
Chapter 3

Direct Structure from Motion

This chapter is concerned with robust 3D scene modeling using a novel
Structure from Motion algorithm – Direct Pose Registration Structure from
Motion (DPR-SfM). The aim is to obtain a high precision texture model of a
generic scene acquired using any off the shelf camera undergoing an arbitrary
trajectory. The reconstruction algorithm does not require any camera posi-
tion / attitude information, endowing DPR-SfM with flexibility to be readily
used for any type of 3D scene modeling application, both underwater and
terrestrial.

3.1 Introduction

We have designed the DPR-SfM algorithm to cope with the most common
challenges (see Section 1.3):

• Object occlusions and perspective distortions.
• Invalid image frames due to camera obstructions, motion blur, etc.
• Moving objects.
• Image noise, low contrast and illumination changes (especially in the un-

derwater environment).

DPR-SfM computes directly the pose of the camera without the necessity to
recover the inter-frame motion. The structure of the scene is formed by sets
of 3D vertices characterized by affine invariant local image descriptors. In this
way, by associating image patches extracted from camera views with the 3D
vertices, we can recover the camera pose with respect to the scene model. In
DPR-SfM, the camera pose is obtained using a novel dual approach, allowing
accurate camera pose estimations even in the presence of planar scenes, where
most 3D reconstruction algorithms would fail.

Subsequently, the obtained camera poses are used to update the scene
model as new features are tracked. Both camera pose estimation and scene
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40 3 Direct Structure from Motion

model update steps use robust methods thus reducing the impact of poor
camera pose/vertex estimations.

DPR-SfM algorithm works in two stages, as shown in Figure 3.1. First, it
uses motion estimation techniques in order to obtain an initial model corre-
sponding to a small subregion of the scene. In the second stage, using the
initial model as a “seed”, the subsequent camera poses are computed by reg-
istering 2D features with 3D vertices in the scene model. For each newly
acquired image, once the camera pose is recovered, the scene model is up-
dated by adding vertices corresponding to newly tracked features. In this
way, as the camera moves, the model is extended to represent new regions of
the scene.

As the data is being processed sequentially, camera pose and scene model
estimations are constantly available, enabling the use of DPR-SfM for on-
line applications such as robot navigation and mapping, in situ scientific
studies, etc.

The remainder of this chapter details the flow of the DPR-SfM algorithm,
followed by a discussion on various results that we have obtained by applying
the proposed algorithm on outdoor and underwater image sequences. For
the ease of the explanation, we illustrate the description of the DPR-SfM
algorithm using a simple dataset1 provided by the Visual Geometry Group
of University of Oxford. Figure 3.2 depicts the input set of images of a house
model.

3.2 Image Features

Feature tracking is the building block of any sparse 3D reconstruction algo-
rithm. Tracking image features corresponding to a scene region (i.e. points,
lines, patches, etc.), allows the 3D position of the scene features to be
estimated.

Robust feature tracking is crucial to the accurate estimation of both the
camera poses and the structure of the scene. Maximizing the number of
frames where a given scene feature is tracked improves the precision of its
3D position estimation and increases the number of inter-frame constraints,
allowing a higher precision in camera pose estimation.

In order to ensure robust feature tracking in presence of geometric distor-
tions and illumination changes, we have tested various state of the art point
and blob feature extractors (see Section 2.1.3): Harris Affine, Hessian Affine,
SIFT, SURF and MSER. As expected, point feature extractors generate more
dense sets of features than blob feature extractors, providing a better cover-
age of the scene but having less discriminative power, increasing the chances
of mismatching. In contrast, blob extractors produce more sparse but more
stable sets of features with higher discriminative power.

1 http://www.robots.ox.ac.uk/~vgg/data/dunster/images.tar.gz

http://www.robots.ox.ac.uk/~vgg/data/dunster/images.tar.gz
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Fig. 3.1 Flowchart of the DPR-SfM algorithm. The model initialization stage
estimates the baseline between the base frame and a newly acquired frame. If the
baseline is wide enough, the motion between the base frame and the acquired frame
is recovered. Using the motion, the scene structure is estimated and the algorithm
passes to the direct pose registration stage, otherwise the process is restarted using
the next acquired frame. In the direct pose registration stage, the camera poses
are obtained by extracting correspondences between the acquired images and the
model. After each new camera pose estimation, the algorithm updates the model
with new vertices corresponding to features tracked in the current image. In this
way, the scene model grows as the camera surveys new regions of the scene.

In terms of feature descriptors, Harris, Hessian and MSER can be described
using both SIFT and SURF, while SIFT and SURF use their own descriptors
only.
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Fig. 3.2 DPR-SfM – House dataset. The input sequence of 6 images captured
by a camera undergoing a rotation around a house model.

3.3 Model Initialization

This stage generates a subregion (“seed”) of the 3D model corresponding to
the first few frames of the image sequence. This initial subregion is required
by the second stage that subsequently extends it to the full 3D scene model.

The model is initialized by first fixing the first frame of the sequence as
the base frame Ib. The camera pose corresponding to Ib will serve as the
global reference frame (world frame) for the entire model. During model ini-
tialization, the camera motion between the reference and some image Ii is
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computed. Ii is chosen so that the baseline between Ib and Ii is sufficient
to ensure a robust motion estimation. The baseline between images is ap-
proximated by translation induced by the homography b−0.8mmHi on the
image centers, where bHi is a projective homography obtained from feature
correspondences between images Ib and Ii (see Section 2.2).

Generally, SfM algorithms use fundamental matrix for camera motion es-
timation. However, when the scene is planar or the parallax effect is small
(i.e. small scene depth variations with respect to scene-to-camera distance),
the fundamental matrix can be ill-conditioned [67]. In this case, a more ro-
bust solution is to use homography-based motion computation. On the other
hand, when scene geometry induces significant parallax, homographies can-
not correctly model the camera motion. In order to cover both cases, we use
a dual approach for motion computation:

Fundamental matrix motion computation. Using the feature correspon-
dences between images Ib and Ii (see Figure 3.3), we estimate the funda-
mental matrix Fbi using RANSAC-based Least Squares (LS) methods2 [3],
with the cost function given by the Sampson distance [153] (see
Figure 3.3c,d):
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where (Fp)2j represents the square of the j -th entry of vector Fp.

The camera rotationRF
bi and translation tFbi are obtained by Singular Value

Decomposition (SVD) of Fbi using [74, 94]:

Fbi = (A−1)T T̂F
bi R

F
bi A

−1 (3.2)

where A is the known camera intrinsic matrix, R is the rotation matrix of
the camera and T̂ is the translation skew-symmetric matrix (T̂[x] = t×x for
any vector x with t representing the camera translation). The approach
yields 4 possible solutions (2 translations and 2 rotations). The correct
solution is obtained by applying cheirality constraints (i.e. reconstructed
points must be in front of the camera) [146].

Homography motion computation. From the correspondences of Ib and Ii
we compute the homography bHi using RANSAC with the cost function
given by:

EH = pkb −bHi p
k
i

where pkb and pki represent the kth feature correspondence in images Ib and
Ii respectively.

2 After testing various fundamental matrix estimation methods, RANSAC-based
LS method has been adopted as it proved to provide the most robust results in
the case of small base lines.
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(a) (b)
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(e) (f)

Fig. 3.3 DPR-SfM – Camera motion. When there is enough camera motion
between the base frame (left column) and the current frame Ii (right column), the
pose is computed. (a) and (b) show the extracted image features. (c) show the
initial feature disparity after matching, (d) shows the feature disparity after outlier
rejection, in this case using F . (e) and (f) illustrate the epipolar lines for Ib and Ii,
respectively.
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By normalizing the homography between Ib and Ii:

bĤi = −A−1 bHi A

we obtain the camera camera rotation RH
bi and translation tHbi using SVD

[35]:
bĤi = RH

bi − tHbi η
T

where η is the normal of the scene plane. This type of decomposition raises
two solutions. The correct one corresponds to the plane normal pointing
towards the camera.

Between the two solutions (RF
bi, t

F
bi) and (RH

bi , t
H
bi ), we choose the most ac-

curate one. This is done by estimating the 3D position of the image features
with respect to each solution using LS Intersection. Then, the accuracy of
the camera motion is given by the back-projection error:

Ebi =

N∑
k=1

(‖pkb −ΠbP
k‖+ ‖pki −ΠiP

k‖) (3.3)

where, pkb and pki are the corresponding image features in images Ib and Ii
respectively; P k is the estimated 3D position of kth feature.

The solution corresponding to the smallest retrojection error Ebi is chosen
and the corresponding set of 3D points is used to initialize the scene model.

In order to complete the set of camera poses, we recover the pose of the
cameras corresponding to the intermediate frames between Ib and Ii by di-
rectly registering the camera views with the 3D model (Section 3.5). Figure
3.4 illustrates the initial model for the House dataset, corresponding to the
first three frames.

3.4 Scene Model

The scene model was designed to contain geometric along with photometric
information. The geometry of the scene is described in terms of 3D vertices,
defined by their position [X Y Z]T with respect to a common world frame.
Photometrically, the vertices are characterized by descriptors obtained from
their corresponding image feature descriptors.

The image descriptor vectors can be seen as noisy measurements of the
image gradient within a feature patch. As the features are tracked, multiple
measurements of the same patch are obtained. Hence, we improve feature
tracking by modifying the similarity measurement in eq. (2.1) to include
multiple observations:

s(fk, fk
i ) = ‖

∑
fk

n
− fk

i ‖ (3.4)
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Fig. 3.4 DPR-SfM – Initial model. Initial 3D scene model (red dots) and
camera poses. The model initialization was done using frame 1 (red) and 3 (blue).
Camera pose for frame 2 (green) was obtained by direct registration.

where V k represents the descriptor vector of vertex3 k, and n represents the
total number of images where the vertex was tracked. Using such a descriptor
representation allows for more stable vertex tracking in presence of image
noise, illumination changes and projective distortions.

When associating vertices with image features using eq. (3.4), we impose
distance thresholds for s(V k, vki ) to reduce the number of outliers. The thresh-
old values were established empirically. As all the feature descriptors are nor-
malized, the established thresholds proved to provide optimum results (for
both SIFT and SURF descriptors) in all the test sequences.

In practice, using a direct approach for feature association in eq. (3.4)
involves a high computational load. Depending on the resolution and the fea-
ture extractor type, an image can yield thousands of features that have to

3 Here, we use the term vertex to express a set of image features corresponding to
the same scene point. The actual 3D position of the vertex does not need to be
calculated at this point.
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be associated with tens of thousands of features from each feature group4

in the scene model. We highly reduce this computational load by using a
k -dimensional tree (kd-tree) approach. Using kd-trees, we hierarchically de-
compose the scene model feature space into a relatively small number of
subregions so that no region contains too many features [4] (see Figure 3.5).
This provides a fast way to access any scene model feature. In order to as-
sociate an image feature, we traverse down the hierarchy until we find the
subregion containing the match and then scan through the few features within
the subregion to identify the correct match. In the implementation that we
used [113], we obtained a decrease in the computational time with respect to
classical NN of about 5 times.

Fig. 3.5 Kd-tree partitioning. The k-dimensional feature space is hierarchically
partitioned in subregions containing a small amount of features.

3.5 Direct Camera Registration

This section deals with the direct recovery of the camera pose with respect
to the scene model, without the need of any a priori information on camera
motion or pose. This way, the robustness of the DPR-SfM algorithm is in-
creased, allowing it to naturally deal with camera occlusions, loop closures
and position estimation errors.

In Section 3.4 we explain how to associate image and scene model features.
From this, we obtain 3D-to-image correspondences with the aim of recovering
camera pose (Ri, ti) with respect to the world frame (see Figure 3.6). The
camera pose is obtained using RANSAC with the cost function:

Ei =

N∑
k=1

‖pki −ΠiP
k‖ (3.5)

4 DPR-SfM supports simultaneous use of different feature types. In the scene
model, the features are grouped by extractor/descriptor.
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Fig. 3.6 DPR-SfM – Direct pose registration. Example of pose registration
of frame 4: the image features are associated with the scene model. The camera
pose is estimated using the projection matrix.

In order to robustly cope with different types of scenes, we propose a novel
dual approach for camera pose recovery (similar to the one described in the
Section 3.3): (i) if the scene region seen in the current image has enough
parallax, we use projective matrix to recover the camera pose; (ii) if the
scene region is planar or close to being planar, the projection matrix is ill-
conditioned [67], in which case we use a homography approach. In order to
determine the planarity of the scene, for each RANSAC sample, we fit a plane
L to the 3D vertices using a LS method. If the distance between the plane
L and all the other 3D vertices (from the 3D-to-image correspondences) is
small enough, we consider the scene region as being planar. The method is
summarized in Table 3.1. The camera pose estimation methods are detailed
hereafter:

Projection matrix-based. Provided the set of 3D-to-image correspondences,
we obtain the projection matrix Πk using DLT. From equation (2.2), we
obtain the camera pose (Rk, tk).
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Homography-based. We compute the planar transformation iHL, so that:

pki =iHL · pkL
where pkL is the projection of Pk onto plane L. Applying SVD on iHL, we
obtain the relative transformation (iRL,

ktL) between the plane L and the
camera. Thus, the pose of the camera is obtained from:

ti = tL ·iRL +itL

Ri =
iRL ·RL

with tL and RL representing the pose of plane L in the world coordinate
system.

Once a (Rk, tk) have been obtained using the RANSAC dual method, the
camera pose is further adjusted using a LS method that minimizes the back-
projection error shown in eq. (3.5).

Table 3.1 Camera pose recovery process

1. While not enough RANSAC samples.

2. Choose randomly a set of 3D-to-image correspondences.

3. Fit a plane L to the 3D vertices from the set.

4. Check if the other vertices (corresponding to Ik) lay close to plane L.

5. If yes, compute R and t based on the homography using the set of
correspondences.

6. If no, compute R and t based on the projection matrix using the set of
correspondences.

7. Go to 1.

3.6 Model Update

As the camera moves, the DPR-SfM algorithm updates the scene model
as new features are extracted and tracked, generating new 3D vertices.
This section discusses the model updating process along with the outlier
management.

As new images are fed to the DPR-SfM algorithm and the image fea-
tures are associated with scene model features (see Section 3.4), three
scenarios arise:
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Image features matched with model features with known 3D position. These
feature associations are used to recover the camera pose, as explained in
Subsection 3.5. The outliers are detected by reprojecting the 3D vertices
into the image (eq. (3.5)). Vertices with a reprojection error higher than
a pre-established threshold are eliminated. Inliers are added to the model
to create new constraints. Every time an additional image feature is as-
sociated with a particular 3D vertex, the position of the vertex is refined,
taking advantage of this new constraint. The refinement is done by mini-
mizing the sum of the reprojection errors Ek in all the images where the
vertex was tracked:

Ek =

M∑
i=1

‖pki −ΠiP
k‖ (3.6)

Image features matched with model features with no 3D position. Adding
new image features to already existing model features provides additional
information that ultimately leads to the recovery of 3D vertex position. In
this case, the back-projection approach cannot be used for outlier rejection
as the 3D position of the vertex is unknown at the time. Alternatively, we
use a fundamental matrix based approach. For each image feature pki we
choose a feature pli from its associated feature track so that their corre-
sponding camera poses (Rk, tk) and (Rl, tl) have the widest possible base-
line (the wider the baseline the more discriminative the process). From the
relative transformation between the two cameras (Rkl, tkl) we compute the
fundamental matrix F , as shown in equation (3.2). This allows us to use
the Sampson distance shown in eq. (3.1).

If the image feature pki yields a distance Esampson larger than a pre-
established threshold, it is regarded as an outlier and the feature asso-
ciation is eliminated, otherwise it is added to the model. When enough
views of a feature are available, the position of the corresponding vertex
is calculated using a multi-view factorization approach [100]. The vertex
position is then refined using a LS method (see eq. (3.6)).

Unmatched image features. If the image features could not be consistently
associated to any model features, they are used to generate new feature
entries in the model.

Since not all model features are tracked reliably enough to produce
accurate 3D vertices, the model is constantly checked and features that do
not provide a consistent tracking are eliminated in order to minimize the
unnecessary clutter of the model.

Figure 3.7 illustrates the final 3D model of the House sequence along
with the recovered camera poses.
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Fig. 3.7 DPR-SfM – Final model. 3D model of the House sequence containing
� 2, 000 vertices (red dots) along with the camera poses. The first camera pose
(shown in red) defines the global coordinate system of the model.

3.7 Ortho-mosaicing and 3D Representation

A great deal of underwater studies require the assessment of 2D visual maps
(see Section 1.2). When the regions of interest contain significant 3D relief,
classical mosaicing techniques prove inaccurate due to the parallax effect. We
propose a solution to this shortcoming, where the 3D scene model is ortho-
projected into a plane. The result is a virtual “high-altitude” view of the
scene called ortho-mosaic. In other words, an ortho-mosaic is the equivalent
to a 2D mosaic acquired from a camera located far from the scene.

The ortho-mosaic is obtained by first creating a continuous model of the
scene. The continuous model is defined by triangular patches with the corners
defined by the 3D vertices [6]. Within the patches, we can obtain the 3D
position of any point using linear or cubic interpolation5.

5 For natural and unstructured scenes, where the shapes are usually smooth, cubic
interpolation provides the best results.
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An ortho-projection plane O is then chosen to have the same tilt as the
average tilt of continuous model. This maximizes the projection area, pro-
viding the highest level of mosaic detail. Then, all the patches are mapped
onto the destination plane along projection rays perpendicular to plane O
(see Figure 3.8).

The plane O is digitized based on a predefined resolution; each point pkO
on the grid corresponds to a pixel in the ortho-mosaic. In order to render the
mosaic, we define the following transformation relating each point pkO to a
corresponding point pki from the original images:

pki = ΠiTnp
k
O (3.7)

where Tn is the ortho-projection transformation of the patch [P1 P2 P3] and
Πi is the camera projection matrix corresponding to frame Ii, as shown in
Figure 3.8a.

Figures 3.9a and 3.10 illustrate the results of the ortho-mosaicing process
for the the House sequence and an underwater scene respectively.

For the cases where 3D information is required, the ortho-mosaic is used
as texture for rendering the 3D surface. The result is a complete model that
includes both geometrical and photometrical information of the scene. In
Figure 3.11 we show two views of the 3D model of the underwater scene.
Here, the surface was obtained by using cubic interpolation. In the case of the
House scene, illustrated in Figure 3.9b, linear interpolation is more suitable.

3.8 Experimental Results

In this section, we discuss the performance of the DPR-SfM algorithm. The
evaluation focused on two main aspects: (i) the accuracy of both scene model
and camera pose estimations and (ii) the robustness of the algorithm when
faced to common challenges such as: illumination changes, shadows, scat-
tering, low contrast images, moving objects, specular surfaces, obstructions,
objects with complex geometry, etc.

DPR-SfM has been successfully tested under various conditions, briefly
discussed hereafter:

• We applied the algorithm on image sequences captured using both still and
video cameras. The algorithm successfully coped with both high overlap
images in video sequences and low overlap images in sequences acquired
by still cameras. The DPR-SfM provides accurate estimations even in the
case of temporarily static cameras, where most SfM algorithms would fail.
The minimum overlap between images is given by the minimum number
of views where a feature needs to be tracked before its 3D position is
estimated, which can be set by the user. We generally use a minimum of
3 views per each tracked feature for redundancy.
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Fig. 3.8 Principles of ortho-mosaicing. In figure (a) The model patch
[P1 P2 P3] is ortho-projected onto the plane O. The corresponding ortho-mosaic
patch [p1O p2O p3O] is rendered using eq. (3.7) from image Ii, chosen so that the angle
α between the patch normal and the camera principal axis is minimum. In (b),
for clarity purposes, we show the ortho-projection of a seafloor model containing a
coral-reef formation (Bahamas dataset). This model will be discussed in detail in
Section 3.8.
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(a)

(b)

Fig. 3.9 Model of the house scene. (a) shows the ortho-mosaic of the house. In
this case, there is no gain in using the ortho-mosaic since all the camera views cover
the entire scene. (b) is a view of the textured model; the 3D surface was generated
using linear interpolation, which is more suited for structured scenes, containing
planes and straight edges.
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Fig. 3.10 Ortho-mosaic of an underwater scene. The rendered mosaic simu-
lates a high-altitude view of the scene, depicting coral-reef formations.
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(a)

(b)

Fig. 3.11 3D model of an underwater scene. Two views of the underwater
scene model obtained by texture rendering the ortho-mosaic on the 3D surface.
Here the surface was obtained using cubic interpolation.
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• We tested the algorithm in the presence of occlusions and pose estimation
failures (e.g. excessive motion blur). The pose of the camera was correctly
estimated immediately after the situation disappeared. From our experi-
ments, we have concluded that the camera pose can be correctly estimated,
if there is at least ∼ 20% overlap between the 3D model and the images.

• The conducted experiments included sequence acquisitions under extreme
lighting conditions, obtaining accurate results: sun-flickering in shallow wa-
ters, low lighting and increased turbidity/scattering, strobe/focus lighting
in deep waters.

In the discussion that follows, we generally assess the accuracy of the
DPR-SfM algorithm on absolute basis as, to the best of our knowledge, there
are no freely available SfM algorithms for comparison that can cope with
such large scale reconstructions.

All the data-sets presented here were acquired using various off the shelf
cameras, undergoing a random trajectory with no constraints. For all the
sequences, we assume that the internal parameters of the cameras are known
and do not change throughout the image acquisition (i.e. no zooming), and
the radial distortion is corrected. The estimation of the camera internal pa-
rameters and radial distortion parameters were obtained using a checkerboard
pattern and Bouguet’s camera calibration toolbox [12].

3.8.1 Car Scene

In this sequence we used synthetically generated images, allowing the usage
of ground truth in order to quantify the accuracy of the DPR-SfM on both
camera pose and scene geometry estimations.

The scene, comprised by a parked car in front of a building, was chosen
to incorporate common challenges in urban environments: occlusions, object
transparency, light reflections, shadows, uniform textures, etc. The rendering
of the scene was carried out using ray-tracing as it is capable of producing very
high degree of photorealism [142]. Ray-tracing generates images by tracing
the path of light through pixels in an image plane [159], accurately modeling
light alterations (reflections, shadows, transparency).

The sequence consists of 20 frames with 1, 024 × 1, 024 pixels, captured
from a camera undergoing a translation motion along the building facade
with a slight panning (see Figure 3.12 for some examples). The length of
the translation is 10m with a mean distance between the camera and scene
(the facade of the building) of � 9m. In order to accurately compare the
results with the ground truth, we fix the scale of the model by fixing the first
two camera poses in the initialization step. The following camera poses are
estimated by direct registration with the model (see Figure 3.13).

For comparison purposes, we used 4 types of feature extractors: Har-
ris, Hessian, SIFT and SURF. The processing time for the sequence was
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Fig. 3.12 Car Scene – Input images. Synthetic images generated using ray-
tracing rendering. Here, we illustrate 4 of the 20 frames showing some of the chal-
lenges: specular objects (car body and building windows) induce inter-reflections,
irregular illumination due to shadows (garage door, doors and pavement), trans-
parency (car windows), etc.

� 14mins6. A detailed description of execution times is presented in
Table 3.2. We processed this sequence using both NN and Approximated
Nearest Neighbor (ANN). The use of ANN provides a significant gain in
computation time (see Figure 3.14): NN times are quadratic in the number
of features while ANN times are linear.

6 The DPR-SfM algorithm was implemented in Matlab, partially using C++ rou-
tines. All the experiments presented in this work were executed on an Intel Core
Duo 2.13 GHz 64-bit platform.
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Fig. 3.13 Car Scene – 3D model. Two views of the 3D model containing 9,800
vertices – 2,900 Harris, 2,600 Hessian, 2,400 SURF and 1,800 SIFT. The first two
camera poses (shown in red) were fixed in order to recover the scale. The remaining
camera poses (green) were estimated by direct registration along with scene model
(red dots).
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Table 3.2 Car Scene – Processing time. Average processing time for each step
(seconds/frame).

Feat. Extraction Feat. Matching (ANN) Camera Pose Vertex Position

40.1 2.1 0.2 0.6
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Fig. 3.14 Car Scene – Scene feature matching time. Comparison of aver-
age times for matching image and scene features vs. number of features in scene.
The number of features in the image is constant (12,000). Using ANN decreases
drastically the computation times.

The resulting scene model is illustrated in Figure 3.13:

• Invalid vertices formed by reflective surfaces are removed.
• Facade regions partially occluded by the car are correctly modeled

(e.g. left of the building entrance).

The ray-tracing software was modified to generate the ground truth 3D po-
sition of the points in the scene corresponding to each pixel in the rendered
images. Knowing the position of the extracted visual features, the accuracy
of the model is quantified by comparing the vertex position estimations with
the ground truth.

Figure 3.15a illustrates the average residuals (XY Z) for the vertices gen-
erated by each feature extractor. While very similar, SIFT and SURF have
slightly greater residuals than Harris and Hessian, due to the nature of the ex-
tractors (see Section 2.1.3). The evolution of error in camera pose estimation
is shown in Figure 3.15b.

In ideal conditions (absence of noise, distortions, blurring, etc.), both scene
geometry and camera pose estimations are accurate and the error accumula-
tion (drifting) is very small. Additionally, we want to test the robustness and
accuracy of DPR-SfM for realistic scenarios. For this, we use a Monte Carlo
test by adding noise to image features, aiming to:
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Fig. 3.15 Car Scene – Reconstruction errors. Figure (a) shows the vertex
position residuals by frames, for each feature extractor. The extractors yield com-
parable results, with small error accumulation. In (b) we represent the error in
camera pose. The residuals in both position and attitude are very small with a slow
error accumulation.
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• Assess the accuracy of the model and camera pose estimations in presence
of noise.

• Robust camera pose estimation and vertex position estimation use a pre-
established threshold ρ for outlier rejection (see Sections 3.5, 3.6). We test
how this threshold affects the DPR-SfM accuracy.

As we consider feature localization errors to follow a normal distribution, we
use a zero-mean gaussian noise with a known standard deviation σ. For each
test, we fix the value of ρ and we generate the model with increasing values
of σ until a valid model cannot be generated. We use two values for ρ: 1.5
and 2.5 (values typically used in DPR-SfM). The errors in scene model and
camera pose are given by εv, εp and εa, where εv is the average error in vertex
position estimation and εp is the average error in camera position estimation
(both error measurements are given by the average Euclidian distance). The
error in camera attitude estimations εa is given by the average of absolute
differences over all the rotations:

εa =

N∑
i=1

|φi − φi|+ |θi − θi|+ |ψi − ψi|

3N

where (φi θi ψi) is the estimated orientation and (φi θi ψi) is the ground
truth orientation for camera pose i; N is the total number of frames.

Table 3.3 details the results of the Monte Carlo tests. The noise in im-
age features has little impact on both model and camera pose estimations,

Table 3.3 Car Scene – Monte Carlo test results. The results for two values
of ρ. The values for εv and εp are expressed in m·10−3 and εa is expressed in
rad · 10−3. Vert./fr. represents the average number of vertices registered in each
frame.

ρ = 1.5 ρ = 2.5
σ εv εp εa vert./fr. εv εp εa vert./fr.

0 47.9 1.3 0.03 2226 61.2 3.0 0.05 2449
0.2 48.9 1.4 0.10 2211 61.9 3.2 0.14 2447
0.4 48.8 1.8 0.16 2148 63.6 3.3 0.18 2446
0.6 50.5 3.3 0.21 1939 65.5 4.0 0.23 2435
0.8 51.8 4.2 0.25 1598 66.0 4.4 0.27 2416
1.0 57.9 4.1 0.31 1285 66.4 3.7 0.29 2291
1.2 63.3 7.5 0.7 970 73.8 6.2 0.32 2309
1.4 69.1 14.5 0.81 848 74.0 5.1 0.34 2180
1.6 65.7 19.6 0.85 329 81.8 4.7 0.43 2035
1.8 – – – – 85.6 6.0 0.45 1857
2.0 – – – – 90.7 7.0 0.50 1671
2.2 – – – – 106.6 7.8 0.61 1471
2.4 – – – – 124.6 7.9 0.72 1237
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Fig. 3.16 Car Scene – Feature evolution in Monte Carlo test. The av-
erage number of vertices drops as the noise level increases (Top Figure). Using a
more relaxed threshold keeps a larger number of vertices but slightly decreases the
accuracy of the vertices (Bottom Figure).

especially when a low threshold is used. However, as the noise level increases,
the use of a very restrictive threshold highly reduces the number of vertices
(see Figure 3.16). This affects the camera registration precision, ultimately
leading to the impossibility to generate a valid model.

Figure 3.17 illustrates the distribution of the noise in the image features
for each threshold. The DPR-SfM can generate a valid scene model even in
the presence of an overwhelming number of outliers (more than 60%).
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Fig. 3.17 Car Scene – Image feature noise distribution. The two histograms
correspond to the maximum noise level where DPR-SfM could generate a valid
model for ρ = 1.5 and ρ = 2.5 respectively. In (a) 35.4% of the features fall within
the threshold (yellow line) while in (b) 39.2%.
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3.8.2 Water-Tank Sequence

This sequence is part of a series of experiments, used for testing the perfor-
mance of the DPR-SfM algorithm under realistic conditions. The dataset was
acquired by a camera mounted on the Johns Hopkins University (JHU) ROV
at the JHU test tank. The bottom of the tank was populated with rocks and
shells, simulating the appearance and geometry of a typical seafloor scene.
The size of the scene is � 5 × 5m. The sequence, comprised of 3,500 images
(see Figure 3.18), was acquired at a constant distance of 1.2m above the bot-
tom of the tank. After the visual survey, the tank was drained and scanned
with a Leica Geosystems laser scanner, obtaining 3.8 millon points with an
estimated accuracy of 1.2mm.

The objective of this experiment was to assess the 3D reconstruction ac-
curacy of the DPR-SfM using the ground truth, under a realistic scenario,
and compare it with state-of-the-art SfM algorithms.

For this purpose we have applied DPR-SfM on the dataset in conjunction
with OVV (see Chapter 4) in order to efficiently detect loop closures, followed

Fig. 3.18 Water-tank Sequence – Input images. Sample images from the
dataset depicting some of the objects present in the scene.
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by bundle adjustment. The resulting 3D model, consisting of 610,000 vertices,
is illustrated in Fig. 3.19 along with the estimated camera trajectory.

The same dataset was processed using sparse reconstruction algorithm:
VisualSFM [164, 175], and dense reconstruction algorithms: Patch-based
Multi-view Stereo Software (PMVS) [44, 141] and Multi-View Reconstruc-
tion Software (CMPMVS) [22, 78]. It should be noted here that PMVS and
CMPMVS are multi-view stereo approaches, meaning that these algorithms
require camera poses to be computed prior to the reconstruction. In our ex-
periment, we have used camera poses obtained using both DPR-SfM and
VisualSFM as basis for the dense reconstructions.

The accuracy of the reconstructions was quantified by comparing the ob-
tained models with the laser scan. For this, for each obtained 3D model, we
first manually aligned it with the laser scan using 3D point correspondences.
The alignment was further refined using Iteratively Closest Point (ICP) [186].
In order to assess the accuracy of the reconstructions, we quantify the re-
construction errors using the Hausdorff distance [115] between the models
and the laser scan ground truth. Table 3.4 summarizes the reconstruction
accuracy, 3D model complexity and computational times for each of the
reconstruction techniques. DPR-SfM provides the most accurate 3D recon-
struction, compared to either sparse and dense reconstruction techniques.
Moreover, for both PMVS and CMPMVS, the models obtained using camera
poses estimated using DPR-SfM yield a higher accuracy. The complexity of
the model obtained using DPR-SfM is slightly higher than VisualSFM and
� 60% of the complexity of dense models in terms of number of vertices.

Regarding the computational costs, DPR-SfM had similar execution times
with PMVS and CMPMVS, while VisualSFM has much higher execution
times due to its brute-force approach for cross-over detection – tries to match
any possible combination of two images in the sequence.

Table 3.4 Water-tank Experiment – Comparison between 3D reconstruc-
tion algorithms. The table summarizes the reconstruction errors for DPR-SfM,
VisualSFM, PMVS and CMPMVS. Both the average error E and maximum error
Emax shown here are provided in metric units and in percentages of scene depth.
For PMVS and CMPMVS, we show the reconstruction accuracy when using camera
poses recovered using both DPR-SfM and VisualSFM – the computational times
shown here represent only the dense recontruction process and do not include the
camera pose recovery process.

Algorithm E [m] E [%] Emax [m] Emax [%] Vertices Time [h]
DPR-SfM 0.011 0.91 0.092 7.60 610,000 4.1
VSFM 0.0125 1.03 0.116 9.59 560,000 97.5
DPR-SfM+PMVS 0.016 1.32 0.134 11.07 1,022,000 3.95
DPR-SfM+CMPMVS 0.015 1.24 0.129 10.66 1,343,000 4.8
VSFM+PMVS 0.0173 1.43 0.137 11.32 957,000 3.92
VSFM+CMPMVS 0.0165 1.36 0.133 10.99 1,256,000 4.82
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Fig. 3.19 Water-tank Sequence – Scene model and camera trajectory
obtained using DPR-SfM. The model consists of 610, 000 vertices, shown in
green. The camera trajectory is marked in blue. Both the model and the camera
trajectory were subsampled for illustrative purposes.

Figure 3.20 illustrates the error distribution within the reconstruction ob-
tained using DPR-SfM. The wide regions of the tank bottom with higher
error correspond to changes in the carpet shape as the tank was drained for
the laser scanning. For details on the acquisition process refer to [138].

Fig. 3.20 Water-tank Sequence – Error distribution. The color encoded by
error magnitude, lighter areas correspond to higher errors.
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3.8.3 Rocks Loop

In this experiment, we discuss the capability of the DPR-SfM algorithm to
model outdoor, unstructured scenes.

The scene, illustrated in Figure 3.21, is formed by a random arrangement
of rocks. The image sequence was acquired using a monochrome camera with
a resolution of 696× 520 pixels. A sample of the images is shown in Figure
3.22. During the acquisition, the camera was looking downwards, towards the
scene, and rotated so that its y axis was tangent to the direction of movement,
simulating a down-looking camera mounted on an UUV.

Fig. 3.21 Rocks Loop – Overview. The scene is comprised by a round area with
a diameter of � 8m. The area is covered by rocks with varying sizes and textures,
ideal for simulating an underwater relief.

The sequence of 740 frames was processed using HarrisAffine-SURF and
SURF-SURF, yielding 170,000 vertices – 86,000 Harris and 84,000 SURF (see
Figure 3.23a). We obtain an average back-projection error of 1.72 pixels, with
1.67 pixels for Harris and 1.75 pixels for SURF. The average track length for
Harris is 12.1 frames while for SURF is 14.3 frames. This shows that, in the
case of unstructured environments, Harris provides better precision in feature
localization, while SURF is more robust to image transformations.

The major drawback of these types of environments is the impossibility
of an exact quantification of the reconstruction accuracy due to the lack of
ground truth. We overcome this by designing the camera trajectory to have
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Fig. 3.22 Rocks Loop – Input images. A sample set of the input images. We
used a plastic object (highlighted in yellow) to mark the beginning and ending of
the loop.

a loop form, so that its beginning overlaps its ending (see Figure 3.22). In
this way, we establish constraints between the two ends of the loops (see
Appendix B). After detecting the loop closure and applying BA, we correct
the estimation errors up to a high degree of precision (see Figure 3.23b). We
use this corrected model as the ground truth and compare it with the origi-
nal result, quantifying the accuracy of the DPR-SfM. Figures 3.24 and 3.25
illustrate the error evolution in vertex position and camera pose respectively.

3.8.4 Pool Trials

We present one of the experiments we have conducted in the Underwater
Robotics Center of the University of Girona. Shown in Figure 3.26a, the center
is endowed with a pool used for performing tests of small class underwater
vehicles. The Underwater Vehicles (UVs) are controlled and monitored from
a submerged control room, allowing the researchers to have live panoramic
view of the experiments.
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Fig. 3.23 Rocks Loop – 3D model and camera trajectory. Figure (a) illus-
trates the resulting model along with the estimated camera trajectory. The drifting
generates a gap in the model where the loop should be completed. The model is
corrected after loop closure detection and BA (b).
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Fig. 3.24 Rocks Loop – model estimation errors. The evolution of the ver-
tex position estimation errors by frame for each degree of freedom. Bottom plot
illustrates the total vertex estimation error.

The tests were performed using Ictineu, an open frame, small class Au-
tonomous Underwater Vehicle (AUV) (see Figure 3.26). The modular design
of Ictineu allows us to set up different types of sensors, depending on the
mission environment and purpose. For our experiments, we have used an off
the shelf, low end, 384 × 288 pixels monochrome camera. The camera was
mounted on Ictineu on a down-looking configuration.

The AUV was set to follow predetermined trajectories, while the cam-
era was acquiring images of a poster mounted on the bottom of the pool,
simulating a seafloor scene.

The aim of the experiments is to observe the behavior of the DPR-SfM
algorithm in the presence of flat scenes. In these cases (e.g. sandy seafloor
regions, building facades, etc.), SfM algorithms fail due to the lack of parallax.
Our dual approach, on the other hand, allows us to handle these situations
(see Sections 3.3 and 3.5).

In the presented experiment, we have acquired a sequence of 150 frames
while Ictineu was following a straight trajectory, maintaining a constant
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Fig. 3.25 Rocks Loop – Camera pose errors. Camera pose estimation error
evolution by frame, for each degree of freedom. Bottom two plots illustrate total
estimation errors for position and attitude respectively.

distance to the poster of � 1.5m (refer to Figure 3.27 for examples of images
from the dataset). During the experiment, there was a brief communication
error between Ictineu and the control room generating some invalid frames
to be captured. This offered an ideal situation to test the robustness of the
DPR-SfM algorithm when faced to camera obstructions / errors.

After processing the sequence, we obtained 10,000 HarrisAffine and 7,000
SURF vertices. In both cases, we used SURF for description. Figure 3.28
illustrates the result of the reconstruction. The gap in the camera trajectory
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(a)

(b)

Fig. 3.26 Pool Trials – Experimental setup. (a) Underwater Robotics Lab-
oratory of the University of Girona and (b) Ictineu AUV (foreground) with the
seafloor poster during the experiments, photographed from the submerged control
room.
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Fig. 3.27 Pool Trials – Input images. Images from the sequence of the poster
simulating an underwater scene.
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Fig. 3.28 Pool Trials – 3D model and camera trajectory. 3D model of the
poster and camera trajectory. There is a gap in the camera trajectory due to a
communication error between the UV and the control room.
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corresponds to the communication error. DPR-SfM was able to recover from
this situation, correctly registering the following frames.

In order to account for the precision of the reconstruction we first first
determine the average scene plane using Least-Squares fitting to the 3D ver-
tices. As the scene is planar, we define the reconstruction error as the Eu-
clidean distance between the plane and the 3D vertices. The distribution of
the reconstruction error is illustrated in Figure 3.29.
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Fig. 3.29 Pool Trials – Reconstruction error histogram. We calculate the
reconstruction error as the Euclidean distance between the scene plane and the
vertices.

3.8.5 Coral Reef Sequence

Here we discuss the results obtained from sequence depicting a coral reef
area. This dataset is part of a larger survey of a benthic habitat undertaken
in shallow waters in The Bahamas. The images were acquired by the Univer-
sity of Miami (UoM) using a hand-held HD camera. The sequence consists
of 1,100 images of 962× 540 pixels (the resolution of the images was reduced
from 1920×1080 due to interlacing). The area was surveyed with the camera
following a “lawnmower” trajectory, with partial overlap between adjacent
columns. This provides a complete coverage of the area while offering addi-
tional constraints in the model.

The sequence covers � 150m2 and was chosen to include different types
of topologies and textures often found in underwater scenes. Figure 3.30
depicts typical entities found in the dataset. We recover the scene model
using HessianAffine-SURF and SURF-SURF features with an outlier rejec-
tion threshold ρ = 1.5, obtaining 270,000 vertices (130,000 HessianAffine and



3.8 Experimental Results 75

Fig. 3.30 Coral Reef Sequence – Input images. Sample images from the input
sequence showing different types of regions: coral reef formations, rocks, algaes,
sand, etc.

140,000 SURF). Figure 3.31 illustrates the scene model and camera trajec-
tory – the number of vertices in the model has been reduced 10 times in order
to avoid cluttering in the figure.

The aim of this experiment is to asses the accuracy of the model with
respect to the texture types present in the scene. For this, we consider the
average back-projection error for each reconstructed vertex. Figure 3.32 shows
that the precision of the vertex reconstruction is highly related to the saliency
of the corresponding image features7. Moreover, it can be observed that there
is a strong correlation between the vertex precision and the type of its neigh-
boring scene type (e.g. vertices in rocky and coral reef areas are more accurate
than ones in sandy areas).

Using the constraints between adjacent columns in the camera trajec-
tory (see Appendix B), we apply BA on the sequence. We use the result
as reference to quantify the errors in the reconstruction. The error evolu-
tion in camera pose estimation is illustrated in Figure 3.33. As the camera
is registered directly with the model, the errors do not increase significantly
along the columns in the camera trajectory, reducing drastically the error
accumulation.

7 The saliency represents a quality measurement of the features. It is related to
the image gradient in the neighborhood of the feature, so that higher saliency
corresponds to more accurate and discriminant features.
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Fig. 3.31 Coral Reef Sequence – 3D model and camera trajectory. (a)
simplified scene model and camera trajectory: green and magenta markers show
the beginning and end of trajectory respectively; (b) another view of the scene
model.
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(a)

(b)

(c)

Fig. 3.32 Coral Reef Sequence – Vertex error. Figure (a) shows the back-
projection error distribution. Darker values correspond to higher accuracy. The
distribution of image feature saliency is shown in (b); lighter values correspond
to higher saliency. The ortho-mosaic of the scene is provided for reference in (c),
showing the relation between region types, feature saliency and vertex accuracy.
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Fig. 3.33 Coral Reef Sequence – Camera pose errors by frames. (a) camera
pose errors and (b) camera attitude errors.
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3.8.6 Mequinenza Sequence

In this experiment, we aim to test the behavior of the DPR-SfM under difficult
image conditions. The sequence was captured in the Ebro river, Mequinenza,
Catalunya by the Ictineu AUV using a down-looking monochrome camera.
Due to the high turbidity in the water, we used additional lighting, which
increased the visibility but induced shadows and non-uniform illumination
patterns. Moreover, due to back-scattering, the images have low contrast
(see Figure 3.34).

Fig. 3.34 Mequinenza Sequence – Input images. Image samples depicting
some of the challenges of sequence: scattering, light absorbtion, shadows, complex
scene geometry, etc.

The sequence, comprised by 2,900 frames of 384 × 288 pixels resolu-
tion, was first pre-processed using Contrast Limited Adaptive Histogram
Equalization (CLAHE) [188] in order to enhance the quality of the images.
Using SURF-SURF features, we obtained 220,000 vertices. Figure 3.35 il-
lustrates the resulting camera trajectory and scene model (the number of
features has been reduced for illustration clarity). The model shows an envi-
ronment with complex geometry, also, the trajectory of the camera depicts a
motion of Ictineu with sudden changes in heading and motion direction due
to the water currents.
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Fig. 3.35 Mequinenza Sequence – 3D model and camera trajectory. (a)
scene model along with camera trajectory: green and magenta markers show the
beginning and end of trajectory respectively; (b) another view of the scene model.

Using an outlier rejection threshold ρ of 1.5, we obtain an average back-
projection error for the whole model of 0.9 pixels.



3.8 Experimental Results 81

3.8.7 Urban Experiment

This experiment was aimed at testing the DPR-SfM algorithm for large-
scale urban modeling applications. For this, we acquired a sequence of Unirii
Square in Timisoara, Romania. The square, illustrated in Figure 3.36, has a
rectangular shape, measuring � 155× 120m and is surrounded by historical
buildings of various shapes and textures. We used a low-end Pentax Optio
A30 digital camera for video acquisition, while walking through the square
following a loop trajectory. The resulting image sequence contains 961 frames
of 640× 460 pixels in resolution (see Figure 3.37).

Fig. 3.36 Urban Experiment – Overview of the Unirii Square. Aerial view
of the Unirii Square.

After applying DPR-SfM on the sequence using SURF-SURF, the resulting
model, shown in Figure 3.38, contains 240,000 vertices. The drift due to error
integration is obvious at the loop closure, where the facades of the buildings
are repeated (see Figure 3.38b). The main reason behind the high drift in
this dataset is the decreased precision in feature localization due to the low
quality of the images: the camera uses a high compression ratio MPEG2
codec, which results in loss of details in images.
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Fig. 3.37 Urban Experiment – Input images. Sample images from the dataset,
showing some of the typical challenges such as moving objects, occlusions, sun
flickering, lack of texture, etc. Also, the partial overlap between the first and last
image can be clearly observed.



3.8 Experimental Results 83

−100−50050100

−40

−20

0−150

−100

−50

0

50

100

Y [m]

X [m]

 701
 751

 801
 851

 651

 901

 601

 951
   1  51

 551

1001 101

 501

 151

 451

 201

 401

 301
 251

 351

Z
 [m

]

(a)

-100 -50 0 50 100
-150

-100

-50

0

50

100

351

251

301

401

201

451

151

501

101

X [m]

1001

551

51
1

951

601

901

651

851

801

751

701

Z
 [
m

]

(b)

Fig. 3.38 Urban Experiment – 3D model and camera trajectory. (a) scene
model (red) along with camera trajectory (blue) – the number of vertices in figure
was reduced by 10 times to avoid cluttering; (b) top view of the scene model clearly
depicting the drift at the loop closure (repeated edges at the bottom marked in
green).
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After the loop closure detection (see Section 4.4.5), we corrected the model,
as shown in Appendix B. The result is shown in Figure 3.39.

Considering the model after BA as the ground truth, we calculate the
camera pose and vertex position estimation errors by comparing the models
before and after the BA (in a similar fashion to the experiment described in
Section 3.8.3). Figure 3.40 illustrates the error for both camera and vertex
estimations.

3.9 Discussion

In this chapter we presented a novel SfM algorithm for large scale scene
modeling. The algorithm generates the scene models sequentially, using a
two stage approach. Initially, DPR-SfM creates a seed model corresponding
to a small subregion of the scene, using camera motion estimation techniques.
In the second stage, the scene model is extended to cover the entire surveyed
area. During scene reconstruction, the camera pose is recovered by directly
registering camera views with the scene model. This increases the accuracy
and robustness of DPR-SfM, allowing it to successfully cope with situations
often found in visual surveys such as occlusions, camera temporary failures,
etc. Also, using direct camera pose registration highly increases the flexibility
of the DPR-SfM.

Generally, state of the art SfM algorithms require additional sensor infor-
mation or impose constraints on the image acquisition (e.g. minimum camera
movement between frames for correct motion estimation). DPR-SfM can be
readily applied on image sequences acquired with any type of camera, both
still and video, with no constraints on the camera acquisition process. Also,
the presented SfM algorithm does not require navigation priors. However,
sensor information such as camera pose can be used to decrease the compu-
tational cost of the algorithm.

The direct camera pose registration uses a novel dual RANSAC projective/
homography approach which allows the DPR-SfM algorithm to accurately
model both planar and non-planar scenes. This is particularly important in
underwater and urban scenes, where parts of the scene can have significant
parallax while others can be perfectly planar.

Robust estimation methods are also used on vertex position recovery.
Experiments show that using a dual layer (camera and model) RANSAC
approach increases the stability and accuracy of the method, especially in
challenging environments, such as underwater, where image blurring and low
contrast decrease the efficiency of feature tracking.

We have also developed an efficient and flexible scene representation. It al-
lows the 3D modeling of large and complex scenes while enabling the parallel
use of multiple visual feature extractors/descriptors. In this context, we em-
ployed a kd-tree scheme for efficient feature matching and camera registration
even for large scene models.
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(a)

(b)

Fig. 3.39 Urban Experiment – 3D model and camera trajectory after
BA. (a) view of the 3D model using colored vertices, and the camera trajectory;
(b) top view of the 3D model aligned with an aerial view of Unirii Square from
Google Earth – the reconstruction fits the photo accurately.
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Fig. 3.40 Urban Experiment – Estimation errors. (a) total camera position
drift: evolution by frames; (b) vertex estimation error distribution.

Experiments show the robustness of DPR-SfM in both land and under-
water environments. In the Water-tank experiment we compare different
state-of-the-art sparse and dense SfM techniques, showing that DPR-SfM has
improved accuracy, both in terms of scene modeling and camera pose
recovery.

Results demonstrate that DPR-SfM can efficiently cope with large and
complex reconstructions8 (e.g. Section 3.8.2).

There are several ongoing and future topics that may improve the work
presented in this chapter. After camera pose registration, the image patches
around features can be warped using camera-to-model transformations. This
would reduce the limitations of feature extractor/descriptors of coping with
extreme geometric distortions, increasing the efficiency of feature matching.
Also, the accuracy of feature localization can be improved by using cross-
correlation as a refinement step after feature tracking. Feature-to-model as-
sociation computational costs can be highly decreased by using GPU-based
parallel processing, e.g. using NVIDIA CUDA.

8 We consider the complexity of the 3D modeling problem to be quantified by the
amount of data involved in the reconstruction (i.e. number of camera poses and
vertices), rather than the metric size of the scene, as the size of the reconstructed
area depends only on the camera-to-scene distance and the properties of the
camera lenses.
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