
Chapter 3
System Architectures for Automated Vehicle
Guidance Concepts

Felix Lotz

3.1 Introduction and Motivation

Analyzing the current landscape of automotive engineering and the respective
research domains leads to the conclusion that vehicle automation is becoming a
key technology for the near future. A large part of today’s automotive innovation
derives from advanced driver assistance systems (ADAS) which are being developed
essentially to make driving safer, more comfortable and economically more efficient.

The state of technology counts about 60 available assistance systems for passen-
ger vehicles which help to prevent traffic accidents from happening (Barrios et al.
2007, pp. 9–12). To enable this large number of assistance functionalities, modern
cars contain up to 80 electronic control units (ECUs) and a variety of network plat-
forms (Broy et al. 2006, p. V). Furthermore, when looking at an ADAS-Roadmap
(Winner and Weitzel 2012, p. 666) it can be assumed that the number of assistance
functionalities will increase even more in the future, and will most likely lead to
more and more complex systems. The situation is becoming increasingly compli-
cated because of the rising number of manufacturer vehicle models, platforms and
powertrain concepts, including different engines and their degree of electrification,
in order to fill market gaps and satisfy customer demands for individualization and
individual mobilization.

Faced with this variety and complexity in automotive systems design, the engineer
and system architect have to deal with challenging problems which cannot be solved
through the linear addition of functionalities and control units into already existing
architectures, and this not only because of hardware packaging problems (Reichart
and Bielefeld 2012, p. 84). The functional variation and diversity mean that the
time and effort of system application as well as the costs of corresponding testing
and validation will probably increase and can lead to an uneconomical development
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process. Another aspect is the risk of the visual and mental overload of the driver,
who has to interact with and know the system boundaries of the individual assistance
systems (Kauer et al. 2010, p. 1214).

From a functional viewpoint, a higher grade of vehicle automation opens the
opportunity to incorporate existing systems into an integrated, functionally com-
bined assistance approach and hence provides a possible solution to the problems
described above. Presently, many research projects initiated by industry, academia
and also the military concern the development of semi- and fully automated driving
(cf. Sect. 3.3.1). The latter, often also referred to as autonomous driving, has to address
extensive technical and social requirements. Besides the challenge of machine-based
perceiving and understanding of a highly complex traffic environment like inner-
city driving, to date there is still no valid metric to give a proof of safety, which is
required for legal registration and in order to resolve the issue of manufacturer liability
(Winner and Weitzel 2012, p. 661). A recent report by the German Federal Highway
Research Institute (BASt) comes to the conclusion that highly and fully automated
driving, in which the driver has not to control the automated system permanently, is
inconsistent with today’s German regulatory law because the driver is obligated to
show permanent caution in road traffic (Gasser et al. 2012, p. 3).

A legally acceptable intermediate solution for automation concepts could be the
vehicle guidance paradigm of “cooperative automation”. Cooperative automation
can be characterized as an intensive, cooperative interaction between the driver and
the automated system based on mutual information, recommendation and approval in
order to encounter the driving task more effectively than without one another (Löper
et al. 2008; Hakuli et al. 2012, p. 641). For example, in the cooperative assistance
concept “Conduct-by-Wire”, the system relieves the driver of the vehicle stabilization
task and yet enables him/her to stay in the control loop by communicating with the car
at maneuver level. Therefore, the driver is still holding responsibility as demanded
by law (Hakuli et al. 2011, p. 221; Geyer 2013).

Besides the approach of combining assistance functionalities by an integrated
vehicle automation concept, a very important tool to manage the overall system
complexity is the system architecture. Not only does it bridge the gap between
requirements analysis and implementation by defining the structural layout of the
automotive system, but it also accounts for an efficient development process allow-
ing risks to be identified at an early stage of development, enabling the division
of labor within a project group and promoting a mutual understanding between all
stakeholders (Posch et al. 2007, pp. 14–15).

However, a well-designed system architecture does not by itself generate a suc-
cessful overall development process. Similar to the functional integration already
described above, the upcoming challenges in automotive engineering also require
an integrated development process which addresses requirements engineering, the
design of test and validation strategies and also tool development. Independent of spe-
cific applications, in this chapter such an integrated development process is referred
to as ‘automotive systems engineering’.

In the following sections we will specify the role of the system, and particularly
the software architecture within an integrated development process based on the
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interdisciplinary research project PRORETA 3. This is the latest project within the
PRORETA long-term research initiative between the TU Darmstadt and Continen-
tal AG. The objective is to design a virtual safety corridor that prevents accidents
without limiting the application to specific use cases. Furthermore, a semi-automated
and maneuver-based vehicle guidance concept is being developed in order to relieve
the driver from the task of vehicle stabilization. Hereby, emphasis is set on an intu-
itive close-to-production HMI-solution1 and the “Safety Corridor” as a solution to
combine exclusively intervening and semi-automated assistance systems. In contrast
to other research projects, a concept is derived on how this collision mitigation func-
tion can be efficiently integrated in synergy into a semi-automated driving concept
(Bauer et al. 2012).

One outcome of the project is to implement the PRORETA 3 assistance concept
in a test vehicle in order to verify the system performance. The purpose is on the one
hand to analyze the warning and intervention strategy within the “Safety Corridor”
mode which aims to prevent accidents and critical situations in a 360-degree field of
view, and on the other to investigate the vehicle behavior with respect to the maneuver-
based, cooperative driving mode, including driver interaction. In this mode, the driver
is given the opportunity to assign a vehicle maneuver, like turning left or right at an
intersection or going through a roundabout, and then supervise the assistance system
that automatically accomplishes the selected maneuver.

In order to achieve the functionalities described above, the test vehicle is equipped
with environment sensors as shown in Fig. 3.1. Besides a GPS-receiver, attached radar
sensors and their opening angle are indicated in light and dark blue, the stereo camera
is indicated in green. Furthermore, the vehicle comes with an active force-feedback
gas pedal, controllable electric power steering and a controllable brake booster.

The sensor- and actuator-configuration is an important part of the hardware archi-
tecture. Nevertheless, in the following section, focus is set on the software archi-
tecture since it offers greater degrees of freedom within the corresponding design
process.

An overview over the state of technology for automated vehicle concepts and the
respective architectures is given in Sect. 3.3.

3.2 Software Architecture Design

3.2.1 Definitions

According to Vogel et al. (2005, p. 46), there are many definitions for the term
“Software Architecture”. However, a common definition is the following (Bass et al.
2003, p. 3):

1 HMI: Human-Machine Interface.
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"The software architecture of a program or computing system is the structure or
structures of the system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them."

In analogy to the architecture of a building or a house, the architecture is usually
displayed in form of “views”, comparable to a construction plan. Similar to a building,
different views of the architecture can be obtained, for example a blueprint, a plan
of electricity or a plan of statics. In software architecture, the four most common
(Darms 2007, p. 3) views (or viewpoints) are called “context view”, “runtime view”,
“deployment view” and “module view” (IEEE 2000), while every view is important
for a different group of stakeholders (Starke 2009, p. 15).

For the architecture design process, the most important view (and the one most
published in literature) is the “module view”, which represents the static structure
in terms of modules, subsystems, components and the interfaces among them. It
is possible to represent the module view in different levels of abstraction, whereas
the most abstract view would be the context view (which, for example, shows the
interaction of a user with the software) or the most detailed view, which would be
the software source code itself (Starke 2009, p. 79).

In the definition of software architecture and in most publications concerning
architecture design, the term “system” is often used, yet mostly without a definition.
However, in order to understand the difference between the architecture and the
system itself, the term “system” has to be defined. In system theory, the following
definition can be found (Vogel et al. 2005, p. 52):

"A system is an entity which maintains its existence through the mutual interaction
of its parts."
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Fig. 3.1 Sensor configuration in the PRORETA 3 test vehicle (unscaled) (Bauer et al. 2012). LRR:
Lone Range Radar Sensor; SRR: Short Range Radar Sensor; BSD: Blind Spot Detection Radar
Sensor.
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According to this definition, a system consists of interacting parts (or modules)
and has a system border. It can also be a module for a superior system. Systems
exist in order to achieve an objective and therefore exchange information with their
environment (open systems) or at least stand in an energetic relation with it (closed
systems) (Vogel et al. 2005, p. 53). Hence, the system architecture cannot be seen as
the system itself, but as a description of the structure of the system.

Another important finding of system theory is the so-called “emergence”, which
means that the system possesses characteristics that are more than just the sum of its
modules’ characteristics. These “emergent” characteristics come into existence by
module interaction (Vogel et al. 2005, p. 54). Since the architecture only describes the
structure and interfaces between them, by itself it can neither describe the “holistic”
system characteristics, nor verify the overall system requirements.

A driver assistance system can be associated with the definitions mentioned above.
Its objective is to assist the driver of a vehicle and to this end, exchanges information
with its environment, e.g. with HMIs or environmental sensors. While the assistance
system consists of interacting software and hardware-modules, their structure and
interfaces are described by the system architecture. The emergent characteristics of
the overall assistance system have, therefore, to meet the product requirements and
are an outcome of the module interaction. Concerning the test- and validation strategy,
this means that it is not sufficient simply to evaluate the correct module characteristics
and functionalities (which is called reductionism) but also the overall, holistic system
characteristics have to be included.

3.2.2 The Role of the Architecture

The significance of the architecture design within the overall development process
of a driver assistance system can best be described by the well-known V-Model as
shown in Fig. 3.2. The V-Model has proven itself for the top-down and structured
development of complex technical systems.

On the left-hand side, the specification branch is depicted, which ranges from
the overall product requirements down to detailed software components. The spec-
ification and design of the logical, technical and software architecture take place
within these development milestones. Hence, as already mentioned in Sect. 3.1, the
architecture design is the connecting process between requirements definition and
software implementation. A characteristic of the V-Model is that for every spec-
ification step a suitable testing strategy is defined, which forms the basis for the
component and system validation branch on the right hand side (Fig. 3.2).

The meaning of the architecture for the development team involved has already
been described in Sect. 3.1. For the system architect and the software programmer
it has another important function: It serves as a “skeleton system” within the imple-
mentation phase (Vogel et al. 2005, p. 284). This means that first of all, “empty”
software modules and their interfaces are implemented while the module function-
alities are extended in later steps. This approach makes it possible to first implement
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Fig. 3.2 Basic structure of the V-Model, see Maurer (2012, p. 45)

the full functionality of one specific use case (the so-called “cut”) and then add the
functions needed for further use cases gradually, which allows risks to be identified
and simultaneously obtain a functioning system in an early development phase.

Having explained the importance of the architecture design within the develop-
ment process, the following section will now focus on the procedure of architecture
design.

3.2.3 The Architecture Design Process

Figure 3.3 shows the architecture design process, derived from Starke (2009, p. 33)
and Posch et al. (2007, p. 57). The first step is the system requirements analysis
which is a fundamental process not only for architecture design, but also for the
whole development process (cf. V-Model in Fig. 3.2). Requirements can be divided
into functional requirements, e.g. specific use cases for the assistance system, and
non-functional requirements, e.g. safety-related requirements like a backup strategy
during a sensor breakdown, the real-time capability or testability of the system.

In the context of the requirements analysis for driver assistance systems, a scenario-
based, use-case-driven approach is proposed as successfully used within the
PRORETA 3 project (step 1). The use cases are derived based on the assistance
target of the system.

As an example for the cooperative automation mode (cf. Sect. 3.1) use cases are
structured by means of basic driving maneuvers for vehicle automation (Tölle 1996).
Also, scenario features are specified such as road geometry and the description of the
behavior of other vehicles. By describing the desired system behavior within all use
case scenarios, a detailed list of requirements can be derived.2 Other advantages of
such a scenario-based use-case description are the clear communication and discus-

2 See also Vogel et al. (2005, p. 278).
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Fig. 3.3 Proposed architecture design process

sion of the system requirements within the project team, the possibility to analyze the
scenarios in order to identify the specific system modules and functionalities (e.g.
a traffic light detection module) and to use it as a foundation for the later testing
strategy (“test cases”).

Step two of the architecture design process is to identify the factors influencing
the architecture. Organizational factors are, for example, the project budget, time
schedule or given programming tools and frameworks (Posch et al. 2007, p. 75). Also
technical influencing factors like given hardware components have a big impact on
the later system architecture. Limiting factors often come from political issues and
policies within the project group or project clients, not necessarily from technical
limitations (Starke 2009, p. 48). As an example, an OEM supplier is more eager
to set up an ADAS testing vehicle using its own brand of sensors instead of using
other sensor concepts from a competitor, even if such concepts would better suit the
system in development.

Further along the architecture design process (step 3), potential risks are identified
by comparing the system requirements and the limiting influencing factors. As a
result, strategies then have to be derived to minimize the impact of the influencing
factors. Example negative influencing factors could be the limited availability of
important resources like suitable development and testing tools or a strategy to set
up an interface to external systems that is insensitive to software versions.

In step four, the actual software architecture is derived. For this, a literature
research is necessary in order to identify the state-of-the-art of architecture design
for the system in development and to pinpoint similar architecture solutions, archi-
tecture patterns or reference architectures. Section 3.3.1 describes the outcome of
the research regarding vehicle automation architectures.



46 F. Lotz

Architectural heuristics play an important role within the design process, since
they are tools to reduce the complexity of systems with wide degrees of conceptual
freedom. The term “heuristics” is used in a variety of meanings throughout archi-
tectural literature, e.g. in synonym with the terms “rule”, “pattern” or “principle”
(Starke 2009, p. 136). In this chapter, the term heuristics is understood as a “code
of practice” obtained from the experience of system architects in the past. One com-
mon and important heuristic is modularity. The principle of modularity indicates an
architecture in which the single module has a distinct and closed functionality and
well-defined interfaces, so that it can be exchanged and reused arbitrarily. Modu-
larity is of such importance because it incorporates the also imminent principles of
“abstraction”, “separation of concerns” and “information hiding” (Vogel et al. 2005,
pp. 129–130). A good overview of architectural heuristics can be found in Vogel
et al. (2005, p. 111ff.) and Starke (2009, p. 135ff).

Architectural patterns, in contrast, are defined as solutions for recurring problems
in software design. In literature, they are described as a practical approach with a
distinct solution, often documented in form of UML3-diagrams or even code frag-
ments (Vogel et al. 2005, p. 175) and hence are on a more concrete level compared to
heuristics. Example patterns are “adapters”, “proxies” or “observers” (Starke 2009,
p. 167ff).

Given the many examples of architecture heuristics and architecture patterns, it
becomes obvious that a thorough literature research on similar systems can pay off
quickly in terms of project resources. After the communication and implementation
process step of architecture design (cf. the “skeleton system” in Sect. 3.2.2), the
architecture design has to be constantly evaluated because requirements as well as
influencing factors can change during the development phase, which is therefore
characterized as an iterative process (Starke 2009, p. 25).

The evaluation process of architecture design has to answer the question of
whether the designed architecture is “good enough”. That raises another question:
How is a good architecture characterized and is there a suitable criterion or quantity
to be measured for its evaluation?

According to Starke (Starke 2009, p. 301), there are two ways to evaluate software
projects. The first is to rate organizational aspects of the development process, like
the amount of resources needed. However, this kind of evaluation does not provide
evidence about the quality of the software product. The second way is to analyze
so-called “artifacts” coming from the development process, i.e. requirement lists,
architecture views or source code. Only a few of those artifacts are suitable for
evaluation using a quantitative criterion, e.g. the number of lines of source code,
the amount of memory capacity needed on the computer, the number of test cases
needed or, for processes for example, the number of implemented features per time
unit.

Therefore, an architecture itself cannot be measured quantitatively. It has to be
subject of a qualitative evaluation, that means in respect of its composition and suit-
ability (Starke 2009, p. 302). In detail, the evaluation focuses on how well a designed

3 UML: Unified Modeling Language.
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architecture is likely to meet the functional and non-functional requirements derived
during the earlier requirement analysis process (Posch et al. 2007, pp. 12–13). There-
fore, the requirements in terms of quality criteria are prioritized as to their importance
for the assistance system. This results in a “utility tree” (Starke 2009, p. 310). With
the help of specific use case analyses, it is then possible to evaluate in a structured
way the suitability of the architecture to meet the quality criteria. This “Architecture
Tradeoff Analysis Method” (ATAM) has a lot in common with the “house of quality”
methodology (Bohn 2012), well-known from product development science.

Although a lot of effort can be put into the evaluation process, it cannot describe
the quality of the architecture to the full extent. The missing piece of architectural
quality is a phenomenon known in software science under the term “quality without
a name” (QWAN). Lacking a precise scientific definition, it can best be described as
the unmistakable esthetics, structure and beauty of an architecture (Vogel et al. 2005,
p. 176). Although this phenomenon has not been analyzed appropriately, it can be
stated that most systems that are not well-structured and are hard to understand tend to
be problematic in terms of the fulfillment of their requirements. Hence, the influence
of an architecture’s esthetics should not be underestimated within the architecture
design and evaluation process.

Based on this description of the architectural design process and associated chal-
lenges, the following section summarizes the functional and non-functional require-
ments for the assistance system and sums up important quality criteria to satisfy the
requirements for the architecture itself within the PRORETA 3 project.

3.2.4 Requirements for Software Architectures

To be able to conduct a preliminary evaluation of the software architectures identified
in the literature research in Sect. 3.3.1 and to structure important quality criteria for
the PRORETA 3 software architecture, it is necessary to define a list of the most
important architectural requirements. These are:

• Modularity in terms of

– exchangeability of software modules
– re-usability of single software modules for other ADAS
– expendability of system functionalities
– changeability in terms of robustness against changes and software versions

• Testability in terms of functional testing and debugging that lead to a preferably
easy architecture verification and system- or component validation

The requirements above demonstrate that an important goal of the PRORETA 3
project is to develop an ADAS software architecture that is arbitrarily scalable in
its functionality in respect to the level of vehicle automation, similar to the work
of Darms (2007), who proposed a reference architecture for sensor data fusion for
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advanced driver assistance systems and Maurer (2000), who introduced a flexible
architecture in terms of the degree of automation for vehicles with dynamic machine
vision. The issue at hand is how such an architecture has to be composed in order
to satisfy the principle of being “as substantial as possible while just as complex as
necessary”.

3.3 Architectures for Vehicle Automation

The previous section pointed out the need for a literature research to be carried
out in order to find out how other ADAS software architectures concerning vehicle
automation are structured, which modules are then necessary and how the developers
proceeded within other projects.

If the research is limited to the field of driver assistance systems, the software
architecture will only play a minor role in most publications.4 Usually, the architec-
ture itself is depicted as a low detail module view (cf. Sect. 3.2.1) and with regards to
content is dwarfed by the systems’ functionalities. Unfortunately, little or no expla-
nation is given of how the architecture was derived or what the advantages of the
architectural structure are. This stands in a noticeable contrast to publications con-
cerning robotics, where architectural structures and reference architectures seem to
be a keen discussion topic.

However, advanced driver assistance systems in terms of “intelligent vehicles”
are not in contrast to the robotics discipline but can rather be seen as an application
of robotics. This is why the outline given below is structured similar to Kortenkamp
and Simmons (2008, p. 187ff), who give a good overview over robotic architectures.

3.3.1 State of Technology

3.3.1.1 Sense-Plan-Act

The sense-plan-act (SPA) paradigm was one of the first architectures applied in
robotics. It was employed in mobile robots that used sensors (e.g. cameras) to perceive
and build an internal model of their environment, used a planner module to generate
a plan in form of a sequence of actions and then executed this plan with the help of its
actuators (Kortenkamp and Simmons 2008, p. 189). This linear sequence of events
has the disadvantage that the robot is not able to react to unforeseen occurrences like
an oncoming obstacle, since it does not use its sensors while moving. Obviously,
therefore, this sequential architecture is not suitable for a dynamic environment like
road traffic.

4 This finding is also described in Maurer (Maurer 2000, p. 15).
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3.3.1.2 Reactive Architectures

Reactive Architectures emerged after the sense-plan-act paradigm reached its limits;
they are characterized by quick, “reactive planning”. Reactive architectures exist of
different interacting finite state machines which are called “behaviors” (Kortenkamp
and Simmons 2008, p. 190). This is why this kind of architecture has embossed
the term “behavioral robotics”. Behaviors access sensors and actuators during their
runtime so they can react to changes in their environment quickly, just like a “reflex”.
This is also why robots based on this architecture are said to have an “insect-like”
behavior. An example of a mobile robot is a small robotic vacuum cleaner with the
behaviors “wander around” and “collide”. Every time the robot collides with a wall,
the “wander” behavior is subsumed by the “collide” behavior and the heading angle
is changed randomly. After that, the “wander” behavior is active again. A well-known
type of reactive architectures is the “subsumption architecture” of Brooks (1986). In
this architecture, it is possible to just add more and more behaviors in order to create
more complex robots.

However, this also brings disadvantages: Adding more behaviors leads to a com-
plex state machine interaction and, since only a few behaviors can be active at
the same time, results in an arbitration problem (Kortenkamp and Simmons 2008,
p. 190). An easy way to deal with multiple behaviors is to categorize low- and high-
level behaviors, like a hierarchy. In the vacuum cleaner example, the “collide” behav-
ior is superior to the “wander around” behavior. Another way to arbitrate different
behaviors was proposed by Arkin (1987) with the “motor-schema” based on human
perception and action. In it, every behavior creates a potential field as an overlay
over the current environment. The robot’s path then is derived from the sum of all
of those potential fields. In order to also fulfill more complex tasks, a high-level
planning module was implemented that consists of a mission planner, a navigator
that calculates waypoints and a pilot that controls the different behaviors.

A further way to deal with the arbitration problem was proposed by Rosenblatt
(1997) with the “Distributed Architecture for Mobile Navigation” (DAMN). It also
consists of different behaviors, however, an arbitration module on top assigns differ-
ent priorities to them, depending on the current situation. The behaviors then each
vote for a path curvature they want the vehicle to execute in the future while being
weighted with the corresponding priorities. Instead of using a mean curvature of all
votes, the arbiter, in contrast to Arkins’ scheme, chooses the path with the most votes
(cf. Fig. 3.4). This way, inherent problems of averaging commands, that can lead to
unsatisfactory results like logical minima on potential fields, are avoided (Rosenblatt
1997, p. 343).

Another advantage of this architecture design is the directly resulting vehicle
trajectory, since the curvature and therefore the maximum safe vehicle velocity is a
direct outcome of the arbitration process. As an example, a successful implementation
of this architecture approach was conducted by the German team “Caroline” in
the DARPA urban challenge. The autonomous vehicle concept used the DAMN
arbitration concept and combined it with an interrupt function to be able to also react
to road intersections, roadblocks and other events (Rauskolb et al. 2008, p. 701).
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Fig. 3.4 Result of the DAMN
arbitration process (Rauskolb
et al. 2008, p. 701)

To sum up, reactive architectures have the advantage that they are able to react
quickly to unforeseen events and can be easily expanded in terms of the system’s func-
tionality. However, this architectural style reaches its limits in complex environments
like road traffic since the interaction of the behaviors becomes hard to arbitrate and
to optimize. Also, no long-term planning is available such as the planning to drive a
complex route. The examples of the Arkin scheme as well as the DAMN architecture
show that there has to be a superior module to coordinate the individual behaviors.
This circumstance leads to the so-called “layered architectures” explained below.

3.3.1.3 Layered Architectures

Layered architectures emerged in order to combine the advantage of reactivity with
deliberate planning. The most common type of layered architectures has three hier-
archical layers, as depicted in Fig. 3.5. Just like reactive architectures, in the lowest
layer a set of behaviors is implemented, which have the closest connection to sensors
and actuators. These behaviors are either active all the time and have to be arbitrated
or are triggered specifically by the higher-level executive layer, for example when
two behaviors compete for the same resource (e.g. an actuator) (Kortenkamp and
Simmons 2008, p. 196). The task of the executive layer is to decompose a high-
level plan coming from the planning layer into a sequence of low-level behaviors.
Therefore, it has to also set temporal constraints if behaviors are conducted in a
sequence or are active concurrently. Usually, the executive layer is implemented as a
hierarchical finite state controller which also has the function to monitor the behav-
ior execution and to handle exceptions within a routine (Kortenkamp and Simmons
2008, p. 198).

The intention of the high-level planning layer is to generate long-term plans to
reach the system goal. Also, it has to re-plan in case a situation changes, e.g. if a
road is blocked. To do this, planners usually can be seen as schedulers, which lay out



3 System Architectures for Automated Vehicle Guidance Concepts 51

Fig. 3.5 Exemplary struc-
ture of layered architectures
(Kortenkamp and Simmons
2008, p. 191)

tasks for the executive layer on a time line (Kortenkamp and Simmons 2008, p. 199).
They can be implemented in that the executive layer requests a task at a given time
or that the planner is always active and hands out tasks to the executive layer.

Maurer (2000, pp. 32–34) summarizes three different types of theoretical hier-
archical decompositions. One possibility is to use a “hierarchy of description”, in
which a complex problem can be described in various levels of detail. In it, a high
level layer describes the problem’s meaning in order to get a deeper understand-
ing of it and low-level layers give a more detailed explanation. Another type is the
“hierarchy of decisional layers” in which the solution to a complex problem can be
substituted with a sequence of low order problems that have to be solved. A third
way of hierarchical decomposition is the “hierarchy of organization” for multi-goal
systems. This kind of architecture is characterized by layers which do not control
the lower-order layers completely but coordinate them in such a way that they have
a specified freedom of action. The advantage of this type of hierarchy is a more effi-
cient decision process, since the higher-order layers only have to intervene in case
a conflict of goals occurs. Hence, such a hierarchy supports the ability to introduce
specialist modules or agents into the architecture.

Besides combining reactivity and deliberate planning, layered architectures have
the advantage that each layer can be developed, implemented and tested indepen-
dently of each other. For example, in an early stage of development, behaviors can be
triggered manually and tested without the need for an executive layer, or an executive
layer state machine can be checked by the trigger outputs in certain situations coming
from a planning task without the vehicle or robot needing to actually conduct the
behavior.

An important example of a layered architecture is the “Real-Time Control System
Architecture” (RCS) which was derived from the US National Institute of Standards
and Technology as an advancement of the “NASA Standard Reference Model Archi-
tecture” (NASREM) used in various robots, autonomous vehicles and in space travel



52 F. Lotz

(Albus et al. 1994; Albus 1997; Albus 2000). The RCS architecture is a multi-layered
architecture in which each layer has a node consisting of a world modeling module
that creates maps, events and other state variables concerning its environment and is
serviced by a perception module. Also, a behavior generation module exists, which
receives a commanded goal from a superior architectural layer, creates a number
of plans to achieve it and then gets an expected result of the plan from the world
model, including a cost/benefit analysis (Albus 2000, p. 3262). For each plan and a
corresponding “executor”, a new node of the same kind as just described is used. The
layers themselves are arranged hierarchically in terms of spatial range and resolu-
tion, whereas each layer differs to the factor 10 from the others. As an example, the
top level could be a navigation task that uses a 10 min horizon and a spatial range of
about 5 km, the lowest level could be the actuator level that uses a 20 ms time horizon
with a spatial range of centimeters. A successful implementation of this reference
architecture in the field of ADAS is described by Häring et al. (2009), who proposes
the function of an autonomous emergency brake using the RCS paradigm.

A milestone in respect to autonomous vehicle concepts was achieved within the
PROMETHEUS project, which introduced the spatio-temporal “4-D” approach (3D
space plus time) for dynamic machine vision (Dickmanns et al. 1994). The struc-
ture of the hierarchical layers within the 4-D architecture design was inspired by the
well-known Rasmussen model of human action (Rasmussen 1983) which comprises
“knowledge-based”, “rule-based” and “skill-based” behaviors as a base for hierarchi-
cal decomposition (Maurer 2000, p. 27). In a subsequent version of the 4-D approach,
Maurer (2000) expands the 4-D architecture in a way that various levels of automa-
tion could be achieved. Therefore, a key requirement is that the automated system
is aware of its own capabilities and is able to activate matching vehicle behaviors
during the system’s runtime. It works in such a way, that the driver-requested level
of automation is permanently compared with correspondent and therefore required
quality criteria that have to be fulfilled by the automated system. In case the defined
criteria are not fulfilled, for example the dead time of the vehicle control loop exceeds
a required threshold, a flexible behavior decision module, which consists of hierarchi-
cal ordered state machines, is able to activate appropriate automated driving functions
for a lower level of automation. The capability of the 4-D concept was shown by
the implementation into the test vehicle “VaMP” which travelled more than 1,600 km
in an automated driving mode on public roads (Maurer 2000, p. 114).

The success of both approaches described above (RCS and 4-D) led to a com-
bined architecture which shows the compatibility of both designs, the “4-D/RCS
architecture” (Albus 2000). Maurer (Maurer 2000, p. 38) however concludes that a
combination of both paradigms results in conceptual disadvantages and hence they
should rather be used in parallel, depending on the task to be achieved.

Most recent projects regarding vehicle automation are, for example, the
“autonomous car project” of Google or the German team “AutoNOMOS Labs” with
the prototype vehicle “MadeInGermany”, which has gathered a lot of media attention.
Unfortunately, only few details are known so far in terms of the software architecture
design of these projects. At least for the “MadeInGermany” project it can be stated
that also a layered architecture design was chosen that consists of two main layers, the
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“behavior layer”, itself divided into a high-level “strategy module” which processes
data from digital maps and a lower-level “tactics” module which calculates an
appropriate vehicle trajectory, and the “controller layer” which controls the given
trajectory.5

Other examples of layered architectures are widespread and very similar. For
further reference see Baker et al. (2008) who used a three-layered architecture for
the winning autonomous vehicle “BOSS” in the DAPRA Urban Challenge or Payton
(1986), Simmons (1994), Laugier et al. (1998), Miura et al. (1997) and Nelson (1999).

All of the mentioned architectures have been designed for autonomous or highly-
automated vehicle guidance. However, since the PRORETA 3 project’s intention is
to design a vehicle for semi-automated, maneuver-based vehicle guidance, a lacking
feature of all of these architectures is that a driver interaction is not provided or not
sufficiently described. The state of technology so far regarding automated vehicle
guidance in combination with a systematic driver interaction concept consists of the
research projects “Conduct by Wire” (CbW), “H-Mode” and “HAVEit”.

The software architecture of CbW has a lot in common with the layered archi-
tectures described above (Geyer 2013). It is hierarchically structured according to
the three-level hierarchy of the driving task of Donges (2012, p. 16), who divides
the driving task into the navigation level, the trajectory-based guidance level and
the vehicle stabilization level. The architecture consists of a maneuver management
module that assigns and enables a set of driving functions, which can be seen as vehi-
cle behaviors, in accordance with the driver’s desired maneuver. These maneuvers
are obtained via an HMI called maneuver interface. To sum up, in CbW the driver
is able to interact with the automation concept via an HMI that allows him/her to
assign maneuvers, parameterize trajectories and also manually control the vehicle in
an unstructured environment like a parking lot. These interactions then influence the
automation in respect to the activation of vehicle behaviors.

In contrast to CbW, the research projects “H-Mode” and “HAVEit” propose a vari-
able level of vehicle automation, ranging from manual driving through to autonomous
driving (Löper et al. 2008). The architecture itself consists of a driver interface mod-
ule, which assesses the driver’s state, a command layer to define maneuvers and
vehicle trajectories dependent on the automation level and the execution layer which
controls the vehicle actuators (Zeng 2010, p. 1667). The driver interaction is arbi-
trated via a selection unit, in which a quantitative measure, the “valential”, decides
over the future trajectory. The magnitude of this unit is influenced by a negotiation
process between driver and automation based on haptic feedback, e.g. the driver’s
torque of the steering wheel (Löper et al. 2008, p. 16).

A further publication on driver-vehicle interaction was proposed by Bayouth et al.
(1997), who introduced the idea of different automation levels and maneuver based
driving already in the year 1997.

5 Lecture slides and personal question to Professor Raùl Rojas at his speech at FZD, TU Darmstadt
on 9 July 2012.
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3.3.2 Summary and Discussion

The above excerpt of the state of technology on software architectures of vehicle
automation concepts aims to find out which architectural patterns have proved them-
selves within the field of ADAS and robotics and which system modules are therefore
necessary.

It can be stated that the paradigm of behavior-based, layered architectures have
proved themselves to be a beneficial architectural pattern for vehicle automation con-
cepts since they have been successfully used in key research projects within the last
two decades, right up to the most recent prototypes like “MadeInGermany”. Impor-
tant advantages are the inherent structured arrangement based on a hierarchical and
modular task composition, the ability to develop and test the different architectural
layers independently of each other and the fact that this type of architecture is capable
of deliberate, long-term planning.

An interesting finding is that most layered architectures for vehicle automation
consist of three architectural main layers. As Maurer (2000, p. 34) summarizes,
three layers have become established in this field of robotics although there is not
necessarily a reason for that from the viewpoint of functional architecture. However,
we assume that this number comes from common agreed-upon models that help the
architect to decompose the driving task in a structured way, like the Rasmussen model
of human activities or the Donges model for the driving task, which each contain
three main layers (Rasmussen 1983; Donges 2012).

Important modules, in addition to a sensory processing module, that can be found
in most automation concepts are a world model that gathers information about the
systems’ environment, a high-level planning module to be able to achieve long-
term goals like vehicle navigation, an executive module that coordinates low-level
vehicle behaviors and reacts to exceptions, a set of behaviors and—for cooperative
automation concepts—a suitable HMI.

The three projects on cooperative vehicle automation described in Sect. 3.3.1.3
have in common, that no direct mechanical connection exists between the driver and
the vehicle because “by-wire” interfaces are being used for the steering as well as the
brake and gas pedals. Within the PRORETA 3 project, however, the test vehicle is
equipped with regular controllable power steering as well as a brake pedal connected
to the main braking cylinder by the electro-pneumatically actuated booster. This leads
to the question of how the driver interaction influences the software architecture of
automated vehicle guidance concepts when the driver input comes from the hardware
architecture.

As a conclusion drawn from the literature research, it can be stated—in accor-
dance with Dickmanns (2005, p. 224) and Gasser et al. (2012, p. 25)—that there
is a significant demand for research into the interaction of the human being with
automated vehicle concepts. Especially the driver interaction as a problem of com-
mand arbitration and its impact on the software architecture and dependency on the
hardware architecture is to be investigated.

Based on the information given in this section, an initial design of the PRORETA 3
software architecture is derived in Sect. 3.4.
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3.4 Software Architecture for Vehicle Automation

Based on the findings from literature research, the functional requirements of
PRORETA 3 and the requirements for the software architecture itself, an architecture
design for automated vehicle concepts is derived. In contrast to the robotic architec-
ture patterns for autonomous vehicles, focus is also placed on the human-machine
interaction.

A layered architecture is believed to be most appropriate as a design basis for
PRORETA 3, in line with the “modularity” and “testability” requirements (cf.
Sect. 3.2.4), the inherently well-structured and functionally scalable approach as
well as the ability to cope with complex situations such as road traffic. Based on
this decision, the question has to be answered of how many layers are, therefore,
necessary and how the complex problem of vehicle automation can be decomposed
into them.

As shown in Maurer (2000), the model of human activity according to Rasmussen
(1983) has proven to be well-suited for an example decomposition, especially for
behavior-based layered architectures. This comes from the fact that in behavioral
robotics, behaviors can be seen as basic state machines containing mostly simple
transfer functions that describe the robot’s desired movement and have direct access
to sensors and actuators (cf. Sect. 3.3.1.2). Accordingly, Rasmussen (1983) describes
the “skill-based behavior” level of human action as a set of automated sensorimotor
patterns that process sensory input features into direct actions, which is a very similar
procedure. The next higher layer in Rasmussen’s model is described as the “rule-
based behavior”, in which the human recognizes specific “signs” from the perceived
sensory features, associates an appropriate task and chooses between a set of stored
rules to solve this task. This can be seen as a feedforward control for the sensorimotor
patterns (Maurer 2000, p. 29). As an equivalent, most architecture designs use an
“executive” or “coordination” layer in which a superior module controls the behaviors
in a way that they trigger specific behaviors to solve a recognized task. The similarity
of Rasmussen’s model to layered architectures also applies for the top-layer. In both
paradigms, a planning entity decides between tasks in order to reach its overall
goal concerning specific boundary conditions. To sum up, both paradigms consist of
hierarchically structured layers that can be understood as layered control loops with
an increasing time constant, in which higher layers provide a feedforward control
to the next lower layers. Hence, the Rasmussen model serves as a good basis for
hierarchical decomposition and is considered in the following design.

After having defined the basic architecture layout and an approach how to decom-
pose it into specific layers, the modules within the layers have to be determined. Tasks
that are necessary for vehicle automation are, independent of their exact specifica-
tion or name, the perception of the vehicle’s environment, and an interpretation of
the perception that serves as a basis for a behavioral decision which itself feeds a
behavior generation (or action) module. A task neglected in most publications on
architecture is a description of how to embed the driver into a vehicle automation
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concept. Therefore, a suitable HMI concept is needed and should be considered in
the design.

Based on the above considerations, the actual architecture design process results
in a top module view that describes the static architecture layout as shown in Fig. 3.6.

As already described, the architecture is based on three horizontal main layers
within the application range (Bauer et al. 2012), which are structured according to
their level of abstraction in the Rasmussen model. Vertically, there are also three
columns. A world model column has the task of providing all necessary informa-
tion coming from the vehicle’s environment to the planning modules in order to
make situation-appropriate decisions. The world model itself is fed by a solution-
independent sensorics- and sensordata-fusion module which provides information
about the existence of perceived objects and the vehicle’s surroundings in a detailed
but mostly not situational-interpreted way. Approaches of Darms (2007) are suit-
able for an implementation, however, in PRORETA 3 a geometric grid-map-based
description of the static environment as well as an object list for the dynamic envi-
ronment was chosen. According to the Rasmussen model, most information is used
by the lowest “behavior” layer, but also more abstract information via digital maps
or Car2X can be provided that a human would not be able to perceive him/herself.
From this, the sensorics- and sensordata-fusion module spreads over all layers. On

Fig. 3.6 Proposed software architecture for vehicle automation concepts (cf. (Bauer et al. 2012))
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this basis, the world model is able to interpret the given data in order to analyze
and understand a traffic situation. Therefore, specialist modules are needed. In the
behavior layer, a landmark tracking module detects localization-relevant features like
road junctions or stop lines, a lane tracking module interprets video data for a lane
model, a drivable freespace module determines valid maneuvering space (Schreier
and Willert 2012) and an object prediction module calculates future positions of
relevant entities. For the “coordination layer” more abstract information is needed.
Corresponding modules are an electronic horizon based on geometric and digital
maps with free-configurable attributes, a module to determine the traffic rules such
as the right of way on intersections and the driver monitoring to check whether the
driver is able to stay in the overall control loop. For the “mission layer”, a graph-based
topological map is proposed.

The planning modules, which are explained below in this section, receive high-
order tasks and split them up into lower-order tasks. A novel element within the
proposed behavior-based, layered architecture is the HMI column that is needed for
driver interaction within a cooperative automation concept. Specialist modules are
the driver conditioning which helps to support and warn the driver in critical traffic
situations and, for the coordination layer, a maneuver interface to offer the driver
possible situation-dependent vehicle maneuvers as well as the possibility to choose
a specific mode of automation. A possible module on mission layer level could be
the input of a destination, which, however, is not implemented within PRORETA 3.

In the following, the layers and their functionality are described. The layer with the
highest hierarchy is called “mission layer”. In it, the mission planner module splits
the current vehicle route into route fragments and delegates a matching task to the
secondary behavior planner module, e.g. “handle intersection” or “follow road”. The
mission planner module receives its information from a topological map, in which
intersections are represented as knots and roads as conjunctive edges. Additionally,
corresponding characteristics, e.g. the number of outgoing lanes at an intersection,
are deposited. In line with the Rasmussen model, the mission planning module should
be able to detect and react to unknown situations in which no rules for the behavior
planning module are available. However, in most architecture designs, the task of
the top-level layer is limited to the navigation task since—in contrast to human
behavior—it is very easy to implement a large number of rules for behavior planning
(Maurer 2000, p. 46). For autonomous vehicle concepts, a vehicle destination comes
from the HMI module, however, this is not necessary for the cooperative PRORETA
3 concept (dashed lines in Fig. 3.6).

The second layer is called “coordination layer” and has the job of controlling the
underlying vehicle behaviors according to its current task. The main module within
this layer is the behavior planner, which triggers appropriate vehicle behaviors in a
timely manner and hence is the central behavior decision unit within the architecture.
A common implementation for this kind of planning module is one or more state
machines. As an interface towards the behavior layer, disjunctive longitudinal and
lateral driving functions, e.g. “lane change” or “follow road” are a possible solution
(Maurer 2000, p. 52; Hakuli et al. 2010). As an example of the behavior planner
module, the task “handle intersection” with the attribute “traffic light” may result
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in reducing the vehicles’ speed in advance, requesting a desired maneuver from the
driver and stopping the vehicle in case of a red traffic light. Therefore, it needs
information from the world model, like the right of way or the geometric relation
between the car and the scene, e.g. the number of lanes on a road or the distance
to the next intersection. Another major task of the behavior planning module is to
monitor the system’s performance in terms of important resources and modules that
are needed for a given task. In case one of those fails or necessary information cannot
be provided, it has to transfer the system into a safe state.

The third layer is called “behavior layer”, and is where the different vehicle
behaviors are implemented. The main trajectory planner module has the function of
processing a safe vehicle trajectory in respect to the given driving functions that have
been triggered. Therefore, it is possible to implement the behaviors independently,
e.g. a sigmoid function for a lane change or a braking intervention in terms of a high
negative acceleration, or, to have more complex behaviors like the safety corridor
function, that cannot be implemented as just a transfer function. In the trajectory
planning module, an emergency trajectory is determined with the use of a potential-
field based approach. In order to perform this task, the world model has to provide
much more specific information in a spatial and timely manner coming from the
specialist modules described above. The HMI on the behavior level is called “driver
conditioning” and has the task of embedding the driver not only via information and
warning but also in an accident-preventive way.

In the lower hierarchy of the proposed architecture two more layers exist outside
of the functional range. In the vehicle dynamics and control layer, the given vehicle
trajectory is processed into the vehicle dynamics controllers. This layer then generates
commands for the actuators like a steering torque or a brake pressure which are then
processed by the actuators themselves.

The importance of these two layers should not be underestimated since the driver
is able to directly influence the actuators depending on the hardware concept of
the car. This may not be problematic within an autonomous concept using by-wire
interfaces for human-machine interaction or also for single ADAS functionalities like
adaptive cruise control. However, it is problematic within the full range of automation
functionalities in-between, especially for systems that utilize standard HMIs like a
steering wheel and a brake pedal. As an example, in the case of an emergency
maneuver, the driver wants to evade to the right, the automation to the left. The
question then is, is the driver treated as a disturbance quantity which the automation
wants to compensate? If not, how is the force-transition process back to the driver to
be defined? So far, no scientific investigation has been conducted on how to integrate
the drivers’ intention in that direct mechanical access to the actuators has to be
integrated within the overall arbitration strategy. This reveals a clear demand for
research in the future.

In the architecture design for vehicle automation concepts proposed above, the
Rasmussen (1983) model for human action was used as a basis for hierarchical
decomposition. A novel element within behavior-based layered architectures is the
integration and description of a suitable driver interface into the design, which is
especially important for the cooperative automation concepts explained in Sect. 3.1.
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Details of the necessary specialist modules for situation interpretation were pre-
sented. The proposed design makes some exceptions with regard to the Rasmussen
model, e.g. the sensory input and the knowledge-based behavior. However, this
is because vehicle behavior cannot be completely subsumed by human behavior
(Maurer 2000, pp. 30–31). Decomposition paradigms need to serve as a flexible
helper, not as a rigid burden for the system architect.

3.5 Summary and Outlook

This chapter proposes a systematic and top-down development methodology for
automated vehicle guidance concepts and their corresponding system- and software
architecture.

To this end, a software architecture design process was introduced in Sect. 3.2,
which bridges the gap between requirements analysis and implementation within the
overall development process according to the well-known V-Model. Explanations
were given on the importance of knowing limiting influencing factors, ways of eval-
uating architecture design and on the conduct of a literature research on architectural
patterns.

The state-of-technology identified was that most vehicle automation concepts
utilize behavior-based, hierarchically layered architectures since they are well-
structured in an inherent way and hence facilitate a modular design. This allows
a division of labor and an efficient design-, implementation and validation process.
However, most architectural patterns have been designed for autonomous vehicle
guidance and do not support a human-machine interaction on a cooperative basis.
This is why the architecture proposed in Sect. 3.4 facilitates a new human-machine
interface column. From a first evaluation, the architecture meets the functional and
architectural requirements mentioned in Sect. 3.2.4 thanks to its modular approach.
In future, the proposed architecture has to prove itself within the further development
process of the PRORETA 3 project.

A clear demand for research has been identified in terms of the interaction and
arbitration metric between the driver and the automation with regard to the system’s
hardware architecture.

In the automotive systems engineering discipline and the associated scientific
community, it would be desirable for a lively discussion to arise about efficient
development processes and structures of system architectures, just like that underway
in the example discipline of robotics.

Acknowledgments We thank Continental AG for kindly funding this work within the PRORETA 3
cooperation, which aims to develop future concepts for integrated driver assistance systems.
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