

Lecture Notes in Computer Science 7767
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Hana Kubátová Christian Hochberger
Martin Daněk Bernhard Sick (Eds.)

Architecture of
Computing Systems–
ARCS 2013
26th International Conference
Prague, Czech Republic, February 19-22, 2013
Proceedings

13

Volume Editors

Hana Kubátová
Czech Technical University
Thákurova 9
160 00 Prague 6, Czech Republic
E-mail: kubatova@fit.cvut.cz

Christian Hochberger
Technische Universität Darmstadt
Merckstraße 25
64283 Darmstadt, Germany
E-mail: hochberger@rs.tu-darmstadt.de

Martin Daněk
Institute of Information Theory and Automation
Pod Vodárenskou věží 4
18208 Prague 8, Czech Republic
E-mail: danek@utia.cas.cz

Bernhard Sick
Universität Kassel
Wilhelmshöher Allee 73
34121 Kassel, Germany
E-mail: bsick@uni-kassel.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-36423-5 e-ISBN 978-3-642-36424-2
DOI 10.1007/978-3-642-36424-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013930452

CR Subject Classification (1998): C.2, C.5.3, D.4, D.2.11, H.3.5, H.4, H.5.4

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The Architecture of Computing Systems (ARCS) series of conferences has a long
tradition of reporting high-quality results in computer architecture research and
closely related fields. ARCS represents a dynamic, evolving community that
closely follows new research trends and also defines new research areas such as
the field of organic computing. Over the years, ARCS has evolved from a small
national event to an important international forum. The 26th ARCS, with a
special focus on application acceleration, was hosted by the renowned Czech
Technical University in Prague, one of the oldest technical universities in the
world, in one of the most beautiful European cities.

ARCS 2013 attracted 73 submissions coming from 26 countries spread over all
but one inhabited continent. Of those, 29 were accepted for presentation at the
conference and have been published in this book. We would like to acknowledge
the efforts of all researchers who submitted their work to ARCS 2013, even
though many papers could not be be included in the final program due to the
packed conference schedule.

We would like to express our gratitude to all those who made this ARCS pos-
sible. This includes the Chairs, the members of the Steering Committee (GI/ITG
Fachausschuss ARCS), the members of the Technical Program Committee, the
additional reviewers, and in particular the authors that submitted their work
to ARCS 2013. We would also like to thank all our sponsors and supporters.
Finally, we wish to express our appreciation to Petr Fǐser, for the web support,
and André Gensler, for typesetting the proceedings.

We hope you enjoyed ARCS 2013.

December 2012 Hana Kubátová
Christian Hochberger

Martin Daněk
Bernhard Sick

Organization

Organizing Committee

General Chair
Hana Kubátová CTU in Prague, Czech Republic
Christian Hochberger TU Dresden, Germany

PC Chairs
Martin Daněk UTIA AV CR, Czech Republic
Bernhard Sick University of Kassel, Germany

Workshop and Tutorial Chair

Mladen Berekovic TU Braunschweig, Germany

Publicity Chairs

Josef Hlaváč CTU in Prague, Czech Republic
Dietmar Fey University of Erlangen-Nürnberg, Germany

Conference Web Chairs
Petr Fǐser CTU in Prague, Czech Republic
Martin Chloupek CTU in Prague, Czech Republic

Industry Liaison

Robert Lórencz CTU in Prague, Czech Republic

Local Organization

Rudolf Kinc AMCA, Czech Republic
Eva Uhrová (Finance) AMCA, Czech Republic

VIII Organization

Program Committee

Michael Beigl Karlsruhe Institute of Technology, Germany
Mladen Berekovic TU Braunschweig, Germany
Koen Bertels Technical University of Delft, The Netherlands
Jürgen Brehm University of Hanover, Germany
Uwe Brinkschulte University of Frankfurt, Germany
Philip Brisk University of California, USA
Jiannong Cao Hong Kong Polytechnic University, Hong Kong
Joao Cardoso University of Porto, Portugal
Luigi Carro Universidade Federal do Rio Grande do Sul,

Brazil
Martin Daněk Akademie věd České Republiky,

Czech Republic
Koen De Bosschere Ghent University, Belgium
Oliver Diessel University of New South Wales, Australia
Nikitas Dimopoulos University of Victoria, Canada
Ahmed El-Mahdy E-JUST, Egypt
Fabrizio Ferrandi Politecnico di Milano, Italy
Alois Ferscha University of Linz, Austria
Petr Fǐser Czech Technical University in Prague,

Czech Republic
Pierfrancesco Foglia Università di Pisa, Italy
William Fornaciari Politecnico di Milano, Italy
Björn Franke University of Edinburgh, UK
Roberto Giorgi University of Siena, Italy
Daniel Gracia-Pérez CEA, France
Jan Haase Technical University Vienna, Austria
Jörg Henkel Karlsruhe Institute of Technology, Germany
Andreas Herkersdorf Technical University of Munich, Germany
Christian Hochberger TU Dresden, Germany
Michael Hübner University of Bochum, Germany
Murali Jayapala IMEC, Belgium
Gert Jervan University of Tallinn, Estonia
Ben Juurlink TU Berlin, Germany
Wolfgang Karl Karlsruhe Institute of Technology, Germany
Andreas Koch TU Darmstadt, Germany
Jan Kořenek Brno University of Technology, Czech Republic
Hana Kubátová Czech Technical University in Prague,

Czech Republic

Organization IX

Olaf Landsiedel KTH Stockholm, Sweden
Róbert Lórencz Czech Technical University in Prague,

Czech Republic
Paul Lukowicz DFKI and University of Kaiserslautern,

Germany
Erik Mähle University of Lübeck, Germany
Christian Müller-Schloer Leibniz Universität Hannover, Germany
Alex Orailoglu UC San Diego, USA
Francois Pacull Commissariat à l’énergie atomique, France
Raphael Poss University of Amsterdam, The Netherlands
Kay Römer ETH Zürich, Switzerland
Pascal Sainrat Université de Toulouse, France
Silvia Santini ETH Zürich, Switzerland
Toshinori Sato Fukuoka University, Japan
Jan Schmidt Czech Technical University in Prague,

Czech Republic
Martin Schulz Lawerence Livermore National Laboratory,

Canada
Karsten Schwan Georgia Institute of Technology, USA
Lukáš Sekanina Czech Technical University in Prague,

Czech Republic
Bernhard Sick University of Kassel, Germany
Cristina Silvano Politecnico di Milano, Italy
Leonel Sousa TU Lisboa, Portugal
Rainer Spallek TU Dresden, Germany
Olaf Spinczyk TU Dortmund, Germany
Benno Stabernack Fraunhofer HHI, Germany
Walter Stechele TU München, Germany
Jarmo Takala Tampere University of Technology, Finland
Djamshid Tavanagraian Universität Rostock, Germany
Jürgen Teich Universität Erlangen, Germany
Pedro Trancoso University of Cyprus, Cyprus
Theo Ungerer University of Augsburg, Germany
Hans Vandierendonck Queens University Belfast, UK
Stéphane Vialle Supelec, France
Lucian Vintan University of Sibiu, Romania
Klaus Waldschmidt Universität Frankfurt, Germany
Stephan Wong Delft University of Technology,

The Netherlands

Additional Referees

F. Terraneo
N. Moser
Y. Chaaban

T. Schuster
R. Pujari
R. Paseman

J. Wenninger
J. Paul
G. Mariani

X Organization

G. Nazar
R. Seedorf
C. Kang
T. Preußer
R. Backasch
J. Lucas
A. Ilic
I. Zgeras
M. Kicherer
L. Kuan
G. Thomas
H. Amrouch
M. Solinas
F. Miller
J. Matousek
M. Pacher
M. Kohlik
M. Gunia
M. Raitza
J. Mische
L. Cassano

S. Roloff
J. Mottin
C. Li
S. Lal
H. Mushtaq
D. Matos
B. Motruk
A. Brandon
S. Campanelli
M. Zabel
I. Koutras
F. Stock
S. Boppu
F. Nowak
V. Lari
S. Schlingmann
F. Nadeem
G. Hempel
A. Garbade
T. Wink
J. Sykora

G. Bournoutian
A. Portero
S. Metzlaff
B. Thielmann
S. Wildermann
F. Kluge
A. Ostadzadeh
G. Gabrielli
S. Xydis
F. Anjam
R. Ferreira
A. Barenghi
F. Hameed
T. Martinek
S. Mühlbach
Z. Vasicek
S. Michalik
M. Kajan
B. Schmidt
M. Vogt
S. Niemann

We also thank all additional referees whose names are unknown to the
Executive Committee.

Table of Contents

An Unstructured Termination Detection Algorithm Using Gossip in
Cloud Computing Environments . 1

JongBeom Lim, Kwang-Sik Chung, Joon-Min Gil,
TaeWeon Suh, and HeonChang Yu

Power Monitoring for Mixed-Criticality on a Many-Core Platform 13
Boris Motruk, Jonas Diemer, Rainer Buchty, and Mladen Berekovic

On Confident Task-Accurate Performance Estimation 25
Yang Xu, Bo Wang, Rafael Rosales, Ralph Hasholzner, and
Jürgen Teich

Iwazaru: The Byzantine Sequencer . 38
Maciej Zbierski

Exploiting Thermal Coupling Information in MPSoC Dynamic Thermal
Management . 50

Simone Corbetta and William Fornaciari

A Multi-core Memory Organization for 3-D DRAM as Main Memory . . . 62
Jared Sherman, Krishna Kavi, Brandon Potter, and Mike Ignatowski

Synthetic Aperture Radar Data Processing on an FPGA Multi-core
System . 74

Pascal Schleuniger, Anders Kusk, Jørgen Dall, and Sven Karlsson

Virtual Register Renaming . 86
Mageda Sharafeddine, Haitham Akkary, and Doug Carmean

Load-Adaptive Monitor-Driven Hardware for Preventing Embedded
Real-Time Systems from Overloads Caused by Excessive Interrupt
Rates . 98

Josef Strnadel

Producer-Consumer: The Programming Model for Future Many-Core
Processors . 110

Arnau Prat-Pérez, David Dominguez-Sal,
Josep-Lluis Larriba-Pey, and Pedro Trancoso

A Highly Dependable Self-adaptive Mixed-Signal Multi-core
System-on-Chip . 122

Benjamin Betting, Julius von Rosen, Lars Hedrich, and
Uwe Brinkschulte

XII Table of Contents

Inter-warp Instruction Temporal Locality in Deep-Multithreaded
GPUs . 134

Ahmad Lashgar, Amirali Baniasadi, and Ahmad Khonsari

GALS-CMP: Chip-Multiprocessor for GALS Embedded Systems 147
Muhammad Nadeem, HeeJong Park, Zhenmin Li,
Morteza Biglari-Abhari, and Zoran Salcic

HW/SW Tradeoffs for Dynamic Message Scheduling in Controller Area
Network (CAN) . 159

Tobias Ziermann, Zoran Salcic, and Jürgen Teich

A Data-Driven Approach for Executing the CG Method on
Reconfigurable High-Performance Systems . 171

Fabian Nowak, Ingo Besenfelder, Wolfgang Karl,
Mareike Schmidtobreick, and Vincent Heuveline

Custom Reconfigurable Architecture Based on Virtex 5 Lookup
Tables . 183

Rico Backasch and Christian Hochberger

Profiling Energy Consumption of I/O Functions in Embedded
Applications . 195

Shiao-Li Tsao, Cheng-Kun Yu, and Yi-Hsin Chang

An Application-Aware Cache Replacement Policy for
Last-Level Caches . 207

Tripti S. Warrier, B. Anupama, and Madhu Mutyam

Deploying Hardware Locks to Improve Performance and Energy
Efficiency of Hardware Transactional Memory . 220

Epifanio Gaona, José L. Abellán, Manuel E. Acacio, and
Juan Fernández

Self-adaptation for Mobile Robot Algorithms Using Organic Computing
Principles . 232

Jan Hartmann, Walter Stechele, and Erik Maehle

Self-virtualized CAN Controller for Multi-core Processors in Real-Time
Applications . 244

Christian Herber, Andre Richter, Holm Rauchfuss, and
Andreas Herkersdorf

Shrinking L1 Instruction Caches to Improve Energy–Delay in SMT
Embedded Processors . 256

Alexandra Ferrerón-Labari, Marta Ort́ın-Obón,
Daŕıo Suárez-Gracia, Jesús Alastruey-Benedé, and
Vı́ctor Viñals-Yúfera

Table of Contents XIII

Arithmetic Unit for Computations in GF(p) with the Left-Shifting
Multiplicative Inverse Algorithm . 268

Josef Hlaváč and Róbert Lórencz

HW-OSQM: Reducing the Impact of Event Signaling by
Hardware-Based Operating System Queue Manipulation 280

Stefan Wallentowitz, Thomas Wild, and Andreas Herkersdorf

Comparison of GPU and FPGA Implementation of SVM Algorithm for
Fast Image Segmentation . 292

Marcin Pietron, Maciej Wielgosz, Dominik Zurek,
Ernest Jamro, and Kazimierz Wiatr

Automatic Floorplanning and Interface Synthesis of Island Style
Reconfigurable Systems with GoAhead . 303

Christian Beckhoff, Dirk Koch, and Jim Torreson

Separable 2D Convolution with Polymorphic Register Files 317
Cătălin B. Ciobanu and Georgi N. Gaydadjiev

Architecture of a Parallel MOSFET Parameter Extraction System 329
Tomáš Zahradnický and Róbert Lórencz

Predictable Two-Level Bus Arbitration for Heterogeneous Task Sets 341
Roman Bourgade, Christine Rochange, and Pascal Sainrat

Author Index . 353

An Unstructured Termination Detection

Algorithm Using Gossip in Cloud Computing
Environments�

JongBeom Lim1, Kwang-Sik Chung2, Joon-Min Gil3, TaeWeon Suh1,
and HeonChang Yu1,��

1 Department of Computer Science Education, Korea University, Seoul, Korea
{jblim,suhtw,yuhc}@korea.ac.kr

2 Department of Computer Science, Korea National Open University, Seoul, Korea
kchung0825@knou.ac.kr

3 School of Computer & Information Communications Engineering,
Catholic University of Daegu, Daegu, Korea

jmgil@cu.ac.kr

Abstract. Determining termination in dynamic environments is hard
due to node joining and leaving. In previous studies on termination de-
tection, some structures, such as spanning tree or computational tree,
are used. In this work, we present an unstructured termination detection
algorithm, which uses a gossip based scheme to cope with scalability and
fault-tolerance issues. This approach allows the algorithm not to main-
tain specific structures even when nodes join and leave during runtime.
These dynamic behaviors are prevalent in cloud computing environments
and little attention has been paid by existing approaches. To measure
the complexity of our proposed algorithm, a new metric, self-centered
message complexity is used. Our evaluation over scalable settings shows
that an unstructured approach has a significant merit to solve scala-
bility and fault-tolerance problems with lower message complexity over
existing algorithms.

Keywords: Termination detection, Unstructured algorithm, Gossip,
Cloud computing.

1 Introduction

In the termination detection problem, a set of nodes in the system collectively
execute a distributed computation and the purpose of termination detection
algorithms is to safely detect the termination of the distributed computation,
whereupon the next distributed computation can progress. Determining whether
a distributed computation has terminated or not is a non-trivial task because no

� This work was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korea goverment (MEST) (No. 2012046684).

�� Corresponding author.

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 J. Lim et al.

node has complete knowledge of the global state, and there is no notion of global
time or global memory. Each node only knows its own local state and local time,
and communication among nodes can be done only by passing messages.

Termination detection problem has been extensively studied for static dis-
tributed systems where all of the nodes are stationary in terms of node joining
and leaving from the beginning to the end (e.g., [1], [2], [3], [4], [5] and [6]).
One of the systems where termination detection algorithms can be used is the
cloud computing system in which constituent nodes can easily join and leave
with dynamic behavior due to loosely-coupled environments. However, although
numerous research efforts for the termination detection problem in recent years
mainly focus on reducing message complexity, little attention has been paid to
the aforementioned dynamic behavior. Most of the studies assumed that the
system is static without considering node failures and joining which are vital
aspects in cloud computing environments and should not be dismissed.

Recently, gossip-based algorithms have received much attention due to its
inherent scalable and fault-tolerant properties which offer additional benefits
in distributed systems [7]. Correctness of a gossip-based protocol is presented
in [8] and [9]. In gossip-based algorithms, each node maintains some number
of neighbors called a PartialView. With this PartialView, at each cycle (round),
every node in the system selects f (fanout) number of nodes at random and then
communicates using one of the following ways: 1) Push, 2) Pull, and 3) Push-pull
mode. Gossip-based algorithms guarantee message delivery to all nodes with high
probability and their variation can be found in [10], [11], [12], [13], [14] and [15].
Applications of gossip-based algorithms include message dissemination, failure
detection services, data aggregation etc.

In this paper, we present an unstructured termination detection algorithm
based on the gossip-based algorithm. Having PartialView in the gossip-based
algorithm is the essential key to solve the scalability issue. In other words, each
node does not have to maintain all the nodes in the system, but the small
number of nodes. Furthermore, in structured termination detection algorithms
(using spanning tree or computational tree), reconstruction of the structure of
algorithms is required when node joining and leaving occur. Otherwise, detecting
the termination of a distributed computation is virtually impossible since node
connection has not established or has broken.

The rest of the paper is organized as follows. We present the system model
and formally describe the termination detection problem in Section 2. Section 3
provides our gossip-based termination detection algorithm. Experimental results
for the algorithm and their interpretation are given in Section 4; this section also
analyzes the message complexity. Finally, Section 5 gives our conclusions.

2 Model and Problem Specifications

2.1 System Model

We assume that the cloud computing infrastructure consists of numerous nodes
of resources, and individual nodes perform arbitrary programs to achieve a

An Unstructured Termination Detection Algorithm 3

common goal. Because of the absence of shared memory, each process or node
should communicate with other nodes only by passing messages through a set
of channels. In addition, we assume that all channels are reliable but are not re-
stricted to FIFO (first-in, first-out). The message delay is bounded. There is no
global clock. However, we assume that each node synchronizes its time by gos-
siping with other nodes. This approach has been justified by [16]. Furthermore,
the communication model is asynchronous.

2.2 Model and Problem Specifications

Termination detection is a fundamental problem in distributed systems; it is
not an exception in cloud computing systems. The importance of determining
termination derives from the observation that some nodes may execute sev-
eral sub-problems, and in some cases, there are precedence dependencies among
them. Because there is no shared memory, message passing is the only way to
deal with the termination detection problem satisfying following properties:

– Safety: If the termination detection algorithm announces termination, then
the underlying computation has indeed terminated.

– Liveness: If termination holds in the underlying computation, then eventu-
ally the termination detection algorithm announces termination and hence-
forth termination is not revoked.

– Non-Interference: The termination detection algorithmmust not influence
the underlying computation.

The definition of termination detection is as follows: Let Pi(t) denote the state
(active or passive) of process Pi at time t and Ci,j(t) denote the number of
messages in transit in the channel at time t from Pi to Pj. A distributed com-
putation is said to be terminated at time t if and only if:

(∀i :: Pi(t) = passive) ∧ (∀i,j :: Ci,j(t) = null) (1)

2.3 Performance Metrics

Traditionally, the following metric has been used to measure the performance of
termination detection algorithms:

– Message complexity: The number of messages required to detect the ter-
mination.

In addition to the message complexity, we propose a new metric called self-
centered message complexity. Self-centered message complexity counts the num-
ber of messages required to detect the termination from a requester point of view
rather than from the whole nodes in the system. Self-centered message can be
defined as follows:

– Self-centered message complexity: The number of messages required to
detect the termination from a requester point of view.

4 J. Lim et al.

It is believed that this is more flexible and simpler metric to measure the struc-
tured and unstructured termination detection algorithms because some algo-
rithms are not always intuitive and observable from a high-level domain.

3 Unstructured Termination Detection Algorithm

In this section, we first review the basic gossip-based protocol based on [17]
to describe our gossip-based termination detection algorithm. The termination
detection algorithm proposed in this section can be viewed as an extension of
the gossip-based algorithm to support the termination detection functionality.

3.1 Basic Idea

In the gossip-based algorithm, there are two different kinds of threads in each
node: active and passive. At each cycle (round), an active thread selects a neigh-
bor at random and sends a message. The active thread then waits for the mes-
sage from the receiver. Upon receiving the message from the neighbor, the active
thread updates its local state with the received message and its previous infor-
mation. A passive thread waits for messages from active threads and replies
to the senders. Afterwards, the passive thread updates its local state with the
received message from the sender accordingly.

A simple way to solve the termination detection problem is to use distributed
snapshots (e.g., [3]). If a consistent snapshot of a distributed computation is
taken after the distributed computation has terminated, the snapshot will cap-
ture the termination of the computation. However, the algorithm that uses dis-
tributed snapshots broadcasts to all other nodes when a process goes passive;
this involves a large number of request messages. Furthermore, detecting whether
all the other processes have taken a snapshot is not a trivial job even though all
of processes are passive and taken a snapshot.

Hence, we take the distributed approach with the gossip-based algorithm.
To let a process decide whether all of the nodes are passive and distributed
computation has terminated, we use a piggy-backing mechanism by which a
node adds additional information of neighbors to the message during gossiping.
By using the piggy-backing mechanism, any node wishing to detect termination
can eventually detect whether distributed computation is terminated or not.

In the previous researches using the distributed approach, however, they as-
sumed that the number of nodes is static. Few studies have focused on the
dynamic behavior such as adding and removing nodes while request operations
are ongoing, which is that we want to deal with.

3.2 Details of Termination Detection Algorithm

The unstructured termination detection algorithm using the gossip-based ap-
proach is summarized in Algorithm 1. We explain only our extensions to the
gossip algorithm. We assume that each process has a unique identifier, which

An Unstructured Termination Detection Algorithm 5

Algorithm 1. Unstructured termination detection algorithm for P i

1 begin initialization
2 Statei[j] = passive, where ∀j ∈ {1 . . . n};
3 isActive= false;

4 begin at each cycle
5 begin upon sending <basicMessage> to P j

6 Statei[j].state = Statej [j].state = active;
7 Statei[j].timestamp = Statej[j].timestamp = LCcurrent;
8 call updateStatesArray ();

9 begin upon receiving <basicMessage> from P j

10 Statei[j].state = Statej [j].state = active;
11 Statei[j].timestamp = Statej[j].timestamp = LCcurrent;
12 call updateStatesArray ();

13 call checkTermination ();

14 begin upon local computation is completed
15 Statei[i].state = passive;
16 Statei[i].timestamp = LCcurrent;

17 function updateStatesArray ()

18 foreach elements in Statei[k] and Statej[k] do
19 if Statei[k].timestamp < Statej[k].timestamp then
20 Statei[k].state = Statej [k].state;
21 Statei[k].timestamp = Statej [k].timestamp;

22 else
23 Statej [k].state = Statei[k].state;
24 Statej [k].timestamp = Statei[k].timestamp;

25 function checkTermination ()

26 isActive= false;
27 foreach element in Statei[k] do
28 isActive |= Statei[k].state;
29 if isActive == false then
30 Termination is detected;
31 else
32 Termination is not detected;

is indexed by from 1 to n, where n is the number of processes (nodes) in the
system. Henceforth, the terms a node and a process are used interchangeably.

Each process P i maintains the following data structure:

– Statei[1 : n]: An array of states for P i. This data structure consists of two
components for each array element: state and timestamp. State value can be
active or passive, and timestamp value is logical clock (LC) at which state
value is updated.

6 J. Lim et al.

Algorithm 2. Extended algorithm for Alg. 1

1 begin at each cycle
2 begin upon sending <basicMessage> to P j

3 timestamp = LCcurrent;
4 BasicMsgSeti = BasicMsgSeti ∪ (j, timestamp);

5 function updateStatesArray ()

6 if BasicMsgSeti �= null ∨ BasicMsgSetj �= null then
7 foreach elements in Statei[k] and Statej[k] do
8 if Statei[k].timestamp < timestamp∨ Statej[k].timestamp <

timestamp then
9 // where timestamp∈ (k, timestamp) in BasicMsgSeti ∪

BasicMsgSetj
10 Statei[k].state = Statej [k].state = active;
11 Statei[k].timestamp = Statej [k].timestamp = timestamp;

We describe our extensions as follows:

1. If P i selects P j during gossiping the following states are performed:

(a) When P i sends a basic message to P j , State array is updated as follows:
i. j th elements (i.e., state and timestamp) of array of both processes

are updated with active and LC current.
(b) When P j sends a basic message to P i, State array is updated as follows:

i. ith elements (i.e., state and timestamp) of array of both processes
are updated with active and LC current.

(c) Each element of State[k] of both processes, where ∀k ∈ {1 . . . n}, is
updated with the one whose timestamp value is fresher.

2. When local computation is completed, State values are updated as follows:

(a) Statei[i].state and Statei[i].timestamp are updated with passive and
LC current, respectively.

3. In order to decide whether local computation of whole processes is completed,
following states are performed:

(a) State array is checked:
i. If Statei[k].state == passive, where ∀k ∈ {1 . . . n}, then it concludes

that termination is detected.
ii. Otherwise, it concludes that termination is not detected and local

computation of some processes is ongoing.

Obviously, Algorithm 1 works correctly if computation is distributed at the initial
stage and no further basic messages are sent out. However, when basic messages
are sent at arbitrary time, then the algorithm could violate the safety property.
For instance, let P i be an initiator, and P j’s state is active and other nodes’
state are passive. If P j sends a basic message (immediately before P j changes its
state from active to passive) to Pk whose state is passive and then P j selects P i

as a gossip target, then P i could announce termination without knowing Pk’s
state is active.

An Unstructured Termination Detection Algorithm 7

To enable our algorithm working safely, we introduce the modified algorithm.
Algorithm 2 shows only the added procedures from Algorithm 1. When P i

sends a basic message to P j , (j, timestamp) is added to BasicMsgSeti, where
timestamp is the time the basic message is sent out. Then, P i sets Statei[j].state
to active and Statei[j].timestamp to the time the basic message is sent out.

In the updateStatesArray procedure, if BasicMsgSeti or BasicMsgSetj is not
null, and timestamp value of k ’s element of State arrays is less than that of (k,
timestamp), where (k, timestamp) ∈ BasicMsgSeti ∪ BasicMsgSetj, then k ’s
elements of State arrays are updated with active and timestamp that are in
BasicMsgSet. Thus, even if a process sends a basic message at arbitrary time,
our algorithm can safely announce the termination.

4 Experimental Evaluation

In this section, we evaluate our unstructured termination detection algorithm
compared with the broadcast algorithm and the tree-based algorithm. Due to
restriction of node scalability on physical machines, we used the PeerSim simu-
lator [18], which supports extreme scalability and dynamicity of nodes. Further-
more, message complexity is compared to show the efficiency of our unstructured
termination detection algorithm with existing algorithms. For simplicity, we as-
sume that every node completed its local computation before a request for the
termination detection is initiated.

4.1 Experimental Setup and Methodology

Table 1 summarizes our experimental setup parameters. We assume that a re-
quest for termination detection is initiated before cycles begin. We set the size of
PartialView to 20, which is 0.2% of the number of nodes. Because of the nature
of dynamism of cloud computing environments, some nodes may join and leave
at any time. Thus, we consider the following scenarios:

1. Nodes are static: nodes does not fail and join during runtime.
2. Nodes join during execution: some numbers of nodes are added during gossip

cycle 1 through 10.
3. Nodes leave during execution: some numbers of nodes are removed during

gossip cycle 1 through 10.

4.2 PartialView Size and the Requisite Number of Cycles

We first evaluate the impact of the size of PartialView on the requisite number
of cycles. Figure 1(a) and 1(b) show the results for the requisite number of
cycles to detect termination with varying the size of PartialView from 5 to 30
for 104 nodes, and with varying the number of nodes from 102 to 104.5 with 20
of PartialView size.

8 J. Lim et al.

Table 1. Experimental Setup Parameters

Parameter Value

The number of nodes 10,000
Fanout 1

The size of PartialView 20
Cycles for node joining and leaving 1 through 10

The number of nodes that join at a cycle 500
The number of nodes that leave at a cycle 100

We have confirmed that the impact of the size of PartialView is unpredictable
because the gossip algorithm relies on random samples. Notice that in Fig-
ure 1(b), the requisite number of cycles grows linearly as the total number of
nodes increases exponentially. In Figure 1(c) shows the fraction data of the re-
quester’s State array whose state value is passive. At the early cycles, the fraction
data increase slowly, but increase sharply at later cycles.

(a) (b) (c)

Fig. 1. The requisite numbers of cycles to detect termination and its fraction data.
The number of nodes is set to 104 in (a) and (c). The size of PartialView is set to 20
in (b) and (c).

4.3 Impact on Node Joining

To show the impact of node joining during a request to detect termination is in
progress, we compared with existing algorithms, that is, the broadcast algorithm
and tree-based algorithm. Because of node joining, the broadcast algorithm and
the tree-based algorithm should re-initiate the request to detect termination. In
the broadcast algorithm, the requester sends a request message to all nodes. After
that, some nodes may join. In this case, the requester should receive acknowl-
edges from all the nodes. Therefore, the broadcast algorithm should re-initiate
the request to safely announce the termination. The tree-based algorithm also
requires the re-initiation because it is possible that a node joins with an ac-
tive state. In this case, the tree-based algorithm involves two steps: 1) rebuild a
computational tree, and 2) re-initiate the request.

On the other hand, the unstructured algorithm does not require re-initiating
the request due to its inherent property. In our scenario such that some nodes are
joined at cycle 1 through 10, the number of trial for the termination detection

An Unstructured Termination Detection Algorithm 9

is 11, 11 and 1 for the broadcast algorithm, the tree-based algorithm, and the
unstructured algorithm, respectively. Hence, the requisite number of cycles to
detect termination is 11 for the broadcast algorithm and tree-based algorithm.
However, in the unstructured algorithm, it requires 13 cycles to detect termi-
nation because information about newly joined nodes should also be taken into
account (see Figure 2(a)).

(a) (b)

Fig. 2. Fraction data for the node joining scenario (a) and leaving scenario (b)

4.4 Impact on Node Leaving

Like the node joining scenario, we compared three algorithms to see the impact
of node leaving. As in the node joining scenario, if some nodes leave due to
failure or unavailability, the broadcast algorithm and the tree-based algorithm
should re-initiate the request to detect termination. Thus, the requisite number
of cycles is 11 for the two algorithms.

For the unstructured algorithm, the requisite number of cycles is 12 and its
fraction data are shown in Figure 2(b). The curve of the graph is changing
uncertainly. This phenomenon can be explained from two extreme points of
view. First, because some nodes leave from the system, the requester only needs
to know information about nodes that alive. Therefore, the fraction data may
increase sharply. The other extreme is that when nodes contact a node that has
failed frequently, the requisite number of cycles may get delayed and the fraction
data may increase slowly.

4.5 Message Complexity

We analyze the message complexity of our unstructured algorithm compared
with the broadcast algorithm and the tree-based algorithm. Obviously, message
complexity of the broadcast algorithm is 2·(n-1), n-1 for request messages and n-
1 for acknowledge messages, where n is the number of nodes. For the tree-based
algorithm, message complexity is 2t, t for request messages and t for acknowledge
messages, where t is the number of tasks distributed. In the worst case, message
complexity of the tree-based algorithm is equivalent to the broadcast algorithm.

On the other hand, the message complexity of the unstructured algorithm is
cn, where c is the requisite number of cycles, and n is the number of nodes.
However, the message complexity of the unstructured algorithm amortized by
a cycle is n. The rationale of amortizing it by a cycle is that cycles of the

10 J. Lim et al.

gossip algorithm may become infinite periodic events when we use it as, for
example, a failure detection service, and that the amortized message complexity
is more intuitive regarding the gossip algorithm because c will vary each run
due to random uncertainty. Figure 3(a) shows the comparison of the message
complexity for the static scenario.

When we analyze the self-centered message complexity, we count the messages
from a requester point of view. In other words, in the unstructured algorithm,
each node sees 2 messages on average because at each cycle a node selects a
neighbor as a gossip target (if fanout is set to 1) and the probability of being
selected as a gossip target from other nodes at a cycle is 1. Specifically, Ps = v/n
· 1/v · n = 1, where v is the size of PartialView and n is the number of nodes.
For the tree-based algorithm, we assume that each node sends e basic messages,
where e is the base of natural logarithm. Thus the height of the tree-based
algorithm is ln(n).

The self-centered message complexity of the three algorithms for the static
scenario is shown in Figure 3(b). Because the requester of the broadcast algo-
rithm sees the whole 2·(n-1) messages, the self-centered message complexity of
the broadcast algorithm is huge enough to offset the other two algorithms’ data.
Therefore, the two algorithms’ data is shown in Figure 3(c) separately. Besides
the broadcast algorithm, the requester of the tree-based algorithm sees 2e mes-
sages, whereas the requester of the unstructured algorithm sees 2 messages on
average at each cycle.

Figure 4(a) shows the message complexity of the three algorithms for each
scenario. Note that data in Figure 4(a) are used at which until the requisite
number of cycles is reached. Apart from the static scenario, the unstructured
algorithm has a lower message complexity than other algorithms. Figure 4(b)
shows the fraction data for the number of times that is selected from other nodes.

The expectation of being selected from other nodes is 1 because
n∑

i=1

i × si
n = 1,

where s i is the number of nodes selected i times, and n is the number of nodes.
Finally, Figure 4(c), 4(d) show the self-centered message complexity for each

scenario. As in Figure 4(a), data for the self-centered message complexity is
used at which until the requisite number of cycles is reached. The broadcast al-
gorithm always has higher self-centered message complexity than that of the two
algorithms. When we compare the tree-based algorithm and the unstructured al-
gorithm, the phenomenon is similar to that appeared in Figure 4(a). In the static
scenario, the tree-based algorithm has lower complexity but higher complexity
in node joining and leaving scenarios than the unstructured algorithm.

Besides message complexity, we analyze the algorithmic properties of the three
algorithms with respect to maintenance cost, re-initiating, and fault-tolerance as
shown in Table 2. The tree-based algorithm is required to maintain the computa-
tional tree when node joining and leaving occur as well as when sending a basic
message. The unstructured algorithm does not require re-initiating the request
due to node joining and leaving but others do. In this regard, the unstructured
algorithm is also fault-tolerant.

An Unstructured Termination Detection Algorithm 11

Table 2. Comparison of algorithms with respect to maintenance cost, re-initiating,
and fault-tolerance

Algorithm Maintenance cost Re-initiating due to joins and leave Fault tolerance

Broadcast No Required No
Tree Required Required No

Unstructured No No Yes

(a) (b) (c)

Fig. 3. Comparison of self-centered message complexity of algorithms for the static
scenario

(a) (b) (c) (d)

Fig. 4. Comparison of message complexity for each scenario (a) and the fraction data
for the number of times selected from other nodes (b), and self-centered message com-
plexity for each scenario (c) and (d)

5 Conclusion

In this work, we presented a termination detection algorithm using a gossip-based
approach to cope with scalability and fault tolerance issues. A cloud environ-
ment, in which the behavior of their constituting nodes is dynamic (i.e., a node
may join and leave at any time), is an example to which our algorithm can be
applied. Furthermore, our gossip-based termination detection algorithm could be
embedded seamlessly into other existing gossip-based algorithms. In other words,
if a gossip-based algorithm is implemented for the failure detection service, then
the termination detection algorithm proposed in our work can be embedded into
the existing gossip-based algorithm. A self-centered message complexity allows
us to measure the distribution of messages of in the system. The self-centered
message complexity of our proposed termination detection algorithm shows that
messages are diffused among nodes almost evenly without a bottleneck.

12 J. Lim et al.

References

1. Dijkstra, E.W., Scholten, C.S.: Termination detection for diffusing computations.
Inf. Proc. Letters 11(1), 1–4 (1980)

2. Mattern, F.: Algorithms for distributed termination detection. Distributed Com-
puting 2(3), 161–175 (1987)

3. Huang, S.T.: Termination detection by using distributed snapshots. Inf. Process.
Lett. 32(3), 113–120 (1989)

4. Mahapatra, N.R., Dutt, S.: An efficient delay-optimal distributed termination de-
tection algorithm. J. Parallel Distrib. Comput. 67(10), 1047–1066 (2007)

5. Mittal, N., Venkatesan, S., Peri, S.: A family of optimal termination detection
algorithms. Distributed Computing 20, 141–162 (2007)

6. Livesey, M., Morrison, R., Munro, D.: The doomsday distributed termination de-
tection protocol. Distributed Computing 19, 419–431 (2007)

7. Ganesh, A., Kermarrec, A.M., Massoulie, L.: Peer-to-peer membership management
for gossip-based protocols. IEEE Transactions on Computers 52(2), 139–149 (2003)

8. Allavena, A., Demers, A., Hopcroft, J.E.: Correctness of a gossip based membership
protocol. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Prin-
ciples of Distributed Computing, PODC 2005, pp. 292–301. ACM, New York (2005)

9. Gurevich, M., Keidar, I.: Correctness of gossip-based membership under message
loss. In: Proceedings of the 28th ACM Symposium on Principles of Distributed
Computing, PODC 2009, pp. 151–160. ACM, New York (2009)

10. Ganesh, A.J., Kermarrec, A.M., Massoulié, L.: Hiscamp: self-organizing hierarchi-
cal membership protocol. In: Proceedings of the 10th Workshop on ACM SIGOPS
European Workshop, EW 10, pp. 133–139. ACM, New York (2002)

11. Voulgaris, S., Gavidia, D., Steen, M.: Cyclon: Inexpensive membership manage-
ment for unstructured p2p overlays. Journal of Network and Systems Manage-
ment 13, 197–217 (2005)

12. Matos, M., Sousa, A., Pereira, J., Oliveira, R., Deliot, E., Murray, P.: CLON:
Overlay Networks and Gossip Protocols for Cloud Environments. In: Meersman,
R., Dillon, T., Herrero, P. (eds.) OTM 2009, Part I. LNCS, vol. 5870, pp. 549–566.
Springer, Heidelberg (2009)

13. Jelasity, M., Montresor, A., Babaoglu, O.: T-man: Gossip-based fast overlay topol-
ogy construction. Comput. Netw. 53(13), 2321–2339 (2009)

14. Lim, J.B., Lee, J.H., Chin, S.H., Yu, H.C.: Group-Based Gossip Multicast Protocol
for Efficient and Fault Tolerant Message Dissemination in Clouds. In: Riekki, J.,
Ylianttila, M., Guo, M. (eds.) GPC 2011. LNCS, vol. 6646, pp. 13–22. Springer,
Heidelberg (2011)

15. Lim, J., Chung, K.-S., Chin, S.-H., Yu, H.-C.: A Gossip-Based Mutual Exclusion
Algorithm for Cloud Environments. In: Li, R., Cao, J., Bourgeois, J. (eds.) GPC
2012. LNCS, vol. 7296, pp. 31–45. Springer, Heidelberg (2012)

16. Iwanicki, K., van Steen, M., Voulgaris, S.: Gossip-Based Clock Synchronization for
Large Decentralized Systems. In: Keller, A., Martin-Flatin, J.-P. (eds.) SelfMan
2006. LNCS, vol. 3996, pp. 28–42. Springer, Heidelberg (2006)

17. Jelasity, M., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: The Peer Sampling
Service: Experimental Evaluation of Unstructured Gossip-Based Implementations.
In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 79–98. Springer,
Heidelberg (2004)

18. Montresor, A., Jelasity, M.: Peersim: A scalable p2p simulator. In: IEEE Ninth In-
ternational Conference on Peer-to-Peer Computing, P2P 2009, pp. 99–100 (Septem-
ber 2009)

Power Monitoring for Mixed-Criticality
on a Many-Core Platform

Boris Motruk1, Jonas Diemer1, Rainer Buchty2, and Mladen Berekovic2

1 Institute of Computer and Network Engineering
2 Chair for Chip Design for Embedded Computing

Technische Universität Braunschweig, Germany
{motruk,diemer}@ida.ing.tu-bs.de,
{buchty,berekovic}@c3e.cs.tu-bs.de

Abstract. Mixed-critical applications on a many-core platform have to
be sufficiently independent to be certified separately. This does not only
include independence in terms of time and space, but also in terms of
power consumption as the available energy for a many-core system has
to be shared by all running applications. Increased power consumption
of one application may reduce the available energy for other applications
or the reliability and lifetime of the complete chip. This paper presents a
monitoring and control mechanism based on event-driven power estima-
tion to isolate dynamic power consumption of mixed-critical applications
running on a many-core platform. Isolating dynamic power consumption
significantly reduces safety requirements for lower critical applications
and therefore overall certification costs, making many-core systems more
attractive for safety-critical applications.

Keywords: embedded systems, dependability, energy, fault-tolerance,
isolation, many-core, mixed-criticality, monitoring, multi-core, power.

1 Introduction

Time and space partitioning are mandatory for fault containment in safety-
critical systems [14]. Power is another resource that has to be shared among
individual applications running on the same platform. Increased power consump-
tion of one application could negatively influence other applications of other or
the same criticality. Power can be described by a dynamic and a static part. The
static part is mainly due to leakage, and the dynamic part can further be divided
into switching power and short-circuit power:

P = Pdyn + Psta = Pswi + Psc + Pleak . (1)

Switching power has the largest share of power consumption in CMOS circuits
and can be expressed by

Pswi = αCLV 2f , (2)

where V is the supply voltage, CL are parasitic capacitances that are charged and
discharged with frequency f when the corresponding component is active [7]. The

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 13–24, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

14 B. Motruk et al.

switching activity α is highly dependent on the running applications and their
input data [18]. Therefore, the amount of dynamic power consumption cannot
be guaranteed in case of unspecified or faulty behavior of running applications.

A chip’s overall power budget is defined at design time based on packaging and
cooling, battery capacity (if applicable), and environmental conditions. Meeting
this budget is especially important for battery-powered devices [18] as increased
power consumption of one application would reduce the available energy for all
other running applications. Moreover, high local power consumption could lead
to hotspots influencing neighboring components, or may reduce the entire chip’s
lifetime and reliability [21]. Detecting over consuming applications potentially
endangering safe execution of other applications requires monitoring of dynamic
power consumption for each application and region separately. As the internal
logic of most silicon devices is supplied by a single or few external voltage sources,
it is only possible to physically measure the power consumption of the whole in-
ternal logic and not of individual regions. Even systems like Intel’s Single Chip
Cloud Computer (SCC) that provide several voltage islands only allow measur-
ing the accumulated supply current, and herewith power consumption, of all
cores [15]. Moreover, it is impossible to identify the originator (application) of
the consumed energy in a shared component [3], which is important to avoid ther-
mal hazards. This makes physical measurements inapplicable to isolate dynamic
power consumption of different applications at run time.

Isolation of dynamic power consumption of all individual applications is espe-
cially important for devices implementing functions of different criticality (mixed-
criticality). The generic standard IEC 61508 [1] defines four discrete criticality
levels. Each level specifies requirements to be fulfilled to reduce the residual risk.
If multiple functions of different criticality are implemented on the same platform
without proper isolation, all have to fulfill the highest level’s requirements [1].
This significantly increases certification cost for non- or low-critical applications
if implemented on a shared platform together with high-critical applications.
Mechanisms for time and space separation are available in most embedded sys-
tems including our platform [17], but to the best of our knowledge, this work is
the first that concentrates on dynamic power isolation of mixed-critical applica-
tions on a shared platform.

The main contributions of this paper are: (1) We introduce a power analysis
method for embedded systems based on an existing performance analysis method.
(2) We develop a fast and lightweight monitoring and control mechanism for dy-
namic power consumption of individual mixed-critical applications on a single
platform. (3) We implement and evaluate our mechanism on a many-core plat-
form hosting several mixed-critical applications and show its effectiveness in case
of failure of one of the running applications.

Starting with background information and related work in Section 2, we intro-
duce our power model and analysis method in Section 3. In Section 4, we shortly
explain our many-core platform and introduce its monitoring and control mech-
anisms. We present experiments showing the effectiveness of our approach in
Section 5 before concluding in Section 6.

Power Monitoring for Mixed-Criticality 15

2 Background and Related Work

The last decade saw much work on run-time power monitoring using performance
monitoring counters (PMC). PMCs are available in various processors for per-
formance measurement, but have successfully been used for power estimation.
Bellosa et al. [4] discovered a strong correlation between system performance
events, like floating-point operations or cache misses, and required energy. The
dynamic power consumption of a system with n PMCs can then be described
by multiplying the performance counter readings PMCi with the corresponding
energy per performance event ei divided by the sampling interval tsample,

Pdyn =
∑n

i=1(PMCi · ei)
tsample

. (3)

The authors of [4] used microbenchmarks exclusively triggering single perfor-
mance events with variable sleep intervals, e.g., floating point operations, while
measuring the system’s power consumption. They found a linear correlation
between sleep intervals in the microbenchmarks and consumed energy. Thus,
the energy consumption per performance event could be computed using lin-
ear regression technique. Bhattacharjee et al. [6] used gate-level simulations of
their system instead of live measurements for event characterization. They used
a power analysis tool to calculate component-wise power consumption using
the system’s switching activity gathered during simulation of their microbench-
marks.

To be able to estimate power consumption by counting events, power models
of all components in the system are required. These power models assign one or
more activating events and the corresponding consumed energy to a component
or to a group of components. The number and kind of events determine the
power monitoring’s overhead and accuracy. Existing solutions range from very
few existing counters available in standard CPUs for performance measurement
[11] to counters for almost every gate activity [10]. The authors of [18] and [6]
added additional counters dedicated to collect power events to existing proces-
sors. State-of-the-art microprocessors, like Intel’s Sandy Bridge microprocessor
[19], implement a digital power meter based on dedicated counters to track activ-
ity of the main building blocks but without allowing to identify the originator of
power consumption in shared components, e.g., memories or graphics processor.

Since PMCs are not dedicated to power monitoring, additional effort must
be made to extract power information from them. It is especially complicated
to estimate power consumption of components outside the processor. For exam-
ple, cache misses counted by PMCs are used to estimate memory activity [11].
The authors of [8] connected a monitoring unit to the system bus to estimate
power consumption in memory devices based on bus traffic. Their approach
could also be used for systems-on-chip (SoC) based on existing IPs without any
counters that could or should be used for power monitoring. For safety-critical
applications, it is even desirable not to use available counters or to add coun-
ters to existing IPs to separate monitor and monitored function [1]. In this case,

16 B. Motruk et al.

power consumed in these IP cores can be modeled from their external behav-
ior by monitoring transactions on the local busses or transactions sent over a
network-on-chip (NoC). We extend this approach to estimate and control the
power consumption of a many-core system as described in Section 4.1.

The power information gathered by run-time power monitoring has been used
for various applications, but to the best of our knowledge, has not been applied
to isolate power consumption of mixed-critical applications on a shared platform.
In [6], the monitored data is used for hardware-accelerated power emulation to
reduce extensive simulation times for complex SoCs. Monitored data can also be
used for application profiling [12], enabling software engineers to develop power-
aware applications before the chip is produced. The authors of [5] applied power
information emulated by the use of PMCs for energy accounting for virtual
machines in server farms. There has been much work on power management
based on run-time power information. In [22], dynamic voltage scaling, and in
[4], energy-aware scheduling is applied. Associated problems of heat dissipation
are modeled in [2]. Hazards arising in case of extensive power consumption or
occurrence of hotspots are tackled in [6,16]. Tasks from overheated processors are
migrated to cooler ones, or the system performance is degraded by the reduction
of the frequency. Chung et al. [9] presented how activity counts translate to
temperature and detected fine-grained hotspots based on PMCs, which could
not be detected by the use of regular temperature sensors.

3 Power Model and Analysis

Our power analysis is based on the performance analysis described by Henia et al.
[13]. They analyzed the system performance based on task execution times and
task activating event functions η+

T (Δt) and η−
T (Δt). η+

T (Δt) specifies the maxi-
mum number of activating events for task T that can occur during any time inter-
val of length Δt and η−

T (Δt) specifies the minimum number of events. Schliecker
et al. [20] extended this model with the definition of the shared-resource request
bound η̃+

T→S(Δt) and the aggregate busy time. η̃+
T→S(Δt) is the maximum num-

ber of requests that may be issued from a task T to a shared resource S within
a time-window of size Δt and the aggregate busy time accumulates the product
of the number of operations to a shared resource and the corresponding amount
of time to be completed. For our power analysis, we replace the required amount
of time per operation with the amount of energy per operation. The weights of
these energy events can be gathered using microbenchmarks and linear regres-
sion technique [4,6,12]. Since we estimate power consumption from component’s
external interfaces and transactions sent over local busses and the NoC, energy
weights that depend on the corresponding component’s internal state or on past
events are modeled with an energy interval. Following the notation introduced
by Schliecker et al., ẽ+

T→S and ẽ−T→S are the maximum and minimum energy
required for a task T to access a resource S. For example, an event for a compo-
nent in idle state may cost more energy because of a possible wake-up overhead.
Another example is writing data to the same location in memory twice. Writing

Power Monitoring for Mixed-Criticality 17

both times the same data would cost less energy than writing different data
because reloading the capacitance of that memory location is not required. To
be able to give power guarantees to different applications, we are mainly inter-
ested in safe upper bounds for power consumption of individual applications and
energy density in components in close proximity. Therefore, we use the upper
bounds ẽ+

T→S for our analysis and power/energy budget allocation.
From event functions and energy weights, the maximum dynamic energy con-

sumed by the set of all running tasks T using the set of all available resources
S in any time interval of length Δt is expressed by

E+
T→S(Δt) =

∑
Ti∈T

(∑
Sk∈S

η̃+
Ti→Sk

(Δt) · ẽ+
Ti→Sk

)
. (4)

The worst-case average dynamic power consumption of the analyzed system in
any time interval of length Δt is then given by

P+
dyn(Δt) =

E+
T→S(Δt)

Δt
. (5)

To detect a possible hotspot in a specific area on the die, the maximum possible
power density for this area in any time interval of length Δt has to be calculated.
Therefore, the subset S∗ ⊆ S of all resources in this area has to be used in
Equation 5. Equation 5 can also be used to get the worst-case average dynamic
power consumption per application. In this case, the subset of all tasks T∗ ⊆ T
of the investigated application has to be entered into the equation.

From the overall power budget of the device and analyzedpower requirements of
all applications, power/energy budgets can be assigned to individual applications
and regions. If, at run time, the number of energy events originatedby a low-critical
application differs from the one used for analysis, e.g., due to less strict safety re-
quirements, power guarantees given to high-critical applications may not hold any
longer. Therefore, we introduce a monitoring and control mechanism in Section 4.1
to limit the number of energy events per application to the number used during
analysis. This requires the monitoring and control mechanism to be certified to the
highest level of criticality but not the lower critical applications.

4 Architecture

Our Integrated Dependable Architecture for Many-Cores (IDAMC) [17] is a re-
search vehicle for developing and evaluating methods and mechanisms for re-
duced certification cost for trusted multi-core platforms. It consists of nodes (N)
connected by a network-on-chip. The number of nodes as well as the network
topology is configurable. Fig. 1a shows 9 nodes connected by a 2D mesh network.
Each node includes a router (R) and up to 4 tiles connected by network interfaces
(NI). Tiles are based on Gaisler’s GRLIB IP library including the open-source
LEON3 processor and various other IPs connected to local buses. Tiles are con-
figurable as well and reach from simple processing or memory tiles, containing a

18 B. Motruk et al.

Fig. 1. System Overview and Power Monitoring

single core or memory controller respectively, to complete systems with multiple
cores, peripherals and memory interfaces. One of the tiles acts as system con-
troller, assigning resources to applications and supervising their safe execution.
Mapping of physical memory interfaces and peripherals to local applications is
done by address translation tables (ATT) in the network interfaces. The ATT
translates local tile addresses to addresses in destination tiles and contains re-
quired routing information. The system controller can re-program the tables at
run time. This enables replacing faulty peripherals or memory interfaces, and
re-mapping of applications to other tiles without interaction or knowledge of the
running application.

4.1 Power Monitoring and Control

Activity in local masters, and peripheral and memory usage in local and re-
mote tiles cost energy. Energy consumption estimation is performed using event
counters as described in Section 2. First, the local per-tile power consumption
is monitored to detect hotspots caused by an application running locally or a
remote application accessing a local resource. Second, the power consumption
caused by every application is monitored separately even if power is consumed
in another tile, e.g., shared memory. This way, the total available power budget,
like any other shared resource, can be allocated to individual applications in the
system. The collected power information is used to detect and prevent excessive
dynamic power consumption of individual applications, assuring independence
of the running applications, especially high-critical ones. We monitor and isolate
power consumption in the network interfaces connecting the tiles and the rest
of the system, separating monitor and monitored function [1]. Thus, only single
applications or applications of same criticality should be mapped to the same
processing tile representing an error containment zone.

Per-tile energy density is monitored by counting and weighting activity in
local masters and slaves. Increased local dynamic power consumption could also
be caused by a master in another tile sending an unexpectedly high number of

Power Monitoring for Mixed-Criticality 19

requests to local slaves. For local power density monitoring it does not matter
if the originator of local activity is an application running locally or on a core
in another tile. The expected thermal emission based on the estimated energy
density can be calculated using the approach presented by [21].

To monitor local power consumption within each tile, two of the look-up ta-
bles (LUT) shown in Fig. 1b are programmed with energy weights for activity in
local masters and slaves. When an event is detected, the corresponding energy
amount multiplied by access size (in words) is added to an energy accumula-
tor (energy_acc). For increased accuracy, the local masters’ table may include
weights for different events per master, e.g., activity in floating-point units or co-
processors. Our experiments presented in Section 5.2 showed that the difference
in energy consumption of different operations within the LEON3 core compared
to such of remote memory accesses is negligible. Therefore, the LUTs for local
masters contain a single (the largest) energy weight per master. The LUT en-
tries for local masters are selected by signals extracted from the cores’ debug
interfaces. Similar to [8], the table for local slaves contains weights for local slave
accesses. This table’s entries are selected by slave select signals of the local bus.

Dynamic per-application energy consumption, monitored in the network in-
terfaces, is calculated by accumulating and weighting all activity issued by the
locally running application, no matter if consumed locally or outside the tile. For
estimating a locally running application’s power, energy consumed in local slaves
is only accumulated if originated by a local master. Monitoring dynamic power
consumption caused by a local application but consumed in other tiles is done
by utilizing IDAMC ’s ATTs: each activation selects a corresponding entry in
the third LUT shown in Fig. 1b, containing required energy to access a module
in the respective address range. The energy weights contain an entire request’s
consumed energy, including local busses and the NoC. Thus, the energy weights
of two resources of same type may differ if located in tiles with different distances
to the source tile.

To not only isolate applications on IDAMC in terms of time and space but
also in terms of energy, energy budgets (energy_max) per time period have to
be monitored for each tile and application individually, especially of low-critical
applications to prevent any interference with high-critical ones. Two different en-
ergy accumulators and maximum energy values are implemented. One is required
for power consumption (energy density) per tile independent of the originator,
the other for power consumption per application including power consumed in
other tiles and the NoC. Appropriate budgets are derived from analyzing the
power requirements of all applications and the chip’s overall power budget as
described in Section 3. The system controller stores these upper bounds in the
power monitoring and control modules in the network interfaces of all tiles. More-
over, an interval counter is programmed with the corresponding time period.
When this counter elapses without any energy budget exceeding its maximum,
the energy accumulators are reset. If one of the limits exceeds within the corre-
sponding time period at run time due to a possible fault or unexpected input data,
the following reactions can be taken: (1) A message can be sent to the system

20 B. Motruk et al.

controller for further analysis, advanced reactions like remapping of applications,
or simple error collection. (2) The tile can be paused until the end of the time
period preventing further activity and herewith dynamic power consumption in
the current time period. At the end of the time period, the application contin-
ues where it was stopped. (3) The tile can be reset to recover from a possible
transient error. It is not restarted before the end of the selected time period; an
immediate restart could lead to further dynamic power consumption. (4) The
tile can be disabled, isolating a tile potentially containing a permanent defect.

The last three listed reactions could also be executed by the system controller
after receiving a message. Due to network latency and overhead of software
running on the system controller, this option’s reaction time to prevent further
dynamic power consumption of an application exceeding it budgets is much
longer than a reaction executed directly by hardware in the NIs. Moreover, this
time increases with the size of the system and is hard to predict. Therefore, a
centralized solution can not be used to guarantee separation of applications of
different criticality on a many-core platform.

Note that the implemented reactions do not target the optimization of power
consumption of the running applications but only preventing a faulty (low-
critical) application from negatively affecting a high-critical application running
on another tile. Therefore, neither effects of the reactions on the locally run-
ning (faulty) application, nor other possible reactions, like power/clock gating
or voltage/frequency scaling, are further investigated.

Our proposed dynamic power estimation and control mechanism is done in
parallel with address translation or local slave access and hence does not add
any latency. On detecting an exceeded power budget, a faulty application can be
prevented from consuming further dynamic power without delay. This reaction
time can be guaranteed and does not increase with a larger number of tiles. Our
mechanism’s area overhead depends on the number of events required for esti-
mating power consumption of local masters and slaves, and distributed resources
supported by the ATTs. An implementation of our mechanism supporting a sin-
gle local master, 16 local slaves, and 32 distributed resources per tile increases
area by around 2.4 %. Every additional event to be monitored increases only the
memory requirements by 8 additional bits per energy weight. The amount of
required logic stays constant also for a large number of monitored events.

5 Evaluation

We implemented an IDAMC baseline system on a Virtex-6 LX760 FPGA to
evaluate our proposed mechanism at minimal synthesis/simulation time. Since
our distributed power monitoring and control mechanism does not require a
central instance at run time [17], our setup’s small number of tiles does not
limit general applicability. The approach is also applicable for ASICs using a
standard cell library similar to [6]. Our baseline system comprises 4 routers
with a single connected tile each. Tile 0, the system controller, includes a debug
interface, UART, timer unit, interrupt controller and 256 kB on-chip memory. It

Power Monitoring for Mixed-Criticality 21

Event Energy Weight [nJ]

tile3 memory read 32.66
NI 1.24
monitor 0.27
tile3 memory write 5.62
router 0.39
leon3 active 0.59
tile0 memory read 5.716
tile0 memory write 5.08

Fig. 2. Energy Weights

controls the other tiles and assigns resources to applications. Tile 1 and Tile 2
are memory-less processing tiles with a single core, 1 kB of data and instruction
cache each, timer unit, and interrupt controller. Tile 3 contains 2 MB of on-chip
memory shared by applications running on the processing tiles.

5.1 Event Characterization

We used microbenchmarks and linear regression technique as described in [4,6] for
characterizing all events in local masters and slaves, and remote slaves with the
largest impact on dynamic power consumption. These microbenchmarks consist
of a variable number of operations exclusively triggering single or a small number
of components. For example, we used microbenchmarks that write/read a differ-
ent number of words to/from the shared memory in Tile 3 to get the energy per
read/written word consumed in the network interfaces, the NoC’s routers, and
the on-chip memory. The overall switching activity of the placed and routed de-
sign gathered during simulating the individual microbenchmarks is fed into Xilinx’
XPower Analyzer tool. With this method, we get component-wise power consump-
tion for each microbenchmark as proposedby [6]. From power consumption of a spe-
cific microbenchmark and number and type of operations used in it, we calculate
per-event energy (energy weight) using linear regression technique, similar to [12]
and as shown in Fig. 2. Reading the large on-chip memory in Tile 3 consumes much
more power than the different operations in the LEON3 core. Therefore, we use a
single energy weight (the largest measured) for all operations of the LEON3 core
with only a small impact on the overall accuracy. Systems with different compo-
nents, memory or cache sizes require an additional one-time effort for event selec-
tion and characterization but no changes to the proposed methodology. Reading
and writing the on-chip memory in Tile 3 includes the complete transfer’s energy
(2x NI, 1xmonitor, 2x router). In larger systems, a single router’sweight as in Fig. 2
can be used to calculate energy weights for memory accesses in tiles requiring a dif-
ferent number of hops in the NoC.

We evaluated the accuracy of our model while running more complex work-
loads based on the Dhrystone benchmark [23]. The error of estimated power con-
sumption vs. real power consumption taken from post place-and-route

22 B. Motruk et al.

Table 1. Simulation results (Energy numbers based on 3.25ms sample interval)

Activation Run- Memory Acc. LEON3 Worst-case Energy per Worst-case
App. Criticality Interval time Reads Writes (act. cycles) activation interval Avg. Power
A1 high 1.6 ms 1.2 ms 3337 291 2625 112.17 μJ 224.34μJ 69.03 mW
A2 none/low 2.4 ms 720 μs 2107 180 1640 70.73 μJ 141.46μJ 43.53 mW

Total 365.80 μJ 112.56 mW

Fig. 3. Monitored Power/Energy

simulations was between 8 % and 23 %, which can be improved by either mon-
itoring more events or by a higher measurement resolution. In all cases, the
estimation was higher than the actual consumption, which is required for a safe
separation of power consumption of different applications.

5.2 Experiments

In our experiments, Tile 1 runs a high-critical application (A1) and Tile 2 a
low- or non-critical one (A2), both based on the Dhrystone benchmark [23].
Tab. 1 shows the experimental setup with application properties acquired from
simulation, and derived energy and power numbers based on Equations 4 and 5.

Fig. 3a shows energy and power consumption for both applications behaving
as expected. If the low-critical A2 causes more power-sensitive events, e.g., due
to a longer run time because of unexpected input data or due to more frequent
activation (e.g., due to a timer error in Tile 2), energy and power requirements of
A2 increase as shown in Fig. 3b. One further activation of A2 within 3.25 ms leads
to a worst-case energy consumption of 212.19 μJ and a corresponding dynamic
power consumption of 65.29 mW (134.32 mW for the entire system).

Let 400 μJ be the maximum available dynamic energy within 3.25 ms, only
175.66 μJ may be consumed by A2. In Fig. 3b, the available energy is already

Power Monitoring for Mixed-Criticality 23

spent after 2.7 ms due to A2’s increased power consumption. This may prevent
the high-critical A1 from successful completion. Fig. 3c shows the system’s energy
and power consumption running a faulty A2 with our monitoring and control
mechanism being activated. A2 is disabled as soon as an increased energy con-
sumption is detected by our mechanism (after 1.2 ms). Other options are pausing
A2 until further activity is expected (after 1.6 ms) or allowing as much activity
as long A2 consumes less energy than left by the high-critical A1 (175.66 μJ).
Our mechanism reacts to increased energy consumption without any delay due to
its implementation in hardware. In contrast, solutions based on interaction with
a central controller require a worst-case energy margin that may be consumed
by a faulty application during the time between detecting an increased energy
consumption and the reaction to be completed. This time increases with larger
systems, is hard to predict, and may lead to an overdimensioned system [17].

6 Conclusion

To the best of our knowledge, this paper is the first presenting a many-core plat-
form isolating dynamic power consumption of mixed-critical applications. Our
solution significantly decreases certification costs for safety-relevant embedded
multi- and many-core systems by reducing safety requirements for low-critical
applications. The per-application and per-region worst-case dynamic power con-
sumption is first analyzed at design time, and then supervised at run time based
on event-driven power estimation. The presented fast and lightweight monitor-
ing and control mechanism is separated from the monitored function and does
not require any changes to existing software or any special operating system. It
is scalable and applicable to very large systems, due to it’s decentralized nature,
and does not impose any timing overhead. We implemented our system on an
FPGA and demonstrated the effectiveness of our method running a high-critical
and a (faulty) low-critical application.

Acknowledgment. This work has been funded by the Bundesministerium für
Bildung und Forschung (BMBF), the Deutsche Forschungsgemeinschaft (DFG),
and Advanced Research & Technology for Embedded Intelligence and Systems
(ARTEMIS) within the project “RECOMP” (grant no. 01IS10001A / 100202).

References

1. Functional safety of electrical/electronic/programmable electronic safety-related
systems. Int. Electrotechnical Commission (2010)

2. Atienza, D., Del Valle, P.G., Paci, G., Poletti, F., Benini, L., De Micheli, G., Men-
dias, J.M.: A Fast HW/SW FPGA-Based Thermal Emulation Framework for Multi-
Processor System-on-Chip. In: Proc. 43rd Design Automation Conf. ACM (2006)

3. Bellosa, F.: The Case for Event-Driven Energy Accounting. Tech. rep., University
of Erlangen, Department of Computer Science (2001)

4. Bellosa, F.: The Benefits of Event-Driven Energy Accounting in Power-Sensitive
Systems. In: Proc. of the 9th ACM SIGOPS European Workshop (2000)

24 B. Motruk et al.

5. Bertran, R., Becerra, Y., Carrera, D., Beltran, V., Gonzalez, M., Martorell, X.,
Torres, J., Ayguade, E.: Accurate Energy Accounting for Shared Virtualized En-
vironments using PMC-based Power Modeling Techniques. In: Int. Conf. on Grid
Computing (2010)

6. Bhattacharjee, A., Contreras, G., Martonosi, M.: Full-System Chip Multiprocessor
Power Evaluations Using FPGA-Based Emulation. In: ACM/IEEE Int. Symp. on
Low Power Electronics and Design, ISLPED (2008)

7. Bhunia, S., Mukhopadhyay, S. (eds.): Low-Power Variation-Tolerant Design in
Nanometer Silicon. Springer (2010)

8. Cho, Y., Kim, Y., Park, S., Chang, N.: System-Level Power Estimation using an On-
Chip Bus Performance Monitoring Unit. In: IEEE/ACM Int. Conf. on Computer-
Aided Design, ICCAD (2008)

9. Chung, S., Skadron, K.: Using On-Chip Event Counters For High-Resolution, Real-
Time Temperature Measurement. In: The Tenth Intersociety Conf. on Thermal
and Thermomechanical Phenomena in Electronics Systems. IEEE (2006)

10. Coburn, J., Ravi, S., Raghunathan, A.: Power Emulation: A New Paradigm for
Power Estimation. In: Design Automation Conf. Proc. 42nd (2005)

11. Contreras, G., Martonosi, M.: Power Prediction for Intel XScale Processors Using
Performance Monitoring Unit Events. In: Proc. of the Int. Symp. on Low Power
Electronics and Design, ISLPED 2005. ACM (2005)

12. Genser, A., Bachmann, C., Haid, J., Steger, C., Weiss, R.: An Emulation-Based
Real-Time Power Profiling Unit for Embedded Software. In: Int. Symp. on Systems,
Architectures, Modeling, and Simulation, SAMOS 2009. IEEE (2009)

13. Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., Ernst, R.: System level
performance analysis - the SymTA/S approach. IEEE Computers and Digital Tech-
niques (2005)

14. Hoyme, K., Driscoll, K.: Safebus [for avionics]. IEEE Aerospace and Electronic
Systems Magazine (1993)

15. Intel Labs: The SccKit 1.4.0 User’s Guide (2011)
16. Merkel, A., Bellosa, F.: Balancing Power Consumption in Multiprocessor Systems.

In: Proc. of the 1st ACM SIGOPS/EuroSys Conf. on Computer Systems (2006)
17. Motruk, B., Diemer, J., Buchty, R., Ernst, R., Berekovic, M.: Idamc: A many-core

platform with run-time monitoring for mixed-criticality. In: IEEE 14th Interna-
tional Symposium on High-Assurance Systems Engineering, HASE (2012)

18. Peddersen, J., Parameswaran, S.: Low-Impact Processor for Dynamic Runtime
Power Management. IEEE Design Test of Computers (2008)

19. Rotem, E., Naveh, A., Rajwan, D., Ananthakrishnan, A., Weissmann, E.: Power-
management architecture of the Intel microarchitecture code-named Sandy Bridge.
IEEE Micro (2012)

20. Schliecker, S., Ernst, R.: Real-Time Performance Analysis of Multiprocessor Sys-
tems with Shared Memory. ACM Trans. Embed. Comput. Syst. (2010)

21. Skadron, K., Stan, M., Sankaranarayanan, K., Huang, W., Velusamy, S., Tarjan,
D.: Temperature-aware microarchitecture: Modeling and implementation. ACM
Transactions on Architecture and Code Optimization, TACO (2004)

22. Snowdon, D.C., Petters, S.M., Heiser, G.: Accurate On-line Prediction of Processor
and Memory Energy Usage Under Voltage Scaling. In: Proc. of the 7th Int. Conf.
on Embedded Software (2007)

23. Weicker, R.: Dhrystone: A Synthetic Systems Programming Benchmark. Commu-
nications of the ACM (1984)

On Confident Task-Accurate Performance

Estimation

Yang Xu1, Bo Wang1, Rafael Rosales2, Ralph Hasholzner1, and Jürgen Teich2

1 Intel Mobile Communications, Munich, Germany
{yang.a.xu,bo1.wang,ralph.hasholzner}@intel.com

2 University of Erlangen-Nuremberg, Germany
{rafael.rosales,teich}@informatik.uni-erlangen.de

Abstract. Task-accurate performance estimation methods are widely
applied for design space exploration at the Electronic System Level (ESL).
These methods estimate performance by simulating task-level models
annotated with nominal execution time. In early design phases, source
code, which is necessary for generating accurate annotations, is usually
not available. Instead, extrapolated values or even estimated values are
used for performance estimation, which makes the results unreliable and
may eventually cause performance violations if used to guide critical de-
sign decisions. In this paper, we propose a confident task-accurate perfor-
mance estimation methodology that uses high-level information available
in early design phases and provides confident estimation to guide design
space exploration with respect to performance constraints.

1 Introduction

In modern System-on-Chip (SoC) design methodologies, performance together
with other design constraints, e.g., power consumption and die size, are usually
defined in very early design phases. Respecting these design constraints, the
design space is explored to choose appropriate system architectures. Correct
design decisions made in such early design phases are very important in avoiding
significant modification efforts and cost in later phases. Therefore, early and
confident performance estimations are required to guarantee the fulfillment of a
set of performance constraints. Additionally, owing to the increasing complexity
of modern SoCs, the design space becomes very huge. Thus, fast performance
estimation methods are mandatory to allow efficient design space exploration.

1.1 Related Work

To achieve high efficiency during design space exploration, task-accurate perfor-
mance estimation methods have been proposed [1–4]. In these methods, basic
system operations, such as functions or communication transactions, are mod-
eled as tasks whose timing information is back-annotated into the task models for
fast performance simulation. Since the task is the finest granularity in such kind
of method, it is called Task-Accurate Performance Estimation (TAPE). In [1],

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 25–37, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

26 Y. Xu et al.

the processing time of each task is modeled by annotating the delay budgets to
the communication events. Then a so called virtual processing unit is introduced
to capture the timing behavior of the system. Thanks to its XML-based perfor-
mance model, the design space exploration is significantly accelerated. Similarly,
in [2] [3], a Virtual Processing Component (VPC) approach is adopted. They dif-
ferentiate themselves from [1] by applying an actor-oriented modeling approach,
which strictly separates the functionalities and their underlying architecture to
ease the exploration of different architecture options. A hybrid method is pro-
posed in [4] where Worst-Case Execution Time (WCET) analysis is first exe-
cuted and then the resulting WCET values are back-annotated into task models
to simulate system performance. The dynamic effects at run-time, such as data
dependencies, are also incorporated by using dynamic correction.

All of the above methods can provide performance estimation very efficiently.
However, none of them can guarantee confident performance estimation because
of the errors propagated form the annotation values. These errors are mainly
caused by source code analysis and profiling. Even worse, in early design phases
where source code is not yet available for generating annotation values, esti-
mated timing information must be used as annotation values to estimate system
performance. This will make the final result even more unreliable. Even though
absolutely accurate estimation is not always required in early design phases since
relatively accurate results can still help the designers differentiate different ar-
chitecture options, confident performance estimation is still mandatory when
critical design decisions or real-time constraints are involved. For example, given
two baseband processor architectures arch1 and arch2, the TAPE methods can
confirm that arch1 is faster than arch2 in processing Long Term Evolution
(LTE) packets. But because of the unreliable performance estimation they can-
not confirm whether these two architectures can finish the packet processing
within 1 ms (real-time constraint of LTE) especially when the estimated time
is too close to the real-time constraint. Therefore, it is highly desired to have
a confident performance estimation method providing confidence information,
i.e., the probability of an architecture meeting a specific performance constraint,
given errors existed in the estimation results.

To incorporate uncertain objectives during design space exploration, the au-
thor in [5] proposes a Pareto-Front exploration method treating the objectives as
random variables. There are also a few low-level methods proposed to estimate
performance with confidence information [6–8]. In [6], the software behavior is
modeled by a sequence of virtual instructions with each one representing a type
of real instructions. Then linear regression method is used to determine a pre-
dictor equation, which estimates performance along with confidence levels. The
drawback of this method is that the statistical predictor equation is only trained
for a specific application population; whenever a new type of application is un-
der evaluation, it needs a new dedicated equation. To overcome this limitation,
the work in [7] proposes a trace-based estimation method. Instead of training a
statistical equation for each application, it generates statistical model for each
virtual instruction, which is consequently used to estimate the performance and

On Confident Task-Accurate Performance Estimation 27

its expected confidence intervals of a pre-generated instruction trace. Since the
virtual instructions are fixed for a specific target processor, the statistical models
can be reused for different applications. In the more recent work [8], the authors
propose a method to build a statistical performance model for a processor by
exploiting linear regression techniques. All these methods stay at lower level of
abstraction. Therefore, they cannot solve the challenges of confident TAPE.

1.2 Challenges of Confident TAPE

Compared with instruction-level performance estimation, TAPE has the follow-
ing advantages: 1) it is much more efficient during design space exploration
thanks to its high level of abstraction; 2) it is more applicable than low-level
methods in early design phases where only limited high-level information is avail-
able for use. However, these advantages also come with challenges:

Firstly, because of having a different abstraction level, TAPE cannot directly
reuse the confidence level calculation methods used in the low-level confident per-
formance estimation. One specific example is the trace-based approach proposed
in [7]. In this approach, the confidence level can be easily calculated by travers-
ing a pre-generated instruction trace and accumulating the mean and variance of
execution time of each instruction. Unfortunately, such kind of approach cannot
be applied by TAPE, even though a task trace can be easily generated, because
the scheduling of tasks may be determined by the execution time of tasks; dif-
ferent execution time for the same task may lead to completely different task
traces, as shown in Fig. 1. In this example, two tasks t1 and t2 are executed
on two dedicated hardware accelerators, which are connected to a CPU whose
scheduling algorithm is First Come First Served (FCFS). If the execution time
of t1 is shorter than t2, as shown in Fig. 1 (2), the interrupt service routine 1
(isr1) is scheduled after t1 terminates; on the other hand, if the execution time
of t1 is longer than t2, isr2 is scheduled first instead (Fig. 1 (3)). If the execution
time is modeled statistically to model the effect of errors, the scheduling of tasks
becomes indeterministic and the trace-based approach is no longer valid. There-
fore, in confident TAPE, the first challenge is how to incorporate the statistical
aspect caused by the errors propgated from the annotation values.

Secondly, how to calculate the confidence level of parallel task execution is an-
other challenge. This has not yet been addressed by the instruction-level methods

t1

t2

isr1

time

task

(2)

t1

t2

isr2

time

task

(3)(1)

CPU

int2

HW1

HW2

t1

t2

int1FCFS

Fig. 1. Indeterministic scheduling of tasks

28 Y. Xu et al.

in [6–8] because they only focus on single processor systems. Although TAPE has
been used to evaluate MPSoC systems [1] [3], it only handles deterministic sim-
ulation. On MPSoC, instead of having one task stream executing sequentially,
the system has several task streams executing in parallel. The confidence level of
the system performance cannot be easily calculated by simply accumulating the
mean and variance of execution time as used in the instruction-level method [7]
because of the overlap between parallel tasks.

Finally, in early design phases, the source code used to extract system be-
havior and timing information is usually not available. How to make use of the
limited high-level information available in early design phases to provide confi-
dent performance estimation still remains a challenge.

In this paper, we propose a novel methodology that solves the challenges of
confident TAPE. The contributions of this paper are:

1. Our method complements traditional TAPE methods by adding the capabil-
ity to provide confidence information on meeting a performance constraint.
This information can guide designers to explore architecture options with
respect to real-time constraints.

2. The proposed methodology integrates an actor-oriented TAPE approach
with a parallel Monte Carlo (MC) simulation method to form an efficient
confident TAPE framework, which can not only easily incorporate the sta-
tistical aspect propagated from the errors of annotations but also naturally
handle the confidence level calculation of parallel task execution.

3. Our method can be applied in very early design phases, even when no source
code is available. It only relies on high-level information available in early
design phases. And the results can be refined throughout the whole design
phases when detailed information becomes available.

The rest of this paper is organized as follows: In Section 2 we will present our
framework in details. Thereafter, we will present the experimental results in
Section 3. Finally we will conclude this paper in Section 4.

2 Methodology

In this section, we will first illustrate an overview of our methodology. Then four
different aspects of this methodology, namely, behavior modeling, architecture
& resource modeling, performance modeling and parallel MC simulation, will be
detailed, respectively.

2.1 Methodology Overview

Our methodology consists of two key parts: an actor-oriented TAPE framework
and a parallel MC simulation framework, as shown in Fig. 2. The actor-oriented
TAPE framework is composed of behavior models, resource models as well as a
Mapping & Performance Annotation (MPA) file. The system functionalities are

On Confident Task-Accurate Performance Estimation 29

Annotation

Behavior Models

R
ei
la
b
le

P
er
f.
E
va

l.
R
es
u
lt
s

Mapping

MPA
(XML)

Mapping
Info.

HW HW HW

Actor Actor Actor

VPC VPC VPC

Annotation

Parallel MC Simulation Framework

Fig. 2. Methodology overview

modeled by the behavior models as different actors. The benefit of this actor-
oriented modeling is the strict separation between the system functionalities and
the underlying architecture. This separation significantly eases the design space
exploration by allowing modification of the mappings between functionalities and
their corresponding hardware resources. All the mapping information is specified
in the MPA file, which also specifies the characteristics of the hardware resources
and execution time of each task. The execution time information is used by the
VPC [2] associated to each hardware resource to simulate the performance of the
whole system. All these models together form the kernel of the MC simulation,
which subsequently generates confident performance estimation.

The reason why we prefer MC simulation to the statistical performance model
approaches in [6–8] is that MC simulation can easily handle the indeterminis-
tic task scheduling challenge and it can also naturally solve the challenge of
confidence level calculation of parallel task execution mentioned in Section 1.
Additionally, in our methodology, the kernel of the MC simulation is the highly
efficient TAPE, which can eventually compensate the drawback of MC simula-
tion, i.e., relatively long simulation time.

2.2 Behavior Modeling

In our methodology, the functionalities executed on hardware components are
modeled as a series of actors [9] [10]. The behaviors of the functionalities are
defined in the specifications. Therefore, they can be extracted without having
source code. Each actor is defined as a tuple a = (P, F, S) containing a set of
actor ports P = I ∪ O including input ports I and output ports O, the actor
functionalities F and the firing FSM S. The actor ports P are used to pass and
receive tokens from other actors for communication. Such kind of communication
can only take place via dedicated channels, i.e., no implicit communication is
allowed. The behavior of the actor is constructed by a set of actor functionalities

30 Y. Xu et al.

F , representing the atomic operations of the actor. Each atomic operation may
correspond to a function or even a task, depending on the required level of
abstraction. Finally, the firing FSM specifies the communication behavior of
each actor, i.e., when to produce or consume tokens. A SystemC library [11] is
used as our actor-oriented modeling infrastructure. This library provides special
channels for inter-actor communication and a C++ syntax to specify the actor
behavior in a unique way. Channels are queues with FIFO semantics allowing
actors to read/write and consume/produce data in a first in first out discipline.

2.3 Architecture and Resource Modeling

A system architecture is modeled by a set of resources, e.g., processors, mem-
ories, interconnects and dedicated hardware accelerators, which are specified in
the MPA file (annotation file). Each resource is further characterized by its per-
formance attribute, including a scheduler, frequency settings and transaction
delay. The scheduler is required to resolve the resource contention caused by
multi-tasking on each resource. The frequency settings are introduced to model
the effect of Dynamic Voltage & Frequency Scaling (DVFS), which is widely ap-
plied on modern SoCs for dynamic power management. Under each frequency
setting, a transaction delay is defined to specify the latency of transferring one
byte of data into or out of its corresponding resource running at that frequency.

<resources>
<component name="CPU" scheduler="FCFS">

<frequency="100 MHz">
<transaction_delay value="10 ns" />
<frequency="200 MHz">
<transaction_delay value="5 ns" />

<frequency="400 MHz">
......

</component>

<component name="DSP" scheduler="FCFS">
......

</resources>

Fig. 3. Example of an MPA file

Fig. 3 shows an example of an MPA file that specifies a SoC architecture and
its resources. In the example, the CPU is configured with a FCFS scheduler and
it supports three frequency settings. Each frequency setting has a transaction
delay value associated to it where the value may be an existing measurement
value, estimated value based on extrapolation, or a value from a data-sheet. The
other system resources, such as the DSP, can be specified similarly.

The mappings between the behavior actors and resources are specified in the
MPA file where timing information of actors is also specified. Fig. 4 shows a
portion of an MPA file that specifies mappings. In this example, actor A1 is
mapped to a CPU, which supports two frequency settings. The computation

On Confident Task-Accurate Performance Estimation 31

time of two functions, f1 and f2, is separately annotated for each frequency
setting. Additionally, topology information is also defined here, from which we
can see the CPU is connected to a memory via a crossbar (XBar). Thus, the
communication overhead from the CPU to the memory can be calculated by
summing up the transaction delays of CPU, XBar and Mem that are specified
together with the resources.

<mappings>
<mapping actor="A1" target="CPU">

...

...

<delay frequency="200 MHz" name="f2" mean="40 us" sigma="4 us" dist_type="Gaussian"/>

<route src="CPU" destination="Mem">
<hop name="CPU"/>

<hop name="Mem"/>
<hop name="XBar"/>

<topology>

......

</topology>

</mappings>

</mapping>

<delay frequency="400 MHz" name="f1" mean="10 us" sigma="1 us" dist_type="Gaussian"/>

</route>

<delay frequency="200 MHz" name="f1" mean="20 us" sigma="2 us" dist_type="Gaussian"/>
<delay frequency="400 MHz" name="f2" mean="20 us" sigma="2 us" dist_type="Gaussian"/>

Fig. 4. Example of mappings with an MPA file

2.4 Performance Modeling

In traditional TAPE, software profiling is used to obtain accurate annotation
values, hence to guarantee accurate estimation result. However, in early design
phases, there is no source code available for profiling. Instead, estimated exe-
cution time is usually used as annotation values, which will consequently result
in significant estimation errors. Even though in some rare cases source code
might be available for profiling, modeling the execution time as a constant value
may still generate errors because data and architecture dependencies, such as
cache misses, will eventually lead to variable execution time of tasks. Therefore,
constant annotation values cannot guarantee confident performance estimation.

Conventionally, designers handle these estimation errors by using over-design,
e.g., add margins or guardbands according to worst-case analysis or their experi-
ence, but without systematic analysis, which makes the late design changes after
integration testing very likely. In our methodology, execution time of atomic op-
erations is modeled as statistical variables with mean value, standard deviation
(σ) and a specific distribution type, as shown in Fig. 4. These values are im-
ported into the MC simulation framework to generate samples for each iteration.
Within each MC iteration, deterministic TAPE is executed. Therefore, the inde-
terministic task scheduling challenge is solved. After all iterations are finished,
the confidence level of performance estimation can be calculated by analyzing
the performance samples. Thus, the challenge of calculating the confidence level

32 Y. Xu et al.

of parallel task execution is also resolved. This framework allows to determine
minimum margins and guardbands already during early design phases.

In early design phases, instead of exact execution time, high-level performance
information, such as the mean value, σ and distribution type of execution time
is usually available. They can be obtained either by analytical method, e.g., the
datasheet analysis proposed in [6] or measurements from previous products or
even the experience of the designers. Although some of these values may also be
estimated, e.g., the σ, it can still provide more guidance to the designer than the
mean-value or worst-case based methods by showing the confidence information
as shown in the experimental results.

2.5 Parallel MC Simulation

In this section, we will introduce the parallel MC simulation framework used
in our methodology. Although TAPE is far more efficient than the instruction-
level estimation methods, as the kernel of the MC simulation, it may still cause
relatively long runtime when the number of iterations is large. Therefore, we
introduce a parallel MC simulation framework, which takes advantage of modern
multiprocessing power on PCs, to accelerate the simulation.

It is straight forward to parallelize a MC simulation because there is no data
dependencies between different iterations. The parallelization is done by splitting
a normal sequential MC simulation into several sections and distributing them
to available CPU cores. The whole process is summarized in Algorithm 1:

Algorithm 1. Parallel MC simulation

input : MPA, number of cores (#cpu), number of iterations (#i)
output: mean and standard deviation of performance estimation

1 generate samples(MPA) ;
2 N = #i/#cpu ;
3 for cnt = 0 → #cpu− 1 do
4 offset = cnt ∗N ;
5 fork(MC(N , offset)) ;

6 end
7 wait process(); ;
8 sample analyze() ;

The input to the parallel MC simulation framework is the MPA file, the num-
ber of CPU cores used for simulation and the number of iterations to be executed.
The framework first generates execution time samples for all tasks according to
their statistical models specified in the MPA file. Then it calculates the corre-
sponding iterations (N) for each parallel section. Thereafter, within each section,
the framework will start a new MC simulation process and set its iteration and
sample offset (offset) accordingly. The offset indicates the starting point of
samples for each section. These samples are used by the TAPE for deterministic

On Confident Task-Accurate Performance Estimation 33

CPU

Interconnects

Mem

DSP

AudioFEMem
Ctrler

Fig. 5. Simplified platform architecture

performance simulation. Finally, after all MC simulation finished, all the esti-
mation samples will be analyzed by the function sample analyze() to calculate
the mean value and standard deviation of the system performance.

3 Experimental Results

We applied the proposed methodology to a real world scenario, MP3 decoding
time estimation, to evaluate its effectiveness. The framework is implemented with
C++ and all the behavior models are written in SystemC in an actor-oriented
style. The simulations are executed on a Linux machine with 4 GB RAM and a
3.4 GHz CPU, which has 4 cores and each core supports 2 threads executing in
parallel. We first compared our method to TAPE with worst-case annotations to
show its advantages during design space exploration. Then we carried out a case
study to demonstrate the effectiveness of our confident TAPE, i.e., exploring
architecture options with respect to real-time constraints.

3.1 Confident TAPE vs. Worst-Case TAPE

We modeled a simplified embedded platform which consists of one CPU, one
DSP, memory subsystem, interconnections and a dedicated hardware, as illus-
trated in Fig. 5. The AudioFE (Audio Front End) is an analog hardware respon-
sible for decoded data playback. The functionality of MP3 decoding is modeled
as a data flow as shown in Fig. 6, which is composed of five actors, namely, source
(Src), pre-processing (PrePro), decoding (Dec), post-processing (PostPro) and
Playback (Play). The MP3 decoding time is defined as the time between the data
streaming into the PrePro stage and leaving the PostPro stage. The functional-
ity mappings and execution time are specified in Table 1. Since the Src models
the data source, it has no real corresponding processing unit and its execution
time is annotated as 0 us.

The mean execution time for each task is obtained from profiling results.
In early design phases, it can also be estimated values. To model the errors
contained in the annotation values, we set standard deviation (σ) associated to
each execution time value as listed in Table 1. It stands for the percentage of

34 Y. Xu et al.

PrePro DecSrc PostPro Play

Fig. 6. Actor-based MP3 playback model

the nominal value. In this paper, we assume the distribution type is Gaussian
for simplicity. If the distribution type is non-Gaussian, a non-linear transform
[12] [13] can be applied to convert the variable to Gaussian. Based on these
annotations, we executed our confident TAPE to estimate the time of decoding
2 KB MP3 data. Additionally, we also carried out one worst-case estimation,
which takes mean+ 3σ as annotation value.

Table 1. State-of-the-art annotations

Task Mapping mean exe. T (us) σ dist type

Src - 0 0 -

PrePro CPU 96.014 10% Gaussian

Dec CPU 221.205 16% Gaussian

PostPro DSP 646.793 20% Gaussian

Play AudioFE 20 0 -

Table 2. Annotations of architecture options

Task
Mapping mean exe. T (us) σ

dist type
cpu-dsp all-cpu cpu-dsp all-cpu cpu-dsp all-cpu

Src - - 0 0 0 0 -

PrePro CPU CPU 461.29 461.29 10% 10% Gaussian

Dec CPU CPU 1061.78 1061.78 10% 10% Gaussian

PostPro DSP CPU 3104.61 1809.41 10% 10% Gaussian

Play AudioFE AudioFE 20 20 0 0 -

Fig. 7 shows the Cumulative Distribution Function (CDF) of decoding time
generated by our confident TAPE, from which we can see that the mean execu-
tion time is 29 ms, which is the same with the one evaluated by the traditional
TAPE method, but with small confidence level; the worst-case execution time is
40.29 ms, which has very high confidence level, but it is also too conservative.
The confident estimation can be read from the CDF, which is around 35 ms.
Therefore, we can conclude that in spite of unavoidable errors in annotation val-
ues, our method can still provide more confident and realistic estimation than
mean-value or worst-case based methods.

On Confident Task-Accurate Performance Estimation 35

 0

 0.2

 0.4

 0.6

 0.8

 1

 20 25 30 35 40 45 50

P
ro

b
ab

il
it

y

Execution Time (ms)

mean

worst

conf.

Fig. 7. CDF of decoding time

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 105 110 115 120 125 130 135 140

P
ro

b
ab

il
it

y

Execution Time (ms)

mean mean

deadline

cpu-dsp
all-cpu

Fig. 8. CDFs of cpu-dsp and all-cpu

3.2 Case Study

In the following we will describe the case study to demonstrate the effectiveness
of our method to explore different architectures with respect to real-time con-
straints. In this case study, we would like to reduce the cost of the platform in
Fig. 5. One architecture option is to replace the processors with slower ones (5
times slower), noted as cpu-dsp. And another more aggressive option is to even
get rid of the DSP by moving all functionalities to the CPU, noted as all-cpu.
Before making these design decisions, we need to evaluate whether these new
architectures will meet the performance constraint or not.

The performance constraint is defined as the real-time constraint of the MP3
data decoding, i.e., whether MP3 data decoding can be finished before a specific
deadline. Assuming the sampling frequency is 44.1 KHz and the compression
ration is 1 : 11, for 2 KB MP3 data, the decoding must be finished within
(2048 × 11)/4/44.1 = 127 ms. The mappings and execution time of these new
architectures are specified in Table 2. We assume 10% standard deviation for all
execution time.

Fig. 8 illustrates the CDFs of the decoding time for both cpu-dsp architecture
and all-cpu architecture. The mean decoding time of both architectures (108
ms, 121 ms) meets the real-time constraint (127 ms). However, the confidence
information tells us that only the cpu-dsp architecture can meet the real-time
constraint with 100% confidence while the all-cpu architecture can meet the
deadline with about 80% confidence. Therefore, we can confirm that the cpu-
dsp architecture can be applied to lower the cost and it would be very risky to
use the all-cpu architecture. From this case study, we can conclude that applying
traditional TAPE to guide critical design decisions may lead to performance con-
straint violation; in contrast our methodology can provide confident estimation
result to explore architecture options with respect to real-time constraint.

We also measured the simulation speed of our framework executed with dif-
ferent parallelism degrees to evaluate the acceleration effect of our parallel MC
simulation. We totally carried out four measurements, i.e., partitioning the sim-
ulation into 1, 2, 4 and 8 sections (4× 2 = 8 threads). For 10000 iterations, the

36 Y. Xu et al.

corresponding simulation time is 775 s, 330 s, 189 s and 145 s, respectively. Based
on these results we can conclude that our parallel MC simulation scales very well
with the parallelism degrees and the simulation speed (145 s) is acceptable in
early design phases.

4 Conclusions

In this paper, we propose a confident task-accurate performance estimation
methodology used in early design phases to guide critical design decisions. This
method integrates an actor-oriented task-accurate performance estimation
method with an efficient parallel Monte Carlo simulation framework and natu-
rally solves the indeterministic task scheduling issue and the challenge of confi-
dence level calculation of parallel task execution. Experimental results show that
our methodology can provide more confident performance estimation than the
worst-case based method; and in early design phases it can be used to explore
architecture options with respect to real-time constraint.

Acknowledgment. This work was supported in part by the Project PowerEval
(funded by Bayerisches Wirtschafsministerium, support code IUK314/001).

References

1. Kempf, T., Doerper, M., Leupers, R., Ascheid, G., Meyr, H., Kogel, T., Van-
thournout, B.: A Modular Simulation Framework for Spatial and Temporal Task
Mapping onto Multi-Processor SoC Platforms. In: DATE, pp. 876–881 (2005)

2. Streubühr, M., Falk, J., Haubelt, C., Teich, J., Dorsch, R., Schlipf, T.: Task-
Accurate Performance Modeling in SystemC for Real-Time Multi-Processor Ar-
chitectures. In: DATE, pp. 480–481 (2006)

3. Streubühr, M., Gladigau, J., Haubelt, C., Teich, J.: Efficient Approximately-Timed
Performance Modeling for Architectural Exploration of MPSoCs. In: Advances
in Design Methods from Modeling Languages for Embedded Systems and SoC’s,
vol. 63, pp. 59–72 (2010)

4. Schnerr, J., Bringmann, O., Viehl, A., Rosenstiel, W.: High-performance timing
simulation of embedded software. In: DAC, pp. 290–295 (2008)

5. Teich, J.: Pareto-Front Exploration with Uncertain Objectives. In: 1st International
Conference on Evolutionary Multi-Criterion Optimization, March 7-9, pp. 314–328
(2001)

6. Giusto, P., Martin, G., Harcourt, E.: Reliable Estimation of Execution Time of
Embedded Software. In: DATE, pp. 580–589 (2001)

7. Bjuréus, P., Jantsch, A.: Performance Analysis with Confidence Intervals for Em-
bedded Software Processes. In: Proceedings of the 14th International Symposium
on Systems Synthesis, pp. 45–50 (2001)

8. Lattuada, M., Ferrandi, F.: Performance Estimation of Embedded Software with
Confidence Levels. In: ASP-DAC, pp. 573–578 (2012)

9. Lee, E., Neuendorffer, S., Wirthlin, M.: Actor-Oriented Design of Embedded Hard-
ware and Software Systems. Journal of Circuits Systems and Computers 12(3),
231–260 (2003)

On Confident Task-Accurate Performance Estimation 37

10. Lee, E.A., Neuendorffer, S.: Actor-Oriented Models for Codesign: Balancing Re-Use
and Performance. In: Formal Methods and Models for System Design, pp. 33–56
(2004)

11. Falk, J., Haubelt, C., Teich, J.: Efficient Representation and Simulation of Model-
Based Designs in System. In: Forum on Design Languages, pp. 129–134 (2006)

12. Li, X., Le, J., Pileggi, L.T.: Statistical performance modeling and optimization.
Found. Trends Electron. Des. Autom. 1(4), 331–480 (2006)

13. Seber, G.: Multivariate Observations. Wiley Series (1984)

Iwazaru: The Byzantine Sequencer

Maciej Zbierski

Institute of Computer Science,
Warsaw University of Technology, Poland

m.zbierski@ii.pw.edu.pl

Abstract. In this article we present Iwazaru - a dedicated Byzantine
fault-tolerant distributed sequencer that significantly outperforms simi-
lar solutions previously used for that purpose. The proposed protocol is
designed for timed asynchronous systems, i.e. environments in which the
response time is bounded by a known value. Using this assumption we
were able to reduce the total number of required communication rounds
by one. Additionally, although Iwazaru itself still requires 3f + 1 repli-
cas to tolerate f malicious parties, once the ordering is established no
more than 2f + 1 machines are required to execute the requests. The
performance evaluation shows that in gracious executions Iwazaru can
perform around 30% faster than Castro and Liskov’s PBFT, which was
previously used as an algorithm of choice for request ordering.

Keywords: Byzantine fault tolerance, distributed sequencer, depend-
ability, state machine replication.

1 Introduction

Nowadays more and more business and home users rely on correctness and high
availability of computer infrastructure. Consequently, simple hardware malfunc-
tion or software errors, if not properly counteracted, might lead to significant
outages resulting for instance in financial loses or user frustration. Ensuring re-
liability is therefore an inherent part of the design of most modern computer
systems.

Byzantine fault tolerance (BFT) is a powerful, yet still not very widely ap-
plied replication technique for providing availability against arbitrary (Byzan-
tine) faults. This approach is usually divided into two phases: agreement and
execution. In the agreement phase replicas decide on the order of incoming re-
quests, and in the execution phase the requests are processed according to pre-
viously established sequence. In order to tolerate f faulty nodes, at least 3f +1
replicas are required to participate in the agreement phase. Once the ordering is
known, however, only 2f +1 replicas are needed to execute them. While certain
protocols (for instance [1, 14]) incorporate both these phases, the separation of
agreement and execution is important for two main reasons. First of all, it al-
lows to reduce the overall cost of the applied solution and secondly, it enables
better resource utilization, as it is believed that the execution phase is far more
expensive than the agreement [17].

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 38–49, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Iwazaru: The Byzantine Sequencer 39

The algorithms previously applied in the agreement phase can be divided into
two main categories. The first type uses a trusted component in the role of a
sequencer. This technique has been described for instance in [2,3,15] and will not
be further analysed in this article. The other, presented for instance in [18], ap-
plies another state-machine replication protocol to agree on the order of requests.
While the efficiency of both methods is still a subject of discussions, the second
approach is usually treated as more versatile, as it places lower requirements on
system components.

To the best of our knowledge however, no dedicated distributed sequencer
tolerating Byzantine faults has been previously proposed. Instead, existing pro-
tocols, not necessarily optimized for this purpose, have been used. For instance,
Yin et al. have applied a modified version of PBFT [1] to agree on the ordering
of requests [18]. Please note however that PBFT itself combines the agreement
and execution, and requires three communication rounds even when no execu-
tion phase is required. Consequently, as the order imposed by PBFT needs to be
afterwards relayed to execution replicas, this approach introduces a fourth com-
munication round, one more than in PBFT or other traditional protocols [11,14].

In this article we contribute with a dedicated Byzantine fault-tolerant protocol
for request ordering that can be applied in the agreement phase. We additionally
show that it can be used to implement a Byzantine replication protocol consisting
of three communication rounds, the same number as PBFT, at the same time
allowing to reduce the number of machines executing the requests to 2f + 1.

The article is constructed as follows. We start by presenting the model and
the assumptions about the underlying distributed system in section 2. Section 3
presents the proposed sequencer protocol under the assumption that the reply is
relayed directly to the client that has issued the request. We drop this assumption
in section 4, where we use the proposed sequencer to build a Byzantine replica-
tion protocol for executing the requests. Section 5 evaluates the algorithm and
discusses the obtained test results. Finally, we present the related work in section
6 and conclude in section 7.

2 System Model

It is widely known that no protocol can reach consensus in a completely asyn-
chronous environment if at least one process can be faulty [7]. To circumvent
this, it is usually assumed that the system run consists of sufficiently frequent
intervals during which the system behaves synchronously. We have on the other
hand decided to focus on a timed asynchronous model [4]. In such environment
machines communicate asynchronously, but the maximum response time (in-
cluding the reaction time and communication overhead) is finite and known. If
the machine either stops responding or responds very slowly, due to for instance
heavy workload, it is regarded as faulty. We believe that, as long as the timeouts
are reasonably set, these conditions represent real-life distributed systems.

Let us call the attacker a party that is able to infiltrate all the components
of our system and has the ability to alter the protocol execution on any replica.

40 M. Zbierski

Please note that this also includes any hardware or software failure. The at-
tacker can perform his actions either by directly controlling the replica or by
intercepting the messages in a communication channel between the machines. In
the first case it can perform any arbitrary action at any point of the protocol. In
the second case it can either prevent the replicas from receiving the transmitted
messages or change their contents.

It is worth noting that the variety of actions the attacker can perform by
intercepting the messages in the channel is a subset of all the actions that can be
performed after gaining control over the sender of the message. Namely, removing
a message in the channel is equivalent to a case when the sender does not produce
a message at all. Similarly, changing the contents of a message corresponds to a
situation where the originating replica creates an already altered version of the
message. For simplicity we therefore assume that the attacker can only alter the
protocol execution on any subset of replicas, while the channel remains fault-free.
Consequently, the receiver will obtain exactly one copy of every sent message in a
known, finite time. The latter can be ensured by the abovementioned assumption
and the properties of the underlying communication protocol (such as TCP). We
however keep in mind that gaining control over the communication channel is
usually much simpler than over a replica.

Whenever the attacker has gained control over a replica or any communication
channel originating from it, we say that this replica is faulty. The safety and
liveness of our protocol are guaranteed as long as no more than f = �n−1

3 �
machines are faulty, where n is the total number of nodes in the system.

The protocol uses signatures to verify contents of messages exchanged in the
system. The primary signs the requests with newly assigned identifiers before
they are passed to backups. Additionally, all nodes attach a signature to every
message sent to the clients. Similarly to other Byzantine fault-tolerant protocols,
we assume that the cryptographic techniques cannot be broken.

3 The Algorithm

The proposed algorithm takes advantage of the primary-backup replication. Ex-
actly one machine in the system (denoted as primary) performs the role of a
centralised sequencer, ordering the requests received from clients. The other
nodes, or the backups, ensure that these assignments are correct. The general
outline of the proposed protocol can be described as follows:

1. The client sends a request to the primary
2. The primary assigns a sequence number to the received request and sends it

to backups
3. Backups try to prove that the primary is faulty. If they fail to do so, they

sign the proposed identifier and send it to the client as soon as they process
all the requests with lower sequence numbers

4. The client waits for at least f + 1 replies with the same identifier signed by
different replicas. If it succeeds, the obtained identifier is treated as valid.

Iwazaru: The Byzantine Sequencer 41

For now we assume that the replicas send the result directly to the client that
has issued the request. In section 4 we will drop this assumption and consider a
situation where the replicas forward their response to machines other than the
client, such as execution nodes.

Following the well-known nomenclature of Castro and Liskov [1] we denote
a view as the replica configuration distinguished by the current primary. View
changes are performed whenever the backups determine that the primary is
faulty. We introduce two data structures, queue and log, for storing requests on
replicated machines. The queue holds the messages that are waiting for being
sent to the client. The log on the other hand preserves the history of messages
that have already been sent to the client in the current view.

The identifiers assigned by the primary are in a form 〈v, c〉, where v is the
current view number and c is the next number in a sequence. For two identifiers
id1 and id2 we say that id1 < id2 iff. v1 < v2 or v1 = v2 ∧ c1 < c2. Additionally,
two identifiers are equal when both their compounds are the same.

3.1 The Client

Whenever a client c wishes to obtain a unique identifier for the payload p, it
sends a 〈REQ, c, p〉 message to the primary. The protocol ensures that for some
finite, yet unknown time two different requests 〈REQ, c, p1〉 and 〈REQ, c, p2〉
such that p1 = p2 result in obtaining the same identifier. If this behaviour is not
desired, the payload p should be concatenated with a unique value, such as the
current timestamp.

The replies sent to the client are in a form 〈REP, v, r, h, i〉, where v is the
identifier of the current primary, r the identifier of the sender, h the hashed
value of the corresponding payload and i is the assigned identifier. The hashed
contents of the message are additionally signed by the replica r. For a given
payload p, the client waits for messages with valid signatures and the same i
value. If such messages are obtained from at least f + 1 different replicas, i is
treated as a genuine identifier of payload p.

If the client does not receive these replies after some specified amount of
time, it resends its original request to all the replicas. If the response for the
given payload has been sent to the client before, replicas respond with a REP
message along with the identifier assigned before. If the request from the client
was already processed, but the response has not yet been generated, replicas
simply ignore the received message. Finally, if replicas have not processed that
request before, they relay it to the primary and wait either for an identifier to
be assigned, or a timeout, after which they start the recovery protocol.

3.2 The Main Protocol

Upon the start of the service the replicas set the values of the current view
number v and a counter value c to zero. Whenever the primary receives a request,
it creates an identifier in a form of a tuple id = 〈v, c〉 and increments the c value.
This identifier, along with the original request is then signed and sent to all

42 M. Zbierski

the backups, which in turn forward it to all the other replicas (including the
primary).

For a given request, the machines wait for at least 2f + 1 messages from
different replicas, which both contain the same identifier and are properly signed
by the primary. If any replica fails to do so before the assigned timeout, it issues
a view change request. Additionally, if a replica obtains two or more different
assignments for the same payload, it attaches them as a proof to its request for
a view change.

Whenever a machine successfully obtains the abovementioned messages, we
say that the corresponding request is locally committed. The replica then checks
if the newly committed request has left the system before, i.e. whether that
replica has once sent it to the client. If that is the case, the result is resent to
the client. Otherwise the committed request is inserted into the request queue,
provided that the following are true:

a) Neither the queue nor log contains a message with a different identifier as-
signed to the considered payload

b) Neither the queue nor log contains a request with the same identifier as in
the considered message, assigned to a different payload

If either of those requirements is not met, the replica triggers the view change
protocol attaching both arguable requests.

A committed message is taken out from the queue and sent to the client as
soon as all the messages with lower identifiers (even those that the replica might
be unaware of) have also been sent. In other words, the message with identifier
id > 0 is processed only when the message with id′ = id − 1 has been sent
and removed from the queue. Additionally, if a message is not removed from the
queue before a timeout, the replica starts the recovery protocol. The pseudocode
for the main protocol is presented as algorithm 1.

3.3 Recovery Protocol

Whenever a replica believes the primary is faulty, it broadcasts a view change
request 〈V CR, v, r, p〉 to all other replicas, where v is the current view number,
r is the reason and p is an optional proof. Upon retrieving such message, a
replica checks whether, based on its own knowledge and the acquired proof, it
can regard the primary as faulty. If the replica agrees and the view number
specified in the request matches the current one, it sends a VC PREP message
to other machines; otherwise it performs no action.

When a replica receives at least f + 1 VC PREP messages, it broadcasts
VC EXEC request, even though it might not agree that the primary is faulty.
Finally, when a replica obtains at least 2f+1 VC EXEC messages, it changes the
current view number, provided it is still in the same view that the one specified
in the VC EXEC message. Upon entering the new view, the replicas can erase
the contents of their queues and logs, unless they might be required for further
reference by other protocols.

Iwazaru: The Byzantine Sequencer 43

Algorithm 1. The main protocol

1 Upon reception of m=〈REQ, c, p〉 ∧ replica is primary
2 if ¬ log.contains(m) then
3 id ← assign identifier(m)
4 sign ← create signature(c,p)
5 broadcast(〈PREPARE, id, c, p, sign〉)
6 else
7 // do nothing

8 Upon reception of m=〈REQ, c, p〉 ∧ replica is backup
9 if log.contains(p) then

10 send(c, log.get(p))
11 else
12 send(primary, m)
13 set timeout(m)

14 Upon reception of m=〈PREPARE, id, c, p〉
15 broadcast(〈COMMIT, id, c, p, sign〉)
16 Upon reception of m=〈COMMIT, id, c, p, sign〉
17 if ¬ verify signature(c,p,sign) then
18 // ignore message

19 if log or queue.contains(id) ∨ log or queue.contains(p) then
20 id′ ← log or queue.get(p)
21 p′ ← log or queue.get(id)
22 if p′ �= p ∨ id′ �= id then
23 // different assignment in the past

24 start recovery protocol()

25 Upon #m = 〈COMMIT, id, c, p〉 = 2f + 1
26 if ¬committed locally(m) then
27 commit locally(m)
28 queue.insert(m)

29 Upon new message in queue
30 while next id = queue.front.id do
31 m ← queue.front
32 send(m.c, m.id)
33 queue.pop()
34 next id++

35 Upon timeout on event e
36 start recovery protocol()

44 M. Zbierski

4 Cooperation with Execution Protocols

In the previous section we have described a simplified version of the protocol,
where all replicas reply directly to the client that has issued the request. In
this chapter we will drop this assumption and use the presented algorithm in
cooperation with protocols executing the requests. For simplicity we will use a
straightforward execution protocol that requires 2f + 1 replicas, although, as
mentioned earlier, Iwazaru can also be used with speculative solutions requiring
only f + 1 machines. The modified outline of the protocol from section 3 is
presented below.

1. The client sends a request to the primary
2. The primary assigns a sequence number to the received request and sends it

to backups
3. Backups try to prove that the primary is faulty. If they fail to do so, they sign

the proposed identifier and send it to the machine from execution cluster as
soon as they process all the requests with lower sequence numbers

4. Upon receiving 2f + 1 replies with the same identifier signed by different
replicas, machines in the execution cluster add the request to their queues

5. Execution cluster replicas execute the job from their queue and send a reply
to the client as soon as all the tasks with lower identifiers have been processed

6. The client waits for at least f + 1 replies containing the same result signed
by different replicas. If it succeeds, the obtained result is treated as valid

In contrast to the protocol presented in the previous section, ordering messages
between views is not straightforward, as in some cases the execution cluster might
contain at least one replica that is unaware of some of the requests processed
by the remaining nodes. Since the number of execution replicas is insufficient to
reach a consensus, the ordering between the views needs to be implemented by
the agreement cluster. The modified view change procedure is presented in the
following chapter.

4.1 The Modified Recovery Protocol

The recovery procedure is the same as in section 3.3 up to the point when a valid
replica receives at least f + 1 VC PREP messages. At that stage, regardless of
its beliefs about the state of the primary, the replica creates a 〈QUERY M, v, l〉
message, where v is the current view number and l is an excerpt from its log. The
data in l contains all the assignments of identifiers between a certain value called
a milestone and the greatest identifier known by that replica. We will present a
broader definition of a milestone and describe how they are created at the end
of this chapter.

After relaying the message, replicas set theirs timers. Adjusting the timeout
is feasible, since the maximum reaction time of a node is known due to our
assumption about the timed asynchronous model. Replicas then wait either for
a reply from all the machines or for a timeout to occur. After that it can be

Iwazaru: The Byzantine Sequencer 45

said, that every node has received a reply from all valid replicas. Each machine
then established the highest identifier confirmed by at least f + 1 replicas, i.e.
performs a search for such identifier M that:

∀i ≤ M #confirmed(i) ≥ f + 1 ∧ #confirmed(M + 1) ≤ f

In other words, M represents the last message that could have been executed
by at least one replica from the execution cluster. Once the decision is made,
replicas increment their view number and relay the responsibilities of a primary
to the next machine. Additionally, each node sends a confirmation of a view
change along with M to the machines from the execution cluster.

The replicas in the execution cluster continue to execute requests from their
queues and switch to the new view as soon as the request with identifier M is
processed. If any replica is unable to proceed due to absence of a request in its
queue, it queries the remaining machines from the execution cluster and waits
for a response from at least f + 1 nodes.

The process of creating the list of the assignments known to the replica can
be very time-consuming, especially if the view change has not been performed
for quite a long time. In order to minimize the time required for this operation
we have introduced a concept of milestones. A milestone represents a certain
identifier that has been confirmed by at least 2f+1 replicas. Since a prerequisite
for a request to be processed by a valid node is that all the messages with lower
identifiers have also been processed, theM value cannot be less than the identifier
of a milestone.

Replicas from the execution cluster periodically create a new milestone after
executing a batch of requests. Whenever a node decides to do so, it sends a mes-
sage to every replica in the agreement cluster. Upon receiving f+1 propositions,
replicas move the current milestone to the new position.

5 Performance and Evaluation

In order to evaluate our approach we have performed a series of comparison test
between Iwazaru and PBFT, which has previously been used as an algorithm
for request ordering [18]. As described before, Iwazaru requires one communica-
tion round less than PBFT while introducing only minor additional workload in
remaining rounds. The expected theoretical speedup as compared to PBFT is
therefore around 33%.

To verify this estimation we have implemented and executed simplified ver-
sions of both algorithms, focusing only on gracious executions, i.e. executions
during which the primary is correct. The parts of both protocols responsible for
changing a faulty primary have not been implemented, as they base on differ-
ent assumptions and are therefore beyond comparison. In normal conditions the
recovery protocol of Iwazaru may be several times slower, depending on the im-
posed timeouts and the distance from the last milestone. This however does not
limit the practicality of our approach, since as long as the timeouts are properly
adjusted, primary faults should be rather rare. The overhead introduced by the

46 M. Zbierski

Fig. 1. Throughput of PBFT and Iwazaru in systems tolerating f = 1 faults.

view changes should therefore be balanced by the gain obtained from correct
protocol runs.

The simulations were performed on an 8 core server equipped with 64GB
RAM. In each run of the experiment a certain number of clients simultaneously
issued requests to both protocols. The duration of an experiment spans between
the first issued request and the point where the last client receives at least f +1
identical identifiers. The throughput of an algorithm is represented by the mean
number of assigned identifiers per second achieved throughout the duration of
the simulation.

Figure 1 presents the throughput achieved for both algorithms in a system
configured for tolerating a single faulty node. As the number of clients increases,
Iwazaru scales better than PBFT. In its peak performance Iwazaru has proved
to perform a little less than 30% faster than PBFT, as compared to theoretical
33%. The difference between both values can be justified by additional actions
that are undertaken by Iwazaru. These include for instance setting timeouts on
the request queue and executing additional references to log. In general however,
the achieved result is very close to our theoretical predictions.

Fault scalability of both algorithms for a constant number of clients is pre-
sented in figure 2. In comparison to a system with f = 1, the introduction of
additional three nodes has halved the throughput of both protocols. This trend
also holds as the number of tolerated faults increases. An interesting observation
is that, apart from the case when f = 1, the throughput of Iwazaru tolerating
f + 1 faults is very close to PBFT tolerating f faults.

Although increasing the number of tolerated faults significantly reduces ob-
tained throughput regardless of the algorithm, Iwazaru has generally demon-
strated better fault scalability. While, as presented earlier, for f = 1 Iwazaru

Iwazaru: The Byzantine Sequencer 47

Fig. 2. Fault scalability of PBFT and Iwazaru with 100 clients

has performed around 30% faster than PBFT, with introducing more nodes to
the system we have observed an increase of this value to around 40%.

The experimental results have therefore confirmed our expectations. Using
Iwazaru as a distributed sequencer rather than PBFT can significantly improve
performance of the whole system. Consequently, a replication algorithm based on
Iwazaru, despite introducing an additional communication round, can be almost
as fast as PBFT itself, while at the same time allowing for reduction in the
number of machines performing the requests.

6 Related Work

The problem of Byzantine agreement was originally presented by Lamport,
Shostak and Pease [12]. Early BFT solutions were either synchronous or intro-
duced an overhead too high for practical applications [9, 13]. PBFT by Castro
and Liskov [1] is considered to be the first practical asynchronous Byzantine
replication algorithm and is treated as a baseline ever since.

Throughout the years various approaches to reduce the throughput and cost
of Byzantine fault-tolerant replicated systems have been presented. Kotla et.
al. [11] proposed to parallelize the execution of incoming requests, as long as
their order was insignificant. Speculative execution was also analysed, on both
server [10] and client side [16].

Yin et. al. [18] proposed the separation of agreement and execution using
a slightly modified version of PBFT in the role of a sequencer. Subsequently,
trusted components became a commonly used alternative to distributed se-
quencers. This method is represented for instance by TTCB [3], A2M [2] and

48 M. Zbierski

MinBFT [15]. Trusted subsystems are however usually either very costly to im-
plement or introduce a major performance bottleneck. CheapBFT [8] tries to
approach this problem by using FPGA-based trusted component.

Another implication of separating agreement and execution is the possible
reduction in the number of machines required to perform the requests. While
originally at least 2f + 1 nodes are needed, several protocols require only f + 1
machines during gracious executions. SPARE [6] and ZZ [17] rely on virtualiza-
tion and are able to activate up to f additional replicas when faults are detected
or suspected. ODRC [5] proposes a different approach by using surplus replicas
to execute requests in parallel, as long as they operate on disjoint parts of the
internal state. Finally, it is worth noting that Iwazaru can be adopted to work
with the majority of the abovementioned protocols.

7 Conclusion

In this article we have presented Iwazaru - a distributed Byzantine fault-tolerant
sequencer that can be applied in the agreement phase of the majority of contem-
porary state machine replication protocols. By assuming timed asynchronous
model for the underlying distributed system we were able to reduce the number
of communication steps required to agree on the order of the incoming requests.

Our tests have demonstrated that under normal execution Iwazaru signifi-
cantly outperforms distributed sequencer used by Yin et. al. [18]. By applying it
into a replication algorithm separating agreement from execution we were able
to obtain a solution only several percent slower than PBFT itself, while at the
same time allowing for a significant reduction in number of machines executing
the requests.

We believe that timed asynchronous model, if correctly configured, is appro-
priate for the majority of modern distributed systems. In the future we plan
to focus on optimizing the execution algorithm and deploying an Iwazaru-based
protocol in wide area networks.

References

1. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Proceedings of the
Third Symposium on Operating Systems Design and Implementation, OSDI 1999,
pp. 173–186. USENIX Association, Berkeley (1999)

2. Chun, B.-G., Maniatis, P., Shenker, S., Kubiatowicz, J.: Attested append-only
memory: Making adversaries stick to their word. In: Proceedings of the 21st Sym-
posium on Operating Systems Principles (2007)

3. Correia, M., Neves, N.F., Veŕıssimo, P.: How to tolerate half less one Byzantine
nodes in practical distributed systems. In: Proceedings of the 23rd IEEE Sympo-
sium on Reliable Distributed Systems, pp. 174–183 (October 2004)

4. Cristian, F., Fetzer, C.: The timed asynchronous distributed system model. IEEE
Transactions on Parallel and Distributed Systems 10, 642–657 (1999)

5. Distler, T., Kapitza, R.: Increasing performance in Byzantine fault-tolerant sys-
tems with on-demand replica consistency. In: Proceedings of the EuroSys 2011
Conference (EuroSys 2011), pp. 91–105 (2011)

Iwazaru: The Byzantine Sequencer 49

6. Distler, T., Kapitza, R., Popov, I., Reiser, H.P., Schröder-Preikschat, W.: SPARE:
Replicas on hold. In: Proceedings of the 18th Network and Distributed System
Security Symposium (NDSS 2011), pp. 407–420 (2011)

7. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Technical report, Cambridge, MA, USA (1982)

8. Kapitza, R., Behl, J., Cachin, C., Distler, T., Kuhnle, S., Mohammadi, S.V.,
Schröder-Preikschat, W., Stengel, K.: CheapBFT: Resource-efficient Byzantine
fault tolerance. In: Proceedings of the EuroSys 2012 Conference (EuroSys 2012),
pp. 295–308 (2012)

9. Kihlstrom, K.P., Moser, L.E., Melliar-Smith, P.M.: The SecureRing protocols for
securing group communication. In: Hawaii International Conference on System
Sciences, pp. 317–326 (1998)

10. Kotla, R., Clement, A., Wong, E., Alvisi, L., Dahlin, M.: Zyzzyva: Speculative
Byzantine fault tolerance. In: Symposium on Operating Systems Principles (2007)

11. Kotla, R., Dahlin, M.: High throughput Byzantine fault tolerance. In: Proceedings
of the 2004 Conference on Dependable Systems and Networks, pp. 575–584 (2004)

12. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems 4, 382–401 (1982)

13. Reiter, M.K.: The Rampart Toolkit for Building High-Integrity Services. In: Bir-
man, K.P., Mattern, F., Schiper, A. (eds.) Dagstuhl Seminar 1994. LNCS, vol. 938,
pp. 99–110. Springer, Heidelberg (1995)

14. Rodrigues, R., Castro, M., Liskov, B.: BASE: using abstraction to improve fault
tolerance. In: Proceedings of the 18th Symposium on Operating Systems Principles,
pp. 15–28. ACM Press (2001)

15. Veronese, G.S., Correia, M., Bessani, A.N., Lung, L.C., Verissimo, P.: Efficient
Byzantine fault tolerance. IEEE Transactions on Computers 99(prePrints) (2011)

16. Wester, B., Cowling, J., Nightingale, E.B., Chen, P.M., Flinn, J., Liskov, B.: Tol-
erating latency in replicated state machines through client speculation. In: Pro-
ceedings of the 6th USENIX Symposium on Networked Systems Design and Im-
plementation, pp. 245–260. USENIX Association, Berkeley (2009)

17. Wood, T., Singh, R., Venkataramani, A., Shenoy, P., Cecchet, E.: Zz and the art
of practical bft execution. In: Proceedings of the Sixth Conference on Computer
Systems, EuroSys 2011, pp. 123–138 (2011)

18. Yin, J., Martin, J.-P., Venkataramani, A., Alvisi, L., Dahlin, M.: Separating agree-
ment from execution for byzantine fault tolerant services. In: Proceedings of the
Nineteenth ACM Symposium on Operating Systems Principles, pp. 253–267. ACM
Press (2003)

Exploiting Thermal Coupling Information in MPSoC
Dynamic Thermal Management

Simone Corbetta and William Fornaciari

Politecnico di Milano – Dipartimento di Elettronica e Informazione
Via Ponzio 34/5 – 20133 Milano, Italy

{scorbetta,fornacia}@elet.polimi.it

Abstract. Temperature profile optimization is one of the most relevant and chal-
lenging problems in modern multi-core architectures. Several Dynamic Thermal
Management approaches have been proposed in literature, and run-time policies
have been designed to direct the allocation of tasks according to temperature con-
straints. Thermal coupling is recognized to have a role of paramount importance
in determining the thermal envelope of the processor, nevertheless several works
in literature do not take directly into account this aspect while determining the
status of the system at run-time. Without this information, the DTM design is
not able to fully redistribute the roles that each core have on the system-level
temperature, thus neglecting important information for temperature-constrained
workload allocation.

Purpose of this work is to provide a novel mechanism to better support DTM
policies, focusing on the estimation of the impact of thermal coupling in deter-
mining the appropriate status from a thermal stand-point. The presented approach
is based on two stages: off-line characterization of the target architecture esti-
mates thermal coupling coefficients, that will be used at run-time for proper DTM
decisions.

1 Introduction

Microelectronics integration density is limited by the reliability of the circuits. Increas-
ing power consumption of VLSI circuits causes thermal effects to become one of the
most important concerns for circuit reliability. Experimental results show that more
than 50% of integrated circuit failures are due to thermal issues [1]. In addition, it
has been demonstrated that temperature spatial gradients have negative effect on the
performance of the circuit [2]. Temperature profile optimization for reliable system de-
sign has become of paramount importance, and several Dynamic Thermal Management
(DTM) approaches have been proposed in literature. The purpose of DTM is to control
the varying temperature profile to optimize a given objective function: for instance, in
reliable systems, the optimization goal is generally the maximum operating tempera-
ture or the maximum variability of the temperature (in time) compared to the average
chip temperature. All these aspects require an accurate estimation of the status, from
a thermal view-point, of the processor. With multi-core technology gaining further at-
tention, this aspect is of paramount relevance since the problem of estimation is just a
fraction of the DTM process, but the benefits of a good DTM are entirely based on the

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 50–61, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Exploiting Thermal Coupling Information in MPSoC Dynamic Thermal Management 51

3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
0

20

40

60

80

100

Samples

W
or

kl
oa

d
[%

]

Core#1
Core#2

(a) Workload

3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
35

40

45

50

55

60

65

70

Samples

T
em

pe
ra

tu
re

 [
°C

]

Core#1
Core#2

(b) Temperature

Fig. 1. Thermal coupling effects on a dual-core architecture, showing (a) workload and (b) tem-
perature of both cores

estimation process itself. For this reason, it is belief of the authors that an accurate esti-
mation methodology should be employed. The main important aspects of the proposed
methodology are to be searched in the role that thermal coupling has on the temperature
distribution in a chip [3].

1.1 Motivation Example

This research work faces the problem of an appropriate dynamic thermal management
support for multi-core processors, that focuses on the role of thermal coupling in the es-
timation process. The proposed work aims at the definition of a mechanism supporting
DTM policies, while the definition of an appropriate policy is part of on-going research.
The proposed novel methodology accounts for two important aspects: the coupling be-
tween pairs of cores, and the transient profile to reach steady-state temperature val-
ues. The importance of these two aspects will be discussed in this section, and a brief
overview of the problem will be proposed from a formal stand-point.

In single-core processors the operating temperature is a function of the only core
operating point: frequency, supply voltage and the load impacting on the switching ac-
tivity of the core circuitry. In this context, temperature is mainly due to the self-heating
process, since power consumption leads to thermal energy dissipation. Thermal man-
agement in this scenario is rather trivial, since control points converge into the processor
itself. Nevertheless, this is not the case with multi-core architectures. Assume a double-
core architecture with asymmetric load, i.e. each core is loaded with applications that
are different from a power requirements view-point, and suppose to sample the temper-
ature of each core once every τ time units. Then, consider the temperature profile as
a function of the workload in each processor. Figure 1 reports the temperature profile
and the workload of an Intel©Core™2 Duo processor; temperature values are sampled
once every second using appropriate standard interfaces available in the GNU/Linux
operating system. Two main aspects are clear from this scenario. The first one is on
the effect of cores proximity on the temperature distribution inside the package: even
though Core#1 is low loaded (under 10% on average) in the first period from sample
3000 to sample 5000, it actually does consume a non negligible portion of static power
due to the temperature induced by the activity of Core#2. As a matter of fact, the oper-
ating temperature of Core#1 is 55°C in this time period, while its lowest value is around

52 S. Corbetta and W. Fornaciari

40°C as it happens in the time frame between samples 5000 and 6500. This means that
an inactive core should be actually subject to power/performance decisions, and also to
reliability concerns, since it plays a relevant role in the system power dissipation and
thermal envelope. Another important aspect is the one of transients. The rate at which
a core heats up depends on several factors, both local (i.e., proper to the core) and non-
local (i.e., induced by neighbor cores). The proximity to active cores makes the average
cores temperature higher than in the case of isolated environments or when the system
is entirely in low activity, also due to the package resistance and capacitance charac-
teristics to spread thermal energy. Furthermore, the rate speed at which a core heats up
is a function of the difference between the steady-state and the actual temperatures [4],
the physical parameters determined by the architecture and fabrication of the chip, the
workload of that core and of the neighbor ones, and power consumption.

1.2 Novel Contributions

By exploiting the current temperature readings, the temperature history and appropriate
thermal status information, purpose of our research work is giving a major source of
information to the system-wide thermal management subsystem to control temperature
envelope and to prolong device lifetime. The proposed approach tries to convey raw
information and power/performance metrics to give a more accurate overview of the
system status from a temperature view-point, considering the direct effects of thermal
coupling and core-to-core proximity. To this extent, we define a methodology to esti-
mate the status, from a thermal view point, of each core in a multi-core processor. We
developed a two-stages methodology, where accurate thermal coupling information is
collected once off-line, properly stressing the target architecture, and used at run-time
to take appropriate power/thermal management optimizations. The novel contributions
of this work can be summarized as follows: (i) a novel mechanism for supporting Dy-
namic Thermal Management is proposed, focusing on the role of thermal coupling in
specifying the status of each core; (ii) a novel system-wide metric is proposed, through
an appropriate formal model; (iii) a two-stage estimation methodology has been devel-
oped, general enough to be virtually employed in any multi-core architecture.

The remainder of the paper is organized as follows. The metric will be presented in a
formal way in Section 2: the analytical expressions raising the metric will be presented,
and the methodology to estimate the coupling coefficients in the target architecture will
be also discussed. Experimental results are then given in Section 3. Related works on
the topic are given in Section 4, while conclusions are drawn in Section 5.

2 Definition of a Thermal Status Metric

The proposed methodology is based on the novel concept of thermal status (or status),
combining power, performance and temperature metrics; the logic that glues together
these aspects resides in the thermal coupling. It is meant to be employed on-line and to
give a comprehensive status of the processor to support dynamic thermal management
policy selection.

Exploiting Thermal Coupling Information in MPSoC Dynamic Thermal Management 53

2.1 Neighbor-Aware Thermal Status

As sketched in Section 1, in multi-core architectures the temperature reached by a core
is a function of local and non-local contributions. In particular, the heat associated to
a core j is a function of two different sources. A generative one accounts for the dy-
namic power consumption according to its activity; this is independent on the floorplan,
but impacts cores in the proximity. Also, an exchange contribution takes into account
coupling effects among cores that reside in the neighborhood, and it is proportional to
the physical distance between cores. This last term models the spatial aspect of ther-
mal heat diffusion. With these definitions, the generative contribution can be mapped
to the power consumption profile of the generic core j, while the exchange contri-
bution accounts for thermal proximity. We define the generative contribution gj(t) of
core j at sample time t in Equation 1, through a function of the operating point tuple
Oj(t) = 〈Vj(t), fj(t), wj(t), Tj(t)〉, with Vj(t) being the supply voltage applied to that
core, fj(t) its operating frequency, wj(t) its average load and Tj(t) its operating tem-
perature. Notice that Vj(t) and fj(t) can change dynamically according to the presence
of a power management framework. To simplify the on-line estimation process, their
values are defined relative to the maximum (architecture dependent) voltage VMAX and
frequency fMAX . The additive term takes into account temperature-dependent leakage
effects. The values ξdyn and ξst are used to weight the dynamic and static power con-
tributions; their typical values are set according to reflect scaled technologies [5], e.g.
〈ξdyn, ξst〉 = 〈0.65, 0.35〉.

gj(t) = ξdyn ·
((

Vj(t)

VMAX

)2
fj(t)

fMAX
wj(t)

)
+ ξst · exp {−1/Tj(t)} (1)

Equation 1 provides a perspective with respect to local information on the cores, i.e. its
validity is confined to the generic core j. In order to account for the heat conduction
between adjacent cores, we apply the generative contribution definition to each core k
in the neighborhood set Nj of core j, as given in Equation 2. The second contribution
from sj(t) is due to neighbors activity. θjk represents the thermal coupling factor that
holds between cores j and k. The generative value is then further weighted through
an index αj(t) accounting for aging aspects. The value of α changes over time as a
consequence of temperature-accelerated reliability concerns, for instance considering
the impact of Negative Bias Temperature Instability (NBTI) on the performance of the
device [6]. In this work, we assume it constant (αj = 1) for simplicity.

sj(t) = αj(t) · gj(t) +
∑
k∈Nj

θjk · αk(t) · gk(t) (2)

Λ =
s1 T1 + s2 T2 + · · ·+ sN TN

T1 + T2 + · · ·+ TN
=

1

N Tp

N∑
j=1

sjTj (3)

The definition of thermal status given in Equation 2 provides local as well as coupling
information, but focuses on a per-core perspective and does not provide a system-wide
perspective. A system-wide thermal status metric Λ is defined in Equation 3, where N

54 S. Corbetta and W. Fornaciari

is the number of cores 1. The system-wide perspective is a weighted sum of the thermal
status of each core in the processor and weights are determined by the local temperature
values Tj ; in this way, it jointly exploits local and package (average) temperature as well
as thermal status information. The expression at the denominator equals N times the
average temperature Tp in the processor.

2.2 Proactive Thermal Status

The model given in Equation 3 allows us to capture the heat-up rate of the system, in
terms of perturbations of the (local) thermal status of each core. In general, consider-
ing the thermal coupling effects exploited in the model of Equation 2, a perturbation
of the local thermal status sj will have direct effects on the thermal status sk in the
neighborhood set Nj , by means of thermal coupling phenomenon. From a system-wide
perspective, on the other hand, a perturbation of the (local) thermal status of each core
will have additive effects on the value of Λ. According to Equation 3, these effects
will be a function of the local temperature values with respect to the system’s aver-
age temperature. This aspect ranks the cores according to their role in determining the
system temperature: the higher the core-to-package ratio Tj/Tp, the higher the role
of core j in determining temperature Tp; this can be due for instance to the different
power/performance profile of core j, or to coupling contributions. To formalize the ef-
fects on the system-wide metric Λ by means of local perturbations, we have to consider
the total derivative of Λwith respect to the perturbation sj in the vectorS = [s1s2...sN].
Equation 4 reports the analytical expression of the derivative. By definition, we have to
take care of three quantities: the partial effects on Λ of an increase in sj ; the partial
effects on Λ due to an increase in sk, for each k in the neighborhood set Nj , and the
mutual effects of sj and sk.

dΛ

dsj
=

∂Λ

∂sj
+
∑
k �=j

∂Λ

∂sk

dsk
dsj

=
Tj

N Tp
+
∑
k �=j

Tk

N Tp
θjk (4)

The first term ∂Λ/∂sj defines the effect on Λ of an increase in the value of thermal
status sj ; according to Equation 3 this derivative equals Tj/(N Tp): an increase in the
local status has an impact on the system-wide perspective that is a function of the rela-
tive temperature with respect to the system average temperature. The summation term
extends the derivative to the adjacent cores; the first factor of the summation has the
same meaning as the previous one but focuses on adjacent cores. As a second factor,
the effects of considering the ratio of the differentials dsk and dsj from two cores k and
j, models the mutual influence that a change in thermal status sj has on the adjacent
ones; the ratio dsk/dsj can thus be understood to be the thermal coupling factor θjk
from Equation 2. The values assumed by these coefficients are estimated through an
appropriate methodology, discussed later on in Section 2.3. Hence, the model in Equa-
tion 4 is a suitable tool to keep track of the dynamic behavior of the system in response
to an evolution of the thermal status of each core, and to assess the mutual influence
of thermal status between pairs of cores as the system evolves. The only relationship

1 From now on, the notation will be simplified avoiding the use of time variable t.

Exploiting Thermal Coupling Information in MPSoC Dynamic Thermal Management 55

modeled in Equation 4 is the one between status sj and Λ and nothing is said about
the relationship between a change in gj and Λ, necessary to estimate the effects of lo-
cal power/performance requirements on system-wide metrics. Similar to what has been
done in Equation 4, we can compute the effect of a perturbation of the self-heating con-
tribution on Λ. In this case, however, additional care must be taken: sj is a function of
gj , such that Λ is a compound function of sj and gj and Λ = f(sj ◦gj) = f(sj(gj)); as
a consequence the impact on Λ of gj is not directly exploited, but should pass through
the analysis of the impact on sj ; last, the mutual influence between dgj and dgk is to be
considered null, by definition of the self-heating contribution in Equation 2. The total
derivative is reported in Equation 5.

dΛ

dgj
=

dΛ

dsj
· dsj
dgj

=

⎛⎝ ∂Λ

∂sj
+
∑
k �=j

∂Λ

∂sk
· dsk
dsj

⎞⎠ ·
⎛⎝∂sj
∂gj

+
∑
k �=j

∂sj
∂gk

· dgk
dgj

⎞⎠ (5)

Locally, we can compute the impact on the thermal status by an increase in the genera-
tive contribution in three generic cases: (a) when an increase in the core activity does not
modify the operating point; (b) is in the opposite direction, in which the only operating
point is changed; (c) refers to the mixed change in the activity and operating point. The
common contribution in cases (a), (b) and (c) relies on the sole ξdyn factor, determining
the impact of dynamic power contribution as a function of the power/performance point
of core j. Last, the ratio between the two differentials dgk and dgj is null by definition.

2.3 Coupling Coefficients Estimation

The proposed estimation methodology accounts for the contribution given by the dif-
ferent subsystems composing the reference SoC architecture (e.g., the coupling con-
tribution due to hardware blocks different from the cores). Also, it can be employed
on different architectures, thus developing as a general methodology. The interest on
this last aspect increases with the increasing availability of multi-core architectures in
different domains, pushing researchers to find a suitable methodology to easily adapt
their thermal-aware designs and thermal management solutions in a broad range of
platforms and operating environments. The proposed approach accounts for the avail-
ability of on-chip resources and on-board cooling facilities (e.g., fans or fan less, heat
sinks dimension and geometries...), through direct temperature observation and plat-
form characterization at warm-up periods. The proposed methodology is divided into
three steps. The generic mapping specification M is used to load the multi-core archi-
tecture to cover a broad range of allocation patterns: each pattern specifies which core
will be assigned work to, and which load. For each mapping M , temperature values
are sampled from each core until the steady-state temperature of the system is reached.
Once the temperature vector T is known, coupling factor θ is estimated for that partic-
ular configuration, and for each core pairs. The flow ensures that different load levels
are allocated to each core in the system; this is driven by the rationale that the effec-
tive thermal coupling coefficient is a function of the status of each core, in terms of
power consumption, and it is not dependent on the sole floorplan. To estimate the cou-
pling coefficients, we run a predefined set of typical applications with the objective to

56 S. Corbetta and W. Fornaciari

heat-up the processors in a controlled environment. Denoting with X the set of active
processors, and with Y the available CPU activity, the mapping should cover a proper
subset of X × Y . Temperature profiles are used for computing the thermal coupling

coefficients θjk between cores j and k as θjk =
(
Tj − T

(q)
k

)
/T

(q)
k , where Tj is the

maximum temperature reached by core j in a particular configuration 〈x, y〉 ∈ X × Y ,

while T (q)
k is the quiet-state temperature of core k, i.e. its temperature when the system

is idle (for simplicity, this equals ambient temperature). The output of the second stage
is a multi-dimensional matrix summarizing the thermal coupling phenomena at differ-
ent configurations. Each entry defines the coupling factor as a function of the workload,
and can be hard-coded in the DTM policy.

3 Results

We conducted several experiments on representative Intel©i7 820QM quad-core pro-
cessor, featuring 4 physical on-chip cores supporting up to 8 threads, operating at a
maximum frequency of 1.73GHz and fabrication node 45nm; the processor is design to
support a Thermal Design Power of 45W. We used different real-life applications, rang-
ing from scientific to multimedia workloads. Since the aspect of interest resides in the
coupling phenomenon without any specific relationship with the application running on
each core, we will not go through any workload characterization: from our perspective
the heating process is the most important feature, independently on the application of
interest. Data related to temperature, frequency and workload is taken during execu-
tion of mixed applications. Results here are grouped into different sections. Section 3.1
shows the difference of estimation in two cases: with and without the support of the
thermal coupling contribution from Equation 2. Section 3.2 shows the results obtained
from the estimation of thermal coupling with the methodology proposed in Section 2.3,
considering quad-core processors. Finally, Section 3.3 gives an overview of the estima-
tion process overhead as a function of the history window depth.

3.1 The Impact of Thermal Coupling

There is a slightly different estimate in the proposed model with respect to neglecting
coupling contributions. Such difference can be as high as as 30% in some cases. This
difference is shown in Figure 2(a), highlighting the influence of operating temperature
on the estimation. The top-most figure reports the thermal status estimate with and with-
out considering the thermal-coupling contributions (respectively, Floorplan-aware and
Classical scenarios); such difference demonstrates that without considering coupling
contribution, there will be an underestimation, and this underestimation being as much
as 65%. This will generally influence DTM decisions, since policies are biased to the
information provided about the system from a thermal view-point. The bottom-part of
the figure, on the other hand, shows the relative error (with its moving-average) su-
perimposed to the normalized temperature profile. In this case, the error is higher when
average temperature is lower; this empirical observation of our model is in concordance
with reality, since at higher temperatures the impact of coupling decreases due to the

Exploiting Thermal Coupling Information in MPSoC Dynamic Thermal Management 57

0 1000 2000 3000 4000 5000 6000 7000
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

(a) Thermal status as computed with and without the thermal−coupling information

0 1000 2000 3000 4000 5000 6000 7000
0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Underestimation in neglecting coupling contribution

Classical
Floorplan−aware

Difference profile
Average difference
Temperature

Th
er

m
al

 st
at

us
N

or
m

al
iz

ed
 th

er
m

al
 st

at
us

(a) Estimation mismatch

0 20 40 60 80 100 120 140 160 180 200
60

65

70

75

80

85

Te
m

pe
ra

tu
re

 [°
C]

Core 1
Core 2
Core 3
Core 4

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

No
rm

al
ize

d
ac

tiv
ity

0 20 40 60 80 100 120 140 160 180 200
0.1

0.15

0.2

0.25

0.3

0.35

Er
ro

r

(a) Temperature profile

(b) Cores workload

(c) Estimation distance (error)

(b) Estimation mismatch breakdown for
each core

Fig. 2. Estimation mismatch and error profile in a quad-core processor, as a function of the oper-
ating temperature and workload

fact that the neighborhood average temperature tend to saturate. For completeness, Fig-
ure 2(b) reports the absolute difference for each core considering a specified time span
of 200 samples, as a function of the activity and temperature of each core. The dif-
ference in a quad-core processor can reach up to 65%, while experimental results (not
reported for lack in space) on dual-core processors show the difference is below 50%.
Similar conclusions as for the previous case can thus be drawn.

3.2 Thermal Coupling Coefficients

The results in this section show how to determine quantitative values for the θj,k coef-
ficients from Equation 2, varying with the dynamic power and performance state of the
processor. To simplify the characterization process, we consider the temperature ranges
of each core as a function of the workload associated to each core, rather than as a
function of the effective power consumption. The advantage of this approach is in the
simplified estimation process, although its validity is bound to a particular power man-
agement policy. In this perspective, we conducted several experiments with different
allocation patterns: we then discretized the available workload in steps of 25%, using
tools available in GNU/Linux operating system. In order to find the values in the multi-
dimensional matrix, an exhaustive set of tests should be performed covering all possible
allocation patterns. Due to lack in space, only a selected subset of representative tests
will be reported. Notice that we are not interested in selecting a specific benchmark

58 S. Corbetta and W. Fornaciari

to stress the processor, because we are interested in heating-up the processors without
being aware of the executing application, since the focus is on application-independent
thermal management. Figure 3 shows how the coupling coefficient varies effectively
with the load; the values of the coefficients are reported normalized with respect to the
maximum. Figure 3 highlights a varying trend, relying upon the core’s activity. The fact
that all the cores’ coefficients asymptotically reach the same trend line while load tends
to 100% reveals the steady-state nature of thermal coupling phenomenon, as already
mentioned earlier: at steady-state temperature the system is stable, influence decreases
and the coefficients reach their maximum values. In this case, the system will remain
stable until it changes its state.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Load

N
or

m
al

iz
ed

 c
oe

ffi
ci

en
t

Core 1
Core 2
Core 3
Core 4

(a) Allocation pattern 1000.
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

Load

N
or

m
al

iz
ed

 c
oe

ffi
ci

en
t

Core 1
Core 2
Core 3
Core 4

(b) Allocation pattern 0100.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Load

N
or

m
al

iz
ed

 c
oe

ffi
ci

en
t

Core 1
Core 2
Core 3
Core 4

(c) Allocation pattern 0010.
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

Load

N
or

m
al

iz
ed

 c
oe

ffi
ci

en
t

Core 1
Core 2
Core 3
Core 4

(d) Allocation pattern 0001.

Fig. 3. Thermal coupling coefficients trend, as a function of the load of the active core when a
single core is active, for different allocation patterns

The same experiments have been conducted while loading more than one core in the
processor; the procedure has been exhaustively repeated for every allocation pattern.
Figure 4 reports the coefficients for one single allocation pattern, for lack in space. The
surface shows the influence of cores activity on each core in the architecture (active or
idle). The values plotted on the surface are normalized to their maximum values. As
already sketched in the previous results, the coefficients have much higher variance at
lower temperatures (represented by lower cores’ activity).

We can also capture additional relevant aspects in the thermal coupling phenomenon.
The thermal coupling coefficient is monotonically non-decreasing for a given mixed
workload. The first difference we encounter in the quad-core case is a steady-state flat
region early toward higher values of the cores activity; this aspect was not experienced
in the dual-core case, and it might be associated to the allocation pattern and to the
relevant differences in the architecture design and floorplan (however, at the same tech-
nology node). Furthermore, the coupling trend is in general a function of the allocation
pattern. Even though this dependence is weak at higher cores’ activity, it is quite rele-
vant when the cores are loaded weakly: this is clear if we compare the trend for Core#2
in the two allocation patterns.

Exploiting Thermal Coupling Information in MPSoC Dynamic Thermal Management 59

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

Core 1 loadCore 4 load

N
or

m
al

iz
ed

 c
oe

ffi
ci

en
t

(a) Core#1
0

0.2
0.4

0.6
0.8

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

Core 1 loadCore 4 load

N
or

m
al

iz
ed

 c
oe

ffi
ci

en
t

(b) Core#2

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

Core 1 loadCore 4 load

N
or

m
al

iz
ed

 c
oe

ffi
ci

en
t

(c) Core#3
0

0.2
0.4

0.6
0.8

1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

Core 1 loadCore 4 load

N
or

m
al

iz
ed

 c
oe

ffi
ci

en
t

(d) Core#4

Fig. 4. Thermal coupling trend of each core, as a function of the CPU activity of the active cores.
Cores are reported in order (Core#1 on the extreme left and Core#4 on the extreme right). Data
are reported for allocation patterns 1001.

Notice that the aforementioned aspects are in line with the concept of thermal
impedance in chip packages. Indeed, for a given package, the thermal impedance is
reported to be a function of both the duty cycle and the duration of the (equivalent)
power consumption pulse. To the best of our knowledge, this is the first time a concept
like this is employed in multi-core architectures to characterize the thermal behavior
of the SoC importance of thermal coupling in future technology nodes and multi-core
architectures, we can envision that in perspective a coupling pre-characterization of
commercial multi-core processors will be integrated in the processor data sheet.

3.3 Estimation Overhead

The estimation process reported in Section 2 and Section 2.3 has been completely de-
veloped under a GNU/Linux operating system, based on the lm-sensors interface to
retrieve low-level information from the hardware architecture (e.g., temperature sam-
ples, workload activity, frequency and supply voltage values). The framework has been
developed entirely as user-space, using gcc compiler version 4.4.3. Slow-down esti-
mates as a function of the history depth have been proven to be in the order of a few
milliseconds, making it suitable for real deployment. Furthermore, the performance re-
quirements have been shown to be independent on the history depth: the bottleneck is
given by the communication overhead in retrieving values from the lm-sensorsAPI,
since the framework has been entirely developed in user-space.

60 S. Corbetta and W. Fornaciari

4 Related Works

Dynamic Thermal Management refers to a set of techniques to optimize the temper-
ature profile of microprocessor systems, generally under performance constraints [7].
DTM is defined by means of policies taking decisions according to a system-level or
local view of the processor, and mechanisms supplying low-level information on the sta-
tus of the system from a thermal view-point. Runtime profile optimization can usually
be performed in either of two ways [8]: through thermal sensors readings, or solving
formal models. Thermal sensors provide direct on-chip temperature samples, but these
values are highly dependent on their placement; algorithmic approaches, on the other
hand, are based on solving formal models at runtime, generally accurate at the cost of
high computational overhead. Load balancing techniques for MPSoC architectures can
benefit from multi-threaded support from the hardware [9] as well as multi-processor
support [10]. Migration policies are investigated while achieving processor throughput,
however without considering either temperature history nor the effects of thermal cou-
pling on inactive cores (as sketched in Section 1). If application profile is available,
thermal management can benefit from appropriate ordering approaches, such as the one
presented in [11]. However, application profiling suffers from dependence of mapping
policies. Off-line profiling is used also in other predictive approaches [12]. Tempera-
ture history and workload are weighted in [13] to predict future operating temperature
of the processor. However, the authors do not consider the effects of cores proximity in
determining the thermal status of active and inactive cores.

5 Conclusions

This paper presented a novel methodology to support Dynamic Thermal Management
in complex MPSoC architectures, in which the thermal requirements are limiting the
integration capability as well as the efficiency of optimization policies. Since thermal
coupling phenomena are a major source of challenge, and proactive approaches are pre-
ferred in reliability-aware designs, the proposed methodology focuses on a coupling-
driven estimation of the effects of self-heating contributions on system-wide thermal
status metrics. The proposed methodology is able to avoid underestimations in predict-
ing the thermal status. Indeed, even a typical difference of 20÷ 30% in the local status
estimation process has a negative impact on the system-wide perspective. Our approach
is able to provide a better estimation support, employing architecture-dependent infor-
mation on the dynamic behavior of heat exchange among the different subsystems in
the processor. Such support is of paramount importance in DTM to dynamically reveal
the evolution of the system from a temperature stand-point. The proposed approach
presents a mechanism, rather than a policy, to support DTM decisions. The overhead is
kept low thanks to a double-phase approach: off-line pre-characterization of the target
architecture (e.g., at bootstrap time) collects sensible information that will be conve-
niently used at run-time for proper DTM decisions. Experimental results have been
collected on real commercial processors, and temperature values reflect the real usage
of the system, with typical workloads from different scenarios.

Exploiting Thermal Coupling Information in MPSoC Dynamic Thermal Management 61

Acknowledgments. This research work is partially supported by the EU-funded
2PARMA FP7 research project (http://www.2parma.eu/) focusing on resources
management techniques and methodologies in multi-core and many-core architectures.

References

1. Lasance, C.J.M.: Thermally driven reliability issues in microelectronic systems: status-quo
and challenges. Microelectronics Reliability 43(12), 1969–1974 (2003)

2. Ajami, A., Banerjee, K., Pedram, M.: Modeling and analysis of nonuniform substrate temper-
ature effects on global ULSI interconnects. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 24(6), 849–861 (2005)

3. Janicki, M., Collet, J.H., Louri, A., Napieralski, A.: Hot spots and core-to-core thermal cou-
pling in future multi-core architectures. In: 2010 26th Annual IEEE Semiconductor Thermal
Measurement and Management Symposium (SEMI-THERM), pp. 205–210. IEEE (2010)

4. Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S.: Fundamentals of heat and mass
transfer. Wiley (2007)

5. International Technology Roadmap for Semiconductor, Design chapter (2010),
http://www.itrs.net/

6. Alam, M., Kang, K., Paul, B., Roy, K.: Reliability- and process-variation aware design of vlsi
circuits. In: 14th International Symposium on the Physical and Failure Analysis of Integrated
Circuits, IPFA 2007, pp. 17–25 (July 2007)

7. Brooks, D., Martonosi, M.: Dynamic Thermal Management for High-Performance Micro-
processors. In: 17th International Symposium on High Performance Computer Architecture,
HPCA 2001 (2001)

8. Siozios, K., Rodopoulos, D., Soudris, D.: Quick hotspot: A software supported methodology
for supporting run-time thermal analysis at mpsoc designs. In: 23rd International Conference
on Architecture of Computing Systems, ARCS 2011 (2011)

9. Gomaa, M., Powell, M., Vijaykumar, T.: Heat-and-run: leveraging smt and cmp to man-
age power density through the operating system. In: Proceedings of the 11th International
Conference on Architectural Support for Programming Languages and Operating Systems,
ASPLOS-XI, pp. 260–270. ACM, New York (2004)

10. Donald, J., Martonosi, M.: Techniques for Multicore Thermal Management: Classification
and New Exploration. In: 33rd International Symposium on Computer Architecture, ISCA
2006 (2006)

11. Yang, J., Zhou, X., Chrobak, M., Zhang, Y., Jin, L.: Dynamic thermal management through
task scheduling. In: IEEE International Symposium on Performance Analysis of Systems and
Software, ISPASS 2008, pp. 191–201 (April 2008)

12. Srinivasan, J., Adve, S.V.: Predictive dynamic thermal management for multimedia applica-
tions. In: Proceedings of the 17th Annual International Conference on Supercomputing, ICS
2003 (2003)

13. Yeo, I., Liu, C.C., Kim, E.J.: Predictive dynamic thermal management for multicore systems.
In: Proceedings of the 45th Annual Design Automation Conference, DAC 2008, pp. 734–739.
ACM, New York (2008)

http://www.2parma.eu/
http://www.itrs.net/

A Multi-core Memory Organization
for 3-D DRAM as Main Memory

Jared Sherman1, Krishna Kavi1, Brandon Potter1, and Mike Ignatowski2

1 University of North Texas, Denton, Texas, USA
{JaredSherman,BrandonPotter}@my.unt.edu, Krishna.Kavi@unt.edu

2 Advanced Micro Devices, Austin, Texas USA
Mike.Ignatowski@amd.com

Abstract. There is a growing interest in using 3-D DRAM structures
and non-volatile memories such as Phase Change Memories (PCM) to
both improve access latencies and reduce energy consumption in multi-
core systems. These new memory technologies present both opportunities
and challenges to computer systems design.

In this paper we address how such memories should be organized to
fully benefit from these technologies. We propose to keep 3-D DRAMs as
main memory systems, but use non-volatile memories as backing store.
In this connection, we view DRAM based main-memory both as a cache
memory and as main memory. The cache like addressing allows for fast
address translation and better memory allocation among multiple pro-
cesses. We explore a set of wide-ranging design parameters for page sizes,
sub-page sizes, TLB sizes, and sizes of write-buffers.

Keywords: 3-D stacked DRAM, non-volatile memories, phase-change
memories, virtual memory management, set-associative indexing.

1 Introduction

An emerging DRAM technology, die-stacked DRAM (3-D DRAM), reduces ac-
cess latencies for large amounts of memory due to its integration with the pro-
cessor. In the near term, die-stacking may be used as a large last-level cache [1],
however as capacity increases it may be an attractive option to use as a system’s
main memory. We also consider the use of non-volatile solid-state memories,
such as phase-change memory (PCM), to replace the disk drive of a traditional
computer.

A system where 3-D DRAM is main memory and PCM is the backing store
could have significant overall performance benefits due to their improved laten-
cies, however it would be necessary to rethink memory organizations for such a
system. For example, 4K or 8K bytes (pages) are used as the units of transfer
between DRAM and disks because of large disk latencies. Should we continue to
transfer such large amounts of data when the PCM latencies are much smaller?
Another issue to consider is the cost of context switches on page faults when the
access latencies to PCM are in the same range as the access latencies to DRAM.

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 62–73, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Multi-core Memory Organization for 3-D DRAM as Main Memory 63

Current systems use hierarchical page tables for virtual to physical address
translation. With 64-bit virtual addresses, systems need to look up multiple lev-
els of page tables to translate a virtual address into a physical address and the
traversal can be relatively slow [2]. If address translation latencies can be mini-
mized, context switches on page faults may be unnecessary. We explore changes
to virtual memory management and structure of pages to improve address trans-
lation and minimize OS kernel intervention on page faults. When using 3-D
DRAMs and PCMs, TLB performance becomes even more critical since delays
in address translation can undercut the performance advantages. We attempt to
increase TLB performance using large page sizes, say 32KB, 64KB pages, but
still transfer only small amounts of data between DRAM and PCM via subpages.
An additional challenge is the limited write-endurance of non-volatile memories.
We address this by tailoring CMM parameters to consider write-back and using
a victim buffer.

This paper makes the following contributions:

• Evaluates new memory organizations for 3-D DRAM as main memory and
non-volatile PCM as secondary memory.

• Evaluates treating 3-D DRAM as both main memory and cache for the
purpose of speeding up virtual to physical address translation.

• Evaluates the use of large pages with subpages to benefit from small access
latencies to PCM, while improving the utilization of TLB and page tables.

Previously we explored our ideas in a single-core environment using Sparc
(Serengeti) architecture [3]. In this paper we explore our ideas for multicore
systems using x86-64 architecture running Ubuntu.

The remainder of this paper is organized as follows. Section 2 contains our
approach to memory organization. Section 3 describes our experimental setup
and Section 4 includes results and analysis of the experimental data. Section 5
details future work. Section 6 describes research that is closely related to our
work. Section 7 concludes with ending remarks.

2 Memory Organization

Given the physical proximity to the processor, as well as the low access latencies,
the 3-D DRAM memory is viewed both as a cache and a primary memory of a
computing system. We utilize cache-like addressing using set-associative indexing
schemes with main memory. For this reason, we call our main memory a Cache-
Main Memory (CMM). Additional design details about our memory architecture
and necessary hardware structures can be found in [3].

2.1 Virtual-Physical Address Translation

Our design relies on both page tables and cache-like indexing for addressing
DRAM entries. In conventional main memories, virtual addresses are mapped
to physical addresses (DRAM frames) using hierarchical page tables. Typically,
a virtual address is divided into several parts where each part indexes into a

64 J. Sherman et al.

Fig. 1. Page Table Bit Divisions

different page table, and the page table entries provide addresses of the next
level page table.

Some of the page tables can be eliminated if we use a portion of the virtual
address as a set index, similar to addressing a set-associative cache. For example,
the efg portion of the virtual address can be used as a set index into DRAM
(see Figure 1). This idea can be viewed in one of two different ways. We can
view this as using very large pages, thus efg along with page offset will become
the offset into a very large page. Or we can also view this as using very large
segments with pages, and efg constitutes the address of a segment. By using a set-
associative index for the segment, we imply associating a working set of DRAM
pages with a segment, and the pages within that segment compete for DRAM
pages within the working set. The address of the working set for a segment is
given by page tables identified by the higher order bits of the virtual address
(abcd in Figure 1).

This allows us to satisfy the need for physical addresses (e.g., to eliminate
address aliases for common or shared pages), but also speeds up address trans-
lation. Furthermore, it allows higher memory levels (L1, L2, and Last Level
Caches) to use virtual address indexing. This approach is similar in principle to
page coloring [4]. By using large segments with reasonably sized pages, we main-
tain fine-grained protection at page level. We still use a translation look-aside
buffer (TLB) that speeds up address translation.

Page Structure. The CMM consists of large pages which are divided into
subpages. Large pages are used to reduce the number of TLB entries while
subpages allow us to transfer small chunks of data between DRAM and backing
store. It will be necessary to keep track of valid and dirty subpages within a
page. A subpage bitmap can be used to track valid and dirty status of subpages
within a page.

Page Lookup. Pages are located in the CMM using the virtual address, in
combination with an address space identifier (ASID). In addition to using set-
associative mapping of addresses to CMM pages, we use a specialized TLB-like
structure to accelerate this process. Our TLB is fully-associative and contains a
small number of entries. In addition, it also contains the subpage bitmaps for its
resident pages which may be rapidly accessed to determine a hit or miss. A page
may still reside within the CMM even if there is no TLB entry for the page. In
such cases, the CMM Tag Structure is searched using set-associative indexing.
Bitmaps are not stored with tags but stored in the CMM page itself as header
information. Only the actual CMM pages reside in the 3-D DRAM layers. The
other structures can reside in the memory controller or MMU, possibly on the
same layer as the processing cores.

A Multi-core Memory Organization for 3-D DRAM as Main Memory 65

Table 1. Benchmark mixes. Total (MB) represents the combined working set size of
all applications in a given mix.

Mix Bench1 Bench2 Bench3 Bench4 Total (MB)
Small1 Gobmk Hmmer H264Ref Gromacs 41.7
Small2 Gamess Sphinx3 Tonto Namd 27.6
Medium1 Sjeng Libquantum Leslie3d Astar 191.6
Medium2 Omnetpp Astar Calculix Gcc 139.9
Large1 Milc Wrf Zeusmp Soplex 865.9
Large2 Zeusmp Leslie3d Gcc CactusADM 718.3
VeryLarge1 GemsFDTD Mcf Bwaves CactusADM 2262.2
VeryLarge2 Mcf Zeusmp Milc Bwaves 1656.0

3 Experimental Setup

We use Simics [5], a robust full-system simulator. Simics includes a timing mod-
ule called G-Cache to gather cycle-accurate timing data. We modified G-Cache
in order to simulate our 3-D DRAM CMM system. The target platform we use
Ubuntu 8.04 running on a x86-64 Hammer processor running at 3GHz. We eval-
uate our design using mixes of SPEC CPU2006 benchmarks which are shown in
Table 1, which are comparable to those of [6].

Each mix contains four benchmarks. Though we ran simulations for 2, 4 and 8
cores, due to space restrictions and the similarity of results we only include 4-core
results here. Processes are statically bound to a core so we could more easily track
how many instructions each benchmark executed. We are currently investigating
the use of better process tracking so that benchmarks can be tracked regardless
of the core on which it is scheduled.

Benchmark mixes are grouped by working set sizes, a measure of how much
(total) memory is being actively used by an application. This is different from
the amount of address space the OS has reserved for an application and resident
set size which is how much physical memory an application uses. Working set size
has been often considered by researchers looking at cache misses, TLB misses and
page faults, and the working set sizes we use were determined by [7]. We felt that
grouping our benchmarks by this measure would allow us to see how different
applications with similar working set sizes might operate in our CMM design,
and also see how benchmarks with small to very large working sets perform. We
set the CMM size to 256 MB, so that we may be able to see the effects of heavy
workloads up to ten times greater than the size of CMM. In time, 3-D DRAM
modules will be able to store 8 to 32 GB and perhaps more, and we are confident
that the trends which we report here will scale appropriately for larger CMMs.

Latencies and other fixed L1, L2 and CMM parameters used in our study
are the same as reported previously in [3], except that here we are dealing with
multiple cores and we use 32 KB L1s and 256KB L2s per core. These sizes are
chosen to be representative of current L1 and L2 caches, and these values are
fixed throughout our experiments. Design parameters we varied in experiments
will be explained in the following section. The caches and CMM are warmed
for 300 million user-level transactions to core-0, after which simulation data is

66 J. Sherman et al.

gathered for all cores during the time taken for 500 million benchmark instruc-
tions executed by core-0. Several parameters are explored here including number
of memory banks, associativity, TLB size, page size, subpage size, number of sub-
pages to pre-fetch and size of victim buffers.

4 Results and Analysis

In this section we detail the results of our experiments. The most common met-
rics used for comparing different design parameters are relative IPC and relative
amount of data copied back. IPC, or instructions per cycle, is a measure of how
many instructions are executed per clock cycle, and data copied back measures
the amount of data that is written back from CMM to PCM backing store.
The graphs that follow, unless otherwise specified, use relative numbers rang-
ing between 0 and 1, and display the IPC relative to the best IPC possible in
that experiment. This is intended to provide a clearer picture (as one can view
the range of performance possible for different values of the design parameter
explored), than using raw numbers, since we use a wide ranging workloads.

Page Size. Larger pages are beneficial in that TLB and page tables can be
smaller, while having small subpages grants us the ability to have smaller, quicker
transfers between CMM and PCM, eliminating the excessive CPU stalls on a
page/subpage miss. Page size affects the number of CMM entries and larger
pages may cause more conflicts for (fewer) CMM entries.

We explored page sizes between 4KB and 2MB. In terms of IPC, Figure 2(a)
shows that pages between 4KB to 64KB show minor performance changes, with
a marginal peak at 32KB. IPC declines sharply after 128KB, particularly for
benchmarks with large working sets; a result of having fewer pages that can
reside in memory at any given time. Further, Figure 2(b) shows a general trend
where page size increases leads to an increase in write-backs. Smaller benchmark
mixes display more sensitivity to page size variation, and a linear increase in the
amount of data written back with page sizes. Of particular interest, for small
working sets, CMM is not fully utilized and thus in case of 4KB pages, no data
is written back, because page conflicts are eliminated. However such page sizes
require very large TLBs, thus we believe a 32KB page provides a reasonable
trade-off between the amount of data written back and the cost of memory
structures (e.g., TLB).

Subpage Size. When using larger pages (32KB), since the new technologies
present very low data transfer latencies, we explore the use of subpages within
a page as the unit of data transferred between DRAM and backing store (i.e.,
PCM). Subpage size is an important consideration in our design in both hard-
ware cost and performance benefits. Hardware cost will increase as subpages get
smaller because subpages must be tracked by a bitmap. Here we fix the page
size at 32KB.

Figures 3(a) and 3(b) display the relative values for IPC and amount of data
written back to PCM respectively for different subpage sizes. In most cases,
IPC tends to peak at 512 or 1024 byte subpages, with the very large working

A Multi-core Memory Organization for 3-D DRAM as Main Memory 67

(a) Page Size: Relative IPC (b) Page Size: Write-backs

Fig. 2. Page Size: subfigures (a) and (b) use a 0 to 1 relative scale. 4KB to 2MB pages
are evaluated. Subpage size is set at 512 bytes.

(a) Subpage Size: Relative IPC (b) Subpage Size: Write-backs

Fig. 3. Subpage Size: subfigures (a) and (b) use a 0 to 1 relative scale. Subpage sizes
from 128B-32KB. Simulated page size is 32KB, therefore 32KB subpage effectively
represents no subpages.

set benchmark mixes displaying the most volatility when moving outside that
range. The small working set mixes appear somewhat impervious to subpage size
variations due to very few page faults and underutilization of CMM as discussed
previously.

For write-backs, subpage size is easily the most important parameter to con-
sider. As can be seen from Figure 3(b), all workloads display nearly a linear
relationship between subpage size and amount of data copied back to PCM.
On average, a 32KB page with 32KB subpages writes back 3 times more data
to PCM as a 32KB page with 128 byte subpages. This is expected since we
only write back dirty subpages to PCM. Taking all things into consideration, we
would conservatively recommend a 512 byte subpage size.

68 J. Sherman et al.

Associativity. As described in Section 2, we use both page tables and set-
associative style indexing to address the CMM. In this section we describe the
effect of associativity within our CMM. Figure 4(a) shows that increasing asso-
ciativity appears to improve IPC. Performance gains are due to reduced conflict
misses as associativity increases. Beyond 8-way, however, performance gains are
negligible. This phenomenon has been reported for very large caches, and our
findings here corroborate previous studies [8].

Figure 4(b) shows that conflict reduction in CMM due to increased associa-
tivity can significantly reduce the amount of data copied back, but insignificant
savings are achieved beyond 8-way.

(a) Associativity: Relative IPC (b) Associativity: Write-backs

Fig. 4. Associativity: subfigures (a) and (b) use a 0 to 1 relative scale. Associativities
from 1 to 32 are evaluated.

Translation Look-aside Buffers (TLB). As described in Section 2, we use
TLBs to speedup address translation and verify if the requested subpage is cur-
rently available in CMM using subpage bitmaps stored in TLB. Our TLB is a
fully-associative cache of CMM page addresses and bitmaps for current pages
tracked in TLB. We evaluated the performance impacts of using different sizes
for TLBs from 128 entries to 32,768 (which represents one entry in TLB for each
of CMM page).

We felt that TLB hit rate was the best basis for comparison. It can be clearly
seen from Figure 5(a) that hit rate appears to max out at 1024 to 2048 en-
tries, depending on the benchmark. Since the TLB contains a mapping between
virtual-physical addresses, the number of TLB entries can be considered in terms
of total coverage of CMM, representing the percentage of total CMM pages for
which the physical address and bit map can be stored in TLB at any given time.
Our experiments indicate that a 3% to 6% coverage is sufficient for TLB sizes.
Even at these coverages, a TLB for 32GB CMM will be very large, and it may
be necessary to use set-associative TLBs instead of fully associative TLBs. It
should be noted, however, TLB’s will be even larger when using 4K or 8K pages.

A Multi-core Memory Organization for 3-D DRAM as Main Memory 69

(a) TLB: Hit Rate (b) Banks: Relative IPC

Fig. 5. TLB: (a) shows actual hit rates for varying TLB sizes. Sizes from 128 to 32,768
entries are explored. In these simulations CMM has a fixed size of 256MB and 32KB
pages, which give 32,768 total pages that may reside in CMM, and therefore that many
pages may be addressed by the TLB.
Banks: (b) shows relative IPC for varying bank sizes. Comparison on a 0 to 1 relative
scale. 3-D DRAM with 1 to 256 banks are evaluated.

Pre-fetch. Pre-fetching has been shown to be very effective in reducing cache
miss rates, however it can also substantially increase memory traffic [9][10]. At
the CMM to PCM level, we expect less contention than at the L1 or L2 cache
level. Therefore, we may direct the memory controller to use idle CMM cycles to
pre-fetch additional subpages from backing store on a memory request. Pre-fetch
may occasionally delay requests for new pages or subpages, since the current pre-
fetched subpage must complete before a new request can be issued.

We explored pre-fetch policies of zero (no pre-fetch), up to 64 which is the total
number of subpages in a page (with 32KB pages and 512 byte subpages). Figure
6(a) shows that the reduction in miss rates as a result of the spatial locality of
pre-fetched pages account for a greater performance increase than the perfor-
mance loss attributable to delaying demand fetches. However for large working
set benchmark mix Large1, the applications exhibit poorer spatial localities and
thus pre-fetching can actually be detrimental to performance.

Figure 6(b) and Figure 6(c) display subpage usage and efficiency respectively.
Usage is a generally increasing trend because as more subpages are pre-fetched,
more of those subpages are used, generating fewer demand requests. Efficiency is
the percentage of prefetched subpages that were actually used. It declines as more
subpages are prefetched. While we did not explicitly perform energy consumption
calculations here, this figure captures the essence of energy efficiency of pre-
fetching as unused subpage contribute to wasted power. Our results indicate
that pre-fetching just one subpage provides the best tradeoff. We plan to extend
these studies by using adaptive pre-fetching techniques similar to those proposed
in [11].

Victim Buffer. Victim caches [12] have traditionally been used to decrease
conflict misses in low associativity caches. We adapt this concept to alleviate
the conflict misses in CMM, causing write-back to PCM. Our victim buffer can
also be viewed similar to DRAM caches or write buffers used in [13][14].

70 J. Sherman et al.

(a) Pre-Fetch: Relative IPC (b) Pre-Fetch: Usage

(c) Pre-Fetch: Efficiency (d) Victim Size: Write-Backs

Fig. 6. Pre-Fetch: (a) and (b) use a 0 to 1 relative scale. For (a), the X-axis represents
the maximum number of subsequent subpages to be pre-fetched. Data simulates a
CMM using 32KB pages with 512 byte subpages. For (b), a 1 would represent the
pre-fetch policy had the most used subpages among all policies for a given benchmark.
(c) shows the percentage of used subpages for a given prefetch policy where a 1 would
mean every pre-fetched subpage was used.
Victim Cache: (d) displays write-back data for varying victim cache sizes. Comparison
on a 0 to 1 relative scale. Victim cache sizes from 32 to 4,096 entries are explored along
with having no victim cache at all (0). Page size is fixed at 32KB.

Figure 6(d) shows that data copied back becomes zero for smaller benchmarks
as victim size is increased. Here the CMM, along with the victim buffer, is able
to contain the entire address space of the benchmarks. However, data copied
back for larger workloads is largely unaffected by victim buffer size. Much larger
victim buffer sizes may have reduced write-backs even for large benchmarks, but
this will add to the cost of the hardware.

Banks. Large 3-D DRAM are designed using multiple banks, each with a ded-
icated connection to the common bus. We assign addresses to different banks
statically and simulate contention to banks.

Demand requests may interrupt pre-fetches and copybacks to the same bank,
after the currently transferring subpage has finished, but may not interfere with
copybacks or pre-fetches to different banks. Thus multiple prefetches and copy-
backs may occur simultaneously. A new demand request to a bank must wait

A Multi-core Memory Organization for 3-D DRAM as Main Memory 71

for prior demand requests to finish. We explore the impact on performance by
varying the number of banks.

Figure 5(b) shows that increasing the number of banks provides an IPC boost.
However, the figure also shows diminishing returns beyond 16 or 32 banks. We
feel that this behavior is due to our use of (mostly) virtual addresses to DRAM
and our static assignment of addresses to banks. This means that most applica-
tions’s addresses map to very few banks. However, with larger benchmarks, more
cores, the virtual to physical address translation, and more dynamic distribu-
tion of addresses to banks would lead to better utilization of banks and scalable
performance improvements with more banks. We will explore these issues in our
future work.

5 Future Work

We are currently exploring in detail the implications of our ideas in terms of
changes needed with OS virtual memory management. We will evaluate the
advantages of our virtual memory management in the context of benchmarks
with very large working sets, in order to fully exercise memory systems with
8GB-32GB. For this purpose, we will use server class and cloud application
suites. We are currently working on models to evaluate energy consumed by
applications when using our designs.

In the interest of further reducing the amount of data copied back, we will
explore ideas (described in Section 6) such as eliminating dead writes, partial or
delayed writes, flip-writes and other techniques that rely on compiler analysis.

6 Related Work

The ideas presented in Qureshi, et. al [14] are closely related. In that work,
they explored the use of PCM as primary memory in place of DRAM. They
compare the use of conventional organizations using very large DRAM systems
(4GB-32GB), consider the merits of PCM vs DRAM, and subsequently examine
a hybrid configuration that uses a 1GB DRAM as a cache to 32GB PCM. The
purpose of their DRAM cache is to minimize writes to PCM. Their studies show
that a hybrid configuration is a fair trade-off between scalability and latency.
Our approach differs from this study as we use DRAM as primary memory and
PCM as secondary memory, replacing magnetic disk drives.

The study by Lee, et. al [13] is similar to that of Qureshi [14], in that they also
use PCM as a replacement to DRAM as the main memory system. Like Qureshi,
Lee, et. al use DRAM based buffers between LLC and PCM, however Lee studies
the use of multiple DRAM buffers instead of a single DRAM based cache. As
an example, the authors show improved write endurance using four 512-byte
buffers instead of using a single 2048-byte buffer. For our own purposes, we view
the use of multiple buffers as an associative DRAM cache. Lee also investigates
another technique for reducing writes, called partial writes or delayed writes.
This compares data evicted from caches with the contents of PCM row buffers
and writes only the data that is actually modified (it is possible for modified

72 J. Sherman et al.

data to return to its original value). The study explores different granularities
for these comparisons and, as expected, finer granularity leads to fewer bytes
being written back.

Other studies have explored techniques to minimize write-backs. Cho, et al
[15], writes either a modified, i.e. dirty, value or its complement, depending on
the number of bits that will be written back. More recently, Bock, et al [16],
explore how to eliminate writing modified data that is no longer useful. Useless
data stems from freed objects, such as heap deallocations, and from popping
stack frames which make previously stacked data inaccessible. We refer to these
as dead writes.

Techniques such as these, including delayed writes [13], flip writes [15], and
dead write elimination [16] are complimentary to our efforts. We explore them
as a part of our on-going research.

Page coloring, Kessler, et. al [4], is similar to our page indexing schemes. Page
coloring speeds up the virtual-physical address translations such that there are
negligible differences between the virtual and physical addresses for large caches.

7 Conclusion

In this paper we investigated the use of 3-D DRAM as main memory and phase-
change memory (PCM) as secondary memory. These technologies hold significant
promise in reducing memory access latencies. PCM devices can also reduce the
amount of energy consumed. However, data stored in non-volatile devices such as
PCM can only be modified a limited number of times. Thus, it becomes critical
to minimize the amount of data modified or copied back to such devices.

Our goal in this work is to study how to benefit from the faster accesses to
3-D DRAM and PCM devices. For this purpose, we describe a new memory
organization that views DRAM both as a conventional main memory and a
cache: the cache view allows us to use set-associative addresses to locate data in
DRAM, while the memory view allows us to permit the use of traditional virtual
memory management using page tables, eliminating aliases resulting from virtual
addresses and enforcing protection at page level. Our approach can significantly
eliminate the need for page table walks and context switches on page faults. We
investigated the use of large pages with subpages, where the unit of transfer is
a subpage between 3-D DRAM and PCM devices.

We reported the results of our experimental evaluation of a wide range of
design parameters for page sizes, subpage sizes, TLB sizes, set-associativities,
victim cache sizes, number of subpages to pre-fetch, in a multi-core environment.
We reported our analyses, indicating preferred values for configuration param-
eters. With the right parameter choices, we show that a Cache-Main Memory
organization, implemented in future technologies, can outperform contemporary
DRAM memory configurations.

Acknowledgements. This project is supported in part by the NSF Net-Centric
Industry/University Cooperative Research Center and a unrestricted research
grant from the Advanced Micro Devices.

A Multi-core Memory Organization for 3-D DRAM as Main Memory 73

References

1. Loh, G.H., Hill, M.D.: Efficiently enabling conventional block sizes for very large
die-stacked dram caches. Micro, 454–464 (2011)

2. Barr, T.W., Cox, A.L., Rixner, S.: Translation caching: skip, don’t walk (the page
table). SIGARCH Comput. Archit. News 38(3), 48–59 (2010)

3. Fawibe, A., Sherman, J., Kavi, K., Ignatowski, M., Mayhew, D.: New Memory Or-
ganizations for 3D DRAM and PCMs. In: Herkersdorf, A., Römer, K., Brinkschulte,
U. (eds.) ARCS 2012. LNCS, vol. 7179, pp. 200–211. Springer, Heidelberg (2012)

4. Kessler, R.E., Hill, M.D.: Page placement algorithms for large real-indexed caches.
ACM Trans. Comput. Syst. 10, 338–359 (1992)

5. Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hållberg, G., Hög-
berg, J., Larsson, F., Moestedt, A., Werner, B.: Simics: A full system simulation
platform. Computer 35(2), 50–58 (2002)

6. Loh, G.: 3d-stacked memory architectures for multi-core processors. In: 35th In-
ternational Symposium on Computer Architecture, ISCA 2008, pp. 453–464 (June
2008)

7. Gove, D.: Cpu2006 working set size. SIGARCH Comput. Archit. News 35(1), 90–96
(2007)

8. Dube, P., Zhang, L., Daly, D., Bivens, A.: Performance of large low-associativity
caches. SIGMETRICS Perform. Eval. Rev. 37(4), 11–18 (2010)

9. Callahan, D., Kennedy, K., Porterfield, A.: Software prefetching. In: Proceedings
of the Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS-IV, pp. 40–52. ACM, New York
(1991)

10. Porterfield, A.K.: Software methods for improvement of cache performance on su-
percomputer applications. PhD thesis, Rice University, Houston, TX, USA (1989)
AAI9012855

11. Ebrahimi, E., Lee, C.J., Mutlu, O., Patt, Y.N.: Prefetch-aware shared resource man-
agement for multi-core systems. SIGARCH Comput. Archit. News 39(3), 141–152
(2011)

12. Jouppi, N.P.: Improving direct-mapped cache performance by the addition of a
small fully-associative cache and prefetch buffers. In: Proceedings of the 17th An-
nual International Symposium on Computer Architecture, ISCA 1990, pp. 364–373.
ACM, New York (1990)

13. Lee, B.C., Ipek, E., Mutlu, O., Burger, D.: Architecting phase change memory as
a scalable dram alternative. SIGARCH Comput. Archit. News 37(3), 2–13 (2009)

14. Qureshi, M.K., Srinivasan, V., Rivers, J.A.: Scalable high performance main memory
system using phase-change memory technology. In: Proceedings of the 36th Annual
International Symposium on Computer Architecture, ISCA 2009, pp. 24–33. ACM,
New York (2009)

15. Cho, S., Lee, H.: Flip-n-write: A simple deterministic technique to improve pram
write performance, energy and endurance. In: 42nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO-42, pp. 347–357 (December 2009)

16. Bock, S., Childers, B., Melhem, R., Mossé, D., Zhang, Y.: Analyzing the impact of
useless write-backs on the endurance and energy consumption of pcm main mem-
ory. In: 2011 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), pp. 56–65 (April 2011)

Synthetic Aperture Radar Data Processing

on an FPGA Multi-core System

Pascal Schleuniger1, Anders Kusk2, Jørgen Dall2, and Sven Karlsson1

1 DTU Informatics
Technical University of Denmark

{pass,ska}@imm.dtu.dk
2 DTU Space

Technical University of Denmark
{ak,jd}@space.dtu.dk

Abstract. Synthetic aperture radar, SAR, is a high resolution imaging
radar. The direct back-projection algorithm allows for a precise SAR
output image reconstruction and can compensate for deviations in the
flight track of airborne radars. Often graphic processing units, GPUs are
used for data processing as the back-projection algorithm is computa-
tionally expensive and highly parallel. However, GPUs may not be an
appropriate solution for applications with strictly constrained space and
power requirements.

In this paper, we describe how we map a SAR direct back-projection
application to a multi-core system on an FPGA. The fabric consisting of
64 processor cores and 2D mesh interconnect utilizes 60% of the hardware
resources of a Xilinx Virtex-7 device with 550 thousand logic cells and
consumes about 10 watt. We apply software pipelining to hide memory
latency and reduce the hardware footprint by 14%. We show that the
system provides real-time processing of a SAR application that maps a
3000m wide area with a resolution of 2x2 meters.

Keywords: Synthetic aperture radar, multi-core, network-on-chip,
FPGA.

1 Introduction

Synthetic aperture radar, SAR, is a form of imaging radar that provides high
quality mapping independent of light and weather conditions. SAR is used across
a wide range of scientific and military applications including environmental mon-
itoring, earth-resource mapping, surveillance, and reconnaissance. The principle
of SAR operation is that a radar antenna is attached to an aircraft or spacecraft.
The antenna transmits electromagnetic pulses and records their echoes.

An output image is reconstructed from echoed data that is interpreted as a set
of projections. The direct back-projection algorithm provides a precise output
image reconstruction and can compensate for deviations in the flight track. A
very high number of operations is required to reconstruct the output image
because each pixel contains data of hundreds of projections.

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 74–85, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Synthetic Aperture Radar Data Processing on an FPGA Multi-core System 75

Therefore, graphic processing units, GPUs, are often used for this type of
SAR data processing. However, for applications with strict space and power
requirements GPUs may not be an appropriate solution. For example, small
unmanned aircraft systems may want to use the direct back-projection algorithm
to compensate for deviations in the flight track but do not provide space and
power for a computing system with a high performance GPU.

In this paper, we describe how we map a specific SAR data processing ap-
plication to a multi-core system on an FPGA. We design a scalable multi-core
system consisting of Tinuso processor cores [10] and a 2D mesh interconnect.
We evaluate the system by simulating data processing of the airborne POLARIS
SAR [5]. This radar is currently used in the evaluation process of the European
Space Agency’s, ESA, BIOMASS candidate mission [6]. This mission aims for a
P-band SAR satellite that provides global scale estimates for forest biomass.

To the best of our knowledge, we are the first ones using a multi-core on
an FPGA for SAR data processing with direct back-projection algorithm. The
proposed system provides a number of advantages including system integration,
power, scalability, customization, and the use of industrial and space grade com-
ponents. As the power efficiency and logic capacity of FPGAs increases, they
become an attractive technology for use in low-volume, large-scale systems. For
example, Xilinx’s Virtex-7 family comes with devices up to two million logic
cells. These devices allow for combining the processing power of hundreds of
processor cores on a single FPGA. Moreover, the same device can also host the
digital front-end used for SAR signal processing. FPGAs provide flexible I/O
that allows for connecting a multitude of data links and memory units to a sin-
gle device. We propose and advocate for a multi-core system because it raises
the abstraction level for the application programmer without facing the current
performance drawbacks of high-level synthesis [9]. The proposed system provides
the ability for customizations at all levels. For example, it is possible to add pro-
cessor cores, define special instructions, and change the interconnect link-width.
FPGAs are available in industrial and space grade, which permits the use in
rough environments and in space.

We make the following contributions:

– We design a scalable multi-core system consisting of Tinuso processor cores
and a high throughput, low latency network-on-chip, NoC,

– We demonstrate that we can integrate 64 processor cores on a single FPGA
and clock the system at 300MHz on a Xilinx Virtex-7 device.

– We evaluate the system by simulating the POLARIS SAR application that
is based on direct back-projection. We achieve real-time data processing for
a 3000m wide area with a resolution of 2x2 meters. The multi-core fabric
consisting of 64 processor cores and 2D mesh network-on-chip utilizes 60% of
the hardware resources of a Xilinx Virtex-7 device with 550 thousand logic
cells and consumes about 10 watt.

– We apply software pipelining by distributing subtasks to dedicated process-
ing elements. This hides memory latency and reduces the hardware resources
by 14%.

76 P. Schleuniger et al.

2 Synthetic Aperture Radar Application

Synthetic aperture radar is a form of imaging radar that is operated from a mov-
ing platform, typically an aircraft or satellite. SAR provides high quality radar
mapping independent of light and weather conditions. Therefore, SAR is an at-
tractive choice for a broad range of scientific and military applications, such as
environmental monitoring, earth-resource mapping, surveillance and reconnais-
sance. The principle of SAR operation is that a radar antenna is attached to
an aircraft or spacecraft and alternately transmits an electromagnetic pulse and
receives echoes. As the radar moves along the track it records its exact position,
the energy level, and round trip delay of the received echoes. Signal and data
processing is then applied to reconstruct an image of the scanned terrain.

The term synthetic aperture radar derives to the fact that a moving antenna
effectively acts as a much larger antenna that can more accurately resolve dis-
tances in the flight direction. It is therefore possible to obtain radar maps with
a resolution of up to decimeters from very large distances. Often frequency-
domain algorithms are used for SAR image reconstruction [1]. These algorithms
are based on the fast Fourier transform, FFT, technique and are computationally
efficient to implement. A limitation of these algorithms is the high sensitivity to
non-linear deviations in the flight track. Direct back-projection is a time-domain
algorithm that can adapt to a general geometry of the synthetic aperture and
therefore compensate for deviations in the flight track. The received echo of each
transmitted radar pulse is stored in a one-dimensional array, called range line or
projection. It represents the reflected energy and propagation delay of all points
on the ground swath illuminated by this pulse. To reconstruct a projection im-
age, for each projected pixel all range lines must be considered that possibly
contain an echo from the corresponding point in the scene. The energy contribu-
tion of each range line for each pixel is computed and coherently accumulated.
At the most, all range lines on the length of the synthetic aperture, L, are re-
quired to compute an output pixel. As the resolution of a SAR image depends
on the length of the synthetic aperture, hundreds up to thousands of range lines
contribute to a single output pixel.

t1

t2L

3km

azimuth

range
r

ground
swath

h
3km

3km

x

y

Fig. 1. SAR system overview

Synthetic Aperture Radar Data Processing on an FPGA Multi-core System 77

ALGORITHM 1. Pseudo code for SAR data processing with direct back-
projection

for each pixel do
for each range line do

calculate round-trip delay and fetch data samples from memory
reconstruct echo signal and interpolate the energy contribution
do amplitude weighting and phase correction
accumulate energy contributions of each range line

end

end

In this case study we consider SAR data processing for the POLARIS system.
The radar operates at 435 MHz with a pulse bandwidth of 85 MHz, which allows
for a range resolution of 2 meters. The radar is mounted on an airplane that
flies at an altitude of 3000m. Real-time data processing must be provided for a
3000m wide ground swath as shown in Figure 1. Due to the relatively low radar
frequency and small antenna, we get a long synthetic aperture of 700 up to 1100
meters depending on the slant range. We assume an oversampling ratio of 1.25
and consider 50 range lines per second to avoid aliasing. Hence, for each pixel
we need to calculate the energy components of 437 up to 688 range lines. 1500
Pixels in range dimension are required to map a 3000m wide ground swath with
a resolution of 2 meters. Given a flight speed of 80 m/s, we need to compute
60’000 pixels per second to provide real-time processing. We use a direct back-
projection algorithm for image reconstruction.

The first step of Algorithm 1 is to calculate the round trip delay of the trans-
mitted signal. This corresponds to a signals traveling time from the antenna to
a point on the ground swath and back to the receiver. The round trip delay
specifies which data samples of a range line need to be fetched from memory. In
the second step, data samples are interpolated to reconstructs the echo signal of
the point on the ground swath. We decided for the sinc function interpolation
because it shows a very low interpolation error and is well suited for image pro-
jection applications [7]. Each interpolation considers 8 data samples to provide
sufficient accuracy. The next step of the algorithm applies phase correction and
amplitude weighting. For this computation, we use sine and cosine functions
to extract the phase and amplitude information of the interpolated IQ signal.
A Hamming window function is used for weighting the amplitude. The result of
this operation represents the energy component of a point on the ground swath
in one range line. Finally, we coherently accumulate the energy components of
all range lines, within the synthetic aperture, to determine the value of the pixel.
This SAR data processing application provides a high degree of parallelism for
reconstructing the output image. To optimize application performance, we ex-
ploit parallelism at task-level. We define a task as the computation of a single
output pixel. As there is a memory operation in the time-critical path of the
algorithm, the performance greatly depends on memory latency.

78 P. Schleuniger et al.

We evaluate two implementations of the application. The first implementation
assumes a low memory latency and simultaneously executes the algorithm on a
number of parallel processing elements. We call this homogeneous SAR. The
second implementation applies software pipelining to hide memory latency. The
algorithm is split up in three sub-tasks that run on individual processing elements
as shown in Figure 2. The first sub-task calculates the round trip delay for each
range line and thereby determines which data samples need to be fetched from
memory. These samples are then forwarded directly to the processor that runs
the second sub-task, which includes interpolation. The interpolated values are
then sent to the core that runs the third sub-task. Hence, this implementation is
less sensitive to memory latency because the processing element that sends the
memory request does not need to wait on the data samples.

PE 1 PE 2 PE 3

memory

Input:
pixel coordinates

&
flight track info

for each range line:
calculate

round trip delay

memory
request Output:

pixel value

for each range line:
sinc interpolation

for each range line:
ampl. weighting
phase correction

accumulate

buffer

latency

Fig. 2. Software pipelined SAR data processing application

3 System Architecture

We aim for a system as shown in Figure 3 to integrate SAR signal and data pro-
cessing. Signal processing is done partially in an analogue front-end where the
received echo is mixed down to base-band, IQ de-modulated, and A/D converted.
The digital front-end is used for filtering and data preprocessing. Preprocessed
data is then stored in off-chip memory. The SAR data processing application is
mapped to a number of parallel processing elements that communicate over an
interconnect with a memory controller. This application involves a high num-
ber of integer and floating-point operations. Therefore, synthesizable processor
cores are well suited to implement the processing elements. To support efficient
communication between processing elements, we use a message passing commu-
nication scheme and design a 2D mesh interconnect.

R

network
 interface
router

mem
controllerD front-end

antenna

o
ff

-c
h

ip
 m

em
o

ry

FPGA

NI

A
 f

ro
n

t-
en

d PE
NI

R

PE
NI

R

PE
NI

R

PE
NI

R

PE
NI

R

PE
NI

R

PE
NI

R

PE
NI

R

PE
NI

R

PE
NI

R

procesing
element

PE

Fig. 3. Block diagram of a SAR signal and data processing system

Synthetic Aperture Radar Data Processing on an FPGA Multi-core System 79

3.1 Processing Element

We decided to use instances of the Tinuso processor architecture as processing
elements. Tinuso is a three operand, load-store architecture with a fixed instruc-
tion word length of 32-bits. The current implementation has a super-pipelined,
single issue, in-order pipeline that is optimized for a high instruction throughput
when implemented on an FPGA. The pipeline is fully exposed to software where
all types of hazards need to be considered. The architecture supports predicated
execution to reduce the branch penalty. Tinuso is a lightweight architecture with
a small instruction set that can easily be extended. Given the high instruction
throughput, the small hardware footprint, and the ability to extend the design,
Tinuso is an attractive choice for our multi-core system. However, we need to do
a number of application specific modifications and extensions such as adding a
floating point unit, sinc, sine, Hamming window functions and enable message
passing communication.

We use the Xilinx floating-point core to implement a single precision FPU
with the following operations: addition, subtraction, multiplication, division, and
square root. Implementing mathematical functions on an FPGA is a trade-off
between accuracy, clock speed and utilized resources. We have decided to use a
lookup-table to implement sinc, sine, and Hamming window functions. The block
RAM size in Xilinx Virtex-6 FPGAs is 36 kilobits, which allows for a lookup-
table with 1024 data words. We analyzed the algorithm to limit the range of
the functions that are placed in the lookup-tables and thereby reach sufficient
accuracy.

Tinuso’s network interface supports message passing communication to sup-
port efficient communication between processing elements. To keep the hardware
footprint low, we only implement functionality strictly required by the applica-
tion. The network interface contains a small FIFO buffer for outgoing messages.
The processor core is writing to that FIFO and triggers a message transfer. The
current Tinuso implementation utilizes first level instruction and data caches.
Data caching functionality is not used for this case study application. Therefore,
we disable the dirty-bit in the data cache to prevent the cache controller to write
data back to main memory. The state machine in the network interface places
the incoming data packets directly in the data cache. An identifier in the packet
header specifies where data is placed. Once the complete incoming package is
written to the data cache, a status register is set. The processor core is polling
this status register to check whether a packet has arrived or not.

3.2 Network-on-Chip

The interconnection network plays a vital role in the performance of applications
with a high communication to computation ratio. Therefore, we implement a
high throughput, low latency network-on-chip that matches the requirements
of the SAR data processing application. The network is deadlock free because
SAR real-time processing cannot accept any deadlock situations, that require a
system restart.

80 P. Schleuniger et al.

We implement a wormhole-switched router with five bidirectional ports for
a 2D mesh interconnect. The router consists of crossbar, switch arbiter, slack
buffers, output registers, and a control unit implemented as a finite state ma-
chine, FSM. When a header flit arrives at an input port its destination infor-
mation is decoded. Following the routing scheme an output port is selected. We
decided for XY routing scheme as it is deterministic, deadlock-free and very sim-
ple to implement. The control logic checks whether the desired port is available
or not. If more than one flit arrive at the same time and want to use same out-
put resource, the arbiter decides which is to succeed. If the desired output port
is available and the header flit got the permission from the arbiter it is stored
in the output register. In cases where the desired output port is not available
or the arbiter prioritizes another package the flit is stored in slack buffers and
the back-pressure signal is set. This back-pressure signal will then propagates
upstream to pause the transmission until the desired output port is available.
We use back-pressure flow-control and implement only one pipeline stage per
router to reach a lowest possible latency of one cycle per hop.

We optimized the routers for a high clock frequency because the NoC operates
in the same clock domain as the processing elements. We identified the time-
critical path of the design in the decoder and arbitration logic of the router.
Hence we use a fast, fixed priority arbitration scheme where priorities are given
in a clockwise manner. The decode logic needs to extract the destination address
of a packet and apply the XY routing scheme to determine to which output port
the flit is forwarded. Lu et. al. use auxiliary routing information in the header
flit to simplify the decode logic [8]. We use 8 bits of the 32 bit header flit for
auxiliary routing information to avoid costly comparisons with carry chains in
the decode logic. The simplified decode logic enables a very high system clock
frequency of 300Mhz on a Xilinx Virtex device and a maximum link bandwidth
of 9.6 Gbit/s.

4 Hardware Organization

We have now introduced processing elements, interconnect, and described how
to map the application to hardware. At this point, we do not yet know how
many parallel processing elements to employ in the final system. Therefore, we
measure the scalability of the SAR data processing algorithm. In a massively
parallel system memory access bandwidth is typically the limiting factor. We
measure the scalability by running a number of parallel instances of the algorithm
and record the total performance of the system. We use a network with 25 nodes
whereas one node is used for the memory controller. We run a set of experiments
where we populate 1 up to 24 nodes with processor cores.

All memory requests go to a memory controller that is connected to a corner
node of the interconnect. As our implementation is sensitive to memory latency,
we simulate a memory controller using fast synchronous SRAM. We argue for
such a design as in recent years quad data rate SRAMS, QDR, started to pene-
trate the market. In QDR, data transfers use both rising and falling clock edges.

Synthetic Aperture Radar Data Processing on an FPGA Multi-core System 81

Fig. 4. Performance scaling and network traffic of the SAR application

For example, data can be read on the rising clock edge while writing is done
on the falling clock edge. This allows for simultaneous read and write burst ac-
cesses. This is an important feature for SAR data processing because it allows
for storing incoming data in real-time.

The upper part of Figure 4 shows the performance of the system for variable
number of parallel instances. For this test setup, we define performance as the
number of pixels calculated per 1 million clock cycles, whereas each pixel includes
data of 500 range lines. We observe an almost linear performance increase until
a system size of 19 processor cores. We measure an evenly distributed workload
among the processing elements. The lower part of Figure 4 shows the number
of flits in the network and the percentage of flits that are blocked due to back-
pressure signaling. We observe a significant increase in blocked flits when 18
processor cores run the application in parallel.

To provide data processing in real-time we need to compute 60’000 pixels
per second. Hence, we need to scale up the system. One of the advantages of
FPGAs is the flexible I/O capabilities that allows for connecting a multitude of
memory blocks to a single device. We decided for a multi-core system consisting
of 4 memory controllers and 64 processor cores to provide sufficient computing
power for the case study application.

5 Results

We evaluate the proposed multi-core system by running the SAR data processing
application. First, we derive the system’s maximum clock frequency and the
required hardware resources for various FPGA families. Second, we evaluate the
processing performance, network traffic, and application mapping.

82 P. Schleuniger et al.

Table 1 shows the speed and resource results of a multi-core fabric consisting
of 64 processor cores and a 2D mesh network-on-chip. The memory controllers
are implemented as functional models only, therefore they are not included in
these results. The speed and resource results are based on Xilinx ISE 13.4 ”place
and route” report. We use Xilinx SmartXplorer to run multiple implementation
flows using varying sets of implementation properties and strategies until timing
closure is achieved. The multi-core fabric utilizes about 60% of an FPGA with
550’000 logic cells. We measure a maximal system clock frequency of 300 MHz
on Virtex-7 device of the fastest speed grade. The homogeneous SAR implemen-
tation requires all processor cores to be equipped with full FPU and function
lookup-tables. The pipelined SAR implementation allows for simplifying the indi-
vidual processing elements. For example, the floating-point square root operation
is only used in the processor core that computes the round trip delay. Thus, this
operation is omitted in the processing elements that run the other sub-tasks.The
software pipelined approach reduces the hardware footprint by 14%. To evalu-
ate the performance and network traffic we use the VHDL open-source simulator
GHDL. The memory controllers are integrated in a test bench that simulates
synchronous SRAM memory and are connected to regular network nodes. As
they receive a memory request message, memory address and destination node
are decoded. Then, the desired data is fetched from memory and sent to the des-
tination node. We assign a fixed latency of 5 clock cycles to this memory model.
We used assembly language programming to optimize instruction scheduling. To
speed up the application, we store pre-computed constants, packet headers, and
intermediate results in registers. This allows for computing the energy content
for one pixel of one range line in 350 clock cycles.

Table 1. Overview of clock frequency (a) and hardware resource usage (b)

(a)

FPGA family Grade F.max

Xilinx Virtex 7 -3 300 Mhz
Xilinx Virtex 7 -2 260 Mhz
Xilinx Virtex 6 -2 250 Mhz

(b)

Homogeneous SAR

200k Regs 209k LUTs
896 RAMB18E1 256 DSP48E1s

Pipelined SAR

190k Regs 167k LUTs
600 RAMB18E1 240 DSP48E1s

Figure 5 illustrates the network traffic that includes memory requests, pro-
cessor intercommunication, and communication with the host. Light colors in
graph indicate high network traffic. We obtain this data by counting the number
of flits in the network while we run the application. We extend the router ports
with counters to record the network traffic. When the GHDL simulation has
completed these counter values are stored in a file. We then use MATLAB to
plot the data of the hardware simulation. We observe the highest traffic in the

Synthetic Aperture Radar Data Processing on an FPGA Multi-core System 83

(a) (b)

Fig. 5. Network traffic of homogeneous implementation (a) and software pipelined
implementation (b) on a system with 8 x 9 network nodes

corners of the system where the memory controllers are located. It is also visible
that the network traffic in the pipelined SAR application strongly depends on
the mapping of the processing elements. According to Section 2, we provide real-
time data processing for this case study application when we are able to calculate
60’000 pixels per second. Each pixel has to consider 437 up to 688 range lines
depending on the length of the synthetic aperture. We measure an execution
time of 905 ms to compute 60’000 pixels using the pipelined SAR application on
a Virtex-7 device of a medium speed grade. The Xilinx Pocket Power Estima-
tor computes a power dissipation of about 10 watts for the complete multi-core
fabric.

6 Related Work

EMISAR is an airborne SAR developed at the Danish Technical University,
DTU, which provides a resolution of 2x2m [2]. It was mainly used for research
in remote-sensing techniques and to collect high-quality SAR data. A high fre-
quency of up to 5.3 GHz and a relatively large antenna lead to a quite short
aperture length which limits the number of echoes that need to be considered
to compute a pixel of the output image. Real-time data processing is possible
of a single channel [4]. This was mainly used to check the data acquisition. An
offline system then did the high-quality processing of the data that was stored
on HDDT tapes. Both the real-time and the offline processing system are based
on the range-Doppler algorithm [11], as the relative bandwidth is so small that
the back-projection algorithm is not required.

POLARIS is an ice sounding radar developed at DTU [5]. It was initially
built to assess the potential and feasibility of a space-based P-band ice sounding
mission. It operates in the P-band at 435MHz. A radar with a low frequency is

84 P. Schleuniger et al.

used to avoid excessive attenuation of transmitted and reflected signals in the
ice. The on-board signal processing supports real-time visualization at a coarse
resolution only. This is sufficient to calibrate the system. Final data processing
is done offline. POLARIS is currently used as a SAR system to support the
evaluation of the ESA’s BIOMASS candidate Earth Explorer mission. The long
wavelength of P-band SAR has a higher saturation threshold to biomass than
radars operating in a higher frequency band.

SAR data processing always has been a challenge due to huge input data
and computationally expensive algorithms. In the past, dedicated hardware and
large computing clusters were used, e.g. the EMISAR real-time processor in-
cludes about 20 programmable signal processing elements, each with 8 digital
signal processors, DSPs [4]. Modern systems, however, make use of accelerators
of various forms.

FPGA accelerated SAR data processing has been proposed previously by
Cordes et. al. [3]. They use system with a host machine and an FPGA acceler-
ator. The host machine provides the FPGA with preprocessed data and appli-
cation specific information at run-time. The back-projection algorithm is then
implemented on the FPGA to calculate the pixel values of the output image.
However, their system is very different from our proposed approach. While our
multi-core system consists of generic processing elements and interconnect, they
use dedicated hardware blocks only. We use sinc interpolation to get a better
estimate of the energy contribution of each echo, which is not done in their sys-
tem. Finally, they use fixed-point arithmetic while we do all data processing in
floating-point arithmetic.

7 Conclusions

We described how to map a SAR data processing application on a multi-core on
an FPGA.We implemented a multi-core system consisting of 64 Tinuso processor
cores and a high throughput, low latency network-on-chip. The multi-core fabric
consisting of 64 processor elements and 2D mesh interconnect utilizes about 60%
of the hardware resources of a Xilinx Virtex-7 device with 550 thousand logic
cells and consumes about 10 watt.

We show that real-time data processing for the POLARIS SAR can be done
on a multi-core system on an FPGA. FPGAs are often used to implement the
digital front-end of radar systems. Hence, it is possible to combine SAR signal
and data processing in a single device. The use of synthesizable processor cores
raises the abstraction level for the application programmer. This is of particular
interest when the application needs to adapt quickly to flight and scene proper-
ties. We conclude that multi-core systems on FPGA are an attractive choice for
application with strictly constrained space and power budgets.

Acknowledgment. The research leading to these results has received funding
from the ARTEMIS Joint Undertaking under grant agreement number 100230
and from the national programmes / funding authorities.

Synthetic Aperture Radar Data Processing on an FPGA Multi-core System 85

References

1. Carrara, W., Goodman, R., Majewski, R.: Spotlight synthetic aperture radar: Sig-
nal processing algorithms. Artech House (1995)

2. Christensen, E., Skou, N., Dall, J., Woelders, K., Jorgensen, J., Granholm, J.,
Madsen, S.: EMISAR: an absolutely calibrated polarimetric l- and c-band SAR 36,
1852–1865 (1998)

3. Cordes, B., Leeser, M.: Parallel backprojection: A case study in high-performance
reconfigurable computing. In: Proceedings of the 14th IEEE Symposium on Field-
Programmable Custom Computing Machines, FCCM 2006, pp. 205–216 (2009)

4. Dall, J., Joergensen, J., Christensen, E., Madsen, S.: Real-time processor for the
danish airborne SAR. IEE Proceedings-F 139, 115–121 (1992)

5. Dall, J., Kristensen, S., Krozer, V., Hernandez, C., Vidkjr, J., Kusk, A., Balling, J.,
Skou, N., Sbjrg, S., Christensen, E.: ESA’s polarimetric airborne radar ice sounder
(POLARIS): design and first results. Journal on Radar, Sonar Navigation, IET 4,
488–496 (2010)

6. ESA: Measuring forest biomass from space - esa campaign tests biomass mis-
sion (2012), www.esa.int/esaLP/SEMFCJ9RR1F_index_0.html (retrieved on June
5, 2012)

7. Lehmann, T., Goenner, C., Spitzer, K.: Survey: Interpolation methods in medical
image processing. IEEE Journal on Transactions on Medical Imaging 18, 1049–1075
(1999)

8. Lu, Y., McCanny, J., Sezer, S.: Generic low-latency noc router architecture for
FPGA computing systems. In: Proceedings of the 21th International Conference
on Field Programmable Logic and Applications, FPL 2011, pp. 82–89 (2011)

9. Papakonstantinou, A., Liang, Y., Stratton, J., Gururaj, K., Chen, D., Hwu, W.,
Cong, J.: Multilevel granularity parallelism synthesis on fpgas. In: Proceedings of
the 19th IEEE Symposium on Field-Programmable Custom Computing Machines,
FCCM 2011, pp. 178–185 (2011)

10. Schleuniger, P., McKee, S.A., Karlsson, S.: Design Principles for Synthesizable
Processor Cores. In: Herkersdorf, A., Römer, K., Brinkschulte, U. (eds.) ARCS
2012. LNCS, vol. 7179, pp. 111–122. Springer, Heidelberg (2012)

11. Wu, C., Liu, K., Jin, M.: Modeling and a correlation algorithm for spaceborne sar
signals. IEEE Journal on Transactions on Aerospace and Electronic Systems AES-
18, 563–575 (1982)

www.esa.int/esaLP/SEMFCJ9RR1F_index_0.html

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 86–97, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Virtual Register Renaming

Mageda Sharafeddine1, Haitham Akkary1, and Doug Carmean2

1 Electrical and Computer Engineering Department
American University of Beirut, Lebanon
{mas117,ha95}@aub.edu.lb

2 Intel Corporation
Hillsboro, Oregon, USA

douglas.m.carmean@intel.com

Abstract. This paper presents a novel high performance substrate for building
energy-efficient out-of-order superscalar cores. The architecture does not
require a reorder buffer or physical registers for register renaming and
instruction retirement. Instead, it uses a large number of virtual register IDs for
register renaming, a physical register file of the same size as the logical register
file, and checkpoints to bulk retire instructions and to recover from exceptions
and branch mispredictions. By eliminating physical register renaming and the
reorder buffer, the architecture not only eliminates complex power hungry
hardware structures, but also reduces reorder buffer capacity stalls when
execution encounters long delays from data cache misses, thus improving
performance. The paper presents performance and power evaluation of this new
architecture using Spec 2006 benchmarks. The performance data was collected
using an x86 ASIM-based performance simulator from Intel Labs. The data
shows that the new architecture improves performance of a 2-wide out-of-order
x86 processor core by an average of 4.2%, while saving 43% of the energy
consumption of the reorder buffer and retirement register file functional block.

Keywords: Superscalar Processors, Checkpoint Processors, Register
Renaming.

1 Introduction

In conventional superscalar processors, a large physical register file is necessary for
exposing large amount of instruction level parallelism [21]. By allocating a separate
physical register for each instruction that writes a logical register, a feature known as
register renaming, write-after-write and write-after-read register dependences are
eliminated. This allows the processor to execute instructions in any order, limited
only by true data dependences and readiness of input operands. Physical registers are
either organized as data fields within an instruction reorder buffer, or as a separate
physical register file of size larger than the number of logical registers [12].

Regardless of whether the physical registers used for register renaming are
implemented as data registers within the reorder buffer or as separate physical register
file, the reorder buffer in conventional superscalar processors provides key

 Virtual Register Renaming 87

mechanisms for maintaining correct sequential program execution [20]. Even though
register renaming allows the processor core to schedule instructions for execution out
of program order, the reorder buffer reorders the execution results, thus updating (i.e.
committing or retiring) register and memory state in the original program order, as
needed in case of an interrupt or mispredicted branch event. In addition to the in-order
retirement mechanism, the reorder buffer provides the mechanisms necessary to
reclaim dead physical registers that have been read by all instructions that need their
values, and for restoring the correct non-speculative register renaming map table to
resume execution properly upon recovery from a branch misprediction event [1].

Although the reorder buffer has become a central structure in superscalar
processors, researchers have shown that in-order retirement of instructions and the
associated reorder buffer mechanisms limit performance, especially as the size of the
reorder buffer increases to exploit more instruction level parallelism [1][2][3]. As a
higher performance alternative to reorder buffers, Checkpoint Processing and
Recovery architectures (CPR) were proposed for building scalable large instruction
window processors [1]. CPR replaces in-order retirement and its associated branch
recovery mechanisms with checkpoint recovery and bulk retirement of instructions.
CPR also decouples physical register reclamation from retirement by using read
counters and remapped flags [18] to identify and reclaim unneeded physical registers.

Despite the advantages that CPR provides by eliminating the reorder buffer and its
sequential mechanisms, it introduces its own unique complexities. The CPR
architecture studied in [1][3] requires too many checkpoints and too many counters.
Specifically, CPR used eight mapping table checkpoints with flash copy support,
eight instruction execution counters to manage bulk commit and checkpoint allocation
and reclamation, register read counters and remapped flags, one per physical register,
augmented with a free list array to track physical registers usage and reclamation.

The complexity of CPR was justified as a more efficient alternative to reorder buffers
for scaling the instruction window on high performance superscalar cores. However, its
complexity makes CPR unsuitable for energy-efficient small core architectures that target
low power ultra-mobile devices (e.g. smart phones, tablets, etc…).

In this work, we propose and evaluate a novel checkpoint architecture that uses
virtual register renaming (VRR). Our VRR architecture features a specialized
“logical” register file, with in-cell fast checkpoint copy and restore. VRR completely
eliminates the reorder buffer used in conventional out-of-order cores as well as CPR
physical register file with its complex free list, register reclamation counters and
remapped flags circuits. Moreover, VRR uses a special mechanism in the logical
register file to fuse checkpoint contexts in one cycle, allowing checkpoints to be
reclaimed out-of-order. This increases the checkpoint hardware utilization
significantly and reduces the number of checkpoints needed for performance in
comparison to CPR.

The rest of the paper is organized as follows. Section 2 describes in detail the
virtual register renaming core architecture (VRR) and the register file checkpoint and
context fusion algorithms. In section 3, we discuss our performance simulation
methodology and benchmarks, and present performance and power results. Section 4
examines related work. The paper finally concludes in section 5.

88 M. Sharafeddine, H. Akkary, and D. Carmean

Fig. 1. VRR Architecture Block Diagram

2 Virtual Register Renaming Architecture

Figure 1 shows a block diagram of the VRR core architecture. An instruction in VRR
goes through the typical processing steps of a conventional superscalar processor.
These instruction processing steps include fetch, decode, rename, register operands
read, schedule, execute, writeback and retire. VRR uses Tomasulo’s algorithm [23]
and performs equivalent processing steps to Intel P6 architecture [19], but has key
distinguishing features and differences, as shown in Figure 1. First, VRR performs
register renaming using virtual register IDs generated by a counter. These IDs are not
mapped to any fixed storage locations in the core. Second, VRR does not have a
reorder buffer or physical register file. Instead, it uses a logical register file with in-
cell checkpoints. Third, VRR, like other CPR architectures, performs bulk commit of
instructions using checkpoint counters and handles mispredicted branches and
exceptions by rolling back execution to the last safe checkpoint.

We next discuss how each instruction executes as it advances through the pipeline
stages. Depending on the core circuit implementation and the degree of pipelining,
each one of the processing steps described next may correspond to one or more clock
cycles.

2.1 VRR Instruction Processing Pipeline

Instruction Fetch and Decode Stages
These are the conventional fetch and decode stages. These stages include the L1
instruction cache, the ITLB, the branch predictor, the decoder and microcode
sequencer units.

Rename and Allocate Stage
In this stage, VRR assigns to every instruction a unique virtual register ID (VID)
generated by a virtual ID counter. Instructions receive VIDs in program order and the
VID value of an instruction precisely indicates its order relative to other instructions.
Moreover, if the instruction has a logical destination register, its VID is written into

Virtual Register Counter

Instruction

Cache

Register

File with

Chkpts

Execution

Units

Data

Cache

Decoder
Virtual

Registers
Mapping

Table

Reservation

Stations

Load/Store

Queues

 Virtual Register Renaming 89

the register mapping table entry corresponding to its logical destination. At the same
time, the instruction reads from the mapping table the VID entries corresponding to
its logical source registers.

The mapping table has the same number of entries as the number of logical
registers defined by the VRR core instruction set architecture (ISA). Therefore, each
entry in the table contains at any given time the VID of the last renamed instruction in
the program that has as register destination the entry’s corresponding logical register.

Any buffer entries needed by an instruction (e.g., reservation station, load queue,
store queue) are allocated in this stage. If any needed buffer is full, the pipeline stalls
until an entry becomes available.

Register File Access and RS Write Stage
In this stage, each instruction that has a destination register writes its VID in the
logical register destination entry and clears the entry valid bit to 0, indicating that the
destination register will be written at a later time. The valid bit of the instruction
destination register is later set to 1 when the instruction writes back its result to the
register file.

The instruction also reads its source registers with their valid bits. The source
operands and their valid bits are subsequently written in the reservation station
allocated for the instruction. Since instructions carry any valid source operands with
them into the reservation stations, they do not need to access the register file again
when they are scheduled and dispatched later for execution. In the case when source
operands are not valid, i.e. have not been computed and written back into the register
file, they are grabbed by the instruction reservation station from the bypass network
during writeback.

RS Ready Stage
VRR has data-capture reservation stations, as in Tomasulo’s algorithm [23] and Intel
P6 architecture [19]. In this stage, a RS with an instruction that does not have a valid
source operand will use the VID of the source operand to detect when the source
operand value is being written back and to capture it from the write back bus.

RS Schedule and Dispatch Stage
In this this stage, an instruction that have all source “valid” bits set to 1 gets
dispatched to an execution unit of its class with its operands. When an instruction is
dispatched to execution, its reservation station is immediately freed to be made
available for another instruction.

Execution Stage
Instructions are executed in this stage. Execution latency could be one or more cycles,
depending on the type of instruction. In the first execution cycle the register
destination VID is read from the register file, to be used later during the writeback
stage as explained in the next paragraph.

90 M. Sharafeddine, H. Akkary, and D. Carmean

Fig. 2. VRR Register File Cell with Two Contexts and One Checkpoint

Writeback Stage
After an instruction executes, it broadcasts back its result data along with its VID on
the write back bus to all reservation stations. If the VID matches any RS source
operand VID, the data is grabbed by the RS. The data is also written into the
destination register entry in the register file and the valid bit in the entry is set to 1,
but only if the write back data VID matches the destination register file entry VID.

Commit Stage
VRR does not commit instructions one at a time as in reorder buffer architectures.
Instead, it bulk commits groups of contiguous instructions. VRR tracks execution of
instructions within a group using counters. When every instruction in a group
executes (possibly out of order) without encountering an exception or mispredicted
branch, VRR uses a flash copy (shift operation within the register file) to commit all
the result registers instantaneously.

We next describe the VRR logical register file and its checkpoint copy and context
fusion mechanisms.

2.2 VRR Register File

The logical register file is the central component in the VRR architecture. It replaces
the reorder buffer and the physical register file of conventional superscalar cores.

Figure 2 shows a diagram of VRR register file cell with one checkpoint store, two
work contexts and in-cell flash copy logic to support taking a checkpoint, restoring a
checkpoint, and fusing the two contexts. The two context bits are connected to the
register file read and write ports, while the checkpoint storage bit is not ported.
Although not explicitly shown in Figure 2, the read and write ports are common to the
two context bits. An instruction can read or write one of the context bits based on
operand context ID assigned at rename. Finally, there are two copies of the logical
register mapping table in the renaming block, one for each context. In one cycle,
context 0 register mappings can be flash copied into context 1 mapping table.

Figure 3 shows a state machine diagram that represents the state and state
transitions of VRR register file and the actions taken on these transitions. Events

Read/Write Ports

Recover Fuse

Read/Write Ports

Dirty Chkpt

Ctxt 0

 Ctxt 1

 Chkpt

D

Clk Clk

D

Clk

 Virtual Register Renaming 91

causing state transitions are annotated using regular font, and actions taken on a
transition are annotated with bold font. We next discuss these events and the
corresponding actions that are taken.

2.3 Creating and Committing Register Checkpoints

Program execution starts in context 0. Both the checkpoint storage and context 0
initially contain the startup state of the program, as defined by the ISA.

A checkpoint of the register state by definition corresponds to the precise execution
state at some point in the program. The checkpoint bit (“Chkpt” latch in Figure 2)
always contains the last committed, precise register state. VRR uses this checkpoint
for handling exceptions and interrupts.

Notice that because only an instruction with a matching VID to that stored in the
register file entry is allowed to write the register, and because a logical register entry
always has its last assigned virtual mapping, a context in our VRR architecture is
basically a “future file” for a contiguous group of instructions. If a checkpoint is
desired at the end of a group of instructions, a possible implementation is to stall the
execution of instructions located after the desired checkpoint until all the instructions
in the group execute and write back their results. When all instructions in the group
before the desired checkpoint complete, the future file becomes the precise state.
Stalling the execution pipeline to create a checkpoint is not a good option however
because of impact to performance.

To create a checkpoint without stalling and hurting performance, VRR provides
two register work contexts. When VRR determines that a new checkpoint should be
created, e.g. periodically every “n” instructions or when a low confidence branch [14]
is decoded, VRR performs a flash copy of context 0 register mapping table to context
1 and continues renaming and execution of the instructions following the desired
checkpoint using context 1. Therefore, instructions after the desired checkpoint do not
disturb context 0 register state. After enough time elapses, all instructions before the
checkpoint (context 0 instructions) finish execution leaving in context 0 the desired
precise checkpoint state. At this point, indicated by the state of context 0 counter,
context 0 bit is committed to the checkpoint bit to use for exception handling.

Notice that between the time context 1 is spawned and the time context 0 is
committed, both contexts are active with their instructions executing concurrently in
the pipeline. VRR identifies to which context an instruction belongs using a context
ID assigned at the rename stage and carried with every instruction.

2.4 Recovering from Mispredicted Branches

VRR uses the two contexts for recovering from branch mispredictions by simply
discarding the work context (or contexts) of the mispredicted branch and all
instructions after the mispredicton. In other words, if a mispredicted branch is in
context 0, all instructions belonging to both contexts are flushed and execution
restarts from the checkpoint. If a mispredicted branch is in context 1, context 1
instructions are flushed and execution restarts from the beginning of context 1, after
flash copying, again, context 0 register mappings to context 1 in the rename table.

92 M. Sharafeddine, H. Akkary, and D. Carmean

2.5 Context Fusion

It was necessary for CPR performance [1] to have checkpoints created as close as
possible to mispredicted branches in order to reduce the amount of rollback execution
on branch recovery. Previous CPR architectures used eight checkpoints, low
confidence branch estimation and limited maximum distance between checkpoints to
minimize performance loss from rollbacks. CPR reclaims checkpoints in program
order through bulk commit of all instructions in the oldest checkpoint when they
complete execution. Therefore, a long latency instruction such as cache load miss that
goes to DRAM can stall checkpoint reclamation in CPR, thus creating the need for
larger number of checkpoints.

In contrast, VRR uses a new effective mechanism to improve checkpoint
utilization and reduce rollback overhead after branch mispredictions, thus minimizing
the number of needed contexts without hurting performance. Like CPR, VRR bulk
commits context 0 (which is always the oldest context) into the checkpoint storage
once all context 0 instructions execute. Moreover, VRR reclaims context 1 once it
detects using a branch counter that all branches in context 1 are correctly predicted,
even if other instructions in contexts 0 or 1 have not completed. We call this
mechanism context fusion. VRR literally fuses context 0 and context 1 together into a
new context 0 with a larger number of instructions, leaving context 1 available for a
new checkpoint.

Figure 2 shows the context fusion logic within the register file cell. Context 0 bit
can be updated with an input from a 2-to-1 multiplexer. The multiplexer selects
between the checkpoint storage bit in case of execution roll back to the checkpoint
(e.g. for handling interrupts or exceptions), or context 1 bit when fusing the contexts.
However, there is an important difference between the two cases. When restoring the
checkpoint, all registers are copied from the checkpoint storage into context 0. When
fusing the contexts, only registers that have been actually written in context 1 are
copied into context 0. A dirty bit within each context 1 register gates the clock to
context 0 latch, thus enabling the copy only if the register has been written.

On fusing the two contexts, VRR globally clear all context IDs in the RS, load
queue and store queue entries, thus moving all these entries to context 0.

Tying Some Architecture Loose Ends Together
We complete the description of the VRR architecture with a few important details.

1. Stores from a checkpoint are issued to the data cache only after the checkpoint is
committed. When a checkpoint is flushed due to branch misprediction or
exception, all stores belonging to the checkpoint are cleared.

2. The virtual ID counter is finite in size and cannot be allowed to overflow for
correctness reason. VRR architecture opportunistically resets the VID counter
whenever it can, e.g. when the pipeline is flushed to recover from a mispredicted
branch.

 Virtual Register Renaming 93

Fig. 3. State diagram for VRR Register File

When such opportunity does not arise before the counter overflows, VRR forces a
pipeline flush. We have used a 10 bit VID counter in our simulations without
seeing noticeable performance degradation from these forced pipeline flushes.

3. To ensure forward progress, a new checkpoint is taken immediately at the second
instruction after execution restart from a checkpoint. This ensures that at least the
first instruction after roll back always executes and commits.

4. After an exception, execution rolls back to the last committed checkpoint. VRR
then switches to a special non-speculative in-order execution mode until the
exception instruction is reached, leaving in the register file the precise state needed
to take the exception. This mode can be implemented by allowing only one
instruction at a time into the RS buffer using the allocate stage pipeline stall
mechanism.

5. VRR attempts to create a checkpoint every 16 instructions, if possible. When both
contexts are active, VRR keeps executing instructions beyond the checkpoint
distance of 16 and then places the next checkpoint as soon as a context becomes
free.

3 Performance Results and Analysis

3.1 Simulation Methodology

We used Spec 2006 benchmarks and a detailed ASIM-based performance simulator
[7] from Intel labs to evaluate VRR performance relative to a 2-wide, out-of-order,
X86 baseline core. The performance simulation model accounted for user as well as
operating system code. Table 1 shows the baseline core configuration that we used,
which represents a small core that is appropriate for power constrained computing
devices. The VRR core model used a logical register file with two contexts and one
checkpoint as described earlier. Other than not having a reorder buffer, the VRR core
branch predictor, caches, pipeline and buffer configurations were identical to the
baseline core configurations. We collected performance data using representative
simulation samples from Spec 2006 benchmarks, after skipping an initial execution
phase to warm-up the branch predictor and the instruction and data caches.

Distance Reached or Low_confidence Branch/Copy map table C0->C1

C0 mis-predict/“restore”

C1 mis-predict/

Copy map table C0->C1

start

C0_inst_cntr = 0/

“commit_chkpt”

 C0_inst_cntr = 0

 “commit_chkpt, fuse”

Context0 &

Context 1

Active

Context0

Active

 C1_br_inst_cntr=0/“fuse” C0 mis-predict/“restore”

94 M. Sharafeddine, H. Akkary, and D. Carmean

Table 1. Simulated Machine Configurations

 Baseline Model VRR Model
Pipeline 2-Wide, 13 Stages 2-Wide, 13 Stages
Reorder Buffer 80 Entries None
Retirement Register File X86 Register File 2 X86 Contexts + Checkpoint
Reservation Stations 32 Entries 32 Entries
Load/Store Queue 24 Entries 24 Entries
L1 ICache, L1 DCache 16K Byte, 4-way 16K Byte, 4-way
L2 Cache 256K Byte, Unified 256K Byte, Unified
Branch Prediction Combined Bimod-gshare Combined Bimod-gshare

Fig. 4. VRR and Ideal VRR % Speedup over Baseline

3.2 Performance Analysis

Figure 3 shows the speedup percentage of VRR and an ideal VRR relative to the
reorder buffer baseline for each of our benchmarks as well as the average (Av). The
average includes two other benchmarks, Mcf and Bwaves, not shown in the graph.
Mcf and Bwaves see 24% and 46% performance improvement from VRR
respectively. We do not show them in the graph to minimize the y-axis range for
readability. Ideal VRR uses an Oracle simulation mode to place the checkpoints
exactly at mispredicted branches. It avoids having to undo and then redo some
correctly predicted instructions during rollback to checkpoints when recovering from
mispredicted branches, and thus captures the performance impact of having a small
number of contexts.

VRR achieves an average speedup of 4.2% over baseline, which is very close to
the best case performance improvement of 4.8% with ideal VRR. Notice that all
benchmarks benefit from VRR except for Gobmk, Sjeng, Tonto and Astar, which
suffer a very small slowdown (1%) due to very high branch misprediction rates and
significant rollback execution from checkpoints. Since in our study we did not use
branch confidence to improve checkpoint placement as suggested in previous CPR

 Virtual Register Renaming 95

work, it may be possible to eliminate this observed slowdown by using a better branch
predictor and low confidence branch estimation to select the checkpoints placement.

Many benchmarks show significant speedup with VRR. The variation in
performance between benchmarks is due to the variation in cache misses and branch
misprediction rates. VRR benefit is higher with higher cache miss rates since it has no
reorder buffer and therefore does not encounter rename/allocate stage stalls resulting
from the reorder buffer becoming full when long latency cache misses stall the in-
order retirement. VRR performance also benefits from lower branch misprediction
rates and the consequent reduction in checkpoint rollback execution.

3.3 Power Analysis

We used a power model derived from the performance model logic activity counters,
and circuit simulation of the reorder buffer and register files structures of the baseline
and VRR architectures. Notice that VRR energy savings come from completely
eliminating the reorder buffer and the energy it consumes during register operands
read and write activity as well as the energy it consumes to read out results and then
write them in the retirement register file during the commit pipeline stage.

Our model shows that the reorder buffer consumes about 6% of total baseline core
power or about 53% of the combined reorder buffer and retirement register file unit.
However, the overall VRR core power saving is only 2% due to overhead. This VRR
overhead includes additional complexity in the register file (1%), additional
complexity in the register rename table (0.5%) and overhead execution from rollback
to checkpoints to recover from branch mispredictions (2.5%). Accounting for the
increased complexity in the VRR register file, the energy consumption saving from
eliminating the reorder buffer is about 43% of the total reorder buffer and the
retirement register file of the baseline core.

Finally, notice that VRR does not achieve any performance improvement over
CPR [3], since both eliminate the reorder buffer bottleneck created by in-order
retirement of instructions and its associated mechanisms. However, VRR has a
significant power benefit over CPR, especially on small cores. CPR requires multiple
checkpoints (8 checkpoints were used in [3]) and a large physical register file to
support these checkpoints. CPR also has significant overhead from the free list,
register read counters and increased complexity in the rename table to support a larger
number of checkpoints than VRR. We have estimated that VRR on a 2-wide out-of-
order core has more than 10% core power advantage over 2-wide CPR.

4 Related Work

Tomasulo [23] proposed an algorithm for eliminating write-after-write and write-
after-read register dependences and executing instructions out of order using
reservation stations. Tomasulo’s algorithm did not provide precise state for handling
exceptions. In addition, it did not perform speculative execution and therefore did not
require precise state for recovering from branch mispredictions.

96 M. Sharafeddine, H. Akkary, and D. Carmean

Checkpoints in processors are used to repair architectural state to a known, precise
previous state. The use of checkpoints for recovering from branch mispredictions and
exceptions in out-of-order processors was first proposed by Hwu and Patt [13]. The
Pentium 4 used a retirement register alias table to track register mappings [12] while
the MIPS R10000 [24] and Alpha 21264 [16] used checkpoints to recover register
rename mappings. All the above designs used physical registers for register renaming.

Architectures that use checkpoints with physical register files for recovery and for
scaling the instruction execution window to help tolerate cache misses include Virtual
ROBs [6], Cherry [17], Checkpoint Processing and Recovery [1][3], Continual Flow
Pipelines [10][11][15][22] and Out of Order Commit Processors [5].

Gonzalez et al. [8][9] proposed using virtual registers to shorten the lifetime of
physical registers. The idea was to use virtual-physical registers to delay the
allocation of physical registers from the time instructions are renamed until
instructions execute and produce results that need the physical registers. Until the
physical destination registers are allocated at execution time, virtual registers are used
for register renaming. Kilo instruction processors [4] also used virtual renaming and
ephemeral registers to do late allocation of physical registers. In contrast to virtual-
physical registers and ephemeral registers, VRR does not require physical registers
for any allocation of execution results to physical registers.

5 Conclusion

This paper introduces an out-of-order virtual register renaming architecture that
outperforms a conventional core of equally sized scheduling window by an average of
4.2%, while reducing the energy consumed in the reorder buffer and register file by
43% and the overall core energy by 2%. VRR achieves this speedup by eliminating
the use of reorder buffer or physical registers for register renaming, thus improving
energy efficiency as well. The performance and simple hardware advantages of VRR
makes the architecture an interesting design option for power constrained computing
devices, such as cores for ultra-mobile computing.

Acknowledgements. This work has been supported by a research grant from Intel
Corporation.

References

1. Akkary, H., Rajwar, R., Srinivasan, S.: Checkpoint processing and recovery: towards
scalable large instruction window processors. In: Proceedings of MICRO 2003 (2003)

2. Akkary, H., Rajwar, R., Srinivasan, S.: Checkpoint processing and recovery: an efficient,
scalable alternative to reorder buffers. IEEE MICRO 23(6), 11–19 (2003)

3. Akkary, H., Rajwar, R., Srinivasan, S.: An analysis of a resource efficient checkpoint
architecture. ACM Transactions on Architecture and Code Optimization 1(4), 418–444
(2004)

 Virtual Register Renaming 97

4. Cristal, A., Santana, O.J., Valero, M., Martinez, J.F.: Toward kilo-instruction processors.
ACM Transactions on Architecture and Code Optimization 1(4), 389–417 (2004)

5. Cristal, A., Ortega, D., Llosa, J., Valero, M.: Out-of-order commit processors. In:
Proceedings of HPCA 2004 (2004)

6. Cristal, A., Valero, M., Llosa, J., Gonzalez, A.: Large virtual ROBs by processor
checkpointing. Tech. Report, UPC-DAC-2002-39, Department of Computer Science,
Barcelona, Spain (July 2002)

7. Emer, J., Ahuja, P., Borch, E., Klauser, A., Luk, C.-K., Manne, S., Mukherjee, S.S., Patil,
H., Wallace, S., Binkert, N., Espasa, R., Juan, T.: ASIM: A performance model
framework. IEEE Computer 35(2), 68–76 (2002)

8. Gonzalez, A., Gonzalez, J., Valero, M.: Virtual-physical registers. In: Proceedings of
HPCA 1998 (1998)

9. Gonzalez, A., Valero, M., Gonzalez, J., Monreal, T.: Virtual registers. In: Proceedings of
HPCA 1997 (1997)

10. Hilton, A., Nagarakatte, S., Roth, A.: Tolerating all-level cache misses in in-order
processors. In: Proceedings of HPCA 2009 (2009)

11. Hilton, A., Roth, A.: BOLT: energy-efficient out-of-order latency tolerant execution. In:
Proceedings of HPCA 2010 (2010)

12. Hinton, G., Sager, D., Upton, M., Boggs, D., Carmean, D., Kyker, A., Roussel, P.: The
microarchitecture of the Pentium 4 processor. Intel Technology Journal 5(4) (February
2001)

13. Hwu, W.W., Patt, Y.N.: Checkpoint repair for out-of-order execution machines. In:
Proceedings of ISCA 1987 (1987)

14. Jacobsen, E., Rotenberg, E., Smith, J.E.: Assigning confidence to conditional branch
predictions. In: Proceedings of MICRO 1996 (1996)

15. Jothi, K., Akkary, H., Sharafeddine, M.: Simultaneous continual flow pipeline architecture.
In: Proceedings of ICCD 2011 (2011)

16. Leibholz, D., Razdan, R.: The Alpha 21264: a 500 MHz out-of-order execution
microprocessor. In: Proceedings of the 42nd IEEE Computer Society International
Conference (COMPCON), pp. 28–36 (February 1997)

17. Martinez, J.F., Renau, J., Huang, M.C., Prvulovic, M., Torrellas, J.: Cherry: checkpoint
early resource recycling in out-of-order Microprocessors. In: Proc. of MICRO 2002 (2002)

18. Moudgill, M., Pingali, K., Vassiliadis, S.: Register renaming and dynamic speculation: an
alternative approach. In: Proceedings of MICRO 1993 (1993)

19. Papworth, D.B.: Tuning the Pentium Pro microarchitecture. IEEE MICRO 16(2), 8–15
(1996)

20. Smith, J.E., Pleszkun, A.R.: Implementation of precise interrupts in pipelined processors.
In: Proceedings of ISCA 1985 (1985)

21. Smith, J.E., Sohi, G.S.: The microarchitecture of superscalar processors. Proceedings of
the IEEE 83(12), 1609–1624 (1995)

22. Srinivasan, S.T., Rajwar, R., Akkary, H., Gandhi, A., Upton, M.: Continual flow pipelines.
In: ASPLOS-11 (October 2004)

23. Tomasulo, R.M.: An efficient algorithm for exploiting multiple arithmetic Units. IBM
Journal of Research and Development 11, 25–33 (1967)

24. Yeager, K.: The MIPS R10000 superscalar microprocessor. IEEE Micro 16(2), 28–40
(1996)

Load-Adaptive Monitor-Driven Hardware

for Preventing Embedded Real-Time Systems
from Overloads Caused

by Excessive Interrupt Rates

Josef Strnadel

Brno University of Technology, IT4Innovations Centre of Excellence
Bozetechova 2, 61266 Brno, Czech Republic

strnadel@fit.vutbr.cz

Abstract. In the paper, principle, analysis and results related to a spe-
cial embedded hardware/software architecture designed to prevent the
real-time software from both timing disturbances and interrupt overloads
is presented. It is supposed that the software is driven by a real-time op-
erating system and that the software is critical, so it is expected not to
fail. The architecture is composed of an FPGA (MCU) utilized to run
the hardware (software) part of a critical application. Novelty of the pro-
posed architecture can be seen in the fact it is able to adapt interrupt
service rates to the actual software load, the priority of a task being ex-
ecuted by the MCU and priorities of interrupts occured. The load and
priority are monitored by the FPGA on basis of low-overhead signals
produced by the MCU for minimizing impacts of the load-monitoring
hardware to the software execution because of the monitoring process.

Keywords: task, operating system, load monitoring, interrupt control,
scheduling, overload prevention, priority space.

1 Introduction and Problem Formulation

If the load hypothesis is not defined precisely or there are no computational re-
sources available to process the peak load, then a conflict can arise between spec-
ified and real behaviors of a system, so the system can fail to operate correctly.
Especially, it holds for embedded systems (ES) required to be both I/O intensive
and real-time (RT). Such an ES must be able to react to stimuli both correctly
and on-time even though the stimuli are of various rates and (a)periodicity and
the ES is equipped with very limited computational resources. Typically, oc-
curence of a stimulus is signalized by an interrupt (INT) mechanism, advantage
of which can be seen in its high reactivity. Disadvantage of the mechanism is
that each INT occurence and related service routine (ISR) are assigned com-
putational resources prior to the main-loop instructions. As a consequence, the
SW part may stop working correctly or collapse suddenly as the INT rate (fint)
increases. This is typically denoted as the interrupt overload (IOV) problem,
seriousness of which grows with criticality of the SW.

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 98–109, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Load-Adaptive Monitor-Driven Hardware 99

Thus, a critical ES must be designed so that it may never give up to recover
even if the load hypothesis is violated by the reality [3]. Several solutions exist
to solve the IOV problem, e.g. [3, 6–8, 10, 12, 14, 16, 17].

The paper is organized as follows. In the section 2, the background related to
the research is outlined. In particular, basic terms related to real-time systems are
summarized there along with the solved problem definition and typical solutions
(2.1). In the section 3, the proposed HW solution to the problem is presented
with a special attention paid to monitoring interface and signal generation details
w.r.t. proposed HW monitor unit (3.1, 3.2) and its operating principle 3.3. In the
section 3.4, experimental results achieved by the proposed solution are presented
and compared to results of typical solutions to the problem followed by the sum
of crucial implementation overheads w.r.t. proposed monitor and the section 4
concludes the paper.

2 Research Background

The paper is related to systems, perfection of which is based on both the cor-
rectness and the timeliness of the outputs. Such a system – i.e., that is able to
produce the right response to given stimuli on time – is called an RT system [1].
For event-driven RT systems, it is typical that each stimulus (considered as an
event) is associated with a computational unit called a task, responsible to react
correctly to the event. There are two basic types of RT tasks: hard and soft [2,4].
For hard tasks it holds their timing constraints must be strictly met; violating
any of them can lead to a failure of the system. The latter (soft) constraints are
not required to be strictly met as their violation typically leads to a temporal
degradation of some system services only, but not to a failure of the system
as a whole. While hard tasks are typically running at high priority levels, soft
tasks are running at lower priorities because they are less time-critical than the
hard tasks. To organize task executions in time (i.e., to schedule them to meet
their timing and other constraints) and to simplify design and analysis of an RT
system, RT operating systems (RTOS) are often used [2, 4]. In the paper, it is
supposed the critical SW is driven by an RTOS.

2.1 Interrupt Overload Problem Solutions

In existing works those problems are typically solved w.r.t. INT management:
i) the timing disturbance problem composed mainly of a disturbance due to soft
real-time (RT) tasks and priority inversion sub-problems [6,7,14] and ii) the pre-
dictability problem originating from the ES inability to predict arrival times and
the rate of INTs induced by external events [10, 12]. The timing disturbance
problem can be efficiently solved at the kernel level – e.g., it was shown in [6], [7]
that ESes can suffer significantly from a disjoint priority space where ISRs are
serviced by the HW prior to tasks managed by the SW; as the solution, they
suggested to implement a joint priority space so the ISR and task priorities can
be mutually compared to detect the highest-priority ISR/task in the joint set.

100 J. Strnadel

They suggested not to service an INT immediately in its ISR but later in an
associated (deferred) task – called an interrupt service task, IST – running at
a predefined task-level priority. At the ISR level, it is supposed only necessary
actions are performed such as INT acknowledge or signaling the corresponding
IST. It was shown the concept minimizes disturbance effects induced by inter-
rupting high-level tasks by ISRs serviced by low-level ISTs. Similar approaches
can be found e.g., in [14, 16, 17]. However, although the solutions minimize the
disturbances produced by ISRs, they do not solve the predictability problem.
They are still susceptible to INT-overload scenarios in which the CPU can be
overloaded when the INT interarrival times (tarrival) are very close to or smaller
than the ISR context switch time [15].

The latter (predictability) problem solutions – presented e.g. in [6,10,12] – are
typically designed to bound the tarrival times (or, maximal interrupt arrival rate
fint). In [12], the INT overload prevention solutions – called interrupt limiters
(IL) there – are classified to SW ILs (SIL) and HW ILs, (HIL). The SILs can be
classified to the following sub-types:

i) Polling SIL. It is designed to check periodically (with tarrival period) if any
event flag is set or not. If it is then an IST corresponding to the event is
started. A timer or a well-tuned block of instructions can be utilized to start
a new polling period after ttimer units of time.

ii) Strict SIL. It works as follows: an ISR prologue is modified to disable INTs
(except those from timers) and configure a one-shot timer to expire after
tarrival units measured from the INT occurence time (treq). After it expires,
INTs are re-enabled. Main disadvantage of the approach can be seen in the
fact INTs are practically doubled as each external INT request leads to an
internal INT utilized to signalize the one-shot timer expiration.

iii) Bursty SIL. It is designed to reduce the double-INT overhead w.r.t. strict
SIL. Comparing to the strict SIL, the bursty SIL is driven by the two pa-
rameters: maximum arrival rate (farrival = 1/tarrival) and maximum burst
size (N). The reduction is based on the following idea: INTs are disabled
after a burst of N≥2 requests rather than disabled after each INT request.
An ISR prologue is modified to increment the counter; INTs are disabled as
soon as the counter reaches N . INTs are re-enabled and the counter is reset
after a timer overflows (after tarrival time units measured from treq).

In the latter (HIL) approach [6], INT requests are processed before they are
directed to the device the ES runs on – a HIL guarantees that at most one INT
is directed to the device within a time interval long tarrival units (i.e., the HIL
is designed to limit fint to a predefined, fixed maximum farrival rate). Further
solution to the HIL – based on the Real-Time Bridge (RTB) concept – was
presented by Pellizzoni [10]: Each I/O interface is serviced by a separate RTB
able to buffer all incoming/outgoing traffic to/from peripherals, and deliver it
predictably according to the actual scheduling policy; the PCI(e) bus is utilized
to interconnect the RTB-based HIL and the control parts of the ES based on a
high-performance (1Ghz Intel Q6700 quad-CPU) platform.

Load-Adaptive Monitor-Driven Hardware 101

3 Proposed Solution

It can be concluded that actual solutions to the IOV problem are either limited
to solving one of the timing disturbance and predictability problems, they are
too complex for (limited) embedded realizations, they require significant modifi-
cations and/or extensions of common commercial off-the-shelf (COTS) compo-
nents or they inherently worsen the RT-task schedulability as they increase the
CPU utilization factor. Motivation and goals of the research w.r.t. this paper can
be summarized as follows: Reachability: to offer a solution to the IOV problem
on basis of instruments accessible at the market, i.e., using COTS components
such as MCUs/FPGAs and operating systems (OSes), Generality: the solution
must result to an architecture that is general enough to abstract from products
of particular producers and is able to solve both the timing disturbance and
predictability problems, Simplicity: the solution must reduce a need to modify
existing components to a minimum, Adaptability: the solution must be able to
adapt the INT service rate to the actual SW load and constraints implying from
the system specification.

3.1 Architecture

To achieve the above-mentioned goals, we have decided i) to utilize an FPGA (for
realization a HIL function) and an MCU (for executing the safe part of an RTOS-
driven ES) as the realization platforms for our monitor-based architecture, ii)
to define a monitoring protocol and interface between FPGA and MCU, iii) to
describe a monitoring hardware in VHDL for its implementation into the FPGA
and iv) to analyze RTOS kernel changes and overheads necessary to realize the
monitoring protocol and interface at the MCU side.

In the proposed solution, we have decided to combine the existing RTB con-
cept [10] with the joint task/IST scheduling [6, 7, 14] and novel load-monitoring
solution able to adapt the INT management mechanism to the actual SW load.
Design and utilization of the monitoring protocol/interface for load-estimation
purposes as well as the estimation mechanism itself can be seen as the most
important contributions of this paper. Main idea of the proposed solution can
be summarized as follows: the FPGA is designed to preprocess all INTs before
they are directed to the MCU; each interface (IFC i) able to generate an INT
request is processed by a separate RTB responsible for processing stimuli related
to the INT – during the high load of the MCU’s CPU any INT is buffered by
the FPGA until the CPU is underloaded or the INT priority is higher than the
priority of the task running in the RTOS; then the INT is directed to the MCU.
Buffers w.r.t. the RTBs must be of a ”sufficiently large” capacity to store stalled
communication related to delayed INTs.

3.2 Monitoring Signals: Timing and Overheads

Details related to the MON INT to MON SLACK signals (see Fig. 1) produced by the
MCU for the monitoring purposes are summarized as follows:

102 J. Strnadel

i) Start: The signal generation begins just after a free-running hardware timer
(TIM) is started to periodically generate an INT for signalizing new tick
of the (logical) operating system time. The start is signalled by producing
a short pulse at each of the MON INT to MON SLACK lines (Fig. 1, A). The
overheads w.r.t. the short pulse generation can be summarized as follows.
Number of FPGA/MCU pins needed to realize the monitoring interface is

Npins = 4 + n (1)

where n is the joint priority bit-width. Moreover, for the SW part it holds
that few instructions must be added to the end of the TIM-start routine
in order to produce a short pulse at each of the lines; this increases the
ES-startup time by about few CPU cycles (tSTARTovr), number of which
depends on pins and instructions selected to control the lines.

ii) ISR-Presense Monitor: Each INT prologue (epilogue) is modified to set the
MON INT signal to HIGH (LOW) just at the beginning (end) of an ISR body to
ease the monitoring of ISR execution times. This extends the ISR execution
a bit (e.g., one instruction for setting and one for clearing the line), but in
a deterministic and the same way across all ISRs except of the TIM-ISR
(let the execution delay implying from the extension be denoted as tISRovr).
Moreover, execution of the (special) TIM-ISR is signalled by generating a
short pulse at the MON TICK line.
So, the TIM-ISR execution time is increased by about

tTICKovr = 2× tISRovr (2)

because of the signal generation. ISR nesting is disallowed. This saves limited
embedded resources such as memory and simplifies the ES analysis, but puts
greater demands on ISR-coding efficiency – execution of an ISR must be as
short as possible not to delay the execution of a consecutive ISR, which
could be of higher priority.

iii) Context-Switch Monitor: The MON CTX signal is set to HIGH each time the
task-level context switch (CTXSW) is being (re)stored; otherwise, it is set
to LOW. Pulse between A, B parts in Fig. 1 represent a (half) CTXSW
to the very first task to run while pulses between B, C (C, D and D, E)

t
MON_TICK

MON_CTX

MON_PRI

MON_SLACK

X

A B

PRI_L

OSTick

PRI_IDLEPRI_H

C E

t

t

t

PRI_L

D

t
MON_INT H L

T

M
C
U

F
P
G
A

Fig. 1. An illustration to the monitoring signals/interface introduced in [15]

Load-Adaptive Monitor-Driven Hardware 103

represent (full) CTXSWs between the tasks – i.e., the CTXSWs formed of
context store (the light filled area) and context restore (the dark filled area)
parts. In Fig. 1, it is supposed the full CTXSW is performed in the ISR body
of a special (Exception/Trap/Software Interrupt) instruction, so MON INT is
HIGH too. Each CTXSW is processed in the critical section (INT disable)
mode, so an extra response delay is added to INTs arisen during a CTXSW
execution. The SW overhead related to generating the signal is similar to
those presented above – one instruct. to set, one to clear the line per half
CTXSW (tHCTXovr), i.e., twice as much for the full CTXSW:

tCTXovr = 2× tHCTXovr. (3)

iv) Priority Monitor: The MON PRI signal is utilized to monitor the running-task
priority. The signal is set in the context restore phase of the CTXSW (as
soon as the priority is known). Let the execution overhead needed to adjust
the MON PRI line be denoted as tPRIovr . So, the total CTXSW overhead is

tCTXovr = 2× tHCTXovr + tPRIovr (4)

In Fig. 1, it is illustrated how the value of MON PRI changes if a lower priority
task (PRI L priority, part B) is preempted by a higher priority task (PRI H
priority, part C) and then back to PRI L (part D) after the higher priority
task becomes unready. If there is no ready task in the system (part E) then
the idle task is started (i.e., MON PRI is set to PRI IDLE).

v) Slack Monitor: The MON SLACK signal is utilized to detect slack time in the
schedule. The value of the signal is given by the formula (where PRIHmin

is the least significant hard-level priority):

MON SLACK =

{
HIGH if((MON PRI = PRI IDLE)or(MON PRI ≤ PRIHmin)),
LOW otherwise.

(5)

3.3 Proposed HIL: Operation Principle

In this paragraph, the operation principle of the FPGA-based HIL proposed in
the paper is described. A special attention is paid there to principles utilized
to process the monitoring signals by the FPGA. For the description, let the
PRI : SINT ∪ Sτ → N be a function assigning a joint-priority value to an INT
(INTi ∈ SINT where SINT is the set of all INT sources) or a task (τi ∈ Sτ

where Sτ is the set of all non-IST tasks). Let A be a preemptive, fixed-priority
assignment policy, let Sτ = {τ1, . . . , τm, τm+1, . . . , τn} be the set of all tasks to be
scheduled by A and let the following subsets be distinguished in the Sτ set: the
set (SτH = {τ1, . . . , τm}) of hard tasks, the set (SτS = {τm+1, . . . , τn}) of soft
tasks, the set (SτP) of periodic tasks forming a repetitive part of the ES behavior
and the set (SτA) of aperiodic event-driven tasks being released/executed once
iff an event (INT) occurs.

104 J. Strnadel

It is supposed these parameters are known for a τi ∈ Sτ : ri (release time), Ci

(worst-case exec. t.), Di (relative deadline), Ti (period; for an aperiodic task it is
set to Di or – if it is known – to the min. interarrival t. of a corresponding INT).
Alike, it is supposed these parameters are known for a INTi ∈ SINT : CINTi

(worst-case INTi service t.), WINTi (worst-case data bandwidth w.r.t. INTi).
The proposed architecture was designed to meet the following requirements:

i) the CPU will not get overloaded by an excessive stream of INTs, ii) timing
constraints of hard tasks will be always met, iii) soft tasks will be executed if
a slack time is detected on the MON SLACK line or if the CPU is not fully loaded
by the hard tasks, iv) the worst-case blocking-time boundary w.r.t. INTs is
known.In [15] it is shown that the requirements can be met if a new INT (INTi) is
signaled to the CPU after at least one of the conditions (7) – (9) is satisfied along
with (6). To avoid a non-deterministic behavior, the conditions are evaluated in
the following, left-to-right order: (7), (8), (9).

i) NoISR Condition:
MON INT = LOW (6)

ii) Priority Condition:
PRI(INTi) > MON PRI. (7)

INT nesting is not allowed, so a new highest-priority INT is i) blocked at
most by one (recently executed) lower-priority ISR and ii) directed to the
CPU just after the actual ISR ends.

iii) Underload Condition: the total CPU load (ρ) at hard-PRI levels plus the
CINTi-induced load is smaller than 100% where ρ = maxi=1,...,m(ρi(t)) and

ρi(t) =

∑
dk≤di

remk(t)

(di − t)
× 100 (8)

is the CPU load of a hard-task τi ∈ SτH in the < t, di > interval, t is actual
time, di = ri +Di (dk = rk +Dk) is the absolute deadline of a task τi (τk)
and remk(t) = Ck − runk(t) is the remaining execution time of a hard-task
τk ∈ SτH in time t where runk(t) is the consumed exe-time of the task τk
in time t measured on a basis of monitoring the MON PRI=PRI(τk) width.

iv) Slack Condition:
MON SLACK = HIGH. (9)

The maximum number of INTs allowed between consecutive hard-level execu-
tions (an implicit update interval) is

Nmax
INT (t) = � (100− ρ(t))× (dmax − t)

100 ×CINT
� (10)

where CINT = max∀i(CINTi) is the worst-case execution overhead related to
servicing an INT and dmax = maxi=1,...,m(di). If time t′ ≤ dmax exists for which
it holds that wint(t

′, t′′) – i.e. the accumulated MON INT’HIGH observed from the

last Nmax
INT update done in t” – exceeds the � t′−t′′

CINT
� × CINT value then no INT

is forwarded to the MCU until the exceeding is over, excluding INTs satisfying
the (7) condition.

Load-Adaptive Monitor-Driven Hardware 105

Actually, MON TICK and MON CTX are not involved in the formulas; they are
utilized to measure the actual OSTime value/jitter and gather CTXSW statis-
tics only. Crucial lemmas (theorems) w.r.t. impact of the architecture to the
parameters of an RT system can be found in [15] along with outlines of the
corresponding proofs. Because of the limited space, they are not included in this
paper. Instead, more details related to experimental results and implementation
overheads are presented in the next. Details related to inner structure of the pro-
posed monitoring-driven limiter can be seen in Fig. 3 – each INT is recognized
by a separate INT Detect Unit and prospective INT stimulus and related data
are stored in the Stall-INT Buffer until the MCU is ready to service the INT.

102

103

104

105

 0

 25

 50

 75

 100
 0

 20

 40

 60

 80

 100

total
CPU utilization [%]

interrupt load [Hz]

main-loop
CPU utilization [%]

total
CPU utilization [%]

 0

 20

 40

 60

 80

 100

(a) no INT limiter

102

103

104

105

 0

 25

 50

 75

 100
 0

 20

 40

 60

 80

 100

total
CPU utilization [%]

interrupt load [Hz]

main-loop
CPU utilization [%]

total
CPU utilization [%]

 0

 20

 40

 60

 80

 100

(b) Polling SIL

102

103

104

105

 0

 25

 50

 75

 100
 0

 20

 40

 60

 80

 100

total
CPU utilization [%]

interrupt load [Hz]

main-loop
CPU utilization [%]

total
CPU utilization [%]

 0

 20

 40

 60

 80

 100

(c) Strict SIL

102

103

104

105

 0

 25

 50

 75

 100
 0

 20

 40

 60

 80

 100

total
CPU utilization [%]

interrupt load [Hz]

main-loop
CPU utilization [%]

total
CPU utilization [%]

 0

 20

 40

 60

 80

 100

(d) Bursty SIL

102

103

104

105

 0

 25

 50

 75

 100
 0

 20

 40

 60

 80

 100

total
CPU utilization [%]

interrupt load [Hz]

main-loop
CPU utilization [%]

total
CPU utilization [%]

 0

 20

 40

 60

 80

 100

(e) Simple (static) HIL

102

103

104

105

 0

 25

 50

 75

 0

 20

 40

 60

 80

 100

total
CPU utilization [%]

0
105

interrupt load [Hz]

main-loop
CPU utilization [%]

total
CPU utilization [%]

 0

 20

 40

 60

 80

 100

(f) Proposed dynamic HIL

Fig. 2. Comparison of CPU utilization factors of the limiter techniques for farrival =
4kHz. It can be seen that our approach (f) offers ”small” CPU utilization comparable
to (e) while the other approaches need a higher (c, d) or constant (b) utilization to
offer the same level of the IOV protection.

106 J. Strnadel

INT_n
Detect
UnitINT_1

Detect
Unit

rdy_1

MON_...

INT_n
Forward

UnitINT_1
Forward

Unit

Stall-INT
Buffer Unit

Cond. Eval.
Unit go_1

to

F
P
G
A

to

M
C
U

s
t
i

m
u
l
i

s
t
i

m
u
l
i

Fig. 3. Block schema of the proposed load-adaptive limiter

The MCU readiness is analyzed by the Condition Evaluation Unit – designed
to evaluate the (6) to (10) formulas – and signalled to the INT Forward Unit
responsible to forward the INT stimulus to the MCU along with its data. All
the mentioned units work in parallel.

3.4 Solution Properties and Implementation Overheads

The solution presented in 3.1 to 3.3 was implemented and compared to those
presented in 2.1. In the figures, it can be seen that for high fint values our
dynamic HIL solution is able to prevent the ES from INT overload and to service
higher number of INTs during CPU underload than the others at comparable
CPU loads. Fig. 4a(b) compares CPU loads (INT throughputs) achieved by our
solution and common SIL (polling, strict, bursty) and HIL (static) approaches.

In order to analyze practical applicability of the proposed IOV mechanism, we
have decided to summarize its implementation overheads. Because the overheads
w.r.t. MCU side of the mechanism are minimal (they are practically limited to
inserting a couple of simple instructions to into the original RT kernel source
code, which was outlined in the section 3.2), the summary herein (see Fig. 5,
Fig. 6) is limited to overheads w.r.t. the HW part of the mechanism.

a)

05010
0

15
0

20
0

25
0

30
0

(for farrival=4kHz)
fint=0.1kHz
fint=2.5kHz, polling SIL
fint=10kHz

(for farrival=4kHz)
fint=0.1kHz
fint=2.5kHz, strict SIL
fint=10kHz

(for farrival=4kHz, b.size=16)
fint=0.1kHz
fint=2.5kHz, bursty SIL
fint=10kHz

(for farrival=10kHz)
fint=0.1kHz
fint=2.5kHz, static HIL
fint=10kHz

(farrival is adaptive)
fint=0.1kHz
fint=2.5kHz, dynamic HIL
fint=10kHz

total CPU load [%]

IN
T

 li
m

it
te

ch
ni

qu
e

ha
rd

-t
as

k
se

t C
P

U
 u

til
iz

at
io

n
[%

]
10

50
75

b)

0x
10

0

1x
10

3

2x
10

3

3x
10

3

4x
10

3

5x
10

3

6x
10

3

7x
10

3

8x
10

3

9x
10

3

(for farrival=4kHz)
fint=0.1kHz
fint=2.5kHz, polling SIL
fint=10kHz

(for farrival=4kHz)
fint=0.1kHz
fint=2.5kHz, strict SIL
fint=10kHz

(for farrival=4kHz, b.size=16)
fint=0.1kHz
fint=2.5kHz, bursty SIL
fint=10kHz

(for farrival=10kHz)
fint=0.1kHz
fint=2.5kHz, static HIL
fint=10kHz

(farrival is adaptive)
fint=0.1kHz
fint=2.5kHz, dynamic HIL
fint=10kHz

of INTs serviced during CPU underload

IN
T

 li
m

it
te

ch
ni

qu
e

ha
rd

-t
as

k
se

t C
P

U
 u

til
iz

at
io

n
[%

]
10

50
75

Fig. 4. Comparing accumulated a) CPU loads and b) INT throughputs achieved by the
proposed solution (the topmost 3 columns denoted as ”dynamic HIL”) and by common
SIL (polling, strict, bursty) and static HIL approaches. For each of them (vert. axis)
results are plotted for 3 various fint values: 0.1kHz, 2.5kHz and 10kHz, determined
by farrival and by burst size values (where applicable).

Load-Adaptive Monitor-Driven Hardware 107

The HW was targeted to Xilinx Spartan6 family and synthesized using Xil-
inx ISE 13.1. Device utilization data (such as No. Slice Reg., No. Slice LUTs,
No. fully used LUT-FF pairs, No. bonded IOBs and No. BUFG/CTRLs) were
collected from Device Utilization Summary report produced by ISE after the
synthesis process was over (terminology was taken from the ISE reports).

The remaining data present in the ISE reports were processed to estimate
the number of slices needed to implement our limiter into particular Spartan6
devices (Fig. 6). It was estimated that the maximum number of INTs limited
by an on-chip Spartan6 realization of the adaptive INT limiter proposed in
this paper is about 250. Higher number leads to exhaustion of bonded IOB
resources and cannot be implemented on a Spartan6 device. It can be seen that
some of the resources are more critical as their utilization is constantly high or
grows significantly with decreasing complexity of Spartan6 device while some of
them are less critical as their utilization is near to low-constant value across the
devices. No. slices needed for implementations are summarized in the Fig. 6c
and detailed (for the low-end devices) in Fig. 6b. As common real-time kernels
support not more than 256 priority levels, it can be concluded that the presented
Spartan6-realization of the limiter is able to limit up to 32–250 INT stimuli.

Limits of memory needed to store data related to interrupts delayed by the
FPGA both to prevent the monitored CPU from excessive interrupt stimuli
and to guarantee timeliness of responses related to critical interrupts are as
follows. The maximum memory size available on-chip of a Spartan6 device along
with the limiter mechanism is 6164 kbit (xc6slx150). In the Fig. 6a, details to
low-end devices are presented. It can be seen that for XC6SLX9/XC6SLX16
(XC6SLX25) devices, about 600 (1100) kbits can be stored on-chip of an FPGA
if the number of limited interrupt sources is not much greater than 32. Otherwise,
the maximum of available on-chip memory decreases significantly, so an external
memory must be utilized for the purpose. However, in that case, an extra on-chip
FPGA resources are needed to implement the controller of such a memory.

Fig. 5. Summary of utilization bounds (the left sub-figure) and service limits (the right
sub-figure) w.r.t. Spartan6 realizations of the proposed IOV mechanism

108 J. Strnadel

(a) (b) (c)

Fig. 6. Requirements and limits w.r.t. on-chip Spartan6 realizations of the adaptive
limiter solution proposed in the paper depicted as functions of i) number of limited
interrupts and ii) number of supported priority levels. As a Spartan6-slice is composed
of 4 LUTs and 8 FFs, ISE outputs were transformed into the number of slices (NSlices)
value using the formula NSlices = (Npairs +NLUTs)/4+NFFs/8 where i) Npairs is the
number of fully used LUT-FF pairs (each of them composed of 1 LUT and 2 FFs –
i.e., a slice it is composed of 4 LUT-FF pairs), ii) NLUTs is the number of LUTs not
paired with a FF and iii) NFFs is the number of FFs not paired with a LUT.

4 Conclusion

In the paper, a novel hardware solution to the INT overload problem was pre-
sented. Novelty of the solution can be seen in the fact it shows that although an
RTOS is equipped with a very simple, but properly designed interface then it is
possible to precisely monitor its dynamic load by a simple external device and
utilize this dynamic information to adapt the INT service rate to the actual load,
so the CPU running the safe part of an RT application is not threatened by low-
priority INT sources. For the implementation of the proposed approach, common
COST components (μC/OS-II RTOS running on ARM Cortex-A9 and Spartan6
FPGA) were utilized to show the applicability and implementation overheads
w.r.t. the proposed approach, but it should be emphasized there that the pro-
posed approach is general enough to be realized using another RTOS, MCU/CPU
or FPGA. Moreover, an RTOS is not required to run on an MCU/CPU (it can be
run e.g. on an FPGA to produce the same monitoring signals) and the monitor
is not required to be implemented by an FPGA (instead, a different device such
as CPU can be utilized supposing it is able to analyze the monitoring signals).
Because of the adaptability, the presented architecture offers an efficient and
low-cost load-driven solution to the timing disturbance and predictability prob-
lems w.r.t. INT management, which was shown in the paper. Future research
activities w.r.t. the paper are going to be focused on real-world applications and
real-traffic measurements based on the proposed load-adaptive architecture.

This work has been partially supported by the RECOMP MSMT project
(National Support for Project Reduced Certification Costs Using Trusted Multi-
core Platforms), the Research Plan No. MSM 0021630528 (Security-Oriented Re-
search in Information Technology), the BUT FIT-S-11-1 and the IT4Innovations
Centre of Excellence CZ.1.05/1.1.00/02.0070.

Load-Adaptive Monitor-Driven Hardware 109

References

1. Cheng, A.M.K.: Real-Time Systems, Scheduling, Analysis, and Verification. John
Wiley & Sons, Hoboken (2002)

2. Cottet, F., Delacroix, J., Kaiser, C., Mammeri, Z.: Scheduling in Real-Time Sys-
tems. John Wiley & Sons, Hoboken (2002)

3. Kopetz, H.: On the Fault Hypothesis for a Safety-Critical Real-Time System.
In: Broy, M., Krüger, I.H., Meisinger, M. (eds.) ASWSD 2004. LNCS, vol. 4147,
pp. 31–42. Springer, Heidelberg (2006)

4. Laplante, P.A.: Real-Time Systems Design and Analysis. Wiley-IEEE Press, Hobo-
ken (2004)

5. Lee, M., Lee, J., Shyshkalov, A., Seo, J., Hong, I., Shin, I.: On Interrupt Schedul-
ing Based On Process Priority For Predictable Real-Time Behavior. SIGBED
Rev. 7(1), 6:1–6:4 (2010)

6. Leyva-del-Foyo, L.E., Mejia-Alvarez, P.: Custom interrupt management for real-
time and embedded system kernels. In: Proceedings of the Embedded Real-Time
Systems Implementation Workshop at the 25th IEEE International Real-Time Sys-
tems Symposium, p. 8. IEEE Computer Society, United States (2004)

7. Leyva-del-Foyo, L.E., Mejia-Alvarez, P., Niz, D.: Predictable interrupt management
for real time kernels over conventional pc hardware. In: Proceedings of the IEEE
Real-Time and Embedded Technology and Applications Symposium, pp. 14–23.
IEEE Computer Society, Washington, DC (2006)

8. Lee, M., Lee, J., Shyskalov, A., Seo, J., Hong, I., Shin, I.: On interrupt scheduling
based on process priority for predictable real-time behavior. In: ACM SIGBED
Review - Special Issue on the RTSS 2009 WiP Session, 6th article, p. 4 (2010)

9. Parmer, G., West, R.: Predictable interrupt management and scheduling in the
composite component-based system. In: Proc. of the Real-Time Systems Sympo-
sium, pp. 232–243. IEEE Computer Society, Washington, DC (2008)

10. Pellizzoni, R.: Predictable and monitored execution for cots-based real-time em-
bedded systems. Ph.D. thesis, University of Illinois at Urbana-Champaign (2010)

11. Regehr, J.: Safe And Structured Use Of Interrupts In Real-Time And Embedded
Software. In: Lee, I., Leung, J.Y.-T., Son, S.H. (eds.) Handbook of Real-Time and
Embedded Systems, pp. 16-1–16-12. Chapman & Hall/CRC, US (2007)

12. Regehr, J., Duongsaa, U.: Preventing interrupt overload. In: Proceedings of the
ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools For
Embedded Systems, pp. 50–58. ACM, New York (2005)

13. Regnier, P., Lima, G., Barreto, L.: Evaluation Of Interrupt Handling Timeliness
in Real-Time Linux. SIGOPS Oper. Syst. Rev. 42(6), 52–63 (2008)

14. Scheler, F., Hofer, W., Oechslein, B., Pfister, R., Schroder-Preikschat, W.,
Lohmann, D.: Parallel, hardware-supported interrupt handling in an event-trigered
real-time operating system. In: Proc. of the Int. Conf. on Computers, Architectures
and Synthesis of Embedded Systems, pp. 167–174. ACM (2009)

15. Strnadel, J.: Monitoring-Driven HW/SW Interrupt Overload Prevention for Em-
bedded Real-Time Systems. In: Proc. of the 15th IEEE Int. Symposium on Design
and Diagnostics of Electronic Circuits and Systems, IEEE CS, pp. 121–126 (2012)

16. Zhang, Y.: Prediction-based interrupt scheduling. In: WiP Proc. of the 30th IEEE
Real-Time Systems Symposium, pp. 81–84. University of Texas, San Antonio
(2009)

17. Zhang, Y., West, R.: Process-aware interrupt scheduling and accounting. In:
Proceedings of the 27th IEEE International Real-Time Systems Symposium,
pp. 191–201. IEEE Computer Society, Los Alamitos (2006)

Producer-Consumer: The Programming Model

for Future Many-Core Processors

Arnau Prat-Pérez1, David Dominguez-Sal1,3, Josep-Lluis Larriba-Pey1,
and Pedro Trancoso2

1 DAMA-UPC, Universitat Politècnica de Catalunya
Barcelona, Spain

{aprat,ddomings,larri}@ac.upc.edu
2 Department of Computer Science, University of Cyprus

Nicosia, Cyprus
pedro@cs.ucy.ac.cy

3 Sparsity Technologies
Barcelona, Spain

Abstract. The massive addition of cores on a chip is adding more pres-
sure to the accesses to main memory. In order to avoid this bottleneck,
we propose the use of a simple producer-consumer model, which allows
for the temporary results to be transferred directly from one task to an-
other. These data transfer operations are performed within the chip, using
on-chip memory, thus avoiding costly off-chip memory accesses. We imple-
ment thismodel on a realmany-core processor, the 48-core Intel Single-chip
CloudComputer processor using its on-chipmemory facilities.Wefind that
the Producer-Consumer model adapts to such architectures and allow to
achieve good task and data parallelism. For the evaluation of the proposed
platform we implement a graph-based application using the Producer-
Consumer model. Our tests show that themodel scales very well as it takes
advantage of the on-chipmemory. The execution times of our implementa-
tion are up to 9 times faster than the baseline implementation, which relies
on storing the temporary results to main memory.

1 Introduction

The recent efforts in new processor development are geared towards the integra-
tion of more cores in a single chip. Currently, we find processors in the market
with more than ten cores and the designs aim at including more. However, as
the trend in adding more cores to the processor proceeds, we are facing with
new challenges. More cores in the same chip lead to an increased pressure in the
interconnection network and integrated memory controllers, higher synchroniza-
tion costs and fewer shared resources. In such processors, the traditional shared
memory programs (e.g: openMP like) face severe hurdles such as limited cache
coherence mechanisms and private memory spaces for each core that difficult
the deployment of efficient shared memory code.

The new prototype of many core processor developed at Intel is the Single-
chip Cloud Computer (SCC) [1]. This processor is built with 48 cores, and has

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 110–121, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Producer-Consumer: The Programming Model 111

a new architecture that intends to integrate hundreds of cores once it gets into
production stage. The SCC has a single memory space for all the cores, but the
two levels of cache between the main memory and the processor are not coher-
ent among cores. The synchronization of data among cores using shared memory
requires the flush of the caches [1]. Flushing the caches impose synchronization
barriers and disables the cache hierarchy benefits, which makes flushing not ad-
visable for high performance computing. As a solution, the SCC offers a small
memory space inside the chip oriented to send messages between cores and facil-
itate the implementation of message passing parallel programs (e.g. MPI-like).

In this paper, we take the Intel SCC as a reference of the upcoming many-core
processors and study the usage of the Producer-Consumer model as a scalable
programming model for future many-core architectures. We propose an imple-
mentation of the model for the Intel SCC, where the memory in the chip is
divided in as many sections as cores are available, and is used as buffers to
implement a Producer-Consumer framework. Our proposal, Task&DataParallel,
makes use of a double buffer solution that allows simultaneous production and
consumption on the same buffer.

We test our Production-Consumer implementation on graph algorithms be-
cause they are good representatives of memory intensive applications with het-
erogeneous data access patterns. We select the triangle counting [2], which con-
sists on computing the number of triangles where a node of a graph participates.
This computation is the core of spam detection [2] or social network analy-
sis algorithms [3]. The experimental results show that the Producer-Consumer
model scales well for a large number of cores, sometimes super-linearly thanks
to the exploitation of the on-chip memory of the Intel SCC. We prove that the
Task&DataParallel implementation of the Producer-Consumer model is able to
exploit both data and task parallelism, achieving high scalability and perfor-
mance (running up to 9 times faster than a baseline working on main memory).

This paper is organized as follows: in Section 2, we present the many-core
architecture and in particular we describe the Intel SCC architecture and re-
view the parallel programming paradigms; in Section 3 we review the Producer-
Consumer programming model and its applications; in Section 4, we describe
the different implementations of the Producer-Consumer programming model
for the Intel SCC; in Section 5, we present the experimental setup; in Section 6,
we discuss the experimental results; in Section 7, we overview the related work
and finally in Section 8 we present the conclusions of the work.

2 Many-Core Architecture

In this section, we first describe the main characteristics of many-core architec-
tures, and we present details of the Intel SCC platform. Second, we revisit the
two main parallel programming paradigms.

112 A. Prat-Pérez et al.

2.1 Hardware

Many-core architectures, are characterized by having tens or even hundreds of
cores. This allows to perform calculations and to process large amounts of data in
parallel. However, the presence of such amount of cores leads to simpler cores, for
example, without hardware support for cache-coherency, since these mechanisms
would result in a bottleneck and make the exploitation of parallelism harder. This
is the main reason why, until nowadays, the usage of many-core architectures
has been restricted to specific domains, where the applications are inherently
parallel, such as GPUs for graphic processing. Hence, there is a need of more
complex and flexible architectures, aimed at satisfying the processing demands of
general purpose applications. One proposed architecture that attempts to solve
this problem is the Single-chip Cloud Computer (SCC) proposed by Intel [1].

The Intel SCC experimental processor is a 48-core vehicle created by Intel
Labs as a platform for many-core software research. This is a clustered architec-
ture composed of P54C cores, grouped in tiles containing two cores each. Each
tile (pair of two cores) has a router, forming a communication mesh within all
the chip to access the four DDR3 memory controllers.

The Intel SCC has an aggregated address space of 64 GB of memory. However,
each P54C core is able to address 4 GB. In our experiments, each core has
assigned a private region of memory of total size divided by 48. What makes
the Intel SCC special is its non-coherent memory hierarchy. Each core has a
non coherent L1 and L2 caches, of 16KB and 256KB respectively, with a cache
line size of 32 bytes. Since the caches are non-coherent, is the programmer the
responsible of maintaining the coherency of the caches manually. For this reason,
the Intel SCC provides a fast core-to-core communication, consisting on 384KB
of on-chip memory (also called the Message Passing Buffer(MPB)). Each tile is
assigned 16KB of the buffer (8KB for each core), which is is addressable by any
core. We will call each 8KB section assigned to each core, as an MPB section.
Finally, in order to synchronize the access to the MPB and the memory by all
the cores, the system provides 48 globally accessible test-and-set registers.

2.2 Parallel Programming Paradigms For Many-Core Processors

We review the two principal paradigms for exploiting the parallelism of many-
core architectures: data parallel paradigm, and task parallel paradigm [4].

In data parallel paradigm, the data is split into subsets, each of one is
then processed independently by a processing unit in parallel. Applications that
map to this paradigm achieve a large degree of parallelism, sometimes achieving
super-linear speedups because of cache line re-usage. However, due to the nature
of the existing applications, data dependencies are common and splitting the
data is not always possible.

In task parallel paradigm, each processing unit is devoted to execute a spe-
cific task. These tasks can be either subtasks inside an application or different in-
stances of the same application. However, similarly to the data parallel paradigm,
sometimes is difficult to identify such tasks, or even executing different instances
of the same application is not possible due to a lack of data.

Producer-Consumer: The Programming Model 113

3 Scalable Programming Model: Producer-Consumer

The goal of this work is to analyze the scalability of the Producer-Consumer
(P/C) model as a general purpose programming model for future many-core
processors. In the P/C model, the program is divided into tasks which adopt the
role of a Producer, a Consumer or both. The Producers are tasks that operate
on the input data and produce the results, which are then sent to the Con-
sumers. The Consumers are the tasks that receive the data from the Producers,
operate on the data and then produce the results, which can be either stored in
main memory or forwarded to the next Consumer in the P/C chain (and hence
performing the Producer’s role too).

The Producers and the Consumers are independent tasks that can be executed
in concurrently as long as they have available data to consume and available re-
sources to store the results they produce. Hence, the task parallelism parallelism
is exploited. Furthermore, the input data of the tasks, can be split and dis-
tributed among multiple instances of both Producers and Consumers, allowing
the partitioning of the data and the execution of multiple tasks in parallel. This
way, we are also exploiting the data parallelism.

Finally, from a programming point of view, the P/C model allows the pro-
grammer to abstract and focus only on each individual task, which is isolated and
self contained, and let a hypothetic task scheduler to execute the tasks efficiently
in order to optimize the usage of the available resources.

The P/C model is used in many and varied applications. In a GUI system,
the Producer is in charge of gathering all the input events while the Consumer
use this events to perform the corresponding actions. In an MPEG-4 video en-
coder [5], the Producer distributes the frames among a set of Consumers, that
encode them. The P/C model can also be applied to more complex systems,
where the computations are divided into subsystems of different nature. Each of
this subsystem can be either be a Producer, a Consumer or both. For example,
in computer games, game engines are composed by different subsystems like the
physics subsystem, the AI subsystem, the input subsystem and the renderer,
which are executed asynchronously following a P/C model [6].

In this paper, we will focus on the triangle counting problem [2]. The problem
consists of computing, for each node in a graph, the number of triangles the
node belongs to. The counting of triangles in graphs has several applications,
such as detecting web spam [2] or content quality in networks [7]. Also, several
studies [3] show that social networks are characterized by having lots of triangles,
and the computation of local triangle count is of high importance to study the
characteristics and topology of these networks.

Given a graph G(V,E) (where V is the set of nodes and E is the set of edges),
the Producers compute, for each edge e in E, the number of triangles the edge
e belongs to. Given an edge e connecting two nodes a and b, the number of
triangles of this edges corresponds to the size of the intersection between the
adjacency lists of nodes a and b. In order to exploit data parallelism, different
Producer instances are created, and each of them is assigned a subset of the edges
to process. Then, the Consumers read the results produced by the Producers and

114 A. Prat-Pérez et al.

accumulate, for each node, the number of triangles where the edges incident to
the node participate in. Several instances of Consumers are created, and each
of them accumulates the result of a subset of the nodes of the graph. All the
Producers and the Consumers are executed concurrently, as long as the data is
produced and consumed.

4 Efficient SCC Implementation

In this section, we present three different implementations for the P/C model
on the Intel SCC: the DataParallelMsg (which serves as the baseline implemen-
tation), the DataParallelMsgBlk and the Task&DataParallel implementations.
Even though the implementations are described for the target architecture, the
model and the concepts are general enough to be applied to any other architec-
ture that includes an MPB like structure. As long as the encapsulation processes
evolve, more transistors can be added into a chip, which are used to include more
devices, bigger caches and resources. On chip memory buffers have been already
used in many-core architectures such as GPUs [8], and we expect to be a common
feature in future many-core designs due to the possibilities they offer.

In all the implementations, the input data is loaded and replicated into the
main memory assigned to each core. This data is read only, so no synchronization
between the different cores is needed to maintain the coherency of this data.
Consider P cores being used by these implementations.

(a) (b) (c)

Fig. 1. (a)The DataParallelMsg implementation scheme. (b)The DataParallelMsgBlk
implementation scheme. (c)The Task&DataParallel implementation scheme.

DataParallelMsg: This implementation follows the data parallel paradigm and
uses main memory to exchange the data between the tasks. This means that only
one step (either the Producer or the Consumer step) is executed at a given time.
Figure 1-(a) shows the execution flow and how the P processors are distributed
among the Producer and the Consumer step. In this approach, all the cores exe-
cute the Producer step first, and when it is completed, all the cores execute the
Consumer step. All the cores P are assigned to the step being under execution,
so each core is responsible for 1/P of the computations. The results computed
by each core, are stored into main memory. Once all the cores have finished

Producer-Consumer: The Programming Model 115

executing the Producer step, the results are broadcast to the other cores, by
storing their results into their MPB sections. The other cores read the results
and store it again into their addressable main memory. Once all the cores have
all the data, the Consumer step starts. Note that, since the MPB sections are
smaller than the amount of data to be transfered by each core, this is transfered
iteratively in multiple chunks of size of the MPB section.

DataParallelMsgBlk: This implementation, as depicted in Figure 1-(b), fol-
lows the data parallel programming model like the previous implementation
presented. However, in this implementation, the results in the Producer step are
iteratively produced in blocks of the size of the MPB section, instead of produc-
ing all the results and then broadcast them. The Producers produce a chunk of
results and store them directly into their own MPB section, instead of storing
them into main memory. Once all the Producers have finished to produce their
chunk of data, the cores consume the data produced by the rest directly from
the MPBs of the others, and execute the Consumers step. The process iterates
until all the computations from the Producer step have been performed. The
goal of this approach is to benefit from keeping all the data produced in the
Producers’ step inside the chip, instead of copying it into the main memory and
hence achieving better performance.

Task&DataParallel: The goal of this implementation, is to fully benefit from
the presence of the MPB present in the SCC, by implementing a version based
on the task and data parallel paradigm. In this approach we have k cores as
Producers, and P − k cores as Consumers and all cores execute their task the
same time. The Producers produce the data and store it directly into their MPB
section, while the Consumers consume this data to perform their computations.
Figure 1-(c) shows the scheme of the application with the different cores assigned
to the tasks. Note that one step can have more cores than others, depending on
the complexity of the computation performed by the step.

A Producer computes and produces data as long as there is space in its MPB
section. Once the buffer is filled, it waits until the data is consumed by all
the consumers and the buffer is freed. Once the Producer has performed all
the computations, it finishes. On the other hand, a Consumer waits for the
data to be in the buffer. Once the data is available, it consumes it and tells
the corresponding Producer that the data has been consumed. In order to re-
duce the contention on the buffer between Producers and Consumers, a double
buffering scheme is used in every MPB section. Figure 2 shows how each of the
8KB MPB section is divided and used.

The first 8128 bytes of each MPB section are used to implement the double
buffering scheme. The last 4 bytes of each on-chip memory buffer are used for the
synchronization mechanism. We store a 32bit (4 bytes) at the end of the section
which we call the “communication flag”, in order to implement the synchroniza-
tion protocol. The flags store information about which consumers have read the
data in the buffer and which is the region of the double buffer from which they
have to read. In order to guarantee the atomic access to each communication

116 A. Prat-Pérez et al.

Fig. 2. The division of every 8KB section of the MPB assigned to each core

flag, we use one of the 48 test-and-set registers (one for each Producer) available
on the Intel SCC chip.

The goal of this approach is two fold. From the one hand, we achieve and
overlap between computations and data distribution, reducing the communica-
tion cost and improving the scalability. On the other hand, we keep the data
flowing inside the chip by using the MPB, and hence we reduce the number of
accesses the main memory.

5 Experimental Setup

For this work, we have used a real many-core system, the Intel Single Chip Cloud
Computing (Intel SCC) experimental processor, RockyLake version configured
with 32GB of main memory. The frequencies of the tiles, mesh and memory are
533, 800 and 800 Mhz respectively. The operating system used for the Intel SCC
cores is the Linux kernel provided by the RCCE SCC Kit 1.3.0.

To test the performance of the different implementations proposed, for the
P/C model, we have implemented the local triangle count problem described in
Section 3. The input graphs, are built with a graph generator [9], which creates
graphs with social network statistics. We generate two graphs: one with 100K
nodes and 1M edge (small), and another one with 1M nodes and 10M edges
(big). Each measure is obtained by averaging five executions.

Note that it is not the objective of this work to focus on the improvement of
this particular application. Our aim is to test the usage of the Intel SCC in real
complex applications such as graph processing, and to prove the scalability of
the P/C model for such architectures with an on chip memory buffer. We show
the results in terms of speedup since what we want to analyze is the scalability
of the proposed model, using a case-study application, on a sample architecture.

Producer-Consumer: The Programming Model 117

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

DataParallelMsg
DataParallelMsgBlk
Task&DataParallel 50-50
Ideal

Number of Cores

Sp
ee

d-
up

(a)

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

DataParallelMsg
DataParallelMsgBlk
Task&DataParallel 50-50
Ideal

Number of Cores

Sp
ee

d-
up

(b)

0 5 10 15 20 25 30 35
0

0.01

0.01

0.02

0.02

small

big

Number of Cores

Co
m
m
un

ic
at
io
n
tim

e
pe

re
le
m
en

t

(c)

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Task&DataParallel 50-50
Task&DataParallel Best
Task&DataParallel Worst
Ideal

Number of Cores

Sp
ee

d-
up

(d)

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Task&DataParallel 50-50
Task&DataParallel Best
Task&DataParallel Worst
Ideal

Number of Cores

Sp
ee

d-
up

(e)

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35
Task&DataParallel 1024
Task&DataParallel 2048
Task&DataParallel 4096
Task&DataParallel 8192
Ideal

Number of Cores

Sp
ee

d-
up

(f)

Fig. 3. Speed-up obtained by the different implementations proposed for the: (a) small
graph and (b) big graph. (c) Normalized communication time for the DataParallelMsg
for the small and big graphs. Speedup for the Task&DataParallel implementation with
different configurations for a variable number of cores for the (d) small and (e) big
graph. (f) Speedup for the Task&DataParallel implementation with different buffer
sizes.

6 Experimental Results

In Figure 3, we depict the speedup for the different implementations described in
Section 4 with an increasing number of cores. We present the results for both the
small and big graphs in Figure 3-(a) and 3-(b), respectively. The 50-50 indicates
that there is an equal number of Producers and Consumers running in parallel
and the Ideal line represents the ideal speedup. The speedup is computed taking
the DataParallelMsg execution with one core only as reference.

118 A. Prat-Pérez et al.

From the results in Figure 3-(a) we observe that the data parallel implementa-
tions do not scale well. The speedup for the baseline is limited to approximately
2.6x, independently of the number of cores used to solve the problem. In order to
understand the speedup behavior, we measured the communication time for the
DataParallelMsg implementation. In Figure 3-(c), we show the communication
time per graph node for both the small and big graphs, for configurations rang-
ing from 2 to 32 cores for the DataParallelMsg implementation. This is the time
spent by the system to have the data produced by the Producers to be copied to
all the Consumers. This is measured after all Producers have finished execution
and before the Consumers start their execution. First of all, we see that the
time spent per element is the same for both the small and the big graph. This
means that the total communication cost is directly proportional to the size of
the results produced. Second, we see that the communication cost per element is
almost constant, independently of the number of cores. This means that as long
as the number of cores increases, the total communication time keeps almost
constant, becoming the dominant portion of the total execution time, and hence
acting as a bottleneck for the improvement. This justifies why the scalability is
degraded when the number of cores is increased.

For the optimized version, the DataParallelMsgBlk implementation, the
speedup scales a bit better but still it is limited to 10x for the larger number of
cores used. We observe that Figures 3-(a) and (b) show very similar results. Even
though the input data size changes, resulting in an impact on the execution time
(big graph executions take 10x more time), the relative performance is very simi-
lar. This is because both computation and communication patterns maintain the
same even when different input graphs are used. The main difference between
this implementation and the DataParallelMsg is that instead of the Producers
writing the results in their MPB sections and the Consumers copying them to
main memory, the Consumers make the computations by directly reading from
the MPB’s of the Producers. This does not change the communication pattern
but does have an impact on the communication latency as the the main memory
accesses are avoided. Consequently, we can observe that the speedup for this op-
timized version follows a similar trend to the DataParallelMsg implementation
but the speedup achieved is higher once the communication fixed cost is lower.

Finally, while both data parallel implementations showed a limit in their
speedup, the Task&DataParallel implementation shows a near linear speedup
even for large number of cores (about 24x of speedup for 32 cores). The P/C
model has a major benefit compared with the other models studied, which is the
characteristics that Producers and Consumers are executing at the same time
in a pipelining way. Thus, we are able to hide the communication cost with the
Producer and Consumer computation. Consequently we do not observe a limit
in the speedup. The reason for the speedup to be slightly below the ideal has
to do with another fact which is related to load balancing and contention on
the double buffer space used to exchange the results between Producers and
Consumers.

Producer-Consumer: The Programming Model 119

6.1 Task Assignment

As mentioned previously, in our proposal there are multiple Producers and Con-
sumers. One difficulty is to determine, for a given number of cores, the optimal
distribution of Producers and Consumers. Without any proper runtime analysis,
a naive bet is to assign one half of the cores to the Producer role and one half of
the cores to the Consumer role. We will call this the 50-50 strategy, which is the
strategy used in the results presented in the last section. In order to study the
performance impact of the task assignment, we have executed the application
on different configurations ranging from 2 up to 30 Producers and 2 up to 30
Consumers, with a maximum of 32 cores in total. In Figure 3-(d) and (b) we
show, for each fixed number of cores, the speedup for the worst, the best, the
ideal, and the 50-50 configurations.

From the results in Figure 3-(d) and (e) we observe that the 50-50 strategy
performs well, close to the Best and Ideal. It is also relevant to notice that
the gap between the Best and Worst is quite large. This is an indication that
smarter dynamic schemes for task assignment may be required to achieve good
performance.

6.2 Internal Memory Size

In this section we analyze the impact of the size of the MPB on the performance
of the application. We have tested our P/C model with different sizes for the
MPB sections. Figure 3-(f) shows the speedup of the Task&DataParallel imple-
mentation for different buffer sizes: 1024, 2048, 4096, 8192 bytes per core. We
observe that, the larger the buffer size, the better the scalability. This is because
the cores can spend more time computing than being stalled waiting for writing
or reading from the MPBs. However, it seems that after a certain number of
cores, there is an upper bound on the performance gain which is independent
of the size of the buffer (the difference in the performance between using 4096
bytes or 8192 bytes of MPB sections’ size is minimal). This means that, after a
certain point, there are other factors which affect the more the scalability such
as load balancing, and hence, the MPB does not need to be very large, keeping
the architecture simpler.

7 Related Work

Parallel systems have been around for a very long time. One of the major is-
sues with these systems has been programmability. Several parallel programming
models have emerged from research projects and standards. Most parallelism
has been exploited using the fork-join model implemented using either shared-
memory or message-passing. The most common library for shared-memory is
OpenMP while the most common for message-passing is MPI. The programma-
bility issue has recently become more serious as processors with multiple cores
are becoming widespread. Thus, parallelism is now reaching all, resulting in a

120 A. Prat-Pérez et al.

need for more simpler ways to exploit that available parallelism. A considerable
effort has been put into organizing existing models into what is called parallel
programming patterns [4]. This allows programmers to express their algorithms
into one or more of the proposed patterns which then can be easily mapped
to an efficient implementation for the target architecture. NVIDIA has devel-
oped CUDA [10] for programming their GPUs but many believe that a similar
paradigm can be also used for many-core processors [11]. Intel is putting some
effort into Cilk [12] as a programming language for parallel systems as well as
a streaming language Ct which inherits some concepts from RapidMine [13].
IBM is developing X10 [14] a language for parallel programming using the par-
titioned address space model. Another large effort has been put by Google with
their MapReduce model [15]. In this model the authors try to simplify the paral-
lel program as to be able to split them into two phases the Map and the Reduce.
Even though MapReduce has been originally developed for large scale multipro-
cessor systems, it is currently also exploited for multi-core architectures [16] and
GPUs [17]. Many researchers believe that the models offered so far require a large
effort from the programmer and thus have proposed Transactional Memory [18],
a model that exploits parallelism in a speculative way. Others, in order to re-
duce the large synchronization overheads, have started to look at models that
are based on the more efficient data-flow model of execution such as Data-Driven
Multithreading [19].

8 Conclusions and Future Work

In this work, we have analyzed the usage of the P/C parallel model in a modern
many-core architecture such as the Intel SCC. The Intel SCC, serves as a refer-
ence of how future many-core architectures for general purpose computing will
look like. The results suggests that the P/C model adapts well to that architec-
ture thanks to the presence of the MPB, which reduces the latency in the com-
munication and the number of main memory accesses. We observed that, with
a relatively small MPB, this model scales for a large number of cores (achieving
about 24x of speedup for 32 cores, and about 9 times faster than the baseline
implementation). Furthermore, we also showed that even though the static task
assignment seems to perform well, dynamic task assignment strategies are able
to deliver better performance.

As future work, we intend to develop a library to implement applications
mapping the P/C model or to exploit the characteristics of these architectures
for other models such as MapReduce and Data-Driven Multithreading.

Acknowledgments. The members of DAMA-UPC thank the Ministry of Sci-
ence and Innovation of Spain and Generalitat de Catalunya, for grant num-
bers TIN2009-14560-C03-03 and GRC-1187 respectively, and IBM CAS Canada
Research for their strategic research grant. David Dominguez-Sal thanks the
Ministry of Science and Innovation of Spain for the grant Torres Quevedo PTQ-
11-04970. The authors would like to thank Intel Labs for their support with the

Producer-Consumer: The Programming Model 121

supply of the Intel SCC machine used in this paper. Arnau Prat-Pérez would like
to thank the HiPEAC network for their collaboration grant. Finally, the authors
would like to thank Andreas Diavastos, Panayiotis Petrides and the rest of the
members of the CASPER research group (www.cs.ucy.ac.cy/carch/casper) for
their key support in the realization of this work.

References

1. Mattson, T., Riepen, M., Lehnig, T., Brett, P., Haas, W., Kennedy, P., Howard,
J., Vangal, S., Borkar, N., Ruhl, G., Dighe, S.: he 48-core SCC processor: the
Programmer’s view. In: SC, pp. 1–11. IEEE Computer Society (2010)

2. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient Semi-streaming Algo-
rithms for Local Triangle Counting in Massive Graphs. In: KDD, pp. 16–24 (2008)

3. Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of
social networks. In: KDD, pp. 462–470. ACM (2008)

4. Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming.
Addison-Wesley Professional (2004)

5. Hamosfakidis, A., Paker, Y., Cosmas, J.: A Study of Concurrency in MPEG-4
Video Encoder. In: ICMCS, pp. 204–207. IEEE (1998)

6. Tulip, J., Bekkema, J., Nesbitt, K.: Multi-threaded Game Engine Design. In: CGIE,
pp. 9–14. Murdoch University (2006)

7. Welser, H., Gleave, E., Fisher, D., Smith, M.: Visualizing the Signatures of Social
Roles in Online Discussion Groups. JoSS 8(2), 1–31 (2007)

8. Andrews, J., Baker, N.: Xbox 360 System Architecture. IEEE Micro 26(2), 25–37
(2006)

9. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Physical Review E 78(4), 046110 (2008)

10. Nvidia, C.: Nvidia CUDA Programming Guide (2012),
http://docs.nvidia.com/cuda/index.html

11. Stratton, J.A., Stone, S.S., Hwu, W.-M.W.: MCUDA: An Efficient Implementation
of CUDA Kernels for Multi-core CPUs. In: Amaral, J.N. (ed.) LCPC 2008. LNCS,
vol. 5335, pp. 16–30. Springer, Heidelberg (2008)

12. Kim, W., Voss, M.: Multicore Desktop Programming with Intel Threading Building
Blocks. IEEE Software 28(1), 23–31 (2011)

13. McCool, M., D’Amora, B.: Programming Using RapidMind on the Cell BE. In:
SC, p. 222. ACM (2006)

14. Saraswat, V., Sarkar, V., von Praun, C.: X10: Concurrent Programming for Modern
Architectures. In: PPoPP, p. 271. ACM (2007)

15. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. CACM 51(1), 107–113 (2008)

16. Yoo, R., Romano, A., Kozyrakis, C.: Phoenix rebirth: Scalable MapReduce on a
Large-scale Shared-memory System. In: IISWC, pp. 198–207 (October 2009)

17. He, B., Fang, W., Luo, Q., Govindaraju, N.K., Wang, T.: Mars: a MapReduce
Framework on Graphics Processors. In: PACT, pp. 260–269 (2008)

18. Herlihy, M., Moss, J.: Transactional memory: Architectural Support for Lock-free
Data Structures. SIGARCH 21(2), 289–300 (1993)

19. Kyriacou, C., Evripidou, P., Trancoso, P.: Data-Driven Multithreading Using Con-
ventional Microprocessors. TPDS 17, 1176–1188 (2006)

http://docs.nvidia.com/cuda/index.html

A Highly Dependable Self-adaptive Mixed-Signal
Multi-core System-on-Chip

Benjamin Betting, Julius von Rosen, Lars Hedrich, and Uwe Brinkschulte

Institute for Computer Science
Johann Wolfgang Goethe-University,

Frankfurt am Main, Germany
{betting,brinkschulte}@es.cs.uni-frankfurt.de,

{jrosen,hedrich}@em.cs.uni-frankfurt.de

Abstract. In this article we propose a design of a dependable self-organizing
and adaptive mixed-signal SoC. With respect to organic computing, we introduce
an artificial hormone system (AHS) as general control mechanism. The AHS is
an implementation of a completely decentralized, self-organizing task allocation
mechanism using self-X properties. To minimize the increase in complexity es-
pecially with respect to the analog parts, several different implementations are
introduced. Besides the basics of the hormone controlled architecture, the paper
presents the mapping onto a SoC, an evaluation of a completely simulated AHS-
controlled SoC implementing the different approaches and validating the func-
tionality, stability and upper timing boundaries and showing the improvements in
system reliability.

Keywords: Mixed Signal System-on-Chips, Artificial Hormone System.

1 Introduction

The general idea of a self adaptive mixed-signal multi-core System-on-Chip (SoC)
combines several research topics related to mixed-signal processing, multithreaded/
multicore architectures, self-organizing and organic computing. The main goal is the
development and evaluation of a high dependable, self-organizing mixed-signal SoC.
Therefore, also failure modeling, especially regarding analog components, is in the fo-
cus of this project. The most relevant failures considered here are degradation through
aging, electromigration and temperature instability.

The basic idea of the project1 is the usage of a generalized heterogeneous Chip-Multi-
Processor (CMP) system for mixed-signal processing. The functionality of the SoC is
spread across different types of cores. A generalized core concept is issued, which cov-
ers the capability of executing one or more tasks on each core. Cores are e.g., processing
cores, interface cores, timer cores, special purpose cores, etc. Although, a slight special-
ization of cores is done due to the principal difference of analog to digital cores. Gener-
alized task notation represents software-programmed tasks, such as data processing or
supporting input, and hardware oriented tasks, as camera readout or engine control.

1 This research program is supported by the German Research Foundation (DFG) as part of
the priority program “Dependable Embedded Systems” (SPP 1500 - spp1500.itec.kit.edu -
MixedCoreSoC).

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 122–133, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Highly Dependable Self-adaptive Mixed-Signal Multi-core System-on-Chip 123

To ensure the self-organization of the system for task-allocation and reliability, an
artificial hormone system (AHS) is used as global middleware realized in hard- and
software. The assignment of tasks to cores in the mixed-signal CMP is completely han-
dled by the AHS. It has to deal with task reallocation, mixed signal task migration
and different kinds of failures. The cores are interconnected via a crossbar-network and
provide redundant interfaces to the environment.

2 General SoC Architecture

Our general system architecture is based on a generalized core and task concept for
reliable mixed-signal SoC. Therefore, we turned from nowadays likely standard SoC
architecture consisting of active digital processing cores and rather reactive digital and
analog components like memories, timers, interfaces, converters or amplifiers into a
completely heterogeneous many-core architecture, tracing the assumption of a gener-
alized core and task concept. Within this, the entire functionality of the SoC is spread
up into different types of cores (Fig. 1). In fact, each core type represents a specialized
SoC function realized by specific circuits in the domain of analog, digital or mixed-
signal. Consequently, each activity of the SoC is considered as a task to be executed on
a suitable core. This generalized core and task concept offers a wide range of flexibility
by dynamically assigning tasks to cores for proactive and reactive failure handling. To
cover a large amount of typical mixed-signal SoC applications, we focused on elemen-
tary core templates for processing, interfacing, analog as well as special purposes.

In order to keep the correlation between the types of cores and corresponding tasks,
the notion of generalized core declares the capability of core units, being able to ex-
ecute one or more generalized tasks. Further the generalized task concept covers the
classification of all software as well as hardware related tasks. Tasks can be represented
as coded programs executable on processing cores or as formal task descriptions defin-
ing the activities and timing of interface cores, analog cores, memory cores, etc. To
give an example of such a formal task description for other than processing cores, an

Fig. 1. General MixedCoreSoC architecture

124 B. Betting et al.

interface task could be described by the message to send, the sending and receiving task
ids, and the requested transmission format (e.g. serial link, asynchronous transmission,
baud-rate 19200, no parity, ...). Assigning generalized tasks to generalized cores means
to execute either the coded program or the formal task description on the selected core.
Some cores are able to execute completely different types of task. A timer task can be
executed in hardware by a timer core, but as well in software by a processor core. This
increases the flexibility and thus the dependability of our approach.

3 Artificial Hormone System for Task Assignment

To realize the dynamic assignment of tasks to cores, a middleware architecture is nec-
essary. Here, we have selected an Artificial Hormone System (AHS), which has been
proven to be a highly robust and completely decentralized task assignment mechanism
[1]. The aim of the AHS is to assign tasks to cores in a self-organizing way i.e., it uses
three main types of hormones:

Eager value. This hormone type determines the suitability of a core to execute a task.
The higher the hormonal value the better the ability of the core to execute the task.

Suppressor. This hormone type lowers the suitability of a task execution on a core.
Suppressors are subtracted from eager values.

Accelerator. This hormone type favors the execution of a task on a core. Accelerators
are added to eager values.

More details on these subtypes of hormones are presented when needed, because they
are used for fine tuning of the AHS and do not contribute to its basic understanding.

We have to distinguish between received hormones and hormones to be sent and also
between tasks and cores. Therefore, we use Latin letters such as i as task indices and
Greek letters such as γ as core indices. A hormone of any type denoted as Hiγ with

Fig. 2. Basic Hormone Balancing Control Loop

A Highly Dependable Self-adaptive Mixed-Signal Multi-core System-on-Chip 125

superscripted indices signifies that this hormone is dedicated to and will be received by
core γ and task Ti. A hormone of any type denoted as Hiγ signifies that this hormone
is sent by core γ and task Ti to other cores.

The task assignment happens in the following way: Each core periodically executes
the hormone based control loop presented in Fig. 2. Core γ receives the modified eager
values Emiγ , suppressors Siγ and accelerators Aiγ for each task Ti from each core in
the network. Then, core γ computes the modified eager values Emiγ for all of its tasks
by adding the received accelerators and subtracting the received suppressors from the
local eager value. These modified eager values are now distributed to the other cores.
If the modified eager value Emiγ on core γ is higher than all received modified eager
values for task Ti, core γ decides to take this task, because it is best suited. If a task
Ti is taken on core γ, it also distributes a suppressor Siγ dedicated to the same task
on all other cores. This limits the number of allocations of the tasks. Depending on the
strength of this suppressor, the task is taken only once or several times. Furthermore, the
core distributes an accelerator Aiγ to its neighbored cores to attract tasks cooperating
with task Ti to neighbored cores thus forming clusters of tasks. Furthermore, local
suppressors Sloc to indicate the load of a core and local accelerators Aloc to keep tasks
from migrating too easily thus avoiding task oscillation exists.

Our approach is completely decentralized and offers self-X properties:
Self-configuration in terms of finding an initial task allocation by exchanging hormones,
self-optimization by task reallocation when hormone levels change, and self-healing by
automatic task reassignment. In terms of self-healing, our approach offers the oppor-
tunity of both, reactive and proactive system behavior [2]. Since reactive self-healing
covers the system’s capability in automatic task reassignment in case of core and task
crashes, proactive self-healing adapts an task assignment with respect to general fail-
ures (not only crashes) and failure sources on cores in order to prevent crashing. The
main idea is to emit local suppressor hormones reflecting the current level of failures
and failure risk on a core. These failure suppressors rebalance the hormone levels in a
way that tasks are assigned more likely to cores with low failure rates or risks. Based
on that, we implemented further suppressors for single event errors, temperature and
aging. The error suppressor is based on the error history of a task and is used for any
type of task error. The temperature suppressor is linked to the current temperature of
a core, because high temperature is considered to increase the failure risk. The aging
suppressor represents the degradation of a core which becomes affected by negative
bias temperature instability (NBTI), hot carrier instability (HCI) etc. The detection of
single event, temperature and aging related errors is performed via core monitoring.
Within this, task error detection uses parity check of internal data paths and shadowing
of register files. Furthermore, several core execution units (e.g. ALU) use multi-path ex-
ecution to detect errors during calculation (wrong task results). Degradation is detected
through monitor circuits for e.g., output stages which measure the input-output voltage
difference of transistors threshold voltage. The temperature level can be monitored via
heat sensors for e.g., ring-oscillators spread on the chip.

In addition, the self-configuration is real-time capable. Tight upper time bounds are
given for self-configuration, these are presented in detail in [3,1]. The hormone loop
is stable as long as for each task the sum of suppressors is bigger than the sum of

126 B. Betting et al.

accelerators. The derived stability rules guide as well the proper selection of initial
hormone values.

4 AHS and the Analog Domain

To extend the AHS to the analog domain, the characteristics and properties of the analog
cores need to be incorporated into the concept of the hormone system as well. We will
present two concepts to transfer the AHS to handle analog cores and to furthermore
transfer the hormone signal processing in the analog domain.

4.1 Analog Artificial Hormone System

The Analog Artificial Hormone System (AAHS), is the concept of the AHS using pure
analog components. The hormone is not a message anymore, which is broadcasted at
the network of the SoC, but a signal put on the wires connecting analog cores on the
SoC. The hormone level has to be remodeled as a voltage or a current.

The iteration steps are replaced by continuous time operation. The core γ constantly
receives signals and is constantly deciding, whether to take or leave the task Ti. Leaving
it results in no change at all. However, as soon as the task Ti is taken, two actions are
performed. The global accelerator/suppressor signal is pulled down globally, to prevent
other cores from taking the task. In order to reduce the signaling, accelerator and sup-
pressors are modeled on one wire using either positive or negative values. While the
global accelerator/suppressor signal is pulled down, the local accelerator/suppressor
signal is drawn up to keep the task running. Otherwise the core would drop the already
taken task immediately. Different time constants for both loops are needed and can be
easily established in the analog design process. This decision process is done contin-
uously for every hormone the core is assigned to. Due to this continuous character of
the AAHS, tasks on a core are selected simultaneously in time. Hence the reaction time
of the hormone system could be relaxed. The analog circuit implementation has not to
be very fast and can therefore be power efficient. The signal can either be voltage- or
current-based. Both options have slightly different hardware architecture due to their
addition principles of voltages and/or currents. However, the basic principle in decen-
tralized task assignment stays and it implements self-X properties, too.

4.2 Artificial Hormone System with Analog Components

Another approach is the Artificial Hormone System with Analog components (AHS-
A). This approach is an adaptation of the digital AHS to control analog cores (AHS-A).
The hormone system is implemented in the simple digital way described above. To con-
nect to the analog cores, analog-digital-converters (ADC) and digital-analog-converters
(DAC) are needed for communication. In the simplest form, these converters are 1-bit
converters to transport the take task and health status from the digital to the analog do-
main and vice versa. However, more detailed information about the health status can be
coded with more bits into the local eager value to improve the task balancing on slightly

A Highly Dependable Self-adaptive Mixed-Signal Multi-core System-on-Chip 127

Fig. 3. Hormone based control loop for analog cores (AHS-A)

degraded analog cores. Fig. 3 shows the hormone cycle of this artificial hormone system
with analog components.

The core γ, more precisely the hormone loop decision stage of the core is still deal-
ing with digital hormone processing. After the decision is done, the information within
the hormone is translated into a signal for the analog core. Therefore, AHS-A is a
mixed-signal hormone system, using AHS as its base and integrating analog compo-
nents. According to digital AHS, self-X features, especially the self-optimization and
self-healing criterion, is met. Noise, stability and other analog signal processing issues
are mostly avoided, since the major part of the AHS is still digital.

4.3 Mixed-signal SoC with Digital and Analog Cores

The next question is how to join the hormone systems for digital and analog cores.
Regarding the AHS and the AAHS, the simplest solution is to run both independently.
Self-X properties are still offered on both domains, but with no communication and
hence no coordination of tasks throughout the systems. This leads to a violation of the
self-optimization and self-healing concept with respect to tasks which would be able
to migrate between analog and digital cores (e.g. Filtering Tasks or PWM vs. direct
analog. Limitations in task migration across both domains lowers the system’s flexi-
bility towards a real mixed-signal approach. To respond to this violation of the self-
optimization criteria within an implementation of independently working AAHS and
AHS, the hormone system need to be cut down to one again. Therefore the analog cores
need to be connected to the digital hormone system, which is done using the AHS-A.
Within this, the analog and digital cores are connected by a unique digital hormone
system, while hormones are transformed to the analog domain within each analog core.
On the downside, this rises the complexity. Furthermore, to allow task migration be-
tween analog and digital cores, a sophisticated data switching methodology is provided
to maintain task communication besides hormones. If a task migrates from a digital to

128 B. Betting et al.

an analog core or vice versa, it is still able to communicate with the other cooperating
tasks. As can be seen the mentioned approaches have their advantages and disadvan-
tages, which need to be carefully weighted against each other. For example, equations
1, 2, and 3 provide a formula for a quick estimation in chip area overhead for each
approach. Uppercase letters of T and C denote the number of tasks and cores, while Z
represents the amount of OpAmp’s to administrate one task on one core and D denotes
the amount of OpAmps of the decision-unit.

ahs = C · ((T · Greg) + Gahs) · Agate (1)

ahs-a = C · ((T · Greg) + Gahs + Genv) · Agate (2)

aahs = C · ((T · Z) + D) · Aopamp (3)

The chip area of hardware implemented AHS (equation 1) is given by the total amount
of required system gates and its corresponding manufacturing size Agate of one gate
within the design. Within this, the notion of both Greg and Gahs represents the local
gate count for the self-synchronized hormone loop mechanism implemented in hard-
ware on one core. Thereby, Gahs denotes the gate count of the loop logic (adders,
subtracters, comparators etc.). The notion Greg represents gate count of the register
overhead (cycle and accumulation registers) required for each task on one core. The
parameter Agate depends on the chosen processing technology (e.g, 180nm).

Table 1. Comparison of the proposed hormone system implementations

AHS AAHS AHS-A
gates/ OP’s 23.360 120 OpAmp’s 24.040

needed chip area 0.284mm2 0.360mm2 0.293mm2

percentage of core 12.75% 18.75% 13.1%
min. self-config. time 613.5 ns 5μs 735.75 ns

min. communication time 20 ns 1μs 20 ns
min. cycle time 122.3 ns 5μs 145.75 ns

According to the equations 1, 2, and 3 with T = 5, Z = 2, C = 10, D = 2, Greg = 384, Gahs

= 416 and Genv = 68, estimated by a 180nm CMOS processing technology of Xilinx Inc.,
considering the total amount of system NAND gates within the design netlist, each given with
2 inputs and at least 12.2μm2. Percentage of core within AHS, AHS-A considers the use of
MB-Lite RISC processing cores.

The chip area needed for AHS-A is calculated by extending equation 1 for hardware
based AHS slightly. Thereby, just the overhead in gate count for required hormone
translation between both domains of analog and digital is added to already estimated
gate count for each core (Fig. 3). Therefore, the notion Genv denotes the number of
gates required for simple ADC/DAC converters.

A comparison between all approaches is shown in Table 1, considering a SoC ex-
ample chip with 10 cores and an occurrence of 5 possible tasks for each core. All
implementations are feasible. Especially AAHS in combination with AHS, although
disabling analog/digital migrations, has a few key points, which makes it still interest-
ing for further consideration.

A Highly Dependable Self-adaptive Mixed-Signal Multi-core System-on-Chip 129

5 Evaluation

In cause of the nonstandard design, requiring a dynamic virtual environment of mixed-
signal cores, regular evaluation tools are very slow. Hence for further analysis, a self
implemented hormone simulator application for the AHS has been developed [4] and
extended to incorporate analog cores and corresponding hormones. Besides the capa-
bility of simulating a dynamic processing grid, containing multiple mixed signal cores,
the provision of self-X properties is realized. As a test scenario we used the assignment
of 16 different tasks upon a grid arrangement of 4x4 heterogeneous cores. The evalua-
tion focuses on self-healing of dynamic failures during runtime. As a reference, we first
run a simulation with deactivated self-healing. After the self-configuration process the
hormone cycle was deactivated. Failures caused by single event upsets, aging and tem-
perature effects have been created by a stochastic process according to corresponding
failure models described. During simulation, transient and permanent failures leading
to task or core crashes are considered. Fig. 4 shows the result.

Fig. 4. Behavior of 16 AHS cores with deactivated self-healing

After system startup, all 16 tasks are allocated by self-configuration. This process
is finished at hormone cycle 6, so at that time the system is operational. Already at
hormone cycle 7 the first failure, a single event upset, crashed one task. More task
crashes due to single event upsets followed at hormone cycles 25, 37, 47 and 51 further
reducing the number of active tasks. No aging or temperature based failures occurred
up to that point in time. So, starting from hormone cycle 7 the system is no longer
operational as can be seen by the linearly increasing system downtime (single dotted
line) resulting in a downtime ratio of 50/51 = 155/158 = 0.98 = 98% at hormone
cycle 51.

Fig. 5 shows the same scenario with self-healing activated by the hormone cycle.
To be comparable, the stochastic process creating the failures was initialized with the

130 B. Betting et al.

Fig. 5. Behavior of 16 AHS cores with reactive self-healing

same random seed to produce identical events. Again, the system comes operational by
allocating all 16 tasks at hormone cycle 6 while at hormone cycle 7 the first single event
upset occurred crashing a task. This caused the corresponding task suppressor to vanish.
Due to the resulting hormone imbalance, this task is reallocated at cycle 8 bringing the
system back online. The same happens for the following failures. Every time a task is
crashed by a failure, the hormone system compensates this event by task reallocation
or reassignment. Beginning at hormone cycle 81, aging and temperature based crashes
occur as well and are compensated. Even so the system downtime still increases due
to these crashes, it increase much slower and the system always comes back online, as
long as enough cores are available to take all tasks (either by other cores or regeneration
of the crashed cores). The downtime ratio is 23/158 = 0.14 = 14% at hormone cycle
158.

The behavior shown is a pure reactive self-healing process. To allow proactive failure
handling, additional suppressors can be applied. By monitoring, e.g., failures and tem-
perature, suppressors can be emitted for cores with high temperature or failure count.
This favors reliable and cool cores in comparison to unreliable and hot ones. The ma-
jor effect of this proactive reallocation behavior is shown in Fig. 6, where temperature
suppressors are proportional emitted to the raising temperature load. This successively
reduces the suitability (eager value) of the core until tasks get migrated to other cores.
As a result of the sinking workload, the temperature and the temperature suppressor are
declining. The temperature and load are balancing at a reasonable level. The proactive
task assignment increases the reliability by preventing cores from total failing, using a
rebalance of the workload via task distribution on different cores. The system downtime
compared to the reactive simulation is reduced significantly to 14/158 = 0.089 = 8.9%
at hormone cycle 158.

A Highly Dependable Self-adaptive Mixed-Signal Multi-core System-on-Chip 131

Fig. 6. Behavior of 16 AHS cores with proactive system behavior

Table 2. Comparison between none self-healing, reactive and proactive system behavior towards
downtime reduction

Self-healing Downtime Failure/Crashes(Fig.)
None 155/158 = 0.98 = 98% 84/18 (4)

Reactive 23/158 = 0.146 = 14.6% 84/18 (5)
Proactive 14/158 = 0.089 = 8.9% 42/8 (6)

In conclusion, the evaluation shows the major advantage of the hormone cycle for
task assignment. Comparing with the results of the first simulation the system achieves
an excellent enhancement in downtime optimization thus improving dependability in a
significant way, which is shown in Table 2.

6 Related Work

Currently there exist only a few approaches of task assignment in middleware on future
CMP based mixed-signal SoC. The approach of [5] traces the assumption of a reli-
able multi-layered MPSoC architecture against thermal issues due to increasing task
processing. This concept internalizes a proactive task migration on cooler cores by a
distributed hierarchical agent-based system. It avoids single points of failure, but is re-
stricted to thermal management domain and no mixed-signal is used. Another approach
using also the assumption of an distributed agent system is shown in [6]. The author
presents an algorithmic schedule for task distribution on a processing grid. In contrast
to our approach, it is absolutely different using centralized elements so called Group
Manager’s (GM), responsible for the internal controlling in a clustered bunch of tasks.
Unless a single GM-instance fails, there is no possibility for restoring the corresponding
group information, which implies a single point of failure vulnerability.

132 B. Betting et al.

With this increasing number of mixed-signal SoC, the analog part forms a bottleneck
for the design. Failure models are not yet well understood and as predictable as for digi-
tal systems. This even gets worse, because of new failure mechanisms like “Hot Carrier
Injection” (HCI) [7], “Negative Bias Temperature Instability” (NBTI) [8,9] or Electro-
migration (EM) [10]. Another aspect is aging and its effects on for example threshold
voltage drifts, as shown at [11]. Recent research focuses on this and identifies circuits
and its parts, which are sensitive for the reliability ([12,13]) or create tools for partly
aided and automated design ([14]). Concepts of redundancy of analog components has
been shown for fault-tolerant methodologies (i. e. [15]). Though, a generalized concept,
that deals with redundancy, as needed for the hormone system and task allocation, has
yet not been taken into account.

7 Conclusion and Future Work

In summary, this paper presented an approach of a highly dependable self-organizing
mixed-signal SoC. Besides a reliable general SoC architecture using generalized cores
and tasks, an artificial hormone system is used for decentralized task allocation.

In prospection and future work, further investigation upon reliability and superiority
aspects especially with a real prototypic SoC hardware implementation have to be con-
ducted to validate the simulation results and to confirm the timing behavior. Therefore,
we intend the development of a real demonstrator application in the field of automo-
tive driven assistance control. For this, the SoC is admitted controlling a complex re-
connaissance and exploration vehicle used for navigation purposes. The corresponding
SoC prototype will be build by distributing the different parts and components within
the available SoC approaches of AHS, AAHS, and AHS-A to the corresponding related
circuit domain. Then, circuit domain related techniques for rapid prototyping will be
used to build up the corresponding parts (e.g. FPGA, FPAA, or breadboards). The first
aim is to control the vehicle autonomously by using the SoC prototype as control unit,
processing and monitoring different high class mixed-signal tasks in actoric and sen-
sorics. As a major scientific yield, we expect validation and verification results of the
functionality in real timing behavior, failure dependability, and collaborating commu-
nication as well as the workability in mixed-signal domain of the SoC.

References

1. von Renteln, A., Brinkschulte, U., Pacher, M.: The Artificial Hormone System - An Or-
ganic Middleware for Self-organising Real-Time Task Allocation. In: Organic Computing -
A Paradigm Shift for Complex Systems. Springer, Basel (2011)

2. Betting, B., Pacher, M., Brinkschulte, U.: Development and Evaluation of a Self-Adaptive
Organic Middleware for Highly Dependable System-on-Chips. In: 8th International Con-
ference on Autonomic and Autonomous Systems (ICAS 2012), St. Maarten, Netherlands
Antilles (March 2012)

3. Brinkschulte, U., Pacher, M., von Renteln, A.: An Artificial Hormone System for Self-
Organizing Real-Time Task Allocation in Organic Middleware. In: Organic Computing.
Springer (2008)

A Highly Dependable Self-adaptive Mixed-Signal Multi-core System-on-Chip 133

4. von Renteln, A., Weiss, M., Brinkschulte, U.: Examining Task Distribution by an Arti-
ficial Hormone System Based Middleware. In: 11th IEEE International Symposium on
Object/component/service-oriented Real-time Distributed Computing (ISORC 2008), Or-
lando, Florida, USA, May 5-7 (2008)

5. Ebi, T., Rauchfuss, H., Herkersdorf, A., Henkel, J.: Agent-Based Thermal Management Us-
ing Real-Time I/O Communication Relocation for 3D Many-Cores. In: Ayala, J.L., Garcı́a-
Cámara, B., Prieto, M., Ruggiero, M., Sicard, G. (eds.) PATMOS 2011. LNCS, vol. 6951,
pp. 112–121. Springer, Heidelberg (2011)

6. Bittencourt, L.F., Madeira, E.R.M., Cicerre, F.R.L., Buzato, L.E.: A path clustering heuristic
for scheduling task graphs onto a grid. In: 3rd International Workshop on Middleware for
Grid Computing (MGC 2005), Grenoble, France (2005)

7. Li, X., Qin, J., Huang, B., Zhang, X., Bernstein, J.: Sram circuit-failure modeling and reli-
ability simulation with spice. IEEE Transactions on Device and Materials Reliability 6(2),
235–246 (2006)

8. Salfelder, F., Hedrich, L.: An NBTI model for efficient transient simulation of analogue cir-
cuits. In: Proc. eda Workshop 2011, pp. 27–32. VDE Verlag (2011)

9. Grasser, T., Entner, R., Triebl, O., Enichlmair, H., Minixhofer, R.: Tcad modeling of negative
bias temperature instability. SISPAD, 330–333 (September 2006)

10. Papanikolaou, A., Wang, H., Miranda, M., Catthoor, F.: Reliability issues in deep deep sub-
micron technologies: time-dependent variability and its impact on embedded system design,
121 (2007)

11. Lorenz, D., Georgakos, G., Schlichtmann, U.: Aging analysis of circuit timing considering
nbti and hci. In: IOLTS 2009 (2009)

12. Jha, N.K., Reddy, P.S., Sharma, D.K., Rao, V.R.: NBTI Degradation and Its Impact for Ana-
log Circuit Reliability. IEEE Transactions on Electron Devices 52, 2609–2615 (2005)

13. Yan, B., Fan, Q., Bernstein, J., Qin, J., Dai, J.: Reliability simulation and circuit-failure anal-
ysis in analog and mixed-signal applications. IEEE Transactions on Device and Materials
Reliability 9(3), 339–347 (2009)

14. Gielen, G.: Cad tools for embedded analogue circuits in mixed-signal integrated systems on
chip. IEE Proceedings Computers and Digital Techniques 152(3), 317–332 (2005)

15. Askari, S., Nourani, M.: Highly reliable analog filter design using analog voting. In: Saudi
International Electronics, Communications and Photonics Conference (SIECPC), pp. 1–6
(April 2011)

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 134–146, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Inter-warp Instruction Temporal Locality
in Deep-Multithreaded GPUs

Ahmad Lashgar1, Amirali Baniasadi2, and Ahmad Khonsari1,3

1 School of Electrical and Computer Engineering, University College of Engineering,
University of Tehran, Tehran, Iran

2 Electrical and Computer Engineering Department, University of Victoria,
Victoria, British Columbia, Canada

3 School of Computer Science, Institute for Research in Fundamental Sciences,
Tehran, Iran

a.lashgar@ece.ut.ac.ir, amirali@ece.uvic.ca, ak@ipm.ir

Abstract. GPUs employ thousands of threads per core to achieve high
throughput. These threads exhibit localities in control-flow, instruction and data
addresses and values. In this study we investigate inter-warp instruction
temporal locality and show that during short intervals a significant share of
fetched instructions are fetched unnecessarily. This observation provides
several opportunities to enhance GPUs. We discuss different possibilities and
evaluate filter cache as a case study. Moreover, we investigate how variations in
microarchitectural parameters impacts potential filter cache benefits in GPUs.

Keywords: Multi-threaded processors, Energy-efficient design, Pipeline
front-end.

1 Introduction

Innovative microarchitectural solutions have used locality to enhance processor
performance in several ways (e.g., caches, branch predictors, etc). Many studies have
investigated locality in CPUs. Locality in GPUs [3], however, has not received the
same level of attention.

In this study we explore Inter-warp Instruction Temporal Locality (or simply ITL).
ITL represents our observation that a small number of static instructions account for a
significant portion of dynamic instructions fetched and decoded during short intervals
and within the same stream multiprocessor. We investigate ITL among threads and
show how GPUs come with ample ITL.

An important issue contributing to ITL in GPUs is deep multi-threading. GPUs
achieve high throughput by employing and interleaving thousands of threads per core.
Threads are grouped into coarser independent schedulable elements (called warps) to
achieve both scheduling simplicity and SIMD efficiency. The warp scheduler issues
instructions from different warps back-to-back filling the pipeline effectively. This
pipeline organization amplifies ITL by fetching the same instruction for all warps
during short intervals.

 Inter-warp Instruction Temporal Locality in Deep-Multithreaded GPUs 135

Moreover, we have observed that the chances of accessing a recently fetched
instruction again are higher in GPUs compared to CPUs. For example, our evaluation
shows the likelihood of fetching the same instruction within a 64-cycle period is 67%
in CPUs. This grows to 82% in GPUs (see Section 5.1 for methodology).

Each generation of GPUs has superseded the precedent generation by increasing
the number of executed warps (also referred to as multi-threading depth) and SIMD
width. It is expected that deep multithreading will continue to serve an important role
in performance growth in GPUs in upcoming years. Therefore, we expect the current
trend in ITL in GPUs to continue in near future.

In this work, we list different opportunities to improve energy efficiency in GPUs
by exploiting ITL. In particular and as a case study, we evaluate energy savings
achievable under filter caches [12] in GPUs. As we show, employing a filter cache
eliminates a significant share of the instruction cache accesses, improving the fetch
engine’s energy efficiency.

The rest of the paper is organized as follows. In Section 2 we study related works.
In Section 3 we present the pipeline front-end of GPU microarchitectures and review
ITL. We investigate our case study in Section 4. We present experimental setup and
simulation results in Section 5. Finally, in Section 6 we offer concluding remarks.

2 Related Works

Locality studies (data or instruction) in GPUs have received less attention compared
to CPUs. Collange et al [5] studied data locality in registers and found that register
values often appear uniform across threads of a warp. They introduced dynamic
mechanisms detecting up to 19% of the register values as uniform. Their mechanism
can be exploited to reduce the number of accesses to the register file or reduce the
size of vector register file. Gebhart et al [7] observed that the written registers are
often read last within three instructions after the write. They introduce a register file
cache to reduce the number of accesses to the conventional power-hungry register
file. Moreover, to prevent heavy contention on register file cache, they introduce a
two-level warp scheduler. At the first-level they maintain a few active warps. At the
second-level other inactive warps are stored. Each warp at the first-level has a few
registers in the cache. The scheduler issues instructions from these warps for as long
as possible. Once a warp at the first-level stalls on the completion of a long latency
instruction (due to operand dependency), the scheduler replaces it with a ready warp
from the second-level. The mechanism effectively saves 36% of register file power,
which translates to 3.8% of chip dynamic power.

Collagne et al. [4] stressed different NVIDIA GPUs by various workloads to reveal
the effect of workload on GPU power. They evaluated power for different number of
SIMD processors and reported energy per memory access and energy per ALU
instruction. Hong and Kim [10] observed that the optimal performance/watt differs
for various types of workloads, depending on the number of active cores. They
introduced a performance-power model to predict the optimal number of cores for
achieving the best performance/watt dynamically. They also reported the contribution
of each architectural module to the dynamic power. They found that GPU’s front-end

136 A. Lashgar, A. Bania

Fig. 1.

(fetch, decode, and schedul
al. [21] used a static regress
AMD/ATI GPUs. The analy
and power in GPUs. They
power and is the 4th a
GPU power. VLIW usage
other top important param
measuring power in GPUs
measure GPU power. In the
to measure power using GP

3 Observation

3.1 Background

We assume a GPU-like
similar to NVIDIA Tesla.
six memory controllers thr
SM maintains the context o
coarser independent-schedu
SIMD lock-step manner.

Each SM employs a 24-s
model the pipeline front-en
Figure 1, SM pipeline fro
Instruction Buffer (IB), a
instructions from concurre
dependencies. ID fetches t
them to the execution pipeli

asadi, and A. Khonsari

. The microarchitecture of SM’s front-end

ling) accounts for 18% of GPU’s dynamic power. Zhang
sion-based model to analyze the performance and powe
ysis shows which units are the most critical to performa
found that the fetch engine accounts for 12% of the G

among the most important parameters contributing
, ALU instructions, and global memory accesses are
meters. Kasichayanula [11] evaluated two schemes
s . In the hardware approach, he used external devices
e software approach, NVIDIA NVML library is emplo

PU performance counters.

SIMT (Single-Instruction Multiple-Thread) accelera
16 8-wide stream multiprocessors (SM) are connected

rough an on-chip crossbar interconnection network. E
of 1024 concurrent threads. These threads are grouped i
ulable warps. Threads within a warp are executed in

stage SIMD pipeline for most instructions. In this work,
nd according to NVIDIA’s patents [14, 6, 15]. As shown
ont-end consists of three stages: Instruction Fetch (
and Instruction Dispatch (ID). IF selects and fetc
ent warps. IB buffers the instructions to resolve d
the operands for dependency-free instructions and iss
ine. Below we review each stage in more details.

g et
er of
ance
GPU

to
the
for

s to
yed

ator
d to

Each
into

n an

 we
n in
IF),

ches
data
sues

 Inter-warp Instruction Temporal Locality in Deep-Multithreaded GPUs 137

0%

20%

40%

60%

80%

100%

BF
S

BK
P CP

D
YN

FW
A

L

G
A

S

H
SP

T

LP
S

M
P2 M

P

M
TM

M
U

2

M
U

N
N

C

N
N

N
Q

U

N
W

RA
Y

SC
N

SR
1

SR
2

Fe
tc

h
Re

du
nd

an
cy

<= 16 16 < AND <= 32 32 < AND <= 64

Fig. 2. Fetch redundancy among concurrent warps of SMs during 16, 32, and 64
recent fetches for different benchmarks

Instruction Fetch. IF uses per warp logic to determine the next warp instruction PC,
followed by fetching the corresponding instruction through I-Cache. The baseline
warp scheduler uses the round-robin policy among warps to select the next instruction
from the instruction pool.

IF resolves control dependences among warp instructions using the PC logic
module. This module stalls the warp upon a pending branch. PC logic also determines
the next active PC of the warp. IF takes one cycle to select the PC and fetch the
corresponding instruction from I-Cache to the IB stage if I-Cache hits.

After an instruction is fetched, the warp scheduler sends it to an empty field in the
instruction buffer in the next cycle. This empty field is reserved at fetch time and
therefore the fetched instruction always finds an empty instruction buffer entry.

Instruction Buffer. Data dependency is resolved through scoreboarding. Instructions
communicate only through the register file and operand forwarding is not supported.
Once the scoreboard marks the instruction as ready, the scheduler can select the
instruction to proceed. The instruction scheduler used at this stage uses round-robin
policy.

Instruction Dispatch. ID buffers collect register operands from highly banked
register files [15] and issue instructions to the pipeline’s back-end as soon as all
operands are buffered.

We assume a scoreboard structure similar to [6]. Each scoreboard entry is
associated with a different warp and points to the registers having a pending value.
This information is maintained at the register region granularity. Each register region
is identified using a base (register ID) and an offset (number of register after the
base). Each scoreboard entry can keep track of 6 register regions. Scoreboard stalls an
instruction due to a RAW/WAR dependency if the input/output operands of the
instruction belong to a register region in the warp’s scoreboard entry. Note that a warp

138 A. Lashgar, A. Baniasadi, and A. Khonsari

is stalled if all of its register regions are taken in the scoreboard. Therefore increasing
the number of register regions reduces the probability of warp stalls. Our evaluation
shows that six register regions per warp are enough to achieve maximum ILP under
the evaluated workloads and the employed in-order pipeline. Once an instruction
commits, the register region is released.

3.2 ITL

ITL stems from the fact that a few static instructions account for a significant portion
of instructions fetched and decoded among different warps during short intervals and
within the same warp scheduler. SMs often execute concurrent warps from the same
kernel code. Moreover, the scheduler keeps the warps at the same pace to improve
cache locality [13], further increasing ITL.

To provide better understanding we measure and report fetch redundancy as an
indication of ITL. Fetch redundancy reports the percentage of instructions already
fetched by other currently active warps recently. We measure fetch redundancy in
different recency windows (16, 32, and 64). We present our findings in Figure 2.

Average fetch redundancy is 53%, 59%, and 67%for recency window sizes of 16,
32, and 64, respectively. Highly parallel benchmarks, which employ a high number of
blocks per grid with a few branch divergences (e.g., CP, HSPT, and NN), show higher
fetch redundancy. Other benchmarks, which have fewer concurrent warps (e.g., GAS,
SR2, and NW), or more diverging branches (e.g., MP2, MP, MU2, MU, NQU),
exhibit less fetch redundancy.

3.3 Exploiting ITL

In this section, we briefly go over possible power and performance benefits
achievable using ITL in GPUs.

Fetch/Decode Bypassing. Loop buffering stores the decoded word of loop
instructions in a dedicated buffer and skips fetch/decode as long as the thread
proceeds inside the loop [9]. The challenge in CPUs is to find loop boundaries
effectively and fitting the entire loop in the buffer. GPUs can take advantage of
bypassing by storing the most recent decoded warp instructions and reusing them later
by other warps.

Reducing the Size of Instruction Buffer. We have observed that for ~42% of
instruction fetches, the corresponding decoded instruction already exists in the
instruction buffer (in the entries dedicated to other warps). The instruction
fetch/decode process can be bypassed by reading the decoded word from the
instruction buffer. A more efficient alternative is to share similar entries among warps
to reduce instruction buffer size.

Reducing Accesses to I-Cache. ITL can be used to filter accesses to I-Cache. This
can be done by using a filter cache or row buffer [12]. Filter cache uses temporal
locality to reduce cache miss rate by storing the most recent fetched instructions. Row
buffer stores the last accessed I-Cache block (row) and serves fetch requests for

 Inter-warp Instr

blocks residing in the bu
opportunities provided by fi

4 Using ITL Case

Exploiting filter caches (F
baseline pipeline front-end
program counter (PC) to fet
following I-Cache access
conventional path from I-C

Table 1. Front-end area, leak
CACTI [16]

I-Cache tag

I-Cache data

Instruction Buf.

Scoreboard

Operand Buf.

FC tag (32-entry)

FC data (32-entry)

FC tag (16-entry)

FC data (16-entry)

Fig. 3. Modifications made t

Microarchitecture. Figur
modifications are highlight
cache-like structure consist

ruction Temporal Locality in Deep-Multithreaded GPUs

uffer. In the next section we evaluate energy sav
filter cache.

Study in GPUs: Filter Cache

FC) in current GPUs requires minor modifications to
d (described in section 3.1). FC is probed using the n
tch. If the instruction look-up hits during FC tag check,
is prevented, else the instruction is fetched through
ache. Missing instructions update FC later.

kage power, read/write energy, and access delay measured

Area

(μm2)

Leakage

(mW)

Energy per

R/W (pJ) Delay (ps)

229 0.03 0.13 115.94

18204 1.78 4.30 221.20

2600 0.16 1.00 137.59

6921 0.24 1.57 162.17

24173 0.53 4.16 174.05

266 0.03 0.14 117.28

2229 0.11 0.81 161.76

155 0.02 0.10 105.47

1337 0.05 0.57 143.38

to the instruction fetch stage to implement an FC-enhanced SM

re 3 shows an FC-enhanced front-end design. T
ted over the baseline pipeline microarchitecture. FC i
ting of two parts, i.e., FC check and FC fetch. FC check

139

ving

the
next
the
the

d by

M

The
is a
k is

140 A. Lashgar, A. Baniasadi, and A. Khonsari

similar to a tag array and compares the incoming PC tags against earlier stored tags.
Upon a match, FC forwards the bypass signal to the fetch circuit and prevents
instruction fetching. Bypass signal activates FC fetch and sends the instructions
associated with the matched PC to the next stage through the multiplexer. Upon a
mismatch, the front-end follows the conventional approach.

Timing. Using an FC imposes two delays: FC tag check and multiplexer. Upon FC
check hit, fetch stage faces the following delay:

(Warp scheduling) + (FC check) + (FC fetch) + (MUX)

Upon FC mismatch, the delay is:

(Warp scheduling) + (FC check) + (I-Cache) + (MUX)

Table 2. Benchmark characteristics. CTA/SM indicates the maximum number of concurrent
blocks per SM which is limited by both parallelism and occupancy.

Abbr. Name and Suite Grid Size Block Size #Insn CTA/SM

BFS BFS Graph [2] 16x(8) 16x(512) 1.4M 1

BKP Back Propagation [2] 2x(1,64) 2x(16,16) 2.9M 4

CP Coulumb Poten. [19] (8,32) (16,8) 113M 8

DYN Dyn_Proc [2] 13x(35) 13x(256) 64M 4

FWAL Fast Wal. Trans. [18]
6x(32)
3x(16)
(128)

7x(256)
3x(512)

11M 2, 4

GAS Gaussian Elimin. [2] 48x(3,3) 48x(16,16) 9M 1

HSPT Hotspot [2] (43,43) (16,16) 76M 2

LPS Laplace 3D [1] (4,25) (32,4) 81M 6

MP2 MUMmer-GPU++ [8] big (196) (256) 139M 2

MP MUMmer-GPU++ [8] small (1) (256) 0.3M 1

MTM Matrix Multiply [18] (5,8) (16,16) 2.4M 4

MU2 MUMmer-GPU [2] big (196) (256) 75M 4

MU MUMmer-GPU [2] small (1) (100) 0.2M 1

NNC Nearest Neighbor [2] 4x(938) 4x(16) 5.9M 8

NN Neural Network [1]

(6,28)

(25,28)

(100,28)

(10,28)

(13,13)

(5,5)

2x(1)

68M 5, 8

NQU N-Queen [1] (256) (96) 1.2M 1

NW Needleman-Wun. [2]

2x(1)
…

2x(31)
(32)

63x(16) 12M 2

RAY Ray Tracing [1] (16,32) (16,8) 64M 3

SCN Scan [18] (64) (256) 3.6M 4

SR1 Speckle Reducing [2] big 4x(8,8) 4x(16,16) 9.5M 2, 3

SR2 Speckle Reducing [2] small 4x(4,4) 4x(16,16) 2.4M 1

 Inter-warp Instruction Temporal Locality in Deep-Multithreaded GPUs 141

Our study shows that MUX delay is negligible compared to the rest and can be
ignored. Table 1 reports the access latency of FC tag, FC data, I-Cache tag, and I-
Cache data. IF delay for FC check hit/miss scenario is 0.28ns/0.45ns plus warp
scheduling delay. The evaluated front-end runs under 1.3 GHz (0.77ns clock period).
For warp scheduling delays below 0.32 ns (0.77 ns - 0.45 ns), FC-enhanced SM does
not impose extra cycles. Under the pessimistic scenario where warp scheduling’s
delay exceeds 0.32 ns, IF should be pipelined into two stages. Under such
circumstances, warp scheduling and FC check are done at the first stage. The second
stage decides whether to fetch the instruction from FC or I-Cache. This design

extends the pipeline depth by a cycle compared to the baseline resulting in a
performance loss less than 1%.

Hardware Overhead. FC- enhanced SM requires two auxiliary structures. First, a
multiplexer is used to select between two 64-bit instruction words. Second, additional
storage is needed for the FC module to temporarily store a small number of
instructions. Our simulations show that a 32-entry FC captures a significant share of
fetch redundancy. The 32-entry FC imposes 4.7% area overhead compared to a
conventional pipeline front-end.

5 Experiments

5.1 Methodology

We used GPGPU-sim v2.1.1b [1] to model the baseline architecture described in
Section 3. We configured GPGPU-sim with the parameters shown in Table 3. We

NoC
#SMs : #Memory Ctrls 16 : 6

#SM Sharing a Network Interface 2

Clocking
Core 1300 MHz

Interconnect 650 MHz
DRAM 800 MHz

Memory
#Banks Per Memory Ctrls 8
DRAM Scheduling Policy FCFS

SM
Warp size : SIMD width 32 : 8

Thread/SM 1024

Register file : Shared memory 64KB : 16KB

Table 3. Baseline configurations for GPGPU-sim

Fig. 4. SM’s front-end energy
breakdown

142 A. Lashgar, A. Baniasadi, and A. Khonsari

have extended GPGPU-sim to model the discussed FC-enhanced pipeline front-end.
We extended the simulator to model 4KB 4-way 4-set [20] I-Cache per SM (32 8-byte
instructions per line). On a cache miss, the associated warp is stalled for 300 cycles to
access the cache block in global memory. Requests from different warps are merged
through I-Cache per warp MSHRs. We used benchmarks from Rodinia benchmark
suite [2], CUDA SDK 2.3 [18], Parboil [19], and the benchmarks distributed with
GPGPU-sim. We also included the MUMmerGPU++ [8] third-party sequence
alignment program. Table 3 shows benchmarks’ characteristics.

We report both static and dynamic power. We use CACTI 6.5 [16] to estimate the
power dissipation, area, and latency of an FC-enhanced SM compared to the baseline
under 32nm technology. For small sized modules, like the operand collector, we
scaled the number linearly to extrapolate the parameters. We extracted 6 samples of
larger caches (keeping I/O bits, associativity, and other parameters the same) from
CACTI to find the line’s parameters.

5.2 Experimental Results

In this section, we first report the energy breakdown of the baseline architecture. Then
we report the percentage of I-Cache accesses filtered by FC and the associated energy
savings. Finally, we evaluate filter caches under various microarchitectural changes.

Energy Breakdown. Figure 4 presents the energy breakdown for the SM pipeline
front-end for the evaluated workloads. The operand collector and the associated
buffering are the most energy consuming parts accounting for 40% of dynamic power.
I-Cache, which is the target of this case study, is second, accounting for 27%.

FC Hit Rate. Table 4 reports FC hit rate, which is equal to percentage of the I-Cache
accesses filtered. FC check hit rate reaches a maximum of ~100%. Hit rate is above
60% for coherent control-flow compute-intensive workloads like CP, DYN, HSPT,
LPS, and MTM. FC shows lower hit rate in control-flow intensive workloads with
high branch divergence (e.g., MU2, and MP2). This is due to the fact that these
benchmarks exhibit lower ITL as warps often follow different diverging paths. Hit
rate is also low for workloads with limited warp-level parallelism (MU, NW, MP,
SR2, and NQU). Lower number of concurrent warps reduces the chance of instruction
reuse and consequently FC hit rate.

Energy Saving. Table 1 reports die area, leakage power, read/write energy per
access, and access latency for modules with significant energy contribution in the
pipeline front-end. We assume two ports per I-Cache and FC caches, one read port
and one write port. Using a 32-entry FC cache, front-end static power increases by
5.0%. Assuming 16KB register file (7.46 mW leakage), 16KB shared data cache (5.80
mW leakage), 5KB texture cache (1.93 mW leakage), and 2KB L1 constant cache
(0.82 mW leakage) per SM, FC imposes less than 0.7% leakage power per SM.

 Inter-warp Instruction Temporal Locality in Deep-Multithreaded GPUs 143

Table 4. FC energy saving compared to the baseline as measured by CACTI [16]

FC
hit rate

Baseline
I-Cache energy

(nJ)

I-Cache + FC
energy

(nJ)

Front-end
energy-saving

using FC
BFS 97% 644.11 270.93 12%
BKP 96% 500.14 216.86 9%

CP 100% 16532.20 6616.15 7%
DYN 93% 9882.86 4435.14 8%

FWAL 96% 1730.16 740.77 8%
GAS 87% 1218.70 592.08 7%
HSPT 89% 12076.70 5676.64 8%
LPS 83% 14955.05 7625.97 8%

MP2 33% 67872.12 57354.82 2%
MP 30% 161.40 139.78 2%

MTM 95% 347.37 153.66 8%
MU2 49% 43099.85 31846.11 5%
MU 39% 100.32 81.10 4%
NNC 76% 1718.39 963.81 10%

NN 99% 132820.86 53780.92 19%
NQU 50% 217.81 159.97 5%
NW 70% 5627.29 3356.63 10%
RAY 76% 10520.69 5945.77 6%
SCN 97% 562.47 240.70 9%
SR1 87% 1430.76 699.11 8%

SR2 84% 368.94 189.63 7%

In Table 4, we report the dynamic energy consumption of the baseline I-Cache

compared to the FC-enhanced design (I-Cache + FC). As reported, FC can reduce I-
Cache energy from 13% (MP) to 60% (CP). This translates to from 2% (MP
benchmark) to 19% (NN benchmark) of the overall pipeline front-end dynamic
energy reduction. Assuming an 18% overall energy share for the front-end [10], an
FC-enhanced GPU saves up to 3.4% of the dynamic energy.

Sensitivity Analysis. In this section we report FC hit rate and energy reduction under
variations in multithreading depth, FC size, and warp scheduler. We evaluate filter
caches for 512 threads per SM, 16-entry FC, and a two-level warp scheduler [17] as
an alternative to our baseline 32-entry FC, 1024 threads per SM, and round-robin
warp scheduler.

Employing the two-level scheduler improves memory latency hiding. Two-level
scheduler divides the warps into multiple fetch groups and gives the highest priority
to the warps belonging to the fetch group of the last issued warp. This mechanism can
hide the memory accesses made in one fetch group using the computations of other
fetch groups. We choose 8 warps per fetch group to achieve maximum latency hiding.

144 A. Lashgar, A. Baniasadi, and A. Khonsari

0%

20%

40%

60%

80%

100%

CP HSPT LPS MP MTM NN RAY SCN avg

FC
 H

it
 R

at
e

(a)

1024Thd-RR-32FC 1024Thd-2Lev-32FC 1024Thd-RR-16FC 1024Thd-2Lev-16FC

512Thd-RR-32FC 512Thd-2Lev-32FC 512Thd-RR-16FC 512Thd-2Lev-16FC

0%

5%

10%

15%

20%

25%

30%

CP HSPT LPS MP MTM NN RAY SCN avg

Fr
on

t-
en

d
En

er
gy

Sa

vi
ng

(b)

Fig. 5. Sensitivity for a) FC hit rate and b) front-end energy reduction to the multithreading
depth (1024 and 512), warp scheduling policy (RR for round-robin and 2Lev for two-level
scheduler), and FC size (32 and 16) for different benchmarks.

Figure 5 reports FC hit rate and front-end energy reduction for different

combinations: multithreading depth (1024, and 512), FC sizes (32, and 16), and warp
schedulers (RR, and 2Lev). In the interest of space we report average and a few
representative benchmarks.

Multithreading Depth. Reducing multithreading depth is expected to reduce ITL.
CP, LPS, and SCN are among the benchmarks that have enough parallelism to run
more than 512 threads per SM. As reported, reducing multithreading depth to 512
threads reduces FC hit rate up to 6% (in LPS) compared to 1024 threads per SM but
has minor impact on energy reduction.

Warp Scheduler. We expect to see lower FC hit rate under 2Lev compared to RR
under fixed FC size and multithreading depth. This is because 2Lev keeps the warps
of different fetch groups at different paces reducing the ITL. As reported, 2Lev often
impacts FC hit rate but insignificantly.

FC Size. Among the parameters studied here, FC size has the highest impact. Lower
FC size reduces FC hit rate. However, smaller FC comes with lower energy overhead.

 Inter-warp Instruction Temporal Locality in Deep-Multithreaded GPUs 145

As reported, a 16-entry FC has a lower FC hit rate (on average of 9% to 10% percent)
compared to a 32-entry. However, since the 16-entry consumes less energy, it still
shows higher energy reduction.

6 Conclusion

In this study we showed that there is high temporal instruction locality in GPU
microarchitectures for general-purpose computations. Concurrent warps fetch and
decode the same instruction frequently providing an opportunity to design a more
efficient pipeline front-end. We suggested different possibilities to exploit this locality
to improve performance, energy, and area. We investigated filter cache as a case
study. We found that a simple direct-map filter cache per SM can eliminate 30% to
~100% of I-Cache requests reducing pipeline front-end energy up to 19%. We have
evaluated our results under various microarchitectural changes including
multithreading depth, warp scheduling, and filter cache size.

Acknowledgement. The authors like to thank anonymous reviewers. This work was
partially supported by School of Computer Science at Institute for Research in
Fundamental Sciences (IPM).

References

1. Bakhoda, A., Yuan, G.L., Fung, W.W.L., Wong, H., Aamodt, T.M.: Analyzing CUDA
workloads using a detailed GPU simulator. In: Proc. of ISPASS 2009, pp. 163–174 (2009)

2. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Sang-Ha, L., Skadron, K.:
Rodinia: A benchmark suite for heterogeneous computing. In: Proc. of IEEE International
Symposium on Workload Characterization (IISWC), pp. 44–54 (2009)

3. Collagne, S.: Exploiting all forms of parallel locality in many-thread architectures. ALF
Research Group Seminar, IRISA, Rennes (December 21, 2011)

4. Collange, S., Defour, D., Tisserand, A.: Power Consumption of GPUs from a Software
Perspective. In: Proc. of the 9th International Conference on Computational Science
(ICCS), pp. 914–923 (2009)

5. Collange, S., Defour, D., Zhang, Y.: Dynamic Detection of Uniform and Affine Vectors in
GPGPU Computations. In: Lin, H.-X., Alexander, M., Forsell, M., Knüpfer, A., Prodan,
R., Sousa, L., Streit, A. (eds.) Euro-Par 2009. LNCS, vol. 6043, pp. 46–55. Springer,
Heidelberg (2010)

6. Coon, B.W., Mills, P.C., Oberman, S.F., Siu, M.Y.: Tracking register usage during
multithreaded processing using a scoreboard. United States Patent, Patent number:
7434032

7. Gebhart, M., Johnson, D.R., Tarjan, D., Keckler, S.W., Dally, W.J., Lindholm, E.,
Skadron, K.: Energy-efficient mechanisms for managing thread context in throughput
processors. In: Proc. of the 38th Annual International Symposium on Computer
Architecture (ISCA), pp. 235–246 (2011)

8. Gharaibeh, A., Ripeanu, M.: Size Matters: Space/Time Tradeoffs to Improve GPGPU
Applications Performance. In: Proc. of ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1–12 (2010)

146 A. Lashgar, A. Baniasadi, and A. Khonsari

9. Hiraki, M., Bajwa, R.S., Kojima, H., Gorny, D.J., Nitta, K., Shri, A.: Stage-skip pipeline: a
low power processor architecture using a decoded instruction buffer. In: International
Symposium on Low Power Electronics and Design, pp. 353–358 (1996)

10. Hong, S., Kim, H.: An Integrated GPU Power and Performance Model. In: Proc. of ISCA
2010, pp. 280–289 (2010)

11. Kasichayanula, K.K.: Power Aware Computing on GPUs. Master Thesis Dissertation,
University of Tennessee, Knoxville (May 2012)

12. Kin, J., Gupta, M., Mangione-Smith, W.H.: The filter cache: an energy efficient memory
structure. In: Proc. of MICRO 1997, pp. 184–193 (1997)

13. Lindholm, J.E., Coon, B.W., Wierzbicki, J., Stoll, R.J., Oberman, S.F.: Credit-Based
Streaming Multiprocessor Warp Scheduling. United States Patent, application number:
12/885,299

14. Lindholm, J.E., Coon, B.W., Moy, S.S.: Across-thread out-of-order instruction dispatch in
a multithreaded microprocessor. United States Patent, Patent number: 7676657

15. Liu, S., Lindholm, J.E., Siu, M.Y., Coon, B.W., Oberman, S.F.: Operand collector
architecture. United States Patent, Patent number: 7834881

16. Muralimanohar, N., Balasubramonian, R., Jouppi, N.: Optimizing NUCA Organizations
and Wiring Alternatives for Large Caches with CACTI 6.0. In: Proc. of MICRO 2007,
pp. 3–14 (2007)

17. Narasiman, V., Shebanow, M., Lee, C.J., Miftakhutdinov, R., Mutlu, O., Patt, Y.N.:
Improving GPU performance via large warps and two-level warp scheduling. In: Proc. of
MICRO 2011, pp. 308–317 (2011)

18. NVIDIA Corp. NVIDIA CUDA SDK 2.3
19. Stratton, J.A., Rodrigues, C., Sung, I.J., Obeid, N., Chang, L.W., Anssari, N., Liu, G.D.,

Hwu, W.M.W.: Parboil: A Revised Benchmark Suite for Scientific and Commercial
Throughput Computing. IMPACT Technical Report (2012)

20. Wong, H., Papadopoulou, M.M., Sadooghi-Alvandi, M., Moshovos, A.: Demystifying GPU
microarchitecture through microbenchmarking. In: Proc. of ISPASS 2010, pp. 235–246
(2010)

21. Zhang, Y., Hu, Y., Li, B., Peng, L.: Performance and Power Analysis of ATI GPU: A
Statistical Approach. In: 6th IEEE International Conference on Networking, Architecture
and Storage (NAS), pp. 149–158 (2011)

GALS-CMP: Chip-Multiprocessor

for GALS Embedded Systems

Muhammad Nadeem, HeeJong Park, Zhenmin Li,
Morteza Biglari-Abhari, and Zoran Salcic

Department of Electrical & Computer Engineering,
University of Auckland, Private Bag 92019,

Auckland 1142, New Zealand
{m.abhari,z.salcic}@auckland.ac.nz

Abstract. In this paper we present a novel multi-processor architecture
for concurrent execution of programs that follow the Globally Asyn-
chronous Locally Synchronous (GALS) formal model of computation.
Programs are specified using the SystemJ concurrent programming lan-
guage, suitable for modeling heterogeneous embedded applications that
contain reactive and control driven parts and interact with the exter-
nal environment. The proposed architecture is based on separating the
control-driven and data-driven operations and executing them on dis-
tinct cores that support both types of operations, implemented as two
modes within the single processor core. Each core can switch between
two modes without any overhead. The core as the basic building block
of the multiprocessor extends Java Optimized Processor (JOP), suit-
able for data-driven transformational operations, with control-oriented
constructs that implement concurrency, reactivity, and control flow in
SystemJ. Experimental evaluation over a range of benchmarks shows
significant performance improvements over the existing platforms devel-
oped for the execution of the SystemJ program.

Keywords: GALS Processors, Reactive Processors, Chip-multiprocessors,
Concurrent embedded systems.

1 Introduction

A wide range of embedded systems consist of multiple concurrent behaviors con-
taining both control-dominated and data-dominated operations. These behaviors
also interact with each other and with the environment repeatedly reading in-
puts, doing computations and generating outputs. They typically have different
requirements on response times; hence, they need to run concurrently at different
speeds. These systems are often modeled using GALS (Globally Asynchronous
Locally Synchronous) model of computation. Although Java can be used to pro-
gram such systems, it has never been an obvious choice due to the presence
of a large piece of software in the form of Java Virtual Machine (JVM), as an
additional layer, and garbage collector resulting in increased memory and exe-
cution cost. Java is not suitable for the hard real-time systems due to garbage

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 147–158, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

148 M. Nadeem et al.

collector which typically causes non-deterministic pauses in the application due
to unpredictable invocation times and length of these pauses. In addition, Java
threads and concurrency constructs introduce non-determinism in program ex-
ecution and make it hard to analyze the execution behavior of the program.
Also the lack of statements for modeling reactive control structures, support of
synchronous reactive model of computation, and frequent occurrence of context
switching to support thread-based concurrency reduce its efficiency.

SystemJ [1] is a system-level programming language which extends Java with
synchronous and asynchronous concurrency and reactivity, making it suitable
for designing complex embedded programs. The language allows use of full Java
as usual object oriented sequential programming language, and does not rec-
ommend using Java concurrency (threads), but relies on its own concurrency
model based on formal GALS model of computation (MoC). It extends Java
with Esterel-like [2] constructs for the synchronous concurrency and reactivity,
and CSP-like [3] constructs for the asynchronous concurrency. Synchronous parts
of SystemJ programs are deterministic and suitable for real-time applications if
the continuous blocks of java code embedded into those programs have bounded
execution times.

A SystemJ program consists of multiple asynchronous processes, called clock-
domains (CD), which are described at the top design level. The clock-domains
are composed together with the asynchronous parallel operator (><). Each
clock-domain consists of a number of synchronous concurrent processes, called
reactions, which execute in lock-step, driven by a logical clock, called tick. A
synchronous program reacts to its environment in a sequence of ticks, and com-
putations within a tick are assumed to be instantaneous, i.e., as if the processor
executing them was infinitely fast (synchrony hypothesis). The reactions com-
municate within a clock-domain, as well as with the external environment (in-
put/output) through signals, which are broadcast and present within the current
tick and comply with synchronous reactive MoC [2]. Communication between
reactions in different clock-domains is carried out through the exchange of mes-
sages over channels, which are semantically the same as channels used in CSP
MoC [3]. Besides operations on signals and channels, SystemJ allows free use of
Java data objects and sequential statements in its reactions, and those state-
ments are considered instantaneous in terms of logical time (i.e. they do not
consume logical time or ticks).

Control flow of a SystemJ program incorporates scheduling of all reactions and
clock-domains, as well as communication between reactions, and communication
with the external environment. The data-driven computations and transforma-
tions are performed in Java.

This paper presents a homogeneous chip-multiprocessor architecture for exe-
cuting programs described in SystemJ referred to as GALS-CMP. The multipro-
cessor is based on the use of multiple JOP-Plus [4] cores, which are particularly
suitable for separation of SystemJ reactivity and concurrency control flow on one
hand, and sequential Java computations, on the other hand. This is used as the

GALS-CMP: Chip-Multiprocessor for GALS Embedded Systems 149

basis of two modes of JOP-Plus operation, particularly efficient for execution of
single clock domain and all synchronous reactions in it.

The rest of the paper is organized as follows. Section 2 presents the previous
related works. Details of the GALS-CMP architecture including the interconnect
fabric, the distribution of clock-domain processing on multiple cores and the inter
clock-domain communication are presented in Section 3. Section 4 presents the
details of the compilation and the execution flow of the system. The experiment
results and evaluation of GALS-CMP performance are given in Section 5. Finally,
Section 6 presents the conclusions and future work directions.

2 Related Works

SystemJ programs can be compiled and executed using various approaches. The
early approach was using TReK [5] run-time Java library, which required ad-
ditional memory. Also, the language was introduced informally and without a
compiler so SystemJ mechanisms were used through suitable application pro-
gramming interface. In another approach the SystemJ program is transformed
to an intermediate format called AGRC (Asynchronous GRaph Code) and the
compiler back-end produces a single threaded Java code [1] that can be exe-
cuted on processors with JVM or on Java processors, such as JOP [6], resulting
in more efficient execution than those that target JVM. These JOP Java pro-
grams can also be analyzed and their worst case execution times estimated [6].
An attempt to extend JOP byte code repertoire and support SystemJ reactiv-
ity resulted in more efficient execution of SystemJ programs [7], but SystemJ’s
powerful concurrency model in this case is implemented in Java and inherits
the same deficiencies as previous implementations due to the lack of efficient
mechanism (unconditional goto) to control the program flow. The compilation
approach [8] separates the concurrency and control flow (CRCF) of SystemJ
program, presented as special instructions, from Java control flow (JCF), pre-
sented in Java, and they are executed on two different processors [8], [9]. Further
attempts reported in [9], [4], extend JOP and execute both control-dominated
and data-dominated computations on a single processor resulting in efficient
execution in terms of both execution times and resources used.

Although, the execution of SystemJ programs on a single processor can be
efficient and economical, it may suffer from poor response time due to cyclic
scheduling of the asynchronous behaviors called clock domains [1]. These pro-
grams respond to the environment events only once at every logical clock cycle
(tick) of the clock-domain execution. Hence, for each clock-domain, system will
be able to interact with the environment only when it resumes the execution
of the same clock-domain after executing all other clock-domains. The SystemJ
programs offer high degree of concurrency at clock-domain level which could be
exploited to boost the performance of the system if clock domains are executed
in parallel. The single processor approach is unable to exploit this parallelism
and fails to make efficient use of it. Furthermore, achieving higher performance
out of a piece of silicon by increasing the system clock frequency results in higher
power consumption.

150 M. Nadeem et al.

3 GALS-CMP Architecture

A SystemJ program uses local synchronous concurrency and global asynchronous
concurrency. This can be exploited by introducing hardware platforms consist-
ing of multiple cores to provide parallel and faster execution. To achieve efficient
execution, we divide programs into concurrent operations at the clock-domain
boundaries during compilation and then we distribute these concurrent oper-
ations to the cores. In other words, each part of the compiled program to be
executed on a core comprises of the CRCF and JCF code for a complete clock-
domain. In this section we describe the GALS-CMP system in detail.

3.1 GALS-CMP System

The GALS-CMP follows the methodology adopted by the time predictable multi-
processor system JopCMP [10]. It consists of multiple JOP-Plus cores, connected
to the shared memory through an arbiter using a SoC bus as shown in Fig. 1.
Each core uses a local method cache, stack cache and the CRCF memory, which
contains the control code of a SystemJ clock-domain, to reduce the shared mem-
ory accesses. Shared memory is used to store Java data computations (JCF)
made of a collection of Java methods that are loaded upon call from the control
code into local method caches of individual cores before they are executed. Also,
shared memory is used to store the JVM run time data areas. Furthermore,
the depicted GALS-CMP architecture shows a synchronization unit which has
the responsibility to coordinate access to the shared objects by a mutual exclu-
sion mechanism. On-chip IO devices, such as a controller for real-time Ethernet
or a real-time field bus, may be mapped to shared memory addresses and are
connected via the memory arbiter.

All cores are connected to each other and to the memory via simple SoC inter-
connect (SimpCon) [11] which provides point-to-point interconnections between
components. All cores communicate with each other through the shared memory
and an arbiter is used when multiple masters try to access the same slave.

Both control-dominated and data-dominated processing is split at the clock-
domain boundaries. This means that an entire clock domain must execute on
the same processing core. However, a single processing core may execute any
number of clock-domains. The allocation of clock-domains to the processors is
done statically at the compile time. The designer is offered with the specific
choice of executing the clock-domain on different processors.

3.2 Inter Clock-Domain Communication

The distribution of clock-domains on different cores gives rise to the problem of
communication between the clock-domains. In SystemJ, all communication be-
tween clock-domains must take place through channels, which are implemented
as Java objects shared by the respective clock-domains. The exchange of data
using channels on traditional JVM based processors is implemented by pass-
ing Java objects between Java methods and classes on the same JVM, which

GALS-CMP: Chip-Multiprocessor for GALS Embedded Systems 151

JOP-Plus 0C
R
C
F
PM

and
D
M

CD-Table

Register file

Stack cache

Method cache

JOP-Plus 3

C
R
C
F
PM

&
D
M

CD-Table

Register file

Stack cache

Method cache

Memory Arbiter

Synchronization
Unit

On-chip IO
devices

Shared memory

Fig. 1. GALS-CMP system

entails passing references. All the cores of GALS-CMP are connected to the sin-
gle shared memory and the communication between clock-domains is handled
by passing object references of channels in Java. The shared memory also con-
tains channel status signals to implement the rendezvous used in data exchange.
The inter clock-domain communication in GALS-CMP is more efficient than the
one adopted by the multiprocessor system in [8]. The two clock-domains com-
municating each to the other and executing on different processors have more
expensive communication mechanism in terms of execution time and memory
requirements as channel objects need to be transferred physically instead of
passing references. In case of GALS-CMP, channel communication takes place
by passing object reference to the other clock-domain irrespective of whether
they are allocated to the same core or on different cores.

3.3 Base Core

The core used as basis for the GALS-CMP provides a seamless integration of
both control and data execution modes in one processor called JOP-Plus [4]. The
control execution is capable of invoking the data computations in Java, which
then returns to the control directly. The main idea is to provide support for the
two separate components of the control flow in SystemJ programs, Concurrency
and Reactive Control Flow (CRCF) and Java Control Flow (JCF), by extending
the instruction set of the original JOP while using single execution unit and

152 M. Nadeem et al.

data-path. This allows resultant core to appear as two ”logical” processors, or,
alternatively, as a processor executing in two different modes of execution. At
any given time, the processor executes SystemJ program in either of the two
modes and uses all the resources of processor. The code parts corresponding to
CRCF and JCF are stored in two different memories, local CRCF memory and
shared memory, respectively.

3.4 Memory Organization

Each GALS-CMP core consists of a number of memories; method cache, stack
cache, microcode ROM, and translation-table. Other memory components such
as Register-File, CRCF program memory, CRCF data memory and a number
of temporary registers are part of the processor, which are used in the CRCF
execution mode. The program memory of the CRCF holds the compiled and
assembled code implementing concurrency and control flow of a SystemJ pro-
gram. The memory depth is parameterized depending upon the code size, but
maximum size is limited to 64K. There are two sources of program instructions:
CRCF programmemory andmethod cache. Therefore, the CRCF memory shares
the program counter register with the method cache. The method cache serves as
the instruction cache for JCF. The byte-codes for a complete method are loaded
into the cache before execution.

The CRCF data memory (DM) contains the data structure for the concur-
rency and control flow statements of the SystemJ program (CRCF). The DM
is 16-bits wide and the depth is not fixed and maximum size depends on the
number of clock-domains. The register file (RF) is used for temporary storage of
the operands when executing CRCF and is functionally the same as the register
file in [8,9]. The Register-File consists of 16 16-bit registers, which are not visible
in the JCF mode. The method cache holds a complete Java method prior to its
execution. The clock-domain table is created in a very small memory and is used
for holding the address of particular methods.

The main memory is situated external to the core and can be divided into
two parts: application (program) area and heap. The application area consists of
per-class structures such as run-time constant pool, field and method data, and
the code for methods and constructors, as well as interned Strings. The heap is
a run-time data area from which memory for all class instances and arrays are
allocated. The application area also contains the code for JCF methods, loader
method and CRCF wrapper for each CPU and the main method. The channels
are implemented as the Java object and reside in the heap part of the main
memory. These objects are shared among the clock-domains running on the same
or different cores. The access to the objects by the multiple concurrent clock-
domains on different cores is synchronized by using the lock which guarantees
the mutual exclusion.

GALS-CMP: Chip-Multiprocessor for GALS Embedded Systems 153

3.5 CD-Table

The CD-table holds the addresses of the first JCF method structure of each
clock-domain which helps in calculating the address of any method being in-
voked directly from CRCF. In the GALS-CMP architecture, each processor core
executes different clock-domain(s); therefore, each processor needs to store the
base address of corresponding JCF. All these addresses are stored in a CD-
table. The clock-domain number acts as the index of the table and each entry
in the table consists of the address of the structure of the first method of that
clock-domain. All the JCF methods, each representing a data-computation node,
are arranged in ascending order making it possible to calculate the address of
structure of any method provided its offset from the base method is given. This
offset is provided during the data-call. The CD-table, implemented in a RAM
has parameterized number of entries equal to the number of clock-domains. The
clock-domain number acts as the address for the RAM and address of the struc-
ture of base method for that clock-domain is read which is used to calculate the
address of the desired method to be invoked.

3.6 Instruction Fetch

There are two different memories which hold the program code for two different
modes: method cache for the JCF mode and CRCF program memory. The pro-
gram memory source for the next instruction to be fetched is controlled through
mode control flag, which defines the mode of operation. If mode control flag is
set, the next instruction to be executed is always fetched from the CRCF pro-
gram memory. On the other hand, resetting of the flag results in fetching of the
next instruction to be executed from the method cache. This flag is set and reset
while switching from the CRCF mode to JCF or vice versa. Both memories share
the program counter (jpc); therefore, its value is saved when switching to the
JCF mode. The switching from JCF to CRCF mode does not require storing
the address as the memory subsystem provides the method start address in the
cache every time a JCF method is loaded into it.

4 GALS-CMP Compilation and Execution Flow

The compilation and execution flow for GALS-CMP is shown in Fig. 2. The
GALS programs described in SystemJ are compiled by using the approach where
CRCF is separated from JCF. The CRCF code is compiled first; the resulting
code is wrapped in an array as shown in Fig. 2 and stored in heap. On start
up the compiled CRCF code is stored in the program memories of the respec-
tive processor cores. The allocation of clock-domains to the processors is done
statically at the compile time. The designer is offered with the specific choice of
executing the clock-domain(s) separately on different processors. The compiler
generates separate CRCF (CRCF.asm) and JCF (JCF.java) code for each pro-
cessor consisting of the CRCF and JCF codes for the clock-domains assigned

154 M. Nadeem et al.

to this particular processor. The assembler assembles the CRCF assembly code
and generates .hex file (CRCF.hex). The CRCF wrapper fragments this code
and wraps them into Java arrays (CRCF.java). The Java code responsible for
downloading the CRCF code, called CRCF loader, is generated and combined
with the JCF.java to produce the code to be executed on each core (core.java).
All the signals and variables local to these clock-domains being executed on
the same core are declared here. Finally, all the clock-domains are assigned to
the respective cores physically in the main method of class GALSCMP.java.
The shared channel objects, through which the clock domains communicate, are
declared inside the same class. The application class is compiled by javac and
produces the class file which is further processed by the JOP specific tool to
produce the GALS-CMP final code. It also generates the code for the CD-table.
The application is downloaded into main memory by the core whose id is 0. Once
the start up is completed, all the cores start executing respective clock-domains.
Each core starts in Java mode and downloads the CRCF code from the heap
into CRCF program memory. After the CRCF program memory is initialized,
the core switches the mode and start executing in control mode by fetching the
instructions from the CRCF program memory.

SystemJ
compiler

SystemJ
Program
(.sysj)

CRCF_0.asm

...
CRCF_n.asm

JCF_0.java

...
JCF_n.java

Assembler
CRCF_0.hex

...

CRCF_n.hex

CRCF
wrapper

CRCF
loader and
combiner

CRCF_0.java

CRCF_n.hex

Core_0.java

...
Core_n.java

Physical
process
distribution
on cores

GALSCMP
.java

javac/
JOPizer

Class file/
GALCMP.jop

GALS-
CMP.vhd

Download
.jop file
into main
memory

Altera
Quartus II
(Synthesizer

and
Programmer

FPGA

Designer input
CD distribution
and no. of
cores

Fig. 2. Compilation and execution flow

GALS-CMP: Chip-Multiprocessor for GALS Embedded Systems 155

4.1 JCF Invocation and Return

When invoking a JCF method to perform data-computation, the address of
next (returning) CRCF instruction is stored in a register and the address of the
structure of the base method of the clock-domain to be executed is fetched from
the CD-table. The address of the structure of the required method is calculated
using the address of the structure of base method. The structure record of a
method resides in main memory and holds the information such as constant
pool address, argument count, variable count, method start address and code
length, in the encoded form. The method start address and code length are
extracted and the information is passed to the memory subsystem for loading
the method code into the cache. At the same time, the mode control flag is reset
making the method cache default memory for read/write operations. The next
byte-code is fetched from the method cache and JCF method execution starts.

When returning from the JCF to the CRCF mode, the result is available as
the top element of stack. The result is written to the CRCF data memory at a
location pointed to by data-lock position. The address of next CRCF instruction
to be executed is stored in a register; it is loaded into Java program counter and
mode control flag is set. The next instruction is fetched from the CRCF program
memory, and method cache does not require being loaded with CRCF program
code as it permanently resides in the CRCF program memory.

5 Experimental Results

This section presents the results of experiments conducted to evaluate and com-
pare our proposed GALS-CMP multiprocessor architecture with a single proces-
sor approach, called base core, to execute the SystemJ programs. All presented
data have been collected from the experiments carried out by using the cycle-
accurate ModelSim simulator for 2, 3 and 4 core systems all running at 50 MHz
clock. The system is capable of running at frequency higher than 50 MHz but the
results presented are for 50 MHz clock for fair comparison with earlier published
results.

The benchmarks are selected to show the effectiveness of the approach for the
SystemJ GALS program execution. The benchmarks include asynchronous
examples which are heterogeneous in nature both with and without involving any
clock-domain communication. The benchmarks without any inter clock-domain
communication include the two and four clock-domain version of demoloop
(dl), dl2 and dl4, respectively. They consist of two or four identical clock-domains
respectively each comprising of four reactions and these clock-domains run inde-
pendently without involving any communication between them. This benchmark
has minimal data computation without any accesses to shared data structures and
synchronization needs. The asynchronous case is represented by an asynchronous
protocol stack (aps with two clock-domains, and aps3 with three clock-domains),
and pumpcontroller examples. In both cases ofaps, the first clock-domain is used to
model the packet generation process, and the second clock-domain implements the

156 M. Nadeem et al.

stack itself asmentioned previously. The aps3 implements two protocol stacks pre-
senting a casewhere network generator sends data at a rate higher thanwhat canbe
handled by a single protocol stack. Therefore, the generator sends to two different
stacks alternately. The pump controller example consists of two clock-domains and
nine reactions in total. It models the control of a pump inside a mine which may
have high methane levels. The pump pumps out water whenever the water level
exceeds the desired level and is turned on only if methane level is below a certain
limit. Whenever methane level goes above that limit, the controller must stop the
pump andwait until right methane level is restored. If methane level goes too high,
then the pump is stopped immediately and an ALARM is generated.

The execution speed comparisons are given in terms of the average response
time of the clock-domain and the application execution time. The response time
is defined as the average time taken by the clock-domain to respond to the
environment at the end of its logical tick. A logical tick is the time interval
between two logical time consuming statements and may have variable time
depending on the amount of computation enclosed between these two statements.
The application response time is defined as the time between the application
input sampled and final output generation and may involve multiple logical
ticks. It takes into account the time needed by the cores and in addition the
time taken for communication between the processing elements to exchange the
information, if needed.

Heading

R
es
po
ns
e
tim
es
(m
s)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Base Core

CMP-PlusGALS-CMP

JOP-Plus

Fig. 3. Comparison of applications’ execution

The results in Fig. 3 show that GALS-CMP outperforms the single processor
execution in terms of response time. The GALS-CMP with 2 cores has between
2 and almost 4 times reduction in response time when executing the benchmarks
which do not involve any clock-domain communication and have minimal data
computations. This can be attributed to two factors: firstly, the use of multipro-
cessor system and secondly, the local storage of the CRCF program as provided
in the base core. The control dominated programs contain minimal data com-
putations, so they do not need to access the main memory to fetch the JCF

GALS-CMP: Chip-Multiprocessor for GALS Embedded Systems 157

method into the cache. Therefore, the gain is almost proportional to the number
of processor cores. Increasing the number of clock-domains increases the response
time, which is evident from the results for the benchmarks aps and its variant
aps3. The improvement in response time is achieved through concurrent execu-
tion of the clock-domains. The clock-domains run independently and respond to
the environment at the end of each of their logical ticks which is in contrast to
the single processor approach where clock-domains are executed cyclically one
after the other. The clock-domains in the later case are able to respond to the
environment signals only after all the clock-domains have finished their execu-
tion resulting in increased response time. The GALS-CMP is expected to suffer
from degradation in the clock-domain tick time due to the shared memory as the
bandwidth is divided equally among all the nodes of the GALS-CMP. In case of
control-dominated applications with minimal data-computation, the tick time is
not expected to suffer by much as the code implementing the concurrency and
control flow is stored in a separate local memory and, therefore, it is not affected
by the constraints on memory bandwidth due to shared memory.

Fig. 4 shows the gain in application execution times for benchmark examples
against the single processor execution. The results indicate that the application
execution times are improved by almost 100% when we migrate from single core
to two core system when executing control dominated applications such as dl2.
But this gain is not linear when going from 2 to 4 core systems as evident from
dl4 benchmark. This is due to the constraints on shared memory bandwidth. The
aps and pump controller examples are 85% and 89% faster, respectively. Both of
these examples involve the channel communication; therefore, some of the time
is consumed in physical transfer of data over channels. Further addition to this
time is the fact that the channel objects reside in heap, which is implemented
in shared main memory resulting in delayed access due to memory bandwidth
constraints.

0

20

40

60

80

100

120

140

160

180

200

dl2 dl4 pump aps aps3

R
ed
uc
tio
n
in
ap
pl
ic
at
io
n

ex
ec
ut
io
n
tim
e
(%
)

Fig. 4. Comparison of applications’ execution

158 M. Nadeem et al.

6 Conclusion and Future Work

We have described a new multiprocessor platform, GALS-CMP, for the execution
of concurrent programs written in the GALS programming language SystemJ.
We demonstrated the effectiveness of the approach by running different bench-
mark examples and comparing the measurements against the single processor
approach. This processor outperforms other execution platforms for SystemJ in
terms of clock-domain response-time and the overall application response time.

In the current implementation, the CRCF code is stored in on-chip memory
whereas JCF code is stored in the main memory which is shared among all the
processing cores. The sharing of memory bandwidth results in the degradation
of performance as the processing cores compete for the bandwidth to fetch the
JCF code to method cache prior to its execution. So, providing the local stor-
age for JCF code will ease the pressure on the shared memory bandwidth. At
present, channel-based communication takes place through the shared memory.
We plan to investigate hardware support for point-to-point channel communica-
tion among the processing cores.

References

1. Malik, A., Salcic, Z., Roop, P.S., Girault, A.: SystemJ: A GALS language for system
level design. Comput. Lang. Syst. Struct. 36(4), 317–344 (2010)

2. Berry, G.: The semantics of pure Esterel (1993)
3. Hoare, C.A.R.: Communicating sequential processes. Prentice-Hall, Inc. (1985)
4. Nadeem, M., Biglari-Abhari, M., Salcic, Z.: JOP-Plus - A processor for efficient

execution of Java programs extended with GALS concurrency. In: 17th Asia and
South Pacific Design Automation Conference (ASP-DAC), January 30-February 2,
pp. 17–22 (2012)

5. Gruian, F., Roop, P., Salcic, Z., Radojevic, I.: The SystemJ approach to system-
level design. In: Proceedings of the fourth ACM and IEEE International Conference
on Formal Methods and Models for Co-Design, MEMOCODE 2006, pp. 149–158
(2006)

6. Schoeberl, M.: A Java processor architecture for embedded real-time systems. El-
sevier Journal of Systems Architecture 42(1-2), 265–286 (2008)

7. Nadeem, M., Biglari-Abhari, M., Salcic, Z.: RJOP - A customized Java processor
for reactive embedded systems. In: 48th ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1038–1043 (June 2011)

8. Malik, A., Salcic, Z., Roop, P.S.: SystemJ compilation using the tandem virtual
machine approach. ACM Trans. Des. 14(3), 34:1–34:37 (2009)

9. Nadeem, M., Biglari-Abhari, M., Salcic, Z.: GALS-JOP: A Java embedded pro-
cessor for GALS reactive programs. In: IEEE Ninth International Conference on
Dependable, Autonomic and Secure Computing (DASC), pp. 292–299 (December
2011)

10. Pitter, C., Schoeberl, M.: A real-time Java chip-multiprocessor. ACM Trans. Em-
bed. Comput. Syst. 10(1), 9:1–9:34 (2010)

11. Schoeberl, M.: JOP Reference Handbook: Building Embedded Systems with a Java
Processor (2009)

HW/SW Tradeoffs for Dynamic Message
Scheduling in Controller Area Network (CAN)

Tobias Ziermann1, Zoran Salcic2 and Jürgen Teich1

1 University of Erlangen-Nuremberg, Germany
{tobias.ziermann,teich}@informatik.uni-erlangen.de

2 The University of Auckland, New Zealand

Abstract. Designers of distributed embedded control systems face many
design challenges related to change of system configuration, functionality
and number of participating computing nodes, which affect the usage of
the communication bus. The concept of self-adaptivity of participating
nodes plays an important role in reducing design effort while guarantee-
ing high system performance. The dynamic offset adaptation algorithm
(DynOAA) for adaptive message scheduling reduces average message re-
sponse times in CAN-based systems with high bus loads. This technique
has in previous work proven its benefit in simulation. However, it is still
necessary to test the algorithm in a real physical environment. In this
paper, we use FPGAs with their capability of performing rapid system
prototyping. Our design space exploration shows that both pure software
and pure hardware implementations are possible. However, parts of the
software implementation require a significant amount of computation.
As a result a mixed HW/SW implementation is proposed.

1 Introduction

Distributed control systems use communication buses for communication be-
tween their components, which are usually called electronic control units (ECUs)
or just nodes. The most common communication bus is the Controller Area
Network (CAN) [1] is used in automotive, industrial control, medical and other
similar applications [5,12,13]. Industrial communication buses, such as CAN, typ-
ically have fairly low nominal transmission speed and bandwidth, but also very
short response times. However, when multiple messages are sent from multiple
nodes at the same time, the messages with low priorities can have long response
times, sometimes leading to starvation. This problem becomes even worse at the
high bus loads, for example in modern cars that contain more than 70 ECUs [14].
Because the underlying CAN bus has limited bandwidth, this inevitably results
in increased message response times. From this reason the bus has to be run at
low bus utilization. A possible solution would be to increase the bandwidth by
using another communication bus or by using multiple CAN segments at higher
cost. In this paper, we propose to retain the existing CAN infrastructure and
add the intelligence to the nodes that result in better scheduling of messages

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 159–170, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

160 T. Ziermann, Z. Salcic, and J. Teich

and shortening of the average message response times, while at the same time
allowing higher utilization of the bus.

The main idea of this approach is based on the distribution and dispersion of
message release times, thus alleviating the problem of simultaneously released
messages. Assuming that messages released by different nodes are periodic, off-
sets are added to the release times using a dynamic offset adaptation algorithm
or DynOAA [17]), where each node that releases messages monitors the traffic
on the bus and adapts the offsets as the traffic on the bus changes. DynOAA,
which has been analyzed using simulation models only, achieves reduction of the
average of maximum message response times, avoids the analytical worst case,
and enables the use of the same bus at higher bus loads.

In order to apply the algorithm in real distributed setting it is necessary to
verify that the actual implementations with limited resources are able to per-
form similar to the simulation results. In addition, this has to be achieved within
acceptable cost. As the acceptable solutions may be combinations of hardware
and software, FPGAs prototyping is an almost ideal way to explore different
solutions. Moreover, FPGAs allow software-only implementations using a soft-
core processor, pure hardware solutions or solutions that combine hardware and
software to achieve the same functionality on a single platform. Finally, in fore-
seeable future it is expected that FPGAs are utilized in the ECUs of the final
system [7,8], too. In this paper, we use the developed prototypes and test-bed to
analyze performance of DynOAA in the real implementation setting. Tests on
the real system are more realistic and require less time than those in simulations.

This paper is organized as follows. In Section 2, we describe DynOAA, which is
the basis for the following sections. Section 3 evaluates the HW/SW-tradeoffs and
proposes a mixed hardware and software implementation of DynOAA. Section 4
shows the performance of the pure hardware and pure software solution on a
prototype with initial measurements. Conclusions are given in Section 5.

2 Dynamic Message Scheduling Using Offset Adaptation

Current analytical techniques for calculating the message response times for
priority-based buses are overly pessimistic [6,11], and result in very conservative
designs with low bus utilization. On the other end of the spectrum are approaches
that use simulation models of the behavior and measure the message response
times [9,15,16]. These approaches are based on the assumption of random release
times of messages by the system nodes, which may, in the worst case, result
in simultaneous release of messages by multiple or all nodes. The DynOAA
approach belongs to the later group, but uses adaptation of offsets to control
the otherwise random release times.

2.1 Problem Definition

The proposed approach for message scheduling specifically targets soft real-time
systems. As soft real-time we consider system where satisfying timing constraints

HW/SW Tradeoffs for Dynamic Message Scheduling 161

is important for the system functionality, but missing the deadlines once in a
while will not result in malfunction of the system. Typical examples of such
applications are found in the body network of an automotive embedded system
[14]. For example, a rain sensitive wiper needs to react in time on the changing
environment, but some delayed messages will not cause a system failure.

The CAN system consists of a set of nodes, i.e. ECUs, each executing one
or more tasks, which release messages, typically periodically. In our model, we
abstract the tasks by considering only the mechanism used to release messages
called a stream. A stream si is characterized by a transmission time, by a period
(time between any two consecutive messages generated by stream si) and an
offset. The offset is relative to a global time reference. It can therefore drift
over time, because the local time reference differs from the global one. In our
approach to calculating offsets, we assume that the individual streams are not
bound by any constraints, but rather can freely be set by the designer [10].
The hyperperiod P is the least common multiple of all periods. Assuming a
synchronous system, the schedule is finally periodic with the period equal to
the hyper-period. A message is a single release or CAN frame of the stream.
The time between a message release and the start of its uninterrupted transfer
over the bus is the response time of the message. We do not add the constant
non-preemptive time to transfer the message to the response time, thus a zero
response time is always the best possible case for any message regardless of its
length. This simplifies comparisons between different schedules.

To compare our results, we use the rating function called the average weighted
worst case response time, or AWW, originally proposed in [17], which enables
us to differentiate the quality of different message scheduling schemes:

AWW (t) =

∑k
i=1

WCRTi(t−P,t)
Ti

k
(1)

where WCRTi(t − P, t) is the measured worst case response time of the stream
i that has period Ti in the last hyper-period P and k is the total number of
streams generating messages. The function AWW (t) takes into account that the
streams with large periods are more sensitive to large response times, because
each WCRT is weighted with its corresponding period. Finally, the sum is divided
by the number of streams to get the average rating per stream. This also allows
comparison of different scenarios with different numbers of streams.

2.2 Dynamic Offset Adaptation Algorithm (DynOAA)

In our approach, we use the dynamic offset adaptation algorithm (DynOAA)
introduced in [17], which changes offsets over time following the change of the
traffic on the CAN bus. DynOAA is run on each node independently and peri-
odically. An illustration of the operation of DynOAA for one stream is shown
in Fig. 1. In the upper part of the figure, on the top of the time line, the pe-
riodically released messages of the stream are indicated by small arrows. The
larger arrows on the bottom of the time line indicate the instances when the

162 T. Ziermann, Z. Salcic, and J. Teich

Fig. 1. DynOAA illustration - timing diagram and busy_idle_list on a single node

adaptations start or when DynOAA is executed. Each algorithm run consists of
a traffic monitoring phase and a delay phase. During the monitoring phase, a list
called busy_idle_list is created. It is a circular list, meaning the last element
is adjacent to the first element. An example of it is shown in the lower part
of Fig. 1. It contains, for each time slot during the monitoring phase, an idle
element if the bus is idle and a busy element if the bus is busy. If not mentioned
otherwise a time slot has the length of the transmission time of one CAN bit.
From the busy_idle_list, we can find the longest idle time αlongest and longest
busy time βlongest, which are the maximum continuous intervals when the bus
was idle or busy, respectively. During the delay phase, the next message of the
stream is then delayed, i.e., the offset is adjusted, so that a message in the next
monitoring phase is released in the middle of αlongest (next_position).

In distributed systems, all streams are considered independent of each other.
If more than one stream starts to execute the adaptation simultaneously, there
is a high probability that the value of the next_position will be identical at
more than one stream. Instead of spreading, the message release times would
in that case be clustered around the same time instant. Therefore, we need to
ensure that only one stream is adapting its offsets at the same time. This is
accomplished by introducing a unique criterion for all streams, which ensures
that the stream that is the first in the longest busy time βlongest will adapt its
offset. The probability that a message will be delayed depends on the number
of preceding messages. If the message is not preceded by any other message, the
message cannot be delayed. Therefore, it makes sense to choose the first message
from the βlongest to adapt. All communication controllers have to adhere to this
unique protocol individually.

3 HW/SW Exploration

The proposed algorithm from the previous section is not directly applicable to
an embedded platform (ECU). In this section, we introduce and analyze purely
software-based and hardware-based implementations of DynOAA. Then, based
on these observations a mixed HW/SW solution is proposed.

HW/SW Tradeoffs for Dynamic Message Scheduling 163

Fig. 2. Different ECU architectures and how DynOAA could be integrated. The dashed
boxes indicate a possible integration on a single IC.

In our model, we assume it is possible to control the offsets of message streams.
In a real application, the messages are triggered by tasks running periodically
on the ECUs. Therefore, in order to control the message release and also the
offset, we suggest doing it via controlling the task release.

3.1 Design Alternatives for DynOAA

Figure 2 shows examples of three different implementation alternatives of ECUs
with DynOAA. ECU 1 represents the currently most often used architecture,
where one or several microcontrollers are responsible for the execution of the
application tasks. Because of the limited computation power, the the communi-
cation protocol needs dedicated hardware support. This hardware unit is inte-
grated into the microcontroller as indicated by the dashed box or is a separate
integrated circuit (IC). Finally, a CAN transceiver is needed to establish the
physical communication with the bus. In this setup type, typically an operating
system is responsible for scheduling the application tasks. To include DynOAA,
the releases of the tasks need to be controlled either by integrating DynOAA
to the operating system (as additional component of a scheduler) or by run-
ning DynOAA as an application task reporting the desired release times to the
operating system.

ECU 2 uses an FPGA for computation and communication [2]. Here, the
application tasks are implemented as hardware modules running in parallel to
each other. Typically the application tasks are triggered periodically. In this
type of ECU, DynOAA could be integrated by implementing it as a hardware
component which triggers the application tasks with the adapted schedule. In
this setup, the CAN controller could be implemented as dedicated hardware
module similar to the implemented application tasks.

ECU 3 represents a solution where DynOAA is implemented as a HW/SW
solution. A general purpose DynOAA monitoring unit unloads the CPU of mon-
itoring the traffic on the bus, while the adaptation is implemented as software
integrated into the operating system (see Section 3.4).

164 T. Ziermann, Z. Salcic, and J. Teich

Algorithm 1. Timer interrupt: adaptation at the end of the
monitoring interval

1: if (βlongest.isSender) then

2: next_position = αlongest.pos +
αlongest.length

2

3: adapt(next_position mod period)
4: end if
5: reset(α/βcurrent/longest)

In the following sections, we describe in more details two implementation
alternatives: (1) an interrupt-based implementation, which is better suited as
software implementation on existing processors, and (2) a polling-based imple-
mentation, which is better suited as a hardware implementation that works in
parallel with existing processors.

3.2 Software Implementation

Typical microcontrollers have processors ranging from simple 8-bit microproces-
sors to powerful 32-bit processors. In order to estimate the class of controllers
DynOAA can be run on, we provide an interrupt-based alternative of DynOAA
to measure the computational requirements. Interrupts are generated by the
CAN controller and by a timer of the microcontroller. The CAN controller raises
interrupts when the reception of a message starts and when it finishes. For ex-
ample, the CAN controller inside the AT90CAN32/64/128 microcontroller series
[3] offers these interrupts. A timer with the period equal to the length of the
monitoring interval is used to trigger the adaptation and to provide the current
position when a CAN controller interrupt is raised. Therefore, the timer needs
to be set to increment by one whenever one time slot passes, i.e. after trans-
mission time of one CAN bit. The implementation of DynOAA requires storing
the longest and the current busy and idle time. Each time is characterized by
a position (.pos), by a length (.length) and a Boolean whether the stream that
is running the algorithm is sender of the first message of that busy time (.is-
Sender). The id of the first message of the busy time has to be stored, if the
ECU runs more than one stream.

The principle of operation of the interrupt service routines is as follows. The
timer interrupt (Alg. 1) delays the task if it is the first of the longest busy time
and resets all variables for the next monitoring phase. The start of reception
interrupt (Alg. 2) updates the longest idle time αlongest if necessary. In addition,
the position and whether it is sender or not of the current busy time is updated,
if the received message starts a new busy time. This is the case if the distance
between the last two messages, i.e. αcurrent, is greater than a threshold (δ). In the
ideal case, when transmission of delayed messages starts immediately δ = 0. But
depending on the accuracy of the involved microcontrollers the threshold needs
to be increased. The end of reception interrupt (Alg. 3) updates the longest busy
time if necessary and stores the current timer position for the next interrupt.

HW/SW Tradeoffs for Dynamic Message Scheduling 165

Algorithm 2. CAN controller interrupt: start of reception
1: αcurrent.length = currentCount − αcurrent.pos
2: if αlongest.length < αcurrent.length then
3: αlongest = αcurrent

4: end if
5: if (αcurrent.length > δ) then
6: βcurrent.pos = currentCount

7: βcurrent.isSender = isCurrentSender()

8: end if

Algorithm 3. CAN controller interrupt: end of reception
1: βcurrent.length = currentCount − βcurrent.pos

2: if βlongest.length < βcurrent.length then
3: βlongest = βcurrent

4: end if
5: αcurrent.pos = currentCount

In summary, the interrupt-based implementation requires seven unsigned inte-
gers and two Boolean values (or two 16-bit values, if several streams are adapted).
In our example scenarios, when using the time of the transmission of one CAN
bit per time slot on a 500kbit CAN with a monitoring interval of 2 sec, the
integer needs to have the maximum value

integermax =
2 sec

2 μs
= 10

6
< 220. (2)

The total amount of computation depends on the frequency of the interrupts.
The CAN controller interrupts can be predicted by assuming the worst case
of sending the shortest message all the time, in our example around 80 bits
* (1/500kbit/s) = 160us. During each interrupt only a few comparisons and
subtractions need to be calculated. The timer interrupt is only raised every 2
seconds, so its computation requirements can be neglected.

In order to verify the amount of computation, we implemented the algorithm
on a Nios 2 32-bit processor instantiated on an Altera Cyclone II 2C70 FPGA
running at 100 MHz. The used CAN controller is a VHDL module that is imple-
mented on the FPGA as hardware. The memory requirement is minimal using
seven 32-bit and two 16-bit integer that makes a total of 32 bytes. The number of
cycles required to calculate the CAN controller interrupts is always below 2500
cycles (25us). However, the overhead for entering and leaving the interrupt is in
the order of 100us that it dominates the calculation overhead.

166 T. Ziermann, Z. Salcic, and J. Teich

3.3 Hardware Implementation

A polling-based hardware implementation does not use any processor resources
and can be done in parallel with processor operation. We prototyped this imple-
mentation in an FPGA and as such it can be used on ECUs that use FPGAs.
However, the design could be easily ported on an ASIC, too. Alg. 4 shows the
pseudo code of this approach.

In order to perform the algorithm, only the longest and the current busy and
idle time (β/αcurrent/longest) need to be stored similar to the software imple-
mentation in the previous section. During the monitoring phase, each time slot,
αcurrent and βcurrent are updated by simply counting up the length of αcurrent

and reset βcurrent when the current slot is idle. When the current slot is busy
αcurrent is reset and the length of βcurrent is incremented by one. In addition,
αcurrent needs to update the position when a new idle time starts and βcurrent

needs to update isSender when a new busy time starts. After updating, the
length of the current idle time αcurrent.length is compared with the length of
the longest idle time αlongest.length and, if necessary, updated. The same is done
for the busy times. During the adaptation, if the node is the sender of the first
busy slot of the longest busy time, next_position is calculated and the node
adapts by delaying its next release time.

Algorithm 4. Polling-based DynOAA implementation
1: // monitoring:
2: init(α/βcurrent/longest)
3: for (each time slot) do
4: update(α/βcurrent)
5: if αlongest.length < αcurrent.length then
6: αlongest = αcurrent

7: end if
8: if βlongest.length < βcurrent.length then
9: βlongest = βcurrent

10: end if
11: end for
12: // adaptation/delay:
13: if (βlongest.isSender) then

14: next_position = αlongest.pos +
αlongest.length

2

15: adapt(next_position mod period)
16: end if

In summary, this implementation of DynOAA requires six 20-bit unsigned
integers according to 2 and two Boolean values to be stored in registers. Similar
to the software implementation, DynOAA can be used for several streams by
storing the id of the first message of the busy time instead of only a Boolean.

HW/SW Tradeoffs for Dynamic Message Scheduling 167

The amount of computation is very low, because in every time slot the FPGA
carries out a few simple comparisons and increments, and at the end of every
monitoring carries out interval two integer additions, a division by two and a
modulo operation.

We designed the polling-based approach as hardware module in VHDL and
implemented it on FPGA to verify the overhead. The algorithm is designed as
a finite state machine using a counter, three flag bits and 16 registers resulting
in a memory requirement of 38 bytes. Considering today’s size and computation
power of FPGAs the requirements for DynOAA in hardware can be neglected.

3.4 HW/SW-Solution

Running DynOAA as a purely software-based solution allows its straightforward
integration to a typical ECUs. However, the analysis of the computation overhead
shows that the monitoring requires the most processing time as it is in the worst
case triggered every 160 us. It is necessary to interrupts to trigger monitoring,
because otherwise the acquired information would be corrupted. The interrupt
can, depending on the used microcontroller, cause a significant overhead. In
addition, the use of interrupts can have negative effects on the timing behavior
of the applications running on the microcontroller. Therefore, this approach is
suitable only for ECUs with powerful processors. The duration of the delay phase
is mainly affected by the adaptation of the schedule. It is not necessary to trigger
the adaptation by an interrupt, as it is not timing critical. Instead, we suggest
integrating the delay phase into the scheduler of the operating system.

A pure hardware implementation of DynOAA is the most efficient one, as the
required resources are negligible and performance is highest. However, DynOAA
needs to control the release of the applications, and therefore, hardware/software
communication is necessary.

Due to these facts, we propose to implement the monitoring phase in a hard-
ware unit and the delay phase in software as a part of the operating system.
With the growing popularity and use of FPGAs in the control domain, this
design could be implemented on an FPGA using a softcore processor for soft-
ware part of the algorithm and dedicated hardware unit for monitoring phase.
Alternatively, the hardware unit could be integrated within standard microcon-
trollers. The hardware unit implements the polling-based approach in Alg. 4,
and generates αlongest and the id of the first message of βlongest. A reset signal
on the hardware unit resets αlongest and βlongest, and starts the next monitor-
ing interval. The adaptation is triggered periodically by the operating system.
It reads the values from the hardware unit, delays the appropriate stream and
resets the hardware unit. This way the computation burden by DynOAA is re-
duced to almost zero by moving the computational intensive part to hardware.
The area requirement of the hardware unit is also very small. In order to make
the hardware unit general purpose, it needs to be able to adjust the length of
one time slot, i.e., length of the transmission of one CAN bit. Microcontrollers
that include a CAN controller already have a register to set the speed of the
CAN, which could be then read by the hardware unit.

168 T. Ziermann, Z. Salcic, and J. Teich

4 Results

In this section, results for a hardware-based and software-based DynOAA using
a prototype setup implementation on two FPGAs are shown. The hardware-
based implementation uses two Xilinx XC5VLX100T FPGAs that communicate
each to the other over a real CAN bus to explore the effects of a distributed
embedded system. The software-based implementation is run on a Nios 2 pro-
cessor instantiated on two Altera Cyclone II 2C70 FPGAs. Using two FPGAs,
we can emulate close to real world examples from the automotive domain [4]
which typically consist of 10 to 20 ECUs with up to 300 streams. Figure 3 shows
the setup of the prototype, where each ECU is implemented according to ECU
1 or 2 template in Fig. 2. The streams are equally distributed on both ECUs.
Each ECU module has three basic components: (1) the CAN controller is re-
sponsible for the communication protocol, (2) the DynOAA module implements
the scheduler for the application tasks that can run either purely periodically
(fixed random offsets) or use DynOAA. In the software-based implementation
the operating system is reduced to the periodic or DynOAA scheduler. (3) the
application tasks collect the response times and include them in the data field of
the CAN messages. These response times are collected by the evaluation module,
which calculates the AWW and transmits it to a PC for evaluation.

Using this setup, measurements were taken to compare the performance of
DynOAA to fixed offsets using a hardware-based or software-based implemen-
tation as shown in Fig. 4. The initial or fixed offsets are chosen uniformly dis-
tributed and are equal for all shown runs. The measurements show that using
DynOAA improves the AWW in average almost by a factor of two. In addition,
the behavior of using the hardware-based or software-based implementation is
similar when using DynOAA. The difference between the hardware-based and
software-based implementation when using fixed offsets exists, because the AWW
is mainly influenced by the offset between both FPGAs. This offset is initially
random depending on the sequence of turning on the FPGAs and then changes
over time depending on the clock drift between the FPGAs.

Fig. 3. Schematic of the prototype setup

HW/SW Tradeoffs for Dynamic Message Scheduling 169

0 10 20 30 40 50 60
0

0.005

0.01

0.015

0.02

0.025

time t (min)

A
W

W
(t

)

hardware−based: fixed random offsets
software−based: fixed random offsets
hardware−based: DynOAA
software−based: DynOAA

Fig. 4. Value of the AWW over time for a scenario with 85% bus load using DynOAA
or fixed random offsets run as the hardware-based or software-based implementation

5 Conclusion

FPGAs are used to prototype alternatives for integrating the dynamic offset
adaptation of message scheduling into current ECUs. A software only solution,
which can easily be run on any ECU, was developed first. The solution has
been implemented and tested on a softcore processor. Furthermore, a design of
DynOAA especially suited for hardware implemented ECUs is proposed and de-
veloped. Based on hardware and software solutions an FPGA test-bed of the
CAN bus system emulating a complete typical automotive bus has been estab-
lished. The analysis shows that the monitoring part of the algorithm requires a
considerable amount of computation that suggests the use of a general purpose
hardware accelerator. This accelerator could be included as a hardware module
into future specialized microcontrollers. In case using an FPGA in the ECU, it
is possible to use a softcore processor with reconfigurable hardware accelerators.
The experiments on the test-bed show the same performance in terms of aver-
age weighted maximum response times independent of the implementation. In
summary, we have shown that self-adaptive methods are realistically applicable
in embedded distributed control systems.

Acknowledgment. This work was supported in part by the German Research
Foundation (DFG) under contract TE 163/15-1.

References

1. CAN specification 2.0 b. Robert Bosch GmbH, Stuttgart, Germany (1991)
2. Anthony, R., Rettberg, A., Chen, D., Jahnich, I., de Boer, G., Ekelin, C.: Towards a

dynamically reconfigurable automotive control system architecture. In: Embedded
System Design: Topics, Techniques and Trends, pp. 71–84 (2007)

170 T. Ziermann, Z. Salcic, and J. Teich

3. Atmel Corporation. 8-bit AVR Microcontroller with 32K/64K/128K Bytes of ISP
Flash and CAN Controller (2008)

4. Braun, C., Havet, L., Navet, N.: NETCARBENCH: A benchmark for techniques
and tools used in the design of automotive communication systems. In: 7th IFAC
International Conference on Fieldbuses and Networks in Industrial and Embedded
Systems, pp. 321–328 (2007)

5. Bueno, E.J., Hernandez, A., Rodriguez, F.J., Giron, C., Mateos, R., Cobreces, S.:
A dsp- and fpga-based industrial control with high-speed communication inter-
faces for grid converters applied to distributed power generation systems. IEEE
Transactions on Industrial Electronics 56(3), 654–669 (2009)

6. Davis, R.I., Burns, A., Bril, R.J., Lukkien, J.J.: Controller Area Network (CAN)
schedulability analysis: Refuted, revisited and revised. Real-Time Systems 35(3),
239–272 (2007)

7. Gabrick, M., Nicholson, R., Winters, F., Young, B., Patton, J.: Fpga considerations
for automotive applications. In: Proc. SAE Conf. (2006)

8. Galea, F., Gatt, E., Casha, O., Grech, I.: Control unit for a continuous variable
transmission for use in an electric car. In: 17th IEEE International Conference on
Electronics, Circuits, and Systems (ICECS), pp. 247–250 (December 2010)

9. Gamiz, J., Samitier, J., Fuertes, J.M., Rubies, O.: Practical evaluation of messages
latencies in CAN. In: Proceedings of the IEEE Conference on Emerging Technolo-
gies and Factory Automation, ETFA 2003, pp. 185–192 (2003)

10. Goossens, J.: Scheduling of offset free systems. Real-Time Systems 24(2), 239–258
(2003)

11. Grenier, M., Havet, L., Navet, N.: Pushing the limits of CAN-scheduling frames
with offsets provides a major performance boost. In: Proc. of the 4th European
Congress Embedded Real Time Software (ERTS 2008), Toulouse, France (2008)

12. CAN in Automation. Canopen, http://www.canopen.org/
13. Marino, P., Poza, F., Dominguez, M.A., Otero, S.: Electronics in automotive engi-

neering: A top-down approach for implementing industrial fieldbus technologies in
city buses and coaches. IEEE Transactions on Industrial Electronics 56(2), 589–600
(2009)

14. Navet, N., Simonot-Lion, F.: Automotive embedded systems handbook. CRC
(2009)

15. Samii, S., Rafiliu, S., Eles, P., Peng, Z.: A simulation methodology for worst-case
response time estimation of distributed real-time systems. In: Proceedings of the
Conference on Design, Automation and Test in Europe, DATE, pp. 556–561. ACM
(2008)

16. Zhou, F., Li, S., Hou, X.: Development method of simulation and test system for
vehicle body CAN bus based on CANoe. In: 7th World Congress on Intelligent
Control and Automation, WCICA, pp. 7515–7519. IEEE (2008)

17. Ziermann, T., Salcic, Z., Teich, J.: DynOAA - dynamic offset adaptation algorithm
for improving response times of CAN systems. In: Proc. of Design, Automation,
and Test in Europe (DATE), pp. 269–272 (2011)

http://www.canopen.org/

A Data-Driven Approach for Executing the CG Method
on Reconfigurable High-Performance Systems

Fabian Nowak1, Ingo Besenfelder1, Wolfgang Karl1, Mareike Schmidtobreick2,
and Vincent Heuveline2

1 Chair for Computer Architecture, Karlsruhe Institute of Technology
2 Engineering Mathematics and Computing Lab, Karlsruhe Institute of Technology

ingo@besenfelder.de, firstname.lastname@kit.edu

Abstract. Employing reconfigurable computing systems for numerical applica-
tions poses an interesting and promising approach toward increased performance.
We study the applicability of the Convey HC-1 for numerical applications by
decomposing a preconditioned conjugate gradient (CG) method into several in-
dependent kernels that can operate concurrently. To allow overlapped execution
and to minimize data transfers, we stream the data between the kernel units us-
ing a central buffer set. A microprogrammable control unit orchestrates memory
accesses, buffer writes/reads and kernel execution, and allows for further algo-
rithms to be executedon the available kernel units. Solving the Poisson problem
can thereby be accelerated up to 10 times compared to a single-threaded software
version on the HC-1 and up to 1.2 times compared to a 2-socket hex-core Intel
Xeon Westmere system with 24 hardware threads for large problem sizes with
only a single application engine.

1 Introduction

Numerical simulations provide great benefit in, for example, engineering and weather
forecasting. These simulations need to be carried out as fast as possible to trigger ap-
propriate actions early or to yield more accurate results. There the huge amount of data
and the low compute-to-memory-access ratios pose significant problems. Thus, accel-
erators such as GPUs and FPGAs need to be employed and programmed thoughtfully.
Although memory frequently isn’t large enough to allow the efficient use of these ac-
celerators, the Convey HC-1 is a promising system architecture that combines large
amounts of accelerator-side memory with easy programming models and fast, large
FPGAs.

We aim at creating a reusable framework on the HC-1 that solves the data trans-
port problem. Moreover, given the large FPGAs and the small size of arithmetic units
in contrast, we aim at exploiting task parallelism to fully leverage the FPGAs and the
available memory bandwidth. To efficiently support an overlapping of data transport and
the execution of multiple kernels while internally streaming data between the compu-
tational units, we additionally implement a microprogrammed control unit. Users may
reprogram the unit in order to also employ our implementation for other algorithms.
We evaluate our framework by accelerating a preconditioned CG method for the Pois-
son problem [1]. In this context, the HC-1 is also evaluated for its general ability to
accelerate numerical applications by using our approach.

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 171–182, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

172 F. Nowak et al.

Our results show that with our data-driven, task-parallel approach, HC-1 users can
profit from up to 1.2 times the speed of a 2-socket hex-core HyperThreading Intel Xeon
Westmere system and up to 10 times the performance of the Intel Xeon 5138 by using
only a single application engine (AE). Performance projections indicate that with even
larger FPGAs such as on the Convey HC-1ex, much more speedup can be gained when
more kernel units run in parallel.

This paper is structured as follows: we first give an overview over related work in
Sect. 2, then analyze the CG method toward decomposition for FPGA implementation
in Sect. 3. Our design is presented in Sect. 4 and its implementation is given in Sect. 5.
The evaluation of our approach is discussed in Sect. 6 before drawing the final conclu-
sions and giving an outlook in Sect. 7.

2 Related Work

For the Convey HC-1, Convey delivers so-called personalities providing general but
also application-specific kernel implementations for the four user-programmable
FPGAs. The performance of the floating-point vector personality is comparable to 4-5
Intel Westmere cores for stencil computations [2]. Although sparse matrix-vector mul-
tiplications conducted by the vector personality suffer from performance issues [3], Na-
gar et al. investigated in a sophisticated, powerful and fast sparse matrix personality [4]
and achieved better results than a single Tesla S1070 GPU in most cases.

Porting numerical applications or selected kernels onto accelerators such as FPGAs
and GPUs has already been published extensively. The Conjugate Gradient Method
that we consider in this work could be accelerated via double-precision sparse matrix-
vector multiplies on reconfigurable computing systems (RCSs), yielding a speedup of
1.3 [5]. With FPGAs being perfectly suited for arithmetics other than floating-point,
the CG method can be accelerated on FPGAs via rational fraction implementations that
only need few hardware resources and few pipeline stages, but run at high frequen-
cies [6]. DuBois et al. implemented a sparse, non-preconditioned CG method on the
SRC MAPStation. They overlapped several parts of the main loop so that the 30 times
slower clocked RCS performed comparatively to single-core CPUs [7]. As they used
high-level tools only, performance gain can be expected from hand-coded designs.

With the advent of multicores and heterogeneous systems, more research on the ker-
nel’s data access patterns was required. Cache-aware formulations of algorithms proved
better performance than cache-oblivious ones on different architectures [8]. In addi-
tion, programmer-managed memory and data transfers, as necessary on the Cell B.E.,
showed best absolute and best relative performance in terms of bandwidth usage. For
multicores, pinning data and computation to fixed nodes has become important in ad-
dition to in-place calculations that minimize cache accesses [9]. With the proposed in-
place calculation scheme, the authors were able to frequently obtain performance near
the optimum.

Another important aspect of this work poses data-driven, task-parallel program ex-
ecution. This subject has gained much attraction recently by industry. AMD Hetero-
geneous Parallel Primitives (HPP) [10] targets at bringing task parallelism, which is
not available with OpenCL, to the GPU. StarPU establishes a model to concurrently

A Data-Driven Approach for Executing the CG Method 173

and asynchronously execute different tasks of an application on different computational
units [11]. Their focus is mostly on the necessary task queues and scheduling. When
parallelizing the Visualization ToolKit, Vo et al. considered data parallelism, task paral-
lelism, i.e. concurrent execution of independent kernels, and pipeline parallelism, where
data are streamed from one unit to another [12]. As a result, Gaussian smoothing can
be 5 times faster on an 8-core system. For distributed computing, Active Pebbles [13]
with its data-driven nature of performing computations showed to perform similarly to
MPI implementations while at the same time being conveniently programmable.

Controlling concurrent execution of kernels or tasks on FPGAs can be achieved via
microprogrammed controls [14]. While the pipelined version achieved higher frequency
than the non-pipelined version, delayed branches are necessary.

3 A Preconditioned CG Method for FPGA Acceleration

A well-known problem in numerics is to solve the Poisson equation that occurs in elec-
trostatics and mechanical engineering. Let Ω ⊂R

2 be an open and bounded domain and
let f : Ω →R, f ∈C(Ω) be a given function. A function u : Ω̄ →R, u ∈C2(Ω)∩C(Ω̄)

is to be found that satisfies −Δu = f in Ω , where Δ := ∂ 2

∂x2 +
∂ 2

∂y2 . We further de-

mand homogeneous Dirichlet boundary conditions u = 0 on ∂Ω and set Ω = (0,1)2

for simplicity. We discretize our domain Ω by an equidistant grid with parameter h to
Ωh = {(x,y)∈ Ω | x= k ·h,y= l ·h,(k, l)∈Z

2} and approximate−Δ by means of finite
differences

−Δu =
−u j+e1 − u j−e1 + 4u j − u j+e2 − u j−e2

h2 +O(h2), (1)

where u j+ei := u(x j+hei) and ei denotes the ith unit vector. We first apply a lexicograph-
ical ordering to the grid points, i.e. starting at one corner of the grid and numbering the
nodes consecutively. Then we multiply Equation (1) with h2 and obtain a matrix Ah

with block structure

Ah =

⎛⎜⎜⎜⎜⎝
T −I

−I T
. . .

. . .
. . . −I
−I T

⎞⎟⎟⎟⎟⎠ , T =

⎛⎜⎜⎜⎜⎝
4 −1

−1 4
. . .

. . .
. . . −1
−1 4

⎞⎟⎟⎟⎟⎠ , I =

⎛⎜⎝1
. . .

1

⎞⎟⎠ , (2)

and a corresponding right-hand side bh(x j) = h2 · f (x j). As a result of the sparsity pat-
tern in Equation (2) we can express Ah as the well-known five-point stencil expressing
Equation (1), illustrated in Figure 1(a).

Additionally, Ah has the advantage that it is symmetric and positive definite. For solv-
ing this kind of linear system, the CG method is the best known iterative technique [15].
The number of necessary iterations for reaching a good approximation to the solution
depends on the condition number κ(A) through the relation

‖e(k)‖A

‖e(0)‖A
≤ 2

(√
κ(A)− 1√
κ(A)+ 1

)k

, (3)

174 F. Nowak et al.

4

−1

−1

−1

−1

(a) Five-point stencil of the Poisson
problem (3) discretized by finite dif-
ferences on an equidistant grid.

0 25 1 27 3

28 3 29 4 31

7 32 8 34 10

35 11 36 13 38

21 46 22 47 23

(b) Example of a red-black ordering. The rectangles de-
note the border values given by the boundary condition.

Fig. 1. Applying a 2-dimensional stencil operation onto a red-black reordered grid

where e(k) = x(k)− x is the error in the kth iteration and ‖ · ‖A the energy norm. This in-
equality justifies the application of a preconditioner M where κ(M−1A)� κ(A). Con-
clusively, fewer iterations are necessary to solve the equivalent system M−1Ax =M−1b.
In our case, M needs to be symmetric and positive definite in order to sustain these prop-
erties for the CG method.

An often applied preconditioner for the CG method is a descendant of the Successive-
Over-Relaxation (SOR) method. SOR relies on the matrix splitting ωA = (D+ωL)−
((1−ω)D−ωU), where D is the diagonal of A, L its strict lower part, U its strict upper
part and ω ∈ (0,2) a relaxation parameter. An iteration scheme is then given by

(D+ωL)x(k+1) =
(
(1−ω)D−ωLT)x(k) +ωb, (4)

that solves the given equation system under the same premises as the CG method with
the fulfilled additional requirement that all diagonal entries are positive. Given the spar-
sity pattern of our matrix (4), this can be easily translated to a stencil formulation. The
drawback of the scheme is that the left-hand side of Equation (4) enforces the cal-
culation of x(k+1) by a serial forward substitution. Using a red-black ordering of the
unknowns remedies this drawback so that unknowns with the same color are decoupled
from each other as illustrated in Figure 1(b).

An SOR preconditioner is then simply defined as one SOR iteration with the starting
vector x(0) chosen to be the null vector and the right-hand side b = r. The precondi-
tioner is applied in line 8 of Algorithm 1. To achieve the necessary symmetry, which is
violated by the left-hand side in Equation (4), we update consecutively two times with
reversed ordering of the unknowns the second time to get a symmetric SOR (SSOR)
preconditioner, formally

M−1 = ω(2−ω)(D+ωLT)−1D(D+ωL)−1. (5)

In the case of a red-black ordering, the best relaxation parameter ω is known to be 1,
which renders the SSOR a symmetric Gauss-Seidel method. Equation (5) can then be
simplified to gain Algorithm 2.

Decomposing the CG method into basic computational units reveals that many tasks
can execute in parallel, given enough hardware resources. Furthermore, with the red-
black ordering and the SGS preconditioner, the matrix multiplications or calculations

A Data-Driven Approach for Executing the CG Method 175

Algorithm 1. Preconditioned Conjugate Gradient
method.
1: r0 = b−Ax0
2: z0 = M−1r0
3: p0 = z0
4: for k = 0,1, . . . ,kmax do

5: αk =
rT

k zk

pT
k Apk

6: xk+1 = xk +αk pk
7: rk+1 = rk −αkApk
8: zk+1 = M−1rk+1
9: if rT

k+1zk+1 < TOL then
10: exit loop
11: end if
12: βk =

rT
k+1zk+1

rT
k zk

13: pk+1 = zk+1 +βk pk
14: end for

Algorithm 2. Red-black
symmetric Gauss-Seidel
preconditioner (SSOR with
ω = 1) as applied in line 8
of Algorithm 1.
1: for all zi in red points do
2: zi = (ri + (r j+e1 +

r j−e1 + r j+e2 +
r j−e2)/4)/4

3: end for
4: for all zi in black points

do
5: zi = ri + (z j+e1 +

z j−e1 +z j+e2 +z j−e2)/4
6: end for

of the inverse for the preconditioner can be replaced by stencil operations. This allows
streaming the data to the stencil units because for a successive stencil operation, only
one more datum is required in the best case. The same applies to all vector operations
when a second input stream is connected. This motivates a streaming-oriented imple-
mentation where pipeline parallelism can be exploited. We also consider task paral-
lelism where functional units process independent data from several memory locations
concurrently in order to fully exploit memory bandwidth.

4 Designing a Data-Driven Architecture

Key to supporting numerical problems are efficient stencil units and descendants, such
as the red-black symmetric Gauss-Seidel preconditioner. These units must be provided
with enough data, which can be achieved by exploiting memory data width such that
two data are delivered within one cycle, thereby exploiting data parallelism. For the
HC-1’s data width of 64 bits, this means that we implement single-precision floating-
point units only.

4.1 Data Buffer Set for Intermediate Storage and Streaming between Units

With only small memories on the FPGAs and comparatively high latencies to out-
side memory, streaming must be employed. Thereby, many function units can be ex-
ecuted overlappingly, obtaining pipeline parallelism. We therefore designed the buffer
set based on FIFOs shown in Fig. 2: a buffer within the set is read only by one distinct
function unit. In contrast, any unit can write to any other unit by writing to its buffer.
For vector units, the buffers can carry up to 8K elements (around 90× 90 resolution
of the vector x); scalar buffers are only 64 elements deep. Dependencies in the data-
flow (Fig. 4(a)) might lead to livelocks in case data aren’t consumed fast enough or the

176 F. Nowak et al.

Fig. 2. Buffer set Fig. 3. Scalar product unit

buffers are too small for the problem size. Figure 4(b) illustrates how to bypass them:
data on the critical paths are written back to memory and reloaded via memory access
units.

4.2 Memory Access

For the input data to be loaded, output data to be written and for overly large intermedi-
ate data to be stored temporarily in memories outside the FPGAs, direct memory access
(DMA) engines are required. Writing DMA engines consume their assigned buffer, and
reading DMA engines feed an arbitrary unit’s input buffer so that the corresponding
unit can work in a streaming fashion as long as input data are available. The HC-1 has 8
memory controllers (MCs), each for a different column of the memory space. The MCs
operates on both clock edges, labelled “odd” and “even” ports, so that there is a total of
16 MC ports available. Instantiating the optional memory crossbar enables any MC to
read or write from/to arbitrary addresses. From the analysis phase (cmp. Fig. 4(b)), we
know that there is potential for livelocks when all buffers are filled so that data need to
be written back to memory at some points within the algorithm implementation. Over-
all, this amounts to 7 read operations and 3 write operations, so we attach 10 DMA
units to the buffer set and to the 16 MCs.

4.3 Vector Operation Units

As can be seen from Algorithm 1, most of the required operations are vector operations.
Apart from vector addition and subtraction, the scalar product is required to calculate
the A-norm and vectors need to be scaled by α and β , respectively.

The scalar (inner) product of two vectors is a classical reduction operation. With the
two-datum buffer width, an implementation can be data-parallel internally by multiply-
ing two vector components in parallel (cmp. Fig. 3 left). Their products then need to be
added and then summed up in an accumulation unit (cmp. Fig. 3 bottom right). When
the 5-stage pipeline of the product adder is filled, this adder produces one datum per
cycle. The accumulating adder will have two valid operands only every second cycle
in the beginning, which is handled and buffered by the control logic. This adder pro-
duces only partial results in the beginning, which need to be summed up. To achieve
this goal, the output is fed back to the control logic. In case three operands are available,
one of them is stored temporarily in a buffer and will be added later on automatically.
The resulting pipeline has a length of k = 21 stages. Additional 26 cycles are required

A Data-Driven Approach for Executing the CG Method 177

z = precond(res)

Ap = stencil(p)

 = rz / s

s = dp(p, Ap)

rz = dp(res, z)

res = res - Ap

p = * p

x = x + p

p = z + p

p = * p

if(rz < TOL) break

Ap = * Ap

dma_read(TOL)

(a) Dependencies in data-flow

p = z + p

Ap = stencil(p)

 = rz / s

s = dp(p, Ap)

z = precond(res)

rz = dp(res, z)

res = res - Ap

p = * p

x = x + p

p = * p

if(rz < TOL) break

Ap = * Ap

dma_write(p)

dma_write(res)

dma_write(x)

dma_read(p)

dma_read(p)

dma_read(x)

dma_read(res)

dma_read(p)

dma_read(p)

dma_read(TOL)

(b) Dependencies resolved via intermediate write-backs to
memory

Fig. 4. Data-flow graph of the CG method. There are loop-carried dependencies that need to be
resolved statically and offline before formulating a data-driven implementation.

for accumulating the buffer’s content, resulting in n+ k− 1+ 26 = n+ 46 cycles for a
vector of length n. Both adders are custom designs, extended with tags to check when
the last two partial sums are added and the final result becomes valid.

Similar to the scalar product unit, the vector adder is given two pairs of elements from
vectors a and b and uses two adders to produce two sums, which are finally merged into
a 64-bit output register and written to the assigned buffer.

Many numerical implementations make heavy use of the operation ax+ y, which is
also highly applicable to the CG Algorithm 1. However, in this design we stick to two
operands only and therefore need to split this operation into a regular vector addition
as above and a separate multiplication with a scalar value. Again, the implementation
is internally twofold data-parallel. The 32-bit scalar value is read from a 64-element
scalar buffer and right-aligned inside the 64 bit.

4.4 Stencil Computation Unit and RBSGS Preconditioner

Nearly random access when fetching all matrix values for a stencil implementation re-
quires four memory accesses on the HC-1 (one for the top, two for the middle, and one
for the bottom). This can be avoided by saving the recently read value to internal line
buffers of sufficient length. Limited by hardware resources, we use 2048-element line
buffers of width 64 bit, which suffice for matrices with up to 4096 columns. As Fig-
ure 5 shows, it is sufficient to implement two line buffers because the single new value
of the southern element can overwrite the old northern element that is no longer needed.

178 F. Nowak et al.

Fig. 5. Streaming southern stencil element only Fig. 6. Pipelined stencil unit

Again, to consume two floating-point numbers per cycle, two kernel units are instan-
tiated as illustrated in Figure 6. Employing four floating-point adders, the weighted
stencil elements are added and registered appropriately. Special care is taken of the ma-
trix border values for which no stencil can be calculated: they must also be written to
the results streams, but the correct order must be guaranteed. For this purpose, border
values are stored temporarily in shift registers.

For the RBSGS implementation, the individual weights for each stencil element from
Algorithm 2 are 0.0625 for the neighbors of the black stencils and 0.25 for the neighbors
of the red stencils and also for all center values. Thereby, we can avoid multiple scalar
multiplications and the divisions as well. The above stencil implementation is slightly
modified with different parameters for the red and black part and only computes every
second stencil. However, at this stage the full advantage of custom hardware comes
out as data locality can be exploited: having just computed the black stencil value, it
can already be used as the new southern value in the red kernel unit (and vice versa,
depending on the current row). Figure 7 shows the final, fully pipelined design with the
necessary shift registers to take care of the correct ordering of all values.

4.5 Scalar Units

Besides vector operations, calculation with scalar values is required. For the scalar di-
vision unit (lines 5 and 12 in Algorithm 1), an off-the-shelf floating-point core is con-
nected to a 64-entry scalar input buffer. Upon achieving a distinct threshold, the CG
method can terminate. The comparator unit requires a scalar value and a constant, in
our case, and is hence connected to a scalar input buffer as well. It is the only unit
writing to the control unit that stalls until the result has been written to the register set.

4.6 Microprogrammable Control Unit

The central control unit contains a micro-instruction memory (MIM), a register set, an
ALU, a sequencer and connects the functional units such as DMA units, stencil unit,

A Data-Driven Approach for Executing the CG Method 179

Fig. 7. Pipelined red-black symmetric Gauss-Seidel preconditioner

preconditioner and vector operation units. The MIM can be written by the DMA units.
The control unit has a default program that waits for a program-load command from the
host, then loads the microprogram to memory and finally executes the given program.
The register set consists of 32 64-bit registers directly attached to the Convey copro-
cessor interface and can also be read and written by micro instructions. The ALU is
required to perform adding, subtracting and shifting to implement counters and modify
addresses. The sequencer is in charge of modifying the instruction pointer. Instructions
are first fetched from the MIM, then they are decoded, and finally executed. Pipelin-
ing of the control unit is not required as most operations of the asynchronously running
functional units will take many cycles, while the next instruction can already be fetched,
decoded, and executed concurrently, so that in the end virtually all functional units can
work in parallel despite the non-pipelined control unit.

5 Implementing, Synthesizing, Placing and Routing the Design

Synthesis of the entire Convey HC-1 FPGA project revealed that this design would not
fit the device due to too much logic having to be packed too densely and therefore lead-
ing to badly routed paths. To overcome this limitation, we split the microprogram for
executing the CG method into 4 distinct parts such that within each part, each functional
unit is used only once as is depicted in Fig. 8 and accordingly needs to be instantiated
only once. This block-wise decomposition achieved timing closure and produced a valid
and fully functional bitstream. Its resource consumptions as well as the implementation
results of the larger design variant are given for both the HC-1 and the HC-1ex in Tab. 1.

6 Evaluation

We measured the execution times for both our hardware-supported and purely soft-
ware versions of the single-precision CG method. They were compiled with -O0 for

180 F. Nowak et al.

rz = dp(res, z)

z = precond(res)

x

b

x = x + p

Ap = stencil(p)

 = rz / s

s = dp(p, Ap)

p = * p

x

z = precond(res)

rz = dp(res, z)

p = z + p

p = * p

res = res - Ap

Ap = * Ap

if
(r

z
<

 T
O

L)
 b

re
a
k

tol

Fig. 8. Blocked data flow of the CG method and parallel execution of few units only

the Open64-based Convey compiler to be comparative with GCC, which is used for
the multithreaded versions, unless otherwise noted. Also, no additional optimizations
have been applied to our hardware design, yet. For all implementations, stencil calcu-
lations have been used instead of matrix multiplications, thereby avoiding the overhead
of sparse matrix formats for the sparsely populated finite-differences matrix. As can
be seen from Fig. 9, the performance of a single instance (one FPGA) of the mod-
ified, blocked coprocessor version is for small problem sizes inferior to a 24-thread
version compiled with -O2 executing on a 2-socket hex-core Intel Xeon Westmere, but
its advantage comes for large data sizes when generic, portable stencil implementations
suffer from cache benefits. Furthermore, based on simulation results we prognosed the
to be expected performance of the full design. It suffers not only from not achieving
timing closure on the HC-1, but also from lack of block memory on the Virtex-5 such
that the buffers only suffice for problems of dimension 90 – for larger problem sizes,
intermediate stores and loads to and from memory are needed. For this reason, we also
synthesized the full version for the HC-1ex. On the large Virtex-6, there are many more
block RAMs available to further increase the size of the buffer set.

In addition to comparing the execution times of the coprocessor design, we are
also interested in achievable performance. Figure 10 shows the maximum achievable

Table 1. Resource consumption and achievable timing

Resource
Blocked Variant Full Variant

HC-1 HC-1 HC-1ex

Slices 34,311 (66%) 45,210 (87%) 58,039 (48%)
Slice Registers 86,379 (41%) 112,603 (54%) 110,593 (11%)
Slice LUTs 89,445 (43%) 134,381 (64%) 172,114 (36%)
Slice LUT Flip-Flop Pairs 115,181 (55%) 159,820 (77%) 190,879 (40%)
RAMB36 255 (89%) 264 (92%) 274 (38%)
DSP48 110 (57%) 138 (72%) 138 (15%)
Clock 6.643 ns 14.164 ns 14.889 ns
(targeting 6.667 ns timing closure) (99.6%) (212%) (223%)

A Data-Driven Approach for Executing the CG Method 181

 0

 5

 10

 15

 20

 25

8 10 16 20 32 40 64 80 90 10
0

12
8

16
0

25
6

32
0

51
2

64
0

10
24

20
48

40
96

S
pe

ed
up

Dimension

2-core Xeon 5138
Core2 Quad Q6600
2-socket Hex-Core Xeon 5670
2-socket Xeon 5670, -O2
Full Variant
Blocked Variant

Fig. 9. Speedup of one AE over sequential software
version on Intel Xeon 5138 on the Convey HC-1

Fig. 10. Usage of available bandwidth
(scaled to 4 Application Engines for the
HC-1)

memory bandwidth and the computed or measured throughput for the evaluated archi-
tectures. Note that caches and especially the data-driven, buffer-supported AE design
would allow for more throughput than available bandwidth. The figure also illustrates
that it is possible to exploit the large memory bandwidth on the HC-1 for accelerating
computations when all four FPGAs are used on a partitioned problem, i.e., the input
data split into a 2× 2 grid, or for four different problems in parallel being solved via a
single coprocessor call to the four different application engines with distinct parameters
each.

7 Conclusions and Outlook

We designed a data-driven, micro-programmable framework for the Convey HC-1 to
accelerate entire numerical applications. Reading input data, storing and loading inter-
mediate data, passing data between computational units, and starting them is handled
via the microprogram. As an example, we evaluated a preconditioned conjugate gradi-
ent solver for the Poisson equation whose sparsely populated matrix can be reordered
by means of the red-black scheme. The matrix multiplication could then be replaced
by a simple stencil computation. Similarly, the symmetric Gauss-Seidel preconditioner
could also be formulated based on stencils. Due to hardware constraints of the chosen
HC-1, only few units fit on the FPGA, yielding only a speedup of 1.2 compared to 24
OpenMP threads with optimization level 2, and of 10 compared to a sequential im-
plementation on the HC-1’s CPU for 4096×4096 data sets and no optimizations. This
could be achieved by exploiting data parallelism within vector units, pipeline paral-
lelism via streaming between successive operations, and task parallelism by concurrent
execution of independent functional units.

For the HC-1ex, our initial design with more functional units will become synthesiz-
able after minor adaptations. The size of the intermediate buffers and buffer sets can be
increased there so that larger problems can be solved, potentially doubling the currently
achievable performance. Apart from that, a large design space has been opened with
regard to the number of DMA and vector units.

182 F. Nowak et al.

Much work is currently being done integrating FPGA-based coprocessors into com-
modity systems while at the same time FPGA performance increases. With the Convey
programming model and advanced, user-programmable, domain-specifically targeted
personalities such as our proposed one, many more performance gains can be expected
by FPGA-extended high-performance computing systems in future.

References

1. Chen, R.S., Yung, E.K.N., Chan, C., Wang, D.X., Fang, D.G.: Application of the SSOR pre-
conditioned CG algorithm to the vector FEM for 3D full-wave analysis of electromagnetic-
field boundary-value problems. IEEE Transactions on Microwave Theory and Tech-
niques 50(4), 1165–1172 (2002)

2. Kunkel, J.M., Nerge, P.: System Performance Comparison of Stencil Operations with the
Convey HC-1. Technical report, Research Group: Scientific Computing, University of Ham-
burg (November 2010)

3. Augustin, W., Weiss, J.P., Heuveline, V.: Convey HC-1 Hybrid Core Computer – The Poten-
tial of FPGAs in Numerical Simulation. In: HipHac 2011, pp. 1–8. KIT Scientific Publishing
(2011)

4. Nagar, K., Bakos, J.: A Sparse Matrix Personality for the Convey HC-1. In: FCCM 2011,
pp. 1–8. IEEE Computer Society (2011)

5. Morris, G.R., Prasanna, V.K., Anderson, R.D.: A Hybrid Approach for Mapping Conju-
gate Gradient onto an FPGA-Augmented Reconfigurable Supercomputer. In: FCCM 2006,
pp. 3–12. IEEE Computer Society (2006)

6. Maslennikow, O., Lepekha, V., Sergyienko, A.: FPGA Implementation of the Conjugate Gra-
dient Method. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM
2005. LNCS, vol. 3911, pp. 526–533. Springer, Heidelberg (2006)

7. DuBois, D., DuBois, A., Boorman, T., Connor, C., Poole, S.: An Implementation of the
Conjugate Gradient Algorithm on FPGAs. In: FCCM 2008, pp. 296–297. IEEE Computer
Society (2008)

8. Kamil, S., Datta, K., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Implicit and explicit op-
timizations for stencil computations. In: Proc. of the 2006 Workshop on Memory System
Performance and Correctness, pp. 51–60. ACM (2006)

9. Augustin, W., Heuveline, V., Weiss, J.-P.: Optimized Stencil Computation Using In-Place
Calculation on Modern Multicore Systems. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-
Par 2009. LNCS, vol. 5704, pp. 772–784. Springer, Heidelberg (2009)

10. Gaster, B.R., Howes, L.: Can GPGPU Programming Be Liberated from the Data-Parallel
Bottleneck? IEEE Computer 45, 42–52 (2012)

11. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.-A.: STARPU: A Unified Platform for
Task Scheduling on Heterogeneous Multicore Architectures. In: Sips, H., Epema, D., Lin,
H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 863–874. Springer, Heidelberg (2009)

12. Vo, H.T., Comba, J.L., Geveci, B., Silva, C.T.: Streaming-Enabled Parallel Data Flow Frame-
work in the Visualization ToolKit. IEEE Computing in Science Engineering 13(5), 72–83
(2011)

13. Willcock, J.J., Hoefler, T., Edmonds, N.G., Lumsdaine, A.: Active Pebbles: Parallel Program-
ming for Data-Driven Applications. In: ICS 2011, pp. 235–244. ACM (2011)

14. Bomar, B.W.: Implementation of Microprogrammed Control in FPGAs. IEEE Transactions
on Industrial Electronics 49(2), 415–422 (2002)

15. Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and
Applied Mathematics (SIAM) (2003)

Custom Reconfigurable Architecture

Based on Virtex 5 Lookup Tables

Rico Backasch1 and Christian Hochberger2

1 Chair for Embedded Systems
Dresden University of Technology
Department of Computer Science
Institute for Computer Engineering
rico.backasch@tu-dresden.de

2 Computer Systems Group
Department of Electrical Engineering and Information Technology

Technical University of Darmstadt
hochberger@rs.tu-darmstadt.de

Abstract. Reconfigurable architectures combine the high flexibility of
general purpose processors with the high performance of specialized
hardware architectures. They can be implemented on field programmable
gate arrays or on custom coarse grain reconfigurable arrays (CGRA).
Often the CGRAs are designed in a domain specific way. In this contri-
bution, we present a mixture of both: a domain specific custom recon-
figurable architecture implemented with the help of a particular feature
of modern Virtex FPGAs (Virtex 5 and up). We show that our custom
architecture joins the qualities of both alternatives: a full hardware im-
plementation and a reconfigurable solution based on vendor tools. Our
custom tool for the programming of the architecture performs consider-
ably faster than using partial reconfiguration and the standard vendor
tools and is smaller than a full hardware solution.

Keywords: Custom Architecture, Dynamic Partial Reconfiguration,
Trace Analyzing.

1 Introduction

For the past 20 years, reconfigurable architectures have been promoted for many
different application areas. They offer better performance than general purpose
processors, but can be adapted to the needs of individual applications within
their applications domain. Also, reconfigurable architectures allow to apply a
particular chip design to more than one application, thereby leading to a better
amortization of the non recurring costs. Eventually, reconfigurable architectures
may even provide virtualization of hardware, as different parts of the application
can be mapped to the reconfigurable resources at different times.

Field programmable gate arrays (FPGAs) based on lookup tables (LUTs) are
reconfigurable by design, as the content of the table can be exchanged for dif-
ferent applications (as well as the routing configuration). In case that individual

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 183–194, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

184 R. Backasch and C. Hochberger

tables can be exchanged at runtime, such a system is typically considered a dy-
namically partial reconfigurable system. The advantage of this approach is that
some part of the FPGA can execute the application while other parts of the
FPGA are being reconfigured for later use.

Unfortunately, the usage of the partial reconfiguration feature is rather com-
plicated. The designer has to apply a special tool flow and the design itself
needs to be tailored to this approach. For a long period, the required tool sup-
port was available only upon request to the FPGA manufacturer. In fact, some
FPGA vendors considered partial reconfiguration so critical, that neither their
tools included support for this, nor did they publish the required information to
implement the required tools on your own.

Nevertheless, partial reconfiguration allows the designer to adapt a circuit to
the specific requirements of an application much quicker. Only the exchanged
part of the circuit needs to be synthesized. Especially the physical synthesis
(place and route) is completed faster as if the whole chip had to be treated.

Although partial reconfiguration offers advantages over the traditional devel-
opment approach, it is still not often used since the handling of the tools is
rather complicated. Alternatively, the designer can implement a domain specific
reconfigurable architecture on the FPGA. In this case the designer also needs
to supply the tools which are required to program this architecture. Even if this
may be a lot of additional work, it might improve the applicability of the system,
since the requirements of the end user can be regarded in the specific synthesis
tool.

The focus of this paper is to show the rewards for building your own custom
reconfigurable architecture. Compared with two alternatives (1) a full hardware
implementation that can be switched into different modes or 2) using dynamic
partial reconfiguration), a domain specific reconfigurable architecture and an
accompanying tool can provide the best of both alternatives. It can be reconfig-
ured much faster than using partial reconfiguration, but consumes much fewer
resources than the full hardware implementation.

The remainder of this paper is organized as follows. The following section gives
an overview of the application domain that is considered for this work. Following,
in section 3 we discuss the different implementation alternatives and our own
reconfigurable architecture. Section 4 gives a short evaluation of the three al-
ternative approaches to customize the hardware for the application. Eventually,
section 5 gives a conclusion and sketches some future activities.

2 Application Domain

Modern embedded systems contain thousands of lines of software code, often
even for several processor cores working in parallel. Debugging this code has
become a very time consuming part of the overall software development process.

Custom Reconfigurable Architecture 185

Runtime verification [1] has successfully been used in complex software scenar-
ios to assess the software quality and to identify and eliminate bugs. A runtime
verification system tests defined properties of the running software by analyzing
software traces. Properties are defined in form of linear temporal logic formulas
(LTL[2]).

Our aim is to analyze the trace data of embedded processors on the fly. The
analysis should be able to check for arbitrary properties of the executed code.
To this end, we use an FPGA to process trace data in real-time which are gener-
ated from trace systems like ARM ETM[3], NEXUS[4], MCDS[5] or hidICE[6].
Our verification system consists of a module which processes the trace data
and another module, which analyzes this processed data. Customizing the trace
processing seems to involve to much design effort, so that we decided to build
a rather generic trace processing module. It generates 150 boolean signals (so
called propositions), which are derived from many different sources: reaching a
particular source line, reading or writing variables, counting instructions in par-
ticular address ranges, aggregations of all these conditions and even comparisons
of these aggregations with predefined constants. Checking these propositions is
usually done by a finite state machine (FSM). We implement this FSM in a
microprogrammed way to simplify the exchange of the transition function.

Eventually, trace processing generates much more propositions than we can
handle as input signals for the microprogrammed FSM. Fortunately, studies have
shown, that the number of required propositions within one rule is below six[7].
Hence, we build the microprogrammed FSM with six inputs. In turn, we need
a third component that selects the right properties for the FSM. This selection
must be newly defined every time the FSM is exchanged.

In our system, we added a very small soft core called SpartanMC[8] as recon-
figuration manager to exchange the FSM memory and to handle the reconfig-
uration of the selection module. Figure 1 shows the described system with the
incomming trace data which is processed and has to be routed the the FSM.

Selection Module

Cond-
ition
Gen-
erator

FSM150 6Tracedata

Reconfiguration Manager

Fig. 1. System Overview with producer and consumer

3 Implementation

The selection module can be implemented in three different ways: A full hard-
ware implementation, dynamic partial reconfiguration and a domain specific
reconfigurable architecture, which we will now discuss in detail.

186 R. Backasch and C. Hochberger

3.1 Full Hardware Implementation (Multiplexer)

The first realization idea is building six 150 to 1 multiplexer, each with a 8bit
select signal. It is shown in figure 2. This is the simplest solution, but also the
biggest. In terms of reconfiguration time, it is the fastest routing module.

Pro-
ducer

Configuration Data
Select-Signals

Con-
sumer

Fig. 2. Multiplexer Solution

3.2 Partial Reconfiguration

The main function of the module is to create a direct connection from one input
to one output, which is a very simple line of code in a hardware description
language. Partial Reconfiguration can be used to implement and download this
connection into the device.

The configuration of an FPGA consists of many bits that control the internal
operation of the FPGA. The full set of configuration information is called a bit-
stream. Inside the FPGA this information is stored in SRAM cells. In principle,
all SRAM cells could be connected as one large shift register. Then, a full con-
figuration could be shifted into the FPGA. This approach is neither from the
viewpoint of circuit layout nor from the viewpoint of device management very
useful. Thus, FPGA vendors have opted to organize the bitstream into so called
frames. Each frame that is shifted into the device, carries an address informa-
tion. Typically, the frame is shifted into a central shift register and then loaded
in parallel into the appropriate SRAM cells.

This approach allows the bitstream to selectively reconfigure individual frames
within the FPGA. Early FPGAs used full columns of the FPGA as frames.
Modern FPGAs use segments of one column as frames and thus can address the
configuration information more fine grained.

Custom Reconfigurable Architecture 187

Pro-
ducer

Con-
sumer

verilog config n:

assign out[0] = in[a]

assign out[1] = in[b]

assign out[2] = in[c]

assign out[3] = in[d]

assign out[4] = in[e]

assign out[5] = in[f]

verilog config 2:

assign out[0] = in[a]

assign out[1] = in[b]

assign out[2] = in[c]

assign out[3] = in[d]

assign out[4] = in[e]

assign out[5] = in[f]

verilog config 1:

assign out[0] = in[a]

assign out[1] = in[b]

assign out[2] = in[c]

assign out[3] = in[d]

assign out[4] = in[e]

assign out[5] = in[f]

Fig. 3. System with partial reconfiguration

If a bitstream that is loaded into the device does not contain all configuration
frames it is called a partial bitstream. Engineering such a partial bitstream is
non trivial. Therefore, the FPGA vendors did not supply the tool support for a
long time, but now it is available.

One of the problems that have to be solved for partial reconfiguration is the
connection between the static part of the design and the reconfigured region.
Care must be taken, such that no illegal situation arises during reconfiguration
(i.e. two outputs actively driving a single wire segment). For this purpose, so
called bus macros must be inserted into the design (nowadays built with LUTs).
In order to do this automatically, the designer has to identify a geometrical region
which is the target of the reconfiguration and he has to define an interface to
the reconfigurable region (typically done by inserting a black box model into the
verilog code).

The tools now allow the designer to specify the functionality of the reconfig-
urable area in the usual manner (HDL or schematic). The tool flow then produces
a mapped circuit which is in turn placed and routed (obeying the region restric-
tions of the reconfigurable area). Eventually, a bitstream is created that only
contains the frames which are affected by the reconfigurable region.

Figure 3 shows how partial reconfiguration can be used in our application
domain. The main part that needs to be configured individually for each speci-
fication is the selection of conditions. Condition selection is thus delegated to a
partial reconfigurable region and a new configuration is computed for each new
specification.

3.3 Custom Architecture

Working with the partial reconfiguration is not very easy for a person that has
no knowledge about FPGAs. But our application should be used by such people.
Thus we developed our own reconfigurable routing architecture which is powerful

188 R. Backasch and C. Hochberger

Configuration Data

Pro-
ducer

Con-
sumer

Permutation

Reduction
Permutation

Reduction

150 150 30 30
6

Fig. 4. System with reconfigurable architecture

enough to realize the required function and can be easily and fast configured.
Figure 4 shows the system with our architecture.

Basic Elements. The basic idea of our architecture is to build a static network
of basic elements and change the behavior of this network without a new synthe-
sis. These basic elements are called configurable lookup tables (CFGLUT) and
are a version of the shift register lookup tables, which are primitives of Virtex 5
and newer Xilinx FPGAs. These lookup tables have 5 inputs and two outputs.
One output deals with all 5 inputs and the other one only with the lower 4
inputs. Our approach uses only the first output. Figure 5 shows such a basic el-
ement. These lookup tables work like normal lookup tables, but have additional
connections to exchange the behavior. The behavior of a 5-input lookup table
is defined by a 32 bit wide memory inside the table. Every combination of the
inputs addresses one bit of this memory. Normally, the value of this memory is
calculated by the synthesis-tool. Configurable lookup tables provide access to
this memory through four extra connections. The connections are serial data in,
configure enable, configuration clock and serial data out. With these signals, the
memory can be used like a shift register and the behavior of the table can be
exchanged manually. Because the memory content is shifted serially, 32 clock
cycles are required to reconfigure one lookup table.

Reduction Stages. As described in section 2, we have to provide six output
signals. Thus, we use six parallel CFGLUT to reduces 30 input signals to 6
output signals. The possible combinations are limited because only a block of
5 signals can be combined into one output signal as the affected table has five
inputs (see figure 5). This structure of tables can realize a reduction of signals
and is called reduction stage with a width of 6 (red[width])1 . It is shown in
figure 6. Unfortunately, only using this structure would prevent us from routing
adjacent input signals to the consumer.

1 red[width] means a reduction stage that reduces 5 · width signals to width signals.
A red[1] is one basic element and a red[6] reduces 30 signals to 6 signals.

Custom Reconfigurable Architecture 189

CFGLUT

==

red[1]

config in

config enable

config clk

config out

I0

I1

I2

I3

I4

O

Fig. 5. A configurable lookup table

i0
i1

i2
i3

i4 i5
i6

i7
i8

i9

config in

config enable

config clk

config out

data out

6

cfg lut cfg lut cfg lut cfg lut cfg lut

i10
i11

i12
i13

i14 i25
i26

i27
i28

i29

cfg lut

i15
i16

i17
i18

i19 i20
i21

i22
i23

i24

Fig. 6. Reduction stage: red[6]

Permutation Stages. There are 30! possibilities to combine the 30 input sig-
nals and one combination of these signals is called a permutation. It is infeasible
and not necessary to use all possible permutations. Instead, five different permu-
tations are used in the implemented architecture. An important step is to choose
only permutations which are not equal. Two permutations are equal when the
input signals of a lookup table of the first permutation are only a shuffled ver-
sion of the input signals of the same lookup table in the second permutation.
For example, table 1 shows 3 different input signal permutations of a reduction
stage with width two and the equation 1 shows the realized functions of the two
basic elements. Permutation P1 is equal to permutation P2 because the two
CFGLUT s realize the same function in both permutations. They are redundant.
If this property is valid for each pair of tables in two permutations, both are
equal. Permutation P3 is not equal to P1 or P2 because each CFGLUT has a
different set of input signals.

The architecture tries to select permutations which are not equal. The map-
ping of an input signal to an output signal of one permutation is done by equation
2 where x is the number of the input signal in the input vector, i size of the
input vector, j the number of the permutation and f(x, j) the position of the
signal in the output vector. The number of input signals (i) has to be a multiply
of 5 because a basic element has five inputs and one output. The verilog imple-
mentation of a permutation is a for-loop which assigns every input signal to the
output signal calculated with the given equation. Every permutation is followed
by a reduction stage and five parallel instances are called permutation stage.

190 R. Backasch and C. Hochberger

Table 1. Example permutations at red[2]

Signal P1 P2 P3

C
F
G
L
U
T

0 0 0 4 0
1 1 3 5
2 2 2 1
3 3 1 6
4 4 0 2

C
F
G
L
U
T

1 5 5 9 7
6 6 8 3
7 7 7 8
8 8 6 4
9 9 5 9

P1

{
out[0] = f(i0, i1, i2, i3, i4)

out[1] = f(i5, i6, i7, i8, i9)

P2

{
out[0] = f(i0, i1, i2, i3, i4)

out[1] = f(i5, i6, i7, i8, i9)

P3

{
out[0] = f(i0, i1, i2, i5, i6)

out[1] = f(i3, i4, i7, i8, i9)

(1)

f(x, j) =

{
x, if x = (i− 1)

x ∗ ((5 ∗ j) + 1) (mod i− 1), if x �= (i− 1)

i = size of inputvector(constant)
x = input signal (0. . . i-1), j = number of permutation (0. . . 4)

(2)

Altogether, with one permutation stage and one reduction stage we provide
an architecture which combines 30 input signals to six output signals. In our
application we want to select six signals out of 150, so we put a second reduction
and permutation stage in front of the first one with a width of 30 which has 150
input signals and 30 output signals.

Resource Estimation. A reduction stage has as many CFGLUTs as output
signals. This means that a small reduction stage consists of 6 CFGLUTs and a
large reduction stage consists of 30 CFGLUTs. A permutation stage consists of
5 reduction stages. Table 2 gives an overview of the used lookup tables in the
implemented architecture.

As one can see, there are 216 LUTs in the design which are connected serially.
Each lookup table comprises 32 bit of memory. In other words, the whole config-
uration data for this structure contains 6912 bit (32 bit∗216) and needs the same
amount of clock cycles to be shifted into the CFGLUTs. Given a configuration
clock of 50Mhz, 13,824 μs are required to configure the architecture.

Configuring this architecture is as simple as the architecture itself. Only 3 Pins
are required to shift the data in. In our case we put a small microcontroller[8]
into the design. This controller does not only configure the LUT structure but
also configures and controls other parts of the hardware e.g. the FSM memory.
The controller receives the configuration data through a USB connection and
shifts it into the chain of lookup tables. However, a simple JTAG-Controller can
also do the configuration.

Configuration- & Download-Tool. The behavior of the presented architec-
ture is defined by a configuration which consists of the memory of the configurable

Custom Reconfigurable Architecture 191

Table 2. Resource Consumption

Stage Number of CFGLUT Note

small reduction stage 6 reduces 30 signals to six signals
small permutation stage 30 shuffles 30 signals
large reduction stage 30 reduces 150 signals zu 30 signals
large permutation stage 150 shuffles 150 signals

total 216 + Overhead for programming logic

lookup tables. Computing a configuration for this network of tables is done on
a hosts PC with a special tool, similar to the partial reconfiguration tool flow.

The tool has to know the architecture of the network. For this reason, the ar-
chitecture is modeled in the tool as a set of connected objects. In future versions,
the architecture can be described as an XML-structure and from this structure
the model can be generated. The model includes all connections of the tables
which allows using a simple search algorithm. Up to now, the network is used as
a simple routing network. So the function in the tables realize the mapping of
one of the inputs to the output. Unused inputs are not interesting and are set
to don’t care.

The implemented algorithm is a depth-first-search starting at the outputs of
the architecture. It searches a path through the tables and always tries the first
input of the table. If there is another table connected to this input, the first input
of this table is used to find the path. If there is no other table, the algorithm
checks if the reached input port is the expected port. If it is the wrong port, it
goes back to the last found table and tries the next input as long as there are
untried inputs. If all five input-paths fail, the algorithm goes one table back and
so on. If the expected port is reached, the path will be marked as used and the
configuration values are stored in the model. The five configuration values are
shown in table 3. If the algorithm comes back to the starting point without a
positive search result, the algorithm is stopped and the tool exits with an error.
Future versions will try to delete existing connections, find different paths for the
deleted connections and then find a path for the failing connection (essentially
leading to a full backtracking algorithm).

The values of the lookup tables are stored in the model of the architecture. As
mentioned above, the model is an exact copy of the real hardware. The bitstream
generation is as easy as the search algorithm. In other words the algorithm walks
along the configuration signals, fetches the configuration value of each table and
writes it into the bitstream. The generated bitstream can be shifted into the real
tables.

Summary. The reconfigurable architecture is a network of configurable LUTs
as basic elements. As shown in figure 7 the architecture is structured into 4
stages, 2 permutation stages and 2 reduction stages. Permutation stages are
parallel reductions stages with shuffled input connections. The first permutation
stage shuffles 150 signals. The following reduction stage reduces the number of

192 R. Backasch and C. Hochberger

Table 3. Routing Information

active input value of lut memory

0 0xAAAAAAAA

1 0xCCCCCCCC

2 0xF0F0F0F0

3 0xFF00FF00

4 0xFFFF0000

signals to 30. These 30 signals are shuffled in the third stage which is the second
permutation stage. The last stage is the second reduction stage and reduces
the number of signals to six. All lookup tables are connected serially with its
configuration signals which allows to change their behavior through a bitstream.

4 Evaluation

All three presented solutions have been implemented, tested and compared with
each other. The results are shown in table 4.

The custom architecture requires 28% fewer lookup tables than the full fea-
tured multiplexer. Also generating and downloading a new configuration is more
than two orders of magnitude faster as the partial reconfiguration approach
because the algorithm is much simpler as the algorithms of the partial reconfig-
uration tool flow.

To avoid the compute time of partial reconfiguration and to prevent the user
from the high complexity of this tool chain, one might think to precompute all
possible configurations This is not possible, because on a single core computer
this takes 156·106 years. Also if one partial reconfiguration bitfile requires 50KB
storage, you have to spent 468PB for all configurations. The custom architecture
does not require additional storage space because the configuration data is held
in the LUT.

An important question to the network is: can this network route all possible
combination of six chosen inputs through the LUTs to the output pins. To answer

permutation 1

permutation 2

permutation 5

permutation 3

permutation 4

150
reduction
red[30]

reduction
red[30]

reduction
red[30]

reduction
red[30]

reduction
red[30]

reduction
red[30]

150

30

30

30

30

30

permutation 1

permutation 2

permutation 5

permutation 3

permutation 4

30

reduction
red[6]

reduction
red[6]

reduction
red[6]

reduction
red[6]

reduction
red[6]

reduction
red[6]

30

6

6

6

6

6

6

Reduction-StagePermutation-StageReduction-StagePermutation-Stage

Fig. 7. Stages of reconfigurable architecture

Custom Reconfigurable Architecture 193

Table 4. Solution comparison

multiplexer partial custom
reconfiguration architecture

tool runtime (s) 0 502 2
download (s) 0 1 10
resources (LUT) 300 0 216

this question we checked all expedient possibilities. Expedient possibilities are all
combinations were never input is routed to two different outputs. The number
of this combinations are calculated in equation 3. This check showed that 98.6%
of this combinations can be mapped to our architecture.

x =

(
150

6

)
= 10, 293 · 1012 (3)

Another important issue is the delay of the implemented module. The delay of
the partial reconfiguration realization depends on the functions implemented in
the module while the delay is fixed in our approach because every signal has to
pass 4 stages. Also the delay of the multiplexer is constant. The minimal delay
of the partial reconfiguration realization is the delay of two LUTs, because the
inserted bus macros are built with LUTs.

An advantage of our approach is the usability. The user does not have to know
anything about writing Verilog or VHDL, synthesis tools or FPGA development.
The user has to define the function and the developed tool does everything else,
which is in contrast to using complicated synthesis tools.

5 Conclusion

We have analyzed three different implementations of a signal selection box: A
full hardware multiplexer, a dynamic partial reconfiguration of the FPGA and
a custum reconfigurable architecture.

The last one is a network of configurable lookup tables which are primitives
of the Virtex 5 and newer Xilinx FPGAs. We implemented reduction stages
with these basic elements to reduce the number of input signals. We also built
permutation stages to increase the number of mappable combinations of the
input signals. The architecture is a composition of 216 lookup tables and all
tables form one long shift register through their configuration ports.

A tool on the host PC computes a configuration for this network. This config-
uration is send to a microcontroller which configures the tables. Our approach
is ∼ 200 times faster than the partial reconfiguration approach and consumes ∼
2/3 of the resources of the full hardware multiplexer.

Compared with the reconfigurable approach, our architecture has the advan-
tage of a fixed delay and fixed resource consumption. Furthermore the user

194 R. Backasch and C. Hochberger

doesn’t have to install a synthesis tool or have to know how a hardware descrip-
tion language.

Compared with the full hardware multiplexer, our architecture has the huge
advantage that it is possible to compute combined condition signals in the net-
work, which is impossible in the multiplexer.

In the future, we will improve the tool in order to support this combinatorial
usage of the network. Also, we will extend the algorithm to support a better
backtracking, in order to find an optimal solution. Additionally, we think that
other permutation schemes might provide better routeability with less resource
consumption, so we want to explore different permutation schemes as well.

References

1. Leucker, M., Schallhart, C.: A brief account of runtime verification. Journal of Logic
and Algebraic Programming 78(5), 293–303 (2009)

2. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Transactions on Software Engineering and Methodology (TOSEM) (2009) (in
press)

3. ARM: Coresight (2011), http://www.arm.com/products/system-ip/coresight/
index.php

4. NEXUS-Forum: The Nexus 5001 forum (2011), http://nexus5001.org
5. Infineon: MCDS - multi-core debug solution (2011), http://www.infineon.com
6. Hochberger, C., Weiss, A.: Acquiring an exhaustive, continuous and real-time trace

from socs. In: IEEE International Conference on Computer Design, ICCD 2008, pp.
356–362 (October 2008)

7. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications
for finite-state verification. In: International Conference on Software Engineering
(ICSE), pp. 411–420. IEEE (1999)

8. Hempel, G., Hochberger, C.: A resource optimized SoC kit for FPGAs. In: Bertels,
K., Najjar, W.A., van Genderen, A.J., Vassiliadis, S. (eds.) International Conference
on Field Programmable Logic and Applications (FPL 2007), pp. 761–764. IEEE
(2007)

 http://www.arm.com/products/system-ip/coresight/index.php
 http://www.arm.com/products/system-ip/coresight/index.php
 http://nexus5001.org
 http://www.infineon.com

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 195–206, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Profiling Energy Consumption of I/O Functions
in Embedded Applications

Shiao-Li Tsao, Cheng-Kun Yu, and Yi-Hsin Chang

Department of Computer Science, National Chiao Tung University, Hsinchu, Taiwan
sltsao@cs.nctu.edu.tw, {louis.ckyu,changyihsin}@gmail.com

Abstract. I/O operations consume a significant portion of energy of an embed-
ded system. To profile the energy consumption of I/O requests issued by a spe-
cific application helps developers to understand the energy consumption of the
software and to further optimize the energy efficiency of the designs. However,
most of the existing energy profiling tools concentrate on the energy consump-
tion analyses of processors and memory, and provide limited supports to asso-
ciate the energy consumption of an I/O device with high-level I/O function
calls. In this paper, we propose and implement a generic framework, called
energy profiling module (EPROM), which can estimate the energy consump-
tion of I/O requests in application processes. The experimental results based on
two typical I/O devices, i.e. WLAN and TFT-LCD, demonstrate that our pro-
posed framework can provide accurate estimates on the energy consumption of
I/O function calls and the errors between the estimation and measurement re-
sults are below 4%.

Keywords: Energy Efficiency, Energy Profiling and Estimation, Embedded
System, I/Os.

1 Introduction

The energy efficiency becomes one of the most important design considerations for
embedded devices such as mobile phones and tablets [1]. Considering more and more
embedded devices offer Internet-based and cloud-based services, the energy con-
sumption of I/O devices such as display and wireless communication becomes a criti-
cal design issue [4].

To understand the energy consumption of an embedded application and the energy
consumption of each function in the application helps developers to diagnose energy
consumption problems. Moreover, many power saving and power management strate-
gies rely on accurate energy estimation of an embedded system [2-3]. Therefore, tech-
nologies that estimate and monitor the energy consumption of embedded applications
become very important. To estimate the energy consumption of an I/O device and
to associate the energy consumption of the I/O device with its I/O requests (e.g. I/O
function calls) is even more challenging since application processes generate I/O re-
quests simultaneously and the I/O requests are scheduled by operating system (OS) in
an asynchronous manner. In this paper, we propose a generic I/O energy profiling

196 S.-L. Tsao, C.-K. Yu, and Y.-H. Chang

framework, called energy profiling module (EPROM), to associate the energy con-
sumption of an I/O device with I/O requests issued by embedded applications. The
proposed framework is implemented in the Linux kernel 2.6.15 running on an embed-
ded system. The experimental results based on two typical I/O devices, i.e. WLAN and
TFT-LCD, demonstrate that the energy estimation error is less than 4%. With the pro-
posed tool, developers can obtain accurate energy estimation of I/O events and optim-
ize the energy efficiency of the software designs and power management policies.

The rest of the paper is organized as follows. Section 2 summarizes the related
work. Section 3 presents design concept and implementation of the proposed frame-
work. Section 4 analyzes the experimental results. Finally, we conclude this study in
Section 5.

2 Related Work

With increasing attention to energy consumption issues of embedded devices, a num-
ber of energy estimation tools have been proposed. The existing solutions for estimat-
ing the energy consumption of an embedded system can be categorized into
measurement-based and model-based approaches. For measurement-based approach-
es, the energy consumption is measured by an external equipment such as a
multi-meter, data acquisition card (DAQ), or an oscilloscope [5-6]. For example,
PowerScope [5] is a measurement-based energy profiling tool which can associate the
energy consumption of an processor with software activities. However, they did not
consider I/O events and the synchronization between the measurement equipment and
the target system may introduce estimation error.

Model-based approaches estimate the power consumption of an embedded system
according to power models at different granularities such as transistor-level, architec-
ture-level and instruction-level [7-8]. Depending on the granularity that the power
model considers, the estimation process may spend a period of time to get an energy
report of the software. Since developers may want to modify applications and see its
energy efficiency, they prefer fast energy estimation of the applications. Therefore,
running embedded applications on a target embedded system and estimating the energy
consumption of embedded applications based on performance counters and high-level
power models have been considered. For example, processors with hardware perfor-
mance counters can monitor the performance events, such as cache misses, TLB hits,
and these parameters reflect the system activities which are strongly correlated with the
energy consumption of the system [9-11]. [12-15] gather high-level software activities
such as execution time, processor utilization, memory utilization, and power states of
components to evaluate the energy consumption of software. In [12], the tool provides
application-level energy analyses, and [13] further supports on-line energy profiling.
[14] and [15] estimate the energy consumption of applications running on virtual ma-
chine such as Java virtual machine on mobile devices and notebooks. Most of the pre-
vious work focused on the energy consumption estimation of processors and systems,
but did not elaborate the energy consumption issues of I/O devices. Some studies pro-
posed power models for I/O devices. For example, wireless communication interface is

 Profiling Energy Consumption of I/O Functions in Embedded Applications 197

one of the most power-consuming devices. Factors such as packet sizes, the transmis-
sion rates, the radio frequency (RF) power level influence the power consumption of a
wireless communication interface. In [16], a linear formulation of the energy consump-
tion of a wireless communication interface was presented. In [17], the detailed energy
model based on the energy per bit goodput for a WLAN interface was proposed. Al-
though above tools and models can help the energy consumption estimation of an I/O
device, a generic framework in operating system which can dynamically and flexibly
monitor the energy consumption of I/O activities and estimate the energy consumption
of an I/O function call in a application process has not been explored. This study pro-
poses a generic energy profiling framework to associate energy consumption of I/O
devices with high-level software I/O requests so that the process-level and function-
level energy consumption estimation of I/O events can be obtained.

3 Profiling Energy Consumption of I/O Events

3.1 Methodology

The application processes first generate I/O requests to operating system (OS). OS
then schedules resources such as CPU, memory, wireless communication interface,
display, etc. to serve these high-level requests. However, following characteristics
cause problems to correlate the energy consumption of I/O devices with I/O requests.

1. Operating system usually performs a scatter-gather technique on I/O requests to
improve I/O efficiency. Therefore, we cannot associate the energy consumed by an
I/O device for handling one I/O request with only one process or one function call.

2. I/O are usually asynchronous. The asynchronous occurs in two scenarios. The first
scenario is that an application process may invoke an I/O function but the request
is not scheduled and performed at an I/O device immediately. The other scenario is
that when an I/O event occurs, the event does not always correlate with the appli-
cation process that is currently running on the processor. Therefore, we may not
charge the energy consumption of an I/O device purely based on the time that the
I/O event occurs.

3. OS usually removes the process identifier (ID) when the process passes an I/O re-
quest to OS and device drivers. The link between an I/O operation at the I/O device
and an I/O function call at the software is missing.

The relationship between I/O function calls and I/O operations performed by the I/O
device could be one-to-one, many-to-one, one-to-many mapping. For example, trans-
mitting a large packet by using the socket application program interface (API) are
usually fragmented into a number of small packet data units (PDUs), and then PDUs
are transmitted by a network interface. Therefore, we propose a framework in the OS
kernel to associate necessary information with I/O requests so that the application
process and/or function call that issues the I/O requests and introduces the energy
consumption can be easily identified.

198 S.-L. Tsao, C.-K. Yu, and Y.-H. Chang

Fig. 1. Architecture of the proposed EPROM

Before the EPROM starts to profile the I/O energy consumption of an application
process or a function call in an application process, a calibration process has to be
conducted first. Fig. 1 shows the architecture of the EPROM. The calibration process
is done by an energy analyzer and benchmark programs. The energy analyzer imple-
ments the energy consumption model of a specific I/O device, runs the benchmark
programs, and collects the energy consumption measurements. A benchmark program
is to test all operations and/or states of an I/O device. For example, the benchmark
program for WLAN is to set the WLAN interface to the doze mode, i.e. deep sleep
mode, idle mode and to collect the information while the interface receives and
transmits packets at different speeds. The benchmark program for TFT-LCD is to set
TFT-LCD to different brightness levels and different colors at various sizes of areas.
The energy models and benchmark programs can be easily extended in order to sup-
port more I/O devices in the proposed framework. While the benchmark programs are
running, the energy analyzer collects the system activities from the EPROM and the
energy consumption of the system from measurement devices such as an external
meter or an internal battery controller. After a period of tests, the energy analyzer can
derive the parameters of energy consumption model of an I/O device based regression
analyses. We use WLAN to describe the detailed calibration procedures.

To perform I/O requests, processor and memory also involve and consume energy.
In the below model, we only consider the energy consumption of a WLAN interface
and ignore the energy consumption of processor and memory for processing the I/O
operations. Several existing processor and memory energy profiling tools such as [12-
15] have been integrated with the proposed framework to support full system profil-
ing. Before the benchmark program starts, the energy analyzer first stops all unneces-
sary processes, measures the system base energy consumption, and notifies the
EPROM to track the I/O activities of the WLAN interface. We use below model to
estimate WLAN energy consumption: · · ∑ · ∑ · .

 is the extra energy consumption during the benchmark period and it can be
measured by an external meter or a battery controller. We assume the extra energy
consumption is introduced by WLAN only. and are the time periods that a

I/O
devices

LCD WLAN Battery

Linux KernelEPROM

Benchmark
programs

Programs /
functions
under test

Energy
analyzerProfiling

settings

Profiling
logs

Profiling
functions

 Profiling Energy Consumption of I/O Functions in Embedded Applications 199

WLAN interface stays in the doze (deep sleep) and idle mode. The benchmark pro-
gram first stops transmitting packets, sets the WLAN interface to the doze mode and
idle mode for a period. Then, and can be derived. To derive other parame-
ters of the WLAN energy consumption model, the benchmark program randomly
generates a number of packets to access public websites, and the EPROM traces the
I/O activities in the OS and device drive. The ERPOM also adjusts the modulation
and coding schemes for transmitting packets so that packets can be delivered at dif-
ferent speeds. Assume that the EPROM detects total packets transmitted by the
benchmark program and reports as the time for transmitting packet using the

th modulation and coding scheme. Similar, the EPROM detects packets
received by the benchmark program and reports as the time for receiving pack-
et using the th modulation and coding scheme. After running the benchmark
tests, the EPROM collects the time for transmitting and receiving each packet and its
corresponding modulation and coding scheme, i.e. , , , and .
With a number of iterations, the energy analyzer is able to derive the average power
consumption per bit for transmitting and receiving a packet at different modulation
and coding schemes, i.e. different transmission/reception speeds, by using regression
analysis technique. We define the average power consumption per bit for transmitting
and receiving a packet as , , 1, … , , respectively, and is the number of
modulation and coding schemes that an WLAN interface can support. The calibration
process is to calibrate the parameters such as , , , , 1, … , for the
energy consumption model of a WLAN interface. With these parameters, the EPROM
can collect the WLAN activities such as , , , , , and ,
and estimate the energy consumption of WLAN I/O requests.

The proposed EPROM is a kernel module and uses /proc file system to commu-
nicate with the energy analyzer. A developer can turn on/off the energy profiling of a
specific I/O device by enabling or disabling the flag in /proc. The EPROM moni-
tors the kernel activities related to the I/O devices that the developer specifies and
saves the I/O logs to a kernel buffer. Before the EPROM starts to monitor the activi-
ties of the I/O devices, it reads a setting file and loads another profiling module which
contains profiling functions for the I/O devices into the kernel memory. Based on
the setting file, the EPROM knows the probe points in the kernel and drivers that the
EPROM has to insert the related profiling functions. The probe points that the
EPROM should instrument are kernel addresses or kernel function names which can
be further translated into kernel addresses based on the kernel symbol table. The
probe points are the functions which handle the I/O requests and perform scatter-
gather operations of the I/O requests. The profiling functions are to gather I/O activi-
ties so that the EPROM can refer the activity information to estimate the energy con-
sumption of I/O requests. These profiling functions and probe points are I/O specific.
Each I/O device may have its own probe points and profiling functions. The EPROM
uses a generic design to read the settings, probe points, and profiling functions infor-
mation from the user space so that developers can further add probe points and profil-
ing functions for newly added I/O devices. Therefore, energy profiling on the new I/O
devices can be supported.

200 S.-L. Tsao, C.-K. Yu, and Y.-H. Chang

An example to register profiling functions to the WLAN probe points such as
transport layer send/recv functions and WLAN driver send/recv functions in the ker-
nel space is illustrated in Fig. 2. We apply the dynamic kernel instrumentation tech-
nology which is similar to Kprobes [19] to implement the above procedures. First
(step), when a developer enables the profiling flag, the probe points and profiling
functions are loaded and the profiling functions are further registered as un-defined
instruction handlers. Second (step), the EPROM finds the probe points in the ker-
nel memory, replaces the entry instructions of the functions with un-defined or break
instructions (depending on the architecture). Once the processor executes the un-
defined instructions, it traps an un-defined exception. The profiling functions are
called in the un-defined instruction handler (Step). The profiling functions can be
identified, run, and return (step). With the dynamic kernel instrumentation, we do
not have to recompile the kernel and can dynamically determine the I/O devices to
profile during the run-time. Also, no additional overhead is introduced for these I/O
devices which are not monitored.

Fig. 2. An example of dynamic instrumentation in the EPROM

3.2 Energy Profiling of a WLAN Interface

In order to evaluate software-level energy consumption, we construct process-level and
function-level energy model based on below models. The energy consumption of a
WLAN interface can be rewritten as: ∑ ∑ , where

 is the WLAN power consumption that the WLAN interface stays in the doze and
idle mode, and and are the energy consumption of packet transmission and re-
ception for process . Since the WLAN power consumption during the doze and idle
mode depends on user configuration and the WLAN enable and disable policy, we there-
fore consider the base energy consumption of WLAN, i.e.

 as a system operation cost and does not charge it to any process or function. For a
specific process, say process , it may transmit or receive certain amount of packets.

Linux Kernel Memory
Space

…

Socket system call

Transport layer send
function

Transport layer recv
function

WLAN driver send
function

WLAN driver recv
function

EPROM

Transport send
profiling function

Transport recv
profiling function

WLAN profiling flag

Dynamic
instrumentation

WLAN profiling
functions

WLAN probe points

 Profiling Energy Consumption of I/O Functions in Embedded Applications 201

Therefore, the energy consumption of WLAN introduced by process is defined as
. Assume, process calls I/O transmission functions, e.g. send(), for , times to send packets and calls I/O reception functions, e.g. recv(), for ,

times to receive packets. We thus can calculate the process-level WLAN energy con-

sumption of process as: ∑ ,,
 and ∑ ,,

, where ,
and , are the energy consumption of the th I/O transmission and reception function
call for process , respectively. As we mentioned before, an I/O transmission function
invokes the kernel and copies the data to the kernel to send the data may be further frag-
mented into packet data units (PDUs), and the PDUs are transmitted by the device.
Therefore, we define: , , , , , … , , , where the data for the th
I/O transmission function call is divided into PDUs which are transmitted by the de-
vice. We can then estimate the energy consumption of the th I/O transmission function

call for process as: , ∑ , , . The transmission time for

packet , can be estimated by: , , ,
, where , is the modulation and coding scheme for transmitting packet , , ,

 is the transmission rate under the , th modulation and coding scheme, , is the size of packet , and is the header size of the PDU. We can
also estimate the energy consumption of the th I/O reception function call for process

 as: , ∑ , , and the reception time for packet ,

can be estimated by: , , ,
. According to above

calculations, we can estimate the energy consumption of I/O requests for a specific appli-
cation process and the energy consumption of a specific I/O function call in an applica-
tion process. Fig. 3 and Fig. 4 illustrate the implementation details of the EPROM for
tracking an I/O transmission and reception function call and estimating their energy con-
sumption.

Fig. 3. Tracking I/O transmitting function calls for WLAN

(pid, timestamp, i, j)
(82, 4.0, 1, --)

A
pplication

Kernel
D

river

Data

header PDU

Network Stack

In sock_sendmsg(), logs pid, timestamp, and assign an
index i for the I/O function call

fragmentation

(pid, timestamp, i, j, M(PKpid,j
TX), and S(PKpid,j

TX)
(82, 4.1, 1, 1, 36Mbps, 1500)
(82, 4.2, 1, 2, 24Mbps, 1500)
(82, 4.3, 1, 3, 36Mbps, 680)

202 S.-L. Tsao, C.-K. Yu, and Y.-H. Chang

Fig. 4. Tracking I/O reception function calls for WLAN

3.3 Energy Profiling of a TFT-LCD

Display is also one of the major energy-consuming devices for embedded systems.
For a TFT-LCD, the power consumption is determined by the brightness levels of the
backlight of the LCD screen. For an OLED, the power consumption is related to the
displayed objects and their colors [20]. In this study, we use a TFT-LCD as an exam-
ple, the design can be applied to the OLED system. The EPROM monitors the area of
the screen which each process occupies and the backlight levels of the LCD to esti-
mate the energy consumption of each process. Display function calls from application
processes to the frame buffer are directly reflected the display. Therefore, the
EPROM module monitors the activities at the frame buffer when each process may
write data to it. Furthermore, the EPROM records how many pixels on the screen are
occupied by an application process and how long the displayed area is occupied on
the screen. If an area is overlapped by a number of processes, the power consumption
is only charged to the foreground process (the process on the top).

To estimate the energy consumption of TFT-LCD for processes, we construct the
energy model for LCD. The energy consumption of a TFT-LCD device is: ∑ ∑ , where represents the energy consumption of
TFT-LCD, indicates the energy consumption of the LCD areas that operating
system manipulates, and is the energy consumption that process consumes.
Moreover, the LCD energy consumption that process introduces can be further
estimated by: ∑ , where is the screen area
ratios that process occupies, is the time process displays on the screen,

 is the power consumption of display under the backlight level . For the imple-
mentation, the EPROM monitors a 4-tuple (timestamp, PID, drawing position, drawing

(pid, timestamp, i, j)
(82, 4.7, 3, 1)
(82, 4.7, 3, 2)
(82, 4.7, 3, 3)

A
pplication

Kernel
D

river

Data

header PDU

Network Stack

In sock_recvmsg(), idenitfypid and
index i for the specific I/O function call

Reassemble

(pid, timestamp, i, j, M(PKpid,j
TX), and S(PKpid,j

TX)
(--, 5.1, --, 1, 36Mbps, 1500)
(--, 5.2, --, 2, 24Mbps, 1500)
(--, 5.3, --, 3, 18Mbps, 560)

Data

recv()
timestamp: 4.7

Index: 3

 Profiling Energy Consumption of I/O Functions in Embedded Applications 203

area) information from the frame buffer. The EPROM also tracks the display I/O func-
tion calls so that the energy consumption of each process can be derived.

4 Experimental Results

4.1 Experimental Environment

The measurement equipment includes a current probe and a data acquisition (DAQ).
The current clamp uses Hall effect to measure the current flow of the I/O devices, and
the data acquisition collects the measurements from the current clamp. The experi-
mental platform is an embedded system evaluation board with an Intel XScale
PXA270 processor. A TFT-LCD and a WLAN USB adaptor are connected to the
experimental platform as the I/O devices. The TFT-LCD is 3.5" display with a
320×240 resolution, supporting 16-bit color depth. The WLAN USB adaptor supports
802.11b/g. The benchmarking programs execute on the experimental platform which
runs the Linux kernel 2.6.15 with the proposed EPROM.

4.2 Experimental Results

The experiments are separated into three parts. The first part shows the overhead of
our proposed framework. The second and third parts are WLAN and TFT-LCD expe-
riments, respectively. The WLAN and TFT-LCD experiments verify the accuracy of
the energy estimation.

We use ping utility to ping the local host and default gateway for 30 times to eva-
luate the profiling overhead introduced by the EPROM. The one way delay which
indicates the overhead introduced by the EPROM increase only 3.5%-7%. For these
I/O devices which are not monitored, the EPROM introduces zero overhead.

The second experiment uses different link speeds to send 1MB data. Table 1 shows
that using lower link speeds to send packets consumes much more energy than that
using higher link speeds. We compare the estimated energy with the measured results,
and find that the errors are below 4%.

In the third experiment, represents a process to send 1MB data using UDP, and
 represents a process to receive 1MB data using UDP. The symbol "+" indicates

the processes execute in order, and the symbol "&" indicates the processes execute
simultaneously. We compare the total estimated energy with total measured energy,
and calculate the estimation error. Table 2 illustrates that the error is less than 3% in
each testing. In different cases such as running in order or concurrently, the results
show each or process consumes the similar energy. The results match our
expectations. The link rates for receiving packets are decided by the access point
(AP). Since the AP changes the link rate according to the manufacture’s rate algo-
rithm, the AP does not use the highest link rate to transmit each packet. Therefore, the
energy consumption of packet reception process is larger than energy consumption of
packet transmission process in the experiment.

204 S.-L. Tsao, C.-K. Yu, and Y.-H. Chang

Table 1. Energy consumption for transmitting 1MB data under different link speeds

Link Rate
Tx Time

(ms)
Idle Time

(s)
Tx Energy

(mJ)
Idle Energy

(J)
Estimated
Energy (J)

Measured
Energy (J)

Error

54Mbps 154.55 1.91 275.10 2.491 2.766 2.839 2.58%
48Mbps 173.87 1.89 309.48 2.467 2.777 2.851 2.60%
36Mbps 231.82 1.83 412.64 2.391 2.803 2.903 3.43%
24Mbps 347.73 1.72 618.97 2.240 2.858 2.882 0.82%
18Mbps 463.64 1.60 825.29 2.089 2.915 2.977 2.09%
12Mbps 695.47 1.37 1237.93 1.785 3.023 3.095 2.33%
9Mbps 927.29 1.14 1650.57 1.484 3.135 3.190 1.73%

Table 2. Energy consumption of combined tests

Exec.
Test
Set

Tx
Time
(ms)

Rx
Time
(ms)

Idle
Time

(s)

Tx
Energy

(mJ)

Rx
Energy

(mJ)

Idle
Energy

(J)

Total
Estimated
Energy (J)

Total
Measured
Energy (J)

Error(%)

one 155 0 2 275 0.0 2.49 2.77 2.79 0.7

+
 155 0

4
275 0.00

4.93 5.48 5.54 1.0
 155 0 275 0.00

&
 154 0

3
275 0.00

4.29 4.82 4.91 1.8
 154 0 275 0.00

one 0 323 2 0 514 2.27 2.79 2.84 1.8

+
 0 326

4
0 518

5.00 6.02 6.20 3.0
 0 313 0 498

&
 0 315

6
0 501

7.28 8.311 8.435 1.5
 0 331 0 526

+
 155 0

3
275 0

4.52 5.297 5.429 2.4
 0 316 0 502

&
 155 0

3
275 0

4.25 5.070 5.129 1.2
 0 343 0 546

4.2.1 TFT-LCD Experiment
In TFT-LCD experiments, we prepare a script that four processes draw the screen in a
pre-defined order. Process 1 uses the full screen from time 0 to 4. Process 2 pops up at
time 4, and occupies 25% screen (process 1 now uses 75%). Process 2 ends at time 6,
and process 3 and process 1 share the screen from time 6 to 9. Finally, process 1 and
process 3 both end. Process 4 uses the full screen from time 9 to 14. According to the
profiling on the frame buffer, we obtain when, where, and the area each process
writes to the frame buffer. Hence, we apply the LCD power model and the profiling
information to estimate energy consumption of each process. Experimental results
demonstrate the error between measurement and estimated energy consumption of
TFT-LCD is merely 1.93%.

5 Conclusions

In this paper, we proposed a generic framework to profile the energy consumption of
functions and application processes. The framework assists developers to dynamically

 Profiling Energy Consumption of I/O Functions in Embedded Applications 205

decide the I/O devices to monitor and obtain accurate energy estimation of I/O events
so that they can optimize the energy efficiency of the software designs and power
management policies. We implemented the proposed idea in the Linux and PXA270
platform. Experimental results based on WLAN and TFT-LCD demonstrate that our
proposed framework can provide accurate estimations on the energy consumption of
I/O events and the errors between the estimation and measurement results are below
4% for WLAN and 2% for TFT-LCD.

Acknowledgment. The authors would like to thank MediaTek Inc. and National
Science Council of the Republic of China for financially supporting this research
under Contract No. 101-2219-E-009-010-, 101-2220-E-009-036-, 101-2918-I-009-
004-, 101-2915-I-009-022, 101-3113-P-006-020-, 101-2219-E-009-001-, and Institute
for Information Industry under the “Advanced Sensing Platform and Green Energy
Application Technology Project” which is subsidized by the Ministry of Economy
Affairs of the Republic of China.

References

1. Starner, T.E.: Powerful Change Part 1: Batteries and Possible Alternatives for the Mobile
Market. IEEE Pervasive Computing 2, 86–88 (2003)

2. Cho, Y., Chang, N.: Energy-Aware Clock-Frequency Assignment in Microprocessors and
Memory Devices for Dynamic Voltage Scaling. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 26, 1030–1040 (2006)

3. Anand, M., Nightingale, E.B., Flinn, J.: Self-tuning Wireless Network Power Manage-
ment. Wireless Networks 11, 451–469 (2005)

4. Palit, R., Singh, A., Naik, K.: Modeling the Energy Cost of Application on Portable Wire-
less Devices. In: Proceedings of the 11th International Symposium on Modeling, Analysis
and Simulation of Wireless and Mobile Systems (2008)

5. Flinn, J., Satyanarayanan, M.: PowerScope: a Tool for Profiling the Energy Usage of Mo-
bile Applications. In: Proceedings of the 2nd IEEE Workshop on Mobile Computing Sys-
tems and Applications (1999)

6. Xian, C., Cai, L., Lu, Y.-H.: Power Measurement of Software Programs on Computers
With Multiple I/O Components. IEEE Transactions on Instrumentation and Measure-
ment 56, 2079–2086 (2007)

7. Tiwari, V., Malik, S., Wolfe, A.: Power Analysis of Embedded Software: a First Step To-
wards Software Power Minimization. In: Proceedings of the 1994 IEEE/ACM Internation-
al Conference on Computer-Aided Design (1994)

8. Tan, T.K., Raghunathan, A., Jha, N.K.: EMSIM: an Energy Simulation Framework for an
Embedded Operating System. In: Proceedings of the IEEE International Symposium on
Circuits and Systems (2002)

9. Kadayif, I., Chinoda, T., Kandemir, M., Vijaykirsnan, N., Irwin, M.J., Sivasubramaniam,
A.: vEC: Virtual Energy Counters. In: Proceedings of the 2001 ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (2001)

10. Choi, W., Kim, H., Song, W., Song, J., Kim, J.: ePRO-MP: Energy PRofiler and Optimizer
for MultiProcessors. In: Proceedings of Design, Automation and Test in Europe Confe-
rence, France (2009)

206 S.-L. Tsao, C.-K. Yu, and Y.-H. Chang

11. Contreras, G., Martonosi, M.: Power Prediction for Intel XScale Processors Using Perfor-
mance Monitoring Unit Events. In: Proceedings of the 2005 International Symposium on
Low Power Electronics and Design (2005)

12. Kansal, A., Zhao, F.: Fine-grained Energy Profiling for Power-aware Application Design.
In: Proceedings of the Workshop on Measurement and Modeling of Computer Systems
(2008)

13. Do, T., Rawshdeh, S., Shi, W.: pTop: A Process-level Power Profiling Tool. In: Proceed-
ings of the Workshop on Power Aware Computing and Systems (2009)

14. Dong, M., Zhong, L.: Self-constructive, High-rate Energy Modeling for Battery-powered
Mobile Systems. In: Proc. ACM/USENIX Int. Conf. Mobile Systems, Applications, and
Services, MobiSys (2011)

15. Kansal, A., Zhao, F., Liu, J., Kothari, N., Bhattacharya, A.: Virtual Machine Power Meter-
ing and Provisioning. In: ACM Symposium on Cloud Computing, SOCC (2010)

16. Feeney, L.: Investigating the Energy Consumption of an IEEE 802.11 Network Interface.
SICS Technical Report (1999)

17. Ebert, J., Aier, S., Kofahl, G., Becker, A., Burns, B., Wolisz, A.: Measurement and Simu-
lation of the Energy Consumption of an WLAN Interface. TKN Technical Report (2002)

18. Dugam, J.: Iperf (2010), http://sourceforge.net/projects/iperf/
19. Moore, R.: A Universal Dynamic Trace for Linux and other Operating Systems. In: 2001

USENIX Annual Technical Conference (2001)
20. Dong, M., Zhong, L.: Power Modeling and Optimization for OLED Displays. IEEE Trans-

actions on Mobile Computing (2012)

An Application-Aware Cache Replacement

Policy for Last-Level Caches

Tripti S. Warrier, B. Anupama, and Madhu Mutyam

PACE Laboratory, Computer Science and Engineering Department,
Indian Institute of Technology Madras, Chennai, India-600036

{tripti,anupama,madhu}@cse.iitm.ac.in

Abstract. Current day multicore processors employ multi-level cache
hierarchy with one or two levels of private caches and a shared last-level
cache (LLC). Efficient cache replacement policies at LLC are essential
for reducing the off-chip memory traffic as well as contention for memory
bandwidth. Cache replacement techniques for unicore LLCs may not be
efficient for multicore LLCs as multicore LLCs can be shared by applica-
tions with varying access behavior, running simultaneously. One appli-
cation may dominate another by flooding of cache requests and evicting
the useful data of the other application.

This paper proposes a new cache replacement policy for shared LLC
called Application-aware Cache Replacement (ACR). ACR policy pre-
vents victimizing low-access rate application by a high-access rate appli-
cation. It dynamically keeps track of maximum life-time of cache lines in
shared LLC for each concurrent application and helps in efficient utiliza-
tion of the cache space. Experimental evaluation of ACR technique for
2-core and 4-core systems using SPEC CPU 2000 and 2006 benchmark
suites shows significant speed-up improvement over the least recently used
and thread-aware dynamic re-reference interval prediction techniques.

1 Introduction

Modern multi-core processors support multiple levels of cache to improve per-
formance. Most often the LLC in such systems is shared among concurrent ap-
plications. Implementing an efficient LLC management policy is essential for
reduction in off-chip memory traffic and bandwidth since it has a direct impact
on power consumption of the system. One of the key features involved in cache
management is the replacement policy. An ideal replacement policy will victim-
ize cache lines that are accessed farthest in future and retain the data with high
temporal locality [1]. But all practical cache replacement policies take victim
selection decision by predicting the cache line that is going to be re-referenced
farthest in future. The effectiveness of such replacement policies depends on the
prediction accuracy.

Least recently used (LRU) policy is one of the most commonly used cache
replacement techniques. LRU policy predicts near re-reference for a cache line
accessed recently and distant re-reference for one without reference. There are

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 207–219, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

208 T.S. Warrier, B. Anupama, and M. Mutyam

several drawbacks with the LRU technique: 1) it looses the access history if it
encounters a burst of references of length more than the associativity; 2) it can
victimize a frequently accessed cache line over a less-frequently but recently ac-
cessed cache line; 3) it performs badly for working sets larger than the cache size;
and 4) it may not be effective for multicore LLC as applications with varying
access patterns share the LLC. Since the performance gap between the theoreti-
cal optimal [1] and LRU technique is large, several cache replacement techniques
have been proposed for unicore LLCs [2, 3] to improve the cache efficiency.

In multicore processors, concurrent execution of applications demands signif-
icant memory bandwidth. This is provided by multi-level cache hierarchy with
one or two levels of private caches and a shared LLC. As LLC can be shared
by parallely running applications with varying access behavior, the replacement
techniques proposed for unicore LLC may not be effective for multicore LLC. If
such applications conflict with each other, system-wide performance can be sig-
nificantly degraded. One application may dominate another by flooding cache re-
quests and evicting the useful data of the other application. Performance of most
of the cache replacement techniques proposed for multicore LLCs [4, 5, 6, 7, 8]
depends on the data access patterns of specific workloads.

This work takes a different approach for replacement of a cache line from LLC
by exploiting the non-uniform access rates and access behaviors of applications.
It proposes an Application-aware Cache Replacement (ACR) policy. Apart from
being access rate aware, ACR technique dynamically adapts the eviction process
to the varying access patterns of applications. ACR technique is compared with
LRU policy and state-of-the-art thread-aware dynamic RRIP (TA-DRRIP) [5]
policy using SPEC CPU 2000 and 2006 benchmarks. ACR policy achieves (geo-
metric mean) speed-up of 8.62% and 5.08% over LRU and TA-DRRIP policies,
respectively, for 4-core workloads. The major contribution of the work is that
the proposed replacement technique works well for workloads with both LRU
friendly and scan access patterns as opposed to TA-DRRIP, which is not the
best replacement technique for LRU friendly workloads.

2 Related Work

Several cache eviction policies have been proposed in the literature for both uni-
core and multicore systems. Discussion in this section is restricted to techniques
that are relevant to proposed techniques.

Counter-based replacement technique [3] for unicore LLC predicts access in-
terval using a counter for each cache line. All counters in a set are incremented
on an access and a cache line whose counter value exceeds a given threshold is
selected as victim.

The use of reuse information during victim selection for unicore LLC has been
exploited in [2]. PC-based prediction method [2] predicts the reuse distance and
uses the predicted values for cache eviction. On a cachemiss, if the predicted reuse
distance of the memory reference is higher than the reuse distance seen by all cache
lines in the set, the requested data is directly sent to the processor without storing

An Application-Aware Cache Replacement Policy for Last-Level Caches 209

it in the cache. Otherwise, a cache line with highest reuse distance is replaced with
the requested data.

To avoid keeping one time accessed cache lines for longer time, Bimodal Inser-
tion Policy (BIP) [6] inserts most of the cache lines at the LRU position and place
the others at MRU. But some applications are benefited if the cache lines are
inserted at LRU position. In order to work with this varying behavior, dynamic
insertion policy (DIP) [6] chooses either LRU or BIP policies at run-time. When
it comes to multicore LLC, DIP technique is extended with thread-awareness
[4], wherein each thread selects between LRU or BIP policies at run-time.

Static and dynamic cache replacement techniques based on re-reference inter-
val prediction (RRIP) are proposed in [5]. Static RRIP (SRRIP) is scan-resistant,
but not thrash-resistant. Thrashing is avoided by adopting an approach similar
to BIP in bimodal RRIP (BRRIP). Both thrashing and non-thrashing access
patterns are handled in dynamic RRIP (DRRIP), which selects between BRRIP
or SRRIP for a given application using set-dueling monitors (SDMs)[6]. DRRIP
policy does not have recency information. It inserts cache lines with low priority
and changes it priority to highest only on a hit. During victim selection, it always
searches from left and selects any cache line with lowest priority. If there are no
suitable candidates, it keeps on changing the priority of all the cache lines till it
finds a cache line with lowest priority. In case there are multiple cache lines with
lowest priority, the search from left might not give the best victim candidate as
the low priority of the chosen victim could be either due to its insertion or inser-
tions of other cache lines. Hence, DRRIP policy does not always work well with
LRU friendly applications. The work is extended to handle multi-programmed
workloads in thread-aware dynamic RRIP (TA-DRRIP). With the help of two
SDMs per application, TA-DRRIP dynamically selects either SRRIP or BRRIP
in the presence of other application.

The promotion/insertion pseudo partitioning (PIPP) technique [8] has differ-
ent priority positions for insertion of cache lines that belong to different applica-
tions. On a hit, accessed cache line is promoted by one position up in the priority
chain. During promotion of cache lines, the applications with low priority po-
sition for insertion face stiff competition from those with high priority position
for insertion. Hence, identifying suitable application-specific priority positions is
critical for achieving good performance in PIPP technique.

Adaptive timekeeping replacement [7] uses the cache decay concept in cache
line level for managing shared LLC. Operating system assigns three levels of
priorities to the application and hardware assigns decay intervals accordingly.
When a cache line is not accessed within the decay interval, it becomes a po-
tential victim block. The main drawback with the technique is that it cannot
distinguish between two or more applications having the same priority values.

Thrasher caging [9] identifies thrashing application that degrades the perfor-
mance of multicore processor. The thrasher detection is based on the absolute
number of misses from the cores. Once an application is detected as a thrasher
application, reduced number of cache ways will be allocated.

210 T.S. Warrier, B. Anupama, and M. Mutyam

Table 1. LLC statistics for SPEC CPU 2000 and 2006 benchmarks1

SPEC LLC statistics SPEC LLC statistics
benchmark APKI Miss Rate (%) benchmark APKI Miss Rate (%)

164.gzip 1.22 17.08 429.mcf 64.47 90.91
168.wupwise 3.01 99.13 435.gromacs 1.72 19.59
171.swim 22.89 99.98 437.leslie3d 9.15 82.64
172.mgrid 12.32 64.95 444.namd 0.68 98.68
173.applu 20.16 99.92 450.soplex 2.94 35.67
175.vpr 11.78 27.48 454.calculix 0.91 62.92
177.mesa 0.72 91.53 456.hmmer 2.14 71.36
178.galgel 14.09 43.91 458.sjeng 0.37 79.98
179.art 129.64 78.81 459.GemsFDTD 0.006 70.98
186.crafty 0.58 9.65 462.libquantum 6.72 99.64
193.fma3d 0.00051 100 464.h264ref 0.88 10.41
300.twolf 15.24 32.37 470.lbm 32.07 99.99
401.bzip2 5.18 43.57

3 Motivation

In a multi-core scenario, multiple applications compete with each other for space
in LLC. The access rates and behavior of these applications are different from one
another and their accesses to LLC are filtered by caches closer to the processors.

Access Rates of Applications: Table 1 shows the accesses per kilo instructions
(APKI) at LLC of different SPEC CPU 2000 and 2006 benchmark suites [10]
with 3-level cache hierarchy in a single core environment. In a shared LLC with
LRU replacement policy, high access rate application can dominate low access
rate application. Figure 1 shows the cache line occupancy of a particular cache set
for an application (hmmer) when it is concurrently executing with a lower access
rate application (calculix) and a higher access rate application (libquantum).
The average number of cache lines in the cache for hmmer reduces from 8.5
to 5.7 when the co-executing application is libquantum instead of calculix. This
corresponds to a performance loss of 11.2% in IPC for hmmer due to libquantum.

Figure 2 gives a typical access in a 2-core system at time T1 (=3848587115
simulation cycle) with hmmer-libquantum during which libquantum flushes the
application cache lines of hmmer. It shows that the number of cache lines in a
particular set from hmmer (libquantum) is changed from 7 (8) to 2 (14) during
an interval of 16 accesses to the set. This is because the LRU replacement policy
is unaware of the difference in accesses across the applications. It selects the
LRU candidate from an eviction chain that is common to both the applications.
Due to the variation in access rate, the cache lines of low access rate application
are pushed to the LRU position of priority chain and will be flushed out by the
cache lines that belong to high access rate application. In such case, it is better
to prevent an application from evicting a cache line of another application [11].

1 Refer Section 5 for simulation setup.

An Application-Aware Cache Replacement Policy for Last-Level Caches 211

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 2 4 6 8 10 12 14 16

F
r
a
c
t
i
o
n

o
c
c
u
p
i
e
d

(
%
)

Number of cache lines in a set

hmmer

calculix

(a)hmmer-calculix

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0 2 4 6 8 10 12 14 16

F
r
a
c
t
i
o
n

o
c
c
u
p
i
e
d

(
%
)

Number of cache lines in a set

hmmer

libquantum

(b)hmmer-libquantum

Fig. 1. The distribution of cache lines for set 56 in LLC when hmmer is executing with
lower (calculix) and higher (libquantum) APKI applications

Hence, access rate aware eviction policy can improve the overall performance of
the system.

Access Pattern of Applications: Access rate of an application does not
give any insight on the temporal locality of the application. Relying just on
application-wise access rates for cache replacement may sometimes degrade the
performance of the system. As can be seen from Table 1, benchmarks such as
mesa and namd have low APKI and very high miss rates. When such an appli-
cation is co-scheduled with high access rate application, the access count based
strategies can penalize the latter. This is of disadvantage because high access
rate application is penalized without considering the temporal locality of indi-
vidual applications. Hence, the replacement policy should also be aware of the
access recency behavior of the overall system along with access rate.

Each application has different reuse patterns, which can change during vari-
ous stages of the execution. Figure 3 shows the hit-behavior of SPEC CPU 2000
and 2006 benchmark suites in a single core environment with 1MB 16-way set
associative LLC. The hit behavior is measured in terms of hit-gap of the cache
lines. The hit-hap of a cache line is defined as the number of accesses to the corre-
sponding set between consecutive accesses to the cache line. The graph provides
percentage of hits covered for different hit-gap values. Most of the applications

Fig. 2. Access sequence for hmmer-libquantum for set-56. The cache occupancy status
is denoted by (a,b), where a is number of cache lines that belong to hmmer and b is
number of cache lines that belong to libquantum.

212 T.S. Warrier, B. Anupama, and M. Mutyam

 0

 20

 40

 60

 80

 100

1
6
4
.
g
z
i
p

1
6
8
.
w
u
p
w
i
s
e

1
7
1
.
s
w
i
m

1
7
2
.
m
g
r
i
d

1
7
3
.
a
p
p
l
u

1
7
5
.
v
p
r

1
7
7
.
m
e
s
a

1
7
8
.
g
a
l
g
e
l

1
7
9
.
a
r
t

1
8
6
.
c
r
a
f
t
y

1
9
3
.
f
m
a
3
d

3
0
0
.
t
w
o
l
f

4
0
1
.
b
z
i
p
2

4
2
9
.
m
c
f

4
3
5
.
g
r
o
m
a
c
s

4
3
7
.
l
e
s
l
i
e
3
d

4
4
4
.
n
a
m
d

4
5
0
.
s
o
p
l
e
x

4
5
4
.
c
a
l
c
u
l
i
x

4
5
6
.
h
m
m
e
r

4
5
8
.
s
j
e
n
g

4
5
9
.
G
e
m
s
F
D
T
D

4
6
2
.
l
i
b
q
u
a
n
t
u
m

4
6
4
.
h
2
6
4
r
e
f

4
7
0
.
l
b
m

%

h
i
t
s

c
o
v
e
r
e
d

<=2 3-4 5-8 9-16 17-24 >25

Fig. 3. hit-gap for single core SPEC benchmarks

cover their hits by a hit-gap of 16 and fma3d does not have hits at all. Even
when an application gets the entire share of LLC, the hit-gap is not increasing
beyond a particular value. For example, applications such as gzip, swim, mesa,
namd, sjeng, GemsFDTD, h264ref and lbm cover most of their hits by a hit-gap
of 4. If a cache line of one of these applications is present in the cache for more
than 4 accesses to the set, it is highly likely that the cache line will not be ref-
erenced again. This maximum value of hit-gap will give the maximum life-time
required by any cache line of the application in the cache. The maximum hit-gap
when tracked dynamically can be used during cache line eviction. The use of
maximum hit-gap will ensure that all cache lines of an application are present in
the cache for only allotted time. Hence, the use of maximum hit-gap information
can facilitate better utilization of available cache space.

In conclusion, variation in access counts, access recency, and hit-gaps across
different applications motivates an alternate cache replacement policy. The next
section proposes such policy.

4 ACR: An Application-Aware Cache Replacement Policy

The paper proposes an application aware cache replacement (ACR) policy for
shared LLCs. To make the policy access rate aware, separate local eviction pri-
ority chains are maintained for different cores. The length of each chain is dy-
namically changed at run-time to make ACR policy access pattern aware.

An Application-Aware Cache Replacement Policy for Last-Level Caches 213

ACR technique updates the eviction priority of only those cache lines that
belong to the referencing application and maintains separate eviction priority
chains for each application. It is seen in Section 3 that for low-access and low-
hit rate applications, separate replacement chains that are aware of the access
rates of applications is not sufficent and can sometime degrade the performance.
Keeping a tab on the order of access recency among concurrent applications for
individual sets along with access counts is of use here. Further in case of victim
selection if multiple applications have victims with same eviction priority, the
access recency information can be used to guarantee performance similar to LRU
policy.

The study of hit-gaps of cache lines for different applications in Section 3
also shows that each application has different maximum residency period for its
cache lines. This maximum residency period for each application can be used
to limit the length of individual eviction priority chain as the cache lines are
unlikely to be reference after this period. ACR policy changes the length of the
individual eviction priority chain based on the application-wise maximum hit-
gap. ACR policy dynamically tracks the maximum hit-gaps of an application for
each interval and uses it as the predicted life-time or predicted-hit-gap (PHG) for
the next interval. We consider the maximum hit-gap observed for the prediction
to avoid any additional miss penalties due to insufficient prediction of cache life-
time. Special care is taken in the absence of hit for an application in an interval,
as the reason for no hits could be an error in the predicted hit-gap.

Implementation: ACR technique uses the following registers/counters for im-
plementation:

– n-bit saturating counter called hit-gap counter (HG) for each cache line to
keep track of individual access counts.

– N ∗ logN bits per cache set to maintain application-wise access recency order
(LRU chain), where N is the number of cores in the system.

– Two n-bit application-wise counters, predicted-hit-gap (PHG) and shadow
predicted-hit-gap (sPHG). PHG value is the predicted life time for current
interval and sPHG value is the learned maximum hit-gap during the current
interval (to be used as the predicted life-time for the next interval).

– 1-bit hitF lag per application, which is set on a hit for the application.

Access Rate Awareness: On every access to a set, HG counters of all cache lines
in the set that belong to the accessed application are incremented. The counter
value of a cache line at any given time is an estimate of its life-time in the cache
after its last access. This time is measured in terms of the number of accesses to
the cache set. A cache line with the highest counter value is the oldest cache line
without access in the set. If an access is a hit, the counter of the corresponding
cache line is reset. The value of the counter at the time of hit is the hit-gap of
the cache line and so is called the hit-gap (HG) counter. Whenever a new cache
line is inserted, its HG value is set to 0. Each access to the cache also updates
the application wise LRU chain corresponding to that set.

Access Pattern Awareness: For dynamically tracking the application life-time
(maximum hit-gap) the total number of cache sets s is divided into p monitor

214 T.S. Warrier, B. Anupama, and M. Mutyam

Fig. 4. Illustration of ACR policy (a) Flowchart illustrating dynamic update of PHG.
(b) Computation of PHG at the end of an interval.

sets and (s − p) normal sets. The predicted life-time for all monitor sets is
fixed at MAX = 2n − 1 to ensure the maximum possibility of hit-gap for cache
lines in monitor sets. The hit gaps of the monitor and normal sets are tracked
and stored as sPHG for each interval of 2m misses (implemented using an m-bit
missCounter) for LLC and the PHG value is updated at the end of each interval
(Figure 4(a)). At the start of each interval sPHG and hitF lag are reset. During
each hit to a cache line l of an application i, if HGl > sPHGi, then sPHGi is
set to HGl. At the end of the interval, sPHGi stores the maximum hit-gap of the
application. If hitF lagi is set, PHGi for the next interval is set to sPHGi+1. If
the hitF lagi is reset, the application had no hits during the interval. This could
be because of insufficient PHG, which is tackled using the FSM shown in Figure
4(b). In case of no hit, the FSM gives the application maximum time in cache
for the next interval, i.e., PHG = MAX . If the status of the hitF lag continuous
to remain reset, it means the application has thrashing behavior, and so sPHG
is reset. To make sure such application is given opportunity to remain in the
cache if its behavior changes, PHG alternates between 0 and MAX

2 . Note that
if at any point the application encounters a hit, the value of sPHG is used for
PHG for the next interval.

Victim Selection: As maximum time in the cache for a cache line l of an
application i is when HGl = PHGi, the cache line with minimum predicted
life-time will be one with min (PHGi −HGl). Hence on a miss, the victim in
the absence of invalid cache line is the cache line with min (PHGi −HGl). The
search for victim cache line starts from LRU core so that the cache line that has
minimum life in the cache from a core that is least recently used is evicted.

Note that in the absence ofmonitor sets in the PHG computation, the chances
of the value of sPHG being larger than PHG would be very less as all cache

An Application-Aware Cache Replacement Policy for Last-Level Caches 215

Table 2. Architectural parameters of the simulated system

IL1 caches 32KB, 64B, 4-way, 1 cycles, 1W and 2R ports, LRU

DL1 caches 32KB, 64B, 4-way, 1 cycles, 1W and 2R ports, LRU

L2 cache 256KB, 64B, 8-way, 10 cycles, private, LRU

LLC 1MB per-core, 64B, 16-way, 35 cycle, shared, non-inclusive

Main memory 200 cycles

lines with HG = PHG are evicted. Any hit in the monitor or normal cache set
can change the value of sPHG as long as the hit-gap of the current hit is greater
than the present value of sPHG. Also, the victim selection procedure is not in
the critical path and hence the search involved in the algorithm does not affect
the system performance.

Whenever a cache encounters scan access pattern, the corresponding cache
lines become victim candidates faster by virtue of application based HG modi-
fication. Such scan patterns will not have hits due to which cache lines of such
applications will be predicted to have smaller life-time in the cache. Hence, ACR
policy is scan resistant irrespective of the length of the scan chain unlike SRRIP.
ACR policy is aware of access recency and so can perform well for LRU friendly
applications. Hence in contrast to TA-DRRIP, ACR policy can perform well for
applications that have access patterns that can be LRU friendly or scan.

5 Evaluation

Our technique is evaluated with 3-level cache hierarchy having private L1 and L2
caches with shared LLC. Table 2 gives other details of the system configuration
used in experimentation. Workloads using set of 26 SPEC CPU 2000 and 2006
benchmark suites [10] (refer to Table 1), compiled for ALPHA ISA, are executed
on GEM5 simulator [12]. All the benchmarks are executed using reference inputs.
Applications are fast-forwarded for 900 million instructions and then warmed up
for next 100 million instructions. The statistics are recorded for the next 1 bil-
lion instructions for each application. As ACR technique is access rate aware, we
consider workloads with mix of low (L) and high (H) APKI values. Applications
with APKI > 6 are categorized as H and others are categorized as L. The work-
load mixes are categorized based on the number of low and high APKI applica-
tions. For 2- and 4-core systems, we have 3 ((#L,#H) = {(2, 0), (1, 1), (0, 2)})
and 5 ((#L,#H) = {(4, 0), (3, 1), (2, 2), (1, 3), (0, 4)}) categories of workloads,
respectively. About 20 mixes are considered for each class of workloads in both
2- and 4-core systems.

Results and Analysis: ACR policy is compared with LRU and TA-DRRIP [5]
techniques. We consider 4-bit HG counter, 12-bit missCounter and 128 monitor
sets for ACR policy. TA-DRRIP [5] is implemented with 2N SDMs, where N
is the number of cores, with 32 sets each to learn the insertion decision of each

216 T.S. Warrier, B. Anupama, and M. Mutyam

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

(2,0) (1,1) (0,2) all

W
e
i
g
h
t
e
d

S
p
e
e
d
-
u
p

n
o
r
m
a
l
i
z
e
d

w
.
r
.
t

L
R
U

(a) 2-core workloads (#L,#H)

ACR

TA-DRRIP

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

(4,0) (3,1) (2,2) (1,3) (0,4) all

W
e
i
g
h
t
e
d

S
p
e
e
d
-
u
p

n
o
r
m
a
l
i
z
e
d

w
.
r
.
t

L
R
U

(b) 4-core workloads (#L,#H)

ACR

TA-DRRIP

Fig. 5. Performance comparison of ACR policy with LRU and TA-DRRIP policies

application. A 10-bit dedicated PSEL counter is used to decide the core-wise
insertion policy.

Effect on System Performance: Performance of multiple applications that ex-
ecute concurrently is evaluated using weighted speedup. Weighted speedup gives
the improvement in execution time compared to the baseline configuration. Fig-
ure 5(a) shows the performance improvement of ACR policy for 2-core system
compared to LRU and TA-DRRIP policies in various categories of workloads.
ACR policy achieves speed-up of 7.02% and 4.16% (geometric mean) with re-
spect to LRU and TA-DRRIP policies, respectively.

Similar behavior for 4-core systems can be observed in Figure 5(b). The geo-
metric mean of performance improvement of ACR policy as compared to LRU
and TA-DRRIP techniques are 8.6% and 5.03%, respectively. ACR policy out-
performs LRU and TA-DRRIP policies in all categories of workloads for both 2-
and 4-core systems. The difference in performance improvement between ACR
and TA-DRRIP policies is largest for (2,0) and (4,0) workload categories in
2- and 4-core systems, respectively. This difference reduces as the number of H
category applications increases in the workloads. Most of the applications in L
category have low miss rate or good temporal locality (refer to Table 1) with
LRU policy and hence are LRU friendly. ACR policy improves the performance
of workloads with LRU friendly patterns as the modification of eviction priority
chain for each application is similar to LRU chain update. On the other hand,
TA-DRRIP policy does not have recency information and hence degrades the
performance of workloads with similar access patterns. Further, due to the dy-
namic update of length of the eviction priority chain based on hit-gap in ACR
policy, applications with scan patterns will have shorter life-time in the cache.
Hence ACR policy is able to improve performance of workloads with both scan
and LRU friendly patterns. With increase in high access rate applications in the
workloads, both ACR and TA-DRRIP policies have improved performance but

An Application-Aware Cache Replacement Policy for Last-Level Caches 217

the performance of ACR policy is still higher than that of TA-DRRIP technique
as it is access rate aware along with being access pattern aware.

Figure 6 shows the speedup improvement ofACRandTA-DRRIP policies in a 4-
core systemwith respect to LRU technique for all the workloads. It can be observed
that unlikeTA-DRRIP, the performance ofACR is alwaysbetter thanLRUpolicy.

-10

 0

 10

 20

 0 20 40 60 80
P
e
r
f
o
r
m
a
n
c
e

i
m
p
r
o
v
e
m
e
n
t

w
.
r
.
t

L
R
U

Workloads

ACR
TA-DRRIP

Fig. 6. Effectiveness of ACR and TA-DRRIP policies for
all workloads in 4-core system.

Table 3. Overhead of
replacement policies for
4-core system with 4-MB
LLC

Replacem- Overhead
ent Policy
LRU 32KB
TA - ≈ 16KB
DRRIP
ACR ≈ 36KB

Victim selection procedure for our technique involves comparing the counter
values to identify the victim candidate. This procedure is similar to that of LRU.
Since the victim selection is in parallel to memory access, it does not increase
the critical path to the processor. For a ‘k-way’ set associative cache, LRU and
TA-DRRIP replacement policies have an overhead of k ∗ logk and 2 ∗ k bits per
cache set, respectively. In addition, TA-DRRIP has 10-bit PSEL counter per core
to support SDMs. ACR policy has an overhead of k ∗ logk (for HG counters)
+ NlogN (to implement core-wise LRU), where N is the number of cores in
the system. In addition to this, ACR policy has two 4-bit register for PHG
and sPHG, and one 1-bit register for hitF loag per application and a single
12-bit misCounter. Table 3 shows the overhead involved in implementation of
LRU, TA-DRRIP, and ACR replacement policies for 4-core system with 4MB
LLC. Even though ACR policy incurs slightly larger area overhead than TA-
DRRIP, ACR achieves significant performance improvement in both 2- and 4-
core systems. Hence it can be used in environments where performance is critical
and hardware overhead is not a constraint.

Effect of the size of HG counter: Performance of 2- and 4-core systems is
evaluated for different sizes of the HG counter. Performance of ACR policy
improves with the increase in the number of bits in the HG counter from 3
bits to 5 bits for both 2- and 4-core systems. Increase in the number of bits for
HG counter provides better control on the length of eviction priority chains.
This gain is almost constant on increasing the size of HG counter beyond 5
bits. Thus, we consider 4-bit HG counter as it provides significant performance
improvement without incurring much hardware overhead.

218 T.S. Warrier, B. Anupama, and M. Mutyam

6 Conclusion

Acache eviction policy formulticore sharedLLC is proposed to exploit application
wise access rate and pattern. Evaluation of ACR technique using SPECCPU 2000
and 2006 benchmark suites has shown to improve the performance with respect
to LRU and TA-RRIP techniques. Experiments on 2- and 4-core systems indicate
that incorporating awareness of access-rates and hit-gaps during cache eviction
will improve the LLC utilization. As the proposed policy is aware of the access
rates of the applications, it prevents domination of high access rate application
over low access rate application. It also performs well in the presence of both LRU
friendly and scan access patterns. As part of future work, we plan to i) look at the
challenges of using this technique in a multi-threaded scenario; ii) apply fine grain
control on the life of individual cache lines of applications at run-time along with
the coarse grain maximum life constraints exerted by ACR policy.

Acknowledgement. This work was supported in part by grant from Depart-
ment of Science and Technology, India, Project No. SR/S3/EECE/0018/2009.

References

[1] Belady, L.: A study of replacement algorithms for a virtual-storage computer. IBM
Systems Journal 5(2), 78–101 (1966)

[2] Keramidas, G., Petoumenos, P., Kaxiras, S.: Cache replacement based on reuse
distance prediction. In: International Conference on Computer Design (2007)

[3] Kharbutli, M., Solihin, Y.: Counter-based cache replacement and bypassing algo-
rithms. IEEE Transactions on Computers 57 (2008)

[4] Jaleel, A., Hasenplaugh, W., Qureshi, M., Sebot, J., Steely Jr., S.C., Emer, J.:
Adaptive insertion policies for managing shared caches. In: ACM International
Conference on Parallel Architectures and Compilation Techniques, pp. 208–219
(2008)

[5] Jaleel, A., Theobald, K.B., Steely Jr., S.C., Emer, J.: High performance cache
replacement using re-reference interval prediction (RRIP). In: ACM International
Symposium on Computer Architecture, pp. 60–71 (2010)

[6] Qureshi, M.K., Jaleel, A., Patt, Y.N., Steely Jr., S.C., Emer, J.: Adaptive inser-
tion policies for high-performance caching. In: ACM International Symposium on
Computer Architecture, pp. 381–391 (2007)

[7] Wu, C.J., Martonosi, M.: Adaptive timekeeping replacement: Fine-grained capac-
ity management for shared cmp caches. ACM Transactions on Architecture and
Code Optimization 11, 27 (2011)

[8] Xie, Y., Loh, G.H.: PIPP: Promotion/insertion pseudo-partitioning of multi-core
shared caches. In: ACM International Symposium on Computer Architecture, pp.
174–183 (2009)

[9] Xie, Y., Loh, G.H.: Scalable Shared-Cache Management by Containing Thrashing
Workloads. In: Patt, Y.N., Foglia, P., Duesterwald, E., Faraboschi, P., Martorell,
X. (eds.) HiPEAC 2010. LNCS, vol. 5952, pp. 262–276. Springer, Heidelberg (2010)

[10] SPEC CPU benchmark suite, http://www.spec.org

 http://www.spec.org

An Application-Aware Cache Replacement Policy for Last-Level Caches 219

[11] Srikantaiah, S., Kandemir, M.: Irwin: Adaptive set pinning: Managing shared
caches in chip multiprocessors. In: International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, pp. 135–144 (2008)

[12] Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Hes-
tness, J., Hower, D.R., Krishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib,
M., Vaish, N., Hill, M.D., Wood, D.A.: The GEM5 simulator. ACM SIGARCH
Computer Architecture News 39, 1–7 (2011)

Deploying Hardware Locks to Improve

Performance and Energy Efficiency of Hardware
Transactional Memory

Epifanio Gaona1, José L. Abellán1, Manuel E. Acacio1, and Juan Fernández2

1 Universidad de Murcia, Spain
{fanios.gr,jl.abellan,meacacio}@ditec.um.es

2 Intel Barcelona Research Center, Spain
juan.fernandez@intel.com

Abstract. In the search for new paradigms to simplify multithreaded
programming, Transactional Memory (TM) is currently being advocated
as a promising alternative to lock-based synchronization. Among the two
most important alternatives proposed for conflict detection and data ver-
sioning in today’s Hardware Transactional Memory systems (HTMs), the
Lazy-Lazy one allows increased concurrency, potentially bringing higher
performance levels in most cases. Unfortunately, the implementation of
the commit protocol in Lazy-Lazy systems results in increased complex-
ity and has severe impact on performance and energy consumption. In
this work, we propose GCommit, an efficient and low cost hardware im-
plementation of the SEQ commit protocol based on the use of hardware
locks. Specifically, GCommit deploys hardware locks to ensure exclusive
access to shared data at commit time. Implementing this functionality
using dedicated hardware brings important benefits in terms of execution
time as well as energy consumption with respect to traditional commit
protocols that use the general-purpose interconnection network. Addi-
tionally, our proposal has negligible requirements in terms of area. Re-
sults for a 16-core CMP show that the GCommit protocol obtains average
reductions of 15.7% and 13.7% in terms of execution time and energy
consumption, respectively, compared with a traditional implementation
of Scalable TCC with SEQ, a high-performance commit protocol pro-
posed in the literature.

1 Introduction and Motivation

In recent years the emphasis in microprocessor design has shifted from high
performance to high efficiency, measured as cycles per watt. Therefore energy
consumption constitutes a fundamental aspect in processor design that has made
major processor vendors to evolve towards multicore architectures. On the other
hand, whereas it is expected that the number of cores in multicore architectures
will grow, reaching even hundreds of them in the next years, multithreaded
programming remains a challenging task, even for experienced programmers.

In this context, Transactional Memory (TM) has arisen as a promising alter-
native to lock-based synchronization, and industry is moving to incorporating

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 220–231, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Deploying Hardware Locks to Improve Performance and Energy Efficiency 221

TM support at the hardware level (e.g. Intel’s Haswell microarchitecture [1]).
TM borrows the concept of transaction from the database world and brings
it into the shared-memory programming model [2]. Transactions are no more
than blocks of code whose execution must satisfy the serializability and atomic-
ity properties. Programmers simply declare the transaction boundaries leaving
the burden of how to guarantee such properties to the underlying TM system
thereafter.

In HardwareTransactionalMemory (HTM) systems, the hardware provides the
illusion that each transaction is executed atomically and in isolation while threads
are executing in parallel (transactions are speculatively executed). HTM systems
usually work at cache line level. Conceptually, each transaction is associated two
initially-empty read and write sets that are populated every time a transactional
access is issued. A transaction can commit only after the HTM system can assure
that there are no other running transactions whose write sets collide with its read
orwrite sets. The commit processmakes the read andwrite sets visible to thewhole
system. HTM systems are usually classified attending to how they tacklewith data
version management (VM) and conflict detection (CD). In this work we focus our
attention on the extensively used Lazy-Lazy systems.

Lazy-Lazy systems are called optimistic since they perform data accesses as
if there were no data dependencies. Nevertheless, at commit time, it must be
verified that there are no conflicts with other transactions. This step represents
in some cases a significant fraction of the total transactional execution time [3].
We can distinguish two different tasks during the commit : (1) acquiring privileges
and (2) making changes visible. The former, also known as precommit subphase,
ensures compliance with the serializability and atomicity properties by enforcing
commit ordering between transactions with clashing read and write sets. The
latter propagates transactionally modified data to the memory hierarchy.

In this work, we present GCommit, an efficient and low cost hardware im-
plementation of the SEQ commit protocol [4] used in Scalable TCC system [5]
(STCC-SEQ). The main particularity of GCommit is that it deploys hardware
locks to reduce the duration of the commit phase (more precisely the precommit
component), and consequently, to improve performance and reduce energy con-
sumption. More specifically, GCommit is implemented assuming GLocks hard-
ware locks [6], which are slightly modified. Glocks present really short acquire-
ment and release latencies even in the case of high contention. Taking advantage
of these characteristics, a GLock can be employed to ensure exclusive access
to a rank of addresses at precommit time, as L2 cache banks do in STCC-SEQ.
Implementing this functionality using dedicated hardware brings important ben-
efits in terms of execution time as well as energy consumption with respect to
traditional implementations of commit protocols that use the general-purpose
interconnection network to coordinate commit ordering. Additionally, our pro-
posal entails negligible overhead in terms of area. Results for a 16-core CMP
show that GCommit accelerates the precommit subphase about 68.5% on aver-
age, which results in average reductions of 15.7% and 13.7% in terms of execution
time and energy consumption when compared with STCC-SEQ.

222 E. Gaona et al.

2 GCommit: Efficient Commits in HTM Systems

In this section we start with a description of the original scheme of Sequential
Commit (SEQ) and its most advanced algorithm up to date: SEQ-PRO. After-
wards, we continue with a brief explanation of GLocks [6], the main hardware
component of GCommit, and how they have to be adapted to our proposal.
Finally, we detail the design and implementation of GCommit.

2.1 STCC with Sequential Commit (STCC-SEQ)

In Lazy-Lazy systems, transactions are allowed to run as if they were alone in
the system. Only when a transaction reaches its end and before it is allowed to
propagate their results, conflicts are checked. This stage is known as the commit
phase. Sequential Commit (SEQ) is nowadays the most popular commit algo-
rithm for Lazy-Lazy HTM systems. Instead of employing a centralized arbiter to
enforce commit ordering, SEQ makes use of the L2 directory banks to manage
an implicit order between transactions with clashing read and write sets. To do
so it tries to book every directory (L2 cache bank) in its read and write sets. A
directory belongs to that sets if at least one transactional address belongs to the
corresponding L2 cache bank. The process is explained below:

1) A committing transaction sends a request message to each directory in its
read and write sets in ascending order. This prevents deadlock conditions. In
the case of two different transactions competing to commit, only the first that
achieves to book the first conflicting directory will continue with the process.
The other transaction will have to wait till the completion of the first one.
2) Once a transaction has booked a particular directory, an “Occupied” bit is
set and an ACK message is sent back. Other requests will be buffered.
3) The precommit phase finishes once a transaction has collected all the ACKs
from every directory bank in its read and write sets.
4) The transaction’s write set is sent to the reserved directory banks. Involved
memory lines will be marked as Owned and invalidations will be sent to the
other sharers of theses lines to signal a conflict with this transaction. When all
the ACKs for these invalidations has been received, the directory bank clears
its “Occupied” bit. If another transaction is waiting to book the directory bank,
then an ACK message is sent to it.
5) The transaction ends with a release message to the directories in its read set.
The scheme above represents the basic approach where Read-After-Read (RAR)
situations are managed as a possible source of conflict. This happens when two
transactions share the same directory bank in their read sets. Although in this
case there is no conflict between the transactions (the directory is only used for
reads), SEQ only allows one of the transactions to book the directory, delaying
the commit of the other. An advanced algorithm called SEQ with Parallel Reader
Optimization (SEQ-PRO) distinguishes between directories booked by read and
write access, allowing several transactions to occupy the same directory bank for

Deploying Hardware Locks to Improve Performance and Energy Efficiency 223

(a) GLock architecture (b) Logical view of a GLock

Fig. 1. Implementation of a GLock in a 9-core CMP

read accesses. To do so, several Read “Occupied” bits (and one Write “Occupied”
bit) are required in every directory bank.

2.2 GLocks

The design of a GLock for a 9-core CMP is shown in Figure 1(a). Every GLock
is made up of two kind of components: G-lines (finer black lines) and controllers
(R, Sx, and Cx). Each G-line is able to transmit one bit signal across one dimen-
sion of the chip in one cycle. Thanks to that property and its distributed tree de-
sign (figure 1(b)), a GLock can guarantee access to the critical section in two or
four cycles in absent of contention. Figure 1(b) represents the logical tree view
of a GLock. The lock request travels till the root controller (R) with one cycle in
each step and the ACK/token signal performs the same in the opposite direction
(4 cycles). In case the intermediate controller (Sx) already had the token, then this
node has enough privileges to ensure access to the GLock without asking the root
(2 cycles). In addition, an implementation of GLocks using regular wires (not G-
lines) has also been studied. This implementation relies on amainstream industrial
synthesis toolflow and on an STMicroelectronics 45 nm standard cell technology
library. The placement-aware logic synthesis is performed through Synopsys Phys-
ical Compiler. Assuming an area equal to 550×550μm2 (each core) it is obtained
that the size of a GLock is 3.62μm2, which represents 0.07% of the total area em-
ployed (this is true also for 32 cores). This marginal overhead also will lead to a
negligible impact on power dissipation as is specified in [6]. Details about the op-
eration, implementation and scalability of GLocks can be found in [6].

In order to be used in GCommit, GLocks had to be minimally customized.
In particular, we extend the behavior of GLocks to manage release petitions
(unlock) even if the ACK signal that grants access to the lock has not been
sent yet. In particular, this behavior is found when a transaction is aborted just
after requesting access to a GLock, and the corresponding ACK has not been
received. In this case, and as part of the abort, the transaction desists from its
request to commit by explicitly sending the release signal to the lock manager.

224 E. Gaona et al.

2.3 GCommit

GCommit is a hardware implementation of the SEQ commit algorithm used in
STCC. Instead of using the directory banks as a distributed arbiter, GCommit
employs one or several GLocks [6] to enable transactions to commit. According
to our experiments, a GLock is at least ten times faster than the usual network
where cache coherence messages flow.

For SEQ, the decision of employing as much directories as L2 cache banks
is natural since the directory itself is usually split in that way. Nevertheless
GCommit needs a separate hardware mechanism that does not scale naturally
with system size. Each GLock is not implemented as a central arbiter. Its design
is spread along the whole system and C − 1 G-lines are needed for one GLock,
where C represents the number of cores. To keep GCommit simple, we assume
that each GLock logically protects a rank of addresses. The assignment is done
statically by means of the next formula: D mod G. Where D is the directory
ID and G represents the number of GLocks used by GCommit. This additional
mapping does not entails any overhead.

When a transaction wants to commit, it tries to acquire all the GLocks (with a
lock request) in its read and write sets (instead of the L2 cache banks) in ascend-
ing order to avoid deadlock conditions. To do so, a transaction requests the first
GLock. If no other transaction has already acquired that GLock, it will receive
an ACK signal giving it exclusive access over the addresses protected by the lock.
On the contrary, the GLock will delay the ACK till the other transaction keeping
the lock at that moment, releases (unlock) the GLock. After collecting all ACKs
from the GLocks involved in the read and write sets, the precommit subphase
finishes. After that the transaction has the certainty that no other transaction
will abort it, and hence, it proceeds making its write set visible to the L2 cache
as in the SEQ protocol (second phase of the commit). Finally, after collecting
all the acknowledgments to the invalidations sent by the cache coherence proto-
col as part of the propagation of its writes, the transaction must unlock all the
previously granted GLocks (just one cycle). This is another difference between
the original SEQ implementation and GCommit, since SEQ only needs to send
a release message to the read directories. Nevertheless GLocks’ acquisitions and
releases do not travel along the main interconnection network, but are sent us-
ing the specialized hardware deployed by GLocks. This results in very significant
savings in terms of network traffic (Section 4).

3 Evaluation Environment

3.1 System Settings

We use a full-system execution-driven simulation based on the Wisconsin GEMS
toolset [7], in conjunction with Wind River Simics [8]. We rely on the detailed
timing model for the memory subsystem provided by GEMS’s Ruby module,
with the Simics in-order processor model. Simics provides functional correctness
for the SPARC ISA and boots an unmodified Solaris 10. We simulate a tiled

Deploying Hardware Locks to Improve Performance and Energy Efficiency 225

Table 1. Parameters of
Orion

Parameter Value

in port 6
tech point 45

Vdd 1.0
transistor type NVT

flit width 128 (bits)

Table 2. Workloads and inputs

Benchmark Input
Genome -g512 -s32 -n32768
Intruder -a10 -l16 -n4096 -s1

Kmeans-high -m15 -n15 -t0.05 -i random-n2048-d16-c16
Kmeans-low -m40 -n40 -t0.05 -i random-n2048-d16-c16
Labyrinth -i random-x32-y32-z3-n96

Ssca2 -s14 -i1.0 -u1.0 -l9 -p9
Vacation-high -n4 -q60 -u90 -r1048576 -t4096
Vacation-low -n2 -q90 -u98 -r1048576 -t4096

Yada -a10 -i ttimeu10000.2

CMP system configured as described next. We assume a 16-core configuration
with private L1 I&D caches and a shared, multibanked L2 cache consisting of
16 banks of 512KB each. The L1 caches maintain inclusion with the shared L2
cache. The private L1 data caches are kept coherent through an on-chip directory
(at L2 cache banks), which maintains bit-vectors of sharers and implements the
MESI protocol. All tiles are connected through a router-based 2D-mesh network.
In this 4×4 2D-network, each router has between 5 and 7 ports.

To compute energy consumption in the on-chip memory hierarchy we consider
both the caches and the interconnection network. Energy consumed by the inter-
connection network has been measured based on Orion 2.0 [9]. In particular, we
have extended the network simulator provided by GEMS with the consumption
model included in Orion. Table 1 shows the values of some of the parameters
assumed for the interconnection network. On the other hand, the amount of en-
ergy spent in the memory structures (L1, L2, Write Buffer) has been measured
based on the consumption model of CACTI 5.3 rev 174 [10]. In the case of the
L2 cache, we distinguish the accesses that return cache blocks from those that
only involve the tags’ part of the L2 cache. To account for the energy consumed
by the GLocks we assume the implementation presented in [6].

The Ruby module provides support for a naive implementation of a Lazy-
Lazy system. We have extended it in order to achieve an implementation that
mimics the behavior of Scalable-TCC with the sequential commit algorithm
(STCC-SEQ) described in [4]. We have implemented GCommit on top of STCC-
SEQ. For that, all we had to change was the commit protocol. In GCommit, all
commits are performed in hardware using the mechanism described in Section 2.
The remaining aspects are identical in both GCommit and STCC-SEQ. Finally,
we have also evaluated the parallel reader optimization for STCC-SEQ (STCC-
SEQPRO [4]). This optimization allows multiple transactions to simultaneously
occupy a directory as long as none of these transactions write to this directory.

3.2 Workloads

For the evaluation, we use nine transactional benchmarks extracted from the
STAMP suite [11]. We evaluate STAMP applications using the recommended in-
put size in each case. The application Bayes was excluded since it exhibits unpre-
dictable behavior and high variability in its execution times [12]. Results presented

226 E. Gaona et al.

have been averaged over twenty runs for each application, each with very minor
randomization of some system parameters just sufficient to excite different inter-
leavings. Table 2 describes the benchmarks and the values of the input parameters
used in this work.

4 Results

In this section, we present the results obtained for the Lazy-Lazy systems previ-
ously described (STCC-SEQ, GCommit and STCC-SEQPRO) in terms of exe-
cution time, energy consumption and network traffic. For GCommit we assume
different number of GLocks. Gx in the next figures represents an implementation
of GCommit with x GLocks. Results for G16 have been omitted in the energy
and traffic graphs since they coincide with those obtained with less GLocks.

4.1 Execution Time Results

Figure 2 shows the relative breakdown of the execution times obtained for STCC-
SEQ, STCC-GCommit andSTCC-SEQPRO(SEQ,GCommit andSEQPROfrom
here on respectively). In all cases, execution times have been normalized with re-
spect to those obtained with SEQ. Moreover, to have clear understanding of the
results Figure 2 divides the execution times into the following categories: Abort
(time spent during aborts), Back-off (delay time between an abort and the next
re-execution),Barrier (time spent in barriers),Commit (time needed to propagate
thewrite sets to thememory hierarchy),Non xact (time spent in non-transactional
execution),Precommitting –or precommit phase– (time taken to acquire privileges
to commit–bookthecorrespondingdirectorymodules/GLock),Xact useful (useful
transactional time)andXact wasted (transactional timewastedbecauseofaborts).

As it can be derived from Figure 2, GCommit shows noticeable improvements
in overall performance with respect to both SEQ and SEQPRO (average re-
duction of 15.7% and 11.3% respectively). It is important to note that these
improvements come as a result of a significant reduction in the amount of time
needed to complete the precommit phase (Precommitting category in the bars).
Observe also that GCommit consistently reduces the duration of the precommit
phase in all applications (68.5% on average compared with SEQ). On the other
hand, the distinction between reads and writes carried out in SEQPRO results
in small improvements over SEQ (average reduction of only 5.1%), which are
mainly a consequence of the reductions in the precommit phase in just two of
the nine applications (Kmeans-high and Ssca2). The other important conclusion
that can be extracted from Figure 2 is that the number of GLocks needed to
obtain full potential of GCommit is just one. All bars labeled with Gx obtain
almost the same result and hence, G1 is presented as the best tradeoff between
complexity and performance. On the one hand, with only one GLock, GCommit
precludes the possibility of parallel commits since all the transactions willing to
commit will have to compete for the same GLock during the precommit phase.
On the other hand, the more GLocks GCommit uses, the more GLocks must be

Deploying Hardware Locks to Improve Performance and Energy Efficiency 227

SEQPRO
SEQ

G8
G4

G2
G16

G1

genome
intru

der

kmeans-high

kmeans-low

labyrinth
ssca2

vacation-high

vacation-low
yada

Average

Applications

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e
(b

re
ak

do
w

n)

abort
backoff

barrier
commit

non_xact
precommitting

xact_useful
xact_wasted

Fig. 2. Breakdown of the execution times

booked, thus enlarging the duration of the precommit phase. In this way, the
benefits of having several GLocks are offset by the increased number of steps in
the booking process. Moreover, the fact that our proposal reduces drastically the
duration of the precommit phase also minimizes the possibility of transactions
competing for the same resources.

The discussion below highlights important observations and presents insights
gained from a detailed analysis of the interaction between the three commit
algorithms and the behavior of individual workloads.

Genome. This workload exhibits moderate to high degree of contention. The
average number of directory banks that must be booked is considerably high
(10-16). This supposes a considerable number of steps that enlarge the duration
of the precommit phase. Additionally, the distinction between read and write
accesses enabled by SEQPRO barely improves execution time.

Intruder. This workload shows high contention with three transactions. Nev-
ertheless, only transaction with TID0 accumulates the most important part of
the aborts. Reducing the time needed in the arbitration process (booking direc-
tories/GLocks) benefits the global execution by 20%.

Kmeans (high/low).Despite the fact that this benchmark is mainly non trans-
actional, there are some differences in Kmeans-high. In this case, there are three
transactions but only TID0 and TID1 represent important fractions of transac-
tional execution time. Parallel commits are allowed only between threads running
transactions with different TIDs. Nevertheless, Kmeans is highly concurrent, so
the efficiency of GCommit exceeds its lack of parallel commits.

Labyrinth. Results for this workload depend significantly on the interleaving of
threads. Its most important transaction (TID1) presents large write sets and a
long execution time. An abort is extremely costly and when a transaction com-
mits, it is frequent that other transactions must abort. Tansactional execution
phases dominate overall time, and the commit algorithm is not relevant.

Ssca2. It has a large number of tiny transactions that favors parallel reader
optimization of SEQPRO allowing multiple parallel commits. On the other hand

228 E. Gaona et al.

SEQPRO
SEQ

G8
G4
G2
G1

genome
intru

der

kmeans-high

kmeans-low

labyrinth
ssca2

vacation-high

vacation-low
yada

Average

Applications

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

(b
re

ak
do

w
n) abort

backoff
barrier
commit

non_xact
precommitting

xact_useful
xact_wasted

Fig. 3. Energy consumed (breakdown)

SEQ obtains the worst results due to the serialization that introduces in RAR
situations. GCommit beats SEQ because of its minimum delay to book every
directory/GLock. Parallel Reader Optimization (PRO) applied to GCommit can
improve its performance even more.

Vacation (high/low). This benchmark does not exhibit real conflicts. The
number of directory banks booked for writing and the low level of contention
eliminate any possibility of parallel commits. Only the fast commits enabled by
GCommit can make precommitting time disappear.

Yada. It has a large working set and exhibits high contention. The domi-
nant transaction (TID2) spreads its large write set (69.3 addresses) among
all L2 banks, hindering parallel commits. The frequency of the aborts makes
xact wasted time the most important fraction in the total execution.

4.2 Energy and Network Traffic Results

Figure 3 shows the dynamic energy consumption for the three systems consid-
ered in this work. As before, results have been normalized with respect to SEQ.
Additionally, we split the energy consumed in each case into the same categories
than in Section 4.1. To do so, we track the amount of energy consumed during
each one of the categories. For messages sent through the general-purpose inter-
connection, we track data accesses in any cache structure and Write Buffer as
well as other possible messages generated because of the first one, and accumu-
late all this energy consumption into the corresponding execution phase of the
transaction that issued the original message.

As with execution time, our proposal significantly improves overall energy con-
sumption compared to SEQ and, as shown in Figure 3, average reductions of 13.7%
are obtained. The energy due to the precommit phase is virtually eliminated in
GCommit. Our proposal does not issue any messages on the general-purpose in-
terconnect, and the energy consumed during the precommit phase comes just from

Deploying Hardware Locks to Improve Performance and Energy Efficiency 229

genome
intru

der

kmeans-high

kmeans-low

labyrinth
ssca2

vacation-high

vacation-low
yada

Average

Applications

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

N
or

m
al

iz
ed

 n
et

w
or

k
tr

af
fic

 (
nu

m
be

r
of

 fl
its

)

G1 G2 G4 G8 SEQ SEQPRO

Fig. 4. Normalized network traffic

themuchmore efficient dedicated links and controllers of theGLocks.Additionally,
in both SEQand SEQPRO, several directory banksmust be reserved and therefore
much more steps have to be done (except with G16). Network traffic (measured as
number of flits) generated by SEQ, SEQPRO and GCommit is shown in Figure 4.
As in Figure 3, results have been normalized with respect to those obtained with
SEQ. As it can be seen, GCommit entails smaller traffic levels than the other ap-
proaches (reductions of 10.6%onaverage).On theother hand, the amountof energy
spent during precommitting is small in the case of SEQ and SEQPRO.The number
of controlmessages across the network during this arbitrationperiod ismoderate in
both protocols, so part of the improvements in energy consumption come from the
reduction in the number of aborts that GCommit entails. This is why the amount
of energy due to backoff is also reduced in GCommit.

5 Related Work

Research in Hardware Transactional Memory (HTM) has been very active since
the introduction of multicores in mainstream computing. The initial proposal by
Herlihy et al. [13] was revived in the previous decade with more sophisticated
designs like TCC [14] or LogTM-SE [15]. HTM systems have been traditionally
classified into two categories according to the approaches to version management
(VM) and conflict detection (CD) that they implement: Eager-Eager and Lazy-
Lazy (VM and CD respectively). Although Lazy-Lazy HTMs have been identified
as being more efficient than eager designs [16], the necessity of en-masse publi-
cation of updates at commit time raises issues of scalability and several hybrid
approaches (FlexTM [16], ZEBRA [17]) have been recently proposed.

TCC [14] has probably been the most seminal Lazy-Lazy system. The original
design which was based on a bus was later adapted to a more scalable architecture
that uses directory-based coherence, giving rise to Scalable-TCC [5]. Subsequently,
Pugsley et al. proposed STCC-SEQ and STCC-SEQPRO to significantly reduce

230 E. Gaona et al.

commit time in Scalable-TCC [4]. Both STCC-SEQ and STCC-SEQPRO are free
ofdeadlocks/livelocks, donot employa centralizedagentandallow for parallel com-
mits. In this work we study a hardware implementation of an algorithm similar to
STCC-SEQ and show that to improve commit bandwidth it is more important to
reduce commit transfer time (time that goes since a transaction completes commit
until another one gets permission to commit) than enabling parallel commits.

Finally, GCommit is based on the use of hardware locks, specifically GLocks,
presented by Abellán et al. [6]. A GLock makes use of G-lines [18] to deploy
a distributed design that let transactions fast commit during their arbitration
period at commit time (precommit phase). This efficient hardware imitates the
behaviour of directories in STCC-SEQ but it completes each step of the precom-
mit phase much more faster.

6 Conclusions

In this work we have presented GCommit, a new hardware approach to commit
algorithms in Lazy-Lazy HTM systems. GCommit implements a hardware ap-
proximation to the STCC-SEQ commit algorithm that dramatically accelerates
the precommit subphase of a commit. GCommit is implemented using hardware
locks, more specifically GLocks. A GLock allows access to its critical section in
2 or 4 cycles in absent of contention. GCommit exploits that quality to replace
the reservation of directory banks during the precommit phase in STCC-SEQ
with the acquisition of one or several GLocks. Now each GLock protects access
to the same rank of addresses (its critical section) than the previous directory
bank. GCommit can use several GLocks in its implementation. Nevertheless we
find that with a single GLock, GCommit achieves the maximum performance
and energy savings with the minimal hardware complexity.

We evaluate our proposal using full-system simulations of a 16-core CMP
running several STAMP applications, and compare it against a traditional im-
plementation of STCC-SEQ and STCC-SEQPRO.We find that GCommit accel-
erates the precommit subphase about 68.5% on average, which results in average
reductions of 15.7% and 13.7% in terms of execution time and energy consump-
tion, respectively, compared with STCC-SEQ. Additionally, our proposal has
negligible requirements in terms of area. Finally, although GCommit does not
enable parallel commits–with only one GLock–(contrary to STCC-SEQ), be-
cause of the particularities of transactional applications it is more important to
ensure short precommitting time than enabling parallel commits at the cost of
increasing the duration of the process (for example, by increasing the time to
acquire every GLock).

Acknowledgment. This work was supported by the Spanish MINECO under
grant TIN2012-38341-C04. Epifanio Gaona Ramı́rez is supported by fellowship
09503/FPI/08 from Fundación Séneca, Agencia Regional de Ciencia y Tecnoloǵıa
de la Región de Murcia (II PCTRM).

Deploying Hardware Locks to Improve Performance and Energy Efficiency 231

References

1. Kanter, D.: Analysis of Haswell’s transactional memory. In: Real World Technolo-
gies (Febuary 15, 2012)

2. Herlihy, M., Eliot, J., Moss, B.: Transactional memory: Architectural support for
lock-free data structures. In: ISCA 20 (May 1993)

3. Gaona-Ramı́rez, E., Titos-Gil, R., Fernández, J., Acacio, M.E.: Characterizing en-
ergy consumption in hardware transactional memory systems. In: SBAC-PAD-22
(October 2010)

4. Pugsley, S.H., Awasthi, M., Madan, N., Muralimanohar, N., Balasubramonian,
R.: Scalable and reliable communication for hardware transactional memory. In:
PACT-17 (October 2008)

5. Chafi, H., Casper, J., Carlstrom, B.D., McDonald, A., Minh, C.C., Baek, W.,
Kozyrakis, C., Olukotun, K.: A scalable, non-blocking approach to transactional
memory. In: HPCA-13 (February 2007)

6. Abellán, J.L., Fernández, J., Acacio, M.E.: Design of an efficient communication
infrastructure for highly-contended locks in many-core cmps. Journal of Parallel
and Distributed Computing (July 2012)

7. Martin, M.M.K., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M., Alameldeen,
A.R., Moore, K.E., Hill, M.D., Wood, D.A.: Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset. SIGARCH CAN 33(4), 92–99 (2005)

8. Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G., Hog-
berg, J., Larsson, F., Moestedt, A., Werner, B.: Simics: A full system simulation
platform. IEEE Computer 35, 50–58 (2002)

9. Kahng, A.B., Li, B., Peh, L.S., Samadi, K.: ORION 2.0: A fast and accurate
NoC power and area model for early-stage design space exploration. In: DATE-13
(March 2009)

10. HP Labs, http://quid.hpl.hp.com:9081/cacti
11. Minh, C.C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transac-

tional applications for multi-processing. In: IISWC-4 (September 2008)
12. Dragojevic, A., Guerraoui, R.: Predicting the scalability of an STM. In: Transact-

05 (April 2010)
13. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-

free data structures. SIGARCH CAN 21(2), 289–300 (1993)
14. Hammond, L., Wong, V., Chen, M.K., Carlstrom, B.D., Davis, J.D., Hertzberg,

B., Prabhu, M.K., Wijaya, H., Kozyrakis, C., Olukotun, K.: Transactional memory
coherence and consistency. In: ISCA-31 (June 2004)

15. Yen, L., Bobba, J., Marty, M.R., Moore, K.E., Volos, H., Hill, M.D., Swift, M.M.,
Wood, D.A.: LogTM-SE: Decoupling hardware transactional memory from caches.
In: HPCA-13 (February 2007)

16. Shriraman, A., Dwarkadas, S., Scott, M.L.: Flexible decoupled transactional mem-
ory support. In: ISCA-35 (June 2008)

17. Titos, J.R., Negi, A., Acacio, M.E., Garćıa, J.M., Stenström, P.: ZEBRA: A data-
centric, hybrid-policy hardware transactional memory design. In: ICS-25 (June
2011)

18. Krishna, T., Kumar, A., Peh, L.S., Postman, J., Chiang, P., Erez, M.: Express
virtual channels with capacitively driven global links. IEEE Micro 29(4), 48–61
(2009)

 http://quid.hpl.hp.com:9081/cacti

Self-adaptation for Mobile Robot Algorithms

Using Organic Computing Principles

Jan Hartmann1, Walter Stechele2, and Erik Maehle1

1 Institute for Computer Engineering, Universität zu Lübeck
2 Institute for Integrated Systems, Technische Universität München

Abstract. Many mobile robot algorithms require tedious tuning of pa-
rameters and are, then, often suitable to only a limited number of situ-
ations. Yet, as mobile robots are to be employed in various fields from
industrial settings to our private homes, changes in the environment will
occur frequently. Organic computing principles such as self-organization,
self-adaptation, or self-healing can provide solutions to react to new sit-
uations, e.g. provide fault tolerance. We therefore propose a biologically
inspired self-adaptation scheme to enable complex algorithms to adapt to
different environments. The proposed scheme is implemented using the
Organic Robot Control Architecture (ORCA) and Learning Classifier Ta-
bles (LCT). Preliminary experiments are performed using a graph-based
Visual Simultaneous Localization and Mapping (SLAM) algorithm and
a publicly available benchmark set, showing improvements in terms of
runtime and accuracy.

1 Introduction

The Organic Robot Control Architecture (ORCA, [1]) is a software architec-
ture that enables the development of self-x properties for mobile robots. While
ORCA was only applied to simple problem sets, e.g. servo control or walking
gate generation, previously, in this work, ORCA is extended by utilizing Learn-
ing Classifier Systems (LCS, [2]) as the main method for self-adaptation, so that
it can be applied to a broad range of algorithms. Now, in ORCA algorithms are
organized in a modular and hierarchical fashion. The LCS analyze the output of
a module and apply changes to algorithm parameters or exchange parts of the
algorithm. In operation, the LCS further employ unsupervised machine learning
to determine, which actions have most improved the algorithm performance, e.g.
runtime or accuracy, and adjust itself accordingly.

A Visual Simultaneous Localization and Mapping (SLAM) algorithm has been
chosen as a test scenario for its popularity, the ability to modularize the algo-
rithm, and the large impact of changes in the environment to the algorithm’s
performance. ORCA and LCS are implemented in the Robot Operating System
(ROS) framework1, which supports the modular approach of ORCA. We extend
existing interfaces for manual reconfiguration of parameters to allow for an easy
incorporation of self-adaptation capabilities into other projects.

1 http://www.ros.org/wiki

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 232–243, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.ros.org/wiki

Self-adaptation for Mobile Robot Algorithms 233

As software systems become larger and the underlying hardware is often dis-
tributed and heterogeneous, self-adaptive software has been extensively studied.
Self-adaptive software systems vary widely in the degree of adaptation, scale,
and view-point of the approach. A comparison of different formal descriptions
of self-adaptation architectures can be found in [3]. Self-adaptive software in
terms of self-managed system architectures is introduced in [4]. A survey from
an engineering point of view is given in [5], posing open questions for future re-
search. Some of these questions are addressed in this work, e.g. the transparent
integration into existing projects through ROS.

Our approach, given the various definitions in the previously mentioned sur-
veys, must be seen as an architecture-based self-adaptation approach, governed
by the Organic Robot Control Architecture ORCA. It further exhibits the prop-
erties of a control loop-based self-adaptation scheme. A similar biology-inspired
approach was introduced with the generic Observer/Controller architecture [6].
Another approach to self-adaptation architectures was proposed by the IBM Au-
tonomic Computing Initiative2, specifically the Monitor-Analyze-Plan-Execute
(MAPE)Model, which was e.g. implemented in the Rainbow framework [7]. Simi-
larly to organic computing, ORCA, and other Observer/Controller architectures,
autonomic computing and Rainbow utilize a biologically inspired approach. Yet,
the main application lies in large-scale server infrastructures.

In the field of mobile robots, self-adaptation has been studied on the level of
physically reconfigurable robots [8] and cooperating robot teams [9]. While the
main goal of robots that seamlessly adapt to the environment remains similar, the
problem set discussed in this paper requires a higher degree of software-centered
self-adaptation. Generally, in comparison to other self-adaptation schemes, the
approach presented in this paper mainly contributes in three areas. Firstly, the
approach is tailored to complex mobile robot algorithms. To reduce the en-
gineering time and raise the degrees of freedom for such complex algorithms,
secondly, unsupervised machine learning was introduced to the self-adaptation
process. Lastly, a simple means of applying self-adaptation to existing projects
is proposed by the integration into the ROS framework.

The remainder of this paper is structured as follows. First, the different meth-
ods used in this work are introduced in Sec. 2. Then, details on the implementa-
tion of the proposed self-adaptation framework are presented in Sec. 3. Finally,
preliminary results are shown in Sec. 4 and discussed in Sec. 5.

2 Methods

In this section, the main building blocks of the self-adaptation approach, which
is presented in this work, will be introduced in more detail.

2.1 The Organic Robot Control Architecture

The Organic Robot Control Architecture (ORCA, [1]) was developed in the Ger-
man Research Foundation (DFG) priority program “Organic Computing” at the

2 http://www.research.ibm.com/autonomic/

http://www.research.ibm.com/autonomic/

234 J. Hartmann, W. Stechele, and E. Maehle

Fig. 1. Using the Organic Robot Control Architecture (ORCA) for the six-legged walk-
ing robot OSCAR. Basic Control Units (BCU, white) guarantee the functionality of
the system under normal condition. In case of anomalies, Organic Control Units (OCU,
gray) may change parameters of the gait generation and motor control BCUs to ensure
that the robot reaches its goal in the best still possible way.

Institute for Computer Engineering at the University of Lübeck in cooperation
with the University of Osnabrück and the Fraunhofer IAIS. ORCA is a modular
and hierarchically structured software architecture, which is aimed to aid the
development of self-x properties in mobile robots.

In ORCA, the functionality of a system in a fault-free state is guaranteed
by the Basic Control Units (BCU). Organic Control Units (OCU) supervise the
BCUs as well as other OCUs and may change parameters of the supervised
modules in case of anomalies, i.e. disturbances that stem from the environment
or the inner state of the robot. Further, with the means of Health Signals, the
state of any unit may be described in a hierarchical fashion.

The capabilities of ORCA have been demonstrated on the six-legged walk-
ing machine OSCAR (Fig. 1). OSCAR is able to adapt to its environment, e.g.
different kinds of terrain [10], or hardware failures, e.g. the amputation of a leg
[11]. Re-planning of paths through difficult terrain based on the general health
status of the robot has been investigated in [12]. A number of BCUs execute
the basic functionality: planning, reactive behaviors, and walking. OCUs can

Self-adaptation for Mobile Robot Algorithms 235

adjust the walking gait generation as well as the parameters of the servo motor
controller to ensure the best possible walking in any situation.

In this paper, the ORCA architecture is utilized to bring organic computing
principles to a more general and a more complex set of mobile robot algorithms.

2.2 Visual SLAM as Demonstration Algorithm

The estimation of the position of a robot in an unknown environment - Si-
multaneous Localization and Mapping (SLAM) - is one of the most important
problems of mobile robotics. Solutions using cameras to construct a map of the
environment especially pose several challenges. Realtime capability in large en-
vironments, due to the complexity of the image processing algorithms that are
typically used, remains an open issue. The impact of changes in the environment
is largely ignored.

Such unsolved problems make Visual SLAM a good algorithm to demonstrate
the capabilities of our self-adaptation approach. Using the ORCA OCU/ BCU
scheme, Learning Classifier Tables (LCT), as described in the next section, are
used to adjust parameters of the different parts of the Visual SLAM algorithm
to ensure high efficiency in terms of runtime and accuracy, depending on the
environment and state of the algorithm and robot. Further, parts of the algorithm
may be exchanged, e.g. the means by which the robot movement is estimated.

2.3 Learning Classifier Tables

In this work, OCUs are implemented using Learning Classifier Tables (LCT,
[13]). LCT are based on Learning Classifier Systems (LCS, [14]), but allow for
an efficient hardware implementation, which will be an important goal for future
improvements to this work. A LCT rule table consists of a set of rules with
specific conditions, actions, and a fitness value. The fitness value governs which
rule that matches the current conditions is selected. It is updated based on a
reward, which reflects the general performance of the algorithm, e.g. runtime or
accuracy. While an extension to learning via genetic algorithms is provided by
LCT, this work solely relies on the fitness update for learning, due to the limited
scope of the presented preliminary results.

Fig. 2 shows an example LCT for the proposed demonstration algorithm. A
total of 10 conditions are evaluated. The conditions reflect information about
the environment, e.g. the amount of information that can be obtained from the
current image, as well as the inner state of the robot, e.g. the current robot
speed. Thirteen different actions are applied, which change the supervised mod-
ule by either reconfiguring part of the module or changing a specific parameter.
Matching rules are selected based on the conditions, where for each rule a con-
dition must apply, if the rule value at the corresponding position is 1, must not
apply for a value of 0, and is ignored otherwise. Similarly, for a selected rule, a
specific action is performed, if the rule value at the corresponding position is 1.

236 J. Hartmann, W. Stechele, and E. Maehle

Fig. 2. Example of a Learning Classifier Table (LCT) for the proposed demonstration
algorithm

3 Implementation

This section will explain the Visual SLAM implementation and show the LCT
ruleset that is used to adapt the Visual SLAM algorithm.

3.1 Visual SLAM Implementation

The proposed Visual SLAM algorithm largely follows the popular graph-based
solution, which is e.g. utilized in [15] and [16]. Fig. 3 shows the general dataflow
of a graph-based SLAM solution. Features are extracted from the camera image
to estimate the robot movement. If the robot has traveled a distance larger than
T , a new node is added to the SLAM graph. The extracted features are used
to link existing nodes in the vicinity of the new node by estimating the linear
transformation between the two nodes. Finally, the graph is optimized based on
the robot movement as well as the links between nodes, which were estimated
based on the features.

In this work, the RGBD camera Microsoft Kinect3 is used. The Kinect pro-
vides a RGB image as well as depth information for each pixel through a struc-
tured light approach. The Features from Accelerated Segment Test (FAST, [17])
feature detector and Binary Robust Independent Elementary Features (BRIEF,
[18]) feature descriptor are used for feature extraction. The graph is optimized
using g2o [19], an efficient framework for least squares graph optimization. The
means of estimating the movement of the robot and the transformation between
nodes as well as the threshold distance T is governed by the LCT self-adaptation.
The robot movement as well as the transformation between nodes is estimated

3 http://www.xbox.com/de-DE/Kinect

http://www.xbox.com/de-DE/Kinect

Self-adaptation for Mobile Robot Algorithms 237

Fig. 3. Simplified dataflow for a graph-based Visual SLAM system

in a Random Sample Consensus (RANSAC) scheme. Two different algorithms
may be used to estimate a transformation from feature correspondences. A ro-
bust and fast approach, as similarly applied in [15], uses three correspondences
and the Singular Value Decomposition (SVD). The more sophisticated EPnP
algorithm [20] is less efficient, but generally more accurate.

The proposed Visual SLAM algorithm has been designed for the popular
Robot Operating System (ROS) framework. Each BCU and OCU is implemented
as a ROS node, i.e. distinct processes that communicate via pre-defined messages.
ROS messages are also used as a means of generalized communication between
BCUs and OCUs. This will, in future experiments, provide a simple way to
introduce the capabilities of self-adaptation to other algorithms. Initial steps
in this direction have already been taken by using the dynamic reconfigure4

message types, which is a generic means for manual reconfiguration of algorithm
parameters in ROS.

3.2 Proposed Ruleset

For these experiments, the Visual SLAM algorithm is structured as shown in
Fig. 4. The general SLAM algorithm is subdivided into four modules. The graph
optimizer, feature extraction, movement estimation, and graph manager (which
handles adding new nodes and finding links between different nodes) are each
represented by a BCU. Two OCUs perform the self-adaptation for the latter
three BCUs. The first OCU supervises the movement and feature extraction
BCUs. It adjusts the number of features that are to be extracted. The second
OCU adjusts the distance after which to add a new node and the algorithm used
to estimate the transformation between nodes.

4 http://www.ros.org/wiki/dynamic_reconfigure

http://www.ros.org/wiki/dynamic_reconfigure

238 J. Hartmann, W. Stechele, and E. Maehle

Fig. 4. The proposed graph-based Visual SLAM as structured in ORCA

Table 1. Conditions, actions and rewards that were used in the experiments

conditions

mean feature score (μS) represents the amount of information that may be gath-
ered from the environment, i.e. high for highly textured
environments, low otherwise

robot speed (ν) influences the rate at which images need to be processed
in order to maintain a high accuracy

actions

number of features (F) sets the number of features to be extracted to a specific
value

new node distance (T) sets the distance after which a new node is to be added

transformation estimation sets the algorithm to estimate the transformation be-
tween nodes

rewards

runtime reward for low runtime

matches reward for high number of matching features in move-
ment estimation

neighbors reward for large number of node neighbors

Generally, as shown in Tab. 1, two conditions, two actions that change pa-
rameters, one action that reconfigures part of the algorithm, and three rewards
were selected in the experiments. Rules may then, for example, look as depicted
in Fig. 5.

Self-adaptation for Mobile Robot Algorithms 239

if μS < 60 and ν ≥ 0.5m
s

then
F = 200

end
if μS ≥ 60 then

F = 100
end
.
.
.
if μS ≥ 60 and ν < 0.5m

s
then

T = 0.1m, use EPnP
end
if ν ≥ 0.5m

s
then

T = 0.2m, use SVD
end
.
.
.

Fig. 5. Example of a ruleset for the Visual SLAM algorithm with four rules. Left: rules
in pseudo-code formulation. Right: resulting learning classifier table.

4 Preliminary Results

The self-adaptation for the Visual SLAM algorithm was evaluated using the
Freiburg University RGBD SLAM dataset5. The dataset provides different test
sequences using a handheld Microsoft Kinect as well as ground truth position
and orientation of the camera using a highly accurate tracking system. While
all test sequences are set in an office environment, they exhibit different kinds
of motion (e.g. rotational in FR1 rpy or translational in FR1 xyz) and different
degrees of texture in the image (e.g. low amount of texture in FR1 floor or high
amount of texture in FR1 desk). Therefore, a Visual SLAM algorithm should
benefit from self-adaptation in the test sequences.

The proposed Visual SLAM algorithm was tested on all test sequences that
were available at the time of writing, with and without self-adaptation. In the
latter case, a new node distance of T = 0.1, the SVD transformation estimation,
and feature numbers of F = 100 and F = 300 were used, representing the
two extremal cases in terms of runtime and accuracy. A full set of rules was
used for the learning classifier tables with the conditions, actions, and rewards
that were proposed in Sec. 3.2. All rules were initialized with equal fitness. The
self-adaption should, now, produce similarly accurate results as when using the
highest number of features while significantly improving the runtime.

Tab. 2 shows the runtime, i.e. mean time for a Visual SLAM update, and Root
Mean Squared Error (RMSE) in position, averaged over ten runs. Comparing the

5 http://vision.in.tum.de/data/datasets/rgbd-dataset

http://vision.in.tum.de/data/datasets/rgbd-dataset

240 J. Hartmann, W. Stechele, and E. Maehle

Table 2. Mean runtime (excluding graph optimization) and Root Mean Squared Error
(RMSE) in position of the Visual SLAM algorithm with and without self-adaptation.
Length and duration indicate the path length and actual duration of each test sequence.
Experiments without self-adaptation were run with T = 0.1 and the two extremal
number of features, F = 100 and F = 300. Values are averaged over 10 runs. The
best accuracy is highlighted for each sequence. Please refer to [15] for a more detailed
description of the dataset and results of the original authors.

with without (100) without (300)

Sequence
Name

Length
(m)

Duration
(s)

Time
(s)

RMSE
(m)

Time
(s)

RMSE
(m)

Time
(s)

RMSE
(m)

FR1 360 5.82 28.69 0.114 0.119 0.064 0.129 0.174 0.105
FR1 desk2 10.16 24.86 0.142 0.087 0.070 0.118 0.201 0.066
FR1 desk 9.26 23.40 0.116 0.061 0.068 0.081 0.193 0.061
FR1 floor 12.57 49.87 0.160 0.217 0.066 0.227 0.190 0.224
FR1 room 15.99 48.90 0.147 0.139 0.067 0.186 0.190 0.153
FR1 rpy 1.66 27.67 0.163 0.042 0.071 0.049 0.217 0.045
FR1 xyz 7.11 30.09 0.166 0.023 0.069 0.032 0.188 0.026

mean 0.144 0.098 0.068 0.118 0.193 0.097

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0

50

100

150

200

250

0

5

10

15

0 10 20 30 40
0

50

100

150

200

250

0 10 20 30 40
0

5

10

15

Fig. 6. Illustration of the self-adaptation process for the FR1 room test sequence using
self adaptation (top) and fixed 300 features (bottom)

two test cases without self-adaptation, as expected, the error decreases signifi-
cantly with the number of features (-18%), while the update time almost triples.
Results with self-adaptation show that by adjusting parameters dynamically,
as opposed to the 300 feature case, the runtime can be significantly decreased
(-25%) while accuracy is improved in most test sequences.

A more in-depth analysis is shown in Fig. 6, comparing a single test run for the
FR1 room test sequence with self-adaptation (top) and without self-adaptation

Self-adaptation for Mobile Robot Algorithms 241

Fig. 7. The proposed hardware platform for self-adaptation and reconfiguration in
software and hardware

using 300 features (bottom), with a RMSE of 0.113m and 0.145m and mean
runtime of 0.152s and 0.190s respectively. The figure shows, from left to right,
the error, number of matched features, and number of node neighbors for a new
node over time. Two characteristic regions are highlighted.

Generally, both, the number of matched features and the number of node
neighbors, directly relate to the accuracy of the algorithm. In the first region
(time 18 to 27), the self-adaptation chooses a lower number of features. As this
is a part of the test sequence, where a lot of node neighbors can be found, the
accuracy will not decrease with a lower number of features, while the runtime
improves. Similarly, in the second region (time 36 to 40), the number of node
neighbors is low. Here, the self-adaptation chooses to increase the number of
features to maintain a high accuracy.

5 Conclusion and Outlook

In this paper, a new method for the self-adaption of mobile robot algorithms
has been proposed. The self-adaption is performed within the Organic Robot
Control Architecture (ORCA) framework and uses Learning Classifier Tables
(LCT) as a means of adapting the parameters of an algorithm or exchanging
parts of an algorithm.

The method for self-adaptation was demonstrated using a graph-based Visual
SLAM algorithm. Self-adaptation was used to dynamically adjust important pa-
rameters and exchange parts of the algorithm. The performance of the Visual
SLAM algorithm was evaluated using a publicly available benchmark, showing
that, in our setup, self-adaptation may improve runtime significantly while main-
taining similar or better accuracy as compared to parameters, which have proven
to provide good results in previous experiments.

Of course, the presented experiments only superficially evaluate the full po-
tential of the proposed self-adaptation scheme. Therefore, in future efforts, more
thorough experiments will be conducted with larger LCT tables. The perfor-
mance will be evaluated using the ground truth data for rewards as well as using

242 J. Hartmann, W. Stechele, and E. Maehle

several consecutive runs to better train the classifier tables. Further, genetic al-
gorithms will be used to alter the LCT rules and find better solutions in larger
rulesets, while rewards will be modified based on the current task and state of the
robot. For more sophisticated experiments, new datasets will be used, which are
tailored to the self-adaptation problem, e.g. with vastly different environments
and robot speeds or supplemental information, e.g. the battery charge.

The approaches that were presented in this paper may be applied to any kind
of mobile robot algorithm, given appropriate conditions and rewards. Therefore,
besides more thorough experiments using the Visual SLAM algorithm, the self-
adaptation will be generalized in a way that it can be easily applied to a wide
variety of algorithms. This will include the transparent inclusion into the Robot
Operating System (ROS) through the dynamic reconfigure interfaces, which is
already used by many projects. The automatic generation of a ruleset will be a
key part in this effort.

In terms of system architecture, future research will focus on extending our ap-
proach to dynamically reconfigurable Field Programmable Gate Arrays (FPGA).
Since many advanced mobile robot algorithms are computationally very inten-
sive, CPUs alone are often too slow to assure realtime behavior. A partially
reconfigurable FPGA in form of a Multiprocessor System-on-Chip (MPSoC), as
shown in Fig. 7, will be used as a co-processor to accelerate parts of the Visual
SLAM algorithm, e.g. the feature extraction. Which parts of the software will be
executed on the CPU or FPGA is decided based on the current situation, simi-
larly to the self-adaptation methods presented in this paper. Hardware Learning
Classifier Tables will govern the dynamic reconfiguration of the FPGA.

Acknowledgement. Thisworkwas funded inpartby theGermanResearchFoun-
dation (DFG)within priority programme1183under grant referenceMA1412/8-2.

References

[1] Brockmann, W., Maehle, E., Grosspietsch, K.E., Rosemann, N., Jakimovski, B.:
ORCA: An organic robot control architecture. In: Müller-Schloer, C., Schmeck, H.,
Ungerer, T. (eds.) Organic Computing - A Paradigm Shilft for Complex Systems.
Birkhäuser-Springer (2011)

[2] Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3(2),
149–175 (1995)

[3] Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey of self-
management in dynamic software architecture specifications. In: ACM SIGSOFT
Workshop on Self-Managed Systems (WOSS), pp. 28–33 (2004)

[4] Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Fu-
ture of Software Engineering (FOSE), pp. 259–268 (2007)

[5] Cheng, B.H., Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker,
B., Bencomo, N., Brun, Y., Cukic, B., Marzo Serugendo, G., Dustdar, S., Finkel-
stein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M., Kramer, J.,
Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw, M., Tichy, M.,
Tivoli, M., Weyns, D., Whittle, J.: Software engineering for self-adaptive systems,
pp. 1–26. Springer, Heidelberg (2009)

Self-adaptation for Mobile Robot Algorithms 243

[6] Richter, U., Mnif, M., Branke, J., Müller-Schloer, C., Schmeck, H.: Towards a
generic observer/controller architecture for organic computing. In: Hochberger,
C., Liskowsky, R. (eds.) INFORMATIK 2006 - Informatik für Menschen!, pp.
112–119. Bonner Köllen Verlag (2006)

[7] Garlan, D., Schmerl, B., Cheng, S.W.: Software Architecture-Based Self-
Adaptation, pp. 31–55. Springer (2009)

[8] Yu, C.H., Nagpal, R.: Self-adapting modular robotics: A generalized distributed
consensus framework. In: IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 1881–1888 (2009)

[9] Edwards, G., Garcia, J., Tajalli, H., Popescu, D., Medvidovic, N., Sukhatme, G.,
Petrus, B.: Architecture-driven self-adaptation and self-management in robotics
systems. In: ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), pp. 142–151 (2009)

[10] Al-Homsy, A., Hartmann, J., Maehle, E.: Inclination detection and adaptive walk-
ing for low-cost six-legged walking robots using organic computing principles. In:
Climbing and Walking Robots (CLAWAR), pp. 173–182 (2012)

[11] Maehle, E., Brockmann, W., Grosspietsch, K.E., El Sayed Auf, A., Jakimovski, B.,
Krannich, S., Litza, M., Maas, R., Al-Homsy, A.: Application of the organic robot
control architecture ORCA to the six-legged walking robot OSCAR. In: Müller-
Schloer, C., Schmeck, H., Ungerer, T. (eds.) Organic Computing - A Paradigm
Shilft for Complex Systems, Birkhäuser-Springer (2011)

[12] Maas, R., Maehle, E.: Fault tolerant and adaptive path planning for mobile robots
based on health signals. In: International Conference on Architecture of Comput-
ing Systems (ARCS), Workshop on Dependability and Fault-Tolerance, pp. 58–63
(2011)

[13] Zeppenfeld, J., Bouajila, A., Stechele, W., Herkersdorf, A.: Learning classifier
tables for autonomic systems on chip. Lecture Notes in Informatics, vol. 134, pp.
771–778. Springer, GI, Jahrestagung (2008)

[14] Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3(2),
149–175 (1995)

[15] Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An
evaluation of the RGB-D SLAM system. In: IEEE International Conference on
Robotics and Automation, ICRA (2012)

[16] Strasdat, H., Davison, A.J., Montiel, J., Konolige, K.: Double window optimisation
for constant time visual SLAM. In: IEEE International Conference on Computer
Vision, ICCV (2011)

[17] Rosten, E., Drummond, T.W.: Machine Learning for High-Speed Corner Detec-
tion. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951,
pp. 430–443. Springer, Heidelberg (2006)

[18] Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary robust independent
elementary features, 778–792 (2010)

[19] Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: A
general framework for graph optimization. In: IEEE International Conference on
Robotics and Automation, ICRA (2011)

[20] Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: An accurate O(n) solution to the
PnP problem. International Journal of Computer Vision 81(2), 155–166 (2008)

Self-virtualized CAN Controller for Multi-core

Processors in Real-Time Applications

Christian Herber, Andre Richter, Holm Rauchfuss, and Andreas Herkersdorf

Technische Universität München, Institute for Integrated Systems,
Arcisstr. 21, 80290 Munich, Germany

{christian.herber,andre.richter,holm.rauchfuss,herkersdorf}@tum.de

Abstract. The long-rising number of electronic control units (ECUs)
in cars is a major problem for OEMs, because of high costs and instal-
lation space requirements. The complexity could be reduced by the use
of multi-core processors, where several ECUs can be repartitioned into
virtual machines (VMs) running on one multi-core processor. Such a
consolidation of ECUs is challenging, because I/O devices for real-time
capable interconnects have to be shared by multiple VMs. In this paper
we present a concept for offloading the functionality for CAN controller
virtualization into a self-virtualized controller. By means of a thorough
real-time analysis, it is shown that proposed solution is capable of real-
time message transmission with additional latencies, that are multiple
orders smaller than the common deadlines.

Keywords: Embedded Multi-Core Systems, Controller Area Network,
Automotive Electronics, Self-Virtualized I/O Devices, Real-Time.

1 Introduction

Electronic functions have been a major driver of innovation in cars for many
years. Since the beginning of the 1990s, embedded electronics and software have
been increasing by 10% per year [1]. The fast development of electronic functions
is responsible for many innovations in cars. The underlying Car-IT architecture
is composed of a large number of electronic control units (ECUs) with relative
low-performance single-core microcontrollers. They are connected by a set of au-
tomotive communication buses, e.g. Controller Area Network (CAN). Common
practice for the introduction of a new electronic function has been the imple-
mentation of an additional ECU. This approach, however, has reached its limits
regarding installation space, complexity and costs, with premium cars employing
more than 70 ECUs [2].

An employment of multi-core processors in automotive electronic architec-
tures could help to reduce this complexity, by consolidating the functionality of
multiple ECUs into a multi-core powered ECU. To allow running mixed critical-
ity functions side-by-side without one interfering with the other, a virtualization
layer must be employed. Putting each function into a separate virtual machine
(VM) will guarantee a logical separation in processing resources and memory

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 244–255, 2013.
� Springer-Verlag Berlin Heidelberg 2013

Self-virtualized CAN Controller for Multi-core Processors 245

space that prevents interference. However, each VM still needs access to the
shared I/O devices of the hosting ECU. This is particularly challenging, because
real-time requirements are a key factor in the design of automotive embedded
systems and virtualizing I/O devices often poses a bottleneck in a virtualized
system.

In order to minimize the latency between a VM and a shared I/O device, an
efficient way of I/O virtualization is needed. In this paper, we propose a self-
virtualized CAN controller as an extension to a conventional CAN controller
that allows the transmission of messages from multiple VMs to a CAN bus
under real-time constraints.

The remainder of this paper is structured as follows: Section 2 presents re-
lated work regarding I/O virtualization. Section 3 introduces basic principles of
the CAN protocol. Our proposed concept is discussed in Section 4 and a the
corresponding architectural realization is presented in Section 5. Section 6 intro-
duces a real-time analysis method for such a controller. Based on this, Section
7 analyzes a consolidation scenario, and finally, Section 8 concludes this paper.

2 Related Work

Several approaches towards I/O virtualization, i.e. multiplexing and partitioning
of the I/O device access for several VMs, have already been researched. Tradi-
tional solutions include emulating a device [3] or using paravirtualized front-
end/back-end drivers [4].

Both solutions are purely software-based, either via extended functionality in
the Virtual Machine Monitor (VMM) or by a dedicated driver VM. While these
solutions are capable of circumventing the problem that conventional I/O devices
are designed to be accessed from only a single instance, the additional latencies
are too high for embedded applications [5]. Furthermore, extension of the trusted
computing base of the software leads to side-effects on security, footprint and
verification.

Self-virtualized I/O devices [6] [7] can resolve this problem. They offload virtu-
alization routines into the I/O device itself to remove the VMM or driver domain
from the I/O data path. In contrast to the aforementioned solutions this leads to
reduced additional latencies for I/O virtualization. However, those devices also
struggle to provide real-time capability, because they still implement software
routines on dedicated RISC processors inside the device for the data processing.

This limitation is overcome in [8] for Ethernet by removing any software from
the data path, implementing all virtualization functionality in hardware. Still,
certain properties of automotive communication controllers like their unique
arbitration schemes have not been addressed in any research. This motivates the
development of a self-virtualized CAN controller that enables real-time access for
VMs by offloading I/O virtualization functionality into hardware and removing
any additional software from the data path.

246 C. Herber et al.

3 Controller Area Network

Controller Area Network (CAN) is the most widely used bus in automotive
embedded systems and supports data rates of up to 1 Mbit/s. Communication
on the CAN bus is message based and the nodes do not have a distinct address. It
has to be clear from the ID of a message what the associated content is. The ID is
transmitted at the beginning of a frame (cf. Fig. 1) and specifies the fixed priority
of a message, with low IDs having the highest priority. Because communication
is non-preemptive, low priority messages can block the transmission of higher
priority messages.

Fig. 1. Format of a CAN data frame with extended ID

The arbitration is performed by each node in a bitwise way. At any point in
time when the bus is idle, any CAN node can start transmitting a message. The
arbitration uses certain electrical characteristics of the physical bus on which
dominant (0) and recessive (1) logic levels can exist. At the beginning of the
frame a node will send the identifier and monitor the level present on the bus. If a
node monitors a dominant state after transmitting a recessive bit, the arbitration
is lost and the message has to be backed off. This scheme is called carrier sense
multiple access/bitwise arbitration (CSMA/BA).

4 Concept for a Self-virtualized CAN Controller

In order to enable access to the CAN bus for multiple VMs through a single
protocol engine, we propose a concept for a self-virtualized CAN controller as
depicted in Fig. 2. It will offer virtual interfaces to the host system that enable
real-time capable medium access. The concept is derived from several constraints
originating from the nature of the CAN bus itself and considerations regarding
flexibility, scalability and efficient use of resources.

When a message gets issued for transmission by the host system to the self-
virtualized CAN controller, immediate access to the CAN bus cannot be guar-
anteed, because it might temporarily be occupied by messages from other nodes.
Therefore, messages have to be buffered. Because certain actions from the host
system (e.g. disabling one virtual controller) affect only the set of buffered mes-
sages associated with a distinct VM, a logical buffer has to be provided for each
VM. The total memory demand is application dependent and scales with the
number of VMs and messages objects (usually one per message).

To enable a flexible architecture, which can be used in many different appli-
cation scenarios, the number of messages associated with one virtual interface

Self-virtualized CAN Controller for Multi-core Processors 247

Fig. 2. System-level view at a virtualized multi-core system communicating through a
self-virtualized CAN controller

should not be fixed. A common memory shall be shared by all virtual controllers,
in which pointer-based data structures are contained for each virtual domain.

More requirements arise from the nature of the CAN bus, which is non-
preemptive and uses a fixed priority arbitration scheme. The behavior of each
virtual CAN controller should be as close as possible to the behavior of an ideal
CAN controller to guarantee optimal performance. Therefore, the highest prior-
ity message queued should enter arbitration when the bus goes idle. Selecting
this message at the right time is done by the virtualized CAN controller.

The length of a CAN frame is not fixed due to variable payloads and bit
stuffing, which makes it hard to determine its actual length and therefore the
point in time, when the bus will be idle. The only point, where this information
is easily obtained is after the successful transmission. From there on, the inter-
nal arbitration has 3 �s of interframe spacing to determine the highest priority
message, which will subsequently enter the CAN bus arbitration.

Because an arbitration of all messages requires a number of RAM accesses
that scales linearly with the number of buffered messages, it is not feasible for
the internal message selection by the virtualized CAN controller. Alternatively,
priority queues can be used as buffers, which provide a sorted set (based on CAN
ID) of messages for each virtual controller. The priority queue was realized as a
binary search tree. This way, only a small subset of messages (one for each virtual
domain) has to be compared, allowing a fast arbitration that is independent of
the number of buffered messages. On the other hand, the insertion of messages
into a priority queue might take longer. How this affects the overall performance
of the system evaluated in Sections 6 and 7.

Frames received from the CAN bus are compared to a predefined set of filters
for each VM, saved in a random access data structure and fetched by the host
application. Back-to-back messages can arrive with a minimum inter-arrival time
of 56 �s (standard ID, no payload), resulting in relaxed timing constraints in the
receive part. Because the reception of messages is not critical with respect to
real-time capability, the remainder of this paper will focus on the transmission.

248 C. Herber et al.

The concept presented here allows several VMs to access the buffers within
the respective virtual controller through dedicated virtual interfaces. The orga-
nization of the buffers as binary search trees, which are connected by pointers,
enables a flexible use of resources and a fast selection of messages for transmis-
sion. The concept should allow real-time applications to communicate within
their respective deadline requirements.

5 Architecture

We used the concepts presented above to create a timing accurate SystemC
model of the virtualized CAN controller. The structure of the model and the
contained components will be explained. A top-level schematic of the modules
is shown in the lower half of Fig. 2.

The component presented here receives frames for transmission from a host
system. These frames have to be buffered and selected for transmission on the
CAN bus, which is connected to the other end of the controller.

The Host Controller Interface is used as a test bench in order to achieve an
abstraction from actual host systems or peripheral interconnects. Transmission
requests can arrive at arbitrary rates and are issued to the buffer control module
using a first-come, first-served policy.

The Buffer Control module manages the priority queues within the RAM.
It is the only component aware of which data structure is actually used (here:
binary search tree). Upon an insertion request, the issued message has to be
stored at the right position within the RAM. If the inserted message has the
highest priority within a virtual controller, a notification will be issued to the
arbiter module. In addition to the data structures, general information regarding
the buffers is stored in the memory. This includes a pointer to the object of
maximum priority for each buffer, which will be used by the arbiter module.

The Arbiter has to select the highest priority message from the RAM and
issue it for transmission. The selected message should be ready for transmission
when the CAN bus goes idle and another arbitration on the CAN bus is possible.
The highest priority message within each virtual controller is found by referenc-
ing the provided pointer. The overall highest priority message will be issued to
the protocol engine in order to enter the CAN bus arbitration.

The implementation of the CAN specification is done within the Protocol
Engine. Its implementation is similar for all CAN controllers and does not need
to be modified here. Within a self-virtualized CAN controller, multiple virtual
CAN controllers can be served by one protocol engine.

6 Real-Time Analysis

CAN buses in an automotive context are often used under real-time conditions.
This means that messages transmitted via the CAN bus are expected to meet
deadline requirements. To determine whether a message will meet its deadline,

Self-virtualized CAN Controller for Multi-core Processors 249

an analysis for the worst-case message response time is needed. Such a method
exists for ideal CAN controllers. For the case of virtualized CAN controllers, this
theory has to be extended and is presented in Section 6.2.

6.1 Ideal CAN Nodes

A method for calculating message response times for ideal CAN nodes was pub-
lished by Davis et al. in 2007 [9]. We will introduce the central ideas here, while
the complete theory can be reviewed in the original publication.

The worst-case scenario assumed for message m is the following. At the time
the message is queued for transmission, all higher priority messages are also
queued. Additionally, a lower priority message has just started transmission on
the bus, blocking it for a time Bm. Therefore, after transmission of the blocking
lower priority message, all higher priority messages will be transmitted. It is pos-
sible that while waiting for transmission further instances of the higher priority
messages will be queued. After all these messages are successfully transmitted,
message m will start transmission.

The time that has to be considered in a worst-case scenario is called level-m
busy period. It starts when a message of priority m or higher is queued ready
for transmission and no messages of the same or higher priority waiting for
transmission were queued before. It ends when there is no message of priority
m or higher queued at the beginning of arbitration. According to [9], it can be
iteratively calculated as

tn+1
m = Bm +

∑
∀k∈hp(m)∪m

⌈
tnm + Jk

Tk

⌉
Ck. (1)

Here, hp(m) describes the set of higher priority messages, Jk, Tk and Ck are the
queuing jitter, the cycle time and the transmission time of a message k.

It is possible that the level-m busy period is extended beyond the transmission
of message m and also the cycle time Tm. This implies that multiple instances
might be issued during the worst-case scenario. Instances are represented by the
index variable q ∈ (0, Qm − 1) with the number of instances being

Qm =

⌈
tm + Jm

Tm

⌉
. (2)

The response time for all instances q has to be calculated. The time from the
start of the level-m busy period until the transmission of each instance is called
the queuing delay and can be determined as

wn+1
m (q) = Bm + qCm +

∑
∀k∈hp(m)

⌈
wn

m(q) + Jk + τbit
Tk

⌉
Ck. (3)

Finally, the worst-case response time for each message can be computed. It is
equal to the sum of the queuing jitter, the time from the queuing of the instance
till its transmission and the transmission time of the message itself.

250 C. Herber et al.

Rm(q) = Jm + wm(q)− qTm + Cm (4)

The worst case response time of a message can then be obtained as the maximum
response time of all instances. In most cases, the level-m busy period does not
stretch beyond the cycle time Tm and only one instance has to be considered.
Even if multiple instances have to be checked, the first instance usually suffers
from the longest response time. Nevertheless, it is important not to disregard
these cases in order to have a sufficient real-time analysis.

6.2 Self-virtualized CAN Controller

The analysis presented for ideal CAN nodes delivers optimistic results when
dealing with non-ideal virtualized CAN nodes, because the shared interface and
finite insertion times can result in head-of-line blocking by low priority messages.

We therefore propose a new worst-case scenario for non-ideal virtualized CAN
controllers. Because all messages can delay the transmission of message m, they
are all ready to be queued up at the same time. Lower priority messages con-
tribute maximum blocking if they are inserted to the RAM before message m.

They are assumed to be inserted in order of increasing priority. This way, the
pointer to the object of maximum priority has to be updated after each insertion
resulting in maximum insertion times.

Such a blocking is contributed from each virtual CAN controller v ∈ {0, ..., V −
1}. Because the virtual CAN controllers share a physical interface, they can still
induce blocking to each other. This is of course in contrast to the ideal case,
where only higher priority messages cause such blocking. The number of messages
in one virtual CAN controller v that additionally contribute to the blocking is
given as

Mlp(m),v = |{k|k ∈ lp(m) ∧ k ∈ mv}| , (5)

where | · | is the cardinality of the set. mv describes the set of messages in a
virtual CAN controller. From the model we determine the time needed for an
insertion into a buffer at the n-th level as

tinsrt(n) = (6 + n)/fclk. (6)

The insertion times of all messages add up for each virtual CAN controller,
leading to an additional blocking by lower priority messages described by

Bvirt,m =

V−1∑
v=0

Mlp(m),v−1∑
k=0

tinsrt(k). (7)

After this time, only higher priority messages or messagem itself can be inserted
and no further head-of-line blocking is experienced. Although higher priority
messages can also block the insertion of message m, they do not contribute
additional waiting time, because message m is assumed to enter bus arbitration
only when all higher priority messages have been transmitted.

Self-virtualized CAN Controller for Multi-core Processors 251

The proposed worst-case scenario assumes that just before a higher priority
message is ready for transmission, a low priority message wins the CAN bus
arbitration. For simplicity it is assumed that this message has maximum length.
This assumption is true for most messages in a CAN configuration, especially
for high priority messages. The blocking is therefore determined to be

Bm = max
k∈lp(m)

(Ck), (8)

which is equal to the blocking assumed in [9] for an ideal CAN controller. When
computing the overall waiting time only the influence of the blocking of lower
priority messages has to be considered additionally.

Such blocking by lower priority messages can occur at multiple points through-
out the level-m busy period, effectively extending its duration. This case can
occur, when a high priority message gets issued to the controller near the end of
the transmission of message m. If the insertion of this high priority message is
delayed by head-of-line blocking within the controller, it can miss the CAN bus
arbitration and a lower priority message gets transmitted.

While this case seems to be unlikely, it must still be considered in a sufficient
real-time analysis. Because it is hard to determine whether this case occurs, we
assume it to happen after each transmission of an instance of message m. This
is a conservative assumption, however, it will very rarely lead to an increased
message response time. Under these considerations the length of the level-m busy
period can be determined as

tn+1
virt,m = Qn

mBm +Bvirt,m +
∑

∀k∈hp(m)∪m

⌈
tnvirt,m + Jk

Tk

⌉
Ck. (9)

The length of the level-m busy period is influenced by the number of instances
Qm of message m that have to be considered.

Qn+1
m =

⌈
tnvirt,m + Jm

Tm

⌉
. (10)

Equations (9) and (10) have to be updated in an alternating way until conver-
gence. The bigger Qm is, the more low priority messages are assumed to extend
the level-m busy. If Qm = 1 no additional blocking is considered. Finally, the
maximum time from the start of the level-m busy period until an instance q of
a message m wins the arbitration and starts transmission is determined as

wvirt,n+1
m (q) = Bvirt,m+(q+1)Bm+qCm+

∑
∀k∈hp(m)

⌈
wn

virtm,m(q) + Jk + τbit

Tk

⌉
Ck.

(11)
A couple of observations can be made regarding previously introduced equations.
Equation (7) describes the additional blocking experienced with a non-ideal, vir-
tualized CAN controller. The blocking is the greatest for high priority messages,
whereas the lowest priority message does not experience any additional blocking.

252 C. Herber et al.

This blocking increases the overall waiting time at least by its value. It is pos-
sible that additional interference occurs from later instances of higher priority
messages.

Equation (11) is simplified to (3) if the insertion time tinsrt is assumed to
be zero. Also, by choosing the number of virtual devices V = 1, the equation
can be used to characterize non-ideal, non-virtualized controllers that implement
similar mechanisms regarding message buffering.

Fig. 3. Bus occupation in a worst-case scenario for message m

Figure 3 summarizes the blocking and waiting experienced by multiple in-
stances of message m. All important measures used are depicted. Here, the head-
of-line blocking and finite insertion times cause the insertion of messages to be
delayed (Bvirt,m). After all low priority messages are inserted, a transmission of
a low priority message is started on the bus (Bm). After the transmission of all
higher priority messages, the first instance m(0) of the message wins arbitration.
Due to the increased blocking, the level-m busy period is stretched beyond the
cycle time of message m and a second instance m(1) has to be considered. Still,
instance m(0) experiences the highest overall response time.

7 Results

In the previous sections we presented an architecture as well as a real-time anal-
ysis for a self-virtualized CAN controller. Because major parts of the evaluation
are based on the analytic approach, its validity and accuracy is discussed first.

For one-on-one comparison, the following case studies were conducted using
the same generic traffic pattern. The cycle times are chosen randomly for each
message and can take values between 10 ms and 100 ms. 251 messages distributed
among 16 (virtual) controllers are generated to achieve a bus load of 75%.

The left graph in Fig. 4 compares the response times of a set of messages
obtained from simulation and from the real-time analysis. It is assumed that
all messages are transmitted through the same self-virtualized CAN controller.

Self-virtualized CAN Controller for Multi-core Processors 253

Fig. 4. Left: Comparison of the message response times determined by simula-
tion/analysis. Right: Additional latency compared to an ideal CAN node.

While the curves are nearly overlapping, the response times calculated analyti-
cally are strictly bigger. This is to be expected, because the simulation cannot
cover the worst-case for each message. These results suggest that the analytic
method is capable of providing accurate timing information.

The right graph in Fig. 4 shows the additional latency suffered in this scenario,
compared to the case of ideal CAN controllers. For most messages the latency
increase is smaller for higher IDs (lower priorities). While this is unfortunate,
the absolute values are still orders smaller than the smallest common deadlines
in automotive CAN applications (around 10 ms).

For some medium priority messages a strong increase in their response time
can be witnessed. This increase is due to additional interference from higher
priority messages, caused by the additional delay inside the self-virtualized CAN
controller. It is important to note that interference from higher priority messages
is generally not possible if the response time of a message is smaller than the
smallest cycle time within the network (as indicated in the left half of Fig. 4).

For medium priority messages the latency increase due to the virtualization
can peak to values around 100 �s. Deadlines of medium priority messages are
usually in the range of 100 ms, so the latency increase seems to be tolerable.

In a similar scenario we evaluated how the latencies are increased if other
controllers are repartitioned into a common self-virtualized CAN controller. Out
of the 16 controllers, the messages of 8 controllers are subsequently moved to
one self-virtualized CAN controller. The rest of the messages are assumed to be
transmitted through ideal CAN controllers.

This scenario is relevant, when considering the consolidation of stand-alone
ECUs in the VMs of a multi-core processor. It allows us to draw conclusions,
how the additional latency scales with respect to the number of VMs/virtual
CAN controllers and how messages of different priorities are affected.

The results of this case study are summarized in Fig. 5. All of the results focus
on the additional latency that is inflicted to the 17 messages that are first moved

254 C. Herber et al.

to the virtualized CAN controller. The increase in latency seems to scale linearly
with the number of VMs employed. This observation is in agreement with the
theoretical considerations in Section 6. Equation (7) suggests that the overhead
introduced by each virtual device is superimposed. Deviations from the linear
trend are grounded in the varying message characteristics.

Fig. 5. Additional latency dependent on the number of VMs accessing the CAN bus
through a self-virtualized CAN controller. In the left graph, each curve corresponds to
one message. In the right graph, the number of VMs is rising with each curve.

For this small set of messages, no additional interference is suffered by any
message. Therefore, the overhead is the greatest for high priority messages. This
is not generally guaranteed, as Fig. 4 showed. To evaluate, how the response
times are actually increased in a concrete scenario, a message response time
analysis has to be conducted for the respective configuration.

In this section, the feasibility of the analytic real-time analysis was demon-
strated. If no additional interferences occur, high priority messages suffer from
the highest additional overheads, which are small compared to common automo-
tive deadlines. Additional interference cannot occur for high priority messages.
It was also shown that the additional latency scales roughly linearly with the
number of VMs used (e.g. when repartitioning ECUs in a consolidation scenario).

8 Conclusion

In this paper, we proposed a self-virtualized CAN controller architecture that
allows multiple VMs to transmit real-time messages onto a CAN bus. It over-
comes the limitations imposed by the additional latencies that go along with
software based virtualization solutions for I/O devices, and enables applications
with real-time requirements. We presented a flexible and scalable concept that

Self-virtualized CAN Controller for Multi-core Processors 255

enables real-time processing by buffering messages in distinct priority queues
associated with each virtual domain. These queues are dynamically managed
and implemented as binary search trees. This way, the CAN bus arbitration
principles can efficiently be applied to the buffered messages. The architecture
we presented differs from ideal CAN nodes, because it has finite insertion times
and can induce head-of-line blocking. Based on these limitations we proposed a
modified analytical method for calculating worst-case message response times.
Using this method, the additional latency suffered by messages in different sce-
narios was evaluated. It was shown that the additional latency is small compared
to common deadlines and that the self-virtualized CAN controller introduced is
therefore capable of serving real-time transmissions.

Acknowledgments. This work was funded within the project ARAMiS by
the German Federal Ministry for Education and Research with the funding IDs
01|S11035. The responsibility for the content remains with the authors.

References

1. Navet, N., Simonot-Lion, F.: Automotive Embedded Systems Handbook. Industrial
Information Technology Series. Taylor & Francis (2008)

2. Fürst, S.: Challenges in the design of automotive software. In: Proceedings of the
Conference on Design, Automation and Test in Europe, pp. 256–258 (2010)

3. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, A.,
Pratt, I., Warfield, A.: Xen and the art of virtualization. ACM 37(5), 164 (2003)

4. Pratt, I., Fraser, K., Hand, S., Limpach, C., Warfield, A., Magenheimer, D., Naka-
jima, J., Mallick, A.: Xen 3.0 and the Art of Virtualization. In: Proceedings of the
2005 Ottawa Linux Symposium, pp. 65–77 (2005)

5. Menon, A., Santos, J., Turner, Y., Janakiraman, G., Zwaenepoel, W.: Diagnosing
performance overheads in the xen virtual machine environment. In: Proceedings
of the 1st ACM/USENIX International Conference on Virtual Execution Environ-
ments, VEE 2005, pp. 13–23. ACM (2005)

6. Raj, H., Schwan, K.: High performance and scalable I/O virtualization via self-
virtualized devices. In: Proceedings of the 16th International Symposium on High
Performance Distributed Computing, HPDC 2007, pp. 179–188 (2007)

7. Willmann, P., Shafer, J., Carr, D., Menon, A., Rixner, S., Cox, A.L., Zwaenepoel,
W.: Concurrent direct network access for virtual machine monitors. In: High Per-
formance Computer Architecture, pp. 306–317 (2007)

8. Rauchfuss, H., Wild, T., Herkersdorf, A.: A network interface card architecture for
I/O virtualization in embedded systems. In: Proceedings of the 2nd Conference on
I/O Virtualization (2010)

9. Davis, I., Burns, A., Bril, R., Lukkien, J.: Controller Area Network (CAN) schedu-
lability analysis: Refuted, revisited and revised. Real-Time Systems 35(3), 239–272
(2007)

Shrinking L1 Instruction Caches to Improve

Energy–Delay in SMT Embedded Processors

Alexandra Ferrerón-Labari, Marta Ort́ın-Obón, Daŕıo Suárez-Gracia,
Jesús Alastruey-Benedé, and Vı́ctor Viñals-Yúfera

gaZ—DIIS—I3A, Universidad de Zaragoza, Spain
{ferreron,ortin.marta,dario,jalastru,victor}@unizar.es

Abstract. Instruction caches are responsible for a high percentage of the
chip energy consumption, becoming a critical issue for battery-powered
embedded devices. We can potentially reduce the energy consumption of
the first level instruction cache (L1-I) by decreasing its size and associati-
vity. However, demanding applications may suffer a dramatic performance
degradation, specially in superscalar multi-threaded processors, where, in
each cycle, multiple threads access the L1-I to fetch instructions.

We introduce iLP-NUCA (Instruction Light Power NUCA), a new
instruction cache that substitutes the conventional L2, improving the
Energy-Delay of the system. iLP-NUCA adds a new tree-based trans-
port network topology that reduces latency and energy consumption,
regarding former LP-NUCA implementations.

With iLP-NUCA we reduce the size of the L1-I outperforming con-
ventional cache hierarchies, and reducing the overall consumption, inde-
pendently of the number of threads.

1 Introduction

Superscalar execution cores demand a continuous instruction supply to feed
their functional units. Delays due to instruction cache misses affect the instruc-
tion flow speed and instruction issue, and hence, performance. Simultaneous
Multi-Threading (SMT) is a technique to hide long latency operations, such as
cache misses, by the execution of several threads [1]. SMT aims to have all the
functional units highly utilized by using a more powerful front-end (fetch unit)
that supplies instructions from several threads. Consequently, the aggregated
demand of instructions added by SMT makes on-chip instruction caches even
more critical.

Instruction caches are responsible for a high amount of the energy consumption
of the system. For example, StrongARM SA-100 and ARM 920TTM dissipate the
27% and 25% of the total power in the instruction cache, respectively [2],[3].

Ideally, we would like to have an instruction cache big enough to fit the foot-
print of the most demanding applications in order to increase their hit rate.
However, bigger caches come at the expense of higher access latencies and higher
energy consumption per access. Thus, there is a complex trade-off between size,
on the one hand, and latency and energy consumption, on the other hand.

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 256–267, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Shrinking L1 Instruction Caches in SMT Embedded Processors 257

Reducing the size of the first level instruction cache (L1-I)—as Qualcomm
MSM8960 does [4]—will potentially benefit the system from the energy perspec-
tive, but it could affect the cache hit rate, harming performance, and the energy
consumption of the second level cache could increase, counteracting other savings.

Recent works propose to dynamically reconfigure the L1 size and associativity,
so only part of the ways or part of the sets are active in a given moment [5],[6].
With such an approach, the cache adapts to the behavior of the applications and
operates within the optimal size. Other works add a small structure close to the
L1-I that captures part of its accesses, increasing the fetch speed, reducing the
energy consumption, or both [7],[8].

All of these techniques need to either modify the interface between the first-
level cache and the processor, or add additional hardware/software support. We
propose a different approach not requiring to modify the interface between the
L1-I and the processor. We reduce the L1-I size and associativity, and replace the
L2 cache with an iLP-NUCA (instruction Light Power NUCA), which minimizes
performance degradation and reduces energy consumption.

Our experiments running SPEC CPU2006 show that, for the same L1-I size,
iLP-NUCA performs better and consumes less energy than a conventional
instruction-only L2. Alternatively, by using iLP-NUCA we can shrink the L1-I
from 16KB to 8KB and keep performance, regardless of the number of threads.
Specifically, we reduce the energy consumption by 21%, 18%, and 11%, reaching
90%, 95%, and 99% of the ideal performance for 1, 2, and 4 threads, respectively.

This work makes the following contributions:

– We apply a new NUCA organization to the instruction hierarchy. To the best
of our knowledge, this is the first work proposing a specific NUCA cache for
the instruction hierarchy in both single thread and SMT environments.

– We adapt LP-NUCA for instruction hierarchies (iLP-NUCA). We propose a
new instruction-driven transport network-in-cache for iLP-NUCA, based on
a tree topology, which improves previous designs. This new topology simul-
taneously reduces the effective service latency of cache blocks, the number
of links, and the energy consumed by the network.

– We propose to shrink L1-I size and associativity to save energy, and maintain
an acceptable performance by replacing a conventional L2 with iLP-NUCA.
By reducing the size of LI-I, iLP-NUCA provides additional area for the
implementation of other components such as accelerators.

The rest of the paper is organized as follows. Section 2 explores iLP-NUCA. In
Section 3 the methodology we followed is explained. Section 4 collects the main
results. Section 5 presents the related work, and Section 6 concludes.

2 Instruction Light Power NUCA

2.1 LP-NUCA Overview

LP-NUCA [9] extends the conventional L1 capacity by surrounding it with one
or more levels of small cache tiles interconnected by specialized networks, as
shown in Fig. 1.

258 A. Ferrerón-Labari et al.

LP-NUCA levels

1 2 3

processor

RT

(a) Search network.

LP-NUCA levels

1 2 3

processor

RT

(b) Transport network.

LP-NUCA levels

1 2 3from next
cache level processor

to next cache level

RT

(c) Replacement network.

Fig. 1. 3-level LP-NUCA with its three networks-in-cache

The first level of LP-NUCA (root-tile, RT) corresponds to a conventional L1
cache with added network logic. The second level of the conventional hierarchy is
replaced by a tiled structure whose effective access time increases gradually. The
LP-NUCA design relies on three specialized networks-in-cache: search, transport,
and replacement, allowing for a simple implementation, low latency, and high
bandwidth. The search network (Fig. 1a) uses a broadcast-tree to propagate
miss requests from the RT to the rest of the LP-NUCA levels. The transport
network (Fig. 1b) employs a 2-D mesh to deliver hit cache blocks from the tiles
to the RT. The replacement network (Fig. 1c) connects tiles by means of an
irregular topology to place recently evicted blocks close to the RT, and exploit
their temporal locality. Please refer to [9] for further details about the design
and implementation of LP-NUCA.

LP-NUCA has never been tested for instruction hierarchies; however, it is a
good candidate because it could exploit the temporal code locality, reduce the
average memory access time, and be more energy-efficient. Besides, it does not
modify the interface between the L1 and the processor. We call the structure
adapted to instruction hierarchies iLP-NUCA (instruction Light Power NUCA).
The following section describes the improvements we propose to successfully
adapt LP-NUCA to instruction hierarchies.

2.2 Instruction-Driven Tree-Based Transport Network

Instruction and data hierarchies differentiate in two key aspects. First, the miss
instruction bandwidth demand from L1/RT is lower than the corresponding miss
data bandwidth demand. In SMT environments (without taking into account the
prefetches), the maximum number of requests in iLP-NUCA equals the number
of threads being executed. Second, an instruction fetch missing in the first cache
level stalls the corresponding thread, preventing the front-end to supply instruc-
tions to the pipeline. The L1-I miss resolution time becomes critical forcing the
re-evaluation of the search and transport networks.

Previous designs of LP-NUCA utilized a bufferless search network with no flow
control, having little margin for latency improvement, and a 2-D mesh for the
transport network, because it provides high bandwidth with its path diversity.
Figure 2a shows the 2-D mesh topology (solid lines). The numbers in the upper

Shrinking L1 Instruction Caches in SMT Embedded Processors 259

left corner of the tiles represent the round-trip latencies (time since injecting a
request into LP-NUCA until the block returns to the processor), assuming a one-
cycle tile access time. The main components of the transport network (Fig. 2b)
are a switch and two transport buffers (Tbf) that contain hit blocks on their
way to the RT. The replacement buffers (Rbf) contain victim blocks waiting
for replacement. Hits can occur also in the replacement buffers and, therefore,
they must be accessed during a search operation. The transport network relies
on buffered flow control, and uses store-and-forward flow control with on/off
back-pressure (dashed lines in Figs. 2b and 2c) and two-entry buffers per link.

LP-NUCA levels

1 2 3

processor

3 55 3

3 3 5

55 5

3

5

5

5

3 55 3

3 4 6

75 6

4

6

6

7

RT

(a) 2-D Mesh (solid lines)
and tree-based (dashed lines)
transport networks.

CACHE

T
bf

T bf

R bf
R

bf

T
bf

T bf

(b) 2-D mesh transport
components.

CACHE

T
bf

T bf

R bf

R
bf

T
bf

(c) Tree-based transport
components.

Fig. 2. Transport networks (a)—2-D mesh (solid lines, latencies in upper left corner)
and tree-based (dashed lines, latencies in bottom right corner)—and their respective
components, (b) and (c), for the example tile (thick box)

A preferable transport network for instructions would offer lower latency, even
if that comes at the expense of lower bandwidth. Figure 2a shows in dashed lines
an instruction-driven transport network topology based on a minimum degree
tree. With this topology the benefit is twofold. On the one hand, we decrease the
number of links between tiles to just one transport output link, decreasing the
crossbar delay and area (Fig. 2c). On the other hand, latency becomes uniform
within each level and most of the tiles decrease their hit latency (numbers on
bottom right corner in Fig. 2a), as we need less hops to reach the RT. The latter
also reduces the energy consumed by the network when delivering blocks to the
RT. Thus, we expect to reduce the average hit latency of blocks in comparison
with previous LP-NUCA designs, and the energy consumption of the transport
network. This latency reduction could allow us to dramatically shrink the RT
(L1-I) because misses can be served faster from the next cache level.

The novel topology increases the number of inputs of the RT multiplexer from
3 to 5 without harming performance. Cycle time remains unchanged because the
multiplexer is not in the critical path (it works in parallel with the instruction
cache banks).

Finally, the original replacement network offers a good block replacement
distribution and, therefore, iLP-NUCA will use the same network topology.

260 A. Ferrerón-Labari et al.

3 Methodology

3.1 Processor Model and Simulation Environment

We model the system summarized in Table 1. Our model is based on state-of-the-
art high performance embedded systems such as IBM/LSI PowerPC 476FP [10],
NetLogic XLP864 [11], and Freescale QorIQ AMP T2080 [12]. Our system has
a more powerful memory hierarchy, and supports 4 hardware threads.

We compare two alternative instruction cache hierarchies. The first one is
a conventional setup, named CV, made up of two dedicated instruction/data
cache levels, L1-I/D and L2-I/D, and a third level shared by instructions and
data, L3. The second one, named iLP, replaces L1-I and L2-I by a three-level
iLP-NUCA, that is, L1-I is replaced by the root-tile, and L2-I by two levels of
tiles (Le2 and Le3) interconnected as explained in Sect. 2. iLP also replaces L1-D
and L2-D by the original data LP-NUCA. We model a perfect data path with
L1-D/LP-NUCA caches that always hit, so that result variations only come
from instruction activity. Section 4.3 removes this constraint to examine the
interaction of iLP-NUCA with the data hierarchy.

We have developed SMTScalar, a cycle-accurate execution-based simulator
based on SimpleScalar 3.0d for Alpha ISA [13]. SMTScalar heavily extends
SimpleScalar to support detailed microarchitectural models, highly configurable
memory hierarchies, simultaneous multi-threading execution, and iLP-NUCAs.

Table 1. Simulator micro-architectural parameters. BS, AM, lat, and init stand for
block size, access mode, latency, and initiation latency, respectively.

Clock Frequency 1 GHz Fetch/Decode/Commit 4

ROB/LSQ 64/32 entries Int/FP/Mem IW 24/16/16 entries

Functional units 3 int ALUs, 2 mem
ports, 3 FP units

STB/L2–iLP-NUCA
WB/L3 WB

32/16/16 entries

Issue width 4(Int+Mem) + 2FPTLB miss latency 30 cycles

Branch Predictor bimodal + gshare Miss. branch penalty 6 cycles

L1/L2/L3 MSHR 8/8/4 entries MSHR second. misses 4

Baseline L1/RT a 32KB, 4Way, 32B BS, parallel AM, 2-cycle lat, 1-cycle init

L2-I/L2-D 512KB, 8Way, 32B BS, serial AM, 4-cycle lat, 2-cycle init

iLP-NUCA rest tiles 32KB, 2Way, 32B BS, parallel AM, levels: 3 (448KB)

L3 4MB, eDRAM, 16Way, 128B BS, 14-cycle lat, 7-cycle init

Main Memory 100 cycles/4 cycle inter chunk, 16 Byte bus
a L1: write-through; RT: copy-back; L1/RT: write-around and 2 ports.

We estimate cache access latencies and energy consumption assuming 32nm
LSTP (Low STandby Power) technology with Cacti 6.5 [14]. For iLP-NUCA
networks-in-cache we derive latency and consumption figures by scaling the data
obtained from a real 90nm layout [9].

Shrinking L1 Instruction Caches in SMT Embedded Processors 261

3.2 Workloads

We use the full SPEC CPU2006 benchmark suite [15], but 483.xalancbmk (which
could not be executed in our environment). For each program we simulate 100M
representative instructions that were selected following the SimPoints methodol-
ogy [16]. Caches and branch predictor are warmed up during 200M instructions
for one thread experiments. Multi-thread experiments (2 and 4 threads) are mul-
tiprogrammed. We utilize last as simulation ending policy and collect statistics
for the first 100M instructions of each thread. For two thread experiments we run
all the benchmarks combinations. For four thread experiments, we assure results
are representative by using statistical sampling and taking enough samples to
reach 97% of confidence level and less than 3% error [17],[18].

3.3 Metrics

We use two system oriented performance metrics for multiprogrammed work-
loads: IPC throughput (i.e., committed user instructions summed over all threads
divided by total elapsed cycles1) and fairness [19], according to the formulas:

IPC throughput =
n∑

i=1

IPCi fairness =
min

i

(
CPIMT

i

CPIST
i

)

max
i

(
CPIMT

i

CPIST
i

)

where IPC, CPI, ST and MT refer to instructions per cycle, cycles per instruc-
tion, single thread, and multi-threaded execution, respectively.

Regarding energy consumption, we report the total energy consumed by the
cache hierarchy. We compute the Energy-Delay and Energy-Delay2 products tak-
ing into account the energy consumption of the memory hierarchy2 and the exe-
cution time (delay). We follow the Li et al. approach for SMT environments [20],
and account for all the energy consumed until the last thread commits 100M
instructions.

4 Evaluation

4.1 Impact of the Tree-Based Transport Network

The new tree-based network-in-cache reduces the tiles degree regarding the for-
mer 2-D mesh. The transport components (see Fig. 2c) are the two input trans-
port buffers and the switch. From the hardware implementation of LP-NUCA [9],
we know that each buffer accounts for one third of the energy consumption, and
so does the switch. Our new network simplifies the switch removing one out-
put link. From the original layout we estimate that these changes reduce the
components energy consumption by 20%.

1 The use of IPC throughput is safe because there are no synchronization instructions.
2 In general, we have observed that the processor activity implementing iLP-NUCA
decreases slightly, due to a reduction in the speculation depth.

262 A. Ferrerón-Labari et al.

We compare the former 2-D mesh with the tree-based transport network in a
system with a 3–level iLP-NUCA (4-way, 32KB root-tile).

Our results show that the tree-based transport network reduces the average
service latency by 8%, with bigger gains in tiles located on more distant levels.
Thus, the effectiveness of the new network strongly depends on the amount of
reused blocks that those levels capture, which tends to be low except in some
benchmarks, such as 447.dealII. Finally, the tree-based network does not expe-
rience contention because the number of simultaneous requests is low.

Energy savings are more noticeable when executing several threads. With 2
threads the new transport network consumes 4.7% less energy than the former
2-D mesh; with 4 threads energy savings reach 6%.

4.2 Instruction Cache Energy/Performance Trade-Offs

We compare two alternative instruction cache hierarchies (CV and iLP), as ex-
plained in Sect. 3.1. In this section we assume a perfect L1 data cache, so that
result variations will only come from instruction activity. We are also interested
in analyzing the sensitivity of CV and iLP to a possible L1-I/RT downsizing.
Hence, we reduce the L1-I/RT size and associativity from 4-way, 32KB (baseline)
to 2-way 16KB, 8KB, and 4KB. Next, we show results of energy, performance,
and fairness for all the above configurations, considering the system loaded by
one, two, or four threads.

Energy Consumption. Figure 3 shows the total energy consumption for 1, 2,
and 4 threads. Each bar corresponds to one configuration, and represents the
added energy consumption of all the executed workloads. We plot the dynamic
energy of the different caches accessed by instructions (L1-I, L2-I, and L3), and
group the total static energy on top. In order to analyze the results in Fig. 3 we
first highlight some obvious facts; namely, i) the dynamic energy of L1-I and RT
matches, as both caches have a very similar complexity; ii) the static energy is
almost constant for a given number of threads, except for the smallest L1-I cache
in the CV system loaded with 4 threads, due to its significant slowdown; and iii)
the L3 cache spends a negligible amount of dynamic energy, because hitting in
L2-I is the norm. Bearing this in mind, to gain an insight into the best choice
we should concentrate on the energy transfer between the L1-I and the L2-I as
we change L1-I size and number of threads.

In configurations with 32KB 4-way L1-I/RT, the dynamic energy consumed by
the L2-I or by the levels 2 and 3 of iLP-NUCA (Le2+Le3 in Fig. 3) is similar and
very small, though it increases as the number of threads grow. We can conclude
that the instruction footprints of most applications fit in the L1-I cache.

As we shrink the L1-I/RT size, the energy per access decreases and so does
the total energy of L1-I/RT. However, smaller L1-I/RT caches fail to capture
the required footprint and the number of misses increase. In turn, the growing
number of first-level misses increases the dynamic energy consumption in L2-I or
Le2+Le3, and, eventually, the total energy consumption increases. Underloaded
systems, executing one or two threads, present a similar behavior: overall energy

Shrinking L1 Instruction Caches in SMT Embedded Processors 263

 0

5

10

15

20

25

30

35

40

E
n
e
rg

y
 (

m
J)

C
V
-3

2
K
B
-4

a
s

C
V
-1

6
K
B
-2

a
s

C
V
-8

K
B
-2

a
s

C
V
-4

K
B
-2

a
s

IL
P
-3

2
K
B
-4

a
s

IL
P
-1

6
K
B
-2

a
s

IL
P
-8

K
B
-2

a
s

IL
P
-4

K
B
-2

a
s

1 thread

 0

200

400

600

800

1000

1200
2 threads

 0

1000

2000

3000

4000

5000

6000
4 threads

L1-I or RT dynamic

L2-I or Le2+Le3 dynamic

L3 dynamic

Total static

Fig. 3. Energy consumption of several CV and iLP cache configurations—labeled with
type (CV vs. iLP) and L1-I/RT size and associativity—for 1, 2, and 4 threads

reduction for 16KB and 8KB L1-I/RT caches, and overall increase for 4KB.
However, in the fully loaded system, when executing four threads, as the first
level shrinks and the working set moves to the second level, the behavior of CV
and iLP clearly departs. CV hierarchies do not allow L1-I reduction, because
the energy transfer between levels is always detrimental for the overall spending.
In contrast, iLP hierarchies benefit from RT reduction up to 8KB. All in all,
for any configuration and number of threads, iLP-NUCA always consumes less
energy than the conventional hierarchy, and the preferable configuration is an
iLP-NUCA with a 2-way 8KB RT.

Performance and Fairness. Figure 4a shows the IPC throughputs harmonic
mean and Fig. 4b the fairness distributions for the considered configurations.

When reducing the first-level size the miss ratio increases, and performance
lowers in both CV and iLP systems. With iLP-NUCA the performance degrada-
tion is lower: for the same size of L1-I/RT, iLP-NUCA performs better, regardless
of the number of threads. In the conventional system loaded with a single thread,
as L1-I reduces to 16KB, 8KB, and 4KB, the IPC throughput decreases 5.8%,
12.5%, and 20%, respectively. In the iLP-NUCA system, performance also de-
creases, yet the gradient is less and the 32KB IPC throughput is slightly better.

When considering two threads, the former observations hold, but now the
sensitivity to the first-level cache size is softened by the ability of SMT to hide
long latency operations by interleaving useful work from other threads. In the
conventional system loaded with two threads, as L1-I reduces to 16KB, 8KB,
and 4KB, the IPC throughput reduces 3%, 6.3%, and 10.5%, respectively, while
in the iLP system the reductions are 1.1%, 3.2%, and 6%, respectively.

With four threads differences are smaller. The occupancy of the functional
units is higher and there are more threads to hide the processor stalls due to

264 A. Ferrerón-Labari et al.

1 thread 2 threads 4 threads

0.0

0.5

1.0

1.5

2.0

2.5

IP
C

CV-32KB-4as

CV-16KB-2as

CV-8KB-2as

CV-4KB-2as

ILP-32KB-4as

ILP-16KB-2as

ILP-8KB-2as

ILP-4KB-2as

(a) Average IPC throughput. (b) Fairness distribution.

Fig. 4. Harmonic mean of IPC throughputs and fairness distribution—labeled with
type (CV vs. iLP) and L1-I/RT size and associativity

instruction misses. As the first level shrinks, iLP-NUCA keeps performance
degradation below 1.5%, while conventional caches lose up to 3.5%, on average.

As expected, since we keep the first-level cache latency constant, from a per-
formance standpoint it is always better to select the largest size. However, if we
can afford some losses when the system is underloaded (one or two threads), an
iLP system with 16KB or 8KB will keep an acceptable performance and use less
energy. For example, an iLP system implementing a 8KB RT would reach the
performance of a CV system with a 16KB L1-I, but saving 21%, 18%, and 11%
of energy, for 1, 2, and 4 threads, respectively.

Regarding the fairness among threads, let us consider Fig. 4b where each
candlestick represents the minimum, the quartile 25, the median, the quartile
75, and the maximum of the fairness distribution. A fairness figure close to 1.0
means an even resource distribution. Lower figures mean unfair execution, where
some threads are slowed down much more than others. As we can see in Fig. 4b,
the fairness distribution for two and four threads is quite similar in CV and iLP
systems. We can conclude that implementing an iLP system is not detrimental
at all from a fairness standpoint.

Energy-Delay and Energy-Delay2. Figure 5 shows the Energy-Delay and
Energy-Delay2 products normalized to the baseline (CV-32KB-4ass). Configura-
tions with iLP-NUCA present better (lower) ED and ED2 results, independent
of the number of threads. We find bigger differences when the L1-I cache is
smaller and the pressure on the next levels higher. Again, the optimal configu-
ration would be an iLP-NUCA with a 2-way, 8KB RT, whose normalized ED
values are 0.70, 0.8, and 0.94, for 1, 2, and 4 threads respectively. ED2 values
are 0.73, 0.82, and 0.95, respectively.

Shrinking L1 Instruction Caches in SMT Embedded Processors 265

1 thread 2 threads 4 threads

0.0

0.5

1.0

1.5

E
D

 n
o
r
m

a
li
z
e
d
 t

o
 b

a
s
e
li
n
e

CV-32KB-4as

CV-16KB-2as

CV-8KB-2as

CV-4KB-2as

ILP-32KB-4as

ILP-16KB-2as

ILP-8KB-2as

ILP-4KB-2as

(a) Energy–Delay product.

1 thread 2 threads 4 threads

0.0

0.5

1.0

1.5

E
D

2
 n

o
r
m

a
li
z
e
d
 t

o
 b

a
s
e
li
n
e

CV-32KB-4as

CV-16KB-2as

CV-8KB-2as

CV-4KB-2as

ILP-32KB-4as

ILP-16KB-2as

ILP-8KB-2as

ILP-4KB-2as

(b) Energy–Delay2 product.

Fig. 5. ED (Fig. 5a) and ED2 (Fig. 5b) products for 1, 2, and 4 threads. Values are
normalized to baseline (CV-32KB-4ass).

4.3 Evaluating iLP-NUCA with a Non-ideal Data Cache Hierarchy

We evaluated our proposal with a non-ideal data path, using a conventional
L1-D/L2-D pair, and the original data LP-NUCA. We just summarize some re-
sults due to the lack of space. The benefit now is twofold: we reduce the fetch
latency on the instruction side (iLP-NUCA), and we reduce the load latency
as well as increasing the store bandwidth on the data side (LP-NUCA). This
allows for energy reductions up to 28%, 28%, and 27% for 1, 2, and 4 threads,
respectively, while achieving greater IPC throughput, on average, regardless of
the number of threads. Thus, former conclusions hold, encouraging the use of
iLP-NUCA. A 2-way, 8KB RT is reinforced as the best candidate for our
workloads.

5 Related Work

Several works have addressed the instruction cache energy consumption problem
by adding hardware structures between the processor and the first-level instruc-
tion cache (L1-I) to capture instruction fetches [7],[8],[21]. These proposals add
extra hardware structures between the processor and the instruction cache. They
reduce the amount of access to the L1-I, but at the expense of introducing extra
fetch latency when a miss to these structures occurs. On the contrary, we keep
the interface between the processor and the L1-I, and these designs could be
implemented in front of our system.

Reconfigurable caches try to adapt dynamically to applications requirements
obtaining great energy reductions, but they modify the cache structures
[22],[5],[6]. A variable size or associativity allows the hosting of applications
or program phases with big working set requirements and reduces the energy
consumption when the requirements are small. Apart from complexity, a recon-
figuration drawback appears when predictions are wrong and the cache becomes

266 A. Ferrerón-Labari et al.

under- or over-sized. Nonetheless, merging reconfiguration with iLP-NUCAwould
be an interesting future work, for example switching on/off iLP-NUCA levels.

These works do not considermulti-threaded applications, where several threads
that run together and share a small structure (such as a filter or victim cache) could
interfere each other by evicting useful blocks of other threads.

6 Conclusions

Current high-performance embedded processors require a powerful instruction
cache hierarchy with low energy consumption. Most designs rely on large first
level instruction (L1-I) caches that, for many applications and a low number of
executing threads, spends an undue amount of energy. However, shrinking L1-I
caches naively harms the performance of many applications, specially when the
processor becomes loaded up to its maximum number of threads. In order to
simultaneously improve the performance and energy consumption of the instruc-
tion cache hierarchy, we propose iLP-NUCA, a structure that replaces a conven-
tional L1-I/L2-I cache pair by several levels of richly interconnected cache tiles.
We provide iLP-NUCA with a new transport network-in-cache, reducing blocks
average service latency by 8%, and the energy consumption of the network.

We compare our proposal with a state-of-the-art conventional three level cache
hierarchy, where L1-I and L2-I are dedicated to instructions, and L3 is shared.
From our experiments we can conclude that iLP-NUCA performs better and
consumes less energy for the same L1-I/RT size, independently of the number
of threads. Furthermore, iLP-NUCA achieves the performance of a conventional
hierarchy with a double sized L1-I, saving a great amount of energy. For instance,
if we compare a conventional 2-way, 16KB L1-I against an iLP-NUCA with a
2-way, 8KB RT, we found equal performance and energy savings of 21%, 18%,
and 11% for 1, 2, and 4 threads, respectively.

Acknowledgments. This work was supported in part by grants TIN2010-
21291-C02-01 (Spanish Government, European ERDF), gaZ: T48 research group
(Aragón Government, European ESF), Consolider CSD2007-00050 (Spanish Gov-
ernment), and HiPEAC-3 NoE. The authors would like to thank Manolis Kat-
evenis for his suggestions about the transport network.

References

1. Tullsen, D.M., Eggers, S.J., Levy, H.M.: Simultaneous multithreading: maximiz-
ing on-chip parallelism. In: Proc. of the 22 nd Ann. Int. Symp. on Comp. Arch.,
pp. 392–403 (1995)

2. Montanaro, J., Witek, R., Anne, K., Black, A., Cooper, E., Dobberpuhl, D., Don-
ahue, P., Eno, J., Farell, A., Hoeppner, G., Kruckemyer, D., Lee, T., Lin, P., Mad-
den, L., Murray, D., Pearce, M., Santhanam, S., Snyder, K., Stephany, R., Thierauf,
S.: A 160 MHz 32 b 0.5 W CMOS RISC microprocessor. In: Proc. of 1996 IEEE
Int. Solid-State Circuits Conference Digest of Technical Papers, pp. 214–215, 447
(1996)

Shrinking L1 Instruction Caches in SMT Embedded Processors 267

3. Segars, S.: Low power design techniques for microprocessors. ISSCC Tutorial note
(February 2001)

4. Gwennap, L.: What’s inside the Krait. Microprocessor Report 26, 1–9 (2012)
5. Sundararajan, K.T., Jones, T.M., Topham, N.: Smart cache: A self adaptive cache

architecture for energy efficiency. In: Proc. of the Int. Conference on Embedded
Comp. Systems: Architectures, Modeling, and Simulation, pp. 41–50 (July 2011)

6. Zhang, C., Vahid, F., Najjar, W.: A highly configurable cache for low energy em-
bedded systems. ACM Trans. Embed. Comput. Syst. 4, 363–387 (2005)

7. Bellas, N., Hajj, I., Polychronopoulos, C., Stamoulis, G.: Architectural and com-
piler techniques for energy reduction in high-performance microprocessors. IEEE
Trans. on Very Large Scale Integration Systems 8, 317–326 (2000)

8. Kin, J., Gupta, M., Mangione-Smith, W.: The filter cache: an energy efficient mem-
ory structure. In: Proc. of the 30th Ann. IEEE/ACM Int. Symp. on Microarchitec-
ture, pp. 184–193 (1997)

9. Suárez, D., Dimitrakopoulos, G., Monreal, T., Katevenis, M.G.H., Viñals, V.: LP-
NUCA: Networks-in-cache for high- performance low-power embedded processors.
IEEE Trans. on Very Large Scale Integration Systems 20, 1510–1523 (2012)

10. LSI Corporation: PowerPCTM processor (476FP) embedded core product brief
(January 2010),
http://www.lsi.com/DistributionSystem/AssetDocument/PPC476FP-PB-v7.pdf

11. Halfhill, T.R.: Netlogic broadens XLP family. Microprocessor Report 24, 1–11
(2010)

12. Byrne, J.: Freescale drops quad-core threshold. Microprocessor Report 26, 10–12
(2012)

13. Austin, T., Burger, D.: The simplescalar tool set, version 2.0. Technical Report
CS-TR-97-1342, University of Wisconsin Madison (1997)

14. Muralimanohar, N., Balasubramonian, R., Jouppi, N.: Optimizing NUCA Organi-
zations and Wiring Alternatives for Large Caches with CACTI 6.0. In: Proc. of
the 40th Ann. IEEE/ACM Int. Symp. on Microarchitecture, pp. 3–14 (2007)

15. Henning, J.L.: SPEC CPU2006 benchmark descriptions. SIGARCH Comput. Ar-
chit. News 34, 1–17 (2006)

16. Hamerly, G., Perelman, E., Lau, J., Calder, B.: SimPoint 3.0: Faster and more
flexible program analysis. Journal of Instruction Level Parallelism (2005)

17. Suárez, D., Monreal, T., Viñals, V.: A comparison of cache hierarchies for SMT
processors. In: Proc. of the 22nd Jornadas de Paralelismo (2011)

18. Wackerly, D., Mendenhall, W., Scheaffer, R.L.: Mathematical Statistics with Ap-
plications, 7th edn. Brooks/Cole Cengage Learning (2008)

19. Gabor, R., Weiss, S., Mendelson, A.: Fairness and throughput in switch on event
multithreading. In: Proc. of the 39th Ann. IEEE/ACM Int. Symp. on Microarchi-
tecture, pp. 149–160 (2006)

20. Li, Y., Brooks, D., Hu, Z., Skadron, K., Bose, P.: Understanding the energy effi-
ciency of simultaneous multithreading. In: Proc. of the 2004 Int. Symp. on Low
Power Electronics and Design, pp. 44–49 (2004)

21. Yang, C.L., Lee, C.H.: Hotspot cache: joint temporal and spatial locality exploita-
tion for i-cache energy reduction. In: Proc. of the 2004 Int. Symp. on Low Power
Electronics and Design, pp. 114–119 (2004)

22. Albonesi, D.H.: Selective cache ways: on-demand cache resource allocation. In:
Proc. of the 32nd Ann. ACM/IEEE Int. Symp. on Microarchitecture, pp. 248–259
(1999)

http://www.lsi.com/DistributionSystem/AssetDocument/PPC476FP-PB-v7.pdf

Arithmetic Unit for Computations

in GF(p) with the Left-Shifting Multiplicative
Inverse Algorithm

Josef Hlaváč and Róbert Lórencz

Czech Technical University in Prague, Faculty of Information Technology,
Thákurova 9, 160 00 Praha, Czech Republic

{josef.hlavac,robert.lorencz}@fit.cvut.cz

Abstract We present the hardware architecture of an arithmetic unit
intended for computing basic operations over a Galois field GF(p). The
arithmetic unit supports addition, subtraction, multiplication, and mul-
tiplicative inverse modulo a prime p. To compute the multiplicative in-
verse, we use the promising left-shifting algorithm that is based on the
extended Euclidean algorithm. We discuss the potential applications of
the arithmetic unit, including elliptic curve cryptography.

Keywords: Galois field, multiplicative inverse, modular arithmetic, left-
shift algorithm.

1 Introduction

Modular arithmetic is widely used in many areas of computer science, with
cryptography being one of the most prominent ones. There is increasing demand
for cryptographic devices that are small and consume little power, yet provide a
high level of security. As a result, there is strong interest in hardware solutions
that can perform cryptographic operations as efficiently as possible.

In this paper, we extend the hardware architecture for computing the mod-
ular multiplicative inverse using the left-shifting algorithm [14] into a complete
modular arithmetic unit. The unit supports all the basic operations – addition,
subtraction, multiplication, and the multiplicative inverse modulo a prime p.
The use of the left-shifting algorithm is the primary difference from previous
approaches.

2 Algorithms

2.1 Multiplicative Inverse

Modular multiplicative inverse is the most complicated operation that our arith-
metic unit needs to support. Since our aim is to minimize hardware complexity
and avoid dedicated units for each type of operation, the choice of algorithm for
computing the inverse determines the overall datapath structure.

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 268–279, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Arithmetic Unit for Computations in GF(p) 269

Algorithm 1. Left-shifting modular inverse

Input: p, a (0 < a < p)
Output: y =

∣∣a−1
∣∣
p

1. u ← p, v ← a, r ← 0, s ← 1, cu ← 0, cv ← 0
2. while u �= ±2cu ∧ v �= ±2cv do
3. if left shift of u possible then
4. if cu ≥ cv then u ← 2u, r ← 2r, cu ← cu+ 1
5. else u ← 2u, s ← s/2, cu ← cu+ 1
6. else if left shift of v possible then
7. if cv ≥ cu then v ← 2v, s ← 2s, cv ← cv + 1
8. else v ← 2v, r ← r/2, cv ← cv + 1
9. else if vn = un then
10. if cu ≤ cv then u ← u− v, r ← r − s
11. else v ← v − u, s ← s− r
12. else
14. if cu ≤ cv then u ← u+ v, r ← r + s
15. else v ← v + u, s ← s+ r
16. if v = ±2cv then r ← s, un ← vn
17. if un = 1 then
18. if r < 0 then r ← −r
19. else r ← p− r
20. if r < 0 then r ← r + p
21. return r

Algorithm 2. Modular multiplication

Input: p, a, b (0 ≤ a, b < p)
Output: y = |a · b|p

1. s ← 0, v ← a, r ← b
2. while r �= 0 do
3. if r0 = 1 then s ← s+ v
4. if s ≥ p then s ← s− p
5. r ← r/2
6. v ← 2 · v
7. if v ≥ p then v ← v − p
8. y ← s
9. return s

270 J. Hlaváč and R. Lórencz

Algorithm 3. Modular addition

Input: p, a, b (0 ≤ a, b < p)
Output: y = |a+ b|p

1. s ← a, r ← b
2. s ← r + s
3. if s ≥ p then y ← s− p else y ← s
4. return y

Algorithm 4. Modular subtraction

Input: p, a, b (0 ≤ a, b < p)
Output: y = |a− b|p

1. s ← a, r ← b
2. s ← s− r
3. if s < 0 then y ← s+ p else y ← s
4. return y

Modular multiplicative inverse is usually computed using an algorithm de-
rived from the Extended Euclidean Algorithm (EEA) [5,6,12,14]. A basic binary
EEA version is attributed to M. Penk (Exercise 4.5.2.39 in [12]). Later, Kaliski
described an algorithm [11] for computing the so-called Montgomery modular
inverse, which computes the multiplicative inverse in the Montgomery domain
[15]. With a simple modification, Kaliski’s algorithm can be used to compute the
inverse in the integer domain; this approach is shown e.g. in [14], with additional
optimizations presented e.g. in [4,9,18].

In [14], another algorithm is shown. In this algorithm, the intermediate res-
ults are shifted to the left; hence the name “left-shifting algorithm”. While still
based on the EEA, this algorithm tries to avoid the drawbacks of the previous
algorithms.

The qualities of this left-shifting algorithm are confirmed in [6], where a vari-
ant of the left-shifting algorithm is shown to be the least-complex algorithm
as long as the shift operation does not cost anything (which is the case in a
hardware implementation).

We based our design on the left-shifting algorithm, see Algorithm 1.

2.2 Multiplication

There are many algorithms for modular multiplication; however, most of them
use special representations of numbers, such as the Montgomery domain, or
special hardware elements [1]. Our choice of algorithms is limited because the
left-shifting inverse algorithm works in the integer domain. We chose the simple
algorithm of alternating addition and modular correction (Algorithm 2). This

Arithmetic Unit for Computations in GF(p) 271

algorithm is simple and straightforward, yet reasonably efficient, and it can be
easily added to the hardware architecture.

2.3 Addition and Subtraction

Addition and subtraction are the simplest operations. Compared to their integer
counterparts, only one additional step is needed – correction of results greater
than p− 1. Algorithm 3 and Algorithm 4 detail the operation.

3 Hardware Architecture

As already mentioned, the hardware structure is largely determined by the ne-
cessary datapath for the left-shifting inverse algorithm. An architecture for com-
puting the multiplicative inverse alone is proposed in [13,14], and our design is
somewhat similar. However, our architecture is more complex because it sup-
ports more operations, and we chose to use multiplexers instead of the implied
tri-state outputs.

Our hardware architecture is shown in Figure 1. The control logic, implemen-
ted as a Finite State Machine, is described in the following sections, broken down
by individual operations.

3.1 Multiplicative Inverse

When computing the multiplicative inverse, the data path can be seen as a
combination of a “master” part (containing the work registers u, v, and the
associated combinatorial logic), and a “slave” part (containing the work registers
r, s, the output register y, and the associated combinatorial units).

Algorithm 1 internally allows negative values in the two’s complement code.
A sign bit is therefore needed in all internal registers, implying the width of n+1
bits. In certain very rare cases, the register r can exceed the [−p+1, p−1] range
and has to be n+ 2 bits wide.

Algorithm 1, as presented in the previous section, can be implemented in
hardware in quite a straightforward way; however, significant optimizations are
possible. Most of the optimizations shown in [13,14] can be applied to our design
as well and are briefly mentioned below for the sake of completeness.

First, a shift by a constant number of bits needs zero time and logic resources.
It is therefore advantageous to perform shifts together with add/subtract oper-
ations in one clock cycle whenever possible.

In line 2, there is no need to test both registers u, v since only one of them
can change in each clock cycle. Thus, the test can be applied to the output of
ADD1, checking for ±1 shifted by min(cu, cv). In the special case of a = 1, the
inverse still computes correctly, it just takes longer. The test results are stored
in two 1-bit registers (t pos, t neg) for use in the next clock cycle.

In line 16, the result is moved to the register r if it is not already there. To
avoid this test, a flip-flop (the wu signal) is used to “remember” which of the
registers u, v was last updated.

272 J. Hlaváč and R. Lórencz

ADD1

ADD2

P

U V R S

MXU

A

MXV

MX1

Y

Y

MXR MXS

MX2

Test Logic

M

. .

..

uv wu t_p t_n

.

RESET

START

DONE

Finite State

Machine

n

n

n+2 n+1

n+1

n+1

n+2

n+1

n+1

n+1

n+2

n n+2

n+2

n+1

n+1

n+1

n+1

n+1

n+1

n+1

n+1
n

=

CU

CV

MX3

n

B

OP

n+1

Fig. 1. Modular arithmetic unit – Hardware architecture

The tests in lines 4, 7, 10 and 14 imply an e-bit subtracter, where e = log2 n.
However, the subtracter can be replaced with an e-bit equality comparator (that
outputs the difference signal d) and one flip-flop (signal uv).

The ±1 tests are implemented using the register m, which contains a binary
mask shifted by the appropriate number of bits+1, that is, −2min(cu,cv)+1 (−1
shifted to the left by min(cu, cv) + 1). To test for +1, the mask is AND’ed with
the value to be tested. To test for −1, the mask is XOR’ed with two times the
value to be tested. In both cases, if the result is zero, ±1 is present. Test results
are stored in the t pos and t neg flip-flops.

Arithmetic Unit for Computations in GF(p) 273

The tu, tv signals represent the “left shift is possible” conditions (more pre-
cisely “value can be doubled without causing an arithmetic overflow”) in lines 3
and 4 of Algorithm 1. The t cond test signal results from the implementation of
the conditions in lines 17–20 of Algorithm 1; it is high whenever s has the same
sign as the ±1 that has caused the main loop to terminate. A summary of the
test signals introduced in the preceding paragraphs follows:

t pos = (mn−1 · an) + (mn−2 · an−1) + . . .+ (m0 · a1)
t neg = (mn ⊕ an) + (mn−1 ⊕ an−1) + . . .+ (m0 ⊕ a0)

tu = (un = un−1 = 0) ∨ ((un = un−1 = 1) ∧ (un−2 + un−3 + . . .+ u0 = 1))

tv = (vn = vn−1 = 0) ∨ ((vn = vn−1 = 1) ∧ (vn−2 + vn−3 + . . .+ v0 = 1))

t cond = (t neg = 0 ∧ sn = 1) ∨ (t pos = 0 ∧ sn = 0)

The tests are rather complicated, and so is the associated test logic consisting of
the n+1-bit register m, 1-bit registers uv, wu, t pos, t neg, and the counters cu,
cv. Most of these are not found in the plain version of the algorithm (Algorithm
1) and result from implementing the optimizations.

Due to the number of optimizations that are not obvious from Algorithm
1, the FSM operation is detailed in an algorithmic form (Algorithm 5) with a
simplified diagram of states and transitions (Figure 2).

Theoretically, the lowest number of clock cycles needed to compute one inverse
is a constant – one such case is a = p− 1. In this case, the main loop exits after
just one iteration, no matter what the n is. The theoretical maximum is 2n, plus
a few cycles for initialization etc, since in each iteration the number of significant
bits in one of the variables u, v is decreased at least by one. The average number
of clock cycles is near this maximum. There is a linear relationship between the
word size in bits and the average number of clock cycles needed.

3.2 Multiplication

For multiplication, we used a straightforward implementation of Algorithm 2.
The computation takes at most 2n + 1 clock cycles including the initialization
(line 1 of Algorithm 2), with the average around 2n. Each iteration of the main
loop (lines 2–7) takes two clock cycles: in the first one, operations in lines 3, 5,
6 are performed; in the second one, operations in lines 4 and 7 are performed.
Figure 3 shows the corresponding portion of the FSM.

3.3 Addition and Subtraction

Again, a straightforward implementation of Algorithm 3 and Algorithm 4 is
used. The calculation takes exactly 3 clock cycles – initialization, addition or
subtraction, and modular correction. Figure 4 shows the portion of the FSM
that controls these operations.

274 J. Hlaváč and R. Lórencz

Algorithm 5. Multiplicative inverse – FSM operation

1. u ← p, v ← a, s ← 1, m ← −2;
clear r, cu, cv; set uv, t pos, t neg S INIT→S ML

2. while (t neg = 1) ∧ (t pos = 1) do S ML→S ML
3. if tu = 1 then ·
4. if (d = 0) ∨ (uv = 0) then ·
5. u ← 2u, r ← 2r; inc cu; clear uv ·
6. else ·
7. u ← 2u, s ← s/2, m ← 2m; inc cu ·
8. else if tv = 1 then ·
9. if (d = 0) ∨ (uv = 1) then ·
10. v ← 2v, s ← 2s; inc cv; set uv ·
11. else ·
12. v ← 2v, r ← r/2, m ← 2m; inc cv ·
13. else if un = vn then ·
14. if d = 0 then ·
15. u ← 2(u− v), r ← 2(r − s) ·
16. inc cu; clear uv; set wu; update t pos, t neg ·
17. else if uv = 1 then ·
18. u ← 2(u− v), r ← r − s, s ← s/2, m ← 2m ·
19. inc cu; set wu; update t neg, t pos ·
20. else ·
21. v ← 2(v − u), s ← s− r, r ← r/2, m ← 2m ·
22. inc cv; clear wu; update t neg, t pos ·
23. else ·
24. if d = 0 then ·
25. u ← 2(u+ v), r ← 2(r + s) ·
26. inc cu; clear uv; set wu; update t neg, t pos ·
27. else if uv = 1 then ·
28. u ← 2(u+ v), r ← r + s, s ← s/2, m ← 2m ·
29. inc cu; set wu; update t neg, t pos ·
30. else ·
31. v ← 2(v + u), s ← s+ r, r ← r/2, m ← 2m ·
32. inc cv; clear wu; update t neg, t pos S ML→S ML
33. if wu = 1 then S INV→S INV1
34. if uv = 1 then s ← r ·
35. else s ← r/2 ·
36. r ← 0 S INV→S INV1
37. if t cond = 1 then S INV1→S INIT
38. if t neg = 0 then y ← r − s ·
39. else y ← r + s ·
40. else ·
41. if t neg = 0 then y ← p− s ·
42. else y ← p+ s S INV1→S INIT

Arithmetic Unit for Computations in GF(p) 275

START = 0

RESET

S_INIT

S_INV

START = 1
OP = 11

S_INV1

(t_pos =0 | t_neg = 0)

t_pos = 1
t_neg = 1

Fig. 2. Multiplicative inverse – FSM states and transitions

RESET

S_INIT

S_MUL

S_MUL1

START = 1
OP = 10
U<=P, V<=A,
R<=B, S<=0

R(0) = 0

V <= 2V
R <= R/2

R(0) = 1
S <= S+V
V <= 2V
R <= R/2

R != 0
V <= V mod P
S <= S mod P R = 0

Y <= S mod P
DONE <= 1

START = 0

DONE <= 0

Fig. 3. Multiplication – FSM states and transitions

276 J. Hlaváč and R. Lórencz

RESET

S_INIT

S_ADD

S_ADD1

S_SUB

S_SUB1

START = 1
OP = 00
S<=A, R<=B

START = 1
OP = 01
S<=A, R<=B

S <= S+R S <= S-R

S<P
Y <= S
DONE <= 1

Y <= S
DONE <= 1

S>=0

S>=P
Y <= S-P
DONE <= 1

Y <= S+P
DONE <= 1

S<0

START = 0
DONE <= 0

Fig. 4. Adddition and subtraction – FSM states and transitions

4 Results and Discussion

4.1 Implementation

We described the modular arithmetic unit in VHDL, and tested the correct
operation of our design by applying about 500,000 random test vectors with
various operands and moduli, including several marginal cases.

To get an idea about the properties of a real implementation, we synthes-
ized the design into a Xilinx Spartan2 FPGA (namely “xc2s200-fg456-5”). The
following table shows the occupied area (in equivalent gates) and maximum
attainable clock frequency reported by the synthesis tool for various operand
lengths in bits. The synthesis was optimized either for the smallest area or for
the highest speed.

The left-shift inversion algorithm is designed to minimize the number of ad-
ditions/subtractions. This is very useful if the additions and subtractions take
more clock cycles than pure shifts. However, our unit does not take advantage of
this property since all the elementary operations are performed in a single clock
cycle.

Table 1. FPGA implementation

Bits Eq. gates (area/spd opt.) fCLK (area/spd opt.)

32 7752 / 10222 28 / 44

64 14309 / 17205 22 / 26

80 17593 / 21020 20 / 24

Arithmetic Unit for Computations in GF(p) 277

4.2 Comparison with Other Approaches

In general, it is tricky to compare numbers given by various authors. To obtain
comparable results, one should take the same target platform and use the same
version of synthesis tools. For this reason, the following discussion may seem
somewhat vague.

The dual-field arithmetic unit in [17] does not support the modular inverse
directly; the calculation must be controlled from the outside and takes many
clock cycles. Multiplication takes n cycles; however, one cycle includes both ad-
dition and correction. Our approach is significantly faster thanks to the directly
implemented inverse.

The GF (p) arithmetic unit in [3] is designed for operation in the Montgomery
domain, while our unit operates in the integer domain. The unit in [3] utilizes
the advantages of the Montgomery multiplication which is performed in n cycles.
Inversion always takes 2n cycles. Our design is therefore slightly faster in the
inverse calculation but slower in multiplication. However, this does not take into
account the overhead of converting to/from the Montgomery domain and dif-
ference in complexity of one clock cycle (and therefore the maximum attainable
frequency). The required area, based on the quoted number of equivalent gates,
is roughly the same.

4.3 Applications

One of the possible application areas is elliptic curve cryptography (ECC) [10].
The operations supported by the arithmetic unit are sufficient to implement all
operations over points on elliptic curves – point addition, point doubling, and
scalar multiplication.

Another intended application of the modular arithmetic unit is in a system
for solving sets of linear equations exactly. One such system is shown in [16]; it
takes advantage of modular arithmetic with many prime moduli and the Chinese
Remainder Theorem to avoid rounding errors during calculations. To use the
proposed arithmetic unit in such a system, one would simply use many instances
(possibly thousands) of this unit in parallel and let them perform the same
sequence of operations for different moduli. In this application, the word size
should stay small, let’s say 16 to 32 bits, to avoid large propagation delays.

5 Conclusion

We presented a hardware implementation of a modular arithmetic unit that
can add, subtract, multiply and invert modulo a prime number p. To compute
the multiplicative inverse efficiently, the unit uses the promising left-shifting
algorithm [13,14]. The arithmetic unit can be used whenever there is need to
perform modular arithmetic operations efficiently in hardware, such as in elliptic
curve cryptography, or for calculations that use a residual number system.

In comparison with the current state of the art, our arithmetic unit outper-
forms designs that do not directly implement the inversion. Other designs may

278 J. Hlaváč and R. Lórencz

have the upper edge thanks to faster multiplication. Future work should there-
fore focus on improving the multiplication performance, in addition to further
optimizations of the left-shift inverse algorithm.

References

1. Bernal, A.: Conception et Etude d’une Architecture Numerique de Haute Perform-
ance pour le Calcul de la Fonction Exponentielle Modulaire. PhD thesis, Institut
National Polytechnique de Grenoble (1999)

2. Ciet, M., Joye, M., Lauter, K., Montgomery, P.L.: Trading Inversions for Multiplic-
ations in Elliptic Curve Cryptography. Designs, Codes and Cryptography 39(2),
189–206 (2006)

3. Daly, A., Marmane, W., Kerins, T., Popovici, E.: An FPGA Implementation of a
GF(p) ALU for Encryption Processors. Microprocessors and Microsystems 28(5-6),
253–260 (2004)

4. Meurice de Dormale, G., Bulens, P., Quisquater, J.-J.: An Improved Montgomery
Modular Inversion Targeted for Efficient Implementation on FPGA. In: Interna-
tional Conference on Field-Programmable Technology, FPT 2004, pp. 441–444
(2004)

5. Gutub, A.: New Hardware Algorithms and Designs for Montgomery Modular In-
verse Computation in Galois Fields GF(p) and GF(2n). PhD Thesis, Department
of Electrical & Computer Engineering, Oregon State University (2002)

6. Hars, L.: Modular Inverse Algorithms without Multiplications. EURASIP Journal
on Embedded Systems 32192:2006, 1–13 (2006)

7. Hitchcock, Y., Dawson, E., Clark, A., Montague, P.: Implementing an Efficient
Elliptic Curve Cryptosystem over GF (p) on a Smart Card. In: Proc. of 10th Com-
putational Techniques and Applications Conference, CTAC 2001. ANZIAM J.,
vol. 44, pp. C354–C377 (2003)

8. Hlaváč, J.: Hardware Implementation of Algorithms for Computations in Finite
Fields. PhD thesis, Czech Technical University in Prague (2010)

9. Hlaváč, J., Lórencz, R.: Improved Hardware Architecture for Computing the Modu-
lar Inverse using AMI. In: International Conference on Computer, Communication
and Control Technologies, CCCT 2003 and ISAS 2003, vol. III, pp. 255–260 (2003)

10. IEEE Computer Society: IEEE Standard Specifications for Public-Key Crypto-
graphy. Document No. IEEE 1363-2000 (2000) ISBN: 0-7381-1956-3

11. Kaliski Jr., B.S.: The Montgomery Inverse and Its Applications. IEEE Trans. on
Computers 44(8), 1064–1065 (1995)

12. Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Al-
gorithms, vol. 2. Addison-Wesley (1998)

13. Lórencz, R.: Method for Generating the Multiplicative Inverse in a Finite Field
GF(p). U.S. Patent No. 7574469 (2009)

14. Lórencz, R.: New Algorithm for Classical Modular Inverse. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 57–70. Springer,
Heidelberg (2003)

15. Montgomery, P.L.: Modular Multiplication Without Trial Division. Mathematics
of Computation 44(170), 519–521 (1985)

Arithmetic Unit for Computations in GF(p) 279

16. Morháč, M., Lórencz, R.: Modular System for Solving Linear Equations Ex-
actly, I. Architecture and Numerical Algorithms. Computers and Artificial Intelli-
gence 11(4), 351–361 (1992)

17. Wolkerstorfer, J.: Dual-Field Arithmetic Unit for GF (p) and GF (2m). In: Kaliski
Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 500–514.
Springer, Heidelberg (2003)

18. Yan, X.: Modified Modular Inversion Algorithm for VLSI Implementation. In: 7th
International Conference on ASIC – ASICON 2007, pp. 90–93 (2007)

HW-OSQM: Reducing the Impact

of Event Signaling by Hardware-Based
Operating System Queue Manipulation

Stefan Wallentowitz, Thomas Wild, and Andreas Herkersdorf

Technische Universität München, Institute for Integrated Systems
Arcisstr. 21, D–80290 München
stefan.wallentowitz@tum.de

Abstract. System-on-chip integrate an increasing amount of processing
elements and on-chip communication is of particular importance. Rising
communication rates with varying delays require efficient techniques to
signal events related to the on-chip communication to the application
software. While latencies are commonly hidden by multithreading, the
signaling of events is usually done by polling or interrupts. With rising
rates of such events the classic techniques expose an increasing software
overhead that becomes significantly important.

In this paper we present the concept of hardware-based operating sys-
tem queue manipulation (HW-OSQM) to offload the process of event
signaling. The concept is implemented as a flexible hardware accelerator
which integrates with the communication hardware and autonomously
manipulates the queue data structures of the operating system. It elim-
inates the associated software overhead and utilizes small additional re-
sources while allowing for the required flexibility. The performance im-
provement shows that HW-OSQM can nearly eliminate any overhead in
software.

1 Introduction

Modern multiprocessor system-on-chip integrate an increasing amount of pro-
grammable processing elements ranging from heterogeneous embedded systems
to homogeneous massively parallel manycore platforms. The processing elements
in such platforms become more powerful and also the operating systems can be
complex. Multithreading can be found to some certain degree, so that at least
concurrent application tasks share a processing node in such a platform. Commu-
nication of applications running on such platforms is an increasingly important
factor. Future platforms have to deal with rising data rates and bandwidth de-
mands, such as for example in mobile communication devices [1].

The communication among the processing and other elements is commonly
performed as message passing or shared memory accesses. Usually threads are
waiting for events that signal the completion of a transfer, the availability of data
and other events. Multithreading allows to interleave the waiting time for events
with other thread processing to increase efficiency. When a thread suspends to

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 280–291, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

HW Operating System Queue Manipulation 281

T
h

re
a

d
s

Kernel
tevent

context switch polling

yield

overhead

A

B

C

D

(a) Polling: overhead increases with
waiting threads

interrupt service routine overhead

T
h

re
a

d
s

Kernel

tevents

A

B

C

D

(b) Interrupts: overhead increases with
rate of events

Fig. 1. Scalability issues for the two common signaling methods

wait for an event, it has to be re-scheduled after its occurrence. Hence, the
problem is how to efficiently signal such events to the thread.

Two techniques are commonly used to signal events to waiting threads: Polling
is the repeated checking of a certain address by the thread itself and interrupts
are signals from the corresponding hardware to the processor which trigger the
operating system (see [2]). When polling is used, a thread yields (releases) the
processor to the operating system. It is scheduled later again and repeatedly
checks for the event. The operating system performs context switches and invokes
the scheduler every time a threads yields. Multiple outstanding events have an
increasing performance impact as sketched in Figure 1(a). It is possible to reduce
the overhead of the polling operations by reducing the polling thread’s priority.
But this automatically leads to reduced re-activeness.

When interrupts are used, a thread suspends while waiting for an event. The
scheduler will not select a suspended thread for execution again unless it is
“woken up”. In the occurrence of the event, the hardware raises an interrupt and
the interrupt service routine (ISR) re-schedules the waiting thread. Compared
to polling there is no overhead of checking for the completion, but the overhead
of the ISR. Furthermore, this method is advantageous when the latency from an
event to the notification needs to be low. But the overhead of the ISR becomes
a significant factor with an increasing rate of events as depicted in Figure 1(b).

Two factors impact the performance of the two methods: the number of con-
currently waiting threads and the event rate. To be independent of both factors,
we propose to offload the processing related to event signaling to the hardware
that generates such events, such as a DMA controller or a Network-on-Chip
network interface. The proposed hardware-based operating system queue manip-
ulation (HW-OSQM) assists such modules and appears to the application (or
driver) similar to interrupting and therefore eliminates the problems of polling.
HW-OSQM autonomously performs the central operation of the interrupt ser-
vice routine: Waking up a thread by putting it back to the ready queue of
the operating system’s scheduler. The proposed method is scalable and easy to
adapt to different scenarios as we will discuss in this paper. Contrary to existing
approaches the proposed method does entirely remove any software overhead
related to external events. On the other extreme, HW-OSQM does not offload
the entire scheduler operation to hardware, but allows for flexible integration
with existing operating systems, even without modifications to it.

282 S. Wallentowitz, T. Wild, and A. Herkersdorf

The contributions of this paper are: (i) an analysis of the impact of the clas-
sical event signaling methods on computing performance and the potentials for
overhead reduction in Section 3, (ii) a flexible concept for HW-OSQM that elim-
inates this overhead along with a configurable implementation (see Section 4),
and (iii) the validation of the results in Section 5.

2 Related Work

The tradeoff between interrupts and polling has been researched for a long time.
Langendoen et al. [2] for example investigated this tradeoff for cluster comput-
ing. During execution of software the choice for interrupts or polling is adapted
depending on the question whether other threads are runnable. In many cases
interrupt-based event notification is favored due to its minimal latency and the
lack of influences on the software other than the ISR. To reduce the impact of the
ISR on software performance interrupt coalescing has been introduced. Events
are here “collected” and signaled with a single interrupt. In network interface
cards several packets are stored in memory before raising an interrupt, such as
discussed in [3]. MSIQ [4] is an on-chip message passing adapter that coalesces
interrupts. Although this technique can achieve good results, the impact of inter-
rupts can still be reduced by saving the ISR and execute its operations directly
in hardware as proposed in this work.

Substituting parts of an operating system by much faster hardware elements
has been proposed before. Approaches often focus on hard real-time systems
and their specific demands. In change for the real-time behavior such hardware
accelerators are often restricted in their flexibility, e.g., only allowing for a bound
set of threads or events. The prior solutions vary in their set of operating system
functionalities offloaded to hardware and their implementation style. One class
of such hardware-assists for operation systems are programmable as separate
(application-specific) processors or microcontrollers. OSIP [5] for example is an
application-specific instruction set processor that replaces the entire scheduler.
Scheler et al. [6] present an approach which utilizes a microcontroller to order
interrupt requests and perform scheduling and processor interrupts for real-time
systems. While those approaches are very flexible and can also perform the task
addressed in this paper, they are complex to use and consume much resources.
Other hardware offloads for operating systems implement specialized hardware.
HW-RTOS [7] implements a scheduler and communication for a dual core system.
Threads are woken up when communication events occur. Nevertheless, HW-
RTOS as other hardware operating systems is restricted in the amount of buffers,
threads, and events supported and lacks an external interface.

In microthreading platforms several threads execute in parallel and are dy-
namically scheduled [8]. Context switches are fast and special instructions allow
for cycle-to-cycle thread switches. A waiting thread can be signaled using a spe-
cific instruction for efficient thread synchronization. For external events such as
a data load this specific instruction is issued in the pipeline to signal the thread.
In recent years this concept has been extended to multiprocessor environments

HW Operating System Queue Manipulation 283

such as the Microgrid architecture for the Self-adaptive Virtual Processor (SVP)
model [9]. Families of threads run concurrently on one or more processors and
synchronize with the means of microthreading. [10] extends this concepts to in-
tegrate I/O events. A general problem with this microthreaded approach is the
specialization and overhead induced by having several contexts in hardware.

Transputers also work with a sleep and wake up mechanism controlled by
the hardware [11, p. 32]. Two priority queues hold the active threads. Threads
that are waiting for external or internal events are automatically notified by the
hardware by putting them back to the active queue. The scheduler is microcoded
hardware which is complex compared to our proposed module. Instructions for
queue manipulation in software were provided by the (CISC) VAX instruction
set, but the other overhead persists.

Summarized, contrary to interrupt coalescing and related techniques the goal
of our work is to offload the essential task of the interrupt service routine –
waking up a waiting task – entirely to hardware. Although running the entire
scheduler in hardware might be favorable in some cases, our approach keeps
the software data structures intact and keeps the full flexibility of the operating
system by only doing the necessary operations in hardware.

3 Problem Analysis

The performance impact of the classical methods strongly depends on the char-
acteristics of the application scenario and the operating system parameters. In
the following we will analytically derive the overhead and evaluate the impact.

3.1 Performance Metric and Parameters

The basic performance metric is the overhead o that is the share of the total
execution time the software spends in operations specific to the respective signal-
ing mechanism. This overhead should be minimal and it is influenced by many
parameters and characteristics. First of all, the execution times of the specific
operations influence the overhead. They are approximately constant for each
implementation: the time for polling Tpoll and the time for the interrupt service
routine Tisr. Similarly, the time for context switches TCS is another constant
factor. Contrary, the time slice length Tslice is a parameter of the kernel: Longer
time slices reduce the impact of kernel context switches and the scheduler on
the computational performance while shorter time slice lengths increase the re-
activeness. Application characteristics also influence the overhead. The average
event rate revent is the number of generated events per second. In steady-state
this is the rate applications start waiting for external events. Tdelay is the average
time from the start of the waiting of a thread until the event is signaled.

The latency between the event and the thread gets to know this similarly
needs to be minimal. There are too many factors influencing the latency and
a detailed analysis discussion goes beyond the scope this paper. Nevertheless it
is important that a generic solution can still cope with this issue (see “Critical
Events and Demand Interrupting” in Section 4.2).

284 S. Wallentowitz, T. Wild, and A. Herkersdorf

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

N
wait

O
v
e
rh

e
a
d

62.5 μs

125 μs

250 μs

500 μs

(a) Polling

0 25000 50000 75000 100000
0

0.2

0.4

0.6

0.8

1

Event Rate (1/s)

O
v
e
rh

e
a
d

(b) Interrupting

Fig. 2. Analytical result of overhead of polling and interrupting

3.2 Analysis

We calibrated the constant factors based on a minimalistic operating system
and a simple off-the-shelf RISC processor assuming an operating frequency of
400 MHz. To research the impact of our proposed solution we did a steady-
state analysis as such an analysis can capture different application scenarios.
The overhead of polling can be derived from Figure 1(a). The rate of events
revent and the average delay Tdelay together determine the average number of
concurrently waiting threads Nwait = revent ·Tdelay and the overhead is

opolling =
Nwait · (Tpoll + TCS)

Tslice +Nwait · (Tpoll + TCS)

Figure 2(a) shows the overhead for different typical time slice lengths Tslice and
numbers of average waiting threads Nwait. Even for long time slice lengths, the
overhead becomes around 10% for 8 waiting threads. At a short time slice length
even two waiting threads already induce an overhead in that range.

In the interrupt scheme the number of waiting threads is not relevant, but
instead only the event rate revent determines the overhead. Furthermore, the
time slice length Tslice does principally not influence the overhead, as there is
one run of the interrupt service routine for each event, thus leading to the linear
dependency

ointerrupting = revent ·Tisr

Figure 2(b) shows the overhead when using interrupts. For event rates around
25kHz the overhead is already above 10%. As motivated before, in future many-
core systems developers can easily face higher event rates. The analytical results
show a good potential for improvements.

4 Operating System Queue Manipulation

The goal is to get rid of the overhead associated with the signaling of an event
to a suspended thread. First of all, threads should not poll for events, but in-
stead yield the processor while the event is pending. The events then need to

HW Operating System Queue Manipulation 285

T
h

re
a

d
s

Kernel

tevent

A

B

C

context switch queue manipulation

OSQM configure

(a) HW-OSQM timing diagram

Ready

Queue

mutex

tailhead

OSQMsuspended

thread

pointer to

queue element
eventadd to

queue

lock
unlock

Processor Core

Memory Comm. Module
(DMA, etc.)

(b) Queue manipulation after event

Fig. 3. HW-OSQM: basic principle, integration and operation

be signaled to the thread by appending them to the ready queue of the operat-
ing system. In principal, this ready queue of an operating system resides in the
memory. It usually points to head and tail of a linked list of queue elements.
The scheduler dequeues an element from the head to select the next thread and
enqueues threads that yield or which are preempted. When the event occurs, an
interrupt service routine appends the thread queue element to the list.

The actual scheduling operation and context switches are not part of this
manipulation, so that the approach is generic and can be integrated in more
sophisticated systems.

4.1 HW-OSQM Operation

In Hardware-based Operation System Queue Manipulation (HW-OSQM) the
queue operations are performed asynchronously by the assisted hardware (e.g.,
DMA controller or similar) as depicted in Figure 3(b). The principal function-
ality of HW-OSQM is sketched in Figure 3(a): When suspending a thread, the
HW-OSQM is configured to wake up this thread on a certain event by appending
it to the ready queue. Both phases and variations of HW-OSQM are described
subsequently, followed by the implementation description.

Configuration Phase. In the beginning the pointer to the ready queue needs
to be configured once. When a thread starts waiting for an event, e.g., the
completion of a DMA transfer it initiated, it suspends. The respective queue
element is thereby removed from the ready queue. As HW-OSQM has to find
the element in the memory when the event occurs, it needs to be configured
during the thread suspension. Therefore, HW-OSQM needs to store the pointer
to the queue element for every tracked event. In Figure 3(b) the set of pointers
associated to events are depicted as part of the HW-OSQM module.

Event Phase. The basic operations performed in hardware are depicted in
Figure 3(b). After an event occurred (1) the thread queue element address as
set during configuration is looked up and appended to the ready queue. As the

286 S. Wallentowitz, T. Wild, and A. Herkersdorf

queue data structure is shared among processors and the hardware assist it has
to be locked when operating on it (2). After the lock has been successfully
acquired, the thread queue element is enqueued to the ready queue by manip-
ulating the pointers (3). Finally, the lock is released (4). In case atomicity
is possible without locking, the operation does not need to lock the queue ap-
parently. Furthermore, cache coherency needs to be ensured, for example by
snooping for this operations.

4.2 HW-OSQM Variations

This basic scheme already matches many minimalistic operating systems. Nev-
ertheless, it is not sufficient to handle more sophisticated cases that can also be
handled with slight modifications of the basic concept.

Multiple Priority Queues. Above we described a scenario where one queue
holds all runnable threads, while waiting threads are stored separately. In many
operating systems, especially real-time operating systems, there are multiple
queues for runnable threads that are ordered by thread priority. Such structures
can be easily handled by extending the thread entry in HW-OSQM with the
associated priority queue.

Critical Events & Demand Interrupting. The major advantage of HW-
OSQM over interrupts is that the normal software execution is not interfered
with the wake-up operation. But this interference might be desired. For ex-
ample when the event is critical for the thread or additional actions might be
required by the kernel when the event occurs. For using such critical events the
HW-OSQM entry can be extended with a flag. Each of those events apparently
reduces the performance gain of HW-OSQM, but cannot be avoided due to the
application demands.

Signaling with Ready Flag. Sometimes bitmap schedulers are used. Those
schedulers store threads in a table that holds a restricted number of them. Such
a data structure is rarely used in standard operating systems but is sometimes
chosen as alternative in real-time operating systems. This scheduler structure is
can also be handled with HW-OSQM. Instead of modifying the ready queue, the
HW-OSQM simply directly modifies the runnable flag.

This set of extensions to HW-OSQM allows to support most common simple
operating systems, e.g., VxWorks, FreeRTOS, eCos etc. Even more complex
scheduler implementations may use HW-OSQM by defining an additional queue,
for example in Linux or similar. HW-OSQM then uses this queue to enqueue
ready threads and the scheduler can then check this queue for threads and add
them to its own data structures.

4.3 Implementation

A generic implementation of HW-OSQM is depicted in Figure 4(a) beside inte-
gration examples with the assisted modules in Figure 4(b). The implementation

HW Operating System Queue Manipulation 287

B
u

s
M

a
s
te

r

In
te

rf
a

c
e ReadyQ*

Thread*

Queue*
irq_en

HW-OSQM

ack

Thread

table

static

configuration

ack

index

runtime

configuration

T
im

e
r

Counter
Timer

valid
valid

IRQ line Event

Signaling

Interface

(a) OSQM modules, dashed: optional (b) Integration exam-
ples

Fig. 4. HW-OSQM implementation and integration with the assisted modules

essentially consists of two parts: the logic that performs the queue operations
via a bus interface and the table that holds the addresses of the thread queue
elements associated with each event. The configuration ports of the modules can
be accessed via a slave bus interface from the processor or integrated with the
assisted modules. The configuration of the queues etc. (HW-OSQM module) is
typically done by the software at start time. At runtime, the table is then con-
figured to associate a thread queue element with each event. Assisted modules
usually have a number of requests that it handles in parallel, e.g. multiple DMA
transfers, messages or similar. It is important that the events can later be as-
sociated with the correct thread. The software therefore sets the thread queue
element corresponding to the event that is created after transfer completion.

The event itself is signaled from the assisted modules, such as a DMA con-
troller, by setting the index and signal the event with valid. HW-OSQM can
also assist multiple modules when those signals are multiplexed (see Figure 4(b)).
The HW-OSQM module acknowledges the completion with ack. The address of
the corresponding thread queue element is picked from the table and handed
to the state machine (Thread*). The pseudo code of the operations that the
state machine executes are depicted in Figure 5. Depending on the different
implementation configurations the execution flow is slightly different.

if (Q->tail)
 Q->tail->next=Thread;
thread->prev=Tail;
thread->next=NULL;
Q->tail=Thread;
if (!Q->head)
 Q->head=Thread;

Q=ReadyQ; Q=Queue;

OSQM OSQM +

Multi Queues

raise_irq();

+ IRQ

lock(Q->mutex);

append(Q,Thread);

unlock(Q->mutex);

lock(Q->mutex);

append(Q,Thread);

unlock(Q->mutex);

Fig. 5. Pseudo code of the HW-OSQM state machine functionality

288 S. Wallentowitz, T. Wild, and A. Herkersdorf

If the queue (set either by internal register or external signal) cannot be locked
a timer is used to wait. After locking the thread element is simply added to the
end of queue. This is a normal linked list operation which consists of just a few
reads and writes. Finally the lock is released.

For the extensions described in Section 4 some optional interface signals can
be added (dashed in Figure 4(a)): The Queue* signal allows for multiple priority
queues and irq_en triggers a demanded interrupt after completion of the queue
manipulation. With demand interrupting the HW-OSQM raises an interrupt to
the operating system. Finally, in case the assisted module can be extended it
is also possible to directly interface the HW-OSQM queue manipulation. The
transfer table of a DMA controller may for example be extended by the required
entries.

5 Results

Based on the described implementation we will present the implementation re-
sults with respect to hardware overhead and the computational performance
impact.

5.1 Resource Utilization

Figure 6 summarizes the resource utilization of HW-OSQM. The synthesis results
for the HW-OSQM state machine logic are shown in Figure 6(a). Provided are
the results of an FPGA (Xilinx Virtex6) and an ASIC process (TSMC 65nm).
Beside the basic HW-OSQM implementation the three variants described in
Section 4.2 are depicted. The requirement for registers in the basic HW-OSQM
implementation stems from the state machine, the runtime configuration register
and a counter that implements the timeout when acquiring a lock. In the variant
where the queue is configured as an additional signal (Queues) there is no con-
figuration register. Additional states are required for the interrupt configuration
(IRQ). Finally, the version for flag manipulation (Flags) does not require a con-
figuration register and locking at all. The frequencies of all modules are around

(a) Queue manipulation logic (b) Thread queue element table

Fig. 6. Synthesis results for the basic module and the thread table

HW Operating System Queue Manipulation 289

500 MHz for the FPGA and 1.5 GHz for the ASIC. Apparently, this frequency
can be bound by other modules, such as the bus and the network adapter.

In Figure 6(b) the impact of the variation of the number of supported waiting
threads, that is the number of HW-OSQM table entries, on the resource utiliza-
tion is given. As expected, the variation of the entries is the direct determinant
for the register part, plus muxing logic. Finally, we integrated the prototype with
a remote DMA network adapter that can handle four different transfers concur-
rently. The additional resource utilization here varies from 3% to 25% depending
on the HW-OSQM implementation variant.

5.2 Performance Impact

Finally, we compare the impact of HW-OSQM on the computational perfor-
mance and compare the findings to the analysis in Section 3.2.

Methodology. The performance tests are executed with a subsystem of a multi-
processor system-on-chip. It consists of a 400MHz processor core, a local memory
and a DMA unit that fetches data from remote memory (compare Figure 3(b)).
A minimalistic operating system that does not add much additional noise in
the performance measurement runs on the processor core. We ran a synthetic
test bed, that produces events depending on the characteristics described in Sec-
tion 3. The data is gathered non-intrusively by directly observing the processor
state and other signals in an accurate RTL simulation. To compare the polling
and interrupting with HW-OSQM, we measure the computational performance
with the average share of time that the user applications have of the total time.
This is the time productive operations are executed by runnable threads that do
not wait for events.

Polling vs. HW-OSQM. As discussed in Section 3.2 (cf. Figure 2(a)), the
determining factors for the polling overhead are the number of waiting threads
(Nwait) and the time slice length (Tslice). Figure 7 shows the impact of the
variation of those parameters. In Figure 7(a) the average share of user time

2 4 6 8
0

0.25

0.5

0.75

1

Waiting Threads (N
wait

)

U
s
e

r
T

im
e
/T

o
ta

l
T

im
e

Polling (62.5 us)

Polling (250 us)

Polling (1 ms)

OSQM (62.5 us)

OSQM (250 us)

OSQM (1 ms)

(a) Polling vs. HW-OSQM

2 4 6 8
0

0.25

0.5

0.75

1

Waiting Thread (N
wait

)

S
a
v
e

d
 O

v
e

rh
e

a
d

25 us

40 us

100 us

Ref (25 us)

Ref (40 us)

Ref (100 us)

(b) Saved overhead vs. analysis

Fig. 7. Polling improvement

290 S. Wallentowitz, T. Wild, and A. Herkersdorf

10000 30000 50000
0

0.25

0.5

0.75

1

Event Rate (1/s)

U
s
e

r
T

im
e

/T
o

ta
l
T

im
e

IRQ (25 us)

IRQ (40 us)

IRQ (100 us)

OSQM (25 us)

OSQM (40 us)

OSQM (100 us)

(a) IRQ vs. HW-OSQM

10000 30000 50000
0

0.25

0.5

0.75

1

Event Rate (1/s)

S
a

v
e

d
 O

v
e

rh
e

a
d

25 us

40 us

100 us

Analysis

(b) Overhead

Fig. 8. Interrupting improvement

of the total time is depicted for polling and HW-OSQM. From the graph it is
visible that with decreasing time slice length and increasing number of waiting
threads the performance decreases for polling. With HW-OSQM there is also a
slight loss that results from the additional overhead of the waiting threads that
have to initiate another request via the kernel driver before yielding again. The
improvement in terms of saved software overhead is plotted in Figure 7(b). It
shows a very good improvement especially for decreasing time slice lengths. In
many system-on-chip it is desirable that the time slice length is relatively short
(here: 62.5µs =̂ 25000cycles), so that the delay for signaling is shorter. The graph
compares the results with the analytically derived overhead (Ref.). The actual
numbers are slightly reduced as a part of the polling is hidden in other kernel
operations.

Interrupting vs. HW-OSQM. In Section 3.2 we analytically derived that
the overhead of interrupting depends on the event rate and does not depend
on the time slice length, but other kernel operations influence the share of the
user execution time of the total time. Figure 8(a) compares this share for the
variation of the event rate and the time slice length. The event rate was chosen
in a range based on the consideration in the introduction. The improvement in
terms of saved software overhead is again depicted in Figure 8(b). It shows a
significant saving, in the range as predicted by the analysis.

6 Conclusion and Outlook

In today’s and future system-on-chip the communication and data rates steadily
increase. The trend of integrating more and more processing elements concen-
trates this high rates on the on-chip communication interfaces. The completion
of transfers, arrival of external data etc. have to be signaled to the operating
system and finally to the threads.

We have analytically derived that the signaling of those events using the classic
methods polling and interrupting has a significant impact on the computational

HW Operating System Queue Manipulation 291

performance of the software with such increasing event rates. In this paper we
presented the concept of HW-OSQM that directly modifies the data structures
of the operating system on the occurrence of events.

The concept is flexible and can be used in different scenarios. The concept has
been implemented and the resource utilization has been analyzed. The impact on
computational performance was measured and shows that HW-OSQM delivers
a significant improvement especially for increasing numbers of waiting threads
and increasing event rates.

Future work will include more extensive studies of HW-OSQM in different
multiprocessing platform scenarios. Furthermore we will investigate the perfor-
mance impact on complete application scenarios. The analysis and synthetic
measurements in this work support that HW-OSQM will increase the computa-
tional performance significantly.

References

1. van Berkel, C.H.K.: Multi-core for mobile phones. In: Proceedings of the Conference
on Design, Automation and Test in Europe, DATE 2009, pp. 1260–1265. European
Design and Automation Association, Leuven (2009)

2. Langendoen, K., et al.: Integrating Polling, Interrupts, and Thread Management.
In: Proceedings of the 6th Symposium on the Frontiers of Massively Parallel Com-
putation, pp. 13–22. IEEE Computer Society (1996)

3. Goglin, B., Furmento, N.: Finding a tradeoff between host interrupt load and MPI
latency over Ethernet. In: IEEE International Conference on Cluster Computing
and Workshops, CLUSTER 2009, August 31-September 4, pp. 1–9 (2009)

4. Kariniemi, H., Nurmi, J.: High-performance NoC Interface with interrupt batching
for Micronmesh MPSoC prototype platform on FPGA. In: NORCHIP, pp. 1–6
(November 2010)

5. Castrillon, J., et al.: Task management in MPSoCs: an ASIP approach. In: Pro-
ceedings of the 2009 International Conference on Computer-Aided Design, ICCAD
2009, pp. 587–594. ACM, New York (2009)

6. Scheler, F., et al.: Parallel, hardware-supported interrupt handling in an event-
triggered real-time operating system. In: Proceedings of the 2009 International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems,
CASES 2009, pp. 167–174. ACM, New York (2009)

7. Nácul, A.C., Regazzoni, F., Lajolo, M.: Hardware scheduling support in SMP ar-
chitectures. In: Proceedings of the Conference on Design, Automation and Test in
Europe, DATE 2007, San Jose, CA, USA, EDA Consortium, pp. 642–647 (2007)

8. Bolychevsky, A., Jesshope, C., Muchnick, V.: Dynamic scheduling in RISC ar-
chitectures. IEE Proceedings Computers and Digital Techniques 143(5), 309–317
(1996)

9. Bousias, K., et al.: Implementation and evaluation of a microthread architecture.
J. Syst. Archit. 55, 149–161 (2009)

10. Hicks, M., van Tol, M., Jesshope, C.: Towards scalable I/O on a many-core ar-
chitecture. In: 2010 International Conference on Embedded Computer Systems
(SAMOS), pp. 341–348 (July 2010)

11. INMOS Limited: Transputer Reference Manual. Prentice Hall (1992)

Comparison of GPU and FPGA Implementation

of SVM Algorithm for Fast Image Segmentation

Marcin Pietron, Maciej Wielgosz, Dominik Zurek,
Ernest Jamro, and Kazimierz Wiatr

AGH University of Science and Technology,
al. Mickiewicza 30, 30-059 Krakow

ACK Cyfronet AGH
ul. Nawojki 11, 30-950 Krakow

{pietron,wielgosz,jamro,wiatr}@agh.edu.pl
dominik.zurek1102@gmail.com

Abstract. This paper presents preliminary implementation results of
the SVM (Support Vector Machine) algorithm. SVM is a dedicated math-
ematical formula which allows us to extract selective objects from a pic-
ture and assign them to an appropriate class. Consequently, a black and
white images reflecting an occurrence of the desired feature is derived
from an original picture fed into the classifier. This work is primarily fo-
cused on the FPGA and GPU implementations aspects of the algorithm
as well as on comparison of the hardware and software performance. A
human skin classifier was used as an example and implemented both
on Intel Xeon E5645.40 GHz, Xilinx Virtex-5 LX220 and Nvidia Tesla
m2090. It is worth emphasizing that in case of FPGA implementation the
critical hardware components were designed using HDL (Hardware De-
scription Language), whereas the less demanding or standard ones such
as communication interfaces, FIFO, FSMs were implemented in Impulse
C. Such an approach allowed us both to cut a design time and preserve a
high performance of the hardware classification module. In case of GPU
implementation whole algorithm is implemented in CUDA.

Keywords: SVM, image segmentation, FPGA, GPU, CUDA.

1 Introduction

This work is part of the Synat project embracing several initiatives aiming to
create a repository of images which are assigned a descriptive name according to
their contents. Such a database of tagged images will significantly reduce search
time since only picture tags will be processed instead of images so the process
will involve simple string operations rather than image recognition.

The project is a huge challenge due to an immense volume of data collected
over the past years denoted today as the Internet resources. Therefore the core
part of the undertaking is to design and implement a classification system which
should be both reliable and fast. In order to achieve the high performance of a
search engine the most computationally intensive operations are to be ported to

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 292–302, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

FPGA Implementation of the Selected Parts of the Fast Image Segmentation 293

hardware. Thus FPGAs and GPUs due to their strongly parallel structure and
growing processing speed [1] seem to be the best choice.

Image segmentation is a process which aims to separate a picture into sev-
eral regions based on objects or features of interest. A single SVM system may
embrace several modules trained to recognize different features so the unit as
a whole is capable of tracing multidimensional objects in terms of a number of
features.

It is worth emphasizing that a segmentation may also be regarded as a form of
data compression, the classfier accepts images and yields information regarding
objects which usually occupies much less memory resources than corresponding
original data.

There are plantiful image segmentation algorithms [2,3,4] and their number
is still growing to meet constantly rising demands of data analysis systems.
However, reliability and data processing speed are the factors which are at a
premium when it comes to a real life application of a given algorithm. SVM
meets both those criterions and therefore was chosen as a classification algorithm
for the project.

2 SVM Classifiers

Support vector machines were originally devised and described by Vapnik [5,6].
They are used for binary classification which means that there are exactly two
classes of objects (e.g. black and white rectangles) and a classification formula
is found in a training process of the classifier.

The SVM algorithm can be envisioned as a process of creating a hyperplane
which separates data in an n-dimensional space. It is conducted in an iterative
manner in which a selected plane is gradually adjusted to provide the optimal
so-called generalization margin. The following cases may occur:

– Input data is linearly separable and the SVM method guaranties that at
least one plane of the best separation margin exists and will be adopted

– A dimension incrementation is used to bring data to a space of more dimen-
sions so a separation plane can be found

A feature space for 2D can be modeled as a sphere with its center and radius
(see Fig. 1).

The sphere is build upon a set of supportive vectors which constitute its
structure. A classification process of a priorly trained SVM maybe perceived as
probing whether a given point (input data) belongs to the sphere or it’s located
outside of it. In the first case a point is positively classified whereas in the second
one it’s considered to be an outliner.

3 A Choice of a Hardware Platform

It is very important to choose a proper hardware units and appropriate data
transfer protocol since it affects the overall performance of the computational

294 M. Pietron et al.

Fig. 1. N-sphere

system. It also may balk an effort invested in the development of the hardware
algorithm. Therefore the authors decided to compare FPGA and GPU imple-
mentations in order to be able to choose the most appropriate solution for the
complete system realization.

3.1 FPGA

FPGAs have been developed since late 1980s, and have a lot of advantages
over processors. The most important ones are: massive parallel architecture,
reconfigurability, low energy consumption, ability to shape freely its internal
architecture.

Design and effective use of computing system based on FPGA is a difficult
task, as evidenced by the long history of such trials. Existing HPRC (High
Performance Reconfigurable Computing) solutions can be classified based on
their integration with other computing nodes in the system. However, the authors
have used DRC platform for the implementation of the SVM algorithm.

The architecture of Accelium (Xilinx Virtex-5) [12] is based on an idea of
populating CPU sockets with FPGAs and the fast communication link between
them. This architecture allows for equal access of processor and FPGA to the
system resources.

FPGA Implementation of the Selected Parts of the Fast Image Segmentation 295

3.2 GPU

The architecture of a GPU card is described in Fig. 2. The graphical processor
unit has a multiprocessor structure. In Fig. 2 is shown N multiprocessor GPU
with M cores each. The cores share an Instruction Unit with other cores in a
multiprocessor. Multiprocessors have special memories which are much faster
than global memory which is common for all multiprocessors. These memories
are: read-only constant/texture memory and shared memory. The GPU cards are
massive parallel devices. They enable thousands of parallel threads to run which
are grouped in blocks with shared memory. The blocks are grouped in a grid
(Fig. 3). CUDA is a software architecture that enables graphics processing unit
(GPU), to be programmed using high-level languages such as C and C++. CUDA
requires an NVIDIA GPU like Fermi, GeForce 8XXX/Tesla/Quadro, and so on.
CUDA provides three key mechanisms to parallelize programs: thread group hier-
archy, shared memories, and barrier synchronization. These mechanisms provide
fine-grained parallelism nested within coarse-grained task parallelism.

Fig. 2. GPU card architecture

296 M. Pietron et al.

Fig. 3. Relation between grid, blocks, and threads

Creating the optimized code is not trivial and thorough knowledge about the
GPUs architecture is needed. The main aspects are the usage of the memories,
an efficient dividing code to parallel threads and thread communications. As was
mentioned earlier constant/texture and shared memories are the fastest. There-
fore programmers should optimally use them to speedup access to data on which
an algorithm operates. Another important thing is to optimise synchronization
and the communication of the threads. The synchronization of the threads be-
tween blocks is much slower than in a block. If it is not necessary it should be
avoided.

4 System Overview

A human skin classifier OC-SVM (One Class Supportive Vector Machine) was
implemented as a preliminary project which allows us to estimate performance
and resource consumption for other classifiers. As a result of an experiment a
black-and-white image is generated which reflect human skin location in the
original picture which was fed into the classifier. A complete computational
procedure is composed of several steps:

– SVM vectors and τ generation (training of the classifier)

– Input image fetch (the step is different for hardware and software implemen-
tation)

– Image resize and normalization

– Classification

– Noise and skin-like objects filtration

FPGA Implementation of the Selected Parts of the Fast Image Segmentation 297

4.1 The Classification Algorithm

The classification algorithm is given by the following formula:∑
i

αiK(Xx, Xi) ≥
∑
i

αiK(Xs, Xi) = τ (1)

where τ is the sphere radius, Xs and αi are supportive vectors derived in a
training process, Xx is an input pixel.

Regardless of a choice of vectors in right side of the equation 1 the result is
constant and equals τ . Each pixel fed into the classifier is compared against all
the support vectors in order to determine if it is located inside the sphere (see
Fig.1).

In this implementation a Gaussian computational kernel was used:

K = e−γ‖Xi−Xj‖2

(2)

where γ is a spread of the kernel.
If the (1) is met a given point is classified as belonging to the desired class.

For SVM classifies the best results are achieved when input data is normalized
(i.e. fall in the range [-1;1]).

4.2 Architecture of the Hardware Module in FPGA

The computationally intensive routines were ported to hardware to offload the
GPP (General Purpose Processor) and to accelerate the computations. It was
possible due to several features of the algorithm which makes it well suited for the
FPGA implementation such as: fixed-point arithmetic, parallel structure (easy
to pipeline), narrow-range input argument. Consequently a series of hardware
units were designed which constitute the internal structure of computational
module as presented in Fig.4. All the modules are parameterized and pipelined
blocks which process a single input vector X every clock cycle. For a sake of the
software compatibility the base data format employed in the application is 32 bit
fixed-point (16 bits of both fractional and integer part) but it can be adjusted
to meet different precision requirements in the future. Each module is equipped
with the overflow signal which propagates across all the units composing the
classification module. Such an approach allows us to avoid corruptions of the
result just by simply examining the overflow output.

It is possible to connect several classification modules to form a parallel struc-
ture. Furthermore, it is worth noting that supportive vectors (denoted as SV in
Fig. 5) are fetched from an external memory only once for the whole computa-
tions and therefore can be stored in the internal memory for all the computation.
Moreover, the number of the supportive vectors as well as a is not large and usu-
ally not exceed tens, thus internal BRAM memory suffice to accommodate those
coefficients (e.g. for the human skin classification only 16 supportive vectors are
used). Increase of a number of supportive vectors improves the classifier accu-
racy at the expense of the accumulator throughput decrease (see Fig.4) which
in turn affects an overall system performance.

298 M. Pietron et al.

Fig. 4. Block diagram of the classification module

Fig. 5. Block diagram of the multimodule structure

FPGA Implementation of the Selected Parts of the Fast Image Segmentation 299

The classifier (presented in Fig. 4) yields one bit results which reflects an
occurrence of a feature of interest within an image. Therefore in order to take
a full advantage of an external bus throughput, classification results are com-
pacted into 32 bit bundles and sent to a host processor as such. Thereafter the
GPP transforms those binary values into pixels to form a black-and-white image
depicting the features of interest.

4.3 Architecture of the Implementation in GPU

In case of GPU implementation whole image is transfered to global memory. Each
pixel is computed by single thread. Therefore as it is shown in Fig.6 in each block
512 pixels are processed. Each thread reads value of pixel form global memory,
then computes SVM classifier formula (1) for one point of image and writes result
back to shared memory (at the same location as pixel value). Apart from values
of points of image shared memory stores sphere radius and supportive vectors
derived from training process needed to classify each pixel. In this case each
shared memory contains 512*3 bytes of image, 16*3 bytes of supportive vectors
and 16 bytes of sphere radius (Fig.6). When the number of points exceeds 512
then they are divided to multiple blocks of GPU card.

Fig. 6. Diagram of the SVM implementation in GPU

5 Implementation Results

The classification algorithm was initially implemented on GPP in C++ and the
OpenCV library was used. A set of 16 support vectors was generated which
described a human skin, each of which are 32bit RGB colors.

Fig. 7 and 8 represent experimental results for the randomly chosen images.
It can be noticed that the system wrongly classified some parts of the image.
Unfortunately the system often confuses bright objects with a human skin. One
way to improve the accuracy is increasing the contrast between an object and
a background. Similar result of accuracy improvement may be achieved when a

300 M. Pietron et al.

Fig. 7. Original image (before segmenta-
tion)

Fig. 8. Results of human skin segmen-
tation

larger number of supportive vectors is employed but it is done at a expanse of a
loss of classifier’s generalization feature.

Time required to execute the following algorithm on GPP, FPGA and GPU
is presented in Tab. 2 and Fig.9 . They show that in case of less number of pixels
FPGA platform is faster than CPU and GPU. When more points are processed
the GPU card is fastest and CPU is the slowest execution unit. In case of more
points GPU cards takes advantage of its massive parallel architecture. Therefore
it is faster than pipelined FPGA architecture. FPGA hardware implementation
according to the formula (1) (assuming that no input data fetch delay is in-
troduced) can be calculated as follows: 16(SVM)× 480(pixels)× 480(pixels) ∼=
4×106 clock cycles. Consequently theoretical processing time for 200 MHz equals
0.02s. Due to a low resources consumption a single FPGA can accommodate sev-
eral modules which boost a performance several times. The power consumption
in case of FPGA (Virtex-5 LX220) is about 15 watts, GPU (Nvidia Tesla m2090)
consumption is 250 watts. The implementation results of the module on DRC
AC2020 [12] were presented in Tab. 1. Tranfer times are described in Tab. 3.

It is worth noting that a number of coefficients has a large impact on the re-
sources occupation in case of FPGA. On the GPU platform coefficients occupied
very small part of shared memory. In this particular implementation the number
of the coefficient is three (R, G, B).

Table 1. Implementation results of the module building block in Impulse C (see Fig.4)

4-input LUT # flip-flops # BRAM

122,637[83%] 59,208[42%] 2,049[6%]

FPGA Implementation of the Selected Parts of the Fast Image Segmentation 301

Table 2. Implementation results

Number of pixels # GPU [ms] # CPU [ms] # FPGA [ms]

2048 0,6 1,82 0,16896

10240 0,74 36,1 0,8448

51200 1,58 180,7 4,224

204800 5,13 714 16,896

512000 12,15 1813,54 42,24

Table 3. Transfer time

Number of pixels # GPU [ms] # FPGA [ms]

2048 0,45 1,12

10240 0,49 1,22

51200 0,66 1,65

204800 1,3 3,25

512000 2,6 6,5

Fig. 9. Chart with implementation results

The classification module in case of FPGA is a fully pipelined structure and
it is capable of working at the frequency of 200 MHz. Each module generates a
single result every n clock cycles where n denotes number of the support vectors
employed.

302 M. Pietron et al.

Support vectors along with α,γ,τ are generated on the host side (by GPP)
and are sent to the FPGA and GPU only once for the whole computations. The
both implementations perform the classification for all the X vectors and sends
the results back to the host processor.

6 Summary

In this paper implementation results of the selected parts of the fast image
segmentation were presented along with some performance analysis. Both FPGA
and GPU implementation were discussed. GPU significantly surpasses FPGA
and GPP in the high volume calculations. It is worth emphasizing that SVM
can be easily parallelized due to its structure which makes it an ideal candidate
for GPU implementation.

Acknowledgments. The work presented in this paper was financed through
the research program - Synat.

References

1. Mueller, R., Teubner, J., Alonso, G.: Data Processing on FPGAs. In: Systems
Group, Department of Computer Science, VLDB 2009, ETH Zurich, Switzerland,
Lyon, France, August 24-28 (2009)

2. Jun, T.: A color image segmentation algorithm based on region growing. In: 2010
2nd International Conference on Computer Engineering and Technology (ICCET),
April 16-18, vol. 6, pp.V6-634–V6-637 (2010)

3. Farmer, M.E., Jain, A.K.: A wrapper-based approach to image segmentation and
classification. IEEE Transactions on Image Processing 14(12), 2060–2072 (2005)

4. Lan, Y., Li, C., Zhang, Y., Zhao, X.: A novel image segmentation method based
on random walk. In: Asia-Pacific Conference on Computational Intelligence and
Industrial Applications, PACIIA 2009, November 28-29, vol. 1, pp. 207–210 (2009)

5. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer (2000)
6. Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.N.: A support vector clus-

tering method. In: Proceedings of the 15th International Conference on Pattern
Recognition, vol. 2, pp. 724–727 (2000)

7. http://www.alpha-data.com/

8. http://www.nallatech.com/

9. http://www.picocomputing.com/

10. Baxter, R., Booth, S., Bull, M., Cawood, G., Perry, J., Parsons, M., Simpson,
A., Trew, A., McCormick, A., Smart, G., Smart, R., Cantle, A., Chamberlain,
R., Genest, G.: Maxwell - a 64 FPGA Supercomputer. In: Second NASA/ESA
Conference on Adaptive Hardware and Systems (AHS 2007), pp. 287–294 (2007)

11. www.silicongraphics.ru/pdf/rasc_data.pdf

12. www.drccomputer.com/pdfs/DRC_Accelium_Overview.pdf

13. www.vhdl.org/fphdl/

14. Wielgosz, M., Jamro, E., Wiatr, K.: Hardware Implementation of the Exponent
Based Computational Core for an Exchange-Correlation Potential Matrix Gener-
ation. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.)
PPAM 2009, Part I. LNCS, vol. 6067, pp. 115–124. Springer, Heidelberg (2010)

http://www.alpha-data.com/
http://www.nallatech.com/
http://www.picocomputing.com/
www.silicongraphics.ru/pdf/rasc_data.pdf
www.drccomputer.com/pdfs/DRC_Accelium_Overview.pdf
www.vhdl.org/fphdl/

Automatic Floorplanning and Interface Synthesis
of Island Style Reconfigurable Systems with GOAHEAD

Christian Beckhoff1, Dirk Koch2, and Jim Torreson2

1 ReCoBus
christian@recobus.de
2 University of Oslo, Norway

{dirk,jimtoer}@ifi.uio.no
Abstract. When floorplanning a reconfigurable system on an FPGA, we have
to identify the area of the device in which modules share resources over time.
This process should minimize internal fragmentation without impacting the per-
formance of the static and module routing. Floorplanning reconfigurable systems
also comprises the layout of a reconfigurable areas interface around its borders.
In this article, we introduce a novel floorplanning algorithms that is based on an
initial placement proposal created by the Xilinx vendor placer. The algorithms are
built-in in our tool GOAHEAD. We apply our algorithms in a case study where
we automate the design of a reconfigurable system.

1 Introduction

When building static only systems, a user has at least to select a target device, constrain
the clock frequency and define the I/O pinning. The further placement and routing is
then carried out by the vendor tools. Manually floorplanning is usually not necessary.
When building a reconfigurable system however, a designer has to manually first, assign
a physical location to each reconfigurable area and second, manually place the interface
of a reconfigurable area along its borders. This process is called floorplanning a recon-
figurable area and is a crucial step as it influences the later placement and routing of
both the static part of the system and the partial modules.

1.1 Related Work

Related work in the field of floorplanning reconfigurable systems can be categorized by
two means: First, how is the placement of the reconfigurable area derived? Second, how
is the layout of reconfigurable areas interface derived?

For fully manual floorplanning of reconfigurable areas, low level CAD tools have
been developed (e.g. PlanAhead from Xilinx [1] or academic tools like [2–4]). The
authors in [5] present a tool for building reconfigurable systems that is also capable of
floorplanning. However, details about the implemented floorplaning algorithm are omit-
ted. The approaches in [6, 7] apply simulated annealing (SA) for floorplanning, how-
ever they do not discuss the interface layout of the resulting floorplan. Reference [8]
proposes kernel tessellation: First, all reconfigurable areas are clustered by the resource
types they require. Then, starting with the most demanding area, an initial area on the
chip (called kernel) is iteratively enlarged until all resource requirements are met. The

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 303–316, 2013.
© Springer-Verlag Berlin Heidelberg 2013

304 C. Beckhoff, D. Koch, and J. Torreson

allocated resources are then no longer available for subsequent areas. This process is
repeated several times each starting with different initial kernels. The resulting floor-
plans are compared by wire length between regions and fragmentation. However, the
interface layout and how this approach impacts the static and partial module routing is
not discussed.

The approaches in [9, 10] use both SA for floorplanning. The authors in [9] place
the interfaces at predefined locations around the reconfigurable area without further
specifying how these locations are derived. In [10], a covering heuristic is introduced
to layout the interface: The authors consider the placement of all modules that shall
be executed in a reconfigurable area and sort the tiles in the reconfigurable area by the
number of modules occupying a tile. Then, the heuristic distributes the interface over
these tiles starting with the tile that is most frequently occupied by modules. Note that
this heuristic does not favor routing to carry chains used for e.g. adders or comparators
and therefore may result in routing congestion.

After a manual placement of the reconfigurable area, the authors in [11] use SA only
to layout the interface. However, to evaluate the fitness of each SA iteration a complete
place and route step is required rendering this approach time-consuming. In [12], both
the placement of the reconfigurable area and the definition of the interface layout as SA
based. Again, the the fitness evaluation requires time-consuming place and route steps.
Table 1 summarizes the presented approaches:

Table 1. Classification of related work by their approach to place the reconfigurable area and to
layout its interface

Reconfigurable Area Placement Interface Layout
PlanAhead [1] manual manual
Academic tools [2–4] manual manual
Göhringer et al. not discussed not discussed
Craven et al. [6] SA not discussed
He et al. [7] SA not discussed
Vipin et al. [8] Kernel Tessellation not discussed
Singhal et al. [9] SA predefined layout
Montone et al. [10] SA Covering heuristic
Carver et al. [11] manual SA
Yousuf et al. [12] SA SA

1.2 Paper Contribution

In this paper, we present novel algorithms for floorplanning a reconfigurable area and
for layouting the interface of the reconfigurable area around its borders. Our work dif-
fers from the approaches [11, 12] in that we base on an initial placement carried out
by the Xilinx placer taking advantage of all built-in placement optimizations. From this
initial placement we derive the position and layout (i.e. the aspect ratio) of the recon-
figurable region. Moreover, we determine an interface layout optimized for routing the

Automatic Floorplanning and Interface Synthesis 305

static system and the partial modules. These results are used to physically implement
the static system and the modules in separate implementation steps. Note that due to
our algorithms, this is carried out without further manual interaction. We are removing
iterative place and route steps of the simulated annealing approaches [11, 12] that can
easily take more than a day.

Consider an FPGA-based system where different video processing modules are used
mutually exclusively over time (see Figure 1 a)). Due to the different functionality of the
modules, they require different number of resources in terms of look-up tables (LUTs),
multiplier blocks (DSPs), or memory blocks (BRAMs). Moreover, the different mod-
ules might further have different interfaces. However, rather than using multiplexers to
select a specific video function, we now assume that the system uses partial reconfigu-
ration to use the FPGA more efficiently (see Figure 1 b)). The reconfigurable area must
provide sufficient resources (e.g. CLBs, DSPs, and BRAMs) for hosting any of the par-
tial modules. Furthermore the reconfigurable area must provide the unioned interface
of all modules.

Fig. 1. a) Static only implementation of a video processing system. The video stream is demulti-
plexed into either one of the filters whose output is in turn multiplexed into a DVI encoder. The
resource savings due to partial reconfiguration come at the expense of additional reconfigura-
tion logic interfacing the Internal Configuration Access Port (ICAP) and corresponding drivers
or their equivalent hardware implementation.

After deriving 1) the resource requirements and 2) the unioned interface, we have to
3) place the reconfigurable area on the FPGA such that static and module routing are
optimized. As outlined in [2], the first two steps can be carried out with our tool GOA-
HEAD. In this paper, we reveal how GOAHEAD automates the whole process of building
a reconfigurable system from a high level system specification – over floorplanning the
reconfigurable area – all the way down to the final bitstreams. The contributions of this
paper are as follows:

– a design flow and corresponding system specification for automatically implement-
ing island style reconfigurable systems with our tool GOAHEAD (Section 2)

– an algorithm for floorplanning reconfigurable areas (Section 3)
– an algorithm for layouting the interface of a reconfigurable area (Section 4)
– an evaluation and a case study applying our algorithms (Section 5)

306 C. Beckhoff, D. Koch, and J. Torreson

2 Specifying an Island Style Reconfigurable System

The widely used hardware description languages VHDL and Verilog have been devel-
oped for static hardware designs and they provide no constructs required for automat-
ing the design of dynamically run-time reconfigurable systems. For example, there is no
construct for dynamically instantiating a module into a system; or there is no construct
to describe that a set of modules is executed mutually exclusive and that they can share
FPGA resources with the help of reconfiguration.

Before building a reconfigurable system with GOAHEAD, a designer has to define
groups of modules that can share resources in a reconfigurable region over time and
those modules that are executed permanently and therefore become part of the static
system. In this paper, we assume that only one module is hosted exclusively in a re-
configurable region at a point in time. In our flow, a designer provides the modules that
will share a reconfigurable area as netlists. From these netlists, GOAHEAD computes
the resource and interface requirements. The result is used to determine the geometry
information (i.e. the placement and shape of a reconfigurable areas) and the interface
layout. The interface layout is a user friendly specification of the wires the will be used
to route signal across the border of a reconfigurable area. The wires act like pins in a
plug. GOAHEAD uses the computed geometry information and the generated interface
layout to create all necessary constraints required to guide the Xilinx vendor place and
route tools.

3 Automatic Floorplanning of the Reconfigurable Area

At beginning of the floorplanning, GOAHEAD will parse in the module netlists and
count for each module the resource consumption r = (C,D,B); with C, D, and B denot-
ing the number of CLBs, DSP tiles and Block RAMs for a module. The overall resource
requirement rreq of the reconfigurable area is then the componentwise maximum over
the resource requirements over all modules. Note that rreq may be selected larger in
order to get less densely packed modules that can be routed more easily.

For building a union interface, GOAHEAD scans the entities of each module sharing
a reconfigurable area. Here, the tool supports VHDL, XDL, and EDIF specifications
of the module. Now, GOAHEAD creates an artificial HDL union module that does not
carry out any functions but that during synthesis requires exactly the same amount of
resources as calculated in rreq and provides the unioned interface of all partial mod-
ules. The primitives of the union module are densely intermeshed in order to create a
clustering of the primitives in the union module. Consequently, the placed union mod-
ule will represent an obstacle for the static system as the reconfigurable area would
do. Note that GOAHEAD permits static signals to cross reconfigurable regions. GOA-
HEAD generates instantiation VHDL code for the union module that the designer uses
to manually instantiate the union module as a placeholder for the reconfigurable area in
the static design. We now let the placer place the static system together with the union
module without applying further placement constraints. Therefore, we exploit the built-
in optimizations of the vendor tools. GOAHEAD will then use the placement results
of the union module to derive the placement of a reconfigurable area. For this reason,

Automatic Floorplanning and Interface Synthesis 307

GOAHEAD reads in the placed netlist (in the XDL format) and determines the center of
mass of the union module by calculating the arithmetic mean of the position of all its
primitives. Finding the best position for a reconfigurable area is however a hard combi-
natorial problem even if we only consider rectangular shaped reconfigurable areas. In
an FPGA that provides n×m tiles, there are

n

∑
i=1

m

∑
j=1

i · j =
n

∑
i=1

i ·
m

∑
j=1

j =
n(n+ 1)

2
· m(m+ 1)

2
(1)

possible different rectangles to enumerate the problem of finding a rectangle that pro-
vides the required resources with a minimal internal fragmentation and the best routing.
Equation 1 shows that enumerating all rectangles has a complexity of O(n2×m2). How-
ever, the solution space can be reduced significantly, as shown in the following.

Vertical Clustering due to Clock Regions: First of all, the tile grid is coarsely-grained
in vertical direction due to the column-wise reconfiguration scheme. This means that in
Xilinx FPGAs (Virtex-4, Spartan-6 and beyond), only larger portions of the resources
can be atomically reconfigured without the risk of side effects. On these devices, the
smallest atomic unit that can be reconfigured affects the resources in a single tile column
(CLB, DSP, BRAM) that has the height of a clock region. For a Spartan-6 device,
this means that a reconfigurable tile has a height of 4 BRAM or DSP tiles or 16 CLB
primitives. In the following, the height h of a reconfigurable area will hence always be
an integer multiple of the height of a clock region.

Resource Regularities along columns: Due to the column based layout of the primitives,
the resources change only if we move sidewards, while the resources along a column
are all equal. This observation allows us to represent a single row by a resource string
R (also used in [13]). In a resource string, each character represents the resource type
within its column (see Figure 3 for an example).

DSP Chaining: DSP and logic tiles are often chained to implement wider datapaths that
consists of chains of multiple adjacent DSP or logic tiles. Consequently, we also have
to consider the length of DSP and carry chains. With Algorithm 1, we can thus a priori
compute 1) the minimal heights hmin(d) as a function of the number of allocated DSP
columns d and 2) feasible values of d that provide enough resources for all DSP chains.

Starting with d = 1 in each iteration, we allocate d DSP columns each spanning
the full height of the FPGA. Then we bind each DSP chain from each module to the
allocated d columns in a balanced manner, minimizing the difference between the filling
levels of all columns. The resulting maximal filling level of all columns is rounded up
to an integer multiple of a clock region hd and stored: hmin(d) = hd . If in an iteration the
amount of allocated columns d does not provide sufficient resources for all DSP chains,
the binding fails (hmin(d) = ∞). Consequently, allocations with less or equal d DSP
columns are not further considered. In each following iteration, we allocate one more
column, until the additionally allocated column does not yield in a further reduction
(i.e until hmin(d − 1) = hmin(d)) or until the number of allocated columns exceeds the
number of available columns on the device.

308 C. Beckhoff, D. Koch, and J. Torreson

Algorithm 1. Compute the array of minimal heights hmin(d) for the number of allocated
DSP columns d and all feasible values of d.

if DSP Chains = /0 then
return 0

end if
hmin = /0 � store results in this array
d = 1 � allocate the first column
while d ≤ #columns on device do

hd = round(strip pack(DSP Chains, d))
if strip pack failed then

hmin(d) = ∞ � unfeasible, do not further consider d
else

hmin(d) = hd � store minimal height of d
end if
if hmin(d−1) = hmin(d) then � no further reduction

break
end if
d = d +1 � allocate one more column

end while
return hmin � return result

In general, binding DSP chains to columns states a strip packing of DSP chains into
a variable number of columns. Note that we use a simple best fit heuristic (bind the
longest chain to the currently least filled column) for solving the strip pack problem.
This takes into account that also the vendor placer will not necessarily find an optimal
fitting of DSP chains into the allocated columns.

Logic Chaining. In the last section, we considered that the technology mapping can
result in chains of cascaded DSP blocks (e.g. when mapping wide multipliers). As a
consequence, an individual DSP chain is always mapped atomically to a single DSP
column of the FPGA. In addition to this, chaining is commonly used for logic primi-
tives. Here, carry chain logic is used to cascade multiple logic primitives (i.e., slices on
Xilinx FPGAs). In many cases (e.g., adders and counters), the Xilinx vendor tools (ISE
13.4) are able to automatically break a chain over multiple logic columns. This is not
available for wide comparators that also use carry chain logic. However, as a module
typically consists of more logic columns than DSP columns and because of the finer
vertical placement grid for logic columns, mapping logic carry chains is far easier than
mapping DSP chains. Moreover, logic chains are typically relatively short. For exam-
ple, a 32-bit comparator is mapped to a chain with only three slices, when targeting
Virtex-6 or Spartan-6 FPGAs. On the FPGA grid, this comparator is shorter than the
height of a single multiplier block. Consequently, we are not further considering logic
chaining in our placement algorithm.

With the representation of the heterogeneous FPGAs resource as a resource string,
and the knowledge of hmin(d), it is possible to fully enumerate the remaining solution
space to find a rectangular reconfigurable area. This area has to provide the required
resources at a minimal internal fragmentation. Let the set of all sub-resource strings

Automatic Floorplanning and Interface Synthesis 309

of R be defined as S(R). Let for any resource substring s ∈ S(R) the function #(x,s)
return the number of occurrences of x in s. We then define the following functions that
return the number of CLBs, DSP, and BRAM tiles included in s: CLB(s) = #(C,s) ·λC,
DSP(s) = #(D,s) ·λD, and BRAM(s) = #(B,s) ·λB, whereby e.g. λC (λD,λB) denotes
the number of CLBs (DSPs and BRAMs) in a single sub column that spans the height
of a clock region. A resource triple r = (C,D,B) for a resource substring s ∈ S(R) and
a height h is then calculated by the resource function:

r(s,h) = (CLB(s) ·h,DSP(s) ·h,BRAM(s) ·h)

Two resource triples can be compared componentwise, e.g the resource triple rr =
(Cr,Dr,Br) fulfills the resource requirements rreq = (Creq,Dreq,Breq), iff for each re-
source type rreq requires less or equal resources: rr ≥ rreq ⇔ Cr ≥ Creq ∧Dr ≥ Dreq ∧
Br ≥ Breq. The required height h for a substring s is the maximum of all componentwise
minimum resource requirements and is given in terms of clock regions heights:

h(s,rreq) = max

{⌈
Creq

CLB(s)

⌉
, hmin(#(D,s)),

⌈
Breq

BRAM(s)

⌉}
The fragmentation denotes how many resources will be left unused, when selecting a
reconfigurable region of height h over the resource string s: f ragmentation(s,h,rreq) =
rreq − resources(s,h). Note that the fragmentation has multiple dimensions. Conse-
quently, minimizing the internal fragmentation of a reconfigurable area is a multi ob-
jective problem.

3.1 Horizontal Placement of Reconfigurable Regions

Now, in order to find the horizontal position of the reconfigurable area on the FPGA,
we consider all tuples (s,h) that provide minimal fragmentation:

min{ f ragmentation(s,h(s,rreq),rreq) | h ≤ hmax ∧hmin(DSP(s)) �= ∞ ∧
s ∈ S(R) ∧ r(s,h)≥ rreq}

Note that, if the length of the resource string R is l = |R|, then the number of substrings
in R is:

|S(R)|=
l

∑
i=1

i =
l(l + 1)

2

However, there are a lot of duplicates among all substrings which reduce the number of
necessary iterations to find the resource string height tuple with minimal fragmentation.
For instance, the full resource string of even the large Virtex-6 SX475T FPGA is only
134 characters long and thus provides 9045 substrings (including 6764 unique strings).
The device provides nine rows of clock regions. Consequently, an exhaustive search
is a process taking only a few seconds on the largest available FPGA. Figure 2 shows
examples for the available resources with in an assumed clock region for three different
resource strings.

310 C. Beckhoff, D. Koch, and J. Torreson

Fig. 2. Enumerating over all substrings of the resource string means horizontally sweeping
a rectangle. Each rectangle s0, s1, and sk provides different resources (resources(s0,1) =
(4,0,0),resources(s1 ,1) = (8,0,0),resources(sk ,1) = (8,1,1)).

In Figure 3, the substring DCCB with the minimal fragmentation occurs twice in
the resource string and both occurrences result in the same fragmentation. If we end
up with more than one tuple of resource string s and height h that yield in a minimal
fragmentation, we calculate the center of mass of each tuple and pick the tuple that is
the closest to the center of mass of the union module. If the whole system does not
use all available resources on the FPGA (resource slack), we will alternatively take
a higher fragmentation into account and use a placement that is closer to the union
modules center of mass (see the center placement in Figure 3) to favor routability over
area consumption. In other words, we allow a fragmentation of the reconfigurable area
if there is sufficient resource slack available for improving the routing of the system.
In a final step, we move the rectangle described by s and h in a vertical direction clock
region-wise to the closest position of the union modules center of mass.

4 Interface Floorplanning

In our previous papers [2] and [14], we outlined that the fundamental task in imple-
menting physical interfaces for reconfigurable areas is the allocation of physical routing
resources and the binding of each module interface signal to an allocated wire. A wire
can cross the boundary of the reconfigurable area in any cardinal direction (N, S, W ,
and E). In addition, our flow allows us to interleave signals and thus to connect double1

the amount of wires per row (E and W) and column (S or N).
We define interface floorplanning as 1) the assignment of a cardinal direction, 2) the

allocation of CLBs around the reconfigurable area, and 3) the binding of each interface
signal to an allocated CLB. GOAHEAD generates an interface placeholder module that
provides the same interface as the union module does, however the interface placeholder
module does not consume any further resources. At the center of the interface place-
holder module GOAHEAD places primitives that serve as dummy sinks and sources
for input and output signals of the reconfigurable area. In addition, GOAHEAD gener-
ates placement constraints that exclusively assign the interface placeholder module at
the position derived in Section 3. Finally, the static system is placed together with the
interface placeholder module by the Xilinx placer.

1 We may double the amount of wires using double lines that are available on all recent Xil-
inx FPGA. However, it is even possible to interleave quad lines that span the distance of four
CLBs, consequently we connect four times the amount of wires. However, quad lines inter-
leaving is currently not available in automatic mode.

Automatic Floorplanning and Interface Synthesis 311

Fig. 3. An FGPA with different resources (C,D,B) and a placed module union (blue). The re-
sources on the FPGA are identical in a given column. The resources along a row can be rep-
resented by the resource string CCDCCBCCCDCCBCC with one character for each column
abbreviating the resource type of the column [13]. Each DSP and Block-RAM spans the height
of four CLBs. For brevity we assume in figures that the height of a clock region is the height of
a DSP or Block-RAM. The floorplanning algorithm found two possible horizontal placements
with s = DCCB and h = 1 that both provide enough resources and minimal fragmentation. The
left placement is however closer to the union modules center of mass. The placement has to be
moved upwards (indicated by the arrow) such that the placements center of mass gets closest to
the union modules center of mass. Note that with s = BCCCD and h = 1 we could also place
the reconfigurable area in the very center. However, this option is only used if the system has a
resource slack of one extra CLB column.

4.1 Assigning a Cardinal Direction

The resulting XDL netlists provides full placement information for all primitives and all
outpins and inpins of each net. Based on this placement information, the GOAHEAD in-
terface floorplanning algorithm views nets from the interface placeholder module point
of view and distinguishes between the following two types of nets:

1. Outputs Nets: The nets outpin is part of the interface placeholder module and the
net has at least one inpin located on a primitive that is not part of the interface
placeholder module.

2. Input Nets: At least one inpin of the net is part of the interface placeholder module
and the nets outpin is not part of the interface placeholder module.

Now, we move the before derived rectangular shape r (see Section 3) of the reconfig-
urable area over the interface placeholder modules center of mass and determine for
each output and input net in which cardinal direction it crosses the border of the recon-
figurable area. The naming scheme for nets in XDL allows GOAHEAD, to recompose
different input and output nets to a signal vector. GOAHEAD clusters all signal vectors
according to the cardinal direction where it crosses the border of the reconfigurable area
and thus assigns a cardinal direction to each complete input and output vector.

312 C. Beckhoff, D. Koch, and J. Torreson

4.2 Allocating Configurable Logic Blocks

In our papers [2] and [14], we show, how we can connect up ni = 8 input and no =
8 signal bits per CLB row or column and signal direction. We define the number of
input and output bits crossing each of the four borders as ωd

c with c ∈ {E,W,S,N}
denoting the cardinal direction and d ∈ {I,O} denoting the signal direction (either input
or output). Consequently, we have to allocate ω I

c/ni CLBs to connect the input bits and
ωO

c /no CLBs to connect the output bits. If we then assume that the reconfigurable area
is hc CLBs high and wc CLBs wide, the required number of columns or rows nc for a
cardinal direction c is given by:

nc =

⎧⎪⎨⎪⎩
max

{⌈
ωI

c
hc·ni

⌉
,
⌈

ωO
c

hc·no

⌉}
if c ∈ {E,W}

max
{⌈

ωI
c

wc·ni

⌉
,
⌈

ωO
c

wc·no

⌉}
if c ∈ {S,N}

(2)

4.3 Binding Signals to Allocated Configurable Logic Blocks

After allocation, we bind each signal bit to wire of a CLB. The signal to wire binding
is implemented by connecting signals to primitive inputs and outputs in the allocated
CLB and by constraining the routing such that for each wire only one possible routing
path exists to cross the boundary of the reconfigurable area. Starting with the widest
signal vector, we partition each signal vector into slices of ni bits for input and no bits
for output signals. Then, we distribute the bit slices over the allocated columns in a row
wise manner starting with the least significant bit and the button most CLB. This dis-
tribution scheme directly correlates with the mapping of operands to carry chains. The
distribution of signals onto CLBs states physically layouting an interface of a reconfig-
urable area. We connect vector signals only in E, W cardinal direction as this fits best
the vertical mapping of signal bits to primitives and operands. Table 2 gives examples
of vertical wire densities for commonly used primitives and operands. According to that
results, we connect up to 8 signal bits of a vector per CLB row. The vectors are placed
into the rows by firstly considering the vector with the longest Manhattan distance for
the connection to the interface placeholder module. The process is repeated, until all
signal vectors are connected. If one cardinal direction {E,W} is filled completely, the
process continues with the entire other cardinal direction {W,E}. In this case, we force
the router to either cross the reconfigurable region2 or to route around it. However, this
only done for the shortest nets.

4.4 Floorplanning Multiple Reconfigurable Areas

Our algorithms presented in Section 3 and 4 can floorplan a single island style recon-
figurable area. However, both algorithms are also capable of floorplanning multi island
style reconfigurable systems. In this case, we use an individual union module for each
island. All union modules are then placed in a single initial placement step that is car-
ried out by the vendor placer. Our floorplanning algorithms are applied iteratively to

2 By default, GOAHEAD will allocate some wires within the reconfigurable region to be used
for routing nets of the static system directly through the reconfigurable area.

Automatic Floorplanning and Interface Synthesis 313

Table 2. Vertical wire density of different operators and primitives per switch matrix row on two
Xilinx FPGAs. For primitives spanning over multiple vertically aligned switch matrices, the peak
and (average) wire density is listed. In case of the 1-bit BRAM, the values are for the address
vector while for the other memory examples, the values are for the data vector.

primitive or ADD/ compare single BRAM memory single MAC
function SUB A ≥ B A=B 1-bit 32-bit 72-bit A · B + C = P
Spartan-6 4 8 12 13 (3.5) 16 (8) 18 13 (4.5) 9 (4.5) 12 13 (12)
Virtex-6 4 8 12 7 (3) 8 (6.4) 16 (14.4) 8 (6) 4 (3.6) 12 (9.6) 12 (9.6)

each different union module. In the first iteration, all resources on the FPGA are avail-
able. However, each iteration results in a placement of one island and thus reduces the
available resources for following iterations. The implementation and evaluation of this
approach are left for future research.

5 Case Study and Evaluation

We used our floorplanning approach to implement the system shown in Figure 1b).
While some of the partial modules need only a few hundred logic slices (e.g., one
video overlay module and the background module), a generic convolution filter uses
the component-wise resource maximum, which is rreq = (205CLBs,15DSPs,8BRAMs).
Figure 4 show the different steps for an implementation on a Spartan-6 LX16 FPGA
(Nexys 3 board). In this example, there exist only two possible regions with minimal
fragmentation. While both alternatives were fully routable, only the one that was closer
to the center of mass of the union module meet the 100 MHz timing requirement.

Figure 4 shows highlighted the video input and output modules. Based on the relative
position of these modules with respect to the reconfigurable area, GOAHEAD derived
the shown interface binding at the east border of the reconfigurable region.

For an evaluation experiment, we used a synthetic benchmark, as shown in Fig-
ure 5a). As a reference system, we took a Spartan-6 LX45 FPGA with five mostly iden-
tical modules. However, one of the modules was actually replaced by a reconfigurable
region providing the same number of resources rreq = (576CLBs,12DSPs,24BRAMs).
We used identical modules, to get a strong impact of the placement on the clock fre-
quency with less tool noise. For the same reason, we have used a very regular netlist
(kind of a shifting network). The overall resource consumption was 75% for a relative
densely meshed netlist. In this example, there exist 21 possible placement positions for
the reconfigurable region. We used GOAHEAD to try out all of the 21 candidates in
order to determine the achievable clock frequency for all of them. In addition, we used
a union module in an initial placement run and determined the center of mass of the
union, as depicted in Figure 5b).

Figure 5c) reveals that only four regions resulted in a complete routing, while all
other experiments failed to route (within 4 hours). Our algorithm started to try the first
reconfigurable region (i.e., the closest region to the center of mass), but failed with a
few nets that were left unrouted. However, trying the second closest region resulted in

314 C. Beckhoff, D. Koch, and J. Torreson

Fig. 4. Video system from Figure 1b). Left: placed system with union module, middle: automat-
ically generated floorplan in GOAHEAD , right: the final routed static system with the reconfig-
urable region.

a successfully routed design. Note that the distance difference is very little between the
first two cases. In this experiment, there were three sweet spots that result in (almost)
successful routing. Only one sweet spot had two solutions and that was the one closest
to the center of mass. Consequently our algorithm starts trying the most promising
positions for the reconfigurable region first.

Fig. 5. Evaluation of the partial floorplanning algorithm. a) example system, b) placed system
with union module, and c) pos: achieved clock frequency in MHz, neg: number of unrouted nets.
The reconfigurable islands are listed from left to right in ascending order given by the distance
from the unions’ center of mass.

Automatic Floorplanning and Interface Synthesis 315

6 Conclusion

In this paper, we presented a flow with minimal user interaction from a system spec-
ification down to bitstreams with our tool GOAHEAD. The flow comprises two novel
algorithms for floorplanning a island style reconfigurable area and for placing interface
signals along the border of the reconfigurable area. Both algorithms are based on an
initial placement of the Xilinx placer in order to remove the time-consuming iterations
needed by related simulated annealing approaches. The algorithms are integrated in our
tool GOAHEAD which is available at our project website [15].

References

1. Xilinx, Inc., PlanAhead User Guide 2009
2. Beckhoff, C., Koch, D., Torresen, J.: GoAhead: A Partial Reconfiguration Framework. In:

Proceedings of the 20th IEEE Symposium Field-Programmable Custom Computing Ma-
chines (FCCM 2002) (April 2012)

3. Koch, D., Beckhoff, C., Teich, J.: ReCoBus-Builder– a Novel Tool and Technique to Build
Statically and Dynamically Reconfigurable Systems for FPGAs. In: Proceedings of Interna-
tional Conference on Field-Programmable Logic and Applications (FPL 2008), Heidelberg,
Germany, pp. 119–124 (September 2008)

4. Cancare, F., Santambrogio, M., Sciuto, D.: A Design Flow Tailored for Self Dynamic Re-
configurable Architecture. In: IEEE International Symposium on Parallel and Distributed
Processing, IPDPS 2008, pp. 1–8 (April 2008)

5. Gohringer, D., Luhmann, J., Becker, J.: Generatercs: A high-level design tool for generat-
ing reconfigurable computing systems. In: 2009 17th IFIP International Conference on Very
Large Scale Integration (VLSI-SoC), pp. 159–164 (October 2009)

6. Craven, S.D., Athanas, P.M.: Dynamic Hardware Development. Int. J. Reconfig.
Comp. (2008) (2008)

7. He, R., Liang, G., Ma, Y., Wang, Y., Bian, J.: PDPR: Fine-Grained Placement for Dynamic
Partially Reconfigurable FPGAs. In: Choy, O.C.S., Cheung, R.C.C., Athanas, P., Sano, K.
(eds.) ARC 2012. LNCS, vol. 7199, pp. 350–356. Springer, Heidelberg (2012)

8. Vipin, K., Fahmy, S.: Architecture-Aware Reconfiguration-Centric Floorplanning for Partial
Reconfiguration. Applied Reconfigurable Computing (2012)

9. Singhal, L., Bozorgzadeh, E.: SPECIAL SECTION ON FIELD PROGRAMMABLE LOGIC
AND APPLICATIONS - Multi-layer floorplanning for reconfigurable designs. Computers
Digital Techniques, IET 1(4), 276–294 (2007)

10. Montone, A., Santambrogio, M.D., Sciuto, D., Memik, S.O.: Placement and Floorplanning
in Dynamically Reconfigurable FPGAs. ACM Trans. Reconfigurable Technol. Syst. 3(4),
24:1–24:34 (2010)

11. Carver, J.M., Pittman, R.N., Forin, A.: Automatic Bus Macro Placement for Partially Recon-
figurable FPGA Designs. In: Proceedings of the ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, FPGA 2009, pp. 269–272. ACM, New York (2009)

12. Yousuf, S., Gordon-Ross, A.: DAPR: Design Automation for Partially Reconfigurable FP-
GAs. In: Proceedings of the International Conference on Engineering of Reconfigurable Sys-
tems and Algorithms (ERSA). CSREA Press (June 2010)

316 C. Beckhoff, D. Koch, and J. Torreson

13. Fekete, S., Kamphans, T., Schweer, N., Tessars, C., van der Veen, J., Angermeier, J., Koch,
D., Teich, J.: No-break Dnamic Defragmentation of Reconfigurable Devices. In: Interna-
tional Conference on Field Programmable Logic and Applications, FPL 2008, Heidelberg,
Germany, pp. 113–118 (September 2008)

14. Koch, D., Beckhoff, C., Torresen, J.: Zero Logic Overhead Integration of Partially Reconfig-
urable Modules. In: 23rd Symposium on Integrated Circuits and Systems Design (SBCCI),
pp. 103–108. ACM (September 2010)

15. CosReCos project website,
http://www.mn.uio.no/ifi/eng-lish/research/projects/cosrecos/

 http://www.mn.uio.no/ifi/eng-lish/research/projects/cosrecos/

Separable 2D Convolution with Polymorphic

Register Files

Cătălin B. Ciobanu1,2 and Georgi N. Gaydadjiev1,2

1 Computer Engineering Laboratory,
EEMCS, Delft University of Technology,

The Netherlands
{c.b.ciobanu,g.n.gaydadjiev}@tudelft.nl

2 Department of Computer Science and Engineering
Chalmers University of Technology,

Sweden
{catalin,georgig}@chalmers.se

Abstract. This paper studies the performance of separable 2D convo-
lution on multi-lane Polymorphic Register Files (PRFs). We present a
matrix transposition algorithm optimized for PRFs, and a 2D vector-
ized convolution algorithm which avoids strided memory accesses. We
compare the throughput of our PRF to the nVidia Tesla C2050 GPU.
The results show that even in bandwidth constrained systems, multi-lane
PRFs can outperform the GPU for 9× 9 or larger mask sizes.

1 Introduction

Processor designers consider various options to utilize the steadily increasing
number of transistors of each new semiconductor technology generation [1]. Fur-
ther increases of processor clock frequencies are infeasible, as current technology
faces severe thermal and power constraints. In recent years, Chip Multiproces-
sor (CMP) designs became mainstream, along with accelerators targeting spe-
cific workloads (e.g., hardware support for encryption algorithms [2] and various
Single Instruction Multiple Data Extensions (SIMD) [3] to exploit data level par-
allelism). Best performance is typically obtained by balancing single threaded
performance and multi-processor scalability. When determining the characteris-
tics of a new processor, the potential workloads are carefully examined. However,
new, yet unknown workloads will appear in the future, making it close to impossi-
ble to provide a single solution. One possibility is to use reconfigurable hardware
and runtime partial reconfiguration; ASIC solutions, however, are typically used
to obtain the best performance.

When targeting vector architectures such as IBM 370 [4], General Purpose
Processors (GPPs) with SIMD extensions such as Altivec [5] or Heterogeneous
Multicores as the Cell Broadband Engine [6], the programs need to be optimized
according to the width and number of the Vector Registers. In all these systems,
the available register file storage is divided in a fixed number of equally sized
registers. When a new design changes either the number or the width of the

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 317–328, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

318 C.B. Ciobanu and G.N. Gaydadjiev

registers, software compatibility is broken and costly software adaptation effort
is usually required. As part of the Scalable computer ARChitecture (SARC) [7],
the Polymorphic Register File (PRF) [8] has been proposed to provide a relaxed
way of programming high performance vector applications, compatible with both
FPGA [9] and ASIC [10] technologies. The PRF is designed to be customizable
to the various data structures, enabling the programmer to focus on the code
functionality instead of describing complex, platform specific, data operations
and transfers, while maintaining high performance levels. Contrary to the ap-
proach used in previous vector architectures, the PRF is able to dynamically
divide the available register storage into multidimensional registers of arbitrary
shapes and sizes at runtime. PRFs have been shown to be suitable for compu-
tationally intensive workloads such as the Conjugate Gradient (CG) method,
Floyd, and dense matrix multiplication [8,7]. It was also suggested that PRFs
can potentially save area and power in state of the art many-core systems [11].
The benefits of two-dimensional (2D) PRFs are: i) improved storage efficiency,
as the number of registers, as well as their dimensions and sizes are dynamically
customized to the workload requirements, and ii) performance gain, by greatly
reducing the number of committed instructions.

This paper studies the implementation of separable 2D convolutions using
PRFs. More specifically, the main contributions of this paper are:

– A vectorized matrix transposition algorithm, optimized for PRFs;
– A vectorized separable 2D convolution algorithm utilizing our transposition,
avoiding strided memory accesses while accessing column-wise input data;

– Performance evaluation of the separable 2D convolution kernel, compar-
ing the throughput with the nVidia Tesla C2050 Graphics Processing Unit
(GPU). Starting from mask sizes of 9 × 9 elements, the multi-lane PRFs
outperform the GPU.

The remainder of this paper is organized as follows: the background information
and related work are presented in Section 2. The experimental setup is introduced
in Section 3. The 2D separable convolution kernel is introduced in Section 4.
Our vectorized transposition and 2D convolution algorithms are described in
Section 5, and the experimental results are studied in Section 6. Finally, Section 7
concludes the paper.

2 Background and Related Work

A PRF is a parameterizable register file, logically reorganized under software
control, by the system / application programmer or by the runtime system,
to support multiple register dimensions and sizes simultaneously [8]. Figure 1
provides an example of a 2D PRF of N = 9 by M = 12 elements, containing
14 registers defined by the Special Purpose Registers (SPR) contents. For each
vector register it is necessary to specify the location of the upper left corner
(BASE), the shape of the register (REctangular, Main Diagonal or Secondary
Diagonal), the dimensions (Horizontal and Vertical Lengths) and the data type

Separable 2D Convolution with Polymorphic Register Files 319

HL

R0

0

4

R0

RN

1

0

0

-

3RE

- -
RFORG - RF Organization SPR

R BASE SHAPE VLD

Available
space for

more
registers

7

2

3

0

8

-

3

R2

R10 R11 R12 R13

R6

R7

R8

R9

R1

R3

21

8

R5

R0 1 0 3RE 8
R0 1 0 3RE 8
R0 1 0 3RE 8
R0 1 0 3RE 8
R0 1 0 3RE 8

R0 1 0 4RE 2
R1 1 2 4RE 6
R2 1 48 1RE 5
R3 1 60 4RE 4
R4 1 0 4RE 8
R5 1 4 4RE 4
R0 1 0 3RE 8
R0 1 0 3RE 8
R0 1 0 3RE 8
R0 1 0 3RE 8
R0 1 0 3RE 8
R0 1 0 3RE 8

R6 1 2 1RE 6
R7 1 14 1RE 6
R8 1 26 1RE 6
R9 1 38 1RE 6

R10 1 60 4RE 1
R11 1 61 4RE 1
R0 1 0 3RE 8R12 1 62 4RE 1
R0 1 0 3RE 8R13 1 63 4RE 1

4

5

5 98

R4

6 1110
DTYPE

8

-

8
8
8
8
8

FP32
FP32
FP32
FP32
FP32
FP32

8
8
8
8
8
8

FP32
FP32
FP32
FP32
FP32
FP32

8FP32
8FP32

Fig. 1. The Polymorphic Register File (First iteration), N=9, M=12

(DTYPE) - INTeger 8/16/32/64 bit or Floating Point 32/64 bit. The benefits
of the PRF are:

– Potential performance gain, by greatly reducing the number of committed
instructions, and increasing the number of data elements processed with a
single instruction using multi-axis vectorization;

– Improved storage efficiency, as the number of vector registers, their dimen-
sions and sizes are dynamically adjusted during runtime according to the
workload requirements, optimizing the use of the available register storage;

– Reduced static code footprint, as fewer, higher level instructions are used
to describe the data processing. The same binary instructions may be used
regardless of the shapes, dimensions and data types of the vector registers.

Previous works indicate that by employing PRFs, the number of committed
instructions may be reduced by up to three orders of magnitude [8]. Compared to
the Cell processor, PRFs decrease the number of instructions for a customized,
high performance dense matrix multiplication by up to 35 times [7] and improve
performance for Floyd and sparse matrix vector multiplication [8]. A CG case
study [11] evaluated the scalability of up to 256 PRF based accelerators in a
heterogenous multi-core architecture, with two orders of magnitude performance
improvements. Furthermore, potential power and area savings were shown by
employing fewer PRF cores compared to a Cell processors system.

The mathematical foundations for multi-lane PRF hardware implementations,
as well as synthesis results for FPGA and ASIC technologies have been presented
in [9] and [10]. The PRF data is stored using a 2D matrix of memory modules
with p rows and q columns, enabling the efficient use of up to p ·q parallel vector
lanes [12]. As in those papers, here we will use ”×” to refer to a 2D matrix, and
”·” to denote multiplication. Five parallel access schemes have been considered
for the hardware implementation of the PRF: the single-view Rectangle Only
(ReO) scheme, which supports conflict free accesses shaped as p× q rectangles,

320 C.B. Ciobanu and G.N. Gaydadjiev

suggested in [13], and a set of four multi-view schemes, supporting conflict free
access to the most common vector operations for scientific and multimedia ap-
plications [9]: 1) Rectangle Row (ReRo): p × q rectangle, p · q row, p · q main
diagonals if p and q+1 and co-prime, p · q secondary diagonals if p and q− 1 are
co-prime; 2) Rectangle Column (ReCo): p× q rectangle, p · q column, p · q main
diagonals if p + 1 and q are co-prime, p · q secondary diagonals if p − 1 and q
are co-prime; 3) Row Column (RoCo): p · q row, p · q column, aligned (i%p = 0
or j%q = 0) p× q rectangle; 4) Rectangle Transposed Rectangle (ReTr): p× q,
q × p rectangles if p%q = 0 or q%p = 0. Using 90nm ASIC technology, the PRF
clock frequency varies between 500MHz and 970MHz for storage sizes of up to
512KB and up to 64 vector lanes. Estimated power consumption is also within
reasonable limits, up to 8.7W dynamic and 276mW leakage [10].

Related Work: The efficient processing of multidimensional matrices has been
targeted by other architectures as well. One approach is to use a memory to
memory architecture, such as the Burrows Scientific Processor (BSP) [14]. Be-
ing optimized for executing Fortran code, the ISA composed of high level vec-
tor instructions with a large number of parameters. The arithmetic units were
equipped with 10 registers which are not directly accessible by the program-
mer. The Polymorphic register file also creates the premises for a high level ISA,
but can reuse data directly within the register file. The Complex Streamed In-
structions (CSI) [15] approach did not make use of data registers. CSI allows
the processing of 2D data streams of arbitrary length, but requires data caches
to benefit from data locality. Our approach suggests the register file as a cost-
effective alternative of high speed data caches.

The Vector Register Windows (VRW) [16] concept allows grouping of consec-
utive vector registers in a 2D window. However, one of the dimensions is fixed,
contrary to our proposal. The Matrix Oriented Multimedia (MOM) [17] also
uses a 2D register file, but with a fixed number of registers which used sub-
word parallelism in order to store up to 16x8 elements. The PRF also supports
sub-word level parallelism, but doesn’t restrict the number or shapes of the two
dimensional registers. A Modified MMX (MMMX) [18] supports 8 multimedia
registers, each 96 bits wide, with matrix operations limited to only loads and
stores.

The Register Pointer Architecture(RPA) [19] extends scalar processors by
adding two additional register files - Dereferencible Register File (DRF) and
the Register Pointers (RP). The DRF provides the storage space, while the RP
provide indirect access to the DRF. The PRF also uses indirect accessing to a
dedicated register file, but the RPA maps scalar registers, while in our proposal
each indirection register points to a matrix, being more suitable for vectors.

In order to adjust the number of registers and the total size of the physical
register file in a VLIW, FPGA partial reconfiguration is used in [20]. Our ap-
proach assumes fixed physical register file size, but at a higher level logical view,
offers variable fragmentation of the storage space, eliminating many overhead
instructions and costly partial reconfigurations, potentially improving perfor-
mance. While partial reconfiguration is only available in FPGAs, the PRF does

Separable 2D Convolution with Polymorphic Register Files 321

not rely on any specific hardware technology, therefore it can be successfully
implemented in both ASICs and FPGAs.

Accelerators for 2D convolutions have been previously implemented in recon-
figurable technology [21], as well as bit level [22] and defect tolerant [23] systolic
arrays in ASIC.

3 Experimental Setup

We use the simulation infrastructure introduced in [8], which consists of a cycle
accurate simulator written in Unisim [24], an extension of SystemC. The PRF is
implemented as part of the SARC Scientific Vector Accelerator (SVA), a loosely
coupled processor, controlled by a General Purpose Processor (GPP). The exper-
imental results take into consideration the communication between the GPP and
the SVA, which is performed by using a number of exchange registers, similar to
the Molen processor [25]. We also consider the overhead instructions required to
reconfigure the Polymorphic Registers. The separable 2D convolutions are exe-
cuted entirely on the SVA. Parallel execution between the GPP and the SVA is
not considered. The SVA cannot directly accesses the main memory - it can only
process data from its Local Store (LS), similar to the Cell Synergistic Processor
Units (SPU) [6]. We assume that all input data is present in the Local Store
when the SVA starts processing, a situation that can be practically achieved
by using DMA transfers and double buffering. Furthermore, we assume that all
PRF configurations have the same clock frequency, regardless of the number of
vector lanes. Therefore, the experimental results represent an upper bound with
respect to performance. A detailed description of the simulation environment is
available in [8].

The SVA sends the load and store requests to a Local Store Controller (LSC).
While in [8], the LSC was able to handle complex memory requests such as
2D and strided accesses, in this work we assume a more realistic scenario: only
1D contiguous vector loads and stores are supported. Therefore, a simple multi-
banked Local Store which uses low order interleaving can provide sufficient band-
width to the PRF. In our experiments, we set the latency of the LS to 11 cycles,
taking into account the overhead incurred by the 1D vector memory accesses,
and the bandwidth between the SVA and the LS to 16 bytes, equal to the bus
width used in the Cell processor between the SPU and the LS.

4 Separable 2D Convolution

In digital signal processing, each output of the convolution is computed as a
weighted sum of neighbouring data items. The coefficients of the products are
defined by a mask (also known as the convolution kernel), which is used for all
elements of the input array. Intuitively, convolution can be viewed as a blending
operation between the input signal and the mask. Because there are no data
dependencies, all output elements can be computed in parallel.

322 C.B. Ciobanu and G.N. Gaydadjiev

The dimensions of a convolution mask are usually odd, making it possible to
position the output element in the middle of the mask. For example, considering
a 6 element 1D input I = [20 21 22 23 24 25] and a 5 element mask M = [1 2 3 4 5].
The 1D convolution output corresponding to the 3rd input (22) is 1 · 20 + 2 ·
21 + 3 · 22 + 4 · 23 + 5 · 24 = 340. Similarly, the output corresponding to the
4th input (23) is obtained by shifting the mask by one position to the right:
1 · 21 + 2 · 21 + 3 · 23+ 4 · 24 + 5 · 25 = 355.

If the same convolution algorithm is used to for the elements close to the
edges of the input, the mask should be applied to elements outside the input
array (to the left of the first element, and to the right of the last element of
the input). For the rest of this paper we will refer to those elements as ”halo”
elements. In practice, a convention is made for a default value for halo elements.
If we consider the halo elements to be 0, the output corresponding to the 5th
input (24) is 1 · 22 + 2 · 23 + 3 · 24+ 4 · 25 + 4 · 25 + 5 · 0 = 240.

In the case of 2D convolutions, both the input data as well as the mask are 2D
matrices. Assuming the 2D mask has MASK V rows and MASK H columns,
the number of multiplications required to compute one output element using
for 2D convolution is MASK V ·MASK H. Separable 2D convolutions (e.g.,
the Sobel operator) can be computed as two 1D convolutions on the same data,
requiring only MASK V+MASK H multiplications for each output element.

For example [26], the 2D convolution
[−1 0 1
−2 0 2
−1 0 1

]
is equivalent to first applying[

1
2
1

]
and then [−1 0 1]. In this work, we will focus on accelerating separable 2D

convolutions.
Separable 2D convolutions consist of two data dependent steps: a row-wise

1D convolution on the input matrix followed by a column-wise 1D convolution.
The column-wise access involves strided memory accesses, which may degrade
performance due to bank conflicts in multi-bank memory systems. In order to
avoid the strided memory accesses, we propose to transpose outputs of the 1D
transpositions while processing the data. This can be performed conflict free by
using our RoCo memory scheme introduced in Section 2.

5 Vectorizing the 2D Convolution

In this Section, we first introduce the conflict free transposition algorithm. Then,
we propose a 2D vectorized separable convolution algorithm for PRFs.

5.1 Conflict Free Transposition

In Figure 1, the dotted angled arrow is used to highlight the size of overlapping
registers: R1, R4 and R5 overlap with R 6,7,8, 9, and R3 with R 10,11,12, 13.
A block of input data of VSIZE = 4 rows and HSIZE = 6 columns is loaded
from the LS in register R1, and the convolution result is stored in R3.

In order to perform the transposition, the data is loaded in the PRF into row
registers, and stored from column registers. The input data consists of VSIZE

Separable 2D Convolution with Polymorphic Register Files 323

R0

0

4

Available
space for

more
registers

7

2

3

0 3

R2

R10 R11 R12 R13

R6

R7

R8

R9

R1

R3

21

8

R5

4

5

5 98
R4

6

R14 R15

10 11

(a) Main iterations

R0

0

4

Available
space for

more
registers

7

2

3

0 3

R2

R10 R11 R12 R13

R6

R7

R8

R9

R1

R3

21

8

4

5

5 98
R4

6

R14 R15

10 11

R5

R16 R17

(b) Last iteration

Fig. 2. PRF configurations for the Separable 2D Convolution algorithm

rows containingHSIZE elements each - R 6,7,8 and 9, which are loaded from the
LS as 1D accesses. R 10 - 13 single column registers are then stored using regular
1D accesses, effectively transposing the result. The Local Store will only send
and receive data in consecutive addresses, fully utilizing the available bandwidth.
For this example, if the PRF has at least 6 lanes and is implemented using the
RoCo scheme introduced in Section 2, that allows conflict free accesses for both
rows and columns, all the loads and stores used in the transposition can be
performed conflict free. The input data matrix is processed in VSIZE×HSIZE
blocks, and is stored transposed.

An additional requirement for the PRF is a modified auto-sectioning mecha-
nism which stores the transposed output blocks in a top-to-bottom, left-to-right
(column-wise). The regular auto sectioning instruction loads the input matrices
in a left-to-right, top-to-bottom (row-wise) order. This is trivial to implement
by slightly modifying the regular auto sectioning instruction update2d, which
is described in detail [8]. Since two auto sectioning instructions are required,
the one which handles the transposition must not perform a branch to the first
instruction of the sectioning loop.

5.2 Our Implementation

The input matrix contains MAX V × MAX H elements. The two masks
used for row-wise and column-wise convolutions haveMASK H and MASK V
elements respectively. We will refer to both asMASK H, since both convolution
steps are handled identically by the PRF. The PRF algorithm processes the input
in blocks of VSIZE × HSIZE elements, vectorizing the computation both the
horizontal and vertical axes. For clarity, we only present the code required to
execute one convolution step. The code needs to be executed twice, once for the
row-wise convolution and the second time for the column-wise one. However,
only a small number of parameters needs to be updated (e.g., the pointer to the

324 C.B. Ciobanu and G.N. Gaydadjiev

input and out matrixes) in the exchange registers, the binary instructions are
similar for both passes.

The data will be processed in multiple steps (iterations), VSIZE rows at a
time. Because special care needs to be taken at the borders of the input, we
separate the vectorized algorithm in three distinct phases in order to properly
process the first and last iterations. The layout for the PRF used in the first
iteration is illustrated in Figure 1, for the last iteration in Figure 2(b) and for
the rest in Figure 2(a) (to save space, we only show the first iteration SPR
content). The shaded registers (R0 and R5) contain halo elements. Without loss
of generality, we assume that MAX V%VSIZE = 0 and MASK H = 2 ·R+1.

Let A = MAX H%HSIZE and B =

{
HSIZE, if A = 0

A, otherwise

In all figures, VSIZE = 4, HSIZE = 6, R = 2, A = 0, and B = 6.
For both Figure 1 and 2, the vector registers assignment is as follows:

– R0 contains the left hallo cells;
– R1 contains the input data which needs to be processed, and overlaps with
R6-R9 which are used to load the data from the LS;

– R2 contains the mask;
– R3 stores the result of the convolution, and overlaps with R10-R17 which
are used to transpose the result;

– R4 holds the halo elements as well as the loaded data;
– R5 holds the data which will become the halo of the next iteration, or the
right halo cells for the last iteration.

The first iteration of the convolution takes into consideration theR halo elements
to the left of the first input element. The algorithm performs the following steps:

f01. Define R2 as 1x(2*R+1), base=VSIZE

f02. Load R2

f03s.Define R0 as VSIZExR, base=0

f04. Initialize R0 with the default values for halos (e.g., 0)

f05. Resize R0 as VSIZEx2*R, base=0

f06. Define R4 as VSIZEx(HSIZE+R), base=0

f07. Define R1 as VSIZExHSIZE, base=R

f08. Define R6, R7,... R(6+VSIZE-1),as 1xHSIZE,

base=R, R+M, ... R + (VSIZE-1)*M

f09. Define R(6+VSIZE),...R(6+VSIZE+HSIZE-R-1), as VSIZEx1,

base=(VSIZE+1)*M, (VSIZE+1)*M+1, ... (VSIZE+1)*M + HSIZE-R-1

f10. Define R5 as VSIZEx2*R, base=HSIZE-R

f11. Define R3 as VSIZEx(HSIZE-R), base=VSIZE+1

f12. Load R6, R7,... R(6+VSIZE-1)

f13. Row-wise convolution: input=R4, Mask=R2, Output=R3

f14. Store R(6+VSIZE),...R(6+VSIZE+HSIZE-R-1)

f15. Move R5 to R0

f16. Update pointers to the input data and output data

Separable 2D Convolution with Polymorphic Register Files 325

The halo elements complicate the algorithm when processing the input data in
blocks, as each new section of the data will require 2 · R elements from the
previous iteration (R0 in Figure 2(a)). Our solution is to keep the halo elements
in the PRF, and just move them to the left (from R5 to R0) before loading
new data. This way, each input element is only loaded once for the horizontal
pass and once for the vertical pass. The main iterations execute the following
operations:

m01. Define R5 as VSIZEx2*R, base=HSIZE

m02. Define R1 as VSIZExHSIZE, base=2*R

m03. Define R4 as VSIZEx(HSIZE + 2*R), base=0

m04. Define R3 as VSIZExHSIZE, base=VSIZE+1

m05. Define R(6+VSIZE+HSIZE - R),...R(6+VSIZE+HSIZE - 1), as VSIZEx1,

base=(VSIZE+1)*M+HSIZE-R, ... (VSIZE+1)*M + HSIZE-1

m06. Redefine R6, R7,... R(6+VSIZE-1),as 1xHSIZE, new base=2*R

m07s.Load R6, R7,... R(6+VSIZE-1)

m08. Row-wise convolution: input=R4, Mask=R2, Output=R3

m09. Store R(6+VSIZE),...R(6+VSIZE+HSIZE-1)

m10. Move R5 to R0

m11. Update pointers, continue if the last iteration follows

or jump to instr. m07s otherwise

The last iteration needs to add the halo elements to the right of the last input
element(Figure 2(b)). The width of the loads in the last iteration is A, and the
number of stores is A+R. The pseudo-code for the last iteration is:

l01. Define R5 as VSIZExR, base=A+2*R

l02. Initialize R5 with the default values for halos (e.g., 0)

l03. Define R1 as VSIZExA, base=2*R

l04. Define R4 as VSIZEx(A+3*R), base=2*R

l05. Define R3 as VSIZEx(A+R), base=(VSIZE+1)

l06. Redefine R6, R7,... R(6+VSIZE-1),new size 1xA, new base=2*R

l07. Define R(6+VSIZE),...R(6+VSIZE+A+R-1) as VSIZEx1,

base=(VSIZE+1)*M, ... (VSIZE+1)*M+A+R-1

l08. Load R6, R7,... R(6+VSIZE-1)

l09. Row-wise convolution: input=R4, Mask=R2, Output=R3

l10. Store R(6+VSIZE),...R(6+VSIZE+A+R-1),

l11. Update pointers and finish execution if last row

or jump to instr. f03s otherwise

The algorithm also has two special cases, depending on the size of the input
MAX H and HSIZE. If HSIZE < MAX H ≤ 2 · HSIZE, only the first
and last iterations are executed. If MAX H ≤ HSIZE, a single iteration is
executed which processes full rows. Because of lack of space, we didn’t include
the corresponding pseudo-code and PRF configurations in this paper.

6 Experimental Results

The nVidia c2050 GPU [27] is running at 1.15 GHz, a frequency comparable
to our ASIC synthesis results for the PRF presented in Section 2. Therefore,

326 C.B. Ciobanu and G.N. Gaydadjiev

4

8

16

32

64

128

256

512

1024

2048

3 x 3 5 x 5 9 x 9 17 x 17 33 x 33

Pi
xe
ls
/
KC

yc
le
s

Mask Size

2D Convolution, Input Size = 128x128
nVidia c2050 1 Lane 2 Lanes 4 Lanes 8 Lanes
16 Lanes 32 Lanes 64 Lanes 128 Lanes

Fig. 3. 2D Convolution Algorithm Throughput

we measure the throughput for both the PRF and the nVidia c2050 in terms
of pixels / 1000 cycles. Figure 3 compares the throughput of the c2050 card
with multiple PRF configurations, ranging from 1 to 128 vector lanes. The peak
throughput for the c2050 was obtained for an image size of 2048×2048 elements,
which we will use for the comparison below. The input data for the PRF was
set at 128 × 128 elements, as larger inputs did not improve performance. The
mask sizes are varied between 3× 3 and 33× 33 elements, representing realistic
scenarios. For the PRF experiments, we set HSIZE = VSIZE = 32.

The results suggest that for small masks of 3× 3 or 5× 5, the GPU is faster
than the PRF, which is limited by the bandwidth to the Local Store when using
more than 8 lanes.

However, as the masks increase in size, the convolution becomes more ex-
pensive in terms of computations, and the throughput of the GPU decreases.
However, the PRF scales to a higher number of lanes, and starting from a mask
size of 9× 9, outperforms the GPU. For the largest mask size of 33× 33, all but
the slowest PRF configurations gain higher throughput than the GPU.

7 Conclusions and Future Work

We presented a matrix transposition algorithm optimized for PRFs, and a 2D
vectorized separable convolution algorithm avoiding strided memory accesses
when accesing the input data column-wise. We evaluated the performance of the
vectorized algorithm executing on multi-lane PRFs, and compared the through-
put with an nVidia Tesla C2050 GPU. The results show that even in a bandwidth

Separable 2D Convolution with Polymorphic Register Files 327

constrained system, the PRF is able to outperform the GPU for 9× 9 or larger
mask sizes. As future work, we will evaluate the performance of the PRF with
other computationally intensive workloads.

Acknowledgments. We thank Wen-mei W. Hwu and Nasser Salim Anssari for
providing the nVidia Tesla C2050 GPU results.

This work was supported by the European Commission in the context of FP7
FASTER project (#287804).

References

1. ITRS: International Technology Roadmap for Semiconductors. Online, 2011 edn.,
http://www.itrs.net/

2. Akdemir, K., et al.: Breakthrough AES Performance with Intel AES New Instruc-
tions. White paper, 12 pages (June 2010),
http://communities.intel.com/docs/DOC-5003

3. Gwennap, L.: Digital, MIPS Add Multimedia Extensions. Microdesign Re-
sources 10(15), 1–5 (1996)

4. Buchholz, W.: The IBM System/370 vector architecture. IBM Systems Journal,
51–62 (1986)

5. Gwennap, L.: AltiVec Vectorizes PowerPC. Microprocessor Report 12(6), 1–5
(1998)

6. IBM. Cell BE Programming Handbook Including the PowerXCell 8i Processor,
1.11 edn. (May 2008)

7. Ramirez, A., Cabarcas, F., Juurlink, B., Alvarez Mesa, M., Sanchez, F., Azevedo,
A., Meenderinck, C., Ciobanu, C., Isaza, S., Gaydadjiev, G.: The SARC Architec-
ture. IEEE Micro 30(5), 16–29 (2010); ISSN 0272-1732

8. Ciobanu, C., Kuzmanov, G.K., Ramirez, A., Gaydadjiev, G.N.: A Polymorphic
Register File for Matrix Operations. In: Proceedings of the 2010 International Con-
ference on Embedded Computer Systems: Architectures, Modeling and Simulation
(SAMOS 2010), pp. 241–249 (July 2010)

9. Ciobanu, C., Kuzmanov, G.K., Gaydadjiev, G.N.: On Implementability of Poly-
morphic Register Files. In: Proceedings of the 7th Int. Workshop on Reconfigurable
Communication-centric Systems-on-Chip (ReCoSoC 2012), pp. 1–6 (2012)

10. Ciobanu, C., Kuzmanov, G.K., Gaydadjiev, G.N.: Scalability Study of Polymorphic
Register Files. In: Proceedings of the 15th Euromicro Conference on Digital System
Design (DSD 2012), pp. 803–808 (2012)

11. Ciobanu, C.B., Martorell, X., Kuzmanov, G.K., Ramirez, A., Gaydadjiev, G.N.:
Scalability Evaluation of a Polymorphic Register File: A CG Case Study. In:
Berekovic, M., Fornaciari, W., Brinkschulte, U., Silvano, C. (eds.) ARCS 2011.
LNCS, vol. 6566, pp. 13–25. Springer, Heidelberg (2011)

12. Asanović, K.: Vector Microprocessors. PhD thesis, University of California at
Berkeley (1998)

13. Kuzmanov, G., Gaydadjiev, G., Vassiliadis, S.: Multimedia rectangularly address-
able memory. IEEE Transactions on Multimedia, 315–322 (2006)

14. Kuck, D.J., Stokes, R.A.: The Burroughs Scientific Processor (BSP). IEEE Trans-
actions on Computers C-31(5), 363–376 (1982); ISSN 0018-9340

http://www.itrs.net/
http://communities.intel.com/docs/DOC-5003

328 C.B. Ciobanu and G.N. Gaydadjiev

15. Juurlink, B.H.H., Cheresiz, D., Vassiliadis, S., Wijshoff, H.A.G.: Implementation
and Evaluation of the Complex Streamed Instruction Set. In: Int. Conf. on Parallel
Architectures and Compilation Techniques (PACT), pp. 73–82 (2001)

16. Panda, D.K., Hwang, K.: Reconfigurable Vector Register Windows for Fast Matrix
Computation on the Orthogonal Multiprocessor. In: Proc. of the Int. Conference
on Application Specific Array Processors, September 5-7, pp. 202–213 (1990)

17. Corbal, J., Espasa, R., Valero, M.: MOM: a Matrix SIMD Instruction Set Archi-
tecture for Multimedia Applications. In: Proceedings of the ACM/IEEE SC 1999
Conference, pp. 1–12 (1999)

18. Shahbahrami, A., Juurlink, B.H.H., Vassiliadis, S.: Matrix Register File and Ex-
tended Subwords: Two Techniques for Embedded Media Processors. In: Proc. of
the 2nd ACM Int. Conf. on Computing Frontiers, pp. 171–180 (May 2005)

19. Park, J., Park, S.-B., Balfour, J.D., Black-Schaffer, D., Kozyrakis, C., Dally, W.J.:
Register Pointer Architecture for Efficient Embedded Processors. In: Proceedings
of on Design, Automation and Test in Europe, DATE 2007, San Jose, CA, USA,
pp. 978–973. EDA Consortium (2007) ISBN 978-3-9810801-2-4

20. Wong, S., Anjam, F., Nadeem, M.F.: Dynamically Reconfigurable Register File for
a Softcore VLIW Processor. In: Proceedings of the Design, Automation and Test
in Europe Conference (DATE 2010), pp. 969–972 (March 2010)

21. Wong, S.C., Jasiunas, M., Kearney, D.: Fast 2D Convolution Using Reconfigurable
Computing. In: Proceedings of the Eighth International Symposium on Signal Pro-
cessing and Its Applications, August 28-31, vol. 2, pp. 791–794 (2005)

22. Lee, J.-J., Song, G.-Y.: Super-Systolic Array for 2D Convolution. In: 2006 IEEE
Region 10 Conference on TENCON 2006, pp. 1–4 (November 2006)

23. Hecht, V., Ronner, K.: An Advanced Programmable 2D-Convolution Chip for Real
Time Image Processing. In: IEEE International Sympoisum on Circuits and Sys-
tems, vol. 4, pp. 1897–1900 (June 1991)

24. August, D., Chang, J., et al.: UNISIM: An Open Simulation Environment and
Library for Complex Architecture Design and Collaborative Development. IEEE
Comput. Archit. Lett. 6(2), 45–48 (2007); ISSN 1556-6056

25. Vassiliadis, S., Wong, S., Gaydadjiev, G., Bertels, K., Kuzmanov, G., Panainte,
E.M.: The molen polymorphic processor. IEEE Transactions on Computers 53(11),
1363–1375 (2004); ISSN 0018-9340.

26. Podlozhnyuk, V.: Image Convolution with CUDA. Online (June 2007),
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86 64

website/projects/convolutionSeparable/doc/convolutionSeparable.pdf

27. TESLA C2050 / C2070 GPU Computing Processor. Supercomputing at 1/10th of
the Cost. Online,
www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores.pdf

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_64_website/projects/convolutionSeparable/doc/convolutionSeparable.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_64_website/projects/convolutionSeparable/doc/convolutionSeparable.pdf
www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores.pdf

Architecture of a Parallel
MOSFET Parameter Extraction System

Tomáš Zahradnický and Róbert Lórencz

Department of Computer Systems,
Faculty of Information Technology,

Czech Technical University in Prague,
Thákurova 9, Prague 6, 160 00, Czech Republic

{zahradt,lorencz}@fit.cvut.cz

Abstract. The paper first describes an existing parameter estimation
approach used to estimate MOSFET mathematical model parameters.
Next, all of the presented algorithms are analyzed with respect to the
current multiple core processor architecture design. The parallel equiva-
lents of the presented algorithms are given, including their computational
complexities. The presented approach is specific that is uses the multiple-
modulus arithmetic of the Residue Number System for solution of sets of
linear equations. Finally, the paper shows the scalability of the presented
approach and compares the obtained results to the original approach.

1 Introduction

The process of parameter extraction is today an indispensable portion of model-
ing and simulation, and is used to find and verify parameters of a mathematical
model describing some physical reality. Modeling processes utilize parameter ex-
traction with theoretical mathematical models to verify predicted behavior of a
studied experimental object or reality and also to create reliable mathematical
descriptions that model the object’s behavior as close as possible. Simulation
utilizes the already verified mathematical models, and replaces the object by its
mathematical description allowing to virtualize the object or a system of objects
and to perform virtual experiments on a computer.

Parameter extraction uses statistical methods such as the method of maxi-
mum likelihood or weighted least squares and these methods end up with solu-
tion of a set of linear equations (SLE)s. Problems may occur in floating point
arithmetic since it is not associative, higher precision arithmetic is needed, or if
rounding errors committed during the solution process are undesirable. If we use
the arithmetic of the Residue Number System (RNS) [2,3], we address parallel
processing, error free computation, and associativity at once.

SLE solution in residue arithmetic happens as a solution of a number of sets
of linear congruences (SLC)s, each with its own unique modulus. Since there are
no relations in between the individual SLCs their solution can safely occur in
parallel. Once the SLC solutions are available, the result is transformed into the

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 329–340, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

330 T. Zahradnický and R. Lórencz

rational number set either with the backward transformation based on Chinese
Remainder Theorem (CRT) or Mixed Radix Conversion (MRC) [2,3].

The purpose of this paper is to present an architecture of a parallel parameter
extraction system capable of extracting several to many mathematical model
parameters simultaneously. The extraction system is special in a way that it
uses residue arithmetic, which is especially suitable for parallel processing. The
system originates in [4], and is able to extract several to many parameters with
the all-at-once approach. After a recapitulation of the method [4], the paper
provides a scalable equivalent including its complexity.

The structure of the paper is as follows: Section 2, Related Work, provides
the state-of-the-art in MOSFET parameter extraction, classifies our method,
and discusses possible alternative approaches. Section 3, The Original Method,
recapitulates the original method [4] along with its computational complexity.
Section 4, The Parallel Method, presents a scalable version of the original method,
which is the main contribution of the paper. Section 5, Conclusions, summarizes
the contributions of the the paper and concludes it.

2 Related Work

Since the paper is related to a MOSFET [5], we restrict the related work to the
recent electronic component parameter estimations that generally consist of a
determination of a set of relevant parameters and their initial values, followed
by the optimization efforts.

The parameter set and the initial values for the parameters within it are
determined by the technologist. Some parameter values can determined directly
from the data sheet, some of them can be measured, while others have to be
determined experimentally with a significant amount of experience.

Next, relevant parameters are determined (ranked). Lórencz et al. [4] suggest
to use statistic evaluation methods to remove parameters that strongly intercor-
relate and those with high measures of uncertainty. Ben Hadj Slama [6] suggests
a sensitivity survey method to determine relevant parameters. It is also possible
to use neural networks. Other possible ranking methods are discussed in [7].

The current MOSFET parameter extraction approaches define an objective
function1 as a function expressing the overall distance in between the observed
values and the values predicted by the mathematical model. The goal of the op-
timization is to find such parameter values that minimize the objective function.
Since the parameter space can be extremely large, there are global and local
approaches to finding the minimum of the objective function.

Global optimization techniques search the entire parameter space searching
for a region containing the global minimum. The methods currently used often
include evolutionary algorithms. There are methods based on genetic algorithms

1 The naming of the objective function varies across the literature. Genetic algorithms
usually use fitness function, we call this function a goodness of the fit function, while
methods based on simulated annealing calculate with an energy function.

Architecture of a Parallel MOSFET Parameter Extraction System 331

[8,9,10,11,12], simulated annealing [13,14], or fuzzy logic [15]. Recently, there are
appearing global approaches using particle swarm optimization [16,17].

Local optimization techniques are preferred when we expect that the sought
global minimum of the objective function lies near to the current solution. We
can see Levenberg-Marquardt’s algorithm [18,19] (LMA) in [8,9], and the steep-
est descent methods, often combined with heuristics. Bryant [20] suggests to use
Tabu search [21] to avoid exploring the already explored portions of the param-
eter space. The use of other gradient methods such as the conjugated gradients
method [22] was not observed in MOSFET parameter extraction. The approach
presented in this paper can be classified as a static parallel local parameter
extraction approach using steepest descent methods (LMA).

The interesting point about the above papers is that they often do not discuss
computer arithmetic and plainly assume the IEEE 754 [1] arithmetic.

3 The Original Method

The section briefly describes the original parameter extraction method [4]. Tech-
nological and mathematical backgrounds and evaluation of the results are dis-
cussed in [4,23] and were left out of the paper. It is also assumed that all relevant
parameters have already been determined, all data measurements conducted, in-
cluding their standard deviation estimates. The paper focuses on the process of
searching for a minimum of the objective function.

The parameter extraction system [4,23] uses the Levenberg-Marquardt’s al-
gorithm (LMA) [18,19] to find mathematical model parameter values from the
input data being MOSFET’s drain current, base-source, drain-source, and gate-
source voltages. The original paper deals with a Bipolar Junction Transistor
(BJT), but we are using the same approach for a MOSFET.

First, it is necessary to calculate the goodness of the fit (the objective func-
tion). The goodness of the fit tells how the current parameter set is far from the
measured data parameter set and is calculated as follows [4]:

χ2(X, p(k)) = f(X, p(k))T f(X, p(k)) =
N∑

i=1

fi(Xi, p(k))2, (1)

where X ∈ R
N×I is a matrix of independent variables (input voltages). There

are I measured input voltages for N data points. Xi denotes the ith row of X and
is a vector of measured input voltages at the ith data point, while p resp. p(k)

denotes the parameter vector resp. the parameter vector at the kth iteration step.
f
(
X, p(k)

)
is a vector error function containing weighted differences in between

the measured and calculated values of the mathematical model so fi(X, p(k)) =
[IDSi − mi

(
Xi, p(k)

)
]σi

−1. IDSi, σi, and mi(Xi, p) are a drain current, its
standard deviation, and the value of the math. model at the ith data point.

Then we need to find Jacobi’s matrix J(k) =
(∇p

(
f(Xi, p)T

))T |p=p(k) ∈
R

N×P , where P is a number of parameters. The derivatives are evaluated either
with a parabolic approximation [4] or with Neville’s algorithm [24,23].

332 T. Zahradnický and R. Lórencz

Finally we solve a set of linear equations (for more information refer to [4,23]):[(
J(k)

)T

J(k) + λ(k)D(k)

]
Δp(k) =

(
J(k)

)T

f
(
X, p(k)

)
, (2)

where J(k) ∈ R
N×P is Jacobi’s matrix at the kth iteration step. D(k) ∈ R

P×P

and λ(k) ∈ R are the LMA’s diagonal matrix and the damping factor at the kth

iteration step, for Δp(k) being the kth parameter vector adjustment.

����������� �	��
���������	�� ����

�	��
��� χ2

���	� ���

�������������

��������� ����

������ χ2�

���

�����

−

+

+

−

������ ��������

������ ��������

Fig. 1. The parameter extraction algorithm. The algorithm starts in the Start block,
where the relevant parameters are selected forming the parameter set, the default pa-
rameter values p(0) assigned, and the initial goodness of the fit calculated. Initializa-
tion sets the initial values for the damping coefficient, and the iteration step counter
k = 0. The Solve SLE block finds a new par. vector p(k+1) and passes it to the Pa-
rameter Test for decision whether to continue or stop, based on the relative change
in each p(k+1)’s component. If the change is insignificant (−), the algorithm stops, and
the results are statistically evaluated; otherwise (+) the new par. vector is passed to the
Interval Test checking p(k+1)’s physical constraints and resetting all non-conforming
elements to their default values. The Evaluate χ2 block computes a new goodness
of the fit, followed by comparing of the last two values of the goodness of the fit. If
there is a better goodness than in the previous step (+), the computed parameter set
is retained in the Accept Iteration block, the iteration number k increased, and the
damping coefficient divided by 10; otherwise (−) the algorithm goes to the Reject
Iteration block, where the damping coefficient is multiplied by 10, and the new par.
vector p(k+1) discarded. Finally, the algorithm starts over in the Solve SLE block.

Architecture of a Parallel MOSFET Parameter Extraction System 333

The extraction algorithm can be described with the following scheme:
The extraction algorithm is described in detail in [4,23]. The following section
will discuss the SLE solution in arithmetic of the Residue Number System.

3.1 Residue Number System Arithmetic

We use the multiple-modulus residue arithmetic [25,2] with Q distinct prime
number moduli, which is equivalent to a single modulus arithmetic with joint
module M =

∏Q
i=1 mi ∀Q

i=1, i�=j gcd(mi, mj) = 1. CRT guarantees that each
integer x ∈ [0, M) can be uniquely represented as |x|M = {x1, . . . , xQ}, where
xi = x mod mi ≡ |x|mi . For integers x, y ∈ [0, M) and � ∈ {+, −, · }

|x� y|M ≡
{
|x1 � y1|m1

, . . . , |xQ � yQ|mQ

}
, and (3)∣∣∣∣xy

∣∣∣∣
M

≡
{∣∣x1 · |y1

−1|m1

∣∣
m1

, . . . ,
∣∣xQ · |yQ

−1|mQ

∣∣
mQ

}
for y �= 0, (4)

where |yi
−1|mi denotes a multiplicative inverse of yi mod mi.

Relations (3) and (4) are particularly important since individual prime num-
ber moduli mi are chosen small enough to perfectly fit into a CPU register as well
as products of addition, subtraction, multiplication, and multiplicative inverse
modulo mi. Since there are no relations in between calculations across differ-
ent moduli in (3) and (4), the computation in single big modulus is replaced
by a computation in multiple smaller moduli and can occur in parallel and is
naturally scalable. Note that since we are using integers only, the operations are
associative, commutative, distributive, and there is no rounding at all in contrary
to the floating point arithmetic which rounds after every operation.

3.2 Solving Sets of Linear Equations in Residue Arithmetic

Residue arithmetic can be also used to solve an SLE and a typical SLE solution
is accomplished in 4 steps [26]:

1. Scaling Transformation. The input extended SLE matrix is scaled, as it en-
sures that the elements of the SLE matrix have proper magnitude for the
remainder after division (modulo) operation performed in the next step.

2. Forward Transformation. The remainder mod mi operation is applied at the
scaled matrix and an entirely integral matrix is obtained. This step repeats
Q times and we obtain Q sets of linear congruences (SLC)s.

3. SLCs Solution. SLCs are independently solved e.g. by Gauss-Jordan elimi-
nation with pivoting and all singular solutions are discarded along with their
corresponding moduli and Q decreased by 1 for any singular SLC.

4. Backward Transformation [3,26]. The results from step 3 are recombined
back into a rational number SLE solution with MRC.

334 T. Zahradnický and R. Lórencz

Table 1. Complexities of a solution of a set of linear equations in the multiple-modulus
residue arithmetic. P stands for the number of parameters (unknowns) and Q a num-
ber of prime number moduli. The set is solved with Gauss-Jordan elimination with
nonzero residual pivoting [26] and Mixed Radix Conversion used for the Backward
transformation.

Operation Complexity Times Repeated Total

Scaling Transformation O(P 2) 1 O(P 2)
Forward Transformation O(P 2) Q O(P 2Q)
Solution of an SLC O(P 3) Q O(P 3Q)
Backward Transformation O(Q2) P O(PQ2)

Total C = O(P 3Q + PQ2)

Table 1 provides a summary of the computational complexities (derived precisely
in [23]) for each of the above 4 SLE solution steps:

3.3 Summary

When we summarize the complexities of the original parameter extraction sys-
tem, we obtain the following [23]:

Table 2. Iteration step complexity overview. N stands for a number of data points,
P a number of parameters, Q a number of moduli, and α resp. δ for a number of flops
required to evaluate a single value of the mathematical model resp. a derivative of it.

Iteration Step Name Complexity

Goodness of the Fit Evaluation with (1) O(Nα)
Jacobi’s Matrix Evaluation O(NPδ)
(J(k))T J(k) Matrix Multiplication in (2) O(NP 2)

(J(k))T f(X, p(k)) Matrix Multiplication in (2) O(N)

Application of λ(k) in (2) O(P)
SLE Solution with (2) in RNS O(P 3Q + PQ2)
Interval Test O(P)
Parameter Test O(P)

When expressed in big-O notation, the joint complexity of 1 iteration is:

C = O
(
P 3Q + PQ2 + NP 2 + NPδ + Nα

)
.

Architecture of a Parallel MOSFET Parameter Extraction System 335

The presented method was described in [4] and could be used to estimate MOS-
FET parameters, but hence is was not designed to be scalable. The following
section offers a scalable equivalent of the method.

4 The Parallel Method

The purpose of the paper is to present an improvement to the original parameter
extraction method presented in sec. 3 of the paper. The improvement provided
is for a computer with one or more processors, each with one or more processor
cores, and a shared memory system big enough to carry out the calculation. The
parallel method is designed for run at a thread level and all work is partitioned
in a way so that the load balance of the individual threads is about the same,
where possible. The method is designed to provide the same result regardless of
a number of threads p used for the computation. We assume that the number
of data points N is greater than the number of threads p (N > p), and that the
number of flops required to evaluate a value of the mathematical model α � 1.

The following sections analyze the algorithm depicted at Fig. 1 step by step
and present changes to the individual steps in Table 2 that make the algorithm
scalable along with complexities of the approach.

4.1 Parallel Goodness of the Fit Evaluation

The value of the goodness of the fit χ2(X, p(k)) function is evaluated with (1),
and since it evaluates a sum of independent data quantities, we can evaluate
each fi(Xi, p(k))2 independently, and then perform a parallel summation of the
obtained results. This approach does not work in floating point arithmetic since
the addition is not associative because of rounding. For this reason, we assign
N/p elements to each thread and let it calculate fi(Xi, p(k))2 values indepen-
dently, gathering the sum sequentially afterwards. If α is the number of flops
required to evaluate a single value of the mathematical model and since α � 1
then O

(
fi(Xi, p(k))

)
= O(α). We have to perform N additions sequentially and

calculate N/p times fi(Xi, p(k))2 in parallel. When expressed in big-O notation,
the parallel goodness of the fit is evaluated in:

C = O (N + Nα/p) .

4.2 Parallel Jacobi’s Matrix Evaluation

The Jacobi’s matrix J(k) ∈ R
N×P elements are calculated independently and

there are NP elements to be calculated. We assume N > p or even N � p and
if δ � 1 is a number of flops required to evaluate a derivative, it is sufficient to
partition the evaluation of the matrix such that each thread gets assigned a set
of approximately N/p rows. The complexity directly follows as:

C = O(NPδ/p).

336 T. Zahradnický and R. Lórencz

4.3 Parallel Matrix Multiplication

Parallel matrix multiplication is a well explored topic. The extraction algorithm
performs optimizations, based on whether the multiplication result is: i) a non-
symmetric matrix, such as J(X, p(k))T f(X, p(k)), and ii) symmetric matrix such
as J(X, p(k))T J(X, p(k)), where only a half of the elements needs to be calcu-
lated. We consider the complexity for C = AB, where A ∈ R

R×S , B ∈ R
S×T ,

and C ∈ R
R×T to be:

C = O(RST/p) for non-symmetric matrices,
C = O(R2S/p) for symmetric matrices,

where R, S, T ∈ N.

4.4 Solving Sets of Linear Equations in Parallel

The sequential version of the SLE solving process in RNS got already briefly
discussed in sec. 3.2. The parallel solution process comprises of the same 4 steps;
a scaling transformation, a forward transformation, solution of Q SLCs, and a
backward transformation.

Parallel Scaling Transformation. prepares the SLE to take a remainder
modulo mq operations, for mq being the q th unique prime number modulus for
q = 1 : Q. The scaling transformation takes each row of the extended SLE matrix
W ∈ R

P×(P+1), finds the element with the smallest nonzero magnitude, and
scales the entire row in a way so that all nonzero elements of the row |wi, ∗| ≥ 1.
The algorithm uses matrix row partitioning so each processor core processes an
assigned interval of rows Ic of W. There are P + 1 columns in W and each
processor core processes Lc = 1 + max Ic − min Ic rows. Since Lc ≈ P/p, the
complexity expressed in terms of big-O notation yields:

C = O(P 2/p).

Parallel Forward Transformation. gets the scaled extended SLE matrix and
calculates |W|q = W mod mq, for q = 1 : Q, producing Q independent sets of
linear congruencies. This process is made parallel by assigning each processor
core c approximately Q/p moduli in form of an interval Ic and having the core
compute the standard forward transformation for Lc = 1 + max Ic − min Ic

moduli. There are P (P +1)Lc modular reductions per processor and since Lc ≈
Q/p the complexity expressed in terms of big-O notation is:

C = O(P 2Q/p).

Parallel SLC Solutions. In this step, we solve Q sets of linear congruencies.
Since SLCs have small to moderate number of equations, it is better to solve

Architecture of a Parallel MOSFET Parameter Extraction System 337

them as a whole, dividing the whole Q sets among the p processor cores so
that each processor core gets approximately Q/p SLCs, each represented by an
extended SLC matrix |W|q. SLCs are solved with Gauss-Jordan elimination with
pivoting. The complexity of Gauss-Jordan elimination is O(P 3) and since each
core solves approximate Q/p SLCs, the overall complexity of this step is:

C = O
(
P 3Q/p

)
.

Parallel Backward Transformation. recombines the partial SLC solutions
into an SLE solution with the MRC algorithm [3,26]. There are at most Q
SLC solutions, each with a determinant value. The backward transformation
needs to be run for each element of the solution vector x. Since the complex-
ity of Garner’s algorithm is O(Q2), and since each processor core evaluates
approximately P/p elements of the solution vector, the asymptotic complexity
is:

C = O
(
PQ2/p

)
.

The complexity of a parallel SLE solution in residue arithmetic:

Table 3. The complexities of parallel solution of a set of P linear equations (SLE)s in
the multiple-modulus arithmetic of the Residue Number System with Q distinct prime
number moduli. The SLE solution consists of a scaling transformation performed once
for the entire set followed by a forward transformation performed once for each module.
Then Q sets of linear congruencies (SLC)s are solved providing up to Q solutions that
get combined into an SLE solution with the backward transformation. The algorithms
are run on p processor cores.

Operation Complexity Times Repeated Total

Scaling Transformation O(P 2/p) 1 O(P 2/p)

Forward Transformation O(P 2) Q/p O(P 2Q/p)

SLC Solution O(P 3) Q/p O(P 3Q/p)

Backward Transformation O(Q2) P/p O(PQ2/p)

Total C = O
(
P 3Q/p + PQ2/p

)

338 T. Zahradnický and R. Lórencz

4.5 Summary

The previous section described a parallel SLE solution in residue arithmetic.
Table 4 summarizes the complexities of each step of the extraction algorithm
while Fig. 2 compares the sequential and parallel run times of both algorithms:

Table 4. The complexities of each portion of an iteration step of the parallel algo-
rithm. The complexities are presented for the shaded portions of Fig. 1 on page 332.
N stands for the number of data points, Q a number of RNS prime number moduli,
P a number of equations, α resp. δ for a number of flops required to evaluate a value
of the mathematical model resp. a derivative of it.

Operation Parallel Complexity

Goodness of the Fit Evaluation O(Nα/p)

Jacobi’s Matrix Evaluation O(NPδ/p)
JT J Matrix Multiplication O(NP 2/p)

JT f Matrix Multiplication O(N/p)
Application of λ(k) O(P)

SLE Solution O(P 3Q/p + PQ2/p)

Interval Test O(P)
Parameter Test O(P)

The overall complexity of the parallel algorithm is:

C = O
(
P 3Q/p + PQ2/p + NP 2 + NPδ/p + Nα/p + 3P

)
.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

'�������

t
[s
]

p

���	�����

Fig. 2. Overall run time. This figure shows the overall run time of both methods for
P = 13, Q = 250, and N = 1350. The horizontal line denotes run time of the serial
extraction system, the RNS curve presents results obtained with the parallel system
calculating in Residue Number System.

Architecture of a Parallel MOSFET Parameter Extraction System 339

5 Conclusions

The purpose of parameter extraction is to find the unknown parameters of a
mathematical model that models some kind of physical reality, so that the be-
havior of the mathematical model matches the physical reality as closely as
possible. With the model, one can simulate processes, pose what-if questions,
and verify the validity of experiments.

The paper first describes an existing parameter extraction method [4]. The
method is analyzed within sec. 3 and scalable equivalents to all algorithms are
offered in sec. 4, including complexities.

The original method in sec. 3 uses the maximum likelihood estimator to find
a maximum likelihood fit of a mathematical model with the data set so that the
value of goodness of the fit function is minimal with the Levenberg-Marquardt’s
method is used. Since a linearization of the mathematical model is necessary, the
minimization is turned into an iterative process with a necessity to solve a set of
linear equations. A multiple-modulus arithmetic of the Residue Number System
is used to solve the set, as the solution may be sensitive to rounding errors.

All algorithms of the presented method are analyzed, and their scalable equiv-
alents are provided in sec. 4, including computational complexities. We start with
a parallel goodness of the fit evaluation, matrix partitioning and multiplication,
Jacobi’s matrix evaluation, and finish with a solution of a set of linear equa-
tions. All of the algorithms are scalable and their complexity given. At the end
we compare the original and parallel approach and find that the parallel system
scales well with the number of processors. The scalability got also verified with
a case study which results are presented in Fig. 2.

References

1. IEEE Computer Society Standards Committee.: IEEE Standard for Floating-Point
Arithmetic. ANSI/IEEE STD 754-2008. The Institute of Electrical and Electronics
Engineers, Inc. (2008)

2. Young, D.M., Gregory, R.T.: A Survey of Numerical Mathematics. Addison-Wesley
Series in Mathematics, vol. 2. Addison-Wesley Pub. Company, Inc. (1973)

3. Gregory, R.T., Krishnamurthy, E.V.: Methods and Application of Error-free Com-
putation. Springer (1984)

4. Lórencz, R., Reckleben, C., Hansen, K.: A Novel Extraction Method for BJT-
Parameters. J. Elec. E. 51, 21–29 (2000)

5. Cheng, Y., Hu, C.: MOSFET Modeling & BSIM3 User’s Guide. Kluwer Academic
Publishers (2002)

6. Slama, B.H., et al.: Relevant Parameters of SPICE3 MOSFET Model for EMC
Analysis. In: Proceedings of the IEEE International Symposium on Electromag-
netic Compatibility, Austin, Texas, USA, pp. 319–323 (September 2009)

7. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.
Learn. Res. 3, 1157–1182 (2003)

8. Zhou, Q., et al.: Parameter extraction for the PSP MOSFET model by the combina-
tion of genetic and Levenberg-Marquardt algorithms. In: Proceeding of the Interna-
tional IEEE Conference on Microelectronic Test Structures, pp. 137–142 (2009)

340 T. Zahradnický and R. Lórencz

9. Murakawa, M., et al.: Instruction tables: Lists of instruction latencies, throughputs
and micro-operation breakdowns for Intel and AMD CPU’s Towards Automatic
Parameter Extraction for Surface-Potential-Based MOSFET Models with the Ge-
netic Algorithm. In: Proceedings of the 2005 Asia South Pacific Design Automation
Conference (ASP-DAC 2005), vol. 1, pp. 204–207. IEEE, Shanghai (2005)

10. Antoun, G., El-Nozahi, M., Fikry, W., Abbas, H.: A hybrid genetic algorithm for
MOSFET parameter extraction. In: Proceeding of the IEEE Canadian Conference
on Electical and Computer Engineering, vol. 2, pp. 1111–1114 (2003)

11. Keser, M., Joardar, K.: Genetic Algorithm Based MOSFET Model Parameter Ex-
traction. Technical Proceedings of the 2000 International Conference on Modeling
and Simulation of Microsystems, pp. 341–344 (2000)

12. Li, Y., Cho, Y.Y.: Parallel genetic algorithm for SPICE model parameter extrac-
tion. In: 20th Intl. Symposium on Parallel and Distributed Processing (April 2006)

13. Abbasian, A., et al.: Modeling of MOS Transistors Based on Genetic Algorithm
and Simulated Annealing. In: Proceedings of the IEEE International Symposium
on Circuits and Systems, vol. 6, pp. 6218–6221 (May 2005)

14. Ruizhen, L., et al.: Model Parameters Extraction of SOI MOSFETs. In: Proceed-
ings of Intl. Workshop on Junction Technology, Shanghai, China, pp. 240–243 (Au-
gust 2006)

15. Picos, R., et al.: MOSFET Parameters Extraction Using Fuzzy Logic Techniques.
In: Proceedings of the 6th International Caribbean Conference on Devices, Circuits
and Systems, Playa del Carmen, Mexico, pp. 17–21 (April 2006)

16. Chopde, A., Khandelwal, S., Thakker, R., Patil, M., Anil, K.: Parameter extraction
for MOS model 11 using Particle Swarm Optimization. In: Proceedings of Inter-
national Workshop on Physics of Semiconductor Devices, pp. 253–256 (December
2007)

17. Thakker, R., Gandhi, N., Patil, M., Anil, K.: Parameter extraction for PSP MOS-
FET model using particle swarm optimization. In: Proceedings of International
Workshop on Physics of Semiconductor Devices, pp. 130–133 (December 2007)

18. Levenberg, K.: A Method for the Solution of Certain Problems in Least-Squares.
Quarterly Applied Mathematics 2, 164–168 (1944)

19. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parame-
ters. Journal of Applied Mathematics 11(2), 431–441 (1963)

20. Bryant, A.T., et al.: The Use of a Formal Optimisation Procedure in Automatic
Parameter Extraction of Power Semiconductor Devices. In: Proceedings of the 34th
Annual IEEE Power Electronics Specialists Conference, Acapulco, Mexico, vol. 2,
pp. 822–827 (July 2003)

21. Connor, A.M., Tilley, D.G.: A Tabu search for the optimization of fluid power
circuits. Journal of Systems and Control 212(5), 373–381 (1998)

22. Hestenes, M.R., et al.: Methods of Conjugate Gradients for Solving Linear Systems.
Journal of Research of the National Bureau of Standards 49(6), 409–436 (1952)

23. Zahradnický, T.: MOSFET Parameter Extraction Optimization. PhD thesis, De-
partment of Computer Science and Engineering, Faculty of Electrical Engineering,
The Czech Technical University in Prague (February 2010)

24. Press, W.H., et al.: Numerical Recipes in C, The Art of Scientific Computing, 2nd
edn. Cambridge University Press (1999)

25. Gregory, R.T.: Error-free computation: Why It Is Needed and Methods For Doing
It. Robert E. Krieger Publishing Company, Inc. (January 1980)

26. Morháč, M., Lórencz, R.: A modular system for solving linear equations exactly,
I. Architecture and numerical algorithms. Computers and Artificial Intelligence 11,
351–361 (1992)

Predictable Two-Level Bus Arbitration

for Heterogeneous Task Sets

Roman Bourgade, Christine Rochange, and Pascal Sainrat

IRIT - University of Toulouse, France
{bourgade,rochange,sainrat}@irit.fr

Abstract. In a multicore processor, arbitrating the shared resources so
as to ensure predictable latencies for hard real-time tasks is challenging.
In [1], we have introduced a two-level bus arbitration scheme that fits
the needs of heterogeneous task sets, when some tasks have a higher
demand to memory than others. In this paper, we show how this scheme
can be used to optimise the overall utilisation of the cores while enforcing
the schedulability of the whole task set. Our approach both configures
the bus arbiter and maps the tasks onto the cores. Experimental results
show that it reduces the global utilisation of the cores compared to the
traditional round-robin scheme.

Keywords: Real-time, multicore, bus arbitration, task mapping, task
scheduling.

1 Introduction

Multicore processors (CMP or chip multiprocessors) are becoming essential in
the design of constrained embedded systems due to their high performance and
efficiency in terms of power consumption, thermal dissipation, cost. This effi-
ciency is reached by sharing resources among the cores. For example, in a typ-
ical medium-scale multicore, the cores share a bus to the highest levels of the
memory hierarchy.

Resource sharing engenders conflicts between cores trying to accessing the
same resource simultaneously. A consequence is that the resource latency seen
by each core is higher than it would have been in a single-core processor. In real-
time systems, this can be acceptable if and only if a safe upper-bound of the
latency is known: this bound is required to determine the worst-case execution
times (WCETs) of critical tasks.

In this paper, we focus on shared buses. Several schemes have been studied
in the past to perform time-predictable bus arbitration, i.e. arbitration that
makes it possible to predict the worst-case bus latency seen by a core [2][3][4].
In a recent paper, we have introduced a two-level scheme that was specially
designed to support heterogeneous task sets, in which tasks exhibit various levels
of demands to the shared bus [1]. With this scheme, the cores undergo different
latencies, and the ones that see the shortest latencies should host the highest
demanding tasks. In this paper, we propose an approach to exploit such a scheme,

C. Hochberger et al. (Eds.): ARCS 2013, LNCS 7767, pp. 341–351, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

342 R. Bourgade, C. Rochange, and P. Sainrat

i.e. to select the best arbiter configuration and to map the tasks onto the cores,
so that the overall core utilisation is minimised.

We report a reduction of the global utilisation of up to 29.1% compared to a
solution with the traditional round-robin algorithm. In addition, we show that
our two-level bus arbiter combined to our mapping approach may allow mapping
a given task set on a smaller number of cores compared to round-robin.

The paper is organised as follows. Section 2 gives an overview of related work.
Our bus arbiter is described in Section 3 and the mapping approach is introduced
in Section 4. Section 5 reports experimental results. We conclude the paper in
Section 6.

2 Related Work

A real-time aware bus arbiter allows computing the worst-case latency for a
given core to be granted the bus. Several such schemes have been proposed in
the last years. In [2], a round-robin algorithm is considered. Each core is granted
the bus in turn, then the maximum delay it can undergo when requesting the
bus is a linear function of the total number of cores. The worst-case latency
is predictable and identical for all the cores. This approach fits homogeneous
workloads. However, for heterogeneous task sets, it may be desirable to fasten
the execution of high demanding tasks by granting them the bus more often than
less demanding tasks. For parallel applications with inter-task dependencies, it
may also be needed to accelerate the tasks on the critical path.

Time-Division Multiple Access (TDMA) policies allocate time slots for bus
access to the cores. The bus schedule is determined off-line [3][4]. However, it
may be hard to determine with enough accuracy whether an access to the bus
falls within a slot allocated to the hosting core or not, at WCET analysis time.
To predict latencies, the alignment of basic block time-stamps to the allocated
bus slots may be analyzed [5]. However, it makes the WCET analysis of one task
dependent on the bus scheduling and thus on the co-running tasks. We instead
aim at keeping the worst-case bus latencies for any task independent of the other
tasks. This simplifies the analysis and favours timing composition.

3 Time-Predictable Bus Arbitration

A round-robin bus arbiter generates the same worst-case latency for each core
in a shared-bus multicore: N × L, where N is the number of cores and L the
latency of the longest bus transaction. This latency, computed by considering
that each core is permanently requesting the bus, is generally overestimated
but safe. This may be acceptable when all the tasks exhibit homogeneous bus
demands. Otherwise, its impact might be negligible for low-demanding tasks but
disastrous for high-demanding tasks. For this reason, we have introduced a new
bus arbitration scheme that enforces different worst-case latencies for the cores:
some cores see a low latency and should host the most-demanding tasks, while
other cores undergo longer latencies and should run low-demanding tasks [1].

Predictable Two-Level Bus Arbitration for Heterogeneous Task Sets 343

Figure 1 gives an overview of our two-level arbiter. The cores are organised
into groups, and the L1 arbiter grants permission to one group. Then the L2
arbiter selects one core in this group. The worst-case latency to be considered
for the tasks running on a given core depends on: (a) the number of groups and
the L1 arbitration policy; and (b) the number of cores in each group and the L2
arbitration policy.

Fig. 1. Two-level bus arbiter

For the sake of simplicity, we consider a round-robin algorithm in level L2.
This means that the cores that belong to the same group see the same latency,
which can be computed as: Lc = nc × Lg, where nc is the number of cores in
the group and Lg is the worst-case delay for the group to be selected by the L1
arbiter.

We consider two possible policies for the L1 arbiter: (a) the round-robin al-
gorithm, and (b) an original scheme which we call Geometric Latencies. The
resulting two-level schemes are denoted GRR and GGL, respectively.

For GRR, the worst-case bus latency for a group is given by Lg = ng × L,
where ng is the number of groups. As a result, the worst-case latency seen by
one core is Lc = nc × ng × L.

The Geometric Latencies arbitration policy generates worst-case latencies
that follow a geometric series: group G0 sees a latency of 2 × L, group G1 a
latency of 4×L, group G2 a latency of 8×L, etc. The two last groups have the
same latency. In [1], we provide a formal specification of the scheme that also
describes its possible implementation in logic. The worst case latency of group
Gi (∀i < ng − 1) is given by Lgi = 2i+1×L, and Lg(ng−1)

= 2ng−1×L (see proof

in [6]).

344 R. Bourgade, C. Rochange, and P. Sainrat

With the GGL scheme, the latency to be considered for a task running on one
core in group Gi is then:⎧⎨⎩

Lc = nci × 2i+1 × L for 0 ≤ i < ng − 1

Lc = nci × 2ng−1 × L if i = ng − 1
(1)

where nci is the number of cores in group Gi.
To summarise, the worst-case latency seen by one core depends on the number

of cores in the same group in both schemes. In addition, it depends on the group’s
rank in GGL.

Configuring our two-level arbiter means mapping the cores to groups. The
arbiter configuration impacts the bus latency seen by each core, and then the
worst-case execution times of the tasks it runs. In next section, we introduce an
algorithm to select an arbiter configuration together with a mapping of tasks
to cores that both minimise the overall utilisation of cores while ensuring the
schedulability of the whole task set.

4 Task Mapping Optimisation

The problem addressed in this section breaks down into: (a) determining the
best configuration of our bus arbiter for a given task set; (b) finding out the best
mapping of tasks to cores considering this configuration. Both should be solved
simultaneously.

Algorithm 1. Computation of time/utilisation vectors

1 for n ← 1 to num cores do
2 Γn ← PossibleConfigurations(n);
3 Λn ← ∅;
4 foreach γ ∈ Γn do
5 Λn ← Λn ∪ PossibleLatencies(γ);
6 end
7 foreach task τ ∈ T do
8 foreach λ ∈ Λn do

9 tλτ ← WCET (τ, λ);

10 uλ
τ ← tλτ /Pτ ;

11 end

12 end

13 end

Predictable Two-Level Bus Arbitration for Heterogeneous Task Sets 345

4.1 Preliminary Computations

The WCET of a task, and thus its core utilisation, depends on the bus latency
seen by the core that hosts it, which in turn depends on the arbiter configura-
tion. Algorithm 1 computes the WCET and utilisation of each task, considering
each possible value of the bus latency (the possible values result from the vari-
ous possible arbiter configurations). These results are later used to analyse the
schedulability of the task set.

4.2 General Approach to Task Mapping

The problem of mapping tasks together with configuring the two-level arbiter
exhibits several degrees of liberty: L1 arbitration policy (GRR or GGL), number
of groups, number of cores, number of cores in each group, assignment of each
task to a core. Only schedulable solutions should be retained.

Our approach is shown inAlgorithm 2. To keep the problem resolution tractable,
the problem is split into several sub-problems. Each sub-problem consists in find-
ing out the best task mapping for a given arbiter configuration (line 5): our ap-
proach is explained in Section 4.3. If one solution is found, it is added to the set
of possible solutions (line 7). The set of possible configurations is exhaustively
scanned in the two outer loops (lines 2 and 4). As we will see, splitting the whole
problem into sub-problems allows using Integer Linear Programming (ILP) tech-
niques.

Algorithm 2. General approach to task mapping

1 M ← ∅;
2 for n ← 1 to num cores do
3 Γn ← PossibleConfigurations(n);
4 foreach γ ∈ Γn do
5 (schedulable,m) ← FindSolution(γ, T);
6 if (schedulable) then
7 M ← M∪ {γ,m};
8 end

9 end

10 end

4.3 Task Mapping for a Given Arbiter Configuration

Overview. Algorithm 3 describes the process of searching the best task map-
ping for a given arbiter configuration. We consider the aggregated utilisation of
the cores (i.e. the sum of the individual utilisations) as the primary criterion to
estimate the quality of a particular mapping. A lower global utilisation leaves
computing resources to run additional tasks.

346 R. Bourgade, C. Rochange, and P. Sainrat

Now, to be acceptable, a task mapping must also be globally schedulable.
In this paper, we consider a partitioned scheduling strategy. Then each subset
of tasks assigned to one core must be shown schedulable on this core. In the
following, we assume non-preemptive EDF scheduling and we use the related
schedulability test [7].

In Algorithm 3, a loop (line 5) iterates until a schedulable solution has been
found or no other task mapping exists. In each iteration, an integer linear pro-
gram is used to find a task mapping (line 6). If a solution is found, it is tested
for schedulability on each core (line 10). When a subset assigned to one core is
found schedulable, it is locked to this core (line 11). Otherwise, it is appended to
the black list and the task mapping is invalidated (lines 13-14). In the next iter-
ation, the integer linear program is enriched with information about the locked
and black-listed subsets to search for another task mapping. Locking task subsets
is a way to accelerate the mapping process, as we will see in Section 5.

Algorithm 3. Mapping of tasks for a given arbiter configuration
(FindSolution(γ, T))

1 foreach k ∈ [1..n] do
2 Bk ← ∅;Lk ← ∅;
3 end
4 mappable ← true; schedulable ← false;
5 while mappable && !schedulable do
6 (mappable,m) ← Map(n, T,B,L);
7 if mappable then
8 schedulable ← true;
9 foreach k ∈ [1..n] do

10 if IsSchedulable(mk) then
11 Lk ← mk;
12 else
13 Bk ← Bk ∪mk;
14 schedulable ← false;

15 end

16 end

17 end

18 end
19 return (schedulable,m);

Basic ILP Formulation of the Task Mapping Problem. The mapping
of a task set onto cores for a given arbiter configuration γ is described by the
following set:

{μτ,k|τ ∈ T, 0 ≤ k < n}

with: μτ,k =

{
1 if task τ is mapped to core k
0 otherwise

Predictable Two-Level Bus Arbitration for Heterogeneous Task Sets 347

Let λk,γ be the bus latency for core k considering configuration γ. The ILP
formulation is the following:

min : U =
∑n

k=0 Uk /* objective: minimising the global
utilisation */

∀k|0 ≤ k < n, Uk =
∑

τ∈T μτ,k.u
λk,γ
τ /* utilisation of one core is the sum of

the utilisations of the tasks it runs */
∀k|0 ≤ k < n, Uk ≤ 1 /* utilisation of one core cannot ex-

ceed 1*/

∀τ ∈ T,
∑n−1

k=0 μτ,k = 1 /* a task cannot be mapped on several
cores */

Additional Constraints for Locked Task Subsets and Black Lists. These
constraints are used to accelerate the search for a schedulable task mapping.
They avoid exploring new possible tasks subsets when one schedulable subset
has been found for a given core. In addition, they avoid considering subsets that
have already been shown unschedulable.

∀k|0 ≤ k < n, ∀τ ∈ Lk, μτ,k = 1 /* locked task τ is mapped onto
core k */

∀k|0 ≤ k < n, ∀τ /∈ Lk, μτ,k = 0 /* locked task τ is not mapped
onto core k */

∀k|0 ≤ k < n,
∑

τ∈Bk
μτ,k < |Bk| /* tasks in the blacklist for core

k cannot be mapped together on
core k */

5 Experimental Results

5.1 Methodology

In the following, we consider an 8-core architecture, with in-order 2-way su-
perscalar cores supporting the PowerPC ISA. Each core has a 2-Kbyte 2-way
associative level-1 instruction cache with 16-byte cache lines. We consider a per-
fect level-1 data cache 1.

We consider a 32-bit bus, with a bus latency of 1 cycle. The memory latency
is 5 cycles for the first word of a cache line and one additional cycle for each
subsequent word.

Our task set includes 32 tasks, that is four instances of each of the tasks
described in Table 1. They belong to the Mälardalen Benchmark Suite [8]
(nsischneu and statemate), the SPEC95 suite2 (compress) and the MiBench

1 This assumption is only due to the fact that our WCET analysis does not completely
handle data caches. We also have performed experiments considering no data cache,
which are not reported here for the sake of clarity, and we have found similar con-
clusions to the ones drawn with perfect caches.

2 www.spec.org

348 R. Bourgade, C. Rochange, and P. Sainrat

suite [9] (susan). These tasks have been selected because of their heterogeneous
demands to the bus. Figure 2 show the variability of the WCET for each of these
tasks as a function of the bus latency. The reference value is the WCET found
considering the 8-core round-robin scheme (that gives a 73-cycle latency). The
latency values are those observed in various configurations of our arbiter, as will
be shown later.

W
C

E
T

se
ns

iti
vi

ty
 (%

)

Fig. 2. Sensitivity of the tasks WCETs to the bus latency

For each task, considered as a real-time task, a period must be specified. In this
paper, we consider a uniform core utilisation among the tasks. The utilisation of
a task is computed as the ratio of its (worst-case) execution time to its period. To
choose its value, we have performed some experiments considering a round-robin
bus arbiter. We have observed that our task set is schedulable if the utilisation
of tasks is not higher than 0.21. Since the schemes we propose aim at performing
better than the round-robin algorithm, we have decided to use this value for the
rest of the experiments. Then, the period of each task (used to decide on the
task set schedulability) is computed as the ratio of its WCET to 0.21.

The worst-case execution times are analysed using our OTAWA/oRange
toolset [10][11]. It implements static analysis techniques to build a representa-
tion of the binary code of the application (a Control Flow Graph), to determine
flow facts (e.g. loop bounds), to derive the worst-case execution costs of basic
blocks, and to determine the global WCET with the IPET technique [12].

Predictable Two-Level Bus Arbitration for Heterogeneous Task Sets 349

Table 1. Benchmark tasks

Task name Function

nsischneu Simulation of an extended Petri net

statemate Automatically generated code (STARC tool)

compress Data compression

susan corners quick

Image processing (SUSAN)
susan edges small

susan principle

edge draw

corner draw

The algorithms presented in this paper are implemented in Perl and the inte-
ger linear programs are solved with the CPLEX tool3.

5.2 Results

Quantitative results for eight cores are provided in Table 2. For each configura-
tion, described by the number of cores in each group (limited to three groups),
it gives:

– the latency seen by any core in each group;
– the minimum global utilisation and the number of iterations needed to find

it (see Algorithm 3), for both schemes (GRR and GGL).

When several configurations enforce the same values for bus latencies, only one
of them has been considered. Doubles do not appear in the table, or with their
latencies italicised. Configurations for which no schedulable mapping could be
found are marked n.s.

Reference Value. The first configuration (all the eight cores in group G0)
enforces the same latency for each core; it is equivalent to the traditional round-
robin scheme. The corresponding minimum utilisation (6.72) will then be con-
sidered as our reference value.

Performance of the GRR and GGL Schemes. Our two-level schemes both
help in lowering the global utilisation of the cores compared to the round-robin
algorithm: GRR can reduce it by 25.1% and GGL by 29.1%. GGL configurations
that have a low number of cores in the highest priority group (G0) perform better
than GRR.

In addition, our schemes may be able to map and schedule the task set on a
smaller number of cores. For example, the task set considered in these experi-
ments cannot be scheduled on six or seven cores with the round-robin scheme.
But we can find schedulable mappings considering both GRR and GGL. They

3 www.ibm.com/software/integration/optimization/cplex-optimizer/

350 R. Bourgade, C. Rochange, and P. Sainrat

Table 2. Minimum utilisation obtained for all the possible configurations (8 cores)

Configuration GRR GGL

N0 N1 N2 Lc0 Lc1 Lc2 Umin #iter Lc0 Lc1 Lc0 Umin #iter

8 - - 73 - - 6.72 101 73 - - - -

1 7 - 19 127 - 5.30 28 19 127 - - -

2 6 - 37 127 - 5.86 9 37 127 - - -

3 5 - 55 91 - 6.15 13 55 91 - - -

1 1 6 28 28 163 5.03 18 19 27 217 4.76 62

1 2 5 28 55 136 5.30 75 19 73 181 4.86 7

1 3 4 28 82 109 5.46 5 19 109 145 5.05 32

2 1 5 55 28 136 - - 37 37 181 n.s.

2 2 4 55 55 109 6.15 10 37 73 145 5.61 111

3 1 4 82 28 109 - - 55 37 145 5.72 20

3 2 3 82 55 82 6.35 19 55 73 109 6.42 18

4 1 3 109 28 82 - - 73 37 109 5.95 28

5 1 2 136 28 55 - - 91 37 73 5.86 10

even exhibit slightly lower utilisations: 5.01 and 4.70, respectively, for seven
cores.

Finally, both GRR and GGL have solutions for this task set considering an
utilisation of up to 0.27 for each task. The global utilisation then reaches 6.8 for
eight cores. On the contrary, the task set cannot be mapped and scheduled with
the round-robin scheme if the individual task utilisation exceeds 0.21.

Impact of Locking Schedulable Task Subsets. In Algorithm3, we have
introduced task subsets locking as a way of making the computation faster: as
soon as the mapping algorithm finds a solution with some of the task subsets
being schedulable on their assigned core, these task subsets are locked on their
core. Subsequent iterations of the loop, that may be necessary if some subsets
are still not schedulable, consider the locked task subsets as a starting point
and focus on mapping the remaining tasks only. Our experiments have shown
that this drastically limits the number of needed iterations: without this feature,
as many as 7 290 iterations are needed for some configurations; the maximum
number of iterations with subsets locking is lowered down to 111.

6 Conclusion

Time-predictable resource sharing is a key feature that will allow using multicore
architectures for hard real-time systems. In this paper, we propose an approach

Predictable Two-Level Bus Arbitration for Heterogeneous Task Sets 351

to efficiently use a time-predictable bus arbiter which was introduced in a recent
paper [1]. This arbiter enforces different worst-case bus latencies for the differ-
ent cores in order to meet the requirements of heterogeneous workloads. The
approach presented here determines the best arbiter configuration and mapping
of the tasks to the cores. Experimental results show a reduction of the multicore
utilisation by more than 29% compared to a round-robin bus arbiter.

References

1. Bourgade, R., Rochange, C., Sainrat, P.: Predictable Bus Arbitration Schemes
for Heterogeneous Time-Critical Workloads Running on Multicore Processors. In:
Emerging Technologies and Factory Automation (ETFA). IEEE (September 2011)

2. Paolieri, M., Quiñones, E., Cazorla, F.J., Bernat, G., Valero, M.: Hardware sup-
port for wcet analysis of hard real-time multicore systems. In: Proc. 36th Annual
International Symposium on Computer Architecture, ISCA 2009, pp. 57–68 (2009)

3. Andrei, A., Eles, P., Peng, Z., Rosen, J.: Predictable implementation of real-time
applications on multiprocessor system-on-chip. In: International Conference on
VLSI Design, pp. 103–110 (2008)

4. Wandeler, E., Thiele, L.: Optimal tdma time slot and cycle length allocation for
hard real-time systems. In: Proceedings of the 2006 Asia and South Pacific Design
Automation Conference, pp. 479–484 (2006)

5. Chattopadhyay, S., Roychoudhury, A., Mitra, T.: Modeling shared cache and bus
in multi-cores for timing analysis. In: Proc. 13th Int’l Workshop on Software &
Compilers for Embedded Systems, SCOPES 2010, pp. 6:1–6:10 (2010)

6. Bourgade, R., Rochange, C., Sainrat, P.: Predictable bus arbitration schemes for
heterogeneous time-critical workloads running on multicore processors. Technical
Report 2011-19, IRIT (2011)

7. Jeffay, K., Stanat, D.F.: On non-preemptive scheduling of periodic and sporadic
tasks. In: Real-Time Systems Symposium (1991)

8. Gustafsson, J., Betts, A., Ermedahl, A., Lisper, B.: The Mälardalen WCET bench-
marks – past, present and future. In: Int’l Workshop on WCET Analysis (2010)

9. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,
R.B.: Mibench: A free, commercially representative embedded benchmark suite.
In: Int’l Workshop on Workload Characterization (2001)

10. Ballabriga, C., Cassé, H., Rochange, C., Sainrat, P.: Otawa: An open toolbox for
adaptive wcet analysis. In: IFIP WG 10.2 International Workshop on Software
Technologies for Embedded and Ubiquitous Systems (2010)

11. Michiel, M.D., Bonenfant, A., Cassé, H., Sainrat, P.: Static loop bound analysis of
c programs based on flow analysis and abstract interpretation. In: Int’l Conf. on
Embedded and Real-Time Computing Systems and Applications (2008)

12. Li, Y.T.S., Malik, S.: Performance analysis of embedded software using implicit
path enumeration. In: ACM/IEEE Design Automation Conf., pp. 456–461 (June
1995)

Author Index

Abellán, José L. 220
Acacio, Manuel E. 220
Akkary, Haitham 86
Alastruey-Benedé, Jesús 256
Anupama, B. 207

Backasch, Rico 183
Baniasadi, Amirali 134
Beckhoff, Christian 303
Berekovic, Mladen 13
Besenfelder, Ingo 171
Betting, Benjamin 122
Biglari-Abhari, Morteza 147
Bourgade, Roman 341
Brinkschulte, Uwe 122
Buchty, Rainer 13

Carmean, Doug 86
Chang, Yi-Hsin 195
Chung, Kwang-Sik 1
Ciobanu, Cătălin B. 317
Corbetta, Simone 50

Dall, Jørgen 74
Diemer, Jonas 13
Dominguez-Sal, David 110

Fernández, Juan 220
Ferrerón-Labari, Alexandra 256
Fornaciari, William 50

Gaona, Epifanio 220
Gaydadjiev, Georgi N. 317
Gil, Joon-Min 1

Hartmann, Jan 232
Hasholzner, Ralph 25
Hedrich, Lars 122
Herber, Christian 244
Herkersdorf, Andreas 244, 280
Heuveline, Vincent 171
Hlaváč, Josef 268
Hochberger, Christian 183

Ignatowski, Mike 62

Jamro, Ernest 292

Karl, Wolfgang 171
Karlsson, Sven 74
Kavi, Krishna 62
Khonsari, Ahmad 134
Koch, Dirk 303
Kusk, Anders 74

Larriba-Pey, Josep-Lluis 110
Lashgar, Ahmad 134
Li, Zhenmin 147
Lim, JongBeom 1
Lórencz, Róbert 268, 329

Maehle, Erik 232
Motruk, Boris 13
Mutyam, Madhu 207

Nadeem, Muhammad 147
Nowak, Fabian 171

Ort́ın-Obón, Marta 256

Park, HeeJong 147
Pietron, Marcin 292
Potter, Brandon 62
Prat-Pérez, Arnau 110

Rauchfuss, Holm 244
Richter, Andre 244
Rochange, Christine 341
Rosales, Rafael 25

Sainrat, Pascal 341
Salcic, Zoran 147, 159
Schleuniger, Pascal 74
Schmidtobreick, Mareike 171
Sharafeddine, Mageda 86
Sherman, Jared 62
Stechele, Walter 232
Strnadel, Josef 98
Suárez-Gracia, Daŕıo 256
Suh, TaeWeon 1

354 Author Index

Teich, Jürgen 25, 159
Torreson, Jim 303
Trancoso, Pedro 110
Tsao, Shiao-Li 195

Viñals-Yúfera, Vı́ctor 256
von Rosen, Julius 122

Wallentowitz, Stefan 280
Wang, Bo 25
Warrier, Tripti S. 207
Wiatr, Kazimierz 292

Wielgosz, Maciej 292
Wild, Thomas 280

Xu, Yang 25

Yu, Cheng-Kun 195
Yu, HeonChang 1

Zahradnický, Tomáš 329
Zbierski, Maciej 38
Ziermann, Tobias 159
Zurek, Dominik 292

	Title
	Preface
	Organization
	Table of Contents
	An Unstructured Termination Detection Algorithm Using Gossip in Cloud Computing Environments
	Introduction
	Model and Problem Specifications
	System Model
	Model and Problem Specifications
	Performance Metrics

	Unstructured Termination Detection Algorithm
	Basic Idea
	Details of Termination Detection Algorithm

	Experimental Evaluation
	Experimental Setup and Methodology
	PartialView Size and the Requisite Number of Cycles
	Impact on Node Joining
	Impact on Node Leaving
	Message Complexity

	Conclusion
	References

	Power Monitoring for Mixed-Criticality on a Many-Core Platform
	Introduction
	Background and Related Work
	Power Model and Analysis
	Architecture
	Power Monitoring and Control

	Evaluation
	Event Characterization
	Experiments

	Conclusion
	References

	On Confident Task-Accurate Performance Estimation
	Introduction
	Related Work
	Challenges of Confident TAPE

	Methodology
	Methodology Overview
	Behavior Modeling
	Architecture and Resource Modeling
	Performance Modeling
	Parallel MC Simulation

	Experimental Results
	Confident TAPE vs. Worst-Case TAPE
	Case Study

	Conclusions
	References

	Iwazaru: The Byzantine Sequencer
	Introduction
	System Model
	The Algorithm
	The Client
	The Main Protocol
	Recovery Protocol

	Cooperation with Execution Protocols
	The Modified Recovery Protocol

	Performance and Evaluation
	Related Work
	Conclusion
	References

	Exploiting Thermal Coupling Information in MPSoC Dynamic Thermal Management
	Introduction
	Motivation Example
	Novel Contributions

	Definition of a Thermal Status Metric
	Neighbor-Aware Thermal Status
	Proactive Thermal Status
	Coupling Coefficients Estimation

	Results
	The Impact of Thermal Coupling
	Thermal Coupling Coefficients
	Estimation Overhead

	Related Works
	Conclusions
	References

	A Multi-core Memory Organization for 3-D DRAM as Main Memory
	Introduction
	Memory Organization
	Virtual-Physical Address Translation

	Experimental Setup
	Results and Analysis
	Future Work
	Related Work
	Conclusion
	References

	Synthetic Aperture Radar Data Processing on an FPGA Multi-core System
	Introduction
	Synthetic Aperture Radar Application
	System Architecture
	Processing Element
	Network-on-Chip

	Hardware Organization
	Results
	Related Work
	Conclusions
	References

	Virtual Register Renaming
	Introduction
	Virtual Register Renaming Architecture
	VRR Instruction Processing Pipeline
	VRR Register File
	Creating and Committing Register Checkpoints
	Recovering from Mispredicted Branches
	Context Fusion

	Performance Results and Analysis
	Simulation Methodology
	Performance Analysis
	Power Analysis

	Related Work
	Conclusion
	References

	Load-Adaptive Monitor-Driven Hardware for Preventing Embedded Real-Time Systems from Overloads Caused by Excessive Interrupt Rates
	Introduction and Problem Formulation
	Research Background
	Interrupt Overload Problem Solutions

	Proposed Solution
	Architecture
	Monitoring Signals: Timing and Overheads
	Proposed HIL: Operation Principle
	Solution Properties and Implementation Overheads

	Conclusion
	References

	Producer-Consumer: The Programming Model for Future Many-Core Processors
	Introduction
	Many-Core Architecture
	Hardware
	Parallel Programming Paradigms For Many-Core Processors

	Scalable Programming Model: Producer-Consumer
	Efficient SCC Implementation
	Experimental Setup
	Experimental Results
	Task Assignment
	Internal Memory Size

	Related Work
	Conclusions and Future Work
	References

	A Highly Dependable Self-adaptive Mixed-Signal Multi-core System-on-Chip
	Introduction
	General SoC Architecture
	Artificial Hormone System for Task Assignment
	AHS and the Analog Domain
	Analog Artificial Hormone System
	Artificial Hormone System with Analog Components
	Mixed-signal SoC with Digital and Analog Cores

	Evaluation
	Related Work
	Conclusion and Future Work
	References

	Inter-warp Instruction Temporal Locality in Deep-Multithreaded GPUs
	Introduction
	Related Works
	Observation
	Background
	ITL
	Exploiting ITL

	Using ITL Case Study in GPUs: Filter Cache
	Experiments
	Methodology
	Experimental Results

	Conclusion
	References

	GALS-CMP: Chip-Multiprocessor for GALS Embedded Systems
	Introduction
	Related Works
	GALS-CMP Architecture
	GALS-CMP System
	Inter Clock-Domain Communication
	Base Core
	Memory Organization
	CD-Table
	Instruction Fetch

	GALS-CMP Compilation and Execution Flow
	JCF Invocation and Return

	Experimental Results
	Conclusion and Future Work
	References

	HW/SW Tradeoffs for Dynamic Message Scheduling in Controller Area Network (CAN)
	Introduction
	Dynamic Message Scheduling Using Offset Adaptation
	Problem Definition
	Dynamic Offset Adaptation Algorithm (DynOAA)

	HW/SW Exploration
	Design Alternatives for DynOAA
	Software Implementation
	Hardware Implementation
	HW/SW-Solution

	Results
	Conclusion
	References

	A Data-Driven Approach for Executing the CG Method on Reconfigurable High-Performance Systems
	Introduction
	Related Work
	A Preconditioned CG Method for FPGA Acceleration
	Designing a Data-Driven Architecture
	Data Buffer Set for Intermediate Storage and Streaming between Units
	Memory Access
	Vector Operation Units
	Stencil Computation Unit and RBSGS Preconditioner
	Scalar Units
	Microprogrammable Control Unit

	Implementing, Synthesizing, Placing and Routing the Design
	Evaluation
	Conclusions and Outlook
	References

	Custom Reconfigurable Architecture Based on Virtex 5 Lookup Tables
	Introduction
	Application Domain
	Implementation
	Full Hardware Implementation (Multiplexer)
	Partial Reconfiguration
	Custom Architecture
	Basic Elements.
	Reduction Stages.
	Permutation Stages.
	Resource Estimation.
	Configuration- & Download-Tool.
	Summary.

	Evaluation
	Conclusion
	References

	Profiling Energy Consumption of I/O Functions in Embedded Applications
	Introduction
	Related Work
	Profiling Energy Consumption of I/O Events
	Methodology
	Energy Profiling of a WLAN Interface
	Energy Profiling of a TFT-LCD

	Experimental Results
	Experimental Environment
	Experimental Results

	Conclusions
	References

	An Application-Aware Cache Replacement Policy for Last-Level Caches
	Introduction
	Related Work
	Motivation
	ACR: An Application-Aware Cache Replacement Policy
	Evaluation
	Conclusion
	References

	Deploying Hardware Locks to Improve Performance and Energy Efficiency of Hardware Transactional Memory
	Introduction and Motivation
	GCommit: Efficient Commits in HTM Systems
	STCC with Sequential Commit (STCC-SEQ)
	GLocks
	GCommit

	Evaluation Environment
	System Settings
	Workloads

	Results
	Execution Time Results
	Energy and Network Traffic Results

	Related Work
	Conclusions
	References

	Self-adaptation for Mobile Robot Algorithms Using Organic Computing Principles
	Introduction
	Methods
	The Organic Robot Control Architecture
	Visual SLAM as Demonstration Algorithm
	Learning Classifier Tables

	Implementation
	Visual SLAM Implementation
	Proposed Ruleset

	Preliminary Results
	Conclusion and Outlook
	References

	Self-virtualized CAN Controller for Multi-core Processors in Real-Time Applications
	Introduction
	Related Work
	Controller Area Network
	Concept for a Self-virtualized CAN Controller
	Architecture
	Real-Time Analysis
	Ideal CAN Nodes
	Self-virtualized CAN Controller

	Results
	Conclusion
	References

	Shrinking L1 Instruction Caches to Improve Energy–Delay in SMT Embedded Processors
	Introduction
	Instruction Light Power NUCA
	LP-NUCA Overview
	Instruction-Driven Tree-Based Transport Network

	Methodology
	Processor Model and Simulation Environment
	Workloads
	Metrics

	Evaluation
	Impact of the Tree-Based Transport Network
	Instruction Cache Energy/Performance Trade-Offs
	Evaluating iLP-NUCA with a Non-ideal Data Cache Hierarchy

	Related Work
	Conclusions
	References

	Arithmetic Unit for Computations in GF(p) with the Left-Shifting Multiplicative Inverse Algorithm
	Introduction
	Algorithms
	Multiplicative Inverse
	Multiplication
	Addition and Subtraction

	Hardware Architecture
	Multiplicative Inverse
	Multiplication
	Addition and Subtraction

	Results and Discussion
	Implementation
	Comparison with Other Approaches
	Applications

	Conclusion
	References

	HW-OSQM: Reducing the Impact of Event Signaling by Hardware-Based Operating System Queue Manipulation
	Introduction
	Related Work
	Problem Analysis
	Performance Metric and Parameters
	Analysis

	Operating System Queue Manipulation
	HW-OSQM Operation
	HW-OSQM Variations
	Implementation

	Results
	Resource Utilization
	Performance Impact

	Conclusion and Outlook
	References

	Comparison of GPU and FPGA Implementation of SVM Algorithm for Fast Image Segmentation
	Introduction
	SVM Classifiers
	A Choice of a Hardware Platform
	FPGA
	GPU

	System Overview
	The Classification Algorithm
	Architecture of the Hardware Module in FPGA
	Architecture of the Implementation in GPU

	Implementation Results
	Summary
	References

	Automatic Floorplanning and Interface Synthesis of Island Style Reconfigurable Systems with GOAHEAD
	Introduction
	Related Work
	Paper Contribution

	Specifying an Island Style Reconfigurable System
	Automatic Floorplanning of the Reconfigurable Area
	Horizontal Placement of Reconfigurable Regions

	Interface Floorplanning
	Assigning a Cardinal Direction
	Allocating Configurable Logic Blocks
	Binding Signals to Allocated Configurable Logic Blocks
	Floorplanning Multiple Reconfigurable Areas

	Case Study and Evaluation
	Conclusion
	References

	Separable 2D Convolution with Polymorphic Register Files
	Introduction
	Background and Related Work
	Experimental Setup
	Separable 2D Convolution
	Vectorizing the 2D Convolution
	Conflict Free Transposition
	Our Implementation

	Experimental Results
	Conclusions and Future Work
	References

	Architecture of a Parallel MOSFET Parameter Extraction System
	Introduction
	Related Work
	The Original Method
	Residue Number System Arithmetic
	Solving Sets of Linear Equations in Residue Arithmetic

	The Parallel Method
	Parallel Goodness of the Fit Evaluation
	Parallel Jacobi’s Matrix Evaluation
	Parallel Matrix Multiplication
	Solving Sets of Linear Equations in Parallel
	Summary

	Conclusions
	References

	Predictable Two-Level Bus Arbitration for Heterogeneous Task Sets
	Introduction
	Related Work
	Time-Predictable Bus Arbitration
	Task Mapping Optimisation
	Preliminary Computations
	General Approach to Task Mapping
	Task Mapping for a Given Arbiter Configuration
	Overview.
	Basic ILP Formulation of the Task Mapping Problem.
	Additional Constraints for Locked Task Subsets and Black Lists.

	Experimental Results
	Methodology
	Results
	Reference Value.
	Performance of the GRR and GGL Schemes.
	Impact of Locking Schedulable Task Subsets.

	Conclusion
	References

	Author Index

