
Chapter 11
Sliding Mode Control for Nonlinear Discrete
Time Systems with Matching Perturbations

Yang Li, Quanmin Zhu, Xueli Wu and Jianhua Zhang

Abstract This chapter considers sliding mode control of nonlinear discrete time
systems with matching perturbations. The nonlinear sliding mode controller, whose
parameters assure the closed-loop system stable, is designed in order to drive the state
trajectories toward to a small bounded region. The controller is approximated by a
polynomial equation in current control term u(k) according to Taylor series expan-
sion. The algebraic solutions can be obtained by resolving a polynomial equation
in the latest control term u(k). The integrated procedure provides a straightforward
methodology to apply sliding mode control design technique for nonlinear systems.
The simulation results are provided to illustrate the effectiveness of the proposed
scheme.

Keywords Nonlinear discrete time system · Nonlinear controller · Sliding mode
control · Matching perturbations

11.1 Introduction

The discrete time sliding mode control algorithm is very important when it is
implemented by digital controller [1]. However, the discrete time sliding mode con-
troller is not easily designed from the continuous counterpart through simple equiv-
alence. So it is necessary to study the discrete time sliding mode control algorithm.
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Reference [2] proposed the necessary reaching condition of the discrete time
sliding mode control system. Reference [3] proposed the sufficient and necessary
reaching condition of the discrete time sliding mode control system. Reference [4]
proposed the discrete reaching condition based onLyapunov function by using equiv-
alent form in Ref. [3]. Reference [1] proposed the “reaching law approach” which is
the equivalence of the reaching condition in inequality form and defined notions of
reaching condition. References [4] and [5] developed the idea of an equivalent con-
trol and the sector of sliding mode. Reference [6] proposed discrete-time equivalent
controller in the prescribed boundary layer for Sampled-Data Systems. Reference [7]
proposed a simple methodology for designing sliding mode control that can elim-
inate chattering for discrete time systems with matching perturbations. However,
these methods cannot assign the desired closed-loop eigenvalues directly. Reference
[8] proposed the output feedback sliding mode controller for a sampled data lin-
ear systems with matching disturbances which can assign the desired closed-loop
eigenvalues directly. The applications of the sliding mode control method have been
extensively studied, Refs. [9, 10] considered the application of the sliding mode
control for discrete time systems.

On the other hand, a number of reports for discrete time nonlinear controller have
been presented from application demand. However, it is not easy for the description
of the controller nonlinearities because the lack of general modeling framework for
a wide range of nonlinearities. Some researches into the nonlinear controllers have
been presented, such as Ref. [11] proposed a control-oriented model to represent a
wide range of nonlinear discrete-time dynamic plants, a pole placement controller
is designed for providing a straightforward methodology when designing systems
with nonlinear controller. Reference [12] proposed state-dependent parameter (SDP)
models to deal with the nonlinearities of system states and system controllers. In all
of the above methods with sliding mode control, there is no direct method to handle
the nonlinearities of the discrete time system. This is the motivation to propose the
new study in which a direct nonlinear sliding mode controller is proposed to handle
the nonlinearities in such control system design.

With reference to some previous results, a simple design technique of nonlinear
sliding mode controller for discrete time nonlinear system with matching perturba-
tions is discussed in this chapter. The controller is designed by using the slidingmode
control concept, but the controller proposed in this chapter is more general than Ref.
[8]. The nonlinear controller is approximated by a polynomial equation in current
control term u(k) according to Taylor series expansion [13]. The algebraic solutions
can be obtained by resolving a polynomial equation in the latest control term u(k). It
provides a straightforward method to deal with the sliding mode nonlinear controller
for the discrete time nonlinear system.

The organization of this chapter is: in Sect. 11.2, the problem formulation is
proposed. In Sect. 11.3, the structure of the general controller is designed to drive the
state trajectories into a small region with respect to the bound of perturbations. In
Sect. 11.4, the parameters of the general controller are designed according to a set of
preassigned eigenvalues. In Sect. 11.5, the direct sliding mode controller is obtained
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by using Newton–Raphson algorithm to resolve the general controller polynomial
equation. In Sect. 11.6, two examples are given to illustrate the effectiveness of the
proposed procedure.

11.2 Preliminaries

The nonlinear discrete time system can be described as follows:

x (k + 1) = Ax (k) + B (ϕ (u (k)) + v (k, x, u)), (11.1)

where x ∈ Rn is the state vector, ϕ (u (k)) ∈ Rm is the nonlinear controller, u (k)

is the control input, where m ≤ n, v (k, x, u) is bounded matching perturbations, A
and B are constant matrixes with appropriate dimensions.

Lemma 1 [8]. The sufficient discrete time sliding condition |σ i (k + 1)| < |σ i (k)|
is held if the following inequality satisfies:

σ (k)�σ (k + 1) < −1

2
(σ (k + 1))2 , σ (k) �= 0, (11.2)

where �σ (k + 1) = σ (k + 1) − σ (k).

Assumption 1. The norm of the matching perturbation is bounded as follows:

‖v (k, x, u)‖p ≤ δ, (11.3)

where p = 1, 2,∞.

The sliding coefficient matrix S ∈ Rm×n of the sliding function is chosen such
that SB is nonsingular matrix. The sliding function is designed as

σ (k) = Sx (k) . (11.4)

11.3 Design of Controller Structure

The controller structure is designed in this section. The sliding mode control idea is
inspired by Ref. [8], but the nonlinear sliding mode controller is introduced in this
section.

Theorem 1. Given the system equation described in (11.1), and the sliding function
described in (11.4). Let σ = (SB)−1σ = [

σ 1 σ 2 · · · σm
]T . If the sliding mode

controller is designed as
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ϕ (u (k)) = ϕ (ue (k)) + ϕ (uσ (k)), (11.5)

where
ϕ (ue (k)) = (SB)−1 (βS − S A) x (k). (11.6)

ϕ (uσ (k))=
[
ϕ (uσ1) ϕ (uσ2) · · · ϕ (uσm)

]T = −K0σ (k), (11.7)

where β is constant, and K0 = diag
[

k01 k02 · · · k0m
]
.

Then the following cases can be obtained:
(A) The state trajectories of the controlled system whose controller is described by
(11.5) is driven into the following region:

�A =
⎧
⎨

⎩

z (k) ∈ Rn : ‖z (k)‖p

≤
∥
∥P−1B

∥
∥

pδ

1−∥
∥P−1

(
A+B(SB)−1(βS−S A)−BK0(SB)−1S

)
P

∥
∥

p

⎫
⎬

⎭
, (11.8)

where z (k) = P−1x (k), P is diagonal transformation matrix.
(B) The discrete sliding condition |σ i (k + 1)| < |σ i (k)| will be satisfied outside
the following region:

�B =
⎧
⎨

⎩
z (k) ∈ Rn :

∣∣
∣∣∣∣

n∑

j=1

li j z j (k)

∣∣
∣∣∣∣
≤ max

[
ρ (k)

k0i
,

ρ (k)

2 − k0i

]
⎫
⎬

⎭
, (11.9)

where 0 < k0i < 2, L = [li j ] = (SB)−1 S P , and ‖v (k) + (β − 1) Lz (k)‖p ≤
ρ (k).

Proof. (A) The system equation with nonlinear controller described by (11.10) can
be obtained by substituting (11.5) into (11.1).

x (k + 1) =
(

A + B (SB)−1 (βS − S A) − BK0 (SB)−1 S
)

x (k)

+ Bv (k). (11.10)

Equation (11.10) can be transformed into the following equation by using the
transformation z (k) = P−1x (k):

z (k + 1) =P−1
(

A + B (SB)−1 (βS − S A) − BK0 (SB)−1 S
)

Pz (k)

+ P−1Bv (k), (11.11)

where P is the transformation matrix.
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If the state trajectories satisfy:

‖z‖p >

∥∥P−1B
∥∥

p δ

1 − ∥∥P−1
(

A + B (SB)−1 (βS − S A) − BK0 (SB)−1 S
)

P
∥∥

p

. (11.12)

Then

‖z (k + 1)‖p

=
∥∥∥P−1

(
A + B (SB)−1 (βS − S A) − BK0 (SB)−1 S

)
Pz (k) + P−1Bv (k)

∥∥∥
p

≤
(∥∥∥P−1

(
A + B (SB)−1 (βS − S A) − BK0 (SB)−1 S

)
P

∥∥∥
p

+
∥∥P−1B

∥∥
p δ

‖z‖p

)

‖z‖p

< (

∥∥∥P−1
(

A + B (SB)−1 (βS − S A) − BK0 (SB)−1 S
)

P
∥∥∥

p

+ 1 −
∥∥∥P−1

(
A + B (SB)−1 (βS − S A) − BK0 (SB)−1 S

)
P

∥∥∥
p
) ‖z‖p

≤ ‖z (k)‖p . (11.13)

Therefore, it can indicate that the system state trajectories are driven into the
region as follows:

�A =
⎧
⎨

⎩

z (k) ∈ Rn : ‖z (k)‖p ≤∥
∥P−1B

∥
∥

pδ

1−∥
∥P−1

(
A+B(SB)−1(βS−S A)−BK0(SB)−1S

)
P

∥
∥

p

⎫
⎬

⎭
. (11.14)

Which means the system state trajectories can be driven into a small closed and
bounded region by the controller. The bound of the region is determined by the
system parameters and the magnitude of perturbation.
(B) The following equation can be obtained by substituting (11.3) into (11.10):

�σ (k + 1) = σ (k + 1) − σ (k)

= SBϕ (uσ (k)) + SBv (k) + (β − 1) Sx (k) . (11.15)

Equation (11.15) indicates that

�σ = (SB)−1�σ = ϕ(uσ ) + v + (β − 1)Lz, (11.16)

where σ = (SB)−1σ = [
σ 1 σ 2 · · · σm

]T and L = [li j ] = (SB)−1 S P .
If the system (11.11) is stabilized, then z (k) is bounded. Because v(k) is bounded,

so v̄ (k) = v (k) + (β − 1) Lz (k) is bounded, too. Therefore, it gives ‖v̄ (k)‖p ≤
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ρ (k). Equation (11.16) implies that

�σ i = ϕ (uσ i ) + v̄i = −koiσ i + v̄i , i = 1, 2, . . . , m. (11.17)

Now, suppose that the following equation is satisfied with

|σ i (k)| > max

{
ρ (k)

k0i
,

ρ (k)

2 − k0i

}
= ρ (k)

2 − k0i
, (11.18)

where 0 < k0i < 2.
Equation (11.18) can lead to the following two cases:

(a) σ i > 0. Equation (11.18) implies that 2σ i (k)−σ i (k) k0i > ρ (k), which means

that 1 >
ρ(k)+σ i (k)k0i

2σ i (k)
>

v̄i +σ i (k)k0i
2σ i (k)

, that means −1 <
−koi σ i +v̄i

2σ i
.

(b) σ i < 0. Equation (11.18) implies that−2σ i (k)+σ i (k) k0i > ρ (k), whichmeans

that1 >
ρ(k)−σ i (k)k0i−2σ i (k)

>
v̄i −σ i (k)k0i−2σ i (k)

, that means −1 <
−koi σ i +v̄i

2σ i
.

On the other hand, Eq. (11.18) also implies |σ i | >
ρ

k0i
, which indicates that

− koi + v̄i

σ i
≤ −koi + |v̄i |

|σ i | ≤ −koi + ρ

|σ i | < 0. (11.19)

According to case (a), case (b), and (11.19), it gives

− 1 < (−koiσ i + v̄i )/2σ i < 0. (11.20)

According to (11.17) it gives

− ∞ <
2σ i

�σ i
< −1, (11.21)

which also implies �σ iσ i < − 1
2 (�σ i )

2.
where σ = (SB)−1Sx = Lz. Therefore, from Lemma 1, it can be obtained that
|σ i (k + 1)| < |σ i (k)|which also means that the sliding function σ i (k) is decreasing
outside �B when the nonlinear sliding mode controller is used.

Remark 1. It should be noted that the obtained controller in Theorem 1 is not strict
sliding mode controller due to the nonlinearities. We can use the U model approach
to solve it in Sect. 11.5.

Remark 2. There are two advantages of the controller. First, the upper bound of
the perturbations need not be known before the controller implement. Second, the
chattering phenomenon will never happen because there is no switching action in
the controller. A multiple robotic manipulators system (MRMS) is composed of n
robotic manipulators. An MRMS containing four robotic manipulators is shown in
Fig. 11.1.
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11.4 Design of Controller Parameters

The controller parameters are determined in this section. The design method has
been proved by Ref. [14] for single-input systems, and has been proved by Ref. [8]
for multi-input systems.
(A) Determination of the controller parameter β

If the sliding coefficient matrix S is full rank matrix and K0 = I , then n − m
eigenvalues of the system described in Eq. (11.10) is determined by the following
reduced order system:

x (k + 1) =
(

A − B(SB)−1S A
)

x (k) = Āx (k) (11.22)

σ (k) = Sx (k) = 0. (11.23)

And the rest m eigenvalues are β − 1.
(B) Determination of the controller parameter S

First, the eigenvector matrix W is determined. This method has been proved by
Ref. [14]. Consider the following system:

ẋ = Ax + Bu

σ = Sx, (11.24)

where A ∈ R, u ∈ R, y ∈ R, and SB is nonsingular, the feedback system eigenvalue
assignment question is that

(A + BK ) W = W J, (11.25)

where K is an m ×n feedback matrix and it is chosen to yield the desired closed-loop
poles specified by the eigenvalues of J .

The problem of arbitrary eigenvector assignment has been tackled by Ref. [15],
where it has been shown that, in general, it is possible to specify all components of
any one eigenvector arbitrarily using state feedback method. In matrix form, (11.25)
is equivalent to

AW − W J = BL , (11.26)

where L is an arbitrary m × (n − m) matrix and it is chosen to provide linear
combinations of the columns of matrix B.

Second, the eigenvector matrix S is determined.
Let the matrix S satisfy

SB = X, (11.27)

where X is an arbitrary m × m nonsingular matrix and

SW = 0. (11.28)
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A solution to (11.28) always exists, since B is full rank, giving the particular
solution

S = X B−1. (11.29)

This solution also satisfies (11.28), since it is required from B−1W = 0. A
systematic method of finding B−1 which will always satisfy B−1W = 0 is by
constructing

[
B W

]−1. The first m rows of this inverse matrix is B−1 that satisfies
B−1W = 0.

11.5 Solution of the Nonlinear Controller

The nonlinear controller is solved in this section. The method has been proved by
Ref. [11]. According to Taylor series (1721), analytic functions of the Taylor series
at a given point are finite order functions of its Taylor’s series, which completely
determines the function in some neighborhood of the point. So the following poly-
nomial equation in the current control term u (k), was proposed to approximate the
nonlinear controller ϕ (u (k)) that is described by (11.5):

ϕ (u (k)) =
M∑

j=0

α j (k) u j (k − 1) (11.30)

The control input u (k) can be obtained by Newton–Raphson algorithm.

Remark 4. As far as the authors know, there is almost no straightforward approach
for nonlinear system control [16–22], the method of Ref. [11] provides the straight-
forward approach.

11.6 Algorithm for Implement

In this section, a step-by-step procedure is listed to implement the control scheme.
Step 1. Calculate the controller parameter β and sliding matrix S.
Step 2. Assign initial values of the state x (1), the ideal state of the system and

assign i = 1.
Step 3. Calculate the controller ϕ (u (i)) based on Eqs. (11.5) to (11.7) and initial

values of the state x (i).
Step 4. Calculate the controller u (i) of (11.30) based on the Newton–Raphson

algorithm.
Step 5. i = i + 1 go to Step 3.
This is an online algorithm for sliding model control of discrete time nonlinear

dynamic system.
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11.7 Simulation

Example 1. The selected discrete time nonlinear system is described as follows:

x (k + 1) =
⎡

⎣
1 0.01 0
0 1 0.01

−0.01 0.02 0.99

⎤

⎦ x (k)

+
⎡

⎣
0.01 −0.01
0 0.01

0.01 0

⎤

⎦
(

v (k) +
[

ϕ (u1 (k))

ϕ (u2 (k))

])
. (11.31)

The nonlinear controller outputs are expressed in terms of (11.30):

[
ϕ (u1 (k))

ϕ (u2 (k))

]
=

[
u3
1 (k) + u2

1 (k) + u1 (k) + 1

u3
2 (k) + u2

2 (k) + u2 (k) + 1

]

. (11.32)

The matching perturbations of the system can be described as follows:

v(k) =
[

x1x2 − 0.2x3 + 0.1x1u1 − x2 cos (k) + 0.2 sin (k)

x22 − x3 − 2x23 + 0.1x1 + 0.01x2u2 + 0.5 cos (k)

]
. (11.33)

The eigenvalues of the discrete time nonlinear system (11.31) are assigned to
{0.6,0.6,0.8}, and β = 1.6, and xd is the ideal value of the state, and yd are the
desired output value of the system.

The sliding coefficient matrix S is obtained according to Ref. [13].

S =
[
2111.8 2111.8 −2011.8
2117.6 2217.6 −2117.6

]
. (11.34)

The equivalent control law is designed as

ϕ (ue) =
[

1247 1286.2 −1248.3
1249.4 1331.7 −1313.9

]
x . (11.35)

And,

ϕ (uσ ) = −σ (k) = (SB)−1 σ

= −
[
2111.8 2111.8 −2011.8
2117.6 2.2176 −2117.6

]
x, (11.36)

where x1 (1) = 1, x2 (1) = −0.5, x3 (1) = 0.5.
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Fig. 11.1 State variable x1 and desired output yd1

Fig. 11.2 State variable x2 and the desired output yd2

Figures11.1, 11.2, and 11.3 show that the state trajectories are all tracked to the
desired output yd rapidly. Figures11.4 and 11.5 show the sliding function σ also into
small bounded region rapidly. Figures11.6 and 11.7 show that the controller output
trajectories obtained by Newton–Raphson algorithm.
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Fig. 11.3 State variable x3 and desired output yd3

Fig. 11.4 Sliding surface σ1

Note that the controllers proposed in Ref. [7] can be used for discrete time linear
system with matching perturbations, but it does not contain controller nonlinearities.
Therefore, the controller proposed inRef. [8] cannot be used directly for those system
with controller nonlinearities.
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Fig. 11.5 Sliding surface σ2

Fig. 11.6 controller output u1

Example 2. Comparison with the PID method.
Figures11.8, 11.9, and 11.10 show that the state trajectories are all tracked to the

desired output yd by using the PID method. The plots show very clearly that the
peak overshoot and the settling time can be minimized and the system performance
improves significantly by using the sliding mode controller proposed in this chapter.
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Fig. 11.7 controller output u2

Fig. 11.8 State variable x1 and desired output yd1
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Fig. 11.9 State variable x2 and the desired output yd2

Fig. 11.10 State variable x3 and desired output yd3
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11.8 Conclusions

The nonlinear sliding mode controller is designed for the discrete time nonlinear
systems. The controlled system state trajectories are driven into small bound region,
and the system is stable by the determination of the nonlinear controller parameters.
The nonlinear controllers are represented by a polynomial equation, and the algebraic
solutions can be obtained by Newton–Raphson algorithm. The method proposed in
this chapter provides a straightward methodology to use sliding mode control design
techniques when nonlinearities embedded in the controller. Here, only the sliding
mode control of nonlinear systems is investigated, but it is strongly believed that the
idea of this chapter is effective formost other classes of discrete time control systems.
Further studies on the developed methodology, such as discrete time switched sys-
tems, discrete time neutral systems, time delay systems, will be conducted to provide
a comprehensive framework in designing discrete time nonlinear control systems.
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