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Abstract The method of description of thermal and micro-structural processes,
developed by P.A.Zhilin is discussed. The main idea of the method consists of trans-
formation of the energy balance equation to a special form called the reduced equation
of energy balance. This form is obtained by separation of the stress tensors into elastic
and dissipative components and introduction of quantities characterizing the physical
processes associated with neglected degrees of freedom. As a result the energy bal-
ance equation is divided into two or more parts, one of them is the reduced equation
of energy balance, and the rest have a sense of heat conduction equation, diffusion
equation, equation of structural transformations, etc. We discuss the applicability of
this method to generalized continua, in particular, to media with rotational degrees
of freedom and media with microstructure. Comparative analysis of various modifi-
cations of Zhilin’s method, differed in the way of temperature, entropy and chemical
potential introduction, is carried out.

1 Introduction

The idea of generalized continua goes back to the work of the Cosserat brothers [6].
The main idea of generalized continua is to consider extra degrees of freedom for
material points in order to be able to better model materials with microstructure in the
framework of continuum mechanics. Many developments have been reported since
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the seminal work of the Cosserat brothers (see [8, 13, 18, 25, 26] and references
therein). One of the most fundamental references on the theory of polar media is
the paper written by Kafadar and Eringen [9, 14], where the nonlinear Cosserat
medium of a general type is considered. The more recent developments can be seen
in [4, 7, 10, 21, 24] and references therein. Due to the effort of Eringen and his
contemporaries Cosserat’s theory appreciably evolved, however, after a time the
interest in studying of the Cosserat 3D-continuum began to wane. One of the reasons
was that the attempts to determine the additional elastic moduli experimentally were
not successful. At the same time the effect of these constants is so small that in fact
the Cosserat theory of elasticity does not provide any improvement in comparison
with the classical theory of elasticity.

At the beginning of XXI century a new method of describing of various inelastic
processes in solids and multicomponent mixtures by means of the Cosserat con-
tinuum was proposed by P. A. Zhilin (see original papers [1, 30–33] and books
[34, 35] based on these papers). One of the key ideas of the method consists in
the separation of force and moment stresses into elastic and inelastic (dissipative)
components. To describe the inelastic processes associated with phase transitions
and structural transformations, plastic flow, dynamics of bulk solids, dynamics of
granular media, fragmentation and defragmentation of materials, particle diffusion,
chemical reactions, etc. it is important to introduce the additional state variables
such as temperature, entropy, chemical potential and particle distribution density. In
fact, the introduction of these quantities in continuum mechanics should be consid-
ered as an attempt to take into account the microstructural processes at the macro
level by means of some integral characteristics. Zhilin’s method tolerates various
modifications of the definitions of entropy and chemical potential as well as other
state variables being quantities that cannot be measured. In this paper we consider
different ways of introduction of such quantities and carry out their comparative
analysis.

The paper is organized as follows. In Sect. 2, in order to describe structure modi-
fications, we introduce the density of particle distribution as an independent charac-
teristic and recall the basic balance equations for the spatial distribution. Following
Zhilin [32, 34] in Sect. 3 we rewrite the energy balance equation in a special form
called the reduced equation of energy balance. This form is obtained by separa-
tion of the stress tensors into elastic and dissipative components and introduction of
quantities characterizing the physical processes associated with neglected degrees of
freedom. As a result the energy balance equation is divided into two or more parts,
one of them is the reduced equation of energy balance, and the rest have a sense
of heat conduction equation, equation of structural transformations, etc. Section 4
aims at comparison of Truesdell’s and Zhilin’s methods of constitutive equations
derivation and provides some constitutive equations for the dissipative part of stress
tensors. In Sect. 5 we discuss in details the different ways of the entropy and chemical
potential introduction and compare these approaches in Sect. 6.
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2 Balance Equations for Cosserat Continuum with
Microstructure

The majority of the researches were focused on the fact that in a continuum one
has to define translations and rotations independently (or in other words, one has to
establish force and moment actions as it was done by Euler). Therefore one sym-
metric stress tensor is not enough to represent the response of the continuum on the
external loading. As a result two independent laws of motion appear: the balance
of momentum and the balance of angular momentum. Another internal degree of
freedom which can be considered explicitly is the distribution of the particle density.
Considering this quantity independently of mass density allows to take into account
media microstructure changes due to its fragmentation or particle diffusion. Further
we formulate the balance equations for a continuum with angular degrees of freedom
and microstructure.

Let us choose an inertial reference system and observe the volume V (control
volume) fixed in the reference system and containing some amount of body-points.
It is assumed that a body-point occupies zero volume and has both translational and
angular degrees of freedom. To derive dynamical equations of the continuum we
apply the spatial description. Let vector r determine a position of some point of
space. We denote a mass density of the material medium in the point of space by
ρ(r, t), a velocity field by v(r, t), fields of rotation tensor and angular velocity vector
of the body-point by Q(r, t) and ω(r, t).

The local form of the mass conservation law can be written as:

δρ

δt
+ ρ ∇ · v = 0. (1)

Here δ/δt is the material derivative, ∇ denotes the nabla operator.
In addition to the mass density we introduce a particle density n(r, t) as an inde-

pendent variable. Such differentiation is important, for example, when the material
tends to fragmentation, as in this case the mass is preserved, but the number of par-
ticles changes. In other words considering the particle density as an independent
characteristic corresponds to introducing an additional degree of freedom which
accounts for structural changes. As a result an additional balance equation for the
new variable has to be formulated. This equation can be written by analogy to Eq. (1)
with a source term. Thus, the particle balance equations takes the form [1, 35]

δn

δt
+ n∇ · v = χ. (2)

Here χ is the rate of particle production per unit volume.
From combination of Eqs. (1) and (2) it follows that

δz

δt
= −

χ(r, t)

n(r, t)
, z ≡ ln

(
ρ(r, t)n0(r)
ρ0(r)n(r, t)

)
, (3)
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where n0(r) and ρ0(r) are reference distributions of densities of particles and mass.
To formulate the rest of the balance equations we assume that the kinetic energy

of the substance K in the control volume V is an additive function of mass, and thus
can be written in terms of a kinetic energy mass density κ

K =

∫

V

ρ κ dV.

Then, following [32, 35], we postulate that κ is a quadratic form of translational and
angular velocities of the body-point

κ =
1

2
v · v + v · B · ω +

1

2
ω · C · ω, (4)

where B = Q · B0 · QT and C = Q · C0 · QT are the mass densities of the inertia
tensors of the body-point. B0 and C0 are the inertia tensors in the reference state per
unit mass. Q is a rotation tensor. It relates to ω by the equation:

dQ(r, t)

dt
= ω(r, t) × Q(r, t)

Then the linear momentum is defined by expression

K1 =

∫

V

ρ K1 dV, K1 =
∂κ

∂v
= v + B · ω, (5)

where K1 is the mass density of momentum.
The angular momentum calculated relative to the origin is defined as:

K2 =

∫

V

ρ K2 dV, K2 = r × K1 + L, (6)

where

L ≡ ∂κ

∂ω
= v · B + C · ω (7)

is the mass density of the dynamic spin.
Euler’s first dynamical law momentum balance equation for the control volume

V bounded by smooth surface Σ within the spatial description may be written

d

dt

∫

V

ρ K1 dV =

∫

V

ρ F dV +

∫

Σ

(Tn − ρ n · vK1) dΣ, (8)
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where d/dt is the total time derivative, F is an external force per unit mass, Tn is a
stress vector acting upon an elementary surface, n is normal to this surface.

The local form of Euler’s first dynamical law is:

ρ
δ

δt
K1 = ∇ · T + ρ F, (9)

where T is the Cauchy stress tensor (Tn = n · T).
Euler’s second dynamical law (the equation for balance of the angular momentum)

within spatial description is as follows:

d

dt

∫

V

ρ K2 dV =

∫

V

ρ (r × F + L) dV +

∫

Σ

(r × Tn + Mn − ρ n · vK2) dΣ, (10)

where L is an external moment per unit mass, Mn is a moment acting upon a surface
with the normal n.

Using Euler’s first dynamical law one can obtain the local form for Euler’s second
dynamical law for a generalized continuum

ρ
δ

δt
K2 = ∇ · M + T× + ρ L, (11)

where M is a couple tensor introduced in analogy to the stress tensor, T× is a vector
invariant of a second rank tensor. For the dyad ab it is defined by (ab)× = a × b.
The material derivative of the angular momentum has the form:

δ

δt
K2 = v × K1 +

δ

δt
L = v × B · ω +

δ

δt
L (12)

The first law of thermodynamics (the energy balance equation) states that there
is a function of state U (called internal energy) satisfying the equation

d

dt
(K + U) = Ne + Q, (13)

where Ne is the power of external forces, Q is the energy supply from external
sources per unit time.

The definition of internal energy is less formal than that of the kinetic energy. As
a matter of fact, the internal energy is the energy of motion on degrees of freedom
which are ignored in the model under consideration. Indeed, the momentum balance
equation and the angular momentum balance equation are obtained by choosing the
kinetic energy as a quadratic form of translational and angular velocities correspond-
ing to the translational and rotational degrees of freedom. Other degrees of freedom
that are ignored in the kinetic energy are taken into account by means of the internal
energy. As a rule the sense of the internal energy depends on the mathematical model
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used for description of the system. For example, in classical equilibrium thermody-
namics the internal energy of the ideal gas is an additive function of the number of
particles and proportional to the temperature [19, 23]. In statistical thermodynamics
the internal energy is determined by the elastic interactions of the particles, and for
the ideal gas it is equal to zero [16]. The difference between the approaches can not
give the cause for doubts about their correctness. The fact is that the internal energy
is a quantity that cannot be measured, and so there are no physical experiments which
let us know what the internal energy of the system under consideration is.

Usually in many continuum mechanics applications the internal energy is an
additive function of the mass [20, 27, 29]. Here we intend to take into account the
structure changes in the media caused by a change of the number of particles in the
medium. Therefore we suppose that the internal energy is an additive function of
the number of particles [32], and we will study the consequences of our supposition.
Thus we accept

U =

∫

V

nu dV,

where u is the specific internal energy.
The power of external forces and coupled forces can be represented in the follow-

ing form:

Ne =

∫

V

ρ (F · v + L · ω) dV +

∫

Σ

(Tn · v + Mn · ω) dΣ (14)

The energy supply per unit time is determined by the adding (moving away) of
new particles to the control volume and by the heat supply per unit time Q which is
the sum of the heat supply per unit time directly in the volume V and through the
boundary of volume Σ

Q =

∫

V

nq dV −

∫

Σ

n · h dΣ −

∫

Σ

n · v(ρ κ + nu)dΣ,

where q is the energy supply per unit time into the particles of the medium, h is the
heat flow.

Taking into account Gauss’ theorem and balance laws (1), (2), (9) and (11) one
can obtain the local form of energy balance equation1

n
δu

δt
= nu

δz

δt
+ TT··(∇v + I × ω) + MT··∇ω − ∇ · h + nq, (15)

where I is a unit tensor. However such a form of the energy balance equation is not
that good since it is not clear on which arguments the internal energy depends. In

1 Details are presented in E.N. Vilchevskaya. Appendix: Formula calculus in [35].
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the following section we will transform (15) to obtain the so-called reduced energy
balance equation.

3 Transformation of the Energy Balance Equation

Let us consider Eq. (15). The right-hand side of this equation contains the power of
forces and moments. A part of this power leads to the change of the internal energy.
The remaining part of the power is partly conserved within the body as heat and is
partly emanated into external medium. In order to separate these parts let us introduce
the following decomposition

T = −(pe + pf)I + τe + τf, M = Me + Mf, tr τe = tr τf = 0, (16)

where the quantities with the index “e” are independent of velocities. These quantities
always affect the internal energy. The quantities with the index “f” account for an
internal friction. These quantities may have an influence on the internal energy but
only by means of additional parameters like entropy or chemical potential. Taking
(16) into account we rewrite the energy balance equation in the form:

n
δu

δt
= nu

δz

δt
− pe∇ · v + τT

e··(∇v + I × ω) + MT
e··∇ω

−∇ · h + nq − pf∇ · v + τT
f ··(∇v + I × ω) + MT

f ··∇ω

(17)

The part of the power of forces and moments that does not depend on velocities
can be represented as:

τT
e··(∇v + I × ω) + MT

e··∇ω = fT
1 ··δE

δt
+ MT

e··δF
δt

+
1

2
fT
2 ··δQ

δt
(18)

fT
1 = −

(
τe + Me · FT

)
· E-T, fT

2 =
(

MT
e · F − τe

)
× × Q,

where the strain measure F and the deformation gradient E are determined by:

∇Q = F × Q, E = I − ∇u (19)

u is a displacement field. From the mass balance it follows that

∇ · v =
ρ

ρ0

δ σ

δt
, σ =

ρ0

ρ
(20)

and as a result the energy balance equation takes the form:
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n
δu

δt
= nu

δz

δt
− pe

ρ

ρ0

δ σ

δt
+ fT

1 ··δE
δt

+ MT
e··δF

δt
+

1

2
fT
2 ··δQ

δt

−∇ · h + nq − pf∇ · v + τT
f ··(∇v + I × ω) + MT

f ··∇ω

(21)

A transformation of the underlined terms is not as formal as the above ones. In
order to state the full form of the reduced equation of the energy balance we need
to define the concepts of temperature, entropy and chemical potential that will be
discussed later.

4 Constitutive Equations

There are several methods of the constitutive equations derivation in continuum
mechanics. We start with comparing Zhilin’s method with one of the best known and
widely used methods—the method of Truesdell.

Truesdell’s method [29] is based on the combined use of the first and second laws
of thermodynamics. The essence of this method is as follows. The second law of ther-
modynamics is written in the form of the Clausius–Duhem inequality. Then some
thermal terms, namely the rate of heat supply per unit volume and divergence of the
heat flow, are excluded from the inequality by means of the energy balance equation.
As a result the so-called reduced dissipation inequality is obtained. It must be satis-
fied for all processes occurring in the medium. Since neither the external mechanical
actions nor the heat supply from external sources are included in the reduced dissipa-
tion inequality this inequality imposes restrictions to the constitutive equations. In the
case of an elastic medium the reduced dissipation inequality allows us to obtain the
Cauchy–Green relations for the stress tensor, moment stress tensor and temperature,
and imposes restrictions to the choice of the constitutive equation for heat flow vec-
tor. After substituting the Cauchy–Green relations into the energy balance equation
and performing some mathematical transformations the heat conduction equation is
obtained. This equation relates the temperature and entropy, divergence of the heat
flow vector and the terms characterizing the rate of heat supply per unit volume. The
heat conduction equation closes the system of equations of coupled problem of ther-
moelasticity. If a medium possesses inelastic properties then the reduced dissipation
inequality does not allow us to obtain the constitutive equations in the formal way
and only makes it possible to eliminate those constitutive equations which contradict
the second law of thermodynamics in the form of the Clausius–Duhem inequality.
Thus other methods of the constitutive equations obtaining should be used, for exam-
ple, the method of rheological models or the method of theory of media with fading
memory. At the same time the statement of the heat conduction equation in the form
that is obtained in the problem of thermoelasticity is an open question.

The basic idea of Zhilin’s method is to transform the energy balance equation into
a special form. During this transformation the stresses are represented as a sum of
elastic and dissipative components, the temperature and entropy are introduced, and
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the energy balance equation is divided into two equations. One of them is the reduced
energy balance equation which contains the internal energy, the elastic components
of stress tensor and moment stress tensor, and also temperature and entropy. Another
equation is the heat conduction equation which contains temperature and entropy,
the dissipative components of stress tensor and moment stress tensor, the divergence
of the heat flow vector, and the terms characterizing the rate of heat supply per unit
volume. In contrast to the reduced dissipation inequality, the reduced energy balance
equation used in Zhilin’s method allows us to obtain the Cauchy–Green relations
for the temperature and the elastic component of the stress tensor in the case of
an inelastic medium. Note that by Zhilin’s method the Cauchy–Green relations are
obtained without use of the second law of thermodynamics, which is used only for
the formulation of the constitutive equations for the dissipative components of stress
tensors and heat flow vector. In addition, Zhilin’s formulation of the second law of
thermodynamics differs from the Clausius–Duhem inequality and represents the set
of two inequalities [32, 35].

h · ∇ϑ � 0, δ = −pf∇ · v + τT
f ··(∇v + I × ω) + MT

f ··∇ω � 0, (22)

where ϑ is the temperature measured by a thermometer. This formulation is more
restrictive than the Clausius–Duhem inequality [28], which follows from Zhilin’s
formulation.

The first inequality expresses the intuitive condition that heat flows in the direction
of the negative gradient of temperature and imposes restriction of the constitutive
equation for heat flow vector. The second one can be associated with the statement
that the dissipative forces and moments can not perform a positive work and imposes
restriction of the constitutive equations for the dissipative components of stress ten-
sors. According to Zhilin [1, 30–35] the components of stress tensors connected
with inelastic behavior and internal dissipation can be related with antisymmetric
tensors. Bellow we give some examples of constitutive equations for the dissipative
components of stress tensors.

To describe the inelastic behavior of solids, for example, plasticity and dynamics
of granular media Zhilin proposed [30–35] the following constitutive equations

pf = 0, τf = I × t, Mf = 0, (23)

where vector t is determined by analogy with the Coulomb dry friction and takes the
form

t = k |n · τe · n|σ(n · τe · n)
2ω − ∇ × v
|2ω − ∇ × v|

, ω �= 1

2
∇ × v. (24)

Here k > 0 is the parameter of friction, and the function σ(n · τe · n) is determined
as follows

σ(n · τe · n) =

{
1, n · τe · n < 0,
0, n · τe · n � 0.

(25)
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The unit vector n in Eq. (24) is found by tensor τe as a solution of the problem

n · τe · m = max, ∀ n, m : |n| = |m| = 1, n · m = 0. (26)

The solution of problem (26) is unique. This fact is proved in [30, 35]. It is easy to see
that the constitutive equations (23), (24) satisfy the second law of thermodynamics
in the form of Eq. (22). Indeed,

τT
f · · (∇v + I × ω) ≡ 2t ·

(
ω −

1

2
∇ × v

)
. (27)

Hence, in view of Eqs. (24), (25) and the fact that k > 0 we have

τT
f · · (∇v + I × ω) = k |n · τe · n|σ(n · τe · n) |2ω − ∇ × v| � 0. (28)

All aforesaid relates to the case of sliding. If there is no sliding, i.e. the condition
2ω = ∇ × v is satisfied, then vector t is found from the equations of motion. To
be exact, by using the equation of the angular momentum balance vector t can be
excluded from the equation of the momentum balance. Note that if there is no sliding,
the friction force is conservative and there is no energy dissipation. In this case the
constitutive equations (23) also satisfy the second law of thermodynamics in the form
of Eq. (22).

In [32, 35] Zhilin noted that in many cases Coulomb dry friction can be replaced
by viscous friction, i.e. instead of Eq. (24) we can use the constitutive equation

t = k

(
ω −

1

2
∇ × v

)
, (29)

where k > 0 is the coefficient of viscous friction.
To describe the behavior of a two-component micropolar medium Zhilin proposed

[1, 34, 35] the constitutive equations for inelastic components of stress tensors which
contain both symmetric and antisymmetric parts. The first component of this medium
is a viscous fluid and the second one is a solid-liquid component consisting of fibres.

The constitutive equations for the fluid component are

p′
f = 0, τ′

f = 2μ · · D + t′ × I, M′
f = 0, (30)

where

D =
1

2

(
∇v1 + ∇vT

1 −
2

3
(∇ · v1)I

)
. (31)

Vector t′ is a vector of viscous friction which depends on the particle distribution
density of the solid-liquid component:
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t′ = η2 μ1 ·
(

ω −
1

2
∇ × v1

)
. (32)

The first term in Eq. (30)2 is a standard term for a viscous fluid. The second
term in Eq. (30)2 characterizes friction due to the presence of a solid-liquid
component.

The constitutive equations for the solid-liquid component are

p′′
f = 0, τ′′

f = t′′ × I, M′′
f = m′′ × I, (33)

where vectors t′′ and m′′ are

t′′ = η2 μ2 ·
(

ω −
1

2
∇ × v2

)
, m = − η2 μ3 (∇ × ω) . (34)

The tensors of viscous friction coefficients must satisfy the relations

∀ a, b, c with c = −cT : a · ·μ · · a � 0, b · μ1 · b � 0, μ3 � 0,

a · ·μ = μ · · a, c · ·μ = 0, I · ·μ = 0, b · μ1 = μ1 · b.

(35)

The inelastic components of stress tensors are responsible for the conversion of
mechanical energy into heat. In accordance with Zhilin’s constitutive equations the
transfer of energy into heat is associated with the motion by rotational degrees of
freedom, i. e. by those degrees of freedom for which there are no elastic interactions.
Note that the classical model of viscous fluid is constructed similarly: the pressure is
assumed to be elastic and depends on the mass density (or volume strain, that is the
same) whereas the viscous stresses are determined by the deviatoric part of the stress
tensor and depend on the deviatoric part of the strain tensor. Thus, in this model
of fluid the dissipation of mechanical energy occurs by degrees of freedom without
elastic interactions. It is not possible within the framework of classical continuum
to implement this principle in relation to the solid where elastic interactions are
described by a symmetric stress tensor. The use of a generalized continuum allows
us to associate mechanical energy dissipation with the degrees of freedom for which
there is no elastic interactions, namely the rotational degrees of freedom which cor-
respond to the moment stress tensor and the antisymmetric parts of the stress tensor.

5 Different Ways of Entropy and Chemical Potential
Introduction

Usually the concepts of temperature, entropy, internal energy and chemical potential
are supposed to be well-known. However, in fact there are no satisfactory definitions
for them in continuum mechanics. The problem is that it is impossible to prove
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that the temperature as it is introduced in thermodynamics or in statistical physics
coincides with the temperature definition as it is used in continuum mechanics. A
situation with the definition of variables that cannot be measured such as the entropy,
internal energy or chemical potential is even more complicated. Such quantities are
characteristics of a mathematical model and they are necessary for obtaining some
relations connecting measurable quantities. Consequently, the preference of this or
that definition is determined by specific features of problems under consideration.

In fact, the entropy is introduced as an attempt to take into account a dependence
of the internal energy on the velocities of the ignored degrees of freedom. There
are different ways of entropy introduction (see [3, 5, 17, 22] for example) and it
is difficult to say unambiguously which of them is more preferable. A new ther-
modynamical quantity—chemical potential is introduced to describe a change of
density of particles. As usual in thermodynamics the chemical potential is defined
as the derivative of the internal energy with respect to the number of particles [12,
23]. However there exist other definitions of the chemical potential. For example,
Baierlein [2] proposed to introduce the chemical potential by describing its properties
instead of explaining the chemical potential by relating it to an energy change. These
ideas have a further development in [11]. Zhilin [32] suggested a new concept of the
chemical potential as a conjugate variable to the number of particles. Its definition is
given by means of pure mechanical arguments, which are based on using a special
form of the energy balance equation.

Further different ways of the entropy and chemical potential introduction based
on the method developed by Zhilin [34, 35] are considered.

5.1 Variant 1

Let us introduce the temperature ϑ(r, t) and entropy η(r, t) by the following equation:

nq − ∇ · h − pf∇ · v + τT
f ··(∇v + I × ω) + MT

f ··∇ω = nϑ
δ η

δt
(36)

The above given definition brings about a few remarks. First, the temperature ϑ is
considered to be some characteristic of the medium that is measured by a thermome-
ter, and the entropy η related to one particle is introduced as a quantity conjugate
with the temperature. Second, since we suppose that the internal energy is an addi-
tive function of the number of particles then it is assumed that the entropy is also
an additive function of the number of particles. Note that this definition of entropy
is different from the definition used, for example, in classical thermodynamics or
physics, where an inequality is introduced. In particular, the proposed definition
does not coincide with the concept of an equilibrium process. The Eq. (36) is the
heat conduction equation, i.e. equation describing a non-equilibrium process.

Accounting for (36) one may rewrite the Eq. (21) in the form:
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n
δu

δt
= nu

δz

δt
− pe

ρ

ρ0

δ σ

δt
+ fT

1 ··δE
δt

+ MT
e··δF

δt
+

1

2
fT
2 ··δQ

δt
+ nϑ

δ η

δt
(37)

It is seen that the internal energy is a function of the following arguments

u = u(z, σ, η, E, F, Q) (38)

Note that from (38) and (47) it follows that

u =
∂u

∂z
(39)

In thermodynamics the derivative of the internal energy with respect to the number of
particles is usually called chemical potential [12, 23]. Introduction of the temperature
and entropy by (36) means that a role of the chemical potential can be played by the
internal energy.

Let us show that the variable z can be excluded from the arguments of the internal
energy. Indeed from (39) it follows that

u = u∗(σ, η, E, F, Q)
ρ0

n0
exp z ⇒ u =

ρ

n
u∗, (40)

where u∗ is a mass density of the internal energy. It should be noted that the last
equation is only valid, if there are no massless particles in the system.

Insertion of (39) into (37) gives

ρ
δu∗
δt

= −
pe

σ

δ σ

δt
+ nϑ

δ η

δt
+

(
E−1 · τT

e + E−1 · F · MT
e

) ··δE
δt

+ MT
e··δF

δt
+

1

2

(
(MT

e · F − τe)× × Q
)T ··δQ

δt

(41)

From the reduced energy balance equation one can derive the Cauchy-Green relations

pe = −
∂ ρ0 u∗

∂ σ
, ϑ =

1
σn

∂ ρ0 u∗
∂η

, σ Me =
ρ0 ∂u∗

∂F
, (42)

σ τe = −
ρ0 ∂u∗

∂E
· ET −

ρ0 ∂u∗
∂F

· FT

and constrains which the internal energy has to satisfy

(
∂u∗
∂E

)T

··E +

(
∂u∗
∂F

)T

··F = 0,

(
∂u∗
∂E

)T

··(A · E) +

(
∂u∗
∂Q

)T

··(A · Q) +

(
∂u∗
∂F

)T

··(A · F − F · A) = 0,

(43)

where A is an arbitrary antisymmetric tensor.
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Note that the function ρ0 u∗ is independent of z. It means that only the constitutive
equation for the temperature depends on the distribution density of the particles. The

heat conduction equation depends on n only by means of nϑ
δ η

δt
, and the chemical

potential does not appear in any equation.
Considering function ρ0 u∗ implies that we assume that the internal energy is an

additive function of mass. In this case it is natural to assume that the entropy is also
additive by mass. Thus instead of (36) we can introduce the temperature and entropy
η∗ by means of

ρq∗ − ∇ · h − pf∇ · v + τT
f ··(∇v + I × ω) + MT

f ··∇ω = ρ ϑ
δ η∗
δt

(44)

Then the reduced equation of the energy balance has the form

ρ
δu∗
δt

= −
pe

σ

δ σ

δt
+ ρ ϑ

δ η∗
δt

+
(

E−1 · τT
e + E−1 · F · MT

e

)
··δE

δt
(45)

+ MT
e··δF

δt
+

1

2

(
(MT

e · F − τe)× × Q
)T ··δQ

δt

All Cauchy-Green relations (42) are still valid except the one for the temperature,
which now has the form

ϑ =
∂u∗
∂η∗

(46)

It is seen that the heat conduction equation (44) as well as the constitutive equations
(42) do not depend on the particle density. Thus the influence of the mechanical
and thermal processes on the change of the particle distribution can be taken into
account only by means of the source term in the particle balance equation (2). So the
stress-strain state and the temperature conditions can affect the changes of particle
distribution density since the source term in the particle balance equation can depend
on all these factors. Hence, this method of temperature and entropy introduction can
be used to describe the structure transformations and phase transitions which occur
without the release or absorption of heat and are not accompanied by significant
changes in the mechanical and thermodynamical characteristics but only leads to
changes in other physical characteristics such as, for example, electrical or magnetic
properties.

5.2 Variant 2

An alternative form of the reduced energy balance equation makes use of the particle
balance equation. We insert (3) into (21) and obtain
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n
δu

δt
= −pe

ρ

ρ0

δ σ

δt
+ fT

1 ··δE
δt

+ MT
e··δF

δt
+

1

2
fT
2 ··δQ

δt

−χu − ∇ · h + nq − pf∇ · v + τT
f ··(∇v + I × ω) + MT

f ··∇ω

(47)

and as a result the source term in the particle balance equation χ appears in the energy
balance equation.

Now let us define the temperature and entropy by the equation

− χu − ∇ · h + nq − pf∇ · v + τT
f ··(∇v + I × ω) + MT

f ··∇ω = nϑ
δ η

δt
(48)

and investigate the consequences. This equation differs from (36) only due to the term
χu standing for the energy supply per unit time caused by the structural transitions
of the medium. Then the reduced energy balance equation takes the form

n
δu

δt
= −

pe

σ

δ σ

δt
+

(
E−1 · τT

e + E−1 · F · MT
e

) ··δE
δt

+MT
e··δF

δt
+

1

2

(
(MT

e · F − τe)× × Q
)T ··δQ

δt
+ nϑ

δ η

δt

(49)

Thus the internal energy is a function of the following independent arguments

u = u(σ, η, E, F, Q) (50)

and the Cauchy-Green relations are

pe = −n σ
∂u

∂ σ
, ϑ =

∂u

∂η
, σ Me = n

∂u

∂F
, (51)

τe = −n
∂u

∂E
· ET − n

∂u

∂F
· FT

The constraints for the internal energy u are the same as they were in Variant 1
for u∗.

Note that now the internal energy does not play role of the chemical potential
as it was in Variant 1. At the same time the heat conduction equation (48) has
a term connected with particle distribution changes and this term depends on the
internal energy. Thus, this method of introduction of temperature can be used to
describe the structure transformations and phase transitions accompanied by the
release or absorption of heat. Note that the first and second variants of derivation
of the constitutive equations and the heat conduction equation are correct both in
the case when the mass density and the particle distribution density are independent
quantities and in the case when they are linearly related (i.e. when the source term
in the particle balance equation is equal to zero).
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5.3 Variant 3

Let us assume that some part of the underlined terms in (21) is responsible for the
change in the number of particles. Therefore, instead of Eq. (36) we will use a more
general equation containing an additional term that accounts for structural transitions.
We denote

nq − ∇ · h − pf∇ · v + τT
f ··(∇v + I × ω) + MT

f ··∇ω = nϑ
δ η

δt
+ ψ

δn

δt
(52)

Analogous to the temperature and entropy, n and ψ appear in Eq. (52) as the conju-
gate variables. Equation (52) is the combined equation of structural transitions (e.g.,
fragmentation) and heat conduction.

Substituting Eq. (52) into (21) after some transformation we obtain the reduced
energy balance equation in the form

δ(nu)

δt
=

pe + nu

ρ

δ ρ

δt
+ fT

1 ··δE
δt

+ MT
e··δF

δt
+

1

2
fT
2 ··δQ

δt
(53)

+ nϑ
δ η

δt
+ ψ

δn

δt

It is significant that such a form of the reduced energy balance equation is valid only
if the mass density and the density of particle distribution are independent variables.

From Eq. (53) there follow the Cauchy-Green relations

pe = ρ2 ∂

∂ρ

(
nu

ρ

)
, ϑ =

1

n

∂(nu)

∂η
, ψ =

∂(nu)

∂n
, (54)

Me =
∂(nu)

∂F
, τe = −

∂(nu)

∂E
· ET −

∂(nu)

∂F
· FT

From Eq. (54)3 it is seen that ψ is a chemical potential. Similar expressions to (54)3
are given in the classical textbooks [15, 19, 20, 23].

Note that Eq. (52) characterizes only overall influence of the entropy and chemical
potential on the internal energy. To clarify their roles in the considered processes it
is necessary to split Eq. (52) into two equations: the heat conduction equation and
the equation of structural transitions.

nϑ
δ η

δt
+ Q = nq1 − ∇ · h1 − p1∇ · v + τT

f ··(∇v + I × ω) + MT
f ··∇ω, (55)

ψ
δn

δt
− Q = nq2 − ∇ · h2 − p2∇ · v (56)

Where the following decompositions are used
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h = h1 + h2, q = q1 + q2, pf = p1 + p2 (57)

The equivalence of Eqs. (52) and (55) is determined by the presence of the undefined
quantity Q characterizing the rate of energy exchange in the processes of the heat
conductivity and the structural transitions.

The definition (55) given above brings about a necessity to formulate constitutive
equations for all new quantities: hi, qi, pi (i = 1, 2) and Q. The following cir-
cumstances have to be taken into account. First, suppose that the expression for the
internal energy u and the source term χ are given. Then we have two equations for
n and ψ—the particle balance equation, and Cauchy-Green relation relating these

quantities. It means that the term ψ
δn

δt
in the equation of structural transformations

is determined. Therefore the constitutive equations for h2, q2, p2 and Q can not be
independent. Second, arbitrarily given constitutive equations for h2, q2, p2 and Q

together with the equation of structural transitions and corresponding Cauchy-Green
relation determines the quantities n and ψ. Then the particle balance equation allows
us to determine the source term χ. Finally a third variant exists. We can arbitrarily
choose the constitutive equations for h2, q2, p2, Q and χ, but in this case there is no
freedom in choosing internal energy.

Introduction of the chemical potential as an independent variable is necessary to
describe the diffusion processes and chemical reactions as well as the structure trans-
formations and phase transitions which are accompanied by the release or absorption
of heat and occur at a constant temperature.

6 Discussion

The investigation carried out shows that the mass density and particle density can be
considered as independent variables without the chemical potential introduction. In
some cases the role of the chemical potential can be played by the internal energy
or the source term in the particle balance equation. Of course there is no reason to
say that there is no necessity for the chemical potential introduction in general. The
preference of this or that approach is determined by specific features of the problems
under consideration. For example, if experimental data allow us to formulate the con-
stitutive equation for the quantity Q characterizing the rate of energy exchange in the
processes of the heat conductivity and the structural transitions, then the third variant
of unmeasurable parameters introduction looks more preferable. In the opposite case
an approach based on smaller amount of the constitutive equations should be chosen.
The first and the second approaches require only the source term χ specification and
do not impose any constraints on the internal energy definition. Thus they are easier
in this sense, but of course a number of problems stays beyond the consideration.

Also it is important to lay stress on the fact that the equations of structural transi-
tions and heat conduction (44), (48) and (52) define not only the entropy and chemical
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potential but also the internal energy. Thus all these quantities should be introduced
simultaneously.

References

1. Altenbach, H., Naumenko, K., Zhilin, P.: A micro-polar theory for binary media with application
to phase-transitional flow of fiber suspensions. Continuum Mech. Thermodyn. 15(6), 539–570
(2003)

2. Baierlein, R.: The elusive chemical potential. Am. J. Phys. 69(4), 423–434 (2001)
3. Boltzmann, L.: Zur Theorie der elastischen Nachwirkung. Kaiserl. Akad. Wiss. Wien. Math.

Naturw. Kl. 70(II), 275–306 (1874)
4. Capriz, G.: Continua with Microstructure. Springer, Berlin (1989)
5. Clausius, R.: On the motive power of heat and on the laws which can be deducted from it for

the theory of heat (translated from German by Magie, W.F.). Dover, New York (1960)
6. Cosserat, E., Cosserat F.: Théorie des corps déformables. Hermann, Paris (1909)
7. Epstein, M., de Leon, M.: Geometrical theory of uniform Cosserat media. J. Geom. Phys. 26,

127–170 (1998)
8. Ericksen, J.L., Truesdell, C.: Exact theory of stress and strain in rods and shells. Arch. Ration.

Mech. Anal. 1, 295–323 (1957)
9. Eringen, A.C.: Theory of Micropolar Elastisity. Academic Press, New York (1968)

10. Eringen, A.C.: Microcontinuum Field Theories. Springer, New York (1999)
11. Job, G., Herrmann, F.: Chemical potential—a quantity in search of recognition. Eur. J. Phys.

27, 353–371 (2006)
12. Gibbs, J.W.: On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Sci. III,

108–248 (1875)
13. Green, A.E., Rivlin, R.S.: Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17,

113–147 (1964)
14. Kafadar, C.B., Eringen, A.C.: Micropolar media-I: the classical theory. Int. J. Eng. Sci. 9,

271–305 (1971)
15. Kondepudi, D., Prigogine, I.: Modern thermodynamics. From Heat Engines to Dissipative

Structures. Wiley, New York (1998)
16. Laurendeau, N.M.: Statistical Thermodynamics—Fundamentals and Applications. Cambridge

University Press, New York (2005)
17. Maugin, G.A.: Thermomechanics of Nonlinear Irreversible Behaviors: An Introduction. World

Scientific, Singapore, New York (1999)
18. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)
19. Müller, I.: A History of Thermodynamics: The Doctrine of Energy and Entropy. Springer,

Berlin (2007)
20. Müller, I., Müller, W.H.: Fundamentals of thermodynamics and applications: with historical

annotations and many citations from Avogadro to Zermelo. Springer, Berlin (2009)
21. Muschik, W., Papenfuss, C., Ehrentraut, H.: A sketch of continuum thermodynamics. J. Non-

newton. Fluid Mech. 96, 255–290 (2001)
22. Nowacki, W.: Dynamic Problems of Thermoelasticity. Polish Scientific Publisher, Warszawa

(1975)
23. Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes. Charles C. Thomas

Publishers, Springfield (1955)
24. Slawianowski, J.J.: Classical and quantized affine models of structured media. Meccanica 40,

365–387 (2005)
25. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414

(1962)



Description of Thermal and Micro-Structural Processes in Generalized Continua 197

26. Toupin, R.A.: Theories of elasticity with couple stresses. Arch. Rational Mech. Anal. 17, 85–
112 (1964)

27. Truesdell, C., Toupin, R.A.: The classical field theories. In: Flügge, S. (ed.) Encyclopedia of
Phycics, vol. III/1. Springer, Heidelberg (1960)

28. Truesdell, C.: Rational Thermodynamics. Springer, New York (1984)
29. Truesdell, C.: The Elements of Continuum Mechanics. Springer, New York (1965)
30. Zhilin, P.A.: Basic equations of the theory of non-elastic media. Proc. of the XXVIII Summer

School ”Actual Problems in Mechanics”. St. Petersburg, pp 14–58 (in Russ.) (2001)
31. Zhilin, P.A.: Phase Transitions and General Theory of Elasto-Plastic Bodies. Proc. of XXIX

Summer School - Conference ”Advanced Problems in Mechanics”. St. Petersburg, pp 36–48
(2002)

32. Zhilin, P.A.: Mathematical theory of non-elastic media. Uspechi mechaniki (Advances in
Mechanics) 2(4), 3–36 (in Russ.) (2003)

33. Zhilin, P.A.: On the general theory of non-elastic media. Mechanics of materials and strength
of constructions. Proc. of St. Petersburg State Polytechnical University, vol. 489, pp 8–27 (in
Russ.) (2004)

34. Zhilin, P.A.: Advanced Problems in Mechanics, vol. 2, St. Petersburg (2006)
35. Zhilin, P.A.: Racional’naya mekhanika sploshnykh sred (Rational Continuum Mecanics, in

Russ.). Politechnic university publishing house, St. Petersburg (2012)


	10 Description of Thermal and Micro-Structural Processes in Generalized Continua: Zhilin's Method and its Modifications
	1 Introduction
	2 Balance Equations for Cosserat Continuum with Microstructure
	3 Transformation of the Energy Balance Equation
	4 Constitutive Equations
	5 Different Ways of Entropy and Chemical Potential Introduction
	5.1 Variant 1
	5.2 Variant 2
	5.3 Variant 3

	6 Discussion
	References


