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Abstract One previously developed essentially nonlinear continuum model for a
bi-atomic lattice is examined by comparing with the continuum limit of generalized
Born-Huang model. It is found that these models do not correspond to each other,
while the coefficients of the last model may be evaluated for real bi-atomic crystals.
Some new features of the strain waves in the lattice are revealed on the basis of exact
traveling wave solutions of the generalized Born-Huang model.

1 Introduction

Deep variations in the structure of a crystalline lattice, allows description of the
cardinal, qualitative variations of the cell properties, lowering of potential barriers,
switching of interatomic connections, arising from singular defects and other dam-
ages, phase transitions. Recently an essentially proper structural nonlinear model has
been developed in [1, 2] that treats a continuum approach and a crystal translational
symmetry of the bi-atomic lattice without making a continuum limit of its discrete
model. According to [1, 2], the following variables are introduced in the 1D case:

U =
m1U1 + m2U2

m1 + m2
, u =

U1 − U2

a

A. V. Porubov · E. L. Aero · B. R. Andrievsky
Institute of Problems in Mechanical Engineering Bolshoy, av. 61, V.O., 199178
Saint-Petersburg, Russia
e-mail: alexey.porubov@gmail.com

E. L. Aero
e-mail: 16aero@mail.ru

B. R. Andrievsky
e-mail: bandri@yandex.ru

H. Altenbach et al. (eds.), Generalized Continua as Models for Materials, 283
Advanced Structured Materials 22, DOI: 10.1007/978-3-642-36394-8_16,
© Springer-Verlag Berlin Heidelberg 2013



284 A. V. Porubov et al.

where a is a period of the lattice, U is a macro-displacement and u is a relative
micro-displacement for the pair of atoms with masses m1, m2. Then the density of
kinetic energy is introduced,

K =
ρU2

t

2
+

μu2
t

2
(1)

where ρ and μ are an average density of the mass of the atoms and a so-called
density of the reduced masses of the pair of the atoms respectively. The internal
density energy Π is suggested in [1, 2] as

Π =
E U2

x + κ u2
x

2
+ (p − SUx)(1 − cos(u)) (2)

where E and κ are the second order macro-and micro-elastic constants, p is an energy
of activation of interatomic connections in the elementary cell, S is the coefficient of
nonlinear striction (re-arrangement of the microstructure under the action of macro-
scopic strains). The term (1−cos(u)) was chosen to take into account a translational
symmetry of the crystalline lattice. It accounts for a strong or essential nonlinearity
allowing transition of atoms in neighboring cells to realize the micro-mechanism
of the cardinal re-arrangement of the structure. The weakly nonlinear models give
rise to only the description of small variations in the position of the atoms around
undisturbed state.

The governing equations are obtained using the variation Hamilton-Ostrogradsky
principle, and the coupled equations for U and u are obtained in the form

ρUtt − E Uxx = S(cos(u) − 1)x, (3)

μutt − κuxx = (SUx − p) sin(u) (4)

The model eqs. (3), (4) possess interesting localized wave solutions describing varia-
tions in the amplitude of the localized defect u as well as simultaneous propagation of
the bell-shaped and kink-shaped defects u due to an influence of an external loading
Ux, see [3–5]. However, the model (3), (4) is based on some suggestions, mentioned
above. These suggestions are given on the basis of physical reasons, but they are
not justified enough. Also the constants E, S, μ, κ and p are not defined for real
bi-atomic materials, and application of the solutions to Eqs. (3), (4) is questionable.
To overcome this difficulty, a comparison may be done with a continuum limit of
the discrete equations accounting for the bi-atomic lattice. A natural candidate is
the familiar Born-Huang model for bi-atomic lattices [6, 7]. However, this model is
linear, and its extension by the nonlinear case is needed. It will be done further in this
paper. It seems that possible correspondence may help to check the suggestions about
the expressions for the energies (1), (2) and to estimate the values of the constants
of the model (3), (4).
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2 Generalization of the Born-Huang Lattice Model

The Born-Huang model accounts for a lattice that is a chain of the atoms of two kinds
interacting with each other. The interaction is modeled by elastic springs with equal
stiffness, see Fig. 1. Consider an elementary cell (marked in Fig. 1) with displacement
ul for the mass m1 and displacement vl for the mass m2. Two possible elementary
cells are marked in Fig. 1, the choice depends on the mass that is placed ahead, heavier
or lighter. First the Born-Huang model is generalized up to a weakly nonlinear level.
The discrete equations of motion for the elementary cell are written as

m1 ul,tt = C[(vl+1 − ul) − (ul − vl−1)] + P[(vl+1 − ul)
2 − (ul − vl−1)

2],

m2 vl,tt = C[(ul+1 − vl) − (vl − ul−1)] + P[(ul+1 − vl)
2 − (vl − ul−1)

2],

where C and P are the coefficients of the linear and nonlinear stiffness respectively.
The continuum long-wave limit of these equations up to the terms of order O(a3) is

m1 utt = 2C (v − u) + 4a P(v − u)vx + C a2vxx, (5)

m2 vtt = 2C (u − v) + 4a P(u − v)ux + C a2uxx. (6)

A comparison with the model (3), (4) requires transition to the variables,

U =
m1u + m2v

m1 + m2
, V =

u − v

a
.

that have the same meaning as for the model (3), (4). Then the continuum eqs. (5),
(6) are transformed to the coupled equations for the new variables,

(m1 + m2)Utt − 2a2 CUxx − 4a3 PVVx +
a3 C(m1 − m2)

m1 + m2
Vxx = 0, (7)

x

m1 m2

m1 m2

Fig. 1 Two kinds of establishing elementary cells in bi–atomic Born–Huang lattice. Two choices
of an elementary cell are marked by dashed lines
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m1m2a
2

m1 + m2
Vtt +

a4 Cm1m2

(m1 + m2)2
Vxx + 2a2(C + 2a PUx)V

+
a3 C(m1 − m2)

m1 + m2
Uxx = 0. (8)

A comparison will be done first between the linearized versions of Eqs. (3), (4)
and (7), (8). Then Eqs. (7), (8) will be compared with the weakly nonlinear limit
of Eqs. (3), (4) resulting from application of the power series expansions of the
trigonometric functions. Finally, an essentially nonlinear extension of Eqs. (7), (8)
will be suggested to compare with Eqs. (3), (4).

3 Comparison of the Models

The linearized equations (3), (4),

ρUtt − E Uxx = 0, (9)

μutt − κuxx = 0. (10)

demonstrate no coupling and no acoustical and optical branches in the dispersion
relation. On the contrary, the Born-Huang model (linearized Eqs. (7), (8)),

(m1 + m2)Utt − 2a2 CUxx +
a3 C(m1 − m2)

m1 + m2
Vxx = 0, (11)

m1m2a
2

m1 + m2
Vtt +

a4 Cm1m2

(m1 + m2)2
Vxx +

a3 C(m1 − m2)

m1 + m2
Uxx = 0, (12)

possesses both branches [6]. Also, one can note that the coefficients in Eqs. (9), (10)
are independent, while they depend on each other in Eqs. (11), (12).

The weakly nonlinear limit of Eqs. (3), (4) is obtained by expanding the trigono-
metric functions and retaining only the first terms in the expansions,

ρUtt − E Uxx = −S uux, (13)

μutt − κuxx = (SUx − p) u. (14)

A comparison with Eqs. (7), (8) may be done using exact traveling wave solutions
depending only on the phase variable θ = x − c t. Two kinds of decoupling are
possible for Eqs. (13), (14). The Eq. (13) may be resolved for Uθ,

Uθ =
S u2 − 2σ

2(E − ρ c2)
, (15)
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and Eq. (14) becomes an equation for finding the function u after substitution of
Eq. (15). Alternatively, Eq. (13) gives rise to the relationship for u,

u =

√
2((E − ρ c2)Uθ − σ)

S
, (16)

while the function U is defined from Eq. (14) after substitution of Eq. (18). In both
cases σ is a constant of integration.

Only the first kind of decoupling is realized for solving Eqs. (7), (8). Thus, Eqs. (7)
yields

Uθ =
2a3PV2 + σ

c2(m1 + m2) − 2Ca2
+

(m2 − m1)C a3Vθ

(m1 + m2)(c2(m1 + m2) − 2Ca2)
(17)

that is used for derivation of the governing equation for V from Eq. (8). One can note
that the second term in Eq. (17) depends on the difference of the masses mi.

Despite the relationships for Uθ for both models are different due to the last term
in Eq. (17), the resulting ordinary differential equations (ODE) for the functions u

and V are similar. Thus, Eq. (14) transforms to the ODE reduction of the modified
Korteweg - de Vries (mKdV) equation,

(uθ)2 = b1u
4 + b2u

2 + b3,

b1 =
S2

4
(
κ − c2μ

) (
E − c2ρ

) , b2 = −

(
p(E − c2ρ) + Sσ

)

(
κ − c2μ

) (
E − c2ρ

) , b3 − const.

while for the generalized Born- Huang model substitution of Eq. (17) into Eq. (8)
results in the same ODE for the function V ,

(Vθ)2 = q1V
4 + q2V

2 + q3,

but with different coefficients,

q1 =
2a4P2

C2a4 − m1m2c4
, q2 =

2(2aPσC(m1 + m2)c
2 − 2C2a2)

C2a4 − m1m2c4
, q3 − const.

The known solitary wave solution of the mKdV equation is be written for u,

u =
2
√

p
(
c2ρ − E

)
− Sσ

S
sech

⎛

⎝

√
p

(
E − c2ρ

)
+ Sσ

√(
κ − c2μ

) (
E − c2ρ

) (θ − θ0)

⎞

⎠ (18)

while the same solution for V is
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V =

√
2C2a2 − c2C(m1 + m2) − 2aPσ√

2a2P

sech

(√
2
√

2C2a2 − c2C(m1 + m2) − 2aPσ
√

−C2a4 + c4m1m2

(θ − θ0)

)

. (19)

However, the reality of the parameters of the solutions depend on the coefficients
of the equation. The coefficients are independent for the model (13), (14), then
the solution (18) exists, in particular, for σ = 0. It follows from Eq. (15) that Uθ

vanishes at θ → ±∞, and the solitary wave of the moving defect u is accompanied
by the solitary wave of an external loading, or a macro-strain, Uθ. However, the
coefficients of Eqs. (7), (8) do not allow the value of the velocity c at σ = 0 for the
solution (19). It means that the macro-strain wave Uθ (17) cannot vanish at infinities,
and a constant external loading is needed to support the localized wave of defects
V in this case. Typical shapes of the wave (17) are shown in Fig. 2 in the form of
a localized wave but with constant negative shift that has a meaning of an external
longitudinal compression. The shape of the wave is not symmetric with respect to
its peak contrary to the symmetric shape of the solution (15). Also a trough appears
ahead or behind the wave depending on the ratio of the masses, mi.

Similarly the essentially nonlinear case may be considered. However, the weakly
nonlinear Eqs. (7), (8) should be extended up to the essential level in the same manner
as Eqs. (3), (4) are reduced up to the weakly nonlinear level, (13), (14). Now we
assume that the nonlinear terms in Eqs. (7), (8) are the “traces” of the expansions
of the trigonometric functions. Then the essentially nonlinear generalization of the
continuum limit of the Born-Huang model is suggested in the form

(m1 +m2)Utt −2a2CUxx −4a3P(1−cos V)x +
a3C(m1 − m2)

m1 + m2
Vxx = 0 (20)

Fig. 2 Solitary wave with a constant shift (shown by dashed line), m1 < m2 (left), m1 > m2
(right)



Nonlinear Generalizations of the Born-Huang Model and Their Continuum Limits 289

m1m2a
2

m1 + m2
Vtt +

a4 Cm1m2

(m1 + m2)2
Vxx

+2a2(C + 2a PUx) sin V +
a3 C(m1 − m2)

m1 + m2
Uxx = 0.

(21)

Again a comparison is done using exact traveling wave solutions to Eqs. (3), (4)
and Eqs. (20), (21). Two kinds of decoupling are possible for Eqs. (3), (4):

Uθ =
S (1 − cos u) − σ

2(E − ρ c2)

or

u = arccos

(
(ρ c2 − E)Uθ − σ

S
+ 1

)

.

Only the first kind is realized for the generalized essentially nonlinear Born-Huang
model, (20), (21),

Uθ =
a3P(1 − cos V) + σ

c2(m1 + m2) − 2Ca2
+

(m2 − m1)C a3Vθ

(m1 + m2)(c2(m1 + m2) − 2Ca2)
(22)

The equations both for the functions u and V have the form of the ODE reduction of
the Double Sine-Gordon equation. In particular, substitution of Eq. (22) into Eq. (21)
of the generalized essentially nonlinear Born-Huang model results in

(
m1m2a2(c2 + C a2)

m1 + m2
−

(m1 − m2)2C2 a6

(m1 + m2)2((m1 + m2)c2 − 2C a2)

)

Vθθ

+ 2a2

(

C +
2AP(4a3P + σ)

(m1 + m2)c2 − 2C a2

)

sin V −
4a4P

(m1 + m2)c2 − 2C a2
sin(2V) = 0.

(23)

The substitution of variable V = 2 arctanW(θ) allows us to convert Eq. (23)
to the form of the mKdV equation for the function W. Then a comparison is done
using already noted solitary wave solution. It turns out that the main deviations in
the solutions are the same as in the weakly nonlinear case. Again the generalized
essentially nonlinear Born-Huang model does not possess the bell-shaped solution
for Uθ without constant shift, σ, while the shape of the wave Uθ is similar to that
shown in Fig. 2.
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4 Conclusions

The essentially nonlinear continuum model (3), (4) and the continuum limit of the
discrete Born-Huang model do not correspond to each other at the linearized, weakly
nonlinear and essentially nonlinear levels. The distinct features of the last model
are the dependence of the profile of the solution on the ratio between the masses
mi of the atoms of the lattice and the need in a shift σ for the existence of the
solution for the macro-strain Uθ needed for propagation of localized defects V .
Therefore, both models similarly describe propagation of localized defects but under
different loading, Uθ ( with or without constant part or a pedestal). The coefficients
in the continuum equations of the generalized Born- Huang model depends on the
interaction forces of the lattice that makes possible their evaluation for real bi-atomic
materials.

However, the essentially nonlinear continuum model (3), (4) corresponds well to
the structural essentially nonlinear model after G. Pouget, G.A. Maugin and M.K.
Sayadi [8, 9] for a one-dimensional atomic chain equipped with rotatory molecular
groups. Therefore, all the solutions obtained in Refs. [3–5] may be successfully
applied in this problem.
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