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Abstract. Care pathways are excellent tools for the standardization
of care delivery and the improvement of clinical efficiency. The high
dynamism and unpredictability of the clinical environment require path-
ways to be adaptable to the deviations that may arise during their ex-
ecution. In this work we present a methodology for the identification,
monitoring, detection and managing of these deviations. Such deviations
include evolving patient conditions, arbitrary medical modifications and
unpredicted clinical settings. The care pathways are dynamically gen-
erated based on a knowledge-driven planning process that personalizes
treatments according to up-to-date patient conditions and guarantees ad-
herence to clinical guidelines recommendations. The implementation of
the proposed methodology in a domain-independent continuous planning
architecture is presented.

Keywords: Personalization and adaptation of healthcare processes,
Managing flexibility and exceptions in healthcare processes, Lifecycle
management for healthcare processes, Process modeling in healthcare,
Compliance of healthcare processes.

1 Motivation

Clinical guidelines and care pathways are clinical tools used in Clinical Decision
Making in order to unify criteria according to the best scientific evidence[9,19].
Care Pathways can be seen as a way for adapting clinical guidelines to local con-
ditions and their subsequent application to clinical practice[4]. These pathways
are patient-centric processes that manage the patient care through the central-
ization of multidisciplinary tasks[13] which (1) are temporally annotated, (2)
may require the involvement of clinical resources, and (3) are intended to cover
the whole patient care journey.
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Thus, care pathways are an excellent tool for the patients to know how his/her
care treatment is expected to evolve, for the clinical staff to have their tasks
properly scheduled and for institutions to efficiently use the clinical resources.
However, the clinical environment is highly dynamic and unpredictable so a
key problem is how to adapt care pathways to the deviations that may occur
during their execution, guaranteeing that the adapted pathways also maintain
adherence to guideline recommendations.

In order to cover these needs we present an approach for the execution, moni-
toring and adaptation of care pathways to the evolving patient and clinical condi-
tions, maintaining the adherence to guideline recommendations. In our proposal
care pathways are dynamically generated, following a knowledge-driven process
based on temporal Hierarchical Task Network (HTN) planning[5]. This process
takes as inputs both an HTN-based formal representation of a clinical guideline
and data extracted from a Virtual Medical Record (VMR) which includes pa-
tient and resource information. This HTN formalism has already been proved
to be an enabling technology for representing clinical guidelines and generating
patient-tailored care pathways from them[6,7]. It takes into account the specific
patient features and observation values for generating a patient-centric and in-
dividualized care pathway, which is one of the challenges to be confronted in
the Healthcare area since each patient constitutes an unique case[2]. These care
pathways take the form of temporally and semantically annotated plans.

In this work we present how these plans can be executed following a contin-
uous planning model which (1) automatically identifies the potential sources of
deviation from the planned pathway, (2) monitors them and (3) adapts the path-
way to the new conditions in case that any deviation from the expected course is
detected. The pathway adaptation is done via a replanning process based on the
same temporal HTN planning process, which re-generates the pathway according
to both the knowledge encoded in the formal guideline and the current health
conditions of the patient which are continuously updated in the VMR during
pathway execution. This way, adherence of adapted pathways to guideline rec-
ommendations is guaranteed, as well as the observation of up-to-date clinical
information.

The proposed execution model has been implemented in a planning archi-
tecture called PELEA[1] which follows a continuous planning approach. The
implementation contemplates the use of a VMR which acts as an intermediate
gateway that integrates patient data, clinical conditions and available resources
coming from external Electronic Health Records (EHR) or Hospital Informa-
tion System (HIS). Full access to this VMR is ensured at any stage of the care
pathway execution management.

The implementation in PELEA is aimed at carrying out an experimentation
focused on testing our methodology and demonstrating a way of implementing
guidelines in clinical practice through the use of patient-tailored care pathways
extracted from them. The following aspects concerning the management of clin-
ical pathways can be considered as contributions: (1) the representation of care
pathways as temporal plans allows for their dynamic generation and adaptive
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execution; and (2) plan monitoring and execution techniques are valid to adapt
care pathways to the deviations that may arise during execution. This work
shows also how adherence of the adapted pathways to evidence-based guidelines
is guaranteed by the planning process, which takes as input a formal representa-
tion of a clinical guideline. Moreover, all the care pathways within this approach
are individualized for specific patients and tailored to available resources, thanks
to the use of a VMR which gathers information about patient data and clinical
conditions, as well as the clinical settings where care pathways are executed.

In the rest of the paper we first explain the knowledge representation model
and how it is used to dynamically generate and adaptively execute individualized
care pathways adhering to guidelines recommendations. Then, we explain our
methods for the adaptive execution of the pathways. Afterwards, we explain the
PELEA architecture and how these methods have been implemented there. The
experiment follows together with a discussion about the results. The Related
Work and the Conclusions are exposed at the end.

2 Knowledge Representation for the Dynamic Generation
and Adaptive Execution of Care Pathways

The knowledge representation includes both a context model devoted to model
and represent clinical data and an expert knowledge model intended to encode
the clinical decisions and procedures of a clinical guideline.

The context model follows the standard recommendations of UML (Unified
Modeling Language [3]) and includes those objects, properties and relations in-
volved in a clinical guideline like patient, drugs, staff, mechanical resources, etc.

The expert knowledge model follows an extended Hierarchical Task Networks
(HTN) representation which incorporates a graphical notation[18] inspired by
Business Process Management (BPM) standards[22]. Its basic concepts are:
Compound Task (or Goal), Decomposition Method and Primitive Task. Com-
pound tasks represent high-level processes or goals to be accomplished in possi-
bly alternative ways depending on the context. Decomposition methods are used
to specify the alternative ways in which either a high-level process can be decom-
posed or a high-level goal can be achieved. Each method has related applicability
conditions and subtasks. Applicability conditions are logical expressions referring
to properties and relations of the context model. If applicability conditions for a
method m of a task t hold in a given context, then subtasks of m specify the way
to decompose (or accomplish) the compound task (or goal) represented by t in
that given context. Tasks are decomposed via their decomposition methods until
all the activities to be performed are primitive tasks. Primitive tasks represent
concrete actions which involve a change in the context data when executed. The
relations between tasks, decomposition methods and primitive tasks allow the
representation of the clinical decisions and procedures of a clinical guideline in
terms of a compositional hierarchy of tasks.

The dynamic generation of patient-tailored care pathways is based on a
knowledge-driven, temporal hierarchical planning process described in [6,7].



Knowledge-Driven Adaptive Execution of Care Pathways 45

This planning process receives as inputs the expert knowledge model which en-
codes guideline recommendations, a starting date for the pathway and context
data accomplishing the UML specification of the context model. As explained
in [6], the temporal HTN planning process allows the representation and rea-
soning about temporal constraints derived from hierarchical decompositions is
able to express different kinds of periodic patterns to be followed by temporal
constraints. The so generated care pathways are sets of instantiated primitive
tasks that adhere to guideline recommendations. These tasks are annotated with
information about (1) their start and end time points, (2) the changes that they
produce in the context data, and (3) the conditions that must hold during their
execution.

2.1 Use of the Knowledge Representation for the Adaptive
Execution of Pathways

The knowledge representation can be used to represent the management pro-
cesses for several kind of deviations that may arise during pathway execution.
Following the definitions of [20], all the deviations that we are able to detect and
manage are predictable, in the sense that they can be foreseen at design time.

The first two potential sources of deviation are decision points (DP) and un-
planned patient conditions (UPC). Both of them can be found in clinical guide-
lines recommendations. DPs represent choices that must be done among different
treatment alternatives depending on patient conditions at a given instant. UPC
refer to patient conditions which require additional care tasks and may arise (or
not) during pathway execution. The difference among them is that DPs are pre-
cisely located in time, while it is not exactly known when UPCs will arise, if ever.
The management of both kinds of deviations is encoded as different decomposi-
tion methods in the expert knowledge model, but the monitoring and detection
of deviations is done in an unified way as will be seen in next section. Figure
1(a) models a compound task for DP management. Applicability conditions of
each method relate to patient conditions and subtasks of each method model
the different treatment alternatives. Figure 1(b) models a compound task for
UPC management. Applicability conditions of its two decomposition methods
distinguish whether UPC are present or not. Just in case, the additional care
tasks are applied. When any of these compound tasks is included in the expert
knowledge model, the planning process must know which method to apply, which
ultimately depends on patient conditions. For that reason, the expected patient
evolution must be encoded as context data, assuming (1) more foreseeable pa-
tient conditions at DPs and (2) no-appearance of UPCs. These expected patient
evolution is encoded as patient attributes in the context model and as changes
in the context data made by specific primitive tasks. This way the planning
process can take this expected patient evolution into account and the generated
care pathways can be temporally annotated with this information. During path-
way execution, we will need to monitor at proper time if real patient evolution
matches the expected one.
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(a) (b)

Fig. 1. Modelling of Decision Points and UPC management

Another deviation type is the practitioner request for delaying the pending
treatment. This is an example of arbitrary medical modification. The planning
process takes as input the starting date for the pathway, which can be used
to manage this kind of deviation. During pathway execution, we will need to
continuously monitor this potential practitioner request.

Last source of deviation is resource availability. Committed resources may
be unavailable during pathway execution due to several reasons. The resource
availability can be encoded as object attributes in the UML-based context model
which can be dynamically changed by those primitive tasks where they are in-
volved. During pathway execution we will need to monitor availability for each
committed resource at each time they are scheduled.

Summing up, the context model is used as a means for representing the
expected patient evolution and the resource availability. Compound tasks and
decomposition methods allow for the modeling of management processes for de-
cision points and unplanned patient conditions. Primitive tasks are the way to
model the changes to be done in the context data, which include patient condi-
tions and resource availability. Furthermore, care pathways are annotated with
the changes to be made to the context data together with the time at which
these changes must be made. Finally, the delay of the pending treatment can be
managed with the starting date of the pathway.

3 Adaptive Execution of Care Pathways Based on
Continuous Planning Techniques

In this section, we present our methodology for the adaptive execution of care
pathways based on continuous planning techniques. All the deviations that can
be managed are predictable as defined in [20], in the sense that they can be
foreseen at design time. Thus, all the management processes for these deviations
are encoded in the expert knowledge model as explained in the previous sec-
tion. However, the adaptive process requires several stages which make use of
this knowledge. Figure 2 and algorithm 1 depict the main elements and overall
process.

The main elements in our approach are a formal representation of the Clini-
cal Guideline, a VMR, the Care Pathway (which takes the form of a temporally
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Fig. 2. Adaptive Execution of Care Pathways Based on Continuous Planning

annotated plan) and its potential sources of deviation during execution. The Clin-
ical Guideline representation is encoded according to the expert knowledgemodel.
The VMR implements the context data according to the UML-based context
model and acts as an intermediate gateway that integrates patient data, clinical
conditions and available resources coming from external EHR and/or HIS, as well
as the expected patient evolution.Moreover, information about alreadyperformed
care tasks is also embedded in the VMR, to avoid their repetition when adapting
a pathway, as we will see next. The extraction of a patient-tailored Care Path-
way from these elements following an HTN planning process has already been ex-
plained in previous works[6,7]. In this sense, our work extends that approach with
adaptive execution capabilities. In order to endow our systemwith these execution
capabilities we need also to know the potential sources of deviation from pathway.
Each of these potential sources of deviation consists of (i) a condition that need
to be monitored in the VMR data, (ii) the time when this condition is expected to
hold. The system considers that a deviation arises every time that one (or more)
of these conditions do not hold at the expected time.

The main processes of our methodology are: (1) a Dynamic Generation pro-
cess, which generates a plan representing the care pathway from the clinical
guideline formal representation and the VMR; (2) the Variance Management
process, the goal of which is to extract the potential sources of deviation to
be monitored during pathway execution; (3) a Monitoring process in charge of
both sending actions to execute and checking if any deviation arises; and (4) the
Execution of the care tasks which continuously update the VMR accordingly to
primitive tasks specifications. Full access to the VMR is ensured at any stage of
the care pathway execution management.

The full life-cycle of the methodology is as follows. First, (lines 1-3 of algorithm
1) Dynamic Generation generates a care pathway according to guideline recom-
mendations taking as input the actual patient conditions and clinical settings
from the VMR, in order to individualize the pathway and tailor it to available
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Algorithm 1. Care PathwayDynamic Generation and Adaptive Execution

Input: Virtual Medical Record(VMR),Clinical Guideline representation in
HTN form(Guide)

1 Set already performed tasks (APT ) = ∅;
2 Get actual patient state (PatSta), expected evolution (ExpEvo), resource

information (ResInf ) and already performed tasks (APT ) from the VMR;
3 Generate Care Pathway (Pathway) from Guide applying PatSta, ExpEvo,

ResInf and APT ;
4 Wait expert approval for Pathway ;
5 Compute potential sources of deviation (PotDev) from Pathway ;
6 repeat /* Execution-Monitoring stage */

7 Execute next action(s) (NexAct) of Pathway according to start-time and
update VMR accordingly;

8 foreach action in NexAct (ordered by end-time) do
9 if any deviation of PotDev at end-time of action is detected then

10 Go back to step 2;
11 else /* action was performed successfully */

12 Store action in APT ;
13 end

14 end

15 until No remaining actions to execute in Pathway;

resources. To be able to plan for the long-term also the expected patient evo-
lution is gathered from the VMR. Initially, no care tasks have been applied to
the patient so information about already performed tasks is empty. The gen-
erated care pathway takes the form of a plan and is annotated with temporal
information about (1) start-time and end-time points for each care task1, (2)
expected evolution of the patient, (3) unplanned patient conditions that may
arise according to guideline specifications, and (4) resources availability through
the pathway execution. From there, the Variance Management process (line 5)
computes the potential sources of deviation that need to be monitored during
pathway execution. Every potential source of deviation consists of (i) a condi-
tion to be monitored in the VMR data, (ii) the time when this condition must
hold. This data is extracted from the effects of the primitive tasks in the care
pathway, so a potential source of deviation is extracted for every effect of every
primitive task and is related to the time that the effect is expected to hold. For
instance, {(Patient.good-level-neutrophils Carl), 10} is a potential source of de-
viation which indicates that patient Carl must have a good level of neutrophils
at tenth day after the beginning of pathway execution, otherwise it is considered
a deviation that must be managed. After these potential sources of deviation
have been computed, the Execution-Monitoring stage (lines 6-15) starts. There,
the Monitoring process continuously checks for the actions that need to be exe-
cuted (according to their start-time) and send them to execution. The next set

1 Imprecise times are not allowed but rich and complex time constraints can be en-
coded as explained in [6].
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of actions to be executed is computed in a way so there is no overlapping of any
action in the set with any other action of a previous or future set. For every
executed action, the VMR is updated accordingly (line 7). Then, Monitoring
checks if any deviation has arisen at that moment (line 9). If everything goes
as expected it updates the already performed tasks with the successfully ap-
plied actions (line 12) and continues sending actions to execution. If a deviation
from the expected pathway is detected (i.e. the level of neutrophils of patient
Carl is not good at tenth day after the beginning of the pathway execution),
then Monitoring notifies it to Variance Management which is in charge of call-
ing again the Dynamic Generation process (line 10). Dynamic Generation will
get the up-to-date information from the VMR - now the information about the
already performed tasks will not be empty - together with the guideline recom-
mendations from the formal guideline representation and generates a new plan
representing the new pathway. This new pathway covers the whole patient care
journey from the moment the deviation was detected till the end of the treat-
ment. The new pathway is obtained via a replanning process, based on the same
temporal HTN planning process, which re-generates the pathway according to
both the knowledge encoded in the formal guideline - which encodes also the
management processes for the deviations - and the current health conditions of
the patient, continuously updated in the VMR during pathway execution. The
cycle is repeated until no more actions need to be executed (e.g. no more care
tasks to apply) (line 15). All the generated pathways must be approved by the
person responsible (line 4).

4 Implementation in a Continuous Planning Architecture

The explained methodology has been implemented in a modular architecture
called PELEA[1] which follows a continuous planning approach. PELEA allows
the rapid prototyping of planning applications using standard planning tech-
niques. Figure 3 depicts the architecture, where the gray shadow surrounds the
modules that we have made use of. For a more detailed explanation of the ar-
chitecture we refer the reader to [1].

The high-level replanner module of PELEA implements the Dynamic Genera-
tion process. An HTN planner is in charge of obtaining a temporally annotated
plan which represents the care pathway. This pathway representation is obtained
taking the formal guideline representation and the VMR data, following a tempo-
ral HTN planning process. Furthermore, the pathway representation is annotated
with the required information to compute the potential sources of deviation. The
high-level replanner sends this output to the decision support module. The de-
cision support module of PELEA is in charge of computing the conditions that
must be monitored during execution and implements the Variance Management
process, which computes potential sources of deviation in the following way: (1)
it sorts the primitive tasks of the pathway representation by their end-time, (2)
for every effect (change to context data) of every primitive task, it adds a poten-
tial source of deviation, (3) each of these potential sources of deviation consists
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Fig. 3. PELEA Architecture

of a condition that is expected to hold (the expected effect of the primitive task)
and the time when it is expected to hold (the end-time of the primitive task). The
care pathway and these potential sources of deviation are sent by the decision sup-
port to the monitoring module. The monitoring module of PELEA is in charge
of checking the effects of every primitive task at its end-time and has been used
to implement theMonitoring process. The information about potential sources of
deviation is used for that purpose. The monitoring module is in charge of send-
ing next actions to execution module, according to their start-time. The execution
module of PELEA is in charge of executing actions and updating the context data
accordingly. It implements the Execution process which represents the real clini-
cal settings where the system would be implemented and therefore, actions would
be executed. The execution module receives the context data (i.e. the VMR) and
the formal clinical guideline representation, making them accessible to the rest of
modules through the data flow, guaranteeing full access to VMR at any stage of
the care pathway execution.

5 Experiment

The goal of this experiment is to check that our methodology is able to detect
and manage deviations from pathway during execution, adapting these pathways
in a way that adherence to guidelines and use of up-to-date clinical information
is guaranteed. For this purpose, we simulate these deviations using a proba-
bilistic simulator as Execution process (see figure 2), embedded in the execution
module of PELEA architecture (see figure 3). The probabilistic simulator uses
a modified version of the actions (primitive tasks used in the formal guideline
to represent care tasks) to simulate their execution. Thus, their expected effects
(changes that they made on the context data) are assigned a probability. Then,
several (independent) sets of effects with related probabilities are added to each
action. The probabilities distribution has been manually created. To execute an
action, the simulator selects one of the related sets of effects following the related
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probability distribution. The monitoring process always checks for the expected
effects after each action is executed. Therefore, if the simulator chooses one of
the new added sets of effects, it is considered by the monitoring process as a
deviation from the expected pathway.

A simplification of a guideline for planning the treatment of Hodgkin’s disease
[10], as example of clinical guideline, has been used for the experiment.

In this guideline there are several decision points related to evaluations of
tumor remission in the patient, being complete-remission and partial-remission
the possible values of these evaluations. For the experiment, we assume that
the expected evolution of the patient is complete-remission and specify it in the
VMR as a patient attribute. In the expert knowledge model, a primitive task
for the evaluation is modeled with associated effect (Patient.complete-remission
?patient). For the probabilistic simulator, the corresponding action will have
two different possible effects: (1) (Patient.complete-remission ?patient) and (2)
(Patient.partial-remission ?patient) with a related probability distribution. This
way, the execution module is able to simulate the expected value (complete-
remission) but also (partial-remission), which should be detected as a deviation
by monitoring. For patients of group 1 - which is the case that we present below
- just a decision point of this kind is specified in [10], for which the management
process for deviations (e.g. a partial-remission of the tumor) is to apply 14 ra-
diotherapy sessions. According to the definitions in [20], those deviations coming
from decision points are synchronous. In this experiment they are treated in this
way, detecting them at the same time that they occur, if ever.

On the other hand, bad level of platelets, bad level of neutrophils and fever have
been modeled as unplanned patient conditions. The expected patient evolution
in the context data assumes that the patient will not show any of these circum-
stances during the pathway execution. To detect this potential deviation we have
set the conjunction of (Patient.good-level-platelets ?patient), (Patient.good-level-
neutrophils ?patient), and (not (Patient.has-fever ?patient) as the effects of the
primitive task which represents a drug administration. Thus, a potential source
of deviation is detected for each one of these facts after each drug administra-
tion. Furthermore, we add the rest of possible combinations of conditions (i.e. a
bad level of neutrophils and/or bad level of platelets and/or fever) to the related
action in the probabilistic domain, with a related distribution probability. This
way, the execution module will be able to simulate both the expected values
and different kind of deviations. The management processes specified in the for-
mal guideline for these unplanned patient conditions are: (1) if a bad level of
platelets is detected, perform a blood transfusion; (2) if a bad level of neutrophils
is detected, apply ten Filgrastrim administrations and one increase-neutrophils
special action2; and (3) if the patient has fever, apply four administrations of
Cotrimoxazol and one reduce-fever special action3. Unplanned patient condi-

2 This special action is intended to represent that the intention of applying ten Fil-
grastrim administrations is to increase the level of neutrophils.

3 This special action is intended to represent that the intention of applying four Cot-
rimoxazol administrations is to reduce the fever.
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tions originate asynchronous deviations which in this experiment are monitored
at discrete instants of time (related to the end of every drug administration),
being possible that there is a delay from the moment the deviation occurs and
its detection by the system. The improvement of this feature is planned as future
work by the authors.

To simulate a possible practitioner request for delaying the pending treat-
ment, the primitive task for radiotherapy sessions is modeled with (no-delay)
as expected effect, so these requests are monitored after each radiotherapy ses-
sion4. The corresponding action in the probabilistic domain has both effects of
(no-delay) and (delay) with a related probability distribution. If the simulator
chooses the delay effect, the monitoring process will detect a deviation due to
a practitioner request for delaying the pending treatment. The beginning-of-
treatment date is used instead of the formal guideline to manage this kind of
deviation which, like UPCs, is asynchronous but monitored at discrete instants
of time (related to the end of every radiotherapy session).

Resource unavailability has not been worked in this preliminary experiment.
However, we explain how they are correctly rescheduled for each care pathway
adaptation, since the resource information is stored in the VMR.

5.1 Results

In this preliminary experiment we have extracted a patient-tailored care pathway
for a patient of gender male and group 1, according to the specifications of
[10]. The initial care pathway was composed of 131 care tasks. Its execution
in PELEA lasted 63 minutes and 11 seconds and 20 deviations were thrown
by the probabilistic simulator. All the deviations were detected and correctly
managed with the subsequent adaptation of the pathway. The total number of
executed care tasks was 193. Table 1 shows a summary of the deviations, their
type, number, what the adaptation of the pathway consisted of and the number
of actions that was added in each case.

The results of this experiment show that every simulated deviation is detected
and managed. For each deviation, the correct adaptation is done by the Dynamic
Generation process, tailoring a re-generated pathway which adheres to guideline
recommendations and takes into account the new patient conditions. Resources
are also rescheduled when necessary in this re-generation process.

6 Related Work

Previous works of our group shows that HTN planning is an enabling technology
for the representation of clinical guidelines and the generation of treatment plans
[6], and also how Computer Interpretable Guidelines (CIGs) can be translated
into HTN planning domains so patient-tailored care pathways can be extracted
from them [7]. The work here presented adds adaptive execution capabilities for

4 Though this should be checked continuously we have chosen to do it only after this
primitive task for the first approximation of the experimentation.
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Table 1. Experiment Results. Line 1, for instance, is read: “A partial-remission of
tumor was simulated once. Care pathway was adapted with 14 additional radiotherapy
sessions, which is the proper alternative treatment encoded in the formal guideline.”.

the care pathways. Another recent work [21] is focused on the medical excep-
tions representation and the differentiation of normal and exceptional flow in
the formal guideline modeling.

There is an intensive review of computer-based execution of clinical guidelines
in [12]. Though we set the focus on the execution of care pathways, there are
common points because of the guideline adherence of the patient-tailored care
pathways here treated. In this sense, our approach has all the elements needed
to encode a guideline [6,7] and adds execution capabilities to care pathways that
adhere to so-encoded guidelines.

In [14] a multiagent approach is used to manage test requests for patients.
The scheduling of the test requests involves resource management and can be
seen as a plan that is monitored and adapted in case that unexpected events
occur or a high priority request needs of already scheduled resources. However,
these unexpected events are not clearly stated and no care tasks are observed,
so it is not clear how this approach would behave for other critical aspects as
the ability to compute the proper dose of a drug administration depending on
patient features. It is something that our approach can deal with [6].

Quite close to ours are the works [15,16]. We use a different terminology but
the differences go beyond. These works are focused on high-frequency domains
and short term plans, while the one presented here is frequency independent and
more focused on the long term. The monitoring in these approaches is done in
fixed time intervals while we check only those times where a deviation can imply
a change to the pathway. Moreover, these approaches face the plan generation
with a non-deliberative process, based on the static adaptation of skeletal-plans,
that is not interleaved with temporal constraints reasoning as in ours.

Interesting works based on workflows can be found in the literature [17,8].
They use ECA rules for the local modification of workflows that which represent
clinical guidelines. They do not provide the complete set of expected care tasks
as we do, which allows for a better and earlier resources scheduling, as well as
the awareness of the personnel involved. Moreover, our approach supports the
temporal dimension of failures, solving the problem cited in [17].
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The work of [11] makes the pathway adaptation based on ratings given by
physicians which is more time consuming and biased than guaranteeing standard
guidelines adherence as in our approach. In [2] dynamic adaptation occurs during
each step of care pathway execution by applying semantic rules that handle the
deviations, but no explicit reference to guideline adherence is given and the care
pathways are not extracted for the whole patient journey.

7 Conclusions

We have presented an approach based on continuous planning techniques for
the dynamic generation and adaptive execution of individualized care path-
ways which adhere to evidence-based guidelines recommendations. This ap-
proach gives the expected course of events for the particular situation of the
patient in the form of a care pathway represented as a plan. It is also aware of
the potential sources of deviation from this normal course and is able to manage
those predictable complications that may arise, adapting the normal course to
the new circumstances. The knowledge representation model allows the repre-
sentation of (1) clinical guidelines, (2) context data, (3) temporally annotated
care pathways, and (4) management processes for several kind of deviations.
The implementation of the approach in a continuous planning architecture has
been presented. A preliminary experiment shows that our approach is able to
dynamically adapt pathways to deviations that may arise during their execution.
Guideline adherence of the adapted pathways is guaranteed by the underlying
planning-based generation process. Full access to the context data at every stage
of the pathway execution ensures the use of continuously up-to-date information.
Moreover, adapted pathways are stored together with the context data at the
moment they were generated so it can serve for statistical analysis of deviations.
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