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Abstract. Content-adaptive embedding is widely believed to improve
steganographic security over uniform random embedding. However, such
security claims are often based on empirical results using steganaly-
sis methods not designed to detect adaptive embedding. We propose
a framework for content-adaptive embedding in the case of imperfect
steganography. It formally defines heterogeneity within the cover as a
necessary condition for adaptive embedding. We devise a game-theoretic
model for the whole process including cover generation, adaptive em-
bedding, and a detector which anticipates the adaptivity. Our solution
exhibits a unique equilibrium in mixed strategies. Its location depends
on the level of heterogeneity of the cover source, but never coincides
with naïve adaptive embedding. The model makes several simplifying
assumptions, including independent cover symbols and the steganalyst’s
ability to recover the adaptivity criterion perfectly.

Keywords: Content-Adaptive Steganography, Game Theory, Security.

1 Introduction and Motivation

In the past couple of years, several so-called content-adaptive steganographic
schemes have been proposed, e. g., [13,25,26,21,23]. They all have in common
that they embed in the locations of the cover medium, which are most suitable
for embedding, i. e., where changes are (supposed to be) harder to detect. To
find these locations, the schemes specify an adaptivity criterion, e. g., the local
variance. Most often the superiority of content-adaptive over random uniform
embedding is claimed on the grounds of better resistance against selected ste-
ganalysis methods, not tailored to detect adaptive embedding. However, such
arguments disregard Kerckhoffs’ principle [20]: the warden knows the adaptivity
criterion as well and may be able to reproduce or estimate its values. In other
words, the adaptivity criterion leaks side information to the warden.

Furthermore, most of the adaptive schemes embed the m bits of the secret
message M into the m most “secure” locations of the cover medium. From now
on, we will call this kind of adaptive embedding naïve adaptive steganography.
There is initial evidence that this is not optimal. For example, it is shown in [4]
that the adaptive embedding function suggested in [9] is less secure than uni-
form random embedding, if the attacker recalculates the adaptivity criterion.
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An implication of this finding is that restricting the steganographer to the most
suitable embedding locations can lead to less secure steganography. Therefore,
leaving the steganographer with more choice on where to embed may strengthen
the resistance to steganalysis methods specifically designed to detect adaptive
embedding. As the steganalyst, in turn, can anticipate this behavior, she has to
be given choice, too. Game theory is the preferred method to model a situation
with two (or more) opponents who can adjust their strategies according to as-
sumptions about the behavior of the other(s). In general, they want to either
maximize their gain or minimize their loss in a competitive environment. So-
called Nash equilibria [22] are stable situations in this environment, where none
of the players would benefit from unilaterally changing her strategy.

Game theory requires that all participants have a parameter of choice. In our
case this choice is discrete for both players, steganographer and steganalyst. We
model the choice of the steganographer as the decision to embed either in the
better location or in the worse. A steganalyst who anticipates adaptive embed-
ding can choose which of the symbols she pays more attention to, depending on
their suitability for embedding.

This paper documents a first attempt to develop a rigorous approach to secure
content-adaptive steganography. We formulate a game-theoretic model spanning
the entire process from cover generation to embedding and detection. For now,
we keep the model as simple as possible in order to be able to solve our game,
and to calculate theoretical bounds of detectability for arbitrary embedding and
detection functions. By this, we are able to prove that naïve adaptive steganog-
raphy is never optimal and introduce the term of optimal adaptive steganography
as an adaptive embedding function, which anticipates a steganalysis technique
that is aware of content-adaptive embedding and may recover the adaptivity
criterion. Depending on the level of heterogeneity, optimal adaptive embedding
distributes the embedding changes between more secure and less secure locations.

This paper is organized as follows: Section 2 briefly reviews related work. Sec-
tion 3 gives a formal definition of heterogeneity and develops our basic model
including first conclusions about which strategies are possible at all. Section 4
deals with the game-theoretical payoff function and optimal strategies for both
players. The results are discussed in Section 5. Finally, Section 6 draws a con-
clusion and prioritizes directions for future work.

2 Related Work

The idea of combining game theory with steganographic security was first men-
tioned by Ettinger in 1998 [7], who proposes zero-sum games to model the contest
between a data-hider and a data-attacker. He studies active attackers who not
only want to detect, but to suppress hidden communication. Consequently, this
approach is less focussed on indistinguishability, but on the maximum capacity
which can be hidden robust enough to prevent an attacker, who is bound by a
distortion constraint, from suppressing the channel.
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Ker [16] uses game theory to find best strategies for a steganographer who
can spread her secret message over several homogeneous cover media (batch
steganography), and a steganalyst who anticipates this and tries to detect the
existence of at least one secret message (pooled steganalysis). He concludes that
a (batch) steganographer should either spread her payload as thinly as possible
or concentrate it as much as possible. The specific choice of the payoff function
precludes to fully explore mixed strategy equilibria. So the author presents min-
max and max-min solutions in pure strategies.

To our knowledge there are no other game-theoretic works in the area of
steganographic security so far. However, in general, game theory is gaining pop-
ularity in the field of information security, e. g. [1,14].

In the context of syndrome coding, Fridrich [10] shows that for sufficiently
large covers, it is never optimal to embed only into the symbols which cause
the least amount of (additive) distortion. Her result, along with the definition
of a detectability profile, which mirrors our notion of an adaptivity criterion,
is relevant for adaptive steganography. However, her work does not specify a
detector. Therefore, it solves an optimization problem and not a game.

3 Our Model

3.1 Definition of Heterogeneity

A precondition for adaptive steganography is heterogeneity within the cover.
For example, in images, flat regions are less secure to embed, whereas edges and
noisy areas are likely more secure. Until now, there is no formal definition of
heterogeneity for the purpose of adaptive embedding. We try to close this gap.

Definition 1 (Cover). A sequence of n k-bit symbols is called cover, if it is a
realization of the (cover) distribution P0. More specifically, every symbol of the
cover can take values in {0, . . . , 2k − 1}.
Cachin [5] defines information-theoretic security of a steganographic system. He
assumes that the distribution of the covers P0 and the distribution of the stego
objects P1 are known. Then he suggests to use the Kullback–Leibler divergence
(KLD) as a measure of discrepancy between these two distributions. He derives
bounds for the detectability of a steganographic embedding function. A lower
KLD indicates more similar distributions and thus a more secure embedding
function. Therefore, if the embedding function is fixed, it is convenient to base
a definition of heterogeneity on KLD.

Definition 2 (Heterogeneity). A cover is called heterogeneous, if it con-
tains (well-defined) areas, where embedding changes result in a lower KLD.
I. e., let P0 be the probability distribution of the cover and P(xi) be the altered
probability distribution after making a specific embedding change at location xi.
Then, the cover is heterogeneous iff there exists i, j ∈ [1, . . . , n], i �= j with
KLD(P0, P(xi)) �= KLD(P0, P(xj)). Otherwise the cover is homogeneous.

So, the simplest model to study adaptive embedding consists of exactly two areas
which differ in their detectability of embedding changes.
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3.2 Game-Theoretical Setup

Let Alice be the steganographer and Eve be the steganalyst.
As mentioned in Section 1, Eve has access to the embedding function. This

is a realistic assumption and in line with Kerckhoffs’ principle. There are dis-
cussions on how to interpret this principle for steganography [6,2,8], but Eve’s
access to the embedding function should be undisputed. Alice does not know the
cover distribution P0, because with that knowledge she could choose her stego
objects like realizations of P0 and could thus perform perfect steganography [24].
Granting Eve access to both distributions P0 and P1 (which would be the case
for a strict interpretation of Kerckhoffs’ principle [8]) would enable her to de-
tect at the information-theoretic bound. This is neither realistic nor interesting
to examine. We follow [3,18] where it is argued that a more realistic setup is
incomplete information on both sides. With this condition, neither perfect em-
bedding nor best possible detection is practicable and thus, both players have to
make choices. In particular, both players have to anticipate the choice of their
opponent. By this we are in a classical game-theoretic situation.

As mentioned above, the simplest model to study adaptive embedding consists
of exactly two areas. We further specify this to a model with exactly two 2-
bit symbols p

(0)
0 , p

(0)
1 , one better suitable for embedding than the other, i. e.,

n = k = 2. Following the notation in [3], the superscript (0) in p
(0)
i denotes a

symbol before embedding and the superscript (1) in p
(1)
i denotes a symbol after

embedding. If symbols are independent (see Sect. 3.6 below), we can think of
larger heterogeneous covers as sets of pairs of pixels (p(0)

0 , p
(0)
1 ) drawn from two

equally sized areas of different detectability. The game is repeated for each pair.
Since steganographic security is defined by the indistinguishability between

cover and stego objects, we start with the “game” introduced by Katzenbeisser
and Petitcolas [15]. Despite the name, their setup is not a game in a game-
theoretic sense, but inspired by cryptographic security proofs. We augment it
with choice variables in adaptive embedding to make it a veritable game.

Figure 1 shows the extensive form of our game. The different entities in our
game are: Nature, the steganographer Alice, the Judge, and the steganalyst Eve.
Nature generates a cover with exactly two symbols p

(0)
0 , p

(0)
1 , according to a pre-

defined probability mass function (PMF). Without loss of generality, among the
two symbols, p

(0)
0 is always better or equally suitable for embedding than p

(0)
1 .

Upon receiving a heterogeneous cover from Nature, Alice embeds with probabil-
ity ā into p

(0)
0 and with probability 1− ā into p

(0)
1 . The Judge is fair and forwards

with constant probability μ = 1/2 either the cover or the stego object to Eve. In
a game-theoretic sense, the Judge is a part of Nature. When Eve gets either the
cover or the stego, she examines p

(1)
0 with probability ē and p

(1)
1 with probability

1 − ē. Then she has to make a decision about the type of object she received.
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Fig. 1. Content-adaptive game in extensive form. The dashed line indicates Eve’s in-
formation set, i. e., Eve does not know which of the connected nodes has been reached.
αi, βi are the false positive, respectively false negative, rates for fmi , the PMF of p

(0)
i .

3.3 Embedding Function

We model LSB replacement as embedding function because it is best studied and
well tractable. We will introduce one modification in that Alice always has to
flip one bit instead of one on average. We justify this by the fact that in practice
it is very unlikely that not a single bit has to be flipped. The corresponding
probability is 2−m for an m-bit message and thus negligible in m.

Note that changing exactly one symbol is incompatible with the popular sim-
plifying assumption of independent embedding. It makes the symbols dependent
in P1 even if they were independent in P0. Therefore P1 cannot be decomposed
into a product of the PMFs of its symbols. Other models are certainly conceiv-
able, but not considered in this work.

3.4 Strategies

Alice’s parameter of choice is a ∈ {0, 1}. A value of a = 1 means she embeds in
p
(0)
0 , i. e., the better suitable symbol, and a = 0 means she embeds in p

(0)
1 . We

assume that the order of suitability is perfectly preserved through embedding
(not an unrealistic assumption for several so far proposed adaptivity criteria)
and thus Eve can recover it. In future models we may relax the assumption of
perfect recovery and replace it by a partial recovery.

Eve’s parameter of choice is e ∈ {0, 1}. A value of e = 1 means she examines
p
(1)
0 , i. e., the better suitable symbol, and e = 0 means she examines p

(1)
1 . We

model Eve’s decision in the way that she can either examine p0 or p1, but not
both at the same time. We justify this by the fact that for real-world covers, it
is intractable to use all information from the joint distribution of all symbols in
the sequence. Although specific steganalysis methods can take all symbols into
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account, there has to be a weighting decision [19,17] and we model this decision
in our model by an exclusive either p0 or p1. Note that whenever restricting the
adversary, security claims may break down if she is more powerful than assumed.

Game theory differentiates between stable situations in pure and in mixed
strategies. A pure strategy is a strategy where a player deterministically decides
what to do, whereas a mixed strategy is a probability distribution over pure
strategies. To be able to research the mixed strategies as well, we introduce the
random variable A, of which Alice’s choice a is a realization and the random vari-
able E, of which Eve’s choice e is a realization. Furthermore, let ā = prob(A = 1)
and ē = prob(E = 1) be Alice’s, respectively Eve’s, parameter in mixed strate-
gies. Now, a value of ā = 1/2 means that Alice embeds randomly without bias
and a value of ē = 1/2 means that Eve examines both symbols with the same
probability.

3.5 Exclusion of Pure Strategies

Lemma 1. Under the assumption that P0 �= P1 for LSB replacement, i. e., LSB
replacement does not preserve the cover distribution perfectly, there is no equi-
librium in pure strategies.

Proof. There are exactly four pure strategies in the above described game.

1. Alice embeds always in p
(0)
0 .

2. Alice embeds always in p
(0)
1 .

3. Eve examines always p0.
4. Eve examines always p1.

If Alice follows strategy (1) (i. e., naïve adaptive embedding), Eve’s best response
would be strategy (3), because she would not gain from examining the other
location. Hence, Alice would change her strategy to (2) so that Eve would not
get any information from examining p

(0)
0 . Now, Eve would switch to (4) because

all information would be in p
(1)
1 . Now, Alice’s best response would be strategy

(1) again, because Eve will not detect changes there. By this they are in an
infinite loop.

So, in every situation in pure strategies, one of the players would benefit from
changing her strategy. Therefore no equilibrium exists in pure strategies. ��

3.6 Cover Generation Model

We need a model to represent some (simplified) conditions of heterogeneous cover
sources. For this, our model should have one parameter mi to adjust the level
of heterogeneity. Now, the distribution P0 according to which the two ordered
symbols p

(0)
0 and p

(0)
1 are realised, is a discrete bivariate distribution of f

(0)
m0 (the

PMF of p
(0)
0 ) and f

(0)
m1 (the PMF of p

(0)
1 ) with m0 �= m1 (if m0 = m1, we model a

homogeneous cover). Here, mi measures the suitability for embedding. A value
of mi = 0 indicates a uniform distribution (i. e., maximal entropy) and allows
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perfect steganography. With increasing mi, the entropy and the suitability for
embedding decrease. As we assume that p

(0)
0 is more suitable for embedding,

we define m0 ≤ m1. In practice, the order of the symbols is established by the
adaptivity criterion. Reordering the cover according to this criterion removes
Markov-properties of the cover [8], but maintains some higher-order dependen-
cies not regarded here, because most of them are incognizable or intractable in
practice. Therefore, we may assume that the two ordered symbols are indepen-
dent before embedding.

So the joint PMF of the cover generation f (0)(x0, x1) is given by

f (0)(x0, x1) = f (0)
m0

(x0) · f (0)
m1

(x1). (1)

To fulfil the requirements from above, we model the family of probability mass
functions depending on mi as

f (0)
mi

(x) = (2k − x)mi +
1 −

(∑2k

j=1 j
)

mi

2k
, x ∈ {0, . . . , 2k − 1}, with (2)

mi ∈

⎡
⎢⎣0;

⎛
⎝

2k−1∑
j=1

j

⎞
⎠

−1
⎞
⎟⎠ , and therefore: mi ∈

[
0;

1
6

)
for k = 2. (3)

Equation (2) ensures that the sum of masses equals 1 and the masses for the
different symbol values are strictly decreasing. The constraints in Equation (3)
ensure that the PMF is never negative. Note that the interval has to be open.
Otherwise the value x = 2k−1 would have zero mass. This would allow detection
with certainty whenever this value occurs in a stego object after LSB flipping.

Figure 2 visualizes our cover generation model. For two fixed values of m0,
it shows the corresponding PMFs depending on m1. A lower value of m0 in the
homogeneous case means a higher entropy. A bigger difference between m0 and
m1 indicates a higher level of heterogeneity within the cover. As can be seen, by
changing m0 and m1, the entropy as well as the level of heterogeneity change.

3.7 Embedding Impact

Let f
(1)
mi be the PMF resulting from always embedding in p

(0)
i . Then, for single

symbol values xj it holds, that:

f (0)
mi

(xj) = prob(xj |Cover) and f (1)
mi

(xj) = prob(xj |Stego). (4)

As we are interested in the distribution after embedding P1, we now proceed
by examining the distribution after embedding in p

(0)
0 with probability ā and

embedding in p
(0)
1 with probability 1 − ā.

The LSB replacement embedding operation emb(x) simply swaps the values
2j by 2j + 1, and vice versa, for j ∈ {0, . . . , 2k−1}. This can be expressed by

emb(x) := x + (−1)x ⇒ emb−1(x) = emb(x). (5)
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Fig. 2. Cover generation model with increasing levels of heterogeneity from left to
right. f

(0)
m0 is light gray, f

(0)
m1 is dark gray. Left: m0 = 0.05, m1 ∈ {0.05, 0.165}. Right:

m0 = 0.01, m1 ∈ {0.01, 0.15}.

Now in our model, where we always embed, it holds that

f (1)
mi

(xj) = f (0)
mi

(emb−1(xj)), j ∈ {0, 1, . . . , n}. (6)

This yields the following lemma about f
(1)
mi (xj).

Lemma 2. In our model, the PMF f
(1)
mi (xj) is

f (1)
mi

(xj) =

{
f

(0)
mi (xj + 1), : xj ≡ 0 (mod 2)

f
(0)
mi (xj − 1), : xj ≡ 1 (mod 2)

(7)

=

{
f

(0)
mi (xj) − mi, : xj ≡ 0 (mod 2)

f
(0)
mi (xj) + mi, : xj ≡ 1 (mod 2).

(8)

Proof. From Equation (6) we know that:

f (1)
mi

(xj) = f (0)
mi

(emb−1(xj))

= f (0)
mi

(xj + (−1)xj )

=

{
f

(0)
mi (xj + 1), : xj ≡ 0 (mod 2)

f
(0)
mi (xj − 1), : xj ≡ 1 (mod 2).

(9)

And with Equation (2):

f (1)
mi

(xj) =

⎧
⎪⎨
⎪⎩

(2k − (xj + 1))mi +
1−
(∑2k

j=1 j
)

mi

2k , : xj ≡ 0 (mod 2)

(2k − (xj − 1))mi +
1−
(∑2k

j=1 j
)

mi

2k , : xj ≡ 1 (mod 2)

=

{
f

(0)
mi (xj) − mi, : xj ≡ 0 (mod 2)

f
(0)
mi (xj) + mi, : xj ≡ 1 (mod 2).

(10)

��
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As Lemma 1 excludes both pure strategies, we get a mixed strategy and thus a
mixture distribution of the kind,

f (1)(x0, x1) = ā
(
f (1)

m0
(x0) · f (0)

m1
(x1)

)
+ (1 − ā)

(
f (0)

m0
(x0) · f (1)

m1
(x1)

)
. (11)

To quantify the overall information Eve can potentially gain from the embed-
ding function, we can numerically calculate the KLD between f (0) and f (1) as
benchmark for a numerical analysis. This is certainly precluded for real covers.

3.8 Eve’s Decision

The parameter on which Eve’s choice relies is ē. This indicates to which symbol
she assigns a higher weight. This symbol will influence her decision and thus her
false positive and false negative rates more. Conveniently, as will be shown in
this paragraph, the false positive rate equals the false negative rate in our model.
So we have only one variable of interest, the equal error rate (EER).

Recall that we have a strictly decreasing PMF and thus for P0 it holds that,

f (0)
mi

(0) > f (0)
mi

(1) > f (0)
mi

(2) > f (0)
mi

(3). (12)

Therefore, we know from Lemma 2 that in pure strategies it holds that,

f (1)
mi

(1) > f (1)
mi

(0) > f (1)
mi

(3) > f (1)
mi

(2). (13)

This is sufficient to derive Eve’s optimal decision rule DR(xj) between “Cover”
and “Stego” for individual symbols.
Lemma 3. Eve’s best decision rule for individual symbol values xj is:

DR(xj) =

{
Cover, : xj ≡ 0 (mod 2)
Stego, : xj ≡ 1 (mod 2).

(14)

Proof. The decision rule implements the maximum a posteriori (MAP) estima-
tion, which can be found, for example, in [11]. Here it is important to notice that
the a priori probability of “Cover” prob(Cover) = μ = 1/2 equals the probability
of “Stego” prob(Stego) = μ = 1/2 because the Judge is fair.

The MAP estimation minimizes the decision errors by calculating:

θ̂ = arg max
θ

prob(θ|x) = argmax
θ

prob(x|θ) · prob(θ). (15)

With θ ∈ {Cover, Stego} and x = xj , this results in

θ̂ = argmax
θ

prob(xj |θ) · μ
Eq. (4)

= max
{

f (0)
mi

(xj), f (1)
mi

(xj)
}

=

{
Cover, : xj ≡ 0 (mod 2)
Stego, : xj ≡ 1 (mod 2),

(16)

because of Equations (12) and (13). ��
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Thus, in our case with n = k = 2, Eve’s decides for “Cover” whenever she sees a
symbol with value 0 or 2, and “Stego” for values 1 and 3.

Let αi and βi be Eve’s false positive, respectively, false negative rate for f
(0)
mi

and f
(1)
mi . By Lemma 3, her true positive rate (1−αi) (and consequently the false

positive rate as well) is aggregated between the cases where her decision yields
“Cover” and the same for the true negative rate (1 − βi) in all other cases.

Lemma 4. In our model, Eve’s false positive rate αi equals her false negative
rate βi and thus is called equal error rate EERi.

EERi = αi = βi =
1
2
− mi, (17)

for i ∈ {0, 1}.
The proof can be found in Appendix A.1.

Equation (17) is intuitive, as values of mi = 0 indicate an uniform distribution.
In this case P1 would equal P0, i. e., the same distribution before and after
embedding. Therefore the false positive and false negative rate would be 50%,
i. e., random guessing. Furthermore, it follows our initial thoughts that a higher
value of mi implies a better detectability, which materializes in a lower EER.

Corollary 1. The worst case for Eve would be Alice choosing a ∈ {0, 1} and she
herself choosing e = 1−a because by this, her decision would be merely guessing,
i. e., EER = 0.5.

The proof can be found in Appendix A.2.
This confirms Lemma 1 that there is no equilibrium in pure strategies, as with

every pure strategy, one of the players would benefit from changing her strategy
to the opposite. Now we are in the position to solve the game and to identify
equilibria in mixed strategies.

4 Solving the Game

The EER described in Section 3.8 can be seen as the payoff function in our zero-
sum game. As it is Alice’s intention to perform least detectable steganography,
her goal is to maximize the EER, whereas it is Eve’s goal to maximize her
detection rate and thus, to minimize the EER.

4.1 Payoff Function

From Figure 1 and the EER described in Section 3.8, the payoff function χ(ā, ē)
for mixed strategies can be derived and equals the overall EER. It is stated in
the following corollary.

Corollary 2. In our model, the payoff function in mixed strategies is

χ(ā, ē) =
1
2
− (ā · ē · m0 + (1 − ā) · (1 − ē) · m1) (18)
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Proof. From Figure 1 it can be seen, that the nodes of Eve’s decision (shaded
nodes) can be partitioned into three different situations.

The first situation is that Alice embeds in p
(0)
0 and Eve anticipates this

(lightgray nodes in Figure 1). This situation occurs with probability ā · ē. When
faced with a situation like this, we know from Equation (17) that Eve’s EER

equals α0 (= β0). The second possible situation is that Alice embeds in p
(0)
1

and Eve, again, anticipates this (darkgray nodes in Figure 1). The occurrence
probability of this situation is (1 − ā) · (1 − ē). Again, we know the payoff from
Equation (17), which is α1 (= β1). The third and last situation is that Alice
embeds in p

(0)
i , but Eve inspects the wrong location (black nodes in Figure 1).

This situation occurs with probability (1 − ā) · ē (for Alice embedding in p
(0)
0 ,

but Eve examining p
(1)
1 ) and ā · (1 − ē) (for Alice embedding in p

(0)
1 , but Eve

examining p
(1)
0 ). Here, we know from Corollary 1 that Eve’s decision rule is no

better than random guessing and thus has an EER of 1/2.
This leads to the following expression for χ(ā, ē),

χ(ā, ē) = (ā · ē) · α0 + ((1 − ā) · ē + ā · (1 − ē)) · 1
2

+ (1 − ā) · (1 − ē) · α1

= (ā · ē) · α0 +
ā + ē − 2āē

2
+ (1 − ā) · (1 − ē) · α1. (19)

From Lemma 4 we know that αi = 1/2 − mi and thus:

χ(ā, ē) = (ā · ē) · (1
2
− m0) +

ā + ē − 2āē

2
+ (1 − ā) · (1 − ē) · (1

2
− m1)

=
ā · ē
2

− ā · ē · m0 +
ā + ē − 2ā · ē

2

+
1
2
− ā

2
− ē

2
+

ā · ē
2

− (1 − ā) · (1 − ē) · m1 (20)

=
1
2
− (ā · ē · m0 + (1 − ā) · (1 − ē) · m1) (21)

��

4.2 Best Strategies

As the payoff function is the same for both players but with contrary goals,
i. e., Alice wants to maximize it, while Eve wants to minimize it, an equilibrium
in mixed strategies can be found by looking at the partial derivatives of the
payoff function and setting them to zero. With this method we find a unique
equilibrium of our model, which happens to be symmetric.

Lemma 5. In our model, there exists a unique symmetric Nash equilibrium in
mixed strategies. In this equilibrium it holds that:

ā∗ = ē∗ =
m1

m0 + m1
(22)
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Proof. The partial derivatives of the payoff function are,

∂χ(ā, ē)
∂ā

= − (m0 + m1) · ē + m1 (23)

∂χ(ā, ē)
∂ē

= − (m0 + m1) · ā + m1. (24)

Setting both derivatives to zero yields the values for the equilibrium,

−(m0 + m1) · ē + m1
!= 0 ⇔ ē∗ =

m1

m0 + m1
(25)

−(m0 + m1) · ā + m1
!= 0 ⇔ ā∗ =

m1

m0 + m1
. (26)

��
Inserting these optimal values into χ(ā∗, ē∗) yields the equilibrium EER .

Corollary 3. In the equilibrium it holds that the EER is,

EER∗ = χ

(
m1

m0 + m1
,

m1

m0 + m1

)
=

1
2
− m0 · m1

m0 + m1
. (27)

Proof. Equation (21) can be rearranged to

χ(ā, ē) =
1
2
− ((m0 + m1) · (ā · ē) − m1 · ā − ē · m1 + m1) , (28)

and using ē = ā = ā∗ = m1
m0+m1

from Lemma 5 we obtain,

χ(ā∗, ā∗) =
1
2
− ((m0 + m1) · (ā∗)2 − 2 · m1 · ā∗ + m1

)
(29)

=
1
2
−
(

(m0 + m1) ·
(

m1

m0 + m1

)2

− 2 · m1
2

m0 + m1
+ m1

)
(30)

=
1
2
−
(

m1 − m1
2

m0 + m1

)
=

1
2
− m0 · m1

m0 + m1
. (31)

��
With this unique value for ā∗, we say a steganographer performs optimal adaptive
steganography. It is always less detectable than a steganographer who performs
naïve adaptive steganography.

5 Discussion

One implication of our analysis is that the optimal distribution of embedding
changes depends on the level of heterogeneity in the cover source. So, steganog-
rapher and steganalyst both have to adjust their strategy to the cover source.
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(a) Optimal ā∗ once with regard to minimal KLD (dashed line) and once with
regard to the equilibrium of our game (solid line).
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(b) Optimal KLD once minimal achievable using LSB replacement (dashed
line) and once with regard to ā∗ in the equilibrium of our game (solid line).
Note the different scales.
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(c) Optimal EER with optimal KLD and fixed detector (dashed line) and
once in the equilibrium of our game (solid line).

Fig. 3. Comparsion of equilibrium parameters with numerical benchmarks based on
KLD, as a function of the level of heterogeneity. Left figures: m0 = 0.05, m1 ∈
[0.05, 0.165]. Right figures: m0 = 0.01, m1 ∈ [0.01, 0.165].
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The discussion of our results is facilitated by looking at numerical examples in
Figure 3. As one requirement for our model was simplicity, we are able to calcu-
late the KLD as benchmark, which is infeasible for real-world cover sources.

Figure 3(a) shows the optimal value of ā∗, once by numerically minimizing
KLD (dashed line) and once the value found in the equilibrium (solid line). Fig-
ure 3(b) shows the KLD created by the values for ā∗ from the figure above and
Figure 3(c) shows the resulting EER. To recall how the corresponding PMFs
look like, they are displayed in Figure 2. Figure 3(a) reveals that if Alice’s goal
was to minimize KLD, she would choose higher values for ā∗, i. e., embed with
higher probability in the better suitable location. Furthermore, it can be seen in
Figure 3(b) that the KLD generated by Alice’s strategy in the equilibrium in-
creases rapidly with an increasing level of heterogeneity. Nonetheless, Figure 3(c)
shows that Alice’s strategy in the equilibrium implicates a higher EER than in
the situation with minimal KLD, and thus more secure steganography against
the specific detector defined in our model. By this, both players could perform
better, if the other would not follow the strategy in the equilibrium. So, it fol-
lows that if Alice tries to minimize the KLD and Eve anticipates this (still being
bound to her specific detector), Eve’s detection rate would increase and thus
Alice would perform less secure steganography.

6 Conclusion and Outlook

The literature is full of content-adaptive embedding schemes, but most of them
seem to be designed ad-hoc. Their security relies solely on the opinion of the re-
spective developer that the adaptivity criterion of her choice is good at selecting
secure embedding locations. To overcome such design methods in the medium
term, we give a first definition of heterogeneity for content-adaptive steganogra-
phy and specify a model of the entire process, covering the choices of Alice and
Eve, and being simple enough to be tractable, both in terms of game-theoretic
equilibria and information-theoretic benchmarks.

We show that naïve adaptive steganography, the strategy to embed only in
the most suitable locations of a heterogeneous cover, is never optimal. We solve
our model and find a unique equilibrium of our game, where none of the players
would gain from changing her strategy. As a result, we define a new kind of
adaptive embedding, the so-called optimal adaptive steganography, which takes
into account the knowledge of an attacker who can recover (or estimate) the
values of the adaptivity criterion as side information.

The way we model the level of adaptivity certainly needs further refinement
and, in future works, we may be able to relax some of the restrictions we impose
on our model. Furthermore, as mentioned in Section 3.6, changing m0 and m1 of
the cover generation model influences the entropy and the level of heterogeneity.
It would be more convenient if both quantities of interest could be adjusted
independently. This is a goal for future models.

It is obvious that a cover model with exactly two locations is not realistic, so
there is space for future work. Special attention in these future models has to
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be be paid to what happens if the parameters ā, ē, our players’ parameters of
choice, become divided into n instead of 2 parts. By this, we have to think about
how to model the different weights and will most likely come to an optimization
problem over the function field, similar to the batch steganography problem
stated in [16].

Another open question is the relation between adaptive embedding and ste-
ganalysis based on machine learning. As a first remark on the combination of
these two areas, [12] states that “[...] it does not appear that giving [Eve] prob-
abilistic information about the selection channel is a weakness”.

Another field for future research is the advantage the attacker gains from
cover estimation in the case of heterogeneity within and between covers. By
adding this to our model, we end up with a double-stochastic cover generation
process. As can be seen by these examples, a rigorous understanding of content-
adaptive steganography in theory and practice remains a relevant target for
future investigations.
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A Appendix

A.1 Proof of Lemma 4

As mentioned in Section 3.8, Eve’s true positive and true negative rate can be
calculated as follows:
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True Positives TP(xj):

xj = 0 : TP(0) =
f

(0)
mi (0)

f
(0)
mi (0) + f

(1)
mi (0)

=
f

(0)
mi (0)

f
(0)
mi (0) + f

(0)
mi (1)

(32)

xj = 2 : TP (2) =
f

(0)
mi (2)

f
(0)
mi (2) + f

(1)
mi (2)

=
f

(0)
mi (2)

f
(0)
mi (2) + f

(0)
mi (3)

(33)

⇒ (1 − αi) = (f (0)
mi

(0) + f (0)
mi

(1)) · TP (0) + (f (0)
mi

(2) + f (0)
mi

(3)) · TP (2) (34)

= f (0)
mi

(0) + f (0)
mi

(2) (35)

True Negatives TN(xj):

xj = 1 : TN(1) =
f

(1)
mi (1)

f
(0)
mi (1) + f

(1)
mi (1)

=
f

(0)
mi (0)

f
(0)
mi (0) + f

(0)
mi (1)

= TP (0) (36)

xj = 3 : TN(3) =
f

(1)
mi (3)

f
(0)
mi (3) + f

(1)
mi (3)

=
f

(0)
mi (2)

f
(0)
mi (2) + f

(0)
mi (3)

= TP (2) (37)

⇒ (1 − βi) = (f (0)
mi

(0) + f (0)
mi

(1)) · TN(1) + (f (0)
mi

(2) + f (0)
mi

(3)) · TN(3) (38)

= f (1)
mi

(1) + f (1)
mi

(3) = f (0)
mi

(0) + f (0)
mi

(2) = (1 − αi) (39)

Eq.(2)⇔ (1 − αi) = (1 − βi) = 4 · mi +
1 − 10mi

4
+ 2 · mi +

1 − 10mi

4
(40)

= 6 · mi + 2 · 1 − 10mi

4
=

2 · mi + 1
2

= mi +
1
2

(41)

⇒ EERi = αi = βi =
1
2
− mi. (42)

for i ∈ {0, 1}. ��

A.2 Proof of Corollary 1

If Eve chooses e = 1 − a and a ∈ {0, 1}, it holds that Alice always embeds
in p

(0)
a and by this never into p

(0)
e . From Eq. (6) it follows that f

(1)
ma(xj) =

f
(0)
ma(emb−1(xj)), but f

(1)
me (xj) = f

(0)
me (xj), as there is no embedding in p

(0)
e .

Therefore, it holds that:

xj ∈ {0, 2} : TP(xj)
xj ∈ {1, 3} : TN(xj)

}
=

f
(0)
me (xj)

f
(0)
me (xj) + f

(1)
me (xj)

=
f

(0)
me (xj)

f
(0)
me (xj) + f

(0)
me (xj)

=
f

(0)
me (xj)

2 · f (0)
me (xj)

=
1
2
. (43)
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