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Abstract A two-dimensional model of the crystalline (granular) medium is
considered that represents a square lattice consisting of elastically interacting
particles, which possess translational and rotational degrees of freedom. In the
long-wavelength approximation the partial derivatives equations have been derived
that describe propagation of longitudinal, transverse and rotational waves in such a
medium. In the field of low frequencies, when the rotational degree of freedom of
particles can be neglected, the obtained nonlinear three-mode system degenerates into
a two-mode system. Analytical dependencies of the velocities of elastic waves and the
nonlinearity coefficients on the sizes of particles and the parameters of interactions
between them have been found for both nonlinear models. Due to these dependencies,
numerical estimations of the nonlinearity coefficients are performed. The two-mode
system is shown to be reduced by the multi-scale method to Kadomtsev–Petviashvili
evolutionary equation for transverse deformation, which has a soliton solution. For
some crystals with a cubic symmetry it is found out, whether soliton is steady and
what kind of polarity it has.

1 Introduction

As a rule, adequate description of wave processes in a structurally-heterogeneous
material necessitates consideration of some scale levels, which interact with each
other on account of internal connections [1]. The following scales are usually
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distinguished: atomic or microlevel (characteristic sizes are angstroms and nanome-
ters), mesolevel (from 10−8–10−6 m), and macrolevel (larger than 10−6 m).

Mental breaking of a material into parts is restricted by some limit consisting in a
qualitative change of physical properties on a given scale level, i.e. in this case a size
effect [2, 3] arises. There are materials, where qualitative changes occur gradually, but
in crystal solids this limit is expressed rather accurately and takes place in the field of
nanometers. During studying of wave processes in materials, the size effects start to be
shown, when the characteristic spatial scale of effect (for example, length of an elastic
or electromagnetic wave) becomes comparable with the characteristic spatial scale
of a material—the size of grain, the lattice period, etc. In process of accumulation of
knowledge about microstructure of a material there arises a transition to new level of
knowledge—a theory is created that enables one to explain mechanical behavior of a
material from new positions. It is necessary to emphasize that in this case real values
of “microscales” of a medium can lie in the field of both microns and nanometers
or angstroms. However, with the viewpoint of methodology of theoretical research,
smallness of some scales in comparison with other ones is more important than their
absolute values.

In the mathematical simulation of microstructured media, two approaches can be
distinguished. The first approach consists in the passage from atomic-level models
to mesoscale models and is based on the laws of quantum theory. In this case, the
medium is considered as a discrete system of particles coupled by the interaction
forces determined from the first principles [4]. This approach allows one to under-
stand the nature of physical laws and to explain the origin of some properties having
no substantiation in the classical theory.

The second approach means passing from description of a medium on a macrolevel
to mesoscale models. The continuum-phenomenological method of modeling of
microstructured media is related to this approach. This method lies at the boundary
of mechanics and physics of solid-state. It consists in improvement of the classical
models of media by including qualitatively new characteristics inherent in actual
discrete structures [1, 5, 6]. At present, structurally-heterogeneous materials are fre-
quently simulated by the generalized micropolar theories of the Cosserat continuum
type [7–9]. These theories involve a large number of material constants, which have
to be determined experimentally. The relationships between these quantities and the
material structure are not always clear. Besides, there is an alternative—the method
of structural modeling, according to which a certain minimum volume is separated
in the bulk material—a representative structural element that is capable of reflecting
the main features of the macroscopic behavior of the given material [1, 10–12]. In
this method, a nanocrystalline material is represented by a regular or quasi-regular
lattice, with small-size bodies possessing internal degrees of freedom (rather than
material points) occupying the lattice sites. The role of these bodies can be played
by domains, grains, fullerenes, nanotubes, or clusters consisting of nanoparticles.
Advantages of the structural modeling consist in a clear relationship between the
structure of a medium and its macroparameters, as well as in possibility of purpose-
ful design of materials with the given properties, and shortcomings are absence of
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universality of modeling procedure and complexity of the accounting of nonlinear
and nonlocal effects of interparticle interactions.

Construction of mechanical and mathematical models is a base of research of the
dynamic (wave) phenomena [13] in both natural and artificial materials possessing
unique properties. It should be noted that an adequate description of this or that wave
process in the certain structured material necessitates a corresponding mathematical
model. For example, in [14] it was shown that in the field of high frequencies the
accounting of rotation motions of particles is necessary, in a low-frequency range it
is enough to use the equations of the classical theory of elasticity, which considers
particles as material points and does not take into account rotation of particles, and,
at last, in the intermediate area, the equations of the second-order gradient theory of
elasticity should be used, which do not contain rotations of particles in an explicit
form, but the sizes of particles influence on factors of these equations.

In this work, the nonlinear differential equations describing propagation of
longitudinal, transverse and rotational waves in the two-dimensional crystal (gran-
ular) medium are derived by the method of structural modeling. After that, in the
field of low frequencies, when the rotational wave does not propagate, the received
three-mode set of equations degenerates into the two-mode model corresponding to
the continuum “with the restricted rotation of particles” [5]. Due to application of
the method of structural modeling, analytical dependencies of the linear and non-
linear macroparameters of the medium on sizes of the particles and on parameters
of interactions between them have been established, and numerical estimates of the
nonlinearity parameters have been performed both for the complete (three-mode)
system and for the reduced (two-mode) model. Using the multi-scale method, the
two-mode system is reduced to Kadomtsev–Petviashvili evolutionary equation with
respect to transverse deformation. This equation has a soliton-type solution. Differ-
ent variants of behavior of a plane solitary wave are analyzed, depending on initial
conditions of Kadomtsev–Petviashvili equation and its factors that depend on the
microstructure parameters of the considered medium.

2 Discrete Model

We consider a square lattice (Fig. 1), the sites of which are occupied by
homogeneous round particles (granules) having mass M and diameter d. In the initial
state, the centers of mass of the particles are located in lattice sites, and the distance
between them is a. The lattice sites N are enumerated using the subscripts (i, j). Each
particle has three degrees of freedom: displacements uij(t) andwij(t) of the center
of mass along axes x and y, respectively, and the angle of rotationϕij(t) with respect
to an axis passing through the center of mass of a particle (Fig. 2). The kinetic energy
of the cell is as follows:

Ti,j =
M

2

(
u̇2

i,j + ẇ2
i,j

)
+
J

2
ϕ̇2

i,j, (1)
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Fig. 1 A square lattice con-
sisting of round particles

where J = Md2/8 = MR2 is the moment of inertia about the axis passing through

its mass center and R = d
/√

8 is the radius of gyration of the particle. The dots

denote derivatives with respect to time.
Since we consider only small deviations of particles from equilibrium positions,

their force and moment interactions can be described by a power potential. In the
harmonic approximation, the interaction potential is a quadratic form of the variables
of the system state. The potential energy per cell is equal to the potential energy of a
particle located at site N and interacting with its neighbors and can be described by
the following expression:

UN

(
Δnrq

k,ϕ,Δnrϕ
)

=

2∑
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∑
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∂2U

∂
(
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)
∂ (Δlmqs)

Δnrq
kΔlmq

s

+
∑

n,r,l,m

∂2U

∂ (Δnrϕ) ∂ (Δlmϕ)
ΔnrϕΔlmϕ
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∂
(
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(∂ϕ)2
ϕ2.

Here
{
qk

ij

}
=

{
q1

ij, q2
ij

}
= {uij, wij} are the components of the displacement

vector of the center of mass for a particle located at the site with subscripts (i, j),

Δnrq
k =

(
qk

i+nj+r − qk
ij

) /
a is the relative variation of interparticle distances,

Δnrϕ =
(
ϕi+nj+r −ϕij

) /
a is the relative variation of the particle orientation

angles, and n = ±1, r = ±1 are the subscripts determining the spatial positions of
the neighboring particles. The second-order derivatives of the potential energy are
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Fig. 2 Schematic for force interactions between the particles and kinematics

the constants of quasi-elastic interactions of the particles and represent the elements
of force matrices of the crystalline structure [15]. In phenomenological theories,
the material constants are assumed to be known from experiments. Their relation
to the geometric structure and interaction parameters in the crystal lattice is gener-
ally unclear. From the general energy considerations and the symmetry conditions,
only certain restrictions on their values [5] can be derived. The proposed structural
approach makes it possible to find explicit relationships between the force matrix
elements and lattice parameters.

For structural modeling of crystalline media, an equivalent force scheme is
introduced as a system of rods or springs that incorporates the transmission of forces
and moments between the structural elements [10–12] instead of a field description
of the interaction of the particles. For convenience, the round particles are replaced
by inscribed polygons, the shape of which repeats that of the cell. The springs sim-
ulating the interactions between particles are considered anchored at the vertices of
polygons.

In the present paper, a spring model is used for modeling. Displacements of the
granules are assumed to be small compared to the size of the elementary cell of the
lattice. The particle N is supposed to interact directly with eight nearest neighbors in
the lattice. The mass centers of four of them are on horizontal and vertical lines (these
particles are called particles of the first coordination sphere), while the mass centers
of the other four neighboring particles lie along diagonals (particles of the second
coordination sphere). The potential energy per cell of the square lattice produced by
its interaction with eight neighbors is described by

UN =
1

2

(
4∑

n=1

K0

2
D2

0n +

8∑

n=1

K1

2
D2

1n +

8∑

n=1

K2

2
D2

2n +

4∑

n=1

K3

2
D2

3n

)
, (2)
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where Dln (l = 0, 1, 2, 3) are extensions of arbitrary enumerated springs of four
types, which connect a particle with its neighbors. The central springs having rigid-
ityK0, together with the non-central springs with rigidityK1 define interaction forces
of extension/compression of the material, whereas the springs with K1 transmit also
moments to particle rotation. The diagonal springs with rigidityK2 characterize force
interactions of the granules of shear deformations in the material. The springs pos-
sessing rigidity K3 model interactions with the particles of the second coordination
sphere. For convenience of further calculations, we shall assume that points of con-
nection of springs K0 are located in the centers of the particles, whereas ones of the
springsK1,K2 andK3 lie in the vertices of a square that is entered in a circumference
and has a sideh = d/

√
2 (Fig. 2). Equation (2) contains additional factor 0.5 because

the potential energy of the spring is equal to the sum of the potential energies of two
particles, which are connected by this spring.

We shall calculate expressions for extensions of the springs,Dln, supposing that
quantities Δui ∼ Δwi ∼ Δuj ∼ Δwj ∼ aε, Δϕi ∼ Δϕj ∼ ε3/2, and Φi ∼

√
ε are

small, where Δui = ui,j −ui−1,j, Δuj = ui,j −ui,j−1,Φi = (ϕi−1,j +ϕi,j)
/

2

� π
/

2, and ε � 1 is a measure of cell deformation. After substitution of these

expressions into (2) we shall make up Lagrange function L = Ti,j − Ui,j for the
particle with number (i, j) to an accuracy of terms of order ε5/2. Thus, only geometri-
cal nonlinearity is taken into account in this model. Then, using Lagrange equations
of the second kind it is possible to obtain differential-different equations describing
dynamics of the considered lattice. However, the continuum approximation of the
proposed model will be considered in this chapter.

3 Continuum Approximation

For a comparison of the structural model of the medium with the well-known models
of a deformable solid, it is expedient to pass from the discrete description to a
continuous description. In the case of the long wavelength perturbations, for which

a
/
Λ � 1 (Λ is the characteristic spatial deformation scale), the discrete variables i

and j can be replaced by the continuous variables x = ia and y = ja, and the functions
uij (t),wij (t), ϕij (t) can be interpolated by the fields of displacements u(x, y, t),
w(x, y, t) and microrotations ϕ (x,y,t), respectively.

Depending on the order of approximation, it is possible to consider various
continuous models. In the first approximation the following Lagrangian of the con-
sidered medium with microstructure yields:

L =
M

2

(
u2

t +w2
t + R2ϕ2

t

)
−
M

2
[c2

1(u
2
x +w2

y) + c2
2(w

2
x + u2

y)

+ R2c2
3(ϕ

2
x +ϕ2

y) + s2(uxwy + uywx) + 2β2(wx − uy)ϕ+ 2β2ϕ2
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+ α1(u
3
x +w3

y) + α2(u
3
y +w3

x + u2
xuy + uxu

2
y +w2

xwy +wxw
2
y

− u2
xwx − u2

ywx − u2
xwy − uyw

2
y − uyw

2
x − uxw

2
y)

− 2α2(uxuy(wx +wy) +wxwy(ux + uy)) + α3(uxw
2
x + u2

ywy)

+ α4(wxwyϕ− uxuyϕ+
1

2
(w2

x − u2
x +w2

y − u2
y)ϕ) (3)

+ α5(uyϕ
2 +wxϕ

2) + α6(uxϕ
2 +wyϕ

2) + α7(uxwxϕ+ uywyϕ)].

Using Lagrangian (3), a set of nonlinear differential equations describing the
dynamic processes in a 2D crystalline medium with non-dense packing of the parti-
cles is derived in agreement with Hamilton’s variational principle:

utt = c2
1uxx + c2

2uyy + s2wxy − β2ϕy +
1

2

∂F1

∂x
+

1

2

∂F2

∂y
,

wtt = c2
2wxx + c2

1wyy + s2uxy + β2ϕx +
1

2

∂F3

∂x
+

1

2

∂F4

∂y
,

R2ϕtt = R2c2
3(ϕxx +ϕyy) + β2(uy −wx) − 2β2ϕ− F5. (4)

Here, the following notation has been introduced: ci (i = 1, 2, 3) are the velocities
of propagation of longitudinal, transverse, and rotational waves, respectively, s is the
coefficient of linear coupling between the longitudinal and transverse deformations
in a material, β is the dispersion parameter. Dependencies of the coefficients of
equations (4) on the force constants K0, K1, K2, and K3, the lattice period a and grain
size h = d/

√
2 (d is a diameter of the particle) have the following form [14]:

c2
1 =

a2

M

(
K0 + 2K1 +

2(a− h)2

(a− h)2 + h2
K2 + K3

)
,

c2
2 =

a2

M

(
2h2

(a− h)2 + h2
K2 + K3

)
, (5)

c2
3 =

a2h2

2MR2

(
K1 +

a2

(a− h)2 + h2
K2

)
,

s2 =
2a2

M
K3, β2 =

2a2

M

(
h2

(a− h)2 + h2
K2

)
.

Moreover, the nonlinearity functions contain in the right-hand sides of Eqs. (4):

F1 = 3α1u
2
x + α2(2uxuy + u2

y − 2uxwx − uxwy −w2
y) + α3w

2
x

− 2α2(uywx + uywy +wxwy) − α4(uyϕ+ uxϕ) + α6ϕ
2 + α7wxϕ,

F2 = α2(3u
2
y + u2

x + 2uxuy − 2uywx −w2
y −w2

x) + 2α3uywy
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− 2α2(uxwx + uxwy +wxwy) − α4(uxϕ+ uyϕ) + α5ϕ
2 + α7wyϕ,

F3 = α2(3w
2
x + 2wxwy +w2

y − u2
x − u2

y − 2uywx

− 2uxuy + uxwy) + 2α3uxwx + α4(wyϕ+wxϕ) + α5ϕ
2 + α7uxϕ,

F4 = 3α1w
2
y + α2(w

2
x + 2wxwy − u2

x − 2uywy − 2uxwy) + α3u
2
y (6)

− 2α2(uxuy + uxwx + uywx) + α4(wxϕ+wyϕ) + α6ϕ
2 + α7uyϕ,

F5 = α4

(
wxwy − uxuy +

1

2
(w2

x − u2
x +w2

y − u2
y)

)

+ 2α5(uyϕ+wxϕ) + 2α6(uxϕ+wyϕ) + α7(uxwx + uywy),

where αi (i = 1,...,7) are the nonlinearity coefficients depending on the microstruc-
ture parameters:

Mα1 =
K2

r4
a3(a− h)h2 +

K3

4(a− h)
a3, Mα2 =

K3

4(a− h)
a3,

Mα3 = K0a
2 + K1

a3

a− h
+
K2

r4
a3(a− h)(a2 − 2ah− h2) −

K3a
3

4(a− h)
,

Mα4 =
2a2hK3

a− h
, Mα5 =

K3

(a− h)2
a2h2, (7)

Mα6 = K1
ah2

a− h
+ K2

ah2

r4
(2h− a)(5ah− 2h2 − a2) +

K3

(a− h)2
a2h2,

Mα7 = K1
2a2h

a− h
+

2a3h

r4
K2

(
5h2 − 5ah+ a2

)
.

Here r =

√
(a− h)2 + h2 is the initial length of the springs with rigidityK2 (Fig. 2).

Equations (4) describe the dynamics of a crystalline (granular) medium
accounting for local interactions of the grain, and coincide with the dynamic equa-
tions of the 2D anisotropic Cosserat continuum consisting of centrally-symmetric
particles [5]. Such equations differ from the equations of the classical theory of
elasticity by the additional equation for the microrotation wave. In the continuous
approach, this equation follows from the conservation law of moment of momentum
(or angular momentum), if the internal moments of the particles of the medium are
introduced into the consideration.

4 Approximation of the Second-Order Gradient Theory
of Elasticity

Theoretical estimates [14] and experimental data [16] show that rotational waves
in solids exist in the high-frequency range (>109–1011 Hz), where it is quite diffi-
cult, with a technical point of view, to carry out acoustic experiments. Nevertheless,
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information about microstructure of the medium can be received even by means of
acoustic measurements on rather low frequencies (106–107 Hz), when the rotational
waves do not propagate in a medium. Therefore we will consider low-frequency
approximation of Eqs. (4), in which the microrotations of the particles of the medium
are not independent and are determined by a displacement field. The inter-relationship
between the microrotations ϕj and displacements u and w can be found from the
third Eq. (4) by the method of stepwise approximations. In the first approximation

ϕ (x, t) ≈ 1

2
(uy −wx) . (8)

This relationship between the rotations of the particles of the medium and a vorticity
of a displacement field, is a characteristic feature of the Cosserat pseudo-continuum
model (continuum with the restricted rotation of the particles) [5]. Taking account of
Eq. (8) leads to the “freezing” of the rotational degree of freedom. Thus, excitations,
which are caused by the microrotations, do not propagate in the medium, but they
influence on propagation of the longitudinal and transverse waves. In this case, the
Lagrange function L takes on the simpler form:

L =
M

2

(
u2

t +w2
t +

R2

4
(uyt −wxt)

2

)

−
M

2

[
c2

1(u
2
x +w2

y) + c2
2(w

2
x + u2

y) +
R2

4
c2

3((uxy −wxx)2

+ (uyy −wxy)2) + s2(uxwy + uywx) −
β2

2
(wx − uy)2 (9)

+ α1(u
3
x +w3

y) − α2(u
2
xwy + uxw

2
y + 2uxuywy + 2uxwxwy)

+ γ1(u
3
y +w3

x − uyw
2
x − u2

ywx) + γ2(uxu
2
y +w2

xwy)

+ γ3uxw
2
x + γ4u

2
ywy + γ5(u

2
xuy +wxw

2
y − u2

xwx − uyw
2
y)

− (2γ5 + γ6)uxuywx − (2γ5 + γ7)uywxwy

]
.

Here

γ1 = α2 +
α5 − α4

4
, γ2 = α2 +

α6

4
−
α4

2
, γ3 = α3 +

α6

4
−
α7

2
, (10)

γ4 = α3 +
α6

4
+
α7

2
, γ5 = α2 −

α4

4
, γ6 =

1

2
(α6 − α7) , γ7 =

1

2
(α6 + α7) .

In contrast to the classical case, in Lagrangian (9), there are terms containing
second-order derivatives from the field of displacements. The terms uyt and wxt

take into account the contribution of the rotational motions to the kinetic energy,
and the terms with spatial derivatives uxy,wxx, etc. describe the contribution to the
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potential energy of the stresses provided by bending of the lattice. The nonlinear dif-
ferential equations describing the propagation and interaction of the longitudinal and
transverse waves in the nanocrystalline medium in the low-frequency approximation
have the form:

utt − c2
1uxx −

(
c2

2 −
β2

2

)
uyy −

(
s2 +

β2

2

)
wxy

=
R2

4

∂

∂y

[
∂2

∂t2
(uy −wx) − c2

3Δ (uy −wx)

]
+

1

2

∂H1

∂x
+

1

2

∂H2

∂y
, (11)

wtt −

(
c2

2 −
β2

2

)
wxx − c2

1wyy −

(
s2 +

β2

2

)
uxy

= −
R2

4

∂

∂x

[
∂2

∂t2
(uy −wx) − c2

3Δ (uy −wx)

]
+

1

2

∂H3

∂x
+

1

2

∂H4

∂y
.

Here, the symbol Δ means the 2D Laplacian Δ = ∂2/∂x2 + ∂2/∂y2,
H1, 2, 3, 4 are the nonlinearity functions:

H1 = 3α1u
2
x − 2α2

(
uxwy +

1

2
w2

y + uywy +wxwy

)

+ γ2u
2
y + γ3w

2
x + 2γ5(uxuy − uxwx) − (2γ5 + γ6)uywx,

H2 = −2α2uxwy + γ1(3u
2
y −w2

x − 2uywx) + 2γ2uxuy + 2γ4uywy

+ γ5(u
2
x −w2

y) − (2γ5 + γ6)uxwx − (2γ5 + γ7)wxwy,

H3 = −2α2uxwy + γ1(3w
2
x − u2

y − 2uywx) + 2γ2wxwy + 2γ3uxwx

+ γ5(w
2
y − u2

x) − (2γ5 + γ6)uxuy − (2γ5 + γ7)uywy,

H4 = 3α1w
2
y − 2α2

(
uxwy +

1

2
u2

x + uxuy + uxwx

)

+ γ2w
2
x + γ4u

2
y + 2γ5(wxwy − uywy) − (2γ5 + γ7)uywx.

Equations such as Eqs. (11) are usually called equations of the second-order
gradient theory of elasticity [17], as the terms with spatial fourth-order derivatives
take into account the coupled stresses arising at the translational displacements of the
particles. It should be noted that, in spite of absence of microrotations in Eqs. (11), the
coefficients of these equations changed because of influence of microstructure—in
the considered low-frequency approximation, the transverse wave velocity is dimin-
ished by quantity β2/2, and the parameter s2 increases by the same quantity.
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5 The Problem of Parametric Identification

The real-world problem of identification of the Cosserat continuum (see Eqs. (4)) is
still actual for a lot of heterogeneous materials that are suitable for application of
this model [18]. However, even in the simplest case of the elastic isotropic Cosserat
continuum, there are rather few reliable results, confirmed by different researchers,
concerning determination of model parameters. The further proposed procedure of
estimating of macroparameters of the medium, which is based on the method of
structural modeling, is intended for solving this problem.

Among velocities of propagation of translational waves in a square lattice
consisting of round particles there are three independent quantities—in accordance
with number of elasticity constants of the second order (C11, C12 and C44) in Lame
equations of the classical theory of elasticity for media with cubic symmetry [19]:

ρutt = C11uxx + C44uyy + (C12 + C44)wxy,

ρwtt = C44wxx + C11wyy + (C12 + C44)uxy.

From comparison of these equations with Eqs. (11), which factors depend on the
sizes of the particles, it is possible to receive the following relationships:

c2
1 =

C11

ρ
, c2

2 =
2C44 − C12

ρ
, s2 =

2C12

ρ
, β2 =

2(C44 − C12)

ρ
. (12)

It should be noted that the equality c2
2 = β2 + s2/2 follows both from (12) and from

(5). Taking into account that C11 − C12 = 2ρv2 [19], where ρ is the density of the
medium, v is the transverse wave velocity in the crystallographic direction 〈110〉

v2 = (2c2
1 − s2)/4, (13)

Equations (12) will be rewritten in the form [20]:

C11 = ρc2
1, C12 = ρ(c2

1 − 2v2), C44 = ρ(c2
1 + c2

2 − 2v2)/2. (14)

Formulas (14) show, how to determine effective moduli of elasticity of the nanocrys-
talline medium using acoustic measurements. Due to equations (12)–(14), it is pos-
sible to use freely any set of basis quantities: (c1, c2, s), (c1, c2, v) or (C11, C12,
C44). In particular, starting from known constants of elasticity of the second order,
we come to the following expressions of parameters of interparticle interactions:
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K1

a
=

1

2 + K

[
C11 − C12 − 2 (C44 − C12)

(
1

p
− 1

)2
]

, (15)

K2

a
= (C44 − C12)

(
1 +

(
1

p
− 1

)2
)

,
K3

a
= C12,

where K = K0/K1 is the relation between the central and noncentral interactions,
p = h/a = d/a

√
2 is the relative size of the particle.

Relations (5) depending on the values of microstructure parameters were
analyzed in details in [14] and chap. 3 of monograph [1]. As a result of the analysis,
using known experimental data ρ,C11,C12 andC44 (at normal temperature) [21], the
wave velocities c1,c2,c3, parametersβ and s, and also modeling parameters of power
interactions between particles are calculated for some cubic crystals. The calcula-
tions were carried out for K = 10 (the central interactions dominate) and d/a = 0.9.
In this work by means of equalities (15) we will estimate factors of nonlinearities
(7) (see Table 1) which dependencies on microstructure parameters K and p, and the
elasticity constants of the second order have the following appearance:

ρα1 =
1 − p

(1 − p)2 + p2
(C44 − C12) , ρα2 =

C12

4(1 − p)
,

ρα3 =
K(1 − p) + 1

(2 + K)(1 − p)

[
C11 − C12 − 2 (C44 − C12)

(1 − p)2

p2

]

+ (C44 − C12)
(1 − p)(1 − 2p− p2)

((1 − p)2 + p2)p2
,

ρα4 =
2pC12

1 − p
, ρα5 =

p2C12

(1 − p)2
, (16)

ρα6 =
1

2 + K

[
(C11 − C12)

p2

1 − p
− 2 (C44 − C12) (1 − p)

]

+ (C44 − C12)
(2p− 1)(5p− 2p2 − 1)

(1 − p)2 + p2
,

ρα7 =
2

2 + K

[
(C11 − C12)

p

1 − p
− 2 (C44 − C12)

1 − p

p

]

+2 (C44 − C12)

(
5p2 − 5p+ 1

)

p((1 − p)2 + p2)

From (16) it follows that, if p → 0, as shown in work [11], the Cauchy relation
C12 = C44 is valid and, as a result

α2 →
C12

4ρ
, α3 →

K + 1

(2 + K)ρ
(C11 − C12),
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Table 1 Structural parameters for crystals with cubic symmetry

Structural parameters Crystals
LiF NaF NaBr

Density (kg/m3) ρ 2600 2800 3200

Elasticity constants (109 N/m2) C11 113.00 97.00 32.55
C12 48.00 25.60 13.14
C44 63.00 28.00 13.26

Wave velocities (m/s) c1 6593 5890 3190
c2 5477 3295 2045
v 3536 3571 1741
c3 5659 2896 1092

Coefficient of linear coupling s 6076 4276 2866
between the longitudinal and
transverse deformations (m/s)

Dispersion parameter (m/s) β 3396 1309 274

Parameters of force interactions K0/a 46.01 58.19 16.11
between the particles (109 N/m2) K1/a 4.601 5.819 1.611

K2/a 19.897 3.183 0.159
K3/a 48.00 25.60 13.14

Nonlinearity coefficients in the α1 16.60 6.87 2.85
original model (106 m2/s2) α2 12.69 6.29 2.82

α3 −34.75 0.38 −4.91
α4 64.63 32.00 14.37
α5 56.65 28.01 12.58
α6 62.55 30.92 13.17
α7 0.90 6.49 1.73

Nonlinearity coefficients in the γ1 10.68 5.29 2.37
two-mode model (106 m2/s2) γ2 −3.98 −1.99 −1.07

γ3 −19.56 4.87 −2.49
γ4 −18.66 11.36 −0.76
γ5 −3.46 −1.71 −0.77
γ6 30.83 12.22 5.72
γ7 31.72 18.70 7.45

and all the other nonlinearity factors tend to zero. For p = 1/2 the Cauchy relation
is not valid and

α1 = (C44 − C12)/ρ, α2 = C12/2ρ, α3 = (C11 + 2C12 − 3C44)/ρ,

α4 = 2C12/ρ, α5 = C12/ρ,

α6 =
C11 + C12 − 2C44

2(2 + K)ρ
, α7 =

C11 + 3C12 − 4C44

2(2 + K)ρ
.
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Here α3 does not depend on the parameter of interparticle interactions K = K0/K1,
and any of nonlinearity coefficients does not tend to zero.

Numerical estimates of the nonlinearity factors presented in Table 1 show that
only parameters γ2 and γ5 are negative for all considered crystals, whereas factors
α3, γ3 and γ4 can be both positive and negative. In the three-mode model, parameter
α4 is the greatest for all considered materials, and parameter γ7 has maximal values
in the two-mode one. For the certain material γ7 exceeds the smallest absolute value
of a factor γi up to 11 times, and for parameters αi this ratio is greater—up to 72
times. Besides, some αi can even surpass a square of the longitudinal wave velocity,
c2

1, that proves importance of the accounting of the nonlinear terms.

6 Kadomtsev–Petviashvili Evolutionary Equation
for the Two-Mode Model

We shall consider propagation of localized strain waves in a medium, depending on
parameters of its microstructure. For this purpose, we introduce new coordinates and
time ξ = x − vt, η =

√
εy, τ = εt; u =

√
εu, w = w in Eqs. (11). So, these

equations take on the form:

√
εv2 ∂

2u

∂ξ2
− 2ε

√
εv
∂2u

∂ξ∂τ
−

√
εc2

1
∂2u

∂ξ2
− (c2

2 −
β2

2
)ε

√
ε
∂2u

∂η2
− (s2 +

β2

2
)
∂2w

∂ξ∂η

√
ε

=
R2

4

√
ε
∂

∂η

[
v2 ∂

2

∂ξ2

(
ε
∂u

∂η
−
∂w

∂ξ

)
− 2εv

∂2

∂ξ∂τ

(
ε
∂u

∂η
−
∂w

∂ξ

)

− c2
3

(
∂2

∂ξ2
+ ε

∂2

∂η2

)(√
ε
∂u

∂η
−
∂w

∂ξ

)]
+

1

2

∂H1

∂ξ
+

1

2

∂H2

∂η
, (17)

v2 ∂
2w

∂ξ2
− 2εv

∂2w

∂ξ∂τ
−

(
c2

2 −
β2

2

)
∂2w

∂ξ2
− εc2

1
∂2w

∂η2
−

(
s2 +

β2

2

)
ε
∂2u

∂ξ∂η

= −
R2

4

∂

∂ξ

[
v2 ∂

2

∂ξ2

(
ε
∂u

∂η
−
∂w

∂ξ

)
− 2εv

(
ε
∂u

∂η
−
∂w

∂ξ

)

− c2
3

(
∂2

∂ξ2
+ ε

∂2

∂η2

)(√
ε
∂u

∂η
−
∂w

∂ξ

)]
+

1

2

∂H3

∂ξ
+

1

2

∂H4

∂η
.

As various terms of Eqs. (17) have different orders of smallness, we shall consider
some approximations step-by-step.

Approximation of ε0-order has the form:

(
v2 −

(
c2

2 −
β2

2

))
∂2w

∂ξ2
= 0, hence,

v2 = c2
2 −

β2

2
. (18)
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Approximation of
√
ε-order: (v2 − c2

1)
∂2u

∂ξ2
−

(
s2 +

β2

2

)
∂2w

∂ξ∂η
= 0, therefore,

∂u

∂ξ
=
s2 + β2/2

v2 − c2
1

∂w

∂η
. (19)

Approximation of ε-order:

− 2εv
∂2w

∂ξ∂τ
− εc2

1
∂2w

∂η2
−

(
s2 +

β2

2

)
ε
∂2u

∂ξ∂η

= −
R2

4

∂

∂ξ

[
v2 ∂

2

∂ξ2

(
ε
∂u

∂η

)
− 2εv

(
−
∂w

∂ξ

)

− c2
3

(
ε
∂2

∂η2

)(
−
∂w

∂ξ

)]
+ 3γ1

∂w

∂ξ

∂2w

∂ξ2
. (20)

After entering the designation
∂w

∂ξ
= U in Eq. (20) and taking into account

expressions (18) and (19), Eq. (20) is reduced to the following equation:

2vUξτ + q1(U
2)ξξ +

R2

4
q2Uξξξξ + q3Uηη = 0, (21)

where

3γ1

2ε
= q1,

2c2
2 − 2c2

3 − β2

2ε
= q2, c2

1 +
(2s2 + β2)2

4(c2
2 − c2

1) − 2β2
= q3. (22)

We will introduce designations: U/U0 = W, ξ/ξ0 = X, τ/τ0 = T , η/η0 = Y.
If to put U0 = 1 and η0 = ξ0, then W = U and, in terms of new variables, Eq. (22)
yields:

2
∂2U

∂X∂T
+
q1

v

τ0

ξ0

∂2(U2)

∂X2
+
R2

4v
q2
τ0

ξ3
0

∂4U

∂X4
+ q3

τ0

vξ0

∂2U

∂Y2
= 0. (23)

We choose scales ξ0 and τ0 so, that the last coefficient in Eq. (23) would be equal
to 1:

τ0

ξ0
=
v

q3
.

If to take in this relation ξ0 = R/2, then Eq. (23) is transformed into well-known
Kadomtsev–Petviashvili equation



106 V. I. Erofeev et al.

Fig. 3 The plane localized
strain wave [22]

2
∂2U

∂X∂T
+
q1

q3

∂2(U2)

∂X2
+
q2

q3

∂4U

∂X4
+
∂2U

∂Y2
= 0. (24)

This equation has a solution in the form of a plane solitary strain wave (soliton)
(Fig. 3):

U(θ) = Asch−2(θ/Δ), (25)

where θ = X − kY − V T is the wave phase. The amplitude of soliton, As, and its
width Δ are determined by relations:

As =

∣∣∣∣∣
3q3(k

2 − 2V)

2q1

∣∣∣∣∣ , (26)

Δ = 2

√∣∣∣∣
q2

q3(k2 − 2V)

∣∣∣∣.

It should be noted that product

AsΔ
2 =

∣∣∣∣
6q2

q1

∣∣∣∣ =

∣∣∣∣∣
2c2

2 − 2c2
3 − β2

γ1

∣∣∣∣∣

is the constant for each material.
The plane solitary wave (25) is known to be stable, if q2/q3 > 0, and it is

unstable with respect to transverse perturbations, when q2/q3 < 0 [22]. In this case,
Kadomtsev–Petviashvili equation has an other precise solution [23]:

U(X, Y, T) =
6q2

q1

∂2

∂X2
ln [1 + exp(2qθ) + exp(2p(θ+ψ) (27)

+ A exp((q+ p)θ+ pψ) cos kY] .

Here p and q are integration constants,
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Fig. 4 The plane wave modulated in the transverse direction [22]

θ = X− (1 +
2q2

q3
q2)T , ψ = −4p

q2

q3
(p2 − q2)T ,

A =
4
√
pq

p+ q
, k = (q2 − p2)

√
−3q2

q3
.

Formula (27) describes a periodic chain of two-dimensional solitary strain waves
(Fig. 4). If q2/q3 < 0, i.e. the condition of soliton instability with respect to trans-
verse perturbations takes place, the plane solitary wave (25) plotted in Fig. 3 will
be transformed into Eq. (27). Polarity of solitons (25) and (27) depends on sign of
expression q1/q2. The solitons have a positive polarity (this case is represented in
Figs. 3 and 4), when q1/q2 > 0, and their polarity is negative, if q1/q2 < 0.

Let us analyze obtained from (27) dependencies of coefficients q1/q2 and q2/q3
on the macroparameters of the medium:

q1

q2
=

3γ1

2c2
2 − 2c2

3 − β2
, (28)

q2

q3
=

(2c2
2 − 2c2

3 − β2)(2c2
2 − 2c2

1 − β2)

ε(2c2
1(2c

2
2 − β2) − 4c4

1 + (2s2 + β2)2)
. (29)

From (10) and (7) follows that

γ1 = α2 +
α5 − α4

4
=
K3

M

(
a3

4(a− h)
+

a2h2

4(a− h)2
−

a2h

2(a− h)

)

=
K3a

2(a2 − 3ah+ 3h2)

4M(a− h)2
> 0.

Thus, q1/q2 > 0 for c2
2 > c

2
3 + β2/2, and q1/q2 < 0 for c2

2 < c
2
3 + β2/2.
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Table 2 Existence of stable plane solitons of deformations and their polarity in some cubic crystals

Crystal LiF NaF NaBr

Sign of q2/q3 + + −

Sign of q1/q2 − + +

Stable solitons of plane deformation and their polarity no

Fig. 5 A 2D soliton without
plane front (T= 0)

Fig. 6 Spreading of the 2D
soliton (T= 5)

According to the data presented in Table 1, we will determine signs of
expressions q1/q2 and q2/q3. Existence and polarity of steady plane solitons of
deformations for the media with such parameters as for cubic crystals of LiF, NaF,
and NaBr depend on signs of these expressions and are presented in Table 2.

If to take as an initial condition for Kadomtsev–Petviashvili equation a 2D soliton
without plane front (Fig. 5), i.e. perturbation in the form

U0(X, Y) = 12sech2
(
X− 32

4

)
sech(Y − 8), (30)

and to carry out numerical simulation by means of the semi-implicit pseudo-spectral
scheme [24] with parameters: 256×64 is dimension of a grid,ΔX = 0.25 is a length
of a step along X-axis, ΔY = 0.25 is a length of a step along Y -axis, ΔT = 0.003
is a length of a step along T -axis, then an other behavior of the solitary wave will
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be observed. In fact, the peak of excitations (30) moves forward (along X-axis) and
simultaneously spreads along Y -axis. Eventually, the amplitude of excitation grows
till a certain value (A = 7.1) near the boundaries, spreading aside and moving
forward, that leads to appearance of the crosswise structures (Fig. 6).

7 Conclusions

The nonlinear mathematical model of the two-dimensional crystalline (granular)
medium with a non-dense packing of the particles possessing two translational and
one rotational degrees of freedom, has been elaborated in this work. In the field of low
frequencies the obtained set of equations is reduced to the two-mode set, linear parts
of which equations coincide with a two-dimensional analog of the classical Lame
equations for media with cubic symmetry. But even in this case, the effect of the
medium microstructure is still left in the form of the relationship between the macro-
scopic characteristic parameters of the medium and the micromodel parameters.

Analytical dependencies of the elastic and rotational wave velocities and the non-
linearity factors on the sizes of particles and the parameters of interactions between
them have been found. The velocities of elastic waves along the various crystallo-
graphic directions can be measured experimentally without any difficulties, but it is
rather complicated or even, sometimes, impossible to determine from experiments
the rotational wave velocity, the threshold frequency of this wave and the factors
of nonlinear interactions between the waves of various types. For this reason, the
estimates of these quantities can be very useful that are obtained by the following
way. First, due to obtained expressions (5) for the experimentally measured veloc-
ities of elastic waves depending on the microstructure parameters of the material,
inverse relationships (15) are derived, and then they are used for calculation of other
macroparameters of the medium. In this work, by such a way the factors of nonlinear
interactions of complete three-mode set (7) and two-mode model of the medium
with the restricted rotation of particles (10) are calculated. Some of these factors are
shown to be negative, whereas the other ones can exceed a square of the longitudinal
wave velocity.

In its turn, the two-mode system is reduced by the multi-scale method to
Kadomtsev–Petviashvili evolutionary equation with respect to shear deformation,
which has a solution in the form of plane soliton. Due to the method of structural
modeling used in this work, it is shown that in the crystal medium with parameters as
for NaBr, the plane soliton is unstable with respect to two-dimensional perturbations,
in NaF-crystal the soliton has a positive polarity, and in LiF-crystal it has a negative
polarity.
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