization by invasive plant species, tillage, building and construction, gar-
dening, mining, establishment of a pond, trampling, pollution, rubbish, com-
mercial collection of plants.

– Prediction of future changes of vegetation patches can be supported by the
evaluation of the direct effect of the neighborhood (< 200 m) on the mapped
stands. This evaluation defines whether the neighboring patches will aid or
hinder the survival of the particular patch in the next few (10-15) years
[103]. The categories are: (1) definitely positive (sustaining neighborhood),
(2) slightly positive, (3) indifferent, (4) slightly negative, (5) definitely neg-
ative (destructive neighborhood).

The neighborhood is negative, e.g., if there is an intensively used arable
field (chemicals, infiltration of fertilizer), expanding settlement, or spreading
populations of invasive species surrounding the patch. Neighborhood is posi-
tive, if it serves as a source of species, provides proper micro-climate, buffers
against degrading factors.

– The connectedness is the potential of dispersal of the species of one vege-
tation stand compared to the surrounding areas. It is documented at two
spatial scales: within the distance of several hundred meters (hexagon), and
several kilometers (quadrant). It is recorded whether the patches are (1) iso-
lated (typical species of the habitat are not present in the surroundings), (2)
connected (species are abundant) or (3) the connectedness is intermediate.

Connectedness is also documented at the quadrant level. Categories in-
dicate whether stands are properly connected, moderately connected or iso-
lated. The first two categories denote any possibilities for dispersal through
quadrant whereas the third category shows whether the dispersal is hindered.

Additional data for each habitat type at quadrant level (invasive species, con-
nectedness, regeneration potential), and data for the landscape at hexagon level
(potential natural vegetation, area of invasive species and old fields, land-use
type, landscape health status) are collected, as well (see [96] for details).

Model of Behavioral Features of Natural Vegetation. In this section we
present a model for the behavioral features of natural vegetation of Hungary. The
model is relying on the results of MÉTA program and the set approximations
including both Pawlakian rough set theory and partial approximation of sets.

Let H denote the set of all hexagons of Hungarian landscapes. The hexagons
are disjoint and cover the whole country, i.e., they form a partition. Let π denote
the equivalence relation corresponding to this partition. If A denotes an arbitrary
area of the country, one can approximate A in the Pawlakian framework. So,
Pawlakian lower π(A) and upper π(A) π-approximations can be determined in
the universe H.

Now, we want to investigate the area A in relation to the threat types. First
of all, we need the following classification of threat types which is applied by the
MÉTA program [103]: Th1 =water shortage,Th2 =access water,Th3 = improper
water dynamics,Th4 =overgrazing,Th5 =undergrazing,Th6 = improper grazing
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regime, Th7 = abandonment from grazing, Th8 = improper mowing, Th9 = aban-
donment from mowing, Th10 = melioration, Th11 = encroachment of shrubs and
trees, Th12 = non-natural burning, Th13 = afforestation with improper species,
Th14 =woodland patches managed homogeneously, Th15 = improper selection of
trees for timber extraction, Th16 = logging trees at low age, Th17 = new planta-
tions on grasslands, Th18 = overpopulated game, Th19 = colonization by invasive
plant species, Th20 = tillage, Th21 = building and construction, Th22 = spread of
gardens threatens vegetation, Th23 =mines destroying vegetation, Th24 = estab-
lishment of a pond destroying vegetation, Th25 = trampling, Th26 = pollution,
Th27 = rubbish, Th28 = commercial collection of plants.

According to the MÉTA method, any threat type determine a well-defined
subset of hexagons in H. Let hTh1 , hTh2 , . . . , hTh28 ∈ 2H denote the sets of all
hexagons in which threat types Th1, Th2, . . . , Th28 are found, respectively. For
instance, hTh1 contains all hexagons which are threatened with the threat type
Th1. Of course, hTh1 , hTh2 , . . . , hTh28 do not necessarily disjoint and their union
do not necessarily cover the whole are of the country.

Let B = {HTh1,HTh2, . . . ,HTh28} ⊆ 2H be the base system in the universe
2H. The base system B can directly be applied only in the case when A is exactly
built up by hexagons, which is rather an extreme case. It is self–explanatory that
for the first time we apply Pawlakian π-approximations to A in the universe H.
All the lower and upper π-approximations and π-boundary of A are already made
up of hexagons. Thus, in the next step, we can apply the partial approximation
of sets to the three sets in the universe 2H.

Now, let us consider all possible cases one by one.

Case (1) The lower B-approximation of the lower π-approximation of A is:

C�
B(π(A)) =

⋃
{h | h ∈ B, h ⊆ π(A)}.

If C�
B(π(A)) �= ∅, then {h | h ∈ B, h ⊆ π(A)} contains the threat types (to be

more exact, the hexagons threatened with these threat types) which certainly
and exclusively appear in A.

Case (2) The upper B-approximation of the lower π-approximation of A is:

C�
B(π(A)) =

⋃
{h | h ∈ B, h ∩ π(A) �= ∅}.

If C�
B(π(A)) �= ∅, then {h | h ∈ B, h∩π(A) �= ∅} contains the threat types which

certainly but not exclusively appear in A.

Case (3) The lower B-approximation of the upper π-approximation of A is:

C�
B(π(A)) =

⋃
{h | h ∈ B, h ⊆ π(A)}.

If C�
B(π(A)) �= ∅, then {h | h ∈ B, h ⊆ π(A)} contains the threat types which

perhaps exclusively but not certainly appear in A.

Case (4) The upper B-approximation of the upper π-approximation of A is:

C�
B(π(A)) =

⋃
{h | h ∈ B, h ∩ π(A) �= ∅}.
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If C�
B(π(A)) �= ∅, then {h | h ∈ B, h ∩ π(A) �= ∅} contains all the threat types

which may appear in A at all.

The last two cases, the B-approximations of the π-boundary of the area A,
provide information about the spread of the thread types around A.

Case (5) The lower B-approximation of the π-boundary of A is:

C�
B(π(A) \ π(A)) =

⋃
{h | h ∈ B, h ⊆ π(A) \ π(A)}.

If C�
B(π(A) \ π(A)) �= ∅, then {h | h ∈ B, h ⊆ π(A) \ π(A)} contains the threat

types which partly belong to A and partly not. These are the threat types which
spread from inside of A to outwards.

Case (6) The upper B-approximation of the π-boundary of A is:

C�
B(π(A) \ π(A)) =

⋃
{h | h ∈ B, h ∩ (π(A) \ π(A)) �= ∅}.

If C�
B(π(A) \ π(A)) �= ∅, then {h | h ∈ B, h ∩ (π(A) \ π(A)) �= ∅} contains the

threat types which may partly belong to A. These are the threat types which
spread from outside of A to inwards—“Hannibal ante portas”.6

7.2 Simultaneous Anomaly and Misuse Intrusion Detections

Introduction. Nowadays, people run their applications in a complex open com-
puting environment including all sorts of interconnected devices. While this en-
vironment permanently changes, people watch their applications, work with one
of them, and, in general, also follow details of other applications with attention.
Many applications, at the same time, work unnoticeably in the background, and
some of them, even by stealth. In order to meet the computer security challenge
in human environments, Intrusion Detection Systems (IDS) have to be designed.

To a large extent, acceptable and/or unacceptable patterns in the behaviors of
the observed system cannot be designed and/or forecast in advance. This strange
situation is smartly described by B. Schneier:

You have to imagine an intelligent and malicious adversary inside your system
(the “Satan” of Satan’s computer), constantly trying new ways to subvert it.
You have to consider all the ways your system can fail, most of them having
nothing to do with the design itself. You have to look at everything backwards,
upside down, and sideways. You have to think like an alien. ([104], from the
Foreword by B. Schneier)

Computer security has definitely different challenges in corporate information sys-
tems and nonprofessional human computing environments. In the former one there
are many approaches for security policy specification. Traditionally, security poli-
cies are formulated along the so-called CIA taxonomy which sees security as the
combination of three attributes—confidentiality, integrity, and availability [105].

6 This characterization of the situation is due to T. Mihálydeák.
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People in nonprofessional human computing environments are flooded by rec-
ommendations how they operate their system and use their applications. In
headwords only: strong passwords creation tips and maintenance, virus protec-
tion, software downloading and installation, removable media risks, encryption
and cryptographic means, system backups, incident handling, e-mail and internet
use best practises, etc.

Nonprofessionals, of course, cannot convert these good pieces of advice into
security policies, especially into formal ones. Meanwhile, arising from the human
thinking, all nonprofessional users have anticipated hypotheses how an applica-
tion or the whole system should or should not work [84]. These presupposes
may range from informal expected behaviors, their constituents might call ex-
pected “milestones”, to more formal ones described in user manuals and other
development artifacts.

To built up a formal security model for computer systems, first, one has to
understand what has to be protected and why. The answers determine the secu-
rity strategy which is, in turn, expressed by security policies [106,107]. Security
policies as a general rule prescribe and proscribe behaviors of software systems
in advance, only with more or less knowledge about future applications.

We model a computer system as a semantic system model, a so–called traced–
based model. A traced-based model describes the behaviors of a computer system
as sets of execution traces. We focus solely on externally observable execution
traces sent out by the observed computing system.

An important note. An information system, among others, consists of differ-
ent software components of finite number. Each component has an individual
behavior, and the global behavior of the whole system is the collection of the
individual ones. The components can operate with each other. Their intercon-
nections may be deliberate or ad hoc. Notice, however, that in both cases, the
mechanism of these interconnections mostly remains concealed from the external
observers. In particular, based on only external observations we cannot model
these synchronization mechanisms.

According to the trace–based model, it is assumed that security policies specify
the prescribed and proscribed behaviors of a computer system via the patterns
of acceptable and unacceptable execution traces, respectively [104,108]. We also
take into account the partial nature of security policies. Typically some policies
may only apply to specific hardware appliances, software applications or type of
information. For instance, possibly it is enough to enforce the information flow
policy on such software processes which handle confidential information.

In order to meet the computer security challenge outlined above, a sort of
sophisticated Intrusion Detection System (IDS) has to be developed. Intrusion
detection techniques can be categorized in different ways. For a survey of intru-
sion detection methods, see, e.g., [109,110].

Intrusion detection techniques are categorized into anomaly and misuse de-
tections. Both techniques use patterns based on different types of data [110,111].
Anomaly detection, originally proposed by Denning [112], profiles expected be-
haviors to identify abnormal behaviors as anomalies which deviate from the de-
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fined profile. Misuse detection profiles patterns of known attacks, i.e., unexpected
behaviors, to identify abnormal behavior directly.

In our IDS model, the patterns of expected and unexpected execution traces
provide positive and negative reference sets, while the patterns of acceptable
and unacceptable execution traces determined by the security policies serve as
positive and negative tools.

The Intrusion Detection Model. Let us assume that A denotes a nonempty
finite set of symbols. A string is a finite or infinite sequence of symbols chosen
from A. String containing no symbols is called the empty string and is denoted
by λ. Let A∗ and Aω denote the set of all finite and infinite strings made up
of symbols chosen from A, respectively. We also use the following notations:
A+ = A∗ \ {λ}, A∞ = A∗ ∪ Aω.

An execution sequence or trace consists of linearly ordered observable atomic
actions concerning the observed computer system [113]. Types of atomic actions
are the following:

– Let Areq be a finite nonempty set of externally observable required atomic
actions. It is called the required action set.

– Let Auns be a finite nonempty set of insecure atomic actions which may
happen during the running time of the observed system. It is called the
unsafe action set.

– Let Aneu be a finite nonempty set of additional atomic actions which in
themselves may not influence the safety of the observed system. It is called
the neutral action set.

Let us assume that Areq, Auns and Aneu are pairwise disjoint. Let A = Areq ∪
Auns ∪ Aneu which is called the system action set.

An execution trace σ ∈ A∞ is a finite or infinite sequence of not necessarily
different system atomic actions.

Definition 21. By a computer system we mean an (A, Σ) pair, where Σ(�=
∅) ⊆ Aω.

If the computer system terminates, we as usual model it as an infinite execution
trace by infinitely stuttering the empty action λ.

A∗ is the set of all possible finite observable execution traces generated by the
computer system.

Definition 22. By a system observation we mean an (A, Σobs) pair, where
Σobs(�= ∅) ⊆ A∗. A subset S ⊆ Σobs is called the snapshot.

Let A∗ be the universe of discourse in our IDS model.
Let P+ ⊆ (Areq ∪ Aneu)

∗ � A∗ denote the set of expected execution traces
which describes the expected behavior of the running system (see Fig. 11).

A∗ \ P+ can be seen as the abnormal behavior of the system which deviates
from the previously defined expected profile. Its elements are called anomalies
[112] (see Fig. 12).
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According to our current available knowledge, however, only a subset P− ⊆
A∗ \ P+ can really be modeled as the unexpected behavior of the system. Its
elements are usually called misuses. Of course, the unexpected behavior P− has
its own right to be profiled (see Fig. 13).

Expected and unexpected behaviors serve as positive and negative reference
sets in our IDS model.

Security strategy is expressed by security policies of finite number and modeled
as a family of sets S ⊆ 2A

∗
. Prescriptions and proscriptions of security policies

can also be represented by families of sets of execution traces denoted by S+

and S− respectively.

+ + + 

+ + + + 

+ + + + 
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A∗ is the universe of the IDS model:

the set of all possible finite
observable execution traces.

P+ ⊆ (Areq ∪Aneu)∗ � A∗

profiles the expected behavior
of the computer system.

Fig. 11. Initialization of the IDS model
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Fig. 12. Anomalies
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Fig. 13. Misuses

Let

S+ = {S+
i | S+

i ⊆ A∗, i = 1, . . . , n+} ⊆ 2A
∗
,

S− = {S−
i | S−

i ⊆ A∗, i = 1, . . . , n−} ⊆ 2A
∗
,

whereS = S+∪S−. It is assumed that
⋃
S+∩
⋃

S− = ∅, i.e., an execution trace
cannot model a prescribed and proscribed behavior at the same time. Note that⋃
S+ (resp.,

⋃
S−) may contains execution traces with unsafe (resp., required

and neutral) atomic actions.
Members of S+ are called acceptable behaviors, whereas members of S− are

called unacceptable behaviors. They serve as positive and negative tools in our
IDS model. Acceptable/unacceptable behaviors and expected/unexpected be-
haviors mutually justify each other.

The sets in S+ (resp., in S−) are not necessarily pairwise disjoint and they do
not cover A∗ in general. That is, S+ and S− are base systems over the universe
A∗. In other words, 〈A∗,DS+ ,C�

S+ ,C
�
S+〉 and 〈A∗,DS− ,C�

S− ,C
�
S−〉 form lower

semi–strong approximation spaces (see Fig. 14 and 15).
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The complete IDS model is depicted in Fig. 16.
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Fig. 16. The complete IDS model

Using the running example, we show how this model can be applied.

Step 1. Mutual justifying the reference sets and tools

(1) P+ is S−-consistent and S+-complete (see Fig. 17).

(2) P− is S+-inconsistent (see Fig. 18), P− is S−-incomplete (see Fig. 19).
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Fig. 17. P+ is S−-consistent and S+-complete
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Step 2. Rebuilding positive and negative tools

(1) Since P+ was S−-consistent, there was nothing to be done.

(2) Since P+ was S+-complete, P+ was removed from the framework (see
Fig. 20).

– – –

– – – –

– – – –

– – – –

– – – –

– – – –

– – –

– – –

+ + + 

+ + + + 

+ + + + 

+ + + + 

+ + + + 

+ + + +

+ + + +

+++++

+++

P¡

P+

S+
3

S+
1

S+
2

S+
4

S+
5

S¡
1

S¡
2

S¡
3

S¡
4

A¤

P¡

S¡
1

S¡
2

S¡
3

S¡
4

A¤

P+

S+
3

S+
1

S+
2

S+
4

S+
5

– –
–

– –
– –

– –
– –

– –
– –

– –
– –

– –
– –

– –
–

– –
–

Fig. 20. P+ is removed from the framework

(3) P− was S+-inconsistent, we decided that the positive tool S+
3 was rea-

sonable (see Fig. 21).
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Fig. 21. We decide that the positive tool S+
3 is reasonable

(4) P− wasS−-incomplete, we decided that we augmented negative tools with
S−
5 , S−

6 patterned upon one or more elements of the uncovered subset of P−.
Then P− was removed from the framework (see Fig. 22).
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Fig. 22. New negative tools: S−
5 , S−

6

By the end of Steps 1 and 2, we obtained the rebuilt positive tools S+
r = S+,

and the rebuilt negative tools S−
r = S− ∪ {S−

5 , S−
6 } (see Fig. 23).
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The rebuilt positive tools:

S+
r = S+

The rebuilt negative tools:

S−
r = S− ∪ {S−

5 , S−
6 }.

Fig. 23. The rebuilt tools

Step 3. We apply the rebuilt tools to justify snapshots of the system as follows.

A possible analysis based on the sample snapshots S1, S2, S3 ⊆ Σobs is the
following (Fig. 24):

– C�
S+

r
(S2) contains all prescriptions of the security policies being actually in

force which in full pertain to the snapshot S2.
Since C�

S+
r
(S2) = S+

4 , thus S+
4 is the only prescription which in full belongs

to the snapshot S2.
– C�

S+
r
(S2) contains all prescriptions of the security policies being actually in

force which possibly pertain to the snapshot S2.
Since C�

S+
r
(S2) = S+

4 ∪ S+
5 , thus only S+

4 , S+
5 are the prescriptions which on

the whole or in part belong to the snapshot S2.
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Sample snapshots:

S1, S2, S3 ⊆ Σobs.

Fig. 24. Sample snapshots

– Acceptable execution traces in C�

S+
r
(S2) \ C�

S+
r
(S2) = S+

5 \ S+
4 are abstained

because they cannot be uniquely classified either as belonging to S2 or as
not belonging to S2 with respect to the prescriptions of the security policies.

– S2 �� C�

S+
r
(S2) and so the execution traces in the subset S2 \ C�

S+
r
(S2) of

S2 are anomalous. Moreover, since C�

S−
r
(S2 \ C�

S+
r
(S2)) = S−

3 , the execution

traces in S−
3 ∩ (S2 \ C�

S+
r
(S2)) are actually unacceptable.

A similar analysis can be made in the case of the snapshot S1.
Notice that the snapshot S3 cannot be justified at all with the prescriptions

and proscriptions of the security policies being actually in force.

7.3 A General Tool–Based Approximation Framework

This section generalize the method presented in Subsection 7.2.
Let U be a nonempty set. Let A+, A− ∈ 2U be nonempty subsets of U in

such a way that A+ ∩ A− = ∅. A+ and A− are called the positive reference set
and negative reference set, respectively. In general, A+ ∩ A− = ∅ is the only
requirement for A+ and A−. Of course, additional relations between them may
be prescribed.

Furthermore, let T+,T− ⊆ 2U be two nonempty families of nonemty subsets
of U such that

⋃
T+ ∩

⋃
T− = ∅. T+ is called positive or T+-tools, T− is called

negative or T−-tools. For each subset T+ ∈ T+ (resp., T− ∈ T−) it is easy to
decide whether an element of U belongs to T+ (resp., T−) or not.

The sets in T+ are not necessarily pairwise disjoint, so they are not in T−.
Neither

⋃
T+ nor

⋃
T− covers U .

Note that, the adjectives positive and negative claim nothing else but that the
sets A+ (resp., T+) and A− (resp., T−) are well separated.

Remark 16. Such pair of sets as above A+ and A− and/or T+ and T− have
been studied by several authors and in several environments. For instance, as
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orthopairs [114] or equivalently nested pairs [115], interval sets [116], bipolarity
[117], etc.

According to the general set theoretic approximation framework, T+ and T− are
primary tools and letDT+ andDT− denote their derived tools as usual. Then the
quadruples 〈U,DT+ ,C�

T+ ,C
�
T+〉 and 〈U,DT− ,C�

T− ,C
�
T−〉 form lower semi–strong

T+-approximation and T−-approximation spaces, respectively.
Borrowing the terminology from the inductive logic programming [118], the

mutual relationships between A+ and A− can be characterized by the available
T+-tools and T−-tools as follows.

It is said that
– A+ is T+-complete if A+ ⊆ C�

T+(A
+), otherwise A+ is T+-incomplete;

– A+ and T− are consistent, or A+ is T−-consistent for short, if C�
T−(A

+) = ∅,
otherwise A+ and T− are inconsistent, or A+ is T−-inconsistent for short.
It is said that

– A− is T−-complete if A− ⊆ C�
T−(A

−), otherwise A− is T−-incomplete;

– A− and T+ are consistent, or A− is T+-consistent for short, if C�
T+(A

−) = ∅,
otherwise A− and T+ are inconsistent, or A− is T+-inconsistent for short.

From a pure combinatorial point of view, according to the previous terminology,
a positive reference set A+ may be

– T+-complete and T−-consistent,
– T+-complete and T−-inconsistent,
– T+-incomplete and T−-consistent,
– T+-incomplete and T−-inconsistent ;

a negative reference set A− may be
– T−-complete and T+-consistent,
– T−-complete and T+-inconsistent,
– T−-incomplete and T+-consistent,
– T−-incomplete and T+-inconsistent.

There may be in sum 4 · 4 = 16 different compound situations. However, some
of them are impossible by constraint

⋃
T+ ∩

⋃
T− = ∅. Now, let us consider all

the possible and impossible cases one by one.

Case (1) A+ is T+-complete, T−-consistent;
A− is T−-complete, T+-consistent.
It is a possible case (see, e.g., Fig. 25).
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Fig. 25. Case (1) It is a possible case because
⋃

T+ ∩
⋃

T− = ∅

Case (2) A+ is T+-complete, T−-consistent;
A− is T−-complete, T+-inconsistent.
It is an impossible case (see, e.g., Fig. 26).

– – –

– – – –

– – – –

– – – –

– – – –

– – – –

– – –

– – –

+ + + 

+ + + + 

+ + + + 

+ + + + 

+ + + + 

+ + + +

+ + + +

+++++

+++

U

+
2T

+
1T

+A
+
4T

–A

–
1T

–
3T

–
4T

+
3T

–
2T

A+ is T+-complete:

A+ ⊆ C�

T+(A+) = T+
2 ∪ T+

3 ∪ T+
4 ,

A+ is T−-consistent:

C�

T−(A+) = ∅;

A− is T−-complete:

A− ⊆ C�

T−(A−) = T−
1 ∪ T−

2 ∪ T−
3 ,

A− is T+-inconsistent:

C�

T+(A−) = T+
1 	= ∅.

Fig. 26. Case (2) It is an impossible case because
⋃

T+ ∩
⋃

T− 	= ∅

Case (3) A+ is T+-complete, T−-consistent;
A− is T−-incomplete, T+-consistent.
It is a possible case (see, e.g., Fig. 27).
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Fig. 27. Case (3) It is a possible case because
⋃

T+ ∩
⋃

T− = ∅

Case (4) A+ is T+-complete, T−-consistent;
A− is T−-incomplete, T+-inconsistent.
It is a possible case (see, e.g., Fig. 28).
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Fig. 28. Case (4) It is a possible case because
⋃

T+ ∩
⋃

T− = ∅

Case (5) A+ is T+-complete, T−-inconsistent;
A− is T−-complete, T+-consistent.
It is an impossible case (see, e.g., Fig. 29).
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Fig. 29. Case (5) It is an impossible case because
⋃

T+ ∩
⋃

T− 	= ∅

Case (6) A+ is T+-complete, T−-inconsistent;
A− is T−-complete, T+-inconsistent.
It is an impossible case (see, e.g., Fig. 30).
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Fig. 30. Case (6) It is an impossible case because
⋃

T+ ∩
⋃

T− 	= ∅

Case (7) A+ is T+-complete, T−-inconsistent;
A− is T−-incomplete, T+-consistent.
It is an impossible case (see, e.g., Fig. 31).
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Fig. 31. Case (7) It is an impossible case because
⋃
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T− 	= ∅

Case (8) A+ is T+-complete, T−-inconsistent;
A− is T−-incomplete, T+-inconsistent.
It is an impossible case (see, e.g., Fig. 32).
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Fig. 32. Case (8) It is an impossible case because
⋃
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T− 	= ∅

Case (9) A+ is T+-incomplete, T−-consistent;
A− is T−-complete, T+-consistent.
It is a possible case (see, e.g., Fig. 33).
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Fig. 33. Case (9) It is a possible case because
⋃

T+ ∩
⋃

T− = ∅

Case (10) A+ is T+-incomplete, T−-consistent;
A− is T−-complete, T+-inconsistent.
It is an impossible case (see, e.g., Fig. 34).
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Fig. 34. Case (10) It is an impossible case because
⋃

T+ ∩
⋃

T− 	= ∅

Case (11) A+ is T+-incomplete, T−-consistent;
A− is T−-incomplete, T+-consistent.
It is a possible case (see, e.g., Fig. 35).
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Fig. 35. Case (11) It is a possible case because
⋃
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T− = ∅

Case (12) A+ is T+-incomplete, T−-consistent;
A− is T−-incomplete, T+-inconsistent.
It is a possible case (see, e.g., Fig. 36).
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Fig. 36. Case (12) It is a possible case because
⋃

T+ ∩
⋃

T− = ∅

Case (13) A+ is T+-incomplete, T−-inconsistent;
A− is T−-complete, T+-consistent.
It is a possible case (see, e.g., Fig. 37).
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Fig. 37. Case (13) It is a possible case because
⋃

T+ ∩
⋃

T− = ∅

Case (14) A+ is T+-incomplete, T−-inconsistent;
A− is T−-complete, T+-inconsistent.
It is an impossible case (see, e.g., Fig. 38).
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Fig. 38. Case (14) It is an impossible case because
⋃

T+ ∩
⋃

T− 	= ∅

Case (15) A+ is T+-incomplete, T−-inconsistent;
A− is T−-incomplete, T+-consistent.
It is a possible case (see, e.g., Fig. 39).
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Fig. 39. Case (15) It is a possible case because
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Case (16) A+ is T+-incomplete, T−-inconsistent;
A− is T−-incomplete, T+-inconsistent.
It is a possible case (see, e.g., Fig. 40).
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A+ is T+-incomplete:

A+ 	⊆ C�

T+(A+) = T+
2 ∪ T+

3 ,

A+ is T−-inconsistent:

C�

T−(A+) = T−
3 	= ∅;

A− is T−-incomplete:

A− 	⊆ C�

T−(A−) = T−
1 ∪ T−

2 ,

A− is T+-inconsistent:

C�

T+(A−) = T+
1 	= ∅.

Fig. 40. Case (16) It is a possible case because
⋃

T+ ∩
⋃

T− 	= ∅

In order to build up the general tool-based approximation framework, at the
beginning, let us assume that a positive reference set A+ and a negative reference
set A− are at our disposal together with the suitable positive tools T+ and
negative tools T−. Initially, we only presuppose that A+ ∩ A− = ∅ and

⋃
T+ ∩⋃

T− = ∅. The framework can be built up and used in the following three
consecutive steps.

1. Mutual justifying the reference sets and tools
Step 1 is intended to reveal consistencies/inconsistencies between positive
(resp., negative) reference sets and negative (resp., positive) tools and the
completeness/incompleteness of reference sets in terms of T+ and T−-ap-
proximation spaces.
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2. Rebuilding positive and negative tools

Step 2 is intended to resolve inconsistencies completely and eliminate incom-
pleteness as far as possible.

The case of consistency. There is nothing to be done.

The case of inconsistency. We have to decide within the context of the
observed field

– if A+ or the concerned negative tools is reasonable or not, and/or
– whether A− or the concerned positive tools is reasonable or not.

The case of completeness. We remove the covered positive and/or neg-
ative reference sets from the framework.

The case of incompleteness. We may decide within the context of the
observed field either to remove the uncovered subset from A+ (resp.,
A−) completely or in part, or to augment the positive (resp., negative)
tools with new subsets of which elements are patterned upon one or more
elements of the uncovered subset of A+ (resp., A−).
These new subsets may contain any elements of the universe, provided
that they can easily be determined.
For the new tools T+ and/or T−,

⋃
T+ ∩

⋃
T− = ∅ should also be

fulfilled.

In this step, all decisions should be made by domain experts on professional
criteria within the context of the observed field.

We obtain new rebuilt tools, denoted by T+
r and T−

r , by the end of the steps
1 and 2.

3. Applying rebuilt tools

Step 3 is intended to justify any subset of the universe in terms of partial
approximation of sets based on rebuilt positive and negative tools as usual.

8 Conclusion and Future Work

In this article, first, we have proposed a general set theoretic approximation
framework. We have pointed out that the classic Pawlakian rough set theory
can be treated in a natural way within it. Next, we have presented a special
approximation scheme based on the partial covering of the universe which can
also be treated naturally within the same framework. We have cleared up which
conditions have to be satisfied by the novel upper and lower approximations so
that they form a regular or partial Galois connection.

Further researches are planned in two directions. On the one hand, the gran-
ular property of definable sets is a strict requirement. It seems to be worth to
investigate what would happen if we relaxed this requirement in diverse ways.
Another research direction is to apply rough set and/or partial approximation
idea to membrane computing. However, membrane computing works with mul-
tisets, and so first of all, an adequate approximation framework for multisets has
to be worked out.
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(eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 319–328.
Springer, Heidelberg (2008)

9. Yao, Y., Chen, Y.: Rough Set Approximations in Formal Concept Analysis. In:
Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100,
pp. 285–305. Springer, Heidelberg (2006)

10. Yao, Y.Y.: On Generalizing Rough Set Theory. In: Wang, G., Liu, Q., Yao, Y.,
Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 44–51. Springer,
Heidelberg (2003)

11. Rasiowa, H., Skowron, A.: Rough Concept Logic. In: Skowron, A. (ed.) SCT 1984.
LNCS, vol. 208, pp. 288–297. Springer, Heidelberg (1985)

12. Rasiowa, H., Skowron, A.: Approximation logic. In: Bibel, W., Jantke, K.P. (eds.)
Mathematical Methods of Specification and Synthesis of Software Systems. Math-
ematical Research, vol. 31, pp. 123–139. Akademie Verlag, Berlin (1985)

13. Yao, Y.Y., Lin, T.Y.: Generalization of rough sets using modal logics. Intelligent
Automation and Soft Computing, An International Journal 2, 103–120 (1996)

14. Orlowska, E.S.: Logic of vague concepts. Bulletin of the Section of Logic 11(3-4),
115–126 (1982)



Approximation of Sets Based on Partial Covering 215

15. Orlowska, E.: Algebraic Aspects of the Relational Knowledge Representation:
Modal Relation Algebras. In: Pearce, D., Wansing, H. (eds.) All-Berlin 1990.
LNCS, vol. 619, pp. 1–22. Springer, Heidelberg (1992)

16. Balbiani, P., Iliev, P., Vakarelov, D.: A modal logic for Pawlak’s approximation
spaces with rough cardinality n. Fundam. Inform. 83(4), 451–464 (2008)

17. Vakarelov, D.: A Modal Characterization of Indiscernibility and Similarity Rela-
tions in Pawlak’s Information Systems. In: Śl ↪ezak, D., Wang, G., Szczuka, M.S.,
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28. S�lowiński, R., Vanderpooten, D.: Similarity relation as a basis for rough approxi-
mations. In: Wang, P. (ed.) Advances in Machine Intelligence and Soft-Computing,
vol. IV, pp. 17–33. Duke University Press, Durham (1997)

29. Nieminen, J.: Rough tolerance equality. Fundamenta Informaticae 11, 289–294
(1988)

30. Marcus, S.: Tolerance rough sets, C̆ech topology, learning processes. Bulletin of
the Polish Academy of Sciences, Technical Sciences 42(3), 471–478 (1994)

31. Järvinen, J.: Lattice Theory for Rough Sets. In: Peters, J.F., Skowron, A.,
Düntsch, I., Grzyma�la-Busse, J.W., Or�lowska, E., Polkowski, L. (eds.) Trans-
actions on Rough Sets VI. LNCS, vol. 4374, pp. 400–498. Springer, Heidelberg
(2007)

32. Zhu, W.: Relationship between generalized rough sets based on binary relation
and covering. Information Sciences 179(3), 210–225 (2009)



216 Z.E. Csajbók
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83. Miné, A.: Weakly Relational Numerical Abstract Domains. PhD thesis, École
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86. Csajbók, Z.: On the partial approximation of sets. Acta Medicinae et Sociolog-
ica 2(2), 143–152 (2011)

87. Salomaa, A.: Computation and automata. In: Encyclopedia of Mathematics and
its Applications, vol. 25. Cambridge University Press, New York (1985)

88. Stadler, P.F., Stadler, B.M.R.: Genotype phenotype maps. Biological Theory 3,
268–279 (2006)

89. Zhu, W., Wang, F.Y.: Reduction and axiomization of covering generalized rough
sets. Information Sciences 152(1), 217–230 (2003)

90. Yang, T., Li, Q.: Reduction about approximation spaces of covering generalized
rough sets. International Journal of Approximate Reasoning 51(3), 335–345 (2010)
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Ecology and Botany of the Hungarian Academy of Sciences) (Vácrátót) and
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118. Lavrač, N., Džeroski, S.: Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood, New York (1994)

119. Proceedings of the International Multiconference on Computer Science and Infor-
mation Technology. In: IMCSIT 2009, Mragowo, Poland, October 12-14. Polskie
Towarzystwo Informatyczne - IEEE Computer Society Press (2009)



Author Index
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