Comparison of GPU and FPGA Implementation
of SVM Algorithm for Fast Image Segmentation

Marcin Pietron, Maciej Wielgosz, Dominik Zurek,
Ernest Jamro, and Kazimierz Wiatr

AGH University of Science and Technology,
al. Mickiewicza 30, 30-059 Krakow
ACK Cyfronet AGH
ul. Nawojki 11, 30-950 Krakow
{pietron,wielgosz, jamro,wiatr}@agh.edu.pl
dominik.zurek1102@gmail.com

Abstract. This paper presents preliminary implementation results of
the SVM (Support Vector Machine) algorithm. SVM is a dedicated math-
ematical formula which allows us to extract selective objects from a pic-
ture and assign them to an appropriate class. Consequently, a black and
white images reflecting an occurrence of the desired feature is derived
from an original picture fed into the classifier. This work is primarily fo-
cused on the FPGA and GPU implementations aspects of the algorithm
as well as on comparison of the hardware and software performance. A
human skin classifier was used as an example and implemented both
on Intel Xeon E5645.40 GHz, Xilinx Virtex-5 LX220 and Nvidia Tesla
m2090. It is worth emphasizing that in case of FPGA implementation the
critical hardware components were designed using HDL (Hardware De-
scription Language), whereas the less demanding or standard ones such
as communication interfaces, FIFO, FSMs were implemented in Impulse
C. Such an approach allowed us both to cut a design time and preserve a
high performance of the hardware classification module. In case of GPU
implementation whole algorithm is implemented in CUDA.

Keywords: SVM, image segmentation, FPGA, GPU, CUDA.

1 Introduction

This work is part of the Synat project embracing several initiatives aiming to
create a repository of images which are assigned a descriptive name according to
their contents. Such a database of tagged images will significantly reduce search
time since only picture tags will be processed instead of images so the process
will involve simple string operations rather than image recognition.

The project is a huge challenge due to an immense volume of data collected
over the past years denoted today as the Internet resources. Therefore the core
part of the undertaking is to design and implement a classification system which
should be both reliable and fast. In order to achieve the high performance of a
search engine the most computationally intensive operations are to be ported to

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 292-B0Z] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



FPGA Implementation of the Selected Parts of the Fast Image Segmentation 293

hardware. Thus FPGAs and GPUs due to their strongly parallel structure and
growing processing speed [I] seem to be the best choice.

Image segmentation is a process which aims to separate a picture into sev-
eral regions based on objects or features of interest. A single SVM system may
embrace several modules trained to recognize different features so the unit as
a whole is capable of tracing multidimensional objects in terms of a number of
features.

It is worth emphasizing that a segmentation may also be regarded as a form of
data compression, the classfier accepts images and yields information regarding
objects which usually occupies much less memory resources than corresponding
original data.

There are plantiful image segmentation algorithms [23/4] and their number
is still growing to meet constantly rising demands of data analysis systems.
However, reliability and data processing speed are the factors which are at a
premium when it comes to a real life application of a given algorithm. SVM
meets both those criterions and therefore was chosen as a classification algorithm
for the project.

2 SVM Classifiers

Support vector machines were originally devised and described by Vapnik [56].
They are used for binary classification which means that there are exactly two
classes of objects (e.g. black and white rectangles) and a classification formula
is found in a training process of the classifier.

The SVM algorithm can be envisioned as a process of creating a hyperplane
which separates data in an n-dimensional space. It is conducted in an iterative
manner in which a selected plane is gradually adjusted to provide the optimal
so-called generalization margin. The following cases may occur:

— Input data is linearly separable and the SVM method guaranties that at
least one plane of the best separation margin exists and will be adopted

— A dimension incrementation is used to bring data to a space of more dimen-
sions so a separation plane can be found

A feature space for 2D can be modeled as a sphere with its center and radius
(see Fig. [I]).

The sphere is build upon a set of supportive vectors which constitute its
structure. A classification process of a priorly trained SVM maybe perceived as
probing whether a given point (input data) belongs to the sphere or it’s located
outside of it. In the first case a point is positively classified whereas in the second
one it’s considered to be an outliner.

3 A Choice of a Hardware Platform

It is very important to choose a proper hardware units and appropriate data
transfer protocol since it affects the overall performance of the computational



294 M. Pietron et al.

X2

X1

A 4

Fig. 1. N-sphere

system. It also may balk an effort invested in the development of the hardware
algorithm. Therefore the authors decided to compare FPGA and GPU imple-
mentations in order to be able to choose the most appropriate solution for the
complete system realization.

3.1 FPGA

FPGAs have been developed since late 1980s, and have a lot of advantages
over processors. The most important ones are: massive parallel architecture,
reconfigurability, low energy consumption, ability to shape freely its internal
architecture.

Design and effective use of computing system based on FPGA is a difficult
task, as evidenced by the long history of such trials. Existing HPRC (High
Performance Reconfigurable Computing) solutions can be classified based on
their integration with other computing nodes in the system. However, the authors
have used DRC platform for the implementation of the SVM algorithm.

The architecture of Accelium (Xilinx Virtex-5) [12] is based on an idea of
populating CPU sockets with FPGAs and the fast communication link between
them. This architecture allows for equal access of processor and FPGA to the
system resources.



FPGA Implementation of the Selected Parts of the Fast Image Segmentation 295

3.2 GPU

The architecture of a GPU card is described in Fig.[2l The graphical processor
unit has a multiprocessor structure. In Fig. 2 is shown N multiprocessor GPU
with M cores each. The cores share an Instruction Unit with other cores in a
multiprocessor. Multiprocessors have special memories which are much faster
than global memory which is common for all multiprocessors. These memories
are: read-only constant/texture memory and shared memory. The GPU cards are
massive parallel devices. They enable thousands of parallel threads to run which
are grouped in blocks with shared memory. The blocks are grouped in a grid
(Fig.Bl). CUDA is a software architecture that enables graphics processing unit
(GPU), to be programmed using high-level languages such as C and C++. CUDA
requires an NVIDIA GPU like Fermi, GeForce 8XXX/Tesla/Quadro, and so on.
CUDA provides three key mechanisms to parallelize programs: thread group hier-
archy, shared memories, and barrier synchronization. These mechanisms provide
fine-grained parallelism nested within coarse-grained task parallelism.

Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Shared Memory

A Y 7'y
Registers | Registersl | Registersl '”St&?ttion
Processor 1 Processor 2 Processor M

A 3 ? A ? ? | |
Constant
Cache
Constant
Cache

Device Memory

Fig. 2. GPU card architecture



296 M. Pietron et al.

Host Device
Grid
C code running Block Block
on host _’@ (0.0) (1,0)
Block Block
(0,1) 1,1)
/

Treads A001) 1001, 0.1

(0,0,0) | (1,0,0) | (2,0,0) | (3,0,0)

0,1,0)| (1,1,0)] (2,1,0) | (3,1,0)

Fig. 3. Relation between grid, blocks, and threads

Creating the optimized code is not trivial and thorough knowledge about the
GPUs architecture is needed. The main aspects are the usage of the memories,
an efficient dividing code to parallel threads and thread communications. As was
mentioned earlier constant/texture and shared memories are the fastest. There-
fore programmers should optimally use them to speedup access to data on which
an algorithm operates. Another important thing is to optimise synchronization
and the communication of the threads. The synchronization of the threads be-
tween blocks is much slower than in a block. If it is not necessary it should be
avoided.

4 System Overview

A human skin classifier OC-SVM (One Class Supportive Vector Machine) was
implemented as a preliminary project which allows us to estimate performance
and resource consumption for other classifiers. As a result of an experiment a
black-and-white image is generated which reflect human skin location in the
original picture which was fed into the classifier. A complete computational
procedure is composed of several steps:

— SVM vectors and 7 generation (training of the classifier)

— Input image fetch (the step is different for hardware and software implemen-
tation)

— Image resize and normalization

Classification

Noise and skin-like objects filtration



FPGA Implementation of the Selected Parts of the Fast Image Segmentation 297

4.1 The Classification Algorithm

The classification algorithm is given by the following formula:

Y aiK(Xe, Xi) 2 Y oiK(X,, X)) =7 (1)

where 7 is the sphere radius, X, and «; are supportive vectors derived in a
training process, X, is an input pixel.

Regardless of a choice of vectors in right side of the equation [ the result is
constant and equals 7. Each pixel fed into the classifier is compared against all
the support vectors in order to determine if it is located inside the sphere (see
Figll).

In this implementation a Gaussian computational kernel was used:
K = e*WHXi*XjHQ (2)

where 7y is a spread of the kernel.

If the () is met a given point is classified as belonging to the desired class.
For SVM classifies the best results are achieved when input data is normalized
(i.e. fall in the range [-1;1]).

4.2 Architecture of the Hardware Module in FPGA

The computationally intensive routines were ported to hardware to offload the
GPP (General Purpose Processor) and to accelerate the computations. It was
possible due to several features of the algorithm which makes it well suited for the
FPGA implementation such as: fixed-point arithmetic, parallel structure (easy
to pipeline), narrow-range input argument. Consequently a series of hardware
units were designed which constitute the internal structure of computational
module as presented in Figldl All the modules are parameterized and pipelined
blocks which process a single input vector X every clock cycle. For a sake of the
software compatibility the base data format employed in the application is 32 bit
fixed-point (16 bits of both fractional and integer part) but it can be adjusted
to meet different precision requirements in the future. Each module is equipped
with the overflow signal which propagates across all the units composing the
classification module. Such an approach allows us to avoid corruptions of the
result just by simply examining the overflow output.

It is possible to connect several classification modules to form a parallel struc-
ture. Furthermore, it is worth noting that supportive vectors (denoted as SV in
Fig. 0] are fetched from an external memory only once for the whole computa-
tions and therefore can be stored in the internal memory for all the computation.
Moreover, the number of the supportive vectors as well as a is not large and usu-
ally not exceed tens, thus internal BRAM memory suffice to accommodate those
coefficients (e.g. for the human skin classification only 16 supportive vectors are
used). Increase of a number of supportive vectors improves the classifier accu-
racy at the expense of the accumulator throughput decrease (see FigHl) which
in turn affects an overall system performance.



298 M. Pietron et al.

)govuxﬁx;fllﬁx;N-fllXXN-i
@ @ Modul A @

al
|

Modul B

exp()

=g ep(-y 3 (X7 - x1))

5 J

Fig. 4. Block diagram of the classification module

External data bus

OC-SVM for subspace 1 OC-SVM for subspace] 2 OC-SVM for subspace 3
e r===-=-=-=-- ' ittt ;
! rt rt I
! 1! 1! 1]
) 1! 1! 1
I 11 i1 i
| (! (! 1
| 11 11 1!
I 1! 1! 5
1 1 1 |
e 1 1 - 1
| lu lb" iy iy iu is\ I\v
! Y 1! Y 1l _ v v I
| Classification y 11| Classification y 11| Classification v o1
: module  le—— | : module le— 1 : module le— 1
1 1 1
! 1! 1! 1
I_ P | SO ——— I I_ ST | NSO N Y Ry I I_ W . S T S — I

Fig. 5. Block diagram of the multimodule structure



FPGA Implementation of the Selected Parts of the Fast Image Segmentation 299

The classifier (presented in Fig. M) yields one bit results which reflects an
occurrence of a feature of interest within an image. Therefore in order to take
a full advantage of an external bus throughput, classification results are com-
pacted into 32 bit bundles and sent to a host processor as such. Thereafter the
GPP transforms those binary values into pixels to form a black-and-white image
depicting the features of interest.

4.3 Architecture of the Implementation in GPU

In case of GPU implementation whole image is transfered to global memory. Each
pixel is computed by single thread. Therefore as it is shown in Fig.6 in each block
512 pixels are processed. Each thread reads value of pixel form global memory,
then computes SVM classifier formula (1) for one point of image and writes result
back to shared memory (at the same location as pixel value). Apart from values
of points of image shared memory stores sphere radius and supportive vectors
derived from training process needed to classify each pixel. In this case each
shared memory contains 512*3 bytes of image, 16*3 bytes of supportive vectors
and 16 bytes of sphere radius (Fig.6). When the number of points exceeds 512
then they are divided to multiple blocks of GPU card.

Shared memory

d
d

P

v
%\Od

-
aﬂ\

¥
hﬂ\

v
aﬂ\w

v
h\od

od

B S IR 4 P S IR I

0.
0.
53

£ wuiod

1S juiod

Result of
comparison

P
z pea.
¢ pea.
v pea.
S pe:

9 pes;
. pead

4. S KX, X)2 Y oK (X, X,)

Fig. 6. Diagram of the SVM implementation in GPU

5 Implementation Results

The classification algorithm was initially implemented on GPP in C++ and the
OpenCV library was used. A set of 16 support vectors was generated which
described a human skin, each of which are 32bit RGB colors.

Fig. [ and B represent experimental results for the randomly chosen images.
It can be noticed that the system wrongly classified some parts of the image.
Unfortunately the system often confuses bright objects with a human skin. One
way to improve the accuracy is increasing the contrast between an object and
a background. Similar result of accuracy improvement may be achieved when a



300 M. Pietron et al.

Fig. 7. Original image (before segmenta- Fig. 8. Results of human skin segmen-
tion) tation

larger number of supportive vectors is employed but it is done at a expanse of a
loss of classifier’s generalization feature.

Time required to execute the following algorithm on GPP, FPGA and GPU
is presented in Tab.[2land Fig.9 . They show that in case of less number of pixels
FPGA platform is faster than CPU and GPU. When more points are processed
the GPU card is fastest and CPU is the slowest execution unit. In case of more
points GPU cards takes advantage of its massive parallel architecture. Therefore
it is faster than pipelined FPGA architecture. FPGA hardware implementation
according to the formula (1) (assuming that no input data fetch delay is in-
troduced) can be calculated as follows: 16(SV M) x 480(pixels) x 480(pizels) =
4x10% clock cycles. Consequently theoretical processing time for 200 MHz equals
0.02s. Due to a low resources consumption a single FPGA can accommodate sev-
eral modules which boost a performance several times. The power consumption
in case of FPGA (Virtex-5 LX220) is about 15 watts, GPU (Nvidia Tesla m2090)
consumption is 250 watts. The implementation results of the module on DRC
AC2020 [I2] were presented in Tab. [[l Tranfer times are described in Tab. Bl

It is worth noting that a number of coefficients has a large impact on the re-
sources occupation in case of FPGA. On the GPU platform coefficients occupied
very small part of shared memory. In this particular implementation the number
of the coefficient is three (R, G, B).

Table 1. Implementation results of the module building block in Impulse C (see FigH])

# 4-input LUT # flip-flops # BRAM
122,637[83%)] 59,208[42%)] 2,049[6%)]



FPGA Implementation of the Selected Parts of the Fast Image Segmentation 301

Table 2. Implementation results

Number of pixels # GPU [ms] # CPU [ms] # FPGA [ms]

2048 0,6 1,82 0,16896
10240 0,74 36,1 0,8448
51200 1,58 180,7 4,224
204800 5,13 714 16,396
512000 12,15 1813,54 42,24

Table 3. Transfer time

Number of pixels # GPU [ms] # FPGA [ms|

2048 0,45 1,12
10240 0,49 1,22
51200 0,66 1,65
204800 1,3 3,25
512000 2,6 6,5

Time of SVM algorithm execution

~

- GPU
CPU

/ FPGA

2048 10240 51200 204800 512000

o

'
%]

Time of execution in logarithmic scale
(values from Table 2)
r

-4

Num ber of points

Fig. 9. Chart with implementation results

The classification module in case of FPGA is a fully pipelined structure and
it is capable of working at the frequency of 200 MHz. Each module generates a
single result every n clock cycles where n denotes number of the support vectors
employed.



302 M. Pietron et al.

Support vectors along with «,y,7 are generated on the host side (by GPP)
and are sent to the FPGA and GPU only once for the whole computations. The
both implementations perform the classification for all the X vectors and sends
the results back to the host processor.

6 Summary

In this paper implementation results of the selected parts of the fast image
segmentation were presented along with some performance analysis. Both FPGA
and GPU implementation were discussed. GPU significantly surpasses FPGA
and GPP in the high volume calculations. It is worth emphasizing that SVM
can be easily parallelized due to its structure which makes it an ideal candidate
for GPU implementation.

Acknowledgments. The work presented in this paper was financed through
the research program - Synat.

References

1. Mueller, R., Teubner, J., Alonso, G.: Data Processing on FPGAs. In: Systems
Group, Department of Computer Science, VLDB 2009, ETH Zurich, Switzerland,
Lyon, France, August 24-28 (2009)

2. Jun, T.: A color image segmentation algorithm based on region growing. In: 2010
2nd International Conference on Computer Engineering and Technology (ICCET),
April 16-18, vol. 6, pp.V6-634-V6-637 (2010)

3. Farmer, M.E., Jain, A.K.: A wrapper-based approach to image segmentation and
classification. IEEE Transactions on Image Processing 14(12), 2060-2072 (2005)

4. Lan, Y., Li, C., Zhang, Y., Zhao, X.: A novel image segmentation method based
on random walk. In: Asia-Pacific Conference on Computational Intelligence and
Industrial Applications, PACITIA 2009, November 28-29, vol. 1, pp. 207-210 (2009)

5. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer (2000)

6. Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.N.: A support vector clus-
tering method. In: Proceedings of the 15th International Conference on Pattern
Recognition, vol. 2, pp. 724-727 (2000)

7. http://www.alpha-data.com/

8. http://www.nallatech.com/

9. http://www.picocomputing.com/

10. Baxter, R., Booth, S., Bull, M., Cawood, G., Perry, J., Parsons, M., Simpson,

A., Trew, A., McCormick, A., Smart, G., Smart, R., Cantle, A., Chamberlain,
R., Genest, G.: Maxwell - a 64 FPGA Supercomputer. In: Second NASA/ESA
Conference on Adaptive Hardware and Systems (AHS 2007), pp. 287-294 (2007)

11. www.silicongraphics.ru/pdf/rasc_data.pdf

12. www.drccomputer.com/pdfs/DRC_Accelium_Overview.pdf

13. www.vhdl.org/fphdl/

14. Wielgosz, M., Jamro, E., Wiatr, K.: Hardware Implementation of the Exponent
Based Computational Core for an Exchange-Correlation Potential Matrix Gener-
ation. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.)
PPAM 2009, Part I. LNCS, vol. 6067, pp. 115-124. Springer, Heidelberg (2010)


http://www.alpha-data.com/
http://www.nallatech.com/
http://www.picocomputing.com/
www.silicongraphics.ru/pdf/rasc_data.pdf
www.drccomputer.com/pdfs/DRC_Accelium_Overview.pdf
www.vhdl.org/fphdl/

	Comparison of GPU and FPGA Implementation of SVM Algorithm for Fast Image Segmentation

	Introduction
	SVM Classifiers
	A Choice of a Hardware Platform
	FPGA
	GPU

	System Overview
	The Classification Algorithm 
	Architecture of the Hardware Module in FPGA
	Architecture of the Implementation in GPU

	Implementation Results
	Summary
	References




