
Chapter 10
Development of an Improved Genetic Algorithm
for Resolving Inverse Kinematics of Virtual
Human’s Upper Limb Kinematics Chain

Gangfeng Deng, Xianxiang Huang, Qinhe Gao, Ying Zhan and Quanmin Zhu

Abstract Inverse kinematics is the key technique in virtual human motion control
and it is difficult to obtain the solutions by using geometric, algebraic, or iterative
algorithms. In this chapter, an Improved Genetic Algorithm (IGA) is proposed to
resolve the inverse kinematics problem in upper limb kinematics chain (ULKC). First,
the joint-units of ULKC and its mathematical models are constructed by using D–H
method; then population diversity and population initialization are accomplished by
simulating human population, and the adaptive operators for mutation are designed.
The simulation results show that compared with the Standard Genetic Algorithm
(SGA), the IGA can provide higher precise solutions in searching process and avoid
“premature” stop or inefficient searching in later stage with high probability.

Keywords Upper limb kinematics chain · Inverse kinematics · D–H method ·
Genetic algorithm · Population initialization

10.1 Introduction

Control of joint angles is the key technique in virtual human motion control. The
popular approaches include geometric control, behavior control, physical control,
motion capture control, and synthesis control [1], which have different characteristics
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[2, 3]. The kinematics control, one of the geometric control methods, has been the
most widely used in human motion control while the end-effector’s position and
orientation are determined.

Kinematics control algorithm contains forward kinematics (FK) algorithm and
inverse kinematics (IK) algorithm. Calculating the position and orientation of the
end-effector from the joint Cartesian space is known as FK problem and calculating
the joint angles from position and orientation of the end-effector is called IK problem.
Many traditional methods have been used to resolve the IK problem such as geometric
[4], algebraic [5], and iterative methods [6]. However, these methods have their own
demerits in solving the IK problem of the mechanical structure or the body structure.

In recent years, Fuzzy [7], Artificial Neural Networks (ANN) [8, 9] and Genetic
Algorithm (GA)-based evolutionary approaches have been applied to solve the IK
problem for many kinds of manipulators, and great progress has been achieved. Satish
[10] uses a 3-layer perceptron neural network to resolve the IK problem in a two
degree-of-freedom (DOF) serial chain manipulator, as the training data subdivide
degree is only 1.125 degrees, the precision of solution is not good enough. Bassam
[11] uses a 4-layer perceptron neural network to resolve the IK problem in 2 DOF
manipulator, which can avoid the emergence of redundant solutions and improve the
precision by dividing the solution space into many sub-spaces, but the complexity
of the algorithm is increased on one hand. Reference [12] researches the multi-layer
perceptron and functional link artificial neural network, respectively, to compute 2
and 3 DOF serial manipulators’ inverse solution. When the robotic arm is 3 DOF,
the solution’s precision is less than satisfactory. As the training sample’s subdivision
degree determines the precision of the solution in neural network, when the body
has more than 3 DOF, due to the limitation in the number of training samples, it
is difficult to obtain a high precise solution. The GA is widely applied to solve
the IK problem due to its excellent characteristics of evolutionary optimization;
Saleh [13] obtains the IK solutions of the three joints which decide the end-effector
position of PUMA560 robot by using the genetic algorithm based on the niche and
clustering technique. The method can search four optimal solutions at a time but it
is time-consuming—every generation computation spent 4 s; Banga [14] combines
GA and Analytical Hierarchy Process (AHP) to resolve three nodes manipulator’s
IK problem, AHP is used to select a different fitness function to prefer a one robotic
arm indicator (such as attitude, friction, adjust time), and GA optimizes the inverse
solution according to the fitness function selected by AHP. Due to the fitness function
selection mechanism, the method can meet multiple-objectives optimization, but it
also increases the probability of obtaining suboptimal solutions. Due to the random
selection of initial population and the large searching domain, the computational
time of GA optimization is usually long and the algorithm is prone to “premature”
and later search slowly. So, scholars study another approach, using GA to optimize
the parameters of neural network, and then use this neural network to compute the
IK solutions. Liu [15] uses GA to optimize weights and thresholds of BP neural
network by applying partition coding method; then the BP neural network is used to
compute the 2 DOF robot’s IK solution. Carlos [16] combines Fuzzy neural network
(FNN) algorithm and GA for solving the inverse kinematics problem of a 2 DOF
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manipulator. This method uses GA to optimize the network structure, the set of
rules and membership functions of the FNN, and then this FNN algorithm is used to
compute the two joint angle’s values of manipulator. These methods will accelerate
the optimization process of the inverse solution when the algorithm completes the
parameter optimization. The disadvantage is that the precision of the solution depends
on the neural network, and the accuracy of the neural network’s output depends on
its structure, parameters, and training samples. When the dimension of the input and
output increases, the number of parameters also will be exponentially increased. And
it requires a lot of training samples, which would make the training inefficient or even
unattainable. As a simple neural network algorithm, the method mentioned above is
only suitable for solving the IK problem in less than 3 DOF; when DOF is equal to
or larger than 3, the precision of solutions will be far from satisfactory.

The objective of this study is to resolve the IK problem of virtual human’s ULKC
which is the most complex, flexible, and commonly used agent of the human body
which has 6 DOF. This study proposes an improved GA method to resolve the IK
problem of ULKC, which can avoid GA falling into “premature” stop or inefficient
searching in later stage with high probability.

10.2 Mathematical Model of ULKC

In this section, we introduce the basic principle of D–H method, construct the
kinematics chain of ULKC, and analyze the difficulty in obtaining solutions from
the kinematics equation.

10.2.1 Introduction of D–H Method

At present, the D–H method is usually used to construct the coordinate of kinematics
chain whose mathematical model is used to represent by matrices. The D–H method
is based on the transformation of the homogeneous coordinates in three-dimension
space, which can link the movement, transformation, and mapping with matrix cal-
culation.

(1) The posture description of kinematics chain

a. Position description

In the three-dimension Cartesian coordinate system, the position of point is usually
described by a 3×1 vector. Figure 10.1 shows the point P in the coordinate system
{A}. Its homogeneous coordinates are P = (Px , Py, Pz, 1)T .
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Fig. 10.1 Point P in the
coordinate system

P

x

y

z

b. Orientation description

In order to study the kinematics chain’s movement and operation, both the object’s
position and orientation need to be described. 4×4 homogeneous matrix B

AR repre-
sents the orientation of the coordinate system {B} relative to the coordinate system
{A}. nx , ny, nz, ox , oy, oz, ax , ay, az are the direction cosine values that three

unit vectors
⇀
x ,

⇀
y,

⇀
z of the coordinate system {B} to the coordinate system {A}

B
AR =

⎡
⎢⎢⎣

nx ox ax 0
ny oy ay 0
nz oz az 0
0 0 0 1

⎤
⎥⎥⎦ . (10.1)

B
AR represents the orientation of the coordinate system {B} to the coordinate

system {A}.
Rotate θ around the axis x, y, and z, respectively, and their corresponding rotation

matrices can be expressed as follows:

Rot(x, θ) =

⎡
⎢⎢⎣

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎤
⎥⎥⎦ , (10.2)

Rot(y, θ) =

⎡
⎢⎢⎣

cos θ 0 sin θ 0
0 1 0 0

− sin θ 0 cos θ 0
0 0 0 1

⎤
⎥⎥⎦ , (10.3)

Rot(z, θ) =

⎡
⎢⎢⎣

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ . (10.4)
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Spatially, when the coordinate systems {A} and {B} have the same orientation
and different origins, the translation matrix is as follows:

B
Atrans(Bx , By, Bz) =

⎡
⎢⎢⎣

1 0 0 Bx

0 1 0 By

0 0 1 Bz

0 0 0 1

⎤
⎥⎥⎦ . (10.5)

It represents the origin position of the coordinate system {B} in the coordinate
system {A}.

c. The expression of position and orientation of objects in space

When coordinates system {A} and {B} have different origins and different
orientations, the matrix B

AT represents the position and orientation of B in the coor-
dinate system {A}

B
AT = B

Atrans(Bx , By, Bz)
B
AR =

⎡
⎢⎢⎣

nx ox ax Bx

ny oy ay By

nz oz az Bz

0 0 0 1

⎤
⎥⎥⎦ . (10.6)

It is proved that every posture matrix can be decomposed to many rotation matrices
and translation matrices.

d. The spatial transformation between different coordinate systems by the posture
matrix

If A P = (A Px, A Py, A Pz, 1)T and B P = (B Px, B Py, B Pz, 1)T are homoge-
neous coordinates of the point P in the coordinates {A} and {B}, respectively, then,
A P = B

AT B P .
The transformation between different coordinate systems can be conducted on

the basis of the above formula.

(2) The nature of matrices in D–H method

a. The nature of translation matrix

Proposition 1: if {trans(a, b, c)|{a, b, c ∈ R} represents the exchange group on
matrix multiplication, then,

trans(0, 0, 0) = I (10.7)

trans(a, b, c) · trans(a, b, c)−1 = trans(−a,−b,−c). (10.8)

Property l:

trans(a1, b1, c1) · trans(a2, b2, c2) = trans(a1 + a2, b1 + b2, c1 + c2). (10.9)
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Corollary l:

trans(a, b, c)−1 = trans(−a,−b,−c). (10.10)

b. The nature of rotation matrix

Proposition 2: if {Rot(x, θ)|θ ∈ R} represents the exchange group on matrix
multiplication, so does to {Rot(y, θ)|θ ∈ R} and {Rot(z, θ)|θ ∈ R}.

Property 2:

Rot(x, θ1) · Rot(x, θ2) = Rot(x, θ1 + θ2)

Rot(y, θ1) · Rot(y, θ2) = Rot(y, θ1 + θ2) (10.11)

Rot(z, θ1) · Rot(z, θ2) = Rot(z, θ1 + θ2).

Corollary 2:

Rot(x, θ)−1 = Rot(x, θ)T = Rot(x,−θ)

Rot(y, θ)−1 = Rot(y, θ)T = Rot(y,−θ) (10.12)

Rot(z, θ)−1 = Rot(z, θ)T = Rot(z,−θ).

c. The nature of the posture matrix

If the posture matrix m
i T represents the transformation from coordinate system

{m} to coordinate system {i}, and the posture matrix k
mT represents the conversion

from coordinate system {k} to coordinate system {m}; then, the posture matrix, from
coordinate system {k} to coordinate system {i}, can be computed by the following
formula:

k
i T = m

i Tk
mT. (10.13)

Then, the transformation from i th joint-unit to j th joint-unit can be described as:

j
i T = i+1

i T i+2
i+1T · · · j

j−1T. (10.14)

10.2.2 Structure of ULKC

The human ULKC contains root joint, chest joint, shoulder joint, elbow joint, wrist
joint, and palm joints. Usually the palm is regarded as an independent research object
as it has a lot of joints. Therefore, the wrist is the end-effector of the ULKC.

Human joints can be approximately treated as the rotary joint which is classified
into P-type (shaft parallel to the link) and V-type (shaft perpendicular to the link).
This study considers each joint-unit a combination of P-type and V-type. While the
joint-unit only consists of P-type or V-type, this study adds another type which is
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Fig. 10.2 The joint-units of
the ULKC
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within the ZERO rotation range. The rotation shaft of the P-type joint is the x-axis
of the local coordinate system of the joint-unit, and the rotation shaft of the V-type
joint is the z-axis of the local coordinate system of the joint-unit, then the y-axis can
be determined by the right-handed screw rule. According to this specification, the
local coordinate systems of human ULKC’s joint-units are established, as shown in
Fig. 10.2.

The 0th joint-unit is the human root joint-unit whose coordinate is relatively fixed,
and it is also the basic coordinate of the entire kinematics chain. The 1st joint-unit is
the chest joint-unit which contains a real V-type joint and a complementary P-type
joint; thus, it can only rotate around z1. The 2nd joint-unit is the shoulder joint-unit,
which consists of a V-type joint and a P-type joint. The 3rd joint-unit is the elbow
joint-unit which contains a V-type joint and a P-type joint. The 4th joint-unit is the
wrist joint-unit which consists of a complementary V-type joint and a real P-type
joint. It should be noted that the joints P2, V2, P3 are derived from the shoulder
joint which is a spherical joint. Placing P3 under the elbow unit is conducive to joint
grouping and mathematical description of the kinematics chain. αi represents the
rotation angle of Pi , and θi the rotation angle of Vi . α1 and θ4 are always equal to 0.

According to the parameter values of adult body in GB10000-88 (Chinese), set
values for L1, L2, L3, L4, d2 and the ranges of θ1, θ2, θ3, α2, α3, α4. They are listed
in Table 10.1.

10.2.3 Posture Transformation of ULKC

With reference to Sects. 10.2.1 and 10.2.2, the transformation from first joint-unit to
zeroth joint-unit of ULKC can be described as follows:
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Table 10.1 The parameters of the ULKC

Joint-unit Li /mm θi /
◦ αi /

◦ di /mm

1 19.5 0 ∼ 60 0 0
2 31.5 −30 ∼ 180 −180 ∼ 45 19.85
3 33.3 −140 ∼ 0 −45 ∼ 90 0
4 25.3 0 −90 ∼ 90 0

(1) Translate L1 along the axis z0, then the origin of the two coordinate systems are
coincided;

(2) Rotate −90◦ around the axis x0, then the shaft z0 and z1 are collinear;
(3) Rotate −90◦ around the axis z0, then the shaft x0 and x1 are collinear.

Therefore, the transformation matrix is:

1
0T = trans(0, 0, L1)Rot(x,−90◦)Rot(z,−90◦). (10.15)

According to Eqs. (10.2–10.5),

trans(0, 0, L1) =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 L1
0 0 0 1

⎤
⎥⎥⎦ , (10.16)

Rot(x,−90◦) =

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

⎤
⎥⎥⎦ , (10.17)

Rot(z,−90◦) =

⎡
⎢⎢⎣

0 1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ . (10.18)

Substitute Eqs. (10.16–10.18) into Eq. (10.15):

1
0T =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
1 0 0 L1
0 0 0 1

⎤
⎥⎥⎦ . (10.19)

Similarly, we can obtain the transformation matrices of other adjacent joints’ local
coordinate systems:
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2
1T =

⎡
⎢⎢⎣

0 Cα2Cθ1 − Sα2Sθ1 −Cα2Sθ1 − Sα2Cθ1 L2Cθ1
0 Cα2Sθ1 + Sα2Cθ1 Cα2Cθ1 − Sα2Sθ1 L2Sθ1
1 0 0 d2
0 0 0 1

⎤
⎥⎥⎦ , (10.20)

3
2T =

⎡
⎢⎢⎣

C(θ2 − π/2) −S(θ2 − π/2)Cα3 S(θ2 − π/2)Sα3 L3C(θ2 − π/2)

S(θ2 − π/2) C(θ2 − π/2)Cα3 −C(θ2 − π/2)Sα3 L3S(θ2 − π/2)

0 Sα3 Cα3 0
0 0 0 1

⎤
⎥⎥⎦ ,

(10.21)

4
3T =

⎡
⎢⎢⎣

Cθ3 −Cα4Sθ3 Sα4Sθ3 L4Cθ3
Sθ3 Cα4Cθ3 −Sα4Cθ3 L4Sθ3
0 Sα4 Cα4 0
0 0 0 1

⎤
⎥⎥⎦ . (10.22)

In the equations above, S represents sine operator; C represents cosine operator.
According to Eq. (10.14), the posture transformation matrix of wrist joint (end-

effector) relative to the root joint can be computed as follows:

4
0T = 1

0T2
1T(θ1, α2)

3
2T(θ2, α3)

4
3T(θ3, α4)

=

⎡
⎢⎢⎢⎣

4
0nx

4
0ox

4
0ax

4
0 Bx

4
0ny

4
0oy

4
0ay

4
0 By

4
0nz

4
0oz

4
0az

4
0 Bz

0 0 0 1

⎤
⎥⎥⎥⎦

(10.23)

where,

4
0nx = S(θ2 − π/2)C(θ3)(Cα2Cθ1 + Sα2Cθ1)−Sθ3(Sα3(Sα2 Sθ1−Cα2Cθ1)

−C(θ2 − π/2)C(α3)(C(α2)S(θ1) + S(α2)Cθ1))

4
0ny = C(θ2−π/2)Cθ3−S(θ2−π/2)Cα3Sθ3

4
0nz =−Sθ3(Sα3(Cα2 Sθ1 + Sα2Cθ1) + C(θ2−π/2)Cα3(Sα2 Sθ1−Cα2Cθ1))

−S(θ2−π/2)Cθ3(Sα2 Sθ1−Cα2Cθ1)

4
0ox = −Sα4(Cα3(Sα2 Sθ1−Cα2Cθ1)+C(θ2−π/2)Sα3(Cα2 Sθ1 + Sα2Cθ1))

−Cα4Cα3(Sα3(Cα2 Sθ1 − Cα2Cθ1)−C(θ2−π/2)Cα3(Cα2 Sθ1+Sα2Cθ1))

−S(θ2−π/2)Cα4Sθ3(Cα2 Sθ1+Sα2Cθ1)

4
0oy = S(θ2−π/2)Sα3Sα4−C(θ2−π/2)Cα4Sθ3−S(θ2−π/2)Cα3Cα4Cθ3

4
0oz = S(θ2−π/2)Cα4Sθ3(Sα2 Sθ1−Cα2Cθ1)−Cα4Cθ3(Sα3(Cα2 Sθ1+Sα2Cθ1)
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+C(θ2 − π/2)Cα3(Sα2 Sθ1 − Cα2Cθ1))−Sα4(Cα3(Cα2 Sθ1+Sα2Cθ1)

−C(θ2 − π/2)Sα3(Sα2 Sθ1 − Cα2Cθ1))

4
0ax = Sα4Cθ3(Sα3(Sα2 Sθ1 − Cα2Cθ1) − C(θ2 − π/2)Cα3(Cα2 Sθ1 + Sα2Cθ1))

−Cα4(Cα3(Sα2 Sθ1 − Cα2Cθ1) + C(θ2 − π/2)Sα3(Cα2 Sθ1 + Sα2Cθ1))

+S(θ2 − π/2)Sα4Sθ3(Cα2 Sθ1 + Sα2Cθ1)

4
0ay = S(θ2 − π/2)Cα4Sα3 + C(θ2 − π/2)Sα4Sθ3 + S(θ2 − π/2)Cα3Sα4Cθ3

4
0az = Sα4Cθ3(Sα3(Cα2 Sθ1 + Sα2Cθ1) + C(θ2 − π/2)Cα3(Sα2 Sθ1 − Cα2Cθ1))

−Cα4(Cα3(Cα2 Sθ1 + Sα2Cθ1) − C(θ2 − π/2)Sα3(Sα2 Sθ1 − Cα2Cθ1))

−S(θ2 − π/2)Sα4Sθ3(Sα2 Sθ1 − Cα2Cθ1)

4
0 Bx = L2 Sθ1 + L3S(α2 − π/2)(Cα2 Sθ1 + Sα2Cθ1) − L4Sθ3(Sα3(Sα2 Sθ1 − Cα2Cθ1)

−C(θ2 − π/2)Cα3(Cα2 Sθ1 + Sα2Cθ1)) + L4 S(θ2 − π/2)Cθ3(Cα2 Sθ1 + Sα2Cθ1)

4
0 By = d2 + L3C(θ2 − π/2) + L4C(θ2 − π/2)Cθ3 − L4S(θ2 − π/2)Cα3Sθ3

4
0 Bz = L1 + L2Cθ1 − L3S(θ2 − π/2)(Sα2 Sθ1 − Cα2Cθ1) − L4Sθ3(Sα3(Cα2 Sθ1 + Sα2Cθ1)

+C(θ2 − π/2)Cα3(Sα2 Sθ1 − Cα2Cθ1)) − L4 S(θ2 − π/2)Cθ3(Sα2 Sθ1 − Cα2Cθ1).

(10.24)

It is difficult to compute the inverse solutions from such a complex posture
transformation matrix like Eq. (10.24) by using the analytical method or geomet-
ric method. Also, as there are six variables θ1, θ2, θ3, α2, α3, and α4 in the matrix
and the end-effector of the ULKC is 6 DOF, it is also difficult to compute the pre-
cise solutions quickly by simply using the neural network algorithm or the standard
genetic algorithm.

10.2.4 Summary

In this section, D–H method is used to describe the kinematics equations of ULKC.
The basic principle of D–H method is that transformation of points in different coor-
dinate systems can be conducted according to transitivity of transformation matrices.
ULKC is a kinematics chain. Its IK problem is to resolve the joint angles when the
posture of end-effector is known. We derive the transformation matrices of adjacent
local coordinates systems and the kinematics Eq. (10.24) of ULKC. It is difficult to
resolve Eq. (10.24) by basic geometric method or analytic method due to its com-
plex and nonlinear features. From the next section, GA will be improved to resolve
Eq. (10.24).
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10.3 Improvement of Standard Generation Algorithm

In this section, an improved GA is put forward with the assistance of an adaptive
genetic operator.

10.3.1 Introduction of SGA

Genetic algorithm is an efficient and global searching algorithm based on natural
selection and genetic theory. The possible solution in the problem domain is seen as
an individual or chrome in the population. The SGA is a group operation algorithm
which only uses the standard genetic operators, such as selection operator, crossover
operator, and mutation operator. It is the foundation of other improved GA.

(1) The mathematical model of SGA

The SGA can be expressed as:
SGA=(C, E, P0, M, φ, Γ, Ψ, T )

where,

C coding method;
E the fitness function of individual;

P0 the initialization population;
M the amount of population;
O selection operator;
Γ crossover operator;
Ψ mutation operator;
T the termination condition;

(2) The process of the SGA

a. Chromosome coding and decoding (Fig. 10.3)

In the SGA, the individuals in the population are represented by fixed-length
binary strings, whose allele consists of the binary digit {0, 1}. The genes of each
individual in the initial population can be generated via the random numbers distrib-
uted uniformly. For example, X = 100010111011 can be used to depict an individual,
whose chromosome length is 16.

Coding: a parameter, with the range of [U1, U2], can be expressed by the binary
code symbol with the length of K, which generate 2k kinds of code. Thus the corre-
sponding relationship between the parameters and coding is as follows:
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Fig. 10.3 The flowchart of
SGA

Coding and Population 
generation

Fitness value

Selection

End

No

Yes

Fitness value

If the termination 
conditon is satisfied?

Crossover 

Mutation

000000 · · · 0000 = 0 → U1

000000 · · · 0001 = 1 → U1 + δ

000000 · · · 0002 = 2 → U1 + 2δ (10.25)

...
...

...

111111 · · · 1111 = 2k − 1 → U2

where, δ = U2−U1
2k−1

.
Decoding: if the code of an individual is bkbk−1bk−2…b2b1, the corresponding

decoding formula is as follows:

X = U1 +
(

k∑
i=1

bi · 2i−1

)
· U2 − U1

2k − 1
. (10.26)

b. The evaluation of individuals’ fitness

In the SGA, the probability of individual’s genetic opportunity is decided by its
fitness value. All the individual fitness values must be nonnegative for evaluating the
genetic probability correctly. So, we need to determine the transformation principle
from target function to fitness function, especially when the target value is negative.

c. Genetic operators

Three kinds of genetic operators used by the SGA are as follows:
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Fig. 10.4 The process of
crossover
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Mutation

1. Use the proportional selection operator to select the father individuals. The
proportional selection factor refers to the genetic probability. If the number of indi-
viduals is M, the fitness of i th individual is fi , then, the probability of i th individual
is:

Pi = fi

/ M∑
k=1

fk . (10.27)

If the probability of individual selection is given, uniform random numbers between
[0, 1] are generated to determine which individual is to mate. The individuals, who
have a large selection probability, can be repeatedly selected and their genes are
expanded in the population, while the small ones would eliminate gradually.

2. The single-point crossover operator is applied to crossover operation in SGA.
Only one cross point exists in the single-point crossover operator, the two individuals
are chosen as cross objects, then, a crossover point is generated randomly. The
chosen individuals exchange their genes at the cross point and generate two children
individuals (Fig. 10.4).

3. The mutation operation uses the basic bit mutation operator and the uniform
mutation operator. In order to avoid the “premature” convergence problem, there is
a small probability for the individuals composed of binary gene code to shift the
genetic code from 0 to 1 or 1 to 0 (Fig. 10.5).

4. The parameters of the SGA
There are four parameters of the SGA need to be set; they are M, T, Pc, and Pm .
M represents the size of the population, which refers to the individual number of

the population, usually ranging from 20 to 100;
T represents the terminal generation times, which usually ranges from 100 to 500;
Pc stands for the crossover probability, usually 0.4–0.99;
Pm stands for the mutation probability, normally 0.0001–0.1.

10.3.2 Principles of Improvement

Since the intact structure and theory of GA was systemically proposed by Holland
in 1975, numerous scholars have devoted to developing GA. The coding method, the
control parameters, and crossover mechanism are deeply studied. Therefore, various
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improved GA are proposed, such as Hierarchic Genetic Algorithm [18, 19], CHC
Algorithm [20, 21], Messy Genetic Algorithm [22, 23], Niched Genetic Algorithm
[24], Adaptive Genetic Algorithm [25, 26], and Parallel Genetic Algorithm [27–29],
whose characteristics and performances are compared in article [30].

The present research focuses on the improvement of GA from the perspectives
of population initialization and its diversity. An improved GA is put forward in this
chapter with the assistance of adaptive genetic operator.

We operate on the individuals from the perspectives of selection, crossover, and
mutation. The SGA contains some demerits such as “premature” and inefficient
searching in later stage, which result from the following aspects, such as single
population, random selection of initial population, and no-adaptive crossover and
mutation probabilities. This research will improve the SGA on the aspects of popu-
lation diversity, the selection strategy for initial population, and the adaptive genetic
operators to overcome the “premature” and inefficient searching in later stage.

a. Population diversity. In the SGA, all the N individuals in a population, Chrom,
the differences among individuals will be reduced with the increase of genera-
tion times, which leads the searching process to the “premature” convergence.
We introduce the population migration: the population Chrom is divided into
p independent subpopulations, SubPopi (i = 1, 2, . . ., p); then each sub popu-
lation has m = N/p individuals. The genetic operations are conducted in the
isolated subpopulation in the normal condition; we let the individuals migrate
to other subpopulations with the probability Pmig, while it meets the needs of
certain conditions (such as get the certain generation times). It can ensure the
diversity of individuals in population, and avoid the “premature” convergence.

b. Population initialization. Randomly selecting the individuals will reduce the dif-
ferences among individuals significantly after several genetic operations, which
results in inefficient searching in later stage. To solve this problem, Rasit [17]
proposes a method in which the initial population is generated by three trained
Elman neural networks. Three outputs from three networks can be obtained at
a time. After putting these outputs into the initial population, the GA is used
to optimize the solution. The disadvantages of this method are: complex struc-
ture, which consists of 155 neurons in the hidden layer of the three Elman
neural networks; the small number of sample (no more than 3); other individuals
are randomly generated. Based on the research of the phenomenon of human
populations, we found there is at least a significant difference in the human
populations—color. The populations with different colors certainly have differ-
ent chromosomes, and the colors of individuals within the same population are
similar but different; on the other hand, there are no exactly same individuals in
the same human population. These ensure the diversity of human genes, thus we
propose three principles for initial population:

1. There is at least one gene different between subpopulations;
2. There is at least one gene similar (relative) between individuals within the

same subpopulation;
3. There are no two same individuals within the same subpopulation.
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These three principles can be summarized as “the individuals are similar but
different within the same sub population; the individuals are different but similar
between sub populations.”

c. The adaptive genetic operators. In order to improve the capability of GA to
avoid the “premature” convergence and inefficient searching in later stage, the
genetic operators should be adaptive. That means the crossover probability Pc

and mutation probability Pm would be increased with the similarity of individuals
increased. We design the adaptive operators as follows:

Pc = Pc0 + μβi (10.28)

Pm = Pm0 + νβi (10.29)

where, Pc0 is the initial crossover probability and Pm0 is the initial mutation prob-
ability; βi is the proportion of the maximum fitness individuals account to the total
number of individuals in i th generation; μ and ν are the two constant factors which
are used to make Pc and Pm not more than 1.

The improved GA has the features of diversity population, the similar but different
initial population, the adaptive genetic operators, which will be helpful to search the
high-accuracy solutions quickly.

10.3.3 Process Flow of IGA

The process flow of the GA contains coding, population initialization, fitness value
evaluation, selection, crossover, mutation, and judge the terminal condition. Accord-
ing to the above principles, we design the IGA as the following steps:

a. Coding. The fixed-length binary string is used to represent the individual in the
SGA, where allele is {0, 1}. Binary coding will greatly increase gene length,
and must shift between the coding and decoding repeatedly. It is not suitable for
the high dimension. We use the real coding to represent each individual whose
chromosome concludes six genes {θ1, θ2, θ3, α2, α3, α4}. The variable domains
are shown in Table 10.1.

b. Population initialization. The population initialization contains population diver-
sity and individuals’ initialization. The population diversity is realized by setting
subpopulations. We divide the population Chrom into p independent subpopu-
lations SubPopi (i = 1, 2, . . . , p), each subpopulation has m individuals, then
the entire population has N = pm individuals. The genetic operations are inde-
pendently conducted within the subpopulations. We let the individuals of every
subpopulation migrate to other subpopulations with probability Pmig every g
generations, which will ensure the individual diversity within populations.

According to the principle “the individuals are similar but different within the
same sub population, the individuals are different but similar between sub popula-
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tions,” we initiate the population: using θ1 as feature gene to distinguish the different
subpopulations; we divide the interval (0, π/3) of variable domain of θ1 into p equal
length intervals, and the length of each interval is:

σ = π/3

p
. (10.30)

Then, the i th interval is ((i − 1)σ, iσ) from which the first gene θ1 of the i th
subpopulation are generated, and the other five genes are generated from their own
variable domain randomly. This method can ensure: a. the first genes of individuals
from the same subpopulation are similar but different; b. the other five genes are
all the same, which is a small probability event; c. the individuals from different
subpopulations are not possibly the same.

c. Fitness value evaluation. The only requirement for the fitness function is that, for
each chromosome, we can calculate a corresponding comparable nonnegative
result. According to the posture matrix 4

0T ′ computed by individual and the target
posture matrix 4

0T except the last line (the last line of the all posture matrix is
the same), we define the error function:

F(θ1, θ2, θ3, α1, α2, α3) = 1

3 × 4

√√√√
3∑

i=1

4∑
j=1

(4
0T

′
i, j−4

0Ti, j )2. (10.31)

The fitness function is designed as follows:

Fit(F) = 1

1 + F(θ1, θ2, θ3, α1, α2, α3)
. (10.32)

The individual’s fitness value of Fit(F) will be larger when the error F(θ1, θ2, θ3,

α1, α2, α3) is smaller.
d. Selecting the father individuals. The randomized competitive selection method is

used to select the father individuals. Each time, we select a pair of individuals by
using roulette selection mechanism, and then make the two individuals compete.
The one who has the higher fitness will be selected. Repeat this process until the
population is full.

e. Crossover. We use the two-point crossover method which needs to randomly
select two integers k1 and k2, and exchange the (k1 +1)th to (k2)th genes of two
father individuals with probability Pc; the value of Pc is derived by Eq. (10.28).

f. Mutation. Mutation means that one or several genes of each individual are
changed with mutation probability Pm ; the Pm is derived by Eq. (10.29).

g. Termination conditions. When the error computed by Eq. (10.31) is equal to
or smaller than the given value ε, or the GA operation goes to the maximum
generation times, the computational process comes to the end.
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10.3.4 Summary

In this section, the principle, “the individuals are similar but different within the same
sub population; the individuals are different but similar between sub populations,” is
proposed to direct the initialization and diversity of the population. The population
is divided into some independent subpopulations which are marked by the first gene.
Thus, the chromosomes of individuals from different subpopulations are absolutely
different, and the chromosomes of individuals from same subpopulations are similar.
And the migration strategy is also used to keep diversity. Formulas (10.28) and
(10.29) are designed to make the crossover operator and mutation operator adaptive.
These methods can keep the IGA diversity and avoid “premature” convergence and
inefficient searching in later stage. Besides, error function (10.31) and fitness function
(10.32) are designed.

10.4 Simulation Studies

In this section, SGA and IGA are compared in terms of optimizing capability in
solving the IK problem of ULKC. Then, the IGA is applied in the control of ULKC
of a virtual human.

10.4.1 Simulation of SGA

We set 120 individuals in the population; crossover probability Pc = 0.7, mutation
probability Pm = 0.131; the termination condition was the error F ≤ 0.01 or the
number of generation time was up to 200.

For example, a target posture matrix was generated randomly. See the following
matrix:

4
0T =

⎡
⎢⎢⎣

0.87814 −0.02665 0.47767 46.3554
0.07128 0.99459 −0.07554 54.6941

−0.47307 0.10039 0.87529 33.5743
0 0 0 1

⎤
⎥⎥⎦ . (10.33)

The result of the SGA operation is shown in Fig. 10.6.
The solid line represents the error of the optimal individual in the population, and

the dotted line represents the average error of all the individuals. The computation fell
into “premature” convergence when the 31st generations, and the error was 0.0329
when generation time was 200, which did not reach the target value 0.01.
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Fig. 10.6 Computational curves of SGA

10.4.2 Simulation of IGA

We divided the population into three subpopulations, each with 40 individuals;
We let the individuals migrate to other subpopulations with the probability of 0.2

every 20 generation times;
Crossover probability and mutation probability are:

Pci = 0.6 + 5βi (10.34)

Pm = 0.125 + 2βi (10.35)

The termination condition was the errorF ≤ 0.01;
The target posture matrix was expressed as matrix (10.33).
The result of the IGA operation was shown in Fig. 10.7.
The error was 0.0094 when the generation time was 30, which reached the target

value 0.01, and then the computation came to an end. The best individual was:
Chr_best = {34.380 79.038 − 76.716 − 124.272 29.286 − 0.738}
According to Chr_best, we obtained the actual posture matrix:

4
0T

′ =

⎡
⎢⎢⎣

0.87611 −0.01764 0.48180 46.2860
0.06416 0.99471 −0.08025 54.1649

−0.47783 0.10122 0.87260 33.3975
0 0 0 1

⎤
⎥⎥⎦ . (10.36)

Comparing the 4
0T ′and 4

0T, we saw that the solution was highly accurate.
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Fig. 10.7 Computational curves of IGA

Table 10.2 Results of simulation

No. The generation times when error is up to 0.01
IGA SGA

1. 38 41
2. 28 –
3. 43 –
4. 21 25
5. 25 40
6. 30 55
7. 35 –
8. 32 32
9. 59 –
10. 31 86

Note The line means the error has not reached 0.01 after 200 generation times

10.4.3 Comparison of SGA and IGA

We compared the performance differences of SGA and IGA by 10 times simulation
to resolve the ULKC IK problem. The results are shown in Table 10.2.

By inspection of Table 10.2, it can be seen that all 10 computations based on IGA
meet the target error 0.01 within 200 generations. And SGA cannot meet the target
error after 200 generations for four times. The results showed that compared with
SGA, IGA falls into the “premature” convergence with low probability.
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Fig. 10.8 Hardware of the
system

Posture Sensor

Data Glove

10.4.4 Application

We applied the IGA in a virtual maintenance system. Posture sensor was used to
measure the wrist joint’s posture of operator relative to its root joint, and the position
of operator’s root was fixed. The postures of root and sensor of operator are mapped
into the postures of root joint and end-effector of virtual human in the virtual circum-
stance. The data glove was used to control the virtual human’s behaviors like grasp
and release. The hardware is shown in Fig. 10.8.

The termination condition is F<0.05 or the generation is 100 times. We set the
scan period 100 ms.

The operator stretched or shrank his hand in the real world. The posture sensor
measured the posture of wrist joint relative to the root; thus the posture of end-effector
relative to the root joint of virtual human was obtained. Compute the inverse solution
with IGA and get the six joint angles. Then the form of virtual human’s ULKC was
displayed on the screen. When the hand of virtual human touched the part, the data
glove was used to control the hand and catch it. The operator and virtual maintenance
scene are shown in Fig. 10.9.

The computer measurements indicated that it cost 0.068 s to compute one genetic
operation with Intel Core i3 (clocked at 2.93 GHz) processor. And in most cases, the
IGA approach can obtain the required solution within 20 generations. The experi-
mental results showed that the IGA approach was reliable in application.

10.4.5 Summary

In this section, SGA and IGA have been tested to resolve the IK problem of ULKC.
The same target posture matrix has been resolved by both SGA and IGA which
consists of the same number of individuals. The simulation curves are shown in
Figs. 10.6 and 10.7, respectively. Obviously, the simulation result of IGA is better
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Fig. 10.9 Operator and virtual human

than that of SGA. A number of simulations have been conducted for the comparison,
which is shown in Table 10.2. It can be concluded that the optimizing capability of
IGA is much better than that of SGA. The IGA has been tested to control the ULKC
of virtual human and to provide demonstrations for the other potential applications.

10.5 Conclusions

In this research, we have proposed a new IGA approach to resolve IK problem and
obtained the precise inverse solution of ULKC. Compared with SGA, the IGA can
avoid “premature” convergence and inefficient searching occurred with much high
probability in the later stage of the computation. We have utilized D–H method
to structure the mathematic model of ULKC, and improved the GA’s population
diversity, population initialization, and adaptive genetic operators. Therefore the
proposed procedure provides high precise solutions in a quick search route. The
simulation bench tests have demonstrated the concepts and algorithms. In addition,
the IGA can be applied to resolve many other chain’s inverse kinematic problems.
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