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Abstract The accuracy of respiratory motion estimation has a direct impact on the
success of clinical applications such as diagnosis, as well as planning, delivery, and
assessment of therapy for lung or other thoracic diseases. While rigid registration is
well suited to validation and has reached a mature state in clinical applications, for
non-rigid registration no gold-standard exists. This chapter investigates the validation
of non-rigid registration accuracy with a focus on lung motion. The central questions
addressed in this chapter are (1) how to measure registration accuracy, (2) how to
generate ground-truth for validation, and (3) how to interpret accuracy assessment
results.

8.1 Lack of a Gold-Standard in Non-Rigid Image Registration

Respiratory motion estimation is a topic receiving much attention in medical imaging.
For clinical applications such as diagnosis as well as better planning, delivery, and
assessment of therapy for lung or liver diseases, estimation of and compensation
for motion is indispensable and its accuracy has direct impact on the success of the
clinical applications.
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As detailed in the previous chapters of this book, respiratory motion estimation
and compensation require non-rigid registration of CT thorax data typically acquired
in a dynamic protocol as for respiratory-gated 4D scans. In each case, a voxel-wise
computation of respiratory motion between different respiratory states is needed.
However, while rigid registration is well suited for validation [1] and has come to
a mature state in clinical applications, for non-rigid registration no gold-standard
exists. Moreover, a discrepancy between the maturity of non-rigid registration in the
image processing community and its dissemination in clinical workstations can be
observed, indicating a lack of acceptance of the technique that can only be overcome
by establishing commonly accepted validation metrics and procedures. This chapter
therefore investigates current approaches for the validation of non-rigid registration
when applied to motion estimation, focusing particularly on lung motion.

A necessary criterion for a successful registration is the alignment of visible
image structures, often converted into an inspection of the residuum (i.e., the sub-
traction of the aligned data) where mis-aligned image structures show up. However,
the absence of any structure in the residuum image does not guarantee that the non-
rigid registration was successful, since the residuum is invariant to the deformation
of image regions with homogeneous intensities. Even for image regions containing
structures such as lung vessels an increased similarity of the aligned data (deter-
mined by a correlation coefficient for example) does not always imply an increased
registration accuracy [2]. Furthermore, a registration scheme allowing for a very
flexible alignment tends to result in an almost perfect residuum but suffers from
implausible deformations and consequently from decreased accuracy. Additional
evaluation criteria are therefore indispensable.

The most obvious method is probably to identify corresponding positions of
anatomical structures in the images to be compared. For example, in lung data such
features are usually anatomical points located on lung structures with adequate image
contrast like vessel bifurcations, fissures and pleura, or the boundary of a potential
tumor. To provide additional information, point positions can also be extended to line
structures such as the centerlines of the bronchial tree defined at different respiratory
states, and surface structures and volumes define objects like the lung fissures or
target regions (e.g. masses) and organs at risk in radiotherapy. In each case, after
applying the registration result, a validation metric such as a landmark-based regis-
tration error, or a line or surface alignment error is computed to measure registration
accuracy quantitatively.

The validation metrics described so far focus on morphological structures but not
on the physical and physiological plausibility of the entire deformation. A physically
implausible result such as local folding in the deformation can be detected by analysis
of the local volume change [3] as a simple example for functional validation. Another
validation metric based on the entire deformation vector field measures the sensitivity
of the registration result to the order of the input data (consistency metric). For a
clinical application, the computed structural correspondence is certainly expected to
be the same when aligning a follow-up scan with a baseline scan or vice versa (i.e., a
consistent mapping). Moving from conventional diagnostic CT data to respiratory-
gated CT data (4D-CT), anatomical positions can be tracked over (respiratory) time
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leading to motion trajectories. Since 4D-CT data usually suffer from lower spatial
resolution and higher noise levels due to reduced radiation dose, and, in addition,
often contain motion-induced artifacts [4] due to irregular patient breathing during
image acquisition, the use of motion trajectories in combination with a breathing
model for validation is beneficial.

A reliable ground-truth is essential to make use of any type of validation metric.
However, there are many different types of ground-truth. Whereas morphological
validation metrics such as landmark-, centerline- and overlap-based metrics require
corresponding lists of annotated voxel positions, functional validation metrics rest
upon underlying models, e.g. a certain breathing model for trajectory analysis or the
positive Jacobian map as minimum requirement for a physiologically plausible tissue
deformation. While in the past published validation studies [3, 5–7] have often been
based on a limited number of registration algorithms and/or on proprietary datasets
(typically with different imaging parameters such as dose or voxel resolution) there
is an increasing trend towards multi-institutional validation studies. Recently, there
have been two examples in the field of respiratory motion estimation. The Multi-
Institutional Deformable Registration Accuracy Study (MIDRAS) [8] was motivated
by the use of registration schemes for improved radiation therapy planning and there-
fore selected CT and MRI data showing the lungs, the liver and the prostate, while
the Evaluation of Methods for Pulmonary Image REgistration 2010 (EMPIRE10)
challenge [9], organized in conjunction with the Grand Challenge workshop1 at
MICCAI 2010, provided a public platform for comparison of registration algo-
rithms applied to thoracic CT data. Based on the selected datasets, the participants
calculated deformation vector fields and submitted them to the organizational teams
for independent evaluation. Evaluation was, dependent on the study, performed con-
sidering anatomical landmarks, lung boundary alignment, fissure alignment, and the
presence of deformation field singularities. Furthermore, the DIR-lab of the Univer-
sity of Texas M. D. Anderson Cancer Center2 and the Léon Bérard Cancer Center
together with the CREATIS-LRMN CNRS Research lab (POPI-model)3 provide a
series of freely available 4D-CT and exhale-inhale CT image data along with land-
mark lists for the validation and comparison of non-linear registration algorithms
[2, 10].

Common to these studies and databases is the potentially exhausting task of
generating ground-truth. The manual selection of landmarks, for example, is time-
consuming and landmark locations are prone to uncertainties due to intra- and inter-
observer variability and approaches for (semi-)automation are therefore desirable;
finally, an interpretation of validation metric results also needs to be addressed since
each validation metric poses only a single necessary condition.

Taking into account the above mentioned two principal types of validation metrics,
their ability to identify characteristics of individual registration schemes and the
issues of ground-truth generation, this chapter is divided into the description of

1 http://www.grand-challenge.org/index.php/MICCAI_2010_Workshop
2 http://www.dir-lab.com
3 http://www.creatis.insa-lyon.fr/rio/popi-model

http://www.grand-challenge.org/index.php/MICCAI_2010_Workshop
http://www.dir-lab.com
http://www.creatis.insa-lyon.fr/rio/popi-model
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morphological validation criteria and of functional validation criteria. Each section
then discusses the specific validation criterion in detail, including metric definitions,
available ground-truth and the interpretation of corresponding results.

8.2 Morphological Validation Criteria

Morphological validation is currently the state-of-the-art in estimating the accuracy
of registration results. Validation metrics defined in zero-dimensional space
(e.g. landmarks) or higher spaces (e.g. tree structures or tumor surfaces) are fre-
quently used and well understood. This section describes the validation metrics and
the considered anatomical structures in the order of their dimensionality. Each sub-
section then describes how registration accuracy can be measured, what possibilities
exist to generate ground-truth, and how to interpret the results when comparing
multiple registration schemes.

8.2.1 Landmarks

8.2.1.1 Validation Metrics

Landmarks are usually understood as being characteristic anatomical points, which
can therefore be considered as being zero-dimensional features and leading to valida-
tion metrics defined in zero-dimensional space, respectively. Typical landmark candi-
dates are, as described in Sect. 8.1, salient bifurcations of the bronchial tree (lungs),
specific branches of vessel trees (lungs, liver), or calcified nodules [5, 8, 11, 12],
cf. Fig. 8.1.

Fig. 8.1 Example of a landmark in a lung CT data set, selected by three medical experts. It can
be seen that manual landmark selection and subsequent quantitative registration evaluation suffers
from interobserver variability of landmark identification
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For evaluation purposes, a (usually relatively sparse) set of landmarks is identified
within each of the images A and B to register. For a single landmark xA within the
discrete domain of image A, ΩA, and a spatial transformation T mapping ΩA onto
ΩB , the standard validation metric is the Euclidean distance between the mapped
landmark position x[pred]

B = T (xA) after registration and the position x[actual]
B in

ΩB that is anatomically corresponding to landmark xA. In literature, this metric

TRE (xA) =
∥
∥
∥x[pred]

B − x[actual]
B

∥
∥
∥

2
(8.1)

is also often referred to as landmark-based, point, or target registration error
[2, 13], and to summarize the error distribution for a set of landmarks, the mean
error, the standard deviation, the maximum error and/or error quantiles are commonly
considered.

Whilst landmark-based registration errors as defined above represent (in the sense
of a metric) absolute, non-negative error values, over- or underestimation of respi-
ratory motion along a certain direction can also be identified using landmark sets.
Therefore let the direction of interest being represented by a unit vector ea along a
vector a; then, directional errors and over/underestimation can be deduced from the
projections of the misalignments

(

x[pred]
B − x[actual]

B

)

onto ea .

8.2.1.2 Ground-Truth Generation

Ground-truth for evaluating the landmark-based registration error is commonly gen-
erated by annotating corresponding landmarks within the images to register manually
and is usually carried out by ‘medical experts’ (radiologists, medical students, etc.).
The manual selection of such points is, however, time-consuming and landmark loca-
tions are prone to uncertainties due to intra- and interobserver variability concerning
exact point selection [5, 12] (cf. Fig. 8.1), for instance caused by low image resolution
or partial volume effects. In the case of lung CT registration, landmark identifica-
tion additionally suffers from low contrast in near-to-pleura regions, which often
leads to very limited landmark sets grouped around the mediastinum [3]. To serve as
reliable ground-truth, the landmarks should preferably consist of a well-distributed
set of verifiable anatomical correspondences throughout the image region of interest
(e.g. the lungs) and be large enough in number to enable meaningful statistical analy-
sis. The required number of landmarks can be assessed by a posteriori statistical sam-
ple size calculation [2]. The number may vary for individual data sets and motion
estimation approaches, but it has been reported to be even more than 1000 anatomical
point pairs [2] and so efforts have been made to (partially) automate identification
of landmark sets.

One such algorithm is described in [11, 14], here serving as an example. The
algorithm starts with automatic detection of landmarks in an image A. A so-called
distinctiveness term is defined to quantify the distinctiveness of a voxel within its
local neighborhood. The distinctiveness term combines both differential properties
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(gradient magnitude) and intensity characteristics to quantify the suitability of the
voxel as a landmark candidate. Good distribution throughout the region of interest
is ensured by forcing a minimum Euclidean distance between the landmark can-
didates. In a second step, the interactive landmark transfer to the image B to be
aligned with image A by registration is supported by computing and progressively
refining a thin-plate-splines transformation based on user-annotated landmark cor-
respondences. After manually transferring an adequate number of landmarks, the
transformation can be applied to guide the user to find correspondences for the
remaining landmarks or even be used to transfer the landmarks fully automatically.

The algorithm has recently been applied for a number of registration evaluation
studies [3, 9, 15], but it is only one example for construction of a landmark-based
ground-truth. For instance, reviving earlier works on landmark detection [16] it has
been suggested to incorporate curvature-based operators for distinctiveness calcula-
tion [17] or to consider Shannon entropy instead [18]. Furthermore, template match-
ing methods have been applied for landmark transfer in order to fully automate the
evaluation process [17, 19]; however, especially automating the landmark transfer
can be controversial [2]. The transfer represents, by definition, a (point-based) reg-
istration problem. Thus, a (semi-)automatic landmark transfer may lead to biased
evaluation if the registration method to evaluate and the landmark transfer methods
are similar in some sense (for example if they maximize the same similarity measure).

8.2.1.3 Validation in Practice

The usage of landmarks is the most popular method of validation of non-linear regis-
tration. As well as the validation studies mentioned above and the described publicly
accessible 4D-CT databases, numerous research articles have used anatomical land-
mark sets denoted by experts.

However, the actual size of the landmark sets varies from small numbers of about
20 landmark positions to large sets of 1500 positions, cf., e.g. [2, 20]. Naturally,
the larger the number of landmarks, the better the estimation of accuracy is likely
to be (cf. requirements for ground-truth generation described above). For a simple
illustration beyond pure statistical computations, consider a lung with a volume of
4 l together with a set of 20 landmark positions. In this example, each cube of lung
parenchyma with edge length 58 mm contains one landmark on average. Increasing
the set of landmarks to 100 or even to 1500, the edge length of this cube reduces to
34 mm and 14 mm, respectively. A landmark spacing of a size of 14 mm undoubtedly
allows for registration accuracy estimation on a coarse scale but not on a finer scale
when taking into account the distinctive inhomogeneity of lung parenchyma.

Another critical point is the requirement of the landmarks to represent a well-
distributed set over the structure/region of interest. If landmarks are placed on the
bifurcations of major blood vessels as shown exemplarily in Fig. 8.2, left, they are
concentrated around the mediastinum which has a number of disadvantages: (1) this
type of ground-truth does not allow for accurate estimation in regions near to the
pleura or diaphragm where registration accuracy is typically worse; (2) the stiffness
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Fig. 8.2 Region definition and landmark positions shown in a coronal projection for a landmark set
as commonly used in the literature (left) and for a well-dispersed landmark set (right). For improved
visualization each region is given a unique landmark symbol

of the lungs is highest in the surroundings of the major bronchial tree—reducing the
local motion and meaning that the registration task is most difficult elsewhere; (3)
major bifurcations are clearly visible to a human observer but also to the majority of
registration schemes—unlike the hardly detectable low-contrast structures near to the
pleura. The importance of the requirement of a good distribution of the landmarks
in the region of interest is demonstrated in [3]. The authors compared landmark-
based registration error as obtained for two landmark sets, one set as commonly
used in the literature (cf. POPI-model), the other set well-distributed throughout
the lung volume (shown in Fig. 8.2). A collection of six popular methods including
surface- and volume-based as well as parametric and non-parametric methods was
investigated. From each of these algorithms, a deformation vector field was extracted
and used to transform the landmarks from both sets. While the mean landmark-based
registration error on both landmark sets differs only slightly, a region-based analysis
reveals smaller errors in apical regions but also a significantly higher error in the lower
right lung (Fig. 8.3) and therefore a dependency of the landmark-based registration
error on the distribution of landmarks. This dependency is observed for each of the
six registration schemes.

Conclusion: Landmarks are a popular and intuitive method of registration validation.
Both a large number of corresponding positions and a good distribution of the points
throughout the organ of interest are crucial for reliable registration accuracy assess-
ment. However, landmarks estimate registration accuracy only at selected locations
and additional validation metrics are beneficial to provide deeper insight.
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Fig. 8.3 Landmark-based registration error, shown proportional to the spheres’ diameters after
registration by six different algorithms. Note the different errors in apical regions and lower right
lung indicating the need for a well-dispersed set of landmarks

8.2.2 Line-Like Anatomical Structures

8.2.2.1 Validation Metrics

Landmarks focus on prominent points which are in most cases bifurcations of airways
or the vessel tree. In order to extend the evaluation, validation metrics for line-like
anatomical structures analyze he registration accuracy not only at discrete positions,
but take the properties of the structure (e.g. vessel or airway) into account. For exam-
ple, significant changes in curvature, folding along a branch, or implausible changes
in branch length are interesting properties that can not be captured by landmarks.
In the following, it is assumed that for both images a segmentation of the airways
and/or vessels is given. Furthermore, the individual branches are labelled, so that
for each branch in one image, the corresponding part in the other image is known.
From the segmentation, a centerline representation can be derived and the branching
points can be extracted.

Now, consider a given set of centerline points defined between two branch points of
consecutive branching generations. An adequate interpolation scheme can be chosen
to represent the point set as a continuous curve with a parametrization as a func-
tion α(t) with t ∈ [0, 1]. The corresponding curve described by a function β can
be derived in the other image as well. Having two continuous corresponding line
segments allows the definition of a variety of distance measures.
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As an example, the registration accuracy along the centerline can be evaluated
as the difference between corresponding points that have the same value of the
parametrization constant as

Di
1(t) = ||T (ci,A

α(t)) − ci,B
β(t)||2 , (8.2)

where i defines the branch index and T (ci,A
α(t)) is the transformed centerline belonging

to the i th branch defined in image A. Note that this measure is sensitive to a change
in the length of the centerline. As the structures considered in the lungs can be
assumed to preserve their absolute length during respiration, this sensitivity might
be desirable.

Alternatively, it is also possible to evaluate the distance by finding the closest
point on the corresponding other centerline as

Di
2(tA) = min

tB∈[0,1]||T (ci,A
α(tA)) − ci,B

β(tB )||2 . (8.3)

Based on the centerline representation, other measures can be evaluated that con-
sider line properties of the transformed centerline, for example local curvature, to
detect implausible deformations. However, so far metrics for line-like structures have
rarely been applied, mainly because segmentation and labelling of the considered
structures is difficult to achieve.

8.2.2.2 Ground-Truth Generation

Examples that can be considered for line-like structures are airways and vessels.
In each case the ground-truth generation relies on a segmentation and a labelling.
However, manual segmentation and labelling is very time-consuming and from a
practical point of view not always possible. Although a variety of automatic segmen-
tation algorithms exists, failure especially in the case of pathologies or low image
resolution, which is the case in 4D-CT, is likely to occur. A reliable ground-truth
may be most efficiently obtained by applying an automatic segmentation first which
is then inspected and manually corrected.

Both airways and blood vessels form dense tubular structures, but typically differ
in appearance in a CT image. Thus, most approaches that take into account the tubular
characteristic of the structure to be segmented can be often applied for both airways
and vessels by simply changing the appearance parameters.

Many existing algorithms for airway and vessel segmentation are based on region
growing [21]. However, in areas where the contrast is low, for example due to resolu-
tion and noise, leakage is observed. One possibility to circumvent this problem is by
means of explosion control, for example by introducing certain rules derived from
anatomical knowledge [22], or using template tracking based methods [23, 24]. For
a recent overview on vessel segmentation techniques see [25] as well as algorithms
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described within challenges on vessel segmentation in the lung (VESSEL12)4 and
on airway extraction (EXACT09, [26]).5

For matching of both airways and vessels, different approaches have been
proposed [27, 28]. However, as the methods have been used on different data sets, it
is not clear which is currently the method of choice.

8.2.2.3 Validation in Practice

Validation based on labelled airways or vessels as introduced in Sect. 8.2.2.1 has,
to our knowledge, not been published so far. While a considerable amount of work
has been done on automatic segmentation as well as on matching of both airways
and vessels, little of this information has been used for registration evaluation. This
might be due to the fact that even with the help of automatic segmentation algorithms,
generating a reliable ground-truth would require the verification of the obtained seg-
mentations which is still very difficult and time-consuming. Furthermore, automatic
extraction of both airways and vessels is still difficult on 4D-CT with low resolution
and severe pathologies.

Conclusion: Compared to the use of landmarks that evaluate the registration accuracy
at distinct locations, metrics described here can be used to measure the registration
accuracy along a line-like structure. These measures have the potential to provide
additional valuable insight into the registration, for example by detecting folding
of a branch or change in branch length, etc. Nevertheless, measurements based on
line-like structures have not been used so far because of the difficulties of obtaining
a reliable ground-truth.

8.2.3 Surface Structures and Volumes

8.2.3.1 Validation Metrics

Estimating the registration accuracy for anatomical structures like the lungs, the lobes
and the fissures leads to validation metrics for surface structures and volumes. The
segmentations of a corresponding anatomical surface area or volume in two images
A and B are denoted as voxel sets SA and SB , respectively, with the transformed
voxel set denoted as S̃A (cf. Fig. 8.4).

One common measure for evaluation of the registration accuracy using surface
structures such as the outer lung boundaries or the fissures is the average surface
distance. For each voxel xB contained in SB , the closest voxel xA in S̃A is determined
and the Euclidean distance between them is calculated as

4 http://vessel12.grand-challenge.org
5 http://image.diku.dk/exact

http://vessel12.grand-challenge.org
http://image.diku.dk/exact
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Fig. 8.4 Illustration of union and intersection between two volumes

d(xB, S̃A) = min
xA∈S̃A

‖xB − xA‖2 . (8.4)

To ensure symmetry, the error d(xA, SB) at each voxel in S̃A is also calculated and
finally the average overall error is computed.

For the calculation of the volumetric overlap between two voxel sets several
methods exist [29–32] where the most frequently used are

• Dice coefficient (DC) [33] which is also called volume overlap index [34]

DC = 2(|SB ∩ S̃A|)
|SB | + |S̃A| , (8.5)

• Jaccard coefficient (JC) or volumetric overlap (VO) [35]

JC = VO = |SB ∩ S̃A|
|SB ∪ S̃A| , (8.6)

which can also be alternatively calculated as [36]

JC = |SB | + |S̃A|
|SB ∪ S̃A| − 1 , (8.7)

• target overlap (TO)

TO = |SB ∩ S̃A|
|SB | . (8.8)

8.2.3.2 Ground-Truth Generation

Ground-truth generation for surface structures and volumes requires the segmentation
of the respective objects of interest. For the purpose of evaluation of lung motion
estimation, the most relevant structures are (i) lungs, (ii) lung lobes and fissures
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and (iii) potential tumors. Manual segmentation of those structures is usually very
time-consuming. Thus, ground-truth generation that results from semi-automatic or
automatic segmentation algorithms which are inspected and manually corrected is
much more feasible from a practical point of view.

For the segmentation of the lungs, automatic approaches have been presented
ranging from voxel-based segmentation methods [37] to multi-atlas registration [38].
Voxel-based methods are based on the assumption that, for normal lung parenchyma,
there is a large difference in attenuation between the lung parenchyma and the sur-
rounding tissue. While those methods have low computational time, they fail espe-
cially in the case of pathological lungs or image artifacts. Other methods that involve
prior knowledge give potentially better results on pathological cases but have a sig-
nificant increase in runtime. Further algorithms are described within a challenge on
lobe and lung analysis (LOLA11).6

Fissure segmentation has been recently described in [39, 40] and extensions have
been presented to deal with incomplete fissures or cases where the fissures are hardly
visible [41]. Interactive methods [42] allow for correction of a given automatic seg-
mentation result or manual segmentation from scratch.

In the context of radiotherapy planning and treatment, evaluating the correctness
of tumor motion estimation is of major importance. For ground-truth generation,
a variety of methods for semi-automatic and automatic tumor segmentation exists
including vessel removal and pleural surface removal [43].

8.2.3.3 Validation in Practice

Volumetric overlap measures are well established and often applied to evaluate the
results of an automatic segmentation [38]. However, especially in the case of large
volumes, surface distance metrics are probably more relevant as there can still be
quite large errors near the boundaries even though large parts of the volumes are
overlapping.

For the registration methods from Fig. 8.3, a careful inspection of the pleura
revealed good alignment with no significant inter-method variation. This observa-
tion is supported by the EMPIRE10 challenge [9] where 12 (26) out of 34 methods
matched more than 99.99 % (99.9 %) of pleura-adjacent voxels correctly to either the
interior or the exterior of the lung boundary.

Unlike the lung boundaries, the fissures are of much lower contrast in CT and
thus more challenging to align in particular for larger motion amplitudes. In the
EMPIRE10 challenge 2 (20) out of 34 methods matched more than 99.9 % (99 %) of
fissure-adjacent voxels to the correct lung lobe. Registration of fissures is examplarily
shown in Fig. 8.5. For visual inspection, the fissure of the left lung (marked by green
plus signs) as extracted from the reference image (shown top left) is overlayed onto
the transformed template images from three of the six registration methods under
consideration. Although none of the methods employs dedicated knowledge about

6 http://www.lola11.com

http://www.lola11.com
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Fig. 8.5 Sagittal view of reference image (top left) and transformed template images after reg-
istration with different registration algorithms. Green plus signs and red contours indicate fissure
and −650 HU iso-contour and are extracted from the reference image. Their overlay onto the
transformed template images allow for visual inspection of fissure and vessel alignment

the fissures (e.g. by detecting them first), the fissures are roughly matched with a
misalignment of only one to two voxels. Taking into account their low contrast, it
can be assumed that matching of the fissures is assisted by high contrast surround-
ing vessel structures guiding the algorithm towards the desired deformation result
(cf. Fig. 8.5 where the iso-contour is defined at −650 HU in the reference image and
overlayed onto each transformed template image).

For both lung boundaries and fissures, it should be noted that surface-based met-
rics do not evaluate the motion in the tangential direction. At the lung boundary slip-
ping occurs along the rib-lung interface, while sliding motion can also occur along
the fissures which are built up of two tissue layers with lubricant fluid in-between.
Evaluation of this sliding effect is not captured by the surface-based metrics.

While for both the lung boundary as well as the fissures, the individual methods
seemed to have very similar performance results, inter-method differences exist that
can be highlighted, for example, by comparing residual images. The residual image is
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Fig. 8.6 Same view as in Fig. 8.5 but with residuals (top row) and subtraction of residuals (bottom
row) depicted

defined as the subtraction of a transformed template image from the reference image
(cf. Fig. 8.6, top row). Misaligned image structures show up whereas well-aligned
structures cancel out after subtraction (given the same imaging protocol). It can there-
fore serve as a rough indicator of successful registration. Optimizing a registration
result on the basis of the residual image will provide very little regularization of
the deformation. Registration accuracy, however, does not necessarily improve with
decreased regularization and is, moreover, often worsened since image noise starts
to dominate the computed deformation.

Figure 8.6, bottom row, displays the residual images after subtraction from each
other. These secondary residuals highlight image regions being differently deformed
by the three registration methods under consideration. Moreover, secondary residuals
are less impacted by differences in SNR or parenchymal densities between reference
and template image since both the minuend and the subtrahend are interpolated from
the template image. For the investigated case pleura and pleura-adjacent vessels are
more similarly transformed by methods 3 and 6 than by 1 and 3 or 1 and 6. On the
other hand, methods 1 and 6 better agree for vessel structures near to the fissure.

Conclusion: Both surface-based as well as volume-based metrics are well established
methods to evaluate the overlap of two structures. While the methods can be used
to provide a first indication of the quality of a registration method, detailed analysis
of the transformation is limited. Most prominently, in the case of lung boundaries
and fissures surfaces, sliding motion that occurs in tangential direction along the
boundary is not captured by surface-based metrics. Furthermore, as surface-based
metrics evaluate the overall overlap (lung volume overlap) or registration accuracy
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at distinct structures (fissures), detailed information about particular regions or far
away from the considered structures is difficult to derive as demonstrated in Fig. 8.6.

8.3 Functional Validation Criteria

In the previous section, a number of morphological validation criteria are described.
Among these are anatomical landmarks measuring the correspondence of point posi-
tions and surface structures measuring the alignment of lung boundaries or lung fis-
sures. All these criteria, however, focus on certain anatomical structures. As soon as
the anatomy under investigation is aligned, from a morphological point of view it
is irrelevant if and how other regions are transformed. Functional validation criteria
can fill this gap by adding prior knowledge in terms of assumptions on the functional
behaviour of the lung tissue.

The following subsection revisits landmarks but now considered in the context
of (respiratory-gated) 4D datasets where they define a motion trajectory over time.
Another class of validation metrics is based on the deformation vector field (DVF).
Contrary to morphological validation criteria, ground-truth data does not exist for
these metrics, thus careful interpretation of the results is required.

8.3.1 Trajectory Analysis

8.3.1.1 Validation Metrics

Landmark-based evaluation relies on a set of independent point positions, corre-
sponding to anatomical features. When dealing with respiratory-gated 4D thoracic
datasets, each point is expected to follow a cyclic trajectory and additional prior
knowledge can be used on this trajectory. Such prior information is important for
deriving robust and efficient algorithms but can serve also in the validation process.

The conventional approach for the registration of 4D-CT datasets is to compute a
set of DVFs—either between a designated reference phase and all remaining phases
or between any adjacent respiratory phases. An alternative is to register the designated
reference phase with the entire 4D dataset (sometimes referred to as group-wise
registration). This is equivalent to estimating motion trajectories of individual point
positions and can be called spatio-temporal registration.

In this context, it can be interesting to generalize the landmark-based registration
error to take into account the time spent at the main phases of a trajectory. For
example, an error metric could take into account that more time is spent at the end-
inspiration and end-expiration phases than between these extremes and therefore
be designed to reflect the decreased likelihood for motion-induced image artifacts.
In other words, estimation of errors at an intermediate phase of the cycle should
have lower weight than errors at extreme phases. According to known prior 1D
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breathing models, such as the one proposed by [44], locally defined material points
move along their trajectories at variable speeds (determined by the derivative of the
globally defined lung volume curve). One such metric is called spatio-temporal error
(STE) [12] and is defined by

STEta ,tb (L1, L2) = 1

tb − ta

∫ tb

ta
||L1(s(t)) − L2(s(t))||2 (8.9)

where L1 and L2 are two parametric trajectories (each of which defines the set of
the different locations of a material point during its motion), s(t) the normalized
curvilinear abscissa of the trajectory according to a prior breathing model to take
into account the relative breathing velocity. This abscissa is a function of time and
denotes the curve length travelled between initial time ta and time t . However, in
practice, such methods have not been shown to be more effective or more robust than
conventional landmark-based registration error in evaluating registration accuracy.

8.3.1.2 Validation in Practice

To our knowledge, few studies analyze respiratory motion estimation in terms of
point trajectories. Sets of 4D landmark points sets were used to test the adequacy of
some trajectory model. In [45] the authors proposed a 4D local trajectory model for
thoracic 4D-CT, where trajectories were modeled with cubic polynomials through
the expiratory phases (neither cyclic nor inspiratory phase was included). For the
validation, experts were asked to select corresponding anatomical points in expiratory
phases with the help of a dedicated GUI named Assisted Point Registration of Internal
Landmarks (APRIL) [6].

In [46], projection sequences of cone-beam images were used to analyse cran-
iocaudal positions of the diaphragm over time. A database of motion was obtained
and used to assess the validity of several trajectory models. Validation of respi-
ratory motion estimation on 4D-CT was then performed with sets of about 100
expert-selected corresponding points by temporal frame, using a semi-automatic
software [11] (see Fig. 8.7 for an illustration of such trajectories). The mean distance
between the experts’ annotations was 0.5 mm (0.9 mm standard deviation).

In practice, two main issues are encountered. Firstly, the manual (even semi-
automatic) definition of landmarks across the 4D dataset is very time-consuming.
In addition, an alarmingly high number of acquisitions contain motion-induced arti-
facts, mainly due to irregular patient breathing during image acquisition. In the
case of artifacts, the image information can be considered locally invalid, as it does
not correspond to the patient anatomy. Clinical use of the estimated motion fields
requires them to be as close to the unknown reality as possible. A patient-specific,
spatio-temporal deformation model could assist in reducing sensitivity to local image
irregularities and render the motion estimate more plausible and potentially more
representative of the patient’s breathing motion under these challenging circum-
stances. In [46], robustness of registration methods was illustrated and compared by
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Fig. 8.7 (from [47]). Example landmarks with large displacements projected onto the sagittal plane:
manually identified landmark positions are plotted together with trajectories obtained using three
different trajectory models (shown using black, gray and dashed lines)

introducing artificial artifacts in 4D-CT. Qualitative evaluation was performed visu-
ally on images with real artifacts. From this very limited dataset, it seems that the
addition of temporal information improves the robustness of the registration.

Conclusion: To validate the robustness of a registration method remains challenging,
but taking into account the temporal dimension by means of point trajectories may
be useful.

8.3.2 Deformation Vector Field Analysis

8.3.2.1 Validation Metrics

This paragraph describes validation metrics based on the deformation vector field
(DVF) T mapping the discrete domain of an image A onto that of an image B,
T : ΩA → ΩB .

One such validation metric employs the asymmetric nature of image registra-
tion7. A natural assumption is that independent of the order of the input images,
the resulting transformations are inverse to each other. More specifically, defin-
ing T A→B as the spatial transformation after registration with A as the reference
image and T B→A as that with B as the reference image, for an ideal registration
x̃A := T B→A (T A→B (xA)) is equal to xA for all voxels of image A. More generally,
in the case of n images with computed pairwise transformations T A1→A2 , T A2→A3 ,

7 Symmetric registration approaches are independent of the order of input images while asymmetric
approaches are not. Naturally, a validation metric based on a specific criterion is not designed for
approaches already relying on the same criterion.



176 S. Kabus et al.

…T An−1→An , T An→A1 let T̃ denote the concatenation of all transformations,

T̃ := T An→A1 ◦ T A1→A2 ◦ . . . ◦ T An−1→An . (8.10)

The n-consistency metric [48] is then defined as

C(xA) := ‖T̃(xA) − xA‖2 , xA ∈ ΩA . (8.11)

It is common to consider mean and standard deviation as well as the maximum of
the consistency map C .

A second DVF-based validation metric investigates the local volume change at
every voxel position. In particular, it measures how much an infinitesimally small
region around a voxel is contracting or expanding. For applications involving respi-
ratory motion, large contractions of parenchymal tissue can occur. Taking a contrac-
tion beyond its physically possible limit, however, it can occur that two anatomical
positions different from each other are mapped onto the same anatomical position,
resulting in a loss of image information. This property is often described as the
limit to folding, non-invertibility, non-bijectivity or non-diffeomorphism. For reg-
istration tasks containing pathologies, e.g. registration of a pre-operative planning
image with an image taken after tumor resection, a locally folding DVF can be rea-
sonable. However, respiratory motion estimation in this chapter assumes the absence
of intervention related tissue loss. Therefore, any occurences of folding indicate
a local registration failure. This is measured by calculation of the Jacobian map
det(∇T A→B(xA)). Folding is defined as

F := {xA ∈ ΩA | det(∇T A→B(xA)) ≤ 0} . (8.12)

8.3.2.2 Validation in Practice

Since ground-truth is not available, necessary conditions for registration accuracy,
so-called indications, can be considered. For the following discussion, the compari-
son study [3] cited in previous subsections is referenced again.

Firstly, for registration methods with both forward and backward DVFs available,
the 2-consistency metric is computed. Since none of the registration methods under
consideration is consistent by definition, measuring the consistency error is a suitable
indicator of how independent the registration result is from the image input order.
Figure 8.8, top row, as well as quantitative evaluation (details are described in [3])
indicate different consistency errors for methods 1, 3, 4 and 6.

Next, the Jacobian map is computed, a metric which is often used as a surrogate
for local lung ventilation estimation. Since each DVF considered here is defined in
the end-inspiration domain, a contraction is generally expected. A comparison of
the various methods (cf. Fig. 8.8, bottom row) revealed large differences: whereas
methods 1, 3 and 6 show a relatively homogeneous contraction, the remaining
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Fig. 8.8 2-consistency metric (top) and Jacobian map (bottom) for coronal views after registration
with different registration algorithms. The consistency error as the amplitude of the geometrical
discrepancy between forward and backward registration is given in mm. The Jacobian map estimates
local lung ventilation: positive (negative) values indicate local expansion (contraction)

methods result in heterogeneous contraction-expansion patterns, methods 2 and 5
even show severe foldings [3]. Folding in the spatial domain is equivalent to partial
loss of image information and should therefore be avoided. However, even with-
out folding, heterogeneous contraction-expansion patterns are less plausible from a
physiological point of view. Lungs in healthy condition are expected to be equally
ventilated throughout with two exceptions: (1) gravity can impact both parenchy-
mal density and ventilation resulting in a ventral-dorsal gradient [49, 50], (2) inertia
can cause the lower lung regions to be more ventilated at intermediate respiratory
phases when using dynamic acquisition protocols (as in respiratory-gated 4D-CT for
example) rather than breath-hold imaging.

Lung diseases such as emphysema or fibrosis can cause ventilation of a certain
lung region to be poor or even absent. Diseases showing (partially) obstructed air-
ways can lead to an abnormal local level of synchrony since air flow entering a lung
compartment with obstructed airways is slowed down and therefore continues to
fill this compartment after the rest of the lung has stopped inhalation and switched
to exhalation [51]. Such diseases can explain a heterogeneous level of contraction
between end-inspiration state and end-expiration state but not a mix between con-
traction and expansion. On this basis, an experienced radiologist rated the result from
method 6 (Fig. 8.8, last column) as the most plausible one, followed by method 1
(Fig. 8.8, first column).

Conclusion: Ground-truth in a strict sense does not exist for DVF-based validation
metrics. Metrics such as consistency or the Jacobian map serve as necessary condi-
tions for registration accuracy, thus they are indicators only. Registration methods
with similar accuracy measured by morphological metrics can differ significantly
for DVF-based metrics illustrating out the inadequacy of landmark- or surface-based
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validation alone. Use of the Jacobian map to define lung ventilation is an important
measure of functional validation.

8.3.3 Beyond Pure Deformation

Functional criteria from the previous section such as the consistency metric and
the Jacobian map were demonstrated to add further information to the validation
space. This can increase plausibility of the registration result and highlight previ-
ously unseen variations among different registration methods. A fully-automated
evaluation of the Jacobian map is, however, difficult to establish: regions undergo-
ing folding can, without any doubt, be classified as local registration failure. But
what about regions compressed to 30 % or even to 10 % of their original volume,
for example? Without dedicated knowledge of parenchymal elasticity in general and
the specific patient status in particular, it is certainly not possible to rate this level of
compression. Likewise, the radiologist’s preference for a homogenoeus contraction
as shown in Fig. 8.8 can not be automatically achieved.

One possible way to deal with the limitations of the Jacobian map for automatic
validation is to link it to the voxel-specific tissue density. From a functional perspec-
tive, the lungs are comprised of tissue structures ranging from stiff to elastic. In CT
imaging, higher densities are usually associated with stiff structures (e.g., bronchial
walls or larger vessels) whereas low densities result from lung parenchyma consist-
ing of alveoli and capillary vessels. In fact, due to the partial volume effect almost
all voxels represent a mixture of stiff and elastic structures. During breathing, air can
inflate or deflate the lungs, thus leading to a change in volume of lung parenchyma
indicated by a change in local density. Generally, the change is proportional to the

Fig. 8.9 Phantom composed of foam pieces with size ranging from about 1 mm to more than
10 mm. A sensory analysis reveals the single pieces to be of individual elasticity. The composite
foam is mounted between two plates of acrylic glass with the upper plate splitted into two parts.
Screws are used to fix the upper plate parts to the lower plate. On the left, the phantom is displayed
in compressed state (“axial” view), on the right, intensity histograms after CT acquisition are shown
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fraction of air. A change in volume of a certain structure, however, requires the
structure to be elastic. Thus, elasticity is proportional to the fraction of air as well.

A recent study [52] investigated the voxel-wise calculated correlation between the
Jacobian map and tissue density based entities such as the SAI measure (Eq. 13.17).
However, the reported resulting correlation is not sufficient for use as a validation
metric yet. Possible sources of errors include image noise, image artifacts, registration
errors and inhomogeneous changes in the blood distribution during respiration. It
should also be noted that lung diseases may change elasticity locally with possible
impact on the relationship between expected parenchymal elasticity and air fraction.
For instance, lung regions affected by emphysema or fibrosis are characterized by
decreased compliance of the lung tissue [53] resulting in reduced ventilation and
loss of elasticity. To rule out any possibility of impact from unknown pathologies,
a compressible CT phantom with spatially varying elasticity (see Fig. 8.9) has been
chosen [54] to investigate the relation between parenchymal elasticity and air fraction
for functional validation.

The phantom is scanned twice (0.33 × 0.33 × 0.45 mm3, further details are
described in [54]), once in the uncompressed state and once in a compressed state
(see Fig. 8.10a, b for exemplary slices). A histogram analysis (Fig. 8.9, right) reveals
that, as for the lungs, the density in the compressed state is higher than in the uncom-
pressed state.

For illustration and comparison, two registration methods are chosen: (1) one
with a spatially constant elasticity constraint and (2) one with a spatially varying
elasticity constraint. The two methods result in a similar landmark accuracy (50 well-
dispersed landmarks; TRE given as mean ± std (max) [mm]) of 0.28 ± 0.13(0.72)

and 0.33 ± 0.14(0.76), respectively. The Jacobian maps (cf. Sect. 8.3.2.1) shown in
Fig. 8.10c reveal mostly contracting regions but also expanding regions occuring with
a spatially constant elasticity constraint as depicted by regions color-coded in blue.
Recalling that the phantom was exposed to overall contraction, expanding regions
would be physically unrealistic.

Registration accuracy is now functionally analysed by relating the Jacobian map
voxel-wise with the HU densities. Relating these two entitites is achieved by means of
joint histograms. Since the relationship depends on the applied compression level, for
each level of relative compression (relC) a normalized joint histogram is computed.
Finally, to combine the information from the different compression levels, from each
histogram a median graph is extracted. The collection of graphs shown in an ensemble
plot (Fig. 8.11) now describes the reaction of a material with a certain HU value
to individually applied compression forces. The differences between the spatially
constant elasticity constraint (shown left) and the spatially varying constraint (shown
right) underline the impact of the elasticity constraint on the registration result:
the constant elasticity setting results in a graph ensemble with implausible positive
Jacobian values for voxels with higher intensity. The positive values are directly
linked to the expanding regions visible in Fig. 8.10c. On the contrary, for the spatially
varying constraint no part of the phantom has been expanded.

http://dx.doi.org/10.1007/978-3-642-36441-9_13
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(a) (b)

(c)

Fig. 8.10 a Mid coronal slice of CT phantom in uncompressed state. b Mid axial slice in uncom-
pressed (top) and compressed state (bottom). c Jacobian maps (same slice as for (a)) for spatially
constant elasticity constraint (left) and for spatially varying elasticity constraint (right)

Fig. 8.11 Ensemble plots derived from normalized joint histograms (see text for explanation) for
spatially constant elasticity constraint (left) and for spatially varying elasticity constraint (right)
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Conclusion: It has been shown that landmark-based registration error is not sufficient
to validate the deformations of an elastic body under compression. Moreover, valida-
tion based solely on this error may lead to a tuning of registration methods towards
high flexibility but less physiologically plausible deformations. This experiment,
which was carried out under laboratory conditions (no patient induced artifacts, high
image dose) supports another recent study [3] where different registration schemes
showed partially implausible contraction-expansion patterns but resulted in similar
landmark-based registration errors.

Functional validation is exemplarily demonstrated by relating the Jacobian map
voxel-wise with HU densities. Validation is no longer restricted to analysis of high
contrast anatomical structures, but has been extended to include assessment of image
regions with homogeneous intensities.
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