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Foreword

Robotics is undergoing a major transformation in scope and dimension. From
a largely dominant industrial focus, robotics is rapidly expanding into hu-
man environments and vigorously engaged in its new challenges. Interacting
with, assisting, serving, and exploring with humans, the emerging robots will
increasingly touch people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has
produced is revealing a much wider range of applications reaching across di-
verse research areas and scientific disciplines, such as: biomechanics, haptics,
neurosciences, virtual simulation, animation, surgery, and sensor networks
among others. In return, the challenges of the new emerging areas are prov-
ing an abundant source of stimulation and insights for the field of robotics.
It is indeed at the intersection of disciplines that the most striking advances
happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing
to the research community the latest advances in the robotics field on the ba-
sis of their significance and quality. Through a wide and timely dissemination
of critical research developments in robotics, our objective with this series is
to promote more exchanges and collaborations among the researchers in the
community and contribute to further advancements in this rapidly growing
field.

The monograph by Tudor Nicosevici and Rafael Garcia reports original
research work aimed at developing end-to-end solutions for creating accu-
rate 3D textured models using monocular video sequences.Three main con-
tributions are outlined and critically discussed, namely: i) a method for
3D modeling of the environment which is derived from sequential structure
from motion, ii) an online approach for measuring similarities between im-
ages, iii) an online 3D model simplification algorithm allowing mapping of
complex scenes.



VIII Foreword

The performance of the various algorithms is effectively tested and com-
pared using a series of challenging datasets both in underwater and outdoor
scenarios. A fine addition to STAR!

Naples, Italy Bruno Siciliano
December 2012 STAR Editor



Abstract

Scene modeling has a key role in applications ranging from visual mapping
to augmented reality. This book presents an end-to-end solution for cre-
ating accurate 3D textured models using monocular video sequences, with
contributions at different levels.

First, we discuss a method developed within the framework of sequential
Structure from Motion, where a 3D model of the environment is maintained
and updated as new visual information becomes available. The camera pose is
recovered by directly associating the 3D scene model with local image obser-
vations, using a dual registration approach. Compared to the standard Struc-
ture from Motion techniques, this approach decreases the error accumulation
while increasing the robustness to scene occlusions and feature association
failures, allowing 3D reconstructions for any type of scene.

We also develop an online approach for measuring similarities between im-
ages. In this way, images corresponding to the same scene region can be asso-
ciated, allowing the reduction of drift and position uncertainties for mapping
and navigation. Inspired from content-based image retrieval, the proposed
approach uses visual vocabularies to represent images as occurrences of vi-
sual words. The technique is entirely sequential and automatic, making it
suitable for online applications, such as robot navigation and mapping: (i)
the vocabularies are built and updated online, during image acquisition, in
order to efficiently represent the visual information present in the scene, and
(ii) the vocabulary building and image indexing processes do not require any
user intervention.

Lastly,motivated by the need to map large areas, we propose an online 3D
model simplification algorithm. The simplification process uses plane-parallax
to estimate the geometry of the scene, eliminating the necessity of explicit
scene shape information. Such an approach offers two main advantages: (i)
it is suited for online applications, where it can run parallel with the 3D
reconstruction process, and (ii) as it does not require having the full model
prior to the simplification, the algorithm allows mapping of larger, more
complex scenes.

We discuss the efficiency of the proposals and compare them with other
state of the art approaches, using a series of challenging datasets both in
underwater and outdoor scenarios.
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Chapter 1

Introduction

1.1 Objectives

The aim of this book is to provide a complete framework for efficient 3D
modeling. More specifically, given an image sequence of a scene, the objective
is to provide a high-precision textured 3D reconstruction of the scene with
virtually no human intervention.

The main focus of this book is on efficient modeling of 3D underwater
scenes for scientific studies. Nevertheless, as shown in this work, we have
successfully applied the technique in other areas of interest such as the
reconstruction of small scale objects, outdoor natural scenes, urban envi-
ronments, etc.

Although some successful 3D reconstruction algorithms have been reported
in literature, they are limited to specific applications. Most techniques assume
controlled or structured environments, where illumination, camera motion
and scene geometry priors can be used. More importantly, these techniques
can be applied to very limited scenes only, due to the complexity of the 3D
reconstruction problem.

In contrast, we aim to develop an online generic framework for 3D scene
reconstruction that can cope with wide areas of complex and highly unstruc-
tured environments. In order to achieve this, we focused on the following
aspects:

Online process. The entire framework has been designed to process the data
sequentially, enabling its use on online applications such as robot naviga-
tion and mapping.

Flexibility of acquisition. The 3D reconstruction algorithm uses image se-
quences that can be acquired by using any type of video/still cameras,
with no constraints on the acquisition process. Moreover, the framework
can readily cope with camera occlusions and temporary failures.

Stand-alone framework. While additional information can be integrated
into the 3D reconstruction process, the framework does not require any
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additional sensor information. This increases the flexibility of the recon-
struction process while decreasing the acquisition costs. In this way, under-
water sequences can, for example, be acquired by using cameras mounted
on inexpensive Remotely Operated Vehicles (ROVs) or even by divers us-
ing hand-held cameras. On the other hand, without absolute positioning
sensors, vision systems are prone to drifting. We address this shortcoming
by proposing a novel online cross-over detection system, that allows the
detection of loops in camera trajectory along with camera pose1 correction.

Efficient 3D modeling. The framework employs a novel online 3D model
simplification algorithm, that allows mapping of larger, more complex
scenes.

1.2 Motivation

Throughout the history of the Earth, the most determinant element, that
shaped it as we know it today, are the oceans. They are the origin of life
on Earth and home of the widest biodiversity. Moreover, the oceans are the
major factor in our climate, literally affecting almost every aspect of our daily
lives.

Apparently paradoxical, the oceans represent the least studied region of
the Earth’s surface. The main reason behind this is the inaccessibility and
hostility of this environment. This, however, is changing at a rapid pace.
Our urge to find alternative food and energy sources, to understand climate
changes and geological phenomena have determined the scientists to multiply
their efforts into understanding this complex environment. Moreover, the
latest technological advances provide the scientists with the basis for more
efficient means to explore the underwater environment.

In this context, this work proposes a valuable tool for remote underwater
studies. Images acquired by scuba divers using hand-held cameras can be
used to obtain high detail textured 3D models of the seafloor. Using cameras
mounted on Unmanned Underwater Vehicle (UUV) we can obtain 3D maps
of high depth underwater regions that otherwise would be inaccessible to
humans. Just to name a few, this proposal has applicability in (see Figure
1.1 for some examples of scientific oriented underwater imagery):

• Biology. Visual 3D maps of marine habitats provide important clues in
studying the marine species and their interaction with the environment.

• Ecology. The impact of human activities on our environment has become
a matter of great concern nowadays. Climate changes, intensive fishing and
the destruction of habitats greatly affect the underwater biodiversity. In
this context, 3D models can be used to observe and monitor the changes
that take place in the underwater habitats, such as coral reefs.

1 Camera position and attitude (orientation).
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(a)

(b)

(c)

Fig. 1.1 Motivation – Scientific underwater imagery. (a) a coral reef head
near Bahamas; (b) underwater lava formations captured during MoMARETO’06
cruise – courtesy of IFREMER and (c) amphoras near Pianosa Island in the
Mediterranean Sea – courtesy of Venus Project.
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• Geology. Shape and texture of the regions with increased geological ac-
tivity greatly aid geologists in order to understand the complex geological
phenomena that take place underwater.

• Archeology. In our pursuit to understand history, we continuously search
the depths of the oceans for new clues about our past. Unfortunately, in
most cases the artifacts are too fragile or too inaccessible to be recovered
for studying. In this case, 3D models can provide a viable solution for
remote archeological studies.

Nowadays, an increasing number of underwater studies employ ROVs as an
alternative to scuba divers. This eliminates the risks the divers are exposed to,
especially in deep waters, while allowing more efficient studies. However, the
use of ROVs poses a series of drawbacks: their operation requires specialized
personnel and their range and depth is limited by the length of their umbilical
cable, which connects the ROV with the ship. Various research groups have
focused their efforts on developing underwater vehicles that would carry out
missions autonomously. This requires that the vehicles be able to model the
environment in order to navigate through it. The images acquired by cameras
mounted on these vehicles can be processed and 3D maps of the environment
can be obtained. Furthermore, the obtained maps can be used for navigation
in subsequent missions where, for example, successive surveys of the same
area are needed.

With the wide accessibility of high computational power, the use of wide
area 3D modeling has become an area of interest in fields much closer to the
end-user:

• Urban 3D modeling. Applications such as Google Earth [58] (see
Figure 1.2) or certain navigation applications such as iGo [75] offer 3D
models of urban landmarks. The process of constructing the 3D models
could be highly simplified by using automated 3D modeling techniques.
Additionally, one could imagine applications where tourists would able to
obtain 3D models along with information about the landmarks they are
visiting.

• Architecture. Indoor / outdoor 3D models of buildings can be obtained
for virtual marketing purposes. Also, using augmented reality, one could
visualize beforehand the results of the restoration of a historical building
for example, etc.

• Virtual reality. Computer games and virtual community applications
such as Second Life [158] could be enriched with 3D models of real-life
objects and buildings.

1.3 Challenges

The human brain interprets visual information provided by the eyes by gen-
erating 3D images of our surroundings. We use this information in order to
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Fig. 1.2 Motivation – Urban architecture. Google Earth view of downtown
Miami depicting 3D models of the most iconic buildings.

orient ourselves and move through the environment. The flexibility and power
of abstraction of the brain allows it to easily cope with constant challenges in
our environment such as moving objects, lighting artifacts and so on. When
it comes to computer vision however, things become ever more difficult. For
this, in order to achieve flexibility and robustness, we need to address a series
of challenges:

• Unstructured, natural 3D scenes consist of large amounts of objects with
diverse shapes and textures. As the camera moves through the scene, ob-
jects constantly occlude each other (see Figure 1.3).

• Light changes (e.g. motion of the light source), moving shadows, alter-
ing of light reflections in specular surfaces due to point of view changes
drastically modify the photometric properties of the scene. This effect is
particularly emphasized in underwater scenes, where sun flicker (changes
in light pattern due to sunlight being refracted on moving sea surface) dra-
matically changes the illumination field (refer to Figure 1.4 for details).

• Moving objects such as cars and pedestrians in urban environments or
fishes and algaes in underwater environments (see Figure 1.5) violate the
rigid scene assumption, inducing errors in scene geometry estimation.

All these are common challenges faced by computer vision systems. However,
the underwater environment poses specific challenges that make underwater
imagery a particularly difficult task (Figure 1.6):

• In water, light suffers a much higher rate of attenuation than in atmo-
spheric conditions. This limits the maximum distance between the camera
and the scene, resulting in a narrow coverage of the camera. In order to
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(a) (b)

(c) (d)

Fig. 1.3 Challenges – Scene occlusions. (a) and (b) show the same underwater
scene from two different camera view points; The region marked by the yellow
rectangles is shown in detail in (c) and (d). Note the rock is clearly visible in (a)
and (c) but almost occluded in (b) and (d).

cover wide scene areas, large amounts of images have to be merged. Fur-
thermore, due to light attenuation, at great depths, additional illumination
sources have to be used. Generally, underwater vision systems employ focus
lights as the latter can illuminate the scene at greater ranges. The draw-
back of the focus lights, however, is that they induce highly non-uniform
lighting fields [50] (refer to Figure 1.6a for details).

• The contrast of underwater images is reduced due to light absorbtion,
decreasing the signal-to-noise ratio (see Figure 1.6b).

• Small suspended particles present in the sea water such as plankton and
sediments generate the so called scattering effect. Practically, the scatter-
ing effect takes place due to the light changing direction when it enters in
contact with the particles. The forward scattering bends the light beams
traveling from the scene towards the camera, resulting in a blurring effect
that reduces the level of detail of the images (Figure 1.6c). On the other
hand, the backward scattering refracts the light from the light source to-
wards the camera decreasing the contrast and inducing noise in the images
(Figure 1.6d).



1.3 Challenges 7

(a) (b)

(c) (d)

(e) (f)

Fig. 1.4 Challenges – Light artifacts. (a) and (b) illustrate an underwater scene
a few frames apart. The details of the outlined region are visible in (a) while not
distinguishable in (b) due to shadowing. Specular surfaces such as wet pavement
(c) and windows (d) are highly reflective, inducing lighting artifacts. (e) and (f)
show two frames of an underwater scene taken only 150ms apart. The light pattern
changes drastically due to sun flickering.
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(a) (b)

Fig. 1.5 Challenges – Moving objects. Moving objects such as pedestrians
in urban scenes (a) and fishes in underwater scenes (b) violate the rigid scene
assumption.

In addition to environment challenges, vision systems pose specific funda-
mental problems:

• Our aim is to develop a 3D modeling system where the camera can move
freely through the scene. In order to maintain the generic character of
the proposal, we assume that no external sensor information is used. In
this case, scene geometry and camera motion are computed incrementally.
Over wide scenes, small errors in the camera pose and scene geometry
estimation build up over time. This error build-up can lead to estimations
that drift away from the reality.

• Scene models are composed of 3D vertices. These vertices can be seen as
discrete samples of the surfaces that are present in the scene. Over wide
scene areas, millions of such vertices can be generated. Such large number
of scene samples can prove too large to be effectively managed by vision
systems.

1.4 Contributions

This book has contributions at different levels, briefly described hereafter. A
more extensive account of the contributions is presented in Chapter 6.



1.4 Contributions 9

(a) (b)

(c) (d)

Fig. 1.6 Challenges – Underwater environment. (a) the use of additional
illumination sources induce non-uniform illumination fields; (b) light attenuation
limits the range of the camera: the two divers in the background are hardly visible;
(c) forward scattering blurs and decreases the contrast of underwater images and
(d) backward scattering induces image noise.

1.4.1 Structure from Motion

We develop a novel Structure from Motion (SfM) algorithm, where the scene
model is generated using a two-step approach: (i) camera pose is directly
obtained from the scene model and (ii) using the camera pose, the scene
model is updated and extended. This approach reduces the accumulation of
error and results in more accurate scene models.

Also, we propose a novel dual camera pose recovery method, which allows
SfM algorithm to successfully cope with both planar and non-planar scenes.

1.4.2 Ortho-mosaic and Rendering

We propose a novel approach to generate synthetic 2D visual maps – ortho-
mosaics. By exploiting the geometry of the scene, the approach takes into



10 1 Introduction

account surface normals and camera poses in order to assure maximum res-
olution and minimum distortions during the ortho-mosaic rendering. This
method results in accurate and visually pleasant scene maps.

1.4.3 Loop Closure Detection

Loop closures are situations where the camera revisits an already surveyed re-
gion. These regions allow us to impose additional constraints in the geometry
of the scene, hence reducing the 3D estimation errors. This work proposes
an online loop closing detection algorithm that uses Bag of Words (BoW)
to measure visual similarities among camera frames. There are three main
novelties that we propose here: (i) the visual vocabularies are built incre-
mentally, enabling the use of the algorithm for online applications; (ii) the
algorithm requires no training stage and no user intervention, and (iii) the
feature clustering process uses a global data distribution criteria, resulting in
more efficient visual vocabularies.

1.4.4 Vertex Selection

Scene models are formed from thousands to millions of 3D vertices. Most of
these vertices are geometrically redundant (4 or more vertices laying on the
same plane, 3 or more vertices laying on the same straight edge, etc.). We
propose an online approach which analyzes the geometry of the scene and
selects only those vertices that are geometrically representative for the scene.
The method uses plane-parallax techniques that allow us to approximate the
shape of the scene without explicitly recovering its geometry. In this way,
feature selection can be carried out sequentially, as the scene model is being
built.

The result is a 3D scene model with drastically reduced complexity that,
at the same time, maintains the accuracy of the original model.

1.5 Book Outline

In Chapter 2 we review previous work on image registration techniques, vi-
sual feature extraction and matching, mosaicing and 3D reconstruction tech-
niques. The review details those aspects of literature that are relevant to
this book. Modern visual feature extractors and descriptors are described
thoroughly as they constitute the basis for the proposed 3D reconstruction
framework. Also, other 3D reconstruction algorithms are discussed along with
their limitations, illustrating the motivation behind this work.

Chapter 3 presents the proposed 3D reconstruction algorithm. The first
part of the chapter provides a detailed description of each step of the algo-
rithm. The algorithm is validated through a series of experiments presented
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in the last part of the chapter. In here, we discuss various experiments that
we have carried out in underwater, natural and structured environments.

In Chapter 4, we present the cross-over detection algorithm. The algorithm
is built on top of the 3D reconstruction process and allows online detection
of loops in the camera trajectory. In the first part of the chapter, we provide
a review of the literature regrading the cross-over detection problem. Next, a
detailed description of the proposed algorithm is provided. Finally, we present
a series of experiments along with a comparison with a state of the art loop
closure detection algorithm.

Chapter 5 discusses the online model simplification algorithm, that works
in parallel with the 3D reconstruction algorithm. First, we discuss the existing
work related to 3D model simplification, followed by a detailed description
of our simplification algorithm. The chapter concludes with a series of ex-
perimental results and comparison with a widely used model simplification
algorithm.

Finally, Chapter 6 summarizes the contributions of the book and discusses
ongoing and future work. This chapter also presents the publications of the
author, that are most significant to the development of this book.



Chapter 2

Literature Review

Scene modeling has represented one of the most fundamental problems of
computer vision since its birth, four decades ago. Despite this, until not long
ago, scene modeling was more of an exploratory field with very limited ap-
plications. Recent advances in both hardware and algorithms, however, have
increased the popularity of scene modeling within the scientific community.
Applications of this field have become part of our everyday lives. Google
Earth, for example, allows anyone with a computer and an Internet connec-
tion to take an instant virtual trip to any place on Earth.

This chapter presents a brief review of most the representative techniques
in the general context of scene modeling.

2.1 Image Registration

Determining the transformations that take place between images as camera
viewpoint changes is an essential problem in computer vision. This is widely
known as the image registration problem. It constitutes the basis for camera
motion estimation and scene modeling.

Image registration has been largely discussed in the literature, where a
series of authors have proposed methods to tackle this problem. Largely, these
methods can be classified into: frequency domain based methods (Fourier
transform), dense methods (optical flow) and sparse methods (feature based),
discussed hereafter.

2.1.1 Frequency Domain

Originally, frequency-based methods used phase-correlation in order to es-
timate the shifts between two images. This was later extended to account
for rotation and scale transformations [144] and even affine transformations
[179] using log-polar coordinates. A few authors have proposed the use of
frequency domain methods for underwater image registration [150, 151].

T. Nicosevici & R. Garcia: Efficient 3D Scene Modeling and Mosaicing, STAR 87, pp. 13–38.
DOI: 10.1007/978-3-642-36418-1_2 c© Springer-Verlag Berlin Heidelberg 2013
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However, frequency domain methods are computationally expensive, as
they require Fast Fourier Transform (FFT) to be computed over the entire
images.

2.1.2 Optical Flow

Optical flow methods estimate the disparity (apparent motion) of pixels be-
tween pairs of images. Generally, optical flow estimates the image flow field
using the Brightness Constancy Model (BCM), in which it is assumed that
the photometric properties (intensity and color) remain constant.

There are two main approaches in estimating the optical flow: global meth-
ods such as Horn-Schunck [73] which yield dense flow fields, and local methods
such as Lucas-Kanade[97, 98] that produce non-dense regularized grid flow
fields but are more robust to noise.

Lucas-Kanade is one of the most widely used methods based on the local
Taylor series approximation using partial spatial and temporal derivatives.
It considers:

I(x+ δx, y + δy, t+ δt) = I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt+ ξ,

where I(x, y, t) is pixel intensity at coordinates (x, y) at time t and ξ is a
remainder (small enough to be ignored). Making use of the BCM assumption
along frames, we have

∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt = 0

or
∂I

∂x

δx

δt
+
∂I

∂y

δy

δt
+
∂I

∂t

δt

δt
= 0

therefore,

∂I

∂x
Vx +

∂I

∂y
Vy = −∂I

∂t

Using Ix, Iy and It as the spatial and temporal derivatives we obtain
−It = IxVx+ IyVy or simply −It = ∇I ·V which is an equation that imposes
a single constraint with two unknowns, thus not solvable as is. However, as-
suming constant flow within small windows, for instance, over 3 × 3 pixels,
we can obtain a set of 9 equations:
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Ix11 · Vx + Iy11 · Vy = −It11
Ix12 · Vx + Iy12 · Vy = −It12
Ix13 · Vx + Iy13 · Vy = −It13

...

Ix33 · Vx + Iy33 · Vy = −It33
Therefore, we can construct an over-determined system of 3×3 = 9 equations:

⎛
⎜⎜⎜⎝

Ix11 Iy11

Ix12 Iy12

...
...

Ix33 Iy33

⎞
⎟⎟⎟⎠ ·

(
Vx
Vy

)
=

⎛
⎜⎜⎜⎝

−It11
−It12

...
−It33

⎞
⎟⎟⎟⎠

This over-determined system B · v = −b can be solved in a Least-Squares

sense giving BT ·B ·v = BT(−b) and, therefore, v = (BTB)
−1
BT(−b). Hence,

(
Vx
Vy

)
=

( ∑
I2xij

∑
Ixij · Ixij∑

Ixij · Ixij

∑
I2yij

)−1

·
(−∑ Ixij · Itij
−∑ Iyij · Itij

)

Local optical flow methods yield a vector direction for each considered patch
in the image.

In recent years, some authors have proposed better alternatives to BCM
that assume linear changes in illumination – Generalized Dynamic Image
Model (GDIM) [117, 123], and color[101, 118].

However, due to the formulation of the problem, the optical flow methods
are not suitable for disparities that exceed 1 pixel. The solution for this
is to use multi-resolution approaches [122]. Here, the images are gradually
decimated and the optical flow is computed from coarse levels towards fine
levels. This approach has its own drawback: it is slow (optical flow has to be
computed at each level) and the maximum pixel disparity has to be known a
priori in order to set the number of decimation levels. Also, multi-resolution
approaches are very sensitive to noise, since errors in the estimation of optical
flow at coarse levels will propagate to fine levels.

2.1.3 Feature Based

Feature based image registration methods focus on certain regions in the im-
ages, rather than images as a whole. Tracking the changes that these regions
(features) suffer between images allows accurate image registration. For this,
image features must be: (i) repetitive – features can be correctly tracked
among images even in the presence of point of view and illumination changes
and (ii) discriminative – in the sense that they can be uniquely matched in
images.
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Image registration based on image features involves three steps:

Feature detection. Extraction of the regions of interest in the images cor-
responding to image features such as: point features, line (edge) features,
blob features, etc.

Feature description. Characterization of the image features in order to cor-
rectly identify and associate them.

Feature matching. Association of image features corresponding to the same
region in the scene.

Hereafter, we discuss some of the most popular image feature detection, de-
scription and matching techniques, providing a detailed description of those
used as basis for this work.

2.1.3.1 Feature Detection

During this step, the actual locations of image pixels corresponding to the vi-
sual features are extracted (see Figure 2.1 for a comparison between different
types of feature detectors). The outcome of the step depends on the image
content and the type of feature extractor. However, regardless of these factors,
the features have to be highly distinguishable from their neighborhood.

Harris Corner Detector is historically the most widely used point feature
detector. Originally developed by Harris and Stephens in 1988 [66] to extract
corner regions in structured environments (hence its name), it was success-
fully applied to all sorts of scenes. Harris Corner Detector extracts image
points with high gradient in both X and Y directions. These points are lo-
cally discriminative in the sense that image patches centered in the points
are highly dissimilar to any neighboring patches.

Harris Corner Detector uses the second moment matrix (also called the
autocorrelation matrix) for feature extraction:

C(x, y) =

[
I2x(x, y) IxIy(x, y)
IxIy(x, y) I2y (x, y)

]

where:

I2x =
∑
W

(Ix(xi, y, i))
2

I2y =
∑
W

(Iy(xi, y, i))
2

IxIy =
∑
W

Ix(xi, y, i)Iy(xi, y, i)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 2.1 Examples of feature fetectors. Examples of features extracted from
two different scenes – urban (left column) and underwater (right column): Harris
(a) and (b), Hessian (c) and (d), MSER (e) and (f), SIFT (g) and (h) SURF (i)
and (j). Number of extracted features was highly reduced for illustration clarity.
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Matrix C(x, y) captures the intensity structure of the local neighborhood. Its
eigenvalues represent two principal intensity changes in the neighborhood of
a point. Harris features points correspond to local maxima of KHarris. Such
points are invariant to rotation and arbitrary lightning changes.

KHarris =
I2xI

2
y − (IxIy)

2

I2x + I2y + ε

where ε is a small scalar added to avoid division by 0.

Hessian Blob Detector was one of the first image feature detectors. Pro-
posed by Beaudet in 1978 [10], it represents the basis for many recent corner
detectors.

The Beaudet operator is a rotationally invariant measurement of corner-
ness given by the determinant of the Hessian matrix M which represents a
second-order partial derivative of an image I:

M(x, y) =

[
Ixx(x, y) Ixy(x, y)
Ixy(x, y) Iyy(x, y)

]

The second derivatives used in the Hessian matrix correspond to blobs and
ridges1, being represented by the local maxima of KHessian:

KHessian(x, y) = Ixx(x, y)Iyy(x, y)− I2xy(x, y)

Harris Affine and Hessian Affine Detectors are robust to image noise
and invariant to rotation and lighting changes. However none of them is in-
variant to scale and affine transformations [109]. This makes them ineffective
in wide base-line image registration where changes in camera viewpoint can
induce significant geometric transformations.

Mikolajczyk et al. [111] have proposed adaptations of both Harris and Hes-
sian feature extractors that are invariant to scale changes and affine trans-
formations. In order to cope with scale changes, they propose the use of an
scale selection method based on Laplacian. The idea is to select a scale that
is characteristic to the local structure. For this, the Harris autocorrelation
matrix is modified to include scale information:

CAffine(x, σI , σD) = σ2
Dg(σI) ∗

[
I2x(x, σD) IxIy(x, σD)
IxIy(x, σD) I2y (x, σD)

]

The local image derivatives are computed using Gaussian kernels of scale σD
and averaged by smoothing with a Gaussian window of scale σI .

1 Blobs and ridges are compact image regions which differ from the background in
terms of intensity, color or texture characteristics.
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In the case of the Hessian feature extractor, the second order matrix
becomes:

MAffine(x, σD) =

[
Ixx(x, σD) Ixy(x, σD)
Ixy(x, σD) Iyy(x, σD)

]

The affine shape of the neighborhood around the feature points in both Harris
and Hessian cases is estimated using an iterative method using the eigenvalues
of the second moment matrix.

SIFT Detector uses Laplacian of Gaussian to extract image features that
correspond to high gradient regions. However, in order to decrease the com-
putational load, the Laplacian of Gaussian operator is approximated by Dif-
ference of Gaussians (DoG). The use of DoG was proposed by Lowe in [96]
for both feature extraction and scale selection. For this, an image I is con-
volved with Gaussian filters at different scales, and the differences between
successive Gaussian-blurred images are taken (see Figure 2.2):

D(x, y, σ) = L(x, y, kiσ)− L(x, y, kjσ)

L(x, y, kσ) = G(x, y, kσ) ∗ I(x, y)
where G(x, y, kσ) is the Gaussian kernel at scale kσ.

Fig. 2.2 SIFT feature detection. Laplacian of Gaussian is approximated by
DoG. The image I is convolved with Gaussians at different levels. Adjacent Gaus-
sian images are subtracted to obtain DoG.
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Specifically, image I is convolved with different kernels by successively
increasing k. The convolved images are grouped by octaves, which correspond
to doubling the value of k. The DoG is obtained by simply subtracting two
adjacent convolved images. By stacking all the DoG’s, we obtain a 3D space
where the first two dimensions are given by x and y and the third dimension
is the scale (this space is referred to as the scale-space). The keypoint features
are obtained by extracting local extrema in the scale-space. In this way, the
method extracts image features that are invariant to scale changes.

However, the precision of the extracted image features is limited by the
resolution of the image I. In order to increase the precision of the feature
extractor, Lowe proposes the use of a quadratic Taylor expansion of the
scale-space, thus obtaining sub-pixel accuracy.

SURF Detector uses the determinant of Hessian matrix for selecting both,
the location of the keypoint and its scale [8]. The Hessian matrix M(x, y, σ)
of image I at point (x, y) is given by:

M(x, y, σ) =

[
Lxx(x, y, σ) Lxy(x, y, σ)
Lxy(x, y, σ) Lyy(x, y, σ)

]

Lxx, Lxy and Lyy are the convolutions of the Gaussian second-order deriva-
tives with the image I at point (x, y).

Motivating that, in practice, the Gaussians need to be discretized and
cropped, thus producing aliasing, Bay et al. approximate second-order deriva-
tives of Gaussian with box filters (Figure 2.3b) which are applied on the in-
tegral version of I. The entry of an integral image IΣ at a location (x, y)
represents the sum of all pixels in the input image I of a rectangular region
formed by the point (x, y) and the origin (Figure 2.3a).

(a) (b)

Fig. 2.3 SURF feature detection. (a) Integral image calculation scheme. (b)
Approximation of the second-order derivatives of Gaussian Lyy and Lxy with box
filters Dyy and Dxy (mean / average filter).
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The scale-space is built by gradually increasing the block filter size and
stacking the responses (M). The feature extraction in the scale-space is car-
ried out in a similar fashion with the one proposed by Lowe [96].

As reported in the literature and determined by our experiments, SURF
has very similar performance to SIFT, but has a significant cut in computa-
tional load.

MSER Detector was proposed by Matas et al. for detecting blob regions in
wide baseline image registration [105]. As defined by the authors, a maximal
region is a connected component of an appropriately thresholded image. In
other words, MSER extracts compact regions whose pixels have either higher
(bright blobs) or lower (dark blobs) intensity values than all the pixels in
their surroundings.

In order to extract MSER regions, the image is binarized using gradually
increasing intensity thresholds. The binarization is used to extract compact
dark and bright regions. MSER selects only those regions whose area changes
insignificantly over a large range of intensity thresholds. These areas prove
to be highly stable in both illumination (linear and non-linear) and affine
transformations.

2.1.3.2 Feature Description

For accurate image registration, each image feature has to be characterized
so that image features corresponding to the same scene region – also referred
to as pre-image region [19] – can be correctly matched. Blob features are
generally characterized by extracting some statistics on the intensity or color
values of the pixels forming the blob. However, in the case of point and
edge features the characterization is not done on the features themselves. As
images are subject to noise, illumination and geometric changes, measuring
only one pixel (point features) or a small amount of pixels (edge features)
would be highly unstable. In these cases, the solution is to characterize these
types of features using their surrounding pixels.

Much of the robustness of feature tracking to lighting changes, noise and
image transformations is obtained by choosing appropriate feature character-
ization (feature description). An extensive survey and comparison of state of
the art feature characterization methods is discussed in [8, 110]. Hereafter,
we detail two widely used feature descriptors employed in this book.

SIFT Descriptor

The detector used by SIFT provides interest points that are translation and
scale invariant. Rotation, illumination and affine invariance is managed by
the descriptor. The SIFT descriptor calculates an orientation corresponding
to the dominant gradient direction of the neighborhood of a feature. All
the following calculations are done relative to this orientation, so that all
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the features corresponding to the same pre-image point are aligned in the
same direction (rotation invariance). In order to calculate the orientation,
the gradient magnitude m and orientation Θ are calculated for each pixel in
the neighborhood of the feature:

m(x, y) =
√
(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2

Θ(x, y) = tan−1 L(x, y + 1)− L(x, y − 1))

L(x+ 1, y)− L(x− 1, y)

L is obtained by smoothing I with a Gaussian at the scale where the feature
was extracted. The gradient orientations Θ are used to form an orientation
histogram with 36 bins. The highest peak in the histogram is detected and
any other local peaks within 0.8 of the highest peak are used to create key-
points with those orientations. Finally, a parabola is fit to the 3 histogram
values closest to each peak to interpolate the peak position for better ac-
curacy. As a result, each detected SIFT keypoint is characterized by a vec-
tor (x, y, s,m,Θ), where x, y represent the coordinates of the keypoint, s the
scale, m the magnitude and Θ the orientation. In order to achieve orientation
invariance, the coordinates of the descriptor and the gradient orientations are
rotated relative to the keypoint orientation.

A Gaussian weighting function with σ equal to 0.5× the width of the
descriptor window is used to assign a weight to the magnitude of each sample
point. Convolution with Gaussian avoids sudden changes in the descriptor
with small changes in the position of the window, and gives less emphasis to
gradients that are further away from the feature, as these are most prone to
misregistration errors.

The keypoint descriptor allows for significant shift in gradient positions
by creating an orientation histogram for each of the 4 × 4 sample regions.
The orientation histogram consists of 8 bins covering the 360 degree range of
orientations. Each bin is multiplied by a weight of 1− d for each dimension,
where d is the distance from the sample to the central value of the bin,
measured in units of the histogram bin spacing.

The descriptor is formed from a vector containing the values of all the
orientation histogram entries. SIFT uses 4 × 4 array of histograms with 8
orientation bins in each, computed from a 16 × 16 sample array. Therefore,
the SIFT feature descriptors have 4× 4× 8 = 128 elements.

Finally, the feature vector is normalized, to reduce the effects of illumina-
tion changes.

SURF Descriptor assigns a reproducible orientation to each detected key-
point, in order to get invariance to rotation. For this, the Haar-wavelet
responses in x and y directions are calculated (shown in Figure 2.4) in a
circular neighborhood of radius 6s around the keypoint, where s is its scale.
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Accordingly, the size of wavelet filters is adjusted to the scale. Using integral
images, only six operations are needed to compute the response in x or y
direction at any scale. The side length of the wavelets is 4s. Once the wavelet
responses are calculated and weighted with a Gaussian (σ = 2.5s) centered
at the keypoint, the responses are represented as vectors in a space with
the horizontal response strength along the abscissa and the vertical response
strength along the ordinate (corresponding to x and y axis in Figure 2.4).
The dominant orientation is estimated by calculating the sum of all responses
within a sliding orientation window covering an angle of π/3. The horizontal
and vertical responses within the window are summed, yielding a new vector.
The longest vector lends its orientation to the interest point.

Fig. 2.4 SURF orientation assignment. Left: Circular neighborhood of radius
6s around the keypoint, where wavelet responses are computed (s is a scale of the
keypoint). Middle: Haar wavelet 2D filters used for SURF. Right: Representation
space of the wavelet responses as vectors with coordinates x (horizontal response)
and y (vertical response). The dominant orientation is estimated by calculating the
sum of all vectors within a sliding orientation window covering an angle of π/3.

SURF descriptor is extracted by constructing a square region around each
keypoint with the size 20s, oriented along the keypoint orientation. The re-
gions is then split into 16(4 × 4) smaller square sub-regions and the Haar
wavelet responses in horizontal direction (dx) and vertical (dy) are calcu-
lated (horizontal and vertical directions are relative to keypoint orientation
as shown in Figure 2.5b). The wavelet responses dx and dy are weighted with
a Gaussian (σ = 3.3s) centered at the keypoint, that increases the robust-
ness to geometric deformations and localization errors. Then, dx and dy are
summed up independently over each subregion to form a first set of entries
in the feature vector. Furthermore, the sum of the absolute values of the
responses |dx| and |dy| are extracted, providing information about the po-
larity of the intensity changes. Hence, each sub-region is represented by a
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(a) (b)

Fig. 2.5 SURF feature descriptor. (a) The descriptor is constructed from ab-
solute sums of wavelet responses along x and y over the 20s keypoint neighborhood
split into 16 square sub-regions. The descriptor entries of a sub-region represent
the nature of the underlying intensity pattern; (b) A square region centered in the
keypoint is aligned with the keypoint orientation. “Horizontal” (x) and “vertical”
(y) wavelet responses are also defined with respect to this orientation.

four-dimensional descriptor vector f = (
∑
dx,
∑
dy,
∑ |dx|,

∑ |dy|), under-
lying its intensity structure. By stacking up the descriptor vector for all the
subregions, the result is a 64 dimension vector describing each key feature.

The wavelet responses are invariant to a bias in illumination (offset). In-
variance to contrast (a scale factor) is achieved by normalizing the descriptor
vector.

2.1.3.3 Feature Matching

Image features originating from the same pre-image region have similar
photometric properties, reflected in a resemblance between feature descrip-
tors. Early feature matching techniques used simple similarity measurements
between features’ neighborhood (correlation). Currently, correlation based
methods are sparsely used in feature matching due to their lack of invariance
to rotation and affine transformations. However, due its high precision in
feature localization (subpixel correlation-based feature matching)[180], cor-
relation is still used in some applications where rotation and affine transfor-
mations are absent or can be accounted for.

Modern feature matching techniques use similarity measurements between
feature descriptors. As the descriptors themselves are invariant to illumina-
tion and camera viewpoint changes, these matching techniques are highly
robust, increasing the precision of image registration.

Correlation matching was initially used for area based feature matching
[7, 47]. Here, the image features are extracted in image I1 and the matches
are obtained by applying correlation on a neighborhood of each pixel within
a fixed-size search window in I2 around the coordinates of each feature.
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The computational cost of this approach is very high since all possible candi-
dates within each search window of each feature have to be analyzed. Later,
this approach has been optimized by extracting image features (e.g. using
Harris Corner extractor) and correlating windows centered on the extracted
features.

Different feature matching methods have been developed based on the
correlation measurement. They can be either a measurement of similarity
– Normalized Cross Correlation (NCC) or a measurement of dissimilarity –
Sum of Absolute Differences (SAD) and Sum of Squared Differences (SSD).
Given a keypoint p1 in image I1 with coordinated (x1, y1) and a candidate
match p2 in image I2 with coordinated (x2, y2) the NCC is defined on a
rectangular neighborhood of these keypoints with size 2r + 1× 2r + 1 as:

NCC(p1, p2) =

i=r∑
i=−r

j=r∑
j=−r

(I1(x1 + i, y1 + j)− I1)(I2(x2 + i, y2 + j)− I2)

r2
√
σ2(I1)σ2(I2)

Here, I is the average and σ2(I) is the variance of image I:

I =

i=r∑
i=−r

j=r∑
j=−r

I(x+ i, y + j)

r2

σ2(I) =

i=r∑
i=−r

j=r∑
j=−r

(I(x + i, y + j)− I)2

r2

Similarly, SAD and SSD are defined as:

SAD(p1, p2) =

i=r∑
i=−r

j=r∑
j=−r

|I1(x1 + i, y1 + j)− I2(x2 + i, y2 + j)|

SSD(p1, p2) =

i=r∑
i=−r

j=r∑
j=−r

(I1(x1 + i, y1 + j)− I2(x2 + i, y2 + j))2

Descriptor Similarity

In order to associate corresponding features in different images, a descrip-
tor similarity measurement is needed. The most commonly used one is the
Euclidean distance:

s(p1, p2) = ‖f1 − f2‖ (2.1)
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(a)

(b)

(c) (d)

Fig. 2.6 Examples of feature matching. (a) and (b) illustrate matching between
two images for an urban and an underwater scene. (c) and (d) show the disparity
of the features. Red lines denote mismatched features (outliers).

In order to find the corresponding features, the Euclidean distance is cal-
culated between all the features in one image and all the features in the
other image. The feature pairs corresponding to the minimum distances are
most likely to correspond to the same pre-image region – Nearest Neighbor
(NN). However, this is not always valid (not all features in one image have
correspondence in the other) and this assumption can introduce outliers
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(erroneous feature pairs). One way to minimize this risk is to use a thresh-
old on the maximum acceptable distance between feature descriptors, though
optimal thresholds are dependent on the image data.

In [96], Lowe proposes a more general and robust approach. Here, he im-
poses that distance to the NN must be significantly lower (usually � 1.5×)
than the distance to its Second Nearest Neighbor (SNN). In general, the SNN
method performs well as correct matches need to be significantly closer than
the closest incorrect matches in order to achieve reliable matching. For false
matches, there will likely be a number of other false matches within simi-
lar distances. The second nearest match provides an estimate of the density
of false matches within this area of the feature space and at the same time
identifies specific instances of feature ambiguity.

Figure 2.6 illustrates the matching process in the case of two distinct
scenes: urban (Figure 2.6a and Figure 2.6c) and underwater (Figure 2.6b
and Figure 2.6d).

2.1.4 Match Propagation

Match propagation represents a hybrid approach that combines feature-based
with optical flow [91, 178]. In match propagation, a sparse set of points are
extracted from feature correspondences. Using these points as seeds, image
registration is expanded using either optical flow or local matching. This
approach combines the advantages of sparse and dense matching up to a
certain degree.

2.2 Photo-mosaicing

Photo mosaicing (simply called “mosaicing” hereafter) is primarily a tech-
nique that allows widening the coverage of the scene by aligning (stitching)
images taken by a panning or moving camera. Mosaicing has its origins in
aerial photography, where images taken from planes or air balloons were
manually aligned in order to obtain maps for military purposes. With the
introduction of automated mosaicing techniques by means of image registra-
tion, photo mosaicing has extended his range of applications.

Mosaicing is widely used nowadays for underwater sea floor mapping to
compensate for the narrow coverage of cameras due to limited visibility
[46, 48, 49, 61, 77, 140, 160, 161]. Furthermore, mosaicing techniques are
successfully employed in applications such as navigation of underwater ve-
hicles [33, 42, 51, 60, 62], document analysis [116], augmented reality [167],
scene stitching [15, 168], etc.

Mosaics can be accurately employed in situations where the scene does not
induce parallax [67] – planar scenes or when the camera is rotated around
its optical axis (see Figure 2.7 for an example of mosaic of a planar scene).



28 2 Literature Review

Fig. 2.7 Example of mosaicing. Mosaic of a planar scene. Colored rectangles
outline of the contributing images. Green corresponds to the first (reference) frame,
yellow and blue to the second and third images respectively. The mosaic was gen-
erated using the projective homography model.

In these cases the transformation induced on the images by the camera motion
can be modeled as a planar transformation, called homography (H).

A homography is a planar projective transformation, represented by a 3×3
homogeneous matrix, relating the coordinate systems of two images I1 and
I2 so that p1 = H · p2:

⎛
⎝
α · x1
α · y1
α

⎞
⎠ =

⎛
⎝
a b c
d e f
g h 1

⎞
⎠ ·

⎛
⎝
x2
y2
1

⎞
⎠

where p1 = (x1 y1 1)T and x2 = (x2 y2 1)T are 2D points in homogeneous
coordinates; α is an arbitrary scale factor.

In the general case, homographies have 8 Degrees of Freedom (DoF). De-
pending on the application, the number of DoF can be reduced in order to
limit the estimation errors. Table 2.1 provides a description of the common
types of homographies.

The transformationH between images is obtained using image registration
techniques, most commonly using feature correspondences [121] (see Section
2.1.3). Depending on the homography model, a minimum of 1 to 4 correspon-
dences are needed to compute H . In practice, tens to hundreds of correspon-
dences are used in order to increase the precision of the homography in the
presence of feature localization noise.
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Table 2.1 Homography motion models. A 2-DoF homography allows only for
translation between images. Euclidean transformations account for the translation
and a rotation angle φ between images. The similarity model adds the scaling factor
s. Affine motion model extends the similarity model by including the anisotropic
scaling. Finally, the projective motion model describes any possible planar trans-
formation between images induced by a 6-DoF camera motion.

Transform Figure DoF H

Translation 2

⎛
⎝

1 0 tx
0 1 ty
0 0 1

⎞
⎠

Euclidean 3

⎛
⎝
cos(φ) −sin(φ) tx
sin(φ) cos(φ) ty

0 0 1

⎞
⎠

Similarity 4

⎛
⎝
s · cos(φ) −s · sin(φ) tx
s · sin(φ) s · cos(φ) ty

0 0 1

⎞
⎠

Affine 6

⎛
⎝
a b c
d e f
0 0 1

⎞
⎠

Projective 8

⎛
⎝
a b c
d e f
g h 1

⎞
⎠

The mosaics are then rendered by establishing a global frame (coordinate
system) and aligning the images with respect to this global frame using homo-
graphies. Generally, the mosaic coordinate system is chosen to coincide with
the coordinates of the first image; in this case the transformation between
an image j and the mosaic (absolute homography) is obtained by chain-
ing the local homographies (relative homographies) of the previous images:
1Hj =

1 H2 ·2H3 ·...·j−2Hj−1 ·j−1Hj . From this, it becomes evident that small
errors in the relative homographies build up to generate important inaccura-
cies in the estimation of the absolute homographies. This problem is common
to vision systems, where the camera position is computed incrementally (see
Section 1.3).

Generally, homographies are prone to estimation inaccuracies due to:

Feature localization errors – are induced by image noise, aliasing, changes
in lighting and camera viewpoint.



30 2 Literature Review

Outliers – are caused by feature matching errors, usually due to repetitive
patterns in the scene.

Moving objects – violate the rigid scene assumption.
Non-planar scenes – violate the planarity assumption.

The effect of feature localization errors, outliers and moving objects can
be reduced by using modern feature detectors and robust estimation meth-
ods such as Random Sample Consensus (RANSAC) [38] or Least Median
of Squares (LMedS) [149]. However, the violation of planarity represents a
limitation of 2D mosaicing techniques.

Obviously, most outdoor scenes (landscapes, urban, underwater, etc.) are
hardly planar. If the camera is not sufficiently far from the scene2, the par-
allax effect produces significant errors in the homography estimations (see
Figure 2.8). In this case, 3D reconstruction techniques represent a far more
accurate alternative to 2D mosaicing.

2.3 3D Reconstruction

3D reconstruction techniques are concerned with the recovery of the shape of
scenes and their representation as 3D models. Using such techniques, a 3D
model of the scene is obtained, represented as a collection of 3D elements
such as points (vertices), lines, planes, surfaces, etc.

In order to recover the geometry of the scene, 3D objects are related to their
projection on the image plane. Assuming the pinhole model3, this relation is
given by the projection matrix Π so that:

i⎛
⎝
α · px
α · py
α

⎞
⎠ = i

WΠ(3×4) ·
W
⎛
⎜⎜⎝
Px

Py

Pz

1

⎞
⎟⎟⎠

where p = (px, py)
T is the image projection of a 3D point P = (Px, Py, Pz)

T

(see Figure 2.9), α is an arbitrary scaling factor. The projection matrix Π is a
function of the rotation W

i R and translation W
i t between the scene (world) and

camera coordinate systems, and the intrinsic parameters (A) of the camera:

i
WΠ(3×4) = A ·

(
W
i R

T
(3×3)

W
i t(3×1)

0(1×3) 1

)
(2.2)

2 As a thumb rule, if the camera-to-scene distance is more than ∼ 10× the scene
depth variations, the parallax-induced errors can be neglected.

3 Pinhole camera model is a simplified representation of the cameras, where some
of the transformations that light suffers inside the camera optics are ignored. It
is the most widely used projective representation due to its simplicity.
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(a) (b)

(c)

(d)

Fig. 2.8 Mosaicing under parallax. (a) and (b) show two images representing
a light pole with a building in background. The planarity assumption does not
stand here due to the big depth differences between scene elements with respect
to the camera. Trying to register the images using mosaicing techniques generates
important misalignments. In (c) the building facade is correctly aligned, being the
predominant plane, however the light pole and the trees create a ghosting effect
(shown in color). Image (d) illustrates the full mosaic (20 images) of the facade.
Again, we can observe that the parallax effect induces misalignments (highlighted
in yellow).
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Fig. 2.9 Camera projection. The 3D point WP is projected in the image plane
onto point ip.

A =

⎛
⎝
ku kc u0
0 kv v0
0 0 1

⎞
⎠ ·

⎛
⎝
f 0 0 0
0 f 0 0
0 0 1 0

⎞
⎠

where f is the focal length in millimeters and ku, kv are the relationships
between pixels and world metric units (in pix/mm) along x and y axes of the
image plane, respectively. The point where the camera focal axis intersects
the image plane (principal point) is defined by (u0, v0). Finally kc is the skew
between image frame vectors (u, v) which, in the ideal case, is 0 (they are
perpendicular), therefore, kc = tan(φ) ·kv, where φ is the skew angle between
the image frame vectors.

In order to be able to accurately apply the pinhole camera model on real
cameras, we have to account for the radial and tangential [14] distortions
induced by the optical systems of these cameras (illustrated in Figure 2.10).

Considering an unitary focal length (f = 1), the projection of a 3D point
P = (Px, Py, Pz) is given by:
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(a) Pincushion Distortion

(b) Barrel Distortion

Fig. 2.10 Camera distortions. Image (a) illustrates the pincushion distortion,
typical for long focal lengths (tele-lenses), (b) shows the barrel distortion mostly
found in wide-angle lenses (short focal distances).

pd =

(
xd
yd

)
=

(
Px

Pz
Py

Pz

)

by denoting r2 = x2d + y2d, considering the distortion model, we obtain the
undistorted point pu:

pu =

(
xu
yu

)
= (1 + kc1 · r2 + kc2 · r4 + kc5 · r6) · pd + dt

where dt is the tangential distortion vector defined as follows:

dt =

(
2 · kc3 · xd · yd + kc4 · (r2 + 2 · x2d)
kc3 · (r2 + 2 · y2d) + 2 · kc4 · xd · yd

)

Parameters kc1 , kc2 , . . . , kc5 represent non-linear distortion coefficients. After

undistorting, the point (xu, yu, 1)
T
is projected into the image plane using

the matrix of intrinsic camera parameters A:
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⎛
⎝
x
y
1

⎞
⎠ = A ·

⎛
⎝
xu
yu
1

⎞
⎠

Camera intrinsic parameters (αu, αv, αc, u0, v0) and the non-linear distortion
coefficients (kc1 , kc2 , . . ., kc5) are obtained by camera calibration methods
[36, 152].

So far, we have discussed the problem of estimating the projection of a 3D
point in the camera plane given its 3D position. Nonetheless, we are interested
in the reverse problem: given a projection of a 3D point (or another scene
element) in the camera plane, how to recover the 3D position of the former.
This problem cannot be solved from a single camera view. By analyzing
Figure 2.9, we can see that any 3D point P ′ laying on the line (C,P ) would
yield the same projection p on the image plane. Consequently, having only
the position of the 2D point p, there is an ambiguity in the position of P . This
problem can be resolved given two or more camera views of P , as illustrated
in Figure 2.11.
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Fig. 2.11 Stereo triangulation. Having the position of the projections of the 3D
point P in two cameras (p1, p2)and the position of the cameras(R1, t1, R2, t2), the
3D position of P is defined by the intersection of the projection lines (C1, p1) and
(C2, p2).
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Hereafter, we briefly discuss some of the most widely used techniques for
recovering the camera pose and the 3D geometry of a scene.

Stereo

Stereo vision algorithms use two or more cameras in a rigid setup. The
relative pose of the cameras is obtained by calibration [68, 187]. In this
case, the geometry of the scene can be obtained directly using epipolar
geometry [67, 100].

At application level, online stereo vision techniques such as those presented
in [34, 120, 134, 184] include robot navigation and visual servoing. Other
proposals, more related to our work, focus on scene and object modeling
[105, 173].

Stereo systems generally provide accurate results but require a more com-
plex calibration and image acquisition process. The use of multiple cameras
and the necessity of camera synchronization hardware greatly increases the
acquisition costs. Moreover, stereo setups cannot be easily handled by hu-
mans and are difficult to mount on small size robots.

Structure from Motion

The SfM problem refers to recovering the structure of the scene using a single
moving camera. The main advantage of Structure from Motion is actually the
use of a single camera, which leads to a highly flexible and accessible image
acquisition process.

From the algorithmic point of view, SfM is equivalent to stereo tech-
niques except that the 3D camera motion for each time interval4 has to be
determined. As the camera motion and the scene structure are computed at
the same time, the result of SfM is an up-to-scale representation of the scene5

(see Figure 2.12). However, this scale ambiguity can be resolved if the size of
any object in the scene is known.

Initial approaches of Structure from Motion used motion computation
based on fundamental matrix (F ) [9, 92] and trifocal tensor [40]. These ap-
proaches have a common drawback: position estimation based on motion
integration leads to important drifts over relatively short distances. With
the introduction of Bundle Adjustment (BA) techniques [93, 132, 165, 171],
the effect of drifting can be partially reduced by globally minimizing the re-
projection errors within the image sequence. In this context, some authors
[16, 155, 174] have proposed batch SfM methods that use camera motion esti-
mation followed by BA. However, in online applications, where accurate scene
structure and camera poses have to be constantly available, repeatedly apply-
ing BA to correct for drifts is not feasible due to the high computational costs

4 Time elapsed between two consecutive frames captured by the camera.
5 Assuming that the camera intrinsic parameters are known.
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Fig. 2.12 SfM scale ambiguity. The 3D position of point P from an arbitrary
moving camera can be determined up to a scale factor. The disparity dp of the
point P determined by the camera motion R and t would be the same as d′p when
the motion R′ and t′ is greater with P further away.

related to Bundle Adjustment. Additionally, motion-integration SfM methods
suffer from another major drawback: instability at small camera motions. In
this case, F is ill-conditioned [67], resulting in a poor estimation of the camera
motion.

A more accurate alternative to motion integration is the direct recovery of
camera pose. This can be achieved by associating 3D features with image fea-
tures and estimating the camera pose using methods such as Direct Linear
Transformation (DLT) [67]. In [164], the authors propose a batch SfM method
based on DLT for reconstructing well-known world sites from Internet photo
collections. Following similar camera registration principles, in [83] Klein et
al. propose an algorithm for real-time camera tracking in small-scale environ-
ments. Here, the scene is represented by a set of 3D vertices along with a multi-
resolution representation of key frames extracted from the camera. For each
frame, a pose prior is generated, based on a motion model, that is used to
project map features (vertices) into the camera frame. Image features are then
extracted and associatedwithin the vicinity of the projected vertices. The cam-
era pose is then refined by minimizing the sum of the re-projection errors.

Oriented towards underwater imaging, Pizarro et al. [138, 139] propose a
SfM framework that deals with large sequences by independently process-
ing local submaps. Within the submaps, the camera pose is recovered di-
rectly by using resection methods and the submaps are registered using global
alignment techniques. While accurate, this approach has somewhat limited
applications as it uses navigation priors for submap generation.
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Factorization

Factorization methods use a special formulation to deal with scene structure
and camera motion, decomposing image measurements (i.e. image dispari-
ties) into a product of two separate factors:

image disparities⇐⇒ motion× shape

The first solution to the factorization problem, introduced by Tomasi and
Kanade, used rank constraints under orthographic camera projection [169].
This work was later extended to deal with more general camera models [64,
69, 166]. Factorization methods are mainly aimed at object and small scale
reconstructions. Even though the latest developments in factorization allow
partially dealing with missing data [17, 104], these methods cannot deal with
high degree of missing data, rendering them impractical for scene modeling.

Dense Reconstruction

Early dense methods use pixel disparities, rather than feature correspon-
dences to recover the scene geometry. The result is a 2.5D model6 of the
scene, where the optical flow is used to estimate the depth of the scene points
corresponding to each pixel in the image [81, 114]. These dense reconstruc-
tion approaches use iterative methods based on Longuet-Higgins differential
image motion model, being highly expensive in terms of computation.

In contrast to the above-mentioned algorithms, newer proposals allow full
3D dense reconstructions, using feature-based region growing techniques. Fu-
rukawa et al. [43, 44] uses a patch based approach, where feature matches are
first extracted and their corresponding 3D vertices are computed. By defining
a patch around each 3D vertex (in terms of position and orientation defined
by the patch normal), the algorithm iteratively recovers the neighbouring
patches as defined by a regular grid in the image domain. Using the patches
as support, a polygonal mesh is defined, providing a dense and continuous
representation of the scene.

In a similar fashion, in [79], Jancosek et al. propose a reconstruction
method that uses sparse features as seeds that are then expanded (or grown)
into a dense representation of the model [20]. This method, however, uses
a meshing process simultaneously with the growth of the model. Their was
later extended to support weakly supported surfaces, where texture informa-
tion is low, increasing the chances of obtaining a complete model of the scene
[78].

Oriented towards small-scale Augmented Reality (AR) applications, in
[124] Newcombe et al. describe a fast dense reconstruction method that uses
PTAM [83] as basis for camera pose estimation and sparse scene represen-
tation. The authors use a multi-scale radial basis function to interpolate the

6 2.5D models do not represent the full geometry of the scene. Alternatively, the
scene is represented by a regular grid of points defined by their depth.
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point cloud generated by PTAM into a continous, dense representation of
the scene. Also AR designed, in [125] the authors propose a 3D reconstruc-
tion method that estimates camera poses by directly registering the images
provided by the camera with the dense representation of the environment, at
pixel level. Here, scene flow (a formulation of optical flow) is used to generate
a dense representation of the scene. The mapping problem is formulated in
terms of an energy minimization problem, where the energy is the sum of
photometric errors in conjunction with spatial regularization factors.

2.4 Discussion

A wide range of applications, from remote scientific studies to augmented
reality and virtual tourism benefit from automated visual mapping. Classi-
cal approaches involving 2D mosaicing are limited to quasi planar scenes.
In reality, most environments are far from being planar and the necessity
to map such environments led to an increased interest in 3D scene model-
ing. Despite this, most 3D techniques are application specific and inherently
offline. Moreover, these approaches are rather limited, being able to handle
only small scale / reduced complexity scenes.



Chapter 3

Direct Structure from Motion

This chapter is concerned with robust 3D scene modeling using a novel
Structure from Motion algorithm – Direct Pose Registration Structure from
Motion (DPR-SfM). The aim is to obtain a high precision texture model of a
generic scene acquired using any off the shelf camera undergoing an arbitrary
trajectory. The reconstruction algorithm does not require any camera posi-
tion / attitude information, endowing DPR-SfM with flexibility to be readily
used for any type of 3D scene modeling application, both underwater and
terrestrial.

3.1 Introduction

We have designed the DPR-SfM algorithm to cope with the most common
challenges (see Section 1.3):

• Object occlusions and perspective distortions.
• Invalid image frames due to camera obstructions, motion blur, etc.
• Moving objects.
• Image noise, low contrast and illumination changes (especially in the un-

derwater environment).

DPR-SfM computes directly the pose of the camera without the necessity to
recover the inter-frame motion. The structure of the scene is formed by sets
of 3D vertices characterized by affine invariant local image descriptors. In this
way, by associating image patches extracted from camera views with the 3D
vertices, we can recover the camera pose with respect to the scene model. In
DPR-SfM, the camera pose is obtained using a novel dual approach, allowing
accurate camera pose estimations even in the presence of planar scenes, where
most 3D reconstruction algorithms would fail.

Subsequently, the obtained camera poses are used to update the scene
model as new features are tracked. Both camera pose estimation and scene

T. Nicosevici & R. Garcia: Efficient 3D Scene Modeling and Mosaicing, STAR 87, pp. 39–86.
DOI: 10.1007/978-3-642-36418-1_3 c© Springer-Verlag Berlin Heidelberg 2013
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model update steps use robust methods thus reducing the impact of poor
camera pose/vertex estimations.

DPR-SfM algorithm works in two stages, as shown in Figure 3.1. First, it
uses motion estimation techniques in order to obtain an initial model corre-
sponding to a small subregion of the scene. In the second stage, using the
initial model as a “seed”, the subsequent camera poses are computed by reg-
istering 2D features with 3D vertices in the scene model. For each newly
acquired image, once the camera pose is recovered, the scene model is up-
dated by adding vertices corresponding to newly tracked features. In this
way, as the camera moves, the model is extended to represent new regions of
the scene.

As the data is being processed sequentially, camera pose and scene model
estimations are constantly available, enabling the use of DPR-SfM for on-
line applications such as robot navigation and mapping, in situ scientific
studies, etc.

The remainder of this chapter details the flow of the DPR-SfM algorithm,
followed by a discussion on various results that we have obtained by applying
the proposed algorithm on outdoor and underwater image sequences. For
the ease of the explanation, we illustrate the description of the DPR-SfM
algorithm using a simple dataset1 provided by the Visual Geometry Group
of University of Oxford. Figure 3.2 depicts the input set of images of a house
model.

3.2 Image Features

Feature tracking is the building block of any sparse 3D reconstruction algo-
rithm. Tracking image features corresponding to a scene region (i.e. points,
lines, patches, etc.), allows the 3D position of the scene features to be
estimated.

Robust feature tracking is crucial to the accurate estimation of both the
camera poses and the structure of the scene. Maximizing the number of
frames where a given scene feature is tracked improves the precision of its
3D position estimation and increases the number of inter-frame constraints,
allowing a higher precision in camera pose estimation.

In order to ensure robust feature tracking in presence of geometric distor-
tions and illumination changes, we have tested various state of the art point
and blob feature extractors (see Section 2.1.3): Harris Affine, Hessian Affine,
SIFT, SURF and MSER. As expected, point feature extractors generate more
dense sets of features than blob feature extractors, providing a better cover-
age of the scene but having less discriminative power, increasing the chances
of mismatching. In contrast, blob extractors produce more sparse but more
stable sets of features with higher discriminative power.

1 http://www.robots.ox.ac.uk/~vgg/data/dunster/images.tar.gz

http://www.robots.ox.ac.uk/~vgg/data/dunster/images.tar.gz
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Fig. 3.1 Flowchart of the DPR-SfM algorithm. The model initialization stage
estimates the baseline between the base frame and a newly acquired frame. If the
baseline is wide enough, the motion between the base frame and the acquired frame
is recovered. Using the motion, the scene structure is estimated and the algorithm
passes to the direct pose registration stage, otherwise the process is restarted using
the next acquired frame. In the direct pose registration stage, the camera poses
are obtained by extracting correspondences between the acquired images and the
model. After each new camera pose estimation, the algorithm updates the model
with new vertices corresponding to features tracked in the current image. In this
way, the scene model grows as the camera surveys new regions of the scene.

In terms of feature descriptors, Harris, Hessian and MSER can be described
using both SIFT and SURF, while SIFT and SURF use their own descriptors
only.
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Fig. 3.2 DPR-SfM – House dataset. The input sequence of 6 images captured
by a camera undergoing a rotation around a house model.

3.3 Model Initialization

This stage generates a subregion (“seed”) of the 3D model corresponding to
the first few frames of the image sequence. This initial subregion is required
by the second stage that subsequently extends it to the full 3D scene model.

The model is initialized by first fixing the first frame of the sequence as
the base frame Ib. The camera pose corresponding to Ib will serve as the
global reference frame (world frame) for the entire model. During model ini-
tialization, the camera motion between the reference and some image Ii is
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computed. Ii is chosen so that the baseline between Ib and Ii is sufficient
to ensure a robust motion estimation. The baseline between images is ap-
proximated by translation induced by the homography b−0.8mmHi on the
image centers, where bHi is a projective homography obtained from feature
correspondences between images Ib and Ii (see Section 2.2).

Generally, SfM algorithms use fundamental matrix for camera motion es-
timation. However, when the scene is planar or the parallax effect is small
(i.e. small scene depth variations with respect to scene-to-camera distance),
the fundamental matrix can be ill-conditioned [67]. In this case, a more ro-
bust solution is to use homography-based motion computation. On the other
hand, when scene geometry induces significant parallax, homographies can-
not correctly model the camera motion. In order to cover both cases, we use
a dual approach for motion computation:

Fundamental matrix motion computation. Using the feature correspon-
dences between images Ib and Ii (see Figure 3.3), we estimate the funda-
mental matrix Fbi using RANSAC-based Least Squares (LS) methods2 [3],
with the cost function given by the Sampson distance [153] (see
Figure 3.3c,d):
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where (Fp)2j represents the square of the j -th entry of vector Fp.

The camera rotationRF
bi and translation tFbi are obtained by Singular Value

Decomposition (SVD) of Fbi using [74, 94]:

Fbi = (A−1)T T̂F
bi R

F
bi A

−1 (3.2)

where A is the known camera intrinsic matrix, R is the rotation matrix of
the camera and T̂ is the translation skew-symmetric matrix (T̂[x] = t×x for
any vector x with t representing the camera translation). The approach
yields 4 possible solutions (2 translations and 2 rotations). The correct
solution is obtained by applying cheirality constraints (i.e. reconstructed
points must be in front of the camera) [146].

Homography motion computation. From the correspondences of Ib and Ii
we compute the homography bHi using RANSAC with the cost function
given by:

EH = pkb −bHi p
k
i

where pkb and pki represent the kth feature correspondence in images Ib and
Ii respectively.

2 After testing various fundamental matrix estimation methods, RANSAC-based
LS method has been adopted as it proved to provide the most robust results in
the case of small base lines.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.3 DPR-SfM – Camera motion. When there is enough camera motion
between the base frame (left column) and the current frame Ii (right column), the
pose is computed. (a) and (b) show the extracted image features. (c) show the
initial feature disparity after matching, (d) shows the feature disparity after outlier
rejection, in this case using F . (e) and (f) illustrate the epipolar lines for Ib and Ii,
respectively.
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By normalizing the homography between Ib and Ii:

bĤi = −A−1 bHi A

we obtain the camera camera rotation RH
bi and translation tHbi using SVD

[35]:
bĤi = RH

bi − tHbi η
T

where η is the normal of the scene plane. This type of decomposition raises
two solutions. The correct one corresponds to the plane normal pointing
towards the camera.

Between the two solutions (RF
bi, t

F
bi) and (RH

bi , t
H
bi ), we choose the most ac-

curate one. This is done by estimating the 3D position of the image features
with respect to each solution using LS Intersection. Then, the accuracy of
the camera motion is given by the back-projection error:

Ebi =

N∑
k=1

(‖pkb −ΠbP
k‖+ ‖pki −ΠiP

k‖) (3.3)

where, pkb and pki are the corresponding image features in images Ib and Ii
respectively; P k is the estimated 3D position of kth feature.

The solution corresponding to the smallest retrojection error Ebi is chosen
and the corresponding set of 3D points is used to initialize the scene model.

In order to complete the set of camera poses, we recover the pose of the
cameras corresponding to the intermediate frames between Ib and Ii by di-
rectly registering the camera views with the 3D model (Section 3.5). Figure
3.4 illustrates the initial model for the House dataset, corresponding to the
first three frames.

3.4 Scene Model

The scene model was designed to contain geometric along with photometric
information. The geometry of the scene is described in terms of 3D vertices,
defined by their position [X Y Z]T with respect to a common world frame.
Photometrically, the vertices are characterized by descriptors obtained from
their corresponding image feature descriptors.

The image descriptor vectors can be seen as noisy measurements of the
image gradient within a feature patch. As the features are tracked, multiple
measurements of the same patch are obtained. Hence, we improve feature
tracking by modifying the similarity measurement in eq. (2.1) to include
multiple observations:

s(fk, fk
i ) = ‖

∑
fk

n
− fk

i ‖ (3.4)
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Fig. 3.4 DPR-SfM – Initial model. Initial 3D scene model (red dots) and
camera poses. The model initialization was done using frame 1 (red) and 3 (blue).
Camera pose for frame 2 (green) was obtained by direct registration.

where V k represents the descriptor vector of vertex3 k, and n represents the
total number of images where the vertex was tracked. Using such a descriptor
representation allows for more stable vertex tracking in presence of image
noise, illumination changes and projective distortions.

When associating vertices with image features using eq. (3.4), we impose
distance thresholds for s(V k, vki ) to reduce the number of outliers. The thresh-
old values were established empirically. As all the feature descriptors are nor-
malized, the established thresholds proved to provide optimum results (for
both SIFT and SURF descriptors) in all the test sequences.

In practice, using a direct approach for feature association in eq. (3.4)
involves a high computational load. Depending on the resolution and the fea-
ture extractor type, an image can yield thousands of features that have to

3 Here, we use the term vertex to express a set of image features corresponding to
the same scene point. The actual 3D position of the vertex does not need to be
calculated at this point.
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be associated with tens of thousands of features from each feature group4

in the scene model. We highly reduce this computational load by using a
k -dimensional tree (kd-tree) approach. Using kd-trees, we hierarchically de-
compose the scene model feature space into a relatively small number of
subregions so that no region contains too many features [4] (see Figure 3.5).
This provides a fast way to access any scene model feature. In order to as-
sociate an image feature, we traverse down the hierarchy until we find the
subregion containing the match and then scan through the few features within
the subregion to identify the correct match. In the implementation that we
used [113], we obtained a decrease in the computational time with respect to
classical NN of about 5 times.

Fig. 3.5 Kd-tree partitioning. The k-dimensional feature space is hierarchically
partitioned in subregions containing a small amount of features.

3.5 Direct Camera Registration

This section deals with the direct recovery of the camera pose with respect
to the scene model, without the need of any a priori information on camera
motion or pose. This way, the robustness of the DPR-SfM algorithm is in-
creased, allowing it to naturally deal with camera occlusions, loop closures
and position estimation errors.

In Section 3.4 we explain how to associate image and scene model features.
From this, we obtain 3D-to-image correspondences with the aim of recovering
camera pose (Ri, ti) with respect to the world frame (see Figure 3.6). The
camera pose is obtained using RANSAC with the cost function:

Ei =

N∑
k=1

‖pki −ΠiP
k‖ (3.5)

4 DPR-SfM supports simultaneous use of different feature types. In the scene
model, the features are grouped by extractor/descriptor.
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Fig. 3.6 DPR-SfM – Direct pose registration. Example of pose registration
of frame 4: the image features are associated with the scene model. The camera
pose is estimated using the projection matrix.

In order to robustly cope with different types of scenes, we propose a novel
dual approach for camera pose recovery (similar to the one described in the
Section 3.3): (i) if the scene region seen in the current image has enough
parallax, we use projective matrix to recover the camera pose; (ii) if the
scene region is planar or close to being planar, the projection matrix is ill-
conditioned [67], in which case we use a homography approach. In order to
determine the planarity of the scene, for each RANSAC sample, we fit a plane
L to the 3D vertices using a LS method. If the distance between the plane
L and all the other 3D vertices (from the 3D-to-image correspondences) is
small enough, we consider the scene region as being planar. The method is
summarized in Table 3.1. The camera pose estimation methods are detailed
hereafter:

Projection matrix-based. Provided the set of 3D-to-image correspondences,
we obtain the projection matrix Πk using DLT. From equation (2.2), we
obtain the camera pose (Rk, tk).
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Homography-based. We compute the planar transformation iHL, so that:

pki =iHL · pkL
where pkL is the projection of Pk onto plane L. Applying SVD on iHL, we
obtain the relative transformation (iRL,

ktL) between the plane L and the
camera. Thus, the pose of the camera is obtained from:

ti = tL ·iRL +itL

Ri =
iRL ·RL

with tL and RL representing the pose of plane L in the world coordinate
system.

Once a (Rk, tk) have been obtained using the RANSAC dual method, the
camera pose is further adjusted using a LS method that minimizes the back-
projection error shown in eq. (3.5).

Table 3.1 Camera pose recovery process

1. While not enough RANSAC samples.

2. Choose randomly a set of 3D-to-image correspondences.

3. Fit a plane L to the 3D vertices from the set.

4. Check if the other vertices (corresponding to Ik) lay close to plane L.

5. If yes, compute R and t based on the homography using the set of
correspondences.

6. If no, compute R and t based on the projection matrix using the set of
correspondences.

7. Go to 1.

3.6 Model Update

As the camera moves, the DPR-SfM algorithm updates the scene model
as new features are extracted and tracked, generating new 3D vertices.
This section discusses the model updating process along with the outlier
management.

As new images are fed to the DPR-SfM algorithm and the image fea-
tures are associated with scene model features (see Section 3.4), three
scenarios arise:
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Image features matched with model features with known 3D position. These
feature associations are used to recover the camera pose, as explained in
Subsection 3.5. The outliers are detected by reprojecting the 3D vertices
into the image (eq. (3.5)). Vertices with a reprojection error higher than
a pre-established threshold are eliminated. Inliers are added to the model
to create new constraints. Every time an additional image feature is as-
sociated with a particular 3D vertex, the position of the vertex is refined,
taking advantage of this new constraint. The refinement is done by mini-
mizing the sum of the reprojection errors Ek in all the images where the
vertex was tracked:

Ek =

M∑
i=1

‖pki −ΠiP
k‖ (3.6)

Image features matched with model features with no 3D position. Adding
new image features to already existing model features provides additional
information that ultimately leads to the recovery of 3D vertex position. In
this case, the back-projection approach cannot be used for outlier rejection
as the 3D position of the vertex is unknown at the time. Alternatively, we
use a fundamental matrix based approach. For each image feature pki we
choose a feature pli from its associated feature track so that their corre-
sponding camera poses (Rk, tk) and (Rl, tl) have the widest possible base-
line (the wider the baseline the more discriminative the process). From the
relative transformation between the two cameras (Rkl, tkl) we compute the
fundamental matrix F , as shown in equation (3.2). This allows us to use
the Sampson distance shown in eq. (3.1).

If the image feature pki yields a distance Esampson larger than a pre-
established threshold, it is regarded as an outlier and the feature asso-
ciation is eliminated, otherwise it is added to the model. When enough
views of a feature are available, the position of the corresponding vertex
is calculated using a multi-view factorization approach [100]. The vertex
position is then refined using a LS method (see eq. (3.6)).

Unmatched image features. If the image features could not be consistently
associated to any model features, they are used to generate new feature
entries in the model.

Since not all model features are tracked reliably enough to produce
accurate 3D vertices, the model is constantly checked and features that do
not provide a consistent tracking are eliminated in order to minimize the
unnecessary clutter of the model.

Figure 3.7 illustrates the final 3D model of the House sequence along
with the recovered camera poses.
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Fig. 3.7 DPR-SfM – Final model. 3D model of the House sequence containing
� 2, 000 vertices (red dots) along with the camera poses. The first camera pose
(shown in red) defines the global coordinate system of the model.

3.7 Ortho-mosaicing and 3D Representation

A great deal of underwater studies require the assessment of 2D visual maps
(see Section 1.2). When the regions of interest contain significant 3D relief,
classical mosaicing techniques prove inaccurate due to the parallax effect. We
propose a solution to this shortcoming, where the 3D scene model is ortho-
projected into a plane. The result is a virtual “high-altitude” view of the
scene called ortho-mosaic. In other words, an ortho-mosaic is the equivalent
to a 2D mosaic acquired from a camera located far from the scene.

The ortho-mosaic is obtained by first creating a continuous model of the
scene. The continuous model is defined by triangular patches with the corners
defined by the 3D vertices [6]. Within the patches, we can obtain the 3D
position of any point using linear or cubic interpolation5.

5 For natural and unstructured scenes, where the shapes are usually smooth, cubic
interpolation provides the best results.
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An ortho-projection plane O is then chosen to have the same tilt as the
average tilt of continuous model. This maximizes the projection area, pro-
viding the highest level of mosaic detail. Then, all the patches are mapped
onto the destination plane along projection rays perpendicular to plane O
(see Figure 3.8).

The plane O is digitized based on a predefined resolution; each point pkO
on the grid corresponds to a pixel in the ortho-mosaic. In order to render the
mosaic, we define the following transformation relating each point pkO to a
corresponding point pki from the original images:

pki = ΠiTnp
k
O (3.7)

where Tn is the ortho-projection transformation of the patch [P1 P2 P3] and
Πi is the camera projection matrix corresponding to frame Ii, as shown in
Figure 3.8a.

Figures 3.9a and 3.10 illustrate the results of the ortho-mosaicing process
for the the House sequence and an underwater scene respectively.

For the cases where 3D information is required, the ortho-mosaic is used
as texture for rendering the 3D surface. The result is a complete model that
includes both geometrical and photometrical information of the scene. In
Figure 3.11 we show two views of the 3D model of the underwater scene.
Here, the surface was obtained by using cubic interpolation. In the case of the
House scene, illustrated in Figure 3.9b, linear interpolation is more suitable.

3.8 Experimental Results

In this section, we discuss the performance of the DPR-SfM algorithm. The
evaluation focused on two main aspects: (i) the accuracy of both scene model
and camera pose estimations and (ii) the robustness of the algorithm when
faced to common challenges such as: illumination changes, shadows, scat-
tering, low contrast images, moving objects, specular surfaces, obstructions,
objects with complex geometry, etc.

DPR-SfM has been successfully tested under various conditions, briefly
discussed hereafter:

• We applied the algorithm on image sequences captured using both still and
video cameras. The algorithm successfully coped with both high overlap
images in video sequences and low overlap images in sequences acquired
by still cameras. The DPR-SfM provides accurate estimations even in the
case of temporarily static cameras, where most SfM algorithms would fail.
The minimum overlap between images is given by the minimum number
of views where a feature needs to be tracked before its 3D position is
estimated, which can be set by the user. We generally use a minimum of
3 views per each tracked feature for redundancy.
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Fig. 3.8 Principles of ortho-mosaicing. In figure (a) The model patch
[P1 P2 P3] is ortho-projected onto the plane O. The corresponding ortho-mosaic
patch [p1O p2O p3O] is rendered using eq. (3.7) from image Ii, chosen so that the angle
α between the patch normal and the camera principal axis is minimum. In (b),
for clarity purposes, we show the ortho-projection of a seafloor model containing a
coral-reef formation (Bahamas dataset). This model will be discussed in detail in
Section 3.8.
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(a)

(b)

Fig. 3.9 Model of the house scene. (a) shows the ortho-mosaic of the house. In
this case, there is no gain in using the ortho-mosaic since all the camera views cover
the entire scene. (b) is a view of the textured model; the 3D surface was generated
using linear interpolation, which is more suited for structured scenes, containing
planes and straight edges.
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Fig. 3.10 Ortho-mosaic of an underwater scene. The rendered mosaic simu-
lates a high-altitude view of the scene, depicting coral-reef formations.
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(a)

(b)

Fig. 3.11 3D model of an underwater scene. Two views of the underwater
scene model obtained by texture rendering the ortho-mosaic on the 3D surface.
Here the surface was obtained using cubic interpolation.
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• We tested the algorithm in the presence of occlusions and pose estimation
failures (e.g. excessive motion blur). The pose of the camera was correctly
estimated immediately after the situation disappeared. From our experi-
ments, we have concluded that the camera pose can be correctly estimated,
if there is at least ∼ 20% overlap between the 3D model and the images.

• The conducted experiments included sequence acquisitions under extreme
lighting conditions, obtaining accurate results: sun-flickering in shallow wa-
ters, low lighting and increased turbidity/scattering, strobe/focus lighting
in deep waters.

In the discussion that follows, we generally assess the accuracy of the
DPR-SfM algorithm on absolute basis as, to the best of our knowledge, there
are no freely available SfM algorithms for comparison that can cope with
such large scale reconstructions.

All the data-sets presented here were acquired using various off the shelf
cameras, undergoing a random trajectory with no constraints. For all the
sequences, we assume that the internal parameters of the cameras are known
and do not change throughout the image acquisition (i.e. no zooming), and
the radial distortion is corrected. The estimation of the camera internal pa-
rameters and radial distortion parameters were obtained using a checkerboard
pattern and Bouguet’s camera calibration toolbox [12].

3.8.1 Car Scene

In this sequence we used synthetically generated images, allowing the usage
of ground truth in order to quantify the accuracy of the DPR-SfM on both
camera pose and scene geometry estimations.

The scene, comprised by a parked car in front of a building, was chosen
to incorporate common challenges in urban environments: occlusions, object
transparency, light reflections, shadows, uniform textures, etc. The rendering
of the scene was carried out using ray-tracing as it is capable of producing very
high degree of photorealism [142]. Ray-tracing generates images by tracing
the path of light through pixels in an image plane [159], accurately modeling
light alterations (reflections, shadows, transparency).

The sequence consists of 20 frames with 1, 024 × 1, 024 pixels, captured
from a camera undergoing a translation motion along the building facade
with a slight panning (see Figure 3.12 for some examples). The length of
the translation is 10m with a mean distance between the camera and scene
(the facade of the building) of � 9m. In order to accurately compare the
results with the ground truth, we fix the scale of the model by fixing the first
two camera poses in the initialization step. The following camera poses are
estimated by direct registration with the model (see Figure 3.13).

For comparison purposes, we used 4 types of feature extractors: Har-
ris, Hessian, SIFT and SURF. The processing time for the sequence was
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Fig. 3.12 Car Scene – Input images. Synthetic images generated using ray-
tracing rendering. Here, we illustrate 4 of the 20 frames showing some of the chal-
lenges: specular objects (car body and building windows) induce inter-reflections,
irregular illumination due to shadows (garage door, doors and pavement), trans-
parency (car windows), etc.

� 14mins6. A detailed description of execution times is presented in
Table 3.2. We processed this sequence using both NN and Approximated
Nearest Neighbor (ANN). The use of ANN provides a significant gain in
computation time (see Figure 3.14): NN times are quadratic in the number
of features while ANN times are linear.

6 The DPR-SfM algorithm was implemented in Matlab, partially using C++ rou-
tines. All the experiments presented in this work were executed on an Intel Core
Duo 2.13 GHz 64-bit platform.
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Fig. 3.13 Car Scene – 3D model. Two views of the 3D model containing 9,800
vertices – 2,900 Harris, 2,600 Hessian, 2,400 SURF and 1,800 SIFT. The first two
camera poses (shown in red) were fixed in order to recover the scale. The remaining
camera poses (green) were estimated by direct registration along with scene model
(red dots).
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Table 3.2 Car Scene – Processing time. Average processing time for each step
(seconds/frame).

Feat. Extraction Feat. Matching (ANN) Camera Pose Vertex Position

40.1 2.1 0.2 0.6
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Fig. 3.14 Car Scene – Scene feature matching time. Comparison of aver-
age times for matching image and scene features vs. number of features in scene.
The number of features in the image is constant (12,000). Using ANN decreases
drastically the computation times.

The resulting scene model is illustrated in Figure 3.13:

• Invalid vertices formed by reflective surfaces are removed.
• Facade regions partially occluded by the car are correctly modeled

(e.g. left of the building entrance).

The ray-tracing software was modified to generate the ground truth 3D po-
sition of the points in the scene corresponding to each pixel in the rendered
images. Knowing the position of the extracted visual features, the accuracy
of the model is quantified by comparing the vertex position estimations with
the ground truth.

Figure 3.15a illustrates the average residuals (XY Z) for the vertices gen-
erated by each feature extractor. While very similar, SIFT and SURF have
slightly greater residuals than Harris and Hessian, due to the nature of the ex-
tractors (see Section 2.1.3). The evolution of error in camera pose estimation
is shown in Figure 3.15b.

In ideal conditions (absence of noise, distortions, blurring, etc.), both scene
geometry and camera pose estimations are accurate and the error accumula-
tion (drifting) is very small. Additionally, we want to test the robustness and
accuracy of DPR-SfM for realistic scenarios. For this, we use a Monte Carlo
test by adding noise to image features, aiming to:
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Fig. 3.15 Car Scene – Reconstruction errors. Figure (a) shows the vertex
position residuals by frames, for each feature extractor. The extractors yield com-
parable results, with small error accumulation. In (b) we represent the error in
camera pose. The residuals in both position and attitude are very small with a slow
error accumulation.
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• Assess the accuracy of the model and camera pose estimations in presence
of noise.

• Robust camera pose estimation and vertex position estimation use a pre-
established threshold ρ for outlier rejection (see Sections 3.5, 3.6). We test
how this threshold affects the DPR-SfM accuracy.

As we consider feature localization errors to follow a normal distribution, we
use a zero-mean gaussian noise with a known standard deviation σ. For each
test, we fix the value of ρ and we generate the model with increasing values
of σ until a valid model cannot be generated. We use two values for ρ: 1.5
and 2.5 (values typically used in DPR-SfM). The errors in scene model and
camera pose are given by εv, εp and εa, where εv is the average error in vertex
position estimation and εp is the average error in camera position estimation
(both error measurements are given by the average Euclidian distance). The
error in camera attitude estimations εa is given by the average of absolute
differences over all the rotations:

εa =

N∑
i=1

|φi − φi|+ |θi − θi|+ |ψi − ψi|

3N

where (φi θi ψi) is the estimated orientation and (φi θi ψi) is the ground
truth orientation for camera pose i; N is the total number of frames.

Table 3.3 details the results of the Monte Carlo tests. The noise in im-
age features has little impact on both model and camera pose estimations,

Table 3.3 Car Scene – Monte Carlo test results. The results for two values
of ρ. The values for εv and εp are expressed in m·10−3 and εa is expressed in
rad · 10−3. Vert./fr. represents the average number of vertices registered in each
frame.

ρ = 1.5 ρ = 2.5
σ εv εp εa vert./fr. εv εp εa vert./fr.

0 47.9 1.3 0.03 2226 61.2 3.0 0.05 2449
0.2 48.9 1.4 0.10 2211 61.9 3.2 0.14 2447
0.4 48.8 1.8 0.16 2148 63.6 3.3 0.18 2446
0.6 50.5 3.3 0.21 1939 65.5 4.0 0.23 2435
0.8 51.8 4.2 0.25 1598 66.0 4.4 0.27 2416
1.0 57.9 4.1 0.31 1285 66.4 3.7 0.29 2291
1.2 63.3 7.5 0.7 970 73.8 6.2 0.32 2309
1.4 69.1 14.5 0.81 848 74.0 5.1 0.34 2180
1.6 65.7 19.6 0.85 329 81.8 4.7 0.43 2035
1.8 – – – – 85.6 6.0 0.45 1857
2.0 – – – – 90.7 7.0 0.50 1671
2.2 – – – – 106.6 7.8 0.61 1471
2.4 – – – – 124.6 7.9 0.72 1237
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Fig. 3.16 Car Scene – Feature evolution in Monte Carlo test. The av-
erage number of vertices drops as the noise level increases (Top Figure). Using a
more relaxed threshold keeps a larger number of vertices but slightly decreases the
accuracy of the vertices (Bottom Figure).

especially when a low threshold is used. However, as the noise level increases,
the use of a very restrictive threshold highly reduces the number of vertices
(see Figure 3.16). This affects the camera registration precision, ultimately
leading to the impossibility to generate a valid model.

Figure 3.17 illustrates the distribution of the noise in the image features
for each threshold. The DPR-SfM can generate a valid scene model even in
the presence of an overwhelming number of outliers (more than 60%).
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Fig. 3.17 Car Scene – Image feature noise distribution. The two histograms
correspond to the maximum noise level where DPR-SfM could generate a valid
model for ρ = 1.5 and ρ = 2.5 respectively. In (a) 35.4% of the features fall within
the threshold (yellow line) while in (b) 39.2%.



64 3 Direct Structure from Motion

3.8.2 Water-Tank Sequence

This sequence is part of a series of experiments, used for testing the perfor-
mance of the DPR-SfM algorithm under realistic conditions. The dataset was
acquired by a camera mounted on the Johns Hopkins University (JHU) ROV
at the JHU test tank. The bottom of the tank was populated with rocks and
shells, simulating the appearance and geometry of a typical seafloor scene.
The size of the scene is � 5 × 5m. The sequence, comprised of 3,500 images
(see Figure 3.18), was acquired at a constant distance of 1.2m above the bot-
tom of the tank. After the visual survey, the tank was drained and scanned
with a Leica Geosystems laser scanner, obtaining 3.8 millon points with an
estimated accuracy of 1.2mm.

The objective of this experiment was to assess the 3D reconstruction ac-
curacy of the DPR-SfM using the ground truth, under a realistic scenario,
and compare it with state-of-the-art SfM algorithms.

For this purpose we have applied DPR-SfM on the dataset in conjunction
with OVV (see Chapter 4) in order to efficiently detect loop closures, followed

Fig. 3.18 Water-tank Sequence – Input images. Sample images from the
dataset depicting some of the objects present in the scene.
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by bundle adjustment. The resulting 3D model, consisting of 610,000 vertices,
is illustrated in Fig. 3.19 along with the estimated camera trajectory.

The same dataset was processed using sparse reconstruction algorithm:
VisualSFM [164, 175], and dense reconstruction algorithms: Patch-based
Multi-view Stereo Software (PMVS) [44, 141] and Multi-View Reconstruc-
tion Software (CMPMVS) [22, 78]. It should be noted here that PMVS and
CMPMVS are multi-view stereo approaches, meaning that these algorithms
require camera poses to be computed prior to the reconstruction. In our ex-
periment, we have used camera poses obtained using both DPR-SfM and
VisualSFM as basis for the dense reconstructions.

The accuracy of the reconstructions was quantified by comparing the ob-
tained models with the laser scan. For this, for each obtained 3D model, we
first manually aligned it with the laser scan using 3D point correspondences.
The alignment was further refined using Iteratively Closest Point (ICP) [186].
In order to assess the accuracy of the reconstructions, we quantify the re-
construction errors using the Hausdorff distance [115] between the models
and the laser scan ground truth. Table 3.4 summarizes the reconstruction
accuracy, 3D model complexity and computational times for each of the
reconstruction techniques. DPR-SfM provides the most accurate 3D recon-
struction, compared to either sparse and dense reconstruction techniques.
Moreover, for both PMVS and CMPMVS, the models obtained using camera
poses estimated using DPR-SfM yield a higher accuracy. The complexity of
the model obtained using DPR-SfM is slightly higher than VisualSFM and
� 60% of the complexity of dense models in terms of number of vertices.

Regarding the computational costs, DPR-SfM had similar execution times
with PMVS and CMPMVS, while VisualSFM has much higher execution
times due to its brute-force approach for cross-over detection – tries to match
any possible combination of two images in the sequence.

Table 3.4 Water-tank Experiment – Comparison between 3D reconstruc-
tion algorithms. The table summarizes the reconstruction errors for DPR-SfM,
VisualSFM, PMVS and CMPMVS. Both the average error E and maximum error
Emax shown here are provided in metric units and in percentages of scene depth.
For PMVS and CMPMVS, we show the reconstruction accuracy when using camera
poses recovered using both DPR-SfM and VisualSFM – the computational times
shown here represent only the dense recontruction process and do not include the
camera pose recovery process.

Algorithm E [m] E [%] Emax [m] Emax [%] Vertices Time [h]
DPR-SfM 0.011 0.91 0.092 7.60 610,000 4.1
VSFM 0.0125 1.03 0.116 9.59 560,000 97.5
DPR-SfM+PMVS 0.016 1.32 0.134 11.07 1,022,000 3.95
DPR-SfM+CMPMVS 0.015 1.24 0.129 10.66 1,343,000 4.8
VSFM+PMVS 0.0173 1.43 0.137 11.32 957,000 3.92
VSFM+CMPMVS 0.0165 1.36 0.133 10.99 1,256,000 4.82



66 3 Direct Structure from Motion

-3

-2

-1

0

1

2

-2

-1

0

1

2

-1

-0.5

0

0.5

X [m]
Y [m]

Z
 [

m
]

Fig. 3.19 Water-tank Sequence – Scene model and camera trajectory
obtained using DPR-SfM. The model consists of 610, 000 vertices, shown in
green. The camera trajectory is marked in blue. Both the model and the camera
trajectory were subsampled for illustrative purposes.

Figure 3.20 illustrates the error distribution within the reconstruction ob-
tained using DPR-SfM. The wide regions of the tank bottom with higher
error correspond to changes in the carpet shape as the tank was drained for
the laser scanning. For details on the acquisition process refer to [138].

Fig. 3.20 Water-tank Sequence – Error distribution. The color encoded by
error magnitude, lighter areas correspond to higher errors.
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3.8.3 Rocks Loop

In this experiment, we discuss the capability of the DPR-SfM algorithm to
model outdoor, unstructured scenes.

The scene, illustrated in Figure 3.21, is formed by a random arrangement
of rocks. The image sequence was acquired using a monochrome camera with
a resolution of 696× 520 pixels. A sample of the images is shown in Figure
3.22. During the acquisition, the camera was looking downwards, towards the
scene, and rotated so that its y axis was tangent to the direction of movement,
simulating a down-looking camera mounted on an UUV.

Fig. 3.21 Rocks Loop – Overview. The scene is comprised by a round area with
a diameter of � 8m. The area is covered by rocks with varying sizes and textures,
ideal for simulating an underwater relief.

The sequence of 740 frames was processed using HarrisAffine-SURF and
SURF-SURF, yielding 170,000 vertices – 86,000 Harris and 84,000 SURF (see
Figure 3.23a). We obtain an average back-projection error of 1.72 pixels, with
1.67 pixels for Harris and 1.75 pixels for SURF. The average track length for
Harris is 12.1 frames while for SURF is 14.3 frames. This shows that, in the
case of unstructured environments, Harris provides better precision in feature
localization, while SURF is more robust to image transformations.

The major drawback of these types of environments is the impossibility
of an exact quantification of the reconstruction accuracy due to the lack of
ground truth. We overcome this by designing the camera trajectory to have
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Fig. 3.22 Rocks Loop – Input images. A sample set of the input images. We
used a plastic object (highlighted in yellow) to mark the beginning and ending of
the loop.

a loop form, so that its beginning overlaps its ending (see Figure 3.22). In
this way, we establish constraints between the two ends of the loops (see
Appendix B). After detecting the loop closure and applying BA, we correct
the estimation errors up to a high degree of precision (see Figure 3.23b). We
use this corrected model as the ground truth and compare it with the origi-
nal result, quantifying the accuracy of the DPR-SfM. Figures 3.24 and 3.25
illustrate the error evolution in vertex position and camera pose respectively.

3.8.4 Pool Trials

We present one of the experiments we have conducted in the Underwater
Robotics Center of the University of Girona. Shown in Figure 3.26a, the center
is endowed with a pool used for performing tests of small class underwater
vehicles. The Underwater Vehicles (UVs) are controlled and monitored from
a submerged control room, allowing the researchers to have live panoramic
view of the experiments.
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Fig. 3.23 Rocks Loop – 3D model and camera trajectory. Figure (a) illus-
trates the resulting model along with the estimated camera trajectory. The drifting
generates a gap in the model where the loop should be completed. The model is
corrected after loop closure detection and BA (b).
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Fig. 3.24 Rocks Loop – model estimation errors. The evolution of the ver-
tex position estimation errors by frame for each degree of freedom. Bottom plot
illustrates the total vertex estimation error.

The tests were performed using Ictineu, an open frame, small class Au-
tonomous Underwater Vehicle (AUV) (see Figure 3.26). The modular design
of Ictineu allows us to set up different types of sensors, depending on the
mission environment and purpose. For our experiments, we have used an off
the shelf, low end, 384 × 288 pixels monochrome camera. The camera was
mounted on Ictineu on a down-looking configuration.

The AUV was set to follow predetermined trajectories, while the cam-
era was acquiring images of a poster mounted on the bottom of the pool,
simulating a seafloor scene.

The aim of the experiments is to observe the behavior of the DPR-SfM
algorithm in the presence of flat scenes. In these cases (e.g. sandy seafloor
regions, building facades, etc.), SfM algorithms fail due to the lack of parallax.
Our dual approach, on the other hand, allows us to handle these situations
(see Sections 3.3 and 3.5).

In the presented experiment, we have acquired a sequence of 150 frames
while Ictineu was following a straight trajectory, maintaining a constant
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Fig. 3.25 Rocks Loop – Camera pose errors. Camera pose estimation error
evolution by frame, for each degree of freedom. Bottom two plots illustrate total
estimation errors for position and attitude respectively.

distance to the poster of � 1.5m (refer to Figure 3.27 for examples of images
from the dataset). During the experiment, there was a brief communication
error between Ictineu and the control room generating some invalid frames
to be captured. This offered an ideal situation to test the robustness of the
DPR-SfM algorithm when faced to camera obstructions / errors.

After processing the sequence, we obtained 10,000 HarrisAffine and 7,000
SURF vertices. In both cases, we used SURF for description. Figure 3.28
illustrates the result of the reconstruction. The gap in the camera trajectory
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(a)

(b)

Fig. 3.26 Pool Trials – Experimental setup. (a) Underwater Robotics Lab-
oratory of the University of Girona and (b) Ictineu AUV (foreground) with the
seafloor poster during the experiments, photographed from the submerged control
room.
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Fig. 3.27 Pool Trials – Input images. Images from the sequence of the poster
simulating an underwater scene.
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Fig. 3.28 Pool Trials – 3D model and camera trajectory. 3D model of the
poster and camera trajectory. There is a gap in the camera trajectory due to a
communication error between the UV and the control room.
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corresponds to the communication error. DPR-SfM was able to recover from
this situation, correctly registering the following frames.

In order to account for the precision of the reconstruction we first first
determine the average scene plane using Least-Squares fitting to the 3D ver-
tices. As the scene is planar, we define the reconstruction error as the Eu-
clidean distance between the plane and the 3D vertices. The distribution of
the reconstruction error is illustrated in Figure 3.29.
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Fig. 3.29 Pool Trials – Reconstruction error histogram. We calculate the
reconstruction error as the Euclidean distance between the scene plane and the
vertices.

3.8.5 Coral Reef Sequence

Here we discuss the results obtained from sequence depicting a coral reef
area. This dataset is part of a larger survey of a benthic habitat undertaken
in shallow waters in The Bahamas. The images were acquired by the Univer-
sity of Miami (UoM) using a hand-held HD camera. The sequence consists
of 1,100 images of 962× 540 pixels (the resolution of the images was reduced
from 1920×1080 due to interlacing). The area was surveyed with the camera
following a “lawnmower” trajectory, with partial overlap between adjacent
columns. This provides a complete coverage of the area while offering addi-
tional constraints in the model.

The sequence covers � 150m2 and was chosen to include different types
of topologies and textures often found in underwater scenes. Figure 3.30
depicts typical entities found in the dataset. We recover the scene model
using HessianAffine-SURF and SURF-SURF features with an outlier rejec-
tion threshold ρ = 1.5, obtaining 270,000 vertices (130,000 HessianAffine and
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Fig. 3.30 Coral Reef Sequence – Input images. Sample images from the input
sequence showing different types of regions: coral reef formations, rocks, algaes,
sand, etc.

140,000 SURF). Figure 3.31 illustrates the scene model and camera trajec-
tory – the number of vertices in the model has been reduced 10 times in order
to avoid cluttering in the figure.

The aim of this experiment is to asses the accuracy of the model with
respect to the texture types present in the scene. For this, we consider the
average back-projection error for each reconstructed vertex. Figure 3.32 shows
that the precision of the vertex reconstruction is highly related to the saliency
of the corresponding image features7. Moreover, it can be observed that there
is a strong correlation between the vertex precision and the type of its neigh-
boring scene type (e.g. vertices in rocky and coral reef areas are more accurate
than ones in sandy areas).

Using the constraints between adjacent columns in the camera trajec-
tory (see Appendix B), we apply BA on the sequence. We use the result
as reference to quantify the errors in the reconstruction. The error evolu-
tion in camera pose estimation is illustrated in Figure 3.33. As the camera
is registered directly with the model, the errors do not increase significantly
along the columns in the camera trajectory, reducing drastically the error
accumulation.

7 The saliency represents a quality measurement of the features. It is related to
the image gradient in the neighborhood of the feature, so that higher saliency
corresponds to more accurate and discriminant features.
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Fig. 3.31 Coral Reef Sequence – 3D model and camera trajectory. (a)
simplified scene model and camera trajectory: green and magenta markers show
the beginning and end of trajectory respectively; (b) another view of the scene
model.
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(a)

(b)

(c)

Fig. 3.32 Coral Reef Sequence – Vertex error. Figure (a) shows the back-
projection error distribution. Darker values correspond to higher accuracy. The
distribution of image feature saliency is shown in (b); lighter values correspond
to higher saliency. The ortho-mosaic of the scene is provided for reference in (c),
showing the relation between region types, feature saliency and vertex accuracy.
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Fig. 3.33 Coral Reef Sequence – Camera pose errors by frames. (a) camera
pose errors and (b) camera attitude errors.
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3.8.6 Mequinenza Sequence

In this experiment, we aim to test the behavior of the DPR-SfM under difficult
image conditions. The sequence was captured in the Ebro river, Mequinenza,
Catalunya by the Ictineu AUV using a down-looking monochrome camera.
Due to the high turbidity in the water, we used additional lighting, which
increased the visibility but induced shadows and non-uniform illumination
patterns. Moreover, due to back-scattering, the images have low contrast
(see Figure 3.34).

Fig. 3.34 Mequinenza Sequence – Input images. Image samples depicting
some of the challenges of sequence: scattering, light absorbtion, shadows, complex
scene geometry, etc.

The sequence, comprised by 2,900 frames of 384 × 288 pixels resolu-
tion, was first pre-processed using Contrast Limited Adaptive Histogram
Equalization (CLAHE) [188] in order to enhance the quality of the images.
Using SURF-SURF features, we obtained 220,000 vertices. Figure 3.35 il-
lustrates the resulting camera trajectory and scene model (the number of
features has been reduced for illustration clarity). The model shows an envi-
ronment with complex geometry, also, the trajectory of the camera depicts a
motion of Ictineu with sudden changes in heading and motion direction due
to the water currents.
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Fig. 3.35 Mequinenza Sequence – 3D model and camera trajectory. (a)
scene model along with camera trajectory: green and magenta markers show the
beginning and end of trajectory respectively; (b) another view of the scene model.

Using an outlier rejection threshold ρ of 1.5, we obtain an average back-
projection error for the whole model of 0.9 pixels.
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3.8.7 Urban Experiment

This experiment was aimed at testing the DPR-SfM algorithm for large-
scale urban modeling applications. For this, we acquired a sequence of Unirii
Square in Timisoara, Romania. The square, illustrated in Figure 3.36, has a
rectangular shape, measuring � 155× 120m and is surrounded by historical
buildings of various shapes and textures. We used a low-end Pentax Optio
A30 digital camera for video acquisition, while walking through the square
following a loop trajectory. The resulting image sequence contains 961 frames
of 640× 460 pixels in resolution (see Figure 3.37).

Fig. 3.36 Urban Experiment – Overview of the Unirii Square. Aerial view
of the Unirii Square.

After applying DPR-SfM on the sequence using SURF-SURF, the resulting
model, shown in Figure 3.38, contains 240,000 vertices. The drift due to error
integration is obvious at the loop closure, where the facades of the buildings
are repeated (see Figure 3.38b). The main reason behind the high drift in
this dataset is the decreased precision in feature localization due to the low
quality of the images: the camera uses a high compression ratio MPEG2
codec, which results in loss of details in images.



82 3 Direct Structure from Motion

Fig. 3.37 Urban Experiment – Input images. Sample images from the dataset,
showing some of the typical challenges such as moving objects, occlusions, sun
flickering, lack of texture, etc. Also, the partial overlap between the first and last
image can be clearly observed.
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Fig. 3.38 Urban Experiment – 3D model and camera trajectory. (a) scene
model (red) along with camera trajectory (blue) – the number of vertices in figure
was reduced by 10 times to avoid cluttering; (b) top view of the scene model clearly
depicting the drift at the loop closure (repeated edges at the bottom marked in
green).
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After the loop closure detection (see Section 4.4.5), we corrected the model,
as shown in Appendix B. The result is shown in Figure 3.39.

Considering the model after BA as the ground truth, we calculate the
camera pose and vertex position estimation errors by comparing the models
before and after the BA (in a similar fashion to the experiment described in
Section 3.8.3). Figure 3.40 illustrates the error for both camera and vertex
estimations.

3.9 Discussion

In this chapter we presented a novel SfM algorithm for large scale scene
modeling. The algorithm generates the scene models sequentially, using a
two stage approach. Initially, DPR-SfM creates a seed model corresponding
to a small subregion of the scene, using camera motion estimation techniques.
In the second stage, the scene model is extended to cover the entire surveyed
area. During scene reconstruction, the camera pose is recovered by directly
registering camera views with the scene model. This increases the accuracy
and robustness of DPR-SfM, allowing it to successfully cope with situations
often found in visual surveys such as occlusions, camera temporary failures,
etc. Also, using direct camera pose registration highly increases the flexibility
of the DPR-SfM.

Generally, state of the art SfM algorithms require additional sensor infor-
mation or impose constraints on the image acquisition (e.g. minimum camera
movement between frames for correct motion estimation). DPR-SfM can be
readily applied on image sequences acquired with any type of camera, both
still and video, with no constraints on the camera acquisition process. Also,
the presented SfM algorithm does not require navigation priors. However,
sensor information such as camera pose can be used to decrease the compu-
tational cost of the algorithm.

The direct camera pose registration uses a novel dual RANSAC projective/
homography approach which allows the DPR-SfM algorithm to accurately
model both planar and non-planar scenes. This is particularly important in
underwater and urban scenes, where parts of the scene can have significant
parallax while others can be perfectly planar.

Robust estimation methods are also used on vertex position recovery.
Experiments show that using a dual layer (camera and model) RANSAC
approach increases the stability and accuracy of the method, especially in
challenging environments, such as underwater, where image blurring and low
contrast decrease the efficiency of feature tracking.

We have also developed an efficient and flexible scene representation. It al-
lows the 3D modeling of large and complex scenes while enabling the parallel
use of multiple visual feature extractors/descriptors. In this context, we em-
ployed a kd-tree scheme for efficient feature matching and camera registration
even for large scene models.
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(a)

(b)

Fig. 3.39 Urban Experiment – 3D model and camera trajectory after
BA. (a) view of the 3D model using colored vertices, and the camera trajectory;
(b) top view of the 3D model aligned with an aerial view of Unirii Square from
Google Earth – the reconstruction fits the photo accurately.
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Fig. 3.40 Urban Experiment – Estimation errors. (a) total camera position
drift: evolution by frames; (b) vertex estimation error distribution.

Experiments show the robustness of DPR-SfM in both land and under-
water environments. In the Water-tank experiment we compare different
state-of-the-art sparse and dense SfM techniques, showing that DPR-SfM has
improved accuracy, both in terms of scene modeling and camera pose
recovery.

Results demonstrate that DPR-SfM can efficiently cope with large and
complex reconstructions8 (e.g. Section 3.8.2).

There are several ongoing and future topics that may improve the work
presented in this chapter. After camera pose registration, the image patches
around features can be warped using camera-to-model transformations. This
would reduce the limitations of feature extractor/descriptors of coping with
extreme geometric distortions, increasing the efficiency of feature matching.
Also, the accuracy of feature localization can be improved by using cross-
correlation as a refinement step after feature tracking. Feature-to-model as-
sociation computational costs can be highly decreased by using GPU-based
parallel processing, e.g. using NVIDIA CUDA.

8 We consider the complexity of the 3D modeling problem to be quantified by the
amount of data involved in the reconstruction (i.e. number of camera poses and
vertices), rather than the metric size of the scene, as the size of the reconstructed
area depends only on the camera-to-scene distance and the properties of the
camera lenses.



Chapter 4

Online Loop Detection

This chapter proposes a novel loop closure detection framework for visual
based navigation and mapping. The proposed approach eliminates the train-
ing stage and reduces the user interaction process while increasing both the
accuracy and robustness of the loop closure detection.

4.1 Introduction

Vision-based navigation is essentially a dead reckoning process. During navi-
gation and map building, vision systems estimate the camera pose relative to
either previous poses or an environment map, while they build the map from
observations relative to camera poses. All estimations are prone to aliasing,
noise, image distortions and numerical errors (see Section 1.3), leading to
inaccuracies in both pose and map inferences. While generally small, these
inaccuracies build up in time, leading to significant errors over large camera
trajectories.

These errors can be reduced by taking advantage of the additional informa-
tion resulting from cross-overs. Cross-overs (or loop-closures) are situations
when a camera revisits a region of the scene during a visual survey. If cor-
rectly detected, these situations can be exploited in order to establish new
constraints, allowing both camera pose and map errors to be decreased (see
Figure 4.1), either using offline approaches such as BA [19, 102, 108, 154, 172]
or online approaches employing gaussian filters such as the popular Kalman
Filter [18, 41, 52, 145] or non-parametric methods such as those using particle
filters [99, 112], etc. In this context, the main open issue is the correct and
efficient detection of loop closures.

Loop closure detection is an inherently complex problem due to the amount
of data that needs to be analysed. As typical image feature extractors yield
thousands of features per image, after just a few hundred frames, the resulting
map contains tens to hundreds of thousands of features. A brute force loop
closure detection, where the current visual observations are compared to the

T. Nicosevici & R. Garcia: Efficient 3D Scene Modeling and Mosaicing, STAR 87, pp. 87–125.
DOI: 10.1007/978-3-642-36418-1_4 c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 4.1 Loop closure detection. As the the camera moves, there is an increasing
uncertainty related to both the camera pose and the environment map. At instant
tk, the camera revisits a region of the scene previously visited at instant ti. If the
visual observations between instants tk and ti can be associated, the resulting in-
formation can be used not only to reduce the pose and map uncertainties at instant
tk, but it also can be propagated, reducing the uncertainties at prior instants.

entire map, would be much too computationally expensive, especially for
online applications.

As an alternative, the complexity of the loop closure problem can be re-
duced by narrowing the search to the vicinity of the current camera pose.
This is a widely used approach, mainly in the Simultaneous Localization and
Mapping (SLAM) community, where the vision system is modeled as a sensor
with a known uncertainty. During navigation, an uncertainty is associated to
each vehicle pose and the loop closures are detected by matching current
observations with the region of the map corresponding to the current uncer-
tainty space [31, 32, 76, 136]. However, an accurate estimation of the vehicle
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uncertainty is a complex problem and is generally affected by linearization
approximations. To counterbalance this shortcoming, assuring the detection
of the cross-over, current observations may be compared with a region of the
map corresponding to a higher covariance than the estimated one [80, 106].
Doing so becomes computationally expensive, especially over large trajectory
loops, where the covariance of the camera is high. Moreover, the noise model
used for covariance estimation does not account for inaccuracies resulting
from obstruction, temporary motion blur, sensor failures, etc. These situa-
tions lead to poor vehicle pose estimation, not reflected in the uncertainty
estimation, in which case the loop closure may not be detected.

In [56, 176, 183], the authors propose a loop-closing detection method that
computes the visual similarity using features. During navigation, they extract
key points from each image (e.g. SIFT [96]). These features are matched
among images and the visual similarity is proportional to the number of suc-
cessfully matched features. Generally, such methods are sensitive to occlu-
sions while being computationally expensive, limiting their application over
large navigation trajectories.

A more robust and computationally efficient alternative is to represent en-
tire images as observations rather than individual image features. In this
context, cross-overs are detected on the basis of image similarity, drasti-
cally decreasing the amount of data that needs to be processed. The reduced
computational cost related to such approaches enable brute force cross-over
detection, even for large camera trajectories. This allows correct detection
of trajectory loops, independent of camera pose and covariance estimation
accuracy.

Initial proposals on image similarity cross-over detection use image repre-
sentations based on a single global descriptor, embodying visual content such
as color or texture[13, 86, 88, 143, 170]. Such global descriptors are sensitive
to camera view-point and illumination changes, decreasing the robustness of
the cross-over detection.

The emergence of modern feature extractors and descriptors (see Section
2.1.3) has led to the development of new appearance-based cross-over de-
tection techniques that represent visual content in terms of local image de-
scriptors [1, 2, 25, 26, 177]. Inspired from advances in the fields of object
recognition and content-based image retrieval [133, 162, 185], recent exam-
ples of such approaches describe images using BoW (see Figure 4.2). BoW
image representation employs two stages: (i) in the training stage, sets of
visual features are grouped or clustered together to generate visual vocabu-
laries - collections of generalized visual features or visual words ; (ii) in the
second stage, the images are represented as histograms of visual word occur-
rences. While discarding the geometric information in images, BoW proved
to be very robust methods for detecting visual similarities between images,
allowing efficient cross-over detection even in presence of illumination and
camera perspective changes, partial occlusions, etc.
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Fig. 4.2 BoW image representation. Images are represented by histograms of
generalized visual features.

Initially, BoW techniques have been developed for object recognition and
content-based image retrieval applications. Such methods use a training set
of images from which the visual vocabularies are built, mostly using k-means
clustering [21, 162, 163], where the user is required to specify the number of
visual words in the vocabulary (for a detailed comparison of different cluster-
ing strategies, please refer to [11]). Alternatively, other works have proposed
the use of hierarchical k-means or approximated k-means, increasing the ef-
ficiency of the vocabulary building process for large training data sets [137],
[131].

In [156] Schlinder et al. propose the use of kd-trees to build a visual vo-
cabulary as proposed by Nister and Stewenius in [131]. The vocabulary is
then used for SLAM at the level of a city with good results. Galvez et al.
[45] propose the use of a vocabulary based on binary features for fast image
matching.

Konolige et al. [84] propose a two stage method in which visual vocabu-
laries are first used to extract candidate views followed by a feature-based
matching.

The main shortcoming of the above-mentioned methods is the use of a
static vocabulary: the vocabulary is built a priori and remains constant
during the recognition stage, failing to accurately model objects or scenes
not present during training [182]. This shortcoming is particularly critical in
the case of mapping and navigation, where a robot should be able to suc-
cessfully detect loop-closure situations in uncontrolled environments. As a
consequence, a series of authors in the SLAM community have proposed al-
ternatives to address this problem. Notably, Filliat [37] and Angeli et al. [1, 2],
assume an initial vocabulary which is gradually incremented with new image
features in an agglomerative fashion, using a user-defined distance thresh-
old as the merging criterion. Alternatively, Cummins et al. [25–27] and later
Paul et al. [135] and Glover et al. [55] propose a large scale loop detection
probabilistic framework based on BoW. They show good results employing
k-means based static vocabularies built from large sets of visual information,
not necessarily acquired in the same areas where the robot navigation takes
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place. As an alternative, Zhang [183] proposes a workaround to the off-line
vocabulary building stage by describing images directly using visual features,
instead of vector-quantized representation of BoW. Here, the complexity of
raw feature matching for loop-closure detection is partially reduced by means
of a feature selection method that reduces the number of features extracted
from images.

We propose a novel method for building Online Visual Vocabulary (OVV)
[127]. The proposed approach is aimed at increasing the efficiency and accu-
racy of loop-detection in the context of on-line robot navigation and mapping.
It requires no user intervention and no a priori information about the envi-
ronment. OVV creates a reduced vocabulary as soon as visual information
becomes available during the robot survey. As the robot moves, the vocabu-
lary is constantly updated in order to correctly model the visual information
present in the scene.

Current state-of-the-art clustering methods such as k-means, k-medians or
agglomerative use local cluster relationships as basis for the merging criterion,
resulting in a high probability for these algorithms to get stuck in a local
minima. In contrast, we propose a new clustering criterion which takes into
account the entire distribution of the clusters, increasing the efficiency of the
resulting vocabularies. Also, we present a novel method for feature-cluster
association and image indexing, suited for incremental vocabularies.

The remaining of the chapter is structured as follows: the following section
proposes a novel vocabulary building method, followed by a proposal of a new
image indexed method. The OVV process is then validated through a series of
experimental results, including a 18.5-km trajectory dataset, along with the
application of OVV on large-scale 3D reconstruction and mapping for land
and underwater environments. The chapter concludes with some remarks and
proposal for further work.

4.2 Visual Vocabulary

State of the art visual vocabulary-based loop-closure algorithms assume an
initial training stage. This stage involves pre-acquiring visual features, which
are then used to build the visual vocabulary by means of some clustering
method. Typical vocabulary building methods use k-means, k-medians or
fixed-radius clustering algorithms, which require the user to set various pa-
rameters such as the number of clusters in the vocabulary, or some distance
threshold. Finding the adequate parameters for an optimum vocabulary is a
tedious task which generally involves a trial and error approach. For instance,
a vocabulary with too many words would not have enough abstraction power
to detect similarities between images. In contrast, a vocabulary with too few
words would be too confusing and generalized to be discriminative.

In this chapter we propose a novel incremental visual vocabulary building
technique that is both scalable (thus suitable for online applications) and
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automatic (see Figure 4.3). In order to achieve this goal, we use a modi-
fied version of agglomerative clustering. Agglomerative clustering algorithms
begin with each element as a separate cluster – called hereafter elementary
clusters – and merge them using some similarity measurement into succes-
sively larger clusters until some criterion is met (e.g. minimum number of
clusters, maximum cluster radius, etc.).

Vocabulary update

I ..I
mp+1 m(p+1)

Cluster merging

Image indexing

I ..I
mp+1 m(p+1)

Image re-indexing

I ..I
1 mp

Image features

Fig. 4.3 Flowchart of OVV and image indexing. Every m frames, the vo-
cabulary is updated with new visual features extracted from the last m frames.
The complete set of features in the vocabulary is then merged until convergence.
The obtained vocabulary is used to index the last m images. Also, the previously
indexed frames are re-indexed, to reflect the changes in the vocabulary.

4.2.1 Vocabulary Building

In our proposal, elementary clusters are generated from visual tracking of
scene points, with each elementary cluster corresponding to one feature track.
The feature tracks are generated by gathering multiple observations of the
same scene point, as the camera moves [126, 129]. While not required by
OVV, this step allows us to pre–select the number of visual features used in
building the vocabulary, decreasing the computational costs.

The visual vocabulary is built by incrementally merging these clusters.
The building process can be summarized in two steps (see Figure 4.3):
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• Vocabulary initialization step. The vocabulary is initialized with the
elementary clusters corresponding to the firstm images. Clusters are grad-
ually merged until convergence is achieved (the merging criterion is dis-
cussed in detail in Section 4.2.4).

• Vocabulary update step. As the robot moves, more visual information
of the scene becomes available, which needs to be contained in the vocabu-
lary. Therefore, from every block ofm images, new elementary clusters are
extracted. These clusters are added to the vocabulary and the complete
set of clusters is gradually merged until convergence. This step is repeated
for each block of m new images.

4.2.2 Cluster Characterization

Each cluster in the vocabulary is defined by its position in the t-dimensional
feature space and its size (radius). This provides complete information about
both the cluster distribution and the interaction between clusters. As previ-
ously shown, all the input information (for both initialization and update)
comes from elementary clusters, such that all the other clusters in the vocab-
ulary are formed by merging these clusters. As the elementary clusters are
generated from feature tracking that provide multiple (noisy) observations of
a scene point, we define them through:

Ck =

n∑
i=1

f i
k

n

Rk =

n∑
i=1

(f i
k − Ck)(f

i
k − Ck)

T

n− 1

where Ck is the cluster centroid given by the mean of feature vectors corre-
sponding to scene point k in image i and Rk is the covariance matrix of the
observations of point k.

4.2.3 Cluster Updating

Each cluster merging involves the joining of two clusters (see Figure 4.4).
The parameters of the newly generated cluster are obtained directly from
the merged clusters, without the need of recomputing them from the original
data. This saves both computational time and memory, especially in the case
of large clusters. The position and size of the new cluster are given by [82]:
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Fig. 4.4 Iterative visual vocabularies. In the initialization step (bottom part)
the vocabulary is populated with elementary clusters (marked in gray), extracted
from the first m images. These clusters are merged until convergence. The final
clusters of the initialization step are marked in black. In the update step (top
part), new elementary clusters obtained from blocks of m images are added to the
vocabulary. The complete set of clusters are then merged until convergence.

Cab =
naCa + nbCb

na + nb

Rab =
na − 1

na + nb − 1
Ra +

nb − 1

na + nb − 1
Rb

+
nb · na

(na + nb)(na + nb − 1)

· [(Ca − Cb)(Ca − Cb)
T]

where Ca and Cb are the centroids of the merging clusters, having na and nb

elements, respectively.

4.2.4 Cluster Merging Criterion

Generally, clustering algorithms use some similarity measurement to decide
which data should be grouped into clusters. Similarity measurements are
often represented by distances in the t-dimensional data space, including:
Euclidean distance, Manhattan distance [85], Chebyshev norm [63], Maha-
lanobis distance [103], vector angle, etc. These clustering criteria analyze
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the data only locally and can be suboptimal, especially in high-dimensional,
cluttered spaces such as those used for visual feature representation.

We propose a novel clustering method that takes into account the global
distribution of data, increasing both the distance between clusters and their
compactness. This is crucial, as the efficiency of visual vocabularies is deter-
mined by two properties: (i) repetitiveness : similar image features should be
associated to the same cluster and (ii) discriminative power : dissimilar image
features have to be associated to different clusters.

The proposed method, based on Fisher’s linear discriminant [39] [107],
clusters the data in order to maximize the following objective function:

Q =
tr(SB)

tr(SW )

where tr() is the trace operator, SB represents the between clusters scat-
ter matrix and SW represents the within clusters scatter matrix, which are
defined, respectively, by:

SB =
1

N

N∑
k=1

nk(C − Ck)(C − Ck)
T

SW =
1

N

N∑
k=1

nkRk

where C is the global centroid of the data, N represents the total number of
data elements and nk is the number of data elements contained in cluster k.

Practically, the merging takes place in two steps:

1. For each cluster, we search for merging candidates in its neighborhood (in
the Euclidean sense), using a k-dimensional tree (kd-tree) approach [4].

2. For each possible merging pair of clusters, we compute the objective func-
tion Q′ that would be obtained if the two clusters were merged. If there
is an increase in the value of the objective function, then the two clusters
are merged and Sb, Sw are updated accordingly1.

Each merging step changes the distribution of data in the vocabulary, re-
quiring the re-computation of both SB and SW . As a direct re-computation
would be very costly, we propose an incremental update scheme:

1 In practice, we first compute the gain in Q for each possible merging pair, creating
a list from the highest to the lowest gain. The clusters are merged following the
order in the list, making the merging step independent of the order in which the
clusters are analyzed.
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S′
B = SB +

na + nb

N
(C − Cab)(C − Cab)

T

− na

N
(C − Ca)(C − Ca)

T

− nb

N
(C − Cb)(C − Cb)

T

S′
W = SW +

na + nb

N
(Rab)

− na

N
(Ra)− nb

N
(Rb)

where S′
B and S′

W are the updates of SB and SW , respectively; Cab and Rab

are the centroid and covariance matrix of the merged cluster.

4.2.5 Convergence Criterion

The two steps shown in Section 4.2.4 are repeated, gradually merging clus-
ters, until no more merges are possible (that would increase the value of
the objective function Q). In this way, the repetitiveness and discriminative
power of the resulting vocabulary are maximized. Moreover, using a natural
convergence criterion, the process eliminates the need of user-set parame-
ters such as cluster radius or number of clusters, specific to other vocabulary
building algorithms.

4.2.6 Adding New Clusters

During the vocabulary update step, new elementary clusters are added, con-
taining new visual features. For each newly added elementary cluster ζe, SB

and SW have to be updated accordingly. Similar to the merging step, we avoid
recalculating the scatter matrices by proposing a novel update method.

The update of SW simply involves the covariance matrix Re of ζe, weighted
by its number of elements ne:

S′
W =

NSW +Re

N + ne

in the case of elementary clusters, ne corresponds to the number of frames in
which a given image feature has been tracked.

Adding any new cluster in the vocabulary affects the global data centroid
C. The new centroid C′ is incrementally obtained from:

C′ =
CN + Cene

N + ne



4.2 Visual Vocabulary 97

Taking into account the changes in the centroid C, SB is updated using:

S′
B =

N

N + ne
(SB + δTCδC − V TδC − δTCV )

− ne

N + ne
(Ce − C′)T(Ce − C′)

where δC = C′−C, V is the weighted sum of differences between each newly
added cluster centroid and global data centroid. V is obtained incrementally
by using:

V ′ =
NV +NδC + ne(Ce − C′)

N + ne

4.2.7 Linear Discriminant Analysis

Using the cluster information contained in the visual vocabulary, we aim
to find a data transformation that would maximize cluster separability and
would allow us to reduce the dimensionality of the data, thus increasing the
speed of both vocabulary building and image indexing. For this, we consider
maximizing the following Linear Discriminant Analysis (LDA) objective func-
tion [39][107][29]:

J(w) =
wTSBw

wTSWw

where w is a vector determining the maximum cluster separability direction.
Formulating the maximization of J(w) as a generalized eigenvalue problem,
we obtain a data transformation G from the eigenvectors corresponding to
w. By selecting m columns of G corresponding to the highest values of w, we
reduce the dimensionality of the data to s dimensions.

4.2.8 Vocabulary Update Criterion

In Section 4.2.1, for simplicity of explanation, we stated that the vocabulary
is updated each m images. In practice, the vocabulary is updated adaptively,
rather than at fixed intervals, so that it constantly represents an accurate
model of the visual content in images.

During image indexing, features are associated with clusters in the vocab-
ulary. For each association of a feature fl with a cluster ζk we check if the
feature falls within the cluster, using:

|fl − Ck| ≤ 3σk

where σk is the standard deviation of cluster ζk. In Eq. 4.2.8, the absolute
value | · | and the comparison are to be understood componentwise, i.e. only
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if the condition is met for all the dimensions, we consider that the feature
falls within the cluster.

At each vocabulary update step, we index images until the percentage of
features falling within the radius of their associated clusters drops below 90%.
At this point, we update the vocabulary.

4.3 Image Indexing

Inspired from text document indexing [89], BoW techniques use visual vo-
cabularies to represent the images by associating the features present in each
of the images with the visual words in the vocabulary [24, 133, 185]. The
result is a histogram representing the number of occurrences of each visual
word in the image. The similarity between images is calculated by comparing
these histograms.

When detecting loop-closures, it is paramount that image features are
correctly associated with clusters, even in presence of illumination and per-
spective changes. We partially achieve this by maximizing the repetitiveness
and discriminative power of the vocabulary (see Section 4.2.4). However, in
the context of the online vocabulary, we need to define a third property:
stability. As the vocabulary is constantly updated, the aim is to ensure that
similar features are associated with the same clusters at different stages of the
vocabulary update. We achieve this property through a novel feature-cluster
association technique, as described below.

4.3.1 Cluster Association

The association between features and visual words is performed by comparing
each feature with all the clusters in the vocabulary. The feature is then associ-
ated with the most similar cluster. Most image indexing techniques calculate
the similarity between features and clusters using distances in the feature
space (see Section 4.2.4). This approach is suitable for image indexing in the
case of static vocabularies that are calculated before the image indexing and
do not change throughout it [162].

Since we use an online approach for vocabulary building, such a feature
association method would not be stable. In Figure 4.5a, feature f is associated
with the closest cluster ζb. After the vocabulary is updated, clusters ζa and ζc
are merged, yielding a new cluster ζac (Figure 4.5b). As the feature f is now
closer to the centroid of the new cluster ζac, it would be associated to it. In
this case, feature f would be associated with different clusters before and after
the vocabulary update. As a consequence, an image Ik containing feature f ,
indexed at different vocabulary stages would have different representations.
The amount of occurrences of such situations increase with each vocabulary
update, ultimately leading to inconsistent image indexing.
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Fig. 4.5 Feature-cluster association. In (a) the feature f is associated with
cluster ζb, using feature-to-cluster centroid distance. After the vocabulary update,
clusters ζa and ζc are merged. The centroid of the newly obtained cluster ζac is now
closer to f . Using a classical approach, feature f would be associated with ζac (b).
Using hierarchical trees, feature f is correctly associated with cluster ζb (c).

Alternatively, the proposed feature-cluster association technique uses a
tree-based approach. The trees are formed during the vocabulary building
process. The nodes of the trees represent the clusters while the branches
define the cluster hierarchy. The roots of the trees correspond to the visual
words while the leafs of the trees correspond to the elementary clusters (see
Figure 4.4).

During the feature-cluster association, the trees are visited top-down, cal-
culating the similarity (Euclidean distance) between each feature and the tree
nodes (see Figure 4.5c). In order to speed up the association process, we visit
only those trees corresponding to visual words in the vicinity of the feature.
For this, we calculate the distance between the feature and the visual words
and select the trees where:

D(f, ζk) ≤ τDm
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with D(f, ζk) being the distance between feature f and ζk; Dm is the min-
imum distance between the feature f and the visual words and τ is a user-
defined constant2 (τ ≥ 1).

The selected trees are visited in parallel (see Figure 4.6). For efficiency pur-
poses, we use the same stopping criterion shown in Eq. 4.3.1, hence avoiding
visiting branches that contain nodes that are not close to f . The feature is
finally associated to the visual word corresponding to the most similar leaf.

Fig. 4.6 Top-down feature-cluster association. The trees are visited by com-
paring each node with the feature. If a node is too dissimilar to the feature (marked
in light grey), the rest of the tree corresponding to the node is not visited. The fea-
ture is associated with ζa due to the highest similarity between f and the leaf
marked in black.

4.3.2 Image Re-indexing

It should be taken into account that during the update process, the configura-
tion of the vocabulary changes. Consequently, the similarity between images
indexed at different update stages cannot be computed. Also, indexing the
images after each vocabulary update is not a viable solution due to its large
computational cost.

We propose a novel solution to this shortcoming by defining a transforma-
tion pΓp−1 that embodies the changes in the vocabulary during the update
stage. This transformation allows a fast re-indexing of the images (hence
eliminating the need of repeated image indexing):

W̃ p
I =p Γp−1W

p−1
I

2 User parameter τ provides a balance between computational efficiency and accu-
racy of the image indexing. As shown in Section 4.4, optimum results are obtained
using a typical value of τ = 1.4, which is not data dependent.
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where W p−1
I is the indexing of image I at vocabulary update stage p − 1

and W̃ p
I is an approximation of the image indexing I at vocabulary update

stage p.
During update, the visual vocabulary undergoes the following changes:

1. Adding of elementary clusters. If these new clusters are not absorbed into
already existing clusters, they contain new visual information. In this case,
it is very unlikely that any feature from any image before the update would
have been associated to them. Therefore, the bins W̃ k

I are initialized to 0.
2. Cluster merging. In the case that two (or more) clusters merge, any feature

previously associated with these clusters would be associated to the newly
formed cluster. In this case, the number of occurrences associated with the
new cluster is the sum of occurrences of the merging clusters.

To reflect these changes, pΓp−1 has to initialize the histogram elements cor-
responding to newly added clusters and sum the elements corresponding to
merging clusters. For a better understanding, let us consider the following ex-
ample: at stage p−1 the indexing of image I yields [w1 w2 w3]

T corresponding
to the visual vocabulary containing (ζ1, ζ2, ζ3); during the vocabulary up-
date, clusters ζ1, ζ2 merge into ζ12 and a new cluster ζ4 is added. In this case,
the transformation pΓp−1 becomes:

⎡
⎣
w12

w3

w4

⎤
⎦ =

⎡
⎣
1 1 0
0 0 1
0 0 0

⎤
⎦
⎡
⎣
w1

w2

w3

⎤
⎦

4.3.3 Image Similarity

The visual resemblance between images is quantified by measuring the sim-
ilarity of their corresponding histograms of visual words. As the histograms
are represented by vectors containing the occurrences of the visual words, we
calculate their similarity using the normalized scalar product (cosine of the
angle between vectors) [162]:

srq =
WT

r Wq

‖Wr‖2 · ‖Wq‖2
where srq is the similarity score between images Ir and Iq,Wr andWq are the

histograms of visual words corresponding to the images; ‖W‖2 =
√
WTW is

the L2 norm of vector W .
In Eq. 4.3.3, the similarity score is highly influenced by histogram elements

corresponding to visual words with high occurrence. Generally, these frequent
words represent visual features commonly found in the images, thus having
low discriminative power. In order to counterbalance this shortcoming, the
elements of the histograms are weighted using the term frequency-inverse
document frequency approach proposed in [5]:
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wk =
nki

oi
log

mp

Ok

where nki is the number of occurrences of word k in image Ii, oi is the total
number of words in Ii, Ok is the total number of images containing word k
and mp is the total number of indexed images.

4.3.4 Loop-Closure Detection

Increased values of srq between the current image and any previous one in-
dicate a high probability of the two images representing the same scene re-
gion (i.e. loop-closing). This information can be used for both introducing
new constraints in the mapping model and reducing the navigation-related
uncertainties.

4.3.5 Increasing Vocabulary Efficiency

During online navigation and mapping, new image features are extracted
and added to the visual vocabulary. Over long image sequences this could
result in complex vocabulary structure that decreases the efficiency of OVV
in terms of computational times. This effect is partially reduced by using ANN
techniques [4] on both vocabulary building and image indexing, however we
further improve the computational efficiency of OVV by pruning branches
corresponding to nodes that provide little information, using the following
criterion:

tr(Ri
k) < p · tr(Rk)

where Ri
k is the radius of node i in cluster ζk and p is a user-defined scalar

value. In our experiments, we have found that using a value p = 0.1 provides
a good balance between computational efficiency and accuracy of OVV.

4.4 Experimental Results

This section discusses a series of experiments designed to evaluate the effi-
ciency and accuracy of the two contributions of presented in this chapter:
(i) incremental building of the vocabulary and (ii) image indexing based on
hierarchical trees. The efficiency and accuracy of the online visual vocabulary
algorithm is tested using a data association and a comparison with ground
truth. In practice, the OVV process was implemented on top of DPR-SfM,
which provides extraction and tracking of the image features used by OVV.

In the first part, we assess the influence of LDA dimension reduction s and
relative threshold τ (see eq. 4.3.1) on the accuracy and computational times
of OVV. The two parameters are user-set and provide a tradeoff between
computational efficiency and accuracy of vocabulary building and image
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indexing. Experiments show that these two parameters are not data sensitive,
so that for all experiments we used τ = 1.4 and s = 24, which provide a good
balance between speed and accuracy. We consider two images to correspond
to a loop closure situation when their visual similarity srq ≥ 0.45.

The second experiment provides a detailed analysis of OVV for a large-
scale loop closure problem in a mixed environment. In order to provide an
objective assessment of the proposed algorithm, for this experiment we carry
out a comparison between OVV and a state-of-the art visual SLAM algo-
rithm, FAB-MAP2 [27].

In the last part of the section, we discuss series of experimental results
that illustrate the application of OVV in 3D robot navigation and mapping.
During navigation and mapping, the visual features extracted by DPR-SfM
are used to create a 3D map of the environment, while they are simultane-
ously used for vocabulary building and image indexing. When a loop-closure
situation is detected, the resulting information is used to correct the accu-
mulated drift. Essentially, we show the use of OVV for 3D navigation and
mapping in case of two distinct scenarios: (i) an urban environment, and
(ii) and underwater environment. The latter was chosen due to the addi-
tional difficulties imposed by the underwater environment: the high rate of
light absorbtion in the water decreases the range of cameras and the contrast
in images; moreover, the scattering effect due to floating microscopic parti-
cles induces a blurriness effect, further decreasing the contrast of images, also
inducing the “marine snow” effect. All these aspects decrease drastically the
image quality, resulting in nosier, less discriminant image features.

It should be mentioned here that for the urban and underwater experi-
ments, we were not able to obtain consistent results using FAB-MAP2 due
to its inability to cope with high overlapping frame sequences, such as those
provided by video cameras.

4.4.1 Laboratory Experiment

The first experiment was carried out in the laboratory, using a relatively
flat scene that contains books, boxes and magazines. The scene composition
was chosen to be visually complex, combining uniform (low texture) regions,
natural scenes, geometric figures and abstract drawings.

The test sequence consists of 215 images of 640 × 480 pixels, acquired
using a Canon G9 compact camera (see Figure 4.7 for some snapshots of
the sequence). The images contain a certain amount of motion blur and
defocusing, allowing us to test the robustness of the visual vocabulary.

The camera is moved while in a down-looking orientation, describing a loop
trajectory with a partial overlap between the first and the last images. Figure
4.8 illustrates the resulting scene model and camera trajectory, after applying
DPR-SfM on the image sequence. The detection and extraction of features
was carried out using SURF, yielding ∼37,000 tracks corresponding to the
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Fig. 4.7 Laboratory Experiment – Input image sequence. Sample images
from the input sequence. The first and the last images have a partial overlap. The
blow-up shows the motion blur and defocusing.

3D vertices. Each image feature is represented using a 64-element normalized
vector as described in Section 2.1.3.

The vocabulary was initialized using the visual information extracted from
the first 20 images. During sequence analysis there are 10 vocabulary updates,
resulting in a final vocabulary containing 3,485 visual words. Figure 4.9 illus-
trates the evolution of the vocabulary. Towards the end of the sequence, the
growth rate of the vocabulary decreases, as there is little new visual infor-
mation contained in the last images. The instants when the vocabulary was
updated can be better observed in Figure 4.10, along with the computational
times of vocabulary building and frame indexing.

OVV can be adjusted using two user-set parameters. Unlike other visual
vocabulary algorithms, where various parameters need to be adjusted for
each dataset in order to obtain accurate results, the user parameters in OVV
are data independent. The first parameter s determines the number of LDA
dimensions used for feature clustering and image indexing. A lower num-
ber of dimensions decreases both the clustering and frame indexing times,
while slightly decreasing the accuracy of the results. The second parameter τ
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Fig. 4.8 Laboratory Experiment – 3D model and camera trajectory. The
scene model contains ∼37,000 vertices (marked in green). The camera describes a
loop trajectory (marked in blue) with an overlap between the first and last images.
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Fig. 4.9 Laboratory Experiment – Vocabulary size evolution. The vocabu-
lary was initialized using the first 20 frames. After 10 updates, the final vocabulary
contains � 3, 400 visual words.
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Fig. 4.10 Laboratory Experiment – Computational times. The vocabulary
building time (red bars) and the frame indexing time (blue line) evolution vs. the
number of frames. A total of 10 vocabulary updates took place with an average of
0.9 sec./update. The average indexing time was 0.13 sec./frame.

determines the amount of tree branches that are simultaneously visited dur-
ing frame indexing. A lower value of this parameter decreases the computa-
tional time related to frame indexing, while slightly decreasing the accuracy
of frame indexing.

We designed two tests that assess the efficiency of the OVV and influence
of the parameters on the accuracy of the results. In the first test, we use
a direct data association experiment. For each image feature, we associate
an elementary cluster that corresponds to the smallest Euclidean distance
in the feature space. The image features are then “sent down” the indexing
trees. If the image features end up at the leaf corresponding to the associ-
ated elementary cluster, it is considered a hit and a miss otherwise. A high
ratio of hits denotes a stable vocabulary and feature labeling which is crucial
for accurate results, especially in the case of dynamic vocabularies used in
OVV, as we show in Section 4.3.1. The second test is aimed at evaluating the
accuracy of the visual similarity in representing the actual overlap between
images. For this, we compare the similarity matrix (see Figure 4.11) with the
overlap ground truth matrix. The overlap matrix was obtained by exhaus-
tively calculating the projective homography between each two images from
the sequence. From the homographies, we obtained the overlap ratio between
all images in the sequence. We represent the accuracy of the frame similarity
matrix by the average of absolute differences between the similarity and the
overlap matrices.

The two tests were repeated for different values of s and τ . Table 4.1 shows
the accuracy and execution time versus LDA dimensionality reduction. The
results clearly show the advantages of LDA. Reducing the dimensionality of
data to 24 we obtain more accurate results and greatly increased computa-
tional efficiency with respect to full 64 dimensions when no LDA is used.
However, decreasing the data dimensionality further diminishes the discrim-
inative power of the vocabulary. This increases the similarity score between
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Table 4.1 Laboratory Experiment – OVV accuracy and execution times
vs. LDA dim. reduction. As the number of dimensions decreases, total vocabu-
lary building time (2nd column) and average frame indexing time (3rd column) are
reduced, also decreasing the hit percentage (4th column) and increasing the visual
similarity average error wrt. image overlap (5th column). The first row shows the
results without using LDA.

LDA Dim. s Vocab. Time [sec.] Index. Time [sec./fr.] Hits [%] Error
no LDA 11.9 0.24 99.1 0.0714

64 10.9 0.24 99.6 0.0668
48 9.9 0.17 99.5 0.0674
32 8.6 0.13 99.3 0.0682
24 8.3 0.11 99.2 0.0695
16 6.5 0.08 98.8 0.0793
8 5.7 0.05 98.0 0.1216

Table 4.2 Laboratory Experiment – OVV accuracy and execution times
vs. τ . Using a higher τ , the average frame indexing time (2nd column) increases
as more tree branches are visited simultaneously, improving the hit percentage (3rd
column) and decreasing the visual similarity average error with respect to image
overlap (4th column).

τ Index. Time [sec./fr.] Hits [%] Error

1.0 0.10 95.0 0.0738
1.1 0.11 97.0 0.0731
1.2 0.11 98.4 0.0715
1.3 0.12 98.9 0.0701
1.4 0.13 99.2 0.0695
1.5 0.15 99.2 0.0693

non-overlapping frames, reducing the overall accuracy of the result. Addi-
tional tests on other datasets show that s = 24 provides the ideal tradeoff
between accuracy and computational efficiency.

Augmenting the value of τ (see Table 4.2), increases the number of tree
branches that are simultaneously visited during image indexing. As expected,
this results in increased accuracy at the expense of higher computational
costs. Using τ = 1.4 offers the ideal trade-off between indexing speed and
accuracy, as using higher values increases the related computational cost
with no real gain in accuracy. As in the previous case, τ = 1.4 proved to be
the ideal value for all the datasets we have tested.

In order to provide the reader with an objective evaluation, we compare
the results obtained using OVV with an off the shelf BoW algorithm based
on K-means clustering. We have chosen this approach for comparison, due
to its popularity in computer vision and visual SLAM community. We set
the number of words in the vocabulary to be the same as the number of
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words in the OVV in its final form – 3,485 words. Due to the random nature
of K-means clustering, we ran the clustering algorithm 20 times and chose
the vocabulary corresponding to the maximum cluster compactness. The av-
erage computational time was 8.9 sec./run. The frames were indexed using
minimum Euclidean distance feature-cluster association with an average com-
putational time of 0.3 sec./frame, resulting in an average error between the
similarity matrix and frame overlap of 0.0985. This shows that, while incre-
mental, OVV provides better accuracy than offline K-means algorithm.

The last part of the Laboratory Experiment consisted in the detection of
the loop closure. For this, we build the image similarity matrix, shown in Fig-
ure 4.11. The similarity matrix illustrates a high degree of visual resemblance
between the first images and the last images of the sequence (upper-right
corner).

Figure 4.12 illustrates the similarity score between I215 and all the images
in the sequence. The peak at image I1 indicates a high visual similarity be-
tween frames I1 and I215, corresponding to a cross-over (see Figure 4.13). The
visual similarity score between the two images is 0.8, accurately representing
the ground truth overlapping ratio of 0.82.

Fig. 4.11 Laboratory Experiment – Image similarity matrix. High values
close to the main diagonal correspond to the similarity of the images with their
close neighbors. The bright region in the upper-right corner of the matrix denotes
an overlap between frames in the beginning and the end of the sequence.
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Fig. 4.12 Laboratory Experiment – Image similarity for query image I215.
The plot shows the similarity between frame I215 and all the previous frames. The
peak on the far right of the plot corresponds to time-adjacent frames. The peak
corresponding to I1 indicates an overlap.

Fig. 4.13 Laboratory Experiment – Loop detection. The first (left) and
last (right) images of the sequence correspond to the same region of the scene,
determining a loop closure.

4.4.2 Large-Scale Mixed Environment

In this experiment, we have acquired data corresponding to a large trajectory
consisting of two part: (i) an urban area with well structured and diversi-
fied visual characteristics and (ii) an area mainly formed by a natural (more
repetitive) landscapes depicting trees, grass, etc. Both scenarios are common
in land-based robot/vehicle navigation. The data was acquired using a setup
consisting of two Canon 50D DSLR cameras equipped with 24mm Canon
fixed lenses, mounted on a car (see Figure 4.14). The dual-camera setup was
used to increase the field-of-view of the image acquisition system, increas-
ing the probability of detecting the loop-closure situations. For ground-truth,
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we used a DGPS system, allowing for accurate positioning, even in the case
of low GPS coverage situations, which is often the case in urban areas. The
setup, mounted on a car, was used to gather data representing both urban
and natural environments. Figure 4.15 illustrates the trajectory of the car
during data acquisition. Over the 18.5-km trajectory, the system was set to
automatically acquire images every 0.5 seconds, resulting in a total of 11,500
images. The trajectory was chosen to include a series of smaller loops at the
beginning of the sequence, along with two large loops: the first containing
almost exclusively urban scenery and the second containing a combination of
urban and natural environments.

For ground truth, the data recorded by the DGPS device was interpo-
lated to match the image acquisition rate (the DGPS provides GPS fixes
at a frequency of 1Hz). Any images acquired within a distance of 30m were
considered to depict the same area, hence corresponding to a loop-closure
situation (the distance threshold was estimated from the average distance
from the cameras to the scene, and validated manually). The car orientation
was not taken into account due to the large total field of view of the imaging
system (∼ 164 degrees horizontally).

Prior to feature tracking, the images were down-sampled to 640 × 480
pixels resolution, to simulate a low-end image acquisition system. The image
features were extracted and described using SURF, yielding a total of 40
million feature tracks. The visual vocabulary was built online, during feature
tracking. The final size of the vocabulary was ∼ 30K visual words. Figure
4.16 shows the evolution of the vocabulary. At the beginning of the sequence,
the vocabulary grows quickly. However as scene features tend to repeat, the
growth rate slows down at the middle of the sequence. The vocabulary grows
again at the end of the sequence to model features corresponding to novel
sceneries (natural environment).

The entire process was run on an Intel 2 Quad machine running Windows
7. The execution times for vocabulary building and image indexing are shown
in Figure 4.17, where it can be observed that the vocabulary is being updated
at short intervals at the beginning of the sequence, where high amounts of
visual information are being learned by the vocabulary. The vocabulary up-
date intervals decrease during the rest of the sequence, only when new visual
information becomes available. The image indexing times are maintained con-
stant throughout the sequence. It should be mentioned here that currently,
OVV is mainly implemented in Matlab with some routines implemented
in C++.

The precision of OVV was assessed by comparing extracting visually simi-
lar images as measure by OVV and comparing the result with the ground
truth. Here we make a comparison between the results obtained by the
proposed algorithm and the results obtained by the FAB-MAP2 algorithm
proposed by Cummins et al. [27]. For this purpose, we ran FAB-MAP2 in
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two cases: (i) using a generic, off-line built visual vocabulary of 40k visual
words, containing mostly urban visual data, and (ii) using a generic, off-line
built vocabulary containing 80k visual words, embodying data from various
environments (indoor/outdoor, natural, etc.).

Figure 4.18 shows the results of the precision/recall evaluation. The goal
of this analysis is two fold: (i) evaluate the performance of the incremental
image indexing and (ii) compare the accuracy of OVV wrt. FAB-MAP2.

The incremental indexing was compared to the full indexing of the en-
tire set of images using the vocabulary generated by OVV in its final form.
Figure 4.18 shows that the proposed incremental method closely approxi-
mates the full indexing, with very little loss in precision � 0.01 with a gain
in computational cost of � 30×.

On the other hand, it can be observed that OVV outperforms FAB-MAP2
in both cases, while using a smaller size vocabulary. OVV uses a 3D camera
pose model while FAB-MAP2 uses a camera rotation model to check the geo-
metrical consistency of the detected loop closures. Such stages highly reduce
the number of false positives, thus increasing the accuracy of the algorithms.
However, here we focus primarily on the accuracy and efficiency of measuring
visual similarities between images, hence the results presented here are those
provided by the algorithms, without any geometrical consistency checks.

The evaluation of the algorithms was carried out using precision/recall
analysis where: the precision represents the ratio between the true detected
loop-closures and the total detected loop-closures and the recall represents
the ratio between the true detected loop-closures and the true loop-closures.

A more detailed analysis of the results shows that OVV can cope with
common challenges found in outdoor environments such as illumination and
camera view-point changes, partial occlusions, moving pedestrians, cars, etc.
Furthermore, all the loop-closures situations were successfully detected even
at early stages of the navigation, where the vocabulary contained little vi-
sual information (see Figure 4.19 for a few examples of detected loop-closure
situations).

Nevertheless, there are a few cases where the erroneously matched images
representing different locations, resulting into false loop-closure detections.
As expected, these situations are related to strongly repetitive patterns in
images, mostly related to natural sceneries: grass, trees, earth, etc.

4.4.3 Underwater Experiment

This experiment is aimed at testing the efficiency of the online visual vocabu-
lary method in describing natural, unstructured environments for underwater
robot navigation and mapping, under typical challenges found in this envi-
ronment. The data was acquired in Tortugas, Florida Keys using a Phantom
ROV of the UoM. The 1,000-image sequence has a resolution of 720×530 pix-
els and depicts a region comprised mainly by rocks and sand. The sequence
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Fig. 4.14 Mixed Environment Experiment – Image acquisition setup. The
dual-camera setup was mounted on a car during data acquisition.

Fig. 4.15 Mixed Environment Experiment – Car trajectory during data
acquisition. The 18.5 km trajectory (overlayed in yellow, as recorded by the DGPS
system) was chosen to include multiple loop-closures. The starting point can be seen
at the lower right corner.
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Fig. 4.16 Mixed Environment Experiment – Vocabulary size evolution.
The vocabulary growth slows down at the middle of the sequence but increases
at the end of the sequence as novel types of sceneries are imaged. There are 35
vocabulary updates in total.

Fig. 4.17 Mixed Environment Experiment – Vocabulary building and
image indexing computational times. The vocabulary update step takes an
average of 1.6 seconds / update while the image indexing takes an average of 0.11
seconds / frame.

Fig. 4.18 Mixed Environment Experiment – Precision/Recall evaluation.
Comparison between OVV in two cases: using the proposed incremental indexing
vs. full re-indexing using the final form of the vocabulary; and FAB-MAP2 for two
vocabulary cases.
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Fig. 4.19 Mixed Environment Experiment – Successfully detected loop-
closure situations. Loop closures are successfully detected in the presence of
camera view point changes, dynamic environments (moving pedestrians, occlusion
due to the presence of cars, etc.)
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Fig. 4.20 Mixed Environment Experiment – False positives in loop clo-
sure detection. Some of the wrongly detected loop-closure situations, mostly re-
lated to repetitive patterns.

is characterized by repetitive textures, allowing the test of OVV algorithms
in presence of increased perceptual aliasing3.

Figure 4.21 illustrates the estimated 3D model containing 125,850 vertices
and the camera trajectory. The online vocabulary was initialized using the
feature tracks in the first 20 frames. During scene reconstruction, the vocab-
ulary went through 15 updates, containing 6,644 visual words, at the end of
the sequence.

In the case of this experiment, no ground truth was available from naviga-
tion due to the lack of GPS coverage in the underwater environment. As an
alternative, we exhaustively matched the feature between each pair of images
in the sequence, estimating the overlap between all the possible image pairs
using a projective homography model. We consider images with an overlap
ratio higher than 0.5 to correspond to loop closing situations (as the overlap
denotes the fact that images correspond to the same region of the scene).

After comparing the results of OVV with the ground truth, the preci-
sion/recall curve (illustrated in Figure 4.22) shows a slightly decreased pre-
cision, with respect to other environments, due to the perceptual aliasing
and the decrease in the image quality. This effect can be also observed in
the image similarity matrix (see Figure 4.23a), denoted by the slightly bright

3 The perceptual aliasing problem corresponds to scenes with poor or repetitive
textures, being characterized by the fact that different regions of the scene appear
similar to the camera.



116 4 Online Loop Detection

Fig. 4.21 Underwater Experiment – Estimated 3D model and camera
trajectory. The scene model shown in red contains � 126, 000 vertices. The tra-
jectory of the camera (blue) presents some partial overlaps.

background corresponding to non-overlapping images having a small degree
of visual resemblance.

In order to detect the loop closure situations, the image similarity ma-
trix was binarized using a threshold of 0.45, which provides a good balance
between precision and recall (thus minimizing the false positives and false
negatives). This value for the binarization threshold was found to be opti-
mum for all the experiments we have carried out. The resulting loop-closure
detection matrix (see Figure 4.23b), clearly depicts areas where the robot
revisits previously mapped areas.

Figure 4.24 illustrates some of the pairs of images, corresponding to loop-
closures in the camera trajectory.

Fig. 4.22 Underwater Experiment – Precision/Recall evaluation. The
maximum precision is slightly lower in this experiment mostly due to the perceptual
aliasing.
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(a)

(b)

Fig. 4.23 Underwater Experiment – Similarity matrix and loop-closures
(a) Image similarity matrix: highlighted values off the main diagonal correspond
to loop closure situations; (b) Detected loop closure situations after binarizing the
image similarity matrix with a threshold of 0.45.
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I589 I156

I966 I738

I999 I445

I841 I45

Fig. 4.24 Underwater Experiment – loop detection. Pairs of images corre-
sponding to some of the detected loop-closures. Query frames are shown in the left
column and their corresponding most similar frames are shown in the right column.
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4.4.4 Coral Reef Experiment

This experiment is aimed at testing the efficiency of the OVV method in de-
scribing natural, unstructured environments for underwater robot navigation
and mapping. The image sequence, acquired using a ROV near the Bahamas
by the UoM, is comprised by 235 frames of 720 × 530 pixels. The surveyed
scene contains a coral formation and its surroundings, combining rich texture
areas (vegetation and rock formations) and uniform areas (sandy regions).

We applied DPR-SfM on the sequence using SURF features. Figure 4.25
illustrates the 3D reconstruction and the camera trajectory estimation. The
resulting � 62, 000 SURF feature tracks were used to generate the vocab-
ulary as the scene was being reconstructed. The vocabulary was initialized
using the first 20 frames and updated 9 times, containing 4,343 in its final
form. Analyzing the vocabulary evolution in Figure 4.26, it can be seen that
the vocabulary grows fast at the beginning of the sequence. Towards the end,
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Fig. 4.25 Reef Experiment – 3D model and camera trajectory. The scene
model contains � 62, 000 vertices. The trajectory of the camera has several cross-
overs.
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Fig. 4.26 Reef Experiment – Vocabulary size evolution. The vocabulary was
initialized using the first 20 frames. After 9 updates, the final vocabulary contains
� 3, 400 visual words.
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the vocabulary increase rate slows and the vocabulary update frequency low-
ers, as there is little unmodeled visual information left in the scene.

After vocabulary building and image indexing, the resulting similarity
matrix in Figure 4.27 successfully points out the cross-overs in the

Fig. 4.27 Reef Experiment – Image similarity matrix. The bright regions
off the main diagonal correspond to multiple cross-overs.
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Fig. 4.28 Reef Experiment – Image similarity for query image I204. The
plot shows the similarity between frame I204 and all the previous frames. The two
peaks corresponding to frames I52 and I155 indicate that all three frames correspond
to the same region of the scene.
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I204

I52 I155

Fig. 4.29 Reef Experiment – Cross-over. Query frame I204 and frames I52
and I155 were successfully determined as corresponding to the same region of the
scene, defining a loop closure.

camera trajectory. An exemplification of this is provided in Figure 4.28, where
a query for frame I204 shows two peaks at frames I52 and I155, with similar-
ity scores of 0.73 and 0.75 respectively. The estimated overlap ratio between
I204 and frames I52 and I155 is 0.78 and 0.8 respectively, showing that the
similarity scores closely represent the overlap between images. Figure 4.29
clearly illustrates that the three frames correspond to the same region of the
scene.

To quantify the precision of the similarity matrix in approximating the
image overlap, we compared it with the overlap ground truth using the aver-
age of absolute differences. The error was 0.095, higher than in the previous
experiment. This is expected, since low contrast and high blurriness in un-
derwater imaging decreases the quality of image features.
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We compared the result with K-means vocabulary, using the same number
of visual words as in the OVV in its final stage. The average error in case
of K-means vocabulary is 0.0978, indicating that OVV yields slightly better
results in case of underwater imaging.

4.4.5 Outdoor Experiment

Here, we discuss the loop closure detection for the Urban Experiment pre-
sented in Section 3.8.7. The visual vocabulary was generated and the images
were indexed during the scene reconstruction. The final vocabulary contains
7,182 words. The resulting similarity matrix, shown in Figure 4.30, points out
a cross-over between the first and last frames of the sequence. The situation
is exemplified in Figure 4.31, where a query for frame I960 denotes a visual
similarity of 0.8 with frame I45. Figure 4.32 confirms that the two frames
correspond to a loop closure.

Fig. 4.30 Urban Experiment – Image similarity matrix. The bright region
in the upper-right corner of the matrix indicates an overlap between first and last
frames of the sequence.
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Fig. 4.31 Urban Experiment – Image similarity for query image I960.
The plot shows a high degree of visual similarity between frames I960 and I45,
corresponding to a loop closure.

I960 I45

Fig. 4.32 Urban Experiment – Loop detection. Example of image pair cor-
responding to the loop closure.

In the remainder of this section, we present a test that we have carried
out in order to assess the capacity of OVV indexing to be extended to other
images of the same location. For this, we selected a set of photos from Google
Images [59] depicting the Unirii Square, taken at different times of day and
from various viewpoints. Each photo was then indexed using the generated
vocabulary and the most visually similar image from the original dataset was
extracted. Figure 4.33 illustrates the results. The majority of photos were cor-
rectly associated (� 90%). Generally, the cases where OVV did not correctly
identify the location were the result of: (i) extreme zooming, where the query
pictures show details of the buildings not modeled in the vocabulary due to
the limited resolution of the original dataset; (ii) severe obstructions that
block most of the visual content modeled in the vocabulary; (iii) extreme
lighting changes – pictures taken in the early evening or at night, where most
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Fig. 4.33 Urban Experiment – Location identification. Google Images pho-
tos used as query images (left column) and the most visually similar image from
the original dataset (right column). The last row shows an example of poor location
identification, due to the post-processing of the query photo.
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of the visual details are lost due to low contrast. Moreover, in the last row
of Figure 4.33 we illustrate an example of poor localization due to HDR
processing of the query image.

4.5 Discussion

We have developed a new visual BoW method for loop-closure detection,
oriented towards online navigation and mapping. The method uses a novel
incremental vocabulary building process. As the vocabulary is being con-
stantly updated to include new visual information, we propose a novel in-
cremental image indexing process in conjunction with a tree-based feature
labelling method, that increases the stability of feature-cluster associations
at different vocabulary stages.

The proposed method requires no a priori knowledge of the environment,
as the visual vocabularies are built online, during robot navigation. Also,
while most BoW require the user to set parameters such as the number
of words in the vocabulary, which are generally data-dependent, we show
that the default values of parameters used by OVV yield optimum results,
regardless of the type of environment, size of the robot trajectory, etc.

In this chapter, we present a series of experiments, representing various
types of environments and a comparison with a state-of-the-art visual SLAM
algorithm. We show that using the proposed clustering technique, we ob-
tain more accurate loop closure detection, even with a smaller vocabulary
size, than other SLAM algorithms. This is due to a novel clustering criteria,
which takes into account the global distribution of the data, resulting in more
compact and discriminant visual words.

Also, we avoid fully re-indexing the images as content of the vocabulary
changes, using an incremental image indexing method. Experimental results
show that this approach allows to highly reduce the computational times with
only a small loss in precision.

The scope of this chapter is oriented towards the capacity of OVV to detect
loop closure situations. However, the accuracy of the estimation will signif-
icantly increase by using OVV in conjunction with geometrical consistency
checks.



Chapter 5

Online 3D Model Simplification

Here we propose a 3D simplification method aimed at reducing storage,
transmission and model rendering costs. In contrast with state-of-the-art al-
gorithms, our proposal simplifies the 3D model during the building stage,
simplifying the process pipeline and reducing the computational complexity
related to the 3D modeling process. Practical results discussed in this chap-
ter show that, while highly reducing the the complexity of the 3D model, the
method has a minimal impact on the representation accuracy.

5.1 Introduction

Scene reconstruction algorithms approximate the shape of the scene using 3D
features such as vertices or lines. These features can be seen as discrete mea-
surements of a continuous model representing the scene. Clearly, the higher
the number of the 3D features, the higher the accuracy of the scene structure
estimation.

When navigation and mapping algorithms have to deal with large areas,
however, the amount of data may prove overwhelming. This is especially the
case when Kalman Filter or Global Alignment algorithms are used, in which
the complexity of the problem grows with the square of the number of scene
features.

The solution to this problem is reducing the number of extracted scene fea-
tures. The difficulty stands in selecting the 3D features in a way to minimize
the impact on the precision of the resulting scene model.

The problem of reducing the complexity of 3D models while maintaining
the model precision has been studied by the computer graphics community
where it is known as mesh simplification. The state of the art in mesh simpli-
fication includes a wide range of alternatives. In [95, 147], the authors divide
the 3D volume into a user-specified grid. Then, the model is simplified by
removing all vertices within a grid cell, maintaining only the most represen-
tative vertices. Schroeder et al. [157] use a multiple pass simplification, based
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on a user specified user error threshold. Eck et al. [30] use a wavelet-based ap-
proach to create a fast multi-resolution representation of the original surface.
A similar multi-resolution approach is employed by Progressive Meshes (PM)
[70, 71], a widely used method in real-time 3D rendering. Other authors have
proposed the use of color and texture information in addition to the shape
in the simplification criteria [54, 57, 181], minimizing visual aliasing due to
model simplification.

From the point of view of the model simplification strategy, two general
approaches should be underlined:

Local Simplifications Algorithms. Define a mesh operation that only affects
a small set of its elements and produces a new mesh with fewer elements.
This operation is associated with a cost function measuring the error intro-
duced by the local simplification operation, which allows applying first the
operations introducing less error. The process repeats the simplification op-
eration until the user requirements are fulfilled, which normally consist in a
maximum error at the cost function, or a desired number of faces. In [157],
Schroeder et al. proposes a method that iteratively deletes vertices while
tessellating the resulting holes. This method does not change the topology
and it is applicable to non-manifold surfaces (though will not simplify near
non-manifold vertices). In contrast, edge contraction approaches converts
edges into single vertices. Such methods can change the topology of the
model (e.g., contract edges repeatedly around a hole may eventually close
it), and is applicable to non-manifold meshes. This method was first pro-
posed in [72], with many of its variants proposing different alternatives for
defining the vertex-to-edge association cost function. The quadric error
metrics approach of [53], for example, offers a very good trade-off between
geometric accuracy and computational cost. Here, the error at a vertex is
described using a 4× 4 matrix Q that represents the sum of squared dis-
tances from a vertex to the planes defined by the neighboring triangles as
vTQv. In order to update the error metric of the vertex resulting after edge
collapse, the quadrics Q of the original vertices are directly summed. This
simple updating operation makes the method achieve a nice computational
cost. Other authors propose methods that define the error associated with
the simplification in terms of pixels. In [90], the simplification is guided
by minimizing the deviation from the rendered screen space mesh, that is,
minimizing the visual artifacts.

Global Simplifications Algorithms. While less significant than the local
strategies, there are some approaches that define the simplification prob-
lem in a global manner. Vertex clustering methods discretize the space
into a regular voxel grid. Vertices from the original mesh falling into the
same voxel are clustered to a single one, using some heuristics. An exam-
ple from this category is [148]. Despite easy to implement, vertex clus-
tering can severely distort the topology of the mesh. On the other hand,
using shape approximation methods, the surface simplification problem
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problem is cast into a global optimization which uses a variational parti-
tioning scheme to fit a set of non-overlapping connected regions [23]. Each
region is then approximated using a plane and the vertices of the original
mesh that coincide with the intersection of three or more of these planes
are retained. Finally, an edge contraction process is used to eliminate re-
dundant geometry.

Unfortunately, all mesh simplification algorithms are inherently offline, in
the sense that the entire scene geometry must be available during the sim-
plification process. We propose a novel algorithm that carries out the model
simplification sequentially, as the model is being generated. The simplifica-
tion is done by selecting the vertices that are most representative for the
scene geometry, reducing the redundancy in describing 3D shapes. In order
to better understand the concept, consider the simple example of Figure 5.1a,
which illustrates a 2D profile as the cross section of a 3D relief. By extracting
vertices around the edges of the slopes (marked by dots) and applying linear
interpolation (dotted lines), a good approximation of the shape is obtained.
The algorithm follows this concept, selecting 3D vertices on edges/surface
inflexions of the objects present in the scene. Similarly to the interpolation
in Figure 5.1a, these vertices provide the basis for surface interpolations that
accurately approximate the geometry of the scenes.

(a)

(b)

(c)

Fig. 5.1 Simple 2D example of feature extraction from a topological point
of view. 4 feature points provide a good initial piece-wise linear approximation of
the curved profile (a); absolute value of first derivative (b); the 4 features correspond
to the maxima of the response of the second derivative (c).
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As the Online Model Simplification (OMS) process is carried out sequen-
tially, in parallel with the scene reconstruction process, the scene model is not
fully known during vertex selection. Instead we approximate the scene geom-
etry using depth maps. From these depth maps, we extract interest points,
corresponding to object edges/surface inflexions, hereafter called geometrical
features. The geometrical features are then substituted by 3D vertices. The
result is a small subset of 3D vertices that accurately describes the geometry
of the scene.

Figure 5.2 outlines the main modules of the OMS algorithm. There are two
parallel pipelines: one computes the structure of the scene (DPR-SfM) and
the second extracts the geometric features. The two pipelines are merged in
order to select the most representative vertices for the structure of the scene.
Hereafter we describe each stage of the vertex selection process.

5.2 Depth Map Computation

The first step for obtaining the depth map is the computation of the 2D
optical flow v = [u v]T from pairs of images. The GDIM method used for this
step was proposed by Negahdaripour et al. [117, 123], and later generalized
to take advantage of color in addition to intensity information for improved
robustness and estimation accuracy [119] (see Section 2.1.2). The computed
optical flow for each pair of consecutive frames {Ii−1, Ii} provides an estimate
of local disparities for depth computation.

Given the optical flow, an approximation of the depth map can be com-
puted. Our previous proposals use Longuet-Higgins differential image motion
model [128, 130]. However, this approach is computationally expensive, re-
quiring iterative scene depth and camera motion estimations. Here, we pro-
pose a fast, closed-form solution using plane-parallax. First, the homography
iHi−1 is computed using all the correspondences between the two frames.
This homography embodies the disparity induced by the camera motion
on the average scene plane. From here we can obtain the parallax of the
scene that represents a direct measurement of the depth variations of the
scene (D̂):

D̂i = (pi −iHk−1 · pi−1)− vk

where pi−1 and pi are the image point coordinates of frames Ii− 1 and Ii
respectively.

5.3 Depth Map Derivatives

In order to extract the geometric features, we consider two types of regions of
interest: (i) object edges and (ii) surface inflexions, both of which correspond
to large absolute values of the second derivative of the depth map (see Figure
5.1c) and will be called edges hereafter.



5.3 Depth Map Derivatives 131

Homography

Optical
Flow

Plane
Parallax

Depth map
Derivatives

DPR-SfM

ROI
Extraction

Contour
Tracing

Geometric
Feature

Detection

3D Vertex Selection

Simplified Model

Geometric
Processing

Ii-1

I
i

G
e

o
m

e
tr

ic
 F

e
a

tu
re

E
x
tr

a
c
ti
o

n

Depth map
Computation

3D Vertices Geometric Features

Fig. 5.2 Flowchart of the OMS algorithm. The geometric processing (right)
runs in parallel with the DPR-SfM pipeline (left). In the geometric processing block,
first the depth map is obtained using plane parallax. Then, the regions of interest
corresponding to edges of objects, are segmented from areas of local maxima of
the depth map second derivative. Finally, geometric features, are then extracted
from the regions of interest. The geometric features are used to select the ver-
tices, generated by the DPR-SfM pipeline, that are the most representative for the
scene.
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The second derivative of the depth map (D) is approximated by:

D′′(x, y) =
1

N
ΣN

k=1D(x, y) ∗ LoG(σk)

where ∗ is the convolution operator, LoG(σk) is the Laplacian of Gaussian
with standard deviation σk = m · k and m is a predefined constant. D′′

computed in this way is less sensitive to noise compared to the standard
second derivative using local differences, while still providing high responses
on the edges of the surfaces (Fig. 5.3b).

(a) (b)

(c) (d)

Fig. 5.3 Main steps of the OMS algorithm. (a) depth map of the scene, (b)
computation of the second derivative, (c) RoI extraction and (d) edge traces along
with the extracted geometric features: “×” corresponds to line ends, “+” represents
line junctions and “ ◦ ” denotes high curvature points.

5.4 RoI Extraction

As mentioned earlier, the regions of interest correspond to those areas where
D′′ has high absolute values. In order to extract these regions, a binarization
using a constant threshold could be applied. However the steepness and the
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area of the slopes influence the magnitude and width of the peaks in D′′. In
this case, applying a fixed binarization would either not detect certain edges
or would over-evaluate others. In order to obtain a more suitable binarization,
D′′ is locally normalized using:

D̂′′(x, y) =
D′′(x, y)− wn(x, y)√
vn(x, y)− w2

n(x, y)

where

wn(x, y) =

∑x+n
i=x−n

∑y+n
j=y−nD

′′(i, j)

(2n+ 1)2

and

vn(x, y) =

∑x+n
i=x−n

∑y+n
j=y−n(D

′′(i, j))2

(2n+ 1)2

Figure 5.3c shows the regions of interest after normalization and binarization.

5.5 Geometrical Feature Extraction

In order to minimize geometrical redundancy, only relevant edge points are
extracted. To detect the edges, a thinning algorithm is applied to the regions
of interest [87]. The result is a pixel-wide trace line following the edge (here-
after called traces), with each pixel corresponding to the local maxima of D′′

(see Figure 5.3d).
Three types of geometrical features are defined along the traces:

• line end points
• line junction points
• high curvature points

Line end-points and line junction points are extracted by convolving the trace
image with specific kernels taking into account 8-neighbor-connectivity. The
curvature of the trace line along each point p is obtained by computing Cp

within a 2n+ 1 band along the line [28], with:

Cp =
1

(2n+ 1)

p+n∑
i=p−n

e(−d2
ip)(1−cos(φp−φi))

where φp and φi represent the angles of the line normals at points p and i
respectively; and dip represents the Euclidean distance between p and i.

High curvature points are extracted by locating local maxima of Cp where
Cp > tc. The threshold tc is imposed in order to avoid false positives due to
image aliasing.

Figure 5.3d illustrates the extracted geometric features: line junctions,
line-ends and high-curvature points.
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5.6 Selection of 3D Vertices

In order to obtain a reliable 3D reconstruction, the algorithm substitutes ge-
ometric features with vertices. In previous works we have proposed the direct
selection of image features using the geometric criteria [128, 130]. However,
as the selection is done prior to vertex reconstruction, there is no guarantee
that all the selected features will provide reliable reconstruction.

Performing the selection process on the 3D vertices rather than on the
image features overcomes this limitation. Substitution of each geometric fea-
ture with a vertex is carried out using a criteria based on two measurements:
the uncertainty of the 3D location of the vertex and the “distance” between
the geometric feature and the vertex. As the extraction of geometric features
takes place in the images, in order to have a common frame, 3D vertices are
represented by their image projections. Therefore, the score of substituting
the geometric feature g with vertex X , in frame Ii is given by:

sF (g,X) = (1 −ΣΔx) · cos(π
2
· ‖Πi ·X − g‖

maxG
) (5.1)

where maxG is a pre-established maximum substitution distance. ΣΔx is
the uncertainty of vertex X normalized among all the possible candidates
of g (see Appendix A). The use of the cosine function in eq. (5.1) applies
a nonlinear weight that rewards vertices which are close to the geometric
feature and penalizes those towards the outer radius maxG.

Given a feature g in frame Ii, sF is computed for all vertices whose pro-
jections fall within a radius of maxG. The vertex with the highest score sF
is considered the substitute of g. This selection process is carried out for all
geometric features.

Using the substitution criteria show in eq. (5.1), OMS creates a tradeoff
between vertex reconstruction precision and geometric approximation. As the
Online Model Simplification process runs in parallel with the DPR-SfM, the
two processes can be seen as a single SfM module, whose output is a reduced
yet accurate scene model.

Obtaining a simplified model directly, without the necessity of generating
the full model as an intermediate step, the computational and memory costs
are drastically reduced, allowing reconstruction of more complex and larger
scenes.

5.7 Experimental Results

The experiments reported in this section are aimed at evaluating the OMS
algorithm. We are concerned with two aspects of OMS: (i) efficiency – its
capacity to reduce the number of vertices in the 3D model and (ii) accuracy
– the precision loss after model simplification. In each experiment, the eval-
uation was carried out by comparing the model containing the complete set
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of features (full model) with the simplified model. In order to provide the
basis for comparison, we only tagged the vertices selected by OMS, without
removing any vertices. In this way, vertices corresponding to the simplified
model represent a subset of the vertices comprising the full model.

We define the efficiency of the OMS as follows:

ξ =
Nfull −NOMS

Nfull
· 100

where Nfull is the number of vertices in the full model and NOMS is the
number of vertices in the simplified model.

We quantify the simplification accuracy using the average Hausdorff dis-
tance [115] between simplified model and the full model. As the Hausdorff
distance is metric, we represent the error as percentage of scene depth.

We extend the analysis of OMS by comparing it with Progressive Meshes
[71]. We have chosen this algorithm for 3 reasons: (i) it is a widely used al-
gorithm in computer graphics and hardware-based rendering, (ii) it reduces
the model complexity by selecting the most geometrically representative ver-
tices, similarly to our algorithm and (iii) it allows the user to manually set
the number of vertices in the simplified model, thus providing common basis
for comparison.

Hereafter, we present some of the results we have obtained from image
sequences representing outdoor and underwater environments.

5.7.1 Rocks Experiment

In this experiment, a set of rocks with various photometric (texture) and ge-
ometric (size and shape) properties were imaged on a planar concrete back-
ground (see Fig. 5.4a). During acquisition, the camera was oriented towards
the ground with little pitch and roll movement, and rotated around its optical
axis so that it maintained a constant orientation with respect to the motion
direction (i.e. simulating the motion of a survey platform). The sequence
consists of 360 images of 694×519 pixels.

After applying DPR-SfM on the sequence, the resulting full model shown
in Figure 5.5a contains 14,000 vertices. When we performed model simplifica-
tion in parallel with DPR-SfM, OMS introduced an overhead of 0.11s/frame
in the model update step, as the latter requires the computation of the ver-
tex covariance. The optical flow computation times are highly dependent on
the image resolution. For high resolution images, we use subsampling prior
to optical flow computation, resulting in significant gains in computational
times with minimal loss of depth map precision. For this image sequence,
we obtained an average of 1.2s/frame for depth map computation without
subsampling. The rest of the steps for the geometrical feature extraction and
vertex selection stages had small computational costs, averaging a total of
0.1s/frame.
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(a) (b)

(c) (d)

Fig. 5.4 Rocks experiment – Geometrical feature extraction. (a) sample
image from the sequence, (b) depth map, (c) second derivative and (d) object
contours and the extracted geometrical features).

OMS allows the user to specify the maximum substitution distance maxG
as an input parameter (see eq. (5.1)). As maxG is represented in image pix-
els, we avoid the resolution dependency by defining the user parameter as
percentages of image width. In order to assess the influence of maxG on the
outcome of OMS, we generated the simplified model using different values of
the parameter and compared the results with PM. In each case, we set the
number of vertices in PM to be the same as those of the OMS model.

Table 5.1 shows the results of the experiment. Using low values of maxG
limits the amount of geometrical features that are substituted by vertices.
This increases the efficiency of the model simplification at the expense of
accuracy. Increasing the value ofmaxG highly improves the accuracy of OMS
to a point where the results of OMS and PM are similar. This shows that
our OMS approach is nearly as accurate as the batch PM algorithm. Figure
5.5b illustrates the simplified model using maxG = 4.3.
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(a)

(b)

Fig. 5.5 Rocks experiment – 3D Structure. (a) full model containing 14,000
vertices, (b) simplified model using the geometric criteria containing 432 vertices
and (c) texture rendering of the simplified model.

Table 5.1 Rocks experiment – Comparison between OMS and PM. Low
values of maxG result in a highly simplified model, where PM is more efficient than
OMS. Increasing the value of maxG, improves the accuracy of OMS to a point
where the difference between OMS and PM is small. Values of maxG above 4.3 do
not bring any significant improves neither in efficiency nor accuracy of OMS.

maxG Vertices Efficiency [%] Accuracy OMS [%] Accuracy PM [%]

0.7 309 97.8 1.31 0.77
1.4 398 97.2 0.96 0.73
2.9 424 97.0 0.87 0.73
4.3 432 96.9 0.86 0.72
5.8 446 96.8 0.86 0.72
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5.7.2 Coral Head Experiment

The data for this experiment were acquired during one of the coral reef
UoM ROV surveys. The dataset consists of 2, 000 frames of 512 × 384 pix-
els, corresponding to a coral head of 1m in height and its surroundings (see
Figure 5.6a).

The aim of this experiment was to test the OMS algorithm using real,
geometrically complex underwater scenes under extreme, changing lighting
conditions. For this, the sequence was chosen to include both almost flat
regions and high 3D structure regions, with images affected by sun flickering,
scattering, blurring and decreased image contrast due to light attenuation.

During OMS process, the lighting conditions reduced the accuracy in opti-
cal flow computation, increasing the noise in the depth map computation (see
Figure 5.6b). The high level of noise in the depth map made the detection of
edges more difficult. By computing the second derivative using local differ-
ences and applying a fixed binarization threshold in Figure 5.6c, the result is
very noisy, with few extracted edges corresponding to true scene edges. How-
ever, applying the locally normalized binarization method, the effect of noise
was highly reduced, resulting in a correct estimation of the edges (Figure
5.6e) and the geometrical features (Fig. 5.6f).

The full scene model, shown in Figure 5.7a contains 15,000 vertices. Using
OMS, the number of vertices was reduced to 641 (Fig. 5.7b), resulting in a
decrease of 95.7% in model complexity. The OMS algorithm highly reduced
the number of vertices in the close-to-planar regions, while maintaining the
model complexity in the regions with high 3D structure (i.e. the coral head in
the center). The error introduced by the OMS algorithm was 1.15% while the
error introduced by PM simplification was 0.92%. This shows that OMS has
good performance under challenging conditions, with an accuracy comparable
with PM.

5.7.3 Coral Reef Experiment

In this section, we discuss the result of OMS on the dataset presented in
Section 4.4.4. The aim of this experiment was to assess the efficiency of OMS
under a dense set of vertices. For this, we increased the number of extracted
image features to 5,000 features/frame. This resulted in a 3D scene model
that contains 62,322 vertices. After applying OMS, the model was reduced
to only 762 vertices, with a simplification efficiency of 98.8% (see Figure
5.8). This shows that, as expected, the complexity of the simplified model
depends only on the shape of the scene. This offers a significant advantage
over regular SfM modeling, where the number of vertices depends on image
resolution, number of extracted image features, image content, etc.

The error introduced by OMS simplification was 1.17%, while in the case
of PM was 1.01%.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.6 Coral head experiment – Geometrical feature extraction. (a)
sample image from the sequence; (b) depth map; (c) using local differences for
second derivative and simple binarization using a simple threshold the result is
very noisy; (d) increasing the binarization threshold results in edge loss; (e) edge
trace and geometrical features extracted using proposed method; (f) geometrical
features on the input image.



140 5 Online 3D Model Simplification

(a)

(b)

Fig. 5.7 Coral head experiment – 3D Structure. (a) full model contain-
ing 15,000 vertices, (b) reduced model using the geometric criteria containing 641
vertices.

5.8 Discussion

Model simplification methods greatly reduce the cost related to processing,
storage and representation of complex 3D models. The model simplifica-
tion techniques proposed in literature are inherently offline, requiring the
entire 3D model to be available during simplification. These methods are not
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Fig. 5.8 Coral reef experiment – 3D Structure. (a) the full model contains
a dense set of 62,322 vertices, (b) applying OMS, the resulting model is highly
simplified to only 762 vertices.

adequate for online 3D modeling applications, which could benefit from on-
the-fly model simplification strategies.

In this chapter we presented a novel online model simplification algorithm
oriented towards large scene reconstruction algorithms. OMS does not re-
quire the geometry of the scene to be available as an intermediate step. The
simplification is carried out by analyzing the scene geometry locally, using
plane-parallax approximations, and selecting only those 3D vertices that are
geometrically representative to elements present in the scene. The vertex se-
lection criteria not only takes into account the geometrical representativeness
of the vertices but also their reconstruction accuracy.
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Applying OMS in parallel with an SfM algorithm results in highly simpli-
fied scene models, which can significantly decrease the computational costs
related to mapping.

We show through experimental results that model simplification using
OMS has minimal impact on the accuracy of the model, with results sim-
ilar to state of the art offline model simplification algorithms.

Future work related to Online Model Simplification will focus on multilay-
ered 3D models, containing vertexes classified on geometrical relevance. The
result is a multi-resolution representation of the scene similar to PM. This
would allow the user to select the level of detail, depending on the specific
needs, hardware limitations, etc.



Chapter 6

Conclusions

This book presented a complete framework for efficient 3D scene modeling
and mosaicing. The objective was to develop an efficient and flexible tool for
remote scientific studies that require 3D and visual information under any
type of acquisition conditions and scene types. Using such a tool, where no
additional sensor information and no special acquisition conditions are re-
quired, decreases the complexity and costs related to scientific visual studies.

During the presentation of this work, we mainly focused on underwater
scene modeling due to the increased difficulty and additional challenges that
are present in this environment. Nevertheless, we show successful results on
applying the framework on other types of environments, including land-based
and urban scenes.

The core of the framework is based on a novel SfM algorithm – DPR-SfM.
The algorithm generates the scene model sequentially, in two stages. In the
first stage, a seed model is created using camera motion estimation tech-
niques. The seed model corresponds to the first few frames of the sequence,
representing a small subregion of the scene. The second stage extends the
seed model in order to cover the entire surveyed area. While the first stage
uses classical SFM techniques, the second stage uses a direct camera-to-scene
registration method which increases the accuracy, robustness and flexibil-
ity of DPR-SfM. Also, results show that direct camera registration enables
the algorithm to quickly recover from scene occlusions and tracking errors
(e.g. due to excessive blurriness induced by fast camera movements, camera
temporary failures, etc.).

Generally, large scale scene modeling algorithms use additional sensor in-
formation such as camera position and attitude for accurate results. We show
that DPR-SfM achieves the same accuracy with no additional information,
increasing its flexibility with respect to other SFM techniques. DPR-SfM can
be readily applied on image sequences acquired with any type of camera, both
still and video, using natural or artificial lighting (e.g. strobe/focus lighting
for deep waters).

T. Nicosevici & R. Garcia: Efficient 3D Scene Modeling and Mosaicing, STAR 87, pp. 143–146.
DOI: 10.1007/978-3-642-36418-1_6 c© Springer-Verlag Berlin Heidelberg 2013
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The direct camera pose registration uses a novel dual RANSAC pro-
jective/homography approach which allows the DPR-SfM algorithm to ac-
curately model both planar and non-planar scenes. This is particularly
important in underwater and urban scenes, where parts of the scene can
have significant parallax while other parts can be perfectly planar. The use
of robust estimation methods was also extended to vertex position recov-
ery. We show that using robust estimation for both camera pose and vertex
position estimations increases the accuracy and robustness of the method.

DPR-SfM uses an efficient and flexible scene database that enables the
parallel use of multiple feature extractors/descriptors, while allowing fast
camera registration in case of complex and large scenes. In this context, we
employed a Kd-tree scheme for efficient association between image features
and model vertices.

The second part of the framework deals with the detection of cross-overs
during visual surveys. The novel BoW method (OVV) is oriented towards
online navigation and mapping, eliminating significant drawback of state of
the art visual vocabulary algorithms such as strong a priori knowledge of the
surveyed area and tedious user intervention.

OVV uses an incremental vocabulary building process that eliminates the
need for the offline training stage. During the survey, the vocabulary is ini-
tialized from visual information extracted from a small number of images,
corresponding to the beginning of the sequence. Using a novel vocabulary
update criterion which takes into account the visual information present in
the images, the vocabulary is updated in order to constantly represent the
visual information contained in the scene.

The vocabulary is built using a novel data clustering method. The clus-
tering, based on Fisher’s linear discriminant, takes into account the global
data distribution rather than local inter-cluster relations. We show that such
an approach ensures a more efficient data distribution, increasing both the
repetitiveness and the discriminative power of the resulting vocabularies. The
discriminative power of the vocabularies is further improved using Linear
Discriminant Analysis, which increases the separability of the visual words
within the vocabularies. Also, the use of LDA enables data dimensionality
reduction, decreasing the computational costs related to vocabulary building
and image indexing.

In the context of a constantly changing vocabulary, we propose a new hi-
erarchical feature-cluster association technique, that increases the stability of
feature labeling. We show that stable feature labeling is critical in detecting
visual similarities between images that are indexed at different vocabulary
update steps. Also, to increase the computational efficiency of OVV, we pro-
pose a novel incremental image re-indexing method, eliminating the high cost
of repeatedly indexing the images as the vocabulary changes.

Finally, we propose a novel Online Model Simplification algorithm ori-
ented towards large scene reconstruction algorithms. OMS simplifies the 3D
model sequentially, by analyzing the scene geometry locally, using plane-
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parallax approximations. During simplification, OMS selects only those 3D
vertices that are geometrically representative for elements present in the scene
(e.g. edges, corners, surface inflections, etc.). The vertex selection criteria not
only takes into account the geometrical representativeness of the vertices but
also their reconstruction accuracy.

We show through experimental results that model simplification using
OMS greatly reduced the complexity of the models while having minimal
impact on the accuracy, with results similar to state of the art offline model
simplification algorithms.

6.1 Contributions of the Book

In this book, we have presented a complete framework for 3D scene mod-
eling. Particularly, we focused on developing an accurate and flexible SfM
algorithm, online cross-over detection and 3D model simplification. Experi-
mental results presented in this book show the efficiency and accuracy of the
three modules. Hereafter, we present the main contributions of this book:

• In Chapter 3 we proposed a novel SfM algorithm based on direct registra-
tion between camera and scene model. While the model is initialized using
classical motion-based techniques, the scene model is extended using a new
sequential two step approach: (i) the camera pose is obtained from camera-
model registration and (ii) using the camera pose, the model is extended
to comprise the new information extracted from the camera view. The
camera registration uses a novel dual approach that allows reconstruction
of both planar/non-planar scenes.

• In Chapter 4 we developed an online cross-over detection algorithm, based
on visual BoW. OVV uses a novel incremental visual vocabulary that
eliminates the need of a priori knowledge of the scene being surveyed.
The vocabulary building process uses an automatic update criterion, based
on image content, that reduces the number of vocabulary updates. Also,
the vocabulary building uses a novel clustering approach that increases
the quality of the vocabulary and data separability while allowing data
dimensionality reduction. The natural convergence criterion used during
vocabulary building eliminates any user intervention, increasing the ease
of use of the method.

Image indexing is carried out by means of a novel indexing method
using hierarchical trees. The method increases the stability of the image
indexing process in the context of dynamic vocabularies. Furthermore, as
vocabularies constantly change, we avoid repeated complete indexing of
frames using an efficient incremental re-indexing method that takes into
account the changes in the vocabulary.

• In Chapter 5 we propose a novel method for 3D model simplification ori-
ented towards online 3D modeling applications. The method analyzes the
scene locally, using plane-parallax, hence not requiring knowledge of the
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full scene model. Based on plane-parallax approximations, the method se-
lects vertices that are geometrically representative. For this, we present
a novel vertex selection criteria that takes into account both geometric
relevance and reconstruction accuracy of the vertices.

6.2 Ongoing and Future Work

The work presented in this book can be improved and extended in several
ways. We present hereafter ongoing and future work directions:

Direct Structure from Motion. After camera pose registration, image
patches around features can be warped using camera-to-model transfor-
mations, reducing the effect of extreme geometric distortions on feature
tracking. Also, the scene reconstruction accuracy can be improved, us-
ing cross-correlation as a refinement step after feature matching. Finally,
the computational time of feature-to-model association can be highly de-
creased using recent developments in Graphics Processing Unit (GPU)-
based parallel processing.

Online Loop Detection. The complexity of the visual vocabularies can be
reduced by eliminating small, insignificant clusters at the bottom of the
hierarchy. This would allow online cross-over detection for larger scenes in a
more efficient way. Again, the use of GPU-based parallel processing would
highly decrease the computational time related to vocabulary building and
image indexing.

Online 3D Model Simplification. A new multi-resolution representation of
the scene based on vertex geometrical relevance could be developed, similar
to PM. Such a representation would allow the user to select the level of
detail of the model, depending on the specific needs, hardware limitations,
etc.



Appendix A

Estimating the Uncertainty of 3D
Vertices

The selection of the 3D vertices explained in Chapter 5 is based on computing
the first-order approximation of the uncertainty of the 3D points, obtained
from noisy measurements of point projections across several views. We follow
the approach proposed by Haralick for propagating the covariance matrix
when the data and the parameters are implicitly related by the minimiza-
tion of a cost function [65]. Here, the cost function is represented by the
reprojection error shown in eq. (3.3).

For a given feature track, we consider p to be a 2M × 1 of noisy measure-
ments, so that p = p0 +Δp, where p0 indicates the ideal noise-free quantities
and Δp is random additive noise. Similarly, we consider P = P0+ΔP , where
P0 is the vector of ideal noise-free estimates and ΔP is the associated ran-
dom perturbation induced by Δp. The method assumes the following two
conditions:

• The function E (p, P ) has finite second partial derivatives.
• The random perturbations Δp are small enough, so that E (p0, P0) and
E (p, P ) can be well related by a first order Taylor series expansion.

Let �E(p, P ) be the gradient of E with respect to P ,

�E (p, P ) =
∂E

∂P
(p, P )

Under the above assumptions, an estimate for the covariance ΣΔP of the
noise in P , is obtained by

ΣΔP =

(
∂�E
∂P

)−1

·
(
∂�E
∂p

)T

·ΣΔp · ∂�E
∂p

·
(
∂�E
∂P

)−1

Given the simplicity of the cost function, analytic expressions for ∂�E

∂P and
∂�E

∂p are easy to obtain. For the purpose of selecting the 3D vertices with

lower uncertainty (detailed in Section 5.6), we consider ΣΔp = σ2 · I2n where
σ is the standard deviation of the reprojection residues obtained from our
test data, and I2n is the 2n× 2n identity matrix.
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Loop Closing and 3D Model
Correction

During a scene reconstruction the 3D map is generated incrementally (see
Chapter 3). In a cross-overs situation, there is a certain offset between the
two (or more) subregions of the map corresponding to the same region of the
scene, mainly due to the drift in camera pose and map estimations, (e.g. see
Figures 3.23 and 3.38). We aim here to correct this shortcoming by using
loop-closure information to correct the 3D models.

As mentioned in Chapter 4, we run OVV in parallel with DPR-SfM. In
Figure B.1 we illustrate an example where, during the registration of frame
180, a possible cross-over is detected with frame 31. Before the model cor-
rection, the region of the scene corresponding to the cross-over is represented
two times in the model – in the subset corresponding to frames 31 and 180,
respectively.

Using the cross-over information, we register frame 180 two times. Each
time, we use only those feature tracks (and vertices) corresponding to each
of the subsets (see Section 3.5). The result is a group of image features that
are registered with vertices from both model subsets. In other words, us-
ing image-to-model registration, we identify pairs of vertices that correspond
to the same pre-image region. Then, for each vertex pair, we merge the
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Fig. B.1 Loop closing – Example of loop detection. Using OVV, a loop
closure is detected between frames 31 and 180.
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corresponding feature tracks and keep the vertex position having the low-
est uncertainty (see Appendix A). Doing so (see Figure B.2) allows us
to introduce new constrains in the model, corresponding to the detected
loop-closure.

In order to correct the 3D model using the newly obtained cross-over in-
formation, we apply the BA algorithm presented in [93]. For some examples
of models before and after loop-closure detection and model correction, refer
to Figures 3.23 and 3.38.
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Fig. B.2 Loop closing – Vertex merging. Registering an image with two sub-
regions of the model corresponding to a cross-over, the resulting vertex pairs cor-
responding to the same pre-image region are merged.
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