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Preface

Walking and running on two legs are extremely challenging tasks. Even though most
humans learn to walk without any difficulties within the first year(s) of their life, the
motion generation and control mechanisms of dynamic bipedal walking are far from
being understood. This becomes obvious in situations where walking motions have
to be generated from scratch or have to be restored, e.g.

• in robotics, when teaching and controlling humanoids or other bipedal robots to
walk in a dynamically stable way,

• in computer graphics and virtual reality, when generating realistic walking mo-
tions for different avatars in various terrains, reacting to virtual perturbations,
or

• during rehabilitation in orthopedics or other medical fields, when aiming to re-
store walking capabilities of patients after accidents, neurological diseases, etc.
by prostheses, orthoses, functional electrical stimulation or surgery.

The study of walking motions is a truly multidisciplinary research topic. The book
gives an overview of Modeling, Simulation and Optimization of Bipedal Walking
based on contributions by authors from such different fields as Robotics, Biome-
chanics, Computer Graphics, Sports, Engineering Mechanics and Applied Mathe-
matics. Methods as well as various applications are presented.

The goal of this book is to emphasize the importance of mathematical model-
ing, simulation and optimization, i.e. classical tools of Scientific Computing, for
the study of walking motions. Model-based simulation and optimization comple-
ments experimental studies of human walking motions in biomechanics or medical
applications and gives additional insights. In robotics, this approach allows to pre-
test robot motions in the computer and helps to save hardware costs. Of course no
model is ever perfect, and therefore no simulation and optimization result is a 100%
prediction of reality, but if properly done the will result in good approximations and
excellent starting points for practical experiments. The topic of Model-based Opti-
mization for Robotics is also promoted in a newly founded technical committee of
the IEEE Robotics and Automation Society.



VI Preface

This book goes back to a workshop with the same title organized by us at the
IEEE Humanoids Conference in Paris in December 2009. The workshop consisted
of 16 oral presentations and ten poster presentations. Later, all authors were invited
to submit articles about their work. The papers went through a careful peer-review
process aimed at improving the quality of the papers. In total, 22 papers are included
in this book, representing the whole variety of research in modeling, simulation and
optimization of bipedal walking.

Topics covered in this book include:

• Modeling techniques for anthropomorphic bipedal walking systems
• Optimized walking motions for different objective functions
• Identification of objective functions from measurements
• Simulation and optimization approaches for humanoid robots
• Biologically inspired control algorithms for bipedal walking
• Generation and deformation of natural walking in computer graphics
• Imitation of human motions on humanoids
• Emotional body language during walking
• Simulation of biologically inspired actuators for bipedal walking machines
• Modeling and simulation techniques for the development of prostheses
• Functional electrical stimulation of walking.

We hope that you will find the articles in this book as interesting and stimulating as
we do!

Acknowledgments. We thank Martin Felis for taking care of the technical editing
of this book. Financial support by the French ANR project Locanthrope and the
German Excellence Initiative is gratefully acknowledged.

Heidelberg and Kaiserslautern, Germany Katja Mombaur
December 2012 Karsten Berns
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Rodolphe Héliot, Katja Mombaur, Christine Azevedo-Coste

The Combined Role of Motion-Related Cues and Upper Body Posture
for the Expression of Emotions during Human Walking . . . . . . . . . . . . . . . 71
Halim Hicheur, Hideki Kadone, Julie Grèzes, Alain Berthoz
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Joseph Salini, Sébastien Barthélemy, Philippe Bidaud, Vincent Padois

Walking and Running: How Leg Compliance Shapes the Way We Move . 211
Andre Seyfarth, Susanne Lipfert, Jürgen Rummel, Moritz Maus, Daniel
Maykranz

Modeling and Simulation of Walking with a Mobile Gait Rehabilitation
System Using Markerless Motion Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
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Trajectory-Based Dynamic Programming

Christopher G. Atkeson and Chenggang Liu

Abstract. We informally review our approach to using trajectory optimization to
accelerate dynamic programming. Dynamic programming provides a way to design
globally optimal control laws for nonlinear systems. However, the curse of dimen-
sionality, the exponential dependence of memory and computation resources needed
on the dimensionality of the state and control, limits the application of dynamic pro-
gramming in practice. We explore trajectory-based dynamic programming, which
combines many local optimizations to accelerate the global optimization of dynamic
programming. We are able to solve problems with less resources than grid-based
approaches, and to solve problems we couldn’t solve before using tabular or global
function approximation approaches.

1 What Is Dynamic Programming?

Dynamic programming provides a way to find globally optimal control laws (poli-
cies), u = u(x), which give the appropriate action u for any state x [1, 2]. Dynamic
programming takes as input a one step cost (a.k.a. “reward” or “loss”) function and
the dynamics of the problem to be optimized. This paper focuses on offline planning
of nonlinear control laws for control problems with continuous states and actions,
deterministic time invariant discrete time dynamics xk+1 = f(xk,uk), and a time
invariant one step cost function L(x,u), so we use discrete time dynamic program-
ming. We are focusing on steady state policies and thus an infinite time horizon.
Action vectors are typically limited to a finite volume set.

Christopher G. Atkeson
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: cga@cmu.edu

Chenggang Liu
Department of Automation, Shanghai Jiao Tong University, Shanghai, China
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2 C.G. Atkeson and C. Liu

One approach to dynamic programming is to approximate the value function
V (x) (the optimal total future cost from each state V (x) = minuk ∑∞

k=0 L(xk,uk)), by
repeatedly solving the Bellman equation V (x) = minu(L(x,u)+V (f(x,u))) at sam-
pled states x j until the value function estimates have converged. Typically the value
function and control law are represented on a regular grid. Some type of interpola-
tion is used to approximate these functions within each grid cell. If each dimension
of the state and action is represented with a resolution R, and the dimensionality of
the state is dx and that of the action is du, the computational cost of the conventional
approach is proportional to Rdx ×Rdu and the memory cost is proportional to Rdx .
This exponential dependence of cost on dimensionality is known as the Curse of
Dimensionality [1].

An example problem: We use one link pendulum swingup as an example problem
to provide the reader with a visualizable example of a nonlinear control law and
corresponding value function. In one link pendulum swingup a motor at the base
of the pendulum swings a rigid arm from the downward stable equilibrium to the
upright unstable equilibrium and balances the arm there (Fig. 1). What makes this
challenging is that a one step cost function penalizes the amount of torque used and
the deviation of the current angle from the goal. The controller must try to minimize
the total cost of the trajectory. The one step cost function for this example is a
weighted sum of the squared angle errors (θ : difference between current angle and
the goal angle) and the squared torques τ: L(x,u) = 0.1θ 2 + τ2 where 0.1 weights
the angle error relative to the torque penalty. There are no costs associated with the
joint velocity. The uniform density link has a mass m of 1kg, length l of 1m, and
width of 0.1m. The dynamics are given by:

θ̈ =
(τ + 0.5m ·g · l · sin(θ ))

I
(1)

where g is the gravitational constant 9.81 and I is the moment of inertia about the
hinge. The continuous time dynamics are discretized with a time step of 0.01s using
Euler’s method as discrete time dynamics are more convenient for system identi-
fication and computer-based discrete time control. Because the dynamics and cost
function are time invariant, there is a steady state control law and value function
(Fig. 2). Because we keep track of the direction of the error and multiple rotations
around the hinge, there is a unique optimal trajectory. In general there may be mul-
tiple solutions with equal optimal costs. Dynamic programming converges to one of
the globally optimal solutions.

Fig. 1 Configurations from the simulated one link pendulum swingup optimal trajectory
every half second and at the end of the trajectory. The pendulum starts in the downward
position (left) and swings up in rightward configurations.
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Fig. 2 The value function and policy for a one link pendulum swingup. The optimal trajec-
tory is shown as a line in the value function and policy plots. The value function is cut off
above 20 so we can see the details of the part of the value function that determines the optimal
trajectory. The goal is the state (0,0), upright and not moving.

Representing trajectories explicitly to achieve representational sparseness:
A technique to accelerate dynamic programming is to optimize more than one step
at a time. Larson proposed modifying the Bellman equation to allow multiple time
steps and multiple evaluations of the one step cost and dynamics before evaluating
the value function on the right hand side [3]:

V (x0) = min
u0,N−1

((
N−1

∑
0

L(xi,ui))+V(xN)) (2)

In a grid-based approximation with multilinear interpolation, V (x) depends on the
value estimates at all the surrounding nodes. Larson’s goal was to ensure that V (xN)
on the right hand side of the Bellman equation did not depend on the value be-
ing updated (V (x0)) by ensuring that the trajectory ended far enough away from
its start in his State Increment Dynamic Programming. We have extended this idea
by running trajectories a variety of distances including all the way to the goal. To
help show that representing trajectories explicitly allows greater sparseness in dy-
namic programming, we show its effect on the one link swingup task. Fig. 3-top-left
shows Larson’s State Increment Dynamic Programming procedure on a 10x10 grid
applied to this problem. In Larson’s approach trajectories are run until they exit a
2x2 volume and the start value has no effect on the end value when multi-linear
interpolation is used on the grid of values. Fig. 3-top-right shows a set of optimized
trajectories that run all the way to the goal from a similar grid. The flow from state to
state is clearly indicated. When the resolution is greatly reduced, the State Increment
Dynamic Programming approach fails (Fig. 3-bottom-left), while the full trajectory-
based approach is more robust to the sparse representation (Fig. 3-bottom-right) and
still generates globally optimal trajectories. This work raises the question: “What
should the length of the trajectory be?” Larson used a distance threshold. We used
reaching the goal (attaining a point with zero future costs) as a threshold. A time
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Fig. 3 Right: Different approaches to computing and representing the value function for one
link swingup. On the left is the State Increment Dynamic Programming Approach of Larson.
On the right trajectories are run all the way to the goal. The plots are of phase space with
angles on the x axis and angular velocities on the y axis.

threshold could also be used. What distance or time threshold value should be used?
Should it be the same throughout the space? Another question is how to efficiently
optimize the sequence of actions in Eq. 2. We use local trajectory optimization to
find an optimal sequence of actions.

2 Trajectory-Based Dynamic Programming

Our approach modifies (and complements) existing approximate dynamic program-
ming approaches in a number of ways: 1) We approximate the value function and
policy using many local models (quadratic for the value function, linear for the pol-
icy) as shown in Fig. 4. These local models, located at sampled states, help our func-
tion approximators handle sparsely sampled states. A nearest neighbor approach is
taken to determine which local model should be used to predict the value and policy
for a particular state. 2) We use trajectory segments rather than single time steps
to perform Bellman updates (black lines in Fig. 4-Right). 3) After using either the
approximated policy or value function to initialize the trajectory segment, we use
trajectory optimization to directly optimize the sequence of actions u0,N−1 and the
corresponding states x1,N . 4) Local models of the value function and policy are
created as a byproduct of our trajectory optimization process. 5) Local models ex-
change information to ensure the Bellman equation is satisfied everywhere and the
value function and policy are globally optimal. 6) We also use trajectory optimiza-
tion on each query to refine the predicted values and actions. 7) We are exploring
using adaptive grids. Fig. 4-Right shows a randomly generated set of states superim-
posed on a contour plot of the value function for one link swingup, and the optimized
trajectories used to generate locally quadratic value function models.

Local models of the value function and policy: We need to represent value func-
tions and policies sparsely. We use a hybrid tabular and parametric approach: para-
metric local models of the value function and policy are represented at sampled
locations. This representation is similar to using many Taylor series approximations
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Fig. 4 Left: Example of a local approximation of a 1D value function using three quadratic
models. Right: Random states (dots) used to plan one link swingup, superimposed on a con-
tour map of the value function. Optimized trajectories (black lines) are shown starting from
the random states.

of a function at different points. At each sampled state xp the local quadratic model
for the value function is:

V p(x) =V p
0 +Vp

x x̂+
1
2

x̂TVp
xxx̂ (3)

where x̂ = x− xp is the vector from the sampled state xp to the query x, V p
0 is the

constant term, Vp
x is the first derivative with respect to state at xp, and Vp

xx is the
second spatial derivative at xp. The local linear model for the policy is:

up(x) = up
0 −Kpx̂ (4)

where up
0 is the constant term, and Kp is the first derivative of the local policy with

respect to state at xp and also the gain matrix for a local linear controller. V0, Vx,
Vxx, and K are stored with each sampled state.

Creating the local models: These local models are created using Differential Dy-
namic Programming (DDP) [4, 5, 6, 7]. This local trajectory optimization process is
similar to linear quadratic regulator design in that a value function and policy is pro-
duced. In DDP, value function and policy models are produced at each point along
a trajectory. Suppose at a time step i we have 1) a local second order Taylor series
approximation of the optimal value function: V i(x) = V i

0 +Vi
xx̂+ 1

2 x̂TVi
xxx̂ where

x̂ = x−xi. 2) a local second order Taylor series approximation of the robot dynam-
ics (fi

x and fi
u correspond to A and B of the linear plant model used in linear quadratic

regulator (LQR) design): fi(x,u) = fi
0 + fi

xx̂ + fi
uû + 1

2 x̂Tfi
xxx̂ + x̂Tfi

xuû + 1
2 ûTfi

uuû
where û= u−ui, and 3) a local second order Taylor series approximation of the one
step cost, which is often known analytically for human specified criteria (Lxx and
Luu correspond to Q and R of LQR design): Li(x,u) = Li

0+Li
xx̂+Li

uû+ 1
2 x̂TLi

xxx̂+
x̂TLi

xuû+ 1
2 ûTLi

uuû
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Given a trajectory, one can integrate the value function and its first and sec-
ond spatial derivatives backwards in time to compute an improved value function
and policy. We utilize the “Q function” notation [35] from reinforcement learning:
Q(x,u) = L(x,u) +V (f(x,u)). The backward sweep takes the following form (in
discrete time):

Qi
x = Li

x +Vi
xfi

x; Qi
u = Li

u +Vi
xfi

u (5)

Qi
xx = Li

xx +Vi
xfi

xx +(fi
x)

TVi
xxfi

x (6)

Qi
ux = Li

ux +Vi
xfi

ux +(fi
u)

TVi
xxfi

x (7)

Qi
uu = Li

uu +Vi
xfi

uu +(fi
u)

TVi
xxfi

u (8)

Δui = (Qi
uu)
−1Qi

u; Ki = (Qi
uu)
−1Qi

ux (9)

Vi−1
x = Qi

x−Qi
uKi; Vi−1

xx = Qi
xx−Qi

xuKi (10)

where subscripts indicate derivatives and superscripts indicate the trajectory index.
After the backward sweep, forward integration can be used to update the trajectory
itself: ui

new = ui−Δui−Ki(xi
new−xi). We note that the cost of this approach grows

at most cubically rather than exponentially with respect to the dimensionality of the
state. We formulate the trajectory optimization with an infinite time horizon so that
the value functions and control laws are time invariant and functions only of state.

Combining greedy local optimizers to perform global optimization: As currently
described, the algorithm finds a locally optimal policy, but not necessarily a globally
optimal policy. However, if the combination of local value function models generate
a global value function that satisfies the Bellman equation everywhere, the resulting
policy and value function are globally optimal [1, 2]. We will refer to violations of
the Bellman equation as “Bellman errors”. We can reduce one step Bellman errors

e =V (x)−min
u
(L(x,u)+V(f(x,u))) (11)

and multi-step Bellman errors

e =V (x0)− min
u0,N−1

((
N−1

∑
0

L(xi,ui))+V(xN)) (12)

by 1) re-optimizing local models that disagree using policies from neighboring lo-
cal models, and 2) adding additional local models in the area of the discrepancies
until Bellman errors are reduced below a threshold everywhere (up to a sampling
resolution). This process does require globally optimizing the one step action u or
multi-step action sequence u0,N−1 for each test. The Bellman error approach be-
comes similar to a standard dynamic programming approach as the resolution be-
comes infinite, and thus inherits the convergence properties of grid-based dynamic
programming [1, 2]. A weaker test which verifies that the value function matches
the current policy assesses the Bellman error for u(x) at each selected state, so no
global minimization is necessary. This test is useful in policy iteration.
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A useful heuristic to detect local optima that does not require a global optimiza-
tion on each test is to enforce continuity of the value function and the policy. This
heuristic often works because a switch from a global optimum to a local optimum
in a policy often shows up as a discontinuity in the policy or value function. Un-
fortunately, often optimal policies and value functions have true discontinuities. As
Fig. 2 shows, value functions can have derivative discontinuities (discontinuities of
the spatial derivatives of the value, see the creases in the figure) at policy discon-
tinuities. In addition, value functions can have discontinuities of the value itself in
complex situations such as when there are multiple goals (zero velocity states that
require no cost to maintain) and it is not possible to reach all goals from each state. A
second heuristic is that optimal trajectories should not normally cross any policy or
value function discontinuities given smooth dynamics and one step cost functions.
However, there are exceptions to this heuristic as well.

Discrepancies between predictions of local value functions can also be used to
guide computational effort and allocate local models. Discrepancies of local poli-
cies can be considered by using the local policies to generate trajectory segments,
and seeing if the cost of the trajectory is accurately predicted by local value func-
tion models. We can enforce continuity of local models by 1) using the policy of
one state of a pair to reoptimize the trajectory of the other state of the pair and vice
versa, and 2) adding more local models in between nearest neighbors that continue
to disagree until the discontinuity is confirmed or eliminated [6]. We also periodi-
cally reoptimize each local model using the policies of other local models. As more
neighboring policies are considered in optimizing any given local model, a wide
range of actions are considered for each state. There are several ways to perform
reoptimization. Each local model could use the policy of a nearest neighbor, or a
randomly chosen neighbor with the distribution being distance dependent, or just
choosing another local model randomly with no consideration of distance. [6] de-
scribes how to follow a policy of another sampled state if its trajectory is stored, or
can be recomputed as needed. We have also explored a different approach that does
not require each sampled state to save its trajectory or recompute it. To “follow”
the policy of another state, we follow the locally linear policy for that state until the
trajectory begins to go away from the state. At that point we switch to following the
globally approximated policy. Since we apply this reoptimization process periodi-
cally with different randomly selected local models, over time we explore using a
wide range of actions from each state. This process is analogously to exploration in
learning and to the global minimization with respect to actions found in the Bellman
equation. This approach is similar to using the method of characteristics to solve par-
tial differential equations [8] and finding value functions for games [9, 10, 11]. We
note that value functions that are discontinuous in known locations, with known pat-
terns, or in a relatively small area can also be handled with approaches that partition
the space into regions with no discontinuities.

Adaptive grids — constant value contours: We have explored a number of adap-
tive grid techniques for trajectory-based dynamic programming. Adaptive grid tech-
niques for solving partial differential equations are useful for dynamic programming
as well [12]. Fig. 5 shows a trajectory-based approach being used to compute a
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Fig. 5 Computing a 1D swingup value function using an adaptive grid. The plots are of
phase space with angles on the x axis and angular velocities on the y axis.
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Fig. 6 Randomly sampled states and trajectories for the one link swingup problem after 10,
20, 30, 40, 50, and 60 states are stored. These figures correspond to Figs. 4:right and 5, with
angle on the x axis and angular velocity on the y axis.

global value function [6, 7]. An adaptive grid of initial conditions are maintained on
a “frontier” of constant value V (x) or cost-to-go. This “frontier” is one dimension
less than the dimensionality of x. Trajectories are optimized from each sample of the
frontier and local models are maintained at each sample. The value function at each
frontier sample is compared with that of nearby points, using the local models for
the value functions and policies. At discrepancies the trajectories are re-optimized
using the value function from the neighboring frontier point. If this fails to resolve
the discrepancy, new frontier points are added at the discrepancy until the discrep-
ancy is below a threshold. Fig. 5 shows the frontier being gradually expanded. Since
each trajectory optimization is independent, these approaches are “embarrassingly”
parallel.

Adaptive grids — randomly sampling states: Fig. 6 shows an adaptive grid ap-
proach based on randomly sampling states, similar to Fig. 5. In this case states are
randomly sampled. If the predicted value V (using the nearest local model) for a
state is too high, it is rejected. If the predicted value is too similar to the cost of an
optimized trajectory, it is rejected. Otherwise it is added to the database of sampled
states, with its local value function and policy models. To generate the initial trajec-
tory for optimization the current approximated policy is used until the goal or a time
limit is reached. In the current implementation this involves finding the sampled
state nearest to the current state in the trajectory and using its locally linear policy
to compute the action on each time step. The trajectory is then locally optimized.

We solve a series of problems by gradually increasing the cost of trajectories
we consider. Each cost threshold generates a volume we consider, and in the most
conservative version of our algorithms, we completely solve each volume before
increasing the cost threshold. More aggresive versions only partially solve each vol-
ume before increasing the cost threshold, and continue to update lower cost nodes
throughout execution.
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Fig. 7 Configurations from the simulated three link pendulum optimal swingup trajectory
every tenth of a second and at the end of the trajectory

We expect the locally optimal policies to be fairly good because we 1) gradually
increase the solved volume (Fig. 6) and 2) use local optimizers. Given local opti-
mization of actions, gradually increasing the solved volume defined by a constant
value contour will result in a globally optimal policy if the boundary of this volume
never touches a non-adjacent section of itself, given reasonable dynamics and one
step cost functions. Fig. 2 and 4 show the creases in the value function (disconti-
nuities in the spatial derivative) and corresponding discontinuities in the policy that
typically result when the constant value contour touches a non-adjacent section of
itself as the limit on acceptable values is increased.

3 Results

In addition to the one link swingup example presented in the introduction, we
present results on two link swingup (4 dimensional state), three link swingup (6
dimensional state), four link balance (8 dimensional state), and 5 link bipedal walk-
ing (10 dimensional state). In the first four cases we used a random adaptive grid
approach [13]. For the one link swingup case, the random state approach found
a globally optimal trajectory (the same trajectory found by our grid based ap-
proaches [14]) after adding only 63 random states. Fig. 4 shows the distribution of
states and their trajectories superimposed on a contour map of the value function for
one link swingup and Fig. 6 shows how the solved volume represented by the sam-
pled states grows. For the two link swingup case, the random state approach finds
what we believe is a globally optimal trajectory (the same trajectory found by our
tabular approaches [14]) after storing an average of 12000 random states, compared
to 100 million states needed by a tabular approach. For the three link swingup case,
the random state approach found a good trajectory after storing less than 22000 ran-
dom states (Fig. 7). We were not able to solve this problem using regular grid-based
approaches with a 4 gigabyte table.
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Fig. 8 Configurations every quarter second from a simulated response to a forward push
(to the right) of 22.5 Newton-seconds. The lower black rectangle indicates the extent of the
symmetric foot.

A simple model of standing balance: We provide results on a standing robot bal-
ancer that is pushed (Fig. 8), to demonstrate that we can apply the approach to sys-
tems with eight dimensional states. This problem is hard because the ankle torque
is quite limited to prevent the foot from tilting and the robot falling. We created
a four link model that included a knee, shoulder, and arm. Each link is modeled
as a thin rod. We model perturbations as horizontal impulses applied to the mid-
dle of the torso. The perturbations instantaneously change the joint velocities from
zero to values appropriate for the perturbation. We assume no slipping or other
change of contact state during the perturbation. Both the allowable states and pos-
sible torques are limited. The one step optimization criterion is a combination of
quadratic penalties on the deviations of the joint angles from their desired positions
(straight up with the arm hanging down), the joint velocities, and the joint torques:
L(x,u) = (θ 2

a + θ 2
k + θ 2

h + θ 2
s )+ (θ̇ 2

a + θ̇ 2
k + θ̇ 2

h + θ̇ 2
s ) + 0.002(τ2

a + τ2
k + τ2

h + τ2
s )

where 0.002 weights the torque penalty relative to the position and velocity errors.
The penalty on joint velocities reduces knee and shoulder oscillations. After dy-
namic programming based on approximately 60,000 sampled states, Fig. 8 shows
the response to the largest perturbations that could be handled in the forward direc-
tion. We have designed a linear quadratic regulator (LQR) controller that optimizes
the same criterion on the four link model, using a linearized dynamic model. For per-
turbations of 17.5 Newton-seconds and higher, the LQR controller falls down, while
the controller presented here is able to handle larger perturbations of 22.5 Newton-
seconds. We were able to generate behavior using optimization that matched human
responses for large perturbations [15, 16]. Interestingly, we found that a single opti-
mization criterion generated multiple strategies (both an ankle and hip strategy, for
example).

We explored trajectory-based control of bipedal walking. We simulated a 5 link
planar robot (2 legs and a torso). We optimized a periodic steady state trajectory
(solid line) and 12 additional optimal trajectory segments starting just after -4 and
10 Newton-seconds perturbations at the hip at different times (Figure 9-left). The
trajectory library was evaluated using perturbations of -10, -6, 6, 16, and 20 Newton-
seconds at the hip (Figure 9-right). The robot successfully recovered from these
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Fig. 9 Trajectory-based dynamic programming applied to bipedal walking. On the left we
show the entries in a trajectory library, and on the right we show trajectories generated from
the trajectory library in response to perturbations. The solid curve is the periodic steady state
trajectory. 2D phase portraits are shown which are projections of the actual 10D trajectories.
We plot the angle (x axis) and angular velocity (y axis) of a line from the hip to a foot.

perturbations. The simulated robot could also walk up and down 5 degree inclines
using this trajectory-based policy generated by optimizing walking on level ground.

4 Related Work

Trajectories: In our approach we use trajectories to provide a more accurate es-
timate of the value of a state. In reinforcement learning “rollout” or simulated
trajectories are often used to provide training data for approximating value func-
tions [17, 18], as well as evaluating expectations in stochastic dynamic program-
ming. Murray et. al. used trajectories to provide estimates of values of a set of initial
states [19]. A number of efforts have been made to use collections of trajectories
to represent policies [3, 6, 7, 20, 21, 22, 23, 24, 25, 26, 27]. [21] created sets of
locally optimized trajectories to handle changes to the system dynamics. NTG uses
trajectory optimization based on trajectory libraries for nonlinear control [28]. [6]
and [7] used information transfer between stored trajectories to form sets of globally
optimized trajectories for control.

Local models: We use local models of the value function and policy. Werbos pro-
posed using local quadratic models of the value function [29]. The use of trajec-
tories and a second order gradient-based trajectory optimization procedure such as
Differential Dynamic Programming (DDP) allows us to use Taylor series-like lo-
cal models of the value function and policy [4, 5]. Similar trajectory optimization
approaches could have been used [30], including robust trajectory optimization
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approaches [31, 32, 33]. An alternative to local value function and policy models are
global parametric models, for example [17, 34, 35]. A difficult problem is choosing
a set of basis functions or features for a global representation. Usually this has to be
done by hand. An advantage of local models is that the choice of basis functions or
features is not as important.

5 Discussion

On what problems will our approach work well? We believe our approach can
discover underlying simplicity in many typical problems. An example of a problem
that appears complex but is actually simple is a problem with linear dynamics and a
quadratic one step cost function. Dynamic programming can be done for such linear
quadratic regulator (LQR) problems even with hundreds of dimensions and it is not
necessary to build a grid of states [36]. The cost of representing the value function
is quadratic in the dimensionality of the state. The cost of performing a “sweep”
or update of the value function is at most cubic in the state dimensionality. Con-
tinuous states and actions are easy to handle. Perhaps many problems, such as the
examples in this paper, have local simplifying characteristics similar to LQR prob-
lems. For example, problems that are only “slightly” nonlinear and have a locally
quadratic cost function may be solvable with quite sparse representations. One goal
of our work is to develop methods that do not immediately build a hugely expensive
representation if it is not necessary, and attempt to harness simple and inexpensive
parallel local planning to solve complex planning problems. Another goal of our
work is to develop methods that can take advantage of situations where only a small
amount of global interaction is necessary to enable local planners capable of solving
local problems to find globally optimal solutions.

Why dynamic programming? To generate a control law or policy, trajectory opti-
mization can be applied to many initial conditions, and the resulting actions can be
interpolated as needed. If trajectory optimization is fast enough it can be done on-
line, as in Receding Horizon Control/Model Predictive Control (RHC/MPC). Why
do we need to deal with dynamic programming and the curse of dimensionality?
Dynamic programming is a global optimizer, while trajectory optimization alone
finds local optima. Often, the local optima found using just trajectory optimization
are not acceptable.

What about state estimation, learning models, and robust policies? We assume
we know the dynamics and one step cost function, and have accurate state esti-
mates. Future work will address simultaneously learning a dynamic model, finding
a robust policy, and performing state estimation with an erroneous partially learned
model [37, 38, 39].

Aren’t there better trajectory optimization methods than DDP? DDP, invented
in the 1960s, is useful because it produces local models of value functions and poli-
cies. It may be the case that newer methods can optimize trajectories faster than
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DDP, and that we can use a combination of methods to achieve our goals. Para-
metric trajectory optimization based on sequential quadratic programming (SQP)
dominates work in aerospace and animation. We have used SQP methods to ini-
tially optimize trajectories, and a final pass of DDP to produce local models of
value functions and policies.

6 Future Work

Future work will optimize aspects and variants of this approach and do a thorough
comparison with alternative approaches. More extensive experimentation will lead
to a clearer understanding of when this approach works well, and how much storage
and computation costs are reduced in general. An interesting but difficult research
question is how sacrificing global optimality would enable finding useful solutions
to bigger problems. Another interesting question is how to combine Receding Hori-
zon Control/Model Predictive Control with a pre-computed value function [40, 41].

From our point of view, the most important question is whether model-based
optimal control of this form can be usefully applied to humanoid robots, where the
dynamics and thus the model depend on a poorly characterized environment as well
as a well characterized robot.

7 Conclusion

We have combined local models and local trajectory optimization to create a promis-
ing approach to practical dynamic programming for robot control problems. New
elements in our work relative to other trajectory library approaches include variable-
length trajectories including trajectories all the way to a goal, using local models of
the value function and policy, and maintaining consistency across local models of
the value function. We are able to solve problems with less resources than grid-based
approaches, and to solve problems we couldn’t solve before using tabular or global
function approximation approaches.
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Use of Compliant Actuators in Prosthetic Feet
and the Design of the AMP-Foot 2.0

Pierre Cherelle, Victor Grosu, Michael Van Damme,
Bram Vanderborght, and Dirk Lefeber

Abstract. From robotic prostheses, to automated gait trainers, rehabilitation robots
have one thing in common: they need actuation. The use of compliant actuators is
currently growing in importance and has applications in a variety of robotic tech-
nologies where accurate trajectory tracking is not required like assistive technology
or rehabilitation training. In this chapter, the authors presents the current state-of-
the-art in trans-tibial (TT) prosthetic devices using compliant actuation. After that,
a detailed description is given of a new energy efficient below-knee prosthesis, the
AMP-Foot 2.0.

1 Introduction

Experience in clinical and laboratory environments indicates that many trans-tibial
(TT) amputees using a completely passive prosthesis suffer from non-symmetrical
gait, a high measure of perceived effort and a lack of endurance while walking
at a self-selected speed [28, 20, 3]. Using a passive prosthesis means that the pa-
tient’s remaining musculature has to compensate for the absence of propulsive ankle
torques. Therefore, adding an actuator to an ankle-foot prosthesis has the potential
to enhance a subjects mobility by providing the missing propulsive forces of lo-
comotion. In the growing field of rehabilitation robotics, prosthetics and wearable
robotics, the use of compliant actuators is becoming a standard where accurate tra-
jectory tracking is not required. Their ability to safely interact with the user and to
absorb large forces due to shocks makes them particularly attractive in applications
based on physical human-robot interactions. The approach based on compliance on
a mechanical level (i.e. passive compliance), compared to introduced compliance on
the control level (i.e. active compliance), ensures intrinsic compliance of the device
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at all time, enhancing hereby system safety. Therefore, this type of actuator is pre-
ferred in novel rehabilitation robots where safe human-robot interaction is required.
In the particular case of trans-tibial (TT) prostheses, compliance of the actuation
provides even more advantages. Besides shock absorption in case of collision with
objects during walking, energy provided by the actuator (e.g. electric motor) can be
stored into its elastic element (e.g. spring in series). This energy can be kept for a
moment and released when needed to provide propulsion of the subject [7]. As a
result of this, the electric drive can be downsized so as the overall weight and inertia
of the prosthetic device to improve the so-called 3C-level, i.e. comfort, control and
cosmetics.

Compliant actuators can be divided into actuators with fixed or variable compli-
ance. Examples of fixed compliance actuators are the various types of series elastic
actuators (SEA) [19], the bowden cable SEA [22] and the Robotic Tendon Actua-
tor [14] to name a few. On the other hand the PPAM (Pleated Pneumatic Artificial
Muscles) [25], the MACCEPA (Mechanically Adjustable Compliance and Control-
lable Equilibrium Position Actuator) [6, 8] and the Robotic Tendon with Jack Spring
actuator [15, 16] are examples of variable stiffness actuators. For a complete state-
of-the-art in compliant actuation, the authors refer to [9].

In this chapter, the authors present the current state-of-the-art in powered trans-
tibial prostheses using compliant actuation and a brief analysis of their working
principles. A description of the author’s latest actuated prosthetic foot design will
then be given, i.e. the AMP-Foot 2.0. Conlusions and future work will be outlined
at the end of the chapter.

2 Powered Prosthetic Feet

In this section, the authors present the current state-of-the-art in powered ankle-
foot prostheses, better known as ”bionic feet”, in which the generated power and
torques serve for propulsion of the amputee. The focus is placed on devices using
compliant actuators. For a complete state-of-the-art review of passive TT prosthesis
comprising ”Conventional Feet” and ”Energy Storing and Returning” (ESR) feet,
the authors refer to [24].

2.1 Pneumatically Actuated Devices

Pneumatic actuators are also known as ”antagonistically controlled stiffness” actu-
ators [9] since two actuators with non-adaptable compliance and non-linear force
displacement characteristics are coupled antagonistically. By controlling both actu-
ators, the compliance and equilibrium position can be set.

Klute et al. [17] have designed an artificial musclo-tendon actuator to power
a below-knee prosthesis. To meet the performance requirements of an artificial
triceps surae and Achilles tendon, an artificial muscle, consisting of two flexible
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pneumatic actuators in parallel with a hydraulic damper, and placed in series with
a bi-linear, two-spring implementation of an artificial tendon, was build into the
ankle-foot prosthesis.

Goldfarb et al. [21] at Vanderbilt University have developed a powered trans-
femoral prosthesis using knee and ankle pneumatic actuation.

Developed within the Robotics & Multibody Mechanics Research Group at Vrije
Universiteit Brussel, Belgium, the Pleated Pneumatic Artificial Muscle (PPAM) [23]
was originally intended to be used in bipedal walking robots. It is a lightweight,
air-powered, muscle-like actuator consisting of a pleated airtight membrane. Its ad-
vantage compared to other artificial muscle comes from the unfolding of the pleated
membrane. Because of this there is virtually no threshold pressure, hysteresis is re-
duced when compared to other types of muscles, and contractions of over 40% of
the initial length are possible. Whithin the IPAM (Intelligent Prosthesis using Ar-
tificial Muscles) Project [25], a TT prosthesis using Pleated Pneumatic Artificial
Muscles was developed to demonstrate the importance of push-off during gait [25].

In general, drawbacks of pneumatic systems are the high cost of pressurized air
production and supply requirements for autonomy. Therefore, electric actuators are
preferred in novel prosthetic designs.

2.2 Electrically Actuated Devices

At the Massachusetts Institute of Technology (MIT), the Powered Foot Prosthesis
[1] has been developped using a combination of a spring and a high power series
elastic actuator. Its working principle consists of loading a spring during the con-
trolled dorsiflexion phase and to activate a torque source (SEA) in parallel when
peak power is needed. As a result of this, energy is added to the system to provide
push-off. A peak output torque of 140 Nm and power output of 350W is applied
with a torque bandwidth up to 3.5Hz. This prosthetic device has shown its effective-
ness by improving metabolic economy of walking individuals with TT amputation
[2], on average by 14% compared to evaluated conventional prostheses. Further re-
search at the MIT led to the developement of the Powerfoot BiOM sold by iWalk
[10]. The BiOM is a Bionic lower-leg system to replace lost Muscle function that
approximates the action of the ankle, Achilles tendon and calf muscles by propelling
the amputee upwards and forwards during walking.

At the Arizona State University, the SPARKy project (Spring Ankle with Regen-
erative Kinetics) [12] uses a Robotic Tendon actuator (including a 150W DC motor)
[14] to provide 100% of the push-off power required for walking while maintaining
intact gait kinematics. The first prototype (SPARKy 1) [11] was shown to store and
release approximately 16J of energy per step while an intact ankle of a 80Kg subject
at 0.8Hz walking rate needs approximately 36J [13]. A second prototype was built
(SPARKy 2) with a lighter and more powerfull roller screw transmission and brush-
less DC motor. Both design’s working principle rely on a SEA attached between the
heel and the leg. This robotic tendon is controlled to provide the ankle torque and
power necessary for propulsion during gait. The third prototype (SPARKy 3) [4]
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was designed to actively control both inversion and eversion as well as plantarflex-
ion and dorsiflexion while providing high power for running and jumping.

At the Vrije Universiteit Brussel, a compact, low-weight and energy efficient
trans-tibial prosthesis powered by electric drives was proposed to improve the am-
putee’s gait [26]. The challenge was to design a device respecting the ankle-foot
requirements that mimics a natural ankle behavior during walking. It was shown
that by incorporating a modified MACCEPA [8] into the design, an acceptable ap-
proximation of the ankle characteristic is obtained. The prosthesis contains two uni-
directional springs in parallel, connected to two lever arms. By connecting one of the
lever arms to a locking mechanism it is shown that the energy efficiency is greatly
improved. The actuation comprises a 150W motor with gearhead transmission con-
nected to a ball screw mechanism through a timing belt. The Powered Below-knee
Prosthesis’s behavior is adjustable depending on amputee’s gait speed by regulating
the pretension of the springs. It is capable of providing 100% of the required push-
off power, consuming only 22.19J per step for a 75Kg subject walking at normal
cadence on level ground.

Further research at the Robotics & Multibody Mechanics Research Group [5] led
to the design and development of the Ankle Mimicking Prosthetic Foot (AMP-Foot)
2.0. Fig. 1 shows some of the named prosthetic devices.

Fig. 1 (a) MIT Power Foot Prosthesis. (b) The BiOM from iWalk. (c) SPARKy 1, 2 and 3
(from left to right). (d) Trans-tibial Prosthesis using Pleated Pneumatic Artificial Muscles.

3 The Amp-Foot 2.0: A New Energy Efficient Concept

The main objective of this research is to harvest as much energy as possible from the
gait and to implement an electric actuator with minimized power consumption. The
concept of the AMP-Foot 2.0 relies on the use of a ”plantar flexion (PF)” spring,
to store energy from the controlled dorsiflexion phase of stance while an electric
actuator is loading a ”push-off (PO)” spring during the complete stance phase. Due
to the use of a locking mechanism, the energy injected into the PO spring can be
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Fig. 2 Schematics and picture of the AMP-Foot 2.0

delayed and released at push-off. This way, the actuator’s power is significantly
reduced and so is its size and weight while still providing the full torque and power
needed for locomotion.

In Fig. 2, the essential parts of the AMP-Foot 2.0 are represented. The device
consists of 3 bodies pivoting around a common axis (the ankle), i.e. the leg, the foot
and a lever arm. As mentioned before, the system comprises 2 spring sets: a PF and
a PO spring set. The PF spring is placed between a fixed point p on the foot and a
cable that runs over a pulley a to the lever arm at point b and is attached to the lever
arm at point c, while the PO spring is placed between the motor-ballscrew assembly
and a fixed point d on the lever arm. Not drawn in Fig. 2 is the locking mechanism
which provides a rigid connection between the leg and the lever arm when energy
is injected into the system. Its working principle is discussed further in the text.

To maintain a consistent notation through the chapter, symbols used in the
schematics are described:

L1 = distance between ankle axis (A) and point a.

L2 = distance between ankle axis (A) and point b.

L3 = distance between ankle axis (A) and point c.

L4 = distance between ankle axis (A) and point d.

θ = angle between foot and leg.

φ = angle between foot and lever arm.

k1 = Plantar Flexion spring stiffness.

k2 = Push-Off spring stiffness.
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Fig. 3 Behavior of the AMP-Foot 2.0 during a complete stride

To illustrate the behavior of the AMP-Foot 2.0, one complete gait cycle is divided
into several phases, shown in Fig. 3, and the working principle of the prosthetic
device during each phase is explained.

3.1 Principle of Optimal Power Distribution

As mentioned before, the gait cycle is divided in 5 phases starting with a controlled
plantarflexion from heel strike (HS) to foot flat (FF) produced by muscles as the Tib-
ialis Anterior. This is followed by a controlled dorsiflexion phase ending in push-off
at heel off (HO) during which propulsive forces are generated mainly by the Soleus
and Gastrocnemius muscle groups. In the late stance phase, the torque produced by
the ankle decreases until the leg enters the so-called swing phase at toe off (TO).
Once the leg is engaged in the swing phase, the foot resets and prepares for the
next step.

From heel strike (HS) to foot flat (FF):
A step is initiated by touching the ground with the heel. During this phase the
foot rotates with respect to the leg, until θ (= φ ) reaches approximatly −5◦.
Since the lever arm is fixed to the leg, the PF spring is elongated and generates a
dorsiflexing torque at the ankle which is calculated as

T1 = k1(l1− l0 +V0,1)
L1L3

l1
sinφ (1)

in which

T1 = Torque applied by the PF spring to the lever arm and thus to the ankle.

k1 = Spring constant of the PF spring.

l0 = Distance between the fixed points a and c when φ = 0 i.e. l0 = L1−L3.

V0,1 = Pretension of the PF spring.

l1 = Distance between the fixed point a and c i.e.

l1 =
√

L2
1 +L2

3− 2L1L3cos(φ) (2)
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During this period the electrical drive pulls the PO spring. Since the motor is
attached to the leg and lever arm is locked to the leg, the PO spring is loaded
without delivering torque to the ankle joint. Therefore the prosthesis is not af-
fected by the forces generated by the actuator.

From (FF) to heel off (HO):
When the foot stabilizes at FF, the leg moves from θ =−5◦ to θ = +10◦. Until
the leg reaches θ = 0◦ the torque of the system is given by Equation (1). From
θ = 0◦ to θ =+10◦ the lever arm length is adjusted and thus the torque becomes:

T1 = k1(l
∗
1 − l∗0 +V0,1)

L1L2

l∗1
sinφ (3)

in which

l∗0 = Distance between the fixed points a and b when φ = 0 i.e. l∗0 = L1−L2.

l∗1 = Distance between the fixed point a and b i.e.

l∗1 =
√

L2
1 +L2

2− 2L1L2cos(φ) (4)

This is done by using two different connection points b and c (Fig. 2), on the
lever arm, which are respectively active when θ > 0 and θ < 0. This way it is
possible to mimic the change in stiffness of a sound ankle. During this phase the
motor is still injecting energy into the system by loading the PO spring.

At heel off (HO):
Because the angle between the PO spring and the lever arm is fixed at π/2, the
torque excerted by the spring (no pretension) on the lever arm is given by

T2 = k2l2L4 (5)

with

T2 = Torque applied to the lever arm by the PO spring.

k2 = Spring constant of the PO spring.

l2 = Elongation of the PO spring.

The torque T1 excerted by the PF spring on the lever arm is given by Equation
(3). At the moment of HO, the locking mechanism is unlocked and as a result of
this, all the energy which is stored into the PO spring is fed to the system. Since
T1 ≤ T2 both PF and HO springs tend to rotate the lever arm with an angle ψ to a
new equilibrium position. In other words, T1 and T2 respectively evolves to new
values T ′1 and T ′2 such that T ′1 = T ′2 = T ′ with T ′ ≥ T1 and T ′ ≤ T2. The torque at
the ankle becomes
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T ′ = k1(l
′
1− l′0 +V0,1)

L1L2

l′1
sin(φ +ψ) (6)

in which

l′0 = l∗0 = L1−L2

l′1 =
√

L2
1 +L2

2− 2L1L2cos(φ +ψ)

The effect of this is a virtually instantaneous increase in torque and decrease in
stiffness of the ankle joint as depicted in Fig. 4.

from HO to toe off (TO):
In the last phase of stance, the torque is decreasing until toe off (TO) occurs at
θ = −20◦. Since the two springs are now connected in series, the rest position
of the system has changed according to the elongation of the PO spring. As a
result of this a new equilibrium position is set to approximately θ = −20◦. The
actuator is still working during this phase.

Swing phase:
After TO, the leg enters into the so called swing phase in which the whole system
is resetted. While the motor turns in the opposite direction to bring the ballscrew
mechanism back to its initial position, return springs are used to set θ back to
0◦ and to close the locking mechanism. At this moment, the device is ready to
undertake new step.

Fig. 4 (a) Torque-Angle characteristic of the AMP-Foot 2.0 compared to abled-bodied ankle-
feet according to gait analysis conducted by D. Winter [27]. (b) Ankle power during one
stride. The solid line represents the power generation of a sound ankle while the dotted line
reprensents the resulting power of the AMP-Foot 2.0. The gray rectangle shows how the ac-
tuator power is spread over one gait cycle while the shade area represents the energy gathered
from the controlled dorsiflexion with the PF spring.
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Table 1 Lever arm dimensions

L1 = 80 mm L2 = 60 mm

L3 = 30 mm L4 = 60 mm

3.2 Mechanics and Design

According to Winter [27] a 75 kg subject walking at normal cadence (ground level)
produces a maximum joint torque of 120 Nm at the ankle. This has been taken as
a criterion. Moreover, an ankle articulation has a moving range from approximatly
+10◦ at maximal dorsiflexion to −20◦ at maximal plantarflexion. Therefore a mov-
ing range of −30◦ to +15◦ has been chosen for the joint to fulfill the requirements
of the ankle anatomy. The length of the lever arms named in Fig. 2 are given in
TABLE 1. The foot is made to match a European size 43 with a ankle height of
approximately 8 cm. The largest part of the prosthesis has a width of 5 cm and is
located at the toes to enhance stability. This way the prosthesis fits in a shoe which is
significantly more comfortable for the amputee. A description of the elements used
in the prosthesis is given.

Spring Sets:
As described in the previous section, the AMP-Foot 2.0 uses two spring sets.
For the PF spring (k1), a belleville spring assembly, which is shown in Fig. 5,
is used because of its compactness en ability to provide extremely high forces.
This assembly consists of a tube in which a slider is moving to compress the
disc springs. To achieve the desired, as linear as possible, spring characteristic,
29 belleville springs are stacked in series. The PF spring has a stiffness of ap-
proximately 300 N/mm. For the PO spring (k2), two tension springs with each a
stiffness of 60 N/mm are used.

Actuation:
To achieve the requirements of a able-bodied ankle-foot complex, an actuator
with a good ”power and strength to weight” ratio, high mechanical efficiency is
needed. A Maxon Brushed DC motor (60 W) has been chosen in combination
with a gearbox and ballscrew assembly, which is described in TABLE 2. The
positioning of the motor and other hardware have been chosen in view of the
range of motion and optimized for compactness of the system.

Locking Mechanism:
As mentioned before, a critical part of this mechanical system is the locking
mechanism. This locking must be able to withstand high forces while being as
compact and lightweight as possible. The crucial and challenging part is that the
system must be unlocked when bearing its maximum load and last but not least,
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Fig. 5 Section representation of a disc spring assembly. 29 disc springs are stacked in series
on a slider which moves into a tube.

Table 2 Motor and Transmissions

Motor Maxon RE 30 - 60 W
Tcont. = 51.7 mNm
Tpeak = 150 mNm

Transmission Maxon GP32BZ
stage 1 i = 5.8:1

Transmission Maxon ballscrew GP32S
stage 2 φ10x2

ηtransmission1&2 =+/−75%

this unlocking must require a minimum of energy. Fortunately, the lever arm has
to be locked to the leg at a fixed angle. These requirements have been taken as
criteria and to achieve this, it has been chosen to work with a four bar linkage
moving in and out of its singular position. This principle has already proved its
effectiveness in [18], where it is used to lock the knee joint of a walking robot.
Fig. 6 shows the schematics of the four bar linkage when locked (a) and opened
(b). When the four bar linkage is set in its singular position, it is in unstable equi-
librium. Therefore to ensure locking, the system is allowed to move a bit further
than its singular position. When the singular position is past, the load forces the
mechanism to continue moving in the same direction. To keep it in equilibrium,
a mechanical stop blocks the system. A solenoid (Mecalectro, 12VDC, 5W) is
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then used to push the mechanism back past its singular position when triggered.
Because close to its singular position, the transmission coefficient of the four bar
linkage tends to infinity, the resulting force (or torque) which has to be applied
to unlock the system is greatly reduced. Fig. 7 shows the transmission coefficient
and the resulting force necessary for unlocking under maximal load in function
of the lever arm angle.

It can be estimated that the maximum resulting load which can be applied to
the lever arm, e.g. when PF spring and PO spring are fully extended (at maximal
dorsiflexion), is more or less 40 Nm. In this case, and if the four bar mechanism
is past its singular position of a few degrees, the resulting force needed for un-
locking is estimated to be less than 10 N. Of course, this is a worst case senario.
Having the PO spring completely extended at maximal dorsiflexion is certainly
not optimal. This would mean the motor has to stop moving between HO and
TO. A better control strategy is to make the motor move during the complete
stance phase as shown in Fig. 4. Therefore, depending on the way the motor
is controlled, the resulting force needed to unlock the four bar linkage will be
reduced.

Sensors:
The two spring assemblies are equipped with custom made loadcells which al-
lows a force measurement with a resolution of ± 1.5 N. To measure the position
of the lever arm, and the leg with respect to the foot, two absolute magnetic en-
coders (Austria Micro Systems AS5055) are used with a resolution of ± 0.08◦.
While the magnets of the encoders are glued to the ankle axis (which is fixed to
the foot), the two hall sensors are fixed on the lever arm, respectively on the leg.

Fig. 6 CAD representation and schematics of the four bar mechanism in locked (a) and un-
locked (b) position
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Fig. 7 Transmission Coefficient and resulting force of the four bar linkage mechanism close
to its singular position (0◦)

As a result of this, the resulting torque at the ankle can be calculated using the
mathematical model of the mechanical system which has been discussed before.
To detect the important triggers during the stance phase (IC, FF, HO, TO), two
Force Sensing Resistors (FSR) are placed on the foot sole: one at the heel and
one at the toes. These triggers will be used to control the motor and to lock or
unlock the locking mechanism.

4 Conclusions

In this chapter, the authors propose a new design of an energy efficient powered
transtibial prosthesis mimicking able-bodied ankle behavior, the AMP-Foot 2.0. The
inovation of this study is to gather energy from motion during the controlled dor-
siflexion with a PF spring while storing energy produced by a low power electric
motor into a PO spring. This energy is then released with a delay at a favourable
time for push-off thanks to the use of a locking system. The prosthesis is designed
to provide a peak output torque of 120 Nm with a range of motion of approximately
45◦ to fullfill the requirements of a 75 kg subject walking on level ground at normal
cadence. Its total weight is ± 2.5 kg which corresponds to the requirements of an
intact foot. The prototype is completely built and hardware and control are currently
being tested. Experiments with amputees will follow.

Acknowledgements. This work has been funded by the European Commissions 7th Frame-
work Program as part of the project VIACTORS under grant no. 231554.
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Modeling and Optimization of Human Walking

Martin Felis and Katja Mombaur

Abstract. In this paper we show how optimal control techniques can be used to
generate natural human walking motions in 3D. Our approach has potential applica-
tions in humanoid robotics, biomechanics and computer graphics. It has the advan-
tage that it does not require any previous knowledge about walking motions from
experiments. In this study we consider symmetric walking along a straight line, but
the same techniques can be used to generate walking motions along curved paths or
asymetric motions. We establish a multibody model of the human body with twelve
segments including a head, a three-segment trunk, and arms and legs with two seg-
ments each. An optimal control problem is formulated that minimizes joint torques
head movement, and the impulse on touch-down in a combined criterion. The dy-
namics of the multi-body system are considered as constraints to the optimal control
problem to guarantee physically feasible motions. The optimal control problem is
solved using an efficient direct multiple-shooting method. A skeletal animation li-
brary is used to present the results of the optimized motion.

1 Introduction

Our anatomy is highly optimized for bipedal locomotion, which makes it very easy,
for most of us, to walk on different terrain even under disturbances. Also, the envi-
ronment we live in has been greatly influenced by our locomotion mode (e.g. stairs).
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Research of bipedal walking motions is of great interest in many areas. In robotics,
the aim is to create humanoids and other bipedal robots with a human-like capability
to walk in flexible environments. In computer graphics, creating realistic motions for
virtual characters in games or movies presents a big challenge since our perception
of motion is very specialized and easily recognizes unphysical motions. In biome-
chanics, models for human walking are required to gain a better understanding of
the human locomotor system.

In the different fields, a large variety of models exists to analyze or generate
motions. Models in biomechanics range from simple mass spring systems [4] to
complex multibody systems with simulated muscles [2]. These are primarily used
to describe or investigate forces that act within the body, but not to generate motions.

In computer graphics a lot of research is being done to synthesize plausible mo-
tions. Some authors use optimization techniques to compute or find a transition
from one pre-recorded motion to another such as in [13] or [12]. Other works in this
area incorporate dynamics simulations to generate more realistic motions. Witkin
et. al. [17] used a dynamical model and optimization to animate a lamp figure with
six degrees of freedom. They used a two boundary value formulation to generate
an optimal motion minimizing power consumption. Hodgins et al. [5] used a finite
state machine and proportional-derivative controllers to compute torques that gen-
erate variuous motions such as running, cycling and vaulting. A robust controller
for virtual humans that also allows modification of the generated walking style is
described in [18]. The controller allows the model to walk on uneven terrain in both
2D and 3D.

The zero-moment-point (ZMP) [15] is frequently used in humanoid robotics,
where the controller aims to keep the ZMP within the polygon of support (see e.g.
[6], [7]). ZMP-based control leads to a safe and conservative motion for humanoid
robots. However, the gait is very different from human walking. The human gait
is both faster and in general more energy efficient, since robots mainly control the
precise joint angles instead of exploiting its dynamics.

Another approach that is inspired by biology is to use central pattern generators
(CPG) that also allow the robot to adapt to the environment [11]. CPGs generate
rhythmic motor signals and have to be trained, e.g. by reinforcement learning or
neural networks, to generate walking patterns.

In this paper we want to generate physically valid and natural human walking mo-
tions by using a dynamic model and optimal control techniques. The same approach
has already been successfully used for human running [14], [10]. Its advantage is
that it does not require the prescription of exact trajectories or fixed keyframes for
the degrees of freedom of the walking system, so no previous knowledge from ex-
periments is needed. Also, it does not require previous information about the driving
torques of the walking motion. Instead, trajectories, as well as torques, that best sat-
isfy the optimization criterion are determined simultanously by the optimization
process. Walking differs from running with respect to the sequence of foot contacts:
while running involves alternating single–foot contact and flight phases, walking
is characterized by a change between single– an double–support contact phases.
The double support phase has frequently been ignored in simpler models, but it is
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considered in our walking model. We present a biollogically inspired objective func-
tion, which is a combination of different factors and leads to realistic walking mo-
tions. The computations of this paper are performed for human geometry and mass
distribution using standard biomechanical data. However, the same type of compu-
tations could be done for robot-specific parameters to determine best-possible input
torques for a humanoid robot.

In the next section we describe the dynamic modeling of a human gait as a multi–
phase problem based on a rigid multibody model. We then present the formula-
tion of natural gaits as an optimal control problem and how this problem can be
solved numerically. Finally we describe the optimal solution and show visualization
snapshots.

2 Modeling of the Gait and the Human Model

In this section we describe the formulation of human walking motions as a multi–
phase problem based on a rigid multibody system. We consider regular forward
walking along a straight line, which is charaterized by:

i) Identical left and right steps (bilateral symmetry);
ii) Periodicity constraints on the pose and the velocities.

Additionally, we chose a moderate walking velocity of 1.1m/s and a step length of
0.5m. In our problem velocity and step length are only input variables but could also
be used as optimization variables.

We focus on this most dominant mode of human locomotion, but the same tech-
niques could be used to study more irregular forms of walking. This allows us to
focus on the optimization of a single step gait cycle by formulating appropriate pe-
riodicity constraints including a shift of sides. The gait cycle we are considering is

(a) The human walk cycle for a single step. (b) Overview of our model
and its degrees of freedom.

Fig. 1 Gait cycle and model overview
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shown in Figure 1(a). It starts at the moment of right foot toe–off with a left leg
stance phase. After touchdown of the right leg there is a double support phase and
the cycle ends at the instant of left toe-off.

The multi–body model we created consists of 12 bodies, including legs, upper
body, arms, head and a three–segmented trunk. An overview of the model config-
uration and its resulting ndof = 31 degrees of freedom can be found in Figure 1(b).
We use a right–handed coordinate system in which, seen from the model, X points
forward (saggital direction), Y up (longitudonal direction), and Z towards the left
(transversal direction). Rotations are described by ZY X–Euler angles. The dynami-
cal parameters for the model (segment geometry, masses, inertia) were taken from
[9] to represent an adult human. The posture of the model is described by using
minimal coordinates q ∈ R

ndo f .
In the present model version we use point feet which means there is no distinction

between initial heel, flat foot, and toe contact. Instead, for each foot, there is only a
single point of contact at positions RightContact and LeftContact at the distal ends
of the lower leg segments (see Figure 1(b)). We assume nonsliding ground contact
and therefore use algebraic equations to fix the translation of the feet when in contact
with the ground. This results in a system of differential algebraic equations (DAE)
with differential index 3. Since the single– and double–support phases are described
by different algebraic equations we have two distinct DAE model equations. These
equations are then reformulated to index 1 systems that can be solved with standard
ordinary differential equation (ODE) methods, each time solving the underlying
system of algebraic constraints of the form:

(
M GT

G 0

)(
q̈
−λ

)
=

(
τ−N
−γ

)
. (1)

The matrix of the linear system consists of the joint–space inertia matrix M and the
Jacobian of the algebraic constraint G. On the right–hand side we have the applied
torques τ , the vector of non–linear forces (e.g. coriolis forces) N, and γ contain-
ing second derivatives of the algebraic constraint. Solving this system provides us
with the joint accelerations q̈ and the ground reaction forces λ of the contact points.
Source code for quantities M,G,N,γ were established using the HUMANS Tool-
box [16].

The transition from single–support to double–support occurs when the Y –value
of the right foot point is 0 and the foot point moves along the negative Y–axis. The
collision of the foot point with the ground is assumed to be instantaneous and fully
inelastic. The successive double–support phase ends when the vertical component
of the ground–reaction force acting on the left foot vanishes.

The change of the generalized velocity vector q̇ due to the collision is computed
by solving the system:

(
M GT

new
Gnew 0

)(
q̇+c
Λ

)
=

(
Mq̇−t
0

)
. (2)
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where Gnew describes the new constraint Jacobian of the double support constraint,
q̇− the generalized velocity right before the collision, q̇+ the generalized velocity
right after the collision and Λ the impulsive force in cartesian coordinates that act
at the contact points.

We do not include muscles in the model, but instead use torques to power all
internal DOF. In addition, we insert linear spring damper elements to mimick the
compliance and damping properties of muscles, ligaments and passive tissues. The
parameters of these spring-damper elements are also left free for the optimization.

3 Optimal Control Problem of a Human Gait

By using optimal control methods we can simultaneously optimize the motion
x(t) = [q(t), q̇(t)]T which consists of the positional variables q(t) ∈ R

ndo f and the
velocities q̇(t) ∈ R

ndo f of the generalized coordinates of our model. The torques
at the actuated joints are described by u(t) ∈ R

nu , with nu = 25. Additional model
parameters, such as spring damper constants or step length and velocity, are in the
vector p. As we have two model equations (one for single– and one for double–
support) we have a two–phase optimal control problem.

The complete optimal control problem can be written for i = 1,2 as:

min
x(·),u(·),p,ti

∫ t f

0
ΦL(t,x(t),u(t), p)dt +ΦM(t f ) (3)

subject to:

ẋ(t) = fi(t,x(t),u(t), p) (4)
x(t+i+1) = hi(x(t

−
i+1), p), (5)

gi(t,x(t),u(t), p) ≥ 0, (6)
req(x(0), . . . ,x(t f ), p) = 0, (7)

rineq(x(0), . . . ,x(t f ), p) ≥ 0. (8)

The Lagrange term ΦL in the objective function (3) is of the form:

ΦL(x(t),u(t), p) = cu||Wu(t)||22 + ch||vhead(t)||22 (9)

which minimizes both the torques u(t) applied to the system and the motion of the
head vhead(t). The Mayer term ΦM(t f ) = cm||Δ ptd(t f )||22 contains the impulse at
the foot on touch-down. The weight matrix W as well as the constants cu = 1.0,
ch = 5.0, and cm = 0.1 are used to scale the objective function components, taking
into account their different dimensions and different strengths of joint actuators. The
weighting coefficients of matrix W are shown in Table 1.

Single– and double–support phases are described by (4) as distinct model equa-
tions and the transition between them is modeled by the phase transition function
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Table 1 Weighting coefficients of torque contributions in the Lagrange term ΦL. The same
weighting factors were used for joints of the left and right side of the model.

WHipZ 74.2 WUpperTrunkZ 1.6 WHeadZ 2.2
WHipY 8.6 WUpperTrunkY 1.3 WHeadY 0.8
WHipX 74.1 WUpperTrunkX 1.7 WHeadX 2.1
WKneeZ 74.2 WShoulderZ 3.3
WMiddleTrunkZ 4.1 WShoulderY 0.7
WMiddleTrunkY 1.5 WShoulderX 8.0
WMiddleTrunkX 60.8 WElbowZ 4.0

(5). The touch–down is handled instantaneously by calculating and using an impulse
applied at the contact point which is then propagated through the multi–body system
in function (5). General state and control boundaries such as joint and torque limits
are described by (6). Posture conditions (e.g. foot positions), periodicity at given
time points and phase switches are modeled by (7) and (8).

The resulting multi–phase optimal control problem was solved by using the soft-
ware package MUSCOD-II [8] which uses a direct multiple–shooting method.

It solves the optimization problem directly, which means that the controls in the
continuous formulation (3)-(8) are approximated by a finite dimensional discretiza-
tion. In our case the time–horizon [t0, t f ] was divided into N equidistant intervals
with:

t0 < t1 < · · ·< tN-1 < tN = t f .

On each interval I j = [t j−1, t j] we define finite dimensional base functions ϕ(t,wj)
with parameters wj ∈ R

nw such that the controls can be written as: u(t) = ϕ(t,wj)
for all I j. Thus the controls are solely discretized by wj with j = 0, . . . ,N− 1. The
dimension of the control parameters nw depends on the type of base function, e.g.
for piecewise constant functions nw would be nu, for piecewise linear base functions
we would have: nw = 2nu.

For the state parametrization it uses a multiple shooting method. Similar as in
the previous paragraph the time horizon gets split up into M equidistant so–called
multiple shooting intervals for which the interval boundaries are called multiple
shooting nodes. On each node k at time tk the value of the state is described by
sk = x(tk), k = 0, . . . ,M. With this we can define M initial value problems

ẋ(t) = fi(t,x(t),u(t), p), t ∈ [tk, tk+1]
x(tk) = sk

for k = 0, . . . ,M− 1, of which the numerical solutions are denoted by x(t;sk). By
adding continuity conditions x(tk+1; sk)− sk+1 = 0, the original boundary value
problem is then replaced by M initial value problems together with continuity
conditions. This allows us to discretize the trajectories of the states with sk for
k = 0, . . . ,M.
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Having now parameterized both u(t) and x(t) by wj and sk we can now define a
vector

y = [w0, . . . ,wN−1,s0,s1, . . . ,sM , p, ti]
T

which contains discretized values together with the other optimization variables of
the continuous optimal control problem. Furthermore, by imposing the constraints

Fig. 2 Trajectories of all states of the optimized gait. The first three trajectories in the upper-
most row are the positions of the hip center in m, followed by the hip rotation in radians. The
other plots are the joints in radians. The dashed vertical line marks the phase switch between
single– and double–support phase.
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(6)− (8) only on the multiple shooting nodes, we can formulate a nonliner optimiza-
tion problem over the variables in the vector y:

min
y

F(y) (10)

subject to:
g(y) ≥ 0 (11)
h(y) = 0, (12)

which is the discretized version of our original optimal control problem.
This problem could then be solved by using a general purpose sequential quadratic

programming (SQP) solver. However, due to the fact that the values wj and sk

Fig. 3 Torque profiles at the actuated joints in Nm. Please note the different scalings of the
plots.
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only have local influence, we have specially structured matrices in the underlying
quadratic problems which are heavily exploited by MUSCOD-II.

In our problem we used N =M = 20 and piecewise linear functions as base func-
tions for the control discretization. The discretized nonlinear optimization problem
has 2450 variables, 1842 equality and 4951 inequality constraints. The dynamics of
our model is integrated with an integrator tolerance of 10−5.

4 Numerical Results and Visualization

A plot of the generated trajectories of the position variables q(t) and torques u(t)
are shown in Figure 2 and 3 respectively. A visualization can be found in Figure 4.

There is a natural arm swinging opposite to the leg swing. For the upper body
mainly the shoulder joints are actuated, their actuation is however far less compared
to the actuation in the joints of the lower body. In the upper body the shoulder
abduction and adduction (X–rotations) are the strongest contributors as they cause
weight transference from one leg to the other. The double-support phase is only
0.018 seconds. This is about 4% of the the step cycle, which has a duration of 0.44
seconds. Also, the knee of the swing leg bends less compared to the gait of a real
human. In a human gait, the Y –position of the ankle is increased when the foot is

Fig. 4 Visualization of the generated gait cycle from the front, the side, and in perspective
view
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rolling about the toes, which is compensated by flexion of the knee. However, this
elevation of the ankle does not occur with point feet.

The visualization we created can visualize the generated motion using simple
stick models and also using sophisticated polygonal models that are manipulated by
a skeleton that represents the kinematic structure of our multi–body system. This is
achieved by using the animation library CAL3D [3]. Figure 4 shows the generated
gait by using a polygonal model from our visualization. Custom models and skele-
tons can be created by using the open–source 3D content creation suite Blender [1],
which allows both modeling of the skeleton and the polygonal mesh. Additionally,
our visualization allows the motion to be described by either ZYX–Euler angles or
Quaternions.

5 Summary of Results and Outlook

We were able to generate a physically valid gait by using optimal control methods
as presented in this paper. The generated gait looks natural for our current model
topology and the method does not depend on motion capture data. Even though we
considered a symmetric gait, this method can also be used for non-symmetric gaits,
such as a curved path. Also the model parameters can easily be adjusted to generate
pathological gaits (e.g. limited joint movement, carrying a heavy backpack).

One of the biggest challenges currently is the modeling of the foot. So far we have
used point feet but for a more sophisticated foot model would allow a more realistic
ground contact. We expect this to lead to an automatic bending of the knee at lift-off,
which improves the realism of the motion. Also adding a model for muscles would
be interesting and would allow formulation of optimization criteria concerning their
actuation patterns instead of raw joint torques.

The gait generated by using optimization depends heavily on the constraints and
the objective function. Different styles of walking could be obtained by using ob-
jective functions other than minimization of energy and head movement. Especially
identifying specific objective functions for emotional walking styles would be of
interest.

We would also like to apply this method to computer graphics since the pre-
sented approach could also be applied to a variety of models and, depending on the
objective function, generate different walking styles. The resulting motion would
be physically valid and therefore realistic. Moreover, instead of manually creating
keyframes between two postures (e.g. sitting and standing), generating an optimal
motion could automatically create appealing animations. The method used in this
paper can also be applied in robotics to generate a gait that uses the ZMP by adding
a constraint to the optimal control problem.
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Motion Generation with Geodesic Paths
on Learnt Skill Manifolds∗

Ioannis Havoutis and Subramanian Ramamoorthy

Abstract. We present a framework for generating motions drawn from parametrized
classes of motions and in response to goals chosen arbitrarily from a set. Our frame-
work is based on learning a manifold representation of possible trajectories, from a
set of example trajectories that are generated by a (computationally expensive) pro-
cess of optimization. We show that these examples can be utilized to learn a man-
ifold on which all feasible trajectories corresponding to a skill are the geodesics.
This manifold is learned by inferring the local tangent spaces from data. Our main
result is that this process allows us to define a flexible and computationally efficient
motion generation procedure that comes close to the much more expensive compu-
tational optimization procedure in terms of accuracy while taking a small fraction
of the time to perform a similar computation.

1 Introduction

Humanoid robots provide a flexible platform for a variety of tasks including rough
terrain locomotion and dexterous manipulation. Typically, this flexibility also carries
the burden of increased complexity that adversely impacts the practical usability of
such systems. For example, if a humanoid robot were tasked with locomotion on an
uneven terrain - requiring the ability to continually vary foot placement positions in
response to external events, it is hard to define a suitable motion generation strategy
for two reasons. Firstly, ensuring that the motion satisfies all requirements ranging
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from high-level planning goals to intermediate stability constraints and lower level
actuator of joint constraints is a hard computational problem. Even if we had the
computational resources, it can be hard to actually specify all of these requirements
in a well posed analytical formulation. One way to approach such problems is by
learning from demonstration trajectories. Here, the problem is to infer the continuum
of trajectories in the solution space corresponding to a specific skill from a sparse
set of demonstrated solutions. Additionally, we must represent this set in a way
that allows generation of new motions, directed to previously unseen goals, that are
consistent with prior experience.

While there are a number of different state of the art techniques for learning
by demonstration algorithms, they all share some weaknesses with respect to this
specific goal. Many existing methods focus on reproduction of patterns of movement
for an end effector [1], without direct consideration of joint-space motion either to
address constraints or exploit additional flexibility, or they focus on tasks where it is
acceptable to define independent joint-level trajectories that can be simultaneously
used in parallel [5]. While these are good for, say, reproducing human motions, they
may not be well suited to the needs of a flexible motion generator in an autonomous
system that must be deployed in a continually changing world.

Our approach represents each skill as a manifold that is embedded in the robot’s
joint space. This manifold represents the set of all possible solutions to a skill and
it is inferred from a few example solutions to corresponding optimization problems
(or, if available, human demonstrations). When presented with a planning query we
can generate a path that is within this set, generated by computing the geodesic path
over the manifold.

In this paper, in order to illustrate the behaviour of the algorithm, we utilize ex-
ample trajectories that are obtained from a computational method which involves
numerical optimization. These solutions are computationally expensive and not fea-
sible for online operation. However, they can serve the same role as demonstration
data. With this, we have a clear idea of the specific properties of each task being con-
sidered, and a measure of algorithm performance against reasonable ‘ground truth’.

2 Learning for Motion Synthesis

In the usual formulation, manifold learning is aimed at finding an embedding or
‘unrolling’ of a nonlinear manifold onto a lower dimensional space while preserv-
ing metric properties such as inter-point distances. Popular examples include MDS
[3], LLE [7] and ISOMAP [8]. However, much of this work has been focused on
summarization, visualization or analysis that explains some aspect of the observed
data.

On the other hand, we are interested in preserving properties of trajectories in
the data set. So, formally our goal is to learn a model of the tangent space of the
low-dimensional nonlinear manifold, conditioned on the adjacency relations of the
high dimensional data. Such a learnt manifold model can then be used to compute
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geodesic distances, to find projections of points on the manifold and to directly gen-
erate geodesic paths between points.

2.1 Learning the Manifold

Our nonlinear manifold learning algorithm is based on Locally Smooth Manifold
Learning by Dollar et al. [2], which we have adapted with robot motion specific
issues in mind. In particular we have replaced the neighbourhood graph creation
process with a procedure that considers task space distances as well as ensuring that
temporal neighbourhood relations along the demonstrated trajectories are respected,
similar to the procedure used in ST-ISOMAP [6].

Given that our D-dimensional data lies on a locally smooth d-dimensional mani-
fold in D-dimensional space, where d < D, there exists a continuous bijective map-
ping M that converts low dimensional points y ∈ R

d from the manifold, to points
x ∈ R

D of the high dimensional space, x = M (y). The goal is to learn a mapping
from a point on the manifold to its tangent basis H (x),

H : x ∈ R
D �→

[
∂

∂y1
M (y) · · · ∂

∂yd
M (y)

]
∈R

D×d

where each column of H (x) is a basis vector of the tangent space of the manifold
at y, i.e. the partial derivative of M with respect to y.

We then learn a model of the mapping with parametrization θ , i.e. Hθ , based
on the generalized neighbourhood relations of the data, N, and the centred estimate
of the directional derivative between two neighbours, Δ i

. j. The model is trained by
minimizing the error function:

err(θ ) = min
{ε i j} ∑

i, j∈Ni

∥∥Hθ (x̄
i j)ε i j−Δ i

. j

∥∥2

2
,

where ε i j is an unknown alignment factor and Ni is the set of neighbours of xi.
Solving for the bases and their alignment simultaneously is complex, but if either

one is kept constant, solving for the remaining variables becomes a tractable least
squares problem. Optimizing the model requires alternating between these two least
squares problems, until a local minima has been reached. Typically more than one
random restart is performed to avoid local minima [4].

2.2 Optimal Geodesic Paths

By approximating the tangent space of the manifold, we gain access to a variety of
geometric operations. Central to our robotics aims is the ability to compute geodesic
paths; paths that lie on the low dimensional manifold. In this spirit, we now change
our notation of points from x to q, to denote poses a robot can achieve in a config-
uration space.
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Fig. 1 Learning the optimality manifold of a 3-link arm. (a) The planar task space of the
arm and subsampled points (blue) used for leaning. (b) The neighbourhood graph used for
learning a manifold. (c) The optimality manifold that we wish to learn. Light gray points
are not used for learning but are plotted to give a better estimate of the geometry of the
manifold. Note that the manifold is not planar but twist and turns as we move down the q3
axis. (d) The learnt tangent space model. Blue and green arrows are basis vectors evaluated
at points that correspond to the original grid.

Our goal is to find the shortest path between two specified poses qstart and
qend ∈ R

D, D being the dimensionality of the configuration space, that respects the
geometry of the learnt manifold. In a robotics context, being on the manifold es-
sentially means that the constraints (e.g., optimality w.r.t. a particular task-specific
cost) inherent in the training data are satisfied. In practice, we discretize our path
into a set of n via points, q = qstart , . . . ,qend , with qstart and qend being fixed, and we
follow a combination of gradient descent steps to minimize the length of the path
while not leaving the support of the manifold.

We first initialize a path by linearly interpolating between qstart and qend , while
following the geometry of the manifold, until the distance between consecutive
points is acceptable. With the learnt tangent space we iteratively compute a mini-
mum energy solution that makes qis “stick” to the manifold and minimizes the length
of the path without leaving the support of the manifold. The former is accomplished
by following the orthonormal (to the manifold) component of the gradient of

errM (q) = min
{ε i j} ∑

i, j∈Ni

∥∥Hθ (q̄
i j)ε i j− (qi− q j)

∥∥2
2 ,

and the latter by following the parallel (to the manifold) component of

errlength(q) =
n

∑
i=2

∥∥qi− qi−1
∥∥2

2 ,

while keeping the endpoints fixed.
The next sections present two examples of our method. The main thrust of our

argument here is that the manifold representation provides a concise encoding of all
motions corresponding to a skill. This encoding is equivalent to a computationally
more expensive optimization process, but requires a fraction of the computational
effort. We demonstrate this by first presenting a 3-dim motion problem, where the
manifold can be easily visualized and the algorithm intuitively understood. Then,
we show a more complex example involving a humanoid robot.
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3 Experiments on a Robotic Arm

The planar 3-link arm is a series of three rigid links of unit length that are coupled
with hinge joints, producing a redundant system with 3 degrees of freedom that is
constrained to move on a 2 dimensional plane (task space).

The skill that we learn in this setting is the set of all solutions to a specific re-
dundancy resolution scheme. Here, we choose the joint space configuration, q, that
minimizes the distance to a convenience (robot default or minimum strain) pose, qc.
Formally, min‖q−qc‖2 , subject to f (q)−x= 0,where f is the forward kinematics
and x is the goal endpoint position on the plane. The points trace a smooth nonlin-
ear manifold in joint space (Fig. 1(c)). Note that the manifold is not planar but lies
on a convex strip that twists clockwise and tightens as we travel down the q3 axis.
Also, different redundancy resolution strategies would produce different optimality
manifolds. In general, this kind of information may not be explicitly known (in the
case of human demonstration) or visualizable for more complex problems.

We collect data (joint space points) from a grid in task space and subsample 100
points as our training set (Fig. 1(a)). We compute the neighbourhood graph from
the task space distances and learn a model of Hθ with 10 RBF’s and 100 points, the
blue points in Fig. 1(c). We can subsequently evaluate Hθ at any point in our joint
space. Fig. 1(d) shows the tangent bases evaluated at every point of the previously
generated grid. Note that the basis vectors are aligned and vary smoothly, i.e. we
obtain a good generalization within the region of support of the data.

3.1 Evaluation

We evaluate the accuracy of the approximation that the learnt manifold provides
in two generalization settings. One measures the interpolation ability, where we
compare against ground truth data within the region of support of the training data,
and the second demonstrates the extrapolation ability, where we compare what our
model generates outside the region of support of the training data. We also record
the time needed to produce the trajectories. In both cases we compare 50 trajec-
tories with random start and end points that are produced with geodesic paths on
the learnt manifold, against what the numerical optimization produces for the same
goals. Samples of such paths for both generalization cases are depicted in Fig. 2(a)
and (b) (grid points in light gray for comparison).

We compute the RMSE, for each trial and for each case, between ground truth and
prediction of model, for a total of 10 trials. The averaged errors are depicted in Fig.
2(c). Note that the RMSE axis is in log-scale while the difference of the two bars is of
2 orders of magnitude. To be precise, the average RMSE for paths generated within
the region of support of the data is 1.8935×10−4±3.6013×10−5 (practically zero),
while beyond the support of the data the average RMSE is 6.84×10−2±2.19×10−2.
In addition, computing the optimal geodesic paths takes less time on average (Fig.
2(d) in both cases).
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Fig. 2 Results of the 3-link arm experiments. Novel task space trajectories produced with
random start and end points where (a) demonstrates generalization within the region of sup-
port of the data, while (b) demonstrates generalization beyond the region of support of the
training data. (c) RMSE error of generated trajectories against ground truth for the two cases.
In the interpolation scenario the error is practically zero (y axis in log-scale). (d) Absolute
planning time for the two cases. Note that in the interpolation case the length of the paths
is consistently low.

4 Experiments on a Humanoid Robot

To demonstrate the scalability of our approach we also present an example involv-
ing a humanoid robot platform. We use the KHR-1HV (Fig. 3(a)), that stands ap-
proximately 35cm tall and has 19 DoFs. We focus on the task of walking, with
the aim of learning the manifold of quasi-static stepping trajectories for random
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Fig. 3 The KHR-1HV humanoid robot used, (d) skeleton model and (a) physical robot. Task
space representation of the training data through forward kinematics. Random start and end
point leg swing trajectories of the left (b) and right (c) legs. (e) and (f) the neighbourhood
graphs that result from the task space distances between demonstrated data (units in cm).
This provides the task-specific distance metric for the high dimensional joint-space. Note
that depicted here are only feet midpoint positions while the datasets consist of the joint
space points that are 19-dimensional.
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Fig. 4 Experimental results with the humanoid robot. Random start and end point trajectories
for left (b) and right (b) leg swings that have been generated from our learnt manifold,
via geodesic path optimization (units in cm). (c) RMSE (degrees) of generated data against
ground truth. (d) absolute time needed for planning and optimization with our method and
the nonlinear optimization method (y axis in log-scale) described in the text.

foothold placements, within a reasonably large step interval. We generate data with
an unconstrained nonlinear optimization method that uses a hand-crafted cost func-
tion. Formally, the optimization problem is of the form minq J (q), subject to f (q)−
x = 0, where J is the cost function, f is the forward kinematics and x is a goal
task space position. The cost function is a mixture of task constraints and stability
constraints.

We collected 20 full body joint space trajectories where start and goal points of
every step have been randomized within a reasonable reaching distance (Fig. 3(b)
and 3(c)). We separated each footstep to a swing phase and a weight shift phase. This
way we divided the learning into two components, leg swing manifold and support
weight shift manifold, as the measure of optimality is essentially different for each
phase. We compute a neighbourhood graph (Fig 3(f) and 3(e)) and learn a manifold
for each stepping phase. We set the dimensionality of the manifolds to be 3, being
the simplest model that yields a low error.

4.1 Evaluation

The learnt manifolds are able to produce smooth walking trajectories that satisfy
the optimization criteria used to produce the training data. Specifically, the average
RMSE (degrees) of the leg swing manifold for the ground truth was as low as 0.12
while the average RMSE of the weight shift manifold ranged on average near 0.06
(Fig. 4(c)). This implies that the geometry of the step manifold is more complex
and some of its features might be smoothed over by the RBF model. Nonetheless the
procedure was able to produce stable walking in the continuum of the reaching space
of the robot as depicted in Fig. 4(a) and 4(b) for right and left swings accordingly.

The absolute time needed to generate an optimal geodesic path on the pair of
manifolds (swing leg and weight shift) from random start to random end points was
approximately 1.5552± 0.4785 seconds (in a standard, not particularly fine-tuned,
numerical implementation of the algorithm) whereas generating a trajectory with
the optimization procedure required approximately two minutes on average, an ap-
proximately 98% increase in speed. This is a significant decrease in absolute plan-
ning time, which makes it possible to deploy this algorithm in realistic application
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Fig. 5 Random walk generated by geodesic path optimization on the learnt manifolds for
randomized task-space footholds and stills of the robot executing the planned motion

scenarios (e.g. RoboCup). A randomized walk sequence entirely generated with our
method is depicted in Fig. 5, where foothold positions have been randomly gener-
ated and are previously unseen.

5 Conclusions and Future Work

We have demonstrated how a manifold representation can capture the flexibility re-
quired of a motion generation scheme operating in a continually changing environ-
ment. As used here, we have a computationally efficient procedure that can recover
all of the solutions of a more expensive computational optimization procedure while
also allowing for learning from data - where all requirements may not be easy to
encode in an analytical framework. This work adds to the literature on learning by
demonstration by addressing the cases where the task is more complex than sim-
ply reproducing specific task space trajectories and involves further kinodynamic
requirements in the joint space, etc. We demonstrate this using a couple of robotics
examples - a 3-link arm, where the results are easy to visualize, and a humanoid
robot, where the stepping task is intuitively understood. Our long term goal is to
utilize this procedure as part of a larger system that would be able to learn, plan and
execute motions robustly and in real time.
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Online CPG-Based Gait Monitoring and Optimal
Control of the Ankle Joint for Assisted Walking in
Hemiplegic Subjects

Rodolphe Héliot, Katja Mombaur, and Christine Azevedo-Coste

Abstract. The paper introduces an approach to the FES-assisted correction of the
drop-foot syndrome in post-stroke hemiplegic patients. The approach is based on a
two stage architecture. One stage is dedicated to the online estimation of high-level
gait information and the second to the generation of optimal ankle joint trajectories
for walking assistance. The general gait information is obtained through the obser-
vation of one limb based on a central pattern generator model generating rhythmic
trajectories which auto-adapt to real-measurements. This allows us to obtain infor-
mation about the execution of the walking cycle. Optimal control is used to generate
ankle joint dorsi-flexion trajectories during the swing phase of the corresponding
deficient leg based on a muscle model and on the information provided by the first
stage and some estimated or measured information about the controlled leg. This al-
lows us to minimize a criteria linked to muscle activation, excitation or fatigue while
satisfying constraints such as ground clearance, instead of just mimicking a priori
chosen foot ankle trajectories which may be suboptimal. The strategy is validated
in simulation using experimental data recorded in one healthy subject.

1 Introduction

Hemiplegia is a condition where one side of the body is paretic or paralyzed; it is
usually the consequence of a cerebro-vascular accident (CVA). Many survivors to
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stroke recover a large amount of function by the natural neurological recovery occur-
ring in the months following stroke. Nevertheless, a persistent, long term disability
remains in approximatively 10 to 20% of these patients: the drop foot (DF) syn-
drome [18]. DF typically involves an inability to dorsiflex the foot during the swing
phase of gait. The conventional approach to address this problem is the prescription
of an ankle-foot orthosis (AFO). The most commonly used AFO in drop foot is con-
structed of polypropylene and inserted into a shoe, it provides rigid immobilization
and impedes bearing of the foot when walking. The application of surface electrical
stimulation (ES) to correct drop foot was initially proposed in 1961; ES is usually
applied to the common peroneal nerve inducing an activation of the tibialis anterior
(TA) muscle responsible for foot dorsiflexion ; most of the existing systems use a
footswitch to synchronize the application of ES with the swing phase [16].

The use of functional electrical stimulation (FES) for the correction of hemiplegic
drop foot is well established [7]. The method classically used in most DFS can be
described as using a pre-programmed trapezoidal ES envelope so that ES intensity
(or pulse width) is linearly ramped up to its maximum value from heel-off. ES inten-
sity (or pulse width) is then kept constant until heel-strike, when it is ramped down
to zero. One major issue with existing DFS is that the TA muscle activation is quite
different from the one occurring naturally in healthy gait. In normal walking, TA
presents two phases of activity: 1) the first phase of TA activity occurs at toe-off,
contraction of TA results in foot-lift to provide foot clearance during swing, 2) this
phase is followed by a more intense activity phase at loading response, when the TA
is contracted to provide with braking action at heel strike [28, 19]. Another lack of
usual DFS systems is the absence of adaptability of the stimulation patterns to cope
with frequent gait modifications (rhythm, step length, stairs, muscle fatigue...). Dis-
crete events extracted from footswitches or tilt sensors as proposed in commercial
devices [25, 7] are not able to provide with sufficient information to continuously
modify the stimulation pattern if needed.

Some authors have worked on the dynamic adjustment of the stimulus envelope in
order to mimic natural TA contraction. Results have shown an increased dorsiflexion
and a reduced delivered stimulation charge, which could diminish fatigue and lower
power consumption [19]. However, this was obtained by positioning several sensors
and bulky equipment, leading to poor acceptance by patients. Different approaches
have been proposed to replace footswitches by more powerful sensors in order to
distinguish between different phases of the gait cycle but they involve several sensors
[26, 27, 20, 14, 13, 8] or are used for detection event mainly [9, 24]. Thus, designing
an adaptive control system that will provide a patient-specific walking pattern with
an easy-to-use device remains an open question.

In this paper, we address the drop foot correction problem by optimizing mus-
cle activation in order to achieve a desired motion based on the observation of the
movements of the valid leg. The controller only requires a single, small, attitude
sensor. The walking cycle is monitored thanks to a model-based observer, based on
a nonlinear oscillator that mimics natural Central Pattern Generator (CPG) control
(section 2.1). High-level gait information is extracted online, that is used as input
(see figure 1) to an optimization routine that derives in real-time adapted stimulation
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patterns (section 2.2.2). Using a muscle model described in section 2.2.1, the opti-
mization aims at reducing as much as possible muscle fatigue, while guaranteeing
foot clearance over the ground. Preliminary simulation results are presented for gait
cycle online monitoring and for optimal control aspects based on real experimental
data.

2 Methods

We propose to use a “teleoperation” scheme (see figure 1) for rehabilitation applica-
tions, where the healthy parts of the body could be used to control the deficient limbs.
For example, considering a hemiplegic patient, one could generate a trajectory for
the deficient leg based on the movements of the healthy leg [2]. The deficient leg can
then be controlled using FES [22, 10, 4]. Similarly controlling a prosthetic leg in an
amputee person could be possible. We have already demonstrated the feasibility of
generating cyclic patterns for one leg observing the contralateral leg [11, 3].

In this scheme, a movement observer continuously estimates gait high-level vari-
ables, such as gait phase and joint positions. These online estimations can then be
used to generate a desired joint trajectory; tracking this trajectory through FES raises
a non-trivial technical issue: one needs to invert the musculo-skeletelal model of the
patient to derive from the desired joints trajectory the Electrical Stimulation com-
mands. Practically, this model inversion has to be done through optimal control. In-
deed, due to the redundancy and non-linearity of musculo-skeletelal models, classic
PID controllers cannot be used to compute the commands. With optimal control
one can take into account further constraints such as generating joint trajectories
that are adapted to deficient limbs, for example taking into account muscle fatigue,
stimulation efforts, ... Whatever the optimization criterions and constraints, the op-
timal control procedure has to run online. Hence there is a need for fast, efficient
optimization routines.

This methods section will naturally be divided into two parts: we first describe
the online estimation of high-level gait information using a sensor-modulated con-
troller (Fig.1), and we then present the optimal control techniques that are required
to compute muscle stimulations.

Fig. 1 Control architecture: high-level control variables are generated by the CPG; com-
mands are then derived according to a model through optimal control
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2.1 Online Estimation of High-Level Gait Information

A classical way of generating cyclic motion patterns for articulated systems is to
synthesize a rhythm generator, mimicking the biological Central Pattern Generator
(CPG) principles [23]. CPGs can generate trajectories either based on their intrinsic
rhythm, or based on external inputs. As an example, it is possible to synchronize
the walking movement of a biped robot with the leg motion of a human wearing a
movement sensor [12]. In this type of applications, the CPG, modeled through an
oscillator network, generates coordinated joint trajectories, which are then tracked
through a low-level controller such as a PID corrector. In the following, we describe
a method that allows to estimate online gait-related variables with a CPG that is syn-
chronized with an external sensor. That method will then be used in the teleoperation
scheme described above.

2.1.1 Framework

The basic assumption in the proposed approach is that considered motions (walking)
reflect a cyclical or periodic activity: this means that all involved signals (sensor
outputs, control variables, . . . ) can be described along a cycle. In order to assign to
these variables a kind of relative position in the cycle, the phase ϕ can be introduced
as a coordinate along the limit cycle [21], i.e as a variable which grows uniformly
in the direction of the motion and gains 2π during each rotation, thus obeying the
equation:

dϕ
dt

= ω0 (1)

where ω0 = 2π/T0 is the frequency of the oscillations.
It is possible to extend the definition of the phase to the vicinity of the limit cycle,

demanding that the phase be constant on each isochrone. In this way, phase can be
defined in the neighborhood of the limit cycle.

The goal of the following method is to estimate the phase of an observed signal
(sensor input). To this aim, we build an oscillator that synchronizes with the sensory
input, and estimates the oscillator phase.

2.1.2 Our Approach

To guarantee that the CPG we design will actually be synchronized on its input,
we propose the following two-steps method (Fig. 2). It is based on observer theory
[17], that provides mathematical tools to derive convergence and synchronization
properties of the system:

1. build a system that models the sensor measurements
2. build an observer of this system, in which are injected the on going sensor

measurements
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Fig. 2 Schematics of the method

Since we are interested in a cyclic movement (human gait), we chose to use a non-
linear oscillator as the model for our sensor measurement. This approach, using an
observer of a non-linear oscillator, presents as major advantage: the behavior of the
observer can be proved to converge towards the given cyclic input. The synchro-
nization is therefore ensured, and so is the observation of the phase φ .

2.1.3 Non-linear Oscillator Model

Let us now consider the modeling under the form of an oscillator of the time evolu-
tion of the thigh inclination in standard human gait. From a mechanical point of view,
the motion of the human body restricted to a tree-form kinematic structure with vari-
able unilateral ground contacts can be modeled using a Newton-Euler or Lagrangian
approach, leading to a nonlinear second order system. From a biomechanical point
of view, the standard steady-state human walking corresponds to minimal metabolic
energy consumption and is naturally attained after some transient steps. All these
facts are reflected at the joint level, therefore in the thigh angle itself and its mea-
surement. It finally appears that searching for an oscillator of second-order type and
exhibiting a limit cycle is a natural way of modeling the steady-state behavior of a
human leg link measured with an adequate sensor.

As detailed in [12], we have therefore chosen a Van der Pol equation as a model
of the system, the damping term of which has been modified to take into account
asymmetrical patterns:

ẍ− μ(1− bx− x2)ẋ+ω2
0 x = 0 (2)

2.1.4 Observer Design

The modified van der Pol equation (2) can be rewritten as:

Σ :

⎧
⎨
⎩

ẋ1 = x2

ẋ2 = μ(1− bx1− x2
1)x2−ω2

0 x1

y = x1

(3)
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Once the three parameters of the oscillator are identified through an optimization
procedure that gives the best fitting of the oscillator limit cycle with respect to a set
of recorded measurements, a dedicated nonlinear observer can be built under the
form:

Σ
′
:

⎧
⎨
⎩

ż = −z + (k1 − ω2
0 )y + k2y2 + k3y3

x̂1 = y
x̂2 = z− k1y − k2y2 − k3y3

(4)

where the ki coefficients depend on the oscillator parameters and y is the current
sensor output (all technical developments can be found in [12]). By injecting the
measurement y as an input to the observer, we thus get estimates x̂1 and x̂2 of x1 and
x2, respectively.

2.1.5 Phase Estimation through Isochrones

From the estimates x̂1 and x̂2, and since this observer is itself an oscillator, its phase
can be computed from its state variables even if the estimated state does not belong
exactly to the limit cycle, thanks to isochrones (see section 2.1.1). We thus get a
mapping from the phase space to the phase variable : ϕ = I(x), as shown in Fig. 3.
This phase variable can later be used as a high-level variable for control purposes
(see Fig. 1), as it contains all information relative to speed and position within the
gait cycle. An important remark has to be made here: the strong synchronization of
the observer with the given input signal is guaranteed: thanks to observer theory,
it can be assessed that the behavior of the observer will asymptotically match the
behavior of the observed system. In practice, the convergence time of the observer
is extremely short with respect to the period of the motion, which means that the
filtering that is performed is phase-shift free.

Fig. 3 Computation flow of the phase estimator

2.2 An Optimal Control-Based Approach to Generate Foot
Trajectories

Optimal control techniques can serve to generate optimal trajectories for the foot
taking into account the dynamics of the system and other constraints to be satis-
fied during the motion. The goal of the optimization problem can be either to track
a prescribed trajectory e.g. to mimic another systems behavior, or - which is in
most cases more desirable - optimize a criterion linked to the properties of the sys-
tem itself. Optimal control problems can be solved off-line to determine the overall
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optimal solution in advance, or on-line considering sensory information about the
state of the system and re-optimizing in regular time steps. In this section we de-
scribe first the dynamical model of the lower leg to be optimized in this study, before
we briefly outline the formulation and solution of the optimal control problem.

2.2.1 Dynamical Model of the Lower Leg with the Tibialis Anterior Muscle

In order to address the drop-foot correction problem by an optimal control approach,
we need a dynamical model of the lower leg including the dynamics of the force
generation in the tibialis anterior (TA) muscle as well as its activation dynamics. We
are interested to describe the angular motion of the foot αF during the swing phase
of a walking step under the action of the TA. These equations of motion also depend
on the position histories of the ankle xA, yA, or - more precisely - the corresponding
accelerations ax,A, ay,A and the shank orientation αS and angular velocity ωS. The
foot angle αF is defined to be zero when the foot is horizontal, and the shank angle
αS is zero when the shank is vertical. The dynamics of the foot angle are formulated
as

α̇F = ωF (5)

ω̇F = (TTA +Tgrav+mFcF(ax,A sinαF − az,A cosαF)) (ΘF +mFc2
F)
−1 (6)

with the torque generated by gravity

Tgrav =−cF cos(αF )mF g. (7)

Here mF denotes the mass of the foot and cF its center of mass location with respect
to the ankle. The torque generated by the TA is

TTA = FTA ·d (8)

where d = 0.037 is the lever arm of the TA at the ankle and FTA the muscle force
which is computed using an appropriate muscle model. The muscle model used in
the present version of this study is essentially the model established by van den
Bogert and Ackermann described in [1, 6] with the exception that we assume here
a constant tendon length.

As in most Hill-type models, the muscle is modeled as a combination of a con-
tractile element, a parallel elastic and a parallel damping element FTA = FCE +FPE +
FPD.

The force in the contractile element is generally computed as the product of the
maximum isometric force Fiso,max and three independent factors fad , ftl and f f v (the
activation level, the force-length factor, and the force-velocity factor):

FCE = Fiso,max fad ftl f f v (9)

The activation level fad (with 0≤ fad ≤ 1) is determined by the activation dynamics
of the muscle



60 R. Héliot, K. Mombaur, and C. Azevedo-Coste

ḟad = (ε− fad)(
ε

Tact
− 1.0− ε

Tdeact
) (10)

where ε is the muscle excitation (with 0 ≤ ε ≤ 1) which we take to be the entry
or control variable of this model, and Tact = 0.04s and Tdeact = 0.04s are the time
constants for activation and deactivation, respectively.

The length of the muscle-tendon complex for the TA is assumed to depend lin-
early on the joint angle

lMT = lMT,0− dankleφ (11)

with rest length lMT,0 = 0.381 and the current relative angle at the foot φ := αS−αF

(i.e. φ is zero when there is a right angle at the ankle). The tendon length is assumed
to be constant lT = 0.317, and the length of the contractile element follows directly
from

lCE = lMT − lT ; (12)

and therefore the contraction speed of the muscle can be computed as

vCE =−dankleφ̇ . (13)

The force-length factor f f l takes into account the fact that the force generated by
muscles depends on the current length of the contractile element lCE

f f l = e
−
(

lCE−lCE,opt
WlCE,opt

)2

(14)

where lCE,opt = 0.082 is the fiber length at which optimum force can be generated,
and W = 0.56 is called the width parameter describing the overlapping of filaments
in the sarcomer.

The force-velocity factor f f v models the dependency of the muscle force on the
contraction speed of the muscle which can be described by two hyperbolic relation-
ships:

f f v =
gmaxvCE + c

vCE + c
if vCE > 0 (extension) (15)

f f v =
λ vmax + c

λ vmax− vCE/A
else (contraction). (16)

where gmax = 10/,LCE,opt = 0.82 is the normalized maximum force during exten-
sion and A = 0.25. The parameter λ takes into account that the activation level
changes the maximum contraction speed

λ ( fad) = 1− e−3.82 fad + fade(− 3.82). (17)

The factor c is introduced to produce continuous first derivatives at vCE = 0 and is
computed as follows:

c =
λ vmaxA(gmax− 1)

A+ 1
. (18)
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The force in the parallel elastic element is computed as

FPE = k1(lCE − lslack,PE) if lCE ≤ lslack,PE (19)

FPE = k1(lCE − lslack,PE)+ k2,PE(lCE − lslack,PE)
2 else. (20)

while the force in the parallel damping element results from

FDE = bvCE (21)

where b is chosen as b = 0.001Fiso,max/lCE,opt .
The above equations of motion require information about the motion of the an-

kle and the shank as an input, and it is assumed for our model this information is
available from measurements. One possibility would be to directly substitute these
measurement results into equations (5) and (6), but this is difficult since 2nd order
derivatives of the actual measurements are required. We therefore prefer to keep
these variables as state variables in the problem, and formulate the corresponding
trivial dynamic relationships as additional equations of motions:

ẋA = vx,A (22)

v̇x,A = ax,A (23)

żA = vz,A (24)

v̇z,A = az,A (25)

α̇S = ωS (26)

Corresponding terms in the objective function will then enforce that the measure-
ments are well approximated (see the next section).

The variables used in this model can now be summarized as vectors of state vari-
ables zT = ( fad ,αF ,ωF ,xA,vx,A,zA,vz,A,αS) as well as a vector of control variables
uT = (ε,ax,A,az,A,ωS).

2.2.2 Optimal Control Problem Formulation and Solution

The aim of our approach is to determine the best possible motion (according to a
criterion to be specified) for the musculo-skeletal model of the lower leg. The idea
is that for an artificially stimulated TA muscle of a hemiplegic patient it may not
be desirable to just mimic the normal stimulation pattern of a healthy patient with a
normal gait or to aim at following the motion of a healthy swing foot. In the next sec-
tion, we show that in the investigated case it is even impossible to exactly reproduce
a healthy motion by only stimulating the TA.

One problem is that gaits of hemiplegic patients are not symmetric and that the
motions of the shank and the ankle do not follow normal trajectories such that also
for the foot ankle a non-normal trajectory might be optimal or even necessary to
avoid foot scuffing. The choice of the right cost function is still subject of discus-
sion, but in this study we evaluate different objective functions related to the energy
consumption and fatigue in the stimulated muscle.
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The goal of our ongoing research is to solve the optimal control problem online,
either optimizing each swing phase prior to its start, based on information of the
previous step and the initial conditions, or using predictive control to introduce cor-
rections even during the swing phase based on measurements of the ankle and shank
trajectories. It is important to note here that feasibility of this approach is linked to
the type of measurements which will be practically accessible. Indeed, the number
and volume of embedded sensors will be limited in an everyday use of the system.

As a start, we here investigate the use of optimal control as an off-line problem
coping with pre-scribed trajectories for the shank angle and the ankle position, and
optimizing the relative motion of the foot. For the time being, we also just concen-
trate on the swing phase, but the same approach could be used for the full step.

The optimal control problem to be solved has the following general formulation
with the state variables x and control variables u listed at the end of the previous
section:

min
T,x,u

∫ T

0
φ(x(t),u(t))dt (27)

s. t. ẋ(t) = f (t,x(t),u(t)) (28)

z(0) = x0, x(T ) = xe (29)

r(t,x(t),u(t))≥ 0 (30)

The total time T of the trajectory (which here is the time of the swing phase) can
be either fixed or free in the computations. The objective function φ(x(t),u(t))is a
weighted sum of different components:

• a minimization of the criterion chosen for the foot motion which can be either

– related to the energy consumed, such as a minimization of TA activation
squared: min

∫ T
0 f 2

addt
– related to the fatigue of the muscle, such as a minimization of the third power

of the activation [1]: min
∫ T

0 f 3
addt

– criteria related to the muscle excitation ε , e.g. min
∫ T

0 ε2dt
– a minimization of the distance to a reference trajectory for a subset of state

variables x′ (for comparison purposes) min∑N
i=1(x

′(ti)− x′re f (ti))
2

• a minimization of the distance to the prescribed trajectories for xA, zA and αS.

Eqn. (28) is a placeholder for the dynamic equations described above in section
2.2.1. Eqn. 29 describes the initial and final conditions for the trajectory, in this
case the position variables at the beginning and end of the swing phase which are
here fixed to reference values. () denotes inequality constraints to be satisfied by
the motion, such as upper and lower bounds on all optimization variables or more
complex constraints, in this case e.g. a clearance of the swing foot. If a whole step
(including not only single support but also double support) was to be treated by
this optimal control approach, problem (27) -(2.2.2) would have to be replaced by
the corresponding multi-phase formulation considering different dynamics and con-
straints and potentially different objective functions in each phase of motion. In the
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optimal control framework used, this extension is easily feasible and will be done
in a later publication.

For the solution of the optimal control problem we use the powerful optimal con-
trol code MUSCOD developed at Heidelberg University [5, 15] which is based on a
direct multiple shooting method. There also is a real time model predictive control
version of this code which will be used in a later phase of this project.

3 Results

3.1 Phase Estimation

To validate our method, we have analyzed the walking gait of one healthy subject.
An ELITE (BTS) motion capture system was used to track passive reflective markers
placed on subject anatomical landmarks. Ground efforts were also recorded using a
double force plate (AMTI BP600900). Data processing was performed using Smart
Analyzer software (BTS). We used shank inclination to compute the gait phase and
trigger the optimal control procedure. Based on this input (see Fig. 4, top) and fol-
lowing the method described in section 2.1, we first computed the gait cycle phase
(Fig. 4, middle). Based on this phase estimate, a trigger command is issued (Fig.
4, bottom): when a new stride begins (phase equals 0%), step duration is predicted

Fig. 4 Top left: Sensor input to phase estimation (shank inclination). Top right: estimated
movement phase (0−100%). Bottom: Trigger input featuring step duration prediction (dotted
red line), and comparison to ideal, a posteriori, estimation (blue line).
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based on the previous step duration. This duration is the time needed for the phase
variable to go from 0% (corresponding to heel strike, by definition) to the phase
value corresponding to toe-off. This value depends on the subject; it was here iden-
tified as 63% based on ground reaction force recordings.

3.2 Optimal Control Results

In this section, we present different results of the optimal control problem solution,
using different objective functions. In a first step, we wanted to explore if the model
of the lower foot as described above, with only the TA activated, is capable to re-
produce a measured foot motion. This is done by solving a least squares objective
function minimizing the distance between computed and measured solution. As fig-
ure 5 shows, even in the optimized case, there is still a considerable difference be-
tween computed and measured ankle angle trajectories, i.e. just the TA alone is not
capable to produce an exact fit. Apparently the ankle torque generated by gravity
alone is not enough to counteract the TA torque as much as needed for the reference
trajectory. We therefore have introduced, for the second part of our computations,
an antagonistic torque in the model. We have not included a full muscle model for

Fig. 5 Optimization results for a best possible approximation of the measured trajectory
(in the least squares sense) for the TA alone, without any antagonistic torque: Reference
and computed values for foot and shank angles (top), TA activation (bottom left) and TA
excitation (bottom right)
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the antagonist, but used directly the torque as a control variable, since the only pur-
pose of this test was to see if such an antagonistic torque was enough to achieve
an exact tracking of the reference trajectory. And indeed it was, as shown in figure
6. Mimicking healthy ankle joint motion therefore is possible if both agonist and
antagonist muscle groups are activated (fig.6). However, in the considered applica-
tion of using FES to treat the drop foot syndrome, only the TA muscle is electrically
stimulated and as we have seen above, this prevents to reproduce healthy individ-
ual ankle trajectories (fig.5). Walking training in post-stroke hemiplegic patients is
not aimed at obtaining a symmetric gait or reproducing an healthy individual gait.
The gait impairment is due both to a motion control deficiency and to physiological
deficiencies (weak muscles and spasticity for example). Trying to precisely track a
desired trajectory is not a solution, it would fatigue the muscle with in most of the
cases poor results.

Fig. 6 Optimization results for a best possible approximation of the measured trajectory (in
the least squares sense) for the TA combined with an antagonistic torque: Foot and shank
angles (top left), antagonistic torque (top right), TA activation (bottom left) and TA excitation
(bottom right)

So in the following computations, we were not interested in fitting computations
to the reference solution any more, but to determine optimal motions with respect
to the criteria listed above describing minimizing muscle effort and muscle fatigue.
All following computations are done without the antagonist muscle.

Ankle angle histories and muscle activations for all results discussed are given in
figure 7. We have first minimized the muscle activation squared. This is classical and
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Fig. 7 Optimization results for different objective functions and constrains: minimization of
activations squared (related to energy consumption) with time fixes to experimental time as
well as free time, and minimization of activations to the third power (related to fatigue) with
free time: Foot and shank angles (left) and muscle activation (right)

related to energy consumption minimization. The total swing phase duration in this
simulation is fixed to 0.3306sec which corresponds to the measured swing time. The
controller is able to generate a motion satisfying the ground clearance constraints
as well as start and end point constraints of the measured motion.

We have also compared the results for free swing phase duration from 0 up to 1s
(assuming 2s maximum total step time and 50% time spent in swing phase). Time
goes to upper bound for all results. Compared to the fixed time solution, muscle
activation is clearly diminished for similar amplitude of ankle angle trajectories.

Finally, we present results where we have run the simulations for a cost function
related to muscle fatigue, expressed by the third power of muscle activation. One
interesting observation is that muscle activation tends to become biphasic.

These illustrative results show that using different criteria it is possible to obtain
similar ankle trajectories with very different muscle solicitations. Furthermore the
trajectories can be adapted to online information measured with sensors placed on
the controlled leg together with general gait information obtained from the motion
observer (swing phase duration for instance).

4 Conclusion

We have proposed a control scheme for the FES control of the deficient ankle dorsi-
flexion of post-stroke hemiplegic subjects presenting a drop-foot syndrome. The ap-
proach is based on two stages: 1) a continuous estimation of the walking gait cycle
phase based on the observation of the valid leg behavior and 2) an optimal controller
which generates activation of the muscle responsible for ankle flexion. The phase
estimation algorithm has been validated in previous work. The main objective of the
present paper is to provide the electrical stimulator with adaptive functionalities. The
gait phase gives a rhythm information to the controller which, based on information
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concerning the deficient leg, optimizes the ankle angle in order to minimize energy
consumption while guaranteeing correct step execution during swing phase. Specific
attention has been paid at developing low computational cost methods to allow this
system to run in real-time. The presented simulation results validate the architec-
ture and show that it is possible to adapt muscle activations during walking in such
a way that muscle activations are minimized, thus reducing muscle fatigue. Results
show that when trying to optimize a proxy of muscular fatigue, the activation tends
to become biphasic like observed in healthy individual subjects.

In a real-life system, the patient will have to be equipped with one sensor on
his valid leg in order to compute the gait phase and two sensors on his deficient
limb in order to inform the controller about the actual shank inclination and ankle
position. Multiple studies have shown that small, wearable inertial sensors can be
used to retrieve such information. Once the controller will be available in embedded
hardware, we will have to investigate in clinical studies what is the best optimiza-
tion criterion to be used across multiple patients that both ensures a smooth gait
and preservation of muscle in terms of fatigue. Even though, fatigue modeling and
counteracting remain an open problem.
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about muscle modeling.
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15. Leineweber, D., Bauer, I., Bock, H., Schlöder, J.: An efficient multiple shooting based
reduced SQP strategy for large-scale dynamic process optimization. Part I: Theoretical
aspects. Computers and Chemical Engineering 27, 157–166 (2003)

16. Liberson, W.T., Holmquest, H.J., Scot, D., Dow, M.: Functional electrotherapy: stimula-
tion of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic
patients. Arch. Phys. Med. Rehabil. 42, 101–105 (1961)

17. Luenberger, D.: An introduction to observers. IEEE Trans. Automatic Control 16(6),
596–602 (1971)

18. Lyons, G., Sinkjaer, T., Burridge, J., Wilcox, D.: A review of portable fes-based neu-
ral orthoses for the correction of drop foot. IEEE Transactions on Neural Systems and
Rehabilitation Engineering (2002)

19. Lyons, G., Wilcox, D., Lyons, D., Hilton, D.: Evaluation of a drop foot stimulator fes
intensity envelope matched to tibialis anterior muscle activity during walking (2000)

20. Pappas, I., Keller, T., Mangold, S.: A reliable, gyroscope based gait phase detection
sensor embedded in a shoe insole. In: Proceedings of IEEE Sensors 2002. First IEEE
International Conference on Sensors, vol. 2, pp. 1085–1088 (2002)

21. Pikovsky, A., Rosenblumn, R., Kurths, J.: Synchronization, a universal concept in non-
linear sciences. Cambridge University Press (2001)
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The Combined Role of Motion-Related Cues and
Upper Body Posture for the Expression of
Emotions during Human Walking

Halim Hicheur, Hideki Kadone, Julie Grèzes, and Alain Berthoz

Abstract. The present study aimed at investigating how emotion affect the kinematic
aspect of human walking. The gaits of eight professional actors expressing differ-
ent types of emotions (neutral, joy, anger, sadness and fear) during walking were
recorded and analyzed in the sagittal plane. We show both step-related behavioural
changes (in terms of step length, speed,etc.) that are common to different emotions
and emotion-specific body configuration changes (mainly at the level of the upper
body posture) during emotional gaits. Since the overall speed of walking is another
major variant in walking, natural walking at different speeds were recorded in an-
other session for a control.

1 Introduction

Emotional body language (EBL) provides reliable cues to recognize emotions
even when viewed from distance and when facial expression is not visible. The few

Halim Hicheur
Laboratoire de Physiologie de la Perception et de l’Action, Collège de France, Paris, France.
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currently available studies show that EBL can readily be recognized whether in static
postures[18, 5], whole body movements[22, 1] or even simple dynamic point-light
displays[6, 4]. Moreover, the results from the few studies that have investigated the
neural basis of perceiving EBL underscore the significance of using stimuli consist-
ing of emotional expressions by the entire body as well as those including biological
movement[8, 5, 7, 12, 14] rather than using static facial expressions of emotions.

While these studies extended the question of the expression of emotions to the
whole body configurations in space, the kinematic properties of the emotional whole
body movement received little attention. In the case of arm movements, Pollick et
al.[13] showed that humans perceive particularly well different emotions conveyed
by different types of arm movements using kinematic cues like the peaks of wrist
velocities and acceleration. Atkinson and colleagues[1, 2] generalized these find-
ings to the case of body gestures and provided evidence for distinct contributions
of form-related and motion-related cues to the recognition of emotions from whole
body movements. Within the domain of locomotor behaviors, Troje[20] proposed a
computational approach for analyzing and synthesizing human gait patterns, used
for example to specify the kinematic properties of motion-related and configura-
tional cues during gender recognition.

Another approach based on independent components analysis was successfully
achieved in the case of emotional gaits[11]. In [15], an ICA method based on the
frequency domain was used to find the several basic patterns for each joint angle.
Variation of the coefficients of combination of these basic patterns for each emotion
was computed and applied for the analysis of emotion affect on these joint angle
patterns. They successfully replicated the conventional psychological results from
quantitative analysis. While these computational approaches can help to synthesize
artificial gaits, the control mechanisms underlying the implementation of emotional
gaits in humans remain unclear. Even if locomotion involves a considerable amount
of joints (and the associated muscles) for displacing the whole body, it was shown
that this complex behavior can be characterized by specific postural strategies both
for balance and trajectory control (the ”steering behavior”, see (Hicheur et al.[9])
for a review). A similar approach could therefore be implemented for the description
of the emotional locomotor behavior.

In the present study, kinematic aspect of emotional locomotion will be investi-
gated, based on a physiological viewpoint on the human locomotion control
system. Human locomotion controller is composed of involuntary tonic posture con-
trol mainly by the brain stem, rhythm control and stretch reflex by the spinal cord,
and voluntary precise limb control by the cortical systems[16]. Emotion may affect
some or all of these motion control systems. To clarify this point, we extracted fea-
tures of gait patterns corresponding to these controlled variables (arm movements,
step and rhythm related values, and upper body posture including head and trunk),
and compared their emotion dependence against speed dependence to examine the
implementation of the emotional gaits.

To this purpose, we recorded and analyzed the gaits produced by actors in five
emotional states (neutral NE, joy JO, anger AN, sadness SA and fear FE). Sec-
ond, the comparison between these emotional gaits with neutral gaits performed
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at different speeds by naive subjects (normal/natural speed NS, slow speed SS and
fast speed FS) allowed discriminating between speed-related changes and emotion-
specific changes (mainly at the level of the upper body posture) in the recorded emo-
tional gaits.

2 Methods

2.1 Experiment 1: Recording of the Emotional Gaits

Eight (four males and four females) healthy, well-experienced professional actors
were paid for their participation in the experiments. They gave informed consent
prior to inclusion in the study. Experiments conformed to the Declaration of Helsinki.
The age, height, weight and number of years of practice of the actors were equal to
26.0 ± 1.41 / 27.0 ± 2.71 years (men / women), 1.82 ± 8.12 / 1.63 ± 6.14 meters,
66.8 ± 7.8 / 58.5 ± 5.69 kilograms and 5.6 ± 1.11 / 6.5 ± 2.65 years respectively.
The actors had to walk straight ahead for about ten meters in all the experimen-
tal conditions. Five conditions (fear FE, sadness SA, anger AN or joy JO and the
control, neutral NE) were tested (see Figure 1 for an animated illustration of the
recorded emotional gaits) and subjects had to repeat at least five trials for each con-
dition. In the four conditions, subjects had to express an emotion (one of FE, SA,
AN and JO).

They were instructed to feel the emotion before starting to walk. It must thus be
emphasized that the recorded gaits were performed in a not-specified context except
for fear. Indeed, we observed in a preliminary experiment that some actors sponta-
neously run in the fear condition (”escape” behavior from some imagined fearful
entity). To prevent them from running, a scenario of ”walking forward in a dark and
dangerous room” was specified to actors exceptionally in this condition so that they
walk with a rather general feeling of fear without imaging specific entity at some
specific location. The actors orally reported that this instruction made the task eas-
ier. Thus, the emotions we investigated here are rather specific and a single emotion
(as for fear) can be expressed in different ways. Nevertheless, we wanted here to
examine how the emotional state (rather than the scenario) intrinsically affects the
locomotor behavior, independently of the strategies/scenarios used by the actors for
expressing a particular emotion.

2.2 Experiment 2: Recording of Neutral Gaits with Different
Walking Speeds

As Experiment 1 revealed that the different emotional gaits were characterized by
different walking speeds, the changes observed at the motor patterns level between
emotional gaits might be speed-specific rather than emotion-specific. To address this
issue, we designed a control experiment where we tested 5 naive subjects who were
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asked to walk straight ahead for ten meters, at different speeds (Low, Normal and
Fast - LS, NS and FS conditions, respectively). The age, height and weight of the
(male) subjects were equal to 27.4 ± 3.0 years, 1.81 ± 0.03 meters, and 73.4 ± 4.3
kilograms, respectively. Subjects performed 5 repetitions for each condition and a
total of 75 trials (5 subjects x 3 speeds x 5 repetitions) were recorded. The speed was
chosen by the subjects so that they could walk naturally according to the indicated
speed condition.

2.3 Motion Capture

Three-dimensional positions of light reflexive markers were recorded using an op-
toelectronic Vicon V8 motion capture system wired to 24 (16 in Experiment 2)
cameras at a 120 Hz sampling frequency. We used the Vicon Plug in Gait model
(VICON, Oxford Metrics Limited, Oxford, United Kingdom). Placement of the 3D
markers on the body was as follows: i) 4 markers were directly placed on light
glasses without lenses. The head markers were here placed differently from the
Plug in Gait model where the markers are supposed to be directly placed on the
head. The use of glasses allowed an easier control of markers placement across

NEUTRAL

JOY

ANGER

SADNESS

FEAR

Fig. 1 Animated illustration of an actor (obtained after motion capture) expressing emotion
during locomotion, corresponding to anger, fear, sadness, joy, and neutral. The illustration
was built by mapping marker positions to the animated character.
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subjects, without affecting the quality/accuracy of head markers data: forward and
backward markers were aligned with the head roll rotation (naso-occipital) axis for
left and right sides ii) left and right shoulder markers were located on left and right
acromions, respectively; iii) left and right elbow markers were located on left and
right lateral epicondyles (approximating the elbow joint axis) and left and right wrist
markers were located on the wrist, on the external face of the lower arm; iv) 4 mark-
ers were located on the pelvis: left and right front markers were placed respectively
on left and right anterior superior iliac spines while left and right back markers were
located on the left and right posterior iliac spines, respectively. v) left and right knee
markers were placed on the external side knee joints; vi) left and right ankle markers
were located on the lateral malleolus; vii) left and right toe markers were placed at
the top of the foot (subjects were allowed to wear shoes), between toes 2 and 3 (1
is for the big toe) viii) left and right heel markers were located at the heel (at the
same height as toe markers).

Three dimensional coordinate frame (XYZ) of the motion capture space was de-
fined so that the X-axis is aligned with the walking direction by connecting the start
and end points indicated on the floor and the Y-axis is directed leftward perpendicu-
lar to the X-axis, and the Z-axis is directed upward along the vertical. This definition
gives the laboratory coordinate frame.

2.4 Behavioral Variables

2.4.1 Step Events and Step Parameters

We used heel strike and toe off events for defining steps. These events were detected
in the time course of heel and toe Z position profiles. We considered one step as
the interval separating two successive heel strikes. In order to investigate how an
emotion affects the gait, different step parameters were calculated. The step speed,
duration and length were computed. In addition, the stance and swing phases of the
step cycles were discriminated using the toe-off events and the percentage of stance
duration (relatively to the whole step cycle) was computed. After the calculation
of these parameters, every kinematic pattern examined at the level of the step was
re-sampled to have the same number of points (n=100) for purpose of comparison
between the motor patterns generated by the subjects in the different conditions.

2.4.2 Speed-Related Effects of Emotional and Neutral Gaits

We extracted the walking speed from each step cycle of emotional and neutral gaits.
We also extracted the instants (in % of the step cycle) at which subjects shifted from
stance to swing as well as the magnitude of angular motion, the instant of maximal
peak occurrence and (for the head and trunk absolute angular movements) the mean
upper body orientation throughout the step cycle. We assessed the effects of the
walking speed on these global and local (joint or segment-related) gait changes in a
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2D space for the different joints. This was done for both the ”emotions” (FE, SA, NE,
JO and FE conditions) and ”speed” (LS, NS and FS conditions) groups. The general
effect of speed on the temporal organization of walking was computed through linear
regression between the walking speed and the instant of stance-to-swing transition.

2.4.3 Joint Angular Motion of the Body Segments

Using the positions provided by the markers mentioned above, we defined a total of
12 body segments (HEAD, TRUNK, and left and right ARM, FOREARM, THIGH,
SHANK and FOOT). Joint angular motion of these segments were computed in the
sagittal plane [10]. Every segment was projected onto the sagittal plane, which is
defined by the XZ plane of the laboratory coordinate frame. Its relative angle to the
axes of the laboratory reference frame was computed to obtain the absolute orien-
tation. The angles between the projected segments were computed to obtain joint
angles (HEAD-TRUNK, SHOULDER, ELBOW, HIP, KNEE and ANKLE angles).
These angles were calculated throughout the movement duration.

2.4.4 Joint Angular Motion Amplitude and Timing

The magnitude of the angular displacement of the body limbs was measured as a
root mean square value of joint angles. The temporal structure of the angular profiles
was then quantified using a discrete estimation of the timing changes induced by an
emotion: the maximal (in absolute values) peaks occurring during the step cycle
were computed for each joint (see arrows in Figure 4). For the head movement with
respect to the trunk, we observed two oscillations within a step cycle and chose to
compute the peak during the swing phase (computing it during the stance period
yielded similar results).

2.4.5 Upper Body Orientation in Space

As can be noticed in the animated illustration in Figure 1 , the orientation of the
upper body in space is different across the emotions. We quantified this by com-
puting the mean absolute orientation (relative angle to the Z-axis of the laboratory
reference frame) of HEAD, TRUNK, ARM, and FOREARM throughout the step
cycle.

2.4.6 Discriminative Power as an Evaluation of the Effects of Speed and
Emotion on Gait Parameters

In the field of pattern classification, discriminant analysis is used to find a subspace
that most separates given classified data vectors. We apply the criteria used in this
method to examine the extent of contribution of each feature to separation among
emotion (or speed) groups. The discriminative power was calculated as follows:
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within the whole group of emotions E (or speeds S for the neutral gaits), we com-
puted the variance of whole data Vall including all the groups, and the variance of
each emotional group VEi. The discriminative power DP is computed as:

DP =
Vall

∑N
i=1 VEi

(1)

with N the number of groups contained in the whole dataset (5 classes of emotions
including the neutral or 3 classes of speeds). This criterion evaluates the inverse
proportion of intra-class variance against the whole variance. DP is computed for
each joint motion profile, both for emotional gaits and gaits performed at different
speeds. The greater the DP, the more discriminative the joint segment is. Greater
DP means that the joint motion is largely affected by the differences of classes of
emotions or speeds.

3 Results

Emotions systematically and significantly affected walking behaviors at the level of
the gait pattern changes. This was observable both at the level of global gait pa-
rameters (step length, speed and duration as well as stance phase duration) and at
the level of the segmental motion of the body segments. In the following section,
analysis of variance to compare expected value among emotion groups is conducted
by F-test, where the F-values are indicated by F(a,b) with a and b representing the
degrees of freedom for the groups and the number of data points respectively.

Our focus is on the emotion specific motion features that are common to the both
genders rather than differences between them[20]. Actually, it was difficult to see
gender differences in our data.

3.1 Gait Parameters Changes

Emotions significantly modulated the walking speed (see Figure 2, F(4,284) =
377.62, p < 0.01). In particular, fear (FE) and sadness (SA) slowed down the walk
(by up to 0.7 m/s, compared to the neutral (NE) condition, F(1,71) = 760.70, p <
0.01) while anger (AN) accelerated it (F(1,71) = 219.32, p < 0.01). The walk-
ing speed in FE was also significantly reduced compared to SA (by up to 0.2 m/s,
F(1,71) = 67.04, p < 0.01). No statistically significant difference was observed
when comparing neutral and joy (JO) conditions (p> 0.05). These changes in walk-
ing speed were associated with step length, step duration and stance phase du-
ration changes (F(4,284) = 414.04, p < 0.01, F(4,284) = 107.00, p < 0.01, and
F(4,284) = 15.70, p < 0.01, respectively).

The step length was significantly reduced in FE and SA conditions (F(1,71) =
796.40, p< 0.01, it was also significantly greater in SA compared to FE, F(1,71) =
159.13, p < 0.01) and was significantly increased in AN (F(1,71) = 149.61,
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Fig. 2 Gait parameter changes (mean ± SD) in emotional gaits recorded in actors and in
neutral gaits performed at different walking speeds recorded in naive subjects.

p< 0.01) when compared to NE. Although the step length was quantitatively greater
(by about 3 centimeters) in the joy condition, no statistically significant difference
was observed between the joy and neutral condition (p > 0.05).

The step duration was significantly increased in FE and SA (F(1,71) = 203.32,
p < 0.01, it was also significantly increased in FE compared to SA, F(1,71) =
12.16, p< 0.01) and was significantly reduced in AN (F(1,71)= 216.47, p< 0.01))
when compared to NE. The step duration was quantitatively longer in JO compared
to NE (by about 0.04 seconds), but this difference was not statistically significant
(p > 0.05).

The stance phase was of comparable duration between FE and NE (p> 0.05) and
significantly shorter in FE compared to SA (F(1,71) = 17.79, p< 0.01). The stance
phase was significantly longer in SA (compared to NE, F(1,71) = 120.56, p <
0.01), significantly longer in JO (F(1,71)= 6.38, p< 0.05) and significantly shorter
in AN (F(1,71) = 36.04, p< 0.01). The difference was also statistically significant
between AN and JO (F(1,71) = 7.98, p < 0.01). It should be noted that the vari-
ability of the stance phase duration is greater in the FE and SA conditions (see error
bars in Figure 2). Although the stance phase duration is modulated in different ways,
these changes are, to a certain extent (if FE is not considered), well fitted by velocity
changes (r=0.83, see Figure 3-left).

In the second experiment, in agreement with the instructions to walk at slow (SS),
normal/natural (NS) or fast (FS) speeds across trials, we found that the step speed
was significantly modulated for the neutral gaits performed (F(2,98) = 728.31, p<
0.01). It should be noted that the average walking speed in this group (NS condi-
tion) was higher (see Figure 3-right) than the one recorded in the actors’ group (NE
condition). The speed changes were associated with statistically significant changes
at the level of step length, step duration and stance phase duration (F(2,98) =
192.77,F(2,98) = 147.54 and 63.72, p < 0.01, respectively). For each of these pa-
rameters, the effect was also statistically significant when comparing SS to NS, SS
to FS or NS to FS (p < 0.01). The stance phase duration was also a linear function
of speed changes (r = 0.91, see Figure 3-right).
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Fig. 3 Relationships of the linear regression fit between walking speed and stance phase
duration for emotional gaits (left, including the neutral gait of actors) and neutral gaits per-
formed at various speeds (right). The variance ellipses of the different groups of ”emotion”
and ”speed” are also shown. Note the largest variability of the fear. The linear regression
parameters (correlation coefficient (r), root mean square error (rmse) and slope of the re-
gression lines(s)) were r=0.72, rmse=2.77, s=-5.35 in emotional gaits when including ”fear”
group, r=0.83, rmse=2.03, s=-6.07 when excluding it, and r=0.91, rmse=1.27, s=-5.88 in
neutral gaits with various speeds. Note the comparable slopes(s) of the regression lines for
emotional and neutral gaits.

Taken together, the results from the ”emotions” and from the ”speeds” data show
that most of the global gait parameters changes occurring in the different emotional
gaits can be linearly fitted by speed variations (see Figure 3), independently of the
specific emotions. The only exception concerns the particular case of stance phase
duration (i.e. for the timing of gait within a particular step cycle) for which changes
observed in FE and JO conditions varied independently of the speed. Nevertheless,
even for the stance phase parameter, the slope of the regression line relating this
parameter to speed variations (see Figure 3) is more or less the same for the ”speeds”
and the ”emotions” gaits (s = −5.88 versus s = -6.07, respectively). These local
aspects of the effects of the emotion are further examined at the level of the joint
angular motion patterns in the next section.

3.2 Joint Angular Motion Patterns

The joint motion patterns are presented in Figure 4 for the ”emotions” (left) and
”speeds” (right) gaits. The similarity between these patterns was quantified across
emotions or across speeds by computing the correlation coefficient between the
mean joint angular profile observed in NE (or NS) with those observed in the other
conditions (FE,SA, JO and AN, and SS and FS, respectively). While the ampli-
tude of angular motion differs across conditions, the patterns were highly simi-
lar (r > 0.8) for all joints except for the head-trunk angle in the ”emotions” gaits.
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Fig. 4 Joint angular motion profiles in emotional (left) and neutral (right) gaits. The simi-
larity between the mean neutral profile (or the normal speed profile NS for the neutral gaits)
and the mean emotional profiles (or the FS and SS profiles) is quantified by the correlation
coefficient r (with ± SD across conditions). The arrows indicate the peaks computed for
each particular angular profile and used for estimating the timing of joint angular motion
(see text for details and Figure 5b for quantitative measures). Note the similarity between
the emotional and neutral joint motion patterns. Note also that while the amplitude of joint
angular motion (notably for the shoulder and elbow joints in fear and sadness conditions) is
considerably reduced for some emotions, the pattern of temporal changes of joint motion is
preserved (as quantified by the r coefficient).

The patterns were also comparable between the emotional and the neutral gaits.
However, higher variability was observed between emotional gaits, particularly at
the head-trunk joint, the shoulder and elbow movements in AN and JO conditions.
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In the hypothetical case where the joint angular motion patterns would have been
exclusively driven by speed changes, the amplitude and the temporal structure of the
”emotional” patterns (Figure 5a and b, left) would have been changed as a function
of gait speed, in a way similar to the changes observed in the neutral gaits performed
at different speeds (Figure 5a and b, right). At the level of the amplitude of joint
angular motion (Figure 5a), this possibility was confirmed for movement of the leg
(hip, knee and ankle joints) and the elbow. For these features, the discriminative
power (DP) of the speed is high and comparable to the one of the emotional gaits
(Figure 5c).

However, this was not true for head and shoulders movements: here a greater
variability in the emotional gaits was observed (note the larger width of the vari-
ance ellipses of AN and JO groups). While the head motion amplitude remains un-
changed by walking speed and ranged between 2 and 4 degrees for the neutral gaits,
the head angular motion amplitude was systematically above 4 degrees in AN and
JO. The speed DP is particularly poor for the head motion and the emotion DP is
therefore greater for AN and JO changes. The shoulder motion amplitude linearly in-
creased with walking speed until reaching 10 degrees for FS: a similar tendency was
observed for the ”emotions” gaits but here, an abrupt increase of shoulder motion
amplitude above 10 degrees was observed for AN and JO conditions. This resulted
in a higher DP in ”emotions” compared to ”speeds” gaits. It should be noted that for
the other angles, the DP is comparable between the two groups and is even higher in
”speeds” gaits for the hip joint: this is explained in particular by a super imposition
of JO and NE variance ellipses.

The timing of the joint motion patterns (Figure 5b) was subject to less variability
in the ”emotion” gaits and the changes observed across emotions correspond to the
changes observed in ”speeds”. This resulted in comparable speed and emotion DP.
The speed DP was even considerably greater for the knee and ankle movements.
This was mainly the results of a super imposition of the variance ellipses between
SA and FE groups. It should be noted, though, that both speed and emotions have
low DPs for the head movement, reflecting, as for the amplitude parameter, that the
speed is not as discriminative for this parameter compared with the other joints: this
can also be due to a higher variability of head angular motion for both groups.

3.3 Upper Body Orientation in Space

The joint angular motion previously examined was completed by ”posture” -related
measurements (mean head and trunk orientation in sagittal plane). These quantita-
tive measurements confirmed what can intuitively be observed in Figure 1: the emo-
tions greatly affect the angular position in space (the orientation) around which the
head and the trunk are rotating (see Figure 6). Compared with the ”speeds” gaits
for which the head is oriented around 7 degrees (slightly upwards) across speeds
(with some variability across subjects in particular for the NS condition), the head
is oriented negatively (downwards) for FE, SA and AN conditions. The head is
also oriented slightly more upwards in JO group for a speed comparable to the one
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Fig. 5 a) Joint motion amplitude as a function of the recorded walking speed variations
in both emotional (left) and neutral (right) gaits. The variance ellipses of each group of
emotions or speeds (for neutral gaits) are also plotted. The wider the ellipse is, the more
variable the values within a group are. Note that the amplitude evolves in the same direction
as walking speed for most joints of neutral and emotional gaits, with higher variability for
some emotions (notably the anger and joy at the level of head and arm movements) b) Joint
motion timing as quantified using the peaks computed in the joint motion patterns (see arrows
in Figure 4). Note that here too, the changes in the timing of joint motion patterns are mostly
dictated by walking speed changes, with less variability compared with the joint motion
amplitude c) quantification of the speed and emotions’ discriminative power DP, respectively
on joint motion amplitude (left) and joint motion timing (right). Note the higher emotion
discriminative power for head and shoulders’ amplitude only.

observed in the NE group. The trunk orientation remains unchanged across ”speeds”
and the same for AN, JO and SA. However, the trunk was oriented significantly
more downwards for FE and AN. The distances between the different variance el-
lipses were higher for the ”emotions” than for the ”speed” gaits: this resulted in a
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Fig. 7 Emotions and speed discriminative powers for upper body and arms’ orientation: note
the confirmation of the emotions specificity for head and trunk orientations.

higher emotion DP compared with the speed DP (Figure 7). The orientation of the
arms was much more variable across subjects for a same emotion (Figure 6). The
arms were oriented around – 10 degrees (slightly backwards) both for emotional
and neutral gaits. The variability around this value for ”emotion” gaits was related
to inter-subjects variability and was not due to a particular emotion’s effect. The
emotion and speed DPs were low and considerably lower than the head and trunk
DPs (Figure 7). While the orientation of the forearms displayed even more variabil-
ity than the arms’ orientation, the mean orientation of the forearms observed for
the ”emotion” gaits was around 30 degrees. The forearms were thus in a more el-
evated position (the elbow was in a more flexed position) for the ”emotion” gaits
but their orientation was more stabilized for the ”speed” gaits (around 20 degrees).
This higher ”stability” resulted in a speed DP greater than the emotion DP. Taken
together, the present description of motor changes associated with different emo-
tions revealed that most of the time-varying angular profiles (motion patterns) are
explained by speed changes only. Indeed, the neutral gaits performed at different
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speeds were associated to similar variations. However, the upper body orientation
(the head and the trunk) was found to be emotion-specific. The forearm orientation
was also different between ”emotion” and ”speed” gaits but emotions less system-
atically affect this parameter (a greater inter-subjects variability was observed).

4 Discussion

This study investigated the motor processes governing the expression of emotions
during simple walking task in humans. As mentioned earlier, it should be noted that
this study was limited to the analysis of the movements in the sagittal plane. Further
investigations are thus needed in order to generalize our findings to other planes. An-
other limitation of this study relies on the fact that the emotions expressed by actors
were specific and do not account for the whole range of behaviors potentially asso-
ciated with emotion. Still, a consistent effect across subjects for each of the studied
emotions on the locomotor behavior was revealed. More specifically, we demon-
strated that emotional gaits are associated with body configuration changes that are
emotion-specific and speed-related behavioral changes that are common to different
emotions. we showed that emotions mainly affect walking in terms of motor patterns
(namely the timing and amplitude of the legs’ motion) and postural changes (head
and trunk orientations in the sagittal plane).
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Whole Body Motion Control Framework for
Arbitrarily and Simultaneously Assigned
Upper-Body Tasks and Walking Motion

Doik Kim, Bum-Jae You, and Sang-Rok Oh

Abstract. A walking motion of a humanoid has been analyzed or developed with-
out considering motions of the remaining parts of the humanoid. In order to per-
form tasks in the human’s living environment, a walking motion and assigned tasks
must be considered at the same time. In this paper, a whole body motion genera-
tion method, i.e., the motion embedded CoM Jacobian method is introduced. With
the method, a balance control and assigned motions are separated and thus, the as-
signed motions can be generated without considering balance of a humanoid. As
experimental examples, whole body motion of a humanoid is assigned by the tele-
operation. Arbitrarily assigned upper body motions and independently generated
walking motions are combined to generate a balanced whole body motion with the
suggested methods.

1 Introduction

Recently, robot’s working places are trying to be extended to the human’s daily life.
Among various robots, a humanoid is one of the most feasible robots that can survive
in the human’s living environment. In order to live in the human’s living environ-
ment, a humanoid should overcome many obstacles such as stairs and furnishings,
and understand how to manipulate tools and devices such as many kinds of doors
and electric home appliances. All these elemental tasks are also combined to conduct
more complicated tasks such as cleaning, cooking, errands, and etc.

For these complicated tasks, a humanoid must have at least two functions: mo-
bility and manipulation. The mobility is one of the most important research topics
for a humanoid and many excellent results have been reported in recent years[3].
The manipulation is one of traditional research topics in robotics and has been
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successfully realized in many real robots. Nowadays, wheeled mobile robots with
two arms are popular type for studying manipulation with mobility. This type of
robots can handle objects in the human’s living environment with less stability prob-
lem than a humanoid robot, and thus they can focus on the manipulation with trav-
eling around a working environment.

In order to increase the usefulness of a humanoid, these two research topics, i.e.,
mobility and manipulation should be coordinated seamlessly with guaranteeing a
balance of a humanoid. To achieve the coordination, this paper introduces a whole
body motion generation method which resolves the CoM(Center of Mass) Jacobian
of a humanoid with given motions of manipulation and mobility. The introduced
methods can use almost all manipulation methods without considering balance and
walking situation of a humanoid.

This paper is organized as follows: section 2 gives an overview of the resolution
of the motion-embedded CoM(MECoM) Jacobian. Section 3 derives the MECoM
Jacobin for several cases. Section 4 describes how to use the MECoM Jacobian and
shows several applications. Finally, section 5 concludes the paper.

2 Overall System

In order to balance a humanoid with whole body motion, full dynamics or the CoM
of whole body is studied usually. The CoM relation is much simpler than full dynam-
ics and thus it is suitable for real implementation. Additionally, the CoM Jacobian
gives a relation between the CoM and the joint motion similar to a normal kine-
matic relation. Consequently, the CoM Jacobian is one of the most simple and effi-
cient whole body motion relations with balancing information. The CoM Jacobian
is proposed by Kagami, et al.[5] and formulated analytically by Sugihara, et al.[9].
The dimension of the whole body motion relation is too complicated to be used in
real time or with given task motions. If a humanoid has n-dof in total, then the di-
mension of the CoM Jacobian is (3×n). A usual method to solve the CoM Jacobian
is that given motions are augmented to the CoM Jacobian as constraints, and finally
the joint motions are solved by using an optimization method. The augmentation of
given motions increases the overall dimension of the optimization matrix and thus
it needs heavy computation with given motions. In order to overcome the defect of
the conventional resolution of the CoM Jacobian, the MECoM(Motion-Embedded
CoM) Jacobian is proposed[1, 7].

Basic idea of the MECoM Jacobian is that, in most cases, human motions are
occurred without considering balance of its body explicitly, and human motions are
assigned locally and independently. For example, if a human carries an object with
a certain pose, the aim of arms and legs are different, arms are to maintain pose
of the object according to the body motion and legs are to walk toward a desti-
nation position. While these motions are assigned to corresponding sections, i.e.,
arms and legs, balance of the whole body is occurred subconsciously. Thus a human
needs not consider the balance control of body consciously. This human behavior is
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applied to control a humanoid with the resolution of the MECoM Jacobian, and con-
sequently, the balancing problem is separated from given motions and furthermore,
conventional motion planning methods can be applied without any modification to
generate balanced motions.

As shown in Fig. 1, input of the MECoM Jacobian can be divided into two cate-
gories: 1) CoM-ZMP control for balance and 2) Motions for given tasks. The CoM-
ZMP control algorithms are based on the inverted pendulum model. Many research
results on the walking patterns are dealt with this balance algorithms[2, 4, 6]. Motion
generation methods have been studied for a long time and mostly, the methods can
be categories into the joint motion generation and the Cartesian motion generation.

The output of the MECoM Jacobian is the balanced joint motion of a humanoid,
i.e., the MECoM Jacobian distributes the two independent inputs into the whole
body joint motion which guarantees balance and given motions as much as possible.

Before developing the motion-embedded CoM Jacobian, a humanoid is divided
into several parts. A humanoid has four limbs attached at the main body. Hereafter,
each limb and the main body will be called a section. For a human, a task is done
with some sections, usually two arms, and they balance the body with other sections,
usually two legs. It means that not all sections are dedicated into one task, but they
do their own tasks, for example, balancing or a given task. Thus it is natural that
motions of each section are given independently. According to the existence of a
given desired motion, the section is classified into the idle section and the busy
section: the idle section has no given motion and the busy section has a given motion.
If a section has zero motion, i.e., it is fixed at current position, it can be considered as
an idle section or a busy section. In most case, a supporting section which is attached
on the ground are considered as a busy section even if no motion is assigned to, since

Reference CoM-ZMP

Reference Motion on
each section

CoM-ZMP Control

Modification of CoM
Effect

Motion Embedded
CoM Jacobian

Humanoid

Real CoM &
ZMP

Real Motion

Fig. 1 A basic flow for the resolution of the MECoM Jacobian: balance is maintained by
controlling the CoM-ZMP relation, and motions on several sections are given independently.
Finally, the balancing control and the given motions are combined by solving the MECoM
Jacobian to give balanced motions.
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they have a role of balancing the body and thus they should be fixed at the position.
Other sections such as arms with zero motion are considered as an idle section if no
motion is assigned explicitly.

A given motion of each limb or a main body can be given as a joint motion and/or
a Cartesian motion. If a busy section has a motion in the Cartesian space, it will
be called C-busy section and a section with a motion in the joint space is J-busy
section.

3 Derivation of Motion-Embedded CoM Jacobian

3.1 CoM Jacobian

This section briefly reviews the CoM Jacobian, and a detail description can be found
in [9, 10]. Let us consider a n-DOF humanoid. There are two referential frames
to describe a humanoid as shown in Fig. 2. The world coordinate frame is fixed
on somewhere in the world and represents the global motion of a humanoid. The
body center frame is fixed on a humanoid to describe the local motion. Almost all
the properties of a humanoid is described in the body center frame. The leading
superscript o(·) implies that the elements are represented in the body center frame,
and without it, a value is based on the world coordinate frame.

The CoM, pG, of a humanoid is a function of joint angle vector, q, i.e., pG = f(q).
Thus, there exists a Jacobian JG which can relate q̇ to ṗG as:

ṗG = JGq̇ (1)

where the (3× n) matrix JG is defined by

JG ≡ ∂pG

∂q
(2)

Fig. 2 Coordinate System
of Mahru: There are two co-
ordinate systems. The world
coordinate frame is to repre-
sents the inertial coordinate
system and the body center
frame is attached on the
humanoid body and all the
local motions represented
with leading superscript o(·)
are represented based on the
body center frame.

Body Center
Frame

CoM

X
Y

Z

World Coorinate
Frame

ZMP
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We call JG the CoM Jacobian hereafter. pG is a quite complex function with multiple
arguments. Kagami, et al., proposed the numerical method to calculate it[5], which
unfortunately needs a large amount of computation. Sugihara, et al., developed a
fast and accurate calculation method of JG with the following approach[10].

Firstly, the relative CoM velocity with respect to the body center frame, oṗG, can
be expressed as:

oṗG =
∑n−1

i=0 mi
oṙGi

∑n−1
i=0 mi

=
∑n−1

i=0 mi
oJGi q̇

∑n−1
i=0 mi

(3)

where mi is the mass of link i, orGi is the position of the center of mass of link i
with respect to the body center frame, and oJGi (3× n) is defined by

oJGi ≡
∂ orGi

∂q
(4)

Therefore, Jacobian oJG which relates q̇ to oṗG is

oJG =
∑n−1

i=0 mi
oJGi

∑n−1
i=0 mi

(5)

Secondly, suppose link 1 is the base section, which is fixed in the world frame (for
example, when the right leg is the supporting leg, the right leg is fixed on the ground
and becomes the base section), the CoM velocity with respect to the world coordi-
nates frame, ṗG is

ṗG =ṗo +ωo×Ro
opG +Ro

oṗG

=Ro{oṗG− oṗ1 +(opG− op1)× oω1}
=Ro

oJGq̇

+Ro{−oJv1 +[(opG− op1)×]oJω1}q̇1 (6)

where po is the position of the body center, ωo is the angular velocity of the body
center, and Ro is the attitude matrix of the body center with respect to the world
frame. op1 is the position of the base section, oω1 is the angular velocity of the base
section, oJv1 is the linear velocity part of the base Jacobian and oJω1 is the angular
velocity part of the base Jacobian with respect to the body center frame. [v×] means
outer-product matrix of a vector v (3×1). q̇i is the joint velocity of section i. Note
that the base section can be any section that is fixed on the ground, but here, we
assigned the base section with the number 1 without loss of generality.

In order to use Eq. (6) in the following section, it is rewritten here as:

ṗG =
m

∑
i=1

Ro
oJGi q̇i

+Ro{−oJv1 +[(opG− op1)×]oJω1}q̇1 (7)

where m is the number of sections.
Now, let us derive the motion-embedded CoM Jacobian from Eq. (7).
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3.2 Motion-Embedded CoM Jacobian

3.2.1 Embedment of J-Busy Section

It is easy to embed a joint motion into the CoM Jacobian, since the joint motion can
be directly replaced q̇i in Eq. (7).

If section j is a J-busy section, Eq. (7) becomes

ṗG−Ro
oJGj q̇ j

=
m

∑
i=1,i�= j

Ro
oJGi q̇i

+Ro{−oJv1 +[(opG− op1)×]oJω1}q̇1 (8)

The second term of the left hand side compensates the motion of the jth section.
Therefore, the other sections shown in the right hand side can generate a joint motion
with the compensated CoM motion.

If at least one section, i.e., the base section, is an idle section, then Eq. (8) can
compensate motions of the other sections. If all sections are the J-busy section, there
is no section to compensate given motions. In this case, an optimization method
needs to be applied.

3.2.2 Embedment of C-Busy Section

Let us derive the motion-embedded CoM Jacobian for the C-busy section. Each sec-
tion of a humanoid is considered as an independent section, i.e., any section can have
its own motion independently without considering other sections. In general, the i-th
section has the following relation:

oẋi =
oJiq̇i (9)

where oẋi = [oṗT
i ;oωT

i ]
T is the end point velocity of the section, oṗi and oω i are the

linear and the angular velocity, respectively. q̇i is the joint velocity, and oJi is the
usual Jacobian matrix represented in the body center frame.

In our case, the body center is floating, and thus the end point motion about the
world coordinate frame is written as follows:

ẋi = X−1
i ẋo +Xo

oẋi (10)

where ẋo = [ṗT
o ;ωo

T ]T is the velocity of the body center represented in the world
coordinate system, and

Xi =

[
i3 [Ro

ori×]
03 i3

]
(11)

is a (6×6) matrix which relates the body center velocity and the end point velocity
of the i-th section. i3 and 03 are the (3× 3) identity and zero matrix, respectively.
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Ro is the orientation of the body center based on the world coordinate system. ori

is the position vector from the body center to the end of the i-th section based on
the body center frame. The transformation matrix Xo is

Xo =

[
Ro 03

03 Ro

]
. (12)

By combining Eq. (9) and Eq. (10), the end point velocity based on the world co-
ordinate system is

ẋi = X−1
i ẋo +Xo

oJiq̇i (13)

For simplicity, we will use the relation Ji = Xo
oJi, hereafter.

From Eq. (13), we can see that all sections should satisfy the compatibility con-
dition, i.e., the body center velocity, ẋo, in Eq. (13) for each section is the same, so
that sections are connected without being broken., and thus arbitrary two sections,
for example, the i-th and j-th section should satisfy the following relation:

Xi(ẋi− Jiq̇i) = X j(ẋ j− J jq̇ j). (14)

From Eq. (14), the joint velocity of any section can be represented by the joint ve-
locity of any other section. However, all sections will be represented by the base
section, since the motion of the body center is represented by the base section, as
shown in Eq. (7). The base section can be the supporting leg in the single supporting
phase or one of both legs in the double supporting phase if a humanoid is standing.
Let us express the base section with the subscript 1, then the joint velocity of any
section is expressed as:

q̇i = J−1
i ẋi− J−1

i Xi1(ẋ1− J1q̇1), (15)

for i = 2, · · · ,m, where m is the number of sections. Here,

Xi1 =

[
i3 [Ro(

ori− or1)×]
03 i3

]
. (16)

Note that if a section is a redundant system, any null space optimization scheme can
be added in Eq. (15), and J−1

i becomes a generalized inverse.
By substituting Eq. (15) into Eq. (7), the motion-embedded CoM Jacobian rela-

tion becomes

ṗG = Ro{−oJv1 +[(opG− op1)×]oJω1}q̇1

+
m

∑
i=1

Ro
oJGi J

−1
i (ẋi−Xi1ẋ1)

+
m

∑
i=1

Ro
oJGi J

−1
i Xi1J1q̇1 (17)
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where Jv1 = Ro
oJv1 and Jω1 = Ro

oJω1 are the linear and angular velocity part of
the base section Jacobian. Note that if i= 1, ẋi−Xi1ẋ1 = 0 and Ro

oJGi J
−1
i Xi1J1q̇1 =

Ro
oJGi q̇1.
Finally, all desired motions, ẋi, are embedded in the modified CoM Jacobian.

Thus the effect of the CoM movement generated by the desired motion is compen-
sated by base section. Eq. (17) can be rewritten like the usual kinematic Jacobian
of the base section:

ṗmeG = JmeGq̇1 (18)

where

ṗmeG = ṗG−
m

∑
i=1

Ro
oJGiJ

−1
i (ẋi−Xi1ẋ1), (19)

JmeG = Ro{−oJv1 +[(opG− op1)×]oJω1}

+
m

∑
i=1

Ro
oJGi J

−1
i Xi1J1. (20)

The modified CoM motion, ṗmeG, consists of two relations: a desired CoM mo-
tion(the first term) and the relative effect of motions of each section(the second
term). The modified CoM Jacobian, JmeG also consists of two relations: the effect of
the body center(the first term) and the effect of motions of each section(the second
term).

The modified CoM Jacobian JmeG is a (3×n1) matrix where n1 is the dimension
of the base section, which is smaller than that of the original CoM Jacobian. For
example, Mahru in Fig. 2 has a 6-dof leg, and thus n1 = 6 if the leg is the base
section. After solving Eq. (18), the joint motion of the base section is obtained. The
resulting base section motion balances a humanoid robot automatically during the
movement of all other sections. With the resulting joint motion of the base section,
the joint motion of all other sections are obtained by Eq. (15). The resulting motion
follows the desired motion, regardless of the balancing motion of the base section.

4 Application of MECoM Jacobian

4.1 Embedment of a Motion into MECoM Jacobian

As shown in the previous section, there is no difference between manipulation of
arms and walking of legs. They are just categorized which type of motion is assigned
to a certain section. Currently all sections can have any type of motions, but the
base section must have the Cartesian motion, which is usually the zero motion i.e.,
fixed on the ground. Within the MECoM framework, all motions including walking
motion are considered as manipulation or motion with constraints, and the balance
is guaranteed by the CoM-ZMP controllers, and finally all these manipulation and
balancing results are reflected on the base section.
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The balance control focuses on CoM-ZMP controllers, i.e., by changing the
CoM-ZMP controller, more stable motion can be obtained without considering given
motions. The balance control is tightly related to the CoM-ZMP pattern generation.

According to given motions, the motion embedded CoM Jacobian has two dif-
ferent forms as shown in the previous section: if a given motion is a joint motion,
Eq. (8) is used, i.e., the given motion is just replaced. If a given motion is a Cartesian
motion, Eq. (15) is used, i.e., the joint motion is obtained from inverse kinematics
relation between the given Cartesian motion and the base section.

Consequently, by changing motion generation methods represented in Eq. (15)
explicitly or by substituting the results of motion generation methods into Eq. (8)
implicitly, we can have more sophisticated motion of a humanoid.

In order to show the replacement of motion generation algorithms, let us consider
that a humanoid has arms with more than 6-dof, i.e., arms are redundant. A given
desired arm motion is ẋdi for the ith section, then we can embed this motion into
the MECoM with two methods as follows: Firstly, the given motion is pre-calcuated
before embedding into the MECoM Jacobian

q̇di
= J†

i ẋdi (21)

where (·)† represents the pseudo-inverse, and the null vector related part is not in-
cluded in the equation, but it can be easily added in the equation. With this equation,
a desired joint motion, q̇di

can be obtained and it is embedded into the MECoM Ja-
cobian as a joint motion with Eq. (8). This joint motion embedment is cascaded with
the MECoM Jacobian and thus motion generation algorithms are separated perfectly
and it can be developed independently as in Eq. (21).

The second method is that the given motion ẋdi is embedded explicitly with
Eq. (15) as follows:

q̇i = J†
i ẋdi− J†

i Xi1(ẋ1− J1q̇1) (22)

Note that the null vector related part also can be included in the equation. Eq. (15)
in the previous section must be replaced by Eq. (22) and then the final form of
the MECoM Jacobian relation is also changed according to the motion generation
method as in Eq. (22). This Cartesian motion embedment is an explicit embedment
of given motions and the MECoM Jacobian resolution has all the motion generation
routines and we don’t need additional motion generation routines in this case.

We can develop or use a new motion generation method to perform a certain task
without any modification or consideration of the balance of the body as in Eq. (21)
and Eq. (22). The following section will show several applications of the resolution
of the MECoM Jacobian.

4.2 Applications

As shown in Fig. 2, the MECoM Jacobian method is applied to the humanoid,
Mahru, developed at the Cognitive Robotics Center, KIST in 2004. Mahru has the
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height of about 150cm, and the weight is about 67kg. It has 6-dof for each legs and
arms, 1-dof for the waist, 2-dof for the neck, and each hand has 4-dof. In total, it
has 35-dof.

4.2.1 Tele-Operation

A humanoid has many degrees-of-freedom, and thus it is hard to control its whole
body in real time. To overcome these difficulties, we developed a tele-operation sys-
tem. In order for the portability, we used a motion capture suit, and human motions
are captures from it. The captured motions are interpreted into the humanoid mo-
tions, and it is transferred to the humanoid.

As indicated in the section 3.2, we can assign independent motions to each sec-
tion of the humanoid. For a human-like motion, the upper part of the humanoid is
controlled by the joint motion. For stability, the lower part of the humanoid is con-
trolled by the Cartesian motion. From foot-prints of the lower part, the CoM-ZMP
pattern is calculated. Consequently, we can assign whole body motion and reference
CoM-ZMP for the balance to the humanoid in real time, as shown in Fig. 3. A detail
explanation on this application can be found in [8].

Fig. 3 Teleoperation with mixed given motion: The upper body of the humanoid has a joint
motion comes from the motion capture suit and the lower body of the humanoid has a Carte-
sian motion which represents the foot print. Two different input motions are combined with
the MECoM Jacobian. The lower body of the humanoid has delayed by about two steps
because of the detection procedure of the human walking motion.

4.2.2 Door Opening

In order to interact with an object in the environment, we added a force control
algorithm to the upper body motion generation routine. A compliant motion is gen-
erated from the force sensor attached on the wrist, and this motion is combined with
the captured motion. The final joint motions are embedded into the MECoM Jaco-
bian routine with Eq. (8). The combination of the compliant motion and the captured
motion is pre-calculated before embedding. Fig. 4 shows that the humanoid, Mahru,
opens a door with given tele-operated motions and force controlled motion.
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Fig. 4 Teleoperation with force control: In order to open a door, we embedded a compliance
control algorithm into the upper body motion. By doing this, the embedded motion can follow
the captured motion and can interact with an object in the environment simultaneously.

5 Concluding Remarks

In this paper, the resolution of the motion embedded CoM Jacobian is introduced
as a whole-body motion generation method. In order for a humanoid to survive in
the human’s daily life, a whole body motion generation method will be critical and
the MECoM Jacobian method is suggested as one of promising methods. With the
MECoM Jacobian method, a walking motion is also a type of manipulation and it
can be handled as a usual motion generation method. The supporting leg or the base
section is the only part that is dedicated to the balance of the whole body and it is
affected by the balance control which is separated from given motions. Most con-
ventional motion generation methods can be embedded seamlessly as a joint motion
or a Cartesian motion into the MECoM Jacobian method. By dividing a complicated
whole-body motion generation problem into several independent problems such as a
balance control problem and a motion generation problem, it is possible to perform
complicated tasks as shown in section 4.

References

1. Choi, Y., Kim, D., Oh, Y., You, B.J.: Posture/walking control for humanoid robot
based on kinematic resolution of com jacobian with embedded motion. IEEE Trans.
on Robotics 23(6), 1285–1293 (2007)

2. Choi, Y., You, B.J., Oh, S.R.: On the stability of indirect ZMP controller for biped robot
systems. In: International Conference on Intelligent Robots and Systems, pp. 1966–1971
(2004)

3. Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of honda humanoid
robot. In: Proceedings of the IEEE International Conference on Robotics and Automa-
tion, vol. 2, pp. 1321–1326 (1998)

4. Hong, S., Oh, Y., Kim, D., You, B.J.: A walking pattern generation method with feedback
and feedforward control for humanoid robots. In: IROS 2009: Proceedings of the 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1078–1083.
IEEE Press, Piscataway (2009)



98 D. Kim, B.-J. You, and S.-R. Oh

5. Kagami, S., Kanehiro, F., Tamiya, Y., Inaba, M., Inoue, H.: Autobalancer: An online dy-
namic balance compensation scheme for humanoid robots. In: 4th International Work-
shop on Algorithmic Foundation on Robotics, WAFR 2000 (2000)

6. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Hirukawa, H.:
Biped walking pattern generation by using preview control of zero-moment point. In:
Proceedings of the IEEE International Conference on Robotics and Automation, ICRA
2003, vol. 2, pp. 1620–1626 (2003)

7. Kim, D., Choi, Y., Kim, C.: Motion-embedded cog jacobian for a real-time humanoid
motion generation. In: 2nd International Conference on Informatics in Control, Automa-
tion and Robotics, ICINCO 2005, pp. 55–61 (2005)

8. Kim, S.K., Hong, S.M., Kim, D.: A walking motion imitation framework of a humanoid
robot by human walking recognition from imu motion data. In: International Conference
on Humanoid Robots, Humanoid 2009, pp. 343–348 (2009)

9. Sugihara, T., Nakamura, Y.: Whole-body cooperative balancing of humanoid robot using
cog jacobian. In: International Conference on Intelligent Robots and Systems, pp. 2575–
2580. EPFL, Lausanne (2002)

10. Sugihara, T., Nakamura, Y., Inoue, H.: Realtime humanoid motion generation through
ZMP manipulation based on inverted pendulum control. In: IEEE International Confer-
ence on Robotics and Automation, Washington, DC, pp. 1404–1409 (2002)



Structure Preserving Optimal Control of
Three-Dimensional Compass Gait

Sigrid Leyendecker, David Pekarek, and Jerrold E. Marsden

Abstract. The benefits of structure preserving algorithms for the numerical time-
integration of mechanical systems, also called mechanical integrators, are widely
accepted in forward dynamic simulations. However, in the field of motion planning
and optimal control via direct methods, so far, these benefits have been less used. The
dynamic optimisation method DMOC, does exploit the structure preserving prop-
erties of a variational integrator within an optimal control problem. This work con-
siders the optimal control of a bipedal compass gait by modeling the double stance
configuration as a transfer of contact constraints between the feet and the ground
and develops a structure preserving simulation method for this context.

1 Introduction

When planning or predicting motion of multibody systems, one can pursue quite
different strategies. One possibility is to rely purely on kinematic considerations.
One can capture motion with a camera or simply prescribe certain desired poses for
the motion. This information can be used as input for inverse kinematics, where a
trajectory, meeting the prescribed conditions is reconstructed. However, thereby no
dynamics is taken into account. If one is interested in the forces that cause dynamics,
then one is faced with a control problem. In this paper we consider the problem of
determining an optimal control that produces a walking gait for a three-dimensional
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compass biped model. This control task has been previously addressed with various
biped models in the literature, for instance in [1, 2]. However, this work is unique
in the use of the DMOCC dynamic optimisation method [3] which exploits the geo-
metric structure [4] and variational dynamics of the biped model [5] and yields a
structure preserving simulation. DMOCC is a constrained version of the previ-
ously developed method called discrete mechanics and optimal control DMOC, see
[6, 7, 8]. DMOC and DMOCC can be classified as direct methods that find local so-
lutions of nonlinear optimal control problems, i.e. the state and control variables
are discretised directly in order to transform the optimal control problem into a
finite dimensional nonlinear constrained optimisation problem that can be solved
by standard nonlinear optimisation techniques such as sequential quadratic pro-
gramming (see e.g [9, 10]). This is in contrast to other methods like, e.g. shooting
[11, 12, 13, 14], multiple shooting [15, 16], or collocation methods [17, 18], relying
on a direct integration of the associated ordinary differential equations parametrised
by states and controls or the controls only (see also [19] and [20] for an overview).

Part of the constraints retricting the optimisation problem are the discrete equa-
tions of motion. In general, the standard derivation of forward dynamics integration
methods starts with a continuous equation of motion and replace the continuous
quantities, in particular the derivatives with respect to time, by discrete approxi-
mations. In contrast to that, the variational theory of discrete mechanics provides a
theoretical framework that parallels continuous variational dynamics. Discrete ana-
logues to the Euler-Lagrange equations, Noethers theorem, and the Legendre trans-
form are derived from a discrete Lagrangian by performing similar steps as in the
continuous theory. The resulting time stepping schemes are structure preserving,
i.e. they are symplectic-momentum conserving and exhibit good energy behaviour,
meaning that no artificial dissipation is present and the energy error stays bounded
over longterm simulations. To be more specific, the term structure preserving means
that the approximate solution, i.e. the discrete trajectory, inherits certain character-
istic properties of the continuous motion. For example, the evolution of the system’s
momentum maps (e.g. angular momentum is a momentum map for the biped) ex-
actly represents externally applied forces, in particular they are conserved along the
approximate motion of unforced systems. In addition to momentum maps, the sym-
plectic structure underlying dynamics is respected, and as a consequence, geomet-
ric integrators (sometimes also termed mechanical integrators) yield good energy
behaviour. See e.g. [21] for a short introduction to the basic idea of structure pre-
serving integration while [22, 23] are detailed and elaborate works on geometric
mechanics in the continuous time and discrete time setting. Furthermore, the intro-
duction of [24] gives a short overview on works on symplectic integrators in various
different contexts. Besides improving the fidelity of the approximate solution com-
pared to standard methods, the preservation of these quantities stabilises the numer-
ical integration. On the one hand, this is important for longterm forward dynamics
simulations since it guarantees that energy is neither gained nor dissipated numer-
ically. On the other hand, the inheritance of the continuous dynamics’ structural
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properties increases the robustness of the approximate solution, i.e. also with a rel-
atively coarse time grid, meaningful results can be obtained in optimal control sim-
ulations (requiring comparatively low computation times) which can then be used
as an initial guess for simulations with higher resolution. Based on the choice of
the discrete Lagrangian in the variational integrator, the accuracy of the resulting
approximate trajectory can be influenced, see [8] for an analysis of DMOC.

In contrast to many other works taking a rotation-based approach in minimal co-
ordinates to multibody systems, (see e.g. [25, 26]), here, the multibody system is
described in terms of redundant coordinates subject to holonomic constraints. On
the one hand, difficulties and in particular singularities associated with rotational
parameters are circumvented in this way. On the other hand, the formulation of
complex three-dimensional multibody systems is easily possible in a straightfor-
ward and intuitive way. The resulting equations of motion assume the form of index
three DAEs for which structure preserving integration methods are well developed,
see [27, 28]. Disadvantages like the large dimension and possible ill-conditioning
of the resulting discrete nonlinear system due to the presence of the Lagrange mul-
tipliers can be remedied by using the discrete null space method that eliminates the
constraint forces. Details on the discrete null space method in the context of for-
ward dynamic integration can be found in [29, 30, 31]. An extension to the optimal
control of multibody systems can be found in [3] on which this work here is relying
heavily. However, no contact between bodies is considered there. In the context of
the walker, the change between the stance and the swing leg during the double stance
configuration imposes additional challenges, wherefore in this paper, the variational
formulation of [32] is developed further to describe this transfer of contacts. While
the variational theory for nonsmooth systems is just mentioned briefly in this paper,
details can be found in [33].

Section 2 introduces the biped model and gives details on the constrained multi-
body formulation. The continuous optimal control problem for the walker is formu-
lated in Section 3, while the corresponding problem in discrete time is described in
Section 4. Finally, computational results are demonstrated in Section 5.

2 Compass Gait Walker Model

In this work, a relatively simple model is used to illustrate the performance of the de-
veloped structure preserving numerical simulation method. The three-dimensional
compass biped is modelled as a spherical kinematic pair in which the rigid legs are
combined at the hip by a spherical joint, see Figure 1. A point mass in the hip rep-
resents the weight of the upper part of the body.

The contact between a foot and the ground is modelled as a perfectly plastic
impact, constraining the foot to stay fixed on the ground during the other leg’s
swing phase. The contact is transferred instantaneously when the second foot hits
the ground and the first one is released. During a swing phase, the walker has six
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Fig. 1 Compass biped model with directors (left) and with actuating torque in the hip joint
(right)

degrees of freedom. However, only a three-dimensional torque acts in the hip joint
yielding an underactuated system.

2.1 Multibody Configuration

A constrained formulation is used for the dynamics of the complete multibody sys-
tem as well as for a single rigid body (see e.g. [34, 35, 30]). The n= 27-dimensional
time-dependent configuration variable of the walker q(t) ∈Q = R

27 in the time in-
terval [t0, tN ]⊂R consists of the configurations of the two rigid bodies q1,q2 ∈R12

and the placement qM ∈R
3 of the point mass MM in the hip. It reads

q(t) =

⎡
⎣

q1(t)
q2(t)
qM(t)

⎤
⎦ with qα(t) =

⎡
⎢⎢⎣

ϕα(t)
dα

1 (t)
dα

2 (t)
dα

3 (t)

⎤
⎥⎥⎦ α = 1,2

where ϕα ∈ R
3 denotes the placement of the centre of mass and the directors

dα
I ∈R

3, I = 1,2,3 represent the orientation of the α-th body. Each director triad is
constrained to stay orthonormal during the motion, see Figure 2.

The α-th body’s Euler tensor with respect to the centre of mass can be related to
the inertia tensor Jα via Eα = 1

2 (trJ
α)I−Jα , where I denotes the 3×3 identity ma-

trix. The principal values of the Euler tensor Eα
i together with the body’s total mass

Mα
ϕ are ingredients in the α-th rigid body’s mass matrix. The constant symmetric

positive definite mass matrix of the multibody system reads

M = diag(M1
ϕI E1

1 I E1
2 I E1

3 I M2
ϕ I E2

1 I E2
2 I E2

3 I MMI).
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Fig. 2 Configuration of a
rigid body with respect to
an orthonormal frame {eI}
fixed in space

2.2 Constraints

The redundant configuration variable is subject to two types of constraints. On the
one hand, internal constraints ensure that all bodies are rigid. On the other hand,
external constraints combine the bodies by joints into the walker model. Rigidity of
the two bodies gives rise to orthonormality constraints for the two director triads,
thus there are mint = 12 internal constraints.

gint(q) =
[

g1
int(q)

g2
int(q)

]
with gα

int(q
α) =

1
2

(
(dα

j )
T ·dα

k − δ jk
)
= 0

j,k = 1,2,3
α = 1,2

During the second leg’s swing phase, the first foot is fixed on the ground in xS1

by a spherical joint S1, see Figure 1. The corresponding constraint is gS1(q) = 0.
Furthermore, the spherical joint SH connects the two legs in the hip via gSH (q) = 0
and the point mass is held in place by the condition gM(q) = 0, thus the total number
of external constraints is mext = 9.

It is assumed that a perfectly plastic impact with no sliding takes place [36], when
the second foot hits the ground (i.e. it hits the contact surface in the unknown place
xS2 ), the foot is fully immobilised by the constraint gS2(q) = 0. Depending on the
actual phase of the gait, the relevant constraints are collected in the m=mint +mext =
21-dimensional constraint function vector g1 or g2 given by

g1(q)=

⎡
⎢⎢⎣

gint(q)
gS1(q)
gSH (q)
gM(q)

⎤
⎥⎥⎦ or g2(q)=

⎡
⎢⎢⎣

gint(q)
gS2(q)
gSH (q)
gM(q)

⎤
⎥⎥⎦ with

gS1(q) = ϕ1 +ρ1
S1
− xS1

gS2(q) = ϕ2 +ρ2
S2
− xS2

gSH (q) = ϕ1 +ρ1
SH
−ϕ2−ρ2

SH

gM(q) = qM−ρ1
SH
−ϕ1

where the vectors ρα
J = (ρα

J )Idα
I point from the center of mass of the α-th body

to the specific joint J ∈ {S1,S2,SH}. Altogether, the walker model has n−m = 6
degrees of freedom.

Furthermore, path constraints h(q) ≥ 0 depending on the geometry of the legs
ensure that the walker does not penetrate itself during the gait. For the actual double
coned legs with radius r, the path constraints read

h(q) =
∥∥ϕ2−ϕ1

∥∥− 2r≥ 0
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Fig. 3 When the second foot hits the ground, the first foot is released, thus the system in-
stantaneously leaves the constraint manifold C1 and enters the constraint manifold C2

2.3 Transfer of Contact

It is important to note that the placement of the second foot on the ground is not
known a priori. The (scalar) contact condition for the second foot reads gc(q) =
(ϕ2 + ρ2

S2
) · e3 = 0. In the instant the contact takes place, the point of contact xS2

is determined which then defines the constraint function gS2 . The corresponding
constraint manifolds are defined as C1 = {q ∈ R

27|g1(q) = 0} and C2 = {q ∈
R

27|g2(q) = 0}, respectively. The transfer of contact is illustrated for the discrete
trajectory in Figure 3.

In general, contact conditions are unilateral constraints. Thus, in the presented
case, when modeling the transfer of contact as the concurrent release of the bilateral
constraint g1 and the establishing of the new bilateral constraint g2, one has to verify
for the resulting motion that the constraint forces point into the ground, thus they
prevent the foot from penetrating the ground and do never prevent the lifting of the
foot. Furthermore, the velocity of the previous point of contact (the just released
previous stance foot) must have a positive component normal to the contact surface.

2.4 Nullspace Matrix and Nodal Reparametrisation

In DMOCC, the system of discrete equations of motion (being subject to the kine-
matic constraints described in Section 2.2) serves as constraints for the optimisation.
To reduce the system’s dimension to the minimal possible number, the discrete null
space method is used, see [31, 3]. For each swing phase, the null space matrix and
nodal reparametrisation used later in Section 4.1 are given here.

The n× (n−m) null space matrices P1(q) : Rn−m→ TqC1 and P2(q) : Rn−m→
TqC2 mapping to the tangent space of the constraint manifold in the specific gait
phase read
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P1(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ̂1
S1

0

−d̂1
1 0

−d̂1
2 0

−d̂1
3 0

̂ρ1
S1
−ρ1

SH
ρ̂2

SH

0 −d̂2
1

0 −d̂2
2

0 −d̂2
3

̂ρ1
S1
−ρ1

H 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and P2(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ̂1
SH

̂ρ2
S2
−ρ2

SH

−d̂1
1 0

−d̂1
2 0

−d̂1
3 0

0 ρ̂2
S2

0 −d̂2
1

0 −d̂2
2

0 −d̂2
3

0 ̂ρ2
S2
−ρ2

SH

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The matrix Q(q) :Rn→η(T ∗q C) projects onto the embedding of the cotangent space
T ∗q C in R

n and is canonical for regular Lagrangians. It is given by

Q(q) = In×n−GT · [G ·M−1 ·GT ]−1 ·G ·M−1

where G denotes the Jacobian of the constraints. An equidistant time grid {t0, t0 +
Δ t, . . . , t0 +NΔ t = tN} is defined using the constant time step Δ t ∈ R and the dis-
crete approximation to the configuration at a time node reads qn≈q(tn). The discrete

generalised coordinates un+1 =

[
θ 1

n+1
θ 2

n+1

]
consist of the incremental rotation vectors

θ 1
n+1,θ 2

n+1 ∈ R
3 for the two bodies. With the corresponding rotation matrices ob-

tained via the exponential map exp : so(3)→ SO(3), the nodal reparametrisations
qn+1 = F1(un+1,qn) ∈C1 and qn+1 = F2(un+1,qn) ∈C2 in the specific gait phases
read

(dα
I )n+1 = exp

(
θ̂ α

n+1

)
· (dα

I )n I = 1,2,3 α = 1,2

ϕα
n+1 = xSα − (ρα

Sα
)n+1

ϕβ
n+1 = ϕα

n+1 +(ρα
H)n+1− (ρβ

H)n+1

qM
n+1 = ϕ1

n+1 +(ρ1
H)n+1

During stance phase of first foot, the active constraint is g1 and (α,β ) = (1,2) in
the last three equations. The second foot’s stance phase is characterised by g2 and
(α,β ) = (2,1) holds.
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2.5 Actuation

Although the system has six degrees of freedom, only a three-dimensional torque τ ∈
R

3 acts in the hip joint, thus the system is underactuated. The generalised forces τ
are mapped to the redundant control force f∈Rn (since the optimal control problem
in Section 3 is formulated in terms of the n-dimensional redundant configuration and
control force) via the input transformation matrix

B(q) =
1
2

[
0 −d̂1

1 −d̂1
2 −d̂1

3 0 d̂2
1 d̂2

2 d̂2
3 0
]

To ensure regularity of the constrained optimisation problem in DMOCC, the dis-
crete generalised forces τn are defined in the interval [tn, tn+1], then their effect is
transformed to the nodes via τ+n−1 =

Δ t
2 τn−1 and τ+n = Δ t

2 τn and finally the redun-
dant forces at tn are given by

f+n−1 = BT (qn) · τ+n−1 and f−n = BT (qn) · τ−n

3 Optimal Control of the Walker

3.1 Objective Functional

The objective functional J(q, q̇, f) =
∫ tN

t0
C(q, q̇, f)dt is to be minimised with respect

to the state trajectory (q(t), q̇(t)) and the control trajectory f(t). Motivated by the
specific cost of transport used e.g. in [37], we consider the control effort per step
length sl, i.e. C(q, q̇, f) = ‖f‖

sl(q) as a cost function. Although the walker is in princi-
ple free to move in any direction, the step length is measured as the projection of
the distance between the feet in the double stance configuration onto a predefined
walking direction, see Figure 4.

3.2 Periodic Boundary Conditions

Let qι denote the double stance configuration (which is unknown and thus to be de-
termined by the optimisation). It is assumed that the swing phases of the left and right
leg of the walker are identical mirror images of each other, see Figure 4. Therefore,
only half a gait cycle is optimised while the final state is requested to be a mirror im-
age of the initial state that is translated by the steplength into the walking direction.
For the compass biped, periodicity of the gait leads to 12 independent conditions,
which can e.g. be formulated in terms of the alignment of certain directors (and con-
jugate momenta) at the unknown initial configuration with the mirror image of direc-
tors (and corresponding momenta) at the unknown final configuration. Thereby, the
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(q0,p0) (qι ,pι) (qN ,pN)

Fig. 4 Initial (left) and final (right) configuration of half a gait cycle and mirror plane in the
double stance configuration (middle)

prescribed walk direction and the direction of gravity span the mirror plane which
goes through the midpoint (measured in the plane’s normal direction) between the
contact points of the feet with the ground. Another three conditions relate the un-
known torques in the first and last time interval to each other as mirror images. These
relations are described by the function r(q0,p0,qι ,qN ,pN ,τ0,τN−1) = 0 involving
the initial and final configuration, conjugate momenta and torques, respectively and
the impact configuration. Let mirr : R3→ R

3 denote the mirror function, then one
possibility is to require alignment of

· the first leg’s directors at t0, i.e. (d1
I )0, with the mirror image of the second leg’s

directors at tN , i.e. mirr((d2
I )N) for I = 1,2,3 and

· the conjugate momenta (p1
I )0 with mirr((p2

I )N) for I = 1,2,3 and
· the directors (d2

I )0 with mirr((d1
I )N) for I = 1,2,3 and

· the conjugate momenta (p2
I )0 with mirr((p1

I )N) for I = 1,2,3 and
· the torque τ0 with mirr(τN−1).

Using the discrete Legendre transformation (4), these conditions can be transformed
into relations between q0 and qN−1 and between q1 and qN , respectively, which sim-
plifies their implementation in the framework of the discrete optimisation problem.

3.3 Variational Principles

Before and after the impact, the Lagrange-d’Alembert principle for constrained
forced dynamics is used to derive the equations of motion from a variational prin-
ciple. The Lagrangian L : T Q→ R with L(q, q̇) = 1

2 q̇ ·M · q̇−V(q) represents the
difference of kinetic and potential energy V (q). In the case of the walker, the poten-
tial energy represents the influence of gravity. The Lagrange multipliers λ1,λ2 ∈Rm

correspond to the constraints active during the specific gait phases.
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In the presence of a perfectly plastic impact, the dynamics takes place in a non-
smooth setting involving modifications to the path space such that one takes vari-
ations over curves with isolated points of diminished smoothness or continuity. In
[33], a nonautonomous variational approach to nonsmooth dynamical problems is
elaborated. While mentioning this here only very briefly, we refer to [33] for de-
tails. Essentially, we consider paths c(s) = (ct(s),cq(s)) in an extended configura-
tion space [t0, tN ]×Q parametrised in s ∈ [0,1]. Now, the time reads t = ct(s) in
C∞([0,1], [t0, tN ]) with strictly positive derivative and the configuration is given by
the continuous function q(t) = cq(c

−1
t (t)) being (piecewise) twice continuously dif-

ferentiable (away from the impact) and having a singularity at the impact configura-
tion q(tι ) = cq(sι ) due to which the action integral has to be split. With the variation
δc(sι ) = (δct(sι ),δcq(sι )) ∈ Tqι ([t0, tN ],C2), it reads

δ
(∫ t−ι

t0
L(q, q̇)− g1(q) ·λ1 dt

)
+
∫ t−ι

t0
f ·δqdt + fc

t ·δct(sι )+ fc
q ·δcq(sι )+

δ
(∫ tN

t+ι
L(q, q̇)− g2(q) ·λ2 dt

)
+
∫ tN

t+ι
f ·δqdt = 0

(1)

Note that describing the transfer of contact, and in particular the perfectly plastic
impact with no sliding, requires the joining of two variational principles at tι by in-
corporating the virtual work of the contact force fc = (fc

t , f
c
q) ∈ T ∗qι ([t0, tN ],C2). In

particular, it will be seen in the transition equations (2) below, that the configura-
tion component fc

q imposes a jump in the system’s momentum normal to the contact

surface while fc
t induces jump in the energy E = ∂L

∂ q̇ · q̇−L.

3.4 Optimal Control Problem

Deriving the differential-algebraic equations of motion from the variational formu-
lation (1), results in the following optimal control problem in the time continuous
setting.

min
q,q̇,f

J(q, q̇, f)

subject to
constrained equations of motion in [t0, tι [

∂L(q,q̇)
∂q − d

dt
∂L(q,q̇)

∂ q̇ −GT
1 (q) ·λ1 + f = 0

g1(q) = 0

constrained equations of motion in ]tι , tN ]

∂L(q,q̇)
∂q − d

dt
∂L(q,q̇)

∂ q̇ −GT
2 (q) ·λ2 + f = 0

g2(q) = 0
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transition equations from (q(t−ι ), q̇(t−ι )) ∈ TC1 to (q(t+ι ), q̇(t+ι )) ∈ TC2

∂L(q, q̇)
∂ q̇

∣∣t+ι
t−ι
− fc

q = 0, E
∣∣t+ι
t−ι
− fc

t = 0 (2)

periodic boundary conditions

r(q0,p0,qι ,qN ,pN ,τ0,τN−1) = 0

path constraints
h(q)≥ 0

Here, G1(q) = Dg1(q) and G2(q) = Dg2(q) denote the Jacobians of the constraint
functions. The transition equations (2) describe the change in momentum and energy
due to the perfectly plastic impact that immobilises the foot.

4 Constrained Discrete Dynamics and Optimal Control of the
Walker

4.1 Discrete Variational Principles and Equations of Motion

Without loss of generality, it is assumed that the time of contact establishing between
the second foot and the ground coincides with a time node tι . This is possible since
periodic boundary conditions are imposed on the initial and final states, see Section
3.2. Furthermore, it spares the necessity to consider variations with respect to time in
the discrete setting. Details on the discrete variational theory for nonsmooth systems
with unknown collision time can be found in [33]. The key ingredient of variational
integrators is the discrete Lagrangian Ld , which approximates the action of the con-
tinuous Lagrangian in one time interval. In this work, a midpoint approximation is
used, i.e. Ld(qn,qn+1) = L(qn+qn+1

2 ,
qn+1−qn

Δ t ). In analogy to the continuous varia-
tional principles (1), the joining of two discrete constrained Lagrange-d’Alembert
principle at tι reads

δ

(
ι−1

∑
n=0

Ld(qn,qn+1)− Δ t
2

g1(qn) ·λ1,n− Δ t
2

g1(qn+1) ·λ1,n+1

)
+

ι−1

∑
n=0

(
f−n ·δqn+

f+n ·δqn+1
)
+ fc

q ·δqι +δ

(
N−1

∑
n=ι

Ld(qn,qn+1)− Δ t
2

g2(qn) ·λ2,n− Δ t
2

g2(qn+1) ·λ2,n+1

)

+
N−1

∑
n=ι

(
f−n ·δqn + f+n ·δqn+1

)
= 0

(3)
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with the variations δq0, . . . ,qι−1,qι+1, . . . ,δqN ∈ TQ, the constrained variation at
the impact δqι ∈ Tqι C2, the impact force fc

q ∈ T ∗qι C2 and variations of the Lagrange
multipliers δλ1,0, . . . ,δλ1,ι ,δλ2,ι , . . . ,δλ2,N ∈Rm. Due to their derivation via a dis-
crete variational principle, the discrete equations of motion resulting from (3), called
discrete Euler-Lagrange equations, inherit the structure preserving properties from
the real continuous dynamics. A discrete symplectic form as well as momentum
maps arising from symmetries according to Noether’s theorem are conserved ex-
actly along the discrete trajectory, see [22].

The discrete equations of motion resulting from (3) involve configurations vari-
ables, forces and Lagrange multipliers. However, in the context of boundary condi-
tions as well as for post-processing and interpretation of the discrete equations of
motion as a balance of discrete momentum, the knowledge of the conjugate mo-
menta is useful. At each time node, there exist two expressions for the conjugate
momenta, taking into account the past or the following time interval, respectively.
The constrained forced discrete Legendre transformation are given by

p−n = −D1Ld(qn,qn+1)+
Δ t
2 GT (qn) ·λn− f−n

p+
n = D2Ld(qn−1,qn)− Δ t

2 GT (qn) ·λn + f+n−1

(4)

The projected discrete Legendre transforms, which still yield an n-dimensional con-
jugate momentum, read

Qp−n = Q(qn) ·
[−D1Ld(qn,qn+1)− f−n

]
, Qp+

n = Q(qn) ·
[
D2Ld(qn−1,qn)+ f+n−1

]

Finally, the reduced discrete Legendre transforms result in (n−m)-dimensional con-
jugate momentum and are defined as

Pp−n =PT (qn)·
[−D1Ld(qn,qn+1)− f−n

]
, Pp+

n =PT (qn)·
[
D2Ld(qn−1,qn)+ f+n−1

]

First Swing Phase

For n = 1, ..., ι−1 the discrete variational principle (3) yields the following system
which is to be solved for q2, ...,qι ,λ1,1, ...,λ1,ι−1.

D2Ld(qn−1,qn)+D1Ld(qn,qn+1)−Δ tGT
1 (qn) ·λ1,n + f+n−1 + f−n = 0

g1(qn+1) = 0
(5)

Note that the first equation can be interpreted as a balance of discrete momentum
p+

n = p−n . Equivalently, in reduced form using the null space matrix P1 and the dis-
crete reparametrisation qn+1 = F1(un+1,qn)∈C1, the balance of projected momen-
tum Pp+

n =P p−n reading

PT
1 (qn) ·

[
D2Ld(qn−1,qn)+D1Ld(qn,qn+1)+ f+n−1+ f−n

]
= 0 (6)

is to be solved for u2, ...,uι . In contrast to the (n+m)-dimensional system (5), (6)
is only (n−m)-dimensional.
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Second Swing Phase

The discrete variational principle (3) yields for n = ι + 1, ...,N− 1 the system

D2Ld(qn−1,qn)+D1Ld(qn,qn+1)−Δ tGT
2 (qn) ·λ2,n + f+n−1 + f−n = 0

g2(qn+1) = 0

which is o be solved for qι+2, ...,qN ,λ2,ι+1, ...,λ2,N−1. Equivalently using the null
space matrix P2 and the discrete reparametrisation qn+1 = F2(un+1,qn) ∈ C2 the
reduced system

PT
2 (qn) ·

[
D2Ld(qn−1,qn)+D1Ld(qn,qn+1)+ f+n−1+ f−n

]
= 0 (7)

is to be solved for uι+2, ...,uN−1.

Transfer of Contact

As explained earlier, without loss of generality, it can be assumed that the impact of
the second foot on the ground takes place at tι , thus gc(qι ) = 0. Then automatically
g2(qι ) = 0 follows, since the point of contact defines g2. Note that a contact force
fc
q ∈ T ∗qι C2 which immobolises the second foot in it’s point of contact is normal

to C2, thus it is given by fc
q = GT

2 (qι ) · λc. Substituting this in the discrete form
p+

ι −p−ι + fc
q = 0 of the transition equations (2) yields

D2Ld(qι−1,qι )+D1Ld(qι ,qι+1)− Δ t
2 GT

1 (qι ) ·λ1,ι −GT
2 (qι ) · (Δ t

2 λ2,ι +λc)+

f+ι−1 + f−ι = 0
g2(qι+1) = 0

(8)

This is an underdetermined system. To solve for qι+1,λ1,ι ,λ2,ι ,λc, one possibility
is to augment (8) by the constraints on momentum level G1(q) ·M−1 ·p+

ι = 0 and
G2(q) ·M−1 ·p−ι = 0. However, since only constraints on the configuration variables
are imposed elsewhere, this would be somewhat inconsequent. Therefore, the fact
that Qp+

n = p+
n holds is used and the transition equations read Q1 p+

ι − p−ι + fc
q =

0. Next, projection with the second discrete null space matrix and insertion of the
discrete reparametrisation qι+1 = F2(uι+1,qι ) ∈C2 yields

PT
2 (qι ) ·

[
Q1(qι ) ·

(
D2Ld(qι−1,qι )+ f+ι−1

)
+D1Ld(qι ,qι+1)+ f−ι

]
= 0 (9)

to be solved for uι+1.
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4.2 Discrete Constrained Optimisation Problem

As for the discrete Lagrangian in Section 4.1, the integral of the continuous cost
function in one time interval is approximated by Cd . Furthermore, indicating the
dependence on the discrete generalised coordinates ud = {un}N

n=1 and forces τd =

{τn}N−1
n=0 directly, the discrete objective function can be expressed as

Jd(ud ,τd) =
N−1

∑
n=0

Cd(un,un+1,τn)

The constrained optimisation problem reads

min
ud ,τd

Jd(ud ,τd)

subject to
reduced forced discrete equations of motion (6) for n = 1, ..., ι− 1

PT
1 (qn) ·

[
D2Ld(qn−1,qn)+D1Ld(qn,qn+1)+ f+n−1+ f−n

]
= 0

reduced forced discrete equations of motion (7) for n = ι + 1, ...,N− 1

PT
2 (qn) ·

[
D2Ld(qn−1,qn)+D1Ld(qn,qn+1)+ f+n−1+ f−n

]
= 0

transition equations (9)

gc(qι ) = 0
PT

2 (qι ) ·
[
Q1(qι ) ·

(
D2Ld(qι−1,qι )+ f+ι−1

)
+D1Ld(qι ,qι+1)+ f−ι

]
= 0

periodic boundary conditions

r(q0,p0,qι ,qN ,pN ,τ0,τN−1) = 0

path constraints for n = 1, ...,N

h(qn)≥ 0

5 Results

In the walker model, the mass of the rigid legs is M1
ϕ = M2

ϕ = 5 while that of the
point mass is MM = 10. The legs are double cones of radius r = 0.05 and cone
length l = 0.5. Gravity points with an acceleration of g=−9.81 into the negative e3-
direction. The simulation of the half step takes place in the time interval [0,0.7] and
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Fig. 5 Snapshots of the compass biped gait

N = 13, i.e. 14 time nodes are used and the double stance configuration is assumed
to be approximately in the middle of the interval, thus ι = 6. Note that the periodic
boundary conditions allow tι to be anywhere in the time interval. The restricted op-
timisation problem described in Section 4.2 is solved in Matlab using fmincon
choosing an active-set algorithm and supplying user defined analytic gradients of
the objective function and the constraints, respectively.

The initial guess is quite rough and does not fulfill the discrete dynamics. At t0,
the biped stands in the (e2,e3)-plane, with the stance leg (yellow) rotated by the
angle π

18 around the negative e1-axis and the swing leg (red) rotated by the same
angle around the positive e1-axis. Then,

(θ 1
1 )n = (θ 2

1 )n =
π

18(N−1) n = 2, . . . ,13

(θ 1
2 )n =

0.12
N
2 −1

, (θ 1
3 )n = (θ 2

3 )n =− 0.16
N
2 −1

, (θ 2
2 )n =

0.25
N
2

n = 1, . . . ,6

(θ 1
2 )n =− 0.12

N
2 −1

, (θ 1
3 )n = (θ 2

3 )n =
0.16
N
2 −1

, (θ 2
2 )n =− 0.25

N
2 −2

n = 7, . . . ,13

and all discrete generalised forces are set to zero.
The gait resulting from the discrete objective function

Jd(ud ,τd) =
Δ t

sl(ud)

N−1

∑
n=0
‖τn‖

approximating J(q, q̇, f) introduced in Section 3.1 is computed. See Figure 5 for
snapshots of the motion. Figure 6 shows the evolution of the feet trajectory coordi-
nates (left) and projection of the feet and hip trajectories to the (e1,e2)-plane (right)
during three steps. Only a half step has been simulated, however, the fulfilment of
periodic boundary condition on configuration as well as on momentum level ensures
the smooth transition between the steps. The vertical dotted lines in the left plot in-
dicate the double stance configurations and the yellow and red circles in the right
plot mark the placement xS1 and xS2 of the stancefoot during the specific gait phases,
respectively. The path constraints preventing the self-penetration of the walker are
never active in the presented solution. Due to the presence of gravity and the fix-
ing of one foot on the ground, the only symmetry of the Lagrangian of the walker
is rotation around the gravity axis through the foot position. Figure 7 shows that
during the specific gait phases, angular momentum with respect to the attachment
point is conserved exactly. This illustrates the structure preservation guaranteed by



114 S. Leyendecker, D. Pekarek, and J.E. Marsden

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

t

1

0 0.5 1 1.5 2 2.5 3 3.5 4
0.1

0

0.1

0.2

t

2

0 0.5 1 1.5 2 2.5 3 3.5 4
0.02

0

0.02

t

3
foot 1
foot 2

foot 1
foot 2

foot 1
foot 2

0 0.2 0.4 0.6 0.8 1

0.1

0.05

0

0.05

0.1

0.15

0.2

0.25

1

2

foot 1
foot 2
hip

Fig. 6 Evolution of the feet trajectory coordinates (left) and projection of the feet and hip
trajectories to the (e1,e2)-plane (right).
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Fig. 7 Angular momentum with respect to xS1 (left) and with respect to xS2 (right)

the discrete Euler-Lagrange equations. From the discrete configuration and force tra-
jectories, the steplength for this gait is determined to be sl = 0.1960 and the value
of the objective function is Jd = 11.4020. Due to the midpoint evaluation of the
discrete Lagrangian in (3), the discrete trajectory presented in this work is second
order accurate. However, a numerical convergence study goes beyond the scope of
this work and will be presented elsewhere.

6 Conclusion

A structure preserving method for the numerical simulation of the optimal control of
a bipedal walker’s compass gait has been developed and illustrated with an example.
In the discrete formulation of the optimal control problem in Section 4.2, structure
preservation is guaranteed by the derivation of the discrete equations of motion,
and in particular the discrete transfer of contact equations, via a discrete variational
principle.
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Quasi-straightened Knee Walking for the
Humanoid Robot

Zhibin Li, Bram Vanderborght, Nikos G. Tsagarakis, and Darwin G. Caldwell

Abstract. Most humanoid robots do not walk in a very human-like manner due to
their style of bent knee walking. Typically for decoupling the motion in the sagittal
and the coronal planes, the acceleration term in the zero moment point (ZMP) equa-
tion is set to zero, resulting in a constant height of the center of mass (COM). This
constraint creates the bent knee profile that is fairly typical for walking robots, which
particularly requires high torque transmission from motors. Hence, it is interesting
to investigate an improved trajectory generator that produces a more straight knee
walking which is more energy efficient and natural compared to those performed
by the bent knee walking. This issue is addressed by adding a virtual spring-damper
to the cart-table model. This strategy combines the preview control for generating
the desired horizontal motions of the COM, and the virtual model for generating the
vertical COM motion. The feasibility is evaluated by a mathematical investigation
of the sensitivity of ZMP errors in MATLAB simulation of a multi-body humanoid
model. The walking pattern is applied to the simulated humanoid iCub using the
dynamic simulator OpenHRP3. The simulated iCub successfully performs walking
gaits. Simulation results are presented and compared to the biomechanical study
from human gaits. Both the knee joint torque and energy consumption of all joints
required by the proposed strategy are reduced compared to that of the conventional
cart-table scheme.

1 Introduction

To date, many successful humanoids such as Asimo [12] and HRP-2 [6] demon-
strate their outstanding capability of performing a variety of stable walking tasks.
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Nevertheless, most of them walk with bent knees that gives an unnatural looking.
Moreover, knee motors usually have the highest torque and power [8]. In contrast,
in human walking the knee is almost completely stretched [1] and performs mostly
negative work [14]. Indeed, in many passive walkers, the knee joint is not actuated
and only a knee-locking mechanism is used [7].

WABIAN-2 achieves a more human-like walking than many other robots because
it can stretch its knees and avoid singularities by using extra degree of freedoms
(DOFs) from the waist joint [9]. The waist joint provides two complementary DOFs
for solving the inverse kinematics so it permits a flexible design of knee joint tra-
jectories. Its pattern generator uses predetermined knee joint trajectories consist of
two sine motions in order to realize straight knee walking. The knee singularity is
avoided since the knee trajectory is predefined in the joint space and requires no
inverse kinematics. An essential benefit of this motion is the lower torque require-
ment and reduced energy consumption [10]. Nandha et al. found a hip trajectory
satisfying the zero moment point (ZMP) by the method in [3], and solved the in-
verse kinematics by defining an initial foot trajectory. The knee stretch motion is
redesigned by the cubic spline interpolation to prevent the singularity [2]. But the
foot motion needs to be recalculated to find the inverse kinematics solution for the
new knee trajectory. Both methods have a common groundwork of planning the knee
trajectory in joint space.

Our study presents an alternative approach using a pattern generation method
in the Cartesian space without predefining or redesigning knee joint trajectories in
the joint space. We investigate a pattern generation method which creates a more
straightened (but not fully straightened) knee walking profile by combining the well
recognized cart table model with virtual spring-damper models [11].

The paper is organized as follows. Section 2 mathematically investigates the fea-
sibility of integrating the z motion with the cart-table model and presents the model-
ing of the virtual spring damper. Section 3 provides the gait generation results from
a multi-body humanoid model in MATLAB as well as the successful walking gaits
from the dynamic simulator OpenHRP3. We conclude the study in Section 4.

2 Mathematical Modeling

The spatial COM motion is decoupled into the horizontal plane and the vertical axis
respectively. The control architecture consists of two stages of trajectory generation.
In the first stage, the preview control [4] generates the horizontal motion and the
virtual spring damper produces the vertical motion. In the second stage, the preview
control modifies the horizontal motion to compensate for the errors caused by the
vertical motion as well as the simplified modeling. In this paper, we focus on the
generation of the vertical motion in order to achieve the quasi-straightened knee
walking.
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2.1 Feasibility

Prior to applying the virtual model, we mathematically examine the feasibility of
combining the cart-table model and the virtual model by computing the sensitiv-
ity of the ZMP error linearized around the nominal COM height with zero accel-
eration. The cart-table model assumes that the cart stays on a level table, while the
virtual spring is meant to create vertical displacement. Introducing the virtual spring-
damper theoretically violates the assumption of the cart-table model. However, the
following analysis shows that the introduced error can be minimized and minor if
the vertical acceleration is relatively small compared to the gravity constant.

The general ZMP equations of a multi-body rigid system considering the angular
momentum effect are as follows.

xzmp =
m(z̈+ g)x−mẍz− L̇y

m(z̈+ g)
(1a)

yzmp =
m(z̈+ g)y−mÿz+ L̇x

m(z̈+ g)
(1b)

In the proposed method, the upper body of the robot is kept in an upright posture and
only legs alternate during walking. Hence we assume a minor inertia effect since the
momentum created by two legs counteracts each other to some extent so the rate of
the angular momentum Ly and Lx are neglected in this study. Regarding z, z̈ as two
variables, we obtain the ZMP equation which comprises z and z̈.

A general ZMP equation neglecting the rate of angular momentum is

xzmp = x− ẍz
z̈+ g

. (2)

The simplified ZMP equation of cart-table model used by the preview controller is

x′zmp = x− ẍzc

g
, (3)

where zc is the constant COM height.
We examine the ZMP error ex in the x axis and the same rule holds for ey. There-

fore in the following content ex is investigated and hereafter. The ZMP error ex in-
troduced by the vertical motion is

ex = xzmp− x′zmp

= ẍ
zcz̈+ g(zc− z)

g(z̈+ g)
.

(4)

Partial differential equations of ZMP error ex are

∂ (ex)

∂ (z)
=− ẍ

z̈+ g
, (5)
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and
∂ (ex)

∂ (z̈)
= ẍ(

zc

g(z̈+ g)
− (zcz̈+ gzc− gz)

g(z̈+ g)2 ). (6)

Linearizing the partial derivatives around z = zc and z̈ = 0m/s2, the errors of the
ZMP calculations caused by z and z̈ respectively are

∂ (ex)

∂ (z)
Δz =− ẍ

z̈+ g
Δz

=− ẍ
g

Δz,
(7)

and

∂ (ex)

∂ (z̈)
Δ z̈ =

ẍz
g2 Δ z̈

=
ẍzc

g2 Δ z̈.
(8)

The ratio of errors caused by Δ z̈ and Δz is

∣∣∂ (ex)

∂ (z̈)
Δ z̈
∣∣/∣∣∂ (ex)

∂ (z)
Δz
∣∣ = ∣∣− z/(z̈+ g)

∣∣∣∣Δ z̈/Δz
∣∣

=

∣∣Δ z̈/g
∣∣∣∣Δz/zc
∣∣ .

(9)

For an average human height, assume the value of parameters are zc ≈ 0.95m, |Δz| ≤
0.02m, and |Δ z̈| ≤ 2m/s2. Substituting these values into (9), we gain the insight that
the height variation Δz/zc is relatively small compared to the acceleration variation
Δ z̈/g. So, ex introduced by the vertical COM motion is mainly determined by the
magnitude of acceleration variation Δ z̈. Therefore, the error ex can be reduced within
a reasonable bound by minimizing Δ z̈/g. The same conclusion holds for the error
ey of the ZMP yzmp in the y axis. A generalized investigation of the contribution

Fig. 1 The ZMP error ex normalized by the horizontal acceleration ẍ



Quasi-straightened Knee Walking for the Humanoid Robot 121

of errors for a different humanoid robot can be done using the same equations by
substituting different sets of parameters.

In order to evaluate the error caused by the vertical motion, we configure a set of
parameters 0.41m≤ z≤ 0.44m, −2m/s2 ≤ z≤ 2m/s2, and ẍ = 1m/s2 for the iCub
robot. The parameter scan computes numerically the error ex according to (4) given
a unit of horizontal acceleration ẍ = 1m/s2. In Fig. 1, it can be seen that the differ-
ence of the slope along the z and z̈ axes indicating the difference level of parametric
perturbations from the parameter variation of z and z̈ respectively.

2.2 Virtual Spring-Damper Model

On the basis of the cart-table model, the virtual spring-damper model relaxes the
constraint of the constant COM height. This will permit greater stretching of knee
joints which will reduce the knee torque and provide a more natural motion.

In Fig. 2, the virtual springs connect the COM and the ankle joints. During walk-
ing, the virtual springs are compressed thus generating virtual forces. Since the pre-
view control solves the horizontal motion, only the vertical force component of the
spring is employed to determine the vertical dynamics. In the z axis, a virtual damper
is added at the tip of each spring to prevent the vertical oscillations. l0 is the orig-
inal rest length of the spring; lsl , lsr are the spring length for left and right leg re-
spectively; lupper is the length of the thigh; llower is the length of the shin; dhip is
the horizontal distance from the hip joint to the pelvis center; dhipCOM is the initial
distance between the pelvis center and the COM; x,y,z are the position of the COM
in the world coordinate; x f l ,y f l ,z f l and x f r,y f r,z f r are the position of the left and
right foot in the world coordinate; K = k/m is the mass-less stiffness of the virtual
spring; C = c/m is the mass-less viscous coefficient of the virtual damper; g is the
gravity constant 9.81m/s2. We define the mass-less coefficient K and C which are
the standard stiffness and viscous coefficient normalized by the mass, thus system
dynamics is preserved regardless of a specific mass of the robot. Tuning K and C is
intuitive according to their physical meanings.

(x0, y0, zc)

(xfr, yfr, zfr)

(xfl, yfl, zfl)

lupper

llower

dhip_COM

dhip

ls

COM (x, y, z)

Initial Standing (Front) Single Support Double SupportInitial Standing (Side)

Fig. 2 Virtual spring-damper model
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Define x,y,z and x f ,y f ,z f are the position of the COM and the ankle of the sup-
port leg respectively. The acceleration exerted by the spring can be derived according
to Hooke’s law.

The rest length of the the virtual spring is

l0 =
√(

lupper + llower + dhipCOM

)2
+ d2

hip. (10)

The length of the the virtual spring of the stance leg is

ls =
√
(x− x f )2 +(y− y f )2 +(z− z f )2. (11)

The force produced by the virtual spring is

f = k(l0− ls). (12)

The acceleration caused by the force of the virtual spring is

a =
k
m
(l0− ls)

= K(l0− ls).
(13)

The vertical component of the acceleration is

z̈ = K(l0− ls)
z− z f

ls
. (14)

Setting the origin of the world coordinate at the height of the ankle joint, we have
z f = 0, yields

z̈ = K(l0− ls)
z
ls

= K(
l0
ls
− 1)z.

(15)

The acceleration contributed by the virtual spring force is thus obtained as in (15).
By adding the gravity constant and the acceleration produced by the virtual damper,
the vertical component of the overall acceleration can be easily computed as

z̈ = K(
l0
ls
− 1)z− g−Cż. (16)

2.3 Mathematical Formulation

We have studied smooth transition strategies to minimize the magnitude of the accel-
eration deviation Δ z̈ in order to compensate for the overall ZMP error in the second
stage of preview control. The strategies include three different means of altering
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the spring damper parameters according to the walking phases. The walking phases
such as standing, single support, and double support are defined by the foot ground
contact.

1. Transition from initial standing posture to single support phase: each leg in the
standing phase uses half of the stiffness of that of the stance leg in the single
support phase.

2. Transitions from single support phase to double support phase: set the initial
spring length in the event of touch-down as its temporary rest length l′0, ensuring
the vertical acceleration exerted by touch-down leg increases from zero.

3. Transitions from double support phase to single support phase: restore the orig-
inal spring rest length l0 of the stance leg.

The simulated robot at the initial standing phase has the mass-less stiffness of 0.5K
in each leg. So the overall stiffness of two legs is K. By doing so when the robot
starts the first single support phase, its new support leg also has the same stiffness
K as the overall stiffness of two legs in the standing posture, therefore, the accelera-
tion term z̈ doesn’t vary significantly when the gait starts. When the robot enters the
double support phase, the touch-down leg is not fully straightened for avoiding the
knee singularity. So at the very beginning of touch-down, the virtual spring length ls
is already shorter than its rest length l0. Consequently, it could generate a non-zero
initial force and result in an offset force input which produces large acceleration z̈.
To avoid this, the virtual spring length ls in the event of touch-down is set as the
temporary rest length, denoted as l′0, to ensure that the z̈ exerted by touch-down leg
increases from zero. This realizes a smooth transition of the vertical acceleration.
When the coming single support phase starts, the original rest length of the spring
is restored for the support leg. The usage of the virtual damper primarily filters the
force spikes caused by this stiffness variation. With these smooth transition strate-
gies, the variation of Δz and Δ z̈ can be treated as small parametric disturbances
which can be compensated by the second loop of the preview controller.

In the standing position, the initial COM position is denoted as (x0,y0,zc). The
spring force produced by each leg is computed as in (15). Using superposition, we
obtain the equation of the equilibrium point where the force of two virtual springs
counterbalances the gravity.

(
2l0√

d2
hip + z2

c

− 2)zc =
g
K
. (17)

Rewrite (17), yields

z4 +
g
K

z3 +(
g2

4K2 + d2
hip− l2

0)z
2 +

gd2
hip

K
z+

g2d2
hip

4K2 = 0. (18)

Solving (18) gives the value of zc as the constant COM height in the state space equa-
tion of the preview controller. Given the initial condition z(0) = zc, ż(0) = 0, z̈(0) =
0, the COM state (z(i), ż(i), z̈(i)) can be computed by numerical integrations accord-
ing to the dynamic equations.
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In the single support phase, the dynamic equation is

z̈ = K(l0/ls− 1)z− g−Cż, (19)

The virtual spring length of the stance leg are

lsl =
√
(x− x f l)2 +(y− y f l)2 + z2 (20a)

lsr =
√
(x− x f r)2 +(y− y f r)2 + z2 (20b)

for the left and right support leg respectively.
In the double support phase, the dynamic equation is

z̈ = K(l0/lsold + l′0/lsnew − 2)z− g− 2Cż, (21)

where l′0 is the temporary rest spring length of the latest touch-down leg lsnew .

3 Simulation

The joint trajectories of the stable walking are generated by the gait pattern gener-
ator in MATLAB. In the first control stage, the simplified model presented in the
previous section is used to generate the spatial trajectory of the COM and a multi-
body model including the mass and inertia is used to compute the explicit ZMP as
in (1). In the second control stage, the error of the desired ZMP and the explicit
ZMP is used by the preview controller to generate a modification of the horizontal
motion to minimize the ZMP error. The final output of the COM trajectory and the
foot trajectory are used to solve the inverse kinematics to obtain the joint trajectories
as the reference inputs for joint tracking controllers. Fig. 3 shows the entire control
architecture of the trajectory generator.

In Fig. 4, the red lines are the results from gait pattern generation without smooth
transition strategies, while the blue lines are those with the strategies applied.
Fig. 4(a) shows that without the smooth transition strategies the acceleration z̈ is
large, resulting in large ex which causes the real ZMP to drift away from the one
formulated by the cart-table model as shown in Fig. 4(b). Thus, it is more difficult
for the preview controller to compensate for the ZMP errors in the second control
stage. In Fig. 4(b), the smooth transition strategies minimize ex within 7mm, so the
cart-table model provides a good representation of the system dynamics even with
a certain range of the vertical motion.

The dynamic simulation of the iCub [13] robot is performed in OpenHRP3 [5].
Fig. 5 shows the real iCub robot and its rigid body model in OpenHRP3. The snap-
shots of the bent knee and the straightened knee walking are shown in Fig. 6(a)
and Fig. 6(b) respectively. The difference in the vertical motion are highlighted by
the straight/arc lines of the COM in Fig. 6. The walking manner has more natural
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(a) iCub robot (b) iCub model

Fig. 5 iCub robot and its model in OpenHRP3 simulator

(a) Bent knee walking

(b) Straightened knee walking

Fig. 6 iCub robot and walking simulation in OpenHRP3 simulator

looking because the robot stretches out its shin to place a new foothold while the
stance leg is more straightened rather than a common highly bent profile.

Fig. 7(a) compares the knee joint angles from the simulation of the cart-table
model and the proposed scheme. Fig. 7(b) shows the two knee torque profiles from
the dynamic simulator OpenHRP3 in the single support phase. It can be seen that
the motor torque is reduced in the straightened knee walking. The difference of the
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Fig. 7 Simulation results
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angular velocity is shown in Fig. 7(c). Hence, the power of knee can be computed
as shown in Fig. 7(d). In the conventional bent walking, knee actuator consumes
4.31J of mechanical energy during a single support phase, while 3.87J is required
in a more straightened knee walking, which saves 10.2% of the mechanical energy.

Note that the heat dissipation of electric motors is measured in terms of the cur-
rent square. Since the motor current is proportional to the motor torque, the root
mean square (RMS) torque can be used as an index to evaluate the heat dissipation.
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The RMS torque of all the joints are computed based on the original torque data
obtained in the OpenHRP3 simulator, shown in Fig. 8. The proposed method sig-
nificantly reduces the heat dissipation at all joints. The The total RMS torque of all
joints decreases from 191.4Nm (bent knee) to 136.5Nm (straightened knee), saving
28.7% energy from unnecessary heat waste.
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Fig. 9 Comparison of vertical ground reaction force

The work in [14] shows statistically that the maximum knee angle during the
stance phase is approximately 23◦ for humans as shown in Fig. 9(a), while the sim-
ulated robot with straightened knee is around 26◦ as shown in Fig. 9(b). When the
robot places a new touch-down leg, the knee joint angle increases due to the com-
pression of the virtual spring, then decreases because of the decompression of the
virtual spring. This results in a convex pattern of the knee joint during the stance
phase. Fig. 9(a) reveals a similar convex curve of knee joint in human gait.

Moreover, the compression and decompression of the virtual spring consequently
create a double force peaks. This phenomenon is also observed in the study of
biomechanical research of human gait [14]. In Fig. 9(c) and Fig. 9(d), the normalized
GRF of the human gait and the simulated robot are depicted. In Fig. 9(d), the red
vertical lines indicate the switching between the single and double support phases.
There are several similar features which reflect the similarities, despite that the GRF
of the simulated robot has a smaller magnitude than that of humans.
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1. Both the human and the simulated robot show two force peaks larger than the
body weight during the single support phase.

2. The GRF has a force peak in the middle of the double support phase.
3. The first force peak is larger than the second one in single support phase.

Certainly, the GRF feature of human comes from different nature than that of the
simulated robot. However, the results shown in this study might suggest the possi-
bility of reproducing the similar dynamic features for the robot if a proper modeling
is exploited. For example, the double force peak during single support phase origi-
nates from the bouncing behavior of the virtual spring and the superposition of two
spring force delivers a maximum force magnitude during the mid double support
phase. The viscous force from the virtual damper partially dissipates the kinetic en-
ergy therefore the second force peak has smaller magnitude than the first one during
the single support phase.

4 Conclusion

The proposed method combines the preview control and the virtual spring-damper
model for generating walking patterns with more straightened knees which is more
similar to humans. The dynamic simulation in OpenHRP3 confirms the effective-
ness of proposed control scheme. The investigation of knee joint torque and power
shows the feature of energy efficiency. The proposed method saves 10.2% of the
mechanical energy of the knee joint and 28.7% of energy from unnecessary heat
dissipation for all joint actuators. Therefore it could potentially contribute a longer
operation time for stand-alone application.

In this study, we claim a more natural walking manner in terms of more straight-
ened knees during walking. Interestingly, the knee joint profile and the GRF data
show the similarities to some extent between the robot and human. Nevertheless,
other features such as toe-off and heel-strike are still missing in the proposed method.
It could be the research of interest to further study a novel control scheme that gen-
erates a more human-like foot motion.
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Modeling and Control of Dynamically Walking
Bipedal Robots

Tobias Luksch and Karsten Berns

Abstract. Today’s bipedal robots still cannot compete with humans regarding ef-
ficiency, velocity, and robustness of locomotion. Thus, this paper suggests a con-
trol concept for dynamic walking based on insights into human motion control. Key
features include exploitation of passive dynamics, hierarchical control, and reflexes,
while not requiring a full dynamical model. Walking stability is achieved by a set of
postural reflexes based on the motion of the extrapolated center of mass. It shows
that only a small number of joints must be simultaneously actively actuated during
the different phases of walking. Besides the control concept, the anthropomorphic
biped model and its properties like compliant actuation are presented as they prove
to be essential for the walking performance. Specifically, the approach requires non
self-locking and torque-controllable joints with parallel elasticity and low friction,
similar to the human muscle-tendon system. The approach is validated for 3D dy-
namic walking within a physical simulation framework. Results show an efficient,
fluent, and fast gait that can cope with considerable disturbances. The resulting joint
trajectories show significant resemblance to human walking data.

1 Introduction

Despite several decades of research, locomotion of bipedal robots is still far from
achieving the graceful motions and the dexterity observed in human walking. Most
of today’s bipeds are controlled by analytical approaches based on multibody dy-
namics, pre-calculated joint trajectories, and Zero-Moment Point considerations to
ensure stability [25]. These efforts have been yielding impressive results concerning
two-legged locomotion or other movement skills [21, 12, 11]. However, these ap-
proaches show several drawbacks like strong model dependency, high energetic and
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computational costs, or vulnerability to unknown disturbances. In contrast, human
locomotion is elegant, highly robust, fast, and energy efficient. These considerations
gave rise to the two main hypothesis examined in this article: on the one hand, it is
postulated that a control system based on insights into human motion control can
yield human-like walking capabilities in two-legged robots. On the other hand, it is
argued that certain properties of the human morphology are necessary to deploy and
to fully exploit such a control system. To this end, a control methodology is derived
based on key features of human walking control and is applied to the locomotion of
a biped model featuring some characteristics of the human body.

Naturally, there already has been and still is research on the transfer of control
and morphology aspects from biology to walking machines. For one thing, the de-
sign of most two-legged robots is – at least kinematically – oriented towards human
morphology. Regarding the utilization of this morphology as well as its control, ex-
amples include the exploitation of inherent dynamics of the mechanical system and
elasticities [5, 18, 23], or neural and reflex based approaches [27, 17, 6]. Hence the
presented approach aims at differing from previous work regarding the extend of in-
cluding biological analysis and the resulting applicable control aspects, the manner
in which these aspects are transformed into a robot control system, and the com-
plexity of the considered robotic target platform.

The remainder of this paper is structured as follows: Sec. 2 shortly introduces the
proposed control concept and its biological motivation as well as its application to
dynamic walking control. The biped model is described in Sec. 3, giving some de-
tails on its kinematics and actuation system. Sec. 4 presents experimental validation
by analyzing the robot’s dynamic walking gait. The paper is concluded in Sec. 5.

2 Bio-Inspired Control Approach

A review of biomechanical and neuroscientific research as well as clinical gait anal-
ysis reveals several control aspects that can be transferred to technical systems:

• The robot’s design should be based on functional morphology. By exploiting the
passive system dynamics1 and self-stabilizing properties of the muscle-tendon
system and low-level muscle reflexes, control effort and energy consumption are
significantly reduced [26, 7, 4].

• The hierarchical structure of the CNS (central nervous system) facilitates to cope
with the high complexity and redundancy of body and control [10, 2].

• Natural locomotion control emerges as a combination of feed-forward and feed-
back control. Suitable control units can be derived from gait analysis [20].

• Besides passive control, human walking is stabilized by reflex action, ranging
from local reflexes to supraspinal postural control [28, 9].

1 Here, passive system dynamics are understood as the inherent dynamical motions intro-
duced by the mechanical system, e. g. by inertia of segment masses.
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• Based on motor synergies extracted from EMG (electromyography, i. e. muscle
activity) recordings of normal walking, the gait cycle can be divided into several
distinct phases featuring bilateral synchronization [10].

• Reflexes action is modulated depending on the current task or gait phase, respec-
tively, i. e. the same stimulus can lead to different reactions [28].

2.1 Structure of Control Concept

These insights are incorporated into the following control concept [13, 14]. Since
passive dynamics should be exploited, no whole body joint trajectories are used.
Rather, as in biological systems, the motion commands emerge from a hierarchi-
cal network of control units. Being based on behavioral robot control ideas, these
units already have a semantic interpretation and thus are located above the level of
individual neurons.

Joint Groups
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Environment

Locomotion
Modes

Sense of
Balance

SPGs Motion
Phases

Postural
Reflexes

Local
Reflexes

Motor
Patterns

Sensor
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Joint Control
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System

Vestibular
System
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Mechanical Control (Elasticities, Inerita, . . . )

torque, posi-
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torques, positions, forces

Fig. 1 The hierarchical organization of control units and the interaction of the control system,
the robot’s mechatronics and the environment

Fig. 1 illustrates the hierarchical layout defined by the flow of stimulation, in-
hibition, and modulation between six classes of control units. Locomotion modes
are located at the highest level and represent the form of locomotion like walk-
ing or standing. They stimulate spinal pattern generators (SPG), state machine-like
units triggered by kinetic or kinematic events instead of using oscillators with fixed
timing.

Motion phases provide for synchronized stimulation of feed-forward control
commands and activate the appropriate feedback units. Feed-forward control is
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issued by motor patterns in the form of local torque impulses directed at only one
or a few adjacent joints. These torque patterns shape the natural motion of the robot
created by the passive system dynamics to create the desired motion. All torque im-
pulses are all defined by the same parametrized sigmoid function to simplify the
design of the control system.

Feedback is implemented by local and postural reflexes: local reflexes only affect
spatially related joints based on data of adjacent sensors and introduce a tight sensor-
actor coupling. Postural reflexes require whole body sensor information and can use
simplified dynamic models to calculate their reaction. Modulation signals like the
desired walking velocity can influence the output of control units.

The bottom of Fig. 1 represents the mechatronics of the robot and its interaction
with the environment. The joint control detailed in Sec. 3 allows to set the desired
torque, position, or stiffness of each joint. Further, the robot is equiped with with
various sensor systems that take the function of parts of the human somatosensory
and proprioceptive senses.

2.2 Controlling Dynamic Walking

The suggested control method is applied to the task of bipedal dynamic walking
and stable standing. To do so, certain system premises must be met regarding both
the robot’s morphology and the architectural framework of the control system. The
characteristics of the morphology and the actuation system will be discussed in
Sec. 3. Concerning the control framework, behavior-based architectures have been
established as a preferred control approach for robotic systems acting in situations
and environments that are not known a priori. The behavior-based control architec-
ture iB2C (integrated Behavior-Based Control)2 is well suited for implementing the
aspired hierarchical layout, the control unit classes, or stimulation and inhibition
mechanisms. Further details on iB2C and the implementation of the control system
introduced above can be found in [19] and [13].

Having selected a target locomotion mode, functional control units need to be
selected and designed to achieve the desired motions. Findings from human gait
analysis and neuroscience are consulted to identify suitable units of the six classes.
In the following, the resulting control network for dynamic walking is presented.

At the highest level, the locomotion mode for periodic walking stimulates the
walking SPG as soon as the walking initiation process [15] has finished. This state-
machine-like SPG is responsible for cyclic walking and the respective walking phases.
It is derived from findings based on statistical analysis of EMG recordings of human
walking [10, 24] and manages five motion phases, namely weight acceptance, leg
propulsion, trunk stabilization, leg swing, and heel strike. Fig. 2 depicts the progres-
sion of these phases and the corresponding kinetic and kinematic events that trig-
ger the state transitions. Bilateral synchronization as it is observed in human gait is

2 iB2C as well as the corresponding robot control framework MCA2 can be downloaded at
http://rrlib.cs.uni-kl.de.

http://rrlib.cs.uni-kl.de
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Fig. 2 Phases of walking illustrated for the left and right side. The sensor events responsible
for triggering phase transitions are shown at the bottom.

achieved by simultaneously switching phases of both body sides. As a benefit, this
also reduces the amount of sensor events necessary to trigger walking phases and
thus increases the robustness of the state machine.

Based on results from biomechanical gait studies, motor patterns are identified
for each of the phases to shape the natural motion of the robot based on passive
dynamics towards a walking gait by applying selective torque commands (see [13]
for more details). This process consults kinematic and kinetic analysis as well as
EMG data. While the latter cannot easily be used to obtain quantitative statements,
muscle activities and synergies still provide valuable clues concerning possible con-
trol goals of the CNS during individual phases of locomotion. Furthermore, this data
indicates which DoFs the nervous system has evolved to consider as relevant during
each phase of motion, thus helping to cope with the “DoF problem” as stated by
Bernstein [1]. Concerning feedback control, local reflexes similar to those working
in human walking are inserted, e. g. the cutaneous reflex.

Controlling the stability during walking is based on the combined efforts of local
reflexes as well as several postural reflexes. The latter independently control the
robot’s forward velocity, its lateral stability, and the pose of the upper body. This is
done by adjusting the torques of the ankle, hip, or spine joints, or, most importantly,
by adapting the foot placement. Similar to the supraspinal postural reflexes in human
balance control, these control units cannot purely rely on local sensor signals but
must make use of simplified forward models.

There is evidence from gait analysis that human subjects control postural stability
based on the estimated movement of the center of mass (CoM). Hof et al. suggest a
control strategy for foot placement relying on the extrapolated center of mass [8].
To adopt a similar approach for the functioning of postural reflexes, an estimation of
the current position of the CoM becomes necessary. Fig. 3 illustrates the simplified
pendulum model used for this estimation. For both the frontal and lateral direction
the distance d of the horizontal component of the CoM from each foot contact point
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Fig. 3 Pendulum model for estimating the ground projection d of the center of mass relative
to the stance foot position

is calculated. Following Hof’s suggestions, the extrapolated center of mass (XcoM)
can be derived from these values by including the velocity ḋ of the respective CoM

projection normalized by the eigen frequency ω0 of the assumed inverted pendulum
model:

xcom = d +
ḋ

ω0
= d+

ḋ√
g
l3

The calculated values are used as indication for postural adjustments. More specif-
ically, the trajectories of the CoM and XcoM positions during normal, undisturbed
walking are approximated by simple functions. The derivations of the actual values
from these trajectories serve as excitatory signals for the postural reflexes.

3 Biped Model

The suggested control concept requires certain characteristics of the underlying
mechatronics system. For instance, beneficial effects of the passive system dynamics
cannot be exploited if the robot’s joints are self-locking or have overly high friction.
Similarly, self-stabilizing properties of elastic elements can only be used if such elas-
tic elements are present. A gait then emerges from the combination of local torque
commands issued by the control units and the interaction of the “intelligent mechan-
ics” with the environment.

The choice of kinematic degrees of freedom is based on human gait analysis iden-
tifying the most relevant joints for walking. On the right side of Fig. 4 the rotational
axes of the model are illustrated. Instead of an additional toe joint in the foot, a
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x y

z

Fig. 4 Left: Simulated biped as visualized by the simulation framework. Right: Joint layout
of the biped model. The hip and spine joints are modeled by three, the shoulder and ankle
joints as two subsequent revolute joints.

curved geometry of the frontal part of the foot is selected to allow for the rolling
action during the second half of the stance phase. The spine is reduced to three DoFs
for simplicity. Similar, the complexity of shoulder and arm kinematic is decreased
as the upper extremities are of minor importance during walking. The overall sys-
tem amounts to 21 DoFs, the robot’s height to 1.8 m. Weight distribution is based on
average human data, with the total weight adding up to 76 kg.

Similar to the kinematics, the actuation system must possess certain properties
to make a human-like motion control possible. Hill’s mechanical muscle model fea-
tures serial and parallel elastics elements, dampers, and a contracting unit for each
muscle. A human joint is actuated by at least two of those muscles in an antagonistic
setup. This allows for both torque control and position control with a large range of
stiffness. For this work, direct joint actuation is assumed, neglecting the antagonis-
tic setup. This has the advantage of reducing complexity in design and control. A
drawback could arise as no biarticular structures can be implemented mechanically.

It is assumed that each joint can swing freely with low friction if no control com-
mands are given. A direct torque demand τtarget is possible. Beside this, position con-
trol towards αtarget with variable compliance simulates the series elastic elements of
the muscle. A parallel elastic element with a fixed spring constant and equilibrium
point concludes the joint actuation characteristics.

A block diagram of the resulting joint model is shown in Fig. 5. The stimulation
values sτ and sα are used for a weighted fusion of the torque command and the
torque resulting from the position control loop:

τcontrol =
sτ (τtargetsτ )+ sα(τpossα)

sτ + sα

Thus, stimulation sα can be interpreted as compliance of the joint. The characteristic
of the parallel spring is modeled to be quadratic with a fixed equilibrium point.
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Fig. 5 Block diagram of the joint model calculating the resulting torque based on the given
torque and position commands as well as the corresponding stimulation values

As for the joint actuation, some requirements have to be met regarding the sen-
sor configuration, too.Corresponding to the capabilities of sensor organs in hu-
man muscles, each joint outputs the current angular position and the acting torque.
Cutaneous and load receptor information is required by certain reflexes in human
motion control. Consequently, the model includes force sensors in each of the robot’s
feet providing data on ground contact and load distribution. Finally, postural reflexes
depend on an estimation of the upper trunk’s pose and movements. For this purpose,
an inertial measurement unit (IMU) is installed in the upper body.

4 Experimental Validation

For experimental validation, the suggested biped model is implemented within a
full-featured dynamics simulation framework. The left side of Fig. 4 shows the vi-
sualization of the biped model, with the shapes also serving as collision geometries.
First steps towards developing a robot prototype and a suitable actuation system
have been made [16, 3] but will not be discussed in the scope of this article.

It shows that the presented control concept is indeed capable of achieving three-
dimensional dynamic walking of an anthropomorphic bipedal robot, including the
transition from actively balanced standing to walking [15]. The naturally looking
gait emerges from the combined control outputs of the phase-dependent stimulated
reflexes and motor patterns, passive dynamics, and the interaction of the robot with
its environment. Less than half of the 21 DoFs need to be actively controlled simulta-
neously during each phase of walking. The remaining joints act passively at different
degrees of compliance. Even more, for each phase the control of only 1–4 DoFs by
motor patterns is sufficient to direct the passive dynamics towards a walking gait.
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Fig. 6 Joint angles in the sagittal over the course of one gait cycle. The solid lines represent
the mean values over 30 steps of normal walking on even ground. The dashed lines mark
the minimum and maximum values. The vertical dashed line indicates the transition from
stance to swing. For the hip, knee, and ankle joint, human data is given as dotted line for
comparison.

These facts comply with the “principle of minimal intervention” as formulated for
human movement control [22].

Fig. 6 shows average angle trajectories of the joints rotating in the sagittal plane
from one heel strike to the next. The vertical dashed line marks the transition from
stance to swing. It can be seen that the spine joint is kept relatively stable. The sine-
like trajectory of the shoulder joint results from the passive dynamics combined
with short torque impulses as the arm is mainly swinging freely. Except for low
elasticities, the elbow acts purely passively. As in human walking, the knee flexion
during the swing phase emerges also mainly due to passive dynamics.

These kinematic as well as the kinetic results show strong resemblance to human
walking (dotted lines on the right side of Fig. 6). Joint angle trajectories possess
the same characteristics and even similar amplitude despite the fact that no joint
angle control based on human data has been applied. Further similarities can be
found in the trajectories of the absolute position of body segments, joint torques,
and power values. This resemblance can be explained by the likewise exploitation
of passive system dynamics at comparable segment masses and lengths, and by the



140 T. Luksch and K. Berns

assumption that indeed essential features of human motion control have been iden-
tified and transferred.

Other then in purely passive dynamic walking machines, the presented approach
allows for active variation of the resulting gait by using modulation signals (dashed
line in Fig. 1). This mechanism is validated for controlling the walking velocity. For
the modeled gait, the velocity can be adjusted between 1.1 m/s and 1.4 m/s, with the
corresponding emerging step length ranging from 0.65 m to 0.95 m.

The efficiency of the resulting gait is analyzed by an estimation of the mechan-
ical joint work and power output based on the torque and rotational displacement
of the joints. The total mechanical power consumption during walking amounts to
approximately 300 W. By normalizing this value to the robot’s weight and the walk-
ing velocity, the cost of transport can be approximated. Comparing this result to a
similar estimation of joint angle controlled machines yields an efficiency improve-
ment by the factor five [5]. Still, energy consumption considerably exceeds that of
humans or actuated passive walkers. However it should be noted that the control
system has not been optimized towards low energy consumption at all. Certainly,
simulation can only provide a rough guess on the necessary power when applying
the control concept to a real robot, but nevertheless a considerable energetic benefit
is to be expected. The observed peak values of joint angles, motor torques, or power
can easily be achieved by today’s hardware.

Already during normal walking, local and postural reflexes help to stabilize the
robot against self-induced disturbances and against the impacts occurring at each
foot contact. To further evaluate the robustness of the control system, the robot is
confronted with different ground geometries and arbitrary external forces acting on
body segments. Importantly, it should be noted that all experiments are performed
with identical model and control parameters.

To illustrate postural control on one example, Fig. 7 presents the effects of terrain
inclined orthogonally to the walking direction. It compares lateral foot placement
and the activity of the Lateral Balance Ankle postural reflex on level terrain and
ground sloped downwards to the right by 1.5◦.

The most obvious distinction can be observed in the action of the Lateral Foot
Placement postural reflex. The inclination pushes the robot to the right and rotates
the whole machine around the x-axis with every step it takes. The reflex reacts to
this disturbances by placing the feet further to the right than in normal walking. As
illustrated by the foot point diagrams, the left foot shown as green circle is placed al-
most in front of the last stance foot, whereas the right foot is positioned up to 60 cm
to the right. As a result, the robot is walking sidewards down the slope, whereas on
level ground, the minor foot placement corrections do not deflect the robot distinctly
from its path. In addition, the Lateral Balance Ankle reflex also exhibits increased
activity. It shows that the robot cannot maintain stability during walking on side-
wards slopes of more than 2◦. Mainly, the robot is expecting level ground at heel
strike but instead the foot must be lowered even further. Since the hip is kept rigid
during this phase, the robot tilts to the side.
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Fig. 7 Comparison of lateral foot placement and the activity of the Lateral Balance Ankle
postural reflex on level terrain and ground sloped to the right

Further experiments on robustness focus on ground sloped in walking direction,
external pushes, or walking over steps and on irregular terrain. The control man-
ages downhill slopes of up to 5◦ and uphill slopes of 2◦ before walking becomes
instable. Main difficulties lie in decreased lateral stability during downhill walking
caused by increasingly long steps and insufficient ground clearance during uphill
walking. While the robot can cope with higher pushes of short duration, the limit
for constant external forces in walking direction arises to 15 N, lateral forces should
remain below 8 N. The height of steps the robot can walk up is restricted to about
3 cm, mainly due to the small ground clearance of the feet during the swing phase.
Stepping downwards remains stable to up to 5 cm. During walking on irregular ter-
rain modeled by random, smoothed height fields, differences in height should not
exceed 3 cm.
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5 Summary and Outlook

This paper presented a control methodology for two-legged locomotion and the
corresponding biped model, both based on findings from studies on human motion
control. Located above the neural level, the control system is structured as a hier-
archical network of local feed-forward and feedback units. Neither a complete dy-
namic model nor pre-calculated joint trajectories are used. Sensor event-based spinal
pattern generators coordinate the stimulation and synchronization of control units
and the compliance setting of the passive joints. By mostly applying local torque
commands to only a subset of the robot’s DoFs instead of using joint angle con-
trol, passive dynamics can be exploited. Walking robustness is enhanced by several
postural reflexes based on simple CoM considerations.

Tested on a dynamically simulated anthropomorphic biped with 21 DoFs, the con-
trol system can achieve stable, 3D dynamic walking of variable velocity. It is able to
cope with the high complexity and the compliance of the modeled biped. The emerg-
ing, naturally looking walking gait shows significant similarities to human walking.
Simultaneous actuation of only a subset of joints is sufficient to direct the natural
motion of the robot as introduced by passive dynamics towards a walking gait. At a
high walking velocity of up to 5 km/h, the gait is more energy efficient than in most
joint angle controlled robots. The control system shows considerable inherent ro-
bustness against unknown and unexpected disturbances.

Future work will include modulation signals for e. g. changing the walking di-
rection, additional postural reflexes to increase robustness, or further locomotion
modes like running. To better cope with the parameter multitude, machine learning
and optimization techniques will be applied.
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In Humanoid Robots, as in Humans, Bipedal
Standing Should Come before Bipedal Walking:
Implementing the Functional Reach Test

Vishwanathan Mohan, Jacopo Zenzeri, Giorgio Metta, and Pietro Morasso

Abstract. This chapter describes a computational architecture for coordinating the
degrees of freedom of the humanoid robot iCub during bipedal standing, with par-
ticular reference to the Whole Body Reaching and the Functional Reach Test.

1 Introduction

In humans the ability to stand up on two legs is a necessary prerequisite for bipedal
walking. Moreover, there is ample neurophysiological evidence that standing and
walking are rather independent control mechanisms. Therefore, we suggest that also
humanoid robots should be trained first to master the unstable standing posture and
then learn to walk.

We shall address such issue in relation with the humanoid robot iCub [1], which
has the size of a three years old child (height is 105 cm and weight is 14.2 kg) and has
53 degrees of freedom (DoF): 7 DoFs for each arm, 9 for each hand, 6 for the head,
3 for the trunk and spine and 6 for each leg. iCub is still unable to stand or walk, but
only to crawl, as baby toddlers of the same age. Therefore, the goal of this paper is
to carry out a preliminary study of the computational processes that may allow iCub
to achieve the sensorimotor competence that is necessary for bipedal standing. The
study builds upon what has already been achieved in the bimanual coordination of
iCub’s movements [2], using a biomimetic, force-field based computational model.
The model has been evaluated and validated both in a simulated environment and
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in real movements. On the contrary, the present study is limited to the simulation
stage for ‘developmental constraints’, because the sensorimotor system of iCub has
not matured enough to achieve the features that are necessary for standing (postural
control system) and walking (bipedal locomotion system).

As a matter of fact, the postural control system must face two main problems: P1)
stabilize the inverted pendulum that characterizes the bipedal standing posture either
during quiet standing or when compensating the postural perturbations induced by
movements of the upper part of the body; P2) coordinate the redundant set of DoFs
of the lower and upper parts of the body in whole body gestures. The focus of this
paper is on P2.

The easiest way to solve P1 would be to use a ‘stiffness strategy’, in particular
at the ankle joint. However, this is not what humans do, because the ankle stiffness
is dominated by the elasticity of the Achilles tendon and the corresponding stiff-
ness is consistently smaller than the toppling torque due to gravity [3, 4]. Different
studies have shown that the ankle torque which is missing from the intrinsic prop-
erties of the soft ankle tendons is likely to be supplemented by an active control
process [5, 6]: this process can be characterized as an intermittent control mecha-
nism that generates frequent, ballistic bias impulses by soleus and gastrocnemius. It
was also shown [7] that this discrete-time feedback controller is much more robust
and thus more plausible that an alternative continuous time control mechanism [8]
if one considers the large transmission delays in the feedback loop and the intrinsic
instability of the bodily inverted pendulum. There is a functional merit to the low-
stiffness solution of the postural stabilization mechanism because a rather compliant
ankle joint avoids high impact forces with the ground and more easily adapts to un-
even surfaces. In other words, a low-stiffness postural controller is more robust and
is capable of guaranteeing stability in a much wider range of situations than a stiff
controller.

P2 implies a quite different computational problem because functional move-
ments during bipedal standing recruit, in principle, all the DoFs of the global kine-
matic chain, with a high degree of redundancy, whereas P1 can be considered a 1
DoF or 2 DoFs ‘ankle strategy’. As already mentioned, we plan to address this prob-
lem by using a biomimetic, force-field based computational model, which takes in-
spiration from the Passive Motion Paradigm (PMP [9]), extended to include terminal
attractor properties [10]. We already used this approach for the coordination of bi-
manual movements of the humanoid robot iCub [2] and for modeling whole body
reaching (WBR) movements in humans [11]. Here we investigate the feasibility of
applying this model to the coordination of WBR movements in iCub, with particu-
lar emphasis on a specific form of WBR, the Functional Reach Test (FRT), which
has been invented as a dynamic clinical measure of balance [12]. FRT measures the
distance between the length of the arm and a maximal forward reach in the standing
position, while maintaining a fixed base of support. FRT has been tested for both
validity and reliability and is used in patients with diagnoses as different as stroke,
Parkinson, vestibular hypofunction, multiple sclerosis and hip fractures. FRT has
also been associated with an increased risk of fall and frailty in elderly people who
are unable to reach more than 15 cm. This study fits in the general framework of
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whole body motion of humanoid, highly redundant robots. A number of approaches
have been developed. In many cases the underlying inverse kinematic problem is ad-
dresses either by formulating it as an optimization problem [13] or by a weighted
least norm solution [14]. More specifically, in the case of ASIMO robot redundancy
is resolved by selecting one particular out of the infinite number of solutions based
on additional criteria like distance to the joint limits [15] or by learning whole body
inverse kinematics with a recurrent neural network [16]. Another approach [17, 18]
is based on an operational space formulation, which provides dynamic models at the
task level and structures for decoupled task and posture control. In most cases, the
critical element of the computational architecture is the inversion of a matrix of large
dimension, which makes the computational process heavy and scarcely robust. Our
proposal, based on the PMP, avoids any matrix inversion and is based on a network
which only includes well-posed transformations.

2 FRT Network for iCub

The network architecture which has been developed for allowing iCub to face the
Functional Reaching Test is an extension of the architecture developed for modeling
whole body reaching movements in humans [11]. The architecture is composed of
four parts: 1) Task sub-network, 2) Focal sub-network, 3) Postural sub-network, 4)
Temporal coordination unit (see Fig. 1).

The three networks are stable dynamical systems with terminal-attractor charac-
teristics, which is provided by the temporal coordination unit. This unit generates a
time-varying gain which is transmitted to the three sub-networks and allows them
to reach final equilibrium at the same time:

{
Γ (t) = ξ̇

(1−ξ )

ξ (t) = 6
( t−t0

τ
)5− 15

( t−t0
τ
)4

+ 10
( t−t0

τ
)3 (1)

Here t0 is the initiation time and τ is the duration of the coordinated forward reaching
movement; ξ (t) is a minimum jerk time base generator, but any smooth function
with similar temporal features would yield the same results in terms of temporal
coordination of the three sub-networks.

The task sub-network generates a moving target xT in 3D which attracts both
hands of iCub (represented by the time-varying vector xH) with a suitable force
field, generated by the focal sub-network. xT evolves from the initial position of the
hands, which are supposed to be jointed, to a final position xF . This is related to
the most common form of FRT, i.e. the bimanual test. We might also implement
in the same framework a unimanual paradigm in which one hand is attracted by a
forward moving target and the other is either fixed or is used as a further balanc-
ing tool. In WBR experiments xF may be situated beyond arm’s length but should
be placed inside the reachable workspace, defined as the set of points that can be
reached by keeping the projection on the ground of the center of mass (CoM) within
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Fig. 1 FRT network for iCub. xF , xT , xH , xC, q: vectors of the final and current target posi-
tion, position of the CoM, and the joint configuration, respectively; JF , JP: Jacobian matrices
of the focal and postural sub-networks, respectively; FF f oc, FFpos: force field generators of
the focal and postural sub-networks, respectively; A: admittance matrix; Γ : temporal coor-
dination function.

the support base of the standing robot. Obviously, the support base is a function of
the position of the feet and in FRT they are supposed to be parallel and symmetric
with respect to the body. In FRT experiments we also positioned xF just outside the
reachable workspace, in the anterior-posterior direction.

The focal sub-network generates an attractive force field of elastic type which is
applied to both hands, implementing the focal part of the task whose goal is to allow
the hand to reach the target: FF = KF (xT − xH). KF is a 3x3 matrix and for sim-
plicity we assumed that it is diagonal. Moreover, in the logic of FRT the force field
should be directed in anterior-posterior direction and thus only one component of
the matrix is non-zero. The field FF is mapped from the extrinsic space to the joint
space (TF ) by the following transformation, where JF is the Jacobian matrix of the
overal kinematic chain (from feet to hands): TF = JT

F FF . The admittance matrix A
transforms this torque field into a movement vector q̇ of the kinematic chain, which
is mapped to the extrinsic space by the same Jacobian matrix, generating the trajec-
tory of the hand xH and thus closing the loop. This dynamical mechanism allows the
hand to reach xF at the same time in which xT reaches xF , but there is no guarantee
that the CoM remains withing the support base in the process. Thus, if only driven
by this mechanism, iCub would reach the target but fall forward immediately after.
The postural sub-network is intended to prevent such unfortunate event.
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The postural sub-network modifies the torque field TF , generated by the focal
sub-network, by adding a component TP that takes into account the position of the
CoM on the support base (TTOT = TF +TP). In the vein of the so called ‘hip strat-
egy’, which characterizes human postural movements, the postural force field is ap-
plied to the hip joint and pulls it backward as function of the distance of the CoM
from the forward limit of the support base. The activation of the field is meant to
induce the following effects: 1) a smaller forward shift of the CoM; 2) a backward
shift of the hip; 3) a forward tilt of the trunk associated with the lowering of the
CoM. It is worth remarking that this complex control pattern is not explicitly rep-
resented but is implicitly coded by the dynamics of the network. The motion of the
CoM xC is derived from the motion of the whole kinematic chain using a different
Jacobian matrix JF that only takes into account the ankle and knee joints. The force
field applied to the hip was implemented by a non-linear function that diverges to
very high values when xC approaches the forward limit of the support base xMAX .

In summary, the integrated dynamics of the interacting sub-networks is charac-
terized by the following equations, which achieve a balance between the forward
pull applied to the hand and the backward pull applied to the hip:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋT = Γ (t)(xF − xT )
ẋH = Γ (t)JF ATTOT

ẋC = Γ (t)JPATTOT

TTOT = TF +TP

TF = JT
F KF (xF − xT )

TP = JT
PKP

xC
xMAX−xC

(2)

3 Simulation Experiments with FRT Network

The computational architecture described in the previous section was tested by using
the iCub simulator. The robometric parameters of iCub (length, mass) are summa-
rized here: leg (0.213 m, 0.95 kg); thigh (0.224 m, 1.5 kg); trunk (0.127 m, 4 kg);
humerus (0.152 m, 1.15 kg); forearm + hand (0.137 m, 0.5 kg). The head weight
is 2 kg.

As suggested by the FRT protocol, the initial posture of the test is characterized
the following set of joint angles (ordered from the ankle joint to the elbow joint):
85◦, 92◦, 85◦, 330◦, 0◦. These are absolute values, referred to a horizontal line. With
this posture the initial position of the hand reaches a distance of 29.05 cm beyond
the vertical line and the CoM is shifted forward 3.87 cm with respect to the ankle
joint. The final position of the target was set 5 cm beyond the maximum reachable
forward distance and the limit for the CoM displacement (xMAX ) was set equal to
13 cm, considering that the length of iCub’s foot is 15 cm.

The basic parameters of the FRT control network are 1) the gain of the focal
field KF, 2) the gain of the local field KP, 3) and the admittance matrix of the
whole kinematic chain A. The latter is a 5x5 matrix but we assumed for simplic-
ity that it is diagonal and thus we only have to choose 5 parameters. The results of
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Fig. 2 Initial and final poses of iCub in the Functional Reaching Test

the simulations make us confident that the choice of these parameters is not critical.
The simulations reported in the following were obtained with the following list of
values: KF=700N/m; KP=2N; A1(ankle)=0.02rad/Nms; A2(knee)=0.01rad/Nms;
A3(hip)=0.3rad/Nms; A4(shoulder)=0.1rad/Nms; A5(elbow)=0.07rad/Nms. In par-
ticular, as discussed in [11], the choice of the A parameters allows iCub to choose
among equivalent solutions of the planned movement, as a consequence of the re-
dundancy of the kinematic chain.
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Figure 2 shows the initial and final posture of the FRT, which allowed iCub to
reach forward at a distance of 47.39cm, with an increase of 18.35cm with respect
to the initial posture. Incidentally, this value is greater than the threshold of 15cm
which is considered clinically relevant in relation with the risk of falling.

Fig. 3 Panel A: time course of the forces generated by the focal and the postural sub-
networks, respectively. Panel B: Time course of the joint rotation angles, after subtracting the
mean value: q1(ankle)=1.38 rad; q2(knee)=1.60 rad; q3(hip)=0.83 rad; q4(shoulder)=5.95
rad; q5(elbow)=0 rad. The angular values are absolute, referred to the horizontal line.
Panel C: forward shift of the hand (Functional Reach), related to the forward position of
the target (5 cm beyond the workspace) and forward shift of the CoM, related to the max-
imum stable position on the support base. Panel D: velocity profiles of the hand and the
CoM. Panels A, B, C also display the time course of the Γ function.

Figure 3 shows the evolution of the different relevant variables. Panel A displays
the intensities of the focal and postural force fields, respectively. Panel B shows the
joint rotations patterns from the initial to the final posture, reached at the time of
termination of the Γ function. Please note that some angles evolve monotonously
from initial to termination time whereas other do not. In particular, the elbow joint
angle remains equal to 0 throughout the whole movement for two reasons: 1) it was
set to 0 initially in agreement with the FRT protocol and 2) it remained 0 because
both force fields were directed horizontally (the focal field forward and the postural
field backward, respectively). Panel C plots the forward displacements of the hand
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and the CoM, respectively. The curves evolve monotonously, as should do, to the
final shift values that must be compared with the final position of the target and
the maximum admitted forward shift of the CoM, respectively. It turns out that the
hand stops 5 cm before the target, because the latter is outside the workspace of
the robot; the CoM stops just 6 mm before the fixed limit. Finally, panel D displays
the speed profiles of the hand and the CoM respectively: they appear to be bell-
shaped and synchronized, in agreement with the basic findings of the research in
WBR [19, 20, 21]. Panels A, B, C also display the time course of the Γ function,
emphasizing its role in the ordered coordination and synchronization of so many
different variables.

4 Discussion

The proposed coordination model is not a controller of the standing posture but a
mechanism of synergy formation, which operates on a ‘mass-less body schema’, al-
lowing the redundant DoFs to be coordinated in a principled way during manipula-
tion tasks that may affect the stability of the standing posture. As in human beings,
we believe that also in humanoid robots it is convenient to separate coordination
and control processes. The former one takes into account task requirements and af-
fordances; the latter takes into account body dynamics and actuator constraints. Of
course, the two processes are linked but we believe that the ‘divide and conquer
strategy’ is the best one in the sense that provides solutions that can be scaled up
naturally, achieving at the same time robustness and flexibility.
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A New Optimization Criterion Introducing the
Muscle Stretch Velocity in the Muscular
Redundancy Problem: A First Step into the
Modeling of Spastic Muscle
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Abstract. Over the past few decades, musculo-skeletal modeling has been proposed
as an in silico alternative to the invasive in vivo measurement of internal forces
(e.g., musculo-tendon and joint reaction forces). However, even if great efforts have
been made to improve the models, they remain partially validated and not adapted
to pathologic subjects with orthopeadic and/or neurologic disorders. Indeed, even
if a geometric scaling can be done using medical imaging techniques, the person-
alization of motor control specificities remains problematic. Consequently, when
optimization techniques are used to solve the muscular redundancy problem, the
selected criteria, that should reflect the motor control strategies, are not adapted to
the gait disorders, such as muscle spasticity. The goal of this study was to intro-
duce the muscle stretch velocity in the objective function, since muscle spasticity
is linked to this parameter. We show that the maximization of the squared muscle
stretch velocity provide more physiologic results during the stance phase and could
be a way to introduce a spasticity criterion.
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1 rue André Vésale, L-2674 Luxembourg, Luxembourg
e-mail: florent.moissenet@mailoo.org

D. Pradon
Laboratoire d’Analyse de la Marche, Hopital Raymond Poincaré,
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1 Introduction

With over 10 million people affected worldwide and over 125.000 new cases per
year in France, strokes are nowadays one of the most common cause of disabil-
ity among adults. Indeed, 75% of survivors have permanent sequelae and often gait
disorders such as muscle spasticity [29]. Spasticity is one of the consequences of the
upper motor neuron syndrome associated to a full or partial lesion of the descending
pathways (i.e., corticospinal tracts). It was defined by Lance [20] as ”a motor dis-
order characterized by a velocity-dependant increase in tonic stretch reflexes (i.e.,
muscle tone) with exaggerated tendon jerks, resulting from hyperexcitability of the
stretch reflex”. This disorder can be reduced using treatments such as botulinum
toxin but unfortunately, medical management remains a real difficulty and has few
functional impacts [31]. To overcome this difficulty, it may be relevant to understand
the gait organization of the patient and to identify the mechanisms that lead to it.
Several factors may influence this organization such as energy consumption, envi-
ronment (e.g., constraints, obstacles), stability and security, pain and history (e.g.,
skills, fatigue) [35].

A common way to explore the gait organization is to use musculo-skeletal mod-
eling [2, 5, 6, 13, 15, 28, 30, 33, 34, 38]. However, even if great efforts have been
made to improve the models, they only remain partially validated [25, 26] and not
adapted to pathologic subjects with orthopeadic and/or neurologic disorders [17].
Indeed, even if a geometric scaling can be done using medical imaging techniques
[1, 3, 14, 19, 32, 36], the personalization of motor control specificities remains prob-
lematic. Consequently, when optimization techniques are used to solve the muscu-
lar redundancy problem, the selected criteria, that should reflect the motor control
strategies, are not adapted to the patient specificities, such as muscle spasticity.

The modeling of muscle spasticity can be reached by defining a new criterion in
the optimization. By maximizing the muscle activation over a muscle stretch veloc-
ity threshold, it should be possible to model the specific motor control of a spas-
tic muscle. Among the optimization techniques proposed in the literature to solve
the muscular redundancy problem, one is based on a framework consisting of a for-
ward dynamics assisted data tracking [16, 24, 27, 39] (i.e., the traditional approach).
This method extends an initial optimization cost function (e.g., the minimization of
the sum of the squared muscular activations [2, 37]) by introducing the weighted
minimization of the difference between the sum of the individual muscular mo-
ments and the net joint torques computed from the inverse dynamics procedure.
However, the fulfillment of this torque tracking belongs to the selected optimiza-
tion weight and this can affect the kinematic parameters (e.g., segments and muscles
position, velocity and acceleration) and lead to unphysiologic muscle stretch veloci-
ties. Consequently, the traditional approach can not be directly used to model muscle
spasticity.

This study aims to extend this traditional approach by introducing the muscle
stretch velocity parameter in the optimization process in order to keep a physiologic
muscle stretch velocity pattern. This can be done by extending the cost function with
the maximization of muscle stretch velocity (i.e., the new approach). The results in



A New Optimization Criterion Introducing the Muscle Stretch Velocity 157

terms of muscle fiber lengths and velocities are then compared with those obtained
using the traditional approach and the reference data (i.e., the muscle fiber lengths
and muscle stretch velocities computed from inverse kinematics, and the EMG
signals).

2 Material and Method

Data of five gait cycles of a right hemiplegic patient (58yrs, 160cm, 69kg) are used
in this study. Clinically, the patient presents a stiff knee gait (i.e., insufficient flex-
ion of the knee during the swing phase) associated with spasticity and overactivity
during the swing phase of the right Rectus Femoris (RF). Kinematics of the subject
was collected using optoelectronic cameras (Motion Analysis, Santa Rosa, USA),
sampled at 100Hz, and a typical set of cutaneous markers based on the Helen Hayes
protocol [7]. Ground-reaction forces and moments were measured using forceplates
(AMTI, Watertow, USA) sampled at 1000Hz. Finally, muscular activities were as-
sessed using a 16 EMG channels system (Motion Lab Systems, Baton Rouge, USA).

Based on these data, a forward dynamics assisted data tracking [16, 24, 27, 39]
was run using the software package SIMM (Musculographics, Santa Rosa, CA) to
perform the gait simulation. This software package integrates a 3D lower limbs
musculo-skeletal model, based on the works of Delp et al. [10], made of 13 seg-
ments, 14 degrees of freedom and 86 musculo-tendon units.

The forward dynamics assisted data tracking, implemented in SIMM, corre-
sponds to a minimization problem with only inequality constraints through the scalar
cost function J1 (i.e., the traditional approach):

min
a

J1 =
1
2

(
aT W1a+ k1ceq

T ceq
)

subject to : 0≤ a≤ 1

with :

{
ceq = Lf− τ = 0

f = h(a, l,v)

(1)

where a and f are respectively the j× 1 muscle activations vector and the j× 1
musculo-tendon forces vector. τ is the i×1 net joint moments vector of the i degrees
of freedom, computed by inverse dynamics. L is the i× j moment arms matrix of the
j musculo-tendon units computed by using the musculo-skeletal model. W1 is a j× j
diagonal weight matrix and k1 is a scalar weight factor. 1 and 0 are, respectively, the
identity matrix and the zero vector of appropriate dimensions. In order to perform
the optimization in the activations space, SIMM integrates a Hill-type model [18,
40] that links the musculo-tendon forces f to the activations a through the function
h. This function introduces the j× 1 muscle fiber lengths vector l and the j× 1
muscle stretch velocities vector v. These parameters, l and v, are updated during
the convergence process. The integration scheme, at each time step, calculates joint
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torques and joint kinematics using the activation and kinematic states of the previous
time step [12].

In order to introduce the muscle stretch velocity in the optimization process, the
traditional approach (Eq. 1) is extended as follow through the scalar cost function
J2 (i.e., the new approach):

min
a

J2 =
1
2

(
aT W1a+ k1ceq

T ceq + k2

[
1

˜v

]T [ 1

˜v

])

subject to : 0≤ a≤ 1

with :

{
ceq = Lf− τ = 0

f = h(a, l,v)

(2)

where ˜v is a k×1 vector composed of a selection of muscle stretch velocities that
we want to introduce in the optimization process, and k2 is a scalar weight factor.

The new approach is applied on the right Rectus Femoris stretch velocity and its
potential is estimated by comparing l̂ and v̂, respectively the muscle fiber lengths and
muscle stretch velocities obtained after optimization, with those obtained using the
traditional approach and the reference data (i.e., computed from inverse kinematics).
Predicted musculo-tendon forces are also studied and compared with EMG signals
in order to evaluate the impact of the approach on this output. EMG signals were
processed following the recommendations of De Luca [9, 8] and the amplitude of
EMG signal envelops was adjusted to the amplitude of the predicted musculo-tendon
forces to compare the pattern of these data. Weight matrices and factors were arbi-
trary set to W1 = W2 = 1, k1 = 102 and k2 = 105.

Table 1 Root mean square error (i.e., RMSE) and correlation (i.e., R2 coefficient) between
both the fiber lengths and stretch velocities, obtained when using the traditional approach
and the new approach, and the reference data

Muscle Approach Coefficient
Fiber length Stretch velocity
Stance Swing Stance Swing

RF
Traditional

RMSE (m, m/s) 0.0057 0.0052 0.0416 0.0302
R2 0.9189 0.5436 0.6460 0.7173

New
RMSE (m, m/s) 0.0081 0.0108 0.0087 0.0615
R2 0.9909 0.2266 0.9431 0.1311

ST
Traditional

RMSE (m, m/s) 0.0042 0.0040 0.0102 0.0100
R2 0.9976 0.9877 0.8171 0.8582

New
RMSE (m, m/s) 0.0044 0.0039 0.0030 0.0112
R2 0.9999 0.9827 0.9809 0.8929

VL
Traditional

RMSE (m, m/s) 0.0016 0.0017 0.0026 0.0022
R2 0.9968 0.9883 0.9606 0.9757

New
RMSE (m, m/s) 0.0016 0.0035 0.0025 0.0224
R2 0.9965 0.4560 0.9651 0.3843
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Fig. 1 Fiber length, stretch velocity and force of Rectus Femoris, Semitendinosus and Vas-
tus Lateralis obtained using the traditional approach and the new approach, compared with
reference data

3 Results

The mean fiber length, stretch velocity and force (Fig. 1) of two biarticular muscles,
Rectus Femoris (RF) and Semitendinosus (ST), and one monoarticular muscle, Vas-
tus Lateralis (VL), over the different recorded gait cycles, are presented here. Table 1
gives the root mean square error (i.e., RMSE) and the correlation (i.e., R2 coeffi-
cient) between both the fiber lengths and stretch velocities, obtained when using the
traditional approach or the new approach, and the reference data.

Regarding fiber lengths, the new approach gives better results (Tab. 1: RF-R2)
or similar results (Tab. 1: ST-R2, VL-R2) in terms of pattern than the traditional
approach during stance phase. However, during swing phase, the new approach can
bring to a high increase of muscle fiber length (Fig. 1: Rectus Femoris and Vas-
tus Lateralis). For both the traditional and the new approaches, a positive offset
appears for all muscle fiber lengths (Fig. 1). Regarding the stretch velocities, the
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new approach gives better results (Tab. 1: RF-R2, ST-R2) or similar (Tab. 1: VL-
R2) in terms of pattern than the traditional approach during stance phase. However,
during the swing phase, the new approach gives similar results (Tab. 1: ST-R2) or
worse results (Tab. 1: RF-R2, VL-R2) than the traditional approach. Finally, regard-
ing musculo-tendon forces, the traditional approach reproduces well the EMG peaks
during the initial stance and at toe off for Rectus Femoris (Fig. 1). For semitendi-
nosus, only the EMG peak at the end of the swing phase is reproduced (Fig. 1).
Finally, Vastus Medialis force presents a different pattern than the EMG signal with
a midstance activity (Fig. 1). On the whole, the new approach modifies the ampli-
tude of the forces (e.g., Rectus Femoris and Vastus Medialis forces are decreased,
Semitendinosus force is increased), simplifies the force pattern, that includes less
peaks and greatly reduces muscle activity during stance phase.

4 Discussion

Musculo-skeletal modeling has been proposed as an in silico alternative to the inva-
sive in vivo measurement of internal forces (e.g., musculo-tendon and joint reaction
forces) [2, 5, 6, 13, 15, 28, 30, 33, 34, 38]. However, even if great efforts have been
made to improve the models, they only remain partially validated (i.e., qualitative
comparison of the activation patterns with EMG signals, quantitative comparison of
the joint reaction forces with data of instrumented prosthesis [4, 14, 23, 34]) and
not adapted to pathologic subjects with orthopeadic and/or neurologic disorders. In
order to define patient-specific models, it is necessary to adapt geometric parame-
ters [21], kinematic parameters [11, 15, 22] and kinetic parameters but also, when
optimization techniques are used to solve the muscular redundancy problem, the
selected criteria, that aim to reflect the motor control strategies.

In this study, a new optimization criterion has been proposed by extending a tra-
ditional forward dynamics assisted data tracking approach [16, 24, 27, 39]. It has
been chosen to introduce the muscle stretch velocity parameter in the cost func-
tion in order to avoid unphysiologic results in terms of muscular kinematics (i.e.,
muscle fiber length and stretch velocity). This new approach has been compared to
the traditional one and the results obtained after the inverse kinematics procedure.
The simulation has been performed under the software package SIMM, but could
be generalized to any other software package using the same type of optimization
procedure (i.e., forward dynamics assisted data tracking approach).

Regarding the results, the traditional approach fails to produce physiologic mus-
cle fiber length and stretch velocities. Indeed, these parameters present high and
fast unphysiologic variations during both stance and swing phases. Moreover, max-
imum muscle stretch velocity peaks of the Rectus Femoris (and so potentially spas-
tic contractions) are obtained during the initial stance phase. However, clinically,
spastic contractions of the Rectus Femoris often appear during the pre-swing and
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initial swing phase, limiting the second knee flexion peak. These troubles mainly
appear for biarticular muscles (i.e., RF and ST in this study), since monoarticu-
lar muscles (i.e., VL in this study) seem not to be affected. Accordingly, the tra-
ditional approach seems not well adapted to the study of spastic muscles. The new
approach produces more physiologic muscle fiber length and stretch velocity pat-
terns for both monoarticular and biarticular muscles during stance phase (e.g., the
maximum muscle stretch velocity peak of the Rectus Femoris is obtained during
pre-swing). However, some offsets appear during the computation of muscle fiber
lengths compared with the reference data. These offsets, also present when us-
ing the traditional approach, affect muscle-tendon length, muscle moment-arm and
therefore musculo-tendon force. They can be linked to the computation (i.e., inte-
gration) of the kinematics at each time step of the convergence process, based on
the optimized activation and kinematic states of the previous time step. Since the
equality constraints fulfillment belongs to the selected optimization weight, the kine-
matic parameters (e.g., segments and muscles position, velocity and acceleration)
can be affected. Moreover, the new approach brings high unphysiologic variations
of muscle fiber lengths and stretch velocities for all muscles during the swing phase.
Again, this can be linked to the introduction of the weighted minimization of the
equality constraints error, since the joint torques are closed to zero during the swing
phase.

Several limitations need to be addressed regarding the present study. First, the ref-
erence data, in terms of muscular kinematics (i.e., muscle fiber length and stretch
velocity), are directly computed from inverse kinematics. To do this, SIMM com-
putes the muscle fiber length by finding the static equilibrium force in the musculo-
tendon unit. This can be done using the force-length relationships of the Hill model
[12]. However, since the muscle activation is basically considered at 0 when only
computing inverse kinematics, only the passive component of the musculo-tendon
unit is taken into account. Thus, the reference data are purely kinematic data and can
not reflect the consequences of the muscle active component activity. This can be
problematic when investigating pathologic muscles, such as spastic muscles, where
muscle activations can have a high influence on the muscular kinematics. Second,
the optimization criterion proposed here, defined as the maximization of the muscle
stretch velocity, does not have a physiologic sense. This criterion, and its weight
factors, were defined arbitrary for this study. It would be necessary to investigate if
the motor control rules integrate or not such a mechanism.

To conclude, this study shows that the use of a traditional forward dynamics as-
sisted data tracking approach can bring unphysiologic results in terms of muscular
kinematics (i.e., muscle fiber length and stretch velocity). In order to plan the mod-
eling of muscle spasticity, the new approach proposed here can be used to get more
physiologic results during the stance phase, especially in terms of muscle stretch
velocity.
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Forward and Inverse Optimal Control of Bipedal
Running

Katja Mombaur, Anne-Hélène Olivier, and Armel Crétual

Abstract. This paper discusses forward and inverse optimal control problems for
bipedal human-like running, with a focus on inverse optimal control. The (forward)
optimal control problem looks for the optimal solution for a problem formulation,
i.e. given objective function and given dynamic constraints. The inverse optimal con-
trol problem is more challenging and consists in determining the objective function
and potentially unknown parts in the dynamic model that best reproduce a solu-
tion that is known from measurements. Periodic running motions are modeled as
hybrid dynamic models with multiple phases and discontinuities, based on a three-
dimensional multibody system model with 25 degrees of freedom. We investigate a
recorded running motion on a treadmill at 10 km/h running speed and identify the
best possible objective function based on some hypotheses for potential contribu-
tions to this objective function. For this, we apply a previously developed inverse
optimal control technique which uses a combination of a direct multiple shooting
method and a derivative-free optimization technique, and we demonstrate here that
it also works for problems of the given complexity.
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1 Introduction

It is a common assumption that motions of humans and animals are optimal due to
evolution, learning and training [1]. As a logical consequence, from a mathematical
perspective dynamic motion tasks such as walking and running can be formulated
as optimal control problems. In this paper we discuss two ways in which optimal
control can be used to explore human locomotion: (a) in the classical forward opti-
mal control sense to generate natural motions without any help by motion capture
data; and (b) in the inverse optimal control sense, to identify objectives of human
motion from experiments (compare fig. 1). We show in particular the application of
these optimal control and inverse optimal control approaches to three-dimensional
human running motions.

Fig. 1 Two different types of problems: The classical (forward) optimal control problem
consists in finding the optimal solution for a given objective function and given dynamic
constraints. The inverse optimal control problem consists in determining the objective func-
tion (and potentially unknown parts in the dynamic model) that best reproduce a solution
that is (partly) known from measurements.

Human and human-like running motions are investigated in various fields of re-
search such as humanoid robotics, computer graphics, biomechanics, sports science
or orthopedics. In robotics, achieving real running motions on a humanoid robot sys-
tem is a benchmark that various companies and research labs have tried to achieve
[2, 3]. In computer graphics, the goal is to generate realistic human-like running
motions on an avatar (e.g. [4]). For both tasks, forward optimal control can be ef-
ficiently applied to generate feasible and realistic running motions. We have done
this in previous research, aiming e.g. at the generation of natural looking running
motions [5], or of the most stable running in the open-loop sense of an anthropo-
morphic system [6].
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When looking at biological running systems, the inverse question becomes more
interesting. In biomechanics, orthopedics or sports sciences the goal is to fully un-
derstand mechanics and control of normal and pathological gaits in humans, and to
use this knowledge to improve motions after an accident or illness in the orthope-
dic case, or to increase performance to the highest possible level in sports. In this
case the question for the optimization criterion underlying each of these situations
becomes interesting. Recently, Miller et al. [7] have investigated different objective
functions for running motions based on a 2D model with muscles and found that
a minimization of muscle activations squared comes closer to a measured solution
than a minimization of the cost of transport. Ackermann and Bogert [8] studied the
same objective function for walking. However, none of these authors pursued the
study further to look more precisely for the objective function or combination of ob-
jective functions underlying the measurements which would be solving an inverse
optimal control problem.

In this paper, we investigate running motions on a treadmill at a slow pace (10
km/h). We show how a previously developed method for inverse optimal control [9]
can be applied to identify objective functions underlying this type of motions.

The paper is organized as follows: Section 2 describes the multibody system
model of three-dimensional human running used in this study. Section 3 outlines the
formulation and solution of (forward) optimal control problems for the generation
of optimal running motions. Section 4 discusses the formulation and solution of the
inverse optimal control problem and gives results for a particular running example.
Section 5 gives some conclusions and outlines future research directions.

2 Modeling Human Running Motions

To describe the human body we use a multibody system model in three dimensions
with 12 bodies and 25 degrees of freedom (DOF) in flight - 6 global DOF associ-
ated with the positon and orientation of the pelvis and 19 internal DOF related to
internal joint angles. The system is equipped with torque actuators for each of the
19 internal DOF describing the action of the human muscles. For geometry and in-
ertia parameters, we use the anthropometric data given by de Leva [11]. The model
describes human-like forefoot running, i.e. there is no flat foot ground contact but
only point-like contact with the ball of foot. The higher the running speed is, the
more this assumption is true. At a speed of 10 Km/h, many runners intuitively roll
over the foot from heel to toe, instead of using a ball contact. Since modeling such
a complex contact with a variable foot shape is still an issue of discussion in biome-
chanics [10], we have chosen to use the simplification of a pointlike contact for the
time being.

Detailed muscle dynamics are not included in the model yet, but we plan to do
so at a later stage of this research. For more details on the current model, see the 3D
model in [5]. With respect to the model described in this paper, we have removed
the spring-damper elements for the present study.
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Running motions consist of a sequence of alternating flight phases and single-
leg contact phases. The running motion considered in this study is assumed to be
periodic and symmetric, i.e. right and left steps are assumed to be identical. Each
phase of the motion (flight phase and single-leg contact phase) is described by its
own set of ordinary differential or differential-algebraic equations. Between phases,
there may be discontinuities in the velocities, e.g. at touchdown of the foot on the
floor which are assumed to be fully inelastic. The running model therefore takes the
form of a periodic hybrid dynamical system. The above assumptions allow us to
reduce the model of the periodic running motion to the model of a single step with
a subsequent leg shift and periodicity constraints (see figure 2). The total time of
the step T as well as the individual phase times are free variables of the model.

We describe the motion during flight phase by a set of ordinary differential equa-
tions of the following form:

M(q, p)q̈+N(q, q̇, p)q̇ = F(q, q̇, p,M ), (1)

with mass matrix M and the vector N combining all nonlinear effects. F is the vector
of all external forces (such as gravity, muscle torques M , drag etc.) We have used
the automatic model generator of HuMAnS by Wieber [12] to generate the terms M
and N of the 3D running model (see [5] for details).

Fig. 2 The model of an (infinite) sequence of periodic running steps can be reduced to the
model of one step with leg shift and periodicity constraints

During single leg contact phase, we keep the same number of coordinates even
though the number of DOF is reduced by the fact that one ball of foot is fixed to the
ground by a constraint of the form g(q) = 0. This results in redundant coordinates
and a system of differential algebraic equations (DAE) for the equations of motion:

q̇ = v (2)

v̇ = a (3)(
M GT

G 0

)(
a
λ

)
=

(−N +F
γ

)
(4)

gpos = g(q(t), p) = 0 (5)

gvel = G(q(t), p) · q̇(t) = 0. (6)
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with acceleration a = q̈ and Lagrange multipliers λ . G denotes the Jacobian of
the position constraints G = (∂g/∂q), and γ the corresponding Hessian γ =
((∂G/∂q) q̇) q̇. Eqns. (5) and (6) describe the invariant manifolds on position and
velocity level that the solution must satsify. In the optimization, we take into account
the unilateral nature of the ground contact constraint (i.e. the ground can not pull but
only push against the foot) by formulating an inequality constraint on the Lagrange
multiplier associated with the normal contact force. Phase changes between flight
phase and contact phase are not explicitly time dependent but state dependent:

s(q(τs),v(τs), p) = 0. (7)

Touch-down occurs when the foot gets down to the height of the ground, and lift-
off takes place when the vertical contact force (represented by the negative of the
respective Lagrange multiplier in eqn. (4)) becomes zero.

The discontinuities of the velocities at touchdown (resulting from the fact that
the velocity of the foot contact point is instantly set to zero at inelastic contact and
that this shock wave propagates through the whole body) can be computed as:

(
M GT

G 0

)(
v+
Λ

)
=

(
Mv−

0

)
(8)

where v− and v+ are the velocities immediately before and after impact, respectively.
Matrices M and N are the same as in eqn. (4) above.

Periodicity constraints are imposed in the model on all velocity variables v and
a reduced set of position variables qred eliminating the coordinate describing the
forward running direction of the robot, after formulating the leg shift (compare fig.
2).

3 Generation of Natural Human Running by Means of Forward
Optimal Control

In humanoid robotics or computer graphics one often faces the task to generate
a natural motion for a system with given geometry and inertia characteristics. To
achieve this task without any information at all from motion capture or any other
human measurements, optimal control techniques can be efficiently used. Optimiza-
tion has a clear advantage over approaches based on pure simulation. Simulation
always requires to fix important quantities in advance: if it is performed on a for-
ward dynamics model the input forces and torques have to be pre-specified to obtain
the resulting motion, and if performed on an inverse dynamics model the position
and velocity histories have to be fixed to be able to calculate the required driving
torques and forces. However, typically none of the quantities is exactly known a pri-
ori. Optimization-based simulation allows to leave forces, torques and the motion
free and to determine them all simultaneously according to some desired optimiza-
tion criterion.
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In order to generate optimal running motions, the following optimal control prob-
lem must be solved:

min
x(·),u(·),τ

nph

∑
j=1

(∫ τ j

τ j−1

φ j(x(t),u(t)) dt + Φ j(τ j,x(τ j))

)
(9)

s. t. ẋ(t) = f j(t,x(t),u(t)) for t ∈ [τ j−1,τ j ],

j = 1, ...,nph, τ0 = 0,τnph = T (10)

x(τ+j ) = x(τ−j )+ J(τ−j ) for j = 1, ...,nph (11)

g j(t,x(t),u(t))≥ 0 for t ∈ [τ j−1,τ j ] (12)

req(x(0), ..,x(T )) = 0 (13)

rineq(x(0), ..,x(T ))≥ 0 (14)

Eqn. (9) describes the objecive function to be minimized, where the first part
∫

φ jdt
denotes integral objective functions of Lagrange type, and the second part Φ j Mayer
type objective functions depending only on the end values. x(t) denotes the vector
of state variables, summarizing position and velocity variables of the runner, and
u(t) is the vector of control variables of the system, in this case the muscle torques
Mi. τ is the vector of phase switching times with total step time T = τnph .

Eqn. (9) describes the objective function in a general form and is further dis-
cussed below. Eqns. (10) and (11) are placeholders for the hybrid dynamic model
of the running motion discussed in the previous section. In addition, there are con-
tinuous inequality constraints of form (12), including lower and upper bounds on all
variables, but also more complex relations between several variables, and coupled
and decoupled pointwise equality (13) and inequality constraints (14), such as start
and end point constraints, phase switching conditions or periodicity constraints.

For the solution of these multi-phase optimal control problems we use the pow-
erful optimal control code MUSCOD which has been developed at IWR Heidel-
berg [13, 14]. This code can be applied to mechanical DAEs of the above form, as

Fig. 3 Qualitative comparison of optimized running motion and a photographed sequence
by Muybridge in the late 19th century[19]
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described in [15]. MUSCOD uses a direct method (also called first-discretize-then-
optimize approach) for control discretization, and the multiple shooting technique
for state parameterization. The result of these two discretization steps for which
identical grids are chosen is a nonlinear programming problem (NLP) of large di-
mension which is solved by a specially tailored sequential quadratic programming
(SQP) method.

Our experience has shown that objective functions φ j(t,x(t),u(t), p) minimizing
a sum of weighted torques squared, and possible additionally minimizing the varia-
tion of torques, lead to very natural running motions [5], as a qualitative comparison
with human motion shows (see figure 3). Since the focus of this paper is the inverse
optimal control problem for running motions, we will not discuss this forward op-
timal control problem further, and refer to [5] for details instead.

4 Identification of Human Objectives during Locomotion by
Means of Inverse Optimal Control

This investigation goes beyond the qualitative reasoning of the previous section,
since for a thorough biomechanical analysis one is interested in the true objective
function applied by the human. The specific optimization criterion for locomotion in
different situations is generally unknown, and it can be expected that in most cases
a combination of multiple criteria is used. The optimal behavior during a particu-
lar locomotion task can be observed and measured by motion capture, force plate
or EMG measurements etc. The inverse optimal control problem consists in deter-
mining, from a solution that is (partly) known from measurements, the optimization
criterion that has produced this solution.

4.1 Formulation and Solution of Inverse Optimal Control Problem

To solve the inverse optimal control problem, we make the assumption that a set
of reasonable independent base functions Ψi(t) for the objective function can be
established. The relative contribution of these base functions Ψi(t) expressed by a
weight factor αi remains to be determined by the algorithm. The inverse optimal
control problem can be formulated as:

min
α

m

∑
j=1

||z∗(t j;α)− zM(t j)||2 (15)

where z∗(t;α) is determined by the solution of

min
x,u,T

∫ T

0

[
n

∑
i=1

αiΨi(x(t),u(t))

]
dt (16)

s. t. constraint eqns. (10) - (14)
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The vector z represents the observation vector of states and possibly control variables
with z= h(x,u), h being the observation function. z can be either a subset of the state
and control variables or other quantities that can be directly or indirectly measured
and determined from the computed solution. For a more detailed discussion, see
below.

Inverse optimal control problems are difficult since they require the solution of an
optimal control problem and a parameter identification problem at the same time. We
have developed a bilevel optimization technique (compare fig. 4) capable to solve
this type of problems based on two powerful existing techniques. The upper level in
this method is responsible for the iterations over the unknown weight factors α such
that the fit between measurements and optimal control problem solution is improved.
In each upper level function evaluation a forward optimal control problem has to
be solved for the current set of αi. We apply a derivative-free optimization tech-
nique (i.e. it only requires function evaluations and no gradient information) which
is always favorable if function evaluations are expensive and noisy and derivative
information can therefore not be generated reliably. We use the derivative-free op-
timization code BOBYQA (Bound Optimization BY Quadratic Approximation) by
Powell [16] which is also capable to handle bounds on the weight parameters.

Fig. 4 Solution of inverse optimal control problem as bilevel optimization problem

In the lower level, the task is to efficiently solve the forward optimal control prob-
lem which arrises in each iteration of the upper level. For this we apply the direct
boundary value problem approach MUSCOD that was already described in the pre-
vious section.

This bilevel inverse optimal control method has already been applied to identify
the cost functions that produce locomotion paths in point to point motions in free
space [9] as well as in interaction scenarios. The purpose of this paper is to show
that it can equally be applied to solve the multi-phase problems based on complex
multibody system models that we are facing in the present study.
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4.2 Objective Functions of Human Running Identified from
Measurements

An important prerequisite for any inverse optimal control computation is the estab-
lishment of a basis of potential objective functions which then form the base func-
tions Ψi(x(t),u(t)) in equation (16). These functions are context specific and should
reflect the current expert guesses on the problem under investigation. It is obvious
that their choice is crucial, since any inverse optimal control problem solution can
only be as good as choice of base functions permits. We recall that the goal of the
inverse optimal control task is to find an objective function that gives a meaning-
ful explanation in terms of characteristic physical properties of the system, such as
energy, velocities, muscle activations etc. It is therefore not helpful to perform in-
verse optimal control using a mathematical basis of functions such as Fourier series
since the resulting weights of the Fourier terms would not give the desired insights
into the system’s physical behavior. But for a choice of base functions formulated in
terms of physical quantities it must be guaranteed that they are independent - in the
sense that there should not be different (combinations of) base objective function
producing the same solution (a simple example for this would be a minimization
of time or a minimization of distance for a motion at constant speed, which would
have exactly the same solution). In such a redundant situation it would obviously
be impossible for inverse optimal control to make a selection between any linear
combination of these two functions.

For the investigation of running motions, we have to distinguish two different
situations (and we claim that there is a policy change between these two):

1. Running at full speed (sprinting) reaching the physical limits:
In this case, we formulate the following hypotheses for potential contributions to
the objective function

• maximization of running speed
• maximization of frequency /minimization of step time
• minimization of duty factor (relative contact time, see [17])
• ...

2. Running at controlled slow to medium speed (jogging) at which runners typically
are capable to set their speed to the desired value and then adjust their running
style. For this mode, we formulate the following hypotheses:

• minimization of joint torques (squared)
• minimization of joint accelerations (squared)
• minimization of head motions, compare [18] (e.g. velocities squared)
• maximization of stride length
• ...

In this paper, we focus on the second case, i.e. running at controlled low to medium
jogging speed, and we investigate a particular experiment with running speed
10km/h = 2.78m/s. To this end, we conducted an experiment for which one male
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participant volunteered. He gave written and informed consent before his inclusion
and the study conformed to the Declaration of Helsinki. We asked him to run on a
treadmill. After a training period to be familiar with the treadmill, we imposed the
running speed to the constant value of 10km/h to match the case of a low medium
jogging speed. 3D kinematic data were recorded with twelve high resolution Vicon
MX cameras (Oxford Metrics R©) at a sampling rate of 120Hz. Thirty-four reflec-
tive markers were attached to the participants’skin on standardized landmarks with
respect to the anthropometric table of de Leva (see figure 5).

The average speed of 10km/h is imposed as a constraint in the optimal control
problem. We do not investigate the objective functions underlying running at max-
imum speed, since this might require detailed muscle models in order to more pre-
cisely describe the existing physical limits.

Fig. 5 Recorded marker positions are used to reconstruct movements of joint centers and
other characteristic points: the deviation between corresponding points in the model and the
experiments is minimized by inverse optimal control

Another issue to be solved before starting the computations is the choice of quan-
tities z that are used to determine the match between computational model with 25
DOF and measurements of the 43 marker positions see figure 5 in the least squares
sense in eqn. (15). It is still an ongoing discussion in biomechanics and also in hu-
manoid robotics on which level a fit between human measurements on the one side
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and the mathematical model or the humanoid robot on the other side should best be
achieved. There are different possibilities, e.g.:

• matching joint angles and optionally also position and orientation of the central
body (need to be derived from measured marker positions, but are directly avail-
able as state variables in the model);

• matching marker positions (are directly available from measurements, but have
to be computed as functions of the state variables in the model);

• matching positions of characteristic points such as joint centers or dominant
bones (typically require computations on the measurement side based on mea-
sured markers as as well on the model side based on state variables).

Also combinations of the choices above are of course possible and might be reason-
able. We have for the time being chosen the last option and fit measurements and
model at the following points in the 3D runner: right and left hip points, knees, an-
kles, balls of the feet, shoulders, elbows and wrists as well as head center, xyphoid,
suprasternale and root point in the pelvis. Using 3D position information for these
18 points, this leads to a matching vector z of dimension 54 in eqn. (15).

Based on the reasoning above, we have formulated the following parameterized
objective function which combines base functions for the minimization of all 19 joint
torques squared, a minimization of the head motion (which has to be expressed in
terms of the angular velocities of the trunk since in our model the head is rigidly
connected to the trunk) and a maximization of stride length (i.e. a minimization of
the negative stride length):

min

{∫ T

0
(

19

∑
i=1

α jM
2
i )dt +

∫ T

0
(β1ω2

x,tr +β2ω2
y,tr)dt− γ1Δypelvis

}
(17)

We have not added the terms related to the accelerations of the limbs since we
feel that there may be some redundancy with the torque criterion. We assume here
that the weight factors respect body symmetries, i.e. are identical for corresponding
terms in the left and right body half. This means that the 19 weight factors for the
torque terms can be reduced to 10 unknown parameters. Overall, we then have 13
weight factors to be determined by inverse optimal control.

Our computations have resulted in the following best set of weight factors for the
objective function proposed above:

Table 1 Weight factors of objective function contributions determined by inverse optimal
control

αhip αknee αankle αtrunk αshoulder αelbow β γ
0.56 3.7 4.0 9.1 9.1 5.8 435 337
10.7 3.0 300
0.0 0.0
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Fig. 6 Torques of the computational solution that best reproduces the measurements

Figures 6 and 7 show the resulting 19 torque and 25 position histories of the solu-
tion with the above objective function. Velocity variables are not shown for reasons
of space. This solution represents the best possible match between the measure-
ments and the computations with the chosen model and the selected basis of objec-
tive function. The fit is quite good but there are still some differences which can
only be further reduced if some additional adjustment in the model and the problem
formulation are made:

• The model of the three-dimensional runner (section 2) needs to be refined and
several DOF have to be added since it can be shown that even with a a free choice
of torque inputs (solving a pure fitting problem and leaving the inverse optimal
control question apart) no perfect fit can be achieved. In particular the upper body
and the head need additional DOFs. Kinematic and dynamic data used for this
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Fig. 7 25 position variables of the solution of inverse optimal control

study was taken from anthropometric tables and scaled to the subject’s size and
weight. However, for a more detailed fit, the data should ideally be further per-
sonalized by taking into account the subject’s individual proportions. Also the
foot contact modeling with a point contact of the ball which is more realistic for
very fast running might be revised for this slower running speed.

• Additional terms might be required in the objective function (17). These can be
new functions expressed in variables of the current model such as positions, ve-
locities, accelerations, torques, etc. Other examples are terms related to muscle
activity or fatigue or to the effect of passive tissue. These terms would require an
additional enhancement of the runner model by adequate muscle models.

5 Conclusion and Perspectives

In this paper, we have discussed the use of optimal control for the investigation of
three-dimensional human running motions. We have summarized previous results
for the generation of natural running motions by forward optimal control. The fo-
cus of this paper was on inverse optimal control, and we have shown first results
for a running motion on a treadmill at 10 km/h. The best possible combination of
weight factors for an objective function of terms related to torque minimization, head
motion minimization and stride maximization was determined. The inverse optimal
control computations have been preformed using a previously developed inverse
optimal control technique which uses a combination of a direct multiple shooting
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method and a derivative-free optimization technique. We have shown here for the
first time, that it can also be applied to multi-phase problems with discontinuities
and complex multi-body system models.

While these first results are already quite promising, there still remains some
work to do until we have achived a reliable explanation of the true objectives un-
derlying human running. As discussed above, we are currently working on some
refinements of the model in terms of additional DOF, personalized parameters, and
possibly also the addition of muscle models. In addition, other base terms will be
added in the objective functions based on biomechanical literature. Later, we will
also validate the objective function by performing inverse optimal control compu-
tations at different speeds (experiments for 12, 14, 16, and 18 km/h have already
been performed but not yet been analyzed) and by extending the study from one to
several subjects. With this, it would be possible to answer e.g. if objective functions
are individual or can be generalized, and if and at which speeds there is the policy
change between running at controlled speed and running at high speed discussed in
section 4.
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Synthesizing Human-Like Walking in
Constrained Environments

Jia Pan, Liangjun Zhang, and Dinesh Manocha

Abstract. We present a new algorithm to generate plausible walking motion for
high-DOF human-like articulated figures in constrained environments with multiple
obstacles. Our approach combines hierarchical model decomposition with sample-
based planning to efficiently compute a collision-free path in tight spaces. Further-
more, we use path perturbation and replanning techniques to satisfy the kinematic
and dynamic constraints on the motion. In order to generate realistic human-like
motion, we present a new motion blending algorithm that refines the path computed
by the planner with motion capture data to compute a smooth and plausible trajec-
tory. We demonstrate the results of generating motion corresponding to placing or
lifting object, walking and bending for a 34-DOF articulated model.

1 Introduction

How to generate or synthesize natural human walking is an important topic for many
communities, such as humanoid robotics, computer animation, virtual prototyping,
human factor and biomechanics. This is a challenging problem due to both com-
binatorial and behavioral complexities of human body and there are no known ac-
curate and efficient algorithms to simulate its motion. Even the simplest human-
like models that represent the skeleton as an articulated figure need at least 30-40
joints to model different motions such as navigation, sitting, walking, running, object
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manipulation, etc. The high dimensionality of the configuration space of the artic-
ulated model makes it difficult to efficiently compute the motion. In addition to
collision-free and kinematic constraints, we also need to ensure that the resulting
trajectory satisfies the posture and dynamic constraints and looks realistic.

There exists extensive literature relevant to simulating human-like motion in
robotics, biomechanics, animation and related areas. However, they mainly focus
on human walking in open environments. In the other side, many applications need
a natural human walking in constrained environments, i.e. environments with many
obstacles that people need to deviate from common behavior so as to avoid colli-
sions.

Main Results: We present an original hybrid approach that combines motion plan-
ning algorithms for high-DOF articulated figures with motion capture data to gener-
ate collision-free motion that satisfies both kinematic and dynamic constraints. Our
approach performs whole-body planning by coordinating the motion of different
parts of the body and later refines the trajectory with mocap data.

The rest of the paper is organized as follows. We first give a brief overview of our
approach in Section 2. Then the motion blending algorithm is described in Section 3.
Finally, we highlight the performance of our approach in Section 4.

2 System Overview

In this section, we present an overview of our approach on generating natural human
motion in constrained environments. The overall pipeline of our algorithm is given
in Fig 1(a). We do not make any assumptions about the environment or the obstacles
in the scene. We assume that the human-like model is represented by an articulated
model in Fig 1(b) with serial and parallel joints and there is no limit on the number
of DOFs.

A stable and
collision-free pathMocap

Database

Planner
Collision-free constraints
CoM / ZMP constraints

Blender: combine mocap
data with planner’s path

Natural-looking constraints

HMT-I

A more natural      
trajectory

Replanner/Postprocess
CoM / ZMP constraints

Collision-free constraints
Smoothness

HMT-II

HMP

(a)

A3: 3 DOF

A2: 3 DOF

A5: 7 DOFA4: 7 DOF

A1: 14 DOF

Lower body

Torso

HeadLArm RArm

A3 A5A4

A2

A1

(b)
Fig. 1 (a) An overview of our hybrid approach, which can combine the motion computed
by planner and the motion from mocap databases to generate a collision-free, dynamic and
natural human motion. (b) Our 5-component decomposition scheme for a 34-DOF human-
like model. We compute a trajectory for each component in an incremental manner.
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Our approach first uses a sample-based high-DOF planner to compute a collision-
free path, and it also takes into account the foot placement constraint and static/
dynamic balancing constraints. In order to deal with a large DOFs, we use a hierar-
chical decomposition scheme and present an efficient decomposition planner [2].

In practice, generating natural-looking motion using planning algorithms is con-
sidered non-trivial, due to the following reasons: firstly, the randomness of the mo-
tion planner can cause jerky and unnatural motion, especially when parts of the robot
are in open space; secondly, computing a collision-free trajectory corresponds to
searching in a very high-dimensional space, which can be quite challenging in com-
putation; finally, the constrained environments may have tight spaces or narrow pas-
sages and this makes it hard for even sample-based planners to search for a valid
trajectory. In order to address these issues, we present a novel motion blending algo-
rithm, which refines the motion computed by the planner with motion capture data.
We also ensure that the resulting motion is collision-free and satisfies all the other
constraints.

For more details about the system, please refer to our recent paper [1].

3 Motion Blender

The output of the high-DOF planner is a collision-free path, we call it the Human
Motion Path (HMP). The decomposition planner only considers collision-avoidance
constraints and uses random sampling. This approach can lead to a jerky motion
along the trajectory. As a result, we augment or modify HMP by using mocap data,
if available.

We process the postures in HMP in a per-component manner. First we analyze
the postures in HMP based on three criteria which take into account the local envi-
ronment (i.e. nearby obstacles) around the posture and the quality of the computed
path. The three heuristic criteria are space clearance (CLR), posture similarity (PS),
and torque variation (TV).

Space clearance evaluates whether the human model with a given configuration
q is in the constrained environment or not. To compute this, we generate samples
in the neighborhood of q uniformly. We check whether each sample collides with
any obstacles in environments and use CLR(q) = #non−collision samples

#all samples as a metric to
estimate the space clearance, while #(·) is the counting function. In other words, we
compute the possibility that a small variation of q will produce an in-collision con-
figuration, which implicity describes the local distribution of obstacles near human
model’s current position. If CLR(q) is larger than a given threshold (e.g. 50%), we
estimate that the human model is in the open free space. Otherwise, we estimate that
this posture is in the constrained space.

Posture similarity evaluates whether the current configuration q of human model
is similar enough to ascertain qd in the motion capture database. We use the horizon-
tal translation- and vertical rotation-invariant metric to measure the distance between
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two configurations. If PS(q) is larger than the threshold, then the human model is
regarded to be in its natural configuration.

Torque variation gives a rough evaluation of motion’s validness according to dy-
namics. For each configuration q on HMP, we can estimate its velocity q̇ and accel-
eration q̈. Then we can compute the torque τ for human body by inverse dynamics.
In a natural-looking motion, the torque of each joint tends to change gradually and
this boils down to minimizing the integral

∫ T
0 |τ̇|2dt. Using calculus of variation,

this means τ̈ = 0, i.e., τ should changes linearly between τ(qs) and τ(qg), where
qs and qg are the first and last configuration of HMP. When τ(t) deviates from the
linear formulation, it may result in a more unnatural motion.

Based on these criteria, we process different components of each posture with
different strategies: 1) For components that lie in a constrained space, we primarily
rely on the samples in HMP, even though the computed path may not be natural-
looking. In these cases, the planner computes a collision-free and statically stable
path, and any large changes to that path may result in collisions. As a result those
postures of HMP are used in the final path, we only allow small perturbations during
the refinement. 2) For components of the human-model that lie in open space and
appear to be natural, we tend to retain those postures. Otherwise, we compute a con-
figuration based on the mocap database. The output of this phase is a trajectory that
combines HMP with the mocap data and we refer to it as Human Motion Trajectory
I (HMT-I). HMT-I may not be collision-free or even smooth, but it contains some
important information from the mocap data that can bias the result of the motion
planner towards a natural-looking trajectory. We finally perform a decomposition-
based replanning with HMT-I as the guidance path, and compute a collision-free
trajectory called Human Motion Trajectory II (HMT-II).

4 Results

We designed three challenging environments with many obstacles and tested our
approach to generate collision-free motion by specifying the initial and final con-
figurations of the human model. All the benchmarks consist of multiple obstacles
and it would be difficult to edit mocap data directly for such settings. Rather we
generated the initial path (HMP) using our planner and used some postures from
the CMU mocap database to make the motion appear to be more natural.

Fig. 2 Object Retrieval: the human model stands up and places the object on the table
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Fig. 3 Object Placement: The human model picks the book from the table and puts it on
the bookshelf

Fig. 4 Walking & Bending: The human model walks towards the car, avoiding some obsta-
cles. It bends and stretches to put the tool inside the car

Fig. 5 More bending: The human bends and stretches to put the tools under the chair. This
environment is far more constrained than the one of Walking & Bending (Fig 4).

Fig. 6 Walking in the dinning room: The human walks within a dinning room toward a
chair and sits down

In the first benchmark (Object Retrieval, Fig 2), human begins from a knee-
bending posture, tries to pick up an object and then puts it on the table. There are
three main obstacles: grate behind, a ceiling above and the table.

The second benchmark is the manipulation task (Object Placement, Fig 3). In this
case, the human holds an object (e.g. a book) and rotates backward to put it on a
shelf. The grate, lamp, and bookshelf result in a tight and constrained environment.

The third benchmark has two main motion components: walking and bending
(Fig 4). The human first walks along a passage with an obstacle around its head
and then puts a tool into the car. The task of putting the object inside the car is
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challenging due to limited space. Fig 5 show a more challenging variation of this
benchmark with more human bending.

We also test our algorithm to generate a walking motion in constrained living
room environment as shown in Figure 6. Our framework can successfully synthesize
natural human motion automatically in these environments in about 3-5 minutes.

Conclusion

We have presented an algorithm that combines a high-DOF motion planning algo-
rithm with mocap data to generate plausible human motion and satisfy geometric,
kinematic and dynamic constraints. We use a hierarchical decomposition of a high-
DOF articulated model and use that decomposition for constrained coordination and
to satisfy different constraints. We also present automated techniques to search a mo-
cap database for plausible motion clips and generate a smooth, blended motion. We
highlight the performance on generating motion for different tasks including object
placement, object retrieval and walking & bending.
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Locomotion Synthesis for Digital Actors

Julien Pettré

Abstract. Motion capture technologies are commonly used in the field of computer
animation for interactive applications. They enable synthesizing highly realistic mo-
tions for human figures, but they suffer a lack of flexibility. Editing is required to
answer the needs of interactivity, or to match the motion with some new geometrical
and environmental constraints. During the last two decades, the computer anima-
tion research community expended a great deal of effort to use prerecorded sets of
motion capture to synthesize animations with unknown (a priori) constraints. This
paper provides a short overview on these recent motion capture edition techniques.
We also describe more into details a method for synthesizing locomotion with con-
tinuous control over velocity parameters. We expect these previous works to be of
interest for robotocists who attempt to control humanoid robots motion by imitation
techniques, and who first need to be able to synthesize with control input motions.

1 Introduction

Motion synthesis and control for humanoid 2-legged robots is a challenging prob-
lem. Generating walking motions is crucial but difficult because dynamic balance
must be ensured to prevent falling. A number of dedicated techniques have been pro-
posed: for example, walking motions are computed so that the ZMP always exists
in the expected supporting foot. This asks for the walking motion to be computed in
advance, in real-time, and to be stabilized with respect to the robot’s sensors output.
Some simplified dynamic models (e.g., ZMP of the cart-table model for HRP-2 [9])
can be used to efficiently achieve such computations.

More recently, imitation-based motion synthesis appeared for humanoid robots
[29]. The general principle of such methods is to consider a kinematic motion
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(typically, motion captured) and to successively apply a kinematic and a dynamic fil-
ter to fit the motion to the specific kinematic nature of the robot (degrees of freedom,
limbs size, self-collision removal) and then, to ensure that the motion is dynamically
balanced and performable with respect to mechanical constraints.

Given the potential of motion imitation techniques in the field of Robotics to pro-
vide humanoids with ability to perform natural human motions, it is made important
to overview kinematic motion synthesis techniques that were developed in the field
of Computer Graphics to animate virtual humans. This paper provides an overview
of motion capture edition techniques that were proposed in the past two decades and
which rapidly became highly popular in the entertainment industry because of the
trade-off they provide between computation performances and intrinsic realism of
results.

The next Section provides an overview of existing technologies as well as method
to generate new motions from motion capture. Following that, we detail a method
to synthesize locomotion with continuous velocity control.

2 Motion Capture Edition Techniques

2.1 Motion Capture

In the field of computer animation, the general goal of motion capture is to record
the movements performed by a real actor and to translate them onto a digital ac-
tor. Usually, the position and orientation of main human limbs are recorded. Then,
the movements are transposed onto a kinematics chain which models the mobility
of the digital actor. Movement transposition can be directly achieved when the real
and the digital actors have similar morphology and size. When the real and the digi-
tal actors have different morphologies, a motion retargetting stage is required, which
can be achieved online [12], [8] or offline during a preprocessing stage [6].

Several motion capture technologies and systems are available. First, real actors
can wear exoskeletons: the exoskeleton follows the real actor’s movements and ori-
entation of can be directly measured. Such equipment allows tracking the articular
orientations only, whereas the global position of the actor remains unknown. Second,
the orientation of limbs can also be captured using inertial sensors. Such systems
suffer positional drifts in time, but can be used in various situations (e.g., outdoor).
Third, actors can also wear magnetic sensors: they are localized when moving in
a magnetic field emitted by the system. However, the captured volume is limited
and the system is highly sensitive to external perturbation as any metallic objects
would interfere with the system. Fourth, optical systems are probably the most used
in the entertainment industry because of their high accuracy. The motion capture
volume is directly defined by the number of cameras composing the system. Hu-
man movements are visually captured using image sensors and reconstructed in 3D
by triangulating some tracked points. Again, several types of optical systems can
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Fig. 1 Motion warping techniques work from a unique motion signal. On the left image, an
example of motion made of few degrees of freedom with one motion signal each is repre-
sented. Users define constraint in space and time to edit motion signals. Motion signals are
smoothly deformed to satisfy constraints as shown on the right image. An example of a time
warping and of a space warping over one signal each is represented.

be distinguished, but markers, active or passive, are generally used to facilitate the
accurate tracking of specific points of the human body.

The motion capture process results into a fixed recorded motion sequence which
can be replayed at will. By nature, fixed sequences can be used in fixed contexts (en-
vironment, scenario) and are not suitable for interactive applications where motion
has to fit new physical constraints or events caused by the interactive intervention of
users. This is the strongest limitation of motion capture. To overcome this limitation
many motion edition techniques were proposed to preserve the intrinsic realism of
motion while satisfying new geometrical or physical constraints.

2.2 Space and Time Warping

Space and time warping were early proposed as techniques to edit motion capture
sequences [32]. They work from a single motion capture source as represented in
Figure 1. Space warping allow to locally deform articular trajectories in order to
satisfy some user-defined constraints. A user constraint is for example specific pos-
ture the body has to reach at a given time. Motion signals are then deformed over
a time window - centered on time the posture has to be reached - so that the de-
fined constraints are satisfied whilst motion signals remain continuous and smooth.
Time-warping techniques do not edit the captured body postures but the speed at
which they are replayed in time. Such a method can for example locally accelerate
or decelerate an initial motion. Timing can also be globally changed. Motion and
time warping techniques can be simultaneously combined and can be expressed as
edition functions applied to a motion signals θi(t) (where i refer to each degree of
freedom):

θ ′i (t) = f (θi, t
′), with t ′ = g(t) (1)

where f is a space-warping function and g a time-warping function. These func-
tions can be individually defined for each articular trajectory, however, commonly a
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Fig. 2 Example of a motion blending from 2 motion sources made of one motion signal only.
Motion signals of the two sources have identical structure which is a general requirement in
order to create believable motions.

unique time-warping function is defined and uniformly applied to all motion signals.
Several similar methods or extensions were proposed in the literature [3, 24, 5, 17].

2.3 Motion Blending

Motion blending techniques work from 2 motion sources or more. The key-idea
of these technique is to interpolate the recorded angular trajectories between the
two sources in order to generate a new motion sequence as represented in Figure 2.
Interpolating motion signal has no physical meaning, it is then made important to
interpolate together motions with similar content. This avoids generating unbeliev-
able sequences. This requirement generally needs for annotated motion data and
carefully organized motion database. Such process is clearly defined by Rose and
colleagues in [23]: motions of the same type of action are called verb, whereas vari-
ations of a same action correspond to adverbs. Motions annotated with the same
verb but with different adverbs can be interpolated together to generate new motion
with controlled style. The motion blending technique can thus be expressed as the
interpolation of n motion sources θi(t):

θ ′i (t) =
n

∑
i=1

wiθi(t) (2)

where wi are the interpolation weights and θ ′ the interpolated motion. Even when
motion sources have similar structure, they may have different timings and dura-
tions. The previously described time-warping techniques are then employed to adapt
timings and improve the matching of motion structure [10]. Other methods for or-
ganizing a motion database were proposed, such as by using finite state machines
or hierarchical structures [17, 15]. The annotation of a motion database can be te-
dious, automatic annotation techniques were proposed based on machine learning
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Fig. 3 Example of a motion concatenation using 2 sources made of one motion signal only.
Motion signals are split and reordered where transition can be smoothly achieved, i.e., when
position value and variation are similar (transition 1 and 2). Concatenation enables creating
endless motion by repeating portions of the motion sources.

or principal component analysis [2, 4, 19]. In order to precisely control some mo-
tion parameters such as locomotion velocities, extracting recorded motion features
is first required. Several methods were proposed such as in [20, 27, 13, 21, 14].

2.4 Motion Concatenation

Motion concatenation techniques are probably the most used in practice for inter-
active animation of human figures. They work from a unique or several motion se-
quences. They identifies all the possible transitions in motions, regardless of whether
they belong the same motion or not. A transition is detected between motion i at time
t1 motion j at time t2 when θi(t1)≈ θ j(t2) (as previously mentioned, we may have
i = j). All the difficulty of these techniques resides in the identification of similar-
ities in various motions (i.e., definition of the ”≈” comparison operator). Then, a
concatenation between motions i and j can be achieved by transiting from motion
i at time t1 to motion j at time t2. This principle is illustrated in Figure 3 with 2
motions with two possible transitions: we show endless motion can be synthesized
from these two short sequences.

Graphs efficiently capture feasible motion transitions and concatenations: tran-
sitions are the graph nodes, whereas motion clips between two transitions are its
edges. Any path in the resulting graph is smooth motion made of several clips. For
this reason, concatenation appeared in the literature as Motion Graphs [11]. Note
that inversely, it is possible to consider edges being transitions whereas nodes are
portions of motion. Both conventions were used in other papers on motion con-
catenation [1, 16]. Some key-elements compose motion concatenation techniques
and differentiate the proposed approaches, such as: the method for searching for
transitions (i.e., identifying similar postures and motions), the method for transiting
from clip to clip, the method for pruning to create sparse graphs, and the method
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for searching graphs to create user-controlled motions. Previously described motion
blending techniques can for example be used to perform transitions.

The key-ideas brought by these early works on motion concatenation lead to
many developments. The automatic graphs construction process was refined in [7,
34, 33] to better match the needs of interactive control. Sung and colleagues com-
bined motion graphs with probabilistic motion planning techniques to animate
groups of human figures [30]: rough motions are obtained by assembling motion
clips, which is further edited to satisfy precise constraints in space and time. The
building of motion controllers and near optimal path search is achieved in [31, 18]
to reach user-defined states in the context of interactive control. Hybrid approaches
combining motion graphs and motion blending techniques enabled continuous mo-
tion control [26, 25].

3 Locomotion Synthesis with Continuous Control

Previous sections emphasize the importance of motion blending techniques to en-
able continuous control over motion parameters. We now describe a method entirely
based on a motion blending technique to interactively synthesize locomotion with
continuous control over the tangential and angular velocities. This method fas first
introduced in [22] and detailed in [21]. Velocity control satisfies the needs of many
applications such as path following problems. This method is composed of 3 key-
elements. First, a motion capture database is made of carefully preprocessed loco-
motion sequences. Second, given an input command, a selection process chooses
3 of these sequences to be blend. Finally, motion blending weights are determined
by solving a simple linear system and motion with desired velocities is synthesized.
Each of these components is described in the following sections.

3.1 Motion Database

Our motion capture database contains various locomotion sequences. Each sequence
describes one complete locomotion cycle. All sequences start and end at a same iden-
tifiable event, such as for example the right foot heel strike event. Such a convention
ensures that all the captures contained into the database have the same structure.
The database does not only contain motion captures but also provide their duration
Ti, their mean tangential velocity ˜vi as well as their mean angular velocity ˜ωi at
which the locomotion cycle mi is performed. To extract these features, we apply fit-
ting techniques: the global motion of the root is considered and linear fitting is apply
over the trajectory. In the case of turning motions, an arc of circle is fitted. Mean
velocities are deduced from the fitted shapes with respect to the motion durations.
To summarize, motion database D is a set of n motions described as follows:

D = (mi,Ti, ˜vi, ˜ωi), i : 1→ n (3)
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Fig. 4 Schematic representation of the motion capture database by projecting its content into
the velocity space. Horizontal axis represent angular velocities, vertical axis represents tan-
gential velocities. Each point represents one motion, its coordinates are the measured mean
tangential and angular velocities. Delaunay triangulation over this set of points is represented
as well: such a structuring allow efficient nearest neighbour searches. Thus, for any input
velocity, we immediately deduce the motions having the closest features.

It is made important to carefully choose the motions to be added to the database. At
least two criteria should be considered. First, motion database should enough cover
the velocity space (see Figure 4: in order to enable synthesis of slow or fast walking
motions with various angular velocities, it is important to dispose of corresponding
similar examples. Second, a trade-off has to be found between motion density and
sparsity: a too dense database will provoke frequent changes of the motion blending
formula (see the section below) and will decrease the resulting motion smoothness.
A too sparse database will impose blending motions with highly different features
and may violate the need for similarity between blended motions. The displayed
example of database in Figure 4 is an example of correctly prepared database. It
demonstrates that few motions are required in practice.

The building of the database is made at a preprocessing stage. The following
steps are done at runtime.

3.2 Motion Capture Selection and Weighting

We now consider an input command (vd ,ωd), the user-desired locomotion veloci-
ties. The goal of this step is to search the database for examples the mean velocities
of which are close to (vd ,ωd). When projecting the input command the velocity
space as shown in Figure 5, we simply retain the three motions that correspond to
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Fig. 5 Selection of 3 motion capture sources is made by searching motion clips the mean
velocities of which are close to the input command

the vertices of the triangle the input command belong. The resulting motions are
denoted m1(T1, ˜v1, ˜ω1), m2(T2, ˜v2, ˜ω2) and m3(T3, ˜v3, ˜ω3).

The more the input command is close to the features of one of the selected mo-
tion, the more this motion should be influent in the following blending process. We
can put this principle into practice by computing the blending weights w1, w2 and
w3, respectively corresponding to motions m1, m2 and m3, by solving the following
simple linear system:

⎧
⎨
⎩

w1 +w2 +w3 = 1
w1˜v1 +w2˜v2 +w1˜v3 = vd

w1˜ω1 +w2˜ω2 +w1˜ω3 = vd

(4)

3.3 Motion Blending

In the previous section we described how to select three motion sources from the
database and how to weight them. We also previously described the principle of
motion blending techniques in Section 2.3. We now synthesize a locomotion cycle
md with desired mean locomotion velocities (vd ,ωd) by simply interpolating motion
sources with respective weights:

md = w1m1 +w2m2 +w3m3 (5)

There are however several subtleties to be considered during this process. First is to
choose the interpolation space. Motions are made of angular trajectories. They each
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define the relative orientation of the character limbs. Interpolation is made easier
when limbs orientations are expressed using quaternions [28]. Such a representa-
tion is classically used in the field of computer animation. Second is about motion
timing. Interpolating the three sources using their initial timing is not possible be-
cause motions have various duration. It is made crucial to normalize the motion time
dimensions before interpolating them. The duration Td of the interpolated motion is
deduced as follows:

Td = w1T1 +w2T2 +w3T3 (6)

Finally note that the motion selection step and the blending formula are recomputed
each time the input command changes. Nevertheless, it is not required to compute
the whole locomotion with desired velocities. It is possible to only extract postures
one after the other. It is then made important to maintain frame information in terms
of normalized time to achieve coherent extraction.

When the desired walking velocities are covered by our example database (i.e.,
they belong the convex hull represented in Figure 4), there always exists solution
weights. If desired velocities are continuously changed, the combination and weight-
ing of examples smoothly change accordingly. We thus enable continuously control-
ling walking velocities.

3.4 Example

This method has been applied to locomotion planning problems. In our example, a
collision free path is computed into an environment made of obstacles using a prob-
abilistic roadmap approach. This path is transformed into a trajectory by computing
a velocity profile for following the path. We proposed a dedicated technique that
enables bounding velocities and accelerations. Bounds are chosen with respect to

Fig. 6 Left: a path is planned in an environment made of obstacles using a probabilistic
roadmap technique. Right: The path is transformed into a trajectory by computing a veloc-
ity profile. Resulting velocities are used as inputs of our animation method to synthesize a
locomotion strictly following the path.
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the content of the motion database. Resulting velocities are finally used as inputs
of our motion blending technique. The resulting motion is illustrated in Figure 6.
Details are provided in [22].

4 Conclusion

Motion capture provide realistic motions, technologies are each year easier to use
and systems more affordable. Perspectives of using motion captures to drive the
motion of humanoid robots recently appeared in the literature. This make more im-
portant for roboticists to understand how to overpass limitations of motion capture-
based animation of human figures. This paper proposed a short overview 20 years of
research over this problem. We described in few pages the three main methods to edit
motion capture sequences and adapt them to some given environments or to match
the needs of given scenarios: motion warping, motion blending, and motion concate-
nation techniques. Our description is certainly too short to enable re-implementing
those techniques, we however hope it can be used as an introduction for the reader
to the domain of motion capture-based computer animation.
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Whole-Body Motion Synthesis with LQP-Based
Controller – Application to iCub

Joseph Salini, Sébastien Barthélemy, Philippe Bidaud, and Vincent Padois

Abstract. This paper deals with the dynamic control of humanoid robots interacting
with their environment, and more specifically the behavioral synthesis for dynamic
tasks. The particular problem that is considered here is the sequencing of elementary
activities subjected to physical constraints, both internal as torque limits and external
as contacts, within the framework of posture/tasks coordination. For that we propose
to convert the set of tasks into weighted quadratic functions and to minimize their
cost with a Linear Quadratic Program. The combination of elementary tasks leads
to complex actions, and the continuous evolution of the weights ensures smooth
transitions over time, as it is shown in the results.

1 Introduction

This paper focuses on the design of a generic and efficient framework for dynamic
whole-body motions. Interesting issues appear, like the postural balance control
when the robot realizes numerous objectives, the management of a task hierarchy or
the transition control over time. The issue addressed in this paper is to find how to
build scenarii of complex dynamic activities for humanoid robots, including physi-
cal interaction with the environment and ensuring a match between the control and
the dynamics of the robot.

Generally, the whole-body dynamic control is solved using linear algebra meth-
ods as pseudo-inverses and projectors which give analytic solutions. In computer
graphics, these tools give rise to uses for generation of physical simulations [2], and
in robotics, some authors as in [11, 10] have performed the control of humanoid
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robots with these methods. But the integration of physical constraints in the equa-
tions is not easy, especially inequality constraints.

To overcome these difficulties and provide a more natural way to take into ac-
count the constraints, some researchers propose the use of optimization programs,
and especially Linear Quadratic Programs (LQP) which optimize a quadratic cost
function subject to linear constraints. The work presented in [4] shows how to con-
trol humanoids and find a robust balance behavior with these particular programs.
Furthermore, [1, 13] realize the animation of humanoids with a LQP.

Concerning the task hierarchy, numerous works have been done by the past and
the problem is still complicated. [11, 12, 9] propose general frameworks for manag-
ing several tasks on redundant systems and return analytic solutions. Using LQP, [1]
propose to use a weighted-sum objective as cost function which makes a trade-off
between the different objectives, whereas [7] describes the hierarchy as a cascade
of LQP with no interference between lower level tasks and upper ones. However,
continuity in the transitions is not guaranteed during evolution of the hierarchy.

Here, the authors use a quadratic function to regroup the elementary tasks related
to the functional elements of the robot which control a single degree of freedom
(a joint) or several degrees of freedom simultaneously (a frame). The whole-body
activity is tuned by weights related to the tasks which evolve in time, hence it is
shown that relatively sophisticated scenarii can be designed while ensuring torque
continuity and consequently a good control.

First, this paper exposes the control of humanoid robots with a LQP and explains
the construction of the constraints and the cost function. Second, it addresses the

Fig. 1 Left: the real robot iCub. Middle and Right: Superimposition of the real and virtual
iCub, performing the same simulation.
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issue of the task hierarchy, their advantages and drawbacks. Third, it shows the ap-
plication in simulation of the method described in this paper to the humanoid robot
iCub [8] shown in Fig. 1.

2 Definition of Constraints

A humanoid robot is a mechanical system composed of several rigid bodies, con-
nected to each other in a tree structure by joints. Each active joint has a limited
motion range and is equipped with an actuator that can generate a bounded torque.
This kind of robot is basically an under-actuated system, with a trunk, a head, lower
and upper limbs, and it interacts with its environment with physical contacts. On
these systems, one goal is often to make them perform several basic tasks in a co-
ordinated manner. In this paper, the control of the robot is done by a LQP-based
dynamic controller which needs one set of linear constraints and one quadratic cost
function to model the problem, and applies the solution for whole-body motion.

The set of constraints used in the LQP generally represents the physical limits
of the robot, both internal and external. Some constraints can be added or removed
to change the perception of the world by the controller, but they must be carefully
selected in particular to deal with variations in the contact conditions.

2.1 Equations of Motion

The robot dynamic behavior follows the Euler-Lagrange equations of motion:

Mq̈+Nq̇ = g+Sτ + Jt
cfc (1)

where q, q̇, q̈,M(q),N(q, q̇),g(q),S,τ ,Jc(q), fc are respectively the generalized po-
sition, velocity and acceleration vectors, the generalized inertia matrix, the Coriolis
and non-linear effects matrix, the gravity vector, the actuation matrix, the torque
vector, the contact points Jacobian and finally the contact forces vector. Actuation
matrix S allows each degree of freedom to be actuated or not. This equation is lin-
earized around (q, q̇) to fit the LQP, and it uses q̈,τ , fc as variables.

2.2 Joint and Actuation Limits

As written above, each joint has a limited motion range and the related actuator
can generate bounded torque. Furthermore, the linearization of Eq. 1 around (q, q̇)
should be ensured with bounded joint velocities. These constraints are described in
the LQP as follows:
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τmin ≤ τ ≤ τmax (2)

qmin ≤ q+ q̇h+ q̈h2/2≤ qmax (3)

q̇min ≤ q̇+ q̈dt ≤ q̇max (4)

where τ(min,max),q(min,max), q̇(min,max) are torque bounds, joint position and velocity
limits, h is the horizon of anticipation, and dt the sampling time. Anticipation avoids
sudden braking and collisions with joint mechanical limits. The horizon of antici-
pation used in Eq. 3 has to be tuned to brake sooner or later.

2.3 Contact and Kinematic Closure

For all the humanoid bodies interacting with the environment, contacts are described
as a set of punctual interactions with friction. Each contact point i has a velocity
vci = Jci(q)q̇ ∈ R

3, and each point develops a force denoted fci ∈ R
3. Four cases

may happen

• the contact remains persistent, vci = 0 and fci lies inside the Coulomb cone,
• the contact is lifting, vci.n > 0 and fci = 0,
• there is no contact, vci ∈ R

3 and fci = 0,
• the contact is sliding vci×n �= 0 and fci �= 0,

where n is the normal vector of contact. In order to be integrated in the LQP-based
dynamic controller, Contact point constraints are expressed in terms of joint accel-
erations and forces constraints lying inside linearized cones. For instance, the two
first cases are expressed as follows:

case 1 vci = 0 : Jciq̈+ J̇ciq̇ = 0 (5)

Cfci ≤ 0 (6)

case 2 vci.n > 0 : Jciq̈+ J̇ciq̇.n > 0. (7)

In the same way, kinematic loop closure is described in the LQP as a constraint.
Two points i1 and i2 from two kinematic chains are linked to form the kinematic
loop, so vi1 = vi2 ∈ R

3 is expressed in the controller as follows:

(Ji1− Ji2)q̈+(J̇i1− J̇i2)q̇ = 0. (8)

3 Definition of Cost Function

The quadratic cost function of the LQP represents the objective that the controller
may satisfy. Many objectives may lead to conflicting situations, so the selection of
a strategy to cope with this issue is discussed in Sec. 4. Here, one objective has to
be completed, and its related task is the set composed of the controlled part of the
robot, the goal and the way to achieve it.
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3.1 Task Definition

Each task i is associated to a functional element of the robot. It can be a joint, a frame
linked to the robot bodies, the Center of Mass (CoM), etc. One of the main concern
in the task definition is to find the appropriate Jacobian matrix Ji and its derivative
(with regard to time) J̇i related to the task. Hence, the velocity vi and acceleration
v̇i of the task i can be computed as well:

vi = Jiq̇ (9)

v̇i = Jiq̈+ J̇iq̇. (10)

Since the whole-body motion control is dynamic, at each time step a desired ac-
celeration v̇des

i is computed beforehand, and the cost function of the task becomes
(δ i)

2 = ‖v̇des
i − v̇i‖2.

3.2 Task Controller

A task controller computes the desired acceleration mentioned above. A simple one
is the tracking of a predefined trajectory. If for the task i the desired pose, velocities
and acceleration of reference over the time are respectively posre f

i , vre f
i and v̇re f

i , its
controller gives the desired acceleration as follows:

v̇des
i = v̇re f

i +Kperrp +Kderrd (11)

where Kp,Kd are respectively the stiffness and the damping of the trajectory track-
ing, and errp,errd are the proportional and derivative errors. errd is the difference

between the reference and actual velocities errd = vre f
i − vi, and errp is the dif-

ference between the reference and actual pose. Its computation relies on the con-
trolled element and the nature of the movement. For example a joint with linear
configuration (like a hinge), or the relative position of a point give a simple error
errp = posre f

i −posi. If it is only a translation, the error is computed as an Euclidean
distance, but if it incorporates a rotation it becomes more complicated. The authors
use the imaginary part of quaternions to compute the proportional rotational error.

Another interesting way to achieve an objective is to use a preview control. It is
exploited here to control the center of mass of the robot to generate a gait pattern
using a preview control of the zero-moment point (ZMP) [15]. Indeed, the predictive
controller returns an optimal path according to a given criterion along a predefined
horizon. For example, the use of the inverted pendulum as the approximation of a
humanoid explained in [6, 14] allows to predict the trajectory of the center of mass
function to a control vector. The first component of this vector is used as the desired
acceleration, and the solution is updated at each time step. This preview approach
can be extended to other tasks such as compliant motions.
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3.3 LQP-Based Controller

At each time step, the dynamic LQP-based controller solves the following problem:

min
(q̈,τ,fc)

((δ i)
2 +ατ(τ)2 +αfc(fc)

2) (12)

s.t. : Eqs. 1− 8 (13)

where ατ ,αfc are weights. The given torque vector is applied to the robot, and due to
the minimization of its norm, the controller generates smooth motions. This method
illustrated in Fig. 2 can be compared to optimal quadratic control, where there is a
trade-off between the state-feedback and the control vector of the robot. Here the
state of the robot is q̈, the control vector regroups τ, fc, and the ratio is given by ατ
and αfc .

Fig. 2 Relationships between the different parts to perform the control of the humanoid robot

4 Importance, Hierarchy and Transition

One of the main difficulties for the implementation of coordination between several
tasks on a system with high redundancy is the importance between the various tasks.
Indeed, a strict hierarchy should be used when higher priority tasks need to be per-
formed with no error, but a simple trade-off between weighted objectives may offer
more flexibility.

4.1 Weighting of Tasks

The easiest way to perform several tasks into the LQP-based controller is to optimize
a sum of weighted costs which replaces Eq. 12 by (Σi(αi(δ i)

2)+ατ(τ)2+αfc(fc)
2)
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where αi is the weight of task i, and Σiαi = 1 to keep the same ratio with the com-
mand described above. It is a good way to quickly realize several tasks at the same
time with one LQP at each time step. As a task j with a bigger weight α j � αi∀i
will be roughly fulfilled, this method allows to set up a sort of smooth hierarchy
between tasks.

4.2 Task Hierarchy

A way to perform strict hierarchy is to solve many LQP one after another. Assume
that tasks have been sorted by importance: the first level realizes task 1, the second
level realizes tasks 2 and 3 according to their weighting coefficients, the third level
realizes task 4, and so on. When one level is solved, the related solution is inserted
as a new constraints in the next level. For example, assume the first level of the
hierarchy is solved by the LQP in Sec. 3.3, hence the optimal solution of task 1 is
δ ∗1, the related constraint is δ 1 = δ ∗1, and the second level becomes:

min
(q̈,τ,fc)

(α2(δ 2)
2 +α3(δ 3)

2 +ατ(τ)2 +αfc(fc)
2)

s.t. : Eqs. 1− 8

δ 1 = δ ∗1

which gives solutions for tasks 2 and 3 and provides new constraints to the next
level.

4.3 Tasks Transition over Time

When performing the synthesis of complex tasks, the set of objectives, their relative
importances, their hierarchy and their goals may change during time. A strategy
must be set to ensure stable transitions and avoid peaks in the control.

For example, the humanoid robot has to grab a object on a table, it must bend to
reach its objective, then it gets up to put the object elsewhere. The set of tasks is:

1. keep robot balance,
2. keep the back upright,
3. grab the object,
4. displace the object.

The balancing task has the most importance (or the highest priority) throughout the
example, but grabbing the object is more important than keeping the back upright.
When the object is caught, keeping the back upright becomes more important, and
the object may finally be displaced. If a hierarchy is set as in Sec. 4.2, the task
which keeps the back upright is not continuous because one of its constraint related
to higher tasks suddenly vanishes and affects the control. If the importance between
coefficients is considered, the transition is done by sliding smoothly their values to
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their new relative importances, so the trade-offs change continuously over time. This
example is described and validated in Sec. 5.2.

5 Experiments

The validation of the method is done through some experiments with the model of
the iCub robot. The simulations has been carried out with arboris-python [3], a sim-
ulator developed in the ISIR-UPMC laboratory. It aims to perform dynamic simula-
tions quickly and easily with tree-shaped structures under some physical constraints
as frictional contacts, joint limits and ball joints. The LQP is solved with cvxopt [5],
a convex optimization python library. The sampling time is set to dt = 0.02 s for all
simulations.

5.1 Joint Limit Avoidance

Here, the robot reaches an objective in front of it with its left hand. The motion is
constrained by joint limits, so the controller needs some anticipation to avoid hard
braking. Figure 3 shows the displacement of the left arm.

Fig. 3 The initial (left) and
final (right) positions of the
left hand

During this simulation, the pitch and roll joints of the shoulder approach their lim-
its. The method presented in Eq. 3 bounds the joint acceleration on a predefined hori-
zon. This approach reduces the sharp evolutions of the torques as shown in Fig. 4,
where some peaks appears before t = 0.5 s due to a short horizon of prediction.

5.2 Box Displacement

This experiment is described above. The robot grabs a 3 kg box and displaces it from
one place to another, as shown in Fig. 5.

Here, torques and velocities of the torso joints have been recorded and the results
are given in Fig. 6. As the box is relatively heavy — the robot weighs about 20 kg
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Fig. 4 Left arm behavior when subject to joint limit constraints for different horizons of
prediction h

Fig. 5 Sequence of the robot grabbing the box

— it cannot be neglected in the dynamic behavior and the postural balance of the
humanoid. At t = 1.5 s and t = 4.8 s, there is two discontinuities in torques applied
to the robot, when it lifts and drops the box. Elsewhere, the coefficient of the task
which keeps the back upright evolves smoothly to make the grasping task easier,
and no sudden change appears during the transition periods.
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Fig. 6 Torso and velocity joints evolution over the time

5.3 Gait Pattern

As explain in Sec. 3.2, the approximation of the robot with an inverted pendulum
gives an approximated ZMP, which can be controlled with this method. The tra-
jectory of this point is defined a priori and the tasks which realize the steps are
synchronized with its path.

Fig. 7 Sequence of the walk

Here, the robot gets up from a seated position, initiates a gait pattern, walks 0.5 m
and stops. Figure 7 shows the snapshots of this sequence. The duration of one foot
step is about 0.8 s and the entire simulation is done in 8 s. To perform this simulation,
all joint limits are actives and the horizon of prediction is set to h= 0.15 s. To prevent
the knees to bend in the wrong way, their limits have been reduced and their positions
remain in an admissible set. Furthermore, the feet get closer during the walk, hence
the CoM trajectory has less amplitude which minimizes the swing of the upper body.
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Fig. 8 CoM and ZMP trajectories, with the footprints

The trajectories of the CoM and ZMP from the initiation of the gait pattern to the
end are shown in Fig. 8.

6 Conclusions

This controller allows to perform the synthesis of several dynamic tasks on a hu-
manoid robot while interacting with its environment. The robot is subjected to both
internal and external constraints, which are described as linear constraints on a Lin-
ear Quadratic Program. The tasks are described as a quadratic weighted-sum objec-
tive, and the solution of the problem is a general trade-off. The smooth evolution of
the weights over the time prevents sharp evolutions of torques applied to the robot.
In the future, the authors would like to take into account joint acceleration limits in
the solution of the problem. It implies new constraints and some checks should be
done to ensure that they are not overabundant with the joint position and velocity
limits.
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Walking and Running: How Leg Compliance
Shapes the Way We Move

Andre Seyfarth, Susanne Lipfert, Jürgen Rummel,
Moritz Maus, and Daniel Maykranz

Abstract. The function of the human leg during walking and running is complex.
One issue is the segmented structure of the leg, which consists of thigh, shank and
foot. The situation is further challenged by the parallel arrangement of muscles span-
ning a single or multiple leg joints. How is the leg function organized to make typical
movements such as walking and running possible and easily accessible? In this pa-
per, we review a number of biomechanical models based on the spring-mass model,
which may help to better understand how compliant leg function can be used and
properly adjusted to selected movement tasks. This includes the emergence and sta-
bilization of walking and running patterns. One general characteristic of movements
based on compliant leg function is the functional redundancy in the leg adjustment,
i.e. at a given speed, walking or running can be achieved with different leg strate-
gies. This principle of redundant leg adjustments fulfilling the same general goal of
movement is a key for understanding the organization of human locomotion.

1 Dynamics of Running and Walking

The leg force generated during the stance phase of running is remarkably similar to
that of a linear telescopic spring. This behavior originates from the contribution of
elastic energy recoil to the positive work during the stretch-shortening cycle of the
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muscle-tendon units [4]. When plotting the leg force Fleg against the leg length lleg,
defined as the distance from the leg’s point of force application on the ground to the
center of mass (COM), this results in an almost linear relationship with maximum
leg force being achieved at maximum leg compression (Fig. 1, [11]). The slope of the
force-length curve represents the leg stiffness kleg. This observation of a linear elastic
leg function motivates the spring-mass model [1, 17] as a conceptual framework to
investigate the dynamics of running.

With such a simple mechanical model periodic trajectories of the COM and pat-
terns of the leg force Fleg(t) similar to those found during legged locomotion can
be predicted. For instance, when selecting a certain leg stiffness kleg, appropriate
leg angles of attack α0 can be identified to result in a steady state running pattern.
Some of these periodic solutions are passively stable [21], i.e. they are approached
from adjacent COM trajectories (e.g. trajectories with different apex heights) with-
out changing the leg parameters. This attractive property of spring-mass running can
be described as ’self-stability’, as the fixed point is stable only due to the mechanical
nature of the system without requiring any additional control effort to return to the
periodic running pattern.

Fig. 1 Mean leg force -
leg length Fleg(lleg) tracings
during human walking and
running averaged for 21
subjects on an instrumented
treadmill at 1.55 m/s [11].
The progression of time
is indicated by arrows. In
both gaits, maximum leg
forces are found at max-
imum leg compressions
(smallest leg lengths). Leg
length at touch-down (TD)
is shorter than at take-off
(TO). Index ’c’ indicates
the contralateral leg, BW
= body weight, l0 is the
height of the COM with
respect to the ground during
standing upright. Adapted
from Lipfert SW. Kinematic
and dynamic similarities be-
tween walking and running.
Verlag Dr. Kovac 2010.
Used with permission.

In human walking, leg function seems to be fundamentally different as com-
pared to running. At about mid-stance of walking, the knee joint is almost straight
in contrast to maximum knee flexion in running. The opposite is true for the instant
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of take-off. Here the knee joint is clearly bent in walking and almost straight in
running. Surprisingly, at speeds close to the preferred walking speed the similar-
ity of walking and running on the global leg level may be larger than expected as
indicated by the relation between leg force and leg length (Fig. 1).

For a linear leg spring, we would expect an increase in leg force Fleg proportional
to the amount of leg compression during stance phase. Indeed, for the speed shown
in Fig. 1 this is the case for running (red graph) and walking (black graph). At the
beginning of contact phase, the slope of the force-length graphs is steeper than dur-
ing the remaining contact. In walking, the situation is slightly different as compared
to running. There are two maxima in leg force and two minima in leg length. How-
ever, the force-length dependency in walking at 1.55 m/s is remarkably similar to
the one in running (Fig. 1).

These experimental findings support the previously proposed extension of the
spring-mass model with a second leg spring [6]. This bipedal spring-mass model
is capable of predicting both walking and running motions with similar COM tra-
jectories and GRF profiles as found experimentally [11]. For fast speeds, running
gaits with single humped GRF patterns are predicted by the model, similar to pre-
dictions from the original spring-mass model [21]. At lower speeds, stable walking
patterns are predicted, which are characterized by double support and single support
phases as in human gait. Not only does the model qualitatively predict the kinemat-
ics of the COM, for the first time it also predicts the double-humped GRF patterns
in human walking [6]. However, leg stiffness in human walking and running is not
completely constant (Fig. 1) and there are systematic deviations between COM tra-
jectories predicted by the model compared to experimental data. This indicates that
a more detailed analysis and representation of human leg function than provided by
this model is required.

It is important to note that the bipedal spring-mass model (as well as the under-
lying spring-mass model) fails in describing the shift of the leg’s point of force ap-
plication during stance phase of walking and heel-toe running. This deficit leads to
an overestimation of vertical excursions of the COM in comparison to experimental
data. By introducing the forward shift of the point of force application in the spring-
mass model [2], the vertical impulse and the mechanical work on the COM observed
during stance phase of human running can be described more realistically [3].

Another striking difference between the concept of a simple leg spring and the
experimentally observed force-length curves (Fig. 1) is that the experimentally ob-
served leg length is shorter at touch-down as compared to take-off. This difference in
leg length is increasing with speed (Fig. 2). Within the speed range (0.5−2.6 m/s)
where both walking and running can be observed, the force-length curve remains
spring-like in running with maximum leg force occurring at the instant of maxi-
mum leg compression. Except for the initial landing phase, the slope of the force-
length curve remains quite constant indicating a spring-like leg behavior in running.
The leg force-leg length function in walking, however, appears to be more complex.
Here, the initial loading of the leg occurs at a higher leg stiffness than unloading be-
fore take-off. At speeds higher than 75% PTS, the second loading phase of the leg
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Fig. 2 Leg force-leg length tracings measured on an instrumented treadmill at different
walking and running speeds (0.52− 2.59 m/s) corresponding to 25% PT S− 125% PT S.
100% PTS = individual preferred transition speed between walking an running [11]. In-
stances of touch-down and take-off are indicated as TD and TO. Index ’c’ indicates the
contralateral leg. Adapted from Lipfert SW. Kinematic and dynamic similarities between
walking and running. Verlag Dr. Kovac 2010. Used with permission.

(during mid-stance) occurs even during leg lengthening. This cannot be explained
by a simple spring-like leg function as assumed in the spring-mass model.

In section 3 we will give an example of how the geometry of the segmented hu-
man leg and especially the function of an elastically coupled foot segment can con-
tribute to a change in the overall force-length relation of the leg during stance phase.
But before enhancing the complexity of the leg model we would like to discuss to
what extent a model with two spring-like legs can select between walking and run-
ning gait patterns. In particular, we are interested to see whether the regions of walk-
ing and running are separate in the space of leg parameters or whether continuous
transitions between both gaits are possible. For this, we will analyze in the next sec-
tion the predicted solutions of the bipedal spring-mass model at system energies1,
where both gaits can naturally occur.

1 With ’system energy’ we mean the mechanical energy of the system, i.e. the sum of kinetic
and potential energies including the energy stored in elastic structures.
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2 Are Walking and Running Discrete Gaits?

In the simulation work of Geyer et al. [6] it was shown that both walking and run-
ning can be predicted by the bipedal spring-mass model when the leg stiffness kLEG

and the angle of attack α0 are adjusted appropriately to match the system energy.
Between the regions of stable walking and running, a speed gap was observed indi-
cating that a certain amount of energy needs to be injected to change from walking to
running. In the study of Rummel et al. [20] we asked whether a transition between
both gaits could also be predicted for the same system energy. More specifically,
we analyzed the required changes in the leg adjustment and the COM patterns to
make the transition. To simplify the analysis of the bipedal spring-mass model we
selected a constant leg stiffness (k = 15 kN/m), a rest length of the leg (l0 = 1 m)
and different system energies spanning the range of human walking and running.

To map walking and running solutions, the COM height and the orientation of
the vertical COM velocity at the instant of vertical leg orientation (VLO) during
mid-stance were used. As the bipedal spring-mass model only describes gaits with
constant system energy, it was sufficient to proof that the VLO height y0 and the ver-
tical COM velocity vy0 are the same for two subsequent VLO’s to identify a periodic
solution.

The search for periodic solutions of the bipedal spring-mass model (Fig. 3) re-
veals a large region of walking patterns for VLO heights y0 larger than the landing
height yTD = l0 sinα0 (rest length of the leg l0, angle of attack α0) and running pat-
terns with y0 < yT D. Within a small range of touch-down angles (angle of attack
around α0 = 70 deg) and VLO heights y0 above 0.9 m, there is a small region of
running solutions with single humped force patterns but no flight phases (see exam-
ple with corresponding COM trajectory and GRF pattern in lower panel in Fig. 3).
This new gait pattern can be described as grounded running and bridges the gap be-
tween walking and running (with flight phases). Within the regions of these three
gait patterns (walking, grounded running and running) it is possible to continuously
change from walking to running for a given system energy (e.g. thick black line in
upper panel of Fig. 3 indicates E = 820 J) with appropriately selected angles of
attack.

Another finding of this study was the predicted shift in the angle of attack α0 with
speed (system energy E). For running, the angle of attack is shifted towards flatter
angles with increasing speed. This is different to walking. Here, two independent
walking solutions exist, which move in different directions with increasing energy
as indicated in the upper panel of Fig. 3. For a given angle of attack, different peri-
odic walking patterns can exist at different VLO heights. Alternatively, for a given
VLO height, walking solutions can be found for different angles of attack. Walking
patterns with VLO heights y0 close to the touch-down height yT D are characterized
by trapezoid single humped force patterns with flat plateaus (for details see [20]).

In summary, we found that within the framework of the bipedal spring-mass
model, walking and running solutions can be found in large ranges of angles of
attack α0 and VLO heights y0. Walking and running patterns are separated by the
line y0 = yT D. This means that for spring-like legs, walking can be found when the
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Fig. 3 Upper panel: Regions of walking, running and grounded running depending on the
angle of attack α0 and COM height y0 at vertical leg orientation (VLO) during mid-stance.
The right scale of initial horizontal velocities vx0 (at VLO) corresponds to a selected system
energy of E = 820 J, denoted by thick black lines. Lower panel: COM trajectory and GRF
pattern of a selected ’grounded running’ solution (red dot in the upper panel, around α0 =
75 deg) [20].

COM position is lifted with respect to the landing condition (y0 > yT D). In con-
trast, running requires a lowering of the COM during mid-stance with respect to
touch-down. Within a small range of angles of attack (α0 around 70 deg, Fig. 3),
however, both walking and running solutions approach each other at the separating
line y0 = yT D. Hence, at moderate speeds (e.g. around 1.1 m/s for kLEG = 15 kN/m)
a smooth transition from walking via grounded running to running with flight phases
could be performed with spring-like legs even without changing the system energy.
It remains for further studies to investigate, whether such transitions can also be ob-
served experimentally. Here, deviations from a linear spring-like leg function (as in
fast human walking, Fig. 2) or other physiological constraints (e.g. internal work
required to swing the leg forward before next touch-down) might play an important
role.

The transition between walking and running has attracted the interest of many
researchers within the last years. Here, the function of the foot and the foot extensor
muscles [12] is considered to be crucial to explain the walk-run transition (WRT).
With the help of detailed computer simulation models, a dramatic increase in plantar
flexor forces was predicted when the WRT was performed [18]. This could be due
to the more synchronized function of knee and ankle joint in running as compared
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to walking [11]. In the following section we will investigate how the geometry of
the foot could affect the overall function of a spring-like operating leg. For this, a
rigid foot segment will be coupled to the leg by a rotational spring representing the
function of muscles spanning the ankle joint.

3 Effects of the Foot on the Global Leg Function

During walking and running2, the point of force application on the ground [2] is
shifted from heel to toe. As a result, the leg forces do not intersect in a fixed foot
point as assumed in the spring-mass model. In order to represent this shift of the
center of pressure during ground contact as a natural effect of the roll-over function
of the foot, we introduce a rigid foot segment (length l f ) attached to the linear leg

Fig. 4 Left panel: Contact phase of a spring-mass model extended with an elastically coupled
rigid foot segment [16]. The compression and extension of the elastic leg (prismatic spring)
and the elastic foot joint (rotational spring) may occur at different time scales. As a result,
maximum leg force FMAX and heel-off do not occur simultaneously. Gray lines indicate
the alignment of GRF with a forward shift of the point of force application on the ground.
Right panel: During leg loading, there is a steady rise in leg force with a parallel loading
of both springs. Between maximum leg force FMAX and heel-off, the leg is very stiff. Here
both springs are counter-acting resulting in a rather constant leg length. After heel-off, both
springs are unloading and the leg becomes more compliant. Leg length is defined as the
distance from center of pressure to center of mass.

2 Except for fore-foot running.
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spring of the spring-mass model [16]. The action of the muscles spanning the ankle
joint is represented by a rotational spring (joint stiffness c, rest angle φ0). There are
several studies indicating an elastic function of the ankle joint both in walking [8, 11]
and running [7, 11].

The combination of a linear leg spring and a rotational foot spring (Fig. 4)
can lead to a modulation of the overall leg force-leg length relation during stance
phase (right panel). This may result in a higher leg stiffness during leg compression
compared to leg extension. Additionally, the leg length at take-off becomes larger
than at touch-down. These two effects are also indicated in the force-length curves
of the human leg during walking and running (Figs. 1, 2).

These simulation results indicate that a spring-like joint function does not nec-
essarily lead to a spring-like leg function. The asymmetry of the leg with the foot
pointing forward and initial heel contact leads to higher leg stiffness during leg load-
ing as compared to leg extension. In recent studies on human running the observation
that the leg is more stiff in landing than during take-off [1] was attributed to the dif-
ferent responses of the muscle-tendon units to stretching and shortening [5]. Here,
we demonstrated that this landing-take-off asymmetry could also exist even when
the muscle-tendon units would operate fully elastically. To better understand the
contribution of joint function to the global leg function during locomotion, a more
detailed representation of the segmented structure of the human body is required.
In the following sections, we will separately focus on the two more proximal joints,
namely the knee and the hip joint. The effects of the knee joint within the segmented
leg will be discussed in section 4 to reveal its potential function more specifically.

4 Leg Segmentation with Upper and Lower Leg

Maybe the most striking structure of the human leg is the segmentation with thigh
and shank. Within such a two-segmented leg, spring-like leg function can be
attributed to a rotational stiffness of the knee joint [19]. The segmentation of the
leg offers variable gearing between joint function and leg function by adjusting the
nominal joint angle (i.e. the rest angle of the rotational spring). Joint stiffness be-
havior can be adapted to speed and to the amount of joint flexion. This is used in
human locomotion and may help to guarantee gait stability at different speeds and
gaits.

Elastic knee joint function can be found in human walking [11] and running [7].
In running, the rotational stiffness of the knee increases with running speed [10] in
contrast to ankle stiffness, which remains rather constant. Assuming a linear knee
joint stiffness for running with a two-segmented leg, the predicted minimum speed
required for stable running [21] can be clearly reduced. Also, the robustness of run-
ning with respect to changes in the angle of attack is largely enhanced. This comes
at the cost of a reduced tolerance in speed, which must now be compensated by
joint stiffening. Such an adaptation of knee stiffness with running speed is in agree-
ment with experimental observations [19]. This adaptation of joint stiffness may
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compensate for the changed leg geometry (larger joint flexion with higher speed)
and by this contribute to an approximately constant leg stiffness at different running
speeds [11].

Translating spring-like leg function into joint function offers the opportunity to
adapt joint stiffness and nominal joint angles with speed. By this the stability and
robustness of running can be increased further potentially reducing the required con-
trol effort during locomotion. Knee flexion not only contributes to changes in leg
length but also effects the amount of ankle joint flexion when the foot is flat on the
ground. This kinematic coupling between knee and ankle joint within the segmented
leg is lost after heel-off and may be replaced by a coupling through the bi-articular
gastrocnemius muscle spanning the knee and ankle joint. In this muscle, different
strategies are found between walking and running, with almost constant muscle fibre
lengths in walking and continuous fibre shortening in running [9]. With this coupling
of knee and ankle joint, the function of the foot in shaping the global leg function as
described in section 3 will be further pronounced. A more detailed representation
of the human leg with three segments (foot-shank-thigh, [22]) is required to bet-
ter describe the gait-specific interplay of elastically operating knee and ankle joints
during dynamic loading and unloading.

5 Postural Control Based on Compliant Leg Function

In the last two sections, we focused on the role of the foot and leg segmentation
on gait and gait stability. Similar as in the spring-mass model, the supported body
was reduced to a point mass. In this section we aim at extending the model by an
upper body in order to study mechanisms for stabilizing the upright trunk posture in
human locomotion. Similar to [13], we use a rigid segment as a replacement of the
point mass in order to describe walking and running [14, 15]. Without any additional
means, the upper body cannot be stabilized in an upright posture, as the COM is
located above the hip joint. In order to align the trunk upright during locomotion,
hip torques acting between the telescopic leg spring and the trunk are required. A
typical approach is to measure the orientation of the trunk with respect to the vertical
axis. This is not aimed here. Instead, we ask whether there is a simple strategy to
stabilize the trunk without any external information (e.g. direction of gravitation as
a reference to align the trunk).

One mechanically favorable solution would be that the hip joint is located above
the COM. In this configuration, the COM would have a naturally stable equilib-
rium position3. Here, we aim at mimicking this situation by placing a virtual pivot
point (VPP) instead of shifting the location of the hip. The idea is to redirect the leg
forces from the original leg axis (represented by a telescopic leg spring attached to
the trunk at the hip joint) to the VPP by applying appropriate hip torques (Fig. 5).
To some extent, this mimics the situation in which the leg spring would be attached

3 This is similar to a pendulum, which would asymptotically converge to this configuration
in the case of some damping.
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Fig. 5 Left panel: Extended spring-mass model with a rigid upper body. The leg spring is
attached at the hip, which is located below the center of mass (COM). The force of the
leg spring is deviated by hip torque τ to point towards the virtual pivot point (VPP), located
above the COM. Right panel: By applying this simple hip torque control [14], stable walking
can be predicted with hip torque patterns similar to those found in human walking [15].

to VPP instead of the hip joint. The required hip torque is calculated based on the
spring force and the inner hip angle. Introducing this hip torque results in a non-
conservative model, as the total system energy is not necessarily constant any more.
By implementing this simple concept, it is possible to predict both walking and run-
ning with a stabilized upright trunk posture. For this, the VPP needs to be located
in a certain range above the center of mass. The predicted torque patterns are in
good agreement with experimental hip torque data on human walking (right panel
in Fig. 5).

The presented gait model with an upright trunk demonstrates that the bipedal
spring-mass model is not restricted to simplifying body representations such as a
point mass. The previously identified gait dynamics for walking and running can be
preserved while adding additional functionality such as an upright trunk posture to
the model. For walking, the trunk can even be used as a reference frame to align the
leg angle in preparation of touch-down resulting in stable gait patterns. This further
reduces the need of global sensory information and may facilitate the transfer of
these conceptual gait models to technical systems (e.g. legged robots, prostheses).

With this presentation of the VPP concept as a strategy to achieve an upright trunk
posture during walking and running we conclude our review of conceptional mod-
els for describing human walking and running. So far, these models are restricted
to selected features of the human body (leg segmentation, upright trunk) taking the
overall spring-like leg function into account. At all model levels, it was possible
to generate COM movements and GRF patterns which resemble those observed in
human walking and running. However, it must be stated that the models are still
far from describing the detailed dynamics of human gait. The interplay between
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the different structural levels of the segmented human body during locomotion is
still only poorly understood. We hope that by carefully increasing the model com-
plexity we can finally achieve more realistic representations of the dynamics of the
human body, which can help us to understand the underlying mechanisms of legged
locomotion.
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Modeling and Simulation of Walking with a
Mobile Gait Rehabilitation System Using
Markerless Motion Data

S. Slavnić, A. Leu, D. Ristić-Durrant, and A. Graeser

Abstract. Research and development of gait rehabilitation systems and devices such
as orthosis, prosthesis and wearable robots are complex processes in which simu-
lation techniques are exploited in order to accelerate development process, reduce
development costs, optimize the proposed solution, analyse the interaction between
the system and human, etc. The modelling and simulation results can give valuable
insights in the functionality of the system and directions for optimization and im-
provement of the researched system. Within the frame of the RoboWalker project
a concept of a mobile robotic gait rehabilitation system, which will improve gait
rehabilitation through several novel system features, was investigated. The system
consists of a mobile platform with integrated active exoskeleton. In this paper, the
modelling and simulation approaches utilized in designing and analysing the con-
cept of mobile gait rehabilitation system are presented together with a novel mark-
erless motion capture system that was used for collecting human motion data for
simulation purposes.

1 Introduction

Models of human body of different complexity have been used in different fields
such as humanoid robotics, biomechanics of human walking, gait rehabilitation and
computer animation to model and simulate biped’s walking. The complexity of a
model depends of its intended use. The simplest model that can represent some lo-
comotion activities is the planar inverted pendulum model (single-mass model) [5].
This model consists of mass-less legs and concentrated mass point that represents
the humanoid ’s upper body. The further extension of this model was done by in-
cluding legs with variable lengths that models the knee functionality [7], [8] or by
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extending the planar model into spatial (3D) model [6]. The single-mass model, due
to its simplicity, is mainly used for analysing dynamic walking of bipeds [5], real-
time robot control [8], and real-time motion generation [20]. However, a number
of locomotion effects such as posture stability and control, knee functionality, joint
forces and moments, dynamic stability and different types of walking could not be
analysed and investigated using simple models such as single-mass models. Hence,
more complex and advanced models have been deployed. First, the planar mod-
els of different complexity (consisting of three, five, seven or nine links) have been
used mainly to study standing, walking, running, jumping. Further, very detailed
and complex multi-body mechanicals models with large number of DoF (Degrees
of Freedom) has been used in humanoid robotics for walking synthesis and control
development. In the field of biomechanics, very detailed musculoskeletal models
of the human body have been developed [12], [4] for the usage for modelling and
simulation of human walking. High computing power of today’s computers enables
effective usage of these models, through simulation software such as SIMM [19],
AnyBody [1], OpenSim [13] and LifeMod [9]. In the work presented in this paper
the focus is on modelling and simulation of walking of human models (models of
patients) inside the robotic gait rehabilitation system. The developed models and
simulation results should give valuable information on improvement and optimiza-
tion of the mechanical construction of the system, interaction forces/moments be-
tween user and machine, dynamic stability of the system and other. Also, the same
developed models should be appropriate for research and development of control
algorithms and approaches for gait rehabilitation systems. The complexity of the
components of the system to be simulated demanded combination of the software
tolls as explained in Section 2. This combination, that is simulation environment
developed as optimal to model all components of the considered complex system,
represents a novelty in rehabilitation robotics. The paper is organized as follows.
Sections 2, 3 and 4 present respectively simulation environment, a concept of mo-
bile gait rehabilitation system and mechanical models of the human body and the
rehabilitation system used in simulations. Section 5 describes the markerless mo-
tion capture system used for collecting human motion data for simulations. Finally,
the Section 6 presents simulations results obtained. The work is summarized and
conclusion is given in the Section 7.

2 Simulation Environment

Figure 1 shows simulation tools used, and illustrates simulation process setup. MSC
Adams [11], LifeMod [9] and MATLAB [10] were used for simulation of human
walking inside the rehabilitation system consisting of mobile platform and an ex-
oskeleton. Mechanical models of human body and the rehabilitation system were
built using simulation software MSC Adams. For this, the mechanical CAD con-
struction of the mobile platform and the exoskeleton are imported in MSC Adams
providing geometrical and mass properties of the system parts. Ground-tire contacts
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Fig. 1 Software tools and simulation environment

are modelled using MSC Tire module. Human motion data for ”driving” the sim-
ulation model were provided by the markerless motion capture system that will be
described in Section 5. Mechanical model of the human body was initially gener-
ated using the LifeMod software database and later was refined so that walking of
particular subject, for which motion data are captured, can be simulated.

3 Mobile Gait Rehabilitation System

Figure 2 shows the proposed gait rehabilitation system that consists of a mobile plat-
form with wheels and a powered exoskeleton attached to mobile platform through
two revolute joints in frontal plane as marked with (A) on the image. Rear wheels
are drivable while front wheels are used for steering. Exoskeleton consists of thigh,
shank and pelvis segments that are interconnected by revolute joints. Actuated joints
on the exoskeleton are revolute joints of the hip and knee in sagittal plane. An ac-
tuated translational DoF, which exists in contact between the exoskeleton and the
mobile platform, allows translation of human body in vertical direction. Motions
around remaining rotational axis (frontal and transverse) of the exoskeleton’s hip
and knee joints are restricted by mechanical construction of the exoskeleton. Since
motions of the human in the system are allowed only in sagittal and frontal plane,
the motion capture system that is described in Section 5 has to provide motion data
only for those two planes. The selected number of DoF enables ”human like” walk-
ing and was chosen to be the same as in the case of the existing stationary gait re-
habilitation systems [3], [21]. Several different mechanical designs were modelled
and simulated during the RoboWalker1 project. Figure 2 shows the latest design that

1 The work was performed within the RoboWalker project founded by The Federal Ministry
of Economics and Technology of Germany.
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(a) (b)

Fig. 2 The model of mobile gait rehabilitation system with the human inside it used in the
simulation study (a). Connection points between the exoskeleton and the human body (b).

is outcome of simulation results based optimization of the system (stability, weight,
manoeuvrability and etc.).

4 Mechanical Models of Human Body and the Rehabilitation
System

Mechanical model of the human body used in presented simulation process consists
of 19 segments (links) that are interconnected with spherical joints. Spherical joints
were modelled as sections of three revolute joints connecting ”virtual” segments of
neglectable masses and inertial properties such that they do not affect dynamics of
the mechanism. In contrast to other joints, knee joints were considered as having one
DoF, rotation about sagittal axis, as two other rotations, around transverse and frontal
axis, were locked . Modelling of the ground-foot contacts was done using 11 contact
points per each foot segment defining 11 contact ellipsoids. This number of contact
ellipsoids enables accurate foot-floor contact force generation. The normal forces
are generated according to the penetration of the ellipsoids into the ground surface.
Mechanical models of the human body and the rehabilitation system were intercon-
nected using connection elements with stiffness-damping characteristics. Distances
and rotations between coordinate systems attached to every contact point on the ex-
oskeleton and body segments were measured and action-reaction forces, acting on
exoskeleton and human body, were generated according to the following equations:

Fc = k∗d+ c∗d (1)

Tc = k∗ r+ c∗ r (2)

where Fc and Tc are respectively action-reaction forces and moments, k and c are
stiffness and damping coefficients, d is distance vector between contact points on
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human body and exoskeleton and r is vector containing rotation angles between lo-
cal coordinate systems that reside in contact points. Two of these connection points
exist per each leg’s segment and several of them exist on pelvis segment. Stiffness
and damping coefficients are experimentally obtained, such that small motion be-
tween human body and exoskeleton is allowed. Human motion capture data used
in simulations were obtained by markerless motion capture system developed at the
Institute of Automation (IAT), University of Bremen, which is described below.

5 Markerless Motion Capture System

The markerless motion capture system used in the presented work, as shown in Fig-
ure 3, is a chain consisting of three main blocks: image acquisition, image data pro-
cessing and human gait analysis.

Fig. 3 Block-diagram of the presented vision based gait analysis system

The ultimate goal of the image processing is the reliable extraction of gait fea-
tures that can be used for gait analysis for the purpose of gait rehabilitation. The
extracted features are joint angles of human limbs, which are an effective means
for characterizing human gait [14], [23]. Joint angles are extracted from two planes:
frontal and sagittal. These angles are illustrated in Figure 4 (b, c) showing models
of a human body in the frontal and sagittal planes in the form of stick figures, con-
sisting of seven and five segments respectively, that are connected respectively with
the five and three joints. For the sake of clarity, Figure 4 (a, d) shows two exam-
ple video frames of a person walking in the frontal and sagittal plane respectively,
overlaid with the extracted stick figures. This extraction of the human body skele-
ton in the presented system is the basis for the joint angle calculations. As can be
seen in Figure 4 (b, c), the considered joint angles θFi and θSi, are angles between
the vertical and the line segments of the human body skeleton in the frontal and
sagittal plane respectively. The indexes denote the following angles: 1 - torso an-
gle; 2, 4 - left and right thigh angles; 3, 5 - left and right shank angles. Beside the
above described angles it is of particular interest for gait analysis [14], [23] to ex-
tract knee angles θK1 and θK2, the angles between thighs and shanks segments in
sagittal plane, as illustrated in Figure 4 (c). In the presented system, the extraction
of the human body skeleton, that is the localization of joint angles in 2D images,
which is predecessor to joint angles calculation, is based on the segmented image
of the human body. The image obtained by segmentation of the original image of a
person walking in the frontal plane shown in Figure 4 (a) is given in Figure 5. The
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(a) (b) (c) (d)

Fig. 4 Original images of a person walking in frontal (a) and sagittal (d) plane overlaid with
stick figures. Human body models in frontal (b) and sagittal (c) plane in the form of stick
figures with the joint angles.

(a) (b)

Fig. 5 Joints localization based on both the segmented image of the human body and vertical
projection (a). Statistical data on body segments lengths [23] (b).

graph displaying the number of segmented (white) pixels in each image row, known
as the vertical projection, is shown in Figure 5 together with the segmented image.
This vertical projection is used for determining the location of the first joint, the neck
joint. Namely, as illustrated in Figure 5, the neck joint corresponds to the top located
global minimum of the vertical projection. The locations of other joints are deter-
mined by combining the segmented image data, the extracted location of the neck
joint and the statistical anatomical measures of the human body segments, which
can be found in [23], where all body segment lengths are represented as a percent-
age of body height H. Hence, at first the height H is estimated from the segmented
image as the height of the bounding box of segmented human body. Then, starting
from the extracted neck joint and using statistical information about human skeleton
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segments lengths, the locations of hip joints are determined. As illustrated in Figure
5, the hip joints are considered as the centres of circles having radiuses equal to the
length of the thighs, that is, the distance between the hip and the knee joint. Thus,
the knee joints are defined by the intersections of the circles and the segmented body
parts identified as the legs. Since the location of the joints in 2D images rely heav-
ily on the segmented image, a segmented image of ”good” quality, containing full
”well shaped” segmented regions of the human body which is fully separated from
the background, is essential to the presented system. The image which is the sub-
ject of segmentation in the presented system is obtained by background subtraction.
Ideally, the image resulting from this background subtraction should contain only
pixels belonging to the human body. Such an image would be an ”ideal” input to the
segmentation by simple thresholding [17]. However, background subtraction is very
sensitive to different external influences, and in real-world applications often leads
to subtracted images containing background pixels besides the human body pixels.
Therefore, in order to achieve a good segmented image as necessary for reliable fea-
ture extraction, it is essential to adapt the segmentation parameters to illumination
and background conditions. For automatic adjustment of the segmentation param-
eters, in the presented system the inclusion of a sequential control structure at the
image segmentation level is proposed as indicated in Figure 3. The control structure
consists of two sequential closed-loops: closed-loop control of image region of in-
terest (ROI) definition and closed-loop control of ROI segmentation. The main idea
behind the inclusion of closed-loop control structures is to change the processing
parameters in a closed-loop manner so that the current image processing result at
a particular processing level is driven to a desired result independently of external
influences. The so-called two-dimensional (2D) entropy of segmented pixels [15] is
considered as the measure of the quality of image processing result in both closed-
loops. Applying an appropriate extremum seeking control in both closed-loops the
processing (segmentation) parameter is determined which assures minimum of 2D
entropy and so desired connectivity of segmented pixels in human body region [16].

6 Simulation Results

Simulation of walking inside the gait rehabilitation system using motion data ob-
tained by the described markerless motion captured system was performed. The mo-
tion data of healthy subject was not suitable for simulating human walking inside the
system, because human body model in the system can use only limited number of
DoF during walking in contrast to healthy humans that use all available DoF. Hence,
a healthy human subject (178cm, 91kg), whose walking inside the system was mod-
elled, imitated walking inside the system by limiting motions in the joints which mo-
tion is restricted by mechanical construction of the system. Motion data of the ankle,
knee and hip joints were extracted from frontal and sagittal planes. Extracted motion
data were used to drive kinematically human’s hip and knee joints in sagittal plane
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and human’s ankle joints in frontal and sagittal plane. Figure 6 (a) depicts right hip
and knee angles changes used for simulation. Transitional motion of the pelvis was
calculated according to the lengths of left and right legs during walking, such that
at least one foot is always in contact with the ground. Figure 6 (b) shows ground
reaction force (GRF) during walking of the human model inside the rehabilitation
system. The GRF shape is similar as in case of “normal” walking [24]. Nonetheless,
at some time periods during the swing phase, both legs are in contact with ground.
This is a consequence of limitation of lateral pelvis translation, due to the mechan-
ical construction of the system. Contrary, humans translate pelvis laterally in order
to preserve the dynamic balance [22]. The results imply that walking when the hor-
izontal translation of the pelvis is not allowed is possible inside the system, because
the support platform provides balance during walking. However, walking with the
same gait pattern would not be feasible without the support. Therefore, additional
degrees of freedom in pelvis and hips have to be introduced in order to allow walking
with dynamically balanced gait patterns.

(a) (b)

Fig. 6 Angle changes in hip and knee extracted from images and used in simulation (a).
Ground reaction forces during walking inside the rehabilitation system obtained by simula-
tion (b).

7 Conclusions

In this paper, an approach for modelling and simulation of human walking inside
the robotic mobile gait rehabilitation robotic system, consisting of mobile plat-
form and powered exoskeleton, is presented. Software tools that are usually used in
modelling and simulation of complex mechanical systems were combined and ex-
ploited for modelling human walking and human-robot mechanical interaction. Mo-
tion data for driving mechanical model of human body was obtained using novel
markerless motion capture system. The results of simulation and performance eval-
uation of the markerless motion capture system show that the selected simulation
environment and the developed markerless motion capture system can be effectively
used for simulating of human walking inside the rehabilitation system. According
to the simulation results, it is decided to improve the mechanical construction of the



Modeling and Simulation of Walking with a Mobile Gait Rehabilitation System 231

system by introducing an additional DoF that will allow lateral translation of pelvis.
This will allow practicing of dynamic balanced walking.
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Abstract. In this paper, the problems of humanoid robot motion optimization and
human motion imitation by a humanoid robot are investigated. At first, we propose
a unified framework for the optimization of humanoid robot motions. This frame-
work is based on an efficient dynamics algorithm which allows the calculation of the
gradient function with respect to the control parameters analytically. We show the
efficiency of the framework through an example of smoothing a pre-calculated hu-
manoid motion by minimizing the exerted torques, and at the same time improving
the stability of the humanoid robot during the execution of the motion. Furthermore,
we give insights into the problem of imitating human capture motions by a humanoid
robot. We point out that the imitation problem can be formulated as an optimiza-
tion problem under the constraints of physical limits and balance. The experimental
results conducted on the humanoid robot HRP-2 have pointed out the efficiency of
the framework of optimization to smooth humanoid robot motions and to generate
imitated motions that preserve the salient characteristics of the original human cap-
tured motions. Moreover the experiments showed that the optimization procedure
is well converging thanks to the analytical computation of the gradient function.
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1 Introduction

Few years ago, talking about humanoid robots was some kind of science fiction. The
recent technological advancement not only transformed this dream into a reality, but
also the ability of actual humanoid robots to execute complex tasks is increasing
rapidly. The latest trends in humanoid research are to increase their autonomous
behavior as well as improving the stability and the smoothness of their motions.

Motion optimization is becoming an active research topic in the recent years in
computer graphics as well as in robotics. In virtual reality, a method based on op-
timal control theory within a recursive dynamics framework is proposed in [13].
The objective of their work is to simulate dynamically-correct astronaut motions by
minimizing joint torques. In [24], a method for modeling and optimally control a
human-like running motion is presented. The problem of modeling and control is
transformed into a numerical optimization problem that has been solved using the
optimization package MUSCOD-II [12, 11].

In robotic research, the optimization of manipulability trajectories has been in-
vestigated in [3]. The obtained solution is kinematically optimal and therefore does
not take into account the dynamic constraints.

An overview of motion optimization in robotic using inverse dynamic model is
given in [27]. Using Newton and quasi-Newton optimization algorithms for
dynamics-based robot motion generation is proposed in [10], their algorithm makes
use of an analytical formulation of the dynamic equation that is based on Lie group
and Lie algebra.

A whole-body control framework for humanoids is proposed in [25]. This frame-
work integrates task-oriented dynamic control while complying with humanoid
physical constraints. The controller is obtained within the operational space [9] at
multiple levels. The controller provides the torques which should be applied on each
joint, that means the humanoid robot should be controlled by joint torques. Although
the joint positions can be obtained by deploying forward dynamics methods, these
methods are time consuming and not numerically efficient. It is worth mentioning
that the humanoid robot HRP-2 and many other humanoid robots are controlled by
joint positions.

The imitation of human motions by a humanoid robot is another research topic
that recently begins receiving attention. In the cooperative tasks involving human
beings and humanoid robots, the humanoid robot is expected to act like human be-
ings. To this end, the humanoid robots should be able to imitate human motions. The
imitation task can be done interactively by observing human motions or offline by
using motion capture data. A method to generate human natural behavior through
abstracting the human being’s behavior into symbols by using mimesis theory is pro-
posed in [4]. The observed symbols are analyzed into self motion elements which
is regarded as a series of behavior. A hidden Markov models is then used for the
description of the relation between the sequence of motion patterns and primitive
symbols, and a natural behavior can be generated and applied on a humanoid robot.

Another method to transform a dance captured motion into a motion that the hu-
manoid robot can properly execute is proposed in [18]. A whole body control of the



Optimization and Imitation Problems for Humanoid Robots 235

humanoid robot to imitate Jongara-Bushi dance, which is a traditional Japanese folk
dance, is realized in [16]. To maintain the dynamical stability of humanoid robot,
the previous method controls the trajectory of Zero Moment Point (ZMP) [31] to be
always inside of the polygon of support. A user interface for creating whole body
motions of biped humanoid robots is proposed in [14]. Similarly to computer graph-
ics, the interface enables a user to edit variety of motions in an intuitive and flexible
way without paying attention to the balance or self-collision issues. This interface
has been validated on the humanoid robot HRP4-C [8] through an impressive dance
performance. Other research related to imitating dance motions have been as well
realized [15]. A pre-recorded human motion is used to generate optimal motion of
the upper body of Sarcos humanoid robot [23]. The function to be minimized is the
difference between the recorded and the executed motion by the robot. However,
the previous methods do not consider some physical limits of humanoid robot, e.g.
torque limits.

A method to optimize upper body motion of humanoid robot in order to imitate
a human captured motion is proposed in [22]. Their objective function preserves
the main characteristics of the original motion, and at the same time it respects the
physical constraints of the humanoid robot. However, the authors mentioned that the
resulting trajectories might not respect the physical limits of the humanoid robot, and
in reality they are often violated. This is because their method considers the velocity
and the force limits separately.

The present paper gives insights into the main contribution of our papers [30, 29].
Those contributions are:

• Developing an optimization framework for humanoid robot motions. This frame-
work takes as input a pre-calculated motion that is provided by motion planning
techniques. The output is an optimized and a stable motion.

• The proposed method uses the inverse dynamic formulation and the parameters
to be optimized are the joint positions. As a consequence, the humanoid robot
can be controlled directly in the joint space and not in torque control space. The
method is therefore well adapted for a position controlled humanoid robot such
as HRP-2 platform.

• Providing an optimization framework to generate humanoid robot motions from
human motion capture data. The generated motion imitates the original human
captured motion, and at the same time it respects the physical limits of humanoid
robot.

• The validation of the proposed methods on the humanoid robot HRP-2 pointed
out their efficiency and robustness.

2 Optimization of Humanoid Motions

A general optimization framework of humanoid robot motion can be formulated as
follows
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min
qt,q̇t,q̈t

J (qt, q̇t, q̈t)

subject to
(1)

ST Ft = τt (Dynamic equation)

qt0 = q0, q̇t0 = 0, q̈t0 = 0 (Initial configuration constraints)

qtf = qf, q̇tf = 0, q̈tf = 0 (Final configuration constraints)

τ− ≤ τt ≤ τ+ (Torque limits)

q̇− ≤ q̇t ≤ q̇+ (Velocity limits)

q− ≤ qt ≤ q+ (Joint limits)

p−t ≤ pt ≤ p+
t (Stability criterion)

G f oot = G re f
f oot : tc1 , · · · , tcp (Foot prints)

where J (qt, q̇t, q̈t) is the objective function to be minimized. The stability of the
humanoid robot is assured by guaranteeing that the ZMP is always inside of the
polygon of support.

• τt is the vector of the applied torques on the joints
• Ft is the vector of the applied forces on the joints
• τi,t and Fi,t denote the value of the applied torque and force on the joint i respec-

tively
• qt denotes the configuration vector which includes the joint positions of the hu-

manoid robot and the 6 degree of freedoms of the free-flyer (pelvis joint). That
means for a humanoid robot of n degree of freedoms qt ∈ R

n+6

• x− and x+ denote, respectively, the minimal and the maximal values of vector x
• pt ∈ R

2 is the projection of the ZMP on the floor
• p+

t and p−t design the polygon of support
• G f oot ∈R6 denotes the configuration (position and orientation) of the ankle joint

in the euclidean space
• tci denotes the instant of the foot impact with the floor

Studying human movements [32, 33] has brought out a connection between min-
imizing energy dissipation and forces, and the smoothness of human movements.
On account of the complexity of calculating the energy dissipation, one can use an
approximative prediction of it. A good predictor of human’s metabolic energy is
proven to be the joint torques [26]. As the humanoid robot is supposed to realize
human-like motions, we chose therefore minimizing the integral of the Euclidean
norm of joint torques J (qt, q̇t, q̈t) =

∫ t f
t0 τt

T τtdt.
In order to transform the optimization problem (1) into a classical optimization

problem, let us define

Xt =
[
qt

T q̇T
t q̈T

t

]T
, L(Xt) =

∫ t f

t0
τt

T τtdt (2)
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G(Xt) =

⎡
⎢⎢⎣

τt
qt

q̇t

pt

⎤
⎥⎥⎦ , G− =

⎡
⎢⎢⎣

τ−
q−
q̇−
p−t

⎤
⎥⎥⎦ , G+ =

⎡
⎢⎢⎣

τ+
q+

q̇+

p+
t

⎤
⎥⎥⎦ , H(Xt) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τt− ST Ft
qt0 −q0

q̇t0

q̈t0

qtf −qf
q̇tf

q̈tf

G f oot −G re f
f oot

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Thus the optimization problem (1) can be transformed into the following classical
form:

min
Xt

L(Xt)

subject to

H(Xt) = 0

G− ≤ G(Xt)≤ G+

(4)

The above optimization problem has been extremely studied in the literature of opti-
mization theory. To solve this optimization problem, one can use the augmented La-
grange multiplier method, which is a very efficient and reliable method [19, 13, 30].

The implementation of augmented Lagrange multiplier method, and other deter-
ministic optimization methods, requires the computation of the gradient functions
∂L(Xt )

∂Xt
, ∂H(Xt )

∂Xt
and ∂G(Xt )

∂Xt
. Approximating those gradient functions by a numerical

difference method is usually used in practice. However, this approach is not only
a time consuming on account of the evaluation of the gradient functions, but also
might does not converge well because of the approximation.

To overcome this difficulty, we decided to use the recursive dynamic algorithm
proposed in [17]. The main advantage of this algorithm is that the gradient func-
tion of the dynamic equation is calculated analytically in a recursive way. For more
details refer to [17, 30, 29].

However, it is well known that the space of the admissible solutions of the min-
imization problem (4) is very large. In order to transform this infinite dimensional
space to a finite one, one can use a basis of shape functions. To this end, we chose
a basis of cubic B-spline functions. For more details refer to [30, 29].

3 Imitating Human Motions

The main purpose of the imitation is to reproduce a human motion by an avatar or
a humanoid robot. The inputs of the imitation procedure are often human motion
capture data, these motions are provided by a motion capture system as a skeleton
of a virtual actor and a sequence of the values of virtual actor’s joints.
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The virtual actor has generally more degree of freedoms than the humanoid robot
and its links’ lengths are different from those of the humanoid robot. The imitation
problem, from a kinematic point of view, is well known in computer graphics and
it is called motion retargeting [2]. The motion retargeting problem is formulated as
follows

min
qt

∫ t f

t0

{
(qt−qc

t)
T (qt−qc

t )+σ (Pt −Pc
t )

T (Pt −Pc
t )
}

dt

subject to⎧⎪⎨
⎪⎩

qt0 = q0

qtf = qf

q− ≤ qt ≤ q+

(5)

where σ is a user defined constant. qt and qc
t are the joints position vectors of the

humanoid robot and the virtual actor respectively. Pt and Pc
t are the Cartesian po-

sitions of the head, hands and feet of the humanoid robot and those of the virtual
actor. These positions are usually expressed in the pelvis frame, and the vector Pt is
defined as follows:

Pt =
[
PT

head PT
right hand PT

left hand PT
right foot PT

left foot

]T (6)

If the lengths of the virtual actor’s links are largely different from those of the hu-
manoid robot, the vector Pc

t can be scaled to fit for the humanoid robot size. The
retargeting problem has been extremely studied in computer graphics during the last
years, and there is many commercial graphic software that can solve it efficiently.

However, in the case of human motion imitation by a humanoid robot additional
difficulties arise such as the joints velocity and torque limits. Moreover, another chal-
lenging issue in the imitation of fast human motions because of the actuators limits of
the humanoid robot. A simple solution could be slowing down the captured motion.

Let us consider that we have a captured motion which consists of N samples and
the sampling frequency of this motion is f (e.g. f = 120 Hz). Let qc(n) denotes the
vector of joint values which corresponds to the sample number n. An algorithm to
transform the human captured motion into a motion within the joint velocity limits
of the humanoid robot is given by the following pseudo code.

Algorithm 1. Time re-parameterization of the human captured motion
Input: n← 1
while n≤ N−1 do

Calculate Δqc← |qc(n+1)−qc(n)|;
Input: Δ t← 1

f

while Δqc

Δ t > q̇+ do
Δ t← Δ t + 1

f ;

end
n← n+1;

end
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Recall that q̇+ is the maximal value of humanoid robot’s joint velocity.
Algorithm 1 provides the new associated timing (t) to each qc(n). Fig. 5 shows

that a motion which originally lasts around 12 seconds is transformed into a motion
lasts around 16 seconds.

After modifying the original human motion and taking into account the additional
physical constraints, the imitation problem becomes

min
qt,q̇t,q̈t

∫ t f

t0

{
(qt−qc

t )
T (qt−qc

t )+σ (Pt −Pc
t )

T (Pt−Pc
t )
}

dt

subject to
(7)

ST Ft = τt (Dynamic equation)

qt0 = q0, q̇t0 = 0, q̈t0 = 0 (Initial configuration constraints)

qtf = qf, q̇tf = 0, q̈tf = 0 (Final configuration constraints)

τ− ≤ τt ≤ τ+ (Torque limits)

q̇− ≤ q̇t ≤ q̇+ (Velocity limits)

q− ≤ qt ≤ q+ (Joint limits)

p−t ≤ pt ≤ p+
t (Stability criterion)

where qc
t is the modified motion (time re-parameterization) and the other parameters

are similar to those defined in Section 2.
Analogously to the previous case, let us define

Xt =
[
qt

T q̇T
t q̈T

t

]T

L(Xt) =

∫ t f

t0

{
(qt−qc

t )
T (qt−qc

t)+σ (Pt−Pc
t )

T (Pt −Pc
t )
}

dt
(8)

G(Xt) =

⎡
⎢⎢⎣

τt
qt

q̇t

pt

⎤
⎥⎥⎦ , G− =

⎡
⎢⎢⎣

τ−
q−
q̇−
p−t

⎤
⎥⎥⎦ , G+ =

⎡
⎢⎢⎣

τ+
q+

q̇+

p+
t

⎤
⎥⎥⎦ , H(Xt) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

τt− ST Ft
qt0 −q0

q̇t0

q̈t0

qtf −qf
q̇tf

q̈tf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

Thus, the optimization problem (7) can be transformed into the following classical
form

min
Xt

L(Xt)

subject to

H(Xt) = 0

G− ≤ G(Xt)≤ G+

(10)
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As one can easily notice that the above optimization problem is similar to the op-
timization problem (4) and it can be solved by an analogues logic, i.e. using the
augmented Lagrange multiplier method, the analytical calculation of the gradient
function and discretizing the configuration space in order to transform the optimiza-
tion problem into a finite dimensional problem.

4 Experimental Results

The kinematic structure of the humanoid robot HRP-2 [7] is given in Fig. 1. In this
structure the degree of freedoms are presented by cylinders. The structure contains
30 degree of freedoms.

Fig. 1 Description of HRP-2 kinematic structure

4.1 Humanoid Motion Optimization

The experimental scenario that we have tested to validate the proposed method for
optimizing humanoid motions is the following:

1. The robot carries a bar with its right hand.
2. The robot starts walking while lowering the vertical position of its pelvis, and at

the same time it lifts up the carried bar.

The characteristics of the carried bar are: length= 2 m, weight= 0.7 Kg and cylin-
drical form with uniform density distribution. The robot grasps the bar at 0.35 m



Optimization and Imitation Problems for Humanoid Robots 241

from its end. The main purpose of adding the bar is creating an asymmetry in the
kinematical structure of the humanoid robot. It is worth mentioning that generating
the above-mentioned motion by considering only kinematic constraints yields an
unstable walking pattern and the robot falls down in the middle of the experiment.
Snapshots of the conducted motion are presented in Fig. 2.

The augmented Lagrange multiplier method required 43 iterations to converge
and provide the optimal trajectory. We have chosen to report the number of iteration
instead of the computational time, this is because we are using MATALB language to
solve the optimization problem. However, the number of iterations of the augmented
Lagrange multiplier method gives a good idea of the computational time [20, 21, 1].
In fact, the augmented Lagrange multiplier method is a fast and reliable method
because it does not require the inversion of matrices which have, in our case, very
huge dimensions.

Fig. 2 Optimizing humanoid motion: snapshots of the conducted experiment

To compare the obtained results with the results obtained by the method presented
in [5], we use the real measurements provided by the sensors of the humanoid robot
HRP-2.

Fig. 3 shows the x coordinate of ZMP, the x−axis is the direction of the motion.
The ground reaction force applied on the left foot are presented in Fig. 4(a). Fig. 4(b)
shows the applied torque on the left knee.

We conclude from Fig. 3 and Fig. 4 that:

1. The optimization method smoothes the shape of ZMP, and the oscillations have
been avoided. Note that the ZMP trajectory of the optimized motion does not
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(b) After Optimization.

Fig. 3 x coordinate of ZMP: the solid line is the measured ZMPx, the dash-dotted lines design
the safe stability zone and the dashed line denotes the designed reference. The x−axis is the
direction of the motion. The oscillations around 6.1 seconds disappear after the optimization
as well as the peak at 6.81 second

follow the designed ZMP trajectory. This is because the optimization method
assures the stability of humanoid robot by guaranteeing that the ZMP is always
inside of the polygon of support.

2. Using the optimization method avoids the peaks in the profile of ground reaction
forces applied on the feet.

3. Using the optimization method not only minimizes the joint torques, but also
avoids the peaks.
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(a) Applied ground reaction force on the left foot: solid line for the
optimization method and dashed line for the method proposed in [5].
The peak at 13.3 second disappears after optimization.
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(b) Applied torque on the left knee: solid line for the optimization
method and dashed line for the method proposed in [5]. The peaks
at 11.2 and 12.35 seconds disappear after the optimization.

Fig. 4 Applied ground reaction force and torque

4.2 Human Motion Imitation

We chose a boxing captured motion to validate our proposed method. The imita-
tion of a boxing motion by a humanoid robot is really a challenging issue. Fig. 5(a)
shows the angular position trajectory of the virtual actor’s right elbow, the optimized
trajectory for the humanoid robot is given in Fig. 5(b). The optimized trajectory re-
spects the physical limits of HRP-2 humanoid robot, which are the joint limits as
well as the joint velocity and torque limits. In order to obtain the optimal trajectory,
the augmented Lagrange multiplier method required 29 iterations.
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(b) Obtained motion after the time re-
parameterization and optimization under the
constraints of physical limits of the hu-
manoid robot (HRP-2). Dash lines denote
the limits of elbow joint.

Fig. 5 Angular position of the right elbow

(a) Obtained motion after optimization. (b) Applying self-collision avoidance algo-
rithm [6] as post-processing task.

Fig. 6 Self-collision avoidance

However, the self-collision problem is not considered in this work as shown in
Fig. 6(a). Although, approximating the humanoid robot’s links by cylinders and
spheres and consider the distance between them as an additional constraint can solve
the problem of self-collision, this procedure might yield an imitated motion largely
different from the original human captured motion on account of the approximation.

F. Kanehiro et al [6] proposed an efficient collision-avoidance method for a non-
strictly convex objects. The method makes use of non-strictly convex polyhedra as
geometric models of the robot and the environment. Applying this method as post-
processing task can solve the problem of self-collision, and it yields a collision-free
motion. Fig. 6(b) shows the self-collision avoidance of the humanoid robot’s hands
by applying the method proposed in [6]. Snapshots of the conducted motion using
the humanoid robot HRP-2 are given in Fig. 7.
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Fig. 7 Imitation of boxing motion: snapshots of the conducted motion

5 Discussion and Conclusion

In this paper, we present the methodology that we have developed to optimize
humanoid robot motions and to imitate human motions by a humanoid robot. To
this end, we proposed a unified framework for the optimization of humanoid robot
motions under the constraints of the robot’s physical limits and balance. This frame-
work is based on an efficient dynamics algorithm, which allows computing the gra-
dient function with respect to the control parameters analytically. Furthermore, we
pointed out that the optimization framework can be deployed to efficiently solve the
imitation of human motions by a humanoid robot.

The experimental results have pointed out the efficiency of the proposed methods,
and they have been successfully validated on the humanoid robot HRP-2.

Further improvements of the proposed method can be done by considering the
following issues:

1. Adding the jerk function of the joint trajectories in the objective function could
yield a smoother motion.

2. In motion planning, deforming the planned trajectory is sometimes required.
Therefore, the optimization framework can be enhanced by including the dis-
tance between the robot and the obstacles as an additional constraint.

3. The integration of self-collision avoidance into the optimization problem as an
additional constraint.
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4. Replacing the time re-parameterization algorithm by a more efficient algorithm
such as the algorithm that we developed in [28].

5. Considering real-time application. This issue is very challenging because it re-
quires developing new and highly efficient optimization algorithms.
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Research from the Japan Society for the Promotion of Science (20-08816).
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Motor Control and Spinal Pattern Generators in
Humans

Heiko Wagner, Arne Wulf, Sook-Yee Chong, and Thomas Wulf

Abstract. Spinal pattern generators can produce cyclic and acyclic muscular activa-
tion patterns. Here we introduce a model, which describes the interaction between
spinal pattern generators and the musculoskeletal system. The behavior of this model
will be demonstrated in three different examples, i.e. the reflexive behavior, the be-
havior during locomotion and during coupled arm movements. The results show that
the model was capable of reproducing complex reflex patterns. For locomotion, it
demonstrated the ability in adapting to changes and selecting appropriate afferents,
so as to enable step-like motion to occur. Even phase transition during coupled arm
movements could be described by the model. Our results support the hypothesis, that
depending on the movement task, humans are able to change the coupling within
the spinal pattern generator, which provides an extremely effizient motor control
strategy.

1 Introduction

Neural oscillators, also known as spinal pattern generators (SPG) are neural net-
works that can produce complex muscular activation patterns ([13], [19]), i.e. cyclic
and acyclic movements, based on simple central commands and feedback from pro-
prioceptive sensors. To study the interaction between the neural network within the
spinal column and the musculoskeletal system, we introduce a simple model, which
describes the basic function of spinal pattern generators. Humans possess a flexible
coupling of thoracolumbar and cervical centers for the motor control of movement
tasks [21]. They can use the upper limbs for manipulative and skilled movements
or alternatively for locomotor tasks. Depending on the envisioned task, humans
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seemed to be able to manipulate the gating of neuronal circuits controlling lower and
upper limb muscles [3]. Dietz et al. demonstrated that coordinated electromyo-
graphic (EMG) patterns could be induced in patients with either complete or incom-
plete paraplegia on a moving treadmill. This could only be achieved when loading
and unloading of the limbs were done in combination with cyclic movements. Fur-
thermore, to control bipedal walking or complex motions, it is advantageous to use
an intelligent mechanical system, i.e. the musculoskeletal system, which by itself
should be self-stable with respect to small perturbations. On this basis, the interac-
tion between the musculoskeletal system and the SPG might support the stabilization
of cyclic and acyclic motions. Our interest is focused on how these self-stabilizing
properties interact with the motor control system. In these studies, we show that the
use of a simple SPG model based on Matsouka [18] and combined with a forward-
dynamic musculoskeletal model can describe several different situations of human
movement. In the following, we will introduce a neuromusculoskeletal model which
is based on a simple spinal pattern generator. The behavior of this model will be
demonstrated in three different examples, i.e. the reflexive behavior, the behavior
during locomotion and during coupled arm movements.

2 Model

The musculoskeletal system (4)–(5) together with the SPG (2)–(3) and the sensory
integration (1) includes a system of antagonistic muscles, described by a Hill-type
muscle model. The SPG is based on a model that describes the interaction of a net-
work of connected neurons.

ṡi = r(Fi− si) (1)
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n

∑
j=1

(ai jA j +Wi js j +Wv
i jṡ j)−Bvi− xi (2)
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3 Example A: Long-Latency Reflexes

The emergence of long-latency reflexes is still not understood [16, 24]. Many stud-
ies showed that reflexes and locomotion influence one another. Dietz et al. [3] made
use of task-dependent reflex modulation to test coupling of upper- and lower-limb
movements. The transmission of a reflex from tibialis nerve (foot) to triceps brachii
mucle (arm) is interpreted as evidence for interlimb coupling by SPG during loco-
motion. The neural networks of reflex pathways are thus involved in those of SPG for
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locomotion. Reflexes and SPG both consist of spinal neural networks with recipro-
cal and recurrent connections and mechanisms like self-inhibition (e.g. mediated by
Renshaw cells) [11, 26]. Therefore, we assumed that reflexes may be described by
the SPG concept [27]. To test the hypothesis that reflexes can be described by SPG,
we simulated reflex generation with a SPG model for two neurons and compared the
simulation output to reflex signals measured by EMG. The model parameters were
adjusted for each trial by an optimisation algorithm such that the model matched
the measured EMG time course.

Fig. 1 Experimental setup:
Sudden loading pertur-
bations are applied to a
wooden handle (A). The
sensory afferents are input
to the spinal pattern gen-
erator, SPG (B). The SPG
output is the activation of
left and right abdominal ex-
ternal oblique muscles (C).
The measured reflexive ac-
tivation pattern is compared
to the simulated reflex (D).

10 healthy women (23.6±1.4 years, 55.4±3.7 kg) volunteered for this study.
They held a handle in one hand, in which sudden vertical loading perturbations were
applied. The subjects were instructed to stand upright during the perturbations. Ran-
domized perturbations with loads of 180 N and durations 200 ms and 400 ms were
presented five times in both left and right sides. The experimental setup is shown in
Figure 1. We implemented (1)–(3) as a SIMULINK model (MATLAB 7.5.0, 2007b,
The MathWorks, Inc.). Load force was measured by a dynamometer inserted in the
rope between motor and handle. The rope force data was passed to the model as input
signal F , delayed by a transport delay Td. Gain factors for sensory inputs and change
in sensory inputs were Wc, W v

c for the contralateral and Wip, W v
ip for the ipsilateral

neuron, respectively. Reciprocal and recurrent connections were chosen symmetri-
cally as aother and aself. Simulation time steps met the recording frequency of the
measurement. Integration initial values were taken from measured data for t = 0.
Depending on the model parameters, the output yi of the model neurons was the
simulated reflex response to the actual force input. Bipolar surface EMG of left and
right abdominal external oblique muscles (EO) were taken with sensor application
following [22]. The EMG signals and force data were digitised at 2000 Hz. Stan-
dard procedures were applied for EMG data preparation. The force data was not
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processed. The time of perturbation was triggered by the force signal first exceed-
ing the static force level by more than 2.5 standard deviations. To allow relaxation
of the simulation after initial interferences, datasets were trimmed to 300 ms (600
samples) of pre-trigger signal and 400 ms post-trigger signal (1401 overall samples).
For the parameter optimisation, the MATLAB curve fitting toolbox was used with a
nonlinear least-squares algorithm. The EMG data showed that the system dynamics
was mostly characterised by the contralateral EMG. So, firstly, only the parame-
ters for the contralateral neuron were optimised (Wc, W v

c , R, Td, aself, b, T ), and the
contralateral simulation was matched to the contralateral EMG data. Secondly, the
adjusted parameters from the contralateral neuron were used as initial values for the
ipsilateral neuron. Only aother, Wip and W v

ip were optimised by matching ipsilateral
signals. Thirdly, all parameters were optimised with initial values provided by the
previous step. Both ipsi- and contralateral channels were fitted.

time (sec.) time (sec.) 
-0.1 0 0.1 0.2 0.3 0.4 -0.1 0 0.1 0.2 0.3 0.4 

Fig. 2 Measured and optimised simulated activation time courses. Black: rope forces, blue:
contralateral EMG, light green: ipsilateral EMG, purple: contralateral simulation, dark green:
ipsilateral simulation. Left: long perturbation (2 s), right: short perturbation (200 ms).

The same set of initial parameters was used for all subjects in all trials. Since
this set might not be suitable for every individual trial, the resulting simulations
were visually inspected to eliminate trials that would not follow the measured EMG
qualitatively. Temporal pattern with relative amplitudes can be compared between
two datasets with the determination coefficient r2 which represents the fraction of
common variance in both datasets. The simulation with optimised parameters was
compared to its corresponding EMG trial by r2. For a measure of reflex variability,
r2 is calculated pairwise for all EMG measurement trials per subject, for the left and
right trials separately.

In more than 85% of the cases, the optimisation algorithm delivered sets of
parameters capable of producing plausible simulations. The quality of the reflex
simulations for both perturbation types produced by the optimisation was high.
Figure 2 shows representative measured EMG data and corresponding optimised
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simulation for both types of perturbation. The simulations with fitted parameters re-
sembled their corresponding EMG data with determination coefficients of r2 = 0.75
and r2 = 0.70 for the short and long perturbations, respectively. This resemblance
was clearly stronger (p < 0.001) than between EMG trials. The determination coef-
ficients for EMG show only limited intra-individual reproducibility of reflexes with
r2 = 0.43 and r2 = 0.34 for short and long perturbations, respectively (see Figure 3).

Fig. 3 Determination co-
efficients r2 for optimised
simulation and correspond-
ing EMG (left) and for EMG
trial-to-trial resemblance
(right). Results for short
perturbations are shown
in blue, results for long
perturbations are shown in
red.

0 

0,2 

0,4 

0,6 

0,8 

1 

EMG - simulation (optim.) EMG trials pairwise 

short (n=84) 
long (n=82) 

The results show that the SPG model was capable of reproducing complex reflex
patterns. The perturbation signal was the only input to the model that represented
a neural network on a single spinal segment. This way, the long-latency reflex re-
sponses were generated as SPG activation patterns. These findings attenuate the need
for long-loop explanations for late reflex peaks. The close fit of simulation and mea-
surement during considerable reflex variability suggested that the connection prop-
erties of the network generating the reflex pattern would change from trial to trial. It
is reasonable to have supraspinal influence on SPG, in order to achieve the versatile
demands of motor control tasks.

4 Example B: Rhythmic Motion at the Ankle

Dietz et al. have demonstrated that coordinated EMG patterns could be induced in
human subjects with incomplete or complete paraplegia on a treadmill [4]. Further
studies would demonstrate that loading and unloading of the limbs in combination
with cyclic movements were necessary for these rhythmic EMG activities [6]. Thus,
walking could be attributed to locomotor SPG in humans. This section presents a
method which used neural oscillators to generate and examine the effects of different
inputs on the rhythmic motion at the ankle [2].

7 male and 3 female healthy subjects (26.5±4.3 years, 72.8±10.5 kg) took part
in this study. They were thoroughly informed of the procedures and gave their
consent. Each subject was requested to walk at their normal self-selected speed
(4.8±0.5 km/h) on a treadmill. Forces were measured from in-sole pressure sen-
sors (Gesellschaft für Biomechanik Münster, Germany) at 200 Hz. They were cal-
culated as a summation of pressure acting on the entire area of the insole. Motion
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capture was performed using Qualisys (Gothenburg, Sweden) 3D motion capture
system. The motion analysis system used 6 infra-red cameras which tracked 15 retro-
reflective markers attached to the following body landmarks: anterior superior iliac
spine (left and right), sacrum, lateral and medial knee (left and right), 4 tracking
markers on each thigh. The markers were captured at a sampling rate of 100 Hz.
Muscle activation of the soleus (Sol) and the tibialis anterior (TA) was captured us-
ing bipolar electrodes (Biovision, Wehrheim, Germany) at 2000 Hz. The SPG model
consisted of a simple oscillator made up of two neurons [17] [18]; One represented
the tibialis anterior and the other, the soleus. Therefore, the outputs of the oscil-
lator represented the EMG generated by each muscle. While neural oscillators are
simple and effective, the parameters required to produce the required oscillations
are difficult to tune. Therefore, a nonlinear least squares fitting algorithm was used
to determine the set of parameters that would provide the best fitting between the
output and experimental EMG data. Since the 2 main afferent sources are related to
loading and hip position [5] [23], the inputs used in the oscillator were in-sole forces
and hip angles. To ensure that the model produced stable oscillations, 6 consecutive
steps were analysed in this model.

With two inputs, the SPG model successfully generated outputs that fit experi-
mental data (R = 0.81, Figure 4). It is possible that these afferent inputs which play
a role in influencing motoneurons are largely under the control of SPG. In addition,
this agreed with previous studies that the 2 main afferent inputs related to walking
is loading and hip position [5].

Fig. 4 Muscle activation of the tibialis anterior and soleus of one subject with in-sole force
and hip angles as inputs (thin lines represent the experimental data, bold lines represent the
outputs from the SPG model)

Since there seemed to be a close relation between ground reaction forces and
ankle extensor activity in decerebrate cats [8], afferent input from the hip was re-
moved to study the effects of loading alone, and to determine if it will be sufficient
to activate the soleus. As shown in Figure 5, the use of different parameters enabled
the model to generate another fit with loading as the sole input (R = 0.78). How-
ever, the resulting fit is not as good as when both inputs were used. This agreed with
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Fig. 5 Muscle activation of the tibialis anterior and soleus with loading as sole input (thin
line represents the output from the SPG model, bold line represents the experimental data)

studies that activation of the ankle extensors are affected by loading of the limb dur-
ing stance phase [25] [8]. However, the activation in the TA was unexpected as the
effect of loading on the TA in normal and spinal-cord-injured subjects was unclear
[12]. It might be also possible that loading and unloading has little or no effect on
the TA [15]. However, these results showed that loading alone could produce a good
activation of the Sol (R = 0.86), but less so in the TA (R = 0.71). In such a case,
afferent input from the hip would be required for a better fit as extension of the hip
would signal the start of swing, and thus, an activation of the TA for foot clearance.

When hip angles were used as a sole input, a different set of parameters allowed
the model to also generate another output (R = 0.76, Figure 6). This might explain
how [7] successfully induce locomotor-like EMG activity in patients (with complete
spinal cord injury) while in a supine position. So while inputs from the receptors at
the soles of the feet were absent, neural locomotor activity could still be strongly
regulated by afferents and muscles around the hip.

Fig. 6 Muscle activation of the tibialis anterior and soleus with hip angles as input (thin line
represents the output from the SPG model, bold line represents the experimental data)
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In both cases when only either input was used, changes to the parameters allowed
the model to generate better fitting outputs. However, the resulting fit was not as
good as using a combination of both inputs. This clearly demonstrated the ability of
the SPG in adapting to changes and selecting appropriate afferents, so as to enable
step-like motion to occur.

5 Example C: Phase Transition in Cyclic Arm Movements

Under certain circumstances, animals show sudden changes in motion pattern, i.e.
the transition from trot to gallop. These so called phase transitions between two pos-
sible states of locomotion do not seem to be caused by conscious intervention into
the movement task. In fact, there are several control parameters which determine
such a transition. The phenomenon of phase transition in locomotion is not restricted
to animals, there are also examples in human coordination. For example, the par-
ticipants of a study done by Kelso [14] had shown an unintended phase transition
from an asymmetric to symmetric finger movement while increasing the frequency.

There is evidence, that animals use SPG for locomotion. The claim that even hu-
mans are using SPG for simple cyclic movements is well accepted and can
be supported by several investigations i.e. Dietz and Minassian [3][19]. If SPG
can be responsible for human movement patterns, i.e. for cyclic movement, then
it might be possible that phase transitions can be explained by specific properties
of the neuro-muscular system containing SPG. To investigate whether phase transi-
tions between asymmetric and symmetric movements can be explained by the co-
operation between the SPG and the mechanical system, we simulated the movement
of the forearm in the horizontal plane. The advantage of this model is that we can
simulate the movement quite accurately with only two muscles (flexor, extensor).

Fig. 7 Neuro-muscular model consists of 2 antagonistic pairs of muscles, 2 revolute joints
and 4 mutual coupled neurons. Each neuron obtains external input u and sensory information
s. The coupling between left and right neurons is called Wother. The activation of each muscle
is given by the output of a neuron.
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Furthermore, we were able to show a phase transition for increasing frequency, simi-
lar to Kelso’s finger experiment, for this movement task in preliminary experiments.

To simulate the transition, we used a neuro-muscular model (see Figure 7) and
evaluated the system behaviour for different parameter settings accountable for fre-
quency changes. For the neural activation of the muscles, we used the model de-
scribed above for four reciprocally and recurrently coupled neurons, representing a
cluster of neurons. The output of each neuron acted as an activation on each respec-
tive muscle and thus produced a torque at the given joints. The mechanical model
consisted of two elbow joints and two pairs of antagonistic muscles (flexors and ex-
tensors). In the model, the forearm motion was restricted to the horizontal plane to
exclude gravity in the simulation. We neglected other external moments. The pro-
duced muscle torques consisted of lever arms, muscle activations, force-length and
force-velocity functions. The distance between joint centre and muscle line of ac-
tion was taken as the flexor lever arm. For the extensors, the regression equation by
Gerbeaux [9] was used. The force-length function for extensors was set to 1 as an
approximation (see [20]). For the flexor force-length relation, we used the term de-
scribed by Giesel et al. [10]. Force-velocity relations were given by Hill’s function.
The parameters of the neuron model were chosen to produce a physiological arm
swing in frequency and amplitude. The system behaviour (phase, frequency) was
analysed for varied model parameters. Following Kelso’s experiment, the analysis
was focused on parameters that influenced the frequency as shown in Figure 8 for
an example of two parameters. Increasing the adaptation b lead to an increase in
frequency while the phase relation between the movements of both arms remained
unchanged (Δϕ = π). Changing the reciprocal coupling Wother from a negative to

Fig. 8 Left: Changes in angle time course (right arm=red, left arm=blue) frequency and
phase lag during variation of b. Right: Only variation of Wother from inhibition to excitation
causes a transition from asymmetric to symmetric arm movements.
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a positive value induced a transition in the range of Wother = 0. The arm move-
ment shifted from asymmetric to symmetric coordination within a few cycles. Since
no other parameter in equations (1)–(5) can produce a transition in a physiological
range of frequency, a change in Wother might be the manner in which humans con-
trol the frequency. This assumption needs the evidence of both inhibitory and excita-
tory connections between the left and right sides of the body. Inhibitory connections
have been found in the isolated spinal cord of the lamprey [1]. Evidence for excita-
tory interconnections would support the assumption that the increase in frequency
is achieved by changing the coupling parameter.

6 Conclusion

Our results support the hypothesis, that depending on the movement task, humans—
and some animals—are able to change the coupling between the neurons within
the spinal pattern generator. This provides an extremely simple way to control a
large variety of cyclic and acyclic movements, based on a small number of control
parameters. Thus, the stability of the system is guaranteed based on a stable SPG,
a mechanical self-stabilization and the coupling between these two systems.
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Modeling Human-Like Joint Behavior with
Mechanical and Active Stiffness

Thomas Wahl and Karsten Berns

1 Introduction

The bipedal locomotion has become a research topic of great interest over the last
decades. Several groups have realized dynamic walking on afore known terrain. Our
goal is to realize dynamic walking and running in rough terrain. Beside the control of
the highly dynamic and unstable motion, the actuator itself is still an open research
topic. The main task of such an actuator is to supply the system with energy to com-
pensate losses due to internal friction and environmental impact. In slow walking
speeds this share is very low. Several so-called passive walkers have shown that there
is no need for an actuator, if the energy loss is compensated by transforming poten-
tial energy into kinetic energy [13, 4]. But in more dynamic motions like running
and jumping, however, a powerful actuator is essential.

Beside the energy supply, the actuator is required to control the robot’s move-
ments. One approach solves this by mere permutation of the control signals from
higher behaviors. Most of the today’s bipedal robots use the actuator in that way. A
stiff actuator is combined with a gear box that possesses a high gear ratio like e.g.
harmonic drives. The drive follows their pre-calculated joint trajectories, which are
based on multi-body dynamics and Zero-Moment Point considerations [9, 16]. The
resulting walking and pseudo running gaits often look unnatural, are highly uneco-
nomical and the computational overhead is tremendous.

Dynamic walking in rough terrain requires an adjustable compliant actuator. An
elastic behavior is required to avoid hard impacts at touchdown and a fast adaption
to the uneven terrain. Besides that in normal walking gaits the leg should be able to
rely on the mechanical dynamics by just relaxing the joint. On the other hand the
joint has to be very stiff when the leg is in the support phase.
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A more biological motivated approach allows the system to use the inherent dy-
namics and self stabilizing effects. This is achieved by an innately compliant joint,
like it can be observed in all mammals. The loose joint can be stiffened by contract-
ing the muscles. Their typical characteristic is described by the hill-type muscle
model [7].

Fig. 1 Hill-type muscle model

In this antagonistic principle the nonlinear behavior of the muscles and tendons
allows to adjust the stiffness. Their characteristic is described by the serial spring in
the hill-type muscle model. Furthermore, the fascia of the muscle provides a kind of
parallel spring. That allows all vertebrates to store energy in cyclic motions (Fig 1).
Especially during running and jumping the amount of stored energy is quite high.
Several groups have tried to copy and rebuild this behavior with electric motors and
mechanical springs [5, 15, 6] or with artificial muscles [8]. Up to now, no satisfying
and energy efficient solution for this problem could be observed.

2 Demonstrators

Based on this biologically motivated actuator concept Luksch [11] developed a con-
trol strategy for a whole biped (Fig 2). The control strategy is supported by the self
stabilizing effects of the actuator and does not require a complete model of the biped.
The backbone of the control is a kind of pattern generator that is triggered by exter-
nal events. This external trigger allows the robot to handle uneven terrain without
any parameter adaption or environment cognition. The idea behind this approach is
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Fig. 2 Simulated biped walking up a step [12]

explained in more detail in the paper of Tobias Luksch that can be also found in this
book and in [12].

The real demonstrator was built based on two biologically motivated actuators
(Fig 3). One represents the hip, the other stands for the knee and is assisted by a
parallel spring. The leg has a total weight of 17 kg and has a height of ca. 1 m. The
high weight is a result of the modular concept with aluminum tubes. The modular
concept allows equipping the leg with different foot setups.

It utilizes sparse sensor equipment as it can be found in biology. At each joint
an optical encoder measures the actual position of the leg. These optical sensors are
comparable to the muscle spindles. The spindles are located inside the muscle in

Fig. 3 Demonstrator with rubber sphere
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parallel to the muscle fibers. The muscle fibers themselves have also sensory neu-
rons. They send information about the muscle deflection to the spinal cord.

A load cell is placed in the tibia to measure the force in the z direction and the
torque in x and y direction. The load cell in combination with the current measure-
ment represents the golgi tendon organ. The organ measures the tension inside the
muscle. It is located in parallel to a passive element between the muscle and the
tendon that connects the muscle to the bone. The output of the connected sensory
neuron is proportional to the load of the muscle.

There is no need for an inertial system to estimate the pose of the jumping leg,
because it is fixed to a slider. The vestibular system in mammals is the counter part to
the technical inertial system. It is located in the inner ear, measures angular velocity
and linear acceleration, including gravity. This sensor is an integral part of the sense
of balance in humans. It is supported by the vision system.

3 Mechanics

The actuated joints consist of a DC motor, a gearbox with low gear ratio and a par-
allel elastic element (Fig 4).

A rotor disc motor is chosen (Heinzmann SL120-2NFB), because it offers very
good dynamic properties due to its low inertia (J = 3,5kgcm2) and high peak
torque. The selected model offers an absolute zero motion torque of approximately
13.72Nm. The supply voltageU1 is 48 V and the maximum output power at 3164 rpm
is 430 W.

Equipped with a gear ratio of 32 : 1 it results in a realistic maximum obtainable
torque of approx. 150Nm. The low gear ratio allows for a free swing phase in com-
parison to the normally used harmonic drives. Tests in the simulation have shown
that a maximum peak torque of 150 Nm is enough for jumping with a single leg [2]
and walking with a human sized robot [10].

Every motor has an optical encoder with a resolution of 720 lines per rotation.
Every line on the encoder wheel leads to four ticks in the counter unit. While the
encoder is placed between the motor and the gearbox, the resulting 2880 ticks have
to be multiplied by the gear ratio. Hence the resolution of the output knee angle is
256 ticks per degree. This high resolution is not required for an exact positioning
but rather for the underlying speed controller.

To store energy during the squat phase the knee is extended by a parallel spring.
There are two different approaches to realize this parallel elastic behavior. The first
one is a pneumatic rotary spring. Two shunts inside a casing compress the air when
the knee is flexed. The nonlinear behavior of the rotary spring is similar to the fascia.
Problems during the assembly process led to a more damping-like characteristic.

Furthermore, the weight of the spring (due to the high pressured air, the casing
is thick) is very high (> 1.5kg). To overcome these drawbacks a mechanical spring
is used instead.

The hip is not equipped with such a parallel spring. This is because tests in the
simulation have shown that there is no benefit. The energy that is saved in the squat
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Fig. 4 Knee joint with spring in front and actuator in the back

and jump off phase is wasted again in the air. It requires a lot of energy to reach and
hold the landing position against the parallel spring.

The serial spring in the Hill-type muscle model is implemented in the foot setup
and the compliant behavior of the actuator. The foot setup consists of a simple rubber
sphere, a mechanical foot with serial springs or a foot made of carbon fibers. The
foot is important because at the moment it is the only serial elasticity, which can
absorb hard shocks at touch down. If the first shocks are damped by the mechanical
serial elasticity the physical stress for the gearbox and the motor are reduced. Due to
the low inertia of the motor in combination with the gearbox no active compliance
is required.

4 Electronics

The motor is controlled via a DSP-board (Digital Signal Processor) with two mo-
tor amplifiers (Fig 5). The Active stiffness controller is implemented on a freescale
56F8357 DSP. The DSP is connected to a CPLD to receive a modular electronic
concept that can be used in almost arbitrary systems. The CPLD allows rerouting
some data lines to the IO-ports. The digital IO-ports are used to connect the optical
encoders and the load cell. Furthermore the setup allows to switch some of the digi-
tal IO-ports to analog inputs and to implement some smaller sensor pre processing.
For example a quadrature decoder for the optical encoders or the communication
with the load-cell is implemented.

One amplifier consists of four MOSFETs and a controller chip from Vishay. The
DSP-board further offers a PWM-synchronous (Pulse Width Modulation) current
measurement. This information is essential for the implemented torque controller.
The PWM-frequency is 39 kHz which is too fast for the internal A/D-converter of the
DSP to measure every cycle. Therefore, every fourth cycle the current is measured
over an instrument shunt R2 (Fig 6). The current version of the DSP-board can hold
a continuous current of 15 A.



266 T. Wahl and K. Berns

Fig. 5 DSP-board with motor amplifiers

Fig. 6 Standard DC-motor model with MOSFETs and instrument shunt R2

The board is connected to the PC via CAN-bus. This topology allows implement-
ing higher behaviors on a PC, which need more computational power and are not
time critical. This is also comparable to what is found in nature. The brain on the
one hand has a lot of computational power, but it takes several milliseconds until the
command is executed by the muscles. The reflexes on the other hand have short sen-
sor actuator couplings. Their behavior is modulated in the spinal cord and doesn’t
require any decisions from the brain. The brain only has the possibility to influence
the behavior by stimulating or inhibiting the whole reflex.

The communication between the available boards and the PC is handled automat-
ically in the initialization phase at start up. It is not required to adapt any parameter,
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if a second board is connected. Therefore, it is easy to attach further DSP-boards if
the degrees of freedom are increased.

The joint controller adjusts the stiffness of the joint. To perform this highly dy-
namic task the controller is built up hierarchically.

Fig. 7 Schematic view of the hierarchical closed loop controller

The innermost loop is a fast torque controller with a cycle time of 1ms. The elec-
trical time constant of the used motor is 0.27 ms. That is three times faster then the
loop time of the controller. To overcome this disproportion the current is measured
every 0.10 ms (see above). A first order low pass filter is used to ensure the sampling
theorem holds:

y(n) = (1− 2−α)y(n− 1)+ 2−αx(n)withα ∈Z

Due to the fast switching frequency of the PWM signal, there are two different risen
characteristics of the current. In the first case the duty cycle is below 50% and the
current returns to zero in the off-phase. Because of the large inductance the current
doesn’t reach the saturation of Imax =U1/Rmotor. This leads to a quadratic relation
between the current and the duty cycle (Fig 8). While the voltage at the inductance
UL is nearly constant for the short period the slope of the triangle is given by:

UL = L
dI
dt
⇒ I =

1
L

∫
UL ≈ U1

L
· t

When the motor starts to turn this relation does not hold, since the voltage at the
inductance is reduced by the back e.m.f. U2.

In the second case the duty cycle is above 50% and the current does not return to
zero in the off-phase. That leads to an increasing current from cycle to cycle until
the current reaches the saturation (Fig 9). Although the current is shrinking in the
off-phase the electrical time constant does not change until the motor reaches the
saturation voltage.

In both cases the average current reaches the persistent value faster then the loop
time of the controller. That is the background why 1 ms loop time is enough for the
torque controller. From cycle to cycle the new value is the persistent value for the
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Fig. 8 PWM duty cycle step from 0% to 42%: blue line modulated motor input voltage U1,
red line voltage UR at the resistance R1 proportional to current I

Fig. 9 PWM duty cycle step from 0% to 73%: blue line modulated motor input voltage U1,
red line voltage UR at the resistance R1 proportional to current I

given PWM output from the last cycle. The controller itself is realized as a standard
PI-controller.

Based on this torque controller a speed and a position controller are implemented.
A schematic layout and the interfaces of the controller are presented in Fig 7. The
mechanical time constant τmec = 5.8ms is by more than a magnitude slower than
the electrical time constant. Therefore, the cascaded controller structure is possible,
because the closed loop controller of the current can be approximated as a static
system.

Fig 10 shows a step of the motor’s input voltage from 0% to 94% PWM duty
cycle. The current represented by the red line rises very fast (0.27 ms) until the motor
starts to turn. With the motor speed the back e.m.f. U2 increases and lowers the
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Fig. 10 PWM duty cycle step from 0% to 94%: green line is equivalent to the motor speed
represented by back e.m.f. U2, red line voltage UR at the resistance R1 proportional to cur-
rent I

resulting voltage on the resistance UR. A persistent motor speed is reached at U2 ≈
U1. The speed controller is also implemented as a standard PI-controller and has no
interface to the higher reflex layer. Biology shows that there is no need for an exact
speed control.

The outermost controller is the position controller. The position controller re-
quires only a simple P-controller, because the integral portion is given by the sys-
tem. Therefore, the combination of position and speed controller is not time critical
as it is between speed and current controller.

The desired position and the desired torque impact of the controller output can
be set using respective weight parameters named wpos and wtor:

currentdes =
w2

pos ∗ torpos+w2
tor ∗ tordes

wpos +wtor
(1)

By decreasing wpos the stiffness at a desired position is reduced, because the in-
fluence on the applied torque is reduced. wtor is proportional to the influence of a
desired torque. This is e.g. the case during the push-off phase: there is no need for
an exact position since the maximum torque is required (wpos = 0 and wtor = 1). To
hold a fixed desired position wpos = 1 and wtor = 0.

5 Result of Test

To verify the capabilities of the actuator several tests were performed. A result of one
test is shown in Fig 11. A sinus was applied to the inputs of the position controller of
hip and knee. This leads to a squat movement with a short flight phase. The position
could be controlled in a very accurate way (blue), while the underlying controller
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show more and more noise (red=speed, green = current). This is due to the fact
that the lower controllers must be faster to allow cascading of integral closed loop
controllers [14].

Fig. 11 Real data from the knee with sinus on input

6 Outlook

Tests in biology have shown that there is a coupling between joints on two layers
[1]. On the lowest layer a coupling by bi-articular muscles is given (e.g. m. rectus
femoris, m. gastrocnemius). This connection allows executing complex motions by
activating a single muscle. Furthermore, the connection of more than one joint al-
lows an easy compensation of perturbations. For example if the knee is flexed the
gastrocnemius is responsible for an extension of the ankle joint, which compensates
the leg length deviation.

In addition to the classic biomechanics several groups have shown that there is
a neural representation for kinematic elements on a higher level. At the level of the
spinal cord in the central nervous system specific populations of neurons represent
the whole limb geometry [3]. This becomes apparent when for example a flexion
perturbation is applied to the knee. It stretches the quadriceps muscle which triggers
a heteronymous excitation of the triceps surea muscle group. The result of this reflex
is a compensatory knee extension.

In the current version of our prototype leg the only coupling between the two
joints is given by the PC. This connection is very slow (worst case >50 ms). That
is too slow for the fast reflexes, in comparison to the mono-synaptic reflexes in ex-
tremities of humans.

At the moment the topology does not allow data transfer between DSP notes.
For this reason, first tests with the flexray interface are in progress. The real-time
capabilities of the interface allow implementing an electronic coupling between the
joints. A cycle time of fewer than five milliseconds should be enough to realize the
bi-articular coupling of several joints.

On the mechanical side the prototype leg is too heavy due to the aluminum tubes
and connectors, the gearbox and the slider. By exchanging the tubes through carbon
fibers tubes a weight reduction of up to 1 kg is possible. The weight of 1.5 kg for one
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gearbox is also quite heavy. By replacing the compact gearbox with a wire driven
actuator the weight of the leg is reduced. The wire driven joint has some further
advantages. It allows an easy integration of a serial spring as it can be found in the
Hill-type muscle model. And the inertia of the whole leg is reduced, because the
heavy knee actuator is placed at the hip. The slider is built up on standard aluminum
profiles and holds further potential for a weight reduction.

On the electrical side the enhancement of the amplifiers is in progress. In the next
amplifier generation the continuous current is doubled. That leads to a four times
higher output power.

7 Conclusion

In this paper an actuator is presented that models human-like joint behavior with
mechanical and active stiffness. It consists of a DC-motor with a high torque output
and a gearbox with a low ratio. This innately compliant joint allows a passive swing
phase like it can be found in mammals. Based on this mechanical compliant actuator
a controller is presented which has the possibility to adapt the stiffness with one
single parameter.

The stability of the cascaded controller is given by the significant different time
constants of electrical and mechanical part. This criterion is proven with a theoretical
model of the motor. The capabilities of the real actuator are tested with a prototype
leg. Tests have shown that the actuator is powerful enough to jump with the weight
of ca. 17 kg (about 10 cm).
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Geometry and Biomechanics for Locomotion
Synthesis and Control

Katsu Yamane

Abstract. This paper summarizes two pieces of work related to human locomotion.
The common hypothesis underlying these works is that human locomotion is char-
acterized by, and possibly optimized to, the inherent mechanical and sensory-motor
network structures. The first work investigates the effect of foot geometry on the
walking speed and efficiency. Inspired from passive walk, we consider a foot shape
with circular toe and heel segments, and optimize the gait for different toe and heel
radii. We then compare the optimized gaits and demonstrate that round foot real-
izes faster and more efficient gaits. The second work focuses on the time delay of
the human somatosensory reflex. Humans can walk robustly despite the tens of mil-
liseconds of latency between the sensor input and motor output. To investigate how
time delay affect the reflex model, we build somatosensory reflex models assum-
ing different latency values and perform cross validation across multiple motions.
The result shows that the network model using the physiologically realistic latency
value better generalizes to a wide variety of motions, suggesting that the network is
optimized to the inherent latency of the neural system.

1 Introduction

Human-like motions and robust controllers are essential for many applications of
biped locomotion. Although biped robots with locomotion capability are not uncom-
mon these days, it is still challenging to realize locomotion comparable to human
in terms of efficiency, speed, robustness, adaptability and smoothness.

A typical approach to realize active dynamic walking is to first generate a phys-
ically feasible motion based on a simplified robot model and predefined foot tra-
jectories, and then apply a joint servo controller to track the generated motion. A
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balance controller is usually added to maintain balance under modeling errors and
disturbances. Using this approach, researchers have realized locomotion in various
environments including rough terrains [9] and stairs [7].

This approach has been proved to be an effective and practical engineering so-
lution to realize many biped motions. However, the gaits tend to be less efficient
compared to human locomotion because of the high gains used to track the trajec-
tory. In addition, the locomotion style is usually very different from human because,
for example, the knee joints are bent to improve the robustness and the feet are main-
tained parallel to the ground to make balancing easier.

Inspired by biomechanical observations, some researchers have investigated
bipedal locomotion with entirely different approaches. One of such approaches is
passive walk [12], where the key idea is to realize efficient locomotion with no or
little control by exploiting the geometry and mechanism of the leg and foot. While
passive walkers often realize human-like and efficient gaits, they are not robust or
adaptable enough to be applied to general humanoid robots.

Another group of researchers have tried to incorporate sensory-motor network
of animals to improve the robustness and adaptability. For example, the pioneering
work by Taga et al. [20] used central pattern generators to generate cyclic movements
that are highly adaptive to environment changes. Recent work in graphics [23] also
suggests that simple, reflexive control can realize robust and adaptive control.

This paper summarizes two pieces of work related to human locomotion. The
common hypothesis underlying these works is that human locomotion is charac-
terized by, and possibly optimized to, the inherent mechanical and sensory-motor
network structures.

The first work investigates the effect of foot geometry on the gait and efficiency
of bipedal locomotion [22]. Inspired from passive walk, we consider a foot shape
with round toe and heel segments with a flat section in the middle, and optimize the
gait for different toe and heel radii. We then compare the gaits and demonstrate that
round foot realizes faster and more efficient gaits.

The second work focuses on the time delay of the human somatosensory re-
flex [15]. Humans can walk robustly despite the tens of milliseconds of latency be-
tween the sensor input and reflexive reaction. To investigate how time delay affect
the reflex model, we build somatosensory reflex models assuming different latency
values and perform cross validation across multiple motions. The result shows that
the network model using the physiologically valid reflex latency value better gen-
eralizes across a wide variety of motions, suggesting that the network is optimized
to the inherent latency of the neural system.

2 Foot Geometry and Locomotion [22]

Foot shape and leg mechanism are one of the key design issues in passive walk. Their
feet typically have curved shapes [12, 6] or flat shape with torsional spring at the
ankles [21]. Kwan and Hubbard [10] discussed the optimal foot shape considering
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point, flat and fully curved feet. In biomechanics, a study showed the advantages of
the curved, flexible sole in humans, such as less metabolic cost for arcs with larger
radius [1].

One of the problems of passive walk is that it cannot be applied to general-
purpose humanoid robots directly because of the low adaptability to different en-
vironments or walk parameters. In this section, we investigate the effect of foot sole
shapes on the locomotion of planar active biped robots. For this purpose, we con-
sider a foot composed of two curved sections at the toe and heel, connected by a
flat section in the middle (Fig. 1). We develop an algorithm to obtain the gait that
minimizes the squared ankle torque for a given foot shape. Our results suggest that
having curved toe and heel realizes more efficient locomotion at speeds comparable
to human.
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Fig. 1 The foot model used in our analysis

2.1 The Biped Model

We consider a 2D biped robot whose foot consists of circular segments at the toe
and heel, and a flat section in the middle. This choice is inspired by the circular feet
used in passive walking robots and passive toe joints used in some fully-actuated
biped robots. The curved toe and heel parts have a similar effect to adding a passive
joint because the ground reaction torque around the toe will be proportional to the
angle of the foot with respect to the ground.

To simplify the optimization problem, we employ a simple bipedal robot model.
We represent the mass of the entire robot as a single rigid body with mass m and
inertia I. Each leg has one joint at the ankle but no knee joint. The rationale behind
not having a knee joint is that the knee joint is likely to be locked at the joint limit in
the supporting leg, and the knee joint torque is always zero in the free leg because
we ignore the mass of the foot and leg.

The variables used in the rest of the paper are summarized in Fig. 1 and reviewed
in the rest of this subsection.
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The configuration of a single leg is fully determined by four parameters: (x,y)
representing the position of a point fixed to the foot, θ0 the angle of the flat section
with respect to the horizontal ground, and θ1 the ankle joint angle. We can therefore
define the generalized coordinates as q = (x y θ0 θ1)

T . The generalized coordinates
are subject to one of the kinematic constraints corresponding to heel (θ0 > 0), toe
(θ0 < 0) and flat (θ0 = 0) contact states.

We can also define the corresponding generalized forces as τ = ( fx fy τ0 τ1)
T ,

where ( fx fy)
T is the force applied to the foot link, τ0 is the torque applied to the

foot link around (x,y), and τ1 is the ankle joint torque. The only element of τ that
can be actively selected by a controller is τ1, while other forces are provided by the
contact force.

If we assume that the foot is always in contact with the ground, y is uniquely
determined by θ0 and θ1 due to the contact constraint. If we further assume that
there is no slip, x is also uniquely determined by the trajectories of θ0 and θ1 for a
given initial x. Therefore, the motion of a leg is fully determined by the trajectories
of θ0 and θ1.

Using Lagrange’s equation of motion, we can derive the equation of motion of a
single leg in the following form:

τ = Mq̈+ c+ g (1)

where M is the mass matrix, c denotes the centrifugal and Coriolis forces, and g
denotes the gravitational force.

It should be noted that not all combinations of θ̈0 and θ̈1 are physically feasible at
a particular state because the system is underactuated. We use Δτ , the torque around
the contact point (xc yc)

T required to realize the given θ̈0 and θ̈1, as the measure
of physical infeasibility of the motion because the point contacts at heel and toe
cannot provide Δτ . We can calculate Δτ by first computing τ using Eq.(1) and then
computing the equivalent torque around the contact point by

Δτ = τ0 +(yc− y) fx− (xc− x) fy (2)

in the toe or heel contact case. If the foot is in flat contact (θ0 = 0), the motion
is physically feasible if the center of pressure is in the flat section of the foot. Δτ
therefore becomes

Δτ =

⎧
⎨
⎩

τ0− at fy if τ0− at fy > 0
τ0 + ah fy if τ0 + ah fy < 0
0 otherwise.

(3)

2.2 Collisions

There are two types of collisions in each walk cycle of our foot model (Fig. 2):
a) a swing leg makes a new contact with the ground, and b) a foot in heel contact
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-q̂. +q̂.-q. +q.

F

a)

mF

b)

Fig. 2 Two types of collision: a) swing leg collides with the ground, and b) a foot makes
flat contact

transitions to flat contact. We assume that all collisions are completely rigid and
inelastic, i.e. the foot and ground do not deform and the velocity of the colliding
point turns to zero after the collision. We use the collision models to derive the
boundary conditions for the optimization because we divide a walk cycle into two
phases and optimize each phase separately, as described in the next section.

It turns out that we do not have to enforce a boundary condition at collision a)
because any post-collision velocity of the colliding leg can be realized by modify-
ing its velocity before the collision. At collision b), on the other hand, we have the
boundary condition

m1q̇− = m1q̇+ (4)

where m1 is the bottom row of M, and q̇− and q̇+ are the joint velocities before
and after the collision respectively. Intuitively, this condition means that the angular
momentum around joint 1 must be the same before and after the collision because
the impact does not provide a moment around the joint.

2.3 Gait Optimization

2.3.1 Representation of a Gait

Figure 3 depicts the three events that occur during each step of locomotion. Accord-
ingly, we divide a step into two phases: Phase 1 (from flat contact to touchdown)
and Phase 2 (from touchdown to flat contact). Due to the discontinuity at the
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t=t1

touchdown

t=t0

flat

t=t2

flat

Phase 2Phase 1

Fig. 3 Three events during a step and two phases for optimization

touchdown, the two phases have to be optimized separately with the following three
boundary conditions:

• The swing and colliding legs must share the same mass position at t = t1.
• The configurations at t = t0 and t = t2 must be the same.
• The velocity at the end of Phase 2 must satisfy the collision boundary condition.

As shown in Section 2.1, the configuration of the biped robot is fully determined by
θ0 and θ1 due to the contact constraints. We therefore represent the motion by two
spline curves for each phase representing the trajectories of θ0 and θ1, and obtain
the knot points that minimize a cost function Z by applying the conjugate gradient
method.

Our choice of the cost function is

Z =
1
2 ∑τ2

1 +
w1

2 ∑Δτ2 +
w2

2

(
m1(q̇

−− q̇+)
)2

(5)

where w1 and w2 are constant weights. The first term tries to minimize the ankle
torque, the second term is intended to improve the physical feasibility of the motion,
and the third term enforces the boundary condition (4). While Δτ = 0 should be
an equality constraint to ensure that the optimized motion is physically feasible,
we relax this constraint because strictly feasible motion may not be represented by
splines. We maintain the feasibility as much as possible by using relatively large w1

and by making sure that Δτ is sufficiently small after the optimization.

2.3.2 Gait Optimization

Table 1 summarizes how the initial and final states are given for each phase. Because
the contact foot is in flat contact at t = t0 and t2, we have θ0(t0) = θ0(t2) = 0. We
also know θ̇0(t0) = 0 due to the inelastic collision assumption. For simplicity, we
consider the case where the rest of the initial states, i.e. θ1(t0)= θ1(t2) and θ̇1(t0), are
obtained from human motion capture data. The joint angles at t1 are sampled from
a uniform two-dimensional grid and the best sample is chosen after optimizing the
gait for each sample.
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Table 1 Initial and final values for θ0 and θ1 in each phase

t0 t1 t2
θ0 0 sampled 0
θ̇0 0 optimized optimized
θ1 given sampled given
θ̇1 given optimized optimized

We obtain the optimal gait by the following steps:

1. Sample θ0(t1) and θ1(t1) from the grid.
2. Obtain the optimal gait (represented by joint trajectories) for each sample.
3. Find the gait with the lowest cost among the trajectories obtained in step 2.

Step 2 is further divided into the following three steps:

2-1. For Phase 1, repeat:

1) Randomly sample knot points for θ0 and θ1.
2) Optimize the knot points using a gradient-based algorithm.

2-2. Perform the same process for Phase 2.
2-3. Among all pairs of trajectories from Phase 1 and Phase 2, find the one with

the minimum total cost.

2.4 Results

We chose three foot models with different radii for the curved sections and calcu-
lated the optimal locomotion pattern for each model. Table 2 summarizes the model
parameters used for the experiments. The parameters were chosen so that the total
length of the foot is constant for all models (0.1 m for the heel side and 0.2 m for
the toe side).

We used the gait parameters shown in Table 3. The parameters were extracted
from motion capture clips of walking motions with three different speeds randomly
selected from a human motion capture database [5]. The joint angles of the support-
ing leg at the end of Phase 1 were sampled from a uniform grid in the θ0–θ1 space
with the intervals of 0.05 rad for −0.5≤ θ0 ≤ 0 and 0.08 rad for −0.8≤ θ1 ≤ 0.8.
Note that θ0 must be negative to make toe contact. The total number of grid points
is 231. The trajectories of θ0 and θ1 were represented by a spline curve with five
knot points including the start and end points. We started the optimization from 100
random initial knot points for each sample.

Table 3 summarizes the numerical optimization results. Although we sampled
231 points for the touchdown joint angles, the number of gaits may be smaller be-
cause not all of the samples have valid inverse kinematics solution for the touchdown
leg. In addition, we rejected the optimization result if any of the joint angles exceed
their motion range. We did not impose joint velocity, acceleration or torque limits.
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Table 2 Model parameters used in the numerical experiments

Flat Curved 1 Curved 2 Curved 3
m (kg) 60

I (kgm2/s) 1.0
h (m) 0.1
l (m) 0.7

max/min θ0 (rad) -0.5/0.5
max/min θ1 (rad) -0.8/0.8

rh (m) 0.001 0.05 0.1 0.15
αh (rad) 0.5 0.5 0.5 0.5
ah (m) 0.0995 0.075 0.05 0.025
rt (m) 0.001 0.1 0.2 0.3

αt (rad) 0.5 0.5 0.5 0.5
at (m) 0.1995 0.15 0.1 0.05

shape

Table 3 Gait parameters and summary of results. L: step length (m), v: body velocity (m/s),
�: number of gaits found, (θ0, θ1): the joint angles of the supporting leg at touchdown for
the minimum-torque gait,

∫
τ2

1 dt: squared ankle torque integrated over a step.

gait L t1− t0 t2− t1 v foot � (θ0, θ1)
∫

τ2
1 dt

slow 0.94 0.83 0.17 0.62 Flat 11 (0, -0.64) 1.85×104

Curved 1 12 (0, -0.64) 1.53×104

Curved 2 11 (0, -0.72) 1.46×104

Curved 3 8 (-0.1, -0.56) 1.62×104

normal 0.96 0.46 0.14 0.94 Flat 1 (0, -0.72) 1.57×104

Curved 1 0 – –
Curved 2 9 (-0.45, -0.24) 1.31×104

Curved 3 10 (-0.45, -0.24) 1.30×104

fast 0.99 0.31 0.08 1.26 Flat 0 – –
Curved 1 0 – –
Curved 2 1 (-0.4, -0.32) 9.57×103

Curved 3 4 (-0.4, -0.32) 9.51×103

We observe that there is a large variation in the number of gaits obtained for the
combinations. All foot shapes had a number of possible gaits for slow walk, while
some foot shapes did not have a gait for normal and fast walk. In general, it was
easier to find a gait for the curved feet.

The foot angle (θ0) of the supporting leg at touchdown also varied across walk
speed and foot shapes. Most foot shapes achieved slow walk keeping the supporting
foot flat, with the exception of Curved 3 feet that showed slight toe contact. The
optimal gaits for both normal and fast walks had significant toe contact phase except
for the only solution for the Flat feet. The squared ankle torque was also smaller
with curved feet by 12–21%.
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Fig. 4 Optimized gaits. From top to bottom row: slow, normal, and fast walk. From left to
right column: Flat, Curved 1, Curved 2 and Curved 3.

Figure 4 shows the stick figure representations of the optimal gaits obtained for
each combination of walk speed and foot shape.

2.5 Discussion

In this section, we investigated the effect of foot shape on biped locomotion. We
focused on a foot shape with circular sections in the toe and heel connected by a
flat section, and obtained optimal walk patterns for given foot shapes and walk pa-
rameters using a numerical optimization technique. The optimization is based on
the rigid-body and collision dynamics of the simplified leg model. We also divided
a step into two phases to allow discontinuity at collisions.

Comparison of flat feet and three curved feet suggested that having curved toes
and heels realizes more efficient locomotion at speeds comparable to human. Even
in cases where the optimization could not find a gait for flat feet, it was able to find
one or more gaits for curved feet. In addition, optimal gaits for curved feet utilize toe
contact of the supporting leg. They also require smaller ankle torque than flat feet.

As future work, it would be interesting to consider more general shapes and add
passive elements to the foot. Optimization of the shape parameters, rather than the
gait, is also an interesting research direction. We also have to solve the control prob-
lem in toe and heel contacts in order to apply our result to real robots.
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3 Time Delay and Human Somatosensory Reflex [15]

3.1 Introduction

Understanding the mechanism for generating and coordinating human motions is a
longstanding research issue. It is commonly considered that the human motor control
system has a hierarchical structure comprising the reflex behavior, the emotional be-
havior, and the rational behavior, in accordance with the hierarchical brain structure
shown by MacLean [11]. Similar structures are often adopted in humanoid control
systems.

One of the significant differences, however, is that the human motor control sys-
tem has a very large response time delay. In contrast to many low-level humanoid
controllers that run at around 1 kHz, even the fastest reflex loop can have a latency
of 30 ms. It is surprising that such controllers can robustly control agile motions.

In this section, we investigate the effect of time delay in human reflex, based
on our previous work on modeling and identifying the human somatosensory re-
flex system [13, 14]. More specifically, we identify the parameters of the human
reflex system model assuming different latencies, using the data collected and com-
puted from a stepping motion. We then perform cross validations with other motions
including stepping with different speeds, squat, and jump. In our experiments, the
models with time delays similar to the physiologically validated value show better
cross-validation results. This result suggests that the human somatosensory reflex
system is optimized to the inherent delay of the neural system.

3.2 Somatosensory Reflex Model [13, 14]

Fig. 5 shows our neuromuscular network model, which is essentially a six-layered
neural network. The part enclosed by the dashed rectangle represents the somatosen-
sory reflex network model. In this part, each layer consists of:

1. NNJ,i (filled circles) representing the neuromuscular junctions on the muscles,
where nm is the number of muscles included in the musculoskeletal model. This
layer receives and integrates the motion command signal from the α motor neu-
ron in the spinal nerve ramus. The integrated signal activates the muscle, which
produces tension.

2. NMS,i (filled squares) representing the muscle spindles that measure the muscle
length and its velocity. In our model, these values are computed by forward or
inverse kinematics computation using the musculoskeletal model [17].

3. NGT,i (filled triangles) representing the Golgi tendon organs that measure the
muscle tensions. Their outputs can be computed from the muscle activity us-
ing the Hill-Stroeve muscle model [8, 19] or from the inverse kinematics and
dynamics computation using the musculoskeletal model [17].
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Fig. 5 The neuromuscular network modeled with six-layered neural network. Each layer
represents central nerve system, spinal nerve rami, α motor neuron, neuromuscular joint,
muscle spindle and Golgi tendon organ. The part enclosed by dashed rectangle represents
the somatosensory reflex network model.

The somatosensory reflex network consists of the following connections among
these layers:

1. NNJ is connected to NMS and NGT (solid line) by the descending connections
that represent the conversion from the motion command signal to the muscle
length and tension. The former conversion can be simulated through the kine-
matics and dynamics computations of the musculoskeletal model [17]. The latter
can be computed by a physiological muscle model.

2. NMS and NGT are connected to NNJ (dashed line) by the ascending connections
representing the reflex arc between proprioceptive receptor and muscle via the
interneurons and α motor neurons in the spinal nerve rami. These connections
are the main part of this model and modeled in detail following the anatomical
nerve structure [4, 2]. The neuronal bindings between the spinal nerve rami and
the muscles are also investigated in the anatomy field [18, 16].

The weight parameters of the somatosensory reflex model are identified using ex-
perimental human motion data through a standard back-propagation algorithm [3]
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so that it outputs the computed muscle activity at NNJ when the somatosensory in-
formation is fed back to NMS and NGT with a specific time delay.

3.3 Somatosensory Reflex and Time Delay

One of the critical characteristics of the somatosensory reflex is the time delay
caused by the nerve signal transmission. The reflex arc consists of the proprioceptive
sensory receptors, the Ia and II nerve fibers, the interneurons and α motor neuron,
and the α motor fiber. A large portion of the time delay (δT ) is caused by the sig-
nal transmission through the nerve fiber, and can be computed by dividing the fiber
length by the transmission speed. The rest (δ t) is a collection of response time of
electrical and chemical reactions, such as potential discharge and synaptic transmis-
sion and has been measured in-vivo for some muscles. In Quadriceps, for example,
δT and δ t are reported to be 16 ms and 9–14 ms respectively. The total time delay
of monosynaptic extension reflex of Quadriceps is therefore 25–30 msec, as often
observed as the latency of knee-jerk reflex.

Different time delays obviously lead to different model parameters. Another in-
teresting question is whether the parameters identified using the data from a specific
behavior generalize to other behaviors. In the next subsection, we compare the iden-
tification and cross-validation results of the models with δ t = 0,5,10,15,30,60 and
120 ms.

3.4 Experimental Results

We use an optical motion capture system to measure the motion, two force plates to
measure the ground contact force, and a wireless electromyograph (EMG) system
with 16 electrodes to measure the activities of 8 representative leg muscles on each
side. The following three types of motions are measured for the analysis:

1. Step motion in 100 step/min by Subject A (DATA100).
2. Step motion in 170 step/min by Subject A (DATA170).
3. Step motion with its speed change gradually from 120 step/min to 150 step/min

in 6 sec by Subject A (DATA120−150).
4. Jump motion by Subject B (DATAjump).
5. Squat motion by Subject B (DATAsquat).

The speed of stepping is controlled with a metronome.
First, we train the model with seven different time delays using the motion data

DATA120−150. Then we apply these somatosensory reflex network models to the
other motion data DATA100, DATA170, DATAjump, and DATAsquat for cross valida-
tion. The cross validation is performed for each of the seven time delays and the
resulting errors are evaluated. Figure 6 represents the average and variance of error
between computed and reconstructed muscle activity for cross validation.
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3.5 Discussion

These experimental result can be summarized as follows:

1. The identification consistently results in an error of only 2–4 % for all δ t, im-
plying that the difference of time delay has little impact on the muscle activity
reconstruction capability of the model.

2. The cross validations using DATA100 and DATA170 show slightly different results
depending on the time delay: the error is under 2 % if δ t is less than 10 ms, but
increase with larger values.

3. The result of cross validations using the motion data DATAjump, DATAsquat show
that our model can reproduce the muscle activity with 5 % error when δ t is 5 ms,
although these motions are significantly different from stepping and the usage of
agonist and antagonist muscles and the pattern of co-contraction are expected to
be entirely different. The error is significantly larger with the models with larger
time delays.

Considering the fact that the experimentally obtained δ t is 9–14 ms, this result sug-
gests that the human somatosensory reflex system is optimized for the time delay
enforced by the electric and chemical properties of the elements building the mus-
cles, nerves, and sensory organs.

Fig. 6 Errors and their variances between computed and estimated muscle activities. Black
dashed line: DATA120−150, Red solid line: DATA100, green solid line: DATA170, blue solid
line: DATAjump, cyan solid line: DATAsquat.

4 Conclusion

This paper presented our work related to human locomotion based on the hypothesis
that human locomotion is characterized by the inherent mechanical and sensory-
motor network structures.
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The first piece of work was inspired by the body of work in passive walk where
researchers have exploited various foot shapes and leg mechanisms to realize ef-
ficient locomotion with no or little control. We focused on the foot geometry and
considered foot shapes consisting of a curved toe and heel with a flat section in the
middle. We developed an algorithm to optimize the gait for a given foot shape, and
demonstrated that curved toe and heel enable faster and more efficient locomotion.

The second work concerned the time delay in human somatosensory reflex. An
interesting property of human motor control is that it realizes robust and adaptive
motions despite the very large time delay between sensory input and motor output.
Based on our somatosensory reflex model, we investigated how the time delay af-
fects the performance of reflex and demonstrated that models identified with time
delays close to the physiologically valid value exhibit better generalization across
different motions. This result suggests that human somatosensory network is opti-
mized to the latency that inherently exists in our system.

Acknowledgements. This paper was compiled based on the work conducted in collabora-
tion with Laura Trutoiu (Carnegie Mellon University), Akihiko Murai (formerly at Disney
Research; currently at University of Tokyo), and Yoshihiko Nakamura (University of Tokyo).
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