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Abstract. How to embed and/or extract watermarks on encrypted im-
ages without being able to decrypt is a challenging problem. In this
paper, we firstly discuss the implementation of Walsh-Hadamard trans-
form (WHT) and its fast algorithm in the encrypted domain, which is
particularly suitable for the applications in the encrypted domain for its
transform matrix consists of only integers. Then by modifying the rela-
tions among the adjacent transform coefficients, we propose an WHT-
based image watermarking algorithm in the encrypted domain. Due to
the constrains of the encryption, extracting a watermark blindly from
an encrypted image is not a easy task. However, our proposed algorithm
possesses the characteristics of blind watermark extraction both in the
decrypted domain and the encrypted domain. This means neither the
plain image nor its encrypted version is required for the extraction. The
experiments demonstrate the validity and the advantages of our proposed
method.

Keywords: Secure signal processing, watermark, homomorphic encryp-
tion, signal processing in the encrypted domain, Walsh Hadamard trans-
form.

1 Introduction

Watermarking is an method to protect the copyright of digital media by hiding
proprietary information in media. The security of watermarking is a challenging
problem in the watermarking community. Many efforts focusing on watermark
security have been reported in literature [1] [2]. In fact, there are at least two
problems on the security. The first one is the security of the original media un-
der being watermarked. Almost all the existing watermark schemes accomplish
the watermark embedding and extraction on the plain media. Hence, the wa-
termark embedder must be the owner of the plain media or the trusted third
party, in order to make sure the original media is not exposed to the untrusted
party. The second one is the security of the watermark scheme itself. For ex-
ample, how to prevent illegal watermark embedding, extracting, and removal.
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Though there are some reports on integrating watermark embedding and en-
crypting [3] [4], it causes additional constraints to the watermarking algorithm,
meanwhile. Some works [5] have been proposed to solve the first problem, how-
ever, the visual quality of the watermarked images are not so good as expected.
Single processing in the encrypted domain, also referred to as secure signal pro-
cessing (SSP), provides another way to solve the first problem. This new technol-
ogy allows one to manipulate the encryption data by means of signal processing
without decrypting.

There have been some related works on secure signal processing over the past
few years. An interactive buyer-seller watermarking protocol for invisible water-
marking was proposed in [6], where the seller does not get to know the exact
watermarked copy that the buyer receives. Bianchi et al. [7] conducted an inves-
tigation on the implementation of the discrete Fourier transform (DFT) as well
as the fast Fourier transform (FFT) on encrypted signals. A data encrypting
method, which packs several samples as a single one, was proposed by Troncoso-
Pastoriza et al. [8], and later generalized by Bianchi et al. [9]. In [10] [11], the
authors proposed schemes for privacy-preserving face recognition by using the
Paillier cryptosystem. Zheng et al. [12] presented a new technique to implement
the discrete wavelet transform (DWT) and Multiresolution Analysis (MRA) in
the encrypted domain. They also provided a new method to handle the data
expansion without decrypting. Barni et al. gave a privacy-preserving fingercode
authentication in [13]. In [14], they proposed a system for the secure classifica-
tion of ECG (electrocardiogram) signals with branching programs and neural
networks.

Due to the limitation of the encryption, it is very difficult, sometimes im-
possible, to transplant the existing mature watermark scheme to the encrypted
domain. Thus it is meaningful to design a new image watermark scheme under
the constraints of the homomorphic encrypted domain. Generally, the water-
mark algorithms based on transform domain are more robust than the others.
Owing to the quantization error, DFT [7] and DCT [15] in the encrypted do-
main will bring a noise to the plain reconstructed image, which may decrease
the visual effect of the watermarked image. Since the transform matrix of the
Walsh-Hadamard transform (WHT) contains only +1 and −1, one can avoid
the quantization error of its implementation in the encrypted domain. There-
fore WHT is particularly suitable to be used as a transform method for image
watermarking in the encrypted domain.

This paper addresses the issue of image watermarking in the encrypted do-
main. Firstly, we describe a framework for performing WHT in a homomor-
phic encrypted domain. Secondly, we develop a WHT-based image watermarking
scheme and transplant it to the encrypted domain. The proposed scheme pos-
sesses the characteristics of blind watermark extraction both in the decrypted
domain and the encrypted domain. Finally, we conduct several experiments to
substantiate the proposed scheme. Our technique can be applied to other appli-
cations where a secure watermarking algorithm is required.
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The remainder of this paper is organized as follows. In Section 2, we discuss
the implementation of WHT in the encrypted domain. In Section 3, we propose
the blind-extraction image watermarking algorithm in the encrypted domain.
Section 4 gives some experiments on the image watermarking algorithm. We
conclude the paper and provide suggestions for future work in Section 5.

2 Walsh-Hadamard Transform in the Encrypted Domain

WHT is used widely in the field of signal processing. The transform matrix of
WHT contains only ±1, and no multiplications are required in the computation.
Thus WHT is more efficient than other orthogonal transformations, such as
DFT or DCT. Another advantage of WHT has is that WHT will not bring the
quantization error in the encrypted domain. WHT can therefore be perfectly
reconstructed in the encrypted domain, which is shown in Section 2.3. Hence, in
contrast to DFT and DCT, WHT is particularly suitable for image watermarking
in the encrypted domain. Since the implementation of WHT in the encrypted
domain has not been reported yet, we present the implementation first.

2.1 Homomorphic Cryptosystem

The homomorphic cryptosystem [16] is an encryption function which allows one
to operate the ciphertexts without decrypting. Specifically, suppose D[·] and �·�
are the decrypting operator and encrypting operator, respectively. If m1 and m2

are any two plaintexts, we have

D [�m1� � �m2�] = m1 ∗m2 (1)

where operator ’�’ and ’∗’ are the algebraic operations performed in the cipher-
text space and the plaintext space, respectively.

For convenience, we use the Paillier cryptosystem as data encryption method
in this paper. We refer to [17] for the detailed definition of the Paillier cryp-
tosystem. Based on the definition, we have the additive homomorphic properties
as

D [
�m1� �m2� mod N2

]
= m1 +m2 mod N, (2)

D [
�m1�

m2 mod N2
]
= m1m2 mod N. (3)

The Paillier cryptosystem also has the self-blinding property, i.e.,

D [
�m1� r

N mod N2
]
= m1 mod N (4)

where r is a random element in Z
∗
N . Z∗

N consists of all the integers in Z which are
relative prime with N . The self-blinding property means that every ciphertext
can be publicly changed into another ciphertext which has the same plaintext.

These properties will be applied in the following sections to perform the im-
plementation of WHT and image watermarking in the encrypted domain.
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2.2 Integer Approximation and Evaluation

Let us consider the image I(x, y), with the size of M ×M , where M is assumed
to be the power of two. The 2D WHT of natural ordering is defined as

X (k, l) =
1

M

M−1∑

x=0

M−1∑

y=0

Hμ (k, x) I (x, y)Hμ (y, l) , k, l = 0, 1, . . . ,M − 1 (5)

where μ = log2 M and Hμ denotes the Hadamard transform matrices. Hμ can
be generated by the core matrix

H1 =

(
1 1
1 −1

)
(6)

and the Kronecker product recursion

Hμ = H1⊗Hμ−1 =

(
Hμ−1 Hμ−1

Hμ−1 −Hμ−1

)
(7)

where⊗ is the Kronecker product operator. According to the method in [18], one
can easily obtain WHT of sequency ordering and other orderings by rearranging
the outputs (5). Therefore we will focus on WHT of natural ordering in the
following.

Since all the plaintexts and the ciphertexts are represented by integers in the
cryptosystem, the signal must also be represented by integers too. Obviously, all
the elements of I(x, y) are integers between 0 and 255, i.e., I(x, y) ∈ Z256. How-
ever, the transform coefficients of an image may be negative, and we still need to
consider the problem of representing the negative integers in the cryptosystem.
Suppose N is the modulus of the cryptosystem. We let N ≥ 2 sup {|S(k)|} + 1,
where sup{·} denotes the least upper bound operator performed on a sequence,
and S(k) is the plain value of the processed result in the encrypted domain.

According to the above discussion, we give the definition of the integer ap-
proximation of the 2D WHT as

V (k, l) =

M−1∑

x=0

M−1∑

y=0

Hμ (k, x) I (x, y)Hμ (y, l) , k, l = 0, 1, . . . ,M − 1. (8)

Since all the operations are either integer additions or integer subtractions, (8)
can be implemented in the encrypted domain by using the homomorphic proper-
ties. In the case that the input signal is encrypted with the Paillier cryptosystem,
by means of the equations (2) and (3), the implementation of the 2D WHT in
the encrypted domain is given as

�V (k, l)� =

M−1∏

x=0

M−1∏

y=0

�I (x, y)�
Hµ(k,x)Hµ(y,l) � Ṽ (k, l) , k, l = 0, 1, . . . ,M − 1

(9)
where all the multiplications and exponentiations are carried out under N2.
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The definition of the inverse WHT (IWHT) is identical to the forward WHT.
If X ′(k, l) is the input transform coefficients, which may not be identical to
X(k, l), then the reconstructed image is given as

Î (x, y) =
1

M

M−1∑

k=0

M−1∑

l=0

Hμ (x, k)X
′ (k, l)Hμ (l, y) , x, y = 0, 1, . . . ,M − 1. (10)

A similar approach leads to the definition of the integer IWHT. Assuming we
have already obtained the integer 2D WHT coefficients V ′(k, l), the integer ap-
proximation of the 2D IWHT is defined as

I ′ (x, y) =
M−1∑

x=0

M−1∑

y=0

Hμ (x, k)V
′ (k, l)Hμ (l, y) , x, y = 0, 1, . . . ,M − 1, (11)

where V ′(k, l) is corresponding to X ′(k, l). Since all the input arguments are
integers, (11) can be computed in the encrypted domain as

�I ′ (x, y)� =
M−1∏

k=0

M−1∏

l=0

Ṽ ′ (k, l)Hµ(x,k)Hµ(l,y) � Ĩ ′ (x, y) , x, y = 0, 1, . . . ,M − 1.

(12)
For the sake of simplicity, we use WHT-ed and IWHT-ed to denote the imple-
mentation of WHT and IWHT in the encrypted domain, respectively.

2.3 Data Recovery and Upper Bound

In order to implement WHT and IWHT in the encrypted domain by using (9)
and (12), we need to consider some issues. Since all the calculations of (9) and
(12) are in the finite ring ZN , the plain value of the processed result S must not
be larger than N . Thus we should find a upper bound on S. Let us consider the
implementation of WHT in the encrypted domain first. It is obvious that

D
[
Ṽ (k, l)

]
= V (k, l) mod N = MX (k, l) mod N

� Z (k, l) . (13)

However, Z(k, l) may sometimes be negative. Taking the negative coefficients
into account, the recovery condition is given as

2M sup
k,l

{|X (k, l)|}+ 1 < N. (14)

Moreover, we must find a method to recover every value from the decryption of
the output. Actually, under the condition (14), X(k, l) can be obtained directly
from Ṽ (k, l) as

X (k, l) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D
[
Ṽ (k, l)

]

M
, for Z (k, l) < N/2

D
[
Ṽ (k, l)

]
−N

M
. for Z (k, l) > N/2

(15)
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As for the inverse WHT in the encrypted domain, a similar approach leads to the
upper bound of the reconstructed image. By using the homomorphic property,
we have

D
[
Ĩ ′ (x, y)

]
=

M−1∑

k=0

M−1∑

l=0

Hμ (x, k)D
[
Ṽ ′ (k, l)

]
Hμ (l, y)

= M

M−1∑

k=0

M−1∑

l=0

Hμ (x, k)X
′ (k, l)Hμ (l, y) mod N

= M2Î (x, y) mod N � Y (x, y) . (16)

Specifically, if V ′(k, l) = V (k, l), then Y (x, y) = M2I(x, y). It implies that any
image can be completely reconstructed in the encrypted domain, i.e. perfect
reconstruction. The recovery condition of the reconstructed image is given as

2M2 sup
x,y

{
Î (x, y)

}
+ 1 < N. (17)

When condition (17) is satisfied, we can obtain Î (x, y) from the Ĩ ′ (x, y) as

Î (x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D
[
Ĩ ′ (x, y)

]

M2
, for Y (x, y) < N/2

D
[
Ĩ ′ (x, y)

]
−N

M2
. for Y (x, y) > N/2

(18)

Obviously, supx,y{I(x, y)} = 255. The first element of matrix X(k, l) is the sum
of all the pixels in I(x, y). Thus we have supk,l{|X(k, l)|} = 255M2. In the case
of V ′(k, l) = V (k, l), by combining (14) and (17), the final recovery condition
can be given as

N > max{510M3, 510M2} = 510M3. (19)

According the above analysis, an interesting phenomenon may be obtained. In
contrast to the implementation of WHT in the plain domain, the implementation
in the encrypted domain will expand the plain value of the expected value. The
expanding factor depends on two parameters, the dimension and the length of
the input signal. More specifically, each implementation of 2D WHT-ed and 2D
IWHT-ed will expand the plain value by a fixed factor M . Generally, the image
size M is only tens of bits for real images, while N should be 1024 bits according
to [17]. Therefore the expanding factor M is negligible compared with N , and
the WHT-based applications can be well transplanted to the encrypted domain,
without considering the data overflow.

2.4 Fast WHT in the Encrypted Domain

2D WHT is a separable transform, i.e., a 2D transform which can be decomposed
into two 1D transforms. Specifically, performing 2DWHT on I(x, y) is equivalent
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to performing 1D WHT on the each column of I (x, y) first and then performing
1D WHT on the each row to the former result. Hence, we focus on the fast
algorithm of 1D WHT-ed in this paper.

In fact, the computational complexity of WHT can be reduced from M2 to
M logM by a fast algorithm [18]. The fast algorithm follows the recursive defi-
nition of the Hadamard matrix (7). Similar to FFT, the fast WHT recursively
breaks down a WHT of size M into two smaller WHTs of size M/2. Therefore
there are totally log2 M stages of breaking down by means of the fast algorithm.
Since there are only M additions/subtractions at each stage, there are totally
M log2 M additions/subtractions for the fast WHT. More specifically, every two
coefficients are obtained at one stage from another two coefficients at the previ-
ous stage by using only addition or substraction. That is, by omitting the scaling
factor, the fast WHT at i-th stage can described as

vi (k0) = vi−1 (k0) + vi−1 (k1) (20)

vi (k1) = vi−1 (k0)− vi−1 (k1) (21)

where vi (k0) and vi (k1) are the two coefficients obtained at i-th stage, i =
1, 2, . . . , log2 M . The indices k0, k1 are integers which vary between 0 and M−1.

By using the homomorphic properties, we implement the fast WHT at i stage
in the encrypted domain as

�
vi (k0)

�
=

�
vi−1 (k0)

� �
vi−1 (k1)

�
, (22)

�
vi (k1)

�
=

�
vi−1 (k0)

� �
vi−1 (k1)

�−1
. (23)

Suppose {�vlog2 M (k)�} are the encrypted coefficients obtained at the final stage.
After a simple deduction, we get the relationship between the direct WHT-ed
and the fast WHT-ed as �

vlog2 M (k)
�
= ṽ (k) (24)

where ṽ(k) is the coefficient obtained by the direct WHT-ed. Since the definition
of IWHT is identical to that of WHT, the method described above can also be
used as a fast algorithm to implement IWHT in the encrypted domain.

3 Blind Image Watermarking in the Encrypted Domain

In order to embed a watermark on an encrypted image, we should tackle two
challenging issues. The first one is how to achieve the goal of blind watermark
exaction. Since the original image is protected by the encryption, it is not practi-
cal to involve the plain original image into the extraction. The second one is how
to evaluate the visual quality of the watermarked image. Since the input image
is in the encrypted form and the embedder don’t have the decrypting key, it is
difficult for him/her to determine whether the visual effect of the watermarked
images is good or bad.
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Fig. 1. The relationship between the reference positions and the values ej and dj

3.1 Watermark Embedding

The embedding domain, e.g. the spatial domain or the transform domain, plays
a crucial role in robust performance and the visual quality of the watermarked
image. In order to make the watermark scheme more robust, we choose to embed
the watermark in the transform domain rather than the spatial domain. We
describe the algorithms in the plain domain first and then give its implementation
in the encrypted domain.

Watermarking in the Plain Domain. Suppose the embedding message is
a binary signal w = {w1, w2, . . . , wn}, where wj ∈ {0, 1}. Our watermarking
algorithm in the plain domain can be described as follows.

(1) To segment the original image I(x, y) into non-overlapping blocks of m×m.
m is assumed to be an integral power of two. Thus there are totally Mb =
(M/m)2 blocks after the segmentation.

(2) To perform WHT of sequency ordering on each segmented block and obtain
the transform coefficient blocks, denoted by {Vj}Mb

1 . In order to protect the
watermarked images from illegal extraction, a random number sequence is
introduced to control the embedding. Denote the random number sequence
by a = {a1, a2, . . . , an} ∈ P({1, 2, . . . ,Mb}), where P(·) denotes the power
set of a set. Select n coefficient blocks from {Xj}Mb

1 according to a in se-
quential scan order. The selected blocks are denoted by {X1, X2, . . . , Xn}.

(3) To choose two random sequences e = {e1, e2, . . . , en} and d = {d1, d2, . . . , dn},
where ej ∈ {2, 3, . . . ,m2} and dj ∈ {1, 2, . . . , 8}. ej denotes one special point
in block Xj , called the cardinal point of Xj. The value of ej corresponds to
the position in Xj in sequential scan order. Whereas dj stands for the ori-
entation which surrounds the cardinal point. The value of dj increases as
we revolve clockwise around the cardinal point. We show the corresponding
relation between the values of ej and dj and the positions in block Xj in
Fig. 1.

(4) In the selected block Xj , we choose the cardinal point according to the value
of ej . The cardinal point of Xj is Xj(k0, l0) = Vj(�ej/m�, ej mod m). We use
Xj(k1, l1) to denote the adjacent point surrounding Xj(k0, l0), with respect
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to dj . The watermark is embedded by modifying the transform coefficient
Xj(k1, l1). The detailed modification of the coefficient Xj(k1, l1) is given as

Xj (k1, l1) =

{
Xj (k0, l0) , if wj = 0

Xj (k0, l0) + αj . if wj = 1
(25)

where αj ∈ N
∗ is a locally adjustable amplitude factor. Since the other

coefficients is quite small compared with the Vj(1, 1), this modification is
actually very slight. We use X∗

j to denote the coefficient block which has
been modified.

(5) To perform IWHT on all the coefficient blocks, including the modified blocks
and the unmodified ones, in order to output the watermarked image, de-
noted by Iw(x, y). In order to keep format compliance, Iw(x, y) will undergo
the quantization process. The quantized watermarked image is denoted by
Iw,256(x, y).

The triple (a, e,d) is the secret key of the watermark algorithm. It determines
the positions where the watermark is embedded. It will be sent to the watermark
extractor and take part in the process of watermark extraction.

Watermarking in the Encrypted Domain. By using the homomorphic
properties of the cryptosystem, the watermark embedding algorithm can also
be implemented in the encrypted domain. Suppose the input to the watermark
embedder is an encrypted image �I(x, y)�. The embedder knows nothing about
the plain image while still try to embed w in the plain image. Actually the
watermark embedding can be carried out in the encrypted domain without an
interactive protocol. The detail of the implementation is given as follows.

We segment the encrypted image �I(x, y)� into (M/m)2 blocks ofm×m. Then
we apply WHT-ed to each block. According to the random integer sequence a, n
blocks are selected for watermark insertion. We denote those selected blocks by
{Ṽ1, Ṽ2, . . . , Ṽn}. In the block Ṽj , the cardinal point Ṽj(k0, l0) is chosen according

to the value of ej , i.e., Ṽj = Ṽj(�ej/m�, ej mod m). With respect to the value

of dj , we choose the adjacent point of Ṽj(k0, l0), denoted by Ṽj (k1, l1). Then
the watermark embedding in the encrypted domain can be accomplished by
modifying the encrypted coefficients. Specifically, the coefficient modification of
j-th selected block can be given as

Ṽj (k1, l1) =

{
Ṽj (k0, l0) r

N mod N2, if wj = 0

Ṽj (k0, l0) �αjm� mod N2. if wj = 1
(26)

where r is a random number chosen in ZN . We use Ṽ ∗
j to denote the encrypted co-

efficient block which has been modified. After modifying the coefficients, we per-
form IWHT-ed on all the coefficient blocks, including both the modified blocks
and the unmodified ones. The processed encrypted image, i.e. the encrypted
version of the watermarked image, is denoted by Ĩw (x, y). The above manipu-
lations only use the homomorphic properties of the encryption, and rely on no
interactive protocol.
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We now explain why we call Ĩw(x, y) the encrypted version of Iw(x, y). Since
the homomorphic cryptosystem possesses the self-blinding property (4), by using
the equation (13), we have

D
[
Ṽj (k0, l0) r

N mod N2
]
= mX∗

j (k0, l0) . (27)

Similarly, by using the homomorphic properties (2) and equation (13) , we have

D
[
Ṽj (k0, l0) �αjm� mod N2

]
= mX∗

j (k0, l0) +mαj . (28)

Hence, by combining the two equations (27) and (28), we obtain

D
[
Ṽ ∗
j (k1, l1)

]
= mX∗

j (k1, l1) . (29)

Since Ĩw(x, y) is obtained by performing 2D IWHT-ed on all the encrypted
coefficient blocks, we can get the relationship between Ĩw(x, y) and Iw(x, y) by
using (16). Specifically, the relationship can be obtained as

D
[
Ĩw (x, y)

]
= m2Iw (x, y) mod N. (30)

This means that the image D[Ĩw(x, y)] is the same as the image Iw (x, y) in
the finite ring ZN if the scale factor m2 is not considered. By using a method
similar to (18), we are able to recover the desired watermarked image from the
encrypted image Ĩw(x, y).

3.2 Watermark Extraction

For our watermark scheme, the watermark extraction can be accomplished in
either the plain domain or the encrypted domain. That is, we can extract the wa-
termark either from the image Iw,256 (x, y) or from the encrypted image Ĩw (x, y).

After the watermark has been extracted, it will be compared to the original
watermark with some metrics. We use the bit error rate (BER) to measure the
difference between the extracted watermark and the original one. If we denote
the extracted watermark by w′

j , then the BER of w′
j and wj is given as

BER(w′,w) =
1

n

n−1∑

j=0

w′
j XORwj (31)

where XOR is the exclusive or operator. If the BER is less than or equal to some
threshold τ , it indicates the presence of watermark, otherwise it indicates the
absence of watermark.

We shall show that our watermark scheme possesses the characteristics of
blind extraction in two domains, i.e., the decrypted domain and the encrypted
domain. More specifically, in the plain domain, the watermark can be extracted
from the watermarked image Iw or Iw,256 without requiring the original image
I. While in the encrypted domain, the watermark can be extracted from the
encrypted data Ĩw without requiring either �I� or I. We describe the extracting
algorithm of our watermark scheme below.
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Extraction in the Encrypted Domain. In order to extract the watermark
from the encrypted image, we segment Ĩw(x, y) into non-overlapping blocks of

m × m. According to the sequence a, we select n blocks from total (M/m)2

blocks. We then apply WHT-ed of size m×m to all the selected blocks to output
the encrypted coefficients. Let us denote those encrypted coefficient blocks by
{Ṽ ε

1 , Ṽ
ε
2 , . . . , Ṽ

ε
n }. According to the values of ej and dj , we choose the cardinal

point Ṽ ε
j (k0, l0) and the adjacent point Ṽ ε

j (k1, l1) in the block Ṽ ε
j (k, l). If we

use w̃′
j to denote the extracted information from j-th selected block, then the

watermark extraction in the encrypted domain can be given as

w̃′
j = Ṽ ε

j (k1, l1) [Ṽ
ε
j (k0, l0)]

−1. (32)

By using the homomorphic properties of the cryptosystem and (30), we have

D [
w̃′

j

]
=

{
0, if wj = 0

m3αj . if wj = 1
(33)

The scaling factorm3 can be easily removed after decryption, or directly removed
from m3αj in the encrypted domain by using the multiplicative inverse method
[12]. If the scaling factor is not considered, there is no difference between D[w̃′

j ]

and wj . Assuming that
D[w̃′

j]

m3αj
is denoted by �j , then we have

�j = wj . (34)

Therefore we have proved the extracted encrypted watermark w̃′
j is the encrypted

version of the original watermark wj . We also show an interesting property of the
watermark extraction in the encrypted domain by using equation (34). It means
that after performing a simple scaling, the extracted watermark is identical to
the original watermark without any distortion.

Extraction in the Decrypted Domain. Let us consider the case of extracting
the watermark from the decrypted watermarked image. Based on the analysis
in Section 3.1, the implementation of watermarking in the encrypted domain
will enlarge the plain value of the watermarked image. And small modification
of the transform coefficients may result in large variation in the spatial domain.
Thus the decrypted values are very likely to be greater than 255 or less than 0.
Moreover, all the elements of Iw may not be integers. In order to keep the format
compliance, the decrypted values should be mapped to the integers between 0
and 255. Suppose we have already recovered the correct value m2Iw from the
decryption of Ĩw . Generally, the process of mapping can be given as

Iw,256 =

⌊

255 · m2Iw −min
{
m2Iw

}

max {m2Iw} −min {m2Iw}

⌋

(35)

where �·� is the flooring function, while min{·} and max{·} are the minimum
and maximum operators, respectively.
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Both the quantized watermarked image Iw,256 and the watermarking key
(a, e,d) are sent to the extraction device for further processing. Specifically,
we segment Iw,256(x, y) into non-overlapping blocks of m×m first, then select n
blocks among all the blocks according to the random integer sequence a. WHT
of size m×m is applied to all the selected blocks to output the encrypted coeffi-
cients. Let us denote the encrypted coefficients by {V ε

1 , V
ε
2 , . . . , V

ε
n }. According

to the values of ej and dj , we choose the cardinal point V ε
j (k0, l0) and the adja-

cent point V ε
j (k1, l1) in the block V ε

j . If we use w′
j to denote the extracted bit

in the V ε
j , then the process of watermark extraction can be given as

w′
j = V ε

j (k1, l1)− V ε
j (k0, l0) . (36)

{w′
j} will be compared with the embedding message {wj} by using the BER

metric to output the result that whether there is a watermark in Iw,256(x, y) or
not.

4 Experimental Results

We test the proposed algorithm on a few images. Due to the limitation of paper
length, we only show the results on ’Lena’ image of 512 × 512 × 8 bits. The
original watermark message is chosen as a binary image of 64 × 64 × 1 bits.
The original image and the watermark are shown in Fig. 2(d)-2(g). We exploit
the 2D WHT in the experiments and choose two large prime numbers p and q
for the cryptosystem. The product of p and q is longer than 1024 bits, so the
encryption is secure in practice. We show the encrypted image in Fig. 2(c), which
is sufficiently scrambled and secure enough to protect the image.

Firstly, we perform WHT-ed of size 512 × 512 to the whole image. The de-
cryption of the result looks the same as the WHT of the plain image. We then
perform IWHT-ed to reconstruct the image in the encrypted domain. After de-
crypting, we obtain an image which looks the same as the original one. The
experimental result is shown in Fig. 2(h)-2(i)

Secondly, the encrypted image is segmented into non-overlapping blocks of
8 × 8. We perform WHT-ed of size 8× 8 on each block. Since there are totally
4096(=64×64) bits in w, we choose all the blocks for the watermark insertion.
We adopt ej = 64, dj = 1 and αj = 8 for j = 1, 2, . . . , 4096. According to the

value of ej and dj , the cardinal point and its adjacent point are selected in Ṽj .
By means of (26), we modify coefficients in all the selected blocks for watermark
embedding. We then perform IWHT-ed to output the encrypted watermarked
image. We show the encryption data and its decryption in Fig. 2(h)-2(i).

Thirdly, by using (32) we extract the encrypted watermark, which is embedded
in the encrypted image. The extracted encrypted data and its decryption are
shown in Fig. 2(j)-2(k). It can be seen that the decryption looks the same as the
original watermark. Actually it is identical to the original watermark in Fig. 2(b)
after removing the scaling factor.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Fig. 2. Experimental Results: (a) The Original ”Lena” image; (b) The watermark; (c)
The encrypted ”Lena” image; (d) The WHT-ed coefficients; (e) Decryption of WHT-
ed coefficients; (f) The encrypted reconstruction; (g) Decryption of reconstruction;
(h) The encrypted watermarked image; (i) Decryption of the encrypted watermarked
image; (j) The extracted watermark from the encrypted data; (k) Decryption of the
extracted watermark

In order to evaluate the visual effect of the watermarked image, we compute
the peak signal-to-noise ratio (PSNR) between the original and the watermarked
images. The PSNR of the watermarked image in our experiment is 43.31 dB. We
also apply our watermark algorithm to 100 grayscale images, each of which is of
512 × 512 × 8 bits. The watermark we use is the one shown in Fig. 2(b). The
average PSNRs of the rounding watermarked images Iw,256 and the no-rounding
watermarked images Iw are 43.18 dB and 43.92 dB, respectively. However, all
the BERs (error in detection) are 0 under these two situations. This means our
algorithm can keep the watermarked image in a good visual quality.

The attackers may perform the attacks on the decrypted image or the en-
crypted image. Since the attack on the encrypted image may result in a random
decrypted image, the attacker is more likely to attack the decrypted image.
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Thus we consider the watermark detection performance against Gaussian noise.
The Gaussian noise is added in the decrypted watermarked image Iw,256. For
WNR (watermark to noise ratio) > −2 dB, the BER < 0.032 by using (36) in
watermark retrieval. In practical applications, our watermark algorithm can be
extended to the case of spread spectrum scheme, which will greatly improve the
robust performance of our watermark.

5 Conclusions

This paper has investigated the implementation of WHT and its applications in
image watermarking in a homomorphic encrypted domain. The main contribu-
tions are listed as follows:

1) We have described a method to perform WHT and the fast WHT in the
encrypted domain, which is based on the homomorphic properties. By using
our method, WHT can be implemented in the encrypted domain without any
quantization error. We also deduce some elegant equations to show the rela-
tionship between WHT(IWHT) in the encrypted domain and WHT(IWHT)
in the plain domain.

2) We have proposed an image watermarking scheme based on block WHT-ed.
The watermark embedding is carried out in the encrypted domain. However,
we can extract the watermark both in the plain domain and the encrypted
domain. Both the extractions are blind processing, without involving either
the plain original image or the encrypted one.

Our algorithm gives a possible solution to the security problem in the watermark-
ing community. It is possible to use our watermarking scheme to design a secure
media distribution system. However, due to the constraints of the homomorphic
cryptosystems, the encryption of the original image results in a high store and
computation overhead. It is our future work to address the issues regarding the
limitation, and to extend our watermarking algorithms to other transforms, e.g.,
DWT in the encrypted domain.
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