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Abstract We present an introduction to the theory of viscosity solutions of first-
order partial differential equations and a review on the optimal control/dynamical
approach to the large time behavior of solutions of Hamilton–Jacobi equations,
with the Neumann boundary condition. This article also includes some of basics of
mathematical analysis related to the optimal control/dynamical approach for easy
accessibility to the topics.

Introduction

This article is an attempt to present a brief introduction to viscosity solutions of
first-order partial differential equations (PDE for short) and to review some aspects
of the large time behavior of solutions of Hamilton–Jacobi equations with Neumann
boundary conditions.

The notion of viscosity solution was introduced in [20] (see also [18]) by
Crandall and Lions, and it has been widely accepted as the right notion of
generalized solutions of the first-order PDE of the Hamilton–Jacobi type and fully
nonlinear (possibly degenerate) elliptic or parabolic PDE. There have already been
many nice contributions to overview of viscosity solutions of first-order and/or
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second-order partial differential equations. The following list touches just a few
of them [2, 6, 15, 19, 29, 31, 41, 42].

This article is meant to serve as a quick introduction for graduate students or
young researchers to viscosity solutions and is, of course, an outcome of the lectures
delivered by the author at the CIME school as well as at Waseda University, Collège
de France, Kumamoto University, King Abdulaziz University and University of
Tokyo. For its easy readability, it contains some of very basics of mathematical
analysis which are usually left aside to other textbooks.

The first section is an introduction to viscosity solutions of first-order partial
differential equations. As a motivation to viscosity solutions we take up an optimal
control problem and show that the value function of the control problem is
characterized as a unique viscosity solution of the associated Bellman equation.
This choice is essentially the same as used in the book [42] by Lions as well as in
[2, 6, 29].

In Sects. 2–5, we develop the theory of viscosity solutions of Hamilton–Jacobi
equations with the linear Neumann boundary condition together with the corre-
sponding optimal control problems, which we follow [8,38,39]. In Sect. 6, following
[38], we show the convergence of the solution of Hamilton–Jacobi equation of
evolution type with the linear Neumann boundary condition to a solution of the
stationary problem.

The approach here to the convergence result depends heavily on the variational
formula for solutions, that is, the representation of solutions as the value function
of the associated control problem. There is another approach, due to [3], based on
the asymptotic monotonicity of a certain functional of the solutions as time goes
to infinity, which is called the PDE approach. The PDE approach does not depend
on the variational formula for the solutions and provides a very simple proof of
the convergence with sharper hypotheses. The approach taken here may be called
the dynamical or optimal control one. This approach requires the convexity of the
Hamiltonian, so that one can associate it with an optimal control problem. Although
it requires lots of steps before establishing the convergence result, its merit is that
one can get an interpretation to the convergence result through the optimal control
representation.

The topics covered in this article are very close to the ones discussed by
Barles [4]. Both are to present an introduction to viscosity solutions and to discuss
the large time asymptotics for solutions of Hamilton–Jacobi equations. This article
has probably a more elementary flavor than [4] in the part of the introduction to
viscosity solutions, and the paper [4] describes the PDE-viscosity approach to the
large time asymptotics while this article concentrates on the dynamical or optimal
control approach.

The reference list covers only those papers which the author more or less
consulted while he was writing this article, and it is far from a complete list of
those which have contributed to the developments of the subject.

The author would like to thank the course directors, Paola Loreti and Nicoletta
Tchou, for their encouragement and patience while he was preparing this article.



Introduction to Viscosity Solutions and the Large Time Behavior of Solutions 113

He would also like to thank his colleagues and students for pointing out many
misprints and mistakes in earlier versions of these lecture notes.

Notation:

• When F is a set of real-valued functions on X , sup F and inf F denote the
functions on X given, respectively, by

.sup F /.x/ WD supff .x/ W f 2 F g and .inf F /.x/ WD infff .x/ W f 2 F g:

• For any a; b 2 R, we write a ^ b D minfa; bg and a _ b D maxfa; bg. Also,
we write aC D a _ 0 and a� D .�a/C.

• A function ! 2 C.Œ0; R//, with 0 < R � 1, is called a modulus if it is
nondecreasing and satisfies !.0/ D 0.

• For any x D .x1; : : : ; xn/; y D .y1; : : : ; yn/ 2 R
n, x � y denotes the Euclidean

inner product x1y1 C � � � C xnyn of x and y.
• For any x; y 2 R

n the line segment between x and y is denoted by Œx; y� WD
f.1 � t/x C ty W t 2 Œ0; 1�g.

• For k 2 N and ˝ � R
n, Ck.˝;Rm/ (or simply, Ck.˝;Rm/) denotes the

collection of functions f W ˝ ! R
m (not necessarily open), each of which has

an open neighborhoodU of˝ and a function g 2 Ck.U / such that f .x/ D g.x/

for all x 2 ˝ .
• For f 2 C.˝;Rm/, where ˝ � R

n, the support of f is defined as the closure
of fx 2 ˝ W f .x/ 6D 0g and is denoted by suppf .

• UC.X/ (resp., BUC.X/) denotes the space of all uniformly continuous (resp.,
bounded, uniformly continuous) functions in a metric space X .

• We write 1E for the characteristic function of the set E . That is, 1E.x/ D 1 if
x 2 E and 1E.x/ D 0 otherwise.

• The sup-norm of function f on a set ˝ is denoted by kf k1;˝ D kf k1 WD
sup˝ jf j.

• We write RC for the interval .0; 1/.
• For any interval J � R, AC.J;Rm/ denotes the space of all absolutely

continuous functions in J with value in R
m.

• Given a convex HamiltonianH 2 C.˝ �R
n/, where˝ � R

n is an open set, we
denote by L the Lagrangian given by

L.x; �/ D sup
p2Rn

.� � p �H.x; p// for .x; �/ 2 ˝ � R
n:

• Let ˝ � R
n be an open subset of Rn, g 2 C.@˝;R/, t > 0 and .�; v; l/ 2

L1.Œ0; t �;Rn � R
n � R/ such that �.s/ 2 ˝ for all s 2 Œ0; t � and l.s/ D 0

whenever �.s/ 2 ˝ . We write

L .t; �; v; l/ D
Z t

0

ŒL.�.s/;�v.s//C g.�.s//l.s/�ds:
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1 Introduction to Viscosity Solutions

We give the definition of viscosity solutions of first-order PDE and study their basic
properties.

1.1 Hamilton–Jacobi Equations

Let ˝ be an open subset of Rn. Given a function H W ˝ � R
n ! R, we consider

the PDE
H.x;Du.x// D 0 in ˝; (1)

where Du denotes the gradient of u, that is,

Du WD .ux1; ux2 ; : : : ; uxn/ � .@u=@x1; : : : ; @u=@xn/:

We also consider the PDE

ut .x; t/CH.x;Dxu.x; t// D 0 in ˝ � .0;1/: (2)

Here the variable t may be regarded as the time variable and ut denotes the time
derivative @u=@t . The variable x is then regarded as the space variable and Dxu
(or, Du) denotes the gradient of u in the space variable x.

The PDE of the type of (1) or (2) are called Hamilton–Jacobi equations. A more
concrete example of (1) is given by

jDu.x/j D k.x/;

which appears in geometrical optics and describes the surface front of propagating
waves. Hamilton–Jacobi equations arising in Mechanics have the form

jDu.x/j2 C V.x/ D 0;

where the terms jDu.x/j2 and V.x/ correspond to the kinetic and potential energies,
respectively.

More generally, the PDE of the form

F.x; u.x/;Du.x// D 0 in ˝ (3)

may be called Hamilton–Jacobi equations.
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1.2 An Optimal Control Problem

We consider the function

X D X.t/ D .X1.t/; X2.t/; : : : ; Xn.t// 2 R
n

of time t 2 R, and

PX D PX.t/ D dX

dt
.t/

denotes its derivative. Let A � R
m be a given set, let g W R

n � A ! R
n, f W

R
n �A ! R be given functions and � > 0 be a given constant. We denote by A the

set of all Lebesgue measurable ˛ W Œ0;1/ ! A.
Fix any x 2 R

n and ˛ 2 A, and consider the initial value problem for the ordinary
differential equation (for short, ODE)

( PX.t/ D g.X.t/; ˛.t// for a.e. t > 0;

X.0/ D x:
(4)

The solution of (4) will be denoted by X D X.t/ D X.t I x; ˛/. The solution X.t/
may depend significantly on choices of ˛ 2 A. Next we introduce the functional

J.x; ˛/ D
Z 1

0

f .X.t/; ˛.t//e��t dt; (5)

a function of x and ˛ 2 A, which serves a criterion to decide which choice of ˛ is
better. The best value of the functional J is given by

V.x/ D inf
˛2A

J.x; ˛/: (6)

This is an optimization problem, and the main theme is to select a control ˛ D ˛x 2
A so that

V.x/ D J.x; ˛/:

Such a control ˛ is called an optimal control. The ODE in (4) is called the dynamics
or state equation, the functional J given by (5) is called the cost functional, and
the function V given by (6) is called the value function. The function f or t 7!
e��tf .X.t/; ˛.t// is called the running cost and � is called the discount rate.

In what follows, we assume that f; g are bounded continuous functions on
R
n � A and moreover, they satisfy the Lipschitz condition, i.e., there exists a

constantM > 0 such that
8̂
<̂
ˆ̂:

jf .x; a/j � M; jg.x; a/j � M;

jf .x; a/ � f .y; a/j � M jx � yj;
jg.x; a/ � g.y; a/j � M jx � yj:

(7)



116 H. Ishii

A basic result in ODE theory guarantees that the initial value problem (4) has a
unique solution X.t/.

There are two basic approaches in optimal control theory:

1. Pontryagin’s Maximum Principle Approach.
2. Bellman’s Dynamic Programming Approach.

Both of approaches have been introduced and developed since 1950s.
Pontryagin’s maximum principle gives a necessary condition for the optimality

of controls and provides a powerful method to design an optimal control.
Bellman’s approach associates the optimization problem with a PDE, called the

Bellman equation. In the problem, where the value function V is given by (6), the
corresponding Bellman equation is the following.

�V.x/CH.x;DV.x// D 0 in R
n; (8)

whereH is a function given by

H.x; p/ D sup
a2A

f�g.x; a/ � p � f .x; a/g;

with x � y denoting the Euclidean inner product in R
n. Bellman’s idea is to charac-

terize the value function V by the Bellman equation, to use the characterization to
compute the value function and to design an optimal control. To see how it works,
we assume that (8) has a smooth bounded solution V and compute formally as
follows. First of all, we choose a function a W R

n ! A so that

H.x;DV.x// D �g.x; a.x// �DV.x/ � f .x; a.x//;

and solve the initial value problem

PX.t/ D g.X.t/; a.X.t///; X.0/ D x;

where x is a fixed point in R
n. Next, writing ˛.t/ D a.X.t//, we have

0 D
Z 1

0

e��t ��V.X.t//CH.X.t/;DV.X.t///
�

dt

D
Z 1

0

e��t ��V.X.t// � g.X.t/; ˛.t// �DV.X.t// � f .X.t/; ˛.t//
�

dt

D
Z 1

0

�
� d

dt
e��tV .X.t// � e�tf .X.t/; ˛.t//

�
dt

DV.X.0//�
Z 1

0

e��tf .X.t/; ˛.t// dt:
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Thus we have
V.x/ D J.x; ˛/:

If PDE (8) characterizes the value function, that is, the solution V is the value
function, then the above equality says that the control ˛.t/ D a.X.t// is an optimal
control, which we are looking for.

In Bellman’s approach PDE plays a central role, and we discuss this approach in
what follows. The first remark is that the value function may not be differentiable at
some points. A simple example is as follows.

Example 1.1. We consider the case where n D 1, A D Œ�1; 1� � R, f .x; a/ D
e�x2 , g.x; a/ D a and � D 1. Let X.t/ be the solution of (4) for some control
˛ 2 A, which means just to satisfy

j PX.t/j � 1 a.e. t > 0:

Let V be the value function given by (6). Then it is clear that V.�x/ D V.x/ for all
x 2 R and that

V.x/ D
Z 1

0

e�t�.xCt /2 dt D ex
Z 1

x

e�t�t 2 dt if x > 0:

For x > 0, one gets

V 0.x/ D ex
Z 1

x

e�t�t 2 dt � e�x2 ;

and

V 0.0C/ D
Z 1

0

e�t�t 2 dt � 1 <
Z 1

0

e�t dt � 1 D 0:

This together with the symmetry property, V.�x/ D V.x/ for all x 2 R, shows
that V is not differentiable at x D 0.

Value functions in optimal control do not have enough regularity to satisfy, in
the classical sense, the corresponding Bellman equations in general as the above
example shows.

We introduce the notion of viscosity solution of the first-order PDE

F.x; u.x/;Du.x// D 0 in ˝; (FE)

where F W ˝ � R � R
n ! R is a given continuous function.

Definition 1.1. (i) We call u 2 C.˝/ a viscosity subsolution of (FE) if

8<
:
� 2 C1.˝/; z 2 ˝; max

˝
.u � �/ D .u � �/.z/

H) F.z; u.z/;D�.z// � 0:
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(ii) We call u 2 C.˝/ a viscosity supersolution of (FE) if

8<
:
� 2 C1.˝/; z 2 ˝; min

˝
.u � �/ D .u � �/.z/

H) F.z; u.z/;D�.z// � 0:

(iii) We call u 2 C.˝/ a viscosity solution of (FE) if u is both a viscosity
subsolution and supersolution of (FE).

The viscosity subsolution or supersolution property is checked through smooth
functions � in the above definition, and such smooth functions � are called test
functions.

Remark 1.1. If we set F�.x; r; p/ D �F.x;�r;�p/, then it is obvious that
u 2 C.˝/ is a viscosity subsolution (resp., supersolution) of (FE) if and only if
u�.x/ WD �u.x/ is a viscosity supersolution (resp., subsolution) of

F �.x; u�.x/;Du�.x// D 0 in ˝:

Note also that .F�/� D F and .u�/� D u. With these observations, one property
for viscosity subsolutions can be phrased as a property for viscosity supersolutions.
In other words, every proposition concerning viscosity subsolutions has a counter-
part for viscosity supersolutions.

Remark 1.2. It is easily seen by adding constants to test functions that u 2 C.˝/ is
a viscosity subsolution of (FE) if and only if

8<
:
� 2 C1.˝/; z 2 ˝; max

˝
.u � �/ D .u � �/.z/ D 0

H) F.z; �.z/;D�.z// � 0:

One can easily formulate a counterpart of this proposition for viscosity
supersolutions.

Remark 1.3. It is easy to see by an argument based on a partition of unity (see
Appendix A.1) that u 2 C.˝/ is a viscosity subsolution of (FE) if and only if

(
� 2 C1.˝/; z 2 ˝; u � � attains a local maximum at z

H) F.z; �.z/;D�.z// � 0:

Remark 1.4. It is easily seen that u 2 C.˝/ is a viscosity subsolution of (FE) if and
only if (

� 2 C1.˝/; z 2 ˝; u � � attains a strict maximum at z

H) F.z; �.z/;D�.z// � 0:
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Similarly, one may replace “strict maximum” by “strict local maximum” in the
statement. The idea to show these is to replace the function � by �.x/ C jx � zj2
when needed.

Remark 1.5. The condition, � 2 C1.˝/, can be replaced by the condition,
� 2 C1.˝/ in the above definition. The argument in the following example
explains how to see this equivalence.

Example 1.2 (Vanishing viscosity method). The term “viscosity solution” originates
to the vanishing viscosity method, which is one of classical methods to construct
solutions of first-order PDE.

Consider the second-order PDE

� "�u" C F.x; u".x/;Du".x// D 0 in ˝; (9)

where " > 0 is a parameter to be sent to zero later on, ˝ is an open subset of Rn,
F is a continuous function on ˝ � R � R

n and � denotes the Laplacian

� D @2

@x21
C � � � C @2

@x2n
:

We assume that functions u" 2 C2.˝/, with " 2 .0; 1/, and u 2 C.˝/ are given
and that

lim
"!0

u".x/ D u.x/ locally uniformly on˝:

Then the claim is that u is a viscosity solution of

F.x; u.x/;Du.x// D 0 in ˝: (FE)

In what follows, we just check that u is a viscosity subsolution of (FE). For this,
we assume that

� 2 C1.˝/; Ox 2 ˝; max
˝
.u � �/ D .u � �/. Ox/;

and moreover, this maximum is a strict maximum of u � �. We need to show that

F. Ox; u. Ox/;D�. Ox// � 0: (10)

First of all, we assume that � 2 C2.˝/, and show that (10) holds. Fix an
r > 0 so that Br. Ox/ � ˝ . Let x" be a maximum point over Br. Ox/ of the function
u" � �. We may choose a sequence f"j gj2N � .0; 1/ so that limj!1 "j D 0 and
limj!1 x"j D y for some y 2 Br. Ox/. Observe that
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.u � �/. Ox/ � .u"j � �/. Ox/C ku � u"j k1;Br . Ox/
� .u"j � �/.x"j /C ku � u"j k1;Br . Ox/
� .u � �/.x"j /C 2ku"j � uk1;Br . Ox/

! .u � �/.y/ as j ! 1:

Accordingly, since Ox is a strict maximum point of u � �, we see that y D Ox.
Hence, if j is sufficiently large, then x"j 2 Br. Ox/. By the maximum principle from
Advanced Calculus, we find that

@

@xi
.u"j � �/.x"j / D 0 and

@2

@x2i
.u"j � �/.x"j / � 0 for all i D 1; 2; : : : ; n:

Hence, we get

Du"j .x"j / D D�.x"j /; �u"j .x"j / � ��.x"j /:

These together with (9) yield

�"j��.x"j /C F.x"j ; u
"j .x"j /;D�.x"j // � 0:

Sending j ! 1 now ensures that (10) holds.
Finally we show that the C2 regularity of � can be relaxed, so that (10) holds

for all � 2 C1.˝/. Let r > 0 be the constant as above, and choose a sequence
f�kg � C1.˝/ so that

lim
k!1�k.x/ D �.x/ uniformly on Br. Ox/:

Let fykg � Br. Ox/ be a sequence consisting of a maximum point of u � �k . An
argument similar to the above yields

lim
k!1yk D Ox:

If k is sufficiently large, then we have yk 2 Br. Ox/ and, due to (10) valid for C2 test
functions,

F.yk; u.yk/;D�k.yk// � 0:

Sending k ! 1 allows us to conclude that (10) holds.
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1.3 Characterization of the Value Function

In this subsection we are concerned with the characterization of the value function
V by the Bellman equation

�V.x/CH.x;DV.x// D 0 in R
n; (11)

where � is a positive constant and

H.x; p/ D sup
a2A

f�g.x; a/ � p � f .x; a/g:

Recall that
V.x/ D inf

˛2A
J.x; ˛/;

and

J.x; ˛/ D
Z 1

0

f .X.t/; ˛.t//e��t dt;

where X.t/ D X.t I x; ˛/ denotes the solution of the initial value problem

( PX.t/ D g.X.t/; ˛.t// for a.e. t > 0;

X.0/ D x:

Recall also that for all .x; a/ 2 R
n � A and some constant M > 0,

8̂
<̂
ˆ̂:

jf .x; a/j � M; jg.x; a/j � M;

jf .x; a/ � f .y; a/j � M jx � yj;
jg.x; a/ � g.y; a/j � M jx � yj:

(12)

The following lemma will be used without mentioning, the proof of which may
be an easy exercise.

Lemma 1.1. Let h; k W A ! R be bounded functions. Then
ˇ̌
ˇ̌sup
a2A

h.a/ � sup
a2A

k.a/

ˇ̌
ˇ̌ _

ˇ̌
ˇ̌ inf
a2A h.a/ � inf

a2A k.a/
ˇ̌
ˇ̌ � sup

a2A
jh.a/ � k.a/j:

In view of the above lemma, the following lemma is an easy consequence of (12),
and the detail of the proof is left to the reader.

Lemma 1.2. The HamiltonianH satisfies the following inequalities:

jH.x; p/ �H.y; p/j � M jx � yj.jpj C 1/ for all x; y; p 2 R
n;

jH.x; p/ �H.x; q/j � M jp � qj for all x; p; q 2 R
n:

In particular, we haveH 2 C.Rn � R
n/.
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Proposition 1.1. The inequality

jV.x/j � M

�

holds for all x 2 R
n. Hence, the value function V is bounded on R

n.

Proof. For any .x; ˛/ 2 R
n � A, we have

jJ.x; ˛/j �
Z 1

0

e��t jf .X.t/; ˛.t//j dt � M

Z 1

0

e��t dt D M

�
:

Applying Lemma 1.1 yields

jV.x/j � sup
˛2A

jJ.x; ˛/j � M

�
: ut

Proposition 1.2. The function V is Hölder continuous on R
n.

Proof. Fix any x; y 2 R
n. For any ˛ 2 A, we estimate the difference of J.x; ˛/

and J.y; ˛/. To begin with, we estimate the difference of X.t/ WD X.t I x; ˛/ and
Y.t/ WD X.t Iy; ˛/. Since

j PX.t/ � PY .t/j D jg.X.t/; ˛.t// � g.Y.t/; ˛.t//j
�M jX.t/� Y.t/j for a.e. t � 0;

we find that

jX.t/ � Y.t/j � jX.0/� Y.0/j C
Z t

0

j PX.s/ � PY .s/j ds

� jx � yj CM

Z t

0

jX.s/� Y.s/j ds for all t � 0:

By applying Gronwall’s inequality, we get

jX.t/� Y.t/j � jx � yj eMt for all t � 0:

Next, since

jJ.x; ˛/ � J.y; ˛/j �
Z 1

0

e��s jf .X.s/; ˛.s// � f .Y.s/; ˛.s//j ds;

if � > M , then we have

jJ.x; ˛/ � J.y; ˛/j �
Z 1

0

e��sM jX.s/� Y.s/j ds

� M

Z 1

0

e��sjx � yjeMs ds D M jx � yj
� �M ;
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and

jV.x/ � V.y/j � M

� �M
jx � yj: (13)

If 0 < � < M , then we select 0 < � < 1 so that �M < �, and calculate

jf .�; a/ � f .�; a/j � jf .�; a/ � f .�; a/j�C.1��/

� .M j� � �j/� .2M/1�� for all �; � 2 R
n; a 2 A;

and

jJ.x; ˛/ � J.y; ˛/j � .2M/1��
Z 1

0

e��s.M jX.s/� Y.s/j/� ds

� .2M/1��
Z 1

0

e��s.M jx � yj/�e�Ms ds

� 2M jx � yj�
Z 1

0

e�.���M/s ds D 2M jx � yj�
� � �M

;

which shows that

jV.x/ � V.y/j � 2M jx � yj�
� � �M

: (14)

Thus we conclude from (13) and (14) that V is Hölder continuous on R
n. ut

Proposition 1.3 (Dynamic programming principle). Let 0 < 	 < 1 and
x 2 R

n. Then

V.x/ D inf
˛2A

� Z 	

0

e��t f .X.t/; ˛.t// dt C e��	V .X.	//
�
;

where X.t/ denotesX.t I x; ˛/.
Proof. Let 0 < 	 < 1 and x 2 R

n. Fix 
 2 A. We have

J.x; 
/ D
Z 	

0

e��t f .X.t/; 
.t// dt C
Z 1

	

e��tf .X.t/; 
.t// dt

D
Z 	

0

e��t f .X.t/; ˛.t// dt C e��	
Z 1

0

e��tf .Y.t/; ˇ.t// dt;

(15)

where

X.t/ D X.t I x; 
/; ˛.t/ WD 
.t/; ˇ.t/ WD 
.t C 	/;

Y.t/ WD X.t C 	/ D X.t IX.	/; ˇ/:
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By (15), we get

J.x; 
/ �
Z 	

0

e��tf .X.t/; ˛.t// dt C e��	V .X.	//;

from which we have

J.x; 
/ � inf
˛2A

� Z 	

0

e��tf .X.t/; ˛.t// dt C e��	V .X.	//
�
:

Consequently,

V.x/ � inf
˛2A

� Z 	

0

e��t f .X.t/; ˛.t// dt C e��	V .X.	//
�
: (16)

Now, let ˛; ˇ 2 A. Define 
 2 A by


.t/ D
8<
:
˛.t/ if 0 � t � 	;

ˇ.t � 	/ if 	 < t:

Set
X.t/ WD X.t I x; ˛/ and Y.t/ WD X.t IX.	/; ˇ/:

We have
(
X.t/ D X.t I x; 
/ and ˛.t/ D 
.t/ for all t 2 Œ0; 	�;
ˇ.t/ D 
.t C 	/ and Y.t/ D X.t C 	/ for all t � 0:

Hence, we have (15) and therefore,

V.x/ �
Z 	

0

e��t f .X.t/; ˛.t// dt C e��	J.X.	/; ˇ/:

Moreover, we get

V.x/ �
Z 	

0

e��t f .X.t/; ˛.t// dt C e��	V .X.	//;

and

V.x/ � inf
˛2A

� Z 	

0

e��t f .X.t/; ˛.t// dt C e��	V .X.	//
�
: (17)

Combining (16) and (17) completes the proof. ut
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Theorem 1.1. The value function V is a viscosity solution of (11).

Proof. (Subsolution property) Let � 2 C1.Rn/ and Ox 2 R
n, and assume that

.V � �/. Ox/ D max
Rn
.V � �/ D 0:

Fix any a 2 A and set ˛.t/ WD a, X.t/ WD X.t I Ox; ˛/. Let 0 < h < 1. Now, since
V � �, V. Ox/ D �. Ox/, by Proposition 1.3 we get

�. Ox/ DV. Ox/ �
Z h

0

e��t f .X.t/; ˛.t// dt C e��hV .X.h//

�
Z h

0

e��tf .X.t/; ˛.t// dt C e��h�.X.h//:

From this, we get

0 �
Z h

0

e��t f .X.t/; a/ dt C
Z h

0

d

dt
.e��t �.X.t/// dt

D
Z h

0

e��t �f .X.t/; a/ � ��.X.t//CD�.X.t// � PX.t/� dt

D
Z h

0

e��t �f .X.t/; a/ � ��.X.t//CD�.X.t// � g.X.t/; a/� dt:

(18)

Noting that

jX.t/ � Oxj D
ˇ̌
ˇ
Z t

0

PX.s/ ds
ˇ̌
ˇ �

Z t

0

jg.X.s/; a/j ds � M

Z t

0

ds D Mt; (19)

dividing (18) by h and sending h ! 0, we find that

0 � ���. Ox/C f . Ox; a/C g. Ox; a/ �D�. Ox/:

Since a 2 A is arbitrary, we have ��. Ox/CH. Ox;D�. Ox// � 0.
(Supersolution property) Let � 2 C1.Rn/ and Ox 2 R

n, and assume that

.V � �/. Ox/ D min
Rn
.V � �/ D 0:

Fix " > 0 and h > 0. By Proposition 1.3, we may choose ˛ 2 A so that

V. Ox/C "h >

Z h

0

e��t f .X.t/; ˛.t// dt C e��hV .X.h//;



126 H. Ishii

where X.t/ WD X.t I Ox; ˛/. Since V � � in R
n and V. Ox/ D �. Ox/, we get

�. Ox/C "h >

Z h

0

e��tf .X.t/; ˛.t// dt C e��h�.X.h//:

Hence we get

0 �
Z h

0

e��tf .X.t/; ˛.t// dt C
Z h

0

d

dt
.e��t�.X.t/// dt � "h

D
Z h

0

e��t �f .X.t/; ˛.t// � ��.X.t//CD�.X.t// � PX.t/� dt � "h

D
Z h

0

e��t �f .X.t/; ˛.t// � ��.X.t//CD�.X.t// � g.X.t/; ˛.t//� dt � "h:

By the definition of H , we get

Z h

0

e��t .��.X.t//CH.X.t/;D�.t// dt C "h > 0: (20)

As in (19), we have
jX.t/ � Oxj � Mt:

Dividing (20) by h and sending h ! 0 yield

��. Ox/CH. Ox;D�. Ox//C " � 0;

from which we get ��. Ox/CH. Ox;D�. Ox// � 0. The proof is now complete. ut
Theorem 1.2. Let u 2 BUC.Rn/ and v 2 BUC.Rn/ be a viscosity subsolution and
supersolution of (11), respectively. Then u � v in R

n.

Proof. Let " > 0, and define u" 2 C.Rn/ by u".x/ D u.x/ � ".hxi C M/, where
hxi D .jxj2 C 1/1=2. A formal calculation

u".x/CH.x;Du".x// � u.x/ � "M CH.x;Du.x//C "M jDhxij
� u.x/CH.x;Du.x// � 0

reveals that u" is a viscosity subsolution of (11), which can be easily justified.
We show that the inequality u" � v holds, from which we deduce that u � v is

valid. To do this, we assume that sup
Rn.u" � v/ > 0 and will get a contradiction.

Since
lim

jxj!1
.u" � v/.x/ D �1;
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we may choose a constant R > 0 so that

sup
RnnBR

.u" � v/ < 0:

The function u" � v 2 C.BR/ then attains a maximum at a point in BR, but not at
any point in @BR.

Let ˛ > 1 and consider the function

˚.x; y/ D u".x/ � v.y/ � ˛jx � yj2

on K WD BR � BR. Since ˚ 2 C.K/, ˚ attains a maximum at a point in K .
Let .x˛; y˛/ 2 K be its maximum point. Because K is compact, we may choose a
sequence f˛j g � .1; 1/ diverging to infinity so that for some . Ox; Oy/ 2 K ,

.x˛j ; y˛j / ! . Ox; Oy/ as j ! 1:

Note that
0 < max

BR

.u" � v/ D max
x2BR

˚.x; x/ � ˚.x˛; y˛/

D u".x˛/� v.y˛/� ˛jx˛ � y˛j2;
(21)

from which we get

˛jx˛ � y˛j2 � sup
Rn

u" C sup
Rn

.�v/:

We infer from this that Ox D Oy. Once again by (21), we get

max
BR

.u" � v/ � u".x˛/� v.y˛/:

Setting ˛ D ˛j and sending j ! 1 in the above, since u; v 2 C.Rn/, we see that

max
BR

.u" � v/ � lim
˛D˛j ;j!1.u".x˛/ � v.y˛//

D u". Ox/ � v. Ox/:

That is, the point Ox is a maximum point of u" � v. By (21), we have

˛jx˛ � y˛j2 � u".x˛/� v.y˛/� max
BR

.u � v/;

and hence

lim
˛D˛j ;j!1˛jx˛ � y˛j2 D 0:
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Since Ox is a maximum point of u" � v, by our choice of R we see that Ox 2
BR. Accordingly, if ˛ D ˛j and j is sufficiently large, then x˛; y˛ 2 BR. By the
viscosity property of u" and v, for ˛ D ˛j and j 2 N large enough, we have

u".x˛/CH.x˛; 2˛.x˛ � y˛// � 0; v.y˛/CH.y˛; 2˛.x˛ � y˛// � 0:

Subtracting one from the other yields

u".x˛/ � v.y˛/ � H.y˛; 2˛.x˛ � y˛// �H.x˛; 2˛.x˛ � y˛//:

Using one of the properties of H from Lemma 1.2, we obtain

u".x˛/� v.y˛/ � M jx˛ � y˛j.2˛jx˛ � y˛j C 1/:

Sending ˛ D ˛j ! 1, we get

u". Ox/� v. Ox/ � 0;

which is a contradiction. ut

1.4 Semicontinuous Viscosity Solutions and the Perron Method

Let u; v 2 C.˝/ be a viscosity subsolutions of (FE) and set

w.x/ D maxfu.x/; v.x/g for x 2 ˝:

It is easy to see that w is a viscosity subsolution of (FE). Indeed, if � 2 C1.˝/,
y 2 ˝ and w � � has a maximum at y, then we have either w.y/ D u.y/ and
.u � �/.x/ � .w � �/.x/ � .w � �/.y/ D .u � �/.y/ for all x 2 ˝ , or w.y/ D
v.y/ and .v � �/.x/ � .v � �/.y/, from which we get F.y;w.y/;D�.y// � 0.
If fukgk2N � C.˝/ is a uniformly bounded sequence of viscosity subsolutions of
(FE), then the function w given by w.x/ D supk uk.x/ defines a bounded function on
˝ but it may not be continuous, a situation that the notion of viscosity subsolution
does not apply.

We are thus led to extend the notion of viscosity solution to that for discontinuous
functions.

Let U � R
n, and recall that a function f W U ! R [ f�1;1g D Œ�1; 1� is

upper semicontinuous if

lim sup
y!x

f .y/ � f .x/ for all x 2 U:
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The totality of all such upper semicontinuous functions f will be denoted by
USC.U /. Similarly, we denote by LSC.U / the space of all lower semicontinuous
functions on U . That is, LSC.U / WD � USC.U / D f�f W f 2 USC.U /g.

Some basic observations regarding semicontinuity are the following three propo-
sitions.

Proposition 1.4. Let f W U ! Œ�1; 1�. Then, f 2 USC.U / if and only if the
set fx 2 U W f .x/ < ag is a relatively open subset of U for any a 2 R.

Proposition 1.5. If F � LSC.U /, then sup F 2 LSC.U /. Similarly, if F �
USC.U /, then inf F 2 USC.U /.

Proposition 1.6. Let K be a compact subset of Rn and f 2 USC.K/. Then f
attains a maximum. Here the maximum value may be either �1 or 1.

Next, we define the upper (resp., lower) semicontinuous envelopes f � (resp., f�)
of f W U ! Œ�1; 1� by

f �.x/ D lim
r!0C supff .y/ W y 2 U \ Br.x/g

(resp., f� D �.�f /� or, equivalently, f�.x/ D limr!0C infff .y/ W y 2 U \
Br.x/g).

Proposition 1.7. Let f W U ! Œ�1; 1�. Then we have f � 2 USC.U /, f� 2
LSC.U / and

f �.x/ D minfg.x/ W g 2 USC.U /; g � f g for all x 2 U:

A consequence of the above proposition is that if f 2 USC.U /, then f � D f

in U . Similarly, f� D f in U if f 2 LSC.U /.
We go back to

F.x; u.x/;Du.x// D 0 in ˝: (FE)

Here we assume neither that F W ˝ � R� R
n ! R is continuous nor that ˝ � R

n

is open. We just assume that F W ˝ � R � R
n ! R is locally bounded and that ˝

is a subset of Rn.

Definition 1.2. (i) A locally bounded function u W ˝ ! R is called a viscosity
subsolution (resp., supersolution) of (FE) if

8<
:
� 2 C1.˝/; z 2 ˝; max

˝
.u� � �/ D .u� � �/.z/

H) F�.z; u�.z/;D�.z// � 0

0
@resp:;

8<
:
� 2 C1.˝/; z 2 ˝; min

˝
.u� � �/ D .u� � �/.z/

H) F �.z; u�.z/;D�.z// � 0

1
A :
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(ii) A locally bounded function u W ˝ ! R is a viscosity solution of (FE) if it is
both a viscosity subsolution and supersolution of (FE).

We warn here that the envelopes F� and F � are taken in the full variables. For
instance, if � 2 ˝ � R � R

n, then

F�.�/ D lim
r!0C inffF.�/ W � 2 ˝ � R � R

n; j� � �j < rg:

We say conveniently that u is a viscosity solution (or subsolution) of
F.x; u.x/;Du.x// � 0 in ˝ if u is a viscosity subsolution of (FE). Similarly,
we say that u is a viscosity solution (or supersolution) of F.x; u.x/;Du.x// � 0

in ˝ if u is a viscosity supersolution of (FE). Also, we say that u satisfies
F.x; u.x/;Du.x// � 0 in ˝ (resp., F.x; u.x/;Du.x// � 0 in ˝) in the viscosity
sense if u is a viscosity subsolution (resp., supersolution) of (FE).

Once we fix a PDE, like (FE), on a set ˝ , we denote by S � and S C the sets of
all its viscosity subsolutions and supersolutions, respectively.

The above definition differs from the one in [19]. As is explained in [19], the
above one allows the following situation: let˝ be a nonempty open subset ofRn and
suppose that the Hamilton–Jacobi equation (1) has a continuous solution u 2 C.˝/.
Choose two dense subsets U and V of ˝ such that U \ V D ; and U [ V 6D ˝ .
Select a function v W ˝ ! R so that v.x/ D u.x/ if x 2 U , v.x/ D u.x/C 1 if
x 2 V and v.x/ 2 Œu.x/; u.x/C1� if x 2 ˝n.U [V /. Then we have v�.x/ D u.x/
and v�.x/ D u.x/C 1 for all x 2 ˝ . Consequently, v is a viscosity solution of (1).
If U [ V 6D ˝ , then there are infinitely many choices of such functions v.

The same remarks as Remarks 1.1–1.4 are valid for the above generalized
definition.

Definition 1.3. Let ˝ � R
n and u W ˝ ! R. The subdifferential D�u.x/ and

superdifferentialDCu.x/ of the function u at x 2 ˝ are defined, respectively, by

D�u.x/ D fp 2 R
n W u.x C h/ � u.x/C p � hC o.jhj/ as x C h 2 ˝; h ! 0g;

DCu.x/ D fp 2 R
n W u.x C h/ � u.x/C p � hC o.jhj/ as x C h 2 ˝; h ! 0g;

where o.jhj/ denotes a function on an interval .0; ı/, with ı > 0, having the
property: limh!0 o.jhj/=jhj D 0.

We remark that D�u.x/ D �DC.�u/.x/. If u is a convex function in R
n and

p 2 D�u.x/ for some x; p 2 R
n, then

u.x C h/ � u.x/C p � h for all h 2 R
n:

See Proposition B.1 for the above claim. In convex analysis, D�u.x/ is usually
denoted by @u.x/.
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Proposition 1.8. Let ˝ � R
n and u W ˝ ! R be locally bounded. Let x 2 ˝ .

Then

DCu.x/ D fD�.x/ W � 2 C1.˝/; u � � attains a maximum at xg:

As a consequence of the above proposition, we have the following: if u is locally
bounded in ˝ , then

D�u.x/ D �DC.�u/.x/

D � fD�.x/ W � 2 C1.˝/; �u � � attains a maximum at xg
D fD�.x/ W � 2 C1.˝/; u � � attains a minimum at xg:

Corollary 1.1. Let ˝ � R
n. Let F W ˝ � R � R

n ! R and u W ˝ ! R be
locally bounded. Then u is a viscosity subsolution (resp., supersolution) of (FE) if
and only if

F�.x; u�.x/; p/ � 0 for all x 2 ˝; p 2 DCu�.x/

. resp., F �.x; u�.x/; p/ � 0 for all x 2 ˝; p 2 D�u�.x/ /:

This corollary (or Remark 1.3) says that the viscosity properties of a function,
i.e., the properties that the function be a viscosity subsolution, supersolution, or
solution are of local nature. For instance, under the hypotheses of Corollary 1.1, the
function u is a viscosity subsolution of (FE) if and only if for each x 2 ˝ there
exists an open neighborhood Ux, in R

n, of x such that u is a viscosity subsolution
of (FE) in Ux \˝ .

Proof. Let � 2 C1.˝/ and y 2 ˝ , and assume that u � � has a maximum at y.
Then

.u � �/.y C h/ � .u � �/.y/ if y C h 2 ˝;
and hence, as y C h 2 ˝; h ! 0,

u.y C h/ � u.y/C �.y C h/ � �.y/ D u.y/CD�.y/ � hC o.jhj/:

This shows that

fD�.y/ W � 2 C1.˝/; u � � attains a maximum at yg � DCu.y/:

Next let y 2 ˝ and p 2 DCu.y/. Then we have

u.y C h/ � u.y/C p � hC !.jhj/jhj if y C h 2 ˝ and jhj � ı

for some constant ı > 0 and a function ! 2 C.Œ0; ı�/ satisfying !.0/ D 0. We may
choose ! to be nondecreasing in Œ0; ı�. In the above inequality, we want to replace
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the term !.jhj/jhj by a C1 function  .h/ having the property:  .h/ D o.jhj/.
Following [23], we define the function 
 W Œ0; ı=2� ! R by


.r/ D
Z 2r

0

!.t/ dt:

Noting that


.r/ �
Z 2r

r

!.t/ dt � !.r/r for r 2 Œ0; ı=2�;

we see that

u.y C h/ � u.y/C p � hC 
.jhj/ if y C h 2 ˝ and jhj � ı=2:

It immediate to see that 
 2 C1.Œ0; ı=2�/ and 
.0/ D 
 0.0/ D 0. We set  .h/ D

.jhj/ for h 2 Bı=2.0/. Then  2 C1.Bı=2.0//,  .0/ D 0 and D .0/ D 0. It is
now clear that if we set

�.x/ D u.y/C p � .x � y/C  .x � y/ for x 2 Bı=2.y/;

then the function u � � attains a maximum over˝ \Bı=2.y/ at y andD�.y/ D p.
ut

Now, we discuss a couple of stability results concerning viscosity solutions.

Proposition 1.9. Let fu"g"2.0;1/ � S �. Assume that˝ is locally compact and fu"g
converges locally uniformly to a function u in ˝ as " ! 0. Then u 2 S �.

Proof. Let � 2 C1.˝/. Assume that u� �� attains a strict maximum at Ox 2 ˝ . We
choose a constant r > 0 so that K WD Br. Ox/ \˝ is compact. For each " 2 .0; 1/,
we choose a maximum point (overK) x" of u�

" � �.
Next, we choose a sequence f"j g � .0; 1/ converging to zero such that x"j ! z

for some z 2 K as j ! 1. Next, observe in view of the choice of x" that

.u� � �/.x"j / � .u�
"j

� �/.x"j /� ku� � u�
"j

k1;K

� .u� � �/.x"j /� 2ku� � u�
"j

k1;K

� .u� � �/. Ox/� 2ku� � u�
"j

k1;K :

Sending j ! 1 yields

.u� � �/.z/ � lim sup.u�
"j

� �/.x"j / � lim inf
j!1 .u�

"j
� �/.x"j / � .u� � �/. Ox/;

which shows that z D Ox and limj!1 u�
"j
.x"j / D u�. Ox/. For j 2 N sufficiently

large, we have x"j 2 Br. Ox/ and, since u"j 2 S �,
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F�.x"j ; u�
"j
.x"j /;D�.x"j // � 0:

If we send j ! 1, we find that u 2 S �. ut
Proposition 1.10. Let ˝ be locally compact. Let F � S �. That is, F is a family
of viscosity subsolutions of (FE). Assume that sup F is locally bounded in ˝ . Then
we have sup F 2 S �.

Remark 1.6. By definition, the set ˝ is locally compact if for any x 2 ˝ , there
exists a constant r > 0 such that ˝ \ Br.x/ is compact. For instance, every
open subset and closed subset of Rn are locally compact. The set A WD .0; 1/ �
Œ0; 1� � R

2 is locally compact, but the set A[ f.0; 0/g is not locally compact.

Remark 1.7. Similarly to Remark 1.5, if ˝ is locally compact, then the C1

regularity of the test functions in the Definition 1.2 can be replaced by the C1
regularity.

Proof. Set u D sup F . Let � 2 C1.˝/ and Ox 2 ˝ , and assume that

max
˝
.u� � �/ D .u� � �/. Ox/ D 0:

We assume moreover that Ox is a strict maximum point of u� � �. That is, we have
.u� � �/.x/ < 0 for all x 6D Ox. Choose a constant r > 0 so that W WD ˝ \ Br. Ox/
is compact.

By the definition of u�, there are sequences fykg � W and fvkg � F such that

yk ! Ox; vk.yk/ ! u�. Ox/ as k ! 1:

Since W is compact, for each k 2 N we may choose a point xk 2 W such that

max
W
.v�
k � �/ D .v�

k � �/.xk/:

By passing to a subsequence if necessary, we may assume that fxkg converges to a
point z 2 W . We then have

0 D .u� � �/. Ox/ � .u� � �/.xk/ � .v�
k � �/.xk/

� .v�
k � �/.yk/ � .vk � �/.yk/ ! .u� � �/. Ox/ D 0;

and consequently
lim
k!1 u�.xk/ D lim

k!1 v�
k .xk/ D u�. Ox/:

In particular, we see that

.u� � �/.z/ � lim
k!1.u

� � �/.xk/ D 0;
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which shows that z D Ox. That is, limk!1 xk D Ox.
Thus, we have xk 2 Br. Ox/ for sufficiently large k 2 N. Since vk 2 S �, we get

F�.xk; v�
k .xk/;D�.xk// � 0

if k is large enough. Hence, sending k ! 1 yields

F�. Ox; u�. Ox/;D�. Ox// � 0;

which proves that u 2 S �. ut
Theorem 1.3. Let ˝ be a locally compact subset of R

n. Let fu"g"2.0;1/ and
fF"g"2.0;1/ be locally uniformly bounded collections of functions on ˝ and
˝ � R � R

n, respectively. Assume that for each " 2 .0; 1/, u" is a viscosity
subsolution of

F".x; u".x/;Du".x// � 0 in ˝:

Set

Nu.x/ D lim
r!0C supfu".y/ W y 2 Br.x/ \˝; " 2 .0; r/g;

F .�/ D lim
r!0C inffF".�/ W � 2 ˝ � R � R

n; j�� �j < r; " 2 .0; r/g:

Then Nu is a viscosity subsolution of

F .x; Nu.x/;D Nu.x// � 0 in ˝:

Remark 1.8. The function Nu is upper semicontinuous in ˝ . Indeed, we have

Nu.y/ � supfu".z/ W z 2 Br.x/ \˝; " 2 .0; r/g

for all x 2 ˝ and y 2 Br.x/ \˝ . This yields

lim sup
˝3y!x

Nu.y/ � supfu".z/ W z 2 Br.x/ \˝; " 2 .0; r/g

for all x 2 ˝ . Hence,

lim sup
˝3y!x

Nu.y/ � Nu.x/ for all x 2 ˝:

Similarly, the function F is lower semicontinuous in ˝ � R � R
n.

Proof. It is easily seen that for all x 2 ˝ , r > 0 and y 2 Br.x/ \˝ ,

u�
" .y/ � supfu".z/ W z 2 Br.x/ \˝g:
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From this we deduce that

Nu.x/ D lim
r!0C supfu�

" .y/ W y 2 Br.x/ \˝; 0 < " < rg for all x 2 ˝:

Hence, we may assume by replacing u" by u�
" if necessary that u" 2 USC.˝/.

Similarly, we may assume that F" 2 LSC.˝ � R � R
n/.

Let � 2 C1.˝/ and Ox 2 ˝ . Assume that Nu � � has a strict maximum at Ox. Let
r > 0 be a constant such that Br. Ox/\˝ is compact.

For each k 2 N we choose yk 2 Br=k. Ox/ \˝ and "k 2 .0; 1=k/ so that

jNu. Ox/� u"k .yk/j < 1=k;

and then choose a maximum point xk 2 Br. Ox/\˝ of u"k � � over Br. Ox/\˝ .
Since

.u"k � �/.xk/ � .u"k � �/.yk/;

we get
lim sup
k!0

.u"k � �/.xk/ � .Nu � �/. Ox/;

which implies that

lim
k!1 xk D Ox and lim

k!1 u"k .xk/ D Nu. Ox/:

If k 2 N is sufficiently large, we have xk 2 Br. Ox/\˝ and hence

F"k .xk; u"k .xk/;D�.xk// � 0:

Thus, we get
F . Ox; Nu. Ox/;D�. Ox// � 0: ut

Proposition 1.9 can be seen now as a direct consequence of the above theorem.
The following proposition is a consequence of the above theorem as well.

Proposition 1.11. Let ˝ be locally compact. Let fukg be a sequence of viscosity
subsolutions of (FE). Assume that fukg � USC.˝/ and that fukg is a nonincreasing
sequence of functions on ˝ , i.e., uk.x/ � ukC1.x/ for all x 2 ˝ and k 2 N. Set

u.x/ D lim
k!1 uk.x/ for x 2 ˝:

Assume that u is locally bounded on ˝ . Then u 2 S �.

Let us introduce the (outer) normal coneN.z;˝/ at z 2 ˝ by

N.z;˝/ D fp 2 R
n W 0 � p � .x � z/C o.jx � zj/ as ˝ 3 x ! zg:
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Another definition equivalent to the above is the following:

N.z;˝/ D �DC1˝.z/;

where 1˝ denotes the characteristic function of ˝ . Note that if z 2 ˝ is an interior
point of ˝ , then N.z;˝/ D f0g.

We say that (FE) or the pair .F;˝/ is proper if F.x; r; p C q/ � F.x; r; p/ for
all .x; r; p/ 2 ˝ � R � R

n and all q 2 N.x;˝/.
Proposition 1.12. Assume that (FE) is proper. If u 2 C1.˝/ is a classical
subsolution of (FE), then u 2 S �.

Proof. Let � 2 C1.˝/ and assume that u �� attains a maximum at z 2 ˝ . We may
assume by extending the domain of definition of u and � that u and � are defined
and of class C1 in Br.z/ for some r > 0. By reselecting r > 0 small enough if
needed, we may assume that

.u � �/.x/ < .u � �/.z/C 1 for all x 2 Br.z/:

It is clear that the function u � � C 1˝ attains a maximum over Br.z/ at z, which
shows that D�.z/ � Du.z/ 2 DC1˝.z/. Setting q D �D�.z/ C Du.z/, we have
Du.z/ D D�.z/C q and

0 � F.z; u.z/;D�.z/C q/ � F.z; u.z/;D�.z// � F�.z; u.z/;D�.z//;

which completes the proof. ut
Proposition 1.13 (Perron method). Let F be a nonempty subset of S � having
the properties:

(P1) sup F 2 F .
(P2) If v 2 F and v 62 S C, then there exists a w 2 F such that w.y/ > v.y/ at

some point y 2 ˝ .

Then sup F 2 S .

Proof. We have sup F 2 F � S �. That is, sup F 2 S �. If we suppose that
sup F 62 S C, then, by (P2), we have w 2 F such that w.y/ > .sup F /.y/ for
some y 2 ˝ , which contradicts the definition of sup F . Hence, sup F 2 S C. ut
Theorem 1.4. Assume that ˝ is locally compact and that (FE) is proper. Let f 2
LSC.˝/\ S � and g 2 USC.˝/\ S C. Assume that f � g in ˝ . Set

F D fv 2 S � W f � v � g in ˝g:

Then sup F 2 S .

In the above theorem, the semicontinuity requirement on f; g is “opposite”
in a sense: the lower (resp., upper) semicontinuity for the subsolution f (resp.,
supersolution g). This choice of semicontinuities is convenient in practice since
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in the construction of supersolution f , for instance, one often takes the infimum of
a collection of continuous supersolutions and the resulting function is automatically
upper semicontinuous.

Of course, under the same hypotheses of the above theorem, we have following
conclusion as well: if we set FC D fv 2 S C W f � v � g in ˝g, then
inf FC 2 S .

Lemma 1.3. Assume that˝ is locally compact and that (FE) is proper. Let u 2 S �
and y 2 ˝ , and assume that u is not a viscosity supersolution of (FE) at y, that is,

F �.y; u�.y/; p/ < 0 for some p 2 D�u�.y/:

Let " > 0 and U be a neighborhood of y. Then there exists a v 2 S � such that

8̂
<̂
ˆ̂:

u.x/ � v.x/ � maxfu.x/; u�.y/C "g for all x 2 ˝;
v D u in ˝ n U;
v�.y/ > u�.y/:

(22)

Furthermore, if u is continuous at y, then there exist an open neighborhood V of y
and a constant ı > 0 such that v is a viscosity subsolution of

F.x; v.x/;Dv.x// D �ı in V \˝: (23)

Proof. By assumption, there exists a function � 2 C1.˝/ such that u�.y/ D �.y/,
u�.x/ > �.x/ for all x 6D y and

F �.y; u�.y/;D�.y// < 0:

Thanks to the upper semicontinuity of F �, there exists a ı 2 .0; "/ such that

F �.x; �.x/C t;D�.x// < �ı for all .x; t/ 2 .Bı.y/ \˝/ � Œ0; ı�; (24)

and Bı.y/\˝ is a compact subset of U .
By replacing ı > 0 by a smaller number if needed, we may assume that

�.x/C ı � u�.y/C " for all x 2 Bı.y/ \˝: (25)

Since u� � � attains a strict minimum at y and the minimum value is zero, if
.˝ \ Bı.y// n Bı=2.y/ 6D ;, then the constant

m WD min
.˝\Bı.y//nBı=2.y/

.u� � �/
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is positive. Of course, in this case, we have

u�.x/ � �.x/Cm for all x 2 .˝ \ Bı.y// n Bı=2.y/:

Set � D minfm; ıg if .˝\Bı.y//nBı=2.y/ 6D ; and � D ı otherwise, and observe
that

u�.x/ � �.x/C � for all x 2 .˝ \ Bı.y// n Bı=2.y/: (26)

We define v W ˝ ! R by

v.x/ D
8<
:

maxfu.x/; �.x/C �g if x 2 Bı.y/;
u.x/ if x 62 Bı.y/:

If we set  .x/ D �.x/ C � for x 2 Bı.y/ \ ˝ , by (24),  is a classical
subsolution of (FE) in Bı.y/\˝ . Since (FE) is proper, is a viscosity subsolution
of (FE) in Bı.y/ \ ˝ . Hence, by Proposition 1.10, we see that v is a viscosity
subsolution of (FE) in Bı.y/ \˝ .

According to (26) and the definition of v, we have

v.x/ D u.x/ for all x 2 ˝ n Bı=2.y/;

and, hence, v is a viscosity subsolution of (FE) in ˝ n Bı=2.y/ Thus, we find that
v 2 S �.

Since v D u in ˝ n Bı.y/ by the definition of v, it follows that v D u in ˝ n U .
It is clear by the definition of v that v � u in ˝ . Moreover, by (25) we get

v.x/ � maxfu.x/; u�.y/C "g for all x 2 ˝ \ Bı.y/:

Also, observe that

v�.y/ D maxfu�.y/; u�.y/C �g D u�.y/C � > u�.y/:

Thus, (22) is valid.
Now, we assume that u is continuous at y. Then we find an open neighborhood

V � Bı.y/ of y such that

u.x/ < �.x/C � for all x 2 V \˝;

and hence, we have v.x/ D �.x/C � for all x 2 V \˝ . Now, by (24) we see that
v is a classical (and hence viscosity) subsolution of (23). ut
Proof (Theorem 1.4). We have F 6D ; since f 2 F . In view of Proposition 1.13,
we need only to show that the set F satisfies (P1) and (P2).

By Proposition 1.10, we see immediately that F satisfies (P1).
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To check property (P2), let v 2 F be not a viscosity supersolution of (FE). There
is a point y 2 ˝ where v is not a viscosity supersolution of (FE). That is, for some
p 2 D�v�.y/, we have

F �.y; v�.y/; p/ < 0: (27)

Noting v� � g� in˝ , there are two possibilities: v�.y/ D g�.y/ or v�.y/ < g�.y/.
If v�.y/ D g�.y/, then p 2 D�g�.y/. Since g 2 S C, we have

F �.y; g�.y/; p/ � 0;

which contradicts (27). If v�.y/ < g�.y/, then we choose a constant " > 0 and a
neighborhood V of y so that

v�.y/C " < g�.x/ for all x 2 V \˝: (28)

Now, Lemma 1.3 guarantees that there exist w 2 S � such that v � w �
maxfv; v�.y/C "g in˝ , v D w in ˝ n V and w�.y/ > v�.y/. For any x 2 ˝ \ V ,
by (28) we have

w.x/ � maxfv.x/; g�.x/g � g.x/:

For any x 2 ˝ n V , we have

w.x/ D v.x/ � g.x/:

Thus, we find that w 2 F . Since w�.y/ > v�.y/, it is clear that w.z/ > v.z/ at
some point z 2 ˝ . Hence, F satisfies (P2). ut

1.5 An Example

We illustrate the use of the stability properties established in the previous subsection
by studying the solvability of the Dirichlet problem for the eikonal equation

jDu.x/j D k.x/ in ˝; (29)

u.x/ D 0 on @˝; (30)

where ˝ is a bounded, open, connected subset of Rn and k 2 C.˝/ is a positive
function in ˝ , i.e., k.x/ > 0 for all x 2 ˝.

Note that the constant function f .x/ WD 0 is a classical subsolution of (29). Set
M D max˝ k. We observe that for each y 2 @˝ the function gy.x/ WD M jx � yj
is a classical supersolution of (29). We set

g.x/ D inffgy.x/ W y 2 @˝g for x 2 ˝:
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By Proposition 1.10 (its version for supersolutions), we see that g is a viscosity
supersolution of (29). Also, by applying Lemma 1.1, we find that g is Lipschitz
continuous in ˝ .

An application of Theorem 1.4 ensures that there is a viscosity solution u W
˝ ! R of (29) such that f � u � g in ˝ . Since f .x/ D g.x/ D 0 on @˝ , if
we set u.x/ D 0 for x 2 @˝ , then the resulting function u is continuous at points
on the boundary @˝ and satisfies the Dirichlet condition (30) in the classical sense.

Note that u� � g in ˝ , which clearly implies that u D u� 2 USC.˝/. Now,
if we use the next proposition, we find that u is locally Lipschitz continuous in ˝
and conclude that u 2 C.˝/. Thus, the Dirichlet problem (29)–(30) has a viscosity
solution u 2 C.˝/ which satisfies (30) in the classical (or pointwise) sense.

Proposition 1.14. Let R > 0; C > 0 and u 2 USC.BR/. Assume that u is a
viscosity solution of

jDu.x/j � C in BR:

Then u is Lipschitz continuous in BR with C being a Lipschitz bound. That is,
ju.x/� u.y/j � C jx � yj for all x; y 2 BR.

Proof. Fix any z 2 BR and set r D .R � jzj/=4. Fix any y 2 Br.z/. Note that
B3r.y/ � BR. Choose a function f 2 C1.Œ0; 3r// so that f .t/ D t for all t 2
Œ0; 2r�, f 0.t/ � 1 for all t 2 Œ0; 3r/ and limt!3r� f .t/ D 1. Fix any " > 0, and
we claim that

u.x/ � v.x/ WD u.y/C .C C "/f .jx � yj/ for all x 2 B3r.y/: (31)

Indeed, if this were not the case, we would find a point � 2 B3r .y/ n fyg such that
u � v attains a maximum at �, which yields together with the viscosity property of u

C � jDv.�/j D .C C "/f 0.j� � yj/ � C C ":

This is a contradiction. Thus we have (31).
Note that if x 2 Br.z/, then x 2 B2r .y/ and f .jx � yj/ D jx � yj. Hence, from

(31), we get

u.x/ � u.y/ � .C C "/jx � yj for all x; y 2 Br.z/:

By symmetry, we see that

ju.x/� u.y/j � .C C "/jx � yj for all x; y 2 Br.z/;

from which we deduce that

ju.x/� u.y/j � C jx � yj for all x; y 2 Br.z/; (32)
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Now, let x; y 2 BR be arbitrary points. Set r D 1
4

minfR � jxj; R � jyjg, and
choose a finite sequence fzi gNiD0 of points on the line segment Œx; y� so that z0 D x,
zN D y, jzi � zi�1j < r for all i D 1; : : : ; N and

PN
iD1 jzi � zi�1j D jx � yj. By

(32), we get

ju.zi /� u.zi�1/j � C jzi � zi�1j for all i D 1; : : : ; N:

Summing these over i D 1; : : : ; N yields the desired inequality. ut

1.6 Sup-convolutions

Sup-convolutions and inf-convolutions are basic and important tools for regularizing
or analyzing viscosity solutions. In this subsection, we recall some properties of
sup-convolutions.

Let u W R
n ! R be a bounded function and " 2 RC. The standard sup-

convolution u" W R
n ! R and inf-convolution u" W R

n ! R are defined,
respectively, by

u".x/ D sup
y2Rn

�
u.y/� 1

2"
jy � xj2

�
and u".x/ D inf

y2Rn

�
u.y/C 1

2"
jy � xj2

�
:

Note that

u".x/ D � sup

�
�u.y/ � 1

2"
jy � xj2

�
D �.�u/".x/:

This relation immediately allows us to interpret a property of sup-convolutions into
the corresponding property of inf-convolutions.

In what follows we assume that u is bounded and upper semicontinuous in R
n.

Let M > 0 be a constant such that ju.x/j � M for all x 2 R
n.

Proposition 1.15. (i) We have

�M � u.x/ � u".x/ � M for all x 2 R
n:

(ii) Let x 2 R
n and p 2 DCu".x/. Then

jpj � 2

r
M

"
and p 2 DCu.x C "p/:

Another important property of sup-convolutions is that the sup-convolution u" is
semiconvex in R

n. More precisely, the function

u".x/C 1

2"
jxj2 D sup

y2Rn

�
u.y/� 1

2"
jyj2 C 1

"
y � x

�
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is convex in R
n (see Appendix A.2) as is clear from the form of the right hand side

of the above identity.

Proof. To show assertion (i), we just check that for all x 2 R
n,

u".x/ � sup
y2Rn

u.y/ � M;

and
u".x/ � u.x/ � �M:

Next, we prove assertion (ii). Let Ox 2 R
n and Op 2 DCu". Ox/. Choose a point

Oy 2 R
n so that

u". Ox/ D u. Oy/ � 1

2"
j Oy � Oxj2:

(Such a point Oy always exists under our assumptions on u.) It is immediate to see
that

1

2"
j Oy � Oxj2 D u. Oy/ � u". Ox/ � 2M: (33)

We may choose a function � 2 C1.Rn/ so thatD�. Ox/ D Op and maxRn.u"��/ D
.u" � �/. Ox/. Observe that the function

R
2n 3 .x; y/ 7! u.y/� 1

2"
jy � xj2 � �.x/

attains a maximum at . Ox; Oy/. Hence, both the functions

R
n 3 x 7! � 1

2"
j Oy � xj2 � �.x/

and
R
n 3 x 7! u.x C Oy � Ox/ � �.x/

attain maximum values at Ox. Therefore, we find that

1

"
. Ox � Oy/CD�. Ox/ D 0 and D�. Ox/ 2 DCu. Oy/;

which shows that

Op D 1

"
. Oy � Ox/ 2 DCu. Oy/:

From this, we get Oy D Ox C " Op, and, moreover, Op 2 DCu. Ox C " Op/. Also, using
(33), we get j Opj � 2

p
M=". Thus we see that (ii) holds. ut

The following observations illustrate a typical use of the above proposition.
Let ˝ be an open subset of Rn. Let H W ˝ � R

n ! R and u W ˝ ! R be
bounded and upper semicontinuous. LetM > 0 be a constant such that ju.x/j � M

for all x 2 ˝ . Let " > 0. Set ı D 2
p
"M and ˝ı D fx 2 ˝ W dist.x; @˝/ > ıg.
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Define u" as above with u extended to R
n by setting u.x/ D �M for x 2 R

n n˝ .
(Or, in a slightly different and more standard way, one may define u" by

u".x/ D sup
y2˝

�
u.y/� 1

2"
jx � yj2

�
: /

By applying Proposition 1.15, we deduce that if u is a viscosity subsolution of

H.x;Du.x// � 0 in ˝;

then u" is a viscosity subsolution of both

H.x C "Du".x/; Du".x// � 0 in ˝ı; (34)

and

jDu".x/j � 2

r
M

"
in ˝ı: (35)

If we set
G.x; p/ D inf

y2Bı
H.x C y; p/ for x 2 ˝ı;

then (34) implies that u" is a viscosity subsolution of

G.x;Du".x// � 0 in ˝ı:

If we apply Proposition 1.14 to u", we see from (35) that u" is locally Lipschitz
in ˝ı.

2 Neumann Boundary Value Problems

We assume throughout this section and the rest of this article that ˝ � R
n is open.

We will be concerned with the initial value problem for the Hamilton–Jacobi
equation of evolution type

@u

@t
.x; t/CH.x;Dxu.x; t// D 0 in ˝ � .0; 1/;

and the asymptotic behavior of its solutions u.x; t/ as t ! 1.
The stationary problem associated with the above Hamilton–Jacobi equation is

stated as (
H.x;Du.x// D 0 in ˝;

boundary condition on @˝:
(36)
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In this article we will be focused on the Neumann boundary value problem
among other possible choices of boundary conditions like periodic, Dirichlet, state-
constraints boundary conditions.

We are thus given two functions 
 2 C.@˝;Rn/ and g 2 C.@˝;R/ which
satisfy

�.x/ � 
.x/ > 0 for all x 2 @˝; (37)

where �.x/ denotes the outer unit normal vector at x, and the boundary condition
posed on the unknown function u is stated as


.x/ � Du.x/ D g.x/ for x 2 @˝:

This condition is called the (inhomogeneous, linear) Neumann boundary condition.
We remark that if u 2 C1.˝/, then the directional derivative @u=@
 of u in the
direction of 
 is given by

@u

@

.x/ D 
.x/ � Du.x/ D lim

t!0

u.x C t
.x// � u.x/

t
for x 2 @˝:

(Note here that u is assumed to be defined in a neighborhood of x.)
Our boundary value problem (36) is now stated precisely as

8̂
<
:̂
H.x;Du.x// D 0 in ˝;

@u

@

.x/ D g.x/ on @˝:

(SNP)

Let U be an open subset of Rn such that U \ ˝ 6D ;. At this stage we briefly
explain the viscosity formulation of a more general boundary value problem

(
F.x; u.x/;Du.x// D 0 in U \˝;
B.x; u.x/;Du.x// D 0 on U \ @˝; (38)

where the functions F W .U \˝/ � R � R
n ! R, B W .U \ @˝/ � R � R

n ! R

and u W .U \ ˝/ ! R are assumed to be locally bounded in their domains of
definition. The function u is said to be a viscosity subsolution of (38) if the following
requirements are fulfilled:

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

� 2 C1.˝/; Ox 2 ˝; max
˝

.u� � �/ D .u� � �/. Ox/

H)
(i) F�. Ox; u�. Ox/;D�. Ox// � 0 if Ox 2 U \˝;
(ii) F�. Ox; u�. Ox/;D�. Ox// ^ B�. Ox; u�. Ox/;D�. Ox// � 0 if Ox 2 U \ @˝:
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The upper and lower semicontinuous envelopes are taken in all the variables. That
is, for x 2 U \˝ , � 2 .U \˝/ � R � R

n and � 2 .U \ @˝/ � R � R
n,

u�.x/ D lim
r!0C supfu.y/ W y 2 Br.x/ \ U \˝/g;

F�.�/ D lim
r!0C inffF.X/ W X 2 .U \˝/ � R � R

n; jX � �j < rg;

B�.�/ D lim
r!0C inffB.Y / W Y 2 .U \ @˝/ � R � R

n; jY � �j < rg:

The definition of viscosity supersolutions of the boundary value problem (38) is
given by reversing the upper and lower positions of 	, the inequalities, and “sup”
and “inf” (including ^ and _), respectively. Then viscosity solutions of (38) are
defined as those functions which are both viscosity subsolution and supersolution
of (38).

Here, regarding the above definition of boundary value problems, we point out
the following: define the functionG W .U \˝/ � R � R

n ! R by

G.x; u; p/ D
8<
:
F.x; u; p/ if x 2 ˝;
B.x; u; p/ if x 2 @˝;

(39)

and note that the lower (resp., upper) semicontinuous envelopeG� (resp.,G�) of G
is given by

G�.x; u; p/ D
8<
:
F�.x; u; p/ if x 2 ˝;
F�.x; u; p/ ^ B�.x; u; p/ if x 2 @˝

 
resp., G�.x; u; p/ D

8<
:
F �.x; u; p/ if x 2 ˝;
F �.x; u; p/ _ B�.x; u; p/ if x 2 @˝

!
:

Thus, the above definition of viscosity subsolutions, supersolutions and solutions of
(38) is the same as that of Definition 1.2 with F and˝ replaced byG defined by (39)
and U \ ˝ , respectively. Therefore, the propositions in Sect. 1.4 are valid as well
to viscosity subsolutions, supersolutions and solutions of (38). In order to apply the
above definition to (SNP), one may take Rn as U or any open neighborhood of˝ .

In Sect. 1.4 we have introduced the notion of properness of PDE (FE). The
following example concerns this property.

Example 2.1. Consider the boundary value problem (38) in the case where n D 1,
˝ D .0; 1/, U D R, F.x; p/ D p � 1 and B.x; p/ D p � 1. The function
u.x/ D x on Œ0; 1� is a classical solution of (38). But this function u is not a viscosity
subsolution of (38). Indeed, if we take the test function �.x/ D 2x, then u �� takes
a maximum at x D 0 while we have B.0; �0.0// D F.0; �0.0// D 2 � 1 D 1 > 0.
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However, if we reverse the direction of derivative at 0 by replacing the above B by
the function

B.x; p/ D
8<
:
p � 1 for x D 1;

�p C 1 for x D 0;

then the function u is a classical solution of (38) as well as a viscosity solution
of (38).

Definition 2.1. The domain˝ is said to be of class C1 (or simply˝ 2 C1) if there
is a function � 2 C1.Rn/ which satisfies

˝ D fx 2 R
n W �.x/ < 0g;

D�.x/ 6D 0 for all x 2 @˝:

The functions � having the above properties are called defining functions of ˝ .

Remark 2.1. If � is chosen as in the above definition, then the outer unit normal
vector �.x/ at x 2 @˝ is given by

�.x/ D D�.x/

jD�.x/j :

Indeed, we have

N.x;˝/ D ft�.x/ W t � 0g for all x 2 @˝:

To see this, observe that if t � 0, then 1˝ C t� as a function in R
n attains a local

maximum at any point x 2 @˝ , which shows that

t jD�.x/j�.x/ 2 �DC1˝.x/ D N.x;˝/:

Next, let z 2 @˝ and � 2 C1.Rn/ be such that 1˝ � � attains a strict maximum
over Rn at z. Observe that �� attains a strict maximum over ˝ at x. Fix a constant
r > 0 and, for each k 2 N, choose a maximum .over Br.z// point xk 2 Br.z/ of
�� � k�2, and observe that �.� C k�2/.xk/ � �.� C k�2/.z/ D ��.z/ for all
k 2 N and that xk ! z as k ! 1. For k 2 N sufficiently large we have

D.� C k�2/.xk/ D 0;

and hence
D�.xk/ D �2k�.xk/D�.xk/;

which shows in the limit as k ! 1 that

D�.z/ D �tD�.z/ D �t jD�.z/j�.z/;
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where t D limk!1 2k�.xk/ 2 R. Noting that �.� C k�2/.x/ < ��.x/ � ��.z/
for all x 2 ˝ , we find that xk 62 Br.z/ n ˝ for all k 2 N. Hence, we have t � 0.
Thus, we see thatN.z;˝/ � ft�.z/ W t � 0g and conclude thatN.z;˝/ D ft�.z/ W
t � 0g

Henceforth in this section we assume that ˝ is of class C1.

Proposition 2.1. If u 2 C1.˝/ is a classical solution (resp., subsolution, or
supersolution) of (SNP), then it is a viscosity solution (resp., subsolution, or
supersolution) of (SNP).

Proof. Let G be the function given by (39), with B.x; u; p/ D 
.x/ � p � g.x/.
According to the above discussion on the equivalence between the notion of
viscosity solution for (SNP) and that for PDE G.x;Du.x// D 0 in ˝ and
Proposition 1.12, it is enough to show that the pair .G;˝/ is proper. From the above
remark, we know that for any x 2 @˝ we have N.x;˝/ D ft�.x/ W t � 0g and

G.x; p C t�.x// D 
.x/ � .p C t�.x// � 
.x/ � p D G.x; p/ for all t � 0:

As we noted before, we haveN.x;˝/ D f0g if x 2 ˝ . Thus, we have for all x 2 ˝
and all q 2 N.x;˝/,

G.x; p C q/ � G.x; p/: ut
We may treat in the same way the evolution problem

8̂
<
:̂

ut .x; t/CH.x; t;Dxu.x; t// D 0 in ˝ � J;
@u

@

.x; t/ D g.x; t/ on @˝ � J;

(40)

where J is an open interval in R, H W ˝ � J � R
n ! R and g W @˝ � J ! R. If

we set e̋ D ˝ � R, U D R
n � J ,

F.x; t; p; q/ D q CH.x; p/ for .x; t; p; q/ 2 ˝ � J � R
n � R;

and

B.x; t; p; q/ D 
.x/ � p � g.x; t/ for .x; t; p; q/ 2 @˝ � J � R
n � R;

then the viscosity formulation for (38) applies to (40), with ˝ replaced by e̋ .
We note here that if � is a defining function of˝ , then it, as a function of .x; t/, is

also a defining function of the “cylinder”˝�R. Hence, if we set Q
.x; t/ D .
.x/; 0/

and Q�.x; t/ D .�.x/; 0/ for .x; t/ 2 @.˝ � R/ D @˝ � R, then Q�.x; t/ is the outer
unit normal vector at .x; t/ 2 @˝ � R. Moreover, if 
 satisfies (37), then we have
Q
.x; t/ � Q�.x; t/ D 
.x/ � �.x/ > 0 for all .x; t/ 2 @˝ �R. Thus, as Proposition 2.1
says, if (37) holds, then any classical solution (resp., subsolution or supersolution)
of (40) is a viscosity solution (resp., subsolution or supersolution) of (40).

Before closing this subsection, we add two lemmas concerning C1 domains.
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Lemma 2.1. Let ˝ be a bounded, open, connected subset of Rn. Assume that˝ is
of class C1. Then there exists a constantC > 0 and, for each x; y 2 ˝ with x 6D y,
a curve � 2 AC.Œ0; t.x; y/�/, with t.x; y/ > 0, such that t.x; y/ � C jx � yj,
�.s/ 2 ˝ for all s 2 .0; t.x; y//, and j P�.s/j � 1 for a.e. s 2 Œ0; t.x; y/�.
Lemma 2.2. Let ˝ be a bounded, open, connected subset of Rn. Assume that˝ is
of class C1. Let M > 0 and u 2 C.˝/ be a viscosity subsolution of jDu.x/j � M

in ˝ . Then the function u is Lipschitz continuous in ˝ .

The proof of these lemmas is given in Appendix A.3.

3 Initial-Boundary Value Problem for Hamilton–Jacobi
Equations

We study the initial value problem for Hamilton–Jacobi equations with the
Neumann boundary condition.

To make the situation clear, we collect our assumptions on ˝ , 
 and H .

(A1) ˝ is bounded open connected subset of Rn.
(A2) ˝ is of class C1.
(A3) 
 2 C.@˝;Rn/ and g 2 C.@˝;R/.
(A4) 
.x/ � �.x/ > 0 for all x 2 @˝D.
(A5) H 2 C.˝ � R

n/.
(A6) H is coercive, i.e.,

lim
R!1 inffH.x; p/ W .x; p/ 2 ˝ � R

n; jpj � Rg D 1:

In what follows, we assume always that (A1)–(A6) hold.

3.1 Initial-Boundary Value Problems

Given a function u0 2 C.˝/, we consider the problem of evolution type

(
ut CH.x;Dxu/ D 0 in ˝ � .0;1/;


.x/ �Dxu D g.x/ on @˝ � .0; 1/;
(ENP)

u.x; 0/ D u0.x/ for x 2 ˝: (ID)

Here u D u.x; t/ is a function of .x; t/ 2 ˝ � Œ0;1/ and represents the unknown
function.
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When we say u is a (viscosity) solution of (ENP)–(ID), u is assumed to satisfy
the initial condition (ID) in the pointwise (classical) sense.

HenceforthQ denotes the set ˝ � .0; 1/.

Theorem 3.1 (Comparison). Let u 2 USC.Q/ and v 2 LSC.Q/ be a viscosity
subsolution and supersolution of (ENP), respectively. Assume furthermore that
u.x; 0/ � v.x; 0/ for all x 2 ˝ . Then u � v in Q.

To proceed, we concede the validity of the above theorem and will come back to
its proof in Sect. 3.3.

Remark 3.1. The above theorem guarantees that if u is a viscosity solution of
(ENP)–(ID) and continuous for t D 0, then it is unique.

Theorem 3.2 (Existence). There exists a viscosity solution u of (ENP)–(ID) in the
space C.Q/.

Proof. Fix any " 2 .0; 1/. Choose a function u0;" 2 C1.˝/ so that

ju0;".x/ � u0.x/j < " for all x 2 ˝:

Let � 2 C1.Rn/ be a defining function of ˝ . Since

D�.x/ D jD�.x/j�.x/ for x 2 @˝;

we may choose a constantM" > 0 so large that

M"
.x/ �D�.x/ � max
@˝
.jgj C j
 � Du0;"j/ for all x 2 @˝:

Next choose a function  2 C1.R/ so that

8̂
<̂
ˆ̂:

 0.0/ D 1;

�1 �.r/ � 0 for r � 0;

0 � 0.r/ � 1 for r � 0:

Setting
�".x/ D ".M"�.x/="/;

we have

( � " � �".x/ � 0 for all x 2 ˝;

.x/ �D�".x/ � jg.x/j C j
.x/ � Du0;".x/j for all x 2 @˝;

and we may choose a constant C" > 0 such that

jD�".x/j � C" for all x 2 ˝:
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Then define the functions f"̇ 2 C1.˝/ by

f"̇ .x/ D u0;".x/˙ .�".x/C 2"/;

and observe that

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

u0.x/ � f C
" .x/ � u0.x/C 3" for all x 2 ˝;

u0.x/ � f �
" .x/ � u0.x/ � 3" for all x 2 ˝;


.x/ �Df C
" .x/ � g.x/ for all x 2 @˝;


.x/ �Df �
" .x/ � g.x/ for all x 2 @˝:

Now, we choose a constant A" > 0 large enough so that

jH.x;Df"̇ .x//j � A" for all x 2 ˝;

and set
g"̇ .x; t/ D f"̇ .x/˙ A"t for .x; t/ 2 Q:

The functions gC
" ; g

�
" 2 C1.Q/ are a viscosity supersolution and subsolution of

(ENP), respectively.
Setting

hC.x; t/ D inffgC
" .x; t/ W " 2 .0; 1/g;

h�.x; t/ D supfg�
" .x; t/ W " 2 .0; 1/g;

we observe that hC 2 USC.Q/ and h� 2 LSC.Q/ are, respectively, a viscosity
supersolution and subsolution of (ENP). Moreover we have

u0.x/ D h˙.x; 0/ for all x 2 ˝;
h�.x; t/ � u0.x/ � hC.x; t/ for all .x; t/ 2 Q:

By Theorem 1.4, we find that there exists a viscosity solution u of (ENP) which
satisfies

h�.x; t/ � u.x; t/ � hC.x; t/ for all .x; t/ 2 Q:
Applying Theorem 3.1 to u� and u� yields

u� � u� for all .x; t/ 2 Q;

while u� � u� in Q by definition, which in particular implies that u 2 C.Q/. The
proof is complete. ut
Theorem 3.3 (Uniform continuity). The viscosity solution u 2 C.Q/ of (ENP)–
(ID) is uniformly continuous in Q. Furthermore, if u0 2 Lip.˝/, then u 2 Lip.Q/.
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Lemma 3.1. Let u0 2 Lip.˝/. Then there is a constant C > 0 such that the
functions u0.x/ C Ct and u0.x/ � Ct are, respectively, a viscosity supersolution
and subsolution of (ENP)–(ID).

Proof. Let � and  be the functions which are used in the proof of Theorem 3.2.
Choose the collection fu0;"g"2.0; 1/ � C1.˝/ of functions so that

8̂
<
:̂

lim
"!0

ku0;" � u0k1;˝ D 0;

sup
"2.0; 1/

kDu0;"k1;˝ < 1:

As in the proof of Theorem 3.2, we may fix a constantM > 0 so that

M
.x/ �D�.x/ D M jD�.x/j�.x/ � 
.x/
� jg.x/j C j
.x/ � Du0;".x/j for all x 2 @˝:

Next set
R D sup

"2.0; 1/
kDu0;"k1;˝ CM kD�k1;˝ ;

and choose C > 0 so that
max
˝�BR

jH j � C:

Now, we put

v"̇ .x; t/ D u0;".x/˙ .M".�.x/="/C Ct/ for .x; t/ 2 Q;

and note that vC
" and v�

" are a classical supersolution and subsolution of (ENP).
Sending " ! 0C, we conclude by Proposition 1.9 that the functions u0.x/C Ct and
u0.x/� Ct are a viscosity supersolution and subsolution of (ENP), respectively. ut
Proof (Theorem 3.3). We first assume that u0 2 Lip.˝/, and show that u 2 Lip.Q/.
According to Lemma 3.1, there exists a constant C > 0 such that the function
u0.x/� Ct is a viscosity subsolution of (ENP). By Theorem 3.1, we get

u.x; t/ � u0.x/ � Ct for all .x; t/ 2 Q:

Fix any t > 0, and apply Theorem 3.1 to the functions u.x; t C s/ and u.x; s/ � Ct
of .x; s/, both of which are viscosity solutions of (ENP), to get

u.x; t C s/ � u.x; s/� Ct for all .x; s/ 2 Q:
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Hence, if .p; q/ 2 DCu.x; s/, then we find that as t ! 0C,

u.x; s/ � u.x; s C t/C Ct � u.x; s/C qt C Ct C o.t/;

and consequently, q � �C . Moreover, if x 2 ˝ , we have

0 � q CH.x; p/ � H.x; p/ � C:

Due to the coercivity of H , there exists a constant R > 0 such that

p 2 BR:

Therefore, we get
q � �H.x; p/ � max

˝�BR
jH j:

Thus, if .x; s/ 2 ˝ � .0;1/ and .p; q/ 2 DCu.x; s/, then we have

jpj C jqj � M WD RC C C max
˝�BR

jH j:

Thanks to Proposition 1.14, we conclude that u is Lipschitz continuous in Q.
Next, we show in the general case that u 2 UC.Q/. Let " 2 .0; 1/, and choose a

function u0;" 2 Lip.˝/ so that

ku0;" � u0k1 � ":

Let u" be the viscosity solution of (ENP) satisfying the initial condition

u".x; 0/ D u0;".x/ for all x 2 ˝:

As we have shown above, we know that u" 2 Lip.Q/. Moreover, by Theorem 3.1
we have

ku" � uk1;Q � ":

It is now obvious that u 2 UC.Q/. ut

3.2 Additive Eigenvalue Problems

Under our hypotheses (A1)–(A6), the boundary value problem

(
H.x;Du/ D 0 in ˝;


.x/ � Du D g.x/ on @˝
(SNP)
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may not have a viscosity solution. For instance, the HamiltonianH.x; p/ D jpj2C1
satisfies (A5) and (A6), but, since H.x; p/ > 0, (SNP) does not have any viscosity
subsolution.

Instead of (SNP), we consider the additive eigenvalue problem

(
H.x;Dv/ D a in ˝;


.x/ �Dv D g.x/ on @˝:
(EVP)

This is a problem to seek for a pair .a; v/ 2 R � C.˝/ such that v is a viscosity
solution of the stationary problem (EVP). If .a; v/ 2 R�C.˝/ is such a pair, then a
and v are called an (additive) eigenvalue and eigenfunction of (EVP), respectively.
This problem is often called the ergodic problem in the viewpoint of ergodic optimal
control.

Theorem 3.4. (i) There exists a solution .a; v/ 2 R � Lip.˝/ of (EVP).
(ii) The eigenvalue of (EVP) is unique. That is, if .a; v/; .b;w/ 2 R � C.˝/ are

solutions of (EVP), then a D b.

The above result has been obtained by Lions et al., Homogenization of Hamilton-
Jacobi equations, unpublished.

In what follows we write c# for the unique eigenvalue a of (EVP).

Corollary 3.1. Let u 2 C.Q/ be the solution of (ENP)–(ID). Then the function
u.x; t/C c#t is bounded onQ.

Corollary 3.2. We have

c# D inffa 2 R W (EVP) has a viscosity subsolution vg:

Lemma 3.2. Let b; c 2 R and v;w 2 C.˝/. Assume that v (resp., w) is a viscosity
supersolution (resp., subsolution) of (EVP) with a D b (resp., a D c). Then b � c.

Remark 3.2. As the following proof shows, the assertion of the above lemma is
valid even if one replaces the continuity of v and w by the boundedness.

Proof. By adding a constant to v if needed, we may assume that v � w in˝ . Since
the functions v.x/� bt and w.x/� ct are a viscosity supersolution and subsolution
of (ENP), by Theorem 3.1 we get

v.x/ � bt � w.x/ � ct for all .x; t/ 2 Q;

from which we conclude that b � c. ut

Proof (Theorem 3.4). Assertion (ii) is a direct consequence of Lemma 3.2.
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We prove assertion (i). Consider the boundary value problem

(
�v CH.x;Dv/ D 0 in ˝;


.x/ �Dv D g on @˝;
(41)

where � > 0 is a given constant. We will take the limit as � ! 0 later on.
We fix � 2 .0; 1/. Let � 2 C1.Rn/ be a defining function of the domain ˝ .

Select a constant A > 0 so large that A
.x/ �D�.x/ � jg.x/j for all x 2 @˝ , and
then B > 0 so large that B � Aj�.x/j C jH.x;˙AD�.x//j for all x 2 ˝ . Observe
that the functions A�.x/ C B=� and �A�.x/ � B=� are a classical supersolution
and subsolution of (41), respectively.

The Perron method (Theorem 1.4) guarantees that there is a viscosity solution v�
of (41) which satisfies

jv�.x/j � A�.x/C B=� � B=� for all x 2 ˝:

Now, since
��v�.x/ � B for all x 2 ˝;

v� satisfies in the viscosity sense

H.x;Dv�.x// � B for all x 2 ˝;

which implies, together with the coercivity of H , the equi-Lipschitz continuity of
fv�g�2.0; 1/. Thus the collections fv� � inf˝ v�g�2.0; 1/ and f�v�g�2.0; 1/ of functions
on ˝ are relatively compact in C.˝/. We may select a sequence f�j gj2N � .0; 1/

such that
�j ! 0;

v�j .x/ � inf
˝
v�j ! v.x/;

�j v�j .x/ ! w.x/

for some functions v;w 2 C.˝/ as j ! 1, where the convergences to v and w are
uniform on˝ . Observe that for all x 2 ˝ ,

w.x/ D lim
j!1�j v�j .x/

D lim
j!1�j

�
.v�j .x/ � inf

˝
v�j /C inf

˝
v�j
	

D lim
j!1�j inf

˝
v�j ;

which shows that w is constant on ˝ . If we write this constant as a, then we see
by Proposition 1.9 that v is a viscosity solution of (EVP). This completes the proof
of (i). ut



Introduction to Viscosity Solutions and the Large Time Behavior of Solutions 155

Proof (Corollary 3.1). Let v 2 C.˝/ be an eigenfunction of (EVP). That is, v
is a viscosity solution of (EVP), with a D c#. Then, for any constant C 2 R, the
function w.x; t/ WD v.x/�c#tCC is a viscosity solution of (ENP). We may choose
constants Ci , i D 1; 2, so that v.x/ C C1 � u0.x/ � v.x/ C C2 for all x 2 ˝ . By
Theorem 3.1, we see that

v.x/ � c#t C C1 � u.x; t/ � v.x/ � c#t C C2 for all .x; t/ 2 Q;

which shows that the function u.x; t/C c#t is bounded on Q. ut
Proof (Corollary 3.2). It is clear that

c# � c? WD inffa 2 R W (EVP) has a viscosity subsolution vg:

To show that c# � c?, we suppose by contradiction that c# > c?. By the definition
of c?, there is a b 2 Œc?; c#/ such that (EVP), with a D b, has a viscosity
subsolution  . Let v be a viscosity solution of (EVP), with a D c#. Since b < c#,
v is a viscosity supersolution of (EVP), with a D b. We may assume that  � v

in ˝ . Theorem 1.4 now guarantees the existence of a viscosity solution of (EVP),
which contradicts Theorem 3.4, (ii) (see Remark 3.2). ut
Example 3.1. We consider the case where n D 1, ˝ D .�1; 1/, H.x; p/ D
H.p/ WD jpj and 
.˙1/ D ˙1, respectively, and evaluate the eigenvalue c#. We
set gmin D minfg.�1/; g.1/g. Assume first that gmin � 0. In this case, the function
v.x/ D 0 is a classical subsolution of (SNP) and, hence, c# � 0. On the other hand,
since H.p/ � 0 for all p 2 R, we have c# � 0. Thus, c# D 0. We next assume that
gmin < 0. It is easily checked that if g.1/ D gmin, then the function v.x/ D gminx is
a viscosity solution of (EVP), with a D jgminj. (Notice that

�DCv.�1/ D .�1; �jgminj � [ Œ�jgminj; jgminj �;
�D�v.�1/ D Œ jgminj; 1/:/

Similarly, if g.�1/ D gmin, then the function v.x/ D jgminjx is a viscosity solution
of (EVP), with a D jgminj. These observations show that c# D jgminj.

3.3 Proof of Comparison Theorem

This subsection will be devoted to the proof of Theorem 3.1.
We begin with the following two lemmas.

Lemma 3.3. Let u be the function from Theorem 3.1. Set P D ˝ � .0; 1/. Then,
for every .x; t/ 2 @˝ � .0; 1/, we have

u.x; t/ D lim sup
P3.y;s/!.x;t/

u.y; s/: (42)



156 H. Ishii

Proof. Fix any .x; t/ 2 @˝� .0; 1/. To prove (42), we argue by contradiction, and
suppose that

lim sup
P3.y;s/!.x;t/

u.y; s/ < u.x; t/:

We may choose a constant r 2 .0; t/ so that

u.y; s/C r < u.x; t/ for all .y; s/ 2 P \ .Br.x/ � Œt � r; t C r�/: (43)

Note that

P \ .Br.x/ � Œt � r; t C r�/ D .˝ \ Br.x// � Œt � r; t C r�:

Since u is bounded on ˝ � Œt � r; t C r�, we may choose a constant ˛ > 0 so
that for all .y; s/ 2 ˝ � Œt � r; t C r�,

u.y; s/C r � ˛.jy � xj2 C .s�t/2/ < u.x; t/ if jy�xj � r=2 or js � t j � r=2:

(44)

Let � be a defining function of ˝ . Let  be the function on R introduced in the
proof of Theorem 3.2. For k 2 N we define the function  2 C1.RnC1/ by

 .y; s/ D k�1.k2�.y//C ˛.jy � xj2 C .s � t/2/:

Consider the function
u.y; s/�  .y; s/

on the set
�
˝ \ Br.x/

�� Œt � r; t C r�. Let .yk; sk/ 2 �˝ \ Br.x/
�� Œt � r; t C r�

be a maximum point of the above function. Assume that k > r�1.
Using (43) and (44), we observe that for all .y; s/ 2 .˝\Br.x//� Œt � r; tC r�,

u.y; s/ �  .y; s/ < u.x; t/ D u.x; t/ �  .x; t/

if either y 2 ˝ , jy � xj � r=2, or js � t j � r=2. Accordingly, we have

.yk; sk/ 2 �@˝ \ Br=2.x/
� � .t � r=2; t C r=2/:

Hence, setting

pk D kD�.yk/C 2˛.yk � x/ and qk D 2˛.sk � t/;

we have
minfqk CH.yk; pk/; 
.yk/ � pk � g.yk/g � 0:
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If we note that

.yk/ �D�.yk/ � min

@˝

 �D� > 0;

then, by sending k ! 1, we get a contradiction. ut
Lemma 3.4. Let y; z 2 R

n, and assume that y � z > 0. Then there exists a quadratic
function  in R

n which satisfies:

8̂
<̂
ˆ̂:

.tx/ D t2.x/ for all .x; t/ 2 R
n � R;

.x/ > 0 if x 6D 0;

z �D.x/ D 2.y � z/.y � x/ for all x 2 R
n:

Proof. We define the function  by

.x/ D
ˇ̌
ˇx � y � x

y � z
z
ˇ̌
ˇ2 C .y � x/2:

We observe that for any t 2 R,

.x C tz/ D
ˇ̌
ˇ̌x C tz � y � .x C tz/

y � z
z

ˇ̌
ˇ̌2 C .y � .x C tz//2

D
ˇ̌
ˇ̌x � y � x

y � z
z

ˇ̌
ˇ̌2 C .y � x/2 C 2t.y � x/.y � z/C t2.y; z/2;

from which we find that

z �D.x/ D 2.y � z/.y � x/:

If .x/ D 0, then y � x D 0 and

0 D .x/ D
ˇ̌
ˇx � y � x

y � z
z
ˇ̌
ˇ2 D jxj2:

Hence, we have x D 0 if .x/ D 0, which shows that .x/ > 0 if x 6D 0. It is
obvious that the function  is homogeneous of degree two. The function  has the
required properties. ut

For the proof of Theorem 3.1, we argue by contradiction: we suppose that

sup
˝�Œ0;1/

.u � v/ > 0;

and, to conclude the proof, we will get a contradiction.
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Reduction 1: We may assume that there exist a constant ı > 0 and a finite open
interval J � .0; 1/ such that

u is a viscosity subsolution of(
ut .x; t/CH.x;Dxu.x; t// � �ı in ˝ � J;

.x/ �Dxu.x; t/ � g.x/ on @˝ � J;

(45)

max
˝�J

.u � v/ > 0 > max
˝�@J

.u � v/; (46)

and

u and v are bounded on ˝ � J . (47)

Proof. We choose a T > 0 so that sup˝�.0; T /.u � v/ > 0 and set

u".x; t/ D u.x; t/ � "

T � t for .x; t/ 2 ˝ � Œ0; T /;

where " > 0 is a constant. It is then easy to check that u" is a viscosity subsolution
of 8̂

<̂
ˆ̂:

u";t CH.x;Dxu".x; t// � � "

T 2
in ˝ � .0; T /;

@u"
@

.x; t/ � g.x/ on @˝ � .0; T /:

Choosing " > 0 sufficiently small, we have

sup
˝�Œ0;T /

.u" � v/ > 0 > max
˝�f0g

.u" � v/:

If we choose ˛ > 0 sufficiently small, then

max
˝�Œ0;T�˛�

.u" � v/ > 0 > max
˝�@Œ0;T�˛�

.u" � v/:

Thus, if we set J D .0; T � ˛/ and replace u by u", then we are in the situation of
(45)–(47). ut

We may assume furthermore that u 2 Lip.˝ � J / as follows.

Reduction 2: We may assume that there exist a constant ı > 0 and a finite open
interval J � .0; 1/ such that
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u is a viscosity subsolution of(
ut .x; t/CH.x;Dxu.x; t// � �ı in ˝ � J;

.x/ �Dxu.x; t/ � g.x/ on @˝ � J;

(48)

max
˝�J

.u � v/ > 0 > max
˝�@J

.u � v/; (49)

and

u 2 Lip.˝ � J / and v is bounded on ˝ � J . (50)

Proof. Let J be as in Reduction 1. We set J D .a; b/. Let M > 0 be a bound of juj
on˝ � Œa; b�.

For each " > 0 we define the sup-convolution in the t-variable

u".x; t/ D max
s2Œa;b�

�
u.x; s/ � .t � s/2

2"

�
:

We note as in Sect. 1.6 that

M � u".x; t/ � u.x; t/ � �M for all .x; t/ 2 ˝ � Œa; b�:

Noting that
1

2"
.t � s/2 � 2M ” jt � sj � 2

p
"M (51)

and setting m" D 2
p
"M , we find that

u".x; t/ D max
a<s<b

�
u.x; s/ � .t � s/2

2"

�
for all .x; t/ 2 ˝ � .aCm"; b �m"/:

Let .x; t/ 2 ˝ � .aCm"; b �m"/. Choose an s 2 .a; b/ so that

u".x; t/ D u.x; s/� .t � s/2
2"

:

Note by (51) that
jt � sj � m":

Let .p; q/ 2 DCu".x; t/ and choose a function � 2 C1.˝ � .a; b// so that
D�.x; t/ D .p; q/ and max.u" � �/ D .u" � �/.x; t/. Observe as in Sect. 1.6 that

.p; .s � t/="/ 2 DCu.x; s/ and
.t � s/

"
C q D 0:
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Hence,
.p; q/ 2 DCu.x; s/:

Therefore, we have

(
q CH.x; p/C ı � 0 if x 2 ˝;
minfq CH.x; p/C ı; 
.x/ � p � g.x/g � 0 if x 2 @˝: (52)

Moreover, we see that

jqj D jt � sj
"

� m"

"
;

and
H.x; p/ � �q � m"

"
if x 2 ˝:

Hence, by the coercivity of H , we have

jqj C jpj � R."/ if x 2 ˝; (53)

for some constant R."/ > 0.
Thus, we conclude from (52) that u" is a viscosity subsolution of

(
ut CH.x;Dxu/ � �ı in ˝ � .a Cm"; b �m"/;


 �Dxu � g on @˝ � .a Cm"; b �m"/;

and from (53) that u" is Lipschitz continuous in˝�.aCm"; b�m"/. By Lemma 3.3,
we have

u".x; t/ D lim sup
˝�.aCm"; b�m"/3.y;s/!.x;t/

u".y; s/ for all .x; t/ 2 @˝�.aCm"; b�m"/:

Since u" 2 Lip.˝ � .a Cm"; b �m"//, the limsup operation in the above formula
can be replaced by the limit operation. Hence,

u" 2 C.˝ � .a Cm"; b �m"//;

which guarantees that u" is Lipschitz continuous in ˝ � .a Cm"; b �m"/.
Finally, if we replace u and J by u" and .a C 2m"; b � 2m"/, respectively, and

select " > 0 small enough so that

max
˝�ŒaC2m";b�2m"�

.u" � v/ > 0 > max
˝�@ŒaC2m";b�2m"�

.u" � v/;

then conditions (48)–(50) are satisfied. ut
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Reduction 3: We may assume that there exist a constant ı > 0 and a finite open
interval J � .0; 1/ such that

u is a viscosity subsolution of(
ut .x; t/CH.x;Dxu.x; t// � �ı in ˝ � J;

.x/ �Dxu.x; t/ � g.x/ � ı on @˝ � J;

(54)

v is a viscosity supersolution of(
vt .x; t/CH.x;Dxv.x; t// � ı in ˝ � J;

.x/ �Dxv.x; t/ � g.x/C ı on @˝ � J;

(55)

max
˝�J

.u � v/ > 0 > max
˝�@J

.u � v/; (56)

and

u 2 Lip.˝ � J / and v is bounded on ˝ � J . (57)

Proof. Let u, v, J be as in Reduction 2. Set J D .a; b/. Let � be a defining function
of ˝ as before. Let 0 < " < 1. We set

u".x; t/ D u.x; t/ � "�.x/ and v".x; t/ D v.x; t/C "�.x/ for .x; t/ 2 ˝ � J ;

and
H".x; p/ D H.x; p � "D�.x//C " for .x; p/ 2 ˝ � R

n:

Let .x; t/ 2 ˝ � J and .p; q/ 2 D�v".x; t/. Then we have

.p � "D�.x/; q/ 2 D�v.x; t/:

Since v is a viscosity supersolution of (ENP), if x 2 ˝ , then

q CH.x; p � "D�.x// � 0:

If x 2 @˝ , then either
q CH.x; p � "D�.x// � 0;

or

.x/ � p D 
.x/ � .p � "D�.x//C "
.x/ �D�.x/

� g.x/C "
.x/ �D�.x/ � g.x/C �";

where
� D min

@˝

 �D� .> 0 /:
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Now let .p; q/ 2 DCu".x; t/. Note that .p C "D�.x/; q/ 2 DCu.x; t/. Since
u 2 Lip.˝ � Œa; b�/, we have a bound C0 > 0 such that

jqj � C0:

If x 2 ˝ , then

q CH.x; p � "D�.x// � q CH.x; p C "D�.x//C !.2"jD�.x/j/
� � ı C !.2"C1/;

where
C1 D max

˝

jD�j;

and ! denotes the modulus of continuity of H on the set ˝ � BRC2C1 , with R > 0
being chosen so that

min
˝�.RnnBR/

H > C0:

(Here we have used the fact that H.x; p C "D�.x// � C0, which implies that
jp C "D�.x/j � R.)

If x 2 @˝ , then either

q CH.x; p � "D�.x// � �ı C !.2"C1/;

or

.x/ � p � 
.x/ � .p C "D�.x// � "
.x/ �D�.x/ � g.x/ � �":

Thus we see that v" is a viscosity supersolution of

(
v";t CH".x;Dxv"/ � " in ˝ � J;

.x/ �Dxv".x; t/ � g.x/C �" on @˝ � J;

and u" is a viscosity subsolution of

(
u";t CH".x;Dxu"/ � �ı C !.2C1"/C " in ˝ � J;

 � Du" � g.x/ � �" on @˝ � J;

If we replace u, v, H and ı by u", v", H" and

minf"; �"; ı � !.2C1"/� "g;

respectively, and choose " > 0 sufficiently small, then conditions (54)–(57) are
satisfied. ut
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Final step: Let u, v, J and ı be as in Reduction 3. We choose a maximum point
.z; 	/ 2 ˝ � J of the function u � v. Note that 	 2 J , that is, 	 62 @J .

By replacing u, if necessary, by the function

u.x; t/ � "jx � zj2 � ".t � 	/2;

where " > 0 is a small constant, we may assume that .z; 	/ is a strict maximum
point of u � v.

By making a change of variables, we may assume that z D 0 and

˝ \ B2r D fx D .x1; : : : ; xn/ 2 B2r W xn < 0g;

while we may assume as well that Œ	 � r; 	 C r� � J .
We set O
 D 
.0/ and apply Lemma 3.4, with y D .0; : : : ; 0; 1/ 2 R

n and z D O
 ,
to find a quadratic function  so that

8̂
<̂
ˆ̂:

.t�/ D t2.�/ for all .�; t/ 2 R
n � R;

.�/ > 0 if � 6D 0;

O
 �D.�/ D 2 O
n�n for all � D .�1; : : : ; �n/ 2 R
n;

where O
n denotes the n-th component of the n-tuple O
 .
By replacing  by a constant multiple of , we may assume that

.�/ � j�j2 for all � 2 R
n;

jD.�/j � C0j�j for all � 2 R
n;

O
 �D.�/
(

� 0 if �n � 0;

� 0 if �n � 0;

where C0 > 0 is a constant.
Let M > 0 be a Lipschitz bound of the function u. Set

Og D g.0/; � D Og O

j O
 j2 and M1 D M C j�j:

We may assume by replacing r by a smaller positive constant if needed that for all
x 2 Br \ @˝ ,

j
.x/� O
 j < ı

2.j�j C C0M1/
and jg.x/ � Ogj < ı

2
: (58)

For ˛ > 1 we consider the function

˚.x; t; y; s/ D u.x; t/ � v.y; s/ � � � .x � y/� ˛.x � y/ � ˛.t � s/2
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on K WD �
.˝ \ Br.0; 	/ � Œ	 � r; 	 C r�

�2
. Let .x˛; t˛; y˛; s˛/ be a maximum

point of the function ˚ . By the inequality ˚.y˛; s˛; y˛; s˛/ � ˚.x˛; t˛; y˛; s˛/,
we get

˛.jx˛ � y˛j2 C .t˛ � s˛/
2/ �˛..x˛ � y˛/C .t˛ � s˛/2/

� u.x˛; t˛/� u.y˛; s˛/C j�jjx˛ � y˛j
�M1.jx˛ � y˛j2 C jt˛ � s˛j2/1=2;

and hence
˛.jx˛ � y˛j2 C jt˛ � s˛j2/1=2 � M1: (59)

As usual we may deduce that as ˛ ! 1,

8̂
<̂
ˆ̂:

.x˛; 	˛/; .y˛; s˛/ ! .0; 	/;

u.x˛; t˛/ ! u.0; 	/;

v.y˛; s˛/ ! v.0; 	/:

Let ˛ > 1 be so large that

.x˛; t˛/; .y˛; s˛/ 2 .˝ \ Br/ � .	 � r; 	 C r/:

Accordingly, we have

.�C ˛D.x˛ � y˛/; 2˛.t˛ � s˛// 2 DCu.x˛; t˛/;

.�C ˛D.x˛ � y˛/; 2˛.t˛ � s˛// 2 D�v.y˛; s˛/:

Using (59), we have

˛jD.x˛ � y˛/j � C0˛jx˛ � y˛j � C0M1: (60)

If x˛ 2 @˝ , then x˛;n D 0 and .x˛ � y˛/n � 0. Hence, in this case, we have

O
 �D.x˛ � y˛/ � 0;

and moreover, in view of (58) and (60),


.x˛/ � .�C ˛D.x˛ � y˛// � O
 � .�C ˛D.x˛ � y˛//

� j
.x˛/ � O
 j.j�j C C0M1/

>g.x˛/� j Og � g.x˛/j � ı

2
> g.x˛/� ı:
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Now, by the viscosity property of u, we obtain

2˛.t˛ � s˛/CH.x˛; �C ˛D.x˛ � y˛// � �ı;

which we certainly have when x˛ 2 ˝ .
If y˛ 2 @˝ , then .x˛ � y˛/n � 0 and

O
 �D.x˛ � y˛/ � 0:

As above, we find that if y˛ 2 @˝ , then


.y˛/ � .�C ˛D.x˛ � y˛// < ı;

and hence, by the viscosity property of v,

2.t˛ � s˛/CH.y˛; �C ˛D.x˛ � y˛// � ı;

which is also valid in case when y˛ 2 ˝ .
Thus, we always have

(
2˛.t˛ � s˛/CH.x˛; �C ˛D.x˛ � y˛// � �ı;
2.t˛ � s˛/CH.y˛; �C ˛D.x˛ � y˛// � ı:

Sending ˛ ! 1 along a sequence, we obtain

q CH.0;�C p/ � �ı and q CH.0;�C p/ � ı

for some p 2 BC0M1 and q 2 Œ�2M1; 2M1�, which is a contradiction. This
completes the proof of Theorem 3.1. ut

4 Stationary Problem: Weak KAM Aspects

In this section we discuss some aspects of weak KAM theory for Hamilton–Jacobi
equations with the Neumann boundary condition. We refer to Fathi [25, 27], E [22]
and Evans [24] for origins and developments of weak KAM theory.

Throughout this section we assume that (A1)–(A6) and the following (A7)
hold:

(A7) The Hamiltonian H is convex. That is, the function p 7! H.x; p/ is convex
in R

n for any x 2 ˝ .

As in Sect. 2 we consider the stationary problem
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8̂
<
:̂
H.x;Du.x// D 0 in ˝;

@u

@

.x/ D g.x/ on @˝:

(SNP)

As remarked before this boundary value problem may have no solution in general,
but, due to Theorem 3.4, if we replace H by H � a with the right choice of a 2 R,
the problem (SNP) has a viscosity solution. Furthermore, if we replaceH byH �a
with a sufficiently large a 2 R, the problem (SNP) has a viscosity subsolution. With
a change of Hamiltonians of this kind in mind, we make the following hypothesis
throughout this section:

(A8) The problem (SNP) has a viscosity subsolution.

4.1 Aubry Sets and Representation of Solutions

We start this subsection by the following Lemma.

Lemma 4.1. Let u 2 USC.˝/ be a viscosity subsolution of (SNP). Then u 2
Lip.˝/. Moreover, u has a Lipschitz bound which depends only on H and˝ .

Proof. By the coercivity ofH , there exists a constantM > 0 such thatH.x; p/ > 0
for all .x; p/ 2 ˝ � .Rn n BM/. Fix such a constant M > 0 and note that u is a
viscosity subsolution of jDu.x/j � M in ˝ . Accordingly, we see by Lemma 2.2
that u 2 Lip.˝/. Furthermore, if C > 0 is the constant from Lemma 2.1, then we
have ju.x/ � u.y/j � CM jx � yj for all x; y 2 ˝ . (See also Appendix A.3.)

Since the function u.x/, as a function of .x; t/, is a viscosity subsolution of
(ENP), Lemma 3.3 guarantees that u is continuous up to the boundary @˝ . Thus, we
get ju.x/� u.y/j � CM jx � yj for all x; y 2 ˝, which completes the proof. ut

We introduce the distance-like function d W ˝ �˝ ! R by

d.x; y/ D supfv.x/ � v.y/ W v 2 USC.˝/ \ S �g;

where S � D S �.˝/ has been defined as the set of all viscosity subsolutions
of (SNP). By (A8), we have S � 6D ; and hence d.x; x/ D 0 for all x 2 ˝ .
Since USC.˝/ \ S � is equi-Lipschitz continuous on ˝ by Lemma 4.1, we see
that the functions .x; y/ 7! v.x/ � v.y/, with v 2 USC.˝/ \ S �, are equi-
Lipschitz continuous and d is Lipschitz continuous on˝ �˝. By Proposition 1.10,
the functions x 7! d.x; y/, with y 2 ˝ , are viscosity subsolutions of (SNP). Hence,
by the definition of d.x; z/ we get

d.x; y/� d.z; y/ � d.x; z/ for all x; y; z 2 ˝:
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We set
Fy D fv.x/ � v.y/ W v 2 S �g; with y 2 ˝;

and observe by using Proposition 1.10 and Lemma 1.3 that Fy satisfies (P1) and
(P2), with ˝ replaced by˝ n fyg, of Proposition 1.13. Hence, by Proposition 1.13,
the function d.�; y/ D sup Fy is a viscosity solution of (SNP) in ˝ n fyg.

The following proposition collects these observations.

Proposition 4.1. We have:

(i) d.x; x/ D 0 for all x 2 ˝.
(ii) d.x; y/ � d.x; z/C d.z; y/ for all x; y; z 2 ˝ .

(iii) d.�; y/ 2 S �.˝/ for all y 2 ˝ .
(iv) d.�; y/ 2 S .˝ n fyg/ for all y 2 ˝ .

The Aubry set (or Aubry–Mather set) A associated with (SNP) is defined by

A D fy 2 ˝ W d.�; y/ 2 S .˝/g:

Example 4.1. Let n D 1, ˝ D .�1; 1/, H.x; p/ D jpj � f .x/, f .x/ D 1 � jxj,

.˙1/ D ˙1 and g.˙1/ D 0. The function v 2 C1.Œ�1; 1�/ given by

v.x/ D
(
1 � 1

2
.x C 1/2 if x � 0;

1
2
.x � 1/2 if x � 0

is a classical solution of (SNP). We show that d.x; 1/ D v.x/ for all x 2 Œ�1; 1�. It
is enough to show that d.x; 1/ � v.x/ for all x 2 Œ�1; 1�. To prove this, we suppose
by contradiction that maxx2Œ�1;1�.d.x; 1/ � v.x// > 0. We may choose a constant
" > 0 so small that maxx2Œ�1;1�.d.x; 1/ � v.x/ � ".1 � x// > 0. Let x" 2 Œ�1; 1�
be a maximum point of the function d.x; 1/� v.x/ � ".1 � x/. Since this function
vanishes at x D 1, we have x" 2 Œ�1; 1/. If x" > �1, then we have

0 � H.x"; v
0.x"/ � "/ D jv0.x"/j C " � f .x"/ D " > 0;

which is impossible. Here we have used the fact that v0.x/ D jxj � 1 � 0 for all
x 2 Œ�1; 1�. On the other hand, if x" D �1, then we have

0 � minfH.�1; v0.�1/� "/; �.v0.�1/� "/g D minf"; "g D " > 0;

which is again impossible. Thus we get a contradiction. That is, we have d.x; 1/ �
v.x/ and hence d.x; 1/ D v.x/ for all x 2 Œ�1; 1�. Arguments similar to the above
show moreover that

d.x;�1/ D
(
1
2
.x C 1/2 if x � 0;

1 � 1
2
.x � 1/2 if x � 0;
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and

d.x; y/ D
(
d.x; 1/� d.y; 1/ if x � y;

d.x;�1/� d.y;�1/ if x � y:

Since two functions d.x;˙1/ are classical solutions of (SNP), we see that ˙1 2 A .
Noting that d.x; y/ � 0 and d.x; x/ D 0 for all x; y 2 Œ�1; 1�, we find that for
each fixed y 2 Œ�1; 1� the function x 7! d.x; y/ has a minimum at x D y. If
y 2 .�1; 1/, then H.y; 0/ D �f .y/ < 0. Hence, we see that the interval .�1; 1/
does not intersect A . Thus, we conclude that A D f�1; 1g.

A basic observation on A is the following:

Proposition 4.2. The Aubry set A is compact.

Proof. It is enough to show that A is a closed subset of ˝ . Note that the function
d is Lipschitz continuous in ˝ � ˝. Therefore, if fykgk2N � A converges to
y 2 ˝ , then the sequence fd.�; yk/gk2N converges to the function d.�; y/ in C.˝/.
By the stability of the viscosity property under the uniform convergence, we see that
d.�; y/ 2 S . Hence, we have y 2 A . ut

The main assertion in this section is the following and will be proved at the end
of the section.

Theorem 4.1. Let u 2 C.˝/ be a viscosity solution of (SNP). Then

u.x/ D inffu.y/C d.x; y/ W y 2 A g for all x 2 ˝: (61)

We state the following approximation result on viscosity subsolutions of (SNP).

Theorem 4.2. Let u 2 C.˝/ be a viscosity subsolution of (SNP). There exists a
collection fu"g"2.0; 1/ � C1.˝/ such that for any " 2 .0; 1/,

8̂
<
:̂
H.x;Du".x// � " in ˝;

@u"

@

.x/ � g.x/ on @˝;

and
ku" � uk1;˝ < ":

A localized version of the above theorem is in [39] (see also Appendix A.4 and
[8]) and the above theorem seems to be new in the global nature.

As a corollary, we get the following theorem.

Theorem 4.3. Let f1; f2 2 C.˝/ and g1; g2 2 C.@˝/. Let u; v 2 C.˝/ be
viscosity solutions of
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8̂
<
:̂
H.x;Du/ � f1 in ˝;

@u

@

� g1 on @˝;

and 8̂
<
:̂
H.x;Dv/ � f2 in ˝;

@v

@

� g2 on @˝;

respectively. Let 0 < � < 1 and set w D .1 � �/u C �v. Then w is a viscosity
subsolution of 8̂

<
:̂
H.x;Dw/ � .1 � �/f1 C �f2 in ˝;

@w

@

� .1 � �/g1 C �g2 on @˝;

(62)

Proof. By Theorem 4.2, for each " 2 .0; 1/ there are functions u"; v" 2 C1.˝/

such that

ku" � uk1;˝ C kv" � vk1;˝ < ";8̂
<
:̂
H.x;Du".x// � f1.x/C " in ˝;

@u"

@

.x/ � g1.x/ on @˝;

and 8̂
<
:̂
H.x;Dv".x// � f2.x/C " in ˝;

@v"

@

.x/ � g2.x/ on @˝:

If we set w" D .1 � �/u" C �v", then we get with use of (A7)

8̂
<
:̂
H.x;Dw".x// � .1 � �/f1.x/C �f2.x/C " in ˝;

@w"

@

.x/ � .1 � �/g1.x/C �g2.x/ on @˝:

Thus, in view of the stability property (Proposition 1.9), we see in the limit as " ! 0

that w is a viscosity subsolution of (62). ut
The following theorem is also a consequence of (A7), the convexity of H , and

Theorem 4.2.

Theorem 4.4. Let F � USC(˝) be a nonempty collection of viscosity subsolutions
of (SNP). Assume that u.x/ WD inf F .x/ > �1 for all x 2 ˝ . Then u 2 Lip.˝/
and it is a viscosity subsolution of (SNP).
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This theorem may be regarded as part of the theory of Barron–Jensen’s lower
semicontinuous viscosity solutions. There are at least two approaches to this theory:
the original one by Barron–Jensen [11] and the other due to Barles [5]. The
following proof is close to Barles’ approach.

Proof. By Lemma 4.1, the collection F is equi-Lipschitz in ˝ . Hence, u is a
Lipschitz continuous function in˝ . For each x 2 ˝ there is a sequence fux;kgk2N �
F such that limk!1 ux;k.x/ D u.x/: Fix such sequences fux;kgk2N, with x 2 ˝

and select a countable dense subset Y � ˝ . Observe that Y � N is a countable set
and

u.x/ D inffuy;k.x/ W .y; k/ 2 Y � Ng for all x 2 ˝:
Thus we may assume that F is a sequence.

Let F D fukgk2N. Then we have

u.x/ D lim
k!1.u1 ^ u2 ^ � � � ^ uk/.x/ for all x 2 ˝:

We show that u1 ^ u2 ^ � � � ^ uk is a viscosity subsolution of (SNP) for every
k 2 N. It is enough to show that if v and w are viscosity subsolutions of (SNP), then
so is the function v ^ w.

Let v and w be viscosity subsolutions of (SNP). Fix any " > 0. In view of
Theorem 4.2, we may select functions v"; w" 2 C1.˝/ so that both for .�"; �/ D
.v"; v/ and .�"; �/ D .w";w/, we have

8̂
ˆ̂̂<
ˆ̂̂̂
:

H.x;D�".x// � " for all x 2 ˝;
@�"

@

.x/ � g.x/ for all x 2 @˝;

k�" � �k1;˝ < ":

Note that .v" ^ w"/.x/ D v".x/� .v" � w"/C.x/. Let f�kgk2N � C1.R/ be such
that (

�k.r/ ! rC uniformly on R as k ! 1;

0 � �0
k.r/ � 1 for all r 2 R; k 2 N:

We set z";k D v" � �k ı .v" � w"/ and observe that

Dz";k.x/ D �
1 � �0

k.v".x/ � w".x//
�
Dv".x/C �0

k.v".x/ � w".x//Dw".x/:

By the convexity of H , we see easily that z";k satisfies

8̂
<
:̂
H.x;Dz";k.x// � " for all x 2 ˝;
@z";k
@


.x/ � g.x/ for all x 2 @˝:
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Since v ^ w is a uniform limit of z";k in˝ as k ! 1 and " ! 0, we see that v ^ w
is a viscosity subsolution of (SNP).

By the Ascoli–Arzela theorem or Dini’s lemma, we deduce that the convergence

u.x/ D lim
k!1.u1 ^ � � � ^ uk/.x/

is uniform in ˝ . Thus we conclude that u is a viscosity subsolution of (SNP). ut
Remark 4.1. Theorem 4.2 has its localized version which concerns viscosity sub-
solutions of 8̂

<
:̂
H.x;Du.x// � 0 in U \˝;

@u

@

.x/ � g.x/ on U \ @˝;

where U is an open subset of R
n having nonempty intersection with ˝ . More

importantly, it has a version for the Neumann problem for Hamilton–Jacobi
equations of evolution type, which concerns solutions of

8̂
<
:̂

ut .x; t/CH.x;Dxu.x; t// � 0 in U \ .˝ � RC/;

@u

@

.x; t/ � g.x/ on U \ .@˝ � RC/;

where U is an open subset of Rn � RC, with U \ .˝ � RC/ 6D ;. Consequently,
Theorems 4.3 and 4.4 are valid for these problems with trivial modifications. For
these, see Appendix A.4.

Theorem 4.5. We have

c# D inf



max
x2˝

H.x;D .x// W  2 C1.˝/; @ =@
 � g on @˝

�
:

Remark 4.2. A natural question here is if there is a function  2 C1.˝/ which
attains the infimum in the above formula. See [12, 28].

Proof. Let c? denote the right hand side of the above minimax formula. By the
definition of c?, it is clear that for any a > c?, there is a classical subsolution of
(EVP). Hence, by Corollary 3.2, we see that c# � c?.

On the other hand, by Theorem 3.4, there is a viscosity solution v of (EVP), with
a D c#. By Theorem 4.2, for any a > c# there is a classical subsolution of (EVP).
That is, we have c? � c#. Thus we conclude that c# D c?. ut
Theorem 4.6 (Comparison). Let v;w 2 C.˝/ be a viscosity subsolution and
supersolution of (SNP), respectively. Assume that v � w on A . Then v � w in ˝ .

For the proof of the above theorem, we need the following lemma.
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Lemma 4.2. Let K be a compact subset of ˝ n A . Then there exists a function
 2 C1.U \ ˝/, where U is an open neighborhood of K in R

n, and a positive
constant ı > 0 such that

8̂
<
:̂
H.x;D .x// � �ı in U \˝;
@ 

@

.x/ � g.x/ � ı on U \ @˝:

(63)

We assume temporarily the validity of the above lemma and complete the proof
of Theorems 4.6 and 4.1. The proof of the above lemma will be given in the sequel.

Proof (Theorem 4.6). By contradiction, we suppose that M WD sup˝.v � w/ > 0.
Let

K D fx 2 ˝ W .v � w/.x/ D M g;
which is a compact subset of ˝ n A . According to Lemma 4.2, there are ı > 0

and  2 C1.U \ ˝/, where U is an open neighborhood of K such that  is a
subsolution of (63).

According to Theorem 4.2, for each " 2 .0; 1/ there is a function v" 2 C1.˝/

such that 8̂
<
:̂
H.x;Dv".x// � " in ˝;

@v"

@

.x/ � g.x/ on @˝;

and
kv" � vk1;˝ < ":

We fix a � 2 .0; 1/ so that ı" WD �.1 � �/"C ı� > 0 and set

u".x/ D .1 � �/v".x/C � .x/:

This function satisfies
8̂
<
:̂
H.x;Du".x// � �ı" in U \˝;
@u"
@

.x/ � g.x/ � ı" on U \ @˝:

This contradicts the viscosity property of the function w if u"�w attains a maximum
at a point z 2 U \˝ . Hence, we have

max
U\˝

.u" � w/ D max
@U\˝

.u" � w/:

Sending " ! 0 and then � ! 0 yields

max
U\˝

.v � w/ D max
@U\˝

.v � w/;
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that is,
M D max

@U\˝
.v � w/:

This is a contradiction. ut
Remark 4.3. Obviously, the continuity assumption on v;w in the above lemma can
be replaced by the assumption that v 2 USC.˝/ and w 2 LSC.˝/.

Proof (Theorem 4.1). We write w.x/ for the right hand side of (61) in this proof. By
the definition of d , we have

u.x/� u.y/ � d.x; y/ for all x; y 2 ˝;

from which we see that u.x/ � w.x/.
By the definition of w, for every x 2 A , we have

w.x/ � u.x/C d.x; x/ D u.x/:

Hence, we have w D u on A .
Now, by Proposition 1.10 (its version for supersolutions), we see that w is a

viscosity supersolution of (SNP) while Theorem 4.4 guarantees that w is a viscosity
subsolution of (SNP). We invoke here Theorem 4.6, to see that u D w in ˝ . ut
Proof (Lemma 4.2). In view of Theorem 4.2, it is enough to show that there exist
functions w 2 Lip.˝/ and f 2 C.˝/ such that

(
f .x/ � 0 in ˝;

f .x/ > 0 in K;

and w is a viscosity subsolution of

8̂
<
:̂
H.x;Dw.x// � �f .x/ in ˝;

@w

@

.x/ � g.x/ on @˝:

For any z 2 ˝ n A , the function x 7! d.x; z/ is not a viscosity supersolution
of (SNP) at z while it is a viscosity subsolution of (SNP). Hence, according to
Lemma 1.3, there exist a function  z 2 Lip.˝/, a neighborhood Uz of z in R

n

and a constant ız > 0 such that  z is a viscosity subsolution of (SNP) and it is
moreover a viscosity subsolution of

8̂
<
:̂
H.x;D z.x// � �ız in Uz \˝;
@ z

@

.x/ � g.x/ � ız on Uz \ @˝:
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We choose a function fz 2 C.˝/ so that 0 < fz.x/ � ı for all x 2 ˝ \ Uz and
fz.x/ D 0 for all x 2 ˝ n Uz, and note that  z is a viscosity subsolution of

8̂
<
:̂
H.x;D z.x// � �fz.x/ in ˝;

@ z

@

.x/ � g.x/ � fz.x/ on @˝:

We select a finite number of points z1; : : : ; zk of K so that fUzi gkiD1 coversK .
Now, we define the function  2 Lip.˝/ by

 .x/ D 1

k

kX
iD1

 zi .x/;

and observe by Theorem 4.3 that  is a viscosity subsolution of

8̂
<
:̂
H.x;D .x// � �f .x/ in ˝;

@ 

@

.x/ � g.x/ � f .x/ on @˝;

where f 2 C.˝/ is given by

f .x/ D 1

k

kX
iD1

fzi .x/:

Finally, we note that infK f > 0. ut

4.2 Proof of Theorem 4.2

We give a proof of Theorem 4.2 in this subsection.
We begin by choosing continuous functions on R

n which extend the functions g,

 and �. We denote them again by the same symbols g, 
 and �.

The following proposition guarantees the existence of test functions which are
convenient to prove Theorem 4.2.

Theorem 4.7. Let " > 0 and M > 0. Then there exist a constant � > 0 and
moreover, for eachR > 0, a neighborhoodU of @˝ , a function � 2 C1..˝ [U /�
R
n/ and a constant ı > 0 such that for all .x; �/ 2 .˝ [ U / � R

n,

M j�j � �.x; �/ � �.j�j C 1/;

and for all .x; �/ 2 U � BR,
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.x/ �D��.x; �/

8<
:

� g.x/C 2" if �.x/ � � � ı;

� g.x/C "

2
if �.x/ � � � �ı:

It should be noted that the constant� in the above statement does not depend on
R while U , � and ı do.

We begin the proof with two Lemmas.
We fix r > 1 and set

R
2n
r D f.y; z/ 2 R

n � R
n W y � z � r�1; maxfjyj; jzjg � rg:

We define the function  2 C1.R2nr � R
n/ by

.y; z; �/ D
ˇ̌
ˇ� � y � �

y � z
z
ˇ̌
ˇ2 C .y � �/2:

Lemma 4.3. The function  has the properties:

8̂
<̂
ˆ̂:

.y; z; t�/ D t2.y; z; �/ for all .y; z; �; t/ 2 R
2n
r � R

n � R;

.y; z; �/ > 0 for all .y; z; �/ 2 R
2n
r � .Rn n f0g/;

z �D�.y; z; �/ D 2.y � z/.y � �/ for all .y; z; �/ 2 R
2n
r � R

n:

This is a version of Lemma 3.4, the proof of which is easily adapted to the present
case.

We define the function � W R
2n
r � R

n ! R by

�.y; z; �/ D ..y; z; �/C 1/1=2 :

Lemma 4.4. There exists a constant� > 1, which depends only on r , such that for
all .y; z; �/ 2 R

2n
r � R

n,

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

z �D��.y; z; �/ D �.y; z; �/�1.y � z/.y � �/;
maxf��1j�j; 1g � �.y; z; �/ � �.j�j C 1/;

maxfjDy�.y; z; �/j; jDz�.y; z; �/jg � �;

jD��.y; z; �/j � �:

Proof. It is clear by the definition of � that

�.y; z; �/ � 1:
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We may choose a constant C > 1 so that for all .y; z; �/ 2 R
2n
r � Sn�1,

maxf.y; z; �/; .y; z; �/�1; jDy.y; z; �/j; jDz.y; z; �/j; jD�.y; z; �/jg � C;

where Sn�1 WD fx 2 R
n W jxj D 1g. By the homogeneity of the function .y; z; �/

in �, we have

maxf.y; z; �/; jDy.y; z; �/j; jDz.y; z; �/jg � C j�j2;
jD�.y; z; �/j � C j�j;

.y; z; �/ � C�1j�j2
(64)

for all .y; z; �/ 2 R
2n
r � R

n. From this it follows that

C�1=2j�j � �.y; z; �/ � C1=2.j�j C 1/:

By a direct computation, we get

Dx�.y; z; �/ D Dx.y; z; �/

2�.y; z; �/
for x D y; z; �:

Hence, using (64), we get

jDy�.y; z; �/j � C j�j2
2�.y; z; �/

� C3=2j�j:

In the same way, we get

jDz�.y; z; �/j � C3=2j�j:

Also, we get

jD��.y; z; �/j � C j�j2
2�.y; z; �/

� C3=2j�j:

We observe that

z �D��.y; z; �/ D z �D�.y; z; �/

2�.y; z; �/
D .y � z/.y � �/

�.y; z; �/
:

By setting � D C3=2, we conclude the proof. ut
Let ˛ > 0. For anyW � R

n we denote byW ˛ the ˛–neighborhood ofW , that is,

W ˛ D fx 2 R
n W dist.x;W / < ˛g:
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For each ı 2 .0; 1/ we select �ı 2 C1.˝1;Rn/, 
ı 2 C1.˝1;Rn/ and gı 2
C1.˝1;R/ so that for all x 2 ˝1,

maxfj�ı.x/ � �.x/j; j
ı.x/ � 
.x/j; jgı.x/ � g.x/jg < ı: (65)

(Just to be sure, note that ˝1 D fx 2 R
n W dist.x;˝/ < 1g.)

By assumption, we have

�.x/ � 
.x/ > 0 for all x 2 @˝:

Hence, we may fix ı0 2 .0; 1/ so that

inff�ı.x/ � 
ı.x/ W x 2 .@˝/ı0 ; ı 2 .0; ı0/g > 0:

We choose a constant r > 1 so that if ı 2 .0; ı0/, then

8̂
<̂
ˆ̂:

minf�ı.x/ � 
ı.x/; j
ı.x/jg � r�1;

maxfj�ı.x/j; j
ı.x/jg � r;

jgı.x/j C 1 < r:

(66)

for all x 2 .@˝/ı0 . In particular, we have

.�ı.x/; 
ı.x// 2 R
2n
r for all x 2 .@˝/ı0 and ı 2 .0; ı0/: (67)

To proceed, we fix any " 2 .0; 1/, M > 0 and R > 0. For each ı 2 .0; ı0/ we
define the function  ı 2 C1..@˝/ı0 � R

n/ by

 ı.x; �/ D .gı.x/C "/

ı.x/ � �
j
ı.x/j2 ;

choose a cut-off function �ı 2 C1
0 .R

n/ so that

8̂
<̂
ˆ̂:

supp �ı � .@˝/ı;

0 � �ı.x/ � 1 for all x 2 R
n;

�ı.x/ D 1 for all x 2 .@˝/ı=2;

and define the function �ı 2 C1.˝ı0/ by

�ı.x; �/ D M h�i.1� �ı.x//C �ı.x/
�
 ı.x; �/C .r2 CM/��ı.x; �/

	
;

where� and � are the constant and function from Lemma 4.4, h�i WD .j�j2 C 1/1=2

and �ı.x; �/ WD �.�ı.x/; 
ı.x/; �/. Since supp�ı � .@˝/ı0 for all ı 2 .0; ı0/, in
view of (67) we see that �ı is well-defined.
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Proof (Theorem 4.7). Let ı0 2 .0; 1/ and  ı; �ı; �ı 2 C1.˝ı0 � R
n/ be as above.

Let ı 2 .0; ı0/, which will be fixed later on. It is obvious that for all .x; �/ 2
.˝/ı0 � R

n, (

ı.x/ �D� ı.x; �/ D gı.x/C ";

j ı.x; �/j � r2j�j:
(68)

For any .x; �/ 2 .@˝/ı � R
n, using (66), (68) and Lemma 4.4, we get

 ı.x; �/C .r2 CM/��ı.x; �/ � �r2j�j C .r2 CM/j�j � M j�j;

and
 ı.x; �/C .r2 CM/��ı.x; �/ � r2j�j C .r2 CM/�2.j�j C 1/

� .2r2 CM/�2.j�j C 1/:

Thus, we have

M j�j � �ı.x; �/ � .2r2 CM/�2.j�j C 1/ for all .x; �/ 2 ˝ı � R
n: (69)

Now, note that if .x; �/ 2 .@˝/ı=2 � R
n, then

�ı.x; �/ D  ı.x; �/C .r2 CM/��ı.x; �/:

Hence, by Lemma 4.4 and (68), we get


ı.x/ �D��ı.x; �/ D gı.x/C "C .r2 CM/�
.�ı.x/ � 
ı.x//.�ı.x/ � �/

�ı.x; �/

for all .x; �/ 2 .@˝/ı=2 � R
n.

Next, let .x; �/ 2 ˝ı � R
n. Since

D��ı.x; �/ D M.1��ı.x//Dh�iC�ı.x/
�
D� ı.x; �/C .r2 CM/�D��ı.x; �/

	
;

using Lemma 4.4, we get

jD��ı.x; �/j � max



M jDh�ij; jgı.x/C "j

j
ı.x/j C .r2 CM/�jD��ı.x; �/j
�

� maxfM; r2 C .r2 CM/�2g D .2r2 CM/�2:

(70)

Let .x; �/ 2 .@˝/ı=2 �BR. Note by (65) and (70) that

ˇ̌
.
ı.x/ � 
.x// �D��ı.x; �/

ˇ̌ � ı.2r2 CM/�2:
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Note also that if �.x/ � � � ı, then

.r2 CM/�
.�ı.x/ � 
ı.x//.�ı.x/ � �/

�ı.x; �/

� .r2 CM/�
.�ı.x/ � 
ı.x//.�.x/ � �/

�ı.x; �/
C .r2 CM/�r2Rı

� .r2 CM/�r2ı.1CR/:

Hence, if �.x/ � � � ı, then


.x/ �D��ı.x; �/ � 
ı.x/ �D��ı.x; �/C ı.2r2 CM/�2

� ı.2r2 CM/�2 C gı.x/C "C .r2 CM/�
.�ı.x/ � 
ı.x//.�ı.x/ � �/

�ı.x; �/

� g.x/C "C ı
�
1C .2r2 CM/�2r2 C .r2 CM/�r2.1CR/

	
:

Similarly, we see that if �.x/ � � � �ı, then


.x/ �D��ı.x; �/ � g.x/C " � ı
h
1C .2r2 CM/�2r2 C .r2 CM/�r2.1CR/

i
:

If we select ı 2 .0; ı0/ so that

ı
�
1C .2r2 CM/�2r2 C .r2 CM/�r2.1CR/

	 � "

2
;

then we have for all .x; �/ 2 .@˝/ı=2 � BR,


.x/ �D��ı.x; �/

(
� g.x/C 2" if �.x/ � � � ı;

� g.x/C "
2

if �.x/ � � � �ı:

Thus, the function � D �ı has the required properties, with .@˝/ı=2 and .2r2 C
M/�2 in place of U and�, respectively. ut

We are ready to prove the following theorem.

Theorem 4.8. Let " > 0 and u 2 Lip.˝/ be a viscosity subsolution of (SNP). Then
there exist a neighborhoodU of @˝ and a function u" 2 C1.˝ [ U / such that

8̂
<̂
ˆ̂:

H.x;Du".x// � " for all x 2 ˝ [ U;

.x/ � Du".x/ � g.x/C " for all x 2 U;
ku" � uk1;˝ � ":

(71)
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Proof. Fix any " > 0 and a constant M > 1 so that M � 1 is a Lipschitz bound
of the function u. With these constants " and M , let � > 0 be the constant from
Theorem 4.7. Set R D M C 2�, and let U , � and ı be as in Theorem 4.7.

Let ˛ > 0. We define the sup-convolution u˛ 2 C.˝ [ U / by

u˛.x/ D max
y2˝

.u.y/� ˛�.x; .y � x/=˛//:

Let x 2 ˝ [U , p 2 DCu˛.x/ and y 2 ˝ be a maximum point in the definition
of u˛, that is,

u˛.x/ D u.y/� ˛�.x; .y � x/=˛/: (72)

It is easily seen that

(
D��.x; .y � x/=˛/ 2 DCu.y/;

p D D��.x; .y � x/=˛/ � ˛Dx�.x; .y � x/=˛/:
(73)

Fix an ˛0 2 .0; 1/ so that

.@˝/˛
2
0 � U:

Here, of course, V denotes the closure of V . For ˛ 2 .0; ˛0/ we set U˛ D .@˝/˛
2

and V˛ D ˝ [ U˛ D ˝˛2 . Note that � 2 C1.V ˛ � R
n/. We set W˛ D f.x; y/ 2

V˛ �˝ W (72) holdsg.
Now, we fix any ˛ 2 .0; ˛0/. Let .x; y/ 2 W˛ . We may choose a point z 2 ˝ so

that jx � zj < ˛2. Note that

u.y/ � ˛�.x; .y � x/=˛/ D u˛.x/ � u.z/� ˛�.x; .z � x/=˛/:

Hence,
˛�.x; .y � x/=˛/ � .M � 1/jz � yj C ˛�.x; .z � x/=˛/:

Now, since M j�j � �.x; �/ � �.j�j C 1// for all .x; �/ 2 V˛ � R
n and jx � zj �

˛2 < ˛, we get

M jx � yj � .M � 1/.jx � yj C ˛2/C ˛�.jz � xj=˛ C 1/

� .M � 1/jx � yj C ˛.M C 2�/:

Consequently,

jy � xj � ˛.M C 2�/ D R˛ for all .x; y/ 2 W˛: (74)

Next, we choose a constant C > 0 so that

jDx�.x; �/j C jD��.x; �/j � C for all .x; �/ 2 V˛0 �BR:
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Let .x; y/ 2 W˛ and z 2 BR˛.x/ \ V˛0 . Assume moreover that x 2 U . In view of
(74) and the choice of � and ı, we have


.x/ �D��.x; .y � x/=˛/

8<
:

� g.x/C 2" if �.x/ � .y � x/ � ˛ı;

� g.x/C "

2
if �.x/ � .y � x/ � �˛ı:

We observe that

�.x/ � .y � x/

8̂
<̂
ˆ̂:

� ˛ı

2
C !�.R˛/R˛ if �.z/ � .y � x/ � ˛ı

2
;

� ˛ı

2
� !�.R˛/R˛ if �.z/ � .y � x/ � �˛ı

2
;

where !� denotes the modulus of continuity of the function � on V˛0 . Observe as
well that

ˇ̌

.z/ �D��.x; .y � x/=˛/ � 
.x/ �D��.x; .y � x/=˛/

ˇ̌ �C!
.R˛/;
jg.z/ � g.x/j �!g.R˛/;

where !
 and !g denote the moduli of continuity of the functions 
 and g on the
set V˛0 , respectively.

We may choose an ˛1 2 .0; ˛0/ so that

!�.R˛1/R <
ı

2
and C!
.R˛1/C !g.R˛1/ <

"

4
;

and conclude from the above observations that for all .x; y/ 2 W˛ and zi 2
BR˛.x/ \ V˛0 , with i D 1; 2; 3, if x 2 U and ˛ < ˛1, then


.z1/ �D��.x; .y � x/=˛/
8<
:

� g.z2/C 3" if �.z3/ � .y � x/ � ˛ı=2;

� g.z2/C "

4
if �.z3/ � .y � x/ � �˛ı=2:

(75)

We may assume, by reselecting ˛1 > 0 small enough if necessary, that

.@˝/R˛1 � U: (76)

In what follows we assume that ˛ 2 .0; ˛1/. Let .x; y/ 2 W˛ and p 2 DCu˛.x/.
By (73) and (74), we have

maxfjpj; jD��.x; .y � x/=˛/jg � C.1C ˛/: (77)

Let !H denote the modulus of continuity of H on V˛0 � BC.1C˛0/.
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We now assume that y 2 @˝ . By (74) and (76), we have x 2 U . Let � be
a defining function of ˝ . We may assume that jD�j � 1 in V˛0 and �0 WD
infU˛0 jD�j > 0. Observe that

˛2 > �.x/ D �.x/ � �.y/ D D�.z/ � .x � y/ D jD�.z/j�.z/ � .x � y/

for some point z on the line segment Œx; y�. Hence, we get

�.z/ � .x � y/ � ��1
0 ˛

2:

If ˛ � �0ı=2, then
�.z/ � .y � x/ � �˛ı=2:

Hence, noting that jz � xj � jx � yj < R˛, by (75), we get


.y/ �D��.x; .y � x/=˛/ � g.y/C "

4
;

and, by the viscosity property of u,

0 � H.y;D��.x; .y � x/=˛// � H.x; p/ � !H..RC C/˛/:

Thus, if !H..RC C/˛/ < " and ˛ � �0ı=2, then we have

H.x; p/ � ":

On the other hand, if y 2 ˝ , then, by the viscosity property of u, we have

0 � H.y;D��.x; .y � x/=˛//:

Therefore, if !H..RC C/˛/ < ", then

H.x; p/ � ":

We may henceforth assume by selecting ˛1 > 0 small enough that

!H ..RC C/˛1/ < " and ˛1 � �0ı=2;

and we conclude that u˛ is a viscosity subsolution of

H.x;Du˛.x// � " in V˛: (78)

As above, let .x; y/ 2 W˛ and p 2 DCu˛.x/. We assume that x 2 U˛. Then

�˛2 < �.x/ � �.x/ � �.y/ � D�.z/ � .x � y/
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for some z 2 Œx; y�, which yields

�.z/ � .y � x/ < jD�.z/j�1˛2 � ��1
0 ˛

2:

Hence, if ˛ � �0ı=2, then

�.z/ � .y � x/ � ı˛

2
;

and, by (75), we get


.x/ �D��.x; .y � x/=˛/ � g.x/C 3":

Furthermore,


.x/ � p � 
.x/ �D��.x; .y � x/=˛/C ˛Ck
k1;U˛0

� g.x/C 3"C ˛Ck
k1;U˛0
:

We may assume again by selecting ˛1 > 0 small enough that

˛1Ck
k1;U˛0
< ":

Thus, u˛ is a viscosity subsolution of


.x/ � Du˛.x/ � g.x/C 4" in U˛: (79)

Let .x; y/ 2 W˛ and observe by using (74) that if x 2 ˝ , then

ju.x/� u˛.x/j � ju.x/� u.y/j C ˛j�.x; .y � x/=˛/j � ˛.MRC C/:

We fix ˛ 2 .0; ˛1/ so that ˛1.MR C C/ < ", and conclude that u˛ is a viscosity
subsolution of (78) and (79) and satisfies

ku˛ � uk1;˝ � ":

The final step is to mollify the function u˛. Let fk�g�>0 be a collection of standard
mollification kernels.

We note by (77) or (78) that u˛ is Lipschitz continuous on any compact subset
of V˛ . Fix any � 2 .0; ˛2=4/. We note that the closure of V˛=2 C B� is a compact
subset of V˛ . Let M1 > 0 be a Lipschitz bound of the function u˛ on V˛=2 CB�.

We set
u�.x/ D u˛ 	 k�.x/ for x 2 V˛=2:

In view of Rademacher’s theorem (see Appendix A.6), we have

H.x;Du˛.x// � " for a.e. x 2 V˛;

.x/ � Du˛.x/ � g.x/C 4" for a.e. x 2 U˛:
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Here Du˛ denotes the distributional derivative of u˛ , and we have

Du� D k� 	 Du˛ in V˛=2:

By Jensen’s inequality, we get

H.x;Du�.x// �
Z
B�

H.x;Du˛.x � y//k�.y/ dy

�
Z
B�

H.x � y;Du˛.x � y//k�.y/ dy C !H.�/

� "C !H.�/;

where !H is the modulus of continuity ofH on the set V˛ �BM1 . Similarly, we get


.x/ � Du�.x/ � g.x/C 4"C !g.�/CM1!
.�/;

where !g and !
 are the moduli of continuity of the functions g and 
 on V˛ ,
respectively. If we choose � > 0 small enough, then (71) holds with u� 2 C1.V˛=2/,
U˛=2 and 5" in place of u", U and ", respectively. The proof is complete. ut
Proof (Theorem 4.2). Let " > 0 and u 2 Lip.˝/ be a viscosity subsolution of
(SNP). Let � be a defining function of ˝ . We may assume that

D�.x/ � 
.x/ � 1 for all x 2 @˝:

For ı > 0 we set

uı.x/ D u.x/� ı�.x/ for x 2 ˝:
It is easily seen that if ı > 0 is small enough, then uı is a viscosity subsolution of

(
H.x;Duı.x// � " in ˝;


.x/ � Duı.x/ � g.x/ � ı on @˝;

and the following inequality holds:

kuı � uk1;˝ � ":

Then, Theorem 4.8, with minf"; ıg, uı, H � " and g � ı in place of ", u, H and
g, respectively, ensures that there are a neighborhoodU of @˝ and a function u" 2
C1.˝ [ U / such that
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8̂
<̂
ˆ̂:

H.x;Du".x// � 2" in ˝ [ U;


.x/ � Du".x/ � g.x/ in U;

ku" � uk1;˝ � 2";

which concludes the proof. ut

5 Optimal Control Problem Associated with (ENP)–(ID)

In this section we introduce an optimal control problem associated with the initial-
boundary value problem (ENP)–(ID),

5.1 Skorokhod Problem

In this section, following [39, 44], we study the Skorokhod problem. We recall that
RC denotes the interval .0; 1/, so that RC D Œ0; 1/. We denote by L1loc.RC; Rk/
(resp., ACloc.RC; Rk/) the space of functions v W RC ! R

k which are integrable
(resp., absolutely continuous) on any bounded interval J � RC.

Given x 2 ˝ and v 2 L1loc.RC;Rn/, the Skorokhod problem is to seek for a pair
of functions, .�; l/ 2 ACloc.RC;Rn/ � L1loc.RC; R/, such that

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

�.0/ D x;

�.t/ 2 ˝ for all t 2 RC;

P�.t/C l.t/
.�.t// D v.t/ for a.e. t 2 RC;

l.t/ � 0 for a.e. t 2 RC;

l.t/ D 0 if �.t/ 2 ˝ for a.e. t 2 RC:

(80)

Regarding the solvability of the Skorokhod problem, our main claim is the
following.

Theorem 5.1. Let v 2 L1loc.RC; Rn/ and x 2 ˝ . Then there exits a pair .�; l/ 2
ACloc.RC; Rn/ � L1loc.RC; R/ such that (80) holds.

We refer to [44] and references therein for more general viewpoints (especially,
for applications to stochastic differential equations with reflection) on the Sko-
rokhod problem.

A natural question arises whether uniqueness of the solution .�; l/ holds or not
in the above theorem. On this issue we just give the following counterexample and
do not discuss it further.
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Example 5.1. Let n D 2 and ˝ D fx D .x1; x2/ 2 R
2 W x1 > 0g. (For

simplicity of presentation, we consider the case where ˝ is unbounded.) Define

 2 C.@˝; R2/ and v 2 L1.RC; R2/ by


.0; x2/ D .�1; �3jx2j�1=3x2/ and v.t/ D .�1; 0/:

Set
�˙.t/ D .0; ˙t3/ for all t � 0:

Then the pairs .�C; 1/ and .��; 1/ are both solutions of (80), with �˙.0/ D .0; 0/.

We first establish the following assertion.

Theorem 5.2. Let v 2 L1.RC; Rn/ and x 2 ˝ . Then there exits a pair .�; l/ 2
Lip.RC; Rn/ � L1.RC; R/ such that (80) holds.

Proof. We may assume that 
 is defined and continuous on R
n. Let � 2 C1.Rn/ be

a defining function of ˝ . We may assume that lim infjxj!1 �.x/ > 0 and that D�
is bounded on R

n. We may select a constant ı > 0 so that for all x 2 R
n,


.x/ �D�.x/ � ıjD�.x/j and jD�.x/j � ı if 0 � �.x/ � ı:

We set q.x/ D .�.x/ _ 0/ ^ ı for x 2 R
n and observe that q.x/ D 0 for all x 2 ˝

and q.x/ > 0 for all x 2 R
n n˝.

Fix " > 0 and x 2 ˝. We consider the initial value problem for the ODE

P�.t/C 1

"
q.�.t//
.�.t// D v.t/ for a.e. t 2 RC; �.0/ D x: (81)

By the standard ODE theory, there is a solution � 2 Lip.RC/ of (81). Fix such a
solution � 2 Lip.RC; Rn/ in what follows.

Note that .d q ı �=dt/.t/ D D�.�.t// � P�.t/ a.e. in the set ft 2 RC W � ı �.t/ 2
.0; ı/g. Moreover, noting that q ı � 2 Lip.RC; R/ and hence it is differentiable a.e.,
we deduce that .d q ı �=dt/.t/ D 0 a.e. in the set ft 2 RC W � ı �.t/ 2 f0; ıgg.

Let m � 2. We multiply the ODE of (81) by mq.�.t//m�1D�.�.t//, to get

d

dt
q.�.t//m C m

"
q.�.t//mDq.�.t// � 
.�.t// D mq.�.t//m�1Dq.�.t// � v.t/

a.e. in the set ft 2 RC W � ı �.t/ 2 .0; ı/g. For any T 2 RC, integration over
ET WD ft 2 Œ0; T � W � ı �.t/ 2 .0; ı/g yields

q.�.T //m � q.�.0//m C m

"

Z
ET

q.�.s//m
.�.s// �D�.�.s//ds

D m

Z
ET

q.�.s//m�1D�.�.s// � v.s/ds:
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Here we note
Z
ET

q.�.s//m
.�.s// �D�.�.s//ds � ı

Z
ET

q.�.s//mjD�.�.s//jds;

and
Z
ET

q.�.s//m�1D�.�.s// � v.s/ds

�
�Z

ET

q.�.s//mjD�.�.s/jds
�1� 1

m
�Z

ET

jv.s/jmjD�.�.s//jds
� 1

m

:

Combining these, we get

q.�.T //m C mı

"

Z
ET

q.�.s//mjD�.�.s//jds

� m

�Z
ET

q.�.s//mjD�.�.s/jds
�1� 1

m
�Z

ET

jv.s/jmjD�.�.s//jds
� 1

m

:

Hence,

ı

"

�Z
ET

q.�.s//mjD�.�.s//jds
� 1

m

�
�Z

ET

jv.s/jmjD�.�.s//jds
� 1

m

and

q.�.T //m �
�"
ı

�m�1
m

Z
ET

jv.s/jmjD�.�.s//jds:

Thus, setting C0 D kD�kL1.Rn/, we find that for any T 2 RC,

q.�.t//m �
�"
ı

�m�1
mC0T kvkmL1.0;T / for all t 2 Œ0; T �: (82)

We henceforth write �" for �, in order to indicate the dependence on " of �, and
observe from (82) that for any T > 0,

lim
"!0C max

t2Œ0; T �
dist.�".t/; ˝/ D 0: (83)

Also, (82) ensures that for any T > 0,

ı

"
kq ı �"kL1.0;T / �

�
ımC0T

"

� 1
m

kvkL1.0;T /:
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Sendingm ! 1, we find that .ı="/kq ı �"kL1.0; T / � kvkL1.0; T /, and moreover

ı

"
kq ı �"kL1.RC/ � kvkL1.RC/: (84)

We set l" D .1="/q ı �". Thanks to (84), we may choose a sequence "j ! 0C (see
Lemma E.1) so that l"j ! l weakly-star in L1.RC/ as j ! 1 for a function
l 2 L1.RC/. It is clear that l.s/ � 0 for a.e. s 2 RC.

ODE (81) together with (84) guarantees that f P�"g">0 is bounded in L1.RC/.
Hence, we may assume as well that �"j converges locally uniformly on RC to a
function � 2 Lip.RC/ as j ! 1. It is then obvious that �.0/ D x and the pair
.�; l/ satisfies

�.t/C
Z t

0

�
l.s/
.�.s//� v.s/�ds D x for all t 2 RC;

from which we get

P�.t/C l.t/
.�.t// D v.t/ for a.e. t 2 RC:

It follows from (83) that �.t/ 2 ˝ for t � 0.
In order to show that the pair .�; l/ is a solution of (80), we need only to prove

that for a.e. t 2 RC, l.t/ D 0 if �.t/ 2 ˝ . Set A D ft � 0 W �.t/ 2 ˝g. It is clear
that A is an open subset of Œ0; 1/. We can choose a sequence fIkgk2N of closed
finite intervals of A such that A D S

k2N Ik . Note that for each k 2 N, the set �.Ik/
is a compact subset of˝ and the convergence of f�"j g to � is uniform on Ik . Hence,
for any fixed k 2 N, we may choose J 2 N so that �"j .t/ 2 ˝ for all t 2 Ik and
j � J . From this, we have q.�"j .t// D 0 for t 2 Ik and j � J . Moreover, in view
of the weak-star convergence of fl"j g, we find that for any k 2 N,

Z
Ik

l.t/dt D lim
j!1

Z
Ik

1

"j
q.�j .t//dt D 0;

which yields l.t/ D 0 for a.e. t 2 Ik . Since A D S
k2N Ik , we see that l.t/ D 0 a.e.

in A. The proof is now complete. ut
For x 2 ˝ , let SP.x/ denote the set of all triples

.�; v; l/ 2 ACloc.RC;Rn/ �L1loc.RC;Rn/ � L1loc.RC/

which satisfies (80). We set SP D S
x2˝ SP.x/.

We remark that for any x; y 2 ˝ and T 2 RC, there exists a triple .�; v; l/ 2
SP.x/ such that �.T / D y. Indeed, given x; y 2 ˝ and T 2 RC, we choose a curve
� 2 Lip.Œ0; T �;˝/ (see Lemma 2.1) so that �.0/ D x, �.T / D y and �.t/ 2 ˝ for
all t 2 Œ0; T �. We extend the domain of definition of � to RC by setting �.t/ D y
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for t > T . If we set v.t/ D P�.t/ and l.t/ D 0 for t � 0, we have .�; v; l/ 2 SP.x/,
which has the property, �.T / D y.

We note also that problem (80) has the following semi-group property: for any
.x; t/ 2 ˝�RC and .�1; v1; l1/; .�2; v2; l2/ 2 SP, if �1.0/ D x and �2.0/ D �1.t/

hold and if .�; v; l/ is defined on RC by

.�.s/; v.s/; l.s// D
(
.�1.s/; v1.s/; l1.s// for s 2 Œ0; t/;
.�2.s � t/; v2.s � t/; l2.s � t// for s 2 Œt; 1/;

then .�; v; l/ 2 SP.x/.
The following proposition concerns a stability property of sequences of points

in SP.

Proposition 5.1. Let f.�k; vk; lk/gk2N � SP. Let x 2 ˝ and .w; v; l/ 2
Lloc.RC;R2nC1/. Assume that as k ! 1,

�k.0/ ! x;

. P�k; vk; lk/ ! .w; v; l/ weakly in L1.Œ0; T �;R2nC1/

for every T 2 RC. Set

�.s/ D x C
Z s

0

w.r/dr for s � 0:

Then .�; v; l/ 2 SP.x/.

Proof. For all t > 0 and k 2 N, we have

�k.t/ D �k.0/C
Z t

0

P�k.s/ds D �k.0/C
Z t

0

.vk.s/� lk.s/
.�k.s/// ds:

First, we observe that as k ! 1,

�k.t/ ! �.t/ locally uniformly on RC;

and then we get in the limit as k ! 1,

�.t/ D x C
Z t

0

.v.s/ � l.s/
.�.s/// ds for all t > 0:

This shows that � 2 ACloc.RC;Rn/ and

P�.s/C l.s/
.�.s// D v.s/ for a.e. s 2 RC:

It is clear that �.0/ D x, �.s/ 2 ˝ for all s 2 RC and l.s/ � 0 for a.e. s 2 RC.
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To show that .�; v; l/ 2 SP.x/, it remains to prove that for a.e. t 2 RC, l.t/ D 0

if �.t/ 2 ˝ . As in the last part of the proof of Theorem 5.2, we set A D ft � 0 W
�.t/ 2 ˝g and choose a sequence fIj gj2N of closed finite intervals of A such that
A D S

j2N Ij . Fix any j 2 N and choose K 2 N so that �k.t/ 2 ˝ for all t 2 Ij
and k � K . From this, we have lk.t/ D 0 for a.e. t 2 Ij and k � K . Moreover, in
view of the weak convergence of flkg, we find that

Z
Ij

l.t/dt D lim
k!1

Z
Ij

lk.t/dt D 0;

which yields l.t/ D 0 for a.e. t 2 Ij . Since j is arbitrary, we see that l.t/ D 0 a.e.
in A D S

j2N Ij . ut
Proposition 5.2. There is a constantC > 0, depending only on˝ and 
 , such that
for all .�; v; l/ 2 SP,

j P�.s/j _ l.s/ � C jv.s/j for a.e. s � 0:

An immediate consequence of the above proposition is that for .�; v; l/ 2 SP,
if v 2 Lp.RC; Rn/ (resp., v 2 L

p
loc.RC; Rn/), with 1 � p � 1, then . P�; l/ 2

Lp.RC; RnC1/ (resp., . P�; l/ 2 Lploc.RC; RnC1/).

Proof. Thanks to hypothesis (A4), there is a constant ı0 > 0 such that �.x/ �
.x/ �
ı0 for x 2 @˝ . Let � 2 C1.Rn/ be a defining function of ˝ .

Let s 2 RC be such that �.s/ 2 @˝ , � is differentiable at s, l.s/ � 0 and
P�.s/C l.s/
.�.s// D v.s/. Observe that the function � ı � attains a maximum at s.
Hence,

0 D d

ds
�.�.s// D D�.�.s// � P�.s/ D jD�.�.s//j�.�.s// � P�.s/

D jD�.�.s//j�.�.s// � �v.s/ � l.s/
.�.s//�
� jD�.�.s//j��.�.s// � v.s/ � l.s/ı0

�
:

Thus, we get

l.s/ � ı�1
0 �.�.s// � v.s/ � ı�1

0 jv.s/j
and

j P�.s/j D jv.s/ � l.s/
.�.s//j � jv.s/j C l.s/jk
k1;@˝

� .1C ı�1
0 k
k1;@˝/jv.s/j;

which completes the proof. ut
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5.2 Value Function I

We define the function L 2 LSC.˝ � R
n; .�1;1�/, called the Lagrangian of H ,

by
L.x; �/ D sup

p2Rn
�
� � p �H.x; p/

�
:

For each x the function � 7! L.x; �/ is the convex conjugate of the function p 7!
H.x; p/. See Appendix A.2 for properties of conjugate convex functions.

We consider the optimal control with the dynamics given by (80), the running
cost .L; g/ and the pay-off u0, and its value function V onQ, whereQ D ˝ �RC,
is given by

V.x; t/ D inf
n Z t

0

�
L.�.s/;�v.s//C g.�.s//l.s/

�
ds

C u0.�.t// W .�; v; l/ 2 SP.x/
o

for .x; t/ 2 Q;
(85)

and V.x; 0/ D u0.x/ for all x 2 ˝ .
For t > 0 and .�; v; l/ 2 SP D S

x2˝ SP.x/, we write

L .t; �; v; l/ D
Z t

0

�
L.�.s/;�v.s//C g.�.s//l.s/

�
ds

for notational simplicity, and then formula (85) reads

V.x; t/ D inf
˚
L .t; �; v; l/C u0.�.t// W .�; v; l/ 2 SP.x/

�
:

Under our hypotheses, the LagrangianL may take the value 1 and, on the other
hand, if we set C D minx2˝.�H.x; 0//, then we have

L.x; �/ � C for all .x; �/ 2 ˝ � R
n:

Thus, it is reasonable to interpret

Z t

0

L.�.s/;�v.s//ds D 1

if the function: s 7! L.�.s/;�v.s// is not integrable, which we adopt here.
It is easily checked as in the proof of Proposition 1.3 that the value function

V satisfies the dynamic programming principle: given a point .x; t/ 2 Q and a
nonanticipating mapping 	 W SP.x/ ! Œ0; t �, we have

V.x; t/ D inf
˚
L .	.˛/; ˛/C V.�.	.˛//; t � 	.˛// W ˛ D .�; v; l/ 2 SP.x/

�
:

(86)
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Here a mapping 	 W SP.x/ ! Œ0; t � is called nonanticipating if 	.˛/ D 	.ˇ/

whenever ˛.s/ D ˇ.s/ a.e. in the interval Œ0; 	.˛/�.
We here digress to recall the state-constraint problem, whose Bellman equation

is given by the Hamilton–Jacobi equation

ut .x; t/CH.x;Dxu.x; t// D 0 in ˝ � RC;

and to make a comparison between (ENP) and the state-constraint problem. For
x 2 ˝ let SC.x/ denote the collection of all � 2 ACloc.RC;Rn/ such that �.0/ D x

and �.s/ 2 ˝ for all s 2 RC. The value function OV W ˝ � RC ! R of the
state-constraint problem is given by

OV .x; t/ D inf
n Z t

0

L.�.s/;�P�.s//ds C u0.�.t// W � 2 SC.x/
o
:

Observe that if � 2 SC.x/, with x 2 ˝ , then .�; P�; 0/ 2 SP.x/. Hence, we have

OV .x; t/ D inf
˚
L .t; �; P�; 0/C u0.�.t// W � 2 SC.x/

�
�V.x; t/ for all .x; t/ 2 ˝ � RC:

Heuristically it is obvious that if g.x/ 
 1, then

V.x; t/ 
 OV .x; t/:

In terms of PDE the above state-constraint problem is formulated as follows: the
value function OV is a unique viscosity solution of

(
ut .x; t/CH.x;Dxu.x; t// � 0 in ˝ � RC;

ut .x; t/CH.x;Dxu.x; t// � 0 in ˝ � RC:

See [48] for a proof of this result in this generality. We refer to [17, 55] for
state-constraint problems. The corresponding additive eigenvalue problem is to find
.a; v/ 2 R � C.˝/ such that v is a viscosity solution of

(
H.x;Dv.x// � a in ˝;

H.x;Dv.x// � a in ˝:
(87)

We refer to [17, 40, 48] for this eigenvalue problem.

Example 5.2. We recall (see [48]) that the additive eigenvalue Oc for (87) is given by

Oc D inffa 2 R W (87) has a viscosity subsolution vg;
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For a comparison between the Neumann problem and the state-constraint problem,
we go back to the situation of Example 3.1. Then it is easy to see that Oc D 0. Thus,
we have c# D Oc D 0 if and only if minfg.�1/; g.1/g � 0.

We here continue the above example with some more generality. Let c# and Oc
denote, as above, the eigenvalues of (EVP) and (87), respectively. It is easily seen
that if  2 C. N̋ / is a subsolution of (EVP) with a D c#, then it is also a subsolution
of (87) with a D c#, which ensures that Oc � c#.

Next, note that the subsolutions of (87) with a D Oc are equi-Lipschitz continuous
on N̋ . That is, there exists a constantM > 0 such that for any subsolution  of (87)
with a D Oc, j .x/� .y/j � M jx� yj for all x; y 2 N̋ . Let  be any subsolution
of (87) with a D Oc, y 2 @˝ and p 2 DC .y/. Choose a � 2 C1. N̋ / so that
D�.y/ D p and  � � has a maximum at y. If t > 0 is sufficiently small, then we
have y� t
.y/ 2 ˝ and, moreover, .y � t
.y//� .y/ � �.y� t
.y//��.y/.
By the last inequality, we deduce that 
.y/ � p � M j
.y/j. Accordingly, we have

.y/ �p � M j
.y/j for all p 2 DC .y/. Thus, we see that if g.x/ � M j
.x/j for
all x 2 @˝ , then any subsolution  of (87) with a D Oc is a subsolution of (EVP)
with a D Oc. This shows that if g.x/ � M j
.x/j for all x 2 @˝ , then c# � Oc. As
we have already seen above, we have Oc � c#, and, therefore, c# D Oc, provided that
g.x/ � M j
.x/j for all x 2 @˝ .

Now, assume that c# D Oc and let a D c# D Oc. It is easily seen that

f W  is a subsolution of (EVP)g � f W  is a subsolution of (87)g;

which guarantees that dN � dS on ˝
2
, where dN .�; y/ D sup FN

y , dS.�; y/ D
sup F S

y , and

FN
y .resp.;F S

y / D f �  .y/ W  is a subsolution of (EVP) . resp.; (87) /g:

Let AN and AS denote the Aubry sets associated with (EVP) and (87), respectively.
That is,

AN D fy 2 ˝ W dN .�; y/ is a solution of (EVP)g;
AS D fy 2 ˝ W dS.�; y/ is a solution of (87)g:

The above inequality and the fact that dN .y; y/ D dS.y; y/ D 0 for all y 2 ˝

imply that D�
x dN .x; y/jxDy � D�

x dS .x; y/jxDy . From this inclusion, we easily
deduce that AS � AN .

Thus the following proposition holds.

Proposition 5.3. With the above notation, we have:

(i) Oc � c#.
(ii) If M > 0 is a Lipschitz bound of the subsolutions of (87) with a D Oc and

g.x/ � M j
.x/j for all x 2 @˝ , then Oc D c#.
(iii) If Oc D c#, then dN � dS on N̋ 2 and AS � AN .
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5.3 Basic Lemmas

In this subsection we present a proof of the sequential lower semicontinuity of the
functional .�; v; l/ 7! L .T; �; v; l/ (see Theorem 5.3 below). We will prove an
existence result (Theorem 5.6) for the variational problem involving the functional
L in Sect. 5.4. These results are variations of Tonelli’s theorem in variational
problems. For a detailed description of the theory of one-dimensional variational
problems, with a central focus on Tonelli’s theorem, we refer to [14].

Lemma 5.1. For each A > 0 there exists a constant CA � 0 such that

L.x; �/ � Aj�j � CA for all .x; �/ 2 ˝ � R
n:

Proof. Fix any A > 0 and observe that

L.x; �/ � max
p2BA

.� � p �H.x; p//

�Aj�j C min
p2BA

.�H.x; p// for all .x; �/ 2 ˝ � R
n:

Hence, setting CA � max˝�BA jH j, we get

L.x; �/ � Aj�j � CA for all .x; �/ 2 ˝ � R
n: ut

Lemma 5.2. There exist constants ı > 0 and C0 > 0 such that

L.x; �/ � C0 for all .x; �/ 2 ˝ � Bı:

Proof. By the continuity of H , there exists a constant M > 0 such that H.x; 0/ �
M for all x 2 ˝ . Also, by the coercivity of H , there exists a constant R > 0 such
that H.x; p/ > M C 1 for all .x; p/ 2 ˝ � @BR. We set ı D R�1. Let .x; �/ 2
˝�Bı . Let q 2 BR be the minimum point of the function f .p/ WD H.x; p/�� �p on
BR. Noting that f .0/ D H.x; 0/ � M and f .p/ > �ıRCM C1 D M for all p 2
@BR, we see that q 2 BR and hence � 2 D�

p H.x; q/, where D�
p H.x; q/ denotes

the subdifferential at q of the function p 7! H.x; p/. Thanks to the convexity of
H , this implies (see Theorem B.2) that L.x; �/ D � � q � H.x; q/. Consequently,
we get

L.x; �/ � ıRC max
˝�BR

jH j:

Thus we have the desired inequality with C0 D ıRC max˝�BR jH j. ut
For later convenience, we formulate the following lemma, whose proof is left to

the reader.
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Lemma 5.3. For each i 2 N define the function Li on˝ � R
n by

Li.x; �/ D max
p2Bi

.� � p �H.x; p//:

Then Li 2 UC.˝ � R
n/,

Li.x; �/ � LiC1.x; �/ � L.x; �/ for all .x; �/ 2 ˝ � R
n and i 2 N;

and for all .x; �/ 2 ˝ � R
n,

Li.x; �/ ! L.x; �/ as i ! 1:

The following lemma is a consequence of the Dunford–Pettis theorem.

Lemma 5.4. Let J D Œa; b�, with �1 < a < b < 1. Let ffj gj2N � L1.J;Rm/

be uniformly integrable in J . That is, for each " > 0, there exists ı > 0 such that
for any measurable E � J and j 2 N, we have

Z
E

jfj .t/jdt < " if jEj < ı;

where jEj denotes the Lebesgue measure of E . Then ffj g has a subsequence which
converges weakly in L1.J;Rm/.

See Appendix A.5 for a proof of the above lemma.

Lemma 5.5. Let J D Œ0; T � with T 2 RC, .�; v/ 2 L1.J;Rn/�L1.J;Rn/, i 2 N

and " > 0. Let Li 2 UC.˝ � R
n/ be the function defined in Lemma 5.3. Assume

that �.s/ 2 ˝ for all s 2 J . Then there exists a function q 2 L1.J;Rn/ such that
for a.e. s 2 J ,

q.s/ 2 Bi and H.�.s/; q.s//C Li.�.s/;�v.s// � �v.s/ � q.s/C ":

Proof. Note that for each .x; �/ 2 ˝ � R
n there is a point q D q.x; �/ 2 Bi such

that Li.x; �/ D � � q �H.x; q/. By the continuity of the functionsH and Li , there
exists a constant r D r.x; �/ > 0 such that

Li.y; z/CH.y; q/ � z � q C " for all .y; z/ 2 .˝ \ Br.x// � Br.�/:

Hence, as˝ �R
n is �-compact, we may choose a sequence f.xk; �k; qk; rk/gk2N �

˝ � R
n �Bi � RC such that

˝ � R
n �

[
k2N

Brk .xk/ � Brk .�k/
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and for all k 2 N,

Li.y; z/CH.y; qk/ � z � qk C " for all .y; z/ 2 Brk .xk/ �Brk .�k/:

Now we set Uk D .˝ \ Brk .xk// � Brk .�k/ for k 2 N and define the function
P W ˝ � R

n ! R
n by

P.x; �/ D qk for all .x; �/ 2 Uk n
[
j<k

Uj and all k 2 N:

It is clear that P is Borel measurable in ˝ � R
n. Moreover we have P.x; �/ 2 Bi

for all .x; �/ 2 ˝ � R
n and

Li.x; �/CH.x;P.x; �// � � � P.x; �/C " for all .x; �/ 2 ˝ � R
n: (88)

We define the function q 2 L1.J; Rn/ by setting q.s/ D P.�.s/; �v.s//. From
(88), we see that q.s/ 2 Bi and

Li.�.s/;�v.s//CH.�.s/; q.s// � �v.s/ � q.s/C " for a.e. s 2 J: ut

Lemma 5.6. Let J D Œ0; T � with T 2 RC, " > 0, i 2 N, q 2 L1.J;Rn/ and � 2
C.J;Rn/ such that �.s/ 2 ˝ for all s 2 J . Assume that kqkL1.J / < i . Let Li be
the function defined in Lemma 5.3. Then there exists a function v 2 L1.Œ0; T �;Rn/
such that

H.�.s/; q.s//C Li.�.s/;�v.s// < �v.s/ � q.s/C " for a.e. s 2 Œ0; T �: (89)

Before going into the proof we remark that for any x 2 ˝ the function Li .x; �/
is the convex conjugate of the function QH.x; �/ given by QH.x; p/ D H.x; p/ if
p 2 Bi and QH.x; p/ D 1 otherwise.

Proof. The same construction as in the proof of Lemma 5.5, with the roles of H
and Li being exchanged, yields a measurable function v W Œ0; T � ! R

n for which
(89) holds. Set C D max˝�Bi jH j and observe that

Li .x; �/ � i j�j � C for all .x; �/ 2 ˝ � R
n:

We combine this with (89), to get

"C kqkL1.J /jv.s/j > i jv.s/j � 2C for a.e. s 2 J:

Hence,

kvkL1.J / � "C 2C

i � kqkL1.J /

: ut
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The following proposition concerns the lower semicontinuity of the functional

.�; v/ 7!
Z T

0

L.�.s/;�v.s//ds:

Theorem 5.3. Let J D Œ0; T � with T 2 RC, f.�k; vk/gk2N � L1.J;Rn/ �
L1.J;Rn/ and .�; v/ 2 L1.J;Rn/ � L1.J;Rn/. Assume that �k.s/ 2 ˝ for all
.s; k/ 2 J � N and that as k ! 1,

�k.s/ ! �.s/ uniformly for s 2 J;
vk ! v weakly in L1.J;Rn/:

Let  be a function in L1.J;R/ such that  .s/ � 0 for a.e. s 2 J . Then

Z
J

 .s/L.�.s/;�v.s//ds � lim inf
k!1

Z
J

 .s/L.�k.s/;�vk.s//ds: (90)

Proof. Fix any i 2 N. Due to Lemma 5.5, there is a function q 2 L1.J;Rn/ such
that q.s/ 2 Bi and

H.�.s/; q.s//C Li.�.s/;�v.s// < �v.s/ � q.s/C 1

i
for a.e. s 2 J: (91)

Note that for all k 2 N,

Z
J

 .s/L.�k.s/;�vk.s//ds �
Z
J

 .s/Li .�k.s/;�vk.s//ds

�
Z
J

 .s/Œ�vk.s/ � q.s/�H.�k.s/; q.s//�ds;

and

lim
k!1

Z
J

 .s/Œ�vk.s/ � q.s/�H.�k.s/; q.s//�ds

D
Z
J

 .s/Œ�v.s/ � q.s/ �H.�.s/; q.s//�ds:

Hence, using (91), we get

lim inf
k!1

Z
J

 .s/L.�k.s/;�vk.s//ds �
Z
J

 .s/Œ�v.s/ � q.s/�H.�.s/; q.s//�ds

�
Z
J

 .s/ŒLi .�.s/;�v.s// � 1=i�ds:

By the monotone convergence theorem, we conclude that (90) holds. ut
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Corollary 5.1. Under the hypotheses of the above theorem, let ffkg � L1.J;R/ be
a sequence of functions converging weakly in L1.J;R/ to f . Assume furthermore
that for all k 2 N,

L.�k.s/;�vk.s// � fk.s/ for a.e. s 2 J:

Then
L.�.s/;�v.s// � f .s/ for a.e. s 2 J:

Proof. Set E D fs 2 J W L.�.s/;�v.s// > f .s/g. By Theorem 5.3, we deduce
that

0 � lim inf
k!1

Z
J

1E.s/ŒL.�k.s/;�vk.s//� fk.s/�ds

�
Z
J

1E.s/ŒL.�.s/;�v.s// � f .s/�ds

D
Z
J

ŒL.�.s/;�v.s// � f .s/�Cds;

where Œ� � � �C denotes the positive part of Œ� � � �. Thus we see that L.�.s/;�v.s// �
f .s/ for a.e. s 2 J . ut
Lemma 5.7. Let J D Œ0; T �, with T 2 RC, and q 2 C.˝ � J;Rn/. Let x 2 ˝ .
Then there exists a triple .�; v; l/ 2 SP.x/ such that

H.�.s/; q.�.s/; s//C L.�.s/; �v.s// D �v.s/ � q.�.s/; s/ for a.e. s 2 J:

Proof. Fix k 2 N. Set ı D T=k and sj D .j � 1/ı for j D 1; 2; : : : ; k C 1. We
define inductively a sequence f.xj ; �j ; vj ; lj /gkjD1 � ˝ � SP. We set x1 D x and
choose a �1 2 R

n so that

H.x1; q.x1; 0//C L.x1;��1/ � ��1 � q.x1; 0/C 1=k:

Set v1.s/ D �1 for s � 0 and choose a pair .�1; l1/ 2 Lip.RC; ˝/ � L1.RC; R/
so that .�1; v1; l1/ 2 SP.x1/. In fact, Theorem 5.2 guarantees the existence of such
a pair.

We argue by induction and now suppose that k � 2 and we are given
.xi ; �i ; vi ; li / for all i D 1; : : : ; j �1 and some 2 � j � k. Then set xj D �j�1.ı/,
choose a �j 2 R

n so that

H.xj ; q.xj ; sj //C L.xj ;��j / � ��j � q.xj ; sj /C 1=k; (92)

set vj .s/ D �j for s � 0, and select a pair .�j ; lj / 2 Lip.RC;˝/ � L1.RC;R/
so that .�j ; vj ; lj / 2 SP.xj /. Thus, by induction, we can select a sequence
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f.xj ; �j ; vj ; lj /gkjD1 � ˝ � SP such that x1 D �1.0/, xj D �j�1.ı/ D �j .0/

for j D 2; : : : ; k and for each j D 1; 2; : : : ; k, (92) holds with �j D vj .s/ for all
s � 0. We set ˛j D .�j ; vj ; lj / for j D 1; : : : ; k.

Note that the choice of xj ; �j ; vj ; lj , with j D 1; : : : ; k, depends on k, which
is not explicit in our notation. We define N̨k D . N�k; Nvk; Nlk/ 2 SP.x/ by setting

N̨k.s/ D ˛j .s � sj / for s 2 Œsj ; sjC1/ and j D 1; : : : ; k:

and
N̨k.s/ D .�k.ı/; 0; 0/ for s � skC1 D T:

Also, we define Nxk; Nqk 2 L1.J;Rn/ by

Nxk.s/ D xj and Nqk.s/ D q.xj ; sj / for s 2 Œsj ; sjC1/ and j D 1; : : : ; k:

Now we observe by (92) that for all j D 1; : : : ; k,

L.xj ;��j / � j�j jRC max
˝�BR

jH j C 1;

whereR > 0 is such a constant thatR � max˝�J jqj. Combining this estimate with
Lemma 5.1, we see that there is a constant C1 > 0, independent of k, such that

max
s�0 j Nvk.s/j D max

1�j�k j�j j � C1:

By Proposition 5.2, we find a constant C2 > 0, independent of k, such that
k PN�kkL1.RC/ _ kNlkkL1.RC/ � C2.

We may invoke standard compactness theorems, to find a triple .�; v; l/ 2
Lip.J;Rn/ � L1.J;RnC1/ and a subsequence of f. N�k; Nvk; Nlk/gk2N, which will be
denoted again by the same symbol, so that for every 0 < S < 1, as k ! 1,

N�k ! � uniformly on Œ0; S�;

. PN�k; Nvk; Nlk/ ! . P�; v; l/ weakly-star in L1.Œ0; S�;R2nC1/:

By Proposition 5.1, we see that .�; v; l/ 2 SP.x/. It follows as well that Nxk.s/ !
�.s/ and Nqk.s/ ! q.�.s/; s/ uniformly for s 2 J as k ! 1.

Now, the inequalities (92), 1 � j � k, can be rewritten as

L. Nxk.s/;�Nvk.s// � �Nvk.s/ � Nqk.s/ �H. Nxk.s/; Nqk.s//C 1=k for all s 2 Œ0; T /:

It is obvious to see that the sequence of functions

�Nvk.s/ � qk.s/C 1=k �H. Nxk.s/; Nqk.s//
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on J converges weakly-star in L1.J;R/ to the function

�v.s/ � q.�.s/; s/�H.�.s/; q.�.s/; s//:

Hence, by Corollary 5.1, we conclude that

H.�.s/; q.�.s/; s//CL.�.s/;�v.s// � �v.s/ � q.�.s/; s/ for a.e. s 2 J;

which implies the desired equality. ut
Theorem 5.4. Let J D Œ0; T �, with T 2 RC, and f.�k; vk; lk/gk2N � SP. Assume
that there is a constant C > 0, independent of k 2 N, such that

L .T; �k; vk; lk/ � C for all k 2 N:

Then there exists a triple .�; v; l/ 2 SP such that

L .T; �; v; l/ � lim inf
k!1 L .T; �k; vk; lk/:

Moreover, there is a subsequence f.�kj ; vkj ; lkj /gj2N of f.�k; vk; lk/g such that as
j ! 1,

�kj .s/ ! �.s/ uniformly on J;

. P�kj ; vkj ; lkj / ! . P�; v; l/ weakly in L1.J;R2nC1/:

Proof. We may assume without loss of generality that �k.t/ D �k.T /, vk.t/ D 0

and lk.t/ D 0 for all t � T and all k 2 N.
According to Proposition 5.2, there is a constant C0 > 0 such that for any

.�; v; l/ 2 SP, j P�.t/j _ jl.t/j � C0jv.t/j for a.e. t � 0. Note by Lemma 5.1
that for each A > 0 there is a constant CA > 0 such that L.x; �/ � Aj�j � CA
for all .x; �/ 2 ˝ � R

n. From this lower bound of L, it is obvious that for all
.x; �; r/ 2 @˝ � R

n � RC, if r � C0j�j, then

L.x; �/C g.x/r �
�
A � C0 max

@˝
jgj
�

j�j � CA; (93)

which ensures that there is a constant C1 > 0 such that for .�; v; l/ 2 SP,

L.�.s/;�v.s//C g.�.s//l.s/C C1 � 0 for a.e. s � 0: (94)

Set
� D lim inf

k!1 L .T; �k; vk; lk/;
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and note by (94) that �C1T � � � C . We may choose a subsequence
f.�kj ; vkj ; lkj /gj2N of f.�k; vk; lk/g so that

� D lim
j!1 L .T; �kj ; vkj ; lkj /:

Using (94), we obtain for any measurable E � Œ0; T �,

Z
E

�
L.�k.s/;�vk.s//C g.�k.s//lk.s/C C1

�
ds

�
Z T

0

�
L.�k.s/;�vk.s//C g.�k.s//lk.s/C C1

�
ds � C C C1T:

This together with (93) yields

�
A� C0 max

@˝
jgj
�Z

E

jvk.s/j ds � CAjEj C C C C1T for all A > 0:

This shows that the sequence fvkg is uniformly integrable on Œ0; T �. Since j P�k.s/j _
jlk.s/j � C0jvk.s/j for a.e. s � 0 and vk.s/ D 0 for all s > T , we see easily that
the sequence f. P�k; vk; lk/g is uniformly integrable on RC.

Due to Lemma 5.4, we may assume by reselecting the subsequence
f.�kj ; vkj ; lkj /g if necessary that as j ! 1,

. P�kj ; vkj ; lkj / ! .w; v; l/ weakly in L1.Œ0; S�;R2nC1/

for every S > 0 and some .w; v; l/ 2 L1loc.RC; R2nC1/. We may also assume that
�kj .0/ ! x as j ! 1 for some x 2 ˝ . By Proposition 5.1, if we set �.s/ D
x C R s

0 w.r/dr for s � 0, then .�; v; l/ 2 SP.x/ and, as j ! 1,

�kj .s/ ! �.s/ locally uniformly on RC:

We apply Theorem 5.3, with the function  .s/ � 1, to find that

Z
J

L.�.s/;�v.s//ds � lim inf
j!1

Z
J

L.�kj .s/;�vkj .s//ds:

Consequently, we have

L .T; �; v; l/ � lim inf
j!1 L .T; �kj ; vkj ; lkj / D �;

which completes the proof. ut
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5.4 Value Function II

Theorem 5.5. Let u 2 UC.˝ �RC/ be the viscosity solution of (ENP)–(ID). Then
V D u in ˝ � RC.

This is a version of classical observations on the value functions in optimal
control, and, in this regard, we refer for instance to [43, 45]. The above theorem
has been established in [39]. The above theorem gives a variational formula for the
unique solution of (ENP)–(ID). This variational formula is sometimes called the
Lax–Oleinik formula.

For the proof of Theorem 5.5, we need the following three lemmas.

Lemma 5.8. Let U � R
n be an open set and J D Œa; b� a finite subinterval of RC.

Let  2 C1..U \˝/ � J / and assume that

 t .x; t/CH.x;Dx .x; t// � 0 for all .x; t/ 2 .U \˝/ � J; (95)

@ 

@

.x; t/ � g.x/ for all .x; t/ 2 .U \ @˝/ � J; (96)

 .x; t/ � V.x; t/ for all .x; t/ 2 .@U \˝/ � J; (97)

 .x; a/ � V.x; a/ for all x 2 U \˝: (98)

Then  � V in .U \˝/ � J .

We note that the following inclusion holds: @.U \˝/ � Œ@U \˝�[ .U \ @˝/.
Proof. Let .x; t/ 2 .U \˝/ � J . Define the mapping 	 W SP.x/ ! Œ0; t � a� by

	.�; v; l/ D inffs � 0 W �.s/ 62 U g ^ .t � a/:

It is clear that 	 is nonanticipating. Let ˛ D .�; v; l/ 2 SP.x/, and observe that
�.s/ 2 U for all s 2 Œ0; 	.˛// and that �.	.˛// 2 @U if 	.˛/ < t � a. In particular,
we find from (97) and (98) that

 .�.	.˛//; t � 	.˛// � V.�.	.˛//; t � 	.˛//: (99)

Fix any ˛ D .�; v; l/ 2 SP.x/. Note that

 .�.	.˛//; t � 	.˛// �  .x; t/

D
Z 	.˛/

0

d

ds
 .�.s/; t � s/ds

D
Z 	.˛/

0

�
Dx .�.s/; t � s/ � P�.s/ �  t.�.s/; t � s/�ds

D
Z 	.˛/

0

�
Dx .�.s/; t � s/ � .v.s/ � l.s/
.�.s///�  t.�.s/; t � s/

�
ds:
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Now, using (95), (96) and (99), we get

 .x; t/ � V.�.	.˛//; t � 	.˛//

�
Z 	.˛/

0

� �Dx .�.s/; t � s/ � v.s/C l.s/Dx .�.s// � 
.�.s//

C  t .�.s/; t � s/�ds
�
Z 	.˛/

0

�
H.�.s/;Dx .�.s/; t � s//C L.�.s/;�v.s//C l.s/g.�.s//

C  t .�.s/; t � s/�ds
� L .	.˛/; �; v; l/;

which immediately shows that

 .x; t/ � inf .L .	.˛/; �; v; l/C V.�.	.˛//; t � 	.˛/// ;

where the infimum is taken over all ˛ D .�; v; l/ 2 SP.x/. Thus, by (86), we get
 .x; t/ � V.x; t/. ut
Lemma 5.9. For any " > 0 there is a constant C" > 0 such that V.x; t/ � u0.x/�
" � C"t for .x; t/ 2 Q.

Proof. Fix any " > 0. According to the proof of Theorem 3.2, there are a function
f 2 C1.˝/ and a constant C > 0 such that if we set  .x; t/ D f .x/ � C t for
.x; t/ 2 Q, then is a classical subsolution of (ENP) and u0.x/ � f .x/ � u0.x/�"
for all x 2 ˝ .

We apply Lemma 5.8, with U D R
n, a D 0, arbitrary b > 0, to obtain

V.x; t/ �  .x; t/ � �"C u0.x/ � Ct for all .x; t/ 2 Q;

which completes the proof. ut
Lemma 5.10. There is a constant C > 0 such that V.x; t/ � u0.x/ C Ct for
.x; t/ 2 Q.

Proof. Let .x; t/ 2 Q. Set �.s/ D x, v.s/ D 0 and l.s/ D 0 for s � 0. Then
.�; v; l/ 2 SP.x/. Hence, we have

V.x; t/ � u0.x/C
Z t

0

L.x; 0/ds D u0.x/C tL.x; 0/ � u0.x/ � t min
p2Rn H.x; p/:

Setting C D � min˝�Rn
H , we get V.x; t/ � u0.x/C Ct. ut

Proof (Theorem 5.5). By Lemmas 5.9 and 5.10, there is a constant C > 0 and for
each " > 0 a constant C" > 0 such that



204 H. Ishii

�" � C"t � V.x; t/ � u0.x/ � Ct for all .x; t/ 2 Q:

This shows that V is locally bounded onQ and that

lim
t!0CV.x; t/ D u0.x/ uniformly for x 2 ˝:

In particular, we have V�.x; 0/ D V �.x; 0/ D u0.x/ for all x 2 ˝ .
We next prove that V is a subsolution of (ENP). Let . Ox; Ot/ 2 Q and � 2 C1.Q/.

Assume that V � � � attains a strict maximum at . Ox; Ot/. We want to show that if
Ox 2 ˝ , then

�t . Ox; Ot /CH. Ox;Dx�. Ox; Ot // � 0;

and if Ox 2 @˝ , then either

�t . Ox; Ot/CH. Ox;Dx�. Ox; Ot// � 0 or 
. Ox/ �Dx�. Ox; Ot / � g. Ox/:

We argue by contradiction and thus suppose that

�t . Ox; Ot /CH. Ox;Dx�. Ox; Ot// > 0

and furthermore

. Ox/ �Dx�. Ox; Ot / > g. Ox/ if Ox 2 @˝:

By continuity, we may choose a constant r 2 .0; Ot / so that

�t .x; t/CH.x;Dx�.x; t// > 0 for all .x; t/ 2 .Br. Ox/ \˝/ � OJ ; (100)

where OJ D ŒOt � r; Ot C r�, and


.x/ �Dx�.x; t/ > g.x/ for all .x; t/ 2 .Br. Ox/ \ @˝/ � OJ : (101)

(Of course, if Ox 2 ˝ , we can choose r so that Br. Ox/ \ @˝ D ;.)
We may assume that .V � � �/. Ox; Ot / D 0. Set

B D
��
@Br. Ox/\˝� � OJ

�
[ ��

Br. Ox/\˝� � fOt � rg� ;
and m D � maxB.V � � �/. Note that m > 0 and V.x; t/ � �.x; t/ � m for
.x; t/ 2 B .

We set " D r=2. In view of the definition of V �, we may choose a point . Nx; Nt / 2
˝ \B". Ox/� .Ot � "; Ot C "/ so that .V ��/. Nx; Nt / > �m. Set a D Nt � Ot C r , and note
that a > " and dist. Nx; @Br . Ox// > ". For each ˛ D .�; v; l/ 2 SP. Nx/ we set

S.˛/ D fs � 0 W �.s/ 2 @Br . Ox/g and 	 D a ^ infS.˛/:
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Clearly, the mapping 	 W SP. Nx/ ! Œ0; a� is nonanticipating. Observe also that if
	.˛/ < a, then �.	.˛// 2 @Br. Ox/ or, otherwise, Nt � 	.˛/ D Nt � a D Ot � r . That is,
we have

.�.	.˛//; Nt � 	.˛// 2 B for all ˛ D .�; v; l/ 2 SP. Nx/: (102)

Note as well that .�.s/; Nt � s/ 2 Br. Ox/ � OJ for all s 2 Œ0; 	.˛/�.
We apply Lemma 5.7, with J D Œ0; a� and the function q.x; s/ D D�.x; Nt � s/,

to find a triple ˛ D .�; v; l/ 2 SP. Nx/ such that for a.e. s 2 Œ0; a�,

H.�.s/;Dx�.�.s/; Nt � s//C L.�.s/;�v.s// � �v.s/ �Dx�.�.s/; Nt � s/ (103)

For this ˛, we write 	 D 	.˛/ for simplicity of notation. Using (102), by the
dynamic programming principle, we have

�. Nx; Nt/ < V. Nx; Nt/Cm

� L .	; �; v; l/C V.	; Nt � 	/Cm

� L .	; �; v; l/C �.�.	/; Nt � 	/:

Hence, we obtain

0 <

Z 	

0

�
L.�.s/;�v.s//C g.�.s//l.s/C d

ds
�.�.s/; Nt � s/

�
ds

�
Z 	

0

�
L.�.s/;�v.s//C g.�.s//l.s/CDx�.�.s/; Nt � s/ � P�.s/� �t .�.s/; Nt � s/

�
ds

�
Z 	

0

�
L.�.s/;�v.s//C g.�.s//l.s/

CDx�.�.s/; Nt � s/ � .v.s/� l.s/
.�.s//� �t .�.s/; Nt � s/
�
ds:

Now, using (103), (100) and (101), we get

0 <

Z 	

0

� �H.�.s/;Dx�.�.s/; Nt � s//C g.�.s//l.s/

� l.s/Dx�.�.s/; Nt � s/ � 
.�.s//� �t .�.s/; Nt � s/
�
ds

<

Z 	

0

l.s/
�
g.�.s// � 
.�.s// �Dx�.�.s/; Nt � s/

�
ds � 0;

which is a contradiction. We thus conclude that V is a viscosity subsolution of
(ENP).

Now, we turn to the proof of the supersolution property of V . Let � 2 C1.Q/

and . Ox; Ot/ 2 ˝ � RC. Assume that V� � � attains a strict minimum at . Ox; Ot/. As
usual, we assume furthermore that minQ.V� � �/ D 0.
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We need to show that if Ox 2 ˝ , then

�t . Ox; Ot /CH. Ox;Dx�. Ox; Ot // � 0;

and if Ox 2 @˝ , then

�t . Ox; Ot/CH. Ox;Dx�. Ox; Ot// � 0 or 
. Ox/ �Dx�. Ox; Ot / � g. Ox/:

We argue by contradiction and hence suppose that this were not the case. That is,
we suppose that

�t . Ox; Ot /CH. Ox;Dx�. Ox; Ot // < 0;
and moreover


. Ox/ �Dx�. Ox; Ot / < g. Ox/ if Ox 2 @˝:
We may choose a constant r 2 .0; Ot/ so that

�t.x; t/CH.x;Dx�.x; t// < 0 for all .x; t/ 2 .Br. Ox/\˝/ � OJ ;

where OJ D ŒOt � r; Ot C r�, and


.x/ �Dx�.x; t/ < g.x/ for all .x; t/ 2 .Br. Ox/\ @˝/ � OJ : (104)

We set

R D
�
.@Br. Ox/\˝/ � OJ

�
[ �
.Br . Ox/ \˝/ � fOt � rg� and m D min

R
.V� � �/;

and define the function  2 C1..Br. Ox/\˝/� OJ / by  .x; t/ D �.x; t/Cm. Note
that m > 0, inf.Br . Ox/\˝/� OJ .V� �  / D �m < 0 and V.x; t/ �  .x; t/ for all
.x; t/ 2 R. Observe moreover that

 t .x; t/CH.x;Dx .x; t// < 0 for all .x; t/ 2 .Br. Ox/ \˝/ � OJ
@ 

@

.x; t/ < g.x/ for all .x; t/ 2 .Br. Ox/ \ @˝/ � OJ :

We invoke Lemma 5.8, to find that  � V in .Br. Ox/ \ ˝/ � OJ . This means
that inf.Br . Ox/\˝/� OJ .V� �  / � 0. This contradiction shows that V is a viscosity
supersolution of (ENP).

We apply Theorem 3.1 to V�, u and V �, to obtain V � � u � V� in Q, from
which we conclude that u D V in Q. ut

Our control problem always has an optimal “control” in SP:

Theorem 5.6. Let .x; t/ 2 ˝ � RC. Then there exists a triple .�; v; l/ 2 SP.x/
such that
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V.x; t/ D L .t; �; v; l/C u0.�.t//:

If, in addition, V 2 Lip.˝ �J;R/, with J being an interval of Œ0; t �, then the triple
.�; v; l/, restricted to QJt WD fs 2 Œ0; t � W t � s 2 J g, belongs to Lip. QJt ;Rn/ �
L1. QJt ;RnC1/.

Proof. We may choose a sequence f.�k; vk; lk/g � SP.x/ such that

V.x; t/ D lim
k!1 L .t; �k; vk; lk/C u0.�k.t//:

In view of Theorem 5.4, we may assume by replacing the sequence f.�k; vk; lk/g
by a subsequence if needed that for some .�; v; l/ 2 SP.x/, �k.s/ ! �.s/ uniformly
on Œ0; t � as k ! 1 and

L .t; �; v; l/ � lim inf
k!1 L .t; �k; vk; lk/:

It is then easy to see that

V.x; t/ D L .r; �; v; l/C u0.�.t//: (105)

Note by (105) that for all r 2 .0; t/,

V.x; t/ � L .r; �; v; l/C V.�.r/; t � r/;

which yields together with the dynamic programming principle

V.x; t/ D L .r; �; v; l/C V.�.r/; t � r/ (106)

for all r 2 .0; t/.
Now, we assume that V 2 Lip.˝ � J /, where J � Œ0; t � is an interval. Observe

by (106) that for a.e. r 2 QJt ,

L.�.r/;�v.r//C l.r/g.�.r// D lim
"!0

V .�.r/; t � r/ � V.�.r C "/; t � r � "/
"

�M.j P�.r/j2 C 1/1=2 � M.j P�.r/j C 1/;

where M > 0 is a Lipschitz bound of the function V on ˝ � J . Let C > 0 be the
constant from Proposition 5.2, so that j P�.s/j _ l.s/ � C jv.s/j for a.e. s � 0. By
Lemma 5.1, for each A > 0, we may choose a constant CA > 0 so that L.y; �/ �
Aj�j � CA for .y; �/ 2 ˝ � R

n. Accordingly, for any A > 0, we get

Ajv.r/j �L.�.r/;�v.r//C CA � �l.r/g.�.r//CM.j P�.r/j C 1/C CA

�C.kgk1;@˝ CM/jv.r/j CM C CA for a.e. r 2 QJt :



208 H. Ishii

This implies that v 2 L1. QJt ;Rn/ and moreover that � 2 Lip. QJt ;Rn/ and l 2
L1. QJt ;R/. The proof is complete. ut
Corollary 5.2. Let u 2 Lip.˝/ be a viscosity solution of (SNP) and x 2 ˝. Then
there exists a .�; v; l/ 2 SP.x/ such that for all t > 0,

u.x/� u.�.t// D L .t; �; v; l/: (107)

Proof. Note that the function u.x/, as a function of .x; t/, is a viscosity solution of
(ENP). In view of Theorem 5.6, we may choose a sequence f.�j ; vj ; lj /gj2N so that
�1.0/ D x, �jC1.0/ D �j .1/ for all j 2 N and

u.�j .0//� u.�j .1// D L .1; �j ; vj ; lj / for all j 2 N:

We define .�; v; l/ 2 SP.x/ by

.�.s/; v.s/; l.s// D .�j .s � j C 1/; vj .s � j C 1/; lj .s � j C 1//

for all s 2 Œj � 1; j / and j 2 N. By using the dynamic programming principle, we
see that (107) holds for all t > 0. ut

5.5 Distance-Like Function d

We assume throughout this subsection that (A8) holds, and discuss a few aspects of
weak KAM theory related to (SNP).

Proposition 5.4. We have the variational formula for the function d introduced in
Sect. 4.1: for all x; y 2 ˝ ,

d.x; y/ D inf
˚
L .t; �; v; l/ W t > 0; .�; v; l/ 2 SP.x/ such that �.t/ D y

�
:

(108)

We use the following lemma for the proof of the above proposition.

Lemma 5.11. Let u0 2 C.˝/ and u 2 UC.Q/ be the viscosity solution of (ENP)–
(ID). Set

v.x; t/ D inf
r>0

u.x; t C r/ for x 2 Q:

Then v 2 UC.Q/ and it is a viscosity solution of (ENP). Moreover, for each t > 0,
the function v.�; t/ is a viscosity subsolution of (SNP).

Proof. By assumption (A8), there is a viscosity subsolution  of (SNP). Note that
the function .x; t/ 7!  .x/ is a viscosity subsolution of (ENP) as well.

We may assume by adding a constant to  if needed that  � u0 in ˝ . By
Theorem 3.1, we have u.x; t/ �  .x/ > �1 for all .x; t/ 2 Q. Since u 2 UC.Q/,
we see immediately that v 2 UC.Q/. Applying a version for (ENP) of Theorem 4.4,
which can be proved based on Theorem D.2, to the collection of viscosity solutions
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.x; t/ 7! u.x; t C r/, with r > 0, of (ENP), we find that v is a viscosity subsolution
of (ENP). Also, by Proposition 1.10 (its version for supersolutions), we see that v
is a viscosity supersolution of (ENP). Thus, the function v is a viscosity solution of
(ENP).

Next, note that for each x 2 ˝, the function v.x; �/ is nondecreasing in RC. Let
. Ox; Ot / 2 Q and � 2 C1.˝/. Assume that the function ˝ 3 x 7! v.x; Ot / � �.x/

attains a strict maximum at Ox. Let ˛ > 0 and consider the function

v.x; t/ � �.x/� ˛.t � Ot/2 on ˝ � Œ0; Ot C 1�:

Let .x˛; t˛/ be a maximum point of this function. It is easily seen that .x˛; t˛/ !
. Ox; Ot / as ˛ ! 1. For sufficiently large ˛, we have t˛ > 0 and either

x˛ 2 @˝ and 
.x˛/ �D�.x˛/ � g.x˛/;

or
2˛.t˛ � Ot/CH.x˛;D�.x˛// � 0:

By the monotonicity of v.x; t/ in t , we see easily that 2˛.t˛ � Ot / � 0. Hence,
sending ˛ ! 1, we conclude that the function v.�; Ot/ is a viscosity subsolution of
(SNP). ut
Proof (Proposition 5.4). We write W.x; y/ for the right hand side of (108).

Fix any y 2 ˝ . For each k 2 N let uk 2 Lip.Q/ be the unique viscosity solution
of (ENP)–(ID), with u0 defined by u0.x/ D kjx � yj. By Theorem 5.5, we have the
formula:

uk.x; t/ D inf
˚
L .t; �; v; l/C kj�.t/ � yj W .�; v; l/ 2 SP.x/

�
:

It is then easy to see that

inf
t>0

uk.x; t/ � W.x; y/ for all .x; k/ 2 ˝ � N: (109)

Since d.�; y/ 2 Lip.˝/, if k is sufficiently large, say k � K , we have d.�; y/ �
kjx � yj for all x 2 ˝. Noting that the function .x; t/ 7! d.x; y/ is a viscosity
subsolution of (ENP) and applying Theorem 3.1, we get d.x; y/ � uk.x; t/ for all
.x; t/ 2 Q if k � K . Combining this and (109), we find that d.x; y/ � W.x; y/ for
all x 2 ˝ .

Next, we give an upper bound on W . According to Lemma 2.1, there exist a
constant C1 > 0 and a function 	 W ˝ ! RC such that 	.x/ � C1jx � yj for
all x 2 ˝ and, for each x 2 ˝ , there is a curve �x 2 Lip.Œ0; 	.x/�/ having the
properties: �x.0/ D x, �x.	.x// D y, �x.s/ 2 ˝ for all s 2 Œ0; 	.x/� and j P�x.s/j �
1 for a.e. s 2 Œ0; 	.x/�. We fix such a function 	 and a collection f�xg of curves.
Thanks to Lemma 5.2, we may choose constants ı > 0 and C0 > 0 such that

L.x; �/ � C0 for all .x; �/ 2 ˝ �Bı:
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Fix any x 2 ˝ n fyg and define .�; v; l/ 2 SP.x/ by setting �.s/ D �x.ıs/ for
s 2 Œ0; 	.x/=ı�, �.s/ D y for s > 	.x/=ı and .v.s/; l.s// D . P�.s/; 0/ for s 2 RC.
Observe that

L .	.x/=ı; �; v; l/ D
Z 	.x/=ı

0

L.�x.ıs/; ı P�x.ıs//ds

D ı�1
Z 	.x/

0

L.�x.s/;�ı P�x.s//ds

� ı�1C0	.x/ � ı�1C0C1jx � yj;

which yields
W.x; y/ � ı�1C0C1jx � yj: (110)

We define the function w W Q ! R by

w.x; t/ D inf
˚
L .r; �; v; l/ W r > t; .�; v; l/ 2 SP.x/ such that �.r/ D y

�
:

It is clear by the above definition that

W.x; y/ D inf
t>0

w.x; t/ for all x 2 ˝: (111)

Also, the dynamic programming principle yields

w.x; t/ D inf
˚
L .t; �; v; l/CW.�.t/; y/ W .�; v; l/ 2 SP.x/

�
:

(We leave it to the reader to prove this identity.) In view of (110), we fix a k 2 N so
that ı�1C0C1 � k and note that for all .x; t/ 2 Q,

w.x; t/ � inf
˚
L .t; �; v; l/C kj�.t/ � yj W .�; v; l/ 2 SP.x/

� D uk.x; t/:

Consequently, we have

inf
t>0

w.x; t/ � inf
t>0

uk.x; t/ for all x 2 ˝;

which together with (111) yields

W.x; y/ � inf
t>0

uk.x; t/ for all x 2 ˝:

By Lemma 5.11, if we set v.x/ D inft>0 uk.x; t/ for x 2 ˝ , then v 2 C.˝/ is
a viscosity subsolution of (SNP). Moreover, since v.x/ � uk.x; 0/ D kjx � yj for
all x 2 ˝ , we have v.y/ � 0. Thus, we find that v.x/ � v.y/C d.x; y/ � d.x; y/

for all x 2 ˝. We now conclude thatW.x; y/ � v.x/ � d.x; y/ for all x 2 ˝ . The
proof is complete. ut
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Proposition 5.5. Let y 2 ˝ and ı > 0. Then we have y 2 A if and only if

inf
˚
L .t; �; v; l/ W t > ı; .�; v; l/ 2 SP.y/ such that �.t/ D y

� D 0: (112)

Proof. First of all, we define the function u 2 UC.Q/ as the viscosity solution of
(ENP)–(ID), with u0 D d.�; y/. By Theorem 5.5, we have

u.x; t/ D inf
˚
L .t; �; v; l/C d.�.t/; y/ W .�; v; l/ 2 SP.x/

�
for all .x; t/ 2 Q:

We combine this formula and Proposition 5.4, to get

u.x; t/ D inf
n
L .r; �; v; l/ W r > t; .�; v; l/ 2 SP.x/ such that �.r/ D y

o

for all .x; t/ 2 Q:
(113)

Now, we assume that y 2 A . The function d.�; y/ is then a viscosity solution
of (SNP) and u is a viscosity solution of (ENP)–(ID), with u0 D d.�; y/. Hence, by
Theorem 3.1, we have d.x; y/ D u.x; t/ for all .x; t/ 2 Q. Thus,

0 D d.y; y/ D inf
˚
L .r; �; v; l/ W r > t; .�; v; l/ 2 SP.y/ such that �.r/ D y

�
for all t > 0:

This shows that (112) is valid.
Now, we assume that (112) holds. This assumption and (113) show that u.y; ı/ D

0. Formula (113) shows as well that for each x 2 ˝ , the function u.x; �/ is
nondecreasing in RC. In particular, we have d.x; y/ � u.x; t/ for all .x; t/ 2 Q.
Let p 2 D�

x d.x; y/jxDy . Then we have .p; 0/ 2 D�u.y; ı/ and

(
H.y; p/ � 0 if y 2 ˝;
maxfH.y; p/; 
.y/ � p � g.y/g � 0 if y 2 @˝:

This shows that d.�; y/ is a viscosity solution of (SNP). Hence, we have y 2 A .
ut

6 Large-Time Asymptotic Solutions

We discuss the large-time behavior of solutions of (ENP)–(ID) following [8,38,39].
There has been much interest in the large time behavior of solutions of Hamilton–

Jacobi equations since Namah and Roquejoffre in [53] have first established a
general convergence result for solutions of

ut .x; t/CH.x;Dxu.x; t// D 0 in .x; t/ 2 ˝ � RC (1.2)
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under (A5), (A6) and the assumptions

H.x; p/ � H.x; 0/ for all .x; p/ 2 ˝ � R
n;

max
˝
H.x; 0/ D 0;

(114)

where ˝ is a smooth compact n-dimensional manifold without boundary. Fathi
in [26] has then established a similar convergence result but under different type
hypotheses, where (114) replaced by a strict convexity of the Hamiltonian H.x; p/
in p, by the dynamical approach based on weak KAM theory [25, 27]. Barles and
Souganidis have obtained in [3] more general results in the periodic setting (i.e., in
the case where˝ is n-dimensional torus), for possibly non-convex Hamiltonians, by
using a PDE-viscosity solutions approach, which does not depend on the variational
formula for the solutions like the one in Theorem 5.5. We refer to [7] for a recent
view on this approach.

The approach of Fathi has been later modified and refined by Roquejoffre [54],
Davini and Siconolfi in [21], and others. The same asymptotic problem in the whole
domain R

n has been investigated by Barles and Roquejoffre in [10], Fujita et al.,
Ichihara and the author in [30, 34–37] in various situations.

There has been as well a considerable interest in the large time asymptotic
behavior of solutions of Hamilton–Jacobi equation with boundary conditions.
The investigations in this direction are papers: Mitake [48] (the state-constraint
boundary condition), Roquejoffre [54] (the Dirichlet boundary condition in the
classical sense), Mitake [49, 50] (the Dirichlet boundary condition in the viscosity
framework). More recent studies are due to Barles, Mitake and the author in [8, 9,
38], where the Neumann boundary conditions including the dynamical boundary
conditions are treated. In [8, 9], the PDE-viscosity solutions approach of Barles–
Souganidis is adapted to problems with boundary conditions.

Yokoyama et al. in [58] and Giga et al. in [32, 33] have obtained some results on
the large time behavior of solutions of Hamilton–Jacobi equations with noncoercive
Hamiltonian which is motivated by a crystal growth model.

We also refer to the articles [13,54] and to [16,51,52] for the large time behavior
of solutions, respectively, of time-dependent Hamilton–Jacobi equations and of
weakly coupled systems of Hamilton–Jacobi equations.

As before, we assume throughout this section that hypotheses (A1)–(A7) hold
and that u0 2 C.˝/. Moreover, we assume that c# D 0. Throughout this section
u D u.x; t/ denotes the viscosity solution of (ENP)–(ID).

We set
Z D f.x; p/ 2 ˝ � R

n W H.x; p/ D 0g:
(A9)˙ There exists a function !0 2 C.Œ0;1// satisfying !0.r/ > 0 for all r > 0

such that if .x; p/ 2 Z, � 2 D�
p H.x; p/ and q 2 R

n, then

H.x; p C q/ � � � q C !0..� � q/˙/:
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The following proposition describes the long time behavior of solutions of
(ENP)–(ID).

Theorem 6.1. Assume that either (A9)C or (A9)� holds. Then there exists a
viscosity solution w 2 Lip.˝/ of (SNP) for which

lim
t!1 u.x; t/ D w.x/ uniformly on ˝: (115)

The following example is an adaptation of the one from Barles–Souganidis to the
Neumann problem, which shows the necessity of a stronger condition like (A9)˙
beyond the convexity assumption (A7) in order to have the asymptotic behavior
described in the above theorem.

Example 6.1. Let n D 2 and ˝ D B4. Let �;  2 C1.RC/ be functions such that
0 � �.r/ � 1 for all r 2 RC, �.r/ D 1 for all r 2 Œ0; 1�, �.r/ D 0 for all
r 2 Œ2;1/, .r/ � 0 for all r 2 RC, .r/ D 0 for all r 2 Œ0; 2� [ Œ3;1/ and
.r/ > 0 for all r 2 .2; 3/. Fix a constant M > 0 so that M � k 0k1;RC

. We
consider the HamiltonianH W ˝ � R

2 given by

H.x; y; p; q/ D j � yp C xq C .r/j � .r/
C �.r/

p
p2 C q2 C .1 � �.r//

�ˇ̌
ˇx
r
p C y

r
q
ˇ̌
ˇ�M

�
C
;

where r D r.x; y/ WD p
x2 C y2. Let u 2 C1.˝ � RC/ be the function given by

u.x; y; t/ D .r/
�y
r

cos t � x

r
sin t

�
;

where, as above, r D p
x2 C y2. It is easily checked that u is a classical solution of

(
ut .x; y; t/CH.x; y; ux.x; y; t/; uy.x; y; t// D 0 in B4 � RC;

�.x; y/ � .ux.x; y; t/; uy .x; y; t// D 0 on @B4 � RC;

where �.x; y/ denotes the outer unit normal at .x; y/ 2 @B4. Note here that if we
introduce the polar coordinate system

x D r cos �; y D r sin �

and the new function

v.r; �; t/ D u.r cos �; r sin �; t/ for .r; �; t/ 2 RC � R � RC;

then the above Hamilton–Jacobi equation reads

vt C eH.r; �; vr ; v� / D 0;



214 H. Ishii

where

eH.r; �; pr ; p� /
D jp� C .r/j � .r/C �.r/

r
p2r C

�p�
r

�2 C .1 � �.r// .jpr j �M/C ;

while the definition of u reads

v.r; �; t/ D .r/ sin.� � t/:

Note also that any constant function w on B4 is a classical solution of

(
H.x; y;wx.x; y; t/;wy .x; y; t// D 0 in B4;

�.x; y/ � .wx.x; y; t/;wy .x; y; t// D 0 on @B4;

which implies that the eigenvalue c# is zero.
It is clear that u does not have the asymptotic behavior (115). As is easily seen,

the HamiltonianH satisfies (A5)–(A7), but neither of (A9)˙.

6.1 Preliminaries to Asymptotic Solutions

According to Theorem 3.3 and Corollary 3.1, we know that u 2 BUC.Q/. We set

u1.x/ D lim inf
t!1 u.x; t/ for all x 2 ˝:

Lemma 6.1. The function u1 is a viscosity solution of (SNP) and u1 2 Lip.˝/.

Proof. Note that

u1.x/ D lim
t!1 inffu.x; t C r/ W r > 0g for all x 2 ˝: (116)

By Lemma 5.11, if we set

v.x; t/ D inffu.x; t C r/ W r > 0g for .x; t/ 2 Q;

then v 2 BUC.Q/ and it is a viscosity solution of (ENP). For each x 2 ˝, the
function v.x; �/ is nondecreasing in RC. Hence, by the Ascoli–Arzela theorem
or Dini’s lemma, we see that the convergence in (116) is uniform in ˝ . By
Proposition 1.9, we see that the function u1.x/, as a function of .x; t/, is a viscosity
solution of (ENP), which means that u1 is a viscosity solution of (SNP). Finally,
Proposition 1.14 guarantees that u1 2 Lip.˝/. ut
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We introduce the following notation:

S D f.x; �/ 2 ˝ � R
n W � 2 D�

p H.x; p/ for some .x; p/ 2 Zg;
P.x; �/ D fp 2 R

n W � 2 D�
p H.x; p/g for .x; �/ 2 ˝ � R

n:

Lemma 6.2. (i) Z; S � ˝ � BR0 for some R0 > 0.
(ii) Assume that (A9)C holds. Then there exist constants ı > 0 and R1 > 0 such

that for any .x; �/ 2 S and any " 2 .0; ı/, we have P.x; .1 C "/�/ ¤ ; and
P.x; .1C "/�/ � BR1 .

(iii) Assume that (A9)� holds. Then there exist constants ı > 0 and R1 > 0 such
that for any .x; �/ 2 S and any " 2 .0; ı/, we have P.x; .1 � "/�/ ¤ ; and
P.x; .1 � "/�/ � BR1 .

Proof. (i) It follows from coercivity (A6) that there exists a constant R1 > 0 such
that Z � R

n � BR1 . Next, fix any .x; �/ 2 S . Then, by the definition of S , we may
choose a point p 2 P.x; �/ such that .x; p/ 2 Z. Note that jpj < R1. By convexity
(A7), we have

H.x; p0/ � H.x; p/C � � .p0 � p/ for all p0 2 R
n:

Assuming that � ¤ 0 and setting p0 D p C �=j�j in the above, we get

j�j D � � .p0 � p/ � H.x; p0/�H.x; p/ < sup
˝�BR1C1

H � inf
˝�BR1

H:

We may choose a constant R2 > 0 so that the right-hand side is less than R2, and
therefore � 2 BR2 . SettingR0 D maxfR1;R2g, we conclude thatZ; S � R

n�BR0 .
(ii) By (i), there is a constant R0 > 0 such that Z;S � ˝ � BR0 . We set ı D

!0.1/, where !0 is from (A9)
C

. In view of coercivity (A6), replacing R0 > 0 by
a larger constant if necessary, we may assume that H.x; p/ � 1 C !0.1/ for all
.x; p/ 2 ˝ � .Rn n BR0/.

Fix any .x; �/ 2 S , p 2 P.x; �/ and " 2 .0; ı/. Note that �; p 2 BR0 . By (A9)C,
for all x 2 R

n we have

H.x; q/ � � � .q � p/C !0 ..� � .q � p//C/ :

We set V WD fq 2 B2R0.p/ W j� � .q � p/j � 1g. Let q 2 V and observe the
following: if q 2 @B2R0.p/, which implies that jqj � R0, then H.x; q/ � 1 C
!0.1/ > 1C " � .1C "/� � .q�p/. If � � .q�p/ D 1, thenH.x; q/ � 1C!0.1/ >

1C " D .1C "/� � .q �p/. Also, if � � .q �p/ D �1, thenH.x; q/ � � � .q �p/ >
.1C "/� � .q � p/. Accordingly, the functionG.q/ WD H.x; q/� .1C "/� � .q � p/
on R

n is positive on @V while it vanishes at q D p 2 V , and hence it attains a
minimum over the set V at an interior point of V . Thus, P.x; .1C "/�/ 6D ;. By the
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convexity of G, we see easily that G.q/ > 0 for all q 2 R
n n V and conclude that

P.x; .1C "/�/ � B2R0 .
(iii) Let !0 be the function from (A9)

�
. As before, we choose R0 > 0 so that

Z;S � ˝ � BR0 and H.x; p/ � 1 C !0.1/ for all .x; p/ 2 ˝ � .Rn n BR0/, and
set ı D !0.1/ ^ 1. Note that for all x 2 R

n,

H.x; q/ � � � .q � p/C !0 ..� � .q � p//
�
/ :

Fix any .x; �/ 2 S , p 2 P.x; �/ and " 2 .0; ı/. Set V WD fq 2 B2R0.p/ W
j� � .q � p/j � 1g. Let q 2 V and observe the following: if q 2 @B2R0 .p/, then
H.x; q/ � 1 C !0.1/ > 1 C " � .1 � "/� � .q � p/. If � � .q � p/ D �1, then
H.x; q/ � �1 C !0.1/ > �1 C " D .1 � "/� � .q � p/. If � � .q � p/ D 1,
then H.x; q/ � � � .q � p/ > .1 � "/� � .q � p/. As before, the function G.q/ WD
H.x; q/ � .1 � "/� � .q � p/ attains a minimum over V at an interior point of V .
Consequently, P.x; .1 � "/�/ 6D ;. Moreover, we get P.x; .1 � "/�/ � B2R0 . ut
Lemma 6.3. Assume that (A9)

C
(resp., (A9)

�
) holds. Then there exist a constant

ı1 > 0 and a modulus !1 such that for any " 2 Œ0; ı1� and .x; �/ 2 S ,

L.x; .1C "/ �/ � .1C "/L.x; �/C " !1."/ (117)

(resp.,
L.x; .1 � "/ �/ � .1 � "/L.x; �/C " !1."/ ): (118)

Before going into the proof, we make the following observation: under the
assumption that H; L are smooth, for any .x; �/ 2 S , if we set p WD D�L.x; �/,
then

H.x; p/ D 0;

p � � D H.x; p/C L.x; �/ D L.x; �/;

and, as " ! 0,

L.x; .1C "/�/ D L.x; �/C "p � � C o."/

D L.x; �/C "L.x; �/C o."/ D .1C "/L.x; �/C o."/:

Proof. Assume that (A9)
C

holds. Let R0 > 0, R1 > 0 and ı > 0 be the constants
from Lemma 6.2. Fix any .x; �/ 2 S and " 2 Œ0; ı/. In view of Lemma 6.2, we
may choose a p" 2 P.x; .1 C "/�/. Then we have jp" � p0j < 2R1, j�j < R0 and
j� � .p" � p0/j < 2R0R1.

Note by (A9)
C

that

H.x; p"/ � � � .p" � p0/C !0 ..� � .p" � p0//C/ :
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Hence, we obtain

L.x; .1C "/ �/ D .1C "/ � � p" �H.x; p"/ � .1C "/ � � p"
� � � .p" � p0/� !0 ..� � .p" � p0//C/

� .1C "/Œ� � p0 �H.x; p0/�
C " � � .p" � p0/� !0 ..� � .p" � p0//C/

� .1C "/L.x; �/C " max
0�r�2R0R1

�
r � 1

"
!0.r/

�
:

We define the function !1 on Œ0;1/ by setting !1.s/ D max0�r�2R0R1 .r�!0.r/=s/
for s > 0 and !1.0/ D 0 and observe that !1 2 C.Œ0;1//. We have also L.x; .1C
"/�/ � .1C "/L.x; �/C "!1."/ for all " 2 .0; ı/. Thus (117) holds with ı1 WD ı=2.

Next, assume that (A9)
�

holds. Let R0 > 0, R1 > 0 and ı > 0 be the constants
from Lemma 6.2. Fix any .x; �/ 2 S and " 2 Œ0; ı/.

As before, we may choose a p" 2 P.x; .1 � "/�/, and observe that jp" � p0j <
2R1, j�j < R0 and j� � .p" � p0/j < 2R0R1. Noting that

H.x; p"/ � � � .p" � p0/C !0 ..� � .p" � p0//�
/ ;

we obtain

L.x; .1 � "/ �/ D .1 � "/ � � p" �H.x; p"/ � .1 � "/ � � p"
� � � .p" � p0/ � !0 ..� � .p" � p0//�

/

� .1 � "/Œ� � p0 �H.x; p0/�
� " � � .p" � p0/� !0 ..� � .p" � p0//�

/

� .1C "/L.x; �/C " max
0�r�2R0R1

�
r � 1

"
!0.r/

�
:

Setting !1.s/ D max0�r�2R0R1 .r � !0.r/=s/ for s > 0 and !1.0/ D 0, we
find a function !1 2 C.Œ0;1// vanishing at the origin for which L.x; .1 � "/�/ �
.1 � "/L.x; �/C "!1."/ for all " 2 .0; ı/. Thus (118) holds with ı1 WD ı=2. ut
Theorem 6.2. Let u 2 Lip.˝/ be a subsolution of (SNP). Let � 2 AC.RC; Rn/ be
such that �.t/ 2 ˝ for all t 2 RC. Set RC;b D ft 2 RC W �.t/ 2 @˝g. Then there
exists a function p 2 L1.RC; Rn/ such that

8̂
ˆ̂<
ˆ̂̂:

d

dt
u ı �.t/ D p.t/ � P�.t/ for a.e. t 2 RC;

H.�.t/; p.t// � 0 for a.e. t 2 RC;


.�.t// � p.t/ � g.�.t// for a.e. t 2 RC;b:
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Proof. According to Theorem 4.2, there is a collection fu"g"2.0; 1/ � C1.˝/ such
that 8̂

ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

H.x;Du".x// � " for all x 2 ˝;
@u"
@

.x/ � g.x/ for all x 2 @˝;

ku" � uk1;˝ < ";

sup
0<"<1

kDu"kL1.˝/ < 1:

If we set p".t/ D Du" ı �.t/ for all t 2 RC, then we have

8̂
ˆ̂̂<
ˆ̂̂̂
:

u" ı �.t/ � u" ı �.0/ D
Z t

0

p".s/ � P�.s/ds for all t 2 RC;

H.�.t/; p".t// � " for all t 2 RC;


.�.t// � p".t/ � g.�.t// for all t 2 RC;b:

(119)

Since fp"g"2.0;1/ is bounded in L1.RC/, there is a sequence f"j gj2N converging to
zero such that, as j ! 1, the sequence fp"j g converges weakly-star in L1.RC/
to some function p 2 L1.RC/. It is clear from (119) that

8̂
<
:̂

u ı �.t/ � u ı �.0/ D
Z t

0

p.s/ � P�.s/ds for all t 2 RC;


.�.t// � p.t/ � g.�.t// for a.e. t 2 RC;b:

Now, we fix an i 2 N so that i > kpkL1.RC/ and any 0 < T < 1, and set
J D Œ0; T �. Using Lemma 5.6, for eachm 2 N, we find a function vm 2 L1.J;Rn/
so that

H.�.s/; p.s//C Li.�.s/;�vm.s// < �vm.s/ � p.s/C 1=m for a.e. s 2 J:
(120)

By the convex duality, we have

H.x; q/ D sup
�2Rn

.� � q � Li.x; �// for all .x; q/ 2 ˝ � Bi :

(Note that Li .x; �/ is the convex conjugate of the function H.x; �/ C ıBi , where
ıBi .p/ D 0 if p 2 Bi and D 1 otherwise.) Hence, for any nonnegative function
 2 L1.J;R/ and any .j;m/ 2 N

2, by (119) we get

"j

Z
J

 .s/ds �
Z
J

 .s/H.�.s/; p"j .s//ds

�
Z
J

 .s/Œ�vm.s/ � p"j .s/ �Li .�.s/;�vm.s//�ds:
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Combining this observation with (120), after sending j ! 1, we obtain

0 �
Z
J

 .s/.H.�.s/; p.s// � 1=m/ds;

which implies that H.�.s/; p.s// � 0 for a.e. s 2 Œ0; T �. Since T > 0 is arbitrary,
we see that

H.�.s/; p.s// � 0 for a.e. s 2 RC:

The proof is complete. ut

6.2 Proof of Convergence

This subsection is devoted to the proof of Theorem 6.1.

Proof (Theorem 6.1). It is enough to show that

lim sup
t!1

u.x; t/ � u1.x/ for all x 2 ˝: (121)

Indeed, once this is proved, it is obvious that limt!1 u.x; t/ D u1.x/ for all x 2
˝, and moreover, since u 2 BUC.Q/, by the Ascoli–Arzela theorem, it follows that
the convergence, limt!1 u.x; t/ D u1.x/, is uniform in ˝.

Fix any z 2 ˝ . According to Lemma 6.1 and Corollary 5.2, we may choose a
.�; v; l/ 2 SP.z/ such that for all t > 0,

u1.z/ � u1.�.t// D L .t; �; v; l/: (122)

Due to Theorem 6.2, there exists a function q 2 L1.RC; Rn/ such that

8̂
ˆ̂<
ˆ̂̂:

d

ds
u1.�.s// D q.s/ � P�.s/ for a.e. s 2 RC;

H.�.s/; q.s// � 0 for a.e. s 2 RC;


.�.s// � q.s/ � g.�.s// for a.e. s 2 RC;b;

(123)

where RC;b WD fs 2 RC W �.s/ 2 @˝g.
We now show that
8̂
<̂
ˆ̂:

H.�.s/; q.s// D 0 for a.e. s 2 RC;

l.s/
.�.s// � q.s/ D l.s/g.�.s// for a.e. s 2 RC;b;

� q.s/ � v.s/ D H.�.s/; q.s//C L.�.s/; �v.s// for a.e. s 2 RC:

(124)
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We remark here that the last equality in (124) is equivalent to saying that

�v.s/ 2 D�
p H.�.s/; q.s// for a.e. s 2 RC;

(or
q.s/ 2 D�

� L.�.s/; �v.s// for a.e. s 2 RC:/

By differentiating (122), we get

� d

ds
u1.�.s// D L.�.s/;�v.s//C l.s/g.�.s// for a.e. s 2 RC:

Combining this with (123), we calculate

0 D q.s/ � P�.s/C L.�.s/;�v.s//C l.s/g.�.s//

D q.s/ � .v.s/ � l.s/
.�.s///C L.�.s/;�v.s//C l.s/g.�.s//

� �H.�.s/; q.s// � l.s/.q.s/ � 
.�.s//� g.�.s/// � 0

for a.e. s 2 RC, which guarantees that (124) holds.
Fix any " > 0. We prove that there is a constant 	 > 0 and for each x 2 ˝ a

number �.x/ 2 Œ0; 	� for which

u1.x/C " > u.x; �.x//: (125)

In view of the definition of u1, for each x 2 ˝ there is a constant t.x/ > 0 such
that

u1.x/C " > u.x; t.x//:

By continuity, for each fixed x 2 ˝ , we can choose a constant r.x/ > 0 so that

u1.y/C " > u.y; t.x// for y 2 ˝ \ Br.x/.x/;

whereB�.x/ WD fy 2 R
n W jy�xj < �g. By the compactness of˝ , there is a finite

sequence xi , i D 1; 2; : : : ; N , such that

˝ �
[

1�i�N
Br.xi /.xi /;

That is, for any y 2 ˝ there exists xi , with 1 � i � N , such that y 2 Br.xi /.xi /,
which implies

u1.y/C " > u.y; t.xi //:

Thus, setting
	 D max

1�i�N t.xi /;

we find that for each x 2 ˝ there is a constant �.x/ 2 Œ0; 	� such that (125) holds.
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In what follows we fix 	 > 0 and �.x/ 2 Œ0; 	� as above. Also, we choose a
constant ı1 > 0 and a modulus !1 as in Lemma 6.3.

We divide our argument into two cases according to which hypothesis is valid,
(A9)C or (A9)�. We first argue under hypothesis (A9)C. Choose a constant T > 	

so that 	=.T � 	/ � ı1. Fix any t � T , and set � D �.�.t// 2 Œ0; 	�. We set
ı D �=.t � �/ and note that ı � 	=.t � 	/ � ı1. We define functions �ı , vı , lı on
RC by

�ı.s/ D �..1C ı/s/;

vı.s/ D .1C ı/v..1C ı/s/;

lı.s/ D .1C ı/l..1C ı/s/;

and note that .�ı; vı; lı/ 2 SP.z/.
By (124) together with the remark after (124), we know that H.�.s/; q.s// D 0

and �v.s/ 2 D�
p H.�.s/; q.s// for a.e. s 2 RC. That is, .�.s/; �v.s// 2 S for a.e.

s 2 RC. Therefore, by (117), we get for a.e. s 2 RC,

L.�ı.s/; �vı.s// � .1C ı/L
�
�..1C ı/s/; �v..1C ı/s/

�C ı!1.ı/:

Integrating this over .0; t � �/, making a change of variables in the integral and
noting that .1C ı/.t � �/ D t , we get

Z t��

0

L.�ı.s/; �vı.s//ds �
Z t

0

L.�.s/; �v.s//ds C .t � �/ı!1.ı/

D
Z t

0

L.�.s/; �v.s//ds C �!1.ı/;

as well as Z t��

0

lı.s/g.�ı.s//ds D
Z t

0

l.s/g.�.s//ds:

Moreover,

u.z; t/ � L .t � �; �ı; vı; lı/C u.�ı.t � �/; �/

�
Z t

0

�
L.�.s/; �v.s//C l.s/g.�.s//

�
ds C �!1.ı/C u

�
�.t/; �.�.t//

�

< u1.z/� u1.�.t//C 	!1.ı/C u1.�.t//C "

D u1.z/C 	!1.ı/C ":

Thus, recalling that ı � 	=.t � 	/, we get

u.z; t/ � u1.z/C 	!1

� 	

t � 	

�
C ": (126)
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Next, we assume that (A9)� holds. We choose T > 	 as before, and fix t � T .
Set � D �.�.t�	// 2 Œ0; 	� and ı D .	��/=.t��/. Observe that .1�ı/.t��/ D
t � 	 and ı � 	=.t � 	/ � ı1.

We set �ı.s/ D �..1�ı/s/, vı.s/ D .1�ı/v..1�ı/s/ and lı.s/ D .1�ı/l..1�
ı/s/ for s 2 RC and observe that .�ı; vı; lı/ 2 SP.z/. As before, thanks to (118),
we have

L.�ı.s/; �vı.s// � .1� ı/L.�..1� ı/s/; �v.1� ı/s//C ı!1.ı/ for a.e. s 2 RC:

Hence, we get

Z t��

0

L.�ı.s/; �vı.s//ds �
Z t�	

0

L.�.s/; �v.s//ds C .t � �/ı!1.ı/

D
Z t�	

0

L.�.s/; �v.s//ds C .	 � �/!1.ı/;

and Z t��

0

lı.s/g.�ı.s//ds D
Z t�	

0

l.s/g.�.s//ds:

Furthermore, we calculate

u.z; t/ � L .t � �; �ı; vı; lı/C u.�ı.t � �/; �/
� L .t � 	; �; v; l/C 	!1.ı/C u.�.t � 	/; �.�.t � 	///

< u1.z/C 	!1.ı/C ":

Thus, we get

u.z; t/ � u1.z/C 	!1

� 	

t � 	
�

C ";

From the above inequality and (126) we see that (121) is valid. ut

6.3 Representation of the Asymptotic Solution u1

According to Theorem 6.1, if either (A9)C or (A9)� holds, then the solution u.x; t/
of (ENP)–(ID) converges to the function u1.x/ in C.˝/ as t ! 1, where the
function u1 is given by

u1.x/ D lim inf
t!1 u.x; t/ for x 2 ˝:

In this subsection, we do not assume (A9)C or (A9)� and give two characteriza-
tions of the function u1.

Let S � and S denote the sets of all viscosity subsolutions of (SNP) and of all
viscosity solutions of (SNP), respectively.
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Theorem 6.3. Set
F1 D fv 2 S � W v � u0 in ˝g;
u�
0 D sup F1;

F2 D fw 2 S W w � u�
0 in ˝g:

Then u1 D inf F2.

Proof. By Proposition 1.10, we have u�
0 2 S �. It is clear that u�

0 � u0 in ˝ .
Hence, by Theorem 3.1 applied to the functions u�

0 and u, we get u�
0 .x/ � u.x; t/

for all .x; t/ 2 Q, which implies that u�
0 � u1 in˝ . This together with Lemma 6.1

ensures that u1 2 F2, which shows that inf F2 � u1 in ˝ .
Next, we set

u�.x; t/ D inf
r>0

u.x; t C r/ for all .x; t/ 2 Q:

By Lemma 5.11, the function u� is a solution of (ENP) and the function u�.�; 0/
is a viscosity subsolution of (SNP). Also, it is clear that u�.x; 0/ � u0.x/ for all
x 2 ˝, which implies that u�.�; 0/ � u�

0 � inf F2 in ˝. We apply Theorem 3.1
to the functions u� and inf F2, to obtain u�.x; t/ � inf F2.x/ for all .x; t/ 2 Q,
from which we get u1 � inf F2 in ˝ , and conclude the proof. ut

Let d W ˝ 2 ! R and A denote the distance-like function and the Aubry set,
respectively, as in Sect. 4.

Theorem 6.4. We have the formula:

u1.x/ D inffd.x; y/C d.y; z/C u0.z/ W z 2 ˝; y 2 A g for all x 2 ˝:

Proof. We first show that

u�
0 .x/ D inffu0.y/C d.x; y/ W y 2 ˝g for all x 2 ˝;

where u�
0 is the function defined in Theorem 6.3.

Let u�
d denote the function given by the right hand side of the above formula.

Since u�
0 2 S �, we have

u�
0 .x/ � u�

0 .y/ � d.x; y/ for all x; y 2 ˝;

which ensures that u�
0 � u�

d in ˝ .
By Theorem 4.4, we have u�

d 2 S �. Also, by the definition of u�
d , we have

u�
d .x/ � u0.x/ C d.x; x/ D u0.x/ for all x 2 ˝ . Hence, by the definition of u�

0 ,
we find that u�

0 � u�
d in ˝ . Thus, we have u�

0 D u�
d in ˝ .

It is now enough to show that

u1.x/ D inf
y2A

.u�
0 .y/C d.x; y//:
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Let � denote the function defined by the right hand side of the above formula.
The version of Proposition 1.10 for supersolutions ensures that � 2 S C, while
Theorem 4.4 guarantees that � 2 S �. Hence, we have � 2 S . Observe also that

u�
0 .x/ � u�

0 .y/C d.x; y/ for all x; y 2 ˝;

which yields u�
0 � � in ˝. Thus, we see by Theorem 6.3 that u1 � � in ˝ .

Now, applying Theorem 4.1 to u1, we observe that for all x 2 ˝ ,

u1.x/ D inffu1.y/C d.x; y/ W y 2 A g
� inffu�

0 .y/C d.x; y/ W y 2 A g D �.x/:

Thus we find that u1 D � in ˝ . The proof is complete. ut
Combining the above theorem and Proposition 5.4, we obtain another represen-

tation formula for u1.

Corollary 6.1. The following formula holds:

u1.x/ D inf
˚
L .T; �; v; l/C u0.�.T // W T > 0; .�; v; l/ 2 SP.x/

such that �.t/ 2 A for some t 2 .0; T /�:
Example 6.2. As in Example 3.1, let n D 1, ˝ D .�1; 1/ and 
 D � on @˝ (i.e.,

.˙1/ D ˙1). Let H D H.p/ D jpj2 and g W @˝ ! R be the function given
by g.�1/ D �1 and g.1/ D 0. As in Example 3.1, we see that c# D 1. We set
QH.p/ D H.p/� c# D jpj2 � 1. Note that QH satisfies both (A9)˙, and consider the

Neumann problem

QH.v0.x// D 0 in ˝; 
.x/ � v0.x/ D g.x/ on @˝: (127)

It is easily seen that the distance-like function d W ˝2 ! R for this problem is
given by d.x; y/ D jx � yj. Let A denote the Aubry set for problem (127). By
examining the function d , we see that A D f�1g. For instance, by observing that

D�
x d.x;�1/ D

8̂
<̂
ˆ̂:

f1g if x 2 ˝;
.�1; 1� if x D �1;
Œ1; 1/ if x D 1;

we find that �1 2 A . Let u0.x/ D 0. Consider the problem

8̂
<̂
ˆ̂:

ut .x; t/CH.ux.x; t// D 0 for .x; t/ 2 ˝ � RC;


.x/ux.x; t/ D g.x/ for .x; t/ 2 @˝ � RC;

u.x; 0/ D u0.x/ for x 2 ˝:
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If u is the viscosity solution of this problem and the function v is given by v.x; t/ D
u.x; t/C c#t D u.x; t/C t , then v solves in the viscosity sense

8̂
<̂
ˆ̂:

vt .x; t/C QH.vx.x; t// D 0 for .x; t/ 2 ˝ � RC;


.x/vx.x; t/ D g.x/ for .x; t/ 2 @˝ � RC;

v.x; 0/ D u0.x/ for x 2 ˝:

Setting

u1.x/ D minfd.x; y/C d.y; z/C u0.z/ W y 2 A ; z 2 ˝g for x 2 ˝;

we note that u1.x/ D jx C 1j for all x 2 ˝. Thanks to Theorems 6.1 and 6.4, we
have

lim
t!1 v.x; t/ D u1.x/ uniformly on ˝;

which reads

lim
t!1.u.x; t/C t � jx C 1j/ D 0 uniformly on ˝:

That is, we have u.x; t/ 
 �t C jx C 1j as t ! 1. If we replace u0.x/ D 0 by the
function u0.x/ D �3x, then

u1.x/ D min
y2˝

fjx C 1j C j1C yj � 3yg D jx C 1j � 1 for all x 2 ˝;

and u.x; t/ 
 �t C jx C 1j � 1 as t ! 1.

In some cases the variational formula in Corollary 6.1 is useful to see the
convergence assertion of Theorem 6.1.

Under the hypothesis that c# D 0, which is our case, we call a point y 2 ˝

an equilibrium point if L.y; 0/ D 0. This condition, L.y; 0/ D 0, is equivalent to
minp2Rn H.y; p/ D 0.

Let y 2 ˝ be an equilibrium point. If we define .�; v; l/ 2 SP.y/ by setting
.�; v; l/.s/ D .y; 0; 0/, then L .t; �; v; l/ D 0 for all t 2 RC, and Propositions 5.4
and 5.5 guarantee that y 2 A .

We now assume that A consists of only equilibrium points. Fix any " > 0 and
x 2 ˝ . According to Corollary 6.1, we can choose 	; � 2 RC and .�; v; l/ 2 SP.x/
so that �.	/ 2 A and

L .	 C �; �; v; l/C u0.�.	 C �// < u1.x/C ": (128)

Fix any t > 	 C � . We define . Q�; Qv; Ql/ 2 SP.x/ by
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. Q�; Qv; Ql/.s/ D

8̂
<̂
ˆ̂:

.�; v; l/.s/ for s 2 Œ0; 	/;

.�.	/; 0; 0/ for s 2 Œ	; 	 C �/;

.�; v; l/.s � �/ for s 2 Œ	 C �;1/;

where � D t � .	 C �/. Using (128), we get

u1.x/C " > L .t; Q�; Qv; Ql/C u0. Q�.t// � u.x; t/:

Therefore, recalling that lim inft!1 u.x; t/ D u1.x/, we see that limt!1 u.x; t/ D
u1.x/ for all x 2 ˝ .

6.4 Localization of Conditions (A9)˙

In this subsection we explain briefly that the following versions of (A9)˙ localized
to the Aubry set A may replace the role of (A9)˙ in Theorem 6.1.

(A10)˙ Let
ZA D f.x; p/ 2 A � R

n W H.x; p/ D 0g:
There exists a function !0 2 C.Œ0;1// satisfying !0.r/ > 0 for all r > 0
such that if .x; p/ 2 ZA , � 2 D�

p H.x; p/ and q 2 R
n, then

H.x; p C q/ � � � q C !0..� � q/˙/:

As before, assume that c# D 0 and let u be the solution of (ENP)–(ID) and
u1.x/ WD lim inft!1 u.x; t/.

Theorem 6.5. Assume that either (A10)C or (A10)� holds. Then

lim
t!1 u.x; t/ D u1.x/ uniformly on ˝: (129)

If we set
uC1.x/ D lim sup

t!1
u.x; t/ for x 2 ˝;

we see by Theorem 1.3 that the function uC1.x/ is a subsolution of (ENP), as a
function of .x; t/, and hence a subsolution of (SNP). That is, uC1 2 S �. Since
u1 2 S C, once we have shown that uC1 � u1 on A , then, by Theorem 4.6, we
get

uC1 � u1 in ˝;

which shows that the uniform convergence (129) is valid. Thus we only need to
show that uC1 � u1 on A .

Following [21] (see also [39]), one can prove the following lemma.
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Lemma 6.4. For any z 2 A there exists an ˛ D .�; v; l/ 2 SP.z/ such that

d.z; �.t// D L .t; ˛/ D �d.�.t/; z/ for all t > 0:

Proof. By Proposition 5.5, for each k 2 N there are an ˛k D .�k; vk; lk/ 2 SP.z/
and 	k � k such that

L .	k; ˛k/ <
1

k
and �k.	k/ D z:

Observe that for any j; k 2 N with j < k,

1

k
> L .j; ˛k/C

Z 	k

j

ŒL.�k.s/;�vk.s//C lk.s/g.�k.s//�ds

� L .j; ˛k/C d.�k.j /; �k.	k//;

(130)

and hence
sup
k2N

L .j; ˛k/ < 1 for all j 2 N:

We apply Theorem 5.4, with T D j 2 N, and use the diagonal argument, to
conclude from (130) that there is an ˛ D .�; v; l/ 2 SP.z/ such that for all j 2 N,

L .j; ˛/ � lim inf
k!1 L .j; ˛k/ � �d.�.j /; z/:

Let 0 < t < 1, and choose a j 2 N such that t < j . Using Propositions 5.4 and
4.1 (ii) (the triangle inequality for d ), we compute that

d.z; �.t// � L .t; ˛/ D L .j; ˛/ �
Z j

t

ŒL.�.s/;�v.s//C l.s/g.�.s//�ds

� L .j; ˛/ � d.�.t/; �.j // � �d.�.j /; z/ � d.�.t/; �.j //
� �d.�.t/; z/:

Moreover, by the triangle inequality, we get

�d.�.t/; z/ � d.z; �.t//:

These together yield

d.z; �.t// D L .t; ˛/ D �d.�.t/; z/ for all t > 0;

which completes the proof. ut



228 H. Ishii

The above assertion is somehow related to the idea of the quotient Aubry set (see
[46, 47]). Indeed, if we introduce the equivalence relation � on A by

x � y ” d.x; y/C d.y; x/ D 0;

and consider the quotient space OA consisting of the equivalence classes

Œx� D fy 2 A W y � xg; with x 2 A ;

then the space OA is a metric space with its distance given by

Od.Œx�; Œy�/ D d.x; y/C d.y; x/:

The property of the curve � in the above lemma that d.z; �.t// D �d.�.t/; z/ is
now stated as: �.t/ � �.0/.

Lemma 6.5. Let  2 S � and x; y 2 A . If x � y, then

 .x/ �  .y/ D d.x; y/:

Proof. By the definition of d , we have

 .x/ �  .y/ � d.x; y/ and  .y/ �  .x/ � d.y; x/:

Hence,
 .x/ �  .y/ � d.x; y/ D �d.y; x/ �  .x/ �  .y/;

which shows that  .x/ �  .y/ D d.x; y/ D �d.y; x/. ut
Proof (Theorem 6.5). As we have noted above, we need only to show that

uC1.x/ � u1.x/ for all x 2 A :

To this end, we fix any z 2 A . Let ˛ D .�; v; l/ 2 SP.z/ be as in Lemma 6.4. In
view of Lemma 6.5, we have

u1.z/ � u1.�.t// D d.z; �.t// D L .t; ˛/ for all t > 0:

It is obvious that the same assertion as Lemma 6.3 holds if we replace S by

SA WD f.x; �/ 2 A � R
n W � 2 D�

p H.x; p/ for some .x; p/ 2 ZA g:

We now just need to follow the arguments in Sect. 6.2, to conclude that

uC1.z/ � u1.z/:

The details are left to the interested reader. ut
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Appendix

A.1 Local maxima to global maxima

We recall a proposition from [56] which is about partition of unity.

Proposition A.1. Let O be a collection of open subsets of Rn. SetW WD S
U2O U .

Then there is a collection F of C1 functions in R
n having the following

properties:

(i) 0 � f .x/ � 1 for all x 2 W and f 2 F .
(ii) For each x 2 W there is a neighborhood V of x such that all but finitely many

f 2 F vanish in V .
(iii)

P
f 2F f .x/ D 1 for all x 2 W .

(iv) For each f 2 F there is a set U 2 O such that suppf � U .

Proposition A.2. Let ˝ be any subset of Rn, u 2 USC.˝;R/ and � 2 C1.˝/.
Assume that u � � attains a local maximum at y 2 ˝ . Then there is a function
 2 C1.˝/ such that u �  attains a global maximum at y and  D � in a
neighborhood of y.

Proof. As usual it is enough to prove the above proposition in the case when
.u � �/.y/ D 0.

By the definition of the space C1.˝/, there is an open neighborhood W0 of ˝
such that � is defined in W0 and � 2 C1.W0/.

There is an open subsetUy �W0 ofRn containingy such that maxUy\˝.u ��/ D
.u � �/.y/. Since u 2 USC.˝;R/, for each x 2 ˝ n fyg we may choose an open
subset Ux of Rn so that x 2 Ux, y 62 Ux and supUx\˝ u < 1. Set ax D supUx\˝ u
for every x 2 ˝ n fyg.

We set O D fUz W z 2 ˝g and W D S
U2O U . Note that W is an open

neighborhood of ˝ . By Proposition A.1, there exists a collection F of functions
f 2 C1.Rn/ satisfying the conditions (i)–(iv) of the proposition. According to the
condition (iv), for each f 2 F there is a point z 2 ˝ such that suppf � Uz. For
each f 2 F we fix such a point z 2 ˝ and define the mapping p W F ! ˝ by
p.f / D z. We set

 .x/ D
X

f 2F ; p.f / 6Dy
ap.f /f .x/C

X
f 2F ; p.f /Dy

�.x/f .x/ for x 2 W:

By the condition (ii), we see that  2 C1.W /. Fix any x 2 ˝ and f 2 F ,
and observe that if f .x/ > 0 and p.f / 6D y, then we have x 2 suppf � Up.f /
and, therefore, ap.f / D supUp.f /\˝ u � u.x/. Observe also that if f .x/ > 0 and
p.f / D y, then we have x 2 Uy and �.x/ � u.x/. Thus we see that for all x 2 ˝ ,

 .x/ �
X

f 2F ; p.f / 6Dy
u.x/f .x/C

X
f 2F ; p.f /Dy

u.x/f .x/ D u.x/
X
f 2F

f .x/ D u.x/:
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Thanks to the condition (ii), we may choose a neighborhood V � W of y and a
finite subset ffj gNjD1 of F so that

NX
jD1

fj .x/ D 1 for all x 2 V:

Ifp.fj / 6D y for some j D 1; : : : ; N , thenUp.fj /\fyg D ; and hence y 62 suppfj .
Therefore, by replacing V by a smaller one we may assume that p.fj / D y for all
j D 1; : : : ; N . Since f D 0 in V for all f 2 F n ff1; : : : ; fN g, we see that

 .x/ D
NX
jD1

�.x/fj .x/ D �.x/ for all x 2 V:

It is now easy to see that u �  has a global maximum at y. ut

A.2 A Quick Review of Convex Analysis

We discuss here basic properties of convex functions on R
n.

By definition, a subset C of Rn is convex if and only if

.1 � t/x C ty 2 C for all x; y 2 C; 0 < t < 1:

For a given function f W U � R
n ! Œ�1; 1�, its epigraph epi.f / is defined as

epi.f / D f.x; y/ 2 U � R W y � f .x/g:

A function f W U ! Œ�1; 1� is said to be convex if epi.f / is a convex subset of
R
nC1.
We are henceforth concerned with functions defined on R

n. When we are given
a function f on U with U being a proper subset of Rn, we may think of f as a
function defined on R

n having value 1 on the set Rn n U .
It is easily checked that a function f W R

n ! Œ�1; 1� is convex if and only if
for all x; y 2 R

n, t; s 2 R and � 2 Œ0; 1�,

f ..1 � �/x C �y/ � .1 � �/t C �s if t � f .x/ and s � f .y/:

From this, we see that a function f W R
n ! .�1; 1� is convex if and only if for

all x; y 2 R
n and � 2 Œ0; 1�,

f ..1 � �/x C �y/ � .1 � �/f .x/C �f .y/:
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Here we use the convention for extended real numbers, i.e., for any x 2 R, �1 <

x < 1, x ˙ 1 D ˙1, x � .˙1/ D ˙1 if x > 0, 0 � .˙1/ D 0, etc.
Any affine function f .x/ D a � x C b, where a 2 R

n and b 2 R, is a convex
function on R

n. Moreover, if A � R
n and B � R are nonempty sets, then the

function on R
n given by

f .x/ D supfa � x C b W .a; b/ 2 A �Bg

is a convex function. Note that this function f is lower semicontinuous on R
n. We

restrict our attention to those functions which take values only in .�1; 1�.

Proposition B.1. Let f W R
n ! .�1; 1� be a convex function. Assume that

p 2 D�f .y/ for some y; p 2 R
n. Then

f .x/ � f .y/C p � .x � y/ for all x 2 R
n:

Proof. By the definition of D�f .y/, we have

f .x/ � f .y/C p � .x � y/C o.jx � yj/ as x ! y:

Hence, fixing x 2 R
n, we get

f .y/ � f .tx C .1 � t/y/ � tp � .x � y/C o.t/ as t ! 0C :

Using the convexity of f , we rearrange the above inequality and divide by t > 0, to
get

f .y/ � f .x/ � p � .x � y/C o.1/ as t ! 0C :

Sending t ! 0C yields

f .x/ � f .y/C p � .x � y/ for all x 2 R
n: ut

Proposition B.2. Let F be a nonempty set of convex functions on R
n with values

in .�1; 1�. Then sup F is a convex function on R
n having values in .�1; 1�.

Proof. It is clear that .sup F /.x/ 2 .�1; 1� for all x 2 R
n. If f 2 F , x; y 2 R

n

and t 2 Œ0; 1�, then we have

f ..1 � t/x C ty/ � .1 � t/f .x/C tf .y/ � .1 � t/.sup F /.x/C t.sup F /.y/

and hence

.sup F /..1 � t/x C ty/ � .1 � t/.sup F /.x/C t.sup F /.y/;

which proves the convexity of sup F . ut
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We call a function f W R
n ! .�1; 1� proper convex if the following three

conditions hold:

(a) f is convex on R
n.

(b) f 2 LSC.Rn/.
(c) f .x/ 6� 1.

Let f W R
n ! Œ�1; 1�. The conjugate convex function (or the Legendre–

Fenchel transform) of f is the function f ? W R
n ! Œ�1; 1� given by

f ?.x/ D sup
y2Rn

.x � y � f .y//:

Proposition B.3. If f is a proper convex function, then so is f ?.

Lemma B.1. If f is a proper convex function on R
n, then D�f .y/ 6D ; for some

y 2 R
n.

Proof. We choose a point x0 2 R
n so that f .x0/ 2 R. Let k 2 N, and define the

function gk on NB1.x0/ by the formula gk.x/ D f .x/ C kjx � x0j2. Since gk 2
LSC.B1.x0//, and gk.x0/ D g.x0/ 2 R, the function gk has a finite minimum at a
point xk 2 B1.x0/. Note that if k is sufficiently large, then

min
@B1.x0/

gk D min
@B1.x0/

f C k > f .x0/:

Fix such a large k, and observe that xk 2 B1.x0/ and, therefore, �2k.xk � x0/ 2
D�f .xk/. ut
Proof (Proposition B.3). The function x 7! x � y � f .y/ is an affine function for
any y 2 R

n. By Proposition B.2, the function f ? is convex on R
n. Also, since

the function x 7! x � y � f .y/ is continuous on R
n for any y 2 R

n, as stated in
Proposition 1.5, the function f ? is lower semicontinuous on R

n.
Since f is proper convex on R

n, there is a point x0 2 R
n such that f .x0/ 2 R.

Hence, we have

f ?.y/ � y � x0 � f .x0/ > �1 for all y 2 R
n:

By Lemma B.1, there exist points y; p 2 R
n such that p 2 D�f .y/. By

Proposition B.1, we have

f .x/ � f .y/C p � .x � y/ for all x 2 R
n:

That is,
p � y � f .y/ � p � x � f .x/ for all x 2 R

n;

which implies that f ?.p/ D p �y�f .y/ 2 R. Thus, we conclude that f ? W R
n !

.�1; 1�, f ? is convex on R
n, f ? 2 LSC.Rn/ and f ?.x/ 6� 1. ut

The following duality (called convex duality or Legendre–Fenchel duality) holds.
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Theorem B.1. Let f W R
n ! .�1; 1� be a proper convex function. Then

f ?? D f:

Proof. By the definition of f ?, we have

f ?.x/ � x � y � f .y/ for all x; y 2 R
n;

which reads
f .y/ � y � x � f ?.x/ for all x; y 2 R

n:

Hence,
f .y/ � f ??.y/ for all y 2 R

n:

Next, we show that

f ??.x/ � f .x/ for all x 2 R
n:

We fix any a 2 R
n and choose a point y 2 R

n so that f .y/ 2 R. We fix a number
R > 0 so that jy�aj < R. Let k 2 N, and consider the function gk 2 LSC.BR.a//

defined by gk.x/ D f .x/C kjx � aj2. Let xk 2 BR.a/ be a minimum point of the
function gk . Noting that if k is sufficiently large, then

gk.xk/ � f .y/C kjy � aj2 < min
@BR.a/

f C kR2 D min
@BR.a/

gk;

we see that xk 2 BR.a/ for k sufficiently large. We henceforth assume that k is
large enough so that xk 2 BR.a/. We have

D�gk.xk/ D D�f .xk/C 2k.xk � a/ 3 0:

Accordingly, if we set �k D �2k.xk � a/, then we have �k 2 D�f .xk/. By
Proposition B.1, we get

f .x/ � f .xk/C �k � .x � xk/ for all x 2 R
n;

or, equivalently,

�k � xk � f .xk/ � �k � x � f .x/ for all x 2 R
n:

Hence,
�k � xk � f .xk/ D f ?.�k/:

Using this, we compute that

f ??.a/ � a � �k � f ?.�k/ D �k � a � �k � xk C f .xk/

D 2kjxk � aj2 C f .xk/:
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We divide our argument into the following cases, (a) and (b).
Case (a): limk!1 kjxk � aj2 D 1. In this case, if we set m D min NBR.a/ f , then

we have
f ??.a/ � lim inf

k!1 2kjxk � aj2 Cm D 1;

and, therefore, f ??.a/ � f .a/.
Case (b): lim infk!1 kjxk � aj2 < 1. We may choose a subsequence fxkj gj2N

of fxkg so that limj!1 xkj D a. Then we have

f ??.a/ � lim inf
j!1

�
2kj jxkj � aj2 C f .xkj /

� � lim inf
j!1 f .xkj / � f .a/:

Thus, in both cases we have f ??.a/ � f .a/, which completes the proof. ut
Theorem B.2. Let f W R

n ! .�1; 1� be proper convex and x; � 2 R
n. Then

the following three conditions are equivalent each other.

(i) � 2 D�f .x/.
(ii) x 2 D�f ?.�/.

(iii) x � � D f .x/C f ?.�/.

Proof. Assume first that (i) holds. By Proposition B.1, we have

f .y/ � f .x/C � � .y � x/ for all y 2 R
n;

which reads
� � x � f .x/ � � � y � f .y/ for all y 2 R

n:

Hence,
� � x � f .x/ D max

y2Rn.� � y � f .y// D f ?.�/:

Thus, (iii) is valid.
Next, we assume that (iii) holds. Then the function y 7! � � y � f .y/ attains a

maximum at x. Therefore, � 2 D�f .x/. That is, (i) is valid.
Now, by the convex duality (Theorem B.1), (iii) reads

x � � D f ??.x/C f ?.�/:

The equivalence between (i) and (iii), with f replaced by f ?, is exactly the
equivalence between (ii) and (iii). The proof is complete. ut

Finally, we give a Lipschitz regularity estimate for convex functions.

Theorem B.3. Let f W R
n ! .�1; 1� be a convex function. Assume that there

are constantsM > 0 and R > 0 such that

jf .x/j � M for all x 2 B3R:
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Then

jf .x/ � f .y/j � M

R
jx � yj for all x; y 2 BR:

Proof. Let x; y 2 BR and note that jx � yj < 2R. We may assume that x 6D y.
Setting � D .x � y/=jx � yj and z D y C 2R� and noting that z 2 B3R,

x � y D jx � yj
2R

.z � y/;

and

x D y C jx � yj
2R

.z � y/ D jx � yj
2R

z C
�
1 � jx � yj

2R

�
y;

we obtain

f .x/ � jx � yj
2R

f .z/C
�
1 � jx � yj

2R

�
f .y/;

and

f .x/ � f .y/ � jx � yj
2R

.f .z/ � f .y// � jx � yj
2R

.jf .z/j C jf .y/j/ � M jx � yj
R

:

In view of the symmetry in x and y, we see that

jf .x/ � f .y/j � M

R
jx � yj for all x; y 2 BR: ut

A.3 Global Lipschitz Regularity

We give here a proof of Lemmas 2.1 and 2.2.

Proof (Lemma 2.1). We first show that there is a constant C > 0, for each z 2 ˝ a
ball Br.z/ centered at z, and for each x; y 2 Br.z/\˝ , a curve � 2 AC.Œ0; T �;Rn/,
with T 2 RC, such that �.s/ 2 ˝ for all s 2 .0; T /, j P�.s/j � 1 for a.e. s 2 .0; T /
and T � C jx � yj.

Let � be a defining function of ˝ . We may assume that kD�k1;Rn � 1 and
jD�.x/j � ı for all x 2 .@˝/ı WD fy 2 R

n W dist.y; @˝/ < ıg and some constant
ı 2 .0; 1/.

Let z 2 ˝ . We can choose r > 0 so thatBr.z/ � ˝ . Then, for each x; y 2 Br.z/,
with x 6D y, the line �.s/ D xCs.y�x/=jy�xj, with s 2 Œ0; jx�yj�, connects two
points x and y and lies inside ˝ . Note as well that P�.s/ D .y � x/=jy � xj 2 @B1
for all s 2 Œ0; jx � yj�.

Let z 2 @˝ . Since jD�.z/j2 � ı2, by continuity, we may choose r 2 .0; ı3=4/

so that D�.x/ � D�.z/ � ı2=2 for all x 2 B4ı�2r .z/. Fix any x; y 2 Br.z/ \ ˝ .
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Consider the curve �.t/ D xC t.y�x/� t.1� t/6ı�2jx�yjD�.z/, with t 2 Œ0; 1�,
which connects the points x and y. Note that

j�.t/� zj � .1 � t/jx � zj C t jy � zj C 6t.1 � t/ı�2jx � yjjD�.z/j
<.1C 3ı�2/r < 4ı�2r

and 4ı�2r < ı. Hence, we have �.t/ 2 B4ı�2r .z/ \ .@˝/ı for all t 2 Œ0; 1�. If
t 2 .0; 1=2�, then we have

�.�.t// � �.x/C tD�.��.t/C .1 � �/x/ � .y � x � 6.1 � t/ı�2jx � yjD�.z//
� t jx � yj.1 � 3.1 � t// < 0

for some � 2 .0; 1/. Similarly, if t 2 Œ1=2; 1/, we have

�.�.t// � �.y/C .1 � t/jx � yj.1 � 3t/ < 0:

Hence, �.t/ 2 ˝ for all t 2 .0; 1/. Note that

j P�.t/j � jy � xj.1C 6ı�2/:

If x D y, then we just set �.s/ D x D y for s D 0 and the curve � W Œ0; 0� ! R
n

has the required properties. Now let x 6D y. We set t.x; y/ D .1C6ı�2/jx�yj and
�.s/ D �.s=t.x; y// for s 2 Œ0; t.x; y/�. Then the curve � W Œ0; t.x; y/� ! R

n has
the required properties with C D 1C 6ı�2.

Thus, by the compactness of ˝ , we may choose a constant C > 0 and a finite
covering fBigNiD1 of ˝ consisting of open balls with the properties: for each x; y 2
OBi \ ˝, where OBi denotes the concentric open ball of Bi with radius twice that

of Bi , there exists a curve � 2 AC.Œ0; t.x; y/�;Rn/ such that �.s/ 2 ˝ for all
s 2 .0; t.x; y//, j P�.s/j � 1 for a.e. s 2 Œ0; t.x; y/� and t.x; y/ � C jx � yj.

Let ri be the radius of the ball Bi and set r D min ri and R D P
ri , where i

ranges all over i D 1; : : : ; N .
Let x; y 2 ˝ . If jx � yj < r , then x; y 2 OBi for some i and there is a curve

� 2 AC.Œ0; t.x; y/�;Rn/ such that �.s/ 2 ˝ for all s 2 .0; t.x; y//, j P�.s/j � 1 for
a.e. s 2 Œ0; t.x; y/� and t.x; y/ � C jx � yj. Next, we assume that jx � yj � r . By
the connectedness of ˝ , we infer that there is a sequence fBij W j D 1; : : : ; J g �
fBi W i D 1; : : : ; N g such that x 2 Bi1 , y 2 BiJ , Bij \ BijC1

\ ˝ 6D ; for all
1 � j < J , and Bij 6D Bik if j 6D k. It is clear that J � N . If J D 1, then we
may choose a curve � with the required properties as in the case where jx � yj < r .
If J > 1, then we may choose a curve � 2 AC.Œ0; t.x; y/�; Rn/ joining x and
y as follows. First, we choose a sequence fxj W j D 1; : : : ; J � 1g of points
in ˝ so that xj 2 Bij \ BijC1

\ ˝ for all 1 � j < J . Next, setting x0 D x,

xJ D y and t0 D 0, since xj�1; xij 2 Bj \ ˝ for all 1 � j � J , we may select
�j 2 AC.Œtj�1; tj �; Rn/, with 1 � j � J , inductively so that �j .tj�1/ D xj�1,
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�j .tj / D xj , �j .s/ 2 ˝ for all s 2 .tj�1; tj / and tj � tj�1CC jxj �xj�1j. Finally,
we define � 2 AC.Œ0; t.x; y/�;Rn/, with t.x; y/ D tJ , by setting �.s/ D �i .s/ for
s 2 Œtj � 1; tj � and 1 � j � J . Noting that

T � C

JX
jD1

jxj � xj�1j � C

JX
jD1

rij � CR � CRr�1jx � yj;

we see that the curve � 2 AC.Œ0; t.x; y/�; Rn/ has all the required properties with
C replaced by CRr�1. ut
Remark C.1. (i) A standard argument, different from the above one, to prove the
local Lipschitz continuity near the boundary points is to flatten the boundary by a
local change of variables. (ii) One can easily modify the above proof to prove the
proposition same as Lemma 2.1, except that ˝ is a Lipschitz domain.

Proof (Lemma 2.2). Let C > 0 be the constant from Lemma 2.1. We show that
ju.x/� u.y/j � CM jx � yj for all x; y 2 ˝ .

To show this, we fix any x; y 2 ˝ such that x 6D y. By Lemma 2.1, there is a
curve � 2 AC.Œ0; t.x; y/�; Rn/ such that �.0/ D x, �.t.x; y// D y, t.x; y/ �
C jx�yj, �.s/ 2 ˝ for all s 2 Œ0; t.x; y/� and j P�.s/j � 1 for a.e. s 2 Œ0; t.x; y/�.

By the compactness of the image �.Œ0; t.x; y/�/ of interval Œ0; t.x; y/� by �, we
may choose a finite sequence fBi gNiD1 of open balls contained in ˝ which covers
�.Œ0; t.x; y/�/. We may assume by rearranging the label i if needed that x 2 B1,
y 2 BN and Bi \ BiC1 6D ; for all 1 � i < N . We may choose a sequence
0 D t0 < t1 < � � � < tN D t.x; y/ of real numbers so that the line segment
Œ�.ti�1/; �.ti /� joining �.ti�1/ and �.ti / lies in Bi for any i D 1; : : : ; N .

Thanks to Proposition 1.14, we have

ju.�.ti // � u.�.ti�1//j � M j�.ti / � �.ti�1/j for all i D 1; : : : ; N:

Using this, we compute that

ju.y/� u.x/j D ju.�.tN //� u.�.t0//j �
NX
iD1

ju.�.ti // � u.�.ti�1//j

�M
NX
iD1

j�.ti / � �.ti�1/j � M

NX
iD1

Z ti

ti�1

j P�.s/jds

DM

Z tN

t0

j P�.s/jds � M.tN � t0/ D Mt.x; y/ � CM jx � yj:

This completes the proof. ut
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A.4 Localized Versions of Lemma 4.2

Theorem D.1. Let U , V be open subsets of Rn with the properties: V � U and
V \˝ 6D ;. Let u 2 C.U \˝/ be a viscosity solution of

8̂
<
:̂
H.x;Du.x// � 0 in U \˝;

@u

@

.x/ � g.x/ on U \ @˝:

(131)

Then, for each " 2 .0; 1/, there exists a function u" 2 C1.V \˝/ such that

8̂
ˆ̂̂<
ˆ̂̂̂
:

H.x;Du".x// � " in V \˝;

@u"

@

.x/ � g.x/ on V \ @˝;

ku" � uk1;V\˝ � ":

Proof. We choose functions ; � 2 C1.Rn/ so that 0 � .x/ � �.x/ � 1 for all
x 2 R

n, .x/ D 1 for all x 2 V , �.x/ D 1 for all x 2 supp  and supp � � U .
We define the function v 2 C.˝/ by setting v.x/ D �.x/u.x/ for x 2 U \ ˝

and v.x/ D 0 otherwise. By the coercivity of H , u is locally Lipschitz continuous
in U \ ˝ , and hence, v is Lipschitz continuous in ˝ . Let L > 0 be a Lipschitz
bound of v in ˝ . Then v is a viscosity solution of

8̂
<
:̂

jDv.x/j � L in ˝;

@v

@

.x/ � M in @˝;

where M WD Lk
k1;@˝ . In fact, we have a stronger assertion that for any x 2 ˝

and any p 2 DCv.x/,
( jpj � L if x 2 ˝;

.x/ � p � M if x 2 @˝: (132)

To check this, let � 2 C1.˝/ and assume that v � � attains a maximum at x 2 ˝ .
Observe that if x 2 ˝ , then jD�.x/j � L and that if x 2 @˝ , then

0 � lim inf
t!0C

.v � �/.x � t
.x// � .v � �/.x/

�t
D lim inf

t!0C
v.x � t
.x// � v.x/

�t � @�

@

.x/;



Introduction to Viscosity Solutions and the Large Time Behavior of Solutions 239

which yields

.x/ �D�.x/ � Lj
.x/j � M:

Thus, (132) is valid.
We set

h.x/ D .x/g.x/C .1 � .x//M for x 2 @˝;
G.x; p/ D .x/H.x; p/C .1 � .x//.jpj � L/ for .x; p/ 2 ˝ � R

n:

It is clear that h 2 C.@˝/ and G satisfies (A5)–(A7), with H replaced by G
In view of the coercivity ofH , we may assume by reselectingL if necessary that

for all .x; p/ 2 ˝ � R
n, if jpj > L, then H.x; p/ > 0. We now show that v is a

viscosity solution of 8̂
<
:̂
G.x;Dv.x// � 0 in ˝;

@v

@

.x/ � h.x/ on @˝:

(133)

To do this, let Ox 2 ˝ and Op 2 DCv. Ox/. Consider the case where . Ox/ > 0,
which implies that Ox 2 U . We have �.x/ D 1 near the point Ox, which implies that
Op 2 DCu. Ox/. As u is a viscosity subsolution of (131), we have H. Ox; Op/ � 0 if
Ox 2 ˝ and minfH. Ox; Op/; 
. Ox/ � Op � h. Ox/g � 0 if Ox 2 @˝ . Assume in addition that
Ox 2 @˝ . By (132), we have 
. Ox/ � Op � M . If j Opj > L, we have both


. Ox/ � Op � g. Ox/ and 
. Ox/ � Op � M:

Hence, if j Opj > L, then 
. Ox/ � Op � h. Ox/. On the other hand, if j Opj � L, we have two
cases: in one case we have H. Ox; Op/ � 0 and hence, G. Ox; Op/ � 0. In the other case,
we have 
. Ox/ � Op � g. Ox/ and then 
. Ox/ � Op � h. Ox/. These observations together
show that

minfG. Ox; Op/; 
. Ox/ � Op � h. Ox/g � 0:

We next assume that Ox 2 ˝ . In this case, we easily see that G. Ox; Op/ � 0.
Next, consider the case where . Ox/ D 0, which implies that G. Ox; Op/ D j Opj � L

and h. Ox/ D M . By (132), we immediately see that G. Ox; Op/ � 0 if Ox 2 ˝ and
minfG. Ox; Op/; 
. Ox/ � Op�h. Ox/g � 0 if Ox 2 @˝ . We thus conclude that v is a viscosity
solution of (133).

We may invoke Theorem 4.2, to find a collection fv"g"2.0;1/ � C1.˝/ such that

8̂
ˆ̂̂<
ˆ̂̂̂
:

G.x;Dv".x// � " for all x 2 ˝;
@v"

@

.x/ � h.x/ for all x 2 @˝;

kv" � vk1;˝ � ":
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But, this yields

8̂
ˆ̂̂<
ˆ̂̂̂
:

H.x; v".x// � " for all x 2 V \˝;
@v"

@

.x/ � g.x/ for all x 2 V \ @˝;

kv" � uk1;V\˝ � ":

The functions v" have all the required properties. ut
The above theorem has a version for Hamilton–Jacobi equations of evolution

type.

Theorem D.2. Let U , V be bounded open subsets of Rn �RC with the properties:
V � U , U � R

n�RC and V \Q 6D ;. Let u 2 Lip.U \Q/ be a viscosity solution
of 8̂

<
:̂

ut .x; t/CH.x;Dxu.x; t// � 0 in U \ .˝ � RC/;

@u

@

.x; t/ � g.x/ on U \ .@˝ � RC/:

Then, for each " 2 .0; 1/, there exists a function u" 2 C1.V \Q/ such that

8̂
ˆ̂̂<
ˆ̂̂̂
:

u"t .x; t/CH.x;Dxu".x; t// � " in V \ .˝ � RC/;

@u"

@

.x; t/ � g.x/ on V \ .@˝ � RC/;

ku" � uk1;V\Q � ":

(134)

Proof. Choose constants a; b 2 RC so that U � R
n � .a; b/ and let � be a defining

function of ˝ . We may assume that � is bounded in R
n. We choose a function

 2 C1.R/ so that .t/ D 0 for all t 2 Œa; b�,  0.t/ > 0 for all t > b,  0.t/ < 0 for
all t < a and minf.a=2/; .2b/g> k�k1;˝ .

We set

Q�.x; t/ D �.x/C .t/ for .x; t/ 2 R
nC1;

Q̋ D f.x; t/ 2 R
nC1 W Q�.x; t/ < 0g:

It is easily seen that

Q̋ � ˝ � .a=2; 2b/ and Q̋ \ .Rn � Œa; b�/ D ˝ � Œa; b�:

Let .x; t/ 2 R
nC1 be such that Q�.x; t/ D 0. It is obvious that .x; t/ 2 ˝�Œa=2; 2b�.

If a � t � b, then �.x/ D 0 and thus D�.x/ 6D 0. If either t > b or t < a, then
j 0.t/j > 0. Hence, we haveD Q�.x; t/ 6D 0. Thus, Q� is a defining function of Q̋ .
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Let M > 0 and define Q
 2 C.@ Q̋ ;RnC1/ by

Q
.x; t/ D �
.1CM�.x//C
.x/;  0.t/

�
;

where we may assume that 
 is defined and continuous in ˝ . We note that for any
.x; t/ 2 @ Q̋ ,

Q
.x; t/ �D Q�.x; t/ D .1CM�.x//C
.x/ �D�.x/C  0.t/2:

Note as well that .1CM�.x//C D 1 for all x 2 @˝ and

lim
M!1.1CM�.x//C D 0 locally uniformly in ˝:

Thus we can fix M > 0 so that for all .x; t/ 2 @ Q̋ ,

Q
.x; t/ �D Q�.x; t/ D .1CM�.x//C
.x/ �D�.x/C  0.t/2 > 0:

Noting that for each x 2 ˝ , the x-section ft 2 R W .x; t/ 2 Q̋ g of Q̋ is an open
interval (or, line segment), we deduce that Q̋ is a connected set. We may assume
that g is defined and continuous in ˝ . We define Qg 2 C.@ Q̋ / by Qg.x; t/ D g.x/.
Thus, assumptions (A1)–(A4) hold with nC1, Q̋ , Q
 and Qg in place of n,˝ , 
 and g.

Let L > 0 be a Lipschitz bound of the function u in U \Q. Set

QH.x; t; p; q/ D H.x; p/C q C 2.jqj � L/C for .x; t; p; q/ 2 Q̋ � R
nC1;

and note that QH 2 C. Q̋ � R
nC1/ satisfies (A5)–(A7), with ˝ replaced by Q̋ .

We now claim that u is a viscosity solution of

( QH.x; t;Du.x; t// � 0 in U \ Q̋ ;
Q
.x; t/ � Du.x; t/ � Qg.x; t/ on U \ @ Q̋ :

Indeed, since U \ Q̋ D U \ Q and U \ @ Q̋ D U \ @Q, if .x; t/ 2 U \ Q̋ and
.p; q/ 2 DCu.x; t/, then we get jqj � L by the cylindrical geometry of Q and, by
the viscosity property of u,

(
q CH.x; p/C 2.jqj � L/C � 0 if .x; t/ 2 Q̋ ;
minfq CH.x; p/C 2.jqj �L/C; 
.x/ � p � g.x/g � 0 if .x; t/ 2 @ Q̋ :



242 H. Ishii

We apply Theorem D.1, to find a collection fu"g"2.0;1/ � C1.V \ Q̋ / such that

8̂
<̂
ˆ̂:

QH.x; t;Du".x; t// � " in V \ Q̋ ;
Q
.x; t/ � Du".x; t/ � Qg.x; t/ on U \ Q̋ ;
ku" � uk1;V\ Q̋ � ":

It is straightforward to see that the collection fu"g"2.0;1/ � C1.V \ Q/ satisfies
(134). ut

A.5 A Proof of Lemma 5.4

This subsection is mostly devoted to the proof of Lemma 5.4, a version of the
Dunford–Pettis theorem. We also give a proof of the weak-star compactness of
bounded sequences in L1.J;Rm/, where J D Œa; b� is a finite interval in R.

Proof (Lemma 5.4). We define the functions Fj 2 C.J;Rm/ by

Fj .x/ D
Z x

a

fj .t/dt:

By the uniform integrability of ffj g, the sequence fFj gj2N is uniformly bounded
and equi-continuous in J . Hence, the Ascoli–Arzela theorem ensures that it has a
subsequence converging to a function F uniformly in J . We fix such a subsequence
and denote it again by the same symbol fFj g. Because of the uniform integrability
assumption, the sequence fFj g is equi-absolutely continuous in J . That is, for any
" > 0 there exists ı > 0 such that

a � a1 < b1 < a2 < b2 < � � � < an < bn � b;

nX
iD1
.bi � ai / < ı;

H)
nX
iD1

jfj .bi /� fj .ai /j < " for all j 2 N:

An immediate consequence of this is that F 2 AC.J;Rm/. Hence, for some f 2
L1.J;Rm/, we have

F.x/ D
Z x

a

f .t/ dt for all x 2 J:

Next, let � 2 C1.J /, and we show that

lim
j!1

Z b

a

fj .x/�.x/ dx D
Z b

a

f .x/�.x/ dx: (135)
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Integrating by parts, we observe that as j ! 1,

Z b

a

fj .x/�.x/ dx D �
Fj �

	b
a

�
Z b

a

Fj .x/�
0.x/ dx

! �
F�

	b
a

�
Z b

a

F.x/�0.x/ dx D
Z b

a

f .x/�.x/ dx:

Hence, (135) is valid.
Now, let � 2 L1.J /. We regard the functions fj ; f; � as functions defined in

R by setting fj .x/ D f .x/ D �.x/ D 0 for x < a or x > b. Let fk"g">0 be a
collection of standard mollification kernels. We recall that

lim
"!0

kk" 	 � � �kL1.J / D 0; (136)

jk" 	 �.x/j � k�kL1.J / for all x 2 J; " > 0: (137)

Fix any ı > 0. By the uniform integrability assumption, we have

M WD sup
j2N

kfj � f kL1.J / < 1:

Let ˛ > 0 and set

Ej WD fx 2 J W j.fj � f /.x/j > ˛g:

By the Chebychev inequality, we get

jEj j � M

˛
:

By the uniform integrability assumption, if ˛ > 0 is sufficiently large, then

Z
Ej

j.fj � f /.x/j dx < ı: (138)

In what follows we fix ˛ > 0 large enough so that (138) holds. We write fj�f D
gj C bj , where gj D .fj � f /.1 � 1Ej / and bj D .fj � f /1Ej . Then,

jgj .x/j � ˛ for all x 2 J and kbjkL1.J / < ı:

Observe that

Ij WD
Z
J

fj .x/�.x/ dx �
Z
J

f .x/�.x/ dx

D
Z
J

.fj � f /.x/ k" 	 �.x/ dx C
Z
J

.fj � f /.x/.� � k" 	 �/.x/ dx
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and

ˇ̌
ˇ
Z
J

.fj � f /.x/.� � k" 	 �/.x/ dx
ˇ̌
ˇ

�
ˇ̌
ˇ
Z
J

gj .x/.� � k" 	 �/.x/ dx
ˇ̌
ˇC

ˇ̌
ˇ
Z
J

bj .x/.� � k" 	 �/.x/ dx
ˇ̌
ˇ

� ˛kk" 	 � � �kL1.J / C 2ık�kL1.J /:

Hence, in view of (135) and (136), we get lim supj!1 jIj j � 2ık�kL1.J /: As
ı > 0 is arbitrary, we get limj!1 Ij D 0; which completes the proof. ut

As a corollary of Lemma 5.4, we deduce that the weak-star compactness of
bounded sequences in L1.J;Rm/:

Lemma E.1. Let J D Œa; b�, with �1 < a < b < 1. Let ffkgk2N be a bounded
sequence of functions inL1.J;Rm/. Then ffkg has a subsequence which converges
weakly-star in L1.J;Rm/.

Proof. Set M D supk2N kfkkL1.J /. Let E � J be a measurable set, and observe
that Z

E

jfk.t/jdt � M jEj for all k 2 N;

which shows that the sequence ffkg is uniformly integrable in J . Thanks to
Lemma 5.4, there exists a subsequence ffkj gj2N of ffkg which converges to a
function f weakly in L1.J;Rm/.

Let i 2 N and set Ei D ft 2 J W jf .t/j > M C 1=ig and gi .t/ D
1Ei .t/f .t/=jf .t/j for t 2 J . Since gi 2 L1.J;Rm/, we get

Z
J

fkj .t/ � gi .t/dt !
Z
J

jf .t/j1Ei .t/dt as j ! 1:

Hence, using the Chebychev inequality, we obtain

�
M C 1

i

�jEi j �
Z
J

jf .t/j1Ei .t/dt �
Z
J

M 1Ei .t/dt D M jEi j;

which ensures that jEi j D 0. Thus, we find that jf .t/j � M a.e. in J .
Now, fix any � 2 L1.J;Rm/. We select a sequence f�igi2N � L1.J;Rm/ so

that, as i ! 1, �i ! � in L1.J;Rm/. For each i 2 N, we have

lim
j!1

Z
J

fkj .t/ � �i .t/dt D
Z
J

f .t/ � �i .t/dt:

On the other hand, we have

ˇ̌
ˇ
Z
J

fkj .t/ � �.t/dt �
Z
J

fkj .t/ � �i .t/dt
ˇ̌
ˇ � M k� � �ikL1.J / for all j 2 N
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and ˇ̌
ˇ
Z
J

f .t/ � �.t/dt �
Z
J

f .t/ � �i .t/dt
ˇ̌
ˇ � M k� � �ikL1.J /:

These together yield

lim
j!1

Z
J

fkj .t/ � �.t/dt D
Z
J

f .t/ � �.t/dt: ut

A.6 Rademacher’s Theorem

We give here a proof of Rademacher’s theorem.

Theorem F.1 (Rademacher). Let B D B1 � R
n and f 2 Lip.B/. Then f is

differentiable almost everywhere in B .

To prove the above theorem, we mainly follow the proof given in [1].

Proof. We first show that f has a distributional gradientDf 2 L1.B/.
Let L > 0 be a Lipschitz bound of the function f . Let i 2 f1; 2; : : : ; ng and ei

denote the unit vector in R
n with unity as the i -th entry. Fix any � 2 C1

0 .B/ and
observe thatZ

B

f .x/�xi .x/dx D lim
r!0C

Z
B

f .x/
�.x C rei / � �.x/

r
dx

D lim
r!0C

Z
B

f .x � rei /� f .x/

r
�.x/dx

and ˇ̌
ˇ
Z
B

f .x/�xi .x/dx
ˇ̌
ˇ � L

Z
B

j�.x/jdx � LjBj1=2k�kL2.B/:

Thus, the map

C1
0 .B/ 3 � 7! �

Z
B

f .x/�xi .x/dx 2 R

extends uniquely to a bounded linear functional Gi on L2.B/. By the Riesz
representation theorem, there is a function gi 2 L2.B/ such that

Gi.�/ D
Z
B

gi .x/�.x/dx for all � 2 L2.B/:

This shows that g D .g1; : : : ; gn/ is the distributional gradient of f .
We plug the function � 2 L2.B/ given by �.x/ D .gi .x/=jgi .x/j/1Ek .x/, where

k 2 N and Ek D fx 2 B W jgi .x/j > L C 1=kg, into the inequality jGi.�/j �
Lk�kL1.B/, to obtain

Z
B

jgi .x/j1Ek .x/dx � L

Z
B

1Ek.x/dx D LjEkj;
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which yields
.LC 1=k/jEkj � LjEkj:

Hence, we get jEkj D 0 for all k 2 N and jfx 2 B W jgi .x/j > Lgj D 0. That is,
gi 2 L1.B/ and jgi .x/j � L a.e. in B .

The Lebesgue differentiation theorem (see [57]) states that for a.e. x 2 B , we
have g.x/ 2 R

n and

lim
r!0C

1

rn

Z
Br

jg.x C y/ � g.x/jdy D 0: (139)

Now, we fix such a point x 2 B and show that f is differentiable at x. Fix an
r > 0 so that Br.x/ � B . For ı 2 .0; r/, consider the function hı 2 C.B/ given by

hı.y/ D f .x C ıy/� f .x/

ı
:

We claim that

lim
ı!0

hı.y/ D g.x/ � y uniformly for y 2 B: (140)

Note that hı.0/ D 0 and hı is Lipschitz continuous with Lipschitz bound L. By
the Ascoli–Arzela theorem, for any sequence fıj g � .0; r/ converging to zero, there
exist a subsequence fıjkgk2N of fıj g and a function h0 2 C.B/ such that

lim
k!1hıjk .x/ D h0.y/ uniformly for y 2 B:

In order to prove (140), we need only to show that h0.y/ D g.x/ � y for all y 2 B .
Since hı.0/ D 0 for all ı 2 .0; r/, we have h0.0/ D 0. We observe from (139)

that
Z
B

jg.x C ıy/� g.x/jdy D
Z
Bı

jg.x C y/� g.x/jı�ndy ! 0 as ı ! 0:

Using this, we compute that for all � 2 C1
0 .B/,

Z
B

h0.y/�yi .y/dy D lim
k!1

Z
B

hıjk .y/�yi .y/dy

D � lim
k!1

Z
B

gi .x C ıjky/�.y/dy

D �
Z
B

gi .x/�.y/dy D
Z
B

g.x/ � y�yi .y/dy:
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This guarantees that h0.y/ � g.x/ � y is constant for all y 2 B while h0.0/ D 0.
Thus, we see that h0.y/ D g.x/ � y for all y 2 B , which proves (140).

Finally, we note that (140) yields

f .x C y/ D f .x/C g.x/ � y C o.jyj/ as y ! 0: ut
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