
Chapter 9
Applied Methods and Techniques for Modeling
and Control on Micro-Blog Data Crawler

Kai Gao, Er-Liang Zhou and Steven Grover

Abstract Models can provide mechanisms to improve system performance. This
chapter presents the applied methods and techniques for modeling and controlling
on micro-blog crawler. With the rapid development of social studies and social net-
work, millions of people present or comment or share their opinions on the platform
everyday, and as a result, produce or spread their opinions and sentiments on dif-
ferent topics. The microblog has been an effective platform to know or mine social
opinions. In order to do so, crawling the relevant microblog data is necessary. But it
is hard for a traditional web crawler to crawl micro-blog data as usual, as by using
Web 2.0 techniques such as AJAX, the micro-blog data is dynamically generated
rapidly. As most microblogs’ official platforms cannot offer some suitable tools or
RPC interface to collect the big data effectively and efficiently, we present an algo-
rithm on modeling and controlling on micro-blog data crawler based on simulating
browsers’ behaviors. This needs to analyze the simulated browsers’ behaviors in
order to obtain the requesting URLs to simulate and parse and analyze the sending
URL requests according to the order of data sequence. The experimental results and
the analysis show the feasibility of the approach. Further works are also presented
at the end.

Keywords Models · Social networks · Micro-blog · Crawler

K. Gao (B) · E.-L. Zhou
School of Information Science and Engineering, Hebei University of Science and Technology,
No. 26 YuXiang Road, Shijiazhuang, 050000, Hebei, China
e-mail: gaokai@hebust.edu.cn

S. Grover
Comrise Company, Concord Center Building 2, Hazlet, NJ, 07730, USA
e-mail: steven@comrise.com

L. Liu et al. (eds.), Applied Methods and Techniques for Mechatronic Systems, 171
Lecture Notes in Control and Information Sciences 452,
DOI: 10.1007/978-3-642-36385-6_9, © Springer-Verlag Berlin Heidelberg 2014



172 K. Gao et al.

9.1 Background

Nowadays, most of the research in the fields of mechatronic systems or social studies
have spent significant effort to find rules from various complicated phenomena by
principles, observations, measured data, and logic derivations. The rules are normally
summarized as concise and quantitative expressions or “models,” and this can provide
mechanisms to improve the system (represented by its model) performance. As for
the social studies, the social network data (e.g., Twitter, Facebook, Sina_micro-
blog, Tecent_micro-blog, etc.) have attracted millions of users and academic and
industry researchers to research on modeling and mining the knowledge behind the
magnanimity information, and as a result, there has been tremendous interest in social
networks. Due to its fast development and wide usage, the microblog has attracted the
attention of users, enterprises, governments, and researchers, and so applied methods
and techniques for modeling and controlling in this field is very important.

As the foundation of the micro-blog data mining, data collection is the key phase,
crawling or collecting the relevant micro-blog data effectively and efficiently is
important. But the microblog has many differences compared with traditional web
applications. For example, there are many online users, at the same time, its dif-
ferent interactive and displaying mode and login operation are needed, and AJAX
technology is widely used, etc. Traditional web crawlers, for instance, can only get
the corresponding web pages, but they cannot get the relevant structure and the
corresponding social relationships as well as users’ backgrounds and fans. That is
to say, being different from traditional web application, there are some differences
on micro-blog data’s login operation, display way, privacy policy, data processing,
etc. So the traditional web crawler is not suitable for micro-blog data crawling or
collection.

This section presents some details on modeling of micro-blog data crawler based
on simulating browsers’ behaviors. On the basis of this method, we have collected
several million blog data in a short time period.

9.2 Motivation

Although there has been some research on AJAX-based web pages, the technique is
not suitable to the micro-blog application. Encouraging developers to develop appli-
cations on micro-blog services, some providers of micro-blog services usually offer
some special APIs, which can provide developers with the probability of construct-
ing uniform and universal architecture to utilize the APIs to automatically download
and save these special data. But the mere APIs-based method has some limitations
on rights, calling times, special policies, and so on, and some extra tasks cannot be
done by only using these official APIs.

In this chapter, we present some strategies based on simulating browsers’ behaviors
to obtain the data from micro-blog platform. The main idea is to simulate browsers’



9 Applied Methods and Techniques for Modeling and Control 173

behaviors by using the browser’s (e.g., FireFox) core to get the corresponding data.
This can solve the problem of parsing the JavaScript code, and can do special login
operation, etc. In order to crawl the data effectively, we present the following strate-
gies: (1) focused crawling on some special crowds; (2) meta-topic searching and
crawling: that is to say, we crawl the special contents by using the microblog’s
searching function; (3) parallel crawling: based on big data processing by using the
Redia and MongoDB, we use the multiprocessing technology to download and save
the data simultaneously. The proposed crawler is composed of four modules, i.e.,
simulating module, data crawling module, data parsing module, and data persis-
tence module. The experimental results and the analysis show the feasibility of the
approach. Further works are also presented at the end.

9.3 Related Work

Online social networking technologies enable individuals to simultaneously share
information with any number of peers. With the launch of Twitter in 2007, the
microblog has become highly popular, and many researchers want to investigate the
micro-blog information propagation patterns [1] or analyze structures of the micro-
blog network to identify influential users [2]. Reference [3] discusses some of the
ways in which earlier works used text content to analyze online networks, as well as
background on language coordination and the exchange-theoretic notions of power
from status and dependence. Reference [4] studies several long-standing questions
in media communications research, in the context of the micro-blog service Twit-
ter, regarding the production, flow, and consumption of information. A framework
which enriches the semantics of Twitter Messages (i.e., tweets) and identifies topics
and entities (e.g., persons, events, products) mentioned in tweets is present in refer-
ence [5]. Reference [6] conducts a study on recommending URLs posted in Twitter
messages and compares strategies for selecting and ranking URLs by exploiting the
social network of a user as well as the general popularity of the URLs in Twitter.
Authors of reference [7] investigate the attributes and relative influence of 1.6M
Twitter users by tracking 74 million diffusion events that took place on the Twitter
follower graph over a 2-month interval, and they conclude that the word-of-mouth
diffusion can only be harnessed reliably by targeting large numbers of potential influ-
encers, thereby capturing average effects. Reference [8] examines the role of social
networks in online information diffusion with a large-scale field experiment, and
the authors further examine the relative role of strong and weak ties in information
propagation. Although stronger ties are individually more influential, it is the more
abundant weak ties that are responsible for the propagation of novel information,
and the authors suggest that weak ties may play a more dominant role in the dis-
semination of information online than currently believed. In reference [9], authors
address the problem of discovering topically meaningful communities from a social
network, and authors propose a probabilistic scheme that incorporates topics, social
relationships, and nature of posts for more effective community discovery, and then



174 K. Gao et al.

they demonstrate the effectiveness of the model and show that it performs better than
existing community discovery models. Reference [10] examines the application of an
event-driven sampling approach to the Live Journal social network, and the approach
makes use of the “always on” atom feed provided by Live Journal that contains all
public blog posts in near real-time to inform the sampling process of user friend-
ship networks, and this has the effect of targeting sampling toward the public active
users of the network. In addition to proposing models and algorithms for learning the
model parameters and for testing the learned models to make predictions, reference
[11] develops techniques for predicting the time by which a user may be expected to
perform an action.

As for data crawling, in order to overcome the inherent bottlenecks with the
traditional crawling, reference [12] proposes the design of a parallel migrating web
crawler. Reference [13] proposes a dynamic data crawling methods, which include
the sensitive checking of website changes and dynamic retrieving of pages from
target websites, and the authors implement an application and compare the perfor-
mance between the conventional static approaches and the proposed dynamic ones.
In reference [14], authors present a novel URLs ordering system that relies on a
cooperative approach between the crawlers and the web servers based on file system
and web log information, and the proposed algorithm is based on file timestamps and
web log internal and external counts. Reference [15] presents a micro-blog service
crawler named as MBCrawler, which is designed on the APIs provided by micro-blog
services, and the architecture is modular and scalable, so it can fit specific features
of micro-blog services. Reference [16] presents a dynamic cooperation model for
different crawlers’ message exchanging, and both the experimental results and the
application validate the feasibility of the algorithm.

As for the modeling methods, reference [17] presents the commonly used
statistical modeling methods, such as stepwise regression, radial basis function partial
least squares, partial robust M-regression, ridge regression, and principal component
regression that can be applied in the proposed multicollinearity domain. The Viterbi
algorithm, a widely used maximum likelihood estimating method, can be used in
natural language processing, and reference [18] presents an effective search space
reduction for human pose estimation with Viterbi algorithm.

Although the proposed algorithm has some relationship with the above related
work, there are many differences. The proposed crawler works with simulating
browser behavior to collect Sina_Micro-blog (http://weibo.com/) and Tecent_Micro-
blog (http://t.qq.com/) data. The proposed algorithm is based on simulating browsers’
behaviors. As for browser, reference [19] describes how to calculate various object-
oriented metrics of three versions of Mozilla Firefox, and the neural network approach
can predict high and medium severity errors more accurately than low severity
errors.

The experimental results and the analysis show the feasibility of the proposed
approach.

http://weibo.com/
http://t.qq.com/


9 Applied Methods and Techniques for Modeling and Control 175

Fig. 9.1 System architecture

Comments & 
retransmission 

information

Data
 pers

ist
en

ce

Data parsing

(based on regular 

expression& Json)

Account 
information

contents

Fans 
information

DataBase

Data persistence

Data persist
ence

Data persistence

Fig. 9.2 Parsed data and its persistence

9.4 System Architecture

Social networks are often huge, and therefore crawling the micro-blog data could
be both challenging and interesting. As microblog’s big data properties, it is impos-
sible to crawl all the micro-blog data. Instead, it is feasible to crawl some kinds of
data (e.g., account information, contents or topics, attentions or fans, etc.). In this
section, we propose the system architecture on parallel crawling. Figure 9.1 shows
the architecture, and Fig. 9.2 shows the parsed data and its persistence.

In practice, we can use the RDBMS to store the parsed data, and the Redis is used
as the cache server, so users’ retrieval request can be done through the web server.



176 K. Gao et al.

Fig. 9.3 Multi-thread-based parallel crawling

In detail, as for the multi-thread based parallel crawling, we use a thread pool and
a queue manager to schedule the tasks. There are several different queues, includ-
ing the toVisitUrlsQueue, isVisitingUrlsQueue, visitedUrlsQueue, circleUrlsQueue,
keywordsQueue, etc., see Fig. 9.3.

9.5 Case Studies and Implementation of the Simulated
Browser-Based Crawling

Instead of merely using the official APIs, we propose a simulated browser-based
crawling, as the merely APIs-based method has some limitations on rights, calling
times, and so on, and perhaps some extra tasks cannot be done by only using official
APIs. We present some strategies based on simulating browsers’ behaviors to obtain
the micro-blog data, and the proposed crawler is composed of four modules, i.e.,
simulating module, data crawling module, data parsing module, and data persistence
module.



9 Applied Methods and Techniques for Modeling and Control 177

Fig. 9.4 Different situations with the same account

9.5.1 Simulation of the Login Operation and Cookies Data
Obtaining

Commercial websites often use technologies (e.g., HTTP compression, SSL
encryption and chunked encoding) to provide some reasonable levels of security
and system performance. As for the micro-blog data effectively crawling, simulated
login operation is necessary. Otherwise (for example, by only using official APIs-
based crawling), only few data can be crawling. Here, the simulated login operation
means this kind of operation allows the crawler to use some legal accounts and their
corresponding passwords to login the corresponding micro-blog platforms, and the
key phase is the encrypted data parsing. Here, we use the HttpWatch [20], which
integrates with Internet Explorer or Mozilla Firefox to provide some unrivaled levels
of HTTP monitoring, without the need for separately configured proxies or net-
work sniffers. Simply interacting with a website, HttpWatch can display a log of
requests and responses alongside the web page itself, and it can even show inter-
actions between the browser and its cache. As a result, each HTTP transaction can
be examined or parsed so as to see the values of headers, cookies, query strings,
and other HTTP-related data. HttpWatch can work well with these technologies to
provide a view of HTTP activity. By using HttpWatch, we can obtain 21 or more
different parameters during the simulated login phase. But in practice, there usually
exist some different situations during the login phase, and Fig. 9.4 shows the two
situations when using the same account.



178 K. Gao et al.

Fig. 9.5 Requested preliminary parameters (a) and the return values after the requested period (b)

Fig. 9.6 Returned results

From the parsed results, we can conclude that the requested URLs usually contain
static and dynamic parameters (e.g., the parameter P and verifycode in Fig. 9.4,
and the verifycode parameter is usually used as the password encryption). As the
microblogs’ login passwords are usually multilevers and multilayer encrypted, it
usually contains some other preliminary parameters, and the displayed parameter in
Fig. 9.5b (i.e., “\x00\x00\x00\x00\x25\x24\x6a\x52”) is the encrypted parame-
ter in Fig. 9.4a. Now the encrypted resolving phase is finished, and the returned or
parsed content is shown in Fig. 9.6.

As for judging whether the corresponding user is legal or illegal, it needs to
analyze the cookies data. On the other hand, whether actually login or not, when
requesting the server data, if the user can get the legal cookies, he or she can obtain
the same data as if he or she really “login” the web server. In detail, in order to
obtain the cookies data, it needs three steps. First, it needs to obtain the verifycode
and uin parameters, see algorithm 1 below. Second, by using the JavaScript analysis
engine and invoking the encrypted function, we can obtain the parsed parameters, see
Fig. 9.7. Last, it needs to merge the relevant parameters to obtain the corresponding
cookie data, which is the result of the simulating login phase, see algorithm 2 below,
and the parsed cookies data result is shown in Fig. 9.8.



9 Applied Methods and Techniques for Modeling and Control 179

//parsing the verifyCode and uin parameters
Algorithm 1 (i.e., void getCheckVC())
Input:
(1) preLoginUrl//requested URLs before the login operation;
(2) username
(3) host//parameter on requesting the preLoginUrl
Output:
(1) retJson: returned parameters on preLoginUrl request
(2) verifyCode
(3) uin
Step1. retJson=getPreLoginJson(preLoginUrl,username,host);
Step2. verifyCode=parseVerifyCode(retJson);
Step3. uin=parseUin(retJson);

//obtaining the cookie data

Algorithm 2 (i.e., void getCookies())

Input:

(1) loginUrl // Url to login the corresponding micro-blog page

(2) username

(3) password

(4) verifyCode //verification code obtained from the former step

(5) host

(6) referrer// means the source urls to do the login operation

Output: cookie data

Step1. cookie=getCookies(loginUrl,username,password,verifyCode,

host,referer);

Step2.cookie=checkValidate(cookie) //verify the cookie

Step3.transmitCookie(cookie)//transfer the obtained cookies to

the corresponding threads

9.5.2 Data Parsing and Persistence

After collecting the corresponding data, it needs to be parsed and stored. As for the
content, there are some differences between data within the blogger’s main page and
other common pages. As usual, the main page returns data in a traditional way, while
other common pages usually use AJAX [21] and JSON [22] technology to return data
to client in order to enhance the performance or optimize the user experience. By
using JavaScript, these returned data can be parsed and filled into the corresponding
sites. Figure 9.9 shows the private crawled data, and algorithm 3 shows the main
steps of this processing step.



180 K. Gao et al.

Fig. 9.7 The parsed parameters

Fig. 9.8 The cookies data of the simulating login phase

Fig. 9.9 The crawled content



9 Applied Methods and Techniques for Modeling and Control 181

Page Resource Bigest Content Item Block Every Item Regex Get Every Item Content

Micro-blog contents Using regular expression

Fig. 9.10 The processing flow

// Get the content of corresponding Urls

Algorithm 3 (i.e., grabOnePageArticle(String url, boolean

isFirst))

Input:

(1) Url //pages to be crawled;

(2) Url_Refer //one of the header parameter within the HTTP

request;

(3) Url_Host //one of the header parameter such the port

number, etc.

Output:

(1) content.

Step1. Url=getCompleteUrl(time,currentPage,aid,uid) // Fill in

the Url parameters dynamically, including the current time,

currentPage, aid parameter (i.e., id parameters of the micro-

blog contents, see Fig.\,\ref{fig:9}), uid parameter

(i.e., user name).

Step2. content=grabPageSource4QQ.grabPageSourceOfQQ(Url,

Url_Refer, Url_Host);

The data parsing module needs to process the crawled data and parse the micro-
blog content. The crawled data can be classified into two corpus, i.e., plaintext and
cipher text. As the plaintext is regular and uniform, we use the regular expression
to extract the real contents (e.g., the micro-blog contents, Url, id, published time, IP
address, reviewed or commented number, forwarded number, etc.). The processing
flow is shown in Fig. 9.10.

9.6 Experimental Results and Analysis

9.6.1 About the Testing Data Set and the Experimental
Environment

As for these micro-blog big data, its persistence is an important issue. We use the
MongoDB, Redis to store and cache them in our real application, and Mysql is



182 K. Gao et al.

Fig. 9.11 The parsed results, a account information b other parsed content

only used as the experimental platform. Figure 9.11 shows the MySql-based parsed
Tecent_Micro-blog data.

In order to evaluate the algorithm’s performance, we classify the following tested
data set according to their authorities into three classes. The reason we use the
following three classes is that the micro-blog official platform usually presents the
following three different classes, and the three classes have different data sizes. In
detail, the first class has less data while the two others have more. In detail, the first
class is the ordinary (i.e., minor authorities) microbloggers, whose propagative scope
is only limited within old friends or classmates; the second class is those medium
authorities’ microbloggers (e.g., network magazines microblog), whose contents
can be followed or spread into all kinds of users; the last class is famous persons’
microblogs. We will test the performance on the above different data environment.

9.6.2 Ordinary Microblogger’s Performance Evaluation

In this section, we use someone’s microblog as an example. Figure 9.12a shows
the original microblog, and b shows the crawled and parsed data, respectively. It is
clear that there is no difference between them, and all contents have been obtained
correctly.

9.6.3 Medium Authorities’ Microblogger Performance Evaluation

Here, we use some medium authorities’ microbloggers as the experimental platform.
Figure 9.13a shows the micro-blog interface, while b shows the crawled and parsed
data.



9 Applied Methods and Techniques for Modeling and Control 183

Fig. 9.12 Ordinary and the parsed results of the ordinary microblogger’s, a ordinary data, b parsed
results

9.6.4 Famous Persons’ Microblog

As for these famous persons’ microblogs, we use the famous actor Tom Cruise’s
microblog as an example. Figure 9.14a shows his micro-blog interface, while b shows
the crawled and parsed data.

9.6.5 Performance Evaluation

Sometimes micro-blog services provide some APIs. Through these services, the
well-structured data can be easily obtained, so it can provide us the probability
of constructing uniform and universal software architecture to utilize the provided
APIs to automatically download data. However, there are usually some limits and



184 K. Gao et al.

Fig. 9.13 Medium authorities’ microblogger and the corresponding parsed result, a ordinary data,
b parsed results

obstacles. In order to evaluate the performance, we present the comparison between
APIs-based crawling and the simulating browser behavior approach, see Table 9.1.

From the above comparison, as for the proposed method, it is clear that the parsed
data’s degree of integrity and the accuracy or scope is higher. But, as shown before, if
the template or the main framework of the microblog has been changed, the accuracy
of the parsed data is lower than usual. Fortunately, these changes occur rarely. If we
can track or analyze the parsed data periodically, it is easy to find the changes and
then revise some special rules to parse the corresponding data.



9 Applied Methods and Techniques for Modeling and Control 185

Fig. 9.14 Famous persons’ micro-blog and the parsed results, a ordinary data, b parsed results

9.7 Conclusion

It is hard for a traditional web page crawler to crawl micro-blog data as usual,
and most microblogs’ official platforms cannot offer some suitable tools or RPC
interfaces to collect the data effectively and efficiently. This chapter presents some
algorithms and strategies on crawling and parsing micro-blog data effectively based
on simulating browsers’ behaviors. This needs to analyze the simulated browsing
behavior in order to obtain the requesting URLs, to simulate and analyze the sending
URLs requests according to the order of data sequence. It needs to focus on crawling
on some special crowds and crawl some special contents by using the microblog’s
searching function. Parallel crawling and the multiprocessing technology are also
used to download the data simultaneously. The experimental results and the analysis
show the feasibility of the approach. Existing works are also presented at the end.



186 K. Gao et al.

Table 9.1 The performance comparison of the two approaches

Performance Algorithms
The proposed simulating Official APIs-based
browser behavior-based crawling
crawling

About the micro-blog data
entrance

Micro-blog platform
account

(1) Micro-blog platform
account

(2) AppKey
(3) AccessToken

About the data usability Flexible and easy to use (1) Existing more
limitations such as fixed
or lower crawling
frequency, it is not
flexible

(2) The parsed contents are
usually fixed and
researchers cannot
choose some special
categories from them

About the multi-threads
performance

Better Poor

About the crawling
frequency

Flexible, and the only
limitation is the
bandwidth

Not flexible, as there are
more limitations such as
API invoking rights or
authorization

About the stability Better. The only limitation
is the variation of the
Official’s platform, but
the variation is rare

Better

About the data integrity Better, and almost all
needed data can be
parsed

Poor, and some data cannot
be parsed such as the
docUrl, etc. DocUrl
parameter can be seen
from the Fig. 9.12b

About visiting or data
requested frequency

Larger than 60 times (per
minutes)

Less than 1 times (per
minutes)

About the degree of data
integrity

100 % 95 %, lacking some
materials such as
docUrl, etc

About the data accuracy 99 % 100 %
About the data scope Widely, and almost all the

data appearing on the
micro-blog platform can
be crawled and parsed

Narrowly, and the only
small new parts, such as
microbar, microgroup,
etc., can be obtained



9 Applied Methods and Techniques for Modeling and Control 187

Acknowledgments Some earlier works were done in Beijing Institute of Technology with the help
of Dr. Hua-ping Zhang and Prof. Yin-ping Zhao. This work is sponsored by the National Science
Foundation of Hebei Province (No. F2013208105) and the National Science Foundation of China
(No. 61272362). It is also sponsored by Hebei Province Scientific and Technical Key Task (No.
12213516D).

References

1. Kwak H, Lee C, Park H, Moon S (2010) What is Twitter, a social network or a news media?
In: 19th international conference on world wide web. ACM Press, USA, pp 591–600

2. Weng J, Lim EP, Jiang J, He Q (2010) TwitterRank: finding topic-sensitive influential twitter-
ers. In: 3rd international conference on web search and web data mining. ACM Press, USA,
pp 261–270

3. Cristian DNM, Lee L, Bo P, Kleinberg J (2012) Echoes of power: language effects and power
differences in social interaction. In: 21th international conference on world wide web. ACM
Press, France, pp 699–708

4. Wu S, Hofman JM, Mason WA, Watts DJ (2011) Who says what to whom on Twitter. In: 20th
international conference on the world wide web. ACM Press, India, pp 705–714

5. Abel F, Gao Q, Houben GJ, Tao K (2011) Analyzing user modeling on Twitter for person-
alized news recommendations. In: International conference on user modeling, adaptation and
personalization. LNCS, vol 6787. Springer, Spain, pp 1–12

6. Chen J, Nairn R, Nelson L, Bernstein M, Chi E (2010) Short and tweet: experiments on
recommending content from information streams. In: 28th international conference on human
factors in computing systems. ACM Press, USA, pp 1185–1194

7. Bakshy E, Hofman JM, Mason WA, Watts DJ (2011) Everyone’s an influencer: quantifying
influence on Twitter. In: 3rd international conference on web search and data mining. ACM
Press, Hong Kong, pp 65–74

8. Bakshy E, Rosenn I, Marlow C, Marlow C (2012) The role of social networks in information
diffusion. In: International conference on world wide web. ACM Press, France, pp 519–528

9. Sachan M, Contractor D, Tanveer AF, Subramaniam LV (2012) Using content and interactions
for discovering communities in social networks. In: International conference on world wide
web. ACM Press, France, pp 331–340

10. Dan C, Shipman FM (2009) Capturing on-line social network link dynamics using event-
driven sampling. In: International conference on computational science and engineering, vol
4. Vancouver, Canada, pp 284–291

11. Goyal A, Bonchi F, Lakshmanan LV (2010) Learning influence probabilities in social networks.
In: 3th international conference on web search and data mining. ACM Press, USA, pp 241–250

12. Agarwal A, Durgesh S, Pandey AKA, Goel V (2012) Design of a parallel migrating web
crawler. J Adv Res Comput Sci Softw Eng 2(4):147–153

13. Kim KS, Kim KY, Lee KH, Kim TK, Cho WS (2012) Design and implementation of web
crawler based on dynamic web collection cycle. In: International conference on information
networking (ICOIN). Bali, Indonesia, pp 562–566

14. Chandramouli A, Gauch S, Eno J (2012) A cooperative approach to web crawler URL ordering,
human–computer systems interaction: backgrounds and applications. J Adv Intell Soft Comput
98:343–357

15. Lu G, Liu S, Lü K (2013) MBCrawler: a software architecture for micro-blog crawler. In:
International conference on information technology and software engineering. Lecture Notes
in Electrical Engineering, vol 212. Springer, Berlin, Heidelberg, pp 119–127

16. Gao K, Li SW (2010) The cooperation model for multi agents and the identification on replicated
collections for web crawler. Int J Model Identif Control 11(3–4):224–231



188 K. Gao et al.

17. Garg A, Tai K (2013) Comparison of statistical and machine learning methods in modelling of
data with multicollinearity. Int J Model Identif Control 18(4):295–312

18. Han G, Zhu H, Ge J (2013) Effective search space reduction for human pose estimation with
Viterbi recurrence algorithm. Int J Model Identif Control 18(4):341–348

19. Singh S, Mittal P, Kahlon KS (2013) Empirical model for predicting high, medium and low
severity faults using object oriented metrics in Mozilla Firefox. Int J Comput Appl Technol
47(2/3):110–124

20. HttpWatch: Introduction to HttpWatch 8.x (2013). http://help.httpwatch.com/#introduction.
html

21. Ajax: Introduction to Ajax (2013). http://api.jquery.com/category/ajax/
22. Json: Introduction to Json (2013). http://www.json.org/index.html

http://help.httpwatch.com/#introduction.html
http://help.httpwatch.com/#introduction.html
http://api.jquery.com/category/ajax/
http://www.json.org/index.html

	9 Applied Methods and Techniques for Modeling and Control on Micro-Blog Data Crawler
	9.1 Background
	9.2 Motivation
	9.3 Related Work
	9.4 System Architecture
	9.5 Case Studies and Implementation of the Simulated Browser-Based Crawling 
	9.5.1 Simulation of the Login Operation and Cookies Data Obtaining
	9.5.2 Data Parsing and Persistence

	9.6 Experimental Results and Analysis
	9.6.1 About the Testing Data Set and the Experimental Environment
	9.6.2 Ordinary Microblogger's Performance Evaluation
	9.6.3 Medium Authorities' Microblogger Performance Evaluation
	9.6.4 Famous Persons' Microblog
	9.6.5 Performance Evaluation

	9.7 Conclusion
	References


