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Abstract The deformation accommodation mechanisms associated to grain bound-
aries (GBs) significantly affect the mechanical behavior of nano-polycrystals. Among
these mechanisms, stress-induced GB migration is now seen to compete or interplay
with other intra-granular and GB mechanisms in a wide range of temperatures. A
complete micromechanics-based model is here proposed using the concepts of con-
tinuum thermodynamics and kinematics to derive a new constitutive model able
to describe stress-induced GB migration. Like non diffusive phase-transformations,
stress-induced GB migration can be considered on the thermodynamics point of view
of conservative nature (diffusionless but thermally activated) until high temperature
with respect to melting point. Here, in the framework of continuum micro-mechanics
which should be easily implemented in a polycrystalline model, we will first describe
the micromechanical framework: the kinematics and the thermodynamics associated
with additive mechanisms including plastic deformation in the bulk crystals, GB
migration and GB sliding. For the sake of illustration of the present general theory,
we will focus on planar bi-crystals and only perfect shear-coupling GB migration
situations of [001] symmetric tilt GBs in Cu. Numerical examples and responses of
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the micromechanical model are given for these bi-crystals considering both isotropic
and anisotropic elasticity. These ones are fed by computer-aided MD simulations for
which deformation mechanisms are identified.

1 Introduction

“Shear-coupled” grain boundary (GB) migration is now seen to compete or interplay
with other intra-granular GB mechanisms in a wide range of temperatures [1, 2].
In nanocrystalline (NC) metals, it now becomes challenging to understand stress-
induced GB migration because this is thought to enhance grain growth at low tem-
peratures, which is important for making stable structural materials for engineering
applications. In these materials, the interplay of GB migration with other possible
GB deformation mechanisms like GB sliding [3] becomes very complex due to
the high GB volume fraction. The mechanism of stress-induced shear-coupled GB
migration at room temperature is today well identified by a shear deformation accom-
panying GB migration for symmetric (coincident) tilt GB (here denoted STGB) but
less for general non symmetric GB. This new deformation mechanism is different
from strain-induced GB migration studied for recrystallization phenomena. The latter
essentially comes from spatially heterogeneous intra-crystalline dislocation densities
in the vicinity of GB.

Theoretical studies [4] as well as molecular dynamics (MD) simulations using the
EAM potential for Cu bicrystals with STGB [1, 2, 5] show that stress-induced GB
migration is characterized by a shear “coupling factor” (or shear deformation usually
denoted β) which is defined by the ratio of the shear displacement parallel to the
GB plane to the GB propagation normal to its plane. This coupling factor is purely
geometric and depends on the tilt GB misorientation. “Shear-coupled” GB migration
was recently analyzed by [1, 2] using the “Frank-Bilby” equation [6–8]. Due to the
high resolved shear stresses required to move STGB [1, 2, 5, 9], it is expected that
GB migration would play a key role in the understanding of inverse Hall-Petch effect
in addition to GB sliding or GB dislocation nucleation-propagation-absorption.

Due to the complexity of atomistic mechanisms in the case of general GB, we will
limit the present study to the constitutive behavior of Cu STGB undergoing shear-
coupled migration. For Cu [001] STGB, two shear deformation modes associated
to <110> and <100> crystallographic directions linked to two coupling factors
(resp. negative and positive) were observed using MD simulations and confirmed
experimentally by [10]. In particular, a dual temperature dependent behavior for cer-
tain misorientations (around 53◦) may be observed at finite temperatures. According
to [1], a transition exists above 800 K, where the shear-coupled GB migration may
be interrupted by occasional sliding events. Between these sliding events, the GB
plane continues to move accompanied by shear. This suggests that pure GB sliding
occurs through atomistic mechanisms that preserve GB character. At medium and
low temperatures, shear-coupled GB migration has a stick slip stress versus time
characteristic response which can be retrieved by atomistic simulations [11, 12].
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The objective of the present contribution is to provide a complete micromechanics-
based constitutive model using the concepts of continuum mechanics to describe
shear-coupled GB migration in bi-crystals. Kinematics and thermodynamics asso-
ciated with different additive dissipative mechanisms will be introduced in Sect. 2.
Here, shear-coupled GB migration will be considered as a shear process in the local
coordinates associated to grain boundary plane that can be described in linearized
kinematics by an eigenstrain (or plastic strain jump at the discontinuity GB sur-
face) similarly to deformation twinning [13]. To illustrate the present theory, Sect. 3
will focus on bi-crystals with plane GB and pure shear-coupled GB migration sit-
uations without sliding in addition to intra-crystalline plastic deformation. It will
be derived that the shear “coupling factor” β is related to plastic strain jump at the
GB surface through an “orientation tensor” characterized by GB surface dislocation
Burgers vector and slip plane. In Sect. 4, numerical examples and MD simulations
will be restricted to the shear responses of three Cu STGB exhibiting shear-coupled
GB migration with absence of bulk intra-crystalline plasticity (because crystal sizes
are lower or equal to 10 nm). In these situations, atomic scale deformation mecha-
nisms are well identified using the concept of “displacement shift complete” (DSC)
dislocations [14, 1] or “disconnections” [15]. These interfacial defects will be intro-
duced in the constitutive framework and a discussion about the role of stress-induced
GB migration coupled with anisotropic elasticity on stress-strain characteristics is
provided in the light of the micromechanics-based model. Section 5 concludes and
sketch some perspectives for the applicability of the present bi-crystal constitutive
framework in mean field polycrystalline modeling involving NC materials and/or
deformation twinning.

Throughout the paper, a “,” indicates a spatial differentiation, a superposed dot
a particle time derivative (or rate). “[A]” denotes the jump of a bulk field “A” at a
discontinuity surface such that [A] = AII − AI to be consistent with Fig. 1, where
I and II are both crystals forming a bicrystal (crystal II being the consumed crystal
during interface motion). “〈A〉” denotes the average of a bulk field A across the

interface defined by 〈A〉 =
1

2

(
AII+AI

)
. The Einstein summation convention is also

used throughout the paper.

2 Continuum Modeling

2.1 Kinematics

Following [16–18], the particle velocity vector jump at the internal discontinuity
surface (GB) denoted hereafter S can be decomposed as follows (Fig. 1)

[vi] = [vi]
(1) + [vi]

(2) , (1)
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Fig. 1 Schematic representation of grain boundary (GB) migration and sliding (kinematics). [vi] =
vi

II −vi
I denotes the jump of vi at the interface (GB plane) oriented by unit normal vector ni from

crystal I to crystal II

where
[vi]

(1) = − [ui,j] njωN (2)

is the particle velocity jump due to normal GB propagation assuming linearized
kinematics [19, 16] and [vi]

(2) is the part of particle velocity jump at the discontinuity
surface due to tangential GB sliding.

In Eq. (2), [ui,j] represents the jump of displacement gradient or total distortion at
the discontinuity surface S. ωN is the GB normal velocity and ni is the unit normal
vector to the GB plane oriented from I towards II (Fig. 1). According to Fig. 1, the
particle velocity jump contains a tangential part v‖ and a normal one v⊥ as follows

[vi] = v‖ti + v⊥ni, (3)

where v‖ reads
v‖ = βωN + vs (4)

In Eq. (4), vs = [vi]
(2)

ti is the tangential velocity due to GB sliding. Furthermore,
β is a purely geometric parameter that can be identified as the “coupling factor”
following the terminology used by [4]. Using Eq. (2), β can be identified as a function
of the interfacial jump of displacement gradient through the following expression

β = − [ui,j] njti (5)

It is noteworthy that Eq. (5) was postulated by [4] without any direct link to
continuum-based kinematics like in the present contribution.

2.2 Thermodynamics

The mechanical dissipation D in the body V is defined as the difference between the
power of the applied forces denoted Pext and the rate of change of the stored energy Φ̇

(time derivative of the Helmholtz free energy), which corresponds under isothermal
and quasi-static evolutions to the time derivative of the elastic energy [20, 21]
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D = Pext − Φ̇ (6)

Neglecting the excess interfacial energy effects at GB in Eq. (6), Φ is given by

Φ =

∫

V

1

2
σijε

e
ijdV , (7)

where σij and εe
ij are respectively the Cauchy stresses and the elastic strains.

The power of external forces is defined as

Pext =

∫

∂V

σijnjvidV , (8)

where nj is the unit outward normal vector at a point of the external boundary of
V denoted ∂V and vi is the material velocity at this point.

As described in the kinematics part (Sect. 2.1), the strains and stresses are dis-
continuous across the moving interface. Consequently, the elastic energy density

ϕ =
1

2
σijε

e
ij present in Eq. (7) is also discontinuous through the moving disconti-

nuity surface S. Applying the transport theorem for growing discontinuity surface S
to Eq. (7), Φ̇ is given by

Φ̇ =

∫

V

ϕ̇dV −

∫

S

[ϕ]ωNdS. (9)

In Eq. (9), the first volume term containing ϕ̇ can be easily computed using
εij = εe

ij + ε
p
ij as follows

∫

V

ϕ̇dV =

∫

V

σij

(
ε̇ij − ε̇

p
ij

)
dV . (10)

The second term of Eq. (9) which contains [ϕ] is defined as

[ϕ] =
1

2

(
σII

ij

(
εII
ij − ε

pII
ij

)
− σI

ij

(
εI
ij − ε

pI
ij

))
. (11)

This expression is much simplified in the case of linear homogeneous elastic prop-
erties and using the usual symmetries of the homogeneous elastic stiffness tensor
Cijkl as follows

[ϕ] =
〈
σij

〉 [
εij − ε

p
ij

]
. (12)
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Thus, the expression for Φ̇ is obtained using Eqs. (9)–(11)

Φ̇ =

∫

V

σij

(
ε̇ij − ε̇

p
ij

)
dV −

∫

S

[ϕ]ωNdS. (13)

The expression of external power Pext can be obtained after simplifications from
Eq. (8)

Pext =

∫

V

σijε̇ijdV −

∫

S

〈
σij

〉
[εij]ωNdS +

∫

S

〈
σijnj

〉
[vi]

(2)
dS. (14)

By comparing Eqs. (13) and (14), the total dissipation D of the system is positive
and reads according to Eq. (6)

D =

∫

V

σijε̇
p
ijdV −

∫

S

(〈
σij

〉
[εij] − [ϕ]

)
ωNdS +

∫

S

〈
σijnj

〉
[vi]

(2)
dS. (15)

For homogeneous elastic properties, Eq. (12) can be applied so that Eq. (15) simplifies
into

D =

∫

V

σijε̇
p
ijdV −

∫

S

〈
σij

〉 [
ε
p
ij

]
ωNdS +

∫

S

〈
σijnj

〉
[vi]

(2)
dS. (16)

The first term in Eq. (15) is the classic bulk dissipation due to crystallographic slip
evolution in crystals without surface of discontinuity. The second term in Eq. (15)
is due to the propagation of surface discontinuities and can be related to shear-
coupled GB migration. The associated driving force on the discontinuity surface
S is given by [ϕ] −

〈
σij

〉
[εij] for heterogeneous elastic solids and simplifies into

−
〈
σij

〉 [
ε
p
ij

]
for homogeneous elastic ones. This driving force can be related to the

energy-momentum tensor Plj = ϕδlj−σijui,l introduced by [22] through the jump
relationship [Plj] nj =

(
[ϕ] −

〈
σij

〉
[εij]

)
nl for heterogeneous elastic solids. The

last term in Eq. (15) or Eq. (16) is due to a possible incoherent interface authorizing
tangential GB sliding (see Eq. (4).).

In the following, we first highlight the application of the continuum kinemat-
ics and thermodynamics frameworks to stress-induced shear-coupled GB migration.
From the continuum mechanics viewpoint, GB is here considered as a continuously
distributed dislocation (in the sense of collective continuum defects) for both LAGB
and HAGB. In Sect. 16.3, the transport of GB dislocations is fully examined consid-
ering a bicrystal with planar GB and average mechanical fields in each crystal.
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3 Shear-Coupled GB Migration with Infinite Plane Grain
Boundaries

3.1 Dissipation and Transport Equations

In this part and in the rest of the paper, interfacial sliding will be disregarded, and
we only focus on stress-induced motion of discontinuity surfaces like GB, assuming
they are coherent interfaces. This means that only the first two terms of Eq. (15) are
considered. This situation corresponds to “perfect shear-coupling” GB migration as
defined in [4]. Thus, for planar bi-crystalline systems, such as the one represented in
Fig. 2, Eq. (15) yields

D

V
= fσI

ijε̇
pI
ij + (1 − f)σII

ij ε̇
pII
ij +

(
[ϕ] −

〈
σij

〉
[εij]

)
ḟ, (17)

where f is the current volume fraction of crystal I. If crystal I moves into crystal II,
ḟ describes the rate of growth of the thickness of crystal I due to normal motion. In
the particular case of homogeneous elasticity, [ϕ]−

〈
σij

〉
[εij] should be replaced by

−
〈
σij

〉 [
ε
p
ij

]
in Eq. (17). Furthermore, the overall strain (resp. stress) evolution are

given by the following transport equations (see also [23]) involving the strain (resp.

stress) jump
[
εij

]
(resp.

[
σij

]
) for the plane discontinuity surface S

Ėij =
1

V

∫

V

ε̇ijdV −
1

V

∫

S

[
εij

]
ωNdS = fε̇I

ij + (1 − f)ε̇II
ij −

[
εij

]
ḟ, (18)

Σ̇ij =
1

V

∫

V

σ̇ijdV −
1

V

∫

S

[
σij

]
ωNdS = fσ̇I

ij + (1 − f)σ̇II
ij −

[
σij

]
ḟ. (19)

From Eq. (18) and assuming homogeneous elasticity, the overall plastic strain rate
reads

Fig. 2 Bicrystal configura-
tion for shear-coupled GB
migration with infinite planar
interface (GB plane). Here,
the consumed grain (crystal
II) is chosen as the reference
lattice
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Ė
p
ij =

1

V

∫

V

ε̇
p
ijdV −

1

V

∫

S

[
ε
p
ij

]
ωNdS = fε̇

pI
ij + (1 − f)ε̇

pII
ij −

[
ε
p
ij

]
ḟ (20)

For an infinite plane discontinuity surface and considering heterogeneous elasticity,
the strain concentration equations (given an applied overall strain for instance) are
detailed in [24]. The calculations give the following general expressions for εI

ij and

εII
ij

εI
ij = AI

ijklEkl − (1 − f) Gijkl

[
σ

p
kl

]
,

εII
ij = AII

ijklEkl + fGijkl

[
σ

p
kl

]
,

(21)

where Eij are the overall homogeneous strains, AI
ijkl, AII

ijkl are respectively the
strain concentration tensors for crystals I and II, Gijkl is a strain influence tensor
which depends on the anisotropic elastic constants in crystals I and II. In Eq. (21),[
σ

p
ij

]
is defined by [

σ
p
ij

]
= CII

ijklε
pII
kl − CI

ijklε
pI
kl . (22)

AI
ijkl, AII

ijkl,
[
σ

p
ij

]
and Gijkl are given in [24]. The strain jump [εij] can be easily

derived from Eq. (21). In addition, the effective (overall) elastic moduli Ceff
ijkl of the

bicrystal can be computed using Eq. (21) together with
[
σ

p
ij

]
= 0 and the static

averaging rules. The complete expressions of the effective elastic moduli Ceff
ijkl are

given elsewhere [24].

In Eq. (17), the term
(
[ϕ] −

〈
σij

〉
[εij]

)
ḟ (general case) or −

〈
σij

〉 [
ε
p
ij

]
ḟ (for

homogeneous elasticity) has to be expressed. These terms characterize the intrin-
sic dissipation per unit volume due the shear-coupled GB migration mechanism. In
the following, the link between continuum-based GB dislocation density and the cou-
pling factor β is recalled using the continuum dislocation density tensor introduced
by [25] and [26].

3.2 GB Dislocation Densities and β Coupling Factor

In the continuum dislocation theory [25–27], the dislocation density tensor αhi is
defined as the Curl of the incompatible elastic distortion βe

ji (i.e. the elastic incom-

patible part of the displacement gradient ui,j = βji = βe
ji + β

p
ji in the linearized

theory) as follows
αhi = ∈hljβ

e
ji,l, (23)

where ∈hlj is the permutation tensor. According to the Frank-Bilby theory of surface
dislocations [6–8], the plastic distortion jump (or eigendistortion) due to the GB
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dislocations (which is a continuum description of discrete GB defects present at the
atomic scale and responsible for GB migration) can be obtained from the expression
of surface dislocation densities [8, 28] defined as follows

αS
hi = ∈hlj

[
βe

ji

]
nl = ∈hlj

(
βeII

ji − βeI
ji

)
nl. (24)

Applying the 1st order Hadamard compatibility relation [19] at the discontinuity

surface (i.e. ∈hlj

[
βji

]
nl = ∈hlj

(
βII

ji − βI
ji

)
nl = 0) , Eq. (24) yields

αS
ij = −∈jkl

[
β

p
li

]
nk. (25)

Assuming tl a given unit vector in the boundary plane (of unit normal nm) in Fig. 3
and wj a unit vector such as wj = ∈jmnnmtn, then the resultant Burgers vec-
tor of dislocation lines cut by tl is Bi = αS

ijwj . Using Eq. (25), ∈jkl∈jmn =
δkmδln − δknδlm and nntn = 0, it comes

Bi = −
[
β

p
li

]
tl. (26)

The plastic distortion jump
[
β

p
li

]
results from plastic accommodation due the motion

of gliding surface dislocation embodied by αS
ij. This formalism was first applied to

martensitic transformations by [8] and later by [2] for “shear-coupled” GB migration.
If crystal II is consumed during the motion of crystal I into crystal II then crystal
II will be considered as the reference lattice. This is similar to a parent phase in
martensitic transformations as described in [8]. Thus,

[
β

p
li

]
= −βligl, (27)

where li and gl are unit vectors defined with respect to the reference crystal (see
Fig. 3) so that the interface dislocations can be considered for LAGB as discrete
distributions of straight dislocations parallel to a unit vector. For HAGB, the interface
dislocations are general surface dislocations. Eq. (27) characterizes a simple shear
of magnitude β defined as the “coupling factor” by [4] during perfect shear-coupled
GB migration (i.e. without sliding). This β factor was already identified in Sect. 2.1

Fig. 3 Definition of surface dislocation Burgers vector Bi with respect to reference crystal II. li is
a unit vector in the direction of the Burgers vector, and gi represents the unit normal to the gliding
plane of the surface dislocation
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without making any reference to the surface dislocation concept like in the present
section.

Here, li gives the direction of the Burgers vector content Bi such that Bi = Bli,
where B is its magnitude, and gi represents the unit normal to the gliding plane of
the GB dislocations, such as Eqs. (26) and (27) give

Bi = βligltl = Bli. (28)

From the last equation, the relationship between B and β is found

β =
B

gltl
(29)

In the case of STGB with a tilt axis direction given by the unit vector

pj = ∈jmnlmgn = ∈jmntmnn,

simple geometric considerations using Fig. 3 gives the expression of the coupling
factor

β =
B

llnl
. (30)

This relationship is consistent with [1]’s work through their Eq. (21). In this section,

the most important is the expression of
[
ε
p
ij

]
, the symmetric part of

[
β

p
ji

]
, which

reads from Eq. (27) [
ε
p
ij

]
= −R̃ijβ (31)

with

R̃ij =
1

2
(ligj + gilj) . (32)

R̃ij is defined as the “orientation tensor” associated to the shear deformation (or slip)
of magnitude β coupled to GB migration. From the previous definitions of li and gj

in Fig. 3, R̃ij and
[
ε
p
ij

]
are traceless (i.e. ˜Rkk = 0) so that the induced plastic strain

due to shear-coupled GB migration is incompressible.

3.3 Thermodynamic Driving Forces

From Eq. (17), the total dissipation per unit volume can be rewritten in the following
general form

D

V
= Fi (Ekl, Σkl, Xj) Ẋi, (33)
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where Fi are the driving forces associated to internal variables Xi. These ones depend
on the overall strains Eij or stresses Σij and on the three internal variables Xj

(i.e. ε
pI
ij , εpII

ij , f). In this problem, the three driving forces FεpI , FεpII , Ff associated

respectively to ε
pI
ij , εpII

ij , f (describing three independent inelastic processes) are
listed below using Eq. (17)

FεpI = fσI
ij,

FεpII = (1 − f) σII
ij ,

Ff = [ϕ] −
〈
σij

〉
[εij] ,

(34)

where σI
ij, σII

ij ,
〈
σij

〉
, [ϕ] and [εij] can be computed using Eq. (21). In the case of

homogeneous elasticity without intra-crystalline slip, Ff simply becomes

Ff = −
〈
σij

〉 [
ε
p
ij

]
=

〈
σij

〉
R̃ijβ = τ̃β following Sect. 3.2, where τ̃ is the driving

resolved shear stress on the surface dislocation gliding plane associated to
[
ε
p
ij

]
, R̃ij

is the orientation tensor previously defined in Sect. 3.2 and β is the shear coupling
factor.

In the thermo-mechanics of plasticity [29, 21], the critical forces (corresponding to
“threshold stresses” for the previous irreversible processes) are needed to complete
the theory. The considered constitutive expressions for the critical forces and the
kinetics law must be chosen with respect to a positive dissipation per unit volume in
Eq. (33).

3.4 Critical Forces and Bi-Crystal’s Overall Behavior

If the critical forces for intra-crystalline plastic deformation in both crystals ε
pI
ij ,

ε
pII
ij , f, here denoted FC

εpI , FC
εpII , are higher than their respective corresponding

driving forces and only the critical force for shear-coupled GB migration denoted
FC
f is reached by Ff then

FεpI < FC
εpI ,

FεpII < FC
εpII ,

Ff = FC
f

(35)

In the case of homogeneous elasticity, the last equation in Eq. (35) reduces to τ̃ = τ̃C

for a given shear coupling factor β, where τ̃C is the critical shear stress resolved on
the surface dislocation gliding plane. When Ff reaches FC

f (or when τ̃ reaches τ̃C in
the case of homogeneous elasticity) in Eq. (35), the GB migration flux is given by
the expression of ḟ for an infinite GB plane as follows

ḟ =
1

V

∫

S

ωNdS =
ωNS

V
=

ωN

L
, (36)
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where L is the total length of the deformed bicrystal in the normal direction to the
GB.

The overall Hooke’s law together with Eqs. (18), (19), (36) give the following
constitutive relationship between the overall stress and strain rates

Σ̇ij = Ceff
ijkl

(
Ėkl +

ωN

L

(
[εkl] − Seff

klmn [σmn]
))

, (37)

where [σij] and [εij] are provided by Eq. (21) depending on homogeneous stress or
strain conditions prescribed at the boundary of the bicrystal. Thus, for heterogeneous
elastic bicrystals, Eq. (37) also writes

Σ̇ij = Ceff
ijkl

(
Ėkl − Ė

peff
kl

)
, (38)

where Ė
peff
ij is the effective (overall) plastic strain rate due to shear-coupled GB

migration defined as

Ė
peff
ij = −

ωN

L

(
[εij] − Seff

ijkl [σkl]
)

. (39)

If homogeneous elasticity is assumed, the constitutive law simplifies into

Σ̇ij = Cijkl

(
Ėkl +

[
ε
p
kl

] ωN

L

)
, (40)

which gives, using Eq. (31) in the case, where crystal II is consumed,

Σ̇ij = Cijkl

(
Ėkl − R̃klβ

ωN

L

)
. (41)

Following recent experimental data [30], stress-driven shear-coupled GB migration
exhibits a temperature dependence indicating that a thermally-activated process is
at the origin of the shear-coupled GB migration. It is noteworthy that recent efforts
were made to capture the kinetics law for the GB migration process at finite temper-
atures and strain rates by [11]. However, the accurate determination of the kinetics
parameters for the three investigated Cu STGB will need specific simulation methods
(parallel-replica dynamics, nudged elastic band methods) which are out of the scope
of the present study.

Equation (38) shows that once GB migration is active for a given normal velocity
ωN (which also depends on the applied velocity to the bicrystal), the instantaneous
stress decrease due to induced plastic strain is dependent on the effective elastic
moduli Ceff

ijkl (or Cijkl in the case of homogeneous elasticity), the GB character

(through R̃ij and β) and the bicrystal finite size L. The calculation of ḟ (or equivalently
the volume fraction increment dictated by the stepwise normal GB motion at each
GB migration event) will be specified and discussed in Sect. 4 (for 0 and 500 K
temperatures) with application to particular [001] Cu STGB (coincident GB). For
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the latter, the atomistic mechanisms and collective steps when GB migrates are
known following appropriate vectors of the “displacement shift complete” (DSC)
lattice [1, 14].

4 Application to Cu [001] Symmetric Tilt Grain
Boundaries (STGB)

4.1 Shear Modes

Following [1, 2, 11], we considered [001] STGB in cubic metals like Cu (f.c.c. metal).
GB are generally characterized by five angles. Four angles are set up by choosing
the tilt axis and the GB plane is a particular mirror plane of the bi-crystal containing
the tilt axis. The misorientation angle θ is defined as the tilt angle between the [100]
directions of both crystals in the counterclockwise direction, with 0 < θ < π/2 due
to the four-fold symmetry around the tilt axis. Hence, the GB plane lies along the
bisector between the [100] directions like in Fig. 4.

Following [2], two mappings for the Burgers circuit allows two possible Bi and
two associated “coupling modes” to be defined. The first “coupling mode” called the
<100> mode (or “mode I”) is such that li is parallel to the cube direction [010] of
the reference lattice (crystal II) and the Frank-Bilby dislocation slip planes are (100)
[2]. The slip plane is represented to the left of the GB normal in Fig. 4. For small θ

(LAGB), the expressions for Bi and the associated dislocation density can be resolved
by a discrete distribution of single lattice dislocations of Burgers vectors bi = aL

[010], where aL is the lattice parameter. For LAGB, the critical stress is proportional
to the glide component of the Peach-Koehler force required to initiate the collective
glide of the arrays of GB dislocations [10]. There are two kinds of LAGB: either for
small θ or for θ close to π/2 (i.e. ϕ = π/2 − θ near 0). The latter corresponds to the
GB “mode II” migration (<110> mode), where li is parallel to the direction

[
1 1̄0

]

Fig. 4 Definition of the misorientation angle θ for [001]-type tilt boundaries. Two Burgers vectors
Bi with directions given by unit vectors li are possible which correspond to two different mappings
for Burgers circuit. The normal directions to the slip planes are given by unit vectors gi. Angles θ

and ϕ are linked each other by ϕ = π/2 −θ
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of the reference lattice (crystal I) and the associated resolved single dislocations are
of type Bi = aL/2

[
11̄0

]
. In this case, the Frank-Bilby surface dislocation glides

along (110) planes, which is represented to the right of the GB normal in Fig. 4.
For HAGB, the discrete distributions of single dislocations can not be resolved

anymore [31] and only the “Frank-Bilby equation” (Eq. (25)) is here used for these
STGB. As established by [2], the Frank-Bilby equation (FBE) introduced in Sect. 3.2
provides two feasible solutions for [001] STGB and their continuous GB dislocation
density.

These two solutions (as functions of θ) correspond to Burgers vectors either paral-
lel to the [010] (denoted as Bi <100> for “mode I”) or parallel to the [11̄0] (denoted
as Bi <110> for “mode II”). Here, [010] and [11̄0] are crystallographic directions
respectively defined in the crystal II and crystal I. For GB “mode I” migration, the
consumed grain is crystal II (reference lattice) such as ḟ � 0, whereas for “mode II”
migration, crystal I (reference lattice) is consumed with ḟ � 0. Under simple shear
loading, these two coupling modes compete with each other, and the transition from
one mode to the other occurs at a critical misorientation angle θ which depends on
temperature (see Fig. 8 in [1]). Note that as the temperature drops, the θ range of
“mode II” expands and it may be the only active coupling mode for all values of
θ at T = 0 K. The invoked reason is that the activation of “mode I” requires the
breaking of the mirror symmetry due to equivalent row translations by lattice vectors
1/2[001] and 1/2[001̄]. This symmetry can only be broken at finite temperatures,
where ledges and other defects may form easily. This issue was also checked using
the gamma-surfaces associated to both modes at 0 K by [1].

Thus, due to the complexity of atomistic mechanisms in the case of general GB, we
here limit atomistic investigations to study the constitutive behavior associated with
the STGB shear-coupled migration. For this case, MD simulations are conducted for
three Cu [001] STGB with misorientation angles θ = 77.32◦, 53.13◦, 28.07◦ which
show the well-identified temperature dependent shear-coupling <100> and <110>

modes linked to two characteristic coupling factors β (resp. positive and negative).
According to [1], the coupling factor β depends on θ and on the “coupling modes”
as follows

β<100> = 2 tan

(
θ

2

)
,

β<110> = −2 tan
(ϕ

2

)
, (42)

where ϕ =
π

2
− θ. The atomistic MD simulations which are shown in Sect. 4.2

will first provide the shear stress response, the temperature dependent shear coupling
mode as a function of the GB character, the critical shear stresses (or “peak stresses”),
the stress accommodation due to shear (shear stress drop during GB migration) and
the saw-tooth behavior (stick slip character). Second, the results of the developed
micromechanics-based model regarding elastic slopes and shear stress drops will
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be discussed in Sect. 4.3. The roles of GB character, bicrystal size and cubic elastic
anisotropy will be studied in Sect. 4.3.

4.2 Molecular Dynamics (MD) Simulations

In this subsection, a few “flat” Cu [001] STGB, namely Σ41(540) (θ = 77.32◦),
Σ5(210) (θ = 53.13◦), Σ17(410) (θ = 28.07◦), were studied at 0 K and at 500 K
temperatures using the EAM interatomic potential provided by [32] for Cu. Note that
in the work of [1], where MD simulations were performed under simple shear loading
at 800 K, the first two STGB display “mode II” migration, and the last one displays the
“mode I” (see Table 3.1 in [1]). However, all of them display the “mode II” (<110>

mode) at 0 K as can be inferred from the plots in the Fig. 8 of [1]. Here, each bi-crystal
with [001] STGB is created using the coincident site lattice (CSL) model by placing
the first crystal on the top of the other using the following procedure (Fig. 5). The tilt
axis (x3-axis) is along [001] direction. The horizontal plane (x1,x3) corresponds to
the GB plane, and [100] directions for crystals I and II makes an angle θ. The gap
between the two crystals is set to about 2 Angström before it is subjected to energy
minimization. Several initial configurations are also tested by shifting the upper
grain with respect to the lower along the (x1) direction so as to obtain the lowest
energy state of a GB configuration after atomic relaxation. The energy minimization

Fig. 5 Schematic figure of
the computational atomistic
unit cell box with coordinate
axes and periodic boundary
conditions. L is the total
length in the normal direction
(as defined in the text) to the
GB plane for dynamic atoms
subjected to shear
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Table 1 Elastic shear moduli obtained by the MD results and by the present micromechanical
model accounting for anisotropic elasticity for Σ41(540), Σ5(210), Σ17(410) [001] STGB

Effective elastic shear moduli (GPa) Σ41(540) Σ5(210) Σ17(410)

Atomistic simulations 25.4 35.6 57.4
Present model (anisotropic) 25.7 39.5 61.8
Voigt-Reuss-Hill average (isotropic) 47.8 47.8 47.8

The isotropic Voigt-Reuss-Hill average is also given for comparisons

is performed with the LAMMPS simulator1 using a conjugate gradient method. Each
Cu crystal for simulations is approximately cubic shaped, and the simulation block for
the bicrystal contains between 30000–45000 atoms with periodicity in the (x1) and
the (x3) directions. After optimization, the relaxed structure is subjected to constant
shear strain rate loading as follows. The simulation block (Fig. 5) is sandwiched
between the top and the bottom layer (along the (x2) axis) of thickness about 2 times
the potential cut-off distance. These two layers do not participate in computing data
from the simulations and serve only to impose simple shear loading. The bottom
block is held fixed and the constant shear velocity v0 = v‖ = ĖL is applied on
the top part of the block in the (x1) direction, where Ė is the constant shear strain
rate (Ė = 108s−1) and L is the simulation block length containing unconstrained
atoms. Here, two different values were chosen to keep initial crystal characteristic
sizes lower or equal to 10 nm to mimic nanocrystals, namely L = 12.2 nm and
L = 20 nm. The time step is 1 fs. These simulations are conducted at 0.001 K and at
500 K, and the overall stress tensor was computed using the standard virial expression
averaged over all dynamic atoms. The GB position was also tracked from the common
neighborhood analysis (CNA) computation. The CNA value for atoms in f.c.c. lattice
is 1 and for atoms forming GB structural units it is 5 [33, 34].

4.3 Discussion of the Continuum Model and Comparisons
with MD Results

The micromechanics-based approach is applied to the three previously investigated
Cu bi-crystals with [001] STGB. The motivation to study Cu bi-crystals lies in the
fact that they exhibit a strongly anisotropic elastic behavior characterized by the

following anisotropic coefficient a =
2C44

C11 − C12
= 3.26. The cubic elastic moduli

for Cu are taken as C11 = 170 GPa, C12 = 122.5 GPa and C44 = 76 GPa. These
elastic constants are given by [32] and were used by these authors to validate the
EAM potential for Cu. In this paper, the application of the micromechanics-based
theory is mainly focused on the effect of elastic anisotropy on the shear stress-strain
curves before and at the first shear-coupled GB migration event (Fig. 6).

1 LAMMPS Molecular Dynamics Simulator; http///lammps.sandia.gov/.
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Fig. 6 Schematic representation of the shear stress versus shear strain curve and the quantitative
values predicted by the micromechanical model: elastic slopes and shear stress drops. The critical
shear stress (also called “peak stress”) is obtained by MD simulations

For homogeneous isotropic elastic properties, the isotropic elastic coefficients for
Cu are obtained using the classic “Voigt-Reuss-Hill average” model [35]. This model
gives μ = 47.8 GPa (isotropic elastic shear modulus) and ν = 0.345 (Poisson ratio).
The isotropic shear modulus is reported on Table 1 for comparisons with the effective
elastic shear moduli μeff derived for general elastic anisotropy [24]. The numerical
values for elastic moduli are computed in both crystals using the cubic symmetry
for Σ41(540) (θ = 77.32◦), Σ5(210) (θ = 53.13◦), Σ17(410) (θ = 28.07◦) that can
be used to derive the effective elastic moduli for the three investigated bi-crystals.
We find for f = 1 − f (initial elastic slope) that the effective elastic shear moduli
(Table 1) are in good agreement with the atomistic simulations at 0 K and at 500 K.
In contrast, we remark that the classic isotropic assumption obtained from “Voigt-
Reuss-Hill average” is sometimes far from the atomistic results for the studied Cu
[001] STGB, which means that the simple elastic isotropic assumption is not realistic
for the present application. The mechanical responses given by the micromechanical
model can be enriched by the critical forces FC

f or the critical resolved shear stresses
on the GB slip plane τ̃C in Eq. (35) directly obtained from the peak stresses (or
critical shear stresses τC) of the atomistic results (see Sect. 4.2). These peak stresses
resulted from simple shear performed at an applied material velocity v‖ parallel to
the GB plane (Fig. 5).

Second, we focus on the analysis of shear stress drops in the light of the micro-
mechanical approach after the first GB migration event, i.e. for f = 1 − f in the
constitutive model assuming isotropic elasticity or fully anisotropic elasticity in both
crystals. Following MD results detailed in [24], we start by the analysis of first shear
stress drops when the “mode II” (<110> mode) is activated at 0 K for the three GBs
and at 500 K for Σ41(540) and Σ5(210). Then, the model is applied to the case when
the “mode I” (<100> mode) is activated at 500 K for Σ17(410). Lastly, the model is
applied to understand the origin of bi-crystal size effects on stress drops at 0 K for
the three STGBs.

As seen from atomistic simulations, “mode II” is a dominating shear mode
especially at 0 K for the three GBs. According to Fig. 4, li and gi are defined so
that the <110> mode (“mode II”) is characterized by
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lini = giti = − cos
(ϕ

2

)
= − cos

(
π

4
−

θ

2

)

which gives

li =

(
sin

(
π

4
−

θ

2

)
, − cos

(
π

4
−

θ

2

)
, 0

)

and

gi =

(
− cos

(
π

4
−

θ

2

)
, − sin

(
π

4
−

θ

2

)
, 0

)

and R̃ij from Eq. (32). Since crystal I is the parent grain, only crystal II undergoes

plastic deformation, thus
[
ε
p
ij

]
= ε

pII
ij = −R̃ijβ. When the critical shear stress is

reached, shear-coupled GB migration is active. Then, time integration of Eq. (38)
during the first shear-coupled GB migration event yields

Σ̇ijδt = Ceff
ijklĖklδt +

hN

L

(
Ceff

ijkl [εkl] − [σij]
)

. (43)

From atomistic results, the step time δt for each single shear-coupled GB migration
event is a few ps. This time scale is out of the scope of continuum mechanics for
which GB migration is seen as instantaneous. In Eq. (43), the strain and stress jumps
(resp. [εij] and [σij]) can be computed using Eq. (21) for homogeneous stress or
strain boundary conditions. These jumps depend on the elastic properties of both
crystals and depend on R̃ij and β. In Eq. (43), hN denotes the normal step height
during stepwise GB motion (at the first GB migration event) which corresponds to the
characteristic step height due to GB disconnection loop nucleation [15]. In the case
of “mode II”, the GB plane moves down (negative motion with respect to the (x2)
axis in Fig. 5) to a new position when τC is reached for which the activation energy
for GB migration is overcome. At this point, the second term in Eq. (43), that contains
the strain and stress jumps, hN and the effective elastic moduli, is responsible for
shear stress drop when migration is active. Without trying to determine the complete
activation energy profile for the three studied STGB, the transition from an unstable
state to a metastable state associated with the dissipative GB migration event is then
described by a normal step heighthN. This characteristic distancehN is also linked to
the DSC lattice vector following for coincident (CSL) GB. The DSC (“displacement
shift complete”) lattice is the largest lattice including all the sites of the lattices of
both crystals. According to [14, 1], the disconnection step height hN is linked to
the DSC lattice spacing. Thus, the expression of the disconnection step height hN

depends on the GB character (through θ) and on the lattice parameter aL. For the
<110> mode, hN is negative and is given by [1]

hN
<110> = −

aL√
2

cos
(ϕ

2

)
, (44)
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Table 2 Normal step height hN average values obtained by Eq. (44) (theory) compared to MD
results for Cu Σ41(540), Σ5(210), Σ17(410) [001] STGB

hN (nm) for <110> mode Σ41(540) Σ5(210) Σ17(410)

Atomistic simulations (average values) −0.255 −0.248 −0.220
Theory (for present model) −0.254 −0.242 −0.219

where aL = 0.3615 nm for Cu. The numerical values obtained for hN from MD
simulations are computed by averaging the different GB position steps. The compar-
isons between these values and the theoretical ones given by Eq. (44) are provided
in Table 2 and show a very good agreement.

Here, the shear-coupled GB migration event is assumed instantaneous at the
continuum mechanics time scale so that during the stepwise GB motion ΔEij =

Ėijδt = 0 in Eq. (43), thus

ΔΣij =
hN

L

(
Ceff

ijkl [εkl] − [σij]
)

. (45)

Assuming linear isotropic homogeneous elasticity, Eq. (45) simplifies into

ΔΣij = −2μ
hN

L
βR̃ij (46)

since ˜Rkk = 0 (see Sect. 3.2).
In the following, the tensor to matrix convention is used. The pairs of subscripts

ij and kl are converted to single subscripts as follows: 11→ 1, 22→ 2, 33→ 3, 23
and 32→ 4, 13 and 31→ 5, 12 and 21→ 6. For simple shear parallel to GB plane
in the (x1) direction as performed in the MD simulations (Fig. 5), the shear stress
increment is obtained from Eq. (45) as follows

ΔΣ6 =
hN

L

(
Ceff

62 [ε2] + Ceff
64 [ε4] + Ceff

66 [ε6]
)

(47)

since [σ6] = 0. Thus, the strain concentration equations (Eq. (22)) are here applied.
For isotropic elasticity, Eq. (46) simply yields

ΔΣ6 = −μ
hN

L
βR̃6 (48)

with R̃6 = l1g2 + g1l2 = cos
(π

2
− θ

)
.

The present micromechanics-based model is able to describe the shear stress drop
magnitude in the stick-slip behavior (Fig. 6). The shear stress drop magnitude can
be defined as the absolute value of the shear stress increment |ΔΣ6| obtained from
Eq. (47) or Eq. (48). The stick-slip behavior is dependent on the grain boundary char-
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Table 3 Shear stress drop magnitudes (in MPa) obtained by the MD results at 0 and 500 K and by
the micromechanical model with anisotropic and isotropic elastic formulations for Cu Σ41(540),
Σ5(210), Σ17(410) [001] STGB with L = 12.2 nm

|ΔΣ6| (MPa) for L = 12.2 nm Σ41(540) (0K,500K) Σ5(210) (0K,500K) Σ17(410) (0K)

Atomistic simulations 100 417 1080
Present model (anisotropic) 127 603 1024
Present model (isotropic) 216 506 485

acter (through θ), the effective elastic properties of the bicrystal, the lattice parameter
(through hN) and the bicrystal finite size L. The numerical values regarding shear
stress drop magnitudes for Σ41(540) (θ = 77.32◦), Σ5(210) (θ = 53.13◦), Σ17(410)
(θ = 28.07◦) are reported in Table 3 both from atomistic results and from the micro-
mechanical approach (either Eq. (47) for anisotropic elasticity or Eq. (48) for isotropic
elasticity). The β<110> coupling factors are respectively −0.222, −0.667, −1.200
for Σ41(540), Σ5(210), Σ17(410). The quantitative comparisons reported in Table 3
give reasonable agreement with the atomistic results in the case of anisotropic elastic-
ity for the three investigated STGB. In this case, the relative errors with respect to MD
results appear to be quite acceptable. Conversely, the isotropic elasticity assumption
give unrealistic results which are far from the MD results especially for Σ41(540)
STGB, where the relative error reaches ∼120 %. The results show that the isotropic
elastic assumption may only be relevant for the particular case of Σ5(210) STGB,
where both fully anisotropic and isotropic elastic formulations give similar values.

Another example, where the micromechanical approach can be applied, is the
specific Cu Σ13 (320) (θ = 67.4◦) STGB investigated by [11]. In this case, the shear
stress drop magnitude obtained by the authors using atomistic simulations at 0 K with
L = 6 nm was found to be ∼450 MPa [11]. Taking into account anisotropic elasticity
(Eq. (47)) and the fact that the “mode II” is active at 0 K (Eq. (44)), the present model
gives |ΔΣ6| = 573 MPa, which represents a relative error of ∼27 %.

For Cu Σ17 (410) STGB, “mode I” occurs at 500 K according to MD results [24].
In this <100> mode, Bi (or li) forms an angle θ/2 counterclockwise with respect
to ni (Fig. 4) such that

lini = giti = cos

(
θ

2

)
, li =

(
− sin

(
θ

2

)
, cos

(
θ

2

)
, 0

)
,

gi =

(
cos

(
θ

2

)
, sin

(
θ

2

)
, 0

)
.

Here, crystal II is the parent grain and only crystal I undergoes plastic deformation,

thus
[
ε
p
ij

]
= −ε

pI
ij = −R̃ijβ, where R̃ij is given by Eq. (32). In this case, the first

shear stress drop obtaind by MD simulations is ∼300 MPa. The micromechanical
model can also be applied in the same way to the “mode I” observed at T = 500 K.
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Table 4 Shear stress drop magnitudes (in MPa) obtained by the MD results and by the micro-
mechanical model with anisotropic and isotropic elastic formulations for Cu Σ41(540), Σ5(210),
Σ17(410) [001] STGB with L = 20 nm at 0 K

|ΔΣ6| (MPa) for L = 20 nm Σ41(540) Σ5(210) Σ17(410)

Atomistic simulations (0 K) 60 244 641
Present model (anisotropic) 78 368 624
Present model (isotropic) 132 309 296

In this case, the theoretical hN value is now positive and is given by [1]

hN
<100> =

aL

2
cos

(
θ

2

)
. (49)

Using Eq. (47) (elastic anisotropy), we obtain |ΔΣ6| = 322 MPa, which represents a
relative error of ∼7 %.

It looks clear that the large discrepancies sometimes observed between the atom-
istic results and the model with the isotropic elastic assumption are mainly due to a
poor estimate of the effective elastic shear modulus and the strains in both crystals.

Bicrystal size effect is observed in atomistic results on shear stress drop magnitude
for Σ41(540), Σ5(210), Σ17(410). The results of the micromechanical model for
L = 20 nm are given in Table 4 (for both isotropic and anisotropic formulations).
Overall, the bicrystal size effect is well reproduced for both STGB in the case, where
anisotropic elasticity is accounted for, especially for Σ41(540) and Σ17(410). Even
though the micromechanical approach supposes mean strain and stress fields in both
crystals (no intracrystalline shear stress fluctuations along the normal axis (x2) to
the GB plane), it is found that the bicrystal size effect (characterized by the internal

length scale L) on the shear stress drop magnitude scales with
hN

L
.

Here, hN is fixed for a given STGB because it is linked to the lattice para-
meter aL in Eq. (44). Following Eq. (47) and the fact that the terms Ceff

62 [ε2] +

Ceff
64 [ε4] + Ceff

66 [ε6] are not length scale dependent, the stress drop magnitude ratio
|ΔΣ6|L=12.2nm

|ΔΣ6|L=20nm

=
20

12.2
∼ 1.64 is in good agreement with the one obtained by

atomistic simulations for Σ41(540), Σ5(210) and Σ17(410) which are respectively
1.67, 1.71 and 1.68 from Tables 3 and 4.

5 Conclusions

A new micromechanics-based model was investigated to describe shear-coupled GB
migration in bicrystals. Both MD simulations (at 0 and 500 K) and a micromechan-
ical model assuming Frank-Bilby GB dislocations were applied to three Cu [001]
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STGB: Σ41(540) (θ = 77.32◦), Σ5(210) (θ = 53.13◦), Σ17(410) (θ = 28.07◦).
The critical shear stresses for shear-coupled GB migration can be obtained by MD
simulations. The role of Cu elastic anisotropy on the stick-slip features of shear-
coupled migration has been observed on the shear stress-strain curves. These ones
have been analyzed in the light of the micromechanical model. In this paper, both
formulations including heterogeneous and homogeneous elasticity have been devel-
oped. It has been shown that the elastic shear moduli obtained by MD simulations
are captured by the micromechanics-based model when heterogeneous elasticity
is accounted for. Furthermore, the trends regarding shear stress drops during first
shear-coupling GB migration event at 0 K and 500 K are well described by the
micromechanical approach especially when anisotropic elasticity is considered in
the formulation. The model may also be extended to various strain rates and tem-
peratures assuming the shear-coupling modes can be easily identified by atomistic
simulations. Interestingly, for very low velocities up to 5 m/s, the shear stress drop is
not very sensitive to shear rates [11]. Advanced atomistic methods dedicated to the
kinetics of shear-coupled migration should be developed to improve the constitutive
kinetics law at finite temperatures for shear-coupled GB migration. It could also be
interesting to compare/predict the experimental results although overall stress/strain
curves are seldom reported. As some perspective, the present constitutive and compu-
tational framework developed for bi-crystals with shear-coupled GB migration will
be applied to study stress-induced twin boundary migration and will be incorporated
in polycrystalline continuum models.
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