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Abstract In the framework of the general nonlinear plate theory we consider a
buckling problem for an elastic plate with incompatible plane strains generated by
continuous distributions of edge dislocations and wedge disclinations as well as
other sources of residual stress (non-elastic growth or plasticity). In contrast to the
Föppl-von Kármán model the plane strains are not supposed to be small. To explore
buckling transition of such kind of structures, the problem is reduced to a system of
nonlinear partial differential equations with respect to the transverse deflection of the
plate and the embedded metrics coefficients, which naturally leads to the non-trivial
plate shapes that are seen even in the absence of any external forces. In the case
of very thin plate (membrane) that doesn’t resist bending we present several exact
solutions for the axially-symmetric domains.

1 Introduction

The problem of plate buckling due to the presence of single dislocations of different
types dates back to the work of Eshelby and Stroh [1]. Their study was continued in
[2], with a single wedge disclination (removed or inserted sector in the terminology
of [2]) being considered.

Later on Seung and Nelson [3] published a milestone paper on defects in crys-
talline membranes, where they generalized the continuum theory of dislocations to
include buckling transition and solved exactly the disclination problem in the inex-
tensional limit (Fig. 1). In order to do so, they used the Föppl-von Kármán plate
model [4, 5] as was originally proposed in [1]. The work of Seung and Nelson is
becoming more and more important in the contemporary graphene era.
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Fig. 1 Buckling of a graphite
membrane with a single
positive disclination

The question if it really makes sense to include torsional and couple-stress com-
ponents in the equilibrium equations as in [6–9] is still open. In this chapter we
deal only with the geometrical side of the problem, assuming that the equilibrium
equations are satisfied identically, which means the complete relaxation of stresses
(zero-stress in the classical setting or some special stress states in the framework of
more advanced theory [6–9]).

A rigorous mathematical analysis of the Föppl-von Kármán plates containing
incompatible strains was performed in [10]. An application of residual stresses in
the Föppl-von Kármán plate to the problem of morphogenesis and biological growth
was initiated in [11]. In [12] the Föppl-von Kármán model was applied to study
fingerprint patterns as the result of a buckling instability in the basal cell layer of the
fetal epidermis.

For modern applications of controllable buckling to thin-film electronics and
residual stress measurement, see [13–16]. The strain-induced effects in the electronic
structure of graphene are of great importance for the strain engineering. The buckling
mechanism has been expected to be a new way to fabricate microscale devices or
operate microstuctures.

The chapter is organized as follows. In Sect. 2 we present a planar nonlinear
continuum theory of dislocations and disclinations following [17, 18]. In Sect. 3 we
explain the buckling process in a nonlinear plate. In general, the problem can be
reduced to a system of nonlinear partial differential equations with respect to the
transverse deflection of the plate and the embedded metrics coefficients. In Sect. 4
we find explicitly the buckled form of nonlinear membrane with distributed edge
dislocations using for this purpose the incompatibility conditions of the first order. In
Sect. 5 we discuss in details the problem related to buckling of a membrane containing
distributed wedge disclinations, which leads to the Monge-Ampère equation with a
non-trivial right hand side. In Sect. 6 we draw some conclusions and give perspectives
for the future work.

In the whole chapter we employ a version of tensor analysis used, for example, in
[19, 20], where the first index always indicates differentiation, that allows to perform
lengthy calculations.
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2 Planar Nonlinear Continuum Theory of Dislocations
and Disclinations

The mathematical theory of dislocations appeared for the first time in the work of
Volterra [21]. He analyzed the behavior of linear elasticity solutions in multiply
connected domains.

The continuum theory of translational dislocations was initiated mainly by the
works of Kondo [22], Bilby et al. [23], and Kröner [24]. It is based on the notion of
the elastic body as a differential-geometric manifold with definite properties. Modern
expositions on continuum theory of dislocations in the framework of multiplicative
elastoplasticity can be found in [25–27].

Later on [20, 28] there appeared the continuum theory of disclinations (rotational
dislocations). Continuous distribution of disclinations in 3D is hampered by the fact
of non-commutativity of finite rotations. In [29] continuum theory of disclinations
was applied to model phase transformations.

Let ω be a 2D domain, r and R be the planar position vectors in the reference
and actual configurations respectively, F = ∇R = rαRα be the planar deforma-
tion gradient (distortion tensor). ∇ = rα(∂/∂qα) is the two-dimensional gradient
operator with respect to some curvilinear coordinates q1, q2 in the reference config-
uration. Here and below the Greek indices take the values 1, 2. Consider the problem
of determining the position R(r) by a given smooth and single valued field of F. In
a simply connected domain the solution may be written in terms of line integrals

R(M) =

M∫

M0

dr · F + R(M0). (1)

The integral in (1) does not depend on the path of integration connecting an initial
point M0 with a final point M iff the following compatibility condition (of the first
order) is fulfilled

∇ · (e · F) = 0. (2)

Here, e = eαβrαrβ is the 2D permutation tensor.
In the case of multiply connected domain (Fig. 2) the position vector in (1) is

determined, in general, not uniquely, which means that dislocations of translational
type can exist in the body, each of these is characterized by the Burgers vector

bN =

∮

γN

dr · F (N = 1, 2, . . . , N0). (3)

Here, γN is a simple closed contour (the Burgers circuit) around the axis of the Nth
dislocation. The total Burgers vector of a discrete set of N0 dislocations is given by
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Fig. 2 Integration in a multiply connected domain

B =

∮

γ0

dr · F, (4)

where γ0 is a contour enclosing the lines of all N0 dislocations.
In the case of plane deformation, only edge dislocations are possible and their

axes are orthogonal to the plane q1q2.
The discrete set of dislocations can be replaced by a continuous one if we again

consider the domain ω as simply connected and allow the space inside the dislocation
hole shrink to zero along with multiplication the number of dislocations. Then, the
integral in (4) may be transformed using the Green formula

B =

∫∫

ω0

∇ · (e · F)ds. (5)

Here, ω0 is a planar domain bounded by the contour γ0.
Relationship (5) makes it possible to introduce the density of continuously dis-

tributed edge dislocations α (a vectorial quantity in 2D).

B =

∫∫

ω0

αds. (6)

It means that the compatibility condition (2) is now replaced by

∇ · (e · F) = α. (7)

Equation (7) may be treated as the incompatibility condition of the first order. In
Cartesian coordinates q1 = x1, q2 = x2 it has, for example, the following form

∂F21

∂x1
−

∂F11

∂x2
= α1,

∂F22

∂x1
−

∂F12

∂x2
= α2. (8)
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Let us now introduce the metric tensor of the deformed configuration G and the
connection coefficients Γν

αβ making use of the formulae

G = F · FT = Gαβrαrβ = Gαβrαrβ, (9)

∂Rβ

∂qα
= Γν

αβRν,
∂Rβ

∂qα
= −Γ

β
ανRν. (10)

From (9), (10) it follows that Ricci’s lemma holds

∇μGαβ =
∂Gαβ

∂qμ
− Γν

μαGνβ − Γν
μβGαν = 0. (11)

Here, ∇μ is the covariant derivative with respect to Γ ν
αβ.

The formulae (9)–(11) give us possibility to interprete the deformed configuration
of an elastic body with dislocations as a metrically connected space V2 [30].

Incompatibilty equation (7) now reads as

S· ·ν
αβ =

1
2
eαβαν, (12)

where S· ·ν
αβ is the torsion tensor of É. Cartan [31]

S· ·ν
αβ = Γν

[αβ] =
1
2
(Γν

αβ − Γν
βα). (13)

Let us consider the problem of specification the distortion F with the metric tensor
G and the dislocation density vectorα being given. We use for this purpose the polar
decomposition of F

F = U · A, U = G1/2, (14)

where U is the left stretch tensor (symmetric, positive-definite), A is the rotation
tensor (properly orthogonal).

Under conditions of plane deformation A has the following representation

A = (E − i3i3) cos χ + e sin χ + i3i3, (15)

where E denotes the 3D identity tensor. Equation (15) means that the fibers rotate
around the axis of i3, orthogonal to the plane q1q2, and χ is the angle of rotation.
According to [17, 18] χ satisfies the following equation
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∇χ = ψ, ψ = I
−1/2
2 [U · (∇ · e · U) − α0 · G] , (16)

I2 = detU =
1
2
(tr2G − trG2), α0 = αμrμ.

Once again, the solution to (16) may be given in terms of line integrals

χ(M) =

M∫

M0

ψ · dr + χ(M0). (17)

The integral in (17) does not depend on the path (in a simply connected domain) iff

∇ ·
[
I
−1/2
2 e · U · (∇ · e · U)

]
− ∇ ·

(
I
−1/2
2 e · G · α0

)
= 0. (18)

Geometrically (18) is equivalent to the demand that the Gaussian curvature R of the
Riemann-Cartan manifold V2 should vanish.

In a multiply connected domain (17) provides a single valued solution χ only up
to a cyclic integral defined by

θM =

∮

γM

ψ · dr. (19)

The quantity θM is called the Frank vector of Mth disclination. In the case of
plane deformation only wedge disclinations are possible.

The total Frank vector of a set of M0 disclinations

Θ =

M0∑
M=1

∮

γM

ψ · dr =

∮

γ0

ψ · dr (20)

can be transformed into a surface integral in the case of continuous distribution of
these

Θ =

∫∫

ω0

∇ · (e ·ψ)dσ. (21)

Formula (21) serves as a definition for the density of wedge disclinations β

Θ =

∫∫

ω0

βdσ. (22)

The disclination density (a scalar quantity in 2D) satisfies the incompatibility
condition of the second order
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∇ · (e ·ψ) = β (23)

or

∇ ·
[
I
−1/2
2 e · U · (∇ · e · U)

]
− ∇ ·

(
I
−1/2
2 e · G · α0

)
= β. (24)

Geometrically (24) means that in the presence of distributed dislinations the Gaussian
curvature R is proportional to the density of wedge disclinations

R = I
−1/2
2 β. (25)

In the linear elasticity this fact is known [20, 32] in the form

i3 · Ink ε · i3 = ∇ · e · α+ β (26)

or in Cartesian coordinates

∂2ε11

∂x2
2

+
∂2ε22

∂x2
1

− 2
∂2ε12

∂x1∂x2
=

∂α2

∂x1
−

∂α1

∂x2
+ β. (27)

Here, εαβ are the components of the linear strain tensor ε, Ink ε = ∇ × (∇ × ε)T
is the incompatibility tensor.

3 Escape in the Third Dimension

The stresses due to distributed defects in the case of plane deformation of nonlinearly
elastic material were found in [18]. The particular advantage of slender bodies makes
it possible to consider relaxation of stresses by the escape in the third dimension
(Fig. 3).

Here w is used to denote the transverse deflection of the plate. Then

R∗ = R + wi3, (28)

and

Fig. 3 Buckling of the plate
due to the relaxation process
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G∗ = ∇R∗ · ∇R∗T = ∇R · ∇RT + ∇w∇w = G + ∇w∇w. (29)

From (29) we have
G = G∗ − ∇w∇w. (30)

Substituting now (30) into (24) written in terms of the embedded metric coeffi-
cients G∗

αβ and the transverse deflection w we get a general form of geometrical
equation that determine the bent form of the plate. It is quite lengthy and will not be
presented here. In Sect. 5 a particular case of nonlinear membrane with distributed
wedge disclinations will be studied in details.

4 Buckling of a Flat Membrane with Distributed
Dislocations

The interesting fact about dislocations is that it is possible to solve problems directly
appealing to the first order incompatibility condition (7). Mathematically it means
that, when the disclination density vanishes, the incompatibility condition of the
first order (7) may be considered in a way as a first integral for the incompatibility
condition of the second order (24).

Let us introduce the polar coordinates r, ϕ and the corresponding vector basis
er, eϕ in the plane of a circular membrane of radius r0 and assume that the edge
dislocations are distributed with the density α0 = αϕ(r)eϕ, which contains only
the azimuthal component. The distortion tensor will be sought in the form that cor-
responds to the axisymmetric bending of the membrane [33]

F = F1(r)erer + F2(r)eϕeϕ + F3(r)eri3. (31)

The incompatibility condition of the first order (7) reads then as

dF2

dr
+

F2 − F1

r
= αϕ(r). (32)

This equation has the following solution (under the condition F · FT = E)

F1 = cos η(r), F2 = 1, F3 = − sin η(r), (33)

where η(r) satisfies
cos η(r) = 1 − rαϕ(r). (34)

Solution (33) describes the membrane buckling which results in the release of
residual stresses caused by dislocations. Although there is no displacement field with
the distributed dislocations in the general case, in this special case, when α · i3 = 0,
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Fig. 4 Buckling of a mem-
brane with distributed disclo-
cations

it is possible to find the normal membrane deflection w = R∗ · i3 from the relation
F∗ · i3 = ∇R∗ · i3. Using (33) and taking that w(r0) = 0, we get

w(r) =

∫r0

r

√
2ραϕ(ρ) − ρ2α2

ϕ(ρ)dρ. (35)

If αϕ(r) = α is a constant function, then (35) gives the following exact solution

w(r) =
1

2α

[
(1 − αr)

√
2αr − α2r2 − arcsin(αr − 1)

]
+ C, (36)

where C corresponds to the boundary condition w(r0) = 0. The buckled form of the
membrane is presented in Fig. 4.

5 Buckling of a Flat Membrane with Distributed
Disclinations

Substituting (30) into (24) and assuming α0 = 0 we obtain the following equation
in the membrane limit (when G equals the 2D identity tensor)

[w, w] =
[
1 − (∇w)2

] 3
2
β, (37)

[w, w] = (Δw)2 − tr(∇∇w · ∇∇w). (38)

Here, [w, w] is the Monge-Ampère operator. In Cartesian coordinates x1, x2 it has a
usual representation

[w, w] =
∂2w

∂x2
1

∂2w

∂x2
2

−
( ∂2w

∂x1∂x2

)2
.

In the case of the Föppl-von Kármán theory [3, 34] we have in the membrane
limit1

[w, w] = β. (39)

1 Seung and Nelson [3] deduced this equation in the inextensional limit.
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(a) (b)

Fig. 5 a Positive disclinations; b Negative disclinations

This type of equation according to the general theory [35] gives no direct way of
taking into account negative β.

Let the domain occupied by the plate, the distribution of wedge disclinations β

and the transverse deflection w be axially-symmetric. Then Eq. (37) admits exact
integration. We assume in addition the usual zero-slope condition in the center of the
membrane: w ′(r)|r=0 = 0.

Under such conditions for a constant positive β we obtain

w(r) =
1

β

√
β2r2 + 4β −

1√
2β

log

∣∣∣∣∣
√

2β +
√

β2r2 + 4β√
2β −

√
β2r2 + 4β

∣∣∣∣∣ − C, (40)

whereas for a constant negative β

w(r) =
1

β

√
β2r2 + 4β +

1√
−2β

arctan

√
β2r2 + 4β√

−2β
− C, (41)

the constant C in both cases is furnished by vanishing w(r) on the outer radius r = r0
of the plate.

For negative β the solution exists only in some part of the circular disk, where
r �

√
−4/β (Fig. 5). The reason lies deeply in the topology of surfaces with negative

Gaussian curvature. Being fixed on the outer radius the circular membrane can’t be
anymore a simply connected surface with everywhere negative Gaussian curvature
(like a saddle point surface).

6 Conclusions

In the present chapter we gave some theoretical background and presented a few
exact solutions for the buckling problem of a thin nonlinear plate containing contin-
uously distributed fields of edge dislocations and wedge disclinations. As a particular
application we have chosen the membrane model, because it allows to explore the
geometrical side of the problem. The difficult challenge that still remains is to find
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how non-axially-symmetric buckled regimes appear. The first attempt was done in
[36] for the case of a single negative disclination. In the case of the Föppl-von Kármán
plate model a rigorous stability analysis of the influence of distributed disclinations
was performed numerically in [37].

It is interesting also to take into account couple-stress and strain gradient effects.
For this purpose one can use, for example, a nonlinear model from [38], where a
simple version of strain gradient elasticity, proposed in [39], was combined with the
Föppl-von Kármán approach.
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