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Preface

Neither Finland nor Sweden qualified for the 2010 Football World Cup in South
Africa. Wouldn’t that have been the case, you might not hold this book in your
hands. With Finland vs. Sweden in the finals, our excitement would have been
elsewhere than in science. At this time, at a workshop organized by Pieter Trapman,
Tom Britton and Fredrik Liljeros of Stockholm University in the quaint Swedish
seaside town Öregrund, we started discussing temporal networks. A month earlier,
we had both within days put e-prints on the arXiv with intriguing results—“Small
but slow world” by Saramäki et al. and “Simulated epidemics in an empirical
spatiotemporal network of 50,185 sexual contacts” by Holme et al. In those papers,
we used the same randomization technique, independently of each other, to discover
that the temporal structures of two different datasets responded differently to
spreading processes. In Saramäki’s mobile phone communication data, random-
ization sped up spreading; in Holme’s data from sexual encounters in prostitution,
randomization slowed down spreading. While our beer-fueled discussion did not
solve that question, we agreed that it was a good time to write a review paper on
temporal networks. After about a year of off-and-on writing, we had a manuscript
to submit to Physics Reports. About the same time, we both met at the European
Conference on Complex Systems in Vienna and came up with the idea of this book
volume as a follow-up to the review paper. Luckily Christian Caron, the editor-
in-chief of Springer’s Complexity series, was also at the conference and with his
encouragement we moved on, gathering material to the book.

Temporal networks is a growing subfield of network science, probably with
most of its discoveries still ahead in the future. As an example, we still don’t
have the answer to the question that sparked our collaboration—what are the
conditions for temporal network structure to speed up spreading? However, we do
know much more. This volume gathers 17 chapters and much new knowledge,
many new methods and observations. We are very grateful to the authors and
their contributions, all meeting our high expectations and most submitted by the
deadlines. Last but not least, we want to thank our families. Fate or coincidence,
during the making of this book we both got married and provided the future
generation of network scientists (or football players, who knows) with two baby
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boys: Jari’s & Kaarina’s son Paavo was born in August 2012 and Petter’s &
Hyunok’s son Minu was born in February 2013.

Suwon Petter Holme
Espoo Jari Saramäki
April 2013
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Temporal Networks as a Modeling Framework

Petter Holme and Jari Saramäki

Abstract To understand large, connected systems we cannot only zoom into the
details. We also need to see the large-scale features from afar. One way to take a
step back and get the whole picture is to model the systems as a network. However,
many systems are not static, but consisting of contacts that are off and on as time
progresses. This chapter is an introduction to the mathematical and computational
modeling of such systems, and thus an introduction to the rest of the book. We
will cover some of the earlier developments that form the foundation for the more
specialized topics of the other chapters.

1 Introduction

Life, at many levels, is about large connected systems. In the biological sense, life
is a consequence of macromolecules building cells and carrying information. More
mundanely, our everyday life happens in amid a network of friends, acquaintances
and colleagues. To understand life, at every level, we need to zoom out from
macromolecules or friendships and look at their global organization from a distance.
Here, zooming out means discarding the less relevant information in a systematic
way. One approach to this, successful the last decade, is network modeling. This
means that one focusses on the units of the system, be it proteins or persons,
and how they are connected, and nothing else. Of course, this is a very strong
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2 P. Holme and J. Saramäki

simplification. One often has more information about a system that would enrich
rather than obscure the picture. One such additional type of information regards
when the interactions happen between the units. The essence of temporal-network
modeling is to zoom out by excluding all information except which pairs of units
that are in contact and when these contacts happen.

There is a large number of systems that could, potentially, be modeled as
temporal networks. In addition to the cellular processes and social communi-
cation mentioned above large technological infrastructures—technologies based
on the Internet or mobile-phone networks for example—have both network and
time aspects that make them interesting for temporal network modeling. Neural
networks—perhaps primarily at a functional level of brain regions that are consid-
ered connected if there is a measurable information transfer between them—are
another example. A third example is ecological networks and species and their
interaction. Such networks—like food webs, depicting which species feed on which
other species, or mutualistic networks of species providing mutual benefits, such as
plants and pollinators—experience time varying changes with the seasons and other
environmental changes.

In this chapter, we will review the essential mathematical and computational
techniques for extracting information from a temporal network representation of a
system. We will discuss quantitative measures of network structure, computational
techniques of successive randomization to study these measures, and models to
generate and explain temporal networks and studies seeking to explain the effects of
the temporal-topological structures on dynamics taking place on the networks. For
a more comprehensive review of the field, see Holme and Saramäki [1].

2 Measuring Temporal Network Structure

In this section, we will review some of the proposed structural measures that strive
to capture both temporal and topological features and correlations. For the rest of
the chapter, we will consider systems that can be represented as lists of contacts—
triplets of pairs of vertices together with the time of their contact, or alternatively
as quadruples containing the beginning and end times of contacts, if these are not
instantaneous. We call the first type of temporal network a contact sequence, the
other one an interval graph.

Before we start discussing effects of structural measures, we note that temporal
networks are notoriously difficult to visualize in a way that would both show
all possible temporal information and highlight the important structural features
(similarly to what e.g. spring-embedding can successfully do for static networks).
Two representations, labeled graphs and time-line plots, are illustrated in Fig. 1.
Of these, the time-line plots can help to visualize the temporal structure (including
temporal heterogeneities such as bursts) while the labeled graphs highlight the
network topology. However, neither of them can be scaled up to more than a
dozen or so vertices. There are other attempts of combining time and simplified
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topology—most notably the alluvial diagrams of Rosvall and Bergstrom [2]—that
however typically miss the non-transitivity of temporal networks, or some other
important aspects.

2.1 Reachability and Latency

One of the most fundamental differences between temporal and static networks is
that the former are not transitive. Even if vertex A is related to B and B is related to
C, it might be that A is not related to C (see Fig. 2). The relation in question is in
essence the possibility of something spreading from one vertex to another through a
series of contacts where the times of the contacts are increasing (anything else would
not be feasible in reality). For this reason, the statistics of such time-respecting paths
are very informative. Authors have e.g. investigated the average durations of time-
respecting paths [3–6]. Given a pair of vertices .i; j / and a time t , the latency is the
shortest time to go from i to j at time t following only time-respecting paths.

The latency is not the entire story, since just like regular graphs, temporal
networks can be disconnected. This is, in practice, more common in temporal than
static networks, as the paths joining vertices need to be traversed in the order of
contacts. A practical measure for capturing this would be the expected value of the
number of vertex pairs that have infinite latency values [3]. For empirical data, the
finite period of observation may also play a role, because paths whose realization
takes a very long time may not ever be completed within the observed period. It
should be emphasized that connectivity is only defined within some time window:
the fact that A is connected to B via a time-respecting path that begins at t does
not guarantee that such a connection exists at any later point in time. Furthermore,
connectivity is always directed as dictated by the arrow of time (see the transitivity
example above).

One can elaborate on latency-like measures in many ways in order to capture
different aspects of reachability and dynamical influence between nodes. It could
for example be interesting to monitor the number of time-respecting paths between
pairs of vertices in order to capture frequently appearing pathways, or to resolve
the average latency in time—it might be that the average latency follows e.g. a
daily pattern where time-respecting paths are faster to traverse during the time of
day when the contacts are more frequent. Additional constraints may also be set on
time-respecting paths; e.g. one may require that the contacts forming a path follow
each other rapidly enough, so that long waiting times between contacts destroy the
path [6].

2.2 Clustering and Correlations

In static networks, the local structure—focusing on the immediate surroundings of
an average vertex—is an important predictor of the behavior of dynamic systems on
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Fig. 1 Visualization of temporal networks. (a) Shows a labeled aggregate network where the
labels denote times of contact, and (b) shows a time-line plot, where each of the lines corresponds
to one vertex and time runs from left to right
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C

Fig. 2 Illustrating the non-transitive nature of temporal networks. Information can spread from
A to B, from B to C, from C to B, from B to A, it can also spread from A to C via B, but not from
C to A since by the time the information can have reached B all contacts between A and B have
already happened. Note that static networks are transitive, even directed networks, so one cannot
simply reduce a temporal network to a static one

the network. Adding the temporal dimension is not straightforward, which perhaps
explains the rather few attempts to do so. Below, we sketch one possible approach
and illustrate some of the inherent difficulties.

In static networks, the level of connectivity in the neighborhood of a vertex
can be measured with the (local) topological clustering coefficient. Its values are
normalized, such that a value of 0 indicates no connectivity and a value of 1 the
existence of all possible connections. Adding a temporal dimension, we would like
to measure the connectedness of a neighborhood around a given moment of time
t . In other words, we would like to put a larger weight on contacts that are closer
to t in time. This can be done by an summation kernel F.t/ with the properties
that it is bounded, non-negative, monotonically increasing for t < 0, monotonically
decreasing for t > 0, and F.0/ D 1. A temporal clustering coefficient for a contact
sequence would then be the following sum divided by some normalizing factor
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X

c;c0 ;c00

F.t.c/ � t/ F .t.c0/� t/ F .t.c00/� t/ (1)

where c D .i; j; t/, c0 D .j; k; t 0/ and c00 D .k; i; t 00/ are contacts with i ¤ j ¤ k.
However, there is no obvious choice of denominator to balance this with. If one
calculates the denominator by assuming that there can be one contact per time
step between all vertices that are in contact with i at some point, then this would
for the very most datasets be a number many orders of magnitude larger than the
denominator. One can perhaps set the maximal number of contacts as the total
number of contacts in the dataset and assume that they all happened at time t , but
also this would in practice be a very much larger number than that given by (1).
A third option would be to replace the F -factors by 1 (their maximal value), but
this would be equal to assuming that the number of contacts per vertex pair that
has been in contact at some time is fixed, which would be strange for most types
of temporal networks. This example is not meant to discourage from constructing
measures capturing both temporal and topological structures, but rather the other
way around. It shows how moving away from the assumption that all edges are
equivalent (an assumption underlying most static network representations) requires
new ways to think about network concepts. In this case, the best solution, we believe,
would be to compare the raw sum to that obtained from a carefully chosen reference
model.

In static networks, one important class of measures quantifies the relationship
between the degrees of connected nodes. Is there an overrepresentation of edges
between, say mid-degree vertices and other mid-degree vertices? Such an analysis
can be made at different levels, from plotting the entire correlation profile [7]
to measuring a scalar-valued correlation coefficient [8]. These degree-correlation
measures can be generalized to temporal networks more straightforwardly than the
clustering coefficient. One can use similar summation kernels as discussed above
to replace node degrees by a time-dependent activity level, and then perform the
same analysis. Then again, while this would capture something similar in spirit to
the degree-correlation measures designed for static networks, in temporal networks
there is a multitude of other conceivable concepts of correlations across links that
could well prove more important.

As a temporal networks evolve, some subsets of their nodes and links may be
more continuously active than others. Such persistent patterns are subnetworks that
are prime candidates for functional subunits of some sort; they could also be an
interesting alternative to aggregating all contacts if one wants to reduce the system to
a static network. As an example of how to investigate persistent contact patterns, one
can let a time window slide through an interval graph and calculate the adjacency
correlation function, or vertex persistency

�i.y/ D
P

j2�.i;t / a.i; j; t/a.i; j; t C 1/qP
j2�.i;t /

qP
j2�.i;tC1/

(2)
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where t is the beginning of the time window, and �.i; t/ are the non-zero indices of
the (time-dependent) adjacency matrix.

2.3 Centrality

Network centrality measures form one of the most important classes of measures
of static network structure. These quantities try to capture various facets of the
question how central a vertex is. Pan and Saramäki discuss a centrality measure
akin to closeness in static graphs [8]. Essentially, the authors define centrality as
the average reciprocal value of the time from the focal vertex to all others. Tang et
al. also defines a (somewhat different) closeness centrality for temporal networks
together with a temporal version of the betweenness centrality [9].

Takaguchi et al. take a slightly different approach in [10] when they measure a
kind of influence (called advance) related to concepts of centrality by focusing on
the importance of the events the vertex participates in. This work draws on previous
results from [4]. Mantzaris et al. [11] use a spectral centrality measure for temporal
graphs to study learning in the human brain.

2.4 Motifs

Network motifs were first proposed for static directed networks [12] and are, briefly
described, overrepresented subgraphs formed by a few vertices and their directed
links. Motifs are often interpreted as functional units, or candidates for such, and
motif analysis is commonly applied e.g. in systems biology. In static directed
networks, motifs can be mapped to component-like structures such as feedforward
loops, but in temporal networks, this is harder. Rather, motifs in temporal networks
correspond to typical sequences of events. There are many ways of defining such
motifs. To take one example, Kovanen et al. [13] look at sequences of contacts
between vertices that are maximally separated by a time ıt . More precisely, two
contacts ei and ej are ıt-adjacent if they share a vertex and are separated in time
by no more than ıt . Pairs of events are then defined as ıt-connected if there is a
sequence of ıt-adjacent events joining them and temporal subgraphs are defined as
sets of events that are ıt-connected. By counting such subgraphs and mapping them
into isomorphic classes on the basis of their order of events, Kovanen et al. find an
overrepresentation of temporal motifs that are causal, i.e. where the contacts may
have triggered one another (such as A contacts B who contacts C and D, as opposed
to the non-causal sequence where B contacts C and D, and A only then contacts
B). As an application of a temporal-network motif method (slightly different from
that of [13]) Jurgens and Lu [14] use motifs to study behavior in the evolution of
Wikipedia.
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2.5 Mesoscopic Structures

In static networks, there has recently been a flood of methods proposed to discover
mesoscopic structures (a.k.a. clusters, communities or modules [15]). These are
loosely defined as groups of vertices more densely connect within than between each
other. Much of the community structure literature regarding static networks only
focuses on deriving a method for decomposing the network on the basis of some
conceptually simple principle. The few methods that incorporate the time dimension
into community detection typically operate on aggregated time-slices of the contact
sequence [16, 17] or networks of links that have happened and will happened
again [18]. One can imagine clustering algorithms based on more elaborate temporal
structures, like time-respecting paths (an exception is Lin et al. [19]). As mentioned
earlier, visualizing temporal networks as two-dimensional, printable diagrams is
difficult and this is a major obstacle to intuitive reasoning about mesoscopic
temporal-topological structure. Reducing the network to a network of clusters that
split and merge with time is perhaps the most promising path in this direction.
Unfortunately, such a reduction would also destroy any non-transitive features of
the original structure, especially when time slices or aggregation are involved, and
smear out the effects of all temporal structures associated with shorter time scales
than the time window that is used (such as bursts) [20].

3 Models of Temporal Networks

As in all other areas of theoretical science, our understanding of temporal networks
hinges on mathematical and computational models. These models have different
purposes. The simplest class of models, already mentioned above, involves null
or reference models that are used together with various measures in order to infer
their statistical significance, or in order to assess the contribution of chosen types of
correlations to the values of the measures. Related to this are generative models that
can serve both as reference models and as a method to synthesize temporal structures
to run simulations of dynamic systems on. The third class comprises mechanistic
models for explaining the emergent network structures that one measures; and
finally we also have predictive models that are tailored to forecast future aspects
of a temporal network.

Much remains to be done in the development of temporal-network models in all
above-mentioned areas. This is somewhat in contrast to the theory of static networks
where a very large number of models were developed at an early stage [8].

3.1 Randomized Null or Reference Models

In order to interpret the significance of temporal-network measures, or to understand
what effects different temporal and structural features have on them, one needs
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Fig. 3 Illustration of some
randomization methods.
(a) Shows the randomly
permuted times (PT) scheme
that removes structures in the
order of events. (b) Shows the
random times scheme (RT)
and (c) displays a static
network rewiring as it appears
in a contact sequence. The
contacts of an edge is
conserved in the process.
Note that one need to allow
edges (A,B) and (C,D) to be
rewired to both (A,D), (C,B)
and (A,C), (D,B) to make the
sampling ergodic

something for comparing against. One approach is to compare observations against
the same measures computed for an ensemble of randomized networks that are
“neutral” in some chosen sense, i.e. where certain correlations and features are
removed by randomization procedures such that only the chosen fundamental
constraints of empirical networks are retained. The way the empirical network
differs from the null model gives meaning to the structure observed in the empirical
data, and points out effects that are due to the removed correlations. One can
also give a scale to the “raw” measures of temporal network structure, e.g. by
normalizing by the corresponding values for the reference models or subtracting
such values. More elaborately, one can assess the statistical significance of observed
measures by calculating the Z-score, or similar, of their values in the empirical
network against their distribution in the randomized ensemble. Strictly speaking,
the term “null model” should be used only in this context: Z-scores are then used
to reject or verify the null hypothesis that the observed features can be explained by
the randomized ensemble, and the removed correlations do not play a role.

For static networks, perhaps the most popular reference model is to rewire the
edges randomly while keeping the degree and number of vertices constant [7]. See
Fig. 3. This model is very closely related to the the configuration model which is
rigorously defined as an ensemble of vertices of given degrees that are connected
in a maximally random way [8]. For practical purposes, randomization by edge
swapping and the configuration model are equivalent. This is helpful since the
configuration model is theoretically well understood.
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For temporal networks, randomization plays a slightly different role than for
static networks. On one hand, there is no mathematically well-understood null
model like the configuration model. On the other hand, there is a much larger
number degrees of freedom, and subsequently there is also a much larger number
of possible randomization models. In fact, such models allow for going through a
sequence of randomization procedures, where one progressively removes chosen
types of correlations from the empirical temporal network. This provides a detailed,
continuous picture of temporal-network structure and the correlations that underlie
observations.

Below, we will discuss some of the most important temporal network models.
For a longer list, see Holme and Saramäki [1].

3.1.1 Randomly Permuted Times (RP)

As a temporal counterpart to the randomization of edges discussed above, one
can randomly permute the times of contacts, while keeping the network’s static
topology and the numbers of contacts between all pairs of vertices fixed. As this
randomization scheme retains all static network structure and the number of contacts
for each edge, its application can be used to study the effects of the exact order
and timings of contacts. The reference model destroys burstiness and inter-contact
times of nodes and edges, and subsequently also all correlations between timings of
contacts on adjacent edges. The model also keeps the overall rate of events in the
network over time, such as daily or weekly patterns. See Fig. 3.

3.1.2 Random Times (RT)

The set of time stamps is conserved in the RP ensemble. Hence, the intensities of
contacts at an aggregate level follow the same patterns as the real data—if there are
circadian rhythms (like in many human, and other biological and social systems)
they will still be there in randomized networks. If one wants to explore the impact
of these rhythms, one may draw the interaction times from a random distribution
and compare the outcome to the RP ensemble. See Fig. 3.

3.2 Generative, Mechanistic and Predictive Models

A large amount of numerical temporal network studies have been performed
on empirical networks. Since there is not yet any commonly-agreed-upon set
of temporal network characteristics, and since it is not yet clear what the most
important features of temporal networks are and whether there is any universality in
such features, the focus has been on what the data can tell us, which can be seen as an
advantage. The disadvantage is that we do not get a systematic understanding of the
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effects of temporal network structure. In order to arrive at such an understanding, we
need generative models that can output temporal networks with tunable structure.

In cases where topological and temporal structures are decoupled, creating a
generative model is straightforward. One could perhaps first generate the topology
according to some model from the static network literature, and then generate time
series of contacts over the edges for tuning some quantity of interest (like the vertex
persistency, (2)). Studies that successfully utilize generative models to study the
effects of temporal network structure include [21, 22].

Another type of models that are very common in the static network literature
but not for temporal networks are mechanistic models trying to explain the
emergence of large-scale structure from simple underlying driving mechanisms.
Indeed, the whole field of complex network theory took off in the 1990s with the
Watts–Strogatz model of small-world networks and the Barabási–Albert model of
scale-free networks, which makes this lack of mechanistic temporal network models
even more conspicuous.

A third type of models for temporal networks (largely still waiting to be realized)
is predictive models, solely targeted at forecasting the future development of the
contact structure. Such models, drawing from machine-learning and statistical
techniques, would not necessarily attempt to explain why a temporal network is like
it is, or to generate contact sequences from scratch. Rather, given a contact sequence
or interval graph, such models could predict its continuation in the near future.

4 Processes on Temporal Networks

Networks are never just a collection of vertices and edges (or contacts in the case of
temporal networks), except in very trivial cases. Rather, they are the underlying
structure that determines how dynamical processes over the graph unfold, from
contagion of infections to Internet traffic. Thus, they in reality define the system’s
function. Obviously, temporal effects can strongly affect any dynamics that follow
the shortest paths between vertices (see the above discussion on latency). Especially,
temporal features of networks affect the dynamics of diffusion and spreading. This
has been investigated by comparing spreading dynamics—often, with the help
of compartmental models of infectious disease spreading—on empirical contact
sequences and their randomized reference counterparts. At the moment, we do not
have a comprehensive theory of how temporal-network structure affects disease
spreading. For some systems the temporal structure speeds up spreading [23], in
other systems the temporal structure seems to slow it down [24]. The structure in
focus of these studies is burstiness—the property that contact activity (often human)
is very inhomogeneously distributed in time—that can be readily removed from
temporal networks by applying randomized reference models.

Another type of models of social spreading phenomena is threshold models,
in particular targeted for studies of social influence and opinion spreading. In
threshold models, an agent (or vertex) changes its state whenever the impact from
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the surrounding vertices exceeds some threshold value. The dynamics of such
models seem to have a tendency to speed up if there is burstiness, but also in this
case there is no general theory. Coming up with a general theory might even be
impossible, since there are different aspects of how to measure and quantify the
impact that triggers state changes in such models. Furthermore, it is hard to observe
or experimentally study human threshold behavior, which additionally may largely
depend on circumstances (for one such experiment, see [25]). Regarding threshold
models on temporal networks, Karimi and Holme [26] studied a modification of
Watts’s threshold models of cascades [27] for contact sequences and Takaguchi,
Masuda and Holme [28] studied a threshold model of exponentially decaying
influence. Both these studies were performed on empirical networks.

5 Summary and Discussion

We have given an overview of the different aspects that the field of temporal network
so far has covered. Furthermore, we have explained the challenges in extending
static network measures to temporal networks. We argue these challenges should be
encouraging rather than the opposite, both since they are intellectually fascinating
and since there are useful applications waiting once they are resolved.

The study of temporal networks is a fast advancing field with a great potential
for the future. However, many challenges remain. The extra level of information
added by the temporal dimension does not only make it difficult to develop theory
and computational methods, it also changes the questions one can ask about the
structure of the system. Probably many advances can be made by connecting and
integrating temporal networks with other extensions of network models such as
spatial networks [29] where the coordinated of spatially embedded nodes and links
are incorporated in the modeling framework, or adaptive networks [17, 30] where
there is a focus on the feedback from the dynamics on the networks to the evolution
of the network evolution.

Open questions for future studies ranges from how to make static visualizations
of temporal networks, via how to predict missing links in incomplete temporal
network data [31] or how to make sport-ranking systems [32], to classic questions
like if there is any universal law that involves both temporal structure and network
topology.

6 In This Book

This book aims at presenting an overview of the state-of-the-art in temporal
networks. Its chapters are contributed by leading researchers and research teams
from a variety of backgrounds and disciplines. Our target has been to cover the
emerging field of temporal networks both in breadth and in depth, and because of
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this, some chapters are essentially reviews on key topics—such as temporal network
metrics and burstiness—whereas others provide detailed accounts of investigations
building on the temporal networks framework, from networks of face-to-face human
proximity to the collective behaviour of social insects.

The following five chapters focus on metrics, measures and methods for char-
acterizing temporal network structure. In chapter “Graph Metrics for Temporal
Networks”, Nicosia, Tang, Mascolo, Musolesi, Russo, and Latora present an
overview of key temporal network metrics and measures, from walks and paths
to connectedness and centrality measures. This is followed by a chapter that
focuses on one of the key characteristics of temporal networks, especially those
related to human interactions: in chapter “Burstiness: Measures, Models, and
Dynamic Consequences”, Min, Goh, and Kim discuss burstiness, from measuring
and characterizing bursty activity to modeling its origins and assessing its effects
on dynamical processes. Then, in chapter “Temporal Scale of Dynamic Networks”,
Caceres and Berger-Wolf address the important problem of the underlying temporal
scales in interaction streams that define temporal networks, focusing on identifying
inherent temporal scales and finding network representations that match those
scales. These overviews are followed by two chapters that focus on specific temporal
network features and measures: Zhao, Karsai and Bianconi discuss the entropy
of temporal networks in chapter “Models, Entropy and Information of Temporal
Social Networks”, combining modeling efforts with studies of large, time-stamped
empirical data sets. In chapter “Temporal Motifs”, Kovanen, Karsai, Kaski, Kertész
and Saramäki present the temporal motifs approach that is designed to detect,
categorize and quantify recurrent temporal mesoscopic patterns of link activations.

In the second part of the book, temporal network metrics and measures are put
to use in empirical studies. In chapter “Applications of Temporal Graph Metrics
to Real-World Networks”, Tang, Leontiadis, Scellato, Nicosia, Mascolo, Musolesi,
and Latora apply the metrics discussed in chapter “Graph Metrics for Temporal
Networks” to the analysis of a number of empirical and simulated data sets. Then, in
chapter “Spreading Dynamics Following Bursty Activity Patterns”, Vazquez returns
to the topic of burstiness, and analyzes how bursty dynamics impacts spreading
processes in computer and social systems. The effects of burstiness on spreading
processes are further studied in chapter “Time Allocation in Social Networks:
Correlation Between Social Structure and Human Communication Dynamics” by
Miritello, Lara, and Moro in the context of networks of human interactions,
and connected to the social, topological structure around individuals. This is
followed by an account of temporal networks of face-to-face human interactions
by Cattuto and Barrat in chapter “Temporal Networks of Face-to-Face Human
Interactions”; spreading dynamics are also used here to probe the temporal structure
of proximity patterns. Finally, in chapter “Social Insects: A Model System for
Network Dynamics”, Charbonneau, Blonder, and Dornhaus present an inspiring
overview of social insects as model systems for network dynamics, and discuss how
temporal network analysis methods can provide novel ways to view the complexity
of collective behavior of social insects.
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The third and last part of the book discusses models of temporal networks
and processes taking place on such networks. In chapter “Self-exciting Point
Process Modeling of Conversation Event Sequences”, Masuda, Takaguchi, Sato,
and Yano consider the origins of the long-tailed inter-event interval distributions
in human dynamics, and model them with the Hawkes process, a self-exciting
point process that is fitted to data on face-to-face interactions in company offices.
Mantzaris and Higham then address the micro-scale dynamics of triadic closure
in social networks with the help of a model and time-stamped electronic records
in chapter “Infering and Calibrating Triadic Closure in a Dynamic Network”. The
same authors then move on to dynamic communicability measures, and show
that they can be used to predict macro scale features of simulated epidemics on
temporal networks in chapter “Dynamic Communicability Predicts Infectiousness”.
The last three chapters focus on the behavior of other archetypal dynamic processes
than spreading, when the dynamics unfolds through the interactions sequences of
temporal networks. In chapter “Random Walks on Stochastic Temporal Networks”,
Hoffmann, Porter and Lambiotte develop a mathematical framework for random
walks on temporal networks using an approach that provides a compromise between
abstract but unrealistic models and data-driven but non-mathematical approaches.
Karimi and Holme then develop and study a version of Watts’s cascade model for
the spreading of opinions and innovations in the temporal network setting in chapter
“A Temporal Network Version of Watts’s Cascade Model”, and finally, Fernández-
Gracia, Eguı́luz, and San Miguel present version of the Voter model of opinion
dynamics that is able to account for heterogeneous temporal activity patterns in
chapter “Timing Interactions in Social Simulations: The Voter Model”.
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Graph Metrics for Temporal Networks

Vincenzo Nicosia, John Tang, Cecilia Mascolo, Mirco Musolesi,
Giovanni Russo, and Vito Latora

Abstract Temporal networks, i.e., networks in which the interactions among a
set of elementary units change over time, can be modelled in terms of time-
varying graphs, which are time-ordered sequences of graphs over a set of nodes.
In such graphs, the concepts of node adjacency and reachability crucially depend
on the exact temporal ordering of the links. Consequently, all the concepts and
metrics proposed and used for the characterisation of static complex networks
have to be redefined or appropriately extended to time-varying graphs, in order
to take into account the effects of time ordering on causality. In this chapter we

V. Nicosia (�)
Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue,
Cambridge CB3 0FD, UK
e-mail: V.Nicosia@qmul.ac.uk

Laboratorio sui Sistemi Complessi, Scuola Superiore di Catania, Via Valdisavoia 9,
95123 Catania, Italy

J. Tang � C. Mascolo
Computer Laboratory, University of Cambridge, 15 JJ Thomson Avenue,
Cambridge CB3 0FD, UK

M. Musolesi (�)
School of Computer Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
e-mail: m.musolesi@cs.bham.ac.uk

G. Russo
Dipartimento di Matematica e Informatica, Universitá di Catania, Via S. Sofia 64,
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discuss how to represent temporal networks and we review the definitions of walks,
paths, connectedness and connected components valid for graphs in which the links
fluctuate over time. We then focus on temporal node–node distance, and we discuss
how to characterise link persistence and the temporal small-world behaviour in this
class of networks. Finally, we discuss the extension of classic centrality measures,
including closeness, betweenness and spectral centrality, to the case of time-varying
graphs, and we review the work on temporal motifs analysis and the definition of
modularity for temporal graphs.

1 Introduction

Whenever a system consists of many single units interacting through a certain kind
of relationship, it becomes natural to represent it as a graph, where each node of
the graph stands for one of the elementary units of the system and interactions
between different units are symbolised by edges. If two nodes are connected by
an edge they are said to be adjacent. According to the nature of the units and to the
characteristics of adjacency relationship connecting them, it is possible to construct
different kind of graphs, such as friendship graphs—where nodes are people and
edges connect two people who are friends, functional brain networks—where nodes
are regions of the brain and edges represent the correlation or causality of their
activity, communication graphs—where nodes are terminals of a communication
systems, such as mobile phones or email boxes, and edges indicate the exchange
of a message from a terminal to another, just to make some examples. Thanks to
the availability of large data sets collected through modern digital technologies,
in the last decade or so there has been an increasing interest towards the study of
the structural properties of graph representations of real systems, mainly spurred
by the observation that graphs constructed from different social, biological and
technological systems show surprising structural similarities and are characterised
by non-trivial properties. In a word, they are complex networks. Independently of
the peculiar nature and function of the original systems, the corresponding graphs
are usually small-worlds, i.e., they show high local cohesion and, at the same
time, extremely small node–node distance [47]; the distribution of the number of
neighbours of a node (its degree) is often heterogeneous, and decays as a power-
law (i.e., they are scale-free [2]); they are locally organised as tightly-knit groups
of nodes (called communities), which are in turn loosely interconnected to each
other [33]. The concepts, metrics, methods, algorithms and models proposed so
far to study the structure of real networks has led to the formation of theoretical
framework known as complex network theory [1, 5, 31].

However, the relationships among the units of a real networked system (e.g., node
adjacency) are rarely persistent over time. In many cases, the static interpretation
of node adjacency is just an oversimplifying approximation: contacts among
individuals in a social network last only for a finite interval and are often inter-
mittent and recurrent [8, 13, 18]; different intellectual tasks are usually associated
to different brain activity patterns [9, 45]; communication between agents in a
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telecommunication system are typically bursty and fluctuate over time [4, 26, 40];
transportation networks show fluctuations in their microscopic organisation, despite
the stability of their global structural properties [11]. Consequently, whenever we
deal with a networked system that evolves over time, the concept of adjacency needs
to be appropriately redefined. The extension of node adjacency to the case of time-
evolving systems has lately led to the definition of temporal graphs (sometimes
also called time-varying graphs or dynamic graphs), in which time is considered as
another dimension of the system and is included in the same definition of the graph.
Since most of the metrics to characterise the structure of a graph, including graph
connectedness and components, distance between nodes, the different definitions of
centrality etc., are ultimately based on node adjacency, they need to be appropriately
redefined or extended in order to take into account of the presence, frequency
and duration of edges at different times. In general, the temporal dimension adds
richness and complexity to the graph representation of a system, and demands
for more powerful and advanced tools which allow to exploit the information on
temporal correlations and causality. Recently, Holme and Saramäki have published
a comprehensive review which presents the available metrics for the characterisation
of temporal networks [14]. A description of some potential applications of these
metrics can be found in [44].

This chapter presents the basic concepts for the analysis of time-evolving net-
worked systems, and introduces all the fundamental metrics for the characterisation
of time-varying graphs. In Sect. 2 we briefly discuss different approaches to encode
some temporal information into static graphs and we introduce a formal definition
of time-varying graph. In Sect. 3 we examine how reachability and connectedness
are affected by time-evolving adjacency relationships and we introduce the defini-
tions of node and graph temporal components, showing the intimate connections
between the problem of finding temporal connected components and the maximal-
clique problem in static graphs. In Sect. 4 we focus on the concepts of temporal
distance, efficiency and temporal clustering, and we discuss the temporal small-
world phenomenon. In Sect. 5 we present the extensions of betweenness, closeness
and spectral centrality to time-varying graphs. Finally, in Sect. 6 we report on the
definition of temporal motifs and on the extension of the modularity function to
time-varying graphs.

2 Representing Temporal Networks

From a mathematical point of view a networked time-evolving system consists of
a set C of contacts registered among a set of nodes N D f1; 2; : : : ; N g during
an observation interval Œ0; T � [37, 43]. A contact between two nodes i; j 2 N is
represented by a quadruplet c D .i; j; t; ıt/, where 0 � t � T is the time at which
the contact started and ıt is its duration, expressed in appropriate temporal units. As
we stated above the relationship between i and j is usually not persistent (it could
represent the co-location at a place, the transmission of a message, the temporal
correlation between two areas of the brain etc.), so that in general we will observe
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Fig. 1 The set of contacts
registered among five nodes
within an observation period
of 4 h. Blue bars indicate the
duration of each contact. The
two dashed lines correspond
to two instantaneous cuts
of the contact set, respectively
for t D 80min (green) and
t D 120min (cyan)

more than one contact between i and j in the interval Œ0; T �. In Fig. 1 we report an
example of a set of seven contacts observed between a set of N D 5 nodes within
an interval of T D 240min. The contacts in the figure are considered symmetric,
i.e., .i; j; t; ıt/ D .j; i; t; ıt/, even if in general this in not the case. Each contact is
represented by a pair of nodes and a blue bar indicating the start and duration of the
contact. Notice that in this example, which is indeed representative of many social
and communication systems, the typical overlap between contacts is relatively small
with respect to the length of the observation interval.

Before explaining how the temporal information about such a set of contacts
can be represented by means of a time-varying graph, we first review some simple
approaches to deal with time-evolving systems based on static graphs, and we
discuss why they are inadequate for analyzing time-evolving systems.

2.1 Aggregated Static Graphs

The classic approach to represent networked systems evolving over time consists in
constructing a single aggregated static graph, in which all the contacts between each
pair of nodes are flattened in a single edge. An aggregated graph can be represented
by an adjacency matrix A D faijg 2 R

N�N , in which the entry aij D 1 if at least
one contact .i; j; �; �/ has been registered in Œ0; T � between i and j , and aij D 0
otherwise. If the relationship between any pair of nodes i and j is symmetric,
such as in the case of co-location or collaboration graphs, also the corresponding
adjacency matrix is symmetric, i.e., aij D aji 8i; j 2 N . Conversely, whenever
a directionality is implied, for instance when the contact is a phone call from i to
j or represents goods transferred from i to j , the adjacency matrix is in general
non-symmetric.

Representing a time-evolving system by means of an adjacency matrix, i.e., an
unweighted graph, is usually a severe oversimplification: the information about
the number, frequency and duration of contacts between two nodes i and j is
flattened down into a binary digit (i.e., aij D 1 if there is at least one contact,
of any duration, between i and j , while aij D 0 otherwise). In general, a binary
adjacency information does not take into account the heterogeneity observed in real
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a b c

Fig. 2 Three different aggregated static graphs obtained from the set of contacts in Fig. 1. (a) The
unweighted aggregated graph; (b) the weighted aggregated graph where each weight wij between
node i and node j corresponds to the number of contacts observed; (c) the weighted aggregated
graph where each weight wij is the total duration of all the contacts between i and j

systems. Just to make an example, both the number of phone calls made by a single
node during a certain time interval and the duration of a call between two nodes
exhibit large fluctuations, and their distribution is well approximated by a power-
law [4,16,26]. This means that assigning the same weight to all the relationships can
lead to misleading conclusions. This problem can be partially solved by constructing
a weighted aggregated graph, in which the edge connecting i to j is assigned a
weight wij proportional to the number of contacts observed, their duration, their
frequency or a combination of the these three dimensions.

In Fig. 2 we show three different aggregated static graphs corresponding to
the same set of contacts reported in Fig. 1. The leftmost graph (Panel a) is the
unweighted aggregated graph; in the middle graph (Panel b) the weights correspond
to the number of contacts observed between the nodes; in the rightmost one (Panel c)
the weight of each edge wij is equal to the sum of the duration of all the contacts
between i and j . However, both unweighted and weighted aggregated graphs fail to
capture the temporal characteristics of the original system. In fact, by considering all
the links as always available and persistent over time, the number of walks and paths
between two nodes is overestimated, while the effective distance between two nodes
is instead systematically underestimated. For instance, in all the three aggregated
representations, node 2 and node 4 are connected by an edge, but their interaction
is limited just to the beginning of the observation period, so that these nodes cannot
directly communicate for most of the time.

Despite not being powerful enough to represent networks in which the temporal
aspects are crucial, static aggregated graphs and the metrics proposed for their
analysis still constitute an invaluable framework to investigate the structure and
function of systems in which the topological characteristics are more relevant than
the temporal ones. After all, most of the classic examples of complex networks,
including the graph of the Internet at Autonomous Systems level [46], co-authorship
networks [29, 30], the graph of the World Wide Web [2, 6] and functional brain
networks [7] have been obtained so far by aggregating all the contacts observed
among a certain number of nodes within a given temporal interval, and the analysis
of their structure has provided new insights about the organisation of different
complex systems.
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2.2 Time-Varying Graphs

The natural way to work out a graph representation that can properly take into
account all the temporal correlations of a set of contacts consists into including
time as an additional dimension of the graph [17]. We notice that a set of contacts
implicitly defines a graph for each instant t , made by the set of edges corresponding
to all the contacts .�; �; ti ; ıti / such that ti � t � ti C ıti . In the example shown
in Fig. 1, if we consider t D 80min, corresponding to the dashed green line in the
figure, the graph constructed from contacts active at that time contains only two
edges, namely .2; 3/ and .4; 5/. However, we notice that the graph corresponding
to t D 120min (the dashed cyan line in the figure) is an empty graph, since no
contact is active at that time. For practical reasons, and especially when contacts
are instantaneous, i.e., ıt ! 0, it is convenient to consider a finite time-window
Œt; t C �t� and to construct a graph by creating an edge between all pairs of nodes
for which there is at least a contact which overlaps with the interval Œt; t C �t�.
A generic contact .�; �; �i ; ı�i / overlaps with Œt; t C �t� if it satisfies at least one of
the three following conditions:

t � �i < t C�t (1)

t � �i C ı�i < t C�t (2)

�i < t ^ �i C ı�i > t C�t (3)

A graph Gt obtained by aggregating all the contacts appearing in a given
interval Œt; t C �t� represents the state of the system in that interval, i.e., it is
a snapshot which captures the configuration of the links at that particular time
interval. If we consider a sequence of successive non-overlapping time-windows
fŒt1; t1C�t1�; Œt2; t2C�t2�; Œt3; t3C�t3�; : : : ; ŒtM ; tMC�tM �g then we obtain a time-
varying graph, which is the simplest graph representation of a set of contacts that
takes into account their duration and their temporal ordering [19,43]. A time-varying
graph is an ordered sequence ofM graphs fG1;G2; : : : ; GM g defined overN nodes,
where each graph Gm in the sequence represents the state of the network, i.e., the
configuration of links, in the time-window Œtm; tmC�tm�; m D 1; : : : ;M . In this
notation, the quantity tMC�tM�t1 is the temporal length of the observation period.
In general the graphs in the sequence can correspond to any ordered sequence of
times such that t1 < t1 C �t1 D t2 < t2 C �t2 D t3 < : : : < tM C �tM [12]. In
the following we assume, without loss of generality, that t1 D 0 and tM D T and,
at the same time, that the sequence of snapshots is uniformly distributed over time,
i.e., tmC1 D tm C �t; 8m D 1; : : : ;M � 1 [43]. In compact notation, we denote
the graph sequence forming a time-varying graph as G � GŒ0;T �. Each graph in the
sequence can be either undirected or directed, according to the kind of relationship
represented by contacts. Consequently, the time-varying graph G is fully described
by means of a time-dependent adjacency matrix A.tm/; m D 1; : : : ;M , where
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a

b

Fig. 3 Two time-varying graphs corresponding to the set of contacts in Fig. 1. Panel (a) the four
snapshot obtained setting �t D 60min; Panel (b) the eight snapshots of the time-varying graph
constructed using�t D 30min. The smaller the size of the time-window, the higher the probability
that a snapshot contains no edges (this happens for the snapshot t7 in panel (b))

aij.tm/ are the entries of the adjacency matrix of the graph at time tm, which is in
general a non-symmetric matrix.

Notice that, by tuning the size of the time-window used to construct each
snapshot, it is possible to obtain different representations of the system at different
temporal scales. In Fig. 3 we present two time-varying graphs obtained from the
same set of contacts in Fig. 1 but using two different lengths for the time-window.
The graph on the top panel is constructed by setting �t D 60min, and consists of
four snapshots, while the graph on the bottom panel corresponds to a time-window
of �t D 30min and has eight snapshots. It is usually preferable to set the size
of the time-window to the maximum temporal resolution available. For instance, if
the duration of contacts is measured with an accuracy of 1 s (such as in the case
of email communications or phone calls), it makes sense to construct time-varying
graphs using a time-window�t D 1 s.

In the limit case when �t ! 0, we obtain an infinite sequence of graphs, where
each graph corresponds to the configuration of contacts at a given instant t . This
sequence of graphs might include a certain number of empty graphs, corresponding
to periods in which no contacts are registered. On the contrary, if we set �t D T ,
the time-varying graph degenerates into the corresponding unweighted aggregated
graph, where all the temporal information is lost.

3 Reachability, Connectedness and Components

In a static graph the first neighbours of a node i are the nodes to which i is connected
by an edge, i.e., nodes j such that aij D 1. We say that the neighbours of i are
directly reachable from i . If k is a neighbour of j and j is in turn a neighbour
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of i , then the node k is indirectly reachable from i , i.e., by following first the edge
connecting i to j and then the one which connects j to k. In general, the direct and
indirect reachability of nodes is important to characterise the global structure of a
network and to investigate the dynamics of processes occurring over it. For instance,
if node i has got a contagious disease, then there is a high probability that the disease
will sooner or later be transmitted to the nodes that are directly reachable from i (its
first neighbours). However, if a disease starts from a node i , also the nodes which
are not directly connected to i but are still indirectly reachable from i have a finite
probability to get the disease through a chain of transmissions.

The reachability between nodes is related to the concept of walk. In a static graph
a walk is defined as an ordered sequence of ` edges fai0;i1 ; ai1;i2 ; : : : ; ai`�1;i`g such
that aik ;ikC1

D 1; k D 0; 1; : : : ; ` � 1. The length of a walk is equal to the number
of edges traversed by the walk. We say that the node j is reachable from i if there
exists a walk which starts at i and ends up at j . If each vertex in a walk is traversed
exactly once, then the walk is called a simple walk or a path. For instance, in the
graph shown in Fig. 2 the sequence of nodes Œ2; 4; 5; 2; 1; 4� is a walk of length 5
which starts at node 2 and ends at node 4, while the sequence Œ3; 2; 5� is a path of
length 2 going from node 3 to node 5 passing by node 2. In a static graph the length
of the shortest path connecting two nodes is called geodesic distance.

Since the definitions of walk and path depend on the adjacency of nodes,
and given that node adjacency is a function of time in time-varying graphs,
an appropriate extension of these concepts is necessary in order to define node
reachability and components in time-varying graphs.

3.1 Time-Respecting Walks and Paths

In a time-varying graph, a temporal walk from node i to node j is defined as a
sequence of L edges Œ.nr0 ; nr1/; .nr1 ; nr2/; : : : ; .nrL�1 ; nrL/�, with nr0 � i , nrL � j ,
and an increasing sequence of times tr1 < tr2 < : : : < trL such that anrl�1 ;nrl .trl / ¤ 0
l D 1; : : : ; L [12,43]. A path (also called temporal path) of a time-varying graph is
a walk for which each node is visited at most once. For instance, in the time-varying
graph of Fig. 3a, the sequence of edges Œ.5; 2/; .2; 1/� together with the sequence
of times t1; t3 is a temporal path of the graph. This path starts at node 5 at time
t1 and arrives at node 1 at time t3. Notice that the aggregated static graph flattens
down most of the information about temporal reachability. In fact, if we look at the
static aggregated graph corresponding to this time-varying graph (shown in Fig. 2a),
there are different paths going from node 1 to node 5 and vice versa; however, if we
look at the time-varying graphs of Fig. 3 we notice that in both of them there is
no temporal path connecting node 1 to node 5. The reason is that node 5 could be
reached from node 1 only by passing through either node 2 or node 4, but node 1
actually is connected to both these nodes after they have been in contact to node 5.
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3.2 Temporal Connectedness and Node Components

The concept of connectedness is fundamental in complex network theory. A mes-
sage, a piece of information or a disease can be transferred from one node to all
the other nodes to which it is connected, but will never be conveyed to nodes that
are disconnected from it. For this reason, the study of node connectedness and node
components is the very basic tool to investigate the structure of a graph.

In a static undirected graph two nodes are said to be connected if there exists a
path between them. In this particular case connectedness is an equivalence relation:
it is reflexive (i.e., i is connected to itself), symmetric (i.e., if i is connected to j then
j is connected to i ) and transitive (i.e., if i is connected to j and j is connected to k,
then i is also connected to k). Instead, in a directed graph, due to the directionality
of the edges, symmetry is broken and the existence of a path from i to j does not
guarantee that a path from j to i does indeed exist. For this reason, the notions of
strong and weak connectedness are introduced. In a word, two nodes i and j of a
static directed graph are said to be strongly connected if there exist a path from i

to j and a path from j to i , while they are weakly connected if there exists a path
connecting them in the underlying undirected graph, i.e., in the static graph obtained
from the original by discarding edge directions.

Starting from the definitions of temporal walk and path, it is possible to define
temporal connectedness (in a weak and in a strong sense) for pairs of nodes
in a time-varying graph. A node i of a time-varying graph GŒ0;T � is temporally
connected to a node j if there exists a temporal path going from i to j in Œ0; T �. Due
to the temporal ordering of edges, this relation is trivially not symmetric, so that if
i is temporally connected to j , in general j can be either temporally connected or
disconnected to i . Two nodes i and j of a time-varying graph are strongly connected
if i is temporally connected to j and also j is temporally connected to i .

Temporal strong connectedness is a reflexive and symmetric relation, so that if
i is strongly connected to j , then j is strongly connected to i . However, strong
connectedness still lacks transitivity, and, therefore, it is not an equivalence relation.
In fact, if i and j are strongly connected and j and l are strongly connected, nothing
can be said, in general, about the connectedness of i and l . For instance, in the time-
varying graph shown in Fig. 3a, nodes 5 and 2 are strongly connected and also 2 and
1 are strongly connected, but nodes 5 and 1 are not strongly connected because, as
we have already explained above, there exists no temporal path that connects node 1
to node 5.

Similarly to the case of static directed graphs, it is possible to define weak con-
nectedness among nodes. Given a time-varying graph G , we consider the underlying
undirected time-varying graph G u, which is obtained from G by discarding the
directionality of the links of all the graphs fGmg, while retaining their time ordering.
Two nodes i and j of a time-varying graph are weakly connected if i is temporally
connected to j and also j is temporally connected to i in the underlying undirected
time-varying graph G u. Also weak connectedness is a reflexive and symmetric
relation, but not transitive.
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It is worth noting that strong and weak connectedness propagate over different
time scales. In fact, if we consider two time-varying graphs obtained from the same
set of contacts by using two different time-windows, such as for instance �t1 for
the graph G1 and �t2 > �t1 for G2 (as in the two time-varying graphs of Fig. 3),
then it is easy to prove that if i and j are strongly connected in G1 then they are
also strongly connected in G2. The contrary is trivially not true. Thanks to this
property, strong and weak connectedness in time-varying graphs are consistent with
the corresponding definitions given for static graphs. In fact, as a limiting case,
if two nodes are strongly (weakly) connected in a time-varying graph, then they
are also strongly (weakly) connected in the corresponding aggregated static graph,
which is the degenerate time-varying graph obtained by setting �t D T .

By using reachability, strong and weak connectedness, different definitions of
node components can be derived. For instance, the temporal out-component of
node i (resp. in-component), denoted as OUTT .i/ (resp. INT .i/), is the set of ver-
tices which can be reached from i (resp. from which i can be reached) in the
time-varying graph G . Similarly the temporal strongly connected component of a
node i (resp. weakly connected component), denoted as SCCT .i/ (resp. WCCT .i/),
is the set of vertices from which vertex i can be reached, and which can be reached
from i , in the time-varying graph G (resp. in the underlying undirected time-varying
graph G u).

In general, temporal node components have quite heterogeneous composition and
sizes, and reveal interesting details about the structure of the graph. For instance, the
out-component of node 3 in the two graphs of Fig. 3 contains only nodes 1, 2, 4 and
node 3 itself, since there is no way for node 3 to reach node 5. Conversely, in the
corresponding aggregated graphs (as shown in Fig. 2) the out-components of all the
nodes are identical and contain all the nodes of the graph.

The importance of temporal node components has been pointed out in [36],
which reports the results of temporal component analysis on time-varying graphs
obtained from three different data sets. The authors compared the size of node
temporal in- and out-components in these time-varying graphs with the size of the
giant component of the corresponding aggregated graphs, and they found that in
general temporal node components are much smaller than the giant component of
the aggregated graph, and exhibit a high variability in time. This is another example
of the fact that time-varying graphs are able to provide additional information that
is not captured by aggregated graphs.

3.3 Graph Components and Affine Graphs

Differently from the case of directed static graphs, it is not possible to define the
strongly (weakly) connected components of a time-varying graph starting from the
definition of connectedness for pairs of nodes. Formally, this is due to the fact that
strong and weak connectedness are not equivalence relations. For this reason, the
following definition of strongly connected component of a time-varying graph has
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Fig. 4 Affine graph
associated to the time-varying
graph of Fig. 3a. Pairs of
strongly connected nodes are
linked by an edge, and the
cliques of the affine graph
correspond to the strongly
connected components of the
associated time-varying graph

been proposed [36]: a set of nodes of a time-varying graph G is a temporal strongly
connected component of G if each node of the set is strongly connected to all the
other nodes in the set. A similar definition exists for weakly connected components.
These definitions enforce transitivity but have the drawback that in order to find the
strongly connected components of a time-varying graph, it is necessary to check the
connectedness between all pairs of nodes in the graph. In [36] it has been shown
that the problem of finding the strongly connected components of a time-varying
graph is equivalent to the well-known problem of finding the maximal-cliques of
an opportunely constructed static graph. We define such graph as the affine graph
corresponding to the time-varying graph. The affine graph GG is defined as the
graph having the same nodes as the time-varying graph G , and such that two nodes
i and j are linked in GG if i and j are strongly connected in G . In Fig. 4 we report
the affine graph corresponding to the time varying graph shown in Fig. 3a. In this
graph, node 1 is directly connected to nodes f2; 3; 4g, since it is temporally strongly
connected to them in the time-varying graph. Similarly, node 2 is connected to nodes
f1; 3; 4; 5g, node 3 is connected to f1; 2g, node 4 is connected to f1; 2; 5g and node 5
is connected to f2; 4g. Hence, the affine graphGG has only 7 of the 10 possible links,
each link representing strong connectedness between two nodes. By construction, a
clique of the affine graph GG contains only nodes which are strongly connected to
each other, so that the maximal-cliques of the affine graph, i.e., all the cliques which
are not contained in any other clique, are temporal strongly connected components
(SCCT ) of G . Similarly, all the maximum-cliques of the affine graph GG , i.e., its
largest maximal-cliques, are the largest temporal strongly connected components
(LSCCT ) of G .

We notice that the problem of finding a partition of G that contains the minimum
number of disjoint strongly connected components is equivalent to the well-known
problem of finding a partition of the corresponding affine graph GG in the smallest
number of disjoint maximal-cliques [15]. Unfortunately, this problem is known to
be NP-complete, and in practice can be exactly solved only for small graphs. In the
case of the affine graph reported in Fig. 4, it is possible to check by hand that there
are only three possible partitions of GG into maximal-cliques, namely

1. f1; 2; 3gSf4; 5g
2. f1; 2; 4gSf3gSf5g
3. f2; 4; 5gSf1; 3g
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The second partition contains two isolated nodes, which are indeed degenerated
maximal-cliques. Therefore, the original time-varying graph admits only two
different partitions into a minimal number of non-degenerated strongly connected
components, namely into two components containing at least two nodes each. This
is a quite different picture from that we obtain using static aggregated graphs. In
fact, all the static aggregated representations of the same time-varying graph (see
Fig. 2) are composed by just one strongly connected component which includes all
the nodes.

We notice that in general the largest temporal strongly connected components
of a time-varying graph can be much smaller than the giant connected component
of the corresponding aggregated graph. For instance, in [36] the authors performed
temporal component analysis on time-varying graphs constructed from three dif-
ferent time-stamped data sets (i.e. the MIT Reality Mining project, co-location
at INFOCOM 2006 and Facebook communication), and they found that despite
the giant connected component of the corresponding aggregated graphs usually
included almost all the nodes in the network, the maximal cliques of the affine
graphs were indeed much smaller. Particularly interesting was the case of the
Facebook communication data set: the giant connected components of the aggre-
gated graphs contained from 104 to 105 nodes, while the largest temporal strongly
connected components counted around 100 nodes at most. Disregarding such
discrepancies could result in misleading conclusions. For example, the potential
number of individuals infected by a disease which spreads through the system is in
the order of tens if we correctly take into account temporal correlations, but could
be erroneously estimated to be thousand times larger if one considers the aggregated
graph.

4 Distance, Efficiency and Temporal Clustering

One of the most relevant properties of static complex networks is that they exhibit,
on average, a surprising small geodesic distance between any pairs of nodes, where
the geodesic distance between i and j is defined as the length of the shortest path
connecting them. The average geodesic distance is important to characterise how
fast (for example, in terms of number of hops), a message can be transmitted from
a node to another in the network; therefore, it is related to the overall efficiency of
communication among nodes. Having a small average geodesic distance (where the
average is computed over all the pairs of connected nodes) is a desirable property
when one wants to spread a message throughout the network; conversely, small
geodesic distance becomes a problem if we want to control the propagation of a
disease.
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4.1 Temporal Distance and Efficiency

When we consider time-varying graphs, the temporal dimension is an essential
element of the system, so that the concept of geodesic distance cannot be limited
to the number of hops separating two nodes but should also take into account the
temporal ordering of links. As a matter of fact, any path in a time-varying graph
is characterised by two different lengths: (a) a topological length, measured as
the number of edges traversed by the path, and a (b) temporal length or duration,
measured as the time interval between the first and the last contact in the path.

Both the topological and the temporal lengths of a path usually depend on the
time at which the path starts. Consider for instance two of the paths connecting
node 5 to node 3 in Fig. 3a. The first path starts from 5 at snapshot t1 which traverses
the edge .5; 2/ at .t1/ and arrives at node 3 following the edge .2; 3/ at time .t2/. The
second one starts from 5 at time t2 and arrives at node 3 at time t4, after traversing
the edges .5; 4/ at t2, .4; 1/ and .1; 2/ at t3 and finally .2; 3/ at t4. The first path
has a topological length equal to 2 and a temporal length of two snapshots (e.g.,
2 h), while the second path has a topological length equal to 4 and a temporal length
equal to three snapshots (e.g., 3 h).

The temporal shortest path from node i to node j is defined as the temporal
path connecting i to j which has minimum temporal length. Similarly, the temporal
distance di;j between i and j is the temporal length of the temporal shortest path
from i to j . In the example discussed above, the temporal shortest path connecting
node 5 to node 3 is the one starting at t1 and having temporal length equal to two
snapshots.

The natural extension of the average geodesic distance to the case of time-varying
graphs is the characteristic temporal path length [42, 43], which is defined as the
average temporal distance over all pairs of nodes in the graph:

L D 1

N.N � 1/
X

ij

dij (4)

It is also possible to define the temporal diameter of a graph as the largest
temporal distance between any pair of nodes:

D D maxijdij (5)

However, in real time-varying graphs it is quite common to have many pairs of
temporally disconnected nodes. The problem is that if a node j is not temporally
reachable from i , then dij D 1, and the characteristic temporal path length diverges.
In order to avoid such divergence, the temporal global efficiency [42, 43] of a time-
varying graph has been defined as follows:

E D 1

N.N � 1/
X

ij

1

dij
(6)
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The temporal global efficiency is the straightforward generalisation of the global
efficiency already defined for static graphs [22], and has been successfully employed
to study and quantify the robustness of temporal graphs (see for instance [38] and
[44] in this book).

4.2 Edge Persistence and Clustering

The characteristic temporal path length and the temporal efficiency provide a
quantitative representation of the global structure of a graph in terms of the average
temporal distance among any pair of nodes. However, in time-varying systems
contacts are usually bursty, meaning that the distribution of the time between two
contacts has a heavy tail, and persistent, i.e., if two nodes are connected at a time t ,
there is a non-negligible probability that they will still be connected at time t C�t .
This characteristic can be quantified in the following way. If we consider a node i
and two adjacent snapshots of a time-varying graph, respectively starting at time tm
and tmC1 D tm C �t , we can define the topological overlap of the neighbourhood
of i in Œtm; tmC1� as:

Ci.tm; tmC1/ D
P

j aij.tm/aij.tmC1/rhP
j aij.tm/

i hP
j aij.tmC1/

i (7)

and the average topological overlap of the neighbourhood of node i as the
average of Ci.tm; tmC1/ over all possible subsequent temporal snapshot, i.e.:

Ci D 1

M � 1
M�1X

mD1
Ci.tm; tmC1/ (8)

The average topological overlap of a node i is a natural extension of the concept
of local clustering coefficient which includes temporal information. In fact, while
in a static graph the local clustering coefficient of a node measures the probability
that its neighbours are in turn connected by an edge, the average topological overlap
estimates the probability that an edge from i to one of its neighbours j persists
across two consecutive time-windows. In a word, it is a measure of the temporal
clustering of edges, i.e., of their tendency to persist across multiple windows. The
average of Ci computed over all the nodes in the network, namely the quantity:

C D 1

N

X

i

Ci (9)

is called temporal-correlation coefficient [43], and is a measure of the overall
average probability for an edge to persist across two consecutive snapshots. Notice
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Table 1 Temporal-correlation, characteristic temporal path length and efficiency for brain func-
tional networks (in four different frequency bands) [9], for the social interaction networks of
INFOCOM’06 (time periods between 1 p.m. and 2:30 p.m., four different days) [39], and for
messages over Facebook online social network (4 different months of year 2007) [48]

C C rand L Lrand E Erand

˛ 0.44 0.18 (0.03) 3:9 4:2 0.50 0.48
ˇ 0.40 0.17 (0.002) 6:0 3:6 0.41 0.45
� 0.48 0.13 (0.003) 12:2 8:7 0.39 0.37
ı 0.44 0.17 (0.003) 2:2 2:4 0.57 0.56

d1 0.80 0.44 (0.01) 8:84 6:00 0.192 0.209
d2 0.78 0.35 (0.01) 5:04 4:01 0.293 0.298
d3 0.81 0.38 (0.01) 9:06 6:76 0.134 0.141
d4 0.83 0.39 (0.01) 21:42 15:55 0.019 0.028

Mar 0.044 0.007 (0.0002) 456 451 0.000183 0.000210
Jun 0.046 0.006 (0.0002) 380 361 0.000047 0.000057
Sep 0.046 0.006 (0.0002) 414 415 0.000058 0.000074
Dec 0.049 0.006 (0.0002) 403 395 0.000047 0.000059

Results are compared with the averages measured over 1,000 time-varying graphs obtained by
reshuffling the sequences of snapshots. The values in parenthesis next to Crand are the respective
standard deviations. The values of L and Lrand are computed considering only the connected pairs
of nodes. Table adapted from [43]

that C D 1 if and only if all the snapshots of the time-varying graphs have exactly
the same configuration of edges, while it is equal to zero if none of the edges is ever
observed in two subsequent snapshots.

In [43] the authors considered time-varying graphs constructed from three data
sets, namely functional brain networks [9], the co-location at INFOCOM 2006 [39]
and personal messages exchanged among Facebook users [48]. They compared
the characteristic temporal path length and the temporal correlation coefficient of
these temporal graphs with those obtained from the same data sets by reshuffling
the sequence of snapshots. Notice that by reshuffling the snapshots one destroys
all the existing temporal correlations while retaining the average connectivity
of each node and the configuration of edges in the corresponding aggregated
graph. They showed that the original time-varying graphs usually exhibit both
a relatively smaller characteristic temporal path length and a relatively higher
temporal correlation coefficient, when compared with those measured on reshuffled
sequences of snapshots. This finding is the temporal analogous to the small-world
effect observed in static complex networks, and has consequently been named small-
world behaviour in time-varying graphs. Table 1 reports the results obtained for the
three different data sets.
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5 Betweenness, Closeness and Spectral Centrality

The structural properties of a complex network usually reveal important information
about its dynamics and function. This is particularly true if we take into account the
relationship between the position occupied by a node in a static graph and the role
played by the node for the evolution of a dynamic process. For instance, not all
nodes have the same impact on the transmission of a disease (or the spreading of a
rumour) over a network: intuitively, the nodes having a higher number of neighbours
should contribute much more to the spreading than nodes having few connections.
However, if we perform a deeper analysis, we observe that not just the number of
edges is important to identify good spreaders, since also the actual organisation of
these edges has an impact on the speed of the spreading process. In fact, nodes
mediating a large number of shortest paths are indeed those that contribute the most
to the transmission of diseases and information over a network. The identification
of nodes that play a central role, i.e., nodes having high centrality, has been a quite
active research field in complex network theory. Here we review some standard
centrality measures and their extension to the case of time-varying graphs.

5.1 Betweenness and Closeness Centrality

Two basic centrality measures based on shortest paths are betweenness centrality
and closeness centrality. The betweenness centrality of a node i in a static graph is
defined as follows:

CB
i D

X

j2V

X

k2V

k¤j

�jk.i/

�jk
(10)

where �jk is the number of shortest paths from node j to node k, while �jk.i/ is
the number of such shortest paths that pass through the node i . The higher the
number of shortest paths passing through i , the higher the value ofCB

i . Betweenness
centrality can be also defined for single edges, by counting the fraction of shortest
paths between any pair of nodes to which a given edge participate.

A simple way to extend betweenness centrality to time-varying graphs consists
in counting the fraction of temporal shortest paths that traverse a given node. The
formula would be exactly the same as (10), with the only difference that �jk and
�jk.i/ will be, respectively, the total number of temporal shortest paths between j
and k and the number of those paths which make use of node i .

Sometimes it can be important to take into account not only the number of
temporal shortest paths which pass through a node, but also the length of time
for which a node along the shortest path retains a message before forwarding it
to the next node [41]. For example, let us consider the simple case of nodes i and
j being connected by just one shortest path which consists of the two edges .i; k/t`
and .k; j /tm . This means that the edge connecting i to k appears at time t`, while
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the edge connecting k to j appears at time tm. Since the path through k is the
only way for i to temporally reach j , then we would say that k plays an important
mediatory role and is “central” for communication between i and j . Nevertheless,
the vulnerability of node k heavily depends on the interval Œt`; tm�: the longer this
temporal interval, the higher the probability that a message forwarded to k is lost if
k is removed from the network. In order to take into account the effect of waiting
times, the temporal betweenness centrality [41] of the node i at time tm is defined as:

CB
i .tm/ D

1

.N � 1/.N � 2/
X

j¤i

X

k¤j

k¤i

U.i; tm; j; k/

�jk
(11)

where �jk is the number of temporal shortest path from j to k, and U.i; tm; j; k/ is
the number of temporal shortest paths from i to j in which node i is traversed from
the path in the snapshot tm or in a previous snapshot t 0 < tm, so that the next edge
of the same path will be available at a later snapshot t 00 > tm. The average temporal
betweenness of node i is defined as the average of CB

i .tm/ over all the snapshots:

CB
i D

1

M

X

m

CB
i .tm/ (12)

The closeness centrality of a node i is a measure of how close i is to any other
node in the network. It can be measured as the inverse of the average distance from
i to any other node in the network:

CC
i D

N � 1P
j dij

(13)

where dij is the distance between i and j in a static graph. The temporal closeness
centrality is defined in an analogous way, the only difference being that for time-
varying graphs dij denotes the length of the temporal shortest path from i to j .

As shown in [41] and elsewhere in this book [44], temporal closeness and
betweenness centrality have proven useful to identify key spreaders and temporal
mediators in corporate communication networks. In particular, it was found that
traders indeed played an important mediatory role in time-varying graphs con-
structed from the ENRON email communication data set, being consistently ranked
among the first ones both for temporal betweenness and for temporal closeness
centrality. This result is qualitatively and substantially different from the one
obtained by computing betweenness and closeness centrality in the corresponding
aggregated graph, where the most central nodes are the people who interacted with
the most number of other people, i.e., a secretary and a managing director. This
apparently unimportant discrepancy between the centrality rankings actually turns
out to be fundamental for the spreading of information (or diseases) throughout the
system. In fact, simulation reported in [41] confirmed that when a spreading process
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is initiated at the nodes having the highest temporal closeness centrality the number
of other nodes reached by the spreading was higher and the time needed to reach
them was smaller than in the case in which the spreading starts at nodes having
higher static closeness centrality.

5.2 Spectral Centrality and Communicability

The total number of shortest paths passing through a node is not always the best way
of measuring its centrality, especially because the shortest paths are not always the
most relevant for a process. For instance, a disease could propagate through any path
(not just through the shortest ones), and the rumours usually follow walks which
are much longer (and somehow less efficient) than shortest paths. Consequently,
other definitions of centrality exist which take into account walks instead of shortest
paths. The classic example for static graphs is represented by the so called Katz
centrality [28]. The basic idea is that the propensity for node i to communicate with
node j can be quantified by counting how many walks of length ` D 1; 2; 3; : : : lead
from i to j . The importance of a walk of length ` D 1 (i.e., the direct edge .i; j /) is
higher than that of a walk of length ` D 2, which in turn is higher than that of a walk
of length ` D 3 and so forth. For this reason, it makes sense to appropriately rescale
the contribution of longer walks. The original proposal consisted into scaling walks
of length ` by a factor ˛`, where ˛ is an appropriately chosen real value. We notice
that the element ael lij of the `th power of the adjacency matrix corresponds to the
number of existing walks of length ` between i and j . Consequently, the entry sij of
the matrix sum S D I C ˛AC ˛2A2 C : : : measures the propensity of i to interact
with j (notice that I is the N � N identity matrix). It is possible to prove that the
sum S converges to .I � ˛A/�1 if ˛ < �.A/, where �.A/ is the spectral radius of
the adjacency matrix. In this case, the Katz centrality of node i is measured as the
sum of the i th row of S :

CK
i D

X

j

�
.I � ˛A/�1�

ij
(14)

Katz centrality can be extended to the case of time-varying graphs by using a
similar reasoning [12]. We notice that each entry of the product of the adjacency
matrices corresponding to an increasing sequence of ` snapshots Œtr1 ; tr2 ; : : : ; tr` �
represents the number of temporal walks in which the first edge belongs to the
snapshot tr1 , the second edge to tr2 and so on. So, in order to count all the possible
temporal walks of any length we should sum over all possible products of the form:

˛kA.tr1/A.tr2/ � � �A.trk /; tr1 � tr2 � � � � � trk (15)
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for any value of the length k. It is possible to prove that if ˛ < mintm �.A.tm// then
the sum of all these products can be expressed as:

Q � ŒI � ˛A.t0/��1 ŒI � ˛A.t1/��1 � � � ŒI � ˛A.tm/��1 (16)

The matrix Q is called communicability matrix. Starting from this matrix one can
define the broadcast centrality:

C Broad
i D

X

j

Qij (17)

which quantifies how well node i can reach all the other nodes in the time-varying
graph, and the receive communicability:

C Recv
i D

X

j

Qji (18)

which is an estimation of how well node i can be reached from any other node in
the network. In [12] it has been found that broadcast and receive communicability
can be useful to spot the most influential spreaders in different time-evolving
communication networks.

6 Meso-scale Structures

Real static networks differ from random graphs in many ways. In fact, together
with heterogeneous distributions of node properties (e.g. degree and centrality)
and with specific global characteristics (e.g. high average clustering and small
average path length), complex networks show a non-trivial organisation of subsets
of their nodes and exhibit a variety of meso-scale structures, including motifs and
communities. The characterisation of the abundance of specific motifs has helped
to explain why biological and technological networks are relatively resilient to
failures [24, 25], while the analysis of communities has revealed that there exists
a tight relationship between structure of a network and its functioning [10]. In the
following we discuss how motifs analysis can be performed also in time-varying
graphs and we present the extension of the modularity (a function for measuring the
quality of a partition in communities, defined for static graphs by Newman in [34])
to temporal communities.

6.1 Temporal Motifs

In static graphs a motif is defined as a class of isomorphic subgraphs. We recall
that two graphs G0 and G00, having adjacency matrices A0 and A00, are isomorphic
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if there exists a permutation of the labels of the nodes of A0 such that, after the
permutation, A0 � A00. A permutation is represented by a matrix P that has the
effect of swapping the rows and columns of the matrix to which it is applied. If A0
and A00 are isomorphic, then there exists a permutation matrix P such that:

P�1A0P D A00 (19)

If two graphs are isomorphic then they are topologically equivalent, i.e., the
arrangement of the edges in the two graphs is exactly the same, up to an appropriate
relabelling of the nodes. Consequently, a motif can be thought as the typical
representative of a class of subgraphs sharing the same arrangement of edges. It
has been shown that in real networks, especially in biological ones, motifs are
not uniformly distributed and some motifs are over-represented while others are
rare [24, 25].

As for all the metrics described so far, the extension of motifs to time-varying
graphs has to take into account time in a meaningful way. In a recent paper
Kovanen et al. [20] propose an extension of motifs to time-varying graphs, based
on the definition of��-adjacency and��-connectedness of contacts.1 For practical
reasons, the authors made the simplifying assumption that each node can be involved
in no more than one contact at a time. This assumption is in general too restrictive,
but it could be valid in some cases, e.g. when the contacts represent phone calls or
when the duration ıt of a contact is so small that the probability for a node to have
two simultaneous contacts is negligible.

We say that two contacts ca D .i; j; ta; ıta/ and cb D .k; `; tb ; ıtb/ are
��-adjacent if they have at least one node in common and the time difference
between the end of the first contact and the beginning of the second one is no longer
than �� . We assume, without loss of generality, that ta < tb , so that ca and cb
are ��-adjacent if 0 � tb � ta � ıta � �� . We say that an ordered pair of contacts
.ca; cb/ is feasible if ta < tb . Notice that��-adjacency is defined only for the subset
of feasible pairs of contacts. Two contacts ca and cb are��-connected if there exists
a sequence ofm contacts S D fca D cn0 ; cn1 ; cn2 ; : : : ; cnm D cbg such that each pair
of consecutive contacts in S is feasible and ��-adjacent. From ��-connectedness,
we derive the definition of connected temporal subgraph, which is a set of contacts
such that all feasible pairs of contacts in the set are ��-connected.

For the definition of temporal motifs, we restrict ourselves to the subset of valid
temporal subgraphs. A temporal subgraph is considered valid if all the��-adjacent
contacts of the nodes in the subgraph are consecutive. This means that if a node
j appears in the pair of ��-adjacent contacts ca D .i; j; ta; ıta/ and cb D
.j; k; tb ; ıtb/ of the subgraph, then does not exist any contact cx D .j; k; tx ; ıtx/

1In order to avoid confusion with the size �t of the time-window used to define the temporal
snapshot of a time-varying graph, here we preferred to use �� instead of the original �t proposed
by the authors of [20]. Also, notice that the authors use to call events what we have called here
contacts.
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a b c

Fig. 5 Connected temporal subgraphs and motifs. The subgraph in panel (a) is not a valid temporal
subgraph, because node 2 is involved in another contact after the contact with node 4 at time ta and
before the contact with node 3 at time tb . Conversely, the subgraph in panel (b) is valid. Panel (c)
shows the motif associated to the valid subgraph in panel (b)

such that ta < tx < tb . In Fig. 5 we report two temporal subgraphs of three
nodes obtained from the set of contacts in Fig. 1 considering �� D 30min. The
subgraph of Panel (a) corresponds to the sequence of contacts S1 D fc1 D
.2; 4; 0; 40/; c3 D .2; 3; 70; 20/g, and is not valid because node 2 is involved in
another contact, namely c2 D .2; 5; 50; 10/ after c1 and before c3. Conversely, the
connected temporal subgraph reported in Panel (b) and corresponding to the pair of
contacts S2 D fc4 D .4; 5; 60; 50/; c6 D .1; 4; 140; 35/g, is valid, since node 4 is
not involved in any contact between c4 and c6.

A temporal motif is a class of isomorphic valid temporal subgraphs, where two
temporal subgraphs are considered isomorphic if they are topologically similar (i.e.,
the organisation of the links in the subgraph is equivalent up to an appropriate
relabelling of the nodes) and represent the same temporal pattern, i.e., the order
of the sequence of contacts is the same. The typical element of the temporal motif
corresponding to the graph reported in Fig. 5b is shown in Fig. 5c, where the labels
on the edges of the graph correspond to the ordering of contacts. In [20] the authors
report also an algorithm to discover temporal motifs, and discuss the problems
connected with the estimation of the significance of motifs.

6.2 Temporal Communities and Modularity

The identification of communities, i.e., groups of tightly connected nodes, has
allowed to reveal the richness of static graphs and has helped to understand their
organisation and function. The simplest way to partition a graph is by dividing it into
a set of M non-overlapping groups, so that each node of the graph is assigned to one
of the M communities. The quality of a non-overlapping partition in communities
can be measured by the modularity function. This function, originally proposed by
Newman in [34], estimates the difference between the fraction of edges among
nodes belonging to the same community and the expected fraction of such edges
in a null-model graph with no communities. More formally, it is defined as follows:

Q D 1

2K

X

ij

.aij � Pij/ı.ci ; cj / (20)
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where aij are the elements of the adjacency matrix, Pij is the expected number of
edges between i and j in the null-model graph, ci is the community to which node
i belongs, ı.ci ; cj / D 1 if and only if node i and node j belong to the same
community and K is the total number of edges in the graph. The simplest null-
model is represented by a configuration model graph, where all the nodes of the
graph have the same degree as in the real graph but edges are placed at random. In
this case the modularity function reads:

Q D 1

2K

X

ij

�
aij � kikj

2K

�
ı.ci ; cj / (21)

where ki is the degree of node i . Different extensions of the modularity function
have been proposed for directed graphs, weighted graphs and graphs with overlap-
ping communities [3, 23, 32, 35].

The extension of modularity for time-varying graphs is based on an interesting
result valid for the modularity of static graphs and presented in [21], which connects
the modularity function with the dynamics of a random walk over the graph. The
authors of [21] show that the modularity function can be considered a particular case
of a class of functions that measure the dynamical stability of a partition P , where
the stability of P at time t is defined as:

R.t/ D
X

C2P
P.C ; t/ � P.C ;1/ (22)

Supposing that the random walk has reached the stationary state,2 then P.C ; t/ is
the probability that a random walker which starts from a node in the community C
is found in a node of C after time t . Similarly, P.C ;1/ is the probability that a
random walker that started from a node in C is found in C after an infinite number
of steps; when the walk has reached the stationary state, this corresponds to the
probability that two independent random walks are found in C at the same time.
It is possible to show that if we consider a discrete-time random walk, in which a
walker jumps from a node to another at equally-spaced time-steps of length �� ,
then the stability of a partition at one step R.t D ��/ is identical to the modularity
function.

In [27] Mucha et al. propose an extension of modularity to multi-slice graphs
which exploits the connection between the modularity function and the stability
of a random walk on the multi-slice graph. Indeed, a time-varying graph can be
considered a multi-slice graph if we connect each node of a snapshot with the other
instances of itself in neighbouring snapshots by means of multi-slice edges. For
brevity, we give here the definition of the modularity function for multi-slice graphs,

2It is possible to prove that a random walk on a graph always converges towards a stationary state,
independently of the initial condition, if the adjacency matrix of the graph is primitive, which is
the case for the vast majority of real graphs.
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which corresponds to the stability at one step of a random walk on the multi-slice
graph, but we omit the derivation of the formula.3 The modularity for multi-slice
graphs reads:

Qmulti D 1

2	

X

ijsr

��
aij.s/ � �s ki .s/kj .s/

2ms

�
ısr C Cjsrıij

�
ı.gis; gjr/ (23)

The indices i and j are used for nodes while the indices r and s indicate different
slices. Here aij.s/ are the elements of the adjacency matrix of slice s, ki .s/
represents the degree of node i in slice s (i.e., the number of neighbours to with
i is connected in that slice) and ms D 1

2

P
i ki .s/ is the total number of edges

in the slice s. The term Cjsr is the weight of the link that connects node j in
slice s to itself in slice r , and �s is a resolution parameter. The terms ıij and ırs

indicate the Kronecker function and ı.gis; gjr/ is equal to 1 only if node i in slice
s and node j in slice r belong to the same community. The definition looks a bit
complicated but it is essentially composed of two parts. The term in parentheses
represents the standard modularity for the graph at slice s (the only difference being
the resolution parameter �s), while the termCjsr accounts for inter-slice connections.
Once we have defined modularity for multi-slice networks, the search for the best
partition can be performed by using one of the standard methods for modularity
optimisation [10].

This definition of modularity is quite general, works well for any kind of multi-
slice network, and is also applicable to assess the quality of a partition of a
time-varying graph, which can be considered a multi-slice network. However, when
using (23) one should take into account that in order to derive it as the stability
of a random walk on the graph, the edges connecting different slices have to be
undirected.4 Consequently, this definition of modularity in invariant under inversion
of the sequence of slices which, in the particular case of time-varying graphs,
implies invariance under time inversion. This means that (23) gives the same result
on the time-varying graph GŒ0;T � and on the graph GŒT;0� in which the sequence of
time-windows is given in the opposite order.

In general, invariance under time inversion is not a desirable property for a
metric used to characterise the structure of time-varying graphs, because most of the
interesting characteristics of time-evolving systems, including temporal correlation
of links and reachability, are due to the asymmetry introduced by the arrow of
time. Time-invariance disregards this asymmetry completely, washing out most of
the richness of time-varying systems. Consequently, we believe that the definition
of appropriate metrics for the evaluation of community structures in time-varying
graphs is still an open field of investigation.

3The interested reader can find the derivation of (23) in [27] and in the Supplemental Information
of the same paper.
4This is required to ensure the existence of a stationary state for the Laplacian dynamics on the
graph.
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7 Final Remarks

The description of temporal networks in terms of time-varying graphs and the
analysis of their structural properties is still in its infancy but has already produced
many encouraging results, showing that complex networks theory is a quite flexible
and promising framework for the characterisation of different real systems. There
are still some open problems to be tackled, such as the definition of appropriate
methods to detect temporal communities and the construction of analytical methods
to assess how the structure of a time-varying graph can affect the dynamics of
processes occurring over it, including spreading, synchronisation and evolutionary
games. However, even if the community has not yet converged towards a unified
notation and a fully consistent set of definitions and approaches is still lacking,
the metrics and concepts devised so far for time-varying graphs constitute a
valid and consistent alternative to the standard methods for the study of time-
evolving systems, and will certainly represent a fundamental contribution to our
understanding of complex systems in general.
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Burstiness: Measures, Models, and Dynamic
Consequences

Byungjoon Min and K.-I. Goh

Abstract Various human activities were shown to exhibit heavy-tailed dynamics,
dubbed “burstiness,” which manifests itself as a fat tail in the waiting time
distribution. Such a heavy-tailed activity crucially deviates from the traditional
assumption of Poisson random activity which had been used for over a century
in many theoretical and practical modelings of human activity-based problems. In
this survey article, we will overview some recent studies on burstiness, focusing on
(a) how to characterize the burstiness, (b) how to model the bursty human activity
at the individual and population levels, and (c) how the bursty activity could modify
the collective dynamics of spreading processes in social networks.

1 Introduction

The quantitative understanding of temporal complexity of human dynamics under-
lies better comprehension and proper control of social systems which are among the
most challenging goals of contemporary science [26]. Given the lack of appropriate
data on how humans behave in reality, it has been assumed for a long time that
human activities were uniform in time, thus modeled by the Poisson process
[23]. Recent technological advances, however, changed the situation fundamentally.
During the last few years, researchers have had access to large-scale datasets
of human behaviors such as online and offline digital communications, from
which the researchers could extract information on how people behave in reality
[13, 14, 24, 56]. Studies on these data almost unanimously demonstrated a strong
departure from the Poisson model. Human activities are highly heterogeneous in
time, typically showing significantly enhanced activity levels over short periods,
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followed by long periods of inactivity; human activities are dubbed to exhibit
“burstiness” [4, 5].

“Burstiness” has become one of the keywords in the study of complex systems,
since theories of microscopic individual behaviors as well as macroscopic social
and economic dynamic phenomena should be rewritten in terms of bursty activity
patterns instead of Poisson model. In so doing, a number of general questions can
be raised. First, how should one quantify the burstiness of activity patterns? Second,
how could one model the bursty activity patterns? Third, which consequences would
the burstiness of individual’s activity have in the collective dynamics of the whole
system? These are the questions some partial answers to which we will try to review
in this survey article, centered on recent works contributed by the authors [10, 18,
39, 40].

This survey article is organized as follows: In Sect. 2, we overview the methods
of characterizing burstiness of time series in a quantitative manner. A newly-
proposed measure of burstiness in terms of waiting time distributions and short-term
memory is discussed and applied to classify complex systems. Section 3 covers
models of bursty activities based on the concept of priority-queues, both at the
individual, group, and network levels. In Sect. 4, we discuss how burstiness could
affect spreading processes over the network, as an example of impact of burstiness
on collective dynamics. Section 5 will conclude the survey article with summaries.

2 Measures to Characterize the Burstiness

Although it gained a resumed interest in the context of human activities just recently,
the dynamics showing temporal inhomogeneity had been documented and studied
in a wide range of natural, physical, cellular, physiological, and technological
complex systems, under various concepts such as punctuated, intermittent, chaotic,
and fractal dynamics [3,12,20,35,37,52]. Measures directly or indirectly addressing
the inhomogeneity of signals had been proposed and applied under corresponding
contexts [1]. These measures can be divided into two categories, the one based
on the distribution of waiting times, the time intervals between two consecutive
activities in the activity sequence, such as the coefficient of variation and Fano
factor [37], and the other based on the correlations of the time series, such
as autocorrelation function and Hurst exponent [1]. In human dynamics studies,
burstiness had often been characterized by the fat-tailed nature of the response or
waiting time distributions [4, 56]. Studies of natural systems such as earthquake
and meteorological signals have also focused on the effect of correlations [7, 36].
To quantify the magnitude and potential origin of bursty dynamics seen in different
systems, a two-way characterization scheme has recently been proposed [18]. This
approach uses both distribution-based and correlation-based measures, respectively
called burstiness parameter and memory parameter, putting them into a combined
framework to compare signals from systems coming from diverse and apparently
unrelated domains.
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Fig. 1 (a) A synthetic signal generated by a Poisson process with a unit rate. (b, c) Bursty signals
generated with a power-law waiting time distribution (b) and shuffled Poisson signal for positive
short-term memory (c). (d, e) Anti-bursty signals generated with Gaussian waiting time distribution
(d) and shuffled Poisson signal for negative short-term correlation (e). Note that signals in (a), (c)
and (e) have identical waiting time distributions. Adopted from [18]

2.1 Measures: Burstiness and Memory Parameters

Distribution of and correlation between waiting times are two means that can
generate bursty (or anti-bursty) signals in orthogonal way (Fig. 1). A uniformly
random activity pattern can be obtained by a Poisson process in which the
probability of an event is time-independent (Fig. 1a). In this case the waiting time, � ,
between two consecutive events follows an exponential distribution, PPoisson.�/ D
.1=�0/ exp.��=�0/. An apparently bursty (or anti-bursty) signal emerges if P.�/
is different from the exponential. For example, one can generate a bursty pattern
from a power-law P.�/ ( Fig. 1b), or a more regular pattern with a Gaussian
P.�/ (Fig. 1d). Alternatively, one can also modulate the burstiness of a signal by
correlation without altering P.�/. For example, the signals shown in Fig. 1c, e have
exactly the same P.�/ as the signal in Fig. 1a, yet they have a more bursty or a more
regular character, respectively. In Fig. 1c the waiting times are correlated in such a
way that short waiting times tend to follow short ones, resulting in a bursty look. On
the contrary, in Fig. 1e the relative regularity is due to the anti-correlation between
waiting times, such that short (long) waiting times tend to be followed by long
(short) ones. Therefore, the apparent burstiness of a signal can be attributed to two
mechanistically different origins of deviations from Poisson process: differences in
the distribution of or the correlation between waiting times.

To distinguish these orthogonal effects, it was proposed to use simultaneously the
two metrics, one addressing the properties of P.�/ and the other the correlations.
These two measures are called the burstiness parameter B for the former, and
the memory parameter M for the latter. The corresponding definitions will be
introduced shortly. The proposed framework is readily applicable to systems with a
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discrete activity pattern, as in human email communication signal. For systems with
continuous signals as in earthquakes, one can apply the framework after transform-
ing the signal into a discrete one by thresholding. In many systems the statistical
properties of the obtained signal are known to be threshold-independent [7, 12].

To characterize the deviation of P.�/ from the Poisson signal, perhaps the
simplest way is to use the so-called coefficient of variation, defined as the ratio
of the standard deviation to the mean, ��=m� , where m� and �� are the mean and
the standard deviation of P.�/, respectively. It has a value 1 for a Poisson signal
with an exponentialP.�/, 0 for completely regular ı-function-likeP.�/, and1 for
signals with a heavy-tailed P.�/ with infinite variance. Higher order characteristics
such as skewness or kurtosis, or yet more complicated quantities based on the form
of P.�/ can also be used for this purpose. For the sake of simplicity, we use the
coefficient of variation to define the burstiness parameter B as

B � .��=m� � 1/
.��=m� C 1/ D

.�� �m�/

.�� Cm�/
: (1)

This definition is readily applicable when the mean of P.�/ exist, which is the case
for real-world finite signals. The case with infinite meanm� , such as the power-law
P.�/ with the power-law exponent smaller than 2, should be treated with care.

The particular definition of B was chosen to keep its value in the bounded range
.�1; 1/. Also, the magnitude of B correlates with the signal’s burstiness: B D 1 is
the most bursty signal, B D 0 is neutral, and B D �1 corresponds to a completely
regular (periodic) signal. For instance, for the synthetic signals shown in Fig. 1a, b, d
the burstiness coefficient are B D �0:05 (neutral; a), B D 0:44 (bursty; b), and
B D �0:81 (anti-bursty; c), respectively. In Fig. 2 we show the behavior of B for
the log-normal distribution,
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Plog-normal.�/ D 1

�s
p
2


exp

�
� Œln.�/� 	�

2

2s2

�
: (2)

Here the larger the parameter s is, the larger is the variance of P.�/ hence the
signal gets burstier (B ! 1). On the other hand, the smaller s is, the more regular
is the signal, and B approaches to �1 as s ! 0. Note however that even though
B becomes zero for a specific value s�, P.�/ does not become an exponential there.

Deviation from the Poisson signal in the correlations can be quantified in many
ways. Basically, the joint probability distribution of waiting times, parameterized by
a time lag k, P.�; � 0I k/, defined as the probability density that we have two waiting
times � and � 0 separated by k events, contains the most information about the two-
point correlation properties. The autocorrelation functionC.k/ D h.�i�m�/.�iCk�
m�/i=�2� , where h�i denotes the average over the index i , is also widely used in many
applications. Again for the sake of simplicity, we use the correlation coefficient of
consecutive waiting times .�i ; �iC1/, defining the memory coefficient M as

M � 1

n� � 1
n��1X

iD1

.�i �m1/.�iC1 �m2/

�1�2
; (3)

where n� is the number of waiting times measured from the signal and m1.m2/ and
�1.�2/ are sample mean and sample standard deviation of �i ’s (�iC1’s), respectively
(i D 1; : : : ; n� � 1). It might be noted that M is a biased estimator for C.k D 1/.

With this definition, the memory coefficient also has a value in the bounded range
.�1; 1/ and is positive when a short (long) waiting time tends to be followed by
a short (long) one, and it is negative when a short (long) waiting time is likely
to be followed by a long (short) one. For example, the synthetic signals shown in
Fig. 1a, c, e with identical P.�/ have the memory coefficientM D 0:02 (neutral; a),
M D 0:90 (positive memory; c) andM D �0:74 (negative memory; e), respectively.

2.2 Characterizing Complex Systems with .M; B/ Parameters

Most complex systems display a remarkable heterogeneity: some components may
be very active, and others much less so. For example, some users may send dozens of
emails during a day, while others only one or two; seismic activities can vary across
regions, resulting in different frequencies of earthquake time series. As shown in
the insets of Fig. 3, P.�/ of components with different activity levels can apparently
differ significantly, questioning the validity of a unique system-specific value of B
parameter in systems with heterogeneous activity levels. It turns out, however, that
the apparently different-looking P.�/ curves behave in the same ways, when we
properly rescale time: If we plot �0P.�/ as a function of �=�0, with �0 being the
mean waiting time, the data collapse into a single curve F .x/ (Fig. 3), indicating
that the waiting time distribution takes a scaling form

P.�/ D .1=�0/F .�=�0/; (4)
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where F .x/ is an activity-level-independent scaling function characteristic of the
particular system [8, 12, 50]. Furthermore, the burstiness parameter B is invariant
under such time rescaling, enabling us to assign to each system a characteristic B
parameter in terms of the scaling function F .

Having defined the two orthogonal measures B and M addressing two qual-
itatively different origins of bursty activities, it becomes feasible to characterize
real-world complex systems by placing them in the .M;B/ space (Fig. 4). Non-
random distribution of complex systems in such “burstiness map” would imply
possible classification scheme of complex systems from a dynamics perspective.

The first example examined is written texts, in which a waiting time represents
the spacing between the consecutive occurrences of the same letter. David Copper-
field by Dickens and Isten Rabjai by Géza were chosen as example texts of different
kind, era, and language [45]. For these signals, it was shown that P.�/ follows
closely an exponential so that B � 0, and that they have almost no short-term
memory, as M � 0:01. Therefore these signals are found near the origin of the
.M;B/ space.

As the second class signals from natural phenomena such as the earthquake
sequences near Japan [28] and the daily precipitation records in New Mexico, USA
[41] were examined. They are found in the vicinity of the diagonal, indicating that
both P.�/ and memory contribute to their bursty character.

Thirdly, signals for human activities, ranging from email and phone commu-
nication to web browsing and library visitation patterns [13, 14, 24, 25, 56] are
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considered. For these a high B and small or negligibleM were obtained, indicating
that while these systems display significant burstiness rooted in P.�/, short-term
memory plays a small role in their temporal inhomogeneity. This lack of memory is
quite unexpected, if not counter-intuitive, and it may suggest the lack of short-term
predictability [51]. This suggests that consideration of higher-order correlation may
need to be included for better characterization [33].

Finally as an example of physiological signal, the cardiac rhythms describing
the time interval between two consecutive heartbeats [44] were examined. It was
obtained that Bhealthy D �0:69.6/ for healthy individuals and BCHF D �0:8.1/
for patients with congestive heart failure, both signals being highly regular. It is
noteworthy that the B parameter captures the fact that cardiac rhythm is more
regular in heart failure condition than in healthy condition [52].

The usefulness of burstiness map is illustrated by the clustering of the differ-
ent systems by their class in the .M;B/ plane: human activity patterns locate
themselves in the high B , low M region, natural phenomena near the diagonal,
heartbeats in the high M , negative B region and written texts near the origin,
suggesting the possibility of existence of distinct classes or compositions of
underlying mechanisms driving the temporal complexity of these systems. Further
empirical testing of the clustering and its theoretical understanding should follow
for conclusive understanding and setting the boundaries between these classes and
categorization of complex system dynamics.
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3 Priority-Queue Network Models of Bursty Human
Dynamics

3.1 Priority Queue Models

A primary quantity in studying temporal heterogeneity of human dynamics is the
waiting time distribution P.�/. P.�/ for many different types of human activities
are found to deviate strongly from the exponential distribution for Poisson process.
In particular, they exhibit so-called fat or heavy tail, possessing much larger
statistical weight for long waiting times compared to Poisson process with the
same mean waiting time. A number of models of such heavy-tailed P.�/ have been
proposed. An asymptotic power-law distribution,

P.�/ 	 ��˛ ; (5)

was proposed by Barabási and colleagues [4, 42, 56] and adopted widely [21, 46,
59, 60]; alternatively, the log-normal distribution of the form (2) was proposed by
Amaral and colleagues [38].

Aside from technical issues from the point of view of statistical analysis,
attempts to understand the origins and consequences of the heavy-tailed waiting
time distributions in human dynamics with dynamical models may help provide
conceptual insight. A family of dynamical models based on priority queues has
been proposed to this end [4]. In such models, priority queues are used to mimic
human decision making processes, under the assumption that humans decide what
to do next among the list of tasks according to priorities assigned to the tasks. Here
we briefly overview the main ideas.

The original priority queue model by Barabási [4] is a model of autonomous
individual’s activity, consisting of a single, fixed-length queue. The queue is filled
with tasks, each of which is assigned a priority value drawn randomly when it enters
into the queue. At each step the task with the highest priority is executed and is
replaced by a new task with a random priority value. Upon execution, the waiting
time � , defined as the time interval for which the task has sat (waited) on the queue,
is measured. The distribution of waiting times P.�/ of the Barabási model has been
shown both numerically and analytically to exhibit a power-law tail for large � with
the exponent ˛ D 1 [2, 4, 16, 56]. Exact analytic results for the Barabási model was
first obtained for queue length L D 2 case [56], and then extended to more general
case with arbitrary queue length L [2]. The scaling behaviors were also obtained by
mapping the problem into invasion percolation [16].

If the restriction of fixed queue length in the Barabási model is relaxed and the
number of tasks can vary from time to time, the model becomes the classical priority
queue model by Cobham [11]. For Cobham model, P.�/ has a power-law tail, but
with a different exponent˛ D 3=2 [11,22]. The power-law waiting time distribution
with the exponent ˛ D 3=2 was derived by mapping the variable-length priority
queue model into the biased diffusion [22].
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3.2 Interacting Queues and Priority-Queue Networks

Both Barabási model and Cobham model are simplified models to be used as
a starting framework, and they neglect many aspects of potential importance in
realistic human dynamics. Various detailed factors of human dynamics have recently
been embedded in the priority-queue model framework [6, 21]. Such variants of
priority-queue models have exhibited diverse dynamic behaviors dependent on the
model-specific details. For instance, when a group of tasks is selected to execution at
each time step, waiting time distribution decays as the power-law with the exponent
˛ D 1:25 [21]. Blanchard and Hongler studied the effect of time-dependent
priorities on the basis of population dynamics [6]. They showed that when the
priority of each task increases due to aging or deadlines in tasks, it could be possible
that prioritization alone cannot produce heavy-tailed waiting time distributions.

Another important factor that has not been taken into account until recently
is the interaction among queues, which can be employed to provide a simple
model of human interactions. Due to a large array of interactions among people
in various modes, typical activity of an individual is not an outcome of completely
autonomous decisions, but of delicate compromises and balanced conflicts between
often competing priorities. The impact of such human interactions on the patterns
of human dynamics has first been addressed by Oliveira and Vazquez (OV) [43].
They introduced a minimal model consisting of two interacting priority queues with
interacting (I) and non-interacting (O) tasks. The human interaction is taken into
account in a way that the I -task is executed only when both individuals choose
to execute them, that is, an AND-type protocol. Through this model they showed
that the power-law waiting time distribution still persists against the introduction of
human interaction, but the exponent ˛ of P.�/ can take many different values other
than 1, depending on the length of the queues.

The effect of human interactions for a system of more than two queues, or the
queue network in general, can also be studied by generalizing the OV model [10,39].
A priority-queue network (PQN) of N queues is constructed as follows:

• A queue has one I -task for each neighbor in the network, in addition to an
O-task. Thus a queue node i with degree ki in the network (degree is the number
of links connected to the node) has a queue with fixed length Li D ki C 1:

• The I -task of the node i paired with the node j is denoted as Iij , and the O-task
of the node i as Oi .

• In addition to the network configuration, the queue discipline has to be specified
for a complete specification of a PQN. The protocol consists of a specification
of the type of interaction for I -tasks (e.g., AND- or OR-type interaction) and an
update rule (e.g., parallel or sequential update).

Having specified the PQN, the dynamics runs as follows:

1. Initially each task in the PQN is given a priority value drawn from a uniform
distribution in Œ0; 1/.

2. At each step, one or more tasks are executed, following the queue discipline.
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3. The waiting times of the executed tasks are recorded, and the executed tasks are
replaced with new tasks each with a random priority value uniformly sampled
Œ0; 1/.

4. N such elementary steps constitute a Monte Carlo step (MCS), which is the time
unit of waiting time measurement.

In the following subsections, we will review existing variants of PQN models
[10, 39]. As illustrated therein, variations of interaction rules in PQNs can lead
to diverse power-law behaviors dependent on model details. Persisting power-law
tails in various PQNs suggests that the power-law waiting time distribution is a
robust feature of priority-based queuing models. At the same time, the power-
law exponents are non-universal but dependent on model factors such as network
topology, local position of a queue on the networks, interaction discipline, and
reciprocity of influence. These results may provide theoretical background to
identify essential factors in temporal human activity patterns. Sensitivity of the
exponent dependent on model details supports diverse values of the exponent
observed in empirical data [4, 21, 42, 46, 56, 59]. Finally, analytic treatment of
interacting priority-queue models has largely remained to be fulfilled.

3.3 OV Model on Networks

An example of queue discipline is the AND-type protocol, random sequential update
case, which is a direct extension of the OV model. In this queue discipline, a random
node is chosen at each step, say node i . If the highest priority task of i isOi , then it is
executed. If it is an I -task, say Iij , it is executed only if Ij i is also the highest priority
task of the conjugate node j (AND-type interaction). In this case, the conjugate task
Ij i is also executed. Otherwise, node i executesOi .

Two representative network configurations, the star graph and fully-connected
network, are studied (Fig. 5). The OV model on networks exhibits an interesting
phenomenon of dynamic freezing due to priority conflict. The priority conflict
occurs when a node i has Iij as highest priority task, but the node j has another,
say Ijk, as its highest priority, in conflict with each other. The star topology is less
vulnerable to such a dynamic freezing since leaf-nodes can resolve it, primarily by
updating the priority of the O-task repeatedly. As a result, we have a power-law
decaying P.�/ (Fig. 5a, b). The power-law exponent ˛ is found to be independent
of the network size N ; for the I -tasks ˛I � 2, and for the O-tasks ˛O � 3 for
both hubs and leaf nodes. These exponent values share common values with those
of original OV model with L D 2; so for star graphs the model essentially behaves
in the same way as the binary OV model.

On the other hand, the dynamics is quite different in networks with cycles,
such as fully-connected graphs, which are highly susceptible to conflicts that
cannot be resolved readily. As a consequence, the number of executed I -tasks,
�.t/, decays rapidly in time, either algebraically for small N , or exponentially
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Fig. 5 (a–b) The waiting time distribution P.�/ of the OV model on star networks for I -tasks
(a) and for O-tasks (b), with various N D 3; 4; 5; 20. Both P.�/ show power-law asymptotic
with ˛I � 1:9 (a) and ˛O � 2:8 (b), indicated respectively with dotted lines. (c–d) The double
logarithmic (c) and semi-logarithmic (d) plots of the number of executed I -tasks, �.t/, for the OV
model on fully-connected networks versus time. Different dotted line patterns are used for different
network size N (see legend). �.t/ decays algebraically for small N (c) and exponentially for large
N & 10 (d). Indicated slopes of dotted line are 1.5, 2.5, and 3.5, from right to left, drawn for the
eye. Also shown is �.t/ for N D 20 with the star graph topology (black solid) for comparison.
Adopted from [39]

for large N & 10 (Fig. 5c, d), and eventually the dynamics gets frozen, with the
timescale decreasing with N . In real social networks, we have strong empirical
evidences of high clustering and clique structure [58], suggesting that the AND-
type interaction protocol would strongly suffer the dynamic freezing, rendering
itself alone inadequate for the realistic modeling of the network effects in human
dynamics.

3.4 PQN with OR-Type Interactions: The OR Model

Not all human I -tasks should follow the AND-type protocol. Rather, an OR-type
protocol would be more reasonable for the tasks which require simultaneous actions
of two or more individuals but for which the action can be initiated primarily by
either of them, such as a phone call conversation. For this class of I -tasks, potential
priority conflicts can be instantly resolved; for instance, we normally answer the
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Fig. 6 (a–b) P.�/ of the OR model on star topology. (a) P.�/ for I -tasks decay as power laws
with the exponent decreasing as N from ˛I � 3 for N D 3 to ˛I � 1:5 for N D 20. (b) P.�/
for O-tasks show distinct behaviors between the hub node (open symbols) and leaf nodes (full
symbols). For the hubs, the power-law exponent varies from ˛O;hub � 1:5 for N D 3 to ˛ � 1

for N D 20. For the leaf nodes, P.�/ the exponents range from ˛O;leaf � 2 for N D 3 to
˛O;leaf � 1:5 for N D 20. P.�/ curves were shifted vertically for visibility. (c–d) P.�/ of the
OR model on fully-connected topology. (c) P.�/ for I -tasks decay with asymptotic powers, with
exponents decreasing with N from ˛I � 3 for N D 3 to ˛I � 2 for N D 20. (d) P.�/ for
O-tasks follow the power-law decay with the exponent ˛O � 1:5. All quoted slopes are indicated
with dotted lines for the eye. Adopted from [39]

incoming phone call while we are performing other tasks. By incorporating such
an OR-type interaction protocol, the dynamic rule of what we call the OR model is
given as follows:

• At each step we choose a random node, say node i .
• If its highest priority task is an I -task, say Iij , the two tasks Iij and Ij i are

executed regardless of the priority value of Ij i ; If Oi is the highest priority task,
only that is executed.

• Priorities of all the executed tasks are randomly reassigned.

For the OR model, P.�/ still exhibit power-law tails for both star and fully-
connected network topology, yet the power-law exponent ˛ depends on the network
size N as well as the network topology in a diverse way. First, in the star topology,
˛ decreases as N increases: For I -tasks, it exhibits values from ˛I � 3 for N D 3
to ˛I � 1:5 for N D 20 (Fig. 6a); For O-tasks, the exponent exhibits distinct
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values for the hub and leaf nodes, changing from ˛O;hub � 1:5 for N D 3 to
˛O;hub � 1:0 for N D 20 for the hub node, whereas for the leaf nodes it changes
from ˛O;leaf � 2:0 for N D 3 to ˛O;leaf � 1:5 for N D 20 (Fig. 6b). Moreover, for
the hub-node, the mean waiting time h�iO;hub ofO-tasks diverges, as the power-law
exponent ˛ < 2. For other tasks, however, power-law P.�/ with ˛ < 2 for large N
is accompanies by the peak at � D 1, making the average waiting time finite.

In the fully-connected topology, the power-law exponent ˛ weakly depends
on N . For the I -tasks, it decreases with N from ˛I � 3 for N D 3 to ˛I � 2

forN D 20 (Fig. 6c). For the O-tasks, on the other hand, ˛O is rather stable against
N as ˛O � 1:5 (Fig. 6d). This result implies that on the fully-connected networks,
I -tasks are executed with finite mean waiting times while O-tasks on average have
to wait on the queue infinitely long to be executed. Taken together, the OR model on
networks implicates the importance of not only the overall network structure but also
individual node’s topological position on determining the dynamics of networking
priority-queue nodes.

3.5 The OR Model with Team-Based Execution

Further variations of the OR model were considered, by including more complicated
forms of human interactions [10]. First is the team-based task execution, referring
to the situation when a task demands simultaneous actions of more than two
individuals. The second is the hierarchy in decision making, occurring when a node
in higher hierarchy can order the nodes in lower hierarchy to execute a task together.
Both forms of human interaction are encountered in many real-life situations, thus
the understanding of their impact is of use for a more complete human dynamics
modeling.

In the team-based task execution OR model, each I -task is associated with a
group G of queue nodes of size r , meaning that r individuals form a group or a
team in executing the task. Here the size of a team r is an important parameter
characterizing the model. In this model, each queue has nI D

�
N�1
r�1

	
I -tasks and

nO D 1 O-task. Note that the case with r D 2 is the same as the original OR model
on fully-connected network. As r > 2, the number of I -tasks nI varies drastically
and it is therefore interesting to study its impact on the queue dynamics. Then the
dynamics of the model proceeds as follows:

• At each step, a queue node is chosen randomly (say it to be 	) and its highest
priority task is identified. If it is an I -task, all the r nodes in the associated team
execute the task simultaneously; if it is anO-task, only node 	 executes the task.

• The waiting times � of executed tasks are recorded, and the priority of executed
tasks are refreshed with independent random values in Œ0; 1/.

• Repeat the previous steps, N repeats of which constitute one Monte Carlo step.

This model is called the .N; r/-model.



54 B. Min and K.-I. Goh

t

t

t

t

t

tt

t

a

b

c

d

Fig. 7 Waiting time distribution P.�/ of .N; r/-model. P.�/ of (a, b) I -tasks and (c, d) O-tasks
for various team sizes r with N D 4 (a, c), and 6 (b, d). Slope of the straight lines in (a, b) is �2;
those in (c, d) are�1:3 (upper) and�2 (lower), respectively, drawn for the eye. Adopted from [10]

Waiting time distributions of .N; r/-model with N D 4 and 6 and r D 2 : : : N

are shown in Fig. 7. In all cases shown, we observe a power-law decaying P.�/
whose exponent depends on the model parameters. For I -tasks, ˛ � 2 in the range
2 � r � N � 2 (Fig. 7a, b). Team execution does not have an apparent effect
in these cases. However, the case r D N � 1 exhibits a distinct power law, with
slightly larger exponent ˛ � 2:3 	 2:5. Interestingly, a distinct power-law behavior
for r D N � 1 is similarly observed in OR model (r D 2) on fully-connected
networks. The case N D 3 exhibits a distinct power-law exponent than other cases
N 
 4 [39]. For r D N , P.�/ decays rapidly with an apparent power-law tail
whose exponent increases with N . This apparent power-law behavior is, however,
a finite-size effect, and the distribution is dominated by the � D 1 peak approaching
to unity in the long-time limit. This means that when r D N the I -task tends to
be executed in an overwhelmingly long succession, so that P.�/ has a finite second
moment, contrast with the case r < N where it is divergent.

Results for P.�/ of O-tasks are shown in Fig. 7c, d. For the O-task dynamics,
the power-law exponent ˛ remains unchanged as ˛ � 1:3 for 2 � r � N � 1, even
though the probability density for large � becomes systematically elevated with r .
We note the absence of distinct power law in r D N � 1 case for O-tasks, which is
also consistent with the result of N D 3 pairwise-interaction OR model. The case
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with r D N exhibits a distinct power-law behavior with the exponent ˛ � 2. This
can be understood as follows. From the perspective of the O-task, the case r D N

is similar to the N D 2 OR model, in which each queue has one I -task and one
O-task. Therefore we have the same exponent ˛ � 2 forO-tasks in both cases.

Taken together, these results indicate that in the .N; r/-model, mean I -task
waiting time is marginally divergent (as ˛ � 2) for r < N � 1, but is finite for
r 
 N � 1. The variance diverges for r < N (as ˛ < 3), while it is finite only
for r D N . For O-tasks, not only the variance but also mean waiting time would
diverge .˛ . 2/ in the long-time limit, implying the lack of characteristic scale in
the waiting times dynamics. Further properties of the team-based task execution OR
model have also been studied such as the effect of number of O-tasks [10].

3.6 The OR Model with Hierarchy-Based Execution

When making a decision of what to do next, often the decision is followed in
a hierarchical manner: a node in higher hierarchy can order the nodes in lower
hierarchy to execute a task together. Incorporating such a hierarchy-based task
execution, what is called the H -model is defined as follows.

• Each of the N individuals is assigned a hierarchy value h in the interval
1; 2 : : : N . The node with h D 1 sits on the top of the hierarchy, while the one
having h D N is at the bottom.

• Each node has two tasks, nI D 1 I -task and nO D 1 O-task.
• If a node 	 (	-th in the hierarchy) is chosen for task-execution, and it has the
I -task as highest priority, all the lower hierarchy nodes (from h D 	 C 1 to
h D N ) follow to execute the I -task simultaneously with node 	. If the O-task
is chosen, only node 	 executes it.

• Waiting times are recorded and priorities are refreshed for all the executed tasks.
• Repeat the previous two procedures.

Depending on the node’s position in the hierarchy, the degree of intervention
(number of I -task execution orders from upper-hierarchy nodes) varies.

The waiting time distributions of H -model are shown in Fig. 8. In the H -model,
the node at the top of hierarchy (h D 1) is not affected by any other nodes in its
decision making. Thus the h D 1 node’s dynamics, having two independent tasks,
is the same as that of the simple Barabási queue with length L D 2; therefore, we
have the sameP.�/ for both the I -task andO-task as that of the Barabási model [4],
the nonstationary P.�/ with a strong peak at � D 1 accompanied by a power-law
tail with exponent ˛ D 1 (Fig. 8, �) [54].

The I -task dynamics of nodes with h > 1 is found to follow a power-law P.�/

with the same exponent ˛ � 1, but with an h-dependent cutoff �c (Fig. 8a, b);

P.�/ 	 ��1 exp.��=�c/: (6)
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Fig. 8 P.�/ of the hierarchy-based H -model. (a, b) P.�/ of I -tasks for various hierarchy index
h with N D 2 (a) and 8 (b). Slope of the straight lines is �1, drawn for the eye. (c, d) P.�/ of
O-tasks for various hierarchy index h with N D 2 (c) and 8 (d). Slopes of the straight lines in
each panel are �2 (upper) and �1 (lower), respectively, drawn for the eye. Adopted from [10]

This cutoff waiting time is introduced by the intervention from higher-hierarchy
nodes, due to which the node executes an I -task that is not the highest priority task
at the moment. Without the intervention, the I -task would have had to wait longer.
The characteristic time scale of such intervention introduces the cutoff in P.�/ for
h > 1 nodes. The cutoff timescale �c decreases approximately exponentially with
h [10]. Yet, these interventions do not change the exponent of the tail. Note that
despite the fat-tailed P.�/ with ˛ � 1 the mean I -task waiting time is finite, as the
tail part contributes only marginally to the mean value in the long-time limit [54].
The O-task dynamics of nodes with h > 1 exhibits a different behavior. We have
P.�/ decaying as a power law with the exponent ˛ � 2 in all cases. The peak at
� D 1 disappears and the distributions become stationary. As in r D N case of
.N; r/-model, the power-law exponent ˛ � 2 for O-tasks has the same dynamic
origin as the O-tasks of N D 2 OR model. Each h > 1 node has one I -task and
one O-task; its I -task can be executed not only by its own priority, but also by the
requests from other nodes. Such setting is identical to N D 2 OR model’s O-tasks.
Therefore they share the same exponent. For h > 1 nodes, mean O-task waiting
time is marginally divergent as ˛ � 2, suggesting a lack of the characteristicO-task
waiting time in the model.
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An interesting point can be made from comparison of N D 2 cases of
H -model and OR model. They differ only by directional property of interaction
for I -task, for which we have directional or unilateral influence in the former and
unidirectional or reciprocal influence in the latter. We have seen that this simple
difference has dynamic consequences, as the two model exhibit different P.�/.
Furthermore, I -tasks and O-tasks are found to respond differently to breaking of
interaction symmetry, revealing intricate interplay between the interaction structure
and resulting dynamics of priority-queue networks.

3.7 Other Works

Further variants of priority-queue models have steadily been studied. A vari-
ant priority-queue model incorporating the interaction between individuals was
proposed by Wu et al. [59] to describe a bimodal combination of the Poisson
and power-law waiting time distributions in short message communication. The
interaction in this model is similar to OR model, but a new I�task is added with
a small probability after the interaction, while in the OR model a new I�task
is added immediately after the execution of a previous I�task. This model fits
well the bimodal distribution of short message communication using the parameters
extracted from the empirical data [59]. Recently, Jo et al. [30] introduced a priority-
queue model with time-varying priorities. They solved the priority-queue model
with the priority of task either increasing or decreasing analytically and obtained
the bimodal and unimodal waiting time distributions with power-law tails. They
also compared their results with updating time distribution of arXiv.org and the
processing time distribution of papers in Physical Review journals.

4 Spreading Dynamics with Bursty Activity Patterns

As surveyed in the previous section, priority-queue models mimicking human
decision process were shown to reproduce fat-tailed waiting time distributions
on the individual level. While these modelings were successful, how the activity
modeling at the individual level translates into the collective phenomena at the
population or network level was not addressed in those works.

In this perspective, spreading process has been a paradigmatic subject for study-
ing the impact of individual dynamics on collective dynamics. The impact of the
non-Poisson statistics on spreading processes was first addressed by Vazquez et al.
[57] using email communication patterns. They show that the decay of the number
of new infections based on empirical waiting time distributions is significantly
slower than that expected with the Poissonian assumption [57]. Iribarren and
Moro provided another empirical evidence of slower spreading dynamics using a
viral email experiment [27]. More recently, Karsai et al. [32] examined dynamics
of information spreading on communication networks using the empirical event
sequences of phone calls data, showing dynamics with temporal heterogeneity.
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4.1 Long-Time Behavior of SI Dynamics

Here we outline the main results for the long-time behaviors of susceptible-infected
(SI) model dynamics with bursty activity models [40]. To start understanding
the impact of power-law waiting time distribution on long-time behavior of SI
dynamics, we first outline a general theory of irreversible spreading processes in
a social network. The network structure is assumed to be tree-like, and the activity
pattern is characterized by the waiting time distribution P.�/. The generation time
� [55] is defined as the time interval between the infection of an agent in the
social network (primary case) and the transmission of the infection to a neighbor
agent (secondary case). The generation time distribution g.�/ then characterizes
the timings of infection transmissions.

In this setting, an outbreak starting from a single infected individual at t D 0

results in the average number of new infections at time t , n.t/, given by [55]

n.t/ D
DX

dD1
zd g

?d .t/ : (7)

Here zd is the average number of individuals d contacts away from the first infected
node and D is the maximum of d . g?d .t/ is the d -th order convolution of g.�/,
that is, g?1.t/ D g.t/ and g?d .t/ D R t

0
dt 0g.t 0/g?d�1.t � t 0/, representing the

probability density function of the sum of d generation times.
Long-time behaviors of n.t/ can be extracted from (7). For example, when

g.�/ 	 ��ˇ with 1 < ˇ < 2, that is in the Lévy-stable regime, one obtains in
the limit d � 1, independently of the network structure, g?d .t/ 	 t�ˇ as t ! 1
and thus the asymptotic behavior of the prevalence decay as

n.t/ 	 t�ˇ: (8)

Therefore, quite generically, with heavy-tailed activity patterns the long-time
spreading dynamics would decay with the same tail behavior as the generation time
distribution by the above theory.

4.2 SI Dynamics with Power-Law Waiting Time Distribution

The generation time distribution can be determined from the waiting time distri-
bution and the type of interactions between the social agents in the network. As
the simplest scenario, we consider the case when the activities of individuals in
the network are completely uncorrelated and so are the timings of consecutive
interactions. In such a case, the time series of interactions can be modeled by a
simple renewal process [15] with waiting time distribution P.�/. Specifically, let us
consider the case where agent A is infected at time tA; agent B, who is connected to
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Fig. 9 (a) The average number of new infections n.t/ of the SI model with uncorrelated identical
power-law P.�/ with exponent ˛ D 2:1 (open square), 2:5 (open circle), 2:9 (open triangle),
and with an exponential P.�/ (open inverted triangle), respectively. All P.�/ have the same mean
waiting time h�i D 2. It decays with the exponent � ˛ � 1 for power-law P.�/, whereas it
decays exponentially for exponential P.�/. (b) The generation time distribution g.�/ for power-
law P.�/. It decays as a power law with the same exponent as n.t/. Simulations were performed
on a scale-free network with � D 3 and size N D 104, and averaged over 108 independent runs.
Initial infected node is selected to be the hub. In both panels, dotted lines have slopes �1:1, �1:5,
and �1:9, drawn as a guide. Data are binned logarithmically. Adopted from [40]

A, is still susceptible at time tA and becomes infected, after interacting with agent,
at time tB > tA. From the perspective of B, the time A was infected is random and
therefore, the generation time tB � tA is the residual waiting time, the time interval
between a randomly selected time and the time A and B will perform their next
interaction.

For the waiting time distribution with finite mean h�i, the residual waiting
time probability density function is related to the waiting time probability density
function, leading to [15]

guncorr.�/ D 1

h�i
Z 1

�

P.�/d� : (9)

Therefore, for the uncorrelated activity patterns with P.�/ 	 ��˛ , 2 < ˛ < 3, we
have

guncorr.�/ 	 ��.˛�1/ and nuncorr.t/ 	 t�.˛�1/ : (10)

When 1 < ˛ < 2, P.�/ does not have a finite mean, but thanks to more complicated
theory [15] we still obtain the long-time behavior of power-law form, nuncorr.t/ �
t�1, in this regime.

Numerical simulations of the SI process on the static model [19] of scale-free
networks confirmed the predicted power-law decay of n.t/ (Fig. 9). For 2 < ˛ <

3, n.t/ is found to decay as a power law with the exponent ˛ � 1 for large t as
predicted by the theory. For comparison, the same SI dynamics with exponential
(Poisson-type)P.�/with the same mean waiting time h�i D 2 (Fig. 9a, O) is shown,
where n.t/ decays exponentially fast. The effective duration T of the epidemic
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process, given by the expected infection time of an individual after the outbreak,
T DP1tD0 tn.t/=N , is measured to be Texp � 5 for the exponentialP.�/, whereas
T � 4 � 105 for the power-law P.�/ with ˛ D 2:1. Therefore, the power-law
waiting time distribution indeed impacts the long-time dynamics of the spreading
process significantly.

4.3 SI Dynamics over Priority-Queue Networks

As a second example, the SI dynamics following the OR model of PQN has also
been studied. This may model the spreading of infectious entity through mutual
communications or contacts between individuals that can be initiated primarily by
any one of the individuals, as in the case of phone calls and face-to-face interactions.
The dynamics basically follows that of the OR model in Sect. 3.4. The infection is
transmitted whenever an infected and a susceptible node perform an I -task together.
This dynamics proceeds until all nodes are infected.

We consider first the SI dynamics on a PQN having a power-law degree
distribution with exponent � D 3. In the long time limit, n.t/ is found to decay
as a power law with exponent approximately 2 (Fig. 10a, ı). The power-law decay
of n.t/ is much slower than the exponential decay on the random execution queue
network (Fig. 10a, O). Such a longer prevalence time than predicted by the Poisson
process had been observed for spreading dynamics controlled by empirical human
activity patterns, such as an E-mail virus outbreak [57].

To understand the n.t/ 	 t�2 behavior, we turn to the waiting time distribution
of the OV model PQN, through which the generation time distribution can be
obtained. There is a local variation of the P.�/ exponent ˛ in the OV model PQN as
shown in Sect. 3, which makes the identification of network-level exponent ˛PQN

nontrivial. However, the following statistical reasoning, supported by numerical
simulations, offers key insights about long-time dynamic characteristics. We first
observe that different I tasks (links) manifest different exponents Pkk0.�/ 	
��˛kk0 , parameterized by the degrees k and k0 of the associated nodes. Putting
the contribution of all tasks together, the smallest exponent ˛kk0 makes biggest
contribution to the tail of PPQN.�/. Note that links with ˛kk0 < 2 cannot contribute
statistically because of the strong peak of Pkk0.�/ at � � 1. So the net result is that
links with ˛kk0 � 2 contribute the most, resulting in (Fig. 10b, ı),

PPQN.�/ 	 ��˛PQN ; ˛PQN D 2: (11)

In relating the waiting time distribution to the generation time distribution, we
further note that the interaction timings between connected pairs are not completely
independent in the PQN. To see this explicitly, let us consider three linearly
connected nodes (B � A � C) in the PQN. When node A interacts with node B
(IAB task is being executed), node A cannot interact at the same time with node C
(IAC task has to wait). So the waiting time of IAC begins at the execution of IAB
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Fig. 10 (a) The average number of new infection n.t/ of the SI model on the PQN (open circle)
and on the random execution queue network (open inverted triangle). After the initial increase,
n.t/ after the peak decays with a power-law tail with exponent ˇ � 2 for the PQN (open circle)
and exponentially for the random execution case (open inverted triangle). (b) The waiting time
distribution of the whole network, PPQN.�/, and those of links connecting nodes with degree k and
k0, Pkk0 .�/, of the same process for the PQN. Both PPQN.�/ and Pkk0 .�/ decay as a power law,
yet with different exponents dependent on the local topological position, ˛PQN � 2, ˛196;1 � 1,
˛2;1 � 3, and ˛4;4 � 2. (c) The generation time distribution gPQN.�/ of the same process for the
PQN. In (a–c), simulations were performed on a scale-free network with � D 3 and sizeN D 104,
and averaged over 103 different initial conditions. (d) n.t/ (left scale) and g.�/ (right scale) of the
SI model on the Erdős-Rényi network with mean degree hki D 4 and size N D 104 and Cayley
tree with branching number 4 and six generations (N D 1456). In each case, n.t/ and g.�/ show
power-law tails with the same exponent. In all panels, dotted lines have slope�2, drawn as a guide.
Data are binned logarithmically. Adopted from [40]

task. If node B has been infected, the generation time of infection of C from A is
the same as the waiting time. Therefore, in the PQN the generation time distribution
gPQN.�/ has the same power-law exponent as the waiting time distributionPPQN.�/

(Fig. 10c), which in turn, according to our general theory, leads to nPQN.t/ decaying
with the same power law as PPQN.�/, that is ˇPQN D ˛PQN D 2 consistent with our
numerical findings.

The power-law decay with ˛ D 2 has been checked to hold quite independently
with the network structure (Fig. 10d). We have examined the influence of the
network structure on the spreading dynamics over the PQN by considering Erdős-
Rényi networks and Cayley trees. On both network structures, n.t/ is found to decay
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as a power law also with ˇ D ˛, n.t/ 	 t�˛ (Fig. 10d). Since every node except
the root in Cayley tree is topologically indistinguishable, all I tasks show the same
P.�/, which decays as a power law with ˛ � 2 for degree k 
 3. In this respect,
this is an example where the temporal heterogeneity dominates over the structural
heterogeneity.

5 Summary and Outlook

In this survey article, we have briefly overviewed recent works on the measurements,
modeling, and dynamics consequences of burstiness in human dynamics. A two-
way method for assessing the burstiness of a system using both the distribution-
based and the correlation-based measures was proposed. The modeling framework
of human dynamics based on priority queues has been generalized to a network
level, called the priority-queue network, to take interactions between individuals
into account.Finally, we have shown how individual bursty activity can slow down
spreading dynamics on a social network in the context of the simple SI model.

The stream of studies of temporal heterogeneity in human dynamics still
continues to flow, fuelled mainly by a variety of new datasets. In addition to digital
communication data from email [14], mobile phone [8], and short message [59],
other data from as diverse domains as face-to-face contact [9], online chat [17],
Wikipedia edit [31], internet prostitution [47], and online game behavior [53] have
been studied. Those studies on one hand reinforce the universal characteristics
of bursty, non-Poissonian activity in human dynamics; on the other, they have
also uncovered further features of human dynamics, such as the activity-topology
relation [32], the persistence pattern of emotional expressions [17], the effect
of circadian and seasonal patterns [29], and the temporal correlations in bursty
pattern [33], in particular the presence of long-term correlations [48, 49]. All
these intellectual effort, and surely more to come, will collectively contribute
to the ultimate goal of fulfilling the promise of better understanding of social
dynamics [34] and the physics of complex systems with temporal heterogeneity
in general [26].
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Temporal Scale of Dynamic Networks

Rajmonda Sulo Caceres and Tanya Berger-Wolf

Abstract Interactions, either of molecules or people, are inherently dynamic,
changing with time and context. Interactions have an inherent rhythm, often hap-
pening over a range of time scales. Temporal streams of interactions are commonly
aggregated into dynamic networks for temporal analysis. Results of this analysis
are greatly affected by the resolution at which the original data are aggregated. The
mismatch between the inherent temporal scale of the underlying process and that at
which the analysis is performed can obscure important insights and lead to wrong
conclusions. In this chapter we describe the challenge of identifying the range of
inherent temporal scales of a stream of interactions and of finding the dynamic
network representation that matches those scales. We describe possible formal-
izations of the problem of identifying the inherent time scales of interactions and
present some initial approaches at solving it, noting the advantages and limitations
of these approaches. This is a nascent area of research and our goal is to highlight its
importance and to establish a computational foundation for further investigations.

1 Introduction

Whether it is on-line communications [11, 33, 34], animal social interactions [15,
19, 48, 55], or gene regulatory processes [25], the dynamic systems they represent
have inherent rhythms at which they function. Some of these inherent rhythms come
from the system itself, others are imposed by outside circumstances. Circadian
patterns of cell regulatory systems, seasonality in mobility patterns of animals,
daily and weekly communication patterns of humans are just a few examples
of these characteristic temporal scales. Not only do these complex systems have
inherent rhythms, different patterns within them form and live at different scales
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P. Holme and J. Saramäki (eds.), Temporal Networks, Understanding Complex Systems,
DOI 10.1007/978-3-642-36461-7 4, © Springer-Verlag Berlin Heidelberg 2013

65

mailto:rsulo1@uic.edu
mailto:tanyabw@uic.edu


66 R.S. Caceres and T. Berger-Wolf

[32]. For example, when analyzing animal population behavior, three temporal
scales are considered to be important for capturing the hierarchical nature of its
social structure [21]: the scale of the interactions themselves, the scale of patterns
of interactions (relationships), and, finally, the scale of patterns of relationships
(network structures). In this context, grooming interactions of baboons usually
have a temporal scale ranging from seconds to minutes, mother to infant or
peer to peer relationships have a scale extending over years, while an individual
troop membership, splitting or formation of new troops extends from years to
decades [52]. Similarly, in human social behavior, the patterns of interaction of
conversations, friendships, and kinship occupy different temporal scales. Every
dynamic complex system exhibits this kind of multi-scalar behavior.

We view the system through the filter of data we collect. These data are typically
collected opportunistically, with the temporal rate of data not always matching that
of the system. In order to ask questions about these systems, the tools we use to
answer the questions, and the temporal scale of analysis have to match the temporal
scale of the process underlying the question. Whether the question of interest is
the detection of anomalies, the understanding of cohesiveness and persistence of
interactions, or the prediction of the system behavior, the temporal scale at which the
analysis is applied needs to reflect the temporal scale that captures what is essential
for the question. When we analyze millions of IP network traces in order to detect
outlying behavior, should we analyze their communication patterns every 5 min,
every hour, every day? How long should social interactions persist to be considered
meaningful relationships in a social network [21, 41]? Just like the cell has the
“capacity” to compute the temporal scope of mRNA expression [58], we would
like to develop an understanding of how to estimate the tempo of a given dynamic
system by analyzing its expression as a series of interactions occurring in time (i.e.
temporal stream).

1.1 The Dynamic Network Abstraction

The abstract representation of choice for modeling a dynamic system has been that
of the dynamic network, also referred to as temporal network [23, 27, 29, 35, 36].
A dynamic network is a time series of network snapshots. Each snapshot represents
a state of the system over the interval of time such as a minute, a day, or a year in
the life of the system. The duration of the snapshot represents the temporal scale
of the dynamic network since all the interactions are lumped together discarding
their order in time. Little thought, to date, has been given to matching this temporal
scale to that of the system under study. A snapshot of a year is not appropriate for
analyzing human conversation, but maybe right for understanding kinship relations,
minute-long snapshots could be suitable for analysis of gene regulatory systems, but
too fine for the baboon troop membership. How, then, should we go about finding
the “right” temporal scale for the dynamic network? This is the central question
of this book chapter.
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In the abstraction of the dynamic network, the temporal ordering of interactions
within a snapshot is lost. All these interactions are represented as living in the
same temporal scale, whether we have the finer temporal information or not. In
some instances, the data already comes as a series of aggregated snapshots; in
other instances, we are given a stream of interactions in time which we have to
aggregate. We have to make sure that as we transition from the temporal interaction
stream or a collection of finer snapshots to a dynamic network representation, the
information that we discard is not critical. It is not clear how to decide what the right
temporal scale of dynamic networks should be. While in many cases the system
under observation naturally suggests the size of such a temporal scale [35], it is
more often the case that the choice of temporal scale is arbitrary and is done for the
convenience of the data representation and analysis. For example, it is convenient
and sometimes meaningful to analyze human interaction patterns in calendaric
scales, but it does not always make sense to analyze animal social interactions in
similar scales. Studies of periodic behavior of animals have shown that animals do
not care much about week days and weekends [35].

Within the complex system there are subsets of interactions that form functional
units that naturally co-occur together and their analysis as a cohesive unit allows us
to see critical system behavior such as collective emergent behavior [41,42,46,58].
For example, when studying molecular mechanisms of diseases, it is important
to study the interactions of relevant genes concurrently in order to observe their
temporal coordination [58]. Similarly, epidemiological studies show that analysis
of concurrent relations allows for a more accurate estimation of the magnitude of
spread of an infectious agent [42,46]. In all these scenarios, analysis of interactions
as series of network snapshots allows us to uncover inherent concurrent sets of
interactions while maintaining only the critical temporal orderings. In this transition
from data streams to dynamic networks we have to know to discard the little noisy
perturbations of functional units, while retaining the meaningful temporal ordering
at the scale of natural functionality as a whole.

1.2 Empirical Motivation

The level of aggregation of the temporal stream has great implications on the
patterns observed in the corresponding dynamic network and the inference made
about the network and the processes on it [10, 13, 23, 29, 32, 41, 53]. As Moody
et al. [41] point out, if analysis is applied at too fine temporal resolution, we end
up observing a network that has lots of temporal detail, yet the interesting and
meaningful co-occurring patterns, such as communities, may not be fully formed.
On the other end of the spectrum, when we aggregate the network at a too coarse
of a temporal scale, we loose critical temporal information and cannot observe
meaningful temporal changes to the system or processes over it. For example,
ecologists Baldock et al. [2] have shown that analyzing plant pollinator interactions
at a daily temporal scale misses temporal variations during the span of the day that
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Fig. 1 Representation of a social network aggregated at different windows of aggregation [(a), [7]]
and network measures of Reality Mining dataset as functions of the window of aggregation
[(b), [13]]

are critical for correctly interpreting interactions as either competitive or facilitative.
Figure 1a gives an illustration of the effect of the level of aggregation on the kind
of network structures that we observe (image reprinted from [7], with authors’
permission). Figure 1b also illustrates how measures computed over the dynamic
network critically depend on the level of aggregation that generated this network
(image reprinted from [13], with authors’ permission).

1.3 Data Collection

Data about dynamic interaction systems is often collected as a sequence of interac-
tions together with temporal information about their occurrences. Depending on the
nature of the dynamic system, it might be more meaningful to represent the temporal
dynamics as a stream of instantaneous interactions (i.e. point-based interaction
streams). At other times, a stream of interactions with temporal durations (i.e.
interval-based interaction streams) is more suitable. For systems such as email com-
munications, point-based streams offer a better representation. On the other hand,
friendships in a social network or grooming in baboon troops are better character-
ized as interval-based streams. Interval-based interaction streams can be viewed as a
generalization of point-based interaction streams, where we can think of the duration
time as zero. Figure 2 gives an illustration of both types of interaction streams.

Whether the collected data comes from GPS sensors, digital recording of emails,
or human observation of animals grooming, most often, what we record is the
instantaneous times at which the interactions were observed to be present. This
process often introduces different kinds of artificial noise that can be described both
in terms of topological structure and in terms of temporal structure. Topological
noise arises when we attempt to represent continuous behavior discretely (GPS).
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a b

Fig. 2 Illustration of two different types of temporal interactions: interval-base interactions
(a), point-based interactions (b)

We might miss interactions that should be present in the network. At the same
time, we might record interactions that occur spuriously, but are not meaningful.
For example, when collecting proximity-based networks of students at MIT using
bluetooth devices or zebras in Kenya using GPS collars, an interaction, then, is being
at the same place at the same time for a sufficiently long interval. If two zebras
happen to cross paths without actually interacting, devices that sample positions
sufficiently frequently will record this occurrence even though this “interaction”
should not be included in the network. On the other hand, observing baboon
interactions once a day, will miss many important dynamics.

1.4 Oversampling of Temporal Streams

Oversampling is an aspect of the data collection process that can help with the
issue of representing continuous time discretely. Oversampling helps reduce the
number of missing or spurious interactions. It allows us to better understand
what interactions are persistent in the network. On the other hand, oversampling
affects our ability to distinguish between local noisy temporal orderings and critical
temporal ordering. For example, when we observe human interactions at much
higher rate than necessary, it is maybe hard to distinguish between interactions
that develop independently of each other and those that are transient. When emails
arrive within seconds of each other, is their ordering meaningful? Is it important in
what order people walk in to a meeting room or is it more important to know that
they were present at the meeting? With the advent of electronic data collection of
interactions using communication devices, GPS, and proximity sensors, it is often
the case that data are oversampled at orders of magnitude higher temporal resolution
than the temporal scale of the underlying process. Therefore, it is important that the
aggregation process correctly accounts for the oversampling effects.

So far we have discussed scenarios when the aggregation of interactions streams
into a series of network snapshots is useful in capturing both the topological and
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temporal structure of the underlying system. The characteristic of the system that
makes the dynamic network the right abstraction is the notion of local concurrency,
or temporal independence. In dynamic systems where the temporal ordering of the
interactions is absolutely critical, and there are no hidden concurrencies buried due
to the data collection process, aggregation is not a useful tool.

In addition, we have discussed how temporal networks have an inherent rhythm
that governs their dynamics. This is one natural way to define what is the “right”
temporal scale. An alternative way would be to define the “right” temporal scale
in terms of what is useful about networks. This leads to an orthogonal approach
which is application driven. For example, the identification of the most frequent
sub-graphs, or the identification of dynamic communities are useful applications
that give us meaningful insight about the network. The natural question that arises
here is to identify the optimal temporal scale at which application-specific patterns
become detectable.

In summary, the dynamics of complex systems evolve at characteristic temporal
scales. Understanding the mapping between structure and the temporal scale at
which it lives is critical, and when done appropriately can lead to meaningful
and insightful analysis. The subtle interplay between the temporal concurrency
and temporal ordering is at the core of what is essential about the right temporal
resolution for analysis of dynamic networks. The notions of temporal concurrency
and temporal ordering depend on the context of analysis and they often lead to dis-
covery of complex multi-scalar nature of the structure. When temporal concurrency
is something inherent to the system or analysis, aggregation of interactions streams
helps in capturing this aspect of system functionality.

Although we have illustrated the challenges related to temporal scale identifi-
cation in the context of dynamic complex systems, the problem of identifying the
right resolution for analysis of temporal data in general is very broad and covers
many research areas. The relevant literature spans fields from signal processing
[18,44] and information theory [50] to time series analysis, time series segmentation
[28, 43, 45], and model granularity [5, 20, 47]. While the literature mentioned above
offers a solid foundation for the problem of temporal scale identification in general,
it does not explicitly address data that are represented as networks. It is not clear, for
example, how techniques like aggregation or smoothing of numerical values relate
to the same techniques applied to network structures [10,38,53]. There is, however,
the opportunity for great research in trying to translate and adapt these methods for
the analysis of temporal scale of networks. Caceres, Berger-Wolf and Grossman
[10] show that for special classes of network generative processes, the class of
linear network measures (such as density and average degree) capture essential
characteristics of the network at different scales, while Miller, Bliss and Wolfe [38]
aim to develop a general signal processing theory for networks (graphs).

The understanding and identification of the right temporal scale of dynamic
networks is a nascent area of research. In this chapter, we formalize this problem and
present some of its associated challenges. We also present an overview of existing
methods for this problem, noting their advantages and limitations. Finally, we
propose a conceptual framework designed to offer a common ground for translating
empirical evidence, intuition and insight into a cohesive theory.
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2 Related Work

Following is a brief review of related work in the areas of signal processing,
information theory and time series analysis.

2.1 Signal Processing and Information Theory

Temporal aggregation is a natural pre-processing step when the frequency at which
the data are generated is lower than the frequency at which the data are sampled.
Usually the approach involves formulating a trade-off between loss of information
and reduction of noise present in the signal. The goal in this context is to identify
the window at which the original continuous signal can be fully recovered from the
discretized signal. The Nyquist-Shannon sampling theorem [50] gives a necessary
condition for the length of the sampling window in this context.

Minimum description length (MDL) is another information theoretic technique
that is used to find the best granularity for data analysis [5, 20, 47]. In this context,
information is defined in terms of its algorithmic complexity. It assumes that
the best hypothesis for a given set of data is the one that leads to the largest
compression. Several works have used MDL principle to learn the best model
granularity. Identifying the intrmulinsic temporal scale of time series can be viewed
as a special case of model granularity and there are a few approaches that apply
the MDL concept directly to such data [24, 56]. In the next section we review the
approach by Sun et al. [54] that applies the MDL concept to dynamic networks.

2.2 Time Series Smoothing

Smoothing techniques are prevailing in the domain of time series analysis. In this
context, some of the variation in the data is assumed to be due to random noise. The
goal of the smoothing techniques is, therefore, to cancel some of the variations and
to reveal inherent properties of the time series, such as trends or seasonal and cyclic
behavior. The two main groups of smoothing methods are the averaging methods
and the exponential smoothing methods.

While the literature mentioned in this section offers a solid foundation on how to
properly aggregate data for analysis, it does not explicitly address datasets that are
represented as networks and, furthermore, it does not address the dynamic nature
of these networks. In this chapter, we focus explicitly on understanding how the
process of aggregation or smoothing of interaction streams affects the quality of
dynamic network that we get.



72 R.S. Caceres and T. Berger-Wolf

2.3 Temporal Scale for Dynamic Networks

The problem of identifying the right temporal scale for dynamic networks has only
recently started getting the deserved attention. James Moody explicitly points out
the problem in [41]. Existing literature on the topic is preliminary and mainly of
empirical nature. Clauset and Eagle [13] illustrate the effect of the aggregation
window in understanding the periodic dynamics of the Reality Mining dataset
[16]. They recommend the use of Fourier Transform analysis and auto-correlation
analysis of time series of network measures. While these techniques have been
successfully applied to understand stationary time series, their application to time
series of measures originating from highly dynamic and complex networks might
not be appropriate. It is not clear how the aggregation of time series of measures
in networks relates to the underlying aggregation of interactions. Caceres et al. [10]
theoretically show that for the special class of oversampled stationary processes and
the special class of linear network measures (such as density and average degree),
there is a direct relation between the two. We do not know, however, whether the
same is true for more general dynamic network processes and network measures.
Sulo, Berger-Wolf and Grossman [53] propose a heuristic that applies aggregation
at the level of the dynamic network rather than at the level of time series of network
measures in order to preserve as much of the network structure. They also give an
explicit formulation of the optimal window of aggregation using the information
theoretic framework.

The approach by Sun et al. [54] developed initially for the purpose of efficiently
clustering dynamic networks consists of grouping similar network snapshots into
one time-interval using the Minimum Description Length principle. The idea of
compressing the graph to maintain only the more relevant aspects is very promising
and relevant for the problem of aggregating at the right time scale and is similar to
the approach in [53]. The contribution of the method by Sun et al. [54] is to use
drastic changes in the time series of compression levels to segment the timeline of
the temporal network. Rather than focusing explicitly on change detection, the goal
of the research in [53] is more general, that is, identifying the inherent temporal
scale that governs the overall dynamics of the network, as well as the changes in
that scale.

However there is no definitive principled and rigorous framework for the problem
of temporal scale for dynamic networks. Partially this due to the fact that problem
itself has not been explicitly stated.

3 Problem Definition

We now formally define the main concepts that will be used throughout the chapter.
We formalize the notion of a stream of interactions as a probabilistic process. We
define the process of aggregation of interactions leading to a probabilistic dynamic
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network. We further define special random interaction streams and corresponding
networks. The definition of the optimal temporal scale for these streams is straight-
forward, yet stating these special cases explicitly allows us to gain further insight
into more complex interaction streams. Finally, we formally state the Temporal
Scale Inference (TSI) problem for dynamic networks.

3.1 Preliminary Definitions

In this section we present some basic definitions and descriptions of concepts and
used throughout this thesis.

4 Definitions and Notation

Let V be a set of vertices and E the set of edges defined over V � V . For 8eij 2
E; i; j 2 V and t 2 Œ1; : : : ; T �, the pair .eij; t/ is the time labeled instance of eij.

Definition 1. A temporal stream of edges Et is a sequence of edges ordered by
their time labels:

Et D f.eij; t/jeij 2 E; t 2 Œ1; : : : ; T �g
Let P be a partition of the timeline Œ1; : : : ; T �:

P D Œt0; t1/; Œt1; t2/; : : : ; Œtk; T �

As a special case, we consider the uniform partition P! , where each interval pi
has length !:

P! D fpkg s.t.8pk; jpkj D !
Definition 2. A dynamic graph DG is a sequence of graphs defined over stream Et
and a fixed partition P of Et :

DG W h.V;Ek
t /i

DG D hG1;G2; : : : ; Gk; : : : GjP ji
with Ek

t D f.eij; t/jeij 2 Et ; t 2 pkg and eachGk is associated with the kth interval
pk in P .

We now define the operation of aggregation of a temporal stream of edges into the
time series of graphs comprising a dynamic network. Given the temporal stream of
edges Et , and a fixed partition of the stream P , we define the aggregation function
that takes as an input the temporal stream of edges and the partition and outputs a
time series of graphs.
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G1 G2

t=1 t=3 t=4 t=5 t=2 t=6 Fig. 3 Aggregation of
temporal edges with window
of aggregation ! D 3

Definition 3. An aggregation function A on a temporal stream Et , and a fixed
partition P is defined as:

A W Et �P ! h.V;Ek/i

A.Et ;P/ D DG

The aggregation functionA takes all the edges occurring in a stream within a time
interval pk 2P and constructs a graph. Consider the scenario when A is applied to
the uniform partition P! . Figure 3 shows an illustration of the aggregation function
when the window of aggregation ! is three. Note, that edges can occur within each
temporal window more than once, but they get represented in the corresponding
aggregated graph at most once. Throughout this chapter, we use this definition for
the aggregation function. Another possible extension to this definition of A could
take the multiplicity of edge occurrence into account.

In a more general sense, an aggregation function could also use as a parameter a
“goodness of fit” measure 	, that allows to map an interval pk 2 P to the best fit
graph G�k with respect to 	:

A.Et ;P; 	/ D hG�k i

Note that in the general definition, G�k does not necessarily have to include all the
edges that occur during pk.

Let Q be a function that measures the quality of this dynamic graph:

Q WP � DG! R
C

Quality function Q maps the pair .P;DG/ to the set of non-negative real
numbers so that these values capture how “good” the dynamic network is. Q can
also be used to compare different dynamic network representations of the same
temporal stream. The notion of the quality function is different from that of the
objective function for a particular algorithm that generates a dynamic network.
Thus, the use of quality function as a model selection tool allows us to use it for
comparing different algorithms on the same data.
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5 Problem Formulation

The abstraction and identification of the right temporal scale for transitioning from
a dynamic stream of interactions into a meaningful and representative dynamic
network is not a straight forward task. One natural way to define the “right” temporal
scale of dynamic systems is as the scale of the inherent rhythm that governs their
dynamics. Alternatively, one can argue that the definition of the temporal scale
depends on the analysis objective for a given dynamic network. In either case, there
is an implicit notion of a quality function that characterizes the optimal aggregation
of the interaction stream. Ultimately the goal is to identify the temporal resolution
that corresponds to either global or local optima of this quality function. With this
in mind, we now formally define the Temporal Scale Inference problem:

Definition 4. TEMPORAL SCALE INFERENCE (TSI) PROBLEM: Given a temporal
streamEt and a quality functionQ, find the partition P� of the timeline Œ1; : : : ; T �,
and the corresponding dynamic graph DG�, that optimizes the quality functionQ:

hP�;DG�i D arg max
P;DG

Q.hP;DGi/:

Now that we have given the definitions, and stated the problem we are ready to
discuss in more detail some results for the TSI problem.

6 Special Cases of Temporal Interaction Streams

In this section, we study a collection of interaction streams for which we have some
intuitive understanding on what is the “right” temporal scale. As we carefully define
their generative processes and the properties they inherit, the goal is to understand
more rigorously, and gain insight into what happens as we aggregate the streams
at different temporal scales. We discuss examples ranging from the very simple
constant stream with no temporal scale, to realistic interaction streams coming from
real-world data. Each one of the examples touches on different aspects of temporal
scale and helps us formalize the notion the “right” temporal scale.

6.1 Constant Streams

Constant streams are the simplest possible temporal streams and one might even
argue whether they are indeed temporal at all. They are streams where the same
set of interactions occurs at each time step. The corresponding static graph SG is
defined as follows:



76 R.S. Caceres and T. Berger-Wolf

< T

= T

Fig. 4 Aggregation of a
static stream at different
levels of aggregation

Definition 5. Static Graph (SG) is the graph G.V;E 0; p/ defined over the set of
nodes V and the set of edges E 0 � V � V . Each edge in this graph occurs with
probability p D 1 at any time t :

8.eij; t/ 2 E 0 � V � V; PrŒ.eij; t/ 2 G/� D 1

Clearly there is no dependence on time and no algorithm should choose a particular
temporal scale other than the entire time line. More explicitly, as illustrated in Fig. 4,
any aggregation of the constant stream over any aggregation window will produce a
network identical to the original stream.

A more interesting case of a “stream with no temporal scale” is the stream where
the set of interactions that appear at each step is not constant, yet, the occurrence of
each interaction does not depend on time.

6.2 DynUR Stream

We define the Dynamic Uniform Random Graph (DynUR) as the graph where each
edge occurs at any time uniformly at random with probabilityp. This is the temporal
equivalent of the Erdös-Rényi graph.

Definition 6. Dynamic Uniform Random Graph (DynUR) is the graphG.V;Et ; p/
with a constant probability 0 � p � 1 for all edges:

8.eij; t/ 2 hE; T i PrŒ.eij; t/ 2 G/� D p:

Consider what happens when the aggregation functionA (Definition 3) is applied
to the DynUR stream with aggregation window !. The result is a time series of
graphs, which we call DynUR! D A.DynUR;P!/. Intuitively it is clear that
the DynUR! graph is generated by a process with no temporal dependencies or
correlations. This is true for any window of aggregation !, therefore, such a graph
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becomes a perfect candidate for a network that has no temporal scale. Sulo et al. [10]
give several characterizations of this model. At any temporal scale, the resulting
dynamic network is a time series of ER graphs and, therefore, topologically the
dynamic network is a time series of probabilistically identical in time. Also, any
permutations of the times of edges occurrences does not have any effect on the
probabilistic topology of the dynamic network. These characterizations all point
to the important property: no temporal scale is qualitatively better than any other
for analyzing the DynUR temporal stream. The picture changes when processes
that have an embedded temporal structure (e.g. periodicity) are analyzed at different
temporal scales. In such cases, inherent structural properties of the dynamic network
only emerge at specific scales and not all scales carry this property [10].

In general, a null model provides a baseline and a sanity check for evaluating
any algorithm claiming to solve a problem or assessing the significance of any
discovered pattern. For static networks, the Erdös-Rényi graph has been used as the
simplest null model [17]. It is a simple graph where each edge occurs independently
at random with the same probability p. This model generates a network where
each vertex has the same expected degree. More sophisticated null models that can
approximate the skewed degree distribution of empirical networks [4] have been
proposed by Molloy and Reed [39, 40], and later on by Chung-Lu [12].

The definition of the null model becomes more complicated when we add time. In
addition to correctly representing the relevant topological structure of the network,
these models need to incorporate aspects of the temporal structure such as order,
concurrency, and delay of interactions, among others. Null models for temporal
networks have been proposed by Holme [22] and Karsai [14,26]. They use temporal
reshuffling as a tool to generate streams where different aspects of temporal structure
get randomized. Holme and Karsai discuss these null models in the context of
analyzing processes, such as spread of a virus or information, over the temporal
stream (to which they refer to as the contact sequence). Holme in [23] points to the
issue that scale plays a role in capturing the critical temporal correlations:

. . . there are several kinds of possible temporal correlations and several time scales where the
correlations are important, and thus no single, general-purpose null model can be designed
(the temporal configuration model). Rather, by designing appropriate null models, one may
switch off selected types of correlations in order to understand their contributions to the
observed time-domain characteristics of the empirical temporal network.

In the absence of knowing the right temporal scale for the given temporal stream
or the spread process over it, permutations at all the scales need to be tried and
tested in order to generate the relevant null model. A null model is a way to test
the importance of structure found at any given scale. It does not allow us, however,
to find the temporal scale (or scales) in and of itself. We can use a null model in
conjunction with a quality function to do so. In Sect. 7 we formalize and generalize
this observation for any quality function.
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Fig. 5 Illustration of two cases of DynMix graph with three alternating probability distributions
(MD3). (a) Illustrates Case 1 of DynMix, with a cycle of constant probabilities, and (b) illustrates
Case 2 of DynMix, with a cycle of random graphs

6.3 Structured Temporal Streams

6.3.1 Periodic Stream

We will now consider periodic streams for which we expect the period to be related
to the concept of the “right” temporal scale. We give a general definition of the
corresponding probabilistic graph, the Dynamic Mixture (DynMix) graph.

Definition 7. Dynamic Mixture Graph (DynMixM;fwl g) on M fixed probability

distributions fPlgMlD1 and a set of temporal windows fwlgMlD1 with W D PM
lD1 wl ,

is the graph G.V;Et ; Pl / where:

8.eij; t/ 2 Et; PrŒ.eij; t/ 2 G/� D plijt; l D modM



t

W

�
:

The Dynamic Mixture Graph is a repeating sequence of dynamic graphs.
Consider two special cases for the probability distribution functions generating

the DynMixM;fwl g graph:

Case 1. A sequence of constant probability distribution Pl , so the probability of an
edge elij does not depend on the time index t :

PrŒ.eij; t/ 2 DynMixM;fwl gj.eij/� D plij:

Figure 5a gives an illustration of such a Dynamic Mixture Graph when the number
of repeating probability distributions M is 3.
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Case 2. A sequence of DynUR graphs, where for any given probability distribution
Pl , and a given time index t , the probability of all edges elij at t is the same:

Pr..eij; t/ 2 DynMixM;fwl gjt/ D pt 8i; j 2 V:

Figure 5b gives an illustration of such a Dynamic Mixture Graph with M D 3.

Note that DynUR can be viewed as a special instance of both Case 1 and Case 2 of
the DynMixM;fwl g graph with plij D pt D p for all tuples fl; i; j; tg. Sulo et al. [10]
showed that for a periodic stream, a linear function on the corresponding dynamic
graph becomes stationary at specific windows of aggregation. These windows
of aggregation correspond to the period (or any multiple of the period) of the
underlying edge probability process.

6.3.2 Stationary Stream

One of the most intuitive properties that we want the dynamic network to have
is stability or stationarity [8, 32]. In physics this property is typically referred to
as steady state, while in statistics it is called stationarity. Whether we are trying
to identify long term trends or typical behavior, or whether we want to predict
new behavior, a stable system is a necessary condition for a meaningful analysis
if we wish to infer something about the system from a history of observations.
Furthermore, as perturbation analysis has increasingly become a powerful tool for
untangling the complex structure of networks [22, 26], it is important to apply
such analysis over a stable system. Otherwise, it is difficult to distinguish between
changes due to the instability of the systems and changes due to the perturbation
[8]. Stability is a property analyzed extensively in the context of numerical time
series. The interest here is to understand this property in the context of temporal
interaction streams. Ultimately, the goal is to be able to identify aggregation levels
(temporal scales) of the interaction stream so that the corresponding dynamic system
represents a system in a steady state and, therefore, appropriate for analysis.

In this chapter, we will use the statistical definition of stability. More precisely,
we define a stationary probabilistic function that generates the temporal stream.

Let Pt D PrŒ.eij; t/ 2 Et � be the general case of a (weak) stationary probability
distribution function generating the stream of edges Et D f.eij; t/; ei j 2 E; t 2
Œ1; : : : ; T �g. That is,

1. EŒpijt� D 	ij, s.t. 	ij does not depend on t .
2. Cov.pijt; pij.tC�// D �ij; s.t. �ij does not depend on t .

6.3.3 Theseus Ship Stream

So far we have discussed streams whose structure is stable over time. We now turn
our attention to a stream that appears to be stable, yet it changes slowly over time.
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Fig. 6 Aggregation of
Theseus Ship stream at
different scales. The original
Theseus Ship stream has no
interactions as the base set
and one interaction changes
every time step

What kind of issues does a stream like this introduce to our problem of scale? The
notion of an object changing slowly over time is an old one, and is illustrated by the
Theseus Ship paradox [49].

The ship wherein Theseus and the youth of Athens returned [from Crete] had thirty oars,
and was preserved by the Athenians down even to the time of Demetrius Phalereus, for they
took away the old planks as they decayed, putting in new and stronger timber in their place,
insomuch that this ship became a standing example among philosophers, for the logical
question of things that grow; one side holding that the ship remained the same, and the
other contending that is not the same. [Plutarch, Life of Theseus]

The Theseus Ship paradox raises the question of whether the identity of an
object fundamentally changes when all of the object’s components have changed.
Many great minds from ancient Greece to the present have struggled to find the
right answer to the dilemma posed by this paradox. A translation of the Theseus
Ship paradox in the framework of dynamic networks has been discussed in [57] to
describe the notion of communities whose members change over time.

There is an analog of this paradox in the context of temporal interaction streams.
Consider a process, where every k time steps, the same set of interactions occurs,
except for a small change; one of the occurring interactions is replaced with a
new interaction (illustrated in Fig. 6). After enough time steps, the initial set of
interactions is replaced completely with a new set of interactions. The question that
arises here is “What is the right temporal scale for aggregating such a stream?”
At a fine temporal scale we observe change that is too gradual. At the same
time, we are able to capture the persistence structure of the network. At a coarser
temporal scale, we will loose this persistence structure, but we will be able to
identify periodicity. This is a good example of the complexity of the definition
of the “right” temporal scale. The dichotomy of persistence versus periodicity
motivates the position that the definition of the “right” temporal scale is context- and
question-specific. Furthermore, the aggregation the Theseus Ship stream illustrates
the multi-scalar nature property of temporal streams. Depending on the magnitude
of change we want to observe in such a stream, different levels of aggregation are
suitable for the analysis.
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6.3.4 Oversampled Stream

Another property of the streams that is critical for the TSI problem is the oversam-
pling property. The assumption that the process is oversampled is a natural one for
any good data set. An under-sampled process cannot be guaranteed to contain suf-
ficient information for analysis, by definition. Furthermore, given the pervasiveness
of fast and automated data collection systems, oversampling is more of a realistic
property rather than a wishful one. It does, however, introduce some unwanted side
effects, such as artificial time orderings and spurious patterns. Naturally, we are
interested in identifying aggregation levels of the stream that take the oversampling
factor into consideration. At such temporal scale, the oversampling noise has been
smoothed out, and the corresponding dynamic network is a true representative of the
underlying dynamics. Specifically, if we have an existing stream where we know the
optimal window of aggregation is !, then, intuitively, if we over-sample by a factor
of ˛, the new optimal window of aggregation should be ˛!. Although the size of
the window of aggregation changes proportionally to the oversampling factor, the
process of finding the optimal window should not be sensitive to the oversampling
factor. In this sense, uniformly modifying the frequency of interactions should not
affect the relative temporal distances between interactions.

We now formally define the process of oversampling of interaction streams. Let
Pt D PrŒ.eij; t/ 2 Et � be the probability distribution function generating the stream
of edges Et D f.eij; t/; ei;j 2 E; t 2 Œ1; : : : ; T �g.
Definition 8. An ˛-stretching mapping �˛ of the time line Œ1; : : : ; t; : : : ; T �, where
˛ > 0, is defined as follows:

�˛ W Œ1; : : : ; t; : : : ; T �! Œ1; : : : ; t 0; : : : ; ˛T �

t 0 D Œt˛ � .˛ � 1/; t˛ � .˛ � 2/; : : : ; t˛�
Definition 9. An oversampled probabilistic interaction process Pt 0 DPrŒ.eij; t

0/
2Et 0 �, over the time sequence t 0 2 Œ1; : : : ; ˛T �, and probability function Pt , is
defined as follows:

Pt 0 D P�˛.t/ D
1

˛
Pt

An illustration of a simple oversampled periodic stream is given in Fig. 7. Note
an oversampled periodic stream is still periodic (in this case the period is W D 2,
and the oversampling factor is ˛ D 3). The right scale for such a process takes into
account the oversampling rate and recaptures what is essential about this process,
whether that is the alternating change (!� D ˛W

2
D 3) or the stationarity (!� D

˛W D 6).
Throughout this chapter, we are assuming oversampling at a uniform rate. In

reality, data and the processes they represent are messy and oversampling could
happen at nonuniform rates.
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Fig. 7 Oversampled periodic stream

6.3.5 Noisy Stream

Similar to the definition of structure in dynamic networks, noise comes in two
flavors: topological and temporal. Topological noise has to do with the presence
or absence of an observed interaction (or a set of interactions) that does not reflect
the behavior of the underlying system. The addition of time adds to the complexity
of noise in dynamic networks. Specifically, the occurrence time of an interaction
could be noisy as well as the ordering of this occurrence time with respect to that of
other interactions. Alternatively, we can view noise as the antithesis of structure. In
this context, we discussed in Sect. 6.2 the characteristics for the DynUR stream, the
completely structureless stream.

In general, the topological and temporal aspects of noise are coupled in ways that
make it difficult to analyze them individually. Yet, throughout Sect. 6, we attempt to
state the characteristics of temporal noise more explicitly. In Sect. 6.3.6, we analyze
a simple case of temporal noise, by introducing gaussian noise to the temporal
probabilities of each interaction. In addition, we use perturbation analysis as a way
to detect noisy temporal orderings of interactions. Clearly, in real-world datasets,
noise is generated by much more complex models and can have other manifestations
that we do not consider in this chapter. In addition, we would expect the magnitude
of noise to have an effect on the “right” level of aggregation. We would expect that,
at some threshold, the large magnitude of noise overwhelms structure and the stream
essentially becomes the DynUR stream. Despite the fact that we do not address
these aspects of noise explicitly, they provide interesting and important directions
for future work.

6.3.6 Oversampled, Noisy Stationary Stream

A periodic process is just one example of a stationary process. Now that we have
also discussed oversampled and noisy streams individually, we can discuss a much
more general class of interaction streams: the oversampled noisy stationary streams.

Let Pt D PrŒ.eij; t/ 2 Et � be the general case of a (weak) stationary probability
distribution function generating the stream of edges Et D f.eij; t/; ei j 2 E; t 2
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Œ1; : : : ; T �g. An oversampled noisy probabilistic process Pt 0 D PrŒ.eij; t
0/ 2 Et 0 �

over time sequence Œ1; : : : ; t 0; : : : ; ˛T �, and probability function Pt , is defined as
follows:

Pt 0 D 1

˛
Pt C �;

with � 2 N.0; �/ representing Gaussian noise.
Caceres et al. [10] showed that for the class of oversampled, stationary, noisy

interaction streams, a linear function on the corresponding dynamic graph becomes
stationary at specific windows of aggregation. These windows of aggregation
correspond to the multiple of the oversampling rate.

7 Axiomatic Framework: Desired Properties of the Quality
Function Q

In Sect. 6, we demonstrated some intuitive properties one would expect to observe
for temporal streams. We showed that for a stream with no temporal scale, the re-
ordering of interactions along the time line had no effect on the resulting dynamic
network. We described some simple cases of interaction streams (e.g. DynUR and
constant stream) for which we have a clear understanding of the right temporal
scale. Finally, we illustrated the effect of oversampling on the aggregation of
different temporal streams and how it intuitively relates to the notion of the “right”
temporal scale.

We now propose an axiomatic approach to capture this collection of insights in a
formal way and to allow future rigorous analysis of the TSI problem. The axiomatic
approach has recently gained a lot of interest in the field of spatial clustering. Similar
to the TSI problem, the goal of spatial clustering is to postulate important sets
of properties both in terms of the optimal partitioning [30], and in terms of the
qualitative functions over such partitions [1, 6]. The axiomatic view has also been
applied to the analysis of graphs in the context of graph clustering [37] and graph
complexity [9].

The TSI problem shares many of the characteristics and challenges of the clus-
tering problem, both in metric and non-metric space, yet an axiomatic framework
that synthesizes the characteristics of the TSI problem is lacking.

8 Axiomatic Framework: Desired Properties of the Quality
Function Q

In the formulation of the TSI problem in Sect. 5, we defined the optimal temporal
scale through the proxy of the quality function. This shifts the burden from finding
the “real” temporal scale to optimizing the quality function. Ideally the two are the
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same. What properties, then, should the quality function possess in order to correctly
reflect the behavior of the underlying temporal scale?

Here we present a set of axioms that delineate desired properties of the quality
functionQ. Let˝ be the set of all temporal streams Et defined over the fixed set of
vertices V and the finite time line Œ0; : : : ; T �. Since V is a fixed set and Œ0; � � � ; T �
is finite, there is a finite number of temporal streams in ˝ , and therefore, ˝ is a
discrete probability space. Let A be a TSI algorithm, that takes as input a temporal
stream Et and outputs a set of pairs hP;DGi as solutions:

A W fV � V; Œ1; : : : ; T �g ! fhP;DGig

We can then think of Q as a random variable defined over the set fhP;DGig.
The range of Q is Œ0;Q��, where Q� is the maximal value of quality associated
with a specific partition P of Et , and the corresponding dynamic network DG).

Q W ˝ ! R
C

Let ˚ be a transformation function on the temporal stream Et :

˚ W Et ! Et :

An example of a transformation function is the permutation function 
 defined as
follows:

Definition 10. Given a temporal stream Et , a fixed partition P of the stream, a
probabilistic permutation function 
 picks a pair of edges h.ei1j1 ; tl /; .ei2j2 ; tk/i, at
random from Et and swaps their timestamps:


 W Et ! Et

h.ei1j1 ; tl /; .ei2j2 ; tk/i ! h.ei1j1 ; tk/; .ei2j2 ; tl /i
We consider two special cases of function 
:

• The within-interval permutation function 
w chooses the pair of edges from the
same interval pi 2P such that tl ; tk 2 pi .

• The across-interval permutation function 
a chooses the pair of edges from two
different intervals pi ; pj 2P such that tl 2 pi and tk 2 pj .

The goal of the following axioms will be to characterize the change in the
quality of dynamic network DG defined over a given temporal stream Et due
to transformation function ˚ . Let � 
 0 represent a fixed threshold parameter
characterizing the amount of change in quality. If the change is less or equal �,
we consider the change “small”. Let ı 
 0 be a confidence parameter about the
probability of the change in Q being small. We are now ready to formally define the
axioms.
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[Q1] Within Interval Order Invariance: For an optimal partition, permuta-
tions of interactions within the same interval do not drastically change the quality
of the dynamic graph.
Formally, let P�;DG� be the optimal (with respect to a particular quality func-
tion Q) partition and the optimal dynamic graph for the temporal stream Et . Let
P�0

;DG�0

be the optimal partition and optimal dynamic graph corresponding to
the perturbed stream E 0t D 
w.Et ;P�/. Then, with high probability, the change
in the quality function after the perturbation is small:

8
w;8pi 2P�; P.jQ.DG�/�Q.DG�0

/j � �/ 
 1 � ı:

Intuitively, the process of aggregating temporal interactions into a dynamic graph
has the effect of assigning the same time to interactions within each partition,
while preserving the temporal ordering across partitions. At the optimal temporal
scale, the temporal ordering of interactions that fall within the same partition is
not essential. The fact that, locally, some interactions are observed as happening
in a particular order is an artifact of looking at them at too fine of a temporal
resolution. They could have happened in any order as long as they happened
within a certain time frame.
[Q2] Across Interval Order Criticality: For an optimal partition, permutations
of edges across different intervals change the quality of the partition.
Formally, we define the neighborhood of a given interval pi 2 P the following
way:

N.pi/ D fpj jji � j j � r; r > 0g:
Let DG�0

be the optimal dynamic graph corresponding to E 0t D 
a.Et ;P�/:
Then, with high probability, the change of the quality function after the permu-
tation is substantial:

9
a;8pi 2P�; pj 2 N.pi/; P.jQ.DG�/�Q.DG�0

/j > �/ 
 1 � ı:

Intuitively, at the optimal temporal scale, the temporal ordering of sets of
interactions across the partitions is crucial and reflects the time dependence of
the network structures. While this might not be true for all edges, there must
exist a subset of interactions for which the ordering is critical. Otherwise, time
does not play a role in the structure of the interactions.
[Q3] Measure Unit Invariance: Uniform scaling of the oversampling factor
does not change the quality of the dynamic network.
Formally, let Et and E 0t be two temporal streams generated by oversampling
the same underlying process at rates ˛ and ˛0, such that ˛ ¤ ˛0. Let DG� and
DG�0

be the optimal dynamic graphs forEt andE 0t respectively. Then, with high
probability, the change in the quality function is small:

P.jQ.DG�/�Q.DG�0

/j � �/ 
 ı:



86 R.S. Caceres and T. Berger-Wolf

This axiom bears resemblance to the scale invariance axiom in spatial clustering.
In this context, the partitioning of the data into clusters does not depend on the
units of the distance function. The oversampling invariance axiom represents
an analogous intuition: oversampling rate is a measure of the time unit used
to measure how far apart interactions occur along the timeline. In this sense,
uniformly modifying the frequency of interactions should not affect relative
temporal distances between interactions.
[Q4] Constant Stream: The constant stream has no time scale, the optimal
partition is the whole timeline.
A constant stream is the stream for which the same set of edges occurs at every
time step. Let DG be a dynamic graph over the constant stream. Let DG0 be a
coarsening of DG. Then, the quality function of the coarsening is better:

8DG;DG0;Q.DG/ < Q.DG0/:

Consequently, the optimal DG� with respect to the quality function Q on the
constant stream is the aggregation of the whole timeline.
[Q5] Stream with no Temporal Scale: The quality function is the same for any
partition of the stream with no temporal scale.
Formally, let DG and DG0 be any two dynamic networks corresponding to any
two partitions P and P 0 of the stream with no temporal scale. Then, the quality
function of the two dynamic networks should not be different:

8DG;DG0; jQ.DG/�Q.DG0/j 
 �:

[Q6] Temporal Shift Invariance: A shift of the time line of a temporal stream,
does not drastically change the quality of the dynamic network. The optimal
partition of the stream is independent of the time line’s starting point.
Formally, let Œ0; : : : ; T � be the time line of the temporal stream Et . Let
Œ�; : : : ; T C �� be the new timeline shifted by parameter � > 0. Let DG�
represent the optimal dynamic network for Et and DG�0

be the optimal dynamic
network for the shifted temporal stream. Then, the change of the quality function
due to the shift is small:

jQ.DG�0

/�Q.DG�/j < �:
An interval in a partition of the stream identifies a temporal cohesive unit in the
dynamic network, similar to the notion of a building block. It is more important
that interactions happen a specific time apart rather than where in the stream
they happen. Temporal shift invariance is a strong assumption, considering the
absolute time dependency of complex systems. For example, empirical analysis
of mobile phone calls [32] shows that, especially for a finer time scale, the start
time of the partition matters a lot. In general, it is of great interest to characterize
interaction streams (and their generative mechanisms) that are independent of the
start time, and those streams that are highly sensitive.
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Axioms [Q1] and [Q2] view the underlying dynamic process and the temporal
structure it contains as a sequential process. These axioms specify when the ordering
of the interactions matters and when it is just temporal noise. Axioms [Q3] through
[Q5] are formalizations of some intuitive observations about the TSI problem.
As a collection, axioms presented here are not exhaustive of all the properties
characterizing the temporal scale of interaction streams. Yet, these axioms provide a
starting point for formally addressing the TSI problem in a rigorous and consistent
manner. The axioms serve as external evaluators of the quality of a dynamic
network, in the sense that they do not depend on the type of the partitioning
algorithm used, objective function, or the generative process of the temporal stream.
Therefore, the usefulness of the axiomatic framework is two-fold. The framework
can be used to:

1. Evaluate the performance of a partitioning algorithm in a unbiased way.
2. Provide a taxonomy of different partitioning algorithms.

9 Heuristics for the TSI Problem

We conclude this chapter with two heuristics for the TSI problem. We have already
discussed the very few approaches for inferring the temporal scale of an interaction
stream. We now present in greater detail two heuristics that follow more closely the
formalism of the TSI problem. These are by no means the best solutions for the
problem, but they are the best to date and take a very different route to solving
the problem. We hope they would serve as a starting point and a foundation for
a variety of practical techniques for solving the TSI problem. Both heuristics are
based on ideas from information theory. The concept of “information” embedded in
interaction streams is general and includes the notion of persistence of structure as a
special case. Patterns that persist for awhile truly represent what is more “essential”
for the underlying system. In social network analysis, one point of view considers
persistent interactions over time as defining more complex sociological structures
such as relationships or kinship [41]. In another context, the notion of persistence
is critical in extending the static definition of communities to that of dynamic
communities [57]. Finally, persistence is a property that allows us to construct a
network with the “core” interactions, discarding the noisy transient interactions.
Therefore, the notion of persistence lends itself to yet another formulation of the
“right” temporal scale: the temporal scale that best captures the persistent nature of
the underlying complex system.

Following, we give a summary of the TWIN (Temporal Window In Networks)
[53] and GraphScope heuristic [54]. TWIN takes the approach of looking at
the temporal scale as a global inherent characteristic of the interaction stream.
Graphscope on the other hand, takes an objective-specific approach by identifying
levels of aggregation where drastic changes in the structure of the stream are easier
to identify.



88 R.S. Caceres and T. Berger-Wolf

t

F  Variance (V)   

Compression Rate (R)   

· · ·
DGω

· · ·Pω

d1 d2 d3 d4 · · ·F

· · ·Et
Fig. 8 Illustration of
computation of variance and
compression ratio for a given
level of aggregation (!), and
a given graph-theoretic
measure d (diameter)

Variance Compression 

Temporal Scale 

Uninteresting Range Interesting Range 
Fig. 9 Trade-off plot of
variance and compression
measures

9.1 TWIN

The TWIN (Temporal Window In Networks) heuristic uses graph-theoretic mea-
sures as proxies of different aspects of network structure. Given a temporal stream
of edges and a graph-theoretic measure (Fig. 8), the heuristic generates time series
of graphs (dynamic graphs) at different levels of aggregation. It then computes the
variance and compression ratio for each time series. Finally, the algorithm analyzes
the compression ratio and variance as functions of window size and selects the
window size for which the variance is relatively small and compression ratio is
relatively high.

Variance and compression ratio are not mathematical compliments of each other,
but they do have opposite behavior as functions of window size. As illustrated in
Fig. 9, when we increase the value of !, we expect the variance to decrease and
compression rate to increase. There is a region in Fig. 9 where variance is very
small and compression is very high. However, low variance and high compression
in this region are achieved artificially by aggregating the underlying stream at too
coarse a scale, so that all the critical temporal information is removed. We call
the range of window sizes that fall in this region uninteresting. Instead, there is
a range of window sizes for which we can expect both relatively low variance and
relatively high compression levels of time series F! . This insight allows TWIN to
formulate the process of finding the range of appropriate discretization window sizes
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Fig. 10 TWIN’s trade-off plot of variance (V) and compression rate (R) of network radius with
respect to window size ! (in days)

as a search problem guided by the values of variance and compression (Fig. 10).
Figure 11 gives an illustration of TWIN’s results for the Enron dataset [51].

9.2 Graphscope

Graphscope uses the notion of compression cost to capture the persistence of
network structures (in this case of communities) in time [54]. Similar graph
snapshots will incur low compression cost, therefore they can be grouped together
in one temporal segment. Whenever the compression cost increases substantially
with the addition of a new graph snapshot, Graphscope starts a new temporal
segment. Figure 12 shows the relative difference in compression cost between
grouping consecutive temporal segments versus starting a new temporal segment
for the Enron dataset. High peaks in this plot correspond to key events of the Enron
corporation during the period of January 2002 [54].

9.3 Comparison of TWIN and Graphscope

Since GraphScope focuses on variations of graph compression levels, it is the
magnitude of change in the graph structure that drives the timeline segmentation.
TWIN analyzes the regularity of compression levels of different metrics on the
graph, and therefore, it is the rate of change, not the magnitude, that will have the
most affect in the aggregation.
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Fig. 11 Network radius time series for the Enron dataset at three levels of aggregation: (a) fine
level of aggregation, ! D 1 day, (b) coarse level of aggregation, ! D 12 days, (c) the right level
of aggregation, ! D 4 days. The three important events (Karl Rove selling off his energy stocks
(Event 1), the unsuccessful attempt of Dynegy to acquire the bankrupt Enron (Event 2), beginning
of the FBI investigation (Event 3)) can be discerned only at the right level of aggregation. They
are obscured by noise at too fine level of aggregation and smoothed out at the coarse level of
aggregation
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Fig. 12 Relative compression cost versus time for the Enron dataset. Large cost indicates change
points which coincide with key events (with red representing maximal values of change). Vertical
lines on the plot correspond to top ten change points. Reprinted with authors’ permission
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A nice feature of the Graphscope heuristic is the fact that it generates a non-
uniform partitioning of the timeline. The non-uniform partitioning is a more
realistic representation of real-world interaction streams which are commonly
characterized by bursty behavior [3,31]. On the other hand, Graphscope determines
this partitioning for a fixed aggregation step and it does not take into account the
affect the aggregation step has on the computation of the compression cost. The
estimation of persistent structures leading to the low compression costs is highly
sensitive on the size of aggregation level. TWIN overcomes this dependency by
analyzing the persistent nature of the stream across different scale, and picking those
scales where persistence is more pronounced.

10 Conclusions and Future Outlook

There is both the intuitive understanding and the mounting amount of evidence that
temporal scale of an interaction stream plays an important role in the analysis of
that stream. Moreover, it is clear that many streams have a set of relevant scales and
that those may change over time. Some of the scales are inherent to the dynamics
of the interactions, while others are only relevant depending on the context of the
analysis performed on the stream. All of this makes the problem of identifying and
inferring the temporal scale of interaction streams important. All of this also make
the problem elusive and maddeningly difficult to state.

In this chapter we brought together the various interpretations of the concept
of temporal scale and pointed out the evidence that supports those interpretations.
We formalized the problem of the temporal scale inference and its properties, and
discussed several existing approaches for solving the problem.

The problem of temporal scale inference is very new. The few existing
approaches to stating or solving it are just the beginning. Every research direction
in this area is open. We hope this chapter brings the problem to the forefront of
research consciousness, makes the problem explicit, and provides the tools for
making progress in this area. Understanding the rhythm of interacting systems is
not only necessary for the proper analysis of these systems, but will provide us
with the fundamental insight into what makes these systems tick. It is an important,
challenging, and worthy endeavor.
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23. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012) ArXiv e-prints

(2011)
24. Hu, B., Rakthanmanon, T., Hao, Y., Evans, S., Lonardi, S., Keogh, E.J.: Discovering the

intrinsic cardinality and dimensionality of time series using mdl. In: ICDM, pp. 1086–1091.
IEEE Computer Society, Washington (2011)

25. Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabasi, A.L.: The large-scale organization of
metabolic networks. Nature 407(6804), 651–654 (2000)
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Models, Entropy and Information of Temporal
Social Networks

Kun Zhao, Márton Karsai, and Ginestra Bianconi

Abstract Temporal social networks are characterized by heterogeneous duration of
contacts, which can either follow a power-law distribution, such as in face-to-face
interactions, or a Weibull distribution, such as in mobile-phone communication.
Here we model the dynamics of face-to-face interaction and mobile phone com-
munication by a reinforcement dynamics, which explains the data observed in these
different types of social interactions. We quantify the information encoded in the
dynamics of these networks by the entropy of temporal networks. Finally, we show
evidence that human dynamics is able to modulate the information present in social
network dynamics when it follows circadian rhythms and when it is interfacing with
a new technology such as the mobile-phone communication technology.

1 Introduction

The theory of complex networks [1–6] has flourished thanks to the availability
of new datasets on large complex systems, such as the Internet or the interaction
networks inside the cell. In the last 10 years attention has been focusing mainly
on static or growing complex networks, with little emphasis on the rewiring of the
links. The topology of these networks and their modular structure [7–10] are able
to affect the dynamics taking place on them [5, 6, 11, 12]. Only recently temporal
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networks [13–18], dominated by the dynamics of rewirings, are starting to attract
the attention of quantitative scientists working on complexity. One of the most
beautiful examples of temporal networks are social interaction networks. Indeed,
social networks [19, 20] are intrinsically dynamical and social interactions are
continuously formed and dissolved. Recently we are gaining new insights into the
structure and dynamics of these temporal social networks, thanks to the availability
of a new generation of datasets recording the social interactions of the fast time
scale. In fact, on one side we have data on face-to-face interactions coming from
mobile user devices technology [21,22], or Radio-Frequency-Identification-Devices
[16, 17], on the other side, we have extensive datasets on mobile-phone calls [23]
and agent mobility [24, 25].

This new generation of data has changed drastically the way we look at social
networks. In fact, the adaptability of social networks is well known and several
models have been suggested for the dynamical formation of social ties and the
emergence of connected societies [26–29]. Nevertheless, the strength and nature
of a social tie remained difficult to quantify for several years despite the careful
sociological description by Granovetter [19]. Only recently, with the availability
of data on social interactions and their dynamics on the fast time scale, it has
become possible to assign to each acquaintance the strength or weight of the social
interaction quantified as the total amount of time spent together by two agents in a
given time window [16].

The recent data revolution in social sciences is not restricted to data on social
interaction but concerns all human activities [30–33], from financial transaction
to mobility. From these new data on human dynamics evidence is emerging that
human activity is bursty and is not described by Poisson processes [30, 31]. Indeed,
a universal pattern of bursty activities was observed in human dynamics such as
broker activity, library loans or email correspondence. Social interactions are not an
exception, and there is evidence that face-to-face interactions have a distribution
of duration well approximated by a power-law [16, 34–37] while they remain
modulated by circadian rhythms [38]. The bursty activity of social networks has
a significant impact on dynamical processes defined on networks [39, 40]. Here
we compare these observations with data coming from a large dataset of mobile-
phone communication [41, 42] and show that human social interactions, when
mediated by a technology, such as the mobile-phone communication, demonstrate
the adaptability of human behavior. Indeed, the distribution of duration of calls
does not follow any more a power-law distribution but has a characteristic scale
determined by the weights of the links, and is described by a Weibull distribution.
At the same time, however, this distribution remains bursty and strongly deviates
from a Poisson distribution. We will show that both the power-law distribution of
durations of social interactions and the Weibull distribution of durations and social
interactions observed respectively in face-to-face interaction datasets and in mobile-
phone communication activity can be explained phenomenologically by a model
with a reinforcement dynamics [35, 36, 41, 42] responsible for the deviation from a
pure Poisson process. In this model, the longer two agents interact, the smaller is
the probability that they split apart, and the longer an agent is non interacting, the
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less likely it is that he/she will start a new social interaction. We observe here that
this framework is also necessary to explain the group formation in simple animals
[43]. This suggests that the reinforcement dynamics of social interactions, much
like the Hebbian dynamics, might have a neurobiological foundation. Furthermore,
this is supported by the results on the bursty mobility of rodents [44] and on
the recurrence patterns of words encountered in online conversations [45]. We
have therefore found ways to quantify the adaptability of human behavior to
different technologies. We observe here that this change of behavior corresponds
to the very fast time dynamics of social interactions and it is not related to
macroscopic change of personality consistently with the results of [46] on online
social networks.

Moreover, temporal social networks encode information [47] in their structure
and dynamics. This information is necessary for efficiently navigating [48, 49]
the network, and to build collaboration networks [50] that are able to enhance
the performance of a society. Recently, several authors have focused on measures of
entropy and information for networks. The entropy of network ensembles is able
to quantify the information encoded in a structural feature of networks such as
the degree sequence, the community structure, and the physical embedding of the
network in a geometric space [10,51,52]. The entropy rate of a dynamical process on
the networks, such a biased random walk, are also able to characterize the interplay
between structure of the networks and the dynamics occurring on them [53]. Finally,
the mutual information for the data of email correspondence was shown to be fruitful
in characterizing the community structure of the networks [54] and the entropy of
human mobility was able to set the limit of predictability of human movements [55].

Here we will characterize the entropy of temporal social networks as a proxy
to characterize the predictability of the dynamical nature of social interaction
networks. This entropy will quantify how many typical configuration of social
interactions we expect at any given time, given the history of the network dynamical
process. We will evaluate this entropy on a typical day of mobile-phone communi-
cation directly from data showing modulation of the dynamical entropy during the
circadian rhythm. Moreover we will show that when the distribution of duration
of contacts changes from a power-law distribution to a Weibull distribution the
level of information and the value of the dynamical entropy significantly change
indicating that human adaptability to new technology is a further way to modulate
the information content of dynamical social networks.

2 Temporal Social Networks and the Distribution
of Duration of Contacts

Human social dynamics is bursty, and the distribution of inter-event times follows
a universal trend showing power-law tails. This is true for e-mail correspondence
events, library loans, and broker activity. Social interactions are not an exception
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to this rule, and the distribution of inter-event time between face-to-face social
interactions has power-law tails [30, 31]. Interestingly enough, social interactions
have an additional ingredient with respect to other human activities. While sending
an email can be considered an instantaneous event characterized by the instant in
which the email is sent, social interactions have an intrinsic duration which is a
proxy of the strength of a social tie. In fact, social interactions are the microscopic
structure of social ties and a tie can be quantified as the total time two agents interact
in a given time-window. New data on the fast time scale of social interactions have
been now gathered with different methods which range from Bluetooth sensors
[21], to the new generation of Radio-Frequency-Identification-Devices [16, 17]. In
all these data there is evidence that face-to-face interactions have a duration that
follows a distribution with a power-law tail. Moreover, there is also evidence that
the inter-contact times have a distribution with fat tails. In this chapter we report
a figure of [16] (Fig. 1 of this chapter) in which the duration of contact in Radio-
Frequency-Device experiments conducted by Sociopatterns experiments is clearly
fat tailed and well approximated by a power-law (straight line on the log–log plot).
In this figure the authors of [16] report the distribution of the duration of binary
interactions and the distribution of duration of a the triangle of interacting agents.
Moreover they report data for the distribution of inter-event time.

How do these distributions change when human agents are interfaced with a new
technology? This is a major question that arises if we want to characterize the uni-
versality of these distributions. In this book chapter we report an analysis of mobile-
phone data and we show evidence of human adaptability to a new technology.

We have analysed the call sequence of subscribers of a major European mobile
service provider. In the dataset the users were anonymized and impossible to track.
We considered calls between users who called each other mutually at least once
during the examined period of 6 months in order to examine calls only reflecting
trusted social interactions. The resulted event list consists of 633;986;311 calls
between 6;243;322 users. We have performed measurements for the distribution
of call durations and non-interaction times of all the users for the entire 6 months
time period. The distribution of phone call durations strongly deviates from a fat-tail
distribution. In Fig. 2 we report these distributions and show that they depend on the
strength w of the interactions (total duration of contacts in the observed period)
but do not depend on the age, gender or type of contract in a significant way. The
distribution P w.�tin/ of duration of contacts within agents with strength w is well
fitted by a Weibull distribution

��.w/P w.�tin/ D Wˇ

�
x D �t

�?.w/

�
D 1

xˇ
e
� 1
1�ˇ x

1�ˇ

: (1)

with ˇ D 0:47::. The typical times of interactions between users ��.w/ depend
on the weight w of the social tie. In particular the values used for the data
collapse of Fig. 3 are listed in Table 1. These values are broadly distributed, and
there is evidence that such heterogeneity might depend the geographical distance
between the users [56]. The Weibull distribution strongly deviates from a power-law
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Fig. 1 Probability distribution of human social interaction. Figure from [16]. (a) Probability
distribution of duration of contacts between any two given persons. Strikingly, the distributions
show a similar long-tail behavior independently of the setting or context where the experiment
took place or the detection range considered. The data correspond to respectively 8,700, 17,000
and 600,000 contact events registered at the ISI, SFHH and 25C3 deployments. (b) Probability
distribution of the duration of a triangle. The number of triangles registered are 89, 1,700 and
600,000 for the ISI, SFHH and 25C3 deployments. (c) Probability distribution of the time intervals
between the beginning of consecutive contacts AB and AC. Some distributions show spikes (i.e.,
characteristic timescales) in addition to the broad tail; for instance, the 1 h spike in the 25C3 data
may be related to a time structure to fix appointments for discussions

distribution to the extent that it is characterized by a typical time scale �.w/, while
power-law distribution does not have an associated characteristic scale. The origin
of this significant change in the behavior of humans interactions could be due to
the consideration of the cost of the interactions (although we are not in the position
to draw these conclusions (see Fig. 3 in which we compare distribution of duration
of calls for people with different type of contract) or might depend on the different
nature of the communication. The duration of a phone call is quite short and is not
affected significantly by the circadian rhythms of the population. On the contrary,
the duration of no-interaction periods is strongly affected by the periodic daily of
weekly rhythms. In Fig. 4 we report the distribution of duration of no-interaction
periods in the day periods between 7 a.m. and 2 a.m. next day. The typical times
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��.k/ used in Fig. 6 are listed in Table 2. The distribution of non-interacting times
is difficult to fit due to the noise derived by the dependence on circadian rhythms.
In any case the non-interacting time distribution if it is clearly fat tail.
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Table 1 Typical times �?.w/
used in the data collapse of
Fig. 2

Typical time �?.w/
Weight of the link in seconds (s)

(0–2 %) wmax 111.6
(2–4 %) wmax 237.8
(4–8 %) wmax 334.4
(8–16 %) wmax 492.0
(16–32 %) wmax 718.8
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Fig. 4 Distribution of non-interaction times in the phone-call data. The distribution strongly
depends on circadian rhythms. The distribution of rescaled time depends strongly on the con-
nectivity of each node. Nodes with higher connectivity k are typically non-interacting for a shorter
typical time scale �?.k/. Figure from [41]

Table 2 Typical times �?.k/ used in the data
collapse of Fig. 4

Typical time �?.k/
Connectivity in seconds (s)

kD1 158,594
kD2 118,047
kD4 69,741
kD8 39,082
kD16 22,824
kD32 13,451

3 Model of Social Interaction

It has been recognized that human dynamics is not Poissonian. Several models
have been proposed for explaining a fundamental case study of this dynamics,
the data on email correspondence. The two possible explanations of bursty email
correspondence are described in the following.
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• A queueing model of tasks with different priorities has been suggested to
explain bursty interevent time. This model implies rational decision making
and correlated activity patterns [30, 31]. This model gives rise to power-law
distribution of inter event times.

• A convolution of Poisson processes due to different activities during the circadian
rhythms and weekly cycles have been suggested to explain bursty inter event
time. These different and multiple Poisson processes are introducing a set of
distinct characteristic time scales on human dynamics giving rise to fat tails of
interevent times [57].

In the previous section we have showed evidence that the duration of social
interactions is generally non Poissonian. Indeed, both the power-law distribution
observed for duration of face-to-face interactions and the Weibull distribution
observed for duration of mobile-phone communication strongly deviate from an
exponential. The same can be stated for the distribution of duration of non-
interaction times, which strongly deviates from an exponential distribution both for
face-to-face interactions and for mobile-phone communication. In order to explain
the data on duration of contacts we cannot use any of the models proposed for bursty
interevent time in email correspondence. In fact, on one side it is unlikely that the
decision to continue a conversation depends on rational decision making. Moreover
the queueing model [30, 31] cannot explain the observed stretched exponential
distribution of duration of calls. On the other side, the duration of contacts it is
not effected by circadian rhythms and weekly cycles which are responsible for
bursty behavior in the model [57]. This implies that a new theoretical framework is
needed to explain social interaction data. Therefore, in order to model the temporal
social networks we have to abandon the generally considered assumption that social
interactions are generated by a Poisson process. In this assumption the probability
for two agents to start an interaction or to end an interaction is constant in time and
not affected by the duration of the social interaction.

Instead, to build a model for human social interactions we have to consider a
reinforcement dynamics, in which the probability to start an interaction depends
on how long an individual has been non-interacting, and the probability to end an
interaction depends on the duration of the interaction itself. Generally, to model
the human social interactions, we can consider an agent-based system consisting of
N agents that can dynamically interact with each other and give rise to interacting
agent groups. In the following subsections we give more details on the dynamics of
the models. We denote by the state n of the agent, the number of agents in his/her
group (including itself). In particular we notice here that a state n D 1 for an agent,
denotes the fact that the agent is non-interacting. A reinforcement dynamics for such
system is defined in the following frame.
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Reinforcement dynamics in temporal social networks
The longer an agent is interacting in a group the smaller is the probability that
he/she will leave the group.
The longer an agent is non-interacting the smaller is the probability that he/she
will form or join a new group.
The probability that an agent i change his/her state (value of n) is given by

fn.t; ti / D h.t/

.� C 1/ˇ (2)

where � WD .t � ti /=N , N is the total number of agents in the model and ti
is the last time the agent i has changed his/her state, and ˇ is a parameter of
the model. The reinforcement mechanism is satisfied by any function fn.t; ti /
that is decreasing with � but social-interaction data currently available are
reproduced only for this particular choice fn.t; ti /.

The function h.t/ only depends on the actual time in which the decision is made.
This function is able to modulate the activity during the day and throughout the
weekly rhythms. For the modelling of the interaction data we will first assume that
the function h.t/ is a constant in time. Moreover in the following subsections we
will show that in order to obtain power-law distribution of duration of contacts and
non-interaction times (as it is observed in face-to-face interaction data) we have to
take ˇ D 1 while in order to obtain Weibull distribution of duration of contacts
we have to take ˇ < 1. Therefore, summarizing here the results of the following
two sections, we can conclude with the following statement for the adaptability of
human social interactions.

The adaptability of human social interactions
The adaptability of human social interactions to technology can be seen as an
effective way to modulate the parameter ˇ in (2) parametrizing the probability
to start or to end the social interactions.

3.1 Model of Face-to-Face Interactions

Here we recall the model of face-to-face interactions presented in [35, 36] and
we delineate the main characteristics and outcomes. A simple stochastic dynamics
is imposed to the agent-based system in order to model face-to-face interactions.
Starting from given initial conditions, the dynamics of face-to-face interactions at
each time step t is implemented as the following algorithm.
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1. An agent i is chosen randomly.
2. The agent i updates his/her state ni D n with probability fn.t; ti /.

If the state ni is updated, the subsequent action of the agent proceeds with the
following rules.

(i) If the agent i is non-interacting (ni D 1), he/she starts an interaction
with another non-interacting agent j chosen with probability proportional to
f1.t; tj /. Therefore the coordination number of the agent i and of the agent j
are updated (ni ! 2 and nj ! 2).

(ii) If the agent i is interacting in a group (ni D n > 1), with probability 

the agent leaves the group and with probability 1 � 
 he/she introduces an
non-interacting agent to the group. If the agent i leaves the group, his/her
coordination number is updated (ni ! 1) and also the coordination numbers
of all the agents in the original group are updated (nr ! n � 1, where r
represent a generic agent in the original group). On the contrary, if the agent
i introduces another isolated agent j to the group, the agent j is chosen with
probability proportional to f1.t; tj / and the coordination numbers of all the
interacting agents are updated (ni ! n C 1, nj ! n C 1 and nr ! n C 1
where r represents a generic agent in the group).

3. Time t is updated as t ! t C 1=N (initially t D 0). The algorithm is repeated
from (1) until t D Tmax.

We have taken in the reinforcement dynamics with parameter ˇ D 1 such that

fn.t; t
0/ D bn

1C .t � t 0/=N : (3)

In (3), for simplicity, we take bn D b2 for every n 
 2, indicating the fact the
interacting agents change their state independently on the coordination number n.

We note that in this model we assume that everybody can interact with everybody
so that the underline network model is fully connected. This seems to be a very
reasonable assumption if we want to model face-to-face interactions in small confer-
ences, which are venues designed to stimulate interactions between the participants.
Nevertheless the model can be easily modified by embedding the agents in a social
network so that interactions occur only between social acquaintances.

In the following we review the mean-field solution to this model. For the detailed
description of the solution of the outline non-equilibrium dynamics the interest
reader can see [35, 36]. We denote by Nn.t; t 0/ the number of agents interacting
with n D 0; 1; : : : ; N � 1 agents at time t , who have not changed state since time t 0.
In the mean field approximation, the evolution equations for Nn.t; t 0/ are given by

@N1.t; t
0/

@t
D �2N1.t; t

0/
N

f1.t � t 0/� .1 � 
/�.t/N1.t; t
0/

N
f1.t � t 0/C

X

i>1


i;2.t/ıtt0
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@N2.t; t
0/

@t
D �2N2.t; t

0/
N

f2.t � t 0/C Œ
1;2.t/C 
3;2.t/�ıtt0

@Nn.t; t
0/

@t
D �nNn.t; t

0/
N

fn.t � t 0/C Œ
n�1;n.t/C 
nC1;n.t/C 
1;n.t/�ıtt0 ; n > 2: (4)

In these equations, the parameter �.t/ indicates the rate at which isolated nodes
are introduced by another agent in already existing groups of interacting agents.
Moreover, 
mn.t/ indicates the transition rate at which agents change its state from
m to n (i.e.m! n) at time t . In the mean-field approximation the value of �.t/ can
be expressed in terms of Nn.t; t 0/ as

�.t/ D
P

n>1

Pt
t 0D1 Nn.t; t 0/fn.t � t 0/Pt

t 0D1 N1.t; t 0/f1.t � t 0/
: (5)

Assuming that asymptotically in time �.t/ converges to a time independent variable,
i.e. limt!1 �.t/ D O�, the solution to the rate equations (4) in the large time limit is
given by

N1.t; t
0/ D N1.t 0; t 0/

�
1C t � t 0

N

��b1Œ2C.1�
/O��

N2.t; t
0/ D N2.t 0; t 0/

�
1C t � t 0

N

��2b2
(6)

Nn.t; t
0/ D Nn.t 0; t 0/

�
1C t � t 0

N

��nb2
for n > 2;

with

N1.t
0; t 0/ D

X

n>1


n;1.t
0/

N2.t
0; t 0/ D 
1;2.t 0/C 
3;2.t 0/ (7)

Nn.t
0; t 0/ D 
n�1;n.t 0/C 
nC1;n.t 0/C 
0;n.t 0/ for n > 2:

We denote by Pn.�/ the distribution of duration of different coordination number
n which satisfies the relation

Pn.�/ D
Z t��

t 0D0
fn.t � t 0/N.t; t 0/dt0: (8)

and using (3) and (6) we find that Pn.�/ simply satisfy

P1.�/ / .1C �/�b1Œ2C.1�
/O���1
Pn.�/ / .1C �/�nb2�1: (9)
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Fig. 6 Phase diagram of arbitrary state number n: the red area indicates the regime where a large
group is formed and the solution is divergent. The blue area indicates the non-stationary regime.
The white area indicates the stationary regime

As shown in Fig. 5, the analytic prediction (9) is in good agreement with the
computer simulation.

Despite the simplicity of this model, the non-equilibrium dynamics of this system
is characterized by a non trivial phase diagram. The phase-diagram of the model is
summarized in Fig. 6. We can distinguish between three phases:

• Region I—the stationary region: b2 > 0:5, b1 > .2
�1/=.3
�3/ and 
 > 0:5—
This region corresponds to the white area in Fig. 6. The region is stationary and
the transition rates between different states are constant.

• Region II—the non-stationary region: b2 < 0:5 or b1 > .2
 � 1/=.3
 � 3/, and

 > 0:5—This region corresponds to the blue area in Fig. 6. The region is non-
stationary and the transition rates between different states are decaying with time
as power-law.

• Region III—formation of a big group: 
 < 0:5—In this region there is an
instability for the formation of a large group of size O.N /.

In both regions I and region II the distribution of the duration of groups of size
n follows a power-law distribution with an exponent which grows with the group
size n. This fact is well reproduced in the face-to-face data [36] and implies the
following principle on the stability of groups in face-to-face interactions.
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Stability of groups in face-to-face interactions
In face-to-face interactions, groups of larger size are less stable than groups
of smaller size. In fact the stability of a group depends on the independent
decisions of the n agents in the group to remain in contact.

3.2 Model of Phone-Call Communication

To model cell-phone communication, we consider once again a system of N agents
representing the mobile phone users. Moreover, we introduce a static weighted
network G, of which the nodes are the agents in the system, the edges represent the
social ties between the agents, such as friendships, collaborations or acquaintances,
and the weights of the edges indicate the strengths of the social ties. Therefore the
interactions between agents can only take place along the network G (an agent can
only interact with his/her neighbors on the network G). Here we propose a model
for mobile-phone communication constructed with the use of the reinforcement
dynamic mechanism. This model shares significant similarities with the previously
discussed model for face-to-face interactions, but has two major differences. Firstly,
only pairwise interactions are allowed in the case of cell-phone communication.
Therefore, the state n of an agent only takes the values of either 1 (non-interacting)
or 2 (interacting). Secondly, the probability that an agent ends his/her interaction
depends on the weight of network G. The dynamics of cell-phone communication
at each time step t is then implemented as the following algorithm.

1. An agent i is chosen randomly at time t .
2. The subsequent action of agent i depends on his/her current state (i.e. ni ):

(i) If ni D 1, he/she starts an interaction with one of his/her non-interacting
neighbors j of G with probability f1.ti ; t/ where ti denotes the last time
at which agent i has changed his/her state. If the interaction is started,
agent j is chosen randomly with probability proportional to f1.tj ; t/ and the
coordination numbers of agent i and j are then updated (ni ! 2 and nj ! 2).

(ii) If ni D 2, he/she ends his/her current interaction with probability f2.ti ; t jwij/

where wij is the weight of the edge between i and the neighbor j that is
interacting with i . If the interaction is ended, the coordination numbers of
agent i and j are then updated (ni ! 1 and nj ! 1).

3. Time t is updated as t ! t C 1=N (initially t D 0). The algorithm is repeated
from (1) until t D Tmax.

Here we take the probabilities f1.t; t 0/; f2.t; t 0jw/ according to the following
functional dependence
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f1.t; t
0/ D f1.�/ D b1

.1C �/ˇ

f2.t; t
0jw/ D f2.� jw/ D b2g.w/

.1C �/ˇ (10)

where the parameters are chosen in the range b1 > 0, b2 > 0, 0 � ˇ � 1, g.w/ is a
positive decreasing function of its argument, and � is given by � D .t � t 0/=N .

In order to solve the model analytically, we assume the quenched network G
to be annealed and uncorrelated. Here we outline the main result of this approach
and we suggest for the interested reader to look at papers [41, 42] for the details of
the calculations. Therefore we assume that the network is rewired while the degree
distribution p.k/ and the weight distribution p.w/ remain constant. We denote by
Nk
1 .t; t

0/ the number of non-interacting agents with degree k at time t who have not

changed their state since time t 0. Similarly we denote by Nk;k0;w
2 .t; t 0/ the number

of interacting agent pairs (with degree respectively k and k0 and weight of the
edge w) at time t who have not changed their states since time t 0. In the annealed
approximation the probability that an agent with degree k is called by another agent
is proportional to its degree. Therefore the evolution equations of the model are
given by

@Nk
1 .t; t

0/
@t

D �N
k
1 .t; t

0/
N

f1.t � t 0/� ckN
k
1 .t; t

0/
N

f1.t � t 0/C 
k21.t/ıtt0

@N
k;k0;w
2 .t; t 0/
@t

D �2N
k;k0;w
2 .t; t 0/
N

f2.t � t 0jw/C 
k;k0;w
12 .t/ıtt0 (11)

where the constant c is given by

c D
P

k0

R t
0

dt0Nk0

1 .t; t
0/f1.t � t 0/P

k0 k0
R t
0

dt0Nk0

1 .t; t
0/f1.t � t 0/

: (12)

In (11) the rates 
pq.t/ indicate the average number of agents changing from state
p D 1; 2 to state q D 1; 2 at time t . The solution of the dynamics must of course
satisfy the conservation equation

Z
dt0
�
Nk
1 .t; t

0/C
X

k0;w

Nk;k0;w
2 .t; t 0/

� D Np.k/: (13)

In the following we will denote byPk
1 .t; t

0/ the probability distribution that an agent
with degree k is non-interacting in the period between time t 0 and time t and we will
denote by P w

2 .t; t
0/ the probability that an interaction of weight w is lasting from

time t 0 to time t which satisfy
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Pk
1 .t; t

0/ D .1C ck/f1.t; t 0/N k
1 .t; t

0/

P w
2 .t; t

0/ D 2f2.t; t 0jw/
X

k;k0

N
k;k0;w
2 .t; t 0/: (14)

As a function of the value of the parameter of the model we found different
distribution of duration of contacts and non-interaction times.

• Case 0 < ˇ < 1. The system allows always for a stationary solution with
Nk
1 .t; t

0/ D Nk
1 .�/ and Nk;k0;w

2 .t; t 0/ D N
k;k0;w
2 .�/. The distribution of duration

of non-interaction times Pk
1 .�/ for agents of degree k in the network and the

distribution of interaction times P w
2 .�/ for links of weight w is given by

Pk
1 .�/ /

b1.1C ck/
.1C �/ˇ e

� b1.1Cck/

1�ˇ .1C�/1�ˇ

P w
2 .�/ /

2b2g.w/

.1C �/ˇ e
� 2b2g.w/

1�ˇ .1C�/1�ˇ
: (15)

Rescaling (15), we obtain the Weibull distribution which is in good agreement
with the results observed in mobile-phone datasets.

• Case ˇ D 1. Another interesting limiting case of the mobile-phone communi-
cation model is the case ˇ D 1 such that f k

1 .�/ / .1 C �/�1 and f w
2 .� jw/ /

.1 C �/�1. In this case the model is much similar to the model used to mimic
face-to-face interactions described in the previous subsection [35, 36], but the
interactions are binary and they occur on a weighted network. In this case we get
the solution

Nk
1 .�/ D N
k21.1C �/�b1.1Cck/

N k;k0;w
2 .�/ D N
k;k0;w

12 .1C �/�2b2g.w/: (16)

and consequently the distributions of duration of given states (14) are given by

Pk
1 .�/ / 
k21.1C �/�b1.1Cck/�1

P w
2 .�/ / 
k;k

0 ;w
12 .1C �/�2b2g.w/�1: (17)

The probability distributions are power-laws. This result remains valid for every
value of the parameters b1; b2; g.w/ nevertheless the stationary condition is only
valid for

b1.1C ck/ > 1
2b2g.w/ > 1: (18)
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Indeed this condition ensures that the self-consistent constraints (12), and the
conservation law equation (13) have a stationary solution.

• Case ˇ D 0. This is the case in which the process described by the model is a
Poisson process and there is no reinforcement dynamics in the system. Therefore
we find that the distribution of durations are exponentially distributed. In fact
for ˇ D 0 the functions f1.�/ and f2.� jw/ given by (10) reduce to constants,
therefore the process of creation of an interaction is a Poisson process. In this case
the social interactions do not follow the reinforcement dynamics. The solution
that we get for the number of non interacting agents of degree k, Nk

1 .�/ and the

number of interacting pairs Nk;k0w
2 .�/ is given by

Nk
1 .�/ D N
k21e�b1.1Cck/�

N
k;k0;w
2 .�/ D N
k;k0;w

12 e�2b2g.w/� : (19)

Consequently the distributions of duration of given states (14) are given by

Pk
1 .�/ / e�b1.1Cck/�
P w
2 .�/ / e�2b2g.w/� : (20)

Therefore the probability distributions Pk
1 .�/ and P w

2 .�/ are exponentials as
expected in a Poisson process.

4 Entropy of Temporal Social Networks

In this section we introduce the entropy of temporal social networks as a measure of
information encoded in their dynamics. We can assume that the following stochastic
dynamics takes place in the network: according to this dynamics at each time step
t , different interacting groups can be formed and can be dissolved giving rise to the
temporal social networks. The agents are embedded in a social networkG such that
interaction can occur only by acquaintances between first neighbors of the network
G. This is a good approximation if we want to model social interactions on the fast
time scale. In the case of a small conference, where each participant is likely to
discuss with any other participant we can consider a fully connected network as the
underlying networkG of social interactions. In the networkG each set of interacting
agents can be seen as a connected subgraph of G , as shown in Fig. 7. We use an
indicator function gi1;i2;:::;in .t/ to denote, at time t , the maximal set i1, i2,. . . , in of
interacting agents in a group. If .i1i2; : : : ; in/ is the maximal set of interacting agents
in a group, we let gi1;i2;:::;in .t/ D 1 otherwise we put gi1;i2;:::;in .t/ D 0. Therefore at
any given time the following relation is satisfied,
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Fig. 7 The dynamical social networks are composed by different dynamically changing groups
of interacting agents. (a) Only groups of size one or two are allowed as in the phone-call
communication. (b) Groups of any size are allowed as in the face-to-face interactions

X

GD.i;i2;:::;in/ji2G
gi;i2;:::;in .t/ D 1: (21)

where G is an arbitrary connected subgraph of G. Then we denote by
St Dfgi1;i2;:::;in .t 0/8t 0 < tg the history of the dynamical social networks, and
p.gi;i2;:::;in .t/ D 1jSt / the probability that gi1;i2;:::;in .t/ D 1 given the history St .
Therefore the likelihood that at time t the dynamical social networks has a group
configuration gi1;i2;:::;in .t/ is given by

L D
Y

G

p.gi1;i2;:::;in .t/ D 1jSt /
gi1;i2;:::;in .t /: (22)

We denote the entropy of the dynamical networks as S D �hlog L ijSt

indicating the logarithm of the typical number of all possible group configurations
at time t which can be explicitly written as

S D �
X

G

p.gi;i2;:::;in .t/ D 1jSt / logp.gi;i2;:::;in .t/ D 1jSt /: (23)

The value of the entropy can be interpreted as following: if the entropy is
larger, the dynamical network is less predictable, and several possible dynamic
configurations of groups are expected in the system at time t . On the other hand,
a smaller entropy indicates a smaller number of possible future configuration and a
temporal network state which is more predictable.

4.1 Entropy of Phone-Call Communication

In this subsection we discuss the evaluation of the entropy of phone-call commu-
nication. For phone-call communication, we only allow pairwise interaction in the
system such that the product in (22) is only taken over all single nodes and edges of
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the quenched network G which yields

L D
Y

i

p.gi .t/ D 1jSt /
gi .t/

Y

ij jaijD1
p.gij.t/ D 1jSt /

gij.t/ (24)

with
gi .t/C

X

j

aijgij.t/ D 1: (25)

where aij is the adjacency matrix of G. The entropy then takes a simple form

S D �
X

i

p.gi .t/ D 1jSt / logp.gi .t/ D 1jSt /

�
X

ij

aijp.gij.t/ D 1jSt / logp.gij.t/ D 1jSt /: (26)

4.2 Analysis of the Entropy of a Large Dataset of Mobile
Phone Communication

In this subsection we use the entropy of temporal social networks to analyze the
information encoded in a major European mobile service provider, making use of
the same dataset that we have used to measure the distribution of call duration in
Sect. 2. Here we evaluate the entropy of the temporal networks formed by the phone-
call communication in a typical week-day in order to study how the entropy of
temporal social networks is affected by circadian rhythms of human behavior.

For the evaluation of the entropy of temporal social networks we consider a
subset of the large dataset of mobile-phone communication. We selected 562;337
users who executed at least one call a day during a weeklong period. We denote
by fn.t; t 0/ the transition probability that an agent in state n (n D 1; 2/ changes its
state at time t given that he/she has been in his/her current state for a duration
� D t � t 0. The probability fn.t; t 0/ can be estimated directly from the data.
Therefore, we evaluate the entropy in a typical weekday of the dataset by using
the transition probabilities fn.t; t 0/ and the definition of entropy of temporal social
networks (readers should refer to the supplementary material of [41] for the details).
In Fig. 8 we show the resulting evaluation of entropy in a typical day of our phone-
call communication dataset. The entropy of the temporal social network is plotted
as a function of time during one typical day. The mentioned figure shows evidence
that the entropy of temporal social networks changes significantly during the day
reflecting the circadian rhythms of human behavior.
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Fig. 9 Entropy S of social dynamical network model of pairwise communication normalized with
the entropy SR of a null model in which the expected average duration of phone-calls is the same
but the distribution of duration of phone-calls and non-interaction time are Poisson distributed.
The network size is N D 2;000 the degree distribution of the network is exponential with average
hki D 6, the weight distribution is p.w/ D Cw�2 and g.w/ is taken to be g.w/ D b2=w with
b2 D 0:05. The value of S=SR is depending on the two parameters ˇ; b1. For every value of b1 the
normalized entropy is smaller for ˇ! 1. Figure from [41]

4.3 Entropy Modulated by the Adaptability of Human Behavior

The adaptability of human behavior is evident when comparing the distribution of
the duration of phone-calls with the duration of face-to-face interactions. In the
framework of the model for mobile-phone interactions described in Sect. 3.2, this
adaptability, can be understood, as a possibility to change the exponent ˇ in Eq. (2)
and Eq. (10) regulating the duration of social interactions.

Changes in the parameter ˇ correspond to different values entropy of the
dynamical social networks. Therefore, by modulating the exponent ˇ, the human
behavior is able to modulate the information encoded in temporal social networks.
In order to show the effect on entropy of a variation of the exponent ˇ in the
dynamics of social interaction networks, we considered the entropy corresponding
to the model described in Sect. 3.2 as a function of the parameters ˇ and b1
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modulating the probabilities f1.t; t 0/; f2.t; t 0jw/ (10). In Fig. 9 we report the entropy
S of the proposed model a function of ˇ and b1. The entropy S , given by (26),
is calculated using the annealed approximation for the solution of the model and
assuming the large network limit. In the calculation of the entropy S we have
taken a network of size N D 2;000 with exponential degree distribution of average
degree hki D 6, weight distribution P.w/ D Cw�2 and function g.w/ D 1=w
and b2 D 0:05. Our aim in Fig. 9 is to show only the effects on the entropy due
to the different distributions of duration of contacts and non-interaction periods.
Therefore we have normalized the entropy S with the entropy SR of a null model
of social interactions in which the duration of groups are Poisson distributed but
the average time of interaction and non-interaction time are the same as in the
model of cell-phone communication (readers should refer to the supplementary
material of [41] for more details). From Fig. 9 we observe that if we keep b1
constant, the ratio S=SR is a decreasing function of the parameter ˇ. This indicates
that the broader is the distribution of probability of duration of contacts, the
higher is the information encoded in the dynamics of the network. Therefore the
heterogeneity in the distribution of duration of contacts and no-interaction periods
implies higher level of information in the social network. The human adaptive
behavior by changing the exponent ˇ in face-to-face interactions and mobile phone
communication effectively changes the entropy of the dynamical network.

5 Conclusions

The goal of network science is to model, characterize, and predict the behavior
of complex networks. Here, in this chapter, we have delineated a first step in the
characterization of the information encoded in temporal social networks. In partic-
ular we have focused on modelling phenomenologically social interactions on the
fast time scale, such a face-to-face interactions and mobile phone communication
activity. Moreover, we have defined the entropy of dynamical social networks,
which is able to quantify the information present in social network dynamics. We
have found that human social interactions are bursty and adaptive. Indeed, the
duration of social contacts can be modulated by the adaptive behavior of humans:
while in face-to-face interactions dataset a power-law distribution of duration of
contacts has been observed, we have found, from the analysis of a large dataset of
mobile-phone communication, that mobile-phone calls are distributed according to
a Weibull distribution. We have modeled this adaptive behavior by assuming that the
dynamics underlying the formation of social contacts implements a reinforcement
dynamics according to which the longer an agent has been in a state (interacting
or non-interacting) the less likely it is that he will change his/her state. We have
used the entropy of dynamical social networks to evaluate the information present
in the temporal network of mobile-phone communication, during a typical weekday
of activity, showing that the information content encoded in the dynamics of the
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network changes during a typical day. Moreover, we have compared the entropy
in a social network with the duration of contacts following a Weibull distribution,
and with the duration of contacts following a power-law in the framework of the
stochastic model proposed for mobile-phone communication. We have found that a
modulation of the statistics of duration of contacts strongly modifies the information
contents present in the dynamics of temporal networks. Finally, we conclude that the
duration of social contacts in humans has a distribution that strongly deviates from
an exponential. Moreover, the data show that human behavior is able to modify the
information encoded in social networks dynamics during the day and when facing a
new technology such as the mobile-phone communication technology.
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40. Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabási, A.-L., Saramäki, J.: Small
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Temporal Motifs

Lauri Kovanen, Márton Karsai, Kimmo Kaski, János Kertész,
and Jari Saramäki

Abstract We discuss the temporal motifs approach that is aimed at detecting
significant, intrinsically dynamic, mesoscopic structures and patterns in temporal
networks, which cannot be seen in static or aggregated networks. Such patterns
involve several nodes and their timed contacts. The approach consists of three
phases: (1) identifying temporal subgraphs, (2) assigning the subgraphs to equiva-
lence classes, and (3) assessing the relevance, surprise and significance of class-wise
counts against some reference. We discuss these phases in detail, and apply the
presented method to a temporal network of mobile telephone calls.

1 Introduction

The key target of the temporal network approach is to study patterns that cannot
be seen if the networks in question are made static by e.g. aggregating over link
activation sequences. Sometimes such patterns are of interest because they have
consequences on dynamical processes at the network level (e.g. the effects of
burstiness on spreading, discussed elsewhere in this book). In general, the patterns
are of interest since they may help us understand how the system functions.
Temporal motifs are a tool for studying the mesoscale structure of temporal
networks, where mesoscale refers both to topology and time. In more concrete
terms, we want to study sequences of node contacts that follow each other within
a short time interval, detect patterns in such sequences, and group them into

L. Kovanen �M. Karsai � K. Kaski � J. Kertész � J. Saramäki (�)
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equivalence classes. Finally, we want to study how often patterns in each class
occur and assess their statistical significance.

The concept of network motifs was originally introduced for static networks
by Milo et al. [1] in 2002. Before addressing the time dimension, it is useful to
discuss the reasoning behind static networks motifs. Originally, network motifs
were defined as classes of isomorphic induced subgraphs with significantly large
cardinality, i.e., the number of isomorphic subgraphs is higher in the data than in
a reference system, usually the configuration model.1 With this definition, it turned
out that similar networks had a similar set of network motifs, suggesting that motifs
should have to do with the functioning of the networks and could be used to define
universality classes of networks.

Since their introduction, network motifs have become a widely applied tool,
especially in the study of protein interaction networks [2]. However, it has also
become obvious that it is not as straightforward to consider motifs as the “building
blocks” of complex networks as suggested in the title of [1], or group networks
according to their motif constitution as was done in [3]. In fact, any motif analysis
depends intimately on the choice of the reference, as pointed out in [4]. Even though
it has become customary to take the configuration model as reference, there has been
only a little discussion on why one should fix the degree distribution, but not for
example the clustering, assortativity, modularity, or any other network property that
is well-known to exist in real networks but not in random (Erdős-Rényi) networks.
The problem of finding a reference to compare with will also haunt us with temporal
motifs.

This article is based on the concepts introduced in [5]; somewhat similar ideas
were also presented in [6]. The term temporal motif itself occurs more often in
the complex networks literature because it has been used to label some different
concepts. For example in [7] the term refers to sequences of events in consecutive
time windows, commonly known as time-respecting paths [8]. The term dynamic
motif is also commonly used, but the concepts it refers to vary just as much.
As an example, in [9] “dynamic motif” refers to analyzing network motifs in
static networks obtained by aggregating data in consecutive time windows, and
[10] studies a dynamic process on a network where edges are either active or
not and defines “dynamic motif” as a network motif if all of its edges are active
simultaneously at least once during the process.

Carrying out an analysis with temporal motifs consists of three independent
steps. The first step is to define what we are looking for: temporal subgraphs.
In Sect. 2 we show how the concept of subgraph can be generalized to temporal
networks, and discuss the algorithm for identifying temporal subgraphs in large data
sets. After detecting temporal subgraphs, the second step is to define an equivalence
relation that can be used to divide the temporal subgraphs into equivalence classes,
each corresponding to a temporal motif (Sect. 3). This equivalence is analogous to

1The configuration model is a random network with the same degree sequence as the empirical
network.
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using graph isomorphism to define static motifs. We also present an implementation
for carrying out this step and discuss its limitations and possible extensions.

The two steps above allow us to count the number of motifs in a data set. The
last step of the analysis is interpreting these counts, and here we face the same
problem of finding a reference system that has been troublesome in the static motif
analysis. Instead of providing a single reference—the temporal equivalent of the
configuration model—we argue that the choice of reference depends on the goal of
the study. We also present some cases where meaningful results can be obtained
even without a reference.

We introduce temporal motifs in the context of communication networks where
each node can communicate with at most one other node at a time. This constraints
makes it somewhat easier to define temporal subgraphs, but we also discuss how
this it could be relaxed and go through the issues that arise if this is done.

2 Temporal Subgraphs

Just like a network motif represents an equivalence class of subgraphs, a temporal
motif represents an equivalence class of temporal subgraphs. Both “subgraph” and
“equivalence class” can be easily defined for static graphs: usually one studies
induced, connected subgraphs2 and defines equivalence by graph isomorphism.3

In temporal networks neither of these two concepts has a natural or commonly
accepted definition. In fact, there are multiple possible generalizations of the
concepts of “subgraph” and “isomorphism” to temporal networks.

While some choices for these concepts are surely better than others, we believe
that their definitions should ultimately depend on the goal of the analysis. Temporal
subgraphs are the objects that we wish to count, and the fact that there are many
possible choices for defining subgraphs in temporal networks is not necessarily a
bad thing; rather, it allows us to customize the definition to the problem at hand
much more freely than is possible in static networks.

There is also a computational constraint for the definition: we need to be able to
count the temporal subgraphs in the data, preferably in linear time with respect to
the number of events and nodes. A practical requirement for counting any objects in
linear time in arbitrary data is that there are at most a linear number of the objects to
count. Definitions that give an exponential number of subgraphs are computationally
unfeasible. This constraint is equally relevant when we try to make sense of the
results. Our goal is to make conclusions based on the number of subgraphs in the

2A graph G D .V; L/ is connected iff there is a path between any two nodes, or equivalently when
jLj � 2, iff there is a path between any two edges. A subgraph G0 	 G is induced if all nodes
vi ; vj 2 G0 that are adjacent in G are also adjacent in G0.
3Two graphs G1 and G2 are isomorphic if there is a bijection � W V1! V2 of node labels such that
�.L1/ D L2.
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a b c

d e f g

Fig. 1 (a) A directed temporal network GT D .V; E/ with V D fa; b; c; dg and jEj D 4. Each
event consists of source node vs , destination node vd , starting time t and duration ı. (b) A graphical
representation of GT . (c) Time differences between adjacent event pairs. Assuming i < j , the
value at .ei ; ej / is tj � .ti C ıi /. (d–g) All two-event temporal subgraphs in the data assuming
�t D 10. The subgraph in (g) is not a valid subgraph because it skips event e2 that for node a
takes place between e1 and e3. Other subgraphs are valid

data, and any definition that gives a super-linear number of subgraphs is likely to
give misleading, hard-to-interpret results.

The requirement that subgraphs should be connected seems rather intuitive; in
fact, the number of unconnected subgraphs becomes easily so high that counting
them is out of the question. In a temporal network we should also include time when
defining connectedness between events. We say that two events are �t-adjacent
if they have at least one node in common and if the time difference between the
events is no more than�t , measured from the end of the first event to the beginning
of the second. This definition of adjacency immediately leads to a definition of
connectivity: two events are �t-connected if there is a sequence of �t-adjacent
events between them. A connected temporal subgraph is then a set of events where
each pair of events is �t-connected. Figure 1 illustrates these three concepts.

This definition has one small caveat. Consider a case where one node has n
events that all take place with a time window �t . Because any set of k < n

events is �t-connected, this data would contain
�
n

k

	
connected temporal subgraphs

with k events—a super-linear number. We therefore add a requirement that for each
node in the subgraph the events where that node is involved must be consecutive.
Subgraphs that satisfy this condition are called valid temporal subgraphs. In the
above example this reduces the number of k-event subgraphs to n � k C 1. This
additional requirement is analogous to only counting induced subgraphs in the static
case instead of all possible subgraphs. That choice also reduces the number of
subgraphs and ensures they always include all relevant edges for the included nodes.

Note that valid temporal subgraphs do not necessarily contain all events that
are �t-connected to the included events. When this is the case, we call the result
a maximal temporal subgraph. All other subgraphs involving any of the events in
question are by definition completely contained inside a single maximal subgraph.

The algorithm for detecting all temporal subgraphs presented in [5] works by
first finding all maximal subgraphs and then all other subgraphs by going through
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Algorithm 1 FINDTEMPSUBGRAPHS returns all temporal subgraphs in dataE with
up to nmax events that have e0 as the earliest event. Unlike the algorithm given in [5]
this one does not require constructing maximal subgraphs. N.e/ is the set of next
and previous events of nodes in e (thus jN.e/j � 4), and t0 denotes the starting time
of e0. V� is the set of excluded events; note that this set is updated, not replaced, on
line 10. LC is a list of potential events to add. Each element is a pair .�i ; ei / where
�i 
 0 is the shortest time difference between ei and any other adjacent event
already in the subgraph S ; if �t < maxf�ig, S is no longer connected. This can
be used to efficiently identify temporal subgraphs for different values of �t . Note
that the subgraphs returned by FINDTEMPSUBGRAPHS are not necessarily valid;
this must be checked separately.
1: function FINDTEMPSUBGRAPHS(E ,nmax, e0)
2: S  fe0g
3: V� fe0g
4: LC  Œ.�0;i ; ei / j ei 2 N.e0/; 0 
 �0;i 
 �t�
5: return fe0g[ SUBFIND(E , nmax, S , V�, LC, t0)

6: function SUBFIND(E , nmax, S , V�, LC, t0)
7: Sall ;
8: for .�i ; ei / in LC ordered by �i do
9: if ei 62 V� then

10: V� V� [ fei g
11: S� S [ feig
12: Sall Sall [ fS�g
13: if jS�j < nmax then
14: NC  fej 2 N.ei /nV� j tj � t0; j�i;j j 
 �tg
15: L�

C
 Œ.�j ; ej / 2 LC j �j > �i �C Œ.j�i;j j; ej / j ej 2 NC�

16: Sall Sall[ SUBFIND(E , nmax, S�, V�, L�

C
, t0)

17: return Sall

the subgraphs inside the maximal subgraphs. When �t is increased, the maximal
subgraphs become larger, and eventually a giant maximal subgraph typically
emerges that contains a significant fraction of all events. In this case, it may become
infeasible to detect temporal subgraphs by first detecting maximal subgraphs. Then,
Algorithm 1 is a good alternative, as it does not require the maximal subgraphs to be
identified explicitly. In addition, Algorithm 1 gives the critical time window size for
each subgraph; if �t is smaller than this critical value, the subgraph is no longer
�t-connected. This makes it possible to efficiently study how the number of
temporal motifs varies as a function of �t .

3 From Subgraphs to Temporal Motifs

The definition of temporal subgraph is not sufficient for defining motifs—we also
need to define an equivalence relation. With static motifs equivalence of subgraphs
is defined by graph isomorphism: two induced, connected subgraphs correspond
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to the same motif if they are identical after we disregard the identities of the nodes.
When defining temporal motifs we also start by discarding node identities. An event
sequence can be represented by a directed multigraph.4 Two temporal subgraphs
can correspond to the same motif only if their underlying directed multigraphs are
isomorphic. To define temporal motifs we also need to include the time dimension
in the equivalence relation. We could, for example, retain all temporal information.
In most cases, however, the resulting temporal motifs would be far too specific: two
event sets would be equivalent only if they have the same topology and the events
would occur at exactly the same time. For most types of temporal networks, such
as the call network discussed later, this makes no sense. Because of this, instead of
including exact times, we only retain information about the temporal order of the
events. Then, two temporal subgraphs are equivalent if they have the same topology
and their events occur in the same order.

In practice the motif corresponding to a temporal subgraph is identified by
mapping all information about the topology and the temporal order of events into a
directed colored graph, as shown in Fig. 2. In the simplest case, where nodes have no
attributes and the only attributes associated with events are their time and direction,
the mapping is done as follows: first, all nodes are given the same color (black circles
in Fig. 2). Then, for each event, an additional vertex of another color (open squares)
is inserted, and directed links are created from the source node to the event node, and
from the event node to the target node. At this stage, the colored graph is bipartite,
as there are only links between “real” nodes and event nodes. Finally, information
about the temporal order of events is included by adding directed links between
events in their order of occurrence, so that a directed link joins the first event node
to the second event node and so on. Having done this, we have transformed the
temporal subgraph into an unique colored directed graph.

In order to arrive at temporal motifs, we want to assign the colored directed
graphs that represent temporal subgraphs into classes. Solving the isomorphism of
such graphs is a non-trivial problem, but luckily this problem is common enough and
there are several good implementations: in fact, most popular algorithms for solving
graph isomorphism make use of colored nodes, that is, they solve isomorphism for
colored graphs .G; 
/ where 
 W V ! C defines the color c 2 C of each node. We
will cover the basic ideas for solving graph isomorphism in detail in the next section.

It is worth mentioning that the existence of such algorithms is very fortunate,
since we can add new layers of detail by adding new colors to the above mapping.
For example, we can use different colors to represent different node types, and then
distinguish motifs by the types of involved nodes. Furthermore, because of the way
the mapping is constructed, we can also distinguish between events of different
types. As an example, for mobile communication data, we could assign calls and text
messages a different color, or study how communication patterns differ by the time
of the day by coloring events according to their times (e.g. morning, day, evening,
and night events).

4Multigraphs are graphs where multiple edges between vertices are allowed.
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a b c d

Fig. 2 Identifying the motif for a temporal subgraph. (a) A valid temporal subgraph. (b) Insert an
additional vertex for each event (squares), making sure these vertices have a color not used by the
original nodes (the “color” of a node is denoted by its shape). The direction of events is denoted by
the two directed edges connecting the new vertex to the original nodes. If events are undirected we
replace these by bidirectional edges. (c) Information about the temporal order of events is included
by adding directed edges between the event vertices. The result is a directed, colored graph that
contains all information about the topology and temporal order of events. (d) A more compact
representation of the motif. The edges denote the direction of the events, and the numbers denote
their temporal order. Note that the numbers are always on the side of the arrow head; this way
reciprocated events can also be shown

a b c d

Fig. 3 Identifying the motif for a temporal subgraph when a node can have multiple simultaneous
events. In this case we need to retain information on the order of both the starting and ending times
of events. (a) A valid temporal subgraph. In this example we assume that e1 ends before e2 begins,
and e2 ends before e3 begins. (b) Insert three new vertices for each event and connect them with a
chain of directed edges denoting the direction of the event. Each of the three nodes has a different
color. The color of the central vertex can be used to denote the type of the event, while the other two
vertices denote the beginning and the end of the event and are assigned some other color. (c) Add
directed edges to denote the temporal order of the beginning and end of events. (d) In the compact
representation two numbers are now needed to represent the order of the starting and ending times
of events.

Furthermore, because we use directed edges to denote the temporal order of
events, we are not limited to representing the full order of events, but any partial
order can be used. For example, if we wish to study spreading dynamics, it is
possible to limit the temporal order of two events only if their mutual order is
relevant for spreading. The order of the events is relevant to spreading when
changing the order would either destroy existing time-respecting paths in the motif
or create new ones. This is achieved by placing a constraint for the mutual order
of two adjacent events (by adding an edge between event vertices in the graph of
Fig. 2c).

Finally, what if we wish to study a system where nodes can be simultaneously
involved in multiple events? Unlike the previous step of defining temporal sub-
graphs, the mapping step is easier to generalize to this case. As shown in Fig. 3,
we now need to add three vertices for each event.
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4 Isomorphism Detection and Canonical Graphs

As mentioned above, temporal motifs are identified by mapping temporal subgraphs
into directed colored graphs and then using existing algorithms, such as Bliss5

[11], to solve the isomorphism. In this section we describe the basic idea of how
such algorithms work.

Graph isomorphic is one of very few problems that have not been shown to be in
either P or NP-complete. Instead of directly solving the isomorphism of two graphs,
most algorithms solve a related problem of finding a canonical label C.G/ that
satisfies the condition C.G1/ D C.G2/ , G1 Š G2, where G1 Š G2 means
that the two graphs are isomorphic. Given a tool for finding canonical labels, it is
straightforward to identify isomorphic graphs.

In this sectionG D .V;L/ is a directed graph. We also assume that the nodes are
identified by integers from 1 to N , that is, V D f1; : : : ; N g. Let Sym.V / be the set
of all permutations of V . The image of x 2 V in � 2 Sym.V / is denoted by x� .
This notion is extended to sets so that for S � V we have S� D fx� j x 2 Sg, and
for graphs G� D .V;L�/ where L� D f.i� ; j � / j .i; j / 2 Lg. With this notation
G1 Š G2 if and only if there is a permutation � 2 Sym.V / such that G�

1 D G2.
To illustrate these ideas, consider the following simple method for calculating

canonical labels. Let A D Œaij � be the adjacency matrix of G and b.G/ D
a11 : : : a1na21 : : : ann the binary number obtained by concatenating its values row
by row. Now C.G/ D min�2Sym.V /fb.G�/g is a valid canonical label for graphs
with N nodes, as its value does not depend on the labeling of nodes. Unfortunately,
calculating C.G/ from this simple definition requires going through all nŠ permuta-
tions. It is possible to calculate canonical labels more efficiently than this. The idea
is that instead of going through all possible canonical labelings we only need to try
a subset of them as long as we ensure that the same subset is used for isomorphic
graphs.

A family of efficient algorithms are based on a backtrack search that alternates
between two phases: refinement and individualization. These algorithms are based
on Nauty6 [12], whose predecessor dates back to 1976. The implementation we are
using, Bliss, was published in 2007 but is to a large extent identical to Nauty.
Bliss uses more efficient data structures and includes improvements in pruning
unnecessary parts of the search tree, but the description of the algorithm given here
applies equally well to both Nauty and Bliss.

A central concept in the search is (ordered) partition 
 D .V1; : : : ; Vm/, an
ordered sequence of subsets of V , called cells, whose union is V . A cell is singular
if it has only one element, and a partition is discrete if all of its cells are singular.
A unit partition has only one cell. Partition 
1 is at least as fine as 
2, denoted by

1 
 
2, if 
2 can be obtained from 
1 by replacing neighboring cells by their union

5http://www.tcs.hut.fi/Software/bliss/
6http://cs.anu.edu.au/�bdm/nauty/

http://www.tcs.hut.fi/Software/bliss/
http://cs.anu.edu.au/~bdm/nauty/
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a b c

Fig. 4 Illustration of the backtrack search for calculating the canonical label for a graph. (a) The
undirected, uncolored graph G for which we calculate canonical labels. Initially, each node has
the same color, i.e. the partition is 
 D Œfa; b; c; dg�. (b) Refinement. 
 is the original ordered
partition for the uncolored graph. In the refined partition � all nodes of one color have the same
number of neighbors of each of the other colors. As an example, here the nodes fa; bg are now
of the same color (partition cells correspond to colors), and both have one neighbor of color fcg
and no neighbors of color fdg. (c) Individualization. We select one non-singular cell—in this case
the cell fa; bg is the only one—and create new partitions by splitting each node in turn. Here this
results in two discrete partitions, the leaves in the search tree. A leaf certificate C.G; 
; �i / is then
calculated for each leaf �i , and the leaf �i with C.G; 
; �i / < C.G; 
; �j / 8j ¤ i is selected as
the canonical label

zero or more times. If x 2 V is included in the i th cell of 
 , we write 
.x/ D i ;
in this way every discrete partition corresponds to a permutation N
 2 Sym.V /.
A colored graph is formally defined as pair .G; 
/, where 
.x/ is interpreted as the
color of node x. For an uncolored graph 
 is a unit partition.

Every node � in the backtrack search tree is an ordered partition. We illustrate the
search for the undirected, uncolored graph shown in Fig. 4a. Since the input graph
is uncolored, 
 D Œfa; b; c; d g�.

The search starts with the refinement phase. This phase takes .G; 
/ as input and
produces a partition � D R.G; 
/ 
 
 such that in the colored graph .G; �/ every
node of color i has the same number of neighbors of color j , for all i and j . For
the graph in Fig. 4, the partition � D Œfd g; fa; bg; fcg� satisfies this condition: node
d has no neighbors of color 1 or 2 and one neighbor of color 3, while nodes a and
b have one neighbor of color 1 (each other, that is), and one neighbor of color 3.

Note that this is not the only ordered partition that fulfills the given conditions; for
example Œfa; bg; fcg; fd g� would be equally valid. The crucial point is that however
R is implemented, it must not use any information about the node labels; to be
precise, R.G� ; 
� / D R.G; 
/� 8� 2 Sym.V /. This ensures that the same nodes
are produced for isomorphic graphs. The refinement algorithm used in both Nauty
and Bliss is described in [12].

The individualization phase takes .G; �/ as input, selects one non-singleton cell
Vi D S.G; �/ of �—again so that S.G�; �� / D S.G; �/� 8� 2 Sym.V /, which
can be achieved for example by selecting the first cell with the maximum size—
and produces child nodes by splitting this cell. The child nodes are partitions � D
ŒV1; : : : ; fvj g; Vinfvj g; : : : ; Vm� 8 vj 2 Vi . In the example of Fig. 4 there is only
one non-singleton cell after the initial refinement phase, and the splitting produces
two new partitions as shown in Fig. 4c.

Refinement and individualization are repeated for the partitions produced until
we get discrete partitions defining the leaf nodes in the tree. In Fig. 4 this happens
after applying each phase only once, but in the general case multiple steps are
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required. In each leaf node � we calculate a leaf certificate C.G; 
; �/ defined so
that it is independent of node labels in the original graph; for example .G N�; 
 N�/
fulfills this condition (see [11] for proof). Because we have been careful not to
use node labels during the construction of the tree, isomorphic graphs will produce
isomorphic search trees, and hence the same set of leaf certificates. Now it suffices
to pick one leaf certificate—say, the smallest one—to use as graph certificate.

This basic backtrack search already provides a significant improvement over the
naive method of going through all permutations. For the graph in Fig. 4a we only
need to compute leaf certificate for two permutations, instead of all 4Š D 24. This
is however only the basic idea of the search. For example, by selecting the leaf
certificate function cleverly it is possible to prune some subtrees early in the search.
Even more pruning can be achieved by making use of the automorphism of the input
graph.

For details of these and other improvements to the search we refer the reader
to [12] and [11]. The important point is that even though isomorphisms can not be
detected in polynomial time, the detection is very efficient in practice. Furthermore,
because colored graphs are used internally, there is little extra cost in solving the
isomorphism for colored graphs.

5 Analyzing Motif Counts

The concepts and algorithms presented so far allow counting temporal motifs in data
sets with up to 109 events. Unfortunately, the motif counts alone do not reveal that
much about the data. If there is no reference to compare with, it is in most cases
impossible to say when the count value is high and when it is low. As with static
motifs, a typical choice of reference is a null model, and we will therefore discuss
null models below, in Sect. 5.2.

We argue that a desirable feature of any temporal motif analysis is that the
results are independent of the aggregated network. There are two reasons for this.
The first is that the static differences—those observable in the aggregate network,
like the number of different static motifs, or which node types are involved, the
number of nodes of each type and their average activity—easily overpower temporal
differences. For example, if there is twice the number of nodes of typeA than of type
B , it is not too surprising if temporal motifs with type A nodes are more common.
Social networks also exhibit preferred connectivity by various attributes. A typical
example is homophily; similar people are more likely to be friends. If there are
more edges between similar than dissimilar nodes, we would expect temporal motifs
between similar nodes to be more common.

The second reason for factoring out the effect of the aggregate network is that
differences in it are much easier to study, and in many cases already relatively well
known. For example, aggregated networks obtained from mobile phone data sets
have been studied extensively. If we devise our null model such that the results are
independent of the aggregated network, we also get an independent description of



Temporal Motifs 129

3

1

2

n = 188 633

1

3

2

n = 110 431

1

3

2

n = 107 535

3

2

1

n = 104 913

2
3

1

n = 73 087

2

3

1

n = 52 231

n

Fig. 5 Six motifs with the same underlying graph but different order of events. The bars show
the total count for each of the motifs with �t D 10 min. In the aggregate network it would not
be possible to differentiate between the six motifs, but the large factor (3.6) between the most and
least common case shows that there is a relevant difference to be made

the data, in addition to results obtained with the aggregated network. In other word,
we can see patterns that are not revealed by the aggregate.

In the following sections we present example results using a mobile phone data
set with 	 108 events and 	 106 nodes. The nodes correspond to customers of
a single European mobile phone operator and the events correspond to mobile
phone calls between them during a period of several months. The data set also
contains meta data about the customers, such as gender and age, that can be used to
distinguish different node types.

We use �t D 10min in all examples. This provides ample time for making a
new call after ending the previous one without including too many coincidentally
simultaneous calls. A full data analysis would naturally benefit from studying how
sensitive the results are to changes in the time window size.

5.1 Direct Comparisons

Before considering null models it is worthwhile to note that some purely temporal
results (i.e. results that are independent of the aggregate network) can be obtained
even without any reference model. The first case is motifs that differ only in the
temporal order of events, such as the triangles in Fig. 5 (another example is the two-
chain, where the events can take place in the causal or non-causal order). Because
these motifs cannot be distinguished in the aggregate network, any difference
observed is purely temporal.

Motif analysis reveals that the most common triangle is 4 times as common as the
rarest one. Comparison of all six motifs reveals two explanations for this difference,
both well-known features of communication networks. The first is burstiness; in
the four most common motifs the person making two calls makes those calls
consecutively. The second explanation is causality. E.g., in the most common motif
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Fig. 6 Six motifs that have the same topology but differ in the order of the events, plotted
separately for four different types From top to bottom, the rows correspond to postpaid female,
prepaid female, postpaid male, and prepaid male (postpaid refers to customers who are billed
based on the calls made; prepaid customers pay for their calls beforehand). The numbers below
the motifs show the fraction out of all motifs in each the row. This value can be compared across
different rows because it doesn’t depend on the group size, activity or homophily. For the mobile
phone data we observe only small differences between node types

(where A calls B and C, and C then calls B), the third call can be triggered by the
earlier calls, as the caller C may have information on the first A–B call through the
second A–C call.

When analyzing data that has different node types it is generally not possible
to directly compare the counts because they mostly just reflect the differences in
groups sizes, activity, and connectivity, instead of differences in temporal behavior.
It is however always possible to compare the relative occurrence of motifs with
different orders of events, when we constrain all nodes in the motif to have the same
type, as illustrated in Fig. 6. The reasoning here is similar as with Fig. 5: no property
of the static network can explain the relative count of the differently timed versions,
and hence we are comparing purely temporal differences.

Comparing motifs that have multiple node types is unfortunately not as simple.
Motif counts generally depend on the number of nodes of each type, average
activity levels of different node types and their preferred connectivity. In most
cases, a comparison of motifs with the same topology but different node types
would just reflect these differences. Comparison of different topologies, even when
keeping node type constant, is not valid either. If for example the aggregate network
consists of directed triangles, then we would expect directed temporal triangles to
be common as well (as compared to other kinds of triangles).
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5.2 Null Models

Except for the cases listed above, we need a point of reference to compare against
if we are to make statements about the prevalence of motifs. And when discussing
motifs and references, it is hard not to mention null models.

Null models are often presented as a method for finding out whether the
results could stem from random variations under some constraints. One of the first
applications of network motifs was to test whether the number of static motifs in
various networks could result from the degree distribution alone [1]. This is achieved
by comparing against the motif count in the configuration model, a random network
with the same degree sequence as the empirical network.

Suppose the empirical count for motif mi is C.mi/, and for the randomized
networks we get the mean count 	.mi/ with standard deviation �.mi /. Now, if the
empirical motif counts result from the degree distribution alone, we would expect
the z-score

zi D C.mi/� 	.mi/

�.mi /

to have zero mean and unit variance. Following the standard null hypothesis
framework, this equals to testing the null hypothesis

H0: C.mi/ results from degree distribution alone.

Large deviations of z from zero suggest that the data does no support the null
hypothesis.

Using null models might seem straightforward, but anyone applying null models
in their analysis should be aware of possible problems involved. For example,
the corresponding null hypothesis—which is almost never explicitly written out—
might not be the one the researcher intended to study. And because null models
are typically defined algorithmically, it might not even be obvious what the null
hypothesis is. A good discussion of this and other caveats in the use of null models
can be found in [4].

Complex networks are also not the first applications of null models. Very similar
ideas have been used in ecology [13], and the usage have often been followed by
a heated discussion on the limitations and possibilities of the method—even to the
extent to earn the name null model wars [14].

6 Summary and Discussion

The fundamental goal of temporal network analysis is to be able to detect patterns
that would be lost, were the networks in question considered static or quasi-static
by aggregating over link activations over some time interval. Were this not the case,
then static network analysis would suffice.
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In this chapter, we have presented an approach for detecting recurrent patterns in
the time-ordered sequences of events that constitute temporal networks. In essence,
this approach can be boiled down to three (independent) phases: (1) defining and
detecting temporal subgraphs, (2) assigning the detected temporal subgraphs to
similarity classes (temporal motifs), and (3) assessing the relevance of the class-wise
subgraph counts, either in relation to each other or against some carefully chosen
reference system.

These phases reflect the additional complications induced by adding another
degree of freedom—time. For static networks, a triangle is a triangle, and such
subgraphs can readily be counted. For temporal networks, we first have to define
what a triangle is; here, we have defined temporal subgraphs based on the time
adjacency of events sharing nodes. For constructing similarity classes, we have
designed a method of mapping temporal subgraphs to directed, colored graphs,
whose isomorphism can be tackled with existing algorithms. Finally, the question
of the meaning and relevance of temporal motif counts—often, the surprise of the
counts against some assumptions about regularities in the underlying system—is
clearly the most difficult of these questions. We have attempted to tackle it using
comparisons between motifs that have the same numbers of nodes and events,
representing structure over and above corresponding static network representations,
and by carefully examining the concept of null models, with the aim of clearly
laying out the meaning of null hypotheses.

Our methodology can be directly applied in studies of any temporal system
of interacting agents, where interactions evolve as exclusive instantaneous events.
Because the temporal motifs are based on the timings of such events, all available
time-domain information is accounted for, and no simplifying assumptions are
required. In general, this technique may help to highlight “hidden” correlations and
functionality, and to understand how micro-level interactions induce mesoscopic-
level structure that may play a role for dynamical processes that are mediated by the
temporal system.

Certain possible extensions of the present framework would allow for an even
broader range of applications. First, a generalization that would allow the nodes
to simultaneously participate in multiple instantaneous interactions would be very
useful—consider, e.g. emails sent to multiple recipients. There is a large number of
systems where the node-wise interactions are non-exclusive. Potential applications
include biological systems such as temporal gene regulation or protein interaction
networks [15, 16], social systems of humans or animals [17] and ecological
interaction networks [18]. A generalization for interval graphs, i.e. for temporal
networks where events are non-instantaneous and have specified durations, would
open even further possibilities, and allow for detection of temporal patterns in e.g.
evolving group dynamics such as dynamics of face-to-face communication [19].
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Abstract Real world networks exhibit rich temporal information: friends are added
and removed over time in online social networks; the seasons dictate the predator-
prey relationship in food webs; and the propagation of a virus depends on the
network of human contacts throughout the day. Recent studies have demonstrated
that static network analysis is perhaps unsuitable in the study of real world network
since static paths ignore time order, which, in turn, results in static shortest paths
overestimating available links and underestimating their true corresponding lengths.
Temporal extensions to centrality and efficiency metrics based on temporal shortest
paths have also been proposed. Firstly, we analyse the roles of key individuals of
a corporate network ranked according to temporal centrality within the context
of a bankruptcy scandal; secondly, we present how such temporal metrics can be
used to study the robustness of temporal networks in presence of random errors
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and intelligent attacks; thirdly, we study containment schemes for mobile phone
malware which can spread via short range radio, similar to biological viruses;
finally, we study how the temporal network structure of human interactions can be
exploited to effectively immunise human populations. Through these applications
we demonstrate that temporal metrics provide a more accurate and effective analysis
of real-world networks compared to their static counterparts.

1 Introduction

Temporal graph metrics [48, 49] represent a powerful tool for the analysis of real-
world dynamic networks, especially with respect to the aspects for which time plays
a fundamental role, such as in the case of spreading of a piece of information or a
disease. Indeed, existing metrics are not able to characterise the temporal structure
of dynamic networks, for example in terms of centrality of nodes over time. For
these reasons, new metrics have been introduced, such as temporal centrality, in
order to capture the essential characteristics of time-varying graphs. A detailed
description of the metrics used in this chapter can be found in [40].

In this chapter we will discuss a series of possible applications of temporal
graph metrics to the analysis of real-world time-varying networks. This chapter is
structured as follows. We will cover our work in this area and, finally, we will discuss
contributions in this fields by other researchers and potential future applications, in
particular in the area of the modelling of epidemic spreading.

More specifically, in Sect. 2 we analyse the roles of key individuals according to
temporal centrality within the context of the Enron scandal [49]. In Sect. 3 we study
how such temporal metrics can used to study the robustness of temporal networks
in presence of random errors and intelligent attacks [45]. Then, Sect. 4 we present a
containment scheme for mobile phone malware which can spread via short range
radio transmission [50, 51]. Finally, in Sect. 5 we discuss existing and potential
applications to human epidemiology, outlining some research directions in these
areas.

2 Corporate Networks

2.1 Overview

The Enron Energy Corporation started as a traditional gas and electrical utility
supplier; however, in the late 1990s their main money making business came from
trading energy on the global stock markets [18]. In December 2001, the Enron
Energy Corporation filed for bankruptcy after it was uncovered that fraudulent
accounting tricks were used to hide billions of dollars in debt [23]. This led to
the eventual conviction of several current and former Enron executives [8, 55].
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The investigation also brought to light the reliance of the company on traders
to bring in profits using aggressive tactics culminating in intentional blackouts in
California in Summer 2001. With both control over electricity plants and the ability
to sell electricity over the energy markets, Enron traders artificially raised the price
of electricity by shutting down power plants serving the State of California and
profiting by selling electricity back at a premium [7].

During the investigation into the Enron accounting scandal, telephone calls,
documents and emails were subpoenaed by the U.S. government and as such the
email records of 151 user mailboxes were part of the public record consisting of
approximately 250,000 emails sent and received during the period between May
1999 to June 2002 (1,137 days), leading up to the bankruptcy filing. None of the
emails were anonymised and so they provide unique semantic information of the
owner of each mailbox.

2.2 Temporal Graph Construction

In our analysis, we use the dataset prepared by Shetty and Adibi [47]. Since we do
not have a complete picture of the interactions of users outside of the subpoenaed
mailboxes we concentrate on email exchanges between the core 151 users only.
Taking this email dataset, we process the complete temporal graph from 1999 to
2002 with undirected links, using windows of size w D 24 h and horizon h D 1.
If an email was exchanged between two individuals in a temporal window, a link
between the two nodes representing those individuals will be added to the graph
representing the temporal snapshot for that time.

2.3 Semantic Value of Temporal Centrality

Figure 1 plots the static and temporal centrality rankings of employees calculated
using closeness and betweenness. Examining the static centralities (left column)
we note that there is little difference between the top five employees using static
closeness or betweenness. Also plotting the static degree centrality of each node1,
we notice similar rankings suggesting that static analysis only favours employees
who interacted with the most number of other people. Temporal closeness and
temporal betweenness yield different rankings amongst the top five and the calcu-
lated Kendall-tau correlation coefficient [31] (Table 1) confirm that static-to-static
metrics are strongly correlated ('0:7). Also note that there is low correlation (<0:4)

1The static degree centrality is defined as the number of edges connected to a node i , normalised
by the total possible neighbour nodes .n� 1/ [56].
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Fig. 1 Ranked distribution of top 50 statically (S) and temporally (T) central nodes. From top row:
Closeness (C), Betweenness (B), and Degree (D). Top 5 node ID’s listed under each plot

between temporal metrics and static degree demonstrating that temporal analysis is
not dependent on the number of people an individual interacts with.

Cross referencing the top two employee identifiers with their position within the
organisation (Table 2) we identify a secretary (150) and managing director (122)
as central nodes for both static closeness and betweenness; however, both temporal
closeness and betweenness consistently selected employees in trading roles (053,
075, 107, 147). A secretary and a managing director are certainly important for
information dissemination and central to many communication channels, as detected
by static measures. However, instead the top trading executives are exclusively
favoured by temporal analysis.
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Table 1 Kendall-tau
correlation coefficients
between centralities

SB SC SD TB TC TD

SB 1.00 0.57 0.69 0.41 0.24 0.43
SC – 1.00 0.70 0.36 0.22 0.31
SD – – 1.00 0.39 0.28 0.48
TB – – – 1.00 0.43 0.34
TC – – – – 1.00 0.40
TD – – – – – 1.00

Table 2 Roles of top
centrality nodes

ID Role Notes

9 (Unknown)
13 Legal Senior Legal Specialist
17 Manager
48 Executive
53 Trader
54 President Former Head of Trading
67 Vice President Enron Wholesale Services
73 Trader
75 Director of Trading
107 Trader Head of Online Trading
122 Managing Director
127 Chairman and CEO
139 Director
147 Trader
150 Secretary Assistant to Greg Whalley

To show that temporal analysis does not simply uncover nodes with the most
interactions with other people, we also plot the temporal degree (TD) calculated
as the total number of emails sent and received by each node i . Since there is a
low correlation (<0:4) with temporal closeness and betweenness this shows that
temporal analysis is not dependent on the number of emails sent and received by
each individual.

2.4 Effectiveness of Central Nodes on Dynamic Processes

2.4.1 Trace-Driven Simulation Setup

To evaluate the role and the centrality of the employees identified by temporal and
static analysis, we consider two dynamic processes. First, we simulate a simple
information dissemination process over the temporal graph constructed from the
Enron traces. The process is simulated as follows. We select the top N nodes from
the ranking based on temporal closeness centrality. We place an identical message
m into their (infinite) buffers. We refer to any node that has received a copy of this
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Fig. 2 Dissemination process: Dissemination ratio starting from top 2 (left) and top 10 (right)
closeness source nodes. Area under curve reported in legend for temporal (t) and static (s) centrality

message as reached. We then replay the contact trace through time and as reached
nodes make contact with an unreached node u, the message is replicated into the
buffer of node u. We assume that messages are transferred instantaneously and only
the first neighbour in a time window can be reached. We then repeat this for static
closeness centrality and plot the dissemination ratio across time for both.

Second, to model the role of individuals as part of an information mediation
process, we borrow concepts from the more commonly known epidemic immuni-
sation process where the dissemination ratio of a contagion spreading throughout
a static network is measured before and after certain nodes are immunised against
the contagion [2]. This is analogous to measuring the spread of information (the
contagion) before and after important individuals are removed from the network
(such as going on holiday or being discharged) since our conjecture is that removing
mediators will impact the network communication efficiency greatly.

In the trace-driven simulation, instead of a single message spreading within
the organisation, we seed all employees with a different message that needs to be
delivered to all other employees. This models multiple channels of communication.
In order to derive a baseline performance, we start by calculating the dissemination
ratio when no nodes are removed. We then remove the top N individuals identified
by temporal betweenness and rerun the information spreading process. Nodes which
are removed cannot receive or pass on messages. We then repeat the same process
for comparison using static betweenness centrality for the ranking.

2.4.2 Evaluating Information Dissemination and Mediation

We present plots using N D f2; 10g for information dissemination (Fig. 2) and
information mediation (Fig. 3). As we can see the different pairs of traders identified
by temporal analysis are better than the arbitrary nodes selected by static analysis
for both disseminating information through the organisation and acting as mediators
between communication channels. In the information dissemination case, although
the final dissemination is the same across the long period of time, the two traders
selected by temporal analysis disseminate information quicker. Only after increasing
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Fig. 3 Mediation process: Dissemination ratio after removing top 2 (left) and top 10 (right)
betweenness nodes. Area under curve reported in legend for temporal (t), static (s) and baseline (b)
where no nodes are removed

to 10 nodes the static analysis presents similar results. In the information mediation
case, the final dissemination ratios for both temporal and static centrality nodes
slightly decreases by removing the nodes but are comparable. However, removing
the two traders gives an overall more prolonged drop in message dissemination.
In the case of the removal of 10 nodes, the individuals identified by means of the
temporal metrics slow the dissemination process further compared to static ones.

2.5 Summary of the Findings

This study has demonstrated the advantages of using temporal network analysis over
traditional static, aggregated graphs. Although centrality rankings are quantitative
measures of node importance, their physical meaning is very much qualitative.
For this reason, we have shown that temporal centrality provides a more accurate
identification of key people in a corporate social network where each persons role
is known. Taking a second perspective, we demonstrate that temporal centrality can
identify nodes which can spread and mediate information, better than static analysis.
This demonstrates the importance of temporal information for applications, which
are applied to real networks.

3 Network Robustness

3.1 Overview

The study of real-world communication systems by means of complex network
models has provided insightful results and has vastly expanded our knowledge on
how single entities create connections and how these connections are used for com-
munication or, more generally, interaction [3]. In particular, technological networks
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such as the Internet and the World Wide Web have been under scrutiny in terms
of structure and dynamic behavior [22, 27]. More recently, with the widespread
adoption of mobile and opportunistic networks, it has become important to develop
new analytical tools to keep into account network dynamics over time [30, 32] and
how this affects phenomena such as information propagation [10, 14].

At the same time, the problem of understanding whether real systems can sustain
substantial damage and still maintain acceptable performance has been extensively
addressed [1, 5]. Various measures of network robustness have been defined and
investigated for several classes of networks, evaluating how different system can
be more or less resilient against random errors or targeted attacks thanks to their
underlying structural properties [15, 26].

Nonetheless, it is still unclear how to approach the study of robustness of
networks by taking into account their time-varying nature: by adopting a static
representation of a temporal network, important features which impact the actual
performance might be missed. Thus, it becomes important to develop a robustness
metric which takes into account the temporal dimension and gives insights on how a
mobile network is affected by damage or change. Particularly, the fact that links are
not always active means that information spreading can be delayed or even stopped
and that relative ordering in time of connection events may affect the creation of
temporal paths in mobile networks.

Our main goal is to design a novel framework for the analysis of robustness in
time-varying networks. We adopt temporal network metrics [48] to quantify network
performance and define a measure of robustness against generic network damages.
At first, we study its performance on random network models to understand its
properties; then we apply our method to study a real mobile network, describing
how temporal robustness gives a more accurate evaluation of system resilience than
static approaches.

3.2 A Framework to Evaluate Robustness
of Temporal Networks

The study of robustness of complex networks has mainly focused on describing
how a given performance metric of the network is affected when nodes are removed
according to a certain rule. The underlying assumption is that the absence or
malfunctioning of some nodes will cause the removal of their edges and, thus, some
paths will become longer, increasing the distances between the remaining nodes, or
completely disappear, resulting in the loss of connectivity in the whole system. In
this work we will study the problem of defining and analyzing robustness in evolving
networks: as a consequence, we need to use a performance metric which includes the
temporal dimension in its definition. We choose to adopt temporal efficiency as the
performance metric. We then consider random and independent failures for every
node and we evaluate how the system tolerates increasing level of malfunctioning
nodes.
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Since a temporal graph is continuously evolving, we can evaluate how temporal
efficiency changes over time by considering a value � and evaluating EG.t/ as the
relative temporal efficiency of the temporal graph in the time window Œt � �; t �. The
effect of � is to effectively impose an upper bound on the temporal distances, as all
paths longer than � simply do not exist. As a consequence, � should be chosen so
that any communication whose delay is longer than � itself can be ignored.

Given a temporal graphG, we define a damageD as any structural modification
on it and we define GD as the graph resulting by the effect of the damage D on G.
A damage may be the deactivation of some nodes or the removal of some edges
at a particular time tD . Because of damage D, some temporal shortest paths will
be longer or will not exist any more, thus, we expect that the temporal efficiency
will eventually reach a new steady value EGD � EG . It is important to evaluate the
new value of the temporal efficiency on a new temporal graph which still contains
the deactivated nodes, in order to obtain a decrease in efficiency. Otherwise, we
might obtain a smaller temporal graph which is more efficient than the original
graph, although it has lost much of its structure. Hence, we do not consider highly
dynamic systems where nodes can be constantly added or removed. Instead, we
focus on evaluating the service degradation in a more controlled environment where
only a number of existing nodes could fail.

We define the loss in efficiency �E.G;D/ caused by the damage D on the
temporal graph G as �E.G;D/ D EG �EGD . Finally, we define the temporal
robustness RG.D/ of the temporal graph against the damageD as

RG.D/ D 1 � �E.G;D/
EG

D EGD

EG
(1)

This value is normalized between 0 and 1 and it measures the relative loss of
efficiency caused by the damage: if the damage does not impact the efficiency of
the graph (EGD D EG) then its robustness is 1, while if the damage destroys the
efficiency of the graph (EGD D 0) the robustness drops to 0. Temporal efficiency is a
particularly suitable metric to study temporal network robustness as it denotes both
longer temporal paths and the lack of paths among temporally disconnected nodes
at the same time. Nonetheless, other metrics have been used to assess robustness in
static systems: for instance, there could be scenarios where fast communication with
small delays can be more important than global connectivity, thus other measures
can be adopted. Provided that these measures can be extended to the temporal case,
they can be easily integrated in our framework.

3.3 Robustness of Random Temporal Networks

In this section, we present a numerical analysis of temporal robustness for different
classes of random temporal networks: an Erdős–Rényi temporal model, a Marko-
vian temporal model and mobility-based temporal model.
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3.3.1 Random Temporal Network Models

An Erdős–Rényi (ER) random graph with N nodes and parameter p is created by
independently including each possible edge in the graph with probability p and it is
denoted as G.N; p/ [19]. We generalize this model to the temporal case by creating
a sequence of T ER random graphs G.N; p/ and we denote the resulting temporal
graph as G.N; p; T /.

The temporal ER network model does not provide temporal correlations between
consecutive graphs in the sequence. We thus consider a model where link evolution
is described by a Markov process, thus enabling memory effects in network
dynamics. We consider a complete graph G with N nodes. At every discrete
timestep t each link may or may not be present: a temporal graph is created where
the existence of each link evolves according to a two-state discrete Markov process.
We denote with p the probability that a link present at time t will be removed at
time t C 1 and with q the probability that a link which is not present at time t will
be added at time t C 1. The steady probability of link presence then is PON D q

pCq :
as a consequence, each observation of the temporal graph appears as an ER random
graph with each edge present with probability PON .

We also create a random model of a temporal network by using mobility models.
In this case we are introducing topological constraints: a key difference with the
previous temporal models is that each node is not equally likely to connect with all
the other nodes, due to the effect of spatial distance. We consider N D 100 nodes
moving in a square area 1;000 � 1;000m and we define a communication range r :
at every time step, we create a graph where nodes are connected if their Euclidean
distance is shorter than r . Thus, we change the probability of link presence PON

by varying the communication range. Then, a temporal graph can be defined as
the sequence of graphs extracted at each time step while the nodes move. We
investigate two different mobility models that are implemented using the Universal
Mobility Model Framework [37]: Random Waypoint Model (RWP) and Random
Waypoint Group Model (RWPG). In RWP each node selects uniformly at random a
location towards which it moves with speed uniformly distributed in a fixed range
Œ5; 40�mph. As the node reaches its destination, it waits for a randomly distributed
time in Œ0; 120� s and repeats the above steps until the end of the simulation.

In RWPG nodes are divided into two classes: there are M group leaders and
N �M group followers. Every group followers has its own leader so that the N
nodes are divided into equally-sized groups. Each group leader selects a random
target and moves towards it, according to the RWP mobility model. Group members
do not select any target; instead, they follow their group leader according to the
pursuit force [37] which is set to give a group span of 200 m.

3.3.2 Numerical Evaluation

We numerically evaluate temporal efficiency EG.t/ over time, adopting a time
window of � D 100, for a graph with N D 100 nodes: after an initial phase,
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Fig. 4 Temporal robustness RG as a function of probability of error PERR in the ER random model
for different link probability p (a) 100 nodes; b) 1000 nodes). The size of the system has no impact
on temporal robustness: furthermore, the system fails smoothly as the probability of error increases

the random temporal graph reaches an equilibrium state and we compute the steady
value of temporal efficiency. We run each simulation for 2� steps and we compute
the average value of temporal efficiency over the last � steps. All results have been
averaged over 100 different runs. We evaluated numerically temporal robustness by
deactivating each node independently with increasing probabilityPERR. We measure
temporal efficiency before and after the failure, when the network reaches a new
equilibrium state.

As reported in Fig. 4, the temporal ER model fails smoothly as we increase the
fraction of removed nodes, without any sudden disruption for any value of PERR.
This is a main difference with respect to what happens in the static case: for a
static ER random graph there may exist a critical value of PERR which causes
a breakdown of the network in several disconnected components [1]. This is not
true for temporal robustness, as new paths can still appear after the damage as the
network rearranges its connections. Time provides more redundancy and, hence,
more resilience. Moreover, we also note that temporal robustness does not depend
on system size: since it is normalized with respect to the value of temporal efficiency
before the damage, it depends only on the relative drop in efficiency, not on absolute
values.

As shown in Fig. 5a, temporal robustness is affected by probability of error PERR

in the same way as in the temporal ER model: the system fails gradually as more
nodes are removed. However, for intermediate values of PON robustness has lower
values. At the same time, high and low values of PON provide the same robustness,
even if the absolute value of temporal efficiency can be very different, thanks to the
normalization of temporal robustness.

In the case of mobility-based temporal networks, reported in Fig. 5b, both RWP
and RWPG exhibit a similar behavior: again, the network loses efficiency in a
smooth way and temporal robustness is not affected by PON in this case as the spatial
characteristics of the network are mainly affecting the resulting robustness.
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Fig. 5 Temporal robustness RG as a function of probability of error PERR and for different values
of PON for a) the Markov-based and for b) the RWP random model (RWPG does not deviate from
RWP)

3.4 Case Study: Cabspotting

We have seen that temporal networks do not exhibit sudden breakdowns when nodes
are being removed and that various temporal network models exhibit analogies in
their resilience. We now shift our attention to real time-varying networks: our aim
is to understand whether temporal robustness gives us more information than static
robustness in a real case and to investigate whether random models can offer a good
approximation to real networks.

3.4.1 Dataset

This case study is based on Cabspotting, a publicly available dataset of mobility
traces: the Cabspotting project tracked taxi cabs in San Francisco traveling through
all the Bay Area for about 2 years with the aim of gathering data about city life [41].
The vehicles were equipped with GPS sensors and every device was periodically
updating its position and uploading it to a central server to be stored, along with
the timestamp of the record. Thus, it is possible to reconstruct each taxi’s trajectory
over space. For pictorial representations of the dataset, please refer to the project
website [4].

We have selected an area of about 20 km�20 km around the city of San Francisco
and we have extracted 24 consecutive hours of mobility traces, corresponding
to Wednesday, 21 May 2008. After this, we have generated an artificial contact
trace by defining a communication range of 200 m for the vehicles, which roughly
corresponds to WiFi connectivity range in similar scenarios [11]: whenever two cars
are within this distance they can communicate to each other. Time granularity is in
seconds, so we have a sequence of 86,400 graphs with 488 nodes and more than
350,000 contacts among them. The average contact duration is about 2 min while
the average inter-contact time is more than 2.5 h.



Applications of Temporal Graph Metrics to Real-World Networks 147

0.0 0.2 0.4 0.6 0.8 1.0

PERR

0.0

0.2

0.4

0.6

0.8

1.0

R
G

Temporal

Static

0.0 0.2 0.4 0.6 0.8 1.0

PERR

0.0

0.2

0.4

0.6

0.8

1.0

R
G

Temporal ER

Markov

RWP

RWPG

Cabspotting

a b

Fig. 6 Comparison between temporal robustness RG and static robustness as a function of
probability of error PERR for the Cabspotting dataset (a). The static approach overestimates system
robustness. Right: Comparison between the temporal robustness RG of the dataset and random null
models with the same number of nodes N and PON of the Cabspotting temporal network (b)

3.4.2 Analysis

We study the reaction of the Cabspotting temporal network to random failures and
compare it to our findings on random models. We adopt numerical simulation,
but since the temporal dynamics of this network is not stationary, we can not
compare the temporal efficiencyEG before and after a certain error, because the two
temporal window will likely have already different properties. Instead, we fail nodes
according to PERR at the very first time step of the temporal sequence of graphs: in
this way, we can compare the average temporal efficiency over all the time for the
original network and for the damaged one. We adopt a value of � D 3;600, which
allows us to consider temporal paths up to 1 h, even if such longer paths can not
contribute much to temporal efficiency.

The first comparison that we show in Fig. 6a is between static robustness and
temporal robustness for the Cabspotting temporal network. In this case static
robustness is computed on the static graph obtained by aggregating all the contacts
in the trace and adopting static global efficiency as performance measure. Since
the resulting static graph contains more than 100,000 edges it is clearly an
overestimation of the communication properties of the real system, as not all these
links are continuously available over time and some paths can not be used due to
temporal ordering constraints. Indeed, static robustness appears much larger than
the temporal counterparts: only temporal robustness is able to capture the realistic
communication capabilities of the system and how they are affected by random
failures.

Then, we attempt to understand if the various random temporal network models
we have studied can be used to approximate the robustness properties of the real
scenario. For each model, we compute the temporal robustness as a function of PERR

for a network with the same number of nodesN and the same PON measured in the
Cabspotting temporal network (about 0:005), using the same simulation parameters
as in the real scenario. As reported in Fig. 6b, all temporal networks present the same
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trend in network robustness, albeit random models have higher values of temporal
robustness than the real network. Interestingly, the closest match is the Markov-
based temporal model, while the mobility-based models are closer to the ER model
than to the Cabspotting network, even if this is actually a mobility-based contact
network. However, the assumptions used in mobility models require homogeneity of
space and absolute freedom to move continuously and independently in a boundless
area, while in reality taxis are usually constrained to move on streets and bridges and
they often move together along the same direction or stop together in a particular
place to wait for customers (i.e., airport or stations). The Markov model, instead,
introduces the type of time correlations that appear to better mimic the real scenario.
In fact, the most important aspect that needs to be captured is time ordering
of events: in random mobility models connections do not follow particular time
patterns, whereas real traces do (rush hour, working hours, human sleeping cycles).
Only temporal robustness can take into account these unique characteristics.

3.5 Summary of the Findings

These two results provide evidence that temporal robustness is a more accurate
measure to be used on mobile networks instead of standard static approaches.
Therefore, when testing protocols and applications to be deployed in mobile
networks, a temporal study is more meaningful and should not be substituted by
a static approximation.

4 Mobile Malware

4.1 Overview

Smartphones are not only ubiquitous, but also an essential part of life for many
people who carry such devices through their daily routine. It comes at no surprise
then that recent studies have shown that the mobility of such devices mimic that of
their owners’ schedule [17, 54]. This fact constitutes an opportunity for devising
efficient protocols and applications, but it also represents an increasing security
risk: as with biological viruses that can spread from person to person, mobile
phone viruses can also leverage the same social contact patterns to propagate via
short-range wireless radio such as Bluetooth and WiFi. For example, when security
researchers downloaded Cabir [53]—the first proof-of-concept piece of mobile
malware—for analysis, they soon discovered the full risk potential of the mobile
worm as it broke loose, replicating from the test device to external mobile phones.
This event prompted the need for specially radio shielded rooms to securely test
such malicious code [28].
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Unlike desktop computers mobile malware can spread through both short-
range radio (i.e., Bluetooth and WiFi) and long-range communication (SMS, MMS
and email) [33]. Long-range malicious traffic can potentially be contained by
the network operator by scanning every message against a database of known
malware or spam [52], however, short-range propagation might fall under the radar
of centralised service providers: effective schemes to defend against short-range
mobile malware spreading are necessary. In addition, while a global patching of the
devices through cellular connectivity is the natural solution and is in theory possible,
in practice, due to associated costs and resource consumption, this is not ideal. For
example, there are potential constraints with respect to the cellular network capacity
and server bandwidth (with respect to the latter, similar issues have also investigated
for software updates distribution in the Internet, see for example [25]).

4.2 Temporal Centrality Metrics for Malware

Being highly correlated with human contacts, understanding how such malware
propagates requires an accurate analysis of the underlying time-varying network
of contacts amongst individuals. State-of-the-art solutions on mobile malware
containment have ignored two important temporal properties: firstly, the time order,
frequency and duration of contacts; and secondly, the time of day a malicious
message starts to spread and the delay of a patch [57, 58]. Instead, we argue that
the temporal dimension is of key importance in devising effective solutions to this
problem.

With this in mind, the focus of this study is to investigate the effectiveness of
two containment strategies based on targetting key nodes, taking into account these
temporal characteristics. We firstly investigate a traditional strategy, inspired by
studies on error and attack tolerance of networks [1], exploiting static and a time-
aware enhanced version of betweenness centrality which provide the best measure
of how nodes that mediate or bridge the most communication flows. According
to this strategy the nodes that act as mediators are patched to block the path of
a malicious message. However, due to temporal clustering and alternative temporal
paths, in most cases, such strategies merely slow the malware and does not stop it. In
other words, a scheme based solely on immunisation of key nodes is not sufficient,
instead quick spreading of the patch is necessary for most networks. We propose
a solution based on local spreading of patches through Bluetooth, i.e., exploiting
the same mechanism used by the malware itself. The key issue in this approach is
to select the right nodes as starting points of the patching process, using temporal
closeness centrality which ranks nodes by the speed at which they can disseminate a
message to all other nodes in the network. We show that this strategy can reduce the
cellular network resource consumption and associated costs, achieving at the same
time a complete containment of the malware in a limited amount of time.
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Table 3 Experimental datasets

CAMBRIDGE INFOCOM MIT

N 18 78 100
Duration (days) 10 5 280
Contacts (avg. per day) 1,927 25,796 231
Scanning rate 30 s 2 min 5 min

4.3 Evaluation

4.3.1 Simulation Setup

To evaluate the time-aware mobile malware containment schemes, three traces
of real mobile device contacts carried by humans are used: Bluetooth traces of
researchers at the University of Cambridge, Computer Laboratory, as part of an
emotion sensing experiment [42]; Bluetooth traces of participants at the 2006
INFOCOM conference [46]; and campus Bluetooth traces of students and staff at
MIT [17]. We shall refer to these as CAMBRIDGE, INFOCOM, MIT, respectively.
Table 3 describes the characteristics of each set of traces. All three datasets
were constructed from mobile device co-location where participants were given
Bluetooth enabled mobile devices to carry around. When two devices come into
communication range of the Bluetooth radio, the device logs the colocation with
the other device. For the CAMBRIDGE dataset, all 10 days are used as part of
the evaluation. For the INFOCOM dataset, since devices were not handed out to
participants until late afternoon during the first day, only the last 4 days are used.
For the MIT dataset, we show results for the first 2 weeks of the Fall semester
representing a typical fortnight of activity.

The topNp devices are chosen according to the calculated temporal betweenness
or temporal closeness centrality ranking from the temporal graph G w

t .tp; tmax/,
where w is set to the finest window granularity, corresponding to the scanning rate of
the devices in each dataset (for example, 30 s windows for CAMBRIDGE); and h is
set to 1, since higher values of h lead to similar performance of the containment
schemes. The Nm nodes that are initially infected with malicious messages are
chosen uniformly randomly. The results are obtained by averaging over 100 runs
for each Np . The static centralities from the static aggregated graph over the time
interval Œtp; tmax� are also calculated for comparison.

Our evaluation is based on the following assumptions: firstly, when a node
receives a patch message, it is immunised for the rest of the simulation (i.e., we
assume that the malware does not mutate over time); secondly, there is always
a successful file transfer between devices (errors in transmission can be taken
into consideration in the assessment of the contention scheme without changing
significantly the results of our work, assuming random transmission failures);
thirdly, an attacker chooses nodes at random; and finally, we have no knowledge
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Fig. 7 INFOCOM day 4: Immunising 1 node (top left) and 10 source nodes (top right). Area under
curves shown in the legend. Area (bottom left) and final % infected nodes (bottom right), as we
increase the % nodes immunised (x-axis)

of which devices are compromised (otherwise the best scheme is to patch those
devices immediately).

4.3.2 Non-effectiveness of Betweenness Based Patching

Starting from the results of the analysis of the effects time of day has on message
spreading, we now evaluate the best case scenario for the containment scheme based
on patching nodes (without spreading the patch) and we show that this is highly
inefficient since it requires a very large number of nodes to be patched via the
cellular network to be effective.

Using Day 4 of the INFOCOM trace for this example, a piece of malware is
started at the beginning of the day (tm=12 a.m.) and the device(s) are patched at
the same time (tp=12 a.m.). This is the best case scenario for two reasons: first,
the temporal graph in the morning is characterised by low temporal efficiency
since there are very few contacts, therefore, the malware spreads slowly; secondly,
devices that are immunised immediately have the best chance of blocking malware
spreading routes.

Figure 7 shows the ratio of compromised devices across time when the top 1 (top
left panel) and top 10 (top right panel) devices are patched after being selected using
betweenness and closeness. As we can see, temporal betweenness initially perform
better than static betweenness and both temporal and static closeness (quantified
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by the difference in the area under each curve, shown in the legend). However, by
7 a.m. we observe a steep rise in the number of compromised devices and by the
end of the day, all curves converge to the same point. We also note that in both cases
it is not possible to totally contain the malware, suggesting that more devices need
to be patched. Taking a broader view, Fig. 7 shows the area under the curve (bottom
left) and final ratio of nodes infected (bottom right) as we increase the number of
patched devices. Clearly, even when the malware is started at the slowest time of
day for communication, we still need to patch 80 % of the devices before we can
completely stop the malware from spreading; this can be considered an impractically
high number of devices to patch. Similar high percentages are also required in the
MIT trace with a minimum of 45 % patched nodes.

4.3.3 Effectiveness of Closeness Based Patching
(Worst Case Scenario)

Since the betweenness based containment scheme is not effective, we now evaluate
the closeness based spreading scheme with the aim of disseminating a patch
message throughout the network more quickly than a malicious message. For
brevity, we do not present results on spreading based on temporal betweenness
centrality since it is intuitive that this metric is not designed to quantify the speed
of the patching dissemination process and, for this reason, it leads to poorer results.
We start our analysis by examining a worst case scenario using the CAMBRIDGE
dataset: a researcher receives a malicious message on their device in the early hours
of Friday morning (tm D Fri 12 a.m.) and the malicious program replicates itself to
any devices it meets during the day. A patch message is started a day later to try and
patch all the compromised devices (tp D Sat 12 a.m.). This can be considered as
the a worst case since there are more interactions and hence more opportunity for
malware to spread during the day and the patch is delayed until a day later.

Figure 8 shows the spreading rate for the malicious message versus the best (left)
and worst device (right) to start the patching message. These results were obtained
by running simulations considering every single device as a starting point of the
patching process, and then ranking them based on three performance metrics:

• The area under the curve (AUC), which captures the behaviour of the infection
over time with respect to the number of infected devices2;

• The peak number of compromised devices (Imax);
• The time in days necessary to achieve total malware containment (�).

Since the AUC captures both the Imax and � , the best and worst initial devices that
were patched were selected using the AUC. Comparing all three measures, the case
related to the selection of the worst device (right panel) is characterised by double
AUC (2.62 vs. 1.07); a higher peak in compromised devices Imax (68 % vs. 60 %)

2The AUC is commonly used in epidemiology and medical trials [21].
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Fig. 8 CAMBRIDGE [tm=Fri 12 a.m., tp=Sat 12 a.m.] delivery rate (y-axis) starting a mobile
worm from single node with best case patching node (left) and worse case patching node (right)
shown. Area under the curve shown in the legend

and by the fact that it is not possible to fully contain the malware in a finite time �
(1 vs. 3.3 days).

4.3.4 Sensitivity to Malware Start Time

Thus far we have only considered a single malware start time. We now take a
broader view and examine the effects of a malicious message starting at different
times. For each dataset the AUC, Imax and � are exhaustively calculated for different
malware start times at hourly intervals and increasing patch delays starting from
zero (i.e., patch messages start at the same time as malicious messages) to up to
2 days. As a baseline, a naive method of randomly selecting patching nodes is also
calculated, averaged over 100 runs. Figure 9 shows for each dataset the performance
metrics as a function of the malware start time tm, averaged over all patch delays. In
particular, we note that the AUC and the maximum number of infected nodes Imax

tend to follow the temporal efficiency (strictly related to human circadian rhythms);
however, the total time of containment (�) remains stable across all start times.
These results demonstrate that this time-aware containment scheme is an effective
method of quickly containing malware, irrespective of when the malware started.
Now analysing the AUC and Imax, the temporal centrality curve is consistently lower
than static and naive methods. Furthermore, static centrality performs worse than the
naive method at some points of time; more specifically:

• For the CAMBRIDGE dataset, during the weekend a static method has a higher
peak number of compromised devices (Imax) than the naive method, which shows
that a static method is not effective at slowing down the malware from spreading.

• For the INFOCOM dataset, again Imax is higher than the naive method, during
days 2 and 4. In addition, the AUC curve for a static method peaks with temporal
efficiency during days 2, 4 and 5: this means that the malware is not contained
effectively in these scenarios. Also, the total containment time (�) is greater
than that of the naive method during days 3, 4 and 5. This shows that temporal
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Fig. 9 Performance of temporal, static and naive node selection, across different malware start
times (x-axis), averaged over all patch delays

centrality is more consistently effective for identifying the best nodes to start the
patching process, compared to both static and naive methods.

• Finally, for the MIT dataset, the naive method performs extremely poorly (with
high values of UAC, Imax and � across all malware start times), compared to
either a static or temporal method.

4.3.5 Summary of the Findings

This study demonstrates that a temporal analysis of mobile device interactions is
better suited to real networks where the topology changes over time. As we have
seen, a traditional strategy of patching high betweenness nodes is not effective when
temporal topological information is taking into account for both the information
dissemination process and also centrality calculations. Instead, we propose a
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strategy that can select the best devices to spread the patch in a competitive fashion,
using the same opportunistic encounters with other devices utilised by the malware
itself.

5 Epidemics and Immunisation

A promising application area of the proposed metrics is indeed epidemics modelling
in human networks [29, 36]. Currently, the vast majority of the existing models
assume an underlying static network [35, 38]. By considering a static network,
the temporal order of appearance of the links (i.e., the sequence of the contact
opportunities) is somehow neglected. This fact might have significant implications
on the actual realism of the mathematical model, especially in the case of small
populations. Another specific aspect that might have a strong influence on the
resulting model is the type of mixing patterns [39] that are present in the population.

The problem of modelling the spreading of infection in a time-varying graph
and the definition of vaccination strategies given the information related to the
network and epidemic dynamics (and the correlation between the two) are open and
challenging research areas at the same time. Temporal centrality metrics can be used
for example to prioritise the vaccination of individuals involved in an immunisation
program. Moreover, temporal metrics can be used in general to study the evolution
of a disease over time by providing quantitative measures of the time scale of its
spreading considering the sequence of infected individuals (or geographic areas)
over time.

In the recent years, some works have been focussed on the interplay between
changing topology and the epidemic process taking place over the network. For
example, in [44] Saramäki and Kaski present a model for studying the spreading
of an infectious influenza on a dynamic small-world network, by analysing the
effect of a dynamic re-wiring process on a Susceptible-Infective-Recovered-style
epidemic model, deriving the equations for the epidemic threshold and spreading
dynamics. In particular, the authors show how the epidemic saturation time scale
varies with the size of the network and the initial conditions. In [34] the authors
present the results of different vaccination strategies by simulating the dynamics
of sexual disease spreading in empirical contact sequences of individuals. More
specifically, the authors analyse the largest outbreak, the average outbreak sizes,
and the relative advantages of the different strategies as a function of the infectivity
and the duration of the infective state.

In general, social encounter networks, a typical class of time-varying net-
works, are attracting an increasing attention in the epidemiology community [16].
Researchers have been employing RFID and sensor techniques for extracting
contact traces in order to accurately reconstruct patterns of interactions among
individuals, also with respect to the duration of the contacts (see for example [6,10,
43]). These models might also be scaled up to study disease outbreaks in cities [20].
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Epidemic models have also been applied to diffusion of ideas, behaviour
or lifestyle choices in social networks [9], for example in order to study the
spreading of obesity [12] or smoking [13]. Another interesting and open area is the
characterisation of the spreading of an epidemic and the simultaneous dissemination
of information about it that might modify the behaviour of individuals (i.e., the
dynamics of the underlying time-varying networks). A work in this direction is [24].

We believe that the application of the proposed metrics to these fields is indeed
very promising and might contribute to increase the accuracy, and therefore, the
realism of existing models and to develop new ones allowing researchers to extract
valuable information and insights from them. In particular, the centrality metrics
presented in this chapter and the accompanying one [40] in this book can be used to
identify the key spreaders in order to define effective containment and immunisation
strategies. For example, vaccination can be based on priorities assigned to the
temporal centralities of the individuals in case of human diseases, whereas, as far as
computer viruses are concerned, white worms used for patching the systems could
be distributed starting from the nodes with the highest temporal closeness centrality.

6 Final Remarks

In this chapter we presented some key applications of temporal metrics to various
domains such as centrality analysis in a social network, robustness and epidemiol-
ogy of computer viruses and diseases. We have shown that temporal graph metrics
are able to provide information about the structure of the time-varying networks
and the dynamics of processes happening over them that is not possible to extract
through the classic static metrics and graph representations. We hope that the case
studies presented in this chapter and the discussions of open problems in the field
might be considered as a starting point and a source of inspiration for future
applications in these and other fields.
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Spreading Dynamics Following Bursty Activity
Patterns

Alexei Vazquez

Abstract The dynamics of many social, technological and economic phenomena
are driven by individual human actions, turning the quantitative understanding
of human behavior into a central question of modern science. Recent empirical
evidence indicates that the timing of individual human actions follow non-Poisson
statistics, characterized by bursts of rapidly occurring events separated by long
periods of inactivity. In this work we analyze how this bursty dynamics impacts the
dynamics of spreading processes in computer and social systems. We demonstrate
that the non-Poisson nature of the contact dynamics results in prevalence decay
times significantly larger than predicted by the standard Poisson process based
models. Thanks to this slow dynamics the spreading entity, namely a virus, rumor,
etc., can persist in the system for long times.

1 Introduction

Human activities often mediate the spreading of infectious agents. Typical examples
are the spreading of computer viruses through email communications [1, 2], the
spreading of sexually transmitted diseases through sexual contacts [3–6] and the
spreading of airborne infectious diseases through geographical mobility [4, 7–12].
Most of the literature on spreading processes assumes that these human activities
are carried on at a constant rate and, therefore, are well represented by a Poisson
process [4, 7, 8, 13–16]. However, recent evidence indicates that several human
activities are rather characterized by bursty activity patterns, with short terms where
the activity is executed in consecutive short intervals separated by very long intervals
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[17–21]. These observations have motivated a revision of previous work on spread-
ing processes to account for the bursty nature of human activity patterns [22–26].

The study of spreading processes following human activity patterns can be
divided in two major fields: theoretical and detailed simulations. The theoretical
approaches are based on models that make several simplifications, aiming to
understand the major factors driving the characteristic temporal patterns of the
spreading process [22, 25]. Detailed simulations aim a more precise description of
the spreading process and generally incorporate human activity patterns that are as
close to the reality as possible [11, 12, 27, 28].

In this chapter we introduce the reader to the generalizations that are required
for the theoretical study of spreading process following bursty activity patterns.
We note that, for most part, this framework has been extensively developed in the
mathematical literature of point processes [29] and branching processes [30]. Our
contribution is limited to the adaption of these powerful mathematical methods to
the study of two instances with high impact in our society: the spread of computer
viruses and sexually transmitted diseases.

2 Modeling Human Activities as Renewal Processes

We focus our attention on human activities where the duration of each activity
execution is much smaller than the time interval between two consecutive executions
of the activity. In this case we can represent the activity timeline by a point process in
time (Fig. 1). We call the interevent time the time interval between two consecutive
executions of the activity, which is also refereed as the waiting time in the renewal
and queueing processes literature. We will denote by Ti the i -th interevent time. In
the simplest scenario, we assume that the interevent times are positive independent
identically distributed random variables. This type of point process is called a
renewal process [29]. A renewal process is fully characterized by the interevent time
distribution, with a probability density function P.�/d� D Prob.� � Ti � � C d�/.

When dealing with renewal processes we often calculate the distribution of the
sum of two or more interevent times

Sn D
nX

iD1
Ti (1)

Since the Ti are independent identically distributed random variables the distribu-
tion of Sn is obtained by convolutions of the distribution of Ti

Prob.� � Sn � � C d�/ D P?n.�/ (2)

where P?n.�/ denotes the n-order convolution of P.�/. P?n.�/ can be calculated
recursively: P?1.�/ D P.�/ and

P?n.t/ D
Z t

0

d�P.�/P ?.n�1/.t � �/ (3)
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Fig. 1 Point process
representing the timeline
of a human activity

Poisson Process

The Poisson process is a particular case of a renewal process where the activities
are executed at a constant rate 
. In this case the interevent time distribution is
exponential

P.�/ D 
e�
� (4)

and the n-order convolutions are gamma distributions

P?n.�/ D 


.n � 1/Š .
�/
n�1e�
� (5)

The importance of the Poisson process resides on the fact that, given a renewal
process with a finite mean interevent time h�i, for time scales larger h�i it can be
approximated by a Poisson process with rate [29]


 D 1

h�i (6)

where h�i D R1
0
d�P.�/� is the expected interevent time. In turn, deviations

from the Poisson process approximation are expected in the regime t < h�i. The
longer the mean interevent time the longer we need to wait for the Poisson process
approximation to hold.

Lévy Process

When the average interevent time is not finite we cannot approximate a renewal
process by a Poisson process. This is the case of interevent times distributions with a
power law decayP.�/ 	 ��˛ for � � �0 and 1 < ˛ < 2, where �0 is a characteristic
time scale. In this case we can apply a generalized central limit theorem for power
law distributions concentrated in Œ0;1/ [29]. Specifically, in the limit n � 1 we
can approximate the n-order convolution by

P?n.�/ 	 1

�0n
1

˛�1

L˛�1

 
�

�0n
1

˛�1

!
(7)



164 A. Vazquez

where L	.x/ represents the stable (Lévy) distribution with exponent 	 and
concentrated in Œ0;1/. The stable distributions L	.x/ are characterized by the
asymptotic behavior L	.x/ 	 x�.1C	/ when x � 1. From the latter result and
(7) it follows that

P?n.�/ 	 ��˛ (8)

when � � �0n
1

˛�1 . Therefore, the power law tail of the distribution is preserved
upon convolution.

3 Modeling Disease Spreading as a Branching Process

A spreading process can be represented by a causal-tree of disease transmission
([31], Fig. 2). In this tree each node represents an infected agent and each arrow
represents the transmission of the disease from a primary case to a secondary case.
In addition, the arrow length represents the generation time, the time elapsed from
the infection of the primary case to the infection of the secondary case. We make an
explicit distinction between the first infected agent (patient zero) and the remaining
infected agents. The infection of patient zero comes from an exogenous source, such
as an animal host in the case of human infectious diseases or a hacker in the case of
computer viruses. We could think of patient zero as an agent selected at random
from the agent population. However, this may not be the case for subsequently
infected agents, because the spreading process introduces biases in the way agents
are reached.

The theory of branching processes provides a general framework to study the
causal-tree of disease transmission [30, 31]. It provides recursive rules to calculate
global quantities characterizing the spreading process at the population level from
the iteration of local properties characterizing the transmission from a primary case
to its secondary cases (Fig. 2). Under the assumption that all cases are statistically
equivalent, the local transmission is characterized by the reproductive number or
average number of secondary cases generated by patient zero R0, the reproductive
number or the number of secondary cases generated by primary cases other than
patient zero R, and the probability density function of generation times g.t/. At the
global level, the spreading process is characterized by the average number of new
infections n.t/ between time t and t C dt , which is related to the local properties
by the equation [30, 31]

n.t/ D
DX

dD1
R0R

d�1g?d .t/ (9)

where d denotes the distance from the root and D is the maximum distance from
the root. Here R0Rd�1 is the expected number of nodes at a distance d from the
root and g?d .t/ is the distribution of the time it takes the infection to reach a node at
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Fig. 2 Causal-tree of disease
transmission representing an
epidemic outbreak. The
brown circle represents
patient zero

a distance d from the root, which is just the distribution of the sum of d generation
times. Finally, integrating (9) over time we obtain the total number of infected agents

N1 D
DX

dD1
R0R

d�1 (10)

4 Spreading of Computer Viruses

Computer viruses exploit different mechanisms of transmission between computers.
For the sake of simplicity, we focus on the spreading of an email worm. Email
worms are activated when an email user opens an infected email and, subsequently,
the worm forwards itself to all email addresses in the user’s address-book. In this
case the spreading process is determined by the temporal patterns of email sessions
and the address-book size of email users.

Figure 3 illustrates the spreading of an email worm overlaid over email activity
patterns. The dashed blue lines represent the timeline of each email user where the
horizontal blue segments represent email accesses sessions. At time t D 0 patient-
zero is infected with an email worm (e.g., deployed by a hacker). Some later time
patient zero access his email account, activates the worm, which forwards itself to
the email addresses in the patient-zero address book (Fig. 3, large green circle). The
recipients have now the email worm hidden in an email in their inbox (Fig. 3, red
circles). However, they do not transmit the virus until some later time when they
access their email accounts. In the following we relate these particularities of email
worm spreading to the general approach described in previous section.

In this context the reproductive number is associated with the address-book of
email users. When collecting together the address-book of several users we obtain
a directed email network, where each node represents an email user and there is
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Fig. 3 Schematic representation of the spread of an email worm over the email communications of
a subset of email users. The brown circle represents patient zero. The blue dashed lines represent
the timeline of each user and the horizontal blue segments represent email access sessions. The
green circles represent the activation of the email worm and subsequent transmission to other
email users. The red circles represent the arrival of the email worm to user’s inboxes

an arrow from user A to user B whenever user B is in the address book of user A.
Each user is then characterized by an outdegree kout, counting the number of email
addresses on his address-book, and an indegree kin, counting the number of other
email users having his email address on their address-book. Assuming that patient
zero is a user selected at random, we obtain thatR0 is given by the average outdegree

R0 D
X

kout

koutp.kout/ (11)

where p.kout/ is the outdegree distribution. In contrast, other infected agents are not
selected at random, they are reached following the email network. Assuming that
there are no correlations in the email network other than those deduced from the
outdegree and indegree distributions, the probability that a user is at the other end
of an arrow is proportional to its indegree. Consequently

R D
X

kout

kout

P
kin
p.koutjkin/kinp.kin/P

kin
kinp.kin/

(12)

where p.kin/ is the indegree distribution and p.koutjkin/ is the outdegree distribution
conditioned to users with indegree kin. The difference between R0 and R can be
quite dramatic because email networks are characterized by power law distributions
of indegree and outdegree [32] and the indegree and outdegree are correlated [33].
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To give a quantitative estimate, let us analyze the data reported in [32], recording
email communications in a university setting in a period of 112 days. We estimated
the size of the address-book of a user by the number of different email addresses to
who the user sent at least one email in the recorded period, obtainingR0 D 3:8 and
R D 38:9. This data indicates that R can be one order of magnitude larger than R0.
However, these numbers may be an underestimate. For example, a direct analysis of
user’s address-book sizes reports R0 D 12:45 [33].

Now we turn our attention to the timing of infections. The asynchronous nature
of email communications results in a time lapse between the reception of an infected
email and the subsequent activation and transmission (Fig. 3, across a user timeline,
red to green circle). From the perspective of the user receiving the infected email, the
time it receives the email from the infected sender is a time selected at random.
Therefore, the generation time is the time elapsed from a randomly selected point in
the receiver’s timeline to the next receiver’s email session. This time is known as the
residual waiting time in the context of renewal processes theory [29] (Fig. 1). The
distribution of residual waiting times, and thus the distribution of generating times,
is related to the interevent time distribution through the equation [29]

g.t/ D 1

h�i
Z 1

t

d�P.�/ : (13)

Empirical Data

The empirical data indicates that the probability density function of the time
between consecutive emails sent by an email user is well approximated by a power
law decay followed by an exponential cutoff [22]

P.�/ D A��˛e� �
�E (14)

where A is a normalization factor, ˛ � 1 and �E depends on the dataset
analyzed. For example, �E D 25 ˙ 2 days for a dataset characterizing email
communications within a university setting and �E D 9˙ 1 months (approximately
270 days) for a dataset characterizing the email communications between users of
a commercial email service provider [22]. In contrast, the Poisson approximation
predicts PP.�/ D exp.�t=h�i/=h�i, where the mean interevent time h�i takes
the values 0.86 and 4.9 days for the university and commercial data, respectively.
Therefore, although in both cases the interevent time distribution is characterized by
an exponential decay at long times, the initial power law decay in the empirical data
shifts the characteristic time of that exponential decay from days to months.

Substituting the empirical interevent time distribution (14) into (13) we obtain

g.t/ D f .t/e� t
�E (15)
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where

f .t/ D A

h�i
Z 1

t

d���˛e
t��
�E (16)

is a slowly-varying function of time. Substituting (15) into (9) we obtain

n.t/ D
DX

dD1
R0f

?d .t/
1

�E

1

.d � 1/Š
�

Rt

�E

�d�1
e
� t
�E (17)

In the limit t � �1 D �ED=R equation (17) can be approximated by

n.t/ D N1 f ?D.t/

�E.D � 1/Š
�
t

�E

�D�1
e
� t
�E (18)

To estimate the characteristic time �1 we use again the email network data reported
in [32]. This email network has R � 40 and D D 8, resulting in �1 � 0:2�E .
For the university and commercial email server setting we obtained �E � 25 days
and 9 months, resulting in �1 � 5 days and 1.8 months, respectively. Therefore,
the asymptotic expression (18) is valid beyond a few days within a university
setting (thousand users) and beyond 2 months in the commercial email provider
setting (million users). To better understand the implication of these time scales
let us inspect (18) in more detail. First, n.t/ 	 N1, indicating that by t 	 �1
the spreading process has reached a number of individuals proportional to the
final outbreak size N1, which coincides with the total number of users in the
absence of any intervention. Thus, the email worm will reach epidemic dimensions
within a few days in the university setting and within 2 months in the commercial
provider setting. We note that the 2 months may be an overestimate because we
based our calculation of R and D on data from a university setting. Second, at
this point the spreading dynamics is characterized by a power law increase with
an exponent D that is determined by the typical distance between users in the
network. This behavior is a characteristic feature of networks with heavy-tailed
degree distributions [34], independently of degree correlations [35] or the existence
of multiple node types [36]. We note that this power law growth is modulated by
f ?D.t/, which is itself determined by the power law behavior of the inter-email time
distribution for � < �E . Finally, the spreading dynamics will follow an exponential
decay with a characteristic time �E that is of the order of 1 month for the university
setting and 9 months for the commercial provider setting. This latter prediction is
consistent with empirical data [22]. Prevalence data collected for six different email
worms exhibits an exponential decay with a characteristic decay times between
11–14 months [22].
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Fig. 4 Schematic representation of the spread of a sexually transmitted disease over the pattern of
sexual activities of a subset of homosexual individuals. The brown circle represents patient zero.
The blue dashed lines represent the timeline of each individual and the horizontal segments the time
at which they engage in a sexual activity. Green circles represent events of disease transmission
and red circles the time when individuals become infected

5 Spreading of Sexually Transmitted Diseases

The spread of sexually transmitted diseases is intimately connected with the patterns
of sexual activities. For the sake of simplicity, we focus on the spread of a sexually
transmitted disease in a homosexual population. Figure 4 illustrates the spread of
a sexually transmitted disease overlaid over the sexual activity patterns of a set of
individuals. The dashed blue lines represent the timeline of each individual where
the blue segments represent the time points when individuals are involved in a sexual
activity. In the simplest case, we can model the timeline of sexual activities of an
individual by a renewal process [29], where the interevent times are independent
equally distributed random variables with a probability density P.�/.

We note that, as a difference with the email worms (Fig. 3), the sexual activity
requires the synchronous participation of at least two individuals (Fig. 4). Further-
more, an infected individual can infect other individuals at different time points
(Fig. 4). The time interval to the first transmission coincides with an interevent
time, the time to the second transmission coincides with the sum of two interevent
times and so on. The probability density function of the sum of l interevent times is
obtained from the convolution P?l .t/.

Another important observation is that the rate 
 at which sexually active
individuals acquire new sexual partners is quite heterogeneous. The rate 
 can be
estimated as the number of sexual partners that an individual has in a given period
of time. Empirical data collected for several countries reveals that the probability
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density function of 
 is characterized by a power tail u.
/ 	 
�� , with an exponent
2 < � < 4 [37–40]. To take this heterogeneity into consideration we parametrize
the interevent time distribution by the effective rate 
, explicitly writing P.� I
/.

We assume that patient zero is an individual selected at random. Therefore, the
number of secondary cases generated at time t by patient-zero is given by

�0.t/ D i.t/s.t/m
Z 1

0

d
u.
/
1X

lD1
P ?l .t I
/ (19)

where m is the average number of partners per sexual activity session, i.t/ is the
probability of disease transmission upon sexual contact and s.t/ is the probability
of stopping the disease transmission. The stopping of disease transmission generally
happens when the patient becomes aware of his/her disease status, i.e. when
he/she becomes symptomatic. The time between infection and the manifestation
of symptoms is known as the incubation period, here denoted by �I . Subsequent
infected individuals are biased by the rate at which they engage in sexual activities,
with a probability 
=

R1
0 d
u.
/
. Therefore, the number of secondary cases

generated at time t by a patient other than patient-zero is given by

�.t/ D i.t/s.t/m 1R1
0
d
u.
/


Z 1

0

d
u.
/

1X

lD1
P ?l .t I
/ (20)

From (19) and (20) we can calculate the reproductive numbers and generating time
distributions as follows

R0 D
Z 1

0

dt�0.t/ (21)

R D
Z 1

0

dt�.t/ (22)

g0.t/ D 1

R0
�0.t/ (23)

g.t/ D 1

R
�.t/ (24)

Poisson Process Approximation

When the distribution of interevent times has a finite mean, we can approximate
the timeline of sexual activities by a Poisson process with rate (6). Furthermore, we
assume that the probability of transmission i.t/ D i0 is time independent and that
the patient becomes aware of its disease status at a rate 1=�I . Under these approxi-
mations we obtain �0 D i0me�t=�I h
i and � D i0me�t=�I h
2i=h
i, resulting in
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R0 D i0mh
i�I (25)

R D i0m h

2i
h
i �I (26)

g0.t/ D g.t/ D 1

�I
e
� t
�I (27)

As mentioned above the empirical data indicates that 
 follows a power law
distribution u.
/ 	 
�� with � > 3, but close to 3. As previously noticed [16, 41],
this results in high a value of h
2i=h
i and, consequently, a high reproductive
number (26). However, the validity of the Poisson process as a model of sexual
activity patterns has not been challenged so far.

Non-Poisson Nature of Sexual Activity Patterns

To test the validity of the Poisson approximation we analyzed data reporting sexual
activity patterns in Sweden and Finland [42]. Specifically, we focus on reported
statistics for the time since last having sexual intercourse. This time is known as
the spent waiting time in the theory of renewal processes [29], i.e. the time elapsed
since the last event (sexual activity in this context). The probability density function
of the spent time Ps.�/ is related to that for the interevent time through the equation

Ps.t/ D 1

h�i
Z 1

t

d�P.�/ (28)

Figure 5 reports the histogram of the time since last intercourse for Swedish and
Finnish men and women. This distribution manifest a slow decay over three order of
magnitudes. While the quality of the data is not sufficient to make an accurate fit, it
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can approximated by a power law decay with an exponent between �0:4 and �0:8.
From (28) it then follows that P.�/ 	 ��˛ and 1:4 < ˛ < 1:8. Therefore, the
interevent time of sexual activities deviates from the exponential law characterizing
a Poisson process. Furthermore, since 1:4 < ˛ < 1:8 it cannot be approximated by
a Poisson process.

As discussed in Sect. 2 a feature of power law interevent time distributions with
exponent 1 < ˛ < 2 is that the power law tail is preserved under convolution.
Therefore, at long times, (21) and (22) will behave as �0.t/ 	 i.t/s.t/mt�˛ and
�.t/ 	 i.t/s.t/mt�˛ . Again assuming a time-independent probability of infection
upon sexual contact and that patients stop transmitting the disease at a rate 1=�I , we
obtain the asymptotic behavior

g0.t/ 	 g.t/ 	 At�˛e�	t : (29)

Substituting (29) in (9) we obtain the following asymptotic behavior for the
spreading dynamics

n.t/ 	 N1
DX

dD1
f ?d .t/

1

�I .d � 1/Š
�

Rt

�I

�d�1
e
� t
�I (30)

where f .t/ 	 At�˛ . In the limit t � �1 D �ID=R, and taking into account
that the convolution of f .t/ preserves the asymptotic power law, (29) can be
approximated by

n.t/ 	 N1 1

�I .D � 1/Š
�
t

�I

�D�˛�1
e
� t
�I (31)

This predicts that the number of new infections will increase as a power law in time
during the time scale �1 < � < �I . Empirical data collected for several countries
reveals that the probability density function of 
 is characterized by a power tail
u.
/ 	 
�� , with an exponent 2 < � < 4 [37–40]. As previously noticed [16,
41], this results in high a value of h
2i=h
i and, consequently, a high reproductive
number (26). No data has been reported regarding the typical distance in the network
of sexual contacts, but our experience with human networks suggest that it should
be small. In summary, although we do not count with an accurate estimate ofD and
R, the reported data suggest that the network of sexual contacts is a small-world
network (smallD) with a high heterogeneity in the number of sexual partners (high
R), suggesting that D=R � 1. Therefore, we expect that �1 D �ID=R � �I
In the case of HIV, the incubation time is about 10 years [5] and, therefore, we
predict the manifestation of a power law growth over years. This prediction agrees
with the observation of a polynomial growth in the HIV epidemics in US cities and
sub-Saharan African countries [5, 43, 44]. There are some exceptions however. For
Eastern European countries the HIV epidemics exhibits an exponential growth [44].
While this could be determined by narrow distribution of 
, which results in an
exponential growth, we do not count with data to explain these exceptions.
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6 Outlook

These analyses provide the first order approach to understand spreading processes
with the underlying non-Poissonian dynamics characteristic of human activity
patterns. Due to the high heterogeneity of human networks, such as the network
of email communications or sexual partners, the spreading process reaches a
population level in very short times. From there on the spreading process follows
a power law increase in the number of new infectious, with an exponent that is
determined by the characteristic distance between nodes in the network and the
scaling of the interevent time distribution. This power law increase is followed by
an exponential decay with a characteristic time that is very long. In the context of
email worms spread, the decay time is set by the exponential tail of the inter-emails
time distribution, which is of the order of 10 months. In the context of the spread
of sexually transmitted diseases the decay time is set by the incubation time of the
disease, which is particularly long, 10 years, for HIV.

In the context of sexually transmitted diseases, the characteristic time of the
long-time exponential decay is associated with the incubation period of the disease.
However, we still do not know what is the origin of the exponential decay in the
emails interevent time distribution, which causes the long-time exponential decay
of the spreading process in the context of computer viruses. Given the relevance of
this time scale, future work should be devoted to elucidate its origin.

The generalization of these results to the case of statistically different agents
can be attained with the use of the theory of multi-type branching processes
[36, 45]. Extensions will be necessary, for example, to model sexually transmitted
diseases in heterosexual populations, where men and women are characterized by
different sexual activity patterns. Further work is required to understand the impact
of correlations in the series of interevent times, precluding the use of renewal
processes to model the human activity timeline. Correlations between the length of
interevent times has been observed in the pattern of jobs sent to a printer by a given
individual [20], mobile phone calls [46], text messages [46], email communications
[46] and models of human activity [25]. How these correlations affect the spreading
dynamics remains to be understood.
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21. Vazquez, A., Oliveira, J.G., Dezső, Z., Goh, K.I., Kondor, I., Barabási, A.L.: Phys. Rev. E 73,

036127 (2006)
22. Vazquez, A., Balazs, R., Andras, L., Barabasi, A.L.: Phys. Rev. Lett. 98, 158702 (2007)
23. Iribarren, J.L., Moro, E.: Phys. Rev. Lett. 103, 038702 (2009)
24. Iribarren, J.L., Moro, E.: Phys. Rev. E 84, 046116 (2011)
25. Min, B., Goh, K.I., Vazquez, A.: Phys. Rev. E 83, 036102 (2011)
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Time Allocation in Social Networks: Correlation
Between Social Structure and Human
Communication Dynamics

Giovanna Miritello, Rubén Lara, and Esteban Moro

Abstract Recent research has shown the deep impact of the dynamics of human
interactions (or temporal social networks) on the spreading of information, opinion
formation, etc. In general, the bursty nature of human interactions lowers the
interaction between people to the extent that both the speed and reach of information
diffusion are diminished. Using a large database of 20 million users of mobile phone
calls we show evidence this effect is not homogeneous in the social network but
in fact, there is a large correlation between this effect and the social topological
structure around a given individual. In particular, we show that social relations
of hubs in a network are relatively weaker from the dynamical point than those
that are poorer connected in the information diffusion process. Our results show
the importance of the temporal patterns of communication when analyzing and
modeling dynamical process on social networks.
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1 Introduction

A quantitative understanding of human communication patterns is of paramount
importance not only for a better understanding of human behavior, but also to
explain the dynamics of many social, technological and economic phenomena.
Examples include epidemics spreading, virus outbreaks, opinion formation, diffu-
sion of innovation, rumors or trends [32, 41, 43]. All these processes are related
to the underlying structure of the network and on the temporal activity patterns
of humans, since they depend on the way humans interact and share information
[3, 21, 33]. Determination of spreading paths, speed and reach in society is crucial
for developing efficient strategies to propagate information (like in viral marketing
[21]), to find out the influence that different people play in social networks [50] or
to know how public opinion forms and spreads [17].

Most of our current understanding of spreading phenomena comes from imple-
menting models and ideas borrowed from epidemiology on empirical or synthetic
social networks [1]. Although recent works suggest that information transmission
or influence is a much more involved process than disease propagation [2, 23, 48],
these studies have permitted to find the deep entanglement between spreading and
the complex topological patterns of the underlying network in the dynamical process
[6–8, 30, 40]. Social networks are very heterogeneous: the flux of information that
pass through each social tie is unevenly distributed, some individuals are more
connected than others, social relationships are organized into communities, etc.
These network structure heterogeneities reflect the way in which whom and how
each individual is connected (and located) within the network and affect, therefore,
the spreading of information. In particular, a celebrated hypothesis is that “hubs”
(most connected people) [41] or those users with large centrality [30] are the key
players in diffusion processes, being responsible for the largest part of the total
reach of the spreading process.

Paradoxically, most of these studies of dynamical phenomena on social networks
neglect the temporal patterns of human communications: humans act in bursts or
cascades of events [3, 24, 44, 49], most social ties are not persistent [18, 31] and
communications happen mostly in the form of group conversations [13, 24, 51, 52].
Since information transmission and human communication are concurrent, the
temporal structure of communication must influence the properties of information
spreading. Indeed, recent experiments of electronic recommendation forwarding
[21] and simulations of epidemic models on email and mobile databases [26,34,49]
found that the asymptotic speed of information spreading is controlled by the bursty
nature of human communications that leads to a slowing down of the diffusion.
Furthermore, in [34] it was found that not only the speed, but also the reach
of information is affected by the temporal patterns of human communication.
Specifically, while burstiness of human communication hinders the propagation
of information through social ties, group conversations (or correlation between
communication events in neighbor ties) favor the formation of local information
cascades. These two competing effects shape the spreading reach and speed of



Time Allocation in Social Networks: Correlation Between Social Structure . . . 177

information yielding to different possible behaviors depending on the temporal
properties of the information transmission.

Although identification of the key ingredients of the dynamical patterns of human
communication allows to understand the evolution of the process at the network
level, still there is no clear knowledge of what the roles played by the individual
patterns of activity in that process are and how they correlated with the (static or
aggregated) topological structure of social networks. For example, we might wonder
whether static hubs, identified as those who contact a large number of people in a
given time period, are also dynamical hubs, i.e., they have such communication
patterns so that they retain their key role in information diffusion on temporal
networks. In this contribution we analyzed this hypothesis by investigating how
the different properties of temporal patterns of communication correlate with the
social connectivity of an individual. More generally, this problem is related to how
people allocate time among their social connections. After all, time and attention are
inelastic resources and thus humans have to implement a communication strategy to
maintain their social connectivity. Although static models of information diffusion
assume that all ties of a given node are open at all times and information can flow
at any time through any given tie, we expect attention and time constrains to shape
the dynamical properties of human communication. Analyzing the communication
of mobile phone calls between people, our results suggest that ties of static hubs
have less transmissibility (on average) than expected and thus we find a large
correlation between the static (node’s degree) and dynamical properties of human
communication. Taken together, these results suggest that temporal patterns of
communication must be incorporated in the description and modeling of dynamical
human-driven phenomena and of quantitative models of contact social networks.

This contribution is organized as follows: in Sect. 2 we describe our data and
methods and review the different ways to characterize communication patterns
between people. In Sect. 3 we revisit our method introduced in [34] in which we
map the dynamic of human interactions onto a static representation of a social
network through a quantity we call the dynamical strength of ties. We also study
the correlation between the dynamical patterns and social connectivity of human
communication in that section. Finally in the discussion we comment on our results
and the possibility of using the dynamical strength of ties as a way to model temporal
networks.

2 Characterizing Human Communication Patterns

To understand what features characterize human communication patterns, we study
the mobile phone calls during T0 D 11 months of a single mobile phone operator
in a given country. The data consists of 2 � 107 phone numbers and 7 � 108
communication ties for a total of 9 billion calls between users. Call Detail Record
(CDR) contains the hashed number of the caller and the receiver, the time when the
call was initiated and the duration of the call. We consider only events in which the
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caller and the callee belong to the operator under consideration, because of partial
access to the records of other operators. Finally, we only consider ties which are
reciprocated, i.e., in which a call is made at least in both directions i $ j and thus
we consider that the weight of the tie wij given by the number of calls or the total
amount of call time between i and j , is symmetric (wij D wji).1 Our data for the
connectivity of the social network, the duration of the calls, etc. are very similar
to those reported in previous studies of mobile phone networks [42]. As shown in
Fig. 1, we found a skewed distribution for both the nodes’ social connectivity ki
in the observation time period and the strength si D P

j wij. In our database, we
observe that the mean social connectivity is around 85, with a maximum value of
around 500. For the node strength si instead, we found that, although the mean of
this distribution is around 1.5 h in the whole period, the maximum value is about 6 h
per day. This means that while the time that the larger part of the population spends
on the phone per day is of the order of seconds or minutes, there is a small minority
who phone more than 1 h per day. Not only the aggregated si , but also the ties weight
wij show a long-tailed distribution, which indicates a strong heterogeneity in the way
people distribute the time across their social circle. For both ki and si , however, the
decay is faster than a power-law, which indicates the presence of a relatively small
number of hubs. This decay is probably due to the fact that we have filtered out
business phone numbers, which mainly correspond to the hubs in mobile networks,
a possibility also pointed out in [39].

The relationship between the social connectivity and the intensity of communi-
cation has been investigated recently by Miritello et al. in [35]: in line with previous
studies for both scientific collaboration and the air-transportation networks [5], we
found that the average strength si .ki / of nodes with degree ki increases almost
linearly with ki , that is si .ki / 	 k

ˇ
i , with ˇ ' 1. However, we observe a slightly

more complex behavior for large values of ki , where si starts to grow sublinearly
with ki until it saturates for very large values of ki , which suggests the existence of

1Similar results are found if the total amount of time is used for wij instead of the number of calls.
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same intensity, wij D 8 calls. Each vertical line correspond to a different call between i and j .
(b) Bivariate representation of the coefficient of variation and stability of ties for the corresponding
cases in (a)

a limit for more connected people to allocate communication time in a proportional
fashion. Thus, the larger the social connectivity, the smaller the time dedicated per
tie. This means that, on average, hubs have weaker communications. The observed
behavior might be related to Dunbar’s theory [11] which asserts that cognitive and
biological constraints limit the number of people an individual keeps social contact
with. On top of those limits, in our case also temporal and monetary constraints
may play their role in phone communication. In this respect, our results are similar
to those found in other communication networks such as Twitter [16].

Characterizing a given communication tie by its strength (weight wij) ignores
however the fact that human communication is a highly complex dynamical process.
Among others, some of the implicit assumptions of considering static description
of ties are that (1) communication can happen at any time, (2) human activity
is Markovian and randomly distributed in time, therefore well approximated by a
Poisson process, and (3) there is no correlation or causality between events.

This is exemplified in Fig. 2, where we show that many different temporal pat-
terns of communication can correspond to the same strength of communication wij.
In particular, recent research has shown that temporal patters of human individuals
are strongly inhomogeneous and deviate from the Poisson process [3, 26, 34, 49].
In the latter, the number of events during a time interval of duration T follows
a Poisson distribution with mean �T , where � is the rate of events and the time
between consecutive events, called the inter-event times, follows an exponential
distribution p.ıt/ D �e��t . As a consequence, individual actions happen at
relatively regular time intervals ıt and very short or very long inter-event times
occur with small probability. However, human activity is bursty, which is reflected
by the slowly decaying of the inter-event time probability distribution (possibly
like P.ıt/ 	 ıt�1 for small inter-event times [3]), thus in stark contrast with the
prediction of a homogeneous Poisson process. This behavior seems to be a universal
feature of human activity: it has been observed in several systems driven by human
activity sequences [4, 13, 15, 38, 45] and is known in literature as bursty behavior
since long periods of inactivity are separated by intense bursts of activity. Regarding
human communication, bursty behavior is found also in inter-event times between
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communications of a single person and even on events within a social tie [26, 34].
Although there are other ways to characterize (and define) burstiness [15, 27], to
capture this information we use the common coefficient of variation cvij of the inter-
event time distribution P.ıtij/ of a tie. It is measured as cvij D �ij=	ij where 	ij and
�ij are the mean and standard deviation of the distribution P.ıtij/. By definition,
cvij measures the dispersion of a distribution, that is the level of heterogeneity of
tie communication: the more heterogeneous the interaction is, the larger cvij. Note
that for the inter-event exponential distribution in the Poisson process we have that
�ij D 	ij and thus cvij D 1. For the perfect deterministic process in which events
happen at regular times we get cvij D 0, while for the bursty behavior in which
P.ıt/ is heavy tailed we usually have �ij � 	ij and thus cvij � 1.

Although wij and cvij tell us something about the intensity and how homogeneous
in time are communication events, they lack the information about how fast this
happens. As shown in Fig. 2, the same amount of calls can be place in a rather long
or extremely short time window. To characterize this variability in the rhythm of
communication we define the temporal stability �ij of a tie as �ij D tmax

ij � tmin
ij ,

where tmin
ij and tmax

ij are, respectively, the time instants at which the first and the last
communication events between i and j are observed within the observation period.
A large stability (�ij ' T0) indicates that the communication between i and j
extends over the observation period, while a small one (�ij ' 0) is the signal of a
short tie lifetime. In the case of a Poissonian process�ij ' T0 for all ties, since time
events are evenly distributed along the observation window.

As shown in Fig. 3, human communication patterns differ from equivalent
Poisson process with the same number of events wij. To mimic the latter process,
we shuffle the time stamps of the real events across the database, thus each call
has an even probability to appear anytime within the observation window. Note that
this shuffling preserves the usual circadian rhythms (nights, weekends, holidays),
but destroys all possible heterogeneous patterns of communication within the ties
[25]. As expected, in the shuffled Poissonian case we have that for most of the ties
cvij ' 1 and �ij ' T0. However, for the real case we observe that most ties show
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bursty behavior (cvij > 1) and that the stability is distributed along the observation
window, with the special feature that a large proportion of ties have either large
stability (�ij ' T0) or very small one (�ij D 1). This bimodal distribution of the
lifetime of links was found also in other mobile phone databases [18] and indicates
that ties are mostly long or very short, possibly signaling the very different nature
of the communication involved: for example, short ties could be due to search of
information within the social network, while long ties might reflect social or close
relationship between individuals.

We now investigate how the dynamical properties of ties depend on the social
connectivity of individuals in the observation time window ki . As mentioned above,
cognitive and monetary costs influence the aggregate amount of attention per tie
for largely connected individuals [11, 16, 35]. On the other hand, we have seen
that communication events are not evenly distributed across the time window. We
therefore expect that the way in which people allocate time in social networks also
reflects in their patterns of communication. For example, for a given wij the attention
allocated in a short tie is much more localized in time than in a long tie. In addition,
individuals might choose to develop more bursty communication patterns to be able
to allocate more conversations within the day. In Fig. 4 we show our results for the
dependence of both cvij and�ij with ki . Although there is no significant dependence
on cvij, i.e., the burstiness of ties, for a given individual as a function of her social
connectivity ki in the time window, we observe that highly connected individuals
have shorter ties. This is a clear indication that, aside from the non-trivial way in
which individuals allocate time of communication among their contacts, there is
also a complex way in which this attention unfolds in time. In summary, it seems
that highly connected people are characterized by weaker (in terms of volume of
communication) and shorter ties than moderate or low connected people.



182 G. Miritello et al.

3 Dynamical Strength of Communication Ties

It is clear that the intensity wij does not capture the whole dynamics of communica-
tion within a tie and thus it is not sufficient to describe the importance or role of that
tie in the diffusion of information. To understand that role, in [34] we developed a
new measure of the strength of a tie which takes into account not only the intensity of
the link, but also its dynamical pattern. The idea is based on the mapping introduced
by Newman in [36] in which the dynamical information diffusion process is mapped
onto a static edge percolation where each tie is described by the transmissibility or
dynamical strength, i.e., the probability that information flows through the link given
the sequence of communication events between individuals. The network is then
still described by a static graph, but the interaction strength between individuals
now incorporates the causal and temporal patterns of their communications. As
shown in [34], this procedure not only explains the qualitative behavior of the
dynamics of information diffusion, but also successfully predicts, for example, the
percolation threshold for the SIR (Susceptible-Infected-Recovered) model on our
dataset. Obviously the dynamical strength of a tie must depend on the process
under consideration. For example, its definition varies if one considers models
of information diffusion like the SIR model [34], simple random walk hopping
between individuals [19], or more complicated processes. In our case, since we are
interested on information diffusion and/or influence, we concentrate on the simplest
model of information propagation, namely the SIR epidemiological model [1].
Although recent research has highlighted that important differences exist between
information diffusion and disease spreading [2,23,48], epidemiological models have
been the main theoretical tools to understand how information is transmitted in
social networks [10]. Moreover, they are useful methods to explore the intricate
structure of social networks at large scale [26, 30, 40]. In that spirit, our aim in
this section is to use the SIR model to investigate the influence of the behavior
observed in the previous section on the role played by individuals in the spreading
of information.

In the SIR model, individuals can be at different states of the infection dynamics
and they are allowed to change their state. Individuals are initially susceptible (S)
and become infected (I) with a given transmission rate 
 when interact with an
infected individual. At the same time, infected individuals are allowed to recover
(R) at some rate 	. In our case, we consider that in each call an infected node (an
individual that knows the information) can infect a susceptible node (an individual
who is not aware of the information) with probability 
. Due to the synchronous
nature of the phone communication, this happens regardless of who initiates the
call. Nodes remain infected for a certain interval of time until they decay into the
recovered state in which they do not propagate the information anymore. Although
this decay into the recovered state can be very complex, for the sake of simplicity
we simulate the simplest model in which nodes recover after a fixed deterministic
and homogeneous time T . More general situations can be accommodated into the
model such as, for example, stochastic recovery times. The information diffusion
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is simulated starting from a unique infected seed which generates a viral cascade
that grows until there are no more nodes in the infected state. As shown in [34],
the simulations using the real sequence of calls between individuals show a phase
transition at very small 
c : below 
c cascades die out very quickly, while above

c we find that with large probability there exists a cascade that infects a large
proportion of the individuals in our social network. This percolation transition
happens also around 
c for the time-shuffled data, in which the real sequence
and properties of tie interactions are destroyed mimicking Poissonian dynamics.
A different behavior was however found between the real and the shuffled case
below and above the percolation transition 
c . Below 
c , the correlations between
events in neighboring ties (group conversations) favor information diffusion and
thus cascades in the real case are larger than in the shuffled case. In contrast,
above the percolation threshold, the burstiness of communication events hinders
the propagation of information, making the reach of information smaller in the
real than in the shuffled case. Thus real dynamics of interaction in social network
makes information spreading more efficient at small (local) scale (below 
c), while
if information propagates easily (large
) the reach of information in social networks
is small than the one expected when a Poissonian dynamics is considered.

The observed behavior can be understand by analyzing how the communication
temporal patterns affect information diffusion [34]. Spreading from user i to user j
(i ! j ) happens at the relay time intervals �ij, i.e., the time interval it takes to i to
pass on to j an information he/she got from any another person � ! i , where j ¤ �
(see Fig. 5). Information spreading is thus determined by the interplay between �ij

and the intrinsic timescale of the infection process T . As it was shown in [34], �ij

depends on the correlated and causal way in which group conversations happen,
since it depends on the inter-event intervals ıtij in the i ! j communication but
also on the possible temporal correlation with the � ! j events [29, 36].
By ignoring this correlation the probability distribution function (or pdf) for �ij can
be approximated by the waiting-time density for ıtij given [9]:

P.�ij/ D 1

ıt ij

Z 1

�ij

P.ıtij/ dıtij; (1)
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where ıt ij is the average inter-event time. In this approximation, the dynamics
of the transmission process only depends on the dyadic i ! j sequence of
communication events. In particular, the heavy-tail properties of P.ıtij/ found in
human communication [26, 34] are directly inherited by P.�ij/, making the relay
times much bigger than expected. Thus the more bursty the communication is, the
larger the relay times are, which qualitatively explains empirical observations that
heterogeneous human activity slows down information spreading [21, 22, 26, 49].

To fully understand the impact of dynamical patterns of communication on
information diffusion, we follow the approach of [36] by mapping the dynamical
SIR model to a static edge percolation model where each tie is described by
the transmissibility Tij. The transmissibility represents the probability that the
information is transmitted from i to j and it is a function of 
 and T . If user i
becomes infected at time t˛ and the number of communication events i ! j in the
interval Œt˛; t˛ C T � is nij.t˛/, then the transmissibility in that interval is (see Fig. 5)

Tij D 1 � .1 � 
/nij.t˛/: (2)

User i may become infected during any � ! i communication event at t˛ .
Assuming these events independent and equally probable, we can average Tij over
all the t˛ events to get

TijŒ
; T � D h1� .1 � 
/nij.t˛/i˛: (3)

If the number of � ! i events is large enough, we can use a probabilistic description
of (3) in terms of the probability P.nij D nIT / that the number of communication
events between i and j in a given time interval T is n. Thus

TijŒ
; T � D
1X

nD0
P.nij D nIT /Œ1 � .1 � 
/n�; (4)

which in principle can be non symmetric (Tij ¤ Tji). This quantity represents the
real probability of infection from i to j and defines what we called the dynamical
strength of the tie. Note that Tij depends on the series of communication events
between i and j , but also on the time series of calls received by i .

In [36] Newman studied the case in which both time series are given by
independent Poisson processes in the whole observation interval Œ0; T0�. Thus,
P.nij D nIT / is the Poisson distribution with rate �ij D wijT=T0, where wij is
the intensity of the tie, i.e., the total number of calls from i to j in Œ0; T0�, and so

QTijŒ
; T � D 1 � e�
�ij D 1 � e�
wijT=T0 ; (5)

which shows the one-to-one relationship between the intensity wij and the transmis-
sibility Tij in the Poissonian case: the more intense the communication is, the larger
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the probability of infection. However, as we have shown in [34] and in previous
sections, the real i ! j and � ! i series are far from being independent and
Poissonian. To proceed analytically, we approximate (3). For small values of 
 we
have 1� .1� 
/n ' 
n, while when 
 ' 1 we get that 1� .1�
/n ' 1 for n > 0.
Thus, the transmissibility for the two regimes is given by:

TijŒ
; T � D
(

 hnijit˛ for 
� 1

1 � P0
ij for 
 ' 1 (6)

where P0
ij D P.nij D 0IT / is the probability of no communication event in a

time window of length T . This approximation allows us to estimate Tij in a much
simpler way, since it depends now only on variables that can be measured from
the temporal activity. In fact, (6) explains the observed behavior found in [34],
since group conversations make hnijit˛ bigger in the real case than in the Poisson
approximation, while burstiness yields to larger values of the probability of no
communication in the real case than in the Poisson case and thus transmissibility
is larger in the latter than in the former situation.

For 
 ' 1, the larger the coefficient of variation cvij in a tie (i.e. the more
bursty it is), the larger the probability of no event P0

ij and thus the lower the
transmissibility of the tie. The same behavior is found for the lifetime of links: if
communication is concentrated in a short time period, then P0

ij is large and thus the
transmissibility is low. Consequently, the shorter the tie communication, the smaller
the transmissibility of the ties. Since the burstiness of human communication and
activity seem to be universal [3], empirical description of social networks only
by their topological structure and/or the intensity wij typically overestimates the
transmissibility power of ties.

Finally, we investigate whether this effect of human communication patterns
is correlated with the social structure around a particular node. As shown in the
previous section, intensity and lifetime of links are distributed differently among
neighbors for individuals with low and large social connectivity. Since lifetime
and burstiness of communication ties impact the transmissibility of links, we
expect that the dependence of time allocation of communication with connectivity
also translates into a dependence between ki and the total transmissibility of an
individual Ti D P

j Tij. Note that in the Poisson case and for small values of 
,

we get that QTij ' 
wijT=T0 and thus QTi ' 
 si T=T0, i.e., the transmission
power of a node is proportional to the strength of the node in this approximation.
However, in the real case Ti D P

j TijŒ
; T � depends both on the intensity and
dynamical patterns of communication. As we see in Fig. 6a, the burstiness of ties
makes individuals in general less powerful to transmit information than in the
Poisson case, in the sense that their total real transmissibility is smaller than shuffled
one. However, this is not an homogeneous effect in our database since, as it can be
seen in Fig. 6b, the relative difference between Ti in the real and shuffled cases
is larger for hubs or more connected people than for poorly connected people, a
manifestation in the process of information diffusion of the effect we have seen in
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Fig. 6 (a) Comparison between the total transmissibility of individuals in the real Ti and shuffled
QTi call records for a random set of 105 users in our database. Dashed line is the Ti D QTi line.

(b) Conditional average of relative difference between the real and shuffled total transmissibility
as a function of the social connectivity ki

the previous section (i.e. hubs have shorter ties). Note that this relative difference
increases with ki meaning that Ti does not grow linearly with ki (or si ) as QTi does.
Our findings show that neither ki or si are good predictors of the local spreading
power or influence of a node, especially for largely connected people or hubs. In
this sense, although in general static hubs (people with large ki or si ) have also
large dynamical transmissibility, the large variability shown in Fig. 6a implies that
this correspondence is not always true.

4 Discussion

In the last years there has been an increasing interest in characterizing the complex
topological structure of the underlying contact network and in understanding how
it affects the diffusion of information, innovation or opinions [37]. However, most
of these studies neglect the temporal dimension of human communication as the
fact that humans act in bursts or cascades of events [3, 24, 26, 34, 44, 49], most
of ties form and decay within the observation time period [18, 31] and there are
correlations between communication events [13, 24, 34, 51, 52]. These temporal
heterogeneities significantly affect the current description of social networks, where
ties are described by a static strength which usually only takes into account the
volume of communication or intensity wij. Although wij has been shown to reflect
the face-to-face interaction between two individuals [12], we have seen that the same
amount of communication events can correspond to ties with completely different
temporal properties, which indicates the necessity to incorporate temporal patterns
of human activity in the description and modeling of human interactions. Actually,
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in line with recent work on temporal networks [20, 28, 46, 47] we have shown that
the current definition of social ties can be largely improved by taking into account
simple temporal tie features, such as the level of burstiness of tie communication or
the lifetime of the tie.

Our main contribution is that temporal properties of tie activity also reveal impor-
tant information on the social topological structure around a given individual. This
correlation between human communication and network topology gives important
insights on the way in which people distribute their time across their network and,
at the same time, it also plays a fundamental role on more global phenomena,
such as influence and information spreading in social networks. Previous studies
showed that the aggregated time that people dedicate to their connections is affected
by cognitive and temporal constraints, which applies in particular to people with
larger social circles (hubs) [11,16,35]. Here we have seen that time and/or attention
constraints also reflect in the temporal properties of social ties. We observed in fact
that, on average, social connections of highly connected individuals not only are
weaker in terms of volume of communication, but they are also shorter in time.
The latter result signals a time allocation strategy of individuals in their social
neighborhood, which also affects the transmissibility of a given individual, i.e.,
her capacity to propagate a piece of information. In particular, we have found that
the static picture of networks in terms of social connectivity ki and/or intensity
of communication si , typically overestimates the power of individuals to transmit
information, an effect which is larger for more connected people.

Our mapping approach goes beyond the important application to information
diffusion and it also applies to the more general and critical problem in complex
networks of describing empirical temporal social networks [20]. We have shown,
in fact, that a simple way to account for the temporal properties of human
communication and still have a static representation of the social network, is by
using the transmissibility Tij as a measure of tie strength, instead of the volume
of communication (number of calls or total duration) wij. While the number of
communication events between a tie i ! j represents the static strength, the
transmissibility Tij represents the dynamical strength of a tie [34]. By definition,
in fact, Tij incorporates not only the volume of communication wij, but also all the
temporal inhomogeneities of human interaction (see (3)). The use of the dynamical
strength of ties TijŒ
; T � allows possible comparison of the network at different
time scales and thus it can be use to obtain essential information about how and
why temporal networks unfold in time. In Fig. 7 we compare a portion of the social
network where the weight of each link is given by the static (a) and the dynamical
(b) strength of the ties. The figure clearly shows that these two quantities may lead
to quite different pictures of the topological structure of the network.

More generally, this effective static structure of temporal networks might be used
in other areas of network research such as determination of influence/centrality [2],
community finding algorithms [14], targeting in viral marketing [21], etc., to analyze
the impact of the dynamical patterns of communication in those areas and to assess
more accurately the role played by individuals or groups in dynamical process on
social networks.
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Fig. 7 (a) Temporal and (b) static structure of the mobile phone network around a randomly
chosen individual where colors of the links are proportional to the strength of the ties. The strength
of ties is taken as wij for the static structure, while for the sake of comparison we take the effective
weight wij.
; T /

� D �T0=.
T / ln.1� Tij.
; T // for the temporal case. Note that in the Poisson
case wij D wij.
; T /

�. Parameters for the calculation are 
 D 0:5 and T D 15 days. It is
interesting to note that most of the strong ties present in the static structure become very weak
in the temporal picture due to the burstiness and/or lifetime of links
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49. Vázquez, A., Rácz, B., Lukács, A., Barabási, A.-L.: Impact of non-poissonian activity patterns
on spreading processes. Phys. Rev. Lett. 98, 158702 (2007)

50. Watts, D., Dodds, P.: Influentials, networks, and public opinion formation. J. Consum. Res.
34(4), 441–458 (2007)

51. Wu, T., Zhoud, C., Xiaob, J., Kurthsa, J., Schellnhubera, H.: Evidence for a bimodal
distribution in human communication. Proc. Natl. Acad. Sci. USA 107, 18803 (2010)

52. Zhao, Q., Oliver, N.: Communication motifs: a novel approach to characterize mobile
communications. In: NetMob2010 (2010). http://dl.acm.org/citation.cfm?id=1871694

http://dl.acm.org/citation.cfm?id=1871694


Temporal Networks of Face-to-Face Human
Interactions

Alain Barrat and Ciro Cattuto

Abstract The ever increasing adoption of mobile technologies and ubiquitous
services allows to sense human behavior at unprecedented levels of details and scale.
Wearable sensors are opening up a new window on human mobility and proximity
at the finest resolution of face-to-face proximity. As a consequence, empirical data
describing social and behavioral networks are acquiring a longitudinal dimension
that brings forth new challenges for analysis and modeling. Here we review recent
work on the representation and analysis of temporal networks of face-to-face human
proximity, based on large-scale datasets collected in the context of the SocioPatterns
collaboration. We show that the raw behavioral data can be studied at various
levels of coarse-graining, which turn out to be complementary to one another, with
each level exposing different features of the underlying system. We briefly review
a generative model of temporal contact networks that reproduces some statistical
observables. Then, we shift our focus from surface statistical features to dynamical
processes on empirical temporal networks. We discuss how simple dynamical
processes can be used as probes to expose important features of the interaction
patterns, such as burstiness and causal constraints. We show that simulating
dynamical processes on empirical temporal networks can unveil differences between
datasets that would otherwise look statistically similar. Moreover, we argue that,
due to the temporal heterogeneity of human dynamics, in order to investigate the
temporal properties of spreading processes it may be necessary to abandon the
notion of wall-clock time in favour of an intrinsic notion of time for each individual
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node, defined in terms of its activity level. We conclude highlighting several open
research questions raised by the nature of the data at hand.

1 Introduction

Although social relationships and behaviors are inherently dynamically evolving,
social interactions, represented by the paradigm of social networks [1] have long
been studied as static entities, mostly because empirical longitudinal data have been
scarce [2, 3], and often limited to relatively small groups of individuals. As new
technologies pervade our daily life, digital traces of human activities are gathered
at many different temporal and spatial scales and for large populations, and they
promise to transform the way we measure, model and reason on social aggregates
[4, 5] and socio-technical systems [6] that combine social dynamics and computer-
supported interaction mechanisms (e.g., large scale on-line social networks like
Twitter and Facebook). It is important to remark that, from a methodological point of
view, data from technological and infrastructural proxies give access to behavioral
networks defined in terms of the specific proxy at hand, and not to bona fide social
networks. Digital traces have been already used as proxies to study many specific
aspects of human behavior, such as geographic mobility [7–13], phone communica-
tions [14], email exchange or instant messaging [15–20], and even human mobility
and proximity in indoor environments (http://www.sociopatterns.org) [21–24].

Due to the often high temporal resolution of emerging data sets on human
interactions, the now customary representation of interactions in terms of static
complex networks, which has led to countless interesting analyses and insights
[1, 25–31], needs to be extended to take into account the dynamical properties of
the interaction patterns, bringing forth the field of “temporal networks” [32]. This
prompts fundamental and applied research on adapting and extending well-known
networks observables, metrics and characterization techniques to the more complex
case of a time-varying graph representations.

At the same time, the availability of high-resolution time-resolved data on human
interactions does not mean that any research question should be addressed by using
the full-scale and finest-resolution datasets, as they usually entail computational
challenges due to the sheer size of their digital representations. Given a specific
problem or research questions, understanding what is the most appropriate scale for
coarse-graining the raw behavioral data, and what are the mathematical techniques
and data representation that are best suited to create such synopses is a key problem
in its own merit [33–35], and has been already identified as such in the specific case
of epidemic simulation based on temporal social network data [36, 37].

In the context outline above, we review here recent research efforts, devel-
oped within the SocioPatterns collaboration (http://www.sociopatterns.org), based
on large-scale datasets that describe human face-to-face interactions in various
contexts, covering scientific conferences [21–23, 36, 38], hospital wards [39],
schools [40], and museums [38].

http://www.sociopatterns.org
http://www.sociopatterns.org
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2 Phenomenology

2.1 From Raw Proximity Data to Dynamical Networks

The data we describe here have been collected in deployments of the SocioPat-
terns (http://www.sociopatterns.org) social sensing infrastructure, described in
[21]. This measurement infrastructure is based on wearable wireless devices that
exchange low-power radio signals in a distributed fashion and use radio packet
exchange rates to monitor for location and proximity of individuals. The proximity
information is sent to radio receivers installed in the environment, which timestamp
and log contact data. Participants are asked to wear such devices, embedded in
unobtrusive wearable badges, on their chests, so that badges can exchange radio
packets only when the individuals wearing them face each other at close range
(about 1–1:5m). The onboard software of the devices is tuned so that the face-
to-face proximity of two individuals wearing the badges can be assessed with a
probability in excess of 99% over an interval of 20 s. A “contact” between two
individuals is then considered as established during a time period of 20 s if the
devices worn by these individuals exchanged at least one radio packet during that
interval. The contact is then considered as ongoing until a 20 s interval occurs such
that no packet exchange between the devices is recorded: at that point the contact
event is recorded together with its starting time and duration. Notice that in contrast
to other temporal network datasets in which interactions are instantaneous events,
here close-proximity and face-to-face contacts do have a finite duration.

The data gathered by the social sensing infrastructure thus give access, for each
pair of participants, to the detailed list of their contacts, with starting and ending
times: these data can be represented as a time-varying social network of contact
within the monitored community. The temporal resolution of 20 s in assessing
proximity sets the finest resolution for the temporal network representation we use,
which, in the following, will be assumed to be an ordered sequence of graphs,
each corresponding to a 20-s interval. Table 1 provides information and literature
references on the temporal networks that will be discussed in the following.

2.2 Microscopic View

For each pair of individuals i and j , the datasets contain a list of ` successive time
intervals ..t .s;1/ij ; t

.e;1/
ij /; .t

.s;2/
ij ; t

.e;2/
ij /; � � � ; .t .s;`/ij ; t

.e;`/
ij // during which i and j were

detected to be in close-range face-to-face proximity, where t .s;a/ij refers to the starting

time (hence the superscript s) and t .e;a/ij to the ending time of the time interval
number a.

Several quantities of interest can be defined to summarize the contact patterns of
each individual or pair of individuals, and to provide a statistical characterization of

http://www.sociopatterns.org
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Table 1 Partial list of the datasets on face-to-face proximity collected by the SocioPatterns
collaboration during 2009 and 2010 and discussed in the present paper

Name Date Venue Event type # persons Duration Reference

SG Apr–Jul
2009

Science
Gallery,
Dublin, IE

Exhibition �30,000 3 months [38, 41, 42]

ESWC09 Jun 2009 ESWC 2009,
Crete, GR

Conference �180 4 days [22, 23]

SFHH Jun 2009 SFHH, Nice,
FR

Conference �400 2 days [36]

HT09 Jul 2009 ACM
Hypertext
2009,
Torino, IT

Conference �120 3 days [43, 44]

PS Oct 2009 Primary school,
Lyon, FR

School �250 2 days [40, 45]

ESWC10 Jun 2010 ESWC 2010,
Crete, GR

Conference �200 4 days [46]

(OBG) Nov 2009 Bambino Gesù
hospital,
Roma, IT

Hospital �100 10 days [39]

(PRAMA) Apr 2010 Practice
Mapping,
Gijon, ES

Exhibition �100 10 days [47]

(HFARM) Jun–Jul
2010

H-Farm,
Treviso, IT

Company �200 6 weeks –

Deployments that did not involve face-to-face detection or had less than 100 participants are not
reported. Deployments with names in bold face correspond to publicly available datasets (see
references). Deployments with names in parentheses are listed for reference only

contact patterns. In particular, for each pair of individuals i and j (edge i -j ), their
list of contact time intervals yields a list of contact durations .�t.1/ij ; � � � ; �t.`/ij /, with

�t
.a/
ij D t .e;a/ij �t .s;a/ij for a D 1; � � � ; `. Several notions of weight wij for the edge i -j

can be defined on the basis of this list of contact durations, yielding weighted contact
networks that describe different aspects of the empirical sequence of contacts:

• Edge presence: wpij measures the contact occurrence (the superscript p stands
for “presence”), with wpij D 1 if at least one contact between i and j has been
established, and 0 otherwise.

• Frequency of occurrence: The frequency wnij D l indicates how many distinct
contact events have been registered between i and j , disregarding the length of
each contact (the superscript n is for “number”).

• Cumulative time in contact: The cumulative duration of the contact wtij DP
a �t

.a/
ij gives the sum of the durations of all contacts established between i

and j (hence the superscript t).
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Fig. 1 Distributions of the
face-to-face contact durations
measured in different
environments

At the level of each individual i , the above weights w can be aggregated over all
individuals j who had a contact with i , i.e., si D P

j wij, yielding the following
notions of node strength:

• s
p
i D

P
j wpij gives the number of distinct individuals with whom i has

established at least one contact; i.e., the degree ki of i in the behavioral contact
network.

• sni D
P

j wnij indicates the overall number of contacts in which i has been
involved.

• The cumulative contact time sti D
P

j wtij corresponds to the total sum of the
duration of all contacts involving individual i .1

Of course all the quantities described above can be measured over the whole
duration of the deployment, or for a restricted duration (for instance, 1 day, as is
natural for conferences or the museum deployment we describe below). The choice
of the aggregation time allows, for instance, to investigate the inter and intra-day
variability of interaction patterns among different individuals.

A first way to uncover the complexity of the data is through a study of the
statistical distributions of the duration of the contact events, and of the time intervals
between contact events. As shown in Figs. 1 and 2 and discussed in [21], broad
distributions spanning several orders of magnitude are observed in both cases: most
contact durations and intervals between successive contacts are very short, but very
long durations are also observed, and no characteristic timescale emerges. This
bursty behavior is a well known feature of human dynamics and has been observed
in a variety of systems driven by human actions [14, 48–50]. In the present case of
close-range contacts, no simple functional form such as a power-law distribution or
a log-normal distribution seems to fit the observed data over the full range of time

1Note that sti might be larger than the total time during which i has been in contact with any
individual, as i could be in contact at the same time with more than one individual.
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Fig. 2 Distributions of the
time intervals between two
successive contact events of a
given individual, aggregated
over the entire population

intervals. However, it is important to highlight a few important aspects of the contact
duration distributions of Fig. 1.

The first observation is that the distributions approximately collapse on one
another regardless of the specific context they refer to. This is remarkable as the
datasets refer to very different social environments: exhibitions (SG), where visitors
stream along a pre-defined path of a museum; Academic conferences (HT09,
ESWC09, ESWC10), where the same tightly knit community shares a small number
of social spaces for several days and meets according to a predefined schedule,
large-scale conferences (SFHH) where many people do not know each other and
very different social spaces coexist, such as plenary rooms and exhibition spaces. In
the case of the primary school (PS), the distribution is slightly narrower, possibly
due to strong schedule constraints such as the duration of breaks between lectures,
or to the fact that young children tend to have less long face-to-face interactions
than adults. Regardless of all these social, spatial and demographic differences,
face-to-face contact behavior appears to obey the same bursty behavior across all
contexts. This is an important fact for modelers, as it implies that processes relying
on contact durations can be modeled by plugging into the model the empirically
observed distribution, assumed to depend negligibly on the specifics of the contact
situation being modeled.

A second observation deals with the origin of the contact duration heterogeneity
of Fig. 1. It may be argued that the simultaneous presence of multiple timescales
of human contact is responsible for the broad distribution we observe. However,
as shown in [21] and related Supplementary Information, the contact durations
restricted to single individuals do exhibit the same broad distribution observed for
the entire social aggregate. This points to an intrinsic origin for the observed tem-
poral heterogeneity, rooted in the way single persons arbitrate their social contacts
and the use of their time. The temporal heterogeneity of contact durations, at the
individual and collective level, undermines a number of simple representations for
the contact network that implicitly assume some degree of statistical homogeneity.
For example, when dealing with contact networks for epidemiological purpose, it
is customary to summarize the contact networks between classes of individuals by
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using contact matrices [51] computed from averages of contact durations. Given
the highly skewed character of the actual distributions measured by using state-of-
the-art techniques, these representations need to be generalized in order to suitably
capture temporal and structural heterogeneities that may play a crucial role in
determining the evolution of dynamical processes over contact networks.

Perhaps the most striking feature of the observed distributions are their robust-
ness: the distributions of contact durations are extremely similar for very different
contexts, populations, activity timelines, and deployment conditions. In particular,
we observe the same distribution in deployments corresponding to very different
sampling of the population under study (from 30% for SFHH to almost 100%
for PS, HT09). This confirms the results of [21] that showed the robustness of
the contact duration distribution under further resampling of the data, aimed at
simulating data loss or limited population sampling. Moreover, although human
activity and contact patterns are highly non-stationary, as shown by an example
in Fig. 3, the contact duration distributions measured over different time windows
coincide [21], unveiling a statistical stationarity in an otherwise non-stationary
signal. This is consistent with similar analyses on other temporal networks, such
as proximity networks [52] and networks of cattle transfers between farms [53].

On the other hand, as displayed in Fig. 2, the distribution of time intervals
between successive contacts involving the same individual typically do depend
on the specific context at hand. The distributons are very similar for different
conferences (HT09, ESWC09, ESWC10, SFHH), but narrower for the museum
and the primary school cases. Moreover, in the school case (inset in Fig. 2),
spatial and behavioral sampling due to selecting only those contacts that occur
in the school playground significantly affects the distributions, even though their
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qualitative features stay unchanged. In general, this dependence on the context of the
distribution of interval durations between successive contacts means that, contrary
to pair-wise interactions, more complex temporal motifs that bear relevance to the
causal structure of the temporal network may depend on the specific environment.

Similar to the case of contact durations, broad distributions are also observed
for the lifetimes of simple structures in the contact network, such as groups of
individuals of size n C 1 (n D 0 corresponds to an isolated person, n D 1 to
a pair of individuals, and so on), as shown in Fig. 4. These broad distributions of
group lifetimes become narrower for increasing n, i.e., larger groups are less stable
than smaller ones.

2.3 Aggregated Network View

The sequence of contact events between individuals during a given time window
defines an aggregated contact network at the population level, which is a static
summary of the temporal network. In this network, each node is an individual, and a
link between two nodes i and j denotes the fact that the corresponding individuals
have been in contact at least once during the time window under consideration.
Whereas the overall topological structure of the temporal network can be encoded
in a static graph, the temporal activity of individual edges i � j can be summarized
by suitably defined weights for the edges, such as the number of times wnij the link
was established or the cumulative duration wtij of the contact events between i and j .

The time window considered for aggregation can range from the finest time
resolution of 20 s up to the entire duration of the data set. In many contexts, it is
natural to consider a specific temporal aggregation scale (i.e., daily), but different
aggregation levels typically provide complementary views of the network dynamics
at different scales.

Interestingly, and despite their static character, the structures of the aggregated
contact networks unveil important information about the contact patterns of the



Temporal Networks of Face-to-Face Human Interactions 199

101 102 103 104

w
t
ij

10-5

10-4

10-3

10-2

10-1

100

P
(w

t ij
)

SG
HT09
ESWC09
ESWC10
SFHH
PS

Fig. 5 Weight distributions
for the daily aggregated
networks. The weight wtij
gives the cumulated amount
of time spent in face-to-face
interaction during 1 day by
individuals i and j

population. Let us first consider the statistical distributions that are typically used
to describe a network. The distributions of degree (number of distinct individuals
with whom a given individual has been in contact) are typically narrow, with an
exponential decay at large degrees and characteristic average values that depend on
the particular context [38]. On the other hand, the distributions of the cumulative
contact durations are broad: most pairs of individuals have been in face-to-face
proximity for a short total amount of time, but a few cumulated contact durations
are very long. No characteristic interaction timescale can be naturally defined,
except for obvious temporal cutoffs due to the finite duration of the measurements.
As already observed in the case of the distributions of contact durations, Fig. 5
shows the similarity of the distributions obtained in very different contexts: different
populations, in which individuals behave with very different goals in different
spatial and social environments, display a strikingly similar statistical behavior.

Despite their statistical similarities, the aggregated networks of face-to-face
proximity might have very different structures, as revealed by a visual inspection of
simple force-based network layouts. For instance, Fig. 6 shows that the aggregated
network of interactions during a conference day is much more “compact” than the
ones describing the interactions between museum visitors. In fact, as shown in [38],
a typical daily aggregated network has a much smaller diameter in a conference
context than in the museum case. This difference is due to the different patterns of
presence of the attendees at the monitored venue, and also to the different social
contexts: in conferences participants are present during the entire conference dura-
tion and are usually engaged in interacting with known individuals and in meeting
new persons. Conversely, the distribution of visit durations in the museum case is
close to a log-normal, with a geometric mean around 35min, and the visitors’ main
goal is not to meet other visitors but rather to explore the space following a partially
pre-defined path. As a consequence, museum visitors are unlikely to interact directly
with other visitors entering the venue more than one hour after or before them, thus
preventing the aggregated network from having a short diameter: there is limited
interaction among visitors entering the museum at different times, and the network
diameter defines a path connecting visitors that enter the venue at successive times,
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Fig. 6 Daily aggregated networks in the HT09 and SG deployments. Nodes represent individuals
and edges are drawn between nodes if at least one contact event was detected during the
aggregation interval. Left: aggregated network for 1 day of the HT09 conference. Right: one
representative day at the SG deployment. The network layouts were generated by using the force
atlas graph layout implementation available in Gephi [54]

Fig. 7 School (PS) daily aggregated social network. Only links that correspond to cumulated face-
to-face proximity in excess of 5min are shown. The color of nodes indicates the grade and class
of students. Grey nodes are teachers. The network layout was generated by using the force atlas
graph layout implementation available in Gephi [54]

mirroring the longitudinal dimension of the network. These findings show that
aggregated network topology and longitudinal/temporal behavioral properties are
deeply interwoven.

Finally, the aggregated network of contacts among school children reported
in Fig. 7 represents an intermediate case: children of each class form a cohesive
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structure with many links, but links between different classes, and in particular
between children of different grades, are less frequent. This structure results from
several combined factors that include (1) the spatial structure of the school, the
grouping of students into classes, (2) the fixed association of school classes with
given room for school activity, (3) the particular schedule of the school, according
to which students do not go to the schoolyard or canteen at the same time and
their movement as a group follows predefined spatio-temporal trajectories [40],
(4) age-related homophily effects [55], which also play a role when children are
free to move in the same space, such as in the playground. Overall, as shown
in Fig. 7 the cumulative contact network displays a visible community structure
that can be recalled using standard community-detection techniques. However, it is
important to remark that the cumulated network projects out a lot of information on
temporal communities, i.e., on nodes that share similar spatio-temporal trajectories
and similar contact histories. For example, if a group X of nodes mixes strongly
with a different group Y during a time interval Œt1; t1 C T �, and the second group
of nodes Y has some connections with a third group Z during Œt2; t2 C T �, with
t2 > t1 C T , the cumulative network representation will lose information on the
group identities ofX and Y and only show a single groupX[Y with connections to
Z. The problem of defining and identifying temporal communities in a time-varying
networks [56, 57] is a central one when trying to mine out an activity schedule
(such as the school schedule) from electronic records of human interactions, and
requires to suitably define null models for temporal networks that incorporate the
above described heterogeneities.

These few examples show how similar statistical properties in terms of hetero-
geneity of contact event durations and overall face-to-face presence can in fact hide
very distinct structures of aggregated networks, that are shaped by the dynamical
unfolding of the contacts: the study of static aggregated networks sheds in this
respect some light on the system’s dynamics.

As in other cases of weighted networks [10], more insight can be gleaned
by studying the correlations between the weights, which are here the trace of
the contact dynamics, and the topology. Let us consider the strength s of each
node, defined as the sum of the weights of all links inciding on it [10]. In our
case, this corresponds, for each individual, to the cumulated time of interaction
with other individuals. In social interaction contexts, it can be considered as at
least as important as the number of distinct individuals contacted (the degree in
the aggregated network), as it is a measure of the resources (time) an individual
committed to social interactions. Correlations between the strength and the degree
are of course expected: even for completely random durations of the contact events,
a linear dependency of the average strength hs.k/i of nodes of degree k is obtained,
with hs.k/i 	 hwik, where hwi is the average link weight. A deviation of hs.k/i=k
from a horizontal line thus denotes the existence of non-trivial correlations: for
instance, a decreasing hs.k/i=k, as observed in large-scale phone call networks [14],
indicates that individuals who call more distinct individuals spend on average less
time in each call than individuals who have less links.
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In the face-to-face behavioral networks we review here, two distinct behaviors
have been observed, depending on the context, as shown in Fig. 8. In the museum
data set (SG), hs.k/i=.hwik/ has a clearly decreasing trend (that can be fitted by a
power law with a negative exponent). On the other hand, for the aggregated networks
describing the contacts in conferences (HT09 and ESWC10), hs.k/i=.hwik/ dis-
plays consistently an increasing trend. In school settings, a rather flat hs.k/i=.hwik/
is observed when the contacts occurring in the whole school (PS) are taken
into account. This behavior has also been observed independently (Smieszek,
private communication), in another dataset describing the proximity patterns of
highschool students [24]. However, if only the contacts occurring in contexts where
the children’s movements and contacts are not constrained (PS, playground) are
considered, an increasing trend is found.

The contrasting results obtained in different contexts show that processes such as
information diffusion [58,59], frequently occurring in social contexts, will unfold in
different ways. The number of distinct persons encountered does not contain enough
information to estimate the spreading potential of an individual: a super-linear
dependence of hs.k/i with k hints at the importance of “super-spreader nodes” with
large degree [58, 59] while a sub-linear behavior indicates that the decrease in the
weights of individual contacts mitigates the expected super-spreading behavior of
large degree nodes.

3 Modeling Face-to-Face Dynamical Contact Networks

The phenomenology outlined in the previous sections calls for the development of
new modeling frameworks for dynamically evolving networks, as most modeling
efforts have been until recently devoted to the case of static networks [26–30].
Among recent models of dynamical networks [52, 60–64], we review here a model
of interacting agents developed in [63, 64] in order to describe how individuals
interact at short times scales.
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The model considers N agents who can either be isolated or form groups
(cliques). Each agent i is characterized by two variables: (i) his/her coordination
number ni D 0; 1; 2:::; N � 1 indicating the number of agents interacting with
him/her, and (ii) the time ti at which ni was last changed. At each (discrete) time
step, an agent i is chosen randomly. With a probability pn.t; ti / that may depend
on the agent’s state, on the present time t and on the last time ti at which i ’s state
evolved, i updates his/her state, under the following rules:

(i) If i is isolated (ni D 0), another isolated agent j is chosen with probability
proportional to p0.t; tj /, and i and j form a pair. The coordination number of
both agents are then updated (ni ! 1 and nj ! 1).

(ii) If the agent i is already in a group, (ni D n > 0), with probability 
 the agent i
leaves the group; in this case, the coordination numbers are updated as ni ! 0,
and nk ! n�1 for all the other agents k of the original group. With probability
.1 � 
/ on the other hand i introduces an isolated agent j in the group, chosen
with probability proportional to p0.t; tj /. The coordination numbers of all the
interacting agents are then changed according to the rules nj ! n C 1 and
nk ! nC 1 (for all k in the group).

These rules define a dynamic network of contacts between the agents, whose
properties depend on the probabilities pn, which control the tendency of the agents
to change their state, and on the parameter 
, which determines the tendency either
to leave groups or on the contrary to make them grow.

Constant probabilities pn correspond to Poissonian events of creation and
deletion of links between individuals, and hence to narrow distributions of contact
times. On the other hand, the introduction of memory effects in the definition of
the pn is able to generate dynamical contact networks with properties similar to
the ones of empirical data sets [63, 64]. In particular, a reinforcement principle can
be implemented by considering that the probabilities pn.t; t 0/ that an agent with
coordination number n changes his/her state decrease with the time elapsed since
his/her last change of state. To this aim, we can impose pn.t; t 0/ D pn.t � t 0/, with
pn decreasing functions of their arguments. This is equivalent to the assumption
that the longer an agent is interacting in a group, the smaller is the probability that
s/he will leave the group, and that the longer an agent is isolated, the smaller is the
probability that s/he will form a new group.

The evolution equations of the number of agents in each state can be solved self-
consistently at the mean-field level [63, 64] in various cases. One of the simplest is
given by pn functions scaling as 1=.t � t 0/, pn.t; t 0/ D bn

1C.t�t 0/=N , with moreover
bn D b1 for every n 
 1 in order to reduce the number of parameters (the model’s
parameters are then b0, b1, and 
). The probability distributions of the time spent in
each state can then be shown to be given by power-law distributions

P0.�/ / .1C �/�1�b0.3
�1/=.2
�1/
Pn.�/ / .1C �/�.nC1/b1�1 for n 
 1: (1)
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Fig. 9 Distribution Pn.�/ of
durations of groups of size
nC 1, for N D 1; 000 agents
with b0 D b1 D 0:7,

 D 0:8, and a number of
time steps Tmax D N � 105.
The dashed lines correspond
to the analytical predictions
(1). From [64]

As shown in Fig. 9, these predictions are confirmed by numerical simulations.2 The
distributions of time intervals between successive contacts of an individual are as
well power-law distributed, and the aggregated contact networks display features
similar to the empirically observed ones.

The model can be easily extended to include an intrinsic heterogeneity between
agents, possibly reflecting a difference in their “sociability”, or to model populations
with a varying number of agents. For instance, it is possible to consider a museum-
like situation in which agents enter the system, remain for a certain duration, and
then leave without the possibility to re-enter it. Power-law distributions of contact
durations are still observed, and the shape of the aggregated contact network closely
resembles the ones observed in the museum setting. In addition, it would be possible
to consider agents belonging to different groups with different mixing properties, in
order to mimic as well for instance the contact dynamics in a school. Overall, this
model’s versatility makes it an interesting tool for generating artificial dynamical
contact networks.

4 Dynamical Processes on Dynamical Networks

Many networks are the support of dynamical processes of various nature, from
random walks to synchronization or spreading phenomena [30]. Most related studies
have however considered, as a first approach, dynamical phenomena unfolding
on static networks. It has been shown how different topological characteristics
impact the unfolding of phenomena such as epidemic spreading, with important

2The system is in a stationary state for b1 > 0:5, b0 > .2
 � 1/=.3
 � 1/ and 
 > 0:5, while the
self-consistent solution breaks down outside of this parameter region, and non-stationary behavior
with the possible formation of large (system-size) groups can be observed [63, 64].
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consequences such as the suppression of the epidemic threshold in very heteroge-
neous networks [58].

To date, few research efforts have dealt with the fact that the networks supporting
these phenomena might have a dynamics of their own. Through the study of toy
models of co-evolution, in which the network dynamics itself is defined as a reaction
to the process unfolding on top of it, it was shown that the interplay of these two
dynamics can lead to interesting and sometimes counter-intuitive effects [60]. In
this context, the study of dynamical processes on dynamical (temporal) networks
can have a two-fold purpose. On the one hand, it can guide the design of more
realistic models, applied for instance to epidemic spreading. Dynamical processes
on temporal networks can be studied to understand the relative roles of the different
time scales at play, and what level of information is actually needed for the
description of these processes [36]. In addition to that, the use of very simple
dynamical processes, such as random walks or deterministic spreading, can be
considered among the techniques developed for the study and characterization of
dynamical networks, such as the ones put forward in [32,38,53,65,66]. In particular,
dynamical processes can serve to probe the role of causality constraints in temporal
networks, comparing the outcome of a given process (i) on the dynamical network
describing the real temporal sequence of events, and (ii) on aggregated networks in
which the information about the precise order of events is discarded.

In this section we focus on a simple snowball SI model of epidemic spreading
or information diffusion [59]. Individuals can be either in the susceptible (S) state,
indicating that they have not been reached by the “infection” (or information) yet,
or they can be in the infectious (I) state, meaning that they have been infected by
the disease (or that they have received the information) and can further propagate
it to other individuals. In the simplest, deterministic version of such a process,
every contact between a susceptible individual and an infectious one results in a
transmission event, which instantaneously turns the susceptible individual into an
infected one according to S C I ! 2I . In this simple model, infected individuals
do not recover, i.e., once they transition to the infectious state they indefinitely
remain in that state. The process is initiated by a single infected individual (“seed”),
typically chosen at random. Despite its simplicity, such a schematic model provides
interesting insight on causality constraints in dynamical networks, and on how
different temporal contact patterns can lead to different outcomes. This is partially
due to the fact that the SI process yields the fastest possible information propagation
from the seed node to the rest of the network, thus bounding other more complex
and realistic invasion processes.

4.1 SI Model as a Probe of Temporal Network Structure

Let us first consider the simplest measure of the unfolding of an SI process in a
population, as given by the temporal evolution of the number of infected individuals
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Fig. 10 Incidence curves showing the number of infected individuals as a function of time for a
susceptible-infectious (SI) process simulated over 1 day of HT09 (top-left panel), SG (top-right
panel) and PS (bottom-left panel) temporal network data. In the HT09 and SG cases (top plots)
each curve corresponds to a different seed node and is color-coded according to the starting time
of the spreading process. In the PS case (bottom) school, each curve is an average over the dynamics
simulated for different seed nodes belonging to a given class. The inset shows individual curves
for different seeds chosen in two distinct classes

(i.e., the incidence curve). Figure 10 shows that the incidence curves in different
environments look qualitatively very different.

In the case of a typical day at a conference (HT09, top-left panel) few trans-
mission events occur until the conference participants gather for the coffee break at
11am, even if the seed was present early. A strong increase in the number of infected
individuals is then observed, and a second strong increase occurs during the lunch
break (12 p.m.). As a result of the concentration in time of transmission events,
spreading processes initiated by different seeds all achieve very similar (and high)
incidence levels after a few hours, regardless of the initial seed and of its arrival time.
Even epidemics started by latecomers can reach about 80% of the community.

A very different picture is observed in the museum case (top-right panel), where
the arrival time of the seed individual has a strong impact on the epidemic size:
at any point in time, the number of infected individuals is strongly correlated with
the arrival time of the seed. This is due to the fact that visitors stream through the
venue, and those who left before the arrival time of the seed cannot be reached by
the infection. Furthermore, in many cases the daily aggregated network displays
multiple disconnected components, so that the spreading process stops soon after
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the seed leaves and only reaches a very small portion of the total population [38].
Even on days with many visitors and a globally connected daily aggregated network,
the incidence curves do not present sharp gradients as in the conference case, and
later epidemics are unable to infect a large fraction of daily visitors.

In the school case (bottom-left panel) almost all students arrive at the beginning
of the day, hence no effects due to heterogeneous arrival times can be observed.
Similarly to the conference case, the simulated dynamics displays jumps in the
number of infected individuals at specific times of the day, regardless of the seed
node, and by the end of the day almost all individuals get infected. Heterogeneous
invasion dynamics can be observed depending on the class of the seed node,
and the differences can be related to the scheduled activities and movements of
school children. Conversely, different choices for the seed node within a single
class (bottom-left panel, inset) yield very similar incidence curves. This can be
understood as a result of different within-class and cross-class contact patterns:
contacts within individual classes are rather homogeneous compared to cross-class
contacts, so that the SI process quickly reaches most nodes of the seed’s class. The
invasion of other classes is controlled by slower temporal structures of the contact
network, which are determined by the school schedule and determine the sensitivity
on the initial class.

To characterize in a more quantitative fashion the importance of the temporal
structure of the network on the spreading dynamics, we can consider the number
of individuals who are reachable from the seed node through paths in the (daily)
cumulative contact network, and compute what fraction of them are actually reached
by an SI process that takes place over the temporal contact network. The value of this
ratio displays markedly different distributions in the museum and in the conference
case [38]: at a conference almost all the individuals who are reachable along the
cumulative contact network always get infected by the end of the day, whereas in
the museum case this ratio is often much smaller than 1. Therefore, studying the
dynamics of a simple SI process can uncover differences in the temporal structure
of human proximity networks that cannot be detected by using simpler statistical
indicators (e.g., the probability distributions of contact durations). This calls for
more work aimed at using generic dynamical processes over temporal networks to
define a new class of time-aware network observables that can expose important
differences and similarities.

4.2 Causality-Respecting Paths

The differences in spreading patterns outlined above are due to the causality
constraints inherent in the temporal character of the contact network: for instance,
if node i interacts first with node j and then with node k, a message or infectious
agent can travel from j to k through i , but not in the opposite direction, while in a
static network both events would be equally possible.
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It is therefore interesting to study the spreading paths of the SI process on
a temporal network and on the corresponding aggregated network, as mentioned
in the above Sect. 4.1. To this aim, for each seed node we define a transmission
network along which the infection effectively spreads in the temporal network (i.e.,
the network whose edges are given by S $ I contacts). Therefore, the distance
along the transmission network between the seed node and another arbitrary node
i gives the actual number of transmission events that occurred before the spreading
process reached i , and consequently it is the length of the fastest path from the
seed individual to the infected one which respects the causality constraints of the
temporal network [53, 67, 68].

On the other hand, in an aggregated, static view of the contact network the
spreading would follow the shortest path over the network aggregated from the time
the seed first appears, as the infection can only spread along interactions occurring
after the arrival of the seed node. We call this network a partially aggregated
network.

As shown in Fig. 11, the distribution of lengths of the fastest paths turns out to
be broader and shifted toward higher values than the corresponding shortest-path
distributions. This holds both for the conference and for the museum case, and
has also been observed in other cases [68]. The actual number of intermediaries
is therefore larger on a temporal network than would be predicted by a propagation
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scheme based on a static network. This difference can be understood by considering
a similar example as discussed above: if node i is infected and interacts with node
j , who then interacts with node k before i interacts with k, the actual (fastest)
spreading path between nodes i and k has path length 2, while the shortest path has
a unitary path length.

In settings in which each transmission event has a cost, or is associated with the
possibility of signal loss or attenuation, such differences might play an important
role and temporal effects should accordingly be taken into account carefully.

4.3 Activity Clocks

The results of the previous subsection show that, depending on the environment and
on the time at which the spreading process is initiated, different spreading dynamics
can be obtained. In particular, the time at which a given node is reached by the
information or infection may strongly depend on collective activity patterns. In the
context of message routing in networks of mobile devices [69–72], the distribution
of elapsed times between the generation of the message and its arrival at given
nodes is often considered as a way to evaluate the performance of a spreading
protocol [73–76]. However, the non-stationary and bursty behavior of the contact
and proximity networks imply that the distribution of delays between message
injection and message delivery at a given node may in fact depend importantly on the
time of injection of a message, or on specific details of contact and activity patterns.
The left panel of Fig. 12 shows this for the case of a message that spreads over the
HT09 temporal contact network according to a simple SI process initiated at two
different points in time: the distribution of arrival delays computed in terms of wall-
clock time is extremely sensitive to the injection time of the message and displays
strong heterogeneities that cannot be captured by any simple statistical model. It is
thus important to devise more robust metrics for message delivery that factor out
non-stationary behaviors and temporal heterogeneities, allowing on the one hand to
carry out more objective comparisons of different protocols for message spreading,
and on the other hand to validate the models of human mobility (and the ensuing
temporal networks) that are used to design and inform such protocols.

Some progress in the direction outlined above can be made by giving up the
global notion of wall-clock time in favor of a node-specific definition of time. We
imagine that each node has its own clock, and that this clock only runs when the
node is involved in one or more contacts. Since the clock measures the amount of
time a given node has spent in interaction, we refer to this clock as an “activity
clock”. All activity clocks are set to zero at the beginning of the spreading process,
when the initial message is injected into the network. Thus, the activity clock of a
node measures the amount of time during which that node could have received a
message propagated along the links of the temporal network, i.e., it ignores the time
intervals during which the node was disconnected from the rest of the network.



210 A. Barrat and C. Cattuto

Fig. 12 Log-binned distribution of message arrival delays. The distributions are computed by
simulating a simple SI process over the HT09 temporal contact network, for two different injection
times of the initial message (blue crosses and red circles). Left: the delay interval is defined as the
wall-clock time difference between the arrival of the message at a given node and the injection time
of the message. Right: the delay interval distribution is computed by using node-specific activity
clocks that only run when nodes have active links (proximity relations) to other nodes. That is,
each node has a specific notion of “intrinsic” time that is defined as the cumulated time it spent in
contact with other nodes

In this context, the message delivery delay for node i is defined as the value
of its activity clock when the message is received, i.e., it is the elapsed time node
i has spent in contact with others, from the injection time of the initial message
up to the moment when the message is received by i . The right panel of Fig. 12
shows the distributions of delivery delays computed in terms of activity clocks.
The distributions exhibit a smooth dependence on activity-clock time, without the
strong heterogeneities observed when using wall-clock time. Most importantly, they
now collapse onto one another, i.e., they are robust with respect to changes in the
injection time of the message. Strikingly, they are also robust with respect to the
context: as reported in [77], the same distribution is obtained for spreading processes
simulated in conferences with very different schedules and contact densities.

It is important to remark that synthetic temporal networks of human contact
are typically generated on the basis of a number of accepted models for the
underlying human mobility in space. The quality of the models is often assessed
on the basis of their ability to reproduce simple statistical observables of the
temporal network, such as the probability distribution of contact durations and
the distribution of times between successive contacts of a node. However, when
computing the distributions of delivery delays for an SI process in terms of activity
clocks, strong differences emerge between the accepted generative models and the
empirical temporal networks. Specifically, as reported in [77], most of the accepted
models yield delay distributions that are much narrower than those of Fig. 12, thus
failing to reproduce the empirical phenomenology. This points to the need for
further modeling work to design generative models of temporal networks that can
correctly reproduce the empirical distributions. Notice that such differences only
become visible on using activity clocks in combination with dynamical process
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on the temporal network, used as a probe of properties that cannot be captured by
means of customary metrics. For example, the comparison between the left and right
panels of Fig. 12 shows how suitable definitions of “time” based on activity metrics
of the temporal network have the power to uncover regularities that are otherwise
completely shadowed by the intrinsic heterogeneities of the system. At the same
time these results call for more research in several directions. In particular, it would
be important to:

• Define and characterize activity clocks based on different types of node and edge
metrics for temporal networks (e.g., defining time as the cumulated number of
contact events, rather than as the elapsed time in contact),

• Express in terms of activity clocks the evolution of simple dynamical processes
taking place on temporal networks,

• Model the form of the delay distributions observed in simulation for paradigmatic
dynamical processes such as SI spreading taking place on temporal networks.

5 Conclusion

The study of empirical temporal networks is receiving increasing attention because
of the availability of new data sources and because of their relevance for the
detection, modeling and control of phenomena in a broad variety of socio-technical
systems. To date, key questions are still open about temporal networks and
dynamical processes over temporal networks.

Here we focused on high-resolution empirical temporal networks of human
proximity, provided a phenomenological overview of some important properties,
and reported on the impact that such properties have on paradigmatic epidemic-
like processes that take place over temporal networks, with potential applications
to diverse domains such as information spreading or epidemic modeling. We
remark that the consolidated toolbox of statistical indicators, network metrics
and generative models for static networks that has been developed over the last
decade cannot be trivially generalized to the case of temporal networks. More
research is thus needed in order to identify dynamical extensions of the observables
designed for static network, to uncover dynamical network motifs [53, 66], and
to explore entirely new characterization techniques that expose important features
of the temporal-topological structure of the networks. In this respect, it will be
probably fruitful to investigate simple dynamical processes over networks as a tool
for uncovering relevant patterns, and as an aid to constrain and evaluate generative
models for temporal networks.

We also notice that in the context of many applicative domains it is very difficult
to characterize separately the dynamics of the network and that of the relevant
dynamical process (e.g., the dynamics of a contact network and the dynamics of
an epidemic unfolding over it): depending on the specific process, on its timescales,
and on the set of properties of the process that one aims at modeling, the temporal
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structure of the network can have a profoundly different relevance. For example,
it has been shown that for flu-like epidemic processes, with latent and infectious
timescales of the order of a few days, the temporal structure of the underlying human
contact networks is negligible if one aims at modeling just the peak time of the
epidemics, and is important if the goal is to model the size of the epidemics [36].
Developing a more systematic understanding of the impact that the temporal
structure of a network has on a given observable is an open challenge.

The above remarks are related to another important problem, that of coarse-
graining temporal network data when either explicit node/edge attributes are
available or node/edge activity patterns can be clustered into classes of similar
behavior. When dealing with human contact networks, this is the case of many
contexts in which the population under study is structured because of roles (e.g.,
hospitals) and/or spatio-temporal constraints on group mobility and interactions
(e.g., schools). In particular, inferring behavioral classes from temporal network
data requires algorithms to mine for dynamical communities of nodes or edges that
extend those available for static networks, as a temporal network may have sharply
defined classes of dynamical behavior that completely disappear on considering
aggregated networks obtained by projecting out time. To this end, machine learning
techniques based on node/edge features or on entire activity timelines may prove
effective in uncovering and characterizing behavioral regularities hidden in temporal
networks. When classes are known (e.g., explicit role-based classes within a hospital
population), or discovered via time-aware community detection techniques, it is
often insightful to consider aggregated representations of the data based on the
class attributes, such as the contact matrices commonly used in epidemiology. These
customary representations, though, have been defined and investigated in order to
coarse-grain static interaction networks, and they need to be generalized so that
they can be used to summarize temporal networks in a way which is suitable for the
relevant applicative context.

Progress in the above directions of creating synopses of temporal network data
would greatly help in defining “parsimonious” models for dynamical processes,
that only retain the necessary amount of information about the underlying temporal
network. This also calls for work on reconciling different scales of representation of
temporal network data, so that properties and dynamical processes at different levels
can be related to one another. In consideration of the coming deluge of behavioral
information represented in the form of temporal networks, the ability to create
parsimonious but informative representations will be an increasingly valuable asset
for the applications of network science.
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Social Insects: A Model System for Network
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Abstract Social insect colonies (ants, bees, wasps, and termites) show sophis-
ticated collective problem-solving in the face of variable constraints. Individuals
exchange information and materials such as food. The resulting network structure
and dynamics can inform us about the mechanisms by which the insects achieve
particular collective behaviors and these can be transposed to man-made and social
networks. We discuss how network analysis can answer important questions about
social insects, such as how effective task allocation or information flow is realized.
We put forward the idea that network analysis methods are under-utilized in social
insect research, and that they can provide novel ways to view the complexity of
collective behavior, particularly if network dynamics are taken into account. To
illustrate this, we present an example of network tasks performed by ant workers,
linked by instances of workers switching from one task to another. We show how
temporal network analysis can propose and test new hypotheses on mechanisms of
task allocation, and how adding temporal elements to static networks can drastically
change results. We discuss the benefits of using social insects as models for complex
systems in general. There are multiple opportunities emergent technologies and
analysis methods in facilitating research on social insect network. The potential for
interdisciplinary work could significantly advance diverse fields such as behavioral
ecology, computer sciences, and engineering.
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1 Introduction

1.1 Social Insect Biology

There are currently over 1.7 million described species on earth and 1 million of
these are insects. Insects can be found in nearly all habitats and the earliest insects
are thought to have evolved 400 million years ago [39, 96]. Within this exceptional
group there exists an even more exceptional group: the social insects. Though they
only represent 2% of insect species, social insects may constitute up to 80% of
insect biomass and in total outweigh vertebrates by 7 to 1 [41, 89, 104]. They are
known to be one of the most ecologically successful groups in nature, dominating
most terrestrial habitats. Division of labor is often cited as a primary reason for their
ecological success, particularly in ants [42, 72, 90, 103].

Social insects, including particularly termites, ants, bees and wasps, live in family
groups of up to millions of members, called colonies. Colonies contain only one
or few “queens”, who lay eggs and ensure colony reproduction. The rest of the
colony is primarily composed of workers and sometimes males. Workers ensure the
maintenance and growth of the colony. When a colony matures, it produces sexuals,
male drones and female queens, which leave the colony to mate and establish new
colonies.

The reproductive division of labor between queens and workers is an essential
component of eusociality or “true sociality”. Although workers do not reproduce
themselves, they gain indirect fitness through the queen because queens and workers
share a large proportion of their genes. This leads to extreme cooperation between
individuals within a colony and thus group-level optimization of colony features.

1.2 Information Exchange Networks in Social Insects

Social insect societies are complex self-organized systems. They display sophis-
ticated problem-solving that emerges from relatively simple individual behaviors.
For example, ant and bee colonies can select the best among several nest sites
that differ along multiple dimensions by a consensus-decision-making process that
resembles a voting procedure. They also demonstrate division of labor, which
involves individual workers adaptively allocated to different tasks (e.g. caring for
eggs, larvae, and pupae or brood care; building; foraging; defense; etc.), in a way
that is robust to change in demand and to individual failure or even to loss of large
numbers of workers. Many of these processes are regulated by interactions between
the individual agents within the colony. As such the structure and dynamics of the
network of interactions will affect overall colony functioning.

Information-sharing between nestmates is thus necessary for the coordination of
social insect colonies. The most commonly known means of communication among
social insects are pheromone trails. However, social insects use a wide range of types
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of communication including visual, acoustic, tactile, vibration, and chemical cues
other than pheromone trails [37, 42]. Each of these modalities of communication
has properties that could affect information flow in complex ways. For example,
broadcast cues like volatile pheromones will likely have a greater range than an
individual-specific cue like antennation (touching with antennae, which contain
sensory organs). Broadcast cues also travel faster, though less reliably than contact
signals. The type of communication will fundamentally affect network structure, as
it affects how many links a single communication event creates and how connected
the network will be. It also affects network dynamics by changing the speed and
reliability of information flow. As such, we might expect that the structures and
properties of the interaction networks for each of these methods of communication
could be different and optimized for different constraints.

For example, different species of ants are optimized for different environments.
When workers in mass-recruiting ants find a new food source, they lay pheromone
trails on the return trip to the colony. These pheromones serve to both recruit new
workers to exploit the food source as well as guide these foragers to it. Successful
foragers typically add to the pheromone trails on the return trip. This creates a
feedback loop where the better the food source, the more foragers will be recruited to
exploit it, allowing the ants to quickly and efficiently exploit resources. In addition,
this enables ants to find the shortest path to a food source through a self-organized
process [7, 19]. However, studies have shown that, although pheromone laying ant
species are capable of quickly exploiting food sources, they cannot quickly switch
to a new, better food source because they get locked into exploiting the food source
with the existing pheromone trail [8, 19, 54]. There is evidence suggesting that this
phenomenon, linked to symmetry-breaking, could be explained by non-linearity of
individual choice behaviors in response to signal strength [54]. This suggests that
mass-recruiting species are better suited to less variable environments.

Other species have developed different means of recruitment and communication
about food source locations. For example, some species engage in “tandem-
running,” where a worker who finds a food source returns to the colony and recruits
a second individual which then follows the leader back to the site by maintaining
antennal contact. Such recruits, having learned the location of the resource, can then
return and recruit more individuals in turn, thereby creating a feedback loop which
increases the total number of individuals having knowledge of the food site location
and who can contribute to its exploitation. Studies have shown that this means of
recruitment is much better suited to exploiting sporadic and ephemeral food sources
because any time an individual forager returns from a new food source, it is able to
immediately recruit other workers to it [33, 83].

1.3 Why Should We Care About Social Insects?

Social insects must also balance many simultaneous constraints, such as efficient
communication and movement within the colony with nest defense and limited
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disease propagation. This is particularly interesting because man-made networks
are also often faced with multiple constraints and social insects could serve as good
model systems. For example, balancing efficient movement in termite colonies with
limiting disease spread [76, 77] can easily be applied to efficient data transmission
in computer networks while limiting the potential for spreading viruses or other
harmful programs. Furthermore, balancing efficient movement and communication
within the colony with effective nest defense could have military applications.

Colonies are sometimes spatially organized such that workers show fidelity to
certain areas of the nest [44, 92]. There are often relationships between spatial
location of individual workers and their task specialization [82,92], age [91], and/or
body size [44]. Although it is unclear whether spatial location is driving these
relationships, it is clear that the spatial location of interacting workers will change
the structure of interaction networks [10, 80]. The physical nest structure itself can
also affect information flow by constraining interactions, thus limiting global and
enhancing local information flow.

Many biological networks, including social insect networks, are thought to
approximate scale-free networks [3,4,31]. Specifically, the connectivity (or degree)
of biological networks often follows a power law distribution. Scale-free networks
share certain properties that make them particularly interesting to study. They are
typically composed of several hubs, or more central nodes, and a large number of
nodes with few connections. They also belong to a class of networks known as small
world networks, which have the property of rapid communication between nodes
throughout the network. Lastly, scale-free networks are often robust or resilient to
the removal of random nodes.

Although many biological networks have been shown to be scale-free (metabolic
networks, [47]; protein–protein interactions networks, [60]; gene expression net-
works, [70]; gene interactions, [98]), there is still some question as to how prevalent
scale-free networks are in biological systems [52]. In the case of social insect
networks, there is yet to be a clear answer. Because the size of social insect
colonies is often small (naturally limited to no more than a few hundred individuals),
natural scales may emerge in a network and also limit the power of model-selection
approaches to detecting scale-free phenomena.

In Sect. 2, we review the current literature and show that degree distribution in
social insect can depend on colony size. However, when social insect networks are
found to be scale-free, it is possible to transpose methods and results from these to
other scale-free networks, such as computer, social or business networks, and vice
versa [3].

Social insects are particularly interesting to network scientists in all fields
because they are an evolved (and thus optimized) system in which the interacting
parts can be individually tracked and manipulated (Fig. 1). The same cannot be said
for many other model network systems, such as primate social networks [95]. This
is particularly interesting because experiments can be conducted on social insect
networks that might not be possible in networks in other fields. We can map many
of social insect adaptive functions on to functions of interest to humans. That is,
they are a simulacrum of our engineered world.
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Fig. 1 Individually marked
ants of the species
Temnothorax rugatulus.
Photo by Alex Wild

1.4 Role and Types of Networks in Social Insects

Most research to date has focused on interaction networks, i.e. ones where individual
workers are nodes and edges are defined as interaction events between workers.
The relevant interactions used as network edges can be of different types such as
spatial proximity [45, 73], physical contact (usually with antennae, “antennation”)
[10, 67, 80], a food exchange event [15, 68, 69, 93], or specific communication
signals [38, 56]. Such studies may investigate questions relating to the propagation
of disease or information through the colony, and may test specific hypotheses
concerning speed of transmission, whether all individuals are equally likely to be
reached by the disease/information, or whether particular individuals or subgroups
of the network (e.g. foragers or the queen) will transmit information/diseases more
or less quickly than the rest of the colony.

Interaction networks can be directed, i.e. interactions may have a defined
directionality. This can be the case in food flow networks, where one worker gives
food to another worker. Given that only a fraction of the colony is out foraging at
any time, successful foragers need to be able to share food, which they can store
in their crop, with other workers and brood. The process by which this food is
regurgitated and shared is called trophallaxis. Food flow networks are comprised of
individual ants as network nodes and edges as trophallaxis events. The duration of a
trophallaxis event tends to correlate with the amount of food being transferred [21],
and edges may be weighted by duration of this interaction. Food flow networks can
answer questions such as: what is the mean degree of separation between foragers
and nurses (individuals who care for the immature brood)? Is food channeled to
particular individuals preferentially (nurses, queen)? What elements of the network
structure are necessary to achieve these things? Are networks structured to increase
food distribution while simultaneously decreasing disease spread?

Worker–worker contact (interaction) networks can also be used to answer
important questions. However, many key questions can only be answered by looking
beyond networks constructed from mere physical contacts between individuals. In
ecology, plant–pollinator networks (bipartite networks between pollinator commu-
nities and plant communities) have been the focus of much research. Pollinator
communities are often composed primarily of social insects [22]. These types of
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networks can be used to look at the resilience of plant–pollinator communities to
the disappearance of one or many pollinator species [28,29,43,62,94] and temporal
variation in plant–pollinator interactions [1, 5, 78].

Beyond these networks, other extremely interesting possibilities of non-
interaction networks exist. For example, it is possible to create worker–task bipartite
networks where each worker is linked to the set of tasks it performs, and each task
is linked to the set of workers that perform it. Research using worker–task networks
would enable investigation of worker specialization and individual variation of
worker specialization as well as questions of network resilience to worker loss or
failure.

Alternatives to interaction networks include task–task networks, in which inter-
actions are weighted and directed by the number of workers switching from one task
to another [31]; worker–nest area networks, which could help investigate spatial
fidelity within the nest and even nest area–nest area networks which could yield
information about the movement patterns of individuals within colonies.

In this chapter, we make the case that looking beyond the worker–worker
interaction networks is a necessary new direction for social insect network research.
Further developing alternative network types will allow researchers to pose and
answer new kinds of questions, and keep the field dynamic and exciting. Integrating
networks at different organizational levels could be used to developed unified
models [55]. In the following sections we review a selection of worker–worker
interaction networks covering classic questions explored by these types of networks
as well as two alternative networks types that look at the temporal stability of
bipartite plant–pollinator networks and the temporal dynamics of nest construction.
We then present a worked example with original data of a task–task network in an
ant colony to showcase the potential of exploring new types of networks.

2 Network Dynamics Applied to Social Insects

In recent years, networks have become increasingly popular in social insect
research. Here we survey previous network research on topics than include inter-
action network resilience, flow (information, disease, and food), temporal stability
of species interactions (plant–pollinator systems), and temporal dynamics of nest
construction. Recently, researchers have focused on adding temporal elements to
existing models and investigating the properties of network dynamics. Temporal
networks on their own can provide insight into dynamic patterns within social
insect colonies (e.g. network stability), and including a temporal dimension to
static networks can yield surprising results and even invalidate conclusions drawn
from static networks. The topics discussed in the following section (resource flow,
group structure, task allocation, multi-species interactions) are actually dynamic
processes, and as such are ideally suited to be studied from a dynamic perspective.
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Fig. 2 Representation of a
time-ordered network.
Reproduced with permission
from [10]

2.1 Worker–Worker Interaction Networks

2.1.1 Information Flow

Social insect interaction networks have been described in different ways: worker
interaction networks (e.g. [80]), network motifs (e.g. [100]), and temporal dynamic
networks (e.g. [11]). Many complex interaction networks are adapted to inhibit or
promote the transmission of disease, resources, or information between individuals.
However, interactions between individuals occur over time, may be repeated, and are
stochastic. These temporal dynamics are certain to affect network function, and are
not captured by static network analyses. There is currently a trend in the literature to
incorporate temporal dynamics into established static models and to apply methods
that directly take the dynamic nature of interactions into account.

In a recent paper, Blonder and Dornhaus [10] investigated constraints on
information flow in colonies of the ant Temnothorax rugatulus. They employed
a “time-ordered network” (Fig. 2) which directly incorporates the timing of inter-
action events, and thus allows the tracing of possible pathways of information
flow through time. The observed network of ant antennation interactions (physical
touching with antennae) was compared to a diffusion model in which all individuals
interact like kinetic gas particles. They compared the number of individuals reached
by a message propagated from a random individual within a set time interval in
the diffusion model with the observed ant interaction network. This measure can be
thought of as an upper bound to information flow, as it was not determined whether
each interaction actually involved transmission of information.

They found that, at large time-scales, information flow was significantly slower
in ant networks than that predicted by the diffusion model, but that at small time-
scales information flow was faster than predicted. This suggests that the structure of
the ant network is optimized to facilitate local information flow, but also underlines
the importance of using an appropriate time-scale as results may vary.

The absence of a relationship between the number of individuals a focal ant
touches (out-degree) in one bout of filming compared to the next (Fig. 3) suggests
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Fig. 3 Individual out-degree
between the first and second
observation of all colonies.
Reproduced with permission
from [10]

that individual ants did not consistently hold central roles within the network. This
is especially interesting as many scale-free networks show consistent individual
specialization.

Since this lack of individual consistency in interaction pattern was not found
in other studies [45, 80], it is likely that these network properties differ between
different ant species with different ecology and life history (colony size, nest types,
etc.), whose individual and collective behavior is optimized for different conditions
and constraints.

2.1.2 Resilience of Colony Function to Perturbation

Network resilience can be broadly defined as the ability of a network to retain
or restore its function after perturbation [35, 65, 106]. In the case of a computer
network, this means being able to provide and maintain an acceptable level of
service in the face of faults. For ecological networks such as between plants and
their pollinators, this may mean having a limited extinction of plant species should
several species of pollinators disappear. For social insect interaction networks, this
may mean maintaining an acceptable level of function when individuals fail, either
by making errors or by disappearing.

In a study looking at the resilience of a colony to the death of workers, Naug [67]
assembled undirected worker–worker contact networks weighted by the frequency
of interactions before and after removal of random workers from colonies of the
social wasp Ropalidia marginata (Fig. 4). By comparing the intact and reduced
networks, he showed that path lengths were maintained, thus preserving information
flow throughout the colony (Fig. 5a). The wasps achieved this by an increase in
connectivity amongst remaining individuals attained through an increase in the rate
of interactions. As such, his results showed that interaction networks within this
wasp species were resilient to the removal of random workers.



Social Insects: A Model System for Network Dynamics 225

Fig. 4 The social wasp
Ropalidia marginata (top)
and its nest (bottom). Top: by
School of Ecology and
Conservation/CC-BY-2.5.
Bottom: by
Abhadra/CC-BY-2.5

Fig. 5 (a) Path length before
(white) and after (black)
removal of random workers.
(b) Clustering coefficient
decreases as colony size
increases. Reproduced with
permission from [67]

Naug [67] also looked at the effect of colony size, i.e. the number of individuals
in the group, on network structure and properties. His results showed that smaller
colonies tended to have more homogeneously connected individuals while larger
colonies tended to have more heterogeneously connected individuals (Fig. 5b).
Uniform connectivity in small colonies may allow all workers to have access to
information about what work needs to be done. This might lead to more generalist
workers in smaller colonies (if workers frequently switch tasks). On the other
hand, workers in larger colonies only have access to partial information, potentially
leading to behavioral specialization. This is in accord with the prevailing view in the
literature that group size often correlates with task specialization ([34, 46, 50, 97],
although see [26]).

However, colony sizes in this study ranged from 8 to 40 individuals which form
relatively small interaction networks. Samples across more orders of magnitude
would provide greater insight into the effects of colony size on network properties,
but there are often natural and practical limitations to these studies. For example,
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Fig. 6 (a) Ants of the genus Odontomachus with mandibles open at 180ı and resting in closed
position. These ants hold the record for fastest moving predatory appendages within the animal
kingdom [75]. Photos by Alex Wild. (b) Strength of associations between workers at different
times. Reproduced with permission from [45]

colonies of Ropalidia marginata (the wasp species used in the Naug study) typically
hold no more than 200 workers and the amount of work required to collect these data
increases exponentially with colony size. Thus the application of scale-free network
concepts may be less relevant in these naturally small systems.

A related study looked at the stability of interaction networks and their resilience
to queen removal in ants of the genus Odontomachus, often called “trap-jaw ants”
because of their unusual mandibles (Fig. 6a). In this study, Jeanson [45] used
passive microtransponders superglued to the ants to track their spatial position
over a 3 week period. By assuming that ants who came in close proximity were
interacting, the author created a dynamic worker–worker interaction network. His
results showed that the interaction networks were stable over time and resilient to
the removal of the queen, but that inter-individual differences were important in
connectivity patterns (Fig. 6b). Specifically, some workers formed stronger long-
lasting interactions with a smaller group of nestmates while other workers did not
have privileged relationships and interacted uniformly with their nestmates.

2.1.3 Disease Transmission

Social insects, like humans, are particularly susceptible to disease because of high
population density, genetic homogeneity within colonies, and high interaction rates
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[105]. As such, social insects may have evolved strategies which mitigate the effects
or limit the transmission of diseases.

If interaction networks are scale-free, interactions should not be uniformly
distributed amongst individuals. A small number of workers should be more central
and most workers should be directly connected only to a subset of the colony. One
effect of this organization is that networks are particularly resilient to the random
loss of some individuals [67]. It has also been shown that that highly clustered
subgroups and short average path lengths, which are characteristics of scale-
free networks and incidentally small world networks, should maximize efficient
communication [101]. As such, we might expect that disease transmission would
equally be maximized.

However, there could also be some evolutionary pressure to limit the spread of
disease within social insect colonies. Certain features of colony organization help
limit the spread of disease [67] and infection period plays an important role in the
spread of disease in social insect colonies [69], as it does in human societies [51].
Indeed, one effect of clustered subgroups is that the network is partitioned which,
combined with short infection periods, can result in a limited spread of disease
throughout the colony because portions of the colony will die out before the disease
can spread to the majority of the colony. Indeed, in an agent-based modeling study,
Pie et al. [79] show that even minimal spatial segregation tends to slow the spread of
disease. On the other hand, if the infection period is long, then the highly efficient
communication of the network will ensure that most if not all of the colony will be
infected.

A study investigating colony properties and their effects on the transmission of a
contagious pathogen (Crithidia bombi) in bumblebee colonies (Bombus impatiens)
used automated video tracking of uniquely identified bees to measure worker–
worker contact (spatial proximity) networks within the colony and quantified the
actual spread of the pathogen [73]. They showed that across colonies, rates of
infection were mostly dependent on network density (average contacts per minute)
where higher densities lead to higher rates of infection (Fig. 7). Furthermore, the rate
of contact for individuals predicted the likelihood of infection for that individual.

Similarly, using weighted trophallaxis networks (undirected food sharing net-
works weighted by transfer duration) to emulate the transmission of orally trans-
mitted pathogens rather than those transmitted simply by contact, Naug [68] shows
that disease transmission in honeybee colonies is more widespread when colony
interaction networks have lower clustering coefficients (degree to which nodes in
a graph are clustered together). Interestingly, lower clustering coefficients and high
network densities are typically associated with network resilience, which suggests
a tradeoff in clustering between colony resilience to losing workers and limiting
disease transmission. Both of these empirical results are supported by Pie et al.
[79] who use agent-based modeling to show a nonlinear interaction between worker
density and the probability of disease transmission.

A surprising fact about social insects is that a significant proportion (as much as
60 %) of colony workers is inactive at any time [27, 85]. One reason for this may
be that reduced activity slows disease transmission, presumably because interaction
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Fig. 7 The average time of
infection from Crithidia
bombi decreases with
increasing network density
(average contacts per minute)
in colonies of Bombus
impatiens. Reproduced with
permission from [73]

rates in less active colonies would be lower ([79], Fig. 8). Interestingly, an empirical
study found no effect of individual activity on the risk of infection [73]. Naug [68]
also suggests that the location of younger individuals both within the colony and the
network could have the effect of limiting their exposure to diseases.

2.1.4 Food Flow

Sendova-Franks et al. [93] looked at the network structure of trophallaxis interac-
tions and its progression in time in the ant Temnothorax albipennis (Fig. 9). They
also compared colonies in normal feeding situations with colonies that had been
starved for 48 h. Note that this ant genus is highly starvation resistant: colonies have
been shown to survive up to eight months of complete starvation [88]. Within the
first 30 min, as much as 95 % of ants from starved colonies (Fig. 10, full circles) were
fed, versus less than 50 % of ants in fed colonies (Fig. 10, empty circles). Increased
efficiency in food distribution resulted from increased movement of internal workers
away from the brood piles (eggs larvae, and pupae which are typically at the
colony center) and movement of foragers carrying food further into the nest. Indeed,
both the number of recipients per donor and the number of ants participating in
trophallaxis increased in starved colonies. Furthermore, the distance of a vector from
the centroid of internal workers to the centroid of external workers (or foragers)
was shorter after starvation than in the control and the direction of this vector
was parallel to that of a line going between the nest entrance and the center of
the brood pile. This is particularly interesting because workers have shown spatial
fidelity according to their tasks where internal workers are essentially segregated
from external workers, a phenomenon which was observed in the fed colonies, but
not in the starved colonies. After starved colonies had been sated, spatial segregation
resumed.
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Fig. 8 Relationships between worker density, probability of transmission and colony activity
obtained from an agent-based model. Reproduced with permission from [79]

Fig. 9 Nest of Temnothorax albipennis ants surrounded a wall of colored sand grains built by
the ants. Photo by Anna Dornhaus
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Fig. 10 The cumulative proportion of the colony fed for colonies A (a), B (b), C (c) and D (d)
when that were starved for 48 h before feeding (full circles) and during regular feeding. Reproduced
with permission from [93]

After starvation, some workers stored food rather than pass it on to other ants.
They suggested that these ants are living “silos” and they may also act as food
testers for the rest of the colony. Essentially, by storing large amounts of newly
acquired food in these individuals the colony can test whether the food contains any
toxins. If there were, only the “silo” worker would die, thus saving the rest of the
colony. Otherwise, if the “silo” ant seems healthy, then the food would likely be
safe. However the long-term network dynamics of food and disease flow were not
directly investigated in this study.

2.2 Beyond Worker–Worker Interaction Networks

2.2.1 Temporal Stability of Species Interaction Networks

Different types of animals and plants often interact with each other in beneficial
or harmful ways. For example, there is a long history of studying plant–pollinator
systems, in which different species of plants are pollinated by different species of
animals, usually insects [58, 86]. These interactions among different species can
be thought of as plant–pollinator networks. Studies on such networks make use
of theory developed in food web networks [28, 29, 43, 94]. These have allowed
researchers to address questions relating to the resilience of such species networks
to changes in biological community composition [62], the effects of invasive plants
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on plant–pollinator networks [57], and the disruption of pollination networks due to
global warming [61].

Resilience is tested by simulating a perturbation, typically by removing network
nodes, and examining its effects on network topology and function. Plant–pollinator
networks have been shown to be fairly resilient to removals [28, 29, 43, 94]. It is
thought that resilience in pollination networks might stem from a redundancy in
pollinators per plant as well as from the nested topology of the networks [62].

In the last 20 years, the question of specialists vs. generalists in plant–pollinator
systems has been the subject of active debate. The idea that interactions between
plants and pollinators tend toward specialization, or that plants and pollinators
will coevolve towards increased fidelity, has long been widely accepted [2, 40].
However, in an extensive review, Waser et al. [99] showed evidence that perhaps
generalists might be equally important and prevalent. Within the last decade, due to
advances in network theory and an increasing awareness of networks, researchers
have been using network approaches to address this question. Some work focused
on characterizing the network properties of plant–pollinator systems such as the
distribution of specialists to generalists [6, 103]. Although this work is important in
understanding plant–pollinator network structure, it does leave the question of how
these networks might vary in time. Indeed, research has shown that relationships
between specialists and generalists are complex and that plant–pollinator networks
are both asymmetric (interaction rates are not equal in each direction) and nested
(species with few links have a sub-set of the links of other species), but until recently
we did not know how stable these interactions were over time. A few recent studies
explicitly address this issue [1, 30, 71, 78].

These studies showed that pollination network topology varied through time.
Indeed, both the number and identity of interaction partners varied in time. This
suggests that the relationships between plants and their pollinators may not be as
strong or exclusive as expected. Indeed, within a single year of plant–pollinator
interactions, a large portion of plants and pollinators seem to be specialists, but over
a longer timescale interactions that were strong one year are not necessarily strong
the next year (Fig. 11).

While the precise network topology of pollination networks varied through time,
overall structural parameters of the network (e.g. degree centralization, connectance,
nestedness, average distance, and network diameter) remained fairly constant.
A large scale study spanning a wide range of latitudinal gradients shows similar
results [30]. These studies are particularly interesting because they show how
different patterns can appear at different timescales.

2.2.2 Temporal Dynamics of Nest Construction

Many social insects build complex nests which both constrain and facilitate col-
lective organization. Nest often consist of multiple chambers connected by tunnels,
and these have garnered much attention from researchers interested in networks.
The networks created by social insect nest architecture are particularly interesting
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Fig. 11 Time dependence of “apparent specialization” of (a) pollinators and (b) plants. Repro-
duced with permission from [78]

because they show how self-organized networks can solve problems with multiple
complex constraints, such as the need for efficient movement within the colony
while making the nest defensible to attacks.

Over the last decade, with increasing accessibility to sophisticated computer
and imaging tools and the interest in applying network approaches to biological
systems, we have seen a progression of increasing complexity and detail in the
studies investigating the network structure of nest architecture. Early studies focused
on two-dimensional nest architecture and looked at the network properties of nest
architecture such as the effects of group size on nest architecture [16], the efficiency
and robustness of nest networks [18], and the relationship between topology and
structural properties of nest networks [17].

More recently, researchers looked at nest networks in three-dimensional space,
which better represents nest architectures of many species. Using computer tomog-
raphy (CT) scanning to build three-dimensional models (Fig. 12) of nest architec-
ture, Perna et al. [76, 77] looked at the transportation efficiency in termite nests and
found that it is significantly higher than random, but below optimal transportation
efficiency (Fig. 13). They proposed that this was a compromise between multiple
constraints, such as efficient connectivity inside the nest, defense and resilience to
attacking predators, and spatial constraints.

Recently, Minter et al. [63] investigated the temporal dynamics of nest building.
Using microcomputer tomography at multiple time points over a 24 h period, they
were able to track tunnel and chamber construction in time (Fig. 14).

In this study, they showed how features of the environment, specifically the
presence of planes between sediment layers, would influence nest construction.
When ants met with a new sediment layer, they tended to excavate more horizontally
along the planes and over longer periods before continuing to tunnel downwards.
They suggested that it is in fact not the planes they are responding to, but rather
local heterogeneities in sediment compaction. This suggests that the importance of
local information outweighs that of global information in determining individual
nest construction behavior which in turn leads to the emergent phenomenon of nest
structure.
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Fig. 12 (a) Above ground mushroom shaped termite nest. (b) tomographical cut of the same nest
(the arrows indicate two of the corridors between chambers). (c) representation of chambers and
galleries as a network. Nodes are chambers in the nest and edges are corridors. Reproduced with
permission from [77]

Fig. 13 Average topological path length for random spanning subgraphs (black), optimized
spanning subgraphs (horizontal lines), and real gallery networks (red circles). Reproduced with
permission from [77]

Fig. 14 Example of the progression of three-dimensional nest structure through time. Reproduced
with permission from [63]
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3 Even Further Beyond Worker–Worker Networks:
A Task–Task Network

Networks play a role in several aspects of collective behavior in social insects. In
Sect. 2 we presented a selection of the network types that have been most studied
so far, including worker–worker interaction networks as well as other network types
(bipartite plant–pollinator networks and nest architecture networks). We made the
case for looking beyond networks of individual interactions, and employing network
theory more broadly to other types of complex interacting processes. In support of
this idea, we present original data worked into an example of a task–task network,
i.e. defining the different tasks performed by workers in an insect colony as nodes,
and each case of a worker switching between tasks as linking these nodes.

The process of allocating workers to the different jobs (“tasks”, such as foraging
or nest-building) in a colony is both difficult and important to colony performance
[9,13,36]. There is no consensus in the literature on how this is achieved in the face
of changing demand for tasks and possible worker failure. To investigate this issue,
we performed a temporal network analysis of the dynamics of task switching, asking
if certain switching patterns were particularly common and whether the patterns of
switching were stable over time. We hypothesized that workers would often rotate
through certain “hub” tasks before switching to other tasks, and that flow through
other tasks would be consistently low.

We collected a colony of Temnothorax rugatulus ants consisted of 41 workers
and 2 queens in the Santa Catalina Mountains, outside of Tucson, Arizona USA in
a pine forest at an altitude of approximately 8,000 ft. The collected ants were kept
in the lab in artificial nests made of a piece of cardboard sandwiched between two
glass slides ([27], see Fig. 15a). In the field, these ants typically nest in small rock
crevices and artificial nests emulate these [32].

The ants were then painted with unique combinations of four paint spots, one
on the head, one on the thorax and two on the abdomen so that they could be
individually identified and tracked (Fig. 15b). Videos (5 min long) of normal colony
activity were taken at four time points throughout the day: 8 am, 4 pm, 8 pm and
4 am (Fig. 15c). For each ant, the task it performed was recorded every second by
an observer (see Table 1 for task list).

We first constructed a time-ordered network for each 5-min interval, creating a
node for each task and an edge for each instance of a worker switching between
tasks. Time-ordered networks are structures that provide a complete record of the
timing of all observed interactions [11]. Here an example is shown for the first
5-min interval, qualitatively demonstrating extensive switching involving the tasks
“wandering inside” (wi), “self-grooming” (sg), and “brood care” (bc), and some
involving rotating through inactivity (i) (Fig. 16).

We used established techniques [11] to transform these time-ordered networks
to a series of time-aggregated networks, with the aim of applying network methods
in a temporal context. We chose a window size of 60 s but in this case results are
robust to the choice of window size. Time aggregated networks constructed from



Social Insects: A Model System for Network Dynamics 235

Fig. 15 Artificial
Temnothorax rugatulus nest
composed of a piece of
cardboard sandwiched
between two glass slides (a).
Individually marked ants. The
larger ant is a queen (b).
Video recording setup of HD
cameras equipped with servos
filming an ant colony (c).
Photos by Daniel
Charbonneau

Table 1 List of possible
tasks observed during video
analysis and their associated
codes

Code Task

b Nest building
f Foraging
wo Wandering outside nest
bc Brood care
sg Self-Grooming
go Grooming other (giver)
og Grooming other (receiver)
t Trophallaxis
fd Eating
wi Wandering inside nest
i Inactive

the first 5-min interval are shown below. These networks qualitatively demonstrate
consistent patterns of flow between tasks (Fig. 17).

To quantitatively test whether workers return to a “hub” task before switching
to new tasks, we measured betweenness for each task for every time-aggregated
network during every interval (Fig. 18). The “wandering inside” (wi) task has
the highest betweenness over nearly every time interval, demonstrating that it is
a hub task. Most other tasks had consistently low betweenness. We then tested
for temporal stability in the task flow by assessing trends in the betweenness of
“wandering inside” (wi) over time. Within each interval, we found no significant
increase or decrease (ANOVA; all p > 0:12). However across all intervals, there
was a significant increase and then decrease in betweenness (ANOVA with linear
and quadratic terms; both p < 0:02).
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Fig. 16 Example of a time-ordered network for the first 5-min interval. Explanations of task
abbreviations can be found in Table 1

Fig. 17 Example time aggregated networks for the first 5-min interval. The numbers in the center
of each network indicates the time interval in seconds. Explanations of task abbreviations can be
found in Table 1

This temporal network analysis therefore indicates that there is minute-scale
stability in task flow but hour-scale variation, and that most variation in task
assignment is mediated through temporary assignment of workers to “wandering
inside” (wi) tasks.

To interpret these results, we must first discuss the observed tasks. These fall
into three separate categories. The first category, which includes all tasks with
the exceptions of “wandering inside” and “inactive”, represents observable tasks
that are thought to contribute to colony fitness (e.g. brood care or foraging). The
second category (inactivity) is a conservative estimate of the time at which and
duration during which individuals are inactive. The last category (anytime workers
are wandering inside the nest but without performing an identifiable task) is less
interpretable. We do not know whether they are simply being inactive, whether
they are in fact performing some other yet to be identified task, whether they are
simply between tasks, or whether they are looking for work to do. Some evidence in
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Fig. 18 Betweenness for each task for every time-aggregated network during each 60 s interval
for all time points. Explanations of task abbreviations can be found in Table 1

Fig. 19 Mean proportion of time spent in each task

honeybees indicates that they may be “patrolling”, i.e. collecting information about
demand for work in different tasks [49].

The fact that the “wandering inside” (wi) task is a hub task (highest betweenness
over nearly every time interval) suggests that the latter two possibilities are likely.
Indeed, it seems as though “wandering inside” (wi) is an intermediate state between
being engage in a task. We’ve shown that there is extensive switching between the
tasks “wandering inside” (wi), “self-grooming” (sg), and “brood care” (bc), and
some involving rotating through inactivity (i). This is likely because these are by far
the tasks which workers spend most of their time doing (Fig. 19).

The temporal network approach lets us test new types of hypotheses and has
identified a key behavior that deserves future study as it plays a key role in mediating
between other tasks. Our task–task network quantifies the role of wandering in
worker task switching in a new way as compared to other studies [48, 49]. It seems
that ants must wander throughout the nest between tasks rather than awake from
inactivity or directly switch from one active task to another.
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Fig. 20 (a) Examples of the
ant tracking tools being
developed in Dr. Shin’s
laboratory and (b) by
Quitmeyer and Balch.
(c) Temnothorax albipennis
ants with RFID tags

4 Future Challenges and Opportunities

Many complex systems (e.g. social groups, neural networks, macro/micro-
economics, etc.) can be studied with a network perspective, but these are often
limited by constraints such as difficulty in acquiring high quantities of data or lack
of an ethical or cost-effective way to do experiments. Social insects do not have
these issues and thus provide a good model for other systems.

Because social insects are thought to employ relatively simple algorithms to
achieve sophisticated group-level behaviors [19], they have been used as inspiration
for the design of many artificial systems [12, 66]. Insect-inspired solutions have
already been derived from foraging behavior [25], spatial sorting [59], or task alloca-
tion [13], and are used in job-shop scheduling [23], “traveling salesman” problems
[24], software “agents” [74, 102], optimization of communication networks [20],
and collective robotics (e.g. for planetary exploration: [14, 53]. Given the existence
of a variety of methods for experimentation on social insects and that the research
can be transposed to so many other fields, we expect this list to keep growing.

Although social insect colonies are tractable to observation and manipulation and
offer a means of gathering real data relatively quickly, the many steps and processes
required for acquiring data are still fairly time- and work-intensive. In many
cases, social insect networks are created from spatial information and advances
in tracking software have helped reduce the workload of acquiring this type of
data. For example, Dr. Shin’s lab at the University of North Carolina Charlotte has
developed a tracking tool (Fig. 20a) that can highly reliably track individual ants
(96 %C accurate) [81], but there are other tracking tools being developed as well
(e.g. [84], Fig. 20b). The miniaturization of electronics has made it possible to use
of radio-frequency identification (RFID) chips to both uniquely identify individuals
and track individual movement ([64, 87], see Fig. 20c). Lastly, rapidly emerging
analytical methods are being developed by social insect scientists (e.g. the R
package “timeordered” that was used in the worked example. See [11] for a review).

Applying network approaches to social insect research is an emerging area and
many studies are only just getting off the ground. Initial datasets were so hard to
obtain that authors are reluctant to publish them completely. However, with new
methods of obtaining data (e.g. video tracking) and new traditions in science (it is
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becoming more common and often required by journals and NSF to publish full
datasets) this is likely to change. Furthermore, there is a strong interest from social
insect scientists to collaborate and share their data with network researchers and
theoreticians. Indeed, social insect researchers often have the data and the biological
questions which could be answered by network analyses, but lack the know-how to
answer them appropriately.

The development of new network analysis tools can advance our understanding
of social insect networks, but also of general organizational principles. We can
transpose many social insect adaptive functions on to functions of interest to humans
such as organizational structures, social and computer networks as well as physics
and engineering. Social insect networks have been optimized by evolution to deal
with multiple simultaneous constraints and principles derived from social insect
systems can be used to find optimal network structures for multiple functions or
under specific constraints.

Nonetheless, there are future challenges that need to be addressed in order for
the use of the network framework to move forward. More and more the importance
of including a temporal element to static networks is becoming evident. These can
have drastic effects on results and even yield completely inverse results as in the
case of specialist vs. generalist pollinators in pollination networks (See Sect. 2.2.1).

Furthermore, simply including a temporal element is insufficient. Finding and
using an appropriate timescale is equally essential in drawing out accurate con-
clusions. In ant interaction networks, Blonder and Dornhaus [10] show that at
small timescales, degree distribution is heterogeneous and some individuals are
more central than others, but that at larger timescales degree distribution flattens
out and becomes more uniform (See Sect. 2.1.4). If we only looked at the smaller
timescale, we would conclude that some individuals are more central and perhaps
act as communication hubs.

In this chapter, we have made the case for moving beyond worker–worker net-
works. This is an exciting avenue of network research that will open the possibility
of answer novel questions. The framework surrounding bipartite networks will be
especially important in advancing this burgeoning area of research.

Emerging technologies are facilitating the way social insect researchers gather
and analyze data, but their development is also fostering a desire for interdisci-
plinary collaboration. Indeed, the need to develop time-saving technologies as well
as the possibility of transposing research between fields is bringing together biolo-
gists, computer scientist, engineers, physicists, mathematicians, to name a few, and
creating a synergism in research that we feel will be very exciting in years to come.
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Self-Exciting Point Process Modeling
of Conversation Event Sequences

Naoki Masuda, Taro Takaguchi, Nobuo Sato, and Kazuo Yano

Abstract Self-exciting processes of Hawkes type have been used to model various
phenomena including earthquakes, neural activities, and views of online videos.
Studies of temporal networks have revealed that sequences of social interevent
times for individuals are highly bursty. We examine some basic properties of event
sequences generated by the Hawkes self-exciting process to show that it generates
bursty interevent times for a wide parameter range. Then, we fit the model to the
data of conversation sequences recorded in company offices in Japan. In this way,
we can estimate relative magnitudes of the self excitement, its temporal decay,
and the base event rate independent of the self excitation. These variables highly
depend on individuals. We also point out that the Hawkes model has an important
limitation that the correlation in the interevent times and the burstiness cannot be
independently modulated.

1 Introduction

1.1 Temporal Networks

Social networks, which specify the pairs of individuals that are directly connected
and those that are not, are substrates of social interactions. An important caveat
in the use of social networks for understanding social behavior is that the pair of
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directly connected individuals does not interact all the time. Social events between
a pair of individuals, such as dialogues and transmission of email, are better
described as a sequence of events, i.e., a collection of tagged event times, where
the tag includes, for example, the identity of the two individuals, type of the event,
duration, and content of dialogues. In fact, recent massive data, mostly online,
and technological developments of recording devices for offline social interaction
enable recording of social events with a higher temporal (and spatial) precision
than before. Examples of data taken in this domain include calling activity [2],
web recommendation writing [15], email traffic [1,7,21], online forum dealing with
sexual escorts [32], human interactions in the real space [3, 16, 17, 33], to name a
few. Transmission of infection or information may occur only during the period in
which two individuals are involved in an event. A set of such event sequences among
pairs of individuals are collectively called the temporal network [14], which is the
focus of this volume. Computational models that generate realistic event sequences
possessing properties such as those described in Sects. 1.2 and 1.3 would help us
understand the nature of human communication behavior.

1.2 Long-tailed Interevent Time Distribution

In many empirical event sequences that we would like to model, interevent times
are distributed according to a long-tailed distribution. The survivor functions (also
called the complementary cumulative distributions) of IET (i.e., the probability that
the IET is larger than a given value �), are shown in Fig. 1 for two individuals in
the data sets used in our previous study [33,34] (see Sect. 4.1 for descriptions of the
data).

Different mechanisms seem to explain the non-Poissonian behavior of the IET.
A first mechanism that was discovered to generate power-law IET distributions is
a priority queue model [1]. In this class of models, each task corresponding to an
event carries a priority level and arrives at a queue. Then, the queue tends to execute
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tasks with high priority; tasks with low priority are made to wait for a long time
before being executed. The priority queue model has also been extended to allow for
interaction of two priority queues between a pair of interacting individuals [18, 23,
28, 38]. However, some types of social interaction including conversations may not
proceed like a queue. Therefore, we attempt an alternative approach in the present
chapter.

1.3 IET Correlation

Another facet of actual event sequences is that they often possess positive temporal
correlation. In other words, a long (short) IET is likely to be followed by a long
(short) IET. This is the case even if the effect of circadian fluctuations is removed
from data [19]. Although there are various methods to measure temporal correlation
of the IET [8, 19], here we show it by simply measuring the conditional mean IET
defined by

�next.�/ � h�iC1i�i
� ; (1)

where �i is the i th IET in a sequence, and h�i represents the average. If the IET
correlation is absent, �next.�/ is independent of � .

The values of �next are plotted against � in Fig. 2a–c for the conversation
sequences used in Fig. 1, times of email sending and receiving in a university
[6], and times of online sexual escorts by male individuals [32], respectively. We
remark that long-tailed IET distributions are known for the email [1, 35] and sexual
escort [32] data sets. The conditional mean IET �next increases with � in Fig. 2a, b.
Therefore, adjacent IETs are positively correlated. In Fig. 2c, �next decreases with �
for � � 7 and increases with � for � 
 7. Figure 2c suggests that those who have
bought an escort tend to avoid buying a next escort within a week. This is directly
shown in Fig. 2d, which shows the IET distribution. However, adjacent IETs for the
sexual escort data are positively correlated on a longer time scale (Fig. 2c).

In the discrete time model proposed in [10], the probability of an event occur-
rence decreases if events occurred too frequently in the recent past and increases if
the time since the last event becomes long. Such a mechanism may generate positive
IET correlation.

1.4 Self-excitatory Stochastic Processes

An alternative mechanism that yields positive IET correlation is self-excitation. The
idea is that once an individual talks with somebody, the individual is excited to talk
with somebody with a higher rate. Malmgren and coworkers developed such models
and applied to data [21, 22].
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Fig. 2 Conditional mean IET defined by (1) for (a) conversation event sequences [33], (b) email
logs [6], and (c) purchase of sexual escorts [32]. (d) Histogram of the IET for the data shown in (c)

In the cascading nonhomogeneous Poisson process proposed in [21], the authors
assumed that the primary process is an inhomogeneous Poisson process with a peri-
odic event rate. An event generated from the primary process is assumed to elevate
the system to the active state and trigger cascades of activity. In other words, after
a trigger event, a burst of events may ensue as a result of the Poisson process with
a rate that is larger than the base rate of the primary process. The entire recording
period is divided into alternately appearing intervals of the active state with a high
event rate and the normal state with a low event rate by an adjustment of the position
and number of intervals to yield a good fit to the data. As a result, the number of
events contained in a burst is shown to obey an approximate exponential distribution
(also see [19], which shows that the number of events in a burst obeys a power law
distribution; the definition of burst is different in the two papers). With a circadian
and weekly rate modulation, the cascading nonhomogeneous Poisson process is
capable of producing the long-tailed IET distributions observed in the data.
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Their model has many parameters to be estimated. This is common to their
another model proposed in [22]. In [22], letter writing activity of each renowned
individual is fitted by a cascading Poisson process model. The time unit is set to a
day. The two parameters, i.e., the base event rate and tendency to write an additional
letter within a time unit, are estimated on the basis of the data. Because the different
parameter values are assumed for different sections of the data, the number of the
parameters in the model can be large. In the case of the letter correspondence by
Einstein, data are collected over 54 years, and the two parameters are estimated for
each year. Therefore, there are 108 parameters.

These models [21, 22] are quite successful in capturing properties of the real
event sequences. Nevertheless, it may be also fruitful to consider a much simpler
self-excitatory model as a complementary approach to capture the origins of bursts
(Sect. 1.2) and IET correlation (Sect. 1.3) inherent in human behavior.

A simple two state model in which normal and excited states are assumed is
proposed in [19]. The model is not a hidden Markov model because the probability
of staying in the excited state becomes large as the number of events that have
already occurred in the current burst increases. The model reproduces properties
of the original data such as the power-law IET distribution and autocorrelation
function. However, statistical methods to estimate the model parameters from the
data were not presented [19].

1.5 Our Approach: Hawkes Process

In this chapter, we fit the self-excitatory point process model called the Hawkes
process [11–13,36] to the data recorded in company offices [33,34,37,39] (also see
Figs. 1 and 2a). A main benefit for using the Hawkes process is that it contains
a small number of parameters and is mathematically tractable; the maximum
likelihood (ML) method for inferring parameter values is established for some
important special cases [29].

This chapter is organized as follows. In Sect. 2, we introduce the Hawkes
model and recapitulate its basic mathematical properties. In Sect. 3, we numerically
investigate properties of event sequences generated by the Hawkes process. In
Sect. 4, we carry out the ML estimation of the parameters of the Hawkes model and
compare the data and the estimated model. In Sect. 5, we discuss the results, with an
emphasis on the limitation and possible extensions of the Hawkes model for better
describing human data. Mathematical details are delegated to two Appendices.

2 Hawkes Process

The Hawkes process is a self-exciting point process model that is analytically
tractable. It is an inhomogeneous Poisson process in which the instantaneous event
rate depends on the history of the time series of events. It is not a renewal process.
The event rate at time t , denoted by 
.t/ is given by
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λ(t)

t

Fig. 3 Example time course
of event rate 
.t/ and the
corresponding event sequence


.t/ D � C
X

i;ti
t
�.t � ti /; (2)

where ti is the time of the i th event, and �.t/ is the memory kernel, i.e., the
additional rate incurred by an event. The causality implies �.t/ D 0 (t < 0).

The Hawkes process has been used for modeling, for example, seismological
data [26, 36], video viewing activities [4, 24], neural spike trains [30], and genomic
data [31]. For example, in [4], time series of views of different videos on YouTube
were categorized into three classes, which were characterized by different �.t/ and
different time-dependent versions of �. The Hawkes process has also been used to
construct a method to estimate the structure of neural networks from given spike
trains [5], analyze auto and cross correlation in data recorded from mouse retina
[20], and understand the correlation between the activities of different neurons in
pulse-coupled model networks of excitatory and inhibitory neurons [30]. In [31],
the Hawkes process is used to model stochastic occurrences of specific genes on
DNA sequences. The method to estimate a piecewise linear �.t/ based on the least
square error was presented.

Depending on applications, the memory kernel �.t/ has been assumed to be a
hyperbolic (i.e., power law) function [4] or a superposition of the gamma function
[26]. Nevertheless, in the present work, we simply set

�.t/ D ˛e�ˇt .t 
 0/ (3)

for the following reasons. First, it allows the ML estimation of the parameters ˛, ˇ,
and � [29]. Second, the Hawkes process with (3) has a small number of parameters
as compared to competitive models with self excitation [21, 22, 26, 27]. It should be
noted that (3) indicates that the self-exciting effect of an event decays in time. It
is contrasted with a previous model in which the self-exciting effect is constant for
some time and then the event rate returns to the basal rate [21]. An example time
course of the event rate 
.t/ and the corresponding event sequence are shown in
Fig. 3.

We define cluster of events as the set of events that are triggered by a single
event occurring at the basal rate �. In other words, all the events in a cluster are
descendants of the trigger event. The expected cluster size is given by [12, 36]

c D
Z 1

0

�.t/dt D 1

1� ˛
ˇ

; (4)
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and the stationary event rate is given by


 D c� D �

1 � ˛
ˇ

: (5)

The convergence of the event rate requires ˛ < ˇ.

3 Numerical Results for Statistics of IET

In this section, we numerically examine basic properties of the Hawkes process with
the exponential memory kernel. To quantify the broadness of the IET distribution,
we measure the coefficient of variation (CV), defined as the standard deviation of
the IET divided by the mean of the IET as follows:

CV D
qPN

iD1.�i � h�i/2=N
h�i ; (6)

where N is the number of IETs in a given sequence and h�i � PN
iD1 �i =N is the

mean IET. It should be noted that h�i in the limit N ! 1 is equal to 1=
 D
.1 � ˛=ˇ/=�. The Poisson process yields CV D 1.

We also measure the correlation coefficient for the IET [8] defined as

PN�1
iD1 .�i � h�i/.�iC1 � h�i/=.N � 1/PN

iD1.�i � h�i/2=N
: (7)

The Hawkes process is invariant under the following rescaling of the time and
parameter values: C t D t 0, ˛ D C˛0, ˇ D Cˇ0, and � D C�0, where C > 0 is
a constant. Therefore, we normalize the time by setting � D 1 and vary ˛ and ˇ.
The values of CV, IET correlation, and mean cluster size c are invariant under this
rescaling. For a given pair of ˛ and ˇ values, we generate a time series with 2� 105
events using the method described in [25] and calculate the statistics of the IET.

The values of CV, IET correlation, and c (4) for various ˛ and ˇ values are shown
in Fig. 4a, 4b, and 4c, respectively. Although we can more theoretically calculate CV
using the expression of the IET distribution [13] (also see Appendix 1 for details),
it is numerically demanding to do so. Therefore, we resorted to direct numerical
simulations. The data are present only in the region ˛ < ˇ, where the Hawkes
process does not explode.

Figure 4a indicates that the Hawkes process generates a wide range of CV.
A large value of ˛=ˇ.<1/ yields a large CV value. This is the case for both small and
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a

b

c

Fig. 4 Statistics of the IET
obtained from the Hawkes
process. (a) CV, (b) IET
correlation, and (c) mean
cluster size c for various
values of ˛ and ˇ

large˛ values. In Fig. 5, the survival function of the IET on the basis of 2�105 events
is compared for different ˛ and ˇ values that satisfy ˇ D 1:1˛ or 1:2˛. Although
the CV values are large, the IET distributions are consistently different from power
law distributions. In particular, the IET distribution seems to be a superposition of
multiple distributions with different time scales when ˛ is large (Fig. 5c). It should
be noted that we assumed the exponential, not long-tailed, memory kernel (3).

Figure 4b indicates that a large ˛=ˇ value also yields a large IET correlation.
Once the event rate increases because of recent occurrences of other events, the
following IET tends to be small. Therefore, strong self-excitation in the model
(i.e., large ˛=ˇ) is considered to cause large IET correlation. The strength of self-
excitation can be also quantified by c. Figure 4c indicates that a large ˛=ˇ tends to
yield a large c.

Figure 4a–c look similar, suggesting that the three quantities are correlated with
each other.
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4 Fitting the Hawkes Process to the Data

4.1 Data Sets

We analyze two data sets D1 and D2 of face-to-face interaction logs obtained
from different company offices in Japan. World Signal Center, Hitachi, Ltd., Japan
collected the data using the Business Microscope system developed by Hitachi,
Ltd., Japan. For technical details concerning the data collection, see [33,37,39]. We
previously analyzed the data using different methods [33, 34]. Data sets D1 and D2

consist of recordings from 163 individuals for 73 days and 211 individuals for 120
days, respectively. The two individuals are defined to be involved in a conversation
event, simply called the event, if their modules exchange the IDs at least once in a
minute. The module has other types of data that we do not use in the present study,



254 N. Masuda et al.

such as the list of conversation partners and the duration of each event. In total, D1

andD2 contain 51,879 and 125,345 events, respectively.

4.2 Results of Fitting

For the entire sequence of event times obtained for each individual, we carry out
the ML estimation of the parameters of the Hawkes process with the exponential
memory kernel. It should be noted that we use the information about event times
and not the duration of events or the partners’ IDs. We slightly modify the ML
method developed in [29] (see Appendix 2 for details).

The modification is concerned with the treatment of the data during the night.
Our data are nonstationary owing to the circadian and weekly rhythms. Therefore,
direct application of the Hawkes process, which is a stationary point process, is
invalid. In the previous literature in which different models are investigated, these
rhythms are explicitly modeled [9, 21] or treated by dynamically changing the time
scale according to the event rate [18]. In contrast, we omit the night part of the data
from the analysis because our data are collected in company offices and therefore
there is no event from late in the night through early in the morning.

In both data sets D1 and D2, there is nobody in the office between four and
six in the morning. Accordingly, we can partition the data into workdays without
ambiguity. For each individual, we discard the workdays that contain less than 40
conversation events. We call a workday containing at least 40 events the valid day.
Then, we define the first event in each valid day as trigger event and set t D 0.
The following events on the same valid day are interpreted to be generated from
the Hawkes process. The time of the last event denoted by tlast (denoted by tdNd
in Appendix 2) is defined to be the end time of the valid day; it is necessary
to specify tlast to apply the ML method (Appendix 2). The value of tlast depends
on individuals even on the same day. The individual may stay in the office for a
considerable amount of time after t D tlast before leaving the office. This implies
that the individual does not have conversations with others remaining in the office
between t D tlast and the time when the individual leaves the office. If this is the
case, the fact that this individual does not have events for t > tlast may affect the
ML estimators. Nevertheless, we neglect this point. Finally, we obtain the likelihood
of the series of events for an individual by multiplying the likelihood for all the
valid days.

We apply the ML method to the individuals that possess at least 300 valid IETs
(i.e., IETs derived from the valid days) during the entire period. This thresholding
leaves 63 individuals in D1 and 148 individuals in D2. We also exclude one
individual in D1 because the ML method does not converge for this individual.

The survivor function of the IET is compared between the data and the estimated
Hawkes process in Fig. 6. The comparison is made for an individual in D1 (Fig. 6a)
and an individual in D2 (Fig. 6b). We calculated the IET distribution for the
estimated model using the theoretical method [13] (Appendix 1). The agreement
between the IET distributions of the data and the estimated model is excellent.
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the IET for two individuals.
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To assess the quality of the fit at a population level, we compare three statistics
of the IET between the data and model for different individuals. The relationship
between the mean IET obtained from the data and that obtained from the estimated
model, i.e., 1=
 D .1 � ˛=ˇ/=�, is shown in Fig. 7a. For different individuals in
both data sets, the mean IET is close between the data and the model. The Pearson
correlation coefficient between the data and model are equal to 0.993 and 0.986 for
D1 and D2, respectively. However, the Hawkes process slightly underestimates the
mean IET.

The CV values for the data and the estimated model are compared in Fig. 7b. We
calculated the CV values for the estimated model on the basis of 2� 105 events that
we obtained by simulating the Hawkes process with the ML estimators ˛, ˇ, and �.
Although the CV can be theoretically calculated using the ML estimators (Appendix
1), we avoided doing so because the theoretical method is computationally too costly
to be applied to all the individuals. Roughly speaking, the CV values obtained from
the model are close to those of the data. The Pearson correlation coefficient between
the data and model are equal to 0.832 and 0.936 forD1 andD2, respectively.

The IET correlation of the data and that for the estimated model are compared
in Fig. 7c. We calculated the IET correlation for the estimated model by direct
numerical simulations, as in the case of the CV. Figure 7c indicates that the Hawkes
process does not reproduce the IET correlation for most individuals. The IET
correlation for the estimated model is distributed in a much narrower range than that
of the data. This is consistent with the finding that the CV and the IET correlation
are positively correlated in the Hawkes process (Sect. 3). Because most individuals
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have the CV values larger than unity (Fig. 7b), the estimate of the IET correlation
obtained by the model tends to be positive regardless of the estimated values of ˛,
ˇ, and �. Figure 7c suggests that the Hawkes process with the exponential memory
kernel is incapable of approximating the real data in terms of the IET correlation.

5 Discussion

We analyzed properties of the IET generated by the Hawkes process with an
exponential memory kernel and then fitted the model to the face-to-face interaction
logs obtained from company offices. The model successfully reproduced the data in
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terms of the IET distribution. However, the model does not explain the behavior of
the IET correlation in the data.

This limitation may be because the effect of self-excitation is too strong in the
Hawkes process; the event rate can be very large after a burst of events. To examine
this issue, we carry out additional numerical simulations using a modified Hawkes
model. We modify the model such that after each event that would increase the event
rate by �.0/ in the original Hawkes process, we reset the event rate to the basal
value � with probability p. The original Hawkes process corresponds to p D 0.
The CV and IET correlation for p D 0:1 and various values of ˛ and ˇ are
shown in Fig. 8a and 8b, respectively. The values of the CV and IET correlation
for p D 0:1 are much smaller than those for p D 0 (Fig. 4a, b). This is because a
burst, which increases the CV and IET correlation in the Hawkes model, is forced
to terminate with probability p after each event in the modified model. The CV
and IET correlation values for .˛; ˇ/ D .0:2i; 0:2j /, where 0 � i < j < 100

are plotted in Fig. 4c. For comparison, the corresponding results for p D 0 on the
basis of the data used in Fig. 4a, b are also shown in the figure. The introduction of
p > 0 does not decorrelate the CV and IET correlation. To explain the behavior of
the IET correlation in the present data, we need different models. It seems that the
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IET correlation has not been discussed in the context of social interaction data, with
a notable exception [19]. We are interested in the capabilities of alternative models
[10, 21, 22] in reproducing the IET correlation in the data.

In the present study, we used the exponential memory kernel because it is
analytically tractable and contains only three parameters. The original Hawkes
process with other memory kernels has also been applied to data [4, 26]. The
ML method is available also for this case [26]. Nevertheless, we suspect that self-
excitation inherent in the Hawkes process induces both high CV and positive IET
correlation for a variety of memory kernels. Therefore, the use of different memory
kernel may not improve the fit of the Hawkes process to our data in terms of the IET
correlation.

Two-state models [19, 21, 22], in which events are produced at high and low
rates in the excited and normal states, respectively, are also self-exciting. These
models may be more realistic for social data than the standard Hawkes process used
in this work in the sense that humans may not distinguish many different levels
of self-excitation as is assumed in the Hawkes process. On the other hand, the
Hawkes process with the exponential memory kernel is simpler than these models
such that the ML methods are available and the parameters have simple physical
meanings. Although the model by Malmgren and colleagues allows for the ML
method [21], the method is quite complicated and contains many parameters. It may
be desirable to develop two-state models that are simple and allow for statistical
methods. Alternatively, it may be desirable to modify the Hawkes process to account
for the behavior of the IET correlation in the real data.

We lack methods to compare the goodness of fit of different models, except that it
is straightforward to test the validity of a model against the Poisson process (but see
[21]). We need develop goodness of fit tests to compare the performance of models
proposed in different papers.

Appendix 1: IET Distribution of the Hawkes Process

In this section, we explain the derivation of the IET distribution of the Hawkes
process shown in [13]. Also see [36] for introduction to mathematical treatments of
the Hawkes and related processes.

Consider a trigger event at t D 0 and the inhomogeneous Poisson process with
rate function �.t/, i.e., the point process directly induced by the trigger event. The
probability generating functional (PGFL) for this inhomogeneous Poisson process,
denoted by H , is given by

H .z.�// �E
0

@
Y

i�1
z.ti /

1

A

D exp

�Z 1

0

Œz.t/ � 1� �.t/dt



; (8)
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where z.t/ is a carrying function, and ti is the time of the i th event. We define
t0 D 0.

The events at t D ti may induce further events. On the basis of (8), the PGFL
for the inhomogeneous Poisson process including all the descendant events induced
by a trigger event at t D 0, denoted by F , is given through the following recursive
relation:

F .z.�// D z.0/ exp

�Z 1

0

ŒF .zt .�//� 1� �.t/dt



; (9)

where zt .t 0/ � z.t 0 C t/ is the time translation. On the right-hand side of (9), z.0/
accounts for the trigger event at t D 0, and F .zt .�// accounts for the fact that an
event triggered at time t initiates an inhomogeneous Poisson process with rate �.t/
on top of the other inhomogeneous Poisson processes going on.

We obtain the PGFL for the entire Hawkes process, denoted byG, by combining
Eq. (9) and the PDFL of the homogeneous Poisson process with rate � as follows:

G .z.�// D exp

�Z 1

�1
� ŒF .zt .�//� 1� dt



: (10)

We set z.t/ D Qz for ts � t � ts C� and z.t/ D 1 otherwise. Then, 
.ts; �; Qz/ �
F.z.�// is the probability generating function (PGF) for the number of events in
Œts; ts C��, with the carrying variable Qz, and


.ts � t; �; Qz/ D F.zt .�// (11)

is the PGF for the number of events in Œts � t; ts � t C��. Equation (9) is reduced to


.ts; �; Qz/ D

8
ˆ̂<

ˆ̂:

exp
nR tsC�
0

Œ
.ts � t; �; Qz/� 1� �.t/dt
o
; ts > 0;

Qz exp
nR tsC�
0

Œ
.ts � t; �; Qz/� 1� �.t/dt
o
; �� � ts � 0;

1; ts < ��:
(12)

By setting ts D 0 and combining (10) and (11), we obtain the PGF for the number
of events in Œ0;�� as

Q�.Qz/ � G.z.�// D exp

�Z �

�1
� Œ
.�t; �; Qz/� 1� dt



: (13)

In particular,
Q
.ts; �/ � 
.ts; �; 0/ (14)

is the probability that there is no event in Œts; tsC�� for a cluster of events originating
at t D 0. Using (12), we obtain
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Q
.ts; �/ D

8
ˆ̂<

ˆ̂:

exp
nR tsC�
0 Œ Q
.ts � t; �/ � 1� �.t/dt

o
; ts > 0;

0; �� � ts � 0;
1; ts < ��:

(15)

By setting Qz D 0 in (13) and using (15), we obtain the survivor function of the
forward recurrence time, i.e., time to the next event from arbitrary t , as follows:

Q�.0/ D Pr.forward recurrence time > �/ D exp
�
��� � �

Z
1

0

Œ1 � Q
.t;�/� dt



;

(16)
where Pr denotes probability.Q�.0/ is the probability that the Hawkes process does
not have any event in Œ0;��.

Finally, the distribution of the interevent time � is given in the form of survivor
function as

Pr.� > t/ D �dQ�.0/.t/

dt

�

; (17)

where the stationary event rate 
 is given by (5).
In the numerical simulations, we adopted the Simpson’s rule for calculating

integrals in (15) and (16), and solved (15) by iteration.
We remark that integration of (17) by part leads to

h�i D 1



(18)

and
˝
�2
˛ D 2




Z 1

0

Q�.0/.t/dt: (19)

Equations (18) and (19) can serve to calculate the CV. However, we did not use
them and obtained the CV by direct numerical simulations because calculating the
CV via (18) and (19) is time consuming.

Appendix 2: ML Method for the Hawkes Process

In this section, we explain a slightly modified version of the ML method for the
Hawkes process with the exponential memory kernel originally proposed in [29].

We let the event times be 0 � t1 � t2 � � � � � tN . Different from the usual
assumption of the continuous-time point process, we allow multiple events to occur
at the same time (i.e., ti D tiC1). Such simultaneous events actually occur in our data
because of the finite time resolution of 1 min. Simultaneous events do not prevent
the application of the ML method explained in the following.
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For the exponential memory kernel given by (3), the event rate at time t is
given by


.t/ D � C ˛
jmax.t/X

jD1
e�ˇ.t�tj /; (20)

where jmax.t/ is the index of the last event before time t .
The likelihood of the event sequence during time period Œ0; tN �, denoted by

L.t1; : : : ; tN /, is given by

L.t1; : : : ; tN / D exp

�
�
Z tN

0


.t/dt

� NY

iD1

.ti /: (21)

By substituting (20) in (21), we obtain the log likelihood for the original Hawkes
process as follows [29]:

logL.t1; : : : ; tN / D ��tN C
NX

iD1

˛

ˇ

�
e�ˇ.tN�ti / � 1	C

NX

iD1
log.� C ˛A.i//; (22)

where
A.i/ D

X

1
j<i
N
e�ˇ.ti�tj /: (23)

Exactly speaking, the point process for an individual for one workday begins
when the individual has arrived in the office. Because we do not know when the
point process begins, we assume that the first event of each day is a trigger event. In
other words, we set t1 D 0 and modify (22) as

logL.t1; : : : ; tN / D ��tN C
NX

iD1

˛

ˇ

�
e�ˇ.tN�ti / � 1	C

NX

iD2
log.� C ˛A.i//: (24)

For each individual, we use the days that have at least 40 events. We index such
a valid day as d D 1; 2; : : : ; dmax. We denote the event times of valid day d by
0 D td1 � : : : � tdNd , where Nd is the number of events in valid day d . The log
likelihood of the entire sequence is given by the summation of the log likelihood
over all the valid days.

The partial derivatives of the log likelihood with respect to ˛, ˇ, and � are
originally derived in [29]. In the present case, they read

@ logL

@˛
D

dmaxX

dD1

(
NdX

iD1

1

ˇ

�
e
�ˇ.tdNd�tdi / � 1

�
C

NdX

iD2

Ad .i/

� C ˛Ad .i/

)
; (25)
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@ logL

@̌
D

dmaxX

dD1

(
�˛

NdX

iD1

�
1

ˇ
.tdNd � tdi /e�ˇ.t

d
Nd
�tdi / C 1

ˇ2

�
e
�ˇ.tdNd�tdi / � 1

��
�

NdX

iD2

˛Bd .i/

� C ˛Ad .i/

)
; (26)

@ logL

@�
D

dmaxX

dD1

(
�tdNd C

NdX

iD2

1

	C ˛Ad .i/

)
; (27)

where
Ad.i/ D

X

1
j<i
Nd
e�ˇ.t

d
i �tdj / (28)

and
Bd .i/ D

X

1
j<i
Nd
.tdi � tdj /e�ˇ.t

d
i �tdj /: (29)

We obtain the ML estimates by setting the left-hand sides of (25)–(27) to 0.
We carried out the gradient descent method to estimate ˛, ˇ, and � for each

individual. We repeat the substitution

˛  ˛ C ı @ logL

@˛
; (30)

ˇ  ˇ C ı @ logL

@̌
; (31)

�  � C ı @ logL

@�
; (32)

where we set ı D 10�2. For one individual inD2, the ML method does not converge
with ı D 10�2. Because it converges with ı D 10�3, we used this value for this
particular individual.

Because the likelihood may have multiple local maxima, we started the gradient
descent method with two different initial conditions, i.e., .˛; ˇ; �/ D .0:6; 1:2; 0:6/
and .12; 24; 12/ [hr�1]. We found that the final results corresponding to the two
initial conditions were identical for each individual.

For the ML method, the Hessian of the log likelihood can be explicitly given
and used in combination with the Newton method [29]. However, we found that
the Newton method does not converge for many individuals compared to the simple
gradient descent described above. Therefore, we did not use the Newton method.

Because ˛; ˇ; � 
 0 and ˛ < ˇ are needed for the Hawkes process to be well
defined, we forced the parameter values to satisfy these conditions. In each update
step, if the updated ˛ becomes less than 10�6, we set ˛ D 10�6. Similarly, if ˛ < ˇ
is violated, we set ˇ D ˛ C 10�6. If � < 10�6, we set � D 10�6.
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The temporal resolution of our data is a minute. We set the unit time for the ML
method to an hour such that our data has a resolution of 1=60 on this timescale. The
data would be too discrete for the ML method to bear accurate results if we set the
unit time for the ML method to a minute. We verified that the results little changed
when we made the time unit larger than one hour.
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17. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., Van den Broeck, W.: What’s in a
crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271, 166–180 (2011)

18. Jo, H.H., Karsai, M., Kertész, J., Kaski, K.: Circadian pattern and burstiness in mobile phone
communication. New J. Phys. 14, 013055 (2012)

19. Karsai, M., Kaski, K., Barabási, A.L., Kertész, J.: Universal features of correlated bursty
behaviour. Sci. Rep. 2, article No. 397 (2012)

20. Krumin, M., Reutsky, I., Shoham, S.: Correlation-based analysis and generation of multiple
spike trains using Hawkes models with an exogenous input. Front. Comput. Neurosci. 4, 147
(2010)

21. Malmgren, R.D., Stouffer, D.B., Motter, A.E., Amaral, L.A.N.: A Poissonian explanation for
heavy tails in e-mail communication. Proc. Natl. Acad. Sci. USA 105, 18153–18158 (2008)

22. Malmgren, R.D., Stouffer, D.B., Campanharo, A.S.L.O., Amaral, L.A.N.: On universality in
human correspondence activity. Science 325, 1696–1700 (2009)

23. Min, B., Goh, K.I., Kim, I.M.: Waiting time dynamics of priority-queue networks. Phys. Rev.
E 79, 056110 (2009)

24. Mitchell, L., Cates, M.E.: Hawkes process as a model of social interactions: a view on video
dynamics. J. Phys. A 43, 045101 (2010)

25. Ogata, Y.: On Lewis’ simulation method for point processes. IEEE Trans. Inform. Theor. 27,
23–31 (1981)

26. Ogata, Y.: Seismicity analysis through point-process modeling: a review. Pure Appl. Geophys.
155, 471–507 (1999)

27. Ogata, Y., Akaike, H.: On linear intensity models for mixed doubly stochastic Poisson and
self-exciting point-processes. J. R. Stat. Soc. B 44, 102–107 (1982)

28. Oliveira, J.G., Vazquez, A.: Impact of interactions on human dynamics. Physica A 388,
187–192 (2009)

29. Ozaki, T.: Maximum likelihood estimation of Hawkes’ self-exciting point processes. Ann. Inst.
Stat. Math. 31, 145–155 (1979)

30. Pernice, V., Staude, B., Cardanobile, S., Rotter, S.: How structure determines correlations in
neuronal networks. PLoS Comput. Biol. 7, e1002059 (2011)

31. Reynaud-Bouret, P., Schbath, S.: Adaptive estimation for Hawkes processes; application to
genome analysis. Ann. Stat. 38, 2781–2822 (2010)

32. Rocha, L.E.C., Liljeros, F., Holme, P.: Information dynamics shape the sexual networks of
Internet-mediated prostitution. Proc. Natl. Acad. Sci. USA 107, 5706–5711 (2010)

33. Takaguchi, T., Nakamura, M., Sato, N., Yano, K., Masuda, N.: Predictability of conversation
partners. Phys. Rev. X 1, 011008 (2011)

34. Takaguchi, T., Sato, N., Yano, K., Masuda, N.: Importance of individual events in temporal
networks. New J. Phys. 14, 093003 (2012)
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Infering and Calibrating Triadic Closure
in a Dynamic Network

Alexander V. Mantzaris and Desmond J. Higham

Abstract In the social sciences, the hypothesis of triadic closure contends that new
links in a social contact network arise preferentially between those who currently
share neighbours. Here, in a proof-of-principle study, we show how to calibrate
a recently proposed evolving network model to time-dependent connectivity data.
The probabilistic edge birth rate in the model contains a triadic closure term, so
we are also able to assess statistically the evidence for this effect. The approach is
shown to work on data generated synthetically from the model. We then apply this
methodology to some real, large-scale data that records the build up of connections
in a business-related social networking site, and find evidence for triadic closure.

1 Motivation

Many modern application areas give rise to patterns of connectivity that change
over time [9]. Examples include mobile telecommunication, on-line trading, smart-
metering, massive multiplayer online gaming and online social networking. Infor-
mation such as ‘who called who’, ‘who tweeted who’, ‘who FaceTimed who’, and
‘people who bought his book also bought . . . ’ is naturally evolving over time and
cannot be fully exploited through a static representation as a single time-average
or snapshot. These emerging, data-rich disciplines generate large, highly-resolved
network sequences that demand new models and computational tools.

This work focuses on the use of a mathematical model to describe the microscale,
transient dynamics. The model, from [5], is mechanistic, incorporating the triadic
closure effect that many social scientists believe to be a key driving force behind
social interactions. We show how a likelihood approach can be used to calibrate the
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model, thereby allowing the triadic closure hypothesis to be tested statistically on
real data.

The manuscript is organised as follows. In Sect. 2 we introduce the triadic closure
concept and discuss some relevant work in the area. In Sect. 3 we describe the model
from [5] and illustrate its use. Section 4 then explains how the likelihood—the
probability of observing the microscale, edge by edge, data given a set of model
parameters—can be computed and used to perform statistical inference. To illustrate
the idea, we generate synthetic data from the model and reverse engineer the model
parameters. In Sect. 5 we then apply these ideas to a set of online social interaction
data. Section 6 gives a summary and points to future work.

2 Background

The concept of triadic closure can be traced back to the work of the sociologist
Georg Simmel in the early 1900s, and was popularized by the influential article [4].
It is a key motivation for the use of clustering coefficients [3, 15] to summarize
network properties. The basic principle can be summarized as [2, 16]

Triadic Closure, part 1: If two unconnected people in a social network have a friend in
common, then there is an increased likelihood that they will become friends themselves at
some point in the future.

As discussed in [2, Chap. 3], there are at least three convincing reasons why
triadic closure might feature in the evolution of a social interaction network. If
B and C are not currently friends, but share a common friend, A, then a new link
from B to C is more likely to arise than a link between an arbitrary pair, through

Opportunity: B and C both socialize with A and hence have more chance of
meeting,

Trust: A can simultaneously vouch for both B and C,
Incentive: A may view the triadic friendship as less stressful or time-consuming

to maintain than the separate pair of dyads, and hence encourage the B–C link.

Based on these points, we may also argue that each extra common friend shared
by B and C will increase the chance of a future B–C link. Hence, we may slightly
extend the triadic closure principle above:

Triadic Closure, part 2: The likelihood that two unconnected people in a social network
will become friends themselves at some point in the future increases with the number of
friends they share in common.

The digital age has given rise to large scale human interaction data sets, making
it feasible to test the hypothesis that changes in connectivity are driven by triadic
closure. For example, Leskovec et al. [12] studied four large online social network
datasets and found that “most new edges span very short distances, typically closing
triangles.” Mislove et al. [14] monitored the growth of the Flickr network and found
that 80 % of new links “connected users that were only two hops apart, meaning that



Infering and Calibrating Triadic Closure in a Dynamic Network 267

U

Y W

V

Fig. 1 Depiction
of the triangulation process,
based on Fig. 6 from [12].
A new edge is produced,
as shown by the dashed line.
This dashed edge creates
a triad closure between nodes
U, V, and W

the destination user was a friend-of-a-friend of the source user before the new link
was created”. Szell et al. [17] measured transition rates between dyadic and triadic
structures for positive and negative social interactions in a massive multiplayer
online game and found “overrepresentation (underrepresentation) of complete triads
in networks of positive ties, and vice versa for networks of negative ties.”

Networks in neuroscience have also been observed to have an overabundance of
triangles, with respect to both anatomical and functional connectivity [1, 7, 13].

In this work we aim to go beyond the realm of simply recording the incidence
of network triangles by combining ideas from applied mathematics and applied
statistics. Given network data, we wish to calibrate an appropriate mechanistic
model of network evolution and simultaneously quantify the statistical evidence in
favour of triadic closure.

The closest previous work to ours is perhaps [12], where stochastic models
incorporating triadic closure were proposed and tested in a microscale/likelihood
setting. To understand the class of models from [12], consider the node u in Fig. 1
(which is based on Fig. 6 from [12]). The triangulation stage adds a link to a node, w,
that is two hops away from u. This is done by first choosing one of u’s neighbours, v,
according to one of the five following rules

random: uniformly at random,
degree: proportional to some power of the degree of node v,
common friends: proportional to the number of common friends shared by nodes

u and v,
last time: proportional to some power of the time that has elapsed since v last

created an edge,
comlast: proportional to the product of (a) the number of common friends shared

by nodes u and v, and (b) the time that has elapsed since v last created an edge,
raised to some power.

Similarly, any of these five rules can be used to chose a neighbour, w, of v. The new
link is then inserted between u and w in order to create a triad. This gives a total
25 different models, which were tested in [12] on real data in a likelihood setting.
The authors concluded that the random-random model (choose v uniformly from
the neighbours of u and then choose w uniformly from the neighbours of v) gives a
good compromise between accuracy and simplicity.

In this work, we consider a recent stochastic triadic closure model from [5],
based on the general methodology of [6]. A key difference from the versions
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discussed above is that this model triangulates by directly choosing nodes w that
are two hops from u, with a bias that is proportional to the number of common
neighbours—directly reflecting part 2 of the triadic closure principle. Advantages
of this modelling approach are that:

• A single parameter, �, is used to quantify the strength of the triadic closure effect.
The case � D 0 corresponds to no preference for triadic closure (edges appear
uniformly at some basal rate). Hence, we have a nested pair of models and can
test whether there is statistically significant evidence for triadic closure in the
data.

• The modeling framework is sufficiently simple to allow a mean-field approxima-
tion for the evolution of the edge density. The mean-field approximation involves
the same model parameters, and hence this macroscopic summary data can be
used when a full likelihood computation at the microscale is not feasible. We
exploit this feature in Sect. 5.

3 The Triadic Closure Model

We suppose that a fixed set of N nodes have a connectivity structure that may
change at discrete, uniformly spaced, time points t0 < t1 < : : : < tK . We let
Ak denote the adjacency matrix for the network at time tk and assume that the
networks are unweighted and undirected without self-loops, so each Ak 2 R

N�N
has aij D aji D 1 if there is an edge from node i to node j at time tk and has
aij D aji D 0 otherwise, with all aii D 0.

The triadic closure model in [5] involves two matrix-valued functions of the
current state, !.Ak/, and ˛.Ak/, giving the edge death and edge birth probabilities,
respectively. The death probability takes the simple form

.!.Ak//ij � Q!; for some Q! 2 .0; 1/: (1)

The birth probability is defined as

.˛.Ak//ij D ı C �.A2k/ij; (2)

for some constants ı and �. We impose 0 < �.N � 2/ < 1 � ı to ensure that the
birth probability lies between 0 and 1.

Given the time tk network, Ak , if there is currently no edge from i to j , then
the birth probability specifies the chance that the edge will emerge at time tkC1.
Similarly, if i and j are connected in Ak , the death probability specifies the chance
that the edge will disappear at at time tkC1. Conditioned on Ak , all such edge events
are taken to be independent. More precisely, the model takes the form of a discrete
time Markov chain over the state space of all binary, symmetric networks with N
nodes, and given A0 we may simulate a path of the chain as follows
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for k D 0,1, 2, . . . ., K � 1
Compute ˛.Ak/
for all disjoint pairs i ¤ j

if .Ak/ij D 0 then set
.AkC1/ij D 1 with prob. ˛.Ak/ij (birth)
.AkC1/ij D 0 with prob. 1 � ˛.Ak/ij (no change)

else we have .Ak/ij D 1, so set
.AkC1/ij D 0 with prob. Q! (death)
.AkC1/ij D 1 with prob. 1 � Q! (no change)

end if
end for all pairs

end for k

To understand the form of the birth probability (2), we note that the factor .A2k/ij
counts the number of neighbours shared by nodes i and j at time tk . Hence the
overall birth probability is given by combining

• a basal level, ı, and
• a triadic closure term that is proportional to the number of new triangles the edge

would create. Here � controls the strength of the triadic closure effect.

A mean-field approximation for the evolution of a macroscopic quantity, the edge
density

Opk WD 1

N.N � 1/=2
XX

i>j
.Ak/ij; (3)

was proposed in [5] and found to match well with real simulations. This mean-field
approximation takes the form

pkC1 D .1 � Q!/pk C .1 � pk/
�
ı C �.N � 2/p2k

	
: (4)

An interesting feature of the iteration (4) is that there are generically three steady
states; that is, values p? such that pkC1 D pk D p? solves (4), with only the outer
two being stable. Simulations showed that both stable states could be observed in
practice, and in particular for initial networks A0 close to the intermediate, unstable
steady state, the density along a path evolves to one of the two stable values in an
unpredictable manner that depends on the precise micro-level detail.

To illustrate the model, and also to provide some data for the inference
computations in the next section, we now show some network sequences generated
by the model. In each case we used 100 nodes and 100 time points, and the initial
network, A0, was a sample of a classical Erdös-Rényi random graph with expected
edge density of p; we denote this by A0 D ER.p/.

Data Set A: ı D 0:0004, Q! D 0:01, � D 0, A0 D ER.0:5/.
In this case there is no triadic closure–edges appear and disappear uniformly at
random. The mean-field equation (4) collapses to a linear iteration with a single,
stable steady state at p? D 0:0385. Figure 2 shows the adjacency matrix at selected
time points, along with the edge density as a function of time. The images of the
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Fig. 2 Data set A. Upper: the adjacency matrix at selected time points. Lower: edge density as a
function of time

adjacency matrix put a black square where the value is zero and a white square
where the value is one. To show the relevance of the mean-field approximation,
Fig. 3 illustrates what happens when the path is followed for a longer period; we
used 1,000 time points. The mean-field approximation from (4) is superimposed
over the edge density plots. Here the observed edge density at the final time point
is 0.0356.
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Fig. 3 Extended version of data set A. Upper: the adjacency matrix at selected times points up to
time 1;000. Lower: edge density up to time 100 and time 1;000



272 A.V. Mantzaris and D.J. Higham

50 100

50

100

time=1

50 100

50

100

time=7

50 100

50

100

time=13

50 100

50

100

time=20

50 100

50

100

time=27

50 100

50

100

time=33

50 100

50

100

time=40

50 100

50

100

time=47

50 100

50

100

time=53

50 100

50

100

time=60

50 100

50

100

time=67

50 100

50

100

time=73

50 100

50

100

time=80

50 100

50

100

time=87

50 100

50

100

time=93

50 100

50

100

time=100

0 10 20 30 40 50 60 70 80 90 100
0.48

0.5

0.52

0.54

0.56

0.58

0.6

time points

ed
ge

 d
en

si
ty

Fig. 4 Data set B. Upper: the adjacency matrix at selected time points. Lower: edge density as a
function of time

Data Set B: ı D 0:0004, Q! D 0:01, � D 0:0005, A0 D ER.0:5/.
Here, the mean-field iteration has steady states 0:7215 (stable), 0:2291 (unstable)
and 0:0494 (stable). Using A0 D ER.0:5/ starts the paths closest to the denser of
the two stable macro-states. Figure 4 shows some network snapshots along with
the edge density. A longer time interval is used in Fig. 5 in order to confirm the
relevance of the p? D 0:7215 steady state.
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Fig. 5 Extended version of data set B. Upper: the adjacency matrix at selected times points up to
time 1;000. Lower: edge density up to time 100 and time 1;000
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Fig. 6 Data set C. Upper: the adjacency matrix at selected time points. Lower: edge density as a
function of time

Data Set C: ı D 0:0004, Q! D 0:01, � D 0:0005, A0 D ER.0:1/.
Here, we use the same model parameters as in Data Set B, but start with a less dense
initial network. Figure 6 shows network snapshots and edge density, and Fig. 7 runs
over a longer time period. In this case, the edge density is attracted to the other
stable steady state at p? D 0:0494.
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Fig. 7 Extended version of data set C. Upper: the adjacency matrix at selected times points up to
time 1;000. Lower: edge density up to time 100 and time 1;000
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4 Likelihood and Inference

The probabilistic nature of the model produces a natural likelihood function to feed
into a calibration and inference framework. This section explains the details and
tests out the idea on the data sets from Sect. 3.

Given network data A0;A1; : : : ; Ak , that is, up to time tk , because the model
satisfies the Markov property the likelihood of observing a network AkC1 at time
tkC1 depends only on Ak and is given by

L
�
AkC1jAk

	 D Y

Remain alive

.1� Q!/� Y

Become alive

˛.Ak/ij �
Y

Remain dead

.1� ˛/ .Ak/ij �
Y

Become dead

Q!ij:

Here the products are over appropriate ordered edge pairs; that is, .i; j / with i<j ;
so for example, “Remain alive” denotes .i; j / for which both .Ak/ij D 1 and
.AkC1/ij D 1.

Now suppose that the model parameters and initial network A0 are fixed. Any
observed network sequence A1;A2; : : : ; AK then has likelihood

L .A1jA0/ �L .A2jA1/ � � � � �L .AK jAK�1/ : (5)

The parameters which maximise the likelihood of a model may then be calcu-
lated. In this work we use straightforward grid searches over appropriate parameter
ranges. We focus here on the constrained model, where � is fixed at zero, so no triad
closure effect is present, and the unconstrained model, where � is a model parameter.
The constrained model is therefore nested within the unconstrained model, which
makes the application of the likelihood ratio test [18] suitable for model comparison.
The likelihood ratio test value, D, is then used to compute a p-value for rejecting
the null model, which is the constrained model. The value D and the difference
in degrees of freedom in the unconstrained and constrained model are used as
parameters for the chi-squared distribution. This allows us to compute a p-value
for rejecting the null hypothesis. We take a threshold of 0.01.

The Akaike information criterion (AIC), [8], is also used here for model
selection. AIC is founded in information theory. The application of AIC reinforces
the results of the likelihood ratio test.

Inference for Data Set A: Here we performed a grid search of the likelihood over
ı D 0:0001 W 0:0001 W 0:0006 and Q! D 0:0005 W 0:005 W 0:025 for the constrained
model. For the unconstrained model we also used � D 0:0000 W 0:0001 W 0:001.

The search for the constrained model gave ımaxD 0:0004 and !maxD 0:0105
with a log likelihood of �10182:0284. For the unconstrained model, we obtained
ımaxD 0:0004,!max D 0:0105 and �max D 0, with a log likelihood of�10182:0284.
Hence, the extra freedom offered by � was clearly not relevant for this data set. The
log likelihood ratio test therefore gives D D 0, favouring the constrained model.
The marginal for � is shown in Fig. 8. We can see the decay away from the true
value of zero. AIC also prefers the model without triadic closure.



Infering and Calibrating Triadic Closure in a Dynamic Network 277

0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.0010
−4.3

−4.2

−4.1

−4

−3.9

−3.8

−3.7

−3.6

−3.5

−3.4

−3.3 x 10
5

EPSILON

Fig. 8 Marginal for � in data set A

0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001
−1.3

−1.25

−1.2

−1.15

−1.1

−1.05

−1

−0.95 x 10
6

EPSILION

Fig. 9 Marginal for � in data set B

Inference for Data Set B: Here we searched over ı D 0:0001 W 0:0001 W 0:0006
and ! D 0:0005 W 0:005 W 0:025 in the constrained model and also � D 0:0000 W
0:0001 W 0:001 in the unconstrained model. The likelihood for the constrained
model is maximized at ımax D 0:0006 and !max D 0:0105 with log likelihood
of �38633:7891. For the unconstrained model, ımax D 0:0001, !max D 0:0105

and �max D 0:0005 with log likelihood �31477:9615. We note that the constrained
model has a higher birth rate to compensate for the lack of triangulation. The log
likelihood ratio test value is D D 14311:6553, so the test result is 1, favouring
the triad closure model. AIC chooses the model that has triad closure as well. The
marginal of �, shown in Fig. 9, has a clear peak around the value of 0.0005 that was
used to generate the data.

Inference for Data Set C: For the constrained model the grid search took place
over ıD 0:0001 W0:0001 W0:0006 and !D 0:0005 W0:005 W 0:025 and for the uncon-
strained model we also used �D 0:0000 W 0:0001 W 0:001. The constrained model
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produced ımaxD 0:0006 and !maxD 0:0105 with log likelihood of �5136:5503. For
the unconstrained model we have ımax D 0:0004, !maxD 0:0105 and �max D 0:0005
with log likelihood of �5089:8203. As for Data set B, the constrained model has
a higher birth rate to balance the lack of triangulation. The log likelihood ratio test
value is D D 93:4599, with a test result of 1, favouring the triad closure model.
As well, AIC chooses the model with triad closure. The marginal of � is shown in
Fig. 10, and, as in Data set B, we see a peak around the value of 0:0005.

Based on these results, we conclude that the likelihood-based inference approach
can produce meaningful conclusions on this type of data.

5 On-Line Social Network Data

We now apply this methodology to online social network data from [10] that relates
to the Wealink (http://www.wealink.com/) social networking site for professionals
in China. In this data set, new users (nodes) join the network over time, and a new
link can be established between any pair of current users. The raw data consists of
triples of the form .i; j; t/, indicating that a link has been created between nodes i
and j at time stamp t . There are 26; 817; 840 time stamps, measured in seconds, and
they range from t D 1 to 72; 711; 888 s, which is just over 841 days. The largest node
id is 223; 482. For the purpose of calibration and model selection, we assume that all
223; 482 nodes are present (i.e. available to form links) from the initial time point,
and that all links are undirected. Hence we have symmetric adjacency matrices of
dimension N D 223; 482. Edges do not disappear in this data set. Figure 11 shows
how the edge density increases with time. The overall average rate of increase in
Fig. 11 is 0:0038 edges per second.

http://www.wealink.com/
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Wealink online social
network as a function of time
in seconds

By construction, there is no edge death in this data set. Hence, we fix Q! D 0. This
leaves two parameters, the basal birth rate, ı, and the triadic closure strength, �. Just
as we did in Sect. 4 for the synthetic data, our aim is therefore to test whether there
is evidence for a positive triadic closure strength.

Because of the large amount of data, we made a number of simplifications in
order to reduce computational complexity to a feasible level. First, it is clear from
Fig. 11 that most activity takes place over a limited time period, and hence, for our
experiments, we start with the network at time 3 � 107 s and continue until time
4� 107 s. Then, rather than treating each event separately, we divide this period into
100 equally spaced time windows and construct an adjacency matrix for each. So
each adjacency matrix records an element 1 in positions .i; j / and .j; i/ if nodes
i and j were already linked, or formed a link in the relevant time window, and it
records a zero otherwise.

Due to the excessive cost of evaluating the likelihood, we first used the mean-
field approximation (4) to get a feel for an appropriate range of parameter values.
Figure 12 shows the edge density increasing over the 100 discrete time points. The
red circles show the corresponding mean-field solution when we fix � D 0 and
optimize in a mean-square sense over the remaining parameter, ı; that is, given p0,
we consider the iteration

pkC1 D pk C .1 � pk/ı
and minimize the mean-square deviation between fpkgk>0 and the edge density from
the data. This produces a value of ı D 8:2059 � 10�8 for the basal birth rate. The
black crosses show the results when also allow the triadic closure strength to be
nonzero; that is, we use

pkC1 D pk C .1 � pk/
�
ı C �.N � 2/p2k

	
:

Here, we found ı D 9:53 � 10�8 and � D 7:32 � 10�16.
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Fig. 12 Blue solid line: Edge density over the 100 discrete time points used for the inference. Red
circles: edge density from best mean-field fit with � fixed at zero and ı as a free parameter. Black
crosses: edge density from best mean-field fit with both � and ı as free parameters
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Fig. 13 Log likelihood of the triadic closure model as a function of triad closure strength, �. The
basal edge birth is fixed at 9:95 � 10�8. The x-axis shows the log base 10 values used for � in the
search for the largest loglikelihood

Since our available computing power only permitted a full likelihood based
calibration over one parameter, we then fixed ı D 9:95�10�8 and infered the triadic
closure strength, �, from the microscale data. Figure 13 shows the log likelihood as
a function of �. The best � value gives a log likelihood of �1:58 � 108, whereas the
� D 0 model produces �1:97 � 108. We find that D D 7:81 � 107, and the triadic
closure model is therefore chosen by the log likelihood ratio test. AIC also chooses
the model with triadic closure.

6 Summary

Our aim in this work was to investigate calibration and inference issues for a
stochastic microscale evolving network model. Edge dynamics in the model involve
a term that quantifies a triadic closure effect—friends of friends tend to become
friends. We showed that the presence of triadic closure can be inferred from a
reasonable quantity of synthetic data, generated from the model. We then showed
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that there is statistical evidence for triadic closure in real data from a business-
related social networking site.

Although likelihood-based calibration and model comparison is conceptually
straightforward for stochastic, Markov chain based, models of the type used here,
the fundamental task is computationally challenging for large network sequences
over long time periods. In this work, we were able to exploit a mean-field theory
that describes the evolution of a macroscale quantity—the edge density—in terms
of the model parameters.

There are many directions in which this type of work could be taken:

• other concepts from the social sciences that may determine network dynamics,
such as homophily/heterophily, social distance and cultural drift [2,11], could be
quantified through mathematical models and then tested for and compared in real
dynamic data sets,

• other types of interaction network, for example from telecommunication, online
human behaviour and e-business, could be calibrated, compared and categorized,

• more sophisticated, customized strategies for sampling the model parameter
space could be developed; for example via Markov chain Monte Carlo tech-
niques.
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Dynamic Communicability Predicts
Infectiousness

Alexander V. Mantzaris and Desmond J. Higham

Abstract Using real, time-dependent social interaction data, we look at correla-
tions between some recently proposed dynamic centrality measures and summaries
from large-scale epidemic simulations. The evolving network arises from email
exchanges. The centrality measures, which are relatively inexpensive to compute,
assign rankings to individual nodes based on their ability to broadcast information
over the dynamic topology. We compare these with node rankings based on
infectiousness that arise when a full stochastic SI simulation is performed over the
dynamic network. More precisely, we look at the proportion of the network that a
node is able to infect over a fixed time period, and the length of time that it takes for
a node to infect half the network. We find that the dynamic centrality measures are
an excellent, and inexpensive, proxy for the full simulation-based measures.

1 Background and Motivation

In many social interactions, the timing of the connections is vital. Suppose A
meets B today and B meets C tomorrow. This makes it possible for a message,
or a disease, to pass from A to B, but not from C to A. Further, the more
active B happens to be tomorrow, the more potential there is for today’s A–B
link to have a downstream effect. Several authors have pointed out the need
to account for topological dynamics when considering disease propagation. The
work in [15] considers the stages that sexually transmitted diseases (STDs) pass
through when infecting subpopulations of a network, and shows that the timing
in the connectivity between individuals plays a crucial role. In [10] a disease is
simulated with an SI model (as we use here) and an SIR alternative, over contact
networks relating to high-end prostitution. Both a static and a temporal view of the
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interaction data is used, and the results show that temporal effects play a key role.
Epidemic simulations over temporal connectivity data are also used in [7] to explore
vaccination strategies. Similarly, the spread of computer malware over temporal
networks is considered in [13, 14], and strategies developed for the immunisation
of key nodes. The SI framework is used in [2] to characterise the global structure of
a temporal network.

From a network science perspective, it is natural to seek generic centrality
measures that rank individual nodes according to their “importance.” In the case
of static network topology, there is a wealth of such measures, most of which can
be traced back to the social network analysis community [4]. Devising centrality
measures that apply to time-dependent networks is a more recent pursuit. The work
of [12] used a shortest-path-counting approach to measure the closeness/betweeness
of nodes in a time varying graph. The alternative walk-counting approach in [5] was
based on a direct generalization of Katz centrality [6] to the case of time-dependent
networks. A key message from [11] and [8] is that centrality measures based on a
static, aggregate summary of the network will not adequately reflect the hierarchy
of importance.

The question that we address in this work is

given a time-dependent network, can suitable centrality measures provide useful informa-
tion about the spread of epidemics?

The question is motivated by the fact that centrality measures are typically much
cheaper to compute than large-scale stochastic simulations. For this reason, we focus
on the dynamic communicability approach in [5] where we can deal with all nodes
simultaneously by solving a sparse linear system at each time step (that is, finding
x in a matrix-vector system of the form Ax D b, where A has the same sparsity as
the current network adjacency matrix).

In the next section we give details of the computational tasks and the data set
used. Sections 3 and 4 describe the data and results, and we finish with a discussion
in Sect. 5.

2 Methodology

We consider a fixed set of N nodes whose connections are recorded at an equally
spaced set of time points t0 < t1 < � � � < tM . The network at each time point is
undirected and unweighted, with no self loops. So, at time tk , we can record the
state of the network in the adjacency matrix AŒk� 2 R

N�N . Here
�
AŒk�

	
ij
D 1 if node

i has a link to node j at time tk and
�
AŒk�

	
ij
D 0 otherwise.

The epidemic simulations are performed in a stochastic SI framework. At each
time point a node is either susceptible (S) or infectious (I). Once made infectious,
a node cannot return to the susceptible state. We begin, at t0, by infecting a
single node. Generally, to determine the status of the nodes at time tkC1, we
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use the following rule: for each node that was in the infectious state at time tk ,
we consider all the time tkC1 neighbours pointed to by this node. If any such
neighbour is in the susceptible state, then it is moved into the infectious state with
independent probability ˇ. More loosely, an infectious node has a fixed probability
ˇ of transmitting the infection to each of its current contacts.

We measure the virulence of a node in two separate ways. After starting the
infection at this node, we compute

(a) the proportion of the network infected at the final time, tM ,
(b) the number of time points required to infect at least half of the network.

To understand the centrality measures from [5], we need to introduce the concept
of a dynamic walk of length w from node i to node j : this is simply any traversal
from i to j along w edges that respects the arrow of time (i.e. having used an edge at
time tr , the next edge that we use must exist at time tr or later). The ability of node
i to broadcast information to node j may then be measured as the total number
of dynamic walks from i to j , where a walk of length w is downweighted by the
factor ˛w. Here ˛ 2 .0; 1/ is a fixed parameter that reduces the influence of longer
walks. In the case of a single time point, this measure reduces to the classical Katz
centrality [6], which may be computed through the matrix resolvent, .I � ˛A/�1.
Generalizing to multiple time points in this way, we arrive at the expression

Q D �I � ˛AŒ0�	�1 �I � ˛AŒ1�	�1 : : : �I � ˛AŒM�
	�1

; (1)

where Qij measures how well node i can broadcast information to node j . To obtain
a single coefficient for node i we sum over all nodes in the network to obtain the
broadcast centrality. In practice, since we plan to use this measure to rank the nodes,
it is reasonable to normalize, which avoids numerical underflow/overflow, leading
to the iteration

OQŒk� D
OQŒk�1� �I � ˛AŒk�	�1ˇ̌

ˇ
ˇ̌
ˇ OQŒk�1� �I � ˛AŒk�	�1

ˇ̌
ˇ
ˇ̌
ˇ
; (2)

for k D 0; : : : ;M , with OQŒ�1� D I and k�k representing the Euclidean matrix norm.

The broadcast centrality for node i is then given by
PN

jD1
� OQŒk�

�

ij
.

Just as in the original Katz version, this centrality measure involves a parame-
ter, ˛. In order for the matrix inverses to exist, we require ˛ to be less than

˛? WD min
0
k
M

�
�
�
AŒk�

		�1
;

where �.�/ denotes the spectral radius. Tests in [5] indicated that the results are not
sensitive to the choice of ˛, and in all tests here we use ˛ D 0:9˛?.
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Fig. 1 The static aggregate degree each day for all of the nodes (Enron employees)

3 Data

We perform the tests on real social interaction data that records email exchanges
between former Enron employees [3, 9]. There are N D 151 individuals, and we
summarize activity into daily time slices: an undirected edge between i and j
indicates that at least one email (including cc and bcc) passed between the two
individuals. Figure 1 shows a plot of the static aggregate degree each day for all the
nodes. Because the start date is arbitrary, we smooth out its influence by repeating
computations over a sliding window that covers half the overall period; that is, 568
of the 1,036 consecutive days. So the first window runs from day 1 to day 568, the
second window runs from day 2 to day 569, and so on. In this manner, we create 568
distinct evolving networks, each involvingM C 1 D 568 consecutive days. Results
are averaged over all windows.

For each of the 568 windows, we compute the broadcast centralities and, with
each node in turn as a starting point for infection, perform one SI simulation. In
practice we found that computing the broadcast centralities was typically an order
of magnitude faster than computingN D 151 paths of the SI model, one from each
starting state.

For a small number of windows/starting node combinations, the infection level
remained below 50 % at the final time point. For simplicity, these runs were omitted
from the averaging process when we measured the average time to infect 50 % of
the population. For this reason, we regard the proportion of the network infected at
the final time as the more robust of the two SI-based measures.
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Table 1 Symbols for
company position

President Hexagram

CEO Pentagram
Executive Pentagram
Legal Diamond
Vice President Hexagram
Director of Trading Square
Managing Director Upward triangle
Manager Right facing triangle
Director Left facing triangle
In House Lawyer Diamond
Trader Square
Employee Plus
Secretary Circle
All others Small dot

Table 2 Correlation
coefficients relating to
Figs. 3, 7 and 11 for broadcast
versus proportion of the
network infected

ˇ Pearson Kendall Tau Spearman

0.2 0.85 0.70 0.88
0.5 0.88 0.82 0.94
1.0 0.94 0.81 0.94

The Enron data set also provides the positions of most employees within the
company. For completeness, we display this information in our figures. Table 1
indicates the symbols that we use. However, in the results that follow there does
not appear to be any clear pattern based on these semantic labels.

4 Results

The SI simulations were repeated for three different choices of the infection
probability, ˇ. In each case, we provide two dimensional scatter plots (one point
for each node) that compare, in a pair-wise fashion, (a) the proportion of the
network infected at the final time point, (b) the time taken to infect 50 % of the
network, and (c) the natural logarithm of the broadcast centrality. The corresponding
Pearson, Kendall Tau and Spearman correlation coefficients for (a)–(c) are reported
in Table 2.

We also scatter plot the aggregate degree—that is, the total number of edges
involving the node over all time points—against the proportion of the network
infected.

We emphasize that the broadcast centrality and aggregate degree are independent
of the parameter ˇ in the SI model.
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Fig. 2 Infected proportion
versus time for 50 % of the
network to be infected for
ˇ D 0:2
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Fig. 3 Broadcast centrality
versus infected proportion for
ˇ D 0:2

4.1 Infection Rate ˇ D 0:2 Results

For ˇ D 0:2, Fig. 2 focuses on the SI model and compares the infected proportion
against the time to infect 50 %. These are seen to have a strong negative correlation,
and hence, in terms of ranking the nodes by infectiousness, they are broadly
comparable.

The broadcast centrality is compared with the infected proportion in Fig. 3 and
with the time to infect 50 % in Fig. 4. In both cases, we see strong correlations.

In Fig. 5 we show the aggregate degree against the infection level. Although
most of the very high degree nodes are typically strong infectors, the relationship
is far from linear and breaks down at the lower levels. We also emphasize that the
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Fig. 4 Broadcast centrality
versus time to reach 50 %
network infection for
ˇ D 0:2
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Fig. 5 Aggregate degree
versus infected percentage for
ˇ D 0:2

integer-valued nature of nodal degree makes it liable to produce more ties when
used to rank nodes.

4.2 Infection Rate ˇ D 0:5 Results

We now repeat the experiments from Sect. 4.1 with a stronger infection rate of
ˇD 0:5.

Figure 6 shows the infected proportion against the time to infect. We see that the
two measures are inversely correlated more tightly than in the ˇ D 0:2 case, shown
in Fig. 2.
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Fig. 6 The infected
proportion against the time
for 50 % of the network to be
infected for ˇ D 0:5
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Fig. 7 Broadcast centrality
versus infected proportion for
ˇ D 0:5

Figures 7 and 8 compare the broadcast centrality with infected proportion and
time to infect 50 %, respectively. The performance of the broadcast measure as a
proxy seems to improve slightly over the ˇ D 0:2 case. This is confirmed in Table 2
in terms of the three correlation coefficients.

Figure 9 shows the aggregate degree against infected proportion and the effect
observed for ˇ D 0:2 is now further exaggerated.

4.3 Infection Rate ˇ D 1:0 Results

The final set of tests uses ˇ D 1:0 in the SI model. In this case the disease
transmission is no longer stochastic.
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Fig. 8 Broadcast centrality
versus time to reach 50 %
network infection for
ˇ D 0:5
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Fig. 9 Aggregate degree
versus infected proportion for
ˇ D 0:5

Following the format of the previous subsections, Fig. 10 shows the infected
proportion against the time for 50 % infection, and Figs. 11 and 12 compare broad-
cast centrality with infected proportion and time to reach 50 % network infection,
respectively. In this case, looking at the SI model in isolation, we see a build up of
virulent nodes in Fig. 10 that have a similar ability to infect around 85–90 % of the
network, but vary quite considerably in their time taken to infect the first 50 %. The
picture is ‘spoilt’ by the faster infectors being unable to ‘finish off’ the final 10 %
of nodes. To some extent this behaviour is also reflected in Fig. 11, where some of
the very high broadcasters are underperforming in terms of their relative ability to
infect a very high proportion of the network. The results in Fig. 12, where broadcast
is compared with time to infect 50 % of the network, show a smoother relationship.
We conclude that in this high-infection-rate, sparse-connectivity regime, the time
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Fig. 10 Infected percentage
versus time for 50 % of the
network to be infected for
ˇ D 1:0
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Fig. 11 Broadcast centrality
versus infected proportion for
ˇ D 1:0

to infect 50 % is a more realistic measure of a node’s virulence than the infected
proportion after a fixed, long time horizon.

Finally, Fig. 13 shows again that the aggregate degree is a poor predictor of the
infected network proportion.

5 Discussion

We are concerned here with quantifying properties of a time-dependent interaction
network in terms of epidemic spread. Our results indicate that ranking nodes
according to their broadcast centrality from [5] can operate as an accurate, and
relatively inexpensive, proxy for more detailed rankings of their ability to spread
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Fig. 12 Broadcast centrality
versus time to reach 50 %
network infection for
ˇ D 1:0
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Fig. 13 Aggregate degree
versus infected proportion for
ˇ D 1:0

infection based on averaging over microscale simulations. In particular, the results
were insensitive to infection probability in the microscale model. By contrast,
simply judging a node by its overall bandwidth does not provide a useful picture.

There are many avenues for extending this type of study. For example:

• Further investigation is needed to test whether improvements will arise from fine
tuning the Katz-style downweighting parameter ˛ used in the broadcast centrality
measure, as a function of the infection probability, ˇ.

• Other types of interaction data could be used to generate the underlying dynamic
topology.

• The accompanying receive centrality measure from [5] can be tested as a proxy
for the vulnerability of a node to infection.

• More complex compartmental epidemic models could be investigated, including
SIS and SIR. In this case, our intuition is that the straightforward dynamic walk
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counting approach of [5] will be less successful, and hence new classes of time-
respecting network centrality measures will be required.

• In addition to local node-based information, global summaries, such as an
appropriate, dynamic, version of the basic reproduction number, R0, could
be compared with network features. A study of this type has recently been
performed for the case of a static network in [1].
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Random Walks on Stochastic Temporal
Networks

Till Hoffmann, Mason A. Porter, and Renaud Lambiotte

Abstract In the study of dynamical processes on networks, there has been intense
focus on network structure—i.e., the arrangement of edges and their associated
weights—but the effects of the temporal patterns of edges remains poorly under-
stood. In this chapter, we develop a mathematical framework for random walks on
temporal networks using an approach that provides a compromise between abstract
but unrealistic models and data-driven but non-mathematical approaches. To do this,
we introduce a stochastic model for temporal networks in which we summarize the
temporal and structural organization of a system using a matrix of waiting-time
distributions. We show that random walks on stochastic temporal networks can be
described exactly by an integro-differential master equation and derive an analytical
expression for its asymptotic steady state. We also discuss how our work might be
useful to help build centrality measures for temporal networks.

1 Introduction

A wide variety of systems are composed of interacting elements (e.g., nodes
connected by edges) and can be represented as networks. Important examples
include the Internet, highways and other transportation systems, and many social

T. Hoffmann
Department of Physics, University of Oxford, Oxford, OX1 3RH, UK
e-mail: tillahoffmann@gmail.com

M.A. Porter
Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute and CABDyN
Complexity Centre, University of Oxford, Oxford, OX1 3LB, UK
e-mail: porterm@maths.ox.ac.uk

R. Lambiotte (�)
Department of Mathematics, University of Namur, Namur, Belgium
e-mail: renaud.lambiotte@fundp.ac.be
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a b c

Fig. 1 Different levels of abstraction to model dynamics on temporal networks. In this illustration,
a walker steps from node 1 to node 2 and then jumps to one of the latter’s three neighbors.
When studying dynamics on temporal networks, researchers tend to either (a) perform numerical
simulations on empirical networks using the observed times at which edges are active between
nodes or (b) develop mathematically-tractable Markovian models that neglect temporal patterns
(typically by considering only aggregations of the interactions between nodes). In this chapter, we
aim at finding (c) an intermediate level of modelling, in which we replace the sequence of activation
times by a stochastic model that preserves a system’s inter-event distribution. We thereby balance
the amount of data included in the description with the description’s simplicity

and biological systems. Because of the ubiquity of network representations, the
study of networks has emerged as one of the fundamental building blocks in the
study of complex systems [6, 13, 43].

Unfortunately, most empirical studies of networks thus far have been based
on observations of snapshots of systems. Similarly, most theoretical efforts have
focused on static network properties (such as degree distribution or modularity)
and their effects on dynamical processes such as diffusion or epidemic spreading.
In its current state, network theory thus fails to properly model a wide range of
complex systems, in which interactions need not be active permanently but rather
might switch on only temporarily. Observations in financial markets [49]; email
[3, 12, 33, 39], letter [44], and online [34, 36] communication networks; face-to-
face contacts [24]; movie rentals [4]; and many other situations have illustrated
that the time intervals between edge activations can be distributed nontrivially, and
the ensuing dynamics thus tend to deviate significantly from Poisson processes.
It has also been shown that such burstiness yields radically different dynamics
on networks. This makes it crucial to go beyond modelling dynamical systems
on static networks by also considering the dynamics of the networks themselves
[8, 14, 15, 22, 27, 29, 31, 40, 47, 51, 53, 55, 56].

A natural framework to study many time-dependent complex systems is to use
temporal networks [21], in which one accounts for the timings of interactions
instead of assuming static connectivity (e.g., by employing data aggregation) or
that interactions take place at a uniform rate. Two approaches (see Fig. 1) have been
used to add a temporal dimension to networks to account for constraints imposed by
temporality on spreading processes. First, one can perform simulations on temporal
graphs for which a time series of the presence versus absence of edges is deduced
directly from empirical observations [27, 47]. However, such a computational
approach has a significant drawback, as it relies entirely on numerical simulations
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and is unable to provide a general picture of such problems. Second, one can use
an abstract approach by developing spreading models that nevertheless attempt to
incorporate realistic temporal statistics. Such models can then be studied either
mathematically or using numerical simulations [53, 56]. In this second approach,
an underlying network is studied as a fluctuating entity that is typically driven
by a stationary stochastic process. This approach is nice because it is amenable
to mathematical analysis [18, 22, 23, 26, 40], and it also provides a more accurate
picture of time-dependent complex systems than do static networks.

In this chapter, which is a modified version of [20], we take the second approach
and develop a mathematical framework to explore the effect of non-Poisson inter-
event statistics on random walks. To do this, we apply the concept of a generalized
master equation [41], which is traditionally defined on regular lattices, to the
study of continuous-time random walks on arbitrary networks. Generalized master
equations are a standard tool in non-equilibrium statistical physics; they lie at the
heart of the theory for anomalous diffusion, and their applications range from
ecology [32] to transport in materials [30]. Our choice regarding what dynamics to
consider is motivated by the importance of random walks as a way to (i) understand
how network structure affects dynamics and (ii) uncover prominent structural
features of networks.

The rest of this chapter is organized as follows. We first introduce basic concepts
of random walks on static networks and then introduce a model for stochastic
temporal networks. We then derive a generalized master equation to describe
random walks on stochastic temporal networks. We examine the stationary solution
of this equation and show that it is determined by an effective transition matrix
whose dominant eigenvector can be calculated rapidly even for very large networks
if they are sparse. After checking that the generalized master equation reduces to
standard rate equations when the underlying process satisfies Poisson statistics, we
validate theoretical predictions using numerical simulations. Finally, we discuss the
implications of our work for constructing centrality measures of nodes in temporal
networks.

2 Random Walks on Static Networks

In this section, we review basic properties of random walks on static networks.
The structure of a network is described by an N � N adjacency matrix A, where
N is the number of nodes in the system. By definition, the adjacency matrix
componentAij gives the weight of an edge going from j to i . The adjacency matrix
reflects the underlying network structure, on which various dynamical processes
(e.g., diffusion) can occur. The simplest process that can be defined on a network
is a discrete-time, unbiased random walk. At a given step of such a process, a
walker located at a node j follows a particular edge leaving j with a probability
proportional to the edge’s weight.
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The probability mass function (PMF) ni It for a walker to occupy node i at time t
evolves according to the equation

ni ItC1 D
X

j

Tijnj It ; (1)

where Tij, a component of the transition matrix T , represents the probability to jump
from j to i and is defined as

Tij D Aij=s
out
j ; (2)

where the out-strength

sout
j D

X

i

Aij

of node j is the total weight of the edges leaving node j . Note that the PMF
is equivalent to the expected density of an infinite ensemble of random walkers.
Because the total number of walkers is conserved, the columns of Tij are normalized:

X

i

Tij D 1

sout
j

X

i

Aij D 1 :

The condition
P

i ni It D 1 is thus verified for all times t . The dynamical process
(1) with transition matrix components (2) has been studied in detail, and a wide
variety of its properties are known for many different types of networks [10]. For
instance, consider a network that is undirected, which implies that Aij D Aji and
that the strength of node j is si D sout

i , and also suppose that it is connected
and non-bipartite. The above discrete-time random walk then converges to a unique
equilibrium solution p with components

pi D si =W ; (3)

whereW DPi si .
By construction, p is the dominant eigenvector (i.e., the eigenvector correspond-

ing to the maximum positive eigenvalue) of the transition matrix. Its corresponding
eigenvalue is 1, so it satisfies

X

j

Tijpj D pi :

When modelling diffusion, it is often desirable (and more realistic) to allow
walkers to jump in an asynchronous fashion. A natural way to implement such a
situation is to switch from a discrete-time to a continuous-time perspective [37]. One
then needs to use a so-called waiting-time distribution (WTD), which determines the
time that is spent by a walker on a node before traversing one of the available edges.
The most common assumption is to use an exponential WTD:

 .i I t/ D 
ie�
i t ;
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for which the process is Markovian. The rates 
i at which a walker jumps can in
general be non-identical and depend on the node i on which the walker is located.
Such continuous-time random walks are governed by the differential equation

dni
dt
D
X

j

�
Aij

sj

j � 
iıij

�
nj � �

X

j

Lijnj ; (4)

where Lij is the component of the Laplacian matrix describing the dynamics and
ni .t/ is the PMF to find a walker on node i at time t . For undirected networks, the
stationary solution has components

pi D si

Z
i
; (5)

where Z DPi si =
i is a normalization constant. One can interpret the quantity pi
as the frequency at which a node i is visited multiplied by the characteristic time
htii � 1=
i spent on it. This frequency is proportional to si , which is the same as
for discrete-time random walks (3). Standard choices for the jumping rates include
the uniform rate 
i D 1, for which

Lij D ıij � Aij=sj ; (6)

and a rate 
i D si proportional to node strength, for which

Lij D si ıij � Aij : (7)

These are the two standard types of graph Laplacians. With the choice (7), the
steady-state solution of a Poisson random walk is uniform (i.e., pi D 1=N , which
is independent of A) regardless of the topology and edge weights of a network.

3 Stochastic Temporal Networks

The models that we described in Sect. 2 overlook temporal patterns of the activation
of edges by assigning a single scalar Aij to represent an aggregation of the
activity between nodes i and j . Such an aggregate measure of the importance of
the connection between i and j is often understood as the rate at which edges
are selected by a walker, and one can certainly use this perspective in (4). The
probability for an edge to be selected in a time interval dt is thus independent of
the time that has elapsed since the process started [19]. This Markovian assumption
facilitates theoretical analysis, but it is accurate only for systems in which the rate
at which events take place is not history-dependent.

To go beyond a Markovian picture, we propose to study random walks on
networks that evolve in time in a stochastic manner. We assign to each edge an inter-
event time distribution that determines when an edge is accessible for transport.
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The dynamics of a network are thus characterized by an N � N matrix  .t/
of waiting-time distributions  ij .t/ that determine the appearance of an edge
emanating from node j and arriving at node i . We also assume that the edges
remain present for infinitesimally small times. That is, no network edge is present
except at random instantaneous times determined by  .t/, when a single edge is
present. From now on, we employ the following terminology. We use G to denote
an underlying graph that determines which edges are allowed and which are not, and
 ij .t/ determines a dynamic graph in which edges appear randomly according to the
assigned waiting times. We use such a random process to model the transitions of a
random walker moving on G . By construction, a walker located at a node j remains
on it until an edge leaving j toward some node i appears. When such an event
occurs, the walker jumps to i without delay and then waits until an edge leaving i
appears.

There are several ways that one can set up the WTDs  ij .t/. One option is to
consider the processes leading to steps being associated with an active walker. In this
case, the walker’s clock is reinitialized when it makes a step to a node. For example,
gossip traversing a social network might be modeled using an active walker because
the process of broadcasting gossip restarts when the gossip is received by a new
contact. Another option is to consider the processes leading to steps being associated
with a passive walker. In this case, the edges’ clocks are reinitialized when they
are activated. A virus spreading across a social network might be modeled using a
passive walker because interactions among people are not (primarily) initiated by a
virus. In the present work, we consider the case of an active walker in which a WTD
corresponds to the probability for an edge to occur between times t and t C dt after
the random walker arrives on node j at time t D 0 (recall that the clock is reset
when the walker arrives at a node).

It follows from the definition of the WTDs as probability distribution functions
that Z 1

0

 ij .t/ dt D 1 :

The probability that an edge appears between j and i before time t is

Z t

0

 ij
�
t 0
	

dt0 ;

and the probability that it does not appear before time t is therefore

�ij .t/ � 1 �
Z t

0

 ij
�
t 0
	

dt0 : (8)

If a transition from j to i is not allowed, then the corresponding element  ij.t/ is
equal to 0 for all times.

It is important to distinguish between the WTD  ij .t/ of the process that might
lead to a step along a network and the probability distribution Tij .t/ for actually
making a step from j to i . This distinction is necessary because all of the processes
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on a node are assumed to be independent of one another, but the probability to make
a step depends on all of the processes. As an illustration, consider a walker on a node
j with only one outgoing edge to i . The probability distribution function (PDF) to
make a step to i at time t after having arrived on j is then

Tij .t/ D  ij .t/ :

However, if there exists another edge leaving j (e.g., an edge to node k), then the
PDF to make a transition to i is modified, as a step to i only occurs if the edge to i
appears before the one going to k. In this situation,

Tij .t/ D  ij .t/ �kj .t/ :

In general, the PDF to make a step from j to i accounting for all other processes
on j is

Tij .t/ D  ij .t/ �
Y

k¤i
�kj .t/

D  ij .t/ �
Y

k¤i

�
1 �

Z t

0

 kj
�
t 0
	

dt0
�
: (9)

Equation (9) emphasizes the importance of the temporal ordering of the edges in the
random walk. In particular, it gives greater importance to edges that tend to appear
before others and are thus more likely to be traversed by a random walker.

4 Generalized Montroll-Weiss Equation

We now focus on the trajectories of a random walker exploring the stochastic
temporal network that we described in Sect. 3. We closely follow the standard
derivation of the Montroll-Weiss (MW) equation [41], which is traditionally defined
on regular lattices, and we generalize it to an arbitrary N -node network of
transitions. We are interested in finding the PMF ni .t/ for a walker to occupy node
i at time t . The PMF is given by the integral over all probabilities qi .t 0/ of having
arrived on node i at time t 0 � t , weighted by the probability �i .t � t 0/ of not having
left the node since then:

ni .t/ D
Z t

0

�i
�
t � t 0	 qi

�
t 0
	

dt0 : (10)

Taking the Laplace transform

Oni .s/ � L fni .t/g D
Z 1

0

ni .t/ e
�stdt
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allows us to exploit the fact that the convolution in (10) reduces to a product in
Laplace space:

Oni .s/ D O�i .s/ Oqi .s/ : (11)

We obtain the quantity O�i .s/ in (11) as follows. The probability distribution to
make a step from node i to any other node is

Ti .t/ D
NX

jD1
Tji .t/ : (12)

The PDF to remain immobile on node i for a time t is thus given by

�i D 1 �
Z t

0

Ti
�
t 0
	

dt0 ;

whose Laplace transform is

O�i .s/ D 1

s

�
1 � OTi .s/

�
: (13)

The quantity Oqi .s/ is the Laplace transform of the PDF qi .t/, which describes
the probability of arriving on node i exactly at time t . One calculates it by
accounting for all k-step processes that can lead to such an event [50]:

qi .t/ �
1X

kD0
q
.k/
i .t/ ;

where q.k/i .t/ represents the probability to arrive on node i at time t in exactly
k steps. Note that the PDF at node i is related to that at node j by the recursion
relation

q
.kC1/
i .t/ D

Z t

0

d�
X

j

Tij .t � �/ q.k/j .�/ : (14)

In other words, the probability to arrive on node i in k C 1 steps is the probability
to arrive at any other node j in k steps weighted by the probability of making a step
j ! i at the required time. Upon taking a Laplace transform, (14) becomes

Oq.kC1/i .s/ D
X

j

OTij .s/ Oq.k/j .s/ :

Summing over all k and adding Oq.0/i .s/ yields

Oq.0/i .s/C
1X

kD0
Oq.kC1/i .s/ D

X

j

OTij .s/

1X

kD0
Oq.k/j .s/C Oq.0/i .s/ ;
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which can also be written in terms of matrices and vectors as

Oq .s/ D OT .s/ Oq .s/C Oq.0/ .s/ :

Noting that q.0/ .t/ D n .0/ ı .t/, we see that the last term is simply n .0/, which
leads to the following solution in Laplace space:

Oq .s/ D
�
I � OT .s/

��1
n .0/ : (15)

We insert the expression (13) for O�i .s/ and the expression (15) for Oqi .s/ into the
equation for the PMF (11) to obtain a generalization of the MW equation [41] that
applies to arbitrary network structures:

Oni .s/ D 1

s

�
1 � OTi .s/

�X

k

�
I � OT .s/

��1
ik
nk .0/

D
X

jk

1

s

�
Iij � OTi .s/ ıij

� �
I � OT .s/

��1
jk
nk .0/ :

In terms of vectors and matrices, we write this as

On .s/ D 1

s

�
I � ODT .s/

� �
I � OT .s/

��1
n .0/ ; (16)

where the diagonal matrix ODT has components given by

� ODT

�

ij
.s/ � OTi .s/ ıij :

Equation (16) is a formal solution in Laplace space for the PMF of a random walk
whose dynamics are governed by the WTDs  ij .t/. However, taking the inverse
Laplace transform to obtain the PMF as a function of time does not in general yield
closed-form solutions.

The non-Markovian nature of equation (16) becomes clear after taking an inverse
Laplace transform and returning to a description in the original time variable. This
leads to the integro-differential equation

dn

dt
D
�
T .t/ �L �1

n OD�1T .s/
o
� ı .t/

�
�K .t/ � n .t/ ; (17)

where L �1 denotes the inverse Laplace transform and

f � g D
Z t

0

d�f .t � �/ g .�/
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denotes convolution with respect to time. The memory kernel K characterizes the
amount of memory in the dynamics [2] and is defined in Laplace space by

OK .s/ � s ODT .s/

I � ODT .s/
:

Because of the convolutions, the temporal evolution of the PMF at time t depends
on the states of the system at all times since the initial condition.

Although the integro-differential equation (17) is instructive, it is difficult to
manipulate in practice, and it is often significantly easier to analyze the associated
Laplace-space equation (16). For example, the total number of walkers is conserved
if and only if

d

dt

X

i

ni .t/ D 0 ;

which is difficult to verify in the time domain. We refer the reader to our paper [20]
for a detailed derivation of (17) and a proof in Laplace space that the total number
of walkers is indeed conserved.

5 Asymptotic State

5.1 Preliminaries

Based on our analysis of random walks on static networks, we expect the walker
distribution to reach a unique steady-state solution as t ! 1 as long as any node
can be reached from any other node. The asymptotic steady-state PMF p satisfies

p D lim
t!1n .t/ D lim

s!0 s On .s/ ;

so
p D Mn .0/ ; (18)

where the matrix

M � lim
s!0

�
I � OD .s/

� �
I � OT .s/

��1

maps the initial state n .0/ to the final state p. In the limit s ! 0, one can expand
the exponential in the definition of the Laplace transform to first order:

h ODT .s/
i

ij
D
Z 1

0

.1 � st/ Tj .t/ ıijdtCO �s2	

D �1 � shtj i
	
ıij CO

�
s2
	

D �I � sDhti
	

ij CO
�
s2
	
;
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where the resting time

htj i D
Z 1

0

tTj .t/ dt (19)

is the mean time spent on node j and the diagonal matrix Dhti has components
given by �

Dhti
�

ij
� htj iıij :

Similarly, one can use the approximation

OTij D
Z 1

0

�
1 � st CO �s2	�Tij .t/ dt

D Tij

�
1 � s

Z 1

0

t
Tij .t/

Tij
dtCO �s2	

�

D Tij
�
1 � shtiji CO

�
s2
	�
; (20)

where htiji is the mean time before making a step j ! i and the components of the
effective transition matrix T are

Tij �
Z 1

0

Tij.t/dt : (21)

We write (20) in matrix form as

OT D T� sT ı hti CO �s2	 ;

where ı denotes the Hadamard component-wise product. This yields our final
expression:

M D lim
s!0

h
sDhti .I � T � sT ı hti/�1 CO �s2	

i
: (22)

5.2 Effective Transition Matrix

Before focusing on the stationary state p in (18), we discuss the properties of T.
The matrix element Tij is the probability of making a step j ! i for any time
t 2 Œ0;1/. Thus, Tij 
 0 for all i and j . Additionally,

X

i

Tij D 1 ; (23)
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so T is a stochastic matrix (which we call the “effective transition matrix” of the
stochastic process). Because we have assumed that G is strongly connected, the
stochastic matrix is irreducible and its dominant eigenvector x satisfies

Tx D x ; (24)

which has an eigenvalue of 1 and is unique [52]. As we will see below, the matrix T

plays an important role in determining the asymptotic state of the system as t !1.
By definition, (23) is equivalent to the condition

Z 1

0

Tj .t/ dt D 1 ;

which is expected to be true if node j is connected to at least one other node.1

Therefore, a transition from j to some other node is guaranteed to occur eventually
if one allows infinite time. To show this, we use (9) and (12) to obtain

Tj .t/ D
NX

iD1
Tij .t/ D �

NX

iD1

0

@d�ij .t/

dt
�
Y

k¤i
�kj .t/

1

A

D � d
dt

 
NY

iD1
�ij .t/

!
:

Integrating over the entire time domain yields

Z 1

0

Tj .t/ dt D �
Z 1

0

dt � d
dt

 
NY

iD1
�ij .t/

!

D �
 

NY

iD1
�ij .t/

!ˇ̌
ˇ̌
ˇ

1

tD0
D 1 ;

because �ij .0/ D 1 and �ij .1/ D 0 when the edge j ! i exists in the underlying
graph G .

5.3 Steady-State Solutions

The matrixM in (22) maps any initial condition onto a unique vector as long as the
underlying graph G consists of a single strongly connected component [20]. The

1This condition holds in our setting, as we have assumed that the underlying graph G of potential
edges is strongly connected.
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steady-state solution p is then given by the dominant eigenvector of the matrix M .
In practice, it is easier to obtain the least dominant eigenvector of its inverse

M�1 D lim
s!0

1

s
ŒI � T � sT ı hti�D�1hti

D lim
s!0

�
1

s
.I � T/D�1hti � .T ı hti/D�1hti

�
: (25)

In the limit s ! 0, the eigenvectors ofM�1 tend to the eigenvectors of the matrix

C � .I � T/D�1hti ;

because the second term in the second line of (25) becomes negligible in comparison
to the first term. Thus, in the limit s ! 0, finding the dominant eigenvector of M
reduces to finding the least dominant eigenvector of C . It follows that

Cp D .I � T/D�1htiDhtix

D Ix � Tx D 0 ;

where we recall that x is the dominant eigenvector of T. Therefore, the steady-state
solution is

p D ˇDhtix ; (26)

where ˇ is a normalization constant.
The equilibrium solution in (26) takes a particularly simple form that is similar

to the stationary solution (5) for Markovian continuous-time random walks on
static networks. The time spent on node i is given by the frequency to arrive on
i multiplied by the waiting time htii spent on i . One can compute this solution
easily even for very large graphs, because deriving T from  is straightforward and
one can compute the dominant eigenvector of a large matrix using standard, efficient
techniques (such as the power method [38]).

5.4 Example: Edges Governed by Poisson Processes

We now focus on the particular case in which the underlying network G is
undirected and the edge dynamics are governed by Poisson processes. The WTDs
are then given by exponential distributions [52]

 ij .t/ D 
ije
�
ijt ; (27)



308 T. Hoffmann et al.

where 
ij is the characteristic rate for the transition j ! i . In this situation, (9)
becomes

Tij .t/ D 
ije
�
ijt

Y

l¤i

�
1 �

Z t

0


lje
�
ljt

0

dt0
�
D 
ije

��j t ; (28)

and (12) becomes

Tj .t/ D
NX

iD1

ije
��j t D �j e

��j t ;

where the aggregate transition rate from node j is defined as �j � PN
iD1 
ij. It

follows from (28) that the effective transition matrix T satisfies

Tij D 
ijPN
iD1 
ij

D 
ij

�j

: (29)

The probability to follow an edge is thus proportional to its weight, and we recover
the usual rate equation (4). In particular, we obtain

dni
dt
D
X

j


ijnj .t/ ��ini .t/ ; (30)

so the dynamics are governed by the combinatorial Laplacian Lij D 
ij � �iıij of
a weighted network defined by the adjacency matrix 
 with components 
ij. As we
discussed in Sect. 2, the steady-state solution p is thus uniform (independent of the
details of the rate matrix 
).

Equation (30) shows that a random walk on a stochastic temporal network driven
by (27) is equivalent to a Poisson continuous-time random walk on a static network
that is constructed by aggregating a temporal network by counting the number of
times edges appear between each pair of nodes.

5.5 Numerical Experiments

In this section, we consider a toy example of a completely connected graph with
N D 3 nodes to illustrate how the nature of the WTDs can affect dynamics.

We suppose that the WTDs for the processes occurring on the edges have
different functional forms and different characteristic times (see Fig. 2), and we
compare this non-Poisson situation to a situation with edges governed by Poisson
processes with the same mean rates. In our example, the characteristic-rate matrix
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Fig. 2 (Left) Illustration of random-walk dynamics on an undirected network with N D 3 nodes
and no self-loops. The waiting-time distributions for the edges a, b, and c are exponential, uniform,
and Rayleigh, respectively. Their corresponding means are htai, htbi, and htci. (Right) Mean
temporal evolution of the PMFs obtained from 106 numerical simulations for (upper panel) Poisson
and (lower panel) non-Poisson processes. In the former case, we also plot the corresponding
analytical solutions of the rate equation. The error bars are smaller than the width of the curves
that we used for plotting. For the non-Poisson example, we obtain the steady-state PMFs from (26)

Table 1 Comparison of the effective transition matrix, dominant eigenvector, mean resting times,
and stationary solution for a Poisson random walk and a non-Poisson random walk on a toy network
with N D 3 nodes

Symbol Eq. Poisson Non-Poisson

Effective transition matrix (T) (21)
0

@
0:000 0:250 0:400

0:333 0:000 0:600

0:667 0:750 0:000

1

A

0

@
0:000 0:387 0:772

0:273 0:000 0:228

0:727 0:613 0:000

1

A

Dominant eigenvector (x) (24) .0:250; 0:333; 0:417/
T .0:392; 0:200; 0:408/

T

Mean resting time (hti i) (19) .0:333; 0:250; 0:200/
T .0:273; 0:387; 0:301/

T

Stationary solution .p/ (26) .0:333; 0:333; 0:333/
T .0:349; 0:252; 0:399/

T

Incorrect normalizations of PMFs are due to rounding errors.

is identical in both situations. However, the resulting effective transition matrices,
mean resting times, and stationary solutions differ (see Table 1). We plot the
temporal evolution of the PMFs in Fig. 2 to illustrate the differences between the two
situations. We obtain PMFs from numerical simulations of random walks with all
walkers located at node 1 initially. The system relaxes towards a stationary solution
in both cases, but this stationary solution clearly depends on the nature of the WTDs,
as walkers tend to be underrepresented on node 1 for the non-Poisson dynamics. See
our paper [20] for additional numerical experiments and other details.
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6 Discussion

In this chapter, we developed a mathematical framework that allows one to
incorporate nontrivial temporal statistics into the study of networks. We proposed
a simple stochastic model for temporal networks and considered how stochastic
processes on edges can affect diffusion processes. In particular, we conducted an
analytical study of a random walk on stochastic temporal networks in which we
demonstrated that its dynamics are driven by an integro-differential master equation.
Despite the complexity of this non-Markovian process, we found an analytical
expression for its asymptotic steady-state solution and verified its validity using
numerical experiments.

We believe that our approach offers an interesting compromise between abstract
but unrealistic models and data-driven but non-mathematical approaches for study-
ing temporal networks. However, our work does suffer from limitations that might
hinder its applicability in practical contexts, and attempting to remove these limi-
tations offers several interesting research directions. First, we summarized the tem-
poral statistics using only inter-event time distributions and thereby neglected other
correlations, such as those involving three or more events [28]. Second, we exam-
ined stationary-state dynamics of temporal networks, and many systems that can be
modeled using temporal networks do not attain stationary states (due, for example,
to daily or weekly patterns). Finally, we implicitly assumed when solving the
generalized Montroll-Weiss equation (16) that the first moments of  ij.t/ and Tij.t/

are finite. In Sect. 5.1, we performed a small-s expansion and used the quantities htj i
and htiji in our calculations. These operations are not valid when it is not possible to
define a characteristic waiting time between two steps. (This occurs, for example,
when the Laplace transform of the WTDs behaves near s D 0 like 1 � as˛ , where
˛ < 1 [2].) Because empirical observations of WTDs in real-world systems often
have heavy tails [3], it would be interesting to extend our results to this situation.

We expect our approach to pave the way for the development of new tools that
consider both network structure and network dynamics [37]. For example, there
is an urgent need for the development of approaches to analyze networks that
properly take into account the temporal dynamics of edges [17, 42, 45, 54]. A direct
application of our work is to define a modified version of PageRank centrality
(which is sometimes called simply PageRank) [7], as well as modified versions
of related measures [43], to measure the importance of nodes with respect to the
dynamics of a random walker on a temporal network. PageRank is a conservative
[16], non-local measure of node centrality (i.e., of a node’s importance [43]) that
has been applied to a huge variety of networks across a broad range of scholarly
disciplines both in its original form [5, 38, 43, 46] and in slight variations of
it [1, 9, 35]. The PageRank vector is usually defined for discrete-time random
walks, and the components of this vector are given by the frequency at which
the corresponding nodes are visited in the time t ! 1 limit. The PageRank
vector is equal to the dominant eigenvector of the transition matrix T , whose
components are given by (2). Constructing an analog of PageRank is somewhat
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more complicated for a continuous-time process, as the steady-state PMF p and
frequency of visits x are now different in general. As we have discussed in this
chapter, these two quantities are related by the relation p D ˇDhtix at stationarity,
where Dhti is the mean time spent on a node before leaving it. To ensure that
the standard PageRank vector is recovered in the Poisson limit, we choose to
use x for the PageRank centrality of a continuous-time process. Accordingly, we
define PageRank on stochastic temporal networks as the dominant eigenvector of
the effective transition matrix T, as this gives more importance to edges that are
visited more by walkers due to the temporal order of their appearance. It would be
interesting to explore the properties of this centrality measure and to compare it to
PageRank and other existing (conservative) notions of centrality. It would also be
interesting to develop non-conservative centrality notions for temporal networks,
and one has to consider processes other than random walks to do that [16]. Other
possible applications of our work include the construction of random-walk-based
measures of network modularity [11, 42, 48] or node similarity [25] for stochastic
temporal networks.
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24. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F., Van den Broeck, W.: What’s in a

crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271, 166 (2011)
25. Jeh, G., Widom, J.: SimRank: a measure of structural-context similarity. In: KDD’02:

Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 538–543, ACM, New York, NY (2002)

26. Karrer, B., Newman, M.E.J.: A message passing approach for general epidemic models. Phys.
Rev. E 82, 016101 (2010)
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A Temporal Network Version of Watts’s Cascade
Model

Fariba Karimi and Petter Holme

Abstract Threshold models of cascades in the social and economical sciences
explain the spread of opinion and innovation as an effect of social influence. In
threshold cascade models, fads or innovation spread between agents as determined
by their interactions to other agents and their personal threshold of resistance.
Typically, these models do not account for structure in the timing of interaction
between the units. In this work, we extend a model of social cascades by Duncan
Watts to temporal interaction networks. In our model, we assume agents are
influenced by their friends and acquaintances at certain time into the past. That
is, the influence of the past ages and becomes unimportant. Thus, our modified
cascade model has an effective time window of influence. We explore two types
of thresholds—thresholds to fractions of the neighbors, or absolute numbers. We try
our model on six empirical datasets and compare them with null models.

1 Introduction

Threshold models of cascades have been studied extensively in social and eco-
nomical literature. The examples of the phenomena they seek to explain include
diffusion of innovation, rumors and diseases, strikes, voting behavior and migration.
Diffusion models such as Bass model [3] are canonical models. These assume that
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the individual choice of action is independent from the total number of interactions
of the individuals. However, sociologist Mark Granovetter [9] proposed thresholds
to influence as a rational action. This insight comes from that in many situations
there must be a point where the net benefits of performing an action exceeds the
net costs. This also reflects the fact that many decisions need the group size to
be considered. For example, the costs of joining a riot would probably decrease
as the group size increases. Granovetter further proposes two main factors that
influence spreading in threshold scenarios—social structure and timing of social
action. In this chapter, we focus on the latter factor.

Social psychologist Bibb Latané [16] proposed social impact theory to explain
social influence as a multiplicative function of strength, immediacy (an inverse
function of physical distance) and the number of sources of influence. In the
threshold model of cascades, we only investigate effects of the third factor (that the
influence is proportional to the number of people involved). The threshold itself
corresponds to the individual’s persistence to change his or her state. Threshold
models have been studied for uniform or heterogeneous threshold values [9, 22].
Dodds and Watts [4] showed that minor manipulation of individual threshold can
have a major impact on spreading phenomena. Here, for simplicity (like in [24]),
we assume an identical threshold value for all individuals.

This chapter is inspired by Watts’ threshold model of cascades in networks [24].
This work explains for example how new innovation can make a cascade of adap-
tation solely by network interactions. Even though this approach does not represent
the reality of innovation adaptation, it gives an estimation of the importance of
networks in the spreading process. In the threshold model, the agents’ decision of
action is binary choice, for examples the decision of choosing a brand for a same
product. In this model, the individuals’ choice of action depends only on other
neighborhood choice. In Schelling’s words, we have model of binary choice with
externalists.

We extend the work of [14] where we present a generalization of a threshold
model to temporal networks [10,15]. Temporal networks, the theme of this book, are
networks that encodes information about when things happen not only about which
nodes that are in contact. We contrast our generalised model to the behavior of the
original, static-network version. In our model (as in Watts’s model), all the agents
initially have the same state, and the thresholds are homogeneously distributed over
the population. During the simulation, the agents change their states according to
their interaction with their neighborhood and time of these interactions. We study
two types of thresholds—fractional and absolute—corresponding to whether the
individual respond to the fraction of neighbors with a deviating opinion, or to
the absolute number of such neighbors. We note that while fractional thresholds
are most common in the social and economic literature, absolute threshold models
are used in bootstrap percolations and self-organized criticality which focus on local
dependency [1, 7].
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2 Methods

We consider a system of vertices (agents) and edges (vertices that at some point are
in contact with each other). The system can be represented as a network G with a
set of vertices V and a set of edges E . Every edge is associated with a set of times
of interaction events. These interactions are bidirectional.

Each vertex or agent in the network has a state. State can be either 0 or 1.
We call vertices with state 0 non-adopters. Vertices with state 1 correspond to
adopters. Initially all the vertices in the network have state 0 (non-adopters). We
start by randomly choosing a vertex and assign the state to 1. This initial vertex with
state 1 can, according to the diffusion-of-innovation literature [22], be interpreted
as an innovator advertising a new product. Here, for simplicity, we only divide the
population into adopters and non-adopters. We thus study cascades of adoption from
adopters to non-adopters. Choosing random vertex and repeating the simulation for
large number of realizations ensures that the results come from large-scale network
properties rather than the initial agent’s position in the network.

We run the dynamic of interactions in the chronological orders. Influential
interactions are those that occur within a time window � in the past. This means
that agents change their initial state 0 to 1, depending on the contacts within a the
mentioned time window. If, within the time window, the fraction (or number) of
adopters among the agent’s neighbors exceeds the threshold value, then the agent
changes state to 1. In ours (and Watts’) setup, an adopter remains adopter for the
rest of the simulation. The motivation of the latter is just to simplify the model.

Let us denote the total population byN and the number of adopters (as a function
of time) Nadopters.t/. The cascade size is calculated as follows (and averaged over at
least 200 runs of simulations)

˝.t/ D hNadopters.t/i
N

(1)

Let � be the threshold value in which agent change their state accordingly. Let ai
denote the number of adopters vertex i meets in a time window � . Here ci denotes
total number of contacting neighbors that vertex i has within the time window � .
In the case of fractional threshold values, we count the fraction of adopters in the
neighborhood of a vertex i within a time window as follows

fi D ai

ci
(2)

The state of adoption occurs according to the following conditions

PrŒadopting from vertex i� D
�
1 if fi 
 �
0 if fi < �

(3)
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Fig. 1 An illustration of our temporal-network cascade model. In the panel (a), vertex d does not
change its state according to the time window and value of threshold. In panel (b), vertex d reaches
the criteria to change its state

For the case of absolute threshold model, let ˚ be the absolute number of
adopters that vertex i needs to meet within the time window � to be able to change
its state to 1. The condition for the change of state is the following

PrŒadopting for vertex i� D
�
1 if fici 
 ˚
0 if fici < ˚

(4)

Figure 1 illustrates the model. Contacts are illustrated in a time line. Shaded
circles indicate adopters, white or gray circles indicate non-adopters. The threshold
here is assumed to be � D 0:5 and the time window � D 10. As time progresses,
the time window slides through each contact and the vertices are updated according
to their contacts within the time window. In panel (a), vertex d does not change its
state even though it is in contact with an adopter. At another time, panel (b), vertex
d changes its color because inside the current time window, the fraction of adopters
exceeds the threshold.

3 Empirical Datasets

We test our model on six empirical datasets stemming from different types of
human interactions. The datasets were obtained with all individuals anonymized
to protect their privacy. All datasets have been used in previous studies. The first
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Table 1 Summary of properties of the datasets

Data No. vertices No. contacts Time duration Resolution

Email 3,188 309,125 82 days Second
Online dating 29,341 536,276 512 days Second
Internet community messages 329 434 500 days Second
Internet community forum 2,384 291,151 500 days Second
Prostitution 16,730 50,632 2,232 days Day
Conference 113 20,818 3 days 20 s

dataset consists of self-reported sexual contacts from a Brazilian online forum
where sex-buyers rate and discuss female sex-sellers [19]. The second dataset
comes from email exchange at a university [6]. It was used in [2] to argue that
human behavior often comes in bursts. The third datasets was collected at a 3-day
conference from face-to-face interactions between conference attendees [13]. The
fourth dataset comes from a Swedish Internet dating site where the interaction
ranges from partner seeking to friendship oriented [11]. The fifth and sixth datasets
come from a Swedish forum for rating and discussing films [20]. One of these
datasets represents comments in a forum that is organized so that one can see who
comments on whom. The other datasets comes from email-like messages. Table 1
summarizes details of datasets such as number of vertices, number of contacts,
sampling time and time resolution. Some of the datasets like movie forum, email
and conference contacts can be underlying structure for the spreading of social
influence, like fads or ideas, or computer viruses. The sexual-contact dataset and
perhaps also the online dating datasets, one can argue represent the structure over
which sexually transmitted infections can spread.

4 Fractional-Threshold Model

4.1 Effect of Threshold Values and Time Windows
on Cascade Size

In this section, we investigate the effect of varying time windows � and threshold
values � on the size of cascade. The cascade size � is defined as the fraction of
adopters over the whole population. The size of cascade can vary from 0 to 1.
Results in all sections are the outcome of at least 200 simulation runs with different
random seed. Therefore, the size of cascade we report is the average over that many
simulation runs.

The threshold is fixed and identical for all individuals. As the threshold increases,
the agents are more resistance to change their initial states. In Watts’s model, the cas-
cade cannot occur if the threshold value is too low [24]. Introducing a time window
enables cascades to happen for higher threshold values. For short time windows only
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Fig. 2 Cascade size˝ versus threshold values � from 0:1 to 1:0 for various time window sizes � .
The error bars indicate the standard error over 200 runs of cascade simulations

the most recent contacts counts. As larger time window integrate more influence, it
can require more time to reach the threshold . It has been shown that in the static
case, there is an upper limit for the threshold value beyond which no cascade can
occur [24]. Since the static case is equivalent to the temporal case when � is equal
to the duration of the data, the limiting threshold value will be at least as large in the
temporal case. In Fig. 2, we show the effect of increasing � and � on cascade size
� for six empirical datasets. In short time windows, individuals meet fewer people
and meeting one adopter is enough to change the state. This behavior is similar
to (hypothetical) disease spreading models with 100 % per-contact transmission
probability.
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Fig. 3 Cascade size versus time-window size for fixed value of the threshold (� D 1=2). To verify
the effect of temporal correlations, we compare the data to a null model by reshuffling time stamps.
The figures show that, except the conference data, temporal correlations slow down the cascade
size compare to the randomized networks without temporal structure. The error bars indicate the
standard error over 150 runs of cascade simulations. The legend in panel (a) applies to all panels
except (e)

4.2 Effect of Temporal Structure on Cascade Size

Now we will focus more on the effect of temporal structure of contacts on
the cascade size. Bursty behavior of contacts meaning that high intensity of
contact activity in short interevent time and followed by no activity in long time
intervals [2, 8]. Studies have shown the burstiness can influence spreading over
the contacts [23]. Here we examine the burstiness effect by applying our cascade



322 F. Karimi and P. Holme

Table 2 Properties of the aggregated (and hence static) networks

Clustering
The data Connectance Burstiness coefficient Assortativity

Prostitution 0.0002 0.44 0.00 [0.00] �0:10Œ�0:02�
Email 0.006 0.68 0.06 [0.07] �0:25Œ�0:22�
Conference 0.34 0.74 0.50 [0.48] �0:12Œ�0:17�
Online dating 0.0002 0.65 0.00 [0.00] �0:04Œ�0:04�
Internet community forum 0.012 0.80 0.43 [0.40] �0:24Œ�0:30�
Internet community messages 0.007 0.65 0.05 [0.08] �0:54Œ�0:51�
Connectance is the fraction of all possible links that are realized in a network [5]. Burstiness is high
activity in short inter-event time followed by long range of no activity [8]. The clustering coefficient
measures the fraction of triangles relative to the number of connected triples [18]. Assortativity
measures the correlation of the degrees at either side of an edge [18]. Clustering coefficient and
assortativity for null models are written in brackets

model on the six empirical datasets and compare the cascade size on the real and
reshuffled time stamps. This reshuffled time stamps model (null model) follow
[15]. It preserves network structures such as degree distribution and number of
contacts. The null model is implemented by randomly reshuffling time stamps
of contacts between pairs of nodes. Therefore burstiness and autocorrelations on
single edges and pairwise correlations of edge pairs is destroyed. The null model,
however, retains the global temporal statistics (number of events at given time,
etc. [15]).

Figure 3 represents results of changing the size of the time window on cascade
size for six empirical datasets. We choose the fractional threshold value to be
� D 0:5. Studies have been shown that in a laboratory experiments individuals’
choice is well described by the threshold 0:5 [17].

The cascade size ˝ decreases as a function of time window � . This is not
surprising since larger time window associate with more interaction per individuals
and decrease the fraction of adopters one meets. For the very large time window
the cascade behavior is similar to the static threshold model—that cascade does
not happen for larger threshold values [24]. When � is large enough, the temporal
order of events no longer matters, exactly as we see in Fig. 3 for large time
windows.

For almost all datasets the null model has larger cascade size compare to the
real datasets. In fact, other studies also suggest that the time correlation of events
slows down the spreading [15]. For the case of conference data, the real and null
model are overlapping for the small or large time windows. For intermediate-sized
time windows the real datasets has larger cascade sizes compare to the null model.
We will try to explain this in terms of the network statistics. In the case of conference
data, the network is densely connected (see Table 2). This high connectance
guarantees that, for the small and medium time windows, sufficient fraction of
adopters are exposed to individuals. For the intermediate time windows, the tem-
poral correlation plays an important role. This is especially strong in the conference
data since it is organized around specific activities such as talks, poster sessions,



A Temporal Network Version of Watts’s Cascade Model 323

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0 500 1000 1500 2000

time (days)

0 500 1000 1500 2000

time (days)

10–2

10–3

10–4

10–5

10–6

10–7

ca
sc

ad
e 

si
ze

fr
ac

tio
n 

of
 n

ew
 a

do
pt

er
s

ba

Fig. 4 Evolution of cascade sizes versus sampling time for the prostitution dataset. The threshold
is � D 0:70

coffee and lunch breaks. Typically, networks of high assortativity have a densely
connected subgraph—for the conference data, the entire network is such a densely
connected graph.

5 The Time Evolution of Adoption in the Fractional
Threshold Model

Spreading dynamics have been studied in SI models of contagion and compared
with null models [15]. It has also been shown that heterogeneity in human
activity affects the spreading [12]. In this section, we study the spreading
dynamics on the population on empirical datasets. In addition, we also study
how the number of new adopters evolves over time in different time window
sizes. We investigate the time evolution of the cascades by two types of plots.
The first is the aggregated cascade size over time which has been defined in
(1). The other plot is based on the number of new adopters for each time
step in the evolving network. Figures 4–9 show these two plots separately for
each dataset.

The general pattern we observe here is that increasing the time window implies
a decrease in the speed of the cascades. The larger time windows take more time for
the vertex to change state. This effect is furthermore highly non-linear—sometimes
the change is dramatic, sometimes hardly visible. The heterogeneity in the daily
pattern is responsible for jagged increase of cascades. This effect is specifically
clear in the curves of new adopters as a function of time. We also note that the
growth is convex in some cases, concave in others (i.e. the cascade accelerates,
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Fig. 5 Evolution of cascade size versus sampling time for the email dataset. The threshold is
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Fig. 6 Evolution of cascade size versus sampling time for the community forum dataset. The
threshold is � D 0:70

like Fig. 4, after a quiet start. This is presumably related to the sparseness of this
dataset and the fact that the overall activity in it grows with time. For Figs. 6
and 9 the outbreak progresses close to linearly. This is interesting in context of
the Fig. 7 which represents the same set of users as Fig. 6 but a different type
of activity (forum posts rather than e-mail like messages). This could suggest
that opinion cascades spreads faster in open discussions than in person-to-person
communication.

The datasets of Internet community messages and conference encounters are two
examples of rather small networks with the distinctive difference that the community
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message data is sparse and conference network is dense. In the adoption dynamics,
we see a similar pattern in both datasets—that as new adopters emerge over time,
the activities speed up. The size of the cascades in the conference data seem to
be much higher than the community message data due to it being more densely
connected.



326 F. Karimi and P. Holme

time (days)

0 100 200 300 400 500

time (days)

0 100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

0.6

0

10–6

10–7

10–5

10–4

10–3

10–2
ba

fr
ac

tio
n 

of
 n

ew
 a

do
pt

er
s

ca
sc

ad
e 

si
ze

Fig. 9 Evolution of cascade size versus sampling time for the dating dataset. The threshold is
� D 0:70

6 Absolute Threshold Model

The fractional threshold models explain only parts of socio-economical spreading
processes. In reality individuals may have different threshold in different interac-
tions. Even a single discussion with a relative or close friend can be sufficient for
changing an opinion. In this chapter, we denote absolute threshold models, ˚ , the
sufficient number of adopters the individual has to meet to change state, (4). One can
assume that in many situations, the reality is somewhere in between pure fractional
or pure absolute threshold.

In Fig. 10, we show the cascade size as a function of various time windows. We
fixed the absolute threshold value for all cases ˚ D 3. As the figure shows, the
cascade size increase by increasing the time window � . In larger time window, the
chance of meeting three adopters increase. Interestingly, for the time-reshuffled
models, this is not the case. In fact, the time order in the empirical datasets
boost the cascade compare to randomized time order. In conference data, Fig. 10f,
the sampling time is short therefore the time order does not play a major role.
The increase in the cascade size by increasing the time window is the opposite
from the fractional threshold models. Exposing to more contacts in fractional
model, decrease the fraction of adopters in the time window. Moreover opposite
to the fractional threshold model, the null model in absolute threshold model has
lower cascade size compare to empirical data. Thus as temporal correlation in
fractional threshold model slows down the cascades. In the absolute threshold
models the opposite effect occurs. In the case of community messages—Fig. 10c—
since number of contacts is low there are large error bars that do not rule out an
increasing �-dependence.
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7 Discussion

We proposed an extension of Watts’s cascade model [24] to temporal networks
where the influence is integrated over a sliding window of the contacts. This model
builds on the key assumption that people are influenced by contacts dating some
time back into the past but not influenced by very old contacts. We studied two
variants of the model, one where people respond to a threshold of the fraction of
adopters among their neighbors and another where they respond to the absolute
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number of such contacts. We find that the dynamics of cascades are heavily affected
by the timing of contacts in the temporal networks.

There is a qualitative difference between the fractional- and absolute-threshold
models. In the former case, the cascade sizes decrease with time-window
size; in the latter case, it is the other way around. Moreover, the response
to randomization is different—for the fractional-threshold case the temporal-
network structure makes the cascades larger, whereas in the absolute-threshold
case, randomization decreases the size of cascades. This is interesting in the
light of [15] where the authors argue that burstiness slows down spreading
phenomena. In this case, the authors have models of contagion in mind, but their
conclusion seems not to generalize to threshold models (as was also observed
in [21] and [14]).

We also note that the time evolution of the cascades differs from dataset to
dataset where the more sparsely connected systems show accelerating outbreaks.
This cannot only be explained by that it takes longer time for a cascade to take
off as there are some datasets where cascades fail to reach a large proportion
of the population for a large part of parameter space. It is indeed hard to single
out one temporal network structure that controls the cascade dynamics. But the
average number of contacts per edge and the connectance (or average degree in
the aggregated network) seem to be two important quantities.

We believe there are interesting open questions regarding threshold models in
temporal networks; the main one being what structures—temporal or topological—
that control spreading phenomena in temporal networks.
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Timing Interactions in Social Simulations:
The Voter Model

Juan Fernández-Gracia, Vı́ctor M. Eguı́luz, and Maxi San Miguel

Abstract The recent availability of huge high resolution datasets on human activi-
ties has revealed the heavy-tailed nature of the interevent time distributions. In social
simulations of interacting agents the standard approach has been to use Poisson
processes to update the state of the agents, which gives rise to very homogeneous
activity patterns with a well defined characteristic interevent time. As a paradigmatic
opinion model we investigate the voter model and review the standard update rules
and propose two new update rules which are able to account for heterogeneous
activity patterns. For the new update rules each node gets updated with a probability
that depends on the time since the last event of the node, where an event can be an
update attempt (exogenous update) or a change of state (endogenous update). We
find that both update rules can give rise to power law interevent time distributions,
although the endogenous one more robustly. Apart from that for the exogenous
update rule and the standard update rules the voter model does not reach consensus
in the infinite size limit, while for the endogenous update there exist a coarsening
process that drives the system toward consensus configurations.

1 Introduction

Individual based models of collective social behavior include traditionally two
basic ingredients: the mechanism of interaction and the network of interactions
[1]. The idea of choosing a mechanism of interaction, such as random imitation
[2–4] or threshold behavior under social pressure [5–7], is to isolate this mechanism
and to determine its consequences at the collective level of emergent properties.
The network of interactions determines who interacts with whom. The topology
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of the network incorporates among other things the heterogeneity of ties among
individuals. In addition ties can be non persistent, so that the network structure
changes with time. In particular, the network and the state of the individuals can
evolve in similar time scales (co-evolution). Such entangled process of dynamics
of the network and the dynamics on the network can describe how to go from
interacting with neighbors to choosing neighbors [8–12]. A third ingredient of
individual based models, which was not considered in detail in the past, is the
timing of interactions: When do individuals interact? The usual assumption in
simulation models was that of a constant rate of interaction. In this paper we revise
this assumption addressing the consequences of the heterogeneity in the timing of
interactions.

Addressing this question is timely due to the availability of massive and high
resolution data on human activity patterns. Information and knowledge extracted
from this data needs to be included in a realistic modeling of collective social
behavior. Indeed, many interevent time distributions measured recently in empirical
studies about human activities such as e-mail communication, surface mail, timing
of financial trades, visits to public places, long-range travels, online games, response
time of cybernauts, printing processes and phone calls, among others [13–22], show
heavy tails for large times. Motivated by these findings there are two current lines
of research:

• Origin of these heavy-tailed distributions

– These heavy tails have been explained based on circadian cycle and season-
ality, via a non-homogeneous Poisson process with a cascading mechanism
[13, 20].

– Root these heavy tails in the way individuals organize and prioritize their
tasks, which can be modeled through a priority queuing model [14,17,21,22].
See chapter “Burstiness: Measures, Models, and Dynamic Consequences”.

• Effects of this interaction timing heterogeneity on certain dynamics: indepen-
dently of the origin of this feature it has been noticed that a non-homogeneous
interaction in time can give rise to non-trivial behavior. An example considered
so far in some detail is spreading and infection dynamics: SI-type spreading
dynamics have been investigated, showing that this peculiar timing gives rise to
a slowing down of the dynamics that cannot be explained just by a change of time
scale but it changes the functional form of the prevalence of a disease [16–19].
See chapter “Spreading Dynamics Following Bursty Activity Patterns”.

Our work [23] goes along the second of these research lines. It considers the
implementation of human activity patterns in simulation models of interacting
individuals, and the consequences of the timing of interactions. As an illustrative
model we explore this general question in the context of the voter model [2, 3]. The
voter model is a very stylized model that serves as a null model for the competition
of two equivalent states under a dynamics of random imitation. A difference with
previous work in spreading and infection dynamics is that in the voter model
each individual can be in two equivalent states. Then the question is when the
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system reaches consensus in either of these two states or when there is asymptotic
dynamical coexistence of the two states. We will see that the answer to this question
depends crucially on the timing of interactions. Related work on the voter model,
discussed later, include the papers by Stark et al. [24], Baxter [25], and Takaguchi
and Masuda [26].

In Sect. 2 we revise the definition of the voter model and the different quantities
used to monitor its macroscopic dynamics. Section 3 considers the voter model
dynamics with different standard update rules, i.e., update rules that incorporate a
constant rate of interaction. In Sect. 4 we introduce new update rules to account for
heterogeneous activity patterns. We consider two update rules: endogenous update,
coupled to the dynamics of the states of the agents; and exogenous update which is
independent of the states of the agents. Section 5 includes a discussion of our results
and related work.

2 The Voter Model

2.1 Definition of the Voter Model

The voter model is a microscopic model first considered in Ref. [2] in 1973 as a
model for the competition of species for their habitats, and named voter model in
Ref. [3] in 1975 as the natural interpretation of its rules in terms of opinion dynamics
[1, 4]. However it has been investigated not just in the context of social dynamics
but also in fields such as probability theory [3] and population dynamics [2].

The voter model consists of a set of N agents placed on the nodes of an
interacting network. The links of the network are the connections among agents.
Two nodes are first neighbors if they are directly connected by a link in the network.
The agents have a binary variable (opinion, state. . . ) which can take the values C1
or �1. The behavior of the agents is characterized by an imitation process, because,
whenever they interact, they just copy the state of a randomly chosen first neighbor.

The model has two absorbing configurations, i.e., configurations in which the
dynamics stop, which consist either of all agents in state C1 or in state �1.
These absorbing configurations are also typically called consensus, as the whole
population has agreed in the same state.

This model has been studied by computer simulations using what we later define
as random asynchronous update for node dynamics. In this case the basic steps in
the dynamics are:

1. Randomly choose an agent i with opinion xi .
2. Randomly choose one of i ’s neighbors, j , with opinion xj . Agent i adopts j ’s

opinion; xi .t C 1=N/ D xj .t/.
3. Resume at 1.

The alternative link dynamics is considered in Ref. [27].
Usually the time is measured in units of N basic steps, i.e., a Monte Carlo step,

following the idea that every agent gets updated on average once per unit time.
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2.1.1 Macroscopic Description

A basic question is under which conditions consensus will be reached and how. In
order to answer this question we have to define some macroscopic quantities which
will describe the state of the system and its dynamical behavior.

Magnetizationm.t/: It is the average state of the population and is defined as

m.t/ D 1

N

NX

iD1
xi :

Density of interfaces �.t/: It is the fraction of links connecting agents with
different states. It is defined as

�.t/ D # of links between �1 andC1
# of links in the network

D 1
PN

iD1 ki

0

@
X

hij i

1 � xixj
2

1

A ;

where hij i stands for summing over neighboring nodes.

In numerical simulations finite size effects come into play. In finite size systems
consensus will be reached, but we have to differentiate if consensus is reached due
to the inherent dynamics or to a finite size fluctuation. We use averages over many
realizations to extract the mean behavior. This is what is called an ensemble average
and will be denoted by h�i. When doing the ensemble averages some conservation
laws can be found. For the case of regular networks, where every node has the same
number of neighbors (same degree), the ensemble average of the magnetization
hm.t/i is conserved under node dynamics [27,28]. For this reason the magnetization
is not a good order parameter and we have to define the density of interfaces �,
which in general is not conserved. This is a proper order parameter as it measures
the degree of order in the system. It is nonzero while the system is not in one of the
absorbing states and is zero otherwise. A decrease of �.t/ describes the coarsening
process with growth of domains with agents in the same state. If the network is
heterogeneous, i.e., the degrees of the nodes are not all the same, the conservation
law for hm.t/i breaks down unless we use link dynamics.

In order to gain more insight into the dynamics for finite size systems we also
introduce two other quantities to characterize the dynamics. These quantities are:

Survival probability S.t/: It is the probability that a realization of the system has
not reached one of the absorbing states at time t . The mean time hT i to reach
consensus is then given by1

1S.t/ is the probability of being in an active configuration at simulation time t . Then the
probability of reaching an absorbing state at time t is d

dt .1� S.t// D � d
dtS.t/. The average

time to reach consensus is then hT i D � R1

0 .t ddtS.t//dt and, integrating by parts one finds that

hT i D R
1

0 S.t/.
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hT i D
Z 1

0

S.t/dt:

Density of interfaces averaged over surviving runs h��.t/i: This quantity is
basically the same as the density of interfaces, but disregarding the realizations
that have already reached an absorbing state when doing the ensemble average.
It tells us the degree of order in the system for the realizations that are still in an
active state. This quantity is related to the density of interfaces averaged over all
realizations by

h�.t/i D S.t/h��.t/i:
A novel quantity in the study of the voter model has to be introduced in order to

characterize the temporal activity patterns. This quantity is:

Interevent time (IET) distribution M.�/: It is the probability that, given two
consecutive changes of state of a node, the time interval between them equals � .
We will also use the complementary cumulative distribution2 of this, C.�/ D
1 � R �

0
M.t/dt.

3 Standard Update Rules

In this section we review standard update rules used in simulations of agent based
models (ABM’s). We also investigate the behavior of the voter model for these
different rules. In ABM’s agents are placed on the nodes of a network. The state
of the agents is characterized by a variable that can take one of various values.
The specific dynamics tells how the states of the nodes are updated. But in addition
to the dynamical rules, simulation incorporate rules that determine when an agent
is given the opportunity to update her state. Standard update rules implement a
homogeneous pattern of updates in time.

The simulations all over this chapter were done with random initial conditions,
i.e., every agent has the same probability in the beginning to have one state or the
other, and setting their initial time since the last change of state equal to zero.

3.1 Definitions of Standard Update Rules

Typically the update rules implemented are

• Asynchronous update: At each simulation step only one of the agents is updated.
The unit of time is typically defined as N simulation steps (a Monte Carlo step),
where N is the number of agents in the system.

2In the remainder we will refer to the complementary cumulative distribution just as cumulative
distribution.
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– Random asynchronous update (RAU): The agents are updated in a random
order.

– Sequential asynchronous update (SAU): The agents are always updated in the
same order.

• Synchronous update (SU): All the agents are updated at the same time. The time
is measured in units of simulation steps.

The most commonly used update for the voter model has been the RAU. Most of
the results have been derived for that update. As we can see from the definitions of
these standard update rules, there exists a well defined characteristic time between
two consecutive updates of the same node. In the case of SAU and SU every agent
is updated exactly once per unit time, while for RAU this only happens on average.

3.2 Voter Model with Standard Update Rules

In Fig. 1 we can see the outcome of the simulations on a complete graph, a random
graph of average degree hki D 6 and on a scale-free graph of average degree
hki D 6. The figure includes plots of the averaged density of active links h�.t/i,
the evolution of � in a single realization and the survival probability S.t/. The
cumulative IET distribution C.�/ is plotted for the three updates and the three
different networks in Fig. 2. The question of interest is whether C.�/ is Poisson-
like or a more heterogeneous distribution.

Results for RAU, SAU and SU are plotted together for comparison purposes. We
observe that the averaged density of active links h�.t/i, the survival probability S.t/
and the tail of the cumulative IET distribution C.�/ display an exponential decay
exp.�t=�.N //, with a characteristic time that depends on the system size. These
characteristic times have been extracted by fitting the data for many system sizes and
computing the scaling behavior of �.N /. The results of this analysis are summarized
in Table 1 for the different update rules and networks. Both the average density of
interfaces h�.t/i and the survival probability S.t/ display the same characteristic
time. This feature gives rise to the appearance of a plateau in the density of interfaces
averages over surviving runs, as h��.t/i D h�.t/i=S.t/, which is a signature of the
system not being ordered by the dynamics.

Our results indicate that the voter model has the same qualitative dynamical
behavior under RAU, SAU and SU node update rules. These results can be
summarized as follows:

Density of active links:
h�.t/i: For the ensemble average over all realizations we find an exponential
decay in

h�.t/i / e�t=�.N /
with a characteristic time that scales as �.N / / N for a complete graph and
random graphs. For the case of Barabási-Albert scale-free graphs the scaling is
compatible with the analytical result �.N / / N= log.N / [27,29,30]. We can see
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Fig. 1 The voter model under the usual update rules (RAU in black, SAU in red and SU in blue)
on different networks. All the averages were done over 1;000 realizations. The left column is for
a complete graph, middle column for a random graph with average degree hki D 6 and right
column a scale-free graph with average degree hki D 6. Top row contains plots for the average
density of interfaces h�i with dashed lines at the value of the plateau that will only exist in the
thermodynamic limit, second row shows the density of interfaces averaged only over surviving
runs h��i, third row shows the density of interfaces for single realizations and the bottom row
contains the survival probability. System size is N D 1;000

that the characteristic time diverges with the system size, so that h�.t/i remains
constant in the infinite size limit for any of these networks. This is telling us
already that the system is not reaching an ordered state in the thermodynamic
limit.

h��.t/i: Decays exponentially until it reaches a plateau. The plateau height is
independent of the system size, meaning that, on average, the realizations that
have not yet reached an absorbing state stay at a disordered state with a finite and
large fraction of active links.
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Fig. 2 Cumulative IET distributions for the voter model under the usual update rules (RAU in
black, SAU in red and SU in blue) on different networks. All the averages were done over 1;000
realizations. Left plot is for a complete graph, middle plot for a random graph with average
degree hki D 6 and right plot for a scale-free graph with average degree hki D 6. System size
is N D 1;000

Table 1 System size dependence of the characteristic times in the density of active links, h�.t/i
and in the cumulative distribution of interevent times, C.t/, for different network topologies and
node update rules

RAU �.N / SAU �.N / SU �.N /

CG h�ijS.t/ N=2 0:23.4/N 1:01.2/ 0:9.1/N 1:01.2/

C 0:63.7/N 0:47.2/ 0:33.4/N 0:50.1/ 0:6.1/N 0:51.2/

RG hki D 6 h�ijS.t/ 0:57.7/N 0:99.2/ 0:34.6/N 0:97.2/ 1:0.1/N 1:01.2/

C 1:0.2/N 0:47.2/ 0:38.6/N 0:51.2/ 0:74.9/N 0:51.2/

SFG hki D 6 h�ijS.t/ 0:25.5/N 0:88.2/ 0:19.3/N 0:92.5/ 1:6.4/N 0:84.3/

C 0:35.7/N 0:52.2/ 0:18.7/N 0:53.4/ 1:0.3/N 0:43.3/

CG stands for complete graph, RG for random graph and SFG for scale-free graph

Survival probability:
S.t/: The survival probability decays exponentially,

S.t/ / e�t=�.N /;

with the same characteristic time as h�.t/i. Thus when combining h�.t/i=S.t/ D
h��.t/i we find a constant value for h��.t/i. The mean times to reach consensus
for finite systems are well defined. In the infinite size limit, as �.N / diverges
with the system size, we can conclude again that the system does not reach an
ordered state and the survival probability is just equal to one for all times in the
thermodynamic limit.
Cumulative IET distribution:
C.�/: This distribution shows an exponential tail,

C.t/ / e�t=� 0.N /;

indicating that there is a well defined average IET. The characteristic time in the
exponential tail scales approximately as

� 0.N / / pN:
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These are the features shared by all standard node update rules. There are also
differences, since the precise characteristic times and the plateau heights of h�.t/i
and h��.t/i depend on the update rule. See top row in Fig. 1 where the plateaus
for the different update rules are plotted with a dashed black line. It is clear that
the difference between RAU and SAU update rule lies in correlations that will be
present in SAU and not in RAU. For the case of SU, the differences come from the
fact that for this update rule the dynamics is purely discrete. Still the main result
is that the qualitative behavior is the same: for these three update rules the system
remains, in the thermodynamic limit, in an active disordered configuration for the
voter model dynamics in a complete graph and in complex networks of infinite
effective dimensionality such as Erdös-Rènyi and Barabási-Albert networks. Also
the activity patterns are very homogeneous, with a well defined IET.

4 Update Rules for Heterogeneous Activity Patterns

A set of N agents are placed on the nodes of a network of interaction, as was
explained generally for agent based models in Sect. 3. Each agent i is characterized
by its state xi and an internal variable that we will call persistence time �i . For
any given interaction model (Ising, voter, contact process, . . . ), the dynamics is as
follows: at each time step,

1. With probability p.�i / each agent i becomes active, otherwise it stays inactive;
2. Active agents update their state according to the dynamical rules of the particular

interaction model;
3. All agents increase their persistence time �i in one unit

The persistence time measures the time since the last event for each agent. Typically
an event is an interaction (exogenous update: active agents reset � D 0 after step
(ii)) or a change of state (endogenous update: only active agents that change their
state in step (ii) reset � D 0) (Fig. 3).

There are two interesting limiting cases of this update when p.�/ is independent
of � : when p.�/ D 1, all agents are updated synchronously; when p.�/ D 1=N ,
every agent will be updated on average once per N unit time steps. The latter
corresponds to the usual random asynchronous update (RAU). We are interested
in non-Poissonian activation processes, with probabilities p.�/ that decay with � ,
that is, the longer an agent stays inactive, the harder is to activate. To be precise, we
will later consider that

p.�/ D b

�
; (1)

where b is a parameter that controls the decay with � . This mechanism is similar to
the reinforcement dynamics explained in chapter “Models, Entropy and Information
of Temporal Social Networks”. An alternative mechanism, also based on a process
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Fig. 3 Example of the new update rule. Every agent gets updated with her own probability p.�i /,
being �i her persistence time. The two possible states of the nodes are represented by blue squares
and red circles. The node or nodes inside a black dashed circle are the ones that are updated. The
nodes inside a green circle are the randomly chosen neighbors for the interaction and the purple
arrow tells in which direction the state will be copied

with memory is the Hawkes process discussed in chapter “Self-exciting Point
Process Modeling of Conversation Event Sequences”.

We expect the IET distribution M.t/ to be related to the activation probability
p.�/. Neglecting the actual dynamics and assuming that at each update event,
the agent changes state we can find an approximate relation between M.t/ and
p.�/. Recall that M.t/ is the probability that an agent changes state (updating and
changing state coincide in this approximation) t time steps after her last change of
state. Therefore the probability that an agent has not changed state in t�1 time steps
is 1 �Pt�1

jD1 M.j / and the probability of changing state having persistence time t
is p.t/. Therefore we can write for t larger than one:

0

@1 �
t�1X

jD1
M.j /

1

Ap.t/ DM.t/; (2)

with p.1/ D M.1/. Taking the continuous limit and expressing this equation in
terms of the cumulative IET distribution we obtain

d ln.C.t// D �p.t/dt: (3)

Setting p.�/ D b=� the cumulative IET distribution decays as a power law C.t/ 	
t�ˇ with ˇ D b. Numerical simulations show that this approximation holds for the
voter model on a fully connected network for endogenous updates and for a small
range of b-values in the exogenous update for any topology of the ones considered
in this study. The modification of the model is investigated more exhaustively for
the case in which the cumulative IET distribution is a power law C.�/ / ��ˇ , but
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Table 2 Evolution of the voter model on a square lattice of 100 � 100 nodes with random
asynchronous update (RAU)

Time Configuration Time since state change Time since update
t D 1

t D 10

t D 100

The first column of images shows the states of the nodes in blue and red, the second one shows the
time since the last change of state of each node, with red being a long time and yellow a small time.
The third column shows the time since the last update, being dark gray for a long time and light
gray for a small time. The updates of the nodes follow a Poisson process with a characteristic time
of one Monte Carlo step. The third column shows three equivalent snapshots (spatial white-noise),
because of the lack of memory of the system. The growth of domains proceeds via interfacial
noise dynamics (first column). Nodes change state quite frequently, except when the system is
approaching consensus (see middle column)

any distribution C.�/ can be plugged into the definition of p.�/ (3). In fact the case
ˇ D 1 will be studied in more detail.

When applied to the voter model the new update rule changes the transition rates
for node-dependent rates that are function of the persistence time of each node.

4.1 Application to the Voter Model

First of all, and to have a better idea of the kind of dynamics that arise from the new
update rules, we exemplify them in Tables 2–4. In those tables we show snapshots of
the evolution of the voter model under the different update rules on a square lattice.
In particular we show the configuration of nodes states, times since the last change
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Table 3 Evolution of the voter model on a square lattice of 100 � 100 nodes with exogenous
update

Time Configuration Time since state change Time since update
t D 1

t D 10

t D 100

Color codes as in Table 2. We observe the same coarsening process (growth of domains) as with
RAU (first column). Nodes also change state quite frequently (second column), with nodes that
have kept their state for a longer time only inside of domains of the same state. Nevertheless, times
since the last update (third column) do not show any specific pattern: some form of 1/f spatial noise
with nodes updated in the same way

of state and time since last update at different points in time: for RAU (Table 2), for
exogenous update (Table 3) and for endogenous update (Table 4).

4.1.1 Voter Model with Exogenous Update on Complex Networks

If instead of the standard update rules discussed in Sect. 3.2 we now use the
exogenous version of the new update, the agents will not be characterized only by
its state xi , but also by their internal time �i , i.e., the time since their last update
event.

The simulation steps for this modified voter model are as follows:

1. With probabilityp.�i / every agent i is given the opportunity of updating her state
by interacting with a neighbor.

2. If the agent interacts, one of its neighbors j is chosen at random and agent i
copies j ’s state. xi .t C 1/ D xj .t/. Agent i resets �i D 0.
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Table 4 Evolution of the voter model on a square lattice of 100 � 100 nodes with endogenous
update

Time Configuration Time since state change Time since update
t D 1

t D 10

t D 100

Color codes as in Table 2. The effect of this update on the dynamics is striking and the same
patterns are observed in the three columns. First, endogenous update introduces surfaces tension
in the dynamics, so that the coarsening process (growth of domains) is now driven by curvature
reduction (first column). In the second column we observe that the time since the last change of
state is only small in the boundaries separating nodes with different states. Given that this time is
now coupled to the update process, the same patterns are observed in the third column: the nodes
at the interface (the ones which have changed less time ago) are updated much more frequently
than the nodes in the bulk of a cluster of each state

3. The time is increased by a unit and we return to 1 to keep on with the dynamics.

For an activation probability p.�/ D 1=� , i.e., ˇ D 1 we ran simulations on a
complete graph, on random graphs of different average degrees, and on a Barabási-
Albert scale-free graph of average degree hki D 6 and for different system sizes
(see Fig. 4).

Our results can be summarized as follows:

Density of active links h�.t/i and h��.t/i: When averaged over all runs, h�.t/i
decays with different rates depending on the interaction networks and system
sizes. For bigger system sizes the decay slows down, reaching a plateau in
the large N limit (top row of Fig. 4). When averaged over active runs h��.t/i
reaches a plateau (second row of Fig. 4), which is independent of the system
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Fig. 4 Characteristics of the voter model with exogenous update for several networks. Left column
is for complete graphs of sizes 300 in black, 1;000 in red and 4;000 in blue. Middle column is for
random graphs with average degree hki D 6 and sizes 1;000 in black, 2;000 in red and 4;000
in blue. Right column is for scale-free graphs with average degree hki D 6 and sizes 1;000 in
black, 2;000 in red and 4;000 in blue. Top row shows plots of the average density of interfaces
h�i, second row shows the density of interfaces averaged over surviving runs h��i, middle column
shows the survival probability S.t/ and right column shows the cumulative IET distribution C.�/.
The averages were done over 1;000 realizations

size, showing that living runs stay, on average, on a dynamical disordered state,
as happens with standard update rules.
Survival probability S.t/: No realizations order in some time, until the survival
probability decays in a nontrivial way. It is not a purely exponential decay,
but decays faster than any power law. Therefore no normalization problems are
expected. See third row of Fig. 4.

Cumulative IET distribution C.�/: Develops a power law tail consistent with
the exponent ˇ D b, which in this case is set to 1, as we could expect if the
approximation of (3) holds. See bottom row of Fig. 4.

The dynamics does not order the system with the exogenous update.
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4.1.2 Voter Model with Endogenous Update on Complex Networks

We now use the endogenous update for the voter model. This is just the same as
the exogenous update rule, but in this case the internal time of each agent i , �i , is
the time since her last change of state. In this way the update rule is coupled to the
states of the agents.

The simulation steps for the modified voter model that we study are as follows:

1. With probabilityp.�i / every agent i is given the opportunity of updating her state
by interacting with a neighbor.

2. If the agent interacts, one of its neighbors j is chosen at random and agent i
copies j ’s state. xi .t C 1/ D xj .t/.

3. If the update produces a change of state of node i , then �i is set to zero.
4. The time is updated to a unit more and we return to 1 to keep on with the

dynamics.

The question now is if this modification will lead to qualitative changes in the
outcome of the dynamics of the voter model.

For an activation probability p.�/ D 1=� , i.e., ˇ D 1 we ran simulations on
a complete graph, on random graphs of different average degree, and on a
Barabási-Albert scale-free graph of average degree hki D 6 and for different system
sizes (see Fig. 5).

The exponents in the power laws of the quantities plotted in Fig. 5 are summa-
rized in Table 5 for the cases of complete, random and scale-free graph with mean
degree hki D 6. We can see from the table that, increasing the average degree of the
random networks we get results that get closer to the ones on a complete graph.
Our results can be summarized as follows:

Density of active links h�.t/i and h��.t/i: When averaged over all runs, h�.t/i
decays as a power law with different exponents depending on the interaction
network (see top row in Fig. 5). When averaged over active runs h��.t/i we see
that it decays as a power law until it reaches a plateau whose height depends
on the system size and is smaller for bigger system sizes (see second row in
Fig. 5), which tells that the system is heading towards consensus, contrary to
what happens with the standard update rules. This is one of the main results of
the present work.

Survival probability S.t/: It is one until it decays, also like a power law (see
third row in Fig. 5). The exponents are in all cases smaller or around 1, so that
the average time to reach consensus diverges for all system sizes. Remember that
the mean time to reach consensus is hT i D R1

0
S.t/dt. So, a proper average

consensus time is not defined.

Cumulative IET distribution C.�/: Develops a power law tail (see bottom row in
Fig. 5). For a complete graph and a random network with high degree we recover
an exponentˇ in the tail of the interevent times cumulative distribution C.�/ that
matches the one we wanted it to follow given our calculations and our choice
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Fig. 5 Characteristics of the voter model with endogenous update for several networks. Left
column is for complete graphs of sizes 300 in black, 1;000 in red and 4;000 in blue. Middle column
is for random graphs with average degree hki D 6 and sizes 1;000 in black, 2;000 in red and 4;000
in blue. Right column is for scale-free graphs with average degree hki D 6 and sizes 1;000 in
black, 2;000 in red and 4;000 in blue. Top row shows plots of the average density of interfaces h�i,
second row shows the density of interfaces averaged over surviving runs h��i, third row shows the
survival probability S.t/ and bottom row shows the cumulative IET distributionC.�/. The averages
were done over 1;000 realizations

Table 5 Exponents for the power law decaying quantities �.t/, S.t/ and
C.�/ for the voter model with the endogenous update rule

h�.t/i / t�� S.t/ / t�ı C.�/ / t�ˇ

Complete graph � D 0:985.5/ ı D 0:95.2/ ˇ D 0:99.3/

Random graph hki D 20 � D 0:99.1/ ı D 0:82.1/ ˇ D 0:94.4/

Random graph hki D 6 � D 0:249.4/ ı D 0:13.1/ ˇ D 0:45.1/

Scale-free graph hki D 6 � D 0:324.7/ ı D 0:32.1/ ˇ D 0:46.1/
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Fig. 6 Exogenous update: cumulative IET distributionC.�/ for different values of the parameter b
(black b D 1, red b D 2, green b D 3, blue b D 4) appearing in the activation probability p.�/
for complete graph (left), random graph with hki D 6 (middles) and Barabási-Albert scale-free
network with hki D 6 (right) and for system size N D 1;000

p.�/ D 1=� . For the other two networks, random and scale-free with hki D 6

we recover that the tail behaves approximately as 1=
p
� .

The dynamics orders the system with the endogenous update through a coarsening
process that leads to the divergence of the mean time to reach consensus for all
system sizes. As a summary, the complete graph case gives us already the qualitative
behavior: for the voter model with exogenous update the timescales are much
larger than in the voter model with RAU, but it has the same qualitative behavior:
the system doesn’t order in the thermodynamic limit, but stays in a disordered
dynamical configuration with asymptotic coexistence of both states. This contrasts
with what happens with the endogenous update, where the timescales are also
perturbed, but with the difference that a coarsening process occurs, slowly ordering
the system. We have checked that the ensemble average of the magnetization
hm.t/i D 1

N

PN
iD1hsi .t/i is conserved for the exogenous update, whereas for the

endogenous update this conservation law breaks down, as previously discussed in
Ref. [24]. The non-conservation of the magnetization leads to an ordering process.
The conservation law is broken due to the different average values of the persistence
time in both populations of agents (C1 and �1) leading to different average
activation probabilities.

4.1.3 Varying the Exponents of the Cumulative IET Distribution C.�/

As was shown in Sect. 4 the exponent in the cumulative IET distribution C.�/ /
��ˇ should be related to the parameter b appearing in the activation probability
p.�/ D b=� . If every time we let an agent be updated, this one changes state, this
relation is such that ˇ D b. When introducing the dynamics, this relation is not so
clear and depends also on the kind of network where the dynamics are taking place.
In Fig. 6 we can see the interevent times cumulative distributions for different values
of b for the exogenous update.
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Fig. 7 Endgenous update: cumulative IET distributionC.�/ for different values of the parameter b
(black b D 1, red b D 2, green b D 3, blue b D 4) appearing in the activation probability p.�/
for complete graph (left), random graph with hki D 6 (middles) and Barabási-Albert scale-free
network with hki D 6 (right) and for system size N D 1;000
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Fig. 8 Endogenous update. Relation of ˇ, the exponent of the cumulative IET distribution
C.t/ � t�ˇ, and b, the parameter in the function p.�/ D b=� for three different topologies;
fully connected (circles), random with hki D 6 (squares) and scale free with hki D 6 (diamonds)
networks. As a guide to the eye we plot the curve ˇ D b with a dashed line. The bars stand for the
associated standard errors of the measures

We can see that for b D 1 the power law tail is recovered with an exponent
that matches ˇ D b. For higher values of b the form of the tail is rapidly lost and
we have cumulative IET distribution C.�/ are similar to those with standard update
rules, i.e., do not display heavy tails.

In Fig. 7 we can see the interevent times cumulative distributions for different
values of b for the endogenous update.

The endogenous update rule has a wider range of b-values for which the heavy
tail is recovered. We measured the exponents of the tails for different values b in the
different topologies. The results can be seen in Fig. 8.

Surprisingly, for the case of the complete graph, we recover the relation
predicted, i.e., a linear relation between ˇ in the cumulative distribution function
and b, the parameter in the probability p.�/.

In the case of other topologies we find that the relation b � ˇ is not the one
predicted in the case of no interactions, but it displays a reminiscent behavior of
the one observed for a complete graph: the exponent ˇ found in the cumulative
interevent time distribution increases monotonically with the parameter b in the
activation probability.
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Fig. 9 On the left we can see the scaling of the number of effective events with system size for a
complete graph and three different update rules, RAU, exogenous and endogenous. On the right we
can see the scaling of the consensus time with system size for a complete graph and three different
update rules, RAU, exogenous and endogenous

4.1.4 Effective Events

An interesting feature is the number of effective events, i.e., updates that result in a
change of state, are needed to get to consensus. It happens that for the usual update
rules and the exogenous update, the scaling with system size is the same, while the
endogenous update follows a different scaling (cf. left plot in Fig. 9 for the case of
complete graph), signaling the difference due to the coarsening process that appears
for the endogenous update. Furthermore the number of effective events needed with
the endogenous update to order the system is much less than with the other update
rules. This efficiency in ordering is due to the coarsening process that occurs with
the endogenous update. Even though, in terms of time steps, the exogenous update
is much slower, such that the time to reach consensus diverges. In the right plot of
Fig. 9 we see a time for reaching consensus for the endogenous update, but this time
will diverge if the sample of realizations taken for the average is big enough.

5 Discussion

The take home message of this work is to beware of social simulations of
interacting individuals based on a constant activity rate: Human activity patterns
need to be implemented as an essential part of social simulation. We have shown
that heterogeneous interevent time distributions can produce a qualitative change
in the voter model of social consensus, leading from dynamical coexistence of
equivalent states to ordering dynamics. More specifically, we have shown that for
standard update rules (SAU, RAU, SU) of the voter model dynamics in networks
of high dimensionality (Fully connected, random, scale free) the system remains
in long lived disordered dynamical states of coexistence of the two states, and
activity patterns are homogeneous with a well defined characteristic interevent
time. A power law tail for the cumulative interevent time distribution is obtained
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with two forms of the update rule accounting for heterogeneous activity patterns.
For an exogenous update rule the dynamics is still qualitatively the same than for
standard update rules: the system does not order, remaining trapped in long lived
dynamical states. However, when the update rule is coupled to the states of the
agents (endogenous update) it becomes part of the dynamical model, modifying in
an essential way the dynamical process: there is coarsening of domains of nodes
in the same state, so that the system orders approaching a consensus state. Also
the times to reach consensus in the endogenous version of the update rule are
such that a mean time to reach consensus is not well defined. In fact the scaling
of effective events needed for consensus is able to give a signature of which of
the updates is ordering the system. In summary, when drawing conclusions from
microscopic models of human activity, it is necessary to take into account that the
macroscopic outcome depends on the timing and sequences of the interactions.
Even if recovering heterogeneous interevent time distributions the type of update
(exogenous vs. endogenous rule) can modify the ordering dynamics.

Recent research on human dynamics has revealed the “small but slow” paradigm
[17, 18], that is, the spreading of an infection can be slow despite the underlying
small-world property of the underlying network of interaction. Here, with the help
of a general updating algorithm accounting for realistic interevent time distributions,
we have shown that the competition of two states can lead to slow ordering not
only in small-world networks but also in the mean field case. Our results provide
a theoretical framework that bridges the empirical efforts devoted to uncover the
properties of human dynamics with modeling efforts in opinion dynamics.

Works closely related to our research are those in Refs. [24–26]. Stark et al.
[24] introduced an update rule similar to our endogenous update and focused
on consensus times. However they did not explore heavy tail distribution for
the interevent intervals. They found that by slowing the dynamics, introducing a
probability to interact that decays with the time since the last change of state,
consensus formation could be actually accelerated. Baxter [25] introduced a time
dependence in the flip rates of the voter model. He explored the case when the flip
rates vary periodically obtaining that consensus times depended non-trivially on the
period of the flip-rate oscillations, having larger consensus times for larger periods,
until it saturates. Finally, Takaguchi and Masuda [26] investigated some variations
of the voter model, where the intervals between interactions of the agents were
given by different distributions. The models they used are similar to our exogenous
update. They found that the times to consensus in the case of a power law distributed
interevent interval distribution were enlarged, in agreement with our results.

Possible future avenues of research following the ideas of this work are to
study other dynamics and topologies. An example is the possibility that fat-tailed
IET distributions appear as a consequence of topological traps in the network of
interaction under majority rule dynamics. These traps can lead to anomalous scaling
of consensus times for a majority rule dynamics [31, 32]. A consensus time is a
global property of the system, but it remains unclear if this is also reflected in the
microscopic dynamics, giving rise to broad IET distributions.
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31. Castelló, X., Toivonen, R., Eguı́luz, V.M., Saramäki, J., Kaski, K., San Miguel, M.: Anomalous

lifetime distributions and topological traps in ordering dynamics. Europhys. Lett. 79, 66006
(2007)
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