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Abstract. This is a short introduction to information visualisation, which is 
increasingly important in many fields as information expands faster than our 
ability to comprehend it. Visualisation makes data easier to understand through 
direct sensory experience (usually visual), as opposed to more linguistic/logical 
reasoning. This chapter examines reasons for using information visualisation 
both for professional data analysts and also end-users. It will also look at some 
of the history of visualisation (going back 4,500 years), classic examples of 
information visualisations, and some current challenges for visualisation 
research and practice.  Design of effective visualisation requires an appreciation 
of human perceptual, cognitive and also organisational and social factors, and 
the chapter discusses some of these factors and the design issues and principles 
arising from them. 

Keywords: information visualisation, human–computer interaction, HCI, visual 
analytics. 

1 Introduction 

Information assails us in business, in science, in government and in day-to-day life, 
from the processing of massive scientific streams at CERN to sentiment analysis of 
millions of Twitter messages to gauge the popularity of a party, or to locate power 
outages.  Information retrieval is about selecting out of this morass of data, relevant 
documents, images, and audio.  Visualisation is about helping people make sense of 
either the original data sources or the subsets of data obtained through information 
retrieval.  Both can operate independently, but also they have great power together. 

This chapter is a short introduction to information visualisation.  In it we will look 
at a number of areas.  First, in the next section, we will look at the definition and 
scope of visualisation in general and information visualisation in particular.  Most 
critically, despite the term being 'visualisation', it may in fact involve other senses and 
is centrally about the use of these senses to make sense of data.  Visualisation has 
various purposes and users; section 3 considers these, in particular the different ways 
in which information visualisation is used by data analysts compared with data 
consumers (whether a company CEO or newspaper reader). 

While visualisation seems like a modern phenomenon, and indeed interactive 
computer visualisation is comparatively recent, in fact the roots of static visualisation 
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can be traced back at least 4500 years. Section 4 presents a brief history of 
visualisation from Mesopotamian financial tables and 10th century line graphs to 
current spreadsheet graphics, data journalism and visual analytics.  This is followed in 
section 5, by an overview of some of the kinds of visualisation that might be 
particularly useful in the context of information retrieval.  

The chapter concludes with a discussion of some of the human-centred design 
principles that can be applied to visualisation choice and creation. We will consider 
detailed design issues; in particular the way interaction can soften the trade-offs that 
are inherent in making (static) visualisation choices.  However, we will also consider 
the way visualisation (and for that matter information retrieval) fits into a larger social 
and organisational context. 

2 What Is (Information) Visualisation 

Defining Visualisation 

Visualisation is perhaps easier to recognise than define.  In his textbook "Information 
Visualisation" [1], Bob Spence refers to the dictionary definition: 

visualize: to form a mental mode or mental image of something [1] 

He emphasises that visualisation is critically about insight, what happens in your 
head, not a computer.  Often the most powerful mental images are formed from words 
alone, but that would not correspond to the common notion of visualisation, which is 
often about the design of media (computer, paper) to help people. 

So, for this chapter we shall adopt a slightly different definition of (information) 
visualisation: 

making data easier to understand using direct sensory experience 

Note this is still about insight and understanding, but also about the perception 
('sensory experience') and deliberate design ('making'). 

Note also that this definition says 'sensory', not simply 'visual', as the inner 
visualisation that makes you say "I see" can also be engendered by other senses. 
Although less common, you can have aural and tactile 'visualisation' – think of the 
click of a Geiger counter – faster clicks mean more radiation.  These non-visual forms 
are particularly valuable for those with visual disability, but also in contexts when the 
eyes need to be elsewhere, for example while flying a plane.  This all said, the vast 
majority of visualisation is, as the name suggests, visual.  The visual cortex accounts 
for around 50% of our brain, and so it makes sense to use it. 

Also note that the word 'direct' is in the definition to exclude purely rich textual 
descriptions, no matter how sharply they focus the mind.  Although you use your eyes 
to read words or even tables of numbers, they are processed linguistically and 
logically, rather than the more instant feeling you get when you see a rising graph. 

With many caveats to beware of pseudo-science, you can think of this as a form of 
left brain / right brain distinction.  Not that one is better than the other.  In statistics, 
one is taught never to start by calculating means, t-tests, etc., but instead always to 
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Information Visualisation

The term 'information' visu
used to contrast it with 'scie
that have a direct connectio
example the airflow around
of fields of numbers of vect

In contrast, information 
complex structurally, but 
Furthermore, the data of inf
gender male/female) as wel

The two are not entirely
(GIS) involve data over 2D 
for marketing purposes will 
patterns for climate modellin
to understand patterns of glo

3 Why Use Visual

When creating visualisation
First there is the data a

academic interpreting exp
anomalies in a bank's accou
cycleway, or the intelligenc
to prevent a terrorist attack.

The other group is the 
reader, or the CEO. These 
peasant, but have in comm
even be highly numerate be

 

Fig. 2. Table Lens [2] 

n 

alisation, as opposed to 'visualisation' in general, is usu
entific' visualisation.  In science there are many phenom
on to the physical world, but are in some way invisible, 
d an aircraft wing.  This scientific data is often in the fo
tors defined continuously over a 2D or 3D space. 
visualisation is often concerned with data sometimes m
almost always discrete: hierarchies, tables, point d

formation visualisation often includes categorical data (
ll as continuous data (e.g. height). 
y distinct, for example, geographical information syste
maps. Methods used to display regional petrol consumpt
not be so different from those showing average temperat

ng, and of course one might want to use both these data 
obal warming. 

lisation and Who Is It for? 

ns there are two kinds of target audience. 
analyst, whose job it is to sift through data whether 
perimental results, the forensic accountant looking 
unts, the city planner working out the best route for a n
ce officer piecing together emails, tweets and passport d
.   
eventual data consumer, the client, audience, newspa
may range from a time-strapped manager to an illiter

mon that they are not experts at data analysis, and may 
eyond what they recall of basic school mathematics. 

 

ally 
mena 

 for 
orm 

more 
data. 
(e.g. 

ems 
tion 
ture 
sets 

the 
for 

new 
data 

aper 
rate 
not 



 

Given you are reading t
the first group, the scientis
you need to work harder to
not have as intuitive a grasp

For each of these two 
visualisations. 

For the Data Consumer 

For the data consumer, the
representations, that can be
when using a visualisation
audience to a more comple
glance or not at all. 

There are two main rea
understanding and rhetoric

understanding – This i
already seen.  For example
want a graph to show the nu
against time. For the gen
graphics to form 'infograph
appealing (if the readers do
partly to point out particul
Guardian Datablog [4], sh
Thatcher administration) un
(blue=Conservative, red=L
of the Exchequer at the time

F

Introduction to Information Visualisation 

this book, it is likely that you have more in common w
t, statistician or professional, than the second. This me
o design visualisations for the data-consumer, as you w
p of what is good. 
groups we'll look at reasons why you may want to 

e focus usually needs to be on simple, well understo
e grasped at first time of looking. Sometimes, for examp
n as part of a presentation, it is possible to introduce
ex graphic, but often the visualisation has to work at f

asons for providing visualisations to the data consum
. 
s when we want to help others see what the analyst 

e, as part of teaching a course on mobile internet, you m
umber of people accessing the internet via a mobile plot

neral public, graphs are often augmented with text 
ics'.  This is partly to make the visualisations more visu

o not look at the visualisation they will learn nothing), 
lar features. For example, the page in figure 3, from 
hows the UK budget deficit from 1979 (the start of 
ntil 2011.  The colours denote the dominant party in pow
abour), the pictures at the top are the various Chancell
e and actual numbers included in the figure. 

 

Fig. 3. UK Deficit and Borrowing [4]  

5 

with 
eans 
will 

use 

ood, 
ple, 

e an 
first 

mer: 

has 
may 
tted 
and 
ally 
and 
the 
the 

wer 
lors 



6 A. Dix 
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UK Deficit relative to GDP (data from [4, 6]) 
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Fig. 

Fig

The human sensory syste
in visualisation for data an
patterns where there are no
more likely one will appe
particularly those for exp
distinguish happenstance fr

4 A (Very) Brief H

4.1 Static Visualisation

The computer-driven visu
visualisations of various fo
tablet in Figure 8 is aroun
information. We may think
tablet writing is of an adm
of numbers. 

 
6. Box plot of Neutrino transit times [7] 

  

g. 7. Multiple parallel visualisations [8] 

em is tuned to find patterns, and this is exploited to the 
nalysis, especially exploratory. However, we may also 
one. The more different ways you look at something, 
ear to have a pattern, purely by chance. Visualisatio
ploratory analysis, therefore need to help the ana
om real underlying patterns.  

History of Visualisation 

n (From 2500 BC to 1990 AD) 

ualisations shown so far are comparatively recent, 
orms date back many millennia. The Mesopotamian c
nd 4500 years old, and contains a table of administrat
k bureaucracy is new, but the vast majority of early c

ministrative / financial nature, often including simple tab

full 
see 
the 

ons, 
alyst 

but 
clay 
tive 
clay 
bles 



 

  Fig. 8. Mesopotamian table o

Moving on 3500 years,
planetary movements. The
heavenly body, where the y
the 19th century and shows
x-axis hours of the day (fro
distance along the route (P
clearly as the steeper lines. 

These early visualisation
of computing it became po
easily, or to create new on
days this was done using v
printer, but now it is simply
print! 

Fig

This use of computers t
page or PDF, or printed in
drawn illustrations. Thes
particularly when commu

Introduction to Information Visualisation 

               

on a clay tablet              Fig. 9. 10th Century time line 

 Figure 9 shows an early line graph of solar, lunar 
e x-axis is days in the month and the lines track e
y-axis is their height in the sky. Figure 10 skips forward
s a visualisation of the Paris–Lyon train timetable, with 
om 6am to 6am the next day) and the y-axis showing 

Paris at the top Lyon at the bottom). Fast trains stand 

ns were created painstakingly by hand, but with the adv
ossible to create the same visualisations more quickly
nes that would have been impossible before. In the ea
very slow x-y pen plotters or character-graphics on a l
y a matter of selecting a few options in Excel and press

 

g. 10. 1855 Paris-Lyon train timetable 

o create fixed visualisations whether on screen, on a w
n a newspaper, is in many ways similar to the older ha
e static visualisations are still of great importan

unicating with others. Furthermore, understanding 

9 

and 
each 
d to 
the 
the 
out 

vent 
y or 
arly 
line 
sing 

web 
and-
nce, 
the 



10 A. Dix 

effective design and qualities of static visualisations is an essential first step to 
creating more complex interactive visualisations. For static visualisation, the core 
texts are undoubtedly Tufte's beautifully illustrated books [9–11]. 

4.2 Interactive Visualisation 

Examples of interactive visualisation can be traced back to early scanning vector 
graphics displays, or the seaside information boards where tiny lights were 
illuminated when you pressed buttons for different kinds of features. However, it was 
in the early 1990s when growing graphics power made it possible, for the first time, to 
create rich 3D graphics, complex visualisations and real-time interaction. This led to a 
blossoming of information visualisation (and other graphics) research notably in the 
groups at Xerox PARC and University of Maryland.  Not all the ideas were good, just 
like with gloriously multi-fonted documents during the desktop publication revolution 
in the 1980s, there were many examples of gratuitous 3D, most of  
which are deservedly forgotten. However, despite this, most of the core kinds of 
visualisations in use today were introduced at that time (see selection in Figure 11), 
several of which will be discussed in the next section. 

  

Fig. 11. Interactive Visualisations from the early 1990s: clockwise from top left: Cone Trees 
[12], TreeMaps [13], FilmFinder [14], Buttefly Browser [15], and Pixel Plotting [16] in centre 
(note how use of 3D distorts text in Butterfly Browser) 

4.3 Current Directions 

We have already seen examples of data journalism where rich, but simple to 
understand, infographics have made their way into mainstream media. Furthermore 
the web has increased the public expectations of high quality, often interactive, 
visualisations. These web visualisations are sometimes 'authored', that is created by 
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particularly important when displaying images in the leaf nodes (Figure 17, left). The 
TreeMap is in many ways quite simple, but is one of the more heavily used 'complex' 
visualisations, proving itself able to manage vast trees (Figure 17, right) and yet still 
be relatively comprehensible. 

Finally for here, although not the end of the visualisation of hierarchical data by 
any means, are methods that distort space in order to show a tree. The most well 
known (but not most well used or understood) of these is the Hyperbolic Browser 
[21]. This began with the failure of simple circular layouts to deal with larger trees.  If 
a tree has a constant branching factor, say on average 3 nodes per parent, then the 
number of subnodes increase exponentially at each level down: 3, 9, 27, 81, 243, 729, 
...  However, when we layout in a circle, then the circumference of successively larger 
circles only grows linearly – there is never enough space! 

Mathematicians deal with a kind of curved space called hyperbolic geometry. This 
had theoretical beginnings, but now turns out to have applications in cosmological 
physics. The important feature of hyperbolic space is that the circumference of 
'circles' in this (rather odd) geometry increases exponentially with the diameter of the 
circle – perfect for trees. Unfortunately we do not see in hyperbolic geometry, so this 
is then projected back down into 2D (see Fig. 18) leading to an effect rather like 
earlier Fish Eye visualisations [3]. 

  

Fig. 18. The Hyperbolic Browser visualising the web [21] 

5.2 Clustered Data 

Quite frequently in information retrieval there is no fixed structure, instead, we have 
large sets of search results, with common attributes, but no given hierarchical 
structure. Although there is no given structure, sometimes a form of structure is 
induced using clustering, whether at a single level to give groups of related nodes, or 
at multiple levels with clusters of clusters leading to tree structure. 

Hierarchies are clearly centred on our linguistic/logical understanding of the world, 
and to some extent need to be made more immediate to our sensory perception. In 
contrast, clusters correspond closely to human perception, we see a group of sheep 
and, without consciously thinking, "they are all similar" they become a flock in our 
minds.  However, the fuzzier concept has its own challenges. 
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Fig. 19. Visualising numeric clusters 
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g. 20. Visualising non-numeric clusters 
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g. 21. The Scatter–Gather Browser [23] 
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ualisation.  Below that area are three individual docume
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ses such as MongoDB's command line mode [24]. 

y 

rnal’ and keyword=‘visualisation’ 

ssing complete - 2175 results 

/N) 
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one, the options on others
shows three document attri
selected 'interaction' and 
document type.  The count 
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Fig. 24. F
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Fig. 2

s are narrowed correspondingly. For example, Figure 
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'173' shows the total number of documents satisfying b

here: 
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Faceted browsing, similar to HiBrowse [25] 
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In the above example, the interactions were discrete, selections of attributes leading 
to updated values. However, sometimes interactions can be made more rapid and 
continuous. Figure 25 shows two screenshots of FilmFinder [14], another early 
faceted browsing interface. Within each screen there is a larger area to the left which 
shows a scatter plot of films, coloured by genre and plotted against date (x-axis) and 
popularity (y-axis). On the right are a number of sliders, which allow the setting of 
maximum and minimum values for various attributes. As the user moves these sliders, 
the points on the scatter graph are filtered in real time giving instant feedback.  Note 
that in the right-hand screen shot the filtering has reduced the number of points and so 
the titles of the films are also shown. 

Another example of faceted browsing is the Influence Explorer [27, 28]. This was 
designed to allow exploration of complex engineering problems including simulations. 
An example problem was light bulb design choices.  There are various input 
parameters that can be chosen (e.g. material, thickness and length of filament), and 
various output measures (e.g. cost, lifetime).  Large numbers of simulations are run to 
create a large set of multi-dimensional data points, each corresponding to a single 
simulation run. The engineer can then use dynamic sliders to either select 'input 
parameter' ranges (e.g. choose range of thicknesses), or 'output' parameters (e.g. 
maximum cost). So far, this is like the FilmFinder interface, except above each slider is 
a small histogram showing the way the currently selected items (simulation runs) are 
distributed over the relevant values. This is effectively like the counts in HiBrowse 
making it possible to see whether the sliders are hovering near critical values. 

  

Fig. 26. 'Peek over the horizon' histograms in Influence Explorer [27, 28] 

5.4 Big Data 

One of the trends noted in section 4.3 is the vast data sets that now need to be 
analysed. Many visualisations fail when dealing with large data. Some problems are 
computational, simply too many points to perform calculations on, especially for real 
time interactive visualisation. Some problems are more intrinsic to the visualisation, 
for example if there are too many points on a scatter plot it becomes unreadable, just 
solid colour. 

One approach is to simply use less space to visualise each item.  Figure 27 shows 
VisD, an example of pixel plotting [16], which uses a single pixel for each data  
point and then packs these densely filling the available space. In Figure 27 the  
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pixels are plotted in circles starting in the centre and then spiralling outwards. Similar 
techniques are also used for filling square areas. The colour represents a single 
attribute of the data, and some other attribute is used to order the plotting. For 
example, if the data is ordered by time then trends in the data would appear as 
changes in the average colour between centre and periphery, and periodicity would 
show up as segments or swirling patterns.  

  

Fig. 27. Pixel plotting [16] 

Pixel plotting allows 100s of thousands or millions of data points to be plotted on 
an ordinary display, but still this does not help with many current datasets, for 
example the tens of billions of web pages on a typical crawl. 

For these vast datasets there needs to be some form of data reduction. This may 
take the form of some sort of pre-programmed or emergent aggregation. For example, 
detecting clusters and displaying the cluster averages, as described earlier – that is 
visualising groups not individual elements. Example data points can also be used, 
effectively reducing the number of points displayed. These examples might be 
selected using some systematic technique, or simply using random sampling [29]. 

6 Designing for Visualisation 

6.1 Perception and Purpose 

As we have seen there are many different forms of visualisation.   When choosing a 
visualisation or designing a new one there are several factors to take into account: 

visual ‘affordances’ – what we can see – Our eyes are better at some things than 
others.  For example, they are much better at discriminating levels of darkness, than 
hues of colour, and are much better comparing lengths of lines when the lines share a 
common base. 

objectives, goals and tasks –  what we need to see – Recall the lists of numbers in 
Figure 1, if the purpose is to compare sizes or find the biggest/smallest, then aligning 
the decimal points helps you to do this. If you can understand the purpose of a 
visualisation, you are in a better position to ensure that the visual affordances make 
this purpose achievable. 
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like to see – Sometimes visualisations simply need to
also need to be attractive. This is certainly true of 
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Fig. 28. Stacked Histogram 
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ing data may be shown in a compressed way, as in 
he Hyperbolic Browser in Figure 18; this is called a FishE
e similar to looking through a FishEye camera lens. 
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Figure 31 shows these as 
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the beginning nor the end of the story. Originally the d
as collected for a reason, maybe selected based on crite
isualisation system. Furthermore, one visualises data fo
y influence one's own future decisions and actions, or th
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big picture – visualisation in context (from [34]) 

ng visualisation systems this often needs to be taken i
alling the different purposes and audiences described

off with a visualisation system focused on the professio
ged in some form of exploratory analysis. However, o
me interesting pattern, it will need to be presented t
 senior manager in a company, that is a move fr

d-user understanding and/or persuasion. It is sadly rare
which takes this into account. 
s and actions one makes based on visualisation have
ng more data, that may need to be visualised in order
actions. 

can involve different senses, not just vision; vis
common and often most powerful because of 

of our brains dedicated to visual processing. Visualisat
tanding or to persuade (or even mislead). However, m
f visualisation for exploratory analysis, as by definition
king for and hence what to emphasise visually. 
examples of many kinds of visualisation, both st

d modern) and, most importantly, interactive informat
at ways to visualise three main kinds of data structu

25 

data 
eria 
or a 
hose 

into 
d in 
onal 
once  
to a 
rom 
e to 

e an 
r to 

sual 
the 

tion 
most 
n we 

tatic 
tion 
ure: 



26 A. Dix 

hierarchies, clusters and multi-attribute data.  However, these are just common 
examples and there are as many kinds of visualisation as there are data, including, 
inter alia, temporal data, geographic data, and multi-media. 

We have also seen that designing visualisations requires an understanding of the 
human visual (or other sensory) system, the objective/goals that the visualisation is to 
aid, and aesthetics (especially for persuasive graphics). Choosing an appropriate 
representation typically requires choices and trade-offs between factors, but interactive 
visualisation can soften these trade-offs, allowing choices to be remade by the user as 
they interact with the system. However, it is also important to remember that 
visualisation takes place within a broader context where the data being visualised 
comes from the world, the visualisation helps individuals or organisations to make 
decisions, and these decisions lead to actions, which change the world and thus the 
data being visualised. 
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