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Preface

Multiscale modeling (MSM) has been a fundamental theoretical modeling
approach in several engineering disciplines including for example materials
engineering and fluid mechanics for many years, but the capacities of MSM have
increased tremendously over the past several years with the exponential growth in
computer power. In biomechanics and biomedical engineering, a multiscale model
typically represents several hierarchies in the structures of organs and tissues,
possibly down to cellular or even molecular scales, and there are links for
exchange of information between these different hierarchical scales. For example,
in a problem involving tissue loading, e.g., in musculoskeletal biomechanics there
will be different model scales to describe how loads are transferred between
organs, and then at the levels of tissue structures, and eventually at the level of
cellular structures such that it would be possible to connect between continuum-
scale mechanical loads and loads at the scale of individual cells. Moreover, with
the recent progress that was made in computational and systems biology it is now
possible to, e.g., assess the effects of such potential cell-level loads on their bio-
logical function, such as viability, synthesis of biomolecules, and events in a cell’s
life cycle. One particularly interesting problem that is often being addressed by
means of MSM is how mechanotransduction eventually shapes tissue function,
since it is now possible to connect computationally between phenomena that take
place at a cell-scale and those that affect whole-tissue behavior, and incorporate in
the modeling not only mechanics but also transport, thermodynamics, and
biochemistry.

The frontier of MSM methods and techniques in bioengineering research today
is described in this volume through contributions of internationally leading groups
in this field, from the UK, France, The Netherlands, Italy, Ireland, New Zealand,
and the United States. Biomedical engineers, medical physicists, applied mathe-
maticians, and computer scientists who are interested in the state-of-science and
current challenges in MSM should find this book very useful. Likewise, medical
researchers in fields such as orthopedics, cardiology and vascular surgery,
oncology and cancer research, respiration and pulmonary medicine, infections and
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wound healing, and others who wish to be updated about the technologies and
latest achievements in this exciting arena of research are also potential readers.
Faculty and graduate students as well as medical practitioners will be able to use
this volume for learning about the latest achievements and great promises that
MSM brings in to biomedical research.

Amit Gefen
Editor

Multiscale Computer Modeling in Biomechanics
and Biomedical Engineering

Series Editor
Studies in Mechanobiology, Tissue Engineering

and Biomaterials
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Part I
Connective Tissue



Application of Neural Network and Finite
Element Method for Multiscale Prediction
of Bone Fatigue Crack Growth
in Cancellous Bone

Ridha Hambli and Nour Hattab

Abstract Fatigue damage in bone in the form of microcracks results from the
repetitive loading of daily activities. It is well known that the resistance of bone at
the organ level to fatigue fracture is a function of its resistance to the initiation and
propagation of local microcracks at a mesoscopic scale which can lead to mac-
rocrack growth at the organ level. Multiscale investigation of the relationship
between the effect of the fatigue microcrack growth at microscopic scales and the
whole bone behaviour is a subject of great interest in the research field of the
biomechanics of human bone. Several finite element models (FE) have been
developed in recent years in order to provide better insight and description
regarding bone fatigue microcrack growth. Despite the progress in this field, there
is still a lack of models integrating multiscale approaches to assess the accumu-
lation of apparent fatigue microcracks in relation with trabecular architecture into
practical FE simulations. In this chapter, a trabecular bone multiscale model based
on FE simulation and neural network (NN) computation is presented to simulate
the accumulation of trabecular bone crack density and crack length at a given
trabecular bone site during cyclic loading. The FE calculation is performed at
macroscopic level and a trained NN incorporated into a FE code is employed as a
numerical device to perform the local mesoscopic computation (the behaviour law
needed to compute the outputs at mesoscale is substituted by the trained NN). The
input data for the NN are some trabecular morphological and material factors, the
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applied stress and cycle frequency. The output data are the average crack density
and length computed at a given trabecular bone site.

1 Introduction

Bone is a hierarchically organized material at different length scales. At the
macroscopic scale, it is composed of cortical or compact bone and trabecular or
cancellous bone (Fig. 1).

Bone strength strongly depends on the trabecular structure of the bone, which
can be assessed by changes in its morphological and mechanical properties over
time [15, 23, 36, 49]. In general, modelling the trabecular bone behaviour must
address changes in its structure, at multiple levels, allowing for a more accurate
description of the bone tissue. This process occurs hierarchically at different
spatio-temporal scales and involves interacting phenomena (deformation, damage,
adaptation, etc.) [15, 23, 36, 49]. In particular, the adaptation of trabecular bone to
cyclic fatigue loads involves a complex physiological response that is targeted to
local sites of damage. Fatigue damage in bone results from the repetitive loading
of daily activities in the form of microcracks with an average crack length of about
100 lm [46] and diffusely damaged areas. Such alterations are relevant for can-
cellous bone with high metabolic activity and numerous bone quality changes [16,
30]. Physically, fatigue microcracks at the mesoscale are assessed by crack density
(Cr.Dn) and crack length (Cr.Le) [14]. Assessment of the hierarchical effect of the
Cr.Dn and Cr.Le accumulation within trabecular bone on the whole bone (organ)
quality is of major biological and clinical importance for the investigation of bone
diseases, fractures and their treatment. The effect of damage microcracks on the
mechanical properties of bone is complex since a crack can affect the mechanical
properties of the surrounding matrix, it can act as a local stress riser, and it can
further exacerbate the heterogeneous and anisotropic character of bone [40].
Moreover, evidence that fatigue damage decreases bone organ quality, increases
fracture susceptibility, and serves as a remodeling stimulus motivates the devel-
opment of numerical multiscale modeling approaches. Most theoretical and
numerical studies of bone damage evolution at the macroscopic level have focused
on the development of continuum approaches in which the total damage is a scalar
quantity defined either as the normalized number of cycles (D = f(N/Nf)) or in
terms of the changes in elastic modulus and residual strain during life [4, 22, 23,
32, 43, 47]. However, these approaches ignore the fact that the physical damage in
bone at the trabecular level takes the form of Cr.Dn and Cr.Le non-linear
accumulation.

Fracture mechanics laws have also been applied to investigate crack growth in
bone. Taylor and Lee [46] developed a theoretical model to predict fatigue damage
and failure in bone based on simulation of the growth of every crack in a piece of
bone material. The limitation of fracture mechanics based approaches is that it is
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very difficult to predict the behaviour of every crack explicitly in a large popu-
lation of cracks, such as will occur in a typical piece of bone. In such cases the
model must consider the difference in crack locations, sizes, lengths, distribution
and loading conditions.

Existing homogenization theories can be applied in multiscale analysis to assess
the effective properties of a hierarchical material. However, in the non-linear case
it is generally necessary to perform numerical calculation at each iteration for each
structural level, due to the fact that at the micro-level, the homogeneous compo-
nents may change their mechanical behaviour, depending on the stress level
(fracturing, yielding, damage, etc.). This approach becomes expensive in order to
obtain the effective outputs for a global FE model. A more realistic modelling of
physical Cr.Dn and Cr.Le growth within bone must include a multiscale approach
to describe microcrack accumulation from the trabecular level (mesoscopic) to the
whole femur (macroscopic).

Despite progress in the field of bone fatigue modelling, there is still a lack of
models integrating Cr.Dn and Cr.Le accumulation into practical numerical simu-
lation. In the last few years, artificial neural networks (NN) have been used in
many engineering applications as a tool for multiscale analysis to couple models
on different spatial scales, to identify model parameters or to simulate the material
itself. In this paper, a rapid multiscale approach for the simulation of trabecular
bone Cr.Dn and Cr.Le accumulation using hybrid FE analysis and a NN (FENN)
method is developed. The input data for the NN are the applied apparent stress, the
number of cycles, the bone volume fraction (BV=TV), the ash density and the
apparent elastic modulus. The output data are the averaged Cr.Dn and Cr.Le at a
specific bone site. First, we show that with a given number of numerical
experiments on a set of different trabecular bone samples, the Cr.Dn and Cr.Le

Fig. 1 Cross-section of human femur showing trabecular and cortical bone from http://
www.theodora.com/anatomy/the_femur.html
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accumulation can be assessed. Second, a trained NN is able to generalize the
acquired data. Third, the NN model can be incorporated into an FE multiscale
simulation procedure as a material formulation on the integration point level at
every FE iteration—e.g. the behaviour law needed to compute the outputs at the
mesoscale is substituted by the trained neural network.

The potential of the proposed FENN method is its ability to incorporate local
trabecular information with physical meaning at the continuum whole femur level.
This is beneficial for investigating for example the role of damage accumulation
on femoral neck fractures. The NN approach is beneficial if the numerical analysis
of the complex model is time-consuming or even unfeasible [3, 17, 21, 33, 44].
A further advantage of the method is that the training data can be directly extracted
from experimental data. The development of a multiscale procedure coupling FE
and NN computation is also motivated by the need in the field of bone biome-
chanics for an efficient coupling between scales in a multiscale approach for bone
analysis. Such detailed numerical simulations on the mesoscale can capture many
of the relevant bone features. Performing FE analysis at the entire femur level with
its trabecular architecture generates a complete mesh composed of some millions
of FE which requires a huge computational time.

2 Hybrid Finite Element and Neural Network
Multiscale Concept

The proposed hybrid FENN method is a simulation procedure to link multiscale
simulations. From a numerical point of view, the macro scale passes information to
the mesoscale in the form of macroscopic variables and boundary conditions
obtained at each FE of the mesh after solving the macroscopic analysis using FE
simulation. At the mesoscopic scale, the local boundary conditions (derived from
the macro FE results) are applied to the mesoscopic bone model and the trained
NN allows for the rapid computation of the meso model responses. And finally, the
mesoscale passes information to the macroscale in the form of averaged updated
outputs (Cr.Dn and Cr.Le) (Fig. 2). Changes in the material distribution of the
continuum model will have an effect on the stress/strain field, thus affecting the
mechanical state of the bone in the subsequent iteration. At the completion of
every iteration, a new FE analysis is performed to update the Cr.Dn and Cr.Le
distribution in the continuum model at the macro level. The proposed methodology
follows this iterative procedure until convergence is achieved.

From a practical point of view, the following five steps summarize the appli-
cation of the proposed FENN approach (Fig. 3):

6 R. Hambli and N. Hattab



(i) Performing suitable numerical experiments to simulate fatigue damage accu-
mulation of different 3D micro-CT trabecular bone specimens taken from
different human proximal femurs for different combinations of loading
conditions.

(ii) Averaging the sample outputs in terms of Cr.Dn and Cr.Le accumulation.
(iii) Steps (i) and (ii) supply training data in the form of an inputs–outputs patterns

table for NN training.
(iv) Training the neural network based on the results of step (iii).
(v) Incorporation of the NN into the macro FE model to link meso-to-macro

scales.

NN computation: 
Compute outputs at every integration point  
of the mesh. 

Meso-to-macro: 
Transfer Cr.Dn and Cr.Le to 
every  integration point F

Macro-to-meso: 
FE simulation to 
obtain the local BC at 
every integration point. 

Fig. 2 Multiscale hierarchical FENN approach for bone and Meso-to-macro transition: the NN
is incorporated into the FE code Abaqus via the routine UMAT. During the FE calculation at the
macro level, the NN is called at every integration point to compute the averaged Cr.Dn and Cr.Le
outputs representing the local trabecular bone architecture

Application of Neural Network and Finite Element Method 7



3 Neural Network for Approximation and Interpolation

NNs have recently been widely used for the analysis of an increasing number of
problems in science and technology [17–21, 23, 28, 33, 48, 51, 53]. NNs can be used
for the mapping of input to output data without knowing ‘‘a priori’’ the relationship
between the data. One of the distinct characteristics of the NN is its ability to learn
and generalize from experience and examples and to adapt to changing situations.
Once the NN has been satisfactorily trained and tested, it is able to generalize rules
and will be able to respond very rapidly (a few seconds) to input data to predict the
required output, within the domain covered by the training examples [27, 29, 44]. NN
architecture is composed of an input layer, a certain number of hidden layers and an
output layer in forward connections (Fig. 4). Each neuron in the input layer repre-
sents a single input parameter. These values are directly transmitted to the subsequent
neurons of the hidden layers. The neurons of the last layer represent the NN outputs
[18, 27, 29].

The output ym
i of a neuron i in a layer m is calculated as [18, 29, 44]:

ym
i ¼ f vm

i

� �
ð1Þ

(i) FE fatigue cracks simulations of 
different trabecular bone specimens for 
different combinations of loading inputs. 

(v) Incorporation of the NN into macro FE 
model to link meso-to-macro scales. 

Equations (7 and 8) 

Preparation of Design of Experiment table 
based on steps (i) and (ii).  

Application of in-house NN code (Hambli et 
al.,2009b).

Implemented into Abaqus code using UMAT 
subroutine. 

(ii) Averaging the specimens outputs 
(Crack.Dn and Cr.Le). 

) Training data preparation for the NN. 
Steps (i) and (ii) supply training data  
in the form of a inputs-outputs patterns. 

(iv) Training the NN: Building the 
architecture of NN. 

(iii

Fig. 3 Building and incorporation of the trained NN in FE code in five steps (i)–(v). The
interdependencies of steps (i)–(v) is expressed in terms of cascades of step execution sequences

8 R. Hambli and N. Hattab



vm
i ¼

XL

j¼1

wm�1
ji ym�1

j þ bm
i ð2Þ

where f is the activation function, L is the number of connections to the previous
layer, wm�1

ji corresponds to the weights of each connection and bm
i is the bias, which

represents the constant part in the activation function.
From among activation functions the sigmoid (logistic) function is the one most

usually employed in NN applications. It is given by:

f vm
i

� �
¼ 1

1þ exp �h vm
ið Þ ð3Þ

where h is a parameter defining the slope of the function.
It has been reported that the h parameter influences the speed of NN learning

and that the optimal value of the slope parameter is problem-dependent [29, 44].
Nevertheless, a constant value of the h parameter of 1 (h ¼ 1) is generally applied
[17, 29, 44].

3.1 Training Algorithm

The training process in the NN involves presenting a set of examples (input
patterns) with known outputs (target output). The system adjusts the weights wm�1

ji

of the internal connections to minimize errors between the network output and

Fig. 4 Neural network architecture composed of input, hidden and output layers
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target output. The knowledge is represented and stored by the strength (weights) of
the connections between the neurons [29, 44].

There are several algorithms in a NN and the one which was used here is the
back-propagation (BP) Levenberg–Marquardt training algorithm. The BP algo-
rithm is an iterative gradient algorithm designed to compute the connection
weights by minimizing the total mean-square error between the actual output of
the multi-layer network and the desired output. In particular, at the beginning, the
weights are chosen randomly and the rule consists of a comparison of the known
and desired output value with the calculated output value by means of the current
set of weights and thresholds.

The learning algorithm can be summarized as follows:

Step 1. Select the learning rate g ¼ 0:1 and momentum coefficient a ¼ 0:1:
Step 2. Take a group of random numbers within (-1, 1) as the initial values of the
weights wm�1

ji .
Step 3. Compute the outputs of all neurons layer by layer, starting with the input
layer using Eqs. (1)–(3).
Step 4. Compute the system mean square error by:

E ¼ 1
2

XP

i¼1

Di � yið Þ2 ð4Þ

where yi is the actual output of the ith output node while Di is the corresponding
desired output. P denotes the number of output nodes.
Step 5. If E is small enough or the learning iteration is too high, stop learning.
Step 6. Compute the learning errors for every neuron layer by layer:

dm ¼ Dm � ymð Þ vm ð5Þ

Step 7. Update the weights along the negative gradient of the error E:

wji t þ 1ð Þ ¼ wji tð Þ þ g di yj þ a wji tð Þ � wji t � 1ð Þ
� �

ð6Þ

Step 8. Repeat by going to Step 3.

In the present work, an in-house NN program called Neuromod written in Fortran
[17, 21] was developed to perform the training and the prediction. Neuromod
includes a module which allows for the automatic selection of the best architecture of
the network based on the following steps:

• Select an initial configuration (typically, one hidden layer with the number of
hidden units set to half the sum of the number of input and output factors.

• Iteratively, conduct a number of calculations with each configuration, retaining
the best network (in terms of verification error) found.

• On each calculation, if under-learning occurs (the network does not achieve an
acceptable performance level) try adding more neurons to the hidden layer(s). If

10 R. Hambli and N. Hattab



this does not help, try adding an extra hidden layer. If over-learning occurs
(verification error starts to rise) try removing hidden units (and possibly layers).

In the present work, the selected architecture is based on double hidden layers
with five neurons of each layer with a learning rate factor g ¼ 0:01 and momentum
coefficient a ¼ 0:01 (Fig. 5).

3.2 Trabecular Bone Specimens for Training

Fracture in trabecular bone is a complex process that depends strongly on the volume
fraction (the relative fraction of bone tissue vs. void space), the architecture (the
geometrical arrangement of the bone tissue, connectivity, and mean trabeculae
thickness), the mechanical properties of the bone tissue, and the applied loads. For a
realistic application of the multiscale approach proposed, different trabecular spec-
imens must be used and trained to cover the morphological ranges of the whole
trabecular zone of the proximal femur (lowest and highest porosities and densities).
From a biological perspective every bone site has a different morphology. Therefore,
different samples must be used to capture a realistic human proximal femur mor-
phology. In the current study 23 cylindrical cores (7.04 mm in diameter and
5.5–10 mm long) from fresh-frozen elderly human proximal femur (n = 12) and
greater trochanter (n = 11) trabecular bone were harvested from eleven males
(50–94 years old) (n = 12). All the specimens were machined such that the main
trabecular orientation was aligned with the axis of the core [37]. None of the donors
had a history of metabolic bone disease or cancer. Fifteen samples were used to
generate training data for the NN and eight samples were kept (not used in the
training phase) to validate the previously trained NN (comparison between FE and
NN predicted results). The 23 specimens were scanned using micro-computed
tomography using the Skyscan 1072 system at an approximate spatial resolution of

Inputs 

Outputs 

Cr.Dn & 
Cr.Le 

Apparent stress

Cycle number

BV/TV

Apparent 
density

Apparent 
Young’s modulus

Fig. 5 Neural network architecture composed of input, hidden and output layers
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20 lm (microarchitectural information is given in Table 1). Some representative
images from different anatomic sites are shown in Fig. 6.

The digital image-based modeling technique using micro-CT (Skyscan 1072
system) and voxel FE at 20 lm voxel sizes were used to simulate the fatigue
behaviour of the trabecular samples under varying cyclic compressive stresses.
Despite the small size of the bone samples, the model satisfied the continuum
assumption for trabecular bone (i.e. at least five intertrabecular lengths in size) [24].

3.3 Factors Affecting the Fatigue Damage Accumulation in Bone

Several factors can affect the evolution of Cr.Dn and Cr.Le within trabecular bone.
These factors include the trabecular bone architectural parameters (BV=TV , SMI,
porosity, Tb.N, Tb.Sp, Tb.Th, …), bone material parameters (elastic modulus,

Table 1 Distribution and microarchitectural information of specimens by anatomic site, FN
femoral neck, GT greater trochanter

Training/
validation

Age Anatomic
site

BV=TV
(%)

SMI Ash density
(g/cm3)

Apparent Young’s
modulus (MPa)

T 64 GT 12.612 1.41361 0.178 404
V 88 FN 15.560 1.18315 0.296 694
T 92 GT 16.956 1.25774 0.322 867
T 74 FN 17.420 0.89504 0.331 929
T 84 GT 17.620 0.69379 0.335 957
V 89 GT 17.715 0.54028 0.337 970
T 92 FN 18.225 0.89345 0.346 1044
T 91 FN 18.532 1.03561 0.352 1090
T 86 FN 18.562 1.0013 0.353 1095
V 94 GT 19.330 1.05269 0.367 1215
T 95 GT 20.348 0.90966 0.387 1387
T 84 FN 23.048 0.8242 0.438 1913
T 98 GT 23.682 0.42063 0.450 2052
V 82 FN 25.035 0.95246 0.476 2368
T 90 GT 26.200 0.78813 0.498 2663
T 68 GT 27.266 0.90167 0.518 2952
V 84 GT 28.988 0.97644 0.551 3457
T 50 GT 30.410 0.56246 0.578 3912
T 51 FN 31.019 0.44852 0.589 4117
V 61 FN 33.330 0.32045 0.633 4956
T 86 FN 34.232 0.22346 0.650 5309
V – FN 39.482 0.15987 0.750 7672
T 88 FN 56.347 0.09023 1.071 13206

Fifteen specimens were used for training (T) and eight specimens were kept for validation (V).
SMI structure model index

12 R. Hambli and N. Hattab



mineralization, collagen cross links, …), loading parameters (stress, frequency),
biological parameters (Ca, hormones, …) and the environment (age, gender, risk
factors, drugs, …). For a given trabecular site (a given morphology), it is more
important and more useful to consider the stress applied in the long term because
the processes by which living bones can repair cracks, and adapt their shape
respond generally to altered stress levels [4, 52]. In the current investigation, five
factors were selected to develop the NN model.

Three bone relevant morphological and material factors (Table 1):

Fig. 6 Example of harvested representative trabecular cores from different anatomic sites of a
human femur
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(i) the bone volume fraction (BV=TV),
(ii) the ash density,
(iii) the apparent elastic modulus.

and two loading factors:

(iv) the applied apparent stress amplitude,
(v) the number of cycles.

The outputs are Cr.Dn (#/mm3) and Cr.Le (lm/mm3). This set of outputs
represents one of the main fatigue damage parameters observed [4, 36, 50].

Five values for each factor were selected, generating full factorial combinations
of the inputs (5� 5) applied to the 15 training specimens. Hence, 375 (5� 5� 15)
micro-CT FE simulations were performed on the 15 specimens with a total
computation time of about 350 h on a 64 GB dual-core computer to study the
effect of each input combination on every trabecular bone specimen.

The stress training values applied were based on a previously established
relation between volume fraction and the maximum stress measured in a mono-
tonic strength experiment [45]. The lower stress amplitude was chosen to be 10 %
of the ultimate stress (ru) while the upper stresses were assigned to four different
amplitudes, varying from 20 to 90 % of the ultimate stress. In addition, reported
S–N curves for human cancellous and cortical bone matrix show that the cycles to
failure vary from 1.e1 to 1.e7 [7, 45]. Based on these results, five cycle values were
used here to train the NN, ranging from 1.e1 to 1.e7 (Table 2).

The training data for the NN were extracted by homogenization from results of
FE simulations performed on 15 specimens. Eight specimens were not used to
prepare the training data but were kept to check the validity of the previously
trained NN (NN prediction first on the 15 training specimens followed by FE
predictions (using the 8 remaining specimens).

4 Finite Element Modeling Approaches

Two FE models were applied in the current investigation:

(i) Meso FE model needed to generate virtual data for the NN training based on
different trabecular specimen simulations coupled to fatigue damage.

Table 2 Loading factors levels used to perform FE simulation on 15 specimens (Table 1)

Loading inputs Level Values

Number of cycles 5 1.e1, 1.e3, 1.e4, 1.e5, 1.e7

Applied apparent stress (MPa) 5 25, 50, 70, 90, 110

The results of FE simulation were used as training data for the NN
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(ii) Macro FE coupled with the NN (FENN) model used to perform the multiscale
prediction incorporating the NN to describe the whole femur behaviour.
Damage effects were not explicitly considered in the macro FE analysis. At
this level, damage is described implicitly during the local NN computation and
fatigue damage outputs are passed back to the macro model.

4.1 Virtual Testing: Micro-CT Based Finite Element Simulation
of Trabecular Bone Fatigue

Available experimental and/or numerical data are necessary to train the NN. This
section presents the numerical tests applied to investigate the accumulation of
fatigue cracks in trabecular bone samples. To prepare the training data for the NN,
the analysis was divided into two separate problems: (i) macroscale FE analyses
were performed on a human proximal femur to determine the boundary conditions
(stress amplitude) applied at every FE of the mesh during one-legged stance for
different frequencies; (ii) the results of the macroscale FE analysis were used to
define the local applied boundary conditions on the micro-CT voxel FE models of
trabecular bone specimens.

The average Cr.Dn and Cr.Le accumulation of every trabecular bone specimen
at every cycle were computed using:

Cr:Dn ¼ 1
VS

Z

VS

nbedV ð7Þ

Cr:Le ¼ 1
VS

Z

VS

LbedV ð8Þ

where nbe, Lbe and VS denote respectively the number of broken elements, the
length of broken elements, and the apparent sample volume.

Several micro-CT based models of trabecular bone have been developed based
on Continuum Damage Mechanics (CDM) [18, 22, 32, 47]. CDM can be used to
monitor the damaging process, as a result of cyclic loading up to the time of the
appearance of cracks [6, 34]. In this case, the trabecular bone tissue was modelled
as a non-linear elastic isotropic behaviour law coupled to fatigue damage given by:

rij ¼ ð1� DÞEl
ijklekl ð9Þ

where D is the isotropic damage variable at tissue level and El
ijkl is the local (meso)

isotropic elasticity stiffness tensor.
When dealing with loading histories composed of well-defined discrete cycles,

an evolution law in terms of the number of cycles and their amplitudes is often
considered more practical in the literature. Such a cycle-based formulation can be
obtained in the form of [6]:
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oD

oN
¼ f

N

Nf

 !

ð10Þ

where Nf denotes the cycle at failure.
For high cycle fatigue under purely elastic strain it is possible to apply Chab-

oche’s model expressed by [6]:

oD ¼ 1� 1� Dð Þbþ1
h ik reqM � �r

M 1� Dð Þ

� �b

oN ð11Þ

where k is a parameter depending mainly on the loading conditions given by:

k ¼ 1� g
reqM þ reqm � 2rD

2ru � reqM þ reqm

* +

ð12Þ

g, b and M are material parameters which can be obtained from experimental
fatigue tests from S–N curves [6].

reqM , reqm, rD and ru are respectively the equivalent maximum peak stress, the
equivalent minimum peak stress, the fatigue limit and the ultimate stress.

Operator . . .h i denotes xh i ¼ x if x� 0 and xh i ¼ 0 if x\0.
Integration of Eq. (11) leads to the Chaboche model expressed by [6]:

D ¼ 1� 1� N

Nf

 ! 1
1�a

2

4

3

5

1
1þb

ð13Þ

Furthermore, to distinguish between the differences in fatigue accumulation in
tension and compression in bone [36, 42], the cycle at failure Nf can be computed
using the experimental results of Martin et al. [36]:

Nc
f ¼ 1:479� 10�21 De�10:3 for compressive loads ð14Þ

Nt
f ¼ 3:630� 10�32 De�14:1 for tensile loads ð15Þ

where De is the amplitude of applied microstrain.
The material properties for bone used for the simulation are given in Table 4.
A practical and sufficiently accurate way to represent fracture propagation at

continuum level is the so-called ‘‘kill element’’ technique. When the damage
parameter reaches its critical value Dc inside an element, its stiffness matrix is set
to zero, leading to the redistribution of the stress state in the vicinity of the
fractured zone (crack initiation). Once a crack is initiated, the propagation
direction is simulated by the propagation of the broken elements of the mesh. At
continuum level, the local critical damage value in tension is generally equal to 1
(DT

c � 1:0) [42, 54]. To avoid numerical convergence problems, the critical
damage value at fracture was set to DT

c ¼ 0:95. When the kill element method is
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used in a compressive region, it is necessary to model the self-contact in the gap
created the element removal. The alternative is to keep the elements, but to reduce
their stiffness to a low, but not null value. In compression, the critical damage
value at fracture was set to DC

c ¼ 0:5 [19, 20]. The kill element technique was
implemented into Abaqus/Standard via the user subroutine UMAT.

With the concept of CDM, there is no difference between crack initiation and
propagation. Both result from the failure of an element with a characteristic
dimension (typical size of a crack). Thus, crack initiation and propagation are
studied in a unified approach [6, 34]. Moreover, the CDM has no intrinsic material
characteristic length in the constitutive law which leads to mesh size dependence
results i.e. the crack growth depends on the FE mesh size. The average crack
lengths found in bones are typically 100 lm [4, 46]. In the present work, this size
corresponds to the mesh characteristic length at trabeculae level of about five finite
elements (20 lm/element). Hence, to prevent mesh dependence that generally
affects the damage propagation rate, numerical fatigue fracture occurs when the
damage value reaches a critical value at a set of five serial broken elements
(a crack length of about 100 lm). Concerning the whole specimen in the case of
compressive cyclic tests, the definition of the apparent critical damage value at
failure (Da

c) is rather arbitrary, varying between 0.1 and 0.5 [2, 45]. In this study,
the apparent failure criterion was set to Da

c ¼ 0:4 [45].
A major drawback of cumulative damage models is the computational cost

associated with modeling every loading cycle. In order to reduce the computation
time, the integration of the damage growth rate was based on the cycle blocks
approach. In this case, the real cycle number is reduced (divided) into equivalent
cycle blocks. Damage accumulation is computed over the cycle blocks and
extrapolated over the real corresponding cycles.

Within the framework of the cycle blocks approach, fatigue damage evolution
can be obtained by:

Dnþp ¼ Dn þ DD ð16Þ

where Dnþp is the damage at iteration n ? p where p denotes the number of
cycles in one block set, Dn is the damage at iteration n and DD is the damage
increment computed for one jump of p cycles. Further, to compute the damage at
every cycle, it is possible to extrapolate the damage state using:

Dnþ1 ¼ Dn þ
DD

p
ð17Þ

To ensure convergence of the Newton–Raphson iterations of the numerical
calculation and to avoid discontinuities in the responses (NN computation), the
compressive stress applied was decomposed into several increments. In this way,
for all these increments an equilibrium solution of the system was found.
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4.2 Finite Element Simulation of Proximal Femur
Elastic Behaviour

In the current study, the application of the multiscale FENN method was restricted
to the trabecular bone only. Nevertheless, the FENN method can be extended to
describe the multiscale fatigue crack accumulation process of cortical bone.

Trabeculae are composed of lamellae, lacunae, canaliculi and cement lines. The
lamellae are arranged longitudinally along the trabeculae within trabecular pack-
ets. Hence, trabecular bone exhibits anisotropic behaviour and its average (tra-
beculae level) properties depend on its microstructure. Since the investigation
scale of the present study corresponds to one or some trabeculae, it can be con-
sidered that the bone behaviour is purely elastic coupled to damage with isotropic
average properties from the nanoscale level.

At the macroscopic level model (whole proximal femur), fatigue damage was
not accounted for. Its coupling effect was considered in the mesoscopic formu-
lation at the trabecular level.

The behaviour law for cortical and cancellous bone at the macro (apparent)
level is expressed by:

rij ¼ Ea
ijklekl ð18Þ

where rij is the stress, ekl is the strain and Ea
ijkl is the apparent (macro) isotropic

elasticity stiffness tensor.
The transition from the mesoscale to the macroscale is accomplished by

employing the trained NN. The mesoscale model (NN) able to predict detailed
responses was incorporated into the macroscale model as a material formulation on
the integration point level at every FE iteration—e.g. the behaviour law needed to
compute the outputs at the mesoscale was substituted by the trained NN (Fig. 2).
The NN model was incorporated into the Abaqus FE code via the user routine
UMAT to link the meso and the macro scales.

5 Multiscale Simulation of 3D Proximal Femur Fatigue
Crack Accumulation

To apply the proposed hybrid FENN method, a proximal femur (male, age = 77)
was imaged using the quantitative computed tomography (QCT) technique. The
3D FE mesh was generated from the reconstructed QCT images using 66680
tetrahedral elements (Fig. 7). Individual conversion of Hounsfield units (HU) to
equivalent ash density (qashðg=cm3Þ) was performed based on the relation [11]:

qash ¼ �9 � 10�3 þ 7 � 10�4HU ð19Þ
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In the current work, 23 trabecular specimens with varying characteristics were
selected to be assigned to different locations of the trabecular region of the
proximal femur based on a partitioning procedure defined by the interval of the
apparent density.

Fig. 7 Three-dimensional mesh of the proximal femur constructed using 66680 tetrahedral
elements

Fig. 8 Partitioned proximal femur with 23 discrete groups of bone volume fraction (BV=TV).
The result was obtained using Eqs. (19) and (21) with qt ¼ 2:31 g=cm3
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The mean HU number of each element was averaged from the values of the
voxels it contained. The proximal femur was then partitioned into 23 regions with
different values of ash density (23 discrete material groups with an iso-value of
density for each group, thus approximating a continuous distribution) (Fig. 8).
Subsequently, the bone volume fraction (BV=TV) and isotropic elastic modulus
(E ) were calculated from qash based on previously published relations.

The Young’s modulus is expressed by [11]:

E MPað Þ ¼ 14664 q 1:49
ash ð20Þ

The bone volume fraction (BV=TV) was calculated using the relationship [25]:

BV=TV ¼ qash

qt
ð21Þ

where qt is the true tissue density which can be expressed by [25]:

qt � 1:41þ 1:29 a ð22Þ

a is the ash function (a ¼ 0 for osteoid and a ¼ 0:7 for fully mineralized bone).
The dry tissue densities corresponding to these ash fraction values are 1:41 and
2:31 g=cm3 respectively [35].

To illustrate the capabilities of the FENN multiscale method, the fatigue pro-
cess of the 3D proximal femur was performed. The daily loading history was
simulated consisting of joint reaction and abductor muscle forces similar to those
proposed by Carter et al. [5] for normal activity (Fig. 9).

The model was run in alternating applied loads and unload (F = 0 N) during
1.E5 cycles with a number of cycles in one block set (P ¼ 500) (200 computation

1 
3 2 

1 
3 

2 

Joint forces 
   Single-leg stance (1)
   Abduction (2)
   Abduction (3)
Abductor muscle 
forces 
   Single-leg stance (1)
   Abduction (2)
   Abduction (3)

Fig. 9 Three-dimensional FE model of the femur and boundary conditions
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loops), a fixed number of cycles per day and a fixed orientation (Table 3). The
transition from the mesoscale to the macroscale was accomplished by employing
the trained NN. The total computation time using the FENN model was about
40 min on 64 GB dual-core computer.

The material properties for bone used for the simulation are given in Table 4.

6 Results

6.1 Fatigue Cracks Within Trabecular Bone

Figure 10 shows an example of the fatigue damage contour after 1.E5 loading
cycles of the specimen (BV=TV ¼ 26:2 %) under excessive cyclic compressive
load (r ¼ 110 MPa). Fatigue damage distribution was found to be highly inho-
mogeneous across the specimen and only a small percentage of trabeculae are
cracked. The ‘‘kill element’’ technique was applied to predict the initiation and
growth of the induced fatigue cracks.

Table 3 Selected load conditions that simulate high loads during walking

Cycles/day Joint forces (N) Orientation (�) Abductor muscle forces (N) Orientation (�)

FP SP FP SP

12000 (1) 3244 24 6 (1) 984 28 15
4000 (2) 1621 -15 35 (2) 491 -8 9
4000 (3) 2167 56 -20 (3) 655 35 16

Orientation refers to the frontal (FP) and sagittal (SP) planes [5]

Table 4 Material properties for bone for the FEM simulation from Hambli [20]

Parameters Notation Trabecular
bone
(meso level)

Trabecular
bone
(macro level)

Cortical
bone

General parameters
Elastic modulus E (MPa) 10000 Eq. (20) Eq. (20)
Poisson ratio m 0.3 0.3 0.3
Bone density q (g/cm3) 1.2 Eq. (19) Eq. (19)
Damage law parameters
Fatigue parameter g 0.7 – –
Fatigue exponent b 0.4 – –
Ultimate stress ru (MPa) 120 – –
Fatigue limit rD (MPa) 50 – –
Critical damage value at fracture Dc 0.95 – –
Cycles N 1.E5 1.E5 1.E5
Number of cycles in one block set p 500 500
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In Fig. 11, an enlargement of the predicted fatigue damage contour is given and
compared with reported experimental results. Micro-CT images of trabecular bone
specimens were obtained at 10 lm resolution by Wang et al. [50] to measure the
fraction of damaged bone tissue and to capture localized regions of damage in
trabecular bone specimens (Fig. 11b).

The predicted damage was found to be located in a limited number of tra-
beculae at low apparent stress levels during the first cycle stage. It can be seen that
the predicted damage contour of Fig. 11a is qualitatively similar to the experi-
mental ones of Wang et al. [50]. Both results show that the damage is localized in
small areas of the bone. Such local damage generates local non-linearities. This is
in agreement with experiments by Dendorfer et al. [9]. The authors showed that

Fatigue 
damage 

crack initiation Crack 
propagation 

Complete 
trabecula 
fracture 

Fig. 10 Contour of fatigue damage within a trabecular bone specimen (cycle = 1.E5,
r ¼ 110 MPa, BV=TV ¼ 26:2 %). The enlargement shows the location of a fatigue crack and
its corresponding initiation and propagation process

22 R. Hambli and N. Hattab



accumulated residual and maximum strains within a trabecular bone specimen
generate strain concentrations followed by the formation of a fracture line through
the specimen. Martin et al. [36] reported that relatively small amounts of micro-
damage can cause significant reductions in the bone’s mechanical properties even
before the appearance of microcracks. Similar results were obtained with
numerical studies, which demonstrated that damage is visible below apparent
compressive yield strain and local tissue yielding initiates at low apparent stress
levels [38, 39]. The predicted fatigue damage of single trabeculae (Fig. 12a) lead
to a crack initiation and propagation (Fig. 12b) which appears to be local, in
agreement with experimental observations (Fig. 12c) [10].

After the training phase, the eight remaining trabecular bone samples were used
in order to check the validity of the NN prediction. First Cr.Dn and Cr.Le were
predicted with the NN and second, micro-CT FE fatigue simulations were per-
formed for verification. Figure 13a, b shows an example of Cr.Dn and Cr.Le
evolution versus cycles predicted by both the NN and the FE methods (specimen:
BV=TV ¼ 25:035 %). One can observe that the accumulation of cracks increases
rapidly during the first cycles, followed by a reduced rate of accumulation and an
accelerated growth rate prior to the specimen failure. Similar experimental results
on cortical bone were obtained by O’Brien et al. [41]. The shape of the Cr.Dn
accumulation can be explained by the following three stages: (i) strain localization
due to trabeculae shapes and interconnections during the early cycles; (ii) accu-
mulation of local residual strain leading to damage growth and (iii) final cata-
strophic rupture of the localized bone tissue which triggers the growth of one
macroscopic crack through the trabecular structure.

It can be seen that very good agreement is obtained between the two predictions.
An average coefficient of correlation of 0.9984 was found between the NN

(a) Predicted fatigue damage contour.            (b) measured  fraction of damaged bone tissue.

Fig. 11 a Enlargement showing the predicted contour of the fatigue damage. b Fraction of
damaged bone tissue and localization in trabecular specimens from Wang et al. [50]
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prediction and the FE one. The NN computation time was about 1 s. The FE
computation time was about 1 h (64 GB dual-core computer). The results indicate
that the NN model was able to predict rapidly and accurately the average Cr.Dn and
Cr.Le accumulation within trabecular bone under varying applied compressive
stress.

6.2 Fatigue Cracks Within a Proximal Femur
Organ: Multiscale Results

The previously trained NN was exploited as a tool to rapidly estimate the Cr.Dn and
Cr.Le accumulation at a given bone site for a human proximal femur. Since the
proposed NN model incorporates the modeling of the real scanned 3D trabecular
networks, stress concentration due to the trabecular shapes and connections can be

(c) Microcracks at trabeculae(a) Damage.
under fatigue test. 

Microcrack in a single trabecula  

(b) Crack propagation.

Fig. 12 Predicted fatigue damage (a) and cracking (b) of a single trabecula of a transversally
loaded trabecula; c SEM image of a fractured trabecula [10]

(a) (b)

Fig. 13 Comparison between NN Prediction and FE verification of Cr.Dn and Cr.Le
accumulation versus cycles. Example of sample (BV=TV ¼ 25:035 %) (Table 1). First, NN
prediction was performed. Second, FE verification was applied to check the validity of the NN.
a Crack density, b crack length
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expected to lead to more accurate prediction of damage accumulation, as suggested
by Cowin [8].

Figure 14 shows the contour of Cr.Dn after 1.E5 loading cycles obtained using
the proposed multiscale FENN approach. The trabecular bone specimen results are
averaged and passed back to the entire femur in the form of averaged Cr.Dn and
Cr.Le using the validated NN.

Observations of the Cr.Dn contour of the proximal femur reveal a very similar
distribution of BV=TV (Fig. 8). Keyak et al. [31] compared experimental fracture

Fig. 14 Averaged contour of Cr.Dn after 1.E5 loading cycles obtained using the proposed
multiscale FENN approach and corresponding Cr.Dn distribution on specific trabecular bone
specimens obtained by FE
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sites on radiographs of 18 specimens. They reported that the predicted fracture
sites were located in the sub-capital region in all specimens. FENN results pre-
dicted localized Cr.Dn in the femoral neck which is qualitatively in agreement
with possible fracture sites in femur necks [1, 12, 13].

In general, clinically available methods of estimating bone strength and the risk of
fracture of the femoral neck include bone densitometry or peripheral quantitative
computed tomography and imaging procedures. These techniques evaluate regional
bone density and morphology, which are partly related to fracture risk, but they are of
limited value for quantifying structural strength [12, 13]. The FENN method, which
incorporates results averaged from real scanned 3D trabecular bone cores using
micro-CT FE models, could possibly achieve rapid multiscale non-invasive and
precise clinical assessments of the strength of the proximal femur and possible sites
of fracture. Previous micro-CT FE models [10, 26] showed that microdamage ini-
tiation occurred prior to apparent yield at relatively low local principal strains in
compression. The authors suggested that local tissue yielding can in fact initiate at
very low apparent strains and that the apparent mechanical properties are degener-
ated through these localized effects. Morgan et al. [38] suggested that relatively small
amounts of microdamage have a major effect on the mechanical properties of bone.

Repetitive loading from everyday activities results in fatigue microdamage
accumulation leading to overall bone structural fragility. The histological evidence
indicates that fatigue damage occurs at the microstructural level (microcracks) and
at ultrastructural levels (diffuse damage) [50]. Bone microcracks resulting in the
disruption of osteocytic communication via the canalicular network may in fact be
an important stimulus providing spatial regulation of bone remodeling activity [8].
The balance between local remodeling and accumulation of trabecular bone fati-
gue microcracks is believed to play an important role in the maintenance of
skeletal integrity. However, the local mechanical parameters associated with the
initiation and propagation of fatigue microcracks are not well understood. Despite
the high clinical relevance of trabecular bone damage, the relationship between
local multiple microcracks and local stresses and strains at trabecular level is not
well understood. A quantitative assessment of trabecular level stresses and strains
associated with Cr.Dn and Cr.Le accumulation may provide insight into the
improvement of fracture risk assessment methods and bone repair simulations.

7 Summary and Conclusions

In this chapter, the focus was on the development and the implementation of a novel
multiscale approach referred to as the FENN method for crack density and crack
length accumulation in trabecular bone using finite element simulation and neural
network computation. The transition from mesoscale to macroscale is done by
means of the trained NN. The mesoscale model (NN) able to predict detailed
responses was incorporated into the macroscale model as a material formulation on
the integration point level at every FE iteration—e.g. the behaviour law needed to
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compute the outputs at mesoscale is substituted by the trained NN. The hierarchical
combination of trained NN (mesocale) and FE (macroscale) models for the
prediction of bone fatigue microcrack growth can be applied using other factors
(age, gender, drugs, …) integrating information extracted from available data and
experiments. The aim here was to illustrate the potential of the FENN method in the
field of bone biomechanics to incorporate local responses at continuum macroscopic
level both accurately and rapidly. Due to the restricted amount of clinical data, it was
very difficult to directly compare the proposed FENN numerical results to in vivo
experimental ones. Nevertheless, the results provide evidence for the capability of
the proposed FENN method to supply outputs of the fatigue microcrack behaviour of
trabecular bone. The FENN model advances current FE models by explicitly
describing the Cr.Dn and Cr.Le evolution under cyclic compressive loads and by the
rapid computation time (the NN approach was about 4.32e5 times faster than the FE
computation). Such a method can contribute toward the development of more
sophisticated multiscale FE models to predict the behaviour of living bone by
explicitly including the effects of fatigue crack influence.

The application of NN models is beneficial since a multilevel numerical
analysis of bone behaviour simulation is time-consuming. The complexity of the
NN is determined during training such that the minimal network is used that can
accurately represent the training data. However, despite the success of the pro-
posed hybrid FENN approach, certain limitations apply. First, for the sake of
simplification, the behaviour of the trabecular bone was considered to be isotropic
and fatigue data were obtained from published experimental results on human
vertebral trabecular bone. Since the scale of investigation of the present work
corresponds to one or some trabeculae, one can assume isotropic averaged prop-
erties from the nanoscale level. Alternatively, an anisotropic behaviour description
of trabecular bone tissue can be used to simulate the anisotropic fatigue damage
behaviour of bone. Furthermore, material anisotropy and fatigue data extracted
from the proximal femur can be assigned to the FE model. However, limited
experimental data are available to characterize such micromechanical properties of
trabecular bone. Third, the bone repair process resulting from bone remodeling
was not considered in the present study. Nevertheless, the overall structure of the
proposed multiscale FENN approach will remain unchanged. There will still be a
need to perform multiscale simulations to predict the accumulation of local fatigue
microcracks within the trabecular bone of human proximal femurs.
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Multiscale Approach to Understand
the Multiphysics Phenomena
in Bone Adaptation

Thibault Lemaire and Salah Naili

Abstract The ability of bone tissue to adapt itself to its physical environment is
the research focus of several teams all over the world. If the physical stimuli
playing a role in bone remodelling are often identified, how they act and are
converted into a cellular response is still an open question. The aim of this paper is,
in a first part, to propose an overview on the physical factors participating in the
bone remodelling process. In a second part, we present some recent developments
concerning the implications of hydro–electro-chemical couplings that could
modify the bone adaptation process. Since the phenomena that are involved in this
mechanism are related both to the mechanical solicitations of the tissue and the
physical phenomena in the vicinity of bone cells, different scales, from the organ
to the cell, should be considered to go deeper in its understanding. That is why a
multiscale strategy based on periodic homogenization has been carried out to
propagate the multiphysics description at the cellular scale toward the macroscopic
scale of the tissue. This multi-level approach is so adapted to connect macroscopic
physical information to microscopic phenomena, et vice versa. Thus, using con-
venient simulations, we have brought a new light on classical interrogations
dealing with bone adaptation. These five questions are: i. Can the sole hydro-
mechanical coupling describe the poro-mechanical behaviour of bone or should we
consider a modified Biot model including electro-chemical effects?; ii. Similarly,
is the classical Darcy law sufficient to describe the bone interstitial fluid flow?;
iii. What is the nature of the stress-induced electric potentials that can be measured
in vivo?; iv. What are the consequences of the electro-chemical couplings on the
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shear sensitivity of the osteocytes?; v. What are the consequences of the micro-
scopic physico-chemical properties of the bone microstructure on the mass
transport within the lacuno-canalicular system? Finally, from these simple
model-driven observations, we propose a new perspective to alter the current bone
adaptation paradigm.

1 Introduction

The mechano-transduction process consists of a chain of three main functions:
mechano-reception, mechano-transmission and mechano-activation. Whether they
are biological or more generally industrial, these functions make that some sys-
tems act as mechano-sensors and/or senso-actors. Thus, these systems are able to
gather and transmit information on their neighborhood and on themselves, mod-
ifying so their properties in response to various physico-chemical solicitations.

The living materials, which are intrinsically active systems, are typical adaptive
systems that may change their response in function of the context. Their activity
generates changes in mass, composition and shape. This phenomenon is called
remodelling.

As such bone tissue can sense, react and adapt itself to its environmental
vicinity. For instance, when submitted to a cycling loading generated by walking
activity, bone is able to change its morphology and its mechanical properties by
forming, respectively resorbing, bone matter in the high, respectively low, stress
zones. For instance, it is well known that the bone quality decreases during space
flight [22, 101].

Thus bone formation and resorption is the result of a series of events trans-
forming a physical information into a biological response. This process including
all the phenomena characterizing the bone cell ability to sense mechanical stimuli
and possibly to reply is called the mechano-transduction of bone remodelling. As
sketched in Fig. 1, the cycle of the mechano-transduction of bone remodelling can
be coarsely summarized as: a macroscopic external physical stimulus (i) is prop-
agated within the bone tissue (ii), and then sensed at the microscale by sensitive
cells (typically the osteocytes, OCY) (iii), that induce signals emission (iv) to
activate effector cells that will resorb (osteoclasts, OCL) old tissue and create
(osteoblasts, OBL) new one (v), thus modifying the macroscopic properties of the
organ (vi).

This adaptation results in the optimization of bone morphology to obtain the
best mechanical resistance using the minimum mineral quantity. This was already
postulated in the nineteenth century by the surgeon Julius Wolff [162]. The Wolff’s
law is part of the general trend in the biological community of the late nineteenth
century. This trend can be crystallized by the statement of Spencer: ‘‘Life is
definable as the continuous adjustment of internal relations to external relations’’
[145]. If this theory has been roughly checked thanks to experiments and clinical
observations, many avenues of research are still open [36, 137].
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In particular, the understanding of the transduction of physical signal is still in
debate [19]. The current trend consists in considering that the central role in the
mechano-reception is played by the osteocytes [18, 64, 66, 159].

These are bone cells embedded in the bone matrix volume. Their bodies are
located in ellipsoidal cavities of 10–30 lm called the lacunae. These lacunae are
connected thanks to canaliculi whose diameters are on the order of magnitude if
0:1 lm: Cytoplasmic osteocyte cell processes that develop from the cell body
occupy the central zone of the canaliculi so that the interstitial fluid pathway
roughly corresponds to an annular geometry. Thus, the stellar osteocytes form a
network in the bone volume and communicate one to the other through the gap
junctions. This particular configuration of the couple osteocytes/lacuno-canalicular
porosity (OCY/PLC) explains that it is often considered as the mechano-sensitive
organ of bone.

In summary, if it is commonly accepted that the effector cells are the osteoclasts
and osteoblasts and the mechano-sensitive cells are the osteocytes [92], the
understanding of the nature of the triggering signals for the different cellular
activities is much debated. The following section proposes a brief review of the
classical hypotheses related to the mechanism by which bone cells sense their
mechanical environment and initiate the deposition or resorption of bone tissue.

Fig. 1 Simplified chain of the mechano-transduction of bone remodelling (reproduced with
permission from [75])

Multiscale Approach to Understand the Multiphysics Phenomena 33



Notwithstanding the nature of these triggering signals, it appears that it is
correlated to the local hydro-mechanical state of the tissue and/or the cells vicinity.
The great difficulty in carrying out experimental investigations of in situ bone
poro-mechanical behaviour renders theoretical investigations crucial. In most of
the representations of bone remodelling, the mechanical stimuli acting on cells
(pressure, shear stress, drag forces, etc.) are calculated from the poro-elasticity
theory [15], which adopts intrinsically a macroscopic point of view [24]. These
mechanical inputs are then somehow downscaled and converted into biochemical
microscopic signals regulating the remodelling activity [1]. In this manner, the
nature of the incoming signals is thought to be purely mechanical. Moreover, the
microscopic phenomena are not directly involved since the fluid flow is quantified
by a macroscopic textural parameter, the hydraulic permeability. In other words,
even if involving microscopic biochemical signals, these modelling strategies
remain purely macroscopic.

In this contribution, we would like to emphasize recent developments that may
strongly modify the current bone mechano-sensation paradigm. Using a multiscale
strategy, we propose to investigate the multiphysics effects due to the physico-
chemical phenomena that occur at the microstructural scale of bone tissue. In
particular, we trace how the fluid-flow and mass transport models for mechano-
transduction should be changed by considering additional effects related to electro-
chemical couplings that characterize the cellular vicinity. Our strategy consists in
discussing, at both the macroscale and the microscale, the importance of the
multiphysical phenomena featuring in bone behaviour using physiologically-based
simulations. That is why, after having described the bone structure and the dif-
ferent physical stimuli that may affect its behaviour, the ingredients of our model
are introduced. Grounded on several former studies [57, 74–76, 84–86] invoking
the periodic homogenization method, a multiscale description linking the macro-
scopic and microscopic features is proposed. Then, some numerical examples are
presented to investigate the real implications of underlying electro-chemical
couplings in the bone remodelling signals expression. Even if their consequences
are not visible at the macroscale, these multiphysical effects could be significant at
the cellular scale and thus should be taken into account in new scenarios of bone
adaptation. To illustrate this, the discussion provides five model-driven examples
proving the necessity of creating a new paradigm in bone remodelling including
multiphysics considerations.

2 Some Basic Aspects in Bone Physiology

When aiming at understanding the complex mechanisms governing biological
systems, the in vivo insuperable problems quickly arise and make it very difficult
to progress without tremendous efforts. In the bone biology field, you have to be
prepared to move mountains when carrying out experiments intending at analyzing
the remodelling process. An alternative avenue of research could be the in silico
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method, which consists in mimicking bone dynamic behaviour at different scales.
Two main approaches develop in parallel: the first one treats bone adaptation
through its tissue evolution, whereas the second one is more focussed on
describing the complex cellular interactions operating in the remodelling process.
A review of all these computer-driven investigations of bone remodelling can be
found in Webster and Müller [157]. Concerning the remodelling models at the
organ or tissue scales, they are often continuum or micromechanical based and
describe the variation of bone density as a function of both biological and
mechanical stimuli. In this section, we propose on overview of these different
stimuli.

2.1 Structure of Bone Tissue

Bone is a multiscale complex structure [16, 17] presenting two types of tissue (see
Fig. 2a): i. the trabecular bone (or spongy bone), a very porous tissue (porosity
� 85 %), located in the interior region of bone and containing bone marrow where
hematopoiesis takes place; ii. the cortical bone (or compact bone), less porous
(porosity � 3 %), located at the periphery of long bones. Representing 90 % of the

Fig. 2 Multiscale bone structure (reproduced with permission from [75])
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total bone mass, cortical tissue permits the locomotion, stores and releases
chemical elements like calcium or phosphorous and protects the organs.

The cortical unit structure, called osteon, is a cylinder whose radius is about
10�4 m (see Fig. 2b). An osteon is constituted by the collagen-apatite matrix
containing vascular porosity (Haversian and Volkmann’s canals) and elliptic holes
named lacunae. Each lacuna holds one mechanical sensor cell (osteocyte, see
Fig. 2d) swimming in fluid environments. These osteocytes develop within little
channels (canaliculi) connecting them together and so forming a stellar network
within bone volume (see Fig. 2c). At the microscale, the representative volume is a
fraction of the lacuno-canalicular system (see Fig. 2e). Canaliculi are described by
two concentric straight cylinders whose the cross section is circular with radii RC

and RM such as RC [ RM: The interstitial fluid occupies the annular space between
the canalicular wall and the osteocyte process membrane. The canaliculus length is
noted LC: Since the radii of the osteocyte and of the canaliculi vary with age,
species, bone location, osteocyte age, etc. [26], a major difficulty in modelling
consists in the allocation of these values. Thus if RC ¼ 130� 65 nm for mice
[170], for sheep and dogs RC ranges from 100 to 500 nm [66, 129]. As we are
interested in human bone, in this study, we will typically consider the values of
You et al. [165], namely RC ¼ 100 nm: Since the ratio RC=RM has given to be
around 2 [154], the value of RM will consequently be 50 nm. According to [165],
the osteocyte process length is three hundred times its radius, so we typically have
LC � 15� 10�6 m.

2.2 Bone Cells

In bone tissues, four types of cells can be distinguished. Figure 3 gives a schematic
representation of the four bone cells types. Multinucleated cells are the osteoclasts
(OCL) which can remove bone. New bone is built by the osteoblasts (OBL) which
can synthesize the osteoid matrix (white zone) which will be mineralized (grey
zone). Some osteoblasts embedded in the bone volume can evolute in osteocytes
(OCY) that are connected with bone lining cells (BL).

Fig. 3 Schematic
representation of the four
bone cells types (reproduced
with permission from [82])
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2.2.1 Lining Cells

The bone lining cells (BL) are located on the walls of the Volkmann and Haversian
canals as well as on endosteal and periosteal zones of bone. They are undiffer-
entiated original cells from the mesenchyme that can differentiate into osteoblastic
cells. These stem cells are increasingly used in bone tissue engineering to generate
tissue to be grafted [50].

2.2.2 Osteoblastic Cells

Osteoblastic cells (OBL) are mono-nucleate cells that are responsible for bone
formation. Osteoblasts produce osteoid, which is composed mainly of Type I
collagen and are also responsible for mineralization of the osteoid matrix. During
the remodelling process, some osteoblasts are trapped in the bone matrix and thus
form a lacuna where they become osteocytes (OCY). Furthermore, some osteo-
blasts at the remodelling surface become bone lining cells.

2.2.3 Osteocytes

Osteocytes (OCY) are the result of the evolution of osteoblast embedded in
lacunae. Scattered in the bone volume, they are networked to each other via long
cytoplasmic extensions (osteocyte process) that occupy tiny canals called cana-
liculi. This endows osteocytes with a star-shaped configuration. In the canaliculi
which are used for paracrinal communication, exchange of nutrients and dispose of
waste products, osteocytes can also communicate through gap junctions by the
transmission of chemical agents.

2.2.4 Osteoclasts

Osteoclasts (OCL) are multinucleated cells that destroy bone tissue by removing
its mineralized matrix and breaking up the organic bone (collagen). This process is
known as bone resorption and is regulated by several hormones, including calci-
tonin from the thyroid gland, parathyroid hormone from the parathyroid gland, and
growth factor interleukin 6.

2.3 Stages of Bone Remodelling Process

The processes of bone resorption and bone growth are taking place continuously
throughout the skeletal system to protect it from daily wear. Bone remodelling is a
cyclic progress that lasts approximatively 4 months when considering mature
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tissue. By observing bone tissues, resorption and formation stages of a basic
multicellular unit (BMU) have been described [9]. Note that some authors prefer
calling it bone modelling unit. The work of this BMU consists in resorbing and
synthesizing bone material to generate a secondary osteon. Bone is so constituted
by billions of modelling units likely to create new osteons. Since each BMU is
chronologically and geographically separated from the others, it is possible to
adapt the quantity and the architecture of bone. This tacitly suggests that the
adaptation process depends on systemic or local factors. Indeed, the cellular events
responsible for remodelling are locally controlled, certainly by autocrine or par-
acrine factors generated in the bone micro-environment [64, 87, 159]. Classically,
the bone remodelling process is decomposed into 6 phases. Basically, this phe-
nomenon sequentially occurs as summed up hereafter [51, 92].

2.3.1 Activation

In response to biochemical messages due to external physical stimuli, a BMU is
activated. The stimuli that initiates bone remodelling have not been yet identified
and a possible scenario is explored in the following of this article. The current
concept of bone remodelling is based on the hypothesis that osteoclastic precursors
become activated and differentiate into osteoclast. Thus, the lining cells are joined
by the mono-nucleate precursors of osteoclasts or pre-osteoclasts.

2.3.2 Resorption

The bone resorption cascade involves a series of steps to obtain the removal of
both the mineral and organic constituents of bone material. Roughly, the osteo-
clastic differentiated cells resorb old bone material. These cells ultimately undergo
apostosis.

2.3.3 Reversal Phase

After the maximum eroded depth has been achieved by the osteoclasts, there is a
reversal stage that lasts around 9 days. During this stage, osteoblasts counteract the
osteoclats activity; resorption is stopped at a surface corresponding to the cement
line that surrounds the future osteon.

2.3.4 Formation

This stage consists in the bone matrix formation in response to a complex cascade
of events. The osteoblasts synthesize the organic extracellular matrix called
osteoid and composed by collagen fibers arranged in concentric lamellae. This
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deposit is made from the cement line to the central zone of the future secondary
osteon until the Haversian canal is formed.

2.3.5 Mineralization

Bone crystals composed of hydroxyapatite are transported within the collagen
matrix. The mineralization phenomenon starts after 13 days at an initial rate of
1 lm/day.

2.3.6 Quiescence

When the secondary osteon is achieved, osteoblasts gradually flatten and become
quiescent lining cells covering the Haversian surface. Some of the osteoblasts are
simply destroyed or differentiate into osteocytes when embedded in the bone
matrix.

The last three stages last longer than the first three ones. However, many
questions remain on hold concerning this remodelling process. What is the
physical signal pathway? If the effector cells are the lining cells that are activated
to initiate the remodelling process, what is the nature of the signal felt by the
mechano-sensitive cells?

2.4 Candidates for the Mechano-Sensitive Role

There are experimental evidences that most of the bone cells can sense a
mechanical solicitation (membrane deformation, fluid shear effects, etc.) and
consequently change their metabolic activity [31]. Anyway, two main scenarios,
that may occur in parallel, have been proposed to explain the mechanically
induced bone formation or resorption [30].

2.4.1 The Bone Surface Cells

On the one hand, the cells located at the bone surface (osteoblasts, lining cells and
osteoclasts) may simultaneously be mechano-sensors and senso-actors. Thus, these
cells would be able to sense the strain of their pericellular matrix in their imme-
diate environment.
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2.4.2 The Osteocyte: A Good Candidate for Mechano-Sensation

On the other hand, many authors stipulate that osteocytes are the bone mechano-
sensing and mechano-transducing cells. Indeed, osteocytes are the most abundant
cells in bone tissue, since there are 10 times more osteocytes than osteoblasts,
which are themselves more numerous than osteoclasts. Furthermore, the special
spatial organization of the osteocytes within the bone cortex forms a tridimen-
sional network connected to the remodelling actors located at the bone surface.

Cell-to-cell communication of electrical signals and small molecules through
gap junctions has been demonstrated in osteoblasts. There is evidence for similar
gap junctions in osteocytes, and it seems likely that they participate in such
communication with osteoblasts, and bone-lining cells as well.

2.5 Bone Remodelling Signals

There has been considerable speculation that osteocytes produce a signal pro-
portional to mechanical loading by sensing different remodelling signals within
bone tissue through stretch-activated ion channels, interstitial fluid flow, electrical
potentials, or some other phenomenon. In this subsection, the main stimuli that can
induce bone remodelling are presented.

2.5.1 Stimuli Originating in the Solid Matrix of Bone

According to the Wolff’s law [162] that roughly states that bone is preferentially
deposited in the area characterized by a high mechanical solicitation and removed
where it is not mechanically needed, the first research of the bone remodelling
were linked to the skeleton deformations.

• Bone matrix micro-strains Considering different physical activities, micro-
strains of the human skeleton have been measured thanks to micro-gauges
exhibiting values ranging between 0:04 and 0:3 % [21, 71]. The key parameters
that directly influence the biological response of bone tissue have been shown to
be the strain amplitude [136] and the strain rate [13, 49, 72, 134]. In particular, it
is known that bone adaptation is proportionally governed by the strain rates
[116, 149].

• Hiatus between in vivo and in vitro micro-strains In physiological conditions
typically corresponding to normal locomotion activities, the bone tissue strains
that can be measured in vivo remain rather small since quantitative data
obtained for running horses and men and fast flying birds present maximal
values around 0:2�0:3 % [21, 133]. These measurements are paradoxical when
compared to the in vitro necessary strains that induce a cellular response which
are one or two order higher, from 1 to 10 % [34, 135]. In vivo, such a huge strain
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level would cause bone fracture. This paradox reinforces the idea that the direct
mechano-sensation of the mechanical loading by the bone surface cells (OBL,
BL and OCL) is certainly not the main sensing pathway.

• Micro-cracks Notwithstanding the reversible micro-strains, physiological
observations of bone tissue exhibit that normal bone presents micro-cracks
[2, 114]. These cracks originate within the bone cortex and tend to merge and
propagate along the cement lines that form the outer layer of the osteons [113,
140]. This indicates that one role of the cement line could be to deflect the bone
micro-cracks propagation and thus limit the fracture risk. In the wake of these
imaging results, new scenarios of the bone remodelling initiation have been
proposed. For instance, the stress concentration phenomenon that is inherent to
these micro-cracks has been proposed to be the key textural phenomenon
inducing the remodelling process [62]. Sites of remodelling in cortical bone
have been indeed shown to occur in conjunction with micro-cracks [20]. In
particular, it has been observed experimentally that a strong association between
microdamage, osteocyte viability and modulation of remodelling activity does
exist [151]. This supports the idea that osteocyte apoptosis may play a role in the
signalling mechanisms by which bone is remodelled after microcrack formation
[111]. It has also been suggested that a micro-damage occurring inside the
osteonal volume may generate a cell transducing mechanism based on ruptured
osteocyte processes [48]. Concomitantly, micro-cracks are likely to alter the
fluid flow and convective transport through the bone tissue and thus modify the
hydraulic behaviour of the fluid in the vicinity of the sensitive cells [40, 73, 103,
108, 110]. As shown hereafter, the fluid environment of osteocytes plays also a
crucial role of bone mechano-sensation.

• Bone piezo-electricity: a 60 years old idea From the birth of electrophysiology
in the wake of Galvani’s work in the late eighteenth century [120] to the con-
temporary electromagnetic medicine, the action of electricity on living tissue
fascinates. Focussing on bone electricity, the year 2012 is the sixtieth anni-
versary of the discovery of the piezo-electricity of bone which was reported by
Dr. Yasuda from Kyoto, Japan [70].

The piezo-electric properties of dry bone are not due to the apatite crystals,
which are centrosymmetric and thus non-piezo-electric, but to collagen molecules
[37]. Collagen exhibits the polar uniaxial orientation of molecular dipoles in its
structure and can so be considered as a sort of dielectric material. In the 1960s,
electric measurements in bone tissue [164] motivated the hypothesis that bone
adaptation could be explained thanks to collagen piezo-electricity. Historically, it
was argued that a mechanically loaded bone induces compression on its concave
side and tension on its convex side [10]. Due to the piezo-electricity of bone
collagen, negative charges are visible on its compressive side and positive charges
on its tensile parts [95]. Thus, it is stipulated that, in the electro-negative zone,
osteoblasts would be stimulated, increasing bone formation, whereas osteoclasts
activity, and therefore bone resorption, would be improved in the electro-positive
zone. If the polarization implications seem to be quite easy to understand when
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focussing on the solely mineralization process [112, 163], the mechanisms by
which charges and piezo-electric properties affect osteoblasts and osteoclasts
responses are more difficult to be identified [11, 107]. Moreover, this piezo-electric
craze faded away in the 1980s when more compelling mechanisms related to the
interstitial fluid movement began being studied [55]. Only recent studies proposed
that piezo-electricity could induce an increase in the electric charge of the bone
tissue and thus engenders an opposite electro-osmotic flow limiting the total
interstitial flow, and thus increasing the apparent stiffness and the mass transport
properties of bone tissue [3, 78]. Moreover, it has been recently proposed that the
mineral crystals of the bone matrix could act as an electric storage system [106].
Notwithstanding this renewed interest in bone piezo-electricity, important com-
ponents of this hypothesis have to be demonstrated and several questions remain.
In particular, due to the poro-mechanical coupling, the stress (or strain) field of the
solid phase of bone cannot be separated of concomitant interstitial fluid movement.
Spurred on by the pioneering paper of [121] in the late 1970s, the mainstream idea
in the bone community became that the mechano-transduction of bone remodelling
was a flow-induced phenomenon [35].

2.5.2 Bone Fluid Flow Signals

It had been for a long time believed that the sole function of bone interstitial fluid
movement in the lacuno-canalicular pores was to provide nutrients and remove
wastes. The strain induced micro-flows were first proposed by Piekarski and
Munro [121]. However, these lacuno-canalicular micro-flows have only been
experimentally observed 20 years later by tracer studies [67–69, 155]. This diffi-
culty to carry out convenient in vivo experiments to measure hydraulic fluid
velocities and interstitial fluid pressure within bone tissue motivated the model-
driven investigations of the bone behaviour.

• Evidence of the fluid flow and stretch in bone cell activity Since it forms the
immediate environment of bone cells and the pathway for nutrient supply and
waste removal, the role of bone interstitial fluid in bone activity is evident [66].
In vivo, when comparing the effect of static [72] and cyclic mechanical loading
[135], only the later mechanical condition positively influences bone formation
for peak strains of 0:1 %: The difference between these two loading types is that
the dynamical loading induces interstitial fluid movement. In parallel, several
in vitro studies proved that bone cells were sensitive to neighboring fluid flow
[54, 96, 161]. Thus, several studies demonstrated that bone cells are more
responsive to fluid flow than to mechanical strain. For instance, the strain-
induced osteoblastic response measured by Binderman et al. [14] is 6 times
lower than the flow-induced response observed by Reich and Frangos [127,
128]. When focussing on the osteocytes, if their in vivo sensitivity to the
mechanical loading was known in the late 1980s [143], the strong influence of
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the fluid shear stress induced by neighboring flow on the cellular activity was
proven in vitro the decade after [4, 18, 65, 160].

• Pressure effects By comparing biochemical responses of osteoblast and osteo-
cytes when submitted to a fluid flow, it was showed that the shear stress induced
by the flow was the predominant mechanical effect felt by the cells [65]. Not-
withstanding this strong evidence, some studies still impute an important role of
the pressure in the bone cells behaviour [104, 105].

• Flow shear stress In the footsteps of Piekarski and Munro [121], Weinbaum
et al. [158] proposed that the fluid flow due to physiological loading was the
primary stimulus that enabled osteocytes to sense and respond to their
mechanical environment. Their theoretical investigation predicted shear effects
induced by the fluid flow on the osteocyte process membrane of a few Pascals.
This value is roughly of the same level as for the endothelium in vascular
capillaries, and typically corresponds to in vitro measurements of bone fluid
shear stress [65]. The success of the ‘‘flow shear stress’’ as a valuable candidate
for the mechano-sensation role in bone tissue is still visible through the recent
works on bone remodelling based on this signal [1, 56, 58, 60, 110].

• Worship what you have burned, and burn what you have worshiped: shear force
versus drag force Even if the shear stress effects predicted in the lacuno-can-
alicular and vascular systems are comparable, the morphological differences
between dendritic cell and endothelial cell should induce different mechano-
sensation scenarios. Indeed, due to the densely packed central actin filament
bundle in the osteocyte process, this portion of the osteocyte should be much
more rigid than the endothelial cell body. Thus, the same group that made the
success of the shear effects within bone tissue proposed another point of view to
investigate the interactions between the interstitial fluid flow and the ultra-
structure of the osteocyte. Indeed, concomitantly to the progress in the imaging
of the canalicular structure [97, 166], forgetting the shear effects, the Wein-
baum’s group proposed that the stimulus was the drag force exerted by the fluid
flow on the pericellular matrix surrounding the cell processes. These forces
would be transmitted by tethering filaments and canalicular projections which
connect the membrane of the cell process to the canalicular wall, generating a
strain amplification of the cell membrane in the hoop direction [46, 156, 165].
Other recent studies provide evidence that primary cilia projecting from the
surface of cultured bone cells can translate fluid flow into cellular responses
[90]. Note that cilia are present only in lacuna in close proximity (25 lm) to the
periosteal surface, that these cilia are parallel and not perpendicular to the cell
body surface and, thus, could not bend in response to fluid flow under these
confined conditions [159].

• Cell-to-cell communication The transport of biochemical species within bone is
not only essential for the survival of osteocytes which are not directly in contact
with the vascular supply [100], but it is central in the paracrinal cell-to-cell
communication as well. Indeed, another stage in the pathway of bone mechano-
transduction is the production of signalling molecules by the osteocyte, which
can alter the bone remodelling activity of osteoclasts and osteoblasts. Even
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when loads are normally transferred into a fluid flow, which is subsequently
adequately sensed by the osteocyte, it is still possible that the transduction of the
mechanical signal to a chemical signal that takes place within the osteocyte is
affected. As a consequence, the production of signalling molecules by
mechanically stimulated osteocytes will be altered. In vivo, this biochemical
cell-to-cell communication becomes more and more understood [28]. Diffusive
mechanism alone gives a prohibitively long transit time generating very dif-
ferent chemical environments of osteocytes according to their position [68, 124].
Based on in vivo tracer perfusion studies showing the link between mechanical
loading and mass transport within bone tissue [67, 89, 155], other transport
mechanisms have been proposed: load-induced fluid flow and concomitant
convective mixing [68, 121, 152] or Taylor-Aris dispersion [141]. However,
based on a theoretical study, it was predicted that neither diffusion nor stress
induced fluid flow is capable of sustaining osteocyte viability, and thus that
cyclic stress could stimulate an active mass transport in bone [119].

• The electro-chemical avenue of research When studying fluid transfer in
nanoporous materials such as the lacuno-canalicular system, other concurrent
phenomena to pressure-driven flow, such as electro-osmosis or osmosis, may
exist. These coupled effects could generate an opposite flow, resulting in a
decrease in the apparent permeability [3, 78], ionic permselectivity effects
[59, 76], and a modification of the Biot model and the Darcy law [74, 86, 102].
This phenomenon is due to an important property inherent to most of the bio-
logical porous media: they present a surface charge on their pore surface.
Indeed, within cortical bone, the lacuno-canalicular pores tend to present a
negative surface charge, due to the presence of fatty acids on the bone matrix
[94] and of phospholipids on the cell membrane [98]. This negative charge is
compensated by the adsorption of cations on the surface forming the inner
compact layer commonly referred to as the immobile Stern layer. However, the
majority of the excess of positively charged counter-ions are located in the
electrolyte aqueous solution in the vicinity of the solid phase, forming an outer
diffuse layer composed of mobile charges. Together with the fixed charged
groups of the solid matrix, these ions form the so-called electrical double layer,
as shown in Fig. 4 [52, 75]. When advected by the interstitial fluid, the mobile
charge population of the double-layer generates the macroscopically observed
streaming currents and the concomitant streaming potential [74]. The gradient of
this potential engenders the electrophoretic movement of the mobile charges
opposing to the streaming current. Due to the viscous drag interaction, the ions
pull the liquid with them resulting in an electro-osmotic seepage flow opposing
the pressure-gradient driven flow, and thus limiting the apparent permeability.
Moreover, due to the possible overlap of similarly charged ionic layers, the
Donnan pressure may cause swelling effects changing the macroscopic hydro-
mechanical behaviour of the porous materials, as, for instance, visible in clayey
media [79, 88].
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Even if highly studied in the 1980s to prove the lacuno-canalicular fluid
movement thanks to the stress-generated streaming potentials [123, 138, 139],
these hydro–electro-chemical couplings have been poorly studied in the context of
the flow induced mechano-transduction.

Additionally, some ionic exchanges appear between the bone matrix and the
bone fluid [33, 91] as well as between bone cells and the interstitial fluid. Indeed,
being living entities, bone cells receive nutrients, throw their waste and commu-
nicate with one another through the interstitial fluid [100]. This biochemical
activity and the surface chemical reactions lead to a change of the physico-
chemical properties of the fluid/solid interface. In particular, the negative surface
charge density is modified when exchanging ionic species and thus depends on the
ionic concentration [146]. Because of the electro-viscous couplings, these
exchanges influence the interstitial fluid transport [76, 80] and, in fine, the fluid
mechano-transduction signals.

2.5.3 Multiphysics Mechano-Transduction of Bone Remodelling:
A Multiscale Strategy

Here, we propose to adopt a fresh new angle to elucidate the multiphysics con-
sequences on the mechano-transduction of bone remodelling. Indeed, combining a
description of electrokinetics in bone tissue [84–86] with the description of piezo-
biomaterials [99], we intend to derive a fully coupled electro–hydro-mechanical
model of bone tissue [74]. Since the anatomical origin of bone electricity is located
at the microscopical scale, our electro–chemo-mechanical description combines
the collagen fibers deformation effects and the advection of ionic double layers
through canalicular network. Then, adopting the periodic asymptotic homogeni-
zation procedure proposed by Auriault and Sanchez-Palencia [8] based on the

Fig. 4 Equilibrium
electrostatic potential in an
electrolyte solution bordered
by a plane negative surface
(reproduced with permission
from [115]). The
microstructure of the ionic
distribution at the interface
induces the phenomenon of
Debye shielding by the ion
cloud of the opposite sign
(double layer phenomenon)
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determination of scaling laws, the consequences at the macroscale of these
microscopic phenomena are obtained.

Our strategy consists of discussing, at both the macroscale and the microscale,
the importance of the multiphysical phenomena featuring in bone behaviour using
physiologically-based simulations. That is why, in the first section, the ingredients
of our model are introduced. Then, some numerical examples are presented to
illustrate the interest of our multiscale approach. Through these simulations, we
are able to distinguish the phenomena that are purely microscopic from those
which can be macroscopically observed. Finally, from these multiscale consider-
ations, we propose some avenues which it is worth exploring when aiming at
in silico representing the bone remodelling process.

3 Multiphysics Model of the Bone Behaviour

The first step in our investigation consists in giving an accurate description of the
phenomena. The solid, the fluid and the fluid-solid interface are treated separately.
The representative periodic cell is built from anatomical considerations. Cortical
bone is seen as a fully saturated porous medium X: The relevant porosity level Xf

for bone fluid electro-chemical phenomena corresponds to the lacuno-canalicular
porosity [84] whereas the origin of piezo-electricity is located in the collagen-
apatite matrix Xs: Thus the representative elementary volume Y corresponds to a
periodic portion of the lacuno-canalicular network as shown in Fig. 5. In this
representative periodic cell, the fluid and solid domains are noted Yf (grey) and Ys

(white) respectively and the solid-fluid interface oYfs: In cortical bone, the cana-
licular pores are occupied by a dendrite of the osteocyte cells (seen here as a part
of the solid phase) giving at the fluid domain an annular geometry. Note that we
neglect the influence of the larger porosity level of cortical bone corresponding
to vasculature. This assumption is grounded on the hierarchical multi-porous

Fig. 5 Representation of the macroscopic medium X (reference length L) and the periodic
representative cell Y (reference scale ‘). In the representative periodic cell, the fluid and solid
domains Yf (grey) and Ys (white) and the solid-fluid interface oYfs (dashed boundary) are shown
(reproduced with permission from [77])
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structure of bone described as a set of nested porosities like a set of Russian nested
dolls. This idea is developed using a phenomenological approach in Cowin et al.
[27], Gailani and Cowin [39] and a homogenization procedure in Rohan et al.
[132]. As a result, the interstitial fluid transport outcomes are governed by the
phenomena at the smallest porous level.

3.1 Equations at the Microscale of the Lacuno-Canalicular
Structure

Neglecting the magnetic effects, at the microscale, the multiphysics description
integrate the solid matrix electro-mechanics, the interstitial fluid electrokinetics
and the solid-fluid interfacial phenomena.

3.1.1 Piezo-Electricity in the Solid Matrix of Bone Tissue

Due to the piezo-electric property of the collagen matrix of bone, this phase can be
considered as a sort of dielectric material characterized by a permittivity tensor es

and exhibiting a quasi-permanent space charge qs: The electric potential in the
solid /s is thought to occur when a number of collagen molecules are stressed in
the same way in response to a gradient of the displacement vector field u; moving
charge carriers from the inside to the surface of the specimen. As a result, the
constitutive laws for the stress tensor Ss and the electrical displacement vector field
Ds in the solid involve both the displacement and the electrical potential effects,
the piezo-electric coupling being quantified by the the piezo-electric third-order
tensor PZ :

Ss ¼ C : eðuÞ þ PT
Z � r/s; ð1Þ

Ds ¼ PZ : ru� es � r/s; ð2Þ

where C represents the fourth-order elasticity tensor of the solid, r is the gradient
operator, I

T stands for the transpose operator, eðIÞ ¼ 1=2ðrIþrI
TÞ is the

operator that gives the symmetric part of the gradient of the quantity I: Here eðuÞ
represents the symmetric part of the gradient of the displacement of the solid phase
(i.e. the infinitesimal strain second-order tensor). By neglecting the body forces,
the mechanical equilibrium and the Maxwell-Gauss equations in the solid phase
are:

r � Ss ¼ 0; ð3Þ

r � Ds ¼ qs; ð4Þ

where r� designates the divergence operator,
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3.1.2 Electrokinetics in the Fluid Phase of Bone Tissue

The multiphysics description of the transport phenomena in the bone interstitial
fluid requires to combine electrostatics, fluid movement and ionic transport.

• Double-layer and streaming potentials The interstitial fluid, which is composed
by a Newtonian and incompressible water-like solvent containing biochemical
agents, is a dielectric material characterized by a spherical permittivity tensor
ef ¼ ef I; I being the unit second-order tensor. For simplification purpose, if we
represent all the charged species in the fluid by monovalent ions (seen as point
charges) characterized by their molar concentration nþ and n�; the charge
density in the fluid qf is then expressed by:

qf ¼ Fðnþ � n�Þ; ð5Þ

where F is the Faraday constant. When advected by the strain-induced
interstitial fluid velocity, the mobile charge population of the double-layer
generates the streaming currents. In parallel, to conserve charge, the move-
ment of the net charge generates an electric potential, often referred to as
streaming potential Wb:
As shown in Fig. 4, the surface charge of the pores induces asymmetric
Boltzmann distributions of the cationic and anionic concentrations which are
governed by the reduced double-layer potential �u:

n� ¼ nb expð��uÞ: ð6Þ

Note that the reduction of electric potentials I involves the Faraday constant
F; the ideal gas constant R and the absolute temperature T; so that �I ¼
FI=RT : In summary, the electric potential in the fluid /f is decomposed into
the sum of the double layer potential u and the streaming potential Wb [86]:

/f ¼ uþWb: ð7Þ

Furthermore, the double-layer potential u obeys the Poisson-Boltzmann equation
[52, 74]:

r � rð �Wb þ �uÞ ¼ 1

L2
D

sinh �u: ð8Þ

The Debye length LD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ef RT=ð2F2nÞ

p
characterises the thickness of the diffuse

ionic layer. When the pore size is large when compared to the Debye length, the
hyperbolic sine of Eq. (8) can be linearized (sinh �u ’ �u) to obtain the Debye-
Hueckel approximation [84].

• Fluid movement If the interstitial fluid is assumed Newtonian and incompress-
ible, its constitutive law is [74]:
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Sf ¼ �ðpb þ pÞIþ 2lf eðvÞ; ð9Þ

where Sf is the stress tensor in the fluid, v is the fluid velocity, pb is the
hydraulic pressure, p is the Donnan pressure and lf is the fluid dynamic
viscosity. Note that the osmotic Donnan swelling pressure p ¼
2RTnbðcosh �u� 1Þ due to the double layer electrostatics repulsion [79] is here
introduced.
Moreover, the canalicular space is partially occupied by pericellular fibers
generating a sub-microscopic friction effect and thus slowing down the fluid
movement [85, 166]. To take into account this effect occurring in the fluid
volume, a viscous force Fb ¼ �ðlf =kf Þ v depending on the fluid velocity v is
introduced. Here, kf represents the isotropic pericellular fibers permeability.
Note that for few fibers, the pore space is very permeable (i.e. kf is high) and
Fb vanishes. In parallel, noting Ef the electric field in the fluid, the electric
body force Fe ¼ qf Ef has to be taken into account. Thus the equilibrium
equation for the fluid reads:

r � Sf þ Fb þ Fe ¼ 0: ð10Þ

In addition, assuming the electrolyte to be incompressible, the mass conser-
vation equation for the fluid reads:

r � v ¼ 0: ð11Þ

• Ionic transport Regarding the ionic transport, the total cationic and anionic flux
vectors are the sum of the convection flux vector, the diffusion flux vector and
the electric current vector. Thus, the Nernst-Planck convection-diffusion-elec-
tromigration equations that govern the ionic transport are [76]:

on�

ot
þr � ðn�vÞ ¼ r � D� � ðrn� � n�r �/f Þ

� �
; ð12Þ

where t is the time, D� are the water-ions diffusion tensors for cations and
anions, respectively. Using the Boltzmann distributions of the ionic species of
Eq. (6) and the electric potential decomposition of Eq. (7), this equation
becomes:

oðnb expð��uÞ
ot

þr � ðnb expð��uÞvÞ ¼ r � D� � ðexpð��uÞðrnb � nbr �WbÞÞ½ 	;

ð13Þ

In this equation, the terms in the divergence corresponds to the electro-diffusive
ionic flux vectors J� ¼ �D� � ðexpð��uÞðrnb � nbr �WbÞÞ:
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3.1.3 Solid-Fluid Interface Conditions

The solid-fluid interface oYfs is characterized by its normal unit vector n directed
toward the solid domain. Concerning the surface charge density, the presence of
the Stern layer and the ionic exchanges quantified by the coefficients a� (homo-
geneous to lengths [76]) may generate an electrical jump rfs by crossing the
interface from the solid part to the fluid phase. As a result, two different electric
surface charges are introduced, rf and rs ¼ rf þ rfs; referring respectively to the
surface charge density seen from the fluid or the solid. The set of interface con-
ditions is then given by:

/f ¼ /s; ð14Þ

�ef � r/f

� �
� n ¼ rf ; ð15Þ

�ðPZ : ru� es � r/sÞ � n ¼ rs; ð16Þ

v ¼ du

dt
; ð17Þ

�J� � n ¼ a�
onb

ot
; ð18Þ

Ss � n ¼ Sf � n: ð19Þ

They correspond, respectively, to the electric potentials continuity and the
electric flux conditions at the interface, to the no-slip condition, to the ionic
exchange property of this interface and to the continuity of the normal stress.

3.2 Upscaling Procedure

An asymptotic periodic homogenization process [7, 102] is carried out to propa-
gate our microscopic description of the phenomena at the upper scale. The prin-
ciple of this procedure is to consider a periodic representative cell Y or
representative volume element (RVE), whose size must be large enough to contain
all relevant microscopic heterogeneities and small enough to ensure the macro-
scopic homogeneity. Let ‘ and L be characteristic lengths of the micro- and macro-
scales respectively, and x and X the associated coordinate systems. In order to keep
the independence between these two scales, the ratio g ¼ ‘=L must be small in
comparison with 1: In our problem, the length ‘ associated with the microscale is
typically the pore size length and the length L is typically of the order of the
cortical tissue size.

The general procedure of the periodic homogenization consists in: i. writing the
equations at the microscale in a non-dimensional fashion and giving scaling laws
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for each non-dimensional number; ii. expanding all the fields in terms of the small
parameter g and collecting the terms corresponding to each power of g (cascade of
equations); iii. identifying the slow variables that do not vary at the microscopic
scale and proposing closure problems for the supplementary fluctuating terms; iv.
deriving the modelling at the macroscale by averaging the remaining quantities at
the microscale over the representative cell.

Remark The obtention of the macroscopic equations requires to average quantities
of the microscale over the representative cell Y : Thus, we define h
i ¼ 1

jY j
R

Y 
 dV

the averaging operator on the representative cell Y : When focussing on the fluid
phase occupying the representative cell, the average over the fluid domain Yf is:
h
if ¼ 1

jYf j
R

Yf

 dVf : Finally, h
iint ¼ 1

jY j
R

oYint

 dS represents the solid-fluid inter-

face averaging operator.

When focussing on the multiphysics behaviour of bone tissue, the homogeni-
zation procedure has been carried out for the Poisson-Boltzmann (8) and the fluid
flow (10) equations in a previous study [86], whereas the upscaling of the Nernst-
Planck equations (13) and its associated ionic exchanges has been summarized in
Kaiser et al. [57] and Lemaire et al. [76]. Furthermore, when neglecting the per-
icellular matrix and the ionic exchanges at the solid-fluid interface, the homoge-
nization of the piezo-poro-mechanics model of bone tissue is extensively presented
in [74].

3.3 Consequences at the Scale of Bone Tissue

Thanks to the upscaling procedure, it is possible to obtain the model at the
macroscale that will mimic the macroscopic behaviour of bone tissue.

3.3.1 Macroscopic Unknowns

First, the homogenization procedure allows to identify the variables purely mac-
roscopic (slow variables). So, the solid displacement u½0	; the bulk concentration
nb½0	 ; the streaming potential Wb½0	 and the fluid pressure pb½0	 are slow variables that
do not vary at the microscopic scale [74].

Remark All these quantities are indexed [0] since they correspond to the first term
in the expansion of the corresponding physical quantity into a sequence of the
small parameter g:

As summarized in Table 1, the macroscopic unknowns are the Darcy velocity V;

the solid displacement u½0	; the total stress tensor Stot ¼ \Ss½0	[ þ\Sf ½0	[
� �

;
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the ionic concentration nb½0	 ; the streaming potential Wb½0	 ; the fluid pressure pb½0	 and
the porosity gf : This corresponds to 16 scalar unknowns.

3.3.2 What Stays Beyond Macroscopic Observation

Due to the scaling laws inherent to cortical bone, both the double layer and the
piezo-electric effects vanish through the homogenization process. Notwithstanding
the fact that the double layer electric potential u and the piezo-electric potential /s

do not filter through the upscaling process, their consequences at the macroscopic
scale can still exist. In particular, as indicated by Ahn and Grodzinsky [3], the
variations of the piezo-electric potential /s directly modify the pore surface
charge, and thus the double layer potential. As shown hereafter, even if purely
microscopic, this double layer potential can induce important consequences at the
macroscale.

3.3.3 Ionic Electro-Diffusive Transport

In the remodelling process, the paracrine communication between the mechano-
sensors (osteocytes) and the effector cells (osteoclasts and osteoblasts) requires to
develop specific transport processes. Due to the narrow space of the canaliculi,
the convective effect vanishes through the upscaling process. Taking into account
the possible ionic exchanges between the cell and its fluid environment and the
electromigration effects, two macroscopic electro-diffusive Nernst-Planck equa-
tions can be obtained for monovalent ions (see Remark) [76]:

o

ot
½nb½0	 gf hexpð��u½0	Þif

� �� �
	 þ

onb½0	

ot
ha�½0	 iint

¼ rX � D�

ðrXnb½0	 � nb½0	rX

�Wb½0	 Þ
h i

:

ð20Þ

Remark The nabla operator is here indexed X since it corresponds to the mac-
roscopic spatial derivative operator, that is to say with respect to the macroscopic
coordinate X:

This equation exhibits three contributions to the ionic transport: i. the temporal
term involving the influence of the porosity gf ; the averaged double-layer effects
and the surface exchange term a�; ii. a Brownian diffusion term in response to the
salinity gradient; iii. an electromigration term in response to the gradient of the
streaming potential.

These two last terms are quantified using effective diffusion tensors D
�
involving, in addition to the diffusion coefficients of the ions D�; the porosity gf

and the electro-tortuosity tensors #�:
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D
� ¼ gf D�#
�1
� : ð21Þ

The explicit definition of #� is obtained during the homogenization process and
is detailed in Kaiser et al. [59].

3.3.4 Modified Darcy Law

As obtained in clayey materials [81, 102], the fluid flow, in addition to the
hydraulic pressure gradient, may be governed by supplementary driving phe-
nomena: the electro-osmotic seepage flow induced by the streaming potential
fluctuations and the osmotic flow in response to the chemical gradient. As a result,
the macroscopic fluid flow is described through a modified Darcy law including, in
addition to the pressure gradient induced flow (indexed by P), chemo-osmosis
(indexed by C) and electro-osmosis (indexed by E):

V ¼ VP þ VC þ VE ¼ �KPrXpb½0	 �KCrXnb½0	 �KErXWb½0	 : ð22Þ

The macroscopic permeability tensors Kk (k ¼ P;C;E) are obtained through the
homogenization process as detailed in Lemaire et al. [74, 85, 86].

3.3.5 Coupled Biot Problem

Bone fluid flow is generated by the strain of the solid matrix. Classically, in bone
biomechanics, the calculation of the hydraulic velocities caused by the mechanical
loading are based on the poro-elasticity theory [15]. Here, a Biot-like constitutive
relation derived from our microscale analysis is obtained [74]:

Stot ¼ C

 : eXðu½0	Þ � a
pb½0	 þ s
: ð23Þ

In this equation, eX corresponds to the macroscopic part of the operator e; that is
to say built from rX: Thus, eXðu½0	Þ corresponds to the macroscopic strain tensor.
Furthermore, the homogenized fourth-order elasticity tensor C
 and the homog-
enized Biot second-order tensor a
 are obtained following the classical treatment
of poro-elasticity as proposed by Auriault and Sanchez-Palencia [8]. Moreover, the
macroscopic electro-chemical tensor s
 representing the macroscopic effects of
the fluid electro-chemical phenomena is similar to the one previously obtained for
the multiphysical description of clayey materials [81, 102]. This tensor accounts
for: i. the spherical Donnan pressure effect; ii. the action of the Maxwell tensor;
iii. the electro-chemical effects occurring at the solid-fluid interface [74].

As a result, by neglecting the body forces, the macroscopic equilibrium equa-
tion simply reads:

rX � Stot ¼ 0: ð24Þ
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The coupled Biot equation is derived from the mass conservation and the Darcy
law:

rX � V ¼ �a
 :
o

ot
eX u½0	
� �

þ !
o

ot
pb½0	 þ -: ð25Þ

Again, in addition to the classical Biot formulation involving the Biot tensor a


[8] and the number ! which are explicitly derived through the upscaling proce-
dure, another electro-chemical effect - has to be also taken into account. This
quantity, which is due to the electrically induced pores deformation is explicitly
given in Lemaire et al. [74].

Finally, it can be shown that the fluid mass conservation could be expressed in
terms of the porosity, the Darcian velocity and the displacement [102]:

ogf

ot
þrX � Vþ gfrX �

o

ot
u½0	 ¼ 0: ð26Þ

3.4 Summary of the Macroscopic Description of Bone Tissue

A problem dealing with studying the multiphysics evolution of a poroelastic
material is defined by a macroscopic set of time-space partial differential equations
over the macroscopic domain involving different physical unknowns. In addition,
convenient macroscopic boundary conditions have to be provided. To check that
our multiscale strategy results in a macroscopic problem that is convenient with
the number of the unknowns, we recapitulate in Table 1 the final macroscopic
description of bone tissue.

It is important to indicate that, in addition to these macroscopic laws, the purely
microscopic cellular problems have to be solved on the periodic cell to express all
the homogenized parameters. Moreover, the double layer potential u; solution of

Table 1 Inventory of the unknowns and equations present in the multiphysics poro-elastic model
at the macroscopic scale

Unknowns Equations

Physical quantity Number Macroscopic equations Number

Solid displacement u½0	 3 Macroscopic balance equation (24) 3

Total stress tensor Stot 6 Modified Biot constitutive law equation (23) 6
Darcy velocity V 3 Modified Darcy law equation (22) 3
Ionic concentration nb½0	 1 Electro-diffusive Nernst-Planck equation (20) 2

Fluid pressure pb½0	 1 Mass conservation equation (25) 1

Streaming potential Wb½0	 1 Fluid mass conservation equation (26) 1

Porosity gf 1

Total of scalar unknowns 16 Total of scalar equations 16
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the Poisson-Boltzmann problem, has also to be found since it appears in some of
these effective parameters.

Now that a multiphysics representation of bone tissue has been built, we are
able to simulate its poro-elastic behaviour, and thus to improve our understanding
of the mechano-transduction of the bone remodelling signals.

4 Some Illustrative Results Through 5 Questions Dealing
with Bone Remodelling Signals

The great difficulty of carrying out experimental investigations of in situ bone
poro-mechanical behaviour renders theoretical investigations crucial. Modelling
and computational approaches become thus increasingly common tools for testing
hypothesis for the regulation of bone remodelling [1, 150].

In this section, we propose to illustrate the great interest of adopting a coupled
viewpoint to treat the in silico issues of bone remodelling. The classical continuum
or micro-mechanically based models of bone behaviour use the sole poro-
mechanical description [24, 132]. The mechanical stimuli acting at the cell scale
(pressure, shear stress, drag forces, etc.) are downscaled from this poro-mechanical
description and somehow converted into biochemical signals regulating the
remodelling activity [1]. In this manner, the nature of the incoming signals is
thought to be purely mechanical.

Hereafter, we propose to illustrate the necessity to strongly modify the para-
digm of in silico bone adaptation by answering to 5 questions related to the
mechano-sensation and mechano-transduction of bone remodelling signals.

4.1 First Question: Is the Classical Poro-Elasticity Sufficient
to Describe Bone Behaviour?

To elucidate the cellular and molecular mechanisms of bone adaptation or bone
pathologies, the in vivo fluid environment of bone cells has to be thoroughly
described. Indeed, it is commonly accepted that the stimuli initiating the bone
remodelling process are correlated to the hydro-mechanical state of bone tissue
(see Sect. 2).

However, due to the heterogeneity of bone material and the multiscale structure
of the bone porosity, from the vascularity (on the order of magnitude of 10 lm) to
the lacuno-canalicular network (canalicular space of 0:01�0:1 lm and lacunar
space of 1�10 lm) [25], a precise determination of the fluid velocity and pressure
fields surrounding the osteocytes remains a tremendous feat.

Since the interstitial bone fluid flow is induced by the skeleton strains, the Biot
poro-elasticity theory [15] has been used to mimic bone behaviour. It is thus
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justified to wonder if the new form of the Biot equation involving an electrical
coupling effect through the Maxwell tensor s
 [see Eq. (23)] should not be
preferred.

According both to experimental studies [88] and theoretical works [29], the
most important contribution to the electro-chemical tensor s
 is the Donnan
osmotic pressure term �pDI: An approximation of this parameter epD exists and is
proposed for a platelet geometry of the pores through the Langmuir formula which
only depends on the half inter-platelets distance d [53].

This approximation is acceptable for a pore size d larger than a few nanometers
(what is true in bone) and for high values of the surface charge density of the
interface. This surface charge density being unknown, its order of magnitude can
be estimated around �0:2 C.m�2 considering either the glyco-amino-glycan
surface charge [93] or the cationic absorption capacity on the hydroxyapatite
surface [47].

Moreover, the lower the salinity, the thicker the double-layer and so the
stronger the electro-chemical effects are going to be. As a result, we consider a low
salinity nb ¼ 10�4 mol:l�1 to plot in Fig. 6 the evolution of the Donnan pressure
pD versus the pore half size d: The geometry of the pore consists in face-to-face
platelets presenting the negative surface charge and separated by a distance 2d:
The calculation of the Donnan pressure results from evaluation of the double-layer
potential thanks to a custom code first developed to study clayey materials [80].

The Langmuir approximation becomes more pertinent for large pores. Never-
theless, this approximation tends to slightly overestimate the Donnan pressure.
Moreover, for typical pore sizes of the bone canaliculi (10�8�10�7m) [166], the
Donnan pressure is one order of magnitude lower than the atmospheric pressure.
Since the typical stresses within bone lay around 0:1�1 MPa [121, 167], the
electro-chemical effects included in the modified Biot constitutive can be

Fig. 6 Donnan pressure
versus the pore size
(reproduced with permission
from Lemaire et al. [75])
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neglected and classical poro-elasticity seems appropriate to describe the averaged
hydro-mechanical phenomena of cortical tissue.

A limitation of this optimistic answer to the first question appears under the
light of the more recent descriptions of the lacuno-canalicular structure. Indeed,
when considering the typical fiber-to-fiber distance in the pericellular matrix that
partially occupies the canalicular space [166] or the canalicular structures
described by Anderson and Knothe Tate [6] or McNamara et al. [97] the pore size
may be nanometric, inducing a Donnan pressure of the same order of magnitude as
the hydraulic pressure.

4.2 Second Question: Is the Classical Darcy Law Sufficient
to Describe Interstitial Fluid Flow?

In parallel to the Biot law that is involved in the strain-induced interstitial fluid
flow estimation, the possible implications of multiphysics phenomena in the fluid
transport have to be investigated. In the classical Biot theory, the ability of bone to
transmit fluid is quantified through the Darcy law by the intrinsic permeability
(m2). In anisotropic media, the permeability is characterized by a second-order
tensor. This tensor is both symmetric and positive definite. For isotropic media,
this tensor is characterized by an unique scalar j: This scalar is a textural
parameter only depending on the porous network geometry [78]. The more precise
the quantification of this parameter at the osteocyte scale (lacuno-canalicular
permeability), the better the understanding of the mechano-sensation process
becomes. However, as visible in Table 2, the determination of this parameter is
quite controversial.

To understand the uncertainties on the values of this parameter, according to
our multiphysics description of the Darcy law, some coupled effects such as
electro-osmosis could generate an opposite flow, resulting in a decrease in the
apparent permeability [3, 78]. Using the coupled Darcy law given by (22), it has
been shown that, for physiological conditions, the osmotic and electro-osmotic
parts of the macroscopic Darcian velocity introduced represent less than 7 % of the
whole interstitial macroscopic flow (see Fig. 7), depending on the value of the
pericellular fibers permeability kf quantifying the volume viscous force Fb induced
by the fibrous matrix that partially occupies the canalicular space [85].

Thus, a classical purely hydraulic Darcy law is sufficient to roughly describe the
bone fluid macroscopic movement. A strong limitation of this result is that the
pericellular matrix is made of glycans proteins that do also present a charge
density. This indicates that the meaningful pore size that should be considered for
the electro-chemical transport could be the typical pericellular fiber-to-fiber dis-
tance instead of the canalicular radius. In particular, it was shown that for so thin
pores of a few nanometers, the electrically induced flow could compensate the
hydraulic flow, resulting in an apparent permeability decrease [78].
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4.3 Third Question: What is the Nature of Bone
In Vivo Electricity?

As explained in the Sect. 2, the nature of bone electricity is a recurrent question in
bone biomechanics. The in vivo stress induced electric potentials that have been
reported by Lanyon et al. [71] could indeed be explained either by the piezo-electric

Table 2 Estimations of the lacuno-canalicular intrinsic permeability, state of the art (reproduced
with permission from Lemaire et al. [78])

Reference Permeability (m2) Remarks

Theoretical estimations
[158] 1:02� 10�20 Isotropic pericellular matrix
[168] 1:47� 10�20 Adapted from [158]
[153] f0:1�13g � 10�20 Adapted from [158]
[144] 2:2� 10�22 FEM and fitting of the electrical data of [117]
[44] f0:67�7:5g � 10�20 Anisotropic pericellular matrix, adapted from [158]

[12] f1�1500g � 10�22 Data of [130, 32], adapted from [158]
[169] 3:79� 10�21 Adapted from [158]
[85] f1� 10g � 10�20 Data of [166], adapted from [158]
[5] f2:65�8:73g � 10�18 Personal data, scaled-up computational model
[43] f1:05�105g � 10�20 Poiseuille modified model
[61] f3�10g � 10�19 Personal data, adapted from [158]

[78] f1�10g � 10�19 FEM, anatomical data of [166]
Experimental estimations (coupled with poroelasticity)
[118] 4:1� 10�24 Nanoindentation
[41] 6:5� 10�23 Nanoindentation
[38] f1�10g � 10�25 Stress relaxation of single osteons

[42] 2:8� 10�23 Step loading of intact bone

Fig. 7 Comparison between
the three driving parts of the
fluid flow for various values
of the pericellular fibers
parameter kf : Poiseuille effect
(dark grey), Osmosis (grey),
electro-osmosis (black)
(reproduced with permission
from Lemaire et al. [85])

58 T. Lemaire and S. Naili



behaviour of the collagen-apatite matrix that constitutes the solid part of bone, or by
the stress-induced streaming potentials. The use of our model to interpret available
experimental data could provide a definitive answer to this question. Here we refer
to the in vivo recording of stress-generated potentials during walking measured by
Cochran et al. [23] thanks to electrodes implanted on a canine radius. In this study, a
simultaneous recording of bone strain is provided. Despite the parasite effects
generated by locomotion (interactions with other legs action), the loading can be
approximatively represented by vertical cyclic loading conditions.

According to the results of our homogenization procedure, piezo-electricity and
double layer potential vanish at the macroscale. Consequently, the macroscopic
electric potential should be identified as streaming potentials.

To check the validity of this statement, we propose to recover the electric
potentials measured on a walking dog by Cochran et al. [23]. Following the idea of
Salzstein and Pollack [138], an estimation of the streaming potentials induced by
the stress-generated fluid flow can be made. Indeed, invoking the Onsager reci-
procity, the streaming potential field are shown to be proportional to the macro-
scopic pressure field [74]. Thus, mimicking the walking induced strain of Cochran
et al. [23] by harmonic axial loading, the macroscopic pressure field can be com-
puted [109]. In this calculation, the electrical parameters of the cortical micro-
structure are those used by Lemaire et al. [84], whereas the poro-elastic parameters
are those of Rémond et al. [131]. In addition, the electric conductivity is taken as
the one of a 0:01 M chloride potassium solution at 37 �C (0:1735 S.m�1).

The comparison in Fig. 8 between experimental and numerical results suggests
that the solution of the poro-elastic model can satisfactory represent electric
phenomena induced by walking activity. This is an indirect validation of the poro-
elastic models of cortical bone and it suggests that the streaming potentials
developing in response to the strain-induced bone fluid movements are likely to be
the physiologically observed electric potentials.

4.4 Fourth Question: What are the Consequences
of the Electro-Chemical Couplings on the Shear
Sensitivity of the Osteocytes?

If osteocytes have been proposed to play a major role in sensing mechanical
signals and regulating bone remodelling [63, 142, 148], they were also shown to
directly participate in the calcium homeostasis by regulating the dissolution and
deposition of calcium in the lacuno-canalicular space [125, 126]. The presence of
such chemical gradients (such as directional calcium fluxes between the bone
matrix and the interstitial fluid [91]) can result in an osmotic fluid flow. This
directional movement of calcium from or into the bone can affect the fluid flow
within the canaliculus and, consequently, the shear stress felt by the osteocytes, as
illustrated by Fig. 9.

Shear stresses are linked to the velocity gradient. Thus it is necessary to
investigate how the velocity gradients are affected near the cell process membrane,
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where the electric double layer develops. Interstitial fluid velocity profiles and
shear stress values at the cell membrane have been computed for physiological
parameters values [58]. The total average fluid velocity in the canaliculus and its
hydraulic, osmotic and electro-osmotic components as expressed by the modified
Darcy law (22) are provided in Table 3. The hydraulic component governs the
total fluid flow within the bulk of the canalicular pore space accounting for more
than 95 % of the transport, while the electro-osmotic and osmotic phenomena are
negligible. However, due to the electro-chemical over-velocities that develops in
the double layer in the close proximity of the osteocyte membrane [85, 86], the
contribution of the osmotic and electro-osmotic phenomena cannot be neglected.
This is apparent looking at the shear stress on the cell membrane (see Table 3).
The major contribution is still due to the hydraulic gradient (52 %), but neither the
electro-osmotic (� 43 %) nor the osmotic contributions (� 5 %) are negligible.

When transferring this results in the context of the cellular mechano-sensitivity
to shear effects, the osteocytes responding to fluid shear stress [65], the results
reported in Table 3 indicate that the hydraulic and the electro-chemical parts of the
shear stress may cause an annihilation of the total shear stress stimulation felt by
the cell. Thus, chemical fluxes due to calcium deposition and dissolution from the
canalicular walls can be expected to modulate osteocyte mechano-sensitivity both
in the presence of unidirectional flow due to the pressure differential within the
blood circulatory system and oscillatory flow due to physical activity [58].

4.5 Fifth Question: What is the Ionic Transport Main
Mechanism Within Bone Tissue?

The mass transport mechanism within the lacuno-canalicular network is another
open question in the domain of bone biomechanics. In the viewpoint of bone
remodelling, it is necessary to properly identify how the chemical species can be
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Fig. 8 Recovery of the in
vivo electric potential data of
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by our streaming potential
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moved from the osteocytes that are imbedded in the bone tissue toward the lining
cells.

As indicated by [119], neither diffusion nor stress induced fluid flow could
capable of sustaining an efficient mass transport inside the lacuno-canalicular
system. Based on the estimation of the osteocytic glucose consumption rate, these

Fig. 9 Example of the consequences of physiological calcium fluxes inside the lacuno-
canalicular system (adapted with permission from Kaiser et al. [58]). The electro-chemical (in
red) and hydraulic (in brown) velocities may act in the same direction (profile on the top) or in a
concurrent way (profile on the bottom)

Table 3 Average coupled parts of the fluid velocity and shear stress on the cell membrane
computed using the physiological values of Kaiser et al. [58] (reproduced with permission from
Kaiser et al. [58)

Fluid velocity Va (m.s�1) Shear stress sa (Pa)

P 1:88� 10�6 (97:4 %) 0:22 (52:0 %)

C 2:80� 10�9 (0:1 %) 0:02 (4:7 %)
E 4:80� 10�8 (2:5 %) 0:19 (43:3 %)
Total 1:93� 10�6 0:4295
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authors highlighted the need for a new interpretation of experimental results where
it was found that cyclic loading increases marker penetration within the lacuno-
canalicular system [68], and proposed that cyclic stress stimulates an active
transport mechanism.

If we take into account the electrical effects on diffusion, a new angle can be
proposed to explain such an active transport. Due to the surface charge charac-
terizing the bone pores, double layers develop inside the pores causing an asym-
metric ionic distribution near their walls (see Fig. 4). The influence of these
electrical phenomena depends on both the fluid salinity and the pore size. Indeed,
the lower the salinity, the larger the characteristic length scale of these electrostatic
phenomena (Debye length) becomes. Moreover, the Debye’s length being nano-
metric, the electrical effects rapidly fade out for pore sizes as large as the cana-
licular radius. However, when considering typical pore sizes related to the
pericellular matrix typical dimensions, these electrical effects should be important.

Using a home-made code based on the recursive resolution of the Cartesian
Poisson-Boltzmann problem proposed in Derjaguin et al. [29], a model of straight
channel described in cartesian coordinate (half-size h) is built for a representative
pore filled with a water-saturated electrolyte and presenting a negative surface
charge density of �0:2 C.m�2: The reduced electrical effective diffusion param-
eters (see Remark) are calculated for monovalent ions considering various pore
sizes and salinity values, as shown by Fig. 10. On the left, considering a typical
fiber-to-fiber distance of the pericellular matrix elements 2h ¼ 10 nm [158, 166],
we present the evolution of the reduced effective diffusivity parameters with the
salinity. On the right, the pore size dependance of these parameters is shown
considering a salinity of 0:01 M.

Remark The one-dimensional diffusivity parameters derived from Eq. (21) are
reduced thanks to the diffusion coefficients of the ions D� and the porosity gf :

These two graphs show that the electro-chemical effects may strongly affect the
effective diffusion process. The evolutions of the cationic, respectively anionic,
effective diffusion parameters exhibit the permselectivity property of the lacuno-
canalicular system which acts here as a negatively charged nanoporous medium
which tends to enhance the cationic transport and limit the anionic one [45, 122].
In particular, for pore sizes corresponding to the pericellular fiber-to-fiber distance,
the electrostatic exclusion-enrichment effect becomes the dominating mass
transport mechanism. Thus, depending on their charge, the chemical species
transport may be enhanced by one or two orders of magnitude. This process could
be a possible explanation of the active transport mechanism in bone claimed by
Petrov and Pollack [119].

Such a charge effect within the lacuno-canalicular space has been observed in
the in vivo tracer experiments of Tami et al. [147]. Indeed these authors showed
that the transport mechanisms of negatively charged and neutral dextran particles
were not the same within the lacuno-canalicular pores. If the neutral species
remained confined in the vasculature, the anions did penetrate inside the
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extravascular pores. Note that this experimental study brings up some fundamental
questions on the sign of the surface charge of the canalicular pores. Indeed, if this
charge is classically thought to be negative [3], such an anionic enrichment effect
would rather indicate a positively charged pore surface. In the concluding remarks
of this work, a possible explanation to this paradoxical observation is proposed.

5 Conclusion: Toward a New Paradigm of Bone Remodelling

The aim of this study was to offer new perspectives for in silico bone remodelling
representations. Based on a multiphysical hierarchical treatment of the phenomena
governing the tissue behaviour, this work quantitatively proved the accuracy of
common macroscopic bone tissue models. Nevertheless, qualitatively, it also puts
into relief the weakness of purely hydro-mechanical approaches when studying
remodelling signals at the cellular scale. Indeed, even if washed out at the tissue
level, the microscopic electro-chemical phenomena are visible in the neighbour-
hood of the cell.

Through this study, it was shown that the consequences of the microscopic
effects in the classical remodelling transduction scenarios may be considerable.
Since the key phenomena are located at the scale of the cell, it would be vain to
carry on working only at the organ scale. For instance, we stressed on the major
consequences on the shear stress of chemical fluxes occurring at the cellular scale.

Fig. 10 Reduced effective electro-diffusity of cations (solid line) and anions (dashed line) as a
function of the salinity (left, pore size of 10 nm) and the half-size of the pore (right, salinity of
0:01 M) (reproduced with permission from Kaiser et al. [59])
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Even if huge steps have been made since the early works of Julius Wolff, the
current bone remodelling paradigm still draws from the vision of the German
surgeon: the general point of view consists in analyzing the different biophysical
phenomena in the light of the mechanical state of the skeleton. Although in vivo
chemical transport seem to be crucial in the behaviour of bone tissue and despite
the efforts done to properly describe the biochemical autocrine and paracrine
cascade leading to the removal and formation of tissue [28], mass transport at the
organ scale remains the poor relation of the bone remodelling paradigm. The
peculiar role of electrically charged species in this biochemical remodelling
pathway is obvious, with the calcium ions at the top of the list.

If we follow up the possibilities emerging from this work, a step toward a new
paradigm of bone adaptation can be made. Indeed, adopting a multiscale vision,
we are able to include significant innovative elements in the representation of the
remodelling process linked to transport phenomena within bone volume. As
illustrated by Fig. 11, we could propose that the formation and resorption of bone
are mainly controlled by the ability to provide in situ calcium ions from the blood
supply to the osteocytes inside the bone system. This mechanism could be regu-
lated by ionic permselectivity induced by the electric surface charge of the lacuno-
canalicular pores. The cationic/anionic permselectivity is the ratio of cations/
anions based on the total number of ions that pass through the selective nano-
porous lacuno-canalicular material. In response to a mechanical solicitation of
bone and the concomitant piezo-electric effects of the collagen-apatite matrix, the
tensile part of the tissue, respectively the compressive one, would generate a
positively charged environment that decreases the cationic flux, respectively a
negatively charged one increasing this flux [95]. As a result, the calcium transport
from the blood supply toward the osteocytes environment would depend on the
local loading conditions. This asymmetry would engender different extracellular
calcium concentrations, modifying the osteocytic signaling pathway and so the
bone adaptation [83]. Thus, the in vivo tracer experiments of Tami et al. [147]
could be a clue of this permselectivity effect in the lacuno-canalicular transport. In
this study, it was shown that the load-induced transport mechanisms of negatively
charged and neutral dextran particles are different. If the neutral species remained
confined in the vasculature, the anions did penetrate inside the extravascular pores.
If these authors also indicate that this trend is more pronounced in the tension area
of bone, no information is given concerning the compressive zone of bone. This
has to be done now to reinforce our proposal.

By giving some answer to recurrent questions in bone biology, a reexamination of
the common point of view of bone remodelling models can be proposed, raising up
new questions. In particular, the focus should be made on the phenomena occurring at
the cellular scale. We hope that the concomitant advances in bone modelling at the
micro- and nanoscale (homogenization, molecular dynamics, etc.) and in micro-
scopic experiments (imaging process, micro-sensors, etc.) will result in an inflexion
of the current paradigm of bone adaptation replacing stress-controlled transport
phenomena in the heart of the problem. Thus, through such an interscale approach,
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the unification of bone biomechanics at the tissue scale and bone mechanobiology
describing the complex cellular interactions could become possible.
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Multiscale Elastic Models of Collagen
Bio-structures: From Cross-Linked
Molecules to Soft Tissues

Michele Marino and Giuseppe Vairo

Abstract Mechanics of collagen bio-structures at different scales (nano, micro,
and macro) is addressed, aiming to describe multiscale mechanisms affecting the
constitutive response of soft collagen-rich tissues. Single-scale elastic models of
collagen molecules, fibrils, and crimped fibers are presented and integrated by
means of consistent inter-scale relationships and homogenization arguments. In
this way, a unique modeling framework based on a structural multiscale approach
is obtained, which allows to analyze the macroscale mechanical behavior of soft
collagenous tissues. It accounts for the dominant mechanisms at lower scales
without introducing phenomenological descriptions. Comparisons between
numerical results obtained via present model and the available experimental data
in the case of tendons and aortic walls prove present multiscale approach to be
effective in capturing the deep link between histology and mechanics, opening to
the possibility of developing patient-specific diagnostic and clinical tools.

1 Introduction

Soft tissues are throughout the whole human body and they include tendons,
ligaments, skin, fibrous tissues, muscles and blood vessels. They link, support, and
are part of other bio-structures and organs, playing a key role in the biomechanics
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of many body systems (e.g., musculo-skeletal, cardiovascular) [1]. Collagen,
elastin and ground substance are the main constituents of the extracellular matrix
in soft tissues, and their arrangement significantly affect the tissue mechanical
response. For instance, stiffness and strength features in soft tissues mainly depend
on the arrangement and the amount of collagen, which is organized in agreement
with a precise hierarchical multiscale scheme [2]. Since the fundamental
mechanical role of collagen, soft tissues are usually referred to as collagenous
tissues.

The structured organization of soft tissues, and thereby their mechanical
behavior, is highly related to the biochemical processes occurring within them [2].
In fact, altered tissue response in disease (e.g., aneurism, keratoconus, arthofibrosis)
arises from pathological tissue remodeling, inducing unphysiological histology and
biochemical composition. Typical disorders, such as tissue hyper-extensibility or
weakness, can be associated with alterations at different scales [3–7]: in content of
tissue constituents, in shape of collagen fibers, in collagen genetic pattern, in density
of inter-molecular cross-links. Nevertheless, available non-invasive techniques do
not allow to measure directly a number of important histological, mechanical, and
biochemical properties of collagenous tissues such as, for instance but not exclu-
sively, collagen content and fiber waviness, collagen cross-linking, elastin amount
and stiffness of elastin networks.

In this context, the biomechanical analysis and modeling of collagen-rich
tissues can be retained a frontier challenge aiming to understand many physio-
pathological processes occurring at very different length scales, as well as to
identify relationships among alterations and diseases. Accordingly, dominant
mechanisms occurring at different scales should be accounted for and consistently
coupled in a unique modeling approach. Moreover, in order to enhance model
reliability for diagnostic and clinical practice, model parameters should be few and
associated with clear physical properties of the tissue, avoiding to introduce
phenomenological descriptions. These requirements can be satisfied if the tissue
structured hierarchical arrangement is explicitly described, possibly reducing
model complexity by means of multiscale homogenization techniques. Such an
approach, employed for example in [8], will be referred to as a structural multi-
scale method, and consists in developing mechanical models at very different
length scales, which are coupled each other by means of consistent inter-scale
relationships. In some way, the structural multiscale approach exploits the ratio-
nale followed by nature in ‘‘designing‘‘ tissues and ‘‘building’’ organs.

Structural multiscale models open to the possibility of developing virtual
simulation tools, that are patient-specific not only for the geometric description of
the tissue domains, but also for the accurate representation of the tissue mechanical
properties. As a result, the effects of changes in histological arrangement or bio-
chemical processes on the overall macroscopic functionality of tissues and organs
could be predicted. Thereby, really customized pharmacological treatments and
therapeutic strategies could be conveniently designed and applied. Finally, para-
metric biomechanical simulations of tissues and organs based on a multiscale
structural framework might be coupled with non-invasive in vivo histological and
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functional measures. Accordingly, following an inverse-like scheme, indirect
estimates of histo-mechano-chemical features, otherwise unknown, could be fur-
nished aiming to improve diagnostic procedures.

2 Biochemical, Histological and Mechanical Properties

Collagen in soft collagenous tissues is arranged according to a precise hierarchical
pattern, based on a number of different bio-structures characterized by very
different length scales (Fig. 1): from the nanoscale (molecules), to the microscale
(fibers), up to the macroscale (tissue). Biomechanics of a single-scale bio-structure
and inter-scale coupling effects strictly depend on biochemical, histological and
mechanical features at the different scales, and highly affect tissue mechanics at
the macroscale.

2.1 Collagen Molecules and Fibrils

The collagen molecule subunit (tropocollagen) can be regarded as a one-
dimensional structure about 300 nm long and 1–2 nm in diameter, made up of
three polypeptide strands, each one being a left-handed helix. The three helices are
twisted together into a triple helix (namely, a ‘‘super helix’’), representing a
cooperative quaternary structure stabilized by covalent cross-links [1].

proteoglycan

Fig. 1 Hierarchical arrangement of collagen in a regular soft tissue such as a tendon
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In collagenous soft tissues, collagen molecules are mainly of type I and they
exhibit hydroxyproline-deficient sequences characterized by 60 residues (about
20 nm long), referred to as labile domains and indicated as molecular kinks [2].
Their measure of length ‘kinks is comparable with the value of the persistence
length1 ‘p for collagen (about 14 nm). This evidence confirms that molecular kinks
are activated by thermal fluctuations [2, 9] and can be extended by forces at
molecular ends that counteract thermal undulations. In this case entropic mecha-
nisms are activated and a transition regime is experienced, from less ordered
molecular states (thermally-activated kinks) to more ordered ones (nearly straight
macromolecule). In this regime, usually referred to as entropic elasticity [9], the
mechanical response of collagen macromolecules is mainly dominated by the
flexural behavior of the polypeptide helices rather than by the extensibility of
intra-molecular covalent bonds. Accordingly, neglecting any stretching effect of
the intra-molecular bonds and in agreement with the Worm-Like Chain (WLC)
model [10, 11], the pair of equilibrated forces Fs to be applied at molecular ends
for obtaining the end-to-end molecular length ‘m results in:

Fsð‘mÞ ¼ q
1

4 1� ‘m=‘cð Þ2
� 1

4
þ ‘m

‘c

" #

; ð1Þ

where ‘c is the molecular contour length and q ¼ kBT=‘p; T being the absolute
temperature and kB the Boltzmann constant. Equation (1) exhibits a pole for
‘m ¼ ‘c, highlighting that the WLC-model is not able to capture an extension of
the end-to-end molecular length over ‘c involving entropic mechanisms only.
Nevertheless, well-established evidences on collagen show a significant level of
molecular extensibility beyond ‘c [12]. Accordingly, when ‘m approaches ‘c the
applied force contributes to activate the stretch of molecular covalent bonds,
inducing the onset of energetic mechanisms [9, 11].

Theoretical models accounting for the extensibility of biopolymer macromol-
ecules over ‘c have been recently proposed in [13–15], and the transition regime
from entropic towards energetic elasticity for collagen has been numerically
investigated by using Molecular Dynamical Simulations (MDSs) [9]. MDS-based
results proposed in [9] have been successfully recovered by the theoretical
approach developed in [15], wherein the transition mechanisms were consistently
described by a physically-based lumped-parameter equilibrium formulation,
avoiding phenomenological transition parameters as made in [13, 14].

It is worth pointing out that, as experimental [12] and MDS-based [9, 16] results
suggest, the mechanical response of collagen molecules due to energetic effects is
highly non-linear in the first stage, following a pseudo-exponential law, and then
tends asymptotically towards a linearly elastic behavior for ‘m � ‘c. Such an
evidence can be justified by observing that the non-linearities are essentially due to

1 The persistence length is the maximum contour length over which the corresponding molecular
segment appears as straight under thermal fluctuations.
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the unrolling mechanisms of the triple helical structure, that tends to disappear
when ‘m � ‘c. In the literature, both linearly [8, 9] and non-linearly [15] elastic
models aiming to describe collagen energetic elasticity can be found.

In biological soft tissues, a single tropocollagen subunit self-assembles in the
extracellular matrix with four other collagen molecules, with regularly staggered
ends, to form units that in turn assemble themselves into even larger arrays, called
fibrils. A collagen fibril, characterized by a diameter between 50 and 500 nm, can
be thought as a mesoscale structure between molecule at the nanoscale and fiber at
the microscale. Within this organized bio-structure, molecules interact each other
by means of both inter-molecular covalent cross-links (each of them connecting
two molecules) and weak bonds (including hydrogen bonds and other electro-
magnetic weak interactions), the former being dominant with reference to the
fibril’s elastic behavior [17].

Recent experimental evidences [18] revealed a three-dimensional crystallo-
graphic patterns of collagen molecules within fibrils. Nevertheless, simple
arrangement models were proved to be effective in capturing the mechanical key
aspects of fibrils, related to molecules and to their mutual interactions. For
instance, according to the Hodge–Petruska scheme [19], fibrils can be successfully
modelled as staggered arrays of parallel macromolecules with an axial offset of
about 67 nm and an equilibrium center-to-center distance of about 1.5 nm between
two transversally adjacent molecules.

2.2 Collagen Fibers and Soft Collagenous Tissues

Collagen fibrils are densely packed in bundles called fibers. Adjacent fibrils within
fibers are stabilized by lateral fibril-to-fibril proteoglycan filaments [20]. As
confirmed by the specialized literature, a controversial matter is if proteoglycans
play or not a significant role in loading transfer among adjacent fibrils. If fibers
consisted in chains of short fibrils interconnected by proteoglycans, then the
among-the-fibrils load-transfer mechanisms would be highly affected by inter-
fibrils links [21]. Nevertheless, many recent experimental studies [22, 23] reveal
extremely few fibril ends, not confirming the thesis of short fibrils. Moreover, other
experimental/numerical results suggest that proteoglycan-based cross-links have a
marginal and unlikely mechanical role in the elastic behavior of a collagen fiber
[24], although they contribute to fundamental physiological processes. Accord-
ingly, these evidences support the hypothesis that the load-transfer mechanism
among fibrils within fibers is nearly proteoglycan-independent.

Soft collagenous tissues are generally fibrous connective tissues which can be
either dense or loose, depending on the collagen amount; they consist primarily of
elastin, amorphous ground substance, cells and collagen fibers [25]. Collagen fibers
can be arranged in agreement with a regular (e.g., tendons) or an irregular (e.g.,
skin) pattern, and regular tissues (that is, with a regular fiber arrangement) can be
conveniently classified in uni- (e.g., tendons and ligaments) or multi- (e.g., arterial
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walls) directional. A multi-directional tissue is intended to be made up of a
number of stacked thin layers, each of them with a regular uni-directional fiber
arrangement.

As confirmed by well-established studies [2], constitutive response of soft
collagenous tissues depends primarily on the mechanical behavior of collagen fibers
and molecules. For instance, in the case of a uni-directional tissue subjected to a
uni-axial tensile test along the fiber direction, a progressive fiber straightening and
the disappearance of nanoscale kinks within molecules are experienced, resulting in
an increase of the overall tissue stiffness. Accordingly, the stress/strain curves are
typically J-shaped and can be subdivided into three main regions (Fig. 2):

• Toe region: the region of small tissue strains (up to 2 %), related to the removal
of the microscopic crimp in collagen fibers.

• Heel region: at strains 2–4 %, characterized by a significant stiffening response
due to the entropic straightening of nanoscale molecular kinks [2, 9].

• Linear region: when the tissue is stretched beyond the heel region, most kinks
are straightened and no further extension is possible by entropic mechanisms.
Therefore, the mechanical response is primarily affected by the stretching of the
collagen triple-helices and by molecular rearrangement (collagen sliding) [26].

It should be pointed out that, despite of similar features at the nanoscale,
different types of collagenous tissues can be characterized by significantly different
mechanical responses, mainly depending on histological composition and orga-
nization at lower scales. In the following, two different regular soft collagenous
tissues, with different complexity in terms of collagen arrangement, geometry and
loading conditions, will be addressed: tendons and the tunica media of the aortic
walls.

2.2.1 Tendons

Tendons are regular dense connective tissues, transmitting muscular forces and
playing a crucial role in the functioning of joints and musculo-skeletal system. The
mean axis of collagen fibers in tendons is mainly aligned along the loading

Fig. 2 Typical stress/strain
curve for unidirectional
regular soft collagenous
tissues such as tendons and
ligaments
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direction, and their geometric features depend on the animal species. For instance,
addressing rat tail tendons, collagen fiber crimp period and amplitude are in the
order of 200 and 10 lm, respectively [27, 28], and fiber radius varies between 2
and 15 lm [29] (while in humans it can be as high as 300 lm). Finally, collagen
volume fraction has been reported to be about 50 % [30], with a little variability
depending on tendon location and on physiological conditions.

Due to collagen content and organization, uni-axial tendon stress/strain curves
are J-shaped, exhibiting the highly non-linear mechanical response that has been
previously described (Fig. 2).

2.2.2 Aortic Wall

The aorta is the largest artery in the body, and its structure and mechanical response
have a crucial role in the fluid-structure interaction mechanisms relevant to the
cardiovascular system. The walls of the aorta are made up of three different tissue
layers: a thin inner layer (intima), a thick elastic middle layer (media), and a thin outer
layer (adventitia). Among these layers, the media is the most important from the
mechanical point of view, as a result of its thickness and stiffness. Histologically, the
tunica media is made up of concentric layers consisting in smooth muscle cells
embedded in an organized network of loose connective tissue. Many authors (e.g.,
[31, 32]) describe the media tissue as a thick cylinder comprising different layers,
usually denoted as medial lamellar units (MLUs), that have practically the same
structural arrangement.

Geometrical features of the aortic media are extremely variable among different
living species, depending on the animal size and weight, as well as on the location
along the vessel length (e.g., in the thoracic—T—or abdominal—A—zones).
Referring to humans, many authors (e.g., [31, 33–35]) indicate that the aortic
radius at zero pressure is about 6–9 mm (T) or 5–8 mm (A), that the media
thickness-to-radius ratio is about 0.1–0.2, and that the MLU number is about 60
(T) or 30 (A). The three-dimensional histological structure of a single MLU has
been recently investigated [36] and described as a thick sub-layer of elastin sided
by an interlamellar substance made up of water, elastin, smooth muscle cells and
collagen. Collagen results in about 20–30 % of the aortic wall dry-weight [37] and
is organized in crimped fibrils with radius varying from 25 to 50 nm [38]. Fibrils
are in turn arranged in both thick and thin bundles (namely, fibers). Analysis by
means of scanning electron microscopy reveals fiber period in the order of 5 lm
and fiber amplitude-to-period ratio about 0.2–0.5 [36]. Fibers are organized in such
a way that no complex mesh within each interlamellar layer appears, but they are
disposed to realize sub-layers with a uni-directional regular character. In other
words, fibers are arranged in circumferential laminae with the fiber axis helically
wrapped around the vessel direction, with the wrapping angle (i.e., the angular
deflection of the fiber axis with respect to the vessel axis) varying across the MLU
thickness, in agreement with a multi-directional tissue structure. Histological
evidences [36] confirmed that the wrapping angle exhibits a symmetric uni-modal
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distribution with a mean angle of about 90� (i.e., the mean fiber axis direction
corresponds to the circumferential’s). Regarding such a distribution as a Gaussian
one, the full width at half maximum is about 40� and then, in agreement also with
sequential confocal microscopic images [36], a variation of the wrapping angle
(from the inner towards the outer side of a single lamellar unit) from about 90� up
to 70� and from about 90� up to 110� is experienced.

From a mechanical point of view, this complex collagen organization results in
a tissue constitutive response highly non-linear, characterized by a progressive
stiffening for values of the circumferential strains that increase from the zero-load
state. It should be remarked that aortic segments in living bodies are pre-stressed
and pre-stretched under zero loads. In fact, when the vessel is excised, the aortic
segment shortens, and when a ring cross-section of an artery free of external loads
is cut radially, an open sector appears [39–41]. Longitudinal pre-stretch and/or pre-
stress generally increases along the length of the aorta, whereas the circumferential
one smoothly varies along the longitudinal direction of the vessel.

3 Modeling Approaches

At the macroscopic level, several constitutive models for collagen-rich tissues can
be found in the specialized literature. Most of them are deduced from phenome-
nological evidences and generally employ exponential and power-law functions
[42, 43], based on parameters having no direct physical or morphological meaning.
Other approaches, namely structural approaches, aim to link model parameters
with structural properties of the tissue, either by micro–macro homogenization
techniques, describing effects related to collagen fibers as linearly elastic [44–46],
or by assuming an orthotropic hyper-elastic macroscopic behavior, accounting for
the main constituents of the tissue and for some microscale features [47–49]. In
this case, non-linearities related to the mechanical response of tissue constituents
(mainly geometric non-linearities related to the fiber crimp, and material
non-linearities induced by nanoscale mechanisms within and among collagen
molecules) are often taken into account by choosing a suitable representation of
the fiber strain-energy density (as in a phenomenological approach). Therefore,
any direct relationship with the molecular scale is usually neglected and the
corresponding models are not able to give predictive indications on nanoscale
effects, that probably play the most important role in many diseases (e.g., cross-
linking variations are strictly related to aortic rupture and tendon hyper-extensi-
bility [3–7]). Analogously, some microscale features (such as the crimp shape or
the thickness of collagen fibers) are not explicitly modeled in many cases, despite
of their physiopathological importance (e.g., spontaneously ruptured tendons show
reduced thickness and crimp angle [7]).

On the other hand, in a patient-specific framework that aims to give predictive
diagnostic indications as well as to describe the tissue response evolution, each
model parameter should be directly associated with in vivo measurable features.
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This can be obtained by means of a structural multiscale technique, coupling a
structural rationale with multiscale homogenization approaches. Accordingly, the
equivalent responses of tissue substructures at different scales are analytically
derived and consistently integrated, allowing to include at the macroscale the
dominant mechanisms occurring at smaller scales [8, 50].

In this context, the authors recently proposed elastic constitutive models for
collagen-rich tissues, based on multiscale homogenization techniques that
explicitly incorporate nanoscale and microscale mechanisms, as well as their
coupling effects [8, 51, 52]. By simulating histological alterations at nano, micro
and macro scales, present models have been proved to be able to highlight and to
analyze the deep link between histology and mechanical response of both col-
lagenous tissues and body structures [52, 53]. Such an approach allows also to
include, through convex analysis arguments and in the same modeling framework,
damage evolution at different scales, induced by both mechanical and non-
mechanical sources [15].

In the following, a mechanical model of soft collagenous tissues is discussed,
addressing the purely elastic response and neglecting any inelastic and damage
mechanism. The model generalizes the one proposed and applied in [8, 51], and
follows a structural multiscale rationale. The macroscale tissue response is
recovered by integrating single-scale models of collagenous bio-structures at very
different length scales: molecules (nanoscale), fibrils (mesoscale) and crimped
fibers (microscale). Following a structural approach, the ordered histology of both
uni-directional and multi-directional tissues is explicitly taken into account.

As a result of a multi-step homogenization procedure, the homogenized tissue
at the macroscale is treated as a non-linearly elastic anisotropic continuum, passing
from its reference configuration to the actual one via a quasi-static deformation
path /, governed by a time-like variable s. In turn, bio-structures at lower scales
undergo to /-induced quasi-static transformations. At each scale this process is
herein described following an incremental strategy. For the sake of notation, in
what follows the symbol _x denotes the partial derivative of x with respect to s.

4 Nanoscale Mechanics: Molecules

A collagen molecule is modelled as an equivalent zero-dimensional nano-
structure, whose reference end-to-end length is ‘m;o, and is lower than its contour
length ‘c. Let Am be a measure of the molecular cross-sectional area (assumed to
be constant during the overall deformation process), and em ¼ ‘m=‘m;o � 1 a
measure of the molecular nominal strain, ‘m being the actual molecular end-to-end
length.

Entropic and energetic mechanisms are assumed to act as in series and they
contribute to the overall molecular stretch measure em by es

m and eh
m, respectively,

so that by compatibility
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em ¼ es
m þ eh

m: ð2Þ

Denoting with r‘ ¼ ‘m;o=‘c, the molecular tangent modulus Es
m that describes the

entropic mechanisms can be introduced, in agreement with the WLC model [8], as

Es
mðes

mÞ ¼
q

Am

r‘

2½1� r‘ð1þ es
mÞ�

3 þ r‘

( )

: ð3Þ

Moreover, the molecular tangent modulus Eh
m dealing with energetic mechanisms

is represented as [15]:

Eh
mðeh

mÞ ¼
Êr‘

1þ e�gðr‘eh
m�eh

oÞ
þ Êor‘; ð4Þ

where Ê; Êo; g and eh
o are model parameters.

Expression (4) is able to grasp the experimental evidence that the molecular
mechanical response is characterized in the first stage by a pseudo-exponential
law, and then asymptotically tends to a linearly elastic behavior for high values of
‘m=‘c. The introduced parameters have a clear physical meaning and, thereby, their
values can be set by numerical atomistic computations or, when available, by
experiments: Ê and Êo govern the asymptotic behavior of Eh

mðeh
mÞ for eh

m ! �1; g
describes the slope of the function Eh

mðeh
mÞ for eh

m ¼ eh
o, and eh

o is the molecular
strain contribution within the energetic regime at which Eh

m practically attains its
mean value.

Therefore, the molecular tangent modulus accounting for the series elasticity
induced by entropic and energetic mechanisms results in:

EmðemÞ ¼
Es

mðes
mÞEh

mðeh
mÞ

Es
mðes

mÞ þ Eh
mðeh

mÞ
; ð5Þ

and the strain contributions due to entropic and energetic effects, that is the
functions es

m ¼ es
mðemÞ and eh

m ¼ eh
mðemÞ, are obtained by solving the following

differential problem:

_es
m ¼

EmðemÞ_em

Es
mðes

mÞ
; _eh

m ¼
EmðemÞ_em

Eh
mðeh

mÞ
: ð6Þ

Accordingly, the description of the entropic/energetic transition directly
derives from the mutual competition of the stiffnesses associated to Es

m and Eh
m: when

Es
m � Eh

m molecular mechanics is mainly governed by the entropic mechanisms
(Em 	 Es

m), when Es
m � Eh

m by the energetic ones (Em 	 Eh
m), whereas when

Es
m 	 Eh

m both mechanisms significantly contribute. As the analysis of Eqs. (6)
reveals, present model of the entropic/energetic transition is based on equilibrium
and compatibility conditions, despite of the phenomenological approaches intro-
duced in [13, 14].
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For the uni-axial traction problem of a collagen molecule, the force pair
Fm applied at the molecular ends can be computed in terms of the actual molecular
length ‘m as Fm ¼ Amrm, where the molecular stress measure results from:

rmðemÞ ¼
Z em

0
EmðnÞdn; ð7Þ

Em being expressed by Eq. (5).
In Fig. 3, the Fm-‘m curve obtained by means of the present approach is

compared with the experimental data proposed in [54] and with results computed
by the classical WLC model, that is by employing Eq. (1). As reported by many
authors [9, 54], the WLC model fits well the molecular response experienced in a
low-force regime, but predicts an unrealistic molecular inextensibility at high
forces. On the contrary, the proposed approach exhibits an excellent agreement in
the overall force range herein addressed, accounting for the molecular compliance
during the entropic/energetic transition. In Fig. 3b the molecular tangent modulus
is plotted versus the molecular extension, highlighting that Em 	 Es

m within the
entropic regime, and Em 	 Eh

m in the energetic one.
Another verification of consistency and soundness of the proposed model for the

entropic/energetic transition follows from Fig. 4a: it shows the computed strain
rates _es

m and _eh
m (normalized with respect to _em) plotted versus the molecular length

‘m. Reference is made to the numerical analyses proposed in [9], wherein for a
collagen molecule with ‘c ¼ 301:7 nm, MDS-based results predict that the entropic
regime dominates for ‘m\280 nm and the energetic one for ‘m [ 317 nm. This
evidence is fully recovered by present results obtained by solving Eqs. (6): _eh

m ! 0
for ‘m\280 nm and _eh

m=_em ! 1 for ‘m [ 317 nm. It is worth pointing out that
present equilibrium and compatibility conditions ensure that the pole at es

m ¼
1=r‘ � 1 for the function Es

mðes
mÞ is never reached (_es

m ! 0 for ‘m [ 317 nm).

Fig. 3 Left: comparison among Fm-‘m curves obtained for a collagen molecule by experimental
tests [54], classical WLC, and present model. Right: molecular (Em), entropic (Es

m), and energetic
(Eh

m) tangent moduli vs. ‘m for a collagen molecule. Parameters: T ¼ 310:15 K, ‘p ¼ 14:5 nm,
‘c ¼ 215 nm, ‘m;o ¼ 1 nm, Êo ¼ 0:1 GPa, Ê ¼ 10 GPa, g ¼ 10; eh

o ¼ 0:65
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Moreover, in Fig. 4b, the Fm-‘m curve obtained in this case is successfully compared
with the experimental data proposed in [12] (available only for low molecular
forces), as well as with the numerical results in [9].

5 Mesoscale Mechanics: Fibrils

Collagen fibrils are modelled as long right cylinders. Let f be the fibril axis
direction, and Af a measure of the fibril cross-sectional area. From a computational
point of view, fibrils are thought as a collection of Nm identical one-dimensional
molecules, with axis aligned along f and mutually interacting through Ncl identical
cross-links, which connect pairs of adjacent molecules (see Fig. 5). Molecules in
reference configuration are assumed to be long ‘m;o ¼ ‘c � ‘kinks, ‘kinks being the
length measure of molecular kinks.

Let ns be the average number of molecules along the fibril length and ‘f ;o the
reference fibril length. Disregarding axial offset among molecules, the following
relationship holds: ‘f ;o 	 ns‘m;o. Moreover, let k be an average measure of cross-
link occurrence for each molecule, such that Ncl ¼ kNm. In the case of a homo-
geneous traction and defining d as the sway of a cross-link along the fibril length, it
is consistent to assume that both molecular strain em and cross-link stretch d are
space-independent quantities within the fibril domain.

Furthermore, denoting with D‘f the fibril length variation and with ef the fibril
nominal strain, the following kinematic assumption is enforced:

D‘f ¼ nsð‘m;oem þ dÞ ! ef ¼
D‘f

‘f ;o
¼ em þ

d
‘m;o

� �
; ð8Þ

Fig. 4 Left: strain rates associated with entropic (_es
m) and energetic (_eh

m) mechanisms (normalized
with respect to _em) computed by the present approach. Right: collagen Fm-‘m curves obtained by
experimental tests [12], MDS [9], classical WLC, and present model. Parameters: T ¼ 310:15 K,
‘p ¼ 16 nm, ‘c ¼ 301:7 nm, ‘m;o ¼ 1 nm, Êo ¼ 5 GPa, Ê ¼ 100 GPa, g ¼ 10, eh

o ¼ 0:35
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that accounts for series mechanisms occurring between molecular and cross-link
stretching, and that is consistent with experimental evidences [26]. It is worth
pointing out that parameter k does not intervene in the compatibility equation (8)
because covalent cross-links occurring upon a given molecule are assumed to act
in parallel.

Assuming a linearly elastic behavior with sway stiffness kcl for each cross-link,
a measure of the nominal fibril stress along f is

rf ¼ lrm ¼ kkcld=Af ; ð9Þ

with rm expressed by Eq. (7) and where l is the average measure of the ratio
between solid (occupied by molecules) and total cross-section. Accordingly, by
combining Eqs. (8) and (9), the fibril tangent elastic modulus along f results in:

Ef ðef Þ ¼ l
1

EmðemÞ
þ Am

kkcl‘m;o

� ��1

; ð10Þ

where the contribution to the molecular elongation due to the fibril strain, that is
the function em ¼ emðef Þ, is obtained by solving the following inter-scale equi-
librium differential problem:

_em ¼
Ef ðef Þ

lEmðemÞ
_ef : ð11Þ

In the following, since fibrils within tissues are made up of densely packed
molecules and in agreement with evidences proposed by [55], the model parameter
l is set equal to one.

In Fig. 6, numerical results obtained considering a uni-axial traction of a col-
lagen fibril are shown, highlighting the capability of the proposed approach to
predict the evolution of both molecular and fibril tangent moduli versus ef . In
agreement with recent theoretical evidences at the atomistic scale [2, 56], lower
values of the fibril stiffness with respect to the molecular ones are successfully
reproduced, as induced by the stretching of inter-molecular cross-links. Moreover,

Fig. 5 Fibril model. Notation
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a quantitative estimate of the fibril stiffness variation due to changes in cross-link
mechanics is provided, showing that fibril stiffness significantly varies both in
terms of absolute values and with respect to the molecule’s. An increase in cross-
link occurrence produces an increase in fibril modulus up to a saturation level that
corresponds to the molecular stiffness. Furthermore, numerical results clearly show
the non-linear dependence of molecular and cross-link strain measures on both
fibril strain and occurrence/stiffness of cross-links.

These results at the mesoscale recover and justify also other significant
evidences. Since identical collagen molecules likely exhibit identical nano-
mechanical responses, the wide range of values for fibril/fiber modulus, generally
reported in the specialized literature as a result of microscale experimental
investigations (0.2–12 GPa [2]), can be justified via the proposed results as a
consequence of different occurrence and mechanical response of cross-links.
Moreover, since after the removal of fibril (fiber) geometrical crimp the
mechanical response of the fibrils’ material (corresponding to cross-linked
collagen molecules) can be considered as representative of the elastic behavior of

Fig. 6 Top left: fibril (Ef ) and molecular (Em) tangent moduli vs. fibril nominal strain ef

(computed for kkcl ¼ 10 pN/nm). Top right: ratio between molecular and fibril moduli Em=Ef vs.
fibril nominal strain ef for different values of kkcl. Bottom left: fibril tangent modulus Ef (in log10
scale) vs. kkcl (in log10 scale) for different values of fibril nominal strain e


f
. Bottom right:

molecular nominal strain em and cross-link normalized extension d=‘m;o vs. fibril strain ef for
different values of kkcl: (�) kkcl ¼ 1 pN/nm; (M) kkcl ¼ 10 pN/nm; (
) kkcl ¼ 100 pN/nm.
Constant parameters: ‘p ¼ 14:5 nm, ‘c ¼ 287 nm, ‘kinks ¼ 22 nm, Êo ¼ 1 GPa, Ê ¼ 100 GPa,
g ¼ 10, eh

o ¼ 0:35, Am ¼ 1:41 nm2; T ¼ 310:15 K, l ¼ 1
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the overall tissue [2, 8], present results recover the tissue stiffening experienced at
the macroscale, confirming as this occurrence can be associated with the formation
of mature cross-links [57, 58].

6 Microscale Mechanics: Fibers

A collagen fiber is modeled as a homogeneous beam with a circular cross-section
of radius rF and with a periodic planar centerline in both reference and actual
configurations (Fig. 7). Let the along-the-chord nominal strain measure be defined
as eF ¼ L=Lo � 1; L (respectively Lo) being the actual (reference) fiber period.
Moreover, let the Cartesian frame ðt; nÞ be introduced, with the unit vector t
aligned with the actual fiber chord direction, and let x be the coordinate along t.
Accordingly, the centerline position vector results in rðx; eFÞ ¼ f ðx; eFÞ nþ x t,
where f ðx; eFÞ denotes the centerline curve, whose slope with respect to t is defined
by the angle aðx; eFÞ.

Following a constrained Hu-Washizu variational approach, and disregarding
any shear and Poisson-related effect, the tangent equivalent along-the-chord fiber
modulus Eeq results in [59]:

EeqðeFÞ ¼ EcIF cos ah i IF cos2 a
� �

þ AF f 2
� �� 	�1

; ð12Þ

where Ec is the tangent elastic modulus of the fiber material along the direction
perpendicular to the fiber cross-section, AF ¼ pr2

F ; IF ¼ pr4
F=4, and symbol �h i

denotes the curvilinear average operator defined along the curvilinear coordinate s
following the fiber centerline, that is

�h i ¼ 1
LðeFÞ

Z LðeFÞ

0
� ds; ð13Þ

LðeFÞ being the length over a period of the actual fiber centerline. By assuming the
fiber material behavior to be governed by the fibril non-linear constitutive
response, that is enforcing the constitutive inter-scale condition Ec ¼ Ef ðef Þ, nano-
and mesoscale mechanical effects are straightforwardly included in the mechanical
description of a collagen fiber. Nominal strain ef associated with eF , that is the
function ef ¼ ef ðeFÞ, is computed from the following inter-scale compatibility
relationship:

ef ¼ LðeFÞ=Lð0Þ � 1; ð14Þ

with

LðeFÞ ¼
Z L

0

df
cos a

: ð15Þ
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The actual shape f ðx; eFÞ ¼ rðx; eFÞ � n at the along-the-chord strain level eF is
determined by solving the following differential problem, resulting by applying the
Principle of Virtual Works [59]:

_rðx; eFÞ ¼
EeqðeFÞ
Ef ðef Þ

a1ðx; eFÞ nþ a2ðx; eFÞt½ �_eF; ð16Þ

with

a1ðx; eFÞ ¼ � x�aðeFÞ þ
Z x

0
sin a� AF

IF

f f

cos a

� �
df

� x
AF

IF

Z L

x

f

cos a
df;

ð17Þ

a2ðx; eFÞ ¼ f ðx; eFÞ�aðeFÞ þ
Z x

0
cos aþ AF

IF

f 2

cos a

� �
df

þ f ðx; eFÞ
AF

IF

Z L

x

f

cos a
df;

ð18Þ

�aðeFÞ ¼
1

2 cos ah i sin 2ah i � 2
AF

IF
f fh i

� �
: ð19Þ

In order to show effectiveness and soundness of the proposed microscale
description, numerical results obtained for an isolated collagen crimped fiber are
discussed, addressing the fiber along-the-chord response. The reference centerline
curve f ðx; 0Þ is defined as the sum of two sinusoidal waves depending on the
parameters x 2 N (x� 0) and v 2 R:

f ðx; 0Þ ¼ Ho sin 2px=Loð Þ þ vHo sin 2xpx=Loð Þ ð20Þ

and, as a notation rule, Hmax;o ¼ maxff ðx; 0Þg. Moreover, nanoscale parameters
defining the fiber’s material behavior are assumed to be equal to ‘p ¼ 14:5 nm,

‘c ¼ 287 nm, Êo ¼ 1 GPa, Ê ¼ 100 GPa, g ¼ 10, eh
o ¼ 0:35; ‘kinks ¼ 22 nm,

Am ¼ 1:41 nm2, T ¼ 310:15 K, l ¼ 1 and kkcl ¼ 10 pN/nm.
By integrating Eq. (16), reference and actual (at eF ¼ 0:1) shapes of curvilinear

fibers with different centerline curves are shown in Fig. 8. The typical stiffening

Fig. 7 Planar fiber model. Notation
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response related to the decrease of the fiber crimp is highlighted in Fig. 9, wherein
the centerline shape is proved to affect the fiber mechanical response mostly for
high values of the aspect ratio Ho=Lo, resulting in a significant dependence on the
parameters v and x.

The fiber behavior is highly non-linear because of both material (at nanoscale
and mesoscale) and geometric effects. Nevertheless, if the equivalent modulus Eeq

is normalized with respect to the fibril’s one Ef , the effects related only to geo-
metric non-linearities can be highlighted. Accordingly, Fig. 10 shows the influence
of the shape parameters (Ho=Lo; x, and rF=Lo) on the fiber mechanical response
related to geometric non-linearities, in terms of the tangent modulus in the
reference configuration (i.e., at eF ¼ 0) as well as in terms of modulus variation
versus the fiber strain level eF .

7 Macroscale Mechanics

Previous microscale approach is employed to describe the mechanical behavior of
collagenous fibers within regular soft tissues. Fibers are assumed to be embedded
into a linearly elastic isotropic matrix, whose Young modulus and Poisson ratio are
EM and mM , respectively. Neglecting any fiber–matrix interaction effect, crimped
fibers are reduced to equivalent reinforcing straight fibers, exhibiting an elastic

Fig. 8 Actual fiber configuration at eF ¼ 0:1 (continuous lines) for different reference centerline
shapes (dotted lines) corresponding to x ¼ 0 (top left), x ¼ 2 (top right), x ¼ 4 (bottom left),
and x ¼ 8 (bottom right). Parameters: Ho=Lo ¼ 0:1; rF=Lo ¼ 0:025; Lo ¼ 100 lm, v ¼ 0:1
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transversally isotropic behavior with the symmetry axis coincident to the fiber-
chord direction t. Due to the small values of the fiber flexural stiffness and of EM

[9], the Poisson ratio (mF), the tangent tensile (EF) and the shear (GF) elastic moduli
of an equivalent fiber within the tissue are represented by:

EF; LðeFÞ ¼ EeqðeFÞ; EF; T ¼ EM; ð21Þ

Fig. 9 Along-the-chord modulus Eeq (left) and dimensionless amplitude variation HðeFÞ=Hmax;o

(right) vs. the fiber along-the-chord nominal strain eF for different reference centerline curves.
Parameters: rF=Lo ¼ 0:025, Lo ¼ 100 lm, v ¼ 0:1; x ¼ 4

Fig. 10 Influence of the aspect ratios Ho=Lo and rF=Lo on the fiber mechanical response. Left:
Along-the-chord modulus Eeq at eF ¼ 0, normalized with respect to the initial fibril modulus
Ef ð0Þ for different reference centerline geometries (x ¼ 0: continuous line; x ¼ 8: dotted line).
Right: Along-the-chord modulus Eeq normalized with respect to the fibril modulus Ef ðef Þ vs. the
nominal fiber strain eF for x ¼ 4. Parameters: Lo ¼ 100 lm, v ¼ 0:1
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mF; LT ¼ mF; TT ¼ mM; GF; LT ¼ EM=½2ð1þ mMÞ�; ð22Þ

with EeqðeFÞ as in Eq. (12) and where the subscript L refers to the direction
identified by t, whereas T to any direction orthogonal to t.

Once crimped collagenous fibers are reduced to equivalent straight fibers,
through the previous homogenization step and accounting for geometrical and
material non-linearities, standard arguments for fiber-reinforced composite mate-
rials can be employed in order to describe the macromechanics of soft collagenous
tissues.

7.1 Uni-directional Tissues: Tendons and Ligaments

A further homogenization step at the macroscale is carried out by employing the
mixture rule [60]. Accordingly, a uni-directional collagenous tissue is reduced to a
homogeneous medium with a transversally isotropic behavior, the isotropy plane
being orthogonal to t. Therefore, tangent equivalent elastic constants of the tissue
at the along-the-chord fiber strain level eF result in:

ELðeFÞ ¼ Vf EF; LðeFÞ þ ð1� Vf ÞEM ; ET ¼
EF; T EM

EF; Tð1� Vf Þ þ EMVf
; ð23Þ

GLT ¼
Vf

GF; LT
þ 1� Vf

GM

� ��1

; GTT ¼
Vf

GF; TT
þ 1� Vf

GM

� ��1

; ð24Þ

mLT ¼ Vf mF; LT þ ð1� Vf ÞmM; mTT ¼
ET

2GTT
� 1; ð25Þ

where Vf is the fiber volume fraction. Referring to the standard Voigt notation, the

tangent stiffness matrix ~C in the material coordinate system (t,n,k), with
k ¼ t� n, is:

~CðeFÞ ¼
LðeFÞ 0

0 M

� �
; ð26Þ

where

LðeFÞ ¼
1
D

ELð1� m2
TTÞ ETmLTð1þ mTTÞ ETmLTð1þ mTTÞ

ETmLTð1þ mTTÞ ETð1� jm2
LTÞ ETðmTT þ jm2

LTÞ
ETmLTð1þ mTTÞ ETðmTT þ jm2

LTÞ ETð1� jm2
LTÞ

2

4

3

5; ð27Þ

M ¼ diag GTT ; GLT ; GLTð Þ; DðeFÞ ¼ 1� m2
TT � 2ð1þ mTTÞjm2

LT ; ð28Þ

with EL ¼ ELðeFÞ and j ¼ jðeFÞ ¼ ET=ELðeFÞ.
Accordingly, at the macroscale and in a global coordinate system, the tangent

homogenized constitutive law for the tissue results in:
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_rt ¼ CðeFÞ_et ¼ T̂rðtÞ~CðeFÞ½T̂eðtÞ��1 _et; ð29Þ

where T̂rðtÞ and T̂eðtÞ are the stress and strain transformation matrix from the
local to the global coordinate system, and _et, _rt are the increments of macro strain
and stress vectors (in Voigt notation) for the equivalent homogeneous tissue,
respectively.

In order to validate the present approach, uni-axial traction along the fiber-
chord direction of tendinous tissues is addressed, comparing available experi-
mental data for rat tail tendons with numerical results obtained via the proposed
model. Figure 11 shows the excellent agreement between experimental results
measured from two different tendinous specimens [27, 61] and the model’s out-
comes. These are obtained by using an incremental approach and considering two
different sets of parameters (Table 1). The major issue is that, setting the same
values for nanoscale parameters (since the collagen-related nanoscale features are
similar among different healthy tissues), different tissue mechanical responses are
clearly reproduced by considering differences in microscale fiber geometry.

Fig. 11 Mechanics of uni-directional tissues: experimental along-t constitutive response of rat
tail tendons [27, 61] compared with the numerical results obtained via present model by using two
consistent sets of micro/macro model parameters (Table 1). rt;t and et;t denote direct stress and
strain components, respectively, along the fiber-chord direction t. The shape of the collagen fiber
centerline in the reference configuration is defined as in Eq. (20) with v ¼ 0. Values of nanoscale
model parameters are set equal to: ‘p ¼ 14:5 nm, ‘c ¼ 287 nm, Êo ¼ 1 GPa, Ê ¼ 80 GPa,
g ¼ 22:5, eh

o ¼ 0:1; ‘kinks ¼ 14 nm, Am ¼ 1:41 nm2, T ¼ 310:15 K, l ¼ 1; kkcl ¼ 10 pN/nm

Table 1 Values of micro- and macroscale parameters for tendons employed in numerical
applications with relevant references

Ho=Lo rF=Lo Lo (lm) Vf EM (MPa) mM

Set 1 0.05 0.02
200 50 % 1 0.49Set 2 0.0635 0.0325

Ref. [28] [29] [27, 28] [30] [62] [62]
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7.2 Multi-directional Tissues: The Aortic Media Case

The proposed approach can be also employed to describe multi-layered tissues,
comprising layers each having a uni-directional collagen fiber arrangement. This is
the case of the arterial tunica media. In the following, reference will be made to the
aorta.

Following experimental evidences [31, 32, 36] and well-established modeling
approaches [47], aortic media is modelled as a multi-layered thick-walled cylinder
(with internal radius ri and thickness ha) made up of N identical layers (media
lamellar units MLUs, see Fig. 12). Such a multi-layered cylinder is assumed to
have a length much greater than ri, and to be loaded by a uniform internal pressure
distribution p, undergoing prevailing membranal response with negligible flexural
effects. Let the cylindrical coordinate system ðz;u; qÞ be introduced, where q is the
radial coordinate, and u and z the angular and axial coordinates, respectively.

Each MLU comprises an elastin rich elastic lamina (EL) he thick and an
interlamellar substance (IL) with thickness hIL.

The EL sub-layer is modelled as a two-phase substance comprising void (or
very soft constituents with negligible stiffness) with volume fraction Vo, and
elastin. The latter is assumed with a linearly elastic isotropic behavior and
characterized by the Young’s modulus Ee and the Poisson’s ratio me. Accordingly,
EL can be reduced by the mixture rule to a homogeneous layer with equivalent
isotropic elastic constants equal to ð1� VoÞEe and ð1� VoÞme.

The interlamellar substance, in turn, can be regarded as a multi-layered sub-
structure, made up of concentrically fiber-reinforced layers, comprising elastin,
muscle cells, and crimped collagenous fibers whose main direction is helically
arranged around the vessel axis. In agreement with well-established histological in
vivo measures [36] and as previously recalled (see Sect. 2.2.2), the wrapping angle
hF of collagen fibers can be described as a function of the radial coordinate q
(Fig. 12).

The kth MLU (k ¼ 1. . .N) is reduced to a homogeneous layer, comprising an
anisotropic (generally with a monoclinic symmetry) non-linearly elastic material
characterized by a tangent equivalent stiffness matrix �CkðeFÞ (and compliance

matrix �Sk ¼ ð�CkÞ�1). The latter is obtained by accounting for the kth MLU-based
microstructure through a homogenization step carried out via the standard laminate
theory [60, 63]. To this aim, at the radial position q, the local tangent stiffness
matrix C is computed referring to a uni-directional collagenous tissue with the fiber
chord direction tðqÞ inclined by hFðqÞwith respect to the vessel axis z. Accordingly,
C ¼ CðhF ; eFÞ, where hF ¼ hFðqÞ and eF ¼ eFðqÞ, and thereby C ¼ CðqÞ at each
incremental step. Since ðhe þ hILÞ=ri � 1, any curvature effect is disregarded. It is
worth observing that if q identifies a position within a EL sub-layer, C is described
in agreement with an isotropic response, that is by involving the elastic constants
Ee and me only.
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Indicating with �Sk
ij (respectively, Cij and Sij) the components of the 6� 6

compliance matrix �Sk (respectively of CðqÞ and SðqÞ) expressed in the standard
Voigt notation, the homogenized tangent compliance results from [60, 63]:

�S
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�S
k
12

�S
k
16

�S
k
21

�S
k
22

�S
k
26

�S
k
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�S
k
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�S
k
66
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3

75 ¼ hIL ðAkÞ�1; ð30Þ

�S
k
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�S
k
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�S
k
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h i
¼ ðAkÞ�1

Z rk

rk�1

S13ðqÞ S23ðqÞ S36ðqÞ½ �QkðqÞdq
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; ð31Þ
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1
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1� �S
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dq; ð32Þ

�S
k
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�S
k
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�S
k
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�S
k
55

" #

¼ 1
hIL

Z rk

rk�1

S44ðqÞ S45ðqÞ
S54ðqÞ S55ðqÞ

� �
dq; ð33Þ

where

QkðqÞ ¼
C11ðqÞ C12ðqÞ C16ðqÞ
C21ðqÞ C22ðqÞ C26ðqÞ
C61ðqÞ C62ðqÞ C66ðqÞ

2

4

3

5; Ak ¼
Z rk

rk�1

QkðqÞdq; ð34Þ

and where rk�1 and rk are the minimum and the maximum radial coordinate of the
kth MLU, respectively.

Since non-fibrous components within interlamellar space are essentially elastin
and muscle cells, and the stiffness of muscle cells can be retained as comparable to
the elastin’s [64], as a first approximation no distinction between elastin and muscle
phases is assumed. Accordingly, the computation of CðqÞ via Eqs. (23)–(29) can be
carried out by applying the mixture rule and by letting:

EM

Ee

¼ mM

me

¼ 1� Vo

1� Vf

� �
: ð35Þ

Fig. 12 Model of the multi-layered aortic tunica media. Notation. The function hFðqÞ has been
assumed in agreement with evidences proposed in [36]
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Due to the previous symmetry assumptions and disregarding any possible end
effect, problem reduces to an axisymmetric generalized plane strain problem. In
the framework of an incremental approach, the incremental elastic equilibrium
solution for such a composite multi-layered thick-walled structure is obtained at
each pressure variation _p as briefly summarized in the Appendix, updating at each
step the fiber chord direction tðqÞ and the fiber strain eFðqÞ as functions of the
actual macroscale strain field [8].

In Fig. 13, p-ri curves numerically obtained via present model are compared
with the available experimental results proposed in [34]. In agreement with his-
tological observations [31], the MTU number N has been set equal to 60. Moreover,
since the experimental data have been obtained on excised dead aortas, both lon-
gitudinal pre-stretch (that is, the direct strain eo, see Appendix) and smooth muscle
tone have been assumed to vanish, whereas geometrical radial pre-stretch effects
have been taken into account referring the fiber morphological parameters to the
experimentally-analyzed undamaged aortic cross-sections at zero-load state [36].

Proposed numerical results show the effects related to the variation of some
model parameters, with the aim to reproduce the evolution of the tissue mechanics
induced by age. The age-dependent values of model parameters have been
assumed in agreement with the evidences proposed through the recent specialized
literature [3, 34, 35, 57, 65], wherein well-established data and results give indi-
cation on the evolution of some histological, geometric and mechanical charac-
teristics in healthy human aortas. In the lack of detailed experimental data,
parameters have been set within well-established physiological ranges, and their
age-dependent variation has been chosen in agreement with available qualitative
evidences, disregarding possible differences between the thoracic and the
abdominal aortic branches.

Fig. 13 Experimental pressure p vs. the internal-radius ri for human aortas at different ages [34],
compared with the numerical results obtained by means of the present multiscale model. The
shape of the collagen fiber centerline in the reference configuration is defined as in Eq. (20) with
v ¼ 0. Age-dependent model parameters are summarized in Table 2, whereas constant
parameters are set equal to: ‘p ¼ 14:5 nm, ‘c ¼ 287 nm, Êo ¼ 1 GPa, Ê ¼ 80 GPa, g ¼ 22:5;
eh

o ¼ 0:1; ‘kinks ¼ 14 nm, Am ¼ 1:41 nm2; T ¼ 310:15 K, l ¼ 1, and Lo ¼ 5 lm
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Experience-based age-dependent aortic features are reported in the following,
together with the corresponding evolution trends for the physically-based
parameters introduced in the present model:

• Unloaded aortic radius [34, 65] and media thickness [65] increase with age.
Physiological ranges are about 5:5-8:65 mm and 0:44-0:76 mm, respectively.
Accordingly, rijp¼0 and ha increase with age.

• Elastin stiffness increases in men, due to increasing glycation with age [35], in
the range 30–280 kPa. Thereby, Ee increases with age.

• The stiffness of collagenous constituents at high pressure (when the collagen
fibers are straightened) increases with age [35], indicating a higher stiffness of
the collagen fibrils, that is Ef . Since the genetic pattern of healthy people is
practically constant in time, it is unlikely to believe that this stiffening behavior
is related to variations in the nanoscale structure of collagen molecules.
Thereby, variations in Ef are associated with the alteration of cross-link stiffness
and/or occurrence, that is with the variation of kkcl, which increases with age.
This is fully in agreement with the experimental results from [57].

• With increasing age, collagen-induced stiffening effects occur at lower pressure
levels during the cardiac cycle [35]. In agreement with present microscale results
(see Fig. 10), this evidence can be associated with a reduced aspect ratio Ho=Lo of
the collagen fibers, which then results to be inversely proportional to age.

• The stiffness of collagenous constituents at very low physiological pressure
decreases with age [65]. As shown in Fig. 10, a reduction in stiffness of
collagenous constituents at small strains can be associated with either more
crimped or thinner fibers. In agreement with the previous evidences, the occur-
rence offibers more crimped has been excluded, associating the present finding to a
reduced value of the collagen fiber radius. Thereby, ratio rF=Lo decreases with age.

• Dry weight of the aortic wall decreases with age (about four or five times, [66])
despite of the increase of the aortic thickness [65]. Therefore, aortic water
content (non-solid matter) increases with age, leading to the decrease of the
absolute amount of elastin and collagen. On the other hand, the increase (about
three times) of the relative amount of collagen with respect to the non-collag-
enous solid matter has been reported [66]. Accordingly, Vo increases with age,
as well as also Vf =ð1� VoÞ.

In agreement with previous considerations, parameters employed in proposed
numerical applications are chosen as summarized in Table 2.

Table 2 Values of age-dependent model parameters for aortic media employed in numerical
applications and relevant references (when available) for physiological ranges

Age
(years)

kkcl

ðpN=nmÞ
Ho=Lo

ð-Þ
rF=Lo

ð-Þ
Vf =ð1� VoÞ
ð%Þ

Vo

(%)
Ee

ðkPaÞ
he

ðlmÞ
ha

(mm)
rijp¼0

ðmmÞ
20–24 5 0.425 0.065 15 10 30 1.4 0.588 5.6
36–42 10 0.295 0.032 20 30 80 1.5 0.630 6.2
71–78 15 0.225 0.022 25 50 120 1.65 0.693 7.4
Ref. [36] [36] [66] [66] [35] [35] [35] [34]
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Figure 13 clearly shows that proposed model is able to reproduce the
mean experimental p-ri curves associated with young (20–24 years), middle-age
(36–42 years), and old (71–78 years) subjects. Although values of model
parameters are chosen only in agreement with well-established trends and there is
no quantitative relationships with the available experiments, the model reveals to
be attractive and potentially effective in relating tissue structure at different scales
and its evolution to the tissue macroscopic mechanical behavior.

8 Conclusions

In the present paper, a structural multiscale elastic formulation for modeling soft
collagenous tissues has been presented, based on the approach proposed and
applied by authors in [8, 51]. To this aim, single-scale models of collagenous bio-
structures at very different length scales have been introduced, addressing mole-
cules (nanoscale), fibrils (mesoscale) and crimped fibers (microscale). Following a
multiscale structural rationale, that allows to account for the hierarchical multiscale
arrangement of the constituents within tissues, these models have been integrated
by means of consistent inter-scale relationships and homogenization arguments,
leading to an accurate macroscale description of soft collagenous tissues.

Soundness and effectiveness of the present approach have been proved by
recovering a number of well-established evidences at different length scales,
without the use of phenomenological descriptions. It is shown that proposed sin-
gle-scale models are able to reproduce the transition from entropic-to-energetic
mechanisms at the nanoscale, the effects of inter-molecular cross-links on fibril
mechanics, and the coupling between material and geometric non-linearities
affecting the deformation process of crimped collagen fibers. Moreover, available
experimental data on the biomechanical response of tendons and aortas have been
compared with the numerical results obtained by the macroscale model, high-
lighting an excellent agreement. Such a capability arises from the structural
multiscale approach herein adopted, that allows to account for material and
geometrical non-linearities at different scales, as well as for nanoscale mecha-
nisms. In fact, as proved in [8], a structural approach involving only microscale
mechanisms is generally not able to recover accurately, for different strain levels,
the non-linear mechanical response of soft collagenous tissues.

Following the proposed approach, few and experimentally measurable model
parameters are introduced. Thereby, the effects of altered histological features on
tissue mechanics can be straightforwardly investigated. For instance, different
microscale fiber geometric features allow to explain the variability in constitutive
response experienced when data measured on different specimens of rat tail
tendons are compared. Moreover, the age-dependent evolution of aortic mechan-
ical behavior has been accurately reproduced, simply by incorporating the well-
documented features of age-dependent tissue remodeling.
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Therefore, multiscale structural approaches allow to implement numerical
simulations, that are patient-specific not only for the geometric description of tis-
sues and organs, but also in terms of tissue constitutive properties. This opens to the
possibility of numerically investigating the effects of histological and biochemical
rearrangement on the mechanics of an organ, as well as of estimating, in an inverse-
like scheme, the values of histo-mechano-chemical features by means of non-
invasive techniques. Accordingly, among the available modeling approaches for
the analysis of soft tissues, the structural multiscale rationale can be retained as the
most promising for conceiving and developing groundbreaking virtual tools,
allowing to improve diagnosis and to assess customized clinical treatments.
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Appendix

The incremental elastic equilibrium solution for the multi-layered aortic cylinder,
comprising N identical media lamellar units (MLUs) and loaded with a uniform
internal pressure increment _p, is herein briefly reported. Reference is made to the
linearly elastic solution proposed in [67], considering the problem as an axisym-
metric generalized plane strain problem, characterized by a given non-vanishing
constant direct strain increment _eo along the cylinder axis z. Accordingly, for the
kth MLU, the incremental components of the displacement field in a cylindrical
system of coordinates result in

_uk
q ¼ Ak

1q
ak þ Ak

2q
�ak þ _eoak

1qþ Bkak
2q

2; ð36Þ

_uk
u ¼ Bkqz; ð37Þ

_uk
z ¼ _eoz: ð38Þ

The non-trivial increments of strain components are

_ek
q ¼

o _uk
q

oq
; _ek

u ¼
_uk
q

q
; _ck

zu ¼ Bkq; ð39Þ

and the components of stress increments are

_rk
q ¼ Ak

1b
k
q1q

ak�1 þ Ak
2b

k
q2q
�ak�1 þ _eob

k
q3 þ Bkbk

q4q; ð40Þ
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_rk
u ¼ Ak
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k
u1q

ak�1 þ Ak
2b

k
u2q
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k
u3 þ Bkbk

u4q; ð41Þ

_rk
z ¼ Ak
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k
z1q

ak�1 þ Ak
2b

k
z2q
�ak�1 þ _eob

k
z3 þ Bkbk

z4q; ð42Þ

_sk
zu ¼ Ak

1b
k
c1q

ak�1 þ Ak
2b

k
c2q
�ak�1 þ _eob

k
c3 þ Bkbk

c4q; ð43Þ

where

bk
q1 ¼ �Ck

g2 þ ak
�Ck

g3; bk
q2 ¼ �Ck

g2 � ak
�Ck

g3; ð44Þ

bk
q3 ¼ �Ck

g1 þ ð�Ck
g2 þ �Ck

g3Þak
1; bk

q4 ¼ �Ck
g6 þ ð�Ck

g2 þ 2�Ck
g3Þak

2; ð45Þ

with the index q ¼ z;u; q; c corresponding to the g-index values g ¼ 1; 2; 3; 6,
respectively, and with

a2
k ¼ �Ck

22=
�Ck

33; ð46Þ

ak
1 ¼ ð�Ck

12 � �Ck
13Þ=½�Ck

33ð1� a2
kÞ�; ak

2 ¼ ð�Ck
26 � 2�Ck

36Þ=½�Ck
33ð4� a2

kÞ�; ð47Þ

�Ck
ij denoting the ði; jÞ component of the stiffness matrix C

k for the kth MLU.
It is worth pointing out that during the deformation path both strain and stress

components, and thereby also the strain-dependent MTU material properties, are
z- and u-independent.

Assuming the MLUs as perfectly bonded layers, the 3N unknown constants
Ak

1; Ak
2; Bk (with k ¼ 1:::N) are solved by imposing the following 3ðN � 1Þ

continuity conditions at the MLU’s interfaces:

_uk
qðrkÞ ¼ _ukþ1

q ðrkÞ; _uk
uðrkÞ ¼ _ukþ1

u ðrkÞ; _rk
rðrkÞ ¼ _rkþ1

r ðrkÞ; ð48Þ

and the three equilibrium incremental relationships:

_rrðriÞ ¼ � _p; _rrðri þ haÞ ¼ 0; 2p
XN

k¼1

Z rk

rk�1

q2 _sk
zudq ¼ 0; ð49Þ

the latter prescribing the average torque related to the tangential stress increment
_szu to be zero.
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Multiscale Modeling of Ligaments
and Tendons

Shawn P. Reese, Benjamin J. Ellis and Jeffrey A. Weiss

Abstract Ligaments and tendons are composed primarily of water and fibrillar
type I collagen, which is hierarchically organized into complex structures that span
multiple physical scales. Forces at the macroscopic joint level are transmitted via
interactions at the mesoscale, microscale and nanoscale. Tissue repair and growth
is mediated by fibroblasts and tenocytes, which are subjected to a unique micro-
scale mechanical environment. The burgeoning field of multiscale modeling holds
promise in filling the gaps in our understanding of structure–function relationships
and mechanotransduction in these tissues, and these questions are difficult or
impossible to address using experimental techniques alone. This article reviews
the state of the art in multiscale modeling of ligaments and tendons, while pro-
viding sufficient background on the structure and function of these tissues to allow
a reader who is new to the area to proceed without substantial outside reading. The
multiscale structure of ligaments and tendons is described in detail. The available
data on material characterization at different physical scales is reviewed as well.
The final section of the chapter summarizes the efforts at developing and vali-
dating multiscale models that are relevant to ligament and tendon mechanics, and
identifies future directions for research. Multiscale modeling of tendon and liga-
ment holds considerable promise in advancing our understanding regarding the
complex mechanisms of multiscale force transfer within these tissues.
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1 Introduction

Although the structure and mechanics of collagenous connective tissues have been
studied for decades, a clear understanding of the relationships between hierarchical
organization and material behavior is severely lacking. This can be attributed, at
least in part, to an inability to integrate and couple mechanics between different
physical scales. In the case of ligaments and tendons, this requires integration of
information on structure, organization and material behavior of constituents
between the nanoscale, microscale and mesoscale.

In theory, this integration can be accomplished using the theory of homoge-
nization [37, 78, 129, 203, 256]. In homogenization, a microscale boundary value
problem is used to determine the governing behavior at the macroscale. In linear
theory, a homogenization yields the components of the so called ‘‘effective’’
elasticity tensor [172]. In nonlinear theory, the macroscale boundary value prob-
lem is solved simultaneously using the methods of computational mechanics, and a
nested solution of two boundary value problems is obtained. Homogenization
techniques have been applied to bone [165, 172, 176, 197, 223], cartilage [203],
myocardium [146, 159], arteries [207], cells [97], connective tissues [4, 12, 37, 42,
43, 137, 149, 187] and biomaterials [43].

The function of the organizational motifs of collagen in connective tissues, and
their mechanical interactions across scale levels, is of fundamental importance in
understanding normal tissue function and the etiology and treatment of injury and
disease, both acquired and inherited. In the case of injury and disease, changes to
ECM organization are one of the most often observed effects on the tissue. It is
well known that ligaments and tendons primarily heal by scar formation [10, 68,
69, 106, 140, 141, 238], and that the healed tissue is inferior to the normal tissue
both in terms of structural organization and material properties [24, 54, 69, 106,
112, 238]. The reasons for the lack of a more ‘‘regenerative’’ healing response
continue to evade us, but an improved understanding of the basic tissue structure
will help to interpret the alterations in structure that are present in healing tissues.
Many heritable diseases directly affect type I collagen structure and fibrillogenesis,
resulting in varied phenotypes that alter the multiscale structure of collagen (e.g.,
osteogenesis imperfecta, Ehlers-Danlos syndrome, [193, 219]). These diseases
cause relatively well-characterized alterations in structure/organization of type I
collagen at the nanoscale (fibril) level, as well as other levels. Additionally, since
collagen fibrillogenesis is regulated by other ECM components, alterations to these
components can directly influence collagen structure. Examples include disorders
that affect decorin, biglycan and elastin/fibrillin such as congenital stromal corneal
dystrophy [36], periodontal disease [92] and Marfan Syndrome [161].

The overall objective of this chapter is to review the state of the art in multi-
scale modeling of ligaments and tendons, while providing sufficient background on
the structure and function of these tissues to allow a reader who is new to the area
to proceed without substantial outside reading. Section 2 reviews the multiscale
structure and function of ligaments and tendons, including the constituents and

104 S. P. Reese et al.



their organization. Section 3 provides a detailed review of the available data on
material characterization of ligaments and tendons at different scales. Section 4
reviews the mathematical fundamentals behind nonlinear continuum mechanics
and homogenization theory. Finally, Sect. 5 critically reviews the state of the art in
multiscale modeling of ligaments and tendons, and identifies directions for future
research.

2 Ligament and Tendon Structure

2.1 Ligament

Ligaments are soft, fibrous tissues that connect bone to bone at the joints. They
help to guide and limit the motion of the bones so that the joint articulates with no
separation or only a limited separation of the bones. Ligaments are passive sta-
bilizers and work in conjunction with other passive stabilizers, including the
articulating surfaces of the bones and, in most diarthrodial joints (major joints—
knee, hip and shoulder), other soft tissues such as the meniscus in the knee and the
labrum in the shoulder and hip. In diarthrodial joints, ligaments are primarily
banded or cordlike. For instance, the medial collateral ligament (MCL) of the knee
is a banded ligament, while the anterior cruciate ligament (ACL) is a cordlike
ligament. These knee ligaments resist motion along a single line of action and
transmit tensile load, but also experience shear, transverse and compressive loads
[5, 6, 20, 29, 33, 41, 49, 65, 75, 76, 233, 240, 242, 245]. The MCL, for example,
primarily resists valgus knee motion, which loads the MCL in tension [3, 11, 87,
113, 115, 142, 157, 160]. However, articulation of the joint and contact with the
bones will also generate shear, transverse and compressive loads [49, 65, 75, 76].
The ligaments in the shoulder and hip form thin, dense bands of tissue around the
joint capsule and are known as capsular ligaments. The inferior glenohumeral
ligament (IGHL), for example, is a capsular ligament in the shoulder. While it can
be argued that capsular ligaments resist motion primarily in one direction, they are
thought to constrain more complex motions than knee ligaments through their
connection with the rest of the capsule [51, 52, 56, 57, 63, 64, 164].

Although ligaments are considered passive stabilizers, there are stresses in the
tissue when the joint is in a neutral position [1]. These in situ stresses are
responsible for the stability of the joint when muscle forces are not acting across
the joint. Due to the difficulty in measuring in situ stresses, in situ strains are
usually measured [75, 244]. Ligament in situ strains are inhomogenous, subject-
specific, and vary depending on joint position [75, 244]. Previous research has
shown that ligament in situ strains must be measured in order to accurately
measure or predict ligament strains and stresses due to external loading [75].

Ligaments attach to bone at insertion sites. There are two types of insertion
sites: direct and indirect insertions. Direct insertion sites occur over a distance of
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less than 1 mm [245], and consist of a distinct right-angle boundary where deep
collagen fibrils extend out of the ground substance matrix and become fibrocar-
tilage tissue, mineralized fibrocartilage tissue and then bone [47]. Indirect insertion
sites occur over a larger area where superficial collagen fibers gradually blend into
the periosteum at more acute angles. Deep collagen fibers also make attachments
at indirect insertion sites, but the connections are fewer than at direct insertion
sites, occur at more acute angles and without the fibrocartilagenous transitional
zone observed in direct insertions [26]. Some ligaments have the same type of
insertion site at both ends, while other ligaments have different types of insertion
sites on opposing ends. The ACL in the knee, for example, has direct insertion
sites on both ends, while the MCL in the knee attaches to the femur with a direct
insertion, but attaches to the tibia with an indirect insertion.

2.2 Tendon

Tendons connect muscles to bones and transmit the forces generated by the
muscles to the bones. Tendons generally stretch more than ligaments during use,
with some tendons being very efficient at storing and recovering energy [23, 40,
48, 71, 100, 116, 139, 151, 155, 204]. These elastic properties allow tendons to
passively modulate forces during locomotion, providing additional stability with
no active work [71, 116, 119, 139]. The length of a tendon significantly contributes
to these characteristics. Shorter tendons allow for more muscle mass [173, 178],
but longer tendons provide more elastic recovery of stored energy [30, 71, 116,
152, 153, 155, 177, 204]. The primary function of tendons like the rotator cuff,
finger tendons, and animal extensor tendons is to transfer load generated by their
associated muscles [23, 27, 28, 123, 177, 178, 258]. In contrast, tendons like the
Achilles tendon and animal flexor tendons store substantial amounts of energy and
are thought to act like biological springs [30, 71, 116, 152, 153, 155, 177, 204].
Structure and composition vary between different tendons and between different
locations within individual tendons [28, 121, 190]. Similar to ligaments, tendons
connect to bones with either direct or indirect insertion sites. These attachments
are complex, are often the site of injury and as such are an area of extensive
continued research [8, 22, 60, 79–81, 150, 151, 214, 215, 246, 255].

2.3 Hierarchical Structure of Ligament and Tendon

Tendons and ligaments are multiphasic biological composites. The extracellular
matrix (ECM) is composed of a fluid phase and a solid phase, with the bulk of the
tissue consisting of the fluid phase (i.e. water). The solid phase consists primarily
of type I collagen, which is organized into a complex hierarchy where tropocol-
lagen monomers form fibrils at the nanoscale, fibrils form fibers at the microscale,

106 S. P. Reese et al.



fibers form fascicles at the mesoscale and fascicles form the whole tendon or
ligament at the macroscale (Fig. 1).

The ECM of ligaments and tendons is formed by self-assembly of cell-secreted
proteins and consists of approximately 70 % water [28]. The solid phase of these
tissues is primarily composed of type I collagen (60–80 %), with the remainder
consisting of elastin, proteoglycans and glycosaminoglycans (GAGs), other types
of collagen (types III, IV, V, VI), fibrillin and other proteins [121, 125, 230]. Type
I collagen exhibits different organizational motifs at each scale (Figs. 1 and 2)
[121]. At the nanoscale, tropocollagen monomers are assembled to form fibrils
(50–200 nm dia.), which display a characteristic d-banding period (67 nm) [121,
170, 171, 224]. Tropocollagen monomers are held together by a combination of
hydrogen, ionic and covalent bonds [125, 230]. Fibrils are spaced regularly within
healthy tissue and predominantly aligned in parallel [31, 209, 227]. Cross sectional
TEM images reveal that fibrils are well organized and separated by a regular
spacing within healthy tissue. At the microscale, fibrils are assembled into fibers
(20–50 lm dia.) [50, 117]. Fibroblasts and tenocytes (10 lm width 9 60 lm
length) are located in the interfiber space [121, 125]. Fibroblasts and tenocytes are
responsible for regulating the ECM in response to loading and injury, and
mechanotransduction plays a major role in their function [229]. The characteristic
crimp pattern is visible at the fiber level, with a period of 50–200 lm [112, 117].
Fibers are arranged in a largely parallel fashion [121]. At the mesoscale, fibers are
assembled into fascicles (100–500 lm dia) [50, 121, 230]. To at least some extent,
crimp is registered between fibers [124, 168]. Fascicles are organized in parallel
[96]. Fascicles and fibers are surrounded by a thin fascia (referred to as endotenon)
[85, 121, 206]. At the macroscale, groups of fascicles are organized into functional
bands (100 lm–1 mm dia) [50].

Noncollagenous ECM constituents include proteoglycans (PGs) such as decorin
(*1%/wt), biglycan (*0.5%/wt) and others (fibromodulin, lumican, aggrecan,
versican), fibrillin [21, 114, 125, 143–145, 167] and elastin (1–2%/wt) [121, 125,
192, 206]. The large PGs (e.g., aggrecan) contribute to the apparent viscoelastic
material behavior of these tissues by controlling water content and flux [114].

Nano 
100 nm

Micro 
100 µm

Meso
500 µm

Macro 
5mm

Tropocollagen

LigamentFascicle
Fiber

Fibril

Fig. 1 Hierarchical organization of ligament from the molecular level to the joint level
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The mechanical role of small PGs (decorin, biglycan) is debated [175, 259], but
our own research demonstrated that their GAG side chains have a negligible
contribution to tissue level mechanics in ligament [102, 104, 144, 145]. Elastin and
fibrillin are thought to contribute to the toe region of the stress–strain curve in
ligament and tendon [32, 136, 166, 220].

Structurally, ligaments and tendons share the same hierarchical organization
and structural motifs. However, there are significant differences in fibril diameter
distributions, fiber diameter and crimp morphologies, metabolic activity and the
relative percentage of certain components such as water, proteoglycans and types I
and III collagen [7, 121, 125, 194].

3 Multiscale Material Characterization

The normal mechanical function of ligament and tendon is an emergent property
of complex interactions between physical scale levels (Fig. 3). In order to model
these complex interactions, a firm experimental basis must first be obtained. This
section reviews and summarizes the experimentally observed material behavior of
ligament and tendon at the macroscale, mesoscale, microscale and nanoscale.

3.1 Elastic and Viscoelastic Behavior

When studying the material behavior of ligament and tendon, it is convenient to
isolate the equilibrium elastic response from the dynamic, or time dependent
response. The elastic response is experimentally measured using slow strain rates
or stress relaxation and creep testing, whereby step displacements or loading are
applied and equilibrium values are obtained [144]. The elastic response arises
primarily from stretching and interactions of the solid phase components.

200 µm

Fig. 2 Unique structural motifs exist at each scale level. At the nanoscale, 67 nm d-banding is
observed (left), at the microscale fiber crimp is present (middle) and at the macroscale fascicles
align in a parallel fashion (right). Note that crimp is generally in register within fascicles
(reproduced with permission from [50, 67, 224])
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However, hydration also plays an important role in modulating equilibrium elastic
response [45]. The viscoelastic response is experimentally measured by per-
forming mechanical testing at varied strain rates, stress relaxation testing, creep
testing and harmonic testing [34, 135, 145, 241]. The viscoelastic response is
attributed to both fluid flow-dependent and fluid flow-independent effects. Flow-
independent effects refer to an intrinsic viscoelasticity of the solid phase (e.g. a
viscous sliding of fibrils), while flow-dependent effects refer to the pressure driven
transport of free water through a permeable tissue (e.g. described using biphasic
theory, discussed in Sect. 4.3) [46, 233, 235, 236, 253].

3.2 Macroscopic Material Characterization

For this chapter, the macroscale will be defined as tissue structures that are within
the range of millimeters to centimeters, most commonly consisting of whole lig-
ament and tendon preparations or subsamples that are dissected or punched out
[27, 131, 144, 147, 249]. The 3D elastic response of ligament and tendon tissue is
complex and difficult to fully characterize. The material response is highly
dependent on the predominant alignment of the collagen fiber families. Although
some capsular ligaments appear to have an isotropic fiber distribution (e.g. gle-
nohumeral capsule [63, 64]), the material symmetry of most ligaments and tendons
is reasonably described by transverse isotropy, with the collagen fibers predomi-
nantly aligned in the direction of in vivo loading [233, 235]. To fully characterize
the elastic material response of these tissues, a combination of tensile, compression
and shear testing must be performed in parallel and transverse directions to the
predominate fiber family [34, 147, 232, 234].

Tensile testing in the fiber direction reveals a nonlinear stress–strain response
consisting of a so called ‘‘toe region’’ and a linear region [34, 233] (Fig. 4, left).

cells

MCL

Meso
~fascicle

Micro
~fiber

Macro
~ligament

vessel

nerve

Fig. 3 Multiscale force transmission. Force transmission within a macroscale tissue structure
(e.g., an MCL, shown on the left) is mediated at the mesoscale by fascicles (center) and at the
microscale by fiber (right)
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It has been hypothesized that the nonlinear toe region results from the uncrimping
and/or successive recruitment of the aligned collagen fibers, while the linear region
is understood as the tensile response of the collagen fibers. The reported linear
modulus varies widely between tissue types, location and studies [19, 34, 147, 243,
245, 250]. The tensile response in the direction transverse to the fiber axis is nearly
linear and an order of magnitude more compliant than the longitudinal response
(Fig. 4, left). The shear response is nonlinear, with a tangent stiffness that is three
orders of magnitude less than the fiber stiffness (Fig. 4, middle). Ligament stiffness
is lowest when tested in unconfined compression transverse to the fiber axis,
yielding a nonlinear response with a tangent compressive modulus nearly four
orders of magnitude less than the tensile modulus of the fiber family (Fig. 4, right).
The elastic volumetric response describes the change in volume in response to
tensile or compressive loading. This has most commonly been reported as the
Poisson’s ratio (which is a linear measure of volume change), and less commonly
as the Poisson’s function (which is a nonlinear measure of volume change) [25,
187]. The Poisson’s ratio (or function) is a kinematic measure that relates the
axially applied strain to the laterally induced strain [25]. Experimentally measured
Poisson’s ratios for uniaxial tensile testing in the fiber direction have revealed
values ranging from 1.0 in capsular ligament to 3.0 for flexor tendon [105, 147].
These values exceed the thermodynamic limit of 0.5 for isotropic tissues and are
indicative of volume loss under tensile loading. This volume loss is generally

Efiber=350 MPa

Etransverse=10 MPa

Eshear=0.125 MPa Ecompressive=0.05 MPa

Fig. 4 The elastic behavior of ligament is anisotropic and nonlinear. The tensile stiffness along
the fiber direction is an order of magnitude stiffer than in the transverse direction (left) [34, 183].
In shear, ligament is two orders of magnitude more compliant than in the transverse direction
(center) [234]. In compression, ligament is over three times more compliant than in tension,
indicating compression-tension nonlinearity (right) [231]. Approximate linear modulus (E) is
shown for each test type

110 S. P. Reese et al.



understood to be the result of fluid exudation during tensile loading, which has
been reported in the literature [94, 101]. The elastic response is not spatially
homogenous. Strain measurements techniques such as speckle tracking and digital
image correlation have shown that strains are highly inhomogeneous during tensile
loading [53, 55, 133, 158]. Although the origins of this behavior are unclear, it
may be due in part to variation in the tissue mechanical properties [163], clamping
artifacts or an uneven fascicle stiffness and preload [126, 233]. It appears that
spatial inhomogeneity within strain distribution may be an intrinsic property of
ligament and tendon tissue.

The viscoelastic response of ligament and tendon is believed to play an
important role in the normal function of these tissues [34]. It is experimentally
manifested as stress relaxation under a step displacement, creep under a step
loading, hysteresis, and a phase shift during harmonic loading [134]. Stress
relaxation testing of ligament and tendon reveals a dependence of both the
relaxation rate and magnitude of relaxation on the strain level [2, 131, 145, 179].
Similarly, the creep rate and creep magnitude are also strain dependent [218]. The
tensile modulus is strain rate dependent, while the damping is relatively inde-
pendent of strain rate [228, 233, 235, 240]. During high rate loading, the volu-
metric behavior of ligament and tendon appears to be incompressible [233].
Although viscoelastic testing is most commonly reported for uniaxial tensile
testing in the fiber direction, both viscoelastic tensile testing in the transverse
direction and in shear has been reported [34]. The magnitude of stress relaxation is
relatively large for testing in the axial, transverse and shear directions, with times
to equilibrium on the order of ten minutes or more [2, 131, 145, 147]. Because of
the considerable importance of the fluid phase to tissue viscoelasticity, it comes as
little surprise that the viscoelastic response is significantly altered by varied levels
of tissue hydration [144]. There is also an observed effect of temperature on the
elastic and viscoelastic response [45].

3.3 Mesoscale Material Characterization

Fascicles are the primary load bearing mesoscale structure found within ligament
and tendon, and range in diameter from 100 to 500 lm [50, 121, 230]. Experi-
mental studies at the mesoscale have interrogated the fascicle response by testing
both isolated individual fascicles as well as fascicles in situ. Rat tail tendons have
often been used in such studies because they are readily available, the tendons
have large aspect ratios, and it is relatively easy to isolate the fascicles from the
tendon. A number of studies have reported both elastic and viscoelastic properties
of rat tail tendon fascicles [95, 184, 191]. The qualitative elastic and viscoelastic
response is similar to that observed for macroscopic tissue, with a nonlinear toe
region and a large stress relaxation.

Several studies have performed tensile testing on progressively divided tendons
(e.g. into half and quarter sections) as well as individually isolated fascicles.
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Uniaxial tensile testing was performed on whole tendons, split tendons and iso-
lated individual fascicles from rabbit patellar tendons [250]. A comparison of
quasi-static stress–strain curves indicated that the intact tendons were stiffer than
split tendons, which were in turn stiffer than individually isolated tendon fascicles.
Stress relaxation testing revealed that whole tendons had a larger stress relaxation
magnitude and lower stress relaxation rate compared to individual fascicles. A
similar study reported that whole porcine cruciate ligaments were stiffer than split
ligaments and isolated fascicles [107]. The results of these studies seem coun-
terintuitive, in that macroscopic structures were stiffer than the constituents. A
parallel spring mechanism was proposed to explain this, but this awaits experi-
mental verification [107].

The opposite trend was observed in similar studies. In one such study, human
patellar tendons were sectioned into half, quarter and individual fascicles [16]. A
comparison of the elastic modulus, relaxation magnitude and rate revealed a strong
dependence on cross sectional area. As the sample cross sectional area decreased,
the linear modulus increased and the rate and magnitude of stress relaxation
decreased. This result is supported by another study in which macroscopic human
Achilles tendon samples were clamped and subjected to multiple quasistatic tensile
testing experiments [126]. For each test, a fascicular bundle was severed and
another stress–strain test was performed. The construct stiffness increased as the
cross sectional area decreased. Another finding from this study was that fascicles
within the tissue did not appear to bear load evenly, with some fascicles carrying
considerably more load than others. This may explain the macroscale observation
of inhomogeneity in strain distribution.

The preceding paragraphs highlight a discrepancy in the literature regarding the
variation of stiffness across scale levels. Some studies report increasing stiffness
with increasing scale level (e.g. [107, 162, 250]), while other report the opposite
(e.g. [16, 126]) Although the cause of this discrepancy is unclear, differences may
arise from the use of animal versus human tissue, clamping methods and methods
used for sectioning and separating the tendons. In either case, it is clear that the
uniaxial tensile behavior in tendon depends on the physical scale.

It has also been shown that the shear behavior displays a scale dependence [96].
In this study two adjacent fascicles in human patellar tendon were isolated from
the whole tendon. The preparations were subjected to repeated tensile loading. On
the first cycle, both fascicles were intact. On the second cycle, a single fascicle was
cut on one end. On the last cycle, the second fascicle was cut on the opposing end
such that force could only be transmitted through an inter-fascicle shearing
mechanism. The results indicated that very little load was transferred through
shearing of adjacent fascicles, suggesting that fascicles are free sliding and largely
independent in the transmission of tensile forces across the tendon.
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3.4 Microscale Mechanical Characterization

The collagen fiber is the primary load bearing tissue constituent in ligaments and
tendons at the microscale. Located between collagen fibrils are fibroblasts in
ligaments and tenocytes in tendons, which are responsible for secreting collagen
and other ECM materials in order to maintain the mechanical integrity of the tissue
[230]. It is well established that fibroblasts respond to local strain fields via
mechanotransduction, making the study of microscale force transfer particularly
important [27]. Both direct (e.g. isolating individual fibers) and indirect (e.g.
confocal imaging of loaded tissue) studies have been performed.

Only one study has directly examined the stress–strain response of individual
fibers [162]. In this study, individual fibers (*1 lm in diameter) were isolated
from rabbit patellar tendon and subjected to uniaxial tensile loading. The reported
stiffness was compared to the fascicle and whole tendon data from a previous study
[250]. The individual fibers were less stiff than both individual fascicles and whole
tendons. This result implies that the macrostructures are stiffer than their con-
stituents. As with the mesoscale fascicle test data discussed in Sect. 3.3, this result
awaits a satisfactory explanation.

Confocal imaging of rat tail tendon fascicles has yielded considerable insight
into the microscale strain environment of collagen fibers and tenocytes. In these
studies single rat tail tendon fascicles were stained for collagen and cell nuclei,
subjected to tensile loading and imaged using confocal microscopy [199, 201,
202]. These studies have revealed that the local strain field within fascicles is
highly inhomogeneous. In response to uniaxial tensile loading, the predominant
mode of microscale deformation is shearing, whereby individual fibers slide rel-
ative to adjacent fibers. As a result, local fiber strains are much smaller in mag-
nitude than applied tensile strains. In one study, the local fiber strain was *1 % in
response to an applied strain of 6 % [201]. Resulting tenocyte strains were also
inhomogeneous, with both tensile strains and large shearing strains being induced
by tensile loading.

These experiments have also yielded insights into the microscale viscoelastic
response. Two microscale mechanisms of viscoelasticity have been observed: a
time dependent shearing of adjacent fascicles, and a time dependent stretching of
individual fibers. The inter-fiber sliding response displayed a much larger mag-
nitude of stress relaxation than the individual fibers, suggesting that microscale
shearing may play an important role in the solid phase viscoelastic component of
tendon. Although the source of the microscale strain inhomogeneity and large
inter-fiber shear is still under investigation, it has been suggested that this may
result from the uncrimping of the ubiquitous collagen crimping pattern [201, 202].
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3.5 Nanoscale Mechanical Characterization

The collagen fibril is the primary load bearing structure at the nanoscale. A number
of methods have been employed to study the behavior of ligament and tendon
fibrils, including direct testing of isolated fibrils, atomic force microscopy of
strained fibrils and the use of X-ray diffraction techniques. Numerous studies have
isolated individual collagen fibrils and subjected them to uniaxial tensile testing
(e.g. [222, 239, 251, 252]). The stiffness of fibrils varied between studies and was
dependent on hydration, mounting method, crosslinking and strain rate. Single
fibrils tested in this manner display viscoelastic behavior such as strain rate
dependence, hysteresis on unloading and stress relaxation [212]. In another study,
AFM was performed on strained fibrils within murine Achilles tendon tissue,
revealing that the local fibril strain was considerably less than the applied mac-
roscale strain (*2 % fibril strain for an applied 10 % macroscale strain). A large
lateral contraction (corresponding to a Poisson’s ratio of *0.8) was also observed
[190]. Mechanical testing of single tropocollagen molecules has also been reported
[35, 210]. In these studies, force-extension relationships were measured and
analyzed by fitting the data to a worm-like chain elasticity model. The contour
lengths reported ranged from approximately 200–300 nm.

It is believed that other nanoscale components may also contribute to the
macroscopic mechanical behavior of ligament and tendon, including proteogly-
cans such as decorin, biglycan and others [114, 125, 144]. Although not a direct
test of multiscale interactions, a number of knockout studies in mice have been
performed that suggest macroscale effects from the altered expression of various
nanoscale constituents [191, 259]. For instance, decorin deficient mice have been
found to have mechanically inferior tendon fascicles [191]. In vitro studies have
also been used to investigate the role of nanoscale constituents such as decorin. In
a number of studies, samples of human MCL were subjected to tensile testing
before and after decorin digestion (via incubation in chondroitinase ABC, ChABC)
and no significant changes in mechanical behavior were found [131, 144, 145].
However, in similar studies that utilized single rat tail tendon fascicles, a change in
mechanical behavior was found in response to digestion incubation in ChABC.
This suggests that perhaps the mechanical function of certain proteoglycans may
vary between tissue types and scale levels [198, 200]. Still, the changes in
mechanical behavior were minimal. Although there were some trends towards
incubation decreasing the stiffness and ultimate strength of the fascicles, the
increased strain at the onset of visible fiber sliding was the only significant dif-
ference found in the tensile test data from both studies [198, 200].

In summary, it is clear that force is transmitted across scales in a complex manner.
Although there are conflicting reports, it appears that tissue constituents are stiffer at
lower scale levels than at higher scale levels (Fig. 5). In response to tensile loading
in the fiber direction, microscale strains are less than the applied macroscale strain,
often times by a large amount. Finally, strains are inhomogenously distributed at the
macroscale, mesoscale and microscale. These findings are summarized in Table 1.
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Fig. 5 Although there are conflicting reports, it appears that the stiffness of ligament and tendon
tissue constituents increases with decreasing scale

Table 1 Mechanical testing of ligaments and tendons has been performed at multiple scales

Scale Studies Methods Key Findings

Macro [55, 133, 147, 234,
241, 250]

Tensile testing Anisotropic, nonlinear
mechanical behavior

Shear testing Large viscoelastic response
Viscoelastic testing Spatially inhomogeneous strain

field
Meso [16, 96, 107, 126,

250]
Subdivision of tendon Scale dependent stiffness
Isolation of single fascicles Scale dependent viscoelasticity
Severing fascicles within intact

tissue
Weak shear coupling between

fascicles
Fascicles are loaded unevenly

Micro [89, 162, 198–202] Isolation of single fibers Spatially inhomogeneous
deformationConfocal imaging of strained

tendon fascicles Large inter-fiber sliding
Micro strain less than macro

strain
Microscale mechanisms of

viscoelasticity
Nano [190, 222, 228, 239,

251]
Testing isolated fibrils Fibrils are stiffer than

macroscale tissue
AFM of strained fibrils Fibrils are viscoelastic
X-ray diffraction Fibril strain less than

macroscopic strain

Summarized in this table are representative studies for each scale level, the test methods used and
some key findings
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4 Mathematical Preliminaries

4.1 Continuum Mechanics

The presence of a continuum assumes that the length scale of microstructures is
infinitesimally small in comparison to the macroscale, and that the deformation
gradient, and thus strain and stress, can be defined uniquely at every point within
the domain. This latter point implies a homogeneous deformation map in which an
infinitesimal line element dX in the reference configuration is mapped to the
current configuration dx:

dx ¼ F � dX þ X0; ð1Þ

in which dX is an infinitesimal material line element in the reference configuration,
dx is the deformed version of the material line element, and X0 represents a rigid
body translation vector. F is the nonsymmetric deformation gradient:

F ¼ ox

oX
: ð2Þ

A number of second order strain measurement tensors are computed from the
deformation gradient, including the right Cauchy deformation tensor (C), the
Green–Lagrange strain (E) and the engineering or infinitesimal strain (e):

C ¼ FTF; ð3Þ

E ¼ 1
2

C � 1ð Þ; ð4Þ

e ¼ 1
2

F� 1ð Þ þ F� 1ð ÞT
h i

: ð5Þ

The engineering strain is used extensively for linear elasticity, but is generally
of limited use for the finite deformations seen in biological tissues. A useful
concept in the study of aligned collagenous tissue is the notion of a unit vector to
describe the fiber direction, which is denoted a0 in the reference configuration. The
fiber vector is rotated and stretched by the deformation gradient, ka ¼ F � a0,
where k is the fiber stretch. The concept of strain invariants is of particular
importance in biosolid mechanics, since they provide an objective measure of
strain that is invariant to rotation and rigid body motion [108, 208].

4.2 Continuum Based Constitutive Models

In order to compute a stress from the aforementioned strain measures, a consti-
tutive model is required. In the case of linear elasticity, this constitutive model
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defines the Cauchy stress, r, to be the inner product of the engineering strain, e,
and the fourth order elasticity tensor, C, such that: r ¼ C : e. Due to the inherent
nonlinearity of ligament and tendon tissue, strain energy approaches (referred to as
hyperelasticity) based on the invariants of the deformation tensor (I1, I2, I3, I4, I5),
are commonly utilized. Such an approach is particularly attractive because it
automatically satisfies a number of constraints, such that the formulation will be
objective (i.e., invariant to rigid body rotation and displacement) and the tangent
elasticity tensor (i.e., the linearization) will be positive definite for a polyconvex
strain energy function [108]. In this approach a scalar strain energy function (W) is
defined which is typically (but not necessarily) a function of the strain invariants.
The Cauchy stress tensor is computed by taking the derivative of the strain energy
function with respect to the right Cauchy deformation tensor C:

r ¼ 2
J

F
oW

oC

� �
FT : ð6Þ

The fourth order elasticity tensor (necessary for the linearization and sub-
sequent nonlinear analysis in numerical methods) is found by taking the second
derivative:

C ¼ 4
o2W

oCoC
; ð7Þ

where C is the elasticity tensor in the material frame, which is pushed forward to
the spatial frame in most practical implementations.

Hyperelastic, invariant-based, anisotropic continuum models have proved
successful in modeling the macroscale behavior of ligament and tendon [233, 235].
One such formulation has been used to model the macroscopic stress–strain
behavior of ligament [65, 75, 76, 232, 233, 235, 237]:

W ¼ WmðI1; I2Þ þWf kð Þ þ U Jð Þ : ð8Þ

Here, W is the total strain energy, Wm is the strain energy for the inter-fiber
matrix, Wf is the strain energy for the collagen fibers, and U represents a volu-
metric strain energy. I1 and I2 are the invariants of the right Cauchy deformation
tensor C, k is the stretch along the fiber direction, and J ¼ det Fð Þ is the volume
ratio. The fiber strain energy term (Wf) is defined to capture the toe region and
linear region of the stress–strain curve for ligaments, and to represent the relatively
small compressive stiffness:

k
oWf

ok
¼

0 k� 1
c2 ec3ðk�1Þ � 1
� �

1\k\k�

c4kþ c5 k[ k�

8
<

:

9
=

;
: ð9Þ

This formulation represents a structurally motivated constitutive model, as it
specifies strain energy terms for the collagen fiber family and the inter-fiber
matrix. Numerical implementation of hyperelastic constitutive models in finite
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element (FE) codes often make use of an additive decomposition of the strain
energy into volumetric and deviatoric parts, based on the multiplicative decom-
position of the deformation gradient F [108, 233, 235]. This requires a small
modification of the equations above. The uncoupled strain energy equations are
advantageous for representing these tissues in FE software because they can make
use of element formulations that allow for nearly and fully incompressible material
behavior without element locking [233, 235].

4.3 Constitutive Modeling of Viscoelasticity

Ligament and tendon viscoelasticity has most commonly been represented by
quasilinear viscoelastic (QLV) [2, 62, 74, 181, 233, 235] and nonlinear viscoelastic
constitutive models [135, 174, 179, 180]. The QLV theory postulates that the time
response and the elastic response are independent [134]. The time response is
described using a relaxation function, while the elastic stress response is typically
described using a hyperelastic constitutive model [181]. The time dependent stress
is then obtained by convolving the relaxation function with the elastic stress.
According to QLV theory, the relaxation function is implicitly related to the creep
function via a convolution [135]. Thus, an experimentally measured relaxation
function should predict an experimentally measured creep function. Although a
number of studies have applied the QLV theory successfully to describe the time-
and rate-dependent material behavior of ligaments and tendons [62, 74, 118, 215,
216], several studies have suggested that these materials do not strictly behave as
quasilinear viscoelastic materials [59, 61, 179, 217]. This has motivated the
development of nonlinear viscoelastic models [174, 179, 180].

The apparent viscoelasticity of ligament and tendon can also be described using
biphasic theory [137, 185, 236, 253]. Biphasic theory postulates an interaction
between a porous, elastic solid phase and an incompressible fluid phase. Loading
of the biphasic material induces volumetric changes in the elastic phase. This
creates pressure gradients, which drive a time dependent fluid flux through the
porous matrix. Diffusive drag and thus energy dissipation is induced by the local
difference in velocity between the solid and fluid phases. Biphasic materials
exhibit stress relaxation, creep and hysteresis. A necessary component of the field
equations for the biphasic theory is the introduction of additional degrees of
freedom related to the time and spatially varying fluid pressure field (or fluid
velocity), thus making analytical solutions more difficult to compute than for
standard viscoelastic constitutive models. Because of this, quasi-analytic solutions
to biphasic problems have only been obtained for simplified geometries and
loading scenarios [13, 46]. These include the confined and unconfined loading of a
cylinder subjected to ramp loading, step loading and harmonic loading [13, 46] for
linear material behavior, and for certain nonlinear materials [15, 110]. Both flow-
dependent (e.g. biphasic material) and flow-independent mechanisms may be
needed to accurately describe and predict the apparent viscoelasticity of some
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biological soft tissues [109, 110]. Poroviscoelastic formulations have been pro-
posed that utilize a viscoelastic continuum model within the solid phase. These
approaches have found utility in the field of cartilage mechanics [109, 110, 154].

4.4 Computational Modeling

Analytical solutions to the equations of motion for the mechanics of ligaments and
tendons can only be obtained for simplified geometries and loading scenarios (e.g.,
uniaxial tension-compression). For complex geometries and loading patterns such
as simulation of the mechanics of a ligament within an intact joint, the geometry
and governing equations must be discretized and solved numerically [233, 235].
The FE method is by far the most commonly used numerical method in the field of
biosolid mechanics. Commercial and freely available software packages support
preprocessing, solution and postprocessing the nonlinear FE problems. Many
studies in the literature have used FE methods for the simulation of ligament and
tendon mechanics (e.g., [64, 65, 75, 235]). In addition to elastic problems, the FE
method can also be used to solve viscoelastic problems and biphasic problems. In
the past, addressing these types of problems was more difficult due to the lack of a
FE framework specifically designed for biological applications. To address this
issue, our lab developed FEBio, a nonlinear implicit finite element framework
designed specifically for analysis in computational solid biomechanics
(www.febio.org) [148].

4.5 Homogenization

Although continuum based constitutive models are useful for describing macro-
scopic behavior, they do not address the mechanical behavior that occurs at lower
length scales and are not always useful for the study of structure–function rela-
tionships between the microscale and the macroscale. Because of the multiscale
structure of ligaments and tendons, it is sometimes desirable to use models that can
simultaneously describe both macroscale and microscale behavior. This is the goal
of multiscale modeling in mechanics, and homogenization is part of the foundation
of multiscale modeling. Homogenization is the process of obtaining a macroscopic
stress–strain response from a material with a known heterogeneous microstructure
[78, 122, 211]. It is based on the concept of a representative volume element
(RVE), which can be considered representative of the continuum [82, 91, 120]
(Fig. 6). An RVE must be large enough to be statistically representative of the
material microstructure, but it must still satisfy the continuum assumption that its
dimensions are much smaller than the macroscale dimension [82]. For the case of a
perfectly periodic microstructure (e.g., a lattice of spherical particles), the RVE
reduces to a unit cell [172]. In a homogenization, the RVE is subjected to the
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appropriate boundary conditions and then simulated macroscopic loading is used
to compute the effective material response. For a periodic unit cell, the exact
homogenized effective material properties are obtained. If the RVE is statistically
representative of the material microstructure, the ‘‘apparent material properties’’
are obtained [99, 172].

The concept of homogenization is based upon the Hill principle [98], which
states that the volume averaged strain energy at the macroscale is equal to the
volume averaged strain energy at the microscale (i.e., energy is conserved):

r : eh i ¼ rh i : eh i: ð10Þ

Special boundary conditions must be applied to satisfy the Hill condition. For a
periodic unit cell, they are periodic boundary conditions [172, 247]. The periodic
boundary conditions enforce the constraints that opposing faces of the unit cell
must deform identically, and that the traction forces on opposing faces must be
antiperiodic [172, 211, 247]:

ukþ xþð Þ � uk� x�ð Þ ¼ e0 xþ � x�ð Þ
tkþ xþð Þ ¼ �tk� x�ð Þ

on C; ð11Þ

where uk+ and uk- are the displacements on opposing faces and tk+ and tk- are
traction forces on opposing faces (both on the boundary C), e0 is the applied strain
and x+ and x2 are the position vectors on opposing faces.

Historically, homogenizations have been primarily used to analyze linear
material behavior, with the effective coefficients of the linear elasticity tensor
being computed. Analytical methods, which obtain homogenized coefficients via
closed form solutions, have been applied to problems that feature simple RVE
geometries (e.g. a homogenization of annulus fibrosis [254], also refer to [122] for
a summary of such methods in engineering applications). However, homogeni-
zation techniques based on analytical methods lack the ability to address the
complex 3D microstructural features in ligament and tendon. Thus, methods based
on FE discretization are particularly appealing.

Unit Cell RVE

Fig. 6 Comparison of a unit cell and an RVE. For materials with a periodic microstructure, such
as a lattice of spheres embedded in a matrix material (left), a unit cell (middle left) can be defined
that describes the microscale geometry. For the case of media with random microstructures
(middle right), a volume element representative of the microstructure, called an RVE (right), can
be defined
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For a properly discretized RVE, the FE method can be used to perform the
homogenization. In the linear case, FE simulations are used to obtain the unknown
coefficients of the elasticity tensor. To obtain a full set of homogenized material
coefficients, a sufficient number of loading conditions must be applied. Depending
on the type of homogenization and the underlying material symmetry, this may
include simulated tensile testing in orthogonal directions and shear testing in
orthogonal shearing directions. For a unit cell with an orthotropic symmetry, a
total of 6 unique loading simulations must be performed to obtain the 9 inde-
pendent coefficients in the elasticity tensor [77]. For a FE simulation, the periodic
displacement boundary conditions (Eq. 11) must be enforced explicitly [247]. This
can be achieved by converting the periodic boundary equations into a set of linear
constraint equations (e.g., via a master node approach) within the FE solver. The
application of periodic boundary conditions typically requires that the FE mesh has
identical nodal distributions on opposing faces and edges (i.e., the faces and edges
are conformal). For homogenizations that utilize a RVE that does not have con-
formal faces, other permissible boundary conditions must be used. These include
kinematic boundary conditions, traction boundary conditions and mixed boundary
conditions [172]. For these cases, the resulting homogenization is not exact.

Although homogenization methods have historically been applied to linear
material behavior and kinematics, they can also be applied to nonlinear materials
and nonlinear kinematics [98]. In the linear case, a finite number of loading
scenarios can be used to solve for the unknown coefficients. In the nonlinear case,
this methodology cannot be used because the functional form of the stress–strain
response is unknown. For example, there is no combination of loading scenarios
that can directly resolve whether a stress–strain response is quadratic, exponential
or some other function. Strain energy based approaches have been suggested that
curve fit an assumed functional response or populate a lookup table for interpo-
lation [257]. However, they have yet to find widespread use.

An attractive alternative for nonlinear homogenizations is the use of a micro-
mechanical model in combination with the appropriate boundary conditions. A
micromechanical model can be subjected to loading scenarios that are of interest
(e.g. uniaxial tensile loading of a tendon) in combination with periodic boundary
conditions, and the homogenized response can be examined. This has proven
useful in several studies that have sought to examine microscale forces and
structure–function relationships in ligaments and tendons [186, 205]. See Sect. 5.2
for a discussion of these models.

However, micromechanical models are limited to very specific loading sce-
narios and do not provide a general homogenized response. In order to provide a
more general homogenization, the FE2 method has been proposed. FE2 based
homogenization utilizes a nested FE problem that consists of a macroscale
boundary value problem and a microscale boundary value problem [66, 78, 122,
127, 128, 213, 256]. A macroscale mesh is defined in the normal fashion. When
the stress or elasticity tensor for the macroscale model are needed during the
nonlinear FE solution procedure, the macroscale deformation gradient is passed to
the microscale problem and a homogenization is performed on a discretized RVE
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(Fig. 7). Thus, the constitutive model is itself an FE problem. This framework
provides a generalized strategy for performing a nonlinear homogenization on an
arbitrarily defined RVE. The primary downside to this methodology is the sub-
stantial increase in computational demand. However, increased computing power
coupled with parallelization methods will make future FE2 considerably faster
[169].

A fundamental assumption for the aforementioned homogenization approaches
is that the RVE is infinitesimally small in comparison to the macroscale. Under
this assumption, a homogenous deformation is described via the deformation
gradient (Eq. 2). Since the deformation gradient is computed by taking a first order
derivative, continuum based homogenization methods are referred to as 1st order
methods. Some homogenization problems, however, feature RVEs that are not
infinitesimally small in comparison to the macroscale. In these cases, micro-
structural size effects must be taken into account [39, 129]. This is particularly
relevant in the study of damage initiation, as size effects play a critical role in this
field [122, 225]. The most generalized approach to accounting for these size effects
is to utilize 2nd order FE2 strategies. In these methods, a microscale RVE problem
is still used. However, the homogenization utilizes a quadratic version of the
deformation map. In this method a Taylor series expansion is used to express the
infinitesimal material line element dx as:

dx ¼ F � dXþ 1

2
dX � 3G � dX
� �

þX0; ð12Þ

where the 3rd-order tensor 3G ¼ rF is used. This method explicitly accounts for
the length scale through the size of the RVE, and thus allows for computational
homogenization of materials for which the assumptions of the 1st order method are
not appropriate. Second order methods are particularly attractive for biological
materials, as physical scales are often not separated sufficiently in size. As an
example, the microstructures in ligament and tendon have similar physical
dimensions to the macroscale. Fascicles, for instance, have a diameter of

Micro Problem

Homogenization

Macroscale

macro

macroσ

macroF

RVE

C

Fig. 7 FE2 homogenization
procedure. The FE2 method
solves a nested FE problem in
which the deformation
gradient Fmacro computed at a
macroscale point is passed to
the microscale RVE. A
homogenization is performed
using the deformation
gradient coupled with
suitable boundary conditions,
and the resulting stress tensor
(rmacro) and elasticity tensor
Cmacro are passed back to the
macroscale. Figure adapted
from [128]
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*250 lm, which is only 1–2 orders of magnitude less than ligament and tendon
widths, which are *5–30 mm (refer to Sect. 2.3). For a comparison of homoge-
nization techniques, refer to Table 2.

5 Multiscale Modeling of Ligament and Tendon Mechanics

5.1 Introduction

The field of multiscale mechanical modeling, and the multiscale modeling of
ligament and tendon in particular, is in its relative infancy. For example, there
seems to be no clear consensus on the very definition of multiscale modeling, as it
has been applied to a large number of models that vary as to what scales are
included and how the scales are linked. For the purposes of this section, a mul-
tiscale model is defined as a model that addresses two or more physical scales.
This implies that both macroscale and microscale stress and strain are computed
from a single simulation. Furthermore, this requires that there is some form of
linking between scale levels. This linking is based on the appropriate application
of boundary conditions, which may include periodic boundary conditions, pre-
scribed boundary conditions, homogenous boundary conditions and a mixture
thereof. This definition includes micromechanical models in which both a mac-
roscale response and microscale response is described, as well as full nonlinear
homogenizations (e.g., FE2 methods). It is important to note that this definition
does not include structurally motivated constitutive models, which may utilize the
notion of microstructural features (e.g., uncrimping of collagen fibers [70, 88],
fiber recruitment [111] or fiber families embedded within a ground substance [18]).
This definition also precludes models that utilize generalized continuums, which
address microscale size effects but do not specifically define microscale stress and
strain [225]. This section reviews the state of the art in multiscale modeling and
multiscale model validation as they relate to ligament and tendon.

Table 2 Summary of homogenization methods

Homogenization Number of simulations Purpose

Linear Finite number, based on number of
unknowns in linear elasticity tensor

Homogenized linear material
coefficients

Micromechanical Finite number, based on model application Investigate nonlinear behavior
and structure–function
relationships

1st order FE2 Simulation every time stress and tangent
stiffness are evaluated within macro
model

Nonlinear homogenization for
infinitesimally small
microstructures

2nd order FE2 Simulation every time stress and tangent
stiffness are evaluated within macro
model

Nonlinear homogenization that
incorporates size effects

The method of homogenization used is dependent on the intended application
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5.2 Micromechanical Modeling of Ligament and Tendon

We define a micromechanical model as a 2D or 3D model that specifies a
microscale geometry (e.g. a unit cell), applies macroscale boundary conditions
(e.g. simulated tensile loading combined with periodic boundary conditions) and
solves the governing equations over the simulation domain. Such a model yields
both a microscale response (e.g. within the unit cell) and a macroscale response
(e.g. reaction force of a unit cell subjected to tensile deformation). Since even
simple 2D geometries do not generally have tractable solutions, these models
almost exclusively rely on computational methods, most commonly the FE
method. Models within the literature are primarily 2D and focused on equilibrium
elasticity, although a biphasic model and 3D models have been proposed [137,
187]. Boundary conditions include fixed boundary conditions (e.g. zero dis-
placement on a model edge), prescribed boundary conditions (e.g. a prescribed
load or displacement on a model edge), periodic boundary conditions and a
combination of these. Both linear and nonlinear micromechanical models have
been proposed for biological tissues. Linear models (ubiquitous in the study of
trabecular bone, e.g. [165, 172, 176, 197, 223]) generally seek to obtain homog-
enized coefficients of the linear elastic stiffness tensor. Due to the nonlinear nature
of ligament and tendon, most micromechanical models for this application are
nonlinear and seek to explore nonlinear behavior as the primary goal, although
some studies have reported homogenized linear coefficients as well (e.g. [187].).
The utility of microscale models is found in a number of ways. Some models are
used to study certain structure function relationships (e.g. how certain microscale
structures affect macroscale behavior) [84, 187]. Other models are used to study
microscale damage mechanisms [205], and still others investigate microscale
mechanotransduction [137].

Micromechanical models have been used to examine the structure–function
relationship between fibril shape, fibril aspect ratio, the stiffness of fibrils and the
inter-fibril matrix [83, 84]. In these studies, a 2D plane strain model was used to
examine force transfer between adjacent collagen fibrils via an inter-fiber matrix
[84]. A unit cell was created that consisted of a discretized fibril embedded within
a matrix material (Fig. 8). The fibrils were given cylindrical or parabloidal (i.e.
tapered) endpoints [83]. The unit cell was subjected to homogenous boundary
conditions in which a displacement was applied to the sides of the model. The
aspect ratio of the fiber and applied load were varied parametrically and their
influence on the fibril stress, inter-fiber force transfer and strain was examined.
Simulations revealed that fiber strain displayed a dependency on the end shape of
the fibril, on the fibril aspect ratio and the ratio of the fibril stiffness to the matrix
stiffness. The effect of tapered fibril ends was to decrease stress within fibers. The
effect of increasing the stiffness of the inter fibril matrix was to increase load
sharing between fibril and the matrix, which yielded decreased fibril strains. By
utilizing a unit cell approach, this study was able to study the influence of struc-
ture–function relationships that would be difficult if not impossible to investigate

124 S. P. Reese et al.



using experimental or analytical approaches. Within these studies, the concept of
an inter-fiber matrix material was utilized. The matrix material is thought to
consist of proteoglycans, elastin and other ECM proteins that may mechanically
couple collagen. Such a concept has been used in numerous studies (e.g. [17, 18,
132, 187, 232]) and is used to describe the substance that mechanically couples
collagen fibrils and fibers within tendon and ligament.

One area that shows great promise in the field of multiscale modeling is in the
study of stress and strain localization as it pertains to damage initiation. Although
no studies have yet utilized micromechanical models to study damage initiation in
tendon, they have been utilized in studying microscale strain patterns in the
myotendinous junction (MTJ), which displays similarities to tendon and ligament
tissue. In one such study, a 2D micromechanical model was used to explore
microscale strain distributions within the MTJ, a common location for musculo-
skeletal injuries [205]. At the MTJ, muscle fibers taper as they insert into the
tendon via the endomysium, creating a potential location for strain concentration
and damage initiation. By utilizing a microscale unit cell model, this study sought
to investigate strain concentrations within this region. The unit cell consisted of a
single tapered muscle fiber inserting into tendon at a pennation angle of 37�
(Fig. 9). The endomysium was given a transversely isotropic constitutive model
similar to that presented in Sect. 4.2 and the muscle fiber was given an active
contraction material model developed for muscle tissue [205]. The unit cell was
subjected to prescribed displacement along the fiber direction corresponding to a
24 % strain. The edges of the unit cell were given periodic boundary conditions,
which simulated a fiber embedded in macroscopic tissue. Simulations were run
with both passive and active fiber recruitment. Model validation was performed by
comparing the predicted fiber strains to those experimentally measured for relaxed
and strained muscle fibers. More specifically, the deflection of the A-bands within
the muscle fibers were experimentally measured and compared to those obtained
from the FE models (refer to [205] for more detail regarding validation methods).

Unit Cell

Fig. 8 Collagen fibril micromechanical model [84]. A model put fourth for collagen fibers
consisted of fibrils of a finite length and with tapered tips connected via proteoglycan matrix
material (left). A quarter symmetric micromechanical model was defined (right) and subjected to
simulated loading. Figure adapted from [84]
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The most significant result of this study was that the FE micromechanical model
predicted stress concentration and microscale strains that were significantly larger
than the macroscale strains. This suggests that origins of damage mechanisms may
initiate within the myotendinous junction, demonstrating the utility of microme-
chanical models in the study of damage initiation. The FE models predicted the
experimentally measured deflection of the A-bands of muscle fibers. Although not a
direct validation of the 2D strains within the unit cell, this validation provides
evidence of the accuracy of the FE simulations. By creating micromechanical FE
simulations driven by macroscopic loading, this study was able to utilize modeling
as a means for investigating microscale strain concentrations, something that would
have been difficult using experimental methods alone.

The aforementioned studies utilized 2D simulations. In our own research, we
have used 3D micromechanical FE models to study structure function relationships
in tendon and ligament tissue [187]. The aim of this research was to examine how
fibril organization contributes to the elastic volumetric response. The volumetric
response is quantified using the Poisson’s ratio in linear theory and the Poisson’s
function in nonlinear theory. Experimentally observed Poisson’s ratios range from
1.0 to 3.0 for tendon and ligament [105, 147], yet the structural underpinnings for
these large values are not known. It was hypothesized that a planar, crimped
arrangement of fibrils would not account for these large Poisson’s ratios, while a
helical organization of fibrils would.

To test this hypothesis, 3D unit cells were created that explicitly modeled
collagen fibrils embedded within a matrix material (Fig. 10, top). The fibrils were
given crimped, helical and combined crimped with a superhelical organization
(Fig. 10, top). The models were given periodic boundary conditions and subjected
to simulated tensile loading in the fiber direction, which yielded a homogenized

Endomysium Muscle Fibers

Periodic BCs on Edge

Applied

Stretch

Unit Cell

Myotendinous Junction

Tendon

Fig. 9 Myotendinous junction micromechanical model [205]. (Top) The myotendinous junction
(MTJ) consists of muscle fibers (red) that insert into tendon tissue (gray) via the endomysium
(black). A micromechanical model was made of the MTJ by creating a unit cell (outlined in white
dashed box and shown on bottom) and subjecting it to periodic boundary conditions on the edge
and prescribed boundary conditions on the ends. Figure adapted from [205]
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macroscale stress–strain response and a homogenized Poisson’s function. For a
subset of models, tensile strains of 8 % were applied and the nonlinear stress–
strain response and the Poisson’s function were obtained (Fig. 10, bottom). For all
other models, small strains (0.5 %) were applied and homogenized Poisson’s ratios
were obtained.

Models with planar crimp (both with and without a helical twist) could generate
the classic nonlinear response, but only models with a helical twist could generate
large Poisson’s ratios (Fig. 10, bottom). This suggests that helical twisting of
fibrils (which has been observed histologically [226, 248]) may contribute to the
large experimentally measured Poisson’s ratios. A parametric study which varied
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Fig. 10 3D micromechanical models with crimped and helical fiber organization [187]. Top left
micromechanical FE model shows fibrils (green) embedded within the matrix (red). Top right
straight, crimped, helical and helically crimped fibril organizations were modeled. Bottom left
crimped models were able to reproduce the classic nonlinear behavior for tendon. Bottom right
crimped models with a constant helical pitch predicted both the nonlinear stress–strain behavior
and the large, nonlinear Poisson’s function
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crimp angle, helical twist, the number of fibrils and the stiffness of the fibrils and
matrix suggested that the large Poisson’s ratios were predicted across a range of
physiologically relevant values for these parameters. This study highlights the
utility of homogenized micromechanical models in testing structure function based
hypothesis that are otherwise difficult to address. Furthermore, it demonstrates the
use of 3D until cells with a non-rectangular cross section for the use of nonlinear
homogenization.

In the previously discussed studies, boundary conditions on the microme-
chanical model were applied a priori to the microscale models. In a recent study,
micromechanical models were combined with a macroscale simulation to solve the
localization problem [156]. In a localization problem, a macroscale deformation
(generally computed from a continuum based FE simulation) is applied to an RVE,
which is then solved in order to obtain the microscale stress and strain [122]. In
this study, an analytically based homogenization was used as the constitutive
model for a macroscopic FE simulation. Briefly, the analytical homogenization
modeled collagen crosslinks at the nanoscale and collagen fiber uncrimping at the
microscale to specify a macroscopic continuum response. The homogenization
was not based on an explicit microstructural organization, therefore no microscale
strains were computed. A macroscale cube was subjected to a tensile loading
(Fig. 11, left), which yielded a macroscale deformation within each element. This
macroscale deformation from an element in the interior of the macroscale mesh
was applied to a microscale RVE (Fig. 11, right), which was solved using an FE
simulation. The microscale FE results revealed a heterogenous distribution of
stress and strain at the microscale. Although this study was primarily the pre-
sentation of a new method, it demonstrates the utility of micromechanical models
in solving the localization problem by applying the results of a macroscale sim-
ulation to a microscale RVE.

The aforementioned models were limited to quasistatic elastic simulations only.
However, models that can incorporate the time dependence and biphasic nature of
these tissues are desirable. In one study, a macroscopic biphasic FE model was

Macroscale Model Microscale Model

Fig. 11 Micromechanical stress and strain localization of tendon [156]. A macroscale model
consisting of a cube of tendon tissue (mesh shown on left) was subjected to simulated loading and
the macroscale deformation was computed. This deformation was then applied to the microscale
model (right). The microscale model consisted of fibers (shown on the upper right in red)
connected via an inter-fiber matrix (shown in yellow). A closeup of the macroscopic and
microscopic model mesh is shown in the breakout boxes. Figure adapted from [156]
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combined with a microscopic biphasic FE model in order to examine the link
between macroscale loading and microscale mechanotransduction [137]. To
facilitate this, a macroscopic nonlinear biphasic model of a rat tail tendon fascicle
was first solved. The macroscopic model utilized nonlinear springs to represent the
transversely isotropic symmetry and nonlinear stress–strain behavior of tendon
fascicles (Fig. 12, left). The springs were embedded in a porous matrix that had a
transversely isotropic porosity. The model was subjected to uniaxial loading under
a constant strain rate, and the computationally obtained macroscale stress–strain
curve was validated against experimental stress–strain data of rat tail tendon
fascicles. The deformation and fluid flux obtained from this model was then used
to generate boundary conditions for the microscale model, which featured an ovoid
shaped fibroblast aligned with the collagen matrix (Fig. 12, right). Finally, the
predicted microscale fluid shear and microscale cell membrane deformation was
correlated to collagenase mRNA levels that were experimentally measured in rat
tail tendon fascicles. Briefly, fresh rat tail tendon fascicles were subjected to
loading scenarios identical to those applied to the simulations. Four loading sce-
narios were utilized, including low strain, high strain, low strain rate and high
strain rate. After each experiment, collagenase mRNA levels (MMP-13) were
measured using real time quantitative PCR.

The macroscale models predicted a stress–strain response that was in good
agreement with experimentally measured values. The microscale models predicted
significant cell membrane strains and fluid shear stress on the embedded cell for
the high strain rate and large strain models. The strains and shear stress correlated
to a decreased expression of mRNA for collagenase. Experimentally, it can be
concluded that decreased loading results in increased collagenase activity. By

Micro ModelMacro Model

Fig. 12 Two level biphasic
simulation of a tendon
fascicle [137]. A biphasic
axisymmetric macroscale
model was created that
contained nonlinear springs
(Mesh, springs and model
dimensions shown on left).
The resulting strains and fluid
flux was applied to a
microscale model (right) that
contained nonlinear springs
and an ovoid shaped
fibroblast. Figure adapted
from [137]
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utilizing a computational micromechanical model, estimates of fluid shear stress
on fibroblasts as well as cell membrane strains were able to be correlated to these
experimental results. No tractable experimental methods currently have been
proposed for obtaining microscale values of this sort, highlighting the important
role that such modeling studies can play in extending our understanding of
mechanotransduction within tendon tissue.

5.3 1st Order FE2 Methods

The aforementioned micromechanical models report both macroscale and micro-
scale measures, but are limited to a specific set of loading conditions. A more
general approach is offered by the 1st order FE2 homogenization method described
in Sect. 4.5. To date, no FE2 models have been proposed for the simulation of
ligament and tendon. However, an FE2 approach has been developed and applied
to model collagen hydrogels, which have characteristics in common with con-
nective tissues [43, 195, 196]. In this work, FE2 models were made of type I
collagen gels that were molded into a cruciform shape. The gels were seeded with
fibroblasts and were allowed to undergo cell mediated compaction of the fibril
network. The gels were subjected to biaxial testing and the macroscopic stress and
strain were measured. Additionally, polarametric fiber alignment imaging (PFAI)
was used to measure fibril orientations during testing. A quarter symmetric mac-
roscopic FE model was constructed (Fig. 13, left) that mimicked the geometry and
loading conditions of the experimentally tested cruciform gels. The fibril orien-
tation (e.g. the angular distribution of fibrils) measured in the reference position
was used in order to generate 3D RVE models that consisted of beam elements,
which represented collagen fibrils within the gel (Fig. 13, middle). A constitutive
model specific to collagen fibrils was developed for use in the RVEs. The mac-
roscopic FE model utilized an FE2 methodology described in Sect. 4.5, whereby
the RVE homogenization was utilized as the constitutive model for the macro-
scopic simulation. The results of the FE simulations generated both macroscopic
stress and strain as well as microscopic stress and strain within the fibril network.
The FE predicted principle angles for fiber orientation were extracted from the
microscale RVE simulations and compared to the experimentally obtained prin-
ciple angles (via PFAI). There was good agreement between the predicted and
measured orientation of the fibrillar network, which provided validation of the
methodology. The microscale RVE simulations revealed realignment of the
fibrillar network with applied strain. A considerable percentage of the fibrils were
subjected to compressive buckling, revealing microscale inhomogeneity in
response to a homogenous macroscale deformation. Collagen hydrogels are sub-
stantially different from tendon and ligament; however, this same microscale
heterogeneity has been observed in tendon fascicles [201] (refer to Sects. 3.3 and
3.4). Although not directly applicable to tendon and ligament, this study provides a
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template for how first order FE2 methodologies could be applied to connective
tissues such as tendon and ligament.

5.4 Multiscale Model Validation

Validation of computational models is fundamentally important if the models are
to be interpreted in a meaningful way [9, 103]. Validation of macroscale com-
putational models of ligaments and tendons consist of comparing macroscale FE
simulations to experimentally measured metrics such as joint reactions forces and
in situ tissue strains, with a number of examples being present in the literature (e.g.
[75, 235]). Validation of multiscale models proceeds in a similar model, but
ideally, experimental validation would occur at each scale level simulated (e.g.,
the macroscale and microscale). In a number of the aforementioned studies,
validation of the mechanical simulations were performed at a single scale level
(e.g., at the micro level for the unit cells of the myotendinous junction [205], and at
the macro level for the biphasic tendon model [137]). To our knowledge, only one
model relevant to tendons and ligaments has been validated at two scale levels
[195]. This study, described in the preceding section, validated macroscale results
via stress–strain data and validated microscale results via polarametric fiber
alignment imaging.

Because of the important role validation plays in interpreting the results of
computational studies, it is desirable to develop multiscale simulation strategies
and experimental validation methods concurrently. Although macroscale valida-
tion methods have been described, microscale validation methods are still in need
of improvement and development. In order to validate microscale models, data

Macroscale RVE Validation

Fig. 13 FE2 simulation of collagen gel mechanics [195]. A quarter symmetric macroscale FE
model was created of the cruciform gel sample (left). The RVE for the simulations consisted of
beam elements with a specified angular distribution (middle). Models were validated using
polarimetric fiber alignment imaging, which yielded fiber alignment vectors and contour plots of
the principle angle of the fiber alignment (right). Figure adapted from [195]
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regarding stress and strain at lower scale levels (e.g. within fascicles, fibers and
fibrils) must be obtained. One possible route involves isolating and mechanically
testing individual tissue constituents, such as those described in Sects. 3.3 and 3.4.
However, such methods have yielded widely variable results, likely due to the
difficulty in consistently isolating substructures without causing tissue damage.
Microscopic imaging studies, such as the confocal studies described in Sect. 3.4,
provide considerable promise for use in validation of microscale models. How-
ever, the highly inhomogeneous strain fields and the complex microscale fiber
structure make this a challenging starting point [199, 201, 202].

In order to address these challenges, our lab has developed a surrogate material
for use as a physical model to aid in the development of multiscale modeling and
validation methods. A physical model reduces the number of uncontrolled vari-
ables related to the structural organization of ligaments and tendons. To create the
physical surrogates, dense (*25 % collage/wt), extruded collagen fibers were
embedded within a collagen gel matrix (*0.5 % collagen/wt). Surrogates served
as physical models to emulate features of ligament and tendon tissue in a con-
trolled and reproducible manner. Two different colors of fluorescent beads were
embedded in the fibers and gel matrix (Fig. 14, left) for use as microscopic fiducial
markers. 3D micromechanical FE models of the surrogates were then constructed
(Fig. 14, bottom). A constitutive model based on a continuous elliptical fiber
distribution was used to describe the mechanical behavior of the collagen gel and
embedded fibers [14]. This constitutive model emulated the reorganization of
fibrils with applied strain. The model was curve fit to tensile testing data for
isolated gel and extruded fiber samples and was found to accurately model both the
uniaxial stress–strain behavior and the 2D strain behavior (i.e., the nonlinear
Poisson’s function). Micromechanical FE models were subjected to uniaxial strain,
and the macroscale and microscale stress and 2D strain were determined. FEBio
was used for all analysis (http://www.febio.org) [148]. To validate the FE models,
the physical surrogates were subjected to tensile loading in a custom testing
apparatus on an inverted confocal microscope. Confocal images were acquired at 6
strain increments at both 2.5X and 10X, while force was measured simultaneously.
Texture correlation was used to measure strain at the macroscale and to measure
strain within the fibers and strain in the inter-fiber matrix at the microscale [221].

The microscopic 2D strains were inhomogeneous, and the macroscopic 2D
strain was not representative of the microscopic 2D strain (Fig. 14, right). The
magnitude of the transverse strain in the fibers greatly exceeded the macroscopic
transverse strain, while the magnitude of the transverse matrix strain was signif-
icantly less than the macroscopic strain. The macroscopically measured Poisson’s
ratio was 1.72 ± 0.26, which is comparable to experimentally measured values for
tendon and ligament [105, 147]. The micromechanical FE model was able to
simultaneously predict the macroscopic stress–strain behavior and the 2D mac-
roscale and microscale strains (Fig. 14, right). The predicted macroscopic stress
and macroscopic transverse strain closely matched the experimentally measured
values with normalized root mean square (NRMSE) values of 0.015 and 0.085,
respectively. The predicted microscopic transverse fiber strain was closely
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matched by the experimentally measured values (NRMSE = 0.018), while pre-
dictions for the microscopic transverse matrix strain were reasonable but not as
accurate (NRMSE = 0.190). When simulations were performed using coefficients
that varied by a single standard deviation, all of the predictions were closely
bounded by this uncertainty. A sensitivity study was then performed in which the
inter-fiber spacing and the inter-fiber matrix material properties were varied.

The results of this work indicate that the micromechanical model was able to
accurately predict the strains at both the macroscopic and microscopic level,
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measurements. (Upper right) Micromechanical FE model stress–strain predictions were in excellent
agreement with the experimental data. (Middle left) The constrained surrogate model displayed
considerable heterogeneity in transverse strain. (Middle right) Microscopic and macroscopic strain
measurement results show that the macroscopic transverse strain (black line) was not representative
of the microscopic fiber strain (green line) or matrix strain (red line). The error bars represent the
standard deviation computed for all samples. (Bottom) Micromechanical FE model of the surrogate.
Green elements represent the fibers and red elements represent the gel matrix

Multiscale Modeling of Ligaments and Tendons 133



demonstrating the utility of this approach for the study of fibrous biological
composites. The use of physical surrogate materials provides a means for devel-
oping and validating more complex and physiologically relevant micromechanical
and multiscale mechanical models. This study illustrates the feasibility of simul-
taneous validation at macro and micro scales that could be extended to the vali-
dation of micromechanical or FE2 models of native ligament or tendon [188, 189].

5.5 Future Directions

There are a number of important areas of research that remain as future directions
and opportunities for multiscale modeling of tendon and ligament. As of yet, no
fully nested 1st or 2nd order FE2 models have been proposed for tendon and
ligament. This will require the development and meshing of RVEs that sufficiently
characterize the microstructure (e.g. crimped fibers, sliding fascicles, etc.), con-
stitutive models capable of describing the nanoscale and microscale response
within the RVE (e.g., Eq. 9), software capable of performing the recursive FE2

simulations using 1st and 2nd order procedures, as well as microscopic techniques
for validating model simulations. Given the multiple scales of organization in
these tissues (i.e. nanoscale fibrils, microscale fibers and mesoscale fascicles), it is
unclear whether two levels of scale linking is adequate, or whether additional scale
levels must be included. Furthermore, the criteria for RVE size in tendinous tissue
and the importance of using of 2nd order methods has yet to be investigated. The
use of physical surrogates may provide a controlled means for answering such
questions, as well as provide a simplified approach for developing multiscale
modeling and validation methods.

The development of validated multiscale models of tendons and ligaments will
provide insight into structure function relationships and will be invaluable in the
study of damage mechanisms, which appear to have microscale origins [58, 72,
73]. In the future, such methods may provide a means for creating scaffolds with a
microstructure that can simultaneously address macroscale mechanical require-
ments of whole organs (e.g. an ACL graft) and the microscale mechanical
requirements necessary for cellular proliferation. Although this chapter has
focused primarily on the quasistatic elastic response, models that capture the
viscoelastic and biphasic response of these tissues will be of substantial impor-
tance. Homogenization methods have been developed to account for viscoelas-
ticity [38, 44, 90, 130], but these methods have yet to be applied to biological
tissues. The next paradigm in multiscale modeling will likely address growth and
remodeling of tissue (e.g. remodeling in bone [86, 93, 138]). Nested FE2 multi-
scale methods for such simulations remain to be developed for aligned collagenous
tissues.
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Multiscale Modelling of Lymphatic
Drainage

Tiina Roose and Gavin Tabor

Abstract In this chapter we will describe the latest developments in the area of
lymphatic modelling. The lymphatic system is one of the key elements of the
human circulation, serving the dual functions of draining interstitial fluid and
returning this to the general blood circulation, together with processing this lymph
fluid which is a key component of the body’s immune response system. Compared
to the main cardiovascular system however, remarkably little modelling has been
attempted. At the same time, the distribution of pumping activity (contractile
lymphangions coupled with simple valves) throughout the system, passive primary
lymphatics and complex lymph nodes combining to form an active network,
makes the system a prime candidate for multiscale modelling.

1 Introduction

Even though the existence of lymphatic vessels has been known since the sev-
enteenth century, until very recently not much was known about their functioning
and development. This was due to our failure to understand their importance in the
proper functioning of tissues. However, in the last ten years, lymphatics have come
to the forefront of biomedical research largely due to findings highlighting their
importance to cancer growth and metastasis [48]. Thus there are now a large
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number of experimental studies of molecular and micromechanical factors con-
trolling lymphatics. Although these studies have greatly increased our knowledge
of different aspects of the lymphatic system there is a need to integrate these
studies to produce quantitative models of the functioning of the lymphatic system.
In particular such models should aim to explain the effect of the lymphatics on the
macroscale, i.e., organ and body scale, in terms of the system’s microscopic and
molecular properties. As well as providing a framework for interpreting experi-
mental results and highlighting interesting avenues for new experimental studies,
in the long term such modelling can lead to new ways of treating important
medical conditions.

The fundamental role of the lymphatic system is to collect excess interstitial
fluids, tissue waste products and plasma proteins from tissue and return them to the
blood. Tissues require fluid and nutrients and these are supplied to them by blood
vessels. After the fluid has performed its function it is reabsorbed either by the
lymphatics or by postcapillary venules, with the dominant contribution in most
cases being due to the lymphatics. Thus when the lymphatic system is unable to
function the interstitial pressure becomes heightened and the tissues become
swollen. In addition, as in most cases reabsorption drives the flow of fluids through
tissues, failure of the lymphatic system results in much slower, mainly diffusive,
movement of nutrients into tissues and the accumulation of waste products in the
tissues. In order to perform its important task, the lymphatic system has evolved
into an elaborate, highly branched, highly valved, unidirectional drainage network.
We can distinguish three main parts of the lymphatic system; the primary lymph
system, comprising passive microcapiliary ducts which drain the interstitial tissue
and feed into the secondary lymphatic ducts or lymphangions, larger vessels with
active, contractile walls and interspersed with simple valves, forming a distributed
pumping system. Secondary lymph vessels combine to feed larger vessels draining
whole areas of the body. Finally, lymph nodes are distributed through the system at
intervals, whose function is to process the lymph fluid as it passes through. In
addition to its primary task the lymphatic system also plays an important part in
the immune system. In particular, lymphocytes that reside and multiply in the
lymphatic system clean lymph fluid of bacteria and other contaminants. Thus
diseases of the lymphatic system often result in compromised immune compe-
tence. The lymph nodes play a critical part in the body’s response to infection, and
in the spread of cancer and HIV.

Many medical conditions have now been linked to a malfunctioning of the
lymphatic system, for example lymphedema, Melkersson-Rosenthal-Meischer
syndrome, Kaposi sarcoma, lymphatic filariasis. Lymphatic filariasis is a parasitic
disease that is thought to be globally the second leading cause of permanent and
long-term disability [20]. In recent years, the lack of lymphatic function in solid
tumours has been identified as one cause for hindered delivery of chemothera-
peutic drugs to solid tumours [19]. Tumour metastasis is also thought to involve
lymphatics as one, if not the primary, pathway [7, 47, 48].
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2 Lymphatic Physiology

2.1 Primary Lymphatics

Primary lymphatics (initial lymphatics, prelymphatics or lymph capillaries) form
typically hexagonal or pentahexagonal capillary plexuses which are covered by a
layer of lymphatic endothelial cells. These cells are attached to the interstitium at
one end whilst the other end is free to move, but overlaps the adjacent lymphatic
endothelial cells (the end which is stuck to the intersititum). The suggestion is that
this construction creates a series of miniature fluid valves which ensure that the
fluid can move from the interstitium into the lymphatic lumen, but it cannot move
from the lymphatic lumen back to the interstitium [31]. The assumption about
there being a long thin channel between the overlapping endothelial cells is
somewhat debatable since in most of the histological, microscopical, and ana-
tomical representations of single primary lymphatic valves [23] there does not
appear to be any indication of this. However, clearly there can be exceptions and
possibly more thorough anatomical and experimental investigations into this issue
are needed. Irrespective of the details, the primary lymphatic vessels act to drain
the interstitial fluid and supply it to the larger, secondary lymphatics. Unlike the
secondary lymphatics, the primary lymphatics have no pumping action and so this
drainage must be a purely passive process (Fig. 1).

2.2 Secondary Lymphatics

The primary lymphatics feed lymph fluid into the next level, that of the secondary
lymphatics (lymph vessels or collecting lymphatics). The secondary lymphatics
are vessels with walls comprising smooth muscle, collagen and elastin fibres, lined
by endothelial cells and bound to surrounding tissue with fibrous adventitia [1]
(see Fig. 2). At intervals, simple valves occur, and the periodic contraction of the
smooth muscle in the walls interacting with the valves produces a pumping action
which transports the lymph fluid, despite any adverse pressure gradients, through
the system. This pumping action is thought to be enhanced by the proximity of the
secondary lymphatics to muscles, arteries and veins, which lead to a natural
mechanical forcing on the walls [42]. The ultimate destination of the lymph fluid is
the venous system, and as under normal conditions the fluid pressure in the veins is
higher than the fluid pressure in most tissues it implies that the lymphatic system,
i.e., the secondary lymphatics, can generate a reasonably large pumping force.
However there are conditions in which the reverse is true, such as edema, or cases
where limbs have been raised or subjected to compression for medical purposes.

The basic unit of a lymphatic vessel between two valves is referred to as the
lymphangion. As the lymph vessel accumulates more and more lymph from the
capillaries and connected lymphangions it swells. At intervals along the secondary
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lymphatic network reside complex structures known as lymph nodes that are fed
by an upstream afferent lymph vessel. The lymph node itself can be basically
divided into an outer cortex and an inner medulla. The surrounding fibrous capsule
extends into the interior structure of the node forming trabeculae. Thin reticular
fibres form an interior supporting network called the reticular network. Lymph
fluid passing through the node experiences a degree of chemical and biological
processing, in particular through interaction with B-cells and T-cells in the cortex,
which represent a significant element of the body’s immune response. However the
variety of entities present in a lymph node makes it difficult to isolate the role
played by each specific component in the overall behaviour of the node. Lymph
fluid passing through the node drains into a single efferent lymph vessel, which
itself may be afferent to another node further downstream. All lymph vessels
ultimately drain into one of two lymph ducts; the right lymph duct which drains
the upper right side of the trunk, neck and head together with the right arm; and the
left or thoracic duct which drains the rest of the body. These ducts return lymph to
the blood stream, emptying into the subclavian veins.

Fig. 1 Schematics showing lymphatic flows. Reproduced from [18]
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3 Modelling Primary Lymphatics

3.1 Derivation of Macroscale Primary Lymphatic Fluid Flow

To describe the fluid flow in the primary lymphatic structure we first have to write
down the fundamental equations describing these flows and then use multiple scale
homogenisation to derive the tissue scale equations. This homogenisation proce-
dure relies on the fact that the primary lymphatics have a very simple, repeating
periodic hexagonal structure and because of the periodicity is very amenable to
such analysis.

3.1.1 Fundamental Equations

We begin by describing the fluid flow inside the lymphatic capillary lumen. Our
starting point is to use the full Navier–Stokes equations and supplement these with
suitable boundary conditions that relate to the fluid drainage. Thus in the lymphatic
capillary domain XC we have

q½otu
C þ ðuC � rÞuC� ¼ �rpC þ lr2uC; and r � uC ¼ 0; ð1Þ

where q is the lymph fluid density and l is the viscosity. From a consideration of
the valve dynamics we get a relationship for the flux of fluid from the interstitium

Fig. 2 a Collecting lymph wall imaged using various two photon microscopy techniques
superimposed to create a composite image [1]. Lymph wall cells are shown in blue, with elastin
fibres (green) and collagen (red). b Data processed using image based meshing package ScanIP to
generate 3D representation of structure, focussing on the elastin fibres. Image courtesy of
Simpleware Ltd (www.simpleware.com)
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into the primary lymphatics and this relationship is usually a function of the
pressure difference. Thus, as a lymphatic capillary surface oX boundary condition
we take

n � uC ¼ �aðpI � pCÞ on the boundary; ð2Þ

where pI is the interstitial fluid pressure, n is the unit inward pointing normal to the
capillary surface and a is the lymphatic capillary permeability, i.e., we include the
primary lymphatic valve function via this effective capillary lumen permeability
parameter. We also supplement this with a no-slip boundary condition on the
lumen surface.

To describe the fluid flow in the interstitial space we use Darcy’s law, i.e. we
will assume that the fluid flux in the interstitium is related to the intersititial
pressure gradient, i.e.,

uI ¼ � k

l
rpI ; ð3Þ

where k is the hydraulic permeability (cm2) and l is the intersititial fluid viscosity.
We will consider the viscosity of the interstitial fluid and lymphatic fluid to be the
same. Combining (3) with the fluid conservation equation r � uI ¼ 0 we get

r2pI ¼ 0; ð4Þ

when k=l is constant.
Clearly, on the lymphatic capillary lumen boundary the fluid flux out of the

interstitium should be the same as fluid flux into the interstitium, i.e. on oXC we
have (looking from the interstitial side)

n � uC ¼ n � uI ¼ n � � k

l
rpI

� �
¼ �aðpI � pCÞ: ð5Þ

3.1.2 Dimensionless Equations

Our next task in the homogenisation procedure is to non-dimensionalise the Na-
vier–Stokes and Darcy equations (1) and (4) with suitable scales. We begin by
defining the standard Navier–Stokes scalings, i.e.,

x� d; pC �P; pI �P; t� d=U and uC �U; ð6Þ

where d is the length scale of the typical single lymphatic structure (i.e. the so
called unit cell scale), U is the typical fluid flow velocity in the lymphatic cap-
illaries, and the classical pressure scale P is given by P ¼ lU=d. Thus, the
dimensionless Navier–Stokes equations are
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Re½otu
C þ ðuC � rÞuC� ¼ �rpC þr2uC; r � uC ¼ 0; ð7Þ

where Re ¼ qdU=l is the Reynolds number based on the microscopic length scale.
Clearly, the interstitial fluid flow equation (4) remains unchanged by the pressure
scaling. The dimensional boundary condition (2) becomes the following dimen-
sionless boundary condition

n � uC ¼ �eRðpI � pCÞ on the boundary; ð8Þ

where eR ¼ al=d.
The microscale Reynolds number Re ¼ qdU=l is based on the microscopic

(unit) length scale d. However, we expect the dominant fluid pressure variation
within lymphatic capillaries to occur over the macroscale, and therefore it makes
sense to rescale pressures with 1=e, where e ¼ d=L is the ratio of the microscale
(i.e. the unit cell scale) d to macroscale (i.e. tissue scale) L. After such rescaling
the dimensionless Navier–Stokes equations become

eRe½otu
C þ ðuC � rÞuC� ¼ �rpC þ er2uC; r � uC ¼ 0; ð9Þ

with the boundary condition on the capillary surface oXC given by

n � uC ¼ �RðpI � pCÞ on the boundary; ð10Þ

where R ¼ eR=e ¼ alL=d2 is the dimensionless modified lymphatic capillary
permeability.

The dimensionless interstitial equations (4) and associated boundary condition
(5) are

r2pI ¼ 0; ð11Þ

n � rpI ¼ WðpI � pCÞ on the boundary; ð12Þ

where W ¼ ald=k.

3.1.3 Parameter Values

There is a high level of uncertainty about some of the parameters, such as lym-
phatic wall permeability a, but the other parameters such as interstitial perme-
ability and geometry are reasonably well known. We present estimates for all the
parameters required for the model in Table 1.

Based on the values in Table 1 the values of the dimensionless parameters are
as follows: e� 10�2, Re� 10�4 to 10�3, R� 2� 10�6 and W� 0:5� ð1 to 10�3Þ.
Thus, since e and Re are always small we can always neglect the inertial terms in
the Navier–Stokes equations and use Stokes equations. Evidently also, the other

parameters are comparable to e, i.e., we can rewrite them as R ¼ R̂e3 and W ¼ Ŵeb
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where 0� b� 2 and R̂ and Ŵ are both Oð1Þ quantities. b ¼ 2 is the case which is
the most relevant.

3.1.4 Multiscale Homogenisation

Multiple scale homogenisation is applicable to systems with structure on more
than one characteristic length scale, i.e. in the case of lymphatics the length of an
uninterrupted lymphatic vessel and the tissue length scale. The method is based
upon the observation that the functions which represent physical variables in such
systems tend to contain components which vary over the same length scales, i.e. in
the case of lymphatics that some parts of the solution will vary significantly on the
length scale of a section of lymphatic vessel whereas other parts of the solution
will only vary significantly on the tissue scale. The method seeks solutions of this
type and makes them easier to identify by inventing a new spatial variable y in
addition to the true position variable x where rapidly varying functions are
functions of x and slowly varying functions are functions of y. Clearly there is only
one spatial variable and thus y is a function of x and in general y is chosen to be
given by y ¼ ex, where e ¼ d=L is a number of order the ratio of the small d and
large L length scales and is significantly less than 1. The use of the second spatial
variable means that the spatial derivatives are given by r ! rx þ ery and
r!r2

x þ eðrx � ry þry � rxÞ þ e2r2
y . After introduction of this two space scale

concept, a standard perturbation expansion solution in e is sought for the problem.
Before we proceed with this we will present the equations that reflect the two
scales. The dimensionless equations used for the perturbation expansion are

�ðrx þ eryÞpC þ eðr2
x þ eðrx � ry þry � rxÞ þ e2r2

yÞuC ¼ 0;

ðrx þ eryÞ � uC ¼ 0;
ð13Þ

ðr2
x þ eðrx � ry þry � rxÞ þ e2r2

yÞpI ¼ 0; ð14Þ

Table 1 Parameter values for all primary lymphatic fluid flow parameters

Parameter Value Unit Description Reference

d 500 lm Length of a single lymphatic structure [6]
L 5 cm Tissue length scale –
k=l 10�8(normal)

to
cm2 mmHg�1 s�1 Interstitial hydraulic conductivity [52]

10�4(tumour)
l 1:5 cP Interstitial and lymph fluid viscosity [52]
a 2� 10�7 cm mmHg�1 s�1 Lymphatic capillary surface

permeability
[53]

q 1 kg L�1 Lymph fluid density –
U 1�50 lm s�1 Average lymph fluid flow velocity [4, 43]
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with boundary conditions

n � uC ¼ �e3R̂ðpI þ pCÞ and n � ðrx þ eryÞpI ¼ e2ŴðpI � pCÞ
on the boundary:

ð15Þ

We use the perturbation expansions given by

uC ¼ uC
0 ðx; yÞ þ euC

1 ðx; yÞ þ e2uC
2 ðx; yÞ þ � � � ; ð16Þ

pC ¼ pC
0 ðx; yÞ þ epC

1 ðx; yÞ þ e2pC
2 ðx; yÞ þ � � � ; ð17Þ

pI ¼ pI
0ðx; yÞ þ epI

1ðx; yÞ þ e2pI
2ðx; yÞ þ � � � : ð18Þ

Substituting Eqs. (16)–(18) into Eqs. (13)–(15) we find the first order, i.e.,
Oðe0Þ, capillary flow equations to be

�rxpC
0 ¼ 0; rx � uC

0 ¼ 0; ð19Þ

with n � uC
0 ¼ 0 on the boundary. This equation essentially says that pC

0 ¼ pC
0 ðyÞ,

i.e., at the leading order the pressure depends only on the macroscopic space scale
y and has no rapid local variations.

The first order interstitial flow equation is

r2
xpI

0 ¼ 0; ð20Þ

with n � rxpI
0 ¼ 0 on the boundary and thus similarly to the capillary flow problem

pI
0 ¼ pI

0ðyÞ, i.e., the interstitial pressure is also only varying on the macroscale.
The OðeÞ capillary flow equation together with Oð1Þ continuity equation gives

us two equations for uC
0 and pC

1 , i.e.,

�rxpC
1 �rypC

0 þr2
xuC

0 ¼ 0; rx � uC
0 ¼ 0; ð21Þ

with n � uC
0 ¼ 0 on the boundary. The equations suggest that we can look for

separable solutions, i.e.,

uC
0 ðx; yÞ ¼ �njðxÞ opC

0

oyj
; pC

1 ¼ �pjðxÞ opC
0

oyj
; ð22Þ

where njðxÞ and pjðxÞ are called local corrector functions that only depend on the
microscale variable x. The local corrector functions are defined/determined by the
specific local solution that depends on the specific microstructure, i.e.,

rx � nj ¼ 0; rxp
j ¼ r2

xn
j þ ej; ð23Þ

with nj ¼ 0 on the internal microstructure surface, and all variables periodic on the
external (on the unit square/rectangle) surfaces; ej is the unit vector in the j
coordinate direction. For any specific geometric situation one would in general
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need to solve these numerically, although for some simplified geometries (i.e.
infinitely thin lymphatic capillaries etc.) analytic solutions may exist.

We are really interested in average velocity of fluid in the capillaries and thus
defining the average fluid velocity over the volume of the unit cell as

UC ¼ 1
V

Z

X
uC

0 dV ; ð24Þ

we find by integrating (22) that the average velocity in the capillaries is given by

UC ¼ �K � rypC
0 ; ð25Þ

where

K ¼ 1
V

Z

X
nj

idV : ð26Þ

K is essentially the Darcy permeability that contains all the necessary information
about the microstructure in it via the direct computation of n using equations (23)
on specific microstructure. With modern computational packages, like Comsol
Multiphysics, it is relatively straightforward and easy to determine n and subse-
quently K.

In the same spirit, substituting (22) into the OðeÞ continuity equation rx � uC
1 þ

ry � uC
0 ¼ 0 and then integrating over the unit cell whilst taking into account the

internal microstructure boundary condition n � uC
1 ¼ 0 and the periodic boundary

conditions on the outside surfaces, we get the following macroscale conservation
equation

ry � UC ¼ 0; i.e. ry � ðK � rypC
0 Þ ¼ 0; ð27Þ

which is the macroscale conservation equation for average capillary flow, i.e.,
macroscale capillary law is essentially described by the Darcy’s law with per-
meability K. All the information about the microstructure is in K. In principle, for
any specific geometric configuration K needs to be calculated independently, but it
is crucial to point out that K does not depend on the macroscopic pressure vari-
ations, only on the local specific microstructure.

The OðeÞ interstitial flow equations are

r2
xpI

1 þrx � rypI
0 þry � rxpI

0 ¼ 0; ð28Þ

with n � ðrxpI
1 þrypI

0Þ ¼ 0 on the boundary. This suggests that the solution is
again scale separable (i.e., function of x and y separately) and given by

pI
1 ¼ �xjðxÞ

opI
0

oyj
; ð29Þ

where the local interstitial corrector function xj satisfies
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r2
xxj ¼ 0; ð30Þ

with n � rxxj ¼ n � ej on the internal microstructure surfaces and periodic on the
outer surfaces.

The order Oðe2Þ interstitial equations are

r2
xpI

2 þrx � rypI
1 þry � rxpI

1 þr2
ypI

0 ¼ 0; ð31Þ

with boundary condition

n � ðrxpI
2 þrypI

1Þ ¼ ŴðpI
0 � pC

0 Þ on oX: ð32Þ

As for the capillary flow equation, substituting (29) into the equation above and
integrating over the whole interstitial domain we obtain

ry � ðE � rypI
0Þ ¼

SŴ
V
ðpI

0 � pC
0 Þ; ð33Þ

where S is the surface area of lymphatic capillaries within the unit cell, V is the
volume of the unit cell, and hence S=V is the lymphatic surface area density in the
tissue. The effective tissue interstitial permeability is given by

Eij ¼
VI

V
dij þ

1
V

Z

oX
xjnidS; ð34Þ

where VI is the volume of interstitial space in the unit cell, V is the volume of the
unit cell, and dij ¼ 1 if i ¼ j and zero otherwise.

3.1.5 Summary of the Macroscale Equations for Primary
Lymphatic Drainage

The capillary flow problem is described as

ry � ðK � rypC
0 Þ ¼ 0; ð35Þ

whilst the interstitital flow problem is described as

ry � ðE � rypI
0Þ ¼

SŴ
V
ðpI

0 � pC
0 Þ: ð36Þ

These equations can now be solved in a fast and efficient manner with suitable
boundary conditions either analytically (1D equations) or numerically in higher
dimensions.
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The cell problems that enable comparison between different microstructures
need to be solved only once and in general using numerical packages such as
Comsol Multiphysics, Abacus, Fluent etc. This was specifically done in [40] where
different surface area matched (i.e. S=V constant) lyphatic capillary configurations
were compared. The results are reproduced on Fig. 3.

Fig. 3 Comparison of capillary and intestitial permeabilities calculated using Comsol Multi-
physics. Reproduced from [40]
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4 Modelling Collecting Lymphatics

Moving downstream within the lymphatic system, primary lymphatics become
larger and acquire valves along the lumen, morphing into the secondary or col-
lecting lymphatic system. These vessels are somewhat larger than the primary
lymphatics, with Reynolds numbers around Re� 1. Modelling of the individual
lymphangions has typically taken one of two forms; development of zero
dimensional or lumped-parameter models often based on a circuit analog, or one-
dimensional models based on the Navier Stokes equations in 1D in a tube with
contractile, elastic walls. Both approaches have required experimental input to
determine specific parameters of the lymph vessels such as elastance. In a typical
experiment [30] an appropriate lymphangion is excised from the body (e.g. bovine
mesentry from an abbatoir), kept in a warmed bath of Krebs solution, and cann-
ulated with fine glass tubes which can be connected to fluid reservoirs. This in
vitro experiment can then be manipulated to measure physical parameters of the
lymphangion, for example valve opening and closure pressures, elasticity and
elastance of the walls, and even flow rates for different pumping effects. A typical
lymphangeon and experimental setup is shown in Fig. 4. Models of individual
lymphangions, together with simplistic valve models, can be (and have been)
linked together to investigate the system properties of short chains of lymphan-
gions, for instance to answer questions related to the degree of coordination of
contractile behaviour between lymphangions. Higher dimensional modelling has
not been widely investigated. Detailed modelling of other elements in the system,
particularly detailed valve modelling or modelling of the fluid dynamics of the
lymph nodes, has not been undertaken, although there are agent-based models of
the immune system within lymph nodes which do take account of the drainage of
fluid through the individual nodes. Accordingly in this section we will outline the
modelling of individual and chains of lymphangions, whilst Sect. 5 will discuss
other aspects of lymph system modelling.

4.1 Zero Dimensional Models

Flows in complicated hydraulic networks have often been represented by means of
lumped-parameter components, where the details of flow through any particular
section of duct are replaced by a simple relation linking pressure and volumetric
flow rate. Such relations are functionally equivalent to electric networks, with
pressure and volumetric flow rate being identified with electric voltage and cur-
rent, whilst wall compliance, viscosity and inertia are equivalent to capacitance,
resistance and inductance respectively. The network is divided into a number of
sections (the number determined by intrinsic features of the network such as nodes
and bifircations, or by resolution requirements). Lumped-parameter models have
been extensively used in a variety of contexts including cardiovascular networks
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[45]; in the lymph network they have been applied by Lambert and Benoit[21] and
extensively by Quick, Venugopal and colleagues [35, 56].

A simple deformable pipe can be modelled through a combination of the three
individual elements detailed in Table 2; with the circuit capacitance representing
the wall compliance, resistance representing the fluid viscosity and self-inductance
representing fluid inertia in the system. There are numerous possible arrangements
of components which can be used to model the deformable pipe in arbitrary detail;
the simplest model is the Windkessel circuit shown in Fig. 5. This can be used to

Table 2 Components of the zero dimensional lymphatic models

Fluid device Electrical component

Compliant vessel Q ¼ C dp
dt q ¼ CV ) dq

dt ¼ I ¼ C dV
dt

Capacitor

Viscosity Dp ¼ QR V ¼ IR Resistor
Inertia Dp ¼ L dQ

dt
V ¼ �L dI

dt
Inductor

Fig. 4 a Cannulated lymph vessel in vitro. b Typical experimental setup for measuring flow and
physical properties, reproduced from [30]
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represent an entire system (left figure) or an element in a chain (right figure). Fluid
flowing into the system can flow out the other side, with associated pressure drop
(the circuit resistance) or the vessel can distend, storing fluid (equivalent to the
capacitor). Applying Kirchoff’s laws to the circuit on the left, for instance, we can
derive the equation

QðtÞ ¼ pðtÞ
R
þ C

dpðtÞ
dt

; ð37Þ

relating volumetric flow rate and pressure for the system. With only one possible
time constant this circuit cannot represent all possible frequencies in a problem,
leading to the development of more sophisticated circuits in order to improve the
detailed modelling [45]. For instance, the transmission line model represented in
Fig. 6 which includes the effect of fluid inertia via self-inductance L. All that
remains with all of these circuits is to identify values or models for the terms R, C
and so forth.

The earliest attempt to represent the lymphatic system in terms of an equivalent
circuit was that of Drake et al. [9], as a simple resistor/diode arrangement. The
value of R was determined from in vitro experimental measurements on a dog lung
lymph vessel. This was cannulated and the volumetric flow rate measured for
various back pressures with the slope of Q vs. pout giving the resistance
R. However this takes no account of the pumping action. In terms of this mod-
elling, lymph vessels differ from arteries in one very important respect; whilst
arterial walls are compliant they are also passive, so the response of the system can
be modelled by finding suitable fixed values for L, C and R. Lymphangion walls

RC C

R

Fig. 5 Windkessel circuit. The left circuit represents a complete system modelled as a
windkessel circuit; the right a single element in a chain

L R

C

Fig. 6 Transmission line description of a blood vessel

Multiscale Modelling of Lymphatic Drainage 163



are actively contractile, contributing to the pumping; and in fact the determination
and modelling of this is a significant part of modelling the system as a whole.

Venugopal, Quick and collaborators [34, 35, 55–57] developed a more
sophisticated lumped parameter representation of the lymph system using the
circuit given in Fig. 7 with the parameters being time-varying. The circuit also
includes a diode to simulate the non-return property of the valve. Representation of
the pumping effect uses time-varying elastance theory, originally developed as a
simple model of the heart [49–51]. The elastance of the pumping vessel (heart or
lymphangion) is defined as

EðtÞ ¼ pðtÞ
VðtÞ � V0

: ð38Þ

The chamber volume VðtÞ varies as a result of the pressure pðtÞ; V0 is the theo-
retical volume for zero pressure, or dead volume. If the chamber were passive this
would be a constant as it inflated and deflated; however the physiological changes
in the wall through the pumping cycle result in changes in the physical stiffness,
i.e. changes in E. Experimental measurements on cannulated lymphangions were
used to determine p� V data through multiple cycles. As with other pumps (e.g.
the heart), the p� V data forms a loop, albiet in the case of the lymphatic pump, a
somewhat eratic one [24]. Quick and collaborators developed an empirical model
of the time-varying elastance from in vitro pressure and volume measurements on
a pumping, cannulated valveless section of bovine mesenteric lymphangion [35];
the same paper also presented valve behaviour data for different pressure gradi-
ents. With the assumption of a cylindrical shape and Poiseuille’s law, the time-
varying resistance and self-inductance can also be calculated:

RðtÞ ¼ Dp

Q
¼ 8ll

pr4
; ð39Þ

LðtÞ ¼ Dp

dQ=dt
¼ ql

pr2
: ð40Þ

Valve resistance is specified as a small fixed value for open valves (Dpvalve [ 0)
switching to infinite for a closed valve (Dpvalve\0), whilst the inlet and outlet

L(t) R(t) L(t) R(t)

C(t)

Fig. 7 Transmission line description of lymphangeon used by Quick, Venugopal and collab-
orators [35, 56]
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boundaries are simulated with additional fixed resistances [56]. The model has been
validated against experimental results for a single lymphangion [35], and expanded
to explore networks of four lymphangions [56] and branching networks [55].

This lumped-parameter approach has proved very successful, allowing inves-
tigation of individual pumping behaviour [35], for example demonstrating that
whilst lymphatic pumping action is beneficial under normal (positive) pressure
gradients, it is counterproductive for reverse (negative) gradients. Such reverse
gradients occur for cases of edema, external compression or limb elevation, where
the interstitial fluid pressure is artificially raised, leading to the permanent opening
of the lymphangion valves and the lymphangion acting as a simple conduit [34]. It
has also allowed the investigation of the effect of coordination of pumping
between successive lymphangions in series [56]. Introducing a phase change into
the time-periodic functions (EðtÞ, RðtÞ etc.) allows the creation of contractile
waves propagating along the series, both orthograde (in the direction of flow) and
retrograde (opposing). The authors found this coordination of the contraction to
have very little impact upon the pumping, and the orthograde and retrograde waves
had similar effects, suggesting that individual lymphangions are able to function
independently and thus adapt to local conditions as necessary. It has also proved
possible to use the model to examine optimal structures of the lymph system [55].
The branching structure of the arterial system is well predicted by Murray’s law
[33]: in an optimal system, where an artery bifurcates, the cubes of the radii of the
daughter vessels must sum to a constant value. This result is based on fundamental
physical principles (minimum energy loss in the system) and has been well vali-
dated experimentally. Venugopal and collaborators demonstrate a similar effect for
lymphatic networks, showing that a ratio of 1:26 for the upstream and downstream
lengths optimises lymph flow for symmetric networks. The same authors have also
investigated the effect of linear and non-linear contractile behaviour on the
pumping effect [57], a significant issue in understanding the response of lym-
phangions to increasing transmural pressure, for example in response to edema.

4.2 One Dimensional Models

Lumped parameter models assume a uniform distribution of the dependent vari-
ables throughout the individual elements of the model at a particular instant in
time. Although they are computationally efficient and so can be applied to large
networks, and, as demonstrated, can produce very good results, the individual
elements of the model are empirical and require fine tuning. A more fundamental
approach is to directly solve the basic equations of fluid dynamics, the Navier–
Stokes equations, for flow through the lymphangions. This has been carried out in
1D using purpose-built codes, discussed in this section, and could potentially be
investigated further in 2D and 3D (see Sect. 3). These models allow for the spatial
variation of the dependent variables; the main challenge is including the
mechanics of the wall, its compliance and contractility. Experimental input to
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determine physical parameters such as elastic modulii as well as for model vali-
dation is still important, but the flow model itself is more directly derived.

The earliest attempt to model the collecting lymphatics was that of Reddy and
co-workers [37, 38]. The Navier–Stokes equations can be reduced to the following
form in cylindrical polar coordinates:

oux

ot
þ ux

oux

ox
þ ur

oux

or
¼ � 1

q
o

ox
pþ qgh½ � þ l

o2ux

ox2
þ 1

r

o

or
r
oux

or
;

� �� �
ð41Þ

This represents the flow of fluid in a cylindrical tube oriented along the x-axis; with
the possibility of including head differences (qgh term) which will be irrelevant in
laboratory in vitro studies but may be quite important for a chain of lymphangions
across a significant section of the human body. Assuming no radial variation in the
flow, i.e.

op

or
¼ 0 ur ¼ 0; ð42Þ

and also assuming the flow to be low-Reynolds creeping flow;

ux
oux

ox
¼ 0; ð43Þ

we can simplify (Eq. 41) as follows:

oux

ot
¼ � 1

q
o

ox
pþ qgh½ � þ m

r

o

or
r
oux

or
:

� �
ð44Þ

Integrating this over the area of the tube (
R

. . .2pr dr) gives

oQ

ot
¼ � pa2

q
o

ox
pþ qgh½ � þ 2pa

q
s

����
r¼a

; ð45Þ

where s is the wall shear stress, a the tube radius and Q the volumetric flow. For
Poiseuille flow it is straightforward to show that the shear stress at the wall is

s

����
r¼a

¼ 4l
pa3

Q; ð46Þ

(see eg. [11]), giving

oQ

ot
¼ � pa2

q
o

ox
pþ qgh½ � þ 8l

qa2
Q: ð47Þ

Finally, an additional term can be introduced to represent the effect of the valve,
switching between finite and infinite resistance to represent the closed valve.

For a flexible tube (i.e. one whose radius can change) it is straightforward to
show that
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oA

ot
þ o

ox
ðuxAÞ ¼ 0; ð48Þ

represents the equation of continuity for an incompressible fluid [16, 44], where A
is the cross sectional area. Rewriting this in terms of the radius (A ¼ pa2) and Q,

oa

ot
¼ � 1

2pa

oQ

ox
: ð49Þ

To close this system we need an expression for the pressure p. For an incom-
pressible fluid within an elastic tube, the pressure, or rather the pressure difference
between outside and inside, is dictated by the dilation of the wall. Reddy used a
standard expression for a thin-walled tube for this:

p� pext ¼
h

a
Rhoop þ Ract

� �
; ð50Þ

where pext is the external imposed pressure, h the vessel wall thickness, a the
radius, Rhoop the hoop stress (due to the elastic properties of the wall) and Rext the
additional stress due to the active contraction of the wall. This was represented as a
combination of a simple sinusoidal function with a fixed period and a limiting
contractile stress representing the minimum condition necessary to activate
contraction.

With this, the equation set can now be discretised using standard finite differ-
ence techniques. Reddy and collaborators used upwind differencing and created a
simple explicit algorithm with one grid point per lymphangion, essentially creating
a lumped-parameter model based directly on the Navier–Stokes equations [37].
This was subsequently extended to model the complete left-side lymphatic net-
work for the human body, i.e. the larger subsystem draining into the thoracic duct,
including the effects of elevation in the system and including an external pressure
term representing the effect of breathing [38]. The authors took care to validate
their modelling as far as was possible by comparing average flow rates with known
values, and were able to demonstrate behaviour in the theoretical model consistent
with observed pumping behaviour in real lymphatics, but did observe somewhat
intermittent and random flow and pressure behaviour.

MacDonald and collaborators [25, 26, 28] used the same basic framework to
construct a more spatially refined model of an individual lymphangion and of short
series of lymphangions [27], using 4–6 grid points to resolve the axial distribution
of flow and wall properties within each lymphangion. In addition this work
attempted to improve some of the detailed modelling, in particular by introducing
a more complex model for the wall:

p� pext ¼ U
A

A0

� �
� T

D0

o2A

ox2
þ c

oA

ot
; ð51Þ

Multiscale Modelling of Lymphatic Drainage 167



where A is the cross-sectional area, (A0 the relaxed area), T the longitudinal wall
tension and c a damping factor. U represents the circumferential wall stress, which
was expressed using the thick wall model [3] often used in arterial mechanics:

UðDaextÞ ¼ EDa2
ext

ða2
ext � a2

intÞ
2ð1� r2Þa2

intaext
; ð52Þ

where aext and aint are the external and internal radii, Daext the change in external
radius caused by the pressure difference U, and r is Poisson’s ratio. E is the
Young’s modulus for the wall material. To simulate the effect of pumping, either
the natural (resting) radius or E can be changed; both approaches were investi-
gated. The computational work was supported by experimentation to determine
appropriate values for coefficients such as T and c. Experimentation was also used
to determine the pumping model for E,

EðtÞ ¼ Erelaxed þ ðEcontracted � ErelaxedÞnðtÞ; ð53Þ

and a similar model for the zero-pressure radius a0; for the pumping function
nðtÞ 2 ½0; 1�, two formulations were used, a simple sine wave with period tp, and a
shorter sine wave with pause at relaxation (total time period tp). Phase differences
between the pumping function at adjacent nodes enabled the simulation of
orthograde and retrograde contractile waves. Results for these simple pumping
functions were entirely consistent with experimentally observed results, generating
a sawtooth output which matched observed radius variations. Pumping worked
best with contraction being nearly simultaneous in all nodes within a lymphangion,
and differences between orthograde and retrograde contractile waves were minor.
For sufficiently high reverse gradients (i.e. edema), pumping merely served to
reduce the flow rate, in agreement with the computational results of [56] reported
earlier. Numerically the explicit algorithm placed a stringent constraint on the
computational timestep which could be used, governed by the propagation of
pressure/contractile waves in the system; the additional terms T and c also acted to
smooth the solution somewhat, producing less erratic results.

4.3 Higher Dimensions

Full solution of the Navier Stokes equations in 2D or 3D, except in very limited
cases, is only really possible numerically, a fact which has led to the development
of the subject of Computational Fluid Dynamics or CFD. CFD has had a major
impact on biomechanics, in both cardovascular and respiratory [8] areas. Com-
monly-used is the Finite Volume method (FVM), in which the domain of interest
is divided into a multitude of small cells or control volumes; the assembly of these
is referred to as a mesh. The Navier–Stokes equations are integrated over each cell,
and this, combined with application of Gauss’ theorem to convert the transport
term in the Navier–Stokes equation into fluxes across the cell faces, converts these
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partial differential equations into difference equations which can be solved, gen-
erally through an implicit, matrix-inversion-based algorithm. The big advantage of
the finite volume method is that the cells can be any shape necessary, thus adapting
to the needs of the geometry. Additional modelling may be introduced, e.g. tur-
bulence, non-Newtonian flow, and particle tracking. Prewritten codes are avail-
able, both commercial (e.g. ANSYS Fluent, Star-CCM) and open source (e.g.
OpenFOAM [58]). Alternative to the finite volume method is the functionally
equivalent Finite Element method (FEM), in which the domain is represented by a
collection of vertices connected by edges, and solution proceeds through numer-
ical minimisation of a cost function. Again, preexisting codes are available (e.g.
Comsol Multiphysics).

The major issue with CFD modelling of lymphatic vessels is that of treating the
wall compliance. Flow of fluid in a duct which can deform is known as fluid-
structure interaction (FSI). The FVM or FEM approaches can both handle this by
permitting the motion of boundary patches and allowing the interior mesh structure
to adapt accordingly. A full FSI calculation for a lymphangion would require the
solution of the flow in the lymphangion and the resultant wall forces (pressures and
shear stresses), together with a stress calculation in the lymphangion wall, with
coupling acting in both directions. This is theoretically achievable but computa-
tionally costly [29, 46] and has not currently been attempted. However if we can
determine the motion of the wall (and this may be more appropriate given its
active state) the boundary motion may be imposed as a condition, simplifying the
calculation considerably. Rahbar and Moore [36] have done this, creating an
idealised model of a lymphangion using the commercial code StarCCM+, of
length 1000 lm (contracting section 500 lm) and a variety of contractions (ranging
from radii contracting from 60 to 40 lm to 120 contracting to 60 lm. Sinusoidal
and skewed-sinusoidal wall motions were imposed with a period of 3:24 s, and
steady and unsteady inlet velocity profiles imposed. The aim of the research was to
ascertain whether the commonly-used assumption of Poiseuille flow, appropriate
for steady flow in a straight, rigid tube, is appropriate for the case of flow in lymph
vessels. In general, the authors found that it was, with discrepancies from strict
Poiseuille flow of less than 4 % for wall shear stress, and parabolic velocity
profiles strongly suggesting Poiseuille flow throughout the whole pumping cycle.

5 Other Modelling Related to Lymphatics

In addition to the two fluid flow modelling areas discussed above there are
additional emerging fields that deal with modelling the detailed nature of how the
lymphatic primary and secondary valves function and how the lymphatic system
develops. We will discuss both very briefly below. In addition there are models
that deal with the immune response within the lymph nodes [2, 17, 32], but since
these do not usually have any fluid dynamics included in them we will not discuss
them in this review.
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5.1 Valve and Node Modelling

Valves are obviously an important element of the overall lymphatic system, but are
even less well researched than the systems behaviour of fluid flows within
lymphatics. Both lumped-parameter and Navier–Stokes based models described
above use empirically based valve models based on experimental measurements of
valve opening and closing pressure drops, and resistance values for the opened
valve. Usually these models have exhibited simple diodic on/off behaviour,
although Macdonald and collaborators [28] developed a more complicated model
with ramping of the valve resistance between the two states. The situation is made
more complex by there being at least two different types of valve in operation in
the system. In the initial lymphatics, overlapping endothelial cells in the vessel
wall form a primitive non-return valve for fluid transiting from the intrastitial
space into the vessel [41, 54], often referred to as the primary valves; the vessels
themselves however are non-pumping, being simple drainage ducts, and so do not
possess internal valves. Mendoza and Schmid-Schönbein [31] attempted to
develop a model for the primary valves by treating the overlapping cell as a flat
flexible plate subject to a deflection wðxÞ with governing equation

d4wðxÞ
dx4

¼ 1
EI

DpðxÞ; ð54Þ

with E as the elastic modulus and I the moment of inertia; the pressure drop across
the plate DpðxÞ being related to Stokes flow through the gap, giving

dp

dx
¼ � 12Ql

wðxÞ3T
; ð55Þ

for tissue thickness T . The equations were solved numerically using Mathematica.
Results showed that, mechanistically, such simple structures could indeed operate
as a valve, opening and closing in appropriate timescales and under appropriate
pressures, and gave a likely estimate of the size of the opening.

Mendoza and Schmid-Schonbein’s model [31] represents the situation where
the valve leaflets are overlapping by a large distance, and hence the primary
impedance for the lymphatic drainage is the movement of fluid in the narrow
channel between two overlapping lymphatic endothelial cells. Galie and Spilker’s
model [12] is essentially similar to that of Mendoza and Schmid-Schonbein with
the difference that they make the fluid dynamics around the valve more sophis-
ticated. Both of these models also neglect the overall curvature of the lymphatic
lumen.

Downstream in the network, as the vessels become larger and form the col-
lecting lymphatic system, we find valve structures between individual lymphan-
gions. However their exact structure is difficult to identify, being largely known
from 2D micrographs such as that shown in Fig. 8. Two distinct structures have
been proposed; a bicuspid valve analogous to the tricuspid shape of the heart valve
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[13–15] or a funnel-like structure [22]. Meanwhile, recent work based on 3D
reconstruction of images from confocal multiphoton microscopy suggests a bi-
leaflet structure anchored at the walls [60]. Macdonald [27] attempted to model a
valve as a 2D bileaflet with the commercial CFD code Fluent; the valve leaflets
were represented by rigid structures with predefined motion, enabling the inves-
tigation of the response of the flow to the opening and closing of the leaflets. This,
combined with experimental data on the valve behaviour, formed the basis for the
empirical valve model used in [28]. Typical results are shown in Fig. 8, from
which the flow resistance for various degrees of opening could be calculated.

Recently, Bertram et al. [5] have attempted to refine the valve modelling within
a lumped-parameter chain model. This modelled the valve behaviour more
smoothly than a simple on–off diode, with a resistance which ramped smoothly:

Fig. 8 Top: cat mesenteric valve (reproduced from [61]). Bottom: 2D simulation of opening
lymphatic valve using Fluent
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RV ¼ RVmin

þ RVmax

1
1þ expðsopenðDp� popenÞÞ

þ 1
1þ expð�sfailðDp� pfailÞÞ

� 1

� �
:

ð56Þ

The two exponential terms here represent the opening resistance and valve
failure, respectively. The authors developed a model of up to five lymphangions in
a chain using Matlab; representative parameters for a small lymph vessel were
used, and the effect of various conditions and coordination between lymphangions
explored. Most significantly, this model enabled a more detailed exploration of the
failure mode for adverse pressures; at the highest adverse pressures pumping was
found to fail through one of two failure modes; through leakback through the valve
or through the valve simply failing to open. Flow rates were also found to be
sensitive to the conditions, with benefits to coordinated pumping and maximum
flow rates and pressures sensitive to the contractile state.

5.2 Models of Lymphatic Development

There is a new and emerging area that deals with modelling lymphatic develop-
ment. This is an undoubtedly an exciting area, but suffers from a scarcity of
systematic experimental knowledge to build truly encompassing models. Thus,
only two, very specialised models have been published [10, 39]. Roose and Fowler
[39] developed a model to describe the fluid flow channelisation within collagen
gels. This channelisation is thought to precede and guide the development of
mature lymph vessels in mouse tail. The model essentially considered the collagen
gel to be a multiphase rubber like material, and thus Flory-Huggins polymer theory
was used for modelling. This resulted in a macroscopic model in the form of
Cahn–Hilliard equation that was shown to exhibit experimentally consistent results
of collagen patterning. However, clearly, not enough is known about all the pro-
cesses to confirm all the model findings.

Lolas and Friedman [10] developed a model for lymphangiogenesis during
solid tumour growth. The model consists of eight reaction-diffusion equations that
include the effects of different growth factors (VEGF-C, plasmin etc.) on the
development of lymphatic endothelial cell and cancer density, in addition to the
effect of extracellular matrix.

All these models are clearly only first step in the longer research programs that
are likely to grow in importance as the applied developmental questions related to
lymphatics are addressed by, for example, tissue engineers who are looking to
create artificial tissue scaffolds with not only functioning vasculature, but also with
working lymphatics.
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6 Conclusions and Challenges

The lymphatic system acts to drain and return interstitial fluids to the main cir-
culatory system, pumping it from the low-pressure interstitial environment and
returning it to the (usually higher pressure) venous system via the lymph ducts.
This is accomplished by means of a complex structure of primary and secondary
lymphatics and lymph nodes spanning three orders of magnitude in scale. In
addition to its role in fluid transport, it provides a significant part of the body’s
defense against disease, particularly through the intermission of the lymph nodes.
Medically, issues arise when compromised through surgery or infection, and it also
plays a role in the spread of cancer through the body.

The range of scales involved indicates the necessity to invoke multiscale
modelling; simulating individual components to investigate their behaviour, but
also using this investigation to create simplified models which can act as building
blocks for the next level up. In the case of the primary lymphatics, this has taken
the form of multiple scale perturbation expansion and has had success in
explaining the nature of fluid flow coupling between the interstitium and lymphatic
capillaries.

In the case of the secondary lymphatics, two basic approaches have been fol-
lowed; lumped-parameter modelling using electrical circuit analogies, and direct
solution of the Navier–Stokes equations in 1D. Both have been highly successful,
generating results which have been broadly in agreement both with each other and
with experiment, and have been used to discover aspects of the system behaviour
which would have been difficult to identify otherwise, such as coordination issues
and the non-pumping behaviour for the case of edema. A more extensive multi-
scale approach is starting to evolve within this area with detailed modelling of
valves beginning to inform the development of the network model. In all cases, a
synergistic approach involving experiment and modelling has been successfully
followed, partly as a pragmatic response to the lack of background information
available about physical parameters of the system.

Further modelling of the primary lymphatic system within the context of
detailed molecular factors influencing its development is clearly still needed.
There are two preliminary models [10, 39], but many more detailed modelling
studies performed as part of experimental investigations are still needed. In the
secondary lymphatic system, advanced microscopy techniques [1, 60] should be
more widely used to probe the structure of the secondary lymphatic vessel walls.
Further CFD modelling can investigate the detailed flow through valves and
lymphangions, possibly employing the techniques of Image Based Meshing to link
with the microscopy [59]. Coordination and integration of the modelling with the
primary lymphatics is also important, with the primary lymphatics providing input
boundary conditions for the secondary lymphatic models. The final aim must be a
complete, detailed model of the whole lymph system which can be used to
investigate not just drainage issues but propagation of components such as
malignant cancer cells through the system.
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Part II
Muscle, Nerve, Epithelium and

Endothelium



A Model of Electromechanical Coupling
in the Small Intestine

Peng Du, Jeelean Lim and Leo K. Cheng

Abstract The motility of the intestines is partly governed by a bioelectrical
activity termed intestinal slow wave activity; however, the dynamics of the
electromechanical relationship have remained poorly defined. With the recent
advances in continuum-based multi-scale modeling techniques, we present a
modeling framework to investigate the electromechanical coupling in a segment of
small intestine. The overall modeling framework included three parts: (i) an
anatomical model describing the geometry and makeup of the smooth muscle
fibers; (ii) an electrical model describing the slow wave propagation; and (iii) a
mechanical model describing the active and passive tension laws during con-
traction. The resultant intraluminal pressure was approximated using Lamé’s
thick-walled cylinder equation. This modeling framework demonstrates the
potential to be used in investigating the effects of intestinal slow wave dys-
rhythmias on the motility of the small intestine, and may be extended in the future
to incorporate additional regulatory factors and pathways.

1 Introduction

Digestion of food and absorption of nutrients are two important aspects to main-
taining the normal physiological functions of the body. Under the normal cir-
cumstances, the food we eat is moved through a long and convoluted muscular
tubular organ called the gastrointestinal tract. The key physiological function of
the gastrointestinal tract is the uptake of nutrients and water that are necessary for
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the maintenance of life. We now understand much more about the remarkable
mechanisms of digestion and absorption, thanks to over a century of accumulative
research of modern gastrointestinal physiology [51]. Furthermore, as the focus of
modern healthcare is shifting toward preventative medicine, it is also becoming
clear that maintaining a healthy digestive system is a key strategy in the man-
agement of increasingly prevalent illnesses in the developed and developing
worlds alike, such as diabetes, cardiovascular diseases, and obesity.

Even though the general topology of the gastrointestinal tract is a continuous
long tube, different parts of the tract are unique in both anatomy and function, in
order to specialize in different aspect of digestion and/or absorption. For example,
the stomach is where most of the digestion takes place, with aid of digestive
enzymes and gastric contractions; whereas the small intestine is where most of the
nutrient absorption occurs. Partially digested food, called chyme, is emptied into
the small intestine at a controlled rate from the stomach, through a muscular valve
called the pylorus, and the nutrients in the chyme are absorbed through the blood
vessels embedded in the villi of the intestinal wall via passive diffusion, as the food
travels down the intestine. The adult human small intestine is approximately 6 m
in length and 30 mm in diameter [7]. In order to ensure that the chyme is con-
tinuously processed through the entire intestine, a series of motor patterns slowly
transport the food content down the small intestine over a period of approximately
8 h [20]. The intestinal content then becomes more compacted in the colon, after
which the content is evacuated from the body. The transit time of food through the
intestine is an important clinical indicator of digestive health. Abnormally quick
transit through the intestine could result in diarrhea, which in severe and/or chronic
cases can lead to malnourishment and dehydration. Conversely, abnormally slow
transit could result in constipation, which is often accompanied with bloating,
pain, and a general reduction in quality of life [22].

Since the advent of modern medical imaging techniques such as the X-ray,
ultrasound, and magnetic resonance imaging, the motor patterns in the small
intestine have been classified into a variety of modes depending on the physiological
state of the body. This in turn is governed by a cohort of biological systems, such as
the myogenic, neurogenic, and hormonal systems [51]. Out of the many types of
motor patterns in the intestine, the most studied motor pattern is a series of con-
traction and relaxation movements known as peristalsis. Generally, the term
‘‘peristaltic contraction’’ refers to any constriction which travels along the intestine,
while the ‘‘peristaltic reflex’’ is a subset of peristaltic contractions, and describes the
neurally-mediated contractile reflex of the intestine to a food bolus [31].

Peristalsis is partly mediated by a propagating bioelectrical activity in the small
intestine called the intestinal slow wave activity. In 1914, intestinal motor patterns
were first studied in rabbits [3], and eight years later in 1922, slow wave activity was
recorded for the first time from the intestines in a number of species [4]. Subsequent
studies have established that the slow wave activity is actively generated by a special
class of pacemaker cells known as the interstitial cells of Cajal. The slow wave
activity then passively conducts to the surrounding smooth muscle cells, driving
their motility. The interstitial cells of Cajal were in fact first described by the Spanish
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Nobel Prize recipient, Santiago Ramón y Cajal, in 1911 [11]. However, it took
decades before the pacemaking role of the interstitial cells of Cajal in electrome-
chanical coupling activity in the gastrointestinal tract was established [21]. The
clinical significance of interstitial cells of Cajal has been demonstrated by multiple
studies showing a strong correlation between loss of the cells and intestinal motility
disorders such as chronic intestinal pseudo-obstruction [22]. In the muscle layers of
the small intestine, the smooth muscle cells are arranged in two sheets, defined as the
circular and longitudinal layers, which refer to the principal direction of alignment
of the individual muscle cells in each layer [9]. Since two of the components
responsible for contraction, the actin and myosin filaments, are aligned roughly
parallel to the longitudinal axis of the cell body, the alignment of the cells within the
muscle layer ensures coordinated contraction and efficient force generation in the
principal direction of the layer [9].

Peristaltic motor patterns involve contraction of both the circular and longitu-
dinal muscle layers in the intestine, accomplished by voltage-mediated calcium
entry into the smooth muscle cells and calcium release from intracellular stores [31].
In addition, the electromechanical sensitivity of the smooth muscle cells is further
influenced by the resting membrane potential which varies across localised regions
as well as across the intestinal wall [52], and changes in the amount of depolarization
required to activate peristalsis in different segments of intestine. This intrinsic
control of excitability also plays an important role in the formation of many other
specific motor patterns in different physiological conditions and at different loca-
tions along the intestine.

In summary, there are multiple co-regulatory pathways imposing on the motility
of the small intestine. These pathways integrate to generate the complex contractile
patterns in response to slow wave activity in the small intestine. In this chapter, we
focus on the electromechanical coupling between the intestinal slow wave activity
and peristalsis. However, even with the current level of understanding we have of
the underlying mechanisms of peristalsis, it is still difficult to evaluate this com-
plicated response in vivo. This is where a mathematical modeling framework can
offer a highly attractive in silico environment to understand peristalsis. Here, we
present the underlying theories with simple examples of a modeling framework that
can be used to investigate the electromechanical coupling in the small intestine. The
framework offers the flexibility to modify or add new components as more infor-
mation is established. Furthermore, the output variables of the electromechanical
model are in physically meaningful quantities that can be validated experimentally.
This additionally enables the model can be used to evaluate current data, and to help
generate new hypotheses for subsequent experimental testing.

2 Geometric Modeling

The sophistication of multi-scale modeling work discussed in this chapter partly
depends on the anatomy of the small intestine. It is therefore important to first
incorporate an appropriate representation of the anatomy of intestinal tissue.
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Generally, the smooth geometry of biological tissue has been represented by
defining geometric finite element mesh with appropriate basis function classes.
The concept of basis functions is used to discretize the physical geometric domain
into multiple geometric elements that can be iteratively fitted to the shape of one
part of the organ using the finite element method. For example, the geometric field
value in a one-dimensional geometric field can be interpolated by a linear
Lagrange basis function over a local coordinate system denoted by n, as follows,

uðnÞ ¼ ð1� nÞu1 þ nu2; ð1Þ

where the field value, u is varied linearly between the nodal values (u1 at n ¼ 0; u2

at n ¼ 1). Higher order geometric basis functions such as quadratic or cubic
functions can also be used to represent the geometric field. Even though the
Lagrange basis functions provide continuity of u across elemental boundaries, they
do not maintain higher order continuity, i.e., the derivatives on the curvature in
terms of geometry, are not continuous, and therefore the smoothness of the bio-
logical tissue is not represented accurately using the Lagrange basis function. One
approach that has been adopted is to define these additional derivative parameters,
such as ou

on, and ensure that both the field value and the derivative are continuous

across the elemental boundaries, e.g., in the form of cubic Hermite basis functions
as follows,

uðnÞ ¼ u1 þ u01nþ ð3u2 � 3u1 � 2u01 � u02Þn
2 þ ðu01 þ u02 þ 2u1 � 2u2Þn3; ð2Þ

where u1, u01 and u2, u02 are the nodal values and derivatives, respectively. A pre-
vious study has adopted the cubic Hermite basis functions to track the center-line
of the small intestine based on imaging evidence from the Visible Human Project
[37]; the wall of the intestinal model was then projected outward with a constant
radius to create an intestinal lumen space (Fig. 1a).

Even though the model constructed from the Visible Human Project success-
fully generated the gross anatomy of the human small intestine, a more detailed
representation of the intestinal micro-structure, in particular the muscle layers,
would be required for a more realistic electromechanical model. Morphological
studies of segments of small intestine have found that the radius and wall thickness
are fairly uniform within each segment. Therefore, a simple hollow cylindrical
tube can be used to represent a relatively short segment of the small intestine, in
order to reduce the computation required to apply the anatomical model in an
electromechanical modeling framework.

As the thickness and radial dimensions of intestines vary considerably between
species. We chose to focus on a 40 mm segment of a rat small intestine as the rat
species has been used in a number of experimental studies. Based on imaging and
morphometric evidence [1, 19], the rat intestine has an external radius of 2.3 mm
and a thickness of 0.9 mm. Figure 1b shows an idealized geometric model of the
small intestine, defined by 216 nodes and 128 geometric elements with a combi-
nation of different types of basis functions. In a three-dimensional space, the
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idealized intestinal model was represented using the Cartesian coordinates (x, y, z)
as the global coordinate system. Alternative coordinate systems such as the polar
cylindrical coordinate system could also be used in this case. A local coordinate
system (n1; n2; n3) is usually used in the finite element method to represent the
geometry within each local element. The local geometric coordinates were inter-
polated over the element using linear Lagrange basis functions in the circumfer-
ential (n1) and transmural (n3) directions, and a cubic Hermite basis function in the
longitudinal (n2) direction. This basis functions scheme represented a balance
between computational efficiency and accuracy, since the physical dimension in
the transmural and circumferential directions was smaller than the geometry in the
longitudinal direction.

The wall of the intestine anatomical model was further divided into two smooth
muscle layers of equal thickness, to represent the inner circular and outer longi-
tudinal muscle layers (Fig. 1b). To represent the different alignment of the muscle
fibers in the longitudinal and circular directions, a fiber coordinate system was
prescribed at each node, and subsequently interpolated over the whole element, in
this case using a trilinear basis function scheme. Note the other anatomical layer of
the small intestine, e.g., the submucosal layer, was not explicitly defined in this
initial model, because they do not contribute significantly to the active mechanical
properties of the intestine.

Anisotropic material properties, such as electrical conductivities and the
parameters for the constitutive equations, were specified along material axes which
are referred to the fiber directions. These axes specify three directions: (i) ‘fiber’,
which was aligned with the direction of the fibers; (ii) ‘‘sheet’’, which was per-
pendicular to the muscle fiber, but parallel to the plane of the muscle layer; and

ξ1

x

y

z

ξ3

(a) (b)

(c)

Fig. 1 Anatomical models of the small intestine. a An anatomical model constructed from the
Visible Human Project using the cubic Hermite basis functions [37]. b A more structurally
detailed linear model with idealized representation of the inner circular (brown) and outer
longitudinal muscle layers (light brown). The green lines represent the orientations of the smooth
muscle fibers in each geometric element. c A end-view of the linear intestinal anatomical model
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(iii) ‘‘sheet-normal’’, which was orthogonal to both the ‘‘fiber’’ and ‘‘sheet’’
directions, and therefore orthogonal to the plane of the muscle layer. The orien-
tations of the fibers in this case were aligned with the local n1 and n2 directions,
i.e., no fiber was aligned in the transmural direction (Fig. 1c). Application of the
anatomical model in electrical and electromechanical modeling process are dis-
cussed in the following two sections.

3 Electrophysiological Modeling

This section presents an overview of the mathematical models we used to simulate
the intestinal slow wave activity, i.e., the electrical activity generated by the
interstitial cells of Cajal and smooth muscle cells. The slow wave activity was then
integrated in a continuum setting, i.e., across multiple cells in a spatially averaged
electrical syncytium. The electrical control of the intestinal tissue is somewhat
unique with respect to its involvement of two separate levels of control by these
two different types of cell models. Earlier intestinal cell models utilized coupled
oscillators to phenomenologically reproduce the periodicity of slow waves [2].
Even though these phenomenological models offer a computationally efficient way
of simulating slow waves, they lack the sophistication required to link the elec-
trical activity to mechanical activity. More recently biophysically-based models of
these two types of cells have been developed. These models are generally based on
the gated ion conductance approach pioneered by Hodgkin and Huxley [30]. These
biophysically-based cell models have the advantage of relating physically mean-
ingful parameters, e.g., ion concentrations, to physiologically realistic processes,
e.g., voltage-dependent ion transport. In this section, we use a biophysically-based
smooth muscle cell model as an example of how slow waves can be simulated
using a system of ordinary differential equations.

A biophysically-based model of gastrointestinal smooth muscle cell was
developed in 2007 [14]. This model adopts the Hodgkin and Huxley formulation to
describe the eight types of commonly known ion channels in the smooth muscle
cell membrane. These eight ion channels, also referred to as conductances, in
combination with a pacemaking current term (i.e., the pacemaking current from
the interstitial cells of Cajal), specify depolarization of the smooth muscle cell,
through,

oVm

ot
¼ � 1

Cm
Iion � IICCð Þ; ð3Þ

where

Iion ¼ ICaL þ ILVA þ IKr þ IKa þ IBK þ IKb þ INa þ INSCC; ð4Þ

specifically, ICaL represents Ca2þ current through voltage-dependent, dihydro-
pyridine (DHP)-sensitive, L-type channels which are expressed in all
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gastrointestinal smooth muscle cells, and have therefore been referred to as the
backbone of electromechanical coupling in the gut [49]. ILVA describes a low
voltage-activated, DHP-insensitive, T-type calcium current. IKr and IKa represent
potassium currents through outward delayed rectifier channels and through out-
ward fast-inactivating, Ca2þ-independent channels respectively. IBK represents
Ca2þ-activated potassium conductance, and IKb, an experimentally-determined,
background potassium current. INa is a sodium conductance and INSCC is current
through non-selective cation channels, which have been found in the gastroin-
testinal tract of several species. The stimulus current, IICC , represents the slow
wave from the interstitial cells of Cajal which depolarizes the surrounding smooth
muscle cells.

A generic expression of the conductance of ion x is in the form,

Ix ¼ GxðVm � ExÞg ð5Þ

where Ix is the ionic current of an arbitrary ion species, Gx is the maximum
channel conductance, and Ex is the Nernst potential of x. The voltage dependency
of the ion conductance comes from the gating variable, g, which has a generic
form,

dg

dt
¼ g1 � g

s1
ð6Þ

Equation (6) specifies the rate of change of the gating variable, g, as a function of
voltage-dependent variables, g1 and s1, both of which can be fitted to experi-
mental measurements.

Another important cellular process which contributes to the behavior of these
ion channels, and which is of particular interest to the intestinal electromechanics,
is the regulation of intracellular calcium during the depolarization of the smooth
muscle cells. In this cell model, the increase in [Ca2þ]i is balanced by a calcium
extrusion current (ICaEXT ), which includes re-uptake by the sarcoplasmic reticulum
and mitochondria, as well as extrusion from the cell through Ca2þ pumps. These
processes were combined and modeled using the following expression,

ICaExt ¼ 0:317 Ca2þ� �1:34

i

� �
; ð7Þ

based on observation of normal Ca2þ levels after each slow wave activity. The
smooth muscle cell model was applied to successfully simulate slow wave
membrane potential traces which have been validated against experimental
recordings. Activity of the individual ion conductance was also simulated (Fig. 2).
Most important to the electromechanical model, the corresponding Ca2þ transient
had an amplitude of 300 pM (Fig. 2 top), as contractions of the smooth muscle
cells are related to the amplitudes of Ca2þ transients [44].
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3.1 Continuum Model

In a continuum model of intestinal electrophysiology, the mathematical descrip-
tions of slow wave propagation incorporate activities of scales larger than that of a
single cell. In one popular approach, individual cells are modeled and integrated
over an electrical syncytium. In the early stages of cardiac modeling, such a
discrete approach was used to model networks of individual cardiac cells over
minute scales (0.5 by 1.5 mm2) but involved significant computational expense
(4.5 h to simulate 520 ms of electrical activity) [40]. Even with the significant
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advances in computational power since, the discrete approach is still challenging
to apply to intestinal slow wave propagation problems that need to be studied over
seconds, if not minutes. In another approach, the basic unit of an electrical con-
tinuum is treated in a spatially averaged sense, i.e., the conductive medium is
modeled as continuous rather than consisting of discrete cells [45]. The spatially-
averaged treatment of the conductive medium reduces the size of the model and
thereby reduces the computation time required to solve the model.

The bidomain model is one of the main continuum electrical models employed
to simulate intestinal slow wave propagation. The principle of the bidomain
equations is to model the electrical current flow between two inter-penetrating
domains: (i) the intracellular domain (usually denoted by subscript i); and (ii) the
extracellular domain (usually denoted by subscript e). The two domains are
divided by a continuum cell membrane. The current fluxes across the cell mem-
brane are described by an Iion term denoting the ionic current term in Eq. (3). This
critical step links the bidomain equations to the cell model. More specifically, the
bidomain formulation involves two equations,

r � ðrirVmÞ ¼ �r � ððri þ reÞr/eÞ; ð8Þ

Am Cm
oVm

ot
þ Iion

� �
�rðrir/eÞ ¼ r � ðrirVmÞ; ð9Þ

where the r terms denote tissue conductivity tensors, with subscript i denoting the
intracellular domain and subscript e denoting the extracellular domain. The Iion

denotes the current flow through the cell membrane, as described in the cell models.
Equation (8) describes the relationship between Vm and /e. Equation (9) is a reac-
tion-diffusion equation in terms of the Vm, where the sum of ion conductances from
cell models provides the non-linear reaction term [45]. The bidomain model pre-
sented here is a voltage dependent system, in line with the standard of previous
simulation studies of both cardiac and gastrointestinal electrical activity [45].

In the numerical solution process, the bidomain equations can be approximated
using a weighted residual approach, similar to that used for the finite deformation
approximations (described in the following section). The bidomain equations
approximated over a physical solution domain can therefore be expressed as,

Z

X
½r � ðrirVmÞ�wdX ¼ 0; ð10Þ

Z

X
r � ðrirVmÞ þ rðrir/eÞ � Am Cm

oVm

ot
þ Iion

� �� 	
wdX ¼ 0; ð11Þ

where w is the weighting factor, specified using the interpolating basis function.
The basis functions are also used to interpolate parameter variables over the local
coordinate of the geometric elements. The time derivative oVm

ot can be approximated
using a difference method, for example,

A Model of Electromechanical Coupling in the Small Intestine 187



oVm

ot
¼ Vtþ1

m � Vt
m

Dt
ð12Þ

The discretized bidomain equations can be solved sequentially, with the Vm term
from Eq. (11) is used to update Eq. (10) at each time step.

In our simulation, as an example of intestinal slow wave propagation, the
smooth muscle cell model was solved at tissue-level using the bidomain formu-
lation implemented within a grid-based (solution points) finite element framework.
Four grid points were assigned in each n-direction of the segment model in
Fig. 1b, to make a total of 64 grid points per element, and 8,192 in the whole
geometry. The intestinal slow wave propagation was simulated for 2.8 s and
visualized over the intestinal geometry (Fig. 3). Boundary conditions of zero
current flux through the cell membrane boundary condition were assigned to the
model. Anisotropic tissue conductivities assigned to the fiber, sheet and sheet-
normal directions were 1, 0.5 and 0.019 mS mm�1 respectively in the intracellular
domain and 1, 0.5 and 0.236 mS mm�1 in the extracellular domain.

The frequency of the simulated intestinal slow wave activity was 23 cpm, with
a propagating velocity of 5 mm s�1. In this initial simulation, the slow wave
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Fig. 3 Simulated intestinal electrical activity. Visualization of slow wave membrane potential at
regular intervals in an idealized intestinal model, from 0 to 8 s. The color bar indicates
membrane potential values in mV, ranging from �70 (blue) to �30 mV (red)
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propagation in the circular direction was assumed to be instantaneous, so that all
the points at the same axial location were activated simultaneously.

4 Electromechanical Coupling

The tension generated in intestinal smooth muscle tissue can be classified into
passive and active components. Passive tension, or ‘‘tone’’, is mainly attributed to
extracellular connective tissue opposing stretch in the muscle tissue [39]. Active
tension is generated by the intracellular mechanisms the intestinal smooth muscle
cells that are responsible for contractions. Active contractions can be further
classified as either ‘‘tonic contractions’’, which maintain the steady-state force
over long periods of time and generate ‘‘specific tone’’ in the tissue [26], or
‘‘phasic contractions’’, which are characterized by a rise in developed tension
followed by relaxation [39]. Multiple phasic contractions may also fuse together,
generating ‘‘tetanic tone’’ in the intestinal tissue [26].

During periods of contraction, the myosin units the smooth muscle cells are
phosphorylated [49]. The activation allows interaction between actin and myosin
elements in the cell. These interactions are regulated by intracellular Ca2þ, so
initiation of contraction requires an increase in the [Ca2þ]i. This increase in
[Ca2þ]i can be induced by multiple factors, but under normal physiological con-
ditions, electromechanical coupling is widely considered as the predominant
mechanism [44, 49]. Slow wave activation of the smooth muscle cell depolarizes
the membrane potential, and this depolarization leads to an increase in the influx of
Ca2þ through voltage-gated Ca2þ membrane channels, e.g., ILVA and ILtype. Nor-
mally, the increase in [Ca2þ]i triggers release of more Ca2þ from intracellular
Ca2þ stores in the smooth muscle cell, e.g., the sarcoplasmic reticulum.

The next step in smooth muscle contraction is the binding of intracellular Ca2þ to
calmodulin. There are four Ca2þ binding sites on calmodulin; at least three need to
be filled before the Ca2þ-calmodulin complex is able to activate myosin-light-chain-
kinase [33]. This partially explains the requirement for a high level of [Ca2þ]i for
activating contraction. Myosin-light-chain-kinase catalyses the phosphorylation of
the light chain subunit in myosin, allowing myosin cross-bridges to attach to actin.
This process of activating cross-bridges through a phosphorylation switch is one of
the major differences between striated and smooth muscle (in striated muscle, Ca2þ

removes the inhibition of actin–myosin interaction instead [39]).
This section presents the principal theory and modeling technique used to

simulate electromechanical coupling in the small intestine. Figure 4 summarizes
the simulation process and highlights the main components of the electrome-
chanical model, which are individually discussed in the following subsections. In
brief, an anatomical model (Fig. 1b) was created and the initial timing of the
electrical activation specified to match slow wave propagation velocity.
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The electrical model was solved for ½Ca2þ�i values (Fig. 3), which are then fed to
the active mechanics component. Resultant active tension was incorporated into the
finite deformation equations that, together with the passive constitutive law,
specified deformation of the geometry. The mesh was updated with this new
geometry before the next solution step. Stress and radial measurements along the
small intestine were used to approximate the intraluminal pressures at various axial
locations along the anatomical model.

4.1 Finite Deformation Theory

In the small intestine, peristalsis can occlude more than 70 % of the diameter of
the lumen [1]. Such large and nonlinear deformation presents a challenge to the
conventional linear and small-strain deformation theory. In this case, a more
fundamental approach of finite elasticity is needed when using the mechanical
behavior of elastic materials which undergo large strains. Stress is another
important measure in mechanical deformation, and it can also vary greatly
between the undeformed and deformed states as the smooth muscle fiber elongates
under large strains.

Formulation of finite elasticity is a relatively more complex procedure than
linear elasticity formulations, as it involves ‘‘tracking’’ the deforming material. In

Anatomical model

Electrical model

Passive model Active model

Total Tension

Deformation Intraluminal pressure

Mechanical Model [Ca   ]2+
i

Fig. 4 Schematic of the electromechanical coupling process used in this simulation. At each
solution step, the electrical component is solved first, and the relevant variables in the cell
models, i.e., [Ca2þ]i, is linked to the active component of the mechanical model. The active
component is solved together with the passive component to update the deformation of the
geometric model
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finite deformation theory, particles in the material are ‘‘tracked’’ using a moving
coordinate system called the material coordinate system, with coordinates denoted
by (X1, X2, X3). This coordinate system moves throughout the deformation to
ensure that the coordinates of each particle remains constant. Another set of
coordinates, the spatial coordinate system, is used as reference. This coordinate
system marks coordinate points, denoted by (x1, x2, x3) which remain constant
throughout the deformation; the spatial coordinate system therefore remains static
in time. The deformation of the material can be quantified by the changes in
direction and length of the lines that connect two adjacent material particles. It is
calculated from the differences in material and spatial coordinates and specified
using the deformation gradient tensor (F),

F ¼ ox

oX
: ð13Þ

Removing the directional components of this tensor, i.e., removing the rotational
dependency of the deformation gradient tenor, leaves the right Cauchy–Green
deformation tensor (C),

C ¼ FT F; ð14Þ

which can be related to a strain tensor in the form of the Lagrangian finite strain
tensor (E) through the following relationship,

E ¼ 1
2

C � Ið Þ; ð15Þ

where I is the identity matrix. The right Cauchy–Green deformation tensor can be
used to specify three invariants (I1, I3, I3), i.e., quantities which remain constant
under coordinate rotations, which are used for expressing several passive consti-
tutive relationships (Sect. 4.2). The invariants can alternatively be specified in
terms of the principal stretch ratios of C: k1, k2 and k3, such that,

I1 ¼ trðCÞ ¼ k2
1 þ k2

2 þ k2
3; ð16Þ

I2 ¼
1
2

trðCÞ2 � trðC2Þ
h i

¼ k2
1k

2
2 þ k2

2k
2
3 þ k2

3k
2
1; ð17Þ

I3 ¼ detðCÞ ¼ k2
1k

2
2k

2
2: ð18Þ

Both the force and the unit surface area in a material are required in order to
calculate stress. In a large deformation problem, both the force and area are
different in the undeformed and deformed configurations. There are therefore
various definitions for the stress tensor. An important definition, useful for rep-
resenting passive material behavior, is the second Piola–Kirchhoff stress tensor
(T), which represents the force measured per unit undeformed area, acting on a
local geometric element in the undeformed configuration,
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T ¼ JF�1RðFTÞ�1; ð19Þ

where J is the Jacobian matrix required for the transformation from undeformed to
deformed coordinates. The Jacobian matrix is the determinant of the deformation
gradient tensor,

J ¼ detðFÞ ¼ k1k2k3: ð20Þ

The second Piola–Kirchhoff stress tensor is particularly useful as it directly relates
to the strain energy function used in formulating the constitutive models that
specify passive material properties.

In order to specify anisotropic material properties, these tensors are additionally
referred to the locally varying fiber coordinate system, ma (i.e., the fiber (f ), sheet
(s) and sheet-normal (n) directions). By applying the principle of virtual work,
stress equilibrium of the system, in the Einstein notation, yields,

Z

V
TabF j

bduj;adV ¼
Z

V
qðb j � f jÞdujdV þ

Z

S
s jdujdS; ð21Þ

Tab and F j
b are the second Piola–Kirchhoff stress tensor and deformation gradient

tensor respectively, expressed with respect to the fiber coordinate system, so that
the virtual displacements are expressed in the reference coordinate system and
differentiated with respect to the ma coordinate system [41]. The density of the
material (q) is in the reference system; b j and f j are the body force and accel-
eration vectors over the body volume; V , and s j are the surface traction vectors
representing external surface forces acting on the deformed surface, S [41]. For the
finite deformation problem, the finite element basis functions are used to inter-
polate the virtual displacement yields, duj in Eq. (21). The integrals in Eq. (21) are
subsequently transformed to the local coordinate space. Due to the nonlinearity of
the formulation, the resulting integrals form can be evaluated numerically using,
for example, the Gaussian quadrature scheme, which approximates the integrals
using a weighted sum of integrand evaluations,

Z 1

0
f ðnÞdn ¼

XI

i¼1

w if ðniÞ þ Ei; ð22Þ

where wi are the weighting factors, often specified using the interpolating basis
functions, and ni are the locations of the solution points (gauss points) where the
integrand is to be evaluated. Ei is the error in the approximation and I is the order
of the Gaussian quadrature scheme. By incorporating the passive constitutive
equations (described in Sect. 4.2), second Piola–Kirchhoff stress and Lagrangian
strains may be calculated at the gauss points. These integral approximations are
subsequently combined, together with boundary constraints, to form a global system
of nonlinear equations in terms of the unknown displacements of each node in the
mesh. The system can then be solved using an appropriate numerical method.
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4.2 Modeling Passive Tension

Passive tension is an intrinsic material property and refers to the stiffness in the
material that resists deformation. In smooth muscle tissue, this stiffness is largely
due to inelastic collagen fibers, which prevent further deformation at high wall
tensions [26]. It is important to include the effects of passive tension in a
mechanics model of the intestine, because the ease with which a segment of the
intestine is actively distended depends on passive stress, which in turn influences
the flow and mixing within the intestinal lumen [26].

Specifying the passive behavior of smooth muscle tissue in response to stress
requires two important specifications. These are the compressibility constraint and
the constitutive behavior of the tissue. The intestinal tissue can be assumed to be
incompressible, as smooth muscles consist mainly of incompressible fluids. Pop-
ular constitutive laws used to model isotropic material behavior include the
Neo-Hookean and Mooney-Rivlin laws. However, the Mooney–Rivlin relation-
ship may not be appropriate to model the intestinal tissue because the layered
muscle structure, i.e., a hyperelastic and anisotropic constitutive law may be
required and large strains [6]. Another important aspect of constitutive law
modeling is viscoelasticity; although, viscoelasticity is challenging to model
because of the time-dependency. However, an important assumption can be made
in the case of smooth muscle tissue. Following a period of pre-stretching, after the
muscle undergoes repeated loading–unloading cycles, the stress–strain relationship
becomes relatively independent of strain rate; the response becomes constant and
predictable. Fung termed this approximation ‘‘pseudoelasticity’’ [24]. The exis-
tence of a unique stress–strain relationship means that the tissue has an associated
strain energy function, and can therefore be modeled as a hyperelastic material
[24]. In general, the stress can be related to the strain energy function (W) and the
strain (E) tensor of the hyperelastic material,

T ¼ oWðEÞ
oE

: ð23Þ

The general form of the strain energy function can be modeled using many dif-
ferent mathematical formulations, each with parameters that can be adjusted to fit
data from material tests and yield the constitutive equations for the tissue. One
such constitutive law is the Fung-type model, based on a previous biaxial study of
intestinal tissue by Bellini et al. [6],

W ¼ C

2
eQ � 1

 �

ð24Þ

where,

Q ¼ a1E2
11 þ a2E2

22 þ a3E11E22; ð25Þ
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and E11 and E22 are the strains in the circumferential and longitudinal directions
respectively; C, a1, a2 and a3 are parameters fitted from the experimental data. It
was found that the direction of maximum stiffness at different location in the small
intestine is not consistent across all the tissue samples from that location [6]. Not
all, but a majority of the duodenal and ileum samples are stiffer in the circum-
ferential direction, while a majority of the jejunal samples are stiffer in the lon-
gitudinal direction [6]. A lumped model was therefore developed in order to
average out some of the anisotropic behaviors in the tissue.

4.2.1 Measurement of Passive Tension

Passive tension should technically be measurable between contractions when the
muscle is at rest. However, this is challenging in practice, due to the spontaneous
contractile nature of the muscle cells, as well as the presence of specific tone in the
tissue, which is difficult to isolate from pure passive properties [26]. In their efforts to
obtain the passive tension–length relationship in arterial smooth muscle, Herlihy and
Murphy developed a protocol which involves reversibly stretching muscle strips
[29]. Their results closely match measurements obtained from muscle strips which
were irreversibly equilibrated in Ca2þ-free solution, a process which they believed
inactivates the contractile apparatus. However, although various mechanisms have
been found to arrest spontaneous contractions, the mechanical behavior of the
‘‘resting’’ smooth muscle varies with the type of mechanism used [24]. This means
that there is an additional active component in the smooth muscle, i.e., tonic tension,
which is still present, but to varying degrees depending on experimental conditions,
even when the phasic behavior has been inactivated.

Assuming a relatively inert intestinal tissue sample can be obtained, passive
stiffness in the material can be investigated using planar biaxial tests. The tissue
sample is loaded simultaneously in the longitudinal and circumferential directions.
By tracking the movement of markers on the surface of the sample, one can
observe the dependence of the response in one direction on the material properties
of the other direction. Assuming the material is incompressible, the response in the
third direction, i.e., the transmural direction, can be approximated. The stress–
strain responses are incorporated into a constitutive law, which can then be used to
predict the behavior of the tissue under any general loading state. The review by
Sacks provides a detailed explanation of the biaxial testing technique [48].

Another commonly used technique for measuring passive tension in tubular
organs is balloon manometry. A probe is inserted into the intestine and a balloon
attached to the probe is inflated to apply an outward pressure onto the intestinal
wall [46]. The radius of the tube is measured using imaging techniques. The
tension in the wall is then approximated from applied pressure, radius and wall
thickness. This method has the advantage of being able to directly test on the intact
intestinal tissue, rather than on muscle strips. However, this is essentially a uni-
axial method, which is limited by the stiffness data that assumes isotropic material
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behavior in all three orthogonal material directions [48]. Recent adaption of the
fiber optic technology also allowed intraluminal pressure to be measured at high-
resolution using a pressure-sensing catheter placed in the colon [16, 18]. This
method has the potential to resolve movements and pressure developments in
multiple directions.

4.3 Modeling Active Tension

Active tension is generated by the contractile apparatus in the smooth muscle cells
in response to the increase in [Ca2þ]i caused by slow wave depolarization of the
cell. Smooth muscles are capable of generating longer sustained contractions than
striated muscle with the similar level of myosin phosphorylation, because of the
ability of smooth muscle to form latch-bridges. There are several models of the
active behavior of the intestinal smooth muscle [25, 27, 47]. Many of these models
describe detailed mechanisms of the cross-bridge cycling in the smooth muscle
cells. Another simplified approach is to adapt the steady-state tension–length–
calcium relationship (SS-T-L-Ca2þ) relationship developed by Hunter et al. [32],
and use it to describe the active tension generated in response to the increase in
[Ca2þ]i following electrical activation. The model assumes cardiac-specific
kinetics of Ca2þ, including binding of Ca2þ to Troponin-C in cardiac cells. The
Ca2þ-Troponin-C complex binds to tropomyosin and unblocks the binding sites,
and the model provides a phenomenological description for the steady-state pro-
portion of available binding sites (zss), as follows,

zss ¼
Ca2þ� �h

i

Ca2þ� �h
iþCh

50

: ð26Þ

where C50 is the value of [Ca2þ]i required to achieve 50 % availability of actin
binding sites and h determines the steepness of the sigmoidal curve. The tension
developed by the muscle fiber at steady-state length is directly proportional to zss,
and was fitted to cardiac isometric tension data using the following expression,

T ¼ Tref 1þ bO k� 1½ �ð Þ � zss; ð27Þ

where k is the extension ratio of the muscle fiber, Tref is the tension recorded at an
extension ratio of 1, and bO relates to myofilament cooperativity, a phenomenon
which describes how activation of a single cardiac muscle cell facilitates activation
of neighboring cells [53].

Although originally specified from cardiac muscle data, the parameters of the
SS-T-L-Ca2þ model can be readily adjusted to simulate smooth muscle behavior.
Figure 5 shows the tension-[Ca2þ]i relationship with parameters bO = 1.45,
C50 = 0.65, and h = 2.5 to match a set of normalized tension over a range of strains.

A Model of Electromechanical Coupling in the Small Intestine 195



Visualization of the electromechanical simulation using the SS-T-L-Ca2þ rela-
tionship is shown in Fig. 5.

4.4 Boundary Conditions and Numerical Solutions

Boundary conditions were chosen to restrict torsion and whole body movements of
the intestine on one face of the model, but should allow contractions in the lon-
gitudinal and radial directions. In the anatomical model (Fig. 1c), the geometric
elemental nodes on the left hand side face were fixed in the longitudinal direction.
In addition, two nodes on the inner circular layer were fixed in the vertical cir-
cumferential direction, and the two nodes orthogonal to the previous two nodes
were fixed in the horizontal direction. This is representative of physical constraints
applied in several experimental studies on whole segments of small intestine
[28, 50], in which only one end was constricted in the axial direction, so that
longitudinal contractions could be measured. Boundary conditions also influence
the degrees of freedom of a deformation problem. The degrees of freedom for the
mechanical solution is an important indication of the computational time required
for solving the model. The degrees of freedom may be measured by the number of
dependent variables (deformed geometric coordinates) required at each geometric
node, omitting the variables that are fixed due to boundary constraints. For
example, the present mechanical model described in this chapter contained 1,240
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degrees of freedom in total. The solution procedure for the electromechanically
coupling model involved solving for deformed geometric coordinates, which were
then used to update the model geometry, including the coordinates of the electrical
solution points, before the next solution step. At each mechanical solution point
i.e., gauss point, the following variables were defined as outputs: (i) deformed
nodal coordinates, (ii) Lagrangian strains, (iii) active Piola–Kirchhoff stresses, and
(iv) total Piola–Kirchhoff stresses.

More specifically in this example, the electromechanically coupled model was
solved for a simulated period of 8 s, and solutions output at time steps of 0.5 s
(Fig. 6). The electrical component was solved first. The [Ca2þ]i values from the
grid points were interpolated and used to update the Ca2þ variable at each
mechanical gauss point. A trilinear interpolation scheme was used for this update
step. These [Ca2þ]i values were subsequently input into the active mechanics
model. For the mechanical component, the nonlinear finite deformation equations
were linearized using the Newton–Raphson method, then numerically solved using
UMFPACK. The solution converged within five iterations in most cases, with each
iteration taking between 50 and 80 s to solve. Within each mechanical solution
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Fig. 6 Simulated intestinal electromechanical activity. Mechanical deformation is seen as
occlusion of the intestinal lumen. Visualization of slow wave membrane potential at regular
intervals in an idealized intestinal model, from 0 to 8 s. The color bar indicates membrane
potential values in mV, ranging from �70 (blue) to �30 mV (red)
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step, the active tension model was solved using the improved Euler method. The
entire simulation was implemented in a multi-scale modeling computation pack-
age called CMISS [12], on a single 2.8 GHz processor, and required 85.6 h of
computational time. Based on the simulation results in Fig. 6, the maximum active
stress generated along the fiber direction in each slow wave (electrical) cycle was
approximately 937 Pa. Total stress in the fiber direction, i.e., the linear combi-
nation of passive and active stresses, was smaller and much more dependent on
axial location, with maximum recorded values of 464 Pa. We were also able to
quantify the circular contractions by calculating the deformed radius as a ratio of
the original, relaxed radius (14 mm) at each axial node. The three transient
decreases in radial measurement correspond to the three cycles of slow wave and
contractile activity that passed this point during the simulation. The maximum
radial deformation was 0.276 of the original radius. A plot of the radial defor-
mation against time (calculated at the axial locations marked in red) is shown in
Fig. 7. On the other hand, the longitudinal contraction (shortening) at each axial
location was similarly quantified as the ratio of the original length of the axial
segment (Fig. 8).
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Fig. 8 Longitudinal deformation over time. The deformed segment strains at each time step
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4.5 Intraluminal Pressure Calculation

Validation of the model is an important part of any multi-scale modeling study.
Therefore, it is important for the model to have an output that can be measured
experimentally. Clinically, antroduodenal manometry catheter is a commonly
applied method of recording to assess the patient’s intestinal motility. The
assessment involves inserting a tube with pressure sensors through the stomach
and into the small intestine, sometimes for hours at a time. In order to compare the
model with experimental manometry recordings, we calculated the intraluminal
pressure due to the mechanical contraction of the intestinal model. For this initial
model, instead of attempting to deploy a computational fluid dynamics simulation
within the complex movement of the geometry, a relatively simple approximation
using Lamé’s theory of stresses within thick-walled cylinders was applied. The
thick-wall formulation of Lamé’s theory is typically used if the cylinder has a ratio
of wall thickness to internal diameter that is larger than 0.1 [38]; the ratio in this
model geometry was 0.3. The theory approximates the circumferential, or hoop,
stresses (rh) in the wall of the cylinder using the internal (pi) and external (po)
fluid pressures and the internal (ri) and external (ro) radial values,

rh ¼
r2

i pi � r2
opo

r2
o � r2

i

þ r2
i r2

o pi � poð Þ
r2 r2

o � r2
i


 � ; ð28Þ

where r is the coordinate corresponding to the radial location of this stress value.
These parameters are visualized in Fig. 9. The derivation of Lamé’s equation can
be found in [42].

Assuming no external pressure, rearranging for internal pressure gives,

pi ¼ rh
r2 r2

o � r2
i


 �

r2
i r2

o þ r2

 � ð29Þ

Stress values in the fiber, sheet and sheet-normal directions can be calculated at
each gauss point and at each time step of the simulation. The stresses in the fiber
direction at the inner surface of the intestinal model correspond to circular wall
stresses at r ¼ ri because the fibers on the inner surface of the intestine model are
aligned in the circumferential direction. Intraluminal pressures calculated using
stresses at r ¼ ri can therefore be expressed as,

pi ¼ rgauss
r2

o � r2
i


 �

r2
o þ r2

i


 � ð30Þ

where rgauss are the fiber stresses at the innermost gauss points in the simulation.
Radius values can be calculated by taking the distance between the innermost
gauss point and the outermost gauss point at corresponding circumferential
coordinates.
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To make the output of the simulation consistent with measurements obtained
from manometry, particularly high-resolution manometry [18], we calculated
pressures at points spaced approximately 10 mm apart in the longitudinal direction
on the inner surface of the intestinal model. Figure 10 demonstrates a sample of
the pressure traces obtained from the axial locations marked in Fig. 7a. The top-
most trace corresponds to the point at the most left-most location of the geometric
model and the bottom trace to the most right-most location of the geometric
model. We found that pressure varied depending on location within each element,
as seen in the different shapes of the pressure transients in each plot in Fig. 10. The
transient peaks in pressure correlated with periods of contractile activity. The
maximum intraluminal pressure calculated was 148 Pa.

5 Perspectives

This chapter presents a preliminary framework for an electromechanically coupled
simulation of the rat small intestine using multi-scale modeling. In this chapter, we
have highlighted several features and limitations of the methods and models used.
We have also proposed potential extensions that may be added to the modeling
framework as we continue to learn more about the electromechanical dynamics in
the small intestine. Due to the modular nature of this simulation framework, the
model may be readily updated in the future when more specific information on
intestinal motility has been understood. This is a first step toward creating a fully
coupled model that can be applied in the clinical setting as the link between
minimally-invasive electrical measurements and pressure recordings, in order to
improve diagnosis and treatment of intestinal motility disorders.

Ri

Ro

σh

Pi

Po

Fig. 9 Cross-sectional
diagram of intestine
illustrating variables used for
intraluminal pressure
calculation in Eq. (28): ri and
ro are the internal and
external radii respectively, r
is the radial coordinate
corresponding to the location
of this stress value, and pi and
po are the internal and
external pressures
respectively
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The modeling framework proposed in this chapter consists of three main parts:
(i) geometric model; (ii) electrical model; and (iii) electromechanical model. Many
simplifications were made in order to create a computationally feasible model. For
example, a simplification applied to the model geometry is the two-layered wall
structure representing the circular and longitudinal muscle layers. This idealized
geometry ignores the effects of other anatomical layers in the small intestine.
While the missing layers do not generate active tension, they contain structural
features, such as collagen fibers, which contribute to the passive mechanical
properties of the intestinal wall. Additionally for simplicity, we assumed equal
thickness of the longitudinal and circular muscle layers, although morphometric
studies have shown that the circular muscle layer of the rat small intestine is
approximately 1.2 times thicker than the longitudinal layer [19]. Assuming muscle
fiber density is consistent in each layer, this unequal thickness ratio may affect the
active tension generated.

−100

0

100

200

−100

0

100

200

−100

0

100

200

P
re

ss
ur

e 
(P

a)

−100

0

100

200

0 1 2 3 4 5 6 7 8
−100

0

100

200

Time (s)

(i)

(ii)

(iii)

(iv)

(v)

Fig. 10 Intraluminal pressure traces approximated using Lamé’s theory of stresses within thick-
walled cylinders. Each subplot illustrates the pressures calculated at the gauss point locations
marked in Fig. 7a)

202 P. Du et al.



The geometric model was limited to contain mostly linear basis functions in
order to minimize the degrees of freedom and therefore computation time. How-
ever, it would be of interest to evaluate how geometry and mechanical deformation
are affected by the order of the interpolation functions in the simulation, e.g., using
tri-cubic Hermite basis functions. Computing time may be reduced in the future by
using distributed memory multiprocessing for solving the finite deformation
problem. For example, the time consuming computation of the element stiffness
matrices can potentially be sped up by utilizing parallel computation techniques.

The electrical activity of intestinal motility is not limited to slow wave only. For
example, the changes in intestinal contractility also appear to be co-regulated by
other electrophysiological mediating mechanisms, such as spike activity is volt-
age-dependent and rapid oscillations during the plateau phase of the intestinal slow
waves, which apparently play an important role in mediating contractility during
certain stages of intestinal transit, e.g., during fasting [15]. However, as there is a
strong temporal relationship between slow waves, spikes, and contractions,
mechanical activation by slow waves could justifiably be treated in the temporal
domain as spike activation in this initial simulation. Nevertheless, it is still
important to include an intermediate spiking mechanism to realistically simulate
the autonomous control of a wider range of motility patterns in the small intestine.
In a recent study [34], spike patches were shown to propagate faster in the opposite
direction than the slow wave propagation, and spontaneously terminate spikes at
variable distances. At present, however, the cellular mechanisms behind spike
activity are poorly understood, and there are no existing models that simulate
intestinal spike activity. It would be interesting to incorporate these different
characteristics in future modeling studies to investigate how they affect intestinal
motility.

Even though voltage-dependent entry of Ca2þ has been postulated as one of the
main mechanisms of electromechanical coupling in the small intestine [44, 49], the
enteric nervous system is also understood as another important regulator of gas-
trointestinal motility [31]. Incorporation of these neurological pathways will be an
important future direction towards an integrated mechanical model. Recently, an
extension to the bidomain model has been proposed as a possible framework to
bridge the present electromechanical modeling framework and future neural
models [10]. Much details of the neurologically mediated regulators of gastroin-
testinal motility still remain under investigations, and future modeling work will
be required to study these mechanisms as further details become clear.

The passive and active mechanical models implemented in this simulation
framework were developed by Bellini et al. [6] and adapted from Hunter
et al. [32]. [Ca2þ]i acts as the intermediary between the electrical component and
the active mechanical component. Active tension is combined with the passive
tension to obtain the total tension at each gauss point. This is incorporated into the
finite deformation formulation to determine the resultant deformed geometry.
However, recent modeling studies have proposed more biophysically based
descriptions of the relationship between [Ca2þ]i and cellular biomechanical
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response [25]. It will be necessary to incorporate a biophysical, gastrointestinal
specific model that can accurately predict and explain the biophysical process that
lead to the development of active tension.

The present simulation framework is a loosely coupled model, meaning it does
not contain a mechanoelectrical feedback component. We assumed that defor-
mation produces nominal changes in the electrophysiological description. How-
ever, feedback from the mechanical to the electrophysiology component should be
considered in order to investigate the length-dependent Ca2þ-sensitivity of smooth
muscle cells and tissues. Additionally, strain feedback would be required for
describing mechanical transduction mechanisms such as mechanosensitive ion
channels. For example, recently a voltage-dependent sodium channel (Nav1.5
encoded by SCN5A) has been shown to exhibit mechanosensitivity [8]. Further-
more, the physical properties of the luminal contents may also exert a degree of
influence on mixing, efficiency of digestion and, and absorption of the intestine
[35]. Therefore, adding a mechanoelectrical component to the model framework is
an important extension to consider in the future.

Intraluminal pressure approximated from Lamé’s theory of stress in thick-
walled cylinders provided a separate validation for the simulation results. How-
ever, this approximation does not take into account time-dependent behavior, e.g.,
viscosity of the fluid. The necessity to compare the model output with clinical
manometry recordings highlights the importance of a complete numerical fluid
analysis of the intestinal flow [23, 36]. Nevertheless, the procedure of inputting
deformed nodal coordinates, solving the fluid–structure interaction and the flow
equations at each time step, while maintaining a stable and coupled state
throughout, is a challenging problem at present.

Minimally invasive methods that are capable of recording intestinal slow wave
and mechanical contractions are being developed, e.g., endoscopic recordings of
gastric mucosa [13] and laparoscopic measurements of the small intestinal serosal
surfaces [43]. Additionally, recent developments in high resolution pressure
recordings promise effective and minimally invasive diagnostic procedures [5, 17].
These pressure recordings can potentially be used with this simulation framework
to investigate the sources of abnormal motility, without the need for imaging tools
to visualize contractile activity. However, work is still needed to fully understand
the relationships among electrical activity, intraluminal pressure and contractile
activity in the small intestine.

In conclusion, we have presented the underlying theory of continuum-based
electromechanical modeling, with a particular emphasis on electrical and finite
elasticity modeling in the intestine. This framework can be used as a platform for
integrating independent experimental measurements from multiple modalities, for
example, electrical recording, image capture, and manometric analysis, and pro-
vides analysis on the mechanistic relationship between these recordings. A defin-
itive future direction of gastrointestinal biomechanics is detailed constitutive laws
that can sufficiently capture the material behaviours of the gastrointestinal tissues.
Another important aspect of work in this field is the detailed mechanism of the
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electromechanical coupling and mechanical feedback to the cells. The progress in
gastrointestinal electromechanical modeling is therefore only at the beginning, and
more much work will be required before the work can be translated to a better
understanding and treatment of gastrointestinal motility disorders in a clinical
setting.
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Multiscale Computational Modeling
in Vascular Biology: From Molecular
Mechanisms to Tissue-Level Structure
and Function

Heather N. Hayenga, Bryan C. Thorne, Phillip Yen, Jason A. Papin,
Shayn M. Peirce and Jay D. Humphrey

Abstract Blood vessels exhibit a remarkable ability to adapt in response to sus-
tained alterations in hemodynamic loads and diverse disease processes. Although
such adaptations typically manifest at the tissue level, underlying mechanisms exist
at cellular and molecular levels. Dramatic technological advances in recent years,
including sophisticated theoretical and computational modeling, have enabled
significantly increased understanding at tissue, cellular, and molecular levels, yet
there has been little attempt to integrate the associated models across these length
and time scales. In this chapter, we suggest a new paradigm for identifying
strengths and weaknesses of models at different scales and for establishing con-
gruent models that more completely predict vascular adaptations. Specifically, we
show the importance of linking intracellular with cellular models and cellular
models with tissue level models. In this way, we propose a new approach for
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incorporating events across these three levels, thus providing a means to predict
phenomena that can only emerge from a system of integrated interactions.

1 Introduction: Vascular Biology as a Complex System

Vascular development, adaptations to altered hemodynamics, the progression of
disease, and responses to injury or clinical treatment—in each of these cases, one
can identify tissue-level changes in geometry, structure, function, and properties
that result from altered cellular phenotypes, which in turn depend on changes in
intracellular signaling pathways. Indeed, our knowledge of the complex web of
signals that underpin vascular function, homeostasis, growth, and remodeling at
different levels of biological scale is growing exponentially as more sophisticated
experimental models, techniques for analysis, and tools for integrating data
become available. Recent technological developments in molecular biology and
bioinformatics have thus made high-throughput analyses commonplace and ‘‘–
omics’’ data widely accessible. The empirical tools we can use to manipulate and
measure vascular structure, function, and adaptation in vivo—ranging from
inducible genetic manipulations in mice to non-invasive intravital microscopy with
single-cell resolution—are more flexible and precise than ever before. Parallel
advances in systems biology, agent based modeling, continuum biomechanics, and
computational methods have enabled significantly increased understanding of
vascular biology at molecular, cellular, and tissue levels.

Despite all of these advances, critical questions in vascular mechanobiology—
that is, many of the big questions that impact the care of thousands of patients each
year—remain unanswered. For example, how do medial vascular smooth muscle
cells (SMC) transduce mechanical stimuli in a way that impacts their production
and secretion of proteases that degrade the extracellular matrix (ECM)? How, in
turn, does degradation of ECM liberate growth factors that impact the proliferation
of adventitial fibroblasts? What mechanical stimuli induce endothelial-to-mesen-
chymal transition and how does this perturb homeostasis? Similarly, many ques-
tions remain regarding interactions between wall mechanics and pharmacological
treatments. What impact, for example, would a calcium channel blocker have on
the stiffness of an arterial wall in the presence of a stiff atherosclerotic plaque that
occludes 50 % of the lumen? While it is no small task to study such questions in
isolation, the prospect of conceptualizing how these phenomena interact in space
and time to create an emergent response is even more daunting. Indeed, the dif-
ficulty in answering these questions arises not from our ignorance of the individual
components that are relevant in this complex system, but rather from the way in
which they integrate to produce emergent outcomes. Even when we understand
singular cause-and-effect relationships between two components, we face the
challenge of integrating sets of relationships across different spatiotemporal scales
in these complex systems. We submit that achieving a more holistic understanding
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of how blood vessels develop, maintain homeostasis, and respond to diseases
requires an approach that couples experiments with theoretical and computational
models and integrates processes across multiple length and time scales in a way
that ultimately captures the emergent behaviors of the complex system that we
know as a blood vessel.

This chapter will first provide an overview of vascular wall structure and many
of the well characterized molecular signals that underpin functional and dys-
functional cellular behaviors in vascular tissues. We will then briefly describe
some theoretical approaches, including continuum biomechanics, agent-based
modeling, and models of intracellular signaling, that have been applied at different
spatial scales to the study vascular function and adaptation. Examples from the
literature will be highlighted to depict how modeling has been fruitful in producing
new understanding at each level of spatial scale. We will then present our fun-
damental premise: that integration of processes across scales, as enabled by truly
integrated, multiscale computational models, can result in a new understanding of
emergent behaviors in vascular biology. This multiscale modeling approach, in
turn, is expected to reveal new categories of questions that can be posed—ques-
tions that embrace multi-dimensional cause-and-effect relationships. We have
developed the conceptual basis for such a multiscale model and begun integration
efforts for a combined tissue-level continuum mixture and multi-cell agent-based
model as well as for a combined agent-based and intracellular signaling model. We
will conclude with a summary of our goal to integrate models from continuum to
intracelluar scales and to highlight some of the opportunities and challenges posed
by integrative multiscale modeling of complex systems.

2 Background

2.1 Vascular Wall Structure

The microstructure of arteries and veins varies with species, age, disease, and
location along the vascular tree [30], yet the normal wall in maturity is charac-
terized by three primary layers—the intima, media, and adventitia (Fig. 1). The
intima, or inner layer, consists of a monolayer of endothelial cells (EC) and an
underlying basal lamina composed of mesh-like type IV collagen and adhesion
molecules such as laminin. In addition to being a smooth, nonthrombogenic
interface between the blood and contents of the wall, the endothelium is biolog-
ically active. In response to chemical and mechanical stimuli, ECs produce a host
of vasoactive molecules (which control vascular dilatation or constriction), growth
factors (which promote cell replication or synthesis of proteins), proteases (which
degrade proteins), and factors that regulate local immune responses and clotting
processes. The endothelium also modulates transport of substances into the wall
(e.g., white blood cells or lipids), and thereby plays important roles in diseases
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such as atherosclerosis. Realization that many functions of the endothelium cor-
relate with changes in hemodynamic loads provided important guidance for
treating many vascular disorders and renewed interest in the biomechanics even
though this layer contributes little to the overall structural integrity of the wall.
Flow induced wall shear stresses tend to be on the order of 1.5 Pa in arteries and
0.15 Pa in veins; the mean value of this stress can be estimated in vivo from
measurements of viscosity, volumetric flow-rate, and luminal radius.

The media, or middle layer, consists primarily of SMCs embedded in ECM
consisting of elastic fibers, various types of collagen (I, III, V, etc.), and proteo-
glycans (Fig. 1). In general, the closer these vessels are to the heart the more
elastin (the main constituent of elastic fibers), and the farther away the more
smooth muscle. Regardless, the mean circumferential wall stress tends to be on the
order of 100 kPa, which can be estimated in vivo via measurements of transmural
pressure, inner radius, and wall thickness. Whereas SMCs primarily synthesize
proteins of the ECM during development and disease, they endow the normal
mature wall with an ability to constrict or dilate and thereby regulate blood flow
locally. Smooth muscle contraction, hypertrophy (increase in size), hyperplasia

Fig. 1 Porcine aorta displaying the three arterial layers: thin intima, media, and thin adventitia.
The monolayer of endothelial cells is revealed by the blue lining (cell nuclei) in the large image.
The smooth muscle cells (SMC) are shown in red (alpha smooth muscle actin staining) and the
layered elastin in green, which separates each SMC layer. One vessel of the vasa vasorum is seen
in the upper left of the large image as a round collection of SMCs

212 H. N. Hayenga et al.



(increase in number), apoptosis (cell suicide), and migration (often from the media
to subintima) play essential roles in diseases such as aneurysms, atherosclerosis,
and hypertension. Loss of matrix proteins, particularly elastin, similarly plays key
roles in the formation of aneurysms or dissections.

The adventitia, or outer layer, often merges with the perivascular tissue. It
consists primarily of fibroblasts and axially oriented type I collagen, but may
include admixed elastic fibers, nerves, and its own small vasculature, the vasa
vasorum, when the thickness of the wall is too great to allow sufficient transmural
diffusion of oxygen directly from the blood. Fibroblasts are responsible primarily
for regulating the matrix, particularly collagen, but they can migrate, proliferate,
and differentiate. Indeed, there is growing evidence that migrating fibroblasts play
significant roles in many diseases. Nevertheless, the normal adventitia is thought to
serve, in large part, as a protective sheath that prevents over-distension of the
media; like all muscle, smooth muscle contracts maximally at a certain length,
above and below which the contractions are less forceful. Finally, the adventitia is
typically demarcated from the media by an external elastic lamina (except in
cerebral arteries); the media is similarly demarcated from the intima by an internal
elastic lamina, which is a fenestrated, cylindrical sheet of elastin.

Cross-linked elastin is one of the most stable proteins in the body; it endows
vessels with considerable elasticity over finite deformations (e.g., nearly linear
stress response over stretches of 150–200 %) and it helps control the phenotype of
the SMCs. Specifically, cross-linked elastin encourages a quiescent, contractile
phenotype characteristic of maturity. This is in contrast to effects of the elastin
precursor, tropoelastin, which is not cross-linked, contributes little to the structural
integrity, and encourages smooth muscle migration, proliferation, and synthesis of
extracellular matrix, particularly in development. The collagens are the primary
family of structural proteins in the body, with fibrillar types I and III endowing
tissues with significant tensile stiffness. Collagen fibers turn over continuously and
thereby play key roles in homeostasis and remodeling. They can be on the order of
microns in diameter and are often undulated slightly in the normal physiologic
state; they manifest their high stiffness when straightened. Proteoglycans represent
a large class of molecules having diverse functions. Structurally, they tend to be
most important in sequestering water within the tissue, which, as in cells, typically
accounts for *70 % of the total mass. To provide a better idea of relative dis-
tributions of these various constituents, the media of the thoracic aorta (cf. Fig. 1)
consists of, by dry weight, *37 % collagen, 33 % SMCs, 24 % elastin, and 6 %
other constituents whereas the adventitia consists of *78 % collagen, 9 %
fibroblasts, 2 % elastin, and 11 % other constituents. Nevertheless, each vessel has
different distributions of constituents within each layer and different relative
thicknesses of the media and adventitia; overall structural integrity is thus dif-
ferentially controlled by balances and imbalances in cell and matrix turnover
(Fig. 2). For more on vascular ECM and its relation to mechanics, see [62].

Vascular structure, function, and material properties are dictated by the three
primary cell types of the wall (endothelial, smooth muscle, and fibroblasts) and in
some cases cells from the blood stream (e.g., platelets, monocytes, progenitor
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cells). That ECs respond directly to changing mechanical loads was first
noted *35 years ago and is now a well-documented example of mechanotrans-
duction—that is, the sensing and converting of mechanical stimuli into a signal
that controls gene expression and hence cellular activities. For example, ECs
increase their production of vasodilators (e.g., nitric oxide (NO) and prostacyclin
(PGI2)) in response to increases in wall shear stress; this allows the vessel to dilate,
thereby decreasing the resistance to flow, and promotes endothelial proliferation to
cover the increased surface area of the dilated vessel. Conversely, ECs increase
production of vasoconstrictors (e.g., endothelin-1 (ET-1) and angiotensin-II
(ANG-II)) in response to decreases in flow or increases in pressure. Endothelial
cells also produce a host of growth regulatory molecules (including vascular
endothelial growth factor (VEGF), platelet derived growth factors (PDGF),
fibroblast growth factors (FGF)), adhesion molecules (including vascular cell
adhesion molecule (VCAM-1) and intercellular adhesion molecule (ICAM-1)),

Fig. 2 Illustrative arterial mechanics and molecular interactions. a The three layers of an artery
wall. The Intima is composed of endothelial cells and a basement membrane; the Media, smooth
muscle cells and primarily elastin and collagen; the Adventitia, fibroblasts and extracellular
matrix. Shear stress typically orients in the axial direction, while intramural stresses are
circumferential and axial in orientation. b Factors governed by shear stress and produced by
endothelial cells include NO, ET-1, and PDGF-AB. c Factors governed by circumferential stress
and produced by smooth muscle cells include PDGF-AB, TGF-b, and MMPs. Illustrative effects
of these growth factors and MMPs are shown to the right. PDGF-AB and TGF-b act through
complex intracellular pathways to promote collagen production and cell proliferation or
phenotypic switching, while MMPs degrade collagen, gelatin, and elastin
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cytokines and chemokines (e.g., interleukin-1, IL-1, and monocyte chemoattrac-
tant protein, MCP-1), and clotting factors (e.g., tPA)—all in response to changing
mechanical stimuli including local stresses or trauma. See Refs. [19, 28] for more
on endothelial mechanobiology.

The structure of smooth muscle differs from that of skeletal and cardiac muscle,
but its contractility also depends on a calcium dependent actin-myosin interaction.
Vascular smooth muscle can generate contractile forces comparable to those of
striated muscles while maintaining the contraction for longer periods and at a
lower expenditure of energy. This feature allows blood vessels to maintain a
‘‘basal tone’’ from which they can dilate or constrict further. Like ECs, SMCs
respond to changes in their mechanical environment; for example, SMCs alter
their synthesis of collagen in response to changes in mechanical loading.
Mechanical damage to elastin can also induce phenotypic changes in smooth
muscle that promote migration, proliferation, and apoptosis in addition to synthesis
of matrix. This causality appears to be fundamental to the response of the arterial
wall to clinical interventions such as balloon angioplasty and stenting and likewise
to the response of the venous wall to its clinical use as an arterial by-pass graft. See
Refs. [42, 68] for more on the mechanobiology of smooth muscle.

Fibroblasts are primarily responsible for regulating the extracellular matrix in
the adventitia, as, for example, via synthesis and degradation of collagen. Deg-
radation is accomplished via ingestion by cells (phagocytosis) or the release of
enzymes, including the matrix metalloproteinases (MMPs). Fibroblasts play an
important role in regulating the ECM in many soft tissues (from the eye to the skin
to heart tissue) and are easily studied in vitro. For these reasons, there is a con-
siderable literature on the mechanobiology of fibroblasts and myofibroblasts (e.g.,
[59]). Macrophages are scavenger cells; in response to a local injury, they enter the
vessel wall from the blood (actually blood borne monocytes adhere to the wall and
transform into macrophages while inside the wall) and act primarily via phago-
cytosis or the release of MMPs. They, too, are responsive to changes in mechanical
stimuli [64]. Platelets also circulate within the bloodstream; they play a key role in
coagulation, but also release growth factors (e.g., PDGF) and vasoconstrictors
(e.g., serotonin, 5-HT, and thromboxane, TXA2) that affect both ECs and SMCs.
Platelet derived vasoconstrictors play a particularly damaging role following the
rupture of intracranial aneurysms, causing nearby vessels to constrict and cause
distal strokes. More specifics of the molecular biology of blood borne cells can be
found in general textbooks.

2.2 Key Signaling Pathways in Vascular Adaptation

Myriad signaling pathways play important roles in vascular homeostasis and
adaptation in both large and small vessels. Many of these molecules are homol-
ogous across species and play important roles in mediating homeostasis and
growth in other organ systems. For example, VEGF is a highly conserved family
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of molecules present in zebrafish, mice, and humans, and is a pivotal regulator of
growth and patterning in both the circulatory and nervous systems.

The key signaling pathways in the vascular tree can be broadly lumped into
functional categories based on their ability to mediate vascular tone (vasoactive
molecules), activate cells (cytokines), induce growth (growth factors), form and
impact the extracellular milieu (ECM molecules and proteinases), and orchestrate
cell adhesion (Table 1). While a comprehensive review of all of these key sig-
naling pathways is beyond the scope of this chapter, we highlight some of the most
widely studied molecules that play a diverse set of context-specific roles in the
vasculature. We thus focus on a small sub-set of signaling pathways that are
particularly important in mediating vascular responses to physiological and
pathological alterations and those that are most relevant in our proposed multiscale
model of hypertension, which is discussed in subsequent sections.

NO is one of the most widely studied signaling molecules in the vasculature. It
exerts its effects at both systemic and cellular levels throughout the microcircu-
lation and in larger vessels throughout the body. This highly diffusible and short-
lived free radical gas is synthesized via nitric oxide synthases [35], a family of
enzymes that convert L-arginine to NO (for review of this process in ECs see [54]).
Impaired NO activity, due to decreased synthesis or increased degradation, is a
hallmark of endothelial dysfunction and has been observed in a host of conditions
and diseases ranging from aging to atherosclerosis, hypertension, and diabetes
[47]. NO is a potent vasodilator [12] and thus regulates vascular SMC tone. Both
exogenous NO [48, 72] and over-expression of endothelial nitric oxide synthase

Table 1 Some of the key
molecules produced and/or
expressed by vascular cells in
response to altered
hemodynamic loading,
disease, and injury

Vasoactive molecules Cytokines

Nitric oxide IL-1
Endothelin-1 IL-6
Angiotensin-II IL-8
Serotonin IL-10
Thromboxane SDF-1
Thrombin

Growth factors/receptors Proteinases
and modulators

PDGF-BB/PDGFR-alpha, beta MMP-2
VEGF/Flk-1, Flt-1, neuropilin MMP-9
TGF-b1/TGFBRI/II MMP-1
bFGF/FGF-R TIMP-1
EphrinB2/EphB4 TIMP-2

Cell–cell adhesion ECM proteins

P-selectin/PSGL-1 Type I collagen
E-selectin/PSGL-1 Type III collagen
CD-34/L-selectin Type IV collagen
VCAM-1/VLA-4 Elastin/Microfibrils
ICAM-1/LFA-1 & MAC-1 Laminin/Fibronectin
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(eNOS) promote angiogenesis [56]. Interestingly, NO and eNOS also upregulate
and are synergistic with pro-angiogenic growth factors, such as VEGF and An-
giopoietin-1 [10]. This relationship supports an intriguing mechanistic linkage
between hemodynamic alterations due to vasodilation and growth factor mediated
angiogenesis. NO also plays a role in mediating microvascular permeability (for
review see [22]) and inflammation by inhibiting platelet adhesion, aggregation,
and leukocyte adhesion [24].

NO production via eNOS has long been associated with the mechanical shear
stress experienced by the vascular endothelium of large vessels (e.g., during
sustained changes in blood flow) and is critical for blood flow-dependent adaptive
remodeling of the media [50], yet a direct molecular linkage between NO and
SMC remodeling (proliferation and apoptosis) was only recently discovered by Yu
et al. [69]. They demonstrated that abnormal flow-dependent remodeling in eNOS
knockout mice is associated with activation of the PDGF signaling pathway and
downstream inhibition of apoptosis. Moreover, they showed that NO negatively
regulates PDGF-induced cell proliferation in vascular SMCs. Hence, this signaling
module represents yet another example of the mechanistic linkages between
mechanical forces experienced by blood vessels, diffusible signals and morpho-
gens secreted by cells, and defined cellular behaviors that have important conse-
quences on long-term vascular tissue structure and function.

As mentioned above, PDGF is a family of growth factors synthesized and
secreted by vascular ECs and SMCs in homodimeric (e.g., PDGF-AA and PDGF-
BB) and heterodimeric (e.g., PDGF-AB) forms [20]. PDGF homodimers and
heterodimers bind to dimeric tyrosine kinase receptors, PDGFR-alpha and
PDGFR-beta, with different affinities. PDGF is a potent mitogen for SMCs and
fibroblasts, stimulating proliferation, migration, and preventing apoptosis [41]
(Fig. 2). Dysfunction of the PDGF signaling pathway has been implicated in a
number of diseases, including pulmonary hypertension [51], cancer [38], renal
disease [41], and diabetic retinopathy [66]. There is extensive evidence that
implicates PDGF in inhibiting SMC differentiation, and the extensive intracellular
machinery (e.g., gene promoters and repressors) that enact its ability to shift SMC
phenotypes from differentiated to synthetic/proliferative are well described [67];
for a review, see Ref. [36]. How the phenotypic states of a collection of SMCs
within the medial wall, in turn, impact the mechanical stiffness of that tissue,
which may further be influenced by regional NO levels, is less well understood and
requires the type of multiscale modeling that we will focus on in subsequent
sections of this chapter.

Thus far in this section, we have highlighted how small molecule signals (e.g.,
NO) and growth factors (e.g., PDGF) impact vascular adaptation, but we would be
remiss to leave out the impact that ECM and its modifiers have on vascular growth
and remodeling. While various extracellular proteins and glycoproteins (e.g.,
elastin, fibrillins, and fibulins: see Ref. [62]) provide a substrate for vascular cell
assembly and stability, proteolytic enzymes such as the MMPs critically impact
vessel homeostasis and adaptation by degrading the ECM (Fig. 2) and by medi-
ating intercellular signaling (for review see Ref. [46]). The MMP family includes
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collagenases, gelatinases, stromelysins, matrilysins, and membrane-type MMPs.
ProMMPs are cleaved into active forms, which degrade ECM proteins, and their
effects are balanced by tissue inhibitors of metalloproteinases (TIMPs) that prevent
excessive proteolytic ECM degradation.

As noted in subsequent sections, MMP-2 and MMP-9 (gelatinases A and B) are
upregulated during sustained hypertension and contribute to ECM reorganization,
SMC proliferation and migration, and vascular hypertrophy in large vessels.
Increased MMP-2 levels, in particular, have been associated with impaired NO-
mediated vasorelaxation, arterial wall hypertrophy, and excessive collagen and
elastin deposition. Therapeutic MMP inhibition with doxycycline has been pro-
posed as a pharmacological strategy to attenuate SMC proliferation and hyper-
trophy during hypertension (for review see Ref. [15]) as well as the treatment of
aneurysms. MMPs can also liberate and activate matrix-bound growth factors,
such as TGF-beta [13], which may have opposing influences on SMC differenti-
ation. Thus it is important to quantitatively assess these interactions with spatial
and temporal resolution in order to resolve issues of therapeutic dose and timing.

3 Modeling Foundations and Current Models

3.1 Continuum Biomechanics and Illustrative Vascular Models

Continuum biomechanics has proven to be an important contributor to our
understanding of physiology and pathophysiology as well as to the design of
medical devices, biomaterials, and tissue engineered constructs. It is fundamental,
for example, to many analyses of vascular biology and pathophysiology that are
based on clinically available information such as blood pressure, local blood flow,
and complex geometry [30]. Continuum biomechanics is founded upon five basic
postulates: balance of mass, linear momentum, and energy as well as balance of
angular momentum and the entropy inequality. Whereas the first three types of
relations provide partial differential equations of motion, the last two provide
important restrictions on the forms of the constitutive relations (i.e., descriptors of
individual material behaviors). An underlying assumption is that one can compute
at each macroscopic point (or location) and each instant a meaningful ‘‘continuum
average’’ of properties or physical quantities of interest; a general guideline is that
the continuum assumption is reasonable if the characteristic length scale of the
microstructure is much less than the characteristic length scale of the physical
problem. For example, continuum biomechanics can be equally applicable to
studying an arterial wall (wherein diameters of collagen and elastic fibers are on
the order of lm and overall vessel diameter is on the order of mm or cm) or an
isolated cell (wherein diameters of cytoskeletal filaments are on the order of nm
and overall cell dimensions are on the order of lm).
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To date, the two primary vascular applications of the continuum approach have
been to compute pressure and velocity fields in blood flow (i.e., hemodynamics)
and to compute stress and strain fields within the vascular wall (i.e., wall
mechanics), each of which requires explicit solution of mass and linear momentum
balance. Although cells cannot sense continuum metrics such as stress and strain,
these quantities have proven useful in correlating mechanobiological responses by
cells to diverse loads [31]. For example, simple parallel plate flow experiments
demonstrate that ECs are very responsive to changes in wall shear stress, which is
calculated using the continuum approach; simple organ culture experiments on
straight segments of arteries and arterioles demonstrate that SMCs are very
responsive to changes in pressure and extension, which induce intramural changes
in stress and strain. Given the complexity of the microstructure of cells and tissues
down to the level of molecular interactions, it is inconceivable that one would
attempt to use a purely molecular dynamics simulation to study problems that
manifest at a physiological or clinical scale. That is, continuum biomechanics is
much more appropriate to study problems involving, for example, changes in the
structural stiffness of the arterial wall in hypertension, the effects of evolving
vascular diseases such as atherosclerosis or aneurysms, or the design of novel
interventional devices such as intravascular stents, heart valves, or left ventricular
assist devices.

Notwithstanding past successes, until recently continuum biomechanics had
focused primarily on material behaviors at a particular time, not how they evolve.
Moreover, most studies had assumed that the tissue (or cell) is materially uniform.
Yet, all tissues are materially non-uniform, consisting of different types of cells
and matrix that turnover, and so too cells consist of different organelles and
cytoskeletal proteins that change over time. In an attempt to address these com-
plexities, Humphrey and Rajagopal [33] proposed a Constrained Mixture Model
(CMM) that allows one to track evolving changes in the properties, turnover rates,
and natural (i.e., stress-free) configurations of individual structural constituents
that comprise a tissue or cell. Computations have shown that this approach can
capture salient features of diverse vascular adaptations and disease processes (cf.
[6, 61]). Briefly, a CMM of arterial growth and remodeling consists of full mixture
equations for mass balance plus a single equation for overall linear momentum
balance that is solved for the net stress field. The associated two classes of con-
stituents are: structurally insignificant but soluble constituents, such as vasoactive
molecules, growth factors, cytokines, and proteases, and structurally significant
but insoluble constituents, such as elastin, collagen, and muscle. Linear momen-
tum balance is solved via a rule-of-mixtures constitutive relation for the struc-
turally significant constituents. The need for but a single linear momentum
equation stems from the assumption that negligible momentum exchanges exist
between structurally significant constituents, which appear to deform together with
the mixture. Because inertial loads are often negligible in the calculation of arterial
wall stresses, even during transient loading, we assume further that structurally
significant constituents experience quasi-static loading. The primary constitutive
relations thus reduce to equations for the production and removal of structurally
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insignificant and significant constituents (the former via classical reaction–diffu-
sion type relations) and stored-energy functions for the structurally significant
constituents. Each of these relations must be formulated based on appropriate
experimental data. For example, data reveal that NO not only causes vasodilatation
(thus affecting the stress–strain behavior), it also affects the synthesis of collagen
(production relation) and inhibits inflammation (which influences the removal
relation).

3.2 Agent Based Modeling and Illustrative
Vascular-Specific Models

Multi-cell biological phenomena, such as the assembly of cells into tissues in
response to environmental cues, can be modeled using either continuum or discrete
approaches. A primary focus of multi-cell modeling has been to quantify how
patterns emerge in tissues and whether they arise from diffusible biochemical
factors, mechanical forces, cell–cell interactions, cell–matrix interactions, or any
combinations thereof. While most continuum-based models approximate indi-
vidual cells as a series of similar units, discrete multi-cell models explicitly rep-
resent individual cells as distinct entities capable of exhibiting individual
behaviors, which provides increased generality. Amongst the different approaches
to discrete cell modeling, the most common are Agent-Based Models (ABMs),
Cellular Potts Models (CPMs) [25], and statistical models. CPMs generalize an
approach from statistical mechanics called the Ising model, and simulate biolog-
ical cells by mapping them to domains on a lattice. Cell behaviors are described by
effective energies and elastic constraints, and cellular dynamics, such as migration
and cell shape changes, are guided by principles of energy minimization [16, 17,
34, 40, 70]. Statistical approaches, such as Monte Carlo simulations, model bio-
logical cells as discrete objects, and their behaviors are dictated by purely prob-
abilistic rules [21].

3.2.1 Agent Based Modeling

ABMs represent a computational approach that has been used extensively in the
social sciences and ecology [27], but only recently has it been employed in bio-
medical research to study multi-cell phenomena such as tumorigenesis [71],
angiogenesis [44], inflammation [7], and arterial wall remodeling in hypertension
[58]. This technique rests on the idea that local interactions between members of a
population can result in complex higher-level emergent phenomena. The key
components of an ABM include the agents themselves, their behaviors within their
environment (i.e., simulation space), the rules that govern their behaviors, and the
simulation inputs and outputs.
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3.2.2 Agents

Agents are discrete entities that perform a defined set of behaviors according to a
set of rules. Agents representing cells, for example, are programmed to exhibit
biologically-relevant behaviors, including migration, proliferation, differentiation,
and apoptosis [3–5, 43, 44] as shown in Fig. 3. Rules governing an agent’s
decision to perform these behaviors may take into account, among other things, the
agent’s past state history and factors present in the local simulated tissue envi-
ronment; these rules can thus be stochastic or deterministic. Agents can detect
biochemical and biomechanical stimuli in their environment and respond by
exhibiting a particular behavior. Agents can also affect their environment by
secreting diffusible growth factors (e.g., PDGF-BB) or by producing ECM and its
modifiers, such as collagen or MMP-9. Finally, agents can interact with one
another. For example, neighboring agents with engaged cadherins can interact
physically much in the same way as neighboring cells in a tissue would interact—
by signaling directly to one another, transmitting a mechanical force, and so forth.
All of these actions and interactions will impact an agent’s state, and the ABM can
record the state histories of each agent at each time step, facilitating individual cell
lineage tracking. To simulate more complex phenomena, multiple cell types can be
represented using multiple types of agents. For example, an ABM modeling the
progression of an atherosclerotic plaque might contain agents that represent
individual ECs, SMCs, macrophages, foam cells, or fibroblasts. The aggregate of
agent behaviors and interactions over space and time produces emergent phe-
nomena that could not be predicted by modeling a single cell or using models
making a continuum assumption.

Fig. 3 Components of an agent-based model. The grid of squares represents the simulation
space, which can hold concentrations of extracellular factors, denoted here by colored squares.
Agents/cells reside at discrete points on the grid, and are colored to represent cell phenotype or
activity. Agents perform behaviors according to their rule set. For example, the yellow cell is
currently static, with no outside influences, while the green cell is following a rule instructing it to
migrate up a gradient of a chemokine (purple). A third cell (red) is affecting the phenotype of its
neighbors through paracrine secretion of a growth factor (blue)
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3.2.3 Rules

Agent-specific actions and interactions in an ABM are ultimately dictated by the
rule set. These rules can be theoretically or empirically based and can be deter-
ministic or stochastic. An example of a theoretically based rule is the use of Fick’s
second law to describe the diffusion of a growth factor that affects other cells [44].
An example of an empirically based rule is a dose–response curve describing the
speed of cellular migration as a function of chemokine (e.g., IL-8) concentration.
Stochastic rules rely on probability distributions and are important when an agent
state does not explicitly dictate a behavior, but affects the likelihood of such a
behavior. Rules are most often derived or estimated from the literature; the
organization and presentation of these rules is facilitated by a table or flow chart
accompanying the ABM (cf. [7]). Rule sets can vary from fewer than ten rules [26]
to as many as 200 [7]. The composition, content, and accuracy of a rule set have a
profound impact on the output of an ABM. Slight modifications to a single rule can
dramatically alter the output of even the simplest ABM. Therefore, in designing,
constructing, and implementing ABM rule sets, caution is urged to ensure that the
rules are accurate, non-redundant, and necessary.

The validity of a rule set can be checked by contrasting model outputs against
experimental data [39, 44, 55], and by performing a sensitivity analysis, where
rules are systematically removed or adjusted incrementally to determine their
contribution to the overall ABM output [26]. Because the outputs of an ABM are
highly dependent on empirical rules, it is necessary to couple models with
experiments at all stages of model development and to validate an ABM’s rule set
by performing iterative in silico and in vivo/in vitro experimentation. For a review
of the integration of experimental data with ABMs, see Ref. [57], and for a method
of assessing the quality of a model’s rule set, see Ref. [58].

3.2.4 Inputs and Outputs

Most biological ABMs simplify tissue geometry by simulating cell behaviors in a
quasi-two-dimensional simulation space that reduces model complexity and
speeds up simulations. For example, one can use a one-cell thick axial slice of
vessel to model arterial adaptations to hypertension [58]. This simplification
enabled measurement of vascular wall thickness and cellularity and was sufficient
to enable calculation of the concentration and diffusion of extracellular proteins as
well as to facilitate direct comparisons with experimental data. An ABM simu-
lation space can have closed [39], open [7], or periodic boundary conditions [53],
and the positioning and state assignments for the agents at the start of a simulation
are specified by initial conditions that are frequently derived from microscopic
images obtained at a starting time [7, 39]. Setting initial conditions in this way
enables direct comparisons with the experimental data at later time-points for
model validation. The initial agent states are assigned based on empirical obser-
vations (e.g., histology) that describe baseline conditions for agent states. The time
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steps of biological ABMs can span a range of scales, from milliseconds to hours
[14, 44], and simulation times can span years [1].

Outputs of ABMs include the spatial arrangements of agents within their
simulation space, their internal state, and the state of the environment. Spatial
patterns of agent organization may emerge during the simulation, and these can be
analyzed quantitatively. For example, in an ABM simulating angiogenesis, the
pattern of new microvessel growth can be assessed by measuring the new vascular
length, counting branch points of vessel trees, and quantifying the number of new
capillary sprouts that have developed over the course of the simulation time
window. Analyzing agent patterns using metrics that are also used to quantify
biological phenomena experimentally facilitates direct comparison of ABM pre-
dictions to experimental data, which enables rigorous model validation. Because
ABMs generalize intracellular processes, but are more fine-grained (discrete) than
is suitable for continuum analysis, they are uniquely suited to bridging disparate
biological scales.

3.3 Signaling Pathways and Illustrative
Vascular-Specific Models

Intracellular signaling pathways govern basic cell functions and allow cells to
adapt to their microenvironments. These signaling pathways consist of a complex
network of interacting molecules that give rise to a diverse range of cell functions
such as proliferation and differentiation. Often, an extracellular ligand binds to a
cell-surface receptor and triggers a cascade of intracellular interactions between
signaling molecules and second messengers that ultimately results in a change in
transcriptional activity, metabolism, or other regulatory function.

Because network elements of signaling pathways often overlap, the causal
relationship between input and output is not always explained by a linear series of
events. Furthermore, network motifs, such as positive and negative feedback
loops, make it difficult to deduce the relationships between the network elements
solely by intuition [2]. To better study and understand intracellular signaling
pathways and networks, a combination of experimental and mathematical
approaches have been used to disentangle the functions of the highly intercon-
nected components. Mathematical and computational Intracellular Signaling
Models (ISM) are used to contextualize experimental data and predict possible
emergent behaviors that are difficult to realize by experimentation alone. Through
cycles of model refinement and experimental validation, one can begin to
understand and probe the complexities of the signaling network and make pre-
dictions about how specific cellular functions arise.

These computational models predict dynamic behaviors of biochemical reac-
tions by using mathematical relations to describe the underlying molecular inter-
actions. Traditionally, ordinary differential equations (ODEs) are used to model
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the concentration profiles of the different signaling molecules over time in
response to a stimulus. Mass action and Michaelis–Menten kinetics are common
ways to represent the reaction kinetics. These approaches have been used to
demonstrate how even relatively small and focused modules can exhibit emergent
behavior through feedback mechanisms [11]. If information about the spatial
distributions of the molecules is desired, partial differential equations (PDEs) are
used. ODEs and PDEs can then be implemented deterministically or stochastically.
Deterministic systems have no element of randomness while stochastic systems
incorporate probabilities in the evolution of the system output over time. The
choice of how the model is formulated depends upon how the modeler views the
system and the biological question being answered.

While modeling of intracellular signaling networks pertaining to blood vessels
is still a relatively young field, an increasing number of computational models are
being developed to study vascular function. To date, a few aspects of vascular
intracellular signaling have been prominently modeled. Proliferation of ECs and
the formation of vessels is one such area. For example, several intracellular sig-
naling network models have been developed to study vessel formation in the
context of vasculogenesis during embryonic development and angiogenesis in both
physiologic and pathophysiological cases [37, 45, 52]. In terms of particular sig-
naling pathways, those involving NO and calcium have received much attention in
recent computational models [60, 65]. We will summarize some of the published
models of vascular signaling networks in the following paragraphs and highlight
the new understanding they produced.

As noted above, among other functions, NO is a key signaling molecule that
regulates tissue-level vasodilation by affecting cell-level (SMC) contraction. One
group modeled the NO/cGMP signaling pathway in vascular SMCs and repro-
duced NO/cGMP-induced smooth muscle relaxation effects, such as intracellular
Ca2+ concentration reduction and Ca2+ desensitization of myosin phosphorylation
and force generation [65]. The authors of this model proposed a cGMP feedback-
controlled soluble guanylate cyclase (sGC) decay from its activated to its basal
form and predicted that the intermediate form of sGC is the dominant steady-state
form of sGC under physiological NO stimulation. This model thus suggested that
the sGC desensitization by cGMP feedback may limit cGMP production over a
wide range of NO concentration, which may contribute to the robustness of the
response of vascular SMCs to small perturbations in NO. The different mathe-
matical models used to investigate the role of NO in microcirculatory physiology
have been reviewed in [60], and one of the overarching themes is that intracellular
signaling models can provide valuable insights into roles of NO in physiology,
especially because experimentally measuring tracer amounts and signaling events
of NO in biological tissue with the appropriate spatial and temporal resolutions is
difficult.

Calcium signaling is largely coupled to NO signaling. In the arterioles, SMCs
and ECs are coupled via the exchange of Ca2+ along with other ions and the
paracrine diffusion of NO. The vascular response to the nonlinear interactions of
subcellular components and processes including Ca2+ signaling have been studied
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in rat mesenteric arterioles via mathematical modeling [35]. This ODE model
predicted that in the rat mesenteric arterioles, ECs exert a stabilizing effect on
intracellular vascular SMC Ca2+ oscillations, which synchronize with oscillations
in vessel tone to cause vasomotion. This stabilization allows Ca2+ oscillations to be
maintained over a wider range of agonist concentrations. Models related to
intracellular signaling include those that simulate the dynamics of ionic flows
across the membrane. One group modeled the dynamics of the Na+/Ca2+

exchanger (NCX) in vascular SMCs; this exchanger regulates the reloading of the
sarcoplasmic reticulum and the maintenance of Ca2+ oscillations in activated
SMCs [23]. Although this model is not of an actual signaling network, it gives
insights into the mechanism of the coupling between Na+ entry via TRPC6 (a non-
specific cation channel) and the NCX. This implicates the concentration of Ca2+ in
the vascular SMC, which affects the signaling pathways involving Ca2+. The
model incorporates a stochastic element to simulate the movement of single Na+

ions in the nanospace between the plasma membrane and the sarcoplasmic retic-
ulum. This model predicted that in order to have a Na+ concentration transiently
elevated in the plasma membrane/sarcoplasmic reticulum nanospace, there must
be physical obstructions to Na+ motion, which form a relatively impermeable
barrier around the TRPC6 channel. NCX must also be localized near TRPC6
within such barrier in order to sense the high Na+ concentration, reverse, and allow
Ca2+ into the sarcoplasmic reticulum. As the details of individual intracellular
signaling pathways become better understood, models can be evolved to incor-
porate additional pathways such that they combine to form an interconnected
signaling network that increasingly describes the physiological system with more
accuracy.

3.4 Limitations of Singular Modeling Approaches

3.4.1 CMM Limitations

Continuum models have proved very useful in vascular research, including helping
to reveal the existence of residual stresses and their effects on the transmural
distribution of stress that led to a fundamental mechanobiological hypothesis [32].
Continuum models also continue to be very successful in explaining and predicting
a wide variety of nontrivial aspects of vascular physiology and pathophysiology,
including the adaptation of arteries to sustained changes in blood pressure or flow
as well as the rupture of aneurysms. Nevertheless, limitations remain. For exam-
ple, the continuum approach assumes material is distributed continuously over
particular length scales, which can mask specific mechanisms of mechanotrans-
duction that result from cell–matrix interactions at discrete sites (e.g., focal
adhesions) but otherwise help to drive overall tissue-level adaptations. Current
models also do not account for the details of particular matrix–matrix interactions,
including interactions between collagen fibers and proteoglycans. Perhaps most
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importantly, however, CMMs cannot exploit directly the growing knowledge-base
of molecular vascular biology.

3.4.2 ABM Limitations

Agent-based models can explicitly include complex cell–cell interactions, but are
limited when it comes to modeling multiscale phenomena. For example, current
ABMs do not satisfy some of the important constraints on vascular behavior that
stem from classical physics (e.g., conservation of linear momentum). Simulating
whole tissues would also require an extremely large number of individual agents,
which quickly becomes prohibitive computationally, particularly for complex rule-
sets that may include stochastic rules. While stochastic rules can produce a pop-
ulation of results that more closely resembles actual experimental data, including
stochasticity necessitates an even larger number of model runs to converge on an
average output. Finally, single-scale, cell-level ABMs treat the agent as a black
box; intracellular interactions are often included implicitly when rules are derived
from cell-level experiments. When intracellular processes are simple, this is less of
a problem, but as intracellular interactions grow more complex, experimental
approaches to rule development can become intractable. Of course, as with any
model, the ABM rule-set is only as good as the data from which it is derived. Often
the kind of data needed to develop rules for cellular behaviors with complex
multifactorial inputs are not available in the literature.

3.4.3 ISM Limitations

Models of intracellular signaling networks are useful tools in predicting the effects
of signal transduction in a cell in response to a stimulus. These predictions are
made at the cellular level, and may require coupling with higher level models to
infer tissue or organ level function. For example, Ca2+ signaling in vascular
smooth muscle cells is studied to make predictions about vasomotion in blood
vessels. Vasomotion requires the synchronization of oscillations in the concen-
tration of Ca2+ in a large group of vascular smooth muscle cells, and gap junctions
are believed to play an important role in this process [18]. Hence, elements of cell–
cell interactions often need to be coupled to an ISM to convincingly bridge the gap
between single cell and tissue level predictions. Lastly, as with the other types of
mathematical models, determination of the scope and complexity of an ISM during
the developmental stages is not a trivial task. In some cases, the paucity and
confidence of relevant experimental data to be used as model parameters can
directly limit the scope and usefulness of an ISM.
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4 Linking Intracellular, Cellular, and Tissue Level Models

4.1 An Integrative Approach

Single-scale models of the types described above all have their own unique
advantages but also limitations. In vivo changes in vascular wall structure depend
critically on interactions at all scale levels, from intracellular signaling to whole
vessel biomechanics. A more complete understanding of the responses of blood
vessels to changes in hemodynamics requires detail at the cellular level that
CMMs alone cannot provide, while many of the functions of SMCs (such as
proliferation and collagen production) result from the integration of so many
signals that experiments to develop rules for a single-scale, cellular level ABM,
are not feasible. Such an integration of signals could be carried out by an ISM,
however. A multiscale, multi-model approach is thus in order, which promises to
build on the strengths of each type of model while compensating for limitations by
offloading them to another model better suited for those specific types of tasks.

Coupling models at different spatial and temporal scales brings forth a whole
new set of challenges, however. In the next two sections, we focus on challenges
unique to each coupling (intracellular to cellular-level, and cellular-level to tissue-
level). We suggest ideas to consider when attempting this approach, and provide
examples from the literature where these techniques have been successful.

4.2 Coupling Intracellular Signaling Models with Agent
Based Models

Rather than building ABMs whose rules treat the cell as a black box, which
provides specific outputs and behaviors given certain combinations of inputs, it is
possible (experimental data permitting) to couple an ABM with an ISM. In this
case, each agent monitors concentrations of extracellular signaling molecules and
runs its own ISM to decide on a particular behavior, including amounts of proteins
to produce. Such a coupling could thereby enable more fine-grained simulations
that more closely replicate in vivo intracellular processes.

One of the areas where cellular-level ABMs can break down is in the combi-
nation of multiple influences on a single output. For example, both TGF-b and
PDGF-AB influence collagen production by SMCs [58]. Each biomolecule’s
influences can be tested experimentally by varying concentrations applied in
culture, but mapping out responses by SMCs to combinations of growth factors
increases the complexity of the experiment exponentially. Indeed, addition of a
third or fourth growth factor could make the experiment intractable. Hence, these
kinds of experiments are rarely performed in vitro even though they are exactly the
kind needed to inform a cell-level ABM that treats the cell as a black box. For
example, development of a rule for the combined influences of growth factors on
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collagen production currently requires extrapolation from a few data points or
parameterization of the ABM [58]. Conversely, if the appropriate intracellular
signaling pathways were well understood, experimentally inferred rules could be
improved by coupling the determination of collagen production to an ISM
resulting in more physiological model output.

The scenario described above, however, would require each agent to run its
own ISM or to query a single ISM running separately at every timestep. As the
number of agents increases, this could become computationally expensive.
Therefore, it is advisable to carefully select which rules or outputs should receive
this treatment. A thorough sensitivity analysis of the ABM assists in this process
by determining which cellular outputs are most important to model predictions. In
contrast, another way to approach this coupling would be to pre-calculate outputs
of the ISM within physiological ranges of the input parameters and then store
results in a look-up table to be accessed by agents during the ABM simulation.

Other things to consider when determining how to couple cell-level with
intracellular models is that temporal and spatial scales may differ by orders of
magnitude. While the ideal time-step for an ABM may be on the order of minutes
to days (e.g., depending on whether one is simulating cell migration or prolifer-
ation), intracellular protein interactions may occur on the order of nanoseconds to
seconds. The majority of vascular models using some form of ABM-ISM inte-
gration to date have been in the field of angiogenesis. For example, Bauer et al. [8]
developed a model of tumor induced angiogenesis using a cellular Potts model. In
order to understand contributions of cadherins and ECM binding integrins to
VEGF signaling, and the associated decision of a cell to migrate, proliferate, or
apoptose, the authors went on to develop a Boolean network model incorporating
the crosstalk between these three intracellular signaling pathways [9]. This model
could potentially be used in conjunction with the CPM to dictate cellular behavior
during angiogenesis. Likewise, Scianna [52] developed a hybrid approach cou-
pling a CPM of vasculogenesis with an ISM using reaction–diffusion equations to
couple VEGF signaling, arachidonic acid, and NO with calcium entry into the cell.
These reactions occur with ten diffusion time steps per main time step.

The issue of very small time-scales for the ISM is much more easily addressed
than the converse: when the signaling pathway being modeled contains tran-
scription and translation, critical functions may occur over multiple ABM time-
steps. In this case, the ISM might need to be capable of integrating changes in
growth factor concentrations as a cell migrates, which may influence protein
outputs 30 or more ABM time-steps later. While this has been addressed in pre-
vious ABMs by assuming that changes in protein levels happen instantaneously, or
within one time-step [7], this may not always be possible when predicting sensitive
outputs that require sufficient physiological detail. To our knowledge, this problem
has not yet been satisfactorily solved and is something that needs to be seriously
considered in the design phase of any integrated model.
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4.3 Coupling Agent Based Models with Constrained
Mixture Models

In this section we focus on coupling an ABM with a CMM, but the overall
procedure can be applied to the coupling of many types of models. Any model is
only as good as the data upon which it is built. Hence, we suggest that the first step
in a multistep process of coupling different models should be to substantiate the
goodness of the published data used to build both models. This can be done, in
part, by evaluating the credibility of each data set based on four categories: (1)
agreement with other published findings, (2) physiological conditions (e.g., in vitro
versus in vivo), (3) appropriateness to the computational model (this metric
assesses how well the data match the particular situation, that is, same cell type,
organ system, species, environmental condition, and so forth) and (4) data preci-
sion (e.g., data measured directly and quantified numerically are better than
extrapolated or theoretical); please see Ref. [58] for more details. After performing
this data assessment one can then use the highest scored findings to update or
create a data-driven computational model with more confidence.

The second step involves further model verification through stability and
parameter sensitivity analyses. After the governing equations, parameters, and
outputs have been defined for each model, one should confirm that the model is
stable over known situations. For example, constituents within the vascular wall
are synthesized and turned over at different rates; collagen may be secreted by the
cell in less than an hour and has a half-life of *30–70 days, whereas elastin is
primarily produced during the perinatal period and remains for the majority of
one’s lifetime. Despite these changes, the average geometry of a healthy, mature
artery remains fairly constant over long periods. Therefore, it is expected that,
under homeostatic conditions, the ABM and CMM should predict no net change in
geometry, microstructure, mechanical properties, or biological response over such
periods. Moreover, one should confirm that the model can capture acute reactions
to transient perturbations. For example, a 10 % increase in pressure over a few
hours can lead to transient spikes in growth factor production and yet no net
changes in collagen or SMC content. In order to assess the sensitivity of each
model to parameters that influence production and removal rates, it is important to
conduct a one-dimensional, and if possible, a two-dimensional sensitivity analysis.
A one-dimensional analysis will reveal to what degree a single parameter can be
increased or decreased before outputs diverge from what is physiologically
expected. For example, in a recently reported ABM, the production of new SMCs
depended in part on a gain-type parameter multiplied by the concentration of
PDGF; if this parameter increased, then SMC content increased and so too wall
thickness, which could decrease the circumferential stress (Fig. 4). Yet, PDGF
production is a function of circumferential stress, thus less PDGF should be

Multiscale Computational Modeling in Vascular Biology 229



produced as the wall thickens (Fig. 4). Ensuring proper responses to simple per-
turbations, as illustrated by this example, can help identify appropriate bounds to
place on free parameters.

Finally, note that multi-cell ABM rules are often based on cell level in vitro
experiments, which can be well controlled but do not always have direct physi-
ologic relevance. CMMs are typically based on either in vitro or in vivo tissue-
level experiments, which can have considerable physiological relevance but often
little control of the inputs sensed by the cells (e.g., humoral in addition to
hemodynamic). Because each data set will be inherently limited, some advantage
can be gained by ensuring that models of the same processes based on very
different data should yield the same result [29]. The third step, therefore, is to
enforce congruency across two (or potentially more) scales through parameter

Fig. 4 Sensitivity of the number of smooth muscle cells (SMC), value of hoop stress and
concentration of PDGF to changes of the m parameter in the chance of SMC proliferation
function. Note the interdependency between PDGF, hoop stress and number of SMC. Outputs are
able to obtain a new equilibrium to small changes of the m parameter
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refinement. This process allows one to refine the objectively bounded model
parameters in an attempt to minimize the error between common metrics between
both models for simple situations. This step is imperative to synchronize both
models across scales and to yield predictions that are closer to in vivo observa-
tions. This is accomplished not by compromising the strengths of either model, but
by tuning each model so that it is influenced by the strengths of the other. For
example, the ABM and CMM both have the ability to predict the amounts of
collagen and smooth muscle under simple situations; therefore by instituting a
genetic algorithm, or any preferred error minimization technique, the difference
between these common metrics, at each time point, can be minimized by varying
the set of parameters after each full simulation.

5 Future Directions

5.1 Potential Mulitscale Model

A compelling goal in developing multiscale models is to extend the models to both
higher and lower levels of scale, with the motivation being that with every added
level of scale, one gains even greater flexibility with regards to hypothesis testing,
achieving biological relevance, and incorporation of disparate data sets. Starting
with the multiscale CMM-ABM, a natural extension is to conjoin an intracellular
signaling model (ISM) that can simulate events on a much shorter timescale and
account for phenomena within the cell that ultimately impact cell behaviors and
outcomes at the tissue level. We have begun to conceptualize a three-tiered
multiscale model (ISM-ABM-CMM) of vascular growth and remodeling in the
arterial wall (Fig. 5), and this section will briefly summarize some of the enabling
components.

The relevant biology of vascular growth and remodeling during human disease
occurs over years; however, biological phenomena contributing to disease pro-
gression over this timeframe occur across incremental time steps that range from
seconds to weeks, depending on the spatial scale. Specifically, signaling events in
the ISM have a timeframe on the order of seconds to minutes, multi-cell phe-
nomena in the ABM have a timeframe of minutes to hours, and tissue-level
continuum phenomena in the CMM have a timeframe of hours to days or months.
Therefore, in the construction of the multiscale model we envision a temporal
decomposition strategy to couple across scales (Box 1).
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Box 1. Temporal decomposition strategy for a three-tiered multiscale
model
Intracellular to multicellular time interfacing: Each time step of the ABM
will represent 1 h, and multi-cell level behaviors will occur on this time-
scale. For example, SMCs will proliferate over 8–24 h [44] or 8–24 time
steps in the ABM, while growth factor production will occur over 12–24 h
(or time steps) [44]. When the ABM calls the ISM (every 24 h for 120
simulated days), where biological events will be simulated on the order of
minutes, we will institute a time-delay, or essentially ‘‘pause’’ the ABM,
while the intracellular events are computed by the ISM.
Multicellular to tissue-level time interfacing: Each time step of the CMM
will represent 1 week, and tissue-level behaviors will occur on this time-
scale. For example, the strain state of the artery wall will change over the
course of 1–2 weeks (depending on vessel geometry and composition
alterations during this time window). Therefore, to account for these changes
on a time window that is biologically realistic, the ABM will call the CMM
every week (i.e., every CMM time step) in order to recompute and update
tissue-level changes that occurred during this window. Thus, in the ABM,
every 7 days (or 168 time steps in the ABM), the ABM module will be
‘‘paused’’ in order to run the CMM, whose output (computation of the
mechanical state of the media) will be imported back into the ABM.

Another hurdle to achieving a unified three-tiered multiscale model is defining
an appropriate level of resolution and abstraction for the relevant spatial scales
such that information at one level can be mapped to higher and/or lower levels of
biological scale. We have previously devised a method for coupling spatial scales
between an ABM and ISM [49]. In that ABM module, we simulated individual
biological cells using nine coupled agents that represented different cytoplasmic
and membrane compartments within each simulated cell. In this way, we could
simulate the differential behaviors of the leading versus trailing edge of a cell as it
migrated across a two-dimensional substrate. Intracellular signaling events were
simulated in the ISM and distributed equally to the nine agents comprising each
cell, but one could envision partitioning or compartmentalizing certain reactions
within spatially confined intracellular regions that would map directly to the dis-
cretized, multi-agent cells within the ABM. We have similarly devised a method
for comparing spatial scales between an ABM and CMM [29]. In this case, the
ABM consisted of layers of cells whereas the CMM consisted of a homogenized
structural wall. Data from the ABM could thus be averaged radially and applied to
the CMM at each time of interest.

We envision that a three-tiered, multiscale ISM-ABM-CMM will be united by
an umbrella program implemented in JavaTM. This program will run the ISM,
ABM, and CMM modules in parallel, while transferring information between each
pair of modules. The CMM and ISM are implemented in Matlab

�
, and the ABM is

implemented in Netlogo [63]. We have opted to use these modeling software
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programs because they are well established, readily available, and easy to learn,
which, importantly, will facilitate the sharing of our multiscale model. Matlab is a
general-purpose simulation tool, and Netlogo, written in JavaTM, is freely down-
loadable from http://ccl.northwestern.edu/netlogo/ and is the most widely used
agent-based modeling software [63]. Our group has previously published a mul-
tiscale model that unites ISM with ABM using a JavaTM-based umbrella program
to run an ISM and an ABM in parallel [49], for the study of tissue morphogenesis
during embryonic development. The umbrella program will interface the ISM,
ABM, and CMM through the use of text files that can be imported and exported by
both Matlab

�
and Netlogo, which will store inputs and outputs of each module and

be used to communicate predictions from one level of scale to the next. Netlogo
extensions are capable of running JavaTM code, and the JavaTM code will open and
run Matlab.

Model validation is an important check to confirm the model is accurate and
stable. Box 2 describes a possible strategy for validating a three-tiered multiscale
model.

Fig. 5 Illustration of a possible approach to couple intracellular signaling models (ISM), agent
based models (ABM), and constrained mixture models (CMM) to enhance computations of
vascular behaviors
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Box 2. Validation Strategy ISM-ABM-CMM
The multiscale model can be validated by first validating each of the mod-
ules (ISM, ABM, and CMM) individually (Steps 1 and 2), and then vali-
dating the integrity of the unified multiscale model (Step 3):
Step 1: Disconnect each of the modules (ISM, ABM, and CMM) from one
another and compare outputs from each module to independent experimental
data collected (or reported in the literature) at that level of scale. For
example, to validate the ISM, one can perform a set of simulations to acquire
an in silico dose–response curve relating SMC proliferation rates to PDGF-
BB concentration. Then compare this predicted dose–response curve to
experimentally measured proliferation rates from PDGF-BB dose–response
studies. This will ensure that the internal structure of the ISM accurately
reproduces SMC proliferation in response to PDGF-BB.
Step 2: Disconnect each of the modules (ISM, ABM, and CMM) from one
another and compare those outputs that each module has in common with
one another. This will ensure that the modules are internally consistent with
one another. For example, both the CMM and the ABM will predict the
thickness of an atherosclerotic plaque, but it is important to check that the
predictions from both modules are congruent (and minimize the residual
differences between ABM and CMM predictions), given that the parameters
and ‘‘rules’’ governing the ABM and CMM will be derived from different
sources (Fig. 5).
Step 3: Validate the unified multiscale model by comparing its outputs (i.e.,
outputs generated by the integrated ISM, ABM, and CMM) to independent
experimental data. Quantitative predictions of the multiscale model at time
t [ t0 can be compared with identical outcome metrics collected from the
quantitative analyses of hypertensive patients or ApoE -/- plaques. Agree-
ment between prediction and experiment will suggest that the multiscale
model is valid for that range of parameters

The hope in pursuing this type of multiscale modeling is that one day we will be
able to confidently theorize about new drug or knock-out treatments and cause-
effect relationships. For example, if the angiotensin II (ANG-II) receptor type II
(AT-2) is blocked, ANG-II binds to the type I receptor (AT-1) of ECs. Binding of
AT-1 activates the tyrosine kinase and downstream proteins (mitogen-activated
protein kinase (MAPK), Janus kinase (JNK), and signal transducer and activator of
transcription (STAT)) leading to increased intracellular calcium, activation of the
L-type calcium channel, and consequently arterial constriction. Activation of
MAPK also stimulates fibroblast and SMC migration and proliferation via syn-
thesis of platelet derived growth factor and tissue growth factor-b. These growth
factors as well as increased aldosterone all serve to facilitate extracellular matrix
production in a particular collagen, which leads to increased wall stiffening or
pulse wave velocity. Stiffened arteries not only require a larger pressure to distend;
flow propagation is impaired due to inadequate elastic recoil. Thus over time the
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increased load on the heart causes left ventricle hypertrophy and left ventricle
failure. Alternatively, we can theorize about ‘‘top-down’’ effects. For example,
how does mechanical shear force experienced by the ECs impact NO signaling and
PDGF expression, which in turn affect SMCs and overall wall mechanics? Cre-
ating models to predict these types of outcomes will save time, money, and
potentially lives.

Of course, the aspiration to unite ISM-ABM-CMM is met with considerable
challenges, not the least of which is the requirement for additional computing
power. Assuming the technical challenges can be overcome by advances in
computing (e.g., parallelization, grid computing, and cloud computing), one must
address the conceptual challenges in multiscale model design. The final section of
this chapter will delve deeper into these challenges and suggest opportunities for
innovation in multiscale modeling.

5.2 Challenges

As noted by the 1998 Bioengineering Consortium (BECON) Report of the U.S.
National Institutes of Health,

The success of reductionist and molecular approaches in modern medical science has led
to an explosion of information, but progress in integrating information has lagged …
Mathematical models provide a rational approach for integrating this ocean of data, as
well as providing deep insight into biological processes.

Whereas the need remains to develop more robust and faithful models at all
scales (macro, micro, nano), we submit that there is a pressing need to develop
approaches that integrate such models across diverse scales. Indeed, anticipating
the challenges of multiscale modeling should influence the development of models
at each scale for they will need to interface with the other models. Toward this end,
we suggest here the following particular challenges that deserve our immediate
attention.

There are several computational languages used to run numerical analysis (e.g.,
Matlab, Maple, Mathematica, Java Virtual Machine, FORTRAN, and C++,). Thus,
a logistical challenge may arise when models, at different scales, are programmed
with different languages. We proposed herein using text files as inputs/output
because all our modeling platforms can read and write text files, however this
process is time consuming and cumbersome. Therefore finding patches or proper
interfaces between multiple numerical analysis software remains a challenge. In
addition, iterative simulations may take days to complete and require considerable
memory on a personal computer. Consequently large-capacity databases and fast
processors/parallel systems may be required to render the computational process
tractable. After a multiscale program is completed, finding ways to distill and
partition model findings into digestible chunks that is are easy to disseminate and
publish may be a challenge.
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In addition to computational challenges, there are also many conceptual chal-
lenges. For example, events at the tissue level may depend on past events and take
hours to days to occur, while at the intracellular level processes may occur in a
fraction of a second. In addition to integrating across temporal scales, integrating
across spatial scales (i.e., 2D versus 3D) may require further dispensation. One of
the major challenges remains in simplifying the complex system due to gaps in our
understanding or in an attempt to not over constrain the model. Where should one
start, and how is each decision justified? Another challenge of integrating multiple
discrete models is deciding what information to pass back and forth. Each model
may have interdependency within itself, thus passing a concentration or stress
value negates any feedback mechanisms the model had related to these parameters.
Therefore, integrating models that rely on values from one another is a challenge.

Biological adaptation and variability are difficult to capture in a universal
mathematical model. How biological systems change in time is what the models
presented herein try to account for, but some adaptations are unpredictable. For
example, natural effects (due to ageing, hormonal life cycles, ones genetic
makeup, even what division cycle cells in the body are on) and external effects
(due to accidents, smoking, exercise, eating habits, radiation, etc.) may alter how
the general process works. Therefore, if the response of one patient or system
could be very different than another, are the models unique to the patient? How
general should the models be? Of course we are currently limited by our tech-
nology to measure and characterize the interactions of phenomenon of biological
systems. Generally speaking, like the Heisenberg uncertainty principle, to augment
our knowledge of, say, the rate of growth factor production may come at the cost
of compromising physiological conditions.

Nevertheless, we feel that complex system modeling in biology is the key to
developing new drugs and therapies over the next 50 years; as such there are
educational needs that should be met. Having more undergraduate courses that
deal with complex systems analysis in biology will equip more students with the
fundamental skills. More graduate courses on the theory of modeling vascular
adaptation, and biological adaptation in general, will allow for specialization and
additional improvements. Having more graduate programs and/or cross-degree or
dual-degree Ph.D. programs that are designed to treat high-throughput data in the
context of in vivo function and quantitative modeling is needed. In addition,
continued changes in academic culture that recognize the value of collaboration
and teamwork on large complex systems will facilitate more advanced models. We
are encouraged to hear that in April 2012, NSF and NIH jointly launched a ‘‘Core
Techniques and Technologies for Advancing Big Data Science and Engineering
(BIGDATA)’’ initiative. The need for a means to manage, analyze, visualize, and
extract data from diverse, distributed data sets has been recognized. If successful,
having this wealth of ordered data at our fingertips will only help to update and
improve the rules and relations of multiscale modeling.
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1 Introduction

Arterial growth, remodelling and vascular diseases are intrinsically multiscale and
depend on the interactions occurring at the tissue level, cell level and the intracellular
level. Consequently, multiscale computational modelling techniques can help to
elucidate the mechanisms underlying the onset and progression of vascular diseases
as well as vascular tissue regeneration. Mechanical perturbations at the tissue level
translate to cell level mechanical signals via cell–matrix interactions. How these
mechanical signals are further transduced through the cytoskeletal assembly, and
other signalling pathways such as calcium channels to the cell nucleus, resulting in
specific gene expressions which subsequently alter cellular behaviour, adds an
additional level of complexity to these multiscale systems. Cells alter their growth,
phenotype and their extracellular matrix in response to macro mechanical changes.
These cell level events can then in turn accumulate and emerge at the tissue level as
pathological conditions such as atherosclerosis and intimal hyperplasia.

Multiscale modelling is by its nature highly computationally expensive. With
recent advances in computational capabilities, a more mechanistic approach to
multiscale modelling, using discrete methodologies, has become possible which has
enabled a systems approach to understanding diseases. Agent based models (ABM)
or Cellular Automata (CA) models are notable examples whereby the behaviour of
each individual cell can be modelled explicitly. In recent years several agent based
approaches have been developed to provide a quantitative and mechanistic
understanding of pathologies such as inflammation and wound healing [1, 2]
atherosclerosis [3], in-stent restenosis [4–8], and intimal hyperplasia in vascular
grafts [9, 10]. In agent based modelling, a population of ‘‘agents’’ which are
autonomous individuals representing cells, are created and the rules of behaviour and
interactions between the agents are defined. In the context of cell biology, agent
behaviours such as migration, proliferation and differentiation can be defined for
each agent using mathematical formulations which describe the migration speed,
doubling time and extracellular matrix and chemokine synthesis as functions of
different stimuli such as stress/strain or species concentrations. Rules of interactions
between the cells such as contact inhibition and different paracrine signalling
pathways can also be defined.

One important advantage of using ABM to model cell populations is their ability
to better capture the discrete nature of events occurring at the cellular level
compared to continuous approaches such as differential equations. In contrast,
continuum methods such as the finite element method have been extensively used
as a robust and reliable tool for modelling tissue level events such as mechanical
interactions between the arterial wall and stents [11–15]. This has motivated
development of hybrid multiscale models that take advantage of continuum
methods such FEM at the tissue level and employ discrete methods such as CA or
ABM to capture cell level events. Recent studies by Boyle et al. [6, 7] and
Zahedmanesh et al. [58] and Zahedmanesh and Lally [10] are good examples of
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such multiscale modelling approaches whereby FEM was used to quantify the
mechanical stimuli at the tissue level and CA and ABM were utilised to capture the
cell level events.

In the following chapter, a review will be presented of some relevant studies
reported in literature which have used multiscale modelling approaches to elucidate
the growth and remodelling mechanisms underlying vascular diseases, such as
atherosclerosis, in-stent restenosis and intimal hyperplasia.

2 Multiscale Models of Vascular Disease

2.1 Atherosclerosis

It has been shown that atherosclerosis usually occurs in locations where blood flow
perturbations, i.e. low and oscillatory wall shear stress, take place such as at, or near,
bifurcations. Damage to the endothelium can also increase penetration of low density
lipoproteins (LDL) into the intima and lead to accumulation of macrophages and
subsequently foam cells in the arterial wall and its chronic inflammation [16–18].
This chronic inflammation can lead to dedifferentiation of SMCs and their
chemotactic migration and proliferation from the media to the intima and formation
of atherosclerotic plaques. As such the events involved in the onset and progression
of atherosclerosis are intrinsically multiscale chemo-mechano-biological events.

To-date models of atherosclerosis have been developed at the cell level using
ABM, for example (SimAthero, [3]). Models such as SimAthero consider the
biological variables that play the most important role in atherogenesis and its
induced immune response, i.e., LDL, ox-LDL, chitotriosidase and the foam cells
generated in the artery wall. Pappalardo et al. [3] analysed four different classes of
patients to show how SimAthero could be used to analyse and predict the effects of
various LDL levels in a diverse group of patients over a time scale of two years,
namely (i) patients with an LDL level considered normal, where no foam cells
were formed, (ii) patients with a high level of LDL with delayed drug treatment,
(iii) patients with high LDL levels, treated with specific drugs aimed at reducing
total LDL (statins), and (iv) patients with specific lifestyle conditions that
increased the risk of LDL oxidation such as smoking. As with other ABM or
multiscale models, the underlying cell rules described by the model in the virtual
patients were tuned against human data, thereby providing a means of ensuring
realistic behavioural outcomes. Whilst ABM of this nature can provide insights
into individualised drug treatment and the underlying biology of diseases such as
atherosclerosis, the inherent mechano-biological interaction driving many vascular
diseases cannot be modelled by such a framework.

A multiscale model of early stage atherosclerotic plaque formation has recently
been developed in order to integrate the various mechano-biological phenomena
leading to fatty streak formation [19]. The different scales considered in this model
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are in both the spatial domain (from cellular to organism level) and the time
domain (from seconds to months). At the cell level, the transport and chemical
interactions of low-density lipoproteins (LDL) and other agents were modelled.
This was linked to arterial thickening and mean LDL level at the organ level in a
stenosed artery whilst the critical factors for atherosclerotic formation at the organ
level were chosen to be mean LDL and flow induced endothelial wall shear stress.
In this study, it was observed that plaque location was dependent on WSS and that
plaque size, number, and growth were also dependent on mean blood LDL levels.
Whilst the simulation results from these models compared favourably with some
well-established biological hypotheses for atherosclerosis in terms of plaque
location, number, size, and rate of formation, the most significant potential of the
models is their ability to be highly individualised. Multiscale patient-specific
models can take the anatomies of individual patients into account, but they can
also include cell and molecular level information by considering individual
baseline LDL levels and plaque growth rates.

2.2 In-Stent Restenosis

In-stent restenosis, or re-blockage of a vessel following stent implantation, is a
vascular disease which is linked with mechanical injury at the tissue level induced
by the stent which can dramatically alter the microenvironment of SMCs at the
cellular level. After stent deployment, vessel injury by the stent struts leads to
modulation of the medial SMCs’ phenotype to a synthetic phenotype. This change
of phenotype is followed by migration and proliferation of dedifferentiated medial
SMCs towards the lumen and lesion formation, see Fig. 1 [20–23].

The changes in the microenvironment of cells, specifically the extracellular
matrix (ECM) changes following vessel injury have been shown to regulate
VSMC activation [24]. An intact and mature collagen type IV matrix has been
shown to promote a quiescent and contractile phenotype, whereas its degradation
leads to VSMC activation [25–28]. In addition, degradation of collagen types I and
III which maintain the mechanical integrity and stability of arteries promotes a
synthetic VSMC phenotype [28]. As such, basement membrane-degrading matrix
metalloproteinase, i.e. MMP-2 and MMP-9, which can degrade collagen type IV
[29], and fibrilar collagen types I and III [29, 30] are also strongly implicated in
activation of VSMCS following arterial damage. Mechanical injury to the arterial
wall has been shown to upregulate MMP-2 production [31–34], as does
mechanical stretch [35, 36]. A study by Asanuma et al. [35] showed that the
application of a constant mechanical stretch increased MMP expression in cultured
human VSMCs. Therefore, long-term strain imposed by stents, hypertension or
atherosclerosis may lead to enhanced matrix degradation by VSMCs.

Clearly therefore, during in-stent restenosis mechanical perturbations at the tissue
level, due to stent implantation, lead to dramatic changes in the microenvironment of
cells. Subsequently, these cell level changes initiate a cascade of event at the
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Fig. 1 Development of in-stent restenosis following stent deployment, taken from Zahedmanesh
et al. [8]. a Normal artery, b de-endothelialisation and injury of the media, c modulation of
medial VSMC phenotype and their migration and proliferation towards the lumen, d development
of in-stent restenosis, e re-endothelialisation and differentiation of VSMCs back to the quiescent
phenotype. EC endothelial cells, IEL internal elastic lamina, s VSMCs synthetic vascular smooth
muscle cell, c VSMC contractile and quiescent vascular smooth muscle cell, EEL external elastic
lamina
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intracellular level leading to phenotype modulation and changes in cellular
behaviour which ultimately emerge at the tissue level as intimal hyperplasia and loss
of vessel patency. Clearly, in order to develop effective treatment strategies for
in-stent restenosis, a mechanistic understanding of the mechanisms and interactions
at different length scales is required. From a modelling perspective, this can be
realised by means of multiscale modelling strategies rather than single-scale
phenomenological models. One other important advantage of such in-silico models
is that whilst in-vivo and in-vitro models generally enable studying the role of single
parameters at a time, multiscale mechanistic in-silico models can provide a systems
approach to the role of several different parameters and their interactions in the onset
and prognosis of pathologies.

Multiscale approaches which have been adopted to model in-stent restenosis
include those using agent based models to describe SMC proliferation governed by
local fluid flow, structural stress and anti-proliferative drug concentration eluting
from the stent [4], and lattice based CA models of SMC phenotypic modulation,
proliferation and migration governed by arterial damage at the organ level [6, 7].

The authors have recently developed a mechanobiological modelling framework
by coupling a FEM, that simulates strut-artery interaction, with a lattice-free ABM
that simulates the key responses of VSMCs to mechanical damage [58]. In this
model, the stresses induced within the arterial wall were quantified and related to a
damage scale of [0–1] within each element. The ABM was superimposed on the
finite element mesh whereby the level of damage at the location of each VSMC
could be apraised. Damage upregulated MMP synthesis by VSMCs and resulted in
the degradation of the collagen matrix surrounding each VSMC. Endothelial dam-
age and degradation of the collagen matrix were then used as the main regulators of
VSMC activation. As such, degradation of the collagen matrix and lack of nitric
oxide (NO) signalling due to endothelial damage led to migration and proliferation
of VSMCs and ultimately intimal growth and lesion formation, see Fig. 2.

Using this model, collagen matrix turnover following stent induced arterial
injury could be evaluated quantitatively. Given that the collagen matrix is a key
regulator of VSMC activation and phenotypic modulation this enabled the influence
of design parameters, such as stent deployment diameter and strut geometry, on the
level of in-stent restenosis to be investigated using this multiscale framework, see
Fig. 3.

The model predicted that synthesis of MMP-2 reaches its maximum one week
following stent deployment. As a result, the amount of collagen per VSMC drops
33 % from its initial state in the vicinity of the stent strut after 2 weeks. VSMCs
were also activated due to the degradation of the collagen matrix and their numbers
started to increase 2 days post stent deployment. After reaching its maximum
concentration one week post-deployment, MMP concentration subsequently began
to recess to normal levels, decreasing 80 % of the maximum level by the end of day
14. This was found to be consistent with the outcome of organ culture experiments
conducted on damaged human saphenous veins [34], see Fig. 4.
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A significant increase in the level of intimal growth and VSMC number was
predicted by the models when the artery-stent expansion ratio increased from 1.1 to
1.3. This was due to the nonlinear stress-stiffening response of arteries where higher
expansions increased the level of arterial stresses exponentially. This prediction
was verified by comparison to experimental studies which show that the stent
expansion diameter is an important predictor of the level of intimal growth [37–40].

Fig. 2 Schematic of the mechanobiological model of in-stent restenosis (image courtesy of [58]
with permission)
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In addition the model predicted a higher restenosis rate for thicker stent struts
compared to thinner struts which is consistent with the outcome of many clinical
studies [41–44].

Clearly therefore, the model could quantitatively link the mechanical and
biological events occurring at different length and time scales, from the long-term
mechanics of the stent-artery interaction at the tissue level to the short-term cellular
events such as MMP synthesis, ECM turnover, VSMC migration, proliferation and
phenotype modulation, and NO signalling between ECs and VSMCs. The model
can, however, be further expanded to include the role of many more parameters at
the cellular level, such as thrombocytes and vascular progenitor cells, which are

Fig. 3 Collagen changes and development of restenosis following stent strut deployment to
obtain stent-artery expansion ratios of a 1.1, b 1.2, and c 1.3. (Image courtesy of [58] with
permission)
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recruited from the circulation system into the site of injury, as well as various
individual growth factors secreted by the cells. The multiscale nature of the model
can also be further extended to the intracellular level by explicit modelling of events
that are initiated by cell level stimuli. As such, mechanotransduction through
various signalling pathways, including Ca2+ and Rho signalling in VSMCs and
subsequent gene expression, could potentially be included in the model.

2.3 Intimal Hyperplasia in Tissue Engineered Vascular Grafts

The need for an alternative to native blood vessels for use as bypass grafts in
coronary artery bypass graft surgery has led to considerable research into tissue
engineering a blood vessel substitute [45]. For the successful development of a
tissue engineered blood vessel (TEBV), vascular cells and specifically VSMCs
seeded on the blood vessel scaffold should ideally proliferate and populate the
scaffold, synthesise an extracellular matrix similar to that of a native artery, and
subsequently adopt a contractile and quiescent phenotype. Failure of VSMCs to

Fig. 4 Evolution of (left) MMP2 (middle) Collagen and (right) VSMCs, when a stent strut was
deployed to obtain an expansion ratio of 1.2. (Image courtesy of [58] with permission)
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adopt quiescent and contractile characteristics, following this initial proliferative
phase whereby the cells populate and remodel the scaffold, gives rise to the most
significant long-term limitation of vascular grafts and tissue engineered vessels,
namely intimal hyperplasia (IH).

The elasticity of the tissue engineering scaffolds, usually referred to as
‘‘compliance’’ in the context of vascular conduits, plays a key role in regulation of
the proliferative capacity of VSMCs and hence prevention of intimal hyperplasia.
The amplitude of cyclic strain which is dictated by the compliance of scaffolds has
an anti-proliferative influence on VSMCs and also increases their apoptosis rate
[46–49]. In addition, physiological cyclic strain upregulates synthesis of ECM
products, such as collagen and elastin, which enhances the remodelling of vascular
scaffolds [48]. On the other hand, it is necessary for cells within the scaffold to
receive nutrients and discard waste material in order to maintain their viability, a
property governed by interstitial fluid flow which is dependent on the scaffold
permeability. Interstitial fluid flow in a scaffold is also influenced by cyclic strain
[50], however, and is therefore also dependant on the elasticity of the scaffold.
Clearly therefore, there are numerous interlinked mechanobiological parameters
which need to be considered in the design and development of viable tissue
engineered blood vessels. Multiscale in-silico models provide the ideal platform to
explore and optimize the mechanics of such vascular scaffolds.

Towards this goal, in a recent study the authors presented a multiscale
mechanobiological framework which enabled investigation of the role of
mechanical factors, such as scaffold compliance and loading regimes during cell
culture, on the growth of cells within vascular scaffolds and their remodelling [10].
As previously discussed, cyclic strain and pore fluid flow are two key mechanical
regulators of VSMC growth in a vascular tissue-engineered construct. As a result,
cyclic strain and pore fluid flow velocity were adopted as the main regulators of
VSMC growth in these models of cell and tissue growth within a TEBV. The
mechanobiological modelling framework comprised two main coupled modules,
(i) a module based on the finite element method (FEM) that quantified cyclic strain
(ecyc) and pore fluid velocity (Vfluid) as the main regulators of VSMC growth in
TEBVs and (ii) a biological module based on ABM that simulated migration,
proliferation, apoptosis and ECM synthesis by VSMCs under the influence of the
mechanical stimuli quantified in the FE module, see Fig. 5.

The FE model employed in these simulations was an axisymmetric poro-
hyperelastic FE model of a tubular scaffold which could quantify cyclic strain (ecyc)
and pore fluid flow velocity (Vfluid) in the tissue engineered construct. Pressure and
pore pressure boundary conditions were applied to the luminal surface of the tissue-
engineered construct while the two ends were longitudinally tethered and the
pressure was set to zero at the abluminal surface.

Following remodelling by cells, the mechanical properties of the scaffolds, such
as elasticity and permeability, should ideally mimic that of the native artery. Several
scaffolds such as woven polyglactin 910 grafts and Poly(Trimethylene Carbonate)
scaffolds have shown this response following remodelling by cells [51, 52].
Therefore, remodelling of the mechanical properties of the scaffolds was represented
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by altering the initial mechanical properties of the scaffold, i.e. stress–strain
response, permeability and porosity to that of the arterial tissue in elements where
the ECM content reached half of the collagen content in a native artery which is
approximately 3.1 9 10-4 lg/cell [53].

Biological parameters such as the doubling time and the probability of apoptosis
were defined as mathematical functions of the cyclic strain and pore fluid velocity
for each VSMC. Increased cyclic strain decreased the doubling time of VSMCs and
increased their probability of apoptosis whilst low pore fluid velocity also
decreased the doubling time of VSMCs and increased the probability of apoptosis
given that at low interstitial fluid velocities exchange of nutrients and removal of
waste products within the scaffold would be impaired. On the other hand, collagen
synthesis by each VSMC was increased with increases in the amplitude of cyclic
strain.

Three main scenarios were then simulated using the developed mechanobio-
logical modelling framework, (see Fig. 6); (i) VSMCs were seeded on an arterial
compliant scaffold and cultured under hypotensive (50–80 mmHg), normotensive
(80–120 mmHg) and hypertensive (140–200 mmHg) luminal pressure to investi-
gate the role of loading regime for both in-vivo and in-vitro applications,
(ii) VSMCs were seeded on an arterial compliant scaffold and cultured under a
pulsatile luminal pressure and luminal pore pressure of 80–120 mmHg with a
frequency of 1 Hz versus a non-pulsatile pressure of 100 mmHg, to study the
influence of pulsatile flow in in-vitro applications and (iii) VSMCs were seeded on
low compliance versus arterial compliant scaffolds and cultured under a pulsatile
luminal pressure of 80–120 mmHg with a frequency of 1 Hz to study the influence
of scaffold compliance for in-vivo and in-vitro applications.

Fig. 5 Schematic of the mechanobiological modelling framework developed for simulation of
the mechanoregulation of growth and remodelling in tissue engineered blood vessels. (Image
courtesy of [10], with permission)
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The model predictions for these scenarios provided valuable insights into the
multiscale mechanobiological processes involved in vascular tissue engineering and
underscored the significance of mechanical factors. The study showed that any subtle
decrease of cyclic strain can ultimately lead to proliferation of VSMCs towards the
lumen and development of IH. Low cyclic strain contributed to more luminal ingrowth
which in turn reduced the cyclic strain further and thereby expedited patency loss.
Interestingly, the model predicted that under a hypertensive luminal pressure intimal
growth is higher compared to normotensive and hypotensive loading regimes which
corroborates findings from clinical studies which suggest that hypertension causes
thickening and stiffening of arteries [54]. This response is related to the stress-stiffening
mechanical response of vascular tissue which stiffens at higher pressures and therefore
undergoes approximately 20 % lower cyclic strain under the hypertensive pressure
regime compared to the normotenstive pressure, see Fig. 7.

The influence of loading regime during culture was also simulated using the
model given that many in-vitro studies have shown that dynamic culture of VSMCs
on vascular scaffolds using pulsatile flow bioreactors results in a higher number of
VSMCs and improved mechanical properties compared to static culture [53, 55, 56].
The model also predicted that the amount of collagen produced in the vascular
scaffold would be higher where a pulsatile flow culture was used compared to a
static culture. Whilst the pulsatile flow maintained intimal growth at a considerably
lower level, the model predicted enhanced ECM synthesis and remodelling of the

Fig. 6 Schematic of the modelled tubular scaffold (Image courtesy of [10] with permission)
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scaffold, see Fig. 8. As such the results imply that to enhance cell growth and reduce
culture time, an initial non-pulsatile luminal pressure can be used until cells fully
populate the scaffold, following which a pulsatile luminal pressure can enhance
ECM synthesis and scaffold remodelling.

Fig. 7 The Influence of pulsatile pressure on the number of viable vascular smooth muscle cells
over time in the arterial compliant scaffold, three loading regimes of hypotensive (50–80 mmHg),
normotensive (80–120 mmHg) and hypertensive (140-200 mmHg) were compared. (Image
courtesy of [10] with permission)

Fig. 8 ECM synthesis and viable VSMCs at day 160 (a, c) the TEBV was cultured under static
pressure of 100 mmHg (b, d) the TEBV was cultured under pulsatile pressure of 80–120 mmHg.
(Image courtesy of [10] with permission)
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On the other hand, when the role of scaffold compliance was studied the model
predicted that in low compliance scaffolds a higher level of luminal ingrowth occurs
at the onset of growth which accounts for IH formation and thickening of the vessel
and therefore further reduces the cyclic strain in comparison to the compliant
scaffolds. Therefore, the simulations suggest that the optimal scaffold for vascular
tissue engineering should have similar compliance to arteries in order to minimise
IH and enhance ECM synthesis and remodelling.

Such insightful conclusions from the simulations clarify an important potential
application of the multiscale mechanobiological models in vascular tissue
engineering which is to serve as efficient platforms for testing hypotheses on
multiscale phenomena that are not easy to test in the laboratory. The outcome of the
simulations can then help to optimise in-vitro experiments and develop new tissue
engineering strategies in-vivo.

3 Discussion

Whilst progress has undoubtedly been made in recent years in developing suitable
multi-scale vascular mechanobiological models which can provide a basis for better
understanding the mechanisms of vascular disease and optimising its treatment,
there still remains considerable potential in future development of this
methodology. In many respects, computational resources currently limit the
complexity of established multiscale models. Arterial constitutive models are now
well established which are anisotropic and have fibre remodelling capabilities [57].
Incorporation of such material models into multiscale mechanobiological models
will provide a means of better exploring the cell driven adaptations of native
vascular fibre networks and the influence such adaptations have on the
macromechanical behaviour of arteries. In addition, these models will provide a
more accurate framework for optimisation of medical devices and tissue engineered
vessels. This could provide significant benefits in terms of understanding the role of
resident vascular smooth muscle and stem cells in vascular repair or in the
development of novel strategies in the development of vascular tissue engineered
blood vessels with improved long-term performance.

In many ways, the true power of such multiscale models will only be fully
realised when advances in computational capabilities enable 3D patient specific
multiscale mechanobiological models to be combined with stochastic modelling
approaches, such that models are capable of predicting multiple outputs for a given
medical device or therapy which are dependent on patient specific anatomies,
obtained from in-vivo imaging, patient history and even genetic information. In
this way such multiscale models could provide preclinical data which would rival
that generated from animal or even clinical trials without the associated safety,
ethical or cost concerns.
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Although vascular mechanobiological modeling is already helping to establish
better patient selection criteria and more objective strategies for both choosing and
optimising personalised therapeutic options, there is undoubtedly further scope for
this predictive modeling framework in the development of the more individualised
medical therapies of the future.
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Translational Research: Multi-Scale
Models of the Pulmonary Circulation
in Health and Disease

Alys R. Clark, Kelly S. Burrowes and Merryn H. Tawhai

Abstract The pulmonary circulation is a unique low resistance system that carries
almost the entire cardiac output, and is responsible for the essential role of pro-
viding oxygenated blood to the body. As the pulmonary circulation differs from
the systemic circulation in its development, structure, and function, it is often most
appropriate to study the mechanisms that contribute toward pulmonary vascular
disease separately from those of systemic vascular disease at the genetic, cellular,
tissue and organ level. Here we review the development of multi-scale, anatom-
ically based models of the pulmonary circulation. These models aim to describe
the interaction of structural and functional aspects of the pulmonary circulation
that are the most important in determining the effective uptake of oxygen to the
blood. We describe how these models have been used to understand normal lung
physiology and to explain outcomes in pulmonary disease. Finally, we consider the
future of multi-scale modeling in the pulmonary circulation and discuss what can
be learned from well-developed multi-scale models of the pulmonary airspaces
that interact closely with the lung’s circulatory system.

1 Introduction

Experimental or imaging studies of the pulmonary system are fraught with diffi-
culties due to the nature of the lung’s structure and function. The lung comprises
trees of airways and blood vessels that are ‘suspended’ within an extremely
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delicate parenchymal tissue [1]. The in vivo lung is maintained in contact with the
wall of the thoracic cavity by negative pressure in the intrapleural ‘space’ [2]. Ex
vivo experimentation with lung tissue is difficult to reconcile with in vivo behavior
as when removed from the body the lung recoils to considerably smaller volumes
than are encountered in breathing, and the lung changes in shape. The advent of
modern imaging has provided opportunity to study the lung in situ, however this is
again complicated by lung deformability and its air content. In awake humans the
lung is typically functioning in an upright posture, and because the delicate tissue
is readily deformable there is a substantial gradient of tissue density along the
cranial-caudal axis [3]. Magnetic resonance imaging (MRI) and computed
tomography (CT) are currently constrained to horizontal postures, i.e. supine or
prone. The lungs are typically at a smaller volume in these postures than when
upright [4], and the density gradient is in a different axis. This impacts on regional
lung expansion [5], pulmonary blood volume and flow distribution [6], the rela-
tionship between ventilation ( _V) and perfusion ( _Q) [6], and so gas exchange
function [7]. The supine or prone human lung could therefore have important
differences in function to upright. Typically, MRI is preferable as an imaging
modality in comparison to CT because the latter involves ionizing radiation.
However, because MRI images protons in water and the lung tissue contains
mostly air, its effective use in lung is restricted to tagging of blood for quantifying
regional blood flow [8, 9], or imaging inhaled hyper-polarized gases [10]. That is,
MRI is not yet effective at imaging lung tissue. High resolution CT provides
excellent anatomical definition of the lung but its use is restricted in vulnerable
populations, and it is not appropriate for most longitudinal studies. High resolution
imaging data for the normal human lung is therefore typically restricted to one or
two volumes, or one or both horizontal postures at a single volume. The complex
interaction between airspaces, blood vessels and tissue in the lung and its move-
ment in breathing further complicates diagnostic imaging and reconciliation of
experimental data at different spatial and temporal scales.

These limitations on imaging and direct experimental measurement of lung
structure and function provide strong motivation for developing mathematical
models of the lung, including the pulmonary circulation, to interpret experimental
results between postures, lung volumes, or different species, or at different spatial
scales. A multi-scale approach to modeling the pulmonary circulation provides a
means to bridge the gap between mechanisms at the genetic, cellular, tissue, vessel
and organ level and to provide new insights into pulmonary function in health and
disease.

Conceptual models of the pulmonary circulation have provided the basis for
understanding its function since at least the 1960s. An example of an early con-
ceptual model of the pulmonary circulation is the ‘zonal model’ of pulmonary
blood flow [11]. This model explained how the interaction between pulmonary
arterial, venous and alveolar pressure act to introduce a gravitationally dependent
distribution of blood flow in the lungs. Although there is currently extensive
debate on the magnitude of the zonal effect in comparison to other gravitational
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and structural mechanisms [12–16], the model has been significant in showing how
physical laws can be combined elegantly and concisely to explain physiological
function. Since that era numerous mathematical models have emerged to provide
interpretation of experimental measurements of the pulmonary circulation, to
summarize hypotheses, and more recently to quantify the relative effects of gravity
and structure on pulmonary blood flow distribution [17].

Mathematical models of the pulmonary circulation have taken either a systems
(electrical analogue) approach or a biophysical approach (based on the fluid
dynamics properties of the system). Geometrically, these mathematical models
have developed from the ‘lumped parameter’ with each of the arterial, capillary
and venous systems lumped into single ‘resistors’ [18], through symmetric [19],
fractal [20], and regular asymmetric [21] branching structures, to the current
anatomically based volume-filling branching geometries [22] that represent the
state-of-the art for modeling the spatially-distributed geometry of the pulmonary
arterial and venous trees. Each of these model types fills a role in understanding
the function of the pulmonary circulation. Following the philosophy that a
mathematical model should only be as complex as to capture the essential func-
tions under investigation (i.e. ‘more is not always better’), lumped parameter and
regular branching models play an important role in investigating the global
response to pathologies that are diffuse (i.e. are distributed relatively evenly
throughout the lung, e.g. [23, 24]). However, as they cannot capture the complex
structure of the lung they cannot be used to investigate the relationship between
vascular branching structure and flow distribution, or to study pathologies that
present heterogeneously in the lung or within the population. To address this
limitation multi-scale models have recently emerged that couple scale-specific
structure and function in the macro- and micro-vessels with biophysical function in
other components of the pulmonary system that influence how the circulation
behaves [22, 25–32]. This type of model has been used successfully to investigate
the effect of pulmonary embolism (via blood clots in the lungs) on regional and
total organ gas exchange and blood pressure; pulmonary embolism has a variable
impact between individuals and significant localized effects [32–34]. The evolu-
tion of these multi-scale models will be described in the following sections.

1.1 Unique Features of the Pulmonary Circulation

The pulmonary circulation is distinct from the systemic circulation in its structure
and function. Notably, the lung receives almost the entire cardiac output from the
right ventricle (RV). Because the height of the lung is on the order of only 30 cm,
this requires far lower RV pressure (typical systolic range of 15–30 mmHg) than
the LV pressure that is needed to drive blood to the systemic circulation (typical
systolic range of 100–140 mmHg). The pulmonary circulation is therefore
described as a ‘low pressure’ system, which is facilitated by its relatively low
resistance.
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In general, the pulmonary blood vessels have thinner walls and are less mus-
cular than systemic blood vessels of similar size, yet localized active regulation of
smooth muscle tone is an important mechanism for controlling gas exchange
function in the lung [35]. In addition to active mechanisms, passive changes to the
pulmonary vascular system can have a far greater effect than in the systemic
circulation: pulmonary vascular resistance (PVR) and the distribution of blood can
be significantly altered by changes in cardiac output, posture, and the rate or depth
of breathing. Abnormalities in the pulmonary circulation can lead to impaired gas
exchange efficiency or significant increases in RV afterload and impaired cardiac
function. Therefore, understanding normal and abnormal function in the pul-
monary circulation is essential in consideration of lung disease.

The lung provides an interface between air and blood, through which oxygen
(O2) is carried to the body and carbon dioxide (CO2) released to the atmosphere.
Air pressure varies through the breathing cycle meaning that pulmonary blood
vessels (particularly the capillaries that cover the alveoli) are exposed to changes
in external pressure unlike that of any other blood vessels in the body. The caliber
of pulmonary vessels varies with breathing: with inflation the intra-alveolar vessels
compress in height and the extra-alveolar vessels increase in diameter; with
deflation the intra-alveolar vessels increase in height and the extra-alveolar vessels
decrease in diameter [36]. Changes in vessel caliber with lung inflation and the
pulsatility of blood flow in the lung results in a complex, yet coordinated, temporal
variability in blood flow that is dependent on both the rate of breathing and heart
rate. This makes the morphometry of the lung difficult to study in vitro conditions
and necessitates the inclusion of air–blood interactions in modeling the pulmonary
circulation.

Structurally the pulmonary circulation differs from the systemic circulation,
most notably at the micro-scale. Whilst the systemic capillaries have a 3-D ‘tree-
like’ structure, the pulmonary capillaries form a dense 2-D mesh [1]. The systemic
circulation has distinct arterioles with a single smooth muscle layer that connect
arteries to capillaries. There is no distinct anatomical definition of pulmonary
arterioles in terms of muscularization. However, small blood vessels—from which
capillary beds arise—that branch in and between the alveolar airways are some-
times termed arterioles [31, 37, 38]. As the lung carries almost the entire cardiac
output via a low pressure, low resistance system, large pulmonary arteries have a
relatively thin medial wall compared with systemic arteries, which makes them
more distensible, and so more readily adaptable to pressure variations than the
systemic arteries.

As the lung does not have distinct, muscular pre-capillary vessels it is thought
that control of pulmonary blood flow, and its matching to local ventilation, is
achieved by a combination of structural and gravitational influences [12–16]. This
control is ‘fine-tuned’ via active mechanisms [39], which include a further unique
attribute of the pulmonary circulation: its response to hypoxia. Whilst systemic
blood vessels dilate in response to hypoxia, the pulmonary blood vessels contract
when alveolar (air-side) oxygen is low [40, 41]. Like other blood vessels, pul-
monary vessels also dilate when nitric oxide (NO) levels increase, with NO
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production being stimulated by increased shear stress. Therefore, a complete
model of pulmonary blood flow would include important structural influences,
passive influences due to blood pressure and gravity, as well as active mechanisms
that translate from the cellular to the full organ scale.

2 The Macrocirculation

The pulmonary vasculature provides a direct route from the heart to the gas
exchange surface. The branching structure of the pulmonary vasculature, like that
of the airways, allows efficient gas exchange through its bifurcating tree-like
structure that terminates in a very large alveolar-capillary surface area. After
circulating through the systemic circuit to deliver oxygen and nutrients to the body
tissue, blood returns to the right atrium of the heart via the vena cavae, and then to
the RV. The pulmonary trunk emerges from the RV through the pulmonary valve,
and is the conduit for deoxygenated blood to enter the pulmonary circuit. The left
and right main pulmonary arteries enter into the hila of the lungs and divide into
branches that accompany the lobar, segmental and subsegmental bronchi. Arterial
branches continue to bifurcate into successively smaller daughter branches in a
pattern that closely follows that of the bronchi. That is, each bronchus or bron-
chiole (airway) has a corresponding accompanying artery. The venous network
forms a similar branching structure, but it is located in between the paired arterial-
bronchial branches. A single main vein emerges from each of the lobes, and four
veins feed back into the left atrium of the heart. The pulmonary vessels do,
however, branch more frequently than the airways, giving rise to additional
‘supernumerary vessels’ that do not accompany an airway branch [42]. The
functional role of these numerous additional vessels is not known. Morphometric
cast-based studies have meticulously measured the geometric properties of the
pulmonary arterial and venous vessels [37, 43–45] providing useful information
for constructing anatomically-based models of this complex system.

2.1 Modeling the Macrocirculation: From In Vivo
Imaging to In Silico Experiments

As with any simulation study, the first task in modeling the pulmonary circulation
is to develop the geometric domain over which to solve a set of mathematical
equations. These computational meshes can range vastly in their complexity. With
respect to modeling the pulmonary macrocirculation, by far the most predominant
method has been to represent the branching arterial and venous trees as symmetric
structures; that is, branches within each generation have equal diameters and
lengths. While this simplifies calculations tremendously (only a single pathway

Translational Research 263



needs to be considered with tens of branches, compared with tens of thousands of
branches in the full lung) the significant impact that structure has on function
cannot be realized. Until fairly recently, computation time limited the size of
geometric models of the pulmonary circulation and airway tree. However the rapid
advancement of computational power in recent decades has allowed significant
steps forward in imaging technologies to describe the lung geometry, as well as in
the ability to solve large systems of equations numerically over extensive and
complex domains. Therefore, the structural accuracy of geometries in which
models of blood flow can be solved has improved dramatically. Figure 1 shows a
comparison between an anatomically based model geometry and a spatially dis-
tributed symmetric model geometry (note that symmetric models are not usually
distributed spatially in this manner, nor with each pathway modeled explicitly).
Each model has the same average morphometric parameters and there are an
equivalent number of blood vessels in each tree. However, the anatomically based
model clearly captures certain aspects of the lung structure that the symmetric
model cannot.

The contribution of vascular branching structure to heterogeneity in the dis-
tribution of pulmonary perfusion and its relationship to airway structure and
function was first introduced in studies that analyzed the fractal properties of blood
flow distribution. The concept of the pulmonary circulation having a fractal
branching structure was championed by Glenny and Robertson who demonstrated
that there is a spatial correlation in local pulmonary blood flow that is independent
of the size or location of the lung region considered [20, 46]. This implied an
important role for the pulmonary branching networks in determining regional
blood and airflow and ultimately the efficiency of the lung for gas exchange.
Combined with advances in estimating regional perfusion distribution (specifically
the use of inhaled or injected microspheres), fractal modeling of the pulmonary
circulation pointed to inconsistencies with the traditional zonal model for perfu-
sion. This led to a debate within the community concerning the importance of

Fig. 1 a An anatomically based geometric model of the human arterial tree that fills the lung
volume obtained from imaging data (reprinted from [28], with permission from Elsevier), and b a
symmetric model of the arterial tree with the same average morphometric properties
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branching structure in perfusion distribution and ventilation–perfusion ( _V/ _Q)
matching [12–16]. In particular, the fractal model raised questions regarding the
significance of gravity (e.g. West’s zonal model [11]) on function [15, 16]. With
this debate in mind Burrowes et al. constructed an anatomically-based finite ele-
ment model of the pulmonary circulation, based on MDCT (multi-detector com-
puted tomography) imaging which aimed to capture individual lung shape and
blood vessel distribution [22].

The anatomically-based model of the pulmonary vasculature followed the spirit
of previous models of the pulmonary airways developed by Tawhai et al. [47, 48].
An illustration of the generation of geometric models of the pulmonary vasculature
and airways is given in Fig. 2. In each geometric model (airway or vascular), the
lungs or lobes and the pulmonary trunk (central blood vessels and airways) are
segmented from imaging data (in this case MDCT) using image-processing soft-
ware. The segmented airways and blood vessels are represented in a finite element
mesh by vectors describing their centerlines, and spatial coordinates for the
location of branching points. The distal airways and their accompanying blood
vessels are then generated via a volume-filling branching (VFB) algorithm [48],
which generates individual representations of airways and blood vessels to a user-
defined level, which is typically the level of the pulmonary acinus (a gas exchange
unit). The lung or lobe volume that is segmented from the imaging data acts as a
‘host volume’, which is filled with a uniform grid of seed points that represent the
location of the approximately 32,000 acinar units in the lung. Then, the following
steps are repeated until there are no seed points remaining in the set:

1. Seed points are grouped into sets with each seed point being associated with the
closest terminal (parent) vessel in the current tree.

2. The vector in the direction of the parent vessel and the coordinates of the center
of mass of the seed points associated with it are used to define a splitting plane.

Fig. 2 The generation of an anatomically based model of the pulmonary airways and
vasculature. From left to right the figure shows: a single high resolution CT image of a lung
in the supine posture; rendering of volumetric MDCT of the lung and automatic placement of
surface points on each lobe; initial arteries (red), veins (blue), and airways (white) used for model
generation; volume-filling airways (right lung) and blood vessels (left lung)
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3. Each set of seed points is split in two (by the splitting plane) to define two new
seed point sets.

4. The center of mass of the two new seed point sets is calculated and two vessels
are generated along the vectors that run between the parent vessel and the new
centers of mass. The length of the new vessels is defined to be 40 % of the
distance between the end of the parent vessel and the center of mass.

5. If the new vessel is less than a pre-defined length (typical the length of a
terminal bronchiole or the arteries and veins accompanying it), or there is only
one seed point in its set, the vessel is defined as a terminal vessel and the seed
point closest to that vessel is removed from the set of seed points.

Classifying each vessel in a generated tree by order allows a convenient defi-
nition of the caliber of each vessel. Morphometric studies of pulmonary vessels
have shown a linear relationship between the logarithm of vessel diameter and the
Strahler order of the vessel [37, 44, 45]. The Strahler ordering system defines
terminal branches (in this case the terminal bronchioles of the airway tree and the
vessels accompanying them) as order 1. Then, the order of the parent branch
proximal to two daughter vessels is defined as the highest of the orders of the
daughter branches if these orders are different, or the order of the daughter
branches plus one if the order of the daughter branches is the same. Then,

logDðxÞ ¼ ðx� NÞlogRd þ logDN ; ð1Þ

where D(x) is the diameter of a vessel/airway of Strahler order x, N is the total
number of Strahler orders in the tree, Rd is the Strahler diameter ratio (effectively
the rate of decrease of vessel/airway diameter), and DN is the diameter of the
vessel/airway of the highest order in the tree. The value of DN can be estimated
from morphometric parameters or from imaging data. The geometric model
developed by Burrowes et al. [22] matched well with anatomical data from cast
based studies [37, 44].

By assuming that the blood vessels are rigid and adopting a steady (time-
averaged) laminar flow, Burrowes et al. [22] predicted the blood flow and pressure
distribution through the isolated arterial tree. Equations describing Poiseuille
resistance with a gravitational dependence (dominating in the axial direction) were
solved along with flow conservation equations at bifurcations. That is,

Q ¼ pD4

128l
DP

L
þ q gcos h

� �
; ð2aÞ

QP ¼ QD1 þ QD2; ð2bÞ

where Q is the rate of blood flow through a vessel, D is the diameter of the vessel,
l is the viscosity of blood, DP is the pressure drop through the vessel, L is the
length of the vessel, q is the density of blood, g is gravitational acceleration, h is
the angle the vessel makes with the direction of gravity, QP is the flow through a
parent vessel, and QD1 and QD2 are the flows through each of the daughter vessels
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associated with the parent P. As flow and pressure were calculated only in an
isolated arterial tree (without feedback from venous and/or capillary models)
boundary conditions had to be specified at each of the *32,000 terminal arteries.
Burrowes et al. [22] assumed a constant inlet pressure (2 kPa at the main pul-
monary artery) and outlet pressure (1.25 kPa at each terminal vessel) with a
gravitationally dependent gradient of external (pleural) pressure of 0.25 cmH2O
per cm of lung height [49]. Regional perfusion was therefore determined via a
combination of heterogeneous arterial resistance (via vascular branching and
dimensional asymmetry), the hydrostatic effect of gravity acting on the weight of
blood, and an induced (linear) gradient in pressure external to the blood vessels
(pleural pressure).

The simple rigid tube model presented by Burrowes et al. [22] was able to
predict that the asymmetry of the arterial tree could introduce a significant het-
erogeneity in pulmonary blood flow. The study was able to show for the first time
in a computational model, a marked heterogeneity in pulmonary perfusion
superimposed upon a gravitational gradient. This simple blood flow model was
quickly built upon to gain physiological insight into the mechanisms determining
the distribution of pulmonary perfusion [25, 26, 28]. Blood vessel elasticity was
incorporated, initially using a non-linear model for vessel elasticity [28] based on
experimental data for lung vessels [50], but with a functional form derived for the
elasticity of systemic vessels. Later [25], a simpler functional form for vessel
diameter (D) was adopted, based on the studies of Krenz and Dawson [51] who
showed that the elasticity of pulmonary vessels can be assumed to be approxi-
mately linear with transmural pressure (Ptm) and effectively independent of vessel
size and species,

D ¼ D0ð1þ aPtmÞ; ð3Þ

where a = 0.02/mmHg is the elasticity of a vessel. Simulation studies in the new
model highlighted the significant influence that vascular structure could have on
pulmonary perfusion distribution [26, 28], supporting experimental studies that
suggested that posture and gravitational factors have a relatively minor effect on
blood flow [15, 52]. A species comparison in models of the human (biped) and
sheep (quadruped) showed that differences in branching asymmetry could explain
significant differences in perfusion distribution that had been observed between
animal and human studies [25]. However, these models neglected two important
gravitational influences on pulmonary perfusion distribution: the deformation of
lung tissue under gravity (the model assumed a uniform distribution of acinar
units), and the effect of alveolar inflation and air pressure on the microvasculature
(only isolated arterial trees were modeled and so acinar level boundary conditions
were necessarily assigned assumed pressure values).

The first limitation was addressed via concurrent development of an imaging
based model of pulmonary tissue elasticity and deformation. The same lung vol-
umes that had been segmented from imaging data and used as host volumes for
airway and blood vessel trees were used to construct curvilinear finite element
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volume meshes of the lung using the fitting methods described by Fernandez et al.
[53]. The lung-air matrix within this volume was assumed to be a compressible
non-linearly elastic continuum with homogeneous and isotropic material proper-
ties [54]. Stress and strain in the tissue were related by the strain energy density
function

W ¼ c

2
eðaJ2

1þbJ2Þ; ð4Þ

where W is the strain energy, J1 and J2 are the first and second invariants of the
Green strain tensor, and a, b and c are constants with values set such that a uniform
expansion of tissue from a theoretical stress and strain reference state (half of
functional residual capacity—FRC) resulted in physiological expansion pressures
of *5 cmH2O at FRC and *25 cmH2O at total lung capacity (TLC) [54]. Pre-
dictions of lung tissue density distribution (local expansion) in the supine posture
were validated against MDCT data for the subjects that were studied. Once stress
and strain have been calculated, regional elastic recoil pressure (Pe) can be esti-
mated using

Pe ¼
cec

2k
ð3aþ bÞðk2 � 1Þ; ð5Þ

where k is the isotropic stretch from reference volume to the lung volume of
interest, and

c ¼ 3
4
ð3aþ bÞðk2 � 1Þ2: ð6Þ

The tethering pressure acting on a vessel or airway is then estimated locally as
being equal and opposite to local Pe [29, 55]. Burrowes and Tawhai [29] used
predictions of local tethering pressure and tissue deformation coupled to the model
of the pulmonary macrocirculation described previously to distinguish the separate
contributions of arterial vascular geometry and gravitational tissue deformation to
perfusion distribution. This is an example of the strength of computational mod-
eling in comparison to experiment: the ability to ‘switch-on-and-off’ features of a
biological system and analyze their relative or compound effect on a phenomenon.
In this case, the model of Burrowes and Tawhai showed that the deformation of
lung tissue contributes significantly to observed gravitational gradients of blood
flow (removal of this effect halved the predicted gradient), consistent with the
concept of the lung behaving as a ‘SlinkyTM’ [56]. However it was acknowledged
that the model was still lacking a description of the capillary vessels (the micro-
circulation), whose external pressure is air, rather than tissue tethering pressure
[29]. A multi-scale approach would be needed to address this limitation of the
model (see Sect. 4).

While the models described above incorporate a large arterial domain, they
must take a simplified approach to the fluid dynamics of pulmonary blood flow.
The use of the Poiseuille equation effectively provides a time-averaged description
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of blood flow, which for analyses of perfusion distribution is a reasonable
approach [39]. However, there are conditions under which the pulsatility of blood
flow may be critical, and the assumption of laminar flow in the pulmonary blood
vessels may not be appropriate in the largest vessels under certain pathologies.
Another class of pulmonary blood flow models has emerged in recent years, which
is more inclusive of the fluid-dynamic and geometric details of the largest blood
vessels, and simplified at smaller scales (beyond 5 or 6 generations). This approach
has been led by the group of Taylor et al. (e.g. [57]) who solved a one-dimensional
time dependent model for blood flow in the largest pulmonary vessels, assuming
that the flow profile was parabolic. They used the same elasticity law given in
Eq. 3 and solved the following partial differential equations representing conser-
vation of mass and momentum

oQ

ot
þ 4

3
o

oz

Q2

s

� �
þ s

q
op

dz
¼ �8plQ

qs
þ l

q
o2Q

oz2
; ð7aÞ

os

ot
þ oQ

oz
¼ 0; ð7bÞ

where t is time, z is axial distance, s is vessel cross-sectional area (s = pD2/4),
and q is the density of blood. The flow equations were solved using a finite
element scheme (a Galerkin/least squares stabilization in space and a Galerkin
method in time), with a periodic flow waveform in the main pulmonary artery and
a vascular impedance boundary condition at all terminal vessels (in this case the
segmental vessels). Similar methods were followed by Clipp and Steele in a study
of blood flow in the lamb vasculature [58], but this study included a gravitational
influence depending in which ‘zone’ a lumped parameter group of arteries resided.
This type of model provides important steps toward modeling the temporal
interaction between pulmonary blood vessels and airways. However, like the
steady-state models described above, it lacks a description of mechanical and
fluid-dynamic features of the pulmonary microcirculation. As it is at this micro-
scale that gas exchange and drug delivery will occur, and this is a scale that is
hard to investigate in the in vivo environment, we now turn to discussion of how
computational modeling has been used to explore function in the pulmonary
capillary beds.

3 The Microcirculation

In a typical human lung, the branching airway network terminates in an astounding
*480 million alveoli, with a measured range (across six adult subjects) of 274–
790 million [59]. Wrapped over the surface of each of these alveoli is a dense
network of pulmonary capillaries; a total number of 280 billion has been esti-
mated. This vast number of vessels provides a gas exchange surface area of about
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80–100 m2. The pulmonary capillary network forms a far denser mesh than that
found in the systemic microcirculation. Pulmonary capillaries are, on average,
shorter in length and smaller in diameter than their systemic counterpart and
because of this cellular transit through the circulations differs. Measurements of
pulmonary capillary morphometry have found a range of internal diameters from 1
to 15 lm, with an average of around 8 lm [1]. The density of pulmonary capil-
laries led in early studies to the approximation that blood flows as a sheet through
interconnected posts of connective tissue [60]. Later studies, using higher reso-
lution imaging techniques, demonstrated that pulmonary capillary blood does in
fact flow through discrete tubules [61], however the sheet-flow concept is still used
as a simplification in computational modeling studies (see below) and it remains a
physiologically meaningful description of the pulmonary microcirculation.

The gas exchange barrier separating alveolar gas from capillary blood has a
thickness of only around 0.1–0.3 lm. The passive diffusion capacity (gases
diffusing down a partial pressure gradient) correlates directly with the surface area
of contact and inversely with the thickness of the diffusion membrane. The
structure of this tissue barrier has been optimized to enable a thin enough layer for
adequate gas exchange while enabling structural integrity to be maintained over a
range of intravascular pressures. However, because of the fine balance of this
system the pulmonary capillaries are very sensitive to excessive increases in
pulmonary blood pressure. If capillary transmural pressure exceeds a critical limit
(around 24 mmHg) the blood–gas barrier may begin to rupture resulting in fluid
leakage into the alveolar units. This fluid accumulation (edema) is believed to
reduce the capacity for gas exchange by increasing the thickness of the diffusion
barrier within the lung [62].

In large blood vessels blood can be assumed to flow as a Newtonian fluid. That
is, while the viscosity of blood is shear-rate dependent (and hematocrit-dependent)
the relatively large fluid velocities in the largest vessels prevent formation of cel-
lular aggregates that would markedly change the blood viscosity, and hence vis-
cosity can be assumed constant. In contrast, in vessels less than approximately
300 lm in diameter the non-Newtonian properties of blood can no longer be
neglected. Red blood cells (RBCs) tend to preferentially migrate to the center of
small vessels and travel through at a faster rate than the rest of the blood at the
vessel periphery. This results in a decrease in RBC concentration and a dynamic
reduction in the apparent viscosity of blood whereby apparent viscosity decreases
with decreasing vessel diameter. These phenomena are known as the Fahraeus and
Fahraeus–Lindqvist effects, respectively [63], and are one of the key differences in
modeling macro- and micro-circulatory flow behavior. Another important aspect
when discussing cellular transport within the pulmonary capillaries is the transit of
neutrophils. Neutrophils are the most abundant white blood cell (WBC) in the body
and play an important role in immune response. Under normal conditions the
concentration of neutrophils in the lung is between 40 and 80 times higher than that
found in the systemic circulation [64]. This phenomenon is known as neutrophil
margination and is due to the relative size (6.8–8.3 lm [65]) and stiffness of
neutrophils in comparison to the capillaries through which they transit (typical
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diameter 8 lm [1]) meaning that each neutrophil typically has to deform in order to
pass through the pathway of capillaries from arteriole to venule [65]. Neutrophils
are less deformable than RBCs and effectively block capillary pathways for the
duration of the time they take to deform (which depends on the size of the neu-
trophil compared with the blood vessel it blocks, and the activation state of the
neutrophil). The sequestering of neutrophils in the lung is thought to play a vital
role in host defense, acting as the secondary line of defense by destroying any
unwanted foreign material that may have penetrated the system. Models of pul-
monary blood flow at the capillary level are generally designed to account for these
phenomena as best as possible without losing mathematical simplicity.

3.1 Modeling the Microcirculation: Fluid Flow
and Cellular Transit

There have been two general approaches taken to modeling flow through the
pulmonary capillaries: the tube flow approach (typical of systemic microcircula-
tion models) and the sheet flow approach. Figure 3 shows illustrations of a tube
flow model [30] and the sheet flow model [66]. There is clearly a difference in
geometrical complexity between the two. Each geometric model has its limitations
and its merits, summarized below.

Tube flow models (Fig. 3) explicitly represent each individual capillary seg-
ment within a portion of the microcirculation. Flow models are set up as in any
other flow problem—using equations of conservation of mass and momentum—
within a network of vessels. Given an initial assumed hematocrit distribution and
individual capillary resistance, the pressure and flow can be calculated within the
network, assuming elastic vessels. Then a rheological analysis is conducted, that
incorporates the non-Newtonian properties of the blood. In this procedure the
distribution of RBCs is calculated, using empirically derived models that account
for the Fahraeus and Fahraeus–Lindqvist effects as well as the phase separation
effect (the disproportionate distribution of RBCs and plasma at bifurcations).
Conservation of RBCs and plasma is enforced at each capillary junction and the
new hematocrit distribution is used to update the apparent viscosity of blood in
each capillary vessel. In the pulmonary circulation this type of model includes the
impact of both alveolar and intra-pleural pressures on the estimated diameter of
each capillary segment. This tube flow approach has been used successfully to
represent flow in both the systemic [67–69] and pulmonary microcirculation
[30, 70, 71]. The use of tube flow models provides predictions of flow and cellular
transit properties within each individual capillary. The discrete tubular nature of
these models also enables simulation of the impact of individual capillary
blockage, via neutrophils, on capillary blood flow [30, 71]. While these types of
models are more realistic in structure than the sheet flow model and provide more
detailed flow and cellular transit information, current computational limitations

Translational Research 271



mean that only a small subset of capillary tissue can be modeled. This means that a
detailed tube flow model cannot be easily coupled with models of the pulmonary
macrocirculation (Sect. 2.1), and flow or pressure boundary conditions must be
assumed in each subset of capillary tissue. A simpler model of the capillary bed is
required to couple macro- to micro-scale behaviors.

A much simpler approach to modeling the pulmonary microvasculature was
proposed by Fung and Sobin [60] in 1969, and developed considerably in sub-
sequent years [66, 72–76]. This model is termed the ‘sheet flow’ model as it
approximates blood flow through the pulmonary capillaries covering several
alveoli as a sheet of fluid flowing around ‘‘posts’’ of connective tissue that are
bounded on either side by compliant endothelial tissue (Fig. 3). As such, the model
predicts averaged flow streamlines through each inter-alveolar septum. By ana-
lyzing the fluid mechanics of flow in this structure as well as comparison with
silicone models of the structure, simple equations describing blood flow in the
pulmonary capillaries were derived, where flow is proportional to the fourth power
of sheet height (which reflects capillary diameter). The model is able to provide
good general agreement with experimental data for flow and resistance across the
pulmonary capillary bed, and is able to provide a description of partial capillary
bed collapse when venous blood pressures are less than alveolar air pressures [73].
Again, when the sheet flow model is considered in isolation, pressure or flow
boundary conditions must be prescribed at capillary inlets, and coupling of macro-
and micro-scale models must be achieved to minimize the need for these
conditions.

Fig. 3 A comparison between different geometric models that describe the pulmonary capillary
beds. The sheet model of Fung et al. [66] assumes the capillary flow to occur between two elastic
sheets connected with ‘posts’ of connective tissue. The tube model explicitly represents each
individual capillary segment within a portion of the microcirculation. Tube models have been
incorporated into anatomic models of the alveolar structure, where capillary segments cover a
polyhedral representation of alveolar ducts (the anatomic model is reproduced from [30] with
kind permission from Springer Science and Business Media)
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4 Whole Organ Models: Bridging Spatial Scales

Macro- and micro-scale models of the pulmonary circulation can provide impor-
tant insight regarding individual aspects of its function, however there is a sig-
nificant limitation to these models, as boundary conditions must be prescribed at a
spatial scale at which it is difficult to obtain pressure or flow measurements.
A model that bridges the gap between these spatial scales is then necessary to
understand how small scale phenomena emerge into whole lung function. The first
steps toward an anatomically-based whole lung model were taken by Clark et al.
[31], who incorporated serial and parallel micro-circulatory connections in a
model of the pulmonary acinus. This model connects the arteries that accompany
the respiratory bronchioles to their corresponding veins via the capillary network
across several alveolar septa in what has been termed a ‘ladder-like’ structure
(Fig. 4—gray box). There are multiple pre-capillary vessel generations in the
acinus, and this model assumed that these vessels branch in a regular dichotomy,
connected at each generation by capillary sheets (the sheet flow model described in
Sect. 3.1). The model showed that this ladder-like structure may provide func-
tional benefits to the lung: it predicted that the serial-parallel capillary connections
provided a 17 % lower pulmonary vascular resistance than simple parallel capil-
lary connections, when coupled to a symmetric model of the macro-vasculature.

As well as predicting a lower total pulmonary vascular resistance than previous
models, the ladder-like geometrical structure was able to predict stratification of
intra-acinar blood flow similar to that observed experimentally many years pre-
viously [77–80]. This stratification of blood flow may play an important role in the
matching of perfusion to oxygen supply from air.

Fig. 4 A schematic of a model of pulmonary perfusion that bridges the relevant spatial scales in
the lung. Arteries and veins are connected by a ‘ladder-like’ structure of arterioles, venules, and
capillaries that cover the alveoli in the acinar unit

Translational Research 273



The ladder-like representation of the intermediate and micro-vessels [31] has
enabled bridging of the gap between arteries and veins in large-scale anatomically-
based mathematical models of the pulmonary circulation [17], hence negating the
constraint to prescribe boundary conditions at the pre-capillary level in both
macro- and micro-scale models. This new model, which spanned the important
spatial scales in the lung, is illustrated in Fig. 4. It was able—for the first time—to
assess the relative contributions of the compound effects of gravity on pulmonary
blood flow gradients and heterogeneity. In particular the model addressed the
importance of (1) structure, (2) the hydrostatic pressure gradient in the lung, and
(3) tissue deformation to blood flow distribution. Figure 5 provides a schematic of
how each factor contributes to the overall distribution of perfusion. Analysis of the
full model confirms that heterogeneity is introduced into the system via
the asymmetric structure of the pulmonary blood vessels, as each path to and from
the capillary beds has a unique resistance to flow. This means that even in zero
gravity (0G) there is significant heterogeneity in the distribution of perfusion. The
model predicts that heterogeneity is *47 % of its 1G value in 0G conditions. The
hydrostatic pressure gradient acting directly on blood establishes a gravitational
gradient in the distribution of perfusion, and introduces a height-dependent pres-
sure gradient at the capillary level. Even without tissue deformation, this may be
responsible for up to 80 % of the overall gravitational gradient in perfusion. This
gradient contributes to overall heterogeneity, in the sense that variation of per-
fusion in the lung as a whole increases with the introduction of gravitationally
varying pressures. However, local heterogeneity is a function of blood vessel
branching asymmetry. Finally, the effect of gravitational deformation of lung
tissue acts to alter this gravitational gradient, normally increasing its magnitude.
Tissue deformation also contributes (along with structure) to an observed decrease
in blood flow rates in gravitationally dependent tissue. This phenomenon is known
as ‘‘zone 4’’ [81], and is only predicted in theoretical models that include an
asymmetric geometry. The model suggested that upstream resistance, which is

Fig. 5 The multiple contributing factors to the distribution of pulmonary blood flow. Vascular
structure results in a heterogeneity in the distribution of blood flow, and long path lengths far
from the heart result in a reduction of blood flow in extremities. The hydrostatic pressure gradient
acts to induce a gravitational gradient in blood flow by acting directly on blood to drive it
preferentially to the base of the lung. Finally, lung tissue deforms downwards, which increases
the flow gradient and contributes to the size of zone 4. This figure was first published in
Pulmonary Circulation [83]
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influenced by tissue deformation (an effective stretching of large vessels in the
direction of gravity) and posture (prone and supine postures have shorter path-
lengths to dependent lung tissue than upright and a smaller zone 4), is primarily
responsible for the size of zone 4. This supported experimental studies that also
suggested that the mechanism of perfusion reduction in zone 4 was via extra-
alveolar vessel resistance [82]. The integration of structural and gravitational
features to this multi-scale model of the pulmonary circulation provided important
new physiological insight into the mechanisms behind the normal distribution of
pulmonary perfusion that was not possible by experiment, or by previous sim-
plified computational models. It has also opened the door for integrated studies of
pulmonary function, in combination with similarly structured models of ventila-
tion [55], as well as allowing for a subject specific approach to studying lung
disease. These translational aspects of computational modeling in the pulmonary
circulation are discussed in detail in Sect. 5.

5 Translational Outcomes

The ultimate goal of modeling any biological system is to provide physiological
insight and translational outcomes. That is, to enable physiologists, biologists and
physicians to improve knowledge and treatment of pathologies relating to the
system. As the main function of the lung is the exchange of gases between alveolar
air and capillary blood, any disruption to normal function in the pulmonary cir-
culation is likely to translate to disruption to gas exchange function and hence to
the ability of the body to provide oxygenated blood to tissue. A major advantage of
multi-scale, anatomically based models is their ability to relate whole lung func-
tion to localized function. The state-of-the-art in this modeling approach for
simulating regional gas exchange and pulmonary pathologies are introduced in this
section.

5.1 Gas and Solute Exchange and Metabolism

There are many models in the literature that aim to describe gas exchange between
alveolar air and capillary blood in a single ‘unit’ (this may be a whole lung, a
single alveolus or a group of alveoli). These models have been reviewed in detail,
and related to one another based on a hierarchy of modeling assumptions, by
Ben-Tal [84]. In general, the relationship between the partial pressure of oxygen in
alveolar air (pAO2) and pulmonary capillary blood (pcO2) can be expressed as an
ordinary differential equation (ODE)
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dpcO2

dt
¼ DO2

Vcr
1þ 4Hb

r
dSðpcO2Þ

dpcO2

� ��1

ðpAO2 � pcO2Þ; ð8Þ

where DO2 is the diffusion capacity (transfer factor) of oxygen between air and
blood, Vc is capillary blood volume, r is the solubility of oxygen in blood, Hb is
the hemoglobin concentration in whole blood, and S(pcO2) is the hemoglobin
saturation function. This function can be fit to experimental data or derived from
models of the chemical interactions between oxygen and hemoglobin. If one
assumes equilibration between air and blood gases, the ODE given by Eq. 8 can be
reduced to a system of algebraic equations which explicitly depend on capillary
blood flow rates (Qc) and predict end-expired oxygen levels. The equation for
oxygen is (e.g. [85])

VIpIO2 � VEpAO2 ¼ QCkðCcO2 � CvO2Þ; ð9Þ

where VI is inspired ventilation into the unit, pIO2 is inspired oxygen partial
pressure, VE is expired ventilation out of the unit, Qc is the rate of capillary blood
flow, CcO2 is the oxygen content in end-capillary blood, CvO2 is oxygen content
entering the lungs from mixed venous blood, k is a constant factor that accounts
for differences between body temperature and pressure and inspired air tempera-
ture and pressure as well as allowing consistency between the units of the left and
right hand side of Eq. 9. Content (in mol l-1) is related to partial pressure by

CO2 ¼ rpO2 þ 4HbSðpO2Þ: ð10Þ

Critically, each of Eqs. 8 and 9 is dependent on capillary blood pressures and
blood flow rates, which are both spatially and temporally variable (note that the
parameter Vc in Eq. 8 is variable with Qc as capillaries are elastic). Whilst previous
modeling studies assessing the function of the pulmonary circulation had focused

Fig. 6 a A typical MIGET plot obtained from a normal subject, which illustrates the distribution
of ventilation and perfusion in the lung (reproduced from [88] with kind permission from
Springer Science and Business Media). b Shows a simulated distribution of ventilation and
perfusion in a normal subject obtained using the models of Clark et al. [17] and Swan et al. [55].
The two distributions compare well
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on blood flow alone, Burrowes et al. [34] introduced assessment of gas exchange
function in a model of localized pulmonary disease by solving Eqs. 9 and 10,
along with the Monod–Wyman–Changeaux model for S(pcO2) [86]. They assumed
a linear distribution of ventilation with vertical height and were able to predict
baseline pAO2 that was consistent with physiological measurements [7]. This was
expanded upon by Tawhai et al. [87] who modeled both ventilation [55] and
perfusion [17] in subject specific geometries for nine subjects, and estimated gas
transport using the same methodology as Burrowes et al. [34]. Figure 6 shows a
normal (baseline) _V/ _Q distribution as predicted in a normal subject using this
model, compared with a traditional MIGET plot in a normal individual [88]. The
predictions of function made using anatomical geometries and physical laws by
Tawhai et al. compare well to the MIGET measurements, that are essentially
statistical estimates of ventilation and perfusion distributions made following
global measurements of inert gas elimination from the lung. The coupling of
ventilation and perfusion models to predict gas exchange function in anatomical
geometries opened the door for meaningful studies of pathological pulmonary
perfusion.

5.2 Application to Pulmonary Vascular Disease

The advent of anatomically based models of the pulmonary circulation has
enabled model-based investigation of disease states that present heterogeneously
in the lung (i.e. localized tissue abnormalities with relatively normal tissue in
large parts of the lung) and/or in the population (i.e. diseases that affect one
individual more than another for an apparently similar level of regional disease).
These models have so far focused on investigation of pulmonary hypertension
(PH) secondary to pulmonary embolism (PE). In PE, blood clots occlude pul-
monary arteries leading to a redistribution of blood flow and pressures, which can
in severe cases lead to an elevation of pulmonary arterial pressure (PAP) that can
lead to RV dysfunction or failure. The obvious culprit responsible for elevated
PAP is the occlusion of large pulmonary arteries, as this theoretically could
increase PVR substantially, leading to RV dysfunction. However, there are sig-
nificant inter-subject variations in response to PE, even when patients present with
apparently similar levels of occlusion [89, 90]. The question as to what is
responsible for this variable response then hinders PE diagnosis and treatment: as
clot load alone is not correlated with survival [91], is it clot location (e.g. apical,
basal, proximal, distal) or some humoral response that is responsible for variable
outcomes? Or could inter-patient variability in response to clot simply be a result
of underlying pathologies? To date, these questions have been addressed in
anatomically based models of both the acinus [32] and the whole lung [33, 34, 87]
in order to capture the functional consequence of arterial occlusion across all
relevant spatial scales.
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At the smallest spatial scale, micro-emboli (\170 lm in diameter) occluding
small pulmonary arteries appear to produce a larger PAP response, for the same
theoretical level of capillary bed occlusion, than their larger counterparts [92].
Small emboli are often used to induce PH and edema in animal models; compu-
tational modeling provides a means to properly interpret these experimental
models by providing an understanding of the implications of micro-embolus
occlusion. Under the hypothesis proposed by Read in 1969 [78] that occlusion to
proximal (high flow) capillary beds may account for the relative severity of micro-
emboli, Clark et al. [32] constructed an asymmetrically branching model of the
blood vessels in the acinus to investigate the effect of occlusion in this structure.
The idealized, symmetric ladder-like acinar structure described in Sect. 4, while
useful in bridging the spatial scales in models of the full pulmonary circulation,
was inappropriate for this study as it could not capture the effect of a single
occlusion at the micro-scale. A multibranching geometry for pre-capillary acinar
vessels was therefore constructed [93], based on morphometric data regarding
acinar structure [94]. Aside from asymmetry in pre-capillary vessels, the model
retained the ladder-like structure of its symmetric counterpart, with capillary
connections at each level in the acinar tree. The model confirmed the hypothesis
that proximal micro-emboli have a greater impact on PVR than distal emboli.
However, although the blockage of normally high flow capillary beds—and so a
reduction in capillary surface area—increases PVR, the model predicted a sig-
nificant capacity for redistribution of blood flow through unblocked capillary beds.
It suggested that a major reason for a large increase in PVR with proximal
occlusions might be a result of the fact that blood must now travel through several
high resistance blood vessels before reaching the pulmonary capillaries. This again
highlighted the importance of a serial-parallel acinar structure being crucial to the
lung’s ability to carry a high volume of blood at low pressures.

Subsequent modeling studies investigated the impact of larger (mm in diame-
ter) emboli in the anatomically-based full lung geometry of a single individual [33,
34]. Both studies simulated embolism by reducing the radius of an occluded vessel
to a percentage of its original (baseline) radius, depending on the level of occlu-
sion. Vessels were occluded based on locations determined from MDCT data in
patients presenting clinically with acute PE [33], and in a probabilistic manner by
occluding vessels based on their baseline blood flow rates [34]. Both studies
suggested that mechanical occlusion in the absence of any response to hypoxia,
vasoactive signaling, or prior pathology, was not sufficient to raise PAP to PH
levels, even with 70–80 % of the capillary bed occluded. Clinically, PH is seen in
some patients with far lower occlusion levels; for example McIntyre and Sasahara
observed PH in some patients with\30 % estimated capillary bed occlusion in the
absence of prior pulmonary disease [89, 90]. The reason for the low impact of
mechanical occlusion on PAP in modeling studies is the capacity for the lung to
‘recruit’ capillary and large blood vessel volume in non-occluded regions, either
via distension of elastic vessels (because of increased blood pressures), or in the
case of the capillary bed by the direct recruitment of capillary vessels that may
ordinarily be unperfused. The redistribution of blood flow post-occlusion is more
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pronounced in the gravitationally non-dependent lung, which normally receives
the least blood flow so has a greater capacity to carry more blood when the lung is
under stress. In the absence of an underlying pathology, the small increases in PAP
predicted by a model of mechanical occlusion alone [33, 34] suggests a significant
role for active mechanisms in determining response to PE.

Burrowes et al. [34] incorporated the model of oxygen exchange described by
Eqs. 9 and 10 to investigate the possible role of hypoxia in PE. They found that
localized hypoxia was predicted in non-occluded regions following arterial
occlusion (Fig. 7), as well as a significant reduction in oxygen levels in the blood
that returns from the lungs to the systemic circulation. Localized hypoxia may be
significant in elevating PAP in PE, with pulmonary vessels actively constricting in
hypoxic conditions. Constriction of small pulmonary vessels in non-occluded
regions in PE may act to restrict the ability of the lung to redistribute blood flow,
and so elevate blood pressures required to maintain cardiac output. However, the
redistribution of blood away from hypoxic regions may have the beneficial effect
of improving _V/ _Q matching and so the efficiency of the diseased lung for gas
exchange.

An alternative, or additional, mechanism for increased PAP in response to PE is
the response to increased cardiac output. Experimental [95–97] and modeling [34,
87, 98] studies agree that PAP increases more rapidly than cardiac output in PE
than under normal conditions. Tawhai et al. [87] used estimates of metabolic rate

Fig. 7 Predicted acinar
a perfusion, b ventilation–
perfusion ( _V/ _Q) ratios and
c alveolar oxygen partial
pressures (PAO2) in a subject
with 40 % tissue occlusion by
7 mm pulmonary emboli.
Black regions in b are areas
with _V/ _Q [ 1 (more
ventilation than perfusion)
and in c are areas with
PAO2 \ 80 mmHg (hypoxic).
This figure was first published
in Pulmonary Circulation
[34]
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at rest and in non-exercise conditions (e.g. fidgeting or walking) [99] to estimate
the level of activity required to induce hypertension in nine subject-specific
geometries representing patients clinically presenting with PE. They found that
hypertension could be predicted in patients whose cardiac output was consistent
with upright fidgeting (so only low levels of activity or stress) in the absence of
any active response to embolization. This study paved the way for the first truly
subject specific modeling of pulmonary function in disease. Each of (1) anatomical
geometry (lungs, lobes, airways and blood vessels), (2) height-, weight- and age-
dependent metabolic rates, and (3) individualized embolus location and sizes were
incorporated into the model. The patients enrolled in the study were chosen so as
to avoid the confounding factor of existing lung disease, and model predictions
correlated well to both accepted population norms for parameters such as PVR and
PaO2 in baseline conditions, and actual patient response. Of the patients included
in the study, those with predicted global hypoxia (PaO2 \ 80 mmHg) all had RV
dysfunction in the clinical setting, and all the patients without predicted global
hypoxia did not have RV dysfunction. Hypoxia, and/or the hypercapnia that
commonly accompanies it, is known to elevate cardiac output and ventilatory rate
[100] and this response may be crucial in understanding the variable outcomes in
PE. Multiscale modeling of the pulmonary circulation has therefore suggested that
oxygen (and carbon dioxide) transport may be crucial in understanding this
pathology of the pulmonary circulation. This opens the arena for a new class of
multi-scale models of the pulmonary circulation in future studies that are able to
relate cell or vessel levels response to stress or oxygen tensions and emergent
function at the organ level.

6 Linking to Cellular Mechanics

Although current models for the pulmonary circulation have achieved a high level
of sophistication in their structure and coupling of scale-dependent function, they
are currently lacking representation of important dynamic behaviors. For example,
the arteries and veins are treated as passive structures that distend and recoil in
response to transmural pressure only: they do not include force development in the
vascular smooth muscle (VSM). Further, the studies of Burrowes et al. [22, 25, 26,
28–30, 33, 34] and Clark et al. [17, 31, 32] assumed fully developed steady-state
flow to compute the distribution of blood, but not its spatio-temporal fluctuations.
Multi-scale model development for the airway tree and its interaction with the
parenchyma provides a roadmap for how vascular smooth muscle could be inte-
grated with models for the pulmonary circulation [101].

Politi et al. [101] presented a multi-scale model for force development in airway
smooth muscle (ASM) and its interaction with phasic force fluctuations at the airway,
tissue, and organ level (illustrated in Fig. 8). The model includes molecular-scale
phenomena, i.e. attachment of actin and myosin that is regulated by calcium (Ca2+)
dependent mechanisms, via a four-state model for the smooth muscle cross-bridge
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cycle [102] (this is a modified version of the Hai-Murphy model [103]). Activation of
molecular level force development is through a cellular-level Ca2+ model. Active
force development at the cellular level acts against the passive load of the airway
wall, and a constantly oscillating load from the breathing lung parenchyma. The
parenchyma is modeled as in Tawhai et al. [54], and the forces that tether the
parenchyma to the airway wall are calculated as spatially- and temporally-varying
elastic recoil pressures plus additional tethering forces that develop locally as the
airway contracts, following the relationship for tethering force proposed by [104].
Donovan et al. [105] extended the molecular level model to include ‘cross-linkers’
that represent the passive properties of the ASM. The critical component of the multi-
scale model is its connection of the spatial scales, which is defined at the individual
airway level. That is, at each airway at each time point the active tension developed
by the cellular and molecular models is explicitly balanced against force develop-
ment in the surrounding tissues.

The basic mechanisms for interaction of VSM with its surrounding force envi-
ronment are the same as for ASM, however the VSM responds differently to agonist
stimulation [102]. Reaction to agonist (such as methacholine) is relevant in the study

Fig. 8 An example of a multi-scale model of the pulmonary airways that incorporates: a an
anatomically-based organ level model; b an organ-level tissue unit with 90 embedded airway
segments with radii calculated at the tissue level; c a tissue level model where each airway
segment is modeled as a cylinder comprising airway wall, smooth muscle cells, and a
parenchymal layer; and d a cellular/molecular level model which describes the generation of
force in smooth muscle. Reprinted from [101], with permission from Elsevier
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of airway reactivity, as dose-response to methacholine challenge is a standard test for
quantifying asthma severity. However in VSM the relevant stimuli are the partial
pressures of O2 and CO2, and nitric oxide (NO) release via endothelial sensing of
shear stress. The multi-scale model for the airways is focused on explaining
pathology (airway hyper-responsiveness, a hallmark of asthma) whereas under-
standing the dynamics of VSM in the pulmonary circulation is necessary simply to
explain the normal function of the lung. That is, PO2-mediated vasoconstriction and
NO-mediated vasodilation operate simultaneously in the normal lung, with their
balance (along with other signaling pathways) determining the local VSM tension.
Transitioning the organ- and vessel-level models for the pulmonary circulation to
studies of e.g. pulmonary hypertension, where wall remodeling may be a significant
component, will require a multi-scale approach that spans to cellular signaling.
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Part III
Wounds and Infection



A Multilevel Finite Element Approach
to Study Pressure Ulcer Aetiology

Cees W. J. Oomens

Abstract A pressure ulcer is a form of tissue degeneration as a result of sustained
mechanical loading. In the last 3 decades a lot of research has been done to
understand the aetiology of pressure ulcers. It has become clear that the initial
signs of tissue damage are found at the cell scale. That is where the damage
process starts that eventually leads to severe wounds. In order to define damage
thresholds or to understand what cells ‘‘feel’’ it is necessary to have information on
the mechanical status of cells at a scale in the order of micrometres. How the
external loading, that is gravitational body forces and reaction forces at supporting
surfaces on patients in a bed or a wheel chair, is transferred to a local mechanical
state within tissues depends on tissue morphology, mechanical properties and other
boundary conditions and requires an analysis at the scale of the order of centi-
metres to a meter. This cannot be done in one single analysis covering the entire
range of scales. This chapter summarizes some work that our group has done in the
last 10 years on multi-scale modelling of soft tissues that was aimed at under-
standing some of the phenomena that play a role in pressure ulcer development.
The work has shown the potential of multi-scale modelling to gain insight in the
very complex interactions at cell level. It was shown that the heterogeneity in
the microstructure has a profound impact on the way cells deform as well as the
mechanical property changes of the cell after they become damaged.
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1 Introduction

A pressure ulcer is a localized injury to the skin and/or underlying tissues, usually
over a bony prominence that results from pressure and shear [1]. In more technical
terms it is a form of tissue degeneration as a result of sustained mechanical
loading. In the last 3 decades a lot of research has been done to understand the
aetiology of pressure ulcers. It has become clear that the initial signs of tissue
damage are found at the cell scale [2, 3]. The damage process starts with the
disruption of single cells and if continued may eventually lead to severe, chronic
wounds. Bouten et al. [3] proposed a hierarchical approach: ‘‘To investigate the
differential response of the various tissue functional units to mechanical loading
and their relative contributions to the aetiology of pressure ulcers, a hybrid
methodology involving a combination of computer and experimental studies must
be involved.’’ This has led to a series of experimental model systems ranging from
single cell studies [2], to studies with tissue engineered bio-artificial muscle [4–6]
and animal studies with brown Norway rats [7, 8]. Each of the model systems
represented a different length scale and hierarchical position in the system that was
studied. Of course, each system had benefits and drawbacks, but all contributed to
an overall understanding on the effect of ischaemia and deformation on the
development of tissue damage. And although each model system was very useful
within its own system boundaries, for some questions to be answered it is nec-
essary to connect systems and bridge the different scales.

In order to define damage thresholds or to understand what cells ‘‘feel’’ it is
required to know the mechanical status of cells at a scale in the order of micro-
metres. However, if we want to know how the external loading, that is gravita-
tional body forces and reaction forces at supporting surfaces on patients in a bed or
a wheel chair, is transferred to a local mechanical state within tissues, we require
an analysis at the scale of the order of centimetres to a metre, because it all
depends on tissue morphology, mechanical properties and boundary conditions.
This cannot be done in one single analysis covering the entire range of scales, but
requires a multi-scale analysis using different models at different length scales and
methods to connect the models in a correct way.

In this chapter, I will summarize some of the work that was done in our
department in this area. I assume the reader is familiar with continuum mechanics
and the finite element method and will only briefly touch the rather complex
mathematics involved in the coupling of the different length scales. For this the
reader is referred to the original articles.

In the next section the concept of the multi-scale or multi-level modelling will
be explained. After that, two studies will be discussed. The first by Breuls et al. [4]
was aimed at the role of physical and geometrical heterogeneity of the micro-
structure on the damage development in cells. The second study by Nagel et al. [9]
was focussed on the effect that a change in mechanical stiffness of single cells,
after they are being damaged, has on the load distribution over the surrounding
cells.
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2 Multi-level Modelling: The Concept

Multi-level modelling of continuum mechanics problems can be done in various
ways. The method that is described here, was originally developed to study the
behaviour of composite polymer materials and metals [10, 11].

In our application a tissue is considered to consist of cells embedded in matrix
material. The microscopic length scale of the cells (lm) is orders of magnitude
smaller than the macroscopic dimensions (cm). Because of this, two models have
to be developed: one at the micro-level and one at the macro-level. The problem is
how to couple these models, or which boundary conditions have to be applied to
the micro-model. Furthermore, it is not trivial how the average mechanical state of
the micro-model can be transferred back to the macro model. The latter is called
the homogenization of the mechanical state of the micro-model.

There are several approaches for this coupling. One is, to use periodic boundary
conditions. When an external load is applied, the stress and strain fields in the
microstructure will show large gradients due to the microstructural heterogeneity.
However, due to the differences in scale, the microstructural deformation field
around a macroscopic point will be approximately the same as the deformation
field around neighbouring points. The repetitive deformations justify the
assumption of local periodicity, meaning that the microstructure can be thought of
as repeating itself near a macroscopic point (illustrated in Fig. 1). However, the
microstructure itself may differ from one macroscopic point to another. The
repetitive microstructural deformations suggest that macroscopic stresses and
strains around a certain macroscopic point can be found by averaging micro-
structural stresses and strains, in a small representative area of the microstructure
attributed to that point.

Now consider a two-dimensional representative volume element (RVE). The
periodic boundary condition implies:

1. The shapes of two opposite edges remain identical.
2. The stress vectors on opposite edges of the RVE are opposite to satisfy stress

continuity.

In the implementation of numerical codes this is implemented as tying the
displacements of nodes from one edge to corresponding nodes of the opposite
edge. The RVE deformations, orientation and overall dimensions are determined
by the positions of the three vertex points 1, 2 and 4 and the tying conditions. Next
to this the condition of opposite stress vectors on opposite boundaries have to be
satisfied. By averaging the deformations and the stresses in the RVE a coupling
can be made between the microscopic RVE and the macroscopic model.

In a finite element implementation of the theory in each integration point of the
elements of the macroscopic model a microscopic RVE is defined, which again is a
finite element model. The macroscopic deformations Fmacro are transferred to the
corresponding microscopic FE models, by prescribing the corner nodes and
applying periodic boundary conditions. The RVE problems are solved and in a full
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multi-scale analysis the macroscopic stresses rmacro and tangent stiffness matrices
4Smacro are computed from the microscopic models and supplied to the macro-
scopic integration points. In this case only constitutive equations for the structures
in the RVE have to be available. It will be clear that this method is very expensive,
because of computer time and memory. On the other hand the method is very
suitable for implementation on parallel computers. From the following sections it
will be clear that it is not always necessary to perform a full multi-scale analysis in
the described way.

3 The Role of Heterogeneity in the Stress/Strain State
of Individual Cells

Breuls [4] used the multi-level method to study the effect of microstructure on
the load transfer of a macroscopically loaded tissue engineered muscle to the
deformation of single cells. The model described an in vitro experiment that
he performed on Bioartificial Muscles (BAM’s). These tissue engineered BAM’s
are small strips consisting of a collage/matrigel extracellular matrix (ECM) and
oriented myotubes. This in vitro model system was used in several investigations
to study how cells behave under different loading conditions, by indenting the
strips with a spherical indenter and then follow cell death with vital staining’s for
apoptosis and necrosis on a confocal microscope [5, 12, 13].

Breuls wanted to study the influence of the microstructure on what the cell
‘‘feels’’ when the entire construct is loaded. Because the cells in the constructs
formed long myotubes, mostly lying in the direction of the long axis of the con-
struct a two-dimensional plane strain model of the cross section seemed appro-
priate. Micromodel A in Fig. 2 represented the BAM cross section. For
comparison the same analysis was performed on a cross section that was more
similar to real muscle tissue (Micromodel B). Because of symmetry only one
quarter of the cross-section was used for the macroscopic mesh. The mesh con-
sisted of 14 quadratic, rectangular elements with 4 integration points each. In each

Fig. 1 Two-dimensional
RVE illustrating periodic
boundary conditions, which
can be thought of as
surrounded by identically
shaped RVE’s
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integration point, the same RVE was defined. Both cells as well as ECM were
modelled as elastic materials, using a Neo-Hookean material model. At x = 0 and
y = 0, displacements were suppressed in y- and x-direction, respectively. To

Fig. 2 Construction of a multi-level model of a bio-artificial muscle (BAM). In every integration
point of the macroscopic mesh an RVE is defined representing the microstructure. Micro model A
represents a typical microstructure expected in a BAM. Micro model B represents the cross
section of a mature muscle (adapted from Breuls [12])

Fig. 3 Results of a simulation with microstructure A. The deformed macroscopic geometry
(centre) is shown, surrounded with four selected RVEs. The color bar next to the macroscopic
mesh represents the macroscopic SED (in N/m2). The color scale bars next to the RVEs represent
the SED, averaged over the cell area (Adapted from: Breuls [12])
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simulate the transverse compression a constant load was applied by prescribing
displacements in the y-direction of nodal points at the top-edge of the macroscopic
mesh (See Fig. 2).

Figure 3 shows a result from a simulation with the micromodel A. It was clear
that locally in a RVE there is a large variation in the deformation that individual
cells experience. The macroscopic strain energy density at the level of RVE 1 is in
the order of 500 N/m2, but the averaged strain energy density for individual cells
ranges from 200 to 550 N/m2. Taking this into account, it is not so strange that the
initial signs of tissue damage in skeletal muscle are always some individual cells
with a disrupted cytoskeleton, surrounded by perfectly healthy cells.

4 How Do Stiffness Changes Influence the Stress/Strain State
of Single Cells?

Nagel [9] studied the effect of cellular stiffening on the damage evolution in deep
tissue injury. Starting point for his work was the observation by Ganz and Gefen
[7, 14] that rat muscles showed a 1.6–3.3 fold increase in stiffness after being
damaged (in vitro as well as in vivo). Such a rise in stiffness may lead to a
redistribution of stress and strain that might lead to a further accumulation of
damage. Based on these observations Nagel et al. spawned the hypothesis, that a
change in material properties of necrotic tissue during mechanical loading leads to
a significant redistribution of strains, so that previously unaffected regions exceed
the damage threshold. They did not apply a full multi-level analysis but used a two
step approach. First the effect of cellular stiffening was investigated at the level of
an RVE. On the micro-level a finite element mesh was created to act as an RVE.

Fig. 4 Histological image and RVE mesh that was derived from it (with permission from [9])
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This mesh was derived from a histological image of a muscle cross-section of a rat
Tibialis Anterior muscle. Figure 4 shows the image and the mesh that was created
from it.

It was a 2-dimensional plane stress mesh using quadratic triangular elements.
The damage law was derived from in vitro experiments that were described by
Gefen et al. [13] and allowed the description of the typical sigmoid strain threshold
versus time curve like observed in these experiments. The damage law was
implemented and different amounts of stiffening were applied to cells that died due
to excessive prolonged deformation to study the effect of this stiffening on the
strain distribution inside the RVE, but also to find the average stiffness change of
the RVE as a whole.

When applying this damage evolution law it appeared that indeed the per-
centage of damaged cells at a certain time increased with increasing strain. An
applied macroscopic shear strain to the RVE of 0.6 led to 100 % cell death after
4 h. The time at which cells started to die was also slightly time dependent.

In this context it was important to know what happened when cells changed
mechanical properties after cell death. A stiffening of cells after cell death did not
have an impact on the amount of initial cell damage, nor on the onset time of
further damage progression. However, it did influence the final number of cells
that died after a certain amount of time and it also had an effect on the rate of cell
damage progression. Of course the level of strain (and thus the number of dying
cells) has a big influence on how much a stiffness change of the cells effects the
progression of cell death. This is illustrated in Fig. 5:

By performing a sensitivity analysis with different levels of macroscopic strain
and stiffness increase of a single cell after cell death, it was possible to construct
for an RVE a stiffness versus percentage of death cells curve. This was used in a
macroscopic analysis to study the effect of cell stiffening on the damaged area a
macroscopic model.

Fig. 5 The percentage of
dead cells as a function of
time for a shear strain of 0.8
and different stiffening
factors (s = the stiffness of a
cell after cell death divided
by the original stiffness),
Adapted from [9]
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5 What is the Influence of Stiffness Changes of Single Cells
on the Macroscopic Damage Evolution?

The macroscopic model was used to determine the damage evolution in animal
experiments on Brown Norway rats. These experiments are extensively described
in Stekelenburg et al. [8] and Loerakker et al. [15]. Brown Norway rats were
anesthetized and placed in supine position in an MR compatible loading device
with their left hind limbs fixed. The Tibialis Anterior was mechanically loaded
with an indenter filled with fluid to make it visible on MR images. The indentation
was applied slowly, but kept constant for a period of 2 h and then the load was
relieved. Because an MR compatible system was used it was possible to make high
resolution images before and after indentation. These images were used to create
dedicated finite element models of each individual rat and each loading condition.
T2-weighted imaging was used to measure the location and magnitude of tissue
changes including oedema and tissue damage.

The procedure for the damage evolution in the macro model worked as follows.
In a first step the full indentation as observed in the experiments was applied to the
Finite Element Model. This resulted in an initial, non-uniform strain state in the
loaded. When a strain in an integration point was less than a threshold cl there was
no damage. Cells start to be damage when this lower threshold is exceeded. Also
an upper threshold ch was defined, based on the RVE studies. Above this threshold
100 % cell damage was assumed. Between the thresholds cl and ch the percentage
n of cell death was linearly interpolated:

n %½ � ¼
0 if Ês\cl;

Ês�cl
ch�cl

100 if cl� Ês� ch;

100 if Ês [ ch;

8
><

>:
ð1Þ

Based on the sensitivity analysis with the RVE’s the amount of stiffening
around an integration point was calculated with a quadratic function of n. With the
original stiffness c10, the current stiffness of the damaged muscle cd

10 is defined as:

cd
10 ¼ fc10 ð2Þ

with:

f ¼ an2 þ bnþ 1 ð3Þ

After checking, how many cells were damaged, locally the new stiffness cd
10 and

the simulation was repeated until convergence was reached.
Depending on the stiffening factor used for the individual cells the damaged

area changed. For stiffening factors of 2, 3 and 4 fold for the cells the damaged
area in the macroscopic model increased with factors of 1.2, 1.45 and 1.65
respectively.
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6 Conclusion

This chapter gave a summary of two examples of multi-scale work, used in
pressure ulcer aetiology studies. The objective was to show in which cases a multi-
scale analysis is useful or indispensible. The first was aimed at studying how
heterogeneity in the cell shape and location in a muscle influences the damage
evolution. The second example was focussed on how stiffening of cells, after they
are damaged, influences the strain distribution in a muscle and further progress in
damage development.

Neither of the simulations involved a full multi-scale analysis, with a coupling
from both macro to micro and back again. In both cases it was not really necessary
to make a full-scale coupling and in this way simulations were much more cost
effective. However, a full-scale coupling is possible in the way as described in the
first sections. Because each RVE is based on the same FEM mesh many calcu-
lations in integration points can be run parallel and in Eindhoven we typically run
this kind of simulations on a cluster with 64 or 128 CPU’s.
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Discrete and Continuum Multiscale
Behaviour in Bacterial Communication

Sara Jabbari and John R. King

Abstract The interacting effects operating on subcellular (gene regulatory pro-
cesses), cellular (interactions between neighbouring cells) and population (sig-
nalling molecule transport) scales are exemplified and explored through simple
multiscale models. Specific attention is focused on how the upregulation (or
downregulation) of small numbers of discrete cells can influence the behaviour of
the population as a whole, by investigating toy models for positive autoregulation
and by the simulation of a much more detailed model for quorum sensing within a
Gram-positive population of bacteria. The implications for delays associated with
gene expression are also investigated in a spatio-temporal context through the
analysis of blow-up behaviour, as a mathematical symptom of upregulation
through positive feedback, in some model reaction-diffusion delay equations.

1 Bacterial Communication

The belief that bacteria within a colony operate independently of one another was
abandoned in the 1970s with the discovery of cell-density dependent behaviour in
the marine bacterium Vibrio fischeri [16]. It was found that these bacteria emit
light only when present at sufficiently high concentrations, most likely either to
obtain camouflage from predators (by mimicking moonlight on the water’s sur-
face) or to attract mates; at lower bacterial concentrations, the amount of light
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emitted would not merit the energy expended on generating the bioluminescence,
meaning that this phenotype should be induced only at high population density.
This understanding between the cells is mediated by extracellular signal molecules
and the process has been termed ‘quorum sensing’ (the behaviour of the bacteria
alters once a quorum has been attained). Cell communication is now known to be
prevalent throughout the bacterial kingdom [5, 28].

Though signalling pathways vary between species (most notably between
Gram-positive and Gram-negative bacteria) the phenomenon generally consists of
the production of diffusible signal molecules and their excretion into the envi-
ronment, allowing detection by other cells. The level of signal molecules in the
environment is a reflection of the population size or density, and the number of
signal molecules detected by an individual cell will determine the regulatory gene
cascade which is triggered and ultimately the behaviour of the cell. A sufficiently
well-mixed population should therefore act in a synchronised manner.

Since its discovery in the form of bioluminescence, quorum sensing has been
found to regulate a spectrum of bacterial behaviours, many of which, such as
biofilm formation, virulence, sporulation and swarming motility [5, 28], are
medically significant. Biofilm formation in particular causes huge problems on
medical implant devices such as catheters. Modelling quorum sensing in biofilms
poses additional complications since, unlike the relatively homogeneous popula-
tions that occur in other contexts, biofilms are highly heterogeneous, comprising
layers of mixed populations of cells with quorum-sensing signal production (and
therefore cell phenotype) varying throughout the biofilm. Spatial variation is
something on which we focus in the models presented later, albeit in contexts
much simpler than those arising in biofilms.

The goal of quorum sensing is often to coordinate a particular behaviour which
would be futile were the whole population not engaged. For instance, it is believed
that Staphylococcus aureus switches on the production of virulence factors,
thereby attacking the host, only when it is present in sufficient numbers to over-
whelm the resulting immune response [25]. Thus the population should act in a
concerted fashion. In other contexts, however, quorum sensing may not be regu-
lating the response of a large population. Since signal molecule build-up can arise
as a result of a confined environment, rather than a large population, quorum
sensing can also serve to detect environmental conditions (this is sometimes
referred to as diffusion sensing [23]). For instance, the same quorum-sensing
system in S. aureus (i.e. the agr operon) is thought also to trigger endosome escape
[22] (only one or two cells are contained within a host cell), whereby signal
aggregation determines the escape time.

We have also recently used a mathematical model of quorum sensing by
Clostridium acetobutylicum (which uses a modified agr operon) [10] to illustrate
that, if the quorum-sensing system is composed of fewer feedback loops (thus
softening the response), it is possible that it can be used to anticipate hostile
environments and, rather than coordinating behaviour at the whole population
level, send only a portion of cells to a sporulation fate (making them capable of
surviving these conditions). By maintaining a number in a vegetative state, the
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cells should still be able to profit from any potential favourable change in the
environment, thus facilitating a ‘‘hedge-betting’’ approach. Thus it should be
possible that quorum sensing is also used to control behaviour at a level some-
where between the whole population and the single cell.

Quorum sensing can therefore serve to regulate at a variety of levels. Multiscale
modelling is consequently required to describe quorum sensing accurately: sub-
cellular gene regulation informs behaviour of an individual cell which influences
increasing numbers of cells, potentially through to the whole population pheno-
type. At each of these levels, signal is relayed back to the intracellular processes,
linking each level together. Unlike the majority of previous mathematical models
of quorum sensing, we shall focus on heterogeneity of the phenotype within a
population of cells, rather than the population as a whole becoming fully quorate,
investigating effects associated with both discrete and continuous models. Many
quorum-sensing systems have been shown mathematically to be bistable, enabling
switch-like behaviour to arise between phenotypes (i.e. between downregulated
and upregulated behaviour). This bi- (or indeed multi-) stability is dependent upon
the number and nature of feedback loops within the system [26] and quorum-
sensing-induced transcription being significantly faster than the basal rate [7]. For
the case study proposed in Sect. 4 of this chapter, we consider a system with the
appropriate conditions to be bistable.

More broadly, our focus here is on the spatio-temporal modelling of autoin-
ductive (positive-feedback) processes such as those central to quorum sensing and,
specifically, on investigating effects that go beyond those that can be captured by
the classical [i.e. partial-differential equation (PDE)] models for such phenomena.
In keeping with this focus, we investigate in Sects. 2 and 3 two model problems
associated with the most explicit mathematical abstraction of a positive feedback
process leading to upregulation, namely blow-up behaviour, investigating firstly
the effects of delays associated with gene expression and secondly the effects of
discreteness on cell–cell communication. The latter is complemented by an
exploration in Sect. 4 of the influence of discreteness on wave propagation and
pinning in a more mechanistic, and hence significantly more complicated, discrete
model for a specific quorum-sensing system.

The ostensibly simple model problems we explore first seek to illustrate the
implications of a number of key effects: positive feedback (reflected by the source
terms in the systems studied below), nonlinearity (describing effects associated
with cooperativity in gene regulation: we focus on the simplest (quadratic) pos-
sibility, as applicable when, for example, regulation is governed by protein di-
merisation), discreteness (associated with the population being made up of
individuals or distinct compartments: it should be stressed that, while the discrete
models below take the form of finite-difference approximations to PDEs, here it is
the discrete problem that is to be regarded as the ‘true’ model and its continuum
limit as the approximation, rather than vice versa) and delays (which are inevitably
present in autoregulation for a variety of reasons). Our analysis will apply ideas
from (multiscale) matched asymptotic expansions and similarity methods, as well
as numerical simulations.
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The remainder of the chapter can be summarised as follows. Sects. 2 and 3
analyse respectively the effects of delay and discreteness on blow-up behaviour
(reflecting upregulation due to a positive feedback loop) in minimal models, in
each case investigating both linear and nonlinear (cooperative) feedback. Sect. 4
explores related effects by further characterising a preexisting [7, 9] model for
quorum sensing governed by the so-called agr operon. Finally, Sect. 5 briefly
discusses some of the implications of the results.

2 Spatio-Temporal Blow-Up Phenomena:
The Effects of Delays

The context for the current analysis is provided by two very widely studied PDE
models. Firstly, the simplest (linear) reaction-diffusion model1 takes the form

ou

ot
ðx; tÞ ¼ o2u

ox2
ðx; tÞ þ uðx; tÞ �1\x\þ1; ð1Þ

wherein the linear source term embodies the simplest class of positive-feedback
mechanism, leading (for finite-mass initial data) to infinite-time blow up2 in the
form

u� M

2ðptÞ
1
2

et�x2=4t as t! þ1; x ¼ Oðt1
2Þ

u� 1

2ðptÞ
1
2

X

�
x

t

�
et�x2=4t as t! þ1; x ¼ OðtÞ;

ð2Þ

for some constant M and arbitrary function X that satisfies Xð0Þ ¼ M. Secondly,

ou

ot
ðx; tÞ ¼ o2u

ox2
ðx; tÞ þ u2ðx; tÞ �1\x\þ1 ð3Þ

is an archetypal model for nonlinear positive feedback and one that has spawned
an extensive literature concerning its finite time blow up, an effect already illus-
trated by its spatial homogeneous solution

uðtÞ ¼ 1
tc � t

ð4Þ

for constant tc [ 0; the diffusion term in (3) turns out to have a rather limited
influence in mitigating such blow up, the competition between autoinduction

1 We for the most part adopt dimensionless forms containing the minimal numbers of parameters
in this section and the next.
2 Throughout we associate such blow up with upregulation (e.g. quorum sensing).
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driving a local increase in u and diffusion acting to smear out such a peak being an
intrinsic feature of such models.

Here we incorporate delays in feedback, typically associated in the autoregu-
lation of gene expression with the time needed for transcription and translation of
further copies of the relevant transcription factor but also attributable to intra-
cellular transport, for example. Thus in generalising (1) we investigate

ou

ot
¼ o2u

ox2
ðx; tÞ þ uðx; t � TÞ �1\x\þ1; ð5Þ

where T [ 0 corresponds to the delay time and we lump the entire signalling and
genetic machinery into the single variable uðx; tÞ, which could be thought of as the
concentration of a signalling molecule within a population of cells.

In the spatially homogeneous case, solutions to (5) can be written as a super-
position over modes of the form

uðtÞ ¼ AðkÞekt; k ¼ e�kT ð6Þ

for constants A, the large time behaviour being dominated by the real root for k,
whereby

k� 1� T as T ! 0;

k� 1
T

ln T as T ! þ1;
ð7Þ

i.e. the longer the delay, T , the lower the growth rate; it is this real root that we
denote by k in what follows. The large-time behaviour in the spatially structured
case (5) then follows readily: setting

uðx; tÞ ¼ ektvðx; tÞ

and treating v to be slowly varying in t (an assumption whose validity is readily
confirmed a posteriori) implies

ð1þ kTÞ ov

ot
� o2v

ox2

and hence

u� ð1þ kTÞ
1
2M

2ðptÞ
1
2

ekt�ð1þkTÞx2=4t as t! þ1; x ¼ Oðt1
2Þ; ð8Þ

so that the delay has the effect of reducing the effective diffusivity as well as the
growth rate. The behaviour as t! þ1 with x ¼ OðtÞ is also instructive and can
be characterised by applying the Liouville–Green (JWKB) method in the form

u� aðx; tÞe�f ðx;tÞ ð9Þ
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to give

of

ot
þ
�

of

ox

�2

þ eTof=ot ¼ 0;

the large-time behaviour to which takes the form

f ¼ tFðgÞ; g ¼ x=t

whereby (since FðgÞ satisfies a first-order ODE of Clairaut’s form) F is given
parametrically in terms of P � dF=dg by

F � gPþ eTðF�gPÞ þ P2 ¼ 0; �g� TgeTðF�gPÞ þ 2P ¼ 0;

so that

F� � kþ ð1þ kTÞg2=4 as g! 0;
F ¼ g2=4þ exponentially small terms as g! þ1;

the former being consistent with (8) [i.e., in the terminology of matched asymp-
totic expansions, matching with (8)] and the latter implying that the purely dif-
fusive effects dominate the far field, contrasting with the zero-delay case (2) in
which the feedback term continues to generate an exponentially growing
contribution.

We now turn to the more complicated nonlinear case

ou

ot
¼ o2u

ox2
ðx; tÞ þ u2ðx; t � TÞ �1\x\þ1

(in this case we could rescale T to 1 but we forego the opportunity). That this case
is both significantly more involved and qualitatively distinct from the zero-delay
version (3) is already apparent from the spatially uniform solution, which we
denote UðtÞ: applying the Liouville–Green method in the form

UðtÞ ¼ eUðtÞ as t! þ1

gives

UðtÞ� 2Uðt � TÞ; U�Uoet ln 2=T

for some constant U0 that depends on the initial data (implying strong sensitivity to
the initial state); constructing correction terms yields

UðtÞ� 4 ln 2
T

U0et ln 2=T eU0et ln 2=T
as t! þ1; ð10Þ

implying that blow up is in infinite, rather than in finite, time, albeit at a much
faster-than-exponential rate. In the spatially structured case we set
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uðx; tÞ ¼ UðtÞvðx; tÞ

to give

ov

ot
ðx; tÞ ¼ o2v

ox2
ðx; tÞ þ

_UðtÞ
UðtÞ ðv

2ðx; t � TÞ � vðx; tÞÞ:

We conjecture, then, that the large time behaviour takes the quasi-steady form

vðx; tÞ�VðfÞ; f ¼
�

_UðtÞ
UðtÞ

�1
2

x as t! þ1 with f ¼ Oð1Þ ð11Þ

whereby VðfÞ satisfies the novel nonlinear functional differential equation

d2V

df2 ðfÞ þ V2

�
f
ffiffiffi
2
p
�
� VðfÞ ¼ 0; V ¼ Oðe�jfjÞ as jfj ! 1; ð12Þ

where we have made use of (10), which implies in (11) that x ¼ Oðe�t ln 2=2TÞ, i.e.
that u is largest in an exponential narrow spike, and that the neglected terms are
exponentially smaller than those included. The dominant balance for larger x is
simply the heat equation

ou

ot
ðx; tÞ� o2u

ox2
ðx; tÞ; ð13Þ

u remains hyperexponentially large out to x ¼ Oðet ln 2=2TÞ, a caustic of the
resulting rays associated with the Liouville–Green approximation to (12) being
present in this exponentially large range of x. Confirmation of the applicability of
this postulated scenario of course requires in particular the existence of a non-
trivial solution of the boundary-value problem (12), which represents an open
problem; stability is also important: if a solution to (12) exists, it will be unstable
to modes associated with translations of t (or equivalently of U0) and of x, but
should not be to any others if it is to represent the generic large-time behaviour.

3 Spatio-Temporal Blow-Up Phenomena: The Effects
of Discreteness

The analog of the linear problem (1) now reads

dui

dt
ðtÞ ¼ t2ðuiþ1ðtÞ � 2uiðtÞ þ ui�1ðtÞÞ þ uiðtÞ; �1\i\þ1 ð14Þ

wherein the integers i are to be viewed as labelling distinct cells, the simplest
interpretation being that the signalling molecules (concentration uiðtÞ) can be
transported directly across the membranes of adjacent cells, the constant t2 being a
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measure of the rate of transport relative to that of production. Setting x ¼ i=t, the

large-time behaviour for x ¼ Oðt1
2Þ takes the form in (2) [note that (1) corresponds

to the large t limit of (14)] and the only novelty here concerns the regime
x ¼ OðtÞ, wherein the Liouville–Green [as in (9)] implies

of

ot
þ 4t2 sinh2

�
of

ox
=2t

�
þ 1 ¼ 0;

so that

F � gPþ 2t2ðcoshðP=tÞ � 1Þ þ 1 ¼ 0; �gþ 2t sinhðP=tÞ ¼ 0

and hence

F ¼ tg ln

��
1þ g2

4t2

�1
2

þ g
2t

�
� 2t2

��
1þ g2

4t2

�1
2

� 1

�
� 1;

so that

F� � 1þ g2=4 as g! 0; F� tg lnðg=tÞ � tg� 1þ 2t2 as g! þ1;

so the transfer by a finite distance between neighbouring cells that is associated
with discreteness leads to slower decay in the far field than occurs in the con-
tinuous case. More significant for what follows is that blow up occurs at a similar

rate over the range x ¼ Oðt1
2Þ, i.e. diffusion suffices to drive many cells into an

upregulated state at a similar time.
The situation with the nonlinear case

dui

dt
ðtÞ ¼ t2ðuiþ1ðtÞ � 2uiðtÞ þ ui�1ðtÞÞ þ u2

i ðtÞ �1\i\þ1 ð15Þ

(where we could choose to scale t out) is markedly different: blow up occurs in
finite time and does so generically over three cells only [in the case of quadratic
nonlinearity adopted in (15)]—the central one of these (i ¼ 0, say) has

u0ðtÞ� 1=ðtc � tÞ as t! t�c ; ð16Þ

as in (4), with transport having a negligible effect, while blow-up in the neigh-
bouring cells is driven by this one in the form

u1; u�1� t2 ln ð1=ðtc � tÞÞ as t! t�c ;

exhibiting less dramatic blow up than (16). Thus upregulation occurs within a
small number of cells only; in practice the nonlinearity will saturate at high
concentrations, leading to upregulation propagating out from this initial ‘quorate’
subpopulation.
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The limit t!1 is both physically meaningful and of mathematical interest
(specifically, in the associated continuum limit, blow up can occur at an arbitrary
real value of x, whereas in the discrete version the blow up point needs to be at an
integer i: the switch from continuous to discrete translation invariance in going
from the PDE to the differential-difference system has a number of important
implications for the proper understanding of such discrete problems, including for
the pinning phenomena noted later). We adopt the modified definition
x ¼ ði� icÞ=t, where ic 2 R is to be chosen such that blow up in the continuum
limit occurs at x ¼ 0. Setting

uiðt; tÞ� uðx; tÞ þ 1
t2

vðx; tÞ as t! þ1 ð17Þ

implies

ou

ot
¼ o2u

ox2
þ u2;

ov

ot
¼ o2v

ox2
þ 2uvþ 1

12
o4u

ox4
; ð18Þ

wherein the fourth derivative term is the sole remnant of discreteness thus far. The
blow-up behaviour of the first of (18) is well known and motivates the interme-
diate-asymptotic variables

u ¼ 1
ðtc � tÞ f ðn; sÞ; v ¼ 1

ðtc � tÞ2
gðn; sÞ; n ¼ x

ðtc � tÞ
1
2

; s ¼ � ln ðtc � tÞ:

Introducing

jðsÞ ¼ � o2f

on2

���
n¼0

with j! 0 as s! þ1 to be determined, it can be shown that

f � 1þ jðsÞ
�

1� 1
2
n2

�
þ j2ðsÞ

�
� 5þ 1

4
n4

�
as j! 0 ð19Þ

with

dj
ds
¼ �4j2; j ¼ 1=4ðsþ scÞ ð20Þ

arising as a solvability condition (cf., [3, 6], for example). Since gðn; sÞ satisfies a
linear problem, we may superpose the ‘complementary function’ contribution

g� � Tcð1þ jðsÞð1� n2ÞÞ; ð21Þ

corresponding to a shift of Tc=t2 in the blow up time tc, with the constant Tc

depending on the initial data, and a ‘particular integral’
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g� jðsÞb1 þ j2ðsÞ
�

b2 þ
1
8
n2

�
; ð22Þ

where b1 ¼ �1=8 follows from the solvability condition on the j2ðsÞ term (and
calculation of the constant b2 would similarly require a solvability condition at
higher order in the expansion).

It is clear from (20) that the expansion (19) is non-uniform at q � n=s
1
2 ¼ Oð1Þ

and on this scaling we have

1
2
q

of

oq
� f 2 � f ; f � 1=ð1þ q2=8Þ;

1
2
q

og

oq
� 2ðf � 1Þg; g� � ðTc þ 1=ð32sÞÞ=ð1þ q2=8Þ2;

where the first term in the numerator of g matches with (21) and the second with
(22). The fourth derivative term associated with discreteness first causes a non-
uniformity in the expansion in the n ¼ Oð1Þ region, doing so for T ¼ Oð1Þ where
we set

t ¼ tc þ T=t2; ui ¼ t2Ui;

discreteness coming fully into play here: at leading order the full balance

dUi

dT
¼ Uiþ1 � 2Ui þ Ui�1 þ U2

i

applies, but the required leading-order solution is fortunately spatially uniform, i.e.
we may set

Ui�
1

Tc � T
þ 1

ln t
WiðTÞ
ðTc � TÞ2

as t! þ1 ð23Þ

to give

dWi

dT
¼ Wiþ1 � 2Wi þWi�1;

the required solution to which is

Wi ¼
1
8

�
Tc � T � 1

2
ði� icÞ2

�
� 1

64
; ð24Þ

the final contribution being required to match into g and the others into f .
Because (23) and (24) happen to satisfy both the discrete problem and its

continuous limit, the T ¼ Oð1Þ timescale turns out to be innocuous; the one on
which significant behaviour occurs corresponds to a nonuniformity arising for
q ¼ Oð1Þ and has scalings [as also implied by (23)]
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t ¼ tc þ
1
t2

Tc þ
1

t2 ln t
Tz; ui ¼ t2 ln tUzi

giving

dUzi
dTz
�Uzi

2
; Uzi � 1

��
1

64
� Tz þ ði� icÞ2

16

�
ð25Þ

the diffusion term being logarithmically negligible; the extent of the analytical
progress that is possible with this problem is thus striking.

The conclusions of this t! þ1 analysis are of limited practical significance,
but are instructive in terms of the general issues associated with discrete to con-
tinuous limits. Firstly, the blow up time in (25) Tz ¼ Tzc depends on ic with

Tzc 2
�

1
64 ;

1
32

�
, the lower bound arising when the blow up point of the continuous

limit coincides with a cell location (i.e. with integer i) and the upper bound when it
is ‘half way between’ cells (integer iþ 1=2), i.e. (and not surprisingly) upregu-
lation is fastest when the peak of the initial profile (when specified throughout R)
can be regarded as coinciding with a cell. Secondly, the signal molecule distri-
bution at the blow up time is given as t! þ1 with i� ic ¼ Oð1Þ by

ui� t2 ln t
16

ðði� icÞ2 �minði� icÞ2Þ

for integer i; this represents single point blow up, but for the two neighbouring

cells there are additional contributions to Uzi of the form � ln ðTzc � TzÞ= ln t, the
associated further non-uniformity manifesting itself in the three-point blow up
described above.

We now turn to a more complicated differential-difference formulation that was
developed (see [9]) specifically to investigate quorum-sensing behaviour in S.
aureus, again focusing our discussion of phenomena that are explicitly associated
with discreteness and are multiscale in the sense that they reflect both subcellular
genetic regulation and population-level transport of signalling molecules.

4 A Quorum-Sensing Case-Study: The agr Operon

4.1 Background

We now move away from the generic and highly simplified representations of
processes such as quorum sensing given in the previous sections and investigate a
specific quorum sensing system using distinct equations to represent each relevant
component. The result is a spatially structured model of a population of bacteria
utilising an agr operon. This quorum-sensing system is found in a number of
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Gram-positive bacteria. First identified in the pathogen S. aureus [17], homologues
of the agr operon have since been found to also affect virulence factor production
in Listeria monocytogenes [24], Enterococcus faecalis (the fsr system) [14] and
Clostridium botulinum [2] and perfringens [1, 13] amongst others [29]. This
system, however, is not restricted solely to pathogenic bacteria: it has also been
found to regulate granulose formation and sporulation in C. acetobutylicum [27]
and cell morphology in Lactobacillus plantarum [4] for instance. The prevalence
of this system and the fact that it controls such a wide range of cell phenotypes in
different species render it particularly important to understand. Furthermore, since
the signal molecules can be secreted from the cells, cross-talk between strains and
species has been found to occur (for examples relating to S. aureus see e.g. [11, 19]
or [20]). Thus modelling of the agr operon traverses a number of scales—from
subcellular gene regulation, through cell phenotype, to population behaviour and
the repercussions upon multiple populations. We present here a model of a single
species, but examples involving cross-talk between species and strains can be
found in [8] and [9] and between two quorum-sensing systems within one strain in
[12] or [21] for example (though the last two studies consider quorum-sensing in
Gram-negative bacteria, so the systems studied are not agr homologues).

4.2 Model Formulation

Known agr operons have varying degrees of feedback contained within them:
some have every element of the operon up-regulated in response to signal mole-
cules, others only the elements controlling signal synthesis or those governing
signal detection and response. In order to ensure bistability3 in our system, we
consider an agr system in which every element is induced in response to increased
levels of quorum-sensing signal molecule, i.e. that first identified in S. aureus.

The operon consists of two genes (agrB and agrD) that interact to produce the
signal molecule (termed AIP: autoinducing peptide) and two genes (agrA and
agrC) which produce proteins to detect and respond to the AIP (these form a two-
component system); see Fig. 1. Ultimately, sufficiently high levels of signal
molecule induce high levels of phosphorylated AgrA (AgrA * P), which increase
transcription of both the agr genes and the downstream target genes (e.g. those
controlling virulence factor production). We have previously derived a spatially
structured model of the agr operon [9] which, under suitable simplifying
assumptions, could always achieve upregulation should there be no interference
with the operon. In order to investigate bistability, we cannot employ all of these
simplifications and detail must be added back into the model. The full (ordinary

3 Note that we are thus concerned in this section with the interactions between two stable states,
whereas the focus in the previous sections was on how the solution is driven away from an
unstable state (namely the trivial one).
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differential equation) model can be found in [7] and the simplifications which have
been made to arrive at the model in this chapter can be identified from [9]. For
conciseness, these details are omitted here. While we provide only the nondi-
mensional model, the full dimensional model is easily extrapolated from this and,
again, details can be found in [7]. The spatially structured model we consider is
accordingly given by:

oMi

os
¼ 1
�

vPi �Mi þ 1; ð26Þ

oAi

os
¼ kðMi � AiÞ � gAiR

�
i þ �lgAP; ð27Þ

oBi

os
¼ aðMi � BiÞ; ð28Þ

oSi

os
¼ kðBi � SiÞ � �ksTiSi; ð29Þ

oTi

os
¼ kðBi � TiÞ; ð30Þ

oai

os
¼ 1
�2

kb/
g

TiSi �
1
�
bRiai þ

1
�
bcR�i � kaai þ D

ðaiþ1 � 2ai þ ai�1Þ
h2

; ð31Þ

oRi

os
¼ kðBi � RiÞ � �

g
/

Riai þ �
gc
/

R�i ; ð32Þ

genes associated with the
quorum−sensing−induced phenotype

AIP

agrBDCA

mRNA

AgrD

AgrB AgrC

AgrA

Fig. 1 Schematic representation of the agr system. Arrows illustrate the positive feedback loop.
AgrB and AgrC are transmembrane proteins, while AgrD is anchored to the cell membrane
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oR�i
os
¼ Riai � ðkþ cÞR�i ; ð33Þ

oAPi

os
¼ AiR

�
i � ðkþ �lÞAPi; ð34Þ

oPi

os
¼ APið1� PiÞ � uPi; ð35Þ

in 0\x\1, where i ¼ 0; . . .; p. All variables except Pi represent subcellular
processes in a population of cells on a one-dimensional interval with the region
divided into p equally spaced (of dimensionless size h ¼ 1=p) compartments; we
treat each compartment as containing a subpopulation of identically behaving
cells. In the current context it is preferable to view i as labelling distinct sub-
populations rather than individual cells; since it is not our intention here to explore
the detailed biological implications of the model results, the distinction is in any
case somewhat moot. In (31), D=h2 captures the role played by t2 in Sect. 3,
governing the rate of transport between compartments. Piðx; sÞ defines the quo-
rum-sensing activity level of the population of cells in compartment i (P� 1 is
quorum-sensing inactive, while P� 1 is fully active); see Table 1 for definitions of
the other variables and Table 2 for the rates represented by the nondimensional
parameters.

Focusing on signal accumulation, we assume there is no flux across the
boundaries (i.e. signal molecules cannot be lost to, or gained from, the surrounding
environment) yielding the conditions:

a�1 ¼ a1 and apþ1 ¼ ap�1 ð36Þ

(see [9]). For each simulation we vary the initial conditions of the system, with
different sections of cells beginning in an inactive (non-quorum-sensing) state, and
others in an active (quorum-sensing) state. Hence we monitor diffusion of the
signal molecules across the region, envision the resulting cell communication and
investigate the ability of these cells either to retain their initial state or to pull the

Table 1 Variables
representing elements of the
agr operon. In addition, P
represents agr activity levels
(see text)

Variable agr element

M mRNA
A AgrA (response regulator)
B AgrB (processes the signal molecule)
S Transmembrane AgrD (signal precursor)
T Transmembrane AgrB
a AIP (signal molecule)
R Transmembrane AgrC (receptor)
R� Phosphorylated AgrC (AIP-bound)
AP Phosphorylated AgrA (activated)
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other cells into the same state. To represent an already active cell, we use the
following (dimensionless) initial conditions:

Miðx�; 0Þ ¼ Biðx�; 0Þ ¼ Siðx�; 0Þ ¼ Tiðx�; 0Þ ¼ 10;

Aiðx�; 0Þ ¼ Riðx�; 0Þ ¼ APiðx�; 0Þ ¼ 5; aiðx�; 0Þ ¼ 100;

R�i ðx�; 0Þ ¼ 30; Piðx�; 0Þ ¼ 0:9;

ð37Þ

where x� is the region(s) containing these cells. These initial conditions loosely
characterise the up-regulated steady state of a cell in the spatially homogeneous
case (this varies with diffusion rate). For inactive cells, we simply assume zero
initial conditions for all variables in the relevant compartment(s).

4.3 Numerical Solutions

The discrete system is solved in Matlab v7.14 using the ODE15s solver. In the
numerical solutions displayed, the interval is broken into p ¼ 50 compartments
(chosen for ease of illustration). To verify that the results are qualitatively re-
produceable in the continuum limit, the equations have also been solved with
larger numbers of discretisations.

To investigate multi-stability, we first consider the well-mixed non-spatial
version of (26)–(35). We find that a key parameter, k, can generate bistability in
the system, see Fig. 2. k captures the degradation rate of all intracellular proteins
in the agr system. Low values of this parameter result in the preservation of the
agr machinery to the extent that the response regulator (AP) will always build-up,
reach a critical level and trigger activation (P! 1). Increasing k renders this less
and less likely to occur, eventually resulting in guaranteed downregulation. In

Table 2 Interpretations of the nondimensional parameters

Nondimensional parameter Interpretation

a AgrB becoming transmembrane
b AIP binding to receptors
g Receptor loss through AIP binding
c Spontaneous separation of AIP and receptors
k Natural protein degradation
ka Natural AIP degradation
l Housekeeping dephosphorylation of AgrA
/ Activation of AgrA
D Diffusion coefficient of AIP
k AIP production
kS AgrD loss through AIP production
u Unbinding of active AgrA from the DNA binding site
v Ratio of activated agr transcription to basal transcription
� Ratio of basal to QS-induced transcription
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between, there exists an interval of k in which the cells can achieve either state,
depending upon the initial conditions. For the following numerical simulations we
consider two values to examine what can happen as you near either extreme of this
region. All other parameters (except D which is varied for each simulation and
stated in the corresponding caption) are taken to be unity and scaled with the small
parameter � ¼ 0:1 [as written in (26)–(35)] where necessary, as per [7].

4.4 k¼ 25: Slower Protein Degradation Renders the Achievement
of Quorum Sensing Activity Easier

We begin by considering k ¼ 25. On examination of Fig. 2, one can see that this
falls to the lower end of the bistable region, meaning that the cells are more likely to
be drawn towards an active state in the well-mixed scenario (this being initial
condition dependent). In Fig. 3, several solutions are illustrated with varying initial
conditions and diffusion rates. We depict the steady-state value of P across the full
region, i.e. the final level of quorum sensing activity. For each subfigure, the
number of compartments, n, initially selected to be quorum sensing active increases
as we move through the plots (the exact number is given above each graph).

In Fig. 3a, the rate of signal molecule diffusion is so low that the whole interval
of cells simply retain their initial states: insufficient ‘‘communication’’ occurs
between them and they act as single entities. Increasing D in Fig. 3b (so that the
signal molecules will spread out more readily) yields a different pattern which
enables the visualisation of cell communication: the central cells are able to drag
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1
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Fig. 2 Steady-state diagram for P when the model is well-mixed (e.g. when D!1 and there is
no spatial variation in the initial condition). Stable steady states are given by solid lines and
unstable by the dashed line. Protein degradation rate is given by k. A range of k exists where the
system is bistable: the cells will either reach an active or inactive state, depending upon the initial
conditions of all variables. Outside this region, either activation (low k) or inactivation (high k) is
guaranteed

314 S. Jabbari and J. R. King



the surrounding cells into an up-regulated state. Interestingly, for 3� n� 45, all
compartments except two at either extremity become active, with the remaining
four receiving insufficient signal for them to become active: the very outer com-
partments receive signal from only one direction; that these are therefore not up-
regulated has a knock-on effect on the adjacent cells. The population is effectively
divided into active and inactive populations at steady state because the subcellular
processes are unable to even out sufficiently across the interval for the entire
population to upregulate (i.e. to achieve quorum).

Successively increasing D first leads to only the very outer compartments
remaining down-regulated and then to all the cells becoming quorum-sensing
active, see Fig. 3c and d. Thus while the machinery is the same at the subcellular
level, the phenotype of particular cells can be strikingly different, the effect being
associated with the well-known phenomenon of wave pinning (failure of signal
propagation) that occurs in such discrete systems (e.g. [15, 18]) but not their
corresponding continuous limits.
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Fig. 3 The steady state of P, representing the final quorum sensing activity levels across the
interval, with k ¼ 25. Higher values of P 2 ½0; 1� represent compartments of cells which have
been induced into an active state by the quorum sensing machinery and signal accumulation. n
central compartments begin in an active state (red circles), as given by (37). 51� n outer
compartments have zero initial conditions for all variables (blue crosses). In a D ¼ 4	 10�5,
b D ¼ 8:12	 10�5, c D ¼ 8:2	 10�5 and d D ¼ 8:4	 10�4. Thus as we move down the plots,
the diffusion rate increases and as we move across, the number of compartments initially starting
active increases. Complementary time-dependent solutions are illustrated in Fig. 4
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In Fig. 4 some complementary time-dependent solutions are given for each
value of D employed in Fig. 3. The time taken for the cells to evolve to their
steady state varies significantly with diffusion rate and initial conditions.

4.5 k¼ 40: Faster Protein Degradation Requires Greater Signal
Accumulation for Quorum to be Attained

An alternative scenario is that protein degradation, compared to other reactions
within the cell, is sufficiently high that the quorum-sensing machinery must work
much harder to make one or more cells active, making the down-regulated state in
some sense more stable than the active one (i.e. the converse case to that described
in Sect. 4.4); enhancing protein degradation could provide a mechanism for pre-
venting virulence, so scenarios such as that described here are of interest in ana-
lysing possible treatments for bacterial infections. Again, a number (n) of central
compartments is chosen to begin in an active state, but this time the cells are more
likely to be drawn into an inactive state by loss of signal molecules to neigh-
bouring inactive cells.

Fig. 4 Time dependent solutions when k ¼ 25 (these correspond with the steady state plots in
Fig. 3), identical initial conditions for each are employed (n ¼ 19 central compartments begin in
an active state) and with various diffusion rates: a D ¼ 4	 10�5, b D ¼ 8:12	 10�5,
c D ¼ 8:2	 10�5 and d D ¼ 8:4	 10�4. Moving through the plots, it is easy to see the effect
of increasing the diffusion rate: more and more outside compartments are drawn into the up-
regulated state by the central (initially active) compartments
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Contrasting Fig. 5a and b we see that low diffusion (cutting off communication
with adjacent cells) or sufficiently large n (making the initially active population
larger) is required to retain (localised) upregulation. See also the time-dependent
solutions in Fig. 6. These solutions are clean-cut reflections of the essence of
quorum sensing: a small population in its own right can be active in the correct
environment, but if this population migrates to a more open environment con-
taining inactive cells, the associated signal dilution could imply that the subcel-
lular mechanisms will force the smaller population to react to its neighbours and
transition to near-identical behaviour.

For values of D within a certain range, we obtain some particularly interesting
behaviour, however, in which the distinction between the central and outer cells can
become much more blurred than in Sect. 4.4. In Fig. 5c it is evident that some of the
central cells can lose their quorum-sensing activity, with those left in the centre
effectively forming a new smaller population of active cells. Increasing the diffusion
rate beyond this range means that (unless all but two compartments begin active) the
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Fig. 5 The steady state of P, representing the final quorum sensing activity levels across the
interval, with k ¼ 40. Compared with Fig. 3, this higher value of k renders more signal
accumulation required to achieve upregulation. n central compartments begin in an active state
(red circles), as given by (37). 51� n outer compartments have zero initial conditions for all
variables (blue crosses). In a D ¼ 1	 10�3, b D ¼ 8	 10�3, c D ¼ 2:2	 10�2 and
d D ¼ 2:3	 10�2. Thus as we move down the plots, the diffusion rate increases and as we
move across, the number of compartments initially starting active increases. Complementary
time-dependent solutions are illustrated in Fig. 6

Discrete and Continuum Multiscale Behaviour in Bacterial Communication 317



signal will diffuse out too quickly and any activity is lost right across the full
interval, see Fig. 5d (in medical terms, this might represent a successful treatment).

5 Discussion

We have sought in the analysis above to demonstrate some of the explicitly
multiscale behaviour that can arise in even the simplest spatio-temporal models
describing gene-regulatory and signalling processes: we emphasise that capturing
true biological complexity requires much more detailed, and hence involved,
models, but contend that the phenomena which arise in our model problems are
both of mathematical interest in their own right and instructive to gaining insight
into the qualitative properties that are shared by more realistic models arising in
integrative systems biology, but which may be obscured by the complexity of such
models. Given the breadth of the field, we have chosen to focus on two particular
classes of effect that are absent from the PDE models most commonly explored in
classical mathematical biology, namely delay effects and, most extensively, the
implications of the discreteness that is intrinsically associated with populations

Fig. 6 Time dependent solutions when k ¼ 40 (so these correspond with the steady state plots in
Fig. 5), identical initial conditions for each are used (n ¼ 39 central compartments begin in an
active state) and with various diffusion rates: a D ¼ 1	 10�3, b D ¼ 8	 10�3,
c D ¼ 2:2	 10�2 and d D ¼ 2:3	 10�2. As the diffusion rate is increased, the signal molecules
spread out further and, since greater signal accumulation is required than in Fig. 4 because the
protein degradation rate is higher, when this arises the cells are all dragged into an inactive state
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being made up of individual cells.4 We conclude by revisiting some aspects of
these phenomena and noting some obvious omissions.

Delay effects (Sect. 2) have a significant impact on the time dependence of the
initial stages of the behaviour of an autoinductive process. Discreteness (Sect. 3)
by contrast has little influence on the rate of upregulation but can affect signifi-
cantly the extent to which initial quorum-sensing behaviour (say) is localised.
Wave propagation and pinning (Sect. 4) make explicit how discreteness can block
propagation of a switch in phenotype and hence whether or not an entire popu-
lation may upregulate or downregulate in response to the state of a subpopulation.5

It scarcely need be said that numerous potentially important effects have been
ignored, even at the level of generic modelling (combinations of discreteness and
delays, stochastic behaviour etc.): applications to systems biology of such multi-
scale spatio-temporal systems can be expected to continue to raise a wide variety
of novel mathematical challenges.
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Wound Healing: Multi-Scale Modeling

Fred J. Vermolen and Amit Gefen

Abstract This chapter is meant as an overview of our already published work that
we carry out on modeling wound healing on the cellular, colony and tissue scale,
though we detail the description of some stochastic principles that appear in our
models. The relation between the scales is described in terms of the underlying
biological and mathematical concepts. We also present the implications and
applicability of the mathematical models studied.

1 Introduction

Wound healing is a very complicated process with the following partly overlap-
ping phases: inflammation—proliferation—remodeling. During the post-bleeding
inflammatory phase macrophages and white blood cells (leukocytes) enter the
wound site to clear up invading harmful agents and bacteria through the broken
network of capillaries. If a patient suffers from diabetes, then the capillary walls
are suffering from an increased stiffness by which they can break down, and extend
less due to a decreased flexibility, and thereby transport less blood containing
oxygen and indispensable nutrients. Co-agulation of blood occurs to shut-off the
wound. This is followed by angiogenesis, to restore the capillary network, dermal
regeneration, which involves contraction due to traction forces exerted by
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(myo-)fibroblasts, as well as wound closure by the keratinocytes that form the
basis of the epidermis (epithelium).

Many in-vitro experimental and clinical in-vivo studies have been carried out to
scrutinize the biological mechanisms that take place during the very complex
process of wound healing. Unfortunately, still many of the underlying biology is
still unclear despite the long lasting research in wound healing. In order to improve
and to prevent wounds, such as pressure ulcers or diabetic ulcers, it is important to
quantify the influence of the related partial processes taking place during the
healing of wounds. This quantification can be done using statistical analyses on
raw data using for instance genetic algorithms or other forms of artificial intelli-
gence such as neural networks. Since much data lack detailed quantitative aspects,
this holds for in-vivo data in particular, mathematical modeling is also a very
helpful tool for the quest of the interrelations between the parameters involved.
The challenge is either to build a complicated mathematical model that contains as
many of the biological parameters as possible, or to construct simple models that
contain a minimum number of parameters such that only those parameters and
processes that have the largest impact on the healing kinetics are taken into
account. The first class of models will involve many biological parameters that
need to be determined using complicated inverse modeling or any other type of
regression analysis, in which the valid question arises whether the set of param-
eters determined is the actual solution or that one should take another combination
of the parameters involved which reproduces the experiments (almost) equally
well. In other words, the question of uniqueness arises in a natural setting. This
concern is overcome by the construction of a simplified formalism of a certain
(partial) biological process occurring in wound healing. In this paper, we will
highlight the latter class of mathematical models: simplified models for partial
processes occurring during wound healing. We will look at models designed for
various scales and attempt to describe the relations between these models in terms
of the underlying biology and mathematics.

Since wound healing involves basic biological processes like cell migration as a
result of chemico-mechanical stimuli and random walk, cell proliferation and
growth, cell differentiation, cell death, secretion and signaling of growth factors,
we will incorporate many of these processes in a different way into the models at
the various scales considered. To apply these processes, one basically considers
the following mathematical approaches:

• Continuum-based partial differential equations involving transport (random
walk, chemo-tenso taxis) and mechanical balances (visco-elasticity) on a tissue
scale;

• Cellular scale involving discrete lattice models like the cellular Potts model,
cellular automata models (involving a minimization of a virtual energy with a
Monte-Carlo like scheme), or the continuous semi-stochastic approach by
Vermolen and Gefen [1] and Byrne and Drasdo [2];
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• Phenomenological models where the wound healing is modeled as a moving
boundary problem where the interface moves as a result of a growth factor and
local curvature.

The first approach involves very complicated models where many badly known
biological input-parameters are needed. A big advantage is the fact that these models
take relatively many biological parameters and subprocesses into account and that
large tissue areas and large wounds can be modeled. This class of models can be
applied to real-like in-vivo wounds of the order of centimeters or even larger. The
domain of computation needs to be discretized to obtain a finite-element (or any
other discretization) discretization in order to approximate the solution of the
resulting boundary value problems formulated in terms of partial differential
equations and its initial/boundary conditions. The parameter space and limited
availability of appropriate values is a serious drawback of this class of models.
An example concerns the availability of diffusion coefficients (i.e. random walk) or
chemotactic coefficients or proliferation coefficients, see [3–6, 7–10, 11, 12, 13, 14,
15, 16] to mention a few of them. The second class of models only takes few
parameters into account, but stays close to biology if one models in-vitro experi-
ments. An extension to in-vivo cases is not straightforward since one typically will
need to consider a large domain of computation and thereby making the number of
cells or lattice points to be considered extraordinarily large. However, information
from experiments concerning cell motility as a function of the acidity for instance,
can be incorporated in a relatively straightforward manner. Examples are the studies
presented in [1, 2, 17, 18, 19, 20]. The third model class takes few parameters as well,
however, there is not much biology involved. An advantage of this class of models
is, if the model has been set up in a clever way, that the small number of parameters
involved can be adjusted such that experimental cases can be modeled in both
in-vitro and in-vivo situations. See for the instance [21, 9, 22, 23].

In the manuscript, we will describe these classes of models and discuss their
applicability. We will mainly focus on a recently developed continuity-based
model from the second class on cellular level. Of course the models from the
cellular automata-class, such as the cellular Potts model, can be positioned in the
same kind of models. This continuous-based model mimics the migration of a
collection of cells on a planar substrate, where we also take into account a bac-
terially infected zone where an increased acidity, resulting from the competition of
cells and bacteria on oxygen and nutrients, impairs cellular mobility without the
use of a predefined computational lattice. We will show some examples of sim-
ulations. In this model cell motion is a partly stochastic process. Cell death and cell
division are modeled as stochastic processes. The original formulation of the
model can be found in Vermolen and Gefen [1]. Furthermore, we will show some
results from a newly constructed cell deformation model under the influence of
chemotaxis. Finally, we address how the results from a small scale model can be
used as input for a large scale model.
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2 Mathematical Models: From Cell Scale to Tissue Scale

In this section, we consider some mathematical models at various scales where we
introduce the models first to make the present manuscript complete. In the next
chapter, we will describe the link between modeling at various scales in terms of
the underlying biology and mathematics. In this chapter, we will mainly focus on
cell migration, proliferation and death.

2.1 The Cell Scale

In this class of model, we consider the deformation during migration of individual
cells. The cells are assumed to migrate as a result of a chemical signal. We bear in
mind that the mathematical description of the influencing signal is generic and can
easily be adapted and used to model cell deformation and growth as a result of a
mechanical signal.

2.1.1 Random Walk: From Bacteria or Cells to Probability

The model can be applied to bacterial sources where individual bacteria make the
surrounding tissue more acid by the effective production of biotic lactates as a
result of the competition between the bacteria and cells for the available nutrients
and oxygen, which make white blood cells move towards the infectious bacteria,
or it can be applied, for instance, to the migration of fibroblasts or keratinocytes,
among others, towards the wound region due to the signaling agents released by
platelets that are in the coagulated area of the wound. In the case of modeling
individual randomly moving bacteria, we use a random walk model with a sto-
chastic differential equation based on Ito-processes. The model may also incor-
porate the bacteria in an upscaled way so that only bacterial densities are
considered. First, we consider the individual random walk of bacteria. Then, in
three dimensions, the equation of motion does not contain any deterministic drift,
hence for the motion of the bacterium, we obtain

dXðtÞ ¼ rdWðtÞ; dYðtÞ ¼ rdWðtÞ; dZðtÞ ¼ rdWðtÞ; for t [ 0;

ð1Þ

subject to the prescribed initial bacterial condition ðXð0Þ; Yð0Þ; Zð0ÞÞ ¼
ðX0; Y0; Z0Þ; where the co-ordinate positions are independent. Here WðtÞ is a
Wiener process, or Brownian Motion such that the position of the bacterium is
distributed normally with mean coordinates ðX0; Y0; Z0Þ and variance of r2t for
each coordinate direction. Formally, the Wiener process satisfies the following
requirements:
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• Wð0Þ ¼ 0;
• The increments, Wðtkþ1Þ �WðtkÞ and WðtkÞ �Wðtk�1Þ are independent for any

0� tk�1\tk\tkþ1;
• For 0� s� t; the increment WðtÞ �WðsÞ has the Gaussian distribution with

mean 0 and variance t � s; i.e. WðtÞ �WðsÞ�Nð0; t � sÞ:

Further, WðtÞ is ‘stochastically continuous’ (limt!s PðjWðtÞ �WðsÞj[ �Þ ¼ 0),
where P stands for the probability. The formal analytic solution,

XðtÞ ¼ X0 þ rWðtÞ; YðtÞ ¼ Y0 þ rWðtÞ; ZðtÞ ¼ Z0 þ rWðtÞ;
for t [ 0;

ð2Þ

can be given, however the differential form is more useful in this study from a
practical point of view. The equations are classically numerically solved using the
Euler–Maruyama Method, given by

X̂iþ1 ¼ X̂i þ rDWiþ1; X̂0 ¼ ðX0; Y0; Z0Þ: ð3Þ

Here each component of DW is a normally distributed stochastic parameter with
zero mean and variance Dt; denoted by Nð0;DtÞ; and it can be proved that [24]
each component m satisfies DWm

iþ1 ¼ Wm
iþ1 �Wm

i �Nð0; 1Þ
ffiffiffiffiffi
Dt
p

; in other words, a
Gaussian distribution with zero mean and a variance of Dt: We show a run of the
solution of the stochastic differential equations with one bacterium initially located
at ð0; 0; 0Þ with mobility r ¼ 2:6833 � 10�5 m/

ffiffi
s
p
: This value was chosen from

[25] and corresponds to the classical bacillum in Fig. 1. Figure 1 shows the tra-
jectory of the bacterium over time in three dimensions. Since Fig. 1 only gives one
specific run, the trajectory itself is a stochastic parameter and hence for many
purposes the probability density function is of more importance. To this extent,
since dWðtÞ�Nð0; 1Þ

ffiffiffiffi
dt
p

and WðtÞ�Nð0; 1Þ
ffiffi
t
p
; the probability density for the

position of the bacterium at time t for each coordinate direction satisfies

fmðt; mÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2t
p exp ð� ðm� m0Þ2

2r2t
Þ; m 2 ðX; Y ; ZÞ: ð4Þ

Since the Brownian motion in each coordinate direction is an independent
stochastic event, the multi-variate probability density is given by

f ðx; y; zÞ ¼ 1

ð2pr2tÞ
3
2

exp ð� ðx� X0Þ2

2r2t
Þ; ð5Þ

which solves the initial value problem in R
3

of

ot
� r2

2
Df ¼ 0; f ð0; ðx; y; zÞÞ ¼ dðx� X0Þ: ð6Þ

Here dðxÞ represents the Dirac Delta Distribution in three dimensions, with
characteristics
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dðxÞ ¼ 0; for all ðx; y; zÞ 6¼ ð0; 0; 0Þ;
R

X3ð0;0;0Þ
dðx; y; zÞdX ¼ 1;

ð7Þ

where X is subset of R
3 with nonzero measure. For r2

2 ; which represents the

diffusivity, we used r2

2 ¼ 3:6 � 10�10 m2/s (bacillum at 37 �C). Note that if D rep-

resents the diffusivity of a species, then r ¼
ffiffiffiffiffiffi
2D
p

: Equation (5) represents a
fundamental solution to the three-dimensional diffusion equation (in an unbounded
domain), and it represents the probability density that the bacterium is localized at
position ðx; y; zÞ at time t. Note that Eq. (5) is very helpful in deriving the relation
between the stochastic differential equation of Langevin type with zero drift, see
Eq. (1) and the diffusion equation (12). The probability that a region X contains
the bacterium at time t is then given by

Pðt;XÞ ¼
Z

X

f ðt; ðx; y; zÞÞdX; ð8Þ

and note that
R
R

3 f ðt; ðx; y; zÞÞdX ¼ 1 for t� 0: We remark that if drift is incor-
porated through l ¼ ðlx; ly; lzÞ; then Eq. (1) becomes

dXðtÞ ¼ lxdt þ rdWðtÞ; dYðtÞ ¼ lydt þ rdWðtÞ; dZðtÞ ¼ lzdt þ rdWðtÞ;
ð9Þ

for t [ 0; with exact solution, if lx; ly; lz and r are constant,

XðtÞ ¼ X0 þ lxt þ rWðtÞ; YðtÞ ¼ Y0 þ lyt þ rWðtÞ;
ZðtÞ ¼ Z0 þ lzt þ rWðtÞ; ð10Þ

Fig. 1 The trajectory of a
bacterium originally located
at ð0; 0; 0Þ and moving
according to Brownian
motion with r ¼
2:6833 � 10�5 m/

ffiffi
s
p
; which

corresponds to a bacillum at
37 �C
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It is easy to check the validity of the exact solution using Ito’s calculus. The drift
term could possibly result from chemotaxis or fluid flow and induces a temporarily
shifting mean in the probability density, hence Eq. (5) is altered into

f ðx; y; zÞ ¼ 1

ð2pr2tÞ
3
2

exp �ðx� ltÞ2

2r2t

 !

: ð11Þ

It can be shown by the use of some elementary algebra that this function solves the
Fokker–Planck equation

of

ot
þr � ðlf Þ � r2

2
Df ¼ 0; f ð0; ðx; y; zÞÞ ¼ dðx� X0Þ: ð12Þ

The above concepts are very standard and were, for the case of unbiased
random walk, originally derived by Einstein to study Brownian motion of a par-
ticle. Note that we modeled the bacteria as point-sources so far. The extension to
multiple bacteria, say n; is somewhat straightforward upon approximating the
bacterial motion of each bacterium as independent stochastic processes. The
probability follows from the binomial distribution that is used to compute the
probability of k successes out of n trials where the probability of success is given
by p. Since then the probability that a certain region, say X possesses k� n
bacteria is determined through

pðt;X; kÞ ¼ n
k

� �
ðPðt;XÞÞkð1� Pðt;XÞÞn�k: ð13Þ

Hence the probability that this region X contains at least one bacteria is given by

pðt;X; k� 1Þ ¼ 1� ð1� Pðt;XÞÞn � nPðt;XÞ; ð14Þ

where the last approximation is only accurate for Pðt;XÞ 	 1: This approximation
enables us to approximate the probability density function for n particles by
nf ðt; ðx; y; zÞÞ at those positions away from the initial bacterial positions. Note also
that for t [ 0 the probability density function(s) becomes finite at each position
and that we can take the limit measðXÞ ! 0; to get an arbitrarily small probability
as the volume considered tends to zero. Hence the approach can be extended to
solving f in the case of a multi-bacterial environment under the application of the
superposition principle for linear diffusion equations. These concepts can be used
to model the bacterial density using the same partial differential equations. One
can also evaluate a convolution over the domain of computation to get the bacterial
density in case of a (piecewise) continuous initial bacterial distribution.

2.1.2 A Cell Deformation Model

In the literature, many models for cell deformation exist [26, 17], to mention a few
of them. As far as we know, one of the major issues is that most of these models
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are based on the solution of partial differential equations, and often the level-set
method is used to compute the position of the cell boundary, see for instance [26].
The level-set method requires the solution of a set of partial differential equations,
such as the level-set function itself, whose zero level curve typically coincides
with the cell boundary, the extension of the boundary velocity and a tedious re-
initialization procedure which can be done by the fast-marching method based on
the shortest-path optimization procedure, or via the solution of another nonlinear
partial differential equation. Despite the enormous flexibility of the level-set
method in terms of the ability to track interfaces also in cases where topological
changes take place, the method is very expensive. Therefore, we choose to present
a simpler method, which has been published only very recently in Vermolen and
Gefen [17]. This model is based on the sensitivity of cells to a chemical and can
therefore be applied to simulate cell migration and deformation as a result of
chemotaxis. To this extent, the cell boundary, either in 2D or in 3D, is divided into
gridnodes, which have the ability to move according to the gradient of the con-
centration of a certain chemical. This chemical could be a source of nutrition,
oxygen, a growth factor or a poisonous chemical. Further, these points are con-
nected to their neighbors and to the nucleus via springs, see Fig. 2 for a schematic
representation. In this way, surface tension of the cell membrane and the con-
nection between the membrane and nucleus via the ligaments in the cytoplasm are
dealt with. First, we consider the modeling of the chemical sources and subse-
quently we consider the equations of motion of the points on the cell boundary.

To approximate the concentration of the chemical that gives raise to chemo-
taxis, we will use an approach based on Fundamental solutions of the diffusion
equations in unbounded domains such as Eq. (5). For the release of the chemical

Fig. 2 A schematic of the
distribution of springs that
forms the backbone of the
cell skeleton in the model
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agent that attracts cells, we assume all sources to be very small compared to cell
areas and therefore, we approximate these sources as point-sources. Here, we will
assume that a point source is able to move, for instance via Brownian motion, but
that the diffusion-field that surrounds it, sets in either instantaneously or gradually
builds up in time. These point sources can correspond to either bacteria or to points
on the cell boundary of other cells. First we consider the instantaneous diffusion
field. For this purpose, we consider a point-source in 2D that moves according to a
trajectory ðXðtÞ; YðtÞÞ moving under (biased) Brownian motion for instance [see
Eq. (1) or (9)], for which we have for ðx; yÞ 2 R

2 and t [ 0

�DDc ¼ cðtÞdðx� XðtÞ; y� YðtÞÞ: ð15Þ

Here c denotes the concentration of the chemical, which diffuses with a diffusion
coefficient D. Further, c denotes the strength of the point-source, which may
change in time as a result of being present or not being present, and dð:Þ denotes
the Dirac Delta Function. The solution to this differential equation is given by

cðt; ðx; yÞÞ ¼ � cðtÞ
2pD

lnððx� XðtÞÞ2 þ ðy� YðtÞÞ2Þ; ð16Þ

in R
2; which can be found in textbooks like for instance [27]. For the 3-D case, we

report that the Green’s Function is given by

cðt; ðx; y; zÞÞ ¼ 1
4pDjjx� XðtÞjj ; ð17Þ

In the case of multiple, say n, sources, with intensities cj and positions
ðXjðtÞ; YjðtÞÞ; linearity of the diffusion equation allows us to use the superposition
principle, to obtain

cðt; ðx; yÞÞ ¼ �
Xn

j¼1

cjðtÞ
2pD

lnðjjx� XjðtÞjj2Þ: ð18Þ

For a continuously distributed source-function Qðt; ðx; yÞÞ that is non-zero in X 

R

2; we get the following convolution-based solution

cðt; ðx; yÞÞ ¼ � 1
2pD

R

X
Qðt; ðx; yÞÞ lnðjjx� xjj2ÞdX; ð19Þ

where the above integral is evaluated over ðx; yÞ: The 3D case can be treated
analogously.

For the case of a transient diffusion field, we proceed analogously to the steady-
state case with the application of delta-functions to deal with the point sources,
then we arrive at

oc
ot � DDc ¼ cðtÞdðx� XðtÞ; y� YðtÞÞ; for ðx; yÞ 2 R

2; t [ 0; ð20Þ
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in which we assume that ðXðtÞ;YðtÞÞ represents a certain trajectory. Initially, the
concentration is assumed to be zero, and then the following solution for the 2-
dimensional case, as a Green’s Function, is derived according to the principles
outlined in Evans [27]:

cðt; ðx; yÞÞ ¼
Rt

0

cðsÞ
4pDðt�sÞ exp � jjx�XðsÞjj2

4Dðt�sÞ

� �
ds; ð21Þ

for the two-dimensional case and

cðt; ðx; y; zÞÞ ¼
Rt

0

cðsÞ
ð4pDðt�sÞÞ3=2 exp � jjx�XðsÞjj2

4Dðt�sÞ

� �
ds; ð22Þ

for the 3-D case, see also Eq. (5). Using this Green’s Function, any solution with
sources having a compact support, but non-zero measure can be constructed, or
any initial condition, by the application of superposition arguments that result into
a convolution. For completeness, we give the result for n discrete point sources at
the points ðXjðtÞ; YjðtÞÞ and strength cjðtÞ for j 2 f1; . . .; ng:

cðt; ðx; yÞÞ ¼
Pn

j¼1

Rt

0

cjðsÞ
4pDðt�sÞ exp � jjx�XjðsÞjj2

4Dðt�sÞ

� �
ds; ð23Þ

as well as for a ‘continuous’ source that lives in X 
 R
2; we get the following

solution by the use of convolution

cðt; ðx; yÞÞ ¼
Rt

0

R

X

Qðs;ðx;yÞÞ
4pDðt�sÞ exp � jjx�xjj2

4Dðt�sÞ

� �
dXds: ð24Þ

The treatment in R
3 is fully analogous.

Next we consider the dynamics of the points on the cell boundary. Inertia is
neglected in the present formalism. The computational domain may be given by a
flat two-dimensional substrate, where we consider projections of cells or by a
three-dimensional domain where cells move through extracellular matrix or a gel-
like medium. We divide the circumference of the cell into N points. On each point,
the cell detects a chemical signal and each point moves according to the con-
centration gradient that is constructed by a (sequence of) fundamental solutions.
Further the direction of motion, as well as the velocity of the points are determined
by the degree of deformation. To this extent, we use the following phenomeno-
logical law for the motion of the gridpoints on the cell boundary

vi ¼ brcðt; xiÞ þ a xcðtÞ þ x̂i � xiðtÞð Þ; for i 2 f1; � � �;Ng; ð25Þ

where b denotes a mobility parameter of the cell boundary. This parameter is a
measure for the deformation rate of the cell and also represents a measure of the
sensitivity of the cell boundary to the concentration gradient. This b-term models
chemotaxis. Further, the a-term models the ‘desire’ of the cell to attain its
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equilibrium shape and size. The parameter a[ 0 is a measure of the stiffness of
the cell. The position of the point i, which depends on time, is denoted by xiðtÞ:
The velocity of the point is denoted by vi: Further, the position of the cell center is
given by xcðtÞ and the initial positions of the boundary nodes minus the initial
position of the cell center are denoted by x̂i: The above equation guarantees that
the velocity is directed towards the largest increase of the concentration, and that
its magnitude depends on the magnitude of the concentration gradient. Note that in
the case of repulsion, for instance due to a poison, the sign of the b-term should be
reversed.

The movement of the cell boundary makes the cell deform and change its
position. Furthermore, the cell area or volume changes as well. Since the cell
consists of both fluids and solid polymeric matter, the cell is classically modeled as
a visco-elastic medium. This means that the volume of the cell is not necessarily
conserved. It is possible to inhibit volumetric changes by enlarging the a-param-
eter if the volume of the cell increasingly differs from the initial cell volume. The
model is described in more detail in Vermolen and Gefen [17]. An example of a
three-dimensional computation of the model is shown in Fig. 3. The input-data
were the same as in Vermolen and Gefen [17], see Table 1.

In this figure it can be seen how a cell deforms and migrates to engulf the
bacteria. Once the bacteria have been neutralized, the cell deforms back to its
equilibrium shape. In [17], the model is extended to multiple cells where each cell
secretes an agent that attracts the other cells. The model is based on the assumption
that a cell registers the difference between the present concentration profile and the
concentration profile from its own secretion. A repulsive force between gridnodes
on different cells is introduced to prevent the cells from overlapping. The phe-
nomenological relation of the repulsive force is inspired by the Lennard–Jones
potential from electromagnetics. Since the medium through in which the cells
deform is nonhomogeneous and anisotropic, a stochastic component is added to
the equation via a Wiener process. This makes Eq. (26) stochastic:

dxi ¼ brcðt; xiÞdt þ a xcðtÞ þ x̂i � xiðtÞð Þdt þ rdWðtÞ; for i 2 f1; � � � ;Ng; ð26Þ

where W ¼ ðWx;Wy;WzÞ is a vector with Wiener processes Wx; Wy and Wz and r
is a measure for the uncertainty (standard deviation) induced by nonhomogeneities
of the medium. The first two terms are deterministic and hence represent classical
drift. Some computed results with a stochastic contribution can be found in
Vermolen and Gefen [17]. In this manuscript we only show a deterministic run in
Fig. 3. In Fig. 4, we plot the times of engulfing a bacterium versus the cell stiffness
and mobility. It can be seen that an increase of cell stiffness and/or a decrease of
cell mobility delay the engulfment of bacteria. This computation can be used to
quantify the influence of cell stiffening and motility decrease due to certain dis-
eases. This simulation models the effectiveness of the immune response as a
function of the properties of the immunity cells like white blood cells.
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2.2 The Colony Scale

To make the present manuscript as self-contained as possible, we repeat some of
the equations presented in Vermolen and Gefen [1]. Presently, we are also
extending the model to simulate infected cell colonies. To this extent, we consider
a flat substrate on which cells are allowed to move. The projection of the cells onto
the substrate is assumed to be circular. Upon moving, each cell exerts a traction

Fig. 3 Snapshots at consecutive times of a cell engulfing bacteria

Table 1 Values for the
various parameters used

Parameter Value Unit

b 5 mm4/h/mol
c 1 mol/mm3/h
� 0:01 mm6/h
D 1

4p mm2/h

a 1:5 1/h
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force onto the substrate. This force generates a strain field around the cell that is
sensed by the other cells if the strain energy density exceeds a certain threshold. In
this way cells that are distant from each other sense each other’s presence and
hence these cells communicate with one-another, if they are not too far away from
each other. This inter-cell communication over substrates through mechanical
forces and sensing was experimentally observed by Byrne and Drasdo [2]. In this
model, the deformation of the cells is not modeled, and cells are treated as circles
with a constant radius R and hence only the coordinate positions of the cell centres
need to be computed and stored. In the present manuscript, we will disregard the
randomness in the motion of the cells. In [1] a random contribution to cell
movement is introduced via a uniform probability distribution. One could improve
this formulation through a standard normal distribution so that the stochastic
component is built up by a Wiener process. Besides movement of cells, we also
incorporate the basic biological processes like cell division and death. Despite the
fact that cell division and death can be predicted more-or-less if the entire history
of a cell is known, these two fundamental processes are modeled as stochastic
processes. The reason is that the history of the cells is not known and that the
circumstances, although modeled as idealized, are not known well. In the model,
we consider nðtÞ cells. Due to cell division and death the integer n depends on
time. These cells are able to divide or die with respective probabilities p and q per
unit of time. Further, the viable cells pull the substrate with a force F̂; hence for
cell i, we have

Fi ¼
F̂; if the cell is viable

0; else

(

ð27Þ

The cells sense the strain energy density and the direction of the largest increase of
this parameter, i.e. the gradient. Given a cell radius R and a Young’s Modulus of

Fig. 4 The engulfment time
versus cell stiffness, a; and
cell mobility, b
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the substrate Es; the strain energy density as a result of cell i pulling on the
substrate is computed by

M0
i ¼

1
2

r� ¼ 1
2

EsðriÞ�2 ¼ F2
i

2EsðriÞp2R4
; ð28Þ

where the last step can be evaluated using some standard Hookean relations from
mechanics, see [1]. In [1], we show by the use of finite-element simulations, that
the strain energy density away from the cell can be approximated by

MiðrÞ ¼ M0
i expf�ki

jjr�rijj
R g; for r 2 X; i 2 f1; . . .; ng; ð29Þ

where ri represents the location of cell i, projected on X; further ki is a measure of
how much the signal is attenuated, where we have

ki ¼
EsðriÞ

Ei
: ð30Þ

Here Ei represents the Young’s Modulus of the cell. Using the additivity-property
of the strain energy density, the strain energy density for a superposition of cells is
given by

MðrÞ ¼
Pn

j¼1
MjðrÞ ¼

Pn

j¼1
M0

j expf�kj
jjr�rjjj

R g: ð31Þ

Let riðtÞ denote the position of the cell center i at time t, then using this expression,
the mechanical stimulus sensed by the ith cell is computed via

MðriÞ ¼
Xn

j¼1

MjðriÞ ¼
Xn

j¼1

M0
j expf�kj

jjri � rjjj
R

g

¼ M0
i þ

Xn

j¼1j6¼i

M0
j expf�kj

jjri � rjjj
R

g; for all i 2 f1; . . .; ng:
ð32Þ

Note that the cell’s own contribution is also incorporated in this formula. Next, we
repeat some of the formulas in Vermolen and Gefen [1] for the determination of
the direction in which the cell is moving. The direction is determined by all the
vectors connecting the other cells felt by the considered cell. The weight factors
are given by the strength of the signal, in this case the strain energy density,
experienced by the cell. This implies the following (deterministic) direction:

zi ¼
Xn

j¼1j 6¼i

MjðriðtÞÞ
rj � ri

jjrj � rijj
; for all i 2 f1; . . .; ng; ð33Þ

where a contributing term is mapped onto zero if jjri � rjjj ¼ 0: The unit vector
follows from the normalization:
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ẑi ¼
zi

jjzijj
: ð34Þ

The velocity vector is constructed by the multiplication of this direction vector by
the signal strength that is sensed by the considered cell to obtain:

r0iðtÞ ¼ aiMðriÞẑi: ð35Þ

Here the cell velocity is modeled as instantaneous. In [18], we present a modifi-
cation to incorporate the inertia effects into this formulation. The above equation
can also be enriched with a stochastic contribution as is done in Vermolen and
Gefen [1] using a uniform distribution or using Brownian Motion as in Eq. (9).

Further, ai is a velocity parameter with a dimension m2s
kg

h i
¼ m3

Ns

h i
; determined by

ai ¼
Fi

F̂

� �2

bi
R3

f
: ð36Þ

Note that F̂ is a property of the specific phenotype of the cell. The coefficient bi;

with unit s�1; accounts for the mobility of the viable cell over the substrate surface.
In [18], we incorporate the concentration of an infectious agent that typically
results from bacteria. The cell-substrate friction effectively represents the averaged
contribution of focal adhesions along the entire base of the cell without considering
each localized connections of integrins. In [1], it is shown that ai is determined by

ai ¼
biR

3

lF̂2
Fi; ð37Þ

where l (¼ 0:2 following [28]) denotes the cell friction coefficient. In [18], inertia
is taken into account. Since this effect is known to be small, this effect is omitted in
the present manuscript.

The cells will push each other away if they are too close together. This will give
rise to repelling contact forces once these cells impinge elastically. The contact
forces are due to the linear deformation of the cell bodies. In the present manu-
script, the principles outlined in Gefen [28] are used. In [1], the derivation of the
invagination force based on the work in Gefen [28] is given. In this manuscript, the
final result for the strain energy density is given, which reads as

Mij ¼ 6
15

ffiffiffiffiffi
R�
p

E�h
5
2

pR3
; ð38Þ

where h ¼ maxð2R� jjrijjj; 0Þ is the indentation of cell i into cell j and vice versa.
The final result for the total strain energy density function becomes

M̂iðrÞ ¼ MiðrÞ �Mij; ð39Þ

Wound Healing: Multi-Scale Modeling 335



where M̂i and Mij respectively denote the total strain energy density and the
contribution to the strain energy density from the elastic interaction between
neighboring cells. This quantity should be regarded as some energy relative to a
certain energy level or as a potential in order to allow it to have negative values.
For more details, we refer to [1]. The data that we use here can be found in
Table 2.

We show some snapshots of a cell-colony simulation for ‘wound healing’ in
Fig. 5. The red dots denote the cells that are moving towards each other as a result
of mechanical pulling and their mechanical sensing. The snapshots at consecutive
times show how the ‘wound’ closes. Further, we show the ‘wound area’ versus
time in Fig. 6. It can be seen that first the ‘wound’ expands a bit and subsequently
the ‘wound’ contracts. The curve shows a bit of noise that originates mainly from
the randomness in cell division and cell death. The overall curve looks like a
sigmoid relation. This is confirmed by in-vitro experiments on cell colonies. If one
likes to model angiogenesis and its relation to wound healing, one could use a
cellular automata model for instance and combine this model with the presently
described model.

2.3 The Tissue Scale

In order to be able to perform simulations over larger volumes and areas of tissues,
individual cells are no longer tracked. Instead, cell densities are considered. In
other words, the number of cells per unit volume or area is considered. This
approach gives a system of partial differential equations (PDEs) where densities of
several cell types are considered. In [29], among many other studies, a PDE-model
for cutaneous wound healing is considered in terms of tracking the densities of
fibroblasts, endothelial cells (to model angiogenesis), and keratinocytes are con-
sidered. The right-hand side in the above PDE contains a logistic growth term to
account for an increase of cell density towards an equilibrium (i.e. the undamaged
state). Furthermore, the levels of oxygen, VEGF, and extra-cellular matrix are

Table 2 Input data

Quantity name Symbol Value Unit

Substrate elasticity Es 5 kPa
Cell elasticity Ec 0.5 kPa
Cell radius R 4 lm
Cell traction force F̂ 1 lN

Cell death probability p 0.001 –
Cell division probability q 0.005 –
Probability of velocity perturbation pmp 0 –
Cell mobility coefficient bi 0:167 � 10�3 s�1

Initial relaxation parameter j 1000 s�1

Friction coefficient l 0.2 –
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Fig. 5 Four snapshots of a closing gap: a the initial state, b after 4 h, c after 15 h, and d after 32 h

Fig. 6 The gap area as a
function of time
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considered in the model. Next to these biological quantities, the local stress-strain
pattern as a result of the contractile forces exerted by fibroblasts are dealt with by
the solution of visco-elastic equations (Maxwell-model). This class of models is
useful to model processes like angiogenesis, wound contraction and wound closure
and this class has also be extended to model processes like tumor growth. An
advantage of this model class is its applicability to in-vivo cases. Unfortunately,
this class of models that contains a system of complicated nonlinear PDEs suffers
from the incorporation of huge number of parameters which often are hard to
measure. In this manuscript, we will not present a detailed model for wound
healing, however, we will give a very simplified flavor of this model class by the
consideration of a single partial differential equation that can be used to model
wound closure in an in-vitro setting. To this extent, we consider the relatively
simple Fisher–Kolmogorov equation, which reads as

ou

ot
� DDu ¼ kuð1� u

u0
Þ; t [ 0; ðx; y; zÞ 2 X; ð40Þ

subject to some initial condition, that reads as

uð0; ðx; y; zÞÞ ¼ u0ðx; y; zÞ ¼
u0; ðx; y; zÞ 62 Xw;
0; ðx; y; zÞ 2 X n Xw:

�
ð41Þ

Here u denotes the cell density, u0 denotes the undamaged equilibrium cell density
and Xw denotes the area of the initial wound. Furthermore, in the PDE cell motion
is determined through random walk only and the right-hand side models growth of
the cell population towards an equilibrium. A snapshot at 12:5 h of the cell density
(number of cells per unit volume or area, normalized to unity) is shown in Fig. 7.
We used an initial circular ‘wound’ of radius 1 mm, D ¼ 10�4 mm2=h; and
k ¼ 0:7 h�1. If one also encounters chemotaxis, then the cells move according to
the concentration gradient of a generic chemical. Each cell moves according to the
aforementioned concentration gradient, hence in the case of u cells per unit area or
volume, the amount and direction of cell movement are determined by the con-
centration gradient of the chemical multiplied by the cell density u, which gives

ou

ot
� DDuþr � ðubrcÞ ¼ kuð1� u

u0
Þ; t [ 0; ðx; y; zÞ 2 X; ð42Þ

where b and c, respectively, denote the sensitivity and motility of the cells as a
result of chemotaxis, and the concentration of the chemical that gives rise to
chemotaxis. Here also a profile of the chemoattractant needs to be determined,
which already increases the parameter space considerably. Note that the above
equations corresponds to a drift term that is given by brc in the stochastic
counterpart. This equation models mobility of cells towards the concentration
gradient of c, whereas reversing the sign would model mobility of cells away from
the concentration gradient. In the case of a bounded domain of computation, then
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one needs to formulate a boundary condition, such as setting the cell density equal
to the equilibrium undamaged cell density or by imposing a no-flux condition. The
Fisher–Kolmogorov equation admits traveling wave solutions, see [30] for
instance. Furthermore, in a bounded domain, one often solves this PDE by the use
of discretization techniques, such as the finite-element method. The wound
boundary, which moves in time, is classically tracked as a level-curve of the cell
density. The choice of the value for the level-curve is somewhat arbitrary, how-
ever, it gives a good qualitative picture of the kinetics of wound healing predicted
by this simplified version of the PDE-continuum based models. Using the prin-
ciples that were outlined Sect. 2.1.1, one can also regard the cell density as a
measure for the likelihood to encounter a cell at a certain position and time. If cells
are considered as point masses, then the principles outlined in Sect. 2.1.1 are
helpful. However, if cells get compressed, then one should incorporate the cell
volumes or areas. In the case of ‘supersaturated’ cell colonies, the cells are
compressed and thereby their sizes are small. On the contrary, the ‘subsaturated’
cell colonies, in general contain elongated cells and thereby the sizes are larger. In
both cases the same portion of the computational domain can be considered and
hence the likelihood to find a cell at a certain position and time could thereby be
equal. Hence the probability measures nonlinearly with the cell density in case of
relatively large cells which cannot be treated by the use of point sources. There-
fore, it was argued by Vermolen et al. [21] that the likelihood proceeds nonlinearly
and that the curve of the likelihood versus the cell density exhibits a concave-
downward relationship. An alternative point of view is to use the solution u to
represent the quality of the tissue at a certain position, where u ¼ u0 represents the
undamaged quality which could be equal to unity. The quality of the overall tissue
could be quantified by

QðXÞ ¼
R

X udX

u0AreaðXÞ : ð43Þ

Fig. 7 A snapshot of the
solution to the Fisher–
Kolmogorov equation as an
elementary model for wound
healing
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In this way, the quality of the tissue can be evaluated over time within a certain
region, which also gives a useful indication of how the wound heals. This can be
applied to more complicated models based on the solution of PDEs. We note that
the computational model is extremely simple, and we refer for more complicated
mathematical models to Vermolen and Javierre [29].

3 The Relation Between the Scales Involved

The three model classes give insights in their own way in their own scales. The cell-
level models tell us how the shape of the cell actually behaves during the process of
migration, which plays a major role in wound closure, wound contraction, but also in
processes like tumor growth, as well as in the immune system. The measure of how
much a cell can deform depends on its stiffness. Diseases that impair the cell stiffness
(by for instance making the cell stiffer), will influence how the cell deforms when it
is moving. In the case of the immune system, more elastic cells need to migrate over
an only smaller distance to engulf a bacterium or any other harmful agent, see Fig. 4.
This means that the bacteria or agents are neutralized within less time, and that less
energy is consumed if the cell is flexible. In future studies, we will analyze the
energy consumption of the immune system. Thereby, it can be concluded that the
cell stiffness influences the efficiency of the immune system, next to the known
parameters like the blood vessel stiffness and the number of white blood cells in the
sense that if the cells are stiffer for some reason then the immunity response becomes
less efficient. This holds for the immune system but also for the cells (for instance
fibroblasts) that converge during processes like wound healing. The reason is that if
cells converge to each other and if cells are relatively stiff, then it will take more time
until cells are in physical contact. During the early stages of wound healing, flexible
cells will be elongated as they move towards each other. Hence at the earliest stages
at which the wound is closed, the cells are elongated if they are flexible. In the course
of time as more cells have appeared due to cell division, the cells will get their
cobble-stone shape. An example of a micrograph with different cell shapes in a cell
colony is shown in Fig. 8.

If the cells are very stiff, then wound closure will be retarded since the cells are
not able to elongate and hence the state of wound closure with elongated cells,
which is the first stage of the wound being fully or partly closed, does not exist.
Hence, the cell deformation model is very helpful in predicting the macroscopic
closure rate of the wound. This issue will be investigated quantitatively in future.

The results from the cell colony model describe the nature how large numbers
of cells converge, divide and die during processes like wound healing or tumor
growth. In these models cell velocities, as well as cell division and death rates are
used. These quantities are relatively easy to measure and thereby a good estimate
of the wound healing kinetics can be obtained. Furthermore, the biological nature
of wound healing is evaluated by monitoring the shape of the wound edge, and a
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close link to in-vitro experiments with one-layer cell colonies can be established
easily. Note that in the cell deformation model we considered a chemical signal
driving cell edge mobility. Without any complication, it is mentioned that the
mathematical nature of this signal is very generic and hence that this signal can
also represented by a strain energy density as in the cell colony model. This
generic nature of course also applies for the cell colony model where we could use
a chemical signal using the same mathematical principles. Both the cell-scale and
colony-scale models can model processes like chemotaxis and tensotaxis.

The transfer of the information from the cell colony model and hence also from
the cellular model, in a certain sense is done by considering the theory outlined in
Sect. 2.1.1 in case of random walk with a well-defined drift component. It can be
seen that the cell diffusivity is related to the average cell velocity. This, however,
only holds for the treatment of cells as so-called point sources that move inde-
pendently. Incorporating the cell areas or volumes will make the treatment more
challenging. However, if the cells or bacteria are sufficiently small compared to the
mean distance they travel over a certain amount of time, then the approach in
Sect. 2.1.1 is quite reasonable. The incorporation of chemotaxis, or analogously
tensotaxis, the amount of biomass per unit area or volume that moves over a
certain distance within a unit of time is proportional to the number of cells per unit
volume or area, that is the cell density, times the concentration gradient scaled by a
factor of proportionality. This is how the classical linear version of the Keller–
Segell model for chemotaxis results. The continuum-based scale allows the use of
larger tissue areas and hence allows to consider realistic in-vivo wound sizes. The
transfer from colony models to PDE models, also strongly depends on the modes

B

Fig. 8 Two time-sequence
micrographs, taken 4 h apart,
which demonstrate shape
changes in NIH3T3
fibroblasts which cover a
local damage site: A oval
elongated shape of migrating
cells. B Multi-polar cell
shapes when cells are resting
and well-spread at a sub-
confluent density; note the 4-
poles cell in the center of the
magnified frame.
C Polygonal cell shapes in
dense confluent sites. The
scale-bar represents 100 lm
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that are incorporated in the modeling. If migration of cells is not only random, nor
determined by any chemical signals, then, the tensotaxis could be modeled, which
results into a completely different model where the diffusivity-tensor depends on
the local strains. We note that the total local strain-tensor at any point within the
domain of computation is determined by taking summing over the contributions of
all individual cells. In a PDE-setting, one has to evaluate the cell density, which is
the number of cells per unit of area or volume, and the forces that they exhibit. In
our colony model, the strain energy density is evaluated as a result of adding the
contributions of all individual cells that are present in the colony. To upscale this
tensotaxis is by all means less trivial to carry out then upscaling processes like
chemotaxis or random walk, and hence this is a challenge for future research.
Though, it is tempting to upscale the models and many processes, though in some
cases it is very difficult to incorporate all the information from the models. An
example is the size of the cells in the colony models. The cell size certainly has an
influence on the modeling outcomes in the sense that if large cells disappear then a
relatively large gap arises. This enlargement of the cell radius makes the profile
more prone to noise.

4 Modeling Several Processes in Wound Healing

The models that we considered here are very generic of nature and until here the
presentation has mainly focused on wound closure or gap closure. Apart from gap
closure, infections are very common to occur in clinical or real-world wounds. To
this extent, we also plan to model bacterial infections, in which bacteria compete
with the basis cells, such as fibroblasts or keratinocytes, on nutrients and oxygen,
and thereby increase the tension of biotic lactates, which increase the acidity. The
colony model has been extended with bacteria that move around and divide ran-
domly. Bacterial motion is purely modeled as a Wiener process, by the use of
equation (Sect. 2.1.1) with a certain division and death probability and release rate
of biotic lactates. This chemical release is modeled by the use of Green’s Fun-
damental solutions to the diffusion equation, and therewith in fact, the concen-
tration of lactates as a result of a score of bacteria is determined using a
superposition argument. A pilot study has been carried out in Vermolen and Gefen
[18]. In this work, it is assumed that the cellular mobility decreases with increasing
concentration of biotic lactates. A final conclusion of this work is that the decrease
of motility causes gaps not to close anymore, hence the initial wound does no
longer close entirely and that ‘micro-gaps’, which result from local cell death, and
which would normally be occupied by newly appearing daughter cells from cell
division, are no longer filled up due to decreased cellular motility. Hence the
decrease of cellular motility leaves the gap open (for a long time) and can also be
held responsible for the decrease of the quality of tissue. In principle white blood
cells clear up contaminants and bacteria, and therefore we are working on a

342 F. J. Vermolen and A. Gefen



colony-model that also clears up the bacteria by introducing white blood cells into
the model.

We extended the simulations that we showed here for the three-dimensional
cells that deform and migrate to the case of white blood cells (leukocytes) that
leave a small blood vessel to head for an infection to neutralize the bacteria
present. This modeling is currently done by the use of colony models and cell
deformation models. Here a translation to the use of PDEs for continuum models is
also to be made. We are also in the process of doing this and the results will appear
in future papers. A final stage is the remodeling stage where the tissue remodels to
transform from a scarred state into the fully undamaged state. To simulate this
remodeling process, which is important in the context of hypertrophic scar for-
mation as a result of burns, both the cellular and PDE-based models will be very
useful since fibroblasts having several properties due to various chemico-
mechanical environments will be taken into account.

Until now, we described the modeling of several biological processes: cell
division, cell migration (due to random walk, tensotaxis or chemotaxis). Immobile
processes like maturation towards cell division or cell differentiation can be
modeled in cell colonies like stochastic processes. In fact, if the entire history path
in terms of the chemical and mechanical environment is known then the time at
which the cell differentiates or divides is determined. This advocates for a
deterministic approach for cell division or differentiation processes. An example of
such a model can be found in the age-structured model by de Vries et al. [31] for
the computation of age-distributions in population dynamics or Prokharau et al.
[32] for the modeling of cell differentiation with a maturation space variable
(which corresponds to complete differentiation whenever this variable is one and
to a fully undifferentiated state whenever the value zero holds). The latter model
also contains biological processes like cell migration and cell division. This
modeling class is based on solving an advection equation for the cell density per
unit of maturation and can be extended to the incorporation of the physical space
to model cell migration. In real-world situations, the entire history path of the cells
is not exactly known or even hardly known. To this extent, the hypothesis of
deterministic modeling is violated and one has to rely on stochastic processes. In
the current paper we limited ourselves to modeling cell division as a purely ran-
dom process. Probably it is more accurate to model cell differentiation by means of
both a stochastic and deterministic component.

5 Conclusions

We presented a review of our ongoing work in simulation of wound healing on
various scales. All scales give their own bits of information: The cell-based model
for cell deformation can be used to analyze the shape changes a cell experiences
under the influence of an attracting or repulsing chemical or under the influence of
a local strain pattern. The cell-colony models can be used to look at the dynamics
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of large number of cells upon using just a few, well accessible parameters as a
function of the local chemical condition of the substrate or tissue. Further, the third
scale is based on the continuum-hypothesis and is hence based on (systems of)
PDEs. These PDEs can be solved using discretization techniques such as finite-
element techniques or discontinuous Galerkin methods combined with limiters
when the equations are chemotaxis-dominated (or mathematically speaking, pre-
dominantly hyperbolic). The paper describes the relations between the various
scales involved in terms of stochastic and deterministic relations.
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Modeling Multiscale Necrotic
and Calcified Tissue Biomechanics
in Cancer Patients: Application to Ductal
Carcinoma In Situ (DCIS)

Paul Macklin, Shannon Mumenthaler
and John Lowengrub

Abstract Tissue necrosis and calcification significantly affect cancer progression
and clinical treatment decisions. Necrosis and calcification are inherently multi-
scale processes, operating at molecular to tissue scales with time scales ranging
from hours to months. This chapter details key insights we have gained through
mechanistic continuum and discrete multiscale models, including the first mod-
eling of necrotic cell swelling, lysis, and calcification. Among our key findings:
necrotic volume loss contributes to steady tumor sizes but can destabilize tumor
morphology; steady necrotic fractions can emerge even during unstable growth;
necrotic volume loss is responsible for linear ductal carcinoma in situ (DCIS)
growth; fast necrotic cell swelling creates mechanical tears at the perinecrotic
boundary; multiscale interactions give rise to an age-structured, stratified necrotic
core; and mechanistic, patient-calibrated DCIS modeling allows us to assess our
working biological assumptions and better interpret pathology and mammography.
We finish by outlining our integrative computational oncology approach to
developing computational tools that we hope will one day assist clinicians and
patients in their treatment decisions.
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1 Introduction

At its most basic level, cancer is a disease of uncontrolled cell proliferation: cancer
cells, either through mutations or epigenetic alterations, overexpress oncogenes
and underexpress tumor suppressor genes (TSGs). Consequently, the cells enter
into and progress through the cell cycle more often than they should and disregard
apoptotic signals, resulting in a net increase in proliferation and aberrant tissue
growth. (See recent cancer biology tutorials for modelers and physical scientists,
such as [50, 52, 53]). Accordingly, cell proliferation and apoptosis, along with
genetic mutations and epigenetic alterations in genes controlling these processes,
have been major foci of both basic cancer research and modeling. Most cancer
therapies attempt to manipulate these processes either by cytostatic (suppressing
entry to or progression through the cell cycle) or cytotoxic (inducing apoptosis:
programmed cell death) mechanisms. For example, chemotherapy agents such as
doxorubicin are considered to be cytotoxic [10]; therapies that target hormone-
addicted cells (e.g., tamoxifen in estrogen-driven breast cancer) are considered to
be cytostatic [74].

Key biological and clinical terms

Basement membrane (BM) (�100 nm) thick plasto-viscoelastic membrane
separating epithelial and stromal tissues

Extracellular matrix (ECM) Fibrous supportive scaffolding in stromal tissue
Oncogene A growth-promoting gene
Tumor suppressor gene (TSG) A growth-inhibiting gene
Apoptosis Well-regulated, programmed cell death
Anoikis Apoptosis due to loss of attachment to the BM
Necrosis Disordered cell death
Oncosis Cell death at the start of (or preceding) necrosis,

marked by rapid cell swelling
Adenosine triphosphate (ATP) The immediate product of aerobic cell metabolism,

and the ‘‘currency’’ of cell energy
(Apoptotic) caspase Proteases responsible for degrading intracellular

proteins during apoptosis
In situ carcinoma Cancer contained by an intact BM
Ductal carcinoma in situ (DCIS) An in situ precursor to invasive ductal breast cancer
Comedonecrosis Necrotic tissue filling the lumen of a gland, most

typically with intraductal breast cancers
Invasive ductal carcinoma (IDC) An invasive breast cancer derived from ductal cells
Van Nuys Prognostic Index (VNPI) A system for evaluating DCIS and guiding treatment

Necrosis—the disorderly death of cells due to rapid injury or energy deple-
tion—has seen less attention in basic cancer research and computational modeling.
Indeed, cancer apoptosis publications outnumber cancer necrosis in PubMed by
over three to one after excluding tumor necrosis factor (TNF) citations that are

350 P. Macklin et al.



more directly related to apoptotic signaling than necrosis. Many prominent
mathematical models do not incorporate necrosis (e.g., [8]), while others generi-
cally model cell death while failing to differentiate between apoptosis and
necrosis. For example, the recent ductal carcinoma in situ (DCIS) model in [83]
provided an excellent model of cell death due to energy depletion, but the work did
not differentiate this death process (necrosis) from death due to detachment from
the basement membrane (anoikis). As we shall see below, apoptosis and necrosis
take widely divergent courses, particularly in cases of DCIS that exhibit com-
edonecrosis (necrosis filling the lumen of a gland).

Those models that do include necrosis have often modeled it as an instanta-
neous or fast time scale process by immediately removing necrotic cells from the
simulations (e.g., [2]). Others have modeled necrosis as simple volume loss terms
in continuum models (e.g., [12, 89, 90]), or as inert, persistent debris in discrete
models (e.g., [21, 71]). While these are more true to the generally longer time scale
of necrosis, they still fail to account for the multiscale processes involved and their
potential biomechanical impact on tumor progression. None of these or other prior
works have examined calcification of necrotic debris.

And yet necrosis plays a prominent, essential role in many carcinomas. A 1 mm
tumor spheroid with a typical 100 lm viable rim is over 50 % necrotic by volume.
Cell death in such a significant fraction drastically alters mass transport throughout
a tumor and can lead to steady size dynamics as proliferative cell flux out of
the viable rim balances with fluid flux released by degrading necrotic cells
[13, 50, 52]. See Fig. 1 (left). Necrosis has a proven prognostic value in breast
cancer, particularly ductal carcinoma in situ (DCIS) [72, 92]: presence or absence
of comedonecrosis is a prominent part of the Van Nuys Prognostic Index (VNPI) [84].
Moreover, DCIS is primarily detected as subtle patterns of calcified necrotic tissue in
mammograms [27, 29, 82]. See Fig. 1 (right). 90 % of all cases of nonpalpable DCIS
are detected and diagnosed on the basis of microcalcifications alone [69]. Prominent
tissue necrosis is also observed in other cancer types and can similarly be an important
prognostic indicator [76], such as in glioblastoma multiforme [1, 70] and colorectal
cancer [77]. Secretions by necrotic cells may promote inflammation in neighboring
‘‘normal’’ tissue (tumor-associated stroma) [9, 24, 31], thereby promoting progres-
sion from in situ to invasive carcinoma [26, 37, 79].

In this chapter, we shall explore recent efforts by our modeling groups to shed
light on the impact of necrotic tissue biomechanics on tumor progression through
increasingly sophisticated computational modeling. After a brief introduction in
Sect. 2 to the biological background of apoptosis, necrosis, and calcification, we
examine our earliest continuum-scale modeling of necrotic tumor growth
[51, 58–62] in Sect. 3. Continuum conservation laws describe the biomechanics,
while smaller scales are integrated as constitutive relations. The work gave early
and extensive insights on the impact of necrotic core biomechanics on tumor
growth, characteristic features, sizes, morphology, and stability.
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In Sect. 4, we present a multiscale agent-based cell model [56] by Macklin and
colleagues and apply it to ductal carcinoma in situ. The model is the first to
incorporate the vast range of time scales of necrosis and calcification; tissue-scale
biomechanics emerge from interactions among time-varying forces, adhesion
characteristics, and individual cell volumes. This work, which included the first
patient-specific calibration to pathology, gave new mechanistic insights on the
impact of multiscale necrotic and calcified tissue biomechanics on features
observed in patient pathology and mammography. We conclude by discussing the
next steps in multiscale modeling of necrotic and calcified tissues, and we outline
our vision for the future of clinically-focused integrative computational oncology.
It is our belief that integrative modeling will increasingly push the envelope to
advance the state-of-the-art across biology, engineering, mathematics, computing,
and the clinical sciences.

2 Biological Background

2.1 Basic Biology of Apoptosis

Apoptosis is a tightly-regulated, energy-consuming process [25, 36] that begins
when intrinsic or extrinsic signals activate initiator caspases (e.g., Caspase-9) in
the cytoplasm [25, 38]. This is generally regulated in one of two ways. In the first,
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Fig. 1 Left: Proliferation in the viable rim (yellow cells) generates a cell flux (dark gray arrows)
that can balance with fluid flux (pale blue arrows) created by lysing cells in the necrotic core
(brown cell debris), resulting in steady tumor sizes. Adapted with permission from [52]. Right:
Typical ductal carcinoma in situ (DCIS) duct cross-sections showing the outer viable rim, inner
necrotic core, calcifications, and an inflammatory response. Adapted from [56] with permission
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mitochondrial membranes are permeabilized and release cytochrome c and other
proteins into the cytoplasm to activate the initiator caspases. In the second, pro-
apoptotic signals directly activate the initiator caspases independently of the
mitochondria [38]. Mitochondria-regulated apoptosis disrupts ATP (energy) pro-
duction by decreasing the mitochondrial membrane potential. The cell’s remaining
ATP store is depleted by energy-intensive processes throughout apoptosis [80]. See
[65, 80] for greater detail on early regulation of apoptosis. While we do not describe
them here, there are also caspase-independent apoptosis mechanisms [25, 38].

After apoptosis is initiated, various ion pumps on the cell’s surface quickly
remove water from the cell, resulting in significant volume loss [6, 14, 65, 67]. See
Fig. 2 (top: a, b) and Fig. 2 (bottom). Indeed, cell shrinkage and separation from
neighboring cells are some of the first visible signs of apoptosis in histopathology.
The initiator caspases cleave and activate effector caspases (e.g., Caspase-3),
which degrade cellular proteins [25, 38]. The cytoplasm collects in bulbous
‘‘blebs’’ that are shed from the cell. See Fig. 2 (top: c). These blebs surround cell
protein fragments with intact membrane, and thus typically do not trigger
inflammation [25, 44, 65].

In the nucleus, the chromatin condenses and is henceforth degraded by endo-
geneous endonucleases into short fragments of DNA [Fig. 2 (top: d)]. Protein
cross-linking (e.g., by transglutaminase [32]) helps to bundle these fragments into
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Fig. 2 Apoptosis schematic. Top: a, b While pro-apoptotic signals work to activate initiator
caspases and then effector caspases to degrade subcellular structures and DNA, the cell rapidly
shrinks by removing fluid. c The cell sheds its cytoplasm as membrane-encapsulated blebs.
d, e Chromatin is condensed. DNA is fragmented, encapsulated into apoptotic bodies, and
phagocytosed by nearby cells. Bottom: Preliminary simulation [64] of apoptotic cell volume
composition (left) and nuclear/total diameters (right). Figures provided courtesy of [64]
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coherent, membrane-encapsulated apoptotic bodies [4, 25, 44, 46], which are
finally phagocytosed (ingested) and degraded by macrophages or other nearby
cells [25, 44]. See Fig. 2 (top: e). For more information on apoptosis, the reader is
encouraged to consult several excellent reviews (e.g., [25, 44, 46, 65, 87]).

2.1.1 Estimates of Apoptosis Time Scales

In [55–57], Macklin et al. analyzed the experimental biology and clinical literature
to estimate the main apoptosis time scales. The overall duration of apoptosis
was estimated at 8–9 h, with an approximately 2 h lag until detectable cleaved
Caspase-3 activity, and an additional hour of lag prior to detection by TUNEL
assay. Mumenthaler et al. are now directly measuring these and other apoptosis
time scales with in vitro experiments on MCF-7 and related breast cancer cell lines
[68]. In preliminary results, we observed cell water loss to be very fast: most water
is lost within the first hour of apoptosis. We also observed that the cytoplasm
blebbs and loses much of its volume within 3 h, leaving a degrading nucleus for
the remainder of apoptosis. These preliminary observations are consistent with
other experiments (e.g., [30, 88]), which estimated apoptosis to last 8–9 h [30],
and measured rapid 60 % volume losses early in apoptosis [88].

2.2 Basic Biology of Necrosis and Calcification

In contrast to apoptosis, necrosis is a relatively energy-independent process,
spanning a variety of time and spatial scales [46, 66]. In the context of cancer
biology, necrosis is most frequently the result of cellular energy depletion, rather
than a ‘‘planned’’ event [6]. Thus, while apoptotic cells generally appear sporad-
ically as isolated, shrunken cells, necrotic tumor cells are found in large contig-
uous regions (i.e., necrotic cores) where oxygen and glucose are too low to sustain
cell survival [44, 87]. Necrosis also differs from apoptosis in that it triggers an
inflammatory response, due to the dysregulated release of intracellular proteins
into the microenvironment [6, 46]. Indeed, inflammatory responses can readily be
seen in pathology images near necrotic tumors; see Fig. 1 (right) for one such
example.

In the early stages of necrosis (more properly called oncosis [46, 65]), energy
depletion causes the cell’s ion pumps to shut down, resulting in rapid swelling by
osmosis. This swelling has traditionally been a key feature differentiating necrotic/
on-co-tic cell death from apoptotic cell death in pathology and in vitro biology
[44, 46, 65]. The cell swells to several times its original volume, lyses (splits
open), and slowly leaks fluids and other protein contents into the surrounding
microenvironment [46]. See Fig. 3 (top: a–c and bottom: left). Disintegrating
lysosomes can release enzymes that help to further degrade the cell [6]. As in
apoptosis, the nucleus displays some (irregular) chromatin condensation and
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shrinkage (pyknosis). However, the DNA is not cleaved into regularly-sized
fragments, nor is it encapsulated into apoptotic bodies. Instead, it remains and
degrades over time, eventually rupturing and dissipating into the remaining
cytoplasm. See Fig. 3 (top: d and bottom: right). In many tumors, necrotic tissue is
removed by infiltrating macrophages; see the mathematical modeling of this
process (and corresponding references) in [73]. We note that this brief overview of
early-to-mid necrosis is a simplification, and the lines between apoptosis and
necrosis can be blurred. For example, apoptotic bodies that are not cleared can
become necrotic [44, 65], and while necrosis is seemingly ‘‘passive’’, it involves
numerous significant biochemical processes [7, 46]. Excellent reviews of necrosis
can be found in [6, 7, 46, 66, 87].

2.2.1 Dystrophic Calcification

In DCIS, the necrotic core is separated from immune cells (and the stroma) by an
intact basement membrane, preventing the removal of necrotic material. Instead, it
remains and continues to degrade. In this and other cancers where the necrotic
material is not cleared but rather persists for long periods of time, the necrotic core
can undergo dystrophic calcification [40, 47]. In this process, calcium ions interact
with remaining phospholipids in the necrotic cell (the membrane, vesicles, etc.) to
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degrades and is sometimes calcified e. Bottom: Preliminary simulation [64] of early necrotic cell
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nucleate and grow calcium phosphate crystals [47]. See Fig. 3 (top: e), the
example in Fig. 1 (right), and Fig. 4. How this process transpires in vivo is still
poorly understood.

2.2.2 Estimates of Necrosis and Calcification Time Scales

In [55–57], Macklin et al. estimated the various time scales of necrosis and cal-
cification, many of which have not been experimentally measured for carcinoma.
We estimated initial cell swelling and lysis to occur on the order of 2–6 h. Based
upon experimental reports on aortic calcification [34, 42, 48] and our previous
computations [55–57], we estimate calcification to take on the order of 15–20
days [56]. Based upon our insights from [56] (See Sect. 4.3) and the existence of
necrotic tissue with intense eosin staining (a sign of cytoplasm with significant
water loss and little calcification) and compact, partly-degraded nuclei, we esti-
mate that water loss occurs more quickly than pyknosis, and that pyknosis is a
faster process than calcification. We have recently hypothesized and found good
evidence that calcifications degrade at a very long time scale (on the order of two
to three months) [56]. See Sect. 4.5. Thus, necrosis and calcification have pro-
cesses that operate on time scales ranging from hours to months.

3 Early Continuum Modeling Results: Impact of Necrotic
Core Mechanics on Tumor Progression, Morphology,
and Stability

Following earlier tumor growth models that included necrotic cores [12, 89, 90] and
an earlier non-necrotic free boundary formulation of tumor growth [18], Macklin and
Lowengrub developed a model of non-symmetric avascular tumor growth in het-
erogeneous tissues which included necrosis [51, 58–62]. We modeled the tumor as an
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incompressible fluid (with constant cell density) moving in a porous medium—the
ECM. We used a sharp interface approach, where XðtÞ denoted the moving tumor
volume with boundary RðtÞ; we denoted the surrounding host tissue by XH. In [60],
we set XH to enclose X in an L � 100� 200 lm ring of tissue:

X [ XH ¼ x : x� xcenterðtÞj j �RðtÞ þ Lf g; ð1Þ

where

RðtÞ ¼ max x� xcenterðtÞj j; x 2 XðtÞf g; ð2Þ

and where xcenter is the center of mass of XðtÞ. We scaled space by L (the nutrient
diffusion length scale) and time by a mechanical relaxation time scale k�1

R . The

time is rescaled in all plots to correspond to the cell mitosis time scale k�1
M � 24 h.

See [51, 58–60] for more details.
We introduced a single nondimensional ‘‘nutrient’’ r which was required for

cell survival and drove growth. The nutrient was released by the host vasculature
at o X [ XHð Þ, diffused through the non-vascularized nearby host tissue XH to the
tumor, and was then consumed by tumor cells in X. Following [18] and as
described in [58], we make the quasi-steady assumption: nutrient transport and
consumption occur on much faster time scales than cell proliferation and tissue
deformation, and so on the time scale of simulation, or=ot � 0. Thus, r satisfies

0 ¼ r � DHrrð Þ x 2 XH

0 ¼ r � DTrrð Þ � r x 2 X
ð3Þ

subject to boundary and matching conditions

r½ �R¼ 0 Drr � n½ �R¼ 0
rðxÞ

��
o XH[Xð Þ ¼ 1; ð4Þ

where for any x 2 R, the jump function f xð Þ½ �R is defined as

f ðxÞ½ �R¼ lim
X3y!x

f ðyÞ � lim
XH3y!x

f ðyÞ: ð5Þ

In [60], DT ¼ 1 as a result of nondimensionalization. The nutrient is used to
implicitly define viable and necrotic regions (XV and XN, respectively) of the tumor:

XV ¼ x 2 X such that rðxÞ� rNf g
XN ¼ x 2 X such that rðxÞ\rNf g;

ð6Þ

where rN is the necrotic threshold value of r. Note that X ¼ XV [ XN.
Within the tumor’s viable rim, cells were assumed to proliferate at a rate propor-

tional to r and apoptose at a constant background rate. In XN, the model degraded
necrotic debris and released volume, acting as a biomechanical stress relief. We
assumed the host tissue was in homeostasis (proliferation and apoptosis were in
balance), but cells and tissue could be displaced by forces generated by the tumor.
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The tissue moved with velocity u in response to forces generated by cell prolifer-
ation and death. Under the incompressibility and constant cell density assumptions,
the local rate of volume change is given by r � u. In dimensionless form,

r � u ¼ 0 x 2 XH

r � u ¼ G r� Að Þ x 2 XV

r � u ¼ �GGN x 2 XN;
ð7Þ

where G, A, and GN are dimensionless parameters characterizing the rates of cell
proliferation, apoptosis, and necrotic tissue volume loss relative to the time scale
k�1

R . See [60] for greater detail on the nondimensionalization and these parameters.
We introduced a dimensionless proliferation-generated mechanical pressure p

as a simplified model of tissue stress, and assumed a Darcy flow response: cells
can respond to the pressure by overcoming cell–cell and cell-ECM adhesion and
moving through the porous medium (the ECM) supporting the cells. Moreover, the
ECM itself can deform in response to p. Hence, u ¼ �lrp, where l is the tissue
mobility (its ability to respond to pressure gradients). Assuming constant cell–cell
adhesive forces and cell density throughout XV, cell–cell adhesion can be modeled
as a surface tension proportional to the curvature j along RðtÞ. Thus, as in [18],

�r � lHrpð Þ ¼ 0 x 2 XH

�r � lTrpð Þ ¼ Gðr� AÞ
�GGN

�
x 2 XV

x 2 XN

ð8Þ

subject to boundary and matching conditions

p½ �R¼ j lrp � n½ �R¼ 0
pðxÞ

��
o XH[Xð Þ ¼ 0: ð9Þ

In [60], lT ¼ 1 as result of nondimensionalization.
We implicitly tracked the moving boundary position using the level set method:

an auxiliary distance function / satisfies /\0 in X, /[ 0 in XH, / ¼ 0 on R, the
outward normal vector is given by n ¼ r/, and j ¼ r � n. The outward normal
velocity of RðtÞ is obtained by evaluating u � n ¼ � limX3y!x lTrpðyÞ � n for any
x 2 R. The motion of R then becomes an advection equation for / [51, 58–62].
We solved Eqs. (3–4) and (8–9) using a second-order accurate ghost fluid method
[51, 58–62]. We let D ¼ DH=DT and l ¼ lH=lT denote the relative oxygenation
and mechanical compliance of the surrounding host tissue, respectively.

3.1 Impact of Necrotic Core Biomechanics: Key Results

As in earlier tumor spheroid models [12, 89, 90] and early non-symmetric necrotic
tumor simulations in [93], our theoretical and numerical analyses [51] showed that
even with A ¼ 0, volume creation in the proliferative rim could balance with
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volume loss in the necrotic core, leading tumor spheroids to grow to a steady size.
Our work had an additional insight: even during growth (and overall morpho-
logical instability), tumor proliferation and necrotic volume loss could equilibrate
locally, leading to (1) a near-constant necrotic volume fraction, and (2) the
emergence of characteristic feature sizes and shapes. For example, a tumor
growing into well-perfused (D [ 1), mechanically-stiff (l� 1) tissue develops
invasive fingers with a characteristic width. See Fig. 5 (left) for such an example.

The qualitative tumor behavior (classified as fragmenting, fingering, or hollow/
compact growth) was primarily dependent upon the microenvironmental param-
eters D and l. However, the quantitative behavior—viable rim thick-ness, necrotic
volume fraction, overall growth rate, etc.—was strongly dependent upon tumor
cell characteristics, particularly the necrosis parameters rN and GN. The viable rim
size was determined by the balance of nutrient penetration into the host tissue (D),
apoptosis (A), and the tumor cells’ resistance to hypoxia (rN). The size of the
necrotic core was primarily determined by the rate of volume loss in necrotic
tissue (GN). See Fig. 5 (right), where we show how the tumor varied with GN for
several values of G. A key finding was that while moderate rates of necrotic
volume loss indeed contribute to the emergence of a steady state size for the
spherical case, fast necrotic volume loss (large GN) can destabilize the tumor
morphology.

This work revealed a few outstanding problems with continuum necrosis
models of the time. First, defining the necrotic region implicitly through r as in
Eq. (6) could cause unexpected behavior for complex tumor morphologies.

Fig. 5 Left: Growth of a necrotic avascular tumor into well-perfused, mechanically-stiff tissue.
The invasive ‘‘fingers’’ and necrotic regions acquire relatively fixed, characteristic sizes. Right:
Impact of the rate of cell proliferation (G) and necrotic volume loss (GN) on invasive fingering
growth. G acts primarily as a time scale (tumor morphologies are the same but evolve more
quickly with increased G), whereas larger values of GN can destabilize the morphology (seen here
as changing rounded protrusions into invasive fingers). Legend: Viable (gray) and necrotic tissue
(black) grow in host tissue (white). Figures adapted with permission from [60]
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Particularly unstable tumors could experience frequent connection and discon-
nection of invasive fingers or bulbs [51, 58, 60]. (See Fig. 6 for an example of
repeated encapsulation of host tissue). Connection or reconnection of invasive
fingers or bulbs lead to rapid depletion of nutrient in the newly encapsulated host
and tumor tissue, leading to a jump in necrosis. Subsequent disconnection would
rapidly reperfuse the encapsulated regions, leading to the condition where r[ rN

in previously necrotic tissue. This necrotic tissue would ‘‘come back to life’’—an
impossibility. We solved these problems by introducing an additional level set
function /N to separately track the necrotic core boundary [61, 62].

Second, because the continuum model linked together many biophysical effects
into very few parameters (much to the benefit of mathematical analysis!), it was
difficult to directly calibrate the model to experimental measurements. Model
calibration required force-fitting the parameters to match experimental growth rate
measurements, and then tuning the remaining parameters to match the simulated
morphologies (as informed by parameter space investigations) to clinical or other
observations (e.g., as in [33]). While this makes data-driven simulations possible,
it can hinder the acceptance of mathematical modeling in the biological and
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Fig. 6 A simulation of repeated encapsulation of host tissue by a growing tumor [58]. Legend:
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clinical communities, who are concerned that complex models with too many free
parameters can be tuned to any desired behavior without necessarily being bio-
logically correct. Upscaling mechanistic cell-scale models can solve such prob-
lems, as in [23].

Lastly, even if the necrotic biomechanical properties can be rigorously esti-
mated, continuum models like this one would need further refinement to incor-
porate both the slow and fast dynamics known to play a role in necrosis. In the next
section, we will next describe a mechanistic, patient-calibrated agent-based model
developed by Macklin and collaborators in [56] to examine these and other issues.

4 Recent Agent-Based Modeling Results: Impact of Necrotic
Core Biomechanics on DCIS

Agent-based modeling affords us the opportunity to examine the multiscalarity of
necrosis and calcification by implementing both fast and slow time scale processes
in individual cells and investigating the emergent whole-tumor biomechanics and
clinical progression. We present recent work by Macklin et al. in simulating DCIS
for individual patients [54–57]. The work discussed below includes the most
detailed model of cell necrosis to date, and the first model of calcification. It also
includes the first patient-specific calibration method to use clinically-accessible
pathology from a single time point, as might be available in a standard biopsy.

4.1 Model Overview

In [54–57], Macklin et al. developed a patient-calibrated, lattice-free agent-based
cell model and applied it to DCIS. Each virtual cell (an agent) has a position x,
velocity v, and time-dependent physical properties. In particular, each cell has a
volume VðtÞ and nuclear volume VNðtÞ, which can readily be expressed as
equivalent spherical cell and nuclear radii RðtÞ and RNðtÞ, respectively. The cell
also has a maximum adhesion interaction distance RA [ RðtÞ, which models both
the cell’s deformability and uncertainty in its morphology [56]. See Fig. 7 (left).

The cell’s velocity (and hence position) is governed by the balance of
forces acting upon it: cell–cell adhesion (Fcca) and ‘‘repulsion’’ (resistance to
deformation: Fccr), cell-BM adhesion and repulsion (Fcba and Fcbr), fluid drag
(�mv), cell–ECM adhesion (Fcma ¼ �ccmaE, where E is the local ECM density),
and the net locomotive (motile) force Floc. These forces are balanced by Newton’s
second law (conservation of linear momentum). As in [22, 35, 75], we use the
‘‘inertialess’’ assumption of fast force equilibration to explicitly express the
velocity of cell i:
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vi ¼
1

mþ ci
cmaE

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
cell�medium interactions

XNðtÞ

j ¼ 1
j 6¼ i

Fij
cca þ Fij

ccr

� �
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{cell�cell interactions

þ Fi
cba þ Fi

cbr

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{cell�BM interactions

þFi
loc

0

BBBB@

1

CCCCA
; ð10Þ

where NðtÞ is the number of simulated cells/agents at time t. For this discussion, we
set E � 0 and Floc ¼ 0 to model nonmotile cells contained in a lumen without ECM.
See [56] for the specific forms of the forces, which were modeled using potential
functions with finite interaction distances, consistent with the maximum adhesion
interaction distance RA. These forces are labeled for cell 5 in Fig. 7 (right).

Each cell has a phenotypic state SðtÞ 2 A;P;Q;Nf g, where A cells are
apoptosing,P cells are proliferating (in non-G0),Q cells are quiescent (in G0), andN
cells are necrotic. Transitions between phenotypic states are governed by microen-
vironment and signaling-dependent stochastic processes. For example, quiescent
cells enter the cell cycle with a (nondimensionalized) O2-dependent probability:

ProbðSðt þ DtÞ ¼ PjSðtÞ ¼ QÞ ¼ 1� exp

 

�
Z tþDt

t
aQP

O2ðsÞ � O2; hypoxic

1� O2; hypoxic

ds

!

� aQP

O2ðtÞ � O2; hypoxic

1� O2; hypoxic

� �
Dt;

ð11Þ

where aQP is the normoxic Q ! P transition rate (when O2 ¼ 1), and O2;hypoxic is
the hypoxic oxygen threshold. The Q ! A transition is similar but does not

Fig. 7 Left: Cell position x, maximum adhesion interaction distance RA, volume V (light gray
area), nuclear volume VN (dark gray area), and equivalent radii R and RN. Right: Key forces in
the model, labeled for cell 5. Figures reprinted with permission from [56]

362 P. Macklin et al.



depend upon O2. Cells become irreversibly necrotic (S ¼ N ) when O2\O2;hypoxia.
The proliferative and apoptotic states have fixed durations sP and sA. Cell volume
and other key properties are controlled by a ‘‘sub-model’’ for each phenotypic
state. Proliferating cells in P divide in half after progressing through S, G2, and M;
their two daughters spend G1 growing (linearly) to their mature volumes and then
return to Q. Apoptotic cells are removed from the simulation after sA. We do not
impose contact inhibition (a common feature for cellular automata models:
reduced Q ! P transitions for cells when surrounded by neighbor cells); this is
because patient pathology for Ki-67 (a proliferation marker) frequently shows
proliferating cells that are completely surrounded by other cells. As we shall see, a
properly-calibrated mechanistic model can predict quantitatively-reasonable DCIS
growth without need for contact inhibition. See [56] for full details on the pro-
liferative and apoptotic sub-models.

4.1.1 Necrosis Sub-model

Let s denote the elapsed time spent in the necrotic state. Define sNL to be the
length of time for the cell to swell, lyse, and lose its water content, sNS the time for
all surface receptors to become functionally inactive, and sC, the time for calci-
fication to occur. We assume that sNL\sNS\sC.

We assume a constant rate of calcification, reaching a radiologically-detectable
level at s ¼ sC. If C is the nondimensional degree of calcification (scaled by the
detection threshold), then CðsÞ ¼ s=sC for 0� s� sC, and CðsÞ ¼ 1 otherwise. (We
do not track further calcification after sC). We model the degradation of any surface
receptor S (scaled by the non-necrotic expression level) by exponential decay with
rate constant log 100=sNS, so that SðsNSÞ ¼ 0:01Sð0Þ. We set SðsÞ ¼ 0 for s[ sNS.

To model the necrotic cell’s volume change, let fNS be the maximum percentage
increase in the cell’s volume (just prior to lysis), and let V0 be the cell’s volume at
the onset of necrosis. Then we model:

VðsÞ ¼ V0 1þ fNS
s

sNL

	 

if 0� s\sNL

VN if sNL\s:

(

ð12Þ

To model uncertainty in the cell morphology during lysis, we randomly perturb
its location x such that its new radius RðsNLÞ is contained within its swelled radius

Rð0Þ 1þ fNSð Þ
1
3.

4.1.2 Other Model Details and Numerical Implementation

As we described in [56], microenvironmental quantities are modeled with reac-
tion-diffusion equations throughout the computational domain. Uptake terms (e.g.,
for O2) are created by a coarse-graining technique: first construct a high-resolution
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uptake term that resolves each cell’s volume, then average it across a lower-
resolution mesh (mesh size 	 1=10 the appropriate diffusion length scale) before
solving the reaction-diffusion equation. We apply Dirichlet conditions on the BM,
and use Neumann conditions wherever the lumen intersects the computational
boundary.

We represent the basement membrane using a signed distance function d sat-
isfying d [ 0 in the lumen, d\0 in the stroma, d ¼ 0 on the basement membrane,
and rdj j � 1. We introduce an auxiliary data structure to reduce the overall

computational cost from O NðtÞ2
	 


to O NðtÞð Þ, where NðtÞ is the number of

simulation objects at time t [56]. We implemented the model in cross-platform,
object-oriented C++; we currently plan to open source the simulation framework
in the next year. Towards that end, we introduced MultiCellXML, a new XML-
based standard for sharing multicell agent simulation data. The supplementary
material for [56] include sample DCIS simulation datasets (in MultiCellXML
1.0 format) and open source postprocessing and visualization code. Please see
http://MathCancer.org/JTB_DCIS_2012/.

4.1.3 Calibration to Individual Patients, and Key Necrosis
Parameter Values

In [56], we introduced the first calibration method to use individual patient
pathology from a single time point, based upon processing several DCIS-affected
ducts for the patient, as described in [23]. The proliferative index (PI: the per-
centage of Ki-67 positive cells in the viable rim) and apoptotic index (AI: the
percentage of cleaved Caspase-3 positive cells in the viable rim) were combined
with estimates of the proliferative time scale (sP ¼ 18 h) and apoptotic time
scale (sA ¼ 8:6 h) and a population dynamic argument to calibrate the A  
Q $ P phenotypic transitions in the model. The cell density and experimental
reports on cell mechanical response to deformation (see the references in [56])
were used to calibrate the mechanical parameters of the model. We calibrated
oxygen transport by solving steady-state reaction-diffusion equations in a simplified
cylindrical duct geometry and matching to the patient’s measured viable rim
thickness. In [56], we applied the calibration to a single anonymized DCIS patient
with high-grade solid-type DCIS with comedonecrosis; we show the simulation (in
a 1.5 mm, 2-D longitudinal section of duct) after 45 days of growth in this patient in
Fig. 8. We recently combined this calibration method with an upscaling/coarse-
graining argument to derive patient-specific predictions of surgical excision vol-
umes in [23].
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4.2 DCIS Growth is Linear; Mammography and Pathology
Sizes are Linearly Correlated; Origins in Necrotic
Cell Water Loss

In [56], we post-processed the simulation in one-hour increments to determine the
mean proliferative index, apoptotic index, viable rim thickness, and density as
functions of time, as well as the farthest viable cell position (xVðtÞ: the virtual
pathology size) and the farthest calcified cell position (xCðtÞ: the virtual mam-
mography size). Open source postprocessing code is given at MathCancer.org. We
plot xV (solid blue curve) and xC (dashed red curve) in Fig. 9 (left). After early
transient dynamics, a linear (constant-rate) growth pattern emerges. The tumor
advances at approximately 10.2 mm/year (obtained by the linear least-squares fit
of xV), whereas the calcification grows at 9.15 mm/year (linear least-squares fit of
xC). Due to these linear growth rates, the tumor’s mammography and pathology
sizes were predicted to be linearly correlated, with a linear least-squares
correlation:

pathology size � 0:4203 mmþ 1:117 mammography size; ð13Þ

where all measurements are in mm. See the blue points in Fig. 9 (right).
These predictions are qualitatively and quantitatively consistent with clinical

estimates of DCIS growth. Linear DCIS growth has been reported in a clinical
study correlating changes in mammographic size with time between mammograms
[15]. Another clinical study on microcalcifications reported that high-grade DCIS
grows at 7.1 mm per year (along an axis to the nipple) [86]. They also analyzed the
data in [15], deriving 13 and 6.8 mm/year mean and median growth rates,
respectively. According to our relationship in Eq. (13), these correspond to
pathology growth rates on the order of 7.6–14.5 mm/year. Hence, both our
mammography and pathology growth rate predictions are quantitatively consistent
with the clinical literature. [78] compared the maximum calcification diameter in

Fig. 8 Patient-calibrated DCIS simulation: After calibrating to a patient’s pathology data as in
[56], we simulate 45 days of DCIS growth. Legend: Viable rim: The black curve denotes the
basement membrane. The small blue circles are cell nuclei, quiescent cells (Q) are pale blue,
proliferating cells (P) are green, and apoptosing cells (A) are red. Necrotic core: Necrotic cells
(N ) are grey until they lyse; their solid fraction remains as debris (dark circles in center of duct).
The shade of red indicates the level of calcification; bright red debris are clinically-detectable
microcalcifications (N with t [ sC). Bar: 100 lm. Adapted with permission from [56]
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mammograms (corresponds to xC) with the measured pathologic tumor size
(corresponds to xV) in 87 patients, finding a significant linear correlation between
these measurements. When we extrapolate our linear relationship in Eq. (13) over
two orders of magnitude (from the 1 mm scale to the 1 and 10 cm scales,
approximating 1–10 years of growth), our extrapolated mammography-pathology
correlation (the curve) shows an excellent quantitative agreement with these 87
data points (red squares) in Fig. 9 (right). This is a surprising and interesting result,
which suggests that absent major alterations in signaling or microenvironmental
factors, a patient’s long-time growth dynamics may be established very early in
progression.

These clinical phenomena can be understood as emergent from the underlying
biophysics of the viable rim and necrotic core. Due to oxygen transport limitations,
cell proliferation is confined to an approximately 80 lm viable rim. As the tumor
grows, a steady pattern of flux emerges: proliferating cells towards the tumor
leading edge are directed primarily towards empty space ahead of the tumor.
Farther back, it is more mechanically favorable for mitosing cells to push their
neighbors towards the duct center (against fewer cells) than along the duct (against
more cells). Viable cells get pushed into hypoxic regions of the lumen, where they
become necrotic and accumulate to fill the duct. This results in a linear growth
pattern, as forward-directed proliferative cell flux is constrained to the leading
edge of the tumor.

Necrotic cell lysis sustains this process. Whenever a necrotic cell lyses, its former
volume is converted to a small core of cellular debris and a large pocket of (released)
fluid, which is easily occupied by other cells. Thus, the earlier flux dynamic is
maintained: proliferating cells on the outer edge of the duct push interior cells
towards the necrotic core, diverting much of the overall cell flux inwards rather than
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towards the tumor leading edge. Hence, necrotic cell lysis acts as a mechanical stress
relief, analogously to the mechanical pressure sink terms used in [58–61].

This can be further confirmed by altering the necrosis model. In [55, 57], we used a
more gradual model of necrotic cell volume loss, where fluid ‘‘leakage’’ was spread
over sC ¼ 15 days. The tumor advance accelerated as the viable rim grew, consistent
with exponential growth. In those simulations, the rate of biomechanical stress relief
in the necrotic core was too slow, causing more of the proliferative cell flux to be
directed along the duct, preventing sustained linear growth. When we set sNL ¼
sC ¼ 15 days, we observed accelerating, exponential-like growth (blue curve after
initial transient dynamics) [56]. See Fig. 10 (left). Generally, we found that all
simulations exhibited exponential-like growth for approximately sNL time after the
first instance of necrosis. For sufficiently small sNL (under 1 day), the brief expo-
nential growth phase could not be detected. This mechanism suggested to us that
because the lumen/necrotic core acts as a ‘‘reservoir’’ of mechanical stress relief to
absorb proliferative cell flux, DCIS growth should be fastest in small ducts, and
slowest in larger ducts. In simulations, we found this to be supported [56]. See Fig. 10
(right). We found an inverse relationship between duct radius Rduct and the DCIS
growth rate x0V (the red curve in Fig. 10 (right)):

x0V � 20:52þ e6:085�0:02584Rduct lm=day: ð14Þ

Notice that as Rduct !1, we find a minimum growth rate of 7.5 mm/year, or a
mammography growth rate (by Eq. 13) of 6.7 mm/year. Cases with slower growth
would need to be attributed to reduced oxygen or altered cell signaling.

4.3 Proliferative Cell Flux and Multiscale Necrosis Lead
to a Stratified, Age-Structured Necrotic Core

Thus far, we have focused upon the gross macroscopic behavior of DCIS: the
emergent growth rate and the relationship between mammography and pathology.
We now turn our attention to the finer microstructure of the tumor. In Fig. 11 (top),
we highlight several characteristic cross-sections of our DCIS simulation at 45 days.

In Slice a, there is a viable rim of thickness comparable to the remainder of the
tumor, but with little visible evidence of necrosis. Biologically, this section of the
tumor is no different than portions with necrosis (i.e., hypoxia is significant). This
raises the possibility that in cases where too few ducts are sampled, a pathologist
may fail to observe comedonecrosis, potentially (and incorrectly) changing the
patient’s Van Nuys Prognostic Index score [84] and affecting treatment decisions.
This could be particularly true in cases where hPIi=sP � hAIi=sA, as little net cell
flux from the viable rim to the necrotic core would be expected [56].

Farther from the tumor leading edge in Slice b, a ring of necrotic debris surrounds a
hollow duct lumen. In cross sections like this, there has not yet been sufficient tumor
cell flux from the viable rim to completely fill the lumen with necrotic debris. Farther
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still from the leading edge in Slice c, there has been sufficient cell flux to fill the lumen
with necrotic material; an outermost band of intact necrotic nuclei encircles a central
region of mostly degraded nuclei (modeled here simply as partly calcified). Farther
from the leading edge in Slice d, a thin outermost band of relatively intact necrotic
nuclei surrounds an inner band of mostly degraded necrotic material and an inner
core of microcalcification. In Slice e, the microcalcification is larger, and the out-
ermost band of intact necrotic nuclei is largely gone. The necrotic core is increasingly
calcified with distance from the tumor leading edge.

Overall, the model predicts an age-ordered necrotic core microstructure, with
oldest material in the center surrounded by increasingly newer, less-degraded, and
less-calcified material. Indeed, all these cross-sections can be found in our patient.
See the hematoxylin and eosin (H&E) stained section in Fig. 11 (bottom). Slice b
corresponds to Duct 1, where a ring of relatively intact necrotic debris (red arrows)
surrounds an as-yet unfilled lumen. Slice c corresponds to Duct 2, where the entire
lumen has been filled necrotic debris, which is more intact at its outer edge (red
arrow), and increasingly degraded in its center (green arrow). Slice d corresponds
to Duct 3, where a thinner ring of mostly intact nuclei (red arrows) surrounds an
intermediate layer of mostly degraded debris (green arrows) and a central core of
microcalcifications (white arrows). (Note that Duct 3 is likely the intersection of
two or more ducts near a branch point.) Slice e corresponds to Duct 4, where a ring
of degraded necrotic debris (green arrow) surrounds a larger calcification (white
arrow). The inset shows a different duct from the patient that is similar to slice a.

This stratified structure arises from the overall flux of cells from the viable rim
into the necrotic core, working in concert with the multiple time scales during
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Fig. 10 Left: Delaying cell lysis leads to a completely filled necrotic core, which redirects
proliferative cell flux along the duct. This results in exponential-like growth (blue curve). Right:
Larger ducts have a greater ‘‘reservoir’’ available to absorb proliferative cell flux through necrotic cell
lysis, leading to slower growth than in smaller ducts. Figures reproduced from [56] with permission
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necrosis. If any of these scales were changed or removed, the microstructure
would be altered. Indeed, better accounting for the time scales of nuclear degra-
dation and fluid loss would likely improve the quantitative match to the patient
pathology [56, 64].

Fig. 11 Top: Patient-calibrated DCIS simulation from Fig. 8 with selected cross-sections
highlighted to emphasize the emergent necrotic core microstructure. Near the leading edge (slice
a), little necrotic debris has accumulated in the lumen. Farther back, relatively intact necrotic
debris forms a ring near the necrotic boundary (slice b). Farther still, the lumen is completely
filled with necrotic debris, with increasing degradation towards the center (slice c). Farther back,
the oldest material is calcified, surrounded by relatively degraded debris (slice d). Calcification
increases with distance from the leading edge (slice e). Reproduced with permission from [56].
Bottom: All the predicted necrotic core microstructures are observed in the patient’s hematoxylin
and eosin (H&E) pathology. Red arrows show necrotic debris with relatively intact nuclei. Green
arrows show relatively degraded necrotic debris. White vertical arrows show calcification. Black
arrows show the mechanical tear at the perinecrotic boundary. Simulated slice b predicts the
microstructure seen in duct 1. Simulated slice c corresponds to duct 2. Simulated slice d
corresponds to duct 3. Simulated slice 3 corresponds to duct 4. Inset: A duct similar to slice a.
Pathology images adapted with permission from [56]
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4.4 Fast Time Scale Necrotic Cell Lysis and Volume Loss
are Responsible for Mechanical ‘‘Tears’’
at Perinecrotic Boundary

One notable feature of nearly every DCIS pathology section is a ‘‘tear’’ at the
perinecrotic boundary. See the black arrows in Fig. 11 (bottom). The conventional
wisdom is that these tears are not actually present in vivo, but are instead artifacts
that arise from tissue dehydration during sample preparation.

In [57], we implemented a preliminary necrosis sub-model where fluid volume
was lost through the membrane gradually throughout necrosis, at a rate propor-
tional to surface area and the remaining fluid fraction:

dV

ds
¼ � 2

sN

log 100

� �
4pR2
� � V � VS

V

� �
; ð15Þ

where 0\s\sC ¼ sN is the elapsed time since entering the necrotic state, VS is
the cell’s solid fraction, and the coefficient was chosen to make this nonlinear ODE
satisfy VðsNÞ � VS. Fast cell swelling and lysis were neglected. The simulation,
plotted at 30 days in Fig. 12, did not predict a tear at the perinecrotic boundary.
We therefore hypothesized that if the perinecrotic tear is not an artifact, it must be
caused by a fast time scale process. In [56], based upon a more thorough review of
necrosis biology (see Sect. 2.2), we implemented the current model with rapid
necrotic cell swelling followed by rapid volume loss. These simulations did
recapitulate the perinecrotic tear. See the tumor leading edge in Fig. 8.

The mechanistic model is based upon the balance of actual forces with bio-
physically sound parameter values, is calibrated to actual patient data, and suc-
cessfully makes quantitative, validated predictions on DCIS progression. In light of
this care we put into the biological and clinical accuracy of the model, we conclude
that mechanical separation of the viable rim and necrotic core at the perinecrotic
boundary, although exacerbated by tissue dehydration, is in fact a real phenomenon,
rather than a simple artifact. Based upon this new insight, we now interpret tears and
cracks in pathology sections as indicators of a tissue’s local biomechanical strength.

4.5 Evidence of Calcification Degradation
at a Very Long Time Scale

Our simulations (Fig. 8) predict a linear/casting-type calcification, where the cal-
cification forms a long, solid ‘‘plug’’ in the center of the duct. See Fig. 13 for a
mammographic image of casting-type microcalcifications. Other calcification
morphologies (e.g., fine pleomorphic) are not predicted by the biophysical
assumptions of our model. While casting-type calcifications correlate with come-
donecrosis [85], they are only present in approximately 30–50 % of DCIS
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[28, 39]. Moreover, casting-type calcifications can be absent from small,
high-grade DCIS, while present in larger, low-grade DCIS [28]. Additional
biophysics (e.g., secretions, heterogeneous adhesion mechanics, or degradation over
long time scales) are required to model the broader spectrum of observed calcifi-
cations in DCIS. Our H&E images (Fig. 11) support this idea. The central regions of
many calcifications—which we have shown are associated with the ‘‘oldest’’
necrotic material—demonstrate significant cracks that suggest extensive degrada-
tion and weak cohesion.

Phospholipids—such as those from subcellular structures that likely form a
‘‘backbone’’ for the formation of microcalcifications—degrade with half-lives on
the order of 80 [3]–300 h [45] in non-pathologic tissue. Given this time scale, we
would expect necrotic tissues and their associated microcalcifications to degrade
over the course of a few months. This may partly explain rare cases of spontaneous
resolution of calcifications in mammograms, where calcifications become smaller
or occult without alternative explanations [81]: in slow-growing DCIS (e.g., with
both high PI and AI, as observed in high-grade DCIS [11]), calcifications may be
degraded more quickly than they are replaced by new necrotic material.

5 Discussion and Looking Forward

As we have seen, tissue necrosis and calcification are truly multiscale processes.
Early tissue-scale modeling [51, 58–62] (Sect. 3) provided key insights on the role of
tissue necrosis in steady tumor spheroid sizes, and its potentially destabilizing role
when volume loss is rapid. Notably, these models can sufficiently predict the impact
of the necrotic core on the long-time volume and morphology of a tumor, allowing
quantitative predictions of progression. However, continuum modeling has thus far
focused on the slower time scale processes of fluid loss and solid degradation;
reformulation would be required to incorporate fast time scale processes like
swelling and lysis. This is an interesting shortcoming, given that these are key fea-
tures used to differentiate necrosis (and oncosis) from apoptosis in pathology.

Fig. 12 Early DCIS simulations [57] neglected fast necrotic cell swelling and implemented a gradual
volume loss over 15 days. The simulations could not reproduce the tear at the perinecrotic boundary.
Necrotic cell lysis was too slow to sustain linear growth. Adapted with permission from [57]
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Models that consider the full spread of time scales in necrosis and calcification can
produce a rich spectrum of behaviors that match observations in pathology [55–57]
(Sect. 4). As hypothesized in [57] and investigated in [56], fast cell swelling and
lysis—so fundamentally characteristic of early necrosis—are responsible for the
tears (‘‘artifacts’’) at the perinecrotic boundary that we consistently see in pathology.
From a continuum point of view, these are rapid perturbations that create persistent
and sharp discontinuities in the cell and necrotic debris distributions.

The simulated tumor microstructure—a viable rim (with greatest proliferation at
the outermost edge) surrounding a stratified, age-structured necrotic core—arises
from the multiscalarity of tissue necrosis and calcification. In the necrotic core, the
structure mirrors tissue age due to the steady flux from the viable rim into the necrotic
core: the newest, least degraded material surrounds increasingly degraded debris,
with central calcifications in the oldest tissues [56]. All these features are consistently
observed in patient pathology. Our work revealed a long-time deterioration of cal-
cifications that may explain key features in mammography.

5.1 Next-Generation Hybrid Multiscale Modeling

Improved multiscale and hybrid mathematics and computational techniques are
necessary for further advances. In the agent-based model, each necrotic cell agent
must remain in memory on the order of simulated months; by later times, necrotic
agents outnumber viable agents by three to one or more. And yet the vast majority
of these objects are engaged in the slow time scale processes of calcification and
solid degradation—processes that are well-suited to continuum modeling!

Lowengrub and colleagues are now developing a sophisticated continuum model
of necrotic cell calcification in DCIS [17]. We apply a phase field approach [91] to
model the tumor as a mixture of fluid, extracellular matrix, and cells. The model can
separately track the necrotic and calcified cell fractions. We also include a sophis-
ticated model of the basement membrane, which can deform in response to
mechanical stresses introduced by the growing tumor [16]. Preliminary results
recapitulate the gross features observed in DCIS pathology: a viable rim of appro-
priate thickness surrounding a necrotic core with a calcified center [17]. See Fig. 14.

Fig. 13 Mammogram
of a DCIS patient with
characteristic casting-type
microcalcifications,
labeled here with red arrows.
Image courtesy of Andy
Evans, University of Dundee/
NHS Tayside
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We plan to integrate these discrete and continuum approaches in a hybrid
model, as outlined in [43, 50]. A key issue is determining the rate constants for the
continuum model. As water loss in necrotic cells does not occur at a fixed rate, it
may be best to simulate using the discrete model until most fluid has been lost,
then ‘‘convert mass’’ to the continuum model for the slower time scale processes.
A more detailed analysis of the full agent-based model could yield the correct
average per-volume rate of volume loss in the necrotic tissues, similarly to the
upscaling approach we developed in [23, 54]. Other approaches may include
introduction of an age structuring variable, as is often used today in mathematical
ecology (e.g., [5, 41, 49]).

5.2 A Vision for Quantitative, Integrative
Computational Oncology

An integrative modeling approach—where clinicians, modelers, and biologists work
in close-knit teams throughout the modeling process—is necessary to push com-
putational oncology towards clinical application. Conversely, just as the space race
in the 1950s and 1960s fueled advances throughout engineering, physics, and
mathematics, efforts to push the envelope in patient-specific modeling are advancing
the state-of-the-art in mathematical modeling, computational algorithms, experi-
mental methods, and clinical practice. Moreover, quantitatively and explicitly stat-
ing our working biological hypotheses gives us the opportunity to rigorously and
systematically test and refine what can best be described as current cancer biology
orthodoxy. We close this chapter by outlining our vision of clinically-oriented
integrative computational oncology, and its possible impact beyond the clinic.

Model Design Clinicians and modelers jointly identify important unanswered
clinical questions. This helps modelers avoid investigating unnecessary tangents while

Fig. 14 Preliminary continuum simulation of solid-type DCIS with comedonecrosis and
calcifications [17]. Legend: Green curve: deformed basement membrane. Red curve: viable
tumor boundary. Magenta curve: calcified necrotic debris. White shading: non-calcified necrotic
tissue
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bringing fresh perspective to the clinicians. Biologists help modelers identify working
hypotheses around which to build their models. While explicitly writing these out and
‘‘translating’’ them to code, we can evaluate what is and is not truly known in cancer
biology. Lastly, while developing the model and numerical algorithms, assessing the
expected clinical and experimental data helps in choosing the modeling approach; the
model may expose needs for additional experimental measurements.

Data generation, model calibration, and early testing Modelers and clinicians
jointly plan studies and choose which clinical data to gather (pathology, radiology,
case histories, etc.). Biologists and modelers jointly plan experiments to supplement
the clinical data and inform the model’s constitutive relations. These data are inte-
grated into the model with the help of statisticians, image processing specialists, and
others. Early simulations help test and refine the data, model, and calibration.

Simulation, analysis, validation, and feedbacks The calibration procedure is applied
to simulate cancer in individual patients. The simulation data are postprocessed,
yielding quantitative predictions that we validate for each patient. This quantitative
focus allows us to assess and improve our underlying biological hypotheses. If the
predictions are accurate, trials may be planned to assess the model’s ability to assist
individual treatment decisions. The modelers, clinicians, and biologists jointly identify
future refinements and experiments. They also jointly select new modeling foci as
suggested by both clinical needs and model-derived insights.

5.2.1 Application of Integrative Modeling to Breast Cancer

This approach guides our work on breast cancer. We have built a team that now
includes oncologists, pathologists, radiologists, biologists and modelers [63], and we
are continuing to recruit complementary expertise (e.g., in analytical pathology, tissue
bioengineering, etc.). We have jointly identified that patient-specific predictions of
progression from in situ to invasive carcinoma would be of immense clinical value,
and would naturally build upon our increasingly accurate in situ models. To that end,
we are developing key modeling technologies, such as improved BM and
ECM mechanics [20] and multiscale matrix metalloproteinase transport-reaction
kinetics [19]. Early modeling results will help guide future experimental design.

Given the critical role of tissue necrosis in DCIS progression, we are developing
next-generation models of intracellular fluid transport, solid synthesis, and dystro-
phic calcification to more accurately describe individual cell volume and composi-
tion changes during these processes [64], based upon in vitro measurements we are
currently gathering [68]. By this approach, it should soon be possible to accurately
simulate common pathology stains based upon each cell agent’s composition. This,
in turn, should make possible new and innovative quantitative comparisons to patient
pathology, better refinement of the otherwise nigh-unmeasurable necrosis time
scales, and ultimately more accurate predictions of clinical progression.

The interested reader can find up-to-date information on these efforts (including
frequent news postings, animations, tutorials, simulation data, and software) at
MathCancer.org. We also encourage the interested reader to visit the newly-
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established Consortium for Integrative Computational Oncology at the University of
Southern California, where we are developing this approach with a focus on building
community and training the next generation of interdisciplinary cancer scientists.

5.2.2 Broader Implications and Spillover Benefits

The quest for quantitative accuracy in patient-specific modeling drives advances in
mechanistic modeling. Quantitative testing allows us to choose among competing
models, where multiple models may be qualitatively compelling, but fewer are
quantitatively reasonable. To the extent that rigorously-calibrated models can
successfully make quantitative predictions in individual patients, we gain new
confidence in the underlying models. Because the models are built to be universal
(cancer cells are just cells with different phenotypic parameter values), these
advances will be of use across computational biology. Likewise, efficient
numerical simulation of these increasingly sophisticated models is driving
advances in applied parallel computing and hybrid and multiscale modeling. Any
derived algorithms will be of benefit across applied mathematics and engineering.

If we should reach the point where we can integrate in vitro measurements with
clinical data to accurately predict cancer progression and therapy response in
individual patients, the implications are vast: new insights from wetlab biology
could be immediately evaluated for potential impact in individual patients in
combination with current therapies, offering accelerated discovery and clinical
translation. Ultimately, it is our goal that this approach will help bridge the gap
between theoretical modeling, wetlab biology, and clinical practice to develop and
deliver patient-calibrated predictive tools. We believe that such tools will one day
help clinicians and their patients to make optimal, personalized treatment decisions
that incorporate both accepted clinical practice and cutting-edge research results.
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Integration of Molecular Signaling
into Multiscale Modeling of Cancer

Zhihui Wang and Vittorio Cristini

Abstract Multiscale modeling has now been well-accepted as a powerful tool to
quantitatively represent, simulate, understand, and predict cancer progression and
development across multiple biological scales. In this chapter, we focus on a
specific type of multiscale cancer models where molecular signaling profiles are
explicitly linked to the determination of cellular phenotypic changes. These
models are particularly suitable for exploring the relationship between signaling
dynamics within each individual cancer cell and the emergent cancer behavior on
the multicellular level. We also discuss current challenges and future directions of
this molecular signaling-incorporated multiscale cancer modeling approach.
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TGFb Transforming growth factor b
2D Two-dimensional
3D Three-dimensional
TEM Transendothelial migration

1 Introduction

Cancer growth is a multistage complex process originating from molecular and
genetic cell abnormalities [1, 2]. Data-driven mathematical/computational mod-
eling has recently gained recognition for its potential to integrate the large volume
of experimental data currently available, to simulate and analyze the behavior of
complex biological systems, including cancer, and to optimize and predict clinical
therapies and outcome [3–5]. Because cancer growth indeed spans multiple spatial
and temporal biological scales (from genes and proteins to individual biological
cells, and tissues, up to the entire organism) [6, 7], modeling of cancer across
different biological scales, i.e., multiscale cancer modeling, that accounts for
intracellular signaling dynamics, individual cell properties, and multicellular
tumor growth environment is potentially more appropriate to predict cancer pro-
gression and development and generate experimental intervention strategies.
Focusing on only one scale, as does the vast majority of current cancer models [7],
simply neglects the correlative dependence and interplay between different scales.
However, since a multiscale cancer model has to quantify parameters on, and
relationships between biological processes that occur at different scales, the
complexity of model development is significantly increased.

There are three main types of modeling approach currently employed in the
cancer modeling community at large: continuum, discrete, and hybrid, and readers
are referred to [8, 9] for a detailed discussion on each modeling approach. Briefly,
continuum models benefit from the knowledge gained in fundamental physical
principles [7], and are capable of capturing larger-scale volumetric tumor growth
dynamics [10]. However, it is very difficult to use continuum models to explore
heterogeneity in both the tumor and its surrounding microenvironment [11].
Discrete models can address these shortcomings, since they can work on the scale
of individual cells or a cluster of cells [12]. Additionally, they can easily incor-
porate biological rules generated from biomedical data. However, a major draw-
back of discrete models is their compute intense nature due to the detail that each
cell is modeled in, which often limits the model to a relatively small number of
cells. For these reasons, hybrid modeling, i.e., the integration of both continuum
and discrete descriptions, currently appears to be a more appealing approach in the
cancer modeling field [6, 12].

Agent-based modeling (ABM) is a discrete-based hybrid modeling approach [13].
In an ABM, agents (often representing individual cells) interact or communicate
with other immediate agents and their common microenvironment according to a
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set of pre-defined biologically inspired computational rules. Tightly coupling and
iteratively refining these roles at all stages of model development with in vitro or in
vivo experiments is important [14]. An ABM produces emergent behavior that
arises from the behavior and interactions evolving at a cellular level. To date, the
ABM has been used to simulate a variety of cancer aspects, such as somatic
evolution in tumorigenesis [15, 16], the growth dynamics of multicellular tumor
spheroids [17, 18], and cancer cell invasion [19, 20]. In this chapter, we focus on
the introduction of the design and development of a specific type of ABM, i.e.,
molecular signaling incorporated multiscale ABM. This type of ABM is able to
address the role of diversity in cell populations and also within each individual
cell, and thus have the capacity to explore the relationship between molecular
signaling properties and upper level cancer behavior.

2 Modeling Approach

Cancer is a complex disease involving a series of irreversible genomic changes
that affect intrinsic cellular programs [2]. Wet-lab cancer researchers probably do
not appreciate a model which misses correlations of molecular-level alterations
with cancer cell properties, because it is essentially the aberration of signaling
pathways that contributes to the initiation and progression of cancer [21]. Cancer is
also a context-dependent disease [22], implicating that its progression behaviors
depend on the microenvironment where the activities of cancer cells take place.
More precisely, cancer cells bi-directionally communicate with their microenvi-
ronment, not only responding to various external cues but also impacting their
surroundings, e.g., by producing various signals and degrading the neighboring
tissue through proteases [23]. ABM is of particular interest to cancer modelers
because, as we will introduce below, it allows researchers to explore how cancer
growth and invasion properties (due to cell proliferation and migration) emerge as
a result of individual dynamics, including cell–cell and cell-environment inter-
actions and intracellular signaling of individual cells.

In the following, the design concept and development of the most recent
molecular signaling-incorporated multiscale ABMs will be discussed. Special
focus is given to the demonstration of how these two scales are explicitly linked by
what algorithm to determine cell phenotypic transitions upon what molecular
changes.

2.1 EGFR Signaling and Cellular Phenotypic Transition

A set of molecular-multicellular ABMs within brain tumors and non-small cell lung
cancer (NSCLC) have been developed. These models (as reviewed in [4, 12, 24])
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effectively ground and foster future models incorporating multiple scales from the
molecular up to the cellular level and beyond.

2.1.1 EGFR Signaling

The epidermal growth factor receptor (EGFR) is mutated and overexpressed in
many cancers, including brain cancer and lung cancer [25]. Epidermal growth
factor (EGF) binds EGFR and promotes dimerization and subsequent autophos-
phorylation, resulting in the downstream activation of a number of key cell deci-
sion-making proteins such as phospholipase Cc (PLCc), extracellular signal-
regulated kinase (ERK), and many others [26]. A number of EGFR-related pathway
kinetic models have been developed [27–29], but regardless of differences in their
complexity and scale (i.e., the number of molecular entities or molecular events),
all of these models use mathematical kinetic equations to describe molecular
interactions. The change in concentration of a certain protein pathway component
over time is determined based on the following ordinary differential equation form:

dðXiÞ
dt
¼
X

vProduction�
X

vConsumption; ð1Þ

where Xi represents one of the pathway components; the change in concentration
of Xi is the result of the reaction rates producing Xi minus the reaction rates
consuming it. If the initial concentrations of pathway components or reaction rate
constants are not yet available in the literature, their values either have to be
investigated experimentally or are fitted to published time-dependent quantitative
(or sometimes even qualitative) observations.

2.1.2 Microenvironment

A two-dimensional (2D) environment made up of a discrete lattice or a three-
dimensional (3D) environment composed of a discrete cube are constructed to
investigate tumor growth dynamics. Each grid point is occupied by a single cell or
is empty. Heterogeneous environments are attained by distributing external dif-
fusive chemical cues (such as growth factors, glucose, and oxygen) throughout the
computational domain. Throughout a simulation run, the concentrations of the
chemical cues are continuously diffused and updated at a fixed rate with partial
differential equations (PDEs). Each cell has a self-maintained EGFR signaling
network. As a simulation progresses, cells in distinct locations are likely to
experience different external microenvironmental conditions. Thus, even though
their internal states (including cell phenotype and concentrations of pathway
components) are set to be identical initially, they will exhibit different phenotypes
after a certain lapse of time due to their respective molecular changes.
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2.1.3 Molecularly Driven Cellular Phenotype Decision

PLCc is known to be involved in directional cell movement in response to EGF
[30] and is activated transiently in cancer cells, to a greater extent during migration
and more gradually in the proliferation mode [31]. Derived from this finding,
PLCc is modeled as the decision molecule for determining a cell’s migratory fate
by comparing the current rate of change (ROCPLCc) to a pre-specified threshold
TPLC. That is, if ROCPLC exceeds TPLC, the cell then has the ‘‘potential’’ to
migrate. However, a cell additionally has to meet other microenvironmental
requirements, such as sufficient local nutrient conditions and available adjacent
space, in order to process any phenotype transitions. If any of these conditions are
not met, then the cell will have to remain in its current location, waiting for the
next iteration in the simulation when conditions will be re-evaluated. Figure 1
schematically illustrates the cell phenotype decision algorithm. In addition to using
PLCc to determine the cell migration fate, ERK has been employed in making cell
proliferation decision, also based on experimental evidence [32].

Fig. 1 Assume a cell’s current phenotype is quiescence and the on-site nutrition is sufficient so
the cell will not die. The cell’s phenotype at the next step is determined as follows. The cell will
remain quiescent if both ROCPLCc and ROCERK remain below their corresponding thresholds
(TPLC and TERK, respectively); the cell will proliferate (and a new cell will then occupy an
adjacent free location) if only ROCERK exceeds TERK; and the cell will migrate to an adjacent
free location if ROCPLCc (regardless of ERK) exceeds TPLC
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2.1.4 Modeling Examples

A simplified representation of the EGFR signaling pathway and the aforemen-
tioned molecularly-driven cellular phenotype decision algorithm were first applied
to the investigation of brain tumor growth in a 2D environment [33, 34]. The
models examined how the molecular profile of each individual glioma cell impacts
the cell’s phenotypic switch, and how such context-specific single-cell activities
potentially affect the dynamics of the entire tumor system. In particular, the
models found that increasing the EGFR density per cell results in an acceleration
of the entire tumor system’s spatiotemporal expansion dynamics [34], a finding
that is in good agreement with published experimental data [35]. To simulate brain
tumor growth in a more realistic microenvironment, a 3D model was developed
[36], where a simplified cell-cycle description at the sub-cellular scale based on
[37] was added to molecular layer. The simulation results not only confirmed the
impact of regulation of EGFR signaling on tumor behavior (both on the single cell
and multi-cellular level), but also indicated that over time, proliferative and
migratory cell populations oscillate and have a direct effect on the entire spatio-
temporal tumor expansion pattern. A recent extension study [38] further studied
the emergence of heterogeneous tumor cell clones through introducing an element
of genetic instability and analyzed how heterogeneity impacts brain tumor pro-
gression patterns. Simulation results showed that cell clones with higher EGFR
density were comprised of a larger migratory fraction and smaller proliferative and
quiescent fractions, which corresponds well with reported experimental data [39].

EGFR also plays an important role in progression and metastasis of NSCLC.
Can the same modeling method be applied to NSCLC as well? A 2D model with a
revised EGF-induced, EGFR-mediated pathway specific to NSCLC was developed
to quantitatively understand the relationship between extrinsic chemotactic stimuli,
the underlying properties of signaling networks, and the cellular biological
responses they trigger in NSCLC from a systemic view [40]. In addition to con-
firming the experimentally known fact that increasing the amount of available
growth factors leads to a spatially more aggressive cancer system [41, 42], the
model found that in the cancer cell closest to the nutrient source, a minimal increase
in EGF concentration can temporarily abolish its proliferative phenotype. More
recently, the model was extended to a 3D case in which both EGF and transforming
growth factor b (TGFb) and their interplay were taken into account [43]. This
physiologically and clinically motivated extension of the NSCLC modeling plat-
form allowed for investigating how the effects of individual and combinatorial
change in EGF and TGFb concentrations at the molecular level alter tumor growth
dynamics (including tumor volume and expansion rate) on the multi-cellular level.
A particular region of tumor system stability, generated by unique pairs of EGF and
TGFb concentration variations, was discovered. Figure 2 shows the simulation
results from changing EGF and TGFb concentrations both simultaneously and
asynchronously. As can be seen, the common stable phenotypic region is generated
by [2-7]-fold variation of EGF and [0.3–3]-fold variation of TGFb. This result
indicates that when the variation-pair of EGF and TGFb concentrations occurred
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within this region, changes caused by the two growth factors did not effectively
transmit to the downstream activation cascade, potentially explaining the resulting
robustness of the tumor system at the multi-cellular level. However, the tumor
system becomes sensitive to external variations in EGF and/or TGFb when they
occur outside this region, processing a phenotypic switch once the microenviron-
ment becomes more permissive.

2.2 E-cadherin Signaling and Cell–Cell Adhesion

E-cadherin mediates cell–cell adhesion and plays a critical role in the formation
and maintenance of cell contact. E-cadherin mutation has been correlated with
malignant transformation and invasive behavior [45], whereas increasing the
E-cadherin expression level has been shown to reduce the growth of malignant cell
lines [46]. Only recently, cancer modelers began to explicitly investigate cell–cell
adhesion related intracellular signaling in a multicellular context to understand the
possible effects of changes in E-cadherin on the growth characteristics of cancer
cell populations [44, 47, 48].

2.2.1 E-cadherin Signaling

When a cell adheres to adjacent neighbors, E-cadherin binds to b-catenin to form a
complex which can interact with neighboring cells to form bonds. When cells
detach from one another, b-catenin is released into the cytoplasm, targeted for

Fig. 2 The effects of asynchronous combinatorial change in EGF and TGFb concentrations on
tumor volume represented by cell number (left panel) and tumor expansion rate represented by
inverse simulation step (right panel). In tumor volume evaluation, the largest tumor volume is
reached under conditions of high TGFb and low or standard (with a variation of 1.0-fold) EGF
concentrations. However, in tumor expansion rate evaluation, the most aggressive tumor
expansion rate (fewest simulation steps) occurs under conditions of high EGF, regardless of
TGFb concentrations. Reproduced with permission from [43]
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degradation, and at the same time, E-cadherin is sequestered into the cytoplasm by
endocytosis. Upregulation of soluble b-catenin is related to cell migration and the
epithelial-mesenchymal transition (EMT) [49], a process where a well ordered and
polarized layer of cells changes into an unstructured configuration to facilitate
collective cell migration. Sufficiently large concentrations of soluble b-catenin
then move from the cytoplasm into the nucleus, where it interacts with tran-
scription factors which modify cell behavior, e.g., by promoting cell proliferation.
It has been observed that invasive cells show a higher nuclear accumulation of
soluble b-catenin. In particular, as proposed in [50], b-catenin may translocate into
the nucleus above a certain concentration threshold, leading to downregulation of
E-cadherin-mediated adhesion.

2.2.2 Microenvironment

A lattice-free environment is constructed to explore linking the intracellular
dynamics of E-cadherin and b-catenin interaction pathways, physical forces on
the cells, and the extracellular microenvironment. Each cell is considered as an
individual entity in which intracellular dynamics are governed by the a set of
mass conservation chemical equations, using the same form of Eq. (1). A sim-
plified b-catenin pathway which captures the key features of the cell adhesion
process is implemented. Since cells in isolation tend to aggregate, it is assumed
that an invasive cell can change into a noninvasive state again if it comes into
contact with other cells. Cell movement is modeled by a stochastic equation of
motion:

c�vi ¼
X

j nn i

�Fij þ
X

j nn i

�Fa
ij þ �fiðtÞ; ð2Þ

where �vi is the velocity of the cell i at time t; �Fij and �Fa
ij are the repulsive force and

adhesive force of cell j on cell i, respectively, and the sums are over the nearest
neighbors in contact with cell i; �fiðtÞ represents a noise term for cell i at time t; and
c is the cell-substrate friction constant. Interested readers are encouraged to refer to
the original article [48] for more details on each term. Briefly, this governing
equation accounts for the influence of forces and a random contribution to the
locomotion which results from the local exploration of space. The adhesion forces
between cells are controlled by the density of E-cadherin in the cell membrane
within the cell–cell contact zone.

2.2.3 Cell Migration Determination upon Expression Levels of b-Catenin

As explained above, upregulation of soluble b-catenin is assumed to interact with
transcription factors in the nucleus, and intend to induce cell migration [51]. In
fact, both attachment and detachment of cells lead to an exchange of E-cadherin
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between the membranes in the contact zone of the interacting cells. The expression
levels of b-catenin (denoted by [b]) can be used to determine a cell’s migration
potential by comparing with a threshold. Specifically, if [b] exceeds the threshold,
the soluble b-catenin in cytoplasm is considered to be large enough, so it is free to
enter the nucleus and interact with transcription factors, resulting in cell migration.
Note that, the decision for a cell to migrate can be triggered in a number of
different ways, all of them involving an upregulation of the soluble b-catenin
which needs to exceed the pre-specified threshold. For example, the cytoplasmic
concentration of b-catenin may be upregulated due to a failure in the proteasome
system or detachment of local neighbors; in both cases, free b-catenin enters the
nucleus and triggers cell migration.

2.2.4 Modeling Examples

A number of computational studies have been carried out to probe the relative
importance of E-cadherin and b-catenin intracellular signaling properties in
determining tumor tissue characteristics. A multiscale lattice-free ABM was first
developed to study how cell adhesion may be regulated by the interactions
between E-cadherin and b-catenin [48]. Simulation results showed that down-
regulation of b-catenin can be mainly driven by cell–cell contacts, and EMT can
be achieved depending on the regulation of soluble b-catenin by local contacts.
The intra- and intercellular protein interactions that govern cell–cell adhesion
combined with cellular physical properties are also the driving forces of an
essential mechanism that a cancer cell uses to attach to the endothelial wall, i.e.,
transendothelial migration (TEM) [52]. In a subsequent study [47], the influence
of different protein pathways in the achievement of TEM was investigated by
adding the Src pathway to the molecular layer. Four cancer cell genotypes that
differ in the adhesion protein pathways were considered. The genotypes were
characterized by their capacity of creating N-cadherin-mediated bonds with the
tunica intima and by their capacity of inducing a detachment of the endothelial–
endothelial bonds by Src activity. Simulation results indicate that the slowest
migration was found in the case when both N-cadherin and Scr were knocked
out, while the fastest case occurred when both N-cadherin and Scr remained
active.

In a more recent study from the same group [44], three cell–cell adhesion sub-
pathways were proposed, and the influence of these pathways on tumor profiles
was studied. Sub-pathway 1 considers bond formation as a cause of the interaction
between b-catenin and E-cadherin; sub-pathway 2 considers in addition the deg-
radation of the adhesion complex after b-catenin is phosphorylated by Src; and
sub-pathway 3 considers intracellular interactions between Src, b-catenin,
E-cadherin, and PI3. Model analysis finds that cells with sub-pathway 2 and slow
synthesis rate of Src associated sub-pathway 3 generated the largest subpopulation
due to an advantageous position close to the tumor border that permits them to
more easily form clones of large size. Figure 3 shows the transversal section of
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one simulation example with a tumor of 100,000 cells. This finding agrees well
with an experimental study [53] where cell–cell adhesion behavior was found to be
only possible at intermediate concentrations of Src, and when Src was absent or
when it was at high concentrations, the cells were not able to express E-cadherin-
mediated bonds. This model suggested that therapies eradicating Src may not be
effective to prevent cancer invasion because sub-pathway 3 phenotypes associated
with low Src expression levels were one of the most aggressive.

3 Discussion and Future Directions

We have reviewed the methods and achievements of a specific type of multiscale
agent-based modeling which encompass molecular and multicellular scales.
Although still at an early stage, this approach has demonstrated its ability to help

Fig. 3 A transversal section of a simulated tumor formed by different cell types. The external
rim of the tumor is mostly formed by weak adhesive cell types (black, red and blue), while sub-
pathway 1 cell and the sub-pathway 3 cell phenotype associated with intermediate Src synthesis
rate (white and green) remain mostly at the interior. Slow and fast Src synthesis cells and sub-
pathway 2 cells dominate the positions at the tumor border, outcompeting cell types with strong
cell–cell adhesion (sub-pathway 1 and sub-pathway 3 with intermediate Src synthesis rate).
Reproduced with permission from [44]
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understand the relationship between extracellular stimuli, intracellular signaling
dynamics, and multicellular tumor growth. Simulation results can be validated
with in vitro or in vivo experiments, or verified with other theoretical studies. For
using this approach, an algorithm for linking molecular and multicellular scales is
indispensable and sometimes needs experimentally supported creative thoughts.
On the basis of the modeling works presented here, we argue that this type of
ABM is highly suited to modeling complex emergent behaviors of cancerous
systems, which are generated as an outcome of direct and indirect interactions
between large numbers of individual cells.

The molecular-multicellular ABM not only enables the monitoring of multi-
cellular dynamics in response to molecular changes, but also facilitates the
tracking of the fate of molecular components per cell and cell cluster as the entire
tumor system evolves. It is now possible to ascertain the cause of a specific tumor
growth pattern at the multicellular level by exploring the time-course history of
intracellular signaling profiles within individual cells. For example, the EMT
process has been studied by using the ABMs presented in [48]; it is very difficult
for an averaged population-based continuum model to study this process. It is also
noteworthy that the molecular-multicellular ABM has been employed in other
biomedical fields as well other than cancer, e.g., in epithelial cell study [54, 55]
and in acute inflammation study [56–58], highlighting the promise of this type of
ABM in translating mechanistic knowledge into an integrated experimental and
computational framework.

There are a number of technical challenges in transitioning these ABMs to
biomedical/clinical practice. These include the more common issues such as
obtaining access to relevant data to validate simulation results and defining stan-
dards for model definitions. The most severe issue, however, is the compute
intensity associated with these discrete-based hybrid models. In modeling cancer,
it is generally accepted that the higher a model’s spatial and temporal resolution,
the higher its compute power demand [4]. ABMs are generally too detailed to
simulate over a long period of time, particularly in a large, 3D domain. Paralle-
lizing the code and then running the model on a cluster of supercomputers is a
possible but not always practical solution that still may not resolve all the diffi-
culties in handling the enormous amount of experimental and clinical data. We and
others have begun to turn to hybrid, multiscale and multi-resolution modeling
[6, 12, 59], where multi-resolution means that cells at distinct topographic regions
are treated differently in terms of the modeling approach applied. This approach
has the potential to achieve discretely high resolution wherever and whenever
necessary to improve the model’s predictive power, while at the same time
reducing compute intensity as much as possible to support scalability of the
approach to clinically relevant levels. By drawing on the strengths of the multi-
resolution approach, and integrating it into the next generation ABM models with
a hierarchy of processes at varying time and space scales, we can produce com-
putationally efficient models to simulate tumor progression, predict treatment
impact, and ultimately, be applicable in clinical practice.
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