
Chapter 4

Online Loop Detection

This chapter proposes a novel loop closure detection framework for visual
based navigation and mapping. The proposed approach eliminates the train-
ing stage and reduces the user interaction process while increasing both the
accuracy and robustness of the loop closure detection.

4.1 Introduction

Vision-based navigation is essentially a dead reckoning process. During navi-
gation and map building, vision systems estimate the camera pose relative to
either previous poses or an environment map, while they build the map from
observations relative to camera poses. All estimations are prone to aliasing,
noise, image distortions and numerical errors (see Section 1.3), leading to
inaccuracies in both pose and map inferences. While generally small, these
inaccuracies build up in time, leading to significant errors over large camera
trajectories.

These errors can be reduced by taking advantage of the additional informa-
tion resulting from cross-overs. Cross-overs (or loop-closures) are situations
when a camera revisits a region of the scene during a visual survey. If cor-
rectly detected, these situations can be exploited in order to establish new
constraints, allowing both camera pose and map errors to be decreased (see
Figure 4.1), either using offline approaches such as BA [19, 102, 108, 154, 172]
or online approaches employing gaussian filters such as the popular Kalman
Filter [18, 41, 52, 145] or non-parametric methods such as those using particle
filters [99, 112], etc. In this context, the main open issue is the correct and
efficient detection of loop closures.

Loop closure detection is an inherently complex problem due to the amount
of data that needs to be analysed. As typical image feature extractors yield
thousands of features per image, after just a few hundred frames, the resulting
map contains tens to hundreds of thousands of features. A brute force loop
closure detection, where the current visual observations are compared to the
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Fig. 4.1 Loop closure detection. As the the camera moves, there is an increasing
uncertainty related to both the camera pose and the environment map. At instant
tk, the camera revisits a region of the scene previously visited at instant ti. If the
visual observations between instants tk and ti can be associated, the resulting in-
formation can be used not only to reduce the pose and map uncertainties at instant
tk, but it also can be propagated, reducing the uncertainties at prior instants.

entire map, would be much too computationally expensive, especially for
online applications.

As an alternative, the complexity of the loop closure problem can be re-
duced by narrowing the search to the vicinity of the current camera pose.
This is a widely used approach, mainly in the Simultaneous Localization and
Mapping (SLAM) community, where the vision system is modeled as a sensor
with a known uncertainty. During navigation, an uncertainty is associated to
each vehicle pose and the loop closures are detected by matching current
observations with the region of the map corresponding to the current uncer-
tainty space [31, 32, 76, 136]. However, an accurate estimation of the vehicle
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uncertainty is a complex problem and is generally affected by linearization
approximations. To counterbalance this shortcoming, assuring the detection
of the cross-over, current observations may be compared with a region of the
map corresponding to a higher covariance than the estimated one [80, 106].
Doing so becomes computationally expensive, especially over large trajectory
loops, where the covariance of the camera is high. Moreover, the noise model
used for covariance estimation does not account for inaccuracies resulting
from obstruction, temporary motion blur, sensor failures, etc. These situa-
tions lead to poor vehicle pose estimation, not reflected in the uncertainty
estimation, in which case the loop closure may not be detected.

In [56, 176, 183], the authors propose a loop-closing detection method that
computes the visual similarity using features. During navigation, they extract
key points from each image (e.g. SIFT [96]). These features are matched
among images and the visual similarity is proportional to the number of suc-
cessfully matched features. Generally, such methods are sensitive to occlu-
sions while being computationally expensive, limiting their application over
large navigation trajectories.

A more robust and computationally efficient alternative is to represent en-
tire images as observations rather than individual image features. In this
context, cross-overs are detected on the basis of image similarity, drasti-
cally decreasing the amount of data that needs to be processed. The reduced
computational cost related to such approaches enable brute force cross-over
detection, even for large camera trajectories. This allows correct detection
of trajectory loops, independent of camera pose and covariance estimation
accuracy.

Initial proposals on image similarity cross-over detection use image repre-
sentations based on a single global descriptor, embodying visual content such
as color or texture[13, 86, 88, 143, 170]. Such global descriptors are sensitive
to camera view-point and illumination changes, decreasing the robustness of
the cross-over detection.

The emergence of modern feature extractors and descriptors (see Section
2.1.3) has led to the development of new appearance-based cross-over de-
tection techniques that represent visual content in terms of local image de-
scriptors [1, 2, 25, 26, 177]. Inspired from advances in the fields of object
recognition and content-based image retrieval [133, 162, 185], recent exam-
ples of such approaches describe images using BoW (see Figure 4.2). BoW
image representation employs two stages: (i) in the training stage, sets of
visual features are grouped or clustered together to generate visual vocabu-
laries - collections of generalized visual features or visual words ; (ii) in the
second stage, the images are represented as histograms of visual word occur-
rences. While discarding the geometric information in images, BoW proved
to be very robust methods for detecting visual similarities between images,
allowing efficient cross-over detection even in presence of illumination and
camera perspective changes, partial occlusions, etc.
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Fig. 4.2 BoW image representation. Images are represented by histograms of
generalized visual features.

Initially, BoW techniques have been developed for object recognition and
content-based image retrieval applications. Such methods use a training set
of images from which the visual vocabularies are built, mostly using k-means
clustering [21, 162, 163], where the user is required to specify the number of
visual words in the vocabulary (for a detailed comparison of different cluster-
ing strategies, please refer to [11]). Alternatively, other works have proposed
the use of hierarchical k-means or approximated k-means, increasing the ef-
ficiency of the vocabulary building process for large training data sets [137],
[131].

In [156] Schlinder et al. propose the use of kd-trees to build a visual vo-
cabulary as proposed by Nister and Stewenius in [131]. The vocabulary is
then used for SLAM at the level of a city with good results. Galvez et al.
[45] propose the use of a vocabulary based on binary features for fast image
matching.

Konolige et al. [84] propose a two stage method in which visual vocabu-
laries are first used to extract candidate views followed by a feature-based
matching.

The main shortcoming of the above-mentioned methods is the use of a
static vocabulary: the vocabulary is built a priori and remains constant
during the recognition stage, failing to accurately model objects or scenes
not present during training [182]. This shortcoming is particularly critical in
the case of mapping and navigation, where a robot should be able to suc-
cessfully detect loop-closure situations in uncontrolled environments. As a
consequence, a series of authors in the SLAM community have proposed al-
ternatives to address this problem. Notably, Filliat [37] and Angeli et al. [1, 2],
assume an initial vocabulary which is gradually incremented with new image
features in an agglomerative fashion, using a user-defined distance thresh-
old as the merging criterion. Alternatively, Cummins et al. [25–27] and later
Paul et al. [135] and Glover et al. [55] propose a large scale loop detection
probabilistic framework based on BoW. They show good results employing
k-means based static vocabularies built from large sets of visual information,
not necessarily acquired in the same areas where the robot navigation takes
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place. As an alternative, Zhang [183] proposes a workaround to the off-line
vocabulary building stage by describing images directly using visual features,
instead of vector-quantized representation of BoW. Here, the complexity of
raw feature matching for loop-closure detection is partially reduced by means
of a feature selection method that reduces the number of features extracted
from images.

We propose a novel method for building Online Visual Vocabulary (OVV)
[127]. The proposed approach is aimed at increasing the efficiency and accu-
racy of loop-detection in the context of on-line robot navigation and mapping.
It requires no user intervention and no a priori information about the envi-
ronment. OVV creates a reduced vocabulary as soon as visual information
becomes available during the robot survey. As the robot moves, the vocabu-
lary is constantly updated in order to correctly model the visual information
present in the scene.

Current state-of-the-art clustering methods such as k-means, k-medians or
agglomerative use local cluster relationships as basis for the merging criterion,
resulting in a high probability for these algorithms to get stuck in a local
minima. In contrast, we propose a new clustering criterion which takes into
account the entire distribution of the clusters, increasing the efficiency of the
resulting vocabularies. Also, we present a novel method for feature-cluster
association and image indexing, suited for incremental vocabularies.

The remaining of the chapter is structured as follows: the following section
proposes a novel vocabulary building method, followed by a proposal of a new
image indexed method. The OVV process is then validated through a series of
experimental results, including a 18.5-km trajectory dataset, along with the
application of OVV on large-scale 3D reconstruction and mapping for land
and underwater environments. The chapter concludes with some remarks and
proposal for further work.

4.2 Visual Vocabulary

State of the art visual vocabulary-based loop-closure algorithms assume an
initial training stage. This stage involves pre-acquiring visual features, which
are then used to build the visual vocabulary by means of some clustering
method. Typical vocabulary building methods use k-means, k-medians or
fixed-radius clustering algorithms, which require the user to set various pa-
rameters such as the number of clusters in the vocabulary, or some distance
threshold. Finding the adequate parameters for an optimum vocabulary is a
tedious task which generally involves a trial and error approach. For instance,
a vocabulary with too many words would not have enough abstraction power
to detect similarities between images. In contrast, a vocabulary with too few
words would be too confusing and generalized to be discriminative.

In this chapter we propose a novel incremental visual vocabulary building
technique that is both scalable (thus suitable for online applications) and
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automatic (see Figure 4.3). In order to achieve this goal, we use a modi-
fied version of agglomerative clustering. Agglomerative clustering algorithms
begin with each element as a separate cluster – called hereafter elementary
clusters – and merge them using some similarity measurement into succes-
sively larger clusters until some criterion is met (e.g. minimum number of
clusters, maximum cluster radius, etc.).

Vocabulary update

I ..I
mp+1 m(p+1)

Cluster merging

Image indexing

I ..I
mp+1 m(p+1)

Image re-indexing

I ..I
1 mp

Image features

Fig. 4.3 Flowchart of OVV and image indexing. Every m frames, the vo-
cabulary is updated with new visual features extracted from the last m frames.
The complete set of features in the vocabulary is then merged until convergence.
The obtained vocabulary is used to index the last m images. Also, the previously
indexed frames are re-indexed, to reflect the changes in the vocabulary.

4.2.1 Vocabulary Building

In our proposal, elementary clusters are generated from visual tracking of
scene points, with each elementary cluster corresponding to one feature track.
The feature tracks are generated by gathering multiple observations of the
same scene point, as the camera moves [126, 129]. While not required by
OVV, this step allows us to pre–select the number of visual features used in
building the vocabulary, decreasing the computational costs.

The visual vocabulary is built by incrementally merging these clusters.
The building process can be summarized in two steps (see Figure 4.3):
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• Vocabulary initialization step. The vocabulary is initialized with the
elementary clusters corresponding to the firstm images. Clusters are grad-
ually merged until convergence is achieved (the merging criterion is dis-
cussed in detail in Section 4.2.4).

• Vocabulary update step. As the robot moves, more visual information
of the scene becomes available, which needs to be contained in the vocabu-
lary. Therefore, from every block ofm images, new elementary clusters are
extracted. These clusters are added to the vocabulary and the complete
set of clusters is gradually merged until convergence. This step is repeated
for each block of m new images.

4.2.2 Cluster Characterization

Each cluster in the vocabulary is defined by its position in the t-dimensional
feature space and its size (radius). This provides complete information about
both the cluster distribution and the interaction between clusters. As previ-
ously shown, all the input information (for both initialization and update)
comes from elementary clusters, such that all the other clusters in the vocab-
ulary are formed by merging these clusters. As the elementary clusters are
generated from feature tracking that provide multiple (noisy) observations of
a scene point, we define them through:

Ck =

n∑
i=1

f i
k

n

Rk =

n∑
i=1

(f i
k − Ck)(f

i
k − Ck)

T

n− 1

where Ck is the cluster centroid given by the mean of feature vectors corre-
sponding to scene point k in image i and Rk is the covariance matrix of the
observations of point k.

4.2.3 Cluster Updating

Each cluster merging involves the joining of two clusters (see Figure 4.4).
The parameters of the newly generated cluster are obtained directly from
the merged clusters, without the need of recomputing them from the original
data. This saves both computational time and memory, especially in the case
of large clusters. The position and size of the new cluster are given by [82]:
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Fig. 4.4 Iterative visual vocabularies. In the initialization step (bottom part)
the vocabulary is populated with elementary clusters (marked in gray), extracted
from the first m images. These clusters are merged until convergence. The final
clusters of the initialization step are marked in black. In the update step (top
part), new elementary clusters obtained from blocks of m images are added to the
vocabulary. The complete set of clusters are then merged until convergence.

Cab =
naCa + nbCb

na + nb

Rab =
na − 1

na + nb − 1
Ra +

nb − 1

na + nb − 1
Rb

+
nb · na

(na + nb)(na + nb − 1)

· [(Ca − Cb)(Ca − Cb)
T]

where Ca and Cb are the centroids of the merging clusters, having na and nb

elements, respectively.

4.2.4 Cluster Merging Criterion

Generally, clustering algorithms use some similarity measurement to decide
which data should be grouped into clusters. Similarity measurements are
often represented by distances in the t-dimensional data space, including:
Euclidean distance, Manhattan distance [85], Chebyshev norm [63], Maha-
lanobis distance [103], vector angle, etc. These clustering criteria analyze



4.2 Visual Vocabulary 95

the data only locally and can be suboptimal, especially in high-dimensional,
cluttered spaces such as those used for visual feature representation.

We propose a novel clustering method that takes into account the global
distribution of data, increasing both the distance between clusters and their
compactness. This is crucial, as the efficiency of visual vocabularies is deter-
mined by two properties: (i) repetitiveness : similar image features should be
associated to the same cluster and (ii) discriminative power : dissimilar image
features have to be associated to different clusters.

The proposed method, based on Fisher’s linear discriminant [39] [107],
clusters the data in order to maximize the following objective function:

Q =
tr(SB)

tr(SW )

where tr() is the trace operator, SB represents the between clusters scat-
ter matrix and SW represents the within clusters scatter matrix, which are
defined, respectively, by:

SB =
1

N

N∑
k=1

nk(C − Ck)(C − Ck)
T

SW =
1

N

N∑
k=1

nkRk

where C is the global centroid of the data, N represents the total number of
data elements and nk is the number of data elements contained in cluster k.

Practically, the merging takes place in two steps:

1. For each cluster, we search for merging candidates in its neighborhood (in
the Euclidean sense), using a k-dimensional tree (kd-tree) approach [4].

2. For each possible merging pair of clusters, we compute the objective func-
tion Q′ that would be obtained if the two clusters were merged. If there
is an increase in the value of the objective function, then the two clusters
are merged and Sb, Sw are updated accordingly1.

Each merging step changes the distribution of data in the vocabulary, re-
quiring the re-computation of both SB and SW . As a direct re-computation
would be very costly, we propose an incremental update scheme:

1 In practice, we first compute the gain in Q for each possible merging pair, creating
a list from the highest to the lowest gain. The clusters are merged following the
order in the list, making the merging step independent of the order in which the
clusters are analyzed.
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S′
B = SB +

na + nb

N
(C − Cab)(C − Cab)

T

− na

N
(C − Ca)(C − Ca)

T

− nb

N
(C − Cb)(C − Cb)

T

S′
W = SW +

na + nb

N
(Rab)

− na

N
(Ra)− nb

N
(Rb)

where S′
B and S′

W are the updates of SB and SW , respectively; Cab and Rab

are the centroid and covariance matrix of the merged cluster.

4.2.5 Convergence Criterion

The two steps shown in Section 4.2.4 are repeated, gradually merging clus-
ters, until no more merges are possible (that would increase the value of
the objective function Q). In this way, the repetitiveness and discriminative
power of the resulting vocabulary are maximized. Moreover, using a natural
convergence criterion, the process eliminates the need of user-set parame-
ters such as cluster radius or number of clusters, specific to other vocabulary
building algorithms.

4.2.6 Adding New Clusters

During the vocabulary update step, new elementary clusters are added, con-
taining new visual features. For each newly added elementary cluster ζe, SB

and SW have to be updated accordingly. Similar to the merging step, we avoid
recalculating the scatter matrices by proposing a novel update method.

The update of SW simply involves the covariance matrix Re of ζe, weighted
by its number of elements ne:

S′
W =

NSW +Re

N + ne

in the case of elementary clusters, ne corresponds to the number of frames in
which a given image feature has been tracked.

Adding any new cluster in the vocabulary affects the global data centroid
C. The new centroid C′ is incrementally obtained from:

C′ =
CN + Cene

N + ne
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Taking into account the changes in the centroid C, SB is updated using:

S′
B =

N

N + ne
(SB + δTCδC − V TδC − δTCV )

− ne

N + ne
(Ce − C′)T(Ce − C′)

where δC = C′−C, V is the weighted sum of differences between each newly
added cluster centroid and global data centroid. V is obtained incrementally
by using:

V ′ =
NV +NδC + ne(Ce − C′)

N + ne

4.2.7 Linear Discriminant Analysis

Using the cluster information contained in the visual vocabulary, we aim
to find a data transformation that would maximize cluster separability and
would allow us to reduce the dimensionality of the data, thus increasing the
speed of both vocabulary building and image indexing. For this, we consider
maximizing the following Linear Discriminant Analysis (LDA) objective func-
tion [39][107][29]:

J(w) =
wTSBw

wTSWw

where w is a vector determining the maximum cluster separability direction.
Formulating the maximization of J(w) as a generalized eigenvalue problem,
we obtain a data transformation G from the eigenvectors corresponding to
w. By selecting m columns of G corresponding to the highest values of w, we
reduce the dimensionality of the data to s dimensions.

4.2.8 Vocabulary Update Criterion

In Section 4.2.1, for simplicity of explanation, we stated that the vocabulary
is updated each m images. In practice, the vocabulary is updated adaptively,
rather than at fixed intervals, so that it constantly represents an accurate
model of the visual content in images.

During image indexing, features are associated with clusters in the vocab-
ulary. For each association of a feature fl with a cluster ζk we check if the
feature falls within the cluster, using:

|fl − Ck| ≤ 3σk

where σk is the standard deviation of cluster ζk. In Eq. 4.2.8, the absolute
value | · | and the comparison are to be understood componentwise, i.e. only
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if the condition is met for all the dimensions, we consider that the feature
falls within the cluster.

At each vocabulary update step, we index images until the percentage of
features falling within the radius of their associated clusters drops below 90%.
At this point, we update the vocabulary.

4.3 Image Indexing

Inspired from text document indexing [89], BoW techniques use visual vo-
cabularies to represent the images by associating the features present in each
of the images with the visual words in the vocabulary [24, 133, 185]. The
result is a histogram representing the number of occurrences of each visual
word in the image. The similarity between images is calculated by comparing
these histograms.

When detecting loop-closures, it is paramount that image features are
correctly associated with clusters, even in presence of illumination and per-
spective changes. We partially achieve this by maximizing the repetitiveness
and discriminative power of the vocabulary (see Section 4.2.4). However, in
the context of the online vocabulary, we need to define a third property:
stability. As the vocabulary is constantly updated, the aim is to ensure that
similar features are associated with the same clusters at different stages of the
vocabulary update. We achieve this property through a novel feature-cluster
association technique, as described below.

4.3.1 Cluster Association

The association between features and visual words is performed by comparing
each feature with all the clusters in the vocabulary. The feature is then associ-
ated with the most similar cluster. Most image indexing techniques calculate
the similarity between features and clusters using distances in the feature
space (see Section 4.2.4). This approach is suitable for image indexing in the
case of static vocabularies that are calculated before the image indexing and
do not change throughout it [162].

Since we use an online approach for vocabulary building, such a feature
association method would not be stable. In Figure 4.5a, feature f is associated
with the closest cluster ζb. After the vocabulary is updated, clusters ζa and ζc
are merged, yielding a new cluster ζac (Figure 4.5b). As the feature f is now
closer to the centroid of the new cluster ζac, it would be associated to it. In
this case, feature f would be associated with different clusters before and after
the vocabulary update. As a consequence, an image Ik containing feature f ,
indexed at different vocabulary stages would have different representations.
The amount of occurrences of such situations increase with each vocabulary
update, ultimately leading to inconsistent image indexing.
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Fig. 4.5 Feature-cluster association. In (a) the feature f is associated with
cluster ζb, using feature-to-cluster centroid distance. After the vocabulary update,
clusters ζa and ζc are merged. The centroid of the newly obtained cluster ζac is now
closer to f . Using a classical approach, feature f would be associated with ζac (b).
Using hierarchical trees, feature f is correctly associated with cluster ζb (c).

Alternatively, the proposed feature-cluster association technique uses a
tree-based approach. The trees are formed during the vocabulary building
process. The nodes of the trees represent the clusters while the branches
define the cluster hierarchy. The roots of the trees correspond to the visual
words while the leafs of the trees correspond to the elementary clusters (see
Figure 4.4).

During the feature-cluster association, the trees are visited top-down, cal-
culating the similarity (Euclidean distance) between each feature and the tree
nodes (see Figure 4.5c). In order to speed up the association process, we visit
only those trees corresponding to visual words in the vicinity of the feature.
For this, we calculate the distance between the feature and the visual words
and select the trees where:

D(f, ζk) ≤ τDm
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with D(f, ζk) being the distance between feature f and ζk; Dm is the min-
imum distance between the feature f and the visual words and τ is a user-
defined constant2 (τ ≥ 1).

The selected trees are visited in parallel (see Figure 4.6). For efficiency pur-
poses, we use the same stopping criterion shown in Eq. 4.3.1, hence avoiding
visiting branches that contain nodes that are not close to f . The feature is
finally associated to the visual word corresponding to the most similar leaf.

Fig. 4.6 Top-down feature-cluster association. The trees are visited by com-
paring each node with the feature. If a node is too dissimilar to the feature (marked
in light grey), the rest of the tree corresponding to the node is not visited. The fea-
ture is associated with ζa due to the highest similarity between f and the leaf
marked in black.

4.3.2 Image Re-indexing

It should be taken into account that during the update process, the configura-
tion of the vocabulary changes. Consequently, the similarity between images
indexed at different update stages cannot be computed. Also, indexing the
images after each vocabulary update is not a viable solution due to its large
computational cost.

We propose a novel solution to this shortcoming by defining a transforma-
tion pΓp−1 that embodies the changes in the vocabulary during the update
stage. This transformation allows a fast re-indexing of the images (hence
eliminating the need of repeated image indexing):

W̃ p
I =p Γp−1W

p−1
I

2 User parameter τ provides a balance between computational efficiency and accu-
racy of the image indexing. As shown in Section 4.4, optimum results are obtained
using a typical value of τ = 1.4, which is not data dependent.
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where W p−1
I is the indexing of image I at vocabulary update stage p − 1

and W̃ p
I is an approximation of the image indexing I at vocabulary update

stage p.
During update, the visual vocabulary undergoes the following changes:

1. Adding of elementary clusters. If these new clusters are not absorbed into
already existing clusters, they contain new visual information. In this case,
it is very unlikely that any feature from any image before the update would
have been associated to them. Therefore, the bins W̃ k

I are initialized to 0.
2. Cluster merging. In the case that two (or more) clusters merge, any feature

previously associated with these clusters would be associated to the newly
formed cluster. In this case, the number of occurrences associated with the
new cluster is the sum of occurrences of the merging clusters.

To reflect these changes, pΓp−1 has to initialize the histogram elements cor-
responding to newly added clusters and sum the elements corresponding to
merging clusters. For a better understanding, let us consider the following ex-
ample: at stage p−1 the indexing of image I yields [w1 w2 w3]

T corresponding
to the visual vocabulary containing (ζ1, ζ2, ζ3); during the vocabulary up-
date, clusters ζ1, ζ2 merge into ζ12 and a new cluster ζ4 is added. In this case,
the transformation pΓp−1 becomes:

⎡
⎣
w12

w3

w4

⎤
⎦ =

⎡
⎣
1 1 0
0 0 1
0 0 0

⎤
⎦
⎡
⎣
w1

w2

w3

⎤
⎦

4.3.3 Image Similarity

The visual resemblance between images is quantified by measuring the sim-
ilarity of their corresponding histograms of visual words. As the histograms
are represented by vectors containing the occurrences of the visual words, we
calculate their similarity using the normalized scalar product (cosine of the
angle between vectors) [162]:

srq =
WT

r Wq

‖Wr‖2 · ‖Wq‖2
where srq is the similarity score between images Ir and Iq,Wr andWq are the

histograms of visual words corresponding to the images; ‖W‖2 =
√
WTW is

the L2 norm of vector W .
In Eq. 4.3.3, the similarity score is highly influenced by histogram elements

corresponding to visual words with high occurrence. Generally, these frequent
words represent visual features commonly found in the images, thus having
low discriminative power. In order to counterbalance this shortcoming, the
elements of the histograms are weighted using the term frequency-inverse
document frequency approach proposed in [5]:



102 4 Online Loop Detection

wk =
nki

oi
log

mp

Ok

where nki is the number of occurrences of word k in image Ii, oi is the total
number of words in Ii, Ok is the total number of images containing word k
and mp is the total number of indexed images.

4.3.4 Loop-Closure Detection

Increased values of srq between the current image and any previous one in-
dicate a high probability of the two images representing the same scene re-
gion (i.e. loop-closing). This information can be used for both introducing
new constraints in the mapping model and reducing the navigation-related
uncertainties.

4.3.5 Increasing Vocabulary Efficiency

During online navigation and mapping, new image features are extracted
and added to the visual vocabulary. Over long image sequences this could
result in complex vocabulary structure that decreases the efficiency of OVV
in terms of computational times. This effect is partially reduced by using ANN
techniques [4] on both vocabulary building and image indexing, however we
further improve the computational efficiency of OVV by pruning branches
corresponding to nodes that provide little information, using the following
criterion:

tr(Ri
k) < p · tr(Rk)

where Ri
k is the radius of node i in cluster ζk and p is a user-defined scalar

value. In our experiments, we have found that using a value p = 0.1 provides
a good balance between computational efficiency and accuracy of OVV.

4.4 Experimental Results

This section discusses a series of experiments designed to evaluate the effi-
ciency and accuracy of the two contributions of presented in this chapter:
(i) incremental building of the vocabulary and (ii) image indexing based on
hierarchical trees. The efficiency and accuracy of the online visual vocabulary
algorithm is tested using a data association and a comparison with ground
truth. In practice, the OVV process was implemented on top of DPR-SfM,
which provides extraction and tracking of the image features used by OVV.

In the first part, we assess the influence of LDA dimension reduction s and
relative threshold τ (see eq. 4.3.1) on the accuracy and computational times
of OVV. The two parameters are user-set and provide a tradeoff between
computational efficiency and accuracy of vocabulary building and image



4.4 Experimental Results 103

indexing. Experiments show that these two parameters are not data sensitive,
so that for all experiments we used τ = 1.4 and s = 24, which provide a good
balance between speed and accuracy. We consider two images to correspond
to a loop closure situation when their visual similarity srq ≥ 0.45.

The second experiment provides a detailed analysis of OVV for a large-
scale loop closure problem in a mixed environment. In order to provide an
objective assessment of the proposed algorithm, for this experiment we carry
out a comparison between OVV and a state-of-the art visual SLAM algo-
rithm, FAB-MAP2 [27].

In the last part of the section, we discuss series of experimental results
that illustrate the application of OVV in 3D robot navigation and mapping.
During navigation and mapping, the visual features extracted by DPR-SfM
are used to create a 3D map of the environment, while they are simultane-
ously used for vocabulary building and image indexing. When a loop-closure
situation is detected, the resulting information is used to correct the accu-
mulated drift. Essentially, we show the use of OVV for 3D navigation and
mapping in case of two distinct scenarios: (i) an urban environment, and
(ii) and underwater environment. The latter was chosen due to the addi-
tional difficulties imposed by the underwater environment: the high rate of
light absorbtion in the water decreases the range of cameras and the contrast
in images; moreover, the scattering effect due to floating microscopic parti-
cles induces a blurriness effect, further decreasing the contrast of images, also
inducing the “marine snow” effect. All these aspects decrease drastically the
image quality, resulting in nosier, less discriminant image features.

It should be mentioned here that for the urban and underwater experi-
ments, we were not able to obtain consistent results using FAB-MAP2 due
to its inability to cope with high overlapping frame sequences, such as those
provided by video cameras.

4.4.1 Laboratory Experiment

The first experiment was carried out in the laboratory, using a relatively
flat scene that contains books, boxes and magazines. The scene composition
was chosen to be visually complex, combining uniform (low texture) regions,
natural scenes, geometric figures and abstract drawings.

The test sequence consists of 215 images of 640 × 480 pixels, acquired
using a Canon G9 compact camera (see Figure 4.7 for some snapshots of
the sequence). The images contain a certain amount of motion blur and
defocusing, allowing us to test the robustness of the visual vocabulary.

The camera is moved while in a down-looking orientation, describing a loop
trajectory with a partial overlap between the first and the last images. Figure
4.8 illustrates the resulting scene model and camera trajectory, after applying
DPR-SfM on the image sequence. The detection and extraction of features
was carried out using SURF, yielding ∼37,000 tracks corresponding to the
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Fig. 4.7 Laboratory Experiment – Input image sequence. Sample images
from the input sequence. The first and the last images have a partial overlap. The
blow-up shows the motion blur and defocusing.

3D vertices. Each image feature is represented using a 64-element normalized
vector as described in Section 2.1.3.

The vocabulary was initialized using the visual information extracted from
the first 20 images. During sequence analysis there are 10 vocabulary updates,
resulting in a final vocabulary containing 3,485 visual words. Figure 4.9 illus-
trates the evolution of the vocabulary. Towards the end of the sequence, the
growth rate of the vocabulary decreases, as there is little new visual infor-
mation contained in the last images. The instants when the vocabulary was
updated can be better observed in Figure 4.10, along with the computational
times of vocabulary building and frame indexing.

OVV can be adjusted using two user-set parameters. Unlike other visual
vocabulary algorithms, where various parameters need to be adjusted for
each dataset in order to obtain accurate results, the user parameters in OVV
are data independent. The first parameter s determines the number of LDA
dimensions used for feature clustering and image indexing. A lower num-
ber of dimensions decreases both the clustering and frame indexing times,
while slightly decreasing the accuracy of the results. The second parameter τ
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Fig. 4.8 Laboratory Experiment – 3D model and camera trajectory. The
scene model contains ∼37,000 vertices (marked in green). The camera describes a
loop trajectory (marked in blue) with an overlap between the first and last images.
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Fig. 4.9 Laboratory Experiment – Vocabulary size evolution. The vocabu-
lary was initialized using the first 20 frames. After 10 updates, the final vocabulary
contains � 3, 400 visual words.
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Fig. 4.10 Laboratory Experiment – Computational times. The vocabulary
building time (red bars) and the frame indexing time (blue line) evolution vs. the
number of frames. A total of 10 vocabulary updates took place with an average of
0.9 sec./update. The average indexing time was 0.13 sec./frame.

determines the amount of tree branches that are simultaneously visited dur-
ing frame indexing. A lower value of this parameter decreases the computa-
tional time related to frame indexing, while slightly decreasing the accuracy
of frame indexing.

We designed two tests that assess the efficiency of the OVV and influence
of the parameters on the accuracy of the results. In the first test, we use
a direct data association experiment. For each image feature, we associate
an elementary cluster that corresponds to the smallest Euclidean distance
in the feature space. The image features are then “sent down” the indexing
trees. If the image features end up at the leaf corresponding to the associ-
ated elementary cluster, it is considered a hit and a miss otherwise. A high
ratio of hits denotes a stable vocabulary and feature labeling which is crucial
for accurate results, especially in the case of dynamic vocabularies used in
OVV, as we show in Section 4.3.1. The second test is aimed at evaluating the
accuracy of the visual similarity in representing the actual overlap between
images. For this, we compare the similarity matrix (see Figure 4.11) with the
overlap ground truth matrix. The overlap matrix was obtained by exhaus-
tively calculating the projective homography between each two images from
the sequence. From the homographies, we obtained the overlap ratio between
all images in the sequence. We represent the accuracy of the frame similarity
matrix by the average of absolute differences between the similarity and the
overlap matrices.

The two tests were repeated for different values of s and τ . Table 4.1 shows
the accuracy and execution time versus LDA dimensionality reduction. The
results clearly show the advantages of LDA. Reducing the dimensionality of
data to 24 we obtain more accurate results and greatly increased computa-
tional efficiency with respect to full 64 dimensions when no LDA is used.
However, decreasing the data dimensionality further diminishes the discrim-
inative power of the vocabulary. This increases the similarity score between
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Table 4.1 Laboratory Experiment – OVV accuracy and execution times
vs. LDA dim. reduction. As the number of dimensions decreases, total vocabu-
lary building time (2nd column) and average frame indexing time (3rd column) are
reduced, also decreasing the hit percentage (4th column) and increasing the visual
similarity average error wrt. image overlap (5th column). The first row shows the
results without using LDA.

LDA Dim. s Vocab. Time [sec.] Index. Time [sec./fr.] Hits [%] Error
no LDA 11.9 0.24 99.1 0.0714

64 10.9 0.24 99.6 0.0668
48 9.9 0.17 99.5 0.0674
32 8.6 0.13 99.3 0.0682
24 8.3 0.11 99.2 0.0695
16 6.5 0.08 98.8 0.0793
8 5.7 0.05 98.0 0.1216

Table 4.2 Laboratory Experiment – OVV accuracy and execution times
vs. τ . Using a higher τ , the average frame indexing time (2nd column) increases
as more tree branches are visited simultaneously, improving the hit percentage (3rd
column) and decreasing the visual similarity average error with respect to image
overlap (4th column).

τ Index. Time [sec./fr.] Hits [%] Error

1.0 0.10 95.0 0.0738
1.1 0.11 97.0 0.0731
1.2 0.11 98.4 0.0715
1.3 0.12 98.9 0.0701
1.4 0.13 99.2 0.0695
1.5 0.15 99.2 0.0693

non-overlapping frames, reducing the overall accuracy of the result. Addi-
tional tests on other datasets show that s = 24 provides the ideal tradeoff
between accuracy and computational efficiency.

Augmenting the value of τ (see Table 4.2), increases the number of tree
branches that are simultaneously visited during image indexing. As expected,
this results in increased accuracy at the expense of higher computational
costs. Using τ = 1.4 offers the ideal trade-off between indexing speed and
accuracy, as using higher values increases the related computational cost
with no real gain in accuracy. As in the previous case, τ = 1.4 proved to be
the ideal value for all the datasets we have tested.

In order to provide the reader with an objective evaluation, we compare
the results obtained using OVV with an off the shelf BoW algorithm based
on K-means clustering. We have chosen this approach for comparison, due
to its popularity in computer vision and visual SLAM community. We set
the number of words in the vocabulary to be the same as the number of
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words in the OVV in its final form – 3,485 words. Due to the random nature
of K-means clustering, we ran the clustering algorithm 20 times and chose
the vocabulary corresponding to the maximum cluster compactness. The av-
erage computational time was 8.9 sec./run. The frames were indexed using
minimum Euclidean distance feature-cluster association with an average com-
putational time of 0.3 sec./frame, resulting in an average error between the
similarity matrix and frame overlap of 0.0985. This shows that, while incre-
mental, OVV provides better accuracy than offline K-means algorithm.

The last part of the Laboratory Experiment consisted in the detection of
the loop closure. For this, we build the image similarity matrix, shown in Fig-
ure 4.11. The similarity matrix illustrates a high degree of visual resemblance
between the first images and the last images of the sequence (upper-right
corner).

Figure 4.12 illustrates the similarity score between I215 and all the images
in the sequence. The peak at image I1 indicates a high visual similarity be-
tween frames I1 and I215, corresponding to a cross-over (see Figure 4.13). The
visual similarity score between the two images is 0.8, accurately representing
the ground truth overlapping ratio of 0.82.

Fig. 4.11 Laboratory Experiment – Image similarity matrix. High values
close to the main diagonal correspond to the similarity of the images with their
close neighbors. The bright region in the upper-right corner of the matrix denotes
an overlap between frames in the beginning and the end of the sequence.
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Fig. 4.12 Laboratory Experiment – Image similarity for query image I215.
The plot shows the similarity between frame I215 and all the previous frames. The
peak on the far right of the plot corresponds to time-adjacent frames. The peak
corresponding to I1 indicates an overlap.

Fig. 4.13 Laboratory Experiment – Loop detection. The first (left) and
last (right) images of the sequence correspond to the same region of the scene,
determining a loop closure.

4.4.2 Large-Scale Mixed Environment

In this experiment, we have acquired data corresponding to a large trajectory
consisting of two part: (i) an urban area with well structured and diversi-
fied visual characteristics and (ii) an area mainly formed by a natural (more
repetitive) landscapes depicting trees, grass, etc. Both scenarios are common
in land-based robot/vehicle navigation. The data was acquired using a setup
consisting of two Canon 50D DSLR cameras equipped with 24mm Canon
fixed lenses, mounted on a car (see Figure 4.14). The dual-camera setup was
used to increase the field-of-view of the image acquisition system, increas-
ing the probability of detecting the loop-closure situations. For ground-truth,



110 4 Online Loop Detection

we used a DGPS system, allowing for accurate positioning, even in the case
of low GPS coverage situations, which is often the case in urban areas. The
setup, mounted on a car, was used to gather data representing both urban
and natural environments. Figure 4.15 illustrates the trajectory of the car
during data acquisition. Over the 18.5-km trajectory, the system was set to
automatically acquire images every 0.5 seconds, resulting in a total of 11,500
images. The trajectory was chosen to include a series of smaller loops at the
beginning of the sequence, along with two large loops: the first containing
almost exclusively urban scenery and the second containing a combination of
urban and natural environments.

For ground truth, the data recorded by the DGPS device was interpo-
lated to match the image acquisition rate (the DGPS provides GPS fixes
at a frequency of 1Hz). Any images acquired within a distance of 30m were
considered to depict the same area, hence corresponding to a loop-closure
situation (the distance threshold was estimated from the average distance
from the cameras to the scene, and validated manually). The car orientation
was not taken into account due to the large total field of view of the imaging
system (∼ 164 degrees horizontally).

Prior to feature tracking, the images were down-sampled to 640 × 480
pixels resolution, to simulate a low-end image acquisition system. The image
features were extracted and described using SURF, yielding a total of 40
million feature tracks. The visual vocabulary was built online, during feature
tracking. The final size of the vocabulary was ∼ 30K visual words. Figure
4.16 shows the evolution of the vocabulary. At the beginning of the sequence,
the vocabulary grows quickly. However as scene features tend to repeat, the
growth rate slows down at the middle of the sequence. The vocabulary grows
again at the end of the sequence to model features corresponding to novel
sceneries (natural environment).

The entire process was run on an Intel 2 Quad machine running Windows
7. The execution times for vocabulary building and image indexing are shown
in Figure 4.17, where it can be observed that the vocabulary is being updated
at short intervals at the beginning of the sequence, where high amounts of
visual information are being learned by the vocabulary. The vocabulary up-
date intervals decrease during the rest of the sequence, only when new visual
information becomes available. The image indexing times are maintained con-
stant throughout the sequence. It should be mentioned here that currently,
OVV is mainly implemented in Matlab with some routines implemented
in C++.

The precision of OVV was assessed by comparing extracting visually simi-
lar images as measure by OVV and comparing the result with the ground
truth. Here we make a comparison between the results obtained by the
proposed algorithm and the results obtained by the FAB-MAP2 algorithm
proposed by Cummins et al. [27]. For this purpose, we ran FAB-MAP2 in
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two cases: (i) using a generic, off-line built visual vocabulary of 40k visual
words, containing mostly urban visual data, and (ii) using a generic, off-line
built vocabulary containing 80k visual words, embodying data from various
environments (indoor/outdoor, natural, etc.).

Figure 4.18 shows the results of the precision/recall evaluation. The goal
of this analysis is two fold: (i) evaluate the performance of the incremental
image indexing and (ii) compare the accuracy of OVV wrt. FAB-MAP2.

The incremental indexing was compared to the full indexing of the en-
tire set of images using the vocabulary generated by OVV in its final form.
Figure 4.18 shows that the proposed incremental method closely approxi-
mates the full indexing, with very little loss in precision � 0.01 with a gain
in computational cost of � 30×.

On the other hand, it can be observed that OVV outperforms FAB-MAP2
in both cases, while using a smaller size vocabulary. OVV uses a 3D camera
pose model while FAB-MAP2 uses a camera rotation model to check the geo-
metrical consistency of the detected loop closures. Such stages highly reduce
the number of false positives, thus increasing the accuracy of the algorithms.
However, here we focus primarily on the accuracy and efficiency of measuring
visual similarities between images, hence the results presented here are those
provided by the algorithms, without any geometrical consistency checks.

The evaluation of the algorithms was carried out using precision/recall
analysis where: the precision represents the ratio between the true detected
loop-closures and the total detected loop-closures and the recall represents
the ratio between the true detected loop-closures and the true loop-closures.

A more detailed analysis of the results shows that OVV can cope with
common challenges found in outdoor environments such as illumination and
camera view-point changes, partial occlusions, moving pedestrians, cars, etc.
Furthermore, all the loop-closures situations were successfully detected even
at early stages of the navigation, where the vocabulary contained little vi-
sual information (see Figure 4.19 for a few examples of detected loop-closure
situations).

Nevertheless, there are a few cases where the erroneously matched images
representing different locations, resulting into false loop-closure detections.
As expected, these situations are related to strongly repetitive patterns in
images, mostly related to natural sceneries: grass, trees, earth, etc.

4.4.3 Underwater Experiment

This experiment is aimed at testing the efficiency of the online visual vocabu-
lary method in describing natural, unstructured environments for underwater
robot navigation and mapping, under typical challenges found in this envi-
ronment. The data was acquired in Tortugas, Florida Keys using a Phantom
ROV of the UoM. The 1,000-image sequence has a resolution of 720×530 pix-
els and depicts a region comprised mainly by rocks and sand. The sequence
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Fig. 4.14 Mixed Environment Experiment – Image acquisition setup. The
dual-camera setup was mounted on a car during data acquisition.

Fig. 4.15 Mixed Environment Experiment – Car trajectory during data
acquisition. The 18.5 km trajectory (overlayed in yellow, as recorded by the DGPS
system) was chosen to include multiple loop-closures. The starting point can be seen
at the lower right corner.
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Fig. 4.16 Mixed Environment Experiment – Vocabulary size evolution.
The vocabulary growth slows down at the middle of the sequence but increases
at the end of the sequence as novel types of sceneries are imaged. There are 35
vocabulary updates in total.

Fig. 4.17 Mixed Environment Experiment – Vocabulary building and
image indexing computational times. The vocabulary update step takes an
average of 1.6 seconds / update while the image indexing takes an average of 0.11
seconds / frame.

Fig. 4.18 Mixed Environment Experiment – Precision/Recall evaluation.
Comparison between OVV in two cases: using the proposed incremental indexing
vs. full re-indexing using the final form of the vocabulary; and FAB-MAP2 for two
vocabulary cases.
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Fig. 4.19 Mixed Environment Experiment – Successfully detected loop-
closure situations. Loop closures are successfully detected in the presence of
camera view point changes, dynamic environments (moving pedestrians, occlusion
due to the presence of cars, etc.)
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Fig. 4.20 Mixed Environment Experiment – False positives in loop clo-
sure detection. Some of the wrongly detected loop-closure situations, mostly re-
lated to repetitive patterns.

is characterized by repetitive textures, allowing the test of OVV algorithms
in presence of increased perceptual aliasing3.

Figure 4.21 illustrates the estimated 3D model containing 125,850 vertices
and the camera trajectory. The online vocabulary was initialized using the
feature tracks in the first 20 frames. During scene reconstruction, the vocab-
ulary went through 15 updates, containing 6,644 visual words, at the end of
the sequence.

In the case of this experiment, no ground truth was available from naviga-
tion due to the lack of GPS coverage in the underwater environment. As an
alternative, we exhaustively matched the feature between each pair of images
in the sequence, estimating the overlap between all the possible image pairs
using a projective homography model. We consider images with an overlap
ratio higher than 0.5 to correspond to loop closing situations (as the overlap
denotes the fact that images correspond to the same region of the scene).

After comparing the results of OVV with the ground truth, the preci-
sion/recall curve (illustrated in Figure 4.22) shows a slightly decreased pre-
cision, with respect to other environments, due to the perceptual aliasing
and the decrease in the image quality. This effect can be also observed in
the image similarity matrix (see Figure 4.23a), denoted by the slightly bright

3 The perceptual aliasing problem corresponds to scenes with poor or repetitive
textures, being characterized by the fact that different regions of the scene appear
similar to the camera.
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Fig. 4.21 Underwater Experiment – Estimated 3D model and camera
trajectory. The scene model shown in red contains � 126, 000 vertices. The tra-
jectory of the camera (blue) presents some partial overlaps.

background corresponding to non-overlapping images having a small degree
of visual resemblance.

In order to detect the loop closure situations, the image similarity ma-
trix was binarized using a threshold of 0.45, which provides a good balance
between precision and recall (thus minimizing the false positives and false
negatives). This value for the binarization threshold was found to be opti-
mum for all the experiments we have carried out. The resulting loop-closure
detection matrix (see Figure 4.23b), clearly depicts areas where the robot
revisits previously mapped areas.

Figure 4.24 illustrates some of the pairs of images, corresponding to loop-
closures in the camera trajectory.

Fig. 4.22 Underwater Experiment – Precision/Recall evaluation. The
maximum precision is slightly lower in this experiment mostly due to the perceptual
aliasing.
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(a)

(b)

Fig. 4.23 Underwater Experiment – Similarity matrix and loop-closures
(a) Image similarity matrix: highlighted values off the main diagonal correspond
to loop closure situations; (b) Detected loop closure situations after binarizing the
image similarity matrix with a threshold of 0.45.
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Fig. 4.24 Underwater Experiment – loop detection. Pairs of images corre-
sponding to some of the detected loop-closures. Query frames are shown in the left
column and their corresponding most similar frames are shown in the right column.
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4.4.4 Coral Reef Experiment

This experiment is aimed at testing the efficiency of the OVV method in de-
scribing natural, unstructured environments for underwater robot navigation
and mapping. The image sequence, acquired using a ROV near the Bahamas
by the UoM, is comprised by 235 frames of 720 × 530 pixels. The surveyed
scene contains a coral formation and its surroundings, combining rich texture
areas (vegetation and rock formations) and uniform areas (sandy regions).

We applied DPR-SfM on the sequence using SURF features. Figure 4.25
illustrates the 3D reconstruction and the camera trajectory estimation. The
resulting � 62, 000 SURF feature tracks were used to generate the vocab-
ulary as the scene was being reconstructed. The vocabulary was initialized
using the first 20 frames and updated 9 times, containing 4,343 in its final
form. Analyzing the vocabulary evolution in Figure 4.26, it can be seen that
the vocabulary grows fast at the beginning of the sequence. Towards the end,
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Fig. 4.25 Reef Experiment – 3D model and camera trajectory. The scene
model contains � 62, 000 vertices. The trajectory of the camera has several cross-
overs.
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Fig. 4.26 Reef Experiment – Vocabulary size evolution. The vocabulary was
initialized using the first 20 frames. After 9 updates, the final vocabulary contains
� 3, 400 visual words.
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the vocabulary increase rate slows and the vocabulary update frequency low-
ers, as there is little unmodeled visual information left in the scene.

After vocabulary building and image indexing, the resulting similarity
matrix in Figure 4.27 successfully points out the cross-overs in the

Fig. 4.27 Reef Experiment – Image similarity matrix. The bright regions
off the main diagonal correspond to multiple cross-overs.
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Fig. 4.28 Reef Experiment – Image similarity for query image I204. The
plot shows the similarity between frame I204 and all the previous frames. The two
peaks corresponding to frames I52 and I155 indicate that all three frames correspond
to the same region of the scene.
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I204

I52 I155

Fig. 4.29 Reef Experiment – Cross-over. Query frame I204 and frames I52
and I155 were successfully determined as corresponding to the same region of the
scene, defining a loop closure.

camera trajectory. An exemplification of this is provided in Figure 4.28, where
a query for frame I204 shows two peaks at frames I52 and I155, with similar-
ity scores of 0.73 and 0.75 respectively. The estimated overlap ratio between
I204 and frames I52 and I155 is 0.78 and 0.8 respectively, showing that the
similarity scores closely represent the overlap between images. Figure 4.29
clearly illustrates that the three frames correspond to the same region of the
scene.

To quantify the precision of the similarity matrix in approximating the
image overlap, we compared it with the overlap ground truth using the aver-
age of absolute differences. The error was 0.095, higher than in the previous
experiment. This is expected, since low contrast and high blurriness in un-
derwater imaging decreases the quality of image features.
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We compared the result with K-means vocabulary, using the same number
of visual words as in the OVV in its final stage. The average error in case
of K-means vocabulary is 0.0978, indicating that OVV yields slightly better
results in case of underwater imaging.

4.4.5 Outdoor Experiment

Here, we discuss the loop closure detection for the Urban Experiment pre-
sented in Section 3.8.7. The visual vocabulary was generated and the images
were indexed during the scene reconstruction. The final vocabulary contains
7,182 words. The resulting similarity matrix, shown in Figure 4.30, points out
a cross-over between the first and last frames of the sequence. The situation
is exemplified in Figure 4.31, where a query for frame I960 denotes a visual
similarity of 0.8 with frame I45. Figure 4.32 confirms that the two frames
correspond to a loop closure.

Fig. 4.30 Urban Experiment – Image similarity matrix. The bright region
in the upper-right corner of the matrix indicates an overlap between first and last
frames of the sequence.
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Fig. 4.31 Urban Experiment – Image similarity for query image I960.
The plot shows a high degree of visual similarity between frames I960 and I45,
corresponding to a loop closure.

I960 I45

Fig. 4.32 Urban Experiment – Loop detection. Example of image pair cor-
responding to the loop closure.

In the remainder of this section, we present a test that we have carried
out in order to assess the capacity of OVV indexing to be extended to other
images of the same location. For this, we selected a set of photos from Google
Images [59] depicting the Unirii Square, taken at different times of day and
from various viewpoints. Each photo was then indexed using the generated
vocabulary and the most visually similar image from the original dataset was
extracted. Figure 4.33 illustrates the results. The majority of photos were cor-
rectly associated (� 90%). Generally, the cases where OVV did not correctly
identify the location were the result of: (i) extreme zooming, where the query
pictures show details of the buildings not modeled in the vocabulary due to
the limited resolution of the original dataset; (ii) severe obstructions that
block most of the visual content modeled in the vocabulary; (iii) extreme
lighting changes – pictures taken in the early evening or at night, where most
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Fig. 4.33 Urban Experiment – Location identification. Google Images pho-
tos used as query images (left column) and the most visually similar image from
the original dataset (right column). The last row shows an example of poor location
identification, due to the post-processing of the query photo.
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of the visual details are lost due to low contrast. Moreover, in the last row
of Figure 4.33 we illustrate an example of poor localization due to HDR
processing of the query image.

4.5 Discussion

We have developed a new visual BoW method for loop-closure detection,
oriented towards online navigation and mapping. The method uses a novel
incremental vocabulary building process. As the vocabulary is being con-
stantly updated to include new visual information, we propose a novel in-
cremental image indexing process in conjunction with a tree-based feature
labelling method, that increases the stability of feature-cluster associations
at different vocabulary stages.

The proposed method requires no a priori knowledge of the environment,
as the visual vocabularies are built online, during robot navigation. Also,
while most BoW require the user to set parameters such as the number
of words in the vocabulary, which are generally data-dependent, we show
that the default values of parameters used by OVV yield optimum results,
regardless of the type of environment, size of the robot trajectory, etc.

In this chapter, we present a series of experiments, representing various
types of environments and a comparison with a state-of-the-art visual SLAM
algorithm. We show that using the proposed clustering technique, we ob-
tain more accurate loop closure detection, even with a smaller vocabulary
size, than other SLAM algorithms. This is due to a novel clustering criteria,
which takes into account the global distribution of the data, resulting in more
compact and discriminant visual words.

Also, we avoid fully re-indexing the images as content of the vocabulary
changes, using an incremental image indexing method. Experimental results
show that this approach allows to highly reduce the computational times with
only a small loss in precision.

The scope of this chapter is oriented towards the capacity of OVV to detect
loop closure situations. However, the accuracy of the estimation will signif-
icantly increase by using OVV in conjunction with geometrical consistency
checks.
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