
An Application-Aware Cache Replacement

Policy for Last-Level Caches

Tripti S. Warrier, B. Anupama, and Madhu Mutyam

PACE Laboratory, Computer Science and Engineering Department,
Indian Institute of Technology Madras, Chennai, India-600036

{tripti,anupama,madhu}@cse.iitm.ac.in

Abstract. Current day multicore processors employ multi-level cache
hierarchy with one or two levels of private caches and a shared last-level
cache (LLC). Efficient cache replacement policies at LLC are essential
for reducing the off-chip memory traffic as well as contention for memory
bandwidth. Cache replacement techniques for unicore LLCs may not be
efficient for multicore LLCs as multicore LLCs can be shared by applica-
tions with varying access behavior, running simultaneously. One appli-
cation may dominate another by flooding of cache requests and evicting
the useful data of the other application.

This paper proposes a new cache replacement policy for shared LLC
called Application-aware Cache Replacement (ACR). ACR policy pre-
vents victimizing low-access rate application by a high-access rate appli-
cation. It dynamically keeps track of maximum life-time of cache lines in
shared LLC for each concurrent application and helps in efficient utiliza-
tion of the cache space. Experimental evaluation of ACR technique for
2-core and 4-core systems using SPEC CPU 2000 and 2006 benchmark
suites shows significant speed-up improvement over the least recently used
and thread-aware dynamic re-reference interval prediction techniques.

1 Introduction

Modern multi-core processors support multiple levels of cache to improve per-
formance. Most often the LLC in such systems is shared among concurrent ap-
plications. Implementing an efficient LLC management policy is essential for
reduction in off-chip memory traffic and bandwidth since it has a direct impact
on power consumption of the system. One of the key features involved in cache
management is the replacement policy. An ideal replacement policy will victim-
ize cache lines that are accessed farthest in future and retain the data with high
temporal locality [1]. But all practical cache replacement policies take victim
selection decision by predicting the cache line that is going to be re-referenced
farthest in future. The effectiveness of such replacement policies depends on the
prediction accuracy.

Least recently used (LRU) policy is one of the most commonly used cache
replacement techniques. LRU policy predicts near re-reference for a cache line
accessed recently and distant re-reference for one without reference. There are

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 207–219, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

208 T.S. Warrier, B. Anupama, and M. Mutyam

several drawbacks with the LRU technique: 1) it looses the access history if it
encounters a burst of references of length more than the associativity; 2) it can
victimize a frequently accessed cache line over a less-frequently but recently ac-
cessed cache line; 3) it performs badly for working sets larger than the cache size;
and 4) it may not be effective for multicore LLC as applications with varying
access patterns share the LLC. Since the performance gap between the theoreti-
cal optimal [1] and LRU technique is large, several cache replacement techniques
have been proposed for unicore LLCs [2, 3] to improve the cache efficiency.

In multicore processors, concurrent execution of applications demands signif-
icant memory bandwidth. This is provided by multi-level cache hierarchy with
one or two levels of private caches and a shared LLC. As LLC can be shared
by parallely running applications with varying access behavior, the replacement
techniques proposed for unicore LLC may not be effective for multicore LLC. If
such applications conflict with each other, system-wide performance can be sig-
nificantly degraded. One application may dominate another by flooding cache re-
quests and evicting the useful data of the other application. Performance of most
of the cache replacement techniques proposed for multicore LLCs [4, 5, 6, 7, 8]
depends on the data access patterns of specific workloads.

This work takes a different approach for replacement of a cache line from LLC
by exploiting the non-uniform access rates and access behaviors of applications.
It proposes an Application-aware Cache Replacement (ACR) policy. Apart from
being access rate aware, ACR technique dynamically adapts the eviction process
to the varying access patterns of applications. ACR technique is compared with
LRU policy and state-of-the-art thread-aware dynamic RRIP (TA-DRRIP) [5]
policy using SPEC CPU 2000 and 2006 benchmarks. ACR policy achieves (geo-
metric mean) speed-up of 8.62% and 5.08% over LRU and TA-DRRIP policies,
respectively, for 4-core workloads. The major contribution of the work is that
the proposed replacement technique works well for workloads with both LRU
friendly and scan access patterns as opposed to TA-DRRIP, which is not the
best replacement technique for LRU friendly workloads.

2 Related Work

Several cache eviction policies have been proposed in the literature for both uni-
core and multicore systems. Discussion in this section is restricted to techniques
that are relevant to proposed techniques.

Counter-based replacement technique [3] for unicore LLC predicts access in-
terval using a counter for each cache line. All counters in a set are incremented
on an access and a cache line whose counter value exceeds a given threshold is
selected as victim.

The use of reuse information during victim selection for unicore LLC has been
exploited in [2]. PC-based prediction method [2] predicts the reuse distance and
uses the predicted values for cache eviction. On a cachemiss, if the predicted reuse
distance of the memory reference is higher than the reuse distance seen by all cache
lines in the set, the requested data is directly sent to the processor without storing

An Application-Aware Cache Replacement Policy for Last-Level Caches 209

it in the cache. Otherwise, a cache line with highest reuse distance is replaced with
the requested data.

To avoid keeping one time accessed cache lines for longer time, Bimodal Inser-
tion Policy (BIP) [6] inserts most of the cache lines at the LRU position and place
the others at MRU. But some applications are benefited if the cache lines are
inserted at LRU position. In order to work with this varying behavior, dynamic
insertion policy (DIP) [6] chooses either LRU or BIP policies at run-time. When
it comes to multicore LLC, DIP technique is extended with thread-awareness
[4], wherein each thread selects between LRU or BIP policies at run-time.

Static and dynamic cache replacement techniques based on re-reference inter-
val prediction (RRIP) are proposed in [5]. Static RRIP (SRRIP) is scan-resistant,
but not thrash-resistant. Thrashing is avoided by adopting an approach similar
to BIP in bimodal RRIP (BRRIP). Both thrashing and non-thrashing access
patterns are handled in dynamic RRIP (DRRIP), which selects between BRRIP
or SRRIP for a given application using set-dueling monitors (SDMs)[6]. DRRIP
policy does not have recency information. It inserts cache lines with low priority
and changes it priority to highest only on a hit. During victim selection, it always
searches from left and selects any cache line with lowest priority. If there are no
suitable candidates, it keeps on changing the priority of all the cache lines till it
finds a cache line with lowest priority. In case there are multiple cache lines with
lowest priority, the search from left might not give the best victim candidate as
the low priority of the chosen victim could be either due to its insertion or inser-
tions of other cache lines. Hence, DRRIP policy does not always work well with
LRU friendly applications. The work is extended to handle multi-programmed
workloads in thread-aware dynamic RRIP (TA-DRRIP). With the help of two
SDMs per application, TA-DRRIP dynamically selects either SRRIP or BRRIP
in the presence of other application.

The promotion/insertion pseudo partitioning (PIPP) technique [8] has differ-
ent priority positions for insertion of cache lines that belong to different applica-
tions. On a hit, accessed cache line is promoted by one position up in the priority
chain. During promotion of cache lines, the applications with low priority po-
sition for insertion face stiff competition from those with high priority position
for insertion. Hence, identifying suitable application-specific priority positions is
critical for achieving good performance in PIPP technique.

Adaptive timekeeping replacement [7] uses the cache decay concept in cache
line level for managing shared LLC. Operating system assigns three levels of
priorities to the application and hardware assigns decay intervals accordingly.
When a cache line is not accessed within the decay interval, it becomes a po-
tential victim block. The main drawback with the technique is that it cannot
distinguish between two or more applications having the same priority values.

Thrasher caging [9] identifies thrashing application that degrades the perfor-
mance of multicore processor. The thrasher detection is based on the absolute
number of misses from the cores. Once an application is detected as a thrasher
application, reduced number of cache ways will be allocated.

210 T.S. Warrier, B. Anupama, and M. Mutyam

Table 1. LLC statistics for SPEC CPU 2000 and 2006 benchmarks1

SPEC LLC statistics SPEC LLC statistics
benchmark APKI Miss Rate (%) benchmark APKI Miss Rate (%)

164.gzip 1.22 17.08 429.mcf 64.47 90.91
168.wupwise 3.01 99.13 435.gromacs 1.72 19.59
171.swim 22.89 99.98 437.leslie3d 9.15 82.64
172.mgrid 12.32 64.95 444.namd 0.68 98.68
173.applu 20.16 99.92 450.soplex 2.94 35.67
175.vpr 11.78 27.48 454.calculix 0.91 62.92
177.mesa 0.72 91.53 456.hmmer 2.14 71.36
178.galgel 14.09 43.91 458.sjeng 0.37 79.98
179.art 129.64 78.81 459.GemsFDTD 0.006 70.98
186.crafty 0.58 9.65 462.libquantum 6.72 99.64
193.fma3d 0.00051 100 464.h264ref 0.88 10.41
300.twolf 15.24 32.37 470.lbm 32.07 99.99
401.bzip2 5.18 43.57

3 Motivation

In a multi-core scenario, multiple applications compete with each other for space
in LLC. The access rates and behavior of these applications are different from one
another and their accesses to LLC are filtered by caches closer to the processors.

Access Rates of Applications: Table 1 shows the accesses per kilo instructions
(APKI) at LLC of different SPEC CPU 2000 and 2006 benchmark suites [10]
with 3-level cache hierarchy in a single core environment. In a shared LLC with
LRU replacement policy, high access rate application can dominate low access
rate application. Figure 1 shows the cache line occupancy of a particular cache set
for an application (hmmer) when it is concurrently executing with a lower access
rate application (calculix) and a higher access rate application (libquantum).
The average number of cache lines in the cache for hmmer reduces from 8.5
to 5.7 when the co-executing application is libquantum instead of calculix. This
corresponds to a performance loss of 11.2% in IPC for hmmer due to libquantum.

Figure 2 gives a typical access in a 2-core system at time T1 (=3848587115
simulation cycle) with hmmer-libquantum during which libquantum flushes the
application cache lines of hmmer. It shows that the number of cache lines in a
particular set from hmmer (libquantum) is changed from 7 (8) to 2 (14) during
an interval of 16 accesses to the set. This is because the LRU replacement policy
is unaware of the difference in accesses across the applications. It selects the
LRU candidate from an eviction chain that is common to both the applications.
Due to the variation in access rate, the cache lines of low access rate application
are pushed to the LRU position of priority chain and will be flushed out by the
cache lines that belong to high access rate application. In such case, it is better
to prevent an application from evicting a cache line of another application [11].

1 Refer Section 5 for simulation setup.

An Application-Aware Cache Replacement Policy for Last-Level Caches 211

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 2 4 6 8 10 12 14 16

F
r
a
c
t
i
o
n

o
c
c
u
p
i
e
d

(
%
)

Number of cache lines in a set

hmmer

calculix

(a)hmmer-calculix

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 2 4 6 8 10 12 14 16

F
r
a
c
t
i
o
n

o
c
c
u
p
i
e
d

(
%
)

Number of cache lines in a set

hmmer

libquantum

(b)hmmer-libquantum

Fig. 1. The distribution of cache lines for set 56 in LLC when hmmer is executing with
lower (calculix) and higher (libquantum) APKI applications

Hence, access rate aware eviction policy can improve the overall performance of
the system.

Access Pattern of Applications: Access rate of an application does not
give any insight on the temporal locality of the application. Relying just on
application-wise access rates for cache replacement may sometimes degrade the
performance of the system. As can be seen from Table 1, benchmarks such as
mesa and namd have low APKI and very high miss rates. When such an appli-
cation is co-scheduled with high access rate application, the access count based
strategies can penalize the latter. This is of disadvantage because high access
rate application is penalized without considering the temporal locality of indi-
vidual applications. Hence, the replacement policy should also be aware of the
access recency behavior of the overall system along with access rate.

Each application has different reuse patterns, which can change during vari-
ous stages of the execution. Figure 3 shows the hit-behavior of SPEC CPU 2000
and 2006 benchmark suites in a single core environment with 1MB 16-way set
associative LLC. The hit behavior is measured in terms of hit-gap of the cache
lines. The hit-hap of a cache line is defined as the number of accesses to the corre-
sponding set between consecutive accesses to the cache line. The graph provides
percentage of hits covered for different hit-gap values. Most of the applications

Fig. 2. Access sequence for hmmer-libquantum for set-56. The cache occupancy status
is denoted by (a,b), where a is number of cache lines that belong to hmmer and b is
number of cache lines that belong to libquantum.

212 T.S. Warrier, B. Anupama, and M. Mutyam

 0

 20

 40

 60

 80

 100

1
6
4
.
g
z
i
p

1
6
8
.
w
u
p
w
i
s
e

1
7
1
.
s
w
i
m

1
7
2
.
m
g
r
i
d

1
7
3
.
a
p
p
l
u

1
7
5
.
v
p
r

1
7
7
.
m
e
s
a

1
7
8
.
g
a
l
g
e
l

1
7
9
.
a
r
t

1
8
6
.
c
r
a
f
t
y

1
9
3
.
f
m
a
3
d

3
0
0
.
t
w
o
l
f

4
0
1
.
b
z
i
p
2

4
2
9
.
m
c
f

4
3
5
.
g
r
o
m
a
c
s

4
3
7
.
l
e
s
l
i
e
3
d

4
4
4
.
n
a
m
d

4
5
0
.
s
o
p
l
e
x

4
5
4
.
c
a
l
c
u
l
i
x

4
5
6
.
h
m
m
e
r

4
5
8
.
s
j
e
n
g

4
5
9
.
G
e
m
s
F
D
T
D

4
6
2
.
l
i
b
q
u
a
n
t
u
m

4
6
4
.
h
2
6
4
r
e
f

4
7
0
.
l
b
m

%

h
i
t
s

c
o
v
e
r
e
d

<=2 3-4 5-8 9-16 17-24 >25

Fig. 3. hit-gap for single core SPEC benchmarks

cover their hits by a hit-gap of 16 and fma3d does not have hits at all. Even
when an application gets the entire share of LLC, the hit-gap is not increasing
beyond a particular value. For example, applications such as gzip, swim, mesa,
namd, sjeng, GemsFDTD, h264ref and lbm cover most of their hits by a hit-gap
of 4. If a cache line of one of these applications is present in the cache for more
than 4 accesses to the set, it is highly likely that the cache line will not be ref-
erenced again. This maximum value of hit-gap will give the maximum life-time
required by any cache line of the application in the cache. The maximum hit-gap
when tracked dynamically can be used during cache line eviction. The use of
maximum hit-gap will ensure that all cache lines of an application are present in
the cache for only allotted time. Hence, the use of maximum hit-gap information
can facilitate better utilization of available cache space.

In conclusion, variation in access counts, access recency, and hit-gaps across
different applications motivates an alternate cache replacement policy. The next
section proposes such policy.

4 ACR: An Application-Aware Cache Replacement Policy

The paper proposes an application aware cache replacement (ACR) policy for
shared LLCs. To make the policy access rate aware, separate local eviction pri-
ority chains are maintained for different cores. The length of each chain is dy-
namically changed at run-time to make ACR policy access pattern aware.

An Application-Aware Cache Replacement Policy for Last-Level Caches 213

ACR technique updates the eviction priority of only those cache lines that
belong to the referencing application and maintains separate eviction priority
chains for each application. It is seen in Section 3 that for low-access and low-
hit rate applications, separate replacement chains that are aware of the access
rates of applications is not sufficent and can sometime degrade the performance.
Keeping a tab on the order of access recency among concurrent applications for
individual sets along with access counts is of use here. Further in case of victim
selection if multiple applications have victims with same eviction priority, the
access recency information can be used to guarantee performance similar to LRU
policy.

The study of hit-gaps of cache lines for different applications in Section 3
also shows that each application has different maximum residency period for its
cache lines. This maximum residency period for each application can be used
to limit the length of individual eviction priority chain as the cache lines are
unlikely to be reference after this period. ACR policy changes the length of the
individual eviction priority chain based on the application-wise maximum hit-
gap. ACR policy dynamically tracks the maximum hit-gaps of an application for
each interval and uses it as the predicted life-time or predicted-hit-gap (PHG) for
the next interval. We consider the maximum hit-gap observed for the prediction
to avoid any additional miss penalties due to insufficient prediction of cache life-
time. Special care is taken in the absence of hit for an application in an interval,
as the reason for no hits could be an error in the predicted hit-gap.

Implementation: ACR technique uses the following registers/counters for im-
plementation:

– n-bit saturating counter called hit-gap counter (HG) for each cache line to
keep track of individual access counts.

– N ∗ logN bits per cache set to maintain application-wise access recency order
(LRU chain), where N is the number of cores in the system.

– Two n-bit application-wise counters, predicted-hit-gap (PHG) and shadow
predicted-hit-gap (sPHG). PHG value is the predicted life time for current
interval and sPHG value is the learned maximum hit-gap during the current
interval (to be used as the predicted life-time for the next interval).

– 1-bit hitF lag per application, which is set on a hit for the application.

Access Rate Awareness: On every access to a set, HG counters of all cache lines
in the set that belong to the accessed application are incremented. The counter
value of a cache line at any given time is an estimate of its life-time in the cache
after its last access. This time is measured in terms of the number of accesses to
the cache set. A cache line with the highest counter value is the oldest cache line
without access in the set. If an access is a hit, the counter of the corresponding
cache line is reset. The value of the counter at the time of hit is the hit-gap of
the cache line and so is called the hit-gap (HG) counter. Whenever a new cache
line is inserted, its HG value is set to 0. Each access to the cache also updates
the application wise LRU chain corresponding to that set.

Access Pattern Awareness: For dynamically tracking the application life-time
(maximum hit-gap) the total number of cache sets s is divided into p monitor

214 T.S. Warrier, B. Anupama, and M. Mutyam

Fig. 4. Illustration of ACR policy (a) Flowchart illustrating dynamic update of PHG.
(b) Computation of PHG at the end of an interval.

sets and (s − p) normal sets. The predicted life-time for all monitor sets is
fixed at MAX = 2n − 1 to ensure the maximum possibility of hit-gap for cache
lines in monitor sets. The hit gaps of the monitor and normal sets are tracked
and stored as sPHG for each interval of 2m misses (implemented using an m-bit
missCounter) for LLC and the PHG value is updated at the end of each interval
(Figure 4(a)). At the start of each interval sPHG and hitF lag are reset. During
each hit to a cache line l of an application i, if HGl > sPHGi, then sPHGi is
set to HGl. At the end of the interval, sPHGi stores the maximum hit-gap of the
application. If hitF lagi is set, PHGi for the next interval is set to sPHGi+1. If
the hitF lagi is reset, the application had no hits during the interval. This could
be because of insufficient PHG, which is tackled using the FSM shown in Figure
4(b). In case of no hit, the FSM gives the application maximum time in cache
for the next interval, i.e., PHG = MAX . If the status of the hitF lag continuous
to remain reset, it means the application has thrashing behavior, and so sPHG
is reset. To make sure such application is given opportunity to remain in the
cache if its behavior changes, PHG alternates between 0 and MAX

2 . Note that
if at any point the application encounters a hit, the value of sPHG is used for
PHG for the next interval.

Victim Selection: As maximum time in the cache for a cache line l of an
application i is when HGl = PHGi, the cache line with minimum predicted
life-time will be one with min (PHGi −HGl). Hence on a miss, the victim in
the absence of invalid cache line is the cache line with min (PHGi −HGl). The
search for victim cache line starts from LRU core so that the cache line that has
minimum life in the cache from a core that is least recently used is evicted.

Note that in the absence ofmonitor sets in the PHG computation, the chances
of the value of sPHG being larger than PHG would be very less as all cache

An Application-Aware Cache Replacement Policy for Last-Level Caches 215

Table 2. Architectural parameters of the simulated system

IL1 caches 32KB, 64B, 4-way, 1 cycles, 1W and 2R ports, LRU

DL1 caches 32KB, 64B, 4-way, 1 cycles, 1W and 2R ports, LRU

L2 cache 256KB, 64B, 8-way, 10 cycles, private, LRU

LLC 1MB per-core, 64B, 16-way, 35 cycle, shared, non-inclusive

Main memory 200 cycles

lines with HG = PHG are evicted. Any hit in the monitor or normal cache set
can change the value of sPHG as long as the hit-gap of the current hit is greater
than the present value of sPHG. Also, the victim selection procedure is not in
the critical path and hence the search involved in the algorithm does not affect
the system performance.

Whenever a cache encounters scan access pattern, the corresponding cache
lines become victim candidates faster by virtue of application based HG modi-
fication. Such scan patterns will not have hits due to which cache lines of such
applications will be predicted to have smaller life-time in the cache. Hence, ACR
policy is scan resistant irrespective of the length of the scan chain unlike SRRIP.
ACR policy is aware of access recency and so can perform well for LRU friendly
applications. Hence in contrast to TA-DRRIP, ACR policy can perform well for
applications that have access patterns that can be LRU friendly or scan.

5 Evaluation

Our technique is evaluated with 3-level cache hierarchy having private L1 and L2
caches with shared LLC. Table 2 gives other details of the system configuration
used in experimentation. Workloads using set of 26 SPEC CPU 2000 and 2006
benchmark suites [10] (refer to Table 1), compiled for ALPHA ISA, are executed
on GEM5 simulator [12]. All the benchmarks are executed using reference inputs.
Applications are fast-forwarded for 900 million instructions and then warmed up
for next 100 million instructions. The statistics are recorded for the next 1 bil-
lion instructions for each application. As ACR technique is access rate aware, we
consider workloads with mix of low (L) and high (H) APKI values. Applications
with APKI > 6 are categorized as H and others are categorized as L. The work-
load mixes are categorized based on the number of low and high APKI applica-
tions. For 2- and 4-core systems, we have 3 ((#L,#H) = {(2, 0), (1, 1), (0, 2)})
and 5 ((#L,#H) = {(4, 0), (3, 1), (2, 2), (1, 3), (0, 4)}) categories of workloads,
respectively. About 20 mixes are considered for each class of workloads in both
2- and 4-core systems.

Results and Analysis: ACR policy is compared with LRU and TA-DRRIP [5]
techniques. We consider 4-bit HG counter, 12-bit missCounter and 128 monitor
sets for ACR policy. TA-DRRIP [5] is implemented with 2N SDMs, where N
is the number of cores, with 32 sets each to learn the insertion decision of each

216 T.S. Warrier, B. Anupama, and M. Mutyam

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

(2,0) (1,1) (0,2) all

W
e
i
g
h
t
e
d

S
p
e
e
d
-
u
p

n
o
r
m
a
l
i
z
e
d

w
.
r
.
t

L
R
U

(a) 2-core workloads (#L,#H)

ACR

TA-DRRIP

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

(4,0) (3,1) (2,2) (1,3) (0,4) all

W
e
i
g
h
t
e
d

S
p
e
e
d
-
u
p

n
o
r
m
a
l
i
z
e
d

w
.
r
.
t

L
R
U

(b) 4-core workloads (#L,#H)

ACR

TA-DRRIP

Fig. 5. Performance comparison of ACR policy with LRU and TA-DRRIP policies

application. A 10-bit dedicated PSEL counter is used to decide the core-wise
insertion policy.

Effect on System Performance: Performance of multiple applications that ex-
ecute concurrently is evaluated using weighted speedup. Weighted speedup gives
the improvement in execution time compared to the baseline configuration. Fig-
ure 5(a) shows the performance improvement of ACR policy for 2-core system
compared to LRU and TA-DRRIP policies in various categories of workloads.
ACR policy achieves speed-up of 7.02% and 4.16% (geometric mean) with re-
spect to LRU and TA-DRRIP policies, respectively.

Similar behavior for 4-core systems can be observed in Figure 5(b). The geo-
metric mean of performance improvement of ACR policy as compared to LRU
and TA-DRRIP techniques are 8.6% and 5.03%, respectively. ACR policy out-
performs LRU and TA-DRRIP policies in all categories of workloads for both 2-
and 4-core systems. The difference in performance improvement between ACR
and TA-DRRIP policies is largest for (2,0) and (4,0) workload categories in
2- and 4-core systems, respectively. This difference reduces as the number of H
category applications increases in the workloads. Most of the applications in L
category have low miss rate or good temporal locality (refer to Table 1) with
LRU policy and hence are LRU friendly. ACR policy improves the performance
of workloads with LRU friendly patterns as the modification of eviction priority
chain for each application is similar to LRU chain update. On the other hand,
TA-DRRIP policy does not have recency information and hence degrades the
performance of workloads with similar access patterns. Further, due to the dy-
namic update of length of the eviction priority chain based on hit-gap in ACR
policy, applications with scan patterns will have shorter life-time in the cache.
Hence ACR policy is able to improve performance of workloads with both scan
and LRU friendly patterns. With increase in high access rate applications in the
workloads, both ACR and TA-DRRIP policies have improved performance but

An Application-Aware Cache Replacement Policy for Last-Level Caches 217

the performance of ACR policy is still higher than that of TA-DRRIP technique
as it is access rate aware along with being access pattern aware.

Figure 6 shows the speedup improvement ofACRandTA-DRRIP policies in a 4-
core systemwith respect to LRU technique for all the workloads. It can be observed
that unlikeTA-DRRIP, the performance ofACR is alwaysbetter thanLRUpolicy.

-10

 0

 10

 20

 0 20 40 60 80
P
e
r
f
o
r
m
a
n
c
e

i
m
p
r
o
v
e
m
e
n
t

w
.
r
.
t

L
R
U

Workloads

ACR
TA-DRRIP

Fig. 6. Effectiveness of ACR and TA-DRRIP policies for
all workloads in 4-core system.

Table 3. Overhead of
replacement policies for
4-core system with 4-MB
LLC

Replacem- Overhead
ent Policy
LRU 32KB
TA - ≈ 16KB
DRRIP
ACR ≈ 36KB

Victim selection procedure for our technique involves comparing the counter
values to identify the victim candidate. This procedure is similar to that of LRU.
Since the victim selection is in parallel to memory access, it does not increase
the critical path to the processor. For a ‘k-way’ set associative cache, LRU and
TA-DRRIP replacement policies have an overhead of k ∗ logk and 2 ∗ k bits per
cache set, respectively. In addition, TA-DRRIP has 10-bit PSEL counter per core
to support SDMs. ACR policy has an overhead of k ∗ logk (for HG counters)
+ NlogN (to implement core-wise LRU), where N is the number of cores in
the system. In addition to this, ACR policy has two 4-bit register for PHG
and sPHG, and one 1-bit register for hitF loag per application and a single
12-bit misCounter. Table 3 shows the overhead involved in implementation of
LRU, TA-DRRIP, and ACR replacement policies for 4-core system with 4MB
LLC. Even though ACR policy incurs slightly larger area overhead than TA-
DRRIP, ACR achieves significant performance improvement in both 2- and 4-
core systems. Hence it can be used in environments where performance is critical
and hardware overhead is not a constraint.

Effect of the size of HG counter: Performance of 2- and 4-core systems is
evaluated for different sizes of the HG counter. Performance of ACR policy
improves with the increase in the number of bits in the HG counter from 3
bits to 5 bits for both 2- and 4-core systems. Increase in the number of bits for
HG counter provides better control on the length of eviction priority chains.
This gain is almost constant on increasing the size of HG counter beyond 5
bits. Thus, we consider 4-bit HG counter as it provides significant performance
improvement without incurring much hardware overhead.

218 T.S. Warrier, B. Anupama, and M. Mutyam

6 Conclusion

Acache eviction policy formulticore sharedLLC is proposed to exploit application
wise access rate and pattern. Evaluation of ACR technique using SPECCPU 2000
and 2006 benchmark suites has shown to improve the performance with respect
to LRU and TA-RRIP techniques. Experiments on 2- and 4-core systems indicate
that incorporating awareness of access-rates and hit-gaps during cache eviction
will improve the LLC utilization. As the proposed policy is aware of the access
rates of the applications, it prevents domination of high access rate application
over low access rate application. It also performs well in the presence of both LRU
friendly and scan access patterns. As part of future work, we plan to i) look at the
challenges of using this technique in a multi-threaded scenario; ii) apply fine grain
control on the life of individual cache lines of applications at run-time along with
the coarse grain maximum life constraints exerted by ACR policy.

Acknowledgement. This work was supported in part by grant from Depart-
ment of Science and Technology, India, Project No. SR/S3/EECE/0018/2009.

References

[1] Belady, L.: A study of replacement algorithms for a virtual-storage computer. IBM
Systems Journal 5(2), 78–101 (1966)

[2] Keramidas, G., Petoumenos, P., Kaxiras, S.: Cache replacement based on reuse
distance prediction. In: International Conference on Computer Design (2007)

[3] Kharbutli, M., Solihin, Y.: Counter-based cache replacement and bypassing algo-
rithms. IEEE Transactions on Computers 57 (2008)

[4] Jaleel, A., Hasenplaugh, W., Qureshi, M., Sebot, J., Steely Jr., S.C., Emer, J.:
Adaptive insertion policies for managing shared caches. In: ACM International
Conference on Parallel Architectures and Compilation Techniques, pp. 208–219
(2008)

[5] Jaleel, A., Theobald, K.B., Steely Jr., S.C., Emer, J.: High performance cache
replacement using re-reference interval prediction (RRIP). In: ACM International
Symposium on Computer Architecture, pp. 60–71 (2010)

[6] Qureshi, M.K., Jaleel, A., Patt, Y.N., Steely Jr., S.C., Emer, J.: Adaptive inser-
tion policies for high-performance caching. In: ACM International Symposium on
Computer Architecture, pp. 381–391 (2007)

[7] Wu, C.J., Martonosi, M.: Adaptive timekeeping replacement: Fine-grained capac-
ity management for shared cmp caches. ACM Transactions on Architecture and
Code Optimization 11, 27 (2011)

[8] Xie, Y., Loh, G.H.: PIPP: Promotion/insertion pseudo-partitioning of multi-core
shared caches. In: ACM International Symposium on Computer Architecture, pp.
174–183 (2009)

[9] Xie, Y., Loh, G.H.: Scalable Shared-Cache Management by Containing Thrashing
Workloads. In: Patt, Y.N., Foglia, P., Duesterwald, E., Faraboschi, P., Martorell,
X. (eds.) HiPEAC 2010. LNCS, vol. 5952, pp. 262–276. Springer, Heidelberg (2010)

[10] SPEC CPU benchmark suite, http://www.spec.org

 http://www.spec.org

An Application-Aware Cache Replacement Policy for Last-Level Caches 219

[11] Srikantaiah, S., Kandemir, M.: Irwin: Adaptive set pinning: Managing shared
caches in chip multiprocessors. In: International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pp. 135–144 (2008)

[12] Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hes-
tness, J., Hower, D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib,
M., Vaish, N., Hill, M.D., Wood, D.A.: The GEM5 simulator. ACM SIGARCH
Computer Architecture News 39, 1–7 (2011)

	An Application-Aware Cache Replacement Policy for Last-Level Caches

	Introduction
	Related Work
	Motivation
	ACR: An Application-Aware Cache Replacement Policy

	Evaluation
	Conclusion
	References

