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Abstract We present an introduction to the theory of viscosity solutions of first-
order partial differential equations and a review on the optimal control/dynamical
approach to the large time behavior of solutions of Hamilton—Jacobi equations,
with the Neumann boundary condition. This article also includes some of basics of
mathematical analysis related to the optimal control/dynamical approach for easy
accessibility to the topics.

Introduction

This article is an attempt to present a brief introduction to viscosity solutions of
first-order partial differential equations (PDE for short) and to review some aspects
of the large time behavior of solutions of Hamilton—Jacobi equations with Neumann
boundary conditions.

The notion of viscosity solution was introduced in [20] (see also [18]) by
Crandall and Lions, and it has been widely accepted as the right notion of
generalized solutions of the first-order PDE of the Hamilton—Jacobi type and fully
nonlinear (possibly degenerate) elliptic or parabolic PDE. There have already been
many nice contributions to overview of viscosity solutions of first-order and/or
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second-order partial differential equations. The following list touches just a few
of them [2,6,15,19,29,31,41,42].

This article is meant to serve as a quick introduction for graduate students or
young researchers to viscosity solutions and is, of course, an outcome of the lectures
delivered by the author at the CIME school as well as at Waseda University, College
de France, Kumamoto University, King Abdulaziz University and University of
Tokyo. For its easy readability, it contains some of very basics of mathematical
analysis which are usually left aside to other textbooks.

The first section is an introduction to viscosity solutions of first-order partial
differential equations. As a motivation to viscosity solutions we take up an optimal
control problem and show that the value function of the control problem is
characterized as a unique viscosity solution of the associated Bellman equation.
This choice is essentially the same as used in the book [42] by Lions as well as in
[2,6,29].

In Sects. 2-5, we develop the theory of viscosity solutions of Hamilton—Jacobi
equations with the linear Neumann boundary condition together with the corre-
sponding optimal control problems, which we follow [8,38,39]. In Sect. 6, following
[38], we show the convergence of the solution of Hamilton—Jacobi equation of
evolution type with the linear Neumann boundary condition to a solution of the
stationary problem.

The approach here to the convergence result depends heavily on the variational
formula for solutions, that is, the representation of solutions as the value function
of the associated control problem. There is another approach, due to [3], based on
the asymptotic monotonicity of a certain functional of the solutions as time goes
to infinity, which is called the PDE approach. The PDE approach does not depend
on the variational formula for the solutions and provides a very simple proof of
the convergence with sharper hypotheses. The approach taken here may be called
the dynamical or optimal control one. This approach requires the convexity of the
Hamiltonian, so that one can associate it with an optimal control problem. Although
it requires lots of steps before establishing the convergence result, its merit is that
one can get an interpretation to the convergence result through the optimal control
representation.

The topics covered in this article are very close to the ones discussed by
Barles [4]. Both are to present an introduction to viscosity solutions and to discuss
the large time asymptotics for solutions of Hamilton—Jacobi equations. This article
has probably a more elementary flavor than [4] in the part of the introduction to
viscosity solutions, and the paper [4] describes the PDE-viscosity approach to the
large time asymptotics while this article concentrates on the dynamical or optimal
control approach.

The reference list covers only those papers which the author more or less
consulted while he was writing this article, and it is far from a complete list of
those which have contributed to the developments of the subject.

The author would like to thank the course directors, Paola Loreti and Nicoletta
Tchou, for their encouragement and patience while he was preparing this article.
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He would also like to thank his colleagues and students for pointing out many

misprints and mistakes in earlier versions of these lecture notes.

Notation:

When % is a set of real-valued functions on X, sup.# and inf.%# denote the
functions on X given, respectively, by

(sup F)(x) :=sup{f(x) : feF} and (inf.F)(x):=inf{f(x) : f € F}.

For any a,b € R, we write a A b = min{a, b} and a v b = max{a, b}. Also,
we writeay =avVv0anda_ = (—a)+.

A function w € C(]J0, R)), with 0 < R < oo, is called a modulus if it is
nondecreasing and satisfies w(0) = 0.

For any x = (x1,...,x,),y = (J1,...,¥n) € R", x - y denotes the Euclidean
inner product xyy; + --- + x,y, of x and y.

For any x,y € R” the line segment between x and y is denoted by [x, y] :=
{I=0t)x+1ty : te€]0, 1]}.

For k € Nand 2 C R, CK(£2,R™) (or simply, C¥(£2,R")) denotes the
collection of functions f : £2 — R™ (not necessarily open), each of which has
an open neighborhood U of £2 and a function g € C*(U) such that f(x) = g(x)
forall x € £2.

For f € C(£2,R™), where 2 C R”", the support of f is defined as the closure
of {x € 2 : f(x) # 0} and is denoted by supp f.

UC(X) (resp., BUC(X)) denotes the space of all uniformly continuous (resp.,
bounded, uniformly continuous) functions in a metric space X.

We write 15 for the characteristic function of the set E. That is, 1g(x) = 1 if
x € E and 15(x) = O otherwise.

The sup-norm of function f on a set £2 is denoted by || f ooz = |.f oo =
supg |/ .

We write R4 for the interval (0, c0).

For any interval / C R, AC(J,R™) denotes the space of all absolutely
continuous functions in J with value in R™.

Given a convex Hamiltonian H € C(£2 xR"), where £2 C R” is an open set, we
denote by L the Lagrangian given by

L(x,§) = sup(§- p— H(x, p)) for(x,£) € 2 xR".
PpERM

Let 2 C R” be an open subset of R", g € C(352,R),t > 0 and (n,v,/) €

L'([0, 1], R" x R" x R) such that n(s) € £2 for all s € [0, t] and I(s) = 0
whenever 7(s) € £2. We write

Z(t.n,v,1) :/0 [L(n(s). —v(s)) + g(n(s))I(s)]ds.
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1 Introduction to Viscosity Solutions

We give the definition of viscosity solutions of first-order PDE and study their basic
properties.

1.1 Hamilton-Jacobi Equations

Let £2 be an open subset of R”. Given a function H : 2 x R" — R, we consider
the PDE
H(x,Du(x)) =0 in £2, (1)

where Du denotes the gradient of u, that is,
Du := (uy,, Uy, ..., Ux,) = (0u/0xy,...,0u/ox,).
We also consider the PDE
u(x,t) + H(x, Dyu(x,t)) =0 in £2 x (0, 00). 2)

Here the variable ¢ may be regarded as the time variable and u; denotes the time
derivative du/0t. The variable x is then regarded as the space variable and D,u
(or, Du) denotes the gradient of u in the space variable x.

The PDE of the type of (1) or (2) are called Hamilton—Jacobi equations. A more
concrete example of (1) is given by

|Du(x)| = k(x),

which appears in geometrical optics and describes the surface front of propagating
waves. Hamilton—Jacobi equations arising in Mechanics have the form

|Du(x)? + V(x) = 0,
where the terms |[Du(x)|? and V(x) correspond to the kinetic and potential energies,
respectively.
More generally, the PDE of the form
F(x,u(x),Du(x)) =0 in £2 3)

may be called Hamilton—Jacobi equations.
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1.2 An Optimal Control Problem

We consider the function
X =X(1)=(Xi@t), X2(t),..., Xu(t)) eR"

of time ¢ € R, and
. . dX
X=Xt)=—(
(1) =20

denotes its derivative. Let A C R™ be a given set, let g : R" x A — R", f :
R"” x A — R be given functions and A > 0 be a given constant. We denote by A the
set of all Lebesgue measurable « : [0, c0) — A.

Fixany x € R" and @ € A, and consider the initial value problem for the ordinary
differential equation (for short, ODE)

X(1) = g(X(t),a(t)) forae.r>0,
{ g(X(t),a(t)) forae.t > @

X(0) = x.

The solution of (4) will be denoted by X = X(¢#) = X(¢; x, ). The solution X (¢)
may depend significantly on choices of « € A. Next we introduce the functional

umm=A FOX) . ale)e™ dr, 5)

a function of x and o € A, which serves a criterion to decide which choice of « is
better. The best value of the functional J is given by

Vix) = iI€l£ J(x, ). (6)

This is an optimization problem, and the main theme is to select a control ¢ = o, €
A so that
Vix) = J(x, ).

Such a control « is called an optimal control. The ODE in (4) is called the dynamics
or state equation, the functional J given by (5) is called the cost functional, and
the function V' given by (6) is called the value function. The function f or ¢ —
e ™ f(X (), a(t)) is called the running cost and A is called the discount rate.

In what follows, we assume that f, g are bounded continuous functions on
R" x A and moreover, they satisfy the Lipschitz condition, i.e., there exists a
constant M > 0 such that

|f(x.a)] = M, lg(x.a)| = M,

| f(x.a) = f(y,a)| < M|x —y], (7
lg(x,a) —g(y,a)| < M|x —yl|.
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A basic result in ODE theory guarantees that the initial value problem (4) has a
unique solution X (¢).
There are two basic approaches in optimal control theory:

1. Pontryagin’s Maximum Principle Approach.
2. Bellman’s Dynamic Programming Approach.

Both of approaches have been introduced and developed since 1950s.

Pontryagin’s maximum principle gives a necessary condition for the optimality
of controls and provides a powerful method to design an optimal control.

Bellman’s approach associates the optimization problem with a PDE, called the
Bellman equation. In the problem, where the value function V' is given by (6), the
corresponding Bellman equation is the following.

AV(x)+ H(x,DV(x)) =0 inR", (®)

where H is a function given by

H(x,p) = sglj{—g(x, a)-p— f(x,a)},

with x - y denoting the Euclidean inner product in R”. Bellman’s idea is to charac-
terize the value function V' by the Bellman equation, to use the characterization to
compute the value function and to design an optimal control. To see how it works,
we assume that (8) has a smooth bounded solution V' and compute formally as
follows. First of all, we choose a functiona : R" — A so that

H(x, DV(x)) = —g(x,a(x)) - DV(x) — f(x,a(x)),
and solve the initial value problem
X)) =g(X(@0),a(X®)),  X(©0)=x,

where x is a fixed point in R". Next, writing a () = a(X (1)), we have
0= /0 M (VX)) + HX(@), DV(X(0)))) di
= [ v - g, e - DY)~ FOX @) o
_ /0 - (—C%e—“ VX(1)) — f(X(t),a(t))) di

— V(X(0)) - /0 M (X (1), a(t)) dr.
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Thus we have
Vix) = J(x, ).

If PDE (8) characterizes the value function, that is, the solution V' is the value
function, then the above equality says that the control «(¢#) = a(X(¢)) is an optimal
control, which we are looking for.

In Bellman’s approach PDE plays a central role, and we discuss this approach in
what follows. The first remark is that the value function may not be differentiable at
some points. A simple example is as follows.

Example 1.1. We consider the case wheren = 1, 4 = [-1,1] C R, f(x,a) =
e, g(x,a) = aand A = 1. Let X(¢) be the solution of (4) for some control
a € A, which means just to satisfy

I X()| <1 ae.t>0.

Let V' be the value function given by (6). Then it is clear that V'(—x) = V(x) for all
x € R and that

o0 2 o0 2
V(x) = / e T g = &F / e~ dr if x > 0.
0 X
For x > 0, one gets

© 2 2
V'(x) = e"/ e T dr —e™,
and
o0 2 o0
V’(O+)=/ e dr -1 </ e'dt—1=0.
0 0

This together with the symmetry property, V(—x) = V(x) for all x € R, shows
that V is not differentiable at x = 0.

Value functions in optimal control do not have enough regularity to satisfy, in
the classical sense, the corresponding Bellman equations in general as the above
example shows.

We introduce the notion of viscosity solution of the first-order PDE

F(x,u(x),Du(x)) =0 in £2, (FE)

where F : £2 x R x R" — R is a given continuous function.

Definition 1.1. (i) We call u € C(£2) a viscosity subsolution of (FE) if
peC'(2),z€, max(u — ¢) = (u—¢)()

= F(z,u(z), Dp(z)) <0.
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(i) We call u € C($2) a viscosity supersolution of (FE) if

peCi(R2),ze 2, min(u — ¢) = (u — ¢)(2)
= F(z,u(z), Dg(2)) = 0.
(iii) We call u € C(£2) a viscosity solution of (FE) if u is both a viscosity

subsolution and supersolution of (FE).

The viscosity subsolution or supersolution property is checked through smooth
functions ¢ in the above definition, and such smooth functions ¢ are called test
functions.

Remark 1.1. 1f we set F~(x,r,p) = —F(x,—r,—p), then it is obvious that
u € C($2) is a viscosity subsolution (resp., supersolution) of (FE) if and only if
u~ (x) := —u(x) is a viscosity supersolution (resp., subsolution) of

F(x,u (x),Du (x)) =0 in £2.

Note also that (F~)™ = F and (u™)~ = u. With these observations, one property
for viscosity subsolutions can be phrased as a property for viscosity supersolutions.
In other words, every proposition concerning viscosity subsolutions has a counter-
part for viscosity supersolutions.

Remark 1.2. Ttis easily seen by adding constants to test functions that u € C(2) is
a viscosity subsolution of (FE) if and only if

peCl(2),ze, max(u — ¢) = (u—$)() =0
= F(z.9(2). D$(2)) < 0.

One can easily formulate a counterpart of this proposition for viscosity
supersolutions.

Remark 1.3. 1t is easy to see by an argument based on a partition of unity (see
Appendix A.1) that u € C($2) is a viscosity subsolution of (FE) if and only if

¢ € CH(R), z € 2, u— ¢ attains a local maximum at z

= F(z,¢(2), D¢(2)) < 0.

Remark 1.4. Ttis easily seen that u € C(£2) is a viscosity subsolution of (FE) if and
only if
¢ € CY(R), z€ 2, u— ¢ attains a strict maximum at z

— F(z.¢(). Dp(2)) < 0.
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Similarly, one may replace “strict maximum” by “strict local maximum” in the
statement. The idea to show these is to replace the function ¢ by ¢(x) + |x — z|?
when needed.

Remark 1.5. The condition, ¢ € C!(£2), can be replaced by the condition,
¢ € C*(£2) in the above definition. The argument in the following example
explains how to see this equivalence.

Example 1.2 (Vanishing viscosity method). The term “viscosity solution” originates
to the vanishing viscosity method, which is one of classical methods to construct
solutions of first-order PDE.

Consider the second-order PDE

—eAu® 4+ F(x,u’(x),Du’(x)) =0 in 2, )

where ¢ > 0 is a parameter to be sent to zero later on, §2 is an open subset of R”,
F is a continuous function on 2 x R x R” and A denotes the Laplacian

he 9
T+

= e,
ax? ax2

A

We assume that functions u® € C?(£2), with e € (0, 1), and u € C($2) are given
and that
lin}) u®(x) = u(x) locally uniformly on £2.
e—>!

Then the claim is that u is a viscosity solution of
F(x,u(x),Du(x)) =0 in £2. (FE)

In what follows, we just check that u is a viscosity subsolution of (FE). For this,
we assume that

peCl(2). ieg, max(u —¢) = (u— ) (%),

and moreover, this maximum is a strict maximum of u# — ¢. We need to show that
F(X,u(x), D¢(%)) <0. (10

First of all, we assume that ¢ € C2(£2), and show that (10) holds. Fix an
r > 0so that B,(X) C £2. Let x, be a maximum point over B, (%) of the function
u® — ¢. We may choose a sequence {¢;};jen C (0, 1) so that lim; .o &; = 0 and
limj_, 0 x¢; = y forsome y € B, (%). Observe that
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(u—P)(X) =W —¢)(X) + llu— " |loo 5,3
=W = @)(xe;) + llu—u” oo 5,3
< (u—@)(xe;) + 2/u" — ull oo 5,3
—Ww—¢)(y) asj — oo.

Accordingly, since X is a strict maximum point of u — ¢, we see that y = X.
Hence, if j is sufficiently large, then x., € B, (X). By the maximum principle from
Advanced Calculus, we find that

0 02
— (W —¢)(x;;) =0 and — " —$)(x;,) <0 forall i =1,2,....n.
axi / Bxlz /

Hence, we get
Dui (xe)) = Dp(xe,).  Aui (xe)) < Ap(xs)).
These together with (9) yield
—£jAP(Xe;) + F(xe; u™ (xe;), Dp(xe;)) < 0.
Sending j — oo now ensures that (10) holds.
Finally we show that the C? regularity of ¢ can be relaxed, so that (10) holds

for all ¢ € C'(£2). Let r > 0 be the constant as above, and choose a sequence
{pr} C C*®(£2) so that

klim ¢ (x) = ¢(x) uniformly on B, (X).

Let {y;} C B,(X) be a sequence consisting of a maximum point of u — ¢. An
argument similar to the above yields

lim Yk = X.
k—o00

If k is sufficiently large, then we have y;, € B, (%) and, due to (10) valid for C? test
functions,

F(yi,u(yx), Dér(yi)) < 0.

Sending k — oo allows us to conclude that (10) holds.
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1.3 Characterization of the Value Function

In this subsection we are concerned with the characterization of the value function
V by the Bellman equation

AV(x)+ H(x,DV(x)) =0 inR", (11)
where A is a positive constant and
H(x,p) = SuIA}{—g(x, a)-p— f(x,a)}.
ae

Recall that
V(x) = inf J(x, @),
€A

and

J(x.a) = /0 @) a)e .

where X (¢) = X(¢; x, o) denotes the solution of the initial value problem

X(t) = g(X(1t),a(r)) forae.r>0,
X(0) = x.

Recall also that for all (x,a) € R" x A and some constant M > 0,

| f(x,a)] < M, lg(x,a)] < M,
| f(x,a) = f(y,a)| < M|x —y], (12)
lg(x,a) —g(y,a)| < M|x —y|.

The following lemma will be used without mentioning, the proof of which may
be an easy exercise.

Lemma 1.1. Let h,k : A — R be bounded functions. Then

suph(a) —supk(a)| Vv

a€A a€A

inf h(a) — inf k(a)| < sup |h(a) — k(a)|.
a€A a€A

a€A

In view of the above lemma, the following lemma is an easy consequence of (12),
and the detail of the proof is left to the reader.

Lemma 1.2. The Hamiltonian H satisfies the following inequalities:

|H(x,p)— H(y,p)| < Ml|x—yl(|p| +1) forall x,y,peR",
|H(x,p)— H(x,q)| < M|p—q| forall x,p.q € R".

In particular, we have H € C(R" x R").
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Proposition 1.1. The inequality

Vel =

holds for all x € R". Hence, the value function V is bounded on R".

Proof. For any (x,o) € R" x A, we have

o o0 M
el = [ Mo aenlar < u [ e =2
0 0
Applying Lemma 1.1 yields
M
V()| < sup [J(x,a)] < —. O
€A A

Proposition 1.2. The function V is Holder continuous on R".

Proof. Fix any x,y € R". For any @ € A, we estimate the difference of J(x, )
and J(y,a). To begin with, we estimate the difference of X(z) := X(¢; x,«) and
Y(t) := X(¢; y,a). Since

X (0) =Y ()] = |g(X(0), @(t)) = g(Y (1), (1))
<M|X(t)—Y(t)| forae.t >0,

we find that
[X(@)—Y(@)| SIX(O)—Y(O)I+/O |X(s) = Y (s)|ds

t

<|x —y| +M/ |X(s) —Y(s)|ds forall > 0.
0
By applying Gronwall’s inequality, we get
| X(t) = Y(@)| < |x —y|e” forall £ >0.
Next, since
o0

|J(x,0) = J(y. )] S/O eI f(X(s), a(s)) = f(Y(5), (s))] ds,

if A > M, then we have

A /0 ¢ MIX(s) — Y(s)| ds

M|x—y|

o0
<M e M|x — yleMSds = ,
< /0 |x =yl P
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and

V) =Vl = 5371 =l (13)

If0 <A < M, then we select 0 < 6 < 1 sothat M < A, and calculate

| f(E.a) — f(n.a)| <|fE a)— f(n,a)fT0—®
<(M|g—n)°@M)'™" forall £neR" ac 4,

and
70 = Il =@M [ B a1xe - Y s
0

o0
< (2M)l—9/ e—AS(Mlx _ yDOGOMS ds
0

® o 2M |x — y|’
< ZM _ 6 (/1 OM)S d —
<2M|x yl/O e S = —
which shows that .
2M|x —y|
Vix)—=V < — 14
Ve =Vl = S (14)
Thus we conclude from (13) and (14) that V' is Holder continuous on R”. ]

Proposition 1.3 (Dynamic programming principle). Let 0 < 7 < oo and
x € R". Then

Vi) = inf ( /0 e X)) df + VX)),

where X (¢) denotes X(¢; x, «).
Proof. Let0 < 7 < ooand x € R". Fix y € A. We have
T o0
J(x,y) = / e f(X(@).y (1) dr + / e f(X(0). y(1))dr
0

T

. ~ (15)
- / M F(X (1), () dr + e / M (Y (). B dr.
0 0

where

X()=X@:x,y)., a@):=y@), B@):=yC+1),
Yt) =Xt +1)=X(;X(2),B).
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By (15), we get
Sy = [ @)+ V)
from which we have
Sy = i ([ 700, a0 ar + V().
Consequently,
V(x) = inf ( /0 e M FX(t). () di + VX)), (16)

Now, let o, B € A. Define y € A by

Set
X(@):=X(t;x,a) and Y(t):= X(; X(), B).

We have

X(@t)=X(t;x,y) and «a(t) = y(t) forall ¢ €0, 7],
{ B(t)=y(t+71) and Y(t) = X(t + ) forall t > 0.

Hence, we have (15) and therefore,

Vix) < /OI e M f(X(0), a(t)dt + e J(X (1), B).

Moreover, we get

V) < /0 "M X0 a(0)) df + V(X (D)),

and
V(x) < inf ( /0 Ie—m F(X(0),at))dr + e—“V(X(f))). (17)

Combining (16) and (17) completes the proof. O
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Theorem 1.1. The value function V is a viscosity solution of (11).

Proof. (Subsolution property) Let ¢ € C'(R") and £ € R”, and assume that

(V = $)(®) = max(V = ¢) = 0.

125

Fix any a € A and set «(t) := a, X(t) := X(t; X, ). Let 0 < h < 00. Now, since

V < ¢, V(X) = ¢(x), by Proposition 1.3 we get
h
B0 =V = [ FX @) dr + VXY
0

h
< / e FX(1).(t)) di + €M (X (h)).
0

From this, we get

h

L e Mex) di

h
< —At
0_/0 e f(X(t),a)dt—i—/O i

h
= /O e (f(X(1),a) = 2p(X(1)) + DH(X(1)) - X (1)) dt
h
= /O e M (f(X(1),a) = Ap(X(1)) + Dp(X (1)) - g(X(1), a)) dr.
Noting that
1X(1) — | = ‘/0 X(s)ds) 5/0 |g(X(s),a)|ds§M/0 ds = M1,
dividing (18) by & and sending i — 0, we find that

0=<-2¢() + f(X.a) + g(X.a)- DP(X).

Since a € A is arbitrary, we have A¢(X) + H(X, D¢(X)) < 0.
(Supersolution property) Let ¢ € C!(R") and £ € R”, and assume that

(V= $)(&) = min(V — $) = 0.

Fix ¢ > 0 and & > 0. By Proposition 1.3, we may choose @ € A so that

h
V(%) + eh > / e ™M f(X(t), a(r)) dt + e V(X (h)),
0

(18)

19)
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where X (¢) := X(¢; X, ). Since V > ¢ in R" and V(X) = ¢(X), we get

h
O (X) + eh > / e M f(X(1),a(r))dt +e Mp(X(h)).
0

Hence we get

h

9 ey (X (1)) dr — eh

h
0> /0 e—“f(X(z),a(t))dH/O "

h
= /0 e M (f(X(1).a(1)) — Ap(X(1)) + Dp(X(1)) - X (1)) dt — eh

h
= /0 e (f(X(0), (1)) = A¢(X(1) + DH(X (1)) - g(X(1), (1)) dt — eh.

By the definition of H, we get

h
/ e MAP(X(1)) + H(X(1), DP(t))dt + eh > 0. (20)
0

As in (19), we have
|X(t) — x| < Mt.

Dividing (20) by /& and sending 7 — 0 yield
Ap(X)+ H(x, D¢ (X)) +¢ >0,

from which we get A¢(X) + H(x, D¢ (x)) = 0. The proof is now complete. O

Theorem 1.2. Let u € BUC(R") and v € BUC(R") be a viscosity subsolution and
supersolution of (11), respectively. Then u < v in R".

Proof. Let ¢ > 0, and define u, € C(R") by u.(x) = u(x) — e({x) + M), where
(x) = (Jx|*> + 1)'/2. A formal calculation

ug(x) + H(x,Duy(x)) <u(x) —eM + H(x,Du(x)) + eM|D{x)|
<u(x) + H(x,Du(x)) <0

reveals that u, is a viscosity subsolution of (11), which can be easily justified.

We show that the inequality #, < v holds, from which we deduce that u < v is
valid. To do this, we assume that supg. (#. — v) > 0 and will get a contradiction.
Since

lim (4, —v)(x) = —o0,
|x|—>o00
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we may choose a constant R > 0 so that

sup (1, —v) < 0.
R"\Bg

The function u, — v € C(Bg) then attains a maximum at a point in By, but not at
any point in dBg.
Let o > 1 and consider the function

P(x,y) = us(x) —v(y) —alx =y’

on K := B X Bpg. Since @ € C(K), @ attains a maximum at a point in K.
Let (x¢, ¥o) € K be its maximum point. Because K is compact, we may choose a
sequence {o;} C (1, oo) diverging to infinity so that for some (%, y) € K,

(Yo, Vo) = (£.9) as j — co.

Note that

0 < max(u, — v) = max @(x,x) < P(xy, Vo)
Bpr XE€EBpR (21)
= “a(xa) - U(ya) - 0‘|x0t - ya|27

from which we get

o)Xy — Yo|* < supug 4+ sup(—v).
7 7
We infer from this that X = y. Once again by (21), we get

max(us — v) < ug(xy) — V(Va)-
Bpr

Setting @ = «; and sending j — oo in the above, since u, v € C(R"), we see that

max(u, —v) < lm  (us(xe) — v(ya))
Br a=q;,j—>00

= us(X) — v(%).
That is, the point X is a maximum point of u, — v. By (21), we have
|2

= Ma(-xoc) - U(yoc) - HlaX(M - U)s
Br

o|xe — Yo

and hence

lim  o|xy — yo|* = 0.
a=a;,j—>00
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Since X is a maximum point of u, — v, by our choice of R we see that x €
Bpr. Accordingly, if « = «; and j is sufficiently large, then x4, y, € Bg. By the
viscosity property of u, and v, fora = «; and j € N large enough, we have

ue(xg) + H(xg, 20(xg — ya)) <0, V(yo) + H(yo, 20(Xe — o)) = 0.

Subtracting one from the other yields

Us(Xa) = V(o) = H(ya. 20(xo = yo)) — H(Xa, 20(xa = ya))-
Using one of the properties of H from Lemma 1.2, we obtain
us(xg) —v(va) < M|xq — yo|Qa|xg — yo| + 1).
Sending o = a; — o0, we get
ue(X) —v(¥) <0,

which is a contradiction. ]

1.4 Semicontinuous Viscosity Solutions and the Perron Method

Let u, v € C(£2) be a viscosity subsolutions of (FE) and set
w(x) = max{u(x),v(x)} for x € £2.

It is easy to see that w is a viscosity subsolution of (FE). Indeed, if ¢ € C'(2),
y € §2 and w — ¢ has a maximum at y, then we have either w(y) = u(y) and
W= $)x) < w—$)(x) < (w—$)(¥) = (u—P)(y) forall x € 2, or w(y) =
v(y) and (v — ¢)(x) < (v — $)(y), from which we get F(y,w(y), D¢(y)) = 0.
If {ur }reny C C(82) is a uniformly bounded sequence of viscosity subsolutions of
(FE), then the function w given by w(x) = sup, ux (x) defines a bounded function on
£2 but it may not be continuous, a situation that the notion of viscosity subsolution
does not apply.

We are thus led to extend the notion of viscosity solution to that for discontinuous
functions.

Let U C R", and recall that a function f : U — R U {—00, 00} = [—00, 0] is
upper semicontinuous if

limsup f(y) < f(x) forall x € U.

y—>x
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The totality of all such upper semicontinuous functions f will be denoted by
USC(U). Similarly, we denote by LSC(U) the space of all lower semicontinuous
functions on U. That is, LSC(U) := —USC(U) = {—f : f € USC(U)}.

Some basic observations regarding semicontinuity are the following three propo-
sitions.

Proposition 1.4. Let f : U — [—o0, oo]. Then, f € USC(U) if and only if the
set{x € U : f(x) < a} is a relatively open subset of U for any a € R.

Proposition 1.5. If % C LSC(U), then sup % € LSC(U). Similarly, if F C
USC(U), then inf # € USC(U).

Proposition 1.6. Let K be a compact subset of R and f € USC(K). Then f
attains a maximum. Here the maximum value may be either —oo or 00.

Next, we define the upper (resp., lower) semicontinuous envelopes f* (resp., fx)
of f : U — [—00, o] by

fr@) = lim sup{f(y) : y €U N B (x)}

(resp., f« = —(—f)* or, equivalently, f«(x) = lim,oinf{f(y) : y e U N
B, (x)}).

Proposition 1.7. Let f : U — [—00, oo]. Then we have f* € USC(U), f« €
LSC(U) and

f*(x) = min{g(x) : g € USC(U), g > f} forall x € U.

A consequence of the above proposition is that if f € USC(U), then f* = f
in U. Similarly, f« = finU if f € LSC(U).
We go back to
F(x,u(x),Du(x)) =0 in £2. (FE)

Here we assume neither that F' : 2 x R x R” — R is continuous nor that 2 C R”
is open. We just assume that F' : £2 x R x R" — R is locally bounded and that £2
is a subset of R”.

Definition 1.2. (i) A locally bounded function # : £2 — R is called a viscosity
subsolution (resp., supersolution) of (FE) if

$peCl(R), z€ 2, mélx(u* —¢)= W —¢)(z)

= Fiu(z,u"(2).D$(z)) <0

peCl (), ze, min(us — @) = (1x —¢)(2)
resp.,
= F*(z,ux(2), Dp(2)) = 0
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(ii) A locally bounded function # : £2 — R is a viscosity solution of (FE) if it is
both a viscosity subsolution and supersolution of (FE).

We warn here that the envelopes Fy and F* are taken in the full variables. For
instance, if £ € £2 x R x R", then

F.(§) = liI(I)1+inf{F(n) NneERXRxRY, [n—§&| <r}.

We say conveniently that u is a viscosity solution (or subsolution) of
F(x,u(x),Du(x)) < 0in £ if u is a viscosity subsolution of (FE). Similarly,
we say that u is a viscosity solution (or supersolution) of F(x, u(x), Du(x)) > 0
in £2 if u is a viscosity supersolution of (FE). Also, we say that u satisfies
F(x,u(x),Du(x)) < 0in £ (resp., F(x,u(x),Du(x)) > 0in £2) in the viscosity
sense if u is a viscosity subsolution (resp., supersolution) of (FE).

Once we fix a PDE, like (FE), on a set £2, we denote by .~ and . * the sets of
all its viscosity subsolutions and supersolutions, respectively.

The above definition differs from the one in [19]. As is explained in [19], the
above one allows the following situation: let £2 be a nonempty open subset of R” and
suppose that the Hamilton—Jacobi equation (1) has a continuous solution u € C(£2).
Choose two dense subsets U and V of 2 suchthat U NV =@and U UV # £2.
Select a function v : £ — R so that v(x) = u(x) if x € U, v(x) = u(x) + 1if
x € Vandv(x) € [u(x), u(x)+1]if x € 2\ (U UV). Then we have v« (x) = u(x)
and v*(x) = u(x) + 1 for all x € £2. Consequently, v is a viscosity solution of (1).
If U UV # £, then there are infinitely many choices of such functions v.

The same remarks as Remarks 1.1-1.4 are valid for the above generalized
definition.

Definition 1.3. Let 2 C R” and u : §£2 — R. The subdifferential D~ u(x) and
superdifferential D u(x) of the function u at x € §2 are defined, respectively, by
D7u(x)={peR" :ulx+h)>ulx)+p-h+o(h|) as x+h e 2, h— 0},
DTu(x)={peR" :u(x+h) <u(x)+p-h+o(lh|) as x+heR, h—0}
where o(|h|) denotes a function on an interval (0,§), with § > 0, having the
property: lim,—¢ o(|h])/|h| = 0.

We remark that D~ u(x) = —D%(—u)(x). If u is a convex function in R” and
p € D™ u(x) for some x, p € R”, then

u(x+h)>ulx)+p-h forall heR".

See Proposition B.1 for the above claim. In convex analysis, D~ u(x) is usually
denoted by du(x).
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Proposition 1.8. Let 2 C R" andu : 2 — R be locally bounded. Let x € S2.
Then

DT u(x) = {D¢(x) : ¢ € CY(R), u— ¢ attains a maximum at x}.

As a consequence of the above proposition, we have the following: if u is locally
bounded in §2, then

Du(x) = = DF (—u)(x)
= —{D¢(x) : ¢ € C'(2), —u — ¢ attains a maximum at x}
={D¢p(x) : ¢ € C'(2), u— ¢ attains a minimum at x}.
Corollary 1.1. Let 2 C R". Let F : 2 xR xR" - Randu : 2 — R be

locally bounded. Then u is a viscosity subsolution (resp., supersolution) of (FE) if
and only if

Fu(x,u*(x),p) <0 forallx € 2, p € DT u*(x)
(resp., F*(x,ux(x),p) >0 forallx € 2, p € D™ u«(x)).

This corollary (or Remark 1.3) says that the viscosity properties of a function,
i.e., the properties that the function be a viscosity subsolution, supersolution, or
solution are of local nature. For instance, under the hypotheses of Corollary 1.1, the
function u is a viscosity subsolution of (FE) if and only if for each x € £2 there

exists an open neighborhood Uy, in R”, of x such that u is a viscosity subsolution
of (FE)in U, N £2.

Proof Let¢ € C'(£2) and y € £2, and assume that u — ¢ has a maximum at y.
Then

(u=9)y+h) <(u—-9¢)(y) ify+hes2,
and hence,as y + h € 2, h — 0,

u(y +h) =u(y)+ ¢y +h) —¢(y) =u(y) + Dp(y) - h + o(|h)).
This shows that
{D¢(y) : ¢ € C'(2), u— ¢ attains a maximum at y} € DV u(y).
Nextlet y € £2 and p € DT u(y). Then we have
u(y +h) <u(y)+p-h+o(h)h ify+hesand|h| <§

for some constant § > 0 and a function w € C([0, §]) satisfying w(0) = 0. We may
choose w to be nondecreasing in [0, §]. In the above inequality, we want to replace
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the term w(|h|)|k| by a C' function ¥ (k) having the property: ¥ (h) = o(|h]).
Following [23], we define the function y : [0,8/2] — R by

2r
y(r):/0 w(t)dr.

Noting that
2r
y(r) > / w(t)dt > w(r)r forr €0, §/2],

we see that
u(y +h) <u(y)+p-h+y(h|) ify+heand|h| <§/2.

It immediate to see that y € C!([0, §/2]) and y(0) = y’(0) = 0. We set ¥ (h) =
y(|h|) for h € Bgs/»(0). Then ¥ € C'(Bs/2(0)), ¥(0) = 0 and Dy (0) = 0. It is
now clear that if we set

p(x) =u(y)+p-(x—=y)+¥(x—y) forxe Bsa(y),
then the function u — ¢ attains a maximum over £2 N Bs/»>(y) at y and D¢ (y) = p.
|
Now, we discuss a couple of stability results concerning viscosity solutions.

Proposition 1.9. Let {u,}.c.1y C -~ . Assume that §2 is locally compact and {u,}
converges locally uniformly to a function uin 2 as e — 0. Thenu € ™.

Proof. Let ¢ € C'(£2). Assume that u* — ¢ attains a strict maximum at £ € £2. We
choose a constant » > 0 so that K := B, (X) N 2 is compact. For each ¢ € (0, 1),
we choose a maximum point (over K) x, of u} — ¢.

Next, we choose a sequence {¢;} C (0, 1) converging to zero such that x.;, — z
for some z € K as j — oo. Next, observe in view of the choice of x, that

" = $)(xe)) = (@l = $)(xe,) = lu* — 1 oo
> (* — ) (xe)) = 2[u* — i}, ook
> (W = $)(R) — 2[lu* — e loo.x.

Sending j — oo yields

" — ¢)(2) = limsup(u;, — $)(xe;) = linlgf(ujj —P)(xe;) = (" — ) (%),

which shows that z = X and lim; u:j (x¢;) = u*(X). For j € N sufficiently
large, we have x, ;€ B, () and, since u, ;€ 77,
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F*(xsj,u:j ()ng), D¢(-x£j)) E O

If we send j — oo, we find thatu € .. ]

Proposition 1.10. Let 2 be locally compact. Let % C /. That is, F is a family
of viscosity subsolutions of (FE). Assume that sup % is locally bounded in S2. Then
we have sup ¥ € /.

Remark 1.6. By definition, the set §2 is locally compact if for any x € £2, there
exists a constant r > 0 such that £ N B,(x) is compact. For instance, every
open subset and closed subset of R” are locally compact. The set 4 := (0, 1) x
[0, 1] C R? is locally compact, but the set A U {(0, 0)} is not locally compact.

Remark 1.7. Similarly to Remark 1.5, if §2 is locally compact, then the C'!
regularity of the test functions in the Definition 1.2 can be replaced by the C*°
regularity.

Proof. Setu = sup.%.Let¢ € C'(£2) and £ € £2, and assume that
max(u® —¢) = (" —$)(¥) = 0.

We assume moreover that X is a strict maximum point of u* — ¢. That is, we have
(u* — ¢)(x) < 0 forall x # X. Choose a constant 7 > 0 so that W := £ N B, (%)
is compact.

By the definition of u*, there are sequences {yx} C W and {v;} C .# such that

Yi — X, (k) = u*(X) as k — oo.
Since W is compact, for each k € N we may choose a point x; € W such that

mua}x(v]f —¢) = (v — P)(xp).

By passing to a subsequence if necessary, we may assume that {x; } converges to a
point z € W. We then have

0=@"—¢)X) = (" —¢)(xk) = (v —P)(xx)
> (v — ) ) = (e — $) (i) — (" — $)(%) = 0,

and consequently
lim u*(x;) = lim v} (x¢) = u™(%).
k—00 k—o00

In particular, we see that

" = $)() = lim (" = $)(x;) = 0.
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which shows that z = X. That is, limy 00 X = X.
Thus, we have x; € B, (x) for sufficiently large k € N. Since vy € ., we get

Fi(xg, v (xr), Dp(xx)) <0
if k is large enough. Hence, sending k — oo yields

which proves thatu € .. O

Theorem 1.3. Let §2 be a locally compact subset of R". Let {uc}sc01) and
{Fe}ec1y be locally uniformly bounded collections of functions on 2 and
2 xR x R", respectively. Assume that for each ¢ € (0, 1), u. is a viscosity
subsolution of

Fo(x,u:(x),Du,(x)) <0 in £2.

Set

u(x) = rgr&_ sup{us(y) : y € B,(x) N 2, ¢ € (0, r)},

F¢) = rE)I(I)l+inf{Fg(77) neRxRxR", [n—§& <r,ee€(0,r)}
Then u is a viscosity subsolution of

F(x,u(x), Du(x)) <0 in £2.
Remark 1.8. The function u is upper semicontinuous in §2. Indeed, we have
u(y) < sup{us(z) : ze B,(x) N2, e € (0, r)}

forall x € £2 and y € B,(x) N £2. This yields

limsupu(y) < supius(z) : z€ B,(x) N2, € (0, r)}

23y—>x
for all x € §2. Hence,

limsupu(y) < u(x) forallx € £2.

23y—x

Similarly, the function F is lower semicontinuous in £2 x R x R".

Proof. It is easily seen that forall x € £2,r > 0and y € B,(x) N £2,

uy(y) < sup{us(z) : z € B,(x) N 2}.
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From this we deduce that

u(x) = rg%lJrsup{uZ(y) Yy EeEB(X)NKR,0<e<r} foral x € 2.

Hence, we may assume by replacing u, by u} if necessary that u, € USC(£2).
Similarly, we may assume that F, € LSC(£2 x R x R").

Let ¢ € C!(£2) and £ € £2. Assume that i — ¢ has a strict maximum at £. Let
r > 0 be a constant such that B, (X) N £2 is compact.

For each k € N we choose yx € By (X) N §2 and &, € (0, 1/k) so that

|i(X) — ue, (vi)| < 1/k,

and then choose a maximum point x; € B, (%) N £2 of u., — ¢ over B,(X) N 2.
Since

(g, — P)(xk) = (e, — ) (Vi)

we get
111;1 s:);p(usk =) (xx) > (=) (%),

which implies that

lim x; =X and lim wu,, (x;) = u(%).
k—o00 k—o00

If k € N is sufficiently large, we have x; € B,(X) N §2 and hence

Fe, (xic, ue (xi), DP(xx)) < 0.
Thus, we get
F(X,u(%), Dp(%)) < 0. O

Proposition 1.9 can be seen now as a direct consequence of the above theorem.
The following proposition is a consequence of the above theorem as well.

Proposition 1.11. Let §2 be locally compact. Let {uy} be a sequence of viscosity
subsolutions of (FE). Assume that {uy} C USC(£2) and that {uy} is a nonincreasing
sequence of functions on 82, i.e., up(x) > ug4+1(x) for all x € 2 and k € N. Set
u(x) = lim wur(x) for x € 52.
k—o00
Assume that u is locally bounded on §2. Then u € ./~

Let us introduce the (outer) normal cone N(z, §2) at z € §2 by

Nz R2)={peR":0>p-(x—2)+o(x—2z|) as 23> x — z}.
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Another definition equivalent to the above is the following:
N(z. 2) = —DT15(2).

where 1 denotes the characteristic function of §2. Note that if z € §2 is an interior
point of £2, then N(z, £2) = {0}.

We say that (FE) or the pair (F, §2) is proper if F(x,r, p + q) > F(x,r, p) for
all (x,r,p) € 2 xR xR"andall g € N(x, £2).

Proposition 1.12. Assume that (FE) is proper. If u € CY(82) is a classical
subsolution of (FE), thenu € /™.

Proof. Let ¢ € C'(£2) and assume that u — ¢ attains a maximum at z € 2. We may
assume by extending the domain of definition of u and ¢ that # and ¢ are defined
and of class C! in B,(z) for some r > 0. By reselecting r > 0 small enough if
needed, we may assume that

u—¢)(x) <(w—¢)x)+1 forall x € B,(z).

It is clear that the function u — ¢ 4 1 attains a maximum over B,(z) at z, which
shows that D¢ (z) — Du(z) € DT 15(z). Setting ¢ = —D¢(z) + Du(z), we have
Du(z) = D¢(z) + ¢ and

0> F(z,u(z), D¢(2) + q) = F(z,u(z), DP(2)) = Fi(z,u(z), DP(2)),

which completes the proof. O

Proposition 1.13 (Perron method). Let % be a nonempty subset of .~ having

the properties:

(P1) sup F € &.

(P2) Ifv € .F and v & /7, then there exists aw € .F such that w(y) > v(y) at
some point y € §2.

Then sup & € .7.

Proof. We have sup.# € % C . Thatis, sup.# € .. If we suppose that
sup.# ¢ .7, then, by (P2), we have w € .% such that w(y) > (sup.%)(y) for
some y € §2, which contradicts the definition of sup .%. Hence, sup % € . .o

Theorem 1.4. Assume that S2 is locally compact and that (FE) is proper. Let f €
LSC(£2) N~ and g € USC(2) N .. Assume that f < g in 2. Set
F={ves : f<v=<ginf}

Then sup & € .7.

In the above theorem, the semicontinuity requirement on f, g is “opposite”
in a sense: the lower (resp., upper) semicontinuity for the subsolution f (resp.,
supersolution g). This choice of semicontinuities is convenient in practice since
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in the construction of supersolution f', for instance, one often takes the infimum of
a collection of continuous supersolutions and the resulting function is automatically
upper semicontinuous.

Of course, under the same hypotheses of the above theorem, we have following
conclusion as well: if we set FT = {v € St : f < v < gin 2}, then
inf7t e.7.

Lemma 1.3. Assume that §2 is locally compact and that (FE) is proper. Letu € ./~
and y € §2, and assume that u is not a viscosity supersolution of (FE) at y, that is,

F*(y,ux(y), p) <0 forsome p € D™ u.(y).
Let ¢ > 0 and U be a neighborhood of y. Then there exists a v € .~ such that

u(x) < v(x) < max{u(x),us(y) +¢e} forall x € 2,
vV=1u in .Q \ U, (22)
Vs (¥) > ux ().

Furthermore, if u is continuous at y, then there exist an open neighborhood V of y
and a constant § > 0 such that v is a viscosity subsolution of

F(x,v(x),Dv(x)) ==6 inVNSL. (23)

Proof. By assumption, there exists a function ¢ € C!(£2) such that u.(y) = ¢(y),
ux(x) > ¢(x) forall x # y and

F*(y,ux(y). D$(y)) < 0.
Thanks to the upper semicontinuity of F*, there exists a § € (0, ¢) such that
F*(x,¢(x) +1t,Dp(x)) < —8 forall (x,t) € (Bs(y) N 2)x[0,8], (24)

and Bs(y) N 2 is a compact subset of U.
By replacing § > 0 by a smaller number if needed, we may assume that

$(x) +8 <u.(y)+e forall x € Bs(y)N 2. (25)

Since ux — ¢ attains a strict minimum at y and the minimum value is zero, if
(2 N Bs(y)) \ Bsj2(y) # 9, then the constant

m:=  _ min (usx — @)
(2NBs(y)\Bs/2(y)
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is positive. Of course, in this case, we have
usx(x) > ¢(x) +m forall x € (2N Bs(y)) \ Bs;a(y).

Set A = min{m, 8} if (2N Bs(y))\ Bs;>(y) # @ and A = § otherwise, and observe
that
us(x) = ¢p(x) + 4 forall x € (2N Bs(»)) \ Bs2(y)- (26)

We define v : £2 — R by

max{u(x),¢(x) + A} if x € Bs(y),
v(x) =
u(x) if x & Bs(y).

If we set ¥(x) = ¢(x) + A for x € Bs(y) N £2, by (24), ¥ is a classical
subsolution of (FE) in Bs(y) N £2. Since (FE) is proper, ¥ is a viscosity subsolution
of (FE) in Bs(y) N £2. Hence, by Proposition 1.10, we see that v is a viscosity
subsolution of (FE) in Bs(y) N £2.

According to (26) and the definition of v, we have

v(x) = u(x) forallx € 22\ Bs/2(y).

and, hence, v is a viscosity subsolution of (FE) in £2 \ Bj /2(y) Thus, we find that
ve.sS.

Since v = u in £2 \ Bs(y) by the definition of v, it follows that v = uin 2 \ U.
It is clear by the definition of v that v > u in £2. Moreover, by (25) we get

v(x) < max{u(x), u«(y) + ¢} forallx € 2N Bs(y).
Also, observe that

vx(y) = max{ux(y), ux(y) + A} = ux(y) + 4 > ux(y).

Thus, (22) is valid.
Now, we assume that u is continuous at y. Then we find an open neighborhood
V C Bs(y) of y such that

u(x) < ¢p(x)+ A forall x e Vn £2,

and hence, we have v(x) = ¢(x) + A for all x € V' N £2. Now, by (24) we see that
v is a classical (and hence viscosity) subsolution of (23). O

Proof (Theorem 1.4). We have F # @ since f € .%. In view of Proposition 1.13,
we need only to show that the set . satisfies (P1) and (P2).
By Proposition 1.10, we see immediately that .% satisfies (P1).
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To check property (P2), let v € .% be not a viscosity supersolution of (FE). There
is a point y € £2 where v is not a viscosity supersolution of (FE). That is, for some
p € D7 v« (y), we have

Noting v« < g« in £2, there are two possibilities: v« (y) = g« (V) or v« (y) < g«(¥).
If v« (y) = g«(y), then p € D™ g«(y). Since g € . T, we have

F*(y,g+(»). p) =0,

which contradicts (27). If v« (y) < g«(»), then we choose a constant ¢ > 0 and a
neighborhood V of y so that

V«(y) + & < g«(x) forallx e VN 2. (28)

Now, Lemma 1.3 guarantees that there exist w € ¥~ such that v < w <
max{v, v« (y) +e}in 2, v =win 2\ V and wi(y) > v«(y). Foranyx €e 2NV,
by (28) we have

w(x) < max{v(x), g«(x)} < g(x).

Forany x € 2\ V, we have

w(x) =v(x) < g(x).

Thus, we find that w € %. Since w«(y) > v«(y), it is clear that w(z) > v(z) at
some point 7 € £2. Hence, .% satisfies (P2). O

1.5 An Example

We illustrate the use of the stability properties established in the previous subsection
by studying the solvability of the Dirichlet problem for the eikonal equation

|Du(x)| = k(x) in £2, (29)

u(x) =0 on 052, (30)

where 2 is a bounded, open, connected _subset of R"and k € C (§) is a positive
function in £2, i.e., k(x) > O for all x € £2.

Note that the constant function f(x) := 0 is a classical subsolution of (29). Set

M = maxg k. We observe that for each y € 02 the function g, (x) := M|x — y|
is a classical supersolution of (29). We set

g(x) =inf{g,(x) : y € 02} for x € Q.
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By Proposition 1.10 (its version for supersolutions), we see that g is a viscosity
supersolution of (29). Also, by applying Lemma 1.1, we find that g is Lipschitz
continuous in £2.

An application of Theorem 1.4 ensures that there is a viscosity solution u :
2 — R of (29) such that f < u < g in £2. Since f(x) = g(x) = 0 on 082, if
we set u(x) = 0 for x € 952, then the resulting function u is continuous at points
on the boundary d£2 and satisfies the Dirichlet condition (30) in the classical sense.

Note that u* < g in §2, which clearly implies that u = u* € USC(£2). Now,
if we use the next proposition, we find that u is locally Lipschitz continuous in §2
and conclude that u € C(£2). Thus, the Dirichlet problem (29)—(30) has a viscosity
solution u € C(£2) which satisfies (30) in the classical (or pointwise) sense.

Proposition 1.14. Let R > 0, C > 0 and u € USC(Bg). Assume that u is a
viscosity solution of
|Du(x)| < C in Bg.

Then u is Lipschitz continuous in Bgr with C being a Lipschitz bound. That is,
lu(x) —u(y)| < C|x —y|forall x,y € Byg.

Proof. Fix any 7z € By and set r = (R — |z])/4. Fix any y € B,(z). Note that
B3, (y) C Bg. Choose a function f € C!([0, 3r)) so that f(t) = ¢ forall z €
[0, 2r], f/(t) = 1 forallt € [0, 3r) and lim,—,3,— f(¢) = oco. Fix any ¢ > 0, and
we claim that

u(x) <vx):=u(y)+(C +¢)f(|Jx—y|) forall x € B3 (y). (3D

Indeed, if this were not the case, we would find a point £ € Bs,(y) \ {y} such that
u — v attains a maximum at £, which yields together with the viscosity property of u

C=|DvE)|=(C+e)f(E-y)=C +e.
This is a contradiction. Thus we have (31).
Note that if x € B, (z), then x € By,(y) and f(]x — y|) = |x — y|. Hence, from
(31), we get
u(x) —u(y) = (C +¢)|x—y| forallx,y € B,(z).
By symmetry, we see that
lu(x) —u(y)| < (C +¢)|x —y| forallx,y € B,(2),

from which we deduce that

lu(x) —u(y)| < Clx —y| forallx,y € B,(z), (32)
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Now, let x, y € Bpg be arbitrary points. Set r = %min{R — |x|, R —|y|}, and
choose a finite sequence {z; }*_ of points on the line segment [x, y] so that zo = x,
vy =V, |zi —zi—1| < rforalli =1,..., N and Z,N:l |zi —zi—1] = |x — y|. By
(32), we get

lu(z;) —u(zi—1)| < Clzi —zi—| foralli =1,...,N.

Summing these overi = 1, ..., N yields the desired inequality. O

1.6 Sup-convolutions

Sup-convolutions and inf-convolutions are basic and important tools for regularizing
or analyzing viscosity solutions. In this subsection, we recall some properties of
sup-convolutions.

Let u : R" — R be a bounded function and ¢ € R,. The standard sup-
convolution #* : R" — R and inf-convolution u, : R" — R are defined,
respectively, by

1 1
£ (x) = sup (u(y) L x|2) and 1,(x) = inf (u(y) + Ly x|2) .
yeRn 2¢e yER" ¢

Note that

() = =sup (=u(3) = Iy =+ ) = = o).

This relation immediately allows us to interpret a property of sup-convolutions into
the corresponding property of inf-convolutions.

In what follows we assume that u is bounded and upper semicontinuous in R”.
Let M > 0 be a constant such that |u(x)| < M for all x € R”".

Proposition 1.15. (i) We have
—M <u(x) <u®(x) <M forall x e R".

(ii) Let x € R" and p € DV uf(x). Then

M
Ip| < 2,/? and p e DV u(x + ep).

Another important property of sup-convolutions is that the sup-convolution u?® is
semiconvex in R”. More precisely, the function

1 1 1
u(x) + Z—IXI2 = sup (u(y) ——yP+-y- X)
& yeR® 2¢e &
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is convex in R" (see Appendix A.2) as is clear from the form of the right hand side
of the above identity.

Proof. To show assertion (i), we just check that for all x € R”,

u'(x) < sup u(y) < M,
yeR”

and
u*(x) > u(x) > —M.

Next, we prove assertion (ii). Let £ € R” and p € DT uf(%). Choose a point
y € R” so that

. N 1 . .
u'(®) = u(®) = 519 - 2%

(Such a point y always exists under our assumptions on u.) It is immediate to see
that

1
7519 = &P = u(@® —u'(®) < 2M. (33)
e
We may choose a function ¢ € C!'(R") so that D¢ (%) = p and maxgs (u°—¢) =

(u® — ¢)(X). Observe that the function

1
R 5 (x,) = u(y) = 5|y = xI” =4 (x)
attains a maximum at (x, ). Hence, both the functions
n 1 N 2
R'sxt>——|y—x|"—¢(x)
2¢e
and

R'sxulx+y—X%)—o¢(x)

attain maximum values at x. Therefore, we find that
1
—-(X—=9)+ D¢p(x) =0 and D¢(%) € DT u(P),
£

which shows that |
p=—( = e Dru(f).

From this, we get § = £ + ¢p, and, moreover, p € DTu(X + &p). Also, using
(33), we get |p| < 2./M/e. Thus we see that (ii) holds. O

The following observations illustrate a typical use of the above proposition.
Let £2 be an open subset of R". Let H : 2 xR" — Randu : £2 — R be
bounded and upper semicontinuous. Let M > 0 be a constant such that |u(x)| < M
forall x € 2. Lete > 0. Set § = 2+/eM and 25 = {x € £ : dist(x, d2) > §}.
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Define u® as above with u extended to R” by setting u(x) = —M for x € R" \ £2.
(Or, in a slightly different and more standard way, one may define u® by

1
U (x) = sup (u(y) Sbyiae ylz) D)
eR &

y

By applying Proposition 1.15, we deduce that if u is a viscosity subsolution of
H(x,Du(x)) <0 in £,
then u° is a viscosity subsolution of both

H(x + eDu’(x), Duf(x)) <0 in £2s, (34)

|Du® (x)| < 2,/% in £25. (35)

G(x,p)= inf H(x+ y,p) for x € s,
YEB;

and

If we set

then (34) implies that #° is a viscosity subsolution of
G(x,Du’(x)) <0 in £2s.

If we apply Proposition 1.14 to u®, we see from (35) that u® is locally Lipschitz
in .Qg.

2 Neumann Boundary Value Problems

We assume throughout this section and the rest of this article that 2 C R”" is open.
We will be concerned with the initial value problem for the Hamilton—Jacobi
equation of evolution type

%(x,t) + H(x, Dyu(x,t)) =0 in £ x (0, o0),

and the asymptotic behavior of its solutions u(x, t) as t — oo.
The stationary problem associated with the above Hamilton—Jacobi equation is

stated as
H(x,Du(x)) =0 in$2,
(36)
boundary condition on 952.
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In this article we will be focused on the Neumann boundary value problem
among other possible choices of boundary conditions like periodic, Dirichlet, state-
constraints boundary conditions.
We are thus given two functions y € C(352,R") and g € C(9£2,R) which
satisfy
v(x)-y(x) >0 forall x € 952, 37

where v(x) denotes the outer unit normal vector at x, and the boundary condition
posed on the unknown function u is stated as

y(x) - Du(x) = g(x) forx € 052.

This condition is called the (inhomogeneous, linear) Neumann boundary condition.
We remark that if u € C'(£2), then the directional derivative du/dy of u in the
direction of y is given by

u(x + 1y (x)) — u(x)
t

d
—M(x) = y(x) - Du(x) = lim for x € 952.
a]/ t—0

(Note here that u is assumed to be defined in a neighborhood of x.)
Our boundary value problem (36) is now stated precisely as
H(x,Du(x)) =0 in £2,
u (SNP)
a—(x) = g(x) on 052.
4

Let U be an open subset of R” such that U N 2 # @. At this stage we briefly
explain the viscosity formulation of a more general boundary value problem
F(x,u(x),Du(x)) =0 inU N £2,

(38)
B(x,u(x),Du(x)) =0 onU Nas2,

where the functions F : (UNR)xRxR" >R, B : (UNJIR)xRxR" - R
and u : (U N ) — R are assumed to be locally bounded in their domains of
definition. The function u is said to be a viscosity subsolution of (38) if the following
requirements are fulfilled:

peCl(R), e, max*—¢)=u*—¢)X)
2
—

() Fe(Ru*(R), DP(X)) <0 if felUnNQ,
(i) Fe(R,u*(R), DH(X)) A Bu(R, u*(R). DH(X)) <0 if £ € UNIN.
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The upper and lower semicontinuous envelopes are taken in all the variables. That
is,forx eUNK,Ec(UNKX)xRxR"andn € (UNaIR)xRxR",

u*(x) = rgr&_ sup{u(y) : y € B,(x) NU N 2)},
Fi(§) = Erél_l_inf{F(X) X e(UNK)xRxR", | X —&| <r},

Bu(p) = lim inf{B(Y) : ¥ € (UN0Q) x RxR". |Y —y| <r}.

The definition of viscosity supersolutions of the boundary value problem (38) is
given by reversing the upper and lower positions of *, the inequalities, and “sup”
and “inf” (including A and V), respectively. Then viscosity solutions of (38) are
defined as those functions which are both viscosity subsolution and supersolution
of (38).

Here, regarding the above definition of boundary value problems, we point out
the following: define the function G : (U N 2) x R x R” — R by

F(x,u,p) ifxe$,
G(x,u,p) = (39)
B(x,u,p) if x €042,

and note that the lower (resp., upper) semicontinuous envelope G (resp., G*) of G
is given by

Fu(x,u, p) if x € £2,
Fi(x,u, p) A Be(x,u,p) ifx €982

G*()C,Lt, p) =

F*(x,u, p) if x € £2,
(resp., G*(x,u, p) = P )

F*(x,u,p)v B*(x,u,p) ifx e df2

Thus, the above definition of viscosity subsolutions, supersolutions and solutions of
(38) is the same as that of Definition 1.2 with F and 2 replaced by G defined by (39)
and U N £2, respectively. Therefore, the propositions in Sect. 1.4 are valid as well
to viscosity subsolutions, supersolutions and solutions of (38). In order to apply the
above definition to (SNP), one may take R” as U or any open neighborhood of £2.

In Sect. 1.4 we have introduced the notion of properness of PDE (FE). The
following example concerns this property.

Example 2.1. Consider the boundary value problem (38) in the case where n = 1,
2 =0,1),U =R, F(x,p) = p—1and B(x,p) = p — 1. The function
u(x) = x on [0, 1]1is a classical solution of (38). But this function u is not a viscosity
subsolution of (38). Indeed, if we take the test function ¢ (x) = 2x, then u — ¢ takes
a maximum at x = 0 while we have B(0,¢'(0)) = F(0,¢'(0)) =2—-1=1> 0.
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However, if we reverse the direction of derivative at 0 by replacing the above B by
the function

p—1 forx =1,
B(x,p) =
—-p+1 forx=0,

then the function u is a classical solution of (38) as well as a viscosity solution
of (38).

Definition 2.1. The domain £2 is said to be of class C' (or simply £2 € C') if there
is a function p € C!(R") which satisfies

2 ={xeR": p(x) <0},

Dp(x) #0 forall x € 052.

The functions p having the above properties are called defining functions of 2.

Remark 2.1. If p is chosen as in the above definition, then the outer unit normal
vector v(x) at x € 452 is given by

Dp(x)

YO =

Indeed, we have
N(x,82) = {tv(x) : t =0} forall x € 0£2.

To see this, observe that if t > 0, then 15 4+ 7o as a function in R” attains a local
maximum at any point x € 052, which shows that

t|Dp(x)|v(x) € —D+1§(x) = N(x, ).

Next, let z € 352 and ¢ € C'(R") be such that 15 — ¢ attains a strict maximum
over R” at z. Observe that —¢ attains a strict maximum over £2 at x. Fix a constant
r > 0 and, for each k € N, choose a maximum (over B, (z)) point x; € B,(z) of
—¢ — kp?, and observe that —(¢ + kp?)(xx) > —(¢ + kp?)(z) = —¢(z) for all
k € N and that x; — zas k — oo. For k € N sufficiently large we have

D(¢ + kp?)(xx) = 0,

and hence
D (xx) = —2kp(xi) Dp(xi),

which shows in the limit as k — oo that

D¢ (z) = —tDp(z) = —t|Dp(2)[v(2),
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where ¢ = limy— 00 2kp(xx) € R. Noting that —(¢ + kp?)(x) < —¢(x) < —¢(2)
for all x € £2, we find that x € B,(z) \ £2 for all k € N. Hence, we have 1 > 0.
Thus, we see that N(z, £2) C {tv(z) : ¢t > 0} and conclude that N(z, £2) = {tv(z) :
t >0}

Henceforth in this section we assume that £2 is of class C!.

Proposition 2.1. If u € C'(2) is a classical solution (resp., subsolution, or

supersolution) of (SNP), then it is a viscosity solution (resp., subsolution, or
supersolution) of (SNP).

Proof. Let G be the function given by (39), with B(x,u, p) = y(x) - p — g(x).
According to the above discussion on the equivalence between the notion of
viscosity solution for (SNP) and that for PDE G(x,Du(x)) = 0 in £ and
Proposition 1.12, it is enough to show that the pair (G, £2) is proper. From the above
remark, we know that for any x € 92 we have N(x, 2) = {tv(x) : t > 0} and

Gx,p+tv(x)=yx)-(p+tvx)) >yx)-p=G(x,p) forallt > 0.

As we noted before, we have N(x, Q) = {0} if x € 2. Thus, we have forall x € £
and all g € N(x, £2),
G(x,p+4q) = G(x, p). o

We may treat in the same way the evolution problem

u(x,t) + H(x,t, Dyu(x,t)) =0 in £2 x J,

du (40)
a—(xJ)Zg(x,l) on 92 x J,
Y

where J is an open interval in R, H : 2xJxR"—>Randg : 92 xJ — R.If
weset 2 =2 xR, U=R"xJ,

F(x,t,p.q) =q+ H(x,p) for (x,t,p.q) € 2 xJ xR" xR,

and
B(x,t,p,q) = y(x)-p—g(x,t) for (x,t,p,q) € 02 x J xR" xR,

then the viscosity formulation for (38) applies to (40), with §2 replaced by 2.

We note here that if p is a defining function of £2, then it, as a function of (x, ¢), is
also a defining function of the “cylinder” £2 xR. Hence, if we set ¥ (x, 1) = (y(x),0)
and V(x, 1) = (v(x),0) for (x,t) € (2 x R) = 9£2 x R, then V(x, ?) is the outer
unit normal vector at (x,7) € 052 x R. Moreover, if y satisfies (37), then we have
7(x,t)-V(x,t) = y(x)-v(x) > 0forall (x,7) € 382 x R. Thus, as Proposition 2.1
says, if (37) holds, then any classical solution (resp., subsolution or supersolution)
of (40) is a viscosity solution (resp., subsolution or supersolution) of (40).

Before closing this subsection, we add two lemmas concerning C' domains.



148 H. Ishii

Lemma 2.1. Let §2 be a bounded, open, connected subset of R". Assume that 2 is
of class C'. Then there exists a constant C > 0 and, for each x,y € 2 with x # y,
a curve n € AC([0, t(x, y)]), with t(x,y) > 0, such that t(x,y) < Clx — y|,
n(s) € 2 foralls € (0, t(x,y)), and |7(s)| < 1fora.e. s € [0, t(x,y)].

Lemma 2.2. Let §2 be a bounded, open, connected subset of R". Assume that 2 is
of class C'. Let M > 0 and u € C(82) be a viscosity subsolution of |Du(x)| < M
in §2. Then the function u is Lipschitz continuous in §2.

The proof of these lemmas is given in Appendix A.3.

3 Initial-Boundary Value Problem for Hamilton-Jacobi
Equations

We study the initial value problem for Hamilton—Jacobi equations with the
Neumann boundary condition.
To make the situation clear, we collect our assumptions on §2, y and H.

(A1) £2 is bounded open connected subset of R”.
(A2) f2isofclass Cl.

(A3) y € C(0£2,R") and g € C(342,R).

(A4) y(x)-v(x) > 0forall x € 9£2D.

(A5) H € C(2 xR").

(A6) H is coercive, i.e.,

lim inf{H(x,p) : (x,p) € 2 xR", |[p| > R} = c0.
R—00

In what follows, we assume always that (A1)—(A6) hold.

3.1 Initial-Boundary Value Problems

Given a function uy € C(£2), we consider the problem of evolution type

u, + H(x,Dyu) =0 in £ x (0, 00),
y(x) - Dyu = g(x) on 952 x (0, 00),

(ENP)

u(x,0) = up(x) for x € 2. (ID)

Here u = u(x,t) is a function of (x,¢) € £2 x [0, 00) and represents the unknown
function.
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When we say u is a (viscosity) solution of (ENP)—(ID), u is assumed to satisfy
the initial condition (ID) in the p(ﬂltwise (classical) sense.
Henceforth Q denotes the set £2 x (0, c0).

Theorem 3.1 (Comparison). Let u € USC(Q) and v € LSC(Q) be a viscosity
subsolution and supersolution of (ENP), respectively. Assume furthermore that
u(x,0) < v(x,0) forall x € 2. Thenu <vin Q.

To proceed, we concede the validity of the above theorem and will come back to
its proof in Sect. 3.3.

Remark 3.1. The above theorem guarantees that if u is a viscosity solution of
(ENP)—(ID) and continuous for # = 0, then it is unique.

Theorem _3.2 (Existence). There exists a viscosity solution u of (ENP)—(ID) in the
space C(Q).
Proof. Fix any ¢ € (0, 1). Choose a function ug, € C'(£2) so that

lug.e(x) — up(x)| <& forall x € 2.
Let p € C'(R") be a defining function of £2. Since
Dp(x) = |Dp(x)|v(x) forx € 02,
we may choose a constant M, > 0 so large that

M.y(x)- Dp(x) > nalgx(|g| + |y - Dug.|) forall x € 952.

Next choose a function ¢{ € C'(R) so that

§'0) =1,
-1<t(@)<0 for r <0,
0<t(r)y<1 for r < 0.

Setting
Xe(x) = el(Mep(x)/e),

we have

—e<y.(x) <0 forall x € £2,

Y(x) - Dye(x) = |g(x)] + |y(x) - Dupe(x)|  forall x € 982,
and we may choose a constant C, > 0 such that

[Dy:(x)| < C, forall x € 2.
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Then define the functions fgjE e C1(2) by

FEX) = uoe(x) £ (fe(x) + 20),

and observe that

up(x) < fH(x) <up(x) +3¢ forall x € 2,
up(x) > f.(x) > up(x) —3e  forall x € 2,
y(x) - DT (x) > g(x) forall x € 082,
y(x)-Df (x) < g(x) for all x € 052.

Now, we choose a constant A, > 0 large enough so that
|H(x,Df£i(x))| < A, forall x € 2,
and set

gX(x.t) = fE(x) £ At for (x,1) € Q.

The functions g, g7 € C (Q) are a viscosity supersolution and subsolution of
(ENP), respectively.
Setting
ht(x,t) = inf{g;r(x,t) e € (0, 1)},

h(x.1) = suplgs (x.1) : & € (0, 1)},
we observe that #t € USC(Q) and i~ € LSC(Q) are, respectively, a viscosity
supersolution and subsolution of (ENP). Moreover we have

up(x) = h*(x,0) forall x € 2,
h™(x,t) <up(x) <ht(x,t) forall (x,1) € Q.
By Theorem 1.4, we find that there exists a viscosity solution u of (ENP) which

satisfies B
h™(x,t) <u(x,t) <ht(x,t) forall (x,t) € Q.

Applying Theorem 3.1 to u™ and u, yields
u* <u, forall (x,1) € Q,

while usx < u* in Q by definition, which in particular implies that u € C(Q). The
proof is complete. O

Theorem 3.3 (Uniform continuity). The viscosity solution u € C Q) of (ENP)-
(ID) is uniformly continuous in Q. Furthermore, if uy € Lip(§2), then u € Lip(Q).
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Lemma 3.1. Let uyp € Lip(2). Then there is a constant C > 0 such that the

Sunctions ug(x) + Ct and uy(x) — Ct are, respectively, a viscosity supersolution
and subsolution of (ENP)—(ID).

Proof. Let p and ¢ be the functions which are used in the proof of Theorem 3.2.
Choose the collection {ug ¢ }sc(0,1) C C 1(£2) of functions so that

lim [|ug,e — o002 = 0,
e—0

sup ||Duoelloo.2 < 00.
£€(0,1)

As in the proof of Theorem 3.2, we may fix a constant M > 0 so that

My(x)- Dp(x) = M[Dp(x)|v(x) - y(x)
> |g(x)| + |y(x) - Dup.(x)| forall x € 952.

Next set
R = sup ||Dupellco2 + M || Dplloo.e2,
£€(0,1)
and choose C > 0 so that
max |H| < C.
EXER

Now, we put
v (x. 1) = uge(x) £ (Mel(p(x)/e) + C) for (x.1) € Q,

and note that v and v are a classical supersolution and subsolution of (ENP).
Sending ¢ — 0+, we conclude by Proposition 1.9 that the functions u(x) + Ct and
up(x) — Ct are a viscosity supersolution and subsolution of (ENP), respectively. O

Proof (Theorem 3.3). We first assume that uo € Lip(£2), and show that u € Lip(Q).
According to Lemma 3.1, there exists a constant C > 0 such that the function
up(x) — Ct is a viscosity subsolution of (ENP). By Theorem 3.1, we get

u(x,t) > up(x) — Ct forall (x,t) € 0.

Fix any ¢ > 0, and apply Theorem 3.1 to the functions u(x, ¢ + s) and u(x, s) — Ct
of (x, s), both of which are viscosity solutions of (ENP), to get

u(x,t +s) > u(x,s)—Ct forall (x,5) € Q.
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Hence, if (p,q) € Dt u(x,s), then we find that as t — 0+,
u(x,s) <u(x,s +1t)+ Ct <u(x,s) + qt + Ct + o(t),
and consequently, ¢ > —C. Moreover, if x € §2, we have
0>qg+ H(x,p)> H(x,p)—C.
Due to the coercivity of H, there exists a constant R > 0 such that
p € Br.

Therefore, we get
g <—H(x,p) < max |H|.

2XBp

Thus, if (x,s) € 2 x (0,00) and (p,q) € DV u(x, s), then we have

Ipl + gl <M = R+ C + max |H|.
2XBR

Thanks to Proposition 1.14, we conclude that u is Lipschitz continuous in Q.
Next, we show in the general case that u € UC(Q). Let ¢ € (0, 1), and choose a
function up, € Lip(§2) so that

lluo.e — uolloo < &
Let u, be the viscosity solution of (ENP) satisfying the initial condition
us(x,0) = ug(x) forall x € 2.
As we have shown above, we know that u, € Lip(Q). Moreover, by Theorem 3.1

we have
s —ull o < &

It is now obvious that u € UC(Q). O

3.2 Additive Eigenvalue Problems

Under our hypotheses (A1)-(A6), the boundary value problem

H(x,Du) =0 in £2,
y(x)-Du= g(x) ondf2

(SNP)
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may not have a viscosity solution. For instance, the Hamiltonian H(x, p) = |p|>*+1
satisfies (AS5) and (A6), but, since H(x, p) > 0, (SNP) does not have any viscosity
subsolution.

Instead of (SNP), we consider the additive eigenvalue problem

H(x,Dv) =a in 2,

(EVP)
y(x)-Dv = g(x) onds2.
This is a problem to seek for a pair (a,v) € R x C(£2) such that v is a viscosity
solution of the stationary problem (EVP). If (a, v) € R x C(£2) is such a pair, then a
and v are called an (additive) eigenvalue and eigenfunction of (EVP), respectively.
This problem is often called the ergodic problem in the viewpoint of ergodic optimal
control.

Theorem 3.4. (i) There exists a solution (a,v) € R x Lip(£2) of (EVP). B
(ii) The eigenvalue of (EVP) is unique. That is, if (a,v), (b,w) € R x C(£2) are
solutions of (EVP), thena = b.

The above result has been obtained by Lions et al., Homogenization of Hamilton-
Jacobi equations, unpublished.
In what follows we write ¢* for the unique eigenvalue a of (EVP).

Corollary 3.1. Letu € C (Q) be the solution of (ENP)—(ID). Then the function
u(x,t) + c*t is bounded on Q.

Corollary 3.2. We have
c* =inf{a € R : (EVP) has a viscosity subsolution v}.

Lemma 3.2. Letbh,c € R andv,w € C(82). Assume that v (resp., w) is a viscosity
supersolution (resp., subsolution) of (EVP) witha = b (resp., a = c¢). Then b < c.

Remark 3.2. As the following proof shows, the assertion of the above lemma is
valid even if one replaces the continuity of v and w by the boundedness.

Proof. By adding a constant to v if needed, we may assume that v > w in £2. Since
the functions v(x) — bt and w(x) — ct are a viscosity supersolution and subsolution
of (ENP), by Theorem 3.1 we get

v(x) —bt > w(x)—ct forall (x,7) €0,

from which we conclude that b < c. O

Proof (Theorem 3.4). Assertion (ii) is a direct consequence of Lemma 3.2.
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We prove assertion (i). Consider the boundary value problem

Av+ H(x,Dv) =0 in£2,
y(x)-Dv=g on 052,

(41)

where A > 0 is a given constant. We will take the limit as A — 0 later on.

We fix A € (0, 1). Let p € C!(R") be a defining function of the domain £2.
Select a constant A > 0 so large that Ay(x) - Dp(x) > |g(x)| for all x € 952, and
then B > 0 so large that B > A|p(x)| + |H(x, £ADp(x))| forall x € 2. Observe
that the functions Ap(x) + B/A and —Ap(x) — B/A are a classical supersolution
and subsolution of (41), respectively.

The Perron method (Theorem 1.4) guarantees that there is a viscosity solution v,
of (41) which satisfies

[vi(x)| < Ap(x) + B/A < B/A forall x € 2.

Now, since .
—Avy(x) < B forall x € £2,

v, satisfies in the viscosity sense
H(x,Dvy(x)) < B forall x € £,

which implies, together with the coercivity of H, the equi-Lipschitz continuity of
{UA}AG(O 1)- Thus the collections {vy — info vj }1e(o, 1) and {Avj }ae(o, 1) of functions
on £2 are relatively compact in C(£2). We may select a sequence {Aj}jen C (0, 1)
such that

A,j — 0,
vy, (x) — igkaj — v(x),
Ajua; (x) = w(x)

for some functions v, w € C(£2) as j — oo, where the convergences to v and w are
uniform on 2. Observe that for all x € £2,

w(x) = lim A;v;;(x)
] —>00
= jli_)n;o/\j[(vxj (x) — igfvlj) + igfvlj]

= lim A; 1nfv;k ,
]—)OO

which shows that w is constant on $2. If we write this constant as a, then we see
by Proposition 1.9 that v is a viscosity solution of (EVP). This completes the proof
of (1). |
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Proof (Corollary 3.1). Let v € C(£2) be an eigenfunction of (EVP). That is, v
is a viscosity solution of (EVP), with a = c*. Then, for any constant C € R, the
function w(x, 1) := v(x)—c*t + C is a viscosity solution of (ENP). We may choose
constants C;, i = 1,2, so that v(x) + C; < up(x) < v(x) + C, forall x € Q. By
Theorem 3.1, we see that

v(x) — 't + C) <u(x,t) <v(x)—c*t + C, forall (x,t) € O,

which shows that the function u(x, t) 4 c*# is bounded on Q. O

Proof (Corollary 3.2). Tt is clear that

c* > ¢* :=inf{a € R : (EVP) has a viscosity subsolution v}.

To show that ¢* < ¢*, we suppose by contradiction that ¢* > c¢*. By the definition
of ¢*, there is a b € [c*, ¢*) such that (EVP), with ¢ = b, has a viscosity
subsolution 1. Let v be a viscosity solution of (EVP), with a = ¢*. Since b < ¥,
v is a viscosity supersolution of (EVP), with ¢ = b. We may assume that ¢ < v
in 2. Theorem 1.4 now guarantees the existence of a viscosity solution of (EVP),
which contradicts Theorem 3.4, (ii) (see Remark 3.2). O

Example 3.1. We consider the case where n = 1, 2 = (-1,1), H(x,p) =
H(p) := |p| and y(&1) = =1, respectively, and evaluate the eigenvalue c*. We
set gmin = min{g(—1), g(1)}. Assume first that g,,;, > 0. In this case, the function
v(x) = 0 is a classical subsolution of (SNP) and, hence, c* < 0. On the other hand,
since H(p) > 0 for all p € R, we have c¢* > 0. Thus, ¢* = 0. We next assume that
gmin < 0. It is easily checked that if g(1) = gmin, then the function v(x) = gminx is
a viscosity solution of (EVP), with @ = |gmin|. (Notice that

_D+v(_1) = (=00, —|gmin|] U [—[gminl, [gmin|],
—D7v(=1) = [|gminl, 0).)

Similarly, if g(—1) = gmin, then the function v(x) = |gmin|X is a viscosity solution
of (EVP), with @ = |gmia|. These observations show that ¢* = |gmin|.

3.3 Proof of Comparison Theorem

This subsection will be devoted to the proof of Theorem 3.1.
We begin with the following two lemmas.

Lemma 3.3. Let u be the function from Theorem 3.1. Set P = §2 x (0, 00). Then,
forevery (x,t) € 952 x (0, 00), we have

u(x,t) = limsup u(y,s). (42)
P3(y,5)—>(x.t)
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Proof. Fix any (x,t) € 052 x (0, 00). To prove (42), we argue by contradiction, and
suppose that

limsup u(y,s) <u(x,t).
P3(y,s)—(x,1)

We may choose a constant r € (0, ) so that
u(y,s) +r <u(x,t) forall (y,s) € PN (B, (x)x[t—r t+r]). (43)
Note that
PNB,x)x[t—=rt+r])=(RNB,(x)x[t—r t+r].

Since u is boundgd on 2 x [t —r, t + r], we may choose a constant ¢ > 0 so
that for all (y,s) € 2 x [t —r,t + 7],

u(y,s)+r—a(ly — x>+ (s—1)?) < u(x,t) if |y—x|>r/2 or |s—t| >r/2.
(44)

Let p be a defining function of £2. Let ¢ be the function on R introduced in the
proof of Theorem 3.2. For k € N we define the function ¥ € C'(R"*!) by

Y(y.s) = kLK p(1) +a(ly — xP + (s = 1)?).

Consider the function
u(y,s) —v(y,s)
ontheset (2 N B,(x)) x [t —r, t +r]. Let (yk.sx) € (2 N B, (x)) x [t —r, 1 +7]

be a maximum point of the above function. Assume that k > _r_l.
Using (43) and (44), we observe that for all (y,s) € (2N B, (x))x[t—r, t +7],
u(y,s) =y (y.s) <u(x,t) = ulx,1) —y(x,1)
ifeither y € £2, |y — x| >r/2, or |s —¢| > r/2. Accordingly, we have
(k. 5x) € (02 N B, ja(x)) x (t —r/2.t +1/2).
Hence, setting
Pk =kDp(yi) + 20(yx —x) and gk = 2a(sx —1),

we have
min{gx + H(yi. pi), y(3i) - p — &)} < 0.
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If we note that
y(7i) - Dp(yi) = miny - Dp > 0,

then, by sending k — 0o, we get a contradiction. O
Lemma 3.4. Let y,z € R", and assume that y -7 > 0. Then there exists a quadratic
Sfunction ¢ in R" which satisfies:

e(tx) = t2¢(x) forall (x,t) € R" xR,

L(x)>0 if x#0,

z-DC(x) =2(y-2)(y - x) forall x € R".

Proof. We define the function ¢ by

() = [ = 22 4 2
y-z

We observe that for any ¢ € R,

(x+1tz) = +(y-(x +12))?

2
(x+1z
xm_uz‘
-z

2
- X
x— 22 20y X)) + 2002

from which we find that

- DE(x) =2(y - 2)(y - x).

If¢(x) =0,then y -x = 0 and

Hence, we have x = 0 if {(x) = 0, which shows that {(x) > 0if x # 0. Itis
obvious that the function ¢ is homogeneous of degree two. The function ¢ has the
required properties. O

For the proof of Theorem 3.1, we argue by contradiction: we suppose that

sup (u—v) >0,
2x[0,00)

and, to conclude the proof, we will get a contradiction.
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Reduction 1: We may assume that there exist a constant § > 0 and a finite open
interval J C (0, oo) such that

u is a viscosity subsolution of

u(x,t) + H(x, Dyu(x,t)) < -6 in2xJ, (45)
y(x) - Dyu(x, 1) < g(x) on 92 x J,
max(u —v) > 0 > max (u —v), (46)
2x7T 2xaJ
and
u and v are boundedon £2 x J. 47)

Proof: We choose a T > 0 so that supgy g 7)(# —v) > 0 and set
ue(x, 1) = u(x, 1) — % for (x,1) € 2 x [0, T),

where ¢ > 0 is a constant. It is then easy to check that u, is a viscosity subsolution
of

ey + Hx, Do (xv.1) < =5 in 2 x (0.7,

0
%(x,t) < g(x) on 382 x (0, T).
4
Choosing ¢ > 0 sufficiently small, we have

sup (u, —v) > 0> max (u, —v).
2x[0.T) 2x{0}

If we choose o > 0 sufficiently small, then

max (4, —v)>0> max (u,—v).
2x[0,7—a] 2x3[0.T—a]

Thus, if we set J/ = (0, T — «) and replace u by u,, then we are in the situation of
45)-(47). |

We may assume furthermore that u € Lip(£2 x J) as follows.

Reduction 2: 'We may assume that there exist a constant § > 0 and a finite open
interval J C (0, oco) such that
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u is a viscosity subsolution of

u(x,t) + H(x, Dyu(x,t)) <—6 in§2xJ, (48)
y(x) - Deu(x,t) < g(x) on 92 x J,
max(x —v) > 0 > max(u —v), (49)
2x7J 2xaJ
and
u € Lip(2 x J) and v is bounded on £ x J. (50)

Proof. Let J be as in Reduction 1. We set J = (a,b). Let M > 0 be a bound of |u|
on 2 x [a, b].
For each ¢ > 0 we define the sup-convolution in the #-variable

us(x,t) = max (u(x,s) — - 3)2)'

s€la,b]
We note as in Sect. 1.6 that
M > ug(x,t) > u(x,t) > —M forall (x,1) € 2 x[a, b].

Noting that
1
Z—(t—s)2§2M = |t—s|<2VeM (51)
&

and setting m, = 2+/eM, we find that

t —s)? —
( ZS)) forall (x,t) € 2 x (a +mg, b —m,).
e

ug(x,t) = alilixb (u(x,s) —

Let (x,t) € 2 x (a + m,, b —m,). Choose an s € (a, b) so that

(t —s)°

ug(x,t) = u(x,s) — %

Note by (51) that
[t — 5| < m,.
Let (p,q) € D% u.(x,t) and choose a function ¢ € C'(2 x (a, b)) so that
D¢(x,t) = (p,q) and max(u, — ¢) = (u — ¢)(x,t). Observe as in Sect. 1.6 that

(p.(s—1)/e) € DT u(x.s) and (t;s)

+4q =0.
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Hence,
(p.q) € D+u(x,s).

Therefore, we have

q+H(x,p)+5=<0 if x €2,
(52)
min{g + H(x,p) + 6, y(x)-p—g(x)} <0 if x € 0£2.
Moreover, we see that
|t —s|  m,
lg| = < —.
e e
and m
H(x,p) < —q < — ifx €.
€
Hence, by the coercivity of H, we have
lg] + |pl = R(e) ifx € £2, (53)

for some constant R(g) > 0.
Thus, we conclude from (52) that u, is a viscosity subsolution of

u, + H(x,Du) < =8 in 2 x (a+mg b—m,),
y-Du<g on 052 x (a + mg, b —m,),

and from (53) that u, is Lipschitz continuous in 2 x(a+m,, b—m,). By Lemma 3.3,
we have

u(x,t) = lim sup us(y,s) forall (x,t) € 02x(a+mg, b—m,).
2x(at+mg, b—mg)3(y.s)—>(x.1)

Since u, € Lip(2 x (a + m,, b — m,)), the limsup operation in the above formula
can be replaced by the limit operation. Hence,

Us € C(ﬁx (a + mg, b _mE))a
which guarantees that u, is Lipschitz continuous in 2 x (a + mg, b —my).

Finally, if we replace u and J by u, and (a + 2m,, b — 2m,), respectively, and
select € > 0 small enough so that

_ max (e —v)>0> max (ue —v),
2x[a+2mg b—2m,) 2x0la+2mg b—2m;)

then conditions (48)—(50) are satisfied. ]
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Reduction 3: 'We may assume that there exist a constant § > 0 and a finite open
interval J C (0, oo) such that

u is a viscosity subsolution of

u(x,t) + H(x, Dyu(x,t)) < -6 in2xJ, (54)
§ y(x) - Dyu(x,t) < g(x)—26 on 42 x J,
v is a viscosity supersolution of

vi(x, 1) + H(x,Dyv(x,1)) > 8 in2 x J, (55)
{ y(x)- Dyv(x,t) > g(x)+§ on 452 x J,

max(x —v) > 0 > max(u — v), (56)
2xJ 2x0J
and
u € Lip(2 x J) and v is bounded on £ x J. 67

Proof. Letu, v, J be as in Reduction 2. Set J = (a, b). Let p be a defining function
of §2 as before. Let 0 < ¢ < 1. We set

us(x,1) = u(x,t) —ep(x) and v.(x,t) = v(x,1) +ep(x) for (x,t) € 2 x J,
and B
H.(x,p) = H(x,p —eDp(x)) + & for (x,p) € 2 xR".
Let (x,¢) € 2 x J and (p,q) € D™ v.(x, ). Then we have

(p —¢eDp(x).q) € D™ v(x,1).
Since v is a viscosity supersolution of (ENP), if x € £2, then
g+ H(x,p—¢Dp(x)) = 0.
If x € 052, then either

q+ H(x,p—eDp(x)) =0,

or
y(x)-p=y(x)-(p—eDp(x)) + ey(x) - Dp(x)

> g(x) +ey(x)- Dp(x) = g(x) + Ae,

where
A=miny-D 0).
min y p(>0)
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Now let (p,q) € D*¥uc(x,1). Note that (p + eDp(x),¢q) € D*u(x,1). Since
u € Lip(£2 x [a, b]), we have a bound Cy > 0 such that

lg] < Co.
If x € §2, then

g+ H(x,p—¢eDp(x)) <q+ H(x, p+ eDp(x)) + o(2¢| Dp(x)|)
< -6+ wReC),

where
C, = max |Dp|,
Q

and w denotes the modulus of continuity of H on the set 2 x §R+2CI ,with R >0
being chosen so that

min  H > C,.
Q% (R"\BR)

(Here we have used the fact that H(x, p + ¢Dp(x)) < Cy, which implies that
|p + eDp(x)| < R.)
If x € 052, then either

q+ H(x,p—eDp(x)) = =6 + w(2eC)),

or
y(x)-p = y(x)-(p+eDp(x)) —ey(x) - Dp(x) < g(x) — Ae.
Thus we see that v, is a viscosity supersolution of
Vey + He(x, Dyve) > ¢ in 2 xJ,
y(x) - Dyve(x,t) > g(x) + ke ondf2 x J,

and u, is a viscosity subsolution of

ey + He(x, Diu) < -8+ w(Cie) +¢ inf2xJ,

y -Du. < g(x) — Ae on 42 x J,
If we replace u, v, H and § by u,, v., H, and
min{e, Ae, § — w(2C¢) — &},

respectively, and choose ¢ > 0 sufficiently small, then conditions (54)—(57) are
satisfied. O
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Final step: Letu, v, J and 4 be as in Reduction 3. We choose a maximum point
(z,7) € £2 x J of the function u — v. Note that t € J, thatis, t & dJ.
By replacing u, if necessary, by the function

u(x,t) —elx — z|2 —e(t — 1)2,

where ¢ > 0 is a small constant, we may assume that (z, ) is a strict maximum
point of u — v.
By making a change of variables, we may assume that z = 0 and

2N By ={x =(x1,...,X,) € By, : x,, <0},

while we may assume as well that [t —r, T +r] C J.
We set 7 = y(0) and apply Lemma 3.4, with y = (0,...,0,1) e R" and z = 9,
to find a quadratic function ¢ so that
C@eg) = 12¢(¢) forall (£,7) e R" xR,
¢ >0 if §#0,
V- DE(E) =29nén  forall § =(61,....8:) €R",
where 7, denotes the n-th component of the n-tuple 7.
By replacing ¢ by a constant multiple of ¢, we may assume that
5§ =[5 forall § € R",
|IDEE)] = Col§|  forall§ € R,

R >0 if§, >0,
7PEON o i, <o,

where Cy > 0 is a constant.
Let M > 0 be a Lipschitz bound of the function u. Set

A

. LV
§=280), np=g—
17

We may assume by replacing r by a smaller positive constant if needed that for all
x € B, Nas2,

and M, =M + |u|.

) )
X)—p| < —————— and xX)—gl < =. 58
PO =< s e 4 1) -8l <3 (58)

For o > 1 we consider the function

¢(X,t,y,S) :u(x,t)—v(y,s)—u~(x—y)—a§(x—y)—ot(t—s)z
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on K := (2NB.(0,7)x[t—r T+ r])z. Let (X, t, Vo, Se) be a maximum
point of the function @. By the inequality @(yy, S¢, VasSa) < P (Xy,ly, VasSa)s
we get

a(|xy — yalz + (to — Sa)z) <a(C(xe — yao) + (ta — Sa)z)
5 u(-xouta) - “(you sa) + |[L||Xa - ya|
= M1(|xa - ya|2 + It()t - Salz)l/z,

and hence
a(lxa - Yalz + |[a - Sa|2)l/2 < M. (59)

As usual we may deduce that as & — oo,

(Xa» Ta)s (Yo Sa) — (0, 7),
(X, ty) = u(0, 1),

V(YasSe) = v(0, 7).
Let o > 1 be so large that
(Xarta)s (Vas S¢) € (2 N B) X (T —7, T +71).
Accordingly, we have

(:u“ + (XDC(XQ - Ya), ZO{(la - Sa)) € D+“(xou ta),
(4 +aD8(xqy — ya), 20(ty — 50)) € DTV (Ya, Sa)-

Using (59), we have
a|DE(xa = ya)| = Coa|xa = yo| = CoM,. (60)
If xo € 052, then x,,, = 0 and (x, — yo)» > 0. Hence, in this case, we have
P+ DE(xa = ya) = 0,
and moreover, in view of (58) and (60),

Y(xo) - (U +aD8(xe — yo)) 27 - (0 +aDE(Xq — Ya))
= ly(xe) = 7I(I] + CoMy)

§
> g(xe) — |8 — g(xa)| — 7> g(xq) — 6.
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Now, by the viscosity property of u, we obtain
20(ty — Sq) + H(xg, )t +aDC(xy — yy)) < =6,

which we certainly have when x, € £2.
If y, € 082, then (x4 — Yy ), < 0 and

P D(xq = ya) 0.
As above, we find that if y, € 052, then
Y (V) - (1 +aDE(xe — ya)) <6,
and hence, by the viscosity property of v,
2(te = So) + H(yor pp + aD(xa — yo)) = 8,

which is also valid in case when y, € £2.
Thus, we always have

Z(X(ta — Sa) + H(xa, 12 + O(Dé-(xa - ya)) =< _Sa
Z(tot - SO!) + H()’a, M + O{Dé-(xot - ya)) > 8

Sending ¢ — oo along a sequence, we obtain

g+HO,u+p)<—8 and ¢+ HO,u+p) =36

165

for some p € ECOMI and ¢ € [-2M;, 2M], which is a contradiction. This

completes the proof of Theorem 3.1.

4 Stationary Problem: Weak KAM Aspects

|

In this section we discuss some aspects of weak KAM theory for Hamilton—Jacobi
equations with the Neumann boundary condition. We refer to Fathi [25,27], E [22]

and Evans [24] for origins and developments of weak KAM theory.

Throughout this section we assume that (A1)-(A6) and the following (A7)

hold:

(A7) The Hamiltonian H is convex. That is, the function p — H(x, p) is convex

in R” for any x € £2.

As in Sect. 2 we consider the stationary problem
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H(x,Du(x)) =0 in £2,

ou (SNP)
—(x) =g(x) on 052.
dy

As remarked before this boundary value problem may have no solution in general,
but, due to Theorem 3.4, if we replace H by H — a with the right choice of a € R,
the problem (SNP) has a viscosity solution. Furthermore, if we replace H by H —a
with a sufficiently large a € R, the problem (SNP) has a viscosity subsolution. With
a change of Hamiltonians of this kind in mind, we make the following hypothesis
throughout this section:

(A8) The problem (SNP) has a viscosity subsolution.

4.1 Aubry Sets and Representation of Solutions

We start this subsection by the following Lemma.

Lemma4.1. Let u € USC(£2) be a viscosity subsolution of (SNP). Then u €
Lip(§2). Moreover, u has a Lipschitz bound which depends only on H and S2.

Proof. By the coercivity of H, there exists a constant M > 0 such that H(x, p) > 0
for all (x, p) € 2 x (R" \ By). Fix such a constant M > 0 and note that u is a
viscosity subsolution of |Du(x)| < M in §2. Accordingly, we see by Lemma 2.2
that u € Lip(§2). Furthermore, if C > 0 is the constant from Lemma 2.1, then we
have |u(x) —u(y)| < CM|x — y| forall x,y € £2. (See also Appendix A.3.)
Since the function u(x), as a function of (x,¢), is a viscosity subsolution of
(ENP), Lemma 3.3 guarantees that u is continuous up to the boundary d£2. Thus, we
get [u(x) —u(y)| < CM|x — y|forall x, y € £, which completes the proof. O

We introduce the distance-like function d : £2 x 2 — R by
d(x,y) = sup{v(x) —v(y) : v € USC(2) N.7"},

where .~ = .7(2) has been defined as the set of all viscosity subsolutions
of (SNP). By (A8), we have .~ # @ and hence d(x,x) = 0 for all x € £2.
Since USC(£2) N .7~ is equi-Lipschitz continuous on £2 by Lemma 4.1, we see
that the functions (x,y) — v(x) — v(y), with v € USC(2) N ., are equi-
Lipschitz continuous and d is Lipschitz continuous on £2 x £2. By Proposition 1.10,
the functions x + d(x, y), with y € 2, are viscosity subsolutions of (SNP). Hence,
by the definition of d (x, z) we get

d(x,y)—d(z.y) <d(x,z) forallx,y,z€ Q.
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We set
Fy={wx)—v(y) :veS}, with y € £,

and observe by using Proposition 1.10 and Lemma 1.3 that .%, satisfies (P1) and
(P2), with £ replaced by £2 \ {y}, of Proposition 1.13. Hence, by Proposition 1.13,
the function d(:, y) = sup %, is a viscosity solution of (SNP) in 2\ {y}.

The following proposition collects these observations.

Proposition 4.1. We have:

(i) d(x,x) =0 forall x € 2.

(i) d(x,y) <d(x,2) +d(z,y) forall x,y,z € £.
(iii) d(-, y) € S7(R2) forall y € R2.

(v) d(-, y) € L(R2\{y}) forall y e 1.

The Aubry set (or Aubry—Mather set) .7 associated with (SNP) is defined by
o ={y€R:d(, y)e L ()}

Example 4.1. Letn = 1,2 = (-1, 1), H(x,p) = |p| — f(x), f(x) =1 —|x],
y(£1) = £1 and g(£1) = 0. The function v € C!([-1, 1]) given by

1-1x+1)? ifx =<0,
v(x) =9, ) .
s(x—=1) ifx>0

is a classical solution of (SNP). We show that d(x, 1) = v(x) forall x € [—1, 1]. It
is enough to show that d(x, 1) < v(x) forall x € [—1, 1]. To prove this, we suppose
by contradiction that max,ej—1,1j(d(x, 1) — v(x)) > 0. We may choose a constant
e > 0 so small that max,e[—111(d(x,1) —v(x) —e(1 —x)) > 0. Let x, € [-1, 1]
be a maximum point of the function d(x, 1) — v(x) — &(1 — x). Since this function
vanishes at x = 1, we have x, € [—1, 1). If x, > —1, then we have

0> H(x,,v'(x;) —¢&) = |v(xs)| + & — f(x:) =€ >0,

which is impossible. Here we have used the fact that v'(x) = |x| — 1 < 0 for all
x € [—1, 1]. On the other hand, if x, = —1, then we have

0 > min{H(—1,v'(-=1) —¢), —(v'(=1) — &)} = min{e, &} = ¢ > 0,

which is again impossible. Thus we get a contradiction. That is, we have d(x, 1) <
v(x) and hence d(x, 1) = v(x) for all x € [—1, 1]. Arguments similar to the above
show moreover that

%(x +1)? ifx <0,

d(x,—1) = | ,
l—i(x—l) ifx >0,
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and
dx,1)—d(y,1) ifx <y,

dx,—1)—d(y,—1) ifx=y.

d(x,y) =

Since two functions d(x, +1) are classical solutions of (SNP), we see that +-1 € .
Noting that d(x,y) > 0 and d(x,x) = 0 for all x,y € [—1, 1], we find that for
each fixed y € [—1, 1] the function x + d(x, y) has a minimum at x = y. If
y € (=1, 1), then H(y,0) = — f(»¥) < 0. Hence, we see that the interval (—1, 1)
does not intersect 7. Thus, we conclude that &7 = {—1, 1}.

A basic observation on .7 is the following:
Proposition 4.2. The Aubry set of is compact.

Proof. Tt is enough to show that <7 is a closed subset of £2. Note that the function
d is Lipschitz continuous in £2 x £2. Therefore, if {y;lxey C &/ converges to
y € £2, then the sequence {d (-, yi)}ren converges to the function d(-, y) in C(£2).
By the stability of the viscosity property under the uniform convergence, we see that
d(-, y) € /. Hence, we have y € 7. O

The main assertion in this section is the following and will be proved at the end
of the section.

Theorem 4.1. Let u € C(82) be a viscosity solution of (SNP). Then
u(x) = inf{u(y) +d(x,y) : y e o} forallx € 2. 61)

We state the following approximation result on viscosity subsolutions of (SNP).
Theorem 4.2. Letu € C ([_2_) be a viscosity subsolution of (SNP). There exists a
collection {u}sc0.1) C C'(82) such that for any € € (0, 1),

H(x,Du’(x)) <e in$2,

8i()c) < g(x) on 082,
dy

and
lu® — uljco.2 < e&.

A localized version of the above theorem is in [39] (see also Appendix A.4 and
[8]) and the above theorem seems to be new in the global nature.
As a corollary, we get the following theorem.

Theorem 4.3. Let fi, f» € C(R2) and gi,g, € C(082). Let u,v € C(2) be

viscosity solutions of
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H(x,Du) < fi in$2,
— <g on 052,

and

H(x,Dv) < f, inS$2,

0
& =& on 052,
dy

respectively. Let 0 < A < 1 and set w = (1 — A)u + Av. Then w is a viscosity
subsolution of

H(x,Dw) < (1-A)fi+Afr in£2,
(62)
g—wf(l—k)gl-f-lgz on 052,
Y

Proof. By Theorem 4.2, for each ¢ € (0, 1) there are functions u®, v* € C'(£2)
such that

[4° — ]l co.2 + V7 — Vo2 < e,

H(x,Duf(x)) < fi(x) +¢& in£,

a £
P ) <gx) on 912,
dy

and o
H(x,Dv*(x)) < fo(x) + ¢ in 2,

LR on 02.
dy

If we set w® = (1 — A)u® + Av®, then we get with use of (A7)

H(x,Dw'(x)) < (1 =1 fi(x) + A fa(x) + ¢ in £,
aw*

dy

x) = (1 —=gi(x) + Ag2(x) on 952.

Thus, in view of the stability property (Proposition 1.9), we see in the limitas ¢ — 0
that w is a viscosity subsolution of (62). O

The following theorem is also a consequence of (A7), the convexity of H, and
Theorem 4.2.

Theorem 4.4. Let # C USC($2) be a nonempty collection of viscosity subsolutions
of (SNP). Assume that u(x) := inf #(x) > —oo for all x € §2. Then u € Lip(£2)
and it is a viscosity subsolution of (SNP).
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This theorem may be regarded as part of the theory of Barron—Jensen’s lower
semicontinuous viscosity solutions. There are at least two approaches to this theory:
the original one by Barron—Jensen [11] and the other due to Barles [5]. The
following proof is close to Barles’ approach.

Proof. By Lemma 4.1, the collection .% is equi-Lipschitz in £2. Hence, u is a
Lipschitz continuous function in 2.Foreach x € 2 thereisa sequence {uy k fren C
Z such that limy_ o uy x (x) = u(x). Fix such sequences {uy x }ren, With x € Q
and select a countable dense subset Y C §2. Observe that ¥ x N is a countable set

and
u(x) = inf{u, 1 (x) : (y,k) €Y xN} forall x € Q.

Thus we may assume that .% is a sequence.
Let .% = {uy }xen. Then we have

u(x) = lim (u; Auy A -+ Aug)(x) forall x € 2.
k—o0

We show that u; A uy A --+ A uy is a viscosity subsolution of (SNP) for every
k € N.Itis enough to show that if v and w are viscosity subsolutions of (SNP), then
so is the function v A w.

Let v and w be viscosity subsolutions of (SNP). Fix any ¢ > 0. In view of
Theorem 4.2, we may select functions ve, w, € C!(£2) so that both for (¢, ) =
(ve, v) and (¢, ) = (we, w), we have

H(x,D¢.(x)) <e forall x € £2,
0o
dy
l¢e — Plloc.2 < e

(x) < gx) forall x € 342,

Note that (ve A we)(x) = ve(x) — (Ve — we)+(x). Let {nx }ren C C'(R) be such
that
() — ry uniformly on R as k& — oo,

0<n(r)<1 forall reR, keN.

We set z.x = ve — Nk © (Ve — w,) and observe that
Dzep(x) = (1 - n;c(vs(x) - Ws(-x))) Duvg(x) + n;(va(x) — We(x)) Dwe(x).
By the convexity of H, we see easily that z. ;. satisfies

H(x,Dz.x(x)) <& forall x € £,

aza,k
dy

(x) < glx) forall x € 052.
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Since v A w is a uniform limit of z, ; in 2 ask — oo and ¢ — 0, we see that v A w
is a viscosity subsolution of (SNP).
By the Ascoli—Arzela theorem or Dini’s lemma, we deduce that the convergence

u(x) = klinolo(ul A Aug)(x)

is uniform in £2. Thus we conclude that « is a viscosity subsolution of (SNP). O

Remark 4.1. Theorem 4.2 has its localized version which concerns viscosity sub-

solutions of
H(x,Du(x)) <0 inUnN £,

%(x) <g(x) on U N as2,
dy

where U is an open subset of R” having nonempty intersection with §2. More
importantly, it has a version for the Neumann problem for Hamilton—Jacobi
equations of evolution type, which concerns solutions of

u(x,t) + H(x, Dyu(x,t)) <0 inU N2 xRy),

g—u(X,t) <g) onU N (32 x Ry),
14

where U is an open subset of R” x Ry, with U N (2 x Ry) # @. Consequently,
Theorems 4.3 and 4.4 are valid for these problems with trivial modifications. For
these, see Appendix A.4.

Theorem 4.5. We have

c* = inf{max H(x, Dy (x)) : ¥ € C1(2), 0y/dy < gon 32} .
XER

Remark 4.2. A natural question here is if there is a function ¥ € C!(£) which
attains the infimum in the above formula. See [12,28].

Proof. Let ¢* denote the right hand side of the above minimax formula. By the
definition of c*, it is clear that for any @ > ¢*, there is a classical subsolution of
(EVP). Hence, by Corollary 3.2, we see that ct < c*,

On the other hand, by Theorem 3.4, there is a viscosity solution v of (EVP), with
a = c*. By Theorem 4.2, for any a > ¢ there is a classical subsolution of (EVP).
That is, we have ¢* < ¢*. Thus we conclude that ¢* = c*. O

Theorem 4.6 (Comparison). Let v,w € C(2) be a viscosity subsolution and
supersolution of (SNP), respectively. Assume that v < w on o7. Then v < w in §2.

For the proof of the above theorem, we need the following lemma.
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Lemma 4.2. Let K be a compact subset of Q2 \ of. Then there exists a function
¥ € CYU N ), where U is an open neighborhood of K in R", and a positive
constant § > 0 such that

Hx.Dy(x)) <—-8 inUNSK,

63
Ez)—f(x)fg(x)—S onU N as2. ©3)

We assume temporarily the validity of the above lemma and complete the proof
of Theorems 4.6 and 4.1. The proof of the above lemma will be given in the sequel.

Proof (Theorem 4.6). By contradiction, we suppose that M := supg(v —w) > 0.
Let B
K={xe2:@v-—wkx) =M}

which is a compact subset of £2 \ 7. According to Lemma 4.2, there are § > 0
and ¥ € C'(U N 2), where U is an open neighborhood of K such that ¥ is a
subsolution of (63).

According to Theorem 4.2, for each & € (0, 1) there is a function v* € C'(£2)

such that
H(x,Dv*(x)) <e in £,

ov (x) < g(x) on 982,
dy

and
[vf = v]loo.2 <e.

We fixa A € (0, 1) sothat §, := —(1 — A)e + 64 > 0 and set
us(x) = (I = )v(x) + Ay (x).
This function satisfies

H(x,Du.,(x)) <=6, in U N S2,
ou,
dy

(x) < g(x) =6 on U Nos2.

This contradicts the viscosity property of the function w if u, —w attains a maximum
at apoint z € U N §2. Hence, we have

max(u, —w) = max (u, — w).
unge WNR

Sending ¢ — 0 and then A — 0 yields

max(v —w) = max (v —w),
une aUNe
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that is,

M = max (v —w).
N2

This is a contradiction. O

Remark 4.3. Obviously, the continuity assumgtion on v, win thg above lemma can
be replaced by the assumption that v € USC(£2) and w € LSC(£2).

Proof (Theorem4.1). We write w(x) for the right hand side of (61) in this proof. By
the definition of d, we have

u(x) —u(y) <d(x,y) forallx,y e $2,

from which we see that u(x) < w(x).
By the definition of w, for every x € <7, we have

w(x) < u(x) + d(x,x) = u(x).

Hence, we have w = u on &7

Now, by Proposition 1.10 (its version for supersolutions), we see that w is a
viscosity supersolution of (SNP) while Theorem 4.4 guarantees that w is a viscosity
subsolution of (SNP). We invoke here Theorem 4.6, to see that u = w in Q. O

Proof (Lemma 4.2). In view of Theorem 4.2, it is enough to show that there exist
functions w € Lip(£2) and f € C(£2) such that

f(x)=0 in £,
f(x)>0 in K,

and w is a viscosity subsolution of

H(x, Dw(x)) <—f(x) 1in £,

a—W()c) <g(x) on 052.
dy

For any z € 2 \ .7, the function x — d(x,z) is not a viscosity supersolution
of (SNP) at z while it is a viscosity subsolution of (SNP). Hence, according to
Lemma 1.3, there exist a function ¥, € Lip(£2), a neighborhood U, of z in R”
and a constant §; > 0 such that v, is a viscosity subsolution of (SNP) and it is
moreover a viscosity subsolution of

H(anWZ(x))f_gz in Uzﬂ.Q,

Az
dy

(x) <g(x)—¢, onU,Nas2.
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We choose a function f; € C(2) sothat 0 < f.(x) < §forallx € 2 NU. and
f.(x) = 0forall x € £2\ U, and note that ¥, is a viscosity subsolution of

H(x, Dy:(x)) < —fo(x) in£2,

Y
5, ) S8 = L) onde.
We select a finite number of points zj, . .., zx of K so that {U,, }f.‘zl covers K.

Now, we define the function ¥ € Lip(£2) by
1 &
ww=;;mm»
and observe by Theorem 4.3 that v is a viscosity subsolution of
H(x,Dy(x)) =< —f(x) ing2,

Vg1 ondg,
4

where f € C(£2) is given by

k
f@ =2 Y .

i=1

Finally, we note that infx f > 0. O

4.2 Proof of Theorem 4.2

We give a proof of Theorem 4.2 in this subsection.

We begin by choosing continuous functions on R” which extend the functions g,
y and v. We denote them again by the same symbols g, y and v.

The following proposition guarantees the existence of test functions which are
convenient to prove Theorem 4.2.

Theorem 4.7. Let ¢ > 0 and M > 0. Then there exist a constant A > 0 and
moreover, for each R > 0, a neighborhood U of 082, a function y € C'((2UU) x
R") and a constant § > 0 such that for all (x,§) € (2 UU) x R",

MI§[ < x(x.§) = A(|§] + 1),

and for all (x,§&) € U x By,
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=g +2 ifvix)-§=4,

-D )
y(x) - Dgx(x,€) zg(x)+§ if v(x)-€> 8.

It should be noted that the constant A in the above statement does not depend on
R while U, y and § do.

We begin the proof with two Lemmas.

We fix r > 1 and set

R ={(y.2) €R"xR" : y-z>r~" max{|y| |z} <r}.

We define the function { € C®°(R2" x R") by
y-& |2
(2 =le- 2= + 00
Y-z
Lemma 4.3. The function ¢ has the properties:
E(y.z.18) = 120 (y.2.6) forall (y.z.§,1) e R xR" xR,
(y.2.6) >0 forall (y,2,£) € R x (R"\ {0}),
2-Del(y.2.6) =2(y-2)(y-€)  forall (y.z.§) € R} x R".

This is a version of Lemma 3.4, the proof of which is easily adapted to the present
case.
We define the function ¢ : Rf" x R*" — R by

0(.2.8) = (.26 + '/

Lemma 4.4. There exists a constant A > 1, which depends only on r, such that for
all (y,z,£) e R2" x R,

2 Ded(,2.6) = (0,267 (v -y - ),
max{A7' €], 1} < ¢(y.2.§) < A(E| + 1),
max{|Dy¢(y,z,6)|.[D.4(y, 2.6} < A,
|Dep(y.2,6)| < A.

Proof. Tt is clear by the definition of ¢ that

#(y.z,86) > 1.
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We may choose a constant C > 1 so that for all (y,z, &) € R?" x §"71,

max{¢(y,2. ). (7.2 8) 7 1Dy (v, 2. )| I DL (v, 2. O, IDel (v, 2. §)I} < C,

where S"! := {x € R" : |x| = 1}. By the homogeneity of the function ¢(y, z, §)
in £, we have

max{¢(y,z €),|D,¢ (v, 2. 91, 1DL(y,2.§)I} < CIEP,
IDe(y.2.6)] = Cl§]. (64)
(.26 = CTEP

forall (y,z,&) € R? x R". From this it follows that

CTE < ¢(r.2.8) < C2(El + 1),

By a direct computation, we get

_ Dit(r.z.9) B
Di¢(y.z.§) = 20026 forx =y.z.¢.
Hence, using (64), we get
C 2
Dbz 6] < o < ¢l

In the same way, we get

1D (y.2.6)| < C*[g).

Also, we get

ClEP

D (.2 8] = oot = €l

We observe that

_ 22 Del(y.2.8) (- -§)
DO =008 T 0

By setting A = C?/2, we conclude the proof. O
Leta > 0. Forany W C R" we denote by W¢ the a—neighborhood of W, that is,

={x e R" : dist(x, W) < «a}.
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For each § € (0, 1) we select vs € C'(R2',R"), y5 € C'(2',R") and g5 €
C'(£2',R) so that for all x € 22!,

max{[vs(x) —v(x)[, [ys(x) —y ()], |gs(x) — g(x)[} < 8. (65)

(Just to be sure, note that 2! = {x € R" : dist(x, 2) < 1}.)
By assumption, we have

v(x)-y(x) >0 forallx € d2.
Hence, we may fix 6y € (0, 1) so that
inf{vs(x) - ys(x) : x € (382)%, § € (0, 8)} > 0.
We choose a constant » > 1 so thatif § € (0, &), then

min{vs(x) - y5(x), [ys(0)[} = r7",
max{[vs(x)[, [ys(X)[} <, (66)
lgs()[+1 <.

for all x € (9£2)%. In particular, we have
(vs(x), ys(x)) € Rf“ forall x € (952)% and § € (0, &). (67)

To proceed, we fix any ¢ € (0, 1), M > 0 and R > 0. For each § € (0, 8p) we
define the function ¥s € C'((3£2)% x R") by

_ vs(x) - §
Ys(x.§) = (gs(x) + ) R

choose a cut-off function ns € COl (R™) so that

suppns C (92)°,
0<ns(x) <1 forallx e R",
ns(x) =1 forall x € (32)%2,
and define the function y5 € C'(£2%) by
xs(x. &) = M (E)(1 — ns(x)) + ns(x) [¥s(x. &) + (> + M) Ags(x. §)].
where A and ¢ are the constant and function from Lemma 4.4, (£) := (|£]> 4+ 1)"/?

and ¢s(x,£) := ¢p(vs(x), ys(x), ). Since suppns C (3£2)% for all § € (0, &), in
view of (67) we see that y; is well-defined.
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Proof (Theorem 4.7). Let § € (0, 1) and 5, ¢, x5 € C'(£2% x R") be as above.
Let § € (0, 8y), which will be fixed later on. It is obvious that for all (x,§) €
(£2)% x R",
Ys(x) - Ders(x, &) = gs(x) + e,

|Ws(x, )| < r?l&].
For any (x, £) € (02)° x R”, using (66), (68) and Lemma 4.4, we get

(68)

Ys(x. &) + (r* + M) Ags(x, §) > —r?[E] + (r* + M)|E| = M|E],

and
Vs(x, ) + (12 + M) Ads(x, &) <r?|E| + (r* + M)A*(|E| + 1)

<@r*+ M)A*(|E] + 1).
Thus, we have
MIE| < ys(x,€) < 2r2 4+ M)A%(JE| + 1) forall (x,&) € 2P xR".  (69)

Now, note that if (x, £) € (3£2)%/? x R”, then

X80 6) = V(. 6) + (2 + M) Ay (x. §).
Hence, by Lemma 4.4 and (68), we get

(vs5(x) - ys(x)) (v5(x) - §)

_ 2
Y5(x) - Deys(x.§) = gs(x) + e+ (r" + M)A Ps(x, §)

forall (x,£) € (3£2)%/% x R™.
Next, let (x, £) € £2° x R". Since

Dexs(x,§) = M(1=15(x)) D{€) +ns(x) [Deyis (x,§) + (r? + M) ADegps(x.§)],

using Lemma 4.4, we get

185 T el 2y pr) Al Degs(x. B)]
750)] 70

< max{M, r’ + (r* + M)A?} = 2r* + M) A%

| Dg xs(x, )| < max { M|D(§)],

Let (x,£) € (02)%% x Bg. Note by (65) and (70) that

|(r5(x) = y(x)) - Dexs(x,§)| < 82r + M) A%,
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Note also that if v(x) - § < §, then

(vs(x) - y5(x)) (Ws(x) - §)

2
"+ M)A 5. E)
< (2 + M)A ';’fg));)”(x) 9 4 (2 4 M)AFRS
S5 B

< (r> + M)Ar*8(1 + R).
Hence, if v(x) - £ < §, then

y(x) - Deys(x.§) < ys(x) - Deys(x.€) + 82r> + M)A®

(vs(x) - ys(x))(vs(x) - €)
Ps(x, §)
<g(x)+e+8[1+ @2+ M)A*r* + (r* + M)Ar*(1 + R)].

<8QrP+ M)A* + gs(x) +e+ (P + M)A

Similarly, we see that if v(x) - £ > —§, then

y(x) - Deys(x.£) > g(x) + 6 — 8 [1 + @2+ M)AR? 4+ (P2 + M)A + R)] .

If we select § € (0, 8p) so that

S[1+ @ + M)A + (> + M)AF*(1 + R)] < ;
then we have for all (x, £) € (3£2)%? x Bg,
<gx)+2¢ if vix)-&<3§,
y() - Degse.§) = 5 e
>gx)+5  if v(x)-&> 4.

Thus, the function y = y; has the required properties, with (9£2)%/? and (2r% +
M) A? in place of U and A, respectively. O

We are ready to prove the following theorem.
Theorem 4.8. Let & > 0 and u € Lip($2) be a viscosity subsolution of (SNP). Then
there exist a neighborhood U of 052 and a function u, € C'($2 U U) such that
H(x,Du.(x)) <e forall x € 2UU,
y(x)-Duc(x) < g(x)+¢ foral xeU, 71)

l[ue = tlloo.2 < &.
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Proof. Fix any ¢ > 0 and a constant M > 1 so that M — 1 is a Lipschitz bound
of the function u. With these constants ¢ and M, let A > 0 be the constant from
Theorem 4.7. Set R = M + 2A, and let U, y and § be as in Theorem 4.7.

Let @ > 0. We define the sup-convolution u, € C(£2 U U) by

e (x) = max(u(y) — oy (x, (y — x)/a)).

YESR

Letx € QUU, p € D uy(x) and y € £2 be a maximum point in the definition
of ugy, that is,

e (x) = u(y) —ay(x,(y —x)/a). (72)
It is easily seen that
Dex(x, (y —x)/a) € DT u(y),
p=Dey(x.(y —x)/a) —aDy x(x.(y —x)/a).

(73)

Fix an o9 € (0, 1) so that

(02)% c U.

Here, of course, V denotes the closure of V. For a € (0, ) we set Uy = (8.(2)‘)‘2
and V, = Q U U, = 2. Note that y € C'(V, x R"). We set W, = {(x,y) €
V, x £ : (72) holds}.

Now, we fix any a € (0, ap). Let (x, y) € W,. We may choose a point z € £2 so
that |x — z| < ?. Note that

u(y) —ox(x, (y = x)/e) = ug(x) = u(z) —ox(x, (z—x)/e).

Hence,
ax(x,(y —=x)/a) = (M — D]z— y[ + ax(x, (z— x)/a).

Now, since M |&| < y(x,&) < A(|&] + 1)) forall (x,§) € V, x R" and |x —z] <
a? < a, we get

M|x =yl <(M —=1)(|x — y| + &*) + @A(lz — x|/ + 1)
<M —1)|x —y|+ oM +2A47).

Consequently,
ly —x| <a(M +2A) = Re forall (x,y) e W,. (74)
Next, we choose a constant C > 0 so that

[Dex(x. )| + |Dgyx(x,6)| = C forall (x,§) € Vo, X Bg.
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Let (x,y) € Wy and z € By (x) N Vg,. Assume moreover that x € U. In view of
(74) and the choice of y and §, we have

< g(x)+2¢ if v(x)-(y—x) <ad,

y(x) - Dey(x. (y = x)/a) > o(x) +§ if v(x)- (y —x) = —ab.

We observe that

%8 4+ w,(Re)Ra  if v(z)-(y —x) < oc_28’
od . od
=5 —w,(R)Ra  if v(z)-(y —x) > 5

IA

v(x) - (y —x)

\

where w, denotes the modulus of continuity of the function v on V,,. Observe as
well that

(@) Dex(x. (y = x)/a) = y(x) - Dex(x, (v — x)/@)| < Cow,(Ra),
8(2) — g(¥)| = wg(Ra),
where w, and w, denote the moduli of continuity of the functions y and g on the

set Vy,, respectively.
We may choose an «; € (0, o) so that

5
o.(Ra)R <3 and Coy(Ro) + g (Ran) < Z,

and conclude from the above observations that for all (x,y) € W, and z; €
Bro(x) N Vg, withi =1,2,3,if x € U and o < a4, then

<g(z)+3 if v(zs) - (y —x) <ad/2,

(1) - Dey(x. (y —x)/e) e . (75)
Zg(Zz)-i-Z if v(zz)-(y —x) > —ad/2.
We may assume, by reselecting o; > 0 small enough if necessary, that
(02)R c U. (76)

In what follows we assume that & € (0, ;). Let (x,y) € W, and p € D uy(x).
By (73) and (74), we have

max{|pl, [ D¢ x(x. (y —x)/2)|} = C(1 + ). (77)

Let wy denote the modulus of continuity of H on Vi, X Bc(14aq)-
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We now assume that y € 92. By (74) and (76), we have x € U. Let p be
a defining function of 2. We may assume that |Dp| < 11in V,, and py :=
infy,, |Dp| > 0. Observe that

a? > p(x) = p(x) — p(y) = Dp(2) - (x = y) = [Dp@)|v(2) - (x = y)
for some point z on the line segment [x, y]. Hence, we get
v(@) - (x = y) = pyle,

If @ < ppd/2, then
V() (y —x) = —ad/2.

Hence, noting that |z — x| < |x — y| < Ra, by (75), we get
y(O)- Dex(x. (v —)/a) = g(0) + 7.
and, by the viscosity property of u,
0= H(y, Dex(x.(y —x)/a)) = H(x, p) —ou (R + C)a).

Thus, if wg (R + C)a) < e and o < pyd/2, then we have

H(x,p) <e
On the other hand, if y € §2, then, by the viscosity property of u, we have

0= H(y, Dex(x.(y = x)/a)).

Therefore, if gy ((R + C)a) < &, then

H(x,p) <e.
We may henceforth assume by selecting o; > 0 small enough that

og((R+C)ay) <e and o) < ppd/2,
and we conclude that u,, is a viscosity subsolution of
H(x,Duy(x)) <& inV,. (78)
As above, let (x, y) € W, and p € DV u,(x). We assume that x € U,. Then

—o? < p(x) < p(x) — p(y) < Dp(2) - (x — y)
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for some z € [x, y], which yields
(v — D “1,2 o =12
V(@) (y —x) <[DpQ)|"a” = py o
Hence, if @ < pyd/2, then

)
V(Z)~(y—X)§7a,

and, by (75), we get
y(x) - Dex(x, (y —x)/a) < g(x) + 3e.
Furthermore,
y(x)-p =y(x) - Dey(x.(y —x)/a) + aCllylloo.uy,
=g(x)+3e+aC|ly oo,

We may assume again by selecting &; > 0 small enough that

a1 Clylloou,, <eé-

Thus, u, is a viscosity subsolution of
y(x) - Dug(x) < g(x) +4e in U,. (79)
Let (x, y) € W, and observe by using (74) that if x € £2, then
|u(x) — uo (x)| < |u(x) —u(y)| +alx(x.(y —x)/a0)| <a(MR + C).

We fix @ € (0, or1) so that (MR + C) < &, and conclude that u, is a viscosity
subsolution of (78) and (79) and satisfies

e = tlloc.2 < &.

The final step is to mollify the function u,. Let {k; }, ¢ be a collection of standard
mollification kernels.

We note by (77) or (78) that u, is Lipschitz continuous on any compact subset
of V,. Fix any A € (0, o? /4). We note that the closure of V> 4+ B; is a compact
subset of V,,. Let M > 0 be a Lipschitz bound of the function u, on V,» + B;.

We set

u*(x) =uy xky(x) for x € Vyp.

In view of Rademacher’s theorem (see Appendix A.6), we have

H(x,Duqy(x)) < ¢ forae. x € V,,
y(x)-Dug(x) < g(x) +4e  forae. x € U,.
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Here Du, denotes the distributional derivative of u,, and we have
Du* = k; *x Du, in Vasa.

By Jensen’s inequality, we get

H(x,Du’(x)) < : H(x,Dug (x — y))ks(y)dy

< : H(x — y,Duy(x — y))ki(y)dy + o (1)

<e+owu(d),

where wy is the modulus of continuity of H on the set V,, X By, . Similarly, we get
y(x) - Dut(x) < g(x) + 4 + 0g (1) + Miw, (1),

where w, and w, are the moduli of continuity of the functions g and y on V,,
respectively. If we choose A > 0 small enough, then (71) holds with u* € C!(V,2),
U,,> and 5¢ in place of u., U and ¢, respectively. The proof is complete. O

Proof (Theorem 4.2). Let ¢ > 0 and u € Lip(£2) be a viscosity subsolution of
(SNP). Let p be a defining function of £2. We may assume that

Dp(x)-y(x) >1 forall x € 052.

For § > 0 we set
u(x) = u(x) —8p(x) forx e 2.

It is easily seen that if § > 0 is small enough, then u’ is a viscosity subsolution of

H(x,Di’(x)) <¢ in £,
y(x)-Di’(x) < g(x) =8 on 32,
and the following inequality holds:
|4’ = ulloo.2 < .
Then, Theorem 4.8, with min{e, §}, u’, H — ¢ and g — § in place of &, u, H and

g, respectively, ensures that there are a neighborhood U of 952 and a function u, €
C'(22 U U) such that
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H(x,Du.(x)) < 2¢ in QUU,
y(x) - Du,(x) < g(x) in U,

lus — tlloo.2 < 2e,

which concludes the proof. O

S Optimal Control Problem Associated with (ENP)—(ID)

In this section we introduce an optimal control problem associated with the initial-
boundary value problem (ENP)—(ID),

5.1 Skorokhod Problem

In this section, following [39,44], we study the Skorokhod problem. We recall that
R denotes the interval (0, 00), so that Ry = [0, co). We denote by L! (R, R¥)

- -~ loc
(resp., ACjoc(Ry, R¥)) the space of functions v : Ry — Ri which are integrable
(resp., absolutely continuous) on any bounded interval J C Ry.
Givenx € 2 andv € L! (R4, R"), the Skorokhod problem is to seek for a pair

loc

of functions, (7, /) € ACjc(Ry,R") x L} (R4, R), such that

n(0) = x,

n(t) e 2 forallt € Ry,

() + 1(t)y(n(t)) = v(t) forae.t € Ry, (80)
I(t)=0 forae. t € Ry,

I(t) =0 ifn@) € 2 forae. t € Ry.

Regarding the solvability of the Skorokhod problem, our main claim is the
following.

Theorem 5.1. Let v € Llloc(@+, R") and x € 2. Then there exits a pair (1, [) €

AC,(Ry, R") x LL (R, R) such that (80) holds.

loc

We refer to [44] and references therein for more general viewpoints (especially,
for applications to stochastic differential equations with reflection) on the Sko-
rokhod problem.

A natural question arises whether uniqueness of the solution (7, /) holds or not
in the above theorem. On this issue we just give the following counterexample and
do not discuss it further.
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Example 5.1. Letn = 2 and 2 = {x = (x;,x3) € R> : x; > 0}. (For
simplicity of presentation, we consider the case where £2 is unbounded.) Define
y € C(02, R?*) andv € L® (R4, R?) by

7(0,x2) = (=1, =3|x2]73x3) and () = (-1, 0).
Set
nE(t) = (0, £¢°) forallz > 0.
Then the pairs (n+, 1) and (™, 1) are both solutions of (80), with n%(0) = (0, 0).
We first establish the following assertion.

Theorem 5.2. Let v € L®[Ry, R") and x € 2. Then there exits a pair (1, 1) €
Lip(R4, R") x L*°(R4+, R) such that (80) holds.

Proof. We may assume that y is defined and continuous on R”. Let p € C'(R") be
a defining function of £2. We may assume that lim inf| |, p(x) > 0 and that Dp
is bounded on R”. We may select a constant § > 0 so that for all x € R”,

y(x) - Dp(x) = 8| Dp(x)| and [Dp(x)| =48 if 0 <p(x) <é.
We set ¢(x) = (p(x) v 0) A § for x € R” and observe that g(x) = 0 for all x € £

and g(x) > O forall x € R" \ Q.
Fix ¢ > 0 and x € £2. We consider the initial value problem for the ODE

E0) + gGOED) = () foraet Ry, EO =x.  B1)

By the standard ODE theory, there is a solution £ € Lip(R.) of (81). Fix such a
solution £ € Lip(R4, R”) in what follows.

Note that (dg o §/dt)(t) = Dp(E(t)) - £(¢) ae.intheset{t e Ry : po&(r) €
(0, 8)}. Moreover, noting that ¢ o £ € Lip(R,, R) and hence it is differentiable a.e.,
we deduce that (dg o £/df)(¢) = O ae.intheset{t e Ry : po&(z) € {0, 6}}.

Let m > 2. We multiply the ODE of (81) by mq(£(¢))" ' Dp(£(t)), to get

%CI(S(I))’” + %q(é(t))’"Dq(é(t)) y(E@) =mqE@)" " Dg(E@)) - v(t)

ae. intheset{t € Ry : poé&(t) € (0,8)}. Forany T € R, integration over
Er:={te€l0, T]: po&(t) € (0, §)} yields

q(§(T)" —q(£(0)" + % /E q(§(5)"y(§(s)) - Dp(€(s))ds

—m / 4(E())" " Dp(E(s)) - v(s)ds.
Er
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Here we note
/E q &)™y (E(s)) - Dp(E(s))ds = 6 /E q(&(s))" [ Dp(&(s))|ds,
and

/E 4(E(5))" " Dp(E(5)) - v(s)ds

S

-
s([ q(é(S))’"IDp(S(S)IdS) (/ |v<s>|”"|Dp<s(s)>|ds)
Er Er

Combining these, we get

)
gy + 22 / q(E(5))"| Dp(E(s))|ds
& Er

m

-
sm(/ q@(s))mwp(s(s)ws) ([ |v(s)|'"|Dp<s<s>)|ds)
Er Er
Hence,

; : :
2( [ aeonmvpeoias)” < ([ poriosecias)
Er Er

and
g\m—1
aGy = (5)" m [ erippEes,
) Er
Thus, setting Cy = || Dp|| oo @), we find that for any T’ € R,

g\m—1
gE@)" < (3) mCoT [v][feo 0.y forallt € [0, T]. (82)

We henceforth write & for &, in order to indicate the dependence on ¢ of &, and
observe from (82) that for any 7" > 0,

lim max dist(&.(¢), £2) = 0. (83)
e—>0+1€[0,T]

Also, (82) ensures that for any 7" > 0,

8mC0T

1
$ w
g||q o &llreor) < ( ) lvll oo o,7)-
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Sending m — oo, we find that (8/¢)||q o & | L0, 7) < ||v||Lo<(0, 7). and moreover

8
gllq o&ellLo®y) < vllLoo®y)- (84)

We set [, = (1/¢)q o &. Thanks to (84), we may choose a sequence ¢; — 04 (see
Lemma E.1) so that [;; — [ weakly-star in L>(R4) as j — oo for a function
[ € L*(Ry4). Itis clear that /(s) > O fora.e. s € Ry.

ODE (81) together with (84) guarantees that {£.}.-¢ is bounded in L*°(Ry).
Hence, we may assume as well that &, converges locally uniformly on Ry to a
function n € Lip(Ry) as j — oo. It is then obvious that n(0) = x and the pair
(n, 1) satisfies

t
n(t) + / (I(s)y(n(s)) —v(s))ds = x forall? € Ry,
0
from which we get

n) +1()y(n(t)) = v(t) forae.t € R4.

It follows from (83) that n(¢) € £2 for t > 0.

In order to show that the pair (7, /) is a solution of (80), we need only to prove
that fora.e. t € Ry, [(z) = 0if n(t) € 2.Set A = {t > 0 : n(t) € 2}. Itis clear
that A is an open subset of [0, c0). We can choose a sequence {/; }ren of closed
finite intervals of A such that A = ;. Ix. Note that for each k € N, the set (1)
is a compact subset of £2 and the convergence of {&;, } to 1 is uniform on /. Hence,
for any fixed k € N, we may choose J € N so that & (1) € §2 forall 7 € I; and
J = J.From this, we have g(&;, (t)) = O for ¢ € I and j > J. Moreover, in view
of the weak-star convergence of {/;; }, we find that for any k € N,

I(t)dt = lim / iq(fg,-(t))dz =0,
I J7oJ €

which yields /() = 0 for a.e. t € I;. Since A = |, ¢y Ik, We see that /() = 0 a.e.
in A. The proof is now complete. O

For x € £2, let SP(x) denote the set of all triples
(1, v,1) € ACioc (R4, R") x LL (R4, R") x LI (R})

which satisfies (80). We set SP = |, .o SP(x).

We remark that for any x,y € £ and T € R, there exists a triple (1,v,/) €
SP(x) such that n(T) = y.Indeed, given x, y € 2 and T € R, we choose a curve
n € Lip([0, T, £2) (see Lemma 2.1) so that 7(0) = x, n(T) = y and n(¢) € £2 for

all t € [0, T]. We extend the domain of definition of n to Ry by setting n(¢) = y
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fort > T.If we set v(¢) = n(¢) and I(¢) = O fort > 0, we have (1, v,[) € SP(x),
which has the property, n(T) = y.

We note also that problem (80) has the following semi-group property: for any
(x,1) € xRy and (1, v, [), (2, v2, 1) € SP,if n1(0) = x and 72(0) = 1 (¢)
hold and if (n, v, /) is defined on R by

(1 (s), vi(s), Li(s)) fors € [0, 1),
, () =
(). v, 1) (n2(s — 1), va(s — 1), Lr(s — 1)) fors € [t, 00),

then (1, v, [) € SP(x).

The following proposition concerns a stability property of sequences of points
in SP.

Proposition 5.1. Let {(nc.vi.li)ken C SP. Let x € 2 and (w.v.l) €
Lioc(Ry, R, Assume that as k — oo,

M (0) = x,
(e, vie, Ix) = (w,v,1)  weakly in L'([0, T],R*"*1)

forevery T € Ry. Set
n(s) =x + / w(r)dr fors > 0.
0

Then (n,v,1) € SP(x).
Proof. Forallt > 0and k € N, we have

t t
0@ =m0+ [ i) =m0 + [ 046 =Ly ds
First, we observe that as k — oo,
ne(t) = n(t) locally uniformly on R,

and then we get in the limit as k — oo,

nit) =x+ /Ot (v(s) = 1(s)y(n(s)))ds forall ¢ > 0.

This shows that n € ACjc (@4_, R") and

n(s) +1(s)y(n(s)) = v(s) forae. s € Ry.

It is clear that 7(0) = x, n(s) € 2 forall s € Ry and [(s) > O fora.e. s € R.
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To show that (n, v, /) € SP(x), it remains to prove that fora.e.t € Ry, /() =0
if n(¢) € £2. As in the last part of the proof of Theorem 5.2, weset A = {t > 0 :
n(t) € 2} and choose a sequence {/; } ;en of closed finite intervals of A such that
A= UjeNIj- Fix any j € N and choose K € N so that ni(t) € §2 forall ¢ € I;
and k > K. From this, we have /;(t) = O fora.e. t € I; and k > K. Moreover, in
view of the weak convergence of {/}, we find that

[(t)dt = lim / I (t)dt = 0,
I; k—o00 I;
J J

which yields /() = O for a.e. t € I;. Since j is arbitrary, we see that /() = 0 a.e.
inAd = UjeN I;. O

Proposition 5.2. There is a constant C > 0, depending only on 2 and y, such that
forall (n, v, ) € SP,
()] v I(s) < Clo(s)| fora.e.s =0.

An immediate consequence of the a_bove proposition is that for (, v, /) € SP,
ifv e LP(Ry, R") (resp., v € L] (R4, R"), with 1 < p < oo, then (7, ]) €
L?(Ry, R (resp., (7, 1) € LY (Ry, R"TY)).

loc

Proof. Thanks to hypothesis (A4), there is a constant §y > 0 such that v(x)-y(x) >
8o for x € 382. Let p € C'(IR") be a defining function of £2.

Let s € R4 be such that n(s) € 052, n is differentiable at s, /(s) > 0 and
n(s) + 1(s)y(n(s)) = v(s). Observe that the function p o n attains a maximum at s.
Hence,

0= d%p(n(s)) = Dp(n(s)) - (s) = |Dp(n(s)|v(n(s)) - 7i(s)
= [Dp(n(s)v(1()) - (v(s) = L(5)y (1(5)))
<1Dp(()|(v(1(s)) - v(s) = 1(5)80).
Thus, we get
1(s) < 8, v(n(s)) - v(s) < 85 [u(s)]

and
()] =[v(s) = Ls)ymsN| < [v()| + L)V loc.0e

< (1455 1y looae) v (s)],

which completes the proof. O
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5.2 Value Function I

We define the function L € LSC(2 x R", (—o0, o0]), called the Lagrangian of H,
by
L(x,§) = sup (§- p— H(x, p)).

PER”

For each x the function § — L(x, &) is the convex conjugate of the function p >
H(x, p). See Appendix A.2 for properties of conjugate convex functions.

We consider the optimal control with the dynamics given by (80), the running
cost (L, g) and the pay-off u, and its value function V on O, where Q0 = 2 xR,
is given by

Vi) = int{ [ (L6060 + OIS
(85)

Fuo(n(@)) : (v, 1) € SP(x)} for (x,1) € O,

and V(x,0) = up(x) forall x € 2.
Fort > 0 and (,v,1) € SP = |J,cp SP(x), we write

Z(t.n.v,1) = /0 (L(n(s). —v(s)) + g(n(s))I(s))ds
for notational simplicity, and then formula (85) reads
V(x,t) =inf{ZL(t.n,v.1) + uo(n(t)) : (n.v,1) € SP(x)}.

Under our hypotheses, the Lagrangian L may take the value co and, on the other
hand, if we set C = min .5(—H (x, 0)), then we have

L(x,&) > C forall (x, £) € 2 xR".

Thus, it is reasonable to interpret

/0 L(y(s). —v(s))ds = oo

if the function: s — L(7n(s), —v(s)) is not integrable, which we adopt here.

It is easily checked as in the proof of Proposition 1.3 that the value function
V satisfies the dynamic programming principle: given a point (x,¢#) € Q and a
nonanticipating mapping t : SP(x) — [0, t], we have

V(x,t) =inf{ZL(t(x),a) + V(n(r(@)), t — (@) : @ = (n,v,]) € SP(x)}.

(86)
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Here a mapping t : SP(x) — [0, ¢] is called nonanticipating if t(a) = t(B)
whenever «(s) = f(s) a.e. in the interval [0, 7(x)].

We here digress to recall the state-constraint problem, whose Bellman equation
is given by the Hamilton—Jacobi equation

u(x,t) + H(x, Dyu(x,t)) =0 in 2 xRy,

and to make a comparison between (ENP) and the state-constraint problem. For
x € 2 let SC(x) denote the collection of all € AC.(R,R") such that (0) = x
and 5(s) € 2 for all s € Ry. The value function V.2 x Ry — R of the
state-constraint problem is given by

Vix,1) = inf{/o L(n(s). —i(s))ds + uo(n(t)) : n € SC(x)}.

Observe that if n € SC(x), with x € §2, then (5, 7, 0) € SP(x). Hence, we have
V(x,t) = inf {L(t,1,9,0) + uo(n(t)) : n€SC(x)}
>V(x,t) forall (x,1) € 2 xR,.
Heuristically it is obvious that if g(x) & oo, then
V(x,t) ~ V(x,1).

In terms of PDE the above state-constraint problem is formulated as follows: the
value function V' is a unique viscosity solution of

u(x,t) + H(x, Dyu(x,t)) <0 in 2 xRy,
u(x,t) + H(x, Dxu(x,t)) >0 in 2 xR,.

See [48] for a proof of this result in this generality. We refer to [17, 55] for
state-constraint problems. The corresponding additive eigenvalue problem is to find
(a,v) € R x C(£2) such that v is a viscosity solution of

H(x,Dv(x)) <a in £2,
— 87
H(x,Dv(x)) >a in £2.
We refer to [17,40,48] for this eigenvalue problem.
Example 5.2. We recall (see [48]) that the additive eigenvalue ¢ for (87) is given by

¢ = inf{a € R : (87) has a viscosity subsolution v},
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For a comparison between the Neumann problem and the state-constraint problem,
we go back to the situation of Example 3.1. Then it is easy to see that ¢ = 0. Thus,
we have ¢* = ¢ = 0 if and only if min{g(—1), g(1)} > 0.

We here continue the above example with some more generality. Let ¢* and ¢
denote, as above, the eigenvalues of (EVP) and (87), respectively. It is easily seen
that if € C(£2) is a subsolution of (EVP) with @ = ¢, then it is also a subsolution
of (87) with a = ¢*, which ensures that ¢ < ¢*.

Next, note that the subsolutions of (87) with @ = ¢ are equi-Lipschitz continuous
on £2. That is, there exists a constant M > 0 such that for any subsolution ¥ of (87)
witha = ¢, | (x) =¥ (y)| < M|x —y|forall x, y € £2. Let ¥ be any subsolution
of (87) witha = ¢,y € 32 and p € DTy (y). Choose a ¢ € C'(£2) so that
D¢(y) = p and ¥ — ¢ has a maximum at y. If ¢ > 0 is sufficiently small, then we
have y —ty(y) € §2 and, moreover, Y (y —ty(y)) =¥ (¥) < ¢y —1y(»)) — ().
By the last inequality, we deduce that y(y) - p < M|y(y)|. Accordingly, we have
y(¥)-p < M|y(y)|forall p € DTy (). Thus, we see that if g(x) > M |y(x)| for
all x € 062, then any subsolution ¥ of (87) with a = ¢ is a subsolution of (EVP)
with @ = ¢. This shows that if g(x) > M|y (x)| for all x € 352, then ¢* < é. As
we have already seen above, we have ¢ < ¢*, and, therefore, ¢* = ¢, provided that
g(x) = M|y(x)| forall x € 352.

Now, assume that ¢* = ¢ and leta = ¢*

= ¢. Itis easily seen that

{y : ¥ is a subsolution of (EVP)} C {¢ : v is a subsolution of (87)},

which guarantees that dy < dg on 52, where dy (-, y) = sup ﬂyN, ds(,y) =
sup ﬁys, and

ny (resp., ﬁys) = {Y — ¥ (y) : V¥ is a subsolution of (EVP) (resp., (87))}.

Let o7y and /s denote the Aubry sets associated with (EVP) and (87), respectively.
That is,

@y ={y € 2 : dy(-, y) is a solution of (EVP)},
als =1{y € 2 : ds(-,y) is a solution of (87)}.

The above inequality and the fact that dy(y,y) = ds(y,y) = O forall y € £
imply that D7 dy(x,y)|x=, C Dy ds(x,y)|x=y. From this inclusion, we easily
deduce that o7s C .

Thus the following proposition holds.

Proposition 5.3. With the above notation, we have:

(i) ¢ <c*
(ii) If M > 0 is a Lipschitz bound of the subsolutions of (87) with a = ¢ and
g(x) = M|y (x)| forall x € 382, then & = c*.
(iii) Ifé = c* then dy < ds on 2% and <fs C y.
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5.3 Basic Lemmas

In this subsection we present a proof of the sequential lower semicontinuity of the
functional (n,v,/) +— Z(T,n,v,l) (see Theorem 5.3 below). We will prove an
existence result (Theorem 5.6) for the variational problem involving the functional
Z in Sect.5.4. These results are variations of Tonelli’s theorem in variational
problems. For a detailed description of the theory of one-dimensional variational
problems, with a central focus on Tonelli’s theorem, we refer to [14].

Lemma 5.1. For each A > 0 there exists a constant C 4 > 0 such that
L(x, £) > Al§| — C4 forall (x,£) € 2 xR".
Proof. Fix any A > 0 and observe that

L(x,§) > max(§- p — H(x, p))

PEB4

> Al§| + min (—H(x, p)) forall (x,£) € 2 x R".
PEB 4

Hence, setting C4 > maxg, 5 y |H|, we get
L(x,£) > A|g| —Cy4 forall (x,£) € 2 x R". O
Lemma 5.2. There exist constants § > 0 and Cy > 0 such that
L(x,§) <Cy forall (x,€) € 2 x Bs.

Proof. By the continuity of H, there exists a constant M > 0 such that H(x,0) <
M for all x € £2. Also, by the coercivity of H, there exists a constant R > 0 such
that H(x, p) > M + 1 for all (x, p) € 2 x dBg. We set § = R™!. Let (x,£) €
2xBs.Letq € By be the minimum point of the function f(p) := H(x, p)—£-p on
B . Noting that f(0) = H(x,0) < M and f(p) > —SR+M +1 = M forall p €
dBpr, we see that ¢ € Bg and hence & € D, H(x,q), where D}, H(x,q) denotes
the subdifferential at g of the function p +— H(x, p). Thanks to the convexity of
H, this implies (see Theorem B.2) that L(x,&) = & - ¢ — H(x, g). Consequently,
we get
L(x,8) <R+ max |H|.
N2XBp

Thus we have the desired inequality with Cy = 6R + maxg, 5, |H|. O

For later convenience, we formulate the following lemma, whose proof is left to
the reader.
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Lemma 5.3. For each i € N define the function L; on 2 x R" by

Li(x,§) = max(§ - p — H(x, p)).
PEB;

Then L; € UC(£2 x R"),
Li(x,8) < Lipi(x,8) < L(x,§) forall (x,§) e 2 xR" and i € N,
and for all (x,£) € 2 xR,
Li(x,&§) > L(x,§) as i — oo.

The following lemma is a consequence of the Dunford—Pettis theorem.

Lemma 5.4. Let J = [a, b], with—o0 < a < b < oo. Let { fj}jen C L'(J,R™)
be uniformly integrable in J. That is, for each € > 0, there exists § > 0 such that
for any measurable E C J and j € N, we have

/Elf;(t)ldt <& if |E| <8,

where | E| denotes the Lebesgue measure of E. Then { f;} has a subsequence which
converges weakly in L'(J,R™).

See Appendix A.5 for a proof of the above lemma.

Lemma 5.5. LetJ = [0, T|withT € Ry, (n,v) € L®(J,R")xL'(J,R"),i € N
and ¢ > 0. Let L; € UC(2 x R") be the function defined in Lemma 5.3. Assume
that 1(s) € 2 for all s € J. Then there exists a function ¢ € L% (J,R") such that
forae. s e J,

q(s) € Bi and H(1(s),4(s)) + Li(n(s), —v(s)) < —v(s) - ¢(s) + &
Proof. Note that for each (x,£) € £2 x R” there is a point ¢ = ¢(x,£) € B; such

that L;(x,&) = £-qg — H(x, q). By the continuity of the functions H and L;, there
exists a constant r = r(x, §) > 0 such that

Li(y.2) + H(y.q) <z-q+e forall (y,2) € (2N B, (x)) x B (§).

Hence, as 2 x R" is o-compact, we may choose a sequence {(xx, &, qx, rx) }ren C
2 xR" x B; x Ry such that

2 xR" | By, (xx) x By (&)
keN
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and forall k e N,

Li(y,2)+ H(y,qx) <z-qx+¢ forall (y,z) € By, (xx) x By (&).

Now we set Uy = £2n B, (xx)) x By, (&) for k € N and define the function
P : 2 xR" - R" by

P(x.£) =g forall (x.§) e Up\ | JU; andall k €N,
j<k

It is clear that P is Borel measurable in £ x R". Moreover we have P(x,£) € B;
forall (x,&) € 2 x R" and

Li(x,6) + H(x, P(x,£)) <E-P(x,£) +¢ forall (x,£) € 2 xR". (88)

We define the functiong € L*(J, R") by setting ¢(s) = P(n(s), —v(s)). From
(88), we see that g(s) € B; and

Li(n(s),—v(s)) + H(n(s).q(s)) < —v(s)-q(s) +¢ forae.s e J. |

Lemma 5.6. Let J = [0, T]withT e Ry, e>0,i e N, g e L*(J,R") andn €
C(J,R") such that 1(s) € 2 for all s € J. Assume that ||q| ooy < i. Let L; be
the function defined in Lemma 5.3. Then there exists a function v € L*°([0, T],R")
such that

H(n(s).q(s)) + Li(n(s), —v(s)) < —v(s) -q(s) + & foraesel0, T]. (89)

Before going into the proof we remark that for any x € {_2 the function L; (x,-)
is the convex conjugate of the function H (x,) given by H (x, p) = H(x, p) if
p € B; and H (x, p) = oo otherwise.

Proof. The same construction as in the proof of Lemma 5.5, with the roles of H
and L; being exchanged, yields a measurable function v : [0, T] — R” for which
(89) holds. Set C = maxg, 5, |H| and observe that

Li(x,£) >il§|—C forall (x,£) € 2 xR".
We combine this with (89), to get
e+ glleoon|v(s)| > ilv(s)| —2C forae.s € J.

Hence,
e+ 2C
vllzoo(sy < ————. O
i —Igllee )
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The following proposition concerns the lower semicontinuity of the functional

T
(n,v) > /0 L(1(s). —v(s))ds.

Theorem 5.3. Let J = [0, T] with T € Ry, {(nk,vi)tken C L=(J,R") x
L'(J,R") and (n,v) € L®(J,R") x L'(J,R"). Assume that ni(s) € 2 for all
(s,k) € J x Nand that as k — oo,

Nk (s) = n(s) uniformly for s € J,
Vg =V weakly in L'(J,R").

Let  be a function in L°*°(J,R) such that ¥ (s) > 0 fora.e.s € J. Then

[ vLae).-venas < tmint [ v6)L0G). v 0 ©0)

Proof. Fix any i € N. Due to Lemma 5.5, there is a function g € L*(J,R") such
that ¢(s) € B; and

H(n(s),q(s)) + Li(n(s), —v(s)) < —v(s)-q(s) + zl forae seJ. (91
Note that for all k € N,
/J V()L (i (), —vi(s))ds > /J VY (s)Li (i (s), —vi(s))ds
= [ VO a6 = H o). g,
and
klim / V() [—vk () - q(s) — H(ni(s),q(s))]ds
—0 J
= [ ¥Olv6)-a6) = Hons) gDl
Hence, using (91), we get
1}(minf/ Y (s)L(nk (s), —vi(s))ds > / V(s)[-v(s) - q(s) — H(n(s),q(s))]ds
—>00 J J
= [ vOLLs).~0i6) = 171385
J

By the monotone convergence theorem, we conclude that (90) holds. O
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Corollary 5.1. Under the hypotheses of the above theorem, let { fi} C L'(J,R) be
a sequence of functions converging weakly in L'(J,R) to f. Assume furthermore

that for all k € N,

L(mi(s), —ve(s)) < fr(s) forae. se€J.

Then
L(n(s),—v(s)) < f(s) forae seJ.

Proof. Set E = {s € J : L(n(s),—v(s)) > f(s)}. By Theorem 5.3, we deduce
that

0 = liminf / 1)L (5). —vi () — fi(s))ds
k—o00 7
> / 1)L (1), —v(s)) — F(5)lds
J
- /J [L(n(s). —v(s)) — /()] ds.

where [ - -]+ denotes the positive part of [---]. Thus we see that L(n(s), —v(s)) <
f(s) forae. seJ. O

Lemma5.7. Let J = [0, T], with T € Ry, and q € C(2 x J,R"). Let x € £2.
Then there exists a triple (n,v,1) € SP(x) such that

H(n(s), g(n(s).5)) + L(n(s), —v(s)) = —v(s) -q(n(s).s) foraeseJ.

Proof. Fixk e N.Set§ = T/kands; = (j — 1) for j = 1,2,...,k + 1. We
define inductively a sequence {(x;,7;,v;,1;)}5_; C £ x SP. We set x; = x and
choose a £ € R” so that

H(x1.q(x1,0)) + L(x1,—§1) = —=§1-q(x1,0) + 1/ k.

Set vi(s) = £ for s > 0 and choose a pair (171,/;) € Lip(Ry, £2) x L®(Ry, R)
so that (11, v, 1) € SP(xy). In fact, Theorem 5.2 guarantees the existence of such
a pair.

We argue by induction and now suppose that k > 2 and we are given
(xi,mi v, lj)foralli =1,...,j—landsome2 < j < k. Thensetx; =n;_1(J),
choose a §; € R" so that

H(xj,q(xj,s;)) + L(x;,—§;) < =& -q(x;,s;) + 1/k, (92)

set v;(s) = §; for s > 0, and select a pair (,,/;) € Lip(Ry, 2) x L®(R4,R)
so that (n;,v;,/;) € SP(x;). Thus, by induction, we can select a sequence
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{(xj,nj,vj,lj)}’j;l C £2 x SP such that x; = 7]1(0), X; = ﬂj_1(5) = 77](0)
for j =2,...,kandforeach j =1,2,...,k, (92) holds with §; = v;(s) for all
§>0.Weseta; = (n;,vj,l;j)forj =1,... k.

Note that the choice of x;, n;, v;, [;, with j = 1,...,k, depends on k, which
is not explicit in our notation. We define oy = (7, Uk, Iy) € SP(x) by setting

ar(s) =a;(s—s;) forsels;,s;j41) and j =1,... k.

and
ax(s) = (nx(8),0,0) for s > 5311 =T.

Also, we define Xi, g € L*°(J,R") by
Xk(s) =x; and qix(s) =q(xj,s;) for se[s;,sj41) and j =1,... k.
Now we observe by (92) that forall j = 1,...,k,

L(x;,—§;) < |&;|R + max |[H|+1,
N2XBR

where R > 0 is such a constant that R > maxg, ; |¢|. Combining this estimate with
Lemma 5.1, we see that there is a constant C; > 0, independent of k, such that

max v (s)| = max |&;| < Cy.
nax [5(s)| = max J&)] < C)

By Proposition 5.2, we find a constant C, > 0, independent of k, such that
McllLeo@yy V Ikl Loo@®y) < Co.

We may invoke standard compactness theorems, to find a triple (1, v, /) €
Lip(J,R") x L*®(J,R"*!) and a subsequence of {(7j, Uk [x) }xen, which will be
denoted again by the same symbol, so that for every 0 < S < oo, as k — o0,

fix — n uniformly on [0, S],
(k- O Ix) = (7, v.1)  weakly-starin L*°([0, §],R>" ).
By Proposition 5.1, we see that (,v,1) € SP(x). It follows as well that X (s) —

n(s) and gr (s) — ¢q(n(s), s) uniformly for s € J as k — oo.
Now, the inequalities (92), 1 < j < k, can be rewritten as

L%k (5), —Uk (5)) = =0k (s) - G (s) — H(Xk (5). gk (5)) + 1/k forall s € [0, T).
It is obvious to see that the sequence of functions

—0k(s) - qi (s) + 1/k — H(Xk (5), i (5))
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on J converges weakly-star in L*°(J, R) to the function

—v(s) -q(n(s),s) = H(n(s),q(n(s),5)).

Hence, by Corollary 5.1, we conclude that

H(n(s),q(n(s).5)) + L(n(s), —v(s)) = —v(s) - q(n(s).s) forae. seJ,

which implies the desired equality. O

Theorem 5.4. Let J = [0, T], with T € R4, and {(nk, vk, lx)}ren C SP. Assume
that there is a constant C > 0, independent of k € N, such that

LT, ni v, k) < C forall k € N.
Then there exists a triple (n, v, l) € SP such that

L(T,n,v,l) < l}cminfi”(T, N> Vi, L)-
—00

Moreover, there is a subsequence {(nk;, Vk;, lx;)}jen of {(Nk, vk, lx)} such that as
j — oo,
Nk; (s) = n(s) uniformly on J,
(ys vy Ie,) = (), v, 1) weakly in L'(J, R ).

Proof. We may assume without loss of generality that 0, (t) = n«(T), v(¢t) = 0
and [ (t) = Oforallz > T and all k € N.

According to Proposition 5.2, there is a constant Cy > 0 such that for any
(n, v, 1) € SP, [n(®)| v |I()| < Colv(t)| for a.e. t > 0. Note by Lemma 5.1
that for each A > 0 there is a constant C4 > 0 such that L(x,&) > A|§| — Cy

for all (x,£) € 2 x R”. From this lower bound of L, it is obvious that for all
(x,&,r) €02 xR" x Ry, if r < Cp|&, then

L(x. &) + g(or = (A—conalgx|g|) £l = Ca. ©3)

which ensures that there is a constant C; > 0 such that for (1, v, [) € SP,
L(n(s),—v(s)) + g(n(s)i(s) + C, =0 forae.s > 0. (94)

Set
A = liminf Z(T, g, vk, I),
k—o00
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and note by (94) that —C;T < A < C. We may choose a subsequence
Lk s vie; o Iy )} jen Of {(Mie, vie, L)} so that

A= lim L(T, n;, vk, lk;)-
] —>00
Using (94), we obtain for any measurable £ C [0, T],
[ (L0, =050 + g (5) + C1) s
E

T
= / (L (i (). —vie(s)) + g (NI (s) + Cr) ds < C + CiT.
0

This together with (93) yields
(A — Conggx|g|)/ vk (s)|ds < C4|E|+ C + C,T forall A > 0.
E

This shows that the sequence {v} is uniformly integrable on [0, T']. Since |7 (s)| V
[k (s)] < Colvi(s)| for a.e. s > 0 and vi(s) = O forall s > T, we see easily that
the sequence { (7, vx. [x)} is uniformly integrable on R .

Due to Lemma 5.4, we may assume by reselecting the subsequence
{(Mk; > vk;, ;) } if necessary that as j — oo,

(M, vk 2 le;) = (w, v, 1) weakly in L'([0, S].R>"*t1h)

for every S > 0 and some (w,v,1) € L} _ (R, R?"*1). We may also assume that

Nk;(0) — x as j — oo for some x € . By Proposition 5.1, if we set 1(s) =
x + [y w(r)dr fors > 0, then (n,v,/) € SP(x) and, as j — oo,
Nk; (s) = n(s) locally uniformly on Ry.
We apply Theorem 5.3, with the function v (s) = 1, to find that
| L6 ~vas < timin [ L, (5.~ (61
J J= Jy
Consequently, we have

ZL(T,n,v,1l) <liminf Z(T, nkj,vkj,lkj) = A,
] —>00

which completes the proof. O
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5.4 Value Function I1

Theorem 5.5. Letu € UC(2 x Ry) be the viscosity solution of (ENP)—(ID). Then
V=uin 2 xRy.

This is a version of classical observations on the value functions in optimal
control, and, in this regard, we refer for instance to [43, 45]. The above theorem
has been established in [39]. The above theorem gives a variational formula for the
unique solution of (ENP)—(ID). This variational formula is sometimes called the
Lax—Oleinik formula.

For the proof of Theorem 5.5, we need the following three lemmas.

Lemma 5.8. Let U C R" be an open setand J = [a, D] a finite subinterval of Ry.
Lety € CY((U N Q) x J) and assume that

Ye(x,1) + Hx, Dyy(x,1)) <0 forall (x,t) e (UNK)xJ, (95)

Z—Iﬁ(x,t) < g(x) forall (x,t) € (UNJ2) xJ, (96)
Y(x,t) < V(x,t) forall (x,1) e QUNR)xJ, (97)
V(x,a) < V(x,a) forall x e U N . (98)

Theny <V in(UNR) x J.

We note that the following inclusion holds: d(U N 2) C [0U N 2]U (U N 9£2).
Proof. Let (x,t) € (U N £2) x J. Define the mapping t : SP(x) — [0, t —a] by
t(n,v,l) =inf{s >0 : n(s) U} A (t —a).

It is clear that 7 is nonanticipating. Let « = (,v,/) € SP(x), and observe that
n(s) € U forall s € [0, t()) and that n(z(«)) € AU if 7(«) < ¢ —a. In particular,
we find from (97) and (98) that
v(n(z(@).t — (@) < V(n(t(@)).t — t()). (99)
Fix any « = (n, v, [) € SP(x). Note that
Y (n(z(@). 1 — (@) —¥(x.1)

() d
— [ S - sas
0 A
()
- /0 (Da (1(5)-1 — 5) - 7(s) — Y (1(s). 1 — 5))ds

()
= /0 (Dxyr(n(s),t =) - (v(s) = 1(8)y(n())) — Y (n(s), t — 5))ds.
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Now, using (95), (96) and (99), we get
Y1) — V@)t - t(@)
S‘Aﬂw(—-waOKﬂJ-—ﬂ-v@)+l@)Dx¢UKﬂ)ﬁdn@D
Y ns).t — 5)ds
sAWYHmmewmwrﬁm+Lm@»w@»+mmmm)

+ Y (n(s). 1 — 5))ds
< Z(t(),n,v,1),

which immediately shows that

Y(x,0) < inf (L (z(@).n.v.0) + V(n(z(@).1 — (@),
where the infimum is taken over all « = (n,v,l) € SP(x). Thus, by (86), we get
Vx,1) = Vix,0). o

Lemma 5.9. Forany ¢ > 0 there is a constant Ce > 0 such that V(x,1) = uo(x) —
e — Cgt for (x,t) € Q.

Proof. Fix any ¢ > 0. According to the proof of Theorem 3.2, there are a function
f € CY(2) and a constant C > 0 such that if we set ¥ (x,t) = f(x) — Ct for
(x,t) € O, then ¥ is a classical subsolution of (ENP) and ug(x) > f(x) > ug(x)—s
forall x € 2.

We apply Lemma 5.8, with U = R", a = 0, arbitrary b > 0, to obtain

V(x,t) > ¥(x,t) > —e 4+ up(x) — Ct forall (x,t) € Q,

which completes the proof. O

Lemma 5.10. There is a constant C > 0 such that V(x,t) < ug(x) + Ct for
(x,1) € Q.

Proof. Let (x,t) € Q. Setn(s) = x, v(s) = 0and I/(s) = 0 fors > 0. Then
(n,v,1) € SP(x). Hence, we have

Vi(x,t) <up(x)+ /t L(x,0)ds = up(x) +tL(x,0) < up(x) —t¢ ;n]ierll H(x, p).
0 €

Setting C = —ming,p. H, we get V(x,1) < uo(x) + Ct. O

Proof (Theorem 5.5). By Lemmas 5.9 and 5.10, there is a constant C > 0 and for
each ¢ > 0 a constant C, > 0 such that
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—&—Cet < V(x,t) —up(x) <Ct forall (x,t) € Q.
This shows that V' is locally bounded on Q and that

lirgl+ V(x,t) = up(x) uniformly for x € 2.
t—>

In particular, we have Vi (x,0) = V*(x,0) = up(x) forall x € 2.
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We next prove that V is a subsolution of (ENP). Let (%,7) € Q and ¢ € C'(Q).
Assume that V* — ¢ attains a strict maximum at (£, 7). We want to show that if

X € £2, then
¢i(X.1) + H(X, Dc¢(%.1)) <0,

and if X € 92, then either
¢ (X, 1) + H(X, Dxp(%,1)) <0 or y(X)- Dxp(%,1) < g(2).
We argue by contradiction and thus suppose that
¢ (X, 1) + H(X, Dxp(%,1)) > 0

and furthermore
y(®)- Do (R. 1) > g(R) if & € 092.

By continuity, we may choose a constant 7 € (0,7 ) so that

¢i(x.1) + H(x, Dyp(x.1)) >0 forall (x,1) € (B,(X)NR)xJ, (100)
where J = [f—r, f+r],and
y(x) - Degp(x,1) > g(x) forall (x,7) € (B,(X)NIN)x J. (101)
(Of course, if X € £2, we can choose r so that B,(X) N 02 = 0.)
We may assume that (V* — ¢)(X,7) = 0. Set
B = ((0B,(2) N 82) x J) U (B, (%)) N 2) x {F —1}).
and m = —maxg(V* — ¢). Note that m > 0 and V(x,t) < ¢(x,t) — m for

(x,t) € B.

_ Wesete = r/2. In view of the definition of V*, we may choose a point (%, ) €
QN B, (X)x(f—e, [ +¢)sothat (V —¢)(X,f) > —m.Seta =i — + r, and note

that a > ¢ and dist(x, 0B, (X)) > ¢. Foreach @ = (n,v,1) € SP(x) we set

S(a)={s>0:n(s)€adB,(x)} and T =a A inf S(x).
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Clearly, the mapping T : SP(X¥) — [0, a] is nonanticipating. Observe also that if
() < a, then n(z(a)) € dB, (%) or, otherwise, f — T(a) = —a = — r. That is,
we have

(n(z(@)),f —t(x)) € B forall a = (n,v,]) € SP(X). (102)

Note as well that (5(s),7 —s) € B, (%) x J foralls € [0, T()].
We apply Lemma 5.7, with J = [0, a] and the function ¢(x,s) = D@ (x,i — ),
to find a triple @ = (1, v,1) € SP(X) such that for a.e. s € [0, a],

H(n(s), Dxp(n(s).7 =) + L(n(s), —v(s)) < —v(s) - Dxgp(n(s),7 —s) (103)

For this o, we write 7 = t(«) for simplicity of notation. Using (102), by the
dynamic programming principle, we have

G(F D) <V(ED +m
<L nv,)+V(Ei—1)+m
Sg(f, T'I,U,l) + ¢(77(T)7f_— T)'

Hence, we obtain
! d i}
0< /0 (L(n(s). —v() + g(NI() + TP (1(5). 1 = 5)ds
= /0 (L(n(s), =v(s)) + g())I(s) + Dxp(n(s), 7 = 5) - 7(s) — ¢ (n(s), T — 5))ds
< / (LG1(s), —v(s)) + g(1(s)Is)
0

+ Dap(n(s). 7 = 5) - (v(s) = 1()y(1(s)) — ¢ (1(s5), 7 — 5))ds.

Now, using (103), (100) and (101), we get

0< /0 (= H(1(s). Dap(n(s).7 — 5)) + g(n(s)I(s)
1) Dap(n($).T — 5) - Y (1(5)) — d (n(5). T — ))ds
< /0 15)((n(s)) = y(1(5)) - D (1(s). T — ))ds < 0,

which is a contradiction. We thus conclude that V' is a viscosity subsolution of
(ENP).

Now, we turn to the proof of the supersolution property of V. Let ¢ € C'(Q)
and (%,7) € 2 x Ry. Assume that V, — ¢ attains a strict minimum at (%, 7). As
usual, we assume furthermore that ming (Vi — ¢) = 0.
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We need to show that if X € £2, then
¢ (8. 1) + H(E, Dygp(£,1)) = 0.
and if X € 052, then
¢(%,1) + H(X, Dyp(%,1)) = 0 or y(X)- Drg(%,1) > g(%).

We argue by contradiction and hence suppose that this were not the case. That is,
we suppose that
¢t('£7;) + H(')%’ D’CQS()ACv i)) < O’

and moreover
y(R) - Di¢p(%.7) < g(®) if X € 082.

We may choose a constant € (0, 7) so that
Gi(x.1) + H(x, Dyp(x.1)) <0 forall (x,1) € (B, (X) N ) x J,
where J = [f —r,  + r], and
y(x)- Dedp(x,1) < g(x) forall (x,7) € (B, (X)NR)x J. (104)
We set

R= ((aB,.(fc) N Q) x j) U ((B,(®)N82) x (i —r}) and m = min(V — @),

and define the function ¥ € C'((B,(%) N 2) x f) by ¥ (x,t) = ¢(x,t) +m. Note
that m > 0, inf(B,(fc)nﬁ)xf(V* —¢¥) =-m <0 and V(x,t) > ¥(x,t) for all
(x,t) € R. Observe moreover that

Ve (x,t) + H(x, Dywr(x,0)) <0 forall (x,f) € (B, () N 2)x J

é2)—1)6()@1) < g(x) forall (x,1) € (B,(£) N32) x J.

We invoke Lemma 5.8, to find that ¥ < V in (B,(X) N ) x J. This means
that inf 5 $ND)x 7(Ve — ) = 0. This contradiction shows that V' is a viscosity
supersolution of (ENP). .

We apply Theorem 3.1 to Vi, u and V*, to obtain V* < u < Vi in Q, from
which we conclude thatu = V in Q. O

Our control problem always has an optimal “control” in SP:

Theorem 5.6. Let (x,t) € 2 x R.. Then there exists a triple (1, v, [) € SP(x)
such that
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V(x.1) = Z(t.n.v.1) + uo(n(1)).
If. in addition, V € Lip(2 x J,R), with J being an interval of [0, t], then the triple

(1, v, 1), restricted to J; := {s € [0, 1] : t —s € J}, belongs to Lip(J;,R") x
LOO(J“Rn+1)-

Proof. We may choose a sequence {(7k, v, lx)} C SP(x) such that
Vix.t) = lim 2t e, ve. ) + uo (i (0)).

In view of Theorem 5.4, we may assume by replacing the sequence {(nx, vk, Ir)}
by a subsequence if needed that for some (1, v,1) € SP(x), nx(s) — n(s) uniformly
on [0, t] as k — oo and

ZL(t.nv,1) < likminff(t,nk,vk,lk).
—>00

It is then easy to see that
Vx,t) = 2L n,v, 1)+ up(n()). (105)
Note by (105) that for all r € (0, 1),
Vix,t) > Z(r,n,v, 1)+ V(nr),t—r),
which yields together with the dynamic programming principle
Vix,t) =L v, 1)+ V(n(r),t —r) (106)
forall r € (0, 7). .
Now, we assume that V€ Lip(£2 x J), where J C [0, ] is an interval. Observe

by (106) that for a.e. r € J;,

Vin(r),t —=r)=V(n(r+e),t —r —¢)
e

L(n(r),—v(r)) +1(r)gh(r)) = Slg%
<M + DY < M([a(r)] + 1),

where M > 0 is a Lipschitz bound of the function V on £2 x J. Let C > 0 be the
constant from Proposition 5.2, so that [7(s)| Vv I(s) < C|v(s)| for a.e. s > 0. By
Lemma 5.1, for each A > 0, we may choose a constant C4 > 0 so that L(y,§) >
AlE| — C4 for (v, &) € 2 x R". Accordingly, for any 4 > 0, we get

Alo(r)| =L(n(r), —v(r)) + C4 < =1(r)gn(r)) + M(|7(r)| +1) + C4
<C(glloc.oe + M)|v(r)|+ M + C4 forae. r e J.
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This implies that v € L*®(J;,R") and moreover that € Lip(J;,R") and | €
L*°(J;,R). The proof is complete. O

Corollary 5.2. Let u € Lip(£2) be a viscosity solution of (SNP) and x € 2. Then
there exists a (n,v,1) € SP(x) such that for all t > 0,

u(x) —u(n()) = Z(,n,v,1). (107)

Proof. Note that the function u(x), as a function of (x, ¢), is a viscosity solution of
(ENP). In view of Theorem 5.6, we may choose a sequence {(1;,v;,/;)}en so that
m(0) = x,n;+1(0) = n;(1) forall j € Nand

u(n;(0)) —u(n;(1)) = Z(1,n;,v;,1;) forall j €N.

We define (1, v,l) € SP(x) by

(), v(s). 1(s)) = ;s —j + D.vj(s —j+ D.1i(s —j+ 1)

foralls € [j — 1, j) and j € N. By using the dynamic programming principle, we
see that (107) holds for all # > 0. O

5.5 Distance-Like Function d

We assume throughout this subsection that (A8) holds, and discuss a few aspects of
weak KAM theory related to (SNP).

Proposition 5.4. We have the variational formula for the function d introduced in
Sect. 4.1: forall x,y € 2,

d(x,y) =inf{Z(t,n,v,0) : 1 >0, (n,v,]) € SP(x) suchthat n(t) = y}.
(108)

We use the following lemma for the proof of the above proposition.

Lemma 5.11. Let ug € C(2) and u € UC(Q) be the viscosity solution of (ENP)—
(ID). Set .
v(x,t) = ingu(x,t +r) for x € Q.
r>

Then v € UC(Q) and it is a viscosity solution of (ENP). Moreover, for each t > 0,
the function v (-, t) is a viscosity subsolution of (SNP).

Proof. By assumption (A8), there is a viscosity subsolution ¥y of (SNP). Note that
the function (x, t) — ¥ (x) is a viscosity subsolution of (ENP) as well.

We may assume by adding a constant to ¥ if needed that ¢ < ug in £2. By
Theorem 3.1, we have u(x,?) > ¥ (x) > —oo forall (x, ) € Q. Since u € UC(Q),
we see immediately that v € UC(Q). Applying a version for (ENP) of Theorem 4.4,
which can be proved based on Theorem D.2, to the collection of viscosity solutions
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(x,t) = u(x,t +r), with r > 0, of (ENP), we find that v is a viscosity subsolution
of (ENP). Also, by Proposition 1.10 (its version for supersolutions), we see that v
is a viscosity supersolution of (ENP). Thus, the function v is a viscosity solution of
(ENP).

Next, note that for each x € £2, the function v(x, -) is s nondecreasing in R Let
(%,/)) € Qand ¢ € C! (.Q) Assume that the function 2 3 x — v(x,7) — ¢(x)
attains a strict maximum at X. Let & > 0 and consider the function

v(x,t) —p(x) —a(t —1)> on 2 x[0,7+1].

Let (xq,?y) be a maximum point of this function. It is easily seen that (x4, #,) —
(%,7) as @ — oo. For sufficiently large &, we have 7, > 0 and either

Xo €082 and y(xy) - Do(xy) < g(xy),

or
20(ty — 1) + H(xy, D$(x4)) < 0.

By the monotonicity of v(x,?) in ¢, we see easily that 2a(f, — f) > 0. Hence,
sending &« — oo, we conclude that the function v(-, f) is a viscosity subsolution of
(SNP). O

Proof (Proposition 5.4). We write W(x, y) for the right hand side of (108).

Fix any y € 2. Foreach k € Nlet u; € Lip(Q) be the unique viscosity solution
of (ENP)—(ID), with uy defined by uo(x) = k|x — y|. By Theorem 5.5, we have the
formula:

up(x, 1) = inf {2, n.v.0) + k[n(t) = y| : (n,v.1) € SP(x)}.
It is then easy to see that

inguk(x,t) < W(x,y) forall (x,k) e 2 xN. (109)
>

Since d(-, y) € Lip(£2), if k is sufficiently large, say k > K, we have d(-,y) <
k|x — y| forall x € £2. Noting that the function (x,¢) — d(x, y) is a viscosity
subsolution of (ENP) and applying Theorem 3.1, we get d(x,y) < ux(x,t) for all
(x,t) € Q ifk > K. Combining this and (109), we find that d(x, y) < W(x, y) for
all x € 2.

Next, we give an upper bound on W. According to Lemma 2.1, there exist a
constant C; > 0 and a function t : £ — Ry such that t(x) < Ci|x — y| for
all x € 2 and, for each x € £2, there is a curve 7, € Lip([0, (x)]) having the
properties: 1,(0) = x, 7, (t(x)) = y, :(s) € 2 forall s € [0, T(x)] and |7, (s)| <
1 for a.e. s € [0, 7(x)]. We fix such a function 7 and a collection {7,} of curves.
Thanks to Lemma 5.2, we may choose constants § > 0 and Cy > 0 such that

L(x,£) <Cy forall (x,§) € £2 x Bs.
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Fix any x € 2 \ {y} and define (n,v,/) € SP(x) by setting n(s) = 7, (8s) for
s €0, T(x)/8], n(s) = y fors > t(x)/8 and (v(s), I(s)) = (7(s),0) fors € Ry.
Observe that

t(x)/8
L) /8. 0.1) = /0 L(nx(85). 8ty (35))ds

7(x)
s / L(nx(s). —87,(s))ds
0
<8 'Cor(x) < 87'CoCilx — y|,

which yields
W(x,y) <87 'CoCilx — yl. (110)

We define the functionw : QO — R by
w(x,t) = inf{i”(r, n,v,l) :r>t, (n,v,]) € SP(x) suchthat n(r) = y}.
It is clear by the above definition that

W(x,y) = tiggw(x,t) forall x € 2. (111)

Also, the dynamic programming principle yields
w(x,t) = inf{f(t, n,v, 1)+ Whn),y) : (n,v,l) e SP(x)}.

(We leave it to the reader to prove this identity.) In view of (110), we fix a k € N so
that $~!CyC, < k and note that for all (x,?) € Q,

w(x, 1) < inf{Z(t, n,v.1) +klnt) = y| : (., v,1) € SP(x)} = ux(x,1).
Consequently, we have

infw(x,t) < infug(x,t) forall x € 2,
>0 >0

which together with (111) yields

W(x,y) < inguk(x,t) forall x € £2.
1>

By Lemma 5.11, if we set v(x) = inf,~qux(x,1) for x € £2, then v € C(£2) is
a viscosity subsolution of (SNP). Moreover, since v(x) < ui(x,0) = k|x — y| for
all x € £2, we have v(y) < 0. Thus, we find that v(x) < v(y) +d(x,y) < d(x, y)
for all x € £2. We now conclude that W(x, y) < v(x) < d(x, y) forall x € £2. The
proof is complete. O
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Proposition 5.5. Let y € 2 and § > 0. Then we have y € < if and only if
inf{Z(z, n,v,0) :t>86, (n,v,1) € SP(y) suchthar n(t) = y} =0. (112)

Proof. First of all, we define the function u € UC(Q) as the viscosity solution of
(ENP)—(ID), with uy = d(-, y). By Theorem 5.5, we have

u(x,t) = inf{f(t, n,v, ) +dmn@),y) : (n,v,1) e SP(x)} forall (x,7) € Q.

We combine this formula and Proposition 5.4, to get

u(x,t) = inf{f(r, n,v,0) :r>t, (n,v,0) € SP(x) suchthat n(r) = y} (113)
for all (x,t) € Q.

Now, we assume that y € 7. The function d(-, y) is then a viscosity solution
of (SNP) and u is a viscosity solution of (ENP)—(ID), with uy = d(-, y). Hence, by
Theorem 3.1, we have d(x, y) = u(x,t) forall (x,¢) € Q. Thus,

0=d(y,y) = inf{.Z(r, n,v, 1) :r>t, (n,v,0l) € SP(y) suchthat n(r) = y}
forall ¢ > 0.

This shows that (112) is valid.

Now, we assume that (112) holds. This assumption and (113) show that u(y, §) =
0. Formula (113) shows as well that for each x € 2, the function u(x, -) is
nondecreasing in R . In particular, we have d(x,y) < u(x,t) for all (x,t) € Q.
Let p € D d(x, y)|x=y,. Then we have (p,0) € D™ u(y,d) and

H(y,p)>0 ifyeg,
max{H(y,p), y(y)-p—g(y)} =0 ifye€df.

This shows that d(-, y) is a viscosity solution of (SNP). Hence, we have y € <.
O

6 Large-Time Asymptotic Solutions

We discuss the large-time behavior of solutions of (ENP)—(ID) following [8,38,39].

There has been much interest in the large time behavior of solutions of Hamilton—
Jacobi equations since Namah and Roquejoffre in [53] have first established a
general convergence result for solutions of

u(x,t) + H(x, Dyu(x,t)) =0 in (x,7) € 2 x R4 (1.2)
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under (AS5), (A6) and the assumptions

H(x,p) > H(x,0) forall (x,p)e 2 xR",

114
mng(x,O)zO, (114

where §2 is a smooth compact n-dimensional manifold without boundary. Fathi
in [26] has then established a similar convergence result but under different type
hypotheses, where (114) replaced by a strict convexity of the Hamiltonian H (x, p)
in p, by the dynamical approach based on weak KAM theory [25,27]. Barles and
Souganidis have obtained in [3] more general results in the periodic setting (i.e., in
the case where §2 is n-dimensional torus), for possibly non-convex Hamiltonians, by
using a PDE-viscosity solutions approach, which does not depend on the variational
formula for the solutions like the one in Theorem 5.5. We refer to [7] for a recent
view on this approach.

The approach of Fathi has been later modified and refined by Roquejoftre [54],
Davini and Siconolfi in [21], and others. The same asymptotic problem in the whole
domain R” has been investigated by Barles and Roquejoffre in [10], Fujita et al.,
Ichihara and the author in [30,34-37] in various situations.

There has been as well a considerable interest in the large time asymptotic
behavior of solutions of Hamilton—Jacobi equation with boundary conditions.
The investigations in this direction are papers: Mitake [48] (the state-constraint
boundary condition), Roquejoffre [54] (the Dirichlet boundary condition in the
classical sense), Mitake [49, 50] (the Dirichlet boundary condition in the viscosity
framework). More recent studies are due to Barles, Mitake and the author in [8, 9,
38], where the Neumann boundary conditions including the dynamical boundary
conditions are treated. In [8, 9], the PDE-viscosity solutions approach of Barles—
Souganidis is adapted to problems with boundary conditions.

Yokoyama et al. in [58] and Giga et al. in [32,33] have obtained some results on
the large time behavior of solutions of Hamilton—Jacobi equations with noncoercive
Hamiltonian which is motivated by a crystal growth model.

We also refer to the articles [13,54] and to [16,51,52] for the large time behavior
of solutions, respectively, of time-dependent Hamilton—Jacobi equations and of
weakly coupled systems of Hamilton—Jacobi equations.

As before, we assume throughout this section that hypotheses (A1)-(A7) hold
and that uy € C(£2). Moreover, we assume that ¢* = 0. Throughout this section
u = u(x,t) denotes the viscosity solution of (ENP)—(ID).

We set

Z ={(x,p) e 2xR" : H(x,p) =0}.

(A9)+ There exists a function wy € C([0, 00)) satisfying wo(r) > 0 forall r > 0
such thatif (x, p) € Z,§ € D, H(x, p) and g € R", then

Hx,p+q)=§&-q+w(€-q)+).
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The following proposition describes the long time behavior of solutions of
(ENP)—(ID).

Theorem 6.1. Assume thaL either (A9)+ or (A9)_ holds. Then there exists a
viscosity solution w € Lip(§2) of (SNP) for which

tlim u(x,t) = w(x) uniformly on £2. (115)
—>00

The following example is an adaptation of the one from Barles—Souganidis to the
Neumann problem, which shows the necessity of a stronger condition like (A9)4
beyond the convexity assumption (A7) in order to have the asymptotic behavior
described in the above theorem.

Example 6.1. Letn = 2 and 2 = By. Let n, { € C'(R4) be functions such that
0 <n(r) <1forallr € Ry, n(r) = 1forall r € [0, 1], n(r) = 0 for all
r € [2,00), &(r) = Oforall r € Ry, ¢(r) = 0 forall r € [0,2] U [3,00) and
¢(r) > O forall r € (2, 3). Fix a constant M > 0 so that M > [[{'[|oo k. We
consider the Hamiltonian H : £ x R? given by

H(x,y.p.q) =|—yp+xq+{(r)|—-¢(r)
0OV G+ (=) ([P + 2 - M)

where 7 = r(x,y) := /x2 + y2. Letu € C'(£2 x R,) be the function given by
u(x,y,t) =¢(r) (Z cost — = sint) ,
r r

where, as above, r = /x2 + y2. Itis easily checked that  is a classical solution of

u(x, y,0) + H(x, y,u(x,y,1),uy(x,y,1)) =0 in By xRy,
v(x, y) - (ue(x, y. 1), uy(x,y,1)) =0 on By x R,

where v(x, y) denotes the outer unit normal at (x, y) € dBs. Note here that if we
introduce the polar coordinate system

x=rcosf, y=rsinb
and the new function
v(r,0,t) = u(rcos@,rsinf,t) for(r,0,1) e Ry x Rx Ry,
then the above Hamilton—Jacobi equation reads

v + H(r.0,v,,v9) =0,
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where

H (.0, pr, po)

= 1po + 20 = 20) + 0022 + (Z2) 4 =0 (el = M),

while the definition of u reads
v(r,0,t) = ¢(r)sin(6 —1).
Note also that any constant function w on By is a classical solution of

H(x,y,we(x,y,1),w,(x,y,1)) =0 in By,
v(x,y) - (we(x,y,t),wy(x,y,t)) =0 ondBy,
which implies that the eigenvalue c* is zero.

It is clear that u does not have the asymptotic behavior (115). As is easily seen,
the Hamiltonian H satisfies (A5)—(A7), but neither of (A9)L.

6.1 Preliminaries to Asymptotic Solutions

According to Theorem 3.3 and Corollary 3.1, we know that u € BUC(Q). We set
Uoo(X) = liminfu(x,t) forall x € 2.
—>0o0
Lemma 6.1. The function us is a viscosity solution of (SNP) and us, € Lip(£2).
Proof. Note that

Uoo(X) = tl_igloinf{u(x,t +7r):r>0} forall x € 2. (116)

By Lemma 5.11, if we set
v(x,t) = inf{u(x,t +r) : r >0} for (x,t) € Q,

then v € BUC(Q) and it is a viscosity solution of (ENP). For each x € £2, the
function v(x,-) is nondecreasing in R. Hence, by the Ascoli-Arzela theorem
or Dini’s lemma, we see that the convergence in (116) is uniform in £2. By
Proposition 1.9, we see that the function ux(x), as a function of (x, ¢), is a viscosity
solution of (ENP), which means that u, is a viscosity solution of (SNP). Finally,
Proposition 1.14 guarantees that us, € Lip(£2). O
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We introduce the following notation:

S ={(x.§) e 2xR" : § € D, H(x, p) forsome (x,p) € Z},
P(x,§) ={peR" : £€ D, H(x,p)} for (x,§) € 2 xR".

Lemma 6.2. (i) Z, S C 2 x Bg, for some Ry > 0.

(ii) Assume that (A9)4 holds. Then there exist constants § > 0 and Ry > 0 such
that for any (x,§) € S and any ¢ € (0, 8), we have P(x, (1 + €)§) # 0 and
P(x.(1 + £)§) C By,

(iii) Assume that (A9)— holds. Then there exist constants § > 0 and Ry > 0 such
that for any (x,§) € S and any € € (0, §), we have P(x,(1 — &)§) # 0 and
P(x,(1 —¢)§) C Bpg,.

Proof. (i) It follows from coercivity (A6) that there exists a constant R; > 0 such
that Z C R"” x Bg,. Next, fix any (x, ) € S. Then, by the definition of S, we may
choose a point p € P(x, &) such that (x, p) € Z. Note that | p| < R;. By convexity
(A7), we have

Hx,p'y>H(x,p)+&-(p'—p) forall p’ e R".
Assuming that £ # 0 and setting p’ = p + £/|€| in the above, we get

El=¢&-(p'—p) <H(x,p')—H(x,p) < sup H— inf H.
EXBRI-FI QXBRI

We may choose a constant R, > 0 so that the right-hand side is less than R,, and
therefore § € Bp,. Setting Ry = max{R;, R,}, we conclude that Z, S C R” x Bpg,.

(i) By (i), there is a constant Ry > 0 such that Z, S C 2 x Bg,. We set § =
wo(1), where wy is from (A9) . In view of coercivity (A6), replacing Ry > 0 by
a larger constant if necessary, we may assume that H(x, p) > 1 + wy(1) for all
(x.p) € 2 x (R"\ Bg,).

Fix any (x,£) € S, p € P(x,§) and ¢ € (0, ). Note that £, p € Bg,. By (A9)4,
for all x € R” we have

H(x,q)z&-(g=p)+ oo ((§-(g—p)+).

We set V := {q € Bag,(p) : |E-(q — p)| < 1}.Letq € V and observe the
following: if ¢ € 0Bg,(p), which implies that |¢| > Ry, then H(x,q) > 1 +
wo(l) > 1+e> 1+ (g—p).1f§-(g—p) =1 then H(x,q) = 1+ wo(1) >
l+e=(1+¢)§-(q—p) Also,if§-(q—p) = -l then H(x,q) = §-(¢ — p) >
(1+¢)¢-(q — p). Accordingly, the function G(q) := H(x,q) — (1 + &) - (g — p)
on R” is positive on dV while it vanishes at ¢ = p € V, and hence it attains a
minimum over the set V' at an interior point of V. Thus, P(x, (1 +¢)&) # @. By the
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convexity of G, we see easily that G(g) > O for all ¢ € R” \ V and conclude that
P(x, (1 +¢)§) C Bag,-

(>iii) Let wg be the function from (A9)_. As before, we choose Ry > 0 so that
Z,S C 2 x Bg, and H(x, p) > 1 + wy(1) for all (x, p) € 2 x (R" \ Bg,), and
set § = wo(1) A 1. Note that for all x € R”,

Hx.q)z§-(g=p)+wo((E-(g—p)).

Fix any (x,£) € S, p € P(x,£) and ¢ € (0,8). Set V := {g € By, (p) :
|- (q — p)| < 1}. Let ¢ € V and observe the following: if ¢ € 0Bxg,(p), then
H(x,q) 2 1+ wo(l) > 1+e> (-8 -(q—p).IE (g— p) =—1, then
H(x,q) =2 =1 +wo(l) > -1+e=(1-¢8E-(q—p)I§-(¢g—p) =1,
then H(x,q) > &-(q— p) > (1 —¢e)§ - (¢ — p). As before, the function G(g) :=
H(x,q) — (1 —¢)& - (¢ — p) attains a minimum over V' at an interior point of V.
Consequently, P(x, (1 — ¢)&) # @. Moreover, we get P(x, (1 —¢)§) C Byg,. 0O

Lemma 6.3. Assume that (A9)_ (resp., (A9)_) holds. Then there exist a constant
81 > 0 and a modulus w; such that for any ¢ € [0, 6] and (x,§) € S,

Lx,14+¢)& <(1+¢eL(x,&) +cwi(e) (117)
(resp.,

Lix,(1-¢)§) = (1 —-e)L(x.§) +ewi(e)) (118)

Before going into the proof, we make the following observation: under the
assumption that H, L are smooth, for any (x,£) € S, if we set p := D¢L(x,§),
then
H(x,p) =0,

p-§=H(x, p)+ L(x,§) = L(x,§),
and, as ¢ — 0,

Lx,(1 +¢)§) = L(x.§) +ep-§+o(e)
= L(x,§) +eL(x,§) +o(e) = (1 +¢)L(x,§) +o(e).

Proof. Assume that (A9)_ holds. Let Ry > 0, Ry > 0 and 8 > 0 be the constants
from Lemma 6.2. Fix any (x,£) € S and ¢ € [0,4). In view of Lemma 6.2, we
may choose a p. € P(x, (1 + ¢)&). Then we have |p. — po| < 2Ry, |§] < Ry and
€ - (p= — Po)| < 2RoR.

Note by (A9), that

H(x, pe) = &+ (pe — po) + o ((§ - (pe — po))+) -
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Hence, we obtain

Lix,1+e)&) =0+e& - p.—H(x,p.) <(1+¢)&- p.
=& (pe— po) —wo ((§ - (P — po))+)
=+ 9§ po— H(x, po)]
+e&-(pe— po) — o ((§ - (pe — po))+)

<(1+¢&)L(x,§) +& max (r - éwo(r)) .

0=<r=<2RoRi

We define the function w; on [0, 00) by setting w; (s) = maxo<,<aryr, (r —wo(r)/s)
for s > 0 and w;(0) = 0 and observe that w; € C([0, 00)). We have also L(x, (1 +
&)E) < (1+¢e)L(x,&) + ewi(e) forall ¢ € (0,8). Thus (117) holds with §; := §/2.
Next, assume that (A9)_ holds. Let Ry > 0, Ry > 0 and § > 0 be the constants
from Lemma 6.2. Fix any (x,§) € S and ¢ € [0, §).
As before, we may choose a p. € P(x, (1 — ¢)&), and observe that | p. — po| <
2Ry, |€] < Roand |€ - (p: — po)| < 2RoR;. Noting that

H(x, pe) = § - (pe — po) + wo ((§ - (pe — po))_).

we obtain

Lix,(1-e)§) =(1-e)f-p.—H(x,p:) <(1—8)§-p:
=&+ (pe — po) —wo ((§ - (p= — po))_)
< (=95 po— H(x, po)]
—&&-(pe— po) — o ((§ - (pe — Po))_)

0=<r=<2RoR;

<(1+¢eL(x,§)+¢e max (r — éa)o(r)) .

Setting w;(s) = maxo<,<2r,r, (r — wo(r)/s) for s > 0 and w;(0) = 0, we
find a function w; € C(]0, 00)) vanishing at the origin for which L(x, (1 — ¢)§) <
(1—¢e)L(x,&) + ew;(¢) for all ¢ € (0, 8). Thus (118) holds with §; := 5/2. O

Theorem 6.2. Letu € Lip(£2) be a subsolution of (SNP). Let n € AC(R4, R") be
such that n(t) € 2 forallt € Ry. Set Ry, = {t € Ry : n(t) € 02}. Then there
exists a function p € L°° (R4, R") such that

%u on() = p@)-n() foraeteRy,

H(n(), p(t)) =0 foraet e Ry,
y(n@) - p() <gn@)) foraeteRyp.



218 H. Ishii

Proof. According to Theorem 4.2, there is a collection {u,}cc0,1) C C 1(£2) such
that

H(x,Du,(x)) <e forall x € 2,

e

3 (x) <gx) forall x € 052,
Y

lue — ullo.2 < e,

sup [|Dug||Loo(2) < o0.
O<e<l1

If we set p,(t) = Du, o n(t) forall t € R, then we have

t

us o n(t) —u: on(0) = / ps(s) - n(s)ds forallt € Ry,
0

H(n(), p.(t)) <e forallt € Ry, (19

y(n(2)) - pe(t) < g(n(r)) forallf € Ryp.

Since { ps}sc(0,1) is bounded in L°(IR ), there is a sequence {&; } jen converging to
zero such that, as j — oo, the sequence {p.; } converges weakly-star in L>°(R4)
to some function p € L*°(R4). Itis clear from (119) that

uon(t) —uon(0) = /t p(s)-n(s)ds forallt € Ry,
0
y(n(2)) - p(r) < g(n(t)) forae.reRyp.

Now, we fix ani € Nso thati > | p|reo®r,) and any 0 < T < oo, and set
J = [0, T]. Using Lemma 5.6, for each m € N, we find a function v,, € L*°(J,R")
so that

H(n(s), p(s)) + Li(n(s), —vm(5)) < —vm(s)- p(s) +1/m forae. seJ.
(120)

By the convex duality, we have

H(x,q) = sup(§-q— L;(x,£)) forall (x,q) € 2 x B,.
EER”

(Note that L;(x,-) is the convex conjugate of the function H(x,-) + &5,, where
SE (p) =0if p € B; and = oo otherwise.) Hence, for any nonnegative function
¥ € L®(J,R) and any (j,m) € N2, by (119) we get

o [ s = [ W HGE). P 60

> /J V) tm(S) - e, (5) — Li(7(5). — v (s))]ds.
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Combining this observation with (120), after sending j — oo, we obtain

0> /J V() (H(s). pls)) — 1/m)ds,

which implies that H(n(s), p(s)) < 0 fora.e. s € [0, T]. Since T" > 0 is arbitrary,
we see that
H(n(s), p(s)) <0 forae. seRy.

The proof is complete. O

6.2 Proof of Convergence

This subsection is devoted to the proof of Theorem 6.1.

Proof (Theorem 6.1). It is enough to show that

lim sup u(x, t) < uso(x) forall x € 2. (121)

—>00

Indeed, once this is proved, it is obvious that lim,_, o u(x,?) = uo(x) for all x €
£2, and moreover, since u € BUC(Q), by the Ascoli—Arzela theorem, it follows that
the convergence, lim; o u(X, ) = Uxo(X), is uniform in Q.

Fix any z € £2. According to Lemma 6.1 and Corollary 5.2, we may choose a
(n,v,1) € SP(z) such that for all ¢t > 0,

Uoo(2) — oo (N(1)) = Z(2,1,v.1). (122)

Due to Theorem 6.2, there exists a function g € L°°(R, R") such that

disuoo(n(s)) —q(s)-ii(s) forae.s € Ry,

H(n(s), q(s)) <0 forae.s € Ry, (123)
y(n(s)) - q(s) < g(n(s)) fora.e.s € Ryp,
where Ry, :={s € Ry : n(s) € 0£2}.
We now show that
H(n(s). q(s)) =0 forae.s € Ry,
[(s)y(n(s)) - q(s) = 1(s)g(n(s)) forae.s € Ryp, (124)

—q(s)-v(s) = H(n(s), q(s)) + L(n(s), —v(s)) forae.s € Ry.
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We remark here that the last equality in (124) is equivalent to saying that
—v(s) € D, H(n(s), q(s)) forae.s € Ry,
(or
q(s) € D¢ L(n(s), —v(s)) forae.s € Ry.)
By differentiating (122), we get

d
—d—suoo(n(S)) = L(n(s),—v(s)) + (s)g(n(s)) forae.s €Ry.
Combining this with (123), we calculate

0 =gq(s)-0(s) + L(n(s), —v(s)) + (s)g(n(s))
=4q(s) - (v(s) = 1(s)y(n(s))) + L(n(s), —v(s)) + [(s)g(n(s))
= —H(n(s).q(s)) —(s)(g(s) - y(n(s)) — g(n(s))) = 0
for a.e. s € R4, which guarantees that (124) holds.

Fix any ¢ > 0. We prove that there is a constant 7 > 0 and for each x € 2 a
number o (x) € [0, 7] for which

Uoo(X) + & > u(x,0(x)). (125)

In view of the definition of 1, for each x € §2 there is a constant t(x) > Osuch
that
Uoo(X) + & > u(x, t(x)).

By continuity, for each fixed x € £2, we can choose a constant r(x) > 0 so that
Uoo(¥) + & > u(y, t(x)) fory € 2N By(x),

where B,(x) := {y € R" : |y —x| < p}. By the compactness of £, there is a finite
sequence x;,i = 1,2,..., N, such that

§C U B,(x,.)(xi),

1<i<N

That is, for any y € 2 there exists x;, with 1 <i < N, such that ¥ € By (xi),
which implies
Uso(¥) + &> u(y, 1(x;)).

Thus, setting

T = max 1(x;),
max (x:)

we find that for each x € £2 there is a constant o'(x) € [0, 7] such that (125) holds.
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In what follows we fix ¢ > 0 and o(x) € [0, t] as above. Also, we choose a
constant §; > 0 and a modulus w; as in Lemma 6.3.

We divide our argument into two cases according to which hypothesis is valid,
(A9)+ or (A9)_. We first argue under hypothesis (A9)4. Choose a constant 7 > 1
sothat /(T — 1) < §;. Fixany t > T, and set 8 = o(n(¢)) € [0, 7]. We set
5_: 0/(t — 0) and note that § < 7/(t — t) < §;. We define functions ns, vs, [s on
R+ by

ns(s) =n((1 + 8)s).
vs(s) = (1 4+ 8v((1 + §)s),
Is(s) = (1 + )I((1 + 8)s),
and note that (s, vs, Is) € SP(z).
By (124) together with the remark after (124), we know that H(5(s), ¢(s)) =0

and —v(s) € D H(n(s), q(s)) fora.e. s € Ry. Thatis, (n(s), —v(s)) € S fora.e.
s € R4. Therefore, by (117), we get for a.e. s € R4,

L(ns5(s), —v5(s)) = (1 +8)L(n((1 + 8)s). —v((1 + 8)s)) + Sy (§).

Integrating this over (0, t — 6), making a change of variables in the integral and
noting that (1 + 8)(t — 0) = ¢, we get

t—6 t
/0 L(ns(s), —vs(s))ds < /0 L(n(s), —v(s))ds + (t — 0)8w;(8)

_ /0 L((s). —v(s))ds + 6y (8).

as well as e .
/ Is(5)g (ns(s))ds = / 1(5)g(n(s))ds.
0 0

Moreover,
u(z, t) <Lt —0,ns5 s ls) +u(ns(t —0), 6)
< /0 (L(n(s), —v(s)) + 1()g(n(s)))ds + b1 (8) + u(n(). o(n(t)))

< oo (2) — oo (N(1)) + T@1(8) + U (n(1)) + &
=loo(2) + w1 (8) +&.

Thus, recalling that § < t/(t — ), we get

u(z, 1) < too(z) + T <t i T) +e. (126)
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Next, we assume that (A9)_ holds. We choose T > 7 as before, and fix t > T.
Setd =a(n(t—rt)) €0, t]and§ = (r—60)/(t —0). Observe that (1—5)(r —0) =
t—tandd < t/(t —1) <6

We set 5(s) = n((1=238)s), vs(s) = (1=58)v((1—=35)s) and ls(s) = (1—=58)I((1—
§)s) for s € Ry and observe that (s, vs, Is) € SP(z). As before, thanks to (118),
we have

L(ns(s), —vs(s)) < (1—=8)L(n((1—=158)s), —v(l —38)s)) +Sw(§) fora.e.s € Ry.

Hence, we get
t—6 -t
/0 L(ns(s), —vs(s))ds < /0 L(n(s), —v(s))ds + (1 — 0)3w; (8)

_ /0 L(1(s). —v(s)ds + (¢ — ) (6).
and
t—0 t—1
/ I5(5)g(n5(s))ds = / 1(5)g(n(s))ds.
0 0

Furthermore, we calculate

u(z,t) <Lt —0,ns, vs,ls) +u(ns(t — 6), 0)
<Z@—t,nvl)+ 1010 +uni—1), o(nt —1)))
<Uoo(2) + Twi(8) + &

Thus, we get

T
u(z,t) < uco(z) + m)l(l — r) + &,

From the above inequality and (126) we see that (121) is valid. O

6.3 Representation of the Asymptotic Solution u

According to Theorem 6.1, if either (A9) or (A9)— holcE, then the solution u(x, t)
of (ENP)-(ID) converges to the function us(x) in C(£2) as t — oo, where the
function u is given by

Uoo(x) = liminfu(x,t) for x € 2.
—>00

In this subsection, we do not assume (A9) or (A9)_ and give two characteriza-
tions of the function uqo.

Let .~ and .¥ denote the sets of all viscosity subsolutions of (SNP) and of all
viscosity solutions of (SNP), respectively.
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Theorem 6.3. Set o

Fr1={weS :v=<uyinf},

u, = sup.#i,

Fr={weS :w>uy inR2}.
Then uso = inf.%,.
Proof. By Proposition 1.10, we have u, € .. It is clear that u; < ug in 2.
Hence, by Theorem 3.1 applied to the functions uy and u, we get uy (x) < u(x,t)
forall (x,¢) € Q, which implies that u; < ue in §2. This together with Lemma 6.1

ensures that ueo € %, which shows that inf.%, < us in £2.
Next, we set

u (x,t) = rir>1£u(x,t +r) forall (x,t) € Q.

By Lemma 5.11, the function ™ is a solution of (ENP) and the function (-, 0)
is a viscosity subsolution of (SNP). Also, it is clear that u~(x,0) < uy(x) for all
x € £, which implies that u~(-,0) < u; < inf.%, in 2. We apply Theorem 3.1
to the functions u~ and inf .%,, to obtain u~(x,t) < inf.%,(x) for all (x,t) € O,
from which we get uq < inf.%; in 2, and conclude the proof. O

Letd : £2° — Rand o denote the distance-like function and the Aubry set,
respectively, as in Sect. 4.

Theorem 6.4. We have the formula:
Uoo(X) = inf{d(x,y) +d(y.2) +uo(z) : z€ R, y € &/} forall x € 2.
Proof. We first show that
uy (x) = inf{ue(y) + d(x,y) : y € 2} forall x € 2,
where i is the function defined in Theorem 6.3.
Let u; denote the function given by the right hand side of the above formula.
Since u, € .~, we have

ug (x) —uy (y) <d(x,y) forall x,y € 2,

which ensures that #; < u; in 2.

By Theorem 4.4, we have u; € . Also, by the definition of u;, we have
uy (x) < up(x) +d(x,x) = up(x) forall x € . Hence, by the definition of Uy,
we find that u; > u; in 2. Thus, we have uy, =u; in 2.

It is now enough to show that

loo(x) = inf (uy () +d(x,y)).
yES
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Let ¢ denote the function defined by the right hand side of the above formula.
The version of Proposition 1.10 for supersolutions ensures that ¢ € ., while
Theorem 4.4 guarantees that ¢ € .. Hence, we have ¢ € .. Observe also that

Uy (x) <ug(y) +d(x,y) forall x,y € 02,

which yields u; < ¢ in . Thus, we see by Theorem 6.3 that 1, =¢in Q.
Now, applying Theorem 4.1 to u,, we observe that for all x € §2,

inf{uco(y) +d(x,y) : y € &}
inf{uy (y) +d(x,y) : y € &} = ¢(x).

Uoo(X)

%

Thus we find that us, = ¢ in §2. The proof is complete. O

Combining the above theorem and Proposition 5.4, we obtain another represen-
tation formula for 1.

Corollary 6.1. The following formula holds:

Uoo(x) = inf {Z(T.n,v.1) + ug(n(T)) : T >0, (n,v,]) € SP(x)
such that n(t) € & forsomet € (0, T)}.
Example 6.2. As in Example 3.1, letn = 1, 2 = (-1, 1) and y = v on 952 (i.e.,
y(£1) = £1). Let H = H(p) = |p|> and g : 32 — R be the function given
by g(—1) = —1 and g(1) = 0. As in Example 3.1, we see that ¢* = 1. We set

I:I(p) =H(p)—c* = |p|2 — 1. Note that H satisfies both (A9)4, and consider the
Neumann problem

H@'(x)) =0 in £, y(x)-v'(x) = g(x) on 3£. (127)

It is easily seen that the distance-like function d : 2° = R for this problem is
given by d(x,y) = |x — y|. Let &/ denote the Aubry set for problem (127). By
examining the function d, we see that .o# = {—1}. For instance, by observing that

{1 if x € 2,
Did(x,—1) = (=00, 1] ifx = -1,
[1, c0) ifx =1,

we find that —1 € o7 Let up(x) = 0. Consider the problem

u(x,t) + Huy(x,t)) =0  for (x,t) € 2 xRy,
y(Oux(x,1) = g(x) for (x,1) € 92 x Ry,
u(x,0) = up(x) forx € 2.
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If u is the viscosity solution of this problem and the function v is given by v(x,¢) =
u(x,t) + c*t = u(x,t) + t, then v solves in the viscosity sense

vi(x, 1) + H(ve(x,7)) =0  for (x,1) € 2 xRy,
y(X)vx(x, 1) = g(x) for (x,1) € 92 x Ry,
v(x,0) = up(x) forx € Q2.

Setting
Uoo(x) = min{d(x,y) + d(y,2) +uo(z) : y € o, z€ 2} for x € 2,

we note that e (x) = |x + 1| for all x € £2. Thanks to Theorems 6.1 and 6.4, we
have

lim v(x,?) = uoo(x) uniformly on £2,
—>00

which reads
lim (u(x,t) +t — |x + 1]) = 0 uniformly on £.
—>00

That is, we have u(x,t) ~ —t + |x + 1] as t — oo. If we replace up(x) = 0 by the
function up(x) = —3x, then

Uoo(X) = min{|x + 1| + |1+ y| =3y} =|x + 1] -1 forall x € 2,
VESR

andu(x,t) ~ —t+|x+1|—1ast — oo.

In some cases the variational formula in Corollary 6.1 is useful to see the
convergence assertion of Theorem 6.1.

Under the hypothesis that ¢* = 0, which is our case, we call a point y € 2
an equilibrium point if L(y,0) = 0. This condition, L(y,0) = 0, is equivalent to
min,err H(y, p) = 0.

Let y € £2 be an equilibrium point. If we define (1,v,!) € SP(y) by setting
(n,v,0)(s) = (v, 0, 0), then Z(t,n,v,]) = 0forall t € R4, and Propositions 5.4
and 5.5 guarantee that y € 7.

We now assume that 7 consists of only equilibrium points. Fix any ¢ > 0 and
x € 2. According to Corollary 6.1, we can choose 7,0 € Ry and (5, v,1) € SP(x)
so that n(t) € &/ and

Lt +o,nvl])+un(t+0)) <us(x) + e (128)

Fix any t > t 4+ 0. We define (7, v, i) € SP(x) by
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n,v,D)(s) for s € [0, 1),
(7. 5. 1)(s) = (n(r),0,0) for s € [t,7 + 0),
(n,v,D)(s —0) for s €[t + 0,00),

where § =t — (t + o). Using (128), we get
oo(x) + & > Lt 7. 9.1) + uo(ij(1)) = u(x.1).

Therefore, recalling that lim inf;— oo u(x, 1) = Uoo(x), we see that lim,— o u(x, 1) =
Uoo(x) forall x € £2.

6.4 Localization of Conditions (A9) +

In this subsection we explain briefly that the following versions of (A9)4 localized
to the Aubry set .7 may replace the role of (A9)4+ in Theorem 6.1.

(A10)1 Let
Zy ={(x,p)e o xR" : H(x, p) = 0}.

There exists a function wy € C ([0, 00)) satisfying wo(r) > 0 forall r > 0
such thatif (x, p) € Z,§ € D) H(x, p) and g € R", then

Hx,p+q)=§-q+ wo((§-q)x).

As before, assume that ¢ = 0 and let u be the solution of (ENP)—(ID) and
Uoo(x) 1= liminf, oo u(x, ).

Theorem 6.5. Assume that either (A10)4+ or (A10)— holds. Then
tlim u(x,t) = too(x) uniformly on £2. (129)
—00

If we set B
ul (x) = limsupu(x,t) for x € 2,
—>00
we see by Theorem 1.3 that the function u} (x) is a subsolution of (ENP), as a
function of (x,?), and hence a subsolution of (SNP). That is, ug'o e .¥~. Since
Uoo € T, once we have shown that ug'o < Uoo On &7, then, by Theorem 4.6, we
get

+ )
Ui, < oo in £2,

which shows that the uniform convergence (129) is valid. Thus we only need to

show that uZ, < us, on 7.
Following [21] (see also [39]), one can prove the following lemma.
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Lemma 6.4. For any 7 € of there exists an @ = (,v,!) € SP(z) such that
d(z,n@) =L@, a) = —d(n(t),z) forall t > 0.

Proof. By Proposition 5.5, for each k € N there are an oy = (9, vk, lx) € SP(2)
and t; > k such that

1
L, o) < T and () =z

Observe that for any j, k € N with j < k,

1 o
¢ = L0+ [ L6 -u) + hEgn o)l
j (130)

> ZL(j, o) +dme (), me (i),

and hence

sup Z(j,ax) < oo forall j € N.
keN

We apply Theorem 5.4, with T = j € N, and use the diagonal argument, to
conclude from (130) that there is an @ = (1, v, /) € SP(z) such that for all j € N,

Z(j, o) =liminf Z(j, o) = =d(n(/).2).

Let0 < ¢ < oo, and choose a j € Nsuchthatz < j. Using Propositions 5.4 and
4.1 (ii) (the triangle inequality for d), we compute that

j
dz. () = Zt.a) = Z(j.a) —/ [L(n(s). —v(s)) + [(s)g(n(s))]ds

<Z@(.a)—dn@),n(j) < —dn(j).z) —dn().n(j))
< —d(n(t),2).

Moreover, by the triangle inequality, we get

—d(n(t).2) = d(z,n(1)).
These together yield
d(z,n@)) = L@t,a) = —d(n(t),z) forallt > 0,

which completes the proof. O
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The above assertion is somehow related to the idea of the quotient Aubry set (see
[46,47]). Indeed, if we introduce the equivalence relation = on .2/ by

x=y <= dx,y)+d(y,x)=0,
and consider the quotient space o consisting of the equivalence classes
x]={yea : y=x}, with x € &,
then the space o/ is a metric space with its distance given by
d(x). [y = d(x.y) +d(y.x).

The property of the curve 1 in the above lemma that d(z, n(t)) = —d(n(z),z) is
now stated as: n(t) = n(0).

Lemma 6.5. Lety € ¥~ andx,y € . If x = y, then
V(x) —¥(y) =dx, ).
Proof. By the definition of d, we have
Y(x)—y(y) =d(x,y) and ¥ (y) —¥(x) =d(y,x).

Hence,

V() =¥ () =d(x,y) = —d(y.x) < ¥(x) =¥ (),
which shows that ¢ (x) — ¥ (y) = d(x,y) = —=d(y, x). O

Proof (Theorem 6.5). As we have noted above, we need only to show that
u;LO(x) <uU(x) forall x € &.

To this end, we fix any z € &7. Leta = (1, v,1) € SP(z) be as in Lemma 6.4. In
view of Lemma 6.5, we have

Uoo(2) —Uoo(n(t)) = d(z,n(2)) = ZL(t,a) forall t > 0.
It is obvious that the same assertion as Lemma 6.3 holds if we replace S by
Sy =1{(x,§) € &/ xR" : £ € D H(x, p) forsome (x,p) € Z}.
We now just need to follow the arguments in Sect. 6.2, to conclude that
U (2) < oo (2).

The details are left to the interested reader. O
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Appendix

A.1 Local maxima to global maxima

We recall a proposition from [56] which is about partition of unity.

Proposition A.1. Let O be a collection of open subsets of R". Set W := | Jyco U.
Then there is a collection F of C* functions in R" having the following
properties:

1) 0< f(x) <1lforallx e Wand f € Z.
(i) Foreach x € W there is a neighborhood V of x such that all but finitely many
f € ZF vanishin'V.
(i) X ey f(x) =1forallx e W.
(iv) Foreach f € % thereisaset U € O such that supp f C U.

Proposition A.2. Let 2 be any subset of R", u € USC(£2,R) and ¢ € C'(R).
Assume that u — ¢ attains a local maximum at y € §2. Then there is a function
¥ € CY82) such that u — ¥ attains a global maximum at y and ¥ = ¢ in a
neighborhood of y.

Proof. As usual it is enough to prove the above proposition in the case when
(u—9)(y) = 0.

By the definition of the space C!($2), there is an open neighborhood W, of £2
such that ¢ is defined in Wy and ¢ € C'(W)).

There is an open subset Uy, C W, of R" containing y such that maxy, ne (4 —¢) =
(u — ¢)(y). Since u € USC(£2, R), for each x € £2 \ {y} we may choose an open
subset U, of R" so that x € U,, y € U, and SUpy, N U < O0. Seta, = SUpy, ne U
forevery x € 22\ {y}. 1 '

Weset 0 = {U;, : z € yand W = |Jye, U. Note that W is an open
neighborhood of £2. By Proposition A.1, there exists a collection .# of functions
f € C®(R") satisfying the conditions (i)—(iv) of the proposition. According to the
condition (iv), for each f € .% there is a point z € §2 such that supp f C U.. For
each f € % we fix such a point z € §2 and define the mapping p : F — 2 by
p(f) = z. We set

V(x) = Z apry f(x) + Z ¢(x) f(x) forx e W.

feF, p(f)#y feZz, p(f)=y

By the condition (ii), we see that v € C'(W). Fix any x € 2 and f € .Z,
and observe that if f(x) > 0 and p(f) # y, then we have x € supp /' C U,y
and, therefore, a,s) = SUpy, ;N U = u(x). Observe also that if f(x) > 0 and

p(f) =y, then we have x € U, and ¢ (x) > u(x). Thus we see that for all x € £2,

Yy = > u) @+ D w)f(x) =u(x) Y fx) = ulx).

FeZ. p(N#y SeZ. p(fH=y feF
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Thanks to the condition (ii), we may choose a neighborhood V' C W of y and a
finite subset { f;}7_, of .7 so that

N
Y fix)=1 forallx eV

j=1

If p(fj) # yforsome j =1,..., N, thenU,,)N{y} = @andhence y & supp f;.
Therefore, by replacing V' by a smaller one we may assume that p(f;) = y for all
j=1,...,N.Since f =0inV forall f € F\{fi...., fn}, we see that

N
Y(x) =Y ¢(x)f;(x) =¢(x) forallxeV.
j=1

It is now easy to see that u — v has a global maximum at y. O

A.2 A Quick Review of Convex Analysis

We discuss here basic properties of convex functions on R”.
By definition, a subset C of R” is convex if and only if

1-t)x+tyeC foral x,yeC,0<1t <1.
For a given function f : U C R" — [—o00, 00, its epigraph epi( f) is defined as

epi(f) = {(x.y) e U xR : y = f(x)}.

A function f : U — [—o0, o0] is said to be convex if epi( f') is a convex subset of
Rn+l'

We are henceforth concerned with functions defined on R”. When we are given
a function f on U with U being a proper subset of R”, we may think of f as a
function defined on R” having value oo on the set R” \ U.

It is easily checked that a function f : R"” — [—o00, o] is convex if and only if
forall x,y e R",t,s e Rand A € [0, 1],

f((A=MDx+Ay) < (A=At +As if t > f(x) and s > f(y).

From this, we see that a function f : R" — (—o0, o] is convex if and only if for
allx,y e R"and A € [0, 1],

A =Dx+4ay) = (A=) f(x) +Af(p).
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Here we use the convention for extended real numbers, i.e., for any x € R, —oo <
X <00, x £00o==200,x-(£oo) =Fooifx > 0,0 (+oo) =0, etc.

Any affine function f(x) = a-x 4+ b, wherea € R" and b € R, is a convex
function on R”. Moreover, if A C R” and B C R are nonempty sets, then the
function on R” given by

f(x)=sup{a-x+b : (a,b) € Ax B}

is a convex function. Note that this function f is lower semicontinuous on R”. We
restrict our attention to those functions which take values only in (—oo, o0].

Proposition B.1. Let f : R" — (—o00, o0] be a convex function. Assume that
p € D™ f(y) for some y, p € R". Then

fx)>f)+p-(x—y) forall x eR".
Proof. By the definition of D~ f(y), we have
Jf) = f+p-(x=y)+ollx—y)) as x—y.
Hence, fixing x € R", we get
J) = fax+A-0)y)—tp-(x—y)+o@) ast—>0+.

Using the convexity of f, we rearrange the above inequality and divide by ¢ > 0, to
get
JO) = f)—p-(x=y)+o(l) asr—->0+.

Sending t — 0+ yields
f(x)=> fO)+p-(x—y) forall x e R". O

Proposition B.2. Let .7 be a nonempty set of convex functions on R" with values
in (—oo, oo]. Then sup F is a convex function on R" having values in (—oo, oo).

Proof. Ttis clear that (sup .%)(x) € (—oo, oo] forallx e R". If f € %, x,y € R"
and ¢t € [0, 1], then we have

A =x+1y) = (A =1)f(x) +1f(y) = (1 —1)(sup F)(x) + 1(sup.F)(y)

and hence
(sup Z)((1 = 1)x + ty) < (1 —1)(sup F)(x) + t(sup F)(y),

which proves the convexity of sup .%. O
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We call a function f : R" — (—o00, 0o] proper convex if the following three
conditions hold:

(a) f is convex on R".
(b) f € LSC(R").
(©) f(x) # oo.
Let f : R" — [—o00, oo]. The conjugate convex function (or the Legendre—
Fenchel transform) of f is the function f* : R" — [—o0, 0] given by

fr(x) = sup(x-y— f(y)).
yeER?

Proposition B.3. If f is a proper convex function, then so is f*.

Lemma B.1. If f is a proper convex function on R", then D~ f(y) # 0 for some
y e R".

Proof. We choose a point xo € R” so that f(xo) € R. Let k € N, and define the
function g on Bj(xo) by the formula gz (x) = f(x) + k|x — xo|>. Since gx €
LSC(B(x0)), and gx (xo) = g(xo) € R, the function g has a finite minimum at a
point x; € B(xo). Note that if k is sufficiently large, then

min g = min f +k > f(xp).
331(X0)g 331(X())f S (xo)

Fix such a large k, and observe that x; € Bj(xo) and, therefore, —2k(x; — x¢) €
D~ f(xk). O

Proof (Proposition B.3). The function x — x - y — f(y) is an affine function for
any y € R”. By Proposition B.2, the function f* is convex on R". Also, since
the function x + x - y — f(y) is continuous on R” for any y € R”, as stated in
Proposition 1.5, the function f* is lower semicontinuous on R”.

Since f is proper convex on R”, there is a point xo € R” such that f(xp) € R.
Hence, we have

f )= y-x0o— f(xo) > —oc0 forall y e R".

By Lemma B.1, there exist points y, p € R” such that p € D~ f(y). By
Proposition B.1, we have

fx)=fy)+p-(x—y) forall x e R".
That is,
p-y—f(y)=p-x— f(x) forall x e R",

which implies that f*(p) = p-y — f(y) € R. Thus, we conclude that f* : R" —
(—00, 00], f*isconvex on R", f* € LSC(R") and f*(x) 5 oo. O

The following duality (called convex duality or Legendre—Fenchel duality) holds.
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Theorem B.1. Ler f : R" — (—00, 00| be a proper convex function. Then

=
Proof. By the definition of f*, we have

f*(x)=x-y— f(y) forall x,y € R",

which reads
SO)=y-x—f*(x) forall x,y e R".

Hence,
f(y) > f**(y) forall y e R".

Next, we show that
[ (x) = f(x) forall x e R".

We fix any a € R" and choose a point y € R” so that f(y) € R. We fix a number
R > 0sothat|y —a| < R.Letk € N, and consider the function g € LSC(B(a))
defined by g (x) = f(x) + k|x —a|?. Let x; € Br(a) be a minimum point of the
function g;. Noting that if k is sufficiently large, then

xp) < +k|y—al’> < min f + kR?>= min g,
gk(xk) = f(y) +kly —al aBR(a)f Jmin gk

we see that x; € Bg(a) for k sufficiently large. We henceforth assume that k is
large enough so that x; € Bg(a). We have

D™ gk(xx) = D™ f(xx) + 2k(xx —a) 3 0.

Accordingly, if we set & = —2k(x; — a), then we have & € D~ f(x;). By
Proposition B.1, we get

f(x) > fx)+ & - (x —xi) forall x € R,
or, equivalently,
E - xp — f(xx) = & -x— f(x) forall x € R".

Hence,

- xie — flx) = f7(6).
Using this, we compute that
fra) =z a-§ — 7 (6) = &k -a — &k - xi + f(xk)
= 2k|xp —al® + f(xz).
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We divide our argument into the following cases, (a) and (b).
Case (a): limg_s00 k|xx — a|> = oo. In this case, if we set m = ming, f, then
we have
f**(a) > liminf2k|x; — al® + m = oo,
k—00

and, therefore, f**(a) > f(a).
Case (b): liminfy o0 k|Xx — a|?> < co. We may choose a subsequence 1Xk; }jen
of {xy} so that lim; o X¢; = a. Then we have

£ (@) = Timinf (2k; v, —al? + f(x,)) > liminf £(x,) > f(a).
j—o00 j—00

Thus, in both cases we have f**(a) > f(a), which completes the proof. O

Theorem B.2. Let f : R" — (—o00, o] be proper convex and x,& € R". Then
the following three conditions are equivalent each other.

(i) § € D™ f(x).
(i) x € D™ f*(§).
(i) x-§ = f(x) + f*().

Proof. Assume first that (i) holds. By Proposition B.1, we have

SO)= fx)+&-(y—x) forall y e R",
which reads

E-x—f(x)=&-y— f(y) forally e R".
Hence,

f-x—flx) = ;gi)g(é-y—f(y)) = /().

Thus, (iii) is valid.

Next, we assume that (iii) holds. Then the function y + £ - y — f(y) attains a
maximum at x. Therefore, £ € D~ f(x). That is, (i) is valid.

Now, by the convex duality (Theorem B.1), (iii) reads

x-&5= ")+ 7).
The equivalence between (i) and (iii), with f replaced by f*, is exactly the
equivalence between (ii) and (iii). The proof is complete. ]
Finally, we give a Lipschitz regularity estimate for convex functions.
Theorem B.3. Let f : R" — (—o0, 00] be a convex function. Assume that there

are constants M > 0 and R > 0 such that

| f(x)| <M forall x € Bsg.
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Then M
| f(x) = fF)] < ;Ix —y| forall x,y € Bg.

Proof. Let x,y € Bpg and note that |[x — y| < 2R. We may assume that x # y.
Setting £ = (x — y)/|x — y| and z = y + 2R£ and noting that z € Bsg,

_x —yl

(z—y),

and
x=y+ |x2—RY|(Z_y) _ |x2—RJ’|Z+ (1_ |x2—RJ’|)y’
we obtain ] | |
xX—y
s = 22 e+ (1= 5220 ron,
and

o= 100 = B2 - ron < E2 Mo+ o < HEZ

In view of the symmetry in x and y, we see that

M
If(X)—f(y)Ifflx—yI forall x,y € Bg. O

A.3 Global Lipschitz Regularity

We give here a proof of Lemmas 2.1 and 2.2.

Proof (Lemma 2.1). We first show that there is a constant C > 0, for each z € 2a
ball B, (z) centered at z, and for each x, y € B,(z) N £2, a curve n € AC([0, T], R"),
with T € R4, such that 5(s) € 2 forall s € (0, T), |(s)| < 1forae.s € (0,T)
and T < Clx —y|.

Let p be a defining function of £2. We may assume that | Dp|lcorr < 1 and
|Dp(x)| > & forall x € (082)° := {y € R" : dist(y, 3£2) < §} and some constant
5 €(0,1).

Letz € £2. We can choose r > 0 so that B,(z) C §2. Then, foreach x, y € B,(z),
with x # y, theline n(s) = x+s(y—x)/|y—x|, with s € [0, |x—y]|], connects two
points x and y and lies inside §2. Note as well that /(s) = (y — x)/|y — x| € 9B
foralls € [0, |x — y|].

Let z € 882. Since | Dp(z)|> > 8%, by continuity, we may choose r € (0, §°/4)
so that Dp(x) - Dp(z) > §?/2 for all x € Bys—,(z). Fix any x,y € B.(z) N 2.
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Consider the curve £(¢) = x +1(y —x) —t(1 —1)687%|x — y| Dp(z), with t € [0, 1],
which connects the points x and y. Note that

() —zl <(1—1)|x — 2| + 1]y — 2| + 61(1 —1)§*|x — y|| Dp(2)|
<(14+382)r <487%r

and 4§72r < §. Hence, we have £(t) € Bys—,(z) N (02)° for all t € [0, 1]. If
t € (0, 1/2], then we have

P(E(1)) < p(x) +1Dp(B5(t) + (1 —0)x) - (y — x — 6(1 —1)8*|x — y| Dp(2))
<tlx—y|(1-=-3(1-1)) <0

for some 6 € (0, 1). Similarly, if ¢t € [1/2, 1), we have
p(@) < p(y) + (1 —1)|x — y[(1 —=3r) < 0.
Hence, £(¢) € £2 forall ¢ € (0, 1). Note that
@] =< |y —x|(1+657%).

If x = y, then we justset n(s) = x = y fors = O and the curve n : [0, 0] — R”
has the required properties. Now let x # y. We set(x, y) = (14+6872)|x — y| and
n(s) = &(s/t(x,y)) fors € [0, t(x, y)]. Then the curve 5 : [0, ¢(x, y)] — R” has
the required properties with C = 1 + 6572,

Thus, by the compactness of 2, we may choose a constant C > 0 and a finite
coverlng {B' }N 1 of £ consisting of open balls with the properties: for each x, y €
B; N 2, where B; denotes the concentric open ball of B; with radius twice that
of B;, there exists a curve n € AC([0, ¢(x, y)],R") such that n(s) € $2 for all
s €(0, 1(x,y)), |n(s)| < 1forae.s €0, t(x,y)] and t(x,y) < Clx — y|.

Let r; be the radius of the ball B; and set r = minr; and R = ) r;, where i
ranges alloveri =1,..., N.

Let x,y € Q.If [x — y| < r,thenx,y € B; for some i and there is a curve
n € AC([0,t(x, y)], R") such that n(s) € £2 for all s € (0,¢(x, y)), |7(s)| < 1 for
a.e.s € [0,¢(x,y)] and t(x,y) < C|x — y|. Next, we assume that |x — y| > r. By
the connectedness of §2, we infer that there is a sequence {B;; : j =1,...,J} C
{Bi :i=1,...,N}suchthatx € B;,y € B;,, B;, N B, N = @ for all
1 <j<J,and Bi; # B if j # k. Itisclear that J < N.If J = 1, then we
may choose a curve 1 with the required properties as in the case where |x — y| < r.
If J > 1, then we may choose a curve n € AC([0, (x, ¥)], R") joining x and
y as follows. First, we choose a sequence {x; : j = 1,...,J — 1} of points
in §2 so that x; € Bi; N Bi,/+1 N2 forall 1 < j < J. Next, setting xo = X,
x; = y and tp = 0, since Xj—1,Xi; € B; N Qforalll < j < J, we may select
n; € AC([lj_l, lj], R™"), with 1 < j < J, inductively so that ﬂj(lj_l) = Xj—1,
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nj(t;j) =x;,n;(s) € 2foralls € (¢tj_1,¢;)andt; <t;_1+C|x; —x;_1|. Finally,
we define n € AC([0, #(x, )], R"), with #(x, y) = t;, by setting n(s) = n;(s) for
seltj—1,¢;]and 1 < j < J.Noting that

J J
T<CY |xj—x;a|<CY ri, <CR<CRr '|x -yl
j=1 J=l1

we see that the curve n € AC([0, #(x, y)], R") has all the required properties with
C replaced by CRr~". O

Remark C.1. (i) A standard argument, different from the above one, to prove the
local Lipschitz continuity near the boundary points is to flatten the boundary by a
local change of variables. (ii) One can easily modify the above proof to prove the
proposition same as Lemma 2.1, except that £2 is a Lipschitz domain.

Proof (Lemma 2.2). Let C > 0 be the constant from Lemma 2.1. We show that
lu(x) —u(y)| < CM|x —y|forall x,y € £2.

To show this, we fix any x,y € §2 such that x # y. By Lemma 2.1, there is a
curve n € AC([0, ¢(x, y)], R") such that n(0) = x, n(t(x,y)) =y, t(x,y) <
Clx—yl|, n(s) € 2 foralls € [0, t(x, y)] and |7(s)| <1 fora.e.s € [0, t(x, y)].

By the compactness of the image 7([0, #(x, y)]) of interval [0, ¢(x, y)] by n, we
may choose a finite sequence {Bi}f\':l of open balls contained in £2 which covers
n([0, t(x, y)]). We may assume by rearranging the label i if needed that x € B,
y € By and B, N Biy; # @ forall 1 < i < N. We may choose a sequence
0 =1t <t <.+ <ty = t(x,y) of real numbers so that the line segment
[n(ti=1), n(t;)] joining n(z;—) and n(¢;) lies in B; foranyi = 1,..., N.

Thanks to Proposition 1.14, we have

lu(n(@)) —u(n(ti—1))| < M|n#) —n(ti-1)| foralli =1,...,N.
Using this, we compute that

N
lu(y) — u(x)| = |u(n(tn)) — un(o)| < Y lu(n(@)) — u(n(t-1))|

i=1

N N g
D NGERUMIES"D 3 REVOTEE

i=1 i=1"1

IN
- M/ 1(s)|ds < Mty — o) = Mi(x, y) < CM|x — y).
fo

This completes the proof. O
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A.4 Localized Versions of Lemma 4.2

Theorem D.1. Let U, V' be open subsets of R" with the properties: V c U and
VN§R#G Letu € C(U N §2) be a viscosity solution of

H(x,Du(x)) <0 inUnNSK,

ou (131)
5()0 <g(x) onU N0S2.

Then, for each € € (0, 1), there exists a function u® € C'(V N ) such that
H(x,Du’(x)) <e inVnN§,

onV Nos2,

[u* — ullovne < &

Proof. We choose functions ¢, n € C'(R") so that 0 < ¢(x) < n(x) < 1 for all
x € R", {(x) =1forallx € V,n(x) = 1 forall x € supp{ and suppn C U.

We define the function v € C(£2) by setting v(x) = n(x)u(x) forx € U N 2
and v(x) = 0 otherwise. By the coercivity of H, u is locally Lipschitz continuous
in U N £2, and hence, v is Lipschitz continuous in £2. Let L > 0 be a Lipschitz
bound of v in £2. Then v is a viscosity solution of

|[Dv(x)| <L in 2,

a_v(x) <M in 382,
dy

where M := L||y|l00.0c. In fact, we have a stronger assertion that for any x € 2
and any p € DV v(x),

lpl <L if x € £2,

(132)
y(x)-p<M if x € 052.

To check this, let ¢ € C'(£2) and assume that v — ¢ attains a maximum at x € 2.
Observe that if x € §2, then | D¢ (x)| < L and that if x € 052, then

0 < liminf (v—¢)(x —1y(x)) — (v—¢)(x)
t—>0+ —t

_ 1 v(x —ty(x)) —v(x) ¢
= liminf - —
=0+ —t oy

(x).




Introduction to Viscosity Solutions and the Large Time Behavior of Solutions 239

which yields
y(x) - Dp(x) < Lly(x)| = M.

Thus, (132) is valid.
We set

h(x) =¢(x)g(x) + (1 —=C¢(x))M for x € 352,
G(x,p) =L H(x, p) + (1 =¢(x)(|p| = L) for (x,p) € 2 xR".

It is clear that 1 € C(052) and G satisfies (A5)—(A7), with H replaced by G
In view of the coercivity of H, we may assume by reselecting L if necessary that
for all (x, p) € 2 x R",if |p| > L, then H(x, p) > 0. We now show that v is a

viscosity solution of
G(x,Dv(x)) <0 in£,

dv (133)
—(x) < h(x) on 982.
dy

To do this, let £ € £ and p € DT v(X). Consider the case where {(%) > 0,
which implies that X € U. We have n(x) = 1 near the point X, which implies that
p € DTu(%). As u is a viscosity subsolution of (131), we have H(%, p) < 0 if
X € 2 and min{H (%, p), y(X)- p —h(X)} < 0if X € 952. Assume in addition that
X € 0§2. By (132), we have y(X) - p < M. If | p| > L, we have both

y(X)-p <g(X) and y(X)-p <M.

Hence, if |p| > L, then y(x)- p < h(X). On the other hand, if | p| < L, we have two
cases: in one case we have H(X, p) < 0 and hence, G(x, p) < 0. In the other case,
we have y(X) - p < g(x) and then y(x) - p < h(X). These observations together
show that

min{G (X, p), y(X) - p —h(X)} < 0.
We next assume that X € £2. In this case, we easily see that G(X, p) < 0.

Next, consider the case where {(X) = 0, which implies that G(x, p) = |p| — L
and h(x) = M. By (132), we immediately see that G(x, p) < 0if X € £ and
min{G (X, p), y(X)- p—h(x)} <0if x € 3§2. We thus conclude that v is a viscosity
solution of (133).

We may invoke Theorem 4.2, to find a collection {v®}.e(0,1) C C 1(£2) such that

G(x,Dv®(x)) <e forallx € £2,

av

3 (x) < h(x) for all x € 052,
14

v = vl <&
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But, this yields

H(x,v°(x)) <e¢ forall x e VN2,

e

3 (x) < g(x) forall x €e VN0£2,
14

V¥ —utlloo,vne < e

The functions v® have all the required properties. O

The above theorem has a version for Hamilton—Jacobi equations of evolution
type.
Theorem D.2. Let U, V be bounded open subsets of R" x R with the properties:

VCcUUCR'xRy and VNQ #@. Letu € Lip(U N Q) be a viscosity solution
of
u(x,t) + H(x, Dyu(x,t)) <0 inU N2 xRy),
du
B—(X,Z) <g(x) onU N (082 xRy).
4
Then, for each ¢ € (0, 1), there exists a function u® € C'(V N Q) such that
u;(x,t) + Hx, Dyu'(x,1)) <e inV N2 xRy),
ou®
a—(x,t) <g(x) onV N (082 xRy), (134)
4
||M‘9 — I/l”oome <e.

Proof. Choose constants a,b € R4 so that U C R” x (a, b) and let p be a defining
function of £2. We may assume that p is bounded in R”. We choose a function
teCl(R)sothat{(z) = Oforallt € [a, b], ¢'(t) > Oforallt > b, &'(t) < O for
allt < a and min{¢(a/2),’(2b)} > ||pllco.s2-

We set

plx,1) = p(x) +¢(t) for (x,1) € R"*,
Q2 ={(x,1) e R"" 1 j(x,1) <O}
It is easily seen that
2C2x(a/2,2b) and 2N [R"x[a, b]) = 2 x [a, b].
Let (x,¢) € R"*! be such that 5(x, ) = 0.Itis obvious that (x, ) € 2 x[a/2, 2b].

Ifa <t < b, then p(x) = 0 and thus Dp(x) # 0. If either # > b or ¢ < a, then
|¢'(¢)| > 0. Hence, we have Dp(x,t) # 0. Thus, § is a defining function of £2.
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Let M > 0 and define j € C(352, R"*1) by
P, t) = ((1+ Mp(x)+y(x), (1)),

where we may assume that y is defined and continuous in £2. We note that for any
(x,t) € 082,

P, 1) - Dp(x,1) = (1 + Mp(x))+y(x) - Dp(x) + ¢'(1)*.
Note as well that (1 + Mp(x))+ = 1 forall x € 9§2 and

lim (1 + Mp(x))+ =0 locally uniformly in 2.
M—o00

Thus we can fix M > 0 so that for all (x,t) € 902,

7(x,1) - Dp(x,1) = (1 + Mp(x))+y(x) - Dp(x) +¢'(1)* > 0.

Noting that for each x € £2, the x-section {r € R : (x,) € £2} of £ is an open
interval (or, line segment), we deduce that £ is a connected set. We may assume
that g is defined and continuous in 2. We define § € C(9£2) by g(x.1) = g(x).
Thus, assumptions (A1)—(A4) hold with n+ 1, £2, 7 and & in place of n, £2, y and g.

Let L > 0 be a Lipschitz bound of the function u in U N Q. Set

H(x,t,p.q) = H(x, p) +q +2(lq| — L)3 for (x,1, p,q) € @ x R**,

and note that / € C(£2 x R"+!) satisfies (A5)—(A7), with £2 replaced by £2.
We now claim that u is a viscosity solution of

H(x,t,Du(x,1)) <0 inU NS,

7(x.1) - Du(x,1) < g(x,t) onU N L.

Indeed, since U N2 = UN Q and U N 32 = U N30, if (x,1) € U N £ and
(p.q) € DT u(x,1t), then we get |¢| < L by the cylindrical geometry of Q and, by
the viscosity property of u,

q+ H(x,p)+2(q| - L)+ =0 if (x,1) € @,
min{g + H(x, p) +2(lg| = L)+, y(x) - p— g(x)} <O if (x,1) € 9.
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We apply Theorem D.1, to find a collection {#*}.c0.1) C C'(V N .QT) such that

H(x,t,Duf(x,1)) <e inV N,
7(x.1)-Duf(x,1) < g(x,1) onUN £,

v —ull o yng < &

It is straightforward to see that the collection {uf}ce01) C C'(V N Q) satisfies
(134). O

A.5 A Proof of Lemma 5.4

This subsection is mostly devoted to the proof of Lemma 5.4, a version of the
Dunford—Pettis theorem. We also give a proof of the weak-star compactness of
bounded sequences in L*°(J,R™), where J = [a, b] is a finite interval in R.

Proof (Lemma 5.4). We define the functions F; € C(J,R"™) by

Fi(x) = / fi(dr.

By the uniform integrability of { f;}, the sequence {F;} ey is uniformly bounded
and equi-continuous in J. Hence, the Ascoli—Arzela theorem ensures that it has a
subsequence converging to a function F uniformly in J. We fix such a subsequence
and denote it again by the same symbol { F; }. Because of the uniform integrability
assumption, the sequence {F;} is equi-absolutely continuous in J. That is, for any
& > 0 there exists § > 0 such that

a<ar<b<ay<by<---<a, <b, <bh, Z(b,-—ai)<8,

i=1

= Z|fj(bi)—fj(ai)l <e forall j €N.

i=1
An immediate consequence of this is that F € AC(J, R™). Hence, for some f €
L'(J,R™), we have

F(x) = /xf(t)dt forall x € J.

Next, let ¢ € C!(J), and we show that

b b
lim / fi()e(x)dx = / f(x)p(x)dx. (135)
J_)oo a a
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Integrating by parts, we observe that as j — oo,

b b b
/ £ dx = [Fi¢]’ — / Fy ()¢ (x) d

a

b b
b
> [Pl - [ Fog = [ fmpmar
a a

Hence, (135) is valid.

Now, let ¢ € L°°(J). We regard the functions f;, f, ¢ as functions defined in
R by setting f;(x) = f(x) = ¢(x) = O0forx < aorx > b. Let {k;}.~o be a
collection of standard mollification kernels. We recall that

lim ke * ¢ — @15y =0, (136)
e—>0
lke x @ (x)| < ||@pllLoosy forall x € J, e > 0. (137)

Fix any § > 0. By the uniform integrability assumption, we have
M = sup || fj — fllLiy < oo.
jeN

Let o > 0 and set

Ej:={xel:|(fi—fHx)|>al

By the Chebychev inequality, we get

|E;| <

Q.li

By the uniform integrability assumption, if & > 0 is sufficiently large, then

[ 1= Pl <. (138)

In what follows we fix @ > 0 large enough so that (138) holds. We write f; — f =
gj +bj,where g; = (f; — f)(1 —1g;) and b; = (f; — f)1g;. Then,

lgj(x)| <o forall xe€J and bl <S§.

Observe that
= [ fwsmas— [ wecoa

- /J(f; C ) ke # () dx + /J(fj ~ D@ — ke * $)(x) da
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and
[ = D =k i)

<| [ 0@ ko] +| [ @@ -k o
<allke x ¢ =Pl + 28[dllLoe)-
Hence, in view of (135) and (136), we get limsup;_, o [/;| < 28(|@|[oo(s). As
8 > 0 is arbitrary, we get lim; oo /; = 0, which completes the proof. O

As a corollary of Lemma 5.4, we deduce that the weak-star compactness of
bounded sequences in L*°(J,R™):

Lemma E.1. Let J = [a, b], with —00 < a < b < 00. Let { fi }ren be a bounded
sequence of functions in L (J,R™). Then { fi.} has a subsequence which converges
weakly-star in L*°(J,R™).

Proof. Set M = sup,cy || fkllLoo(s). Let E C J be a measurable set, and observe
that

/|fk(1)|df§M|E| forallk € N,
E

which shows that the sequence {f;} is uniformly integrable in J. Thanks to
Lemma 5.4, there exists a subsequence { fi;};jen of {fi} which converges to a
function f weakly in L'(J, R™).

Leti € Nandset E;, = {t € J : |f@)] > M + 1/i} and g;(t) =
1) f(t)/| f(¢)| fort € J. Since g; € L*=°(J,R™), we get

[ A0 > [ 1rohsoa s s>
J J
Hence, using the Chebychev inequality, we obtain
1
(4 + DIEL = [ 1Oz @ < [ M1z @ = MiEL
J J

which ensures that | E;| = 0. Thus, we find that | f(¢)| < M a.e.in J.
Now, fix any ¢ € L'(J,R™). We select a sequence {¢; }ien C L>®(J,R™) so
that, as i — 00, ¢; — ¢ in L'(J,R™). Foreach i € N, we have

i [ £, 000 = [ 10 g0
J—>00 J J
On the other hand, we have

[ fw-p00a = [ 5,0 6i0] = M16 = lsy foratt j
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and

[ rw-pwa = [ 00w < Mg =g,

These together yield

Jim [ g @-pwa = [ 09001 o

A.6 Rademacher’s Theorem

We give here a proof of Rademacher’s theorem.

Theorem F.1 (Rademacher). Let B = By C R" and f € Lip(B). Then f is
differentiable almost everywhere in B.

To prove the above theorem, we mainly follow the proof given in [1].

Proof. We first show that f has a distributional gradient Df € L°°(B).

Let L > 0 be a Lipschitz bound of the function f. Leti € {1,2,...,n} and ¢;
denote the unit vector in R” with unity as the i-th entry. Fix any ¢ € C/J(B) and
observe that

/B ()¢, (x)dx = rEI&/B f(x)¢(x + rer,-) —¢(x) dx

i [ re) - f(x)¢(x)dx
r—>0+ Jp r

and

[ s <L [ g0kt < L1891z,
B B

Thus, the map

Cl(B)> ¢+ — /B £y ()dx € R

extends uniquely to a bounded linear functional G; on L?(B). By the Riesz
representation theorem, there is a function g; € L?(B) such that

Gi(¢p) = /B gi(x)¢p(x)dx forall ¢ € L*(B).

This shows that g = (g1, ..., &) is the distributional gradient of f.

We plug the function ¢ € L?(B) givenby ¢ (x) = (g (x)/|gi (x)|) 1, (x), where
k € Nand Ey = {x € B : |gi(x)| > L + 1/k}, into the inequality |G;(¢)| <
L”d)”Ll(B)’ to obtain

[ Jaltz s < L [ 12, 0ax = LIEL
B B
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which yields
(L + 1/k)|Ex| = L|Ex|.
Hence, we get |Ex| = O forallk € Nand |{x € B : |gi(x)| > L}| = 0. That is,
gi € L*(B) and |g;(x)| < L a.e.in B.
The Lebesgue differentiation theorem (see [57]) states that for a.e. x € B, we
have g(x) € R" and

. 1
tim - [ eG4 ) - g(oldy =0. (139)
r—>0+r B,

Now, we fix such a point x € B and show that f is differentiable at x. Fix an
r > 0 so that B,(x) C B.For$§ € (0, r), consider the function s € C(B) given by

fx+8y)— f(x)
; :

hs(y) =
We claim that
;im hs(y) = g(x)-y uniformly for y € B. (140)
—0
Note that #5(0) = 0 and h; is Lipschitz continuous with Lipschitz bound L. By
the Ascoli—Arzela theorem, for any sequence {8, } C (0, r) converging to zero, there
exist a subsequence {8, }ren of {8;} and a function i € C(B) such that

lim hs, (x) = ho(y) uniformly for y € B.
k—00 k

In order to prove (140), we need only to show that hy(y) = g(x) - y forall y € B.
Since hs(0) = 0 for all § € (0, r), we have hy(0) = 0. We observe from (139)
that

/ lg(x + 8) — g(x)ldy = / g +7) — g5 "dy — 0 as § 0.
B B

Using this, we compute that for all ¢ € C; (B),

[ 1o, 00ay = gim [ 06,00
B —ooJB

- klin;o/B gi(x 438, y)p(y)dy

- / 2 (0P()dy = / ¢() - vy, (9)dy.
B B
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This guarantees that ho(y) — g(x) - y is constant for all y € B while h(0) = 0.
Thus, we see that so(y) = g(x) - y for all y € B, which proves (140).

Finally, we note that (140) yields

fx+y)=f(x)+gx)-y+o(lyl) as y—0. O
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