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Abstract To understand large, connected systems we cannot only zoom into the
details. We also need to see the large-scale features from afar. One way to take a
step back and get the whole picture is to model the systems as a network. However,
many systems are not static, but consisting of contacts that are off and on as time
progresses. This chapter is an introduction to the mathematical and computational
modeling of such systems, and thus an introduction to the rest of the book. We
will cover some of the earlier developments that form the foundation for the more
specialized topics of the other chapters.

1 Introduction

Life, at many levels, is about large connected systems. In the biological sense, life
is a consequence of macromolecules building cells and carrying information. More
mundanely, our everyday life happens in amid a network of friends, acquaintances
and colleagues. To understand life, at every level, we need to zoom out from
macromolecules or friendships and look at their global organization from a distance.
Here, zooming out means discarding the less relevant information in a systematic
way. One approach to this, successful the last decade, is network modeling. This
means that one focusses on the units of the system, be it proteins or persons,
and how they are connected, and nothing else. Of course, this is a very strong
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simplification. One often has more information about a system that would enrich
rather than obscure the picture. One such additional type of information regards
when the interactions happen between the units. The essence of temporal-network
modeling is to zoom out by excluding all information except which pairs of units
that are in contact and when these contacts happen.

There is a large number of systems that could, potentially, be modeled as
temporal networks. In addition to the cellular processes and social communi-
cation mentioned above large technological infrastructures—technologies based
on the Internet or mobile-phone networks for example—have both network and
time aspects that make them interesting for temporal network modeling. Neural
networks—perhaps primarily at a functional level of brain regions that are consid-
ered connected if there is a measurable information transfer between them—are
another example. A third example is ecological networks and species and their
interaction. Such networks—like food webs, depicting which species feed on which
other species, or mutualistic networks of species providing mutual benefits, such as
plants and pollinators—experience time varying changes with the seasons and other
environmental changes.

In this chapter, we will review the essential mathematical and computational
techniques for extracting information from a temporal network representation of a
system. We will discuss quantitative measures of network structure, computational
techniques of successive randomization to study these measures, and models to
generate and explain temporal networks and studies seeking to explain the effects of
the temporal-topological structures on dynamics taking place on the networks. For
a more comprehensive review of the field, see Holme and Saramäki [1].

2 Measuring Temporal Network Structure

In this section, we will review some of the proposed structural measures that strive
to capture both temporal and topological features and correlations. For the rest of
the chapter, we will consider systems that can be represented as lists of contacts—
triplets of pairs of vertices together with the time of their contact, or alternatively
as quadruples containing the beginning and end times of contacts, if these are not
instantaneous. We call the first type of temporal network a contact sequence, the
other one an interval graph.

Before we start discussing effects of structural measures, we note that temporal
networks are notoriously difficult to visualize in a way that would both show
all possible temporal information and highlight the important structural features
(similarly to what e.g. spring-embedding can successfully do for static networks).
Two representations, labeled graphs and time-line plots, are illustrated in Fig. 1.
Of these, the time-line plots can help to visualize the temporal structure (including
temporal heterogeneities such as bursts) while the labeled graphs highlight the
network topology. However, neither of them can be scaled up to more than a
dozen or so vertices. There are other attempts of combining time and simplified
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topology—most notably the alluvial diagrams of Rosvall and Bergstrom [2]—that
however typically miss the non-transitivity of temporal networks, or some other
important aspects.

2.1 Reachability and Latency

One of the most fundamental differences between temporal and static networks is
that the former are not transitive. Even if vertex A is related to B and B is related to
C, it might be that A is not related to C (see Fig. 2). The relation in question is in
essence the possibility of something spreading from one vertex to another through a
series of contacts where the times of the contacts are increasing (anything else would
not be feasible in reality). For this reason, the statistics of such time-respecting paths
are very informative. Authors have e.g. investigated the average durations of time-
respecting paths [3–6]. Given a pair of vertices .i; j / and a time t , the latency is the
shortest time to go from i to j at time t following only time-respecting paths.

The latency is not the entire story, since just like regular graphs, temporal
networks can be disconnected. This is, in practice, more common in temporal than
static networks, as the paths joining vertices need to be traversed in the order of
contacts. A practical measure for capturing this would be the expected value of the
number of vertex pairs that have infinite latency values [3]. For empirical data, the
finite period of observation may also play a role, because paths whose realization
takes a very long time may not ever be completed within the observed period. It
should be emphasized that connectivity is only defined within some time window:
the fact that A is connected to B via a time-respecting path that begins at t does
not guarantee that such a connection exists at any later point in time. Furthermore,
connectivity is always directed as dictated by the arrow of time (see the transitivity
example above).

One can elaborate on latency-like measures in many ways in order to capture
different aspects of reachability and dynamical influence between nodes. It could
for example be interesting to monitor the number of time-respecting paths between
pairs of vertices in order to capture frequently appearing pathways, or to resolve
the average latency in time—it might be that the average latency follows e.g. a
daily pattern where time-respecting paths are faster to traverse during the time of
day when the contacts are more frequent. Additional constraints may also be set on
time-respecting paths; e.g. one may require that the contacts forming a path follow
each other rapidly enough, so that long waiting times between contacts destroy the
path [6].

2.2 Clustering and Correlations

In static networks, the local structure—focusing on the immediate surroundings of
an average vertex—is an important predictor of the behavior of dynamic systems on
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Fig. 1 Visualization of temporal networks. (a) Shows a labeled aggregate network where the
labels denote times of contact, and (b) shows a time-line plot, where each of the lines corresponds
to one vertex and time runs from left to right

1, 5, 7 10, 1
4

A

B

C

Fig. 2 Illustrating the non-transitive nature of temporal networks. Information can spread from
A to B, from B to C, from C to B, from B to A, it can also spread from A to C via B, but not from
C to A since by the time the information can have reached B all contacts between A and B have
already happened. Note that static networks are transitive, even directed networks, so one cannot
simply reduce a temporal network to a static one

the network. Adding the temporal dimension is not straightforward, which perhaps
explains the rather few attempts to do so. Below, we sketch one possible approach
and illustrate some of the inherent difficulties.

In static networks, the level of connectivity in the neighborhood of a vertex
can be measured with the (local) topological clustering coefficient. Its values are
normalized, such that a value of 0 indicates no connectivity and a value of 1 the
existence of all possible connections. Adding a temporal dimension, we would like
to measure the connectedness of a neighborhood around a given moment of time
t . In other words, we would like to put a larger weight on contacts that are closer
to t in time. This can be done by an summation kernel F.t/ with the properties
that it is bounded, non-negative, monotonically increasing for t < 0, monotonically
decreasing for t > 0, and F.0/ D 1. A temporal clustering coefficient for a contact
sequence would then be the following sum divided by some normalizing factor
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X

c;c0 ;c00

F.t.c/ � t/ F .t.c0/ � t/ F .t.c00/ � t/ (1)

where c D .i; j; t/, c0 D .j; k; t 0/ and c00 D .k; i; t 00/ are contacts with i ¤ j ¤ k.
However, there is no obvious choice of denominator to balance this with. If one
calculates the denominator by assuming that there can be one contact per time
step between all vertices that are in contact with i at some point, then this would
for the very most datasets be a number many orders of magnitude larger than the
denominator. One can perhaps set the maximal number of contacts as the total
number of contacts in the dataset and assume that they all happened at time t , but
also this would in practice be a very much larger number than that given by (1).
A third option would be to replace the F -factors by 1 (their maximal value), but
this would be equal to assuming that the number of contacts per vertex pair that
has been in contact at some time is fixed, which would be strange for most types
of temporal networks. This example is not meant to discourage from constructing
measures capturing both temporal and topological structures, but rather the other
way around. It shows how moving away from the assumption that all edges are
equivalent (an assumption underlying most static network representations) requires
new ways to think about network concepts. In this case, the best solution, we believe,
would be to compare the raw sum to that obtained from a carefully chosen reference
model.

In static networks, one important class of measures quantifies the relationship
between the degrees of connected nodes. Is there an overrepresentation of edges
between, say mid-degree vertices and other mid-degree vertices? Such an analysis
can be made at different levels, from plotting the entire correlation profile [7]
to measuring a scalar-valued correlation coefficient [8]. These degree-correlation
measures can be generalized to temporal networks more straightforwardly than the
clustering coefficient. One can use similar summation kernels as discussed above
to replace node degrees by a time-dependent activity level, and then perform the
same analysis. Then again, while this would capture something similar in spirit to
the degree-correlation measures designed for static networks, in temporal networks
there is a multitude of other conceivable concepts of correlations across links that
could well prove more important.

As a temporal networks evolve, some subsets of their nodes and links may be
more continuously active than others. Such persistent patterns are subnetworks that
are prime candidates for functional subunits of some sort; they could also be an
interesting alternative to aggregating all contacts if one wants to reduce the system to
a static network. As an example of how to investigate persistent contact patterns, one
can let a time window slide through an interval graph and calculate the adjacency
correlation function, or vertex persistency

�i.y/ D
P

j 2�.i;t / a.i; j; t/a.i; j; t C 1/
qP

j 2�.i;t /

qP
j 2�.i;tC1/

(2)
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where t is the beginning of the time window, and �.i; t/ are the non-zero indices of
the (time-dependent) adjacency matrix.

2.3 Centrality

Network centrality measures form one of the most important classes of measures
of static network structure. These quantities try to capture various facets of the
question how central a vertex is. Pan and Saramäki discuss a centrality measure
akin to closeness in static graphs [8]. Essentially, the authors define centrality as
the average reciprocal value of the time from the focal vertex to all others. Tang et
al. also defines a (somewhat different) closeness centrality for temporal networks
together with a temporal version of the betweenness centrality [9].

Takaguchi et al. take a slightly different approach in [10] when they measure a
kind of influence (called advance) related to concepts of centrality by focusing on
the importance of the events the vertex participates in. This work draws on previous
results from [4]. Mantzaris et al. [11] use a spectral centrality measure for temporal
graphs to study learning in the human brain.

2.4 Motifs

Network motifs were first proposed for static directed networks [12] and are, briefly
described, overrepresented subgraphs formed by a few vertices and their directed
links. Motifs are often interpreted as functional units, or candidates for such, and
motif analysis is commonly applied e.g. in systems biology. In static directed
networks, motifs can be mapped to component-like structures such as feedforward
loops, but in temporal networks, this is harder. Rather, motifs in temporal networks
correspond to typical sequences of events. There are many ways of defining such
motifs. To take one example, Kovanen et al. [13] look at sequences of contacts
between vertices that are maximally separated by a time ıt . More precisely, two
contacts ei and ej are ıt-adjacent if they share a vertex and are separated in time
by no more than ıt . Pairs of events are then defined as ıt-connected if there is a
sequence of ıt-adjacent events joining them and temporal subgraphs are defined as
sets of events that are ıt-connected. By counting such subgraphs and mapping them
into isomorphic classes on the basis of their order of events, Kovanen et al. find an
overrepresentation of temporal motifs that are causal, i.e. where the contacts may
have triggered one another (such as A contacts B who contacts C and D, as opposed
to the non-causal sequence where B contacts C and D, and A only then contacts
B). As an application of a temporal-network motif method (slightly different from
that of [13]) Jurgens and Lu [14] use motifs to study behavior in the evolution of
Wikipedia.
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2.5 Mesoscopic Structures

In static networks, there has recently been a flood of methods proposed to discover
mesoscopic structures (a.k.a. clusters, communities or modules [15]). These are
loosely defined as groups of vertices more densely connect within than between each
other. Much of the community structure literature regarding static networks only
focuses on deriving a method for decomposing the network on the basis of some
conceptually simple principle. The few methods that incorporate the time dimension
into community detection typically operate on aggregated time-slices of the contact
sequence [16, 17] or networks of links that have happened and will happened
again [18]. One can imagine clustering algorithms based on more elaborate temporal
structures, like time-respecting paths (an exception is Lin et al. [19]). As mentioned
earlier, visualizing temporal networks as two-dimensional, printable diagrams is
difficult and this is a major obstacle to intuitive reasoning about mesoscopic
temporal-topological structure. Reducing the network to a network of clusters that
split and merge with time is perhaps the most promising path in this direction.
Unfortunately, such a reduction would also destroy any non-transitive features of
the original structure, especially when time slices or aggregation are involved, and
smear out the effects of all temporal structures associated with shorter time scales
than the time window that is used (such as bursts) [20].

3 Models of Temporal Networks

As in all other areas of theoretical science, our understanding of temporal networks
hinges on mathematical and computational models. These models have different
purposes. The simplest class of models, already mentioned above, involves null
or reference models that are used together with various measures in order to infer
their statistical significance, or in order to assess the contribution of chosen types of
correlations to the values of the measures. Related to this are generative models that
can serve both as reference models and as a method to synthesize temporal structures
to run simulations of dynamic systems on. The third class comprises mechanistic
models for explaining the emergent network structures that one measures; and
finally we also have predictive models that are tailored to forecast future aspects
of a temporal network.

Much remains to be done in the development of temporal-network models in all
above-mentioned areas. This is somewhat in contrast to the theory of static networks
where a very large number of models were developed at an early stage [8].

3.1 Randomized Null or Reference Models

In order to interpret the significance of temporal-network measures, or to understand
what effects different temporal and structural features have on them, one needs
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Fig. 3 Illustration of some
randomization methods.
(a) Shows the randomly
permuted times (PT) scheme
that removes structures in the
order of events. (b) Shows the
random times scheme (RT)
and (c) displays a static
network rewiring as it appears
in a contact sequence. The
contacts of an edge is
conserved in the process.
Note that one need to allow
edges (A,B) and (C,D) to be
rewired to both (A,D), (C,B)
and (A,C), (D,B) to make the
sampling ergodic

something for comparing against. One approach is to compare observations against
the same measures computed for an ensemble of randomized networks that are
“neutral” in some chosen sense, i.e. where certain correlations and features are
removed by randomization procedures such that only the chosen fundamental
constraints of empirical networks are retained. The way the empirical network
differs from the null model gives meaning to the structure observed in the empirical
data, and points out effects that are due to the removed correlations. One can
also give a scale to the “raw” measures of temporal network structure, e.g. by
normalizing by the corresponding values for the reference models or subtracting
such values. More elaborately, one can assess the statistical significance of observed
measures by calculating the Z-score, or similar, of their values in the empirical
network against their distribution in the randomized ensemble. Strictly speaking,
the term “null model” should be used only in this context: Z-scores are then used
to reject or verify the null hypothesis that the observed features can be explained by
the randomized ensemble, and the removed correlations do not play a role.

For static networks, perhaps the most popular reference model is to rewire the
edges randomly while keeping the degree and number of vertices constant [7]. See
Fig. 3. This model is very closely related to the the configuration model which is
rigorously defined as an ensemble of vertices of given degrees that are connected
in a maximally random way [8]. For practical purposes, randomization by edge
swapping and the configuration model are equivalent. This is helpful since the
configuration model is theoretically well understood.
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For temporal networks, randomization plays a slightly different role than for
static networks. On one hand, there is no mathematically well-understood null
model like the configuration model. On the other hand, there is a much larger
number degrees of freedom, and subsequently there is also a much larger number
of possible randomization models. In fact, such models allow for going through a
sequence of randomization procedures, where one progressively removes chosen
types of correlations from the empirical temporal network. This provides a detailed,
continuous picture of temporal-network structure and the correlations that underlie
observations.

Below, we will discuss some of the most important temporal network models.
For a longer list, see Holme and Saramäki [1].

3.1.1 Randomly Permuted Times (RP)

As a temporal counterpart to the randomization of edges discussed above, one
can randomly permute the times of contacts, while keeping the network’s static
topology and the numbers of contacts between all pairs of vertices fixed. As this
randomization scheme retains all static network structure and the number of contacts
for each edge, its application can be used to study the effects of the exact order
and timings of contacts. The reference model destroys burstiness and inter-contact
times of nodes and edges, and subsequently also all correlations between timings of
contacts on adjacent edges. The model also keeps the overall rate of events in the
network over time, such as daily or weekly patterns. See Fig. 3.

3.1.2 Random Times (RT)

The set of time stamps is conserved in the RP ensemble. Hence, the intensities of
contacts at an aggregate level follow the same patterns as the real data—if there are
circadian rhythms (like in many human, and other biological and social systems)
they will still be there in randomized networks. If one wants to explore the impact
of these rhythms, one may draw the interaction times from a random distribution
and compare the outcome to the RP ensemble. See Fig. 3.

3.2 Generative, Mechanistic and Predictive Models

A large amount of numerical temporal network studies have been performed
on empirical networks. Since there is not yet any commonly-agreed-upon set
of temporal network characteristics, and since it is not yet clear what the most
important features of temporal networks are and whether there is any universality in
such features, the focus has been on what the data can tell us, which can be seen as an
advantage. The disadvantage is that we do not get a systematic understanding of the
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effects of temporal network structure. In order to arrive at such an understanding, we
need generative models that can output temporal networks with tunable structure.

In cases where topological and temporal structures are decoupled, creating a
generative model is straightforward. One could perhaps first generate the topology
according to some model from the static network literature, and then generate time
series of contacts over the edges for tuning some quantity of interest (like the vertex
persistency, (2)). Studies that successfully utilize generative models to study the
effects of temporal network structure include [21, 22].

Another type of models that are very common in the static network literature
but not for temporal networks are mechanistic models trying to explain the
emergence of large-scale structure from simple underlying driving mechanisms.
Indeed, the whole field of complex network theory took off in the 1990s with the
Watts–Strogatz model of small-world networks and the Barabási–Albert model of
scale-free networks, which makes this lack of mechanistic temporal network models
even more conspicuous.

A third type of models for temporal networks (largely still waiting to be realized)
is predictive models, solely targeted at forecasting the future development of the
contact structure. Such models, drawing from machine-learning and statistical
techniques, would not necessarily attempt to explain why a temporal network is like
it is, or to generate contact sequences from scratch. Rather, given a contact sequence
or interval graph, such models could predict its continuation in the near future.

4 Processes on Temporal Networks

Networks are never just a collection of vertices and edges (or contacts in the case of
temporal networks), except in very trivial cases. Rather, they are the underlying
structure that determines how dynamical processes over the graph unfold, from
contagion of infections to Internet traffic. Thus, they in reality define the system’s
function. Obviously, temporal effects can strongly affect any dynamics that follow
the shortest paths between vertices (see the above discussion on latency). Especially,
temporal features of networks affect the dynamics of diffusion and spreading. This
has been investigated by comparing spreading dynamics—often, with the help
of compartmental models of infectious disease spreading—on empirical contact
sequences and their randomized reference counterparts. At the moment, we do not
have a comprehensive theory of how temporal-network structure affects disease
spreading. For some systems the temporal structure speeds up spreading [23], in
other systems the temporal structure seems to slow it down [24]. The structure in
focus of these studies is burstiness—the property that contact activity (often human)
is very inhomogeneously distributed in time—that can be readily removed from
temporal networks by applying randomized reference models.

Another type of models of social spreading phenomena is threshold models,
in particular targeted for studies of social influence and opinion spreading. In
threshold models, an agent (or vertex) changes its state whenever the impact from
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the surrounding vertices exceeds some threshold value. The dynamics of such
models seem to have a tendency to speed up if there is burstiness, but also in this
case there is no general theory. Coming up with a general theory might even be
impossible, since there are different aspects of how to measure and quantify the
impact that triggers state changes in such models. Furthermore, it is hard to observe
or experimentally study human threshold behavior, which additionally may largely
depend on circumstances (for one such experiment, see [25]). Regarding threshold
models on temporal networks, Karimi and Holme [26] studied a modification of
Watts’s threshold models of cascades [27] for contact sequences and Takaguchi,
Masuda and Holme [28] studied a threshold model of exponentially decaying
influence. Both these studies were performed on empirical networks.

5 Summary and Discussion

We have given an overview of the different aspects that the field of temporal network
so far has covered. Furthermore, we have explained the challenges in extending
static network measures to temporal networks. We argue these challenges should be
encouraging rather than the opposite, both since they are intellectually fascinating
and since there are useful applications waiting once they are resolved.

The study of temporal networks is a fast advancing field with a great potential
for the future. However, many challenges remain. The extra level of information
added by the temporal dimension does not only make it difficult to develop theory
and computational methods, it also changes the questions one can ask about the
structure of the system. Probably many advances can be made by connecting and
integrating temporal networks with other extensions of network models such as
spatial networks [29] where the coordinated of spatially embedded nodes and links
are incorporated in the modeling framework, or adaptive networks [17, 30] where
there is a focus on the feedback from the dynamics on the networks to the evolution
of the network evolution.

Open questions for future studies ranges from how to make static visualizations
of temporal networks, via how to predict missing links in incomplete temporal
network data [31] or how to make sport-ranking systems [32], to classic questions
like if there is any universal law that involves both temporal structure and network
topology.

6 In This Book

This book aims at presenting an overview of the state-of-the-art in temporal
networks. Its chapters are contributed by leading researchers and research teams
from a variety of backgrounds and disciplines. Our target has been to cover the
emerging field of temporal networks both in breadth and in depth, and because of
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this, some chapters are essentially reviews on key topics—such as temporal network
metrics and burstiness—whereas others provide detailed accounts of investigations
building on the temporal networks framework, from networks of face-to-face human
proximity to the collective behaviour of social insects.

The following five chapters focus on metrics, measures and methods for char-
acterizing temporal network structure. In chapter “Graph Metrics for Temporal
Networks”, Nicosia, Tang, Mascolo, Musolesi, Russo, and Latora present an
overview of key temporal network metrics and measures, from walks and paths
to connectedness and centrality measures. This is followed by a chapter that
focuses on one of the key characteristics of temporal networks, especially those
related to human interactions: in chapter “Burstiness: Measures, Models, and
Dynamic Consequences”, Min, Goh, and Kim discuss burstiness, from measuring
and characterizing bursty activity to modeling its origins and assessing its effects
on dynamical processes. Then, in chapter “Temporal Scale of Dynamic Networks”,
Caceres and Berger-Wolf address the important problem of the underlying temporal
scales in interaction streams that define temporal networks, focusing on identifying
inherent temporal scales and finding network representations that match those
scales. These overviews are followed by two chapters that focus on specific temporal
network features and measures: Zhao, Karsai and Bianconi discuss the entropy
of temporal networks in chapter “Models, Entropy and Information of Temporal
Social Networks”, combining modeling efforts with studies of large, time-stamped
empirical data sets. In chapter “Temporal Motifs”, Kovanen, Karsai, Kaski, Kertész
and Saramäki present the temporal motifs approach that is designed to detect,
categorize and quantify recurrent temporal mesoscopic patterns of link activations.

In the second part of the book, temporal network metrics and measures are put
to use in empirical studies. In chapter “Applications of Temporal Graph Metrics
to Real-World Networks”, Tang, Leontiadis, Scellato, Nicosia, Mascolo, Musolesi,
and Latora apply the metrics discussed in chapter “Graph Metrics for Temporal
Networks” to the analysis of a number of empirical and simulated data sets. Then, in
chapter “Spreading Dynamics Following Bursty Activity Patterns”, Vazquez returns
to the topic of burstiness, and analyzes how bursty dynamics impacts spreading
processes in computer and social systems. The effects of burstiness on spreading
processes are further studied in chapter “Time Allocation in Social Networks:
Correlation Between Social Structure and Human Communication Dynamics” by
Miritello, Lara, and Moro in the context of networks of human interactions,
and connected to the social, topological structure around individuals. This is
followed by an account of temporal networks of face-to-face human interactions
by Cattuto and Barrat in chapter “Temporal Networks of Face-to-Face Human
Interactions”; spreading dynamics are also used here to probe the temporal structure
of proximity patterns. Finally, in chapter “Social Insects: A Model System for
Network Dynamics”, Charbonneau, Blonder, and Dornhaus present an inspiring
overview of social insects as model systems for network dynamics, and discuss how
temporal network analysis methods can provide novel ways to view the complexity
of collective behavior of social insects.
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The third and last part of the book discusses models of temporal networks
and processes taking place on such networks. In chapter “Self-exciting Point
Process Modeling of Conversation Event Sequences”, Masuda, Takaguchi, Sato,
and Yano consider the origins of the long-tailed inter-event interval distributions
in human dynamics, and model them with the Hawkes process, a self-exciting
point process that is fitted to data on face-to-face interactions in company offices.
Mantzaris and Higham then address the micro-scale dynamics of triadic closure
in social networks with the help of a model and time-stamped electronic records
in chapter “Infering and Calibrating Triadic Closure in a Dynamic Network”. The
same authors then move on to dynamic communicability measures, and show
that they can be used to predict macro scale features of simulated epidemics on
temporal networks in chapter “Dynamic Communicability Predicts Infectiousness”.
The last three chapters focus on the behavior of other archetypal dynamic processes
than spreading, when the dynamics unfolds through the interactions sequences of
temporal networks. In chapter “Random Walks on Stochastic Temporal Networks”,
Hoffmann, Porter and Lambiotte develop a mathematical framework for random
walks on temporal networks using an approach that provides a compromise between
abstract but unrealistic models and data-driven but non-mathematical approaches.
Karimi and Holme then develop and study a version of Watts’s cascade model for
the spreading of opinions and innovations in the temporal network setting in chapter
“A Temporal Network Version of Watts’s Cascade Model”, and finally, Fernández-
Gracia, Eguı́luz, and San Miguel present version of the Voter model of opinion
dynamics that is able to account for heterogeneous temporal activity patterns in
chapter “Timing Interactions in Social Simulations: The Voter Model”.
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