
Chapter 5
Feature-Based Registration Techniques

Cristian Lorenz, Tobias Klinder and Jens von Berg

Abstract In contrast to intensity-based image registration, where a similarity
measure is typically evaluated at each voxel location, feature-based registration works
on a sparse set of image locations. Therefore, it needs an explicit step of interpolation
to supply a dense deformation field. In this chapter, the application of feature-based
registration to pulmonary image registration as well as hybrid methods, combin-
ing feature-based with intensity-based registration, is discussed. In contrast to pure
feature based registration methods, hybrid methods are increasingly proposed in the
pulmonary context and have the potential to out-perform purely intensity based regis-
tration methods. Available approaches will be classified along the categories feature
type, correspondence definition, and interpolation type to finally achieve a dense
deformation field.

5.1 Introduction

Probably the most intuitive approach to find a suitable transformation bringing two
images into the same frame of reference, is by means of a set of corresponding
points. In principle, they could be defined manually. But since we want to define a
non-rigid registration, needing perhaps hundreds or thousands of points for a decent
deformation field, we will concentrate on automated procedures. We will discuss
how suitable feature points can be found, how point correspondence in two images
can be established, and how a transformation can finally be estimated. Still, we have
a sparse point set in mind, associated with a specific feature, be it a vessel bifurcation
or a characteristic gray value structure. This is in contrast to the so called intensity
based registration which will be discussed in Chaps. 6 and 7. Intensity based image
registration treats typically each image location equally. For every grid position
or voxel in a source image, the corresponding location in a target image is found
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by evaluating a suitable intensity based similarity measure. Most medical images,
however, contain more or less homogeneous regions with no or little gray value
contrast. This makes the above task of finding correspondence an ill-posed problem.
It is commonly solved by either applying explicit smoothness constraints to the
deformation field or by exploiting implicit smoothness introduced by the specific
parameterization of the deformation field. In effect, the behavior of an intensity-
based registration is mainly characterized by matching image regions with suitable
contrast and performing an implicit or explicit interpolation in between.
The feature-based registration, however, explicitly attempts to register only highly
structured image regions and to obtain a dense deformation field by interpolating
the resulting sparse deformation vector field. A considerable variety of methods
has been proposed, differing in feature type, and how feature correspondence is
established. In addition, hybrid methods have been proposed, combining feature-
based and intensity-based registration.
We classify feature-based registration algorithms based on the following categories:

• Feature type, which includes feature dimension (point, line, surface) and feature
characterization (e.g. bifurcation-point, vessel-centerline, ridge-line of a surface,
or other intensity patterns)

• Feature correspondence definition (e.g. anatomical labeling, 3D Shape Context,
current-based, shaped-constrained deformable models)

• Interpolation type for generating dense deformation fields.

Consequently, the rest of this chapter is organized along these categories. Feature-
based registration was very frequently used to estimate rigid or affine transformations.
Here, we focus on non-linear transformations, for which feature-based registration
was pioneered for the purpose of brain registration. In the context of a comparison
of algorithms for pulmonary image registration, performed at a satellite workshop
of the 13th International Conference on Medical Image Computing and Computer
Assisted Intervention (MICCAI 2010), actually none of the high-ranking methods
was a purely feature-based method. However, a few of them, including the winner
[19] of the online-contest, were hybrid methods, combining intensity with feature-
based registration. The feature part of those hybrid methods will also be discussed
in this chapter. Table 5.1 contains an overview of feature-based and hybrid non-rigid
registration approaches for pulmonary applications. In this chapter, we focus on
feature-based registration for lung motion estimation and not on the registration of
surrounding structures, such as vertebrae and ribs, for which we only give the work of
Matsopoulus (item 2 in Table 5.1) as an example. The authors attempt here to achieve
a registration of the lung region of interest independent of the breathing phase.
Feature-based registration approaches can provide a natural way to treat motion field
discontinuities, for example at the lung pleura, by separate registration of feature
sub-sets, e.g., pulmonary structures and ribs. This is similar to a regionally restricted
intensity-based registration, but does not require an accurate region segmentation.
The problem, however, how to interpolate a dense motion field for the full image
domain persists.
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Table 5.1 Classification of feature-based registration for pulmonary applications

Author Year Feature Correspondence Interpolation

1 C.V. Stewart
et al. [32]

2004 Points, lines, and
surfaces

Modified ICP B-spline-based

2 G.K.
Matsopoulos
et al. [28]

2005 Points: vertebrae,
ribs, shoulder

Self organizing
maps

RBF (shifted log)

3 M. Urschler and
H. Bischof
[33]

2005 Surface: lung
surface

Shape context TPS

4 A. Hilsmann
et al. [21]

2007 Points: vessel
tree
bifurcations

Shape context TPS

5 T. Klinder et al.
[24]

2008 Surfaces: lung
surf. and
inner
structures

Shape constrained
deformation

TPS

6 Y. Huang et al.
[22]

2009 Points, and lines:
bronchial
tree,
bifurcation
points

Hufman code TPS and Demons

7 V. Gorbunova
et al. [17]

2009 Lines, surfaces:
vessel tree,
lung surface

Currents-based
registration

Gaussian kernel
diffeomorphic
matching

8 K. Cao et al. [6] 2010 Lines: vessel tree Via hybrid
registration

Via hybrid registration

9 D. Loecks et al.
[25]

2010 Points: vessel
bifurcations

Local and global
correspondence
model

Via hybrid registration

10 X. Han [19] 2010 Points: Förstner
operator

SURF descriptor Via hybrid registration

5.2 Feature Types

Feature-based registration does not necessarily mean that a point-wise correspon-
dence between landmarks is established, meaning that at the landmark position all
degrees of freedom (DOF) for the deformation field are removed. By registration of
line-like features such as vessels or bronchial branches only DOF across the line are
removed. This leaves one DOF along the line. Similarly, surfaces like the pleura or
the lung fissures locally remove only one DOF and leave two DOF on the surface.
However, even in the case of line or surface features, often in a successive step, a vir-
tual point-to-point correspondence is established with suitable mapping approaches,
such as the iterative closest point (ICP) or related algorithms [3, 12]. Features may
be determined as anatomical objects, or by their gray value structure, independent
from the anatomy. Examples are, e.g., a bronchial or vascular bifurcation point, or a
point with high gray value variability in all three spatial directions.
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5.2.1 Anatomical Features

If an anatomical feature can be identified in both images as a unique anatomical
landmark, the correspondence problem becomes trivial. In addition, anatomical fea-
tures are easy to handle in interactive definition or correction schemes. For the reg-
istration of the thorax, anatomical objects surrounding the lungs, such as vertebrae
and ribs can be used if an independence from the breathing phase is [28] intended.
For the estimation of pulmonary motion, however, the surface of the lungs, fissures,
bronchial and vascular tree can be used.
Regarding the lung surface, it can be assumed that the motion of it, can to some extent
serve as a predictor of the internal lung motion. This is especially the case in the
region around the diaphragm. Furthermore, most of the intensity based registration
algorithms need as input a delineation of the lungs in order to properly handle the
motion discontinuities at the lung borders. While automated lung segmentation is
a fairly easy task (at least in the absence of gross pathologies), it is less straight
forward to establish anatomical correspondence on the lung surface. In Sects. 5.3.4,
5.3.5, and 5.3.6 approaches to solve the correspondence problem for the lung surface
will be discussed.
Further candidates are bronchi and blood vessels. The distal portions of bronchial
and vascular trees in the lungs are inaccessible for anatomical identification due to
inter-patient variability, the obscuring influences of noise and image artifacts, and
the sheer amount of structures such as small branches or bifurcations. Still, these
structures can be detected and used as input for feature-based registration.
A weak feature influence within a hybrid registration method was introduced by Cao
et al. [6], by adding a ‘vesselness’-based [13] similarity measure. With weak in this
context we mean that no explicit point-to-point correspondence is established. The
approach increases the probability that vessels are registered to vessels, without the
need to establish explicit correspondence between the vessel trees to be matched.
The additional similarity measure follows Frangi’s proposal of using the Eigenvalues
of the Hessian matrix to extract curvi-linear image structures in 2D and 3D images.
The approach is on the borderline between feature based and intensity based regis-
tration. It can be argued that just an additional similarity measure is introduced in
an intensity based registration algorithm and that no explicit correspondences are
established. On the other hand, image regions are treated differently, depending on
the appearance of vessel-like features. Loeckx et al., again in the context of a hybrid
registration approach, determined a set of corresponding vessel bifurcation points
in fixed and moving image and used them in an additional similarity measure [25].
In a pre-processing step, a set of bifurcations points is generated in both images
using a threshold-based segmentation and sub-sequent skeletonization of the pul-
monary vessel tree. In addition, the correspondence between the bifurcation points
in both images is established (see Sect. 5.3). During the iterations of the hybrid reg-
istration, the Euclidean distance between bifurcation points in the fixed image and
transformed corresponding points in the moving image is used in addition to a mutual
information-based similarity measure.
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5.2.2 Gray Value Structure Features

In contrast to anatomically motivated features, it is also possible to search for gray
value structures that are on the one hand characteristic enough to allow a good
localization and that on the other hand provide a better lung coverage in the distal
regions of bronchial and vascular tree. A standard approach for this idea is the analysis
of the gradient structure of a small image region, as given by an averaged structure
tensor. The structure tensor is the tensor product of the image gradient ∇ I with itself.

The Eigenvalues of the averaged structure tensor C = ∇ I (∇ I )T are characteristic for
the type of structure in the covered region as depicted in Fig. 5.1. Three Eigenvalues
that are large in magnitude are required for a characteristic landmark, because this
indicates intensity variation in all directions. Consequently, a variety of formulas
based on the product of the Eigenvalues of C as given by the determinant, by the
sum of the Eigenvalues as given by the trace of C have been proposed as feature
point detectors (see [20] for an overview and comparison). Han [19] determined
local maxima of the structure tensor-based Förstner operator det (C)/trace(Cad j )

[20] as feature points and established point correspondence using SURF descriptors
[1] (see Sect. 5.3). In a hybrid registration setup, the quadratic distance between the
resulting feature-based transformation field and the current estimated transformation
field was used in addition to a mutual information and a curvature penalizing term
during the hybrid registration iterations.

Fig. 5.1 Illustration of the structure tensor for three artificial 2D cases with (i) no predominant
(left), (ii) one predominant (middle), and (iii) two predominant (right) gradient directions. The
Eigenvectors and values λi of the structure tensor can be interpreted as direction and length of the
principal axes of an ellipsoid fitted to the distribution. Figure from Goldlücke [16]
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5.3 Feature Correspondence

In the case of unique anatomical landmarks, the feature correspondence is trivially
given. If this is not the case, correspondence has to be either explicitly established in
an additional processing step or implicitly, e.g., by combining the feature-based pro-
cedure with an intensity-based registration into a hybrid registration approach. Often,
even for named line or surface features, where correspondence of the whole anatom-
ical structure is given, a point-wise correspondence between point sets distributed
on the pair of lines or surfaces is established. The main approaches for establishing
correspondence are described in the following.

5.3.1 Iterative Closest Point and Modifications

The iterative closest point (ICP) was initially presented by Besl in [3]. Its main idea is
to establish a correspondence between two point clouds P and X by performing the
following four steps (i) compute for each pi ∈ P the closest point from X , (ii) com-
pute a transformation to match P to X , (iii) apply the transformation to all points in P ,
(iv) repeat (i)–(iii) until convergence. Initially, it was assumed that the transformation
between the two point clouds could be described by a rigid transformation so that
step (iii) could be found in a closed form solution. It has to be noted that X does not
necessarily have to be a discrete point cloud but could also be a line or surface. Var-
ious extensions have been presented to allow non-rigid transformations between the
two point clouds (see e.g., [12]). Although the ICP states a very standard algorithm
for finding a correspondence between two point sets as it is fast and accurate in many
cases, it is a method minimizing a non-convex cost function, and thus it lacks in terms
of robustness w.r.t. the initial transformation because of local minima. Furthermore,
the computation time is proportional to the number of points, which can be pro-
hibitive when registering two large sets of points. For that reason, many approaches
exist addressing robustness, e.g., using a random sampling of points at each iteration,
bidirectional distance measurements, remove outliers, or introducing probabilities,
and speed, e.g., using k-d trees and/or closest point caching. However, even with
latest modifications, robustness and speed are still critical when applying the ICP.

5.3.2 Shape-Based Descriptors

The ‘Robust Tree Registration’ approach described by Loeckx et al. [25] uses the dis-
tance between corresponding vessel tree bifurcation points as an additional similarity
measure in a hybrid registration approach. Correspondence is established by means
of internal distances between any pair of points. Two distance measures, namely
Euclidean and Geodesic distance (shortest path along the tree skeleton) are used
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separately. Using a Gaussian distribution model, a distance-based matching proba-
bility P(C(i, j).(k,l)) is calculated for the occurrence C(i, j).(k,l), that two point-pairs
g1,i j and g2,kl found in fixed and moving image respectively, do match.

P(C(i, j).(k,l)) = 1√
2πσ2

exp

(
−

∥∥g1,i j , g2,kl
∥∥2

σ2

)
(5.1)

By marginalization, matching probabilities for any two points in fixed and moving
image can be found:

P(Ci,k) =
∑

j

∑
l

P(C(i, j).(k,l)) = mG,ik (5.2)

The authors calculate Geodesic mG,ik and Euclidean m E,ik probabilities according
to (5.2) and additionally a gray value-based correspondence probabilitiy (see next
sub-Sect.). The product of the three is used to finally establish hard correspondences
between feature points in fixed and moving image.

5.3.3 Gray Value Descriptors

The ‘Robust Tree Registration’ approach by Loeckx et al. [25], mentioned in the
previous section, uses the gray value-based ‘n-dimensional Scale-Invariant Fea-
ture Transform’ (n-SIFT) descriptor [8] in addition to a shape-based descriptor. The
n-SIFT descriptor is an extension of the 2-dimensional SIFT descriptor introduced
by Lowe [27]. The SIFT approach addresses feature localization as well as feature
description. For feature localization, a resolution (scale) pyramid of Gaussian blurred
images is created. ‘Difference-of-Gaussian’ (DoG) images are created by subtracting
images of neighboring scales. Feature points are selected as local maxima (in space
and scale) in the DoG images. The local orientation is determined based on a gradi-
ent orientation histogram around the feature point (see Fig. 5.2 for illustration). The
described procedure delivers localization, orientation and scale of a feature point.
The final feature description adds information about the local neighborhood of the
feature point. First, the image gradient magnitudes and orientations are sampled
around the feature point. To achieve orientation invariance, the gradient orientations
are rotated relative to the feature point orientation. In order to avoid discontinuities of
the descriptor for even small position changes and to give less emphasis to gradients
that are far from the feature point, a Gaussian weighting function is used to assign
a weight to the magnitude of each sample point. The weighted gradient magnitudes
are collected block-wise in orientation histograms. The final descriptor is a vector
containing the values of all the orientation histogram entries. In [25], the orientation
histogram-based feature descriptor is taken instead of the DoG-based point selection
to determine the correspondence between bifurcations in fixed and moving image.
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Fig. 5.2 Depiction of the gradient histogram based keypoint descriptor of the SIFT approach [27].
Image gradients (left) are weighted by a Gaussian window (blue circle) and are accumulated into
orientation histograms summarizing the content of a subregion (right). The arrow length depicts
the sum of the gradient magnitudes of the respective directional bin. The figure shows the case of
a 2 × 2 descriptor array computed from an 8 × 8 set of samples. Figure from Lowe [27]

A cubic volume around each bifurcation is partitioned into 64 blocks and the gra-
dient information is captured in a 60 bin histogram resulting in a 3840 dimensional
feature vector. The feature descriptors are used in a probabilistic framework with the
probability of correspondence between two bifurcations i and k modeled as Gaussian
function:

P(i, k) ∼ e−‖ fi − fk‖2
. (5.3)

With fi and fk being the feature descriptor vector for bifurcation i and k, and ‖‖
being the magnitude of the difference vector.

The so-called SURF features, for ‘Speed-Up Robust Features’ [1] follow a similar
line of thinking. In order to speed up the computation, SURF features are based on
‘Integral Images’ instead of a resolution pyramid of smoothed images. ‘Integral
Images’ give for each pixel position the sum (integral) of image intensities of the
image block spanned between image origin and pixel position. They allow the fast
computation of approximated blurred derivatives using box-filters. Instead of local
maxima of the DoG as in the case of SIFT, an approximated determinant of the
Hessian matrix is used as detector of blob-like structures to localize feature points.
The SURF descriptor captures information of the local neighborhood using first order
Haar wavelets (see, e.g., [9]) responses, which again can be computed efficiently
using the Integral Image. As in the SIFT case, image information is captured block
wise around the feature point. Denoting the wavelet response in x , y, and z-direction
with dx , dy , and dz respectively, the feature descriptor for the ith block is given by
the sum of responses within the block:

vi =
(∑

dx ,
∑

dy,
∑

dz,
∑

|dx |,
∑

|dy |,
∑

|dz |
)

(5.4)

The feature descriptors for all blocks are concatenated to produce the total feature
descriptor. The SURF descriptor was used by Han [19], however for feature points
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selected using the Förstner operator (see Sect. 5.2.2). Han used 64 blocks covering a
cubic region, resulting in a 384 dimensional feature vector. Correspondences between
feature points in fixed and moving image were found using nearest neighbors in the
feature space. The inventors of the SURF descriptor claim that it combines high
quality in terms of repeatability, distinctiveness, and robustness, with high computa-
tional performance. For application to pulmonary CT images this is supported by the
fact that Han had won the online ‘EMPIRE’ registration contest within the MICCAI
2010 Workshop ‘Medical Image Analysis For The Clinic—A Grand Challenge’ [34]
while having presented one of the fastest solutions with approx. 10 min computa-
tion time per case. It is, however, difficult to determine the portion of success that
related to using the SURF, since Han used a hybrid approach and further information
concerning the contribution of the individual parts of the approach is not available.

5.3.4 Shape Context

The 2D shape context as a regional descriptor of shape was introduced by Belongie
et al. [2]. Assume a 2D shape is described by the set of its contour points. Then the
idea of the Shape Context is to characterize a location on the contour by assessing in
which view directions and in which distance other points on the contour appear. In
order to do so, a log-polar histogram is positioned at a reference point on the objects
contour and the number of remaining contour points is counted per histogram bin
which gives a feature vector representing the shape at the reference point. The 3D
shape context [14] is a straightforward extension of the 2D shape context being a 3D
spherical histogram Hi in which the displacement vectors from the reference point
pi to the other points are counted. With K denoting the number of bins in the shape
context histogram, Urschler and Bischof [33] use a cost function of the form

C
(

pi , p j
) = 1

2

K∑
k=1

[
hi (k) − h j (k)

]2

hi (k) + h j (k)
(5.5)

to assess whether a point pi on one shape instance of the lung surface corresponds to
a point p j on another shape instance. The same idea can be applied to a point set rep-
resenting the centerlines of a tree structure. This allows to establish correspondence
between branching points of vessel trees [21] or bronchial trees [5].

5.3.5 Shape Constrained Deformation

The key idea of shape constrained deformation to establish feature correspondence is
to adapt a triangulated surface mesh from one image to the other. During the iterative
adaptation, an external force attracts the mesh vertices to image features, while
an internal force regularizes the attraction by preserving similarity. The topology
remains unchanged. The sparse motion field is then derived from the displacement
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of corresponding vertices. In contrast to other techniques for feature correspondence,
the shape constrained deformation as well as the Shape Context, take into account
the topology of the underlying structure and does not treat the feature points as an
unconnected set.

5.3.5.1 Lung Surface Generation

The shape constrained deformation relies on the definition of a triangulated surface
mesh in one image. In order to not only determine the deformation on the outer
surface of the organ, internal structures should also be covered by the surface. In
the context of motion field estimation of the lungs, patient-speci f ic triangulated
surfaces of the lungs are automatically generated in one image which contain most
parts of the vessel tree and tumor surfaces. After applying a lung segmentation,
all other structures besides the lungs are removed and a triangulation is applied
after thresholding the segmented image. Triangulation is thereby performed using
marching cubes [26]. Finally, the mesh is post-processed by applying several mesh
operations to obtain a smooth surface with a certain amount of triangles, as shown
in Fig. 5.3.

5.3.5.2 Mesh Adaptation

Shape-constrained deformation was proposed in [36] and applied for motion estima-
tion in [24, 35]. Using a physical metaphor, the vertex configuration v that minimizes
the following functional of summed energies is computed in each iteration

E(v) = Eext(v) + αEint(v). (5.6)

Fig. 5.3 Surface mesh capturing the transition from lung parenchyma to the lungs wall and to lung
internal structures, such as vessels and bronchi. The mesh is shown in a coronal cut-plane (left) and
as surface rendering (right). Shape constrained deformation allows to track the mesh through the
breathing cycle, keeping mesh vertices at anatomically corresponding points
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The parameter α balances the influence of both energy terms.
The external energy drives the mesh towards detected candidates by performing a

feature search in a local neighborhood around the surface. Feature search is realized
in a discrete manner by searching via a predefined sample pattern. For each barycenter
of a triangle x̂i , feature search is carried out in the direction of its normal ni

c j = jδni with j = −l, . . . , l, (5.7)

which results in (2l + 1) discrete sampling points c j , with a distance of δ. At

every sampling point x j
i = x̂i + c j , a feature function is evaluated and finally the

target point is chosen best combining the feature value F(.) and the distance jδ to
the barycenter of the triangle

xtarget
i = min

x j
i | j=−l,...,l

{
Dj2δ2 − F(x j

i )
}

(5.8)

with the weighting factor D.
With the detected target points xtarget

i , the external energy is given in a quadratic
form as

Eext(v) =
∑

i

wi

(∇ I (xtarget
i )∇ I (xtarget

i )T∥∥∥∇ I (xtarget
i )

∥∥∥2 (xtarget
i − Mi v)

)2

, (5.9)

where Mi expresses the vertices v in terms of triangle centers and wi is a weighting
factor. The projection of (xtarget

i −Mi v) onto the image gradient at the target position

∇ I (xtarget
i ) makes the energy invariant to movements of the triangle within the object

tangent plane, thus preventing the triangle from becoming stuck at the target position.
The weights wi in Eq. (5.9) can be chosen according to the feature value of the
target points to give the most promising points the largest influence during mesh
reconfiguration.

Attraction of the mesh vertices to image features is accomplished by evaluating
a certain feature function given as:

F(x j
i ) = s · nT

i ∇ I (x j
i )

e

∥∥∥∇ I (x j
i )

∥∥∥
gmax

1 +
∥∥∥∇ I (x j

i )

∥∥∥
gmax

e

∥∥∥∇ I (x j
i )

∥∥∥
gmax

, (5.10)

where the parameter s ∈ {1,−1} accounts for the gradient direction, and ni is
the normal of the triangle for which the feature search is carried out. The gradient
response is bounded by some threshold gmax.

In order to distinguish between edges with similar feature responses further image
quantities, as e.g., gray value statistics along the edge, have to be considered. For
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Table 5.2 Registration accuracy for 5 publicly available image pairs at end of exhale and inhale
breathing phase [7]

Case 1 Case 2 Case 3 Case 4 Case 5

Without μ ± σ 3.89 ±2.78 4.34 ±3.90 6.94 ±4.05 9.83 ±4.86 7.47 ±5.51
registration max 10.90 17.69 16.55 20.25 24.77
SCD μ ± σ 1.01 ± 0.55 1.10 ±0.53 1.33 ±0.79 1.62 ±1.16 1.70 ± 1.30

max 3.42 3.47 5.19 12.39 16.54
Currents μ ± σ 1.44 ± 0.72 1.72 ±1.38 2.97 ±2.96 3.30 ±2.61 3.52 ± 2.91
FEIR μ ± σ 1.02 ±0.50 1.04 ±0.50 1.44 ±0.94 1.60 ±1.32 1.67 ± 1.53

max 2.77 3.40 7.31 13.26 15.92

The target registration error (TRE) for 300 manually placed landmarks, also provided by the study
is presented. The Table lists mean, max, and std. dev. values of the TRE in mm resulting from
two feature-based registration techniques: Shape constrained deformation (SCD, see Sect. 5.3.5),
and Currents (see Sect. 5.3.6), and one intensity based registration technique: Fast elastic image
registration (FEIR [23]). SCD and FEIR result in very similar TREs. The Currents based approach
results in slightly higher values.

this reason, rejection intervals can be defined so that the feature will not be evaluated
if certain image quantities, qk , violate some learned criteria

F̃(x j
i ) =

{
F(x j

i ) : qk ∈ [qk
min, qk

max] for all qk in S
0 : qk /∈ [qk

min, qk
max] for some qk in S

, (5.11)

where S is the set of considered quantities.
Penalizing a deviation of the model’s shape regularizes the image forces acting

on it, and decreases the attraction to false image features. The internal energy

Eint(v) =
∑
j∈V

∑
k∈N ( j)

((v j − vk) − (Tint[m j ] − Tint[mk]))2 (5.12)

preserves the shape similarity of all adapted vertices v j to the model vertices m j ,
with N ( j) being the set of neighbors of the vertex with index j . Deviations from the
initial model are penalized by calculating the vector difference between neighboring
vertices of the adapted mesh and the corresponding vertices of the shape model
undergoing a geometric transformation Tint[.]. Depending on the desired flexibility
of the underlying shape prior, similarity transformations or affine transformations are
typically chosen. In each case, the geometric transformation is determined prior to the
calculation of Eq. (5.12) in a closed form solution based on the point correspondences
between adapted and model vertices.
Table 5.2 shows the target registration error (TRE) for 5 publicly available
inhale/exhale image pairs [7] in comparison to the Currents based approach, dis-
cussed in the next chapter, and to an intensity based image registration approach [23].
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5.3.6 Currents-Based Registration

Another approach, using so called currents, to circumvent explicit correspondences
was used by Gorbunova et al. in [17]. The basic idea is to represent shapes as sets of
vectors: Tangential vectors in the case of curvi-linear shapes and normal vectors in
the case of surfaces (see [11] and references therein). The current associated with a
surface is defined as the flux of a probing vector field ω through the surface S:

S(ω) =
∫

S
ω(x)t (u × v)(x)dσ(x) (5.13)

where (u, v) is a local basis of its tangent plane at x, (u × v)(x) being the surface
normal at x and dσ(x) the area element of the surface. Similarly, the current associated
with a curvi-linear structure L is defined as the path-integral of a probing vector field
ω along the curve:

L(ω) =
∫

L
ω(x)tτ (x)dx (5.14)

with τ (x) being the tangent of the curve at x. Figure 5.4 depicts the currents rep-
resenting a pulmonary vessel tree. We adhere to the notation of the authors of [11]
by using the same letters L and S for the geometrical structure and their associated
currents. So currents are a mapping of the space of vector fields ω to the space of
real numbers R. This provides the basis to define a similarity measure in the context
of the registration of curves, surfaces, or sets of them. Simplified, to register the
surfaces S1 and S2, the idea is to evaluate the flux integral Eq. (5.13) through S1
using a probing vector field constructed from S2 and vice versa. To be able to do this
efficiently, the vector fields ω are represented as an integral (or sum in the discrete
case) of reproducing Gaussian kernels K W (x, y) = exp(− ‖ x − y ‖2 λ2

w). x, y
are the positions and λW the width of the kernel. Given a vector β at position y, the

Fig. 5.4 Currents corresponding to pulmonary vessel centerlines. Figure from Gorbunova et al.
[17]
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corresponding vector field is given by ω(x) = K W (x, y)β, the vector field of a set of
local vectors is the superposition of the individual contributions. Representing curves
and surfaces as piecewise linear structures (e.g. as polygons, or triangular meshes,
respectively), each element (a straight line element, or a triangle, respectively) gives
rise to a reproducing kernel positioned at the center of that element. In the formalism
above, the distance between two curves or two surfaces can be calculated without the
need for establishing point-wise correspondence between the two structures. This is
achieved by a distance metric using a kernel-based inner product of currents:

〈L , L
′ 〉 =

n∑
i=1

m∑
j=1

(τi )
t K W (ci , c

′
j )τ

′
j , (5.15)

where L and L
′

are the two curves to be matched, with a number of n and m line-
elements, and with tangential vectors τi and τ

′
j , and centers ci and c

′
j respectively.

So the term (τi )
t K W (ci , c

′
j )τ

′
j measures the match of tangential vectors of the line

elements. The distance between the two curves L and L
′

is then

d2(L , L
′
) =‖ L

′ − L ‖2=‖ L ‖2 + ‖ L
′ ‖2 −2〈L , L

′ 〉, (5.16)

with the norm of a current L , ‖ L ‖ being defined as the supremum path integral
of any regular vector field. The registration of the curves L and L

′
is performed

in the framework of large deformation diffeomorphic matching [15] with a cost
function combining the distance for line, and surface features, and a regularization
term advancing smoothness of the resulting transformation field. Currents-based
registration of lung images has been recently introduced. Results reported so far
(see 5.2) do not completely reach the accuracy of intensity-based registration, but
possibly the advantages of the approach have not been completely exploited yet.
Recently, a hybrid registration approach using currents has been presented [18].

5.4 Interpolation

Finally, to be able to obtain deformation vectors between feature points, an interpola-
tion of the sparsely given deformation field is required. In the following sub-Sections
a selection of proposed methods will be discussed.

5.4.1 B-Splines

B-spline-based approaches are very efficient when a sparse set of deformation vec-
tors defined on a Cartesian grid shall be interpolated, see e.g. Rueckert et al. [31].
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McClelland used B-spline interpolation to create a 4D motion model in [29]. Since in
our case, feature points are virtually always irregularly distributed and since B-spline-
based interpolation is described in some detail in Chap. 6.2.1, we omit a description
here.

5.4.2 Radial Basis Functions

Radial basis functions perform an interpolation of the sparse and possibly irregularly
defined deformation by expressing the deformation as a linear combination of the
sparse deformation weighted by some kernel. One common way to perform the
interpolation is by using thin-plate splines (TPS) [4]. The TPS approach is physically
motivated by a thin metal plate which will take the overall shape in which it is least
bent given the deformation at some locations. The approach can be generalized
to arbitrary dimensions d and degrees of smoothness in terms of the order m of
derivatives of the associated functional to be minimized [30]. For the physically
motivated case of minimal bending energy, we have m = 2. The radial basis functions
U (x, p) associated to the respective choice of d and m are

U (x, p) ∼
{ |x − p|2m−d ln|x − p|, if (2m − d) is an even positive integer

|x − p|2m−d , otherwise
(5.17)

In contrast to TPS, elastic-body splines (EBS) [10] use a more sophisticated physical
model derived from the Navier partial differential equations for a homogeneous
isotropic elastic body subjected to loads (forces)

f(x) = μ∇2u(x) + (λ + μ)∇(∇ · u(x)) (5.18)

where u(x) is the displacement of a point, ∇2 denote the Laplacian and ∇ the gra-
dient, ∇ · u(x) is the divergence and f(x) is the force field. Typically, for the three-
dimensional case, the radial kernel for the EBS that defines the force field is chosen
as r(x) = (x + y + z)

1
2 . The Lamé coefficients λ and μ allow to describe the physical

properties of the elastic material. Both TPS and EBS lead to an equation of the type

d(x) =
∑

i

U(x, pi )ci + Ax + b (5.19)

expressing the deformation vector d with an affine part Ax + b and a weighted sum
of radial basis functions U (x, pi ). Weights ci are determined using the condition
that Eq. (5.19) is fulfilled for all point-pairs pi and qi in fixed and moving image,
respectively. This condition leads with di = qi −pi to a linear equation system which
can be solved with standard approaches, such as the Singular Value Decomposition.
In case of EBS, equations are coupled with respect to space coordinates. The TPS
equations, associated with displacements along one coordinate axis, are independent.

http://dx.doi.org/10.1007/978-3-642-36441-9_6
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Therefore, the computational effort for EBS is higher limiting the use of EBS. For
many applications, TPS provide a sufficient model and can be computed with rea-
sonable computational effort and they are thus the method of choice. However, as
the radial basis function-based interpolation is defined as a linear combination of the
sparse deformation weighted by some kernel, the deformation at one location x is
influenced by all given displacement vectors of the sparse deformation field, i.e., in
other words the impact of some displacement vectors of the sparse deformation field
is not only local but global. Thus, as all displacement vectors of the sparse defor-
mation field have to be considered, the radial based interpolation can result in high
computational costs once the number of given displacement vectors becomes large.

5.4.3 Nearest Neighbour Interpolation

The idea of a K nearest neighbour (KNN) interpolation is to find the dense defor-
mation by taking the K nearest locations with sparse motion vectors uk for a given
position x and then calculate the deformation as

ux = 1∑K
k=1 wk

K∑
k=1

wkuk (5.20)

where ux is the deformation vector at position x and wk is a weighting factor. If wk

is equal to one, then the mean is calculated. However, the wk can also be defined to
be distance dependant, so that uk that belong to locations that lie further away from
x have less influence. In contrast to other interpolation schemes, the KNN interpo-
lation does not assume a physical model. Especially, when a large number of sparse
locations is given, computation of, e.g., radial basis function-based interpolation,
can be computationally very expensive. However, the problem of KNN is that the
interpolation is not smooth which can lead to a locally implausible deformation field
and, e.g., Gaussian-smoothing is needed to overcome this limitation. Comparing lung
motion fields interpolated motion fields using TPS and KNN interpolation, showed
that TPS provided a higher landmark accuracy [35].
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