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Abstract The ever increasing adoption of mobile technologies and ubiquitous
services allows to sense human behavior at unprecedented levels of details and scale.
Wearable sensors are opening up a new window on human mobility and proximity
at the finest resolution of face-to-face proximity. As a consequence, empirical data
describing social and behavioral networks are acquiring a longitudinal dimension
that brings forth new challenges for analysis and modeling. Here we review recent
work on the representation and analysis of temporal networks of face-to-face human
proximity, based on large-scale datasets collected in the context of the SocioPatterns
collaboration. We show that the raw behavioral data can be studied at various
levels of coarse-graining, which turn out to be complementary to one another, with
each level exposing different features of the underlying system. We briefly review
a generative model of temporal contact networks that reproduces some statistical
observables. Then, we shift our focus from surface statistical features to dynamical
processes on empirical temporal networks. We discuss how simple dynamical
processes can be used as probes to expose important features of the interaction
patterns, such as burstiness and causal constraints. We show that simulating
dynamical processes on empirical temporal networks can unveil differences between
datasets that would otherwise look statistically similar. Moreover, we argue that,
due to the temporal heterogeneity of human dynamics, in order to investigate the
temporal properties of spreading processes it may be necessary to abandon the
notion of wall-clock time in favour of an intrinsic notion of time for each individual
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node, defined in terms of its activity level. We conclude highlighting several open
research questions raised by the nature of the data at hand.

1 Introduction

Although social relationships and behaviors are inherently dynamically evolving,
social interactions, represented by the paradigm of social networks [1] have long
been studied as static entities, mostly because empirical longitudinal data have been
scarce [2, 3], and often limited to relatively small groups of individuals. As new
technologies pervade our daily life, digital traces of human activities are gathered
at many different temporal and spatial scales and for large populations, and they
promise to transform the way we measure, model and reason on social aggregates
[4, 5] and socio-technical systems [6] that combine social dynamics and computer-
supported interaction mechanisms (e.g., large scale on-line social networks like
Twitter and Facebook). It is important to remark that, from a methodological point of
view, data from technological and infrastructural proxies give access to behavioral
networks defined in terms of the specific proxy at hand, and not to bona fide social
networks. Digital traces have been already used as proxies to study many specific
aspects of human behavior, such as geographic mobility [7–13], phone communica-
tions [14], email exchange or instant messaging [15–20], and even human mobility
and proximity in indoor environments (http://www.sociopatterns.org) [21–24].

Due to the often high temporal resolution of emerging data sets on human
interactions, the now customary representation of interactions in terms of static
complex networks, which has led to countless interesting analyses and insights
[1, 25–31], needs to be extended to take into account the dynamical properties of
the interaction patterns, bringing forth the field of “temporal networks” [32]. This
prompts fundamental and applied research on adapting and extending well-known
networks observables, metrics and characterization techniques to the more complex
case of a time-varying graph representations.

At the same time, the availability of high-resolution time-resolved data on human
interactions does not mean that any research question should be addressed by using
the full-scale and finest-resolution datasets, as they usually entail computational
challenges due to the sheer size of their digital representations. Given a specific
problem or research questions, understanding what is the most appropriate scale for
coarse-graining the raw behavioral data, and what are the mathematical techniques
and data representation that are best suited to create such synopses is a key problem
in its own merit [33–35], and has been already identified as such in the specific case
of epidemic simulation based on temporal social network data [36, 37].

In the context outline above, we review here recent research efforts, devel-
oped within the SocioPatterns collaboration (http://www.sociopatterns.org), based
on large-scale datasets that describe human face-to-face interactions in various
contexts, covering scientific conferences [21–23, 36, 38], hospital wards [39],
schools [40], and museums [38].

http://www.sociopatterns.org
http://www.sociopatterns.org
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2 Phenomenology

2.1 From Raw Proximity Data to Dynamical Networks

The data we describe here have been collected in deployments of the SocioPat-
terns (http://www.sociopatterns.org) social sensing infrastructure, described in
[21]. This measurement infrastructure is based on wearable wireless devices that
exchange low-power radio signals in a distributed fashion and use radio packet
exchange rates to monitor for location and proximity of individuals. The proximity
information is sent to radio receivers installed in the environment, which timestamp
and log contact data. Participants are asked to wear such devices, embedded in
unobtrusive wearable badges, on their chests, so that badges can exchange radio
packets only when the individuals wearing them face each other at close range
(about 1–1:5 m). The onboard software of the devices is tuned so that the face-
to-face proximity of two individuals wearing the badges can be assessed with a
probability in excess of 99 % over an interval of 20 s. A “contact” between two
individuals is then considered as established during a time period of 20 s if the
devices worn by these individuals exchanged at least one radio packet during that
interval. The contact is then considered as ongoing until a 20 s interval occurs such
that no packet exchange between the devices is recorded: at that point the contact
event is recorded together with its starting time and duration. Notice that in contrast
to other temporal network datasets in which interactions are instantaneous events,
here close-proximity and face-to-face contacts do have a finite duration.

The data gathered by the social sensing infrastructure thus give access, for each
pair of participants, to the detailed list of their contacts, with starting and ending
times: these data can be represented as a time-varying social network of contact
within the monitored community. The temporal resolution of 20 s in assessing
proximity sets the finest resolution for the temporal network representation we use,
which, in the following, will be assumed to be an ordered sequence of graphs,
each corresponding to a 20-s interval. Table 1 provides information and literature
references on the temporal networks that will be discussed in the following.

2.2 Microscopic View

For each pair of individuals i and j , the datasets contain a list of ` successive time
intervals ..t

.s;1/
ij ; t

.e;1/
ij /; .t

.s;2/
ij ; t

.e;2/
ij /; � � � ; .t

.s;`/
ij ; t

.e;`/
ij // during which i and j were

detected to be in close-range face-to-face proximity, where t
.s;a/
ij refers to the starting

time (hence the superscript s) and t
.e;a/
ij to the ending time of the time interval

number a.
Several quantities of interest can be defined to summarize the contact patterns of

each individual or pair of individuals, and to provide a statistical characterization of

http://www.sociopatterns.org
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Table 1 Partial list of the datasets on face-to-face proximity collected by the SocioPatterns
collaboration during 2009 and 2010 and discussed in the present paper

Name Date Venue Event type # persons Duration Reference

SG Apr–Jul
2009

Science
Gallery,
Dublin, IE

Exhibition �30,000 3 months [38, 41, 42]

ESWC09 Jun 2009 ESWC 2009,
Crete, GR

Conference �180 4 days [22, 23]

SFHH Jun 2009 SFHH, Nice,
FR

Conference �400 2 days [36]

HT09 Jul 2009 ACM
Hypertext
2009,
Torino, IT

Conference �120 3 days [43, 44]

PS Oct 2009 Primary school,
Lyon, FR

School �250 2 days [40, 45]

ESWC10 Jun 2010 ESWC 2010,
Crete, GR

Conference �200 4 days [46]

(OBG) Nov 2009 Bambino Gesù
hospital,
Roma, IT

Hospital �100 10 days [39]

(PRAMA) Apr 2010 Practice
Mapping,
Gijon, ES

Exhibition �100 10 days [47]

(HFARM) Jun–Jul
2010

H-Farm,
Treviso, IT

Company �200 6 weeks –

Deployments that did not involve face-to-face detection or had less than 100 participants are not
reported. Deployments with names in bold face correspond to publicly available datasets (see
references). Deployments with names in parentheses are listed for reference only

contact patterns. In particular, for each pair of individuals i and j (edge i -j ), their
list of contact time intervals yields a list of contact durations .�t

.1/
ij ; � � � ; �t

.`/
ij /, with

�t
.a/
ij D t

.e;a/
ij �t

.s;a/
ij for a D 1; � � � ; `. Several notions of weight wij for the edge i -j

can be defined on the basis of this list of contact durations, yielding weighted contact
networks that describe different aspects of the empirical sequence of contacts:

• Edge presence: wp
ij measures the contact occurrence (the superscript p stands

for “presence”), with wp
ij D 1 if at least one contact between i and j has been

established, and 0 otherwise.
• Frequency of occurrence: The frequency wn

ij D l indicates how many distinct
contact events have been registered between i and j , disregarding the length of
each contact (the superscript n is for “number”).

• Cumulative time in contact: The cumulative duration of the contact wt
ij D

P
a �t

.a/
ij gives the sum of the durations of all contacts established between i

and j (hence the superscript t).
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Fig. 1 Distributions of the
face-to-face contact durations
measured in different
environments

At the level of each individual i , the above weights w can be aggregated over all
individuals j who had a contact with i , i.e., si D P

j wij, yielding the following
notions of node strength:

• s
p
i D P

j wp
ij gives the number of distinct individuals with whom i has

established at least one contact; i.e., the degree ki of i in the behavioral contact
network.

• sn
i D P

j wn
ij indicates the overall number of contacts in which i has been

involved.
• The cumulative contact time st

i D P
j wt

ij corresponds to the total sum of the
duration of all contacts involving individual i .1

Of course all the quantities described above can be measured over the whole
duration of the deployment, or for a restricted duration (for instance, 1 day, as is
natural for conferences or the museum deployment we describe below). The choice
of the aggregation time allows, for instance, to investigate the inter and intra-day
variability of interaction patterns among different individuals.

A first way to uncover the complexity of the data is through a study of the
statistical distributions of the duration of the contact events, and of the time intervals
between contact events. As shown in Figs. 1 and 2 and discussed in [21], broad
distributions spanning several orders of magnitude are observed in both cases: most
contact durations and intervals between successive contacts are very short, but very
long durations are also observed, and no characteristic timescale emerges. This
bursty behavior is a well known feature of human dynamics and has been observed
in a variety of systems driven by human actions [14, 48–50]. In the present case of
close-range contacts, no simple functional form such as a power-law distribution or
a log-normal distribution seems to fit the observed data over the full range of time

1Note that st
i might be larger than the total time during which i has been in contact with any

individual, as i could be in contact at the same time with more than one individual.
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Fig. 2 Distributions of the
time intervals between two
successive contact events of a
given individual, aggregated
over the entire population

intervals. However, it is important to highlight a few important aspects of the contact
duration distributions of Fig. 1.

The first observation is that the distributions approximately collapse on one
another regardless of the specific context they refer to. This is remarkable as the
datasets refer to very different social environments: exhibitions (SG), where visitors
stream along a pre-defined path of a museum; Academic conferences (HT09,
ESWC09, ESWC10), where the same tightly knit community shares a small number
of social spaces for several days and meets according to a predefined schedule,
large-scale conferences (SFHH) where many people do not know each other and
very different social spaces coexist, such as plenary rooms and exhibition spaces. In
the case of the primary school (PS), the distribution is slightly narrower, possibly
due to strong schedule constraints such as the duration of breaks between lectures,
or to the fact that young children tend to have less long face-to-face interactions
than adults. Regardless of all these social, spatial and demographic differences,
face-to-face contact behavior appears to obey the same bursty behavior across all
contexts. This is an important fact for modelers, as it implies that processes relying
on contact durations can be modeled by plugging into the model the empirically
observed distribution, assumed to depend negligibly on the specifics of the contact
situation being modeled.

A second observation deals with the origin of the contact duration heterogeneity
of Fig. 1. It may be argued that the simultaneous presence of multiple timescales
of human contact is responsible for the broad distribution we observe. However,
as shown in [21] and related Supplementary Information, the contact durations
restricted to single individuals do exhibit the same broad distribution observed for
the entire social aggregate. This points to an intrinsic origin for the observed tem-
poral heterogeneity, rooted in the way single persons arbitrate their social contacts
and the use of their time. The temporal heterogeneity of contact durations, at the
individual and collective level, undermines a number of simple representations for
the contact network that implicitly assume some degree of statistical homogeneity.
For example, when dealing with contact networks for epidemiological purpose, it
is customary to summarize the contact networks between classes of individuals by
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Fig. 3 Timelines of the number of: nodes and links in 20-s instantaneous networks (top left),
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ESWC09 data set

using contact matrices [51] computed from averages of contact durations. Given
the highly skewed character of the actual distributions measured by using state-of-
the-art techniques, these representations need to be generalized in order to suitably
capture temporal and structural heterogeneities that may play a crucial role in
determining the evolution of dynamical processes over contact networks.

Perhaps the most striking feature of the observed distributions are their robust-
ness: the distributions of contact durations are extremely similar for very different
contexts, populations, activity timelines, and deployment conditions. In particular,
we observe the same distribution in deployments corresponding to very different
sampling of the population under study (from 30 % for SFHH to almost 100 %
for PS, HT09). This confirms the results of [21] that showed the robustness of
the contact duration distribution under further resampling of the data, aimed at
simulating data loss or limited population sampling. Moreover, although human
activity and contact patterns are highly non-stationary, as shown by an example
in Fig. 3, the contact duration distributions measured over different time windows
coincide [21], unveiling a statistical stationarity in an otherwise non-stationary
signal. This is consistent with similar analyses on other temporal networks, such
as proximity networks [52] and networks of cattle transfers between farms [53].

On the other hand, as displayed in Fig. 2, the distribution of time intervals
between successive contacts involving the same individual typically do depend
on the specific context at hand. The distributons are very similar for different
conferences (HT09, ESWC09, ESWC10, SFHH), but narrower for the museum
and the primary school cases. Moreover, in the school case (inset in Fig. 2),
spatial and behavioral sampling due to selecting only those contacts that occur
in the school playground significantly affects the distributions, even though their
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qualitative features stay unchanged. In general, this dependence on the context of the
distribution of interval durations between successive contacts means that, contrary
to pair-wise interactions, more complex temporal motifs that bear relevance to the
causal structure of the temporal network may depend on the specific environment.

Similar to the case of contact durations, broad distributions are also observed
for the lifetimes of simple structures in the contact network, such as groups of
individuals of size n C 1 (n D 0 corresponds to an isolated person, n D 1 to
a pair of individuals, and so on), as shown in Fig. 4. These broad distributions of
group lifetimes become narrower for increasing n, i.e., larger groups are less stable
than smaller ones.

2.3 Aggregated Network View

The sequence of contact events between individuals during a given time window
defines an aggregated contact network at the population level, which is a static
summary of the temporal network. In this network, each node is an individual, and a
link between two nodes i and j denotes the fact that the corresponding individuals
have been in contact at least once during the time window under consideration.
Whereas the overall topological structure of the temporal network can be encoded
in a static graph, the temporal activity of individual edges i � j can be summarized
by suitably defined weights for the edges, such as the number of times wn

ij the link
was established or the cumulative duration wt

ij of the contact events between i and j .
The time window considered for aggregation can range from the finest time

resolution of 20 s up to the entire duration of the data set. In many contexts, it is
natural to consider a specific temporal aggregation scale (i.e., daily), but different
aggregation levels typically provide complementary views of the network dynamics
at different scales.

Interestingly, and despite their static character, the structures of the aggregated
contact networks unveil important information about the contact patterns of the
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population. Let us first consider the statistical distributions that are typically used
to describe a network. The distributions of degree (number of distinct individuals
with whom a given individual has been in contact) are typically narrow, with an
exponential decay at large degrees and characteristic average values that depend on
the particular context [38]. On the other hand, the distributions of the cumulative
contact durations are broad: most pairs of individuals have been in face-to-face
proximity for a short total amount of time, but a few cumulated contact durations
are very long. No characteristic interaction timescale can be naturally defined,
except for obvious temporal cutoffs due to the finite duration of the measurements.
As already observed in the case of the distributions of contact durations, Fig. 5
shows the similarity of the distributions obtained in very different contexts: different
populations, in which individuals behave with very different goals in different
spatial and social environments, display a strikingly similar statistical behavior.

Despite their statistical similarities, the aggregated networks of face-to-face
proximity might have very different structures, as revealed by a visual inspection of
simple force-based network layouts. For instance, Fig. 6 shows that the aggregated
network of interactions during a conference day is much more “compact” than the
ones describing the interactions between museum visitors. In fact, as shown in [38],
a typical daily aggregated network has a much smaller diameter in a conference
context than in the museum case. This difference is due to the different patterns of
presence of the attendees at the monitored venue, and also to the different social
contexts: in conferences participants are present during the entire conference dura-
tion and are usually engaged in interacting with known individuals and in meeting
new persons. Conversely, the distribution of visit durations in the museum case is
close to a log-normal, with a geometric mean around 35 min, and the visitors’ main
goal is not to meet other visitors but rather to explore the space following a partially
pre-defined path. As a consequence, museum visitors are unlikely to interact directly
with other visitors entering the venue more than one hour after or before them, thus
preventing the aggregated network from having a short diameter: there is limited
interaction among visitors entering the museum at different times, and the network
diameter defines a path connecting visitors that enter the venue at successive times,
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Fig. 6 Daily aggregated networks in the HT09 and SG deployments. Nodes represent individuals
and edges are drawn between nodes if at least one contact event was detected during the
aggregation interval. Left: aggregated network for 1 day of the HT09 conference. Right: one
representative day at the SG deployment. The network layouts were generated by using the force
atlas graph layout implementation available in Gephi [54]

Fig. 7 School (PS) daily aggregated social network. Only links that correspond to cumulated face-
to-face proximity in excess of 5 min are shown. The color of nodes indicates the grade and class
of students. Grey nodes are teachers. The network layout was generated by using the force atlas
graph layout implementation available in Gephi [54]

mirroring the longitudinal dimension of the network. These findings show that
aggregated network topology and longitudinal/temporal behavioral properties are
deeply interwoven.

Finally, the aggregated network of contacts among school children reported
in Fig. 7 represents an intermediate case: children of each class form a cohesive
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structure with many links, but links between different classes, and in particular
between children of different grades, are less frequent. This structure results from
several combined factors that include (1) the spatial structure of the school, the
grouping of students into classes, (2) the fixed association of school classes with
given room for school activity, (3) the particular schedule of the school, according
to which students do not go to the schoolyard or canteen at the same time and
their movement as a group follows predefined spatio-temporal trajectories [40],
(4) age-related homophily effects [55], which also play a role when children are
free to move in the same space, such as in the playground. Overall, as shown
in Fig. 7 the cumulative contact network displays a visible community structure
that can be recalled using standard community-detection techniques. However, it is
important to remark that the cumulated network projects out a lot of information on
temporal communities, i.e., on nodes that share similar spatio-temporal trajectories
and similar contact histories. For example, if a group X of nodes mixes strongly
with a different group Y during a time interval Œt1; t1 C T �, and the second group
of nodes Y has some connections with a third group Z during Œt2; t2 C T �, with
t2 > t1 C T , the cumulative network representation will lose information on the
group identities of X and Y and only show a single group X [Y with connections to
Z. The problem of defining and identifying temporal communities in a time-varying
networks [56, 57] is a central one when trying to mine out an activity schedule
(such as the school schedule) from electronic records of human interactions, and
requires to suitably define null models for temporal networks that incorporate the
above described heterogeneities.

These few examples show how similar statistical properties in terms of hetero-
geneity of contact event durations and overall face-to-face presence can in fact hide
very distinct structures of aggregated networks, that are shaped by the dynamical
unfolding of the contacts: the study of static aggregated networks sheds in this
respect some light on the system’s dynamics.

As in other cases of weighted networks [10], more insight can be gleaned
by studying the correlations between the weights, which are here the trace of
the contact dynamics, and the topology. Let us consider the strength s of each
node, defined as the sum of the weights of all links inciding on it [10]. In our
case, this corresponds, for each individual, to the cumulated time of interaction
with other individuals. In social interaction contexts, it can be considered as at
least as important as the number of distinct individuals contacted (the degree in
the aggregated network), as it is a measure of the resources (time) an individual
committed to social interactions. Correlations between the strength and the degree
are of course expected: even for completely random durations of the contact events,
a linear dependency of the average strength hs.k/i of nodes of degree k is obtained,
with hs.k/i � hwik, where hwi is the average link weight. A deviation of hs.k/i=k

from a horizontal line thus denotes the existence of non-trivial correlations: for
instance, a decreasing hs.k/i=k, as observed in large-scale phone call networks [14],
indicates that individuals who call more distinct individuals spend on average less
time in each call than individuals who have less links.
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In the face-to-face behavioral networks we review here, two distinct behaviors
have been observed, depending on the context, as shown in Fig. 8. In the museum
data set (SG), hs.k/i=.hwik/ has a clearly decreasing trend (that can be fitted by a
power law with a negative exponent). On the other hand, for the aggregated networks
describing the contacts in conferences (HT09 and ESWC10), hs.k/i=.hwik/ dis-
plays consistently an increasing trend. In school settings, a rather flat hs.k/i=.hwik/

is observed when the contacts occurring in the whole school (PS) are taken
into account. This behavior has also been observed independently (Smieszek,
private communication), in another dataset describing the proximity patterns of
highschool students [24]. However, if only the contacts occurring in contexts where
the children’s movements and contacts are not constrained (PS, playground) are
considered, an increasing trend is found.

The contrasting results obtained in different contexts show that processes such as
information diffusion [58,59], frequently occurring in social contexts, will unfold in
different ways. The number of distinct persons encountered does not contain enough
information to estimate the spreading potential of an individual: a super-linear
dependence of hs.k/i with k hints at the importance of “super-spreader nodes” with
large degree [58, 59] while a sub-linear behavior indicates that the decrease in the
weights of individual contacts mitigates the expected super-spreading behavior of
large degree nodes.

3 Modeling Face-to-Face Dynamical Contact Networks

The phenomenology outlined in the previous sections calls for the development of
new modeling frameworks for dynamically evolving networks, as most modeling
efforts have been until recently devoted to the case of static networks [26–30].
Among recent models of dynamical networks [52, 60–64], we review here a model
of interacting agents developed in [63, 64] in order to describe how individuals
interact at short times scales.
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The model considers N agents who can either be isolated or form groups
(cliques). Each agent i is characterized by two variables: (i) his/her coordination
number ni D 0; 1; 2:::; N � 1 indicating the number of agents interacting with
him/her, and (ii) the time ti at which ni was last changed. At each (discrete) time
step, an agent i is chosen randomly. With a probability pn.t; ti / that may depend
on the agent’s state, on the present time t and on the last time ti at which i ’s state
evolved, i updates his/her state, under the following rules:

(i) If i is isolated (ni D 0), another isolated agent j is chosen with probability
proportional to p0.t; tj /, and i and j form a pair. The coordination number of
both agents are then updated (ni ! 1 and nj ! 1).

(ii) If the agent i is already in a group, (ni D n > 0), with probability � the agent i

leaves the group; in this case, the coordination numbers are updated as ni ! 0,
and nk ! n�1 for all the other agents k of the original group. With probability
.1 � �/ on the other hand i introduces an isolated agent j in the group, chosen
with probability proportional to p0.t; tj /. The coordination numbers of all the
interacting agents are then changed according to the rules nj ! n C 1 and
nk ! n C 1 (for all k in the group).

These rules define a dynamic network of contacts between the agents, whose
properties depend on the probabilities pn, which control the tendency of the agents
to change their state, and on the parameter �, which determines the tendency either
to leave groups or on the contrary to make them grow.

Constant probabilities pn correspond to Poissonian events of creation and
deletion of links between individuals, and hence to narrow distributions of contact
times. On the other hand, the introduction of memory effects in the definition of
the pn is able to generate dynamical contact networks with properties similar to
the ones of empirical data sets [63, 64]. In particular, a reinforcement principle can
be implemented by considering that the probabilities pn.t; t 0/ that an agent with
coordination number n changes his/her state decrease with the time elapsed since
his/her last change of state. To this aim, we can impose pn.t; t 0/ D pn.t � t 0/, with
pn decreasing functions of their arguments. This is equivalent to the assumption
that the longer an agent is interacting in a group, the smaller is the probability that
s/he will leave the group, and that the longer an agent is isolated, the smaller is the
probability that s/he will form a new group.

The evolution equations of the number of agents in each state can be solved self-
consistently at the mean-field level [63, 64] in various cases. One of the simplest is
given by pn functions scaling as 1=.t � t 0/, pn.t; t 0/ D bn

1C.t�t 0/=N
, with moreover

bn D b1 for every n � 1 in order to reduce the number of parameters (the model’s
parameters are then b0, b1, and �). The probability distributions of the time spent in
each state can then be shown to be given by power-law distributions

P0.�/ / .1 C �/�1�b0.3��1/=.2��1/

Pn.�/ / .1 C �/�.nC1/b1�1 for n � 1: (1)
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Fig. 9 Distribution Pn.�/ of
durations of groups of size
n C 1, for N D 1; 000 agents
with b0 D b1 D 0:7,
� D 0:8, and a number of
time steps Tmax D N � 105.
The dashed lines correspond
to the analytical predictions
(1). From [64]

As shown in Fig. 9, these predictions are confirmed by numerical simulations.2 The
distributions of time intervals between successive contacts of an individual are as
well power-law distributed, and the aggregated contact networks display features
similar to the empirically observed ones.

The model can be easily extended to include an intrinsic heterogeneity between
agents, possibly reflecting a difference in their “sociability”, or to model populations
with a varying number of agents. For instance, it is possible to consider a museum-
like situation in which agents enter the system, remain for a certain duration, and
then leave without the possibility to re-enter it. Power-law distributions of contact
durations are still observed, and the shape of the aggregated contact network closely
resembles the ones observed in the museum setting. In addition, it would be possible
to consider agents belonging to different groups with different mixing properties, in
order to mimic as well for instance the contact dynamics in a school. Overall, this
model’s versatility makes it an interesting tool for generating artificial dynamical
contact networks.

4 Dynamical Processes on Dynamical Networks

Many networks are the support of dynamical processes of various nature, from
random walks to synchronization or spreading phenomena [30]. Most related studies
have however considered, as a first approach, dynamical phenomena unfolding
on static networks. It has been shown how different topological characteristics
impact the unfolding of phenomena such as epidemic spreading, with important

2The system is in a stationary state for b1 > 0:5, b0 > .2� � 1/=.3� � 1/ and � > 0:5, while the
self-consistent solution breaks down outside of this parameter region, and non-stationary behavior
with the possible formation of large (system-size) groups can be observed [63, 64].
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consequences such as the suppression of the epidemic threshold in very heteroge-
neous networks [58].

To date, few research efforts have dealt with the fact that the networks supporting
these phenomena might have a dynamics of their own. Through the study of toy
models of co-evolution, in which the network dynamics itself is defined as a reaction
to the process unfolding on top of it, it was shown that the interplay of these two
dynamics can lead to interesting and sometimes counter-intuitive effects [60]. In
this context, the study of dynamical processes on dynamical (temporal) networks
can have a two-fold purpose. On the one hand, it can guide the design of more
realistic models, applied for instance to epidemic spreading. Dynamical processes
on temporal networks can be studied to understand the relative roles of the different
time scales at play, and what level of information is actually needed for the
description of these processes [36]. In addition to that, the use of very simple
dynamical processes, such as random walks or deterministic spreading, can be
considered among the techniques developed for the study and characterization of
dynamical networks, such as the ones put forward in [32,38,53,65,66]. In particular,
dynamical processes can serve to probe the role of causality constraints in temporal
networks, comparing the outcome of a given process (i) on the dynamical network
describing the real temporal sequence of events, and (ii) on aggregated networks in
which the information about the precise order of events is discarded.

In this section we focus on a simple snowball SI model of epidemic spreading
or information diffusion [59]. Individuals can be either in the susceptible (S) state,
indicating that they have not been reached by the “infection” (or information) yet,
or they can be in the infectious (I) state, meaning that they have been infected by
the disease (or that they have received the information) and can further propagate
it to other individuals. In the simplest, deterministic version of such a process,
every contact between a susceptible individual and an infectious one results in a
transmission event, which instantaneously turns the susceptible individual into an
infected one according to S C I ! 2I . In this simple model, infected individuals
do not recover, i.e., once they transition to the infectious state they indefinitely
remain in that state. The process is initiated by a single infected individual (“seed”),
typically chosen at random. Despite its simplicity, such a schematic model provides
interesting insight on causality constraints in dynamical networks, and on how
different temporal contact patterns can lead to different outcomes. This is partially
due to the fact that the SI process yields the fastest possible information propagation
from the seed node to the rest of the network, thus bounding other more complex
and realistic invasion processes.

4.1 SI Model as a Probe of Temporal Network Structure

Let us first consider the simplest measure of the unfolding of an SI process in a
population, as given by the temporal evolution of the number of infected individuals
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Fig. 10 Incidence curves showing the number of infected individuals as a function of time for a
susceptible-infectious (SI) process simulated over 1 day of HT09 (top-left panel), SG (top-right
panel) and PS (bottom-left panel) temporal network data. In the HT09 and SG cases (top plots)
each curve corresponds to a different seed node and is color-coded according to the starting time
of the spreading process. In the PS case (bottom) school, each curve is an average over the dynamics
simulated for different seed nodes belonging to a given class. The inset shows individual curves
for different seeds chosen in two distinct classes

(i.e., the incidence curve). Figure 10 shows that the incidence curves in different
environments look qualitatively very different.

In the case of a typical day at a conference (HT09, top-left panel) few trans-
mission events occur until the conference participants gather for the coffee break at
11am, even if the seed was present early. A strong increase in the number of infected
individuals is then observed, and a second strong increase occurs during the lunch
break (12 p.m.). As a result of the concentration in time of transmission events,
spreading processes initiated by different seeds all achieve very similar (and high)
incidence levels after a few hours, regardless of the initial seed and of its arrival time.
Even epidemics started by latecomers can reach about 80 % of the community.

A very different picture is observed in the museum case (top-right panel), where
the arrival time of the seed individual has a strong impact on the epidemic size:
at any point in time, the number of infected individuals is strongly correlated with
the arrival time of the seed. This is due to the fact that visitors stream through the
venue, and those who left before the arrival time of the seed cannot be reached by
the infection. Furthermore, in many cases the daily aggregated network displays
multiple disconnected components, so that the spreading process stops soon after



Temporal Networks of Face-to-Face Human Interactions 207

the seed leaves and only reaches a very small portion of the total population [38].
Even on days with many visitors and a globally connected daily aggregated network,
the incidence curves do not present sharp gradients as in the conference case, and
later epidemics are unable to infect a large fraction of daily visitors.

In the school case (bottom-left panel) almost all students arrive at the beginning
of the day, hence no effects due to heterogeneous arrival times can be observed.
Similarly to the conference case, the simulated dynamics displays jumps in the
number of infected individuals at specific times of the day, regardless of the seed
node, and by the end of the day almost all individuals get infected. Heterogeneous
invasion dynamics can be observed depending on the class of the seed node,
and the differences can be related to the scheduled activities and movements of
school children. Conversely, different choices for the seed node within a single
class (bottom-left panel, inset) yield very similar incidence curves. This can be
understood as a result of different within-class and cross-class contact patterns:
contacts within individual classes are rather homogeneous compared to cross-class
contacts, so that the SI process quickly reaches most nodes of the seed’s class. The
invasion of other classes is controlled by slower temporal structures of the contact
network, which are determined by the school schedule and determine the sensitivity
on the initial class.

To characterize in a more quantitative fashion the importance of the temporal
structure of the network on the spreading dynamics, we can consider the number
of individuals who are reachable from the seed node through paths in the (daily)
cumulative contact network, and compute what fraction of them are actually reached
by an SI process that takes place over the temporal contact network. The value of this
ratio displays markedly different distributions in the museum and in the conference
case [38]: at a conference almost all the individuals who are reachable along the
cumulative contact network always get infected by the end of the day, whereas in
the museum case this ratio is often much smaller than 1. Therefore, studying the
dynamics of a simple SI process can uncover differences in the temporal structure
of human proximity networks that cannot be detected by using simpler statistical
indicators (e.g., the probability distributions of contact durations). This calls for
more work aimed at using generic dynamical processes over temporal networks to
define a new class of time-aware network observables that can expose important
differences and similarities.

4.2 Causality-Respecting Paths

The differences in spreading patterns outlined above are due to the causality
constraints inherent in the temporal character of the contact network: for instance,
if node i interacts first with node j and then with node k, a message or infectious
agent can travel from j to k through i , but not in the opposite direction, while in a
static network both events would be equally possible.
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Fig. 11 Distribution of the path lengths nd from the seed node to all the infected individuals,
computed over the transmission network (black circles) and over the partially aggregated networks
(red pluses). For each day the distributions are computed by varying the choice of the seed node
over all individuals

It is therefore interesting to study the spreading paths of the SI process on
a temporal network and on the corresponding aggregated network, as mentioned
in the above Sect. 4.1. To this aim, for each seed node we define a transmission
network along which the infection effectively spreads in the temporal network (i.e.,
the network whose edges are given by S $ I contacts). Therefore, the distance
along the transmission network between the seed node and another arbitrary node
i gives the actual number of transmission events that occurred before the spreading
process reached i , and consequently it is the length of the fastest path from the
seed individual to the infected one which respects the causality constraints of the
temporal network [53, 67, 68].

On the other hand, in an aggregated, static view of the contact network the
spreading would follow the shortest path over the network aggregated from the time
the seed first appears, as the infection can only spread along interactions occurring
after the arrival of the seed node. We call this network a partially aggregated
network.

As shown in Fig. 11, the distribution of lengths of the fastest paths turns out to
be broader and shifted toward higher values than the corresponding shortest-path
distributions. This holds both for the conference and for the museum case, and
has also been observed in other cases [68]. The actual number of intermediaries
is therefore larger on a temporal network than would be predicted by a propagation
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scheme based on a static network. This difference can be understood by considering
a similar example as discussed above: if node i is infected and interacts with node
j , who then interacts with node k before i interacts with k, the actual (fastest)
spreading path between nodes i and k has path length 2, while the shortest path has
a unitary path length.

In settings in which each transmission event has a cost, or is associated with the
possibility of signal loss or attenuation, such differences might play an important
role and temporal effects should accordingly be taken into account carefully.

4.3 Activity Clocks

The results of the previous subsection show that, depending on the environment and
on the time at which the spreading process is initiated, different spreading dynamics
can be obtained. In particular, the time at which a given node is reached by the
information or infection may strongly depend on collective activity patterns. In the
context of message routing in networks of mobile devices [69–72], the distribution
of elapsed times between the generation of the message and its arrival at given
nodes is often considered as a way to evaluate the performance of a spreading
protocol [73–76]. However, the non-stationary and bursty behavior of the contact
and proximity networks imply that the distribution of delays between message
injection and message delivery at a given node may in fact depend importantly on the
time of injection of a message, or on specific details of contact and activity patterns.
The left panel of Fig. 12 shows this for the case of a message that spreads over the
HT09 temporal contact network according to a simple SI process initiated at two
different points in time: the distribution of arrival delays computed in terms of wall-
clock time is extremely sensitive to the injection time of the message and displays
strong heterogeneities that cannot be captured by any simple statistical model. It is
thus important to devise more robust metrics for message delivery that factor out
non-stationary behaviors and temporal heterogeneities, allowing on the one hand to
carry out more objective comparisons of different protocols for message spreading,
and on the other hand to validate the models of human mobility (and the ensuing
temporal networks) that are used to design and inform such protocols.

Some progress in the direction outlined above can be made by giving up the
global notion of wall-clock time in favor of a node-specific definition of time. We
imagine that each node has its own clock, and that this clock only runs when the
node is involved in one or more contacts. Since the clock measures the amount of
time a given node has spent in interaction, we refer to this clock as an “activity
clock”. All activity clocks are set to zero at the beginning of the spreading process,
when the initial message is injected into the network. Thus, the activity clock of a
node measures the amount of time during which that node could have received a
message propagated along the links of the temporal network, i.e., it ignores the time
intervals during which the node was disconnected from the rest of the network.
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Fig. 12 Log-binned distribution of message arrival delays. The distributions are computed by
simulating a simple SI process over the HT09 temporal contact network, for two different injection
times of the initial message (blue crosses and red circles). Left: the delay interval is defined as the
wall-clock time difference between the arrival of the message at a given node and the injection time
of the message. Right: the delay interval distribution is computed by using node-specific activity
clocks that only run when nodes have active links (proximity relations) to other nodes. That is,
each node has a specific notion of “intrinsic” time that is defined as the cumulated time it spent in
contact with other nodes

In this context, the message delivery delay for node i is defined as the value
of its activity clock when the message is received, i.e., it is the elapsed time node
i has spent in contact with others, from the injection time of the initial message
up to the moment when the message is received by i . The right panel of Fig. 12
shows the distributions of delivery delays computed in terms of activity clocks.
The distributions exhibit a smooth dependence on activity-clock time, without the
strong heterogeneities observed when using wall-clock time. Most importantly, they
now collapse onto one another, i.e., they are robust with respect to changes in the
injection time of the message. Strikingly, they are also robust with respect to the
context: as reported in [77], the same distribution is obtained for spreading processes
simulated in conferences with very different schedules and contact densities.

It is important to remark that synthetic temporal networks of human contact
are typically generated on the basis of a number of accepted models for the
underlying human mobility in space. The quality of the models is often assessed
on the basis of their ability to reproduce simple statistical observables of the
temporal network, such as the probability distribution of contact durations and
the distribution of times between successive contacts of a node. However, when
computing the distributions of delivery delays for an SI process in terms of activity
clocks, strong differences emerge between the accepted generative models and the
empirical temporal networks. Specifically, as reported in [77], most of the accepted
models yield delay distributions that are much narrower than those of Fig. 12, thus
failing to reproduce the empirical phenomenology. This points to the need for
further modeling work to design generative models of temporal networks that can
correctly reproduce the empirical distributions. Notice that such differences only
become visible on using activity clocks in combination with dynamical process
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on the temporal network, used as a probe of properties that cannot be captured by
means of customary metrics. For example, the comparison between the left and right
panels of Fig. 12 shows how suitable definitions of “time” based on activity metrics
of the temporal network have the power to uncover regularities that are otherwise
completely shadowed by the intrinsic heterogeneities of the system. At the same
time these results call for more research in several directions. In particular, it would
be important to:

• Define and characterize activity clocks based on different types of node and edge
metrics for temporal networks (e.g., defining time as the cumulated number of
contact events, rather than as the elapsed time in contact),

• Express in terms of activity clocks the evolution of simple dynamical processes
taking place on temporal networks,

• Model the form of the delay distributions observed in simulation for paradigmatic
dynamical processes such as SI spreading taking place on temporal networks.

5 Conclusion

The study of empirical temporal networks is receiving increasing attention because
of the availability of new data sources and because of their relevance for the
detection, modeling and control of phenomena in a broad variety of socio-technical
systems. To date, key questions are still open about temporal networks and
dynamical processes over temporal networks.

Here we focused on high-resolution empirical temporal networks of human
proximity, provided a phenomenological overview of some important properties,
and reported on the impact that such properties have on paradigmatic epidemic-
like processes that take place over temporal networks, with potential applications
to diverse domains such as information spreading or epidemic modeling. We
remark that the consolidated toolbox of statistical indicators, network metrics
and generative models for static networks that has been developed over the last
decade cannot be trivially generalized to the case of temporal networks. More
research is thus needed in order to identify dynamical extensions of the observables
designed for static network, to uncover dynamical network motifs [53, 66], and
to explore entirely new characterization techniques that expose important features
of the temporal-topological structure of the networks. In this respect, it will be
probably fruitful to investigate simple dynamical processes over networks as a tool
for uncovering relevant patterns, and as an aid to constrain and evaluate generative
models for temporal networks.

We also notice that in the context of many applicative domains it is very difficult
to characterize separately the dynamics of the network and that of the relevant
dynamical process (e.g., the dynamics of a contact network and the dynamics of
an epidemic unfolding over it): depending on the specific process, on its timescales,
and on the set of properties of the process that one aims at modeling, the temporal
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structure of the network can have a profoundly different relevance. For example,
it has been shown that for flu-like epidemic processes, with latent and infectious
timescales of the order of a few days, the temporal structure of the underlying human
contact networks is negligible if one aims at modeling just the peak time of the
epidemics, and is important if the goal is to model the size of the epidemics [36].
Developing a more systematic understanding of the impact that the temporal
structure of a network has on a given observable is an open challenge.

The above remarks are related to another important problem, that of coarse-
graining temporal network data when either explicit node/edge attributes are
available or node/edge activity patterns can be clustered into classes of similar
behavior. When dealing with human contact networks, this is the case of many
contexts in which the population under study is structured because of roles (e.g.,
hospitals) and/or spatio-temporal constraints on group mobility and interactions
(e.g., schools). In particular, inferring behavioral classes from temporal network
data requires algorithms to mine for dynamical communities of nodes or edges that
extend those available for static networks, as a temporal network may have sharply
defined classes of dynamical behavior that completely disappear on considering
aggregated networks obtained by projecting out time. To this end, machine learning
techniques based on node/edge features or on entire activity timelines may prove
effective in uncovering and characterizing behavioral regularities hidden in temporal
networks. When classes are known (e.g., explicit role-based classes within a hospital
population), or discovered via time-aware community detection techniques, it is
often insightful to consider aggregated representations of the data based on the
class attributes, such as the contact matrices commonly used in epidemiology. These
customary representations, though, have been defined and investigated in order to
coarse-grain static interaction networks, and they need to be generalized so that
they can be used to summarize temporal networks in a way which is suitable for the
relevant applicative context.

Progress in the above directions of creating synopses of temporal network data
would greatly help in defining “parsimonious” models for dynamical processes,
that only retain the necessary amount of information about the underlying temporal
network. This also calls for work on reconciling different scales of representation of
temporal network data, so that properties and dynamical processes at different levels
can be related to one another. In consideration of the coming deluge of behavioral
information represented in the form of temporal networks, the ability to create
parsimonious but informative representations will be an increasingly valuable asset
for the applications of network science.
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10. Barrat, A., Barthélemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex

weighted networks. Proc. Natl. Acad. Sci. USA 101, 3747–3752 (2004)
11. Balcan, D., Colizza, V., Gonçalves, B., Hu, H., Ramasco, J.J., Vespignani, A.: Multiscale

mobility networks and the spatial spreading of infectious diseases. Proc. Natl. Acad. Sci. USA
106, 21484–21489 (2009)

12. González, M.C., Hidalgo, C.A., Barabási, A.-L.: Understanding individual human mobility
patterns. Nature 453, 779–782 (2008)

13. Song, C., Qu, Z., Blumm, N., Barabási, A.-L.: Limits of Predictability in Human Mobility.
Science 327, 1018–1021 (2010)
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63. Stehlé, J., Barrat, A., Bianconi, G.: Dynamical and bursty interactions in social networks. Phys.
Rev. E 81, 035101(R) (2010)
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