
Chapter 7
Intensity-Based Registration for Lung
Motion Estimation

Kunlin Cao, Kai Ding, Ryan E. Amelon, Kaifang Du, Joseph M. Reinhardt,
Madhavan L. Raghavan and Gary E. Christensen

Abstract Image registration plays an important role within pulmonary image
analysis. The task of registration is to find the spatial mapping that brings two images
into alignment. Registration algorithms designed for matching 4D lung scans or two
3D scans acquired at different inflation levels can catch the temporal changes in
position and shape of the region of interest. Accurate registration is critical to post-
analysis of lung mechanics and motion estimation. In this chapter, we discuss lung-
specific adaptations of intensity-based registration methods for 3D/4D lung images
and review approaches for assessing registration accuracy. Then we introduce meth-
ods for estimating tissue motion and studying lung mechanics. Finally, we discuss
methods for assessing and quantifying specific volume change, specific ventilation,
strain/ stretch information and lobar sliding.

7.1 Introduction

Image registration can be used to determine a spatial mapping that matches images
collected at different time points, or using different imaging modalities. It has been
widely used in radiotherapy for various applications, such as in motion studies, dose
accumulation/composite, dose response evaluation, adaptive planning, auto contour-
ing etc. for various radiotherapy treatment sites such as brain, lung, head neck,
prostate, and cervix. In motion studies, image registration has been used to evalu-
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ate the internal target volume (ITV) which encompasses the clinical target volume
(CTV) and internal margin (IM) to account for the variation in size, shape and posi-
tion, e.g. filling of bladder and movements of respiration [54]. In auto contouring,
the contours drawn by physicians on the initial data set can be propagated to the data
set of interest after image registration is performed to define the gross tumor vol-
ume (GTV) or the organs at risk (OAR) [95]. Such image pair can be intra-modality
images such as 4D CT images or inter-modality images such as the images of PET-
CT image and planning CT image. In addition to the primary contours drawn by the
physicians, the OARs can also be defined as atlas from population so that they can
be propagated to any new patient data set when the contour task is required. The
auto contour greatly reduced the total treatment planning time and allows for the
potential fast same day simulation, planning and treatment clinical work flow [34].
Similarly, in the dose accumulation/composite, instead of propagating the contours,
the planning dose from previous treatments can be propagated to the later treatment
scans so that the total planning dose can be accumulated for further dose response
evaluation or adaptive planning [100].

In lung cancer radiotherapy, image registration is a key tool as one seeks to link
images across modalities, across time, or between lung volumes in the use of pul-
monary investigations [39, 46, 58, 60], due to the inherent motion of the respiratory
system. For example, registration can be used to determine the spatial locations of
corresponding voxels in a sequence of pulmonary scans, as discussed in Chap. 6.
The computed correspondences immediately yield the displacement fields corre-
sponding with the motion of the lung between a pair of images. Using the image
registration, the auto contouring, dose accumulation/composite, adaptive planning
tools etc. as introduced above can be built upon. Furthermore, because of the lung
tissue’s mechanical property during expansion and contraction is highly related to its
ventilation function, the image registration has also been extended to the functional
lung imaging as discussed in Chap. 13.

Chapters 2 and 3 introduced different methods for 4D thoracic CT image acqui-
sition. Imaging allows non-invasive study of lung behavior and image registration
has been used to examine lung mechanics and pulmonary functions [31, 43, 74].
Some groups have utilized non-invasive imaging and image registration techniques
to examine the linkage between estimates of regional lung expansion and local lung
ventilation [26, 32, 42–44, 74, 88, 89, 102]. Guerrero et al. used two CT images,
acquired at different lung inflations, and optical flow image registration to estimate
regional ventilation to identify functioning versus non-functioning lung tissue for
radiotherapy treatment planning [43, 44]. Sundaram and Gee used serial magnetic
resonance imaging to quantify lung kinematics in statically acquired sagittal cross-
sections of the lung at different inflations [88, 89]. Using non-linear image regis-
tration, they estimated a dense displacement field from one image to the other, and
from the displacement field they computed regional lung strain. Christensen et al.
used consistent image registration to match images across cine-CT sequences, and
estimate rates of local tissue expansion and contraction [26]. Their measurements
matched well with spirometry data. Reinhardt et al. used image registration to match
lung CT volumes across different levels of inflation [32, 74]. They calculated local
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specific volume changes as an index of regional ventilation, and compared specific
volume change to xenon-CT based estimates of regional ventilation in sheep. Gor-
bunova et al. developed a weight preserving image registration method for monitoring
disease progression [42]. Yin et al. proposed a new similarity cost preserving the lung
tissue volume, and compared the new cost function driven registration method with
SSD driven registration in the estimation of regional lung function [102].

Local lung expansion can be estimated by using registration to match images
acquired at different levels of inflation. Tissue expansion (and thus, specific volume
change) can be estimated by calculating the Jacobian determinant of the transfor-
mation field derived by image registration [74]. The tissue strain tensor can also be
calculated from the transformation field. Since both the Jacobian matrix and the strain
tensor are formed using partial derivatives of the transformation field, it is important
that the underlying registration transformation model be well-behaved with respect
to these derivatives if the functional and mechanical results obtained are to be useful.

7.2 Intensity-Based Registration

The goal of registration is to find the spatial mapping that will bring the moving
image into alignment with the fixed image. Many image registration algorithms have
been proposed and various features such as landmarks, contours, surfaces and vol-
umes have been utilized to manually, semi-automatically or automatically define
correspondences between two images [39, 59, 60]. Chapters 5 and 6 introduced
feature-based and intensity-based registration techniques. The input data to the reg-
istration process is usually two images; one is defined as the moving or template
image I1, and the other is defined as the fixed or target image I2. The transform
defines how points from the moving image I1 are mapping to their corresponding
points in the fixed image I2. In three dimensional space, let x = (x, y, z)T define
a voxel coordinate in the image domain of the fixed image I2. The transformation
T is a (3 × 1) vector-valued function defined on the voxel lattice of fixed image,
and T (x) gives the corresponding location in moving image to the point x. The cost
function represents the similarity measure of how well the fixed image is matched
by a warped moving image. The optimizer is used to optimize the similarity criterion
over search space defined by transformation parameters.

4D image registrations have been developed for spatial and temporal motion esti-
mation in a 4D image sequence. 4D CT images are given as a sequence of 3D
images representing different respiratory phases in the breathing cycle as discussed
in Chaps. 2 and 3. Typical values are 10 phases from 0 to 90 % phase at 10 % intervals,
where 0 % represents maximum inhale and 50 % approximately maximum exhala-
tion. Most registration approaches use a pairwise registration paradigm, including
the reference-strategy which registers each phase to a chosen reference phase (e.g.
the end of expiration), and the consecutive-strategy which describes deformations
respect to the neighboring time point. Figure 7.1 depicts the reference-strategy with
the 50 % image as reference. For a voxel localization x in the reference phase, the
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Fig. 7.1 Registration scheme for motion field extraction of a 4D CT data set using the reference-
strategy. Each phase of the 4D CT image is registered with a chosen reference phase (e.g. the end
of expiration) (figure adapted from [57])

corresponding localization in the rest of the phases is given by the computed trans-
formation, and in this way, the trajectory of a point is easily defined. Using the
consecutive strategy, transformations have to be concatenated to compute a trajec-
tory, whereby interpolation errors may be introduced.

In addition to pair-wise methods, groupwise strategies have been developed which
simultaneously align multiple phases in a 4D image sequence. In these approaches,
all the phase images in a 4D data set are input into the registration algorithm without
assigning fixed or moving image [16, 62, 93, 99]. In this chapter, we introduce lung
motion estimation from pair-wise registration between images acquired at different
inflation levels.

7.2.1 Preprocessing

Many registration techniques for lung CT images require image preprocessing steps.
Common preprocessing operations include downsampling large datasets, extracting
region of interest (ROI), and initial pre-aligning images. As the CT imaging tech-
niques improve, it is now possible to image lung structures with high spatial reso-
lution, and thus produce large CT datasets. In many cases, downsampling is needed
to resize the original data and to improve the registration efficiency and robust-
ness. A further common preprocessing step is an initial alignment to roughly catch
the translation, rotation, and scaling between two images, i.e. by an affine pre-
registration.

One of the major challenges for registration methods in lung motion estimation
is the occurrence of sliding motion between the visceral and parietal pleura (see
Sect. 4.2.1) and between the individual lung lobes [4, 12, 33]. Sliding motion con-
tradicts common regularization models applied to avoid discontinuities like gaps or
foldings in the computed transformation. To cope with sliding motion, many registra-
tion methods utilize a lung segmentation mask to restrict registration to the inside of
the lung. In the inter-institutional study Evaluation of Methods for Pulmonary Image
Registration (EMPIRE10) [66], 16 out of 20 participating methods applied masking
in at least on step of the algorithm. Due to the large density difference between the
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Fig. 7.2 Pulmonary CT images acquired at breath-hold (a) maximum exhale and (b) maximum
inhale with renderings of the lung segmentations (green objects)

air-filled lungs and surrounding tissue, robust automatic algorithms exist for lung
segmentation in CT images [52]. Figure 7.2 gives an illustration of pulmonary CT
images with renderings of the lung segmentations. Image pair was acquired dur-
ing breath-holds near functional residual capacity (maximum exhale) and total lung
capacity (maximum inhale). Although first approaches for automatic segmentation
of lung lobes exist [76, 92], lobe segmentation remains challenging because of imper-
ceptible fissures in 4D CT images. Performing registration in the region of interest
may help improve registration accuracy and efficiency, but registration is limited to
the object (lung or lobe) and provides no information about other image regions.
Recently, novel regularization approaches has been presented to explicitly model the
sliding motion along organ boundaries (see Sect. 7.2.3.3).

7.2.2 Similarity Criteria

Intensity-based registration utilizes the intensity information of two images to mea-
sure how well they are aligned. It takes advantage of the strong contrast between
the lung parenchyma and the chest wall, and between the parenchyma and the blood
vessels and larger airways. To solve the intensity-based image registration problem,
it is usually assumed that intensities of corresponding voxels are related to each
other in some way. Many criteria to construct the intensity relationship between
corresponding points have been suggested for aligning two images, as discussed in
Chap. 6. Cost functions such as mean square difference (MSD), correlation coeffi-
cient, mutual information, pattern intensity, and gradient correlation are routinely
used for image registration [50, 72].

http://dx.doi.org/10.1007/978-3-642-36441-9_6
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7.2.2.1 Sum of Squared Difference (SSD)

A simple and common similarity function is the sum of squared difference (SSD),
which measures the intensity difference at corresponding points between two images.
Mathematically, it is defined by

CSSD =
∫

Ω

[I2(x) − I1(T (x))]2 dx, (7.1)

where I1 and I2 are the moving and fixed images, respectively. Ω denotes the union of
lung regions in fixed image and deformed moving image. The underlying assumption
of SSD is that the image intensity at corresponding points between two images should
be similar. This is true when registering images of the same modality. In such cases,
if the images are perfectly mapped, the corresponding intensities should be identical,
which means the same underlying structure has the same intensity value in the two
images.

However, considering the change in CT intensity as air inspired and expired
during the respiratory cycle, the grayscale range are different within the lung
region in two CT images acquired at different inflation levels. To balance this
grayscale range difference, normalization of the intensities are needed. For example, a
histogram matching procedure [98] can be used before SSD registration to modify
the histogram of moving image so that it is similar to that of fixed image. Figure 7.3

Fig. 7.3 Illustration of histogram matching before SSD registration between breath-hold maximum
exhale and maximum inhale images from a human subject. a A sagittal slice from maximum exhale.
b A sagittal slice from maximum inhale. c The sagittal slice of b after histogram modification so
that its grayscale range is similar to that of a
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gives an illustration of histogram matching before SSD registration between a pair of
images acquired at breath-hold maximum exhale and maximum inhale from a human
subject. Alternative approaches use a-priori knowledge about density changes in the
lungs to preprocess images before the registration [81]. Please note that intensity
normalization is only needed for SSD similarity function discussed here. It is not
necessary for the similarity functions discussed below.

7.2.2.2 Similarity Functions for Multi-Modal Registration

As mentioned above, CT intensity is a measure of tissue density and therefore changes
as the tissue density changes during inflation and deflation. The registration problem
under this circumstance is similar to the multi-modality image registration, where
similarity functions based on correlation coefficients (CC) [7, 48] or on mutual
information (MI) [27, 61, 91, 94] are well suited and widely used. In the EMPIRE10
study for lung registration [66], 10 out of 20 participants used multi-modal similarity
metrics based on CC or MI.

The local normalized cross-correlation (NCC) between two images I1 and I2
assumes a linear dependency between the image intensities and is defined by

CNCC = 1

|Ω|
∑
x∈Ω

∑
xi

(
I2(xi ) − μI2(x)

) (
I1 ◦ T (xi ) − μI1◦T (x)

)
√∑

xi

(
I2(xi ) − μI2(x)

)2
√∑

xi

(
I1 ◦ T (xi ) − μI1◦T (x)

)2
,

(7.2)
where xi ∈ N (x) iterates through a neighborhood of voxel x and μ is the mean
value within this neighborhood.

Mutual information expresses the amount of information that one image contains
about the other one. Analogous to the Kullback-Leibler measure, the negative mutual
information cost of two images is defined as [61, 91]

CMI = −
∑

i

∑
j

p(i, j) log
p(i, j)

pI1◦T (i)pI2( j)
, (7.3)

where p(i, j) is the joint intensity distribution of transformed moving image I1 ◦ T
and fixed image I2; pI1◦T (i) and pI2( j) are their marginal distributions, respectively.
The histogram bins of I1◦T and I2 are indexed by i and j . Misregistration results in a
decrease in the mutual information, and thus, increases the similarity cost CMI. Note
that the MI metric does not assume a linear relationship between the intensities of the
two images (see Sect. 6.1.4.5 too). Multi-modal metrics omit the need of intensity
normalization in lung registration, but the computational effort of these measures is
increased compared to SSD.

http://dx.doi.org/10.1007/978-3-642-36441-9_6
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7.2.2.3 Sum of Squared Tissue Volume Difference (SSTVD)

Beside the widely used standard similarity functions for mono- or multi-modal reg-
istration, a number of lung-specific similarity metrics have been developed recently.

A recently developed similarity function, the sum of squared tissue volume
difference (SSTVD) [42, 102], accounts for the variation of intensity in the lung CT
images during respiration. This similarity criterion minimizes the local difference
of tissue volume inside the lungs scanned at different pressure levels. This criterion
is based on the assumption that the tissue volume is constant between inhale and
exhale.1

Assume that lung is a mixture of two materials: air and tissue/blood (non-air).
Then the Hounsfield units (HU) in lung CT images is a function of tissue and air
content. From the HU of CT lung images, the regional tissue volume and air volume
can be estimate following the air-tissue mixture model by Hoffman et al. [49]. Let
v(x) be the volume element at location x. Then the tissue volume V (x) within the
volume element can be estimated as

V (x) = v(x)
HU (x) − HUair

HUtissue − HUair
= v(x)β(I (x)), (7.4)

where we assume that HUair = −1000 and HUtissue = 0. Let v1(T (x)) and v2(x)

be the anatomically corresponding volume elements, and V1(T (x)) and V2(x) be the
tissue volumes within anatomically corresponding volume elements, respectively.
Then the intensity similarity function SSTVD is defined as [101, 102]

CSSTVD =
∫

Ω

[V2(x) − V1(T (x))]2 dx

=
∫

Ω

[v2(x)β(I2(x)) − v1(T (x))β(I1(T (x)))]2 dx. (7.5)

The Jacobian determinant (often simply called the Jacobian) of a transformation
J (T ) estimates the local volume changes resulted from mapping an image through
the deformation [10, 21, 25]. In 3D space, let T (x, y, z) = [Tx (x, y, z), Ty(x, y, z),
Tz(x, y, z)]T be the vector-valued transformation which deforms the moving image
I1 to the fixed image I2. The Jacobian of the transformation J (T (x, y, z)) at location
(x, y, z)T is defined as

J (T (x, y, z)) =

∣∣∣∣∣∣∣

∂Tx (x,y,z)
∂x

∂Tx (x,y,z)
∂y

∂Tx (x,y,z)
∂z

∂Ty(x,y,z)
∂x

∂Ty(x,y,z)
∂y

∂Ty(x,y,z)
∂z

∂Tz(x,y,z)
∂x

∂Tz(x,y,z)
∂y

∂Tz(x,y,z)
∂z

∣∣∣∣∣∣∣
. (7.6)

1 However, we need to mention that this is not fully true due to the increased blood volume through
inhalation [43].
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Thus, the tissue volumes in image I1 and I2 are related by v1(T (x)) = v2(x) ·
J (T (x)), and Eq. (7.5) can be rewritten as

CSSTVD =
∫

Ω

{v2(x) [β(I2(x)) − J (T (x))β(I1(T (x)))]}2 dx. (7.7)

An alternative approach based on the assumption that the total mass (tissue vol-
ume) of the lung is conserved was proposed by Castillo et al. [17], named “combined
compressible local-global optical flow” (CCLG). The main idea of this approach is
to substitute the conservation of mass equation for the constant intensity assumption
in the classical optical flow formulation of Horn and Schunk [51].

7.2.2.4 Sum of Squared Vesselness Measure Difference (SSVMD)

Feature information extracted from the intensity image is important to help guide
the image registration process. During the respiration cycle, blood vessels keep their
tubular shapes and tree structures. Therefore, the spatial and shape information of
blood vessels can be utilized to help improve the registration accuracy. Blood vessels
have larger HU values than that of parenchyma tissues. The intensity difference
between parenchyma and blood vessels can effectively help intensity-based registra-
tion. However, as the blood vessel branches, the diameter of vessel becomes smaller
and smaller. The small blood vessels are difficult to see because of their low intensity
contrast. Therefore, grayscale information of the small vessels give almost no con-
tribution to similarity functions directly based on intensity. In order to better utilize
the information of blood vessel locations, the vesselness measure (VM) computed
from intensity image can be used.

The vesselness measure is based on analyses of eigenvalues of the Hessian matrix
of the image intensity. These eigenvalues can be used to indicate the shape of the
underlying object. In 3D lung CT images, tubular structures such as blood ves-
sels (bright) are associated with one negligible eigenvalue and two similar non-zero
negative eigenvalues [40]. Ordering eigenvalues of a Hessian matrix by magnitude
|λ1| ≤ |λ2| ≤ |λ3|, the Frangi’s vesselness function [40] is defined as

F(λ) =

⎧⎪⎨
⎪⎩

(
1 − e

− R2
A

2α2

)
· e

−R2
B

2β2 ·
(

1 − e
− S2

2γ 2

)
if λ2 < 0 and λ3 < 0

0 otherwise

(7.8)

with

RA = |λ2|
|λ3| , RB = |λ1|√|λ2λ3| , S =

√
λ2

1 + λ2
2 + λ2

3, (7.9)

where RA distinguishes between plate-like and tubular structures, RB accounts for the
deviation from a blob-like structure, and S differentiates between tubular structure
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Fig. 7.4 The vesselness images calculated from lung CT grayscale images. a A transverse slice of
breath-hold maximum exhale data. b The vesselness measure of slice in a. Vesselness measure is
computed in multiscale analysis and rescaled to [0, 1]

and noise. α, β, γ control the sensitivity of the vesselness measure. In lung CT
images, an example parameter setting is α = 0.5, β = 0.5, and γ = 5.

The Hessian matrix is computed by convolving the intensity image with second
and cross derivatives of the Gaussian function. For a multiscale analysis, the response
of the vesselness filter will achieve the maximum at a scale which approximately
matches the size of vessels to detect. Therefore, the final vesselness measure is
estimated by computing Eq. (7.8) for a range of scales and selecting the maxi-
mum response: F = maxσmin≤σ≤σmax F(λ). Here σ is the standard deviation of the
Gaussian function [36].

The vesselness image is rescaled to [0, 1] and can be considered as a probability-
like estimate of vesselness features. Larger vesselness value indicates the underlying
object is more likely to be a vessel structure, as shown in Fig. 7.4. The sum of squared
vesselness measure difference (SSVMD) is designed to match similar vesselness
patterns in two images. Given F1(x) and F2(x) as the vesselness measures of images
I1 and I2 at location x respectively, the vesselness cost function is formed as [13, 14]

CSSVMD =
∫

Ω

[F2(x) − F1(T (x))]2 . (7.10)

Mismatch from vessel to tissue structures will result a larger SSVMD cost. This sim-
ilarity metric can be used together with any other intensity-based volumetric metrics
to help guide the registration process and improve matching accuracy.

7.2.3 Transformation Constraints

Enforcing constraints on the transformation helps to generate more meaningful reg-
istration results. In general, the computed transformation should be smooth and
maintain the topology of the transformed images. Furthermore, the registration
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method should be symmetric, and should produce the same correspondences between
two images independent of the choice of fixed and moving images.

7.2.3.1 Regularization Constraints

Continuum mechanical models such as linear elasticity [22, 23] and viscous fluid
[22, 24] can be used to regularize the transformations. For example, linear-elastic
constraint of the form

CELA =
∫

Ω

||Lu(x)||2dx, (7.11)

can be used to regularize the displacement fields where

u(x) = T (x) − x. (7.12)

The linear elasticity operator L has the form of Lu(x) = −α∇2u(x) − β∇
(∇ · u(x))+γ u(x) where ∇ =

[
∂
∂x , ∂

∂y , ∂
∂z

]
and ∇2 = ∇ ·∇ =

[
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

]
.

In general, L can be any nonsingular linear differential operator [63], e.g. a Laplacian
regularization constrain is given by

CLAP =
∫

Ω

||∇2u(x)||2dx. (7.13)

Further regularization terms are discussed in Sect. 6.1.5.
The purpose of the regularization constraints are to constrain the transformation

to obey the laws of continuum mechanics and ensure it maintains the topology of
two images. Using a linear differential operator as defined in Eq. (7.11) can help
to smooth the transformation, and to eliminate abrupt changes in the displacement
fields. However, it can not prevent the transformation from folding onto itself, i.e.
destroying the topology of the images under transformation [25].

To help maintain desirable properties of the moving and fixed images during defor-
mation, another regularization example can be a constraint that prevents the Jacobian
of transformations from going to zero or infinity. The Jacobian is a measurement
to estimate the pointwise expansion and contraction during the deformation (see
Sect. 7.2.2.3). A constraint that penalizes small and large Jacobian is given by [21]

CJac(T ) =
∫

Ω

[
(J (T (x)))2 +

(
1

J (T (x))

)2]
dx. (7.14)

Further examples of regularization constraints that penalize large and small Jacobians
can be found in Sect. 6.1.5, and Ashburner et al. [6].

http://dx.doi.org/10.1007/978-3-642-36441-9_6
http://dx.doi.org/10.1007/978-3-642-36441-9_6
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7.2.3.2 Inverse Consistency Constraint

In order to find better correspondence mapping and reduce pairwise registration error,
one method is to jointly estimate the forward and reverse transformations between
two images while minimizing the inverse consistent error.

Define forward transformation T deforms I1 to I2 and the reverse transformation
G deform I2 to I1. A meaningful map between two anatomical images should be one-
to-one, i.e. each point in image I1 is mapped to only one point in image I2 and vice
versa. However, many unidirectional image registration techniques have the problem
that their similarity cost function does not uniquely determine the correspondence
between two images. The reason is that the local minima of similarity cost func-
tions cause the estimated forward mapping T to be different from the inverse of the
estimated reverse mapping G−1. To overcome correspondence ambiguities, trans-
formations T and G can be jointly estimated. Ideally, T and G should be inverses
of one another, i.e. T = G−1. In order to couple the estimation of T and G together,
an inverse consistency constraint (ICC) [21] is imposed as

CICC =
∫

Ω

||T (x) − G−1(x)||2dx. +
∫

Ω

||G(x) − T−1(x)||2dx. (7.15)

The constraint is minimized and the corresponding transformations are said to be
inverse-consistent if T = G−1.

7.2.3.3 Sliding Preserving Regularization

The physiological characteristics of the lung motion imply discontinuities between
the motion of lung and rib cage contradicting common regularization schemes. As
discussed in Sect. 7.2.1, most lung-specific registration algorithms address this prob-
lem using lung segmentation masks.

Recently, novel regularization approaches were presented to explicitly model the
sliding motion along organ boundaries. Ruan et al. [78] uses a regularization that pre-
serves large shear values to allow for sliding motion. Schmidt-Richberg et al. [83]
addressed sliding motion by a direction-dependent regularization at organ bound-
aries extending the common diffusion registration by distinguishing between normal-
and tangential-directed motion. The idea of direction-dependent regularization was
adopted in other publications, too [30, 71].

7.2.4 Parameterization, Optimization and Multi-Resolution
Scheme

7.2.4.1 Transformation Parameterization

The transformation model defines how one image can be deformed to match another.
It can be a simple rigid or affine transformation, or a non-linear transformation such
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as the spline-based registrations [90], elastic models [9], fluid models [19], finite
element (FE) models [38], etc. The lung is composed of non-homogenous, soft
tissue, interlaced by branching networks of airways, arteries, and veins. Lung tissue
expansion varies within in the lung depending on body orientation, the direction of
gravitation forces, the pattern of airway and vessel branching, disease conditions,
and other factors. Since lung expansion is non-uniform, non-linear transformation
models are needed to track tissue expansion across changes in lung volume.

To represent the locally varying geometric distortions, the transformation can be
represented through different forms. There are three common parameterizations used
for intensity-based registration methods of lung CT. The first type of transformation
is based on B-splines, as introduced in Sect. 6.2.1. B-splines [79] are well suited
for shape modeling and are efficient to capture the local nonrigid motion between
two images. Considering the computational efficiency and accuracy requirement,
the cubic B-Spline based parameterization is commonly chosen to represent the
transformation. In the EMPIRE10 study 10 out of 20 algorithms used a B-Spline
parametrization as transformation model [66]. Other basis functions such as thin-
plate splines(TPS) [8], Fourier series [5], elastic body spline(EBS) [29] can also be
used to parameterize the deformation.

The second type of transformation is dense deformable vector field (DVF), which
is introduced in Sect. 6.2.2. The DVF is a non-parametric model representing the
deformation by displacement vectors u(x) for each voxel location. The transforma-
tion is then given by T (x) = x + u(x).

In the third type, the transformation is represented by a velocity field v : Ω → Rd

in order to ensure that the transformation is diffeomorphic. Diffeomorphisms define a
globally one-to-one smooth and continuous mapping, and therefore, preserve topol-
ogy and are suitable for the study of pulmonary kinematics. Given a time-dependent
velocity field v : Ω × [0, 1] → Rd , one defines the ordinary differential equation
(ODE): ∂tφ(x, t) = v(φ(x, t), t), with φ(x, 0) = x. For sufficient smooth v and
fixed t , e.g. t = 1, the solution T (x) = φ(x, 1) of this ODE is known to be a diffeo-
morphism on Ω [103]. Diffeomorphic registration algorithms are discussed in more
detail in Sect. 10.4.2. Several approaches use diffeomorphic registration methods to
model lung motions [28, 35, 41, 82, 86].

7.2.4.2 Optimization

Most registration algorithms employ standard optimization techniques to the opti-
mal transformation, as discussed in Chap. 6. There are several existing methods in
numerical analysis such as the partial differential equation (PDE) solvers to solve the
elastic and fluid transformation, gradient descent, conjugate gradient method, New-
ton, Quasi-Newton, LBFGS, etc [56, 68, 69, 73]. One efficient optimization method
is a limited-memory, quasi-Newton minimization method with bounds (L-BFGS-B)
[11, 104]. It is well suited for optimization with a high dimensional parameter space.
In addition, this algorithm allows bound constraints on the independent variables.
For example, if the transformation are represented using B-splines, then the bound

http://dx.doi.org/10.1007/978-3-642-36441-9_6
http://dx.doi.org/10.1007/978-3-642-36441-9_6
http://dx.doi.org/10.1007/978-3-642-36441-9_10
http://dx.doi.org/10.1007/978-3-642-36441-9_6
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constraints can be applied on B-spline coefficients so that it is sufficient to guarantee
the local injectivity (one-to-one property) of transformation [18], i.e. the transfor-
mation maintains the topology of two images. According to the analysis from Choi
and Lee [18], the displacement fields are locally injective all over the domain if
B-Spline coefficients satisfy the condition that cx ≤ δx/K , cy ≤ δy/K , cz ≤ δz/K ,
where cx , cy, cz are B-Spline coefficients, δx , δy, δz are B-Spline grid sizes along
each direction, and K is a constant approximately equal to 2.479772335.

7.2.4.3 Multi-Resolution Scheme

In order to improve speed, accuracy and robustness of registration algorithms, a
spatial multiresolution procedure from coarse to fine is often used. The basic idea of
multiresolution is that registration is first performed at a coarse scale where the images
have much fewer pixels, which is fast and can help eliminate local minima. The
resulting spatial mapping from the coarse scale is then used to initialize registration
at the next finer scale. This process is repeated until registration is performed at the
finest scale.

7.3 Registration Accuracy Assessment

Validation and evaluation of image registration accuracy is an important task to
quantify the performance of registration algorithms. Due to the absence of a ‘gold
standard’ to judge a registration algorithm, various evaluation methods are needed to
validate the performance of image registration with respect to different properties of
transformations. Focusing on lung image registration, the following image features
and information can be used to measure registration accuracy:

• Features extracted from image, such as landmarks, airway and vessel trees, fissures,
and object volumes;

• Transformation properties, such as zero singularities and inverse consistency prop-
erties;

• Additional information that is not used in the registration data, such as ventilation
map estimated from Xenon-CT image;

All the features and image information mentioned above provide different perspec-
tives for registration accuracy measurement. Additional validation methods to mea-
sure registration accuracy can be found in Chap. 8.

7.3.1 Evaluation Methods Used in the EMPIRE10 Challenge

Researchers usually test their algorithms on their own data, which varies widely. To
make a fair comparison of different methodologies, EMPIRE10 challenge (Evaluation

http://dx.doi.org/10.1007/978-3-642-36441-9_8
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of Registration Methods on Thoracic CT) was designed to evaluate the performance
of different lung registration algorithms on the same set of 30 thoracic CT pairs.

All the registration results were evaluated in four aspects: (1) alignment of the lung
boundaries, (2) alignment of the major fissures, (3) alignment of correspondence of
annotated point pairs, (4) analysis of singularities in the deformation field. We will
shortly discuss these validation methods, full details can be found in [66].

7.3.1.1 Landmark Matching Accuracy

Landmarks are point features of an object. Anatomical landmarks have biological
meaning. Intra-subject images of the lung contain identifiable landmarks such as
airway-tree and vascular-tree branch points. An example of the landmark distribu-
tion is shown in Fig. 7.5 with the assistance of a semi-automatic system [67]. The
Euclidean distance between registration-predicted landmark position and its true
position is defined as landmark error.

In the EMPIRE10 study, landmarks were generated semi-automatically by three
independent experts.

7.3.1.2 Fissure Alignment Distance

The human lungs are divided into five independent compartments which are called
lobes. Lobar fissures are the division between adjacent lung lobes. The lobes can

Fig. 7.5 Distribution of landmarks (green points) selected at vessel-tree branch points on breath-
hold (a) maximum exhale, and (b) maximum inhale scans from one human subject
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be segmented [92] and the fissures represent important physical boundaries within
the lungs. Therefore, alignment of fissures is an important evaluation category. The
statistics of fissure positioning error (FPE) can be used to evaluate the fissure align-
ment. The FPE is defined as the minimum distance between a point on the deformed
fissure and the closest point on the corresponding target fissure. Mathematically, this
metric can be stated as

FPE(x) = min
y∈F2

d(x, T ( y)) (7.16)

for a given point x in F1, where F1 (F2, resp.) is the set of all points in the fissure in
image I1 (I2, resp.) and d(·) defines the Euclidean distance.

7.3.1.3 Relative Overlap of Lung Segmentations

The relative overlap (RO) is used to measure how well the corresponding parenchy-
mal regions of interest agree with each other. The RO metric is given by

RO(S1 ◦ T , S2) = |(S1 ◦ T ) ∩ S2|
|(S1 ◦ T ) ∪ S2| (7.17)

where S1 and S2 are corresponding regions of interest in images I1 and I2, respec-
tively. S1 ◦ T corresponds to a segmentation transformed from image I1 to I2. The
relative overlap of segmentations can be evaluated on the whole parenchyma region,
or subvolumes of left lung, right lung, or even on the lobe level whenever the seg-
mentations are available.

7.3.1.4 Validation on Transformation Properties

Good matching accuracy on the feature locations does not guarantee that regions away
from the features are correctly aligned. In order to reveal how well a transformation
preserves the topology between two images during the deformation, the Jacobian
determinant of the transformation field derived by image registration can be used for
singularity assessment.

The Jacobian determinant J at a given point gives important information about
the behavior of transformation T at that point. If the Jacobian value at x is zero,
then T is not invertible near x. A negative Jacobian indicates T reverses orien-
tation, which folds the domain [20, 25]. A positive Jacobian means the transfor-
mation T preserves orientation near x. These indications of Jacobian are listed in
Eq. (7.18).
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

J > 0, preserve orientation

⎧⎪⎨
⎪⎩

J > 1, local expansion

J = 1, no deformation

0 < J < 1, local contraction

J = 0, non-injective

J < 0, reverse orientation

(7.18)

The Jacobian evaluates the quality of transformations by measuring how well the
transformation preserves topology. For lung registration, a meaningful and physically
plausible deformation within a continuous region should be diffeomorphic, and thus
contains no singularities (J ≤ 0).

Other measures of transformation properties can be defined, e.g. the inverse con-
sistency error (see Sect. 8.1). It measures the consistency between a forward trans-
formation and a reverse transformation between two images. Ideally, composing the
forward and reverse transformations together should produce the identity map when
there is no inverse consistency error.

7.3.1.5 Registration Algorithms for Lung Motion Estimation

The EMPIRE10 competition included a wide variety of registration algorithms (trans-
formation models, similarity measures, etc.). Most algorithms used lung-specific
preprocessing (masking, histogram-matching, etc.), but beside this, only a selec-
tion of algorithms were tailored towards thoracic CT applications. A conclusion of
the EMPIRE10 study was “[..] generic algorithms which were not tailored for this
data performed extremely well and many different approaches to registration were
shown to be successful.” [66]. Accurate registration of lung CT images is possible,
as shown by an average TRE of less than 1 mm for the top six algorithms in this
study. Another important result was that landmark matching accuracy provided the
most useful reference for distinguishing between registration algorithm results.

In the following, we review some of the registration algorithms that participated
in this study: Song et al. proposed the algorithm which includes affine transfor-
mation and different diffeomorphic transformation by maximizing cross correlation
between images [86]. Han proposed a hybrid feature-constrained deformable reg-
istration method. The features are detected based on robust 3D SIFT descriptors,
and then a mutual information based registration is used to match those features.
The feature correspondences are used to guide an intensity-based deformable image
registration which maximizes the mutual information and minimize the normalized
sum of squared differences between images [47]. Ruhaak et al. presented a varia-
tional approach which drives the registration towards exact lung boundary matching.
They used the normalized gradient field to measure the distance focusing on image
edges instead of intensities, and a curvature regularizer is applied to penalize the sec-
ond order derivatives and yields smooth solutions [80]. Muenzing et al. developed
a novel regularization model incorporates information from two different knowl-
edge sources: anatomical aspect and statistical aspect in which the regularization is

http://dx.doi.org/10.1007/978-3-642-36441-9_8
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considered as a machine learning problem. Predominant anatomical structures are
extracted and used to model the ROI as composition of anatomical objects. And
finally, a link function is formulated to combine the two pieces of information [65].
Modat et al. proposed the NiftyReg package which contains a global and a local regis-
tration algorithm [64]. A block-matching technique is used in the global registration,
as proposed by Ourselin et al. [70]. The Free-Form Deformation (FFD) algorithm is
used in the local registration stage to maximize the normalized mutual information.
Staring et al. proposed the algorithm including a combination of an affine as well
as non-rigid transformations by maximizing the normalized correlation coefficient,
which is implemented in elastix [87]. Schmidt-Richberg et al. developed a robust
registration approach which consists of an affine alignment, a shape-based adjust-
ment of lung surfaces and an intensity-based diffeomorphic image registration. The
algorithm has been optimized for the registration of lung CT data [82]. Cao et al.
developed a nonrigid registration method to preserve both parenchymal tissue volume
and vesselness measure. The transformation is regularized and its local injectivity is
guaranteed [15]. Kabus et al. proposed a fast elastic registration algorithm that can
be used in a multi-resolution setting. It is initialized by an affine pre-registration of
the lungs followed by simultaneously minimizing of the similarity measure calcu-
lated as the sum of squared differences as well as the regularizing term based on the
Navier-Lame equation [55]. The elastic regularizer assumes the lung tissue can be
characterized as an elastic and compressible material. All these methods achieved
good results in the evaluation challenge.

7.3.2 Validation Using Additional Information

7.3.2.1 Correlation Between Lung Expansion and Xe-CT Estimates
of Specific Ventilation

Anatomical reference can usually provide features such as landmarks at the regions
with high contrast which can be recognized by either human observer or computer
algorithms. However, they are not be able to assess registration accuracy at the regions
where no high contrast landmarks are available. Registration results in estimate of the
regional specific ventilation (regional lung function). By comparing it with functional
information, such as the xenon-CT based estimate of the regional specific ventilation,
it is possible to assess the registration accuracy using lung function.

Previous studies have shown that the degree of regional lung expansion is directly
related to specific ventilation (sV) [74]. A good registration should produce a defor-
mation map (Jacobian map) which has high correlation with Xe-CT estimates of
ventilation map.

An example of Jacobian map derived from registering CT images between positive
end-expiratory pressure (PEEP) 10 cm H2O and 25 cm H2O for one sheep subject,
and its sV measures resulted from Xe-CT image analysis [45, 85] are shown on a
transverse slice in Fig. 7.6a, b. The correlation between ventilation map and Jacobian
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Fig. 7.6 Color-coded maps overlaid on a transverse slice showing (a) the Jacobian of transformation
between PEEP 10 cm H2O and 25 cm H2O for one sheep subject, and (b) the corresponding specific
ventilation (1/min) from the Xe-CT analysis. Blue and purple regions show larger deformation in a
and higher ventilation in b, while red and orange regions show smaller deformation in a and lower
ventilation in b

map can be utilized to validate the registration results. A higher correlation indicates
a better registration. As shown in Fig. 7.6, both sV and Jacobian maps show a similar
ventral to dorsal gradient. High specific ventilation should correspond with large
tissue expansion.

7.4 Application: Assessment of Lung Biomechanics

CT imaging of the lungs provides a new opportunity for assessment of lung function
by non-rigid image registration of a pair of scans at different inflation levels. After
finding out the transforms and correspondence for each voxel between two images,
we are ready for motion estimation and mechanical analysis in a regional level. Post-
analysis of the registration results reflects the mechanical properties of local lung
tissue. The computed measurements from dense displacement fields can be used
to estimate regional tissue motion, analyze regional pulmonary function and help
diagnose lung diseases.

Measurements resulting from image registration reveal details of local tissue
deformation patterns. Tissue motion can be quantified by parameters and index maps
from:

• Displacement field analysis, quantifying the magnitude and direction of local tissue
movement;
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Fig. 7.7 3D displacement from breath-hold maximum exhale to maximum inhale for one human
subject

• Specific volume change and ventilation analysis, quantifying specific volume and
specific air volume change through the deformation;

• Strain analysis, quantifying the major deformation magnitude and direction;
• Anisotropic deformation analysis, quantifying regional deformation patterns;
• Shear stretch analysis, quantifying the lobar sliding.

7.4.1 Displacement Vector Field

The displacement fields can be directly used to assess the magnitude and direction
of local volume movement. Figure 7.7 shows a 3D displacement filed computed
from two 3D CT data sets, acquired at breath-hold maximum exhale and breath-
hold maximum inhale. The two 3D CT images are registered using a Laplacian
regularization and a combination of the squared tissue volume difference (SSTVD)
and the squared vesselness measure difference (SSVMD) as distance measure (see
Sects. 7.2.2.3, 7.2.2.4, and 7.2.3.1). The vector field gives the direction of tissue
motion, and the length of vectors reflects the motion magnitude. Notice that regions
near the diaphragm have larger tissue motions, and are moving downwards.

Figure 7.8 demonstrates how tissue movement may be tracked during respiratory
cycles using 4DCT data. The 4DCT data sets were acquired using a Siemens Biograph
40-slice CT scanner operating in helical mode, and reconstructed at 0 %, 20 %, 40 %,
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Fig. 7.8 Tissue ROI trajectory in 4DCT for one human subject. a ROI position in the sagittal slice.
b ROI movement trajectory during the respiratory cycle

60 %, 80 %, 100 % during inspiration (noted as 0IN, 20IN, 40IN, 60IN, 80IN, 100IN),
and 80 %, 60 %, 40 %, 20 % during expiration (noted as 80EX, 60EX, 40EX, 20EX).
Again, a Laplacian regularization and CSSTVD combined with CSSVMD were used for
the registration of the images acquired at different inflation levels. The tissue ROI
is noted in Fig. 7.8a, and its motion is shown in the Y (dorsal-to-ventral) direction
and Z (base-to-apex) direction in Fig. 7.8b. The motion of the ROI mainly occurred
in the Z direction, and moved around 15 mm from 0IN to 100IN. During inspiration,
its movement along Z direction in each interval was quite uniform (around 3 mm in
each of the five intervals). During expiration, its backwards movement was much
faster from 100IN to 80EX, and from 80EX to 60EX intervals (totally around 11 mm
in the two intervals), while in the rest three intervals it only moved around 4 mm to
its original position.

7.4.2 Specific Volume Change

Different measures can be defined to quantify lung tissue deformation patterns.
Specific volume change (sVol) measures the volume change of local structure under
deformation, and regions of local expansion or contraction can be identified. The
most intuitive way to calculate sVol is derived through the Jacobian determinant
of the transformation J (T ). Using a Lagrangian reference frame, a Jacobian value
of one corresponds to zero expansion or contraction. Local tissue expansion corre-
sponds to a Jacobian greater than one and local tissue contraction corresponds to a
Jacobian less than one. These indications of Jacobian are listed in Eq. (7.18).

As derived in Sect. 13.2 the specific volume change can be expressed as

sV ol = J (T (x)) − 1. (7.19)

http://dx.doi.org/10.1007/978-3-642-36441-9_13
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Fig. 7.9 The Jacobian map
showing local volume defor-
mation in exhalation stage
from one human subject.
Local tissue expansion corre-
sponds to a Jacobian greater
than one and local tissue
contraction corresponds to a
Jacobian less than one

Note that sVol is linearly related to the Jacobian and therefore it is possible to use
the Jacobian measurement to reflect the specific volume change.

In Fig. 7.9, the specific volume change maps reflected by Jacobian show local
volume deformation during exhalation stage. Since the CT images were acquired
with subjects in the supine orientation, the more dependent region of lung is the
dorsal region since it is closest to the direction of the force of gravity. Thus, there is
more ventilation in the dorsal region. The maps also reflect the fact that vessels have
little deformation during respiratory cycles while lung tissues and airways deform
a lot.

7.4.3 Specific Ventilation

Specific ventilation measures the specific air volume change, and can be calculated
from the intensity information of corresponding regions. More details about specific
ventilation can be found in Chap. 13. The lung density is represented by CT grayscale
in Hounsfield units (HU), which is defined such that the HU of water and air are 0 and
-1000, respectively. Since the lung density decreases as it inflates with air, changes in
the lung CT density during inflation can also be used to quantify regional mechanical
properties. Therefore, given CT images of a lung region at two different pressures,

http://dx.doi.org/10.1007/978-3-642-36441-9_13
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Fig. 7.10 Color-coded maps
showing specific ventilation
computed from images pair
acquired at PEEP 10 cm H2O
and 15 cm H2O for one sheep
subject

it is possible to estimate the regional air volume change based on the HU values at
corresponding regions. Assuming that the fraction of air in a region located at x is
given by Fair(x) = −I (x)/1000, where I is the intensity function of a image, the
specific ventilation sV can be calculated by [84]

sV = 1000
I1(T (x)) − I2(x)

I2(x)(1000 + I1(T (x)))
. (7.20)

A derivation of this equation and more details about specific ventilation can be found
in Chap. 13.

Figure 7.10 shows an example specific ventilation map computed from images
pair acquired at positive end-expiratory pressure (PEEP) of 10 cm H2O and 15 cm
H2O for one sheep subject. During this experiment, the sheep was anesthetized,
mechanically ventilated, and CT scans covering the thorax were acquired at 0, 5, 10,
15, 20, and 25 cm H2O airway pressures. The consistent image registration method
[21] was used to register the sheep data with different airway pressures. An obvious
dorsal to ventral gradient is noticed from the sV map. This agrees with well known
physiology that subjects positioned in the supine posture have more ventilation in
the dorsal region.

7.4.4 Strain Tensors

In classical mechanics, deformation of structures is characterized by the regional
distribution of a strain or stretch tensor. Some of the most common strain tensors,
such as Linear strain tensor, Green-St. Venant strain tensor, and Eulerian-Almansi
strain tensor are discussed in Chap. 4.

These strain tensors can be computed from the deformation field and used to
analyze the stress caused by the geometrical deformation of the lung. In there most

http://dx.doi.org/10.1007/978-3-642-36441-9_13
http://dx.doi.org/10.1007/978-3-642-36441-9_4
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Fig. 7.11 Maximal principal direction of transformation mapping images from PEEP 0 cm H2O
to PEEP 10 cm H2O for one sheep subject. The vector magnitude represents the maximal principal
strain, and the colored contour expresses the Jacobian

general form, the strain tensors are real symmetric matrices. Through singular value
decomposition (SVD), they can be represented as a set of orthogonal eigenvectors,
along which there is no shear, but only expansion or compression. These eigen-
values and eigenvectors are denoted as principal strains and principal directions.
The maximal eigenvalue for each tensor is defined as maximal principal strain, and
its corresponding eigenvector is called maximal principal direction. The principal
strains and directions provide valuable information on preferential directionalities in
deformation.

Figure 7.11 illustrates the maximal principal direction, maximal principal strain,
and Jacobian together on coronal slice for one sheep subject when deforming images
from PEEP 0 cm H2O to PEEP 10 cm H2O. Strain tensors provide complementary
information to the Jacobian for analyzing lung tissue expansion. The regions near
diaphragm have larger maximal principal strain. The maximal principal strain on the
lung boundaries are towards the chest wall.

Figure 7.12 shows maps of the maximal principal strain from linear strain, Green
strain, and Eulerian strain tensors. Although they are of different ranges, regional
patterns are similar among all three strain measures. The regions near lung boundaries
and near the heart has larger maximal principal strains, while the dorsal regions have
less maximal principal strains.
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Fig. 7.12 Maximal principal strain from (a) linear strain, (b) Green strain, and (c) Eulerian strain
tensors on a transverse slice of deformed image from PEEP 0 cm H2O to PEEP 10 cm H2O for one
sheep subject

7.4.5 Anisotropy Analysis

Regional deformation of the lung during inspiration and expiration is more than just
volume change. Volume change may also have orientational preference anisotropy
of deformation [77, 97]. For instance, regions closest to the diaphragm are likely to
experience more volume change in the vertical orientation. And regions closest to the
heart may be more constrained from expanding normal to the heart. Volume change
and deformation anisotropy are independent quantities as a region may undergo no
volume change but still have deformed significantly, such as the case that the length-
ening in one orientation is compensated by contraction along another orientation.
Therefore, without orientational preference, regional volume change alone is not
enough to characterize lung deformation.

7.4.5.1 Regional Stretch

In continuum mechanics, the deformation gradient tensor F is the same as the Jaco-
bian matrix J of the transformation, which describes the continuum deformation
from point-wise displacements, and it can be decomposed into stretch and rotation
components:

F = J =
⎡
⎢⎣

1 + ∂ux
∂x

∂ux
∂y

∂ux
∂z

∂uy
∂x 1 + ∂uy

∂y
∂uy
∂z

∂uz
∂x

∂uz
∂y 1 + ∂uz

∂z

⎤
⎥⎦ = RU, (7.21)

where the U is the right stretch tensor and R is an orthogonal rotation tensor.
The Cauchy-Green deformation tensor is defined as

C = FT F = UT RT RU = UT U. (7.22)
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In order to obtain stretch information U from this equation, it is first necessary to
evaluate the principal directions of C, denoted here by the eigenvector N1, N2 and N3
and their corresponding eigenvalues λ2

1, λ2
2 and λ2

3. Therefore, after eigendecompo-
sition and taking the square root of the eigenvalues of C, we can get the eigenvalues
of U: λ1, λ2 and λ3 (ordered as λ1 > λ2 > λ3). The eigenvalues of U are defined as
principal stretches and calculated as

λi = √
eigenvalues of C. (7.23)

7.4.5.2 Distortion Index (DI)

The ratio of the length in the direction of maximal stretch over the length in the
direction of minimal stretch is defined as distortion index (DI)

DI = λ1

λ3
. (7.24)

The DI value is always larger or equal to 1. A big DI value indicates an anisotropic
expansion, while a DI values approximately 1 represents an isotropic expansion.

Figure 7.13 gives an example of maps showing Jacobian, principal linear strain
and distortion index from PEEP 0 cm H2O to PEEP 10 cm H2O registration for
one sheep subject. Comparison between Jacobian and principal strain together with
the distortion index (DI) map can reflect more lung tissue deformation informa-
tion. For the region near the aorta in the left lung (black rectangular region), the
Jacobian is large while the principal strain is relatively small. This illustrates that
this region experienced an isotropic expansion, shown as red in the DI map (small
DI value approximately 1) . For the region near the heart (red rectangular region),
the Jacobian is near 1 while its principal strain is large. This illustrates that region

Fig. 7.13 Lung expansion measures resulted from registration. a Jacobian, b principal linear strain,
and c anisotropic deformation index on a transverse slice of deformed image from PEEP 0 cm H2O
to PEEP 10 cm H2O for one sheep subject
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experienced an anisotropic expansion, shown as purple in the DI map (larger DI
value approximately 2). This anisotropic expansion may be caused by the blocking
of the heart. Regional deformation is significantly anisotropic at the posterior end of
lungs, but more isotropic at the anterior end.

Amelon et al. [3] has proposed another method to quantify the magnitude of
anisotropy by defining the anisotropy deformation index (ADI)

ADI =
√(

λ1 − λ2

λ2

)2

+
(

λ2 − λ3

λ3

)2

. (7.25)

It takes the three stretch factors into consideration, and thus has better discriminability
among different anisotropy deformation patterns. This ADI calculation ranges from
0 to ∞ where 0 indicates perfectly isotropic deformation.

7.4.6 Quantification of Lobar Sliding

The lung is divided into five lobes, three in the right lung and two in the left lung.
It is thought that the lobes slide with respect to each other during breathing to reduce
parenchymal distortion avoiding high stress concentrations [53]. Almost all meth-
ods of assessing lung function treat the lung as a single continuum, such as image
registration [26, 44, 75, 88] or finite element simulation [1, 2, 37, 96], and fail to
fully account for the discontinuity in the displacement field at the lobar fissures. The
impact of neglecting discontinuities at the fissures is not understood as the degree of
sliding in the lobes is relatively unaddressed in literature. There is value in quantify-
ing the amount of lobar sliding if not for the sole purpose of analyzing its influence
on current methods of assessing lung function.

Ding et al. quantified lobar sliding from lobe-by-lobe CT image registration by
interpolating the displacement field on either side of the fissure to the fissure surface
[33]. The difference in the displacement field represents the degree of sliding. Up to
20 mm of sliding was observed in the ventral portions of the fissure, increasing from
nearly no sliding near carina. However, due to complexities in the algorithm only the
left lung was considered since it contains only a single fissure. Other groups have
also noted discontinuities in the displacement field along the fissures. For example,
Cai et al. used grid-tagged MRI to obtain a displacement field within the lung [12].
They clearly demonstrate a discontinuity in the displacement field along fissure
surfaces and note that discontinuities can be up to 20 mm.

Another approach to quantify lobar sliding is based on a finite element analysis of
the displacement field using the previous defined stretch tensor U [4]. A discontinuity
in the displacement field will manifest itself as a region of elevated shear. If the
amount of shear created due to sliding is much greater than the shear created by
parenchymal distortion then shear can be considered a good indicator of relative
sliding. Since large strain theory is used, we consider the shear components of the
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Fig. 7.14 Distribution of maximum shear from breath-hold maximum exhale to maximum inhale
for one human subject. a 2D view on a coronal slice, with lung and chest wall regions included.
b 3D view within the lung region

stretch tensor U. The eigenvalues of U define the stretch in the principal directions
of U (see Eq. (7.22) and Sect. 7.4.5.1). It can be shown that the maximum shear
component (denoted γmax ) at a point is half the difference between the maximum
principal stretch and minimum principal stretch. Consider that λ1 > λ2 > λ3, the
maximum shear is defined as

γmax = λ1 − λ3

2
. (7.26)

Figure 7.14 gives an example of maximum shear distribution from breath-hold
maximum exhale to maximum inhale for one normal human subject. Figure 7.14a
shows the distribution of maximum shear on a coronal slice. To obtain the image, each
lobe and the chest wall are segmented and independently registered. The resulting
displacement fields are then added to form a single image. In doing this, the discon-
tinuity at the lobar boundaries is properly accounted for as no information outside of
the respective lobe is included in the registration. Note that large sliding magnitudes
are observed on the outer lung surface and lobar fissures. The sliding magnitude
dissipates when moving medially along the fissure between the right upper lobe and
right middle lobe. Figure 7.14b shows the 3D distribution of maximum shear within
the lung region. Higher shear stretch (higher sliding) is observed in the dorsal region,
while less sliding is observed near the carina.

7.5 Summary

Image registration can be used to determine the spatial locations of correspond-
ing voxels in a sequence of pulmonary scans. The computed correspondences yield
the displacement fields corresponding with the motion of the lung between a pair
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of images. In this chapter, we discussed a method of intensity-based registration
designed to match lung images. Since image registration is inherently an ill-posed
problem due to the fact that determining the unknown the displacements merely
from the images is an underdetermined problem, it is necessary to validate reg-
istration methods in the context of physiologically plausible results. We provided
several methods for validating lung registration performance. Accurate registrations
can represent the underlying anatomical and physiological changes of lung tissue,
and thus make post-analysis on motion estimation and lung mechanics meaningful.
We also provided a systematic study of image registration based measurements of
the regional lung mechanics and motion patterns. Local volume change, major defor-
mation magnitude and direction, anisotropy deformation pattern, and shear stretch
on lobar fissures and lung surface against chest wall were discussed. These mea-
surements enable estimation of tissue motion and assessment of lung function at a
regional level.
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