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Abstract In the range of field-assisted sintering technology or spark plasma sinter-
ing all materials in the testing machine undergo very large temperature changes. The
powder material, which has to be sintered, is filled into a graphite die and mechan-
ically loaded by a graphite punch. The heat is produced by electrical induction and
the cooling process is performed by conduction and radiation. Both the heating and
the cooling process are very fast. In order to understand the process of the highly
loaded graphite parts, experiments, modeling and computations have to be carried
out. On the thermal side the temperature-dependent material properties such as heat
capacity and heat conductivity have to be modeled. Since the heat capacity is not
independent of the Helmholtz free-energy a particular consideration of the free-
energy is carried out. On the other hand, the temperature changes of the electrical
resistivity and the material properties of the graphite tool must be taken into con-
siderations. Accordingly, the material properties of “Ohm’s law” must be modeled
as well. The fully coupled system comprising the electrical, thermal and mechanical
field are solved numerically by a monolithic finite element approach. After the spatial
discretization using finite elements one arrives at a system of differential-algebraic
equations which is solved by means of diagonally implicit Runge-Kutta methods.
Issues and open questions in the numerics are addressed and problems in modeling
a real application are discussed.
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1 Introduction

The numerical treatment of powder compaction processes requires the experimental
basis, appropriate constitutive models and sophisticated algorithms both for the pow-
der and the tools itself. In field-assisted sintering technology (FAST) the mechanical
and thermal loads are applied more or less in parallel. An overview of the technical
development of FAST-processes can be found in [1–4]. In the literature there exists
only few attempts to model the whole thermo-electro-mechanical problem. In the
work of [5] the SPS-process (spark plasma sintering) is modeled without powder to
study the thermal and the electrical field together with a small strain thermoelasticity
relation for the tooling system. Wang et al. [6] investigated the electrical, tempera-
ture and stress fields in order to evaluate stress gradients in the fully densed sample
(copper and alumina). In this study the electrical current is treated as a constant.
Differently, [7] modelled the time dependence of the electrical current by the use
of experimental recorded current for a specific experiment. In [8] a PID control for
the closed loop control of the current is added to achieve a prescribed temperature
path. In this investigation temperature and stress gradients for a fully densed alumina
and copper sample are analyzed. Wang et al. [9] studied the effect of different die
sizes, heating rates and pressures on the temperature and stress distribution inside a
alumina sample, the tooling system and on the resulting microstructure. Maizza et al.
[10] investigated the influence of moving punch on the temperature. He emphasizes
the reliability of the model predictions highly depend on the correct modeling of the
contact resistances. Cincotti et al. [5] compared simulation results to measured tem-
perature, voltage and displacement data including electric and thermal resistance as
a function of temperature and applied mechanically load. Recently two articles also
dealing with the densification process are published, [11, 12]. Since the temperature
in the powder, and, accordingly the final material properties of the sintering process,
is essentially influenced by the graphite tools (given by the die, where the powder is
encapsulated, and the punches treating the mechanical loads to compress the powder),
the investigation of the die/punch system in view of the temperature and stress distri-
bution is of principle interest. Moreover, the heat is applied using electrical induction
so that the temperature and stress distribution during the processes are coupled. Since
the applied temperatures vary within a large range, most of the material parameters
depend on the temperature itself so that the final initial boundary-value problem is
a coupled system represented by the equilibrium conditions, heat equation and the
electrical field equation. In view of the investigations in [13] inertia effects are not
considered because the investigated temperature-rates are not as fast enough to take
resulting phenomena into account. Moreover, the investigated temperature are below
the phase transition effects in the graphite tools and the powder material (copper or
alumina).

In this article we assume in the first instance thermo-elasticity for small strains and
a instationary non-linear heat equation. Particularly, small strain thermo-elasticity is
seemingly well understood, see for example, [13, 14]. However, frequently some
terms are neglected by intuition or by the assumption of small rates or small
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temperature changes. These assumptions are not always applicable, particularly not
in FAST-processes. In this case the graphite tools have temperature-dependent prop-
erties, such as a temperature-dependent heat-capacity, directly influencing the form of
the free-energy and the thermo-mechanical coupling term. Moreover, the well-known
effect of a temperature-dependent electrical resistivity influences the evolution of
the electrical potential. In this article, we propose some experiments determining
the temperature-dependent material properties first. These experiments are given
by purely thermal agencies to determine the heat expansion, the heat capacity, the
heat conductivity and the electrical resistivity. All these quantities are more or less
temperature-dependent. Particularly, the heat capacity influences directly the repre-
sentation of the free-energy. Thus, aspects of the modeling are touched as well. On
the basis of these properties phenomenological models are developed and calibrated
to the experimental data.

Since the entire problem is coupled, all practical applications have to be com-
puted numerically. Here, use is made of the finite element method. In [15] coupled
problems are discussed within the method of vertical lines. This procedure, well-
known as a solution technique for partial differential equations, makes use of two
subsequent steps, namely the spatial and the temporal discretization. In our case the
spatial discretization using finite elements yields a system of differential-algebraic
equations, or, shortly, a DAE-system. In other words, ordinary differential equations
are coupled with algebraic equations. In this context, the differential part of the
DAE-system results from the discretized instationary non-linear heat equation and
the algebraic parts stem from the discretized equilibrium equations and the stationary
charge equation, see for general remarks [16]. These systems are frequently solved
using a Backward-Euler scheme or a trapezoidal rule (Crank-Nicholson procedure)
for the differential part resulting from the fact that the numerical solution of DAEs
are commonly not known in the finite element literature. In this article, high-order
stiffly accurate diagonally-implicit Runge-Kutta methods (SDIRK-methods), see, for
example, [17, 18], are applied having the side-product of an efficient step-size con-
trol technique. The reason for this stems from the application of embedded SDIRK
methods.

The notation in use is defined in the following manner: geometrical vectors are
symbolized by lower case bold-faced letters a and second order tensors A by bold-
faced Roman letters. Furthermore, we introduce matrices at global level of the finite
element procedure symbolized by bold-faced italic letters A.

2 Constitutive Modeling and Initial Boundary-Value Problem

Before developing a constitutive model for the graphite material, the mechanical,
thermal and electrical properties are discussed. The elasticity parameters are deter-
mined using ultrasound measurements, [19, 20], leading to the Young’s modulus
E = 11500 N/mm2 and the Poisson-ratio ν = 0.2. The temperature-dependence
of the elasticity parameters cannot be provided. Moreover, any viscous effects or
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remaining deformations are, currently, not known, i.e. measured. Thus, a model
of linear thermo-elasticity is assumed. Moreover, any viscous effects or remaining
deformations are not taken into considerations. Thus, a model of thermo-elasticity
is assumed. The heat expansion is measured to be nearly temperature-independent
within the measured range of temperature, see Fig. 1a. According to the assumption
that the thermal strains are purely volumetrical,

EΘ = ϕ(Θ(x, t))I (1)

(pure volumetric heat expansion), Fig. 1a suggest the linear function

ϕ(Θ) = αΘϑ = αΘ(Θ−Θ0), (2)

where αΘ is the heat expansion coefficient, ϑ(x, t) = Θ(x, t) −Θ0 the temperature
difference, Θ0 the reference temperature, and Θ the absolute temperature. The heat
expansion coefficient is given by αΘ = 4.55 × 10−6 1/K (here, use is made of
a Unitherm 1252 ultra high temperature dilatometer). Further measurements are
carried out using a Netzsch Laserflash-device LFA 457 to determine the temperature-
dependent heat conductivity, see Fig. 2a. The heat capacity at constant pressure is
provided by the manufacturer of the material and the mathematical representation is
shown in Fig. 2b.

In order to obtain a more or less reasonable curvature, even outside the range of
experimental data, the functions

κΘ(Θ) = b1e
−b2Θ + b3e

−b4Θ (3)

cΘ(Θ) = d1 + d2Θ+ d3 tanh(d4Θ− d5) (4)

are chosen. The parameters are identified with
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Fig. 1 Heat expansion and electrical conductivity in dependence of the temperature of graphite.
(a) Heat expansion, (b) Electrical conductivity
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Fig. 2 Heat conductivity and heat capacity in dependence of the temperature. (a) Heat conductivity,
(b) Heat capacity
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and d5 = 0.9431.
In Fig. 1b the model response of the data for the electrical conductivity in depen-

dence of the temperature provided by the manufacturer is shown as well, which is
modeled by

κϕ(Θ) = c1e
−c2Θ − c3e

−c4Θ (5)

with

c1 = 1.69×105 S

m
, c2 = 2.168×10−4 1

K
, c3 = 1.661×105 S

m
, c4 = 2.089×10−3 1

K
.

The mechanical constitutive equations are applied as follows. First of all, a depen-
dence of the mechanical material parameters on the electrical current and the tem-
perature is not assumed. These properties have not been available so far. For a first
instance thermo-elasticity is assumed. There, it is common to prescribe a specific
free-energy function and calculate the heat capacity, or to define the heat capacity
constant (commonly contradicting the choice of the specific free-energy), or to make
use of the experimentally determined heat capacity and to integrate those equations to
obtain the specific free-energy. Here, use is made of the latter concept. Thus, the case
of thermo-elasticity has to be recapped. Since we assume small strains, the linearized
strain tensor E(x, t) = (grad u(x, t)+grad T u(x, t))/2 is introduced. u(x, t) defines
the displacement field, where x symbolizes the spatial coordinate and t defines the
time. As it is common, the strain tensor is decomposed into a mechanical EM and a
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thermal part EΘ,
E = EM + EΘ, (6)

with EΘ given in Eq. (1). In view of the subsequent development the strain-rates are
required, i.e. the mechanical strain-rate reads

ĖM = Ė − ĖΘ = Ė − αΘΘ̇I with ĖΘ = αΘΘ̇I. (7)

In the following, it is assumed that the free-energy ψ(EM,Θ) can be decomposed
into one part ψM(EM) depending only on the mechanical-based deformation, and
another part ψΘ(Θ) resulting from the temperature effects

ψ(EM,Θ) = ψM(EM) +ψΘ(Θ). (8)

In the case of linear thermo-elasticity

ρψM(EM) =
K

2
(tr EM)2 +GED

M · ED
M (9)

defining the mechanical part of the specific free-energy (isotropic linear elasticity
relation), where K symbolizes the bulk modulus, G the shear modulus, and ρ(x) the
mass density. For the given Young’s modulus E and the Poisson-ratio ν the bulk and
shear moduli are

K =
E

3(1 − 2ν)
= 6389N/mm2, G =

E/

2(1 + ν)
= 4792N/mm2,

respectively.

Remark 8.1. The elastic constants might be depend on the temperature. However, the
experimental results for the underlying material are still an open issue. Accordingly,
as a first attempt temperature-independent bulk and shear moduli are assumed. This
also addresses the form of the classically simple form of the specific free-energy
function. �

tr A = a k
k defines the trace and AD = A − 1/3(tr A)I denotes the deviator

operator of a second order tensor A. tr EM is interpreted as the volumetric mechanical
strains resulting from the interpretation that for the isothermal, small strain theory
εV := tr E = tr (grad u) = div u holds, where εV represents the volumetric strain.
The thermal part of the free-energy is unknown so far and is related to the heat
capacity.

The Clausius-Duhem inequality (CDI) is assumed to guarantee thermo-mechanical
consistence, which reads

− ė+Θṡ+
1

ρ
T · Ė −

1

Θ
q · g � 0. (10)
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e(x, t) is the specific internal energy, s(x, t) the specific entropy, q(x, t) the heat flux
vector, and g(x, t) = gradΘ(x, t) the temperature gradient, see [21]. Additionally,
it is assumed that there exists a relation between the specific internal energy e and
the free-energy ψ, the total temperature Θ and the specific entropy s by

e = ψ+Θs (11)

implying
ė = ψ̇+ Θ̇s+Θṡ. (12)

Inserting this relation and the time-derivative of the free-energy

ψ̇ =
∂ψ

∂EM
· ĖM +

∂ψ

∂Θ
Θ̇ =

dψM

dEM
· ĖM +

dψΘ

dΘ
Θ̇ (13)

into the CDI (10) yields the inequality

− ψ̇− Θ̇s+
1

ρ
T · Ė −

1

Θ
q · g � 0 (14)

i.e.

−
dψM

dEM
· ĖM −

dψΘ

dΘ
Θ̇− sΘ̇+

1

ρ
T · (ĖM + ĖΘ) −

1

Θ
q · g =

=

(
1

ρ
T −

dψM

dEM

)
· ĖM −

(
s+

dψΘ

dΘ
−
αΘ

ρ
T · I

)
· Θ̇−

1

Θ
q · g � 0, (15)

where in addition to Eq. (7)2 the decomposition (7)1 is taken into consideration.
Using tr T = T · I, the strain-energies (9) and ψΘ(Θ) yield for arbitrary processes
the classical potential relations for the assumption of a small strain thermo-elastic
material

T = ρ
dψM

dEM
= K(tr EM)I + 2GED

M = K(tr E − 3αΘϑ)I + 2GED (16)

s = −
dψΘ

dΘ
+
αΘ

ρ
(tr T) = −

dψΘ

dΘ
+

3αΘK

ρ
(tr E − 3αΘϑ) (17)

Furthermore, (1/Θ)q · g � 0 has to be satisfied, which, frequently, is modeled by
Fourier’s model

q = −κΘ(Θ)g = −κΘ(Θ)gradΘ, (18)

where κΘ(Θ) � 0 represents the temperature-dependent heat conductivity. Thus,
all constitutive assumptions are explained, only the thermal part of the specific free-
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energy function, ψΘ(Θ), is unknown so far and has to be determined by the heat
capacity cΘ.

In the following, the coupled partial differential equations required for computing
boundary-value problems must be derived. First of all, the elasticity relation (16)
has to be inserted into the balance of linear momentum (here the inertia terms are
neglected)

div T + ρk = 0, (19)

where ρk is the specific volume force (k represents the acceleration of gravity).
Second, the balance of energy must be considered

ė = −
1

ρ
div q + rϕ + p. (20)

p defines the stress power describing the coupling term

p =
1

ρ
T · Ė =

dψM

dEM
· Ė = (K(tr E − 3αΘϑ)I + 2GED) · Ė, (21)

i.e. it represents a heat source for the heat equation resulting from the mechani-
cal behavior. rϕ symbolizes a volumetrically distributed heat source caused by the
electrical current, see Eq. (30).

It is common, to exchange the internal energy e in the instationary non-linear heat
equation (20) by the rate of the specific internal energy (12). Using Eqs. (7), (13),
(16) and (17) leads to

ρψ̇ = ρ
dψM

dEM
· (Ė − αΘΘ̇I) + ρ

dψΘ

dΘ
Θ̇ = T · Ė − ρ

(
αΘ(tr T) −

dψΘ

dΘ

)
Θ̇

= T · Ė − ρsΘ̇. (22)

It follows that the instationary non-linear heat equation, see Eqs. (20) and (12), reads

ρΘṡ = −div q + ρrϕ. (23)

The time-derivative of the specific entropy s in Eq. (17),

ṡ =

(
9Kα2

Θ

ρ
+

d2ψΘ

dΘ2

)
Θ̇+

3αΘK

ρ
(tr Ė), (24)

can be inserted now,

ρ

(
−

d2ψΘ

dΘ2
−

9Kα2
Θ

ρ

)
ΘΘ̇ = div (κΘ(Θ) gradΘ) + ρrϕ − 3αΘK(tr Ė)Θ. (25)
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This is the analytically exact form of the instationary heat equation in thermo-
elasticity without any further assumptions to reduce its complexity. The mathematical
structure is as follows

ρcΘ(Θ)Θ̇ = div (κΘ(Θ) gradΘ) + ρrϕ − γ(Ė,Θ) (26)

which is coupled with the local balance equation (19) and the elasticity relation (16).
Obviously, the typical assumption of a constant specific heat capacity

cΘ(Θ) = −

(
d2ψΘ

dΘ2
−

9Kα2
Θ

ρ

)
Θ (27)

is not valid anymore, see Fig. 2b, and it occurs a thermo-elastic coupling (production)
term

γ(Ė,Θ) = 3αΘKΘ(tr Ė), (28)

which is commonly not considered due to the fact that it is very small. In view of the
heat capacity (4) the thermal part of the specific free-energy in Eq. (27) one obtains

d2ψΘ

dΘ2
= −

1

Θ
d1 − d2 −

d3

Θ
tanh(d4Θ− d5) +

9Kα2
Θ

ρ
. (29)

However, the second term is analytically non-integrable. Of course, it is possible to
generate a power series around Θ0, but this is not the scope of the article and is not
necessary within the whole approach. It must be remarked that for a temperature-
dependent heat expansion or more sophisticated constitutive models it is hard to
obtain a consistent relation between the specific free-energy and the heat capacity.
Another possibility is to assume a free energy ψΘ(Θ) reflecting the experimental
data. The advantage is that one has only to carry out two differentiation steps. How-
ever, one has to know a priorily the course of the curve of the second derivative
ψ′′

Θ(Θ), which does not simplify the problem. In the case of small strain thermo-
elasticity the proposed approach has no influence although there is no analytical
expression. However, for models of internal variables or in the case of large strains
there is a discrepancy, which commonly is overcomed by assuming ψΘ(Θ) and
letting cΘ constant being a rough approximation. In the case of large temperature
changes, however, this is a very rough assumption. The remaining coupling term
results from the heat generation by the electrical current, which is described by the
volumetrical heat source rϕ, called Joule-heating, in Eq. (26),

rϕ =
1

ρ
e · j =

1

ρ
κϕ(Θ)gradϕ(x, t) · gradϕ(x, t), (30)

where the electrical field e(x, t) = −gradϕ(x, t) is related to the electrical poten-
tial ϕ(x, t) and the electrical current j(x, t) = κϕ(Θ)e(x, t) reflects Ohm’s law.
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κϕ(Θ), see Eq. (5), defines the electrical conductivity. In other words, there is a cou-
pling between the electrical potential ϕ(x, t) in electrostatics and the conservation
of charge

div j(x, t) = 0, i.e. div (κϕ(Θ)gradϕ) = 0, (31)

(assumption of a stationary electrical current, see [16, 22, 23] for further reading
as well). In conclusion, there is a coupling of the three partial differential equations
(19), (26) and (31). The non-linearities result from the temperature-dependence of the
material parameters and the boundary-conditions such as convection and radiation.

3 Time-Adaptive Monolithic Finite Element Approach

In the following, the coupled equations mentioned above, i.e. the equilibrium con-
ditions (19), with the thermo-elasticity relation (16), the instationary non-linear heat
equation (25), i.e. (26), using the abbreviations (27), (28) and (30), and the station-
ary current equation (31), are treated within finite elements. Here, use is made of the
method of vertical lines, where in the first step the spatial discretization is carried
out using the finite element discretization, see [15]. In the second step the temporal
discretization is performed applying stiffly accurate diagonally implicit Runge-Kutta
methods.

The weak formulation of Eq. (19) is derived by multiplying the partial differential
equation with virtual displacements, integrating over the volume and applying the
divergence theorem

∫
V

T · δE dV −

∫
A

t · δu dA−

∫
V
ρk · δu dV = 0, (32)

where δE(x) = (grad δu(x) + grad Tδu(x))/2 defines the virtual strain tensor, i.e.
the symmetric part of the gradient of the virtual displacements δu(x). In this context
it has to hold δu(x) = 0 on the boundary Au of the material body, where the
displacements are prescribed, A = Aσ ∪ Au, u(x, t) = qu(t) on Au (Dirichlet
boundary conditions). t(x, t) = T(x, t)n(x, t) defines the stress vector on the surface
Aσ, where n represents the surface normal. t(x, t) = qt(x, t) on Aσ define the
Neumann boundary conditions. V stands for the volume of the material body.

In the case of the instationary non-linear heat equation (26) the derivation is
similar. First, the heat equation is multiplied with the virtual temperatures δΘ(x),
integrated over the volume, and the divergence theorem is applied,

∫
V
ρcΘ(Θ)Θ̇δΘ dV =

∫
A
qδΘ dA−

∫
V
κΘ(Θ)gradΘ · grad δΘ dV

+

∫
V

(ρrϕ − γ(Ė,Θ))δΘ dV , (33)
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see [24–26]. Analogously to the mechanical field problem, the virtual temperature
has the property δΘ = 0 on AΘ, i.e. the surface where the temperatures are known,
Θ(x, t) = Θ(x, t) on AΘ (Dirichlet boundary conditions). Furthermore, on the
boundary Aq the heat transport q = −q · n is prescribed, q(x, t) = q(x, t) on
Aq,A = AΘ ∪Aq. In the case of convection the linear model q(Θ) = h(Θ−Θref)
and for radiation the non-linear boundary condition q(Θ) = σε(Θ4 − Θ4∞ ) are
considered, where σ symbolizes the Stefan Boltzmann constant and ε the emissivity.

The equation of electrostatics (31) can be treated similar to the heat equation
because it has the same mathematical structure. In this context one obtains

∫
V
κϕ(Θ)gradϕ · grad δϕ dV =

∫
A
j δϕ dA (34)

where δϕ represents the virtual electrical potential and j the electrical current den-
sity. Analogously, δϕ = 0 on Aϕ, i.e. the surface where the electrical potential
is prescribed, ϕ(x, t) = ϕ(x, t) on Aϕ (Dirichlet boundary conditions). Further-
more, on the boundary AJ the electrical current density j = −j · n is prescribed,
j(x, t) = j(x, t) on AJ, A = Aϕ ∪AJ.

The equation of electrostatics to compute thermoelectric coupling effects can
be found in several publications. In Seifert et al. [27] a one dimensional model is
solved by Mathematica to compute the thermoelectric behavior of Peltier coolers. In
the work of Pérez-Aparicio et al. [28] a three-dimensional, non-linear fully coupled
thermoelectric finite element simulation is carried out in order to simulate Peltier
coolers. They included the Seebeck, Peltier, Thompson, and Joule effect in their
analysis. The finite element method is combined with a Monte Carlo simulation
for a material sensitivity analysis. Palma et al. [29] used a modified Fourier law
yielding a hyperbolic heat equation for the simulation of micro-devices under rapid
transient effects. They simulated thermoelectric material with a non-linear dynamic
finite element formulation. Munir et al. [30] simulated the current and temperature
distributions to find out temperature and current gradients in axial and radial direc-
tion for a SPS-process. In the underlying article, however, the field is coupled to
mechanical and thermal influences.

The spatial discretization makes use of shape functions for the displacements, the
temperature and the electrical potential. This leads to the linear system of equations
(in two unknowns)

Kuu(t) + KuΘΘ(t) = ru(t), (35)

where u(t)∈ R
nu are the unknown nodal displacements and Θ(t)∈ R

nΘ the
unknown nodal temperatures. Ku symbolizes the mechanical stiffness matrix of lin-
ear elasticity and KuΘ the stiffness matrix resulting from the heat expansion. The
right-hand side contains the prescribed Dirichlet- and Neumann boundary conditions
and a term coming from the reference temperature Θ0. The weak form of the heat
equation (33) can be treated in a similar manner, see, for example, [25], yielding the
system of ordinary differential equations
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Table 1 Material parameters of the materials in a FAST-process

Material cΘ κΘ κϕ αΘ ρ E ν

mm2/(s2K) tmm/(s3K) 10−3A/(Vmm) 1/K t/mm3 MPa –

Copper cΘ,Cu(Θ) κΘ,Cu(Θ) κϕ,Cu(Θ) 1.6 × 10−5 8.92 × 10−9 120 000 0.3
Alumina cΘ,Al(Θ) κΘ,Al(Θ) 1 × 10−8 8.5 × 10−6 3.7 × 10−9 350 000 0.22
(Al2O3)
Graphite cΘ(Θ) κΘ(Θ) κϕ(Θ) 4.55 × 10−6 1.85 × 10−9 11500 0.2

The material functions κΘ(Θ), κϕ(Θ), and cΘ(Θ) are given in Eqs. (3), (4) and (5)

CΘ(t, Θ)Θ̇(t) = rΘ(t, u̇, Θ, Φ). (36)

CΘ ∈ R
nΘ×nΘ represents the temperature-dependent heat capacity matrix and

rΘ ∈ R
nΘ contains the right-hand side of Eq. (33), i.e. the heat conduction and the

terms resulting from the boundary conditions and the heat source of the electrical
potential. The coupling results from Joule heating, i.e. it depends on the nodal values
of the electrical potential Φ(t). Analogously, the charge equation (34) leads in its
discretized form to

Kϕ(t, Θ)Φ(t) = rϕ(t, Θ), (37)

where the “stiffness matrix” Kϕ ∈ R
nϕ×nϕ is temperature-dependent caused by

the electrical conductivity. Φ(t)∈ R
nϕ are the unknown nodal values of the elec-

trical potential. Equations (35), (36) and (37) represent a DAE-system, where the
algebraic part results from the mechanical equilibrium conditions (35) and the equa-
tion of electrostatics (37) and the differential part stems from the instationary heat
equation (36). According to a number of publications use is made of stiffly accurate
diagonally implicit Runge-Kutta methods (SDIRK-methods) having the advantage
to be of higher order and to have time-adaptivity for free by a local error esti-
mation using embedded schemes, see for their basic ideas [17, 18, 31], in the
context of constitutive modeling with evolutionary-type [32–35] and for further
problems [25, 36, 37]. The application of SDIRK-methods yields in each stage
(points in time in the interval tn to tn+1) a coupled system of non-linear equations,
which can be solved by any kind of non-linear equation solver. In the examples
below the Newton-Raphson and the Newton-Raphson-Chord method are applied, see
[38, 39].

4 Simulations

In the following the application of SDIRK-methods is investigated. Here, a real
process occurring in field assisted sintering is studied and the problems concerned
are worked out. For these computations the material parameters are compiled in
Table 1. The material functions for copper and alumina are listed in the appendix.
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Fig. 3 Mesh (linear hexahedral elements with nu = 27722, nΘ = 9907, and nϕ = 9588
unknowns) and geometry. a Geometry in mm, b Mesh and evaluation points in xy-plane
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Fig. 4 Boundary conditions. a Mechanical field, b Thermal field, c Electrical field

In Fig. 3 the geometry of a die/punch system is shown, where the rectangular
region close to the center contains the compacted powder material. In this context
it has to be mentioned that not the compaction process itself is treated, but “only”
the temperature evolution in the die/punch/powder system is studied. The boundary
conditions are shown in Fig. 4 for the displacements/forces, temperatures/heat fluxes,
and electrical potential/electrical current at the surfaces.Θs is the surface temperature
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Fig. 5 Measured electrical current taken from the FAST-machine used as boundary condition. a

Prescribed electrical current (I =

∫
A

j · n dA), b Measured and simulated temperature evolution in

point 5 (Θ0 = 273 K)

of the graphite tools, Θw the water temperature and h the heat transfer coefficient
(h = 0.88 t/(s3K),Θw = 295.15K). This represents a very rough modeling of
the cooling channels in the steel parts adjacent to the upper graphite surface. In
view of radiation the classical model is chosen having the Boltzmann constant σ =
5.6704 × 10−12t/(s3K4) and the emissivity of ε = 0.8. The temperature of the
chamber wall is supposed to beΘ∞ = 303.15 K. Since the chamber is under vacuum,
convection on the lateral surfaces is not taken into consideration.

From the testing machine one obtains the data of the electrical current prescribed
at the upper surface, see Fig. 5a for the smoothed response. In Fig. 5b the temperature
response for copper powder is depicted, see for the chosen material [40], showing
that the temperature at point 5 is underestimated, see Fig. 3. The heating rate in the
experiment is Θ̇ = 50 K/min. The reason of this can be seen for the absence of
heat reflection in the machine’s chamber, which leads to a larger surface temper-
ature, and the inaccurate modeling of the convection at the upper surface, where
the adjacent steel parts with the water cooling channels are located. However, more
pronounced seems to be the influence of the electrical contact conditions between
steel and graphite, graphite-graphite and graphite-powder, as reported in [10, 41, 42],
which is not modeled. Particularly, an imperfect contact changes the resistivity and,
accordingly, the heat generation. First attempts using a commercial finite element
program confirms this behavior, which is not shown here.

The comparison of electrically conducting and non-conducting material (copper
powder and a ceramic powder (alumina)) yields the fact that the electrically insulating
powder increases the heat in the graphite tool, see Fig. 6a, which is obvious since the
electrically conducting cross-section is smaller for ceramic powder than for metal
powder. However, the temperature inside the die is homogenously distributed as
indicated in Fig. 6b.
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In view of the numerical treatment using time-adaptive SDIRK-methods, the
classical Backward-Euler scheme is chosen as a first choice. Using this procedure a
common adaptive scheme makes use of the number of Newton-Raphson iterations
to estimate the step-size. If the number of iterations is less than 5, the step-size
is increased. However, if one looks at the step-size behavior in Fig. 7a, an appro-
priate computational time cannot be obtained (we terminated the computation due
to an excessive computational amount). Thus, a time-adaptive second-order and
third-order SDIRK-method of Ellsiepen, see [32, 43], and [44], are applied lead-
ing to much larger time increments. Accordingly, reasonable computational costs
are obtained. However, there are a number of step-size rejections resulting from
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conductivity, b Heat capacity

the non-smoothness of the prescribed electrical current function. It seems that the
second-order method of Ellsiepen is better than the third order method of Cash.
Furthermore, it turns out that a Newton-Raphson-Chord method, see [38, 39], is
much more efficient (approximately 10–15 % of the computational time) than using
a Newton-Raphson method. However, an starting vector estimation for the Newton-
Raphson method is always required, see in this context [38].

5 Conclusions

The modeling of electro-thermo-mechanical structures is done on the basis of all
possible experimental data, i.e. the temperature-dependent heat capacity, heat con-
ductivity and electrical conductivity as well as the elasticity parameters are obtained
and modeled. It turns out that the boundary conditions and the contact conditions
between the tools have a significant influence on the accuracy of the prediction,
which have to be taken into consideration in future applications. The numerical treat-
ment of the resulting coupled system of differential-algebraic equations is carried
out using high-order and time-adaptive schemes. The application of second-order
time-integration method using embedded SDIRK-methods yields a sufficient fast
computation, particularly, if time-adaptivity is chosen, a starting vector estimation
is applied and the Newton-Raphson-Chord method is considered. In this case fast
computations are possible even for highly non-linear input data.
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Appendix

In the numerical studies the copper is used in the die system. For this the
temperature-dependent heat capacity and conductivity are measured, see Fig. 8. The
heat capacity at constant pressure of copper is measured with a Netzsch DSC 204 F1
Phoenix apparatus, which uses the Differential Scanning Calorimetry, see Fig. 8b. The
thermal diffusivity a(Θ) of copper is measured with a Netzsch Laserflash LFA 457
and subsequently the thermal conductivity is computed by κΘ(Θ) = a(Θ)ρcΘ(Θ),
see Fig. 8a. For both quantities a linear temperature dependence is assumed,

κΘ,Cu(Θ) = −78.3347 × 10−3 W/(mK2)Θ+ 433.173W/(mK) (38)

cΘ,Cu(Θ) = 82.2141 × 10−3 J/(kgK2)Θ+ 373.728J/(kgK2) (39)

which fit very well with experimental data. The properties of alumina and the elec-
trical conductivity of copper are taken from the literature, see [30]. The investigated
temperature range in this publication is between 300 K and 1300 K.

κΘ,Al(Θ) =
65181330.4 +Θ

−669628.8 + 8175.85Θ
in W/(mK), (40)

cΘ,Al(Θ) =
7770.25Θ

249.4 +Θ
+

790.15

249 +Θ
+ 0.008Θ in J/(kgK), (41)

κϕ,Al = 10−8A/(Vm) (42)

κϕ,Cu(Θ) = (5.5 + 0.038Θ) × 109 in A/(Vm) (43)
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