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Abstract The present research is dedicated to the stability analysis of nonlinearly
elastic highly porous plates. The mechanical properties and behavior of these plates
are described using the model of an inhomogeneous micropolar (Cosserat) medium.
Such approach allows for a more precise modeling and detailed analysis of the
buckling process for constructional elements made of highly porous materials. In the
framework of a general stability theory for three-dimensional bodies, we have studied
the stability of a circular micropolar plate subject to radial compression. It is assumed
that elastic properties of the plate vary through the thickness. Using the linearization
method in a vicinity of a basic state, the neutral equilibrium equations are derived,
which describe the perturbed state of a plate. For a special case of axisymmetric
buckling modes this linearized equilibrium equations are reduced to the system of
three ordinary differential equations. It is also shown that if elastic properties of
a plate are symmetric through the thickness then the stability analysis is reduced
to solving two independent linear homogeneous boundary-value problems for the
half-plate.

1 Introduction

With the increasing number of new structural materials, the problem of stability
analysis for bodies with a microstructure becomes important. One example of such
materials is a porous material. Engineering structures made of porous materials,
especially metal and polymer foams, have different applications in the last decades
[2–4, 6, 9]. The foams are cellular structures consisting of a solid metal (for exam-
ple aluminium, steel, copper, etc.), or polymer (polyurethane, polyisocyanurate,
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polystyrene, etc.) and containing a large volume fraction of gas-filled pores. There
are two types of foams. One is the closed-cell foam, while the second one is the
open-cell foam. The defining characteristic of metal and polymer foams are the very
high porosity: typically, well over 80 %, 90 % and even 98 % of the volume consists
of void spaces.

Constructions made of porous materials are widely used in modern industries with
airspace or automotive applications among others. The reason for this is the advan-
tages of such materials: better density-stiffness ratios in comparison with classical
structural materials, the possibility to absorb energy, etc. As a rule, these construc-
tions have a functionally graded structure. For example, the porous core is quite often
covered by hard and stiff shell, which can be necessary for corrosion or thermal pro-
tection, and optimization of mechanical properties in the process of loading.

2 Initial Strain State of Inhomogeneous Plate

We consider the circular plate of radius r1 and thickness H, and made of functionally
graded material. The behavior of the plate is described by the model of micropolar
elastic body [1, 5, 8, 10, 13, 19]. For the radial compression (extension) of the plate,
the position of a particle in the strained state is given by the radius vector R [12, 20]:

R = αr, 0 � r � r1,

Φ = ϕ, 0 � ϕ � 2π, (1)

Z = f(z), |z| � H/2,

R = αreR + f (z) eZ. (2)

Here r, ϕ, z are cylindrical coordinates in the reference configuration (Lagrangian
coordinates), R, Φ, Z are Eulerian cylindrical coordinates, {er, eϕ, ez} and
{eR, eΦ, eZ} are orthonormal vector bases of Lagrangian and Eulerian coordinates,
respectively, α is the radial compression ratio, f(z) is some unknown function, which
describe the strain in the thickness direction of the inhomogeneous plate.

In addition, a proper orthogonal tensor of microrotation H is given, which charac-
terizes the rotation of the micropolar medium particle and for the considered strain
has the form

H = er ⊗ eR + eϕ ⊗ eΦ + ez ⊗ eZ. (3)

According to expressions (1) and (2), the deformation gradient C is (hereinafter ′
denotes the derivative with respect to z):

C = grad R = α (er ⊗ eR + eϕ ⊗ eΦ) + f′ez ⊗ eZ, (4)
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where grad is the gradient in Lagrangian coordinates. It follows from relations (3)
and (4) that the wryness tensor L is equal to zero [14, 15]

L × E = − (grad H) · HT = 0

and the stretch tensor Y is expressed as follows

Y = C · HT = α (er ⊗ er + eϕ ⊗ eϕ) + f′ez ⊗ ez. (5)

We assume that the elastic properties of the plate vary through the thickness, and
they are described by the model of physically linear micropolar material, whose
specific strain energy is a quadratic form of the tensors Y − E and L [7, 11]:

W (Y, L) =
1

2
λ(z)tr2 (Y − E) +

1

2
(μ(z) + κ(z)) tr

(
(Y − E) · (Y − E)T

)

+
1

2
μ(z)tr (Y − E)2+

1

2
γ1(z)tr

2L+
1

2
γ2(z)tr

(
L · LT

)
+

1

2
γ3(z)tr L2.

(6)
Here λ(z), μ(z) are functions describing the change in the Lamé parameters, κ(z),
γ1(z), γ2(z), γ3(z) are micropolar elastic parameters changing with the thickness
coordinate, E is the unit tensor.

It follows from expressions (3), (5) and (6) that the Piola-type couple stress tensor
G is equal to zero for the deformation of radial compression (1)–(3) of the circular
plate

G =
∂W

∂L
· H =

(
γ1 (tr L) E + γ2L + γ3LT

)
· H = 0

and Piola-type stress tensor D is

D =
∂W

∂Y
· H =

(
λtr (Y − E) E + μ

(
YT − E

)
+ (μ + κ) (Y − E)

)
· H

= (λs + χ (α − 1)) (er ⊗ eR + eϕ ⊗ eΦ) +
(
λs + χ

(
f′ − 1

))
ez ⊗ eZ, (7)

s = 2α + f′ − 3, χ = 2μ + κ.

The equilibrium equations of nonlinear micropolar elasticity in absence of mass
forces and moments are written as follows [7, 20]

divD = 0, divG +
(
CT · D

)
× = 0, (8)

where div is the divergence in the Lagrangian coordinates. The symbol × represents
the vector invariant of a second-order tensor:

K× = (Kmnem ⊗ en)× = Kmnem × en
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We assume that there are no external loads on the faces of the plate (z = ±H/2),
and there is no vertical displacement on the middle surface z = 0:

ez · D|z=± H
2

= 0, f (0) = 0 (9)

By solving the boundary problem (8), (9) while taking into account the relations (7)
we found the unknown function f (z):

f (z) =

z∫

0

2(1 − α)λ(x)

λ(x) + 2μ(x) + κ(x)
dx + z

In the special case, when the pattern of variation for elastic parameters λ, μ, κ is the
same

λ(z) = λ0ξ(z), μ(z) = μ0ξ(z), κ(z) = κ0ξ(z)

the expression for the function f(z) is quite simple:

f (z) = α3z, α3 = 1 +
2λ0(1 − α)

λ0 + 2μ0 + κ0

3 Equilibrium Bifurcation for Inhomogeneous Plate

We assume that in addition to the above-described state of equilibrium for the
inhomogeneous plate, there is an infinitely close equilibrium state under the same
external loads, which is determined by the radius vector R + ηv and microrotation
tensor H − ηH × ω. Here η is a small parameter, v is the vector of additional dis-
placements, ω is a linear incremental rotation vector, which characterizes the small
rotation of the micropolar medium particles, measured from the initial strain state.

The perturbed state of equilibrium for the micropolar medium is described by the
equations [7]:

divD• = 0, divG• +
[
gradvT · D + CT · D•]

× = 0, (10)

where D• and G• are the linearized Piola-type stress and couple stress tensors. In the
case of physically linear micropolar material (6), the following relations are valid
for these tensors [17, 18]:

D• =

(
∂W

∂Y

)•
· H +

∂W

∂Y
· H• =

(
λ (tr Y•) E + (μ + κ) Y• + μY•T

)
· H

−
(
λtr (Y − E) E + μ

(
YT − E

)
+ (μ + κ) (Y − E)

)
· H × ω, (11)
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G• =

(
∂W

∂L

)•
· H +

∂W

∂L
· H•

=
(
γ1 (tr L•) E+γ2L• + γ3L•T

)
· H −

(
γ1 (tr L) E + γ2L + γ3LT

)
· H × ω,

(12)

Y• = (gradv + C × ω) · HT, L• = grad ω · HT.

Here Y• is the linearized stretch tensor, L• is the linearized wryness tensor. Linearized
boundary conditions on the faces of the plate (z = ±H/2) are written as follows:

ez · D•|z=± H
2

= 0, ez · G•|z=± H
2

= 0. (13)

We assume that there is no friction at the edge of the plate (r = r1), and con-
stant normal displacement is given. This leads to the following linearized boundary
conditions:

er · D• · eΦ|r=r1
= er · D• · eZ|r=r1

= er · v|r=r1
= 0,

er · G• · eR|r=r1
= eϕ · ω|r=r1

= ez · ω|r=r1
= 0. (14)

We write the vector of additional displacements v and vector of incremental rotation
ω in the basis of Eulerian cylindrical coordinates:

v = vReR + vΦeΦ + vZeZ, ω = ωReR + ωΦeΦ + ωZeZ. (15)

With respect to representation (15), the expressions for the linearized stretch tensor
Y• and wryness tensor L• have the form:

Y• =

(
∂vΦ

∂r
− αωZ

)
er ⊗ eϕ +

1

r

(
∂vR

∂ϕ
− vΦ + αrωZ

)
eϕ ⊗ er

+

(
∂vZ

∂r
+ αωΦ

)
er ⊗ ez +

(
∂vR

∂z
− f ′ωΦ

)
ez ⊗ er

+
1

r

(
∂vZ

∂ϕ
− αrωR

)
eϕ ⊗ ez +

(
∂vΦ

∂z
+ f ′ωR

)
ez ⊗ eϕ (16)

+
∂vR

∂r
er ⊗ er +

1

r

(
∂vΦ

∂ϕ
+ vR

)
eϕ ⊗ eϕ +

∂vZ

∂z
ez ⊗ ez,

L• =
∂ωR

∂r
er ⊗ er +

1

r

(
∂ωΦ

∂ϕ
+ ωR

)
eϕ ⊗ eϕ +

∂ωZ

∂z
ez ⊗ ez

+
∂ωΦ

∂r
er ⊗ eϕ +

1

r

(
∂ωR

∂ϕ
− ωΦ

)
eϕ ⊗ er +

∂ωZ

∂r
er ⊗ ez (17)

+
∂ωR

∂z
ez ⊗ er +

1

r

∂ωZ

∂ϕ
eϕ ⊗ ez +

∂ωΦ

∂z
ez ⊗ eϕ.
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According to relations (3)–(5), (11), (12), (15)–(17), the components of the lin-
earized Piola-type stress tensor D• and couple stress tensor G• are written as follows:

er · D• · eR = (λ + χ)
∂vR

∂r
+

λ

r

(
∂vΦ

∂ϕ
+ vR

)
+ λ

∂vZ

∂z
,

er · D• · eΦ = (μ + κ)
∂vΦ

∂r
+

μ

r

(
∂vR

∂ϕ
− vΦ

)
+ (λs + 2μα − χ) ωZ,

er · D• · eZ = (μ + κ)
∂vZ

∂r
+ μ

∂vR

∂z
−

(
λs + μ

(
f ′ + α

)
− χ

)
ωΦ,

eϕ · D• · eR =
μ + κ

r

(
∂vR

∂ϕ
− vΦ

)
+ μ

∂vΦ

∂r
− (λs + 2μα − χ)ωZ,

eϕ · D• · eΦ = λ
∂vR

∂r
+

λ + χ

r

(
∂vΦ

∂ϕ
+ vR

)
+ λ

∂vZ

∂z
,

eϕ · D• · eZ =
μ + κ

r

∂vZ

∂ϕ
+ μ

∂vΦ

∂z
+

(
λs + μ

(
f ′ + α

)
− χ

)
ωRz,

ez · D• · eR = (μ + κ)
∂vR

∂z
+ μ

∂vZ

∂r
+

(
λs + μ

(
f ′ + α

)
− χ

)
ωPi,

ez · D• · eΦ = (μ + κ)
∂vΦ

∂z
+

μ

r

∂vZ

∂ϕ
−

(
λs + μ

(
f ′ + α

)
− χ

)
ωR,

ez · D• · eZ = λ
∂vR

∂r
+

λ

r

(
∂vΦ

∂ϕ
+ vR

)
+ (λ + χ)

∂vZ

∂z
, (18)

er · G• · eR = (γ1 + γ2 + γ3)
∂ωR

∂r
+

γ1

r

(
∂ωΦ

∂ϕ
+ ωR

)
+ γ1

∂ωZ

∂z
,

er · G• · eΦ = γ2
∂ωΦ

∂r
+

γ3

r

(
∂ωR

∂ϕ
− ωΦ

)
,

eϕ · G• · eR =
γ2

r

(
∂ωR

∂ϕ
− ωΦ

)
+ γ3

∂ωΦ

∂r
,

er · G• · eZ = γ2
∂ωZ

∂r
+ γ3

∂ωR

∂z
,

ez · G• · eR = γ2
∂ωR

∂z
+ γ3

∂ωZ

∂r
,

eϕ · G• · eΦ = γ1
∂ωR

∂r
+

γ1 + γ2 + γ3

r

(
∂ωΦ

∂ϕ
+ ωR

)
+ γ1

∂ωZ

∂z
,

eϕ · G• · eZ =
γ2

r

∂ωZ

∂ϕ
+ γ3

∂ωΦ

∂z
,

ez · G• · eΦ = γ2
∂ωΦ

∂z
+

γ3

r

∂ωZ

∂ϕ
,

ez · G• · eZ = γ1
∂ωR

∂r
+

γ1

r

(
∂ωΦ

∂ϕ
+ ωR

)
+ (γ1 + γ2 + γ3)

∂ωZ

∂z
.
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Using expressions (4), (5), (7) and (15), (18), we write the equations of the neutral
equilibrium (10) for the inhomogeneous plate in scalar form:

(μ + κ)

(
1

r2

∂2vR

∂ϕ2
+

∂2vR

∂z2
−

1

r2

∂vΦ

∂ϕ

)
+ (λ + μ)

(
1

r

∂2vΦ

∂r∂ϕ
+

∂2vZ

∂r∂z

)

+ (λ + χ)

(
∂2vR

∂r2
+

1

r

∂vR

∂r
−

1

r2
vR −

1

r2

∂vΦ

∂ϕ

)
+

(
μ ′ + κ ′) ∂vR

∂z
+ μ ′ ∂vZ

∂r

+ξ
∂ωΦ

∂z
+ ξ ′ωΦ −

1

r
(λs + 2μα − χ)

∂ωZ

∂ϕ
= 0,

λ + χ

r2

(
∂2vΦ

∂ϕ2
+

∂vR

∂ϕ

)
+

λ + μ

r

(
∂2vR

∂r∂ϕ
+

∂2vZ

∂ϕ∂z

)
+

(
μ ′ + κ ′) ∂vΦ

∂z

+ (μ + κ)

(
∂2vΦ

∂r2
+

1

r

∂vΦ

∂r
−

1

r2
vΦ +

1

r2

∂vR

∂ϕ
+

∂2vΦ

∂z2

)
+

μ ′

r

∂vZ

∂ϕ

−ξ
∂ωR

∂z
− ξ ′ωR + (λs + 2μα − χ)

∂ωZ

∂r
= 0,

(λ + χ)
∂2vZ

∂z2
+ (μ + κ)

(
∂2vZ

∂r2
+

1

r

∂vZ

∂r
+

1

r2

∂2vZ

∂ϕ2

)

+ (λ + μ)

(
∂2vR

∂r∂z
+

1

r

∂vR

∂z
+

1

r

∂2vΦ

∂ϕ∂z

)
+ λ ′ ∂vR

∂r
+

λ ′

r

(
∂vΦ

∂ϕ
+ vR

)

+
(
λ ′ + χ ′) ∂vZ

∂z
+ ξ

(
1

r

∂ωR

∂ϕ
−

∂ωΦ

∂r
−

1

r
ωΦ

)
= 0,

(γ1 + γ2 + γ3)

(
∂2ωR

∂r2
+

1

r

∂ωR

∂r
−

1

r2

∂ωΦ

∂ϕ
−

1

r2
ωR

)

+ (γ1 + γ3)

(
1

r

∂2ωΦ

∂r∂ϕ
+

∂2ωZ

∂r∂z

)
+ γ2

(
1

r2

∂2ωR

∂ϕ2
+

∂2ωR

∂z2
−

1

r2

∂ωΦ

∂ϕ

)
(19)

+γ ′
2
∂ωR

∂z
+ γ ′

3
∂ωZ

∂r
+ ξ

(
∂vΦ

∂z
−

1

r

∂vZ

∂ϕ
+

(
α + f ′) ωR

)
= 0,
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γ1 + γ2 + γ3

r2

(
∂2ωΦ

∂ϕ2
+

∂ωR

∂ϕ

)
+

γ1 + γ3

r

(
∂2ωR

∂r∂ϕ
+

∂2ωZ

∂ϕ∂z

)
+ γ ′

2
∂ωΦ

∂z

+γ2

(
1

r2

∂ωR

∂ϕ
+

∂2ωΦ

∂r2
+

1

r

∂ωΦ

∂r
+

∂2ωΦ

∂z2
−

1

r2
ωΦ

)
+

γ ′
3

r

∂ωZ

∂ϕ

+ξ

(
∂vZ

∂r
−

∂vR

∂z
+

(
α + f ′) ωΦ

)
= 0

(γ1 + γ3)

(
∂2ωR

∂r∂z
+

1

r

∂ωR

∂z
+

1

r

∂2ωΦ

∂ϕ∂z

)
+ γ2

(
∂2ωZ

∂r2
+

1

r

∂ωZ

∂r
+

1

r2

∂2ωZ

∂ϕ2

)

+ (γ1 + γ2 + γ3)
∂2ωZ

∂z2
+ γ ′

1
∂ωR

∂r
+

γ ′
1
r

∂ωΦ

∂ϕ
+

γ ′
1
r

ωR +
(
γ ′

1 + γ ′
2 + γ ′3

) ∂ωZ

∂z

+ (λs + 2μα − χ)

(
1

r

∂vR

∂ϕ
−

1

r
vΦ −

∂vΦ

∂r
+ 2αωZ

)
= 0.

Substitution

vR = VR (r, z) cos nϕ, vΦ = VΦ (r, z) sin nϕ, vZ = VZ (r, z) cos nϕ,

ωR = ΩR (r, z) sin nϕ, ωΦ = ΩΦ (r, z) cos nϕ, ωZ = ΩZ (r, z) sin nϕ,

n = 0, 1, 2, ...

allows us to separate the variable ϕ in these equations, reducing the stability analysis
to the solution of homogeneous boundary problem (13), (14) and (19) for a system
of six partial differential equations in the six unknown functions of two variables
r, z.

4 Axisymmetric Buckling Modes

In the special case of axisymmetric perturbations (n = 0) the use of substitution

vR = VR (z) J1 (βr) , vΦ = 0, vZ = VZ (z) J0 (βr) ,
ωR = 0, ωΦ = ΩΦ (z) J1 (βr) , ωZ = 0,

(20)

β = ζm/r1, J1 (ζm) = 0, m = 1, 2, ...

leads to the separation of variable r in the equations of neutral equilibrium and allows
to satisfy the linearized boundary conditions (14) at the edge of the plate.
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By taking into account the relations (20), the linearized equilibrium equations
(19) are written as follows:

(μ + κ) V ′′
R +

(
μ ′ + κ ′) V ′

R − (λ + χ) β2VR − (λ + μ) βV ′
Z−

− βμ ′VZ + θΩ ′
Φ + θ ′ΩΦ = 0,

(λ + χ) V ′′
Z +

(
λ ′ + χ ′)V ′

Z − (μ + κ)β2VZ + (λ + μ)βV ′
R+ (21)

+ βλ ′VR − θβΩΦ = 0,

γ2Ω
′′
Φ + γ ′

2Ω
′
Φ +

[(
α + f ′) θ − γ2β

2
]
ΩΦ − θV ′

R − βθVZ = 0.

Here we use the following notation

θ = λs + μ
(
α + f ′) − χ.

The linearized boundary conditions on the faces of the plate (13) take the form:

(μ + κ) V ′
R − μβVZ + θΩΦ = 0, βλVR + (λ + χ) V ′

Z = 0, Ω ′
Φ = 0. (22)

Thus, in the case of axisymmetric perturbations, the stability analysis of the inhomo-
geneous circular plate is reduced to solving a linear homogeneous boundary-value
problem (21) and (22) for a system of three ordinary differential equations.

5 Symmetric Plate

It is easy to show that if the functions describing the change in the elastic parameters
of the plate through the thickness are even, i.e. λ(z) = λ(−z), μ(z) = μ(−z),
κ(z) = κ(−z), γ1(z) = γ1(−z), γ2(z) = γ2(−z), γ3(z) = γ3(−z), then the boun-
dary-value problem (21), (22) has two independent sets of solutions
[16], [18].
The First set is formed by solutions for which the deflection of a plate is an odd
function of z (symmetric buckling):

VR(z) = VR(−z), VZ(z) = −VZ(−z), ΩΦ(z) = −ΩΦ(−z).

For the Second set of solutions, on the contrary, the deflection is an even function
of z (bending buckling):

VR(z) = −VR(−z), VZ(z) = VZ(−z), ΩΦ(z) = ΩΦ(−z).
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Due to this property of boundary-value problem (21) and (22), for the study of
stability it is sufficient to consider only the upper half of the inhomogeneous plate
(0 � z � H/2). The boundary conditions at z = 0 follows from the evenness and
oddness of the unknown functions VR, VZ, ΩΦ:

(a) for the First set of solutions:

V ′
R(0) = VZ(0) = ΩΦ(0) = 0, (23)

(b) for the Second set of solutions:

VR(0) = V ′
Z(0) = Ω′

Φ(0) = 0. (24)

Thus, in the case of symmetric inhomogeneous plate, the stability analysis is reduced
to solving two linear homogeneous boundary-value problems—(21), (22), (23) and
(21), (22), (24)—for a system of three ordinary differential equations.

6 Conclusion

In the framework of bifurcation approach, the stability of an inhomogeneous circular
plate subjected to radial compression and composed of a micropolar material is stud-
ied. For the physically linear micropolar material, a system of linearized equilibrium
equations (19) is derived, which describes the behavior of the inhomogeneous plate
in a perturbed state. Using special substitution (20) this equations are simplified and
the linearized boundary-value problem is formulated for the case of an axisymmetric
perturbations. Namely, the stability analysis is reduced to solving a linear homoge-
neous boundary problem (21) and (22) for a system of three ordinary differential
equations.

It was also shown that, if the inhomogeneous plate is symmetric with respect
to the middle surface z = 0, then the stability analysis is reduced to solving two
independent linear homogeneous boundary-value problems for the half-plate—(21),
(22), (23) and (21), (22), (24).

For specific micropolar materials all formulated boundary-value problems can be
solved numerically using the same method as in [17] and [18].
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