


Lecture Notes in Computer Science 7692
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Matthias Kirchner Dipak Ghosal (Eds.)

Information Hiding
14th International Conference, IH 2012
Berkeley, CA, USA, May 15-18, 2012
Revised Selected Papers

13



Volume Editors

Matthias Kirchner
International Computer Science Institute
1947 Center Street, Suite 600
Berkeley, CA 94704, USA
E-mail: kirchner@icsi.berkeley.edu

Dipak Ghosal
University of California Davis
Department of Computer Science
Davis, CA 95616, USA
E-mail: dghosal@ucdavis.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-36372-6 e-ISBN 978-3-642-36373-3
DOI 10.1007/978-3-642-36373-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013931274

CR Subject Classification (1998): E.3, K.6.5, D.4.6, E.4, H.5.1, I.4

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

The 14th edition of the Information Hiding (IH) Conference, since the inaugural
1996 workshop in Cambridge, UK, was held in Berkeley, CA, during May 15–18,
2012. With conference locations alternating between Europe and North America,
it was our particular pleasure to host IH in California again after the 2008
meeting in Santa Barbara and stops in Darmstadt (2009), Calgary (2010), and
Prague (2011).

IH 2012 once more attracted researchers from many different areas of infor-
mation hiding, including steganography and steganalysis, digital watermarking,
fingerprinting codes, anonymity and privacy, covert channels, multimedia foren-
sics and counter-forensics, as well as theoretical aspects of information hiding and
detection. Since its inception, the conference series has been a premier forum for
publishing research in these areas. This year, the Program Committee reviewed
40 papers using a double-blind system, with at least three reviewers assigned
to each paper. A discussion phase helped to reach consensus in controversial
cases. In the end, 18 papers were accepted for presentation at the conference.
This volume contains the revised versions of all accepted papers, incorporating
the comments from members of the Program Committee. Shepherds were as-
signed to three of the papers to advise the authors and to ensure high-quality
proceedings.

Two invited lectures completed the technical program of the conference. Hany
Farid (Dartmouth College) presented his recent work on measuring the strength
and impact of photo retouching. Venkat Anantharam (UC Berkeley) gave an
overview of information-theoretic methods in information hiding.

We would like to the thank all those who contributed to the organization
of a successful and interesting conference. Rennie Archibald and Diana Böhme
ensured a smooth running of the conference, Tomas Filler was always available
for valuable advice, ICSI Berkeley and UC Davis lent organizational support.
The conference would also not have been possible without the generous financial
backing by Technicolor and Civolution, as well as the organizers of IH 2011 in
Prague. Their support was particularly welcomed in times of corporate sponsor-
ship budget cuts.

Finally, we are indebted to all external reviewers and shepherds for voluntarily
investing time and thoughts, as much as we thank all authors, presenters, and
attendees for their support of the conference.

August 2012 Matthias Kirchner
Dipak Ghosal
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External Reviewers

Frederik Armknecht Shujun Li
Paul Cotae Jasvir Nagra
Matthew Edman Angela Piper
Marco Fontani Scott Russell
Teddy Furon Pascal Schöttle
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Blind Median Filtering Detection

Using Statistics in Difference Domain

Chenglong Chen1, Jiangqun Ni1,�, Rongbin Huang2, and Jiwu Huang1

1School of Information Science and Technology, Sun Yat-Sen University
Guangzhou, China

2School of Information and Telecommunication Engineering, BUPT
Beijing, China

{c.chenglong,huangrongbin19}@gmail.com,
{issjqni,isshjw}@mail.sysu.edu.cn

Abstract. Recently, the median filtering (MF) detector as a forensic
tool for the recovery of images’ processing history has attracted wide
interest. In this paper, we focus on two topics: 1) an analysis of the
statistics in the difference domain of median filtered images; 2) a new
approach based on the statistical characterization in difference domain
to overcome the shortages of the prior related works. Specifically, we de-
rive the cumulative distribution function (CDF) of first order differences
based on simplifying assumptions, and also study the behavior of ad-
jacent difference pairs in the difference domain for original non-filtered
images, median filtered images and average filtered images. We then
present a new MF detection scheme based on the statistics in the dif-
ference domain of images. Extensive simulations are carried out, which
demonstrates that the proposed MF detection scheme is effective and
reliable for both uncompressed and JPEG post-compressed images, even
in the case of low resolution and strong JPEG compression.

Keywords: MedianFiltering,Digital ImageForensics,DifferenceDomain.

1 Introduction

Exposing the processing history of a digital image is an important objective for
forensic analysis. In order to determine if an image has undergone any form of
manipulation, the possible use of a wide variety of operations must be tested for.
Existing image forensic works involve the detection of median filtering (MF) [1]
[2] [3], resampling [4], JPEG compression [5], amongst others.

This work concentrates on the median filter, a widely used and well-known
nonlinear denoising operator. Due to its non-linearity and complex statistical
properties, also counter-forensic techniques show special interest in this opera-
tion [6] [7]. Therefore, the median filtering detector becomes an important foren-
sic tool for the recovery of the processing history of an image, or for exposing
possible counter-forensic operations.

� Corresponding author.

M. Kirchner and D. Ghosal (Eds.): IH 2012, LNCS 7692, pp. 1–15, 2013.
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2 C. Chen et al.

Several prior related schemes for the detection of MF in digital images have
been presented so far [1] [2] [3]. In [1], streaking artifacts and subtractive pixel
adjacency matrix (SPAM) features are employed to detect MF in bitmap and
JPEG post-compressed images, respectively. In [2], the probability of zero values
in the first-order difference image in textured regions is considered as statistical
fingerprint to detect the MF operation. Recently, Yuan [3] presented the median
filtering forensics (MFF) feature sets based on order statistics for the forensic
analysis of MF.

In this paper, we provide a new approach for reliable MF detection in digital
images based on the statistical characterization of digital signals in the difference
domain. Making a number of simplifying assumptions, we carry out a theoretical
analysis of the statistical behavior in the difference domain for different image
sources, such as original non-filtered images, median filtered images and average
filtered images. With these results, we then analytically characterize the statis-
tical artifacts in the difference domain of different image sources. Finally, we
introduce two new feature sets and describe our new scheme for MF detection in
digital images. The effectiveness of the proposed scheme is extensively evaluated
with a composite image database of 9,000 images.

The rest of this paper is organized as follows. The theoretical analysis of
statistics in the difference domain for different image sources is given in Section
2. Based on the analysis, two new feature sets in the difference domain are
introduced in Section 3. Section 4 details our experimental methodology and
presents experimental results, including a comparison with previous art. Finally
the conclusion is drawn in Section 5.

2 Statistical Characterization in the Difference Domain

In this section, we carry out an analysis of the statistical behavior of different
image sources in the difference domain to clarify the motivation of feature sets
construction for MF detection. First, we derive the analytic cumulative distri-
bution function (CDF) for different image sources in first order difference under
some simplifying assumptions. Second, we study the behavior of adjacent differ-
ence pairs in the difference domain. Our analysis is supported by strong evidence
from extensive experiments with natural images.

2.1 Analysis of Median Filtering

The median filter is a well-known non-linear filter based on order statistics. Given
a H × W grayscale image Xn,m with (n,m) ∈ {1, 2, . . . , H} × {1, 2, . . . ,W}, a
2-D median filter is defined as

X̂n,m = median{Xn′,m′ : (n′,m′) ∈ W (n,m)}, (1)

where X̂n,m is the output of the median filter and W (n,m) is the 2-D filter win-
dow centered at image coordinates (n,m). Throughout the rest of this paper, we
concentrate on filter with square windows of odd size without loss of generality.
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It is noted that neighboring pixels in median filtered images are correlated
to some extent because they originate from overlapping windows of the original
signal. With the inherent nature of the median filter, it is expected that pixels
in median filtered images are correlated to their neighbors in a specific way. We
study this behavior in terms of the k-th order difference of the filtered image,
which is defined as

Δ
(p,q)
k (n,m) = Δ

(p,q)
k−1 (n,m)−Δ

(p,q)
k−1 (n+ p,m+ q), (2)

where Δ
(p,q)
0 (n,m) = X̂n,m and (p, q) ∈ {−1, 0, 1}2 (|p|+ |q| �= 0).

To give a preliminary look at this problem, Figs. 1(a) and (b) depict empirical

CDFs of |Δ(0,1)
1 | and |Δ(0,1)

2 |, respectively, where |•| is the operation to calculate
the absolute value. These two CDFs are estimated using 3,000 8-bit grayscale
natural images from the BOWS2 database [12] with 2-D windows. Apparently,
the CDF curves of median filtered images (MF) are substantially different from
the ones of original (ORI) and average filtered images (AVE). To get a further
insight, we carry out an analysis on the CDF of first order difference and the
behavior of adjacent difference pairs in the difference domain in Section 2.2 and
Section 2.3, respectively.

2.2 Cumulative Distribution Function of First Order Differences

Overlapping windows and highly non-linear behavior make the theoretical anal-
ysis of two-dimensional median filtering a complex and cumbersome task. Fol-
lowing prior art [1] [2] [8], we thus make two simplifying assumptions. More
specifically, we only consider one-dimensional filters and assume independent
identically distributed (i.i.d.) uniform input signals, i.e., X ∼ U [0, N − 1].

For the sake of a focused presentation, the detailed derivations of the CDFs of
Δ1 and |Δ1|, i.e. F1(r, t) and F|1|(r, t), respectively, for different image sources
are carried out in the Appendix. Here, r relates to the filter window size w,
w = 2r+1 (for original non-filtered image, we take r = 0) and t is integer. Even
under the given simplifying assumptions, the statistical characterization in the
difference domain is already quite cumbersome. We also note that the results
certainly do not yield a complete description of the problem. However, they are
strongly indicative. To demonstrate this, we plot the analytical curves of F|1|(r, t)
in Fig. 1(c), and also report the empirical curves of F

(0,1)
|1| (r, t), estimated from

natural images in the BOWS2 database using 1-D horizontal windows, in Fig.
1(d). Specifically, Fig. 1(d) is obtained by excluding untextured or smooth pixels
satisfying σ < τ , where σ is the standard deviation of local surrounding pixels
in a square region of size d × d. Note that the curves in Fig. 1(d) do not ex-
actly match those in Fig. 1(c), however, similar effects can still be observed.
Therefore, although our theoretical results are obtained under some simplify-
ing assumptions, we believe that it still make sense to use them to investigate
statistical artifacts in the difference domain of different image sources.
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Fig. 1. (a) Empirical CDFs of |Δ(0,1)
1 | from BOWS2 with 2-D window, (b) Empirical

CDFs of |Δ(0,1)
2 | from BOWS2 with 2-D window, (c) Analytical curves of F|1|(r, t) for

i.i.d. uniform input, (d) Empirical curves of F
(0,1)

|1| (r, t) from BOWS2 with 1-D window,
excluding untextured pixels with d = 7 and τ = 20.

Filtered Signal vs. Original Non-filtered Signal. The theoretical curves of
F|1|(r, t) in Fig. 1(c) demonstrate the principal effect of the considered filters that,
for median or average filtered signals, |Δ1| tends to take small values. Note that
smaller and larger values in the first order difference correspond to the low and high
frequency components in spatial domain, respectively. In other words, some of the
high frequency components in filtered images are removed,which is indeed the case
when we consider the low pass property of such filters. Although the median filter,
in a strict sense, is not a low pass filter, it has been observed to have low-pass effect
to some extent [8].

Median Filtered Signal vs. Average Filtered Signal. Fig. 1(c) also sug-
gests a clear distinction between the difference domain CDFs of median filtered
and average filtered signals. For median filtered images and small t, e.g. t ≤ 10,
F|1|(r, t) is much larger than that for original and average filtered images. This is
related to the inherent effect of the median filter known as streaking artifacts [9].
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Streaking means that the median filter tends to produce regions of constant or
nearly constant intensities, which leads to the large probability in first order
difference for small t.

It is also observed in Fig. 1(c) that the curves of median filtered images rise
slowly while the curves of average filtered images rise rapidly with increasing
t. This indicates that, compared to average filtered images, median filtered im-
ages retain more high frequency components, such as image edges. This effect
is also related to another inherent nature of median filter known as good edge
preservation [10]. It is noted that the median filter preserve edges better than
the average filter, owing to its statistical and robustness properties [8] [10].

In general, also the CDFs of higher-order differences (k > 1) vary considerably
between different image sources (cf. Fig. 1(b)). Therefore, we will exploit such
statistics as fingerprint for MF detection in Section 3.1 for the construction of
our global probability feature set (GPF).

2.3 The Behavior of Adjacent Difference Pairs

As shown in Fig. 1(b), the CDFs of |Δ(0,1)
2 | also indicate that, the correlation

between adjacent difference pair (Δ
(0,1)
1 (n,m), Δ

(0,1)
1 (n,m + 1)) varies between

different image sources. We investigate this further by adopting the joint prob-

ability Pr(m,m + l) of adjacent difference pairs (Δ
(0,1)
1 (n,m), Δ

(0,1)
1 (n,m + l))

as another metric besides the CDF of |Δ(0,1)
2 |. Fig. 2 shows the joint probability

for different image sources, which are estimated using the same images from the
BOWS2 database as above with 1-D horizontal windows of width w = 3. In
these figures, the x axis represents Δ

(0,1)
1 (n,m), and y axis represents, from left

to right, adjacent difference Δ
(0,1)
1 (n,m+l) with l ∈ {1, 2, 3}, respectively. Inten-

sity values at (x, y) represent the probabilities at the logarithmic scale, whereas
darker points refer to larger probabilities.

As shown in Fig. 2, Pr(m,m + l) varies considerably between different im-
age sources for specific adjacent pairs. More specifically, both median filter and
average filter employ sliding windows across the whole image. This introduces
local correlations to the filtered image with respect to the position where the
window is centered. This also holds for the difference domain of filtered im-
ages. Fig. 2 illustrates that the distribution of adjacent difference pairs from
filtered images differs from original images, but also differs between median
and average filtered images, respectively. For instance, adjacent difference pairs

(Δ
(0,1)
1 (n,m), Δ

(0,1)
1 (n,m + 1)) tend to cluster in the first and third quadrant

with high probability, which becomes most evident for median filtered images.

Since difference pairs with large value (|Δ(0,1)
1 (n,m)|, |Δ(0,1)

1 (n,m + 1)|) in the
second and fourth quadrants are mainly related to impulse noise, the distribution
Pr(m,m + 1) for median filtered images can be explained by the effectiveness
of the median filter to remove such noise [8]. Similar effects are also observed
for high-order differences and two dimensions, indicating that the correlations
between different adjacent difference pairs can be used as fingerprint for MF
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Fig. 2. Distribution of different adjacent difference pairs for different image sources

detection. We will exploit this observation in Section 3.2, where we construct a
corresponding local correlation feature set (LCF).

Different characteristics of Pr(m,m + 1) between different image sources, to
some extent, also explain the feasibility of SPAM features for the forensic anal-
ysis of MF [1]. Although originally introduced for steganalysis, SPAM features
are also very useful to analyze the conditional joint distribution of first-order
differences [11]. Therefore SPAM effectively captures the correlation of adjacent
difference pairs in the first order difference domain and achieves high perfor-
mance for MF detection [1].

3 New Feature Sets in the Difference Domain

The analysis in Section 2 revealed that median filtered images inevitably exhibit
distinctive statistical artifacts in the difference domain. This section presents fea-
ture sets in the difference domain to capture such artifacts in two different ways.
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3.1 Global Probability Feature Set (GPF)

As analyzed in Section 2.2, F|k|(r, t) (k ≥ 1) varies considerably between different
image sources, indicating a valuable resource for MF detection. With the k-th

order difference array Δ
(p,q)
k , the estimated F

(p,q)
|k| (t) (as we don’t know the size

of the filter window for a given image, so we drop the r term) is computed by

F
(p,q)
|k| (t) =

∑Hk

n=1

∑Wk

m=1 δ(t, |Δ
(p,q)
k (n,m)|)

HkWk
, (3)

where Hk = H − |p|k and Wk = W − |q|k is the height and width of Δ
(p,q)
k

(k ≥ 1), respectively, and δ(x, y) is defined in the Appendix as Eqn (A.12).

Confining 0 ≤ t ≤ T (T ∈ Z), we define feature P
(p,q)
k as

P
(p,q)
k = {F (p,q)

|k| (t) | 0 ≤ t ≤ T }. (4)

To reduce the feature dimensionality, we adopt the assumption in [11] that spatial
statistics in natural images are symmetric with respect to mirroring and flipping.
Thus, we separately average matrices with lags |p| + |q| = i (i = 1, 2) to form
the final feature P k

P i
k =

1

4

∑
|p|+|q|=i

P
(p,q)
k , (5)

P k = [P 1
k,P

2
k]. (6)

Concatenating all the P k(k = 1, 2, . . . ,K) leads to a 2(T + 1) × K-D global
probability feature set (GPF)

FGPF = [P 1,P 2, . . . ,PK ]. (7)

3.2 Local Correlation Feature Set (LCF)

As discussed in Section 2.3, the local correlations between different adjacent
difference pairs can be modeled by the SPAM features as the transition proba-
bility of a higher-order Markov chain. Different from the transition probability
measurement in SPAM, we construct our local correlation feature set using the
normalized cross correlation (NCC). For random variables x and y, the NCC
coefficient is defined as

γ =
cov(x,y)√

cov(x,x)cov(y,y)
, (8)

where cov(x,y) = E[(x − E[x])(y − E[y])] is the covariance and E[•] is the
expectation operator. To deal with the denominator of Eqn (8) being zero, we
simply define γ = 0 in this case. For discrete sample vectors x and y with L
points, cov(x,y) can be estimated by

cov(x,y) =
1

L

L−1∑
i=0

(xi − x̄)(yi − ȳ), (9)

where x̄ and ȳ denote the arithmetic mean of x and y, respectively.
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To construct the local correlation feature on the 2-D difference array Δ
(p,q)
k ,

we first scan it with a 1-D window of width B along the same direction as it
is computed and rearrange all B pixels of the i-th window into the i-th column

of a matrix Y
(p,q)
k . The scanning method is determined by the size of images,

specially, if H ×W > 64× 64, non-overlapping scan is adopted, otherwise over-
lapping scan is preferred. We then eliminate the columns with all values zero

and combine matrices Y
(p,q)
k with lags |p|+ |q| = 1 to obtain Y 1

k, i.e.,

Y 1
k = [Y

(0,1)
k ,Y

(0,−1)
k ,Y

(1,0)
k ,Y

(−1,0)
k ]T . (10)

Treating each column of Y 1
k as a variable which is related to the position in the

filter window, we compute the NCC coefficient γ1
k(n,m) of the n-th and m-th

column of Y 1
k (n > m). The result is a feature vector C1

k,

C1
k = { γ1

k(n,m) | n,m ∈ [1, . . . , B], n > m }. (11)

Another feature vector C2
k is computed from Y

(p,q)
k with lags |p| + |q| = 2 in a

similar manner, resulting in the final LCF feature vector Ck for the k-th order
difference arrays. That is

Ck = [C1
k,C

2
k]. (12)

Concatenating all the Ck (k = 1, 2, . . . ,K) together leads to a (B2 −B)×K-D
local correlation feature set (LCF)

F LCF = [C1,C2, . . . ,CK ]. (13)

Combining GPF and LCF features, we obtain the final feature set (GLF) with
K[2(T + 1) + (B2 −B)] elements for MF detection,

FGLF = [FGPF,F LCF]. (14)

While GPF relates to the estimated CDF in the difference domain (first-order
statistics), LCF captures the correlation of adjacent difference pairs (second-order
statistics). Thus, these two feature sets capture to some extent the statistical arti-
facts introduced by the median filter and other filters in a complementary way. As
for practical implementation, the parameters of our feature sets, i.e., {T,B,K},
should be properly determined to give good detection capability with manageable
computational complexity. According to our experimental study, {T,B,K} =
{10, 3, 2} is a reasonably default choice, which leads to 44 GPF features, 12 LCF
features and 56 GLF features in total.

4 Experimental Study

In this section, we first describe the experimental methodology used in the ex-
periments. Then, we compare our GLF-based MF detector to prior art, using
both uncompressed images and JPEG post-compressed images, respectively.
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4.1 Experimental Methodology

Employing a test setup similar to Yuan [3], this paragraph describes the exper-
imental methodology to verify the effectiveness of our MF detector.

Image Database. Our experiments use the following three image databases:

• 3,000 images from the BOWS2 database. This database was used for the
BOWS2 contest [12], and contains downsampled and cropped natural gray-
scale images of fixed size 512× 512.

• 3,000 images from the NRCS Photo Gallery. This database is provided by the
Department of Agriculture, United States [13], and includes scanned images
from a variety of film and paper sources.

• 3,000 images from the Dresden Image Database (DID). This database is a
collection of more than 14,000 images from 73 different digital cameras [14].

This results in a composite database of 9,000 images. Where necessary, images
were converted to 8-bit grayscale. Moreover, only the center 512 × 512 part of
the images from the NRCS and DID databases was used.

Training-Testing Pairs. Based on the above image database, we prepare 9
training-testing pairs as follows:

1. Process all images in the original database DORI to obtain 5 image sets, i.e.,
DMF3, DMF5, DAVE, DGAU and DRES, which are generated with a 3×3 and
a 5 × 5 median filter, an average filter with the filter window randomly set
to 3 × 3 or 5 × 5, a Gaussian low-pass filter with σ randomly set to 0.5 or
0.8, and a rescale operation that is randomly composed of nearest or bilinear
interpolation and scaling factors 1.1 or 1.2, respectively. These randomized
parameter settings resemble practical use cases.

2. Separate the above 5 image sets into 8 training-testing pairs. Specifically, we
use training sets {DMF(I), DONE(I)} and testing sets {DMF(Ī), DONE(Ī)},
where MF ∈ {MF3,MF5} and ONE ∈ {ORI,AVE,GAU,RES}, I is a subset
of the image indexes (randomly selected) and Ī is its complement.

3. Randomly select 50% from each of the median filtered image sets (DMF3 and
DMF5) to obtain DMF35, and 25% from each of the 4 non-median filtered
image sets to obtain DALL. Partition the image sets DMF35 and DALL into a
training sets {DMF35(I), DALL(I)}, and a testing sets {DMF35(Ī), DALL(Ī)}.

For all the constructed training-testing pairs described above, the size of the
training set is set to be 40% of the database size.

Performance Evaluation. For each training-testing pairs, all detectors under
investigation are implemented as binary classifier using C-SVM with RBF kernel.
The inputs of the classifiers are the selected features under study, computed from
all images in the respective training set. The best hyper-parameters (C0, γ0) are
optimized over the parameter grid (C, γ) ∈ {(2c, 2g)|c, g∈Z} using five-fold cross-
validation [15]. All images in the corresponding testing set are classified using
the classifier trained on the training set after computing the selected features.
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Fig. 3. Classification results for (a) uncompressed images with varying image resolu-
tions, (b) JPEG post-compressed images with varying QFs

4.2 Comparison with Prior Art

MF Detection in Uncompressed Images. To evaluate the detection per-
formance in this scenario, we take the MFF-based scheme as benchmark, which
is known to give the best detection performance with uncompressed images [3].
We calculate two performance metrics, specifically, 1) AUC: the area under the
ROC curve; 2) Pe = min1/2(PFP + (1 − PTP)): the minimum average decision
error under the assumption of equal priors and equal costs, where PFP and PTP

denote the false positive and true positive rates, respectively.
The results in Fig. 3(a) indicate that our scheme performs relatively com-

parable to the MFF-based method, and achieves nearly perfect classification
performance even for image resolutions as low as 16× 16. In general, GPF fea-
tures perform better than LCF features to a certain extent, which becomes most
evident for low resolution images. GLF features are generally superior to both
GPF and LCF.

MF Detection in JPEG Post-compressed Images. To evaluate the robust-
ness of the proposed MF detection scheme against JPEG compression, we use
the JPEG versions of the training-testing pairs described in Section 4.1. More
specifically, we test 3 different quality factors (QF), i.e., QF ∈ {70, 80, 90}.

From Fig. 3(b), we observe that the classification performance of GPF, LCF
and GLF features decrease significantly with decreasing JPEG quality factor.
As discussed in Section 2.2 (cf. Fig. 1(d)), excluding untextured pixels might
increase the performance of GPF features since the statistical fingerprint of
median filtering is not necessarily present in very smooth regions. However,
this also poses a threat in the case of low image resolution, as there may not
be enough pixels left to calculate the GPF features robustly. This applies to
LCF features as well, although LCF features seem generally more robust to
JPEG post-compression than GPF features. However, GLF features give the best
performance again.
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Fig. 4. Classification results of (a) post-compressed MF vs. ORI training-testing pair
with QF = 70, (b) post-compressed MF35 vs. ALL training-testing pairs with varying
QFs, (c) MF35-JPEG vs. ALL-JPEG training-testing pair, (d) post-compressed MF35
vs. ALL training-testing pair with QF = 90 for varying image resolutions

Fig. 4(a) depicts the results for post-compressed MF vs. ORI training-testing
pairs with QF = 70, based on GLF, MFF and SPAM (T = 3) features. While
all three schemes show satisfactory detection performance (note the scaling of
the axes), it is observed that GLF considerably outperforms MFF and SPAM for
3×3 filter windows. For windows of size 5×5, GLF and SPAM yield comparable
results (and are superior to the MFF features), whereas SPAM works in a feature
space of considerably higher dimension (686-D for T = 3, compared to 56-D for
our scheme). Moreover, the ROC curves of our scheme for both 3× 3 and 5× 5
median filtering detection are relatively closer to each other, which indicates a
more consistent classification performance of our scheme. We note that a similar
behavior is also observed on other MF vs. ONE training-testing pairs.

Fig. 4(b) depicts the results for post-compressedMF35 vs. ALL training-testing
pairs with varying QFs. Our scheme outperforms the MFF and SPAM based
schemes for QF ∈ {80, 70}, and yields comparable results with SPAM for QF =
90. For practical forensic analysis, however, the JPEG quality factor is generally
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unknown. Therefore the best strategy is to train the classifier with images of vary-
ingQFs. To this end, we randomly select 3,000 images from each of the 3 JPEGver-
sions DMF35 to obtain DMF35-JPEG, and similarly obtain DALL-JPEG from DALL.
The results shown inFig. 4(c) indicate that proposed scheme also outperformsprior
art in this practical setup. The result can be well explained with Fig. 4(b). For all
QFs, the ROC curves of our scheme are relatively close to each other, indicating
that the proposed scheme can achieve amore consistent classification performance
in case of strong JPEG compression.

In our last experiment, we investigate the effect of the analyzed image (region)
size on detection performance. We use post-compressed MF35 vs. ALL training-
testing pairs with QF = 90 and crop 32×32, 64×64 and 128×128 center portions
from each image of the composite database. As shown in Fig. 4(d), the detection
performance of the SPAM-based scheme decreases rapidly with decreasing image
resolution, which is also observed in [3]. On the contrary, our scheme and MFF-
based scheme are more robust. Moreover, for each tested image resolution, our
scheme outperforms both MFF and SPAM, indicating that the proposed scheme
is more reliable for MF detection in low-quality images in terms of both low
resolution and/or JPEG compression.

5 Conclusions and Future Work

In this paper, we investigated the blind forensics of median filtering (MF) in
digital images. The contributions of the paper manifest in two main aspects.
First, we presented a theoretical analysis of statistical characteristics of median
filtered signals in the difference domain. Second, we proposed an effective and
reliable scheme based on global probability features (GPF) and local correla-
tion features (LCF) for MF detection in both uncompressed images and JPEG
post-compressed images. Compared to prior art, we achieved considerable perfor-
mance improvement for low resolution and strongly JPEG compressed images.

In our future work, we will extend our scheme to detect image tampering in-
volving combinations of median filtering with non-median filtering. Preliminary
experiment results demonstrate that our scheme is also reliable in this case.
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the code of MFF-based scheme in [3] and the anonymous reviewers for their
comments that helped to improve the manuscript.

References

1. Kirchner, M., Fridrich, J.: On detection of median filtering in digital images. In:
Proceedings SPIE, Electronic Imaging, Media Forensics and Security II, vol. 7541,
pp. 1–12 (2010)



Blind MF Detection Using Statistics in Difference Domain 13

2. Cao, G., Zhao, Y., Ni, R., Yu, L., Tian, H.: Forensic detection of median filtering
in digital images. In: Proceedings of the 2010 IEEE International Conference on
Multimedia and Expo (ICME), pp. 89–94 (2010)

3. Yuan, H.: Blind Forensics of Median Filtering in Digital Images. IEEE Transactions
on Information Forensics and Security 6(4), 1335–1345 (2011)

4. Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting traces of resam-
pling. IEEE Transactions on Signal Processing 53(2), 758–767 (2005)

5. Neelamani, R., de Queiroz, R., Fan, Z., Dash, S., Baraniuk, R.G.: JPEG com-
pression history estimation for color images. IEEE Transactions on Image Process-
ing 15(6), 1365–1378 (2006)
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Appendix: CDF of First Order Differences

With X being i.i.d., the statistics of X and X̂ are symmetric with respect to
mirroring and flipping. Therefore the following relations are maintained:

Pr(Δ1(n) = t) = Pr(Δ1(n) = −t), (A.1)

F1(r, t) = 1− F1(r,−t− 1). (A.2)

where F1(r, t) = Pr(Δ1(n) ≤ t), r relates to the filter window size w, w =
2r+1 (for original non-filtered image, we take r = 0) and t is integer. With this
property, we can derive F1(r, t) for t < 0. For t ≥ 0, the CDF follows directly
from Eqn (A.2). With F1(r, t), the CDF of |Δ1| is then given by

F|1|(r, t) = Pr(|Δ1(n)| ≤ t) = F1(r, t)− F1(r,−t− 1). (A.3)

Here, F|1|(r, t) = 0 when t < 0.
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Original Non-filtered Signals. F1(r, t) can be computed as follows

F1(r, t) =

N−1∑
x=0

Pr(Xn ≤ Xn+1 + t | Xn+1 = x) · Pr(Xn+1 = x)

= N−2C2
N+t+1,

(A.4)

where C2
N+t+1 is the binomial coefficient.

Median Filtered Signals. A one-dimensional median filter is defined as

X̂i = median{Xi−r, . . . , Xi, . . . , Xi+r}, (A.5)

It is obvious that there exist common elements Z for computing X̂n and X̂n+1,

Z = {Xi | i ∈ [n− r + 1, n+ r] }, (A.6)

with associated order statistics as below:

Z(·) = {Z(i) | Z(i) ≤ Z(i+1), i ∈ [n− r + 1, n+ r] }. (A.7)

Inspired by [2], we further define three sets: Z̄1 = [0, Z(r)], Z̄2 = (Z(r), Z(r+1)],

Z̄3 = (Z(r+1), N − 1]. Then the filtered output X̂n can be determined in terms
of the relationship between Xn−r and the elements of Z(·). That is

X̂n =

⎧⎪⎨⎪⎩
Z(r) if Xn−r ∈ Z̄1

Xn−r if Xn−r ∈ Z̄2

Z(r+1) if Xn−r ∈ Z̄3.

(A.8)

Similarly, X̂n+1 is related to Xn+r+1 and Z(·). Now to derive F1(r, t), consider
the following relation which holds by the law of total probability

F1(r, t) =

N−1∑
z1=0

N−1∑
z2=0

Pr(Δ1(n) ≤ t | Z(r) = z1, Z(r+1) = z2)

· Pr(Z(r) = z1, Z(r+1) = z2).

(A.9)

As t < 0, the conditional probability can be broken into four event probabilities,

Pr(Δ1(n) ≤ t | Z(r) = z1, Z(r+1) = z2)

= Pr(Xn−r ∈ Z̄1, Xn+r+1 ∈ Z̄2, Δ1(n) ≤ t | Z(r) = z1, Z(r+1) = z2)

+ Pr(Xn−r ∈ Z̄1, Xn+r+1 ∈ Z̄3, Δ1(n) ≤ t | Z(r) = z1, Z(r+1) = z2)

+ Pr(Xn−r ∈ Z̄2, Xn+r+1 ∈ Z̄2, Δ1(n) ≤ t | Z(r) = z1, Z(r+1) = z2)

+ Pr(Xn−r ∈ Z̄2, Xn+r+1 ∈ Z̄3, Δ1(n) ≤ t | Z(r) = z1, Z(r+1) = z2).

(A.10)

Since X is i.i.d., each event probability can be easily calculated. For example,
the first event probability is computed by

= Pr(Xn−r ∈ [0, z1]) · Pr(Xn+r+1 ∈ (z1, z2]) · Pr(z1 −Xn+r+1 ≤ t)

= N−2(z1 + 1)dP1(t, d).
(A.11)
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Here, d = z2 − z1, P1(t, d) = (1 + d−1(t+ 1))δ(t,−d) and

δ(x, y) =

{
1 if x ≥ y

0 if x < y.
(A.12)

The other three event probabilities are calculated in a similar manner. Then the
final conditional probability is given by

Pr(Δ1(n) ≤ t | Z(r) = z1, Z(r+1) = z2)

= N−2[(z1 + 1)dP1(t, d) + (z1 + 1)(N − z2 − 1)δ(t,−d)

+ d2P2(t, d) + d(N − z2 − 1)P1(t− 1, d)],

(A.13)

where P2(t, d) = 0.5d−2(d + t)(d + t + 1)δ(t,−d). The calculation of the joint
probability in Eqn (A.9) is an exercise of combinatorics. In fact

Pr(Z(r) = z1, Z(r+1) = z2)

=

{
N−2rCr

2r ((z1 + 1)r − zr1) ((N − z2)
r − (N − z2 − 1)r) if z1 �= z2

N−2r
∑r

k1=1

∑r
k2=1 C

k1+k2
2r Cr−k1

2r−k1−k2
zr−k1
1 (N − z2 − 1)r−k2 if z1 = z2.

(A.14)

Average Filtered Signals. A 1-D moving average filter is defined as

X̂i = round
{
(2r + 1)−1

∑r

j=−r
Xi+j

}
. (A.15)

where round{•} is the rounding operation. Let S =
∑n+r

i=n−r+1 Xi, we then have

F1(r, t) =

N−1∑
x=0

2r(N−1)∑
s=0

Pr(Δ1(n) ≤ t | Xn+r+1 = x, S = s)

· Pr(Xn+r+1 = x, S = s).

(A.16)

By the i.i.d. assumption, the conditional probability follows as

Pr(Δ1(n) ≤ t | Xn+r+1 = x, S = s) = N−1(t1 + 1)δ(t1, 0), (A.17)

where t1 = (a + t)(2r + 1) − s + r and a = round{(2r + 1)−1(s + x)}. Since
Xn+r+1 and S are independent, we have

Pr(Xn+r+1 = x, S = s) = Pr(Xn+r+1 = x) · Pr(S = s)

= N−1Pr(S = s).
(A.18)

The calculation of Pr(S = s) can be solved by means of generating functions
from the field of combinatorial mathematics [16]. In this case, we have

Pr(S = s) = N−2r ·
∞∑
l=0

2r∑
k=0

Cl
2r+l−1C

k
2r(−1)k |kN+l=s. (A.19)
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Abstract. Color interpolation identification usingdigital images has been
shown to be a powerful tool for addressing a range of digital forensic ques-
tions. However, due to the existence of adversaries who have the incen-
tive to counter the identification, it is necessary to understand how color
interpolation identification performs against anti-forensic operations that
intentionally manipulate identification results. This paper proposes two
anti-forensic techniques against which the robustness of color interpola-
tion identification is investigated. The first technique employs parameter
perturbation to circumvent identification.Various options that achieve dif-
ferent trade-offs between image quality and identification manipulation
are examined.The second technique involves algorithmmixing anddemon-
strates that one can not only circumvent but also mislead the identification
system while preserving the image quality. Additional discussions
are also provided to enhance the understanding of anti-forensics and its
implications to the design of identification systems.

1 Introduction

Recent years have witnessed the prevalence of digital images due to the ad-
vancement of affordable high-quality digital cameras and broadband Internet.
However, as digital images are vulnerable to software editing and manipulations,
concerns regarding their origin and authenticity have also been raised and re-
ceived increasing attention. The study of digital image forensics aims at address-
ing these concerns by answering questions about the acquisition and processing
history of a digital image, such as its source device and the post-processing
operations that it has undergone since its creation.

One class of techniques in the forensic literature addresses the identification
of the underlying color interpolation algorithm that a digital camera has used
to create an image [3, 5, 11, 13]. Color interpolation is a common step in digital
imaging and has a crucial impact on the quality of output images [8]. Different
camera manufacturers compete with customized color interpolation modules to
enhance the image quality, and it has been shown that important information
about the color interpolation modules can be effectively learnt from detectable
traces left in output images [13].

Similar to many other tasks regarding data trustworthiness, there exist adver-
saries who have incentives to perform anti-forensic operations to counter forensic
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identification [7, 12]. For example, consider the scenario of technology infringe-
ment that a company infringes another company’s color interpolation technology
via reverse engineering or industrial espionages. The pirate company has incen-
tives to counteract the identification of color interpolation so that it can use the
technology without being caught. It may be of further interest to the pirate com-
pany if it can mislead the identification toward a wrong direction. In the scenario
of crime scene investigation [9], being aware that the camera information can be
inferred from the color interpolation algorithm [13],a technology-savvy criminal
can conceal the origin of a digital image by circumventing the identification.

These scenarios prompt a strong need for understanding the robustness and
resilience of today’s color interpolation technology against anti-forensic oper-
ations. Toward this end, we explore anti-forensic techniques and evaluate the
performance of color interpolation identification against these anti-forensic op-
erations. In principle, one can alter the image to weaken the evidence that may
reveal the underlying color interpolation module. There exists, however, an in-
evitable trade-off between the strength of the trace concealment and the quality
of the resulting image: if the strength is too weak, the identification is likely
to remain effective, but if the strength is too strong, the image may suffer from
serious distortions. We consider different situations of counter identification, and
compare our proposed techniques in terms of their trade-offs between the quality
of image and the manipulation of identification results.

To the best of our knowledge, the most relevant work to this paper is by
Kirchner and Böhme in [6], whereby a method was presented to resynthesize
a linear color interpolation relation in digital images and minimizes the image
quality distortion. Compared to the work in [6], we propose a low-complexity
methodology for counter identification, and our techniques are applicable to a
large class of interpolation algorithms that cannot be simply modeled as linear.

The rest of the paper is organized as follows. Sec. 2 reviews color interpola-
tion and its identification based on [13]. Sec. 3 proposes a generic methodology of
parameter perturbation for circumventing the identification of a given color inter-
polation algorithm. Sec. 4 investigates how to mislead the identification toward
an incorrect decision. Sec. 5 discusses extensions of the anti-forensic techniques
and insights into our study. Sec. 6 concludes this paper.

2 Design and Evaluation of a Color Interpolation
Identification System

In this section, we first review the process of color interpolation and the ba-
sic principles of its identification. We then describe in detail our design and
evaluation of a color interpolation identification system, which will be used in
subsequent sections for our anti-forensic study.

2.1 Principles of Color Interpolation Identification

In digital photography, light reflected from a real-world scene passes through the
optical components and is then detected by an array of sensors. Most cameras
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in today’s consumer market employ a color filter array (CFA) to filter the lights
from the scene. The CFA selectively allows a certain color of light, commonly
red, green, or blue, to pass through it to the sensors and be recorded. For each
color plane, the lost pixel values are interpolated using its neighboring pixel
values to form the interpolated image. In-camera post-processing, such as white
balance or compression, follows the interpolation to enhance the overall image
quality and/or to reduce storage demand.

Several previous works have studied how to identify the underlying color in-
terpolation algorithm of a camera-generated image [3, 5, 11, 13].In this paper, we
perform the identification of color interpolation based on the scheme proposed
in [13]. This scheme is one of the earliest works that incorporates the concept of
direction-adaptive interpolation and has been shown to have a promising identi-
fication performance We improve upon the scheme with refined directional clas-
sification for higher identification accuracy. Specifically, define Ix,y as the sensor
value at location (x, y). The local gradient profile along different directions can
be found as: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Hx,y = |Ix,y−2 + Ix,y+2 − Ix,y|,
Vx,y = |Ix−2,y + Ix+2,y − Ix,y|,
Dx,y = |Ix−2,y−2 + Ix+2,y+2 − Ix,y|,
Ax,y = |Ix−2,y+2 + Ix+2,y−2 − Ix,y|.

Each pixel at location (x, y) is classified into one of five directional regions accord-
ing to its gradient profile using two preset thresholds T1 and T2. The partition
of the gradient profile plane is illustrated in Fig. 1 and summarized in Table 1.
By approximating the interpolated pixels as a linear weighted sum of the colors
from directly-captured surrounding pixels, we can apply a least squares method
to solve equations corresponding to each directional region in each color channel
and obtain the linear interpolation coefficients that represents the interpolation
algorithm.

Fig. 1. Gradient profile plane

Table 1. Regions’ gradient relations and meanings

Region Gradient relation Meaning
R1 Vx,y − Hx,y > T1 significant horizontal
R2 Hx,y − Vx,y > T1 significant vertical
R3 Ax,y − Dx,y > T2 significant diagonal
R4 Dx,y − Ax,y > T2 significant anti-diagonal
R5 others mainly smooth

2.2 Experiment Setup and Performance Metrics

In this section, we describe our experiment setup and performance metrics for
carrying out and evaluating our anti-forensic designs. Our goals here are to
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sample representative color interpolation algorithms used in our study, and to
establish a testbed on which we can evaluate forensic and anti-forensic capabil-
ities in terms of identification accuracy and the resulting image quality.

Color Interpolation Algorithms: Color interpolation has been an active re-
search area in image processing. Detailed surveys and comparisons of color in-
terpolation techniques can be found in [1, 8]. The algorithms in the literature
range from non-adaptive ones with low complexity such as bilinear or bicubic
interpolation to highly adaptive and complex ones that can better capture the
underlying image structure and recover the lost color information. We investi-
gate eight color interpolation algorithms. The first six have been well known in
the literature for more than one decade, including bilinear, bicubic, smooth hue,
median filter based, gradient based, and an adaptive color plane algorithm [1].
In recent years, significant progress has been made to improve the reconstruc-
tion quality of color interpolation. To reflect the advancement of the state of the
art, we also include a recent algorithm based on local polynomial approximation
(LPA) and intersection of confidence intervals (ICI) [10], which performs well in
a comparative survey [8], and a latest algorithm that combines local directional
interpolation (LDI) and nonlocal adaptive thresholding (NAT) [15].

We construct a dataset composed of images interpolated by the above eight
algorithms. Specifically, we first take 50 high-resolution images with a variety
of content by a high-end standalone camera. From each image, we extract the
central portion of 1024 × 1024 pixels, which is prefiltered and down-sampled to
512× 512 pixels in order to attenuate the traces of color interpolation and post-
processing left by the camera. The resulting 512× 512 “full-color” image is then
sampled according to a given CFA pattern, and interpolated using each of the
eight different interpolation algorithms to simulate in-camera processing.

Performance Metrics: We adopt the full-reference methodology [14] for im-
age quality assessment. The quality of a color interpolated image is assessed
with respect to a reference image. The 512 × 512 full-color image above is used
for this purpose, which is justified in the same way as in [8] and we find that
such reference images are visually pleasant. There are a handful of full-reference
image quality metrics in the literature. The Peak Signal-to-Noise Ratio (PSNR)
is probably the most well-known one. While it is still widely used, previous re-
search has shown that PSNR may not always reflect the true signal fidelity [14].
The quality metric called Structural Similarity (SSIM) index [14] incorporates
the similarity in image structure to capture the subjective quality perceived by
human beings. One notable artifact in color interpolation is called zipper effect,
which occurs if an interpolation algorithm fails to interpolate pixels along di-
rectional edges, as illustrated in Fig. 2(a). The extent of zipper effect can be
quantified by the quality metric called zipper effect ratio [4, 15] , which mea-
sures the increase in spatial color discontinuity due to color interpolation. In
order to provide a comprehensive assessment of image quality, it is beneficial to
examine more than one quality metric. Fig. 2(b) compares the PSNR and the
zipper effect ratio of each algorithm, averaging over all 50 images. In terms of
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Fig. 2. (a) an example of zipper effect (best viewed on screen); (b) PSNR and zipper
effect ratio averaged over 50 images associated with different interpolation algorithms:
(1) bilinear, (2) bicubic, (3) smooth hue, (4) median filter based, (5) gradient based,
(6) adaptive color plane, (7) LPA-ICI, and (8) LDI-NAT

both metrics, algorithms with higher indices perform better. These algorithms
are more sophisticated and represent the advancement of color interpolation
technology.

Identification System: We construct a color interpolation identification sys-
tem that uses the color interpolation coefficients as features. We use the 50 im-
ages described in Sec. 2 and their interpolated versions created by each of the
eight interpolation algorithms. The total number of interpolated images is there-
fore 50× 8 = 400. Half of the images are used for training an 8-class probabilistic
Support Vector Machine (pSVM) classifier [13] with parameters selected by cross
validation, and the remaining half are used for testing. The identification system
takes an image as input, and outputs the identification confidence (or likelihood)
of each of the eight algorithms. Maximum-likelihood classification yields an overall
accuracy of 96.3%, suggesting the accuracy of color interpolation identification.

3 Circumventing Color Interpolation Identification via
Parameter Perturbation

Our first anti-forensic goal is to circumvent the identification of a specific color
interpolation algorithm when it is used for interpolation. We refer to such an
algorithm as a targeted interpolation algorithm. We model a color interpolation
algorithm as a combination of an architecture part that entails the algorithmic
flow and the parameter part that consists of configurable settings. To circumvent
the identification, perturbation can be introduced into a parameter part to alter
the overall color interpolation algorithm, so that estimated color interpolation
coefficients are changed and cannot be recognized by the identification system.
As pointed out in Sec. 1, there is a trade-off between the resulting image quality
and the manipulation of identification results. We will examine whether it is
possible to reach a good balance between these two factors by wisely selecting
the parameters for perturbation.
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Fig. 3. Gradient-based color interpolation

3.1 Perturbing Gradient-Based Interpolation

We consider the 5th color interpolation algorithm reviewed in Sec. 2.2 as an
targeted interpolation algorithm. This algorithm is based on a gradient-based
partitioning of image pixels [1], and its architecture is shown in Fig. 3. We
consider several options of parameter perturbation that are applicable to this
algorithm. First, since the algorithm utilizes bilinear filtering in interpolating the
difference between red/green and blue/green channels, one option is to perturb
the kernel coefficients of bilinear filtering. Second, the targeted interpolation
algorithm performs pixel averaging in the green channel according to the gradient
direction (horizontal, vertical, and non-directional). A second option is hence to
perturb the pixel averaging kernels in each direction. Finally, this algorithm
takes two parameters, denoted as θ1 and θ2, to determine if a pixel falls on a
horizontal edge, a vertical edge, or in a non-directional region, so a third option
is to perturb the decision boundaries of individual directions. The three options
are summarized as follows; the noise standard deviations are selected so that the
trade-offs of different options can be compared more easily.

Option 1: Add Gaussian noise to the bilinear interpolation coefficient matrix.
Noise standard deviation ∈ {0.16, 0.24, 0.3}. Note that the perturbation has to
satisfy constraints on the coefficients’ mutual relations. In particular, two coeffi-
cients at opposite horizontal/vertical positions, and four coefficients at opposite
diagonal positions, must have a fixed sum of 1.

Option 2: Add Gaussian noise to the direction-wise averaging coefficients. Noise
standard deviation ∈ {0.1, 0.3, 0.5}. Similar to Option 1, a fixed sum constraint
must be imposed on the coefficients.

Option 3: Add Gaussian noise to the gradient decision threshold values θ1 and
θ2. Noise standard deviation ∈ {0.1, 0.15, 0.2}. θ1 and θ2 must satisfy θ1+θ2 > 0.
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Table 2. Results of countering color interpolation identification for a gradient-based
interpolation algorithm. PSNR is measured in dB. “Zipper” stands for the zipper effect
ratio; “confidence” stands for the identification confidence.

Uncompressed JPEG compressed with QF=95

PSNR SSIM zipper confidence PSNR SSIM zipper confidence
Option 1 (1) 38.83 0.96 0.02 0.81 39.50 0.96 0.02 0.81

(2) 38.33 0.96 0.03 0.63 38.99 0.96 0.03 0.70
(3) 37.89 0.95 0.03 0.46 37.16 0.94 0.04 0.66

Option 2 (1) 39.01 0.96 0.02 0.90 39.38 0.96 0.02 0.80
(2) 37.45 0.95 0.03 0.80 37.90 0.96 0.04 0.43
(3) 35.46 0.94 0.05 0.50 36.03 0.94 0.06 0.10

Option 3 (1) 39.02 0.96 0.02 0.53 39.02 0.96 0.03 0.49
(2) 38.66 0.96 0.03 0.30 38.80 0.96 0.03 0.28
(3) 38.41 0.96 0.03 0.18 38.42 0.96 0.04 0.16

Option 4 (1) 35.92 0.94 0.03 0.01 37.33 0.95 0.02 0.03
(2) 36.49 0.95 0.03 0.01 38.04 0.96 0.02 0.01
(3) 37.44 0.96 0.04 0.03 38.08 0.96 0.05 0.04
(4) 38.06 0.94 0.03 0.01 38.23 0.94 0.05 0.01
(6) 39.91 0.96 0.01 0.01 40.20 0.96 0.02 0.02
(7) 39.93 0.95 0.01 0.01 40.03 0.96 0.02 0.01
(8) 40.32 0.96 0.01 0.01 40.54 0.97 0.04 0.01

Option 5 (1) 37.24 0.93 0.02 0.64 38.55 0.95 0.03 0.45
(2) 35.41 0.91 0.03 0.08 37.02 0.94 0.04 0.11

Option 6 (1) 35.95 0.93 0.01 0.42 36.40 0.94 0.02 0.39
(2) 34.70 0.92 0.02 0.14 34.98 0.92 0.02 0.04

For comparison, we consider alternative options that do not involve parame-
ter perturbation. For example, in the scenario of technology infringement, if the
risk of being caught is high, one option that a pirate company has is to aban-
don the targeted interpolation algorithm and adopt another algorithm instead.
Other alternative options include applying post-processing operations such as
compression and filtering after color interpolation in order to conceal the trace
of color interpolation. These three more options are summarized below:

Option 4 (i): Replace the gradient-based targeted interpolation algorithm, which
is the 5th among those compared in Sec. 2.2, by another interpolation algorithm
i ∈ {1, 2, 3, 4, 6, 7, 8}.
Option 5: JPEG compression after interpolation. Quality factor (QF) ∈ {95, 75}.
Option 6 (1): 3×3 median filtering after interpolation; (2): 3×3 average filtering
after interpolation.

Comparison of Options: Table 2 shows the comparison of various options in
terms of image quality and identification confidence. We present multiple image
quality metrics to provide a more comprehensive quality assessment. This table
consists of two parts. The left part of columns is the case when there is no
post-processing following color interpolation. The right part of columns includes
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JPEG compression as post-processing. Note that in the right part, the reference
image is also compressed.

From the table, we can first see that parameter perturbation reduces the
identification confidence at different costs in terms of image quality. Option 2
causes image quality degradation, but the identification confidence is kept rela-
tively high. Note that we have imposed coefficient constraints on Option 1 and
2 to ensure that the perturbed coefficient matrices are still valid; otherwise the
unconstrained perturbation would lead to much worse image quality-confidence
reduction trade-offs than the reported values. Compared to Option 1 to 2, Option
3 achieves highest image quality and lowest identification confidence. In partic-
ular, Option 3 reduces the identification confidence by 40% with little reduction
in image quality ((for example, PSNR decreases from 38.66dB to 38.41dB and
there is nearly no reduction in other quality metrics).

We also compare Option 3 with options that do not involve parameter pertur-
bation. If we replace the gradient-based targeted interpolation algorithm by any
other interpolation algorithm as in Option 4, the identification confidence drops
to near zero. This is expected since the 8-class pSVM is tailored to differentiate
these algorithms. However, for Options 4 (1) to (4) that employ more rudi-
mentary interpolation algorithms, the image quality is inferior to what Option
3 yields, which would be unacceptable as image quality is a crucial criterion in
many imaging applications. Option 4 (6) to (8), which replace the gradient-based
targeted interpolation algorithm by more sophisticated algorithms, outperform
Option 3 in both image quality and identification confidence. This implies that,
if a pirate company has more advanced technology, it should utilize such tech-
nology and there is no incentive to infringe other companies’ technology.

Option 5 and 6 apply post-processing after color interpolation. These options
reduce the identification confidence considerably, but none of them produce im-
ages with quality comparable to Option 3. Overall, Option 3 that perturbs de-
cision threshold values is a simple yet effective choice for circumventing color
interpolation identification with minimal reduction in image quality.

3.2 Perturbing Other Interpolation Algorithms

The proposed parameter perturbation methodology is readily applicable to other
color interpolation algorithms. In particular, since a majority of interpolation
algorithms are direction-adaptive based on local gradients, the options that per-
turb gradient-related parameters can also be employed. We have considered the
adaptive color plane algorithm (6th in our list of interpolation algorithms), also
known as Hamilton-Adams algorithm [2] and the LDI-NAT algorithm (our 8th
algorithm) which is considered as the state-of-the-art progress in color interpo-
lation [15]. Different from the gradient-based color interpolation algorithm that
only involves intra-channel interpolation (i.e., pixels are only interpolated using
raw pixels of the same color), the adaptive color plane algorithm also performs
inter-channel interpolation (i.e., pixels can be interpolated using raw pixels of
different colors). The LDI-NAT algorithm take a learning-based approach by first
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applying directional interpolation based on local gradients and then refining the
interpolation results using nonlocal methods.

When applying the same set of options to perturb the parameters of these two
interpolation algorithms, we obtain observations that are consistent with those
from the gradient-based interpolation algorithm. Due to space limit, we omit
details here. But overall, Option 3 that perturbs the gradient decision thresholds
is found to be most effective for reducing the identification confidence while
preserving the image quality. We will discuss in Sec. 5 more about the generality
of our findings.

4 Misleading Color Interpolation Identification via
Algorithm Mixing

So far, we have investigated ways to prevent the color-interpolation-based iden-
tification system from identifying a specific interpolation algorithm. We now
study how to further mislead the identification system toward a wrong direc-
tion, namely, keeping the resulting image visually similar to the original version
interpolated by a specific algorithm (referred to as ALG1), while making the
identification system believe that the image is interpolated by a different algo-
rithm (referred to as ALG2). This can be considered as a generalized scenario
of the one described in Kirchner and Böhme’s work [6], whereby ALG2 is the
bilinear interpolation. For our study here, the similarity between two images is
measured in terms of PSNR, but other metrics such as the SSIM can also be
used for similarity measurement.

We examine the fusion of ALG1 and ALG2 per a given modification ratio
0 ≤ α ≤ 1. Specifically, we realize the fusion by mixing pixels generated by
ALG1 and ALG2. There are multiple ways to carry out the mixing. One option
is to mix pixels interpolated by ALG1 and ALG2 via linear averaging with
weights (1 − α) and α, respectively. This is is also known as alpha blending in
the literature of image editing. Alternatively, one can randomly select pixels from
ALG1 and ALG2 with ratios (1 − α) and α, respectively. This method can be
seen as non-linear mixing. We examine linear and random mixing methods for
the case ALG1=5 and ALG2 ∈ {1, 3, 4} (that is, ALG1 is the 5th algorithm and
ALG2 are the 1st, 3rd, and 4th algorithms from Sec. 2.2), while similar results
can be observed for other combinations of ALG1 and ALG2 as well.

Due to space limit, we only show the case of linear mixing in Fig. 4, but
for both mixing methods, we see that when the modification ratio α increases,
the resulting image becomes less similar to the original version by ALG1, the
identification confidence of ALG1 decreases, and the identification confidence
of ALG2 increases. The exact trade-offs between the visual similarity reduction
and the identification manipulation depends on the choice of ALG2.

On the other hand, these two mixing methods themselves also differ in the
trade-offs between visual similarity reduction and identification manipulation.
For the illustrative case of ALG1=5 and ALG2=3, Fig. 5 shows the relation
between the visual similarity to ALG1 and the identification confidence of ALG2.
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Fig. 4. Algorithm mixing for misleading identification. (a) average PSNR ; (b) identi-
fication confidence of ALG1; (c) identification confidence of ALG2.

For a given modification ratio α, though these two mixing methods lead to similar
identification confidences of ALG2, linear mixing yields a higher PSNR, meaning
that the output of linear mixing remains more similar to the output of ALG1.

We also find that algorithm mixing can be employed as an option for circum-
venting the identification of a specific color interpolation algorithm (namely, the
task in Sec. 3). For illustration, we perform algorithm mixing by choosing the
gradient-based algorithm as ALG1 and the median filter based algorithm (the
4th in Sec. 2.2) as ALG2. Fig. 6 shows the resulting image quality and identifica-
tion confidence of the targeted interpolation algorithm. Note that if linear mixing
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Fig. 6. Algorithm mixing for circumventing the identification of the gradient-based
interpolation algorithm

is used, the PSNR increases when 0 < α < 0.75. A similar observation has also
been reported in [8], and this can be potentially attributed to the independence
of interpolation errors between different color interpolation algorithms. For the
selected ALG1 and ALG2, both mixing methods achieve better balances between
the image quality and the identification confidence as compared to the options
considered in Sec. 3.1. For example, for a PSNR value of 38.41dB (the 3rd row
associated with Option 3 in Table 2), the identification confidence yielded by
Option 3 is 0.18, but the two mixing methods lead to even lower confidences of
0.09 and 0.01, respectively. While such a superior performance may not always
be available for concealing other targeted interpolation algorithms (in particu-
lar, the performance of linear mixing depends on the validity of interpolation
error independence and the choice of modification ratio), the algorithm mixing
technique serves as an generic approach to circumventing identification. As a
remark, it should be noted that algorithm mixing may require more processing
and storage power in the camera since multiple color interpolation algorithms
may need to be performed.

5 Extensions and Further Discussions

In this section, we provide additional discussions of the proposed anti-forensic
techniques. First, we complement the randomized parameter perturbation by
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formulating and solving an optimization problem that incorporates image quality
and identification confidence. We then compare this paper and a relevant prior
work [6]. Finally, we look into the inherent issues and its implications of the
state-of-the-art identification system.

5.1 Optimization Problem Formulation of Parameter Perturbation

As an illustrative example, we have applied in Sec. 3 randomized parameter per-
turbation to conceal the gradient-based color interpolation algorithm, and the
performances in terms of the image quality and the identification confidence, are
measured by averaging over all the test images. For some images, the identifica-
tion confidence may remain high after the randomized perturbation, as shown
in Fig. 7(a). In order to circumvent identification that is usually performed by
an automated detector, it is necessary to make the identification confidence fall
below a threshold set in the automated detector. Toward this end, we formulate
parameter perturbation as the following optimization problem:

max
θ1,θ2

Q(Ip), subject to C(Ip) ≤ Ct,

where Ip is the perturbed image, Q(·) is a quality metric of an image, C(·) is the
identification confidence with respect to a targeted interpolation algorithm, and
Ct is a preset threshold. Because the full-color reference image is not available
during color interpolation, the image interpolated by the original gradient-based
interpolation algorithm serves as an approximate reference image in the opti-
mization. The PSNR with respect to this reference image is taken as the quality
metric Q(·), and C(·) comes from the identification confidence of the gradient-
based algorithm reported by the 8-class pSVM.

Since it is not always feasible to represent Q(Ip) and C(Ip) in a closed form,
solving for the perturbation parameters θ1 and θ2 is a challenging optimization
task. In this paper, we take a Monte-Carlo approach that applies Option 3 in
Sec. 3.1 multiple times to perturb the image, and keep the result that satisfies the
constraint on C(Ip) with highest Q(Ip). Compared to randomized perturbation,
this solution is guided explicitly by the image quality and the identification
confidence. We compare the results of Option 3 and the guided perturbation
when Ct = 0.5 for three different noise strengths. Their average PSNR values
are roughly equal. The identification confidences are shown in Fig. 7. It can
be seen that the proposed approach suppresses the identification confidence for
individual images while maintaining a high image quality; the results also suggest
that the approximation of the reference image by the image interpolated using
the gradient-based algorithm is effective.

5.2 Comparison with Kirchner and Böhme [6]

As reviewed in Sec. 1, the work by Kirchner and Böhme [6] is a related prior
work that studies anti-forensic techniques for color interpolation identification.
Despite the similar goals, the approaches adopted in [6] and the present pa-
per differ substantially. Kirchner and Böhme’s work tries to synthesize a linear
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Fig. 7. Identification confidences as a result of randomized parameter perturbation (a)
and the guided parameter perturbation (b). Identification confidence in (b) ≤ 0.5.

dependency among pixels in an image while minimizing the overall distortion. The
authors proposed to search for a pre-filter that estimates raw samples acquired
by the camera sensor array and applies the bilinear interpolation kernel to the
estimated raw samples to reconstruct the entire image that satisfies the linear de-
pendency. This approach can be viewed as altering the raw samples to counter the
identification of color interpolation. In contrast, our proposed approaches leave
the raw samples unchanged, but alter the color interpolation algorithms so that
the output image either deviates from a target color interpolation algorithm or
moves toward the algorithm. In a sense, it canbe viewed thatKirchner andBöhme’s
method alters the color interpolation after the creation of an image, while our tech-
niques alter the color interpolationduring the creation of an image.Also notice that
in Kirchner and Böhme’s work, even for the case of bilinear interpolation, search-
ing for the pre-filter (or equivalently, the virtual raw samples) is already computa-
tionally challenging, and it becomes even more difficult to generalize this method
to more sophisticated color interpolation. In comparison, our techniques are less
complex and exhibit a promising generalization capability. It will be an interesting
future work to explore whether Kirchner and Böhme’s work and our approaches
can be properly fused for improved anti-forensic capability.

5.3 Reflections on Robustness of Color Interpolation Identification

As motivated in Sec. 1, a fundamental reason for studying anti-forensic opera-
tions against color interpolation identification is to understand the robustness and
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resilience of identification schemes in an adversarial environment against inten-
tional manipulations of identification results. As demonstrated in the paper, prop-
erly configured parameter perturbation and algorithm mixing can circumvent and
mislead the identification system while preserving image quality.

We have observed that by perturbing the decision boundaries of gradient di-
rections, the identification confidence can be reduced with minimal reduction in
image quality. The rationale of such effectiveness can be understood as follows.
In order to capture the nature of direction adaptation in prevailing color inter-
polation algorithms (for example, the gradient-based, adaptive color plane, and
LDI-NAT algorithms considered in this paper), today’s color interpolation identi-
fication schemes [5, 13] are primarily based on direction classification of pixels and
least-squares estimation of interpolation coefficients for each class. By perturbing
the decision boundaries in color interpolation, we are essentially changing the ways
some pixels are interpolated, and this directly makes the estimated color interpo-
lation coefficients deviate from the typical values learnt from the original color in-
terpolation algorithm, making the identification more difficult. In the meantime,
pixels whose interpolation are more likely to be changed are those near the de-
cision boundaries. These pixels are not coupled tightly with respective direction
classes in the interpolation algorithm, and none of the classes is likely to interpolate
these pixels particularlywell. As such, the image quality does not seriously degrade
when these pixels are interpolated by the methods associated with different direc-
tion classes. On the other hand, our investigation of algorithm mixing, especially
linear mixing, suggests the possibility of manipulating identification results while
potentially increasing the image quality. This can be attributed to the indepen-
dence of interpolation errors caused by individual interpolation algorithms, and
one could effectively counter the identification by properly selecting the modifi-
cation ratio, given the validity of error independence. With our work raising the
awareness of these inherent and common issues of color interpolation identifica-
tion, forensic researchers could improve identification techniques accordingly to
combat cost-effective anti-forensics.

6 Conclusions

Identification of color interpolation has been shown to be a promising approach to
assisting answering forensic questions about imaging devices and content. How-
ever, in order to ensure the trustworthiness of forensic identification especially in
an adversarial environment, it is necessary to understand how color interpolation
identification performs against anti-forensic operations that intentionally manip-
ulates identification results.

In this paper, we have proposed two techniques for countering color interpola-
tion identification. For the technique of parameter perturbation, we have exam-
ined options that achieve different trade-offs between two important factors, the
image quality and the reduction in identification confidence. We show that per-
turbing the decision threshold values for pixel classification is a simple yet effective
option for circumventing the identification. For the technique of algorithm mix-
ing that fuses results from multiple algorithms, we have quantitatively compared
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different mixing settings and shown that we can further mislead the identification
system while preserving the image quality.

To complement the randomized parameter perturbation technique, we have for-
mulated it as an optimization problem and proposed a Monte-Carlo approach that
maximizes individual image quality with the identification confidence kept low.
We also compare our proposed anti-forensics with the most relevant work [6], and
find that our approach has the advantages of lower complexity and better general-
ization capability. Based on the analysis presented in this paper, we shed light on
the inherent issues of the current identification system that has performed well.
Forensic researchers could use the understanding developed in this paper as guide-
lines to design more robust identification systems.
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Abstract. Detection of LSB replacement in digital images has received
quite a bit of attention in the past ten years. In particular, structural
detectors together with variants of Weighted Stego-image (WS) analy-
sis have materialized as the most accurate. In this paper, we show that
further surprisingly significant improvement is possible with machine–
learning based detectors utilizing co-occurrences of neighboring noise
residuals as features. Such features can leverage dependencies among
adjacent residual samples in contrast to the WS detector, which im-
plicitly assumes that the residuals are mutually independent. Further
improvement is achieved by adapting the features for detection of LSB
replacement by making them aware of pixel parity. To this end, we in-
troduce two key novel concepts – calibration by parity and parity-aware
residuals. It is shown that, at least for a known cover source when a bi-
nary classifier can be built, its accuracy is markedly better in comparison
with the best structural and WS detectors in both uncompressed images
and in decompressed JPEGs. This improvement is especially significant
for very small change rates. A simple feature selection algorithm is used
to obtain interesting insight that reveals potentially novel directions in
structural steganalysis.

1 Introduction

Least Significant Bit (LSB) replacement, also colloquially called LSB embedding,
is arguably the oldest data hiding method. According to the CEO of WetStone
Technologies, Inc., as of December 1, 2011 in their depository containing 836 data
hiding products, 582 (70%) of them hide messages using LSB embedding. To the
same day, the IEEE Xplore database registered 182 conference and 22 journal
articles on LSB embedding, which further underlines the enormous popularity
of this topic among researchers.

The first accurate detector of LSB replacement was the heuristic RS analy-
sis [10] published in 2001, serendipitously discovered during research on reversible
watermarking. The simplest case of RS analysis, the Sample Pairs (SP) analy-
sis, was analyzed and reformulated by Dumitrescu et al. [5] into a framework
amenable to further generalization and great improvement [6,4]. The least-squares
version of SP by Lu et al. [24] later inspired further significant development mostly
due to Ker, who derived the detectors from parity symmetries of natural images,
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extended the framework to triples [14] and quadruples of pixels [15], and provided
further valuable insight [17,16,18].

In 2004, a different kind of LSB detector was introduced [9] that was later
dubbed Weighted Stego-image (WS) analysis and further improved in [19] by
introducing moderated weights, a better pixel predictor, and a simpler yet more
accurate bias correction. The WS detector differed from the structural detectors
in that it did not utilize trace sets but instead incorporated the parity through
a pixel predictor. The improved version of the WS detector was shown to out-
perform all other structural attacks in raw, never compressed images, while the
triples analysis was identified as the most accurate for decompressed JPEGs. An
unweighted version of WS equipped with a recompression predictor was shown
to be very effective in decompressed JPEGs provided the quantization table can
be estimated [2].

Recently, the WS detector was rederived [26] using invariant hypothesis test-
ing by adopting a parametric model for the cover. An Asymptotically Universally
Most Powerful (AUMP) test that seems to coincide with a generalized likelihood
ratio was derived in [7]. This detector is a variant of the WS analysis with weights
that give it Constant False Alarm Rate (CFAR) property, which allows threshold
setting independent of the image source. Finally, we point out that with the ex-
ception of [3,7], all LSB replacement detectors mentioned above are quantitative
in the sense that the detection statistic is an estimate of the change rate.1

Steganalysis of embedding operations other than LSB flipping went in a differ-
ent direction due to the fact that parity symmetries are no longer useful even for
rather trivial modifications of LSB embedding, such as LSB matching. For such
embedding operations, the most accurate detectors today are built as classifiers
using features obtained as sampled joint distributions (co-occurrence matrices)
among neighboring elements of noise residuals [12,11,27,25,13]. These detectors
perform equally well for both LSB replacement and LSB matching because fea-
tures formed from noise residuals are generally blind to pixels’ parity.

In contrast to modern steganalysis features (briefly outlined in Section 2), the
WS method, which also works with noise residuals, makes an implicit assump-
tion that adjacent residual samples are independent (Section 3). This suggests
a potential space for improvement, which we confirm in Section 4 with a sim-
ple four-dimensional co-occurrence matrix obtained from the same noise residual
that is typically used with WS analysis. With the help of feature selection, im-
provement over the state of the art (triples analysis) is achieved with as few as
three co-occurrence bins for decompressed JPEGs. Besides better utilization of
spatial dependencies through co-occurrences, we introduce calibration by parity
and parity-aware residuals as two general methods to make features aware of pixel
parity to further improve their sensitivity to LSB replacement. By scaling up the
feature space complexity using rich models, the best results of this paper are re-
ported in Section 5. The paper is summarized in Section 6.

1 Since the relationship between the relative payload and change rate depends on the
syndrome coding method employed (see, e.g., Chapter 8 in [8]), everywhere in this
paper we strictly speak of change-rate estimators.
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1.1 Notation
We use boldface symbols for vectors and capital-case boldface symbols for matri-
ces or higher-dimensional arrays. The symbols X = (xij) ∈ X = In1×n2 and
Y = (yij) ∈ X , I = {0, . . . , 255}, will always represent pixel values of 8-bit
grayscale cover and stego images with n = n1n2 pixels; XT denotes the trans-
pose. We use R and Z for the set of real numbers and integers. The operation of
rounding x ∈ R to an integer is round(x). Given T > 0, truncT (x) = x when
x ∈ [−T, T ], and truncT (x) = T sign(x) otherwise. We also define for x ∈ Z,
LSB(x) = mod(x, 2), x̄ = x+1−2LSB(x), which is x with its LSB “flipped.” The
symbol β stands for the change rate defined as the ratio between the number of
embedding changes and the number of pixels. We reserve Pr(E) for the probability
of event E.

1.2 Setup of All Experiments
All experiments in this paper are carried out on BOSSbase ver. 0.92 [1] and its
JPEG compressed versions obtained using the Matlab imwrite command. The
original database contains 9, 074 512 × 512 images acquired by seven digital cam-
eras in the RAW format (CR2 or DNG) and subsequently processed by resizing
and cropping to the size of 512 × 512 pixels.

The classifiers we use are all instances of the ensemble proposed in [22,21] and
available from http://dde.binghamton.edu/download/ensemble. It employs
Fisher linear discriminants as base learners trained on random subspaces of the
feature space. The out-of-bag estimate of the testing error on bootstrap samples
of the training set is used to automatically determine the random subspace dimen-
sionality and the number of base learners as described in [22]. The final classifier
decision is obtained by fusing the decisions of its base learners. We train a separate
classifier for each image source and payload.

The detection accuracy is evaluated in a standard fashion using the minimal total
detection error under equal priors computed from the ROC from the testing set:

PE = min
PFA

PFA + PMD(PFA)
2

, (1)

where PFA is the false alarm rate and PMD is the missed detection rate. What is
reported in all graphs and tables is the average value of this error, P̄E, over ten
random divisions of the database into equally-sized training and testing sets. The
spread of the error over the database splits also includes the effects of random-
ness in the ensemble construction (e.g., formation of random subspaces and boot-
strap samples). We measure this spread using Mean Absolute Deviation (MAD)
defined as the mean of |PE(i) − P̄E|, where PE(i) is the testing error on the ith
database split.

2 Steganalysis Features
Modern steganalysis features are built as co-occurrence matrices from noise resid-
uals. Below, we summarize the approach taken in [11]. Denoting an estimate of

http://dde.binghamton.edu/download/ensemble
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the cover image pixel xij from its neighborhood N (Y, i, j) as Pred(N (Y, i, j)),
the noise residual, Z = (zij),

zij = yij − Pred(N (Y, i, j)), (2)

is quantized with a quantization step q > 0 and truncated to a finite dynamic
range T = {−T, −T + 1, . . . , T }:

rij � truncT (round(zij/q)) . (3)
The statistical properties of R = (rij) are captured as joint probability mass func-
tions (pmfs) or co-occurrence matrices of m neighboring residual samples in the
horizontal and vertical direction. The horizontal co-occurrence for residual R is

C(h)
d = Pr(rij = d1 ∧ . . . ∧ ri,j+m−1 = dm), d = (d1, . . . , dm) ∈ T m, (4)

while the vertical matrix, C(v)
d , is defined analogically. Both have (2T + 1)m ele-

ments.
Most pixel predictors are realized as shift-invariant finite-impulse response lin-

ear filters captured by a kernel matrix. For example, the kernel

K =

⎛
⎝ −0.25 0.5 −0.25

0.5 0 0.5
−0.25 0.5 −0.25

⎞
⎠ , (5)

proposed in [19] predicts the value of the central pixel from its local 3 × 3 neigh-
borhood using the operation of convolution: K � Y.

Symmetries are conveniently utilized to further reduce the dimensionality of the
co-occurrences and to make them better populated. Given d ∈ T m, we assume
that for natural images Cd ≈ C−d and Cd ≈ C←−d , ←−

d = (dm, dm−1, . . . , d1).
Symmetrization by sign means merging the bins Cd +C−d, while symmetrization
by direction requires merging Cd + C←−d .

For example, for T = 2 and m = 4, which are the parameters solely used in this
paper, the original co-occurrence matrix, Cd, with (2 × 2 + 1)4 = 625 elements is
reduced to 325 elements using the directional symmetry or 338 elements using the
sign symmetry. When both symmetrizations are applied, the dimension is reduced
to 169.

3 Motivation

We now provide heuristic arguments for why detectors that utilize joint statistics
of neighboring residual samples are likely to outperform variants of the WS anal-
ysis. It is because the WS detector can be derived from the assumption that the
individual residual values are independent. Detailed technical arguments appear
in [7] and require proper treatment of quantization effects. The author derives a
CFAR variant of the WS detector starting with the independence assumption im-
posed on residual samples obtaining the detector in an asymptotic limit of infinite
pixel bit-depth.
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Deriving the detector while considering dependencies among residuals would
require tackling the difficult problem of estimating the covariance between resid-
uals as well as higher-order moments from a rather limited data. Instead, in this
paper we represent groups of neighboring residual samples with co-occurrence ma-
trices and use machine learning rather than the likelihood ratio test. While this
approach is suboptimal, it is tractable and, as shown below, greatly improves the
accuracy of all variants of WS.

Researchers have been aware for quite a long time that by leveraging the de-
pendencies among neighboring residual samples,2 one can obtain quite substantial
improvement in detecting steganographic changes. Steganalyzers working with fea-
tures formed as joint or transition probability distributions as features were shown
to outperform [27,25,12,11,13] all previously proposed attacks on LSB matching
and the content-adaptive HUGO. In summary, it makes perfect sense to expect
that the accuracy of the WS detector can be improved as well by considering higher-
order statistical constructs from the residual.

4 Making Features Parity Aware

Features computed from noise residuals, which are outputs of linear filters, such
as (5), “do not see” pixel parity as this information is lost when, for example, tak-
ing a difference between two pixel values. This means that such features will detect
LSB matching and LSB replacement with approximately the same accuracy.

We now describe several ways how to make the features parity aware. To this
end, we introduce the following notation. For image X ∈ In, we denote by Ẋ,
X̃, X̄ the image X after setting all its LSBs to zero, randomizing all LSBs, and
flipping all LSBs, respectively. Formally,

ẋij = xij − LSB(xij), (6)
x̃ij = ẋij + ϕ, ϕ r.v. uniform on {0, 1}, (7)
x̄ij = xij + 1 − 2LSB(xij). (8)

The residuals of X, Ẋ,X̃, and X̄ will be denoted correspondingly as R, Ṙ,R̃, and
R̄. In general, a feature computed from a residual R will be denoted as f(R).

Borrowing the idea from the WS detector, we define the concept of a “parity-
aware residual.” Given a residual R = (rij), its parity-aware version is

R(π) = (r(π)
ij ), r

(π)
ij = (1 − 2LSB(xij)) rij . (9)

To make a feature vector of image X parity aware, one can follow the idea of Carte-
sian calibration [20] and augment it with a reference feature computed from Ṙ,
R̃, or R̄. We call this “calibration by parity.” Additionally, we can compute the
feature from the parity-aware residual, f(R(π)).

2 The dependencies are due to in-camera processing, such as denoising, filtering, color
interpolation, and also due to the traces of content in the residual.
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Table 1. Average detection error P̄E for LSB replacement with change rate β = 0.01 in
uncompressed and JPEG 80 BOSSbase. Six different feature sets and their symmetriza-
tions are tested; the last five are parity aware. The last set, f (663), is the 663-dimensional
merger of [f(R), f(Ṙ)] and f(R(π)) symmetrized as explained in the text.

Source JPEG 80 Uncompressed
Symm. None Both Dir Sign None Both Dir Sign

1 f(R) 0.0164 0.0162 0.0158 0.0159 0.3261 0.3282 0.3246 0.3305
2 [f(R), f(Ṙ)] 0.0114 0.0103 0.0103 0.0106 0.1958 0.1971 0.1959 0.2007
3 [f(R), f(R̃)] 0.0139 0.0130 0.0141 0.0135 0.2534 0.2524 0.2497 0.2531
4 [f(R), f(R̄)] 0.0128 0.0123 0.0129 0.0128 0.2239 0.2281 0.2242 0.2286
5 f(R(π)) 0.0165 0.0398 0.0163 0.0388 0.1253 0.3456 0.1249 0.3480
6 f (663) 0.0086 0.1154

4.1 Testing

In the remainder of this section, we test the above features on BOSSbase and its
JPEG compressed version to investigate the efficiency of calibration by parity and
the parity-aware residual as well as the effect of symmetrization on detection per-
formance for both types of features. Since these experiments are investigative in
nature, they will be carried out only for one type of residual R obtained using the
predictor K (5). The basic (parity-unaware) feature is

f(R) = C(h)
d + C(v)

d , (10)

obtained as sum of the horizontal and vertical co-occurrences3 with parameters
T = 2 and m = 4, and with total dimensionality of 625 in its non-symmetrized
version.

Table 1 shows P̄E on BOSSbase and its version compressed with JPEG quality
80. The results are for a fixed change rate β = 0.01, six different feature sets, and
four types of symmetrization. As expected, the detection error is significantly lower
for decompressed JPEGs than for uncompressed images. The symmetrization also
has a very different impact on the features. In general, features computed from the
parity-aware residual, R(π), should be symmetrized only directionally but not by
sign. The symmetrization has a much lesser impact on features calibrated by par-
ity, for which both the directional and sign symmetries can be applied. The best
calibration by parity is by zeroing out the LSB plane, i.e., [f(R), f(Ṙ)]. For JPEG
images, this type of calibration gives the best results while features computed from
the parity-aware residual are the best for uncompressed images. Finally, combin-
ing calibration by zeroing-out the LSBs with parity-aware residual is beneficial
as can be seen from the last row (f (663)) showing the 663-dimensional merger of
[f(R), f(Ṙ)] symmetrized by both direction and sign with f(R(π)) symmetrized
directionally.

3 The symmetry of the kernel K allows us to add both co-occurrences.
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The fluctuations over the ten database splits are all statistically insignificant
as the MAD of PE(i) over the runs (not shown) was between 5 × 10−4 on JPEGs
and 4 × 10−3 for uncompressed images.

4.2 Analysis by Cover Source

In this section, we apply feature selection to reveal several interesting facts about
the detection of LSB replacement using parity-aware features from Table 1.

The dimensionality of f(R) and [f(R), f(Ṙ)] symmetrized using both symme-
tries is d = 169 and 338, respectively, while the directionally-symmetrized f(R(π))
has dimensionality of d = 325. We use a simple forward feature selection (FFS)
method in which the features are selected sequentially one by one based on how
much they improve the detection w.r.t. the union of those already selected. We
start with the feature with the lowest individual detection error estimated from
the training set. Having selected k ≥ 1 features, the k + 1st feature is selected
as the one among the d − k remaining features that leads to the biggest drop in
the error estimate when the union of all k + 1 features is used. This strategy con-
tinuously utilizes feedback of the ensemble classifier as it greedily minimizes the
detection error in every iteration, taking thus the mutual dependencies among in-
dividual features into account. This is an example of a wrapper [23], which is a
feature selection method using the machine-learning tool as a black-box and is
thus classifier-dependent.

Decompressed JPEGs. We start with the source of JPEG compressed images.
Table 2 (left) shows the results of the FFS when applied to the 169-dimensional
feature vector f(R). We used a larger change rate β = 0.02 to make the effects
more pronounced. The most remarkable phenomenon is the large decrease in de-
tection error when the second bin is supplied to the best individual bin. While the
second bin by itself has a very poor performance almost equal to random guessing,
it extremely well complements the first bin. The error drops further with added
bins but does so rather gradually after the initial drop. Note that the first bin cor-
responds to a residual four-tuple with large differences among neighboring sam-
ples. Such a group of values seems to be much less frequent in decompressed JPEGs
than in their stego versions (c.f. the last column in the table) because the compres-
sion smooths the covers and thus empties this bin while the embedding repopu-
lates it. The second bin serves as a reference, which is approximately invariant to
embedding, and the pair together facilitates a very accurate detection. In fact, all
four next selected bins, k = 2, 3, 4, 5, have a rather poor individual performance,
suggesting that they all serve as different references to the first bin.

Remarkably, after merging only the first three bins, the cumulative error of
0.0215 is already lower than for the triples analysis – the best prior art performer
(see Table 5). When all 169 features are used, the error drops further to 0.005.
We remind that this result is obtained for a feature vector that is unaware of
the pixel parity! Applying the FFS to f(R) Cartesian-calibrated by parity, f(Ṙ),
returns the same first four bins as for f(R), which is why we are not showing
the results. This also implies that the main power of the detection is drawn from



38 J. Fridrich and J. Kodovský

Table 2. Forward feature selection strategy with change rate β = 0.02 in JPEG 80: cu-
mulative and individual P̄E, selected bins, and average bin count in cover/stego images.
Left: symmetrized f(R), dimension 169. Right: directionally symmetrized f(R(π)), di-
mension 325. The last row is obtained when all features are used.

k P̄
(cum)
E P̄

(ind)
E Bin Bin count P̄

(cum)
E P̄

(ind)
E Bin Bin count

1 0.2986 0.2986 (-1 2 -1 0) 1509/2291 0.2226 0.2226 (-1 -1 -1 0) 2950/5730
2 0.0377 0.4798 (-1 -1 1 0) 4878/5061 0.0370 0.4660 ( 0 0 1 0) 10130/9470
3 0.0215 0.4582 (-2 0 0 0) 2939/2746 0.0261 0.4712 ( 0 -1 -1 0) 3930/4190
4 0.0190 0.4721 (-2 0 -1 1) 940/989 0.0209 0.4433 ( 0 0 0 0) 116120/91530
5 0.0149 0.4761 (-1 2 -2 0) 2155/2262 0.0117 0.4970 ( 1 0 -2 2) 650/650

169 0.0050 - - - - - - -

the singular property of the cover source (compression “empties out” certain
bins) rather than the parity asymmetry of LSB replacement. This is additionally
confirmed by the fact that LSB matching can be detected with the same feature
vector f(R) equally reliably as LSB replacement.

Furthermore, the best individual bin (−1, 2, −1, 0) seems to be universal
across sources of images with suppressed noise, which immediately disperses
any thoughts that the co-occurrence bins might somehow utilize JPEG compat-
ibility for detection. We confirmed this by repeating the same experiment with
the feature vector f(R) for BOSSbase images denoised using the 3 × 3 Wiener
filter with noise variance σ2 = 2, 5, 10 and for BOSSbase denoised using the 3×3
median filter.4

The 325-dimensional feature vector f(R(π)) obtained from the parity-aware
residual exhibits a similar initial phenomenon, see Table 2 (right). The best in-
dividually performing bin is now different than in images with suppressed noise,
which only strengthens our interpretation above.

Uncompressed Images. The second experiment was carried out on the un-
compressed BOSSbase. In Table 3 (left), we report the results for the best-
performing bins obtained from the parity-aware residual. Although the cumu-
lative error now falls off much slower than for decompressed JPEGs, we again
observe a large initial drop – the best individual performer is supplied with a
reference bin that is by itself a random guesser. Interestingly, the second selected
bin is the negative of the first bin. In fact, the same is true for the first eight
selected bin pairs! To obtain insight into why the bins pair up in this manner,
realize that E[r(π)

ij ] = 0 for unchanged pixels, while E[r(π)
ij ] = −1 whenever the

pixel ij was changed. Thus, while both bins, d, −d ∈ T 4, occur equally likely
in covers, in stego images the one with more negative values is more populated
than its negative counterpart. The reason why the boundary bin (−2, −1, 0, 0)
was chosen as the best can be explained by its population. While there are other
good individual performers with individual errors in the range PE ≈ 0.42 − 0.45,
they are less populated.
4 We used Matlab commands wiener2 and medfilt2.
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Table 3. Forward feature selection strategy for f(R(π)), dimension 325, for change
rate β = 0.02: cumulative and individual P̄E, selected bins, and average bin count in
cover/stego images. Left: uncompressed images. Right: denoised images. The last row
is obtained when all features are used.

k P̄
(cum)
E P̄

(ind)
E Bin Bin count Wie 2 Wie 5 Wie 10 Med

1 0.4126 0.4126 (-2 -1 0 0) 1353/1536 0.3277 0.2988 0.2536 0.2729
2 0.2164 0.4954 ( 2 1 0 0) 1323/1320 0.1130 0.0709 0.0620 0.0474
3 0.1810 0.4866 (-2 -2 -1 -2) 1912/1976 0.0226 0.0491 0.0365 0.0111
4 0.1489 0.4910 ( 2 2 1 2) 1901/1868 0.0223 0.0354 0.0293 0.0092
5 0.1438 0.4915 (-2 0 -2 -2) 1503/1478 0.0222 0.0299 0.0236 0.0087

325 0.0384 - - - 0.0172 0.0133 0.0110 0.0021

About 30 features are enough to obtain a lower detection error than the
best structural performer – the WS analysis with moderated weights with bias
correction (see Table 5).
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Fig. 1. Average detection error P̄E for different versions of the rich model (see text for
details). Left: dependence on the change rate for two selected quality factors. Right:
Dependence on the quality factor for two change rates.

Denoised Images. The last investigative experiment was carried out for four
different versions of BOSSbase denoised using the 3 × 3 Wiener filter with
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Table 4. Comparison of the average detection error P̄E for the best prior art detector,
which is the triples analysis (Tr) and weighted stego-image with bias correction (WSb)
marked by the symbol �, the feature f (663) from Section 4, and the rich model f (50,856)

β Det 70 75 80 85 90 95 100 UNCOMP.

0.0005
Tr/WSb 0.4022 0.4148 0.4190 0.4343 0.4464 0.4637 0.4767� 0.4776�

f (663) 0.2121 0.2366 0.2689 0.3050 0.3563 0.4068 0.4695 0.4681
f (50,856) 0.1095 0.1240 0.1579 0.1907 0.2435 0.3170 0.4433 0.4340

0.001
Tr/WSb 0.3168 0.3411 0.3521 0.3728 0.3961 0.4296 0.4547� 0.4536�

f (663) 0.1270 0.1458 0.1709 0.2044 0.2558 0.3266 0.4380 0.4380
f (50,856) 0.0610 0.0699 0.0858 0.1078 0.1439 0.2126 0.3968 0.3743

0.0025
Tr/WSb 0.1738 0.1973 0.2163 0.2372 0.2742 0.3350 0.3875� 0.3869�

f (663) 0.0527 0.0575 0.0676 0.0816 0.1094 0.1704 0.3522 0.3522
f (50,856) 0.0185 0.0245 0.0278 0.0365 0.0504 0.0869 0.2857 0.2512

0.005
Tr/WSb 0.0852 0.1014 0.1139 0.1283 0.1682 0.2346 0.2918� 0.2925�

f (663) 0.0186 0.0211 0.0255 0.0325 0.0443 0.0718 0.2369 0.2369
f (50,856) 0.0073 0.0092 0.0103 0.0134 0.0210 0.0371 0.1681 0.1441

0.01
Tr/WSb 0.0388 0.0464 0.0537 0.0628 0.0832 0.1341� 0.1697� 0.1662�

f (663) 0.0045 0.0066 0.0086 0.0125 0.0186 0.0302 0.1154 0.1154
f (50,856) 0.0027 0.0032 0.0049 0.0067 0.0113 0.0203 0.0686 0.0582

0.02
Tr/WSb 0.0199 0.0225 0.0268 0.0327 0.0430 0.0613 0.0675� 0.0664�

f (663) 0.0009 0.0013 0.0021 0.0048 0.0079 0.0166 0.0332 0.0332
f (50,856) 0.0010 0.0011 0.0017 0.0032 0.0066 0.0126 0.0193 0.0173

noise variance σ2 = 2, 5, 10 and the 3 × 3 median filter. For the directionally-
symmetrized f(R(π)) we show in Table 3 (right) the cumulative detection error
when selecting the five best bins using the FFS. The last row shows the detection
error P̄E when using all 325 features f(R(π)). The best performing bin was again
(−1, 2, −1, 0), as in case of decompressed JPEGs, with the exception of Wiener-
filter images with σ2 = 2 where the best bin was the same as the one found for
uncompressed images. In all cases, we observed a sharp drop in detection error
after the second bin is added to the best bin. Images processed by the median
3 × 3 filter appear to be particularly easy for detection of LSB replacement. For
these four sources, the FFS did not seem to select the bins in pairs as observed
for uncompressed images, which indicates that the detection utilizes the low level
of noise of covers more than the singularity of LSB replacement.

5 Scaling Up the Image Model

In this section, we scale up our approach to the rich image model built in [11].
Due to the complexity of this model and the limited space in this paper, we
cannot describe it here in detail and instead refer to the original publication.
We use the predictors described in Section IV of [11] designed to better adapt
to content around edges and in textures. The resulting set of 39 feature sets
obtained with T = 2, q = 1, and m = 4 forms the rich model feature vector f (r).
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Table 5. Detection error P̄E for five structural detectors, six change rates, β, and eight
cover sources: uncompressed BOSSbase (UNC) and its JPEG compressed versions using
quality factors 70,75,. . .,100. Shaded in gray are the best results for each change rate.
The acronyms are explained in Appendix A.

β Det 70 75 80 85 90 95 100 UNC.

0.0005

SP 0.4725 0.4727 0.4752 0.4754 0.4792 0.4800 0.4849 0.4855
WSb 0.4265 0.4323 0.4388 0.4477 0.4571 0.4642 0.4767 0.4776
WS 0.4246 0.4240 0.4347 0.4422 0.4538 0.4635 0.4783 0.4768
Tr 0.4022 0.4148 0.4190 0.4343 0.4464 0.4637 0.4853 0.4839

AUMP 0.4564 0.4559 0.4620 0.4656 0.4698 0.4746 0.4805 0.4813

0.001

SP 0.4458 0.4448 0.4501 0.4510 0.4587 0.4626 0.4709 0.4719
WSb 0.3717 0.3768 0.3879 0.3978 0.4124 0.4316 0.4547 0.4536
WS 0.3580 0.3654 0.3768 0.3911 0.4086 0.4310 0.4548 0.4542
Tr 0.3168 0.3411 0.3521 0.3728 0.3961 0.4296 0.4702 0.4673

AUMP 0.4135 0.4139 0.4236 0.4317 0.4386 0.4514 0.4611 0.4614

0.0025

SP 0.3681 0.3768 0.3812 0.3854 0.3954 0.4066 0.4275 0.4255
WSb 0.2639 0.2690 0.2809 0.2922 0.3124 0.3436 0.3875 0.3869
WS 0.2356 0.2460 0.2630 0.2804 0.3069 0.3437 0.3878 0.3898
Tr 0.1738 0.1973 0.2163 0.2372 0.2742 0.3350 0.4243 0.4185

AUMP 0.3037 0.3056 0.3205 0.3392 0.3547 0.3812 0.4056 0.4044

0.005

SP 0.2766 0.2842 0.2909 0.2981 0.3106 0.3271 0.3595 0.3600
WSb 0.1831 0.1838 0.1907 0.1990 0.2121 0.2386 0.2918 0.2925
WS 0.1415 0.1563 0.1690 0.1848 0.2109 0.2392 0.2975 0.2939
Tr 0.0852 0.1014 0.1139 0.1283 0.1682 0.2346 0.3548 0.3432

AUMP 0.1962 0.2015 0.2153 0.2316 0.2494 0.2867 0.3256 0.3276

0.01

SP 0.1756 0.1802 0.1879 0.1949 0.2035 0.2195 0.2594 0.2576
WSb 0.1083 0.1120 0.1164 0.1181 0.1251 0.1341 0.1697 0.1662
WS 0.0730 0.0848 0.0935 0.1048 0.1232 0.1397 0.1770 0.1722
Tr 0.0388 0.0464 0.0537 0.0628 0.0832 0.1377 0.2494 0.2383

AUMP 0.1064 0.1081 0.1195 0.1316 0.1513 0.1818 0.2146 0.2162

0.02

SP 0.0916 0.0931 0.0989 0.0979 0.1094 0.1168 0.1447 0.1410
WSb 0.0550 0.0565 0.0587 0.0592 0.0599 0.0613 0.0675 0.0664
WS 0.0319 0.0359 0.0408 0.0494 0.0585 0.0676 0.0769 0.0714
Tr 0.0199 0.0225 0.0268 0.0327 0.0430 0.0696 0.1392 0.1277

AUMP 0.0498 0.0516 0.0563 0.0629 0.0790 0.1029 0.1231 0.1181

We test the following four versions of the rich model (the dimensionalities are
in brackets):

1. f (r)(R) symmetrized by both sign and direction (12,753);
2. f (r)(R(π)) symmetrized only directionaly (25,350);
3. [f (r)(R), f (r)(Ṙ)] symmetrized by both sign and direction (25,506);
4. Merger of 2) and 3): f (50,856) = [f (r)(R), f (r)(Ṙ), f (r)(R(π))] (50,856).
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Note that we do not symmetrize f (r)(R(π)) by sign as this would compromise its
parity awareness as seen in Table 1.

Table 4 contrasts the performance of f (50,856) with f (663) and the best prior-art
detectors from Table 5. The top two charts in Figure (1) show that the f (50,856)

model brings improvement over the 663-dimensional model especially for small
change rates and high quality factors / uncompressed images. The two bottom
charts inform us about the importance of making the feature vector f (r) parity
aware. The gain is the biggest for high-quality JPEGs and uncompressed images
and it also increases with the change rate.

6 Conclusion

In 2005, the author of [14] expressed the following opinion about the state of
the art in detection of LSB replacement: “... Because it makes full use of struc-
tural information, in some sense this framework [structural steganalysis] should
be the last word on the detection of LSB replacement, although many practical
questions remain open.” In this paper, we challenge the supremacy of structural
detectors and show that feature-based detectors with parity-aware features can
significantly outperform all structural detectors as well as variants of WS anal-
ysis in both decompressed JPEG images and in uncompressed images. After all,
it is only natural that the WS analysis with its limiting assumption of indepen-
dent residual samples can be markedly improved as it has been shown in the
literature before that utilizing dependencies in noise residual is quite important
for detection of steganography.

Although the largest gain is demonstrated for high-dimensional rich models,
state of the art can be outperformed using as few as three co-occurrence bins
in decompressed JPEGs and thirty bins for uncompressed images. Our analy-
sis shows that features built as co-occurrences of neighboring noise residuals are
especially effective for detection in images with low level of noise, such as decom-
pressed JPEGs or low-pass filtered images. In fact, here the detection strength
is almost entirely in the peculiarity of the cover source rather than the asym-
metry of the embedding operation (LSB replacement) as comparable detection
accuracy can be obtained for LSB matching.

We introduce and study two general methods for making features parity aware
– by calibration by parity (adding features computed from the image with zeroed-
out LSBs) and by computing the features from a parity-aware residual. The latter
is especially effective for steganalysis in uncompressed images.

Our approach has some obvious limitations imposed by the necessity to build
a classifier. In particular, it is only feasible when sufficiently many images from
a given source are available. For an unknown source, the accuracy of detection
will undoubtedly be negatively affected by the mismatch between the training
and testing data. Thus, for practical applications, quantitative LSB detectors
and especially the CFAR detector of [7] will still be very important and useful
tools. If the cover source is known, however, classifiers, such as those proposed
here, offer a definitive advantage in terms of detection accuracy. The rich models,
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and in general any high-dimensional steganalysis, require extensive computing
resources, which limits them to primarily off-line applications rather then real-
time traffic monitoring. We note that the classifier training in high dimensions
is quite feasible with tools, such as the ensemble classifier [22]. It is the time
needed to compute the feature vector, that needs to be done for each analyzed
image, that limits the practical use of such highly complex detectors.

Last but not least, our study seems to hint at new directions in structural ste-
ganalysis. We noticed a surprising universality across a wide spectrum of cover
sources. Certain co-occurrence bins appear to be the overall best performers
when accompanied with suitable reference features that by themselves are ran-
dom guessers. In uncompressed images, bins of the parity-aware residual should
be combined in mutually-negative pairs. A study with a simplified version of
the residual, such as the second-order differences, may reveal well-defined flows
between “trace sets” indexed by the residuals that might eventually lead to novel
structural attacks. This work also reveals a possible way how to describe in a
unified manner the WS analysis and structural detectors, which is a very exciting
topic that we do not further elaborate on in this paper due to lack of space.
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A Prior Art

To establish a baseline and to identify the current most accurate LSB replace-
ment detectors, we report here the results of five attacks that we consider
state of the art: SP analysis [5], WS analysis with prediction kernel K (5)
with moderated weights with (WSb) and without (WS) bias correction [19],
triples analysis with m, n ∈ {−5, . . . , 5} (notation used as in [14]), and the
AUMP detector [7] implemented with the recommended pixel block size m = 16,
q = 6 (polynomial degree 5), and, per author’s recommendation and in con-
trast to the paper, max{1, σ̂} as an estimate of the standard deviation to as-
sure numerical stability. The code for all detectors is available for download at:
http://dde.binghamton.edu/download/structural_lsb_detectors.

Table 5 portrays triples analysis as the most accurate for decompressed JPEGs
up to the quality factor of about 95 when it is outperformed by WSb, which is the
best also for raw images. Our results for SP, WSb, WS, and triples seem compatible
with previous art, at least as much as one can judge by results on different image
sources. However, we observed a disturbingly large discrepancy between our results

http://dde.binghamton.edu/download/structural_lsb_detectors
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and what was reported on the same image database in [7] for WS as well as the SP.
The author reports the entire ROC curves for relative payload R = 0.05, which
corresponds to change rate β = 0.025 since the author is not considering any matrix
embedding at the sender. Reading out the PE from the ROC as the most distant
point to the main diagonal in Fig. 5 in [7], the WS method and the weighted SP
achieve PE ≈ 0.2 and PE ≈ 0.45, which is significantly worse than our results,
P̄E = 0.0664 and P̄E = 0.1410, respectively, obtained for the change rate β = 0.02
(which is additionally slightly smaller than R/2 = 0.025).
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Abstract. This paper investigates the detection of information hidden
by the Least Significant Bit (LSB) matching scheme. In a theoretical
context of known image media parameters, two important results are
presented. First, the use of hypothesis testing theory allows us to de-
sign the Most Powerful (MP) test. Second, a study of the MP test gives
us the opportunity to analytically calculate its statistical performance
in order to warrant a given probability of false-alarm. In practice when
detecting LSB matching, the unknown image parameters have to be es-
timated. Based on the local estimator used in the Weighted Stego-image
(WS) detector, a practical test is presented. A numerical comparison with
state-of-the-art detectors shows the good performance of the proposed
tests and highlights the relevance of the proposed methodology.

1 Introduction and Contributions

Steganography and steganalysis form a cat-and-mouse game. On the one hand,
steganography aims at hiding the very presence of a secret message by hiding it
within an innocuous cover medium. On the other hand, the goal of steganalysis
(in the wide sense) is to obtain any information about the potential stegano-
graphic system from an unknown medium. Usually, steganalysis focuses on ex-
posing the existence of a hidden message in an inspected medium.

Many steganographic tools are nowadays easily available on the Internet mak-
ing steganography within the reach of anyone, for legitimate or malicious usage.
It is thus crucial for security forces to be able to reliably detect steganographic
content among a (possibly very large) set of media files. In this operational
context, the detection of a rather simple but most commonly found stegosys-
tem seems more important than the detection of a very complex but rarely

� This work was partially supported by National Agency for Research (ANR)
through ANR-CSOSG Program (Project ANR-07-SECU-004). With the financial
support from the Prevention of and Fight against Crime Programme of the Euro-
pean Union European Commission - Directorate-General Home Affairs. (2centre.eu
project).Research partially funded by Troyes University of Technology (UTT) strate-
gic program COLUMBO.

M. Kirchner and D. Ghosal (Eds.): IH 2012, LNCS 7692, pp. 46–62, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Statistical Detection of LSB Matching Using Hypothesis Testing Theory 47

encountered stegosystem. The vast majority of downloadable steganographic
tools insert the secret information in the LSB plane. Consequently, substan-
tial progress has recently been made in the detection of such steganographic
algorithms, namely LSB replacement and LSB matching, also known as LSB ±1
embedding (see [11,15,1] and the references therein). However, the steganalysis
of LSB matching remains much harder than the steganalysis of LSB replacement.
Indeed, if LSB matching is used instead of LSB replacement, the detection power
of state-of-the-art detectors is significantly lower [25,5].

The recently proposed steganalyzers dedicated to LSB matching can be roughly
divided into two categories. On the one hand, most of the latest detectors are
based on supervised machine learning methods and use targeted [6,4] or univer-
sal features [17,23]. As in all applications of machine learning, the theoretical
calculation of error probabilities remains an open problem [24]. On the other
hand, the authors of [18] observed that LSB matching acts as a low-pass filter
on the image Histogram Characteristic Function (HCF). This pioneering work
lead to an entire family of histogram-based detectors [19,25].

In the operational context described above, the proposed steganalyzer must
be immediately applicable without any training or tuning phase. For this reason,
the use of a machine learning based detector is hardly possible. Moreover, the
most important challenge for the steganalyst is to provide detection algorithms
with an analytical expression for the false-alarm and missed-detection probabil-
ities without which the “uncertainty” of the result can not be “measured.” The
proposed LSB matching steganalyzers are certainly very interesting and efficient,
but these ad hoc algorithms have been designed with a very limited exploitation
of statistical cover models and hypothesis testing theory. Hence, a few theoret-
ical results exist and the only solution to measure their statistical performance
is the simulation on large databases.

Alternatively, the first step in the direction of hypothesis testing has been
made in [12,8,9] for LSB replacement to design a statistical test with known
statistical properties. In the present paper, this statistical approach is extended
to the case of detecting LSB matching. More precisely, the goal of this paper is
threefold:

1. Define the most powerful (MP) test in the theoretical case when the cover
image parameters are known, namely the expectation and noise variance of
each pixel.

2. Analytically calculate the statistical performance of the MP test in terms
of the false-alarm and missed-detection probabilities. More importantly, this
result allows us to highlight the impact of the noise variance and quantization
on the test performance [9].

3. Design a practical efficient implementation of this test based on a simple
local estimation of expectation and variance of each pixel.

The paper is organized as follows. The problem of LSB matching steganalysis
is casted within the framework of hypothesis testing in Section 2. Following the
Neyman-Pearson approach, the MP Likelihood Ratio Test (LRT) is presented in
Section 3 and its statistical performance is calculated in Section 4. Finally, the
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proposed practical implementation of the Generalized LRT (GLRT) is presented
in Section 5. To show the relevance of the proposed approach, numerical results
on large natural image databases are shown in Section 6. Section 7 concludes
the paper.

2 Detection of LSB Matching Problem Statement

This paper mainly focuses on natural images but the extension of the presented
results to any kind of digital media is immediate. Hence, the column vector C =
(c1, . . . , cN )T represents in this paper a cover image of N = Nx×Ny grayscale
pixels. The set of grayscale levels is denoted Z = {0; . . . ; 2B−1} as pixels values
are usually unsigned integers encoded with B bits. Each cover pixel cn results
from the quantization:

cn = Q(yn), (1)

where yn ∈ R
+ denotes the raw pixel intensity recorded by the camera and Q

represents the uniform quantization with a unitary step:

Q(x) = k ⇔ x ∈ [k − 1/2 ; k + 1/2[.

Seeking simplicity, it is assumed in this paper that the saturation effect is absent,
i.e. the probability of excessing the quantizer boundaries −1/2 and 2B−1+1/2 is
negligible. Indeed, taking into account the under or over-exposed pixels is rather
simple but requires a much more complicated notation.
The recorded pixel value can be decomposed as [13,7]:

yn = θn + ξn, (2)

where θn is a deterministic parameter corresponding to the mathematical expec-
tation of yn and ξn is a random variable representing all the noise corrupting the
cover image during acquisition. As described in [13], ξn is accurately modeled
as a realization of a zero-mean Gaussian random variable Ξn ∼ N (0, σ2

n) whose
variance σ2

n varies from pixel to pixel. It thus follows from (1) and (2) that cn

follows a distribution Pθn = Pθn,σn = (pθn [0], . . . , pθn [2B−1]) defined by:

∀k ∈ Z , pθn [k] = Φ

(
k + 1/2 − θn

σn

)
− Φ

(
k − 1/2 − θn

σn

)
, (3)

with Φ is the standard Gaussian cumulative distribution function (cdf) defined
by Φ(x) =

∫ x

−∞ φ(u)du and φ the standard Gaussian probability distribution
function (pdf) φ(u) = 1√

2π
exp(u2/2). In virtue of the mean value theorem, (3)

can be written as:

pθn [k] =
1
σn

∫ k+ 1
2

k− 1
2

φ

(
u − θn

σn

)
du = φ

(
k − θn

σn
+ ε

)
, (4)

where ε is a (small) corrective term [26].
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To statistically model stego-image pixels from (3)–(4), the two following as-
sumptions are usually adopted [12,14] : 1) the probability of insertion is equal
for every cover pixel (independence between hidden bits and cover pixels) and
2) the message is assumed compressed and/or cyphered M = (m1, . . . , mL)T

before insertion. Hence, each hidden bit ml is drawn from a binomial distribu-
tion B(1, 1/2), i.e. ml is either 0 or 1 with the same probability. This situation is
captured by denoting

∀n ∈ {0, . . . , N} ,

{
P[sn = cn] = (1−R),

P[sn = cn + ins(mn, cn)] = R,
(5)

where S = {s1, . . . , sN} are the values of stego-image pixels, the embedding
rate R = L/N corresponds to the number of hidden bits per cover pixel and
ins(mn, cn) represents the value added to cn to insert the hidden bit mn.

The particularity of LSB matching lies in its insertion function ins : {0; 1} ×
Z �→ {−1; 0; 1}. Whenever the LSB of cn is equal to mn, i.e. when lsb(cn) =
cnmod2 = mn, there is no need to change cn, hence ins(mn, cn) = 0. On the
contrary, whenever lsb(cn) �= mn, the insertion must change the LSB of cn,
which is done by adding or subtracting 1 with the same probabilities:{

P[ins(bs, cn) = 1 | lsb(cn) �= mn] = 1/2

P[ins(bs, cn) = −1 | lsb(cn) �= mn] = 1/2.
(6)

Since each hidden bit mn follows the binomial distribution B(1, 1/2), a straight-
forward calculation finally shows that P[lsb(cn) = mn] = P[lsb(cn) �= mn] = 1/2.
Hence, as described in [18,25,6,10], it follows from (5)–(6) that for all n ∈
{1, . . . , N}, the pmf of the stego-pixel sn after embedding at rate R with LSB
matching is given by QR

θn
=
(
qR
θn

[0], . . . , qR
θn

[2b − 1]
)

with ∀k ∈ Z:

qR
θn

[k] =
R

4
(pθn [k−1] + pθn [k+1]) +

(
1−R

2

)
pθn [k]. (7)

3 Likelihood Ratio Test (LRT) for Two Simple
Hypotheses

When analyzing an unknown medium Z the first goal of LSB matching steganal-
ysis is to decide between the two following hypotheses:

H0 = {zn ∼ Pθn , ∀n ∈ {1, . . . , N}}
vs H1 = {zn ∼ QR

θn
, ∀n ∈ {1, . . . , N}}. (8)

Let us start with the simplest case, when the embedding rate R and, for all
n, the parameters θn and σn are known. In this case, the hypothesis testing
problem (8) is reduced to a test between two simple hypotheses.

The goal is obviously to find a test δ : ZN �→ {H0,H1}, such that hypothesis
Hi is accepted if δ(Z) = Hi (see [22] for details about statistical hypothesis
testing). However, as explained in the introduction, in an operational forensics
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context the most important challenge is first, to warrant a prescribed (very low)
false-alarm probability and second, to maximize the detection power defined by:

βδ = P1[δ(Z) = H1],

where Pi(·) stands for the probability under hypotheses Hi , i = {0; 1}. There-
fore, let Kα be the class of tests with an upper-bounded false-alarm probability
α0 defined by

Kα = {δ : P0[δ(Z) = H1] ≤ α0} . (9)

In virtue of the Neyman-Pearson lemma, see [22, Theorem 3.2.1], the most pow-
erful (MP) test over the class Kα0 (9) is the LRT given by the following decision
rule:

δR(Z) =
{H0 if ΛR(Z) ≤ τα0

H1 if ΛR(Z) > τα0 ,
(10)

where τα0 is the solution of P0[δ(Z) > τα0 ] = α0, to insure that δR ∈ Kα0 ,
and the likelihood ratio (LR) ΛR(Z) is given, from the statistical independence
between pixels, by:

ΛR(Z) =
N∏

n=1

ΛR(zn) =
N∏

n=1

R

4
pθn [zn − 1] + pθn [zn + 1]

pθn [zn]
+
(

1 − R

2

)
. (11)

It can be noted that ΛR(zn) depends on pixel values zn through the quantity:

Λ2(zn) =
1
2

pθn [zn − 1] + pθn [zn + 1]
pθn [zn]

, (12)

which corresponds to the the likelihood ratio for the conceptual case of R = 2. In
other words, Equation (12) corresponds to this test: H0 : {Z is a cover medium }
vs H1 : { each pixel of Z is modified by± 1 }. Indeed, considering the case R=2
permits us to clarify the present methodology, which is then extended to the
more general case of R ∈]0; 1[ in Section 4.2.

The exact expression for the LR Λ2(zn) is complicated due to the corrective
terms ε defined in (4). However, the calculation shows that these corrective terms
are usually negligible, particularly when σn > 1. Therefore, it is proposed to
neglect ε in order to obtain a simplified expression for the LR Λ2(zn). From (4),
this approximation permits us to write:

pθn [zn − 1]
pθn [zn]

= exp
(
− 1

2σ2
n

)
exp
(

θn − zn

σ2
n

)
,

pθn [zn + 1]
pθn [zn]

= exp
(
− 1

2σ2
n

)
exp
(

zn − θn

σ2
n

)
. (13)

Finally, using (13), the LR Λ2(zn) can be written as:

Λ2(zn) =
1
4

exp
( −1

2σ2
n

)[
exp
(

zn − θn

σ2
n

)
+ exp

(
θn − zn

σ2
n

)]
. (14)



Statistical Detection of LSB Matching Using Hypothesis Testing Theory 51

The logarithm of the likelihood ratio (15) is usually preferred in order to replace
the product in (11) with a sum. From (14), it immediately follows that:

Λ̃2(zn) def.= log
[
exp
(

zn − θn

σ2
n

)
+ exp

(
θn − zn

σ2
n

)]
(15)

= log
(
Λ2(zn)

)
+ log(2) +

1
2σ2

n

.

Again, one can note that the terms log(4) and 1
2σ2

n
do not depend on the true

hypothesis. That is why, for the same reasons as those discussed in connection
with Equation (12), these terms do not play any role in solving the detection
problem (8). For the sake of clarity, these terms are thus omitted from expres-
sion (15) of the log-LR Λ̃2(zn).

4 Statistical Performance of the LR Test

4.1 Case of Simple Hypotheses, When R = 2

In this section it is first proposed to study the statistical performance for the case
of simple hypotheses, when R = 2. The results are then extended to the general
case of R ∈]0; 1[ in Section 4.2. To easily calculate the statistical performance
of the LR test δR (10), the asymptotic approach is of crucial interest. Moreover,
the assumption that N grows to infinity is relevant in practice due to the very
large number of pixels in typical images.

For the sake of clarity, let the mean expectation and the mean variance of
Λ̃2(zn) under hypotheses Hi be defined as follows:

μi =
1
N

N∑
n=1

Ei

[
Λ̃2(zn)

]
and σ2

i =
1
N

N∑
n=1

Vari

[
Λ̃2(zn)

]
, (16)

where Ei

[
Λ̃2(Z)

]
and Vari

[
Λ̃2(Z)

]
are respectively the expectation and the vari-

ance of Λ̃2(zn) under hypotheses Hi , i = {0, 1}.
The test δ̃2 associated with the “normalized” log-LR Λ̃2(Z) is defined as:

δ̃2 =

{
H0 if Λ̃2(Z) ≤ τ̃α0 ,

H1 if Λ̃2(Z) > τ̃α0 .
where Λ̃2(Z) def.=

N∑
n=1

Λ̃2(zn) − Nμ0√
Nσ2

0

, (17)

It can noted that the random variables Λ̃2(zn) are assumed statistically inde-
pendent and, for any σn > 0, have finite expectation and variance, which implies
that the conditions necessary for application of the Lindeberg’s central limit the-
orem [22, Theorem 11.2.5] are satisfied. These conditions can also be shown by
using the fact that zn are bounded because they can only take values in the set
Z. Therefore,

Λ̃2(Z)�

⎧⎪⎨⎪⎩
N (0 , 1) under H0

N
(√

N(μ2 − μ0)
σ0

,
σ2

2

σ2
0

)
under H1.

(18)
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Fig. 1. Graphical representation of the two first moments of log-LR log
(
Λ2(zn)

)
(20)

- (23). Presented results correspond to the case of i.i.d pixels with expectation θn ∈
[126; 130] and standard deviation σn = 0.75.

where � represents the convergence in distribution as N → ∞. From Equa-
tion (18), a short algebra establishes the following theorem.

Theorem 1. For any given probability of false alarm α0 ∈]0; 1[, the decision
threshold τ̃α0 given by:

τ̃α0 = Φ−1(1 − α0) (19)

where Φ−1(·) is the Gaussian inverse cumulative distribution, asymptotically
warrants that the test δ̃2 (17) is in Kα0 .

The main conclusion of Theorem 1 is that the decision threshold τ̃α0 depends
neither on the embedding rate R nor the image parameters θn and σn. Hence, by
using the “normalized” log-LR Λ̃2(Z), the same threshold permits us to respect
a prescribed false-alarm probability α0 whatever the analyzed image and the
embedding rate are.

Equation (18) also implies that to asymptotically calculate the detection
power of LR test δ̃2 (17), one only needs to calculate the first moments of Λ̃2(Z).
The mean expectations used in the log-LR Λ̃2(zn) are given under hypotheses
H0 and H1 by

μ0 =
1
N

N∑
n=1

∑
k∈Z

pθn [k] log
(

exp
(

k − θn

σ2
n

)
+ exp

(
θn − k

σ2
n

))
, (20)

μ2 =
1
N

N∑
n=1

∑
k∈Z

qR
θn

[k] log
(

exp
(

k − θn

σ2
n

)
+ exp

(
θn − k

σ2
n

))
, (21)
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where the probabilities pθn [k] and qR
θn

[k] are respectively defined in (3) and (7).
Similarly, the mean variances are by definition given under both hypotheses H0

and H1 by:

σ2
0 =

1
N

N∑
n=1

∑
k∈Z

pθn [k] log
(

exp
(

k−θn

σ2
n

)
+ exp

(
θn−k

σ2
n

))2

− μ2
0, (22)

σ2
2 =

1
N

N∑
n=1

∑
k∈Z

qR
θn

[k] log
(

exp
(

k−θn

σ2
n

)
+ exp

(
θn−k

σ2
n

))2

− μ2
2. (23)

The expectations μ0 and μ2 and the variances σ2
0 and σ2

2 as functions of θn are
respectively drawn in Figures 1a and 1b. These figures highlight the fact that
the pixel expectation θn can have a significant impact on the LR moments, and
later on the detection power, particularly when σn < 1. However, a thorough
study of equations (20)–(23) shows that this phenomenon rapidly tends to be
negligible when σn � 1.

Even thoug, the moments given in (20)–(23) have a rather complicated ex-
pression, their numerical calculation is straightforward as long as the parameters
θn and σn are known.

From the asymptotic distribution (18) of the log-LR Λ̃2(Z) and the expres-
sions (20)–(23) of its two first moments, the detection power of the LR test
δ̃2 (17) is given by the following theorem.

Theorem 2. For any α0 ∈]0; 1[, assuming that the parameters {θn}N
n=1 and

{σn}N
n=1 are known, the power function β̃δ2 associated with the test δ̃2 (17) is

asymptotically given, as N → ∞, by:

β̃δ2 = 1 − Φ

(
σ0

σ2
Φ−1(1 − α0) +

√
N(μ0 − μ2)

σ2

)
. (24)

Proof. Using the result (18), it asymptotically holds that for any τ̃α0 ∈ R:

α0(δ̃2) = P0

[
Λ̃2(Z) > τ̃α0

]
= 1 − Φ (τ̃α0) .

Hence, because Φ is strictly increasing, one has:

(1 − α0(δ̃2)) = Φ(τ̃α0) ⇔ τ̃α0 = Φ−1 (1 − α0(δ2)) , (25)

which proves Theorem 1.
It also follows from (18) that for any decision threshold τ̃α0 ∈ R the power of

the test δ̃2 (17) is given by:

β̃δ2 = P1

[
Λ̃2(Z) > τ̃α0

]
= 1 − Φ

(
σ0

σ2

(
τ̃α0 −

√
N(μ2 − μ0)

σ0

))
.

By substituting τ̃α0 by the value given in Theorem 1, a short algebra leads to
the relation (24). This proves Theorem 2 and concludes the proof.
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Fig. 2. Illustration of LRT statistical performance, false-alarm probabilities and detec-
tion power, for N = 1000 pixels, R = 0.1, σn = 0.5 and θ = {127.5; 128}. The empirical
results were obtained with 5.104 realizations.

4.2 General Case of R ∈]0; 1[

The case for which the embedding rate R can take any value in ]0; 1] is treated
in a similar manner as the case R = 2. The problem of designing an optimal test
has been shown to be particularly difficult in [26]. A thorough design a MP test
uniformly with respect to the embedding rate lies outside of the scope of this
paper which mainly studies the MP test for R = 2 and its practical implementa-
tion. Hence, it is proposed to use the test δ̃2 (17) whatever the embedding rate
R might be. Once again, the asymptotic distribution (18) is used to solve the
decision problem (8).

The alternative hypothesis HR, that Z contains a stego-medium with embed-
ding rate R ∈]0; 1], can be considered as a combination of stego and cover pixels.
Hence, the use of the law of total expectation and the law of total variance
is relevant to calculate the two first moments of the log-LR Λ̃2(Z). Using the
moments given in (20)–(23), for the case R = 2, a short calculation gives:

μR =
R

2
μ2 +

(
1 − R

2

)
μ0, (26)

σ2
R =

R

2
(σ2

2 + μ2
2) +

(
1 − R

2

)
(σ2

0 + μ2
0) −

(
R

2
μ2 +

(
1 − R

2

)
μ0

)2

. (27)

In other words, by using the test δ̃2 (17) for any R ∈]0; 1] only the detection power
is impacted. Indeed, the null hypothesis does not change, hence, the asymptotic
distribution (18) of the LR Λ̃2(Z) under H0 as well as the decision threshold
τ̂α0 (19) remain the same. This point is highlighted in the following theorem.

Theorem 3. For any α0 ∈]0; 1[, assuming that the parameters {θn}N
n=1 and

{σn}N
n=1 are known, the power function β̃δR associated with the test δ̃2 (17) is

asymptotically given for any R ∈]0; 1] by:



Statistical Detection of LSB Matching Using Hypothesis Testing Theory 55

R=0.1

R=0.2

R=0.4

� ��� ��� ��� ��� �
�

���

���

���

���

�

�	
�
�� ��� δ̃2

����	�
���� ����
	

Fig. 3. Numerical comparison between Proposed LR test δ̃2 (17), and the clairvoyant
detector which knows the embedding rate R = 0.1 ans, thus, uses the LR test design for
this rate. Results were obtained from a Monte-Carlo simulation with 5.104 realizations
using Lena image cropped to 128 × 128 pixels and addition of a Gaussian white noise
with σ = 2.

β̃δR = 1 − Φ

(
σ0

σR
Φ−1(1 − α0) +

R
√

N(μ0 − μ2)
σR

)
. (28)

The power functions β̃δR for N =1000, R=0.1, σn =0.5 and θn ={127.5; 128} are
drawn in Figure 2a. Once again, this figure highlights the potentially significant
impact of pixel expectation on the performance of the test δ̃2.
It should be highlighted that the most powerful property of the test δ̃2 is difficult
to prove for R ∈]0; 1[, see [9]. However, Figure 3 emphasizes the relevance of the
proposed approach, which consists in designing a test for R = 2 and extending
its application to R ∈]0; 1[. Here, the power function of the proposed test is
compared with the power function of the clairvoyant detector, that knows R.
The numerical comparison present in Figure 3 shows that the loss of the power
is negligible.

Finally, it can be noted that the detection power as given in Theorem 3 com-
plies with the square root law of steganographic capacity [20]. Indeed, from (28),
a short algebra immediately permits us to establish that:

lim√
N/L→0

β̃δR = 1 and lim√
N/L→∞

β̃δR = α0. (29)

5 Practical Implementation of Proposed LR Test

In a practice, the application of the test δ̃2 (17) is compromised because neither
the expectation θn nor the variance σ2

n of pixels are known: their estimated
values, denoted θ̂n and σ̂2

n, respectively, have to be used instead.
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However, accurate estimation of the parameters θn and σn is a difficult prob-
lem but necessary to obtain a high detection performance. This problem also
occurs in LSB replacement steganalysis. An efficient yet simple way to overcome
this problem was introduced in the well-known Weighted Stego-image steganal-
ysis (WS), initially proposed in [14]. The authors propose to locally estimate
the parameter θn by filtering the inspected image so that θ̂n correspond to the
mean of the four surrounding pixels. Similarly, the local variance of the four
surrounding pixels is used to estimate σ2

n. The WS method has been studied
thoroughly in [21] and two major improvements have been proposed. First, the
authors have empirically enhanced the estimation of pixel expectations by test-
ing different local filters. Second, the author proposed to use moderated weights
wn = σ̂2

n + α , α > 0 instead of the variance estimation σ̂2
n.

In the present paper, it is proposed to use the WS filtering method to estimate
the parameters θn and σ2

n. Note that the proposed practical test is not optimal
but intends to show the relevance of the proposed approach and feasibility to
design a practical efficient test. Following the WS method, the practical imple-
mentation of the LR test δ̂2 proposed in this paper estimates each θn by filtering
the inspected image with the kernel:

1
4

⎛⎝−1 2 −1
2 0 2
−1 2 −1

⎞⎠
Contrary to what is suggested in [21], for the case of LSB replacement, our nu-
merical experiments indicate that the detection performance tends to get worse
when using the moderated weights instead of the estimated variance. Our inter-
pretation of this phenomenon is as follows. The proposed LR test (17) essentially
relies on the increase of pixels’ variance due to insertion of hidden information.
Hence, the use of moderated weights tends to fundamentally bias the test and de-
flates the performance results. Figure 4a offers an example of this phenomenon
through a comparison of ROC curves obtained using 10 000 images from the
BOSSbase database with R = 1/2 and α = {1/4; 1/2; 3/4; 1}.

On the other hand, the direct use of the estimated variance σ̃2
n may lead to

numerical instability particularly in flat image areas. Hence, it was chosen to
add α = 1/4 to the estimated variance in our numerical experiments.

By using these estimated values in expression (15) the estimated log-LR
Λ̃2(zn), see Equation (15) becomes:

Λ̂2(zn) = log

[
exp

(
zn − θ̂n

(α + σ̂n)2

)
+ exp

(
θ̂n − zn

(α + σ̂n)2

)]
. (30)

It should be highlighted that some difficult problems still remain open.
First, the normalization of the log-LR, suggested in Equation (17), requires the
calculation of the expectation μ0 and the variance σ2

0 of the log-LR. Unfortu-
nately, the estimates of the parameters σn are, in practice, not accurate enough
to perform this normalization efficiently.
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Fig. 4. Impact of weights and calibration on proposed test performance. ROC curves
obtained using the images from BOSS database [3] with R = 0.5.

Second, possibly the most difficult problem is that the statistical inference be-
tween the cover image and the hidden information should be taken into account.
For instance it was proposed in [26] to remove the LSB plane in order to remove
any potential stego-noise. For LSB matching this is not possible. Therefore, the
impact of hidden information on estimators θ̂n and σ̂n should be studied. Since
the proposed test relies mainly on the slight increase of pixels’ variance due
to data hiding, the embedding changes may have an important effect on the
estimates σ̂n and on the proposed test.

As explained above, proper normalization of the proposed test is critical in
practice. Even though the proposed LR is very sensitive to hidden information, if
its expectation can not be set to a fixed value under H0, the between-image-error
described in [2] may negatively impact the test accuracy. Numerical simulations
show that the expectation of the LR Λ̂2(zn) can be roughly approximated by
− log(2) − 1

4σ̂2
n
.

Therefore, the practical test proposed in the present paper is given as:

δ̂2 =

{
H0 if Λ̂�

2(Z) ≤ τ̂α0 ,

H1 if Λ̂�
2(Z) > τ̂α0 ,

(31)

with Λ̂�
2(Z) =

1√
N

N∑
n=1

Λ̂2(zn) − log(2) − 1
4(α + σ̂n)2

. (32)

One can note that, contrary to the LR statistically studied throughout Sec-
tions 4.1–4.2, the proposed decision statistic is not normalized. Indeed the vari-
ance of Λ̂2(zn) is not taken into account in Equation 31. This is because the
estimation of pixels’ variance is particularly difficult and the method used in
this paper is not accurate enough. In fact, normalization can even lower the
detection performance. The most notable thing about the test (31) is that the
expectation of the decision statistics Λ̂�

2(Z) is always 0 under hypothesis H0.
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(a) Digital image used for the Monte-
Carlo simulations
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(b) Power of the test δ̂2 (31) as a function of
pixel number for different false-alarm prob-
abilities: theory and simulation.

Fig. 5. Numerical verification of theoretical results through Monte-Carlo simulation
based on natural image shown in Figure 5a

Figure 4b shows an example of the detection power obtained with the two tests
based on the statistics (30) and (31).

6 Numerical Simulations

6.1 Theoretical Results on Simulated Data

Figure 5 presents a numerical verification of Theorem 3. The image shown in
Figure 5a has been analyzed 5.104 times. Each run was preceded by the addition
of a zero-mean Gaussian noise whose standard deviation was σ = 1. The embed-
ded hidden information was drawn from a binomial distribution B(1, 1/2) with
an embedding rate R = 1. The empirical power of the test δ̂2 is compared with
the theoretical result given by Theorem 3 for three different false-alarm prob-
abilities: α0 = {10−1; 10−2; 10−3}. Observe that the obtained detection power
almost perfectly corresponds to the theoretical results.

Note that it is crucial to use the same image for this Monte-Carlo simulation
because the detection power of the proposed test depends on image parameters,
namely on θn and particularly on σ2

n. Hence, for a different image, the detection
power may differ significantly as explained in Section 4. Moreover, the use of
the same image artificially permits us to overcome the difficult problem of nor-
malizing the log-LR and, thus, the effects of the between-image-error described
in [2].

6.2 Comparison with the State of the Art on Real Images

Matlab source code of proposed test, as detailed in Equation (31), is available
on the Internet at : http://remi.cogranne.pagesperso-orange.fr/.

http://remi.cogranne.pagesperso-orange.fr/
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(b) ROC curves for R = 1.

Fig. 6. Numerical comparisons of detectors performance using BOSS database [3]

One of the main motivations for this paper was to show that the hypothesis
testing theory can be applied in practice to design an efficient LSB matching
detector. This fact can only be shown by a numerical comparison with state-of-
the-art detectors on large image databases. The potential competitors for LSB
matching detection are not as numerous as for LSB replacement. As briefly
described in the introduction, the operational context selected in this paper
eliminates all prior-art detectors based on machine learning. Almost every other
detector found in the literature is based on the image histogram. For the present
comparison, two histogram-based detectors, namely ALE [25] and the adjacency
HCF COM [19] detector, were used due to their high detection performance.
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(b) ROC curves for R = 0.5.

Fig. 7. Comparisons of detectors performance using Dresden database [16]
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Figure 6 shows the results obtained with 10 000 images from BOSSbase contest
database [3]. Each hidden bit was drawn from a binomial distribution B(1, 1/2).
The embedding rate was R = 0.5 in Figure 6a and R = 1 in Figure 6b. Both
figures show that the proposed test achieves a better detection power for any
prescribed false-alarm probability.

Similarly, Figure 7 shows the results obtained with the 1488 raw images from
the ‘Dresden Image Database’ [16]. Prior to our experiments, each image was
converted to an unprocessed TIFF format (using dcraw) and only the red color
channel was used. The embedding rate was R = 0.25 in Figure 7a and R = 0.5 in
Figure 7b. The results presented in Figures 7a and 7b confirm that the proposed
test has a better detection power for any prescribed false-alarm probability.
Moreover by changing the embedding rate, the combined results of Figures 6
and 7 show that the proposed test also performs better than prior art for any R.

Note that, surprisingly, the detection power of the proposed test is slightly
higher for the BOSSbase database than for the Dresden database for R = 0.5,
see Figure 6a and 7b, respectively, whereas the Dresden database images are
bigger. This phenomenon can be explained by the fact that the Dresden database
images are RAW images that have not being further processed. In contrast,
BOSSbase images have been downsampled, which may introduce correlations
between neighboring pixels that implicitly make the filtering estimator more
efficient.

7 Conclusion and Future Works

The first step to fill the gap between hypothesis testing theory and steganalysis
was recently proposed in [12,7,26]. This paper extends this first step to the case
of LSB matching. By casting the problem of LSB matching steganalysis in the
framework of hypothesis testing theory, the most powerful likelihood ratio test
is designed. Then, a thorough statistical study permits analytical calculations
of its performance in terms of the false-alarm probability and detection power.
To apply this test in practice, unknown image parameters have to be estimated.
Based on a simple estimation of these unknown parameters, a practical test is
proposed.

The relevance of the proposed approach is emphasized through numerical
experiments. Compared to two leading histogram-based detectors, the proposed
practical test achieves a better detection power.

However, the practical test presented in this paper relies on a simple yet
efficient filtered version of inspected media to estimate pixel expectations and
variances. In our future work, a more efficient model should be used to increase
the detection power. Lastly, a thorough statistical study of the impact of this
estimation on detection performance is desirable to complete the present work.
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Abstract. It is observed that the co-occurrence matrix, one kind of textural 
features proposed by Haralick et al., has played a very critical role in 
steganalysis. On the other hand, the data hidden in the image texture area has 
been known difficult to detect for years, and the modern steganographic 
schemes tend to embed data into complicated texture area where the statistical 
modeling becomes difficult. Based on these observations, we propose to learn 
and utilize the textural features from the rich literature in the field of texture 
classification for further development of the modern steganalysis. As a 
demonstration, a group of textural features, including the local binary patterns, 
Markov neighborhoods and cliques, and Laws’ masks, have been selected to 
form a new set of 22,153 features, which are used with the FLD-based 
ensemble classifier to steganalyze the HUGO on BOSSbase 0.92. At the 
embedding rate of 0.4 bpp (bit per pixel)  an average detection accuracy of 
83.92% has been achieved. It is expected that this new approach can enhance 
our capability in steganalysis. 

1 Introduction 

Steganography and steganalysis are a pair of modern technologies that have been 
moving ahead swiftly in the last decade. The conflicting between these two sides is a 
driving force for the rapid development. That is, each side learns from its counterpart. 
From the modern steganalysis point of view, the machine learning framework, 
consisting of statistical features and classifier, has been first utilized in [1]. In [2], the 
first four statistical moments of wavelet coefficients and their prediction errors of nine 
high frequency subbands from three-level decomposition are used to form a 72-
dimensional (72-D) feature vector with the modern classifier SVM for steganalysis. 
The steganalysis method based on the mass center of histogram characteristic function 
has shown improved effectiveness in steganalysis [3]. A framework combining 
wavelet decomposition and moments of characteristic functions is reported in [4]. To 
break steganographic schemes with popularly used JPEG images as carriers, such as 
OutGuess, F5 and model-based steganographic schemes, a group of 23 features, 
including both the first and second order statistics, have been used together with a 
calibrate technique in [5]. Markov process has first been used in [6] for steganalysis. 
How to handle the high dimensionality of elements in the transition probability matrix 
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resultant from the application of Markov process has been studied in [7], for the 
spatial-domain. In [8], both the first and the second order Markov models, called 
SPAM, have been established to detect the more advanced steganographic scheme 
known as LSB matching. As expected, there is no end in the competition between 
steganography and steganalysis just like mouse versus cat. A modern steganographic 
scheme, named HUGO [9], has been developed so as to fail the SPAM by taking high 
order difference into consideration in its data embedding. Steganalytic methods [10, 
11, 12] have been reported to break HUGO. In [12], image features are extracted via 
applying high-pass filters to the image, followed by down-sampling, feature selection, 
and some optimization technique. Depending on the chosen parameters, the feature 
dimensionalities range from more than one hundred to more than one thousand; with a 
linear classifier, the detection accuracies of the generated features on BOSSbase 0.92 
[13,14] range from 70% to more than 80%. In [10,11], the difference arrays from the 
first-order up to the sixth-order are all used for feature extraction in addition to other 
newly designed features, resulting in the total number of features as high as 33,963. 
Because of the high feature dimensionality, an ensemble classifier using Fisher’s 
Linear Discriminant (FLD) has been developed and utilized. These novel measures 
result a detection rate of 83.9% on BOSSbase 0.92 [13, 14] (at the embedding rate of 
0.4 bits per pixel bpp).  

What described above is by no means a complete review of this active research 
field in steganalysis. For instance, the recent technologies of steganography and 
steganalysis in the JPEG domain have not been discussed here, which however have 
shown the same pattern of competition among these two areas. The observation from 
the above discussion is that the modern steganalysis has made rapid progress in the 
past decade, so does modern steganography.  

1.1 Textural Features 

In this paper, we take a different look at steganalysis from the texture classification 
point of view. According to the highly cited (as of February 2012, having been cited 
almost 7,000 times according to Google) paper by Haralick et al. [15] in 1973, 
“context, texture, and tone are always present in the image, although at times one 
property can dominate the other,” “texture is an innate property of virtually all 
surfaces.” In their paper, the co-occurrence matrix has been proposed as textural 
features for image classification. Since then it has been one of the most widely used 
statistical methods for various tasks in pattern recognition.  

Now we extend this thought [15] further. The modern steganography hides data 
into a cover image. That means the original texture of cover image has been modified 
somehow after data embedding even though the change is small. Therefore many 
technologies developed for texture images classification are reasonably expected to be 
usable for steganalysis. In addition, it has been reported that the data hidden inside the 
texture images are difficult to be detected [e.g., 16], in other words, the texture images 
are suitable for steganography, consequently the steganalysis on texture images is 
challenging, and some efforts have been made [e.g., 17].  

Therefore, it becomes clear that the technologies developed for texture images 
classification should be able to play an important role in modern steganalysis. That is, 
there are many tools developed for texture classification that we can borrow to use for 
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steganalysts in addition to co-occurrence matrix (transition probability matrix can be 
shown equivalent to the co-occurrence matrix under certain condition which has been 
used in steganalysis). Specifically, by taking a close look at the techniques used in 
texture classification (e.g. according to [18]), we can find Markov random fields 
(MRF) and others which belong to the technologies suitable for stationary texture 
images. In the category of non-stationary texture images, there are Laws’ masks, local 
binary patterns (LBP), and others. 

These thoughts have led us to investigate new steganalysis technologies. We first 
examined the LBP technology [19, 20]. In this popular technology (as of February 
2012 [20] has been cited almost 1,900 times according to Google), the pixels in the 
entire image (or in the area of interesting) are examines. For each considered pixel, 
the LBP opens, say, a 3×3 neighborhood surrounding it. Then the gray-value of each 
of the eight neighbor pixels is compared with that of the central pixel. If the gray-
value of a neighbor pixel is smaller than that of the central pixel, a binary zero is 
recorded for this pixel; otherwise, a binary one is recorded; thus resulting a string of 
eight binary bits, each being either zero or one. This procedure is conducted for each 
pixel of the given image. If one chooses a sequencing among these eight binary bits 
assigned to the eight-neighbors, one then obtain a corresponding eight-bit binary 
number. Applying this procedure to all pixels, we end up with many eight-bit binary 
numbers, specifically one for each pixel of the image under consideration (with some 
treatment applied to the boundary pixels). Since any eight-bit binary number 
corresponds to a specific decimal number in a range from zero to 255, clearly, the 
histogram of all of the decimal numbers thus formulated consists of 256 bins. The 
distribution of this type of histogram bins’ values is chosen to characterize the given 
image. Since it is obtained from each individual pixel through comparing it with its 
local neighbor pixels, this type of histogram is expected to be suitable for texture 
classification; in our case, for steganalysis.  

Note that there are several different ways to generate the histogram. A popular way 
of LBP technology used in texture analysis ends up with only 59 bins for the 3×3 
neighborhoods described above. That is, the statistics shows that there are many very 
sparse bins among the 256 bins. We can then merge them so as to result in only 59 
bins without losing much information in classification. In order to achieve rotation 
invariance, the following procedures are taken. That is, we consider a unit circle from 
the central pixel with a radius being one, hence the gray-value of four corner pixels of 
this 3×3 block are determined by interpolation.  

Furthermore, the LBP technology considers multi-resolutions. That is, in addition 
to a neighborhood of 3×3, one can also consider neighborhood of 5×5and or 7×7. It is 
shown in [20] that multi-resolution does help in texture classification. In addition to 
the linear binary patterns just discussed, the LBP scheme also considers “contrast” by 
introducing another quantity called variance. That is, if we consider the case of 3×3 
square neighborhoods, we first calculate the mean average of the eight surrounding 
pixels’ gray-value, and then we calculate the local variance with respect to the central 
pixel’s gray-value. For detail of the LBP technologies, readers are referred to [19, 20].  

As an exercise, we have applied these textural features to steganalyzing the above-
mentioned HUGO stego dataset [13, 14] designed for the BOSS contest. We construct 
a steganalyzer with 22,153 features derived from the textural features. Instead of co-
occurrence matrix we have used LBP features (59-D, corresponding to the above 
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mentioned 59 bins, used for some filtered 2-D array, and 256-D (256 bins) used for 
others) and variance features derived from the multi-resolution way. In addition, we 
have used Laws mask and the mask and cliques associated with Markov Random 
fields [18]. The classifier utilized is the FLD-based ensemble classifier, reported in 
[10, 11]. The achieved average detection rate is 83.92% on BOSSbase 0.92 [13, 14] at 
the embedding rate of 0.4 bpp. Note that the stego images were generated by HUGO 
with default parameters. While our first-stage work has been positive, more works 
need to be done to further move our investigation ahead. It is hope that we have 
opened a different angle to view and handle steganalysis. 

1.2 Rest of the Paper 

The rest of this paper is organized as follows. In Section 2, the proposed textural 
feature framework to break HUGO is discussed. The experimental procedure and 
empirical validations are presented in Section 3. The discussion and conclusions are 
made in Section 4. 

2 Textural Feature Framework 

Advanced stegonographic schemes such as HUGO [9] tend to embed data into cover 
image locally into some regions so as to make the image statistical modeling difficult, 
especially into highly texture regions. Intuitively, this small local change should be 
efficiently captured by some image operators which emphasize on modeling 
microstructure image properties. In this paper, we would like to introduce the local 
binary pattern (LBP) operators [19, 20] which have been popularly used in texture 
classification arena, as a potential statistical image modeling for steganalysis. 

2.1 Image Statistical Measures 

Ojala et al. [19] proposed LBP to model the statistics of a texture unit defined within a 
neighborhood of, say, 3×3 pixels. Each of eight neighboring pixels of a 3×3 
neighborhood is thresholded by the gray value of its central pixel to form an 8-bit binary 
pattern. Fig. 1 (a) depicts a 3×3 neighborhood employed in the calculation of the original 
LBP in which gc is the center pixel and gp, p = 0,2,…,P-1, where P is the number of 
neighboring pixels and equal to 8 in this case, representing the neighboring pixels. In 
[20], Ojala et al. reported that LBP operators can achieve rotation invariant property after 
some manipulation. In this version of LBPs, the local neighborhood is circularly defined 
as shown in Fig. 1 (b) in which the pixel values of the neighbors falling outside the center 
of the pixel grids are estimated by interpolation. Rotation invariant and uniformity 
mappings are introduced. The authors classify LBP into two categories: “uniform” and 
“non-uniform” patters as shown in Fig. 1 (c). Uniform patterns have the number of 
binary transitions (between zero and one) over the whole neighborhood circle less than or 
equal to two while the patterns whose number of such transitions is greater than two are 
considered as non-uniform. In texture classification, uniform patterns often occupy the 
majority of the histogram which makes merging non-uniform patterns into the same bin 
legitimate. This pattern merging is simply called uniformity mapping (or u2 mapping), 
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reducing the number of bins in a histogram from 256 to 59 bins. This type of LBP 
descriptor is denoted as LBPP,R

u2 where P defines the number of neighbor pixels, R the 
radius of the circular symmetric. 

The authors also suggested a feasibility of enhancing texture classification 
performance by incorporating multi-resolution approach. Please be noted that while 
doing so we choose to always set P = 8 in order to keep feature dimensionality 
manageable and that the circular symmetric neighbor inscribed within 3×3 square 
neighborhood when R = 1, 5×5 when R = 2, and 7×7 when R = 3. 

Generalized to different P values and correspondingly defined neighborhoods,  
Eq. (1) expresses the formulation of LBP mathematically.  
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where s(x) equals one if the x is less than or equal to zero, or zero otherwise. 
Consequently, a histogram of 256 bins is formulated as a texture descriptor which 
represents vital information about spatial structure of image texture at microscopic 
level. We denote this basic LBP as LBP8. 

 

Fig. 1. (a) 3×3 neighborhood. (b) Example of circular symmetric neighborhood. (c) Examples 
of “uniform” and “non-uniform” local binary patterns.  (b) and (c) are adapted from [20]. 

In some applications, the performance of LBP can be enhanced by the use of a 
local contrast measure [20]. In this paper, we measure local contrast in a 3×3 square 
neighborhood and as a result a variance image can thus be formed. We denote 
contrast measure on square 3×3 neighborhood as VAR8. VAR8 is defined as follows. 
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We found empirically that LBP features extracted from some variance images can 
enhance the detectability of our proposed steganalyzer. 

To demonstrate the effectiveness of LBP operators in steganalysis, we constructed 
some simple testing scenarios to compare the performance of features derived from  
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LBP operators with those from co-occurrence matrix. Here we form a set of features 
on the first-order horizontal residual images generated by filtering images in 
BOSSbase 0.92 [13, 14] with the operator [-1 1].  

Table 1. Comparative performance study of co-occurrence and LBP features from horizontal 
difference array 

Feature Type I II III IV 

TP  57.48% 56.61% 64.53% 61.56% 
TN 51.46% 56.98% 65.20% 61.15% 
AC 54.47% 56.80% 64.87% 61.36% 
D 81 59 256 177 

Feature type I stands for features derived by using co-occurrence matrix formulated 
along horizontal direction, II by LBP8,1

u2, III by LBP8 and IV by LBP8,1
u2 +LBP8,2

u2 
+LBP8,3

u2. TP (true positive rate) is the percentage of the stego images correctly 
classified, TN (true negative rate) being the percentage of cover images correctly 
identified. AC (accuracy rate) is percentage of stego and cover images correctly 
classified. D is feature dimensionality. Random data partitions are done 12 times, 
each with 8,074 pairs of image for training and the 1,000 left for testing. 

To derive feature using co-occurrence matrix along horizontal direction, we first 
threshold the residual images with T = 4 which results in the feature dimensionality of 
81 [7, 8] (first-order SPAM). The corresponding feature dimensionalities of LBP8, 
LBP8,1

u2 (i.e., as introduced, eight neighbor elements in total, radius being one, u2 
mapping applied), LBP8,2

u2 and LBP8,3
u2 are 256, 59, 59, and 59, respectively. Fisher’s 

Linear Discriminant (FLD) is employed.  
The comparative performance is shown in Table 1. The statistics in Table 1 shows 

that: 1) features generated from LBP8 are much more powerful than those from co-
occurrence matrix but with a higher dimensionality; 2) features generated from 
LBP8,1

u2 perform slightly better than those from co-occurrence matrix although they 
are of lower dimensionality; 3) multi-resolution approach improves the performance 
of LBPP,R

u2 scheme while it keeps dimensionality manageable. 
Instead of using co-occurrence matrix, in this paper we formulate statistical image 

features based solely on LBP operators. In so doing, we apply an LBP operator onto a 
set of residual images, each of which reveals artifacts associated with steganography 
in a different way. In the rest of this section, we describe a set of potential residual 
images to be used in our proposed image statistical model. 

2.2 Content-Adaptive Prediction Error Image 

Small perturbation to cover image caused by steganographic schemes may be 
considered as a high frequency additive noise; as a result, eliminating low-frequency 
representation of images before feature extraction process would make the resulting  
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image features better represent the underlying statistical artifacts associated with 
steganography. With the modern steganographic schemes such as HUGO [9], it is 
intuitive that the prediction error images (also referred to as residual images) 
generated in a content adaptive manner would effectively reveal such artifacts caused 
by data embedding. Here we denote I as image, R as residual image, and Pred(I) as 
corresponding predicted image. Predicted images here are calculated based on some 
relationship within a predefined square neighborhood. Mathematically, R can be 
expressed as below. 

 
R = I – Pred(I)       (3) 

 
In this subsection, we propose to use the following two major kinds of content 
adaptive residual images. The first kind is generated based on our proposed prediction 
scheme modified based on [21], while the second kind is generated based on a 
collection of median filters. 

Successive Prediction Error Image. We adopt a prediction scheme based on [21] to 
better reveal steganographic artifacts utilizing a 3×3 neighborhood to formulate the 
prediction error. Since our application is not coding, we are free to manipulate the 
prediction scheme. That is, the prediction scheme [21] is employed in a 2×2 
neighborhood but in a different way; that is, with a fixed reference pixel (a pixel to be 
predicted), we rotate the 2×2 neighborhood four times to cover a 3×3 neighborhood, 
each rotation yielding one predicted value of the reference pixel. The final predicted 
value is the average of these four predicted pixel values. We found empirically that 
features extracted from residual images generated by this proposed scheme are more 
discriminative than those generated by the prediction scheme in [21]. Fig. 2 and Eq. 3 
describe the prediction process.  

 

Fig. 2. Four 2×2 neighborhoods used predict the center pixel of a 3×3 neighborhood 
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Much of image content has been removed by the proposed scheme; however, the 
influence of image content can be further reduced by successive application of this 
scheme. In this paper, we denote PEn as a prediction error image generated by 
applying the proposed scheme to the original input image for n multiple times. 
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Median-Filter-Based Prediction Error Images. Spatial filters have been widely 
used as low-pass filters. Much of their applications are for image denoising. It is 
therefore intuitive to generate residual images by using median filters to compute 
predicted images. That is, a median filtered image is subtracted from an original 
image, thus generating a prediction error image. In this paper, we use a set of median 
filters of three different sizes, 3×3, 5×5, and 7×7, to calculate predicted images. 
Pred(I) in Eq. (3) is defined by the output of applying a median filter defined here to a 
given input image I. 

 

Fig. 3. Symbolic representations of pixel locations used in the creation of median-filter-based 
prediction error images. (a) 3×3, (b) 5×5, and (c) 7×7 neighborhood. 

Table 2. Configuration of Median Filters Employed in Generating Median-Filter-Based Prediction 
Error Images 

Mask size Filter number Pixel locations used in computing median image 

3×3 1 w11, w13, w22, w31, w33 
2 w12, w21, w22, w23, w32 

 
5×5 

1 w12, w14, w21, w22, w24, w25, w33, w41, w42, w44, w45, w52, w54 

2 w11, w13, w15, w31, w33, w35, w51, w53, w55 
3 w13, w22, w23, w24, w31, w32, w33, w34, w35, w42, w43, w44, w53 

 
 
 
 

7×7 

1 w12, w13, w15, w16, w21, w22, w23, w25, w26, w27, w31, w32, 
w33, w35 
w36, w37, w44, w51, w52, w53, w55, w56, w57, w61, w62, w63, 
w65, w66 
w67, w72, w73, w75, w76 

2 w14, w22, w24, w26, w34, w41, w42, w43, w44, w45, w46, w47, 
w54, w62 
w64, w66, w74 

3 w11, w13, w15, w17, w31, w33, w35, w37, w44, w51, w53, w55, 
w57, w71 
w73, w75, w77 

4 w14, w23, w24, w25, w32, w33, w34, w35, w36, w41, w42, w43, 
w44, w45 
w46, w47, w52, w53, w54, w55, w56, w63, w64, w65, w74 
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2.3 Residual Images Based on Laws’ Masks 

The residual images in this portion are computed by applying high-pass filters to the 
given image in the spatial domain. We also generate some residual images in this part 
in a content adaptive manner by incorporating two non-linear operators, minimum 
and maximum in order to catch the desired artifacts.  

This part of image statistical features is formulated by two major set of 1-D spatial 
high-pass filters. The first set of high-pass filters is Laws’ mask [18] which are of odd 
sizes (3,5, and 7), while the other set which contains even-tap high-pass filters (2,4, 
and 6) have been designed by us. As shown in Table 3, F4 and F6 were generated by 
convolving the mask [-1 1], popularly used in steganalysis and denoted by F2 in this 
paper, with S3 and E5, respectively, which are shown in Table 3. 

Table 3. High-pass filters employed in the creation of residual images in Section 2.3 

Category Number of Taps Name Filter 

 
 
 
 

Laws’ Mask 

3 Edge 3 (E3) [-1 0 1] 
Spot 3 (S3) [-1 2 -1] 

 
5 

Edge 5 (E5) [-1 -2 0 2 1] 
Spot 5 (S5) [-1 0 2 0 -1] 
Wave 5 (W5) [-1 2 0 -2 1] 
Ripple 5 (R5) [1 -4 6 -4 1] 

 
 

7 

Edge 7 (E7) [-1 -4 -5 0 5 4 1] 
Spot 7 (S7) [-1 -2 1 4 1 -2 -1] 
Wave 7 (W7) [-1 0 3 0 -3 0 1] 
Ripple 7 (R7) [1 -2 -1 4 -1 -2 1] 
Oscillation 7 (O7) [-1 6 -15 20 -15 6 -1] 

 
Even Taps 

2 Filter 2 (F2) [-1 1] 
4 Filter 4 (F4) [1 -3 3 -1] 
6 Filter 6 (F6) [1 -3 2 2 -3 1] 

For a given filter, we possibly generate five different residual images as follows: 1) 
Rh by applying a filter in the horizontal direction; 2) Rv by applying a filter in the 
vertical direction; 3) Rhv by applying a filter in the horizontal direction and then in the 
vertical direction in a cascaded manner; 4) Rmin = min(Rh, Rv, Rhv); 5) Rmax = max(Rh, 
Rv, Rhv). 

2.4 Residual Images Based on Markov Neighborhoods and Cliques 

Markov Random Field (MRF) has been widely used in texture classification, 
segmentation and texture defect detection [18]. In MRF, a neighborhood, called a 
Markov neighborhood, can be constructed, into which the Markov parameters can be  
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assigned as weights. These neighborhoods are characterized by a group of pixels with a 
variety of orientations often symmetrically inscribed within a square window of odd size. 
They are hence tempting choices for advanced steganalysis. Here our immediate 
application of Markov neighborhood is for high-pass filtering instead of texture 
classification. As a result, we do not strictly rely on Markov condition and parameters. 
Fig. 4 represents the masks we use to generate residual images described in this portion.  

In addition to Markov neighborhoods, we propose to use cliques, portions of 
Markov neighbors, to high-pass filter images. The cliques used in this paper are 
shown in Fig. 5. The artifacts caused by steganalysis, reflected in residual images and 
obtained by applying these cliques are more localized than those caught by applying 
Markov neighborhood because of their small sizes. Thus, the detectability of our 
steganalysis scheme has been enhanced. Note that the masks in Fig. 4 (d), (h), (i), (j), 
(k), (l), and (m) and Fig. 5 (i), (j), (k), and (j), are created by us.  

 

 

Fig. 4. High-pass filters based on Markov neighborhoods 
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Fig. 5. High-pass filters based on cliques 

3 Feature Construction and Experimentation  

After the discussion of a variety of features made in the above section, one can 
observe that there are multiple ways to construct a feature set for steganalysis. An 
effective combination of features with a dimensionality of 22,153 is constructed based 
on the description in Section 2 to steganalyze HUGO at 0.4 bpp on BOSSbase 0.92 
[13, 14]. We do not claim that this is the best possible combination of features in our 
framework. The details of the proposed combination are summarized in Table 4. The 
empirical validations on features from successive prediction error images and their 
variance images are shown in Table 5. Table 6 shows ensemble accuracies of each 
feature type. In order to validate whether or not each type of features are essential to 
the final accuracy of the whole feature set, the performances of the whole feature sets 
as well as the whole feature sets with each individual type of features dropped out are 
evaluated and shown in Table 7.   
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Table 4. The details of the proposed feature set 

Features 
Described  

in Subsection 

 
LBP Operators  

 
Comments 

 
 

2.2 

Multi-resolution LBP: 
LBP8,1

u2 +LBP8,2
u2 

+LBP8,3
u2 

(177-D features 
extracted from 

each residual image) 

PEs denotes features generated from successive 
prediction error images PEn (n=1 to 5).  
VARpe denotes features generated from variance 
images of successive prediction error images. 
MEDpe denotes features generated form median-
filter-based prediction error images according to 
Table 2. 

2.3 LMbased denotes features generated from residual 
images based on Laws’ masks shown in Table 3. 

 
 

2.4 

The original LBP: 
LBP8 

(256-D features 
extracted from 

each residual image) 

MN13 denotes features generated from 13 residual 
images based on Markov neighborhood filters 
shown in Fig. 4. 
CL12 denotes features generated from 12 residual 
images based on cliques shown in Fig. 5. 

Table 5. Empirical validation on PEs and VARpe using FLD classifier 

Residual PE1 PE1-PE2 PE1-PE3 PE1-PE4 PE1-PE5 PEVAR1-PEVAR5 
AC 61.29% 66.96% 68.49% 70.00% 70.78% 73.12% 76.55% 
D 59 118 177 236 295 590 1,770 
R 1 1 1 1 1 1 1, 2, 3 

All the LBP operators used to construct features in Table 5 are based on uniformity 
mapping with P = 8 and different combination of R’s.  Note that the last column in 
Table 5 represents the multi-resolution setting of LBP operators (LBP8,1

u2+ LBP8,2
u2+ 

LBP8,3
u2). In Table 5, PE1-PE5, and PEVAR1-PEVAR5 mean that PE1 to PE5, and PE1 

to PE5 together with their variance images are used as inputs to LBP operators, 
respectively. The statistics shown in Table 5 reveals the successive applications of the 
prediction error schemes, contrast measure, and multi-resolution approach of LBP 
have all contributed to enhance the detection accuracy. 

Table 6. Ensemble accuracies of each feature type 

Feature Type PEs VARpe MEDpe LMbased MN13 CL12 
AC 75.58% 68.08% 66.43% 81.50% 74.88% 71.34% 

D 885 885 1,593 12,390 3,328 3,072 
dred 300 300 600 2,600 1,000 1,000 
L 101 89 45 49 101 43 

 
Note that AC stands for accuracy, D for feature dimensionality, dred for the 

dimensionality of random selected feature subset, L for the number of weak learners 
or ensembles. In all cases, we independently train and test classifiers for 12 times, 
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with the same rule for data partition: randomly selected 8,074 pairs of cover and stego 
images for training and the 1,000 left for testing. 

Table 7. Ensemble performance on feature elimination at dred = 2,600 

Feature Set D AC L Degradation 
Whole 22,593 83.92% 50  0.00% 
Whole - PEs 21,268 83.57% 46 -0.35% 
Whole - VARpe 21,268 83.57% 57 -0.35% 
Whole - MEDpe 20,560 83.67% 63 -0.25% 

Whole - LMbased 9,763 82.72% 65 -1.20% 
Whole - MN13 18,825 83.52% 45 -0.40% 
Whole - CL12 19,081 83.67% 52 -0.25% 

For the whole feature set, TP rate = 84.45%, TN rate = 83.40%, and AC = 83.92%. 
The statistics in Table 7 reveals that each type of the proposed features is essential to 
the final accuracy. That is, the final accuracy decreases upon the absence of each type 
of features. The degree of contribution among all types of features can be ranked in 
descending order as follows: LMbased, MN13, PEs (tied with VARpe), and MEDpe 
(tied with CL12). Note that it is very difficult to make a significant progress when 
more than 80% of detection accuracy has been attained. Therefore, only a fraction of 
percentage gained in the detection accuracy by some set of features matters in 
detection HUGO with high fidelity.  

4 Discussion and Conclusions  

In this paper we have reported our first-stage investigation on applying textural 
features for steganalysis.  Specifically, we studied local binary patterns (LBP), which 
were inspired by the well-known co-occurrence matrix. In this LBP technique each 
pixel is compared with its neighbor pixels and thus binarized. This process is 
conducted for each pixel in a given image (or a region of interests). All of bins of the 
resultant histogram are used as LBP features. Furthermore, a multi-resolution 
structure can be constructed by using multi-size neighbor, e.g., 3×3, 5×5 and 7×7. In 
addition to the LBP, the variance generated from the above-mentioned local can also 
be used to characterize the contrast of the local region of, say, 3×3. Our work has 
verified that the LBP, variance and multi-resolution do work well in steganalysis. As 
to use the 256 bins or the 59 bins (the latter results from the so-called uniform 
mapping) in steganalysis, it depends. Our experimental works have demonstrated that 
the selection of 256 bins often perform better than 59 bins if the feature 
dimensionality is low. As the dimensionality increases, this may change. Hence in our 
work we use both 256 bins and 59 bins for different kinds of features and scenarios. 

Prior to further summarizing this work, we would like to bring one point to 
readers’ attention. That is, Avcibas et al. [22] proposed a steganalysis scheme which 
employs 18 binary similarity measures on the seventh and eighth bit planes in an 
image as distinguishing features. Instead of comparing, say, in a 3×3 neighborhood, 
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the eight neighboring pixel values with the central pixel value to produce an eight-bit 
binary number so as to establish a histogram of 256 bins for classification, the authors 
[22] simply use the two least significant bit-planes in a given image without 
binarization. Furthermore, they include the bit corresponding to the central pixel 
position to formulate a nine-bit string, thus resulting in a histogram of 512, instead of 
256, bins. One more difference is that we use the 59 and/or 256 features as suggested 
in the LBP technologies [19, 20], while they compute four binary similarity measures 
on the resulting 512-bin histograms [22] as features for steganalysis. Consequently, 
one should not consider the scheme in [22] as an application of the LBP technology. 

Markov neighborhoods with Markov parameters utilized in Markov Random Field 
as shown in Figs. 3.53, 3.60 and some of their cliques shown in Fig. 3.68 in [18] have 
been studied in our work. Many of them with some of our additions as shown in Figs. 
4 and 5 have been used in our steganalysis. They have contributed. 

Among Laws’ masks as shown in Figs. 4.126, 4.127 and 4.128 in [18], we 
eliminate all the masks that are considered low pass filters. Instead only the masks, 
which are considered high pass filters, are used. To construct the even-number masks 
to boost steganalysis capability, we use the well-known [-1,1] mask as two-tap mask 
to convolute the S3 (one kind of Laws’ mask), i.e., [-1,2,-1] to form by our four-tap 
mask. The six-tap mask is formulated in the similar fashion. Our experimental works 
have verified the contribution made by these masks.  

We have achieved an average detection accurate rate of 83.92% in the BOSSbase 
0.92 [13, 14] (at payload 0.4 bpp) in our experiment after this initial study, which has 
indicated that our proposal to utilize techniques developed in the field of texture 
classification for steganalysis is valid. Hence, our future plan is to continue this 
approach to enhance the capability in modern steganalysis. 
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Abstract. JPEG-compatibility steganalysis detects the presence of em-
bedding changes using the fact that the stego image was previously JPEG
compressed. Following the previous art, we work with the difference be-
tween the stego image and an estimate of the cover image obtained
by recompression with a JPEG quantization table estimated from the
stego image. To better distinguish recompression artifacts from embed-
ding changes, the difference image is represented using a feature vector
in the form of a histogram of the number of mismatched pixels in 8 × 8
blocks. Three types of classifiers are built to assess the detection accu-
racy and compare the performance to prior art: a clairvoyant detector
trained for a fixed embedding change rate, a constant false-alarm rate
detector for an unknown change rate, and a quantitative detector. The
proposed approach offers significantly more accurate detection across a
wide range of quality factors and embedding operations, especially for
very small change rates. The technique requires an accurate estimate of
the JPEG compression parameters.

1 Introduction

When a JPEG image is decompressed to the spatial domain, the pixel values in
each 8×8 block must be obtainable by decompressing an 8×8 block of quantized
DCT coefficients. However, most steganographic algorithms change the pixels in
a way that makes each block almost surely incompatible with the compression
in the sense that no DCT coefficient block can decompress to such a modified
block of pixels. This JPEG-compatibility attack was described for the first time
in 2001 [6]. The assumption that the cover was originally stored as JPEG is
not that unreasonable as the vast majority of images are stored as JPEGs and
casual steganographers might hide data in the spatial domain in order to hide
larger payloads or simply because their data hiding program cannot handle the
JPEG format. In fact, while there are almost eight hundred publicly available
applications that hide messages in raster formats, fewer than two hundred can
hide data in JPEGs.1

The original JPEG-compatibility detection algorithm [6] strived to provide
a mathematical guarantee that a given block was incompatible with a certain
1 Statistics taken from a data hiding software depository of WetStone Tech.
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JPEG quantization matrix, which required a brute-force search. With an in-
creasing quality factor (decreasing value of the quantization steps), however, the
complexity of this search rapidly increases making it impractically time consum-
ing to use in practice. This prompted researchers to seek alternatives.

In 2008, a quantitative LSB replacement detector was proposed [1,2] as a
version of the weighted stego-image (WS) analysis [5,7] equipped with uniform
weights and a pixel predictor based on recompressing the stego image with a
quantization table estimated from the stego image. This detector proved remark-
ably accurate and also fairly robust w.r.t. errors in the estimated quantization
table as well as different JPEG compressors. Luo et al. [12] used the same re-
compression predictor but based their decision on the number of pixels in which
the stego image and its recompressed version differed. This allowed detection of
embedding operations other than LSB replacement.

The cover-image prediction based on recompression is fairly accurate for low
quality factors. With decreasing size of the quantization steps, the quantization
noise in the DCT domain becomes comparable to the quantization noise in the
spatial domain and the recompression predictor becomes increasingly poor, pre-
venting thus the detection of (or quantifying) the embedding changes. However,
the recompression artifacts due to quantization in both domains cannot be com-
pletely arbitrary. In particular, it is highly unlikely that such artifacts would
manifest as a single changed pixel or, in general, a small number of changed
pixels. This motivated us in Section 4 to form a feature vector as the histogram
of the number of mismatched pixels in 8×8 blocks after recompression. This 65-
dimensional feature vector better distinguishes embedding changes from recom-
pression artifacts and significantly improves the detection accuracy especially
for low embedding rates. In Section 5, we report the detection accuracy of three
types of detectors, interpret the results, and compare them to previous art. The
paper is summarized in Section 7.

2 Notation and Preliminaries

We use the boldface font for matrices and vectors and the corresponding lower-
case symbols for their elements. In particular, X = (xij) ∈ X = In1×n2 , I =
{0, . . . , 255}, and Y = (yij) ∈ X will represent the pixel values of grayscale cover
and stego images with n = n1 × n2 pixels. For simplicity, we assume that both
n1 and n2 are multiples of 8 and limit our exposition to grayscale images. This
also allows us to use publicly available image datasets, such as the grayscale
BOSSbase [4], which gives our results a useful context.

For convenience, images will also be represented by blocks, X = (X(k)),
X(k) = (x(k)

ij ), where now i, j ∈ {0, . . . , 7} index the pixels in the kth block,
k ∈ {1, . . . , n/64}, assuming, for example, that the blocks are indexed in a row-
by-row fashion. For the purpose of this paper, we define the operator of JPEG
compression on an 8×8 pixel block, X(k), as JPEGθ(X(k)) = D(k) ∈ J 8×8, where
J = {−1023, . . . , 1024} and D(k) is the kth block of quantized Discrete Cosine
Transform (DCT) coefficients. Here, θ stands for a vector parameter defining the
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compressor, such as the quantization table(s), the type of the JPEG compres-
sor (e.g., Matlab imwrite or ImageMagick convert), and the implementation
of the DCT, such as ’float’, ’fast’, ’slow’. The parameters related to the lossless
compression in JPEG, such as the Huffmann tables, are not important for our
problem.

Typically, the JPEG operator will be applied to the entire image in a block-
by-block fashion to obtain an array of DCT coefficients of the same dimension,
D ∈ J n1×n2 , as the original uncompressed image: JPEGθ(X) = D = (D(k)),
JPEGθ(X(k)) = D(k) for all k. We also define the JPEG decompression operator
as JPEG−1

θ : J 8×8 → I8×8. In short, JPEG−1
θ (D(k)) is the kth pixel block in

the decompressed JPEG image JPEG−1
θ (D). The decompression involves multi-

plying the quantized DCT coefficients by the quantization matrix, applying the
inverse DCT to the resulting 8×8 array of integers, and quantizing all pixel val-
ues to I. Note that JPEG−1

θ is not the inverse of JPEGθ, which is many-to-one.
In fact, in general JPEG−1

θ (JPEGθ(X)) �= X; the difference between them will
be called the recompression artifacts.

All experiments are carried out on the BOSSbase image database ver. 0.92 [4]
compressed with Matlab JPEG compressor imwrite with different quality fac-
tors. The original database contains 9, 074 images acquired by seven digital
cameras in their RAW format (CR2 or DNG) and subsequently processed by
converting to grayscale, resizing, and cropping to the size of 512 × 512 pixels
using the script available from [4].

3 Prior Art

In this paper, we compare to the WS detector adapted for decompressed JPEGs
[1] and the method of Luo et al. [12]. Both methods output an estimate of the
embedding change rate, β, defined as the ratio between the number of embedding
changes and the number of all pixels.

3.1 WS Adapted for JPEG

Böhme’s change-rate estimator of LSB replacement in decompressed JPEGs
(WSJPG) is a version of the WS estimator:

β̂WSJPG =
1
n

n1,n2∑
i,j=1

(yij − ȳij)(yij − ŷij), (1)

where ȳ = y + 1 − 2 mod (y, 2) is y with its LSB “flipped,”

Ŷ = (ŷij) = JPEG−1
θ (JPEGθ(Y)) , (2)

is the recompression pixel predictor, and R = (rij), rij = yij − ŷij is the residual.
Note that both Ŷ and R depend on θ but we do not make this dependence ex-
plicit for better readability. The WSJPG estimator is limited to LSB replacement
and will not work for other embedding operations, such as LSB matching.
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Fig. 1. Left: cover image ’101.pgm’ from BOSSbase compressed with quality factor 80.
Right: close up of the recompression artifacts (grouped into a smaller region) with the
same quality factor. The image contrast was decreased to better show the artifacts.

3.2 Detector by Luo et al.

The detector by Luo et al. [12] (which we abbreviate LUO) is also quantitative –
it returns an estimate of the change rate as the detection statistic. It is computed
from the relative number of differences between Y and Ŷ:

	θ = 1
n

|{(i, j)|rij �= 0}| . (3)

In general, both the embedding changes as well as the recompression artifacts
contribute to 	θ. Since the artifacts depend on θ, the authors further transform
	θ to obtain an unbiased estimate of the change rate:

β̂LUO = pθ(	θ), (4)

where pθ(x) is a polynomial. The authors show that it is sufficient to consider a
third degree polynomial, pθ(x) = aθ +bθx+cθx2 +dθx3. Note that as long as the
polynomial is monotone (as it seems to always be in [12]), 	θ is an equivalent
detection statistic, which is why we use it here for performance evaluation.

4 The Histogram Feature

Recompression artifacts manifest quite differently in the residual R = Ŷ − Y
than the embedding changes. Figure 1 shows the cover image ’101.pgm’ from
BOSSbase originally compressed with quality factor 80 together with the recom-
pression artifacts. Although the artifacts typically occur in saturated areas, such
as the overexposed headlights, they can show up in other regions with no satu-
rated pixels (the car’s hood and roof). The artifacts usually show up as a whole
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Fig. 2. Values of selected features hi (top) and �θ (bottom) across 100 images and
randomly selected change rates

pattern and almost never as individual pixels. Classifying them, however, would
be infeasible as there are simply too many possible patterns and their number
quickly increases with the quality factor. In fact, this is why the search in [6] is
computationally intractable.

In this paper, we delegate the difficult task of distinguishing “legitimate”
recompression artifacts from those corrupted by embedding changes to machine
learning. To this end, each block, R(k), of the residual is represented using a
scalar – the number of pixels in R(k) for which r

(k)
ij �= 0. Denoting this number

as 0 ≤ ρ(k) ≤ 64, k = 1, . . . , n/64, each image will be mapped to a feature vector
h = (hm) obtained as the histogram of ρ(k):

hm = 64
n

∣∣∣{k|ρ(k) = m}
∣∣∣ , m = 0, . . . , 64. (5)

This feature vector can be considered as a generalization of (3) because 	θ =
1
64

∑64
m=0 mhm is a projection of h onto a fixed direction.

Using 100 randomly selected images and a large number of change rates, in
Figure 2 (top) we show how the individual features hm react to increasing change
rate. Together, the features capture the effects of embedding much better than
the scalar 	θ. For example, a small number of embedding changes affect pri-
marily h1 while the recompression artifacts typically disturb hm with a much
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larger m. In contrast, 	θ cannot distinguish embedding changes from recompres-
sion artifacts. Zooming in Figure 2 (bottom) around β = 0 reveals individual
“lines” of dots corresponding to the 100 tested images. The vertical offset of the
lines is due to recompression artifacts that introduce undesirable noise into 	θ,
which prevents reliable detection (and estimation) of small change rates.

We close this section with one more remark. Detecting steganography using
a binary classifier with a higher-dimensional feature is usually considered as less
convenient or practical than alternative detectors that, for example, provide an
estimate of the change rate. This is mainly because one needs to train the classi-
fier on examples of cover (and stego) images from a given source. However, when
images from a different source are tested, one may experience a loss of detec-
tion accuracy due to lack of robustness of today’s classifiers to model mismatch
(when one trains on one source but tests on another). In our case, however, the
effect of the model mismatch is largely mitigated due to the fact that all JPEG-
compatibility attacks require the knowledge of the JPEG parameter θ to apply
in the first place. The source of JPEG images compressed with one quality factor
is much more homogeneous than images in their uncompressed format because
the compression suppresses the noise and thus evens out the source, making the
issue with model mismatch less serious.

5 Experiments

This section contains all experiments and their interpretation. First, we measure
the detection reliability of a clairvoyant detector (built for a specific change rate)
across a wide spectrum of JPEG quality factors while comparing the results with
WSJPG and LUO. Then, a single constant false-alarm rate (CFAR) detector is
built to detect all change rates. Finally, we construct and test a quantitative
version of the detector. All experiments are carried out under the assumption
that the JPEG compressor parameter θ is correctly estimated, postponing the
discussion of detector robustness to Section 6.

5.1 Classifier

The clairvoyant detector and the CFAR detector are instances of the ensem-
ble [9,8] available from http://dde.binghamton.edu/download/ensemble. The
ensemble reaches its decision using majority voting by fusing decisions of L in-
dividual base learners implemented as Fisher linear discriminants trained on
random dsub-dimensional subspaces of the feature space. The random subspace
dimensionality, dsub, and the number of base learners, L, are determined auto-
matically by measuring the out-of-bag estimate of the testing error on bootstrap
samples of the training set as described in [9].

http://dde.binghamton.edu/download/ensemble
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Fig. 3. Detection error P̄E for WSJPG (dashed lines) and LUO (solid lines) for all ten
change rates β1, . . . , β10 and three selected quality factors 75, 85, and 100. Stegano-
graphic algorithm: LSB replacement.

5.2 Clairvoyant Detector

In this section, detection accuracy will be measured using the minimal total error
under equal priors on the testing set:

PE = min
PFA

PFA + PMD(PFA)
2

, (6)

where PFA and PMD are the false-alarm and missed-detection rates. We always
report the mean value of PE, denoted as P̄E, over ten random splits of BOSSbase
into equally-sized training and testing sets. Since the spread of the error over
the splits, which includes the effects of randomness in the ensemble construction
(e.g., formation of random subspaces and bootstrap samples), is typically very
small, we do not show it in tables and graphs. We note that a separate classifier
was trained for each β, which is why we call it clairvoyant.

First, we work with LSB replacement to be able to compare to the WSJPG
detector. The focus is on detection of very small change rates:

βi =

{
1
n (1, 10, 25, 50, 100) for i = 1, . . . , 5,

0.001, 0.0025, 0.005, 0.01, 0.02 for i = 6, . . . , 10.
(7)

as this is where we see the biggest challenge in steganalysis in general. The actual
embedding changes were always made pseudo-randomly and different for each
image. The first five change rates correspond to making 1, 10, 25, 50, and 100
pseudo-randomly placed embedding changes. Note that the change rate β6 =
0.001 corresponds to 261 embedding changes for BOSSbase images, continuing
thus the approximately geometric sequence of β1, . . . , β5. Furthermore, β is the
expected change rate when embedding 2β bits per pixel (bpp) if no matrix
embedding is employed or the payload of H−1(β) bpp if the optimal binary coder
is used (H−1(x) is the inverse of the binary entropy function on x ∈ [0, 0.5]).
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Table 1. Mean detection error P̄E for the proposed method (shaded) versus WSJPG

QF
Number of changed pixels Change rate (cpp)

1 10 25 50 100 0.001 0.0025 0.005 0.01 0.02

70 0 0 0 0 0 0 0 0 0 0
0.3873 0.3468 0.2922 0.2295 0.1568 0.0763 0.0230 0.0057 0.0009 0.0003

75 0 0 0 0 0 0 0 0 0 0
0.3861 0.3412 0.2804 0.2194 0.1497 0.0701 0.0216 0.0057 0.0010 0.0003

80 0 0 0 0 0 0 0 0 0 0
0.4248 0.3761 0.3014 0.2295 0.1471 0.0625 0.0167 0.0037 0.0005 0.0003

85 0.0101 0 0 0 0 0 0 0 0 0
0.4704 0.4220 0.3483 0.2626 0.1657 0.0642 0.0145 0.0029 0.0003 0.0002

90 0.0852 0.0046 0.0007 0.0010 0 0 0 0 0 0
0.4899 0.4534 0.3950 0.3155 0.2197 0.0882 0.0183 0.0034 0.0005 0.0002

91 0.0798 0.0019 0.0001 0 0 0 0 0 0 0
0.4913 0.4513 0.3882 0.3080 0.2076 0.0808 0.0167 0.0031 0.0004 0.0001

92 0.0893 0.0010 0 0 0 0 0 0 0 0
0.4907 0.4505 0.3852 0.2981 0.1968 0.0722 0.0157 0.0032 0.0003 0.0001

93 0.4499 0.1017 0.0023 0 0 0 0 0 0 0
0.4949 0.4727 0.4313 0.3673 0.2583 0.0936 0.0196 0.0040 0.0005 0.0001

94 0.4888 0.3885 0.2448 0.0906 0.0124 0.0003 0 0 0.0000 0
0.4966 0.4802 0.4527 0.4094 0.3291 0.1482 0.0314 0.0081 0.0016 0.0003

95 0.4948 0.4472 0.3680 0.2538 0.0977 0.0025 0 0 0 0
0.4972 0.4841 0.4611 0.4285 0.3589 0.1854 0.0372 0.0092 0.0028 0.0003

96 0.4973 0.4728 0.4320 0.3675 0.2509 0.0488 0.0018 0.0002 0.0001 0
0.4975 0.4868 0.4680 0.4386 0.3797 0.2151 0.0499 0.0104 0.0028 0.0005

97 0.4983 0.4842 0.4595 0.4208 0.3438 0.1512 0.0178 0.0024 0.0003 0.0001
0.4975 0.4877 0.4723 0.4433 0.3890 0.2316 0.0557 0.0108 0.0030 0.0007

98 0.4982 0.4795 0.4475 0.3936 0.3009 0.1744 0.0272 0.0034 0.0003 0.0001
0.4980 0.4892 0.4725 0.4462 0.3911 0.2446 0.0587 0.0121 0.0024 0.0005

99 0.4988 0.4843 0.4602 0.4195 0.3398 0.1525 0.0161 0.0007 0 0
0.4979 0.4899 0.4766 0.4588 0.4169 0.3016 0.1110 0.0226 0.0036 0.0007

100 0.4986 0.4855 0.4611 0.4251 0.3540 0.0942 0.0048 0.0006 0.0001 0.0001
0.4978 0.4926 0.4849 0.4688 0.4413 0.3561 0.1920 0.0616 0.0151 0.0068

For such small β, the WSJPG method performed better than LUO with the
exception of quality factor 100 (see Figure 3). Thus, in Table 1 we contrast the
proposed method with WSJPG. The improvement is apparent across all quality
factors and change rates and is especially large for the five smallest change
rates. Remarkably, the clairvoyant detector allows reliable detection of a single
embedding change for quality factors up to 92. Then the error abruptly increases.
This is related to the first occurrence of ’1’ in the quantization table. With this
quantization step, the rounding error in the spatial domain becomes comparable
to the rounding error in the DCT domain and the recompression predictor no
longer provides an accurate estimate of the cover. Despite this limitation, reliable
detection of change rates β6, . . . , β10 is still possible even for high quality factors.
It appears that the least favorable quality factor is not 100 but 98 (for change
rates βi, i > 5). The detection error is not monotone w.r.t. the quality factor
and one can observe “ripples” even at lower quality factors (e.g., from 90 to 91).
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Table 2. Average detection error P̄E for HUGO

Number of changed pixels Change rate (cpp)

QF 1 10 25 50 100 0.001 0.0025 0.005 0.01 0.02

80 .0213 .0017 .0022 .0016 .0018 .0017 .0013 .0007 .0006 .0004
90 .1235 .0160 .0065 .0035 .0049 .0035 .0023 .0024 .0024 .0012
95 .4953 .4627 .3974 .3306 .2415 .0859 .0286 .0191 .0076 .0023

We note that our feature vector h (5) as well as Luo’s 	θ work well for
other steganographic methods than LSB replacement. Repeating the above ex-
periment with LSB matching, we obtained identical values of P̄E well within
its statistical spread. Interestingly, content-adaptive embedding appears to be
slightly less detectable, which is most likely due the fact that recompression ar-
tifacts weakly correlate with texture/edges. The results for the content-adaptive
HUGO [14] displayed in Table 2 should be contrasted with the corresponding
rows of Table 1.2

5.3 CFAR Detector

In the previous experiment, a separate classifier was trained for each change rate
and quality factor. However, in practice, the steganalyst will likely have no or
little prior information about the payload and will face the more difficult one-
sided hypothesis testing problem of deciding whether β = 0 or β > 0. For this
purpose, we now construct a single CFAR classifier and report its performance
for LSB replacement.

Following the recipe in [13], we first tried training on a uniform mixture of
change rates from a certain range. This, however, caused the detector to be
undesirably inaccurate for small change rates. There appears to be an interesting
interplay between the design false-alarm rate, the ability to detect small change
rates, and the detection rate. Through a series of experiments, we determined
that the best results were obtained when training on a fixed small change rate
for which the clairvoyant detector’s PE was neither too small or too big (a value
in the range PE ≈ 0.2 − 0.3 seemed to work the best). This makes an intuitive
sense as PE ≈ 0.5 would not allow accurate determination of the direction into
which the features move with embedding, while easy detectability, PE ≈ 0, is
also bad as there exist many decision boundaries that are equally good but only
some of them are useful for smaller change rates.

The performance of the detector for three quality factors is displayed in
Figure 4. Three graphs show the detection rate PD(β) for selected design PFA.
Overall, the false-alarm rates on the testing set agreed rather well with the de-
sign rates, which we show only for the quality factor 100 just as an example.
2 To obtain the desired change rate βi, we searched for the payload iteratively using

the authors’ embedding script.
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Fig. 4. Probability of detection PD on the test set as a function of β for several design
false alarm rates PFA and three quality factors. For the highest quality factor, we also
report the false alarm rate on test images. The CFAR classifier for quality factors 90,
95, and 100 was trained on 10, 25, and 50 changes, respectively.

For quality factor 90, even as few as six embedding change can be detected re-
liably with PFA = 0.01. For quality factors 95 and 100, PD experiences a sharp
increase around 100 changes.

5.4 Quantitative Detector

Since WSJPG and LUO are both quantitative detectors, in this section we built
a quantitative version of our detector using Support Vector Regression (SVR)
and compare to previous art (tests carried out for LSB replacement).

Following the methodology described in [15], the BOSSbase was divided into
two halves, one used to train the quantitative detector and the other used for
testing. We used ν-SVR [16] with a Gaussian kernel whose hyper-parameters
(kernel width, γ, cost, C, and the parameter ν which bounds the number of
support vectors) were determined using five-fold cross-validation on Gγ ×GC ×Gν ,
where Gγ = {2k|k = −5, . . . , 3}, GC = {10k|k = −3, . . . , 4}, and Gν = { 1

10 k|k =
1, . . . , 9}. We used a public SVM package libSVM [3].

The regressor was trained on images embedded with change rates chosen
uniformly and pseudo-randomly from [0, b]. Its accuracy was measured on stego
images from the testing set embedded with a fixed change rate β using relative
bias, Br(β), and relative median absolute deviation (MAD) Mr(β):
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Table 3. Relative bias and median absolute deviation, Br(β) ± Mr(β), as a function
of β. Crosses correspond to failures (either Br or Mr is larger than 50%). The best
performance per change rate is highlighted. JPEG quality factor is 90.

β
Proposed scheme Cascade

b = 0.0005 b = 0.005 b = 0.05 b = 0.5
10/n −2.78 ± 4.84 × × × −2.78 ± 4.84
50/n +0.64 ± 2.34 −9.04 ± 8.06 × × +0.65 ± 2.35
100/n −0.22 ± 2.00 −3.36 ± 4.13 −15.6 ± 28.5 × −0.10 ± 2.02
0.001 −3.83 ± 1.72 −0.19 ± 1.75 −5.326 ± 10.9 × −0.19 ± 1.75
0.0035 −16.4 ± 1.37 +0.11 ± 0.71 −0.47 ± 3.06 × +0.13 ± 0.71
0.01 −43.7 ± 1.07 −0.90 ± 0.80 −0.00 ± 1.06 −16.3 ± 17.2 −0.00 ± 1.06
0.035 × × +0.05 ± 0.40 −3.74 ± 4.68 +0.07 ± 0.40
0.1 × × −21.1 ± 1.17 −1.17 ± 1.74 −1.27 ± 1.67
0.2 × × × −0.57 ± 0.94 −0.57 ± 0.94
0.3 × × × −0.26 ± 0.79 −0.24 ± 0.74
0.4 × × × +0.02 ± 0.51 +0.04 ± 0.47
0.5 × × × −0.90 ± 1.52 −0.96 ± 1.49

Br(β) = 1
β

(med(β̂) − β) × 100%, (8)

Mr(β) = 1
β

med(|β̂ − med(β̂)|) × 100%, (9)

where β̂ is the estimated change rate and the median med(·) is always taken over
all stego images in the testing set. Note that Br(β) is the percentual inaccuracy
in estimating β, while Mr(β) captures the statistical spread in the same units.
These relative quantities are more informative when detecting change rates of
very different magnitudes.

Table 3 shows Br(β) ± Mr(β) when training on stego images embedded with
change rates from [0, b] for four values of b for JPEG quality factor 90. The
detection was declared unsuccessful, and marked by a cross, when either Br(β)
or Mr(β) was larger than 50%. The table reveals that for small β, significantly
better results could be obtained by training the regressor on a smaller range
[0, b], provided β < b. This is because a smaller interval yields a higher density
of training change rates and allows the regressor to locally adjust its hyper-
parameters.

This insight inspired us to construct the quantitative detector by cascading
SVR detectors Di trained on progressively smaller ranges [0, bi], bi > bi+1, bi ∈
[0, 0.5]:

1. Set b = (b1, . . . , bk), initialize i = 1.
2. Compute β̂i using Di. If i = k, terminate and output β̂i.
3. If β̂i ≤ bi+1, increment i = i + 1, go to Step 2.
4. Output β̂i.
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Fig. 5. Quantitative steganalysis of LSB replacement for ’Cascade’ and LUO for dif-
ferent JPEG quality factors in terms of the relative median bias Br; error bars depict
Mr. Note the different ranges on y-axis.

The performance of this cascading regressor is reported in the last column of
Table 3. As expected, it strongly benefits from its individual sub-detectors and
consequently delivers superior performance across all change rates. To complete
the picture, in Figure 5 we compare LUO with ’Cascade’ for JPEG quality fac-
tors, 80, 90, 95, and 100. While both estimators become progressively inaccurate
with increasing JPEG quality factor, ’Cascade’ clearly outperforms LUO for
small β in all cases while both estimators become comparable for larger β. We
note that cascading the regressor for 	θ by training on smaller intervals [0, b]
did not improve its performance. This is due to the low distinguishing power of
	θ on smaller change rates (see Figure 2 bottom).

For quality factor 100 and β � 0.2, neither of the two detectors can estimate
the change rate reliably, and both begin outputting an estimate of β̂ ≈ 0.35 (on
average). This is because in this range the features are very noisy due to recom-
pression artifacts – the quantization table consists solely of ones. Consequently,
the regression learns the output that yields the smallest error on average.

5.5 Error Analysis

We now decompose the compound error of the proposed quantitative detector
trained on [0, 0.5] into the within-image error, EW, and the between-image error,
EB, using the procedure described in [2].

The tails of the EW distribution are analyzed by randomly selecting a single
image from the testing set followed by 200 independent realizations of LSB
embedding at a fixed change rate. Our experiments confirm that this error follows
the Gaussian distribution. To estimate the between-image error, we compute
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Fig. 6. Tail probability for the between-image error EB for β = 0.1 and 0.4 with the
Gaussian and the Student’s t maximum likelihood fits. JPEG quality factor 90.

the change rate estimate for 1000 testing images by averaging estimates over
20 embedding realizations (for every image). The log-log empirical cdf plot of
the resulting estimates is shown in Figure 6 for two selected values of β. While
the the Student’s t-distribution was generally a good fit for the right tail, we
observed great variations in the distribution of the left tail based on the value of
β. The tail could be extremely thin for some β, while for others it did follow the
thick-tailed Student’s t-distribution. We attribute these variations to the highly
non-linear dependence of the feature vector on β seen in Figure 2.

6 Robustness to JPEG Compressor Parameters

The WSJPG detector appears to be quite resistant to incorrectly estimated
quantization table or the JPEG compressor [2]. This is because stronger re-
compression artifacts due to improperly estimated compression parameter θ are
not likely to manifest as flipped LSBs. In contrast, our feature vector, as well as
LUO, are rather sensitive to θ because they count the mismatched pixels instead
of utilizing their parity. While this allows them to detect embedding operations
other than LSB flipping, this generality lowers their robustness.

The overall detection performance of any JPEG-compatibility detector will
necessarily strongly depend on the accuracy of the estimator of θ as well as the
prior distribution of θ in the testing set. Despite some encouraging work, such
as [11], we consider the problem of estimating θ as an open and quite difficult
problem for the following reasons. Most JPEG images today originate in dig-
ital cameras, which, unfortunately, almost exclusively use quantization tables
customized for the image content, the imaging sensor, the manufacturer’s color
space, and the image size [17].3 For color images, one may have to estimate up
3 http://www.hackerfactor.com/blog/index.php?/archives/

244-Image-Ballistics-and-Photo-Fingerprinting.html
http://www.impulseadventure.com/photo/jpeg-quantization.html

http://www.hackerfactor.com/blog/index.php?/archives/244-Image-Ballistics-and-Photo-Fingerprinting.html
http://www.hackerfactor.com/blog/index.php?/archives/244-Image-Ballistics-and-Photo-Fingerprinting.html
http://www.impulseadventure.com/photo/jpeg-quantization.html
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to three quantization tables, one for the luminance and one for each chromi-
nance component, as well as the chrominance subsampling. The quantization
tables may even be different between different cameras of the same model as
manufacturers continue to upgrade the firmware. Multiple JPEG compressions
further complicate the matter. Thus, the search space may be quite large even
when one considers estimating only the quantization tables themselves. Methods
that estimate the individual quantization steps, such as [6,11,10], may fail for
high compression ratios as there may be little or no data in the JPEG file to
estimate the quantization steps for sparsely populated medium–high frequency
DCT modes.

The only meaningful evaluation of the robustness requires the steganalyzer to
be tested as a whole system, which includes the compression estimator, and test-
ing on non-standard quantization tables as well as multiply compressed images.
The authors feel that the problem of robust compression parameter estimation
is a separate issue that is beyond the scope of this paper.

7 Conclusions

This paper describes a new implementation of JPEG-compatibility steganalysis
capable of detecting a wide range of embedding operations at very low change
rates. As proposed previously, the image under investigation is first recompressed
with a JPEG compressor estimated from the test image. The recompression arti-
facts are described using a 65-dimensional feature vector formed as the histogram
of blocks with a certain number of mismatched pixels. This feature vector can
better distinguish between recompression artifacts and embedding changes than
the scalar proposed by Luo et al. [12]. In particular, it allows accurate detection
of fewer than ten embedding changes for quality factors up to 92. For higher
quality factors, the detection error sharply increases due to the onset of quanti-
zation steps equal to one. Nevertheless, very reliable detection of change rates as
low as 0.005 remains possible for quality factors up to 100 (in 512×512 grayscale
images).

Three types of detectors are constructed for a fixed quality factor – a family
of clairvoyant detectors trained for a specific change rate, a constant false-alarm
rate detector for unknown change rate for practical applications, and a quanti-
tative detector.

The proposed method, as well as all JPEG-compatibility detectors, need to be
supplied with an estimator of the JPEG compressor parameters (quantization
table(s), DCT implementation, etc.). Future research will focus on tests with
real-life datasets, including images compressed with non-standard quantization
tables and multiply-compressed images, and on extension of this work to color
images. The latter would require estimation of chrominance quantization table(s)
as well as chrominance subsampling.
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Hiding a Second Appearance in a Physical Relief Surface 

Yi-Liu Chao and Daniel G. Aliaga 

Purdue University 

Abstract. We present a novel information hiding process that couples geome-
trical modeling with automated 3D fabrication for creating hidden-appearance 
reliefs. Our relief surface produces a first grayscale appearance visible by sim-
ple direct illumination and a second grayscale appearance ensured to be visible 
when the relief is lit by a digital projector with a specifically designed pattern 
and from a particular direction. The two appearances/images can be different 
yet embedded in the same physical relief. Since the second appearance appears 
only on demand, it could be used to hide a second image, a company logo, or a 
watermark image, for instance. Our novel method calculates a relief surface that 
maintains the properties needed for producing a second (hidden) appearance 
while also ensuring the first appearance is visible under normal direct illumina-
tion. Our experiments show that our method robustly produces reliefs with two 
arbitrary desired appearances.  

Keywords: information hiding, images, reliefs, surfaces, watermarks, 3D man-
ufacturing. 

1 Introduction 

In this paper, we present a novel application of information hiding whereby two visu-
al appearances (or “images”) are encoded into a single physical relief surface. Our 
work exploits advances in digital manufacturing but focuses on a computational mod-
eling component. We wish to design a physical relief surface to have a first appear-
ance visible to the naked eye under normal directional illumination and defined by a 
provided arbitrary image (Figure 1, shaded image A). In addition, we wish the same 
relief to have a second appearance, defined by an arbitrary second image, which is 
made visible only when the relief is lit by a carefully designed illumination pattern 
(e.g., by using a digital projector) (Figure 2, shaded image B). Since the second ap-
pearance can be made to appear only on demand, it could be used to hide a second 
image, a company logo, or a watermark image, for instance. To our knowledge, there 
is no previous information hiding approach as ours. Some previous works do incorpo-
rate multiple appearances into a relief/object, however our novel process ensures the 
second appearance is always possible despite potential self-shadows and the implicit 
finite projector light radiance. In the absence of our method, the two appear-
ances/images are not always possible (Figure 1, bottom row). We anticipate our me-
thodology will lead to significant more work in this exciting novel application. 

Previously, papers have addressed generating surfaces with purposefully encoded 
data and/or purposefully crafted visual behaviors. In the synthetic world, a relevant  
set of works are algorithms which robustly or fragilely encode watermarks into the  
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Fig. 1. Hidden-Appearance Reliefs. a) We create a relief that produces image A under normal 
direct illumination and image B only under projector illumination. b) We show our hidden relief 
geometry (top) and a plain-light relief geometry (bottom) – an implementation of [1]. c) Left pair 
are photographs of the digitally manufactured physical relief surface under direct illumination and 
yielding image A; right top is image B with our approach and right bottom is image B with plain-
light relief geometry. The small insets are a visualization of the per pixel intensity error between the 
photographs and the desired image B (red = large error). As compared to previous works, our me-
thod is able to produce both images A and B, despite them being very different. 

digital representation of the mesh (e.g., [2]). In the world of digitally manufactured 
physical objects, methods have encoded fragile marks (e.g., for genuinity detection) 
into physical surfaces [3] or into paper [4], and have manufactured surfaces yielding a 
pre-specified shading, or appearance, behavior (e.g., [5, 6]). 

Our work is inspired by an observation in Chen et al. [7] which states that given 
any two appearances for a single diffuse surface there is, in theory, always a combina-
tion of surface geometry, albedo patterns, and light sources that can produce the ap-
pearance pair. In practice, the limited amount of light, manufacturing restrictions on 
heightfield sharpness, and self-shadows imposes practical restrictions on the images. 
However, we have found that a wide range of imagery is possible with our method. 
More concisely, our methodology for generating a hidden appearance in a relief is 
based on the following three key observations: 

• there are multiple relief geometries that yield the same shaded image when viewed 
from above the surface; we exploit the multiplicity of solutions to find a combina-
tion of surface heights that produces both shaded image A and shaded image B;  

• if the relief were not designed to explicitly support/hide the second appearance, 
then the second image cannot in general be produced; this is true even with the 
help of a projector emitting any desired illumination pattern; and 

• the use of an illumination pattern for generating the second appearance 
enables using a constant albedo to produce any two grayscale shaded images 
A and B; image A is visible to the naked eye; however, since the albedo is con-
stant (e.g., no paint or material change is visible to the naked eye), image B is 
only visible to the naked eye by using the proper illumination pattern; the  
pattern itself could, for example, be encoded, or generated, by a key-based pro-
cedure and our overall methodology ensures an arbitrary chosen second ap-
pearance is possible. 

Hidden-Appearance Relief Hidden-Appearance Relief Photographs

Image A

Image B

A
B

Cam

Setup

(a) (b) (c) Plain-light Relief PhotographsPlain-light Relief
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Fig. 2. System Pipeline. A summary of the major components of our method and the computational 
flow. 

Our approach uses an optimization process to create a diffuse surface heightfield 
that will be subsequently manufactured. Creating a relief surface that produces the 
appearance of a single shaded image A under normal direct illumination is simple: 
using optimization a set of normals producing image A is computed and surface inte-
gration yields a suitable heightfield. From the many possible surface geometry confi-
gurations (as will be described in Section 3.2 and using Figure 4), we also wish to 
ensure an arbitrary shaded image B is visible when illuminated by a digital projector 
shining a particular illumination pattern. When creating a hidden-relief surface, a 
suitable combination of surface geometry and illumination pattern are initially un-
known and must be determined. Further, since the projector illumination range is 
limited (i.e., light is additive and a given projector has a limited maximum illumina-
tion intensity), the pattern must also be constrained to lie within possible illumination 
values. A straightforward formulation results in a large set of constrained inequality 
equations that is nonlinear in the unknowns – solving this system is both impractical 
and highly non-robust. Instead, we perform several simplifications that result in an 
efficient solution using equations that are linear with respect to the unknowns and 
include linear smoothing equations and linear constraints. A suitable relief can be 
computed, tested in simulation, and then fabricated. 

We have implemented a complete prototype system to produce hidden reliefs (Fig-
ure 2). The relief is automatically manufactured from our computed model using a 3D 
printer. The relief is placed on a stage in front of a digital camera and two digital pro-
jectors: one projector is used as a simple point light source to directly illuminate the 
relief so as to produce image A, and the other projector emits the illumination pattern 
for image B. The camera and projectors have been geometrically and radiometrically 
calibrated beforehand. Our results include the design and fabrication of several two 
appearance reliefs, and theoretical and empirical comparisons to previous related 
works (e.g., Alexa and Matusik [1] -- we call them plain-light reliefs) and to reliefs 
created for a single appearance but using projector patterns to obtain the second ap-
pearance (we call these single-appearance reliefs). Our experiments consistently 
demonstrate that using our approach yields an improved ability to encode both image 
A and image B into a single relief. 

2 Related Work 

Information hiding can be viewed as an exploitation of flexibility and, in some cases, 
redundancy. With this in mind, the concept of watermarking has been extended to the 
digital domain. Abundant literature investigates watermarks in digital images [8, 9] 
and in digital audio files [10]. It has been used to seamlessly hide watermarks in 3D 
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meshes (e.g., [2, 11, 12]). Approaches are concerned with robustness, security, or 
both (e.g., [13]). These methods have been designed for digital data which can be 
created, read, and replicated with zero error. Some efforts have brought the watermark 
concept to physical surfaces. For instance, the work of Aliaga et al. [3] fabricates 
relief surfaces encoding watermarks such that physically copying the watermark is 
hard. While, similar to these works, we wish to embed information, we seek to do so 
in the visual appearance of a physical relief surface. 

Although, we could hide a second appearance by secretly using relief materials or 
unbeknownst reflective paint patterns, we seek an “open method”, closer to Kerck-
hoff’s principle [14]. Our methodology assumes a public method and a single albedo 
(i.e., a single material and color) yet is still enable to hide an arbitrary second appear-
ance (e.g., one that can be procedurally generated based on a key), and is visible only 
when appropriately illuminated. Additional surface hiding methodologies can be 
viewed as complementary. 

Some previous surface and relief work has attempted to encode multiple appear-
ances. For example, Oliva et al. [15] design a colored pattern (i.e., single flat colored 
image) which gives the illusion of a different appearance at different viewing dis-
tances. Alexa and Matusik [1] use constant albedo and alter the surface geometry so 
as to produce a different image when directly illuminated from one of two different 
directions. However, in both works the two involved images cannot be arbitrary -- 
they must be designed to work well together.  

In contrast, our method yields two novel abilities. First, shaded image A and 
shaded image B can be arbitrary, very different, gray-shaded images. In fact, since we 
are using a projector to produce image B, it can even include the physically impossi-
ble shaded images described by Horn et al. [16], without affecting image A. Second, 
shaded image B is only visible when appropriately illuminated. While a geometrically 
and chromatically calibrated projector illumination system can impart a new appear-
ance on physical surfaces (e.g., state-of-the-art report [17]), it is not sufficient to yield 
an arbitrary image A and image B. In particular, even with perfect calibration an arbi-
trary image B cannot be produced. Rather, the surface geometry must be altered so as 
to ensure image B can be produced by an illumination pattern while subject to the 
constraint of ensuring image A is what is visible under normal direct illumination of 
the relief – such a surface geometry is precisely what our method computes. Al-
though, we do not explicitly maximize the imperceptibility of image B under normal 
illumination, its existence is not evident to the naked eye; in our results section, we do 
analyze the impact of the contrast and sharpness of image A and B on the hiding of 
image B. Collectively, these abilities lead to novel applications; for example, embed-
ding a watermark into a physical relief or a desired alternative appearance suitable for 
other image processing (e.g., object tracking). 

3 Hidden-Appearance Reliefs 

The construction process for our reliefs iteratively finds a single surface that supports 
the two desired appearances. First, we describe the physical setup and present an ap-
pearance formation process for hidden-appearance reliefs. Then, we simplify the for-
mulation and describe an iterative optimization process and smoothing equations. 
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3.1 Relief Setup 

Our setup consists of the relief sur-
face observed from above (i.e., 
viewing direction of 0,0, 1 ) and 
two projectors (Figure 3a). A first 
projector is used to generate the 
directional light for producing im-
age A. It is positioned along a di-
rection lA  at a small angle to the 
viewing direction. A second projec-
tor is along the direction lB  at a 
larger angle to the viewing direction 
and is used to shine the illumination 
patterns for generating image B. 

Since the projector, camera, and 
relief mesh are usually of different resolutions, we choose to define computations in 
terms of each triangle i 1, N  of the relief mesh M and project the triangle to the 
calibrated camera and projector image planes in order to calculate desired image in-
tensity values and projector pattern values. This also enables us to control computa-
tional cost by altering the resolution of mesh M. In order to produce a symmetric 
mesh (i.e., one that is equivalent upon a rotation of 90, 180 or 270 degrees), we add 
an additional vertex in the middle of the quadrilaterals of a standard rectilinear mesh-
ing of vertices (Figure 3b). Furthermore, we assume M to be a heightfield over the XY plane, thus only the z-coordinates of the mesh vertices are free to move. 

3.2 Appearance Formation 

Our formulation of the appearance formation process uses a diffuse reflectance model 
to express the behavior of the relief mesh M under the desired two illumination sce-
narios. Figure 4 contains an intuitive and synthetic 2D example. Figure 4a shows a 
challenging pair of 1D image A 
and B -- image B is chosen as the 
“opposite image” of A, coinciden-
tally an impossible shaded image 
as per Horn et al. [16]. The direct 
illumination for image A  is from 
directly above and the pattern for 
producing image B  is illuminated 
slightly from the right side. Figure 
4b shows four surfaces (i-iv) that 
all yield image A; e.g., in the left-
most surface (i) the amount of re-
flected light is maximal in the mid-
dle and falls off to the sides, as in 
image A . The non-uniqueness of 

Fig. 4. Image Formation Example. a) Desired 
images A and B. b) Four possible reliefs (i-iv) 
that produce image A but not necessarily image B even when using a projector. c) Our optimiza-
tion iteratively finds a relief surface able to pro-
duce both A and B (steps i-iv). 
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Fig. 3. Setup and Relief Mesh. a) A diagram-
matic view of the relief, projectors, and camera. 
b) The symmetric triangulation of the relief 
mesh. Both diagrams are labeled with the va-
riables used in our formulation.
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the solution for A is precisely what we exploit. However, these four meshes are not 
necessarily able to produce image B. Again, consider the leftmost surface in 4b: to 
yield a bright left-side of the surface, the projector must shine a large amount of light 
that might exceed the maximum illumination ability of the projector (even when dis-
regarding self-occlusions). Figure 4c shows our approach which begins with a flat 
surface and iterative finds the relief surface (i-iv) that produces image A and also is 
able to produce image B with the help of a projector. In a full-fledged example, our 
iterative process concurrently finds over the entire surface a heightfield configuration 
able to produce both image A and B.  

For producing appearance A, the image formation process for triangle i can be ex-
pressed by the well-known equation 

 α(n · lA) A                                 (1) 

where α is the constant surface albedo of M, n  is the desired normal of relief trian-
gle i, and A  is the mean intensity of the pixels in A onto which triangle i projects. 

To express the second appearance, we use the inequality  

 α(n · lB) B                                 (2) 

where B  is the mean intensity of the pixels in B onto which triangle i projects. Equ-
ation (2) ensures that for surface normal n  at least the intensity needed to yield B  is 
possible. An inequality is appropriate because ultimately an illumination pattern is 
used and the pattern values can reduce the amount of incident light (but not increase 
it).  

By explicitly factoring in the illumination patterns, the inequality in (2) can be 
converted to the following equality 

 αp (n · lB) B                               (3) 

where p  is the mean intensity value of the projector pixels that cover relief triangle i. 
Our approach seeks relief triangle normals n  and bounded projector pattern val-

ues p 0,1  that simultaneously satisfy equations (1) and (3) for all triangles i 1, N . We denote vertices of triangle i as v , v , v  and write n  in terms of 
the normalized cross product of the vertices:  

 α

( ) ( )( ) ( ) · lA A                   (4) 

 αp ( ) ( )( ) ( ) · lB B   

which is a nonlinear expression with respect to the unknowns (i.e., the z coordinates 
of the triangle vertices and the pattern values p ). The complete equation set defined 
by (4) constitutes a large (though sparse) nonlinear irrational equation system that is 
difficult to solve. 
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3.3 Simplification 

In order to efficiently and robustly solve for the relief mesh height values and projec-
tor pattern values, we use simplifying heuristics. Using the heuristics results is two 
sets of linear equations solved in an alternating fashion in order to incrementally find 
pattern values and relief heights, and to collectively approximate equations (4).  

Our first heuristic is to assume the length of the triangle normals n  are constant 
during an iteration and thus remove the square root in the denominator of equation 
(4). This rewrites equation (4) as 

 
α  y z y zz x z xx y x y · lA A                  (5)  

 
α  p  y z y zz x z xx y x y · lB B                   (6) 

where n (v v ) v v . We write v v as x y z T 
and v v  similarly. Since n  is considered a constant during an iteration and 
the x and y coordinates are fixed, equation (5) is a linear equation of the unknowns z ‘s. Equation (6) is not yet linear because of the multiplication by the unknown p . 
We use the following heuristic to further simplify the problem. 

The second heuristic is to assume a current estimate either for mesh geometry M 
or for the pattern values p . This produces two formulations of equations (5) and (6).  

i. The first formulation solves for p ’s using linear equations by assuming a 
known geometric mesh (i.e., all z’s are constant). Equation (6) is used because 
no p  term appears in equation (5). p  values are restricted to the range 0,1  
by using a constrained linear optimization.  

ii. The second formulation solves for the mesh heights by assuming constant val-
ues for p . This formulation uses both equations (5) and (6) which are now both 
linear in the unknowns (i.e., the z values of the vertices) and can be solved us-
ing linear optimization. 

The full equations set are in general over-constrained but relatively sparse. Since a 
vertex is used in up to only eight adjacent triangles, the system of equations is always 
fairly sparse. Hence, a sparse (constrained) linear least squares optimization can solve 
formulation (i) or (ii) relatively quickly, even for a large number of mesh triangles. 

3.4 Iterative Optimization 

To compute the relief mesh, we iterate between solving for pattern values and for 
geometry mesh heights until converging to a final surface. The validity of our equa-
tions only holds for small height value changes. In particular, as the vertex heights 
change, the constant length of n ’s, the values of the p ’s, the triangle to projector 
correspondence used to calculate p ’s position on the projector image plane, and the 
triangle to camera correspondence used to compute the A ’s and B ’s pixel intensity 
become increasingly inaccurate. Hence, our optimization starts with a planar relief 
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mesh and computes an initial set of pattern values p  using formulation (i). Then, 
pattern values p  are used to obtain new vertex heights using formulation (ii). The 
new mesh updates correspondence of relief, camera, and projectors, and triggers re-
computing the pattern values and triangle normal lengths for the next iteration.  

From a theoretical standpoint, our iterative optimization process and equation sets 
do not guarantee that a solution will be found nor that it is unique. Rather, we find a 
surface that satisfies the specified shading behavior in a least squares sense. In prac-
tice however, we found approximate solutions to always exist. 

3.5 Smoothness 

To provide support for ensuring incremental changes to the surface, for increased 
robustness, and for the creation of an approximately smooth surface (beneficial to 
physical manufacturing), we include additional equations. These equations ensure that 
the height changes of neighboring vertices are similar in one iteration. We define such 
an equation set for all edges in mesh M. 

We rewrite the equations in terms of height changes in one computation in order to 
ensure similar variations of neighbors during an iteration. We denote with ∆z  the 

height change of the jth vertex of triangle i in one computation and we use ∆z  and ∆z  to represent height changes of two mesh vertices where the edge (u, v) is in re-
lief mesh M. We rewrite equations (5) and (6) in terms of height changes and we 
incorporate a smoothness requirement. Altogether the per-iteration task is to minimize 
the following expression:  

∑ EA ΔzΔzΔz ( ) A n( ) · lA,N        

∑ EB ΔzΔzΔz ( ) B n( ) · lB,N             (7) 
 1/β ∑ ∆z ∆z( , ) M              

where 

 EA
lA y y lA x xlA y y lA x xlA y y lA x x ,  

and lA lA lA lA represents the normalized direction vector of light source A. EB  and lB are defined similarly for light source B (i.e., that from the projector). 

The term n( ) (v( ) v( )) v( ) v( )  is the normal vector computed from 

the height values of the mesh during iteration k -- they are constant during an itera-
tion. 
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The first part of equation (7) defines the relief appearance formation objective for 
all mesh triangles and the second part the smoothing desire. The 1/β term is a nor-
malizing factor used to balance the relative importance of the image formation equa-
tions and the smoothing equations. In practice, we compute β so as to provide equal 
importance to image formation and to smoothing. Since the number of equations used 
in image formation is about half of those used for smoothing, we usually set β 2. 

4 Implementation Details 

Our prototype system includes geometric and color calibration. Geometric calibration 
of the 1400x1050 resolution Optoma DLP projectors and the 10MP Canon Rebel XTi 
camera is done once. Color calibration is recomputed for each fabricated object [18]. 
Furthermore, since the resolution of the camera, projector, and relief mesh is not nec-
essarily the same, we use splatting to project relief mesh triangles onto the camera and 
projector image planes. Given a relief mesh, the fabrication process is automated 
using our Alaris30 3D printer. After fabrication, we place the object in front of our 
camera and projectors on a platform that can be mechanically repositioned using 
knobs. To place the object accurately at the origin of the calibrated camera-projector 
coordinate frame, the projector illuminates a contour light pattern which is then used 
to manually align the object with the contour lit by the projectors. 

5 Analysis of Intensity Coverage 

We have analyzed the theoretical intensity ranges achievable for any given image pair (A, B). Our method can obtain a large range of intensity differences between A and B 
images, in fact more than the plain-reliefs of Alexa and Matusik’s [1] (Figure 5). In 
particular, our method supports all lower intensity values for image B. 

For the analysis, we focus on measuring the intensity of a plane since our mesh 
consists of triangles. We assume the simple light source direction to be lA and the 
specifically designed digital projector light direction to be lB. We are looking for a 
triangle i which has a normal n  that satisfies the following two equations: 

 n lA A    and   p n lB B                    (8) 

where p 0, 1  is the intensity of the incident projector from lB, A  is the desired 
intensity of the triangle when lit by the directional light from lA, and B  is the desired 
intensity of the triangle when lit by the designed light pattern from lB. Hence, A  and B  is achievable if 

 n lA A     and    n lB B .                   (9) 

Geometrically, these equations define two cones shown in Figure 5(a). A  is achieva-
ble when n  falls exactly on the surface of a cone defined by the first equation. B  is 
achievable when n  falls inside the cone defined by the second inequality. The 
second equation is always achievable when B 0 . As shown in  
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Figure 5(a), the light directions lA 
and lB  define the centerlines of 
the cones. Let θ be the angle be-
tween lA  and lB . Intensity values A  and B  define the angles γ and δ , the angles between the cone 
surfaces to cone centerlines lA 
and lB . n  has a solution as long 
as any part of the cone centered 
around lA  falls inside the other 
cone; i.e., when δ  θ γ . 
Hence, given light directions lA 
and lB and a particular value for γ 
(or A ), there is a range of δ (or B ) which produces at least one 
solution for n .  

We show in Figures 5b-f the 
pairs of values for A  and B  that 
are possible for several light directions. In each of figures 5b-f, the x-axis is a value 
for A 0,1  and y-axis is a value for B 0,1 . The angle θ between light direc-
tions varies from 90 to 0 degrees from (b) to (f). For a specific A  value a, we draw a 
vertical gray segment along line x a to show what range of B  values are achieva-
ble as per equation 9; in other words, a point (a, b) falling in the gray area implies 
that the intensity pair A a and B b is achievable. As observed, our method 
supports a larger set of intensity than previous work (i.e., [1]) since we cover all lower 
intensities in image B due to the simultaneous optimization of surface shape and 
projector light. 

6 Results and Discussion 

We have used our approach to design several relief surfaces both in simulation and in 
real-life. We used tessellated meshes of resolution 100x80 cells which require a com-
pute time of about 30 minutes (about half of that time is spent in actual optimization 
computations and the rest in file I/O). Our typical 3D print time is 5-10 hours for 10x8 
centimeter reliefs.  

In Figure 1, we show photographs of an example hidden relief mesh and a plain 
light relief mesh produced by [1]. The latter relief mesh uses only simple lighting and 
is designed to yield image A when illuminated from one direction and image B when 
illuminated from a different direction. We use the same light directions for both re-
liefs. As seen, the relief mesh of [1] is not able to produce both appearances – this is 
mostly because of the significant intensity differences between images A and B (see 
Section 5). In contrast, our approach can produce both appearances quite well. The 
visualization inset on the right shows a color-coded image of the errors of both reliefs. 
Note that even though we take image B into account when computing the hidden-
appearance relief, image B is not perceivable in the relief under normal illumination.  

Fig. 5. Intensity Coverage. a) Setup used in b-f. 
b-f) Supported intensity coverage for image A & 
B using different light directions. From b to f, h 0, 1, 2, 4, 8 , lA (1 h ) .  1 0 h  and lB (1 h  ) .  0 1 h .  x-axis represents 
image A intensity when lit by a simple light from 
direction lA and y-axis represents image B inten-
sity when lit by a specifically projector light 
pattern from direction lB. Axes x and y 0, 1 ; 
gray pixels indicate the possible intensity pairs. 

lA
lB

θ

δ γ

(a)

(b) (c) (d)

(e) (f)
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Fig. 6. Hidden- vs Single-Appearance Reliefs. a) We show our hidden-appearance relief geometry 
(top) and a single-appearance relief geometry (bottom) which produces appearances of image A 
and B as shown in Figure 1. b) Photographs of our hidden-appearance relief under direct illumina-
tion yielding image A (top middle) and under projector light yielding image B (top right). A single-
appearance relief is able to produce image A (bottom middle) but the second appearance cannot 
necessarily be produced even with the help of a digital projector (bottom right). The small insets are 
a visualization of the per pixel intensity error between the photographs and image B (red = large 
error). c) The projector patterns that shine on the two reliefs when producing image B.  

In Figure 6, we compare our hidden-appearance relief to a single-appearance relief 
using the same image content as in Figure 1. The geometry of a single-appearance 
relief is computed for only one appearance (image A). Then, we compute the projec-
tor pattern that best achieves the second appearance (image B). Our approach is able 
to faithfully recreate both appearances despite both relief types using projectors. As 
seen in Figures 6c, the projector patterns for both relief types are similar. This means 
the need for the projector pattern is roughly equal in both cases. While one naïve op-
tion to produce appearance B would be to shift all the content to the projector pattern, 
it would require simplifying the relief geometry to nearly a plane. This would violate 
the desire to have appearance A be produced by a simple directional light. Instead, 
our optimization process finds a geometry able to produce image B, with the aid of a 
projector, while leaving the appearance of image A intact.  

 

 

Fig. 7. Hidden-Appearance Reliefs with Different Mesh Resolutions. We experiment with 
altering mesh resolution. a) Shows image A (top) and image B (bottom). Appearances resulting 
from using b) low resolution mesh with 50x40 cells, c) medium resolution mesh with 100x80 
cells, and d) high resolution mesh with 150x120 cells. 

Single-Appearance Relief PhotographsSingle-Appearance Relief

Hidden-Appearance Relief Hidden-Appearance Relief Photographs Hidden-Appearance 
Projector Pattern

Single-Appearance 
Projector Pattern(a) (b) (c)

(a) Image A & B (b) Low resolution mesh (c) Medium resolution mesh (d) High resolution mesh
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Low Contrast A Low Contrast B

High Contrast A High Contrast B

Hidden-Appearance Reliefs

Single-Appearance Reliefs

Figure 7 contains several instances of a hidden-appearance relief each created in 
simulation with a different mesh resolution. The lowest resolution mesh (50x40 cells, 
10 minutes total compute time) shows noticeable visual artifacts and blurriness as 
compared to the highest resolution mesh (150x120 cells, 50 minutes). We found the 
mesh resolution of 100x80 cells (and 30 minutes total compute time) to be a reasona-
ble balance of visual quality and computation time. 

In order to better understand what type of images we can hide, we experimented in 
simulation with the effect of varying contrast levels and sharpness in image A and/or  B. When A has a small contrast, the resulting relief only needs low frequency height 
changes and thus tends to be flat. It is easy for the projector to shine the patterns  
needed to produce image B. In short, low contrast in A makes the hidden-appearance 
relief problem easy. A similar effect occurs with a low contrast B image as well. When B has low contrast, even though the relief is not optimized for the image, the projector 
can do a lot to compensate for the undulations of the relief surface. In Figure 8 we  
show that when both A  and B  have low contrast, both hidden-appearance relief  
and single-appearance relief surfaces do a good job of producing an image B -- the 
problem itself is fairly easy. However, when A has high contrast, the relief surface 
needs significant height changes to produce image A  under normal illumination. 
Hence, it is easy to unwillingly obtain a surface for which it is hard for the projector 
to alter the appearance to produce image B -- even self-shadows occur more readily. 
Moreover, if B has high contrast, it makes the inequality equation (2) even harder to 
achieve. As long as the inequality is not satisfied then B is not achievable given li-
mited projector power. In Figure 8, we show the results of single-appearance reliefs 
and hidden-appearance reliefs with high contrast A and B images. As seen, the sin-
gle-appearance relief must do a significant effort to achieve A, which generates a 
bumpy surface geometry and easily breaks the generation of image B. However, our  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Contrast Experiment. We analyze perfor-
mance of hidden-/single- appearance reliefs when 
image A & B have different contrasts. Top row: low 
contrast A & B are easy to produce even for single-
appearance reliefs. Middle row: single-appearance 
reliefs cannot produce high contrast B images. Bot-
tom row: hidden-appearance reliefs can produce 
high contrast A and B. 
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hidden-appearance reliefs produce image B  while maintaining the appearance of 
image A under normal illumination (and also not showing image B). Hence, although 
any second appearance can be encoded, using images A and B of relatively high con-
trast increases the benefit of using our method to hide the second appearance – a 
naively generated surface for the same images would not reproduce image B as well. 

In Figure 9, we analyzed in simulation the effect of sharpness in the input image A 
and/or B. When A is sharp, the height values needs to change a lot to achieve the 
sharp image. This makes it difficult for both single- and hidden-appearance reliefs. 
Nevertheless, sharpness in B does not have any effect on single-appearance reliefs 
because it does not consider B at all. Generation of A in single-appearance relief is 
not affected by sharpness in B (bottom row of Figure 9). However, sharpness in B 
causes noise in hidden-appearance relief geometries. This effect results from the sim-
plification we made about correspondences: we assume that the correspondences 
between mesh vertices and camera pixels do not change when the geometry change is 
small. However, when B is sharp, small changes in correspondences may cause large 
changes in corresponded intensity. It could be that one relief triangle is asked to have 
a white appearance in one iteration and a black appearance in the next iteration. This 
causes the noisy artifacts in left of middle row in Figure 9. Hence, to obtain a geome-
try that does not show remnants of image B under normal illumination, better results 
are achieved with a smoothed B, (right of middle row in Figure 9). 

Figure 10 shows several real world experiments and photographs. We show hidden-
appearance reliefs and single-appearance reliefs for various A and B image pairs. For 
each, we compute the hidden- and single-appearance relief, fabricate them, color cali-
brate them, compute the color calibrated pattern, and capture photographs of the physical 
object. Figures 10b-d show photographs of hidden-appearance reliefs producing images 
A and B better than single-appearance reliefs. In particular, Figure 10c shows the  

Fig. 9. Sharpness Experiment. Top row: sharp A/sharp B 
and sharp A/smooth B target images. Middle row: sharp-
ness in B makes generating A more challenging for hid-
den-appearance reliefs (left middle). A smoothed B im-
proves the generation of A for hidden-appearance reliefs 
(right middle). Bottom row: single-appearance reliefs 
ignore B so sharpness in B does not alter single-
appearance reliefs (but B is not always possible).  

Single-Appearance Relief

Sharp B Smooth BSharp A

Hidden-Appearance Reliefs

Sharp A
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challenging case of sharp images A and B (see discussion for Figure 9) and Figure 10d 
shows a particularly hard example where A and B systematically contradict each other in 
their visual objectives. Nevertheless, our method shows notable improvement. 

7 Conclusion and Future Work 

We present hidden-appearance reliefs which enable a chosen appearance A  to be 
observed under direct lighting while also enabling a hidden arbitrary appearance B 
which is only visible under a particular lighting setup. By doing this, we effectively 
hide a second piece of information into one single relief. We present a computational 
method which designs hidden-appearance reliefs and a full implementation. Our expe-
riments show that our method is robust for various A and B image pairs both in si-
mulation and in real-life. 

Fig. 10. Real-World Examples. All images of 
hidden- and single-appearance real-world 
reliefs are photographs. a) Target A and B 
image pairs. b) High contrast A image yields 
sharp surface changes causing self-shadows 
to appear in single-appearance relief and 
almost none in hidden-appearance reliefs. c) 
Example rose and tree appearances showing 
improved quality of hidden-appearance relief 
solution. d) Low and high frequency sine 
wave patterns – the contradicting intensities 
of A and B are very hard to achieve but im-
proved in the hidden-appearance relief. 

Hidden-Appearance Reliefs Single-Appearance Reliefs

d)

c)

b)

a)

A images B images
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Our future works includes the following. 1) We would like to extend our method to 
include colored images. 2) Although the second appearance is not recognizable under 
normal illumination in our current approach, we do not explicitly guarantee, or max-
imize, that it is unrecognizable when observed under normal illumination or when 
illuminated by a pattern other than the indicated one. Thus, we seek an extension that 
models the perceptibility of the second appearance and purposefully attempts to keep 
it small. 3) Another interesting extension is to incorporate multiple B appearances 
produced by different projector pattern illuminations and to quantify the “amount of 
information” that can be hidden. 4) We would also like to explicitly consider self-
occlusion, self-shadowing, and inter-reflection within relief computation.  
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Abstract. This paper presents a blind robust watermarking mechanism
for copyright protection of 3D motion data. The mechanism segments
motion data based on stable anchor-points captured by the maxima in
spatio-temporal curvature and filtered by posterior attack model. For
each segment, we make a randomized cluster division of 3D points based
on a secret key. A watermark is then embedded within these clusters
by Triangle Orthocenter based encoding approach. Experimental results
show that the proposed watermarking scheme is robust against many
possible attacks such as uniform affine transforms (scaling, rotation and
translation), noise addition, reordering and cropping.

1 Introduction

With the rapid progress in motion capture (mocap) technology, 3D motion
data are being widely used in animations, video games, movies, human mo-
tion analysis and other fields. 3D motion data has high scientific and commercial
value, which makes its copyright protection becoming an important issue. Digital
watermark technology [6] provides an effective method for digital copyright pro-
tection. So far, digital watermark techniques mainly consist of image watermark-
ing [7][9][11][23], video watermarking [17][20][24], audio watermarking [3][13][21],
mesh watermarking [4][5][14][15][19] etc. Although different watermarking meth-
ods have been developed for other kinds of media, they cannot be directly applied
to 3D data. The most important reasons are dimensionality. Since other kinds
of media are not generalized to handle problems related to higher dimensional
data, developing watermarking methods for 3D motion data is more challenging.

3D human motion data consist of motion information related to human joints,
and can be represented by a set of trajectories. Recently, for 3D motion trajectory
data watermarking, Kim et al [10] present a algorithm based on multiresolution
representation and spread spectrum. The algorithm not only can resist against
random noises, but also has merits of spread spectrum such as the resilience to
common signal processing as well as the robustness to time warping. In [22],
original data is firstly transformed into the frequency domain by discrete cosine
transformation, and then chose the most significant components to insert the
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watermark according to the amplitudes of the signal. Both methods in [10] and
[22] implement the watermarking of motion data based on the spread spectrum
method. However, they use principal component analysis (PCA) approach for
segmentation, with only a rough semantic segmentation capability. Moreover, the
time duration of motion is limited in their methods, and it only robust against
similarity transformation attack, not robust against affine transformation.

Considering the download and transmission of motion data, Li and Okuda [12]
propose a method based the progressive representation including the base frames
and enhancement ones. The motion is sent frame by frame from the base frames
to the enhancements until all the frames are restored. The progressive encoding
method gives the frames of the motion an order which ranks frames by their impor-
tance.With such an order,watermark canbe embedded into a characteristic of each
frame. However, in terms of robustness, this method only tolerates random noises
to some extent. In addition, the extraction algorithm needs information about the
original frame, so it belongs to the non-blind watermarking algorithm as [10] and
[22]. Motwani et al [16] propose a fragile watermarking algorithm for 3D motion
curves. Their approach implements a prototype in spread spectrum domain by us-
ing a Haar wavelet transform on the 3D data and alters the wavelet coefficients.
However, the algorithm also belong to non-blind watermarking algorithm.

In order to enhance the capacity of watermark robustness to affine transfor-
mation attacks, Agarwal and Prabhakaran [1][2] provide blind robust watermark
algorithms of 3D motion data. They segment motion trajectory and identify clus-
ters of 3D points per segment. The watermark can be embedded and extracted
within these clusters by the proposed extension of 3D quantization index mod-
ulation. The watermarking schemes are robust against many types of attacks
and works well. However, the motion segmentation method and ordering criteria
of encoding points need more investigation to identify robustness against noise
addition attacks. And for its Euclidian Distance based encoding method, the
shifting direction of encoding points do not take the movement direction of joint
into account. It may decrease the imperceptibility of the watermark scheme.

This paper presents a blind robust watermarking mechanism for the trajectory
of human joints based on maxima curvature of 3D motion data. The technical
contributions are identified as follows.

-Robust segmentation method based on maxima curvature and posterior at-
tack model. Compared to current segmentation method, it is more robust against
possible attacks due to the stability of anchor-points used for segmentation.

-Blind robust watermark encoding method. For bit encoding process inside
the cluster, we propose a novel Triangle Orthocenter based encoding method.
Compared to current encoding approach, it has better imperceptibility and ro-
bustness to noise addition attack.

The remainder of the paper is organized as follows. In section 2, we describe
the scheme design for our watermarking method. In section 3, some typical
motions with different parameter settings are employed to demonstrate the ad-
vantage of our approach with respect to other methods. Finally, we draw a
conclusion for our work in section 4.
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2 Scheme Design

In our work, the motion capture data is represented by a set of trajectories
consisted of M(1 ≤ M ≤ 19) joint trajectories of human body. The watermark
is represented as multiple bits (series 0s and 1s). Fig.1 shows the watermark
scheme proposed. Firstly, we extract the spatio-temporal curvature extremes for
each trajectory as candidate anchor points, and then filter the stable anchor-
points by posterior attack model. Secondly, motion trajectories are segmented
based on the remaining stable anchor points. Randomized cluster division is done
based on a secret key for each segment. Finally, the watermark is embedded
within these clusters by Triangle Orthocenter based encoding approach. The
watermark is extracted accordingly as shown in the right side of Fig.1.

2.1 Candidate Anchor Points

In order to ensure the embedded watermark can be extracted when a part of the
marked motion trajectory encountering attacks, the original 3D motion trajec-
tory is temporally divided into several parts before watermark embedding. Since
segmentation can help pinpoint the presence of the watermark during the ex-
traction, the point used for segmentation must be robust against motion editing
operations such as noise additions and 3D transforms.

Motion trajectory of 3D motion captured data can be expressed by the posi-
tion vector composed of positions for each time instants, as

r(t) = [x(t), y(t), z(t)]T , (1)

where x(t), y(t), z(t) represent the 3D coordinates of the joint at the time t.
The quantitative measure of motion can be acquired by its velocity v(t), and
acceleration a(t), which are given by the first and second derivatives of position.

v(t) = r
′
(t) = [x

′
(t), y

′
(t), z

′
(t)]T , (2)

a(t) = r
′′
(t) = [x

′′
(t), y

′′
(t), z

′′
(t)]T . (3)

Human observers are able to perceive dynamic instants that stem from dis-
continuities in velocity or acceleration and can be captured by the maxima of
spatio-temporal curvature [18]. The curvature k(t) at time t is given by

k(t) =
‖v(t) × a(t)‖

‖v(t)‖3 , (4)

where ′×′ represents the cross product and ‖v(t)‖ represents speed. Finally, the
maxima in spatio-temporal curvature is captured as

P(t) =
{
r(t) | k

′
(t) = 0

}
. (5)

Because the maxima in spatio-temporal curvature of a trajectory is invariant
to 3D affine transforms, we use these instants as candidate embedding anchor-
points during the watermarking. Each dynamic instant represents an important
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Fig. 1. Watermark scheme design for 3D motion data

change in the motion characteristics. But for robust watermarking of 3D motion
data, not all of these dynamic instants used for segmentation are robust against
possible attacks such as noise addition.

2.2 Stable Anchor Points

In order to filter out those anchor points sensitive to noise, smoothing and other
attacks, we introduce posterior attack model to obtain the stable anchor-points.
Virtual attacks are done by adding Gaussian noise, smoothing and other attacks:

P̃i(t) = f(P(t),G(δ)), (6)

where P(t) represents the candidate anchor-point captured by curvature max-
ima, G(δ) represents combination of several attacks, P̃i(t) represents the can-
didate anchor-points after the i-th attack. We apply N times virtual attacks to
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candidate anchor-points with random attack parameters and combinations. The
set of candidate anchor-points after virtual attacks is

P =
{
P̃i(t) | i = 1...N

}
. (7)

In our implementation, we conduct four groups of attacks with different inten-
sities and ratio including Gaussian noise 10dB and 1dB, smoothing, on various
ratios (1% to 50%) of attacked anchor points. By comparing the position of
original candidate anchor-point P(t) to the candidate anchor-point Pi(t), we
compute the posterior probability of attacks as

p(P(t) | P) =
1
N

N∑
i=1

xi(t), (8)

where xi(t) is given by

xi(t) =

{
1, if P(t) = P̃i(t)
0, if P(t) �= P̃i(t)

. (9)

And then we select the points which have the larger posterior probability than
the median of the posterior probability values, Median, for each candidate
anchor-point as stable embedded anchor-points, which is given by

Pfeature = {P(t) | p(P(t) | P) > Median} . (10)

Finally, the motion trajectory data is segmented based on the remaining stable
anchor points.

2.3 Watermark Embedding

In order to ensure the best robustness for our watermarking method, random
choice for embedding position is an important and pivotal solution. Therefore,
we divide each segment into clusters on the basis of a key sk. The clusters are
chosen in a random fashion separated by a random number of points called
embedding distance. Fig.2(a) shows the clusters based on segments of motion
trajectory. Then for certain number of watermark copies, we randomly select the
clusters to embed for each watermark copy.

For the watermark embedding inside each cluster, a new Triangle Orthocenter
based approach is proposed to encode for every cluster in the trajectory. Firstly,
we identify invariant point set and encoding point set which are used as reference
and watermark bit hiding respectively. The choice of the invariant points is based
on a scalar quantity which is invariant against uniform affine transformations,
such as maximum Euclidian distance between the set of points. The encoding
point set is the difference set between cluster set and invariant point set.

Secondly, we identify the order in which the watermark bits encoded. For a
certain cluster, the order should not be dependent on the 3D information of
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Fig. 2. Identification of clusters (a) Clusters based on segments of a joint trajectory in
3D space. (b) Cluster in joint trajectory for dominant direction determination. Pi and
Pj are the invariant points in the cluster. Pr is the midpoint of the line PiPj . Pm is
the point within the cluster which is the most distant to the line PiPj .

the points, as it is vulnerable to noise adding attack. In addition, the order
also should not be dependent on the occurrence of 3D point in time, as it is
vulnerable to reordering attack. Therefore, we identify ordering criteria based
on the occurrence order of 3D points and the dominant direction determined by
statistics information of the points belonging to the cluster. The determination
of dominant direction make our encoding method robust against global reorder
attacks, which means completely inverting the point in a continuous manner in
the trajectory. As shown in Fig.2(b), the statistics information are introduced
in the following.
Point Numbers. The number of points separated by the line lr. It is described
by Nl and Nr, which represents the number of points separated by line lr re-
spectively. In the example, Nl = 5 and Nr = 3.
Average Gradient. The average gradient of encoding points separated by the per-
pendicular line lm. It is described by Agl and Agr, which represents the module
of average gradient separated by line lm respectively. The Average Gradient Ag
is described as

Ag =
1
n

n∑
i=1

|gradient(Pi)| , (11)

where gradient(Pi) represents the gradient of point Pi, n is the number of points
in the left Nl or right Nr side of line lm.
Average Height. The average height of encoding points separated by the point
lm. It is described by Hl and Hr, which represents average height separated by
line lm respectively. The Average Height H is described as

H =
1
n

n∑
i=1

hi. (12)

where hi represents the Euclidean distance described by the perpendicular dis-
tance from point Pi to the line joining PiPj .
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Pk−1, Pk and Pk+1 are three continuous encoding points, P̂k is the predicted position
of Pk, P

′
k is the new shifted positions of Pk in our proposed.

For identifying dominant direction, because Point Numbers is robust against
most attacks, we identify dominant direction by comparing the Point Numbers
firstly. If |Nr − Nl| is greater than a certain threshold, it is identified according
to the value of Nr and Nl from high to low or vice versa. For example, if Nr > Nl,
we choose Pi → Pj as dominant direction. Otherwise, if |Nr − Nl| is less than a
certain threshold, it means the point numbers Nr and Nl are at the same level.
For this situation, we use |Agl − Agr| and |Hl − Hr| for further judgment. Once
the dominant direction of points in the cluster has been identified, we hash a
sequence of encoding points based on the key sk. Due to this randomness, for n
encoding points in one cluster, the search space for the adversary is n!.

Finally, we encode the watermarking bit in each encoding point using Triangle
Orthocenter based encoding approach. For the encoding progress, as shown in
Fig.3(a), the Euclidean distance between Pk and Po is used as the scalar quantity
to encode a watermark bit information. Here we divide the line |PiPj | into equal
intervals and labeled as 0s and 1s, then measure the scalar quantity |PkPo|
against this scale and locate the interval, e.g. the 1 bit for the Pk point. If
the bit (0 or 1) represented by the encoding point Pk is the same with the
corresponding watermark bit, we move to the next encoding point. Otherwise, Pk

is shifted along the motion direction predicted based upon DR (Dead Reckoning)
technique [8], which can compute the predicted position of a joint based on
the recent position, velocity and acceleration. For the encoding point Pk, the
corresponding predicted position P̂k at time t can be calculated as

P̂k(t) = Pk−1(t − 1) + vk−1(t − 1)τ + 0.5ak−1(t − 1)τ2, (13)

where Pk−1(t − 1), vk−1(t − 1) and ak−1(t − 1) are the position, velocity and
acceleration at the time instant t − 1 for the last frame. In our example, we
make a shift of Pk towards line PkP̂k to P

′
k, as shown in Fig.3(b). Finally, it
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can be observed that since the encoding point Pk is displaced by P
′
k along the

line PkP̂k, the bit represented by it is changed from 1 to 0, as shown in Fig.3
(c). Because 3D trajectory is a curvilinear motion, and the P

′
kPiPj is obtuse

triangle in most case, the Triangle Orthocenter based encoding approach with
shifting towards predicted direction PkP̂k has better imperceptibility than the
Euclidean Distance based encoding, which make the shift along line PkPr.

2.4 Watermark Extraction

Given the watermarked 3D motion trajectory data, we can extract a possible ex-
isting watermark by firstly identifying the segments using the maxima in spatio-
temporal curvature and posterior attack model. Secondly, for each segment, we
identify the cluster based on the secret key and extract all the embedded water-
mark bits in an inverse procedure of watermark embedding. Finally, we compare
the detected watermark bit for all watermark copies K (K ≥ 3). Due to the
randomness and unpredictability for the attack event, we vote for the majority
bit value as the final detected data.

3 Experimental Results

In this section, we discuss experimental scheme and performance analysis for
our proposed watermarking scheme from three aspects including imperceptibil-
ity, hiding capacity and robustness. For each aspect, we analyze the performance
for different parameters settings. The watermarking scheme is implemented in
MATLAB, and the source data are from CMU-MOCAP database. For the exper-
iment analysis, the frames for motion data are from 448 to 1050 with frame rate
being set as 120 fps. We set the watermark length as 32 bits with copy number of
3 for voting, and they are embedded into one cluster for each copy. Moreover, we
conduct a comparison experiment between our method and Euclidean Distance
based method for performance analysis.

3.1 Performance Analysis Metrics

In this section, we illustrate the metrics from the aspects of imperceptibility,
hiding capacity and robustness used to evaluate our watermarking scheme.

For imperceptibility analysis, we use the following metrics:

DistortionforDistance =

∑m
i=1

∑n
k=1 Euclidean(Pi,k,P

′
i,k)

m ∗ n
, (14)

where DistortionforDistance represents the error for the distance between orig-
inal position Pi,k and modified position P

′
i,k in the k-th frame of i-th joint. m

is frame number and n is joint number. Besides the distortion for distance, con-
sidering the motion direction of joint, define the angle metric as:

AverageShiftAngle =

∑m
i=1

∑n−1
k=2 (π − ∠Pi,k−1P

′
i,kPi,k+1)

m ∗ n
, (15)

where ∠Pi,k−1P
′
i,kPi,k+1 represents the trend of the movement direction.
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Hiding capacity is measured by embedding rate, which is the ratio of the
number of embedding bits to the total number of sampling points, as shown by:

ER =
∑s

i=1 Bitsi

m
=

∑s
i=1� Si

CSize�(CSize− 2)
m

, (16)

where s is segment numbers, Bitsi is the bit number that can be embedded in
i-th segment, Si is the length of i-th segment, and CSize is cluster size.

The robustness can be evaluated by the following metrics:
Watermark Detection Rate (WDR). This is measured as the ratio of the number
of watermark bits correctly detected to the original number of watermark bits
encoded, which is defined as:

WDR =
∑wsize

i=1 ¬(w(i) ⊕ w
′
(i))

wsize
, (17)

where w(i) and w
′
(i) represent i-th bit of original and detected watermark re-

spectively, wsize represents watermark length. Due to proper watermark repli-
cation technology, w

′
(i) can be acquired by voting from exacted bit copies.

Bit Error Rate (BER). This is measured as the ratio of the number of error bits
extracted to the total number of watermark bits encoded in the given data set,
which is defined as:

BER =
∑r∗wsize

i=1 errorBits

r ∗ wsize
, (18)

where errorBits represents the number of error bits extracted, r represents the
number of watermark copies, wsize represents the length of watermark in bits.

3.2 Imperceptibility Analysis

As the distortion induced by encoding in our method is dependent on the scale
(number of intervals), the imperceptibility analysis with varying number of inter-
vals is shown in Fig.4. For both the distance and angle distortions, as we increase
the number of intervals, the distortion is reduced. For the same scale, as shown
in Fig.4(a), since we make a shifting of encoding points towards the predicted
direction during our proposed encoding method, the DistortionforDistance of
Triangle Orthocenter based encoding (represented by TO) is consistently smaller
than that of encoding based on Euclidean Distance (represented by ED). And
for angle distortion, the difference of AverageShiftAngle between our proposed
and the original data without watermarking is also smaller, which is shown in
Fig.4(b). Moreover, more intervals results in sensitivity to noises, and this will
be discussed in section 3.4.

3.3 Hiding Capacity Analysis

Just as the cluster-based encoding scheme such as Euclidian Distance based
strategy, we can encode a maximum of t-2 bits for a given cluster of size t.
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Fig. 4. Imperceptibility analysis for varying number of intervals("dance")
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Fig. 5. Embedding rate analysis with respect to cluster size (a) or embedding distance
(b)( "average" means the value for different motion data)

As the hiding capacity is dependent on the cluster size and embedding distance,
we test the influence of the two parameters on embedding rate. As shown in
Fig.5(a), in the beginning, the gains from increased number of embedded bits
per cluster dominate. However, this dominance fades quickly when the cluster is
sizable. The zigzag effects are due to the integer and floor operation as in Eq.(16).
Finally, when the cluster size is larger than any segment, the embedding rate
is zero. With the optimal cluster size which maximizes the embedding rate, we
test the performance of embedding rate with respect to embedding distance. As
shown in Fig.5(b), embedding rate reduces as the distance increases, although
not smoothly.

3.4 Robustness Analysis

In this section, the robustness against possible attacks including uniform affine
transforms, cropping, noises addition and reordering of our proposed watermark-
ing scheme is analyzed. And the noise attacks are done by adding four groups
of attack including white Gaussian noise (10db to 1db) and the smooth attacks
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Fig. 7. Robustness analysis for cropping attacks (CSize for "jump"=22, CSize for
"walk"=32, CSize for "golf"=36)

(represented by smooth1 and smooth2) on various ratios (5% to 100%). Here
smooth1 and smooth2 are defined in [2]. The analysis for noise addition and re-
ordering attacks take the golf motion (Scale=50) for example. We get the mean
value for the four groups of attacks as the final result.

Segmentation Robustness. In order to identify robust segments, we make a seg-
mentation of motion data with stable anchor-points captured by the maxima in
spatio-temporal curvature and posterior attack model. While in [2], it records
segments by identifying the change in angle direction of joint, which is shown
in Fig.6(a). In order to measure its robustness, we conduct posterior attack and
compute the probability for each point. As shown in Fig.6(b), the probabilities
of points A, C and D are comparatively lower, and they may result in sensitivity
to noises. However, in our segmentation method, the unstable points have been
filtered by posterior attack model. The robustness analysis against noise attack
with our "Maxima Curvature based segmentation" and "Direction Change based
segmentation" is shown in Fig.6(c).
Uniform Affine Transforms. Since stable anchor point, and thus the segments
and clusters are invariant to 3D affine transform action. In addition, the Tri-
angle Orthocenter based encoding approach preserves collinearity and ratios of
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Fig. 8. Robustness analysis against noise addition attacks for Triangle Orthocenter
based encoding with and without posterior attack model

distances between the points in clusters. The experiments verify that our scheme
is completely robust against uniform affine transformation (translation, scaling
and rotation).
Cropping Attacks. Since we embed watermarks into each joint trajectory inde-
pendently, our scheme is robust against the joint cropping. That is, if one joint of
the motion is preserved during the cropping, we can still detect the watermark.
When the cropping occur inside one joint trajectory, the robustness against such
attack depends on its presence in segments. Intuitively, in order to detect the
watermark, the remaining part of a trajectory must be large enough to con-
tain the watermarked points in one cluster. For analysis, assume watermarks are
completely embedded in a cluster with the size represented by CSize, and the
cluster is divided continuously in the segment, as shown in Fig.7(a). Fig.7(b)
demonstrates the relation between watermark detection ratio (WDR) and the
varying cropping size. Just as the Euclidean Distance based encoding method[2],
the minimum remaining size CropSize required to maximize the watermark de-
tection ratio is limited by twice the cluster size 2 ∗ CSize.
Noise Addition Attacks. For robustness analysis for noise addition attacks, the
comparison of our proposed watermarking method with and without posterior
attack model is shown in Fig.8. The WDR increases from 0.50752 on average
to 0.62064 by introducing the posterior attack model. Accordingly, the BER
reduces from 0.49404 on average to 0.41344. Fig.9 illustrates the robustness
analysis of our proposed Triangle Orthocenter based encoding (represented by
TO) and Euclidean Distance based encoding (represented by ED) for both using
the posterior attack model. As is shown, our scheme illustrates better robustness
due to position independent ordering criteria of encoding points. The order based
on position information in Euclidean Distance based encoding may be disturbed
by noise addition. Moreover, the robustness against noise addition attacks can be
improved by choosing smaller scales, which is shown in Fig.10. The robustness
decreases for both method with larger scale, and our scheme is also better for a
range of scales.
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Fig. 9. Robustness analysis against noise addition attacks for Triangle Orthocenter
based encoding and Euclidean Distance based encoding
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Reordering Attacks. The reordering attacks are done either by completely invert-
ing the point in the continuous section of the trajectory, or by randomly picking
two neighboring points and swapping them. Because we determine the dominant
direction of cluster based on the statistics information of encoding points, and
the difference of these statistics information are almost robust against global re-
ordering, so our proposed watermarking scheme is completely robust for global
reordering in cluster level. For the random reorder attacks, Fig.11 illustrates
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robustness analysis for random reordering attacks to our watermarking scheme.
Due to watermark replication technology adopted, we can see that with proper
number of copies, our scheme is also highly robust against lower ratio partial
random reordering attacks for the semantic preserved motion data.

4 Conclusions

This paper has presented a blind robust watermarking mechanism based on
maxima curvature of 3D motion data. Analysis proves that the scheme has bet-
ter imperceptibility by shifting the encoding point towards motion direction
predicted based upon its recent position, velocity and acceleration. The hiding
capacity has bounds based on cluster size. Moreover, experimental results show
that our method is robust against many possible attacks such as uniform affine
transforms, reordering and cropping. And particularly, it is more robust than
the state of the art against noise addition attacks due to the stability of anchor-
points used for segmentation and the position independent ordering criteria of
encoding points in our proposed Triangle Orthocenter based encoding method.
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Abstract. Content-adaptive embedding is widely believed to improve
steganographic security over uniform random embedding. However, such
security claims are often based on empirical results using steganaly-
sis methods not designed to detect adaptive embedding. We propose
a framework for content-adaptive embedding in the case of imperfect
steganography. It formally defines heterogeneity within the cover as a
necessary condition for adaptive embedding. We devise a game-theoretic
model for the whole process including cover generation, adaptive em-
bedding, and a detector which anticipates the adaptivity. Our solution
exhibits a unique equilibrium in mixed strategies. Its location depends
on the level of heterogeneity of the cover source, but never coincides
with naïve adaptive embedding. The model makes several simplifying
assumptions, including independent cover symbols and the steganalyst’s
ability to recover the adaptivity criterion perfectly.

Keywords: Content-Adaptive Steganography, Game Theory, Security.

1 Introduction and Motivation

In the past couple of years, several so-called content-adaptive steganographic
schemes have been proposed, e. g., [13,25,26,21,23]. They all have in common
that they embed in the locations of the cover medium, which are most suitable
for embedding, i. e., where changes are (supposed to be) harder to detect. To
find these locations, the schemes specify an adaptivity criterion, e. g., the local
variance. Most often the superiority of content-adaptive over random uniform
embedding is claimed on the grounds of better resistance against selected ste-
ganalysis methods, not tailored to detect adaptive embedding. However, such
arguments disregard Kerckhoffs’ principle [20]: the warden knows the adaptivity
criterion as well and may be able to reproduce or estimate its values. In other
words, the adaptivity criterion leaks side information to the warden.

Furthermore, most of the adaptive schemes embed the m bits of the secret
message M into the m most “secure” locations of the cover medium. From now
on, we will call this kind of adaptive embedding naïve adaptive steganography.
There is initial evidence that this is not optimal. For example, it is shown in [4]
that the adaptive embedding function suggested in [9] is less secure than uni-
form random embedding, if the attacker recalculates the adaptivity criterion.
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An implication of this finding is that restricting the steganographer to the most
suitable embedding locations can lead to less secure steganography. Therefore,
leaving the steganographer with more choice on where to embed may strengthen
the resistance to steganalysis methods specifically designed to detect adaptive
embedding. As the steganalyst, in turn, can anticipate this behavior, she has to
be given choice, too. Game theory is the preferred method to model a situation
with two (or more) opponents who can adjust their strategies according to as-
sumptions about the behavior of the other(s). In general, they want to either
maximize their gain or minimize their loss in a competitive environment. So-
called Nash equilibria [22] are stable situations in this environment, where none
of the players would benefit from unilaterally changing her strategy.

Game theory requires that all participants have a parameter of choice. In our
case this choice is discrete for both players, steganographer and steganalyst. We
model the choice of the steganographer as the decision to embed either in the
better location or in the worse. A steganalyst who anticipates adaptive embed-
ding can choose which of the symbols she pays more attention to, depending on
their suitability for embedding.

This paper documents a first attempt to develop a rigorous approach to secure
content-adaptive steganography. We formulate a game-theoretic model spanning
the entire process from cover generation to embedding and detection. For now,
we keep the model as simple as possible in order to be able to solve our game,
and to calculate theoretical bounds of detectability for arbitrary embedding and
detection functions. By this, we are able to prove that naïve adaptive steganog-
raphy is never optimal and introduce the term of optimal adaptive steganography
as an adaptive embedding function, which anticipates a steganalysis technique
that is aware of content-adaptive embedding and may recover the adaptivity
criterion. Depending on the level of heterogeneity, optimal adaptive embedding
distributes the embedding changes between more secure and less secure locations.

This paper is organized as follows: Section 2 briefly reviews related work. Sec-
tion 3 gives a formal definition of heterogeneity and develops our basic model
including first conclusions about which strategies are possible at all. Section 4
deals with the game-theoretical payoff function and optimal strategies for both
players. The results are discussed in Section 5. Finally, Section 6 draws a con-
clusion and prioritizes directions for future work.

2 Related Work

The idea of combining game theory with steganographic security was first men-
tioned by Ettinger in 1998 [7], who proposes zero-sum games to model the contest
between a data-hider and a data-attacker. He studies active attackers who not
only want to detect, but to suppress hidden communication. Consequently, this
approach is less focussed on indistinguishability, but on the maximum capacity
which can be hidden robust enough to prevent an attacker, who is bound by a
distortion constraint, from suppressing the channel.
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Ker [16] uses game theory to find best strategies for a steganographer who
can spread her secret message over several homogeneous cover media (batch
steganography), and a steganalyst who anticipates this and tries to detect the
existence of at least one secret message (pooled steganalysis). He concludes that
a (batch) steganographer should either spread her payload as thinly as possible
or concentrate it as much as possible. The specific choice of the payoff function
precludes to fully explore mixed strategy equilibria. So the author presents min-
max and max-min solutions in pure strategies.

To our knowledge there are no other game-theoretic works in the area of
steganographic security so far. However, in general, game theory is gaining pop-
ularity in the field of information security, e. g. [1,14].

In the context of syndrome coding, Fridrich [10] shows that for sufficiently
large covers, it is never optimal to embed only into the symbols which cause
the least amount of (additive) distortion. Her result, along with the definition
of a detectability profile, which mirrors our notion of an adaptivity criterion,
is relevant for adaptive steganography. However, her work does not specify a
detector. Therefore, it solves an optimization problem and not a game.

3 Our Model

3.1 Definition of Heterogeneity

A precondition for adaptive steganography is heterogeneity within the cover.
For example, in images, flat regions are less secure to embed, whereas edges and
noisy areas are likely more secure. Until now, there is no formal definition of
heterogeneity for the purpose of adaptive embedding. We try to close this gap.

Definition 1 (Cover). A sequence of n k-bit symbols is called cover, if it is a
realization of the (cover) distribution P0. More specifically, every symbol of the
cover can take values in {0, . . . , 2k − 1}.
Cachin [5] defines information-theoretic security of a steganographic system. He
assumes that the distribution of the covers P0 and the distribution of the stego
objects P1 are known. Then he suggests to use the Kullback–Leibler divergence
(KLD) as a measure of discrepancy between these two distributions. He derives
bounds for the detectability of a steganographic embedding function. A lower
KLD indicates more similar distributions and thus a more secure embedding
function. Therefore, if the embedding function is fixed, it is convenient to base
a definition of heterogeneity on KLD.

Definition 2 (Heterogeneity). A cover is called heterogeneous, if it con-
tains (well-defined) areas, where embedding changes result in a lower KLD.
I. e., let P0 be the probability distribution of the cover and P(xi) be the altered
probability distribution after making a specific embedding change at location xi.
Then, the cover is heterogeneous iff there exists i, j ∈ [1, . . . , n], i �= j with
KLD(P0, P(xi)) �= KLD(P0, P(xj)). Otherwise the cover is homogeneous.

So, the simplest model to study adaptive embedding consists of exactly two areas
which differ in their detectability of embedding changes.
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3.2 Game-Theoretical Setup

Let Alice be the steganographer and Eve be the steganalyst.
As mentioned in Section 1, Eve has access to the embedding function. This

is a realistic assumption and in line with Kerckhoffs’ principle. There are dis-
cussions on how to interpret this principle for steganography [6,2,8], but Eve’s
access to the embedding function should be undisputed. Alice does not know the
cover distribution P0, because with that knowledge she could choose her stego
objects like realizations of P0 and could thus perform perfect steganography [24].
Granting Eve access to both distributions P0 and P1 (which would be the case
for a strict interpretation of Kerckhoffs’ principle [8]) would enable her to de-
tect at the information-theoretic bound. This is neither realistic nor interesting
to examine. We follow [3,18] where it is argued that a more realistic setup is
incomplete information on both sides. With this condition, neither perfect em-
bedding nor best possible detection is practicable and thus, both players have to
make choices. In particular, both players have to anticipate the choice of their
opponent. By this we are in a classical game-theoretic situation.

As mentioned above, the simplest model to study adaptive embedding consists
of exactly two areas. We further specify this to a model with exactly two 2-
bit symbols p

(0)
0 , p

(0)
1 , one better suitable for embedding than the other, i. e.,

n = k = 2. Following the notation in [3], the superscript (0) in p
(0)
i denotes a

symbol before embedding and the superscript (1) in p
(1)
i denotes a symbol after

embedding. If symbols are independent (see Sect. 3.6 below), we can think of
larger heterogeneous covers as sets of pairs of pixels (p(0)

0 , p
(0)
1 ) drawn from two

equally sized areas of different detectability. The game is repeated for each pair.
Since steganographic security is defined by the indistinguishability between

cover and stego objects, we start with the “game” introduced by Katzenbeisser
and Petitcolas [15]. Despite the name, their setup is not a game in a game-
theoretic sense, but inspired by cryptographic security proofs. We augment it
with choice variables in adaptive embedding to make it a veritable game.

Figure 1 shows the extensive form of our game. The different entities in our
game are: Nature, the steganographer Alice, the Judge, and the steganalyst Eve.
Nature generates a cover with exactly two symbols p

(0)
0 , p

(0)
1 , according to a pre-

defined probability mass function (PMF). Without loss of generality, among the
two symbols, p

(0)
0 is always better or equally suitable for embedding than p

(0)
1 .

Upon receiving a heterogeneous cover from Nature, Alice embeds with probabil-
ity ā into p

(0)
0 and with probability 1− ā into p

(0)
1 . The Judge is fair and forwards

with constant probability μ = 1/2 either the cover or the stego object to Eve. In
a game-theoretic sense, the Judge is a part of Nature. When Eve gets either the
cover or the stego, she examines p

(1)
0 with probability ē and p

(1)
1 with probability

1 − ē. Then she has to make a decision about the type of object she received.
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Fig. 1. Content-adaptive game in extensive form. The dashed line indicates Eve’s in-
formation set, i. e., Eve does not know which of the connected nodes has been reached.
αi, βi are the false positive, respectively false negative, rates for fmi , the PMF of p

(0)
i .

3.3 Embedding Function

We model LSB replacement as embedding function because it is best studied and
well tractable. We will introduce one modification in that Alice always has to
flip one bit instead of one on average. We justify this by the fact that in practice
it is very unlikely that not a single bit has to be flipped. The corresponding
probability is 2−m for an m-bit message and thus negligible in m.

Note that changing exactly one symbol is incompatible with the popular sim-
plifying assumption of independent embedding. It makes the symbols dependent
in P1 even if they were independent in P0. Therefore P1 cannot be decomposed
into a product of the PMFs of its symbols. Other models are certainly conceiv-
able, but not considered in this work.

3.4 Strategies

Alice’s parameter of choice is a ∈ {0, 1}. A value of a = 1 means she embeds in
p
(0)
0 , i. e., the better suitable symbol, and a = 0 means she embeds in p

(0)
1 . We

assume that the order of suitability is perfectly preserved through embedding
(not an unrealistic assumption for several so far proposed adaptivity criteria)
and thus Eve can recover it. In future models we may relax the assumption of
perfect recovery and replace it by a partial recovery.

Eve’s parameter of choice is e ∈ {0, 1}. A value of e = 1 means she examines
p
(1)
0 , i. e., the better suitable symbol, and e = 0 means she examines p

(1)
1 . We

model Eve’s decision in the way that she can either examine p0 or p1, but not
both at the same time. We justify this by the fact that for real-world covers, it
is intractable to use all information from the joint distribution of all symbols in
the sequence. Although specific steganalysis methods can take all symbols into
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account, there has to be a weighting decision [19,17] and we model this decision
in our model by an exclusive either p0 or p1. Note that whenever restricting the
adversary, security claims may break down if she is more powerful than assumed.

Game theory differentiates between stable situations in pure and in mixed
strategies. A pure strategy is a strategy where a player deterministically decides
what to do, whereas a mixed strategy is a probability distribution over pure
strategies. To be able to research the mixed strategies as well, we introduce the
random variable A, of which Alice’s choice a is a realization and the random vari-
able E, of which Eve’s choice e is a realization. Furthermore, let ā = prob(A = 1)
and ē = prob(E = 1) be Alice’s, respectively Eve’s, parameter in mixed strate-
gies. Now, a value of ā = 1/2 means that Alice embeds randomly without bias
and a value of ē = 1/2 means that Eve examines both symbols with the same
probability.

3.5 Exclusion of Pure Strategies

Lemma 1. Under the assumption that P0 �= P1 for LSB replacement, i. e., LSB
replacement does not preserve the cover distribution perfectly, there is no equi-
librium in pure strategies.

Proof. There are exactly four pure strategies in the above described game.

1. Alice embeds always in p
(0)
0 .

2. Alice embeds always in p
(0)
1 .

3. Eve examines always p0.
4. Eve examines always p1.

If Alice follows strategy (1) (i. e., naïve adaptive embedding), Eve’s best response
would be strategy (3), because she would not gain from examining the other
location. Hence, Alice would change her strategy to (2) so that Eve would not
get any information from examining p

(0)
0 . Now, Eve would switch to (4) because

all information would be in p
(1)
1 . Now, Alice’s best response would be strategy

(1) again, because Eve will not detect changes there. By this they are in an
infinite loop.

So, in every situation in pure strategies, one of the players would benefit from
changing her strategy. Therefore no equilibrium exists in pure strategies. ��

3.6 Cover Generation Model

We need a model to represent some (simplified) conditions of heterogeneous cover
sources. For this, our model should have one parameter mi to adjust the level
of heterogeneity. Now, the distribution P0 according to which the two ordered
symbols p

(0)
0 and p

(0)
1 are realised, is a discrete bivariate distribution of f

(0)
m0 (the

PMF of p
(0)
0 ) and f

(0)
m1 (the PMF of p

(0)
1 ) with m0 �= m1 (if m0 = m1, we model a

homogeneous cover). Here, mi measures the suitability for embedding. A value
of mi = 0 indicates a uniform distribution (i. e., maximal entropy) and allows
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perfect steganography. With increasing mi, the entropy and the suitability for
embedding decrease. As we assume that p

(0)
0 is more suitable for embedding,

we define m0 ≤ m1. In practice, the order of the symbols is established by the
adaptivity criterion. Reordering the cover according to this criterion removes
Markov-properties of the cover [8], but maintains some higher-order dependen-
cies not regarded here, because most of them are incognizable or intractable in
practice. Therefore, we may assume that the two ordered symbols are indepen-
dent before embedding.

So the joint PMF of the cover generation f (0)(x0, x1) is given by

f (0)(x0, x1) = f (0)
m0

(x0) · f (0)
m1

(x1). (1)

To fulfil the requirements from above, we model the family of probability mass
functions depending on mi as

f (0)
mi

(x) = (2k − x)mi +
1 −
(∑2k

j=1 j
)

mi

2k
, x ∈ {0, . . . , 2k − 1}, with (2)

mi ∈

⎡⎢⎣0;

⎛⎝2k−1∑
j=1

j

⎞⎠−1
⎞⎟⎠ , and therefore: mi ∈

[
0;

1
6

)
for k = 2. (3)

Equation (2) ensures that the sum of masses equals 1 and the masses for the
different symbol values are strictly decreasing. The constraints in Equation (3)
ensure that the PMF is never negative. Note that the interval has to be open.
Otherwise the value x = 2k−1 would have zero mass. This would allow detection
with certainty whenever this value occurs in a stego object after LSB flipping.

Figure 2 visualizes our cover generation model. For two fixed values of m0,
it shows the corresponding PMFs depending on m1. A lower value of m0 in the
homogeneous case means a higher entropy. A bigger difference between m0 and
m1 indicates a higher level of heterogeneity within the cover. As can be seen, by
changing m0 and m1, the entropy as well as the level of heterogeneity change.

3.7 Embedding Impact

Let f
(1)
mi be the PMF resulting from always embedding in p

(0)
i . Then, for single

symbol values xj it holds, that:

f (0)
mi

(xj) = prob(xj |Cover) and f (1)
mi

(xj) = prob(xj |Stego). (4)

As we are interested in the distribution after embedding P1, we now proceed
by examining the distribution after embedding in p

(0)
0 with probability ā and

embedding in p
(0)
1 with probability 1 − ā.

The LSB replacement embedding operation emb(x) simply swaps the values
2j by 2j + 1, and vice versa, for j ∈ {0, . . . , 2k−1}. This can be expressed by

emb(x) := x + (−1)x ⇒ emb−1(x) = emb(x). (5)



132 P. Schöttle and R. Böhme

m1 −m00 0.02 0.04 0.06 0.08 0.10 0.12

0 1 2 3 0 1 2 3

H = 3.926 H = 3.446

lower entropy

m1 −m00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0 1 2 3 0 1 2 3

H = 3.997 H = 3.608

higher entropy

Fig. 2. Cover generation model with increasing levels of heterogeneity from left to
right. f

(0)
m0 is light gray, f

(0)
m1 is dark gray. Left: m0 = 0.05, m1 ∈ {0.05, 0.165}. Right:

m0 = 0.01, m1 ∈ {0.01, 0.15}.

Now in our model, where we always embed, it holds that

f (1)
mi

(xj) = f (0)
mi

(emb−1(xj)), j ∈ {0, 1, . . . , n}. (6)

This yields the following lemma about f
(1)
mi (xj).

Lemma 2. In our model, the PMF f
(1)
mi (xj) is

f (1)
mi

(xj) =

{
f

(0)
mi (xj + 1), : xj ≡ 0 (mod 2)

f
(0)
mi (xj − 1), : xj ≡ 1 (mod 2)

(7)

=

{
f

(0)
mi (xj) − mi, : xj ≡ 0 (mod 2)

f
(0)
mi (xj) + mi, : xj ≡ 1 (mod 2).

(8)

Proof. From Equation (6) we know that:

f (1)
mi

(xj) = f (0)
mi

(emb−1(xj))

= f (0)
mi

(xj + (−1)xj )

=

{
f

(0)
mi (xj + 1), : xj ≡ 0 (mod 2)

f
(0)
mi (xj − 1), : xj ≡ 1 (mod 2).

(9)

And with Equation (2):

f (1)
mi

(xj) =

⎧⎪⎨⎪⎩(2k − (xj + 1))mi +
1−
(∑2k

j=1 j
)

mi

2k , : xj ≡ 0 (mod 2)

(2k − (xj − 1))mi +
1−
(∑2k

j=1 j
)

mi

2k , : xj ≡ 1 (mod 2)

=

{
f

(0)
mi (xj) − mi, : xj ≡ 0 (mod 2)

f
(0)
mi (xj) + mi, : xj ≡ 1 (mod 2).

(10)

��
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As Lemma 1 excludes both pure strategies, we get a mixed strategy and thus a
mixture distribution of the kind,

f (1)(x0, x1) = ā
(
f (1)

m0
(x0) · f (0)

m1
(x1)

)
+ (1 − ā)

(
f (0)

m0
(x0) · f (1)

m1
(x1)

)
. (11)

To quantify the overall information Eve can potentially gain from the embed-
ding function, we can numerically calculate the KLD between f (0) and f (1) as
benchmark for a numerical analysis. This is certainly precluded for real covers.

3.8 Eve’s Decision

The parameter on which Eve’s choice relies is ē. This indicates to which symbol
she assigns a higher weight. This symbol will influence her decision and thus her
false positive and false negative rates more. Conveniently, as will be shown in
this paragraph, the false positive rate equals the false negative rate in our model.
So we have only one variable of interest, the equal error rate (EER).

Recall that we have a strictly decreasing PMF and thus for P0 it holds that,

f (0)
mi

(0) > f (0)
mi

(1) > f (0)
mi

(2) > f (0)
mi

(3). (12)

Therefore, we know from Lemma 2 that in pure strategies it holds that,

f (1)
mi

(1) > f (1)
mi

(0) > f (1)
mi

(3) > f (1)
mi

(2). (13)

This is sufficient to derive Eve’s optimal decision rule DR(xj) between “Cover”
and “Stego” for individual symbols.
Lemma 3. Eve’s best decision rule for individual symbol values xj is:

DR(xj) =

{
Cover, : xj ≡ 0 (mod 2)
Stego, : xj ≡ 1 (mod 2).

(14)

Proof. The decision rule implements the maximum a posteriori (MAP) estima-
tion, which can be found, for example, in [11]. Here it is important to notice that
the a priori probability of “Cover” prob(Cover) = μ = 1/2 equals the probability
of “Stego” prob(Stego) = μ = 1/2 because the Judge is fair.

The MAP estimation minimizes the decision errors by calculating:

θ̂ = arg max
θ

prob(θ|x) = argmax
θ

prob(x|θ) · prob(θ). (15)

With θ ∈ {Cover, Stego} and x = xj , this results in

θ̂ = argmax
θ

prob(xj |θ) · μ
Eq. (4)

= max
{

f (0)
mi

(xj), f (1)
mi

(xj)
}

=

{
Cover, : xj ≡ 0 (mod 2)
Stego, : xj ≡ 1 (mod 2),

(16)

because of Equations (12) and (13). ��
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Thus, in our case with n = k = 2, Eve’s decides for “Cover” whenever she sees a
symbol with value 0 or 2, and “Stego” for values 1 and 3.

Let αi and βi be Eve’s false positive, respectively, false negative rate for f
(0)
mi

and f
(1)
mi . By Lemma 3, her true positive rate (1−αi) (and consequently the false

positive rate as well) is aggregated between the cases where her decision yields
“Cover” and the same for the true negative rate (1 − βi) in all other cases.

Lemma 4. In our model, Eve’s false positive rate αi equals her false negative
rate βi and thus is called equal error rate EERi.

EERi = αi = βi =
1
2
− mi, (17)

for i ∈ {0, 1}.
The proof can be found in Appendix A.1.

Equation (17) is intuitive, as values of mi = 0 indicate an uniform distribution.
In this case P1 would equal P0, i. e., the same distribution before and after
embedding. Therefore the false positive and false negative rate would be 50%,
i. e., random guessing. Furthermore, it follows our initial thoughts that a higher
value of mi implies a better detectability, which materializes in a lower EER.

Corollary 1. The worst case for Eve would be Alice choosing a ∈ {0, 1} and she
herself choosing e = 1−a because by this, her decision would be merely guessing,
i. e., EER = 0.5.

The proof can be found in Appendix A.2.
This confirms Lemma 1 that there is no equilibrium in pure strategies, as with

every pure strategy, one of the players would benefit from changing her strategy
to the opposite. Now we are in the position to solve the game and to identify
equilibria in mixed strategies.

4 Solving the Game

The EER described in Section 3.8 can be seen as the payoff function in our zero-
sum game. As it is Alice’s intention to perform least detectable steganography,
her goal is to maximize the EER, whereas it is Eve’s goal to maximize her
detection rate and thus, to minimize the EER.

4.1 Payoff Function

From Figure 1 and the EER described in Section 3.8, the payoff function χ(ā, ē)
for mixed strategies can be derived and equals the overall EER. It is stated in
the following corollary.

Corollary 2. In our model, the payoff function in mixed strategies is

χ(ā, ē) =
1
2
− (ā · ē · m0 + (1 − ā) · (1 − ē) · m1) (18)
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Proof. From Figure 1 it can be seen, that the nodes of Eve’s decision (shaded
nodes) can be partitioned into three different situations.

The first situation is that Alice embeds in p
(0)
0 and Eve anticipates this

(lightgray nodes in Figure 1). This situation occurs with probability ā · ē. When
faced with a situation like this, we know from Equation (17) that Eve’s EER

equals α0 (= β0). The second possible situation is that Alice embeds in p
(0)
1

and Eve, again, anticipates this (darkgray nodes in Figure 1). The occurrence
probability of this situation is (1 − ā) · (1 − ē). Again, we know the payoff from
Equation (17), which is α1 (= β1). The third and last situation is that Alice
embeds in p

(0)
i , but Eve inspects the wrong location (black nodes in Figure 1).

This situation occurs with probability (1 − ā) · ē (for Alice embedding in p
(0)
0 ,

but Eve examining p
(1)
1 ) and ā · (1 − ē) (for Alice embedding in p

(0)
1 , but Eve

examining p
(1)
0 ). Here, we know from Corollary 1 that Eve’s decision rule is no

better than random guessing and thus has an EER of 1/2.
This leads to the following expression for χ(ā, ē),

χ(ā, ē) = (ā · ē) · α0 + ((1 − ā) · ē + ā · (1 − ē)) · 1
2

+ (1 − ā) · (1 − ē) · α1

= (ā · ē) · α0 +
ā + ē − 2āē

2
+ (1 − ā) · (1 − ē) · α1. (19)

From Lemma 4 we know that αi = 1/2 − mi and thus:

χ(ā, ē) = (ā · ē) · (1
2
− m0) +

ā + ē − 2āē

2
+ (1 − ā) · (1 − ē) · (1

2
− m1)

=
ā · ē
2

− ā · ē · m0 +
ā + ē − 2ā · ē

2

+
1
2
− ā

2
− ē

2
+

ā · ē
2

− (1 − ā) · (1 − ē) · m1 (20)

=
1
2
− (ā · ē · m0 + (1 − ā) · (1 − ē) · m1) (21)

��

4.2 Best Strategies

As the payoff function is the same for both players but with contrary goals,
i. e., Alice wants to maximize it, while Eve wants to minimize it, an equilibrium
in mixed strategies can be found by looking at the partial derivatives of the
payoff function and setting them to zero. With this method we find a unique
equilibrium of our model, which happens to be symmetric.

Lemma 5. In our model, there exists a unique symmetric Nash equilibrium in
mixed strategies. In this equilibrium it holds that:

ā∗ = ē∗ =
m1

m0 + m1
(22)
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Proof. The partial derivatives of the payoff function are,

∂χ(ā, ē)
∂ā

= − (m0 + m1) · ē + m1 (23)

∂χ(ā, ē)
∂ē

= − (m0 + m1) · ā + m1. (24)

Setting both derivatives to zero yields the values for the equilibrium,

−(m0 + m1) · ē + m1
!= 0 ⇔ ē∗ =

m1

m0 + m1
(25)

−(m0 + m1) · ā + m1
!= 0 ⇔ ā∗ =

m1

m0 + m1
. (26)

��
Inserting these optimal values into χ(ā∗, ē∗) yields the equilibrium EER .

Corollary 3. In the equilibrium it holds that the EER is,

EER∗ = χ

(
m1

m0 + m1
,

m1

m0 + m1

)
=

1
2
− m0 · m1

m0 + m1
. (27)

Proof. Equation (21) can be rearranged to

χ(ā, ē) =
1
2
− ((m0 + m1) · (ā · ē) − m1 · ā − ē · m1 + m1) , (28)

and using ē = ā = ā∗ = m1
m0+m1

from Lemma 5 we obtain,

χ(ā∗, ā∗) =
1
2
− ((m0 + m1) · (ā∗)2 − 2 · m1 · ā∗ + m1

)
(29)

=
1
2
−
(

(m0 + m1) ·
(

m1

m0 + m1

)2

− 2 · m1
2

m0 + m1
+ m1

)
(30)

=
1
2
−
(

m1 − m1
2

m0 + m1

)
=

1
2
− m0 · m1

m0 + m1
. (31)

��
With this unique value for ā∗, we say a steganographer performs optimal adaptive
steganography. It is always less detectable than a steganographer who performs
naïve adaptive steganography.

5 Discussion

One implication of our analysis is that the optimal distribution of embedding
changes depends on the level of heterogeneity in the cover source. So, steganog-
rapher and steganalyst both have to adjust their strategy to the cover source.
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(a) Optimal ā∗ once with regard to minimal KLD (dashed line) and once with
regard to the equilibrium of our game (solid line).
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(b) Optimal KLD once minimal achievable using LSB replacement (dashed
line) and once with regard to ā∗ in the equilibrium of our game (solid line).
Note the different scales.
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(c) Optimal EER with optimal KLD and fixed detector (dashed line) and
once in the equilibrium of our game (solid line).

Fig. 3. Comparsion of equilibrium parameters with numerical benchmarks based on
KLD, as a function of the level of heterogeneity. Left figures: m0 = 0.05, m1 ∈
[0.05, 0.165]. Right figures: m0 = 0.01, m1 ∈ [0.01, 0.165].
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The discussion of our results is facilitated by looking at numerical examples in
Figure 3. As one requirement for our model was simplicity, we are able to calcu-
late the KLD as benchmark, which is infeasible for real-world cover sources.

Figure 3(a) shows the optimal value of ā∗, once by numerically minimizing
KLD (dashed line) and once the value found in the equilibrium (solid line). Fig-
ure 3(b) shows the KLD created by the values for ā∗ from the figure above and
Figure 3(c) shows the resulting EER. To recall how the corresponding PMFs
look like, they are displayed in Figure 2. Figure 3(a) reveals that if Alice’s goal
was to minimize KLD, she would choose higher values for ā∗, i. e., embed with
higher probability in the better suitable location. Furthermore, it can be seen in
Figure 3(b) that the KLD generated by Alice’s strategy in the equilibrium in-
creases rapidly with an increasing level of heterogeneity. Nonetheless, Figure 3(c)
shows that Alice’s strategy in the equilibrium implicates a higher EER than in
the situation with minimal KLD, and thus more secure steganography against
the specific detector defined in our model. By this, both players could perform
better, if the other would not follow the strategy in the equilibrium. So, it fol-
lows that if Alice tries to minimize the KLD and Eve anticipates this (still being
bound to her specific detector), Eve’s detection rate would increase and thus
Alice would perform less secure steganography.

6 Conclusion and Outlook

The literature is full of content-adaptive embedding schemes, but most of them
seem to be designed ad-hoc. Their security relies solely on the opinion of the re-
spective developer that the adaptivity criterion of her choice is good at selecting
secure embedding locations. To overcome such design methods in the medium
term, we give a first definition of heterogeneity for content-adaptive steganogra-
phy and specify a model of the entire process, covering the choices of Alice and
Eve, and being simple enough to be tractable, both in terms of game-theoretic
equilibria and information-theoretic benchmarks.

We show that naïve adaptive steganography, the strategy to embed only in
the most suitable locations of a heterogeneous cover, is never optimal. We solve
our model and find a unique equilibrium of our game, where none of the players
would gain from changing her strategy. As a result, we define a new kind of
adaptive embedding, the so-called optimal adaptive steganography, which takes
into account the knowledge of an attacker who can recover (or estimate) the
values of the adaptivity criterion as side information.

The way we model the level of adaptivity certainly needs further refinement
and, in future works, we may be able to relax some of the restrictions we impose
on our model. Furthermore, as mentioned in Section 3.6, changing m0 and m1 of
the cover generation model influences the entropy and the level of heterogeneity.
It would be more convenient if both quantities of interest could be adjusted
independently. This is a goal for future models.

It is obvious that a cover model with exactly two locations is not realistic, so
there is space for future work. Special attention in these future models has to
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be be paid to what happens if the parameters ā, ē, our players’ parameters of
choice, become divided into n instead of 2 parts. By this, we have to think about
how to model the different weights and will most likely come to an optimization
problem over the function field, similar to the batch steganography problem
stated in [16].

Another open question is the relation between adaptive embedding and ste-
ganalysis based on machine learning. As a first remark on the combination of
these two areas, [12] states that “[...] it does not appear that giving [Eve] prob-
abilistic information about the selection channel is a weakness”.

Another field for future research is the advantage the attacker gains from
cover estimation in the case of heterogeneity within and between covers. By
adding this to our model, we end up with a double-stochastic cover generation
process. As can be seen by these examples, a rigorous understanding of content-
adaptive steganography in theory and practice remains a relevant target for
future investigations.
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tion (DFG) under grant “Sichere adaptive Steganographie”. The second author
thanks Andrew Ker for useful discussions on game theory and steganography in
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A Appendix

A.1 Proof of Lemma 4

As mentioned in Section 3.8, Eve’s true positive and true negative rate can be
calculated as follows:
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True Positives TP(xj):

xj = 0 : TP(0) =
f

(0)
mi (0)

f
(0)
mi (0) + f

(1)
mi (0)

=
f

(0)
mi (0)

f
(0)
mi (0) + f

(0)
mi (1)

(32)

xj = 2 : TP (2) =
f

(0)
mi (2)

f
(0)
mi (2) + f

(1)
mi (2)

=
f

(0)
mi (2)

f
(0)
mi (2) + f

(0)
mi (3)

(33)

⇒ (1 − αi) = (f (0)
mi

(0) + f (0)
mi

(1)) · TP (0) + (f (0)
mi

(2) + f (0)
mi

(3)) · TP (2) (34)

= f (0)
mi

(0) + f (0)
mi

(2) (35)

True Negatives TN(xj):

xj = 1 : TN(1) =
f

(1)
mi (1)

f
(0)
mi (1) + f

(1)
mi (1)

=
f

(0)
mi (0)

f
(0)
mi (0) + f

(0)
mi (1)

= TP (0) (36)

xj = 3 : TN(3) =
f

(1)
mi (3)

f
(0)
mi (3) + f

(1)
mi (3)

=
f

(0)
mi (2)

f
(0)
mi (2) + f

(0)
mi (3)

= TP (2) (37)

⇒ (1 − βi) = (f (0)
mi

(0) + f (0)
mi

(1)) · TN(1) + (f (0)
mi

(2) + f (0)
mi

(3)) · TN(3) (38)

= f (1)
mi

(1) + f (1)
mi

(3) = f (0)
mi

(0) + f (0)
mi

(2) = (1 − αi) (39)

Eq.(2)⇔ (1 − αi) = (1 − βi) = 4 · mi +
1 − 10mi

4
+ 2 · mi +

1 − 10mi

4
(40)

= 6 · mi + 2 · 1 − 10mi

4
=

2 · mi + 1
2

= mi +
1
2

(41)

⇒ EERi = αi = βi =
1
2
− mi. (42)

for i ∈ {0, 1}. ��

A.2 Proof of Corollary 1

If Eve chooses e = 1 − a and a ∈ {0, 1}, it holds that Alice always embeds
in p

(0)
a and by this never into p

(0)
e . From Eq. (6) it follows that f

(1)
ma(xj) =

f
(0)
ma(emb−1(xj)), but f

(1)
me (xj) = f

(0)
me (xj), as there is no embedding in p

(0)
e .

Therefore, it holds that:

xj ∈ {0, 2} : TP(xj)
xj ∈ {1, 3} : TN(xj)

}
=

f
(0)
me (xj)

f
(0)
me (xj) + f

(1)
me (xj)

=
f

(0)
me (xj)

f
(0)
me (xj) + f

(0)
me (xj)

=
f

(0)
me (xj)

2 · f (0)
me (xj)

=
1
2
. (43)
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Abstract. Steganographic protocols enable one to embed covert mes-
sages into inconspicuous data over a public communication channel in
such a way that no one, aside from the sender and the intended receiver,
can even detect the presence of the secret message. In this paper, we
provide a new provably-secure, private-key steganographic encryption
protocol secure in the framework of Hopper et al. [2]. We first present a
“one-time stegosystem” that allows two parties to transmit messages of
length at most that of the shared key with information-theoretic security
guarantees; employing a pseudorandom generator (PRG) then permits
secure transmission of longer messages in a striaghtforward manner.

The advantage of our construction in comparison with previous work
is key-length efficiency : in the information-theoretic setting our protocol
embeds a n bit message using a shared secret key of length (1 + o(1))n

while achieving security 2−n/ logO(1) n: this gives a rate of key length over
message length that converges to 1 as n → ∞; the previous best result [5]
achieved a constant rate > 1 regardless of the security offered. In this
sense, our protocol is the first truly key-length efficient steganographic
system. Furthermore, in our protocol, we can permit a portion of the
shared secret key to be public while retaining precisely n private key bits.
In this setting, by separating the public and the private randomness of
the shared key, we achieve security of 2−n. Our result comes as an effect
of a novel application of randomness extractors to stegosystem design.

1 Introduction

The steganographic communication scenario can be described using Simmons’ [15]
formulation of the problem: Alice and Bob are prisoners who wish to communi-
cate securely in the presence of an adversary, called the “Warden.” The warden
monitors the communication channel to detect whether they exchange “conspicu-
ous” messages. In particular, Alice and Bob may exchange messages that adhere
to certain channel distribution that represents “inconspicuous” communication.
By controlling the messages transmitted over such a channel, a stegosystem
permits Alice and Bob to exchange messages that cannot be detected by the
Warden. There have been two approaches in formalizing this problem, one based
on information theory [1, 17, 6] and one based on complexity theory [2, 5]. The

M. Kirchner and D. Ghosal (Eds.): IH 2012, LNCS 7692, pp. 142–159, 2013.
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latter approach is more concrete and has the potential of allowing more efficient
constructions.

Most steganographic constructions supported by provable security guaran-
tees are instantiations of the following basic procedure (often referred to as
“rejection-sampling”). The problem specifies a family of message distributions
(the “channel distributions”) that provide a number of possible options for a so-
called “covertext” to be transmitted. Additionally, the sender and the receiver
possess some sort of private information (typically a keyed hash function, MAC,
or other similar function) that maps channel messages to a single bit. In order
to send a message bit m, the sender draws a covertext from the channel distri-
bution, applies the function to the covertext and checks whether it happens to
produce the “stegotext” m she originally wished to transmit. If this is the case,
the covertext is transmitted. In case of failure, this procedure is repeated. We
remark that this appears to be a minimal configuration for steganography to be
feasible: (1) in the absence of a channel distribution there is no way to model
what is allowed to be transmitted between the two communicating parties, (2)
furthermore, if the channel distribution has no entropy, the cover communica-
tion between the two parties becomes deterministic and thus there is no way to
communicate subliminally, (3) finally, the sender should be capable of sampling
the channel distribution “in her mind” and introduce some appropriate biases
in the distribution of covertexts that are communicated, otherwise, as before, no
subliminal communication can occur.

The complexity-theoretic approach to secure steganography considers the fol-
lowing experiment for the warden-adversary: The adversary selects a message
to be embedded and receives either covertexts that embed the message or cover-
texts simply drawn from the channel distribution (without any embedding): the
adversary is then asked to distinguish between the two cases. If the probability
of success is very close to 1/2, the stegosystem is declared secure against such
(eavesdropping) adversarial activity. Formulation of stronger attacks (such as
active attacks) is also possible.

Given the above framework, Kiayias et al. [4, 5] provided a provably secure
stegosystem that pairs rejection sampling with a t-wise independent family of
functions. They design a one-time stegosystem, a steganographic protocol that
is meant to be used for a single message transmission and is proven secure in
an information-theoretic sense, provided that the key that is shared between the
sender and the receiver is of sufficient length. This system is a natural analogue
of a one time-pad for steganography.

We work in this same information-theoretic framework, presenting a steganog-
raphy protocol that embeds a message of length n using a shared secret key of

length (1 + o(1))n bits while achieving security 2−n/ logO(1) n. In this sense, our
protocol is key-length efficient: the rate of key over message approaches 1
for large values of n. In the best previous protocol [4], the length of the shared
secret key is at least (2 + o(1))n bits long regardless of the security achieved.
Given our one-time stegosystem, it is straightforward to construct provably se-
cure steganographic encryption for longer messages by using a pseudorandom
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generator (PRG) to stretch a random seed that is shared by the sender and the
receiver to sufficient length as shown in [5]. The resulting stegosystem is provably
secure in the complexity-theoretic model.

We are able to obtain an improvement in the key length by introducing two
novelties: We perform a variant of rejection sampling which is more efficient in
its use of the shared secret key and couple this sampling with judicious usage
of randomness extractors. To the best of our knowledge, this is the first time
extractors have been employed in the design of steganographic protocols. A fur-
ther interesting feature of our protocol is that we can permit a portion of the
shared secret key to be public while retaining precisely n private key bits. In this
setting, by separating the public and the private randomness of the shared key,
we can achieve security of 2−n. We adopt the model of channel abstraction first
defined by von Ahn [16] (and also used in [5]).

2 Preliminaries

We use the notation x ← X to denote sampling an element x from a distribution
X and the notation x ∈R S to denote sampling an element x uniformly at random
from a set S. For a function f and a distribution X on its domain, f(X) denotes
the distribution that results from sampling x from X and applying f to x. The
uniform distribution on {0, 1}d is denoted by Ud. We use the notation |s| to
stand for the number of symbols in a string s. For a probability distribution D
with support X , the notation PrD[x] denotes the probability that D assigns to
x ∈ X . We let E denote expectation. The concatenation of string s1 and string
s2 is denoted by s1 ◦ s2. All logarithms are taken base 2.

Definition 1 (Pointwise ε-biased functions). Let P be a distribution with
a finite support X. A function f : X → Y is said to be pointwise ε-biased with
respect to P if ∀y ∈ Y |Prx←P [f(x) = y]− 1/|Y | | < ε .

In this paper, we refer to such functions as ε-biased and drop the “pointwise”
qualification for simplicity.

Definition 2 (Min-entropy). The min-entropy of a random variable X, tak-
ing values in a set V , is the quantity H∞(X) � minv∈V (− logPr[X = v]). A
random variable with min-entropy at least t is called a t-source. We apply this
same terminology to distributions.

Statistical Distance. We use statistical distance to measure the distance between
two random variables. See Shoup [14] for a detailed discussion on statistical
distance and its properties.

Definition 3. Let X and Y be random variables which both take values in a
finite set S with probability distributions PX and PY . The statistical distance
between X and Y is defined as Δ [X,Y ] � (1/2)

∑
s∈S |PX(s)− PY (s)|.

We say that X and Y are ε-close if Δ [X,Y ] ≤ ε.
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We will use the following properties of statistical distance which follow directly
from the definition.

Fact 1. Let X, Y and Z be random variables taking values in a finite set S.
We have (i.) 0 ≤ Δ [X,Y ] ≤ 1 and (ii.) the triangle inequality: Δ [X,Z] ≤
Δ [X,Y ] +Δ [Y, Z].

Fact 2. If S and T are finite sets, X and Y are random variables taking values
in the set S and f : S → T is a function, then Δ [f(X), f(Y )] ≤ Δ [X,Y ].

Lemma 1. Consider two random variables (X,Y ) and (X ′, Y ′), both taking val-
ues in X×Y. For a particular value x ∈ X in the support of X, we let Yx denote
the random variable Y conditioned on the event X = x and define Y ′

x likewise.
Then Δ [(X,Y ) , (X ′, Y ′)] ≤ Δ [X,X ′] + EX

[
Δ [YX , Y ′

X ]
]
.

We include the proof in Appendix A for completeness.

2.1 Extractors

Extractors are deterministic functions that operate on arbitrary distributions
with sufficient randomness and output “almost” uniformly distributed, indepen-
dent random bits (see, e.g., [9]). Extractors require an additional input: a short
seed of truly random bits as a catalyst to “extract” randomness from such distri-
butions; thus the input of an extractor is two independent sources of randomness:
the source of guaranteed min-entropy and a short uniformly random seed.

Definition 4. A (t, ε)-extractor is a function Ext : {0, 1}ν × {0, 1}d → {0, 1}μ
such that for every random variable X on {0, 1}ν with H∞(X) ≥ t, Ext(X,Ud)
is ε-close to Uμ.

For our application, we require a stronger property from the extractor. We need
the output of the extractor to remain essentially uniform even conditioned on the
seed. A way of enforcing this condition is to demand that when the seed is con-
catenated to the output, the resulting distribution is still ε-close to uniform. Such
an extractor is called a strong extractor to distinguish from the weaker notion
of extractors defined above. As we shall require this stronger notion throughout,
we shall use the term extractor to refer to a strong extractor.

Definition 5. A (t, ε)-strong extractor is a function Ext : {0, 1}ν × {0, 1}d →
{0, 1}μ such that for every random variable X on {0, 1}ν with H∞(X) ≥ t, the
random variable S ◦Ext(X,S) is ε-close to Uμ+d if S is distributed according to
Ud.

We refer to ν as the length of the source, t as the min-entropy threshold, ε as the
error of the extractor, the ratio t/ν as the entropy rate of the sourceX and to the
ratio μ/t as the fraction of randomness extracted by the extractor. The entropy
loss of the extractor is defined as t+d−μ. The two inputs of the extractor have a
total min-entropy of at least t+d and the entropy loss measures how much of this
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randomness was “lost” in the extraction process. Radhakrishnan and Ta-Shma
[10] showed that no non-trivial (t, ε)-extractor can extract all the randomness
present in its inputs and must suffer an entropy loss of 2 log(1/ε)+O(1). For our
application, we need efficient, explicit strong extractor constructions as defined
below.

Definition 6 ([13]). For functions t(ν), ε(ν), d(ν), μ(ν) a family Ext = {Extν}
of functions Extν : {0, 1}ν × {0, 1}d(ν) → {0, 1}μ(ν) is an explicit (t, ε)-strong
extractor if Ext(x, y) can be computed in polynomial time in its input length and
for every ν, Extν is a (t(ν), ε(ν))-extractor.

An important property of strong extractors which makes them attractive for
our application is that for any t-source, a (1 − ε) fraction of the seeds extract
randomness from that source.

Remark ([12]). Let Ext : {0, 1}ν × {0, 1}d → {0, 1}μ be a (t, ε)-strong extractor.
From the definition of a strong extractor, we know that Es [Δ [Ext(X, s), Uμ]] ≤ ε
where s ∈R {0, 1}d. By Markov’s inequality, Prs[Δ [Ext(X, s), Uμ] ≥ ε · r] ≤ 1/r.
Later on in the paper, we will use this result for r = ε−2/3 and r = ε−1/2.

See the survey articles by Shaltiel [13], Nisan [7], and Nisan and Ta-Shma
[8] for more details on extractors and their properties. In this paper, we use
the explicit strong extractor construction by Raz, Reingold and Vadhan [11]
which works on sources of any min-entropy. It extracts all the min-entropy using
O(log3 ν) additional random seed bits while achieving an optimal entropy loss
(up to an additive constant) of χ = 2 log(1/ε) +O(1) bits.

Theorem 1 (RRV Extractor [11]). For every ν, t ∈ N, and ε > 0 such that
t ≤ ν, there are explicit (t, ε)-strong extractors Ext : {0, 1}ν×{0, 1}d → {0, 1}t−χ

with entropy loss χ = 2 log(1/ε) +O(1) bits and requiring seeds of length

d = O(log2 ν · log(1/ε) · log t) .

2.2 The Channel Model

The security of a steganography protocol is measured by the adversary’s abil-
ity to distinguish between “normal” and “covert” message distributions over a
communication channel. To characterize normal communication we define and
formalize the communication channel following standard terminology used in the
literature [2, 1, 16, 5, 3]. We let Σ denote the symbols of an alphabet and treat
the channel as a family of distributions C = {Ch}h∈Σ∗; each Ch is supported
on Σ. These channel distributions model a history-dependent notion of channel
data.

We adopt the model of channel abstraction first defined by von Ahn and
Hopper [16]. Here, Alice is provided with a means for sampling “deep into the
channel.” In particular, Alice and, consequently, the steganographic encoding
protocol, has access to a channel oracle that can sample from the channel for
any history. Formally, during the embedding process, Alice may sample from
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Ch1◦...◦h�
for any history she wishes (though Alice is constrained to be efficient

and so can make no more than polynomially many queries of polynomial length).
This model allows Alice to transform a channel C with min-entropy δ into a
channel Cπ with min-entropy πδ. Specifically, the channel Cπ is defined over
the alphabet Σπ, whose elements we write as vectors h = (h1, . . . , hπ). The
distribution Cπ

h1,...,hv is determined by the channel C with history (h1
1◦· · ·◦h1

π)◦
· · · ◦ (hv

π · · · ◦ hv
π). This definition captures the adaptive nature of the channel

by taking into account the dependence between symbols as is typical in real
world communications. We say that a channel has min-entropy δ if ∀h ∈ Σ∗,
H∞(Ch) ≥ δ. Observe that this implies that H∞(Cπ

h ) ≥ δπ due to the additive
nature of marginal min-entropy.

2.3 One-Time Stegosystem

Here, we give the definition of a one-time stegosystem, a steganographic system
that enables the one-time steganographic transmission of a message provided
that the two parties share a suitable key. We adopt the definitions used by Kiayias
et al. [5].

Definition 7. A one-time stegosystem consists of three probabilistic polynomial
time algorithms S = (SK, SE, SD), where:

– SK is the key generation algorithm; we write SK(1k) = κ. It produces a
key κ of length k.

– SE is the embedding procedure and has access to the channel; SE (κ,m;O) =
s ∈ Σ∗.

– SD is the extraction procedure; SD (κ, c) = m. It takes as input the key κ
of length k, and some c ∈ Σ∗. The output is a message m.

The embedding procedure SE takes into account the history h of communication
that has taken place between Alice and Bob thus far and begins its operation
corresponding to this history. It takes as input the key κ of length k, a message
m of length n = n(k) and accesses the channel through an (probabilistic) oracle
O. The oracle O accepts as input any polynomial length history h′ ∈ Σ∗ and
allows SE to draw independent samples repeatedly from Ch◦h′ . The output is
the stegotext s ∈ Σ∗. Observe that in a one-time stegosystem, once a security
parameter k is chosen, the length of the message n is a fixed function of k. In
our model of channel abstraction, SE can access the channel for any history. We
next define a notion of correctness for a one-time stegosystem.

Definition 8 (Correctness). A one-time stegosystem (SK, SE, SD) is said to
be (ε, δ)-correct provided that for all channels C of min-entropy δ, it holds that
∀h ∈ Σ∗

∀m ∈ {0, 1}n(k) Pr[SD(κ, SE(κ,m;O)) �= m | κ ← SK(1k)] ≤ ε .

In general, we treat both ε = ε(k) and δ = δ(k) as functions of k, the security
parameter and the oracle O as a function of the history h.



148 A. Kiayias, A. Russell, and N. Shashidhar

One-time stegosystem security is based on the indistinguishability between a
transmission that contains a steganographically embedded message and a trans-
mission that contains no embedded messages. The adversarial game discussed
next is meant to model the behavior of a warden in Simmons’ formulation of the
problem discussed earlier.

An adversary A against a one-time stegosystem S = (SK, SE, SD) is a pair
of algorithms A = (SA1, SA2), that plays the following game, denoted GA(1k):

1. A key κ is generated by SK(1k).
2. Algorithm SA1 receives as input the security parameter k and outputs a

triple (m∗, aux, hc) ∈ Mn × {0, 1}∗ × Σ∗, where aux is some auxiliary infor-
mation that will be passed to SA2. SA1 is provided access to the channel
via the oracle O, which takes the history h as input. The channel oracle O,
on input h, returns to SA1 an element c selected according to Ch. Observe
that the adversary can determine the channel distribution for any history.

3. A bit b is chosen uniformly at random.
– If b = 0, let c∗ ← SE(κ,m∗;O (hc)), so c∗ is a stegotext.
– If b = 1, let c∗ = c1 ◦ · · · ◦ cλ where λ = |SE(κ,m∗;O)| and

ci
r← Chc◦c1◦···◦ci−1 . In this case, c∗ ← Cλ

hc
.

4. The input for SA2 is 1k, hc, c
∗ and aux. SA2 outputs a bit b′. If b′ = b then

we say that (SA1, SA2) succeeded and write GA(1k) = success.

The advantage of the adversary A over a stegosystem S is defined as:

AdvA
S (k) =

∣∣∣∣Pr [GA(1k) = success
]
− 1

2

∣∣∣∣ .
The probability includes the coin tosses of A and SE.

The (information-theoretic) insecurity of the stegosystem is defined as

InSecS(k) = max
A

{AdvA
S (k)} ,

this maximum taken over all (time unbounded) adversaries A.

Definition 9 (Security). We say that a stegosystem is (ε, δ)-secure if for all
channels with min-entropy δ we have InSecS(k) ≤ ε.

Overhead. The overhead of a one-time stegosystem is judged by the relation of
the key length k and message length n. We adopt the ratio k/n as the measure
of overhead (cf. [5]).

2.4 Rejection Sampling

As noted before, a common method used in steganography over an arbitrary
channel distribution is that of rejection sampling (see, e.g., [1, 2, 4, 5]). Kiayias
et al. [4, 5] provided a provably secure stegosystem that pairs rejection sampling
with a t-wise independent family of functions and Hopper et al. [2] paired re-
jection sampling with a pseudorandom function family. These techniques do not
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provide a sufficiently low overhead. To obtain an overhead of 1 + o(1), we use
a variant of rejection sampling to transmit bit vectors as opposed to a single
bit. To transmit bit vectors, we amplify the entropy of the channel as discussed
before and apply ρ-rejection sampling described below. More precisely, we trans-
form a channel C with min-entropy δ into a channel Cπ with min-entropy πδ,
defined over the alphabet Σπ. We next perform ρ-rejection sampling over Cπ

as follows: Assuming that one wishes to transmit a bit vector m ∈ {0, 1}η and
employs a random function f : Σπ → {0, 1}η that is secret from the adversary,
one performs the following “rejection sampling” process:

Rejfh(m, ρ)

let j = 0
repeat:

sample c ← Cπ
h , increment j

until f(c) = m or (j > ρ)
output: c

For a given history h, the procedureRejfh(m, ρ) draws independent samples from
the channel distribution Cπ

h in rounds until f(c) = m or j > ρ. As there are at
most a total of ρ+1 rounds, if none of the first ρ samples drawn map to the target
bit vector, the sample drawn at round ρ+ 1 is returned by the procedure. Here,
as defined before, Σπ denotes the output alphabet of the channel, h denotes the
history of the channel at the start of the process, and Cπ

h denotes the marginal
distribution on sequences of π symbols given by the channel after history h. The
receiver (also privy to the function f) applies the function to the received message
c ∈ Σπ and recovers m with some probability of success (related, ultimately, to
the correctness of the protocol). Note that the above process performs ρ + 1
draws from the channel with the same history. These draws are assumed to be
independent. One basic property of rejection sampling that we use is:

Lemma 2 ([16]). If the function f is ε-biased on Cπ
h for history h, then for

any ρ and uniformly random m ∈R {0, 1}η: Δ
[
Rejfh(m, ρ), Cπ

h

]
≤ ε.

Proof. Let us denote the samples drawn by the procedure Rejfh(m, ρ) as ci, i =
1, · · · , ρ+1. Suppose that the target bit vectorm was chosen with the probability

P
(m)
f � Pr[f(Cπ

h ) = m] instead of being chosen uniformly at random, i.e, m ←
P

(m)
f . We first show that the output from Rejfh(m, ρ) is distributed identically

to Cπ
h . For simplicity of notation, let us define pm � Pr

P
(m)
f

[m]. Let pc denote

the probability of drawing c from the channel distribution Cπ
h , i.e., pc � PrCπ

h
[c].

For c ∈ Cπ
h , the probability of observing c under the Rejfh(m, ρ) procedure is

then given by Pr[Rejfh(m, ρ) = c] which we may expand as

Pr
c1←Cπ

h

[c1 = c] ·Pr[f(c1) = m]+ Pr
c2←Cπ

h

[c2 = c] ·Pr[f(c2) = m] ·Pr[f(c1) �= m]

+ Pr
c3←Ct

h

[c3 = c] · Pr[f(c3) = m] · Pr[f(c1) �= m ∧ f(c2) �= m] + · · ·
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equal to

pcpm + pcpm (1− pm) + · · ·+ pcpm (1− pm)
ρ−1

+ pc (1− pm)
ρ
= pc .

From the above discussion, we can see that when the target bit vector m was

chosen from the distribution P
(m)
f , the output from Rejfh(m, ρ) is distributed

identically to Cπ
h . Since f is ε-biased, Δ

[
Uη, P

(m)
f

]
≤ ε. Hence,

Δ
[
Rejfh(m ← Uη, ρ),Rejfh(m ← P

(m)
f , ρ)

]
≤ ε

by Fact 2 which gives us the statement of the lemma.

3 The Construction

In this section, we outline our construction of a one-time stegosystem as an
interaction between Alice (the sender) and Bob (the receiver). Alice and Bob
wish to communicate over a channel Cπ

h with history h. We also assume that the
support of Ch is {0, 1}b, i.e, |Σ| = 2b.

3.1 A One-Time Stegosystem

Let m ∈ {0, 1}n be the message to be embedded. Our stegosystem uses the RRV
strong-extractor construction as described in Theorem 1 which extracts random-
ness from the distribution Cπ

h supported on {0, 1}π·b by rejection sampling as
described in Section 2.4. Specifically, we will use the extractor with the seed s
as the function f in the rejection sampling procedure.

Alice and Bob agree on the following:

Extractor Construction. Alice and Bob agree to use the explicit RRV strong-
extractor construction as described in Theorem 1. They use a seed s ∈R

{0, 1}d for the extractor. The length of the seed d will be determined later
as a function of δ, n, b and security ε. The notation Es stands for the extrac-
tor used with the seed s i.e., E(·, s). Here, we treat the seed s as private
and in Section 3.4 we show that the seed s may be public and discuss the
implications of this choice.

One-Time Pad. Alice and Bob also use a shared one-time pad secret key
κotp ∈R {0, 1}n effectively transmitting m′ = κotp ⊕m.

Shared Secret Key. The secret key that they now share is κ = (κotp, s) of
length k = n+ d.

Key generation consists of generating the one-time pad secret key κotp ∈R {0, 1}n
and the random seed s of length d to be used with the extractor. The encoding
procedure accepts an input message m of length n bits and outputs a stegotext
of length λ. We will analyze the stegosystem below in terms of the parameters π,
d, λ, ρ and some constant c > 1 relegating discussion of how these parameters
determine the overall efficiency of the system to Section 3.4.
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PROCEDURE SE: PROCEDURE SD:

Input: Key κ = (κotp, s); m ∈ {0, 1}n, Input: Key κ = (κotp, s)
history h ∈ Σ∗ stegotext cstego

let m′ = κotp ⊕m
parse m′ as m′ = m′

1m
′
2 . . .m

′
�n/c logn� parse: cstego = c1c2 . . . c�n/c logn�

for i = 1 to �n/c log n� { for i = 1 to �n/c log n� do {
ci ← RejEs

h (m′
i, ρ) set mi

′ = Es(ci)
set h ← h ◦ ci }

} set m′ = m′
1m

′
2 . . .m

′
�n/c logn�

Output: cstego = c1c2 . . . c�n/c logn� ∈ Σλ Output: m′ ⊕ κotp

Fig. 1. Encryption and Decryption algorithms for the one-time stegosystem of 3.1

Alice and Bob communicate using the algorithm SE for steganographic em-
bedding and SD for decoding as described in Figure 1. In SE, after applying
the one-time pad to randomize her message m, Alice obtains m′ = κotp ⊕ m.
She then parses m′ into �n/c logn� blocks, each block of length c logn for some
constant c > 1, i.e., m′ = m1

′m2
′ . . .m′

�n/c logn�. She then applies the pro-

cedure RejEs

h (m′
i, ρ) to obtain an element ci ∈ Σπ for each block mi

′, i =
1, · · · , �n/c logn� of the randomized message. Here, the history h represents the
current history at the time of the rejection sampling procedure which is updated
after the completion of the procedure. Recall that the notation Es stands for
the extractor used with the seed s i.e., E(·, s). The resulting stegotext, denoted
by cstego that is transmitted to Bob is cstego = c1c2 . . . c�n/c logn�. In SD, the
received stegotext is first parsed into �n/c logn� blocks as shown and then eval-
uated using the extractor with seed s for each block; this results in a message
block. After performing this for each received block, a bit string of length n is
obtained, which is subjected to the one-time pad decoding to obtain the original
message. The detailed security and correctness analysis follow in the next two
sections.

3.2 Security

In this section, we argue about the security of our one-time stegosystem. Specif-
ically, we establish an upper bound on the statistical distance between the “nor-
mal” and “covert” message distributions over the communication channel. First,
by Lemma 2, observe that if the function f is ε-biased on Cπ

h for history h, then

for any ρ, m′ ∈R {0, 1}η: Δ[Rejfh(m
′, ρ), Cπ

h ] ≤ ε. Now, consider the strong ex-
tractor Ext : {0, 1}ν×{0, 1}d → {0, 1}μ used in the rejection sampling procedure.
Denote the error of extractor by εext. Recall from the remark in Section 2.1 that,
for a uniformly chosen seed s ∈R {0, 1}d, Prs[Δ [Ext(X, s), Uμ] ≥

√
εext] ≤

√
εext.

From this we can see that Ext fails to be a
√
εext-biased function with probability

no more than
√
εext in the choice of the seed s. Thus, for a random m′ and s,



152 A. Kiayias, A. Russell, and N. Shashidhar

Δ[RejEs

h (m′, ρ), Cπ
h ] ≤ 1 · √εext +

√
εext · 1 ≤ 2

√
εext .

We obtain the above inequality by upper bounding the probability of the extrac-
tor being a

√
εext-biased function by 1 and observing that the statistical distance

is also upper bounded by 1 by Fact 1. Suppose that in our stegosystem construc-
tion, we had used an independent and uniformly chosen seed si ∈R {0, 1}d for
each message block i = 1, 2, · · · , �n/c logn�, the statistical distance between Cλ

h

and the output of the procedure SE can be given by Δ
[
SE(κ,m;O), Cλ

h

]
≤

2
√
εext�n/c logn�. However, employing an independent and uniformly chosen

seed for each message block would require too much randomness. In our scheme,
we employ a single seed s over all the message blocks and so we need to manage
the dependencies between the various outputs, which is the major portion of the
work done in the security proof. For a message m ∈ {0, 1}n, we present an upper
bound on Δ

[
SE(κ,m;O), Cλ

h

]
when using a single seed s ∈R {0, 1}d over all

the message blocks.

Theorem 2. For any ε, δ > 0 and message m ∈ {0, 1}n, consider the stegosys-

tem (SK, SE, SD) of Section 3.1 under the parameter constraint εext ≤
(

ε
3�

)3
.

Then it holds that the stegosystem is (ε, δ)-secure where εext is the extractor error
and � = �n/c logn� for some constant c > 1.

Proof. We start the encoding procedure SE with history h which embeds mes-
sage blocks into the channel using rejection sampling. We want to show that the
statistical distance between the output of SE and Cλ

h is given by

Δ
[
SE(κ,m;O), Cλ

h

]
≤ ε

where λ is the length of the output by procedure SE.
First, we define some notation to capture the operation of the procedure SE.

Let C1 denote the distribution at depth 1 that results by sampling c1 ← Cπ
h ;

C2 denotes the distribution at depth 2 that results by sampling c1 ← Cπ
h and

c2 ← Cπ
h◦c1

. We likewise define Cτ for τ ≤ �. We define the random variables
R1, · · · , Rτ obtained by rejection sampling in the same fashion. To be precise,
for a message m′ = κotp ⊕m = m1

′ ◦m2
′ ◦ · · · ◦m�

′ and |mτ
′| = c logn we

define
C1 � Cπ

h , Cτ � Cπ
h◦C1◦···◦Cτ−1

,

for τ ∈ {2, . . . , �}. Likewise, we define the random variables Rτ :

R1 � Rej
Es(·)
h (m1

′, ρ) , Rτ � Rej
Es(·)
h◦R1◦···◦Rτ−1

(mτ
′, ρ) .

Finally, in anticipation of the proof below, we define a “hybrid” random variable

Hτ = Rej
Es(·)
h◦C1◦···◦Cτ−1

(mτ
′, ρ)

which corresponds to the distribution obtained by selecting C1, . . . , Cτ−1 from
the natural channel distribution, and then selecting the τth channel element via
rejection sampling.
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Now, let us analyze the implications of picking a uniformly random seed s ∈R

{0, 1}d for the extractor as we do in our construction. Recall that εext denotes
the error of the extractor. First, we show that for each depth τ , the probability
mass of distributions for which the extractor coupled with the seed s yields a
3
√
εext-biased function is large.
We say that a channel distribution C is

(
s, 3
√
εext
)
-good if Es is 3

√
εext-biased

on C. Otherwise we say that the distribution C is
(
s, 3
√
εext
)
-bad. With this

definition in place, recall that a strong extractor has the property that for any
distribution C on the right domain with sufficient min-entropy,

Pr
s
[C is (s, 3

√
εext) -bad] ≤ ε

2/3
ext . (1)

Define now the following sets for τ ∈ {0, · · · , �− 1}:

Gτ
s =

{
(c1, c2, · · · , cτ ) | Cπ

h◦c1◦c2◦···◦cτ
is (s, 3

√
εext) -good

}
and

Bτ
s =

{
(c1, c2, · · · , cτ ) | Cπ

h◦c1◦c2◦···◦cτ
is (s, 3

√
εext) -bad

}
,

where |ci| = π. The two sets Gτ
s and Bτ

s denote the collection of
(
s, 3
√
εext
)
-good

and
(
s, 3
√
εext
)
-bad distributions at depth τ , respectively. Let μ (Bτ

s ) denote
Pr [Cτπ

h ∈ Bτ
s ], the total probability mass of the set Bτ

s . Define μ (Gτ
s ) similarly.

Observe that in light of Equation (1) above, the expected mass of Bτ
s over

the choice of a uniform seed s is Es [μ (Bτ
s )] ≤ ε

2/3
ext . By Markov’s inequality

Prs
[
μ (Bτ

s ) ≥ 3
√
εext
]
≤ 3

√
εext and, then, by the union bound we conclude

Pr
s
[∃τ < � | μ (Bτ

s ) ≥ 3
√
εext] ≤ � 3

√
εext .

where � = �n/c logn�, the number of message blocks. We say that a seed s is
good if ∀τ ∈ {1, 2, · · · , �}, μ (Gτ

s ) ≥ 1 − 3
√
εext. To summarize the discussion

above, for randomly chosen s, Prs [s is good] ≥ 1− � 3
√
εext.

Now, fix a good seed s. We will now prove that for a good seed s,

Δ [(C1, C2, · · · , C�) , (R1, R2, · · · , R�)] ≤ � · (3 3
√
εext) . (2)

We prove this by induction on τ , the number of message blocks. When τ = 1,
Δ [C1, R1] ≤ 2

√
εext ≤ 2 3

√
εext, as desired. In general, assuming

Δ [(C1, C2, · · · , Cτ ) , (R1, R2, · · · , Rτ )] ≤ τ · (2 3
√
εext) .

for a particular value τ , we wish to establish the inequality for τ + 1. In light
of Lemma 1, we conclude that Δ

[
(C1, C2, · · · , Cτ+1) , (R1, R2, · · · , Rτ+1)

]
is no

more than

Δ [(C1, C2, · · · , Cτ ) , (R1, R2, · · · , Rτ )] + E
C1,...,Cτ

[
Δ [Cτ+1, Hτ+1]

]
≤ τ · (2 3

√
εext) + E

C1,...,Cτ

[
Δ [Cτ+1, Hτ+1]

]
(by induction.)



154 A. Kiayias, A. Russell, and N. Shashidhar

As for the expectation EC1,...,Cτ

[
Δ [Cτ+1, Hτ+1]

]
, this may be expanded

≤ Pr[(C1, . . . , Cτ ) ∈ Gτ
s ] · E [Δ [Cτ+1, Hτ+1] | (C1, . . . , Cτ ) ∈ Gτ

s ]

+ Pr[(C1, . . . , Cτ ) ∈ Bτ
s ] · E[Δ [Cτ+1, Hτ+1] | (C1, . . . , Cτ ) ∈ Gτ

s ]

≤ E[Δ [Cτ+1, Hτ+1] | (C1, . . . , Cτ ) ∈ Gτ
s ] + Pr[(C1, . . . , Cτ ) ∈ Bτ

s ]

≤ 3
√
εext + 3

√
εext ,

as s is good. We can conclude that for a good seed s,

Δ [(C1, C2, · · · , Cτ ) , (R1, R2, · · · , Rτ )] ≤ τ · (2 3
√
εext) ,

for any τ ≤ �. The total statistical distance is now given by

Δ [(C1, C2, · · · , C�) , (R1, R2, · · · , R�)]

= Δ [(C1, C2, · · · , C�) , (R1, R2, · · · , R�)] |s good ·Pr[s good ]+

Δ [(C1, C2, · · · , C�) , (R1, R2, · · · , R�)] |s not good ·Pr[s not good ]

≤ � · (2 3
√
εext) · 1 + 1 · (� 3

√
εext) ≤ 3� 3

√
εext ≤ ε .

The last inequality follows from the inequality εext ≤ (ε/(3�))3. We conclude that
Δ
[
SE(κ,m;O), Cλ

h

]
≤ ε and the theorem follows by the definition of insecurity.

3.3 Correctness

In this section we obtain an upper bound on the soundness of our stegosystem.
We focus on the mapping between {0, 1}n and Σλ determined by the SE proce-
dure of the one-time stegosystem. We would like to bound the probability of the
stego decoding procedure’s inability to faithfully recover the encoded message.

Theorem 3. For any ε, δ > 0, message m ∈ {0, 1}n, consider the stegosystem of

Section 3.1 under the parameter constraints εext ≤
(

ε
6�2

)3
and ρ ≥ 2nc log(3�ε−1)

for some constant c > 1. Then it holds that the stegosystem (SK, SE, SD) is
(ε, δ)-correct where εext is the extractor error and � = �n/c logn� for some con-
stant c > 1.

Proof. Recall that the first step of the procedure SE is to randomize the message
m to get m′ = m ⊕ κotp. SE then proceeds to parse m′ into blocks: m′ =
m′

1m
′
2 . . .m

′
�, � = �n/c logn�. Let F be the event that SD is unable to correctly

decode the message encoded by SE. We seek to upper bound the probability of F .
We proceed to first estimate the probability of failure for one message block mi.
Let us denote this event by F ′. We reuse the notations and definitions introduced
in the security proof of the section above. Recall that we pick a seed s ∈R {0, 1}d
for the extractor we use in our construction and let εext denote the error of the
extractor. As discussed in the security proof, we say that a seed s is good if
∀τ, μ (Gτ

s ) ≥ 1 − 3
√
εext, τ = 1, 2, · · · , �. We showed in the security proof that

the probability of seed s to be good is given by Prs
[
∀τ | μ (Gτ

s ) ≥ 1− 3
√
εext
]
≥
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1− � 3
√
εext. This implies that the probability of seed s to be not good is no more

than � 3
√
εext. This yields

Pr[F ] = � · (Pr[F ′ | s good] · Pr[s good] + Pr[F ′ | s not good] · Pr[s not good])

≤ � · (Pr[F ′ | s good] · 1 + 1 · (� 3
√
εext)) .

We proceed to bound Pr[F ′ | s is good]. We know that when the seed s is good,
for no more than 3

√
εext fraction of distributions in every level τ = 1, 2, · · · , �, the

extractor coupled with the seed s is not a 3
√
εext-biased function with probability

no more than 3
√
ε2ext. So, we get

Pr[F ′ | s good] ≤ 1 ·
(
1−
(

1

2|mi| −
3
√
εext

))ρ

+ 3
√
εext · 1 + 3

√
ε2ext · 1

where ρ is the bound on the number of iterations performed by the rejection
sampling procedure. Setting εext ≤ 1/(8 · 23|mi|) = 1/(8 · n3c) and ρ = 2 · 2|mi| ·
log(3�ε−1) = 2nc log(3�ε−1) (since in our construction |mi| = c logn, and as ρ
is exponential in the block length, we choose the message block length to be
c logn), we have Pr[F ′ | s good] ≤ ε/(3�) + 2 3

√
εext. From the statement of the

theorem we have that εext ≤
(

ε
6�2

)3
, we can bound Pr[F ] as

Pr[F ] ≤ � · (Pr[F ′ | s good] · 1 + 1 · (� 3
√
εext)) ≤ ε

and the statement of the theorem follows.

We record the security and correctness theorem below.

Theorem 4. For any εext ≤ 1/8n3c, δ > 0, ρ ≥ 2nc log(ε
−1/3
ext ) and message

m ∈ {0, 1}n, the stegosystem (SK, SE, SD) of Section 3.1 is (εcor, δ)-correct
and (εsec, δ)-secure, where εcor ≤ 4�2 3

√
εext and εsec ≤ 3� 3

√
εext. Here, εext is the

extractor error and � = �n/c logn� for some constant c > 1.

3.4 Putting It All Together

The objective of this section is to integrate the results of the previous sections of
the paper. We first show that our steganography protocol embeds a message of
length n bits using a shared secret key of length (1+ o(1))n bits while achieving

security 2−n/ logO(1) n. In this sense, our protocol is randomness efficient in the
shared key. We next show that by permitting a portion of the shared secret key
to be public while retaining n private key bits, we can achieve security of 2−n.
Let us first start our discussion by considering the parameters of the extractor
construction we employ in our protocol.

Extractor Parameters. Recall that π is the parameter that dictates how many
copies of the channel Alice decides to use in order to transform the channel C
with min-entropy δ into a channel Cπ with min-entropy πδ.
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If we let π = δ−1 · (c logn+ 2 log (1/εext) +O (1)) for some constant c > 1, the

channel distribution Cπ
h supported on {0, 1}δ−1·(c logn+2 log(1/εext)+O(1))·b has a

min-entropy of at least t = c logn+2 log (1/εext)+O (1). To put this all together,

the RRV strong-extractor is a function Ext : {0, 1}ν×{0, 1}d → {0, 1}t−Δ
where

ν = δ−1 · (c logn+ 2 log (1/εext) +O (1)) · b
d = O

(
log2

(
δ−1 · (c logn+ 2 log (1/εext) +O (1)) · b

)
· log (1/εext) · log t

)
t = c logn+ 2 log (1/εext) +O (1)

Δ = 2 log (1/εext) +O (1) and

t−Δ = c logn

We can immediately see from the preceding discussion that our stegotext is of
length

n

c logn
·δ−1 ·(c logn+ 2 log (1/εext) +O (1))·b = n

δ

(
1 +

2 log (1/εext)

c logn
+ o (1)

)
·b

bits to embed n bits of message.

Key-Length Efficiency. Recall that the shared secret key between Alice and
Bob is comprised of the one-time pad κotp ∈R {0, 1}n of length n and the
extractor seed s ∈R {0, 1}d of length d bits, i.e., κ = (κotp, s). Also, the length
of the seed from the above discussion is given by

d = O
(
log2

(
δ−1 · (c logn+ 2 log (1/εext) +O (1)) · b

)
· log (1/εext) · log t

)
.

Notice the relationship between the error of the extractor εext and the desired

security from our stegosystem ε is given by εext ≤
(

ε
3�

)3
from Theorem 2. When

we let ε = 2−n/ logO(1) n, we can see that the length of the seed d = o(n). Thus
we can embed a message of length n bits using a shared secret key of length

(1 + o(1))n bits while achieving security 2−n/ logO(1) n. Suppose, we were to let
the extractor seed of length d be public, observe now that we can attain ε = 2−n

security in the length of the shared private key of length n. The seed length can
now be given by d = O(n log n log2(δ−1bn)). For small ε, the relationship between
the seed length d and security ε can be given by d = O

(
log3

(
log
(
ε−3
))

log
(
ε−3
))
.

We would like to note that our protocol offers a non-trivial improvement over
the protocol offered by Kiayias et al. [5] as in their protocol, they need O(n)
secret bits regardless of the security achieved.

Also, when we elect to make use of the public randomness for the d bits for the
extractor seed, we obtain constant overhead as well. In particular, the length of
the shared secret key is equal to the length of the message, n bits while attaining
2−n security.

In this context of making the seed of the extractor public, we would like to
explain our model and clarify the implications of making the seed public. In
our model for steganography, we assume that the communication channel is not



Key-Efficient Steganography 157

adversarially controlled. In particular, the adversary is not allowed to reconfigure
the channel distributions once the seed has been made public. In this sense, the
channel is chosen and fixed first, then a seed s is chosen uniformly at random
and made public. In other words, we require that the randomness in the seed s
is independent of the channel. Indeed, in a stronger model where the adversary
does have the ability to readapt the channel distributions, we would need to keep
the seed private. From our above discussion, we can see that our stegosytem of
Section 3.1 is still (ε, δ)-correct and (ε, δ)-secure when the seed s is public.

Theorem 5. For any ε, δ > 0, message m ∈ {0, 1}n consider the stegosystem of

Section 3.1 under the parameter constraints εext ≤
(

ε
6�2

)3
and ρ ≥ 2nc log(3�ε−1)

for some constant c > 1. Then for every channel, if the key κotp ∈R {0, 1}n is pri-
vate and the seed s ∈R {0, 1}n is public, then it holds that the stegosystem is (ε, δ)-
correct and (ε, δ)-secure. Here, εext is the extractor error and � = �n/c logn� for
some constant c > 1. The stegosystem exhibits O(1) overhead, the length of the
shared private key is equal to the length of the message.

4 A Provably Secure Stegosystem for Longer Messages

In this section we show how to apply the “one-time” stegosystem of Section 3.1
together with a pseudorandom generator so that longer messages can be trans-
mitted as shown by Kiayias et al. [5].

Definition 10. Let Uk denote the uniform distribution over {0, 1}k. A polyno-
mial time deterministic algorithm G is a pseudorandom generator (PRG) if the
following conditions are satisfied:

Variable output. For all seeds x ∈ {0, 1}∗ and y ∈ N, |G(x, 1y)| = y.
Pseudorandomness. For every polynomial p the set of random variables

{G(Uk, 1
p(k))}k∈N is computationally indistinguishable from the uniform dis-

tribution {Up(k)}k∈N.

For a PRGG and 0 < k < k′, if A is some statistical test, we define the advantage
of A over the PRG as follows:

AdvA
G(k, k

′) =
∣∣∣∣ Pr
w←G(Uk,1k

′)
[A(w) = 1]− Pr

w←Uk′
[A(w) = 1]

∣∣∣∣ .
The insecurity of the above PRG G against all statistical tests A computable by
circuits of size≤ P is then defined as InSecG(k, k

′;P ) = maxA∈AP {AdvA
G(k, k

′)}
where AP is the collection of statistical tests computable by circuits of size ≤ P .

It is convenient for our application that typical PRGs have a procedure G′

such that if z = G(x, 1y), it holds that G(x, 1y+y′
) = G′(x, z, 1y

′
) (i.e., if one

maintains z, one can extract the y′ bits that follow the first y bits without
starting from the beginning).

Consider now the following stegosystem S′ = (SK ′, SE′, SD′) that can be
used for steganographic transmission of longer messages using the one-time
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stegosystem S = (SK, SE, SD) as defined in Section 3.1. S′ can handle mes-
sages of length polynomial in the security parameter k and employs a PRG G.
The two players Alice and Bob, share a key of length k denoted by x. The func-
tion SE′ is given input x and the message m ∈ {0, 1}ν to be transmitted of
length ν = p(k) for some fixed polynomial p. SE′ in turn employs the PRG G
to extract k′ bits (it computes κ = G(x, 1k

′
), |κ| = k′). The length k′ is selected

to match the number of key bits that are required to transmit the message m
using the one-time stegosystem of Section 3.1. Once the key κ of length k′ is
produced by the PRG, the procedure SE′ invokes the one-time stegosystem on
input κ,m, h. The function SD′ is defined in a straightforward way based on
SD.

The computational insecurity of the stegosystem S′ is defined by adapt-
ing the definition of information theoretic stegosystem security from Section
2.3 for the computationally bounded adversary as follows: InSecS′(k, k′;P ) =
maxA∈AP {AdvA

S′(k, k′)} , this maximum taken over all adversaries A, where
SA1 and SA2 have circuit size ≤ P and the definition of advantage AdvA

S′(k, k′)
is obtained by suitably modifying the definition of AdvA

S (k) in Section 2.3. In
particular, we define a new adversarial game GA(1k, 1k

′
) which proceeds as the

previous game GA(1k) in Section 2.3 except that in this new game GA(1k, 1k
′
),

algorithms SA1 and SA2 receive as input the security parameter k′ and SE′

invokes SE as SE(κ,m∗;O) where κ = G(x, 1k
′
).

Theorem 6. The stegosystem S′ = (SK ′, SE′, SD′) is provably secure in the
model of [2] (steganographically secret against chosen hiddentext attacks); in
particular employing a PRG G to transmit a message m we get

InSecS′(k, k′;P ) ≤ InSecG(k, k
′;P ) + InSecS′(k′)

where InSecS′(k′) is the information theoretic insecurity defined in Section 2.3
and |m| = �(k′).
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A Omitted Proofs

Proof (Lemma 1). For x ∈ X denote Pr[X = x] by Px and Pr[Yx = y] by Py|x.
Define P ′

x and P ′
y|x similarly. Then we may expand Δ [(X,Y ) , (X ′, Y ′)] as

1

2

∑
x∈X,y∈Y

∣∣∣Px · Py|x − P ′
x · P ′

y|x
∣∣∣

≤1

2

∑
x,y

∣∣∣Px · Py|x − Px · P ′
y|x
∣∣∣+ 1

2

∑
x,y

∣∣∣Px · P ′
y|x − P ′

x · P ′
y|x
∣∣∣

=
1

2

∑
x,y

Px ·
∣∣∣Py|x − P ′

y|x
∣∣∣+ 1

2

∑
x,y

P ′
y|x · |Px − P ′

x| ≤ E
X

[
Δ [YX , Y ′

X ]
]
+Δ [X,X ′] .
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Abstract. In this paper we propose a novel approach to implement high ca-
pacity, covert channel by encoding covert information in the physical layer of
common wireless communication protocols. We call our technique Dirty Con-
stellation because we hide the covert messages within a “dirty” constellation that
mimics noise commonly imposed by hardware imperfections and channel condi-
tions. The cover traffic in this method is the baseband modulation constellation.
We leverage the variability in the wireless channel and hardware conditions to
encode the covert channel. Packet sharing techniques and pre-distortion of the
modulated symbols of a decoy packet allows the transmission of a secondary
covert message while making it statistically undetectable to an adversary. We
demonstrate the technique by implementing it in hardware, on top of an 802.11a/g
PHY layer, using a software defined radio and analyze the undetectability of the
scheme through a variety of common radio measurements and statistical tests.

1 Introduction

There are many times when communication needs to be secure. Common and obvious
examples include providing security for electronic commerce or privacy for personal
matters. At other times, communication must also be covert, or undetectable which
has a low probability of intercept (LPI) or a low probability of detection (LPD). LPD
communication mechanisms are useful when the very act of communication can raise
concerns, such as communication during war-time or during surveillance. Usually it is
difficult to detect the receiver of communication mechanisms that exploit the character-
istics of radio propagation.

In this paper, we explore methods that provide LPD and LPI for high-bandwidth
networks. Our method provides a high-bandwidth covert side-channel between multi-
ple radios using a common wireless network, as indicated in Figure 1. The method is
covert because the devices (laptops or smartphones) function as normal devices. Again,
the devices “hide in plain sight”. Rather than raising suspicions by exchanging en-
crypted messages with each other or some centralized server, they appear to be con-
ducting normal network communication (browsing web pages, sending mail, streaming
multimedia) when in reality, they are able to communicate undetected. The adversary
will face great challenge in discovering the side channel because the covert channel
is being transmitted by mobile nodes. Monitoring to locate such nodes would require
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significant investment or infrastructure, such as monitoring in every coffee shop, bus or
public venue where people may be near each other.

The technique uses a common, physical-layer protocol to mask the communica-
tion that takes advantage of the hardware imperfections present in commodity hard-
ware, intrinsically noisy channel of wireless communication and receiver diversity. We
have implemented this mechanism using software-defined radios, operating in 2.4GHz
ISM band, but can also be easily extended to TV whitespaces. Our prototype uses an
OFDM waveform. Most consumer electronic devices use OFDM waveforms for high-
bandwidth networks (including DVB, DAB, WiFi, WiMAX and LTE), and there are
some benefits in “hiding” in such a ubiquitous waveform.

Imperfections in off-the-shelf Network Interface Cards

Fig. 1. Undetected Side-
Channel Communication

(NICs) [4], coupled with an additive random wireless
channel cause the signal to degrade over time and distance.
To mask our communication, we “pre-distort” the signal to
mimic the normal imperfection of the hardware and Gaus-
sian distortion arising from the channel. This distortion
appears as noise to the unobservant receiver, be it the Wi-
Fi access point or an adversary. However, a receiver aware
of the presence of the signal and its encoding technique
can decode the “noise” to reveal the hidden message.

Our motivation for hiding the data in physical layer
(analog waveform domain) of common wired and wireless protocols are the following:

– Hide in Plain Sight - Using the physical properties of the transmission medium
will allow the covert channel to resemble a common waveform, only distorted by
channel noise, or transmitted by a NIC with imperfections.

– Access to Covert Channel - Since the covert channel uses the signal waveform, an
adversary is easily abstracted from the covert channel, as opposed to other packet
level techniques using higher layers [11]. In our method, the bits of the cover packet
are not altered and hence the presence of the covert message is not detected at
higher layers, or more specifically in digital domain.

– Sample Collection - The ubiquitous nature of wireless devices and their localized
transmission make it difficult to detect the presence of a covert channel. As opposed
to digital contents on the Internet (music, picture, video), which can be accessed
from one physical location, acquiring signal waveforms requires hauling expensive,
bulky equipment (signal analyzers) to every possible hotspot.

– Search Complexity - A 500byte packet, modulated with QPSK-1/2 rate coding, re-
sults in ≈ 19KB (calculation omitted due to space constraints) of I/Q information.
This increases the search space by ≈ 38 times, compared to packet level analysis
of a covert channel.

– Statistically Undetectable - In higher layer techniques, an adversary can search the
header fields (known as unused fields) of a packet stream and find the covert chan-
nel [3], whereas in physical layer, the adversary needs to perform several statistical
tests on the I/Q samples, which are already tainted by time varying channel noise.

– Capacity - Compared to conventional techniques using higher layers, where only
a few unused bits of any header field of a packet is used, our technique can easily
utilize 10% of the cover signal to transmit covert messages.
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Fig. 2. Characterizing channel and hardware impairments with three waveforms: ideal QPSK,
faded QPSK and “impaired,” QPSK-IM. The QPSK-IM signal is indistinguishable from QPSK-
faded signal using statistical measures.

These advantages coupled with relative ease of implementation using now popularized
software defined radio, makes this technique extremely useful in providing high capac-
ity covert channels.

2 Characterizing OFDM Signals

Signal quality in wireless channel depends primarily on two factors: channel impair-
ments and hardware impairments. Channel impairments typically range from additive
white noise to frequency selective fading and/or hidden terminal and Doppler shifts,
which degrade signal properties in time and frequency domain. Figure 2(a) plots the
spectrum for an OFDM waveform from a bench measurement that is skewed because
of a frequency selective fading in the left-most subcarriers. Similarly, impairments due
to various non-linearities in the transceiver pipeline are often reflected in the signal char-
acteristics as well. Since these types of impairments are hardly deterministic, estimating
the errors and compensating for them is a non-trivial task.

Signal-to-Noise Ratio (SNR) is a widely used metric, often measured in the time
or frequency domain using averaged power measurements. A simple interpretation of
the SNR is “the higher the SNR, the higher the probability that the information can
be extracted with acceptable error performance”. However, high spatial-decorrelation
of the wireless channel may render portions of the OFDM signal undecodable even
though a high “average” SNR indicates otherwise. Figure 2(a) is an example of an
OFDM spectrum of an ongoing communication that has an average SNR of 21dB but
degraded in the frequency domain.
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The Error Vector Magnitude (EVM), shown in Figure 2(b) is another metric that
measures the deviation of the complex modulation vectors in the I/Q-plane from the
ideal position. A bad channel leads to higher dispersion of these vectors and hence
higher EVM, which affects the error performance as well. Modulation errors can also
be introduced as imperfections in the transceiver hardware itself, which can cause the
intended I/Q sample to be transmitted (or received) at a slight offset. In the IEEE
802.11a/g standard [9], this modulation error at the transmitter for a QPSK modula-
tion is mandated to be no more than 10dB from an “ideal” I/Q mapping.

Figure 2(c) shows the distribution of EVM (in a boxplot) for three bench measure-
ments of an OFDM waveform using QPSK modulation where each of the transmissions
have the same SNR. The first measurement is based on an “ideal” transmission with low
noise resulting in a low EVM with minimal variance, called ideal QPSK. The second
measurement, faded QPSK, from a bench measurement with slightly different antenna
orientation, has higher average EVM and wider variance. The difference between ideal
QPSK and faded QPSK are due to multipath effects. The last measurement, termed
the “impaired QPSK” or QPSK-IM signal, was recorded from a transmitter that pre-
distorted the signal such that the average EVM is 10dB worse than the ideal. On the
surface, the QPSK-IM signal appears to have similar properties to faded QPSK – both
have higher average EVM and wider variance. Figures 2(d)-2(f) show the three con-
stellations corresponding to the measurements described above. It is indeterminable
whether the deterioration in the EVM is due to intentionally introduced noise at the
transmitter, or due to imperfections in the hardware that is operating within tolerable
limits, or is the result of poor channel quality.

From these examples, it is evident that impairments, whether in the channel or in the
hardware, will cause statistical variation in the perceived value of the metrics and that
the bounds on these metrics are only loosely defined and can only be formalized by
various descriptive statistics and statistical tests.

3 Dirty Constellation

Our method relies on being able to embed one message in another in the wireless chan-
nel, but goes well beyond that to then insure that the covert message is undetectable.
There are several ways to embed messages by encoding the constellation symbols using
bits of two distinct messages [13,7] but we use a simpler technique that uses existing
modulation methods of OFDM.

Using a combination of adaptive modulation and efficient packet sharing using joint
constellations we encode the covert channel. If a receiver is aware of our irregular map-
ping of bits, and it has sufficient SNR for that subcarrier, it is able to decode the covert
message while to an uninformed user, the covert constellation points will be treated as
random dispersed sample of a low-rate modulation, that reveals an innocuous message.

The key to such covert communication using the physical layer of an OFDM
based wireless protocol are four fold: 1) packets containing covert data must be
indistinguishable from non-covert packets to all uninformed observers; 2) the presence
of any irregularity in the covert packets has to be kept hidden under rigorous statistical
tests on the signal; 3) the covert channel should be non-trivial to replicate, making it
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secure from spoofing and impersonation; and finally, 4) it should have high capacity. In
this paper we satisfy each of these requirements through a set of techniques.

Requirement 1: Identifying a Covert Channel: Our technique relies on encoding
“cover packets” that are transmitted at a low rate (BPSK or QPSK) with supplemental
information that can be decoded as an additional QPSK signal by an informed receiver.
In the examples below, we use QPSK for both the cover and covert channel.
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Fig. 3. Encoding Dirty Constellation

In a QPSK encoding, the constellation points encode two bits of information as shown
in Figure 3(a). To encode the covert channel, we deflect the placement of the QPSK
points. This is similar to having a “covert QPSK” encoding with an origin around the
ideal QPSK constellation points of the cover traffic. Figure 3(b) corresponds to the upper
right quadrant of the cover QPSK constellation shown in Figure 3(a). To modulate a
subcarrier carrying both the cover and covert message, first the cover constellation point
(QPSK) is chosen (as per the cover message stream), specifying the quadrant, followed
by re-mapping that point to one of the four “covert-QPSK” points around the “cover
QPSK” point.

Clearly, the goal is to leave the cover message decodable by standard receivers. Only
the covert receiver aware of the joint constellation will decode the subcarriers properly
and extract the two covert bits to form the hidden packet. An adversary will decode
at the base rate or the rate for cover message, as specified in the signal symbol of the
packet; while the covert points will be treated as noisy points. The cover message could
be intended for an access point (as part of a web browsing session) while the covert
message can be overheard and decoded by a nearby radio. In this way we implement a
covert channel while making it appear as completely innocuous to other users receiving
the same transmission.

Requirement 2: Low Probability of Detection: How would an adversary detect such
communication? As long as the packet can be decoded, a legacy receiver has no way
of knowing how signals are being encoded at the core of the physical layer, because
conventional packet decoding is performed by identifying the data rates embedded at
the beginning of the packet which will always contain the base rate (QPSK) informa-
tion. However, adversaries using measurement equipment like vector-signal analyzers
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or software defined radios can extract the digital samples from the radio pipeline at dif-
ferent stages of the signal processing. Therefore, our ultimate goal is to provide very
low probability of detection not only at the packet level but also at the signal level.

One simple form of analysis is to look at the equalized

Fig. 4. Constellation without
random pre-distortion of the
QPSK points and using ex-
isting 16QAM points to map
the joint covert constella-
tions

I/Q vectors of the jointly encoded packet. The presence of
the covert constellation at regular interval will appear as
distinct point clouds that will set themselves apart from
the cover QPSK point cloud and will reveal the presence
of the covert channel, as shown in Figure 4.

We solve this problem by changing the I/Q vectors of
the covert transmitter in three steps:

Step1: We bring the covert constellation points closer to
the ideal QPSK point and re-map the covert constella-
tion points symmetrically around the QPSK points, with
a mutual separation of 2√

42
, a distance equal to that of a

64QAM constellation, so that a covert receiver can operate
within the operating range of a WiFi receiver.

Step2: We randomize the I/Q vectors of the covert QPSK

points with a Gaussian distribution but limit their dispersion to a radius of
√

2
42 as

shown in figure 3(b). We call this as the pre-distortion circle; pre-distortion of the QPSK
signal at the transmitter ensures that the covert constellations are hidden in the cloud of
a dispersed (noisy) QPSK point cloud. We introduce imperfections to the transmitted
signal in such a way that the average EVM error is equal to or less than 10dB compared
to the ideal QPSK constellation points, which is within the limits of hardware anomaly
allowed in the IEEE 802.11 standard [9]. Thus, it cannot be ascertained with certainty
if the EVM error is due to hardware impairments, channel impairments or intentionally
injected distortion.

Step3: To accommodate a higher rate covert channel, e.g., when 50% of the OFDM
subcarriers are covert, then at high SNR there is always a finite probability that the
covert constellations are visible. To have the covert symbols blend with the pre-distorted
QPSK point cloud, the covert symbols are rotated along the circumference of the pre-
distortion circle for every subcarrier that is mapped to a covert constellation as shown
in Figure 3(b). The rotation is performed using a monotonically increasing angle θ; the
transmitter and receiver both start with θ = 0◦ at the start of the packet and increment
θ for each covert subcarrier. In our implementation we use a 15◦ counter-clockwise
rotation for the covert points.

These 3 steps allow us to hide the covert channel, even when an adversary has access
to the I/Q samples of the packet. The adversary will interpret the point cloud as a noisy
version of a valid (albeit noisy) QPSK constellation and would not suspect the presence
of a covert communication. This compound constellation involving a covert channel
hidden within a cover constellation is termed a “Dirty Constellation”. However, in
order to avoid raising suspicion by any RF fingerprinting algorithms [4], a QPSK-IM
waveform should always be used for non-covert transmissions, to avoid sudden changes
in the modulation characteristics.
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Requirement 3&4: Security and Higher Efficiency: These requirements are consid-
ered as an enhancement to the basic scheme of Dirty Constellation. We have imple-
mented 10%, 30% and 50% encoding of subcarriers, as shown in Figure 7, yielding up
to 9Mbps datarate with QPSK modulation and 3/4 encoding rate. Using higher modu-
lation constellation, e.g., 256-QAM, we can further increase the capacity of the covert
channel by encoding more bits per subcarrier. Due to space constraints we leave this as
future work. Finally, we discuss the security aspect in §7.

4 Dirty Constellation on SDR

Hiding a message in a randomized

Baseboard (FPGA)
A/D and  DAC Board

Radio Board

Ethernet connection to Host

JTAG connection

Tx and Rx Antennas

Fig. 5. SDR prototype using Virtex-V FPGA

modulation constellation requires a pro-
grammable modulator and demodulator.
Conventional radio 802.11 PHYs modu-
late all the subcarriers with one type of
pre-defined modulation, For this scheme
to work, we used a FPGA-based soft-
ware defined radio platform based on our
previous work [6,5], as shown in fig-

ure 5, and modified the modulator and demodulator to program each subcarrier with
different modulations, adding either noise or covert constellations. Figure 6(a) shows
the functional diagram of the programmable modulator. The notable parameters in the
design are the dirty bit and the mapping sequence bit which are used to select the ap-
propriate mapping for covert joint constellations and randomize (Gaussian) the cover
symbols to engulf the higher order modulation points. The cover and the covert bits are
independently packetized as per the 802.11a/g specification and the covert joint symbols
are formed by merging the bits of the two packets prior to sending it to the modulator.
The merging of packets is performed in software and then fed to the hardware along
with the control information to create the Dirty Constellation. The QPSK-IM constella-
tion is generated by using the randomizer unit that emulates an overall modulation error
of 10dB, by setting the dirty bit to ‘0’ and mapping sequence to ‘1’ for all subcarriers.

The decoder employs maximum likelihood decoding and uses pre-defined thresholds
to decode the constellation. Figure 6(b) shows the functional diagram of the demodu-
lator. First the covert receiver demodulates the signal using the covert decision bound-
aries, 64QAM in this case and then extracts the covert bits. Since all subcarriers do not
contain the hidden message, the receiver then uses the pre-assigned mapping sequence
and its rotation information to filter out the covert subcarriers’ information to form the
covert packet.
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Figure 7 shows an example of Dirty Constellation with varying frequency of the
covert channel that has been transmitted by the SDR prototype and captured using a
VSA. The I and Q histograms alongside the constellation shows the similarity of the
distributions and that they are from the family of normal distributions.

(a) Frequency – 10% (b) Frequency – 30% (c) Frequency – 50%

Fig. 7. Examples of over-the-air transmission of Dirty Constellations with varying embedding
frequency using the SDR prototype

5 Experiments and Measurements

Using the hardware described in §4 as the transmitter, sig-

Agilent VSA / Receivers

SDR Transmitters

Wall
5ft high Cubicle

Fig. 8. Node placement

nal samples are collected in a lab/office environment. The
transmitter nodes were placed as shown in the Figure 8.
The signals were captured using a high-end Agilent vector
signal analyzer (VSA) that provides the raw I/Q vectors of
the packets transmitted by the SDR nodes. We record data
from 6 locations, for ideal QPSK, QPSK-IM and Dirty
Constellation with 10% covert channel efficiency. Each
dataset contains measurement of 500 data packets of each
type per transmit power level. The transmit power is var-
ied in steps of 2.5dB such that the measured SNR at the
VSA has a range of 7dB to 20dB. We have chosen this

range because 7dB is the minimum SNR required to decode a QPSK packet with 98%
packet reception rate. This has been empirically validated using bench measurements
using our SDR transceivers. Likewise, 20dB was selected as the upper limit because the
EVM doesn’t decrease appreciably with higher SNR. After filtering out the required
data range we find the average sample size is 10, 000 packets per type. We bin the pack-
ets by SNR in bins of size 1dB; each bin contains 500 − 800 packets per SNR value.
We perform all the statistical testing using this dataset which captures a wide range of
SNR and channel conditions for all the type of modulations. In these measurements, the
VSA is treated as both the covert receiver and a very aggressive adversary. As a covert
receiver, the messages sent by the different transmitters can be received by the VSA
receiver and the covert data can be extracted. As an adversary, the receiver has a high
quality measurement device and also acts as the “most aggressive adversary” because it
shares the same channel state as the receiver.
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6 Analyzing Dirty Constellation

The core idea of testing a sample for adherence to a particular family of signals is
performed by comparing test results with a known set of statistics for the same class.
Therefore, the first step of the analysis process is to formalize the database of these
statistics that characterizes an entire family of signals. In this paper, we intend to com-
pare a Dirty Constellation with a QPSK waveform. We formulate the problem as a
hypothesis test, with the null hypothesis:

H0: Given a random sample from a Dirty Constellation packet, it is statistically
same as any other QPSK packet.

Whereas the alternative hypothesis is:
H1: Given a random sample from a Dirty Constellation packet, it can be statis-
tically identified that it is not a QPSK packet.

In this section, we analyze whether the packets containing covert data can be distin-
guished from normal packets at the packet level or at the waveform level in the time
and frequency domain. The test statistics of standard QPSK signals is lower bounded
by the statistics of an “ideal QPSK” packet and upper bounded by a “QPSK-IM” packet.
We used “QPSK-IM” packets to mimic a radio with hardware imperfections, but operat-
ing within the limits of IEEE 802.11 standard requirements. Each of these bounds have
been empirically derived from the measurements collected as described in §5. If the
Dirty Constellation sample is within the bounds set for that test then the null hypothesis
is “not rejected”, meaning that the Dirty Constellation packet is statically indistinguish-
able from any other QPSK transmission within the expanse of 802.11a/g transmissions
using that test.

6.1 Packet Based Analysis

Packet based analysis involves looking
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at parameters that can be extracted at the
packet level, or in the digital domain,
where there is no trace of the covert
packet. To measure if the pre-distortion
of the constellation effects the packet re-
ception rate (for both the covert and the
cover packet) we performed measure-

ments over a one hop link between two SDR nodes over a wide range of SNR. Figure 9
shows the packet reception rate for the standard modulations used in 802.11a/g and also
the SNR required by the intended receiver of the covert packet and the cover packet. The
minimum SNR levels required for 98% packet reception rate is marked. For the cover
packets, our mechanism is within 1dB of that required by standard 802.11a/g modula-
tion. Given the stochastic nature of the wireless channel and high spatial de-correlation
of the nodes, this difference is indistinguishable to an end user (the user would experi-
ence greater variance simply by moving their receiver a few inches). The covert receiver
requires an SNR of 24dB, similar to the SNR needed to decode a 64QAM packet.
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Fig. 10. Distribution of EVM. A faded ideal QPSK sample is also shown.

6.2 Signal Domain Analysis

A time varying signal is often characterized either by time-domain measurements
(power envelope and peak to average power ratio) or by performing spectral measure-
ments such as power spectral density, phase and magnitude distributions. Since OFDM
encodes data in the frequency domain as coefficients of an inverse Fourier Transforma-
tion, a frequency domain analysis is of utmost importance and hence we conduct a set
of frequency domain analysis, followed by tests in the time domain.

Frequency Domain Tests –
Test 1: EVM of Constellations: The real and imaginary vectors (I & Q) are available
at the output of the Fourier transform unit. EVM is the absolute value of the dispersion
of the I/Q-vector averaged over all OFDM symbols in a packet. Figure 10 shows EVM
with varying SNR for the QPSK and QPSK-IM bounds and for the Dirty Constellation
as well. The inter-quartile distances represents the spread of the I/Q vectors as they are
degraded by channel noise. The EVM of the Dirty Constellation is distributed within
the bounds set for QPSK making it statistically undetectable when compared with the
empirical benchmarks. The plot also shows the average of EVM of a frequency faded
random QPSK measurement, which emphasizes the non-deterministic effects of the
channel that can push the envelope of the set bounds in either direction. That sample
has the same parameters and configuration as the “ideal QPSK”, but with the antenna
moved by 2 inches. We expect the test statistic to be correlated with the variation in the
bounds.

Test 2: Measure of I/Q Dispersion: The relative dispersion of the I/Q vectors result in a
change in the position of the constellation point. Although all receivers employ channel
equalization to compensate for the channel distortion, there are always residual errors
that cause the points to violate their respective decision threshold leading to bit errors.
Figures 11(a) and 11(b) show how the deviation from an ideal QPSK constellation
is distributed within the dataset. Deviations in the the Dirty Constellation packets are
within the bounds for most of the SNR values. To ascertain that the distributions are
indeed similar and highly correlated, and that they are normally distributed about the
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Fig. 11. Dispersion of I and Q vectors from ideal QPSK mapping. The distribution of the I/Q
dispersion is verified with that of ideal QPSK and QPSK-IM using a two sample t-test.

ideal QPSK constellation, we perform a two sample t-test with the ideal QPSK packet
and the QPSK-IM packet. The test statistics for all the SNR are found to be less than
the critical value at the 0.05 significance level, as shown in the bottom part of figure 11.
This also satisfies the test that the I/Q dispersion for all the three types are distributed in
similar fashion and are from the family of normal distribution with statistically similar
means.

Test 3: Phase and Magnitude Distribution: Often it is important to know how the
phase and magnitude vary with the subcarrier index. Figure 13 shows a histogram of
the subcarrier phases of all packets in the collected dataset at two SNR levels, low SNR
(7dB) and high SNR (18dB). At low SNR the subcarriers undergo distortion over a
wider range and so the phases have a wider distribution, while at high SNR the sig-
nal is closer to the ideal QPSK signal. However, in both the SNR levels, the phases
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from the Dirty Constellation packets are distributed similarly to the ideal QPSK and
QPSK-IM. The four distinct peaks at multiples of 45◦ ascertain that Dirty Constella-
tion preserves the phase properties of the QPSK constellation. Similarly, the magni-
tude distribution across the subcarriers show that the magnitude of the subcarriers in
a packet encoded with Dirty Constellation are distributed within the bounds of QPSK
waveforms, as shown in figure 12. It is also seen that there is a high degree of correla-
tion among the subcarrier from the three types of packets: the same multipath affects
all three transmissions. To show that the distributions are correlated we also show the
quantile-quantile (QQ) plot for subcarrier magnitudes of the QPSK-IM and the Dirty
Constellation packets, as shown in figure 14. The linearity of the QQ plot indicates the
signals have similar distributions.

Time Domain Tests –
Test 1: Temporal Variation of Average Signal Power: To test if the Dirty Constella-
tion affects the signal power, we compare the temporal variation with that of a QPSK
packet. In an experiment, 20 packets were captured using the VSA for all three types of
packet at intervals of ≈ 500ms. The average power is shown in Figure 15(a). The power
envelope for the packets are randomly distributed even though the packets all have
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similar signal to noise ratios. Therefore, from this test we conclude that our method
does not change the average signal power that is different from that of other QPSK
packets.
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Test 2: Peak to Average Power Ratio (PAPR): OFDM can produce spurious increase
in the peak power when the packet contains different types of modulations. PAPR is the
measure of the spurious increase in power in the time domain. Figure 15(b) shows the
complementary CDF (CCDF) of the PAPR for the three packet types. Research [2,10]
shows that the PAPR in 802.11a/g can vary over a wide range with various PAPR op-
timization techniques. The PAPR for Dirty Constellation falls within that range and
follows closely with that of QPSK-IM. Hence it cannot be distinguished as an anomaly
compared to the ideal QPSK transmission.

In this section we conducted tests that fail to reject the null hypothesis leading us to
conclude that our method is statistically undetectable when compared to known wave-
forms that spans over a wide range of SNR. The analysis in frequency as well as time
domain ensures the completeness of the testing. Thus, we conclude that our method can
be successfully used as a covert channel that has very low probability of detection.

6.3 Exceptions

In this section we provide examples of Dirty

Fig. 16. Average EVM per subcarrier

Constellation that are easily detectable, indicat-
ing that the methods and bit-mapping of the
covert channel is non-trivial and requires careful
analysis before adopting. One would guess that a
lower embedding rate is better even though that
results in a lower covert data rate. To see that
this is not the case, we changed the embedding
frequency to ≈ 8% (1 in 12 subcarriers). Figure
16 shows the mean EVM of each data subcar-
rier of Dirty-8% compared to that of Dirty-10%.
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Since the Dirty-8% affects 1 in 12 subcarriers, a regular pattern is emphasized in the
EVM of certain subcarriers. The mean EVM for Dirty-8% clearly shows that four out
of 48 subcarriers has significantly higher EVM. On the contrary, Dirty-10% has a more
even distribution of mean EVM in all of its subcarriers because 48 is not evenly divisible
by 10.

7 Security

In §6.3 we discussed that mapping of covert channel is a non-trivial problem. This
mapping sequence could be generated using a pseudo random number (PRN) sequence
generator. Dirty Constellation employs two forms of sequence or pattern: the covert
carrier mapping sequence and the angle of rotation for the covert constellation along
the pre-distortion circle. While one PR sequence controls the embedding frequency, an-
other specifies the rotation parameters, such as the angle of rotation “θ” for the covert
constellation and the direction of rotation. The receiver needs to know which packets
contain covert communication as well as the PRN’s used to mix the covert message
into the cover message. The frequency of covert messages can also be randomly var-
ied without the need for additional coordination. The PRN used to intermix the covert
message is synchronized with the receiver at the beginning of a transmission and can
vary over time using an agreed-upon PRN based on e.g. the time of day. Any existing
encryption method (like AES, DES) can be used in each packet as an added measure to
increase the security of the proposed method. However, due to space constraints, we do
not analyze the details of the security aspects of this technique in this paper.

8 Related Work

Hiding information has been prevalent since ancient times; however hiding data in dig-
ital format is more a recent developments with the popularization of Computer Science.
Much of the early work [12] in data hiding with low probability of detection and in-
terception has been done by altering a few bits of the digital representation of an im-
age [15], a sound [8] or video [16] files.

A relatively recent field of study called network stenography exploits the redundant
fields present in various network protocols headers, like HTTP and TCP. Zander et.
al. [17] provides a comprehensive survey of covert channels in computer network pro-
tocols. All of the methods detailed in the paper are confined to identifying anomalies or
using the protocol properties at the application, transport or the data link layer. Also [11]
proposes another scheme to hide data based on utilizing redundant fields in IPv4 header
while [3] presents a practical analysis of covert channels in wireless LAN protocols
at the transport layer. Information hiding at the application layer of a mobile telephony
network has been discussed in [1]. These protocols depend on altering the data itself,
which is susceptible to higher probability of interception, when the altered data is tested.
Our procedure is significantly different from previous work in the sense that we mod-
ify the way of data transmission without altering the bits of any digitally transmitted
data. In other words, higher layer stenography operates in the digital domain while our
method operates in the analog domain.
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Examples of covert channel implementation utilizing the physical layer are few and
far between. A PHY layer based security scheme has been proposed in [14]. However,
this method works only when more than one user is available to transmit stenographic
packets to a common node. Also it relies on very tight synchronization between mul-
tiple transmitter and single receiver entity, which is not a practical assumption in real
networks and will lead to erroneous formation of the joint constellations leading to de-
graded performance. Therefore, comparing to prior work, our method presents a more
practical solution to implement covert channels at the PHY layer, while making it se-
cure, high capacity, easily implementable and backward compatible.

9 Conclusion

In this paper, we proposed a technique to implement a covert channel at the physical
layer of 802.11a/g wireless protocol. By hiding the covert channel within the perceived
noise at the receiver, we can ensure high degree of undetectability. We have imple-
mented the covert communication method using a SDR prototype and present results of
a wide variety of statistical tests that confirms the low probability of detection of Dirty
Constellation. Higher datarate, very low probability of detection coupled with easy im-
plementation within existing protocol stacks make Dirty Constellation a very successful
method to implement covert channels in wireless communication.
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Abstract. Broadcast encryption is a type of encryption where the sender
can choose a subset from a set of designated receivers on the fly and en-
able them to decrypt a ciphertext while simultaneously preventing any
other party from doing so. The notion of private broadcast encryption
extends the primitive to a setting where one wishes to thwart an attacker
that additionally attempts to extract information about what is the set
of enabled users (rather than the contents of the ciphertext).

In this work we provide the first lower bounds for the ciphertext size
of private broadcast encryption. We first formulate various notions of
privacy for broadcast encryption, (priv-eq, priv-st and priv-full) and clas-
sify them in terms of strength. We then show that any private broadcast
encryption scheme in the sense of priv-eq (our weakest notion) that sat-
isfies a simple structural condition we formalize and refer to as “atomic”
is restricted to have ciphertexts of size Ω(s ·k) where s is the cardinality
of the set of the enabled users and k is the security parameter. We then
present an atomic private broadcast encryption scheme with ciphertext
size Θ(s · k) hence matching our lower bound that relies on key privacy
of the underlying encryption. Our results translate to the setting priv-full
privacy for a ciphertext size of Θ(n · k) where n is the total number of
users while relying only on KEM security. We finally consider arbitrary
private broadcast encryption schemes and we show that in the priv-full
privacy setting a lower-bound of Ω(n+k) for every ciphertext is imposed.
This highlights the costs of privacy in the setting of broadcast encryp-
tion where much shorter ciphertexts have been previously attained with
various constructions in the non-privacy setting.

1 Introduction

Consider the setting of an encrypted file system. Each file is encrypted so that
only a designated subset of the set of users of the system can retrieve it. An
attacker, who may be controlling a set of system users should be incapable of
recovering the contents of the file provided that none of the controlled users
belong to the enabled set for the file.

This setting is one of the application domains for broadcast encryption, a
cryptographic primitive introduced by Fiat and Naor [9]. Broadcast encryption
is also suitable for application to the setting of content distribution and is indeed
widely used as the encryption system of DVDs (for example in the form of the
AACS [1]) and other media content carrying mechanisms. A variety of schemes
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have been developed over the years with the main objective of reducing the
ciphertext length. Currently in the private key setting (see e.g. [14]) there are
schemes that achieve a ciphertext length of Θ(r · k) where r is the number of
revoked users and k is the security parameter; in the public-key setting, using
bilinear maps the scheme of [4] achieves a ciphertext length of O(k) with public
key of O(n · k) for any set of enabled users and the scheme of Delerablée [6]
achieves a ciphertext length O(k) while the public-key is of size Θ(s ·k) assuming
that sets of enabled users never exceed cardinality s.

Barth, Boneh and Waters [3] put forth the notion of private broadcast en-
cryption. Their objective is to consider another class of attacks for broadcast
encryption where the goal of the attacker is to discover information about the
set of enabled users rather than decrypting a ciphertext for which it is not en-
abled. Protecting the privacy of the users in the enabled set can be an equally
and some times perhaps an even more important goal than the privacy of the
message. Indeed, hiding the information that one is a recipient of a message, from
other users and even from other recipients of the same message, is a critical se-
curity feature in any setting where the fact of receiving a message at a certain
time or frequency reveals sensitive personal characteristics of the recipient. For
example, in a file system, an encrypted system file under a certain account may
reveal that the said account has a certain level of system privileges and this fact
can assist an attacker in a more complex attack vector.

To address this important problem, Barth et al. [3] introduced a security
model for private broadcast encryption and provided a first solution. The scheme
of [3] applies to the public-key setting and has the characteristic of being linear
in the number of users, i.e., has a ciphertext of length Θ(s · k) where s is the
number of enabled users. Given that, as shown above, previously known (non-
private) schemes achieve much better ciphertext lengths, it is an important open
question to improve this efficiency characteristic for private broadcast encryption
schemes or demonstrate that no further improvement is possible.

In this work, motivated by the above, we provide various results suggesting
the latter state of affairs by proving tight lower bounds for the ciphertext length
of private broadcast encryption schemes. We outline our results below.

First, we study the formalization of the notion of privacy in the context of
private broadcast encryption. We introduce three security formulations. The first
notion we consider is inspired by that in [3] : it allows the adversary to interact
with the broadcast encryption system by obtaining encryption and decryption
queries as well as corrupting recipients. Upon completion of a first stage the
adversary provides two target sets of users to be revoked R0,R1.Then, provided
that |R0| = |R1|, the adversary receives as a challenge a message M and an
encryption of M with the set of users Rb revoked where b is a random bit. The
adversary has to guess the bit b under the constraint that it does not submit the
challenge ciphertext to a decryption oracle and does not control any user in the
symmetric difference R0�R1. We call this level of privacy priv-eq.

We observe priv-eq is quite insufficient for many reasonable attack settings.
Specifically, for a certain ciphertext the adversary may be absolutely certain that
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the set of users R is revoked and only wishes to test whether an additional target
user i is also revoked or not. Clearly this attack objective is not captured by the
above definition since in this case it holds that R0 = R and R1 = R ∪ {i}, two
sets of different cardinality. We formalize this notion of privacy as priv-st. It is
very easy to see that there exist schemes that satisfy priv-eq and fail priv-st; in
particular, any scheme that leaks the cardinality of the set of revoked users is
such a candidate and in fact the scheme of [3] is one such scheme.

Taking this one step further we introduce full privacy to be the property
where the adversary cannot distinguish any two sets R0,R1; we term this notion
as priv-full. We then prove that in fact priv-st and priv-full are equivalent.

Armed with this definitional basis we proceed to our lower bounds. We first
consider the case of atomic broadcast encryption schemes. Atomic schemes have
the characteristic that the ciphertext can be broken to a number of discrete
components and each recipient when it is decrypting it applies a decryption
function to one or more of those components. The private schemes of [3] satisfy
this condition and it is also quite common in the wide class of combinatorial
broadcast encryption schemes; a partial list of non-private atomic schemes is the
following ([14],[12],[11],[16],[2]).

For such atomic schemes, we prove that any scheme that satisfies the priv-
eq condition is susceptible to an attack against privacy in the case when the
ciphertext drops below s ·k where s is the cardinality of the set of enabled users.
This means that a lower bound of Ω(s ·k) is in place. We then present an atomic
private broadcast encryption scheme with this complexity hence showing the
lower bound is tight. The scheme itself is a standard linear length construction;
the scheme applies equally to the symmetric and public-key setting and abstracts
the necessary properties needed for privacy to the existence of secure key-private
encryption mechanism in the KEM sense [15]. We present a similar set of results
for the priv-full level of privacy; in this case KEM security is sufficient and the
corresponding tight bound is Θ(n · k).

Having settled the case of atomic broadcast encryption, we switch our focus
to the setting of general private broadcast encryption schemes (that are not
necessarily atomic). We first show using an information theoretic argument that
any broadcast encryption scheme should exhibit some ciphertexts of lengthΩ(n+
k). Using this as a stepping stone we then prove that if a broadcast encryption
scheme is assumed to be private in the sense of priv-st, priv-full, it will have to
provide a ciphertext of length Ω(n + k) for any set of revoked users R hence a
complexity bound sublinear in the number of users is impossible to be achieved
if full privacy is desired.

Related Work. Independently of the present work, Libert, Paterson and Quaglia
[13] have studied the problem of “anonymous broadcast encryption” where the
main focus is to enable efficient decryption in the setting where the ciphertext
is of length Θ(s · k). In this case the known schemes that satisfy privacy require
from the users to test sequentially until they find the proper element they can
decrypt. In the public-key setting this can be an arduous task if the number
of enabled users is large; by using some randomized tagging mechanism it is
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possible to improve the decryption time complexity. Our modeling is consistent
with that of [13] and our lower bounds readily apply to their setting as well.

Fazio and Perera in [8], introduce a weaker notion of anonymity compared
to the one considered here and in previous works, called outsider-anonymity.
An Outsider-anonymous broadcast encryption scheme ensures that a user in the
revoked set can gain no information about the enabled set while a member of
the enabled set may extract information about some other users in it. Taking
advantage of this relaxation to the anonymity definition, the authors employ an
atomic scheme, i.e. the public key variant of Complete Subtree method [7], in
order to achieve sublinear ciphertext size.

2 Privacy Notions for Broadcast Encryption

Broadcast encryption is a triple 〈KeyGen,Encrypt,Decrypt〉 where KeyGen gen-
erates a set of n keys for any given n and Encrypt receives a set of revoked users
R ⊆ [n] that should be barred from decrypting. We define privacy in broadcast
encryption using an experiment between a challenger and an adversary. The ad-
versary is given access to an Encryption Oracle which means that he is capable
of obtaining ciphertext-message pairs that can be decrypted by an enabled set
of his choice. Also, he is able to derive the secret keys of a selected set of users,
by submitting a number of queries to a Corruption Oracle. We will distinguish
three levels of privacy in our formalization. In the most general type (full pri-
vacy), priv-full, the adversary should be unable to distinguish between any two
sets of revoked users as long as the corrupted users do not cover the symmet-
ric difference of the two sets. In the case of “single target” privacy, priv-st the
adversary wishes to understand whether a single (target) user is included in an
(otherwise) known revoked set. Finally, in privacy among equal sets, priv-eq, is
identical to the case of priv-full with the additional restriction that the adver-
sary should challenge on two sets with equal cardinality. Formally, we have the
following:

EncryptionOracle(R) CorruptOracle(u) DecryptionOracle(u, c)
retrieve ek T ← T ∪ {u} D ← D ∪ {(u, c)}
m

r← M return Ku retrieve Ku

c ← Encrypt(ek,m,R) return Decrypt(Ku, c)
return (c,m)

Experiment Exppriv-xA (1n, 1λ)
(ek,K1, . . . ,Kn) ← KeyGen(1n, 1λ)
T ← ∅
(state,R0,R1) ← ACorruptOracle(·),EncryptionOracle(·),DecryptionOracle(·)(1λ)
b

r← {0, 1}
m

r← M
c∗ ← Encrypt(ek,m,Rb)
b∗ ← ACorruptOracle(·),EncryptionOracle(·),DecryptionOracle(·)(guess, (c∗,m), state)
if
(
∃i ∈ T such that i ∈ (R0�R1)

)
∨
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∃(i, c) ∈ D such that i ∈ (R0�R1) and c = c∗

)
then output a random bit else if b = b∗ then return 1 else 0;

Definition 1 (Privacy). Let Φ be a fully exclusive broadcast encryption scheme
with n receivers. We say that Φ is private priv-x, if for all PPT adversaries A,

Prob[Exppriv-xA (1n, 1λ) = 1] ≤ 1

2
+ ε,

where ε is a negligible function of λ and λ is the security parameter.

Based on the definition above, we provide three different definitions for privacy
whose differences concern the form of the challenge (R0,R1).

– We call Exppriv-full the experiment in which R0,R1 can be any set which is
subset of [n].

– With Exppriv-st, we define the experiment where R0,R1 have to be of the form
R and R ∪ {i}, accordingly.

– With Exppriv-eq, we define the experiment where R0,R1 have to be of equal
size. Consequently, it is necessary to add one more or-factor, (|R0| �= |R1|),
in the condition of the last line of the experiment, to guarantee that the
experiment outputs a random bit in case the adversary’s challenge sets are
of unequal size.

We then proceed to show relations between the three notions of privacy.

Theorem 1. 1. Privacy definitions priv-st and priv-full are equivalent.
2. Privacy definition priv-full implies the privacy definition priv-eq.
3. Privacy definition priv-eq does not imply privacy definition priv-st.

Proof. 1. We need to prove two directions in order to show that these defini-
tions are equivalent. The easy direction is the one which says that privacy
definition priv-full implies privacy definition priv-st. If we assume that there
exists a PPT adversary A that breaks privacy definition priv-st challenging a
pair (R,R∪ {i}) with non-negligible advantage α, this adversary also breaks
privacy definition priv-full considering that R0 = R and R1 = R ∪ {i}. The
opposite direction will be derived from lemma 1.

2. Assuming that there exists a PPT adversary that breaks privacy definition
priv-eq having advantage α, then the same adversary does also break privacy
definition priv-full with non-negligible advantage α.

3. It suffices to provide a broadcast encryption scheme which satisfies the defi-
nition priv-eq but not private according to the definition priv-full. Let Φ be a
broadcast encryption scheme which is priv-eq. Now consider Φ′ to be exactly
like Φ but with the added feature that the encryption algorithm appends at
the end of all ciphertexts the cardinality of the revoked set. It is obvious that
this scheme is inherently incapable of satisfying privacy definition priv-full
(while it remains priv-eq). Such schemes exist under standard cryptographic
assumptions as we will see in section 4.

�
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Lemma 1. Let Φ be a broadcast encryption scheme with n receivers. If there ex-
ists a PPT adversary that has advantage α in breaking privacy definition priv-full,
then there exists a PPT adversary that breaks privacy definition priv-st with prob-
ability at least 1/2 + α/n.

Sketch of Proof: Let A be a PPT adversary that breaks priv-full definition with
advantage α. Conditioning on the fact that A breaks privacy for a pair of sets
(R0,R1), we consider a sequence of sets P0, ..., Pk−1, where k = |R0�R1| + 1,
P0 = R0 and Pk−1 = R1. We set m = |R0 \R1| and we define Pi as follows: if i ∈
{0, . . . ,m} Pi = Pi−1 \ {j}, for some user j ∈ R0 \R1, otherwise Pi = Pi−1∪{j′}
for some user j′ ∈ R1\R0. Namely, all the members of this sequence are supersets
of R0∩R1 and every pair of consecutive sets are of the form (R,R∪{i}) for some
R. We denote as A1 the part of the algorithm A that corresponds to the training
stage of the experiment, i.e. before the output of challenge, while with A2 we
denote A’s steps after the receipt of the response. Together with the challenge
pair (R0,R1), A1 outputs a random variable state.

We construct a PPT adversary B that breaks definition priv-st as follows: B
runs A1 until he outputs the challenge pair (R0,R1) together with state. Then
B makes a guess j ∈ {0, . . . , k − 2} and challenges the corresponding pair. Due
to the structure of the sequence, if j ∈ {0, . . .m − 1} B challenges (Pj+1, Pj),
otherwise challenges (Pj , Pj+1). The received response is provided together with
state to A2. Then, if j ∈ {0, . . . ,m − 1} B outputs the complement of A2’s
output, otherwise outputs A2’s output. We conclude that B breaks definition
priv-st with advantage α/(k − 1) which is at least α/n. �

3 Lower Bounds for Atomic Broadcast Encryption
Schemes

Definition 2. An atomic broadcast encryption scheme with n receivers is de-
fined as a tuple of algorithms (KeyGen,Encrypt,Decrypt) :

– KeyGen: On input 1n, 1λ, it generates the set of keys (ek, SK1, ..., SKn), where
ek is the encryption key and SKi is the decryption key assigned to a user i.
Each decryption key SKi is a set which consists of elements {skij}�j=1 (we
call those atomic keys) for some value � which is not necessarily the same for
each user. It also produces the description of a language L which encodes all
the possible subsets of users that may be provided as input to the encryption
function.

– Encrypt: On input a message m, the encryption key ek and a revocation in-
struction R ∈ L, it outputs a ciphertext C such that C ← Encrypt(ek,m,R)
which among possibly other values, contains a number of components c1, ..., cρ
(we call those the atomic ciphertexts of C).

– Decrypt: On input a ciphertext C, such that C ← Encrypt(ek,m,R) and a
decryption key SKi: It outputs m if i /∈ R and some value x �= m if i ∈ R.
Depending on the instantiation, x could be the symbol ⊥, or some plaintext
sampled independently of m.
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For atomic broadcast encryption schemes we further assume the existence of a de-
terministic algorithm called Decryptmatching which matches the atomic cipher-
texts of a ciphertext tupleC with the atomic keys under which they are decrypted.
In all cases we know, this algorithm is in part of the Decryption algorithm.

Proposition 1. The broadcast encryption schemes that rely on the subset cover
framework [14] are atomic. The private schemes of [3] are atomic.

Given that in this section we will provide lower bounds, we provide a weaker
definition of privacy which departs from definition priv-eq in the existence of
the CorruptOracle and DecryptionOracle in the security experiment. More pre-
cisely, the adversary is not given access to a Decryption Oracle and instead of
being provided access to a Corruption Oracle, he is given access to an Atomic
Decryption Oracle which operates as follows:

AtDecOr(j, t, C) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if no atomic ciphertext in C is supposed to be decrypted
under the key skjt

⊥ if the number of keys in the set SKj are less than t
1 if there exists an atomic ciphertext that can be decrypted

under the key skjt

EncryptionOracle(R) AtDecOr(j, t, C)
retrieve ek E ← E ∪ {(j, t)}
m

r← M return x ∈ {0, 1,⊥}
c ← Encrypt(ek,m,R)
return (c,m)

Experiment Exppriv-eq-atA (1n, 1λ)
(ek,K1, . . . ,Kn) ← KeyGen(1n, 1λ)
T ← ∅
(state,R0,R1) ← AAtDecOr(·),EncryptionOracle(·)(1λ)
b

r← {0, 1}
m

r← M
c∗ ← Encrypt(ek,m,Rb)
b∗ ← AAtDecOr(·),EncryptionOracle(·)(guess, (c∗,m), state)
if
(
∃(i, ·) ∈ E such that i ∈ (R0�R1)) ∨ (|R0| �= |R1|)

then output a random else if b = b∗ then return 1 else 0;

The experiment Exppriv-eq-atA is defined identically to Exppriv-eqA with the oracle
AtDecOr substituting the corruption and decryption oracles.

Definition 3. Let Φ be a broadcast encryption scheme with n receivers. We say
that Φ is private priv-eq-at, if for all PPT adversaries A,

Prob[Exppriv-eq-atA (1n, 1λ) = 1] ≤ 1

2
+ ε,

where ε is a negligible function of λ and λ the security parameter.
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The following proposition is easy:

Proposition 2. Any broadcast encryption scheme Φ that satisfies privacy defi-
nition priv-eq, does also satisfy privacy definition priv-eq-at.

Proof. It is easy to see that assuming the existence of a PPT adversary A that
has non-negligible advantage in breaking privacy definition priv-eq-at, there is a
PPT adversary B that breaks privacy definition priv-eq with the same advantage
as A executing A inside him. The proof relies on the fact that B can perfectly
answer the queries submitted by A to the Atomic Decryption Oracle because of
his access to a Corruption Oracle.

Theorem 2. (Lower bound for atomic schemes) Let Φ be an atomic broadcast
encryption scheme and suppose that there exists an enabled set S ⊆ [n] such that
the number of atomic ciphertexts included in the prepared ciphertext CS are less
than |S|. Then, the scheme is not private according to definition priv-eq-at.

Proof. We will assume that for every R the atomic ciphertexts produced by
the algorithm Encrypt are always decrypted under the same set of atomic keys
(in the other case, if the algorithm Encrypt flips a number of coins in order to
decide the atomic keys that will be used, then the same argument we present
below can take place with the only difference that in this case the adversary
will have to run a number of times the algorithm Encrypt for the set R0 to
approximate the distribution). Let us assume that there exists such a set S0 and
let CS0 be a ciphertext produced by the algorithm Encrypt on input ek,m,R0

with R0 = [n] \ S0. Then, according to the pigeonhole principle, there exists at
least one atomic ciphertext ck in the ciphertext CS0 that can be decrypted by at
least two users i, j ∈ [n]. As a result, the ciphertext ck can be decrypted under an
atomic key skm which is a member of both sets SKi, SKj , where SKi, SKj are the
sets of atomic decryption keys of i and j accordingly. Given this, an adversary
A that breaks privacy can be constructed following the logic presented below:

1. If i, j ∈ [n] are two users which decrypt the same atomic ciphertext in a
ciphertext tuple CS0 , where CS0 ← Encrypt(ek,m,R0), select a set R1 such
that |R1| = |R0|, i ∈ R1 and j /∈ R1. Choose arbitrarily the other |R1| − 1
members of R1 and challenge R0,R1.

2. When the response C∗ is received, issue a query R0 to the Encryption Oracle
which is replied with a ciphertext C.

3. Submit a number of queries of the form (j, t, C) to the Atomic Decryption
Oracle, for all the possible values of t, starting form t = 1, until AtDecOr
returns ⊥. If we ignore the symbol ⊥, the output of this procedure is a
bitstring x1 of length s, where s is the number of atomic keys included in
the decryption key of SKj .

4. Repeat the same procedure submitting queries on inputs of the form (j, t, C∗)
and obtain a bitstring x2 of length k (note that this is allowed since j is
enabled in both challenge ciphertexts). If x1 �= x2, then answer 1 else 0. �
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Corollary 1. Any atomic broadcast encryption scheme with n receivers and
ciphertext length less than n cannot be private according to definition priv-full.

Proof. If R = ∅ and the atomic ciphertexts are less that n, the assumption of
the Theorem 2 takes place for S = [n]. It is easily observed that the fact that
the challenge sets R0,R1 were of equal length played no crucial role in the proof
of Theorem 2. Thus, we can apply exactly the same arguments with R = ∅ being
the one set in the challenge.

Corollary 2. For any atomic broadcast encryption scheme Φ with n receivers
which is private according to priv-eq definition, it holds that for any enabled set
S ⊆ [n], the ciphertext length is Ω(k · |S|) bits, where k is the maximum size
of an atomic ciphertext. For any broadcast encryption scheme which is private
according to priv-full definition, the ciphertext length is Ω(k ·n) for all the enabled
sets S ⊆ [n].

4 Constructions of Atomic Private Broadcast Encryption
Schemes

In this section, we present matching schemes for the lower bounds of the previ-
ous section. We focus on CCA-1 security for simplicity but our results can be
easily extended to CCA-2 security. Due to lack of space most of our results are
presented without proofs; full proofs are presented in the full version. We first
consider security in the sense of key encapsulation mechanisms (KEM) defined
with the aid of the following experiment:

Experiment ExpKEM
A (1λ)

Select k at random.
aux ← AEnck(·),Deck(·)

m0,m1
r← M;

b
r← {0, 1}; c ← Enck(mb)

b∗ ← AEnck(·)(m1, c)
if b = b∗ then return 1 else 0;

Definition 4. We say that the symmetric encryption scheme (Gen,Enc,Dec) is
KEM -secure if for any probabilistic polynomial time adversary A it holds that

Prob[ExpKEM
A (1λ)] ≤ 1

2
+ ε,

where ε is a negligible function of λ.

Experiment ExpBE−KEM
A (1n, 1λ)

(ek,K1, . . . ,Kn) ← KeyGen(1n, 1λ)
T ← ∅
R ← ACorruptOracle(·),EncryptionOracle(·),DecryptionOracle(·)(·)
b

r← {0, 1}
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m0,m1
r← M

c∗ ← Encrypt(ek,mb,R)
b∗ ← AEncryptionOracle(·)(c∗,m1)
If T � R then output a random bit
else if b = b∗ then return 1 else 0;

Definition 5. Let Φ be a broadcast encryption scheme with n receivers. We
say that a broadcast encryption scheme Φ is KEM-secure if for any probabilistic
polynomial time adversary A it holds that

Prob[ExpBE−KEM
A (1n, 1λ) = 1] ≤ 1

2
+ ε,

where ε is a negligible function of λ.

Experiment Expkey-privA (1λ)
Select k0 ← Gen(1λ); k1 ← Gen(1λ)
aux ← AEnck0 (·),Enck1 (·),Deck0 (·),Deck1 (·)

m
r← M

b
r← {0, 1};c ← Enckb

(m)
b∗ ← AEnck0 (·),Enck1 (·)(m, c)
if b = b∗ then return 1 else 0;

Definition 6. We say that the symmetric encryption scheme (Gen,Enc,Dec) is
key private if for any probabilistic polynomial time adversary A it holds that

Prob[Expkey-privA (1λ)] ≤ 1

2
+ ε,

where ε is a negligible function of λ.

Scheme 1. This scheme is defined as a tuple of algorithms
(KeyGen,Encrypt,Decrypt) which are described below. A basic component
of the scheme is the underlying symmetric encryption scheme (Gen,Enc,Dec).

– KeyGen : On input 1n, 1λ :
• For any user i ∈ [n] run the algorithm Gen(1λ) which generates a key ki.
The encryption key is ek = {kj}j∈[n].

– Encrypt: On input a message m and a revoked set R:
• By employing the scheme (Gen,Enc,Dec) compute a ciphertext tuple c
as follows: For each i ∈ [n] \ R compute Encki(m). Perform a random
permutation f to the ciphertext components which results to a ciphertext
tuple of length s, where s is the cardinality of the set [n] \ R.

– Decrypt: On input a ciphertext c = 〈c1, ..., cs〉 and a key ku:
• Starting from c1, try to decrypt each ciphertext component under the
key ku. If there exists cj that is supposed1 to be decrypted by u, return
Decku(cj).

1 In order to determine this strong correctness is required; this notion means that
applying a wrong key to a ciphertext results to a special fail message to be returned.
This can be achieved e.g., by appending a value H(M) to all plaintexts M (here H
is a hash function); we omit further details.
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Scheme 2. This scheme is defined as a tuple of algorithms
(KeyGen,Encrypt,Decrypt) which we describe below. A basic component
of the scheme is the underlying symmetric encryption scheme (Gen,Enc,Dec).

– KeyGen : On input 1n, 1λ :
• For any user i ∈ [n] run the algorithm Gen(1λ) which generates a key ki.
The encryption key is ek = {kj}j∈[n].

– Encrypt: On input a message m and a revoked set R:
• By employing a scheme (Gen,Enc,Dec) compute a ciphertext tuple c
of length n as follows: For any user i ∈ [n], if i ∈ R choose randomly
a message m′ ∈ M, compute Eki(m

′) and place Eki(m
′) at the i-th

position. If i /∈ R, compute Encki(m) and place it to the i-th position.
– Decrypt: On input a ciphertext c = 〈c1, ..., cn〉 and a key ku of a user u:

• Compute Decku(cu).

Theorem 3. If Scheme 1 satisfies that the underlying scheme (Gen,Dec,Enc)
key-private then Scheme 1 is private according to the definition priv-eq.

Theorem 4. If Scheme 2 is a broadcast encryption scheme in which the under-
lying scheme (Gen,Dec,Enc) is KEM -secure, then Scheme 2 is private according
to definition priv-full.

It remains to show that the broadcast encryption schemes Scheme 1 and Scheme
2 are BE-KEM-secure, i.e. they are secure under the definition 5. The proofs of
security are similar and we prove this only for Scheme 2.

Theorem 5. If the underlying encryption scheme (Gen,Enc,Dec) is KEM-secure
then Scheme 2 is BE-KEM secure.

Proof. Let A be a PPT adversary that breaks BE-KEM security such that
Prob[ExpBE−KEM

A (1n, 1λ) = 1] ≥ 1
2 + α, for α non-negligible. We define a se-

quence of experiments ExpA0 , ...,Exp
A
n , where Exp

A
0 is the experiment ExpBE−KEM

A .
We define as ExpAv the experiment which operates exactly as ExpA0 modified in a
way that the first v enabled users will be given encryptions of randomly chosen
plaintexts rather than the encryption of the appropriate plaintext. If s is the size
of the enabled set, for v = s, s+ 1, ..., n the experiments are the same.

Now, let p0 = Prob[ExpA0 = 1] and p1 = Prob[ExpA1 = 1]. Moreover, let B be
an attacker against KEM-security of the scheme (Gen,Enc,Dec). B guesses i to
be the user he will play ExpKEM

B and then running n − 1 times the algorithm
Gen(1λ) he generates the private keys for the other users. When A challenges
R, B checks whether i is the first enabled user and returns 0 if this does not
hold. Otherwise, when B receives (m1,Enck(mb)), he places Enck(mb) at the
first position and then chooses randomly a message m′ from the plaintext space
and flips a perfect coin b′. B sets m′

b′ = m1 and m′
1−b′ = m′ and encrypts the

message m′
b′ for the enabled users except for i. B encrypts a message m′′ for

the revoked users which is randomly chosen from the plaintext space. B always
sends to A the message m′

1 together with the prepared ciphertext tuple.
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Due to the fact that for all B, Prob[ExpKEM
B (1λ) = 1] ≤ 1

2
+ε, it can be proven

that p0−p1 ≤ 2n·ε. Similarly, we have that for all i ∈ {0, 1, .., n}, pi−pi+1 ≤ 2n·ε.
Summing these relations for both sides, we have that p0 − pn ≤ 2n2 · ε. Because
of pn = 1/2, it holds that Prob[ExpA0 = 1]− 1/2 ≤ 2n2 · ε, which contradicts the
initial assumption. �

5 Lower Bounds for General Broadcast Encryption
Schemes

We now turn our attention to the setting of general, unrestricted broadcast
encryption schemes. We will prove that any scheme that is private in the sense
of priv-st, priv-full has ciphertext length that with reasonably high probability is
linear. We denote as |x|, the number of bits of the value x.

Theorem 6. For all the sets R ⊆ [n], we define the random variable

SR : Encrypt(ek,m,R) → |Encrypt(ek,m,R)|,
where ek is an encryption key and m is a plaintext chosen from a message space
M. Suppose that Φ is a broadcast encryption scheme with n receivers, and let
R,R′ be two sets. If Φ is private according to priv-full definition, then for all
R,R′ ⊆ [n] and for all the PPT statistical tests D, it holds that ΔD[SR, SR′ ] < ε.

Proof. Suppose that there exists a pair of sets R,R′ and a PPT statistical test
D such that ΔD[SR, SR′ ] ≥ α, with α non-negligible. Then, a PPT adversary A
breaks definition priv-full with advantage at least α/2 following the steps below.

Phase 1: Challenge R,R′.
Phase 2: On input 〈m,Encrypt(ek,m,Rb)〉:
– Compute |Encrypt(ek,m,Rb)|.
– Run D on input |Encrypt(ek,m,Rb)|.
– Return the output of D.

The adversary can execute the algorithm D a number of times in order to un-
derstand whether it is biased to 1 on input SR or vice versa. Without loss of
generality we assume that D returns 1 with greater probability in case of input
|Encrypt(ek,m,R′)|. As a result, we have that

Prob[D(SR′) = 1]− Prob[D(SR) = 1] ≥ α.

We note that if D is biased to 1 on input SR we can consider the adversary A
in order to obtain the same results.

Prob[Exppriv-full
A (1λ) = 1] =

1

2

(
Prob[Exppriv-fullA = 1|b = 0] + Prob[Exppriv-full

A = 1|b = 1]
)

=
1

2

(
Prob[D(SR) = 0] + Prob[D(S′

R) = 1]
)

≥ 1

2
+

α

2
.

�
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Next, we will prove a lower bound on the ciphertext size that any private broad-
cast encryption scheme can achieve. Our proof is based on a standard information
theoretic fact (cf. [5]), which is presented below:

Fact 1. Suppose there is a randomized procedure Enc : {0, 1}n × {0, 1}r →
{0, 1}m and a decoding procedure Dec : {0, 1}m × {0, 1}r → {0, 1}n such that

Probr∈Ur [Dec(Enc(x, r), r) = x] ≥ δ.

Then, m ≥ n− log
1

δ
.

Theorem 7. Let Φ be a broadcast encryption scheme with n receivers and let
ε(λ) be the upper bound of all the probabilities Prob[ER,i]. For any R ⊆ [n] and
i ∈ [n], we denote as ER,i the event

(Decrypt(SKi, c) �= m ∧ i /∈ R) ∨ (Decrypt(SKi, c) = m ∧ i ∈ R),

where c = Encrypt(ek,m,R). If for any λ there exists some β for which ε(λ) <
1

2n
− β

n
, then there exists a set R ⊆ [n] such that Prob[SR ≥ n] > β.

Proof. Recall the definition of SR:

SR : Encrypt(ek,m,R) → |Encrypt(ek,m,R)|.

We define a procedure f which is an encoding procedure of a set R ⊆ [n], while
f−1 is a decoding procedure. The procedure f is a randomized procedure that
takes as input two arguments ρ ∈ {0, 1}r and R ⊆ [n] and outputs ψ. We note
that ρ depends on the security parameter λ and represents all the coins needed
in order for the system to setup and the encryption. The procedures f and f−1

are defined as follows:
f(ρ,R):

1. Using ρ, compute a message m and the key ek which will be used by the
encryption algorithm.

2. Compute Encrypt(ek,m,R).
3. If |Encrypt(ek,m,R)| ≥ n, output 0n−1 else Encrypt(ek,m,R).

f−1(ψ, ρ):

1. Use ρ to compute SK1, ..., SKn.
2. Execute the following algorithm:

R := ∅.
For i = 1 to n

if Decrypt(SKi, ψ) �= m then R := R ∪ {i} else R.

Considering the definition of the decoding procedure, we say that f−1 fails when
its result is R′ �= R, given that R is the encoded set. This happens either in case
an event ER,i takes place or the output of f is 0n−1. With δ we denote the
probability that the procedure f−1 succeeds.
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In order to prove the theorem, we assume that for any λ for which there exists

a β such that ε(λ) <
1

2n
− β

n
it holds that Prob[SR ≥ n] ≤ β for all R ⊆ [n]. Let us

fix a value λ. From the above assumption, we have that Prob[f outputs 0n−1] ≤ β
which subsequently means that Prob[f−1 fails ] ≤ n · ε(λ)+β. Consequently, we
have that δ ≥ 1− n · ε(λ)− β.

Due to the fact that the length of the encoding produced by f−1 is always
n− 1 bits at most, using the fact 1, we have that

n− 1 ≥ n− log
1

δ
⇒ ε(λ) ≥ 1

2n
− β

n
, (1)

which is a contradiction. �

Lemma 2. Let Φ be a private broadcast encryption scheme with n receivers and
λ a security parameter for which β < 1/2 and β non-negligible in λ. Then, for
all R ⊆ [n], it holds that Prob[SR ≥ n] ≥ α, for α non-negligible.

Proof. We assume that there exists a set R0 such that Prob[SR0 ≥ n] < δ, where
δ is a negligible function of λ. We construct the following statistical test D:

D: On input SR: If SR ≥ n return 1 else return 0.

According to the Theorem 7, we have that there exists a set R1 for which
Prob[SR1 ≥ n] > β. As a result, we have that

Prob[D(SR1) = 1]− Prob[D(SR0) = 1] > β − δ,

which is non-negligible. This contradicts to Theorem 6. �

Corollary 3. For any broadcast encryption scheme Φ which is private in the
sense of definition priv-full,priv-st, the ciphertext is of length Ω(n+ k).

The additive factor k stems from the fact that at least one ciphertext should be
present in the encryption of a message m for any enabled set S.

6 Conclusion

The provided lower bounds highlight the high costs that privacy may incur for
broadcast encryption schemes. The fact that privacy for atomic schemes requires
a linear number of ciphertexts in the number of users, leaves essentially no room
for improvement in terms of the ciphertext size. If the objective is to attain
full privacy, this result suggests that our attention should be turned to non-
atomic schemes. In the non-atomic case, our lower bound is much weaker. It is
thus an interesting open problem to design a fully private scheme with sublinear
ciphertext size.
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Abstract. We present traffic analyses of two anonymous communica-
tions schemes that build on the classic Crowds/Hordes protocols. The
AJSS10 [1] scheme combines multiple Crowds-like forward channels with
a Hordes reply channel in an attempt to offer robustness in a mo-
bile environment. We show that the resulting scheme fails to guarantee
the claimed k-anonymity, and is in fact more vulnerable to malicious
peers than Hordes, while suffering from higher latency. Similarly, the
RWS11 [15] scheme invokes multiple instances of Crowds to provide re-
ceiver anonymity. We demonstrate that the sender anonymity of the
scheme is susceptible to a variant of the predecessor attack [21], while
receiver anonymity is fully compromised with an active attack. We con-
clude that the heuristic security claims of AJSS10 and RWS11 do not
hold, and argue that composition of multiple anonymity channels can in
fact weaken overall security. In contrast, we provide a rigorous security
analysis of Hordes under the same threat model, and reflect on design
principles for future anonymous channels to make them amenable to such
security analysis.

1 Introduction

The design of anonymous communication channels is a well established field [4]
with applications in election protocols, censorship resistance and support of free
speech. Several proposed anonymous communications channels take advantage
of specific networking layers, such as ISDN telephony [14], TCP [9], email [6]
or ad-hoc networks [11]. Similarly, the AJSS10 [1] channel is crafted for use in
hybrid mobile networks, where a local peer-to-peer network of mobile devices
(using WiFi) is provided with wide area connectivity by a mobile (3G, GPRS)
telephony provider.

The degree of security for an anonymity system comes down to the difficulty
an adversary has in identifying the originators or intended receivers of messages.
The security guarantees can be formalized by probabilities over senders or re-
ceivers [19], or by equivalence classes of possible actors (anonymity sets) [13].
A probability distribution over all possible actors yields more fine-grained guar-
antees than a division of the actors into equivalence classes, and probabilistic
modelling is thus also the approach we take in this paper.

The capabilities of adversaries are represented by different threat models
against which the security of an anonymity system must be evaluated, such
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as the global passive adversary [12], a fraction of malicious insiders [16], or spe-
cific corrupt entities. All schemes discussed in this paper aim to protect the
identity of the sender from a malicious receiver as well as malicious insiders,
while the RWS11 [15] scheme takes a step further by attempting to guarantee
the anonymity of the receiver.

Performance metrics—communication overhead and latency as well as relia-
bility—are important for anonymous communications as for any other network-
ing primitive. Crucially, low performance of the communication channel leads to
low usability of the system, which might in itself reduce anonymity [8]. Attacks
on performance combined with retransmission mechanisms to ensure reliability
may in fact lead to loss of anonymity [2].

Our contribution in this paper comprises three parts. We start by reviewing
the classic Crowds [16] and Hordes [17] systems. We augment the security anal-
ysis of Hordes by proving new analytic bounds on sender anonymity in the case
of a malicious receiver controlling a subset of nodes in the network. We proceed
by studying the security and performance of two schemes that build on Crowds,
AJSS10 [1] and RWS11 [15], and in both cases, demonstrate how the compo-
sition of multiple anonymous channels results in weaker anonymity as well as
poorer performance. Finally, we reflect on our findings to provide a set of sanity
checks for protocol designers. The key intuition behind our results is that mul-
tiple anonymous channels in general compose poorly: one cannot automatically
argue that since they each separately provide some degree of anonymity, their
composition will provide at least the same level of assurance. Further, while we
are able to analytically bound the security of Crowds and Hordes, seemingly sim-
ple changes to those protocols make their modelling intractable. We argue that
building anonymous communications channels whose security is easy to verify
analytically should be a key design consideration for future proposals.

2 Crowds and Hordes

Crowds [16] uses a peer-to-peer network (a crowd) to pass messages anonymously
from the sender to a receiver outside the crowd. A crowd member wishing to send
a message first passes it to a random crowd node. Each subsequent node then
flips a (biased) coin to decide whether to send the message to the destination
(with probability p) or pass it to another crowd node. The latency of the channel,
that is, the average number of hops a message travels in the crowd before being
forwarded to the final destination is 1/p.

The forward path of a Crowds message can also be used to anonymously
receive replies. Crowds’ bidirectional communication, however, is not robust
in a mobile environment where nodes join and leave the crowd dynamically.
Hordes [17] provides a solution by combining the forward path of Crowds with
a multicast reply channel. In Hordes, the sender appends to the message a ran-
dom session identifier as well as a multicast group—a subset of k crowd nodes
that includes the sender herself. The outgoing message is then sent via a reg-
ular Crowds channel. The reply message, which must also include the session
identifier, is sent directly to the multicast group acting as an anonymity set.
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The original sender, who is part of this group, can use the session identifier to
detect the reply, while the remaining members of the group will simply drop the
message. The crowd forward latency of Hordes is still 1/p, while the fast direct
reply channel means that the latency of a round trip drops from 2/p to 1/p.

2.1 Security Analysis

Throughout this paper, we measure sender anonymity in terms of probabilities
linking the message to its sender. While it is generally prudent to consider the
worst-case confidence an adversary has in the true sender, taken over all possible
observations of messages, we shall shortly see that for the protocols scrutinized
in this paper, the worst-case confidence can be 1. Thus, we resort to measuring
the expected success rate of the adversary guessing the sender of a message.

We say that a system offers perfect anonymity if for any observation, the
adversary’s best strategy is to choose at random from the entire set of n possible
senders: Pr[success] = 1/n. Crowds provides the sender with perfect anonymity
with respect to an adversarial receiver, since the receiver is equally likely to
receive the message from any crowd member. Collaborating dishonest crowd
members, on the other hand, can infer some information about the sender. More
specifically, in a crowd of size n, a fraction 0 < f < 1 of dishonest nodes can
correctly guess the sender of a captured message with expected success rate [16]

E(success) = 1−(1−f)(1−p)+(1−f)(1−p)
1

(1− f)n
= f+(1−f)p+

1− p

n
. (1)

Hordes provides k-anonymity of the sender w.r.t. the receiver: the receiver will
only learn that the sender is one of the k members in the multicast group,
Pr[success] = 1/k. Assuming communication between the sender and the receiver
is encrypted such that intermediate nodes do not learn the multicast group,
Hordes provides the same sender anonymity w.r.t. malicious crowd nodes as
original Crowds.

Finally, we consider sender anonymity in the case of malicious crowd nodes
collaborating with a malicious receiver. A malicious Crowds receiver contributes
no additional information, implying that for messages captured in the crowd, the
success of this adversary is still bounded from above by (1). The average success
rate over all observed messages, including those captured by the receiver, is

E(success) = f + (1− f)
1

(1− f)n
= f +

1

n
. (2)

For Hordes, this adversarymodel is not considered in the original paper, however,
the simplicity of the protocol allows us to now devise a strict bound for sender
anonymity in this model (see Appendix A for the proof).

Theorem 1. In a crowd of n nodes, a fraction 0 < f = c
n < 1 dishonest

crowd members collaborating with a dishonest receiver can identify the sender of
a Hordes message with average success rate
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E(success) = f +
1

k

(
1−

(
c
k

)(
n
k

)) < f +
1

k
,

where k is the size of the multicast group chosen by the sender.

The effect of the security parameter k on the anonymity of Hordes is as expected:
anonymity improves as k increases, and as k approaches n, the security of Hordes
approaches that of Crowds (c.f. (2)). While the latency of a single message does
not increase with k, a large multicast set causes heavier total load on the network,
implying a natural security-performance trade-off.

Curiously, the Crowds parameter p does not influence the average success rate
of the adversary; it does, however, affect the worst-case confidence the adversary
has in the sender of a particular message: as the exit probability p approaches 1,
fewer messages get captured before reaching the receiver, but those that do can
be attributed to the sender with higher confidence, and vice versa. Finally, we
observe that for k ≤ 1+fn, Hordes provides no anonymity in the worst case as a
particularly poor choice of the multicast set can result in the entire set colluding
with the receiver, thus pinpointing the single honest member in the set as the
sender (see the proof in Appendix A for details).

2.2 Advantages and Limitations

The security of Crowds and Hordes depends on the forwarding parameter p, as
well as, in the case of Hordes, the size of the multicast group k. Both parameters
have a negative impact on the latency of the protocol. In both cases, however,
this relationship between latency and security is well understood and proven by
rigorous security analysis. Indeed, the local randomized algorithm that deter-
mines the latency of a Crowds message provides optimal security [5].

On the other hand, both protocols are limited by only providing anonymity
of the sender with respect to the receiver : neither can withstand attacks by even
a passive network adversary that can eavesdrop communications in the crowd.
Furthermore, the predecessor attack [21] can breach sender anonymity when
forwarding paths are frequently resampled, and crowd paths should thus be
fixed during a session between a sender and a receiver. We proceed to show that
a failure to fully consider these limitations results in complex protocols that are
harder to analyze, yet provide weaker anonymity.

3 The AJSS10 Scheme

We present here the features of the AJSS10 channel relevant to its study in terms
of security and performance. Full details are provided in the original work [1].

AJSS10 is designed to provide anonymity in a hybrid networking environ-
ment, where local devices can communicate with one another using a local
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Wifi network, but need to communicate with the wider area network through
a mobile telephony operator – this is an appealing model as it matches the
capabilities of smartphones which now outnumber PCs in sales1.

The AJSS10 protocol aims to achieve sender k-anonymity: the adversary
should not be able to reduce the number of possible senders of a message to
less than k participants. To construct her anonymity set, a sender using AJSS10
splits her message into k parts.2 She sends one part directly to the operator
and k − 1 parts via other peers, using a variant of Crowds for each part. First,
each message part is given to a random node in the local network; each receiving
node flips a biased coin and with probability p sends the message to the operator
unless it has already sent a part of this message to the operator ; otherwise the
message is sent to a random node in the network that repeats this process.

AJSS10 also attempts to conceal receiver anonymity from peers by using, for
each message part, a different temporary identifier that only the operator can
map to the recipient. Upon receiving a message part from a node, the operator
thus looks up its destination address and forwards it to the receiving server.
After all k parts have arrived, the server replies to the set of k peers (which, by
design, includes the sender) and includes a server ID in that reply. The multicast
reply channel of AJSS10 shares two properties with that of Hordes: the set of k
peers aims to provide k-anonymity; while the inclusion of the original sender in
this set guarantees robust reply message delivery in networks where peers join
and leave dynamically.

The key difference between AJSS10 and Hordes routing is the use of multiple
parallel paths on the forward channel, which has two effects. First, multiple paths
are used to relay messages from the same sender to the same receiver—thus, we
expect more opportunities for adversaries to perform traffic analysis. And second,
the fact that the same node cannot send more than one part of the same message
to the operator requires the inclusion of a message identifier visible to all peers,
allowing them to link different parts of the same message together.

These changes also have repercussions on performance: all parts of the message
need to be delivered for the message to be decoded, increasing protocol latency.
Furthermore, some nodes will not be able to output a part as they have already
delivered a previous part to the operator, forcing the message to continue its
course within the network.

We note that the Hordes system assumptions must be satisfied to run the
AJSS10 algorithm. Hordes relies on the sender directly choosing k − 1 other
peers to build a reply anonymity set and sending this set to the server. AJSS10
uses a variant of Crowds which implies that a client knows all other local peers in
the crowd and can create these anonymity sets as in Hordes. Conversely, Hordes
can also be used when peers join and leave the network dynamically, as the reply
channel relies on a multicast that can safely fail for some peers. The question we

1 http://www.pcmag.com/article2/0,2817,2379665,00.asp
2 An estimate of dishonest peers can be used to choose a higher parameter to achieve
k-anonymity, taking into account some of the potential members of the anonymity
set may be under the control of the adversary.

http://www.pcmag.com/article2/0,2817,2379665,00.asp
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ask next is thus whether AJSS10 offers significant security benefits that outweigh
the additional performance cost compared to Hordes.

3.1 Security Evaluation

We consider the security of the scheme against two threat models: a set of mali-
cious peers in the wifi network, as well as a malicious operator that additionally
controls a small fraction of peers.

The goal of the adversary in our analysis is to determine the most likely sender
of a specific message for a set of observations of the anonymity network. The
observations of malicious peers contain the identities of nodes that forwarded a
message they wish to trace. In the second threat model, a malicious operator
additionally records the identities of forwarding nodes for messages that do not
get captured in the crowd. Our analysis relies on the following observations:

– Malicious nodes can link received message parts belonging to the same mes-
sage together by their unique identifier. Similarly to the predecessor attack
on dynamic Crowds paths [21], this results in an attack on sender anonymity,
as the true sender will be observed on the paths of the message parts more
often than any intermediate node. Even worse, while the predecessor attack
relies on implicit identifiers such as user ID-s, cookies or other information
at the application layer for linking messages together, these identifiers are
explicitly included by design in AJSS10.

– A malicious operator cannot use this unique identifier as AJSS10 requires
honest senders to strip the message parts of linkable information before giv-
ing them to the operator. Yet the server ID together with timing information
may be sufficient in linking all parts back together in case of requests to rel-
atively unpopular resources.

– Unlike Hordes, the receiver identity is initially concealed from peers; however,
the server ID is also available in the reply message sent to the multicast
group, allowing coalitions of malicious peers to restore the link between the
message and its recipient. A successful attack on sender anonymity thus also
results in sender-receiver linkability.

The state of the art in traffic analysis of anonymity protocols involves a full
probabilistic modelling of the channel to extract posterior distributions over
actions given the knowledge of an adversary [19]. Unlike Crowds, as well as
Hordes which we modelled in Sect. 2.1, such an analysis is extremely complex
for the AJSS10 protocol as modifications to the Crowds routing logic introduce
temporal constraints. Instead, we provide an experimental upper bound on the
security of the scheme by simulating the protocol and using heuristic analysis
to decide upon the most likely sender of a message. The experimental bound is
from above, as only partial information is used by our adversary to determine
the sender (timing information is excluded), and even that partial information
is not guaranteed to be used optimally.

Given a set of observed senders corresponding to parts of the same message,
we simply pick as the most likely initial sender the peer that has sent the most
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Fig. 1. The security and performance of AJSS10 versus the Hordes protocol

parts. If the operator colludes with malicious peers, we further restrict the sender
to be within the set of honest peers that forwarded the message to the operator,
since the true sender is guaranteed to be in the k-anonymity set observed by the
operator. In general, the higher the fraction of malicious peers in the network,
the higher the probability that the actual sender of the message is observed
multiple times. Surprisingly, the same is true for larger values of the security
parameter k.

We can reason about the success probability of our heuristic algorithm as
follows. Assuming peers collaborate with the operator, capturing at least one of
the k−1 message parts sent via peers during its first hop is likely to identify the
correct sender (who is then linked with at least two message parts); conversely,
if no parts land in the hands of malicious peers during the first hop then the
adversary’s guess will effectively be a random choice from the anonymity set. In
Appendix B, we estimate the success rate of a fraction f = c/n corrupt peers
collaborating with the operator to be

E(success) ≈ 1− (1 − f)k−1 +
(1− f)k−2

k

(
1−

(
c
k

)(
n
k

)) .

Figure 1 (left) compares the anonymity provided by the AJSS10 scheme in the
two threat models with the anonymity provided by Hordes in the stricter model
when both operator and peers are malicious, denoted as the k-anonymity limit.
Specifically, we consider a network of 500 peers out of which 25 are malicious.
We perform 100 simulations for p ∈ [0.1, 0.9] and plot the number of those ex-
periments in which the actual sender was correctly identified. The solid lines
are the median number of successes and the shaded regions represent the mini-
mum and maximum number of successes for different values of p. The analytic
approximation for the security of AJSS10 is also plotted.
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The complexity of the AJSS10 routing logic prevents us from accounting for
the exact effect of the Crowds parameter p. We note that decreasing p increases
latency, which results in more messages being captured before reaching the op-
erator, thus on one hand increasing the number of different senders observed by
peers, while on the other hand decreasing the size of the effective anonymity set
of honest nodes observed by the operator. Our simulations confirm that varying p
does not affect the security guarantees of AJSS10 significantly, while anonymity
decreases rapidly as k increases, Even if only peers are malicious, even mod-
est values of k lead to a greater probability of compromise than k-anonymity
would suggest. In comparison, as k increases, the security of the Hordes channel
increases together with the size of the anonymity set, as expected.

3.2 Performance Evaluation

The modifications introduced by the AJSS10 scheme also have a serious impact
on the latency of messages. Traditional Crowds latency follows a geometric dis-
tribution [5], which has a high variance. Requiring the delivery of k− 1 message
parts through the crowd in effect involves sampling k−1 random variables for the
latency of each part, leading to the maximum delivery time being the latency of
the whole message. The expected maximum latency of k−1 independent random
variables following the geometric distribution with parameter p is

E(lGeomk−1,p) =

k−1∑
i=1

(
k−1
i

)
(−1)i−1

1− (1− p)i
≥ − Hk−1

log(1− p)
, (3)

where Hk−1 is the (k − 1)th harmonic number, yielding a lower bound for the
expected latency of an outbound message in the AJSS10 scheme. The fact that
peers only deliver a single message further increases the delivery time and pro-
hibits us from giving an upper bound to the latency.

Figure 1 (right) illustrates latency for AJSS10 with different parameters k
and fixed p = 0.2 compared to Crowds/Hordes (median and 90% confidence
intervals). It is clear for AJSS10 that as the parameter k increases, latency
also increases to about an order of magnitude above Crowds. We also plot the
theoretical lower bound (3) on the latency. As observed, assuming the AJSS10
system behaves like k − 1 parallel Crowds is a good model for k << n but path
lengths increase significantly beyond this bound as k becomes larger, due to each
peer being restricted to only sending out one message part.

4 The RWS11 Scheme

The RWS11 scheme [15] also uses parallel Crowds paths, this time to conceal
the identity of the receiver from the crowd. To send a message m to a receiver
Rr, the sender first constructs a path R1, R2, . . . , Rr−1, Rr of crowd nodes (in
RWS11, the receiver is considered part of the crowd). She computes, for each



The Dangers of Composing Anonymous Channels 199

node Ri on this path, a set of messages s
(0)
i , s

(1)
i , . . . , s

(k−1)
i and padding values

such that
s
(0)
1 ⊕ s

(1)
1 ⊕ · · · ⊕ s

(k−1)
1 = R2 || s(0)2

s
(0)
2 || pad1 ⊕ s

(1)
2 ⊕ · · · ⊕ s

(k−1)
2 = R3 || s(0)3

· · ·
s
(0)
r−1 || pad2 ⊕ s

(1)
r−1 ⊕ · · · ⊕ s

(k−1)
r−1 = Rr || s(0)r

s
(0)
r || padr−1 ⊕ s

(1)
r ⊕ · · · ⊕ s

(k−1)
r = null || m.

(4)

Padding is used to replace the removed address field, so that the size of the
message remains constant throughout its course in the network. The padding
values pad1, pad2, . . . , padr−1 are defined such that node Ri can compute padi =

f(s
(0)
i , s

(1)
i , . . . , s

(k−1)
i ) as a pseudorandom function of her shares.

The sender then forwards s
(0)
1 to R1, as well as s

(1)
i , s

(2)
i , . . . , s

(k−1)
i for i =

1 . . . r to Ri, using Crowds for each share. The node Ri, upon receiving her k
shares—one share from the previous node as well as k−1 shares from the sender—

reconstructs Ri+1||s(0)i+1 and padi, and forwards s
(0)
i+1||padi to Ri+1, again using

Crowds. The final receiver Rr, upon seeing null in the address field, thus knows
that the message was intended for her.

The core idea behind the security of RWS11 is that all k shares s
(i)
r intended

for Rr are required to learn that Rr is the final receiver, and her identity thus
remains hidden from malicious nodes who only intercept some of the shares. We
proceed to show, however, that this construction significantly weakens sender
anonymity, and further demonstrate active attacks on receiver anonymity.

4.1 Security Evaluation

Sender Anonymity. As before, we first consider the threat model where a
malicious receiver Rr collaborates with a subset of malicious crowd nodes in
order to learn the identity of the sender. Our observations on RWS11 are similar
to those of AJSS10:

– Observing that k − 1 of the k shares meant for Rr originate from the initial
sender, we expect to see the true sender on the path to Rr more often than
any other node.

– While RWS11 does not explicitly specify this, the k shares must include a
common identifier that allows Rr to link the observed parts back together,
making it easy for an attacker to distinguish shares belonging to the same
message (case 1 ). In the absence of noise caused by other traffic, all kr shares
can be linked together (case 2 ).

Again, if we assume that the adversary is successful with probability ≈ 1 in
identifying the sender whenever she captures at least two message shares directly
from the sender, we can predict the overall success rate to be

E(success) ≈ 1− (1 − f)k−1 − (k − 1)f(1− f)k−2 in case 1; (5)

E(success) ≈ 1− (1 − f)r(k−1)+1 − (r(k − 1) + 1)f(1− f)r(k−1) in case 2. (6)
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Fig. 2. Attack probabilities against the RWS11 protocols for different values of the
security parameters. Green lines (“x” ticks) represent attacks against sender anonymity
with a corrupt receiver; Blue lines (triangle ticks) represent attacks against a sender
only using the shares sent to a corrupt receiver; Red lines (“+” ticks) represent attacks
against an honest sender and receiver. (Shaded regions represent the 99% confidence
intervals.

Sender-Receiver Anonymity. Second, we assume the receiver is honest, and
consider the security of the RWS11 scheme against a delaying adversary that
is otherwise passive. Strictly speaking, this adversary is outside the scope of
RWS11, which assumes only a purely passive adversary [15]. But an adversary
that can merely delay any observed traffic and is otherwise passive is a realistic
extension, thus instructive to consider. As before, we assume that message parts
are linkable, either through a common header, or simply through lack of noise.

We note that an adversary that observes shares from a specific sender is left
with the task of identifying the ultimate receiver of the message out of potentially
r choices. We use causality, namely that Ri+1 cannot output a message before
receiving her share from Ri, and that the receiver Rr is the last in this chain, to
attack the scheme.

An adversary delays all shares received within the crowd for a specific time
frame. These messages are considered to be within the same, first, epoch. The
adversary then releases the shares and observes the sequence of captured shares
as the message continues its course through the sequential chain of intermediate
nodes to Rr. This allows the adversary to build an ordering over the observed
potential receivers of the target message. Any receiving peers observed before
the last observation can be discarded as potential receivers.3

As before, the adversary again selects as a candidate sender, the sender that
sent most messages within the delay period. The candidate receiver is selected
at random from the set of potential receivers observed, minus adversary peers
and peers that were not last in the observed route.

3 The original protocol does not specify whether the r nodes must be distinct; for
simplicity, we assume they are. The attack also works if repetitions are allowed, since
message part identifiers allow us to consider each appearance of a node separately.
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Given the complexity of the attack, we simulate runs of the RWS11 protocol
and perform the attack against them to evaluate its true success probability.
This provides an upper bound on its security, as our heuristic adversary is, once
again, not guaranteed to be optimal. The results are summarised in Figure 2 as
the red line (“+” ticks). (Standard parameters used: 1000 peers including 10%
corrupt; k = 5 shares; r = 5 path length; p = 0.05.) The figure illustrates the
security of RWS11 as we vary its security parameters k, r and p.

Figure 2 also plots the success probability of the first attack with a malicious
receiver. The green line (“x” ticks) assumes all message parts are linkable, while
the blue line only uses the k shares destined for the corrupt receiver. As predicted
by (5) and (6), the adversary is very likely to trace the sender for high k or r,
while the average success rate is largely independent of p.

Broadly, increasing the security parameters introduced by RWS11 does not
result in an significant increase in security. Surprisingly, we observe quite the
opposite: as k and r increase, attacks become more successful. For no values of
the security parameters does this probability becomes negligible.

Receiver Anonymity. Finally, we should not exclude the possibility that some
crowd nodes may actively misbehave, intercepting as well as modifying and in-
jecting messages in the network. State-of-the-art packet formats for anonymous
communications offer provable security against active attacks [7], and conversely,
heuristic security claims may not cover design flaws leading to replay and oracle
attacks that completely foil the purported security of the system [3,20].

Lack of integrity protection in the RWS11 protocol opens up way to an oracle
attack whereby any single corrupt node C on the path of any message part to
Ri can determine whether Ri is the final receiver of the message. Namely, upon

receiving a Crowds message s
(j)
i meant for Ri, C sets ŝ

(j)
i = s

(j)
i ⊕ (C||null)

and forwards the modified message ŝ
(j)
i to Ri. By Eq. (4), upon receiving her k

shares, Ri reconstructs

s
(0)
i ||padi ⊕ s

(1)
i ⊕ · · · ⊕ ŝ

(j)
i ⊕ · · · ⊕ s

(k−1)
i = (Ri+1 ⊕ C)||(s(0)i+1 ⊕ null), i + 1 �= r

s
(0)
i ||padi ⊕ s

(1)
i ⊕ · · · ⊕ ŝ

(j)
i ⊕ · · · ⊕ s

(k−1)
i = (null⊕ C)||(m⊕ null), i + 1 = r .

Thus, if Ri is the final receiver, the message m gets routed back to C, else the

share s
(0)
i+1 gets routed to a random addressRi+1⊕C. The node C, upon receiving

m, will thus know that Ri was the true receiver4. C can easily distinguish the
reply message m from an ordinary RWS11 message, for example by observing
that it has no other matching parts.

Receiver anonymity is thus compromised whenever either Rr−1 is corrupt,

or at least one of the k Crowds messages s
(i)
r meant for Rr gets captured by a

corrupt node. From the analysis of Crowds, we know that the probability of a
single message being captured before reaching the receiver is f/(1−(1−f)(1−p)),
so the success rate of the attacker is

4 As a bonus, C will learn the contents of the message m.
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E(success) = 1−
(
1− f

1− (1− f)(1 − p)

)k

· (1 − f) = 1− pk(1− f)k+1

(p+ f − pf)k
,

which approaches 1 quickly as k grows. In particular, the success probability of
the active adversary is higher than the probability of a passive adversary learning
the identity of the receiver in traditional Crowds by simple eavesdropping, so by
attempting to protect receiver anonymity against the passive adversary, RWS11
in fact opens up an opportunity for a much more powerful active attack.

4.2 Performance Evaluation

Similarly to AJSS10, the RWS11 scheme requires the delivery of k message parts
for each hop through parallel Crowds channels. By eq. (3), the expected latency
for R1 to receive all k parts is E(lGeomk,p ) ≥ −Hk/ log(1 − p), and the expected
latency of the channel is thus bounded from below by

E(lRWS11
k,r,p ) ≥ − Hk

log(1− p)
+ (r − 1)

1

p
,

where (r − 1)/p is the expected latency of the r − 1 sequential hops from R1

to Rr. The bound is loose, as we ignore the delay effect of the remaining k − 1
shares per hop that are delivered in parallel.

5 Design Principles for Anonymous Channels

We have seen that as the parameter k increases, both the quality of protection
and performance of the AJSS10 and RWS11 schemes deteriorate. This is true for
both threat models considered, while the simpler Crowds and Hordes schemes
provide higher security even in the stringent threat model where operator and
peers collaborate. Following our analysis we draw a few conclusions regarding
design principles for robust and secure anonymity systems.

Composition. Composing secure anonymous channels does not guarantee that
the resulting channel will be secure. We have seen how k-anonymous multicast
and Crowds on their own are secure, but running multiple instances of Crowds in
parallel is in itself fragile. Leaking further information through the k-anonymous
reply channel is significantly weaker than any of the channels on their own. Fail-
ure to account for this lead the designers of RWS11 to assume there is no need
to analyse sender anonymity at all. The literature on predecessor attacks [21]
and disclosure attacks [10] provides a guide to understanding how parallel com-
position of channels leaks information.

Security Parameters. It is important to specify the security parameters and
ensure that security increases as they increase. For instance, k-anonymous chan-
nels should provide better protection as k grows. Instead, we demonstrate that
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the security of AJSS10 and RWS11 decreases significantly as the security pa-
rameter k increases. This counter-intuitive result was first observed for Crowds
itself a decade ago [18]. Thus any scheme, especially any scheme building on
Crowds, should be designed mindful of the possibility. In comparison, the pa-
rameter p, which is the traditional Crowds security parameter, has little effect
on the security of the new schemes.

Security Assumptions. It is crucial to distinguish the security-relevant state
from incidental operational noise. Robust security analysis should assume that
the adversary knows all security-irrelevant state. For example, the AJSS10 scheme
does not disclose the message identifier to the operator, presumably in an at-
tempt to keep separate message parts unlinkable. While this is prudent, it is a
fragile security assumption, as the designers or users of the system have no way
of ensuring that more than one message will be sent to a specific server. If only
one message is sent to the server, then the identity of the server itself acts as an
identifier that links the message parts. Similarly, RWS11 makes no explicit as-
sumptions about delaying or mixing messages at the intermediate nodes, or the
sender delaying messages. Thus, it is prudent to assume an adversary should be
given information that links those messages together through timing when per-
forming a security analysis. The assumption that the adversary is provided with
all non-security-related information when attacking a system is common place
in cryptology (through the use of artificial oracles), but not well established in
the design of anonymity systems.

Threat Modelling. When modelling the adversary, we must always consider
the possibility that all malicious parties collaborate. Crowds-like peer-to-peer
systems that attempt to protect the identity of the sender from the receiver
as well as the crowd must thus provide protection against a malicious receiver
controlling a subset of crowd nodes. Further, adversarial behaviour is unpre-
dictable, and designs whose security collapses completely in the presence of an
active adversary are too fragile for general purpose applications.

Ease of Analysis. Schemes should be designed so that the security of the
system can be analysed on the basis of a small amount of security state, assuming
arbitrary values for the non-security relevant incidental operational noise. The
AJSS10 mechanism makes such an analysis difficult: since a peer will never
forward to the operator a second part of the same message, a race condition
occurs. To analyse the performance and security of the system in an exact fashion
one would need to introduce models of timing and network delays, and perform
inference over different traces and timings of message transmissions. This is
impractical, making the system difficult to analyse, without greatly improving
its security.

Compare with Simple Designs. Finally, no anonymous channel is perfect,
but some are better than others. For this reason it is important to compare new
proposals with previous ones, making small modifications to existing protocols
and comparing them all the time to ensure additional complexity in fact pro-
vides the advantages hoped for. For example the AJSS10 channel operational
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constraints, in terms of churn or knowledge of local peers, allow the application
of the simple Hordes protocol, and as such Hordes can be used as a baseline for
evaluating its security.

Acknowledgments. The authors would like to thank the anonymous reviewers
for their comments, as well as the paper shepherd Paul Syverson for great advice
on improving the work.

References

1. Ardagna, C.A., Jajodia, S., Samarati, P., Stavrou, A.: Providing Mobile Users’
Anonymity in Hybrid Networks. In: Gritzalis, D., Preneel, B., Theoharidou, M.
(eds.) ESORICS 2010. LNCS, vol. 6345, pp. 540–557. Springer, Heidelberg (2010)

2. Borisov, N., Danezis, G., Mittal, P., Tabriz, P.: Denial of service or denial of secu-
rity? In: Proceedings of the 14th ACM Conference on Computer and Communica-
tions Security, pp. 92–102 (2007)

3. Danezis, G.: Breaking FourMix-Related Schemes Based onUniversal Re-encryption.
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A Proof of Theorem 1

The intuition behind our analysis is this: if the sender forwards the message to
a malicious peer during the first hop, the adversary can correctly attribute the
message to the sender. In all other cases, the adversary’s guess is random.

Adversary Strategy. Given an observed message obs and a probability distribu-
tion Pr[Sender = si|obs] over all possible senders si, the optimal adversarial
strategy is to choose the most likely sender by maxi Pr[Sender = si|obs]. If mul-
tiple senders are equally likely, there exists no better strategy than to choose
one of them at random.

Let H be the subset of honest peers in the multicast group. Since the receiver
is malicious, H is known to the adversary, and her complete observation is obs =
(sj ,H, c), where sj is the honest node that forwarded the message and c ∈
{crowd, recv} indicates whether the message was captured by a crowd node, or
only at the receiver. We group all possible observations into three groups.

Type 1. The message is captured in the crowd, and the forwarding node sj is a
member of the multicast group H: O1 = {(sj ∈ H,H, crowd)}. In this case, we
know from the analysis of Crowds that the adversary should pick sj as the most
likely sender.

Type 2. The message is captured in the crowd, but the forwarding node sj is not
a member of the multicast group H: O2 = {(sj /∈ H,H, crowd)}. In this case, we
know that sj is not the sender. Thus, all senders si ∈ H are equally likely, and
the adversary’s best strategy is to guess at random.
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Type 3. The message is captured at the receiver: O3 = {(sj ,H, recv)}. Similarly
to Case 2, all nodes in H are equally likely senders.

Success Probability. With probability f , the sender forwards the message to a
malicious peer during the first hop, thus generating an observation obs ∈ O1 in
the first set that leads to a correct guess. The remaining Type 1 observations, as
well as all Type 2 and Type 3 observations lead to a guess that is correct with
probability 1/|H|.

Noting that the multicast group contains the sender as well as k − 1 nodes
randomly chosen by the sender, and can thus include anywhere between 1 and
k honest nodes, we can compute the success probability of the adversary as

E(success) = f + (1− f) ·
k∑

k′=1

Pr[|H| = k′]
1

k′
= f + (1− f)

k∑
k′=1

(
n−c−1
k′−1

)
·
(

c
k−k′

)(
n−1
k−1

)
k′

= f + (1− f)
n

k(n− c)

k∑
k′=1

(
n−c
k′
)
·
(

c
k−k′

)(
n
k

) = f +
1

k

(
1−

(
c
k

)(
n
k

))

< f +
1

k
.

��

B Analysis of AJSS10

Assuming that the algorithm succeeds with probability ≈ 1 whenever peers
capture a message on the first hop5; and makes a random guess from the subset
of honest nodes H in the k-anonymity set otherwise, we can predict the success
probability of our algorithm to be

E(success) ≈ 1− (1 − f)k−1 + (1− f)k−1
k∑

k′=1

Pr[|H| = k′]
1

k′

= 1− (1 − f)k−1 +
(1− f)k−2

k

(
1−

(
c
k

)(
n
k

)) ,

where c is the number of corrupt peers, as before.

5 The exact probability is analytically intractable, yet our simulations confirm that
this assumption is reasonable.
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Abstract. Whereas the embedding distortion, the payload and the ro-
bustness of digital watermarking schemes are well understood, the notion
of security is still not completely well defined. The approach proposed in
the last five years is too theoretical and solely considers the embedding
process, which is half of the watermarking scheme. This paper proposes
a new measurement of watermarking security, called the effective key
length, which captures the difficulty for the adversary to get access to
the watermarking channel. This new methodology is applied to the Dis-
tortion Compensated Dither Modulation Quantized Index Modulation
(DC-DM QIM) watermarking scheme where the dither vector plays the
role of the secret key. This paper presents theoretical and practical com-
putations of the effective key length. It shows that this scheme is not
secure as soon as the adversary gets observations in the Known Message
Attack context.

Keywords: watermarking, security, Quantized Index Modulation.

1 Introduction

The Problem: This paper deals with the evaluation of the security level of a
digital watermarking scheme. The problem is that the previous methodology
on this topic [1], although applied on Spread Spectrum [2] and Dither Modu-
lated Distortion Compensated Quantized Index Modulation (DM-DC QIM) [3]
watermarking schemes, is not so successful. As detailed in Sect. 2, it does not
fully capture the whole watermarking scheme as it only considers the embedding
process. Its assessment is mostly theoretical and difficult to apply on real-life wa-
termarking schemes. One has important difficulties in interpreting the quantity
measuring the security level by relying only on information theory.

Example: Let us take the following scenario: consider a DC-DM QIM with a
cubic lattice (a.k.a. SCS, Scalar Costa Scheme [4]) for embedding bits in a signal
x, at a given DWR (Document to Watermark power Ratio) and a given expected
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WNR (Watermark to Noise power Ratio). Denote Δ the quantization step and
α the compensation parameter. Now, the security level when measured by the
equivocation equals log((1−α)Δ) nats [3]. Suppose now that we watermark the
scaled signal 2 ∗ x with the same technique and setup (DWR, WNR). Then, the
quantization step is now 2Δ while α remains the same. The security level is now
higher by 0.69 nats. It is counterintuitive that by doubling the amplitude of the
host signal, we succeed to increase the security level. Moreover this amount is
indeed hard to understand: Does 0.69 nats represent a big increase in term of
security?

Our Contributions: This paper proposes a new way of defining the security level
of a digital watermarking scheme in Sect. 3. Sect. 4 applies this methodology
to QIM watermarking schemes from a theoretical point of view, while Sect. 5
presents an experimental framework to evaluate the security level. Our contri-
butions are the following:

– A framework for security assessment in line with the cryptographic approach,
– A theoretical derivation of the security levels for watermarking schemes

based on Quantized Index Modulation (QIM) with self-similar lattices,
– Theoretical bounds of the security levels when the lattices are not self-

similar,
– An experimental setup for estimating the security levels for QIM.

After the talk at the Information Hiding conference, Prof. Jiwu Huang mentioned
that his team showed similar results in a paper entitled “Security Hole in QIM
Watermarking”, at that time submitted to IEEE Trans. on Information Forensics
and Security. Their work is independent, deals with attacks on QIM data hiding,
but relies on a different approach than the concepts introduced in Sect. 3.

2 The Problem with Previous Security Measures

From the beginning, watermarking has been characterized by a trade-off be-
tween the embedding distortion and the capacity. The capacity is the theoretical
amount of hidden data that can be reliably transmitted when facing an attack of
a given strength. In practice, the operating point of a watermarking technique
is defined by the embedding distortion (measured by a DWR for instance), a
payload (measured in bits per host samples for instance) and the robustness (for
instance, measured by a Symbol Error Rate SER after an attack - compression,
rotation etc).

Security came as a fourth feature stemming from applications where there
exist attackers willing to circumvent watermarking such as copy and/or copyright
protection. The efforts of the pioneering works introducing this new concept first
focused on stressing the distinction between security and robustness. An early
definition was coined by Ton Kalker as the inability by unauthorized users to
have access to the raw watermarking channel [5].
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The problem we see lies in the fact that the methodology proposed so far
poorly captures T. Kalker’s definition. In a nutshell, the methodology of [1–3] is
based on C. E. Shannon definition of security for crypto-systems. The security
level is defined as the amount of uncertainty the attacker has about the secret
key. This is measured by the equivocation which is the entropy of the key knowing
some observations, which are for instance contents watermarked with the same
technique and the same secret key. The equivocation, be it valued in nats or
bits, can be negative (if the secret key is a continuous random variable), and as
illustrated in the example of the introduction, the results of this approach are
sometimes hard to understand.

The main pitfall is that watermarking and symmetric cryptography strongly
disagree in the following point: In symmetric cryptography, the deciphering key is
the secret key which is unique. Therefore, inferring this key from the observations
(here, say some cipher texts) is the main task of the attacker. The disclosure of
this key grants the adversary the access to the crypto-channel.

This is not the case in watermarking for the simple reason that there is no
unique key to decode the hidden messages. In many watermarking schemes, the
secret is a signal lying in the same space as the host vector: the carriers for
Spread Spectrum, the dither for DC-DM QIM. They are generated by a Pseudo-
Random Number Generator (PRNG) fed by a secret seed. Yet, the attacker
may use another generator, or use some observations to estimate these signals.
Therefore, the real secret granting access to the watermarking channel is less the
seed of the PRNG than these signals. In the sequel, the secret signal is denoted
by k and we show that a close enough signal k′ may decode the hidden messages.

Consequently, inferring the secret key k from the observations (here, say some
watermarked contents) is not the ultimate goal of the attacker. As T. Kalker
stated, it is the access to the watermarking channel that matters. The estimation
of the secret key is a possible path to this goal, but not the final destination.
The limit of the past articles on watermarking security is that they focus on
the estimation of the secret key, but very few works deal with the impact of
the estimation accuracy on the access to the watermarking channel. It is quite
symptomatic that almost none of them consider the decoding of the watermark-
ing schemes. We strongly believe that this is the reason why the outcomes of
this methodology are quite difficult to understand. C. E. Shannon was right, but
those who translated his theory to watermarking only capture half the problem.
The only exception we are aware of is [6] which intuitively sketched the idea that
is formalized in this paper.

3 Our New Approach

3.1 The Idea

The keystone of our approach is the brute force attack. In cryptanalysis, the
attacker randomly draws a test key and decrypts the ciphertexts. It is assumed
that a genie tells the attacker when he succeeds, ie. when the test key equals the
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secret key. If the secret is a N -bit word, the probability of this event is P = 1/2N ,
ie. one single secret key over 2N possible keys. With some observations, the
attacker might reduce the key space which increases the probability of success
to P = 2−L, with L < N . The security level is measured by L = − log2(P ) in
bits.

We use the same approach for watermarking security. The inability by unau-
thorized users to have access to the raw watermarking channel is measured by
− log2(P ), where P is the probability that the attacker finds a key granting the
decoding of hidden messages embedded with the secret key. Contrary to sym-
metric cryptographic, there are a plurality of such a key ; and this is mainly
due to the fact that the embedding has to be robust. We name them the equiva-
lent decoding keys. Note that we could also consider equivalent embedding keys,
ie. keys embedding messages in host content which are reliably decoded by the
secret key. Our methodology aims at resolving the following questions:

– What is an equivalent decoding key?
– How many equivalent decoding keys do exist?
– What is the probability of picking an equivalent decoding key?
– How to improve the odds thanks to the observations?

3.2 The Setup

Before producing any watermarked content, the designer draws the secret key k
in the key space K according to a given distribution pK. There is an extraction
function that computes a vector x ∈ X from a content. Usually, X = RNv . The
embedding modifies this vector into y under a distortion constraint (here, given
by a bound on the Euclidean distance ‖y − x‖2 ≤ NvD). There is an inverse
extraction function which maps y back into the content. We assume that the
extraction process is public, and that the secret key k is only used for shaping x
into y: The embedder creates a watermarked vector y ∈ X with hidden message
m using the embedding function e(.): y = e(x,m,k). At the decoding side, a
vector is computed from the received content with the same extraction function.
The message m̂ is decoded from the watermarked vector by m̂ = d(y,k).

The adversary sees No independent observations ONo = (O1, . . . ,ONo). The
nature of these observations defines the attack. In this paper, we restrict our
attention to the Known Message Attack (KMA) where an observation is a pair of
a watermarked content and the embedded message:Oi = {yi,mi}. The article [1]
gives a list of other attacks.

We define by Dm(k) ⊂ X the decoding region associated to the message m
and for the key k by:

Dm(k) � {y ∈ X : d(y,k) = m}. (1)

The topology and location of this region in X depends of the watermarking
scheme and of k.
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To hide message m, the encoder pushes the host vector x deep inside Dm(k),
and this creates an embedding region Em(k) ⊆ X :

Em(k) � {y ∈ X : ∃x ∈ X s.t. y = e(x,m,k)}. (2)

Watermarking provides robustness by pushing the watermarked vectors far away
from the boundary of the decoding region. If the vector extracted from an at-
tacked content z = y + n goes out of Em(k), z might still be in Dm(k) and the
correct message is decoded.

For QIM based watermarking schemes, we often have Em(k) ⊆ Dm(k). There-
fore, there might exist another key k′ such that Em(k) ⊆ Dm(k′), ∀m. A graph-
ical illustration of this phenomenon is depicted on Fig. 1.

Dm(k′)
Dm(k)

Em(k)

))

)

Dm(k”)

Fig. 1. Graphical representation in space X of three decoding regions Dm(k), Dm(k′)
and Dm(k′′) and the embedding region Em(k): k and k′ belong to the equivalent

decoding region K(d)
eq (k, 0), but k′′ does not

3.3 The Equivalent Keys

We now define the equivalent keys and the associated equivalent region. We
should make the distinction between the equivalent decoding keys and the equiv-
alent embedding keys. But we restrict our attention to the decoding problem in
this paper, and we use the term equivalent keys.

The set of equivalent keys Keq(k, ε) ⊂ K with 0 ≤ ε is defined as the set of
keys that allows a decoding of the hidden messages embedded with k with a
probability bigger than 1− ε:

Keq(k, ε) = {k′ ∈ K : P [d(e(X,M,k),k′) �= M ] ≤ ε}. (3)

Due to a lack of space, this paper focuses on ε = 0 giving birth to an equivalent
definition:

Keq(k, 0) = {k′ ∈ K : Em(k) ⊆ Dm(k′)}. (4)

This set is usually not empty for QIM: if Em(k) ⊆ Dm(k), k is then an element
of Keq(k, 0).
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3.4 The Effective Key Length

We introduce the notion of effective key length as a way to measure security.
The adversary picks a key k′ ∈ K taking into account the set of observations
ONo with an estimator: K′ = g(ONo). The estimator g(·) is either deterministic
or stochastic such that K′ ∼ p(k′|ONo) for instance. A graphical example of the
key space K is depicted in Fig. 2.

Keq(k, ε)

K
g(ONo)

k

Fig. 2. Graphical representation of the key space K and the equivalent region Keq(k, ε).
The dotted boundary represents the support of the estimator g(ONo) used to draw new
test keys when the adversary has No observations.

The probability P (ε,No) that the adversary picks up a key belonging to the
equivalent region is:

P (d)(ε,No) = EK[EONo [EK′ [K′ ∈ Keq(K, ε)|ONo ]]]. (5)

Finally, to obtain an analogy with cryptography, the effective key length �(ε,No)
translates this probability into bits as follows:

�(ε,No) � − log2(P (ε,No)) bits. (6)

The bigger the effective key length, the less likely is the attacker to find keys
granting the access to the watermarking channel, and therefore, the more secure
is the watermarking scheme. This measurement of the security is in line with
Kalker’s definition. It is easily interpretable. It doesn’t rely on information the-
oretical element, and it takes into account the embedding and the decoding of
the watermarking scheme.

4 Technical Details: Part I – Theoretical Analysis

This section applies the above methodology to DC-DM QIM watermarking. We
give close form expressions for self-similar lattices and upper and lower bounds
in the general case.
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4.1 A Primer on DC-DM QIM Watermarking

Let us model the host signal by a vector x ∈ RNv . Consider a coarse Euclidean
lattice Λc ⊂ RNv . The origin 0 ∈ RNv is an element of Λc and the Voronoi cell
is defined as the set of vectors of RNv closer to 0 than to any other element of
Λc: V(Λc) � {v ∈ RNv |QΛc(v) = 0} where QΛc(·) is the Euclidean quantizer on
Λc. The Voronoi cell of a lattice is a centrally symmetric, convex polytope.

V(Λc)

V(Λf )

Fig. 3. 2D representation of the different elements used to compute the equivalent
region. The large stars represent elements of the coarse lattice Λc, the small and large
stars represents the fine lattice Λf , associated with the Voronoi cells V(Λc) and V(Λf ).
In this specific non-similar construction with the hexagonal lattice, M = 3. The dotted
and dashed circles represent balls with radius of R(Λ) and r(Λ) respectively. The dashed
hexagone is the scaled version of V(Λf ) used to compute the lower bound in (20).

For each message m ∈ M with say M = {1, 2, . . . ,M}, a coset leader dm ∈
RNv is defined such that Λf = ∪M

m=1(Λc + dm) is a finer lattice. This induces
the partition of Λf into M shifted versions of Λc, which implies that

|M| = M = vol(V(Λc))/vol(V(Λf )), (7)

with vol(A) the volume of subset A ⊂ X . Define r(Λ) the packing radius of
lattice Λ as the radius of the largest hyper-ball contained in V(Λ) and R(Λ)
the covering radius of Λ as the radius of the smallest hyper-ball containing
V(Λ). Denote B(x, r) the hyperball centered on x of radius r (see Fig. 3). Then,
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B(0, r(Λ)) ⊂ V(Λ) ⊂ B(0, R(Λ)). Finally, define ρ(Λ) the effective radius of Λ
such that vol(B(0, ρ(Λ))) = vol(V(Λ)). Eq. (7) means that

M = (ρ(Λc)/ρ(Λf ))
n. (8)

Hiding messagem in x with a DC-DM QIM technique yields watermarked vector
y:

y = e(x,m,k) = x+ α(QΛc(x− dm − k)− x+ dm + k)

= QΛc(x− dm − k) + dm + k+ (1− α)(x− dm − k−QΛc(x− dm − k))(9)

The key k ∈ RNv is called the dither applying a secret shift of the quantizer. Due
to the Λc-periodicity, the key ensemble K is the Voronoi cell V(Λc). We assume
as in [3] that k has been uniformly drawn over K = V(Λc). The last equation
shows that the watermarked signal is an element of Λ + dm + k plus the self-
inference noise (1 − α)x̃, with x̃ � [x − dm − k mod Λc] and [x mod Λ] �
x −QΛ(x). Parameter α with 0 < α < 1 is the distortion compensation factor.
The two lattices are scaled by a factor Δ such that the Euclidean embedding

distortion is below the distortion budget: α2

∫
V(Λc)

‖x‖2∂x

vol(V(Λc))
≤ NvD (under the flat

host assumption, see [3]).
The message decoded from y with key k′ is given by

m̂ = d(y,k′) = arg min
m∈M

‖y − dm − k′ −QΛc(y − dm − k′)‖, (10)

which is m for y = e(x,m,k) if:

[(1− α)x̃ + k− k′ mod Λc] ∈ V(Λf ). (11)

We suppose that, in the noiseless case, the self-interference doesn’t give birth
to decoding errors when we decode with the secret key k′ = k. It implies that
(1− α)V(Λc) ⊂ V(Λf ), or more simply (1− α)R(Λc) ≤ r(Λf ). If α ≥ αmin with

αmin � 1− r(Λf )/R(Λc), (12)

the decoding is error free. But, there might be some values of α < αmin which
yield error-free decoding. If α = αmin, then k can decode without error: the set
of equivalent keys at least comprises the singleton {k}.

There are several constructions of the partition (Λc, Λf ) provably good for
data hiding. Their description is out of the scope of this paper (see [3]). However,
we detail one in particular: We say that (Λc, Λf) are self-similar lattices if Λf =
βΛc with 0 < β < 1 (ie. we exclude the case where Λf is a scaled rotation of
Λc). Eq. (8) imposes that M = β−Nv which must be an integer bigger than 1.
Decoding without error in the noiseless case implies β ≥ (1−α) so that α ≥ αss

min

(superscript ss means self-similar) with

αss
min � 1− β. (13)
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4.2 No Observation – No = 0

The attacker has no observation. He randomly picks a test key k′ uniformly over
V(Λc). What is the probability that k′ is an equivalent key of k?

Self-similar Lattices Construction. We are able to write a close form ex-
pression of this probability for this construction thanks to the following lemma.
For two sets A and B in IRNv , define aA = {x|∃a ∈ A : x = aa} and
A⊕ B = {x|∃(a,b) ∈ A× B : x = a+ b}.

Lemma 1. For (a, b) two positive real numbers, aV(Λ)⊕ bV(Λ) = (a + b)V(Λ)
for any Euclidean Lattice Λ.

Proof. Take any z ∈ (a+b)V(Λ), then x = a/(a+b)z lies in aV(Λ), y = b/(a+b)z
lies in bV(Λ) while z = x+ y. Take now x ∈ aV(Λ) and y ∈ bV(Λ). Consider a
codeword c ∈ Λ with c �= 0. Vector x is closer to codeword 0 than to any other
codeword ac of aΛ. We have ‖x‖ ≤ ‖ac− x‖ so that a‖c‖2 − 2c�x ≥ 0. In the
same way, b‖c‖2 − 2c�y ≥ 0. Then ‖(a + b)c − (x + y)‖2 = ‖x + y‖2 + (a +
b)((a+ b)‖c‖2 − 2c�(x+ y)) ≥ ‖x+ y‖2. This holds for any codeword (a+ b)c
of (a+ b)Λ so that x+ y ∈ V((a+ b)Λ) = (a+ b)V(Λ).

If k′ ∈ [k+ (β − (1− α))V(Λc) mod Λc], then Eq. (11) is satisfied thanks to
this lemma. Because there is no aliasing since 0 ≤ β − (1 − α) ≤ 1, the volume
of Keq(0,k) is the same for any k. For the sake of simplicity, we can restrict our
attention to the case k = 0 which makes the modulo Λc useless. In the end, the
probability of picking an equivalent key is the ratio:

P (d)(0, 0) =
vol(Keq(0,k))

vol(K)
= (β − (1− α))Nv (14)

=
1

M

(
1− 1− α

1− αss
min

)Nv

, (15)

with αss
min given in (13). This expression does not depend on factor Δ.

Bounds for a General Construction. For α = 1, (11) states that Keq(0,k) =
k+ V(Λf) and P (d)(0, 0) = 1/M . For α < 1, we cannot determine Keq(0,k).

Upper Bound. We upper bound Keq(0,k) with an hyperball. Since x̃ ∈ V(Λc),
then (1 − α)‖x̃‖ ≤ (1 − α)R(Λc). If ‖k − k′‖ ≤ r(Λf ) − (1 − α)R(Λc), then
‖(1 − α)x̃ + k − k′‖ ≤ r(Λf ), which implies that (11) is satisfied. This means
that B(k, r(Λf )− (1− α)R(Λc)) ⊂ Keq(0,k). Therefore,

P (d)(0, 0) ≥ vol(B(0, r(Λf )− (1− α)R(Λc)))

vol(V(Λc))
(16)

≥
(
r(Λf )− (1− α)R(Λc)

ρ(Λc)

)Nv

(17)

≥ 1

M
r̄(Λf )

Nv

(
1− 1− α

1− αmin

)Nv

, (18)
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where r̄(Λ) � r(Λ)/ρ(Λ) ≤ 1 is the packing efficiency of the lattice Λ and αmin

is given in (12). Equality holds however if V(Λf) and V(Λc) are both spherical:

R̄(Λf ) = r̄(Λf ) = R̄(Λc) = r̄(Λc) = 1. (19)

This is only the case for Nv = 1 where the Voronoi cell are intervals of R, and
we find back the expression for self similar lattices.

Lower Bound. We lower bound Keq(0,k) with a scaled Voronoi cell of Λf (see
Fig. 3). Suppose k′ ∈ Keq(0,k), then k′ = k+ xf + (1 − α)xc with xf ∈ V(Λf)
and xc belonging to:

V(Λc) ⊂ B(0, R(Λc)) = B
(
0,

R(Λc)

r(Λf )
r(Λf )

)
⊂ R(Λc)

r(Λf )
V(Λf).

Therefore, Keq(0,k) ⊂ k+
(
1 + (1− α)R(Λc)

r(Λf )

)
V(Λf ) and

P (d)(0, 0) ≤ 1

M

(
1− 1− α

1− αmin

)Nv

, (20)

which is the same expression as for self-similar lattices, but with the αmin of (12).
Equality holds if the lattices are self-similar.

It may surprise the reader that no figure of merit about the coarse lattice Λc

appears in these bounds. This is not true because αmin indeed depends on its
covering efficiency. These bounds depend on the distortion compensation factor
α but not on the scale Δ of (Λc, Λf). These bounds may not be tight in general.
For instance, for α = 1, P (d)(0, 0) = M−1 ∀(Λc, Λf ), whereas the lower bound
adds a scaling factor r̄(Λf )

Nv . In the end, we obtain upper and lower bounds for
the effective key length with a gap between the two of Nv log2 r̄(Λf ) bits.

4.3 Some Observations – No > 0

In the KMA setup, the attacker observes No watermarked vectors together with
their hidden message: oi = {yi,mi} with 1 ≤ i ≤ No. We only detail the calculus
for SCS: Nv = 1 and Λc = ΔZ, which can be used for self similar cubic lattices.
We drop the boldface font since the host, the watermarked content and the key
are now scalars. In other words, the embedding (9) simply gives:

y ∈ lΔ+ dm + k + (1− α)V(ΔZ) (21)

with l ∈ Z, dm = (m − 1)Δ/M and k ∈ V(ΔZ) = Δ/2.(−1, 1]. We also assume
that α > 1/2 and that the adversary knows dm under KMA. The observations
are:

oi � yi − dmi ∈ liΔ+ k + (1− α)Δ/2.(−1, 1].

If we take these observations modulo Δ, the results may lie in a non convex
set. However, there exist some r for which [oi − r mod Δ] are all in a convex
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interval of length (1−α)Δ/2.(−1, 1] (see [3, Prop. 2]). In other words, õi � [oi−r
mod Δ]+r = k+(1−α)x̃i, and we get rid off the modulo operation. This implies
in return that k ∈ õi + (1− α)Δ/2[−1, 1). This holds for all the observations so
that k must lie in the intersection of these intervals and we have:

k ∈ [max õi − (1− α)Δ/2,min õi + (1 − α)Δ/2). (22)

This interval is called the feasible set in [3] and we denote it by K(oNo). In words,
thanks to the observations, the attacker knows that the secret key lies into the
feasible set. Therefore, he randomly picks a key k′ in this set, and the probability
that k′ is an equivalent key is given by the ratio:

P (d)(0, No) =
vol(K(d)

eq (k, 0) ∩ K(oNo))

vol(K(oNo))
. (23)

Fig. 4 shows that K(d)
eq (k, 0) has a volume equalling Δ(1/M − (1 − α)).

Dm(k)

k + dm + �Δ

Δ/M

Em(k)
(1− α)Δ

Dm(k′
min)

k′
min + dm + �Δ

Δ/M

Dm(k′
max)

k′
max + dm + �Δ

Δ/M

K(d)
eq (k, 0)

Δ(1/M − 1 + α)

Fig. 4. Computation of vol(K(d)
eq (k, 0)) for DC-QIM

First Study: No = 1. Denote leq = vol(K(d)
eq (k, 0))/Δ = 1/M − (1 − α) and

lfs = vol(K(O1))/Δ = (1−α) (see (22) with max õi = min õi for No = 1). There
are three cases depending on the values of leq and lfs.

1. For 1− 1/M ≤ α ≤ 1− 1/2M , we have leq ≤ lfs.
The probability P (d)(0, 1) is given by

∫
P [k′ ∈ Keq(k, 0)|õ1] f(õ1)∂õ1, with

f(õ1) = (Δlfs)
−1 and P [k′ ∈ Keq(k, 0)|õ1] given in Fig. 5 (left). We find:

P (d)(0, 1) =
leq
lfs

(
1− leq

4lfs

)
= 1− (1 − d)2, (24)

with d � 1
2M(1−α) −

1
2 ≤ 1.
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2. For 1− 1/2M ≤ α ≤ 1− 1/3M , we have lfs ≤ leq.
Although P [k′ ∈ Keq(k, 0)|õ1] has a different expression as shown in Fig. 5
(right), after integration, we find the same expression as (24).

3. For 1− 1/3M ≤ α ≤ 1, we have leq ≤ 2lfs and P (d)(0, 1) = 1.

k

leq/lfs

k − lfs/2

leq/2lfs

k − lfs/2 + leq/2

lfs

leq

P

[
k′ ∈ Keq(k, 0)|õ1

]

k

1

k − lfs/2

leq/2lfs

k + lfs/2 − leq/2

lfs

leq

P

[
k′ ∈ Keq(k, 0)|õ1

]

Fig. 5. SCS with 1− 1/2M ≤ α ≤ 1− 1/3M (left) or 1− 1/M ≤ α ≤ 1− 1/2M (right)

Second Study: No > 1: We introduce two random variables: O = min Õi and
Ō = max Õi which are defined on the following interval: −(1 − α)Δ/2 ≤ O ≤
(1− α)Δ/2 and O ≤ Ō ≤ (1− α)Δ/2. The pdf of (O, Ō) is given by:

pO,Ō(o, ō) =
No(No − 1)

((1− α)Δ)No
(ō− o)No−2. (25)

For a given couple (o, ō), the probability of picking an equivalent key is as follows:

A(o, ō) = 1− |o+ (1− α− 1/2M)Δ|+ + |(1− α− 1/2M)Δ− ō|+
(1 − α)Δ+ o− ō

,

with |x|+ � max(x, 0). Note that if α ≥ 1 − 1/3M , then A(o, ō) = 1, ∀(o, ō)
in the definition set, so that P (d)(0, No) = 1, which is consistent with the first
study. Note also that if α = 1 − 1/M , then A(o, ō) = 0 and the attacker never
succeeds. Finally,

P (d)(0, No) =

∫ (1−α)Δ/2

−(1−α)Δ/2

∫ (1−α)Δ/2

o

pO,Ō(o, ō) · A(o, ō)∂o∂ō. (26)

After some cumbersome manipulations, we have for 1− 1/M ≤ α ≤ 1− 1/3M :

P (d)(0, No) = 1− (1− d)No

+ dNo(No − 1)

(
d ln(d) + 1− d−

No−2∑
�=1

(1− d)�+1

�(�+ 1)

)
. (27)

This shows that when α increases from 1− 1/M to 1− 1/3M , P (d)(0, No) goes
from 0 to 1.

It is easy to extend these results to self similar cubic lattices: Λc = ΔZNv .
The probability to find an equivalent key over the block of size Nv is the product
of the Nv probabilities per component. Therefore, one just has to take Eq. (24)
and (27) to the power Nv, and the effective key length is Nv times the key length
per component.
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5 Technical Details: Part II – Experimental Setup

This section presents an experimental framework to numerically evaluate the ef-
fective key length. We assume that there exist efficient quantizers for the chosen
lattices (Λc, Λf). This means that we know how to embed, decode and make
modulo Λc operation. The subsections below explain how we overcome two dif-
ficulties.

5.1 Indicator Function of Keq(0, k)

Consider the case No = 0. A naive experimental protocol based on a Monte
Carlo simulations would be to generate one secret key k, and then N test keys
{k′

i}Ni=1 and to count the number of times k′
i is an equivalent decoding key of k.

The problem is that, if the partition is not based on self similar lattices, we do
not know the shape of Keq(0,k) and there is no indicator function of this set.
The only thing we have is that Eq. (11) holds for any x̃ ∈ V(Λc) if k

′
i ∈ Keq(0,k).

A first possibility is to generate Nt vectors {x̃i}Nt

i=1 uniformly distributed over
V(Λc). Thanks to the convexity of the Voronoi cells, we know that if Eq. (11)
holds for the Nt elements, then it holds for any point in their convex hull of
which is a subset of V(Λc). Therefore, this method is only an approximation of
the indicator function, which becomes inaccurate if Nt is too small. This in turn
raises a problem of complexity since we need to check (11) Nt times per test key.

A second possibility benefits from the convexity property. Since V(Λc) is con-
vex, setting {x̃i}Nt

i=1 as its vertices is sufficient. However, the dimension of the
space strikes us again. For instance, there are 2Nv such vertices for Λc = ΔZNv

and 19, 440 for Λc = E8. For the latter case, we only consider the 2, 160 deep
holes of E8, i.e. the most far away from 0 vertices [7].

5.2 Rare Event Probability Estimator

Since the probabilities to be estimated can be low, the complexity of Monte
Carlo simulations is another difficulty. The number of test keys N must be in the
order of 1/P (d)(0, No) to achieve a reasonably low relative variance of estimation.
This is the reason why we also use a rare event probability estimator1. Three
ingredients are needed:

– A generator of test keys. The test keys are to be drawn uniformly over a
convex set (e.g. K = V(Λc) for No = 0). This is done by the rejection
method: We randomly draw a vector v in the hypercube R(Λc)[−1, 1]Nv and
we accept it as an occurence of K′ ∼ U(V(Λc)) if QΛc(v) = 0 indicating
that v ∈ V(Λc). If not, we reject it and redraw a vector v until the condition
is checked.

– A modification process. It randomly modifies a key K′ into K′′ so that the
latter is exactly distributed like the former. One says that the process is

1 Available as a Matlab Toolbox at www.irisa.fr/texmex/people/furon/src.html

www.irisa.fr/texmex/people/furon/src.html
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distribution invariant. Since the law is indeed the uniform distribution over
a convex set, we use the “Hit and Run” algorithm [8]. In a nutshell, from a
point K′ in the set, one uniformly draws a direction Θ is the space. Then,
one seeks the 2 points A and B of this line (K′, Θ) that intersect with the
frontier of the set. At the end, one draws a point uniformly over [A,B]. The
process is repeated several times and the output K′′ is the last point.

– A score function s(·) : K → R. It is designed such that s(k′) = 1 implies
that k′ ∈ Keq(0,k). However, it must be a soft function: s(k′) graciously
tends to 1 when k′ gets closer to Keq(0,k) in some sense. We propose the
following trick: We compute the difference di = ‖(1−α)x̃i+k−k′ mod Λc‖−
r(Λf ). Therefore, di > 0 for the vectors violating (11). We set s(k′) =
1 −max({|di|+}). If (11) holds for the Nt vectors defined in Sub. 5.1, then
s(k′) = 1.

With this setting, the algorithm described in [9] estimates P [s(K′) = 1] with
K′ uniformly distributed over a convex set K. Its properties in term of bias,
relative variance and confidence interval are given in [9]. Its complexity is in
O(log(1/P (d)(0, No))). In practice, if P (d)(0, No) is lower than 10−3, this algo-
rithm runs faster than the Monte Carlo simulations.

6 Discussions

6.1 Scalar Costa Scheme

We first analyze the security of the Scalar Costa Scheme whereNv = 1, Λc = ΔZ,
Λf = M−1ΔZ, and αss

min = 1 − M−1. This is the only case where we have a
complete picture for any value of No. Fig. 6 shows the effective key length in
bits per component .

The embedding distortion increases with Δ and with α, and so is the robust-
ness. However, the effective key length decreases with α and does not depend on
Δ. This stems in a trade-off between robustness and security. For a given Δ, α
closer to 1 provides more robustness but less security.

There is a big discrepancy w.r.t. the value of No. When No = 0, the effective
key length is always bigger log2 M bits per component, which is the rate of the
watermarking scheme. Hiding symbols at a higher rate does increase the security,
but the robustness would be much smaller.

When No > 0, the effective key length vanishes to 0 bit as α → 1 − 1/3M .
Fig. 6 (right) shows that the effective key length quickly vanishes asNo increases.
Note the big loss between No = 0 and No = 1.

6.2 Lattice Embedding

The only setup where we have a full analysis is the cubic self-similar lattices:
the effective key length for a block of size Nv is the effective key length of SCS
times Nv. Therefore, the effective key length per component remains the same.
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Fig. 6. Key length in bits for the SCS scheme, (left) vs. the distortion compensation
factor α. (right) vs. the number of observations No for α = 0.8. Stars mark experimental
estimations as described in Sect. 5.1.
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Fig. 7. Key length in bits for constructions 1 (left) and 2 (right) vs. the distortion
compensation factor α. Stars mark experimental estimations as described in Sect. 5.2;
the intervals are the 95% confidence intervals of these estimations.

For any other construction, we only have results for No = 0. As above, when
α = 1, the effective key length per component equals the rate of the water-
marking scheme: log2(M)/Nv bits. Surprisingly, two self-similar constructions
operating with the same β and at the same rate, share the same effective key
length per component. For instance, SCS with M = 2 and the construction 1
detailed below share the same plot for No = 0 (Fig. 6 (left) and Fig. 7 (left)).
In the same way, two non-similar constructions operating with the same αmin

and at the same rate share the same lower bound on the effective key length per
component. In general, αmin has an impact on the decay rate of the effective key
length, whereas the rate of message hiding shifts the plot.
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We apply the experimental benchmark detailed in Sect. 5 to two constructions
for Nv = 8 (RE8 denotes a rotated version of lattice E8 [7]):

1. Self similar: Λc = E8, Λf = βE8, β = 0.5, M = 256, αss
min = 0.5.

2. Non similar: Λc = RE8, Λf = E8, r̄(Λf ) = 0.842, M = 16, αmin = 0.5.

Fig. 7 validates the experimental evaluation of the effective key length: for the
self-similar lattices, the estimation is in line with the close form expression since
it lies in the confidence interval except for the smallest value of α (see Fig. 7
(left)). This is due to the approximation of the equivalent region (see Sect. 5.1).
For non similar lattices, the bounds are so close that the experimental evaluation
does not bring much information. It seems that the key length is closer to the
upper bound for weak α, and closer to the lower bound for strong α. The rare
event estimator (see Sect. 5.2) is useful because the probabilities to be evaluated
are as low as 10−16 for the smallest value of α. This algorithm succeeds to
estimate such order of probability within two minutes on a regular computer.

7 Conclusion and Future Works

This paper introduces a new approach to gauge the security of watermarking
schemes. The keystone is the notion of equivalent keys: there exist a plurality of
keys granting access to the watermarking channel. The scheme is more secure if
the attacker has greater difficulty in finding an equivalent key.

This approach is then applied to DC-DM QIM watermarking schemes. The
lesson is that, as soon as the attacker observes some watermarked contents and
their hidden message, the scheme is then broken if it is designed to be robust.

The paper lacks a part of the study: for lattice embedding, the computation
of the effective key length is missing when the attacker has some observations.
This will be done in a future work. The experimental evaluation should not
be difficult: we will use Set Member Estimation technique to approximate the
feasible set yielded by the observations by a bounding ellipsoid as done in [3].
Then, the attacker has to randomly pick a key inside this region. The theoretical
part however seems much more difficult. Another point is that we work with
ε = 0 (perfect access to the watermarking channel), it is interesting to see how
the effective key length evolves when we relax this strong constraint.
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Abstract. This paper aims at reducing the embedding distortion by
improving predictor’s performance for prediction-error expansion (PE)
based reversible watermarking. In the existing PE embedding methods,
the predicted values or their variety should be rounded to integer values.
This will restrict predictor’s performance since the prediction context
is only with past pixels (image) or samples (audio). In this paper, we
propose a non-integer PE (NIPE) embedding approach, which can
proceed non-integer prediction errors for data embedding by only
expanding integer element of a prediction error while keeping its
fractional element unchanged. More importantly, the NIPE scheme allows
the predictor to estimate the current pixel/sample not restricted only
past pixels/samples. We also propose a novel noncausal prediction
strategy by combining past and future pixels/samples as the context.
Experimental results for some standard test clips show that the
non-integer output of predictor provides higher prediction performance,
and the proposed NIPE scheme with the new predicting strategy can
reduce the embedding distortion for the same payload.

Keywords: Reversible Watermarking, Non-Integer Prediction Error,
Expansion Embedding, Noncausal Prediction.

1 Introduction

Reversible watermarking (also known as lossless/distortion-free/invertible data
hiding) is a technique to embed data in a host signal (for example, an image
or audio clip) and allow for the original digital media to be exactly recovered.
There are two important requirements for reversible watermarking techniques:
1) a larger embedding payload and 2) a lower embedding distortion. The two
requirements conflict with each other since a higher embedding payload usually
results in a higher degree of distortion. In recent 10 years, reversible watermarking
has been an active research topic.

In the literature, reversible watermarking algorithms can be categorized as
four main types:

1) Type-I algorithms use modulo-arithmetic-based in additive spread frequency
techniques, which often cause salt-and-pepper artifacts due to many pixels
wrapped [1]. In this direction, a different approach proposed by Vleeschouwer
et al. [2] reduced the artifacts by using the circular interpolation of the
bijective transform of image histogram.

M. Kirchner and D. Ghosal (Eds.): IH 2012, LNCS 7692, pp. 224–239, 2013.
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2) Type-II algorithms compress a set of selected features from an image in a
lossless way and embed the information into the space saved due to the
compression [3–5]. In [6] Celik et al. proposed a generalized LSB (g-LSB)
embedding algorithm, which is an extension of the work [3]. Compared with
Type-I algorithms, Type-II ones have higher payload.

3) The third category of reversible watermarking algorithms can be classified as
difference expansion (DE) embedding methods, in which a common feature
is to use difference operators to create features with a small magnitude, and
further expand these features in order to create vacancies for bits embedding.
The DE embedding technique was originally developed by Tian [7] and have
been extended in [8–10]. The DE technique involves grouping the pixels of the
host image and transforming them into a low-pass image (including integer
averages) and a high-pass image (the pixel differences). The technique can
embed larger amounts of data than the earlier approaches. For example, it’s
capacity is close to 0.5 bpp for Tian’s method in a single pass).

4) A new research direction, proposed by Thodi et al. [11], is prediction-error
expansion (PE) embedding technique. Comparing with the DE-based methods,
one of the advantages of the PE technique is that it significantly adds
the number of the feature elements that expanded for data embedding.
The other advantage is that a predictor generates feature elements that
are often smaller in magnitude than the feature elements generated by a
difference operator. Instead of embedding the entire expanded difference into
the present pixel, Coltuc split the difference between the current pixel and
its prediction context, and successfully reduced the embedding distortion for
PE-based reversible watermarking [12]. With embedding into each pixel, the
PE embedding techniques provided the maximal capacity up to 1 bpp in a
single pass.

Reversible watermarking algorithms have also been proposed for digital
audio [13–15]. In [13], Veen et al. proposed a novel reversible audio watermarking
approach by first compressing the dynamic range of the original signal to render
a number of unused bits. These unused bits are used to embed data including
payload and information relevant to the bit-exact reconstruction of the original
audio file. This method can achieve a satisfactory embedding capacity but
suffer from a undesirable distortion due to quantization error and loudness
change in the compression-expansion embedding phase. By introducing DE
embedding technique [8] for audio, Bradley et al addressed two DE-based
reversible watermarking methods: dyad-based (two samples as a group) and
triad-based (three samples as a group) [14]. The dyad-based method can achieve
at best 0.5 bits per sample (bps) while the triad-based one providing the maximal
capacity of 2 bits in a group of three neighboring samples. The PE embedding
technique [11] has also been introduced for digital audio in [15] in a way that
the current sample is a linear combination of three past samples (in which each
sample is corresponding to an integer weight coefficient).
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This paper aims at reducing the embedding distortion by improving predictor’s
performance for PE-based reversible watermarking. It is worth noting that the
predicted value of a pixel/sample (see [11, 15]) or a variety of the predicted
value (see Equation (4) in [12]) must be rounded to integer value to add or
subtract to the context for PE-based data embedding. These integer operations
limit predictor’s performance since only past pixels/samples can be defined as
the prediction context. In this paper we propose a non-integer PE (NIPE)
embedding strategy, which can proceed non-integer prediction values for data
embedding by expanding the integer element of a prediction error and keeping
the fractional element unchanged. A novel prediction model, using both past
and future pixels/samples as the prediction context, is designed for the NIPE
embedding technique. Experimental results for some standard test clips show
that the predictor with non-integer output has higher prediction performance,
and the proposed NIPE method with the predictor can significantly reduce the
embedding distortion for the same payload.

The outline of this paper is as follows. In the next section, the proposed
PE embedding technique is introduced. This is followed by a description of a
new prediction strategy. We then address the proposed reversible watermarking
scheme and test the scheme’s performance by comparing with existing reversible
audio watermarking works. Finally, we draw the conclusions.

2 Prediction-Error Expansion Embedding

Prediction-error expansion (PE) embedding is a technique to expand a prediction
error to create a vacant position and insert a bit into the vacant position,
generally at the least significant bit (LSB). The PE-based scheme was originally
developed by Thodi [11], and later improved by Coltuc [12] by marking the
present pixel and its context for reducing the embedding distortion.

In this section, we presents a non-integer prediction-error expansion (NIPE)
embedding technique, which really brings a predictor into full play in comparison
with the integer prediction-error expansion (IPE) methods in [11, 12]. In the
NIPE-based method, the predicted value is not needed to be rounded to integer
number. This is beneficial to apply not only past pixels/samples but also future
pixels/pixels as the prediction context to reduce the embedding distortion for
PE-based reversible watermarking. Before introducing the proposed scheme, the
basic principle of the IPE method [11] and an improvement of its [12] is briefly
reminded.

2.1 IPE Embedding

In the IPE embedding technique [11], the prediction error is the difference
between a pixel intensity y and its predicted intensity ŷ, denoted by e = y − ŷ.
After embedding a bit w, the watermarked prediction error is

ew = 2× e + w. (1)
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The marked pixel intensity is yw = ŷ+ew. Since yw should be integer number, ŷ
must be rounded to integer values. As a result, the prediction error e (e = y− ŷ)
is also an integer value. This is why we denote Thodi’s method as the IPE in this
paper. It is worth noting that the condition that ŷ take integer values makes an
undesirable requirement, that is, the prediction context only contains past pixels
because the fractional element of ŷ is lost in the embedding.

The hidden bit, w, is extracted from the LSB of ew and the original pixel
intensity y is recovered by

w = mod(ew , 2), y = ŷ + "ew
2
#, (2)

where mod(ew, 2) is the remainder on division of ew by 2.

2.2 Improved PE Embedding

In [12], Coltuc improved Thodi’s PE embedding method by modifying the current
pixel and its context for reducing the embedding distortion. The basic principle
is described as follows.

In the PE embedding method, a pixel y is replaced by yw, where

yw = ŷ + 2× (y − ŷ) + w = y + (y − ŷ) + w. (3)

Equation (3) indicates that the prediction error (y − ŷ) and the bit w to be
embedded are added to the gray level of the current pixel y. At detection, if the
prediction context is not altered, the embedded data is recovered from the LSB
of ew:

w = mod(ew, 2) = yw − ŷ − 2"yw − ŷ

2
#, (4)

From (4), Coltuc observed that in order to extract w and restore the original
sample y, not the exact of ŷ is needed, but of the difference of yw − ŷ. Thus,
Yw and ŷ can be simultaneously modified for data embedding in a way that ŷ
is modified by adding or subtracting an integer value ξ (ξ = "αpw + 1

2#) to its
context, where 0 ≤ α < 1 and pw = y − ŷ + w. As a result, the estimate of y
is computed as ŷξ, and the new value of y becomes ywξ = yw − ŷ − ŷξ. In the
detector the bit w can be recovered from Equation (4) and the context can be
recovered by computing ξ. Finally, the original pixel y is recovered.

We can observe from Equation (3) that in the improved PE embedding
method [12], though the prediction value ŷ can take non-integer value, the variety
of ŷ or e(e = y− ŷ), ξ = "α(y − ŷ+w) + 1

2#, is needed to be rounded to integer
value. The integer value ξ is further added or subtracted to the context. This
typical embedding process proposed in [12] does not allow the predictor to use
future pixels of the current pixel for prediction. The basic reason is that a future
pixel (yi+1) of the current pixel (yi) can be considered as a past pixel of another
pixel (yi+2). When past and future pixels of the current pixel can be defined as
the context in the work [12], a pixel, denoted as past pixel of some pixels and
future pixel of other pixels, may be repeatedly modified due to the operation
that adds or subtracts ξ to the context.
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2.3 NIPE Embedding

Sections 2.1 and 2.2 show that the existing two PE embedding approaches [11, 12]
are suffering from an undesired requirement that the context of a pixel (or a
sample) cannot involve future pixels in the predictor. This requirement can be
considered as a weakness since the predictor’s performance is restricted. In this
section, we present a new NIPE embedding approach, one of the advantages
of which is able to deal with non-integer prediction values. The other, more
important, advantage of the approach is that the predictor allows to use past
and future pixels/samples as the context to improve prediction performance.

From the expression yw = ŷ + 2 × (y − ŷ) + w in Equation (3), we find that
in order to recover the marked pixel yw, not exact of an integer ŷ is needed, but
of the sum of ŷ + 2 × e. Towards this direction, the basic idea of our approach
is to allow ŷ to take non-integer value but make sure that the combination of ŷ
and e takes integer value for hiding the bit w.

In the encoder, the prediction error e is a non-integer value when the
predicted value ŷ takes non-integer number. Split e into two parts: integer part
� (� = fix(e)) and fractional part δ (δ = e − �). fix(.) is a function to strip off
the fractional part of its argument, and returns the integer part. The function
does not perform any form of rounding or scaling, e.g., fix(−3.4) = −3 and
fix(3.4) = 3. For a given bit w, the NIPE method expands the integer element
of a prediction error for data embedding while keeping the fractional element
unchanged. The watermarked prediction error is computed by

ew =

{
2× �+ δ + w = e+ �+ w, if e ≥ 0,

2× �+ δ − w = e+ �− w, Otherwise .
(5)

Such a expansion way can guarantee that the fractional part of ew is equal to
that of e.

The resulting watermarked pixel/sample is

yw = ŷ + ew =

{
ŷ + e+ �+ w = y + �+ w, if e ≥ 0,

ŷ + e+ �− w = y + �− w, Otherwise .
(6)

Equation (6) shows that though ŷ and e take non-integer values, the watermarked
pixel is an integer number.

In the decoder, the bit w is extracted from ew and the original pixel/sample
y is restored by

w = mod(�w, 2), and y = ŷ + fix(
�w
2
) + δw, (7)

where �w is the integer element of ew and δw = ew − �w.
Equations (5), (6) and (7) form the proposed NIPE embedding strategy, which

can allow the predictor to output non-integer values. More importantly, this
approach allows a predictor to apply both past and future pixels/samples for
prediction because the fractional element of e keeps unchanged in the embedding.
The detail is described in Section 3.
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2.4 Example for NIPE Embedding

Let y = 100, w = 1 and e = 100− 100.4 = −0.4 when ŷ = 100.4. The IPE and
NIPE scheme are computed as follows:

1) IPE scheme: In the encoder, ew = 2 × (−0.4) + 1 = 0.2, yw = ŷ + ew =
100.4 + 0.2 = 100.6. In the decoder, w = mod(ew, 2) = 0.2, and y = ŷ +
" ew

2 # = 100.4 + " 0.2
2 # = 100.4.

2) NIPE scheme: In the encoder, ew = e+ �−w = −0.4+0− 1 = −1.4. In the
decoder, �w = fix(ew) = −1, δw = ew − �w = −0.4, w = mod(�w, 2) = 1,
y = ŷ + fix( �w2 ) + δw = 100.4 + fix(−1

2 )− 0.4 = 100.

We can see from the above example that the NIPE scheme can deal with
non-integer prediction value but the IPE can not.

3 Signal Prediction

Signal prediction is an important step in reversible watermarking. Usually, the
prediction error is computed from the neighborhood of a pixel/sample. As shown
in Fig. 1, the eight neighboring pixels of the present pixel (y) at the top-left
(xtl), top (xt), top-right (xtr), right (xr), left (xl), bottom-left (xtl), bottom
(xb) and bottom-right (xbr) are defined as the context of y. After proceeding
in a raster-scan order, we can observe that the context include four past pixels
(xtl, xt, xtr, xr) and four future pixels (xl, xbl, xb, xbr) as illustrated in Fig. 1 (b).

xtl xt xtr
xl y xr
xbl xb xbr

    
raster-scan 

xtl, xt, xtr, xr,
y,

xl, xbl, xb, xbr
(a) Two-dimensional (2-D) 

image 
(b) 1-D form after the 

scanning

Fig. 1. Context of a pixel

3.1 Prediction with Past Pixels/Samples

In the previous PE-based works [11, 12], the median edge detection (MED)
predictor (already used in JPEG-LS Standard [16]) was used to report the
performance of their algorithms. Also in [12], the gradient adaptive predictor
(GAP) and the simplified GAP are applied for data embedding. No matter MED
predictor or GAP, after proceeding in a raster-scan order, it is worth noting that
only past pixels are combined as the context of the current pixel for reversible
watermarking in [11, 12]. For example, the MED predictor applies three past
pixels (xt, xtr, xr) as the context of the current pixel (y) as illustrated in Fig. 1.
The output of the MED predictor is



230 S. Xiang

ŷ =

⎧⎪⎨⎪⎩
max(xt, xr), if xtr ≤ min(xt, xr)

min(xt, xr), if xtr ≥ max(xt, xr)

xt + xr − xtr, Otherwise.

(8)

The IPE-based reversible watermarking has also been introduced for audio [15],
where three past samples are selected as the prediction context to output an
integer value. This audio prediction strategy was originally designed for lossless
compression coding of audio signals [17].

From the existing PE embedding algorithms (such as [11, 12, 15], and others),
we can observe that the exploited predictors (such as MED, GAP and difference
predictor) share a common property, that is, only past pixels/samples are defined
as the context due to the fact that the prediction value or its variety is rounded
to integer value in the embedding, as discussed in Sections 2.1 and 2.2.

3.2 Proposed Prediction Strategy

Obviously, only applying past pixels/samples as the context will reduce the
performance of a predictor. In this section, we propose a noncausal prediction
model for the NIPE embedding scheme. The new prediction model can predict
the current pixel/sample not restricted to only past pixels/samples.

Noncausal Prediction Model. Assume we have a time-discrete signal Y of
length N , Y = {y1, y2, · · · , yN} with yi ∈ {0, 1, · · · , 2m − 1}N , and where m
indicates the number of bits used to represent a sample/pixel1. The signal after
the prediction is Ŷ . The residual signal is E = Y − Ŷ . Here, the predicted
waveform is a linear combination of past and future pixels/samples:

ŷi =

p∑
t=1

ai−tyi−t +

p∑
t=1

ai+tyi+t, p < i < N − p+ 1 (9)

where
∑p

t=1 ai−tyi−t is the linear combination of p past pixels/samples,∑p
t=1 ai+tyi+t that of p future pixels/samples. The prediction error is computed

as

ei = yi − ŷi = yi −
p∑

t=1

ai−tyi−t −
p∑

t=1

ai+tyi+t, p < i < N − p+ 1. (10)

The above equation can be rewritten as

yi+p =
yi − ei −

∑p
t=1 ai−tyi−t −

∑p−1
t=1 ai+tyi+t

ai+p
, p < i < N − p+ 1. (11)

1 For a 2-D image, it can be proceeded as 1-D form by using a scanning operation
(e.g., in a raster-scan or zigzag-scan order). For a signed audio, it can be mapped
into the unsigned form by adding 2m−1.
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Equation (11) shows that in order to recover the original audio from the prediction
errors, the information of the first 2p pixels/samples is also needed. The further
information is referring to the following example predictor with p = 1. The
prediction model shows that if there is no integer operation on the predicted
value, those future pixels/samples can be defined as the prediction context of
the current pixel/sample.

An Example Predictor. The section above has addressed the basic principle
of the proposed prediction strategy. Here, an example predictor, used in this
paper for audio files, is a simplified version. Beginning from the second sample,
the sample yi is predicted by averaging its two closest neighbors (yi−1, yi+1):

ŷi =
yi−1 + yi+1

2
, 1 < i < N. (12)

The difference is computed as

ei = yi − ŷi = yi −
yi−1 + yi+1

2
, 1 < i < N. (13)

The original pixel/sample yi+1 is recovered by

yi+1 = 2yi − yi−1 − 2ei, 1 < i < N, (14)

We can observe from Equation (14) that when the information of y1 and y2
is saved, the original signal can be recovered from the prediction errors2. Let
e0 = y1, e1 = y2 − y1. Overall, the output of the predictor is denoted as E =
{e0, e1, · · · , eN−1}.

4 Proposed Watermarking Scheme

The proposed watermarking scheme is a combination of existing techniques
(histogram shifting in [11]) and new techniques (NIPE embedding and data
prediction not restricted only casual pixel/sample).

4.1 Prediction Expansion with Histogram Shift

The histogram shift method, introduced in [11], is an efficient reversible
watermarking technique to enhance fidelity of the marked signal and avoid
overlapping problems caused by expansion embedding. The combination of
histogram shifting and IPE has been previously addressed in [11]. Here, we
present how to combine the NIPE method with histogram shifting technique.
We adopt a positive threshold value T to control the embedding distortion.

2 When the first two pixels y1 and y2 are saved, the third pixel y3 can be recovered
by referring to the prediction error e2 in Equation (14), then recovering y4, y5 and
the other samples in sequential order. This explains the reconstruction process in
Equation (11).
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Specifically, only those prediction values in [−T, T ] are selected for NIPE
embedding (denoted as the expanding set S1), the prediction errors not in
the range [−T, T ] are going to be shifted (denoted as the shiftable set S2) to
avoid overlapping problems. The reversible watermarking rules are formulated
as follows.

ewi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2× �i + δi + wi if ei ∈ [0, T ]

2× �i + δi − wi if ei ∈ [−T, 0)

ei + T + 1 if ei > T

ei − T, if ei < −T,

(15)

where �i is integer part of the i
th prediction error, ei, satisfying ei = �i+ δi. The

marked prediction error is denoted by ewi after the bit wi is inserted.
The decoder recovers the original prediction error ei and the bit wi from ewi

by:

ei =

⎧⎪⎨⎪⎩
fix( �wi

2 ) + δwi if ewi ∈ [−2T, 2T + 1]

ewi − T − 1 if ewi > 2T + 1

ewi + T, if ewi < −2T

(16)

and
wi = mod (�wi, 2), if ewi ∈ [−2T, 2T + 1], (17)

where �wi = fix(ewi) is the integer element of ewi and δwi = ewi−�wi. It is worth
noting that δwi = δi since the embedding process only expands the integer part
while keeping the fraction element unchanged. Finally, the original pixels are
recovered from the prediction errors by performing inverse prediction operation.

The ratio between the sets S1 and S2 can be controlled by changing the
embedding threshold T . The bigger the threshold value T , the higher the
embedding payload, the more the embedding distortion is.

4.2 Overflow and Underflow

The marked signal may suffer from overflow and underflow problems due to
NIPE and histogram shifting operations. Towards this direction, an embedding
testing step is first performed to pick up those bad pixels/samples, as described
in [10]. When a marked pixel/sample in intensity/magnitude is not in the interval
[0, 2m−1], the sample is labeled as a bad pixel/sample. All bad pixels/samples in
position will be recorded as part of the payload and keep their value unchanged
in the embedding.

Take digital audio files as examples. Usually, the length of an audio file is
not longer than 6 minutes. For the sampling rate of 44.1 kHz, the number
of the samples is 6 × 60 × 44, 100 = 15, 876, 000 < 225. Therefore, 25 bits of
information is required to indicate the position of a bad sample. In addition, 15
bits of information is required for conveying the parameter T to the decoder.
The capacity of the proposed method can be computed as:

C =
N1 − 25×Np − 15− 25

N
, (18)
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where N1 is the number of the expandable set S1, Np the number of the bad
samples and N the length of cover-signal. Without recursive embedding, the
maximal capacity of the proposed NIPE scheme is close to 1 bps (or 1 bpp for
images).

5 Encoder and Decoder

The proposed reversible watermarking scheme, as illustrated in Fig. 2, can be
used for image or audio files. In this paper, we take audio clips for experimental
testing. In the embedding, the maximal capacity (Pmax) of an audio signal is first
computed by using the proposed reversible watermarking strategy, Pmax <= N .
When an actual payload size P (P <= Pmax) is given, the threshold T can be
computed. For recovering the cover-signal, the information of P and T is needed
to be sent to the decoder in a way that the LSB values of the first 40 prediction
errors are kept (as part of the payload) and then replaced by the parameters P
(25 bits) and T (15 bits).

Prediction

Y
Encoding

E

Payload

Ew Inverse-
Prediction

Yw

Prediction
w

Decoding E

Payload

Inverse-
Prediction

Yw Ew Y

(a)  Watermark Embedding

(b)  Watermark Extraction and Lossless recovery

Fig. 2. Proposed reversible watermarking scheme

Referring to Sections 2 and 3, the embedding process of the proposed scheme
is described as follows:

1) Predict the cover-signal Y to get the prediction errors E;
2) Find the bad samples in position by using the embedding testing operation.

Each bad sample consumes 25 bits of payload;
3) Embed the data (including P , T and the bad samples in position) into E to

generate Ew;
4) Reconstruct the marked audio signal Yw from Ew by using inverse-prediction

operation.



234 S. Xiang

In the decoder, the same prediction operation is performed on Yw to get Ew.
Then the information of P and T is extracted from the LSB values. Furthermore,
the hidden data and the original prediction errors E are extracted from Ew.
Finally, the original audio signal Y is recovered by using the inverse-prediction
operation.

6 Experimental Testing and Analysis

We choose 9 standard audio signals downloaded from the web site
(http : //sound.media.mit.edu/resources.php) as test data set to report: 1)
performance of the proposed predictor, 2) effect of the embedding threshold T
on the embedding payload and distortion and 3) the embedding payload and
distortion comparison of the proposed NIPE algorithm against several existing
state of the art reversible audio watermarking algorithms [13–15].

6.1 Prediction Accuracy

Several reversible audio watermarking algorithms [13–15] exist in the literature.
The method in [13] compresses the dynamic range and then commands the
range for data embedding. Two difference operators labeled as dyad-based
and triad-based transforms in [14] are adopted to decorrelate digital audio
for DE-based reversible watermarking. In [15], audio signal is predicted by
using three past samples as the prediction context for IPE-based reversible
watermarking. The predictor proposed in this paper has been described in the
Section 3.2.

Consider a signed example clip titled by ′karaoke tempo′ (the mean μ and
the standard derivation σ of which are -0.4402 and 2855.8, respectively). Fig. 3
plots histograms of the example clip proceeded with four different methods:
a) dyad-based transform (two neighboring samples as a vector to generate an
integer average and a difference error, where μ = 0.2976 and σ = 2019.4) [14], b)
triad-based transform (three neighboring samples to generate an integer average
and two difference errors, where μ = 0.0383 and σ = 1757.5) [14], c) difference
coding using past samples (where μ = 0 and σ = 585.1) [15, 17] and d) the
predictor proposed in this paper (where μ = 0 and σ = 325.6).

We can observe that the proposed prediction method provides a smaller
standard deviation (σ = 325.6) while the mean value (μ) is close to Zero. This
indicates that the proposed predictor provides higher prediction accuracy than
the existing several methods. Thus, the proposed predictor is beneficial to reduce
the embedding distortion for reversible audio watermarking.

6.2 Effect of the Parameter T

As mentioned above, the parameter T plays a role to make a trade-off between
the embedding capacity and distortion. In order to achieve better fidelity for the
marked signal, it is necessary to look for an appropriate embedding threshold
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Fig. 3. Histograms of four residual signals resulted from the clip ′karaoke tempo′

value for a given payload. Fig. 4 plots the effect of the different T (T ∈ {1 :
2 : 7, 10, 30, 50, 100, 200 : 200 : 1000, 1500, 2000}) values based on three example
clips in length of 10 seconds (the former portion of the files ′karaoke tempo′,
′track4′ and ′track7′) randomly chosen from 9 test files. We can see from the
figure that the SNR values and the embedding capacity are different from three
different clips. In practice, in order to satisfy some degree of the fidelity (such as
the SNR values of over 20 dB [18]), the embedding threshold and the payload
for a given audio file should be estimated in advance.

6.3 Performance Comparison

The embedding capacity and the fidelity (such as the SNR standard in [18])
are two important factors. The three chosen example clips above are adopted to
report the performance of the proposed scheme in comparison with four existing
reversible audio watermarking algorithms [13–15]. The simulation results are
plotted in Figures 5, 6 and 7. We can observe from these three figures that

1) In [14], the embedding distortion of the dyad-based transform method is
somewhat lower than that of the triad-based one. Their maximal capacity
values are bounded to 0.5 bps and 2

3 bps, respectively.



236 S. Xiang

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

20

30

40

50

60

70

Capacity (bits/sample)

S
N

R
 (

dB
)

Effect of the Embedding Threshold (T)

 

 
karaoke_tempo
track4
track7

Fig. 4. Effect of the parameter T on the embedding capacity and distortion by using
three example clips of 10 seconds
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2) The algorithm in [13] achieves higher embedding payload but suffers from
an undesirable distortion due to quantization error and loudness change in
the compression-expansion embedding phase. Comparing with the expansion
embedding methods (in [14, 15]), the proposed method in this paper provides
the lowest SNR values for the same payload. Of course, it is unfair to measure
the algorithm in [13] with the SNR standard because the loudness change
often causes a low SNR value but can keep the audible quality well.

3) PE based methods (IPE in [15] and NIPE proposed in this paper)
significantly improve the embedding capacity or reduce the embedding
distortion in comparison with the previous algorithms. The maximal capacity
is close to 1 and the SNR values are satisfactory.

4) Comparing with the IPE embedding method, the proposed NIPE scheme
reduces the embedding distortion. It is owing to the fact that the NIPE
method allows a predictor generating non-integer prediction values and
predicting a sample with both past and future neighboring samples. In
the IPE-based scheme, the predicted value must take integer value and the
context cannot involve future samples for prediction of the current sample.
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Fig. 6. Performance of five algorithms with the clip ′track4′
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Fig. 7. Performance of five algorithms with the clip ′track7′

7 Conclusions

This paper presents a NIPE embedding algorithm, which is more scalable than
the IPE method developed by Thodi [11] since it can deal with non-integer
prediction errors for reversible watermarking. We also show that the proposed
method can allow a predictor to estimate the current sample with past and
future pixels/samples but the existing PE embedding methods (such as [11,
12, 14, 15]) only agree with its predictor to predict a pixel/sample with past
pixels/samples. Furthermore, we design a non-integer output of prediction model
to show that a predictor with non-integer output can achieve higher prediction
precision since more neighboring samples in an audio file can be applied as the
prediction context. Experimental results have shown that the proposed NIPE
method with the new audio predictor has better results compared to the original
IPE method and the previous several reversible audio watermarking algorithms.
In the future research, there is one room to design better image predictor for
the NIPE embedding approach since this approach allows a predictor to output
non-integer values by using noncausal prediction with past and future pixels.
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Abstract. How to embed and/or extract watermarks on encrypted im-
ages without being able to decrypt is a challenging problem. In this
paper, we firstly discuss the implementation of Walsh-Hadamard trans-
form (WHT) and its fast algorithm in the encrypted domain, which is
particularly suitable for the applications in the encrypted domain for its
transform matrix consists of only integers. Then by modifying the rela-
tions among the adjacent transform coefficients, we propose an WHT-
based image watermarking algorithm in the encrypted domain. Due to
the constrains of the encryption, extracting a watermark blindly from
an encrypted image is not a easy task. However, our proposed algorithm
possesses the characteristics of blind watermark extraction both in the
decrypted domain and the encrypted domain. This means neither the
plain image nor its encrypted version is required for the extraction. The
experiments demonstrate the validity and the advantages of our proposed
method.

Keywords: Secure signal processing, watermark, homomorphic encryp-
tion, signal processing in the encrypted domain, Walsh Hadamard trans-
form.

1 Introduction

Watermarking is an method to protect the copyright of digital media by hiding
proprietary information in media. The security of watermarking is a challenging
problem in the watermarking community. Many efforts focusing on watermark
security have been reported in literature [1] [2]. In fact, there are at least two
problems on the security. The first one is the security of the original media un-
der being watermarked. Almost all the existing watermark schemes accomplish
the watermark embedding and extraction on the plain media. Hence, the wa-
termark embedder must be the owner of the plain media or the trusted third
party, in order to make sure the original media is not exposed to the untrusted
party. The second one is the security of the watermark scheme itself. For ex-
ample, how to prevent illegal watermark embedding, extracting, and removal.
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Though there are some reports on integrating watermark embedding and en-
crypting [3] [4], it causes additional constraints to the watermarking algorithm,
meanwhile. Some works [5] have been proposed to solve the first problem, how-
ever, the visual quality of the watermarked images are not so good as expected.
Single processing in the encrypted domain, also referred to as secure signal pro-
cessing (SSP), provides another way to solve the first problem. This new technol-
ogy allows one to manipulate the encryption data by means of signal processing
without decrypting.

There have been some related works on secure signal processing over the past
few years. An interactive buyer-seller watermarking protocol for invisible water-
marking was proposed in [6], where the seller does not get to know the exact
watermarked copy that the buyer receives. Bianchi et al. [7] conducted an inves-
tigation on the implementation of the discrete Fourier transform (DFT) as well
as the fast Fourier transform (FFT) on encrypted signals. A data encrypting
method, which packs several samples as a single one, was proposed by Troncoso-
Pastoriza et al. [8], and later generalized by Bianchi et al. [9]. In [10] [11], the
authors proposed schemes for privacy-preserving face recognition by using the
Paillier cryptosystem. Zheng et al. [12] presented a new technique to implement
the discrete wavelet transform (DWT) and Multiresolution Analysis (MRA) in
the encrypted domain. They also provided a new method to handle the data
expansion without decrypting. Barni et al. gave a privacy-preserving fingercode
authentication in [13]. In [14], they proposed a system for the secure classifica-
tion of ECG (electrocardiogram) signals with branching programs and neural
networks.

Due to the limitation of the encryption, it is very difficult, sometimes im-
possible, to transplant the existing mature watermark scheme to the encrypted
domain. Thus it is meaningful to design a new image watermark scheme under
the constraints of the homomorphic encrypted domain. Generally, the water-
mark algorithms based on transform domain are more robust than the others.
Owing to the quantization error, DFT [7] and DCT [15] in the encrypted do-
main will bring a noise to the plain reconstructed image, which may decrease
the visual effect of the watermarked image. Since the transform matrix of the
Walsh-Hadamard transform (WHT) contains only +1 and −1, one can avoid
the quantization error of its implementation in the encrypted domain. There-
fore WHT is particularly suitable to be used as a transform method for image
watermarking in the encrypted domain.

This paper addresses the issue of image watermarking in the encrypted do-
main. Firstly, we describe a framework for performing WHT in a homomor-
phic encrypted domain. Secondly, we develop a WHT-based image watermarking
scheme and transplant it to the encrypted domain. The proposed scheme pos-
sesses the characteristics of blind watermark extraction both in the decrypted
domain and the encrypted domain. Finally, we conduct several experiments to
substantiate the proposed scheme. Our technique can be applied to other appli-
cations where a secure watermarking algorithm is required.
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The remainder of this paper is organized as follows. In Section 2, we discuss
the implementation of WHT in the encrypted domain. In Section 3, we propose
the blind-extraction image watermarking algorithm in the encrypted domain.
Section 4 gives some experiments on the image watermarking algorithm. We
conclude the paper and provide suggestions for future work in Section 5.

2 Walsh-Hadamard Transform in the Encrypted Domain

WHT is used widely in the field of signal processing. The transform matrix of
WHT contains only ±1, and no multiplications are required in the computation.
Thus WHT is more efficient than other orthogonal transformations, such as
DFT or DCT. Another advantage of WHT has is that WHT will not bring the
quantization error in the encrypted domain. WHT can therefore be perfectly
reconstructed in the encrypted domain, which is shown in Section 2.3. Hence, in
contrast to DFT and DCT, WHT is particularly suitable for image watermarking
in the encrypted domain. Since the implementation of WHT in the encrypted
domain has not been reported yet, we present the implementation first.

2.1 Homomorphic Cryptosystem

The homomorphic cryptosystem [16] is an encryption function which allows one
to operate the ciphertexts without decrypting. Specifically, suppose D[·] and �·�
are the decrypting operator and encrypting operator, respectively. If m1 and m2

are any two plaintexts, we have

D [�m1� � �m2�] = m1 ∗m2 (1)

where operator ’�’ and ’∗’ are the algebraic operations performed in the cipher-
text space and the plaintext space, respectively.

For convenience, we use the Paillier cryptosystem as data encryption method
in this paper. We refer to [17] for the detailed definition of the Paillier cryp-
tosystem. Based on the definition, we have the additive homomorphic properties
as

D
[
�m1� �m2� mod N2

]
= m1 +m2 mod N, (2)

D
[
�m1�

m2 mod N2
]
= m1m2 mod N. (3)

The Paillier cryptosystem also has the self-blinding property, i.e.,

D
[
�m1� r

N mod N2
]
= m1 mod N (4)

where r is a random element in Z∗
N . Z∗

N consists of all the integers in Z which are
relative prime with N . The self-blinding property means that every ciphertext
can be publicly changed into another ciphertext which has the same plaintext.

These properties will be applied in the following sections to perform the im-
plementation of WHT and image watermarking in the encrypted domain.
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2.2 Integer Approximation and Evaluation

Let us consider the image I(x, y), with the size of M ×M , where M is assumed
to be the power of two. The 2D WHT of natural ordering is defined as

X (k, l) =
1

M

M−1∑
x=0

M−1∑
y=0

Hμ (k, x) I (x, y)Hμ (y, l) , k, l = 0, 1, . . . ,M − 1 (5)

where μ = log2 M and Hμ denotes the Hadamard transform matrices. Hμ can
be generated by the core matrix

H1 =

(
1 1
1 −1

)
(6)

and the Kronecker product recursion

Hμ = H1⊗Hμ−1 =

(
Hμ−1 Hμ−1

Hμ−1 −Hμ−1

)
(7)

where⊗ is the Kronecker product operator. According to the method in [18], one
can easily obtain WHT of sequency ordering and other orderings by rearranging
the outputs (5). Therefore we will focus on WHT of natural ordering in the
following.

Since all the plaintexts and the ciphertexts are represented by integers in the
cryptosystem, the signal must also be represented by integers too. Obviously, all
the elements of I(x, y) are integers between 0 and 255, i.e., I(x, y) ∈ Z256. How-
ever, the transform coefficients of an image may be negative, and we still need to
consider the problem of representing the negative integers in the cryptosystem.
Suppose N is the modulus of the cryptosystem. We let N ≥ 2 sup {|S(k)|} + 1,
where sup{·} denotes the least upper bound operator performed on a sequence,
and S(k) is the plain value of the processed result in the encrypted domain.

According to the above discussion, we give the definition of the integer ap-
proximation of the 2D WHT as

V (k, l) =

M−1∑
x=0

M−1∑
y=0

Hμ (k, x) I (x, y)Hμ (y, l) , k, l = 0, 1, . . . ,M − 1. (8)

Since all the operations are either integer additions or integer subtractions, (8)
can be implemented in the encrypted domain by using the homomorphic proper-
ties. In the case that the input signal is encrypted with the Paillier cryptosystem,
by means of the equations (2) and (3), the implementation of the 2D WHT in
the encrypted domain is given as

�V (k, l)� =

M−1∏
x=0

M−1∏
y=0

�I (x, y)�
Hμ(k,x)Hμ(y,l) � Ṽ (k, l) , k, l = 0, 1, . . . ,M − 1

(9)
where all the multiplications and exponentiations are carried out under N2.
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The definition of the inverse WHT (IWHT) is identical to the forward WHT.
If X ′(k, l) is the input transform coefficients, which may not be identical to
X(k, l), then the reconstructed image is given as

Î (x, y) =
1

M

M−1∑
k=0

M−1∑
l=0

Hμ (x, k)X
′ (k, l)Hμ (l, y) , x, y = 0, 1, . . . ,M − 1. (10)

A similar approach leads to the definition of the integer IWHT. Assuming we
have already obtained the integer 2D WHT coefficients V ′(k, l), the integer ap-
proximation of the 2D IWHT is defined as

I ′ (x, y) =
M−1∑
x=0

M−1∑
y=0

Hμ (x, k)V
′ (k, l)Hμ (l, y) , x, y = 0, 1, . . . ,M − 1, (11)

where V ′(k, l) is corresponding to X ′(k, l). Since all the input arguments are
integers, (11) can be computed in the encrypted domain as

�I ′ (x, y)� =
M−1∏
k=0

M−1∏
l=0

Ṽ ′ (k, l)Hμ(x,k)Hμ(l,y) � Ĩ ′ (x, y) , x, y = 0, 1, . . . ,M − 1.

(12)
For the sake of simplicity, we use WHT-ed and IWHT-ed to denote the imple-
mentation of WHT and IWHT in the encrypted domain, respectively.

2.3 Data Recovery and Upper Bound

In order to implement WHT and IWHT in the encrypted domain by using (9)
and (12), we need to consider some issues. Since all the calculations of (9) and
(12) are in the finite ring ZN , the plain value of the processed result S must not
be larger than N . Thus we should find a upper bound on S. Let us consider the
implementation of WHT in the encrypted domain first. It is obvious that

D
[
Ṽ (k, l)

]
= V (k, l) mod N = MX (k, l) mod N

� Z (k, l) . (13)

However, Z(k, l) may sometimes be negative. Taking the negative coefficients
into account, the recovery condition is given as

2M sup
k,l

{|X (k, l)|}+ 1 < N. (14)

Moreover, we must find a method to recover every value from the decryption of
the output. Actually, under the condition (14), X(k, l) can be obtained directly
from Ṽ (k, l) as

X (k, l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D
[
Ṽ (k, l)

]
M

, for Z (k, l) < N/2

D
[
Ṽ (k, l)

]
−N

M
. for Z (k, l) > N/2

(15)
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As for the inverse WHT in the encrypted domain, a similar approach leads to the
upper bound of the reconstructed image. By using the homomorphic property,
we have

D
[
Ĩ ′ (x, y)

]
=

M−1∑
k=0

M−1∑
l=0

Hμ (x, k)D
[
Ṽ ′ (k, l)

]
Hμ (l, y)

= M

M−1∑
k=0

M−1∑
l=0

Hμ (x, k)X
′ (k, l)Hμ (l, y) mod N

= M2Î (x, y) mod N � Y (x, y) . (16)

Specifically, if V ′(k, l) = V (k, l), then Y (x, y) = M2I(x, y). It implies that any
image can be completely reconstructed in the encrypted domain, i.e. perfect
reconstruction. The recovery condition of the reconstructed image is given as

2M2 sup
x,y

{
Î (x, y)

}
+ 1 < N. (17)

When condition (17) is satisfied, we can obtain Î (x, y) from the Ĩ ′ (x, y) as

Î (x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
D
[
Ĩ ′ (x, y)

]
M2

, for Y (x, y) < N/2

D
[
Ĩ ′ (x, y)

]
−N

M2
. for Y (x, y) > N/2

(18)

Obviously, supx,y{I(x, y)} = 255. The first element of matrix X(k, l) is the sum
of all the pixels in I(x, y). Thus we have supk,l{|X(k, l)|} = 255M2. In the case
of V ′(k, l) = V (k, l), by combining (14) and (17), the final recovery condition
can be given as

N > max{510M3, 510M2} = 510M3. (19)

According the above analysis, an interesting phenomenon may be obtained. In
contrast to the implementation of WHT in the plain domain, the implementation
in the encrypted domain will expand the plain value of the expected value. The
expanding factor depends on two parameters, the dimension and the length of
the input signal. More specifically, each implementation of 2D WHT-ed and 2D
IWHT-ed will expand the plain value by a fixed factor M . Generally, the image
size M is only tens of bits for real images, while N should be 1024 bits according
to [17]. Therefore the expanding factor M is negligible compared with N , and
the WHT-based applications can be well transplanted to the encrypted domain,
without considering the data overflow.

2.4 Fast WHT in the Encrypted Domain

2D WHT is a separable transform, i.e., a 2D transform which can be decomposed
into two 1D transforms. Specifically, performing 2DWHT on I(x, y) is equivalent
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to performing 1D WHT on the each column of I (x, y) first and then performing
1D WHT on the each row to the former result. Hence, we focus on the fast
algorithm of 1D WHT-ed in this paper.

In fact, the computational complexity of WHT can be reduced from M2 to
M logM by a fast algorithm [18]. The fast algorithm follows the recursive defi-
nition of the Hadamard matrix (7). Similar to FFT, the fast WHT recursively
breaks down a WHT of size M into two smaller WHTs of size M/2. Therefore
there are totally log2 M stages of breaking down by means of the fast algorithm.
Since there are only M additions/subtractions at each stage, there are totally
M log2 M additions/subtractions for the fast WHT. More specifically, every two
coefficients are obtained at one stage from another two coefficients at the previ-
ous stage by using only addition or substraction. That is, by omitting the scaling
factor, the fast WHT at i-th stage can described as

vi (k0) = vi−1 (k0) + vi−1 (k1) (20)

vi (k1) = vi−1 (k0)− vi−1 (k1) (21)

where vi (k0) and vi (k1) are the two coefficients obtained at i-th stage, i =
1, 2, . . . , log2 M . The indices k0, k1 are integers which vary between 0 and M−1.

By using the homomorphic properties, we implement the fast WHT at i stage
in the encrypted domain as

�
vi (k0)

�
=

�
vi−1 (k0)

� �
vi−1 (k1)

�
, (22)

�
vi (k1)

�
=

�
vi−1 (k0)

� �
vi−1 (k1)

�−1
. (23)

Suppose {�vlog2 M (k)�} are the encrypted coefficients obtained at the final stage.
After a simple deduction, we get the relationship between the direct WHT-ed
and the fast WHT-ed as �

vlog2 M (k)
�
= ṽ (k) (24)

where ṽ(k) is the coefficient obtained by the direct WHT-ed. Since the definition
of IWHT is identical to that of WHT, the method described above can also be
used as a fast algorithm to implement IWHT in the encrypted domain.

3 Blind Image Watermarking in the Encrypted Domain

In order to embed a watermark on an encrypted image, we should tackle two
challenging issues. The first one is how to achieve the goal of blind watermark
exaction. Since the original image is protected by the encryption, it is not practi-
cal to involve the plain original image into the extraction. The second one is how
to evaluate the visual quality of the watermarked image. Since the input image
is in the encrypted form and the embedder don’t have the decrypting key, it is
difficult for him/her to determine whether the visual effect of the watermarked
images is good or bad.
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Fig. 1. The relationship between the reference positions and the values ej and dj

3.1 Watermark Embedding

The embedding domain, e.g. the spatial domain or the transform domain, plays
a crucial role in robust performance and the visual quality of the watermarked
image. In order to make the watermark scheme more robust, we choose to embed
the watermark in the transform domain rather than the spatial domain. We
describe the algorithms in the plain domain first and then give its implementation
in the encrypted domain.

Watermarking in the Plain Domain. Suppose the embedding message is
a binary signal w = {w1, w2, . . . , wn}, where wj ∈ {0, 1}. Our watermarking
algorithm in the plain domain can be described as follows.

(1) To segment the original image I(x, y) into non-overlapping blocks of m×m.
m is assumed to be an integral power of two. Thus there are totally Mb =
(M/m)2 blocks after the segmentation.

(2) To perform WHT of sequency ordering on each segmented block and obtain
the transform coefficient blocks, denoted by {Vj}Mb

1 . In order to protect the
watermarked images from illegal extraction, a random number sequence is
introduced to control the embedding. Denote the random number sequence
by a = {a1, a2, . . . , an} ∈ P({1, 2, . . . ,Mb}), where P(·) denotes the power
set of a set. Select n coefficient blocks from {Xj}Mb

1 according to a in se-
quential scan order. The selected blocks are denoted by {X1, X2, . . . , Xn}.

(3) To choose two random sequences e = {e1, e2, . . . , en} and d = {d1, d2, . . . , dn},
where ej ∈ {2, 3, . . . ,m2} and dj ∈ {1, 2, . . . , 8}. ej denotes one special point
in block Xj , called the cardinal point of Xj. The value of ej corresponds to
the position in Xj in sequential scan order. Whereas dj stands for the ori-
entation which surrounds the cardinal point. The value of dj increases as
we revolve clockwise around the cardinal point. We show the corresponding
relation between the values of ej and dj and the positions in block Xj in
Fig. 1.

(4) In the selected block Xj , we choose the cardinal point according to the value
of ej . The cardinal point of Xj is Xj(k0, l0) = Vj("ej/m#, ej mod m). We use
Xj(k1, l1) to denote the adjacent point surrounding Xj(k0, l0), with respect
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to dj . The watermark is embedded by modifying the transform coefficient
Xj(k1, l1). The detailed modification of the coefficient Xj(k1, l1) is given as

Xj (k1, l1) =

{
Xj (k0, l0) , if wj = 0

Xj (k0, l0) + αj . if wj = 1
(25)

where αj ∈ N∗ is a locally adjustable amplitude factor. Since the other
coefficients is quite small compared with the Vj(1, 1), this modification is
actually very slight. We use X∗

j to denote the coefficient block which has
been modified.

(5) To perform IWHT on all the coefficient blocks, including the modified blocks
and the unmodified ones, in order to output the watermarked image, de-
noted by Iw(x, y). In order to keep format compliance, Iw(x, y) will undergo
the quantization process. The quantized watermarked image is denoted by
Iw,256(x, y).

The triple (a, e,d) is the secret key of the watermark algorithm. It determines
the positions where the watermark is embedded. It will be sent to the watermark
extractor and take part in the process of watermark extraction.

Watermarking in the Encrypted Domain. By using the homomorphic
properties of the cryptosystem, the watermark embedding algorithm can also
be implemented in the encrypted domain. Suppose the input to the watermark
embedder is an encrypted image �I(x, y)�. The embedder knows nothing about
the plain image while still try to embed w in the plain image. Actually the
watermark embedding can be carried out in the encrypted domain without an
interactive protocol. The detail of the implementation is given as follows.

We segment the encrypted image �I(x, y)� into (M/m)2 blocks ofm×m. Then
we apply WHT-ed to each block. According to the random integer sequence a, n
blocks are selected for watermark insertion. We denote those selected blocks by
{Ṽ1, Ṽ2, . . . , Ṽn}. In the block Ṽj , the cardinal point Ṽj(k0, l0) is chosen according

to the value of ej , i.e., Ṽj = Ṽj("ej/m#, ej mod m). With respect to the value

of dj , we choose the adjacent point of Ṽj(k0, l0), denoted by Ṽj (k1, l1). Then
the watermark embedding in the encrypted domain can be accomplished by
modifying the encrypted coefficients. Specifically, the coefficient modification of
j-th selected block can be given as

Ṽj (k1, l1) =

{
Ṽj (k0, l0) r

N mod N2, if wj = 0

Ṽj (k0, l0) �αjm� mod N2. if wj = 1
(26)

where r is a random number chosen in ZN . We use Ṽ ∗
j to denote the encrypted co-

efficient block which has been modified. After modifying the coefficients, we per-
form IWHT-ed on all the coefficient blocks, including both the modified blocks
and the unmodified ones. The processed encrypted image, i.e. the encrypted
version of the watermarked image, is denoted by Ĩw (x, y). The above manipu-
lations only use the homomorphic properties of the encryption, and rely on no
interactive protocol.
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We now explain why we call Ĩw(x, y) the encrypted version of Iw(x, y). Since
the homomorphic cryptosystem possesses the self-blinding property (4), by using
the equation (13), we have

D
[
Ṽj (k0, l0) r

N mod N2
]
= mX∗

j (k0, l0) . (27)

Similarly, by using the homomorphic properties (2) and equation (13) , we have

D
[
Ṽj (k0, l0) �αjm� mod N2

]
= mX∗

j (k0, l0) +mαj . (28)

Hence, by combining the two equations (27) and (28), we obtain

D
[
Ṽ ∗
j (k1, l1)

]
= mX∗

j (k1, l1) . (29)

Since Ĩw(x, y) is obtained by performing 2D IWHT-ed on all the encrypted
coefficient blocks, we can get the relationship between Ĩw(x, y) and Iw(x, y) by
using (16). Specifically, the relationship can be obtained as

D
[
Ĩw (x, y)

]
= m2Iw (x, y) mod N. (30)

This means that the image D[Ĩw(x, y)] is the same as the image Iw (x, y) in
the finite ring ZN if the scale factor m2 is not considered. By using a method
similar to (18), we are able to recover the desired watermarked image from the
encrypted image Ĩw(x, y).

3.2 Watermark Extraction

For our watermark scheme, the watermark extraction can be accomplished in
either the plain domain or the encrypted domain. That is, we can extract the wa-
termark either from the image Iw,256 (x, y) or from the encrypted image Ĩw (x, y).

After the watermark has been extracted, it will be compared to the original
watermark with some metrics. We use the bit error rate (BER) to measure the
difference between the extracted watermark and the original one. If we denote
the extracted watermark by w′

j , then the BER of w′
j and wj is given as

BER(w′,w) =
1

n

n−1∑
j=0

w′
j XORwj (31)

where XOR is the exclusive or operator. If the BER is less than or equal to some
threshold τ , it indicates the presence of watermark, otherwise it indicates the
absence of watermark.

We shall show that our watermark scheme possesses the characteristics of
blind extraction in two domains, i.e., the decrypted domain and the encrypted
domain. More specifically, in the plain domain, the watermark can be extracted
from the watermarked image Iw or Iw,256 without requiring the original image
I. While in the encrypted domain, the watermark can be extracted from the
encrypted data Ĩw without requiring either �I� or I. We describe the extracting
algorithm of our watermark scheme below.
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Extraction in the Encrypted Domain. In order to extract the watermark
from the encrypted image, we segment Ĩw(x, y) into non-overlapping blocks of

m × m. According to the sequence a, we select n blocks from total (M/m)2

blocks. We then apply WHT-ed of size m×m to all the selected blocks to output
the encrypted coefficients. Let us denote those encrypted coefficient blocks by
{Ṽ ε

1 , Ṽ
ε
2 , . . . , Ṽ

ε
n }. According to the values of ej and dj , we choose the cardinal

point Ṽ ε
j (k0, l0) and the adjacent point Ṽ ε

j (k1, l1) in the block Ṽ ε
j (k, l). If we

use w̃′
j to denote the extracted information from j-th selected block, then the

watermark extraction in the encrypted domain can be given as

w̃′
j = Ṽ ε

j (k1, l1) [Ṽ
ε
j (k0, l0)]

−1. (32)

By using the homomorphic properties of the cryptosystem and (30), we have

D
[
w̃′

j

]
=

{
0, if wj = 0

m3αj . if wj = 1
(33)

The scaling factorm3 can be easily removed after decryption, or directly removed
from m3αj in the encrypted domain by using the multiplicative inverse method
[12]. If the scaling factor is not considered, there is no difference between D[w̃′

j ]

and wj . Assuming that
D[w̃′

j]

m3αj
is denoted by 	j , then we have

	j = wj . (34)

Therefore we have proved the extracted encrypted watermark w̃′
j is the encrypted

version of the original watermark wj . We also show an interesting property of the
watermark extraction in the encrypted domain by using equation (34). It means
that after performing a simple scaling, the extracted watermark is identical to
the original watermark without any distortion.

Extraction in the Decrypted Domain. Let us consider the case of extracting
the watermark from the decrypted watermarked image. Based on the analysis
in Section 3.1, the implementation of watermarking in the encrypted domain
will enlarge the plain value of the watermarked image. And small modification
of the transform coefficients may result in large variation in the spatial domain.
Thus the decrypted values are very likely to be greater than 255 or less than 0.
Moreover, all the elements of Iw may not be integers. In order to keep the format
compliance, the decrypted values should be mapped to the integers between 0
and 255. Suppose we have already recovered the correct value m2Iw from the
decryption of Ĩw . Generally, the process of mapping can be given as

Iw,256 =

⌊
255 ·

m2Iw −min
{
m2Iw

}
max {m2Iw} −min {m2Iw}

⌋
(35)

where "·# is the flooring function, while min{·} and max{·} are the minimum
and maximum operators, respectively.
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Both the quantized watermarked image Iw,256 and the watermarking key
(a, e,d) are sent to the extraction device for further processing. Specifically,
we segment Iw,256(x, y) into non-overlapping blocks of m×m first, then select n
blocks among all the blocks according to the random integer sequence a. WHT
of size m×m is applied to all the selected blocks to output the encrypted coeffi-
cients. Let us denote the encrypted coefficients by {V ε

1 , V
ε
2 , . . . , V

ε
n }. According

to the values of ej and dj , we choose the cardinal point V ε
j (k0, l0) and the adja-

cent point V ε
j (k1, l1) in the block V ε

j . If we use w′
j to denote the extracted bit

in the V ε
j , then the process of watermark extraction can be given as

w′
j = V ε

j (k1, l1)− V ε
j (k0, l0) . (36)

{w′
j} will be compared with the embedding message {wj} by using the BER

metric to output the result that whether there is a watermark in Iw,256(x, y) or
not.

4 Experimental Results

We test the proposed algorithm on a few images. Due to the limitation of paper
length, we only show the results on ’Lena’ image of 512 × 512 × 8 bits. The
original watermark message is chosen as a binary image of 64 × 64 × 1 bits.
The original image and the watermark are shown in Fig. 2(d)-2(g). We exploit
the 2D WHT in the experiments and choose two large prime numbers p and q
for the cryptosystem. The product of p and q is longer than 1024 bits, so the
encryption is secure in practice. We show the encrypted image in Fig. 2(c), which
is sufficiently scrambled and secure enough to protect the image.

Firstly, we perform WHT-ed of size 512 × 512 to the whole image. The de-
cryption of the result looks the same as the WHT of the plain image. We then
perform IWHT-ed to reconstruct the image in the encrypted domain. After de-
crypting, we obtain an image which looks the same as the original one. The
experimental result is shown in Fig. 2(h)-2(i)

Secondly, the encrypted image is segmented into non-overlapping blocks of
8 × 8. We perform WHT-ed of size 8× 8 on each block. Since there are totally
4096(=64×64) bits in w, we choose all the blocks for the watermark insertion.
We adopt ej = 64, dj = 1 and αj = 8 for j = 1, 2, . . . , 4096. According to the

value of ej and dj , the cardinal point and its adjacent point are selected in Ṽj .
By means of (26), we modify coefficients in all the selected blocks for watermark
embedding. We then perform IWHT-ed to output the encrypted watermarked
image. We show the encryption data and its decryption in Fig. 2(h)-2(i).

Thirdly, by using (32) we extract the encrypted watermark, which is embedded
in the encrypted image. The extracted encrypted data and its decryption are
shown in Fig. 2(j)-2(k). It can be seen that the decryption looks the same as the
original watermark. Actually it is identical to the original watermark in Fig. 2(b)
after removing the scaling factor.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Fig. 2. Experimental Results: (a) The Original ”Lena” image; (b) The watermark; (c)
The encrypted ”Lena” image; (d) The WHT-ed coefficients; (e) Decryption of WHT-
ed coefficients; (f) The encrypted reconstruction; (g) Decryption of reconstruction;
(h) The encrypted watermarked image; (i) Decryption of the encrypted watermarked
image; (j) The extracted watermark from the encrypted data; (k) Decryption of the
extracted watermark

In order to evaluate the visual effect of the watermarked image, we compute
the peak signal-to-noise ratio (PSNR) between the original and the watermarked
images. The PSNR of the watermarked image in our experiment is 43.31 dB. We
also apply our watermark algorithm to 100 grayscale images, each of which is of
512 × 512 × 8 bits. The watermark we use is the one shown in Fig. 2(b). The
average PSNRs of the rounding watermarked images Iw,256 and the no-rounding
watermarked images Iw are 43.18 dB and 43.92 dB, respectively. However, all
the BERs (error in detection) are 0 under these two situations. This means our
algorithm can keep the watermarked image in a good visual quality.

The attackers may perform the attacks on the decrypted image or the en-
crypted image. Since the attack on the encrypted image may result in a random
decrypted image, the attacker is more likely to attack the decrypted image.
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Thus we consider the watermark detection performance against Gaussian noise.
The Gaussian noise is added in the decrypted watermarked image Iw,256. For
WNR (watermark to noise ratio) > −2 dB, the BER < 0.032 by using (36) in
watermark retrieval. In practical applications, our watermark algorithm can be
extended to the case of spread spectrum scheme, which will greatly improve the
robust performance of our watermark.

5 Conclusions

This paper has investigated the implementation of WHT and its applications in
image watermarking in a homomorphic encrypted domain. The main contribu-
tions are listed as follows:

1) We have described a method to perform WHT and the fast WHT in the
encrypted domain, which is based on the homomorphic properties. By using
our method, WHT can be implemented in the encrypted domain without any
quantization error. We also deduce some elegant equations to show the rela-
tionship between WHT(IWHT) in the encrypted domain and WHT(IWHT)
in the plain domain.

2) We have proposed an image watermarking scheme based on block WHT-ed.
The watermark embedding is carried out in the encrypted domain. However,
we can extract the watermark both in the plain domain and the encrypted
domain. Both the extractions are blind processing, without involving either
the plain original image or the encrypted one.

Our algorithm gives a possible solution to the security problem in the watermark-
ing community. It is possible to use our watermarking scheme to design a secure
media distribution system. However, due to the constraints of the homomorphic
cryptosystems, the encryption of the original image results in a high store and
computation overhead. It is our future work to address the issues regarding the
limitation, and to extend our watermarking algorithms to other transforms, e.g.,
DWT in the encrypted domain.
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Asymptotic Fingerprinting Capacity

in the Combined Digit Model

Dion Boesten and Boris Škorić

Eindhoven University of Technology

Abstract. We study the channel capacity of q-ary fingerprinting in the
limit of large attacker coalitions. We extend known results by consider-
ing the Combined Digit Model, an attacker model that captures signal
processing attacks such as averaging and noise addition. For q = 2 we
give results for various attack parameter settings. For q ≥ 3 we present
the relevant equations without providing a solution. We show how the
channel capacity in the Restricted Digit Model is obtained as a limiting
case of the Combined Digit Model.

1 Introduction

1.1 Collusion Resistant Watermarking

Watermarking is a means of tracing the (re-)distribution of content. Before dis-
tribution, digital content is modified by applying an imperceptible watermark
(WM), embedded using a watermarking algorithm. Once an unauthorized copy
of the content is found, the WM helps to trace those users who participated
in the creation of the copy. This is known as ‘forensic watermarking’. Reliable
tracing requires resilience against attacks that aim to remove the WM. Collusion
attacks are a particular threat: multiple users cooperate, and differences between
their versions of the content tell them where the WM is located. Coding theory
has provided a number of collusion-resistant codes. The resulting system has
two layers: The coding layer determines which message to embed, and protects
against collusion attacks. The underlying watermarking layer hides symbols of
the code in segments1 of the content.

Many collusion resistant codes have been proposed in the literature. Most
notable is the Tardos code [15], which achieves the asymptotically optimal pro-
portionality m ∝ c2, with m the code length and c the size of the coalition
of attackers. Tardos introduced a two-step stochastic procedure for generating
binary codewords: (i) For each segment a bias is randomly drawn from some
distribution. (ii) For each user independently, a 0 or 1 is randomly drawn for
each segment using the bias for that segment. This construction was generalized
to larger (q-ary) alphabets in [16].

The interface between the coding and watermarking layer is usually speci-
fied in terms of the Marking Assumption (MA), which states that the colluders

1 The ‘segments’ are defined in a very broad sense.

M. Kirchner and D. Ghosal (Eds.): IH 2012, LNCS 7692, pp. 255–268, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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are able to perform modifications only in those segments where they received
different WM symbols. These segments are called detectable positions. Further-
more, within this class of attacks there is a classification of attacks according
to the manipulations that can be performed in the detectable positions. In the
Restricted Digit Model (RDM), the coalition is only allowed to pick one symbol
that they received. In the Unreadable Digit Model, they are furthermore allowed
to create an erasure. In the Arbitrary Digit Model, they can pick any symbol
from the alphabet, even one that they did not receive (but not an erasure). The
General Digit Model allows any symbol from the alphabet or an erasure.

For q = 2, all these MA attacks are equivalent. For larger alphabets, the
general feeling is that realistic attacks are somewhere between the RDM and the
Unreadable Digit Model. To come to an even more realistic attack model (also
for q = 2) which additionally takes into account signal processing (e.g. averaging
attacks and noise addition), one has to depart from the MA. Such attack models
were proposed in [19] and [17] for general q, and for q = 2 in e.g. [7, 8].

1.2 Asymptotic Channel Capacity

In Tardos’ scheme [15] and later improvements and generalisations (e.g. [3, 5, 9–
11, 13, 14, 16–19]), users are found to be innocent or guilty via an ‘accusation
sum’, a sum of weighted per-segment contributions, computed for each user sep-
arately. The analysis of achievable performance was greatly helped by the onset
of an information-theoretic treatment of anti-collusion codes. The whole class of
bias-based codes can be treated as a maximin game between the watermarker
and the colluders [2, 6, 12], independently played for each segment, where the
payoff function is the mutual information between the symbols x1, . . . , xc handed
to the colluders and the symbol y produced by them. In each segment (i.e. for
each bias) the colluders try to minimize the payoff function using an attack strat-
egy that depends on the (frequencies of the) received symbols x1, . . . , xc. The
watermarker tries to maximize the average payoff over the segments by setting
the bias distribution.

The rate of a fingerprinting code is defined as (logq n)/m, where n is the
number of users and m the code length (the number of q-ary symbols). The
fingerprinting capacity is the maximum achievable rate. For q = 2 it was con-
jectured [6] that the capacity is asymptotically 1/(c22 ln 2). The conjecture was
proved in [1, 6]. Amiri and Tardos [1] developed a joint decoder accusation
scheme (for the binary case) where candidate coalitions get a score related to
the mutual information between their symbols and y. This scheme achieves ca-
pacity but is computationally very expensive. Huang and Moulin [6] proved for
the large-c limit (in the binary case) that the interleaving attack and Tardos’s
arcsine distribution are optimal.

It was shown by Boesten and Škorić [4] that the asymptotic channel capacity
for q-ary alphabets in the RDM is (q−1)/(2c2 ln q). Their proof method revealed
neither the optimal attack strategy nor the optimal bias distribution.
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1.3 Contributions

In this paper we study the asymptotic channel capacity of q-ary fingerprinting in
the Combined Digit Model (CDM) [17], following the approach of [4]. We choose
for the CDM because this model is defined for general q and captures a large
range of non-MA attacks.

The CDM allows the coalition to add noise and to do averaging attacks. Given
the set of symbols used in the averaging, various model parameters describe the
probability of these and other symbols being detected by the watermark detector
(see Sections 2.3 and 2.4 for details).

We show that the asymptotic channel capacity in the CDM can be found
by solving the following problem: Find a mapping γ from the hypersphere in
q dimensions to the hypersphere in 2q dimensions, such that γ minimizes the
trace of the induced metric tensor in the latter space (see Section 3). The attack
parameters of the CDM give rise to non-trivial constraints on the mapping,
which have to be satisfied. One of the main differences between the RDM and
CDM lies in the dimension of the target space of γ, which is q − 1 in the RDM
and 2q − 1 in the CDM. We show how the RDM capacity is re-obtained from
the CDM setting (Section 4).

For q ≥ 3 we have not solved the above mentioned minimization problem. For
q = 2 we present numerical results for various attack parameter choices. The
numerics involve computations of constrained geodesics, a difficult problem in
general. The resulting graphs show a nontrivial dependence of the capacity on
the CDM attack parameters.

2 Preliminaries

2.1 Notation

We use capital letters to represent random variables, and lowercase letters to
their realizations. Vectors are denoted in boldface and the components of a vector
x are written as xi. Vectors are considered to be column vectors. The expectation
over a random variable X is denoted as EX . The mutual information between
X and Y is denoted by I(X ;Y ), and the mutual information conditioned on a
third variable Z by I(X ;Y |Z). The base-q logarithm is written as logq and the
natural logarithm as ln. The standard Euclidean norm of a vector x is denoted
by ‖x‖. The Kronecker delta of two variables α and β is denoted by δαβ . A sum
over all possible outcomes of a random variable X is written as

∑
x. In order not

to clutter up the notation we will often omit the set to which x belongs when it
is clear from the context. We use the notation |Q| for the size of a set Q.

2.2 Fingerprinting with Per-segment Symbol Biases

Tardos [15] introduced the first fingerprinting scheme that achieves optimality
in the sense of having the asymptotic behavior m ∝ c2. He introduced a two-
step stochastic procedure for generating the codeword matrix X . Here we show
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the generalization to non-binary alphabets [16]. A Tardos code of length m
for a number of users n over the alphabet Q of size q is a set of n length-m
sequences of symbols from Q arranged in an n × m matrix X . The codeword
for a user i ∈ {1, . . . , n} is the i-th row in X . The symbols in each column
j ∈ {1, . . . ,m} are generated in the following way. First an auxiliary bias vector

P (j) ∈ [0, 1]q with
∑

α P
(j)
α = 1 is generated independently for each column j,

from a distribution F which is considered known to the attackers. (The P (j)

are sometimes referred to as ‘time sharing’ variables.) The result p(j) is used to

generate each entry Xij of column j independently: Prob [Xij = α] = p
(j)
α . The

code generation has independence of all columns and rows.

2.3 The Collusion Attack in the Combined Digit Model

Let the random variable Σ
(j)
α ∈ {0, 1, . . . , c} denote the number of colluders

who receive the symbol α in segment j. It holds that
∑

α∈Q σ
(j)
α = c for all

j. (We remind the reader that outcomes of random variables are written in
lowercase.) From now on we will drop the segment index j, since all segments
are independent. In the Restricted Digit Model the colluders produce a symbol
Y ∈ Q that they have seen at least once. In the Combined Digit Model one also
allows the attackers to output a mixture of symbols. Let

Ω(Σ) � {α ∈ Q | Σα ≥ 1} (1)

be the set of symbols that the pirates have seen in a certain segment. Then the
output of the pirates is a non-empty set Ψ ⊆ Ω(Σ). On the watermarking level
this represents a content-averaging attack where all the symbols in Ψ are used.
It has been shown [12] that it is sufficient to consider a probabilistic per-segment
(column) attack which does not distinguish between the different colluders. Such
an attack then only depends on Σ, and the strategy can be completely described
by a set of probabilities θψ|σ ∈ [0, 1], which are defined as

θψ|σ � Prob[Ψ = ψ | Σ = σ]. (2)

For all σ conservation of probability gives
∑

ψ θψ|σ = 1.

2.4 Detection Process in the Combined Digit Model

The Combined Digit Model also introduces a stochastic detection process. Let
|Ψ | be the cardinality of the output set Ψ . Then each symbol in Ψ is detected with
probability t|Ψ |. Each symbol not in the set Ψ is detected with error probability r.
The set W ⊆ Q indicates which symbols are detected. Note that Ψ is forced to
be non-empty but W = ∅ can occur.
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Received Mixed Detected

Ω
Ψ ⊆ Ω

W

attack
strategy

signal
processingQ

r

1− r

1− t|Ψ|

t|Ψ|

Fig. 1. Overview of the detection process in the Combined Digit Model. The detection
probabilities are shown on the right.

The numbers ti for i = 1, 2, . . . , q are decreasing, since mixing more symbols
makes it more difficult to detect the individual symbols. The overall probability
of detecting a set w, given ψ, depends on r, t|ψ| and the sizes of the fours sets
shown under ‘Detected’ in Fig. 1. From top to bottom, these are (i) the number
of used symbols that get detected, |ψ ∩ w|; (ii) # used symbols that do not get
detected, |ψ \w|; (iii) # not used symbols that are not detected, q−|ψ∪w|; and
(iv) # not used symbols that are detected due to noise, |w \ ψ|. For a given ψ,
the probability that the detector outputs a detected set w is

Mw|ψ � Prob [W = w | Ψ = ψ]

= t
|ψ∩w|
|ψ|

(
1− t|ψ|

)|ψ\w|
(1− r)

q−|ψ∪w|
r|w\ψ|. (3)

These probabilities form a 2q × (2q − 1) matrix M . In this way we can define

τw|σ � Prob [W = w | Σ = σ] =
∑
ψ

Mw|ψθψ|σ = (Mθ)w|σ , (4)

or, in matrix notation, τ = Mθ. (The matrix notation for the relation (4) is
novel.)

2.5 Collusion Channel and Fingerprinting Capacity

Similarly to the RDM [4] the attack can be interpreted as a noisy channel with
input Σ and output W . A capacity for this channel can then be defined, which
gives an upper bound on the achievable code rate of a reliable fingerprinting
scheme. The first step of the code generation, drawing the biases p, is not con-
sidered to be a part of the channel. The fingerprinting capacity CCDM

q for a
coalition of size c and alphabet size q in the CDM is equal to the optimal value
of the following two-player game:

CCDM
q = max

F
min
θ

1

c
I(W ;Σ | P ) = max

F
min
θ

1

c

∫
F (p)I(W ;Σ | P = p)dqp.

(5)
Here the information is measured in q-ary symbols. Our aim is to compute the
fingerprinting capacity CCDM

q in the limit c → ∞.
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The payoff function I(W ;Σ | P ) is linear in F and convex in τ . Because
τ = Mθ is linear in θ the game is also convex in θ and we can apply Sion’s
Theorem:

max
F

min
θ

I(W ;Σ | P ) = min
θ

max
F

I(W ;Σ | P )

= min
θ

max
p

I(W ;Σ | P = p). (6)

In the second step we performed the maximization over F by choosing the opti-
mum F ∗(p) = δ(p − pmax), where pmax is one of the locations where I(W ;Σ |
P = p) has its maximum.

3 Asymptotic Analysis for General Alphabet Size

We are interested in how the payoff function I(W ;Σ | P = p) of the alternative
game (6) behaves as c goes to infinity. Following the same approach as in [4] our
starting point is the observation that the random variable Σ/c tends to a con-
tinuum in [0, 1]q with mean p. Hence we introduce a continuous strategy h

(
σ
c

)
:

hψ

(σ
c

)
= lim

c→∞ θψ|σ. (7)

We also define

gw

(σ
c

)
= lim

c→∞ τw|σ =
∑
ψ

Mw|ψhψ

(σ
c

)
, (8)

which in matrix notation can be written as g = Mh. The next step is to do a
second order Taylor expansion of gw

(
σ
c

)
around the point σ

c = p. This allows
us to expand I in powers of 1/c, giving (see [4])

I(W ;Σ | P = p) =
T (p)

2c ln q
+O

(
1

c
√
c

)
(9)

T (p) �
∑
w

1

gw(p)

∑
αβ

Kαβ
∂gw(p)

∂pα

∂gw(p)

∂pβ
, (10)

where Kαβ = δαβpα−pαpβ is the scaled covariance matrix of Σ. The asymptotic
capacity CCDM

q,∞ in the limit of c → ∞ is then defined as the solution of the
continuous version of the game (6):

CCDM
q,∞ � 1

2c2 ln q
min
h

max
p

T (p). (11)

At this point we introduce the variable transformations uα � √
p
α
, γw � √

gw

and also the 2q × q Jacobian matrix Jwα(u) � ∂γw(u)
∂uα

. This transformation
means we switch to hyperspheres (‖u‖ = 1, ‖γ‖ = 1) instead of the hyperplanes
(
∑

α pα = 1,
∑

w gw = 1) that we had before. The function γ(u) was originally
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defined only on the domain ‖u‖ = 1, but the Taylor expansion forces us to
define γ on a larger domain, i.e. slightly away from ‖u‖ = 1. There are many
consistent ways to do this domain extension. We choose to define γ such that it
is independent of the radial coordinate ‖u‖. This choice yields Ju = 0, which
allows us to simplify T (u) to

T (u) =
∑
w,α

(
∂γw
∂uα

)2

= Tr(JT J) =

q−1∑
i=1

λi(u), (12)

where λi(u) are the eigenvalues of JTJ . Because of our choice Ju = 0 we
already know that one of the eigenvalues is 0 with eigenvector u. Hence there
are only q − 1 eigenvalues left. Note that (12) can be interpreted as the trace
of a metric: if we define a metric Bαβ = (∂γ/∂uα) · (∂γ/∂uβ) in the usual way,
then T (u) = TrB.

We now wish to find

min
γ

max
u

T (u) (13)

under the constraint

γw =
√
gw =

√
(Mh)w (14)

with M known and h satisfying

hψ ≥ 0 ∀ψ,
∑

ψhψ = 1. (15)

The constraint (14) makes solving the min-max game (13) more difficult and we
are unable to use the same machinery as for the RDM. The main problem is
that it is no longer easy to characterize the allowed (sub)space that γ lives in.

For the binary alphabet we are however able to go further and compute the
asymptotic capacity (see Section 5).

4 Limiting Case: Restricted Digit Model

We show how the known result for the Restricted Digit Model (RDM) follows
as a limiting case of the CDM.

We set r = 0 and ti = 1 for all i ∈ {1, · · · , q}. This means that there is
no noise, and any symbol that the attackers use will be detected with 100%
certainty. Hence W = Ψ . In this situation there is no gain for the attackers to
use fusion, as all the fused symbols are detected and provide the content owner
with more information. Their best option is to use a single symbol; hence we are
back at the RDM.

Mathematically it is slightly more involved to see how the reduction to the

RDM channel capacity is obtained. The matrix M becomes

(
0

I2q−1

)
where
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I2q−1 is the identity matrix of size 2q − 1. Since M has become trivial, (14) does
not really represent a constraint on γw(u) any more. The only difference with
[4] is the dimension of the vector: γ has 2q − 1 components (w = ∅ is excluded),
whereas in the RDM there were only q components. Consequently, the Jacobian
J also has a larger dimension. However, the product JTJ is still a q× q matrix,
and the derivation in [4] can be applied in unchanged form to yield two results:

1. The solution of the min-max game satisfies maxu T (u) = Avu[T (u)], i.e. the
maximum is equal to the spatial average, and T (u) is in fact a constant on
the hypersphere ‖u‖ = 1, with

T (u) ≥ (q − 1)

( ∫
dSγ∫
dSu

)2/(q−1)

. (16)

Here
∫
dSu is the (q− 1)-dimensional ‘volume’ integral on the surface of the

u-hypersphere. The
∫
dSγ is the corresponding (q − 1)-dimensional integral

in the larger (2q − 2)-dimensional γ-hypersphere, with γ = γ(u). In [4] the
γ-sphere had dimension q − 1, and it was used that

∫
dSγ ≥

∫
dSu.

2. The interleaving attack yields T (u) = q − 1 on the hypersphere ‖u‖ = 1.

We argue (without proof) that
∫
dSγ ≥

∫
dSu still holds. This is because of the

Marking Assumption, which fixes the values on the axes in γ-space. Let eα be
the unit vector in the α-direction. Then u = eα =⇒ γ = eα. These ‘corner’
points live in a q-dimensional subspace. It is possible to step out of that subspace
for general u, but doing so increases the volume

∫
dSγ .

Thus, result #1 gives the lower bound maxu T (u) ≥ q − 1, while result #2
shows that there exists a strategy achieving the lower bound. The RDM channel
capacity CRDM

q,∞ = (q − 1)/(2c2 ln q) follows.
Remark: If M is perturbed away from the identity matrix, then the extreme

points u = eα are no longer mapped to mutually orthogonal vectors γ, but to
vectors with smaller mutual angles; the reduction of the angles causes a reduction
of

∫
dSγ and hence the channel capacity. The details are cumbersome and the

general case q ≥ 3 is left for future work.

5 Fingerprinting Capacity in the CDM for q = 2

5.1 Solving the Max-Min Game

For the binary alphabet q = 2 the expression (12) simplifies to

T (u) = Tr(JT J) = λ(u) (17)
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0 u1

u2

1

1

Fig. 2. The path for u is the positive quarter circle

since there is only one nonzero eigenvalue. Furthermore we have the relation
dγ = Jdu and ‖dγ‖ =

√
λ‖du‖ for an infinitesimal change du. We proceed by

rewriting

max
u

T (u) = max
u

λ(u) =
(
max
u

√
λ(u)

)2
≥
(∫ √

λ(u)‖du‖∫
‖du‖

)2

=

( ∫
‖dγ‖∫
‖du‖

)2

≡
(
Lγ

Lu

)2

, (18)

where the inequality results from replacing the maximum by a spatial average.
The path in the integrals (see Fig. 2) is the quarter-circle u2

1 + u2
2 = 1 from

u = (1, 0) to u = (0, 1) and hence Lu = π/2.
The next step is to realize that for any curve γ(u) we have the freedom to

parameterize that curve differently in such a way that λ(u) is constant over that
curve, i.e. we are traveling at constant speed. The inequality in (18) can then be
changed into an equality and we have

min
γ

max
u

T (u) =
4

π2
(min

γ
Lγ)

2. (19)

Hence we have reduced the problem to finding a curve γ(u) of minimal length
with the constraint γw(u) =

√
(Mh)w (u) where M(t1, t2, r) is given by

M =

w\ψ {0} {1} {0,1}
∅ (1− t1)(1− r) (1 − t1)(1 − r) (1− t2)

2

{0} t1(1− r) (1 − t1)r t2(1− t2)
{1} (1− t1)r t1(1 − r) t2(1− t2)
{0,1} t1r t1r t22

. (20)

5.2 Geodesics

In general, the method to find length-minimizing curves is to solve the Euler-
Lagrange differential equations for the geodesics of the appropriate metric. In
our case the additional constraint γw(u) =

√
(Mh)w (u) makes things more

difficult. The constraint can be interpreted in the following way. If we write
M = [m1,m2,m3] then because of constraint (15) then we have that g = Mh is
a convex combination of the three column vectorsm1,m2,m3. Hence the allowed
space of g is anywhere inside the triangle shown in Fig. 3.



264 D. Boesten and B. Škorić

m1 m2

m3

g

Fig. 3. The vector g is not allowed to lie outside the triangle

We switch from variables (u1, u2) to s1, s2 with 0 ≤ s1 ≤ 1 and 0 ≤ s2 ≤ 1−s1.

g(s1, s2) � m1 + s1(m2 −m1) + s2(m3 −m1). (21)

The marking assumption gives us that u = (1, 0) ⇒ h = (1, 0, 0) and u =
(0, 1) ⇒ h = (0, 1, 0). In terms of g(s1, s2) this means g(0, 0) = m1 and g(1, 0) =
m2. We are looking for the shortest path from the lower left corner (m1) of the
triangle to the lower right corner (m2).

The infinitesimal change in dγw in terms of (ds1, ds2) is given by

dγw =
dgw
2
√
gw

=
(m2,w −m1,w)ds1 + (m3,w −m1,w)ds2

2
√
gw

. (22)

This allows us to define the appropriate metric G(s1, s2),

‖dγ‖2 = G11(ds1)
2 +G22(ds2)

2 + 2G12ds1ds2. (23)

We use this metric to compute the geodesics (locally distance minimizing curves).
See Appendix A for the details.

5.3 Finding the Shortest Path

We want to find the shortest path between m1 and m2 that is fully inside the
triangle. If a direct geodesic between these two points exists we know that it is
the optimal path; but this does not always happen. We encounter three possible
cases, given in Fig. 4. In case A the direct geodesic is the shortest possible path.
For cases B and C the optimal paths are shown in Fig. 5.
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Case A:

m1 m2

m3
Case B:

m1 m2

m3

P

Case C:

m1 m2

m3

Fig. 4. In case A there exists a direct geodesic from m1 to m2. In case B the maximum-
slope geodesics starting from m1 and m2 intersect in P . In case C they do not intersect.

Case B:

m1 m2

m3

P
Q

Case C:

m1 m2

m3

P
Q

Fig. 5. The optimal path in both cases is m1−P−m2 over the dashed lines (geodesics).
In case C the geodesic from m2 is the one which is tangent to the left side of the triangle.

Any geodesic starting from m2 with a smaller initial slope eventually has to
cross the maximum-slope geodesic from m1 in a point Q. From Q the optimal
path to m1 is to follow the geodesic; but when you pass P you could have done
better by simply going directly from m2 to P on the geodesic.

Once we have the optimal path we can determine its length Lopt (see Ap-
pendix) and use it to compute the capacity,

CCDM
2,∞ =

1

2c2 ln 2
· 4

π2
L2
opt. (24)

5.4 Results

In Fig. 6 we show plots of the ratio C = CCDM
2,∞ /CRDM

2,∞ between the asymptotic
capacities for the CDM and the RDM as a function of the parameters t1, t2, r.
(For the binary alphabet Q = {0, 1}, we have that r is the noise strength, t1 is
the probability of detecting a symbol α if the coalition used Ψ = {α}, and t2 is
the probability of detecting α if the coalition used Ψ = {0, 1}). Several aspects
of the graphs are easily understood and yield no surprises:

– Obviously, the capacity is an increasing function of t1 and t2, and a de-
creasing function of r. When the attack options become more powerful, the
capacity goes down.

– For r close to zero and t1 close to 1, the capacity has very weak dependence
on t2. This can be understood as follows. A small value of t2 effectively means
that the attackers create an erasure, which brings us to the Unreadable Digit
Model. For large t2 is it not advantageous for them to take Ψ = {0, 1}, since
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the detector will find both symbols, giving the tracer more information than
taking |Ψ | = 1. The attackers will output a single symbol, which brings us
back to the RDM. For (r, t1) ≈ (0, 1) we are close to the Marking Assump-
tion. When the MA holds, all the attack models for q = 2 are equivalent.

Other behaviour is more surprising. In Fig. 6a we see a transition from linear
behavior as a function of r (with almost total insensitivity to t2) to nonlinear
behavior (with dependence on t2). The transition point depends on t2.
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(a) C vs r for fixed t1 = 0.999 for t2 =
{0.8, 0.82, 0.84, 0.86, 0.88, 0.9}
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(b) C vs t1 for fixed r = 0.01 for t2 =
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{0.01, 0.02, 0.03, 0.04, 0.05}

Fig. 6. Numerics for q = 2. The ratio C = CCDM
2,∞ /CRDM

2,∞ is plotted on the vertical axis.

6 Discussion

We have investigated the asymptotic channel capacity CCDM
q,∞ in the Combined

Digit Model. For general alphabet size q it turns out to be very difficult to
compute this quantity. We have shown how the asymptotic capacity for the
RDM [4] follows as a limiting case of the CDM. In the general case, CCDM

q,∞ can be
expressed as the solution of a min-max game (13) where the payoff function is the
trace of the metric induced by the mapping γ from

√
pα-space to

√
gw-space. The

CDM parameters r and t1, · · · , tq give rise to a constraint g = Mh on g which
prevents the application of the solution method of [4]. For the binary alphabet we
have shown that the problem reduces to finding a constrained geodesic between
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two points. Our numerical results do not contain significant surprises. They
confirm the intuition in the vicinity of the Marking Assumption, (r, t1) ≈ (0, 1).
In this regime CCDM

2,∞ is practically independent of t2. The transitions in Fig. 6a
are not intuitively clear. The study of these details and of larger alphabets q ≥ 3
is left for future work.
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A Solving the Geodesic Equations

The metric G(s1, s2) is a 2 × 2 symmetric matrix whose components can be
derived from equations (22) and (23):

Gij(s1, s2) =
1

4

∑
w

(mi+1,w −m1,w) (mj+1,w −m1,w)

m1,w + s1(m2,w −m1,w) + s2(m3,w −m1,w)
, (25)

with i, j ∈ {1, 2}. The Christoffel symbols Γ i
jk for this metric are defined as

Γ i
jk � 1

2

2∑
m=1

G−1
im

(
∂Gjm

∂sk
+

∂Gkm

∂sj
− ∂Gjk

∂sm

)
(26)

whereG−1 is the matrix inverse.We are looking for a shortest curve (s1(x), s2(x))
with x ∈ R from the point (s1, s2) = (0, 0) to (1, 0). The geodesic equations read

s′1(x) = k1(x)

s′2(x) = k2(x)

k′1(x) = −Γ 1
11k

2
1(x)− 2Γ 1

12k1(x)k2(x) − Γ 1
22k

2
2(x)

k′2(x) = −Γ 2
11k

2
1(x)− 2Γ 2

12k1(x)k2(x) − Γ 2
22k

2
2(x). (27)

Once we specify the initial conditions for s1(0), s2(0), k1(0), k2(0) we can
solve (27) numerically to obtain the geodesic curves starting at (s1(0), s2(0))
with initial ‘velocity’ vector (k1(0), k2(0)).
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Abstract. In binary probabilistic fingerprinting codes, the number of
symbols “0” and “1” is generally balanced because of the design of the
codeword. After a collusion attack, the balance of symbols is not always
assured in a pirated codeword. It is reported in [8] that if the number
of symbols in a pirated codeword is unbalanced, then a tracing algo-
rithm can be improved by equalizing the unbalanced symbols. In this
study, such a bias equalizer is customized for probabilistic fingerprint-
ing codes utilizing the encoding parameters. Although the proposed bias
equalizer is highly dependent on collusion strategies, it can improve the
performance of traceability for some typical strategies to which the con-
ventional bias equalizer can not be applied.

1 Introduction

Digital fingerprinting [17] is used to trace illegal users, where a unique ID known
as a digital fingerprint is embedded into a content before distribution. When a
suspicious copy is found, the owner can identify illegal users by extracting the
fingerprint. Since each user purchases a content involving his own fingerprint, the
fingerprinted copy slightly differs with each other. Therefore, a coalition of users
will combine their differently marked copies of the same content for the purpose
of removing or changing the original fingerprint. To counter this threat, coding
theory has produced a number of collusion resistant codes under the well-known
principle referred to as the marking assumption.

Tardos [13] has proposed a probabilistic fingerprinting code which has a length
of theoretically minimal order with respect to the number of colluders. Theo-
retical analyses about the Tardos code yield more efficient probabilistic finger-
printing codes improving the traceability, code length, and so on. Among the
variants of the Tardos code, Nuida et al. [11] studied the parameters to gener-
ate the codewords of the Tardos code which follow a continuous distribution,
and presented a discrete version in attempts to reduce the code length and the
required memory amount without degrading the traceability.

Under the marking assumption, an optimal detector is presented in [9] from
the information theoretic analysis of collusion strategy. If we can identify the
collusion strategy from a pirated codeword, the optimal detector is the best

M. Kirchner and D. Ghosal (Eds.): IH 2012, LNCS 7692, pp. 269–283, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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one for binary fingerprinting codes. However, in a generic situation, the mark-
ing assumption is not always valid, and the assumption should be modified to a
relaxed version. Recently, the relaxation of the marking assumption has been em-
ployed in the analysis of the Tardos code and its variants [5],[6],[7],[10],[18],[15].
In [7], a pirated copy is produced by collusion attack and it is further distorted
by additive white Gaussian noise (AWGN), which is called “relaxed marking
assumption” in this paper. Because no robust watermarking scheme avoids an
injection of noise into a pirated copy, it is reasonable to assume that the noisy
channel is modeled by AWGN.

An important factor in the generation of binary fingerprinting codewords is
the symmetry of the underlying bias distribution. It means that the number
of symbols “1” in a codeword is expected to be equal to that of symbols “0”,
though the probability that a symbol at a certain element is biased in a codeword.
Without the knowledge of the symbol values embedded into a digital content,
the number of symbols in a pirated codeword also follows this rule. However, if
colluders happen to get each symbol value of their codewords, they can employ
aggressive collusion strategies to break down the rule in a pirated codeword. On
the other hand, the bias of symbols in a pirated codeword is exploited to calculate
weights for correlation scores in a tracing algorithm in [8]. It is noticed that the
number of symbols “1” and “0” is easily derived by observing the symbols in
a pirated codeword. Its experimental results revealed that the performance was
improved only when the number of symbols “1” and “0” became imbalanced.

In this paper, we study the bias equalizer proposed in [8], and simplify the
method under a noiseless case. Based on the simplified method, we investigate
the mechanism of the equalization steps, and we extend our study to the noisy
case. Then, we propose the bias equalizer based on the encoding parameters of
Nuida code to improve the traceability under a constant false-positive proba-
bility. Since the bias distribution of the Nuida code is discrete, the encoding
parameters related to the bias distribution are finite. Considering the finite can-
didates for the discrete version of the bias distribution, symbols in a pirated
codeword is classified into groups, and their corresponding weighting param-
eters are calculated from the imbalance of the symbols “1” and “0” in their
groups. The imbalance in each group must be occurred not only for specific col-
lusion strategies, but also for a generic case. It comes from the biased probability
assigned for the group. Hence, the proposed bias equalizer eliminates the limita-
tion of the applicability in [8]. The effect of the proposed detector is evaluated by
experiments under some typical collusion strategies. The experimental results re-
veal that the proposed equalizer effectively enhances the performance of tracing
algorithm and outperforms the conventional bias equalizer. Under the relaxed
marking assumption, we evaluate the performance of the proposed bias equalizer
and the optimal detector. From our experiments, it is revealed that the proposed
detector outperforms the above optimal detector for some collusion strategies.
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2 Fingerprinting Code

In this study, we focus on binary fingerprinting codes, especially for the Tardos
code [13] and the Nuida code [12]. In this section, we review these codes and
related works.

2.1 Probabilistic Code

Let L be a length of codeword, and N be the number of users in a fingerprinting
system. If at most c users collude to produce a pirated copy, at least one of them
should be identified with a negligibly small false-positive probability, which is a
requirement for a fingerprinitng code.

The Tardos code has a length of theoretically minimal order with respect
to the number of colluders. The binary codeword of j-th user is denoted by
Xj,i ∈ {0, 1}, (1 ≤ i ≤ L), where Xj,i is generated from an independently and
identically distributed random number with a probability pi such that Pr[Xj,i =
1] = pi and Pr[Xj,i = 0] = 1 − pi. This probability pi follows a continuous
distribution P over an open unit interval (0, 1), which is called bias distribution.

In order to improve the performance of the Tardos code, Nuida et al. [11]
presented a discrete version of the bias distribution, which is customized for a

given number c of colluders. Let Lk(t) =
(

d
dt

)k
(t2 − 1)k/(k!2k) be the k-th Leg-

endre polynomial, and put L̃k(t) = Lk(2t− 1). Then we define PGL
2k−1 = PGL

2k to

be the finite probability distribution on the set of the k zeroes of L̃k such that

each value p is taken with probability γ
(
p(1 − p)

)−3/2
L̃k′(p)−2, where γ is the

normalization constant making the sum of the probability equal to 1. Since the
output values of PGL

c and the corresponding output probabilities are not neces-
sarily rational, they are represented by approximated numbers. The numerical
examples are shown in Table 1, where p and q denote the output values and their
emerging probabilities, respectively. Based on those parameters for a given c, the
actual probabilities pi, (1 ≤ i ≤ L) are fixed in a fingerprinting system. Except
for the bias distribution, the Nuida code employs the same encoding mechanism
as the Tardos code.

Table 1. Examples of the discrete version of Nuida code’s bias distribution

c p q c p q

1,2 0.50000 1.00000 7,8 0.06943 0.24833
3,4 0.21132 0.50000 0.33001 0.25167

0.78868 0.50000 0.66999 0.25167
5,6 0.11270 0.33201 0.93057 0.24833

0.50000 0.33598
0.88730 0.33201
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2.2 Tracing Algorithm

Suppose that c̃(≤ c) malicious users out of N users collude to produce a pirated
codeword y = (y1, . . . , yL), yi ∈ {0, 1}. A tracing algorithm calculates a score for
i-th bit of j-th user, and then sums them up as the total score S(j) of j-th user.
Because the original correlation score adds each score only when yi = 1, half of
the elements in a pirated codeword is discarded. Considering the symmetry of
P , Škorić et al. [14] proposed a symmetric version of the correlation score:

S(j) =
L∑

i=1

(2yi − 1)Uj,i, (1)

where

Uj,i =

⎧⎨⎩
√

1−pi

pi
(Xj,i = 1)

−
√

pi

1−pi
(Xj,i = 0).

(2)

If the score S(j) exceeds a threshold Z, the user is determined as guilty. Such a
tracing algorithm is called “catch-many” type explained in [17]. The maximum
allowed probability of accusing a fixed innocent user is denoted by ε1, and the
total false-positive probability is by η = 1 − (1 − ε1)

N−c ≈ Nε1. The false-

negative probability denoted by ε2 is coupled to ε1 according to ε2 = ε
c/4
1 in [13].

By decoupling ε1 from ε2, the tracing algorithm can detect more colluders under
a constant ε1 and L [16][2].

A simple approach to estimate the false-positive probability ε1 is to perform
the Monte Carlo simulation. Indeed, it is not easy in general because of the
heavy computational costs for estimating a tiny probability. Furon et al. [5]
proposed an efficient method for estimating the probability of rare events. The
method can estimate the false-positive probability ε1 for a given threshold Z
with a reasonable comutational cost, which means that the method calculates the
map ε1 = F (Z). By iteratively performing the estimating method, an objective
threshold for a given ε1 can be obtained.

For the Nuida code [11], its original tracing algorithm outputs only one guilty
user whose score becomes maximum, which type is called “catch-one”. Due to
the similarity with the Tardos code, the catch-many tracing algorithm of the
Tardos code can be applied to the Nuida code. The report in [6] stated that the
performance of the Nuida code is better than that of the Tardos code when the
catch-many tracing algorithm is used. Under a same code length and a same
number of colluders, it is experimentally measured that the correlation score of
the Nuida code is higher than that of the Tardos code.

2.3 Collusion Attack

A group of colluders is denoted by C = {j1, j2, . . . , jc̃}. The collusion attack is the
process of taking sequences Xjt,i, (1 ≤ t ≤ c̃) as inputs and yielding the pirated
sequence y as an output. The marking assumption states that the colluders have
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yi ∈ {Xjt,i}. It implies that they cannot change the bit in the position where all
of Xjt,i is identical.

In [5], the collusion attack is described by the parameter vector: θc̃ =
(θ0, · · · , θc̃) with θρ = Pr[yi = 1|Φ = ρ], (0 ≤ ρ ≤ c̃), where the random variable
Φ ∈ {0, · · · , c̃} denotes the number of symbol “1” in the colluders’ copies at a
given index. The marking assumption enforces that θ0 = 0 and θc̃ = 1. The
positions where symbols belong to θ0 = 0 and θc̃ = 1 are called “undetectable
position”, and the others are “detectable position”.

In a watermarking research community, it is assumed that each symbol of
a codeword is embedded into a small segment of a content, and colluders can
compare their segments. In this attack model, the colluders can notice differences
between segments, but they cannot know which segment contains symbol “1”.
Because of the symmetry of P , symbols “1” and “0” play a symmetric role, and
satisfy the following conditional probabilities:

Pr[yi = 1|Φ = ρ] = Pr[yi = 0|Φ = c̃− ρ]

= 1− Pr[yi = 1|Φ = c̃− ρ]. (3)

Hence,
θρ = 1− θc̃−ρ. (4)

Notice that θc/2 = 0.5 for even c̃. Some typical examples are “majority”, “minor-
ity”, “random” attacks. It is reported in [5] that some collusion strategies have a
deeper impact on the traceability than others and the Worst Case Attack(WCA)
is defined as the collusion attack minimizing the rate of the code.

In a cryptography’s community, however, it is assumed that the colluders’
symbols are identical [3]. Under this scenario, colluders can employ more active
collusion strategies by releasing the constraints given by Eq.(4). “all-0” and “all-
1” strategies are the typical ones.

On the other hand, the attack strategies are not limited to the above types
in a realistic situation such that a codeword is binary and each bit is embedded
into one of segments of a digital content without overlapping using a robust
watermarking scheme. It is reasonable to assume that each bit is embedded
into a segment using an antipodal signal: X̂j,i = 2Xj,i − 1, namely it is binary
phase shift keying(BPSK) modulation. In this case, colluders can apply the other
attack strategy at the detectable positions. Since each bit of codeword of ŷ is
one of {−1, 1} after the BPSK modulation, it is possible for colluders to alter
the signal amplitude of each element from the signal processing point of view.
One simple example is averaging attack that ŷi =

∑
X̂j,i/c̃, we call this attack

by “average”. Considering the removal of fingerprint signal, a worst case may be
ŷi = 0. At the detectable position, it is sufficient to average only two segments
whose X̂j,i are different with each other, which attack is denoted by “average2”.

Even if a robust watermarking method is used to embed the binary fingerprint
code into digital contents, it must be degraded by attacks. In [7], it is assumed
that a pirated copy is produced by a collusion attack and is further distorted by
the Gaussian noise. Hence, a pirated codeword is represented by

y′ = ŷ + e (5)
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where e is the additive white Gaussian noise. In this case, symbols at the un-
detectable position may be changed by the additive noise, hence, the marking
assumption is not valid under the noisy model. The above attack assumption is
called “relaxed marking assumption” in this paper.

2.4 Related Works

It is reported in [5] that the WCA satisfies the constraint given by Eq.(4). It
means that colluders do not need to know which symbol is indeed in the i-th
segment. On the contrary, if a collusion strategy ignores the constraint, there
may exist more effective detection strategies than the original one.

The Tardos’ accusation process is independent with respect to the collusion
strategies for codes of infinite length. The symmetric version proposed by Škorić
et al. [14] also follows the independency. In [4] and [9], a Maximum A Posterior
(MAP) decoder have been proposed by calculating a correlation score considering
the collusion strategy:

S(j) =

L∑
i=1

log
Pr[yi|Xj,i, θc̃]

Pr[yi|θc̃]
. (6)

This MAP detector is optimally discriminative in the Neyman-Pearson theorem
point of view. However, there is a difficulty to realize such a detector because it
requires the knowledge of c̃ and θc̃ in advance.

In [4], the collusion strategy θc̃ is estimated by applying the Expectation-
Maximization (EM) algorithm [1]. However, the experimental results reveal that
the accuracy of the estimation is not sufficiently high. In [9], the detector is
generalized by finding the maximum of the MAP score for finite possible collu-
sion strategies. The detector seems the best tracing algorithm to the best of our
knowledge. Nevertheless, the estimation of collusion strategy is under investiga-
tion and the impact of mismatch has to be studied. Under the relaxed marking
assumption, the white Gaussian noise may restrict the availability of the MAP
detector because each symbol y′i of a distorted codeword is rounded into “1” or
“0” symbol before performing the above MAP detector.

3 Bias Equalizer

First, we suppose a noiseless case for the convenience of discussion. Let Y1 and
Y0 be the set of indices i satisfying yi = 1 and yi = 0, respectively. Then, the
numbers of elements in Y1 and Y0 are denoted by L1 and L0, respectively, where
L1 + L0 = L. Because of the symmetry of a bias distribution, it is expected
to be L1 = L0 unless the colluders do not know the actual values Xj,i of their
codewords. However, when they happen to get the values contained in segments,
they can perform more active collusion strategies such as “all-0” and “all-1”.
It is not surprising that L1 is not always equal to L0 in a real situation. Be-
cause of the probabilistic generation of codewords, there must be fluctuations
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between the number of symbols “1” and “0”. The imbalance is exploited to im-
prove the traceability by introducing a weighting parameter on the calculation
of correlation score.

For convenience, S(j) given by Eq.(1) is rewritten by

S(j) =
∑
i∈Y1

Uj,i −
∑
i∈Y0

Uj,i, (7)

The first term is the score related to yi = 1 and the second one is to yi = 0.
When L1 = L0, these two terms are balanced, and hence, their summand are
equal. Once the balance breaks down, the influence from one term dominates
the other one. In order to equalize the bias of these numbers, S(j) is modified in
[8]. It is noted that L1 and L0 are easily derived from the observation of y by
counting the symbols “1” and “0”. Then, S(j) is modified by these parameters
as follows:

S(j) =
1

L1

∑
i∈Y1

Uj,i −
1

L0

∑
i∈Y0

Uj,i. (8)

At a judgment, a threshold Z corresponding for the above correlation score
S(j) is calculated for a given false-positive probability ε1 using the rare event
simulator F (Z) explained in Sect.2.2.

Under the relaxed marking assumption, the above correlation score S(j) must
be accommodated for considering the effect of additive white Gaussian noise.
In [8], the detector first estimates the collusion channel regarded as a Gaus-
sian Mixture Model (GMM) by performing the EM algorithm. The probability
density function pdf(y′i) of distorted symbol y′i is denoted by

pdf(y′i) =
m−1∑
k=0

akN (y′i;μk, σ
2
k), (9)

where

N (y′i;μ, σ
2) =

1√
2πσ2

exp

(
− (y′i − μ)2

2σ2

)
, (10)

m is the number of Gaussian components, and
∑m−1

k=0 ak = 1. If the “average” or
“average2” attack is performed, the number of Gaussian components is at most
m = 3; otherwise, m = 2 for collusion strategies under the marking assumption.
When m = 3, the EM algorithm must estimate the following five parameters:
a0, a1, a2, μ2 and σ2

e(= σ2
0 = σ2

1 = σ2
2). On the other hand, among these five

parameters, a2 and μ2 are omitted when m = 2. Because ŷi = ±1 is distorted by
a white Gaussian noise, there are at least two mean values μ0 = −1 and μ1 = 1.

Then, the correlation score S
(j)
i before equalization is derived from the following

equation:

S(j) =
L∑

i=1

a1N (y′i;μ1, σ
2
e)− a0N (y′i;μ0, σ

2
e)

m−1∑
k=0

akN (y′i;μk, σ
2
e)

Uj,i. (11)
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After equalization, the above equation is modified as follows [8]:

S(j) =

L∑
i=1

N (y′i;μ1, σ
2
e)−N (y′i;μ0, σ

2
e)

m−1∑
k=0

akN (y′i;μk, σ
2
e)

Uj,i. (12)

Note that a0 = L0/L and a1 = L1/L when m = 2. In this case, the above
equation can be rewritten by

S(j) = L

(
1

L1

L∑
i=1

yML
i,1 Uj,i −

1

L0

L∑
i=1

yML
i,0 Uj,i

)
. (13)

where

yML
i,ν =

aνN (y′i;μν , σ
2
e)

m−1∑
k=0

akN (y′i;μk, σ
2
e)

(14)

for ν = 0 or 1. By scaling down the above score by a factor of L, we obtain a
simplified formula:

S(j) =
1

L1

∑
i∈{Y0∪Y1}

yML
i,1 Uj,i −

1

L0

∑
i∈{Y0∪Y1}

yML
i,0 Uj,i. (15)

4 Proposed Tracing Algorithm

The bias equalizer explained in the previous section can improve the traceability
effectively only when the imbalance of symbols “1” and “0” is observed in a whole
codeword. The idea of bias equalizer is also applicable for the Nuida code. In this
section, we further study biases in its codeword and propose a new bias equalizer
customized for the Nuida code. Because of its discrete bias distribution, it is
possible to classify each symbol of a codeword into some groups corresponding
to the probabilities p in Table 1. The proposed method calculates weighting
parameters for those groups by observing the number of symbols within those
groups.

Let nc be the number of candidates of pi for the Nuida code (e.g. nc = 4 when
c = 7, 8 as shown in Table 1). Hence, pi can be classified into nc groups. The
number of elements in each group is expected to be qξL, (1 ≤ ξ ≤ nc), where qξ
is the emerging probability of pi in the group(See Table 1). For convenience, the
number of elements is denoted by �ξ where �ξ ≥ 0 and

∑nc

ξ=1 �ξ = L. Since pi
is not always 1/2 for c > 2, the number of symbols “1” and “0” in each group
is imbalanced even for innocent users’ codewords as well as a pirated codeword.
Such a bias is exploited to the tracing algorithm in our method.

Let Yξ,1 and Yξ,0 be the set of indices i satisfying yi = 1 and yi = 0 in the
ξ-th group, respectively. Similar to the representation in Eq.(8), the numbers
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of symbols “1” and “0” are denoted by �ξ,1 and �ξ,0, respectively. Notice that

�ξ,1+ �ξ,0 = �ξ. Using those parameters, the correlation score S
(j)
ξ for ξ-th group

is calculated as follows:

S
(j)
ξ =

1

�ξ,1

∑
i∈Yξ,1

Uj,i −
1

�ξ,0

∑
i∈Yξ,0

Uj,i. (16)

The influence from the first term in the above equation is equivalent to that
from the second term because of the above weighting parameters. However, these
weighting parameters are not always valid since the number �ξ,0 or �ξ,1 happens
to be zero with a non-negligible probability. Considering the weighting ratio
between the first and second terms in the above equation, the above weighting

parameters must be changed. Based on this consideration, S
(j)
ξ is modified by

S
(j)
ξ = �ξ,0

∑
i∈Yξ,1

Uj,i − �ξ,1
∑

i∈Yξ,0

Uj,i. (17)

After the above conversion, although the score S
(j)
ξ in the above equation is

changed from the value derived from Eq.(16), the weighting ratio between the
first and second terms is unchanged. The above modification only considers the
bias between the symbols “1” and “0” in a group. Here, it is noticed that the
number �ξ of symbols in ξ-th group is different, namely, there is a bias among
groups to be equalized. Therefore, the total score is calculated by

S(j) =

nc∑
ξ=1

S
(j)
ξ

�ξ
(18)

It is worth-mentioning that the proposed bias equalizer only observes the symbols
in a pirated codeword and cancels the bias using the encoding parameters pi.

Now, let us consider the relaxed marking assumption for the above correlation

score. Similar to the discussion in the previous section, the correlation score S
(j)
ξ

can be calculated using Eqs.(14), (15), and (17).

S
(j)
ξ = �ξ,0

∑
i∈{Yξ,0∪Yξ,1}

yML
i,1 Uj,i − �ξ,1

∑
i∈{Yξ,0∪Yξ,1}

yML
i,0 Uj,i. (19)

In a noisy case, the number of symbols is not derived directly from the observa-
tion of y′i, (1 ≤ i ≤ L). After quantizing y′i to

ỹ′i =
{
1 if y′i ≥ 0
0 otherwise

, (20)

we count the numbers �ξ,1 and �ξ,0 from ỹ′i, (i ∈ {Yξ,0∪Yξ,1}). With the increase
of noise energy, however, the above classification is not always valid. Because of
the simplicity, �ξ,1 and �ξ,0 are derived using the above classification in this
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paper. Strictly speaking, the probability density function of y′i in ξ-th group is
represented by

pdf(y′i, ξ) =
�ξ,1
�ξ

N (y′i; 1, σ
2
e) +

�ξ,0
�ξ

N (y′i;−1, σ2
e). (21)

Hence, the exploitation of the EM algorithm will be a better choice for estimating
�ξ,1 and �ξ,0, which is left for our future work.

5 Experimental Results

For the comparison of the performance of proposed method, we perform the
Monte Carlo simulation such that pirated codewords are produced by collusion
attack on randomly selected 103 combinations of c̃ colluders. The number of
users is N = 104 in this experiment. By giving a false-positive probability ε1 =
10−8, the corresponding threshold Z is calculated by the rare event simulator.
Under this condition, the total false-positive probability is approximated to be
η ≈ Nε1 = 10−4. The maximum number of colluders is set to be c = 8 for Nuida
code in this experiment.

First, the traceability is evaluated for 6 collusion strategies under a marking
assumption. We compare the traceability of the proposed detector with those
of the original symmetric detector [14], the detector with the bias equalizer
explained in Sect.3, and the MAP detector1 [9], which are denoted by “original”,
“IWSEC”, and “MAP”, respectively. In this experiment, we assume that the
MAP detector knows the number c̃ of colluders and the vector θc̃, namely, it is
regarded as the optimal detector under the noiseless case. Figure 1 shows the
number of detected colluders using the length L = 1024, 2048. It is observed that
the performance of the conventional detector (IWSEC) is very close to that of
original detector under four strategies: majority, minority, random, and WCA.
It is because the number of symbols “1” and “0” in a whole pirated codeword is
balanced after those attacks. On the other hand, the proposed detector improves
the traceability for those attacks. It means that the proposed detector effectively
enhances the traceability. Especially for the majority strategy, the traceability of
the proposed detector is very close to that of the MAP detector. The proposed
detector also improves the traceability against the collusion strategies all-0 and
all-1 compared with the conventional detector. Similar results are derived for
longer L, so they are omitted to show.

It is noted that the total false-positive probabilities of those detectors are
constant and equal in this experiment. For the confirmation, the number of false-
positive detection is measured for 105 trials of Monte Carlo simulation. Because
of the limitation of space, the results of the MAP detector and the proposed
detector only for the majority strategy are plotted in Fig.2. It is observed that the
false-positive probability of the proposed detector is slightly less than η ≈ 10−4

1 We use the following source code for the evaluation of the MAP detector
http://www.irisa.fr/texmex/people/furon/fp.zip
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Fig. 1. Comparison of the number of detected colluders in a noiseless case
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Fig. 2. Comparison of false-positive probability when L = 1024

regardless of the number of colluders, while the probability of the MAP detector
becomes much lower with the decrease of the number of colluders. In any case,
we confirmed that the false-positive probability of the proposed detector was
independent on the collusion strategies and the number of colluders.

Next, we evaluate the performance under the relaxed marking assumption. In
this experiment, a pirated codeword is produced by c̃ = 6 colluders’ codewords
when L = 1024, and by c̃ = 8 when L = 2048, and it is distorted by a white
Gaussian noise. The number of detected colluders versus SNR [dB] is plotted in
Fig.3. Because of the low traceability under “WCA” and “random” strategies,
their false-negative probability is plotted in Fig.4 for the comparison of the
performance when L = 1024. It is observed that the performance of the MAP
detector is rapidly dropped as the decrease of SNR for the collusion strategies
under the marking assumption. It means that the proposed detector should be
selected rather than the MAP detector when the amount of noise added to a
pirated codeword increases. As shown in Fig.5, the false-positive probability is
still constant against the majority strategy, and the similar results are derived
for other strategies.

On the other hand, interesting results are derived for averaging strategies. The
proposed detector is better than the others for the “average” strategy while the
conventional “original” and “IWSEC” detectors are better for the “average2”
strategy when the SNR is within the range between −4 and 10 [dB]. With the
decrease of the amount of noise, it is revealed that the conventional ones can
catch all colluders involved in a pirated codeword. By changing the weighting
parameters in Eq.(19), we check the traceability against these attacks. Because
of the lack of space, we omit to show the numerical result, but we can say that
it is required to design a detector considering the effects on a codeword caused
by these averaging strategies.

Since we assume that the Gaussian noise is added to a pirated codeword after
the collusion attack, the elements y′i =

∑
X̂j,i/c̃ + ei, 1 ≤ i ≤ L are input to

a detector, where ei is a noise. If ei = 0, the “average” strategy is coincident
with the “majority” strategy at the MAP detector because each y′i is classified

into one of ±1 symbols. When
∑

X̂j,i/c̃ = 0, the noise ei significantly affects



Bias Equalizer for Binary Probabilistic Fingerprinting Codes 281

 0

 1

 2

 3

 4

 5

 6

 7

 8

-4 -2  0  2  4  6  8  10

SNR [dB]

nu
m

be
r 

of
 d

et
ec

te
d 

co
llu

de
rs

L = 1024
L = 2048

original
IWSEC

proposed
MAP

(a) majority

 0

 1

 2

 3

 4

 5

 6

 7

 8

-4 -2  0  2  4  6  8  10

SNR [dB]

nu
m

be
r 

of
 d

et
ec

te
d 

co
llu

de
rs

L = 1024
L = 2048

original
IWSEC

proposed
MAP

(b) minority

 0

 1

 2

 3

 4

 5

 6

 7

 8

-4 -2  0  2  4  6  8  10

SNR [dB]

nu
m

be
r 

of
 d

et
ec

te
d 

co
llu

de
rs

L = 1024
L = 2048

original
IWSEC

proposed
MAP

(c) random

 0

 1

 2

 3

 4

 5

 6

 7

 8

-4 -2  0  2  4  6  8  10

SNR [dB]

nu
m

be
r 

of
 d

et
ec

te
d 

co
llu

de
rs

L = 1024
L = 2048

original
IWSEC

proposed
MAP

(d) WCA

 0

 1

 2

 3

 4

 5

 6

 7

 8

-4 -2  0  2  4  6  8  10

SNR [dB]

nu
m

be
r 

of
 d

et
ec

te
d 

co
llu

de
rs

L = 1024
L = 2048

original
IWSEC

proposed
MAP

(e) all-0

 0

 1

 2

 3

 4

 5

 6

 7

 8

-4 -2  0  2  4  6  8  10

SNR [dB]

nu
m

be
r 

of
 d

et
ec

te
d 

co
llu

de
rs

L = 1024
L = 2048

original
IWSEC

proposed
MAP

(f) all-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-4 -2  0  2  4  6  8  10

SNR [dB]

nu
m

be
r 

of
 d

et
ec

te
d 

co
llu

de
rs

L = 1024
L = 2048

original
IWSEC

proposed
MAP

(g) average

 0

 1

 2

 3

 4

 5

 6

 7

 8

-4 -2  0  2  4  6  8  10

SNR [dB]

nu
m

be
r 

of
 d

et
ec

te
d 

co
llu

de
rs

L = 1024
L = 2048

original
IWSEC

proposed
MAP

(h) average2

Fig. 3. Comparison of the number of detected colluders under the relaxed marking
assumption, where c̃ = 6, 8 for L = 1024, 2048, respectively
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the classification even if it is very small. Hence, the performance of MAP de-
tector becomes lower. For the “average2” strategy, half of symbols at detectable
positions are wrongly classified at the MAP detector, but θc̃ is designed as the
“majority” strategy in this experiment. Hence, it is required to estimate θc̃ cor-
rectly to obtain the maximum performance of the MAP detector. Under the
relaxed marking assumption, it is found that colluders can modify a symbol ŷi
in a pirated codeword to the range [−1, 1] without an addition of noise, and
hence, we come up against a difficulty in the modeling of distorted codeword,
especially for the noisy case.

6 Concluding Remarks

In this paper, we proposed a bias equalizer for Nuida’s fingerprinting code using
the discrete bias distribution. When the number of symbols “1” and “0” in a
pirated codeword is imbalanced, the proposed detector can catch more colluders
than the conventional method. Furthermore, even if the number of symbols are
balanced in a whole codeword, it is imbalanced for each set of symbols related
to the corresponding probability pi. Such a bias is equalized in the proposed
detector to improve the performance. Although the performance of the proposed
detector is lower than that of the MAP detector under a marking assumption,
it is not always true under the relaxed marking assumption. The MAP detector
should consider the analogue value of a distorted codeword as well as the type
of collusion strategy.

The effect of bias equalizer is under investigation in a current version. The
detailed and theoretical analysis is left for our future work. In addition, the
design of an optimal detector under the relaxed marking assumption is still an
open problem. The proposed bias equalizer is highly customized for the Nuida
code because its discrete bias distribution is exploited. However, if the continuous
bias distribution of the Tardos code is divided into small ones, it is possible to
apply the proposed method to the Tardos code.
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