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Preface

Neither Finland nor Sweden qualified for the 2010 Football World Cup in South
Africa. Wouldn’t that have been the case, you might not hold this book in your
hands. With Finland vs. Sweden in the finals, our excitement would have been
elsewhere than in science. At this time, at a workshop organized by Pieter Trapman,
Tom Britton and Fredrik Liljeros of Stockholm University in the quaint Swedish
seaside town Oregrund, we started discussing temporal networks. A month earlier,
we had both within days put e-prints on the arXiv with intriguing results—*“Small
but slow world” by Saramiki et al. and “Simulated epidemics in an empirical
spatiotemporal network of 50,185 sexual contacts” by Holme et al. In those papers,
we used the same randomization technique, independently of each other, to discover
that the temporal structures of two different datasets responded differently to
spreading processes. In Saramiki’s mobile phone communication data, random-
ization sped up spreading; in Holme’s data from sexual encounters in prostitution,
randomization slowed down spreading. While our beer-fueled discussion did not
solve that question, we agreed that it was a good time to write a review paper on
temporal networks. After about a year of off-and-on writing, we had a manuscript
to submit to Physics Reports. About the same time, we both met at the European
Conference on Complex Systems in Vienna and came up with the idea of this book
volume as a follow-up to the review paper. Luckily Christian Caron, the editor-
in-chief of Springer’s Complexity series, was also at the conference and with his
encouragement we moved on, gathering material to the book.

Temporal networks is a growing subfield of network science, probably with
most of its discoveries still ahead in the future. As an example, we still don’t
have the answer to the question that sparked our collaboration—what are the
conditions for temporal network structure to speed up spreading? However, we do
know much more. This volume gathers 17 chapters and much new knowledge,
many new methods and observations. We are very grateful to the authors and
their contributions, all meeting our high expectations and most submitted by the
deadlines. Last but not least, we want to thank our families. Fate or coincidence,
during the making of this book we both got married and provided the future
generation of network scientists (or football players, who knows) with two baby
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boys: Jari’s & Kaarina’s son Paavo was born in August 2012 and Petter’s &
Hyunok’s son Minu was born in February 2013.

Suwon Petter Holme
Espoo Jari Saramiki
April 2013
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Temporal Networks as a Modeling Framework

Petter Holme and Jari Saramiéki

Abstract To understand large, connected systems we cannot only zoom into the
details. We also need to see the large-scale features from afar. One way to take a
step back and get the whole picture is to model the systems as a network. However,
many systems are not static, but consisting of contacts that are off and on as time
progresses. This chapter is an introduction to the mathematical and computational
modeling of such systems, and thus an introduction to the rest of the book. We
will cover some of the earlier developments that form the foundation for the more
specialized topics of the other chapters.

1 Introduction

Life, at many levels, is about large connected systems. In the biological sense, life
is a consequence of macromolecules building cells and carrying information. More
mundanely, our everyday life happens in amid a network of friends, acquaintances
and colleagues. To understand life, at every level, we need to zoom out from
macromolecules or friendships and look at their global organization from a distance.
Here, zooming out means discarding the less relevant information in a systematic
way. One approach to this, successful the last decade, is network modeling. This
means that one focusses on the units of the system, be it proteins or persons,
and how they are connected, and nothing else. Of course, this is a very strong
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2 P. Holme and J. Saramaki

simplification. One often has more information about a system that would enrich
rather than obscure the picture. One such additional type of information regards
when the interactions happen between the units. The essence of temporal-network
modeling is to zoom out by excluding all information except which pairs of units
that are in contact and when these contacts happen.

There is a large number of systems that could, potentially, be modeled as
temporal networks. In addition to the cellular processes and social communi-
cation mentioned above large technological infrastructures—technologies based
on the Internet or mobile-phone networks for example—have both network and
time aspects that make them interesting for temporal network modeling. Neural
networks—perhaps primarily at a functional level of brain regions that are consid-
ered connected if there is a measurable information transfer between them—are
another example. A third example is ecological networks and species and their
interaction. Such networks—like food webs, depicting which species feed on which
other species, or mutualistic networks of species providing mutual benefits, such as
plants and pollinators—experience time varying changes with the seasons and other
environmental changes.

In this chapter, we will review the essential mathematical and computational
techniques for extracting information from a temporal network representation of a
system. We will discuss quantitative measures of network structure, computational
techniques of successive randomization to study these measures, and models to
generate and explain temporal networks and studies seeking to explain the effects of
the temporal-topological structures on dynamics taking place on the networks. For
a more comprehensive review of the field, see Holme and Saramaki [1].

2 Measuring Temporal Network Structure

In this section, we will review some of the proposed structural measures that strive
to capture both temporal and topological features and correlations. For the rest of
the chapter, we will consider systems that can be represented as lists of contacts—
triplets of pairs of vertices together with the time of their contact, or alternatively
as quadruples containing the beginning and end times of contacts, if these are not
instantaneous. We call the first type of temporal network a contact sequence, the
other one an interval graph.

Before we start discussing effects of structural measures, we note that temporal
networks are notoriously difficult to visualize in a way that would both show
all possible temporal information and highlight the important structural features
(similarly to what e.g. spring-embedding can successfully do for static networks).
Two representations, labeled graphs and time-line plots, are illustrated in Fig. 1.
Of these, the time-line plots can help to visualize the temporal structure (including
temporal heterogeneities such as bursts) while the labeled graphs highlight the
network topology. However, neither of them can be scaled up to more than a
dozen or so vertices. There are other attempts of combining time and simplified
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topology—most notably the alluvial diagrams of Rosvall and Bergstrom [2]—that
however typically miss the non-transitivity of temporal networks, or some other
important aspects.

2.1 Reachability and Latency

One of the most fundamental differences between temporal and static networks is
that the former are not transitive. Even if vertex A is related to B and B is related to
C, it might be that A is not related to C (see Fig. 2). The relation in question is in
essence the possibility of something spreading from one vertex to another through a
series of contacts where the times of the contacts are increasing (anything else would
not be feasible in reality). For this reason, the statistics of such time-respecting paths
are very informative. Authors have e.g. investigated the average durations of time-
respecting paths [3—6]. Given a pair of vertices (7, j) and a time ¢, the latency is the
shortest time to go from i to j at time # following only time-respecting paths.

The latency is not the entire story, since just like regular graphs, temporal
networks can be disconnected. This is, in practice, more common in temporal than
static networks, as the paths joining vertices need to be traversed in the order of
contacts. A practical measure for capturing this would be the expected value of the
number of vertex pairs that have infinite latency values [3]. For empirical data, the
finite period of observation may also play a role, because paths whose realization
takes a very long time may not ever be completed within the observed period. It
should be emphasized that connectivity is only defined within some time window:
the fact that A is connected to B via a time-respecting path that begins at ¢ does
not guarantee that such a connection exists at any later point in time. Furthermore,
connectivity is always directed as dictated by the arrow of time (see the transitivity
example above).

One can elaborate on latency-like measures in many ways in order to capture
different aspects of reachability and dynamical influence between nodes. It could
for example be interesting to monitor the number of time-respecting paths between
pairs of vertices in order to capture frequently appearing pathways, or to resolve
the average latency in time—it might be that the average latency follows e.g. a
daily pattern where time-respecting paths are faster to traverse during the time of
day when the contacts are more frequent. Additional constraints may also be set on
time-respecting paths; e.g. one may require that the contacts forming a path follow
each other rapidly enough, so that long waiting times between contacts destroy the
path [6].

2.2 Clustering and Correlations

In static networks, the local structure—focusing on the immediate surroundings of
an average vertex—is an important predictor of the behavior of dynamic systems on
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Fig. 1 Visualization of temporal networks. (a) Shows a labeled aggregate network where the
labels denote times of contact, and (b) shows a time-line plot, where each of the lines corresponds
to one vertex and time runs from left to right

Fig. 2 Illustrating the non-transitive nature of temporal networks. Information can spread from
A to B, from B to C, from C to B, from B to A, it can also spread from A to C via B, but not from
C to A since by the time the information can have reached B all contacts between A and B have
already happened. Note that static networks are transitive, even directed networks, so one cannot
simply reduce a temporal network to a static one

the network. Adding the temporal dimension is not straightforward, which perhaps
explains the rather few attempts to do so. Below, we sketch one possible approach
and illustrate some of the inherent difficulties.

In static networks, the level of connectivity in the neighborhood of a vertex
can be measured with the (local) topological clustering coefficient. Its values are
normalized, such that a value of 0 indicates no connectivity and a value of 1 the
existence of all possible connections. Adding a temporal dimension, we would like
to measure the connectedness of a neighborhood around a given moment of time
t. In other words, we would like to put a larger weight on contacts that are closer
to ¢ in time. This can be done by an summation kernel F(¢) with the properties
that it is bounded, non-negative, monotonically increasing for # < 0, monotonically
decreasing for ¢ > 0, and F(0) = 1. A temporal clustering coefficient for a contact
sequence would then be the following sum divided by some normalizing factor
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where ¢ = (i, j,t), ¢’ = (j, k,t') and ¢” = (k,i,t") are contacts with i # j # k.
However, there is no obvious choice of denominator to balance this with. If one
calculates the denominator by assuming that there can be one contact per time
step between all vertices that are in contact with i at some point, then this would
for the very most datasets be a number many orders of magnitude larger than the
denominator. One can perhaps set the maximal number of contacts as the total
number of contacts in the dataset and assume that they all happened at time ¢, but
also this would in practice be a very much larger number than that given by (1).
A third option would be to replace the F-factors by 1 (their maximal value), but
this would be equal to assuming that the number of contacts per vertex pair that
has been in contact at some time is fixed, which would be strange for most types
of temporal networks. This example is not meant to discourage from constructing
measures capturing both temporal and topological structures, but rather the other
way around. It shows how moving away from the assumption that all edges are
equivalent (an assumption underlying most static network representations) requires
new ways to think about network concepts. In this case, the best solution, we believe,
would be to compare the raw sum to that obtained from a carefully chosen reference
model.

In static networks, one important class of measures quantifies the relationship
between the degrees of connected nodes. Is there an overrepresentation of edges
between, say mid-degree vertices and other mid-degree vertices? Such an analysis
can be made at different levels, from plotting the entire correlation profile [7]
to measuring a scalar-valued correlation coefficient [8]. These degree-correlation
measures can be generalized to temporal networks more straightforwardly than the
clustering coefficient. One can use similar summation kernels as discussed above
to replace node degrees by a time-dependent activity level, and then perform the
same analysis. Then again, while this would capture something similar in spirit to
the degree-correlation measures designed for static networks, in temporal networks
there is a multitude of other conceivable concepts of correlations across links that
could well prove more important.

As a temporal networks evolve, some subsets of their nodes and links may be
more continuously active than others. Such persistent patterns are subnetworks that
are prime candidates for functional subunits of some sort; they could also be an
interesting alternative to aggregating all contacts if one wants to reduce the system to
a static network. As an example of how to investigate persistent contact patterns, one
can let a time window slide through an interval graph and calculate the adjacency
correlation function, or vertex persistency

D jepin @l j.0)ali, j.t +1)
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where ¢ is the beginning of the time window, and ¢ (i, ¢) are the non-zero indices of
the (time-dependent) adjacency matrix.

2.3 Centrality

Network centrality measures form one of the most important classes of measures
of static network structure. These quantities try to capture various facets of the
question how central a vertex is. Pan and Saramiki discuss a centrality measure
akin to closeness in static graphs [8]. Essentially, the authors define centrality as
the average reciprocal value of the time from the focal vertex to all others. Tang et
al. also defines a (somewhat different) closeness centrality for temporal networks
together with a temporal version of the betweenness centrality [9].

Takaguchi et al. take a slightly different approach in [10] when they measure a
kind of influence (called advance) related to concepts of centrality by focusing on
the importance of the events the vertex participates in. This work draws on previous
results from [4]. Mantzaris et al. [11] use a spectral centrality measure for temporal
graphs to study learning in the human brain.

2.4 Motifs

Network motifs were first proposed for static directed networks [12] and are, briefly
described, overrepresented subgraphs formed by a few vertices and their directed
links. Motifs are often interpreted as functional units, or candidates for such, and
motif analysis is commonly applied e.g. in systems biology. In static directed
networks, motifs can be mapped to component-like structures such as feedforward
loops, but in temporal networks, this is harder. Rather, motifs in temporal networks
correspond to typical sequences of events. There are many ways of defining such
motifs. To take one example, Kovanen et al. [13] look at sequences of contacts
between vertices that are maximally separated by a time §z. More precisely, two
contacts e; and e; are d¢-adjacent if they share a vertex and are separated in time
by no more than §¢. Pairs of events are then defined as §7-connected if there is a
sequence of §7-adjacent events joining them and temporal subgraphs are defined as
sets of events that are §¢-connected. By counting such subgraphs and mapping them
into isomorphic classes on the basis of their order of events, Kovanen et al. find an
overrepresentation of temporal motifs that are causal, i.e. where the contacts may
have triggered one another (such as A contacts B who contacts C and D, as opposed
to the non-causal sequence where B contacts C and D, and A only then contacts
B). As an application of a temporal-network motif method (slightly different from
that of [13]) Jurgens and Lu [14] use motifs to study behavior in the evolution of
Wikipedia.
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2.5 Mesoscopic Structures

In static networks, there has recently been a flood of methods proposed to discover
mesoscopic structures (a.k.a. clusters, communities or modules [15]). These are
loosely defined as groups of vertices more densely connect within than between each
other. Much of the community structure literature regarding static networks only
focuses on deriving a method for decomposing the network on the basis of some
conceptually simple principle. The few methods that incorporate the time dimension
into community detection typically operate on aggregated time-slices of the contact
sequence [16, 17] or networks of links that have happened and will happened
again [18]. One can imagine clustering algorithms based on more elaborate temporal
structures, like time-respecting paths (an exception is Lin et al. [19]). As mentioned
earlier, visualizing temporal networks as two-dimensional, printable diagrams is
difficult and this is a major obstacle to intuitive reasoning about mesoscopic
temporal-topological structure. Reducing the network to a network of clusters that
split and merge with time is perhaps the most promising path in this direction.
Unfortunately, such a reduction would also destroy any non-transitive features of
the original structure, especially when time slices or aggregation are involved, and
smear out the effects of all temporal structures associated with shorter time scales
than the time window that is used (such as bursts) [20].

3 Models of Temporal Networks

As in all other areas of theoretical science, our understanding of temporal networks
hinges on mathematical and computational models. These models have different
purposes. The simplest class of models, already mentioned above, involves null
or reference models that are used together with various measures in order to infer
their statistical significance, or in order to assess the contribution of chosen types of
correlations to the values of the measures. Related to this are generative models that
can serve both as reference models and as a method to synthesize temporal structures
to run simulations of dynamic systems on. The third class comprises mechanistic
models for explaining the emergent network structures that one measures; and
finally we also have predictive models that are tailored to forecast future aspects
of a temporal network.

Much remains to be done in the development of temporal-network models in all
above-mentioned areas. This is somewhat in contrast to the theory of static networks
where a very large number of models were developed at an early stage [8].

3.1 Randomized Null or Reference Models

In order to interpret the significance of temporal-network measures, or to understand
what effects different temporal and structural features have on them, one needs
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something for comparing against. One approach is to compare observations against
the same measures computed for an ensemble of randomized networks that are
“neutral” in some chosen sense, i.e. where certain correlations and features are
removed by randomization procedures such that only the chosen fundamental
constraints of empirical networks are retained. The way the empirical network
differs from the null model gives meaning to the structure observed in the empirical
data, and points out effects that are due to the removed correlations. One can
also give a scale to the “raw” measures of temporal network structure, e.g. by
normalizing by the corresponding values for the reference models or subtracting
such values. More elaborately, one can assess the statistical significance of observed
measures by calculating the Z-score, or similar, of their values in the empirical
network against their distribution in the randomized ensemble. Strictly speaking,
the term “null model” should be used only in this context: Z-scores are then used
to reject or verify the null hypothesis that the observed features can be explained by
the randomized ensemble, and the removed correlations do not play a role.

For static networks, perhaps the most popular reference model is to rewire the
edges randomly while keeping the degree and number of vertices constant [7]. See
Fig. 3. This model is very closely related to the the configuration model which is
rigorously defined as an ensemble of vertices of given degrees that are connected
in a maximally random way [8]. For practical purposes, randomization by edge
swapping and the configuration model are equivalent. This is helpful since the
configuration model is theoretically well understood.
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For temporal networks, randomization plays a slightly different role than for
static networks. On one hand, there is no mathematically well-understood null
model like the configuration model. On the other hand, there is a much larger
number degrees of freedom, and subsequently there is also a much larger number
of possible randomization models. In fact, such models allow for going through a
sequence of randomization procedures, where one progressively removes chosen
types of correlations from the empirical temporal network. This provides a detailed,
continuous picture of temporal-network structure and the correlations that underlie
observations.

Below, we will discuss some of the most important temporal network models.
For a longer list, see Holme and Saramaéki [1].

3.1.1 Randomly Permuted Times (RP)

As a temporal counterpart to the randomization of edges discussed above, one
can randomly permute the times of contacts, while keeping the network’s static
topology and the numbers of contacts between all pairs of vertices fixed. As this
randomization scheme retains all static network structure and the number of contacts
for each edge, its application can be used to study the effects of the exact order
and timings of contacts. The reference model destroys burstiness and inter-contact
times of nodes and edges, and subsequently also all correlations between timings of
contacts on adjacent edges. The model also keeps the overall rate of events in the
network over time, such as daily or weekly patterns. See Fig. 3.

3.1.2 Random Times (RT)

The set of time stamps is conserved in the RP ensemble. Hence, the intensities of
contacts at an aggregate level follow the same patterns as the real data—if there are
circadian rhythms (like in many human, and other biological and social systems)
they will still be there in randomized networks. If one wants to explore the impact
of these rhythms, one may draw the interaction times from a random distribution
and compare the outcome to the RP ensemble. See Fig. 3.

3.2 Generative, Mechanistic and Predictive Models

A large amount of numerical temporal network studies have been performed
on empirical networks. Since there is not yet any commonly-agreed-upon set
of temporal network characteristics, and since it is not yet clear what the most
important features of temporal networks are and whether there is any universality in
such features, the focus has been on what the data can tell us, which can be seen as an
advantage. The disadvantage is that we do not get a systematic understanding of the
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effects of temporal network structure. In order to arrive at such an understanding, we
need generative models that can output temporal networks with tunable structure.

In cases where topological and temporal structures are decoupled, creating a
generative model is straightforward. One could perhaps first generate the topology
according to some model from the static network literature, and then generate time
series of contacts over the edges for tuning some quantity of interest (like the vertex
persistency, (2)). Studies that successfully utilize generative models to study the
effects of temporal network structure include [21, 22].

Another type of models that are very common in the static network literature
but not for temporal networks are mechanistic models trying to explain the
emergence of large-scale structure from simple underlying driving mechanisms.
Indeed, the whole field of complex network theory took off in the 1990s with the
Watts—Strogatz model of small-world networks and the Barabasi—Albert model of
scale-free networks, which makes this lack of mechanistic temporal network models
even more conspicuous.

A third type of models for temporal networks (largely still waiting to be realized)
is predictive models, solely targeted at forecasting the future development of the
contact structure. Such models, drawing from machine-learning and statistical
techniques, would not necessarily attempt to explain why a temporal network is like
itis, or to generate contact sequences from scratch. Rather, given a contact sequence
or interval graph, such models could predict its continuation in the near future.

4 Processes on Temporal Networks

Networks are never just a collection of vertices and edges (or contacts in the case of
temporal networks), except in very trivial cases. Rather, they are the underlying
structure that determines how dynamical processes over the graph unfold, from
contagion of infections to Internet traffic. Thus, they in reality define the system’s
function. Obviously, temporal effects can strongly affect any dynamics that follow
the shortest paths between vertices (see the above discussion on latency). Especially,
temporal features of networks affect the dynamics of diffusion and spreading. This
has been investigated by comparing spreading dynamics—often, with the help
of compartmental models of infectious disease spreading—on empirical contact
sequences and their randomized reference counterparts. At the moment, we do not
have a comprehensive theory of how temporal-network structure affects disease
spreading. For some systems the temporal structure speeds up spreading [23], in
other systems the temporal structure seems to slow it down [24]. The structure in
focus of these studies is burstiness—the property that contact activity (often human)
is very inhomogeneously distributed in time—that can be readily removed from
temporal networks by applying randomized reference models.

Another type of models of social spreading phenomena is threshold models,
in particular targeted for studies of social influence and opinion spreading. In
threshold models, an agent (or vertex) changes its state whenever the impact from
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the surrounding vertices exceeds some threshold value. The dynamics of such
models seem to have a tendency to speed up if there is burstiness, but also in this
case there is no general theory. Coming up with a general theory might even be
impossible, since there are different aspects of how to measure and quantify the
impact that triggers state changes in such models. Furthermore, it is hard to observe
or experimentally study human threshold behavior, which additionally may largely
depend on circumstances (for one such experiment, see [25]). Regarding threshold
models on temporal networks, Karimi and Holme [26] studied a modification of
Watts’s threshold models of cascades [27] for contact sequences and Takaguchi,
Masuda and Holme [28] studied a threshold model of exponentially decaying
influence. Both these studies were performed on empirical networks.

5 Summary and Discussion

We have given an overview of the different aspects that the field of temporal network
so far has covered. Furthermore, we have explained the challenges in extending
static network measures to temporal networks. We argue these challenges should be
encouraging rather than the opposite, both since they are intellectually fascinating
and since there are useful applications waiting once they are resolved.

The study of temporal networks is a fast advancing field with a great potential
for the future. However, many challenges remain. The extra level of information
added by the temporal dimension does not only make it difficult to develop theory
and computational methods, it also changes the questions one can ask about the
structure of the system. Probably many advances can be made by connecting and
integrating temporal networks with other extensions of network models such as
spatial networks [29] where the coordinated of spatially embedded nodes and links
are incorporated in the modeling framework, or adaptive networks [17,30] where
there is a focus on the feedback from the dynamics on the networks to the evolution
of the network evolution.

Open questions for future studies ranges from how to make static visualizations
of temporal networks, via how to predict missing links in incomplete temporal
network data [31] or how to make sport-ranking systems [32], to classic questions
like if there is any universal law that involves both temporal structure and network
topology.

6 In This Book

This book aims at presenting an overview of the state-of-the-art in temporal
networks. Its chapters are contributed by leading researchers and research teams
from a variety of backgrounds and disciplines. Our target has been to cover the
emerging field of temporal networks both in breadth and in depth, and because of
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this, some chapters are essentially reviews on key topics—such as temporal network
metrics and burstiness—whereas others provide detailed accounts of investigations
building on the temporal networks framework, from networks of face-to-face human
proximity to the collective behaviour of social insects.

The following five chapters focus on metrics, measures and methods for char-
acterizing temporal network structure. In chapter “Graph Metrics for Temporal
Networks”, Nicosia, Tang, Mascolo, Musolesi, Russo, and Latora present an
overview of key temporal network metrics and measures, from walks and paths
to connectedness and centrality measures. This is followed by a chapter that
focuses on one of the key characteristics of temporal networks, especially those
related to human interactions: in chapter ‘“Burstiness: Measures, Models, and
Dynamic Consequences”’, Min, Goh, and Kim discuss burstiness, from measuring
and characterizing bursty activity to modeling its origins and assessing its effects
on dynamical processes. Then, in chapter “Temporal Scale of Dynamic Networks”,
Caceres and Berger-Wolf address the important problem of the underlying temporal
scales in interaction streams that define temporal networks, focusing on identifying
inherent temporal scales and finding network representations that match those
scales. These overviews are followed by two chapters that focus on specific temporal
network features and measures: Zhao, Karsai and Bianconi discuss the entropy
of temporal networks in chapter “Models, Entropy and Information of Temporal
Social Networks”, combining modeling efforts with studies of large, time-stamped
empirical data sets. In chapter “Temporal Motifs”, Kovanen, Karsai, Kaski, Kertész
and Saraméki present the temporal motifs approach that is designed to detect,
categorize and quantify recurrent temporal mesoscopic patterns of link activations.

In the second part of the book, temporal network metrics and measures are put
to use in empirical studies. In chapter “Applications of Temporal Graph Metrics
to Real-World Networks”, Tang, Leontiadis, Scellato, Nicosia, Mascolo, Musolesi,
and Latora apply the metrics discussed in chapter “Graph Metrics for Temporal
Networks” to the analysis of a number of empirical and simulated data sets. Then, in
chapter “Spreading Dynamics Following Bursty Activity Patterns”, Vazquez returns
to the topic of burstiness, and analyzes how bursty dynamics impacts spreading
processes in computer and social systems. The effects of burstiness on spreading
processes are further studied in chapter “Time Allocation in Social Networks:
Correlation Between Social Structure and Human Communication Dynamics” by
Miritello, Lara, and Moro in the context of networks of human interactions,
and connected to the social, topological structure around individuals. This is
followed by an account of temporal networks of face-to-face human interactions
by Cattuto and Barrat in chapter “Temporal Networks of Face-to-Face Human
Interactions”; spreading dynamics are also used here to probe the temporal structure
of proximity patterns. Finally, in chapter “Social Insects: A Model System for
Network Dynamics”, Charbonneau, Blonder, and Dornhaus present an inspiring
overview of social insects as model systems for network dynamics, and discuss how
temporal network analysis methods can provide novel ways to view the complexity
of collective behavior of social insects.



Temporal Networks as a Modeling Framework 13

The third and last part of the book discusses models of temporal networks
and processes taking place on such networks. In chapter “Self-exciting Point
Process Modeling of Conversation Event Sequences”, Masuda, Takaguchi, Sato,
and Yano consider the origins of the long-tailed inter-event interval distributions
in human dynamics, and model them with the Hawkes process, a self-exciting
point process that is fitted to data on face-to-face interactions in company offices.
Mantzaris and Higham then address the micro-scale dynamics of triadic closure
in social networks with the help of a model and time-stamped electronic records
in chapter “Infering and Calibrating Triadic Closure in a Dynamic Network”. The
same authors then move on to dynamic communicability measures, and show
that they can be used to predict macro scale features of simulated epidemics on
temporal networks in chapter “Dynamic Communicability Predicts Infectiousness”.
The last three chapters focus on the behavior of other archetypal dynamic processes
than spreading, when the dynamics unfolds through the interactions sequences of
temporal networks. In chapter “Random Walks on Stochastic Temporal Networks”,
Hoffmann, Porter and Lambiotte develop a mathematical framework for random
walks on temporal networks using an approach that provides a compromise between
abstract but unrealistic models and data-driven but non-mathematical approaches.
Karimi and Holme then develop and study a version of Watts’s cascade model for
the spreading of opinions and innovations in the temporal network setting in chapter
“A Temporal Network Version of Watts’s Cascade Model”, and finally, Fernandez-
Gracia, Eguiluz, and San Miguel present version of the Voter model of opinion
dynamics that is able to account for heterogeneous temporal activity patterns in
chapter “Timing Interactions in Social Simulations: The Voter Model”.
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Graph Metrics for Temporal Networks

Vincenzo Nicosia, John Tang, Cecilia Mascolo, Mirco Musolesi,
Giovanni Russo, and Vito Latora

Abstract Temporal networks, i.e., networks in which the interactions among a
set of elementary units change over time, can be modelled in terms of time-
varying graphs, which are time-ordered sequences of graphs over a set of nodes.
In such graphs, the concepts of node adjacency and reachability crucially depend
on the exact temporal ordering of the links. Consequently, all the concepts and
metrics proposed and used for the characterisation of static complex networks
have to be redefined or appropriately extended to time-varying graphs, in order
to take into account the effects of time ordering on causality. In this chapter we
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discuss how to represent temporal networks and we review the definitions of walks,
paths, connectedness and connected components valid for graphs in which the links
fluctuate over time. We then focus on temporal node—node distance, and we discuss
how to characterise link persistence and the temporal small-world behaviour in this
class of networks. Finally, we discuss the extension of classic centrality measures,
including closeness, betweenness and spectral centrality, to the case of time-varying
graphs, and we review the work on temporal motifs analysis and the definition of
modularity for temporal graphs.

1 Introduction

Whenever a system consists of many single units interacting through a certain kind
of relationship, it becomes natural to represent it as a graph, where each node of
the graph stands for one of the elementary units of the system and interactions
between different units are symbolised by edges. If two nodes are connected by
an edge they are said to be adjacent. According to the nature of the units and to the
characteristics of adjacency relationship connecting them, it is possible to construct
different kind of graphs, such as friendship graphs—where nodes are people and
edges connect two people who are friends, functional brain networks—where nodes
are regions of the brain and edges represent the correlation or causality of their
activity, communication graphs—where nodes are terminals of a communication
systems, such as mobile phones or email boxes, and edges indicate the exchange
of a message from a terminal to another, just to make some examples. Thanks to
the availability of large data sets collected through modern digital technologies,
in the last decade or so there has been an increasing interest towards the study of
the structural properties of graph representations of real systems, mainly spurred
by the observation that graphs constructed from different social, biological and
technological systems show surprising structural similarities and are characterised
by non-trivial properties. In a word, they are complex networks. Independently of
the peculiar nature and function of the original systems, the corresponding graphs
are usually small-worlds, i.e., they show high local cohesion and, at the same
time, extremely small node—node distance [47]; the distribution of the number of
neighbours of a node (its degree) is often heterogeneous, and decays as a power-
law (i.e., they are scale-free [2]); they are locally organised as tightly-knit groups
of nodes (called communities), which are in turn loosely interconnected to each
other [33]. The concepts, metrics, methods, algorithms and models proposed so
far to study the structure of real networks has led to the formation of theoretical
framework known as complex network theory [1,5,31].

However, the relationships among the units of a real networked system (e.g., node
adjacency) are rarely persistent over time. In many cases, the static interpretation
of node adjacency is just an oversimplifying approximation: contacts among
individuals in a social network last only for a finite interval and are often inter-
mittent and recurrent [8, 13, 18]; different intellectual tasks are usually associated
to different brain activity patterns [9, 45]; communication between agents in a
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telecommunication system are typically bursty and fluctuate over time [4, 26, 40];
transportation networks show fluctuations in their microscopic organisation, despite
the stability of their global structural properties [11]. Consequently, whenever we
deal with a networked system that evolves over time, the concept of adjacency needs
to be appropriately redefined. The extension of node adjacency to the case of time-
evolving systems has lately led to the definition of temporal graphs (sometimes
also called time-varying graphs or dynamic graphs), in which time is considered as
another dimension of the system and is included in the same definition of the graph.
Since most of the metrics to characterise the structure of a graph, including graph
connectedness and components, distance between nodes, the different definitions of
centrality etc., are ultimately based on node adjacency, they need to be appropriately
redefined or extended in order to take into account of the presence, frequency
and duration of edges at different times. In general, the temporal dimension adds
richness and complexity to the graph representation of a system, and demands
for more powerful and advanced tools which allow to exploit the information on
temporal correlations and causality. Recently, Holme and Saramiki have published
a comprehensive review which presents the available metrics for the characterisation
of temporal networks [14]. A description of some potential applications of these
metrics can be found in [44].

This chapter presents the basic concepts for the analysis of time-evolving net-
worked systems, and introduces all the fundamental metrics for the characterisation
of time-varying graphs. In Sect. 2 we briefly discuss different approaches to encode
some temporal information into static graphs and we introduce a formal definition
of time-varying graph. In Sect. 3 we examine how reachability and connectedness
are affected by time-evolving adjacency relationships and we introduce the defini-
tions of node and graph temporal components, showing the intimate connections
between the problem of finding temporal connected components and the maximal-
clique problem in static graphs. In Sect.4 we focus on the concepts of temporal
distance, efficiency and temporal clustering, and we discuss the temporal small-
world phenomenon. In Sect. 5 we present the extensions of betweenness, closeness
and spectral centrality to time-varying graphs. Finally, in Sect. 6 we report on the
definition of temporal motifs and on the extension of the modularity function to
time-varying graphs.

2 Representing Temporal Networks

From a mathematical point of view a networked time-evolving system consists of
a set € of contacts registered among a set of nodes 4 = {1,2,..., N} during
an observation interval [0, T] [37,43]. A contact between two nodes i, j € A is
represented by a quadruplet ¢ = (7, j, ¢, 6t), where 0 < ¢t < T is the time at which
the contact started and §¢ is its duration, expressed in appropriate temporal units. As
we stated above the relationship between i and j is usually not persistent (it could
represent the co-location at a place, the transmission of a message, the temporal
correlation between two areas of the brain etc.), so that in general we will observe
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Fig. 1 The set of contacts
registered among five nodes
within an observation period
of 4 h. Blue bars indicate the
duration of each contact. The
two dashed lines correspond
to two instantaneous cuts 1
of the contact set, respectively 1
for + = 80 min (green) and
t = 120 min (cyan)
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more than one contact between i and j in the interval [0, T']. In Fig. 1 we report an
example of a set of seven contacts observed between a set of N = 5 nodes within
an interval of T = 240 min. The contacts in the figure are considered symmetric,
ie., (i, j,t,6t) = (j,i,t,8t), even if in general this in not the case. Each contact is
represented by a pair of nodes and a blue bar indicating the start and duration of the
contact. Notice that in this example, which is indeed representative of many social
and communication systems, the typical overlap between contacts is relatively small
with respect to the length of the observation interval.

Before explaining how the temporal information about such a set of contacts
can be represented by means of a time-varying graph, we first review some simple
approaches to deal with time-evolving systems based on static graphs, and we
discuss why they are inadequate for analyzing time-evolving systems.

2.1 Aggregated Static Graphs

The classic approach to represent networked systems evolving over time consists in
constructing a single aggregated static graph, in which all the contacts between each
pair of nodes are flattened in a single edge. An aggregated graph can be represented
by an adjacency matrix A = {a;} € R¥*V_ in which the entry a; = 1 if at least
one contact (7, j,-,-) has been registered in [0, T'] between i and j, and a; =0
otherwise. If the relationship between any pair of nodes i and j is symmetric,
such as in the case of co-location or collaboration graphs, also the corresponding
adjacency matrix is symmetric, i.e., a; = a; Vi, j € 4. Conversely, whenever
a directionality is implied, for instance when the contact is a phone call from i to
j or represents goods transferred from i to j, the adjacency matrix is in general
non-symmetric.

Representing a time-evolving system by means of an adjacency matrix, i.e., an
unweighted graph, is usually a severe oversimplification: the information about
the number, frequency and duration of contacts between two nodes i and j is
flattened down into a binary digit (i.e., a; = 1 if there is at least one contact,
of any duration, between i and j, while a; = 0 otherwise). In general, a binary
adjacency information does not take into account the heterogeneity observed in real
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Fig. 2 Three different aggregated static graphs obtained from the set of contacts in Fig. 1. (a) The
unweighted aggregated graph; (b) the weighted aggregated graph where each weight w;; between

node i and node j corresponds to the number of contacts observed; (c) the weighted aggregated
graph where each weight wj; is the total duration of all the contacts between i and j

systems. Just to make an example, both the number of phone calls made by a single
node during a certain time interval and the duration of a call between two nodes
exhibit large fluctuations, and their distribution is well approximated by a power-
law [4,16,26]. This means that assigning the same weight to all the relationships can
lead to misleading conclusions. This problem can be partially solved by constructing
a weighted aggregated graph, in which the edge connecting i to j is assigned a
weight w;; proportional to the number of contacts observed, their duration, their
frequency or a combination of the these three dimensions.

In Fig.2 we show three different aggregated static graphs corresponding to
the same set of contacts reported in Fig. 1. The leftmost graph (Panel a) is the
unweighted aggregated graph; in the middle graph (Panel b) the weights correspond
to the number of contacts observed between the nodes; in the rightmost one (Panel ¢)
the weight of each edge w;; is equal to the sum of the duration of all the contacts
between i and j. However, both unweighted and weighted aggregated graphs fail to
capture the temporal characteristics of the original system. In fact, by considering all
the links as always available and persistent over time, the number of walks and paths
between two nodes is overestimated, while the effective distance between two nodes
is instead systematically underestimated. For instance, in all the three aggregated
representations, node 2 and node 4 are connected by an edge, but their interaction
is limited just to the beginning of the observation period, so that these nodes cannot
directly communicate for most of the time.

Despite not being powerful enough to represent networks in which the temporal
aspects are crucial, static aggregated graphs and the metrics proposed for their
analysis still constitute an invaluable framework to investigate the structure and
function of systems in which the topological characteristics are more relevant than
the temporal ones. After all, most of the classic examples of complex networks,
including the graph of the Internet at Autonomous Systems level [46], co-authorship
networks [29, 30], the graph of the World Wide Web [2, 6] and functional brain
networks [7] have been obtained so far by aggregating all the contacts observed
among a certain number of nodes within a given temporal interval, and the analysis
of their structure has provided new insights about the organisation of different
complex systems.
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2.2 Time-Varying Graphs

The natural way to work out a graph representation that can properly take into
account all the temporal correlations of a set of contacts consists into including
time as an additional dimension of the graph [17]. We notice that a set of contacts
implicitly defines a graph for each instant ¢, made by the set of edges corresponding
to all the contacts (-, -,#;,8¢;) such that ; < t < t; 4+ &t;. In the example shown
in Fig. 1, if we consider # = 80 min, corresponding to the dashed green line in the
figure, the graph constructed from contacts active at that time contains only two
edges, namely (2, 3) and (4, 5). However, we notice that the graph corresponding
to t = 120min (the dashed cyan line in the figure) is an empty graph, since no
contact is active at that time. For practical reasons, and especially when contacts
are instantaneous, i.e., §t — 0, it is convenient to consider a finite time-window
[t,t + At] and to construct a graph by creating an edge between all pairs of nodes
for which there is at least a contact which overlaps with the interval [¢,7 + At].
A generic contact (-, -, 7;, §7;) overlaps with [¢,¢ + At] if it satisfies at least one of
the three following conditions:

<1 <t+ At (D)
t <1 +6t <t—+ At 2)
<t AN T+ >t+ At 3)

A graph G, obtained by aggregating all the contacts appearing in a given
interval [t,t + At] represents the state of the system in that interval, i.e., it is
a snapshot which captures the configuration of the links at that particular time
interval. If we consider a sequence of successive non-overlapping time-windows
{[t1, 1+ At], [t2, b+ AL, [t3, t3+ At3], . . ., [ty tar + Atar]} then we obtain a time-
varying graph, which is the simplest graph representation of a set of contacts that
takes into account their duration and their temporal ordering [19,43]. A time-varying
graph is an ordered sequence of M graphs {G, G, ..., G} defined over N nodes,
where each graph G,, in the sequence represents the state of the network, i.e., the
configuration of links, in the time-window [t,,, t,, + At,], m = 1,..., M.In this
notation, the quantity ¢y, + Aty —1, is the temporal length of the observation period.
In general the graphs in the sequence can correspond to any ordered sequence of
times such that#; <t + Aty = th <th + Atp =13 < ... <ty + Aty [12]. In
the following we assume, without loss of generality, that #; = 0 and )y = T and,
at the same time, that the sequence of snapshots is uniformly distributed over time,
i, tyt1 = tmw + At, Vm = 1,..., M — 1 [43]. In compact notation, we denote
the graph sequence forming a time-varying graph as ¢ = %o r]. Each graph in the
sequence can be either undirected or directed, according to the kind of relationship
represented by contacts. Consequently, the time-varying graph ¢ is fully described
by means of a time-dependent adjacency matrix A(t,), m = 1,..., M, where
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Fig. 3 Two time-varying graphs corresponding to the set of contacts in Fig. 1. Panel (a) the four
snapshot obtained setting A = 60 min; Panel (b) the eight snapshots of the time-varying graph
constructed using Ar = 30 min. The smaller the size of the time-window, the higher the probability
that a snapshot contains no edges (this happens for the snapshot ¢7 in panel (b))

a;j(t,) are the entries of the adjacency matrix of the graph at time #,,, which is in
general a non-symmetric matrix.

Notice that, by tuning the size of the time-window used to construct each
snapshot, it is possible to obtain different representations of the system at different
temporal scales. In Fig.3 we present two time-varying graphs obtained from the
same set of contacts in Fig. 1 but using two different lengths for the time-window.
The graph on the top panel is constructed by setting Ar = 60 min, and consists of
four snapshots, while the graph on the bottom panel corresponds to a time-window
of At = 30min and has eight snapshots. It is usually preferable to set the size
of the time-window to the maximum temporal resolution available. For instance, if
the duration of contacts is measured with an accuracy of 1s (such as in the case
of email communications or phone calls), it makes sense to construct time-varying
graphs using a time-window At = 1s.

In the limit case when Ar — 0, we obtain an infinite sequence of graphs, where
each graph corresponds to the configuration of contacts at a given instant . This
sequence of graphs might include a certain number of empty graphs, corresponding
to periods in which no contacts are registered. On the contrary, if we set At = T,
the time-varying graph degenerates into the corresponding unweighted aggregated
graph, where all the temporal information is lost.

3 Reachability, Connectedness and Components

In a static graph the first neighbours of anode i are the nodes to which i is connected
by an edge, i.e., nodes j such that a; = 1. We say that the neighbours of i are
directly reachable from i. If k is a neighbour of j and j is in turn a neighbour
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of i, then the node k is indirectly reachable from i, i.e., by following first the edge
connecting i to j and then the one which connects j to k. In general, the direct and
indirect reachability of nodes is important to characterise the global structure of a
network and to investigate the dynamics of processes occurring over it. For instance,
if node i has got a contagious disease, then there is a high probability that the disease
will sooner or later be transmitted to the nodes that are directly reachable from 7 (its
first neighbours). However, if a disease starts from a node i, also the nodes which
are not directly connected to 7 but are still indirectly reachable from i have a finite
probability to get the disease through a chain of transmissions.

The reachability between nodes is related to the concept of walk. In a static graph
a walk is defined as an ordered sequence of £ edges {a;, i, ai, i, - - - - @is_, iy} SUCh
that a;, ., = 1,k = 0,1,...,£ — 1. The length of a walk is equal to the number
of edges traversed by the walk. We say that the node j is reachable from i if there
exists a walk which starts at i and ends up at j. If each vertex in a walk is traversed
exactly once, then the walk is called a simple walk or a path. For instance, in the
graph shown in Fig.2 the sequence of nodes [2,4,5,2,1,4] is a walk of length 5
which starts at node 2 and ends at node 4, while the sequence [3, 2, 5] is a path of
length 2 going from node 3 to node 5 passing by node 2. In a static graph the length
of the shortest path connecting two nodes is called geodesic distance.

Since the definitions of walk and path depend on the adjacency of nodes,
and given that node adjacency is a function of time in time-varying graphs,
an appropriate extension of these concepts is necessary in order to define node
reachability and components in time-varying graphs.

3.1 Time-Respecting Walks and Paths

In a time-varying graph, a femporal walk from node i to node j is defined as a
sequence of L edges [(n,,, 1y,), (Ny s 1ry), .oy My 0y, Withnyy =i, 0, = j,
and an increasing sequence of times #,, < t,, < ... < t,, such that An,, ., t,) #0
I =1,...,L[12,43]. A path (also called temporal path) of a time-varying graph is
a walk for which each node is visited at most once. For instance, in the time-varying
graph of Fig.3a, the sequence of edges [(5,2), (2, 1)] together with the sequence
of times 71, #3 is a temporal path of the graph. This path starts at node 5 at time
t; and arrives at node 1 at time #3. Notice that the aggregated static graph flattens
down most of the information about temporal reachability. In fact, if we look at the
static aggregated graph corresponding to this time-varying graph (shown in Fig. 2a),
there are different paths going from node 1 to node 5 and vice versa; however, if we
look at the time-varying graphs of Fig.3 we notice that in both of them there is
no temporal path connecting node 1 to node 5. The reason is that node 5 could be
reached from node 1 only by passing through either node 2 or node 4, but node 1
actually is connected to both these nodes after they have been in contact to node 5.
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3.2 Temporal Connectedness and Node Components

The concept of connectedness is fundamental in complex network theory. A mes-
sage, a piece of information or a disease can be transferred from one node to all
the other nodes to which it is connected, but will never be conveyed to nodes that
are disconnected from it. For this reason, the study of node connectedness and node
components is the very basic tool to investigate the structure of a graph.

In a static undirected graph two nodes are said to be connected if there exists a
path between them. In this particular case connectedness is an equivalence relation:
itis reflexive (i.e., i is connected to itself), symmetric (i.e., if i is connected to j then
j is connected to i) and transitive (i.e., if i is connected to j and j is connected to &,
then 7 is also connected to k). Instead, in a directed graph, due to the directionality
of the edges, symmetry is broken and the existence of a path from i to j does not
guarantee that a path from j to i does indeed exist. For this reason, the notions of
strong and weak connectedness are introduced. In a word, two nodes i and j of a
static directed graph are said to be strongly connected if there exist a path from i
to j and a path from j to i, while they are weakly connected if there exists a path
connecting them in the underlying undirected graph, i.e., in the static graph obtained
from the original by discarding edge directions.

Starting from the definitions of temporal walk and path, it is possible to define
temporal connectedness (in a weak and in a strong sense) for pairs of nodes
in a time-varying graph. A node i of a time-varying graph %o 7| is temporally
connected to anode j if there exists a temporal path going from i to j in [0, T']. Due
to the temporal ordering of edges, this relation is trivially not symmetric, so that if
i is temporally connected to j, in general j can be either temporally connected or
disconnected to i. Two nodes i and j of a time-varying graph are strongly connected
if 7 is temporally connected to j and also j is temporally connected to i.

Temporal strong connectedness is a reflexive and symmetric relation, so that if
i is strongly connected to j, then j is strongly connected to i. However, strong
connectedness still lacks transitivity, and, therefore, it is not an equivalence relation.
In fact, if i and j are strongly connected and j and [ are strongly connected, nothing
can be said, in general, about the connectedness of i and /. For instance, in the time-
varying graph shown in Fig. 3a, nodes 5 and 2 are strongly connected and also 2 and
1 are strongly connected, but nodes 5 and 1 are not strongly connected because, as
we have already explained above, there exists no temporal path that connects node 1
to node 5.

Similarly to the case of static directed graphs, it is possible to define weak con-
nectedness among nodes. Given a time-varying graph ¢, we consider the underlying
undirected time-varying graph ¢“, which is obtained from ¢ by discarding the
directionality of the links of all the graphs {G,,}, while retaining their time ordering.
Two nodes i and j of a time-varying graph are weakly connected if i is temporally
connected to j and also j is temporally connected to i in the underlying undirected
time-varying graph ¢*. Also weak connectedness is a reflexive and symmetric
relation, but not transitive.
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It is worth noting that strong and weak connectedness propagate over different
time scales. In fact, if we consider two time-varying graphs obtained from the same
set of contacts by using two different time-windows, such as for instance Az, for
the graph ¢ and A1, > At for 4, (as in the two time-varying graphs of Fig. 3),
then it is easy to prove that if i and j are strongly connected in &) then they are
also strongly connected in %,. The contrary is trivially not true. Thanks to this
property, strong and weak connectedness in time-varying graphs are consistent with
the corresponding definitions given for static graphs. In fact, as a limiting case,
if two nodes are strongly (weakly) connected in a time-varying graph, then they
are also strongly (weakly) connected in the corresponding aggregated static graph,
which is the degenerate time-varying graph obtained by setting At = T'.

By using reachability, strong and weak connectedness, different definitions of
node components can be derived. For instance, the femporal out-component of
node i (resp. in-component), denoted as OUT7 (i) (resp. IN7(i)), is the set of ver-
tices which can be reached from i (resp. from which i can be reached) in the
time-varying graph ¢. Similarly the temporal strongly connected component of a
node i (resp. weakly connected component), denoted as SCCr (i) (resp. WCCr (7)),
is the set of vertices from which vertex i can be reached, and which can be reached
from i, in the time-varying graph ¢ (resp. in the underlying undirected time-varying
graph &").

In general, temporal node components have quite heterogeneous composition and
sizes, and reveal interesting details about the structure of the graph. For instance, the
out-component of node 3 in the two graphs of Fig. 3 contains only nodes 1, 2, 4 and
node 3 itself, since there is no way for node 3 to reach node 5. Conversely, in the
corresponding aggregated graphs (as shown in Fig. 2) the out-components of all the
nodes are identical and contain all the nodes of the graph.

The importance of temporal node components has been pointed out in [36],
which reports the results of temporal component analysis on time-varying graphs
obtained from three different data sets. The authors compared the size of node
temporal in- and out-components in these time-varying graphs with the size of the
giant component of the corresponding aggregated graphs, and they found that in
general temporal node components are much smaller than the giant component of
the aggregated graph, and exhibit a high variability in time. This is another example
of the fact that time-varying graphs are able to provide additional information that
is not captured by aggregated graphs.

3.3 Graph Components and Affine Graphs

Differently from the case of directed static graphs, it is not possible to define the
strongly (weakly) connected components of a time-varying graph starting from the
definition of connectedness for pairs of nodes. Formally, this is due to the fact that
strong and weak connectedness are not equivalence relations. For this reason, the
following definition of strongly connected component of a time-varying graph has
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Fig. 4 Affine graph
associated to the time-varying @

graph of Fig. 3a. Pairs of
strongly connected nodes are @ @
linked by an edge, and the
cliques of the affine graph

correspond to the strongly
connected components of the @
associated time-varying graph

been proposed [36]: a set of nodes of a time-varying graph ¢ is a temporal strongly
connected component of ¢ if each node of the set is strongly connected to all the
other nodes in the set. A similar definition exists for weakly connected components.
These definitions enforce transitivity but have the drawback that in order to find the
strongly connected components of a time-varying graph, it is necessary to check the
connectedness between all pairs of nodes in the graph. In [36] it has been shown
that the problem of finding the strongly connected components of a time-varying
graph is equivalent to the well-known problem of finding the maximal-cliques of
an opportunely constructed static graph. We define such graph as the affine graph
corresponding to the time-varying graph. The affine graph Gg is defined as the
graph having the same nodes as the time-varying graph ¢, and such that two nodes
i and j are linked in Gy if i and j are strongly connected in ¢. In Fig. 4 we report
the affine graph corresponding to the time varying graph shown in Fig. 3a. In this
graph, node 1 is directly connected to nodes {2, 3, 4}, since it is temporally strongly
connected to them in the time-varying graph. Similarly, node 2 is connected to nodes
{1, 3,4, 5},node 3 is connected to {1, 2}, node 4 is connected to {1, 2, 5} and node 5
is connected to {2, 4}. Hence, the affine graph G« has only 7 of the 10 possible links,
each link representing strong connectedness between two nodes. By construction, a
clique of the affine graph Gg contains only nodes which are strongly connected to
each other, so that the maximal-cliques of the affine graph, i.e., all the cliques which
are not contained in any other clique, are temporal strongly connected components
(SCCr) of ¢. Similarly, all the maximum-cliques of the affine graph G, i.e., its
largest maximal-cliques, are the largest temporal strongly connected components
(LSCCr) of ¢4.

We notice that the problem of finding a partition of ¢ that contains the minimum
number of disjoint strongly connected components is equivalent to the well-known
problem of finding a partition of the corresponding affine graph G in the smallest
number of disjoint maximal-cliques [15]. Unfortunately, this problem is known to
be NP-complete, and in practice can be exactly solved only for small graphs. In the
case of the affine graph reported in Fig. 4, it is possible to check by hand that there
are only three possible partitions of G into maximal-cliques, namely

1. {1,2,3} U4, 5}
2.41,2, 43 U3y ULS)
3. {2,4,5} U{1. 3}
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The second partition contains two isolated nodes, which are indeed degenerated
maximal-cliques. Therefore, the original time-varying graph admits only two
different partitions into a minimal number of non-degenerated strongly connected
components, namely into two components containing at least two nodes each. This
is a quite different picture from that we obtain using static aggregated graphs. In
fact, all the static aggregated representations of the same time-varying graph (see
Fig.2) are composed by just one strongly connected component which includes all
the nodes.

We notice that in general the largest temporal strongly connected components
of a time-varying graph can be much smaller than the giant connected component
of the corresponding aggregated graph. For instance, in [36] the authors performed
temporal component analysis on time-varying graphs constructed from three dif-
ferent time-stamped data sets (i.e. the MIT Reality Mining project, co-location
at INFOCOM 2006 and Facebook communication), and they found that despite
the giant connected component of the corresponding aggregated graphs usually
included almost all the nodes in the network, the maximal cliques of the affine
graphs were indeed much smaller. Particularly interesting was the case of the
Facebook communication data set: the giant connected components of the aggre-
gated graphs contained from 10* to 10° nodes, while the largest temporal strongly
connected components counted around 100 nodes at most. Disregarding such
discrepancies could result in misleading conclusions. For example, the potential
number of individuals infected by a disease which spreads through the system is in
the order of tens if we correctly take into account temporal correlations, but could
be erroneously estimated to be thousand times larger if one considers the aggregated
graph.

4 Distance, Efficiency and Temporal Clustering

One of the most relevant properties of static complex networks is that they exhibit,
on average, a surprising small geodesic distance between any pairs of nodes, where
the geodesic distance between i and j is defined as the length of the shortest path
connecting them. The average geodesic distance is important to characterise how
fast (for example, in terms of number of hops), a message can be transmitted from
a node to another in the network; therefore, it is related to the overall efficiency of
communication among nodes. Having a small average geodesic distance (where the
average is computed over all the pairs of connected nodes) is a desirable property
when one wants to spread a message throughout the network; conversely, small
geodesic distance becomes a problem if we want to control the propagation of a
disease.
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4.1 Temporal Distance and Efficiency

When we consider time-varying graphs, the temporal dimension is an essential
element of the system, so that the concept of geodesic distance cannot be limited
to the number of hops separating two nodes but should also take into account the
temporal ordering of links. As a matter of fact, any path in a time-varying graph
is characterised by two different lengths: (a) a topological length, measured as
the number of edges traversed by the path, and a (b) temporal length or duration,
measured as the time interval between the first and the last contact in the path.

Both the topological and the temporal lengths of a path usually depend on the
time at which the path starts. Consider for instance two of the paths connecting
node 5 to node 3 in Fig. 3a. The first path starts from 5 at snapshot #; which traverses
the edge (5, 2) at (¢1) and arrives at node 3 following the edge (2, 3) at time (¢). The
second one starts from 5 at time #, and arrives at node 3 at time ?4, after traversing
the edges (5,4) at tp, (4,1) and (1,2) at t3 and finally (2, 3) at #4. The first path
has a topological length equal to 2 and a temporal length of two snapshots (e.g.,
2 h), while the second path has a topological length equal to 4 and a temporal length
equal to three snapshots (e.g., 3h).

The temporal shortest path from node i to node j is defined as the temporal
path connecting i to j which has minimum temporal length. Similarly, the remporal
distance d; ; between i and j is the temporal length of the temporal shortest path
from i to j. In the example discussed above, the temporal shortest path connecting
node 5 to node 3 is the one starting at #; and having temporal length equal to two
snapshots.

The natural extension of the average geodesic distance to the case of time-varying
graphs is the characteristic temporal path length [42,43], which is defined as the
average temporal distance over all pairs of nodes in the graph:

1

It is also possible to define the temporal diameter of a graph as the largest
temporal distance between any pair of nodes:

D = max;d; %)

However, in real time-varying graphs it is quite common to have many pairs of
temporally disconnected nodes. The problem is that if a node j is not temporally
reachable from 7, then dj; = 0o, and the characteristic temporal path length diverges.
In order to avoid such divergence, the temporal global efficiency [42,43] of a time-
varying graph has been defined as follows:

1 1
SR D 24, ©
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The temporal global efficiency is the straightforward generalisation of the global
efficiency already defined for static graphs [22], and has been successfully employed
to study and quantify the robustness of temporal graphs (see for instance [38] and
[44] in this book).

4.2 Edge Persistence and Clustering

The characteristic temporal path length and the temporal efficiency provide a
quantitative representation of the global structure of a graph in terms of the average
temporal distance among any pair of nodes. However, in time-varying systems
contacts are usually bursty, meaning that the distribution of the time between two
contacts has a heavy tail, and persistent, i.e., if two nodes are connected at a time 7,
there is a non-negligible probability that they will still be connected at time ¢ + At.
This characteristic can be quantified in the following way. If we consider a node i
and two adjacent snapshots of a time-varying graph, respectively starting at time 7,
and t,,4+1 = t,, + At, we can define the topological overlap of the neighbourhood
of i in [t,;, ty+1] as:

Z; aij(tm)aij(tm+1)
\/ %) @it | [ X aittnsn) |

and the average topological overlap of the neighbourhood of node i as the
average of C;(t,,, ty+1) over all possible subsequent temporal snapshot, i.e.:

Ci (tma tm+1) =
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The average topological overlap of a node i is a natural extension of the concept
of local clustering coefficient which includes temporal information. In fact, while
in a static graph the local clustering coefficient of a node measures the probability
that its neighbours are in turn connected by an edge, the average topological overlap
estimates the probability that an edge from i to one of its neighbours j persists
across two consecutive time-windows. In a word, it is a measure of the temporal
clustering of edges, i.e., of their tendency to persist across multiple windows. The
average of C; computed over all the nodes in the network, namely the quantity:

1
C:NZC,- )

is called temporal-correlation coefficient [43], and is a measure of the overall
average probability for an edge to persist across two consecutive snapshots. Notice
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Table 1 Temporal-correlation, characteristic temporal path length and efficiency for brain func-
tional networks (in four different frequency bands) [9], for the social interaction networks of
INFOCOM’06 (time periods between 1p.m. and 2:30 p.m., four different days) [39], and for
messages over Facebook online social network (4 different months of year 2007) [48]

C Cmnd L Lrand E Emnd
o 0.44 0.18 (0.03) 3.9 4.2 0.50 0.48
B 0.40 0.17 (0.002) 6.0 3.6 0.41 0.45
y 0.48 0.13 (0.003) 12.2 8.7 0.39 0.37
] 0.44 0.17 (0.003) 2.2 2.4 0.57 0.56
dl 0.80 0.44 (0.01) 8.84 6.00 0.192 0.209
d2 0.78 0.35(0.01) 5.04 4.01 0.293 0.298
d3 0.81 0.38 (0.01) 9.06 6.76 0.134 0.141
d4 0.83 0.39 (0.01) 21.42 15.55 0.019 0.028
Mar 0.044 0.007 (0.0002) 456 451 0.000183 0.000210
Jun 0.046 0.006 (0.0002) 380 361 0.000047 0.000057
Sep 0.046 0.006 (0.0002) 414 415 0.000058 0.000074
Dec 0.049 0.006 (0.0002) 403 395 0.000047 0.000059

Results are compared with the averages measured over 1,000 time-varying graphs obtained by
reshuffling the sequences of snapshots. The values in parenthesis next to C,,,4 are the respective
standard deviations. The values of L and L’ are computed considering only the connected pairs
of nodes. Table adapted from [43]

that C = 1 if and only if all the snapshots of the time-varying graphs have exactly
the same configuration of edges, while it is equal to zero if none of the edges is ever
observed in two subsequent snapshots.

In [43] the authors considered time-varying graphs constructed from three data
sets, namely functional brain networks [9], the co-location at INFOCOM 2006 [39]
and personal messages exchanged among Facebook users [48]. They compared
the characteristic temporal path length and the temporal correlation coefficient of
these temporal graphs with those obtained from the same data sets by reshuffling
the sequence of snapshots. Notice that by reshuffling the snapshots one destroys
all the existing temporal correlations while retaining the average connectivity
of each node and the configuration of edges in the corresponding aggregated
graph. They showed that the original time-varying graphs usually exhibit both
a relatively smaller characteristic temporal path length and a relatively higher
temporal correlation coefficient, when compared with those measured on reshuffled
sequences of snapshots. This finding is the temporal analogous to the small-world
effect observed in static complex networks, and has consequently been named small-
world behaviour in time-varying graphs. Table 1 reports the results obtained for the
three different data sets.
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5 Betweenness, Closeness and Spectral Centrality

The structural properties of a complex network usually reveal important information
about its dynamics and function. This is particularly true if we take into account the
relationship between the position occupied by a node in a static graph and the role
played by the node for the evolution of a dynamic process. For instance, not all
nodes have the same impact on the transmission of a disease (or the spreading of a
rumour) over a network: intuitively, the nodes having a higher number of neighbours
should contribute much more to the spreading than nodes having few connections.
However, if we perform a deeper analysis, we observe that not just the number of
edges is important to identify good spreaders, since also the actual organisation of
these edges has an impact on the speed of the spreading process. In fact, nodes
mediating a large number of shortest paths are indeed those that contribute the most
to the transmission of diseases and information over a network. The identification
of nodes that play a central role, i.e., nodes having high centrality, has been a quite
active research field in complex network theory. Here we review some standard
centrality measures and their extension to the case of time-varying graphs.

5.1 Betweenness and Closeness Centrality

Two basic centrality measures based on shortest paths are betweenness centrality
and closeness centrality. The betweenness centrality of a node i in a static graph is

defined as follows: )
O (1
CiB — LA (10)
>y

where o is the number of shortest paths from node j to node k, while oy (i) is
the number of such shortest paths that pass through the node i. The higher the
number of shortest paths passing through i, the higher the value of C/2. Betweenness
centrality can be also defined for single edges, by counting the fraction of shortest
paths between any pair of nodes to which a given edge participate.

A simple way to extend betweenness centrality to time-varying graphs consists
in counting the fraction of temporal shortest paths that traverse a given node. The
formula would be exactly the same as (10), with the only difference that oy and
ojk (i) will be, respectively, the total number of temporal shortest paths between j
and k and the number of those paths which make use of node i.

Sometimes it can be important to take into account not only the number of
temporal shortest paths which pass through a node, but also the length of time
for which a node along the shortest path retains a message before forwarding it
to the next node [41]. For example, let us consider the simple case of nodes i and
J being connected by just one shortest path which consists of the two edges (i, k);,
and (k, j),,. This means that the edge connecting i to k appears at time #,, while
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the edge connecting k to j appears at time t,. Since the path through k is the
only way for i to temporally reach j, then we would say that k plays an important
mediatory role and is “central” for communication between i and j. Nevertheless,
the vulnerability of node k heavily depends on the interval [, 2,,]: the longer this
temporal interval, the higher the probability that a message forwarded to k is lost if
k is removed from the network. In order to take into account the effect of waiting
times, the temporal betweenness centrality [41] of the node i at time ¢, is defined as:

1 UG, tm, j k)
CEt) =~ — (11
N-DN-2) ;; o
ki

where oy is the number of temporal shortest path from j to k, and U(i, 1,5, j, k) is
the number of temporal shortest paths from i to j in which node i is traversed from
the path in the snapshot #,, or in a previous snapshot ' < t,,, so that the next edge
of the same path will be available at a later snapshot ¢” > t,,. The average temporal
betweenness of node i is defined as the average of C2(1,,) over all the snapshots:

cf = % > CE(tw) (12)

The closeness centrality of a node i is a measure of how close i is to any other
node in the network. It can be measured as the inverse of the average distance from
i to any other node in the network:

N —1
cf=___
l Zjdij

where d; is the distance between i and j in a static graph. The temporal closeness
centrality is defined in an analogous way, the only difference being that for time-
varying graphs dj; denotes the length of the temporal shortest path from i to j.

As shown in [41] and elsewhere in this book [44], temporal closeness and
betweenness centrality have proven useful to identify key spreaders and temporal
mediators in corporate communication networks. In particular, it was found that
traders indeed played an important mediatory role in time-varying graphs con-
structed from the ENRON email communication data set, being consistently ranked
among the first ones both for temporal betweenness and for temporal closeness
centrality. This result is qualitatively and substantially different from the one
obtained by computing betweenness and closeness centrality in the corresponding
aggregated graph, where the most central nodes are the people who interacted with
the most number of other people, i.e., a secretary and a managing director. This
apparently unimportant discrepancy between the centrality rankings actually turns
out to be fundamental for the spreading of information (or diseases) throughout the
system. In fact, simulation reported in [41] confirmed that when a spreading process

13)
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is initiated at the nodes having the highest temporal closeness centrality the number
of other nodes reached by the spreading was higher and the time needed to reach
them was smaller than in the case in which the spreading starts at nodes having
higher static closeness centrality.

5.2 Spectral Centrality and Communicability

The total number of shortest paths passing through a node is not always the best way
of measuring its centrality, especially because the shortest paths are not always the
most relevant for a process. For instance, a disease could propagate through any path
(not just through the shortest ones), and the rumours usually follow walks which
are much longer (and somehow less efficient) than shortest paths. Consequently,
other definitions of centrality exist which take into account walks instead of shortest
paths. The classic example for static graphs is represented by the so called Katz
centrality [28]. The basic idea is that the propensity for node i to communicate with
node j can be quantified by counting how many walks of length £ = 1,2, 3, ... lead
from i to j. The importance of a walk of length £ = 1 (i.e., the direct edge (i, j)) is
higher than that of a walk of length £ = 2, which in turn is higher than that of a walk
of length £ = 3 and so forth. For this reason, it makes sense to appropriately rescale
the contribution of longer walks. The original proposal consisted into scaling walks
of length £ by a factor a‘, where « is an appropriately chosen real value. We notice
that the element afj[ ! of the £'* power of the adjacency matrix corresponds to the
number of existing walks of length £ between i and j. Consequently, the entry s;; of
the matrix sum S = I + a4 + a*A> + ... measures the propensity of i to interact
with j (notice that I is the N x N identity matrix). It is possible to prove that the
sum S converges to (I —aA)~! if @ < p(A), where p(A) is the spectral radius of
the adjacency matrix. In this case, the Katz centrality of node i is measured as the

sum of the i'" row of S

k=Y [U—aa)™], (14)

J

Katz centrality can be extended to the case of time-varying graphs by using a
similar reasoning [12]. We notice that each entry of the product of the adjacency
matrices corresponding to an increasing sequence of £ snapshots [t,,, ..., ]
represents the number of temporal walks in which the first edge belongs to the
snapshot ¢, , the second edge to ¢, and so on. So, in order to count all the possible
temporal walks of any length we should sum over all possible products of the form:

akA(trl)A(trz) o 'A(trk)v trl <t == trk (15)
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for any value of the length k. It is possible to prove that if « < min,, p(A(t,)) then
the sum of all these products can be expressed as:

0 =[—ad(t)] ' [I —ad()] ™" - [I —ad(t,)]™ (16)

The matrix Q is called communicability matrix. Starting from this matrix one can
define the broadcast centrality:

CiBroad — Z sz (17)
J

which quantifies how well node i can reach all the other nodes in the time-varying
graph, and the receive communicability:

cler = Z ;i (18)
J

which is an estimation of how well node i can be reached from any other node in
the network. In [12] it has been found that broadcast and receive communicability
can be useful to spot the most influential spreaders in different time-evolving
communication networks.

6 Meso-scale Structures

Real static networks differ from random graphs in many ways. In fact, together
with heterogeneous distributions of node properties (e.g. degree and centrality)
and with specific global characteristics (e.g. high average clustering and small
average path length), complex networks show a non-trivial organisation of subsets
of their nodes and exhibit a variety of meso-scale structures, including motifs and
communities. The characterisation of the abundance of specific motifs has helped
to explain why biological and technological networks are relatively resilient to
failures [24, 25], while the analysis of communities has revealed that there exists
a tight relationship between structure of a network and its functioning [10]. In the
following we discuss how motifs analysis can be performed also in time-varying
graphs and we present the extension of the modularity (a function for measuring the
quality of a partition in communities, defined for static graphs by Newman in [34])
to temporal communities.

6.1 Temporal Motifs

In static graphs a motif is defined as a class of isomorphic subgraphs. We recall
that two graphs G’ and G”, having adjacency matrices A’ and A”, are isomorphic
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if there exists a permutation of the labels of the nodes of A’ such that, after the
permutation, A” = A”. A permutation is represented by a matrix P that has the
effect of swapping the rows and columns of the matrix to which it is applied. If A’
and A” are isomorphic, then there exists a permutation matrix P such that:

P'AP=4" (19)

If two graphs are isomorphic then they are topologically equivalent, i.e., the
arrangement of the edges in the two graphs is exactly the same, up to an appropriate
relabelling of the nodes. Consequently, a motif can be thought as the typical
representative of a class of subgraphs sharing the same arrangement of edges. It
has been shown that in real networks, especially in biological ones, motifs are
not uniformly distributed and some motifs are over-represented while others are
rare [24,25].

As for all the metrics described so far, the extension of motifs to time-varying
graphs has to take into account time in a meaningful way. In a recent paper
Kovanen et al. [20] propose an extension of motifs to time-varying graphs, based
on the definition of At-adjacency and At-connectedness of contacts.! For practical
reasons, the authors made the simplifying assumption that each node can be involved
in no more than one contact at a time. This assumption is in general too restrictive,
but it could be valid in some cases, e.g. when the contacts represent phone calls or
when the duration §¢ of a contact is so small that the probability for a node to have
two simultaneous contacts is negligible.

We say that two contacts ¢, = (i, ], t,,6t,) and ¢, = (k,¥,1,,01y) are
Art-adjacent if they have at least one node in common and the time difference
between the end of the first contact and the beginning of the second one is no longer
than Azr. We assume, without loss of generality, that ¢, < ¢;, so that ¢, and ¢,
are At-adjacentif 0 < ¢, —t, — 81, < At. We say that an ordered pair of contacts
(ca, cp) is feasible if t, < tp. Notice that At-adjacency is defined only for the subset
of feasible pairs of contacts. Two contacts ¢, and ¢, are Ar-connected if there exists
a sequence of m contacts S = {¢, = Cny, Cn,>Cnys - - - » Cn,, = Cp} such that each pair
of consecutive contacts in S is feasible and Ar-adjacent. From Ar-connectedness,
we derive the definition of connected temporal subgraph, which is a set of contacts
such that all feasible pairs of contacts in the set are At-connected.

For the definition of temporal motifs, we restrict ourselves to the subset of valid
temporal subgraphs. A temporal subgraph is considered valid if all the At-adjacent
contacts of the nodes in the subgraph are consecutive. This means that if a node
J appears in the pair of Ar-adjacent contacts ¢, = (i, j,,,0t,) and ¢, =
(J,k,tp,68tp) of the subgraph, then does not exist any contact ¢, = (J, k, ty, 8ty)

'In order to avoid confusion with the size At of the time-window used to define the temporal
snapshot of a time-varying graph, here we preferred to use Az instead of the original A¢ proposed
by the authors of [20]. Also, notice that the authors use to call events what we have called here
contacts.
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Fig. 5 Connected temporal subgraphs and motifs. The subgraph in panel (a) is not a valid temporal
subgraph, because node 2 is involved in another contact after the contact with node 4 at time #, and
before the contact with node 3 at time #,. Conversely, the subgraph in panel (b) is valid. Panel (c)
shows the motif associated to the valid subgraph in panel (b)

such that 7, < t, < 1. In Fig.5 we report two temporal subgraphs of three
nodes obtained from the set of contacts in Fig. 1 considering At = 30min. The
subgraph of Panel (a) corresponds to the sequence of contacts S; = {¢; =
(2,4,0,40),¢c3 = (2,3,70,20)}, and is not valid because node 2 is involved in
another contact, namely ¢, = (2, 5, 50, 10) after ¢; and before c3. Conversely, the
connected temporal subgraph reported in Panel (b) and corresponding to the pair of
contacts S, = {c4 = (4,5,60,50),c6 = (1,4,140,35)}, is valid, since node 4 is
not involved in any contact between ¢4 and cg.

A temporal motif is a class of isomorphic valid temporal subgraphs, where two
temporal subgraphs are considered isomorphic if they are topologically similar (i.e.,
the organisation of the links in the subgraph is equivalent up to an appropriate
relabelling of the nodes) and represent the same temporal pattern, i.e., the order
of the sequence of contacts is the same. The typical element of the temporal motif
corresponding to the graph reported in Fig. 5b is shown in Fig. 5c, where the labels
on the edges of the graph correspond to the ordering of contacts. In [20] the authors
report also an algorithm to discover temporal motifs, and discuss the problems
connected with the estimation of the significance of motifs.

6.2 Temporal Communities and Modularity

The identification of communities, i.e., groups of tightly connected nodes, has
allowed to reveal the richness of static graphs and has helped to understand their
organisation and function. The simplest way to partition a graph is by dividing it into
a set of .# non-overlapping groups, so that each node of the graph is assigned to one
of the .# communities. The quality of a non-overlapping partition in communities
can be measured by the modularity function. This function, originally proposed by
Newman in [34], estimates the difference between the fraction of edges among
nodes belonging to the same community and the expected fraction of such edges
in a null-model graph with no communities. More formally, it is defined as follows:

1
0= ;(aly — Pys(circ)) (20)
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where a;; are the elements of the adjacency matrix, P is the expected number of
edges between i and j in the null-model graph, ¢; is the community to which node
i belongs, §(ci,c;) = 1 if and only if node i and node j belong to the same
community and K is the total number of edges in the graph. The simplest null-
model is represented by a configuration model graph, where all the nodes of the
graph have the same degree as in the real graph but edges are placed at random. In
this case the modularity function reads:

1 kik;
0= % ] (a,-j — Z—K’) 8(ci,cp) (1)

where k; is the degree of node i. Different extensions of the modularity function
have been proposed for directed graphs, weighted graphs and graphs with overlap-
ping communities [3,23,32,35].

The extension of modularity for time-varying graphs is based on an interesting
result valid for the modularity of static graphs and presented in [21], which connects
the modularity function with the dynamics of a random walk over the graph. The
authors of [21] show that the modularity function can be considered a particular case
of a class of functions that measure the dynamical stability of a partition &2, where
the stability of &2 at time ¢ is defined as:

R(t)= Y P(%.1)— P(%.00) (22)
CeP

Supposing that the random walk has reached the stationary state,” then P (%, t) is
the probability that a random walker which starts from a node in the community ¢
is found in a node of ¢ after time ¢. Similarly, P(%, o0) is the probability that a
random walker that started from a node in %’ is found in % after an infinite number
of steps; when the walk has reached the stationary state, this corresponds to the
probability that two independent random walks are found in % at the same time.
It is possible to show that if we consider a discrete-time random walk, in which a
walker jumps from a node to another at equally-spaced time-steps of length At,
then the stability of a partition at one step R(t = Ar) is identical to the modularity
function.

In [27] Mucha et al. propose an extension of modularity to multi-slice graphs
which exploits the connection between the modularity function and the stability
of a random walk on the multi-slice graph. Indeed, a time-varying graph can be
considered a multi-slice graph if we connect each node of a snapshot with the other
instances of itself in neighbouring snapshots by means of multi-slice edges. For
brevity, we give here the definition of the modularity function for multi-slice graphs,

21t is possible to prove that a random walk on a graph always converges towards a stationary state,
independently of the initial condition, if the adjacency matrix of the graph is primitive, which is
the case for the vast majority of real graphs.
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which corresponds to the stability at one step of a random walk on the multi-slice
graph, but we omit the derivation of the formula.’ The modularity for multi-slice
graphs reads:

Qmulti = i Z I:(GU(S) — Vs ]ﬂ(;)—n]zim) Ssr + str£iji| S(giss gjr) (23)
ijsr

The indices i and j are used for nodes while the indices r and s indicate different
slices. Here a;;(s) are the elements of the adjacency matrix of slice s, k;(s)
represents the degree of node i in slice s (i.e., the number of neighbours to with
i is connected in that slice) and m; = %Zl ki (s) is the total number of edges
in the slice s. The term Cj,, is the weight of the link that connects node ;j in
slice s to itself in slice r, and y;, is a resolution parameter. The terms §;; and &,
indicate the Kronecker function and §(g, g-) is equal to 1 only if node i in slice
s and node j in slice r belong to the same community. The definition looks a bit
complicated but it is essentially composed of two parts. The term in parentheses
represents the standard modularity for the graph at slice s (the only difference being
the resolution parameter yy), while the term Cj,,- accounts for inter-slice connections.
Once we have defined modularity for multi-slice networks, the search for the best
partition can be performed by using one of the standard methods for modularity
optimisation [10].

This definition of modularity is quite general, works well for any kind of multi-
slice network, and is also applicable to assess the quality of a partition of a
time-varying graph, which can be considered a multi-slice network. However, when
using (23) one should take into account that in order to derive it as the stability
of a random walk on the graph, the edges connecting different slices have to be
undirected.* Consequently, this definition of modularity in invariant under inversion
of the sequence of slices which, in the particular case of time-varying graphs,
implies invariance under time inversion. This means that (23) gives the same result
on the time-varying graph %o 7 and on the graph %7, in which the sequence of
time-windows is given in the opposite order.

In general, invariance under time inversion is not a desirable property for a
metric used to characterise the structure of time-varying graphs, because most of the
interesting characteristics of time-evolving systems, including temporal correlation
of links and reachability, are due to the asymmetry introduced by the arrow of
time. Time-invariance disregards this asymmetry completely, washing out most of
the richness of time-varying systems. Consequently, we believe that the definition
of appropriate metrics for the evaluation of community structures in time-varying
graphs is still an open field of investigation.

3The interested reader can find the derivation of (23) in [27] and in the Supplemental Information
of the same paper.

“4This is required to ensure the existence of a stationary state for the Laplacian dynamics on the
graph.
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7 Final Remarks

The description of temporal networks in terms of time-varying graphs and the
analysis of their structural properties is still in its infancy but has already produced
many encouraging results, showing that complex networks theory is a quite flexible
and promising framework for the characterisation of different real systems. There
are still some open problems to be tackled, such as the definition of appropriate
methods to detect temporal communities and the construction of analytical methods
to assess how the structure of a time-varying graph can affect the dynamics of
processes occurring over it, including spreading, synchronisation and evolutionary
games. However, even if the community has not yet converged towards a unified
notation and a fully consistent set of definitions and approaches is still lacking,
the metrics and concepts devised so far for time-varying graphs constitute a
valid and consistent alternative to the standard methods for the study of time-
evolving systems, and will certainly represent a fundamental contribution to our
understanding of complex systems in general.
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Burstiness: Measures, Models, and Dynamic
Consequences

Byungjoon Min and K.-I1. Goh

Abstract Various human activities were shown to exhibit heavy-tailed dynamics,
dubbed “burstiness,” which manifests itself as a fat tail in the waiting time
distribution. Such a heavy-tailed activity crucially deviates from the traditional
assumption of Poisson random activity which had been used for over a century
in many theoretical and practical modelings of human activity-based problems. In
this survey article, we will overview some recent studies on burstiness, focusing on
(a) how to characterize the burstiness, (b) how to model the bursty human activity
at the individual and population levels, and (c) how the bursty activity could modify
the collective dynamics of spreading processes in social networks.

1 Introduction

The quantitative understanding of temporal complexity of human dynamics under-
lies better comprehension and proper control of social systems which are among the
most challenging goals of contemporary science [26]. Given the lack of appropriate
data on how humans behave in reality, it has been assumed for a long time that
human activities were uniform in time, thus modeled by the Poisson process
[23]. Recent technological advances, however, changed the situation fundamentally.
During the last few years, researchers have had access to large-scale datasets
of human behaviors such as online and offline digital communications, from
which the researchers could extract information on how people behave in reality
[13, 14,24, 56]. Studies on these data almost unanimously demonstrated a strong
departure from the Poisson model. Human activities are highly heterogeneous in
time, typically showing significantly enhanced activity levels over short periods,
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followed by long periods of inactivity; human activities are dubbed to exhibit
“burstiness” [4,5].

“Burstiness” has become one of the keywords in the study of complex systems,
since theories of microscopic individual behaviors as well as macroscopic social
and economic dynamic phenomena should be rewritten in terms of bursty activity
patterns instead of Poisson model. In so doing, a number of general questions can
be raised. First, how should one quantify the burstiness of activity patterns? Second,
how could one model the bursty activity patterns? Third, which consequences would
the burstiness of individual’s activity have in the collective dynamics of the whole
system? These are the questions some partial answers to which we will try to review
in this survey article, centered on recent works contributed by the authors [10, 18,
39,40].

This survey article is organized as follows: In Sect. 2, we overview the methods
of characterizing burstiness of time series in a quantitative manner. A newly-
proposed measure of burstiness in terms of waiting time distributions and short-term
memory is discussed and applied to classify complex systems. Section 3 covers
models of bursty activities based on the concept of priority-queues, both at the
individual, group, and network levels. In Sect. 4, we discuss how burstiness could
affect spreading processes over the network, as an example of impact of burstiness
on collective dynamics. Section 5 will conclude the survey article with summaries.

2 Measures to Characterize the Burstiness

Although it gained a resumed interest in the context of human activities just recently,
the dynamics showing temporal inhomogeneity had been documented and studied
in a wide range of natural, physical, cellular, physiological, and technological
complex systems, under various concepts such as punctuated, intermittent, chaotic,
and fractal dynamics [3,12,20,35,37,52]. Measures directly or indirectly addressing
the inhomogeneity of signals had been proposed and applied under corresponding
contexts [1]. These measures can be divided into two categories, the one based
on the distribution of waiting times, the time intervals between two consecutive
activities in the activity sequence, such as the coefficient of variation and Fano
factor [37], and the other based on the correlations of the time series, such
as autocorrelation function and Hurst exponent [1]. In human dynamics studies,
burstiness had often been characterized by the fat-tailed nature of the response or
waiting time distributions [4, 56]. Studies of natural systems such as earthquake
and meteorological signals have also focused on the effect of correlations [7, 36].
To quantify the magnitude and potential origin of bursty dynamics seen in different
systems, a two-way characterization scheme has recently been proposed [18]. This
approach uses both distribution-based and correlation-based measures, respectively
called burstiness parameter and memory parameter, putting them into a combined
framework to compare signals from systems coming from diverse and apparently
unrelated domains.
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Fig. 1 (a) A synthetic signal generated by a Poisson process with a unit rate. (b, ¢) Bursty signals
generated with a power-law waiting time distribution (b) and shuffled Poisson signal for positive
short-term memory (c). (d, ) Anti-bursty signals generated with Gaussian waiting time distribution
(d) and shuffled Poisson signal for negative short-term correlation (e). Note that signals in (a), (c)
and (e) have identical waiting time distributions. Adopted from [18]

2.1 Measures: Burstiness and Memory Parameters

Distribution of and correlation between waiting times are two means that can
generate bursty (or anti-bursty) signals in orthogonal way (Fig.1). A uniformly
random activity pattern can be obtained by a Poisson process in which the
probability of an event is time-independent (Fig. 1a). In this case the waiting time, t,
between two consecutive events follows an exponential distribution, Ppojisson(7) =
(1/79) exp(—t/7t9). An apparently bursty (or anti-bursty) signal emerges if P(7)
is different from the exponential. For example, one can generate a bursty pattern
from a power-law P(7) ( Fig.1b), or a more regular pattern with a Gaussian
P(7) (Fig. 1d). Alternatively, one can also modulate the burstiness of a signal by
correlation without altering P (7). For example, the signals shown in Fig. 1c, e have
exactly the same P (7) as the signal in Fig. 1a, yet they have a more bursty or a more
regular character, respectively. In Fig. 1c the waiting times are correlated in such a
way that short waiting times tend to follow short ones, resulting in a bursty look. On
the contrary, in Fig. le the relative regularity is due to the anti-correlation between
waiting times, such that short (long) waiting times tend to be followed by long
(short) ones. Therefore, the apparent burstiness of a signal can be attributed to two
mechanistically different origins of deviations from Poisson process: differences in
the distribution of or the correlation between waiting times.

To distinguish these orthogonal effects, it was proposed to use simultaneously the
two metrics, one addressing the properties of P(7) and the other the correlations.
These two measures are called the burstiness parameter B for the former, and
the memory parameter M for the latter. The corresponding definitions will be
introduced shortly. The proposed framework is readily applicable to systems with a
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Fig. 2 The burstiness parameter B for log-normal waiting time distributions, interpolating
between a highly bursty (B = 1), neutral (B = 0), and a regular (B = —1) signal. Insets
show the form of P(7) in bursty- and anti-bursty regime of each distribution along with a typical
time signal generated with the corresponding P(t). Dashed line in the insets corresponds to the
exponential distribution for the Poisson process. Adopted from [18]

discrete activity pattern, as in human email communication signal. For systems with
continuous signals as in earthquakes, one can apply the framework after transform-
ing the signal into a discrete one by thresholding. In many systems the statistical
properties of the obtained signal are known to be threshold-independent [7, 12].

To characterize the deviation of P(t) from the Poisson signal, perhaps the
simplest way is to use the so-called coefficient of variation, defined as the ratio
of the standard deviation to the mean, o,/ m ., where m, and o, are the mean and
the standard deviation of P(t), respectively. It has a value 1 for a Poisson signal
with an exponential P(7), 0 for completely regular §-function-like P(7), and oo for
signals with a heavy-tailed P (7) with infinite variance. Higher order characteristics
such as skewness or kurtosis, or yet more complicated quantities based on the form
of P(7) can also be used for this purpose. For the sake of simplicity, we use the
coefficient of variation to define the burstiness parameter B as

(00/m;—1) _ (0 —my)

B (ot/m;+1)  (0; +my;)

ey

This definition is readily applicable when the mean of P(t) exist, which is the case
for real-world finite signals. The case with infinite mean m ., such as the power-law
P(7) with the power-law exponent smaller than 2, should be treated with care.

The particular definition of B was chosen to keep its value in the bounded range
(—1,1). Also, the magnitude of B correlates with the signal’s burstiness: B = 1 is
the most bursty signal, B = 0 is neutral, and B = —1 corresponds to a completely
regular (periodic) signal. For instance, for the synthetic signals shown in Fig. la, b, d
the burstiness coefficient are B = —0.05 (neutral; a), B = 0.44 (bursty; b), and
B = —0.81 (anti-bursty; c), respectively. In Fig. 2 we show the behavior of B for
the log-normal distribution,
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Here the larger the parameter s is, the larger is the variance of P(t) hence the
signal gets burstier (B — 1). On the other hand, the smaller s is, the more regular
is the signal, and B approaches to —1 as s — 0. Note however that even though
B becomes zero for a specific value s*, P(t) does not become an exponential there.
Deviation from the Poisson signal in the correlations can be quantified in many
ways. Basically, the joint probability distribution of waiting times, parameterized by
atime lag k, P(t, t’; k), defined as the probability density that we have two waiting
times t and 7’ separated by k events, contains the most information about the two-
point correlation properties. The autocorrelation function C (k) = ((t; —m) (i 44 —
m.))/o?, where (-) denotes the average over the index i, is also widely used in many
applications. Again for the sake of simplicity, we use the correlation coefficient of
consecutive waiting times (t;, 7;+1), defining the memory coefficient M as

1 n.—1

M= Z (i —m)(Ti4+1 —m3) ’ 3)

l’lt—l 0102

i=1

where n, is the number of waiting times measured from the signal and m (m>) and
01(02) are sample mean and sample standard deviation of 7;’s (t;+1’s), respectively
(i =1,...,n, — 1). It might be noted that M is a biased estimator for C(k = 1).
With this definition, the memory coefficient also has a value in the bounded range
(—1,1) and is positive when a short (long) waiting time tends to be followed by
a short (long) one, and it is negative when a short (long) waiting time is likely
to be followed by a long (short) one. For example, the synthetic signals shown in
Fig. 1a, c, e with identical P(7) have the memory coefficient M = 0.02 (neutral; a),
M =0.90 (positive memory;c) and M = —0.74 (negative memory; e), respectively.

2.2 Characterizing Complex Systems with (M, B) Parameters

Most complex systems display a remarkable heterogeneity: some components may
be very active, and others much less so. For example, some users may send dozens of
emails during a day, while others only one or two; seismic activities can vary across
regions, resulting in different frequencies of earthquake time series. As shown in
the insets of Fig. 3, P(t) of components with different activity levels can apparently
differ significantly, questioning the validity of a unique system-specific value of B
parameter in systems with heterogeneous activity levels. It turns out, however, that
the apparently different-looking P(7) curves behave in the same ways, when we
properly rescale time: If we plot 7o P(t) as a function of t/7y, with 7y being the
mean waiting time, the data collapse into a single curve .% (x) (Fig.3), indicating
that the waiting time distribution takes a scaling form

P(7) = (1/70)-7 (t/70). “)
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Fig. 3 Scaled plots of waiting time distribution P (7) for some real signals. (a) P(t) for the e-mail
activity of individuals from a University [14]. t corresponds to the time interval between two
emails sent by the same user. (b) P(t) of the cardiac rhythm of individuals [44]. Each event
corresponds to the beat in the heartbeat signal and 7 is the time interval between two consecutive
heartbeats for an individual. In each panel, we also show for reference the exponential waiting time
distribution (dotted). Unscaled waiting time distributions are shown in the inset for each dataset.
Adopted from [18]

where .#(x) is an activity-level-independent scaling function characteristic of the
particular system [8, 12, 50]. Furthermore, the burstiness parameter B is invariant
under such time rescaling, enabling us to assign to each system a characteristic B
parameter in terms of the scaling function .%.

Having defined the two orthogonal measures B and M addressing two qual-
itatively different origins of bursty activities, it becomes feasible to characterize
real-world complex systems by placing them in the (M, B) space (Fig.4). Non-
random distribution of complex systems in such “burstiness map” would imply
possible classification scheme of complex systems from a dynamics perspective.

The first example examined is written texts, in which a waiting time represents
the spacing between the consecutive occurrences of the same letter. David Copper-
field by Dickens and Isten Rabjai by Géza were chosen as example texts of different
kind, era, and language [45]. For these signals, it was shown that P(7) follows
closely an exponential so that B ~ 0, and that they have almost no short-term
memory, as M = 0.01. Therefore these signals are found near the origin of the
(M, B) space.

As the second class signals from natural phenomena such as the earthquake
sequences near Japan [28] and the daily precipitation records in New Mexico, USA
[41] were examined. They are found in the vicinity of the diagonal, indicating that
both P(7) and memory contribute to their bursty character.

Thirdly, signals for human activities, ranging from email and phone commu-
nication to web browsing and library visitation patterns [13, 14, 24, 25, 56] are
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Fig. 4 (a) The burstiness map in (M, B) space. Human activities (red) are captured by activity
patterns pertaining to email (star symbol) [14], library loans (open circle) [56], and printing
(pentagon symbol) [25] of individuals in Universities, call center record (open square) [24], and
phone initiation record (open diamond). Data for natural phenomena (black) are earthquake records
in Japan (filled circle) [28] and daily precipitation records in New Mexico, USA (filled square)
[41]. Data for written texts (blue) [45] are the English text David Copperfield (open triangle)
and the Hungarian text Isten Rabjai (open inverted triangle). Data for physiological behaviors
(green) are the normal sinus rhythm (filled inverted triangle) and the cardiac rhythm with CHF
(filled triangle) [44]. (b) Close-up of the most populated region [light grey region in (a)]. Data in
each class are indicated by grouping for the eye. Adopted from [18]

considered. For these a high B and small or negligible M were obtained, indicating
that while these systems display significant burstiness rooted in P(t), short-term
memory plays a small role in their temporal inhomogeneity. This lack of memory is
quite unexpected, if not counter-intuitive, and it may suggest the lack of short-term
predictability [51]. This suggests that consideration of higher-order correlation may
need to be included for better characterization [33].

Finally as an example of physiological signal, the cardiac rhythms describing
the time interval between two consecutive heartbeats [44] were examined. It was
obtained that Bpeamy = —0.69(6) for healthy individuals and Bcyp = —0.8(1)
for patients with congestive heart failure, both signals being highly regular. It is
noteworthy that the B parameter captures the fact that cardiac rhythm is more
regular in heart failure condition than in healthy condition [52].

The usefulness of burstiness map is illustrated by the clustering of the differ-
ent systems by their class in the (M, B) plane: human activity patterns locate
themselves in the high B, low M region, natural phenomena near the diagonal,
heartbeats in the high M, negative B region and written texts near the origin,
suggesting the possibility of existence of distinct classes or compositions of
underlying mechanisms driving the temporal complexity of these systems. Further
empirical testing of the clustering and its theoretical understanding should follow
for conclusive understanding and setting the boundaries between these classes and
categorization of complex system dynamics.
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3 Priority-Queue Network Models of Bursty Human
Dynamics

3.1 Priority Queue Models

A primary quantity in studying temporal heterogeneity of human dynamics is the
waiting time distribution P (7). P(7) for many different types of human activities
are found to deviate strongly from the exponential distribution for Poisson process.
In particular, they exhibit so-called fat or heavy tail, possessing much larger
statistical weight for long waiting times compared to Poisson process with the
same mean waiting time. A number of models of such heavy-tailed P(t) have been
proposed. An asymptotic power-law distribution,

P(x)~1t%, (%)

was proposed by Barabasi and colleagues [4, 42, 56] and adopted widely [21, 46,
59, 60]; alternatively, the log-normal distribution of the form (2) was proposed by
Amaral and colleagues [38].

Aside from technical issues from the point of view of statistical analysis,
attempts to understand the origins and consequences of the heavy-tailed waiting
time distributions in human dynamics with dynamical models may help provide
conceptual insight. A family of dynamical models based on priority queues has
been proposed to this end [4]. In such models, priority queues are used to mimic
human decision making processes, under the assumption that humans decide what
to do next among the list of tasks according to priorities assigned to the tasks. Here
we briefly overview the main ideas.

The original priority queue model by Barabdsi [4] is a model of autonomous
individual’s activity, consisting of a single, fixed-length queue. The queue is filled
with tasks, each of which is assigned a priority value drawn randomly when it enters
into the queue. At each step the task with the highest priority is executed and is
replaced by a new task with a random priority value. Upon execution, the waiting
time t, defined as the time interval for which the task has sat (waited) on the queue,
is measured. The distribution of waiting times P (7) of the Barabasi model has been
shown both numerically and analytically to exhibit a power-law tail for large t with
the exponent o = 1 [2,4,16,56]. Exact analytic results for the Barabdsi model was
first obtained for queue length L = 2 case [56], and then extended to more general
case with arbitrary queue length L [2]. The scaling behaviors were also obtained by
mapping the problem into invasion percolation [16].

If the restriction of fixed queue length in the Barabasi model is relaxed and the
number of tasks can vary from time to time, the model becomes the classical priority
queue model by Cobham [11]. For Cobham model, P(t) has a power-law tail, but
with a different exponenta = 3/2[11,22]. The power-law waiting time distribution
with the exponent « = 3/2 was derived by mapping the variable-length priority
queue model into the biased diffusion [22].
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3.2 Interacting Queues and Priority-Queue Networks

Both Barabasi model and Cobham model are simplified models to be used as
a starting framework, and they neglect many aspects of potential importance in
realistic human dynamics. Various detailed factors of human dynamics have recently
been embedded in the priority-queue model framework [6,21]. Such variants of
priority-queue models have exhibited diverse dynamic behaviors dependent on the
model-specific details. For instance, when a group of tasks is selected to execution at
each time step, waiting time distribution decays as the power-law with the exponent
a = 1.25 [21]. Blanchard and Hongler studied the effect of time-dependent
priorities on the basis of population dynamics [6]. They showed that when the
priority of each task increases due to aging or deadlines in tasks, it could be possible
that prioritization alone cannot produce heavy-tailed waiting time distributions.

Another important factor that has not been taken into account until recently
is the interaction among queues, which can be employed to provide a simple
model of human interactions. Due to a large array of interactions among people
in various modes, typical activity of an individual is not an outcome of completely
autonomous decisions, but of delicate compromises and balanced conflicts between
often competing priorities. The impact of such human interactions on the patterns
of human dynamics has first been addressed by Oliveira and Vazquez (OV) [43].
They introduced a minimal model consisting of two interacting priority queues with
interacting (I) and non-interacting (O) tasks. The human interaction is taken into
account in a way that the /-task is executed only when both individuals choose
to execute them, that is, an AND-type protocol. Through this model they showed
that the power-law waiting time distribution still persists against the introduction of
human interaction, but the exponent @ of P(7) can take many different values other
than 1, depending on the length of the queues.

The effect of human interactions for a system of more than two queues, or the
queue network in general, can also be studied by generalizing the OV model [10,39].
A priority-queue network (PQN) of N queues is constructed as follows:

* A queue has one I-task for each neighbor in the network, in addition to an
O-task. Thus a queue node i with degree k; in the network (degree is the number
of links connected to the node) has a queue with fixed length L; = k; + 1.

* The /-task of the node i paired with the node j is denoted as I;;, and the O-task
of the node i as O;.

 In addition to the network configuration, the queue discipline has to be specified
for a complete specification of a PQN. The protocol consists of a specification
of the type of interaction for /-tasks (e.g., AND- or OR-type interaction) and an
update rule (e.g., parallel or sequential update).

Having specified the PQN, the dynamics runs as follows:

1. Initially each task in the PQN is given a priority value drawn from a uniform
distribution in [0, 1).
2. At each step, one or more tasks are executed, following the queue discipline.
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3. The waiting times of the executed tasks are recorded, and the executed tasks are
replaced with new tasks each with a random priority value uniformly sampled
[0, 1).

4. N such elementary steps constitute a Monte Carlo step (MCS), which is the time
unit of waiting time measurement.

In the following subsections, we will review existing variants of PQN models
[10, 39]. As illustrated therein, variations of interaction rules in PQNs can lead
to diverse power-law behaviors dependent on model details. Persisting power-law
tails in various PQNs suggests that the power-law waiting time distribution is a
robust feature of priority-based queuing models. At the same time, the power-
law exponents are non-universal but dependent on model factors such as network
topology, local position of a queue on the networks, interaction discipline, and
reciprocity of influence. These results may provide theoretical background to
identify essential factors in temporal human activity patterns. Sensitivity of the
exponent dependent on model details supports diverse values of the exponent
observed in empirical data [4, 21, 42, 46, 56, 59]. Finally, analytic treatment of
interacting priority-queue models has largely remained to be fulfilled.

3.3 OV Model on Networks

An example of queue discipline is the AND-type protocol, random sequential update
case, which is a direct extension of the OV model. In this queue discipline, a random
node is chosen at each step, say node i. If the highest priority task of i is O;, then itis
executed. Ifitis an /-task, say /;;, itis executed only if /;; is also the highest priority
task of the conjugate node j (AND-type interaction). In this case, the conjugate task
I; is also executed. Otherwise, node i executes O;.

Two representative network configurations, the star graph and fully-connected
network, are studied (Fig.5). The OV model on networks exhibits an interesting
phenomenon of dynamic freezing due to priority conflict. The priority conflict
occurs when a node i has [;; as highest priority task, but the node j has another,
say 1y, as its highest priority, in conflict with each other. The star topology is less
vulnerable to such a dynamic freezing since leaf-nodes can resolve it, primarily by
updating the priority of the O-task repeatedly. As a result, we have a power-law
decaying P(7) (Fig.5a, b). The power-law exponent « is found to be independent
of the network size N; for the I-tasks o; & 2, and for the O-tasks «¢p ~ 3 for
both hubs and leaf nodes. These exponent values share common values with those
of original OV model with L = 2; so for star graphs the model essentially behaves
in the same way as the binary OV model.

On the other hand, the dynamics is quite different in networks with cycles,
such as fully-connected graphs, which are highly susceptible to conflicts that
cannot be resolved readily. As a consequence, the number of executed [-tasks,
n(t), decays rapidly in time, either algebraically for small N, or exponentially
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Fig. 5 (a-b) The waiting time distribution P(t) of the OV model on star networks for /-tasks
(a) and for O-tasks (b), with various N = 3,4,5,20. Both P(t) show power-law asymptotic
with ¢y &~ 1.9 (a) and a¢p =~ 2.8 (b), indicated respectively with dotted lines. (c—d) The double
logarithmic (c¢) and semi-logarithmic (d) plots of the number of executed 7 -tasks, 1(¢), for the OV
model on fully-connected networks versus time. Different dotted line patterns are used for different
network size N (see legend). n(z) decays algebraically for small N (c) and exponentially for large
N Z 10 (d). Indicated slopes of dotted line are 1.5, 2.5, and 3.5, from right to left, drawn for the
eye. Also shown is n(¢) for N = 20 with the star graph topology (black solid) for comparison.
Adopted from [39]

for large N =z 10 (Fig. 5c, d), and eventually the dynamics gets frozen, with the
timescale decreasing with N. In real social networks, we have strong empirical
evidences of high clustering and clique structure [58], suggesting that the AND-
type interaction protocol would strongly suffer the dynamic freezing, rendering
itself alone inadequate for the realistic modeling of the network effects in human
dynamics.

3.4 PQN with OR-Type Interactions: The OR Model

Not all human 7-tasks should follow the AND-type protocol. Rather, an OR-type
protocol would be more reasonable for the tasks which require simultaneous actions
of two or more individuals but for which the action can be initiated primarily by
either of them, such as a phone call conversation. For this class of 7 -tasks, potential
priority conflicts can be instantly resolved; for instance, we normally answer the
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Fig. 6 (a-b) P(7) of the OR model on star topology. (a) P(t) for /-tasks decay as power laws
with the exponent decreasing as N from oy ~ 3 for N = 3toa; ~ 1.5 for N = 20. (b) P(7)
for O-tasks show distinct behaviors between the hub node (open symbols) and leaf nodes (full
symbols). For the hubs, the power-law exponent varies from ap sy =~ 1.5for N =3 toa =~ 1
for N = 20. For the leaf nodes, P(7) the exponents range from apjeqy =~ 2 for N = 3 to
Q0 jear & 1.5 for N = 20. P(t) curves were shifted vertically for visibility. (c—d) P(r) of the
OR model on fully-connected topology. (¢) P(t) for /-tasks decay with asymptotic powers, with
exponents decreasing with N from o; = 3 for N = 3toa; ~ 2 for N = 20. (d) P(r) for
O-tasks follow the power-law decay with the exponent ¢y = 1.5. All quoted slopes are indicated
with dotted lines for the eye. Adopted from [39]

incoming phone call while we are performing other tasks. By incorporating such
an OR-type interaction protocol, the dynamic rule of what we call the OR model is
given as follows:

* At each step we choose a random node, say node i .

 If its highest priority task is an /-task, say I;;, the two tasks I;; and [;; are
executed regardless of the priority value of /;;; If O; is the highest priority task,
only that is executed.

* Priorities of all the executed tasks are randomly reassigned.

For the OR model, P(7) still exhibit power-law tails for both star and fully-
connected network topology, yet the power-law exponent a depends on the network
size N as well as the network topology in a diverse way. First, in the star topology,
o decreases as N increases: For [ -tasks, it exhibits values from a; ~ 3 for N = 3
to oy ~ 1.5 for N = 20 (Fig.6a); For O-tasks, the exponent exhibits distinct
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values for the hub and leaf nodes, changing from appp ~ 1.5 for N = 3 to
ooy ~ 1.0 for N = 20 for the hub node, whereas for the leaf nodes it changes
from o jeqr ~ 2.0 for N = 3 to ap jeqr =~ 1.5 for N = 20 (Fig. 6b). Moreover, for
the hub-node, the mean waiting time (t) ¢ 5.5 of O-tasks diverges, as the power-law
exponent o < 2. For other tasks, however, power-law P(7) with ¢ < 2 for large N
is accompanies by the peak at t = 1, making the average waiting time finite.

In the fully-connected topology, the power-law exponent o weakly depends
on N. For the [-tasks, it decreases with N from oy ~ 3 for N = 3toa; =~ 2
for N = 20 (Fig. 6¢). For the O-tasks, on the other hand, o is rather stable against
N as ap ~ 1.5 (Fig. 6d). This result implies that on the fully-connected networks,
I -tasks are executed with finite mean waiting times while O-tasks on average have
to wait on the queue infinitely long to be executed. Taken together, the OR model on
networks implicates the importance of not only the overall network structure but also
individual node’s topological position on determining the dynamics of networking
priority-queue nodes.

3.5 The OR Model with Team-Based Execution

Further variations of the OR model were considered, by including more complicated
forms of human interactions [10]. First is the team-based task execution, referring
to the situation when a task demands simultaneous actions of more than two
individuals. The second is the hierarchy in decision making, occurring when a node
in higher hierarchy can order the nodes in lower hierarchy to execute a task together.
Both forms of human interaction are encountered in many real-life situations, thus
the understanding of their impact is of use for a more complete human dynamics
modeling.

In the team-based task execution OR model, each I-task is associated with a
group G of queue nodes of size r, meaning that r individuals form a group or a
team in executing the task. Here the size of a team r is an important parameter
characterizing the model. In this model, each queue has n; = (1)/_—11) I -tasks and
no = 1 O-task. Note that the case with r = 2 is the same as the original OR model
on fully-connected network. As r > 2, the number of [-tasks n; varies drastically
and it is therefore interesting to study its impact on the queue dynamics. Then the
dynamics of the model proceeds as follows:

* At each step, a queue node is chosen randomly (say it to be p) and its highest
priority task is identified. If it is an [ -task, all the r nodes in the associated team
execute the task simultaneously; if it is an O-task, only node p executes the task.

* The waiting times t of executed tasks are recorded, and the priority of executed
tasks are refreshed with independent random values in [0, 1).

* Repeat the previous steps, N repeats of which constitute one Monte Carlo step.

This model is called the (N, r)-model.
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Fig. 7 Waiting time distribution P(7) of (N, r)-model. P() of (a, b) I -tasks and (¢, d) O-tasks
for various team sizes r with N = 4 (a, ¢), and 6 (b, d). Slope of the straight lines in (a, b) is —2;
those in (¢, d) are —1.3 (upper) and —2 (lower), respectively, drawn for the eye. Adopted from [10]

Waiting time distributions of (N, r)-model with N = 4and6andr =2... N
are shown in Fig.7. In all cases shown, we observe a power-law decaying P(t)
whose exponent depends on the model parameters. For [ -tasks, & ~ 2 in the range
2 <r < N — 2 (Fig.7a, b). Team execution does not have an apparent effect
in these cases. However, the case r = N — 1 exhibits a distinct power law, with
slightly larger exponent ~ 2.3 ~ 2.5. Interestingly, a distinct power-law behavior
forr = N — 1 is similarly observed in OR model (r = 2) on fully-connected
networks. The case N = 3 exhibits a distinct power-law exponent than other cases
N > 4 [39]. For r = N, P(t) decays rapidly with an apparent power-law tail
whose exponent increases with N. This apparent power-law behavior is, however,
a finite-size effect, and the distribution is dominated by the T = 1 peak approaching
to unity in the long-time limit. This means that when » = N the I-task tends to
be executed in an overwhelmingly long succession, so that P(7) has a finite second
moment, contrast with the case r < N where it is divergent.

Results for P(7) of O-tasks are shown in Fig. 7c, d. For the O-task dynamics,
the power-law exponent o remains unchangedas o« ~ 1.3 for2 <r < N — 1, even
though the probability density for large t becomes systematically elevated with r.
We note the absence of distinct power law in 7 = N — 1 case for O-tasks, which is
also consistent with the result of N = 3 pairwise-interaction OR model. The case
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with r = N exhibits a distinct power-law behavior with the exponent @ ~ 2. This
can be understood as follows. From the perspective of the O-task, the case r = N
is similar to the N = 2 OR model, in which each queue has one I-task and one
O-task. Therefore we have the same exponent o ~ 2 for O-tasks in both cases.

Taken together, these results indicate that in the (N, r)-model, mean [-task
waiting time is marginally divergent (as « ~ 2) for r < N — 1, but is finite for
r > N — 1. The variance diverges for r < N (as ¢ < 3), while it is finite only
for r = N. For O-tasks, not only the variance but also mean waiting time would
diverge (o < 2) in the long-time limit, implying the lack of characteristic scale in
the waiting times dynamics. Further properties of the team-based task execution OR
model have also been studied such as the effect of number of O-tasks [10].

3.6 The OR Model with Hierarchy-Based Execution

When making a decision of what to do next, often the decision is followed in
a hierarchical manner: a node in higher hierarchy can order the nodes in lower
hierarchy to execute a task together. Incorporating such a hierarchy-based task
execution, what is called the H-model is defined as follows.

e Each of the N individuals is assigned a hierarchy value 4 in the interval
1,2...N. The node with 7 = 1 sits on the top of the hierarchy, while the one
having & = N is at the bottom.

e Each node has two tasks, n;y = 1 I-task andnp = 1 O-task.

e If a node p (u-th in the hierarchy) is chosen for task-execution, and it has the
I -task as highest priority, all the lower hierarchy nodes (from 7 = u + 1 to
h = N) follow to execute the /-task simultaneously with node p. If the O-task
is chosen, only node u executes it.

* Waiting times are recorded and priorities are refreshed for all the executed tasks.

* Repeat the previous two procedures.

Depending on the node’s position in the hierarchy, the degree of intervention
(number of [-task execution orders from upper-hierarchy nodes) varies.

The waiting time distributions of H-model are shown in Fig. 8. In the H-model,
the node at the top of hierarchy (2 = 1) is not affected by any other nodes in its
decision making. Thus the # = 1 node’s dynamics, having two independent tasks,
is the same as that of the simple Barabasi queue with length L = 2; therefore, we
have the same P(t) for both the 7 -task and O-task as that of the Barabasi model [4],
the nonstationary P(7) with a strong peak at T = 1 accompanied by a power-law
tail with exponent = 1 (Fig. 8, o) [54].

The I -task dynamics of nodes with 2 > 1 is found to follow a power-law P (1)
with the same exponent & & 1, but with an i-dependent cutoff z. (Fig. 8a, b);

P(7) ~ v lexp(—1/1.). (6)
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Fig. 8 P(t) of the hierarchy-based H-model. (a, b) P(t) of [-tasks for various hierarchy index
h with N = 2 (a) and 8 (b). Slope of the straight lines is —1, drawn for the eye. (¢, d) P(z) of
O-tasks for various hierarchy index & with N = 2 (c) and 8 (d). Slopes of the straight lines in
each panel are —2 (upper) and —1 (lower), respectively, drawn for the eye. Adopted from [10]

This cutoff waiting time is introduced by the intervention from higher-hierarchy
nodes, due to which the node executes an 7 -task that is not the highest priority task
at the moment. Without the intervention, the /-task would have had to wait longer.
The characteristic time scale of such intervention introduces the cutoff in P(t) for
h > 1 nodes. The cutoff timescale 7, decreases approximately exponentially with
h [10]. Yet, these interventions do not change the exponent of the tail. Note that
despite the fat-tailed P(7) with @ ~ 1 the mean [ -task waiting time is finite, as the
tail part contributes only marginally to the mean value in the long-time limit [54].
The O-task dynamics of nodes with 4 > 1 exhibits a different behavior. We have
P(t) decaying as a power law with the exponent « ~ 2 in all cases. The peak at
t = 1 disappears and the distributions become stationary. As in r = N case of
(N, r)-model, the power-law exponent &« = 2 for O-tasks has the same dynamic
origin as the O-tasks of N = 2 OR model. Each # > 1 node has one /-task and
one O-task; its /-task can be executed not only by its own priority, but also by the
requests from other nodes. Such setting is identical to N = 2 OR model’s O-tasks.
Therefore they share the same exponent. For 4 > 1 nodes, mean O-task waiting
time is marginally divergent as « & 2, suggesting a lack of the characteristic O-task
waiting time in the model.
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An interesting point can be made from comparison of N = 2 cases of
H-model and OR model. They differ only by directional property of interaction
for [ -task, for which we have directional or unilateral influence in the former and
unidirectional or reciprocal influence in the latter. We have seen that this simple
difference has dynamic consequences, as the two model exhibit different P (7).
Furthermore, /-tasks and O-tasks are found to respond differently to breaking of
interaction symmetry, revealing intricate interplay between the interaction structure
and resulting dynamics of priority-queue networks.

3.7 Other Works

Further variants of priority-queue models have steadily been studied. A vari-
ant priority-queue model incorporating the interaction between individuals was
proposed by Wu et al. [59] to describe a bimodal combination of the Poisson
and power-law waiting time distributions in short message communication. The
interaction in this model is similar to OR model, but a new [ —task is added with
a small probability after the interaction, while in the OR model a new [ —task
is added immediately after the execution of a previous [ —task. This model fits
well the bimodal distribution of short message communication using the parameters
extracted from the empirical data [59]. Recently, Jo et al. [30] introduced a priority-
queue model with time-varying priorities. They solved the priority-queue model
with the priority of task either increasing or decreasing analytically and obtained
the bimodal and unimodal waiting time distributions with power-law tails. They
also compared their results with updating time distribution of arXiv.org and the
processing time distribution of papers in Physical Review journals.

4 Spreading Dynamics with Bursty Activity Patterns

As surveyed in the previous section, priority-queue models mimicking human
decision process were shown to reproduce fat-tailed waiting time distributions
on the individual level. While these modelings were successful, how the activity
modeling at the individual level translates into the collective phenomena at the
population or network level was not addressed in those works.

In this perspective, spreading process has been a paradigmatic subject for study-
ing the impact of individual dynamics on collective dynamics. The impact of the
non-Poisson statistics on spreading processes was first addressed by Vazquez et al.
[57] using email communication patterns. They show that the decay of the number
of new infections based on empirical waiting time distributions is significantly
slower than that expected with the Poissonian assumption [57]. Iribarren and
Moro provided another empirical evidence of slower spreading dynamics using a
viral email experiment [27]. More recently, Karsai et al. [32] examined dynamics
of information spreading on communication networks using the empirical event
sequences of phone calls data, showing dynamics with temporal heterogeneity.
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4.1 Long-Time Behavior of SI Dynamics

Here we outline the main results for the long-time behaviors of susceptible-infected
(SI) model dynamics with bursty activity models [40]. To start understanding
the impact of power-law waiting time distribution on long-time behavior of SI
dynamics, we first outline a general theory of irreversible spreading processes in
a social network. The network structure is assumed to be tree-like, and the activity
pattern is characterized by the waiting time distribution P (7). The generation time
A [55] is defined as the time interval between the infection of an agent in the
social network (primary case) and the transmission of the infection to a neighbor
agent (secondary case). The generation time distribution g(A) then characterizes
the timings of infection transmissions.

In this setting, an outbreak starting from a single infected individual at t+ = 0
results in the average number of new infections at time ¢, n(t), given by [55]

D
n(t) =Y zg™ ). (7
d=1

Here z, is the average number of individuals d contacts away from the first infected
node and D is the maximum of d. g*¢(¢) is the d-th order convolution of g(A),
that is, g*'(t) = g(¢) and g*/(t) = [, dt'g(t')g*¢~"(t — t'), representing the
probability density function of the sum of d generation times.

Long-time behaviors of n(¢) can be extracted from (7). For example, when
g(A) ~ AP with 1 < B < 2, that is in the Lévy-stable regime, one obtains in
the limit 4 > 1, independently of the network structure, g*¢ (1) ~ t=# ast — oo
and thus the asymptotic behavior of the prevalence decay as

n(t) ~17b. (8)

Therefore, quite generically, with heavy-tailed activity patterns the long-time
spreading dynamics would decay with the same tail behavior as the generation time
distribution by the above theory.

4.2 SI Dynamics with Power-Law Waiting Time Distribution

The generation time distribution can be determined from the waiting time distri-
bution and the type of interactions between the social agents in the network. As
the simplest scenario, we consider the case when the activities of individuals in
the network are completely uncorrelated and so are the timings of consecutive
interactions. In such a case, the time series of interactions can be modeled by a
simple renewal process [15] with waiting time distribution P (7). Specifically, let us
consider the case where agent A is infected at time 7 4; agent B, who is connected to
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Fig. 9 (a) The average number of new infections n(¢) of the SI model with uncorrelated identical
power-law P(t) with exponent @« = 2.1 (open square), 2.5 (open circle), 2.9 (open triangle),
and with an exponential P(t) (open inverted triangle), respectively. All P () have the same mean
waiting time (t) = 2. It decays with the exponent ~ « — 1 for power-law P(t), whereas it
decays exponentially for exponential P(t). (b) The generation time distribution g(A) for power-
law P(7). It decays as a power law with the same exponent as n (). Simulations were performed
on a scale-free network with y = 3 and size N = 10*, and averaged over 10° independent runs.
Initial infected node is selected to be the hub. In both panels, dotted lines have slopes —1.1, —1.5,
and —1.9, drawn as a guide. Data are binned logarithmically. Adopted from [40]

A, is still susceptible at time 74 and becomes infected, after interacting with agent,
at time 5 > t4. From the perspective of B, the time A was infected is random and
therefore, the generation time 7p — 4 is the residual waiting time, the time interval
between a randomly selected time and the time A and B will perform their next
interaction.

For the waiting time distribution with finite mean (t), the residual waiting
time probability density function is related to the waiting time probability density
function, leading to [15]

1 o0
guncorr(A) - m/; P(t)d‘[ . (9)

Therefore, for the uncorrelated activity patterns with P(t) ~ 77%,2 < o < 3, we
have
guncorr(A) ~ A_(a_l) and nunwrr([) ~ Z_(a_l) . (10)

When 1 < « < 2, P(t) does not have a finite mean, but thanks to more complicated
theory [15] we still obtain the long-time behavior of power-law form, 7, (f) &
¢, in this regime.

Numerical simulations of the SI process on the static model [19] of scale-free
networks confirmed the predicted power-law decay of n(t) (Fig.9). For2 < o <
3, n(t) is found to decay as a power law with the exponent « — 1 for large ¢ as
predicted by the theory. For comparison, the same SI dynamics with exponential
(Poisson-type) P(t) with the same mean waiting time (r) = 2 (Fig.9a, V) is shown,
where n(¢) decays exponentially fast. The effective duration 7 of the epidemic
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process, given by the expected infection time of an individual after the outbreak,
T =Y 2, tn(t)/N,is measured to be 7y, ~ 5 for the exponential P(t), whereas
T ~ 4 x 10° for the power-law P(t) with o = 2.1. Therefore, the power-law
waiting time distribution indeed impacts the long-time dynamics of the spreading
process significantly.

4.3 SI Dynamics over Priority-Queue Networks

As a second example, the SI dynamics following the OR model of PQN has also
been studied. This may model the spreading of infectious entity through mutual
communications or contacts between individuals that can be initiated primarily by
any one of the individuals, as in the case of phone calls and face-to-face interactions.
The dynamics basically follows that of the OR model in Sect. 3.4. The infection is
transmitted whenever an infected and a susceptible node perform an 7/ -task together.
This dynamics proceeds until all nodes are infected.

We consider first the SI dynamics on a PQN having a power-law degree
distribution with exponent y = 3. In the long time limit, n(¢) is found to decay
as a power law with exponent approximately 2 (Fig. 10a, o). The power-law decay
of n(¢) is much slower than the exponential decay on the random execution queue
network (Fig. 10a, V). Such a longer prevalence time than predicted by the Poisson
process had been observed for spreading dynamics controlled by empirical human
activity patterns, such as an E-mail virus outbreak [57].

To understand the n(¢) ~ =2 behavior, we turn to the waiting time distribution
of the OV model PQN, through which the generation time distribution can be
obtained. There is a local variation of the P(7) exponent « in the OV model PQN as
shown in Sect. 3, which makes the identification of network-level exponent apgy
nontrivial. However, the following statistical reasoning, supported by numerical
simulations, offers key insights about long-time dynamic characteristics. We first
observe that different I tasks (links) manifest different exponents Pyi/(t) ~
7% parameterized by the degrees k and k’ of the associated nodes. Putting
the contribution of all tasks together, the smallest exponent oxs makes biggest
contribution to the tail of Ppoy(7). Note that links with axxr < 2 cannot contribute
statistically because of the strong peak of Py (7) at T & 1. So the net result is that
links with oxxs &~ 2 contribute the most, resulting in (Fig. 10b, o),

Ppon(T) ~ TN, apoy = 2. (11

In relating the waiting time distribution to the generation time distribution, we
further note that the interaction timings between connected pairs are not completely
independent in the PQN. To see this explicitly, let us consider three linearly
connected nodes (B — A — C) in the PQN. When node A interacts with node B
(I 4p task is being executed), node A cannot interact at the same time with node C
(I 4¢ task has to wait). So the waiting time of I4¢ begins at the execution of [4p



Burstiness: Measures, Models, and Dynamic Consequences 61

a g ; b 10—
o [H
) [ ]
1024 ] 10_4 e%
0 107 1 9o ]
10 g 6 o, 1
10 Vo Po_-.
102 ] s Vg0
- o 107 vvgg 1
= 10t 1 X< 1w0f AN ]
< X =N
6 1 g2t 1= B
10 oy
. 104 1961 e
10 . 8 6 2,1
10 Random v \\OOO 10°° ¢ 4,40 @ﬁg b
10° F PQN o 0¥ 4 10718 [ PQN o 3]
10—12 L L L L L ! ! 10—20 ! ! ! ! ! ! !
10° 10" 102 10% 10* 10° 10° 107 10® 10° 10" 102 10 10* 10° 108 107 108
t T
c d
100 T T T T T T T 104 T T T T T T T 100
o A’
-2 o
102 F %, 1 102 | &P 1402
4| (o) i ¥ VY|
10 %%, 100 RO “CBRRg {10
—~ 6 [oJN g_2AY
< 10%h o, 1 ) AN 6
= O6-. — 107 I AN 110° —~
Z 100 o i T % TaYo 2
S SR SIS "o A gy
g . ol o, 1 10 B, AT 10
> 10 o, B Ay
w02f oo ] 10°F  ERn@)o 5 Ay 1070
o ER g(A) % Ay
0L o 1078 | Cayley n(t) v _ 1 10712
Cayley g(a) & Sg a
10—16 L L L L L L L 10—10 L L L L L L L 10*14
10° 10" 102 10% 10* 10° 10° 107 108 10° 10" 102 10% 10* 10° 10° 107 10®
A t, A

Fig. 10 (a) The average number of new infection n(¢) of the SI model on the PQN (open circle)
and on the random execution queue network (open inverted triangle). After the initial increase,
n(t) after the peak decays with a power-law tail with exponent § ~ 2 for the PQN (open circle)
and exponentially for the random execution case (open inverted triangle). (b) The waiting time
distribution of the whole network, Ppgn(7), and those of links connecting nodes with degree k and
k', Py (7), of the same process for the PQN. Both Ppoy(7) and Py (7) decay as a power law,
yet with different exponents dependent on the local topological position, apgy = 2, aj96,1 =~ 1,
a1 ~ 3, and ay 4 ~ 2. (c) The generation time distribution gpgn(A) of the same process for the
PQN. In (a—c), simulations were performed on a scale-free network with y = 3 and size N = 10%,
and averaged over 10? different initial conditions. (d) n(t) (left scale) and g(A) (right scale) of the
SI model on the Erd&s-Rényi network with mean degree (k) = 4 and size N = 10* and Cayley
tree with branching number 4 and six generations (N = 1456). In each case, n(¢) and g(A) show
power-law tails with the same exponent. In all panels, dotted lines have slope —2, drawn as a guide.
Data are binned logarithmically. Adopted from [40]

task. If node B has been infected, the generation time of infection of C from A is
the same as the waiting time. Therefore, in the PQN the generation time distribution
gron(A) has the same power-law exponent as the waiting time distribution Ppoy(7)
(Fig. 10c), which in turn, according to our general theory, leads to npgy(t) decaying
with the same power law as Ppon(7), that is Bpon = apoy = 2 consistent with our
numerical findings.

The power-law decay with @ = 2 has been checked to hold quite independently
with the network structure (Fig.10d). We have examined the influence of the
network structure on the spreading dynamics over the PQN by considering Erd6s-
Rényi networks and Cayley trees. On both network structures, 7 (¢) is found to decay
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as a power law also with 8 = «, n(¢) ~ t=* (Fig. 10d). Since every node except
the root in Cayley tree is topologically indistinguishable, all  tasks show the same
P(7), which decays as a power law with & & 2 for degree k > 3. In this respect,
this is an example where the temporal heterogeneity dominates over the structural
heterogeneity.

5 Summary and Outlook

In this survey article, we have briefly overviewed recent works on the measurements,
modeling, and dynamics consequences of burstiness in human dynamics. A two-
way method for assessing the burstiness of a system using both the distribution-
based and the correlation-based measures was proposed. The modeling framework
of human dynamics based on priority queues has been generalized to a network
level, called the priority-queue network, to take interactions between individuals
into account.Finally, we have shown how individual bursty activity can slow down
spreading dynamics on a social network in the context of the simple SI model.

The stream of studies of temporal heterogeneity in human dynamics still
continues to flow, fuelled mainly by a variety of new datasets. In addition to digital
communication data from email [14], mobile phone [8], and short message [59],
other data from as diverse domains as face-to-face contact [9], online chat [17],
Wikipedia edit [31], internet prostitution [47], and online game behavior [53] have
been studied. Those studies on one hand reinforce the universal characteristics
of bursty, non-Poissonian activity in human dynamics; on the other, they have
also uncovered further features of human dynamics, such as the activity-topology
relation [32], the persistence pattern of emotional expressions [17], the effect
of circadian and seasonal patterns [29], and the temporal correlations in bursty
pattern [33], in particular the presence of long-term correlations [48, 49]. All
these intellectual effort, and surely more to come, will collectively contribute
to the ultimate goal of fulfilling the promise of better understanding of social
dynamics [34] and the physics of complex systems with temporal heterogeneity
in general [26].
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Temporal Scale of Dynamic Networks

Rajmonda Sulo Caceres and Tanya Berger-Wolf

Abstract Interactions, either of molecules or people, are inherently dynamic,
changing with time and context. Interactions have an inherent rhythm, often hap-
pening over a range of time scales. Temporal streams of interactions are commonly
aggregated into dynamic networks for temporal analysis. Results of this analysis
are greatly affected by the resolution at which the original data are aggregated. The
mismatch between the inherent temporal scale of the underlying process and that at
which the analysis is performed can obscure important insights and lead to wrong
conclusions. In this chapter we describe the challenge of identifying the range of
inherent temporal scales of a stream of interactions and of finding the dynamic
network representation that matches those scales. We describe possible formal-
izations of the problem of identifying the inherent time scales of interactions and
present some initial approaches at solving it, noting the advantages and limitations
of these approaches. This is a nascent area of research and our goal is to highlight its
importance and to establish a computational foundation for further investigations.

1 Introduction

Whether it is on-line communications [11, 33, 34], animal social interactions [15,
19,48, 55], or gene regulatory processes [25], the dynamic systems they represent
have inherent rhythms at which they function. Some of these inherent rhythms come
from the system itself, others are imposed by outside circumstances. Circadian
patterns of cell regulatory systems, seasonality in mobility patterns of animals,
daily and weekly communication patterns of humans are just a few examples
of these characteristic temporal scales. Not only do these complex systems have
inherent rhythms, different patterns within them form and live at different scales
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[32]. For example, when analyzing animal population behavior, three temporal
scales are considered to be important for capturing the hierarchical nature of its
social structure [21]: the scale of the interactions themselves, the scale of patterns
of interactions (relationships), and, finally, the scale of patterns of relationships
(network structures). In this context, grooming interactions of baboons usually
have a temporal scale ranging from seconds to minutes, mother to infant or
peer to peer relationships have a scale extending over years, while an individual
troop membership, splitting or formation of new troops extends from years to
decades [52]. Similarly, in human social behavior, the patterns of interaction of
conversations, friendships, and kinship occupy different temporal scales. Every
dynamic complex system exhibits this kind of multi-scalar behavior.

We view the system through the filter of data we collect. These data are typically
collected opportunistically, with the temporal rate of data not always matching that
of the system. In order to ask questions about these systems, the tools we use to
answer the questions, and the temporal scale of analysis have to match the temporal
scale of the process underlying the question. Whether the question of interest is
the detection of anomalies, the understanding of cohesiveness and persistence of
interactions, or the prediction of the system behavior, the temporal scale at which the
analysis is applied needs to reflect the temporal scale that captures what is essential
for the question. When we analyze millions of IP network traces in order to detect
outlying behavior, should we analyze their communication patterns every 5 min,
every hour, every day? How long should social interactions persist to be considered
meaningful relationships in a social network [21, 41]? Just like the cell has the
“capacity” to compute the temporal scope of mRNA expression [58], we would
like to develop an understanding of how to estimate the tempo of a given dynamic
system by analyzing its expression as a series of interactions occurring in time (i.e.
temporal stream).

1.1 The Dynamic Network Abstraction

The abstract representation of choice for modeling a dynamic system has been that
of the dynamic network, also referred to as temporal network [23,27,29, 35, 36].
A dynamic network is a time series of network snapshots. Each snapshot represents
a state of the system over the interval of time such as a minute, a day, or a year in
the life of the system. The duration of the snapshot represents the temporal scale
of the dynamic network since all the interactions are lumped together discarding
their order in time. Little thought, to date, has been given to matching this temporal
scale to that of the system under study. A snapshot of a year is not appropriate for
analyzing human conversation, but maybe right for understanding kinship relations,
minute-long snapshots could be suitable for analysis of gene regulatory systems, but
too fine for the baboon troop membership. How, then, should we go about finding
the “right” temporal scale for the dynamic network? This is the central question
of this book chapter.
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In the abstraction of the dynamic network, the temporal ordering of interactions
within a snapshot is lost. All these interactions are represented as living in the
same temporal scale, whether we have the finer temporal information or not. In
some instances, the data already comes as a series of aggregated snapshots; in
other instances, we are given a stream of interactions in time which we have to
aggregate. We have to make sure that as we transition from the temporal interaction
stream or a collection of finer snapshots to a dynamic network representation, the
information that we discard is not critical. It is not clear how to decide what the right
temporal scale of dynamic networks should be. While in many cases the system
under observation naturally suggests the size of such a temporal scale [35], it is
more often the case that the choice of temporal scale is arbitrary and is done for the
convenience of the data representation and analysis. For example, it is convenient
and sometimes meaningful to analyze human interaction patterns in calendaric
scales, but it does not always make sense to analyze animal social interactions in
similar scales. Studies of periodic behavior of animals have shown that animals do
not care much about week days and weekends [35].

Within the complex system there are subsets of interactions that form functional
units that naturally co-occur together and their analysis as a cohesive unit allows us
to see critical system behavior such as collective emergent behavior [41,42,46,58].
For example, when studying molecular mechanisms of diseases, it is important
to study the interactions of relevant genes concurrently in order to observe their
temporal coordination [58]. Similarly, epidemiological studies show that analysis
of concurrent relations allows for a more accurate estimation of the magnitude of
spread of an infectious agent [42,46]. In all these scenarios, analysis of interactions
as series of network snapshots allows us to uncover inherent concurrent sets of
interactions while maintaining only the critical temporal orderings. In this transition
from data streams to dynamic networks we have to know to discard the little noisy
perturbations of functional units, while retaining the meaningful temporal ordering
at the scale of natural functionality as a whole.

1.2 Empirical Motivation

The level of aggregation of the temporal stream has great implications on the
patterns observed in the corresponding dynamic network and the inference made
about the network and the processes on it [10, 13,23,29,32, 41, 53]. As Moody
et al. [41] point out, if analysis is applied at too fine temporal resolution, we end
up observing a network that has lots of temporal detail, yet the interesting and
meaningful co-occurring patterns, such as communities, may not be fully formed.
On the other end of the spectrum, when we aggregate the network at a too coarse
of a temporal scale, we loose critical temporal information and cannot observe
meaningful temporal changes to the system or processes over it. For example,
ecologists Baldock et al. [2] have shown that analyzing plant pollinator interactions
at a daily temporal scale misses temporal variations during the span of the day that
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Fig. 1 Representation of a social network aggregated at different windows of aggregation [(a), [7]]
and network measures of Reality Mining dataset as functions of the window of aggregation

[(b), [13]]

are critical for correctly interpreting interactions as either competitive or facilitative.
Figure 1a gives an illustration of the effect of the level of aggregation on the kind
of network structures that we observe (image reprinted from [7], with authors’
permission). Figure 1b also illustrates how measures computed over the dynamic
network critically depend on the level of aggregation that generated this network
(image reprinted from [13], with authors’ permission).

1.3 Data Collection

Data about dynamic interaction systems is often collected as a sequence of interac-
tions together with temporal information about their occurrences. Depending on the
nature of the dynamic system, it might be more meaningful to represent the temporal
dynamics as a stream of instantaneous interactions (i.e. point-based interaction
streams). At other times, a stream of interactions with temporal durations (i.e.
interval-based interaction streams) is more suitable. For systems such as email com-
munications, point-based streams offer a better representation. On the other hand,
friendships in a social network or grooming in baboon troops are better character-
ized as interval-based streams. Interval-based interaction streams can be viewed as a
generalization of point-based interaction streams, where we can think of the duration
time as zero. Figure 2 gives an illustration of both types of interaction streams.
Whether the collected data comes from GPS sensors, digital recording of emails,
or human observation of animals grooming, most often, what we record is the
instantaneous times at which the interactions were observed to be present. This
process often introduces different kinds of artificial noise that can be described both
in terms of topological structure and in terms of temporal structure. Topological
noise arises when we attempt to represent continuous behavior discretely (GPS).
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Fig. 2 Illustration of two different types of temporal interactions: interval-base interactions
(a), point-based interactions (b)

We might miss interactions that should be present in the network. At the same
time, we might record interactions that occur spuriously, but are not meaningful.
For example, when collecting proximity-based networks of students at MIT using
bluetooth devices or zebras in Kenya using GPS collars, an interaction, then, is being
at the same place at the same time for a sufficiently long interval. If two zebras
happen to cross paths without actually interacting, devices that sample positions
sufficiently frequently will record this occurrence even though this “interaction”
should not be included in the network. On the other hand, observing baboon
interactions once a day, will miss many important dynamics.

1.4 Oversampling of Temporal Streams

Oversampling is an aspect of the data collection process that can help with the
issue of representing continuous time discretely. Oversampling helps reduce the
number of missing or spurious interactions. It allows us to better understand
what interactions are persistent in the network. On the other hand, oversampling
affects our ability to distinguish between local noisy temporal orderings and critical
temporal ordering. For example, when we observe human interactions at much
higher rate than necessary, it is maybe hard to distinguish between interactions
that develop independently of each other and those that are transient. When emails
arrive within seconds of each other, is their ordering meaningful? Is it important in
what order people walk in to a meeting room or is it more important to know that
they were present at the meeting? With the advent of electronic data collection of
interactions using communication devices, GPS, and proximity sensors, it is often
the case that data are oversampled at orders of magnitude higher temporal resolution
than the temporal scale of the underlying process. Therefore, it is important that the
aggregation process correctly accounts for the oversampling effects.

So far we have discussed scenarios when the aggregation of interactions streams
into a series of network snapshots is useful in capturing both the topological and
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temporal structure of the underlying system. The characteristic of the system that
makes the dynamic network the right abstraction is the notion of local concurrency,
or temporal independence. In dynamic systems where the temporal ordering of the
interactions is absolutely critical, and there are no hidden concurrencies buried due
to the data collection process, aggregation is not a useful tool.

In addition, we have discussed how temporal networks have an inherent rhythm
that governs their dynamics. This is one natural way to define what is the “right”
temporal scale. An alternative way would be to define the “right” temporal scale
in terms of what is useful about networks. This leads to an orthogonal approach
which is application driven. For example, the identification of the most frequent
sub-graphs, or the identification of dynamic communities are useful applications
that give us meaningful insight about the network. The natural question that arises
here is to identify the optimal temporal scale at which application-specific patterns
become detectable.

In summary, the dynamics of complex systems evolve at characteristic temporal
scales. Understanding the mapping between structure and the temporal scale at
which it lives is critical, and when done appropriately can lead to meaningful
and insightful analysis. The subtle interplay between the temporal concurrency
and temporal ordering is at the core of what is essential about the right temporal
resolution for analysis of dynamic networks. The notions of temporal concurrency
and temporal ordering depend on the context of analysis and they often lead to dis-
covery of complex multi-scalar nature of the structure. When temporal concurrency
is something inherent to the system or analysis, aggregation of interactions streams
helps in capturing this aspect of system functionality.

Although we have illustrated the challenges related to temporal scale identifi-
cation in the context of dynamic complex systems, the problem of identifying the
right resolution for analysis of temporal data in general is very broad and covers
many research areas. The relevant literature spans fields from signal processing
[18,44] and information theory [50] to time series analysis, time series segmentation
[28,43,45], and model granularity [5,20,47]. While the literature mentioned above
offers a solid foundation for the problem of temporal scale identification in general,
it does not explicitly address data that are represented as networks. It is not clear, for
example, how techniques like aggregation or smoothing of numerical values relate
to the same techniques applied to network structures [10,38,53]. There is, however,
the opportunity for great research in trying to translate and adapt these methods for
the analysis of temporal scale of networks. Caceres, Berger-Wolf and Grossman
[10] show that for special classes of network generative processes, the class of
linear network measures (such as density and average degree) capture essential
characteristics of the network at different scales, while Miller, Bliss and Wolfe [38]
aim to develop a general signal processing theory for networks (graphs).

The understanding and identification of the right temporal scale of dynamic
networks is a nascent area of research. In this chapter, we formalize this problem and
present some of its associated challenges. We also present an overview of existing
methods for this problem, noting their advantages and limitations. Finally, we
propose a conceptual framework designed to offer a common ground for translating
empirical evidence, intuition and insight into a cohesive theory.
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2 Related Work

Following is a brief review of related work in the areas of signal processing,
information theory and time series analysis.

2.1 Signal Processing and Information Theory

Temporal aggregation is a natural pre-processing step when the frequency at which
the data are generated is lower than the frequency at which the data are sampled.
Usually the approach involves formulating a trade-off between loss of information
and reduction of noise present in the signal. The goal in this context is to identify
the window at which the original continuous signal can be fully recovered from the
discretized signal. The Nyquist-Shannon sampling theorem [50] gives a necessary
condition for the length of the sampling window in this context.

Minimum description length (MDL) is another information theoretic technique
that is used to find the best granularity for data analysis [5,20,47]. In this context,
information is defined in terms of its algorithmic complexity. It assumes that
the best hypothesis for a given set of data is the one that leads to the largest
compression. Several works have used MDL principle to learn the best model
granularity. Identifying the intrmulinsic temporal scale of time series can be viewed
as a special case of model granularity and there are a few approaches that apply
the MDL concept directly to such data [24, 56]. In the next section we review the
approach by Sun et al. [54] that applies the MDL concept to dynamic networks.

2.2 Time Series Smoothing

Smoothing techniques are prevailing in the domain of time series analysis. In this
context, some of the variation in the data is assumed to be due to random noise. The
goal of the smoothing techniques is, therefore, to cancel some of the variations and
to reveal inherent properties of the time series, such as trends or seasonal and cyclic
behavior. The two main groups of smoothing methods are the averaging methods
and the exponential smoothing methods.

While the literature mentioned in this section offers a solid foundation on how to
properly aggregate data for analysis, it does not explicitly address datasets that are
represented as networks and, furthermore, it does not address the dynamic nature
of these networks. In this chapter, we focus explicitly on understanding how the
process of aggregation or smoothing of interaction streams affects the quality of
dynamic network that we get.
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2.3 Temporal Scale for Dynamic Networks

The problem of identifying the right temporal scale for dynamic networks has only
recently started getting the deserved attention. James Moody explicitly points out
the problem in [41]. Existing literature on the topic is preliminary and mainly of
empirical nature. Clauset and Eagle [13] illustrate the effect of the aggregation
window in understanding the periodic dynamics of the Reality Mining dataset
[16]. They recommend the use of Fourier Transform analysis and auto-correlation
analysis of time series of network measures. While these techniques have been
successfully applied to understand stationary time series, their application to time
series of measures originating from highly dynamic and complex networks might
not be appropriate. It is not clear how the aggregation of time series of measures
in networks relates to the underlying aggregation of interactions. Caceres et al. [10]
theoretically show that for the special class of oversampled stationary processes and
the special class of linear network measures (such as density and average degree),
there is a direct relation between the two. We do not know, however, whether the
same is true for more general dynamic network processes and network measures.
Sulo, Berger-Wolf and Grossman [53] propose a heuristic that applies aggregation
at the level of the dynamic network rather than at the level of time series of network
measures in order to preserve as much of the network structure. They also give an
explicit formulation of the optimal window of aggregation using the information
theoretic framework.

The approach by Sun et al. [54] developed initially for the purpose of efficiently
clustering dynamic networks consists of grouping similar network snapshots into
one time-interval using the Minimum Description Length principle. The idea of
compressing the graph to maintain only the more relevant aspects is very promising
and relevant for the problem of aggregating at the right time scale and is similar to
the approach in [53]. The contribution of the method by Sun et al. [54] is to use
drastic changes in the time series of compression levels to segment the timeline of
the temporal network. Rather than focusing explicitly on change detection, the goal
of the research in [53] is more general, that is, identifying the inherent temporal
scale that governs the overall dynamics of the network, as well as the changes in
that scale.

However there is no definitive principled and rigorous framework for the problem
of temporal scale for dynamic networks. Partially this due to the fact that problem
itself has not been explicitly stated.

3 Problem Definition

We now formally define the main concepts that will be used throughout the chapter.
We formalize the notion of a stream of interactions as a probabilistic process. We
define the process of aggregation of interactions leading to a probabilistic dynamic
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network. We further define special random interaction streams and corresponding
networks. The definition of the optimal temporal scale for these streams is straight-
forward, yet stating these special cases explicitly allows us to gain further insight
into more complex interaction streams. Finally, we formally state the Temporal
Scale Inference (TSI) problem for dynamic networks.

3.1 Preliminary Definitions

In this section we present some basic definitions and descriptions of concepts and
used throughout this thesis.

4 Definitions and Notation

Let V be a set of vertices and E the set of edges defined over V' x V. For Ve; €
E.i,jeVandt e[l,...,T], the pair (e, t) is the time labeled instance of e;;.

Definition 1. A temporal stream of edges E; is a sequence of edges ordered by
their time labels:
E, = {(eij,t)leij eE,tell,...,T]}

Let & be a partition of the timeline [1,...,T]:
Z =, t),[n,0), ... [, T]

As a special case, we consider the uniform partition &,,, where each interval p;
has length w:

P = APk} SLY P, | prl = @

Definition 2. A dynamic graph DG is a sequence of graphs defined over stream E,
and a fixed partition & of E;:

DG : (V. E}))

DG = (Gl,Gz,...,Gk,...G\m)

with E¥F = {(e;;,1)|e; € E;,t € py} and each Gy is associated with the kth interval
Pk in Z.

We now define the operation of aggregation of a temporal stream of edges into the
time series of graphs comprising a dynamic network. Given the temporal stream of
edges E;, and a fixed partition of the stream &2, we define the aggregation function
that takes as an input the temporal stream of edges and the partition and outputs a
time series of graphs.
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Definition 3. An aggregation function A on a temporal stream E;, and a fixed
partition &2 is defined as:

A E, x P — ((V,E)

A(E,, 2) = DG

The aggregation function A takes all the edges occurring in a stream within a time
interval p; € & and constructs a graph. Consider the scenario when A is applied to
the uniform partition &,,. Figure 3 shows an illustration of the aggregation function
when the window of aggregation w is three. Note, that edges can occur within each
temporal window more than once, but they get represented in the corresponding
aggregated graph at most once. Throughout this chapter, we use this definition for
the aggregation function. Another possible extension to this definition of A could
take the multiplicity of edge occurrence into account.

In a more general sense, an aggregation function could also use as a parameter a
“goodness of fit” measure , that allows to map an interval p; € & to the best fit
graph G with respect to u:

A(Efsfgzs:u) = (G;:>

Note that in the general definition, G, does not necessarily have to include all the
edges that occur during py.
Let Q be a function that measures the quality of this dynamic graph:

0: 2 xDG— R

Quality function Q maps the pair (&, DG) to the set of non-negative real
numbers so that these values capture how “good” the dynamic network is. Q can
also be used to compare different dynamic network representations of the same
temporal stream. The notion of the quality function is different from that of the
objective function for a particular algorithm that generates a dynamic network.
Thus, the use of quality function as a model selection tool allows us to use it for
comparing different algorithms on the same data.
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5 Problem Formulation

The abstraction and identification of the right temporal scale for transitioning from
a dynamic stream of interactions into a meaningful and representative dynamic
network is not a straight forward task. One natural way to define the “right” temporal
scale of dynamic systems is as the scale of the inherent rhythm that governs their
dynamics. Alternatively, one can argue that the definition of the temporal scale
depends on the analysis objective for a given dynamic network. In either case, there
is an implicit notion of a quality function that characterizes the optimal aggregation
of the interaction stream. Ultimately the goal is to identify the temporal resolution
that corresponds to either global or local optima of this quality function. With this
in mind, we now formally define the Temporal Scale Inference problem:

Definition 4. TEMPORAL SCALE INFERENCE (TSI) PROBLEM: Given a temporal
stream E, and a quality function Q, find the partition &2* of the timeline [1, ..., T],
and the corresponding dynamic graph DG*, that optimizes the quality function Q:

(P*,DG*) = arg mmax 0({(Z,DG)).

Now that we have given the definitions, and stated the problem we are ready to
discuss in more detail some results for the TSI problem.

6 Special Cases of Temporal Interaction Streams

In this section, we study a collection of interaction streams for which we have some
intuitive understanding on what is the “right” temporal scale. As we carefully define
their generative processes and the properties they inherit, the goal is to understand
more rigorously, and gain insight into what happens as we aggregate the streams
at different temporal scales. We discuss examples ranging from the very simple
constant stream with no temporal scale, to realistic interaction streams coming from
real-world data. Each one of the examples touches on different aspects of temporal
scale and helps us formalize the notion the “right” temporal scale.

6.1 Constant Streams

Constant streams are the simplest possible temporal streams and one might even
argue whether they are indeed temporal at all. They are streams where the same
set of interactions occurs at each time step. The corresponding static graph SG is
defined as follows:
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Definition 5. Static Graph (SG) is the graph G(V, E’, p) defined over the set of
nodes V' and the set of edges E’ € V x V. Each edge in this graph occurs with
probability p = 1 at any time ¢:

V(ej.1) € E' CV xV, Pri(ej.1)€G) =1

Clearly there is no dependence on time and no algorithm should choose a particular
temporal scale other than the entire time line. More explicitly, as illustrated in Fig. 4,
any aggregation of the constant stream over any aggregation window will produce a
network identical to the original stream.

A more interesting case of a “stream with no temporal scale” is the stream where
the set of interactions that appear at each step is not constant, yet, the occurrence of
each interaction does not depend on time.

6.2 DynUR Stream

We define the Dynamic Uniform Random Graph (DynUR) as the graph where each
edge occurs at any time uniformly at random with probability p. This is the temporal
equivalent of the Erd6s-Rényi graph.

Definition 6. Dynamic Uniform Random Graph (DynUR) is the graph G(V, E;, p)
with a constant probability 0 < p < 1 for all edges:

V(ej t) € (E,T) Prl(ej,t) € G)] = p.

Consider what happens when the aggregation function A (Definition 3) is applied
to the DynUR stream with aggregation window w. The result is a time series of
graphs, which we call DynUR,, = A(DynUR, Z,). Intuitively it is clear that
the DynUR,, graph is generated by a process with no temporal dependencies or
correlations. This is true for any window of aggregation w, therefore, such a graph
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becomes a perfect candidate for a network that has no temporal scale. Sulo et al. [10]
give several characterizations of this model. At any temporal scale, the resulting
dynamic network is a time series of ER graphs and, therefore, topologically the
dynamic network is a time series of probabilistically identical in time. Also, any
permutations of the times of edges occurrences does not have any effect on the
probabilistic topology of the dynamic network. These characterizations all point
to the important property: no temporal scale is qualitatively better than any other
for analyzing the DynUR temporal stream. The picture changes when processes
that have an embedded temporal structure (e.g. periodicity) are analyzed at different
temporal scales. In such cases, inherent structural properties of the dynamic network
only emerge at specific scales and not all scales carry this property [10].

In general, a null model provides a baseline and a sanity check for evaluating
any algorithm claiming to solve a problem or assessing the significance of any
discovered pattern. For static networks, the Erdos-Rényi graph has been used as the
simplest null model [17]. It is a simple graph where each edge occurs independently
at random with the same probability p. This model generates a network where
each vertex has the same expected degree. More sophisticated null models that can
approximate the skewed degree distribution of empirical networks [4] have been
proposed by Molloy and Reed [39,40], and later on by Chung-Lu [12].

The definition of the null model becomes more complicated when we add time. In
addition to correctly representing the relevant topological structure of the network,
these models need to incorporate aspects of the temporal structure such as order,
concurrency, and delay of interactions, among others. Null models for temporal
networks have been proposed by Holme [22] and Karsai [14,26]. They use temporal
reshuffling as a tool to generate streams where different aspects of temporal structure
get randomized. Holme and Karsai discuss these null models in the context of
analyzing processes, such as spread of a virus or information, over the temporal
stream (to which they refer to as the contact sequence). Holme in [23] points to the
issue that scale plays a role in capturing the critical temporal correlations:

... there are several kinds of possible temporal correlations and several time scales where the
correlations are important, and thus no single, general-purpose null model can be designed
(the temporal configuration model). Rather, by designing appropriate null models, one may
switch off selected types of correlations in order to understand their contributions to the
observed time-domain characteristics of the empirical temporal network.

In the absence of knowing the right temporal scale for the given temporal stream
or the spread process over it, permutations at all the scales need to be tried and
tested in order to generate the relevant null model. A null model is a way to test
the importance of structure found at any given scale. It does not allow us, however,
to find the temporal scale (or scales) in and of itself. We can use a null model in
conjunction with a quality function to do so. In Sect. 7 we formalize and generalize
this observation for any quality function.
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Fig. 5 Illustration of two cases of DynMix graph with three alternating probability distributions
(M=3). (a) Illustrates Case 1 of DynMix, with a cycle of constant probabilities, and (b) illustrates
Case 2 of DynMix, with a cycle of random graphs

6.3 Structured Temporal Streams

6.3.1 Periodic Stream

We will now consider periodic streams for which we expect the period to be related
to the concept of the “right” temporal scale. We give a general definition of the
corresponding probabilistic graph, the Dynamic Mixture (DynMix) graph.

Definition 7. Dynamic Mixture Graph (DynMixy () on M fixed probability

distributions { P;}! | and a set of temporal windows {w;}M  with W = Zlﬂil wi,
is the graph G(V, E;, P;) where:

t
V(e t) € E;, Prl(e;,t) € G)] = pyjr, | = mody {WJ

The Dynamic Mixture Graph is a repeating sequence of dynamic graphs.
Consider two special cases for the probability distribution functions generating
the DynMix, (,,,y graph:

Case 1. A sequence of constant probability distribution P;, so the probability of an
edge e;; does not depend on the time index ¢:

Pr{(ej, 1) € DynMix, q,,1|(ei)] = pij.

Figure 5a gives an illustration of such a Dynamic Mixture Graph when the number
of repeating probability distributions M is 3.
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Case 2. A sequence of DynUR graphs, where for any given probability distribution
Py, and a given time index ¢, the probability of all edges ey; at ¢ is the same:

Pr((ejj,t) € DynMixy; ¢, 3|t) = pr Vi, j € V.

Figure 5b gives an illustration of such a Dynamic Mixture Graph with M = 3.

Note that DynUR can be viewed as a special instance of both Case 1 and Case 2 of
the DynMix (,,+ graph with p;; = p, = p for all tuples {/, i, j,}. Sulo et al. [10]
showed that for a periodic stream, a linear function on the corresponding dynamic
graph becomes stationary at specific windows of aggregation. These windows
of aggregation correspond to the period (or any multiple of the period) of the
underlying edge probability process.

6.3.2 Stationary Stream

One of the most intuitive properties that we want the dynamic network to have
is stability or stationarity [8, 32]. In physics this property is typically referred to
as steady state, while in statistics it is called stationarity. Whether we are trying
to identify long term trends or typical behavior, or whether we want to predict
new behavior, a stable system is a necessary condition for a meaningful analysis
if we wish to infer something about the system from a history of observations.
Furthermore, as perturbation analysis has increasingly become a powerful tool for
untangling the complex structure of networks [22, 26], it is important to apply
such analysis over a stable system. Otherwise, it is difficult to distinguish between
changes due to the instability of the systems and changes due to the perturbation
[8]. Stability is a property analyzed extensively in the context of numerical time
series. The interest here is to understand this property in the context of temporal
interaction streams. Ultimately, the goal is to be able to identify aggregation levels
(temporal scales) of the interaction stream so that the corresponding dynamic system
represents a system in a steady state and, therefore, appropriate for analysis.

In this chapter, we will use the statistical definition of stability. More precisely,
we define a stationary probabilistic function that generates the temporal stream.

Let P; = Pr[(ej;,t) € E,] be the general case of a (weak) stationary probability
distribution function generating the stream of edges E; = {(e;,t),e;j € E,t €
[1,...,T]}. Thatis,

1. E[pii] = wjj, s.t. u; does not depend on ¢.
2. Cov(piji, Pija+<)) = Vij, s-t. y;; does not depend on ¢.

6.3.3 Theseus Ship Stream

So far we have discussed streams whose structure is stable over time. We now turn
our attention to a stream that appears to be stable, yet it changes slowly over time.
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What kind of issues does a stream like this introduce to our problem of scale? The
notion of an object changing slowly over time is an old one, and is illustrated by the
Theseus Ship paradox [49].

The ship wherein Theseus and the youth of Athens returned [from Crete] had thirty oars,
and was preserved by the Athenians down even to the time of Demetrius Phalereus, for they
took away the old planks as they decayed, putting in new and stronger timber in their place,
insomuch that this ship became a standing example among philosophers, for the logical
question of things that grow; one side holding that the ship remained the same, and the
other contending that is not the same. [Plutarch, Life of Theseus]

The Theseus Ship paradox raises the question of whether the identity of an
object fundamentally changes when all of the object’s components have changed.
Many great minds from ancient Greece to the present have struggled to find the
right answer to the dilemma posed by this paradox. A translation of the Theseus
Ship paradox in the framework of dynamic networks has been discussed in [57] to
describe the notion of communities whose members change over time.

There is an analog of this paradox in the context of temporal interaction streams.
Consider a process, where every k time steps, the same set of interactions occurs,
except for a small change; one of the occurring interactions is replaced with a
new interaction (illustrated in Fig.6). After enough time steps, the initial set of
interactions is replaced completely with a new set of interactions. The question that
arises here is “What is the right temporal scale for aggregating such a stream?”
At a fine temporal scale we observe change that is too gradual. At the same
time, we are able to capture the persistence structure of the network. At a coarser
temporal scale, we will loose this persistence structure, but we will be able to
identify periodicity. This is a good example of the complexity of the definition
of the “right” temporal scale. The dichotomy of persistence versus periodicity
motivates the position that the definition of the “right” temporal scale is context- and
question-specific. Furthermore, the aggregation the Theseus Ship stream illustrates
the multi-scalar nature property of temporal streams. Depending on the magnitude
of change we want to observe in such a stream, different levels of aggregation are
suitable for the analysis.
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6.3.4 Oversampled Stream

Another property of the streams that is critical for the TSI problem is the oversam-
pling property. The assumption that the process is oversampled is a natural one for
any good data set. An under-sampled process cannot be guaranteed to contain suf-
ficient information for analysis, by definition. Furthermore, given the pervasiveness
of fast and automated data collection systems, oversampling is more of a realistic
property rather than a wishful one. It does, however, introduce some unwanted side
effects, such as artificial time orderings and spurious patterns. Naturally, we are
interested in identifying aggregation levels of the stream that take the oversampling
factor into consideration. At such temporal scale, the oversampling noise has been
smoothed out, and the corresponding dynamic network is a true representative of the
underlying dynamics. Specifically, if we have an existing stream where we know the
optimal window of aggregation is , then, intuitively, if we over-sample by a factor
of o, the new optimal window of aggregation should be aw. Although the size of
the window of aggregation changes proportionally to the oversampling factor, the
process of finding the optimal window should not be sensitive to the oversampling
factor. In this sense, uniformly modifying the frequency of interactions should not
affect the relative temporal distances between interactions.

We now formally define the process of oversampling of interaction streams. Let
P, = Prl(e;,t) € E;] be the probability distribution function generating the stream
of edges E; = {(ej,t),e;j € E,t €[1,...,T]}.

Definition 8. An «-stretching mapping ¢, of the time line [1,...,¢,..., T], where
o > 0, is defined as follows:

b1, t,... T = [1,....t,...,aT]

' =[ta—(a—1),ta—(x—=2),...,1d]

Definition 9. An oversampled probabilistic interaction process Py = Pr|(e;,t")
€ Ey], over the time sequence ¢ € [1,...,aT], and probability function P, is
defined as follows:

1
Pr =Py, =P

An illustration of a simple oversampled periodic stream is given in Fig. 7. Note
an oversampled periodic stream is still periodic (in this case the period is W = 2,
and the oversampling factor is @ = 3). The right scale for such a process takes into
account the oversampling rate and recaptures what is essential about this process,
whether that is the alternating change (0* = a% = 3) or the stationarity (w* =
aW = 6).

Throughout this chapter, we are assuming oversampling at a uniform rate. In
reality, data and the processes they represent are messy and oversampling could

happen at nonuniform rates.
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Fig. 7 Oversampled periodic stream

6.3.5 Noisy Stream

Similar to the definition of structure in dynamic networks, noise comes in two
flavors: topological and temporal. Topological noise has to do with the presence
or absence of an observed interaction (or a set of interactions) that does not reflect
the behavior of the underlying system. The addition of time adds to the complexity
of noise in dynamic networks. Specifically, the occurrence time of an interaction
could be noisy as well as the ordering of this occurrence time with respect to that of
other interactions. Alternatively, we can view noise as the antithesis of structure. In
this context, we discussed in Sect. 6.2 the characteristics for the DynUR stream, the
completely structureless stream.

In general, the topological and temporal aspects of noise are coupled in ways that
make it difficult to analyze them individually. Yet, throughout Sect. 6, we attempt to
state the characteristics of temporal noise more explicitly. In Sect. 6.3.6, we analyze
a simple case of temporal noise, by introducing gaussian noise to the temporal
probabilities of each interaction. In addition, we use perturbation analysis as a way
to detect noisy temporal orderings of interactions. Clearly, in real-world datasets,
noise is generated by much more complex models and can have other manifestations
that we do not consider in this chapter. In addition, we would expect the magnitude
of noise to have an effect on the “right” level of aggregation. We would expect that,
at some threshold, the large magnitude of noise overwhelms structure and the stream
essentially becomes the DynUR stream. Despite the fact that we do not address
these aspects of noise explicitly, they provide interesting and important directions
for future work.

6.3.6 Oversampled, Noisy Stationary Stream

A periodic process is just one example of a stationary process. Now that we have
also discussed oversampled and noisy streams individually, we can discuss a much
more general class of interaction streams: the oversampled noisy stationary streams.

Let P; = Pr[(ej;,t) € E,] be the general case of a (weak) stationary probability
distribution function generating the stream of edges E;, = {(e;,t),e;j € E,t €
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[1,....T]}. An oversampled noisy probabilistic process Py = Pr[(e;,t") € E/]
over time sequence [1,...,¢,...,aT], and probability function P;, is defined as
follows:

1
Pt/:_Pf+65
o

with € € N(0, o) representing Gaussian noise.

Caceres et al. [10] showed that for the class of oversampled, stationary, noisy
interaction streams, a linear function on the corresponding dynamic graph becomes
stationary at specific windows of aggregation. These windows of aggregation
correspond to the multiple of the oversampling rate.

7 Axiomatic Framework: Desired Properties of the Quality
Function 0

In Sect. 6, we demonstrated some intuitive properties one would expect to observe
for temporal streams. We showed that for a stream with no temporal scale, the re-
ordering of interactions along the time line had no effect on the resulting dynamic
network. We described some simple cases of interaction streams (e.g. DynUR and
constant stream) for which we have a clear understanding of the right temporal
scale. Finally, we illustrated the effect of oversampling on the aggregation of
different temporal streams and how it intuitively relates to the notion of the “right”
temporal scale.

We now propose an axiomatic approach to capture this collection of insights in a
formal way and to allow future rigorous analysis of the TSI problem. The axiomatic
approach has recently gained a lot of interest in the field of spatial clustering. Similar
to the TSI problem, the goal of spatial clustering is to postulate important sets
of properties both in terms of the optimal partitioning [30], and in terms of the
qualitative functions over such partitions [1, 6]. The axiomatic view has also been
applied to the analysis of graphs in the context of graph clustering [37] and graph
complexity [9].

The TSI problem shares many of the characteristics and challenges of the clus-
tering problem, both in metric and non-metric space, yet an axiomatic framework
that synthesizes the characteristics of the TSI problem is lacking.

8 Axiomatic Framework: Desired Properties of the Quality
Function Q

In the formulation of the TSI problem in Sect. 5, we defined the optimal temporal
scale through the proxy of the quality function. This shifts the burden from finding
the “real” temporal scale to optimizing the quality function. Ideally the two are the
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same. What properties, then, should the quality function possess in order to correctly
reflect the behavior of the underlying temporal scale?

Here we present a set of axioms that delineate desired properties of the quality
function Q. Let £2 be the set of all temporal streams E,; defined over the fixed set of
vertices V' and the finite time line [0, ..., T]. Since V is a fixed set and [0,--- , T']
is finite, there is a finite number of temporal streams in 2, and therefore, £2 is a
discrete probability space. Let <7 be a TS algorithm, that takes as input a temporal
stream £, and outputs a set of pairs (&, DG) as solutions:

o VX V,[,....T]} > {{2,DG)}

We can then think of Q as a random variable defined over the set {{Z?, DG)}.
The range of Q is [0, Q*], where Q* is the maximal value of quality associated
with a specific partition & of E;, and the corresponding dynamic network DG).

0:2 >R
Let @ be a transformation function on the temporal stream E;:
®:E — E,.

An example of a transformation function is the permutation function = defined as
follows:

Definition 10. Given a temporal stream E,, a fixed partition & of the stream, a
probabilistic permutation function s picks a pair of edges ((e;, j,, 1), (e, j,. x)), at
random from E; and swaps their timestamps:

n:E — E

((eiljl 3 tl)v (eizjzv tk)) — ((eiljl 5 tk)v (eizjza tl))
We consider two special cases of function x:

» The within-interval permutation function m,, chooses the pair of edges from the
same interval p; € &2 such that 1y, € p;.

* The across-interval permutation function m, chooses the pair of edges from two
different intervals p;, p; € & suchthaty; € p; and 4 € p;.

The goal of the following axioms will be to characterize the change in the
quality of dynamic network DG defined over a given temporal stream E; due
to transformation function @. Let ¢ > O represent a fixed threshold parameter
characterizing the amount of change in quality. If the change is less or equal e,
we consider the change “small”. Let § > 0 be a confidence parameter about the
probability of the change in Q being small. We are now ready to formally define the
axioms.



Temporal Scale of Dynamic Networks 85

[Q1] Within Interval Order Invariance: For an optimal partition, permuta-
tions of interactions within the same interval do not drastically change the quality
of the dynamic graph.

Formally, let 2*, DG* be the optimal (with respect to a particular quality func-
tion Q) partition and the optimal dynamic graph for the temporal stream E;. Let
2% . DG* be the optimal partition and optimal dynamic graph corresponding to
the perturbed stream E; = m,,(E,, &7*). Then, with high probability, the change
in the quality function after the perturbation is small:

V., Vpi € 2% P(|0(DG*) — O(DG*)| <€) > 1.

Intuitively, the process of aggregating temporal interactions into a dynamic graph
has the effect of assigning the same time to interactions within each partition,
while preserving the temporal ordering across partitions. At the optimal temporal
scale, the temporal ordering of interactions that fall within the same partition is
not essential. The fact that, locally, some interactions are observed as happening
in a particular order is an artifact of looking at them at too fine of a temporal
resolution. They could have happened in any order as long as they happened
within a certain time frame.
[Q2] Across Interval Order Criticality: For an optimal partition, permutations
of edges across different intervals change the quality of the partition.
Formally, we define the neighborhood of a given interval p; € & the following
way:

N(pi) = {pjlli = jl < r.r >0},

Let DG* be the optimal dynamic graph corresponding to E = n,(E;, 7*):
Then, with high probability, the change of the quality function after the permu-
tation is substantial:

In,. ¥V pi € P*.pj € N(pi), P(|Q(DG*) — Q(DG*)| > €) > 1 —36.

Intuitively, at the optimal temporal scale, the temporal ordering of sets of
interactions across the partitions is crucial and reflects the time dependence of
the network structures. While this might not be true for all edges, there must
exist a subset of interactions for which the ordering is critical. Otherwise, time
does not play a role in the structure of the interactions.

[Q3] Measure Unit Invariance: Uniform scaling of the oversampling factor
does not change the quality of the dynamic network.

Formally, let E; and E; be two temporal streams generated by oversampling
the same underlying process at rates & and o, such that @ # «’. Let DG* and
DG* be the optimal dynamic graphs for E; and E; respectively. Then, with high
probability, the change in the quality function is small:

P(|Q(DG*) — Q(DG*)| < €) > 6.
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This axiom bears resemblance to the scale invariance axiom in spatial clustering.
In this context, the partitioning of the data into clusters does not depend on the
units of the distance function. The oversampling invariance axiom represents
an analogous intuition: oversampling rate is a measure of the time unit used
to measure how far apart interactions occur along the timeline. In this sense,
uniformly modifying the frequency of interactions should not affect relative
temporal distances between interactions.

[Q4] Constant Stream: The constant stream has no time scale, the optimal
partition is the whole timeline.

A constant stream is the stream for which the same set of edges occurs at every
time step. Let DG be a dynamic graph over the constant stream. Let DG’ be a
coarsening of DG. Then, the quality function of the coarsening is better:

VDG, DG, O(DG) < Q(DG).

Consequently, the optimal DG* with respect to the quality function Q on the
constant stream is the aggregation of the whole timeline.

[Q5] Stream with no Temporal Scale: The quality function is the same for any
partition of the stream with no temporal scale.

Formally, let DG and DG’ be any two dynamic networks corresponding to any
two partitions & and £’ of the stream with no temporal scale. Then, the quality
function of the two dynamic networks should not be different:

VDG, DG, |Q(DG) — Q(DG)| > €.

[Q6] Temporal Shift Invariance: A shift of the time line of a temporal stream,
does not drastically change the quality of the dynamic network. The optimal
partition of the stream is independent of the time line’s starting point.

Formally, let [0,...,7] be the time line of the temporal stream E;. Let
[A,...,T + A] be the new timeline shifted by parameter A > 0. Let DG*
represent the optimal dynamic network for £, and DG* be the optimal dynamic
network for the shifted temporal stream. Then, the change of the quality function
due to the shift is small:

|0(DG*) — Q(DG¥)| < e.

An interval in a partition of the stream identifies a temporal cohesive unit in the
dynamic network, similar to the notion of a building block. It is more important
that interactions happen a specific time apart rather than where in the stream
they happen. Temporal shift invariance is a strong assumption, considering the
absolute time dependency of complex systems. For example, empirical analysis
of mobile phone calls [32] shows that, especially for a finer time scale, the start
time of the partition matters a lot. In general, it is of great interest to characterize
interaction streams (and their generative mechanisms) that are independent of the
start time, and those streams that are highly sensitive.
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Axioms [Q1] and [Q2] view the underlying dynamic process and the temporal
structure it contains as a sequential process. These axioms specify when the ordering
of the interactions matters and when it is just temporal noise. Axioms [Q3] through
[Q5] are formalizations of some intuitive observations about the TSI problem.
As a collection, axioms presented here are not exhaustive of all the properties
characterizing the temporal scale of interaction streams. Yet, these axioms provide a
starting point for formally addressing the TSI problem in a rigorous and consistent
manner. The axioms serve as external evaluators of the quality of a dynamic
network, in the sense that they do not depend on the type of the partitioning
algorithm used, objective function, or the generative process of the temporal stream.
Therefore, the usefulness of the axiomatic framework is two-fold. The framework
can be used to:

1. Evaluate the performance of a partitioning algorithm in a unbiased way.
2. Provide a taxonomy of different partitioning algorithms.

9 Heuristics for the TSI Problem

We conclude this chapter with two heuristics for the TSI problem. We have already
discussed the very few approaches for inferring the temporal scale of an interaction
stream. We now present in greater detail two heuristics that follow more closely the
formalism of the TSI problem. These are by no means the best solutions for the
problem, but they are the best to date and take a very different route to solving
the problem. We hope they would serve as a starting point and a foundation for
a variety of practical techniques for solving the TSI problem. Both heuristics are
based on ideas from information theory. The concept of “information” embedded in
interaction streams is general and includes the notion of persistence of structure as a
special case. Patterns that persist for awhile truly represent what is more “essential”
for the underlying system. In social network analysis, one point of view considers
persistent interactions over time as defining more complex sociological structures
such as relationships or kinship [41]. In another context, the notion of persistence
is critical in extending the static definition of communities to that of dynamic
communities [57]. Finally, persistence is a property that allows us to construct a
network with the “core” interactions, discarding the noisy transient interactions.
Therefore, the notion of persistence lends itself to yet another formulation of the
“right” temporal scale: the temporal scale that best captures the persistent nature of
the underlying complex system.

Following, we give a summary of the TWIN (Temporal Window In Networks)
[53] and GraphScope heuristic [54]. TWIN takes the approach of looking at
the temporal scale as a global inherent characteristic of the interaction stream.
Graphscope on the other hand, takes an objective-specific approach by identifying
levels of aggregation where drastic changes in the structure of the stream are easier
to identify.
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9.1 TWIN

The TWIN (Temporal Window In Networks) heuristic uses graph-theoretic mea-
sures as proxies of different aspects of network structure. Given a temporal stream
of edges and a graph-theoretic measure (Fig. 8), the heuristic generates time series
of graphs (dynamic graphs) at different levels of aggregation. It then computes the
variance and compression ratio for each time series. Finally, the algorithm analyzes
the compression ratio and variance as functions of window size and selects the
window size for which the variance is relatively small and compression ratio is
relatively high.

Variance and compression ratio are not mathematical compliments of each other,
but they do have opposite behavior as functions of window size. As illustrated in
Fig.9, when we increase the value of w, we expect the variance to decrease and
compression rate to increase. There is a region in Fig.9 where variance is very
small and compression is very high. However, low variance and high compression
in this region are achieved artificially by aggregating the underlying stream at too
coarse a scale, so that all the critical temporal information is removed. We call
the range of window sizes that fall in this region uninteresting. Instead, there is
a range of window sizes for which we can expect both relatively low variance and
relatively high compression levels of time series F,,. This insight allows TWIN to
formulate the process of finding the range of appropriate discretization window sizes
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Fig. 10 TWIN’s trade-off plot of variance (V) and compression rate (R) of network radius with
respect to window size w (in days)

as a search problem guided by the values of variance and compression (Fig. 10).
Figure 11 gives an illustration of TWIN’s results for the Enron dataset [51].

9.2 Graphscope

Graphscope uses the notion of compression cost to capture the persistence of
network structures (in this case of communities) in time [54]. Similar graph
snapshots will incur low compression cost, therefore they can be grouped together
in one temporal segment. Whenever the compression cost increases substantially
with the addition of a new graph snapshot, Graphscope starts a new temporal
segment. Figure 12 shows the relative difference in compression cost between
grouping consecutive temporal segments versus starting a new temporal segment
for the Enron dataset. High peaks in this plot correspond to key events of the Enron
corporation during the period of January 2002 [54].

9.3 Comparison of TWIN and Graphscope

Since GraphScope focuses on variations of graph compression levels, it is the
magnitude of change in the graph structure that drives the timeline segmentation.
TWIN analyzes the regularity of compression levels of different metrics on the
graph, and therefore, it is the rate of change, not the magnitude, that will have the

most affect in the aggregation.
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Fig. 12 Relative compression cost versus time for the Enron dataset. Large cost indicates change
points which coincide with key events (with red representing maximal values of change). Vertical
lines on the plot correspond to top ten change points. Reprinted with authors’ permission
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A nice feature of the Graphscope heuristic is the fact that it generates a non-
uniform partitioning of the timeline. The non-uniform partitioning is a more
realistic representation of real-world interaction streams which are commonly
characterized by bursty behavior [3,31]. On the other hand, Graphscope determines
this partitioning for a fixed aggregation step and it does not take into account the
affect the aggregation step has on the computation of the compression cost. The
estimation of persistent structures leading to the low compression costs is highly
sensitive on the size of aggregation level. TWIN overcomes this dependency by
analyzing the persistent nature of the stream across different scale, and picking those
scales where persistence is more pronounced.

10 Conclusions and Future Outlook

There is both the intuitive understanding and the mounting amount of evidence that
temporal scale of an interaction stream plays an important role in the analysis of
that stream. Moreover, it is clear that many streams have a set of relevant scales and
that those may change over time. Some of the scales are inherent to the dynamics
of the interactions, while others are only relevant depending on the context of the
analysis performed on the stream. All of this makes the problem of identifying and
inferring the temporal scale of interaction streams important. All of this also make
the problem elusive and maddeningly difficult to state.

In this chapter we brought together the various interpretations of the concept
of temporal scale and pointed out the evidence that supports those interpretations.
We formalized the problem of the temporal scale inference and its properties, and
discussed several existing approaches for solving the problem.

The problem of temporal scale inference is very new. The few existing
approaches to stating or solving it are just the beginning. Every research direction
in this area is open. We hope this chapter brings the problem to the forefront of
research consciousness, makes the problem explicit, and provides the tools for
making progress in this area. Understanding the rhythm of interacting systems is
not only necessary for the proper analysis of these systems, but will provide us
with the fundamental insight into what makes these systems tick. It is an important,
challenging, and worthy endeavor.
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Models, Entropy and Information of Temporal
Social Networks

Kun Zhao, Marton Karsai, and Ginestra Bianconi

Abstract Temporal social networks are characterized by heterogeneous duration of
contacts, which can either follow a power-law distribution, such as in face-to-face
interactions, or a Weibull distribution, such as in mobile-phone communication.
Here we model the dynamics of face-to-face interaction and mobile phone com-
munication by a reinforcement dynamics, which explains the data observed in these
different types of social interactions. We quantify the information encoded in the
dynamics of these networks by the entropy of temporal networks. Finally, we show
evidence that human dynamics is able to modulate the information present in social
network dynamics when it follows circadian rhythms and when it is interfacing with
a new technology such as the mobile-phone communication technology.

1 Introduction

The theory of complex networks [1-6] has flourished thanks to the availability
of new datasets on large complex systems, such as the Internet or the interaction
networks inside the cell. In the last 10 years attention has been focusing mainly
on static or growing complex networks, with little emphasis on the rewiring of the
links. The topology of these networks and their modular structure [7-10] are able
to affect the dynamics taking place on them [5, 6, 11, 12]. Only recently temporal
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networks [13-18], dominated by the dynamics of rewirings, are starting to attract
the attention of quantitative scientists working on complexity. One of the most
beautiful examples of temporal networks are social interaction networks. Indeed,
social networks [19, 20] are intrinsically dynamical and social interactions are
continuously formed and dissolved. Recently we are gaining new insights into the
structure and dynamics of these temporal social networks, thanks to the availability
of a new generation of datasets recording the social interactions of the fast time
scale. In fact, on one side we have data on face-to-face interactions coming from
mobile user devices technology [21,22], or Radio-Frequency-Identification-Devices
[16, 17], on the other side, we have extensive datasets on mobile-phone calls [23]
and agent mobility [24,25].

This new generation of data has changed drastically the way we look at social
networks. In fact, the adaptability of social networks is well known and several
models have been suggested for the dynamical formation of social ties and the
emergence of connected societies [26-29]. Nevertheless, the strength and nature
of a social tie remained difficult to quantify for several years despite the careful
sociological description by Granovetter [19]. Only recently, with the availability
of data on social interactions and their dynamics on the fast time scale, it has
become possible to assign to each acquaintance the strength or weight of the social
interaction quantified as the total amount of time spent together by two agents in a
given time window [16].

The recent data revolution in social sciences is not restricted to data on social
interaction but concerns all human activities [30-33], from financial transaction
to mobility. From these new data on human dynamics evidence is emerging that
human activity is bursty and is not described by Poisson processes [30,31]. Indeed,
a universal pattern of bursty activities was observed in human dynamics such as
broker activity, library loans or email correspondence. Social interactions are not an
exception, and there is evidence that face-to-face interactions have a distribution
of duration well approximated by a power-law [16, 34—37] while they remain
modulated by circadian rhythms [38]. The bursty activity of social networks has
a significant impact on dynamical processes defined on networks [39, 40]. Here
we compare these observations with data coming from a large dataset of mobile-
phone communication [41, 42] and show that human social interactions, when
mediated by a technology, such as the mobile-phone communication, demonstrate
the adaptability of human behavior. Indeed, the distribution of duration of calls
does not follow any more a power-law distribution but has a characteristic scale
determined by the weights of the links, and is described by a Weibull distribution.
At the same time, however, this distribution remains bursty and strongly deviates
from a Poisson distribution. We will show that both the power-law distribution of
durations of social interactions and the Weibull distribution of durations and social
interactions observed respectively in face-to-face interaction datasets and in mobile-
phone communication activity can be explained phenomenologically by a model
with a reinforcement dynamics [35,36,41,42] responsible for the deviation from a
pure Poisson process. In this model, the longer two agents interact, the smaller is
the probability that they split apart, and the longer an agent is non interacting, the
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less likely it is that he/she will start a new social interaction. We observe here that
this framework is also necessary to explain the group formation in simple animals
[43]. This suggests that the reinforcement dynamics of social interactions, much
like the Hebbian dynamics, might have a neurobiological foundation. Furthermore,
this is supported by the results on the bursty mobility of rodents [44] and on
the recurrence patterns of words encountered in online conversations [45]. We
have therefore found ways to quantify the adaptability of human behavior to
different technologies. We observe here that this change of behavior corresponds
to the very fast time dynamics of social interactions and it is not related to
macroscopic change of personality consistently with the results of [46] on online
social networks.

Moreover, temporal social networks encode information [47] in their structure
and dynamics. This information is necessary for efficiently navigating [48, 49]
the network, and to build collaboration networks [50] that are able to enhance
the performance of a society. Recently, several authors have focused on measures of
entropy and information for networks. The entropy of network ensembles is able
to quantify the information encoded in a structural feature of networks such as
the degree sequence, the community structure, and the physical embedding of the
network in a geometric space [10,51,52]. The entropy rate of a dynamical process on
the networks, such a biased random walk, are also able to characterize the interplay
between structure of the networks and the dynamics occurring on them [53]. Finally,
the mutual information for the data of email correspondence was shown to be fruitful
in characterizing the community structure of the networks [54] and the entropy of
human mobility was able to set the limit of predictability of human movements [55].

Here we will characterize the entropy of temporal social networks as a proxy
to characterize the predictability of the dynamical nature of social interaction
networks. This entropy will quantify how many typical configuration of social
interactions we expect at any given time, given the history of the network dynamical
process. We will evaluate this entropy on a typical day of mobile-phone communi-
cation directly from data showing modulation of the dynamical entropy during the
circadian rhythm. Moreover we will show that when the distribution of duration
of contacts changes from a power-law distribution to a Weibull distribution the
level of information and the value of the dynamical entropy significantly change
indicating that human adaptability to new technology is a further way to modulate
the information content of dynamical social networks.

2 Temporal Social Networks and the Distribution
of Duration of Contacts

Human social dynamics is bursty, and the distribution of inter-event times follows
a universal trend showing power-law tails. This is true for e-mail correspondence
events, library loans, and broker activity. Social interactions are not an exception
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to this rule, and the distribution of inter-event time between face-to-face social
interactions has power-law tails [30, 31]. Interestingly enough, social interactions
have an additional ingredient with respect to other human activities. While sending
an email can be considered an instantaneous event characterized by the instant in
which the email is sent, social interactions have an intrinsic duration which is a
proxy of the strength of a social tie. In fact, social interactions are the microscopic
structure of social ties and a tie can be quantified as the total time two agents interact
in a given time-window. New data on the fast time scale of social interactions have
been now gathered with different methods which range from Bluetooth sensors
[21], to the new generation of Radio-Frequency-Identification-Devices [16, 17]. In
all these data there is evidence that face-to-face interactions have a duration that
follows a distribution with a power-law tail. Moreover, there is also evidence that
the inter-contact times have a distribution with fat tails. In this chapter we report
a figure of [16] (Fig. 1 of this chapter) in which the duration of contact in Radio-
Frequency-Device experiments conducted by Sociopatterns experiments is clearly
fat tailed and well approximated by a power-law (straight line on the log—log plot).
In this figure the authors of [16] report the distribution of the duration of binary
interactions and the distribution of duration of a the triangle of interacting agents.
Moreover they report data for the distribution of inter-event time.

How do these distributions change when human agents are interfaced with a new
technology? This is a major question that arises if we want to characterize the uni-
versality of these distributions. In this book chapter we report an analysis of mobile-
phone data and we show evidence of human adaptability to a new technology.

We have analysed the call sequence of subscribers of a major European mobile
service provider. In the dataset the users were anonymized and impossible to track.
We considered calls between users who called each other mutually at least once
during the examined period of 6 months in order to examine calls only reflecting
trusted social interactions. The resulted event list consists of 633,986,311 calls
between 6,243,322 users. We have performed measurements for the distribution
of call durations and non-interaction times of all the users for the entire 6 months
time period. The distribution of phone call durations strongly deviates from a fat-tail
distribution. In Fig. 2 we report these distributions and show that they depend on the
strength w of the interactions (total duration of contacts in the observed period)
but do not depend on the age, gender or type of contract in a significant way. The
distribution P"(At;,) of duration of contacts within agents with strength w is well
fitted by a Weibull distribution

k w X _ _ AZ _ L —l%xl_ﬁ
(W) PY (Ati) = Wp (x = —‘L’*(W)) = xﬂe B . (1)

with B = 0.47... The typical times of interactions between users t*(w) depend
on the weight w of the social tie. In particular the values used for the data
collapse of Fig.3 are listed in Table 1. These values are broadly distributed, and
there is evidence that such heterogeneity might depend the geographical distance
between the users [56]. The Weibull distribution strongly deviates from a power-law
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Fig. 1 Probability distribution of human social interaction. Figure from [16]. (a) Probability
distribution of duration of contacts between any two given persons. Strikingly, the distributions
show a similar long-tail behavior independently of the setting or context where the experiment
took place or the detection range considered. The data correspond to respectively 8,700, 17,000
and 600,000 contact events registered at the ISI, SFHH and 25C3 deployments. (b) Probability
distribution of the duration of a triangle. The number of triangles registered are 89, 1,700 and
600,000 for the ISI, SFHH and 25C3 deployments. (¢) Probability distribution of the time intervals
between the beginning of consecutive contacts AB and AC. Some distributions show spikes (i.e.,
characteristic timescales) in addition to the broad tail; for instance, the 1 h spike in the 25C3 data
may be related to a time structure to fix appointments for discussions

distribution to the extent that it is characterized by a typical time scale t(w), while
power-law distribution does not have an associated characteristic scale. The origin
of this significant change in the behavior of humans interactions could be due to
the consideration of the cost of the interactions (although we are not in the position
to draw these conclusions (see Fig. 3 in which we compare distribution of duration
of calls for people with different type of contract) or might depend on the different
nature of the communication. The duration of a phone call is quite short and is not
affected significantly by the circadian rhythms of the population. On the contrary,
the duration of no-interaction periods is strongly affected by the periodic daily of
weekly rhythms. In Fig. 4 we report the distribution of duration of no-interaction
periods in the day periods between 7a.m. and 2 a.m. next day. The typical times



100 K. Zhao et al.

2
a 10 UL | R | R | LERELRRRLL LERELRRRLL T T T TTTIT

*e 73
W

~ 10°

SR e, 0% E
E L o w=w_ (2-4%) o
e 10° F o w=w__ (4-8%) =
L ° w:wmax(8—16%) o
107x ~ W:Wmax(lé-32%) .... =
E ¢ £

10'10 :-3 1| IIIIIII-2 1| ||||||I>1 1| IIIIIII0 1| IIIIIIIl 1| IIIIIII2 1| |||||'|--3

10 10 10 10 10 10 10

Normalized call duration Atim/r*(w)

b 0
10 T |||||||| T ||||||1 T ||||||1 T ||||||1 TTTTIm
3 i_“\“\\ =
_ 10_5 I e ]
ER T I N
= 10t o dzeid0-60 8
D s e o : e
10 — age:80-100 Y
10’13 ._| IIIIIIII 1 IIIIII‘ 1 IIIIII‘ 1 IIIIII‘ 111
10° 10" 100 100 10" 10° 10 10" 100 100 10t 10’
Call duration Atim(sec) Call duration Atim(sec)
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7*(k) used in Fig. 6 are listed in Table 2. The distribution of non-interacting times
is difficult to fit due to the noise derived by the dependence on circadian rhythms.
In any case the non-interacting time distribution if it is clearly fat tail.
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0-2%) Wpar 111.6
(24 %) Winax 237.8
(478 %) Winax 3344
(8-16 %) Wiax 492.0
(16-32 %) Wiax 718.8
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Fig. 4 Distribution of non-interaction times in the phone-call data. The distribution strongly
depends on circadian rhythms. The distribution of rescaled time depends strongly on the con-
nectivity of each node. Nodes with higher connectivity k are typically non-interacting for a shorter
typical time scale t* (k). Figure from [41]

Table 2 Typical times t*(k) used in the data
collapse of Fig.4

Typical time t* (k)
Connectivity in seconds (s)
k=1 158,594
k=2 118,047
k=4 69,741
k=8 39,082
k=16 22,824
k=32 13,451

3 Model of Social Interaction

It has been recognized that human dynamics is not Poissonian. Several models
have been proposed for explaining a fundamental case study of this dynamics,
the data on email correspondence. The two possible explanations of bursty email
correspondence are described in the following.
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* A queueing model of tasks with different priorities has been suggested to
explain bursty interevent time. This model implies rational decision making
and correlated activity patterns [30, 31]. This model gives rise to power-law
distribution of inter event times.

* A convolution of Poisson processes due to different activities during the circadian
rhythms and weekly cycles have been suggested to explain bursty inter event
time. These different and multiple Poisson processes are introducing a set of
distinct characteristic time scales on human dynamics giving rise to fat tails of
interevent times [57].

In the previous section we have showed evidence that the duration of social
interactions is generally non Poissonian. Indeed, both the power-law distribution
observed for duration of face-to-face interactions and the Weibull distribution
observed for duration of mobile-phone communication strongly deviate from an
exponential. The same can be stated for the distribution of duration of non-
interaction times, which strongly deviates from an exponential distribution both for
face-to-face interactions and for mobile-phone communication. In order to explain
the data on duration of contacts we cannot use any of the models proposed for bursty
interevent time in email correspondence. In fact, on one side it is unlikely that the
decision to continue a conversation depends on rational decision making. Moreover
the queueing model [30, 31] cannot explain the observed stretched exponential
distribution of duration of calls. On the other side, the duration of contacts it is
not effected by circadian rhythms and weekly cycles which are responsible for
bursty behavior in the model [57]. This implies that a new theoretical framework is
needed to explain social interaction data. Therefore, in order to model the temporal
social networks we have to abandon the generally considered assumption that social
interactions are generated by a Poisson process. In this assumption the probability
for two agents to start an interaction or to end an interaction is constant in time and
not affected by the duration of the social interaction.

Instead, to build a model for human social interactions we have to consider a
reinforcement dynamics, in which the probability to start an interaction depends
on how long an individual has been non-interacting, and the probability to end an
interaction depends on the duration of the interaction itself. Generally, to model
the human social interactions, we can consider an agent-based system consisting of
N agents that can dynamically interact with each other and give rise to interacting
agent groups. In the following subsections we give more details on the dynamics of
the models. We denote by the state n of the agent, the number of agents in his/her
group (including itself). In particular we notice here that a state n = 1 for an agent,
denotes the fact that the agent is non-interacting. A reinforcement dynamics for such
system is defined in the following frame.
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Reinforcement dynamics in temporal social networks

The longer an agent is interacting in a group the smaller is the probability that
he/she will leave the group.

The longer an agent is non-interacting the smaller is the probability that he/she
will form or join a new group.

The probability that an agent i change his/her state (value of n) is given by

h(t)

Ja(t 1) = m

@

where 7 := (¢ —t;)/N, N is the total number of agents in the model and #;
is the last time the agent i has changed his/her state, and j is a parameter of
the model. The reinforcement mechanism is satisfied by any function f, (¢, t;)
that is decreasing with t but social-interaction data currently available are
reproduced only for this particular choice f,(z, ;).

The function /(¢) only depends on the actual time in which the decision is made.
This function is able to modulate the activity during the day and throughout the
weekly rhythms. For the modelling of the interaction data we will first assume that
the function /() is a constant in time. Moreover in the following subsections we
will show that in order to obtain power-law distribution of duration of contacts and
non-interaction times (as it is observed in face-to-face interaction data) we have to
take B = 1 while in order to obtain Weibull distribution of duration of contacts
we have to take § < 1. Therefore, summarizing here the results of the following
two sections, we can conclude with the following statement for the adaptability of
human social interactions.

The adaptability of human social interactions

The adaptability of human social interactions to technology can be seen as an
effective way to modulate the parameter 8 in (2) parametrizing the probability
to start or to end the social interactions.

3.1 Model of Face-to-Face Interactions

Here we recall the model of face-to-face interactions presented in [35, 36] and
we delineate the main characteristics and outcomes. A simple stochastic dynamics
is imposed to the agent-based system in order to model face-to-face interactions.
Starting from given initial conditions, the dynamics of face-to-face interactions at
each time step ¢ is implemented as the following algorithm.
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1. An agenti is chosen randomly.
2. The agent i updates his/her state n; = n with probability f, (¢, ;).
If the state n; is updated, the subsequent action of the agent proceeds with the
following rules.

(1) If the agent i is non-interacting (n; = 1), he/she starts an interaction
with another non-interacting agent j chosen with probability proportional to
fi(t, ;). Therefore the coordination number of the agent i and of the agent j
are updated (n; — 2 andn; — 2).

(ii) If the agent i is interacting in a group (n; = n > 1), with probability A
the agent leaves the group and with probability 1 — A he/she introduces an
non-interacting agent to the group. If the agent i leaves the group, his/her
coordination number is updated (n; — 1) and also the coordination numbers
of all the agents in the original group are updated (n, — n — 1, where r
represent a generic agent in the original group). On the contrary, if the agent
i introduces another isolated agent j to the group, the agent j is chosen with
probability proportional to fi(t,¢;) and the coordination numbers of all the
interacting agents are updated (n; - n+1,n; - n+1landn, - n +1
where r represents a generic agent in the group).

3. Time ¢ is updated as t — ¢ + 1/N (initially # = 0). The algorithm is repeated
from (1) until ¢ = T,y

We have taken in the reinforcement dynamics with parameter 8 = 1 such that

by

IO = TN

3)

In (3), for simplicity, we take b, = b, for every n > 2, indicating the fact the
interacting agents change their state independently on the coordination number 7.

We note that in this model we assume that everybody can interact with everybody
so that the underline network model is fully connected. This seems to be a very
reasonable assumption if we want to model face-to-face interactions in small confer-
ences, which are venues designed to stimulate interactions between the participants.
Nevertheless the model can be easily modified by embedding the agents in a social
network so that interactions occur only between social acquaintances.

In the following we review the mean-field solution to this model. For the detailed
description of the solution of the outline non-equilibrium dynamics the interest
reader can see [35, 36]. We denote by N,(¢,t’) the number of agents interacting
withn = 0,1,..., N — 1 agents at time #, who have not changed state since time ¢'.
In the mean field approximation, the evolution equations for N, (¢,¢") are given by

Ny (z,1") Ni(t,t')
=-2
ot N

Ny(t,1)

file =ty = (1= De()——filt = 1) + Y mia ()i

i>1
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8 I I
ML) S0 f ) 4 r1a0) + s 20018
t N
N, (¢, 1’ Ny (t, ¢ ,
8(§ - - 55/ t )fn(t =)+ [a—10(0) + Tpt10 (@) + 710 D)8, n > 2.(4)

In these equations, the parameter €(¢) indicates the rate at which isolated nodes
are introduced by another agent in already existing groups of interacting agents.
Moreover, 7,,,(¢) indicates the transition rate at which agents change its state from
mton (i.e. m — n) at time ¢. In the mean-field approximation the value of €(¢) can
be expressed in terms of N, (¢,1") as

Dot Sopmy Nalt. 1) fu(t — f/)‘

5
Yo Nt 0) filt = 1) )

€(t) =

Assuming that asymptotically in time €(¢) converges to a time independent variable,
i.e. lim,—, 0 €(f) = €, the solution to the rate equations (4) in the large time limit is
given by

/ o {— " RHI=LE
Ni(t,t")y = Ny, )| 1 +

N
t—1t\ "2
No(t, ) = Nz(t’,t/)(l + N (6)
t— t —nby
N, (@, 1) = Nn(t”t’)(l + N ) forn > 2,
with
N 1)y = ()
n>1
Nz(l‘/, Z/) = Nl,z(l/) + 7t3,2(l/) @)

Nn(t/s Z/) = nn—l,n(t/) + nn+l,n(tl) + ”O,n(tl) forn > 2.

We denote by P, (7) the distribution of duration of different coordination number
n which satisfies the relation

P,(7v) = an(z —t"YN(t,t)dr . (8)

t'=0

and using (3) and (6) we find that P,(t) simply satisfy

Pi(t) o« (1 + 7/-)—171[2+(1—A)€]—1
Py(t) o (1 + ‘L’)_nbz_l. )
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Fig. 5 Distribution P,(t) of
durations of groups of size n
in the stationary region. The
simulation is performed with
N = 1,000 agents for a
number of time steps

Thar = N x 10°. The
parameter used are

bo = b] = 07, A = 0.8. The
data is averaged over ten
realizations

DB wW—| |
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Fig. 6 Phase diagram of arbitrary state number 7: the red area indicates the regime where a large
group is formed and the solution is divergent. The blue area indicates the non-stationary regime.
The white area indicates the stationary regime

As shown in Fig.5, the analytic prediction (9) is in good agreement with the
computer simulation.

Despite the simplicity of this model, the non-equilibrium dynamics of this system
is characterized by a non trivial phase diagram. The phase-diagram of the model is
summarized in Fig. 6. We can distinguish between three phases:

* Region I—the stationary region: b, > 0.5, by > 2A—1)/(3A—=3)and A > 0.5—
This region corresponds to the white area in Fig. 6. The region is stationary and
the transition rates between different states are constant.

* Region II—the non-stationary region: by < 0.5 or by > 2A —1)/(3A — 3), and
A > 0.5—This region corresponds to the blue area in Fig. 6. The region is non-
stationary and the transition rates between different states are decaying with time
as power-law.

e Region Ill—formation of a big group: A < 0.5—In this region there is an
instability for the formation of a large group of size O'(N).

In both regions I and region II the distribution of the duration of groups of size
n follows a power-law distribution with an exponent which grows with the group
size n. This fact is well reproduced in the face-to-face data [36] and implies the
following principle on the stability of groups in face-to-face interactions.
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Stability of groups in face-to-face interactions

In face-to-face interactions, groups of larger size are less stable than groups
of smaller size. In fact the stability of a group depends on the independent
decisions of the n agents in the group to remain in contact.

3.2 Model of Phone-Call Communication

To model cell-phone communication, we consider once again a system of N agents
representing the mobile phone users. Moreover, we introduce a static weighted
network G, of which the nodes are the agents in the system, the edges represent the
social ties between the agents, such as friendships, collaborations or acquaintances,
and the weights of the edges indicate the strengths of the social ties. Therefore the
interactions between agents can only take place along the network G (an agent can
only interact with his/her neighbors on the network G). Here we propose a model
for mobile-phone communication constructed with the use of the reinforcement
dynamic mechanism. This model shares significant similarities with the previously
discussed model for face-to-face interactions, but has two major differences. Firstly,
only pairwise interactions are allowed in the case of cell-phone communication.
Therefore, the state n of an agent only takes the values of either 1 (non-interacting)
or 2 (interacting). Secondly, the probability that an agent ends his/her interaction
depends on the weight of network G. The dynamics of cell-phone communication
at each time step ¢ is then implemented as the following algorithm.

1. An agenti is chosen randomly at time ¢.
2. The subsequent action of agent i depends on his/her current state (i.e. n;):

(i) If n; = 1, he/she starts an interaction with one of his/her non-interacting
neighbors j of G with probability fi(z;,7) where #; denotes the last time
at which agent i has changed his/her state. If the interaction is started,
agent j is chosen randomly with probability proportional to fi(z;,¢) and the
coordination numbers of agent and j are then updated (n; — 2andn; — 2).

(ii) If n; = 2, he/she ends his/her current interaction with probability f>(t;, |wy)
where wy; is the weight of the edge between i and the neighbor j that is
interacting with i. If the interaction is ended, the coordination numbers of
agent i and j are then updated (n; — l andn; — 1).

3. Time ¢ is updated as ¢t — ¢ + 1/N (initially # = 0). The algorithm is repeated
from (1) until t = T,,,4,.

Here we take the probabilities fi(¢,1'), f>2(¢,t'|w) according to the following
functional dependence
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, by
fi.r) = fin) = T+0F
Attt ) = fatel) = 5O (10)

where the parameters are chosen in the range b; > 0,5, > 0,0 < <1,g(w)isa
positive decreasing function of its argument, and 7 is givenby 7 = (t —¢’)/N.

In order to solve the model analytically, we assume the quenched network G
to be annealed and uncorrelated. Here we outline the main result of this approach
and we suggest for the interested reader to look at papers [41,42] for the details of
the calculations. Therefore we assume that the network is rewired while the degree
distribution p(k) and the weight distribution p(w) remain constant. We denote by
N{(,1") the number of non-interacting agents with degree k at time # who have not

changed their state since time ¢’. Similarly we denote by Nzk ’k/’w(t, t’) the number
of interacting agent pairs (with degree respectively k and k’ and weight of the
edge w) at time ¢ who have not changed their states since time ¢’. In the annealed
approximation the probability that an agent with degree k is called by another agent
is proportional to its degree. Therefore the evolution equations of the model are
given by

INKk@, 1 Nth/ Nk@, v
la(z ) _ ( )f(t 1"y —ck 1§V )ﬁ(t — 1) + 7k, )8
ANKK w(p 4 Nkkwtt’
ZT() = —2#]3(1 '|w) + 75 ()8, an

where the constant ¢ is given by

_ Yw o dINE @) i~ 1)
Sk [y dNE @) fite — 1)

12)

In (11) the rates mp, (¢) indicate the average number of agents changing from state
p = 1,2 to state ¢ = 1,2 at time 7. The solution of the dynamics must of course
satisfy the conservation equation

/dt’[N{‘(t, )+ 3 NS )] = Npk). (13)

k' w

In the following we will denote by Plk (¢, 1) the probability distribution that an agent
with degree k is non-interacting in the period between time ¢’ and time 7 and we will
denote by P,’(,t’) the probability that an interaction of weight w is lasting from
time ¢’ to time ¢ which satisfy
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PE(t,t')y = (1 + ck) fi(t, t)NF (2, 1)
Py (et = 2£(t.0'1w) Y NY¥Y (o). (14)

k.k’

As a function of the value of the parameter of the model we found different
distribution of duration of contacts and non-interaction times.

e Case 0 < B < 1. The system allows always for a stationary solution with
NK(t.1") = NF(t) and NSV (¢, 1"y = NF¥'¥ (7). The distribution of duration
of non-interaction times Pf(t) for agents of degree k in the network and the
distribution of interaction times P,"(t) for links of weight w is given by

bi(1+ Ck)e—ibl(llj/;k)(l-i-r)l_ﬁ
(1+17)p

2byg(w) o P ()1

(1+17)f '

Pk (1)

Py (7) x (15)

Rescaling (15), we obtain the Weibull distribution which is in good agreement
with the results observed in mobile-phone datasets.

¢ Case B = 1. Another interesting limiting case of the mobile-phone communi-
cation model is the case B = 1 such that f*(z) o (1 + 7)7! and f3"(r|w) x
(1 + 7)~'. In this case the model is much similar to the model used to mimic
face-to-face interactions described in the previous subsection [35, 36], but the
interactions are binary and they occur on a weighted network. In this case we get
the solution

NF(tr) = Nak (1 + o) 1+eh)
Nzk’k/’w(f) = anz’k/’w(l + 1) 2ag ), 06
and consequently the distributions of duration of given states (14) are given by
Pl(r) oc k(1 4 7)1 (et
Py (@) oy (1L 4 o) 200 (17)

The probability distributions are power-laws. This result remains valid for every
value of the parameters by, b, g(w) nevertheless the stationary condition is only
valid for
bi(1+ck)>1
2byg(w) > 1. (18)
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Indeed this condition ensures that the self-consistent constraints (12), and the
conservation law equation (13) have a stationary solution.

e Case B = 0. This is the case in which the process described by the model is a
Poisson process and there is no reinforcement dynamics in the system. Therefore
we find that the distribution of durations are exponentially distributed. In fact
for B = 0 the functions f(z) and f>(z|w) given by (10) reduce to constants,
therefore the process of creation of an interaction is a Poisson process. In this case
the social interactions do not follow the reinforcement dynamics. The solution
that we get for the number of non interacting agents of degree k, N () and the

number of interacting pairs Nzk KW (1) is given by

le(‘lf) — Nn,écle—bl(l-i-ck)r

NEF @ () = Nk e2hgtor, (19)
Consequently the distributions of duration of given states (14) are given by

Plk (1’) o e—b1(1+ck)r

P} (1) oc e 2028007, (20)

Therefore the probability distributions Plk (r) and P)"(r) are exponentials as
expected in a Poisson process.

4 Entropy of Temporal Social Networks

In this section we introduce the entropy of temporal social networks as a measure of
information encoded in their dynamics. We can assume that the following stochastic
dynamics takes place in the network: according to this dynamics at each time step
t, different interacting groups can be formed and can be dissolved giving rise to the
temporal social networks. The agents are embedded in a social network G such that
interaction can occur only by acquaintances between first neighbors of the network
G. This is a good approximation if we want to model social interactions on the fast
time scale. In the case of a small conference, where each participant is likely to
discuss with any other participant we can consider a fully connected network as the
underlying network G of social interactions. In the network G each set of interacting
agents can be seen as a connected subgraph of ¢, as shown in Fig.7. We use an
indicator function g;, ;,...;, () to denote, at time ¢, the maximal set iy, iy,..., i, of
interacting agents in a group. If (iiz, . .., i,) is the maximal set of interacting agents
in a group, we let g;, ;,....;, (f) = 1 otherwise we put g;, ;,....;, (t) = 0. Therefore at

oo

any given time the following relation is satisfied,

..... in
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Fig. 7 The dynamical social networks are composed by different dynamically changing groups
of interacting agents. (a) Only groups of size one or two are allowed as in the phone-call
communication. (b) Groups of any size are allowed as in the face-to-face interactions

Y Giben =1 @1)

G=(i,ir,...ip)|[i €4

where ¢ is an arbitrary connected subgraph of G. Then we denote by
1 =48 ir....., @) Yt' < t} the history of the dynamical social networks, and
p(&ii....i,(t) = 1|.7) the probability that g;, ;,..;, (f) = 1 given the history ..
Therefore the likelihood that at time ¢ the dynamical social networks has a group
configuration g;, ;,..;, (f) is given by

..... in

L =[] P8y (©) = 1|00 0, 22)
i
We denote the entropy of the dynamical networks as § = —(log.Z) 4,

indicating the logarithm of the typical number of all possible group configurations
at time 7 which can be explicitly written as

S == pP@iiria(®) = 15)10g p(gisr..ir() = 117).  (23)
%

The value of the entropy can be interpreted as following: if the entropy is
larger, the dynamical network is less predictable, and several possible dynamic
configurations of groups are expected in the system at time 7. On the other hand,
a smaller entropy indicates a smaller number of possible future configuration and a
temporal network state which is more predictable.

4.1 Entropy of Phone-Call Communication

In this subsection we discuss the evaluation of the entropy of phone-call commu-
nication. For phone-call communication, we only allow pairwise interaction in the
system such that the product in (22) is only taken over all single nodes and edges of
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the quenched network G which yields

Z=[]r@® =170 ] pes@) =117)5? (24)
i ij laj=1
with
gi() + Y a;g;(t) = 1. (25)
J

where a;; is the adjacency matrix of G. The entropy then takes a simple form
S ==Y plgit) =11%)log p(gi(t) = 11.7)
i

= > ayp(gi(t) = 117) log p(g;i(t) = 11.7). (26)

)

4.2 Analysis of the Entropy of a Large Dataset of Mobile
Phone Communication

In this subsection we use the entropy of temporal social networks to analyze the
information encoded in a major European mobile service provider, making use of
the same dataset that we have used to measure the distribution of call duration in
Sect. 2. Here we evaluate the entropy of the temporal networks formed by the phone-
call communication in a typical week-day in order to study how the entropy of
temporal social networks is affected by circadian rhythms of human behavior.

For the evaluation of the entropy of temporal social networks we consider a
subset of the large dataset of mobile-phone communication. We selected 562,337
users who executed at least one call a day during a weeklong period. We denote
by f,(t,t") the transition probability that an agent in state n (n = 1,2) changes its
state at time ¢ given that he/she has been in his/her current state for a duration
T = t — t'. The probability f,(z,#’) can be estimated directly from the data.
Therefore, we evaluate the entropy in a typical weekday of the dataset by using
the transition probabilities f; (z,") and the definition of entropy of temporal social
networks (readers should refer to the supplementary material of [41] for the details).
In Fig. 8 we show the resulting evaluation of entropy in a typical day of our phone-
call communication dataset. The entropy of the temporal social network is plotted
as a function of time during one typical day. The mentioned figure shows evidence
that the entropy of temporal social networks changes significantly during the day
reflecting the circadian rhythms of human behavior.



Models, Entropy and Information of Temporal Social Networks 113

Fig. 8 Evaluation of the 0.12
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Fig. 9 Entropy S of social dynamical network model of pairwise communication normalized with
the entropy Sy of a null model in which the expected average duration of phone-calls is the same
but the distribution of duration of phone-calls and non-interaction time are Poisson distributed.
The network size is N = 2,000 the degree distribution of the network is exponential with average
(k) = 6, the weight distribution is p(w) = Cw™2 and g(w) is taken to be g(w) = b,/w with
by = 0.05. The value of S /S is depending on the two parameters 3, b;. For every value of b, the
normalized entropy is smaller for § — 1. Figure from [41]

4.3 Entropy Modulated by the Adaptability of Human Behavior

The adaptability of human behavior is evident when comparing the distribution of
the duration of phone-calls with the duration of face-to-face interactions. In the
framework of the model for mobile-phone interactions described in Sect. 3.2, this
adaptability, can be understood, as a possibility to change the exponent § in Eq. (2)
and Eq. (10) regulating the duration of social interactions.

Changes in the parameter B correspond to different values entropy of the
dynamical social networks. Therefore, by modulating the exponent 8, the human
behavior is able to modulate the information encoded in temporal social networks.
In order to show the effect on entropy of a variation of the exponent 8 in the
dynamics of social interaction networks, we considered the entropy corresponding
to the model described in Sect.3.2 as a function of the parameters § and b;
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modulating the probabilities f1(¢,t"), f>(¢,t'|w) (10). In Fig. 9 we report the entropy
S of the proposed model a function of 8 and b;. The entropy S, given by (26),
is calculated using the annealed approximation for the solution of the model and
assuming the large network limit. In the calculation of the entropy S we have
taken a network of size N = 2,000 with exponential degree distribution of average
degree (k) = 6, weight distribution P(w) = Cw™2 and function g(w) = 1/w
and b, = 0.05. Our aim in Fig.9 is to show only the effects on the entropy due
to the different distributions of duration of contacts and non-interaction periods.
Therefore we have normalized the entropy S with the entropy Sz of a null model
of social interactions in which the duration of groups are Poisson distributed but
the average time of interaction and non-interaction time are the same as in the
model of cell-phone communication (readers should refer to the supplementary
material of [41] for more details). From Fig.9 we observe that if we keep b;
constant, the ratio S /Sy is a decreasing function of the parameter 8. This indicates
that the broader is the distribution of probability of duration of contacts, the
higher is the information encoded in the dynamics of the network. Therefore the
heterogeneity in the distribution of duration of contacts and no-interaction periods
implies higher level of information in the social network. The human adaptive
behavior by changing the exponent 8 in face-to-face interactions and mobile phone
communication effectively changes the entropy of the dynamical network.

5 Conclusions

The goal of network science is to model, characterize, and predict the behavior
of complex networks. Here, in this chapter, we have delineated a first step in the
characterization of the information encoded in temporal social networks. In partic-
ular we have focused on modelling phenomenologically social interactions on the
fast time scale, such a face-to-face interactions and mobile phone communication
activity. Moreover, we have defined the entropy of dynamical social networks,
which is able to quantify the information present in social network dynamics. We
have found that human social interactions are bursty and adaptive. Indeed, the
duration of social contacts can be modulated by the adaptive behavior of humans:
while in face-to-face interactions dataset a power-law distribution of duration of
contacts has been observed, we have found, from the analysis of a large dataset of
mobile-phone communication, that mobile-phone calls are distributed according to
a Weibull distribution. We have modeled this adaptive behavior by assuming that the
dynamics underlying the formation of social contacts implements a reinforcement
dynamics according to which the longer an agent has been in a state (interacting
or non-interacting) the less likely it is that he will change his/her state. We have
used the entropy of dynamical social networks to evaluate the information present
in the temporal network of mobile-phone communication, during a typical weekday
of activity, showing that the information content encoded in the dynamics of the
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network changes during a typical day. Moreover, we have compared the entropy
in a social network with the duration of contacts following a Weibull distribution,
and with the duration of contacts following a power-law in the framework of the
stochastic model proposed for mobile-phone communication. We have found that a
modulation of the statistics of duration of contacts strongly modifies the information
contents present in the dynamics of temporal networks. Finally, we conclude that the
duration of social contacts in humans has a distribution that strongly deviates from
an exponential. Moreover, the data show that human behavior is able to modify the
information encoded in social networks dynamics during the day and when facing a
new technology such as the mobile-phone communication technology.
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Temporal Motifs

Lauri Kovanen, Marton Karsai, Kimmo Kaski, Janos Kertész,
and Jari Saramiki

Abstract We discuss the temporal motifs approach that is aimed at detecting
significant, intrinsically dynamic, mesoscopic structures and patterns in temporal
networks, which cannot be seen in static or aggregated networks. Such patterns
involve several nodes and their timed contacts. The approach consists of three
phases: (1) identifying temporal subgraphs, (2) assigning the subgraphs to equiva-
lence classes, and (3) assessing the relevance, surprise and significance of class-wise
counts against some reference. We discuss these phases in detail, and apply the
presented method to a temporal network of mobile telephone calls.

1 Introduction

The key target of the temporal network approach is to study patterns that cannot
be seen if the networks in question are made static by e.g. aggregating over link
activation sequences. Sometimes such patterns are of interest because they have
consequences on dynamical processes at the network level (e.g. the effects of
burstiness on spreading, discussed elsewhere in this book). In general, the patterns
are of interest since they may help us understand how the system functions.
Temporal motifs are a tool for studying the mesoscale structure of temporal
networks, where mesoscale refers both to topology and time. In more concrete
terms, we want to study sequences of node contacts that follow each other within
a short time interval, detect patterns in such sequences, and group them into
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equivalence classes. Finally, we want to study how often patterns in each class
occur and assess their statistical significance.

The concept of network motifs was originally introduced for static networks
by Milo et al. [1] in 2002. Before addressing the time dimension, it is useful to
discuss the reasoning behind static networks motifs. Originally, network motifs
were defined as classes of isomorphic induced subgraphs with significantly large
cardinality, i.e., the number of isomorphic subgraphs is higher in the data than in
a reference system, usually the configuration model.! With this definition, it turned
out that similar networks had a similar set of network motifs, suggesting that motifs
should have to do with the functioning of the networks and could be used to define
universality classes of networks.

Since their introduction, network motifs have become a widely applied tool,
especially in the study of protein interaction networks [2]. However, it has also
become obvious that it is not as straightforward to consider motifs as the “building
blocks” of complex networks as suggested in the title of [1], or group networks
according to their motif constitution as was done in [3]. In fact, any motif analysis
depends intimately on the choice of the reference, as pointed out in [4]. Even though
it has become customary to take the configuration model as reference, there has been
only a little discussion on why one should fix the degree distribution, but not for
example the clustering, assortativity, modularity, or any other network property that
is well-known to exist in real networks but not in random (Erd6s-Rényi) networks.
The problem of finding a reference to compare with will also haunt us with temporal
motifs.

This article is based on the concepts introduced in [5]; somewhat similar ideas
were also presented in [6]. The term femporal motif itself occurs more often in
the complex networks literature because it has been used to label some different
concepts. For example in [7] the term refers to sequences of events in consecutive
time windows, commonly known as time-respecting paths [8]. The term dynamic
motif is also commonly used, but the concepts it refers to vary just as much.
As an example, in [9] “dynamic motif” refers to analyzing network motifs in
static networks obtained by aggregating data in consecutive time windows, and
[10] studies a dynamic process on a network where edges are either active or
not and defines “dynamic motif” as a network motif if all of its edges are active
simultaneously at least once during the process.

Carrying out an analysis with temporal motifs consists of three independent
steps. The first step is to define what we are looking for: temporal subgraphs.
In Sect.2 we show how the concept of subgraph can be generalized to temporal
networks, and discuss the algorithm for identifying temporal subgraphs in large data
sets. After detecting temporal subgraphs, the second step is to define an equivalence
relation that can be used to divide the temporal subgraphs into equivalence classes,
each corresponding to a femporal motif (Sect.3). This equivalence is analogous to

'The configuration model is a random network with the same degree sequence as the empirical
network.
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using graph isomorphism to define static motifs. We also present an implementation
for carrying out this step and discuss its limitations and possible extensions.

The two steps above allow us to count the number of motifs in a data set. The
last step of the analysis is interpreting these counts, and here we face the same
problem of finding a reference system that has been troublesome in the static motif
analysis. Instead of providing a single reference—the temporal equivalent of the
configuration model—we argue that the choice of reference depends on the goal of
the study. We also present some cases where meaningful results can be obtained
even without a reference.

We introduce temporal motifs in the context of communication networks where
each node can communicate with at most one other node at a time. This constraints
makes it somewhat easier to define temporal subgraphs, but we also discuss how
this it could be relaxed and go through the issues that arise if this is done.

2 Temporal Subgraphs

Just like a network motif represents an equivalence class of subgraphs, a temporal
motif represents an equivalence class of temporal subgraphs. Both “subgraph” and
“equivalence class” can be easily defined for static graphs: usually one studies
induced, connected subgraphs® and defines equivalence by graph isomorphism.’
In temporal networks neither of these two concepts has a natural or commonly
accepted definition. In fact, there are multiple possible generalizations of the
concepts of “subgraph” and “isomorphism” to temporal networks.

While some choices for these concepts are surely better than others, we believe
that their definitions should ultimately depend on the goal of the analysis. Temporal
subgraphs are the objects that we wish to count, and the fact that there are many
possible choices for defining subgraphs in temporal networks is not necessarily a
bad thing; rather, it allows us to customize the definition to the problem at hand
much more freely than is possible in static networks.

There is also a computational constraint for the definition: we need to be able to
count the temporal subgraphs in the data, preferably in linear time with respect to
the number of events and nodes. A practical requirement for counting any objects in
linear time in arbitrary data is that there are at most a linear number of the objects to
count. Definitions that give an exponential number of subgraphs are computationally
unfeasible. This constraint is equally relevant when we try to make sense of the
results. Our goal is to make conclusions based on the number of subgraphs in the

2A graph G = (V, L) is connected iff there is a path between any two nodes, or equivalently when
|L| > 2, iff there is a path between any two edges. A subgraph G’ C G is induced if all nodes
v;,v; € G’ that are adjacent in G are also adjacent in G'.

3Two graphs G, and G, are isomorphic if there is a bijection ¢ : ¥/} — V, of node labels such that
o (L]) = Lz.
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Fig. 1 (a) A directed temporal network Gy = (V, E) with V = {a,b,c,d} and |E| = 4. Each
event consists of source node vy, destination node v, starting time ¢ and duration §. (b) A graphical
representation of Gr. (¢) Time differences between adjacent event pairs. Assuming i < j, the
value at (e;,e;) is t; — (t; + &;). (d—g) All two-event temporal subgraphs in the data assuming
At = 10. The subgraph in (g) is not a valid subgraph because it skips event e, that for node a
takes place between e; and e3. Other subgraphs are valid

data, and any definition that gives a super-linear number of subgraphs is likely to
give misleading, hard-to-interpret results.

The requirement that subgraphs should be connected seems rather intuitive; in
fact, the number of unconnected subgraphs becomes easily so high that counting
them is out of the question. In a temporal network we should also include time when
defining connectedness between events. We say that two events are Af-adjacent
if they have at least one node in common and if the time difference between the
events is no more than A¢, measured from the end of the first event to the beginning
of the second. This definition of adjacency immediately leads to a definition of
connectivity: two events are At¢-connected if there is a sequence of Af-adjacent
events between them. A connected temporal subgraph is then a set of events where
each pair of events is Az-connected. Figure 1 illustrates these three concepts.

This definition has one small caveat. Consider a case where one node has n
events that all take place with a time window Atz. Because any set of k < n
events is At-connected, this data would contain (Z) connected temporal subgraphs
with k events—a super-linear number. We therefore add a requirement that for each
node in the subgraph the events where that node is involved must be consecutive.
Subgraphs that satisfy this condition are called valid temporal subgraphs. In the
above example this reduces the number of k-event subgraphs to n — k + 1. This
additional requirement is analogous to only counting induced subgraphs in the static
case instead of all possible subgraphs. That choice also reduces the number of
subgraphs and ensures they always include all relevant edges for the included nodes.

Note that valid temporal subgraphs do not necessarily contain all events that
are At-connected to the included events. When this is the case, we call the result
a maximal temporal subgraph. All other subgraphs involving any of the events in
question are by definition completely contained inside a single maximal subgraph.

The algorithm for detecting all temporal subgraphs presented in [5] works by
first finding all maximal subgraphs and then all other subgraphs by going through
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Algorithm 1 FINDTEMPSUBGRAPHS returns all temporal subgraphs in data E with
up to nyax events that have e as the earliest event. Unlike the algorithm given in [5]
this one does not require constructing maximal subgraphs. N(e) is the set of next
and previous events of nodes in e (thus | N(e)| < 4), and 7y denotes the starting time
of eg. V_ is the set of excluded events; note that this set is updated, not replaced, on
line 10. L is a list of potential events to add. Each element is a pair (4;, e;) where
A; > 0 is the shortest time difference between e; and any other adjacent event
already in the subgraph S; if Az < max{A;}, S is no longer connected. This can
be used to efficiently identify temporal subgraphs for different values of Az. Note
that the subgraphs returned by FINDTEMPSUBGRAPHS are not necessarily valid;
this must be checked separately.
1: function FINDTEMPSUBGRAPHS(E, 1 1ax, €0)

2: S <« {eg}

3: V_ < {eo}

4 Ly < [(Aoi.e) | ei € N(eg),0 < Ag; < At]

5: return {eo}U SUBFIND(E, ., S, V—, L4, to)

6: function SUBFIND(E, nmax, S, V—, Ly, to)

7: Sall <~

8 for (A;,e;) in L4 ordered by A; do

9: ife; & V_ then

10: Vo < V_U{e}

11: S* <~ SU{e}

12: San <= Sai U {S*}

13: if |[S™*| < npax then

14: Ny <{ej € Ne)\V- | t; = 1o, |4; ;]| < At}
15: L*+ < [(Aj,ej) € L+ | A/ > A,] + [(|A,]|,€/) | e; € N+]
16: San < Sy U SUBFIND(E, imax, S*, V_, Lj_, 1)
17: return Sy

the subgraphs inside the maximal subgraphs. When At is increased, the maximal
subgraphs become larger, and eventually a giant maximal subgraph typically
emerges that contains a significant fraction of all events. In this case, it may become
infeasible to detect temporal subgraphs by first detecting maximal subgraphs. Then,
Algorithm 1 is a good alternative, as it does not require the maximal subgraphs to be
identified explicitly. In addition, Algorithm 1 gives the critical time window size for
each subgraph; if Af is smaller than this critical value, the subgraph is no longer
At-connected. This makes it possible to efficiently study how the number of
temporal motifs varies as a function of At.

3 From Subgraphs to Temporal Motifs

The definition of temporal subgraph is not sufficient for defining motifs—we also
need to define an equivalence relation. With static motifs equivalence of subgraphs
is defined by graph isomorphism: two induced, connected subgraphs correspond
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to the same motif if they are identical after we disregard the identities of the nodes.
When defining temporal motifs we also start by discarding node identities. An event
sequence can be represented by a directed multigraph.* Two temporal subgraphs
can correspond to the same motif only if their underlying directed multigraphs are
isomorphic. To define temporal motifs we also need to include the time dimension
in the equivalence relation. We could, for example, retain all temporal information.
In most cases, however, the resulting temporal motifs would be far too specific: two
event sets would be equivalent only if they have the same topology and the events
would occur at exactly the same time. For most types of temporal networks, such
as the call network discussed later, this makes no sense. Because of this, instead of
including exact times, we only retain information about the temporal order of the
events. Then, two temporal subgraphs are equivalent if they have the same topology
and their events occur in the same order.

In practice the motif corresponding to a temporal subgraph is identified by
mapping all information about the topology and the temporal order of events into a
directed colored graph, as shown in Fig. 2. In the simplest case, where nodes have no
attributes and the only attributes associated with events are their time and direction,
the mapping is done as follows: first, all nodes are given the same color (black circles
in Fig. 2). Then, for each event, an additional vertex of another color (open squares)
is inserted, and directed links are created from the source node to the event node, and
from the event node to the target node. At this stage, the colored graph is bipartite,
as there are only links between “real” nodes and event nodes. Finally, information
about the temporal order of events is included by adding directed links between
events in their order of occurrence, so that a directed link joins the first event node
to the second event node and so on. Having done this, we have transformed the
temporal subgraph into an unique colored directed graph.

In order to arrive at temporal motifs, we want to assign the colored directed
graphs that represent temporal subgraphs into classes. Solving the isomorphism of
such graphs is a non-trivial problem, but luckily this problem is common enough and
there are several good implementations: in fact, most popular algorithms for solving
graph isomorphism make use of colored nodes, that is, they solve isomorphism for
colored graphs (G, ) where w : V' — C defines the color ¢ € C of each node. We
will cover the basic ideas for solving graph isomorphism in detail in the next section.

It is worth mentioning that the existence of such algorithms is very fortunate,
since we can add new layers of detail by adding new colors to the above mapping.
For example, we can use different colors to represent different node types, and then
distinguish motifs by the types of involved nodes. Furthermore, because of the way
the mapping is constructed, we can also distinguish between events of different
types. As an example, for mobile communication data, we could assign calls and text
messages a different color, or study how communication patterns differ by the time
of the day by coloring events according to their times (e.g. morning, day, evening,
and night events).

4Multigraphs are graphs where multiple edges between vertices are allowed.
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Fig. 2 Identifying the motif for a temporal subgraph. (a) A valid temporal subgraph. (b) Insert an
additional vertex for each event (squares), making sure these vertices have a color not used by the
original nodes (the “color” of a node is denoted by its shape). The direction of events is denoted by
the two directed edges connecting the new vertex to the original nodes. If events are undirected we
replace these by bidirectional edges. (c¢) Information about the temporal order of events is included
by adding directed edges between the event vertices. The result is a directed, colored graph that
contains all information about the topology and temporal order of events. (d) A more compact
representation of the motif. The edges denote the direction of the events, and the numbers denote
their temporal order. Note that the numbers are always on the side of the arrow head; this way
reciprocated events can also be shown

a b c d
€1
1/2
@ I /3/4
es3 5/6

Fig. 3 Identifying the motif for a temporal subgraph when a node can have multiple simultaneous
events. In this case we need to retain information on the order of both the starting and ending times
of events. (a) A valid temporal subgraph. In this example we assume that e; ends before e, begins,
and e, ends before e3 begins. (b) Insert three new vertices for each event and connect them with a
chain of directed edges denoting the direction of the event. Each of the three nodes has a different
color. The color of the central vertex can be used to denote the type of the event, while the other two
vertices denote the beginning and the end of the event and are assigned some other color. (¢) Add
directed edges to denote the temporal order of the beginning and end of events. (d) In the compact
representation two numbers are now needed to represent the order of the starting and ending times
of events.

Furthermore, because we use directed edges to denote the temporal order of
events, we are not limited to representing the full order of events, but any partial
order can be used. For example, if we wish to study spreading dynamics, it is
possible to limit the temporal order of two events only if their mutual order is
relevant for spreading. The order of the events is relevant to spreading when
changing the order would either destroy existing time-respecting paths in the motif
or create new ones. This is achieved by placing a constraint for the mutual order
of two adjacent events (by adding an edge between event vertices in the graph of
Fig. 2c¢).

Finally, what if we wish to study a system where nodes can be simultaneously
involved in multiple events? Unlike the previous step of defining temporal sub-
graphs, the mapping step is easier to generalize to this case. As shown in Fig. 3,
we now need to add three vertices for each event.
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4 Isomorphism Detection and Canonical Graphs

As mentioned above, temporal motifs are identified by mapping temporal subgraphs
into directed colored graphs and then using existing algorithms, such as Bliss’
[11], to solve the isomorphism. In this section we describe the basic idea of how
such algorithms work.

Graph isomorphic is one of very few problems that have not been shown to be in
either P or NP-complete. Instead of directly solving the isomorphism of two graphs,
most algorithms solve a related problem of finding a canonical label C(G) that
satisfies the condition C(G,) = C(G,) & G; = G,, where G; =~ G, means
that the two graphs are isomorphic. Given a tool for finding canonical labels, it is
straightforward to identify isomorphic graphs.

In this section G = (V, L) is a directed graph. We also assume that the nodes are
identified by integers from 1 to N, thatis, V = {1,..., N}. Let Sym(V) be the set
of all permutations of V. The image of x € V in y € Sym(V) is denoted by x”.
This notion is extended to sets so that for S € V we have S = {x" |x € S}, and
for graphs G¥ = (V, L") where LY = {(i?, j?)| (i, j) € L}. With this notation
G| = G, if and only if there is a permutation y € Sym(V) such that G| = G.

To illustrate these ideas, consider the following simple method for calculating
canonical labels. Let A = [a;;] be the adjacency matrix of G and b(G) =
aiy...apaz .. .a,, the binary number obtained by concatenating its values row
by row. Now C(G) = minyesym){b(G?)} is a valid canonical label for graphs
with N nodes, as its value does not depend on the labeling of nodes. Unfortunately,
calculating C(G) from this simple definition requires going through all n! permuta-
tions. It is possible to calculate canonical labels more efficiently than this. The idea
is that instead of going through all possible canonical labelings we only need to try
a subset of them as long as we ensure that the same subset is used for isomorphic
graphs.

A family of efficient algorithms are based on a backtrack search that alternates
between two phases: refinement and individualization. These algorithms are based
on Nauty® [12], whose predecessor dates back to 1976. The implementation we are
using, Bliss, was published in 2007 but is to a large extent identical to Nauty:.
Bliss uses more efficient data structures and includes improvements in pruning
unnecessary parts of the search tree, but the description of the algorithm given here
applies equally well to both Nauty and Bliss.

A central concept in the search is (ordered) partition 1 = (Vi,...,Vy), an
ordered sequence of subsets of V/, called cells, whose union is V. A cell is singular
if it has only one element, and a partition is discrete if all of its cells are singular.
A unit partition has only one cell. Partition 7| is at least as fine as m,, denoted by
) X 1y, if 7, can be obtained from | by replacing neighboring cells by their union

Shttp://www.tcs.hut.fi/Software/bliss/
Shttp://cs.anu.edu.au/~bdm/nauty/
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Fig. 4 Illustration of the backtrack search for calculating the canonical label for a graph. (a) The
undirected, uncolored graph G for which we calculate canonical labels. Initially, each node has
the same color, i.e. the partition is 7 = [{a, b, ¢, d}]. (b) Refinement. 7 is the original ordered
partition for the uncolored graph. In the refined partition v all nodes of one color have the same
number of neighbors of each of the other colors. As an example, here the nodes {a, b} are now
of the same color (partition cells correspond to colors), and both have one neighbor of color {c}
and no neighbors of color {d}. (¢) Individualization. We select one non-singular cell—in this case
the cell {a, b} is the only one—and create new partitions by splitting each node in turn. Here this
results in two discrete partitions, the leaves in the search tree. A leaf certificate C(G, m, v;) is then
calculated for each leaf v;, and the leaf v; with C(G, x,v;) < C(G,m,v;) Vj # i is selected as
the canonical label

zero or more times. If x € V is included in the i™ cell of 7, we write w(x) = i;
in this way every discrete partition corresponds to a permutation 7 € Sym(V).
A colored graph is formally defined as pair (G, ), where 7 (x) is interpreted as the
color of node x. For an uncolored graph s is a unit partition.

Every node v in the backtrack search tree is an ordered partition. We illustrate the
search for the undirected, uncolored graph shown in Fig. 4a. Since the input graph
is uncolored, # = [{a, b, c,d}].

The search starts with the refinement phase. This phase takes (G, 7) as input and
produces a partition v = R(G, w) < m such that in the colored graph (G, v) every
node of color i has the same number of neighbors of color j, for all i and j. For
the graph in Fig. 4, the partition v = [{d}, {a, b}, {c}] satisfies this condition: node
d has no neighbors of color 1 or 2 and one neighbor of color 3, while nodes a and
b have one neighbor of color 1 (each other, that is), and one neighbor of color 3.

Note that this is not the only ordered partition that fulfills the given conditions; for
example [{a, b}, {c}, {d}] would be equally valid. The crucial point is that however
R is implemented, it must not use any information about the node labels; to be
precise, R(GY,n?) = R(G,n)” Vy € Sym(V). This ensures that the same nodes
are produced for isomorphic graphs. The refinement algorithm used in both Nauty
and Bliss is described in [12].

The individualization phase takes (G, v) as input, selects one non-singleton cell
Vi = S(G,v) of v—again so that S(G?,v") = S(G,v)" Yy € Sym(V), which
can be achieved for example by selecting the first cell with the maximum size—
and produces child nodes by splitting this cell. The child nodes are partitions v =
Vi, ... .{v;} Vi\{v;}. ..., Vin] Yv; € V;. In the example of Fig. 4 there is only
one non-singleton cell after the initial refinement phase, and the splitting produces
two new partitions as shown in Fig. 4c.

Refinement and individualization are repeated for the partitions produced until
we get discrete partitions defining the leaf nodes in the tree. In Fig. 4 this happens
after applying each phase only once, but in the general case multiple steps are
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required. In each leaf node v we calculate a leaf certificate C(G, 7, v) defined so
that it is independent of node labels in the original graph; for example (GV, ")
fulfills this condition (see [11] for proof). Because we have been careful not to
use node labels during the construction of the tree, isomorphic graphs will produce
isomorphic search trees, and hence the same set of leaf certificates. Now it suffices
to pick one leaf certificate—say, the smallest one—to use as graph certificate.

This basic backtrack search already provides a significant improvement over the
naive method of going through all permutations. For the graph in Fig. 4a we only
need to compute leaf certificate for two permutations, instead of all 4! = 24. This
is however only the basic idea of the search. For example, by selecting the leaf
certificate function cleverly it is possible to prune some subtrees early in the search.
Even more pruning can be achieved by making use of the automorphism of the input
graph.

For details of these and other improvements to the search we refer the reader
to [12] and [11]. The important point is that even though isomorphisms can not be
detected in polynomial time, the detection is very efficient in practice. Furthermore,
because colored graphs are used internally, there is little extra cost in solving the
isomorphism for colored graphs.

5 Analyzing Motif Counts

The concepts and algorithms presented so far allow counting temporal motifs in data
sets with up to 10° events. Unfortunately, the motif counts alone do not reveal that
much about the data. If there is no reference to compare with, it is in most cases
impossible to say when the count value is high and when it is low. As with static
motifs, a typical choice of reference is a null model, and we will therefore discuss
null models below, in Sect. 5.2.

We argue that a desirable feature of any temporal motif analysis is that the
results are independent of the aggregated network. There are two reasons for this.
The first is that the static differences—those observable in the aggregate network,
like the number of different static motifs, or which node types are involved, the
number of nodes of each type and their average activity—easily overpower temporal
differences. For example, if there is twice the number of nodes of type A than of type
B, it is not too surprising if temporal motifs with type A nodes are more common.
Social networks also exhibit preferred connectivity by various attributes. A typical
example is homophily; similar people are more likely to be friends. If there are
more edges between similar than dissimilar nodes, we would expect temporal motifs
between similar nodes to be more common.

The second reason for factoring out the effect of the aggregate network is that
differences in it are much easier to study, and in many cases already relatively well
known. For example, aggregated networks obtained from mobile phone data sets
have been studied extensively. If we devise our null model such that the results are
independent of the aggregated network, we also get an independent description of
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Fig. 5 Six motifs with the same underlying graph but different order of events. The bars show
the total count for each of the motifs with Az = 10 min. In the aggregate network it would not
be possible to differentiate between the six motifs, but the large factor (3.6) between the most and
least common case shows that there is a relevant difference to be made

the data, in addition to results obtained with the aggregated network. In other word,
we can see patterns that are not revealed by the aggregate.

In the following sections we present example results using a mobile phone data
set with ~ 10% events and ~ 10% nodes. The nodes correspond to customers of
a single European mobile phone operator and the events correspond to mobile
phone calls between them during a period of several months. The data set also
contains meta data about the customers, such as gender and age, that can be used to
distinguish different node types.

We use Af = 10min in all examples. This provides ample time for making a
new call after ending the previous one without including too many coincidentally
simultaneous calls. A full data analysis would naturally benefit from studying how
sensitive the results are to changes in the time window size.

5.1 Direct Comparisons

Before considering null models it is worthwhile to note that some purely temporal
results (i.e. results that are independent of the aggregate network) can be obtained
even without any reference model. The first case is motifs that differ only in the
temporal order of events, such as the triangles in Fig. 5 (another example is the two-
chain, where the events can take place in the causal or non-causal order). Because
these motifs cannot be distinguished in the aggregate network, any difference
observed is purely temporal.

Motif analysis reveals that the most common triangle is 4 times as common as the
rarest one. Comparison of all six motifs reveals two explanations for this difference,
both well-known features of communication networks. The first is burstiness; in
the four most common motifs the person making two calls makes those calls
consecutively. The second explanation is causality. E.g., in the most common motif
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Fig. 6 Six motifs that have the same topology but differ in the order of the events, plotted
separately for four different types From fop to bottom, the rows correspond to postpaid female,
prepaid female, postpaid male, and prepaid male (postpaid refers to customers who are billed
based on the calls made; prepaid customers pay for their calls beforehand). The numbers below
the motifs show the fraction out of all motifs in each the row. This value can be compared across
different rows because it doesn’t depend on the group size, activity or homophily. For the mobile
phone data we observe only small differences between node types

(where A calls B and C, and C then calls B), the third call can be triggered by the
earlier calls, as the caller C may have information on the first A-B call through the
second A—C call.

When analyzing data that has different node types it is generally not possible
to directly compare the counts because they mostly just reflect the differences in
groups sizes, activity, and connectivity, instead of differences in temporal behavior.
It is however always possible to compare the relative occurrence of motifs with
different orders of events, when we constrain all nodes in the motif to have the same
type, as illustrated in Fig. 6. The reasoning here is similar as with Fig. 5: no property
of the static network can explain the relative count of the differently timed versions,
and hence we are comparing purely temporal differences.

Comparing motifs that have multiple node types is unfortunately not as simple.
Motif counts generally depend on the number of nodes of each type, average
activity levels of different node types and their preferred connectivity. In most
cases, a comparison of motifs with the same topology but different node types
would just reflect these differences. Comparison of different topologies, even when
keeping node type constant, is not valid either. If for example the aggregate network
consists of directed triangles, then we would expect directed temporal triangles to
be common as well (as compared to other kinds of triangles).
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5.2  Null Models

Except for the cases listed above, we need a point of reference to compare against
if we are to make statements about the prevalence of motifs. And when discussing
motifs and references, it is hard not to mention null models.

Null models are often presented as a method for finding out whether the
results could stem from random variations under some constraints. One of the first
applications of network motifs was to test whether the number of static motifs in
various networks could result from the degree distribution alone [1]. This is achieved
by comparing against the motif count in the configuration model, a random network
with the same degree sequence as the empirical network.

Suppose the empirical count for motif m; is C(m;), and for the randomized
networks we get the mean count j(m;) with standard deviation o (m1;). Now, if the
empirical motif counts result from the degree distribution alone, we would expect

the z-score

~_ Cmi) — pu(m;)

L o(m;)
to have zero mean and unit variance. Following the standard null hypothesis
framework, this equals to testing the null hypothesis

Hy: C(m;) results from degree distribution alone.

Large deviations of z from zero suggest that the data does no support the null
hypothesis.

Using null models might seem straightforward, but anyone applying null models
in their analysis should be aware of possible problems involved. For example,
the corresponding null hypothesis—which is almost never explicitly written out—
might not be the one the researcher intended to study. And because null models
are typically defined algorithmically, it might not even be obvious what the null
hypothesis is. A good discussion of this and other caveats in the use of null models
can be found in [4].

Complex networks are also not the first applications of null models. Very similar
ideas have been used in ecology [13], and the usage have often been followed by
a heated discussion on the limitations and possibilities of the method—even to the
extent to earn the name null model wars [14].

6 Summary and Discussion

The fundamental goal of temporal network analysis is to be able to detect patterns
that would be lost, were the networks in question considered static or quasi-static
by aggregating over link activations over some time interval. Were this not the case,
then static network analysis would suffice.
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In this chapter, we have presented an approach for detecting recurrent patterns in
the time-ordered sequences of events that constitute temporal networks. In essence,
this approach can be boiled down to three (independent) phases: (1) defining and
detecting temporal subgraphs, (2) assigning the detected temporal subgraphs to
similarity classes (temporal motifs), and (3) assessing the relevance of the class-wise
subgraph counts, either in relation to each other or against some carefully chosen
reference system.

These phases reflect the additional complications induced by adding another
degree of freedom—time. For static networks, a triangle is a triangle, and such
subgraphs can readily be counted. For temporal networks, we first have to define
what a triangle is; here, we have defined temporal subgraphs based on the time
adjacency of events sharing nodes. For constructing similarity classes, we have
designed a method of mapping temporal subgraphs to directed, colored graphs,
whose isomorphism can be tackled with existing algorithms. Finally, the question
of the meaning and relevance of temporal motif counts—often, the surprise of the
counts against some assumptions about regularities in the underlying system—is
clearly the most difficult of these questions. We have attempted to tackle it using
comparisons between motifs that have the same numbers of nodes and events,
representing structure over and above corresponding static network representations,
and by carefully examining the concept of null models, with the aim of clearly
laying out the meaning of null hypotheses.

Our methodology can be directly applied in studies of any temporal system
of interacting agents, where interactions evolve as exclusive instantaneous events.
Because the temporal motifs are based on the timings of such events, all available
time-domain information is accounted for, and no simplifying assumptions are
required. In general, this technique may help to highlight “hidden” correlations and
functionality, and to understand how micro-level interactions induce mesoscopic-
level structure that may play a role for dynamical processes that are mediated by the
temporal system.

Certain possible extensions of the present framework would allow for an even
broader range of applications. First, a generalization that would allow the nodes
to simultaneously participate in multiple instantaneous interactions would be very
useful—consider, e.g. emails sent to multiple recipients. There is a large number of
systems where the node-wise interactions are non-exclusive. Potential applications
include biological systems such as temporal gene regulation or protein interaction
networks [15, 16], social systems of humans or animals [17] and ecological
interaction networks [18]. A generalization for interval graphs, i.e. for temporal
networks where events are non-instantaneous and have specified durations, would
open even further possibilities, and allow for detection of temporal patterns in e.g.
evolving group dynamics such as dynamics of face-to-face communication [19].
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Applications of Temporal Graph Metrics
to Real-World Networks

John Tang, Ilias Leontiadis, Salvatore Scellato, Vincenzo Nicosia,
Cecilia Mascolo, Mirco Musolesi, and Vito Latora

Abstract Real world networks exhibit rich temporal information: friends are added
and removed over time in online social networks; the seasons dictate the predator-
prey relationship in food webs; and the propagation of a virus depends on the
network of human contacts throughout the day. Recent studies have demonstrated
that static network analysis is perhaps unsuitable in the study of real world network
since static paths ignore time order, which, in turn, results in static shortest paths
overestimating available links and underestimating their true corresponding lengths.
Temporal extensions to centrality and efficiency metrics based on temporal shortest
paths have also been proposed. Firstly, we analyse the roles of key individuals of
a corporate network ranked according to temporal centrality within the context
of a bankruptcy scandal; secondly, we present how such temporal metrics can be
used to study the robustness of temporal networks in presence of random errors
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and intelligent attacks; thirdly, we study containment schemes for mobile phone
malware which can spread via short range radio, similar to biological viruses;
finally, we study how the temporal network structure of human interactions can be
exploited to effectively immunise human populations. Through these applications
we demonstrate that temporal metrics provide a more accurate and effective analysis
of real-world networks compared to their static counterparts.

1 Introduction

Temporal graph metrics [48,49] represent a powerful tool for the analysis of real-
world dynamic networks, especially with respect to the aspects for which time plays
a fundamental role, such as in the case of spreading of a piece of information or a
disease. Indeed, existing metrics are not able to characterise the temporal structure
of dynamic networks, for example in terms of centrality of nodes over time. For
these reasons, new metrics have been introduced, such as temporal centrality, in
order to capture the essential characteristics of time-varying graphs. A detailed
description of the metrics used in this chapter can be found in [40].

In this chapter we will discuss a series of possible applications of temporal
graph metrics to the analysis of real-world time-varying networks. This chapter is
structured as follows. We will cover our work in this area and, finally, we will discuss
contributions in this fields by other researchers and potential future applications, in
particular in the area of the modelling of epidemic spreading.

More specifically, in Sect.2 we analyse the roles of key individuals according to
temporal centrality within the context of the Enron scandal [49]. In Sect. 3 we study
how such temporal metrics can used to study the robustness of temporal networks
in presence of random errors and intelligent attacks [45]. Then, Sect. 4 we present a
containment scheme for mobile phone malware which can spread via short range
radio transmission [50, 51]. Finally, in Sect.5 we discuss existing and potential
applications to human epidemiology, outlining some research directions in these
areas.

2 Corporate Networks

2.1 Overview

The Enron Energy Corporation started as a traditional gas and electrical utility
supplier; however, in the late 1990s their main money making business came from
trading energy on the global stock markets [18]. In December 2001, the Enron
Energy Corporation filed for bankruptcy after it was uncovered that fraudulent
accounting tricks were used to hide billions of dollars in debt [23]. This led to
the eventual conviction of several current and former Enron executives [8, 55].
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The investigation also brought to light the reliance of the company on traders
to bring in profits using aggressive tactics culminating in intentional blackouts in
California in Summer 2001. With both control over electricity plants and the ability
to sell electricity over the energy markets, Enron traders artificially raised the price
of electricity by shutting down power plants serving the State of California and
profiting by selling electricity back at a premium [7].

During the investigation into the Enron accounting scandal, telephone calls,
documents and emails were subpoenaed by the U.S. government and as such the
email records of 151 user mailboxes were part of the public record consisting of
approximately 250,000 emails sent and received during the period between May
1999 to June 2002 (1,137 days), leading up to the bankruptcy filing. None of the
emails were anonymised and so they provide unique semantic information of the
owner of each mailbox.

2.2 Temporal Graph Construction

In our analysis, we use the dataset prepared by Shetty and Adibi [47]. Since we do
not have a complete picture of the interactions of users outside of the subpoenaed
mailboxes we concentrate on email exchanges between the core 151 users only.
Taking this email dataset, we process the complete temporal graph from 1999 to
2002 with undirected links, using windows of size w = 24 h and horizon h = 1.
If an email was exchanged between two individuals in a temporal window, a link
between the two nodes representing those individuals will be added to the graph
representing the temporal snapshot for that time.

2.3 Semantic Value of Temporal Centrality

Figure 1 plots the static and temporal centrality rankings of employees calculated
using closeness and betweenness. Examining the static centralities (left column)
we note that there is little difference between the top five employees using static
closeness or betweenness. Also plotting the static degree centrality of each node',
we notice similar rankings suggesting that static analysis only favours employees
who interacted with the most number of other people. Temporal closeness and
temporal betweenness yield different rankings amongst the top five and the calcu-
lated Kendall-tau correlation coefficient [31] (Table 1) confirm that static-to-static
metrics are strongly correlated (~0.7). Also note that there is low correlation (<0.4)

I'The static degree centrality is defined as the number of edges connected to a node i, normalised
by the total possible neighbour nodes (n — 1) [56].
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Fig. 1 Ranked distribution of top 50 statically (S) and temporally (T) central nodes. From top row:
Closeness (C), Betweenness (B), and Degree (D). Top 5 node ID’s listed under each plot

between temporal metrics and static degree demonstrating that temporal analysis is
not dependent on the number of people an individual interacts with.

Cross referencing the top two employee identifiers with their position within the
organisation (Table 2) we identify a secretary (150) and managing director (122)
as central nodes for both static closeness and betweenness; however, both temporal
closeness and betweenness consistently selected employees in trading roles (053,
075, 107, 147). A secretary and a managing director are certainly important for
information dissemination and central to many communication channels, as detected
by static measures. However, instead the top trading executives are exclusively
favoured by temporal analysis.
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Table 1 Kendall-tau

correlation coefficients 5B SC SD 1B TC 1D

between centralities SB 1.00 0.57 0.69 041 0.24 043
sC - 1.00 0.70 036 0.22 0.31
SD - - 1.00 039 028 048
™ - - - 1.00 043 0.34
TC - - - - 1.00 0.40
™D - - - - - 1.00

Table 2 Roles of top

: ID Role Notes

centrality nodes
9 (Unknown)
13 Legal Senior Legal Specialist
17 Manager
48 Executive
53 Trader
54 President Former Head of Trading
67 Vice President Enron Wholesale Services
73 Trader
75 Director of Trading
107 Trader Head of Online Trading

122 Managing Director

127  Chairman and CEO

139  Director

147 Trader

150  Secretary Assistant to Greg Whalley

To show that temporal analysis does not simply uncover nodes with the most
interactions with other people, we also plot the temporal degree (TD) calculated
as the total number of emails sent and received by each node i. Since there is a
low correlation (<0.4) with temporal closeness and betweenness this shows that
temporal analysis is not dependent on the number of emails sent and received by
each individual.

2.4 Effectiveness of Central Nodes on Dynamic Processes

2.4.1 Trace-Driven Simulation Setup

To evaluate the role and the centrality of the employees identified by temporal and
static analysis, we consider two dynamic processes. First, we simulate a simple
information dissemination process over the temporal graph constructed from the
Enron traces. The process is simulated as follows. We select the top N nodes from
the ranking based on temporal closeness centrality. We place an identical message
m into their (infinite) buffers. We refer to any node that has received a copy of this
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Fig. 2 Dissemination process: Dissemination ratio starting from top 2 (left) and top 10 (right)
closeness source nodes. Area under curve reported in legend for temporal (t) and static (s) centrality

message as reached. We then replay the contact trace through time and as reached
nodes make contact with an unreached node u, the message is replicated into the
buffer of node u. We assume that messages are transferred instantaneously and only
the first neighbour in a time window can be reached. We then repeat this for static
closeness centrality and plot the dissemination ratio across time for both.

Second, to model the role of individuals as part of an information mediation
process, we borrow concepts from the more commonly known epidemic immuni-
sation process where the dissemination ratio of a contagion spreading throughout
a static network is measured before and after certain nodes are immunised against
the contagion [2]. This is analogous to measuring the spread of information (the
contagion) before and after important individuals are removed from the network
(such as going on holiday or being discharged) since our conjecture is that removing
mediators will impact the network communication efficiency greatly.

In the trace-driven simulation, instead of a single message spreading within
the organisation, we seed all employees with a different message that needs to be
delivered to all other employees. This models multiple channels of communication.
In order to derive a baseline performance, we start by calculating the dissemination
ratio when no nodes are removed. We then remove the top N individuals identified
by temporal betweenness and rerun the information spreading process. Nodes which
are removed cannot receive or pass on messages. We then repeat the same process
for comparison using static betweenness centrality for the ranking.

2.4.2 Evaluating Information Dissemination and Mediation

We present plots using N = {2, 10} for information dissemination (Fig.2) and
information mediation (Fig. 3). As we can see the different pairs of traders identified
by temporal analysis are better than the arbitrary nodes selected by static analysis
for both disseminating information through the organisation and acting as mediators
between communication channels. In the information dissemination case, although
the final dissemination is the same across the long period of time, the two traders
selected by temporal analysis disseminate information quicker. Only after increasing
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Fig. 3 Mediation process: Dissemination ratio after removing top 2 (left) and top 10 (right)
betweenness nodes. Area under curve reported in legend for temporal (t), static (s) and baseline (b)
where no nodes are removed

to 10 nodes the static analysis presents similar results. In the information mediation
case, the final dissemination ratios for both temporal and static centrality nodes
slightly decreases by removing the nodes but are comparable. However, removing
the two traders gives an overall more prolonged drop in message dissemination.
In the case of the removal of 10 nodes, the individuals identified by means of the
temporal metrics slow the dissemination process further compared to static ones.

2.5 Summary of the Findings

This study has demonstrated the advantages of using temporal network analysis over
traditional static, aggregated graphs. Although centrality rankings are quantitative
measures of node importance, their physical meaning is very much qualitative.
For this reason, we have shown that temporal centrality provides a more accurate
identification of key people in a corporate social network where each persons role
is known. Taking a second perspective, we demonstrate that temporal centrality can
identify nodes which can spread and mediate information, better than static analysis.
This demonstrates the importance of temporal information for applications, which
are applied to real networks.

3 Network Robustness

3.1 Overview

The study of real-world communication systems by means of complex network
models has provided insightful results and has vastly expanded our knowledge on
how single entities create connections and how these connections are used for com-
munication or, more generally, interaction [3]. In particular, technological networks
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such as the Internet and the World Wide Web have been under scrutiny in terms
of structure and dynamic behavior [22, 27]. More recently, with the widespread
adoption of mobile and opportunistic networks, it has become important to develop
new analytical tools to keep into account network dynamics over time [30, 32] and
how this affects phenomena such as information propagation [10, 14].

At the same time, the problem of understanding whether real systems can sustain
substantial damage and still maintain acceptable performance has been extensively
addressed [1, 5]. Various measures of network robustness have been defined and
investigated for several classes of networks, evaluating how different system can
be more or less resilient against random errors or targeted attacks thanks to their
underlying structural properties [15,26].

Nonetheless, it is still unclear how to approach the study of robustness of
networks by taking into account their time-varying nature: by adopting a static
representation of a temporal network, important features which impact the actual
performance might be missed. Thus, it becomes important to develop a robustness
metric which takes into account the temporal dimension and gives insights on how a
mobile network is affected by damage or change. Particularly, the fact that links are
not always active means that information spreading can be delayed or even stopped
and that relative ordering in time of connection events may affect the creation of
temporal paths in mobile networks.

Our main goal is to design a novel framework for the analysis of robustness in
time-varying networks. We adopt temporal network metrics [48] to quantify network
performance and define a measure of robustness against generic network damages.
At first, we study its performance on random network models to understand its
properties; then we apply our method to study a real mobile network, describing
how temporal robustness gives a more accurate evaluation of system resilience than
static approaches.

3.2 A Framework to Evaluate Robustness
of Temporal Networks

The study of robustness of complex networks has mainly focused on describing
how a given performance metric of the network is affected when nodes are removed
according to a certain rule. The underlying assumption is that the absence or
malfunctioning of some nodes will cause the removal of their edges and, thus, some
paths will become longer, increasing the distances between the remaining nodes, or
completely disappear, resulting in the loss of connectivity in the whole system. In
this work we will study the problem of defining and analyzing robustness in evolving
networks: as a consequence, we need to use a performance metric which includes the
temporal dimension in its definition. We choose to adopt temporal efficiency as the
performance metric. We then consider random and independent failures for every
node and we evaluate how the system tolerates increasing level of malfunctioning
nodes.
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Since a temporal graph is continuously evolving, we can evaluate how temporal
efficiency changes over time by considering a value t and evaluating E¢(?) as the
relative temporal efficiency of the temporal graph in the time window [t — 7, ¢]. The
effect of 7 is to effectively impose an upper bound on the temporal distances, as all
paths longer than t simply do not exist. As a consequence, t should be chosen so
that any communication whose delay is longer than 7 itself can be ignored.

Given a temporal graph G, we define a damage D as any structural modification
on it and we define Gp as the graph resulting by the effect of the damage D on G.
A damage may be the deactivation of some nodes or the removal of some edges
at a particular time 7p. Because of damage D, some temporal shortest paths will
be longer or will not exist any more, thus, we expect that the temporal efficiency
will eventually reach a new steady value Eg, < E¢. It is important to evaluate the
new value of the temporal efficiency on a new temporal graph which still contains
the deactivated nodes, in order to obtain a decrease in efficiency. Otherwise, we
might obtain a smaller temporal graph which is more efficient than the original
graph, although it has lost much of its structure. Hence, we do not consider highly
dynamic systems where nodes can be constantly added or removed. Instead, we
focus on evaluating the service degradation in a more controlled environment where
only a number of existing nodes could fail.

We define the loss in efficiency AE(G, D) caused by the damage D on the
temporal graph G as AE(G, D) = Eg — Eg,. Finally, we define the temporal
robustness Rg (D) of the temporal graph against the damage D as

AE(G,D) _ Eg,

Rs(D)=1-—
¢(D) Eo e

ey

This value is normalized between 0 and 1 and it measures the relative loss of
efficiency caused by the damage: if the damage does not impact the efficiency of
the graph (Eg,, = Eg) then its robustness is 1, while if the damage destroys the
efficiency of the graph (E¢, = 0) the robustness drops to 0. Temporal efficiency is a
particularly suitable metric to study temporal network robustness as it denotes both
longer temporal paths and the lack of paths among temporally disconnected nodes
at the same time. Nonetheless, other metrics have been used to assess robustness in
static systems: for instance, there could be scenarios where fast communication with
small delays can be more important than global connectivity, thus other measures
can be adopted. Provided that these measures can be extended to the temporal case,
they can be easily integrated in our framework.

3.3 Robustness of Random Temporal Networks

In this section, we present a numerical analysis of temporal robustness for different
classes of random temporal networks: an Erd6s—Rényi temporal model, a Marko-
vian temporal model and mobility-based temporal model.
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3.3.1 Random Temporal Network Models

An Erd6s—Rényi (ER) random graph with N nodes and parameter p is created by
independently including each possible edge in the graph with probability p and it is
denoted as G(N, p) [19]. We generalize this model to the temporal case by creating
a sequence of 7 ER random graphs G (N, p) and we denote the resulting temporal
graphas G(N, p, T).

The temporal ER network model does not provide temporal correlations between
consecutive graphs in the sequence. We thus consider a model where link evolution
is described by a Markov process, thus enabling memory effects in network
dynamics. We consider a complete graph G with N nodes. At every discrete
timestep ¢ each link may or may not be present: a temporal graph is created where
the existence of each link evolves according to a two-state discrete Markov process.
We denote with p the probability that a link present at time ¢ will be removed at
time ¢ 4+ 1 and with g the probability that a link which is not present at time ¢ will
be added at time ¢ 4 1. The steady probability of link presence then is Poy = ﬁ:
as a consequence, each observation of the temporal graph appears as an ER random
graph with each edge present with probability Poy.

We also create a random model of a temporal network by using mobility models.
In this case we are introducing topological constraints: a key difference with the
previous temporal models is that each node is not equally likely to connect with all
the other nodes, due to the effect of spatial distance. We consider N = 100 nodes
moving in a square area 1,000 x 1,000 m and we define a communication range r:
at every time step, we create a graph where nodes are connected if their Euclidean
distance is shorter than r. Thus, we change the probability of link presence Poy
by varying the communication range. Then, a temporal graph can be defined as
the sequence of graphs extracted at each time step while the nodes move. We
investigate two different mobility models that are implemented using the Universal
Mobility Model Framework [37]: Random Waypoint Model (RWP) and Random
Waypoint Group Model (RWPG). In RWP each node selects uniformly at random a
location towards which it moves with speed uniformly distributed in a fixed range
[5,40] mph. As the node reaches its destination, it waits for a randomly distributed
time in [0, 120] s and repeats the above steps until the end of the simulation.

In RWPG nodes are divided into two classes: there are M group leaders and
N — M group followers. Every group followers has its own leader so that the N
nodes are divided into equally-sized groups. Each group leader selects a random
target and moves towards it, according to the RWP mobility model. Group members
do not select any target; instead, they follow their group leader according to the
pursuit force [37] which is set to give a group span of 200 m.

3.3.2 Numerical Evaluation

We numerically evaluate temporal efficiency Eg(f) over time, adopting a time
window of t = 100, for a graph with N = 100 nodes: after an initial phase,
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Fig. 4 Temporal robustness Rg as a function of probability of error Pggg in the ER random model
for different link probability p (a) 100 nodes; b) 1000 nodes). The size of the system has no impact
on temporal robustness: furthermore, the system fails smoothly as the probability of error increases

the random temporal graph reaches an equilibrium state and we compute the steady
value of temporal efficiency. We run each simulation for 27 steps and we compute
the average value of temporal efficiency over the last 7 steps. All results have been
averaged over 100 different runs. We evaluated numerically temporal robustness by
deactivating each node independently with increasing probability Prrr. We measure
temporal efficiency before and after the failure, when the network reaches a new
equilibrium state.

As reported in Fig. 4, the temporal ER model fails smoothly as we increase the
fraction of removed nodes, without any sudden disruption for any value of Pggg.
This is a main difference with respect to what happens in the static case: for a
static ER random graph there may exist a critical value of Pggrg which causes
a breakdown of the network in several disconnected components [1]. This is not
true for temporal robustness, as new paths can still appear after the damage as the
network rearranges its connections. Time provides more redundancy and, hence,
more resilience. Moreover, we also note that temporal robustness does not depend
on system size: since it is normalized with respect to the value of temporal efficiency
before the damage, it depends only on the relative drop in efficiency, not on absolute
values.

As shown in Fig. 5a, temporal robustness is affected by probability of error Prgg
in the same way as in the temporal ER model: the system fails gradually as more
nodes are removed. However, for intermediate values of Poy robustness has lower
values. At the same time, high and low values of Poy provide the same robustness,
even if the absolute value of temporal efficiency can be very different, thanks to the
normalization of temporal robustness.

In the case of mobility-based temporal networks, reported in Fig. 5b, both RWP
and RWPG exhibit a similar behavior: again, the network loses efficiency in a
smooth way and temporal robustness is not affected by Poy in this case as the spatial
characteristics of the network are mainly affecting the resulting robustness.
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Fig. 5 Temporal robustness R as a function of probability of error Pggg and for different values
of Poy for a) the Markov-based and for b) the RWP random model (RWPG does not deviate from
RWP)

3.4 Case Study: Cabspotting

We have seen that temporal networks do not exhibit sudden breakdowns when nodes
are being removed and that various temporal network models exhibit analogies in
their resilience. We now shift our attention to real time-varying networks: our aim
is to understand whether temporal robustness gives us more information than static
robustness in a real case and to investigate whether random models can offer a good
approximation to real networks.

3.4.1 Dataset

This case study is based on Cabspotting, a publicly available dataset of mobility
traces: the Cabspotting project tracked taxi cabs in San Francisco traveling through
all the Bay Area for about 2 years with the aim of gathering data about city life [41].
The vehicles were equipped with GPS sensors and every device was periodically
updating its position and uploading it to a central server to be stored, along with
the timestamp of the record. Thus, it is possible to reconstruct each taxi’s trajectory
over space. For pictorial representations of the dataset, please refer to the project
website [4].

We have selected an area of about 20 kmx20 km around the city of San Francisco
and we have extracted 24 consecutive hours of mobility traces, corresponding
to Wednesday, 21 May 2008. After this, we have generated an artificial contact
trace by defining a communication range of 200 m for the vehicles, which roughly
corresponds to WiFi connectivity range in similar scenarios [11]: whenever two cars
are within this distance they can communicate to each other. Time granularity is in
seconds, so we have a sequence of 86,400 graphs with 488 nodes and more than
350,000 contacts among them. The average contact duration is about 2 min while
the average inter-contact time is more than 2.5 h.
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probability of error Pggg for the Cabspotting dataset (a). The static approach overestimates system
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3.4.2 Analysis

We study the reaction of the Cabspotting temporal network to random failures and
compare it to our findings on random models. We adopt numerical simulation,
but since the temporal dynamics of this network is not stationary, we can not
compare the temporal efficiency E¢ before and after a certain error, because the two
temporal window will likely have already different properties. Instead, we fail nodes
according to Pggg at the very first time step of the temporal sequence of graphs: in
this way, we can compare the average temporal efficiency over all the time for the
original network and for the damaged one. We adopt a value of t = 3,600, which
allows us to consider temporal paths up to 1h, even if such longer paths can not
contribute much to temporal efficiency.

The first comparison that we show in Fig. 6a is between static robustness and
temporal robustness for the Cabspotting temporal network. In this case static
robustness is computed on the static graph obtained by aggregating all the contacts
in the trace and adopting static global efficiency as performance measure. Since
the resulting static graph contains more than 100,000 edges it is clearly an
overestimation of the communication properties of the real system, as not all these
links are continuously available over time and some paths can not be used due to
temporal ordering constraints. Indeed, static robustness appears much larger than
the temporal counterparts: only temporal robustness is able to capture the realistic
communication capabilities of the system and how they are affected by random
failures.

Then, we attempt to understand if the various random temporal network models
we have studied can be used to approximate the robustness properties of the real
scenario. For each model, we compute the temporal robustness as a function of Pggr
for a network with the same number of nodes N and the same Poy measured in the
Cabspotting temporal network (about 0.005), using the same simulation parameters
as in the real scenario. As reported in Fig. 6b, all temporal networks present the same
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trend in network robustness, albeit random models have higher values of temporal
robustness than the real network. Interestingly, the closest match is the Markov-
based temporal model, while the mobility-based models are closer to the ER model
than to the Cabspotting network, even if this is actually a mobility-based contact
network. However, the assumptions used in mobility models require homogeneity of
space and absolute freedom to move continuously and independently in a boundless
area, while in reality taxis are usually constrained to move on streets and bridges and
they often move together along the same direction or stop together in a particular
place to wait for customers (i.e., airport or stations). The Markov model, instead,
introduces the type of time correlations that appear to better mimic the real scenario.
In fact, the most important aspect that needs to be captured is time ordering
of events: in random mobility models connections do not follow particular time
patterns, whereas real traces do (rush hour, working hours, human sleeping cycles).
Only temporal robustness can take into account these unique characteristics.

3.5 Summary of the Findings

These two results provide evidence that temporal robustness is a more accurate
measure to be used on mobile networks instead of standard static approaches.
Therefore, when testing protocols and applications to be deployed in mobile
networks, a temporal study is more meaningful and should not be substituted by
a static approximation.

4 Mobile Malware

4.1 Overview

Smartphones are not only ubiquitous, but also an essential part of life for many
people who carry such devices through their daily routine. It comes at no surprise
then that recent studies have shown that the mobility of such devices mimic that of
their owners’ schedule [17, 54]. This fact constitutes an opportunity for devising
efficient protocols and applications, but it also represents an increasing security
risk: as with biological viruses that can spread from person to person, mobile
phone viruses can also leverage the same social contact patterns to propagate via
short-range wireless radio such as Bluetooth and WiFi. For example, when security
researchers downloaded Cabir [53]—the first proof-of-concept piece of mobile
malware—for analysis, they soon discovered the full risk potential of the mobile
worm as it broke loose, replicating from the test device to external mobile phones.
This event prompted the need for specially radio shielded rooms to securely test
such malicious code [28].
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Unlike desktop computers mobile malware can spread through both short-
range radio (i.e., Bluetooth and WiFi) and long-range communication (SMS, MMS
and email) [33]. Long-range malicious traffic can potentially be contained by
the network operator by scanning every message against a database of known
malware or spam [52], however, short-range propagation might fall under the radar
of centralised service providers: effective schemes to defend against short-range
mobile malware spreading are necessary. In addition, while a global patching of the
devices through cellular connectivity is the natural solution and is in theory possible,
in practice, due to associated costs and resource consumption, this is not ideal. For
example, there are potential constraints with respect to the cellular network capacity
and server bandwidth (with respect to the latter, similar issues have also investigated
for software updates distribution in the Internet, see for example [25]).

4.2 Temporal Centrality Metrics for Malware

Being highly correlated with human contacts, understanding how such malware
propagates requires an accurate analysis of the underlying time-varying network
of contacts amongst individuals. State-of-the-art solutions on mobile malware
containment have ignored two important temporal properties: firstly, the time order,
frequency and duration of contacts; and secondly, the time of day a malicious
message starts to spread and the delay of a patch [57,58]. Instead, we argue that
the temporal dimension is of key importance in devising effective solutions to this
problem.

With this in mind, the focus of this study is to investigate the effectiveness of
two containment strategies based on targetting key nodes, taking into account these
temporal characteristics. We firstly investigate a traditional strategy, inspired by
studies on error and attack tolerance of networks [1], exploiting static and a time-
aware enhanced version of betweenness centrality which provide the best measure
of how nodes that mediate or bridge the most communication flows. According
to this strategy the nodes that act as mediators are patched to block the path of
a malicious message. However, due to temporal clustering and alternative temporal
paths, in most cases, such strategies merely slow the malware and does not stop it. In
other words, a scheme based solely on immunisation of key nodes is not sufficient,
instead quick spreading of the patch is necessary for most networks. We propose
a solution based on local spreading of patches through Bluetooth, i.e., exploiting
the same mechanism used by the malware itself. The key issue in this approach is
to select the right nodes as starting points of the patching process, using temporal
closeness centrality which ranks nodes by the speed at which they can disseminate a
message to all other nodes in the network. We show that this strategy can reduce the
cellular network resource consumption and associated costs, achieving at the same
time a complete containment of the malware in a limited amount of time.
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Table 3 Experimental datasets

CAMBRIDGE INFOCOM  MIT

N 18 78 100
Duration (days) 10 5 280
Contacts (avg. per day) 1,927 25,796 231
Scanning rate 30s 2 min 5 min

4.3 Evaluation

4.3.1 Simulation Setup

To evaluate the time-aware mobile malware containment schemes, three traces
of real mobile device contacts carried by humans are used: Bluetooth traces of
researchers at the University of Cambridge, Computer Laboratory, as part of an
emotion sensing experiment [42]; Bluetooth traces of participants at the 2006
INFOCOM conference [46]; and campus Bluetooth traces of students and staff at
MIT [17]. We shall refer to these as CAMBRIDGE, INFOCOM, MIT, respectively.
Table 3 describes the characteristics of each set of traces. All three datasets
were constructed from mobile device co-location where participants were given
Bluetooth enabled mobile devices to carry around. When two devices come into
communication range of the Bluetooth radio, the device logs the colocation with
the other device. For the CAMBRIDGE dataset, all 10 days are used as part of
the evaluation. For the INFOCOM dataset, since devices were not handed out to
participants until late afternoon during the first day, only the last 4 days are used.
For the MIT dataset, we show results for the first 2 weeks of the Fall semester
representing a typical fortnight of activity.

The top N, devices are chosen according to the calculated temporal betweenness
or temporal closeness centrality ranking from the temporal graph 4" (¢,, tax),
where w is set to the finest window granularity, corresponding to the scanning rate of
the devices in each dataset (for example, 30 s windows for CAMBRIDGE); and # is
set to 1, since higher values of % lead to similar performance of the containment
schemes. The N,, nodes that are initially infected with malicious messages are
chosen uniformly randomly. The results are obtained by averaging over 100 runs
for each N,. The static centralities from the static aggregated graph over the time
interval [¢,, f,u4,] are also calculated for comparison.

Our evaluation is based on the following assumptions: firstly, when a node
receives a patch message, it is immunised for the rest of the simulation (i.e., we
assume that the malware does not mutate over time); secondly, there is always
a successful file transfer between devices (errors in transmission can be taken
into consideration in the assessment of the contention scheme without changing
significantly the results of our work, assuming random transmission failures);
thirdly, an attacker chooses nodes at random; and finally, we have no knowledge
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of which devices are compromised (otherwise the best scheme is to patch those
devices immediately).

4.3.2 Non-effectiveness of Betweenness Based Patching

Starting from the results of the analysis of the effects time of day has on message
spreading, we now evaluate the best case scenario for the containment scheme based
on patching nodes (without spreading the patch) and we show that this is highly
inefficient since it requires a very large number of nodes to be patched via the
cellular network to be effective.

Using Day 4 of the INFOCOM trace for this example, a piece of malware is
started at the beginning of the day (#,=12 a.m.) and the device(s) are patched at
the same time (7,=12 a.m.). This is the best case scenario for two reasons: first,
the temporal graph in the morning is characterised by low temporal efficiency
since there are very few contacts, therefore, the malware spreads slowly; secondly,
devices that are immunised immediately have the best chance of blocking malware
spreading routes.

Figure 7 shows the ratio of compromised devices across time when the top 1 (top
left panel) and top 10 (top right panel) devices are patched after being selected using
betweenness and closeness. As we can see, temporal betweenness initially perform
better than static betweenness and both temporal and static closeness (quantified
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by the difference in the area under each curve, shown in the legend). However, by
7 a.m. we observe a steep rise in the number of compromised devices and by the
end of the day, all curves converge to the same point. We also note that in both cases
it is not possible to totally contain the malware, suggesting that more devices need
to be patched. Taking a broader view, Fig. 7 shows the area under the curve (bottom
left) and final ratio of nodes infected (bottom right) as we increase the number of
patched devices. Clearly, even when the malware is started at the slowest time of
day for communication, we still need to patch 80 % of the devices before we can
completely stop the malware from spreading; this can be considered an impractically
high number of devices to patch. Similar high percentages are also required in the
MIT trace with a minimum of 45 % patched nodes.

4.3.3 Effectiveness of Closeness Based Patching
(Worst Case Scenario)

Since the betweenness based containment scheme is not effective, we now evaluate
the closeness based spreading scheme with the aim of disseminating a patch
message throughout the network more quickly than a malicious message. For
brevity, we do not present results on spreading based on temporal betweenness
centrality since it is intuitive that this metric is not designed to quantify the speed
of the patching dissemination process and, for this reason, it leads to poorer results.
We start our analysis by examining a worst case scenario using the CAMBRIDGE
dataset: a researcher receives a malicious message on their device in the early hours
of Friday morning (#,, = Fri 12 a.m.) and the malicious program replicates itself to
any devices it meets during the day. A patch message is started a day later to try and
patch all the compromised devices (f, = Sat 12 a.m.). This can be considered as
the a worst case since there are more interactions and hence more opportunity for
malware to spread during the day and the patch is delayed until a day later.

Figure 8 shows the spreading rate for the malicious message versus the best (left)
and worst device (right) to start the patching message. These results were obtained
by running simulations considering every single device as a starting point of the
patching process, and then ranking them based on three performance metrics:

* The area under the curve (AUC), which captures the behaviour of the infection
over time with respect to the number of infected devices’;

* The peak number of compromised devices (£;x);

» The time in days necessary to achieve total malware containment (7).

Since the AUC captures both the 7,,,, and 7, the best and worst initial devices that
were patched were selected using the AUC. Comparing all three measures, the case
related to the selection of the worst device (right panel) is characterised by double
AUC (2.62 vs. 1.07); a higher peak in compromised devices [, (68 % vs. 60 %)

2The AUC is commonly used in epidemiology and medical trials [21].
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Fig. 8 CAMBRIDGE [#,,=Fri 12 a.m., 7,=Sat 12 a.m.] delivery rate (y-axis) starting a mobile
worm from single node with best case patching node (leff) and worse case patching node (right)
shown. Area under the curve shown in the legend

and by the fact that it is not possible to fully contain the malware in a finite time 7
(o0 vs. 3.3 days).

4.3.4 Sensitivity to Malware Start Time

Thus far we have only considered a single malware start time. We now take a
broader view and examine the effects of a malicious message starting at different
times. For each dataset the AUC, I, and t are exhaustively calculated for different
malware start times at hourly intervals and increasing patch delays starting from
zero (i.e., patch messages start at the same time as malicious messages) to up to
2 days. As a baseline, a naive method of randomly selecting patching nodes is also
calculated, averaged over 100 runs. Figure 9 shows for each dataset the performance
metrics as a function of the malware start time #,,, averaged over all patch delays. In
particular, we note that the AUC and the maximum number of infected nodes 1,4,
tend to follow the temporal efficiency (strictly related to human circadian rhythms);
however, the total time of containment (7) remains stable across all start times.
These results demonstrate that this time-aware containment scheme is an effective
method of quickly containing malware, irrespective of when the malware started.
Now analysing the AUC and /,,,,,, the temporal centrality curve is consistently lower
than static and naive methods. Furthermore, static centrality performs worse than the
naive method at some points of time; more specifically:

* For the CAMBRIDGE dataset, during the weekend a static method has a higher
peak number of compromised devices (/,,,,) than the naive method, which shows
that a static method is not effective at slowing down the malware from spreading.

* For the INFOCOM dataset, again I, is higher than the naive method, during
days 2 and 4. In addition, the AUC curve for a static method peaks with temporal
efficiency during days 2, 4 and 5: this means that the malware is not contained
effectively in these scenarios. Also, the total containment time (t) is greater
than that of the naive method during days 3, 4 and 5. This shows that temporal
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Fig. 9 Performance of temporal, static and naive node selection, across different malware start
times (x-axis), averaged over all patch delays

centrality is more consistently effective for identifying the best nodes to start the
patching process, compared to both static and naive methods.

* Finally, for the MIT dataset, the naive method performs extremely poorly (with
high values of UAC, I, and t across all malware start times), compared to
either a static or temporal method.

4.3.5 Summary of the Findings

This study demonstrates that a temporal analysis of mobile device interactions is
better suited to real networks where the topology changes over time. As we have
seen, a traditional strategy of patching high betweenness nodes is not effective when
temporal topological information is taking into account for both the information
dissemination process and also centrality calculations. Instead, we propose a
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strategy that can select the best devices to spread the patch in a competitive fashion,
using the same opportunistic encounters with other devices utilised by the malware
itself.

S Epidemics and Immunisation

A promising application area of the proposed metrics is indeed epidemics modelling
in human networks [29, 36]. Currently, the vast majority of the existing models
assume an underlying static network [35, 38]. By considering a static network,
the temporal order of appearance of the links (i.e., the sequence of the contact
opportunities) is somehow neglected. This fact might have significant implications
on the actual realism of the mathematical model, especially in the case of small
populations. Another specific aspect that might have a strong influence on the
resulting model is the type of mixing patterns [39] that are present in the population.

The problem of modelling the spreading of infection in a time-varying graph
and the definition of vaccination strategies given the information related to the
network and epidemic dynamics (and the correlation between the two) are open and
challenging research areas at the same time. Temporal centrality metrics can be used
for example to prioritise the vaccination of individuals involved in an immunisation
program. Moreover, temporal metrics can be used in general to study the evolution
of a disease over time by providing quantitative measures of the time scale of its
spreading considering the sequence of infected individuals (or geographic areas)
over time.

In the recent years, some works have been focussed on the interplay between
changing topology and the epidemic process taking place over the network. For
example, in [44] Saramiki and Kaski present a model for studying the spreading
of an infectious influenza on a dynamic small-world network, by analysing the
effect of a dynamic re-wiring process on a Susceptible-Infective-Recovered-style
epidemic model, deriving the equations for the epidemic threshold and spreading
dynamics. In particular, the authors show how the epidemic saturation time scale
varies with the size of the network and the initial conditions. In [34] the authors
present the results of different vaccination strategies by simulating the dynamics
of sexual disease spreading in empirical contact sequences of individuals. More
specifically, the authors analyse the largest outbreak, the average outbreak sizes,
and the relative advantages of the different strategies as a function of the infectivity
and the duration of the infective state.

In general, social encounter networks, a typical class of time-varying net-
works, are attracting an increasing attention in the epidemiology community [16].
Researchers have been employing RFID and sensor techniques for extracting
contact traces in order to accurately reconstruct patterns of interactions among
individuals, al