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Preface

PKC 2013 was held at the Nara Prefectual New Public Hall in Nara, Japan,
during February 26–March 1, 2013. The conference was sponsored by the Inter-
national Association for Cryptologic Research (IACR).

The conference received 97 submissions (from which one submission was
withdrawn), and each submission was reviewed by at least three of the 30
Program Committee members. Submissions co-authored by the Program Com-
mittee members were reviewed by at least five committee members. Committee
members were allowed to submit at most one paper, or two if the second one
was co-authored by a student.

Due to the large number of high-quality submissions, the review process was a
challenging and hard task. After 11 weeks of extensive discussions, the Program
Committee selected 28 submissions for presentation. The program also included
two invited talks: “Functional Encryption: Origins and Recent Developments”
given by Brent Waters, and “Techniques for Efficient Secure Computation Based
on Yao’s Protocol” given by Yehuda Lindell. On behalf of the Program Com-
mittee, I would like to thank Brent and Yehuda for accepting our invitation.

There are many people who contributed to the success of PKC 2013. I would
like to thank many authors from all over the world for submitting their papers.
I am deeply grateful to the Program Committee for their hard work to ensure
that each paper received a thorough and fair review. I gratefully acknowledge
the external reviewers listed on the following pages. The committee’s work was
tremendously simplified by Shai Halevi’s submission/review software. Finally
many thanks go to the General Chair, Goichiro Hanaoka, for organizing the
conference.

March 2013 Kaoru Kurosawa
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David Naccache École Normale Supérieure, France
Tatsuaki Okamoto NTT Labs, Japan
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Packed Ciphertexts
in LWE-Based Homomorphic Encryption

Zvika Brakerski1, Craig Gentry2, and Shai Halevi2

1 Stanford University
2 IBM Research

Abstract. In this short note we observe that the Peikert-Vaikuntanathan-Waters
(PVW) method of packing many plaintext elements in a single Regev-type ci-
phertext, can be used for performing SIMD homomorphic operations on packed
ciphertext. This provides an alternative to the Smart-Vercauteren (SV) ciphertext-
packing technique that relies on polynomial-CRT. While the SV technique is only
applicable to schemes that rely on ring-LWE (or other hardness assumptions in
ideal lattices), the PVW method can be used also for cryptosystems whose se-
curity is based on standard LWE (or more broadly on the hardness of “General-
LWE”).

Although using the PVW method with LWE-based schemes leads to worse
asymptotic efficiency than using the SV technique with ring-LWE schemes, the
simplicity of this method may still offer some practical advantages. Also, the two
techniques can be used in tandem with “general-LWE” schemes, suggesting yet
another tradeoff that can be optimized for different settings.

1 Introduction

Homomorphic Encryption (HE) [Gen09] supports arbitrarily computation on encrypted
data, even by parties that do not have the secret decryption key. Despite rapid recent
advances [BV11b, BV11a, BGV12, Bra12], HE is still quite expensive. In a nutshell,
this is because security considerations dictate that the ciphertexts be large, making ho-
momorphic operations slow (as they have to manipulate these large ciphertexts). The
main technique for dealing with this problem is to work with packed ciphertexts, namely
ciphertexts that encrypt a vector of plaintext values, not just a single value. Homomor-
phic operations are applied to these vectors component-wise in a SIMD fashion (Sin-
gle Instruction Multiple Data). Smart and Vercauteren described a ciphertext-packing
technique based on polynomial-CRT [SV11], and Gentry et al. [GHS12a] used that tech-
nique to achieve a nearly optimal homomorphic evaluation (upto polylogarithic factors).
These techniques rely on working over polynomial rings, and their security is based on
the assumed hardness of problems in ideal lattices (such as ring-LWE [LPR10]).

Although Brakerski et al. [BV11a, BGV12, Bra12] describe also how to apply ho-
momorphic operations to the Regev cryptosystem [Reg09] (whose security is based
on standard LWE), and Peikert et al. [PVW08] show how to pack many plaintext ele-
ments in one Regev ciphertext, so far the literature does not contain a description of
how to use PVW packed ciphertexts to perform SIMD-type operations. Applying basic
homomorphic operations to PVW packed ciphertexts is straightforward, but applying

K. Kurosawa and G. Hanaoka (Eds.): PKC 2013, LNCS 7778, pp. 1–13, 2013.
c© International Association for Cryptologic Research 2013



2 Z. Brakerski, C. Gentry, and S. Halevi

the re-linearizion technique from [BV11a] (which is needed to get more than a constant-
degree homomorphism) takes some care. In this short note we describe how this is done,
and discuss some practical considerations regarding using this technique.

1.1 Overview

Recall that in Regev’s cryptosystem [Reg09] there is a system parameter q ∈ Z , plain-
texts are bits, and secret keys and ciphertexts are vectors in Zn. Decryption of ciphertext
c with secret key s is done by taking the inner product, reducing modulo q to the inter-
val [−q/2,+q/2), then outputting 0 if the result is smaller than q/4 in magnitude and
outputting 1 otherwise. In a few more details, the integer z = 〈s, c〉 is of the form
z = k · q + b · q2 + e, where b is the plaintext bit and k, e, are small integers (and where
〈·, ·〉 denotes inner-product).

Homomorphic operations for Regev’s cryptosystem. It is well known that Regev’s
cryptosystem supports additive homomorphism (for “appropriate choice” of parame-
ters), just by adding the ciphertext vectors modulo q. Moreover, Brakerski and Vaikun-
tanathan observed in [BV11a] that it can be made to support also multiplicative
homomorphism, using tensor products.1 For two vectors c1, c2, denote by c1 ⊗ c2 the
tensor product of c1 and c2 (arranged as a vectors). That is, c1 ⊗ c2 has dimension n2,
with each entry obtained as a product of one entry from c1 by one entry from c2. It
is easy to see that for four vectors s1, s2, c1, c2, we always have 〈s1, c1〉 · 〈s2, c2〉 =
〈s1 ⊗ s2, c1 ⊗ c2〉.

Given two ciphertext vectors c1, c2, that encrypt the bits b1, b2 (relative to secret
key s), we construct a product ciphertext by first computing c1 ⊗ c2 (over the integers),
then scaling down by a (2/q)-factor and rounding to the nearest integer vector. Namely,

c∗ ←
⌈
2
q · (c1 ⊗ c2)

⌋
. It can be seen that for “appropriate choice” of parameters, if

zi = 〈s, ci〉 is of the form zi = ki · q + bi · q2 + ei for i = 1, 2 (with s, ki and ei small
enough), then z∗ = 〈s⊗ s, c∗〉 is of the form z∗ = k∗ · q + b1b2 · q2 + e∗ where k∗, e∗

also rather small. Hence the product ciphertext c∗ can be decrypted using the tensor
product s⊗ s to the product of the plaintext bits b1b2.

Of course, using only tensor product would have led to dimension explosion: the
dimension of c∗ is n2, if two such ciphertexts are multiplied then the dimension be-
comes n4, etc. To overcome this problem, Brakerski and Vaikuntanathan introduced in
[BV11a] a re-linearization technique that shrinks the dimension from n2 back to n. In
fact that technique is more general: given any two keys s and s′, one can generate a key-
switching gadget that can be added to the public key, allowing conversion of ciphertexts
relative to s′ to ciphertexts relative to s. (Roughly speaking, the key-switching gadget
consists of an encryption of s under s′, which is a matrix because encrypting each en-
try in s takes a vector). Re-linearization is then obtained by putting in the public key a
switching gadget from (s ⊗ s) to s.

1 The observation in [BV11a] was initially made about a slightly different scheme that encodes
the plaintext in the least significant bit, but here we use the variant of Brakerski [Bra12] that
recovers the original form of Regev’s cryptosystem.
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Packing Regev ciphertexts. In [PVW08], Peikert et al. observed (roughly) that the same
Regev ciphertext vector c can be used to encrypt many bits, by having many secret-key
vectors. Decrypting the i’th bit is done by applying the same decryption procedure as
above, using the i’th secret-key. Putting all these secret keys si as the rows of a matrix S,
we have a ciphertext c encrypting a plaintext bit vector b if the integer vector z = S · c
is of the form z = k · q + b · q2 + e for some small integer vector k and e.

Computing on packed ciphertexts. Since a packed Regev ciphertext as above is essen-
tially the same as a standard ciphertext (except viewed relative to several different keys),
then the basic homomorphic operation still work as before, i.e., homomorphic addition
by adding ciphertexts (mod q) and homomorphic multiplication via tensor products.

Applying re-linearization to packed ciphertexts takes a little care, however. Although
for each i we can put in the public key a switching gadget from (si⊗ si) to si , this will
still not give us what we need: If c∗ is a packed high-dimension ciphertext that for each
i encrypts the product bib′i relative to the high-dimension key si ⊗ si, then using all the
(si⊗ si)-to-si gadgets will only yield a collection of non-packed ciphertexts, the i’th of
which encrypts bib′i relative to si. Instead, we need a single key-switching gadget, that
simultaneously does all the translations (si ⊗ si)-to-si.

To this end, we recall that a (si ⊗ si)-to-si key-switching gadget is roughly an en-
cryption of (si ⊗ si) under si. We thus will use packed ciphertexts also for this gadget,
obtaining a single matrix that encrypts (si ⊗ si) under si, simultaneously for all the i’s.
This gives us exactly what we need, letting us translate a packed ciphertext relative to
the keys (si ⊗ si) to another packed ciphertext relative to the si’s.

Other homomorphic operations. The above techniques are sufficient to implement
SIMD-type homomorphic computation, where we compute the same function over
many different inputs at once. However, we would like to use the techniques of Gentry
et al. from [GHS12a] to also get efficient evaluation of a single copy. For that purpose,
we need to be able to move plaintext elements between slots. For example, we need
a way to transform a ciphertext that encrypts a vector b into another ciphertext that
encrypts a cyclic shift of b (or any other known permutation of the entries of b).

Moving elements between slots turns out to be very easy for this ciphertext packing
method: To implement a permutation π over the slots of the plaintext vector, all we
need is a packed ciphertext matrix, encrypting the sπ(i) under si simultaneously for
all i. This is an advantage of the PVW packing method over the SV packing method
using polynomial-CRT: In the SV method, plaintext slots movements are implemented
using automorphisms, but only a small set of permutations can be implemented this way,
hence additional work is needed to implement general permutations from this limited
set (see details in [GHS12a]). In the PVW method, any permutation can be implemented
directly by adding to the public key a corresponding key-switching gadget.

2 Background

Notations. We denote scalars by lower-case letters (a, b, . . .), vectors by lower-case
bold letters (a,b, . . .), and matrices by upper-case bold letters (A,B, . . .). We denote
the Euclidean, l1, and l∞ norms of a vector by ‖v‖, ‖v‖1, ‖v‖∞, respectively.
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For an integer q we identify Zq with the set of representatives from the interval
[− q

2 ,+
q
2 ), and denote by [a]q the reduction of a modulo q into this interval.2 By �a	

we denote the rounding of the rational a to the nearest integer, and �a	q is a shorthand
for [�a	]q . These notations are extended to vectors and matrices in the natural way.

2.1 Learning with Errors (LWE)

The LWE problem was introduced by Regev [Reg09] as a generalization of “learning
parity with noise”. This problem has parameters the security parameter n, another inte-
ger q ≥ poly(n), and a probability distribution χ on Zq , that outputs integers of mag-
nitude much smaller than q with overwhelming probability. (Typically, χ is a discrete
Gaussian distribution with zero mean and standard deviation q/β for some parameter
β = poly(n).)

The search version of this problem is to discover a “hidden” vector s given polyno-
mially many samples of the form (ai, bi), where the ai’s are chosen at random in Znq ,
some “error terms” ei ← χ are drawn from χ, and the bi’s are set as bi = [〈s, ai〉+ ei]q .

The decision variant of the LWE problem is to distinguish a sequence of such pairs
{(ai, [〈s, ai〉+ei]q)}i from a sequence of uniform random pairs in Znq ×Zq. As defined
by Regev, the hidden vector s is chosen uniformly at random in Znq , but Applebaum et
al. proved in [ACPS09] that this is equivalent (in terms of hardness) to the variant where
s is chosen from the error distribution, s ← χn. It is this latter variant that we use for
homomorphic encryption.

Evidence for the hardness of the LWE problem follows from results of Regev [Reg09]
who gave quantum reductions from approximation of certain problems onn-dimensional
lattices in the worst case to solving LWE with some Gaussian error distributions, and
Peikert [Pei09] who gave classical reductions for some other problems with similar pa-
rameters.

2.2 Regev’s Cryptosystem

Regev described in [Reg09] a public-key encryption scheme whose security relies on
the hardness of decision-LWE. To simplify the presentation, here we describe this cryp-
tosystem as a symmetric (shared-key) encryption scheme. (Since this scheme supports
homomorphic computation, one can use generic transformations to obtain a public-key
scheme, see, e.g., [Rot11].) Below we also assume for simplicity that q is even, and con-
centrate on the case where the plaintext space is Z2 = {0, 1}. The extensions to larger
plaintext spaces and arbitrary moduli q are straightforward. Also, below we denote the
security parameter by n′ and let n = n′ + 1.

In this symmetric-key variant, the secret key is the LWE hidden vector, chosen (say)
as s′ ← χn

′
. Encrypting a bit σ is done by choosing a vector a ∈ Zn

′
q uniformly at

random and a small error term e ← χ, setting b = [σ q2 − 〈s′, a〉 + e]q, and outputting
(b, a). To decrypt, compute d = [b + 〈s′, a〉]q and output 1 if d has magnitude more
than q/4 and 0 otherwise. Decryption succeeds because the error term e had magnitude
smaller than q/4 (as it is chosen from the error distribution) and we have d = [σ q2 + e]q.

2 The only exception is Z2, which we identify with {0, 1} rather than {−1, 0}.
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Considering the n-vectors s = (1|s′) and c = (b|a), the integer d is just the
inner product 〈s, c〉 modulo q, and decryption can be expressed using the formula
σ = � [〈s, c〉]q / (q/2) 	2. Also, since s′ was chosen from the error distribution χ and
therefore has entries much smaller than q, then the integer 〈s, c〉 (without reduction
modulo q) has magnitude at most q/2 · ‖s′‖ � q2. It follows that a valid encryption of
the bit σ relative to s is a vector c such that the inner product of s and c is of the form

〈s, c〉 = kq + σ
q

2
+ e,

where k, e are of magnitude much smaller than q.
For the basic Regev cryptosystem we only need |e| < q/4 and the size of k does

not matter. However for the homomorphic operations that are described below we need
k, e� q. Typically q is set to be super-polynomial (or even sub-exponential) in n, and
e, k are bounded by some polynomial in n.

2.3 Homomorphic Computation

Let c1, c2 be two valid encryptions of the bits b1, b2, respectively, relative to the same
key s. By the above, this means that we have 〈s, ci〉 = kiq+bi

q
2+ei for small ki, ei. It

therefore follows that their sum, c′ = [c1+c2]q, satisfies 〈s, c′〉 = k′q+(σ1⊕σ2) q2+e′,
where e′ = e1+e2 and k′ is either k1+k2 or k1+k2±1. Hence c′ is a valid encryption
of the bit σ1⊕σ2. More interesting is the observation from [BV11a, Bra12] that Regev’s
scheme also supports multiplication via tensor products. Let c∗ = c1 ⊗ c2 denote the
dimension-n2 vector whose entries are all the products of one entry from c1 and one
from c2 (without any modular reduction), and similarly denotes s∗ = s⊗ s. Then over
the rationals we have:〈
s∗, 2

q · c
∗
〉
= 2

q · 〈s, c1〉 · 〈s, c2〉 =
2
q ·
(
k1q + b1(q/2) + e1

)
·
(
k2q + b2(q/2) + e2

)
= (2k1k2 + k1b2 + k2b1) · q + b1b2 · (q/2)

+ (2k1 + b1)e2 + (2k2 + b2)e1 +
2e1e2
q︸ ︷︷ ︸

e′′

Note that the error term e′′ above is only polynomially (in n) larger than e1, e2 them-
selves, because k1, k2 are bounded by poly(n).

Rounding 2
qc

∗ to an integer vector we have
⌈
2
qc

∗
⌋
= 2

qc
∗ + e for some rounding-

error vector e with ‖e‖∞ ≤ 1
2 . Hence we get〈

s∗,
⌈
2
qc

∗
⌋〉

=
〈
s∗, 2

qc
∗
〉
+ 〈s∗, e〉 = k′′q + b1b2(q/2) + e∗,

where e∗ = (2k1+b1)e2+(2k2+b2)e1+
2e1e2
q + 〈s∗, e〉 and k′′ is some integer. Since

both s∗ = s ⊗ s and e have small entries than the added term 〈s∗, e〉 is insignificant,
and we have |e∗| ≤ poly(n) · (|e1| + |e2|) � q. Finally, reducing the rounded vector

modulo q we get a vector c′′ =
⌈
2
qc

∗
⌋
q

satisfying

〈s∗, c′′〉 = k∗q + b1b2(q/2) + e∗,
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for the same small error term e∗ are above. The factor k∗ can be bounded by

k∗ ≤ 1+
| 〈s∗, c′′〉 |

q
≤ 1+

‖s∗‖ · ‖c′′‖
q

(�)

≤ 1+
‖s‖2 · nq/2

q
= 1+

‖s‖2 · n
2

� q.

(1)
The Inequality (�) follow since ‖s∗‖ = ‖s ⊗ s‖ = ‖s‖2, and c′′ is an n2-vector with
entries of magnitude no larger than q/2. We conclude that c′′ is a valid encryption of
the bit b1b2 relative to key s∗ = s⊗ s.

Key-switching. The multiplication-via-tensoring technique from above comes with the
unpleasant side-effect that the dimension of product ciphertext is squared. To overcome
this problem, Brakerski and Vaikuntanathan introduced in [BV11a] a key-switching
technique. They added to the public key a gadget to enable mapping ciphertexts relative
to the high-dimension s∗ into ciphertexts that encrypt the same thing relative to the
lower-dimension s. Below we describe a variant similar to the key-switching technique
of Gentry et al. [GHS12b], which is a little easier to explain (and more efficient to
implement) than the variants from [BV11a, Bra12].

On a high level, the s∗-to-s key-switching gadget is a (slightly twisted) encryption
of s∗ under s. In more detail, for each entry s∗[i] we put in the public key a rational
“ciphertext” vector wi (say, with � = Θ(log q) bits of precision to the right of the binary
point). This vector satisfies the equality 〈s,wi〉 = kiq + s∗[i] + ei over the rationals,
where the factor ki is an integer and the magnitude of the error term is bounded by |ei| ≤
poly(n)/q. It can be shown that assuming hardness of decision-LWE with modulus 2�q
(and a circular-security assumption), these vectors wi are pseudo-random. Putting all
these vectors as the columns of a matrix, we get an n-by-n2 rational matrix W such
that over the rationals

s×W = kq + s∗ + e,

with k an integer vector and ‖e‖∞ ≤ poly(n)/q.
Given the n2-dimension vector c∗ satisfying 〈s∗, c∗〉 = k′q+ b(q/2)+ e′ (for small

integers k′, e′ � q and a bit b), we multiply c∗ by W, then round and reduce mod q,
getting c = �Wc∗	q. We can express c as c = Wc∗ + e∗ + k∗q, with e∗ the rounding
error and k∗ the integer factor from reduction modulo q. Then we have

〈s, c〉 = 〈s, Wc∗ + e∗ + k∗q〉 = sWc∗ + 〈s, e∗〉+ 〈s,k∗〉 q
= (〈k, c∗〉 q + 〈s∗, c∗〉+ 〈e, c∗〉) + 〈s, e∗〉+ 〈s,k∗〉 q
= (〈s,k∗〉+ 〈s∗,k〉+ k′︸ ︷︷ ︸

k̃

)q + b(q/2) + 〈e, c∗〉+ 〈s, e∗〉+ e′︸ ︷︷ ︸
ẽ

The magnitude of the error term ẽ can be bounded by noticing the following:

– e∗ is the rounding error, so ‖e∗‖∞ ≤ 1
2 , and therefore | 〈s, e∗〉 | < ‖s‖1 � q;

– We have ‖e‖∞ ≤ poly(n)/q and ‖c∗‖∞ ≤ q/2, hence | 〈e, c∗〉 | ≤ n2 · ‖e‖∞ ·
‖c∗‖∞ = poly(n)� q.

It thus follows that |ẽ| ≤ | 〈s, e∗〉 |+ | 〈e, c∗〉 |+ e′ � q. As for the size of the factor k̃,
here we have similarly to Equation (1):

k̃ ≤ 1 +
| 〈s, c〉 |
q

≤ 1 +
‖s‖ · ‖c‖

q
≤ 1 +

‖s‖ · q
√
n/2

q
= 1 +

‖s‖ ·
√
n

2
� q.



Packed Ciphertexts in LWE-Based Homomorphic Encryption 7

Summing up, we obtained a dimension-n ciphertext vector c satisfying 〈s, c〉 = k̃q +
b(q/2) + ẽ with k̃, ẽ� q, so this is a valid encryption of b relative to s.

2.4 Packed Ciphertexts in Regev’s Cryptosystem

As described above, we need a dimension-(n′ + 1) ciphertext to encrypt a single plain-
text bit. Peikert et al. observed in [PVW08] that this ciphertext-expansion ratio can be re-
duced by packing many plaintext bits in a single ciphertext. Specifically, we can encrypt
m′ plaintext bits in a ciphertext of dimension n′ +m′. Below we denote m = n′ +m′.

To this end, we choose m′ (rather than one) secret vectors of dimension n′, s′i ←
χn

′
, and store them as the rows of an m′-by-n′ secret matrix S′. Rather than using a

dimension-(n′ + 1) secret-key vector s = (1|s′) as before, we now use an m′-by-m
secret-key matrix S = (I|S′), where I is the m′-by-m′ identity matrix.

Recall that for simplicity we describe this cryptosystem as a symmetric encryption
scheme. To encrypt a vector of bits b ∈ {0, 1}m′

, we choose a random vector a ∈ Zn
′
q

and a random error vector x← χm, set d = [b · q2−S′a+x]q and output the ciphertext
vector c = (d|a) ∈ Zmq . To decrypt the m-ciphertext c, we multiply it by S modulo q,
then for each entry of the result output 1 if that entry has magnitude larger than q/4
and 0 otherwise. This works because Sc = d + S′a = b · q2 + x (mod q), and the
entries of x are all much smaller than q. Decryption can be expressed using the formula
b = � [Sc]q / (q/2) 	2. Also, a valid ciphertext relative to S is a vector c such that Sc
is of the form

Sc = k · q + b · q
2
+ e,

where ‖k‖∞ and ‖e‖∞ are of much smaller than q. In other words, the same vector c
is a valid ciphertext relative to all the rows of S, encrypting the i’th bit of b relative to
the i’th row of S.

3 Computing on Packed Ciphertexts

The techniques from Section 2 can be combined “right out of the box” to provide ho-
momorphic evaluation of polynomial of constant degree on packed ciphertexts: Let
c1, c2 ∈ Zmq be two packed ciphertexts, encrypting the bit vectors b1,b2 ∈ {0, 1}m

′
,

respectively, relative to the secret key S ∈ Zm
′×m

q . Denote the i’th row of S by si, then
for all i we have that c1, c2 encrypt the i’th bits of b1,b2, respectively, relative to si.

Just like in Section 2.3, this means that for all i, the vector c′ = [c1 + c2]q is a
valid ciphertext relative to si, encrypting the XOR of the i’th bits of b1 and b2. In other
words, c′ is a valid encryption of the vector [b1 + vb2]2, relative to the secret key S.

Similarly, setting c′′ =
⌈
2
qc1 ⊗ c2

⌋
q
, we get that for all i, the vector c′′ is a valid

ciphertext relative to s∗i = si ⊗ si, encrypting the product of the i’th bits of b1 and b2.
In other words, denoting by S∗ the m′×m2 matrix with the s∗i ’s as rows, the vector c′′

is a valid ciphertext relative to S∗, encrypting the bitwise product b1 � b2 ∈ {0, 1}m
′
.
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3.1 Key-Switching with Packed Ciphertexts

Performing key-switching/relinearization on packed ciphertext takes some care. Clearly,
one can put in the public key key-switching gadgets Wi that for each i enable switching
from s∗i back to si. However, this will only let us convert the single high-dimension
ciphertext c′′ (which is a valid ciphertext relative to all the s∗i ’s) into a collection of
m′ low-dimension ciphertexts, the i’th of which is valid with respect to si. Instead, we
would like to have a single gadget that lets us convert the single ciphertext c′′ into a
single low-dimension ciphertext which is valid relative to all the si’s.

Recalling that a key-switching gadget from one key to another is roughly an encryp-
tion of the first key under the second, we use our ability to pack many plaintext into one
ciphertext to “encrypt all the keys s∗i in a single ciphertext” relative to the si’s: Our key-
switching gadget from S∗ to S will be a rational matrix W such that SW ≡ S∗ + E
(mod q) for a sufficiently small error matrix E. In more detail, denoting m = n′ +m′,
then for a secret key S = (I|S′) ∈ Zm

′×m and an “extended secret key” S∗ ∈ Zm
′×m2

,
we choose the key-switching matrix W ∈ Qm×m2

as follows:
Let � = �log q�, and let χ be an error distribution (over Z) for which the decision-

LWE problem with modulus Q = 2�q is hard, and such that with overwhelming prob-
ability, elements drawn from χ are much smaller in magnitude than q. Say |e| ≤
poly(n) � q whp for e ← χ. Note that we require hardness relative to the larger
modulus Q, even though the error is much smaller than the small modulus q. Since
Q ≈ q2 then all the known hardness results for LWE carry also to this case. (However,
since we have larger modulus-to-noise ratio than we would need a larger dimension n′

to get the same level of concrete security.)
For each j ∈ {1, 2, . . . ,m2}, we denote the j’th column of the matrix S∗ by s̃j ∈

Zm
′
. The j’th column of W is set by drawing a random vector aj ∈ Zn

′
Q uniformly

at random, drawing an error vector ej ← χm
′
, computing dj = [2�s̃j − S′aj + ej ]Q,

then dividing by 2� and outputting the rational column vector (with � bits of precision),
wj = (dj |aj)T /2� ∈ Qm.

Let us denote by kj ∈ Zm the integer vector containing the factors of the reduction
modulo Q from above, so dj = [2�s̃j − S′aj + ej]Q = 2�s̃j − S′aj + ej + kQ. We
thus have for every column wj :

Swj =
(I|S′) · (dj |aj)T

2�
=

dj + S′aj
2�

=
(2�s̃j − S′aj + ej + kQ) + S′aj

2�

= kjq + s̃j +
ej

2�
≡ s̃j ± poly(n)/q (mod q)

In other words, multiplying S by the rational matrix W (without any modular reduc-
tion), we have

SW = Kq + S∗ +E, (2)

for some integer matrix K and an error matrix E satisfying ‖E‖∞ ≤ poly(n)/q � 1
(whp).

Functionality of W. Given a valid high-dimension ciphertext c∗ relative to the secret
key S∗, we key-switch it to S by multiplying by W, then rounding and reducing mod q.
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Namely, we set c = �Wc∗	q . This yields a valid low-dimension ciphertext that encrypt
the same thing, but relative to S. Namely, if S∗c∗ = k∗q + b(q/2) + e∗ for a bit
vector b and integer vectors k∗, e∗ of magnitude much smaller than q, then also Sc =
kq + b(q/2) + e for the same b and where also the magnitude of k, e is much smaller
than q. The analysis is identical to that in Section 2.3.

Of course, there is nothing special about S∗ and S above. For every two secret-key
matrices S1,S2 we can similarly generate a key-switching gadget W [S1 → S2] to
enable switching ciphertext relative to S1 into ciphertexts relative to S2.

Security of W. It is immediate to show that when S2 is drawn according to the error
distribution χ and independently from S1, then the key-switching matrix W [S1 → S2]
is pseudo-random, assuming the hardness of decision-LWE relative to error distribution
χ and modulus Q = 2�q. To see this, it is enough to observe that each vector (dj |aj)
(before the division by 2�) is pseudorandom in ZQ.

Lemma 1. If the decision LWE problem with error distributionχ and modulusQ = 2�q
is hard, then for a random secret key S2 ← χm

′×m, the key-switching matrix W [S1 →
S2] as above is indistinguishable from a uniformly random matrix with all the entries
drawn independently at random from [−q/2, q/2) with � bits of precision to the right
of the binary point. The indistinguishability holds even if the distinguisher gets as input
the old secret key S1.

Of course, the above lemma does not hold when S1,S2 are related, as in our case where
each row of S∗ is the tensor product of the corresponding row of S with itself. This
issue is routinely addresses in one of two ways: One option is to construct a leveled HE
scheme, where we choose many independent secret key matrices Sk, k = 1, 2, . . ., then
put in the public key only the key-switching gadgets W [S∗

k → Sk+1]. This requires
that we switch to a new key after every multiplication, hence the multiplication depth
of the circuits that we can handle is bounded by the number of key-switching gadgets
in the public key. The other common option of dealing with this issue is to use related
S1,S2 anyway, call it circular security, then wave our hands emphatically, saying that
we think that the scheme remains secure nonetheless. (Indeed, there are no attacks in
the literature that use this relation between S1,S2 to break the scheme.)

3.2 Moving Values between Plaintext Slot

Using the techniques thus far we can implement SIMD-type homomorphic operations
on packed ciphertexts, where the same function is applied to m′ different inputs at once.
However, Gentry et al. pointed out in [GHS12a] that more is needed if we are to apply
these techniques for efficient evaluation of (wide enough) circuits on just one input. To
take advantage of internal parallelism opportunities within a circuit, we must also be
able to move values between different plaintext slots, so as to move a value from the
output of one gate in level i of the circuit to the input of another gate in level i+ 1.

Specifically, following [GHS12a] we seek an efficient procedure for permuting the
plaintext slots according to any given permutation. Below we denote by π(b) the per-
mutation according to π of the entries of the vector b (i.e., the vector whose π(i)’th
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entry equals the i’th entry of b). Similarly, for a matrix S we denote by π(S) the per-
mutation of the rows of S according to π. What we seek, therefore, is a transformation
that given a ciphertext c encrypting a binary vector b ∈ {0, 1}m′

relative to S, outputs
another ciphertext c′ encrypting the permuted vector π(b) relative to the same S.

The technique from above for key-switching can be easily adopted to this purpose.
Indeed, it follows from the decryption formula that if c is a valid encryption of b relative
to S, then the same c is also a valid encryption of π(b) relative to π(S). All we need,
therefore, is to switch c from the key π(S) back to the key S, which we can do if we
have in the public key a key-switching gadgetW =W [π(S)→ S]. Namely, permuting
the plaintext slots according to π is done by setting c′ = �Ws	q .

3.3 Discussion

In this note we described a very simple method of computing on packed ciphertext
in the PVW variant of Regev’s cryptosystem. This provides an efficiency boost for
LWE-based HE schemes, similar to the boost that we get by using the techniques of
[SV11, GHS12a] in RLWE-based schemes.

We stress, however, that schemes over polynomial rings still offer much better asymp-
totic efficiency than schemes over the ring of integers. The size of ciphertexts in both
cases is roughly the same (upto a constant factor), since ciphertexts in polynomial-ring
schemes consist of a constant number of ring elements, each element represented by
O(n) integers. However, the tensor product multiplication increases the ciphertext size
over the integers to O(n2) integers, whereas over polynomial rings we still only need
O(n) integers to describe even the product ciphertext. Even more, the re-linearizion
gadget over the integers is a O(n)-by-O(n2) matrix, which takes O(n3) integers to
represent. In the polynomial-ring setting, this matrix is still only an O(1)-by-O(1) ma-
trix over the ring, so it still only takes O(n) integers to represent. As a consequence,
whereas in the polynomial-ring setting [GHS12a] were able to reduce the overhead of
homomorphic evaluation to only polylogarithmic factor (for wide enough circuits), us-
ing the same techniques over the integers (with the ciphertext-packing tools from the
current paper) would yield a quasi-quadratic overhead.

On the other hand, the security of the integer schemes is based on the hardness of
standard LWE, which is arguably better understood than the hardness of ring-LWE (or
the NTRU problem) which underly the security of schemes over polynomial rings. In
addition, the techniques that we described in this note are perhaps more flexible and
less “algebraically heavy” than their polynomial-ring counterparts.

For example, for polynomial-ring schemes, the number of plaintext slots in each ci-
phertext is determined by the algebra of the underlying ring, and thus not every number
of slots is achievable. For example, Gentry et al reported in [GHS12b] on homomorphic
evaluation of the AES circuit, that used only 16 plaintext slots (for the 16 bytes in the
AES state). However, security considerations dictated that the ring be very large, which
resulted in several hundred unused plaintext slots. In contrast, the number of plaintext
slots in PVW ciphertext packing is a free parameter that can be set to any desired value.

Perhaps the main advantage of the packed-ciphertext computation techniques for
integer-based schemes over their counterparts for polynomial-ring schemes is the sim-
plicity of implementing data movement over plaintext slots. In polynomial rings, these
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operations are implemented using automorphism, but only a small set of permutations
(determined by the ring algebra) can be implemented this way. In [GHS12a] it was
shown how to implement any data movement pattern using the small set that we get
from the ring algebra, but that procedure requires a logarithmic number of basic au-
tomorphisms to implement a given data-movement pattern. In contrast, the technique
from Section 3.2 lets us directly implement any data-movement pattern, just by putting
in the public key the corresponding key-switching gadget. Hence if we know ahead of
time the circuit that we want to evaluate homomorphically (e.g., the AES circuit), we
can prepare the corresponding gadgets to enable computing the data-movement patterns
of that circuit directly. Of course, if we do not know the circuit ahead of time, we can
put in the public key the gadgets for just a few permutations, and then use the tech-
niques from [GHS12a] to implement arbitrary patterns, incurring the same logarithmic
slowdown.

Another thing which is easier to do in integer-based schemes than in polynomial-
based scheme is to gradually reduce the dimension as the computation progresses: Fresh
ciphertexts in all these schemes must have a very large modulus/noise ratio to enable
computation, which implies that we need fairly high dimension (or fairly high ring-size)
to get security. However, larger noise (and hence smaller modulus/noise ratio) is used
as the computation progresses, so from a security standpoint it is permissible to switch
to lower dimension (or smaller ring), thus speeding up further homomorphic operations.
Recently, it was shown in [GHPS12] how to do this for schemes in polynomial rings,
but this operation is highly constrained by the relevant algebra. Specifically, if the di-
mension of the initial ring is some m, then it is only possible to switch to other rings of
dimension that divides m. In particular it means that the first time we can perform this
transformation is when it is safe to switch to a ring of size m/2 (or less), which means
that at least half the computation has to be done relative to the original large ring. In
contrast, switching to a lower dimension is nearly trivial in LWE-based schemes: All
we need is key-switching from the initial dimension-n key to a lower-dimension key,
exactly as is done for re-linearization (with the noise magnitude in the key-switching
gadget increased to provide adequate security relative to the lower dimension).

Finally, we mention that the techniques described in this note can also be used in
conjunction with HE schemes over polynomial rings (with security based on the “gen-
eral LWE” problem), as suggested, e.g., in [BGV12]. This setting offers a tradeoff,
with schemes over the integers on one end and schemes over large polynomial rings on
the other. In the middle we have schemes over smaller polynomial rings, in which ci-
phertexts are low-dimension vectors over these rings. (For example, the ring may have
dimension n/ logn, and then ciphertexts and secret key can have dimension O(log n)
over that ring.) This opens yet another avenue for tradeoffs and optimizations, for ex-
ample we can choose the ring with best algebraic properties, even if it is too small to
provide the security level that we seek, then use slightly longer vectors over that ring to
recover security. In this context, it is possible to use both ciphertext packing techniques:
pack many plaintext values relative to each secret-key vector using the polynomial-CRT
techniques, and use many secret key vectors to reduce the ciphertext expansion ratio as
described in this work.
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Abstract. Fully homomorphic encryption (FHE) is a form of public-
key encryption that enables arbitrary computation over encrypted data.
The past few years have seen several realizations of FHE under differ-
ent assumptions, and FHE has been used as a building block in many
cryptographic applications.

Adaptive security for public-key encryption schemes is an important
security notion proposed by Canetti et al. It is intended to ensure secu-
rity when encryption is used within an interactive protocol and parties
may be adaptively corrupted by an adversary during the course of the
protocol execution. Due to the extensive applications of FHE to proto-
col design, it is natural to understand whether adaptively secure FHE is
achievable.

In this paper we show two contrasting results in this direction. First,
we show that adaptive security is impossible for FHE satisfying the (stan-
dard) compactness requirement. On the other hand, we show a construc-
tion of adaptively secure FHE that is not compact, but that does achieve
circuit privacy.

1 Introduction

1.1 Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) [18,11] is a form of public-key encryption
that enables a third party (who does not know the associated secret key) to
perform computations over encrypted data. That is, given a public key pk and
a ciphertext c = Encpk(m) that is the encryption of some (unknown) plaintext
messagem, anyone can compute a ciphertext c′ whose decryption is f(m) for any
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desired function f . The actual definition is even more general (see Section 2.1):
given pk and ciphertexts

c1 = Encpk(m1), . . . , c� = Encpk(m�),

it is possible to compute an encryption of f(m1, . . . ,m�).
FHE has several applications. As one example, FHE can be used to construct

simple protocols for secure computation. We restrict ourselves to the two-party
setting with honest-but-curious parties. (In this setting two parties with inputs x
and y, respectively, wish to compute a function f(x, y) over their inputs without
revealing to each other anything more than the result; in the honest-but-curious
setting, the parties are again assumed to follow the protocol though privacy of
their inputs must still be maintained.) Here, a party with input x can generate a
public/private key pair (pk, sk) for an FHE scheme and send pk,Encpk(x) to the
other party. This second party can then compute an encryption of the desired
result f(x, y) and send the resulting ciphertext back to the first party. The first
party can then decrypt this ciphertext to recover f(x, y).

FHE with the functionality described above can be realized trivially by the
construction in which we define f,Encpk(m1), . . . ,Encpk(m�) to be a valid en-
cryption of f(m1, . . . ,m�). This notion, however, does not suffice for most ap-
plications of FHE; in particular, it does not suffice for the application described
above. Thus, some “non-triviality” requirement must be added to the defini-
tion of FHE in order to make the notion meaningful. Various requirements can
be considered, and we consider two here: (1) compactness, which requires that
ciphertexts have bounded length, and (2) circuit privacy, which informally re-
quires that the encryption of f(m1, . . . ,m�) should not reveal f . Note that the
trivial scheme described earlier does not satisfy either of these conditions.

1.2 Adaptive Security

In a separate line of work, Canetti et al. [6] proposed the notion of adaptive
security for (standard) public-key encryption schemes. Their motivation was to
guarantee security when encryption schemes are used to encrypt messages sent
during an interactive protocol, and parties running the protocol can be adap-
tively corrupted during the course of the protocol execution [4]. (The adaptive-
corruption model stands in contrast to the static-corruption model where the
attacker is assumed to corrupt parties only before the protocol begins.)

The primary challenge with regard to adaptively secure encryption is that the
protocol simulator (used to prove security of the protocol) must simulate the
ciphertexts being sent by the various parties without knowing the underlying
plaintext. At some later point in time, the adversary may request to corrupt a
party and the simulator must then simulate for the adversary any secret keys
held by that party. (If secure erasure is not assumed, the simulator will also have
to simulate for the adversary any random coins used by the sender. This only
makes the problem harder.) These secret keys must be such that they correctly
decrypt any ciphertexts previously sent to that party. Most natural public-key
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encryption schemes will not be suitable here, in particular because a given public
key typically has a unique secret key associated with it, which implies that any
(correctly generated) ciphertext can be “opened” later to at most one plaintext.

Canetti et al. [6] show how to construct adaptively secure encryption schemes
from general assumptions. Subsequent research [3,10,14,15,7,9] has shown more
efficient constructions based on specific number-theoretic assumptions, or satis-
fying weaker (but still meaningful) notions of adaptive security.

1.3 Adaptively Secure FHE?

Because of the applications of FHE to protocol design, it is natural to ask
whether adaptive security can be realized for FHE. We focus on receiver corrup-
tion; equivalently, we assume secure erasure and so senders can erase the random
coins they use immediately before sending a ciphertext. (But the receiver cannot
erase its secret key until it receives and decrypts the ciphertext.)

We show two results in this regard. First, we show unconditionally that adap-
tive security is impossible for FHE schemes satisfying compactness.1 On the
other hand, we show that adaptive security is possible for FHE schemes sat-
isfying circuit privacy. Our results are interesting in their own right, but also
show a separation between two notions of non-triviality (namely, compactness
and circuit privacy) that have been considered in the literature.

2 Definitions

Throughout, we let k denote the security parameter.

2.1 Fully Homomorphic Encryption

We begin by formally defining the notion of fully homomorphic encryption.

Definition 1 (Fully homomorphic encryption). Fix a function � = �(k).
An �-homomorphic encryption scheme HE for a class of circuits {Ck}k∈N consists
of four polynomial-time algorithms Gen, Enc, Dec, and Eval such that

– Gen, the key-generation algorithm, is a randomized algorithm that takes the
security parameter 1k as input and outputs a public key pk and secret key sk.

– Enc, the encryption algorithm, is a randomized algorithm that takes a public
key pk and a message m ∈ {0, 1} as input, and outputs a ciphertext c.

– Dec, the decryption algorithm, is a deterministic algorithm that takes the
secret key sk and a ciphertext c as input, and outputs a message m ∈ {0, 1}.

1 The impossibility result of Nielsen [17] does not apply to our setting, since we are
willing to place an a priori upper bound on the length of plaintext(s) that are
encrypted under a single public key. This makes sense when encryption is used
to encrypt messages sent within an interactive protocol, where the length of the
messages to be encrypted is bounded in advance (and a fresh public key can be
generated for each independent protocol execution).
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– Eval, the homomorphic evaluation algorithm, takes as input a public key pk,
a circuit C ∈ Ck, and ciphertexts2 c1, · · · , c�(k); it outputs a ciphertext c∗.

The following properties are required to hold:

1. For any k, any (pk, sk) output by Gen(1k), and any m ∈ {0, 1} we have
m = Decsk(Encpk(m)).

2. For any k, any (pk, sk) output by Gen(1k), any m1, . . . ,m�(k) ∈ {0, 1}, and
any C ∈ Ck, we have

C(m1, . . . ,m�) = Decsk(Evalpk(C,Encpk(m1), . . . ,Encpk(m�)))

We use the standard notion of security against chosen-plaintext attacks. (Al-
though stronger notions of security could be considered, the question of adaptive
security is tangential to these considerations.)

Definition 2. A homomorphic encryption scheme HE is CPA-secure if for any
polynomial-time adversary A the following is negligible in k:

|Pr[A(pk ,Encpk(0)) = 1]− Pr[A(pk ,Encpk(1)) = 1]|,

where (pk , sk)← Gen(1k).

As noted earlier, Definitions 1 and 2 are not enough to capture a meaning-
ful notion of fully homomorphic encryption because they can be satisfied by a
“trivial” construction starting from any CPA-secure (standard) public-key en-
cryption scheme Π = (Gen,Enc′,Dec′) by defining Enc, Eval, and Dec as follows:

– Encpk(m) = (0,Enc′pk(m)).

– Evalpk(C, c1, . . . , c�) outputs (1, C, c1, . . . , c�).

– Decsk(c) does as follows: if c = (0, c′), then output Dec′sk(c
′) (i.e., decrypt

as in Π). If c = (1, C, c1, . . . , c�), then output

C(Dec′sk(c1), . . . ,Dec
′
sk(c�))

(i.e., decrypt and then apply C to the results).

There are various ways one could imagine ruling out trivial schemes like the
above. The first approach (following previous work in the literature) is to require
that ciphertexts cannot grow arbitrarily large; this is known as compactness.

Definition 3 (Compactness). An �-homomorphic encryption scheme HE for
a class of circuits {Ck}k∈N is compact if there exists a polynomial α = α(k) such
that ciphertexts output by Eval have length at most α. (For this to be non-trivial
it should be the case that, for all k, we have α(k) ≤ |C| for some C ∈ Ck.)

2 We assume for simplicity that all circuits in Ck take exactly � = �(k) input bits.
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We say an �-homomorphic encryption scheme is �-fully homomorphic if it is
homomorphic for all boolean circuits, CPA-secure, and compact.

An alternate non-triviality condition that has been considered is to require
that the output of Evalpk(C, c1, . . . , c�) reveal nothing aboutC, even to the holder
of the secret key sk. This notion is called circuit privacy. There are different
ways of formalizing such a notion. The definition we use is weaker than the one
introduced by Gentry [12], but similar to the notion considered in [13]. We also
note that we allow (an upper bound on) the size of C to be revealed.

Definition 4 (Circuit privacy). An �-homomorphic encryption scheme HE
for a class of circuits {Ck}k∈N is circuit private if there exists an efficient sim-
ulator S such that for every (pk, sk) generated by Gen, every C ∈ Ck, and
every m1, . . . ,m�, the following two distributions are computationally indistin-
guishable (even given pk, sk, C,m1, . . . ,m�):{

∀i : ci ← Encpk(mi) :
(
Evalpk(C, c1, · · · , c�), c1, . . . , c�

)}
{
∀i : ci ← Encpk(mi) : S(1k, pk, |C|, C(m1, . . . ,m�), c1, · · · , c�)

}
.

2.2 Adaptively Secure Fully Homomorphic Encryption

We consider here a security notion for FHE that captures adaptive corruption of
the receiver. (Alternately, we assume secure erasure and thus the sender can erase
the randomness it uses for encryption immediately after encryption is complete.)
Here, a simulator is required to commit to (a bounded number of) simulated
ciphertexts c1, . . . , c�; the adversary then outputs messages m1, . . . ,m� ∈ {0, 1},
and the simulator must give the adversary a (single) secret key sk that “explains”
(i.e., decrypts) each ciphertext ci as mi.

Definition 5 (Adaptively secure FHE). An �-homomorphic encryption
scheme HE = (Gen,Enc,Dec,Eval) is adaptively secure if there exists a non-
uniform, polynomial-time algorithm S = (S1,S2) such that for all non-uniform,
polynomial-time algorithms A = (A1,A2) we have

|Pr[IdealA,S(k) = 1]− Pr[RealA(k) = 1]| ≤ negl(k)

where:

IdealA,S(k)

(pk , c1, . . . , c�, s)← S1(1k);
(m1, . . . ,m�, τ)← A1(1

k, pk);
sk ← S2(s,m1, . . . ,m�);
b← A2(τ, pk , c1, . . . , c�, sk);
return b.

RealA(k)

(pk , sk)← Gen(1k);
(m1, . . . ,m�, τ)← A1(1

k, pk );
c1 ← Encpk (m1); . . . ;
c� ← Encpk (m�);

b← A2(τ, pk , c1, . . . , c�, sk);
return b.

��
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3 Impossibility Result

In this section, we show that adaptively secure �-fully homomorphic encryption is
impossible. We first give some intuition. Say adaptively secure FHE were possible,
so there is a simulator as in Definition 5. This gives an alternate way of computing
any function f , described by a circuit Cf : {0, 1}� → {0, 1}, as follows:
1. Run S1 to obtain pk, c1, . . . , c�, and state s.
2. Compute c′ ← Evalpk(Cf , c1, . . . , c�).
3. Given input x ∈ {0, 1}�, run S2(s, x1, . . . , x�) to obtain a secret key sk.
4. Compute Decsk(c

′) to obtain f(x).

Note that steps 1 and 2 can be computed in advance of receiving the input x.
Thus, we can hard-code s, c′, and randomness (if any) for S2 into a circuit
that, upon receiving input x = (x1, . . . , x�), computes sk = S2(s, x) and then
outputs Decsk(c

′). Adaptive security implies that this output must be correct
for most inputs x. (More precisely, it guarantees that there exist values of s, c′,
and randomness for S2 for which the circuit is correct for most inputs x.) But
because Dec and S2 are algorithms of some fixed complexity, and c′ is of some
bounded size (here is where we use the compactness property), we have some
polynomial upper-bound t on the size of the circuit that we get above. Taking f
to be a function that cannot be approximated by circuits of size t, but that can be
computed by a circuit of some polynomial size T � t, we obtain a contradiction.

Theorem 1. Let � = ω(log k). Then, adaptively secure fully �-homomorphic
encryption does not exist.

Proof. Assume, toward a contradiction, that such a scheme HE = (Gen,Enc,
Dec,Eval) exists. This implies the existence of a non-uniform family of circuits
S = (S1,S2) satisfying Definition 5. Let t(k) denote an upper bound on the size
of the circuit for S2 plus the size of a circuit computing Dec for any ciphertext
c′ output by Eval. Using compactness (which says that the size of any such c′

is bounded by some fixed polynomial) and the fact that Dec runs in polynomial
time, we see that t(k) = poly(k).

Let {fk : {0, 1}�(k) → {0, 1}}k be a function family that can be computed by
polynomial-size circuits. Fix some particular k in the discussion that follows, and
let Cf be the circuit computing f = fk. Define a circuit C∗

s,c′,ω as follows. First,

compute (pk, c1, . . . , c�, s) ← S1(1k). Then compute c′ ← Evalpk(Cf , c1, . . . , c�).
Choose random coins ω for S2, and define C∗

s,c′,ω as:

– On input x ∈ {0, 1}�, run S2(s, x1, . . . , x�) (using random coins ω) to ob-
tain sk. Then output Decsk(c

′).

We stress that s, c′, and ω are hard-coded into the above circuit. Thus, the size
of C∗

s,c′,ω is at most t(k).

A circuit C : {0, 1}� → {0, 1} is an ε-approximation of f if

Prx←{0,1}� [C(x) = f(x)] ≥ ε.

The theorem follows from the next two lemmas.



20 J. Katz, A. Thiruvengadam, and H.-S. Zhou

Lemma 1. There exist s, c′, ω such that the circuit C∗
s,c′,ω constructed above is

a 3/4-approximation of f .

Proof. Consider the following non-uniform, polynomial-size adversary
A = (A1,A2): adversary A1, on input pk, outputs random x1, . . . , x� ∈ {0, 1}.
On input c1, . . . , c� and sk, adversary A2 computes c′ ← Evalpk(Cf , c1, . . . , c�)
followed by y = Decsk(c

′). (Non-uniformity is used to hard-wire into A2 a de-
scription of the circuit Cf .) Finally, A2 outputs 1 if and only if y = f(x1, . . . , x�).

Correctness of the FHE scheme implies that in RealA(k) the adversary always
outputs 1. Adaptive security thus implies that the adversary outputs 1 with all
but negligible probability in IdealA(k). But this means that

Prx,s,c′,ω[C
∗
s,c′,ω(x) �= f(x)] < negl(k),

where x ∈ {0, 1}� is chosen uniformly and s, c′, ω are generated as in the con-
struction of C∗

s,c′,ω described earlier. But then there exist s, c′, ω for which

Prx[C
∗
s,c′,ω(x) �= f(x)] < negl(k),

where the probability is now only over the uniform choice of x ∈ {0, 1}�. This
circuit C∗

s,c′,ω is thus a 3/4-approximation of f .

The contradiction is given by the fact that there exist functions f that can be
computed by circuits of polynomial size T but cannot be 3/4-approximated by
circuits of size t.

Lemma 2. For any t(k) = poly(k) and �(k) = ω(log k), there exists a function
family {fk : {0, 1}�(k) → {0, 1}}k that can be computed by circuits of polynomial
size T (k) but cannot be 3/4-approximated by any circuit of size t(k).

Proof. A proof follows via suitable modification of the proof of the standard
hierarchy theorem for non-uniform computation [1]. Pick a random function f ,
and consider the probability that a fixed circuit C correctly computes f on at
least 3/4 of its inputs. Using Chernoff bounds, we can show that this probability

is at most e−2�/16. Since there are at most 22S logS+5S circuits of size S, we have
that if S = 2�/2/16 (and hence 2S logS + 5S < 2�/16) there exists a function
that is hard to 3/4-approximate for all circuits of size S.

Any function g : {0, 1}n → {0, 1} is computable by a circuit of size 2n10n.
Let k be such that � > 2.2 log t(k) (here we use the fact that � = ω(log k)). If we
set n = 2.2 log t(k) and let f : {0, 1}� → {0, 1} be the function that applies g to
the first n bits of its input, then f can be computed by a circuit of size O(t(k)3),
but cannot be 3/4-approximated by circuits of size t(k).

This concludes the proof of the theorem.
We note that our impossibility result also holds for a weaker definition of adap-

tive security where the adversary has to output the messages (whose encryptions
the simulator has to explain) before getting the public key.
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4 Feasibility Result

In this section, we show that adaptive security is possible for circuit-private
fully homomorphic encryption. The main idea is to modify the constructions
in [12,13,2] to use adaptively secure building blocks. Specifically, our construction
is based on (i) a two-move semi-honest oblivious transfer (OT) protocol with re-
ceiver adaptive security, (ii) a projective garbling scheme leaking only the circuit
size [19,5], and (iii) multiple-message, receiver-non-committing public-key en-
cryption (which is a stronger version of single-message receiver non-committing
encryption introduced in [14]).

We recall the high-level idea of [12,13,2], and explain how to upgrade the
building blocks to achieve our goal. The idea is to use the key generation algo-
rithm of a public-key encryption scheme to generate the public and secret keys.
To perform encryption, encode the input to be sent and in addition, encrypt
the randomness used for encoding. The evaluation algorithm forwards the en-
cryption of the randomness in addition to an encoded value of the result of the
evaluation of the circuit on the input sent. For decryption, using the secret key,
we can decrypt to get the randomness used. This randomness can then be used
to recover the result. This idea can be constructed using a regular public key
encryption scheme, oblivious transfer protocol and Yao’s garbling technique [19].

To achieve adaptive security, we need to upgrade the building blocks to adap-
tively secure ones. A semi-honest two-move OT protocol will suffice in the above
construction, but to achieve adaptive security of the circuit-private homomor-
phic encryption we need semi-honest two-move OT but with adaptive receiver
security. The semi-honest OT protocol in [8] is sufficient for our goal. We also
need to replace the regular public key encryption with a multi-message receiver
non-commiting encryption (a formal definition can be found below), a strength-
ened version of receiver non-committing encryption introduced in [14].

Before describing our construction, we recall the definitions of garbling
schemes, semi-honest OT with adaptive receiver security, and then define the
multi-message receiver non-committing encryption. Then, we present our con-
struction of a circuit-private homomorphic scheme which achieves correctness,
adaptive security, and circuit privacy, but not compactness.

4.1 Building Blocks

Garbling Schemes. Here, we define garbling schemes and introduce the secu-
rity notion we consider for such schemes in this work. Our notation follows the
recent work by Bellare, Hoang, and Rogaway [5].

A garbling scheme is a five-tuple of algorithms G = (Gb,En,De,Ev, ev). A
string f , the original function, describes the function ev(f, .) : {0, 1}� → {0, 1}n
that we want to garble. On input f and a security parameter k, the probabilistic
algorithm Gb returns a triple of strings (F, e, d)← Gb(1k, f). String e describes
an encoding function, En(e, .), that maps an initial inputm ∈ {0, 1}� to a garbled
input X = En(e,m). String F describes a garbled function ev(F, .), that maps
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each garbled input X to a garbled output Y = ev(F,X). String d describes
a decoding function, De(d, .), that maps a garbled output Y to a final output
y = De(d, Y ).

We consider only projective garbling schemes in this work. A projective gar-
bling scheme as described in [5] is one where e encodes a list of tokens, one pair for
each bit in m ∈ {0, 1}�. Encoding function En(e, .) uses the bits of m = m1 · · ·m�

to select from e = X0
1 , X

1
1 , · · · , X0

� , X
1
� the subvector X = (Xm1

1 , · · · , Xm�

� ). A
garbling scheme G = (Gb,En,De,Ev, ev) is projective if for all f,m,m′ ∈ {0, 1}�,
k ∈ N, and i ∈ [�], when (F, e, d) ∈ [Gb(1k, f)],X = En(e,m) andX ′ = En(e,m′),
then X = (X1 · · ·X�) and X ′ = (X ′

1 · · ·X ′
�) are � vectors, |Xi| = |X ′

i|, and
Xi = X ′

i if m and m′ have the same ith bit.
For the privacy notion considered, we allow that certain information about the

function f can be revealed and this is captured by the side information function
Φ(f). Specifically, for this work, the side information function is the size of the
circuit.

For the security notion, we describe only the simulation-based notion of pri-
vacy in [5]. We present the definition of the simulation-based security notion of
privacy of a garbling scheme.

Definition 6. Consider the following game PrvSimG,Φ,S associated with a gar-
bling scheme G, side information function Φ(f) and a simulator S. The adver-
sary A is run on input 1k and makes exactly one Garble query. The Garble

procedure is described as follows.

Garble(f,m)

b← {0, 1}
if m /∈ {0, 1}� return ⊥
if b = 1 then (F, e, d)← Gb(1k, f); X ← En(e,m)
else y ← ev(f,m); (F,X, d)← S(1k, y, Φ(f))
return (F,X, d)

The adversary after getting the answer to the query must output a bit b′. The
adversary’s advantage is given by:

AdvΦ,SG (A, k) =
∣∣∣∣Pr [b′ = b]− 1

2

∣∣∣∣
The protocol G is secure over Φ if for every polynomial-time adversary A there
is a polynomial-time simulator S such that AdvΦ,SG (A, k) is negligible.
Semi-honest OT with Adaptive Receiver Security. 1-out-of-2 Oblivious
Transfer (OT) allows a receiver to obtain exactly one of two messages from a
sender where the receiver remains oblivious to the other message, and the sender
is oblivious to which value was received. Please refer to Figure 1 for 2-move OT.
We next define secure 2-move OT scheme with adaptive receiver security.

Definition 7. A k-bit 2-move oblivious-transfer scheme OT = (OT1,OT2,OT3)
is secure with adaptive receiver security if the following properties hold:
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Sender(x0, x1 ∈ {0, 1}k) Receiver(m ∈ {0, 1})

(msg, w) ← OT1(m)

� msg

(m̂sg, ζ) ← OT2(x0, x1,msg)

m̂sg �
xm ← OT3(w, m̂sg)
output xm

Fig. 1. A 2-move OT protocol

Correctness. For all m ∈ {0, 1}, and x0, x1 ∈ {0, 1}k:

Pr

[
(msg, w)← OT1(m);
m̂sg← OT2(x0, x1,msg)

: xm = OT3(w, m̂sg)

]
≥ 1− negl(k)

Adaptive Receiver Security. There exists a non-uniform, polynomial-time
algorithm Srecv = (Srecv

1 ,Srecv
2 ) such that for all non-uniform, polynomial-

time algorithms A = (A1,A2):

|Pr[IdealA,Srecv (k) = 1]− Pr[RealA(k) = 1]| ≤ negl(k)

where:
IdealA,Srecv (k)

(m, τ)← A1(1
k);

(msg, s)← Srecv
1 (1k);

w ← Srecv
2 (s,m);

b← A2(τ, w,msg);
return b

RealA(k)

(m, τ)← A1(1
k);

(msg, w)← OT1(m);
b← A2(τ, w,msg);
return b

Sender Security. There exists a non-uniform, polynomial-time algorithm Ssend

such that for all non-uniform, polynomial-time algorithms A = (A1,A2):

|Pr[IdealA,Ssend(k) = 1]− Pr[RealA(k) = 1]| ≤ negl(k)

where:

IdealA,Ssend(k)

(x0, x1,m, τ)← A1(1
k);

(msg, w)← OT1(m);
m̂sg← Ssend(1k,msg, xm,m);
b← A2(τ,msg, w, m̂sg);
return b

RealA(k)

(x0, x1,m, τ)← A1(1
k);

(msg, w)← OT1(m);
m̂sg← OT2(x0, x1,msg);
b← A2(τ,msg, w, m̂sg);
return b

The construction from [8] satisfies the above properties.

Multi-message, Receiver Non-committing, Public-Key Encryption. Re-
ceiver non-committing encryption (RNCE) was introduced in [14] and further
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studied in [7]. Here, we strengthen their notion to deal with multiple messages
with an a priori bound α = poly(k) on the number of messages; we call this
α-message RNCE, and formally define it below.

– The randomized key-generation algorithm gen takes as input the security
parameter and outputs a key-pair. This is denoted by: (pk, sk) ← gen(1k).
The public key pk defines the message space M.

– The randomized encryption algorithm enc takes a public key pk and a mes-
sage m ∈ M. It returns a ciphertext c← encpk(m).

– The decryption algorithm dec takes as input a secret key sk and a ciphertext
c, and returns a message m← decsk(c), where m ∈M∪⊥.

– The randomized key-faking algorithm g̃en takes as input the security param-
eter and outputs a public key as well as some auxiliary information. This is
denoted by: (pk, z)← g̃en(1k).

– The fake encryption algorithm ẽnc takes as input a tuple (pk, z) as output by
g̃en, and outputs a tuple of fake ciphertexts and some auxiliary information:
(c1, . . . , cα, z

′)← ẽnc(pk, z).
– The reveal algorithm r̃ev takes as input a tuple (c1, . . . , cα, z

′) as output by
ẽnc, and a tuple of messages m1, . . . ,mα ∈ M. It outputs a fake secret key
sk← r̃ev(z′, c1, . . . , cα,m1, . . . ,mα). (Intuitively, sk is a valid-looking secret
key for which ci decrypts to mi for all i ∈ [α].)

Definition 8. (gen, enc, dec) is a secure receiver non-committing encryption
scheme for bounded α = poly(k), if there exist non-uniform, polynomial-time
algorithms S = (g̃en, ẽnc, r̃ev) such that for all non-uniform, polynomial-time
algorithms A = (A1,A2) we have

|Pr[IdealA,S(k) = 1]− Pr[RealA(k) = 1]| ≤ negl(k)

where:

IdealA,S(k)

(pk, z)← g̃en(1k);
(m1, . . . ,mα, τ)← A1(1

k, pk);
(c1, . . . , cα, z

′)← ẽnc(pk, z);
sk← r̃ev(z′, c1, . . . , cα,m1, . . . ,mα);
b← A2(τ, pk, sk, c1, . . . , cα);
return b.

RealA(k)

(pk, sk)← gen(1k);
(m1, . . . ,mα, τ)← A1(1

k, pk);
c1 ← encpk(m1); . . . ;
cα ← encpk(mα);

b← A2(τ, pk, sk, c1, . . . , cα);
return b.

Following [14], we present a construction of a multiple-message, receiver non-
committing scheme based on the DDH assumption. As in [14], we can only
directly encrypt logarithmic-length messages since computation of a discrete
logarithm is required by the receiver. In our case, however, we can then encrypt
messages of length k by breaking the message into logarithmic-length blocks,
encrypting block-by-block, and adjusting the parameter α accordingly.

– The randomized key-generation algorithm: (pk, sk)← gen(1k):
Generate a group G of prime order q with generators g0, g1, . . . , gα. Out-
put the group parameters (G, q, g0, g1, . . . , gα). Choose x0, . . . , xα ← Zq and
output the public key pk =

∏α
i=0 g

xi

i and secret key sk = (x0, . . . , xα).
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– The randomized encryption algorithm c← encpk(m):
View m as an element of Zq. Choose r ∈ Zq at random and output the
ciphertext (gr0, . . . , g

r
α, P

r · gm0 ).
– The decryption algorithm m← decsk(c):

Parse c = (A0, . . . , Aα, B), and compute C = B/
∏
iA

xi

i . Set m = logg0 C.
(We assume m is small enough so that this computation can be done effi-
ciently.)

– The randomized key-faking algorithm (pk, z)← g̃en(1k):
Generate a group G of prime order q with generators g0, g1, . . . , gα where
gi = g0

σi and σi is known. Output the group parameters (G, q, g0, g1, . . . , gα).
Choose x0, . . . , xα ← Zq and output the public key pk =

∏α
i=0 g

xi

i .
– The fake encryption algorithm ẽnc:

For i ∈ {1, . . . , α}, choose ri,0, . . . , ri,α, r′i ← Zq, and output the ciphertext

(g
ri,0
0 , . . . , g

ri,α
α , g

r′i
0 ).

– The reveal algorithm sk← r̃ev(z′, c1, . . . , cα,m1, . . . ,mα):
Output x′0, . . . , x

′
α satisfying

x0 − x′0 +
α∑
i=1

(xi − x′i)σi = 0

∀j ∈ {1, . . . , α} : mj + x′0rj,0 +
α∑
i=1

x′irj,iσi = r′j .

Note that this is a system of α+ 1 equations in α+ 1 unknowns, and has a
solution with all but negligible probability.

4.2 Adaptively Secure Circuit-Private �-Homomorphic Encryption

Our construction of a circuit-private �-homomorphic encryption scheme HE =
(Gen,Enc,Dec,Eval). is based on (i) a projective garbling scheme (Gb, En, De,
Ev, ev) leaking only the circuit size [19,16,5], (ii) a receiver adaptively secure
semi-honest OT protocol (OT1,OT2,OT3), and (iii) an �-message receiver non-
committing public-key encryption scheme (gen, enc, dec).

– The key-generation algorithm (pk , sk)← Gen(1k):
Compute (pk, sk)← gen(1k), and set pk := pk and sk := sk.

– The encryption algorithm c← Encpk (m):
Upon input m ∈ {0, 1}, compute (msg, w) ← OT1(m). Compute e ←
encpk(w) and output c := (msg, e).

– The decryption algorithm m← Decsk (c):

• If c = (msg, e), compute w ← decsk(e). Then run OT1 with inputs 0
and 1, and randomness w, and output m for which (msg, w)← OT1(m).

• If c = (Ĉ, d, ĉ1, . . . , ĉ�) then for all i ∈ [�], further parse ĉi into (m̂sgi, ei),
compute wi ← decsk(ei), and compute Xmi

i ← OT3(wi, m̂sgi). This

gives the garbled input X = (Xm1
1 , . . . , Xm�

� ). Output De(d,Ev(Ĉ,X))
as message m.



26 J. Katz, A. Thiruvengadam, and H.-S. Zhou

– The evaluation algorithm c∗ ← Eval(pk , C, c1, . . . , c�):

• Let Gb(1k, C) → (Ĉ, e, d). Parse the encoding function represented by
string e as (X0

1 , X
1
1 , . . . , X

0
� , X

1
� ).

• Parse ci into (msgi, ei) for i ∈ [�]. Compute m̂sgi ← OT2(X0
i , X

1
i ,msgi),

and set ĉi := (m̂sgi, ei), for all i ∈ [�].
• Finally, set c∗ := (Ĉ, d, ĉ1, . . . , ĉ�).

Theorem 2. Construction HE presented above is an adaptively secure circuit-
private �-homomorphic encryption.

Proof. We show below that the construction HE is a secure �-homomorphic
encryption that satisfies correctness, circuit privacy, and adaptive security.

Correctness. It is easy to verify the correctness. To compute Decsk (c) for
c = Encpk (m) where c = (msg, e), we first compute w′ ← decsk(e). Then run
OT1 twice with both inputs 0 and 1, and randomness w′. Output m′ where
(msg, w′) ← OT1(m). Given the fact that (gen, enc, dec) is correct, it holds
that w = decsk(encpk(w)), i.e., w = w′; furthermore, given the fact that the OT
scheme is correct, it holds that (msg, w) = OT1(m), i.e., m = m′. Therefore, we
have Decsk (c) = m for c = Encpk (m).

To compute Decsk (c) for c = Eval(pk , C, c1, . . . , c�) where c = (Ĉ, d, ĉ1, . . . , ĉ�),
parse ĉi as ĉi = (m̂sgi, ei) for all i ∈ [�]. We first compute w′

i ← decsk(ei),

X̂i ← OT3(w′
i, m̂sgi). Then we use the input key strings X = (X̂1, . . . , X̂�) to

evaluate the garbled circuit Ĉ as Ev(Ĉ,X) and obtain C(m̂1, . . . , m̂�). Given
the fact that (gen, enc, dec) is correct, we have wi = w′

i; furthermore, given the

fact that the OT is correct, X̂i = Xmi

i ; also, given the fact that the garbling

scheme is correct, we have C(m1, . . . ,m�) = De(d,Ev(Ĉ,X)). Therefore, we have
Decsk (c) = m for c = Eval(pk , C, c1, . . . , c�) and m = C(m1, . . . ,m�).

Circuit privacy. The property of circuit privacy follows from the security of
the garbling scheme and the sender security of the OT. By the security of the
garbling scheme, we have that there exists a simulator SG on input the security
parameter, output of the function and the side information function Φ outputs
(F,X, d) except with negligible probability. As mentioned before, Φ(C) = |C| in
our construction.

Let us construct a simulator S as follows:

– Upon receiving (1k, pk , |C|, C(m1, . . . ,m�), c1, . . . , c�) where ci = Encpk (mi)
for i ∈ [�], the simulator S runs the simulator SG of the garbling scheme to
obtain
(F,X, d)← SG(1k, C(m1, . . . ,m�), |C|).

– Set Ĉ = F . Parse X as (X̂1, . . . , X̂�).
– To compute the ciphertext ĉi, parse ci into (msgi, ei) as in the construction.

Then compute m̂sgi ← Ssend(1k,msgi, X̂i) using the OT-simulator Ssend for
sender security, and set ĉi := (m̂sgi, ei), for all i ∈ [�].
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– Finally, set c∗ := (Ĉ, d, ĉ1, . . . , ĉ�).

Next, we develop a sequence of hybrids to show that Definition 4 is satisfied.

Hybrid H0: As in the real scheme, we run the evaluation algorithm Eval to
compute c∗, i.e, c∗ ← Eval(pk , C, c1, . . . , c�) where c∗ = (Ĉ, d, ĉ1, . . . , ĉ�).
Concretely, we use the projective garbling scheme, on input C, compute
(Ĉ, e, d) ← Gb(1k, C); then we parse the encoding function represented by
string e as (X0

1 , X
1
1 , . . . , X

0
� , X

1
� ), and parse ci into (msgi, ei) for i ∈ [�]; after

that, we compute m̂sgi ← OT2(X0
i , X

1
i ,msgi), and set ĉi := (m̂sgi, ei), for

all i ∈ [�]; finally, set c∗ := (Ĉ, d, ĉ1, . . . , ĉ�). The adversary A is given c∗ as
well as the input m, circuit C and the secret key sk.

Hybrid H1,j: For j ∈ [0 . . . �], the hybrid H1,j is the same as the Hybrid H0

except the following:
For all i ∈ [j], parse ci into (msgi, ei). Compute m̂sgi ←

Ssend(1k,msgi, X
mi

i ), using the OT simulator for sender security and set
ĉi := (m̂sgi, ei).

We argue that for j ∈ [1, . . . , �], the hybridsH1,j and H1,j+1 are computa-
tionally indistinguishable under the assumption that the OT satisfies sender
security. If there is an adversary A who can distinguish between the two
hybrids with non-negligible probability, then we can construct an adversary
B who breaks the sender security of the OT as follows.

The adversary B acts as follows:
– run (pk , sk) ← Gen(1k), i.e., run (pk, sk) ← gen(1k) and set pk := pk,

sk := sk.
– Choose m = (m1, . . . ,m�). For all i ∈ [�], compute ci ← Encpk (mi),

i.e., compute (msgi, wi) ← OT1(mi), and ei ← encpk(wi). Set ci :=
(msgi, ei);

– Using the projective garbling scheme on a circuit C, let (Ĉ, e, d) ←
Gb(1k, C). Parse the encoding function represented by string e as
(X0

1 , X
1
1 , . . . , X

0
� , X

1
� );

– for all i ∈ [j − 1], parse ci into (msgi, ei). Then compute m̂sgi ←
Ssend(1k,msgi, X

mi

i );
– for i = j, output (mi, X

0
i , X

1
i ). Parse ci into (msgi, ei) and obtain m̂sgi,

where it is either generated by Ssend, i.e., m̂sgi ← Ssend(1k,msgi, X
mi

i ),
or by the OT scheme honestly, i.e., m̂sgi ← OT2(X0

i , X
1
i ,msgi);

– for all i ∈ [j + 1, �], parse ci into (msgi, ei). Then compute m̂sgi ←
OT2(X0

i , X
1
i ,msgi);

– for all i ∈ [�], set ĉi := (m̂sgi, ei);
– Return (m, sk , pk , C, Ĉ, d, ĉ1, . . . , ĉ�) to the internally simulated A.

When i = j, if m̂sgi obtained by B is generated by Ssend, then A interacts
with Hybrid H1,j . Otherwise, if m̂sgi is generated by the OT scheme hon-
estly, then A interacts with Hybrid H1,j−1. Based on the assumption that
A can distinguish between the two hybrids with non-negligible probability,
we can conclude that B can distinguish Ideal from Real as in Definition 7
for sender security. This contradicts our assumption that the OT is sender-
secure. Therefore, Hybrid H1,j−1 and Hybrid H1,j are indistinguishable.
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Note that H0 is identical to H1,0. Since Hybrids H1,j−1 and H1,j are
indistinguishable as argued above, we also have that Hybrid H0 is compu-
tationally indistinguishable from Hybrid H1,�.

Hybrid H2: This is the same as Hybrid H1,� except the following: Run the sim-
ulator SG for the projective garbling scheme to obtain the garbled circuit, in-
put and the decoding function, i.e., (F,X, d)← SG(1k, C(m1, . . . ,m�), |C|).
Parse X as (X̂1, . . . , X̂�), and set Ĉ = F . We note that this is exactly the
output produced by the simulator S for circuit privacy.

The hybrids H1,� and H2 are indistinguishable under the assumption that
G is a secure garbling scheme. If there is an adversary A who can distinguish
between the two hybrids with non-negligible probability, then we can con-
struct an adversary B who breaks the security of the garbling scheme as
defined in Definition 6.

Consider an adversary B who acts as follows:

– run (pk , sk)← Gen(1k);
– Choose m = (m1, . . . ,m�). For all i ∈ [�], compute ci ← Encpk (mi);

– Choose a circuit C. Make a Garble query on (C,m) to obtain the
challenge (F,X, d). Set Ĉ = F .

– Parse X as (X̂1, . . . , X̂�). For all i ∈ [�], parse ci into (msgi, ei), and
compute m̂sgi ← Ssend(1k,msgi, X̂i); Set ĉi = (m̂sgi, ei);

– Return (m, sk , pk , C, Ĉ, d, ĉ1, . . . , ĉ�) to the internally simulated A.

When B’s challenge (F,X, d) is generated honestly, then the internally sim-
ulated A interacts with H1,�. On the other hand, when B’s challenge is
generated by SG , the simulated A interacts with H2. Based on the assump-
tion that A can distinguish between the two hybrids with non-negligible
probability, we can conclude that B can gain a non-negligible advantage
as in Definition 6. However, this is a contradiction to our assumption that
G is a secure garbling scheme. Therefore, Hybrid H1,� and Hybrid H2 are
indistinguishable.

Thus, we have that the hybrids H0 and H2 are indistinguishable which implies
that the scheme satisfies the circuit privacy requirement as defined in Defini-
tion 4.

Adaptive security. Next we give the proof idea for proving the adaptive
security as defined in Definition 5. We construct the simulator S = (S1,S2) as
follows. The simulator is based on the algorithms (g̃en, ẽnc, r̃ev) of the �-RNCE
scheme, and the simulator (Srecv

1 ,Srecv
2 ) of the OT scheme.

– (pk , c1, . . . , c�, s)← S1(1k):
Compute (pk, z)← g̃en(1k), and set pk := pk. Compute (e1, . . . , e�, z

′)←
ẽnc(pk, z).

For all i ∈ [�], compute (msgi, γi)← Srecv
1 (1k), and set ci := (msgi, ei).

Store all information into state s.
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– sk ← S2(s,m1, . . . ,m�):
Upon obtaining (m1, . . . ,m�), recover {γi}i∈[�] from the state s.
For all i ∈ [�], compute wi ← Srecv

2 (msgi, γi,mi).
Compute sk← r̃ev(z′, {ei, wi}i∈[�]), and set sk := sk.

Next, we develop a sequence of hybrids to show that the real experiment defined
in Definition 5 is indistinguishable from the ideal experiment.

Hybrid H0: This is the real experiment.
Compute (pk, sk) ← gen(1k) and set pk := pk, sk := sk. The adversary

A outputs (m1, . . . ,m�) after seeing the public key pk. Then for all i ∈ [�],
do the following: compute (msgi, wi)← OT1(mi), ei ← encpk(wi). Set ci :=
(msgi, ei). Return (pk , c1, . . . , c�, sk) to the adversary.

Hybrid H1,j: Let j ∈ [0, . . . , �]. The hybrid is the same as the HybridH0 except
the following:

For all i ∈ [j], compute (msgi, γi) ← Srecv
1 (1k). Then, compute wi ←

Srecv
2 (msgi, γi,mi).
We argue that for j ∈ [1, . . . , �], the hybrids H1,j−1 and H1,j are com-

putationally indistinguishable under the assumption that the OT satisfies
adaptive receiver security. Assume there is an adversary A who can distin-
guish between the two hybrids. For all Srecv, we next show how to construct
B to distinguish between the Real experiment and the Ideal experiment as in
Definition 7.
B internally simulates A and receives (m1, . . . ,m�) from it. Then B carries

out the following:
– run (pk, sk)← gen(1k), and set pk := pk, sk := sk;
– for all i ∈ [j− 1], use the OT simulator to obtain (msgi, γi)← Srecv

1 (1k)
and wi ← Srecv

2 (msgi, γi,mi). Compute ei ← encpk(wi);
– for i = j, obtain the pair (msgi, wi), where the pair is generated by

either Srecv = (Srecv
1 ,Srecv

2 ), i.e., (msgi, γi) ← Srecv
1 (1k) and wi ←

Srecv
2 (msgi, γi,mi), or generated by the OT scheme honestly, i.e.,

(msgi, wi)← OT1(mi);
– for all i ∈ [j+1, �], compute (msgi, wi)← OT1(mi) and ei ← encpk(wi).
– for all i ∈ [�], set ci := (msgi, ei);
– Return (pk , c1, . . . , c�, sk) to the internally simulated A.

Note that when i = j, if the pair (msgi, wi) that B obtains are generated by
Srecv = (Srecv

1 ,Srecv
2 ), then A interacts with Hybrid H1,j , while if the pair

(msgi, wi) that B obtains are generated by the OT scheme honestly, A inter-
acts with Hybrid H1,j−1. Based on the assumption that A can distinguish
between the two hybrids with non-negligible probability, we can conclude
that B can distinguish Ideal from Real as in Definition 7 for defining adap-
tive receiver security. This leads to a contradiction to our assumption that
the OT has adaptive receiver security. Therefore, Hybrid H1,j−1 and Hybrid
H1,j are indistinguishable.

Note that H0 is identical to H1,0. Since Hybrid H1,j−1 and Hybrid H1,j

are indistinguishable, as argued above, we also have that H0 is computa-
tionally indistinguishable from H1,�.
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Hybrid H2: The hybrid is the same as Hybrid H1,� except the following:
Compute (pk, z)← g̃en(1k), and set pk := pk. Compute (e1, . . . , e�, z

′)←
ẽnc(pk, z). Compute sk ← r̃ev(z′, {ei, wi}i∈[�]), and set sk := sk. We note
that this is exactly the ideal experiment.

We argue that H1,� and H2 are computationally indistinguishable based
on the security of the �-RNCE scheme. Assume there is an adversary A who
can distinguish between the two hybrids. We next show how to construct an
adversary B that can break the security of the �-RNCE scheme.
B receives pk, and internally runs A. Upon receiving (m1, . . . ,m�) fromA,

B computes (msgi, wi) ← OT1(mi) for all i ∈ [�] and outputs (w1, . . . , w�)
to its challenger. Upon receiving from its challenger (e1, . . . , e�, sk), B sets
ci := (msgi, ei) for all i ∈ [�]. B returns (pk , c1, . . . , c�, sk) to A and returns
A’s output as its own output.

When B’s received tuple (pk, e1, . . . , e�, sk) is generated by (gen, enc, dec)
honestly, then the internally simulated A interacts with H1,�. On the other
hand, when B’s received tuple is generated by (g̃en, ẽnc, r̃ev), i.e, (pk, z)←
g̃en(1k), (e1, . . . , e�, z

′) ← ẽnc(pk, z), and sk ← r̃ev(z′, {ei, wi}i∈[�]), A in-
teracts with H2. Based on the assumption that A can distinguish between
the two hybrids with non-negligible probability, we can conclude that B can
distinguish Ideal from Real as in Definition 8. This contradicts the security of
the �-RNCE scheme. Therefore, Hybrids H1,� and H2 are indistinguishable.

Based on the above argument we have H0 and H1,� are indistinguishable, and
H1,� and H2 are indistinguishable. Therefore H0 and H2 are indistinguishable.
Note that Hybrid H2 is exactly the ideal experiment, and H0 is the real experi-
ment. We now have that the ideal and the real experiments are indistinguishable.
This implies that the scheme satisfies adaptive security.
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Abstract. In homomorphic encryption schemes, anyone can perform
homomorphic operations, and therefore, it is difficult to manage when,
where and by whom they are performed. In addition, the property that
anyone can “freely” perform the operation inevitably means that cipher-
texts are malleable, and it is well-known that adaptive chosen ciphertext
(CCA) security and the homomorphic property can never be achieved
simultaneously. In this paper, we show that CCA security and the ho-
momorphic property can be simultaneously handled in situations that
the user(s) who can perform homomorphic operations on encrypted data
should be controlled/limited, and propose a new concept of homomor-
phic public-key encryption, which we call keyed-homomorphic public-key
encryption (KH-PKE). By introducing a secret key for homomorphic
operations, we can control who is allowed to perform the homomorphic
operation. To construct KH-PKE schemes, we introduce a new concept,
a homomorphic transitional universal hash family, and present a num-
ber of KH-PKE schemes through hash proof systems. We also present a
practical construction of KH-PKE from the DDH assumption. For �-bit
security, our DDH-based scheme yields only �-bit longer ciphertext size
than that of the Cramer-Shoup PKE scheme.

Keywords: homomorphic public key encryption, CCA2 security, hash
proof system.

1 Introduction

1.1 Background and Motivation

In homomorphic encryption schemes, homomorphic operations can be performed
on encrypted plaintexts without decrypting the corresponding ciphertexts. Ow-
ing to this attractive property, several homomorphic public key encryption (PKE)
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schemes have been proposed [13,16,25]. Furthermore, fully homomorphic encryp-
tion (FHE) that allows a homomorphic operation with respect to any circuit, has
recently been proposed by Gentry [15]. This has had a resounding impact not
only in the cryptographic research community, but also in the business commu-
nity. One of the reasons for such a big impact is that FHE is suitable for ensuring
security in cloud environments (e.g., encrypted data stored in a database can be
updated without any decryption procedure).

Improvement in the security of homomorphic encryption will lead to wider
deployment of cloud-type applications, whereas the property that anyone can
“freely” perform homomorphic operations inevitably means that ciphertexts are
malleable. Therefore, it is well-known that adaptive chosen ciphertext (CCA2)
security and the homomorphic property can never be achieved simultaneously. In
other words, security is sacrificed in exchange for the homomorphic property. Al-
though several previous works (e.g., [1,6,17,26,27]) have attempted to construct
homomorphic PKE schemes that offer security close to CCA2 security while
retaining the homomorphic property, these schemes only guarantee security at
limited levels. Note that not all functionalities of conventional homomorphic en-
cryption are indispensable for real-world applications, and therefore there is the
possibility of realizing a desirable security level by appropriately selecting the
functionalities of conventional homomorphic encryption.

Here, we point out that the underlying cause of the incompatibility of CCA2
security and the homomorphic property, lies in the setting that any user can use
the homomorphic property, and it is worth discussing whether the free availabil-
ity of homomorphic operations is an indispensable functionality in real-world
applications. For example, consider the situation where some data encrypted by
a homomorphic PKE scheme is stored in a public database (e.g., public cloud
computing environment) and it is modified by homomorphic operations. If any-
one can perform a homomorphic operation, then it is hard to reduce the risk of
unexpected changes to the encrypted data in the database in which resources are
dynamically allocated. Even in a closed environment (e.g., private cloud comput-
ing environment), we cannot rule out the possibility of unexpected changes to a
user’s data by any user who is authorized to access the database. Of course, it
is possible to protect such unexpected modification of encrypted data by setting
access permissions of each user appropriately. However, in cloud environments,
security of outsourced data storages may not be assured. Therefore, such access
control functionality should be included in encrypted data itself.

From the above consideration, we see that the property that anyone can per-
form homomorphic operations not only inhibits the realization of CCA2 security,
but also introduces the problem of unexpected modification of encrypted data.

1.2 Our Contribution

In this paper, we show that CCA2 security and the homomorphic property can
be simultaneously handled in situations that the user(s) who can perform homo-
morphic operations should be controlled. Specifically, we propose a new concept
of homomorphic PKE, which we call keyed-homomorphic public-key encryption
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(KH-PKE), that has the following properties: (1) in addition to a conventional
public/decryption key pair (pk, skd), another secret key for the homomorphic
operation (denoted by skh) is introduced, (2) homomorphic operations cannot
be performed without using skh, and (3) ciphertexts cannot be decrypted using
only skh. Interestingly, KH-PKE implies conventional homomorphic PKE, since
the latter can be implemented by publishing skh of KH-PKE.

To construct KH-PKE schemes, we introduce a new concept, a homomorphic
transitional universal hash family, which can be constructed from any diverse
group system [11], and present a number of KH-PKE schemes through hash
proof systems (HPSs) [11].

Our Scenarios: Here we introduce situations that the user(s) who can per-
form homomorphic operations should be controlled/limited. For example, in the
situation where encrypted data is stored in a public database, an owner of the
data gives skh to the database manager, who updates the encrypted data af-
ter authentication of users. No outsider can modify the encrypted data in the
public database without having skh. As another example, by considering skh,
a counter can take over the role of aggregating an audience survey, voting, and
so on. An advantage of separating ballot-counting and ballot-aggregation is that
it is possible to reduce the aggregation costs of the counter and to collect the
ballot results for individual areas, groups, and communities.

Naive Construction and Its Limitations: One might think that the func-
tionality and the security of KH-PKE can be achieved by using the following
double encryption methodology: A ciphertext of an “inner” CCA1 secure homo-
morphic PKE scheme is encrypted by an “outer” CCA2 secure PKE scheme,
and the decryption key of the CCA2 secure PKE scheme is used as skh.

However, this naive construction is not secure in the sense of our security
definition. Taking into account the exposure of the homomorphic operation key
skh, an adversary can request skh to be exposed in our security definition. The
adversary is allowed to use the decryption oracle “even after the challenge phase”,
just before the adversary requests skh. However, no such decryption query is
allowed in the CCA1 security of the underlying “inner” scheme, and therefore it
seems hard to avoid this problem.

Even if we turn a blind eye to the above problem, it is obvious that efficiency
of the naive construction is roughly equal to the total costs of the building block
PKE schemes. On the other hand, the efficiency of our KH-PKE instantiations is
very close to the corresponding (non-keyed-homomorphic) PKE schemes based
on HPSs. In particular, the efficiency of our decisional Diffie-Hellman (DDH)-
based KH-PKE scheme is comparably efficient as the Cramer-Shoup PKE (CS)
scheme [9], where for �-bit security, our scheme yields only �-bit longer cipher-
text size than that of the CS PKE scheme. Whereas the naive construction
yields 5�-bit longer ciphertext size even if we choose the Kurosawa-Desmedt
PKE scheme [23] and the Cramer-Shoup lite PKE scheme [9] that seems the
most efficient combination under the DDH assumption. We give the comparison
in Section 5.
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To sum up, our construction is superior than the naive construction from both
security and efficiency perspectives.

Our Methodology: As a well-known result, CCA2-secure PKE can be con-
structed via a HPS [11] which has two projective hash families as its internal
structure: A universal2 projective hash and a smooth projective hash. Also it is
known that a weaker property of universal2, that is called universal1 property,
was shown to be useful for achieving CCA1-secure PKE [22], and universal1 prop-
erty (and smooth property also) does not contradict the homomorphic property.
That is, our aim seems to be achieved if we can establish a switching mechanism
from universal2 to universal1. Moreover, we can simulate the decryption oracle
even after the challenge phase and after revealing skh since the simulator knows
all secret keys in the security proof.

In this paper, we show such a mechanism (which we call homomorphic transi-
tional universal hash family) can be obtained from any diverse group system [11],
and then we propose a generic construction of KH-PKE based on a homomor-
phic transitional universal HPS. Moreover, as an implication result, KH-PKE is
implied by CPA-secure homomorphic PKE (with cyclic ciphertext space) which
implies diverse group systems [19].

Instantiations: According to our methodology, we present a number of KH-
PKE schemes from various major cryptographic assumptions such as the DDH
assumption, the decisional composite residuosity (DCR) assumption, the deci-
sional linear (DLIN) assumption, the decisional bilinear Diffie-Hellman (DBDH)
assumption, and the decisional quadratic residuosity (DQR) assumption. This
means that it is not difficult to extend all existing HPS to have the homomor-
phic transitional property, and thus a homomorphic transitional HPS is not a
significantly stronger primitive in practice, compared to an ordinary HPS.

In this paper, we present a practical DDH-based KH-PKE scheme. Other KH-
PKE schemes based on the DCR assumption and the DQR assumption from
the Cramer-Shoup HPSs [11], based on the DLIN assumption from the Shacham
HPS [28], and based on the DBDH assumption from the Galindo-Villar HPS [12],
and an identity-based analogue of KH-PKE, called keyed-homomorphic identity-
based encryption (KH-IBE) and its concrete construction from the Gentry IBE
scheme [14] will be given in the full version of this paper.

1.3 Related Work

Several previous works have attempted to construct homomorphic PKE schemes
that provide security close to CCA2 security, while retaining the homomorphic
property. Canetti et al. [6] considered the notion of replayable CCA (RCCA),
which leaves a room for an adversary who is given two ciphertexts (C,C′), to gain
information on whether C′ was derived from C. (Modified RCCA notions have
also been proposed [17,26].) In the RCCA security game, the decryption oracle
given to an adversary is restricted in such a way that the challenge ciphertext and
ciphertexts derived from the challenge ciphertext cannot be queried to the oracle.
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Similarly, in benignly-malleable (gCCA) security [1,29], ciphertexts related to the
challenge one cannot be input to the decryption oracle. Therefore, RCCA and
gCCA are strictly weaker notions than CCA2, and may not be sufficient if the
encryption scheme is used as a building block for higher level protocols/systems.

In [27], Prabhakaran and Rosulek proposed homomorphic CCA (HCCA) se-
curity, where only the expected operation, and no other operations, can be per-
formed for any ciphertext. (Targeted malleability, which is a similar concept
to HCCA, was considered in [4].) In addition, they also showed that CCA2,
gCCA, and RCCA are special cases of HCCA. Note that HCCA does not han-
dle the homomorphic property and CCA2 security simultaneously, since anyone
can perform the homomorphic operation. Chase et al. [8] showed that controlled-
malleable non-interactive zero-knowledge can be used as a general tool for achiev-
ing RCCA and HCCA security.

Embedding a ciphertext of homomorphic PKE into that of CCA2-secure PKE,
was considered in [24,3]. Note that their embedding encryption methods are
nothing more than protecting a ciphertext of homomorphic PKE by that of
CCA2 PKE, and therefore no homomorphic operation can be performed on
embedded ciphertexts. Meanwhile, in our KH-PKE, even after performing the
homomorphic operation, a ciphertext is still valid.

Barbosa and Farshim [2] proposed delegatable homomorphic encryption
(DHE). The difference between KH-PKE and DHE is that in DHE a trusted
authority (TA) issues a token to control the capability to evaluate circuits f
over encrypted data M to untrusted evaluators. Furthermore, their security def-
initions of DHE (input/output privacy (TA-IND-CPA) and evaluation security
(IND-EVAL2)) do not allow an adversary to access the decryption oracle and
the evaluation oracle (the oracle for homomorphic operation) simultaneously.
We note that although Barbosa and Farshim defined verifiability (VRF-CCA2),
where no homomorphic operation can be performed without issuing a corre-
sponding token, KH-CCA security for KH-PKE defined in this paper guarantees
a similar level of security, since if there exists an adversary that can perform the
homomorphic operation without using skh, then the adversary can break the
KH-CCA security.

2 Preliminaries

In this section, we review the basic notations and definitions related to HPSs
(mostly following [11] but slightly customized for our convenience).

Throughout this paper, PPT denotes probabilistic polynomial time. If n is a
natural number, then [n] = {1, . . . , n}. If D is a probabilistic distribution (over
some set), then [D] denotes its support, i.e. [D] = {x|Prx′←D[x

′ = x] > 0}.
Let X = {X�}�≥0 and Y = {Y�}�≥0 be sequences of random variables X� and
Y�, respectively, defined over a same finite set. As usual, we say that X and Y
are statistically (resp. computationally) indistinguishable if |Pr[A(X�) = 1] −
Pr[A(Y�) = 1]| is negligible in � for any computationally unbounded (resp. PPT)
algorithm A. Furthermore, we say that X and Y are ε-close if the statistical
distance of X� and Y� is at most ε = ε(�).
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Projective Hash Families: Let X , Π , W , K, and S be finite, non-empty
sets, and L be a proper subset of X (i.e., L ⊂ X and L �= X). Furthermore, let
H = {Hk : X → Π}k∈K be a collection of hash functions indexed by k ∈ K, and
α : K → S be a function. We say that H = (H,K,X,L,Π, S, α) is a projective
hash family for (X,L) if for all k ∈ K, the action of Hk on the subset L is
uniquely determined by α(k) ∈ S.

Let H = (H,K,X,L,Π, S, α) be a projective hash family, and let ε ≥ 0. We
recall the following properties of a projective hash family: We say that H is
ε-universal1 if for all s ∈ S, x ∈ X \L, and π ∈ Π , it holds that Pr

k
$←K

[Hk(x) =

π ∧ α(k) = s] ≤ ε · Pr
k

$←K
[α(k) = s]. We say that H is ε-universal2 if for all

s ∈ S, x, x∗ ∈ X \ L with x∗ �= x, and π, π∗ ∈ Π , it holds that Pr
k

$←K
[Hk(x) =

π ∧ Hk(x
∗) = π∗ ∧ α(k) = s] ≤ ε · Pr

k
$←K

[Hk(x
∗) = π∗ ∧ α(k) = s]. We say

that H = (H,K,X,L,Π, S, α) is ε-smooth if the following two distributions are

ε-close: {k $← K; x
$← X \L : (α(k), x,Hk(x)) } and {k $← K; x

$← X \L; π $←
Π : (α(k), x, π) }.

If a projective hash family is ε-universal1 (resp. -universal2, -smooth) for a
negligible ε, then we simply call the projective hash family universal1 (resp.
universal2, smooth).

Subset Membership Problems: A subset membership problem M specifies
a collection of probabilistic distribution {I�}�≥0 (indexed by a security param-
eter �) over instance descriptions. An instance description Λ[X,L,W,R] ∈ [I�]
specifies non-empty sets X , W , and L, a binary relation R defined over X ×W ,
where X , W , and L are non-empty sets such that L ⊂ X , and an x ∈ X is in
the subset L if and only if there exists a “witness” ω ∈ W such that (x,w) ∈ R.
(If X , L, W , and R are clear from the context, we will just write Λ to indicate
an instance description.)

We require that a subset membership problem M provides the following al-
gorithms: (1) the instance sampling algorithm takes as input 1�, and returns
Λ[X,L,W,R] ∈ [I�] chosen according to I�, and (2) the subset sampling al-
gorithm takes as input 1� and an instance Λ[X,L,W,R] ∈ [I�], and returns
x ∈ L and a witness ω ∈ W for x. We say that a subset membership prob-
lem M = {I�}�≥0 is hard if the following two distributions are computationally

indistinguishable: {Λ← I�;x
$← L : (Λ, x)} and {Λ← I�;x

$← X \L : (Λ, x)}.

Hash Proof System (HPS): Informally, a HPS is a special kind of (designated-
verifier) non-interactive zero-knowledge proof system for a subset membership
problem M = {I�}�>0. A HPS has, as its internal structure, a family of hash
functions with the special projective property, and this projective hash family
is associated with each instance of the subset membership problems. Although
HPS does not treat for all NP languages, HPS leads to an efficient CCA2-secure
PKE construction.

As in [11], we will occasionally introduce an arbitrary finite set E to extend
the sets X and L in an instance Λ[X,L,W,R] ∈ [I�] of M into X×E and L×E.
If E is not required (e.g., for a smooth HPS in our construction), then we omit E
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from the following algorithms. A HPS P = (HPS.param,HPS.priv,HPS.pub), for
M associates each instance Λ = Λ[X,L,W,R] ofM with a projective hash family
H = (H,K,X × E,L× E,Π, S, α), provides the following three algorithms: (1)
The index sampling algorithm HPS.param takes an instance Λ as input, and
returns k ∈ K and s ∈ S such that α(k) = s. (2) The private evaluation
algorithm HPS.priv takes Λ ∈ [I�], k ∈ K and (x, e) ∈ X × E as input, and
returns π = Hk(x, e) ∈ Π . (3) The public evaluation algorithm HPS.pub takes
Λ ∈ [I�], s ∈ S, x ∈ L, e ∈ E, and a witness ω for x as input, and returns
π = Hk(x, e) ∈ Π . We say that P is ε-universal1 (resp. ε-universal2, ε-smooth)
if for all � > 0 and for all Λ[X,L,W,R] ∈ [I�], H is an ε-universal1 (resp. ε-
universal2, ε-smooth) projective hash family.

Note that the homomorphic property of the underlying smooth projective
hash family is required in our construction, where for all k ∈ K, and x1, x2 ∈ X ,
we have Hk(x1) +Hk(x2) = Hk(x1 + x2) ∈ Π holds. Then, we call this smooth
projective hash family homomorphic smooth projective hash family, and also call
a smooth HPS homomorphic smooth HPS if the underlying smooth projective
hash family has the homomorphic property.

Diverse Group System and Derived Projective Hash Family: Here, we
recall the definition of diverse group systems introduced in [11], which were used
to construct projective hash families. Let X , L, and Π be abelian groups, where
L is a proper subgroup ofX , and Hom(X,Π) be the group of all homomorphisms
φ : X → Π . LetH be a subgroup of Hom(X,Π). ThenG = (H, X, L,Π) is called
a group system. In addition, we say that G is diverse if for all x ∈ X \ L, there
exists φ ∈ H such that φ(L) = 〈0〉, but φ(x) �= 0.

We recall the projective hash family H = (H,K,X,L,Π, S, α) derived from
a diverse group system G ([11, Definition 2]): Let g1, . . . , gd ∈ L be a set of
generators of L (i.e., for all x ∈ L, there exist ω1, . . . , ωd ∈ Z such that x =∑d

i=1 ωigi). Set S = Πd, and define α : K → S by α(k) = (φ(g1), . . . , φ(gd)),
where φ = Hk. Note that H is a projective hash family because Hk(x) for x ∈ L
is determined by α(k) such that Hk(x) = φ(

∑d
i=1 ωigi) =

∑d
i=1 ωiφ(gi). The

following was shown by Cramer and Shoup [11, Theorem 2].

Lemma 1. The projective hash family H derived from a diverse group system
G as above is 1/p̃-universal1, where p̃ is the smallest prime dividing |X/L|.

3 Definition of KH-PKE

In this section, we give the formal definitions of the syntax and the security
requirements of KH-PKE.

3.1 Syntax of KH-PKE

Definition 1 (Syntax of KH-PKE for homomorphic operation �). Let
M be a message space. We require that for all M1,M2 ∈ M, it holds that
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M1 �M2 ∈ M. A KH-PKE scheme KH-PKE = (KeyGen,Enc,Dec,Eval) for
homomorphic operation � consists of the following four algorithms:

KeyGen: This algorithm takes a security parameter 1� (� ∈ N) as input, and
returns a public key pk, a decryption key skd, and a homomorphic operation
key skh.

Enc: This algorithm takes pk, and a message M ∈ M as input, and returns a
ciphertext C.

Dec: This algorithm takes skd and C as input, and returns M or ⊥.
Eval: This algorithm takes skh, two ciphertexts C1 and C2 as input, and outputs

a ciphertext C or ⊥.

Note that the above definition for the evaluation algorithm Eval does not say
anything about the homomorphic property, and its functionality is defined as a
correctness requirement below. Let pk be a public key generated by the KeyGen
algorithm, and Cpk,M be the set of all ciphertexts of M ∈ M under the public
key pk, i.e., Cpk,M = {C|∃r ∈ {0, 1}∗ s.t. C = Enc(pk,M ; r)}.

Definition 2 (Correctness). A KH-PKE scheme for homomorphic operation
� is said to be correct if for all (pk, skd, skh) ← KeyGen(1�), the following
two conditions are satisfied: (1) For all M ∈ M, and all C ∈ Cpk,M , it holds
that Dec(skd, C) = M . (2) For all M1,M2 ∈ M, all C1 ∈ Cpk,M1 , and all
C2 ∈ Cpk,M2 , it holds that Eval(skh, C1, C2) ∈ Cpk,M1	M2 .

If an operation � is commutative, then the Eval algorithm is also called com-
mutative, and we require that the distribution of Eval(skh, C1, C2) and that of
Eval(skh, C2, C1) are identical. We instantiate DDH/DLIN/DBDH-based KH-
PKEs with multiplicative homomorphic operations (� := ×), a DCR-based
KH-PKE with additive homomorphic operations (� := +), and a DQR-based
KH-PKE with XOR homomorphic operations (� := ⊕). Thus, our concrete
instantiations are all commutative schemes.

Next, we define the security notion for KH-PKE, which we call indistinguisha-
bility of message under adaptive chosen ciphertext attacks (KH-CCA).

Definition 3 (KH-CCA). A KH-PKE scheme is said to be KH-CCA secure
if for any PPT adversary A, the advantage

AdvKH-CCA
KH-PKE,A(�) =

∣∣Pr[(pk, skd, skh)← KeyGen(1�);

(M∗
0 ,M

∗
1 , State)← AO(find, pk); β

$← {0, 1};

C∗ ← Enc(pk,M∗
β); β

′ ← AO(guess, State, C∗); β = β′]− 1

2

∣∣
is negligible in �, where O consists of the three oracles Eval(skh, ·, ·), RevHK, and
Dec(skd, ·) defined as follows. Let D be a list which is set as D = {C∗} right
after the challenge stage (D is set as ∅ in the find stage).
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– The evaluation oracle Eval(skh, ·, ·): If RevHK has already been queried before,
then this oracle is not available. Otherwise, this oracle responds to a query
(C1, C2) with the result of C ← Eval(skh, C1, C2). In addition, if C �= ⊥ and
either C1 ∈ D or C2 ∈ D, then the oracle updates the list by D ← D ∪ {C}.

– The homomorphic key reveal oracle RevHK: Upon a request, this oracle re-
sponds with skh. (This oracle is available only once.)

– The decryption oracle Dec(skd, ·): This oracle is not available if A has queried
to RevHK and A has obtained the challenge ciphertext C∗. Otherwise, this
oracle responds to a query C with the result of Dec(skd, ·) if C �∈ D or returns
⊥ otherwise.

Here, let us remark on the definition of KH-CCA security. Throughout this
paper, an adversary who has skh is called an insider, whereas an adversary who
does not have skh is called an outsider.

In case A does not query the RevHK oracle (i.e., A is an outsider), A is
allowed to adaptively issue decryption queries and evaluation queries of any
ciphertexts. In particular, in order to capture the malleability in the presence of
the homomorphic operation, the Eval oracle allows the challenge ciphertext C∗ as
input. To avoid an unachievable security definition, the Dec oracle immediately
answers ⊥ for “unallowable ciphertexts” that are the results of a homomorphic
operation for C∗ and any ciphertext of an adversary’s choice. Such unallowable
ciphertexts are maintained by the list D.

The situation that the Dec oracle does not answer for ciphertexts that are
derived from the challenge ciphertext C∗ might seem somewhat analogous to
the definition of RCCA security [6]. However, there is a critical difference be-
tween KH-CCA and RCCA: In the RCCA security game, the Dec oracle does
not answer if a ciphertext C satisfies Dec(skd, C) ∈ {M∗

0 ,M
∗
1 }. That is, the func-

tionality of the Dec oracle is restricted regardless of the adversary’s strategy. On
the other hand, in the KH-CCA security game, in case an adversary selects the
strategy that it does not submit C∗ to the Eval oracle, the restriction on the
Dec oracle is exactly the same as the CCA2 security for ordinary PKE scheme,
and it is one of the adversary’s possible strategies whether it submits C∗ to
the Eval oracle, and thus the adversary has more flexibility than in the RCCA
game.

If an outsider A becomes an insider after A obtains the challenge ciphertext
C∗, then A is not allowed to issue a decryption query after obtaining skh via the
RevHK oracle. In other words, A is allowed to issue a decryption query until right
before obtaining skh, even if C∗ is given to A. This restriction is again to avoid a
triviality. (If A obtains skh, A can freely perform homomorphic operations over
the challenge ciphertexts, and we cannot meaningfully define the “unallowable
set” of ciphertexts.)

Note that we can show that any KH-CCA secure PKE scheme satisfies CCA1
(thus CPA also) security against an adversary who is given (pk, skh) in the setup
phase. Showing this implication is possible mainly due to the RevHK oracle that
returns skh to an adversary, and the Dec oracle in the KH-CCA game.
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4 Generic Construction via Homomorphic Transitional
Universal HPS

In this section, we give a generic construction of KH-PKE from an enhanced
variant of universal HPS, which we call homomorphic transitional universal HPS.
A homomorphic transitional universal HPS has, as its internal structure, a family
of hash functions which we call transitional universal projective hash family.

4.1 Homomorphic Transitional Universal Projective Hash Families

Informally, a projective hash family H = (H,K,X,L,Π, S, α) is said to be a
transitional universal projective hash family if an index k ∈ K for specifying a
hash function from the family can be divided into two components as (k′, k̂),

and even if k̂ is exposed, it still yields the universal1 property.

Definition 4 (Homomorphic Transitional (ε, ε′)-Universal Projective
Hash Families). Let H = (H,K,X × E,L × E,Π, S, α) be an ε-universal2
hash family. We say that H is (ε, ε′)-transitional if (1) The function index space
K can be divided into two subspaces K1 and K2 such that K = K1 ×K2 (say
−→
k := (k′, k̂) ∈ K1 × K2), and (2) Considering the probability space defined by

choosing k′ ∈ K1 at random. Then for all s ∈ S, x ∈ X \L, k̂ ∈ K2 and π ∈ Π,

it holds that Pr
k′ $←K1

[Hk′,k̂(x, e) = π ∧ α(k′, k̂) = s] ≤ ε′ · Pr
k′ $←K1

[α(k′, k̂) = s].

Especially, if ε and ε′ are negligible, then H is called a transitional univer-
sal projective hash family. Moreover, if for all (k′, k̂) ∈ K1 × K2 and for all
(x1, e1), (x2, e2) ∈ X × E, Hk′,k̂(x1 + x2, e1 + e2) can be efficiently computed

given k̂, (x1, e1, Hk′,k̂(x1, e1)) and (x2, e2, Hk′,k̂(x2, e2)), then H is called a ho-
momorphic transitional universal projective hash family.

Next, we show that the projective hash family [10, §7.43 Theorem 3] based on a
diverse group system, satisfies the homomorphic transitional universal property
as it is.

The Cramer-Shoup (CS) Projective Hash Family [10] : LetH = (H,K,X,
L,Π, S, α) be a universal1 projective hash family derived from a diverse group
system G = (H, X, L,Π) (see the last paragraph of Section 2), and E be an

abelian group. Then the CS projective hash family Ĥ = (Ĥ, K̂ = Kn+1, X ×
E,L×E, Π̂, Ŝ = Sn+1, α̂) is constructed as follows: Let Γ : X×E → {0, . . . , p̃−
1}n be an injective function, where p̃ is the smallest prime dividing |X/L|,
and n is sufficiently large enough for Γ to be injective. For

−→
k = (k′, k1, . . . ,

kn) ∈ Kn+1, x ∈ X , and e ∈ E, Ĥ is defined as: Ĥk′,k̂(x, e) := Hk′(x) +∑n
i=1 γiHki(x), and α̂(k′, k̂) = (α(k′), α(k1), . . . , α(kn)), where (γ1, . . . , γn) =

Γ (x, e). Cramer and Shoup showed that the CS projective hash family Ĥ is
(1/p̃)-universal2. Note that since Hk = φ ∈ Hom(X,Π), the basic projective
hash family H derived from the diverse group system satisfies the homomorphic
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property, namely for all k ∈ K, and x1, x2 ∈ X , we have Hk(x1) + Hk(x2) =
Hk(x1 + x2) ∈ Π . Next, we show that it is in fact a homomorphic transitional
universal projective hash family.

Lemma 2. If an index
−→
k ∈ Kn+1 is divided into k′ ∈ K and k̂ = (k1, . . . ,

kn) ∈ Kn, then the CS projective hash family Ĥ is a homomorphic transitional
(1/p̃, 1/p̃)-universal projective hash family.

Proof: For
−→
k ∈ Kn+1, fix (k1, . . . , kn) ∈ Kn, and consider the probability

space is defined by choosing k′ ∈ K at random. Then, Ĥ still provides the (1/p̃)-
universal1 property, because the projective hash family H is a (1/p̃)-universal1
and the output of Ĥ is “masked” by the output of H. Furthermore, for all
(x1, e1), (x2, e2) ∈ X × E, Hk′,k̂(x1 + x2, e1 + e2) can be efficiently computed

given k̂ = (k1, . . . , kn), (x1, e1, Hk′,k̂(x1, e1)) and (x2, e2, Hk′,k̂(x2, e2)) such that

(1) compute
∑n

i=1 γ
(1)
i Hki(x1) and

∑n
i=1 γ

(2)
i Hki(x2), where (γ

(b)
1 , . . . , γ

(b)
n ) =

Γ (xb, eb) for b = 1, 2, and (2) compute Ĥk′,k̂(x1+x2, e1+ e2)←
(
Ĥk′,k̂(x1, e1)−∑n

i=1 γ
(1)
i Hki(x1)

)
+
(
Ĥk′,k̂(x2, e2)−

∑n
i=1 γ

(2)
i Hki(x2)

)
+
∑n
i=1 γiHki(x1 + x2),

where (γ1, . . . , γn) = Γ (x1 + x2, e1 + e2). ��
Finally we define the notion of homomorphic transitional universal HPS.

Definition 5 (Homomorphic Transitional Universal HPS). Let M =
{I�}�≥0 be a subset membership problem. We say that a HPS P for M is homo-
morphic transitional (ε, ε′)-universal if for all � > 0 and for all Λ = Λ[X,L,W,R]
∈ [I�], the projective hash family H that P associates with Λ is homomorphic
transitional (ε, ε′)-universal.

4.2 Generic Construction of KH-PKE

Here, we give the proposed construction of a KH-PKE scheme based on a ho-
momorphic transitional universal HPS given in the previous subsection, a homo-
morphic smooth projective HPS, and a universal2 projective HPS. We note that
all of the projective hash families used in our construction can be constructed
from a diverse group system [11]. Therefore, our proposed construction is fairly
generic.

We set E = Π (Π is an abelian group, for which we use additive notation) and
Γ : X ×Π → Πn is an injective function, where n is a natural number which is
sufficiently large so that Γ is injective. Let M = {I�}�≥0 be a subset membership
problem which specifies an instance description Λ = Λ[X,L,W,R] ∈ [I�]. We

will use the following three kinds of projective hash families H, Ĥ and H̃ and
corresponding HPS (for M). Using these building blocks, we construct a KH-
PKE scheme as in Figure 1.

– H = (H,K,X,L,Π, S, α) is a homomorphic smooth and projective hash
family. Let P = (HPS.param,HPS.priv,HPS.pub) be a homomorphic smooth
projective HPS for M which associates the instance Λ with H.
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KeyGen(1�) :
Pick Λ = Λ[X,L,W,R] ← [I�].

(k, s) ← HPS.param(1�, Λ)

(
−→
k , ŝ) ← ĤPS.param(1�, Λ)

Parse
−→
k ∈ K̂ = K ×Kn as (k′, k̂)

s.t. k′ ∈ K and

k̂ := (k1, . . . , kn) ∈ Kn

(k̃, s̃) ← H̃PS.param(1�, Λ)
pk ← (s, ŝ, s̃)

skd ← (k, (k′, k̂), k̃); skh ← (k̂, k̃)
Return (pk, skd, skh)

Dec(skd, C) :

Parse skd as (k, (k′, k̂), k̃)
Parse C as (x, e, π̂, π̃)

π̂′ ← ĤPS.priv(1�, Λ, (k′, k̂), (x, e))
π̃′ ← H̃PS.priv(1�, Λ, k̃, (x, e))
If π̂ �= π̂′ or π̃ �= π̃′ then return ⊥
π ← HPS.priv(1�, Λ, k, x)
Return M ← e− π

Enc(pk,M) :

Choose x
$← L and its witness ω ∈ W

π ← HPS.pub(1�, Λ, s, x, ω); e ← M + π

π̂ ← ĤPS.pub(1�, Λ, ŝ, (x, e), ω)

π̃ ← H̃PS.pub(1�, Λ, s̃, (x, e), ω)
Return C ← (x, e, π̂, π̃).

Eval(skh, C1, C2) :

Parse skh as (k̂, k̃) where k̂ = (k1, . . . , kn)
Parse Cb as (xb, eb, π̂b, π̃b) for b = 1, 2

π̃′
b ← H̃PS.priv(1�, Λ, k̃, (xb, eb)) for b = 1, 2

If π̃1 �= π̃′
1 or π̃2 �= π̃′

2 then return ⊥
For b = 1, 2 Do:

(γ
(b)
1 , . . . , γ

(b)
n ) ← Γ (xb, eb)

Hki(xb) ← HPS.priv(1�, Λ, ki, xb)
for all i ∈ [n]

π̂′
b ← π̂b −

∑
i∈[n] γ

(b)
i Hki(xb)

End For
x ← x1 + x2; e ← e1 + e2
(γ1, . . . , γn) ← Γ (x, e)

Hki(x) ← HPS.priv(1�, Λ, ki, x)
for all i ∈ [n]

π̂ ← π̂′
1 + π̂′

2 +
∑

i∈[n] γiHki(x)

π̃ ← H̃PS.priv(1�, Λ, k̃, (x, e))
Return C ← (x, e, π̂, π̃)

Fig. 1. The proposed KH-PKE construction from HPS

– Ĥ = (Ĥ, K̂ = K × Kn, X × Π,L × Π, Π̂, Ŝ = Sn+1, α̂) is the CS (homo-
morphic transitional universal) projective hash family that we showed in

the previous subsection (with the index space K̂ is divided into K1 = K

and K2 = Kn). Let P̂ = (ĤPS.param, ĤPS.priv, ĤPS.pub) be a homomorphic

transitional universal HPS for M which associates Λ with Ĥ.
– H̃ = (H̃, K̃,X × Π,L × Π, Π̃, S̃, α̃) is a universal2 projective hash family.

Let P̃ = (H̃PS.param, H̃PS.priv, H̃PS.pub) be a universal2 HPS for M which

associates Λ with H̃.

One might think that in the contraction, H̃ is redundant, and thus is not neces-
sary. However, this is not true. Namely, if H̃ is removed, then the adversary can
extract meaningful information from the Eval oracle by submitting an invalid ci-
phertexts, and therefore, the resulting scheme becomes insecure. In other words,
with the help of H̃, the Eval oracle can distinguish invalid ciphertexts from valid
ones, and consequently, the above attack is prevented.

To see the correctness for the Eval algorithm, suppose that Eval receives cor-
rectly generated ciphertexts C1 = (x1, e1, π̂1, π̃1) and C2 = (x2, e2, π̂2, π̃2) of
plaintexts M1 and M2, respectively. Let M = M1 + M2. Then, by recalling
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the homomorphic and transitional properties, the following holds: π̂′
b = π̂b −∑n

i=1 γ
(b)
i Hki(xb) = Hk′ (xb) for b = 1, 2, e1 + e2 = (M1 +M2) + (Hk(x1) +

Hk(x2)) = (M1 + M2) + Hk(x1 + x2) = (M1 + M2) + Hk(x), π̂ = π̂′
1 +

π̂′
2 +
∑n

i=1 γiHki(x) = Hk′(x1) + Hk′(x2) +
∑n

i=1 γiHki(x) = Hk′(x1 + x2) +∑n
i=1 γiHki(x) = Hk′ (x) +

∑n
i=1 γiHki(x) = Ĥk′,k̂(x, e), which means that

C = (x, e, π̂, π̃) is a valid ciphertext of M :=M1 +M2.
Since all of the projective hash families used in our construction can be con-

structed from a diverse group system, from the result of [19] (where CPA-secure
homomorphic PKE (with cyclic ciphertext space) implies diverse group systems),
the following corollary is given.

Corollary 1. KH-PKE is implied by CPA-secure homomorphic PKE with cyclic
ciphertext space.

The proof of the following theorem is given in the Appendix.

Theorem 1. Our construction is KH-CCA-secure if M is a hard subset mem-
bership problem, P is a homomorphic smooth projective HPS for M, P̂ is a
homomorphic transitional universal HPS for M, and P̃ is a universal2 HPS
for M.

5 Practical KH-PKE Construction from DDH

In this section, we present an efficient DDH-based KH-PKE construction. This
scheme is not a mere combination of the generic construction of KH-PKE in
Section 4 and the transitional HPS from DDH (which will appear in the full ver-
sion), but introduces additional techniques for enhancing efficiency. Remarkably,
efficiency of our scheme is only slightly lower than the Cramer-Shoup encryption
in spite of its complicated functionality. In particular, ciphertext length of our
scheme is only �-bit larger than that of the Cramer-Shoup scheme, where � is the
security parameter. For example, for 128-bit security, ciphertext overhead of our
scheme is 896-bit while that of the Cramer-Shoup scheme is 768-bit (assuming
that these schemes are implemented over elliptic curves).

5.1 Techniques for Improving Efficiency

Before going into the concrete construction of our DDH-based KH-PKE scheme,
we briefly explain two additional techniques for enhancing efficiency which are
not mentioned in the previous sections. Both these techniques employ target
collision resistant (TCR) hash functions [10], and can also be applicable to other
various (standard) PKE schemes.

The first technique is just the same as the popular method for transforming
hash-free variant of the Cramer-Shoup scheme into the TCR-based one (i.e.,
the standard Cramer-Shoup scheme). Due to it, the size of the public key is
significantly reduced.
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KeyGen(1�) :

g0, g1
$← G

k0, k1, k
′
0, k

′
1, k̂1,0, k̂1,1, k̃0, k̃1, k̃1,0,

k̃1,1
$← Zp;

s ← gk0
0 gk1

1 ; s′ ← g
k′
0

0 g
k′
1

1

ŝ ← g
k̂1,0

0 g
k̂1,1

1 ; s̃ ← gk̃0
0 gk̃1

1

s̃1 ← g
k̃1,0

0 g
k̃1,1

1

pk ← (g0, g1, s, s
′, ŝ, s̃, s̃1)

skd ← ((k0, k1), (k
′
0, k

′
1, k̂1,0, k̂1,1),

(k̃0, k̃1, k̃1,0, k̃1,1))

skh ← ((k̂1,0, k̂1,1), (k̃0, k̃1, k̃1,0, k̃1,1))
Return (pk, skd, skh)

Dec(skd, C) :
Parse C as (x0, x1, e, π̂, τ )
γ ← TCR1(x0, x1, e)

π̂′ ← x
k′
0+γk̂1,0

0 x
k′
1+γk̂1,1

1

π̃′ ← x
k̃0+γk̃1,0

0 x
k̃1+γk̃1,1

1

If either π̂ �= π̂′ or τ �= TCR2(π̃
′)

then return ⊥
π ← xk0

0 xk1
1

Return M ← e/π

Enc(pk,M) :

ω
$← Zp; x0 ← gω0 ; x1 ← gω1

π ← sω; e ← M · π
γ ← TCR1(x0, x1, e)
π̂ ← (s′ · ŝ γ)ω; π̃ ← (s̃ · s̃ γ

1 )ω

τ ← TCR2(π̃)
Return C ← (x0, x1, e, π̂, τ )

Eval(skh, C1, C2) :
Parse Cb as (xb,0, xb,1, eb, π̂b, τb)

for b = 1, 2
γb ← TCR1(xb,0, xb,1, eb) for b = 1, 2

π̃′
b ← x

k̃0+γbk̃1,0

b,0 x
k̃1+γbk̃1,1

b,1 for b = 1, 2

If τ1 �= TCR2(π̃
′
1) or τ2 �= TCR2(π̃

′
2)

then return ⊥
π̂′
b ← π̂b/(x

γbk̂1,0

b,0 x
γbk̂1,1

b,1 ) for b = 1, 2

x0 ← x1,0x2,0; x1 ← x1,1x2,1

e ← e1e2; γ ← TCR1(x0, x1, e)

π̂ ← π̂′
1π̂

′
2x

γk̂1,0

0 x
γk̂1,1

1

π̃ ← x
k̃0+γk̃1,0

0 x
k̃1+γk̃1,1

1

τ ← TCR2(π̃)
Return C ← (x0, x1, e, π̂, τ )

Fig. 2. Our DDH-based KH-PKE Scheme

The second technique is to compress the redundant part of the ciphertext by
using a TCR hash function. Interestingly, our security proof still works even if one
of ciphertext components (specifically, a component for validity checking upon
the homomorphic operation) is hashed to be a smaller value. It is a bit surprising
that this technique can be also applied to the original Cramer-Shoup scheme, but
to the best of our knowledge, it has never explicitly been stated in the literatures.
When applying our technique to the Cramer-Shoup scheme, ciphertext length of
the resulting scheme becomes the same as that of the Kurosawa-Desmedt (KD)
scheme [23] which is the best known DDH-based PKE scheme. We should also
note that this technique is not applicable to other similar schemes such as the
Cash-Kiltz-Shoup [7], Hanaoka-Kurosawa [18], and Kiltz schemes [21]. This fact
is primarily due to the structure of HPS-based constructions, and thus, it is
difficult to apply the above technique to PKE schemes from other methodology,
e.g. [5,18,20].

5.2 Practical KH-PKE from DDH

Here, we give a description of our KH-PKE instantiation (using our technique of
reducing the ciphertext size). First, we define the DDH assumption as follows.
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Table 1. Comparison among the Cramer-Shoup (CS) scheme, the Kurosawa-Desmedt
(KD) scheme, the KD + CS-lite (using the double encryption) scheme, and our DDH-
based KH-PKE scheme, where |C| − |M | denotes ciphertext overhead, |G| denotes the
size of the underlying group element G, and exp denotes exponentiation. We count 1
multi-exp equals as 1.2 regular exp, and the size of MAC and the hashed value of TCR
as 0.5|G|.

|C| − |M | Cost (Enc) Cost (Dec) KH property

CS [9] 3|G| 4.2 exp 2.4 exp No

KD [23] 2.5|G| 3.2 exp 1.2 exp No

KD+CS-lite Double Enc 5.5|G| 7.2 exp 3.6 exp No?

Our DDH-based KH-PKE 3.5|G| 5.4 exp 3.6 exp Yes

Definition 6 (The Decisional Diffie-Hellman (DDH) Assumption). Let
G be a group with prime order p. We say that the DDH assumption holds in G if
the advantage AdvDDH

G,A (1�) := |Pr[A(g0, g1, gr0, gr1) = 0]− Pr[A(g0, g1, gr0, gr
′

1 ) =
0]| is negligible for any PPT algorithm A, where g0 and g1 are randomly chosen
from G, and r and r′ are randomly chosen from Zp.

Our DDH-Based KH-PKE Scheme : Let TCR1 : G×G×G→ Zp and TCR2 :
G → {0, 1}logp/2 be TCR hash functions. We give our DDH-based KH-PKE

scheme in Figure 2. Here, we explain the usage of skh = ((k̂1,0, k̂1,1), (k̃0, k̃1, k̃1,0,

k̃1,1)). π̂
′
1 = π̂1/(x

γ1k̂1,0
1,0 x

γ1k̂1,1
1,1 ) = x

k′0
1,0x

k′1
1,1 and π̂

′
2 = π̂2/(x

γ2k̂1,0
2,0 x

γ2k̂1,1
2,1 ) = x

k′0
2,0x

k′1
2,1

hold using (k̂1,0, k̂1,1). So, π̂ ← π̂′
1π̂

′
2x
γk̂1,0
0 x

γk̂1,1
1 = x

k′0+γk̂1,0
0 x

k′1+γk̂1,1
1 holds.

Therefore, the Eval algorithmworks. The other keys (k̃0, k̃1, k̃1,0, k̃1,1) (and TCR2)
are used for computing π̃′

1 (resp. π̃′
2) to check the validity of C1 (resp. C2).

The following theorem can be proved in the same way as Theorem 1.

Theorem 2. The proposed DDH-based KH-PKE scheme is KH-CCA-secure if
the DDH assumption holds, and TCR1 and TCR2 are TCR hash functions.

In Table 1, we give an efficiency comparison of our DDH-based KH-PKE scheme
with the CS PKE [9], the KD PKE [23], and the naive construction (See Section
1). We note that these three schemes do not yield keyed-homomorphic property
and/or KH-CCA security. As seen in Table 1, our scheme is comparably efficient
to the best known DDH-based (standard) PKE schemes, i.e. the CS and the
KD schemes, in terms of both ciphertext overhead and computational costs.
Especially, ciphertext overhead of our scheme is only �-bit longer than that of
the CS scheme for �-bit security. It is somewhat surprising that it is possible to
realize KH property with only significantly small additional cost. Furthermore,
comparing with the naive construction (from KD and CS(-lite)) which appears
to have KH property (but does not satisfy KH-CCA security), we see that our
scheme is more efficient. This means that our methodology does not only yield
KH property (and KH-CCA security) but also significantly high efficiency.
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Appendix: Proof of Theorem 1

Proof. Let A be an adversary who breaks KH-CCA security. Then, we construct
an algorithm B that can break the hardness ofM. To later calculate the concrete
advantage of A, let ε(�), ε̂(�), and ε̃(�) be negligible functions such that P be

ε(�)-smooth, and P̂ be homomorphic transitional (ε̂(�), ε̂(�))-universal, and P̃ be
ε̃(�)-universal2.
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We describe how B simulates the KH-CCA experiment for A. First, B takes
as input 1� along with Λ[X,L,W,R] ∈ [I�] and x

∗ ∈ X . B runs (pk, skd, skh)←
KeyGen(1�) as usual using the given value of Λ, where pk = (s, ŝ, s̃), skd =

(k,
−→
k , k̃) = (k, (k′, k̂), k̃), and skh = (k̂, k̃). B sends pk to A.
In find stage, B answers for each query as follows: For a decryption query C,

B runs Dec(skd, C) as usual using skd, and returns the result of the decryption
algorithm. For an evaluation query (C1, C2), B runs Eval(skh, C1, C2) as usual
using skh, and returns the result of the evaluation algorithm. For the reveal
homomorphic key query, B returns skh = (k̂, k̃). In the challenge phase, A sends

(M∗
0 ,M

∗
1 ) to B. B chooses β

$← {0, 1}, and computes π∗ ← Hk(x
∗) using the

private evaluation algorithm, e∗ = π∗ +M∗
β , and π̂

∗ ← Ĥk′,k̂(x
∗, e∗) and π̃∗ ←

H̃k̃(x
∗, e∗) using the private evaluation algorithm, and sends C∗ = (x∗, e∗, π̂∗, π̃∗)

to A. In addition, B sets a ciphertext dictionary D such that D = {C∗}. In
guess stage, B answers for each query as follows: For a decryption query C,
if C ∈ D, then return ⊥. Otherwise, B runs Dec(skd, C) as usual using skd,
and returns the result of the decryption algorithm. For an evaluation query
(C1, C2), B runs Eval(skh, C1, C2) as usual using skh, and returns the result of the
evaluation algorithm. If either C1 ∈ D or C2 ∈ D, then B updates D ← D∪{C3},
where C3 = Eval(skh, C1, C2). Note that if C3 = ⊥, then B does not update the

dictionary D. For the reveal homomorphic key query, B returns skh = (k̂, k̃).
Finally, A outputs a guessing bit β′. B outputs 1 if β = β′, and 0 otherwise.

Next, we define two experiments according to whether x∗ ∈ L or x∗ ∈ X \ L.
In the first experiment, B is given (Λ, x∗), where Λ[X,L,W,R] ∈ [I�] and x

∗ ∈
L. Let T ′

� be the event that B outputs 1 in this experiment. In the second
experiment, B is given (Λ, x∗), where Λ[X,L,W,R] ∈ [I�] and x∗ ∈ X \ L.
Let T� be the event that B outputs 1 in this experiment. By definition of the
subset membership problem, the advantage of B is defined as AdvDist(�) :=
|Pr[T�]− Pr[T ′

� ]|. Let Qdec(�) be the number of decryption queries and Qeval(�)
be the number of evaluation queries. In the case of x∗ ∈ L, the simulation of
the KH-CCA game for the adversary A is perfect. Thus, we get

∣∣Pr[T ′
�]− 1

2

∣∣ ≥
AdvKH-CCA

KH-PKE,A(�) In the case of x∗ ∈ X \L, we define the sequences of games. We

denote T
(0)
� , T

(1)
� , and T

(2)
� as the event that B outputs 1 in the game 0, 1, and

2, respectively.

Game 0: The same as the KH-CCA simulation.

Game 1: Recall that in Game 0, the decryption oracle (and the evaluation

oracle also) rejects a query (x, e, π̂, π̃) if either Ĥk′,k̂(x, e) �= π̂ or H̃k̃(x, e) �= π̃.
In this game, we make these oracles reject a query that contains a ciphertext
(x, e, π̂, π̃) satisfying x �∈ L. Let F2 be the event that these oracles reject a

query (x, e, π̂, π̃) with x �∈ L, but either Ĥk′,k̂(x, e) = π̂ or H̃k̃(x, e) = π̃ holds.

In the find phase, α̂(k′, k̂) = ŝ and α̃(k̃) = s̃ are fixed. Then, the probability

that Ĥk′,k̂(x, e) = π̂ is at most ε̂(�), since Ĥ is a ε̂-universal2 (or ε̂-universal1
projective, if A has been an insider via the RevHK oracle) hash family, and
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the probability that H̃k̃(x, e) = π̃ is at most ε̃(�), since H̃ is a ε̃-universal2

hash family. In the challenge phase, π̂∗ = Ĥk′,k̂(x
∗, e∗) and π̃∗ = H̃k̃(x

∗, e∗)

are fixed. After this, in the guess stage, the probability that Ĥk′,k̂(x, e) = π̂

is at most ε̂(�), since Ĥ is a ε̂-universal2. Note that if A has been an insider,
then A does not issue the decryption query. In addition, the probability that
H̃k̃(x, e) = π̃ is at most ε̃(�), since H̃ is a ε̃-universal2. To sum up, we get
Pr[F2] ≤ Qdec(�)(ε̂(�)+ ε̃(�))+2Qeval(�)ε̃(�). The term 2Qeval(�) is derived from
the fact that an evaluation query contains two ciphertexts. In addition, from the
fact that Game 0 and Game 1 are identical if the event F2 does not occur, we

get
∣∣Pr[T (1)

� ]− Pr[T
(0)
� ]
∣∣ ≤ Pr[F2] ≤ Qdec(�)(ε̂(�) + ε̃(�)) + 2Qeval(�)ε̃(�).

Game 2: In this game, B chooses π∗ $← Π (instead of computing π∗ = Hk(x
∗))

and computes e∗ = π∗ +M∗
β . Since H is an ε(�)-smooth projective hash family

and β is hidden by π∗, we get
∣∣Pr[T (2)

� ]− Pr[T
(1)
� ]
∣∣ ≤ ε(�) and Pr[T

(2)
� ] = 1

2 . By
combining the inequalities, we get AdvKH-CCA

KH-PKE,A(�) ≤ AdvDist(�) +Qdec(�)ε̂(�) +
(Qdec(�) + 2Qeval(�))ε̃(�) + ε(�), which is negligible. ��
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Abstract. In this talk, we will present the notion of functional en-
cryption and recent progress in the area. We will begin by describing
the concept and origins of functional encryption. Next, we will describe
intuitively why current bilinear map based constructions appear to be
“stuck” with boolean formula type functionality even in the public index
setting. Finally, we will see some very recent work that uses multilinear
forms to move beyond these barriers and achieve functionality for any
circuit.

Overview

Encryption is a method to encode data such that it can only be understood by a
recipient that holds a certain private key object. The traditional notion of public
key encryption [10,11,21,13] is that a data owner will encrypt data to the public
key of a specific targeted user to create a ciphertext. Later, a user possessing
the corresponding private key can decrypt the ciphertext to obtain the original
data. Ingrained in this notion is that: (1) Encryption is a method to target to a
specific user. (2) Decryption is an all or nothing operation; either a ciphertext
is fully decrypted and the original data is recovered or else it fails and nothing
is learned.

Functional encryption is a new vision of encryption that moves pass these
barriers. In a Functional Encryption system what a user learns from decryption
is determined by a function of the encrypted data and the user’s secret key de-
scriptor (as issued by some authority). Briefly, in a functional encryption system
with functionality F (·, ·) a user is issued a secret key skk for value k by some
authority. Suppose that a ciphertext ct is the encryption of data x. The user can
apply their secret key to learn F (k, x).

Functional encryption for expressive functionalities open up a wide variety
of applications. For instance, one might determine access to encrypted data
based on an arbitrary policy over a user’s credentials. Another possibility is that
encrypted data could consist of images and a user’s private key of their headshot.

� Supported by NSF CNS-0915361 and CNS-0952692, CNS-1228599 DARPA through
the U.S. Office of Naval Research under Contract N00014-11-1-0382, DARPA
N11AP20006, Google Faculty Research award, the Alfred P. Sloan Fellowship, and
Microsoft Faculty Fellowship, and Packard Foundation Fellowship.
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The user would be able to view the image only if their face appeared in it as
determined by some vision recognition algorithm. Moreover, the functionality
could blur out parts of the image not immediately surrounding the user’s body. In
a medical research environment, one could consider encrypting a large database
containing medical histories of patients coupled with DNA sequencing. Later,
if a researcher is granted permission to test a correlation between a certain
type of cancer and genotype they could be given a secret key that divulges the
correlation and nothing else.

Origins of Functional Encryption

The origins of functional encryption can be traced to the concept of Attribute-
Based Encryption (ABE) [23] proposed by Sahai and Waters. In a (Key-Policy)
ABE scheme a ciphertext contains a hidden message as well as (unhidden) meta-
data or attributes. A user’s private key is associated with a formula φ. A user
can decrypt a given ciphertext and recover the hidden message if and only if
the formula is satisfied when its values are assigned according to the metadata.
A technical lynchpin was the concept that any secure system must be collu-
sion resistant. Suppose an attacker obtains multiple secret keys, e.g., skk, skk′ .
In particular, the attacker should not be able to combine two private keys to
decrypt ciphertexts that neither private key was authorized for.

While Attribute-Based Encryption moves beyond the notion of encrypting to
a particular user, decryption is still an all or nothing proposition. In subsequent
works [6,16] the concept evolved to hide the metadata. The notion of Functional
Encryption first appeared in presentation slides prepared by Sahai and Waters in
2008 [24] and was described during talks given by both authors. Significant con-
ceptual work was done while both Sahai and Waters were researchers at IPAM
for the 2006 Securing Cyberspace program. The term functional encryption first
appeared in a published research paper by Lewko et. al. [17]. Finally, a defini-
tional framework for functional encryption was put forward by Boneh, Sahai,
and Waters [5] where they put forward both simulation and indistinguishability
definitions.1 The above work was influenced by concepts such as Identity-Based
Encryption (IBE) [26,4,9] and Anonymous IBE [3,1].

Achieving Stronger Functionality

Over the past several years there has been significant research activity on a
variety directions in functional encryption including proofs of adaptive secu-
rity [17,19], revocation of secret keys [2,22], policies across multiple authori-
ties [7,8,18], and investigation of definitions [5,20]. Arguably, the most important
question is what functionality can we achieve. For several years the strongest
form of expression we had was boolean formulas2 in ABE cryptosystems. While

1 Concurrently, with [5] and subsequent to discussions stemming from [24], O’Neill [20]
also put forward general definitions for functional encryption.

2 Technically, one can obtain span programs.
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boolean formula ABE systems give rise to several interesting applications, they
are still a far cry from being able to express access control in the form of any
program or circuit.

In this talk we will first explore the techniques that give rise to ABE systems
for boolean formulas. Our starting point will be the “Key-Policy” ABE system
of Goyal et. al. [15]. We will see how they use bilinear maps as the primary
mechanism for decryption blended with interpolation in the exponent techniques.
Together these give the boolean formula functionality and the needed protection
against collusion attacks. We also give insight into the difficulty of obtaining
stronger functionality using bilinear maps by arguing why such constructions are
“stuck” at the level of boolean formulas. Intuitively, the bilinear map mechanism
is “used up” in pairing the ciphertext with the secret key to prevent collusions
between different users. However, this leaves natural larger fanout generalizations
of GPSW to so called backtracking attacks.

We will next describe some very recent progress [25] that obtains Attribute-
Based Encryption for circuits. Obtaining ABE for circuits is a major jump in
that circuits can express any program of fixed running time. The new result is
obtained by applying the recent work of Garg, Gentry, and Halevi [12] which
describes some approximation of groups with multilinear maps. The new ABE
crypto leverages these multilinear forms to create a new “move forward and
shift” technique for decryption that replaces and subsumes the prior methods.
Independently, Gorbunov, Vaikuntanathan and Wee [14] obtained the same re-
sult under the Learning with Error (LWE) assumption. They create a set of novel
and elegant techniques to combat the backtracking issue. We refer the reader to
the introduction of [25] for further discussion of backtracking attacks and how
these are circumvented by new techniques.
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Abstract. We put forward the study of a new primitive that we call
Vector Commitment (VC, for short). Informally, VCs allow to commit
to an ordered sequence of q values (m1, . . . ,mq) in such a way that one
can later open the commitment at specific positions (e.g., prove that mi

is the i-th committed message). For security, Vector Commitments are
required to satisfy a notion that we call position binding which states
that an adversary should not be able to open a commitment to two dif-
ferent values at the same position. Moreover, what makes our primitive
interesting is that we require VCs to be concise, i.e. the size of the com-
mitment string and of its openings has to be independent of the vector
length.

We show two realizations of VCs based on standard and well estab-
lished assumptions, such as RSA, and Computational Diffie-Hellman (in
bilinear groups). Next, we turn our attention to applications and we show
that Vector Commitments are useful in a variety of contexts, as they al-
low for compact and efficient solutions which significantly improve pre-
vious works either in terms of efficiency of the resulting solutions, or in
terms of ”quality” of the underlying assumption, or both. These appli-
cations include: Verifiable Databases with Efficient Updates, Updatable
Zero-Knowledge Databases, and Universal Dynamic Accumulators.

1 Introduction

Commitment schemes are one of the most important primitives in cryptogra-
phy. Informally, they can be seen as the digital equivalent of a sealed envelope:
whenever a party S wants to commit to a message m, she puts m in the enve-
lope. At a later moment, S opens the envelope to publicly reveal the message
she committed to. In their most basic form commitment schemes are expected
to meet two requirements. A commitment should be hiding, meaning with this
that it should not reveal information about the committed message, and binding
which means that the committing mechanism should not allow S to change her
mind about m. More precisely, this means that the commitment comes with
an opening procedure that can be efficiently verified, i.e. one should be able to
efficiently check that the opened message is the one S originally committed to.
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Thus, a commitment scheme typically involves two phases: a committing one,
where a sender S creates a commitment C on some messages m, using some
appropriate algorithm and a decommitting stage, where S reveals m and should
”convince” a receiver R that C contains m. A commitment scheme is said to be
non-interactive if each phase requires only one messages from S to R.

Commitment schemes turned out to be extremely useful in cryptography and
have been used as a building block to realize highly non-trivial protocols and
primitives. Because of this, the basic properties discussed above have often
turned out to be insufficient for realizing the desired functionalities. This led
researchers to investigate more complex notions realizing additional properties
and features. Here we discuss a couple of these extensions, those more closely
related to the results presented in this paper.

Trapdoor commitment schemes (also known as chameleon commitments) have
a public key and a (matching) secret key (also known as the trapdoor). Knowl-
edge of the trapdoor allows to completely destroy the binding property. On the
other hand, the scheme remains binding for those who know only the public key.
A special case of trapdoor commitments are (trapdoor) Mercurial commitments,
a notion formalized by Chase et al. in [12]. Here the binding property is further
relaxed to allow for two different decommitting procedures: a hard and a soft
one. In the committing phase one can decide as whether to create a hard com-
mitment or a soft one. A hard commitment is like a standard one: it is created
to a specific message m, and it can be opened only to m. Instead, a soft com-
mitment is initially created to “no message”, and it can later be soft-opened (or
teased) to any m, but it cannot be hard-opened.

Our Contributions. In this paper we introduce a new and simple, yet powerful
notion of commitment, that we call Vector Commitment (VC, for short). Infor-
mally, VCs allow to commit to an ordered sequence of q values (i.e. a vector),
rather than to single messages. This is done in a way such that it is later possible
to open the commitment w.r.t. specific positions (e.g., to prove that mi is the
i-th committed message). More precisely, vector commitments are required to
satisfy what we call position binding. Position binding states that an adversary
should not be able to open a commitment to two different values at the same
position. While this property, by itself, would be trivial to realize using standard
commitment schemes, what makes our design interesting is that we require VCs
to be concise, i.e., the size of the commitment string as well as the size of each
opening have to be independent of the vector length.

Vector commitments can also be required to be hiding, in the sense that
one should not be able to distinguish whether a commitment was created to a
vector (m1, . . . ,mq) or to (m′

1, . . . ,m
′
q), even after seeing some openings. We,

however, notice that hiding is not a crucial property in the realization of vector
commitments. Therefore, in our constructions we will not focus on it. While this
might be surprising at first, we motivate it as follows. First, all the applications
of VCs described in this paper do not require such a property. Second, hiding
VCs can be easily obtained by composing a non-hiding VC with a standard
commitment scheme (see Section 2 for more details).
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Additionally, Vector Commitments need to be updatable. Very roughly, this
means that they come equipped with two algorithms to update the commitment
and the corresponding openings. The first algorithm allows the committer, who
created a commitment Com and wants to update it by changing the i-th message
frommi to m

′
i, to obtain a (modified) Com′ containing the updated message. The

second algorithm allows holders of an opening for a message at position j w.r.t.
Com to update their proof so as to become valid w.r.t. the new Com′.

Next, we turn our attention to the problem of realizing vector commitments.
Our technical contributions are two realizations of VCs from standard and well
established assumptions, namely RSA and Computational Diffie-Hellman (over
bilinear groups)1.

Finally, we confirm the power of this new primitive by showing several ap-
plications (see below) in which our notion of Vector Commitment allows for
compact and efficient solutions, which significantly improve previous works ei-
ther in terms of efficiency of the resulting solutions, or in terms of “quality” of
the underlying assumption, or both.

Verifiable Databases with Efficient Updates. Very recently, Benabbas,
Gennaro and Vahlis [3] formalized the notion of Verifiable Databases with Effi-
cient Updates (VDB, for short). This primitive turns out to be extremely useful
to solve the following problem in the context of verifiable outsourcing of storage.
Assume that a client with limited resources wants to store a large database on
a server so that it can later retrieve a database record, and update a record by
assigning a new value to it. For efficiency, it is crucial that the computational
resources invested by the client to perform such operations must not depend on
the size of the database (except for an initial pre-processing phase). On the other
hand, for security, the server should not be able to tamper with any record of
the database without being detected by the client.

For the static case (i.e., the client does not perform any update) simple so-
lutions can be achieved by using message authentication or signature schemes.
For example, the client first signs each database record before sending it to the
server, and then the server is requested to output the record together with its
valid signature. However, this idea does not work well if the client performs up-
dates on the database. The problem is that the client should have a mechanism
to revoke the signatures given to the server for the previous values. To solve
this issue, the client could keep track of every change locally, but this is in con-
trast with the main goal, i.e., using less resources than those needed to store the
database locally.

Solutions to this problem have been addressed by works on accumulators
[26,6,7], authenticated data structures [25,21,27,30], and the recent work on ver-
ifiable computation [3]. Also, other recent works have addressed a slightly dif-
ferent and more practical problem of realizing authenticated remote file systems
[29]. However, as pointed out in [3], previous solutions based on accumulators
and authenticated data structures either rely on non-constant size assumptions

1 Precisely, our construction relies on the Square Computational Diffie-Hellman as-
sumption which however has been shown equivalent to the standard CDH [22,1].
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(such as q-Strong Diffie-Hellman), or they require expensive operations such as
generation of prime numbers, and re-shuffling procedures. Benabbas et al. pro-
pose a nice solution with efficient query and update time [3]. Their scheme relies
on a constant size assumption in bilinear groups of composite order, but does
not support public verifiability (i.e., only the client owner of the database can
verify the correctness of the proofs provided by the server).

In this work, we show that Vector Commitments can be used to build Veri-
fiable Databases with efficient updates that allow for public verifiability. More
importantly, if we instantiate this construction with our VC based on CDH,
then we obtain an implementation of Verifiable Databases that relies on a stan-
dard constant-size assumption, and whose efficiency improves over the scheme
of Benabbas et al. as we can use bilinear groups of prime order.

Updatable Zero Knowledge Elementary Databases. Zero Knowledge
Sets allow a party P , called the prover, to commit to a secret set S in a way
such that he can later produce proofs for statements of the form x ∈ S or
x �∈ S. The required properties are the following. First, any user V (the verifier)
should be able to check the validity of the received proofs without learning
any information on S (not even its size) beyond the mere membership (or non-
membership) of the queried elements. Second, the produced proofs should be
reliable in the sense that no dishonest prover should be able to convince V of
the validity of a false statement. Zero Knowledge Sets (ZKS) were introduced and
constructed by Micali, Rabin and Kilian [23]2. Micali et al.’s construction was
abstracted away by Chase et al. [12], and by Catalano, Dodis and Visconti [8].
The former showed that ZKS can be built from trapdoor mercurial commitments
and collision resistant hash functions, and also that ZKS imply collision-resistant
hash functions. The latter showed generic constructions of (trapdoor) mercurial
commitments from the sole assumptions that one-way functions exist. These
results taken together [12,8], thus, show that collision-resistant hash functions
are necessary and sufficient to build ZKS in the CRS model. From a practical
perspective, however, none of the above solutions can be considered efficient
enough to be used in practice. A reason is that all of them allow to commit
to a set S ⊂ {0, 1}k by constructing a Merkle tree of depth k, where each
internal node is filled with a mercurial commitment (rather than the hash) of
its two children. A proof that x ∈ {0, 1}k is in the committed set consists of the
openings of all the commitments in the path from the root to the leaf labeled
by x (more details about this construction can be found in [23,12]). This implies
that proofs have size linear in the height k of the tree. Now, since 2k is an upper
bound for |S|, to guarantee that no information about |S| is revealed, k has to
be chosen so that 2k is much larger than any reasonable set size.

2 More precisely, Micali et al. addressed the problem for the more general case of
elementary databases (EDB), where each key x has associated a value D(x) in the
committed database. In the rest of this paper we will slightly abuse the notation
and use the two acronyms ZKS and ZK-EDB interchangeably to indicate the same
primitive.
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Catalano, Fiore and Messina addressed in [10] the problem of building ZKS
with shorter proofs. Their proposed idea was a construction that uses q-ary trees,
instead of binary ones, and suggested an extension of mercurial commitment
(that they called q-Trapdoor Mercurial Commitment) which allows to imple-
ment it. The drawback of the specific realization of qTMC in [10] is that it is
not as efficient as one might want. In particular, while the size of soft openings
is independent of q, hard openings grow linearly in q. This results in an ”unbal-
anced” ZK-EDB construction where proofs of membership are much longer than
proofs of non membership. In a follow-up work, Libert and Yung [19] proposed a
very elegant solution to this problem. Specifically, they managed to construct a
q-mercurial commitment (that they called concise) achieving constant-size (soft
and hard) openings. This resulted in ZK-EDB with very short proofs, as by in-
creasing q one can get an arbitrarily “flat” tree3. Similarly to [10], the scheme
of Libert and Yung [19] also relies on a non-constant size assumption in bilinear
groups: the q-Diffie-Hellman Exponent [5].

Our main application of VCs to ZKS is the proof of the following theorem:

Theorem 1 (informal). A (concise) trapdoor q-mercurial commitment can be
obtained from a vector commitment and a trapdoor mercurial commitment.

The power of this theorem comes from the fact that, by applying the generic
transform of Catalano et al. [10], we can immediately conclude that Compact
ZKS (i.e. ZKS with short membership and non-membership proofs) can be built
from mercurial commitments and vector commitments. Therefore, when combin-
ing our realizations of Vector Commitments with well known (trapdoor) mer-
curial ones (such as that of Gennaro and Micali [14] for the RSA case, or that
from [23], for the CDH construction) we get concise qTMCs from RSA and
CDH. Moreover, when instantiating the ZK-EDB construction of Catalano et al.
[10] with such schemes, one gets the first compact ZK-EDB realizations which
are provably secure under standard assumptions. Our CDH realization induces
proofs whose length is comparable to that induced by Libert and Yung’s commit-
ment [19], while relying on more standard and better established assumptions.

Additionally, and more importantly, we show the first construction of updat-
able ZK-EDB with short proofs. The notion of Updatable Zero Knowledge EDB
was introduced by Liskov [20] to extend ZK-EDB to the (very natural) case of
“dynamic” databases. In an updatable ZK-EDB the prover is allowed to change
the value of some element x in the database and then output a new commitment
C′ and some update information U . Users holding a proof πy for a y �= x valid
w.r.t. C, should be able to use U to produce an updated proof π′

y that is valid
w.r.t. C′. In [20] is given a definition of Updatable Zero Knowledge (Elementary)
Databases together with a construction based on mercurial commitments and
Verifiable Random Functions [24] in the random oracle model. More precisely,
Liskov introduced the notion of updatable mercurial commitment and proposed
a construction, based on discrete logarithm, which is a variant of the mercurial
commitment of Micali et al. [23].

3 The only limitation is that the resulting CRS grows linearly in q.
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Using Vector Commitments, we realize the first constructions of “compact”
Updatable ZK-EDB whose proofs and updates are much shorter than those
of Liskov [20]. In particular, we show how to use VCs to build Updatable ZK-
EDB from updatable qTMCs (which we also define and construct) and Verifiable
Random Functions in the random oracle model. We stress that our solutions,
in addition to solving the open problem of realizing Updatable ZK-EDB with
short proofs, further improve on previous work as they allow for much shorter
updates as well4.

Additional Applications of Vector Commitments. We leave to the full
version of this paper [9] a description of additional applications of Vector Com-
mitments to compact Independent Zero-Knowledge Databases [14], Fully Dy-
namic Universal Accumulators [4,7,17], and pseudonymous credentials [16]. Very
recently, Libert, Peters and Yung also used our Vector Commitments to improve
the efficiency of group signatures with revocation [18].

Preliminaries and Definitions. In what follows we will denote with k ∈ N the
security parameter, and by poly(k) any function which bounded by a polynomial
in k. An algorithm A is said to be PPT if it is modeled as a probabilistic Turing
machine that runs in time polynomial in k. Informally, we say that a function
is negligible if it vanishes faster than the inverse of any polynomial. If S is a

set, then x
$← S indicates the process of selecting x uniformly at random over

S (which in particular assumes that S can be sampled efficiently). If n is an
integer, we denote with [n], the set containing the integers 1, 2, . . . , n.

2 Vector Commitments

In this section we introduce the notion of Vector Commitment. Informally speak-
ing, a vector commitment allows to commit to an ordered sequence of values in
such a way that it is later possible to open the commitment only w.r.t. a specific
position. We define Vector Commitments as a non-interactive primitive, that
can be formally described via the following algorithms:

VC.KeyGen(1k, q) Given the security parameter k and the size q of the com-
mitted vector (with q = poly(k)), the key generation outputs some public
parameters pp (which implicitly define the message space M).

VC.Compp(m1, . . . ,mq) On input a sequence of q messagesm1, . . . ,mq ∈ M and
the public parameters pp, the committing algorithm outputs a commitment
string C and an auxiliary information aux.

VC.Openpp(m, i, aux) This algorithm is run by the committer to produce a proof
Λi that m is the i-th committed message.

VC.Verpp(C,m, i, Λi) The verification algorithm accepts (i.e., it outputs 1) only
if Λi is a valid proof that C was created to a sequence m1, . . . ,mq such that
m = mi.

4 This is because, in all known constructions, the size of the update information lin-
early depends on the height of the tree.
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VC.Updatepp(C,m,m
′, i) This algorithm is run by the committer who produced

C and wants to update it by changing the i-th message to m′. The algorithm
takes as input the old message m, the new message m′ and the position i. It
outputs a new commitment C′ together with an update information U .

VC.ProofUpdatepp(C,Λj ,m
′, i, U) This algorithm can be run by any user who

holds a proof Λj for some message at position j w.r.t. C, and it allows the
user to compute an updated proof Λ′

j (and the updated commitment C′)
such that Λ′

j will be valid w.r.t. C′ which contains m′ as the new message
at position i. Basically, the value U contains the update information which
is needed to compute such values.

For correctness, we require that ∀k ∈ N, q = poly(k), for all honestly gener-

ated parameters pp
$← VC.KeyGen(1k, q), if C is a commitment on a vector

(m1, . . . ,mq) ∈ Mq (obtained by running VC.Compp possibly followed by a
sequence of updates), Λi is a proof for position i generated by VC.Openpp or
VC.ProofUpdatepp (∀i = 1, . . . , q), then VC.Verpp(C,mi, i,VC.Openpp(mi, i, aux))
outputs 1 with overwhelming probability.

The attractive feature of vector commitments is that they are required to meet
a very simple security requirement, that we call position binding. Informally,
this says that it should be infeasible, for any polynomially bounded adversary
having knowledge of pp, to come up with a commitment C and two different
valid openings for the same position i. More formally:

Definition 2. [Position Binding] A vector commitment satisfies position binding
if ∀i = 1, . . . , q and for every PPT adversaryA the following probability (which is
taken over all honestly generated parameters) is at most negligible in k:

Pr

[
VC.Verpp(C,m, i, Λ) = 1∧
VC.Verpp(C,m

′, i, Λ′) = 1 ∧m �= m′ | (C,m,m′, i, Λ, Λ′)← A(pp)
]

Moreover, we require a vector commitment to be concise in the sense that the size
of the commitment string C and the outputs of VC.Open are both independent
of q.

Vector commitments can also be required to be hiding. Informally, a vector
commitment is hiding if an adversary cannot distinguish whether a commit-
ment was created to a sequence (m1, . . . ,mq) or to (m′

1, . . . ,m
′
q), even after

seeing some openings (at positions i where the two sequences agree). We ob-
serve, however, that hiding is not a critical property in the realization of vector
commitments. Indeed, any construction of vector commitments which does not
satisfy hiding, can be easily fixed by composing it with a standard commitment
scheme, i.e., first commit to each message separately using a standard commit-
ment scheme, and then apply the VC to the obtained sequence of commitments.
Moreover, neither the applications considered in this paper nor that considered
in [18] require the underlying VC to be hiding. For these reasons, in our con-
structions we will only focus on the realization of the position binding property.
We leave a formal definition of hiding for the full version of the paper.
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2.1 A Vector Commitment Based on CDH

Here we propose an implementation of concise vector commitments based on the
CDH assumption in bilinear groups. Precisely, the security of the scheme reduces
to the Square Computational Diffie-Hellman assumption. Roughly speaking, the
Square-CDH assumption says that it is computationally infeasible to compute
the value ga

2

, given g, ga ∈ G. This has been shown equivalent to the standard
CDH assumption [22,1]. Our construction is reminiscent of the incremental hash
function by Bellare and Micciancio [2], even if we develop new techniques for
creating our proofs that open the commitment at a specific position.

VC.KeyGen(1k, q) Let G,GT be two bilinear groups of prime order p equipped
with a bilinear map e : G × G → GT . Let g ∈ G be a random generator.

Randomly choose z1, . . . , zq
$← Zp. For all i = 1, . . . , q set: hi = gzi . For all

i, j = 1, . . . , q, i �= j set hi,j = gzizj .

Set pp = (g, {hi}i∈[q], {hi,j}i,j∈[q],i
=j). The message space is M = Zp.
5

VC.Compp(m1, . . . ,mq) Compute C = hm1
1 hm2

2 · · ·hmq
q and output C and the

auxiliary information aux = (m1, . . . ,mq).

VC.Openpp(mi, i, aux) Compute

Λi =

q∏
j=1,j 
=i

h
mj

i,j =

⎛⎝ q∏
j=1,j 
=i

h
mj

j

⎞⎠zi

VC.Verpp(C,mi, i, Λi) If e(C/hmi

i , hi) = e(Λi, g) then output 1. Otherwise out-
put 0.

VC.Updatepp(C,m,m
′, i) Compute the updated commitment C′ = C · hm

′−m
i .

Finally output C′ and U = (m,m′, i).

VC.ProofUpdatepp(C,Λj ,m
′, U) A client who owns a proof Λj, that is valid w.r.t.

to C for some message at position j, can use the update information U =
(m,m′, i) to compute the updated commitment C′ and produce a new proof
Λ′
j which will be valid w.r.t. C′. We distinguish two cases:

1. i �= j. Compute the updated commitment C′ = C · hm
′−m

i while the

updated proof is Λ′
j = Λj · (hm

′−m
i )zj = Λj · hm

′−m
j,i .

2. i = j. Compute the updated commitment as C′ = C · hm
′−m

i while the
updated proof remains the same Λi.

The correctness of the scheme can be easily verified by inspection. We prove its
security via the following theorem whose proof appears in the full version.

Theorem 3. If the CDH assumption holds, then the scheme defined above is a
concise vector commitment.

5 The scheme can be easily extended to support arbitrary messages in {0, 1}∗ by using
a collision-resistant hash function H : {0, 1}∗ → Zp.
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Efficiency and Optimizations. A drawback of our scheme is that the size
of the public parameters pp is O(q2). This can be significant in those applica-
tions where the vector commitment is used with large datasets (e.g., verifiable
databases and accumulators). However, we first notice that the verifier does not
need the elements hi,j . Furthermore, our construction can be easily optimized
in such a way that the verifier does not need to store all the elements hi of pp.
The optimization works as follows. Who runs the setup signs each pair (i, hi),
includes the resulting signatures σi in the public parameters given to the com-
mitter pp, and publishes the signature’s verification key. Next, the committer
includes σi, hi in the proof of an element at position i. This way the verifier can
store only g and the verification key of the signature scheme. Later, each time
it runs the verification of the vector commitment it has to check the validity of
hi by checking that σi is a valid signature on (i, hi).

2.2 A Vector Commitment Based on RSA

Here we propose a realization of vector commitments from the RSA assumption.

VC.KeyGen(1k, �, q) Randomly choose two k/2-bit primes p1, p2, set N = p1p2,
and then choose q (�+ 1)-bit primes e1, . . . , eq that do not divide φ(N). For

i = 1 to q set Si = a
∏q

j=1,j �=i ej . The public parameters pp are (N, a, S1, . . . ,
Sq, e1, . . . , eq). The message space is M = {0, 1}�. 6

VC.Compp(m1, . . . ,mq) Compute C ← Sm1
1 · · ·Smq

q and output C and the aux-
iliary information aux = (m1, . . . ,mq).

VC.Openpp(m, i, aux), Compute

Λi ← ei

√√√√ q∏
j=1,j 
=i

S
mj

j mod N

Notice that knowledge of pp allows to compute Λi efficiently without the
factorization of N .

VC.Verpp(C,m, i, Λi) The verification algorithm returns 1 if m ∈ M and C =
Smi Λ

ei
i mod N Otherwise it returns 0.

VC.Updatepp(C,m,m
′, i) Compute the updated commitment C′ = C · Sm

′−m
i .

Finally output C′ and U = (m,m′, i).
VC.ProofUpdatepp(C,Λj ,m

′, i, U) A client who owns a proof Λj , that is valid
w.r.t. to C for some message at position j, can use the update information
U to compute the updated commitment C′ and to produce a new proof Λ′

j

which will be valid w.r.t. C′. We distinguish two cases:

1. i �= j. Compute the updated commitment as C′ = CSm
′−m

i while the

updated proof is Λ′
j = Λj

ej

√
Sm

′−m
i (notice that such ej-th root can be

efficiently computed using the elements in the public key).

6 As in the CDH case, also this scheme can be extended to support arbitrary messages
by using a collision-resistant hash function H : {0, 1}∗ → {0, 1}�.
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2. i = j. Compute the updated commitment C′ = C · Sm
′−m

i while the
updated proof remains the same Λi.

In order for the verification process to be correct, notice that one should also
verify (only once) the validity of the public key by checking that the Si’s are
correctly generated with respect to a and the exponents e1, . . . , eq.

The correctness of the scheme can be easily verified by inspection. We prove
its security via the following theorem.

Theorem 4. If the RSA assumption holds, then the scheme defined above is a
concise vector commitment.

An optimization similar to the one suggested for CDH construction in the pre-
vious section applies to this scheme as well, and thus allows the verifier to store
only a constant number of elements of the public parameters.

Achieving Constant-Size Public Parameters. In the full version of this work
we show a variant of this RSA scheme that achieves constant-size public parame-
ters. Very roughly, to do this we borrow some techniques from [15] that introduce
a “special” pseudorandom function f that generates prime numbers, and we use
such f to compute each prime ei as f(i). This new scheme is computationally less
efficient compared to the other RSA and CDH constructions. Though, it shows
that vector commitments with constant-size public parameters exist.

3 Verifiable Databases with Efficient Updates from
Vector Commitments

In this section we show that vector commitments allow to build a verifiable
database scheme. This notion has been formalized very recently by Benabbas,
Gennaro and Vahlis [3]. Intuitively, a verifiable database allows a weak client to
outsource the storage of a large database D to a server in such a way that the
client can later retrieve the database records from the server and be convinced
that the records have not been tampered with. In particular, since the main
application is in the context of cloud computing services for storage outsourc-
ing, it is crucial that the resources invested by the client after transmitting the
database (e.g., to retrieve and update the records) must be independent of the
database’s size. While a solution for the static case in which the database is not
updated can be obtained using standard techniques (e.g., digital signatures), the
setting in which the client can update the values of the database records need
different ideas.

Here we describe a solution based on our notion of Vector Commitments.
Our construction, when instantiated with our CDH-based VC, allows for an
efficient scheme, yet it is based on a standard constant-size assumption such as
Computation Diffie-Hellman in bilinear groups. Furthermore, our scheme allows
for public verifiability, that was not supported by the scheme in [3].

We begin by recalling the definition of Verifiable Databases. Our definition
closely follows that in [3] except for some changes that we introduce because we



Vector Commitments and Their Applications 65

consider public verifiability. We denote a database D as a set of tuples (x, vx)
in some appropriate domain, where x is the key, and vx is the corresponding
value. We denote this by writing D(x) = vx. In our case we consider keys that
are integers in the interval {1, . . . , q}, where q = poly(k), whereas the DB values
can be arbitrary strings v ∈ {0, 1}∗.

A Verifiable Database scheme VDB is defined by the following algorithms:

VDB.Setup(1k, D). On input the security parameter k and a database D, the
setup algorithm is run by the client to generate a secret key SK that is kept
private by the client, a database encoding S that is given to the server, and
a public key PK that is distributed to all users (including the client itself)
who wish to verify the proofs.

VDB.Query(PK, S, x). On input a database key x, the query processing algo-
rithm is run by the server, and returns a pair τ = (v, π).

VDB.Verify(PK, x, τ). The public verification algorithm outputs a value v if τ
verifies correctly w.r.t. x (i.e., D(x) = v), and an error ⊥ otherwise.

VDB.ClientUpdate(SK, x, v′). The client update algorithm is used by the client
to change the value of the database record with key x, and it outputs a value
t′x and an updated public key PK′.

VDB.ServerUpdate(PK, S, x, t′x). The server update algorithm is run by the server
to update the database according to the value t′x produced by the client.

Before defining the notion of security we remark that a crucial requirement is
that the size of the information stored by the client as well as the time needed
to compute verifications and updates must be independent of the size |D| of the
database.

Roughly speaking, a Verifiable Database is secure if the server cannot convince
users about the validity of false statements, i.e., that D(x) = v where v is not the
value vx that the client wrote in the record with key x. We defer the interested
reader to [3] and our full version for a more precise definition.

3.1 A Verifiable Database Scheme from Vector Commitments

Now we show how to build a verifiable database scheme VDB from a vector
commitment VC. The construction follows.

VDB.Setup(1k, D). Let D = {(i, vi)}qi=1. Run pp
$← VC.KeyGen(1k, q). Compute

(C, aux)←VC.Compp(v1, . . . , vq) and set PK = (pp, C), S = (pp, aux, D),
SK = ⊥.

VDB.Query(PK, S, x). Let vx = D(x). Compute Λx←VC.Openpp(vx, x, aux) and
return τ = (vx, Λx).

VDB.Verify(PK, x, τ). Parse τ as (vx, Λx). If VC.Verpp(C, x, vx, Λx) = 1, then
return vx. Otherwise return ⊥.

VDB.ClientUpdate(SK, x, v′x). To update the record with key x, the client first re-
trieves the record x from the server (i.e., it asks the server for τ←VDB.Query(
PK, S, x) and checks that VDB.Verify(PK, x, τ) = vx �= ⊥). Then, it com-

putes (C′, U)
$← VC.Updatepp(C, vx, v

′
x, x) and outputs PK′ = (pp, C′) and

t′x = (PK′, v′x, U).
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VDB.ServerUpdate(pk, S, x, t′x). Let t′x = (PK′, v′x, U). The server writes v′x in
the database record with key x and adds the update information U to aux

in S.

The security of our scheme follows from the following theorem whose proof ap-
pears in the full version.

Theorem 5. If VC is a vector commitment, then the Verifiable Database scheme
described above is secure.

A note on the size of the public key. If one looks at the concrete Verifiable
Database scheme resulting by instantiating the vector commitment with one of
our constructions in sections 2.1 and 2.2 a problem arises. In VDBs the public
key must have size independent of the DB size, but this happens not to be
the case in our CDH and RSA constructions where the public parameters pp
depend on q. To solve this issue we thus require this transform to use vector
commitments with constant size parameters. Concretely, we can use the variant
of our RSA construction that has this property, or, for a better efficiency, our
CDH/RSA constructions in Section 2 with the respective optimizations that
enable the verifier to store only a constant number of elements of pp. A detailed
description of this optimization was given in the previous section.

4 (Updatable) Zero-Knowledge Elementary Databases
from Vector Commitments

In this section we show that Vector Commitments can be used to build Zero-
Knowledge Elementary Databases (ZK-EDBs). In particular, following the ap-
proach of Catalano, Fiore and Messina [10], we can solve the open problem
of building compact ZK-EDBs based on standard constant-size assumptions.
Furthermore, in the next section we will show that the same approach can be
extended to build Updatable ZK-EDBs, thus allowing for the first compact con-
struction of this primitive. Since the updatable case is more interesting in prac-
tice, we believe that this can be a significant improvement.

Zero-Knowledge Elementary Databases. We first recall the notion of
Zero-Knowledge Elementary Databases. Let D be a database and [D] be the
set of all the keys in D. We assume that [D] is a proper subset of {0, 1}∗. If
x ∈ [D], we denote with y = D(x) its associated value in the database D. If
x /∈ [D] we let D(x) = ⊥. A Zero Knowledge (Elementary) Database system is
formally defined by a tuple of algorithms (Setup,Commit,Prove,V) that work as
follows:

– Setup(1k) takes as input the security parameter k and generates a common
reference string CRS.

– Commit(CRS,D), the committer algorithm, takes as input a database D
and the common reference string CRS and outputs a public key ZPK and
a secret key ZSK.
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– Prove(CRS,ZSK, x) On input the common reference string CRS, the secret
key ZSK and an element x, the prover algorithm produces a proof πx of
either D(x) = y or D(x) = ⊥.

– V(CRS,ZPK, x, πx) The verifier algorithm outputs y if D(x) = y, out if
D(x) = ⊥, and ⊥ if the proof πx is not valid.

We say that such a scheme is a Zero-Knowledge Elementary Database if it sat-
isfies completeness, soundness and zero-knowledge. A precise description of such
requirements can be found in [11]. Here we only explain them informally. In a nut-
shell, completeness requires that proofs generated by honest provers are correctly
verified; soundness imposes that a dishonest prover cannot prove false statements
about elements of the database; zero-knowledge guarantees that proofs do not
reveal any information on the database (beyond their validity).

Towards Building Zero-Knowledge Elementary Databases. Chase et
al. showed a general construction of ZK-EDB from a new primitive, that they
called trapdoor mercurial commitment, and collision-resistant hash functions
[12]. At a very high level, the idea of the construction is to build a Merkle
tree in which each node is the mercurial commitment (instead of a hash) of its
two children. This construction has been later generalized by Catalano et al.
so as to work with q-ary trees instead of binary ones [10,11] in order to obtain
more efficient schemes. This required the introduction of a new primitive called
trapdoor q-mercurial commitments (qTMC), and it basically shows that the task
of building ZK-EDBs can be reduced to that of building qTMCs. Therefore, in
what follows we simply show how to build qTMCs using vector commitments.
Then one can apply the generic methodology of Catalano et al. to obtain compact
ZK-EDBs. We stress that in the construction of Catalano et al. the value q is the
branching factor of the tree and is not related to the size of the database. Thus,
even if vector commitments reveal q in the clear, this does not compromise the
security of ZK-EDBs.

4.1 Trapdoor q-Mercurial Commitments from Vector Commitments
and Mercurial Commitments

Here we show how to combine (concise) vector commitments and standard trap-
door commitment to obtain (concise) trapdoor qTMC. For lack of space, we
defer the interested reader to [11] for the definitions of (trapdoor) mercurial
commitments and trapdoor q-mercurial commitments.

Let TMC = (KeyGen,HCom,HOpen,HVer, SCom, SOpen, SVer,Fake,HEquiv,
SEquiv) be a trapdoor mercurial commitment and VC = (VC.KeyGen,VC.Com,
VC.Open,VC.Ver) be a vector commitment. We construct a trapdoor qTMC as
follows:

qKeyGen(1k). Run pp
$← VC.KeyGen(1k, q) and (PKTMC, TKTMC)

$← KeyGen(1k)
and set pk = (pp, PKTMC) and tk = TKTMC.

qHCompk(m1, . . . ,mq). For i = 1 to q compute (Ci, aux
i
TMC)

$← HComPKTMC
(mi).

Next, compute (C, auxVC)← VC.Compp(C1, . . . Cq). The output is C and the
auxiliary information is aux = (auxVC,m1, C1, aux

1
TMC, . . . ,mq, Cq, aux

q
TMC).
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qHOpenpk(mi, i, aux). Extract (mi, Ci, aux
i
TMC) from aux and set

Λi ← VC.Openpp(Ci, i, auxVC). The opening information is τi = (Λi, Ci, πi)

where πi is the output of HOpenPKTMC
(mi, aux

i
TMC).

qHVerpk(C,mi, i, τi). Parse τi as (Λi, Ci, πi). The hard verification algorithm
returns 1 if and only if both HVerPKTMC

(Ci, mi, πi) and VC.Verpp(C,Ci, i, Λi)
return 1.

qSCompk(). For i = 1 to q compute (Ci, aux
i
TMC) ← SComPKTMC

(). Next, com-
pute (C, auxVC)← VC.Compp(C1, . . . , Cq). The output is C and the auxiliary
information is aux = (auxVC,m1, C1, aux

1
TMC, . . . ,mq, Cq, aux

q
TMC).

qSOpenpk(mi, i, flag, aux). Extract (mi, Ci, aux
i
TMC) from aux and set

Λi ← VC.Openpp(Ci, i, auxVC). The opening information is τi = (Λi, Ci, πi)

where πi is the output of SOpenPKTMC
(mi, aux

i
TMC).

qSVerpk(C,m, i, τi). Parse τi as (Λi, Ci, πi). The soft verification algorithm re-
turns 1 if and only if both SVerPKTMC

(Ci,mi, πi) and VC.Verpp(C,Ci, i, Λi)
return 1.

qFakepk,tk(). This is the same as the qSCom algorithm.

qHEquivpk,tk(m, i, aux). Extract (Ci, aux
i
TMC) (for all i = 1 to q) and set Λi ←

VC.Openpp(Ci, i, auxVC). The hard equivocation is τi = (Λi, Ci, πi) where πi
is the output of HEquivPKTMC,tkTMC

(m, auxiTMC)

qSEquivpk,tk(m, i, aux). Extract (Ci, aux
i
TMC) (for all i = 1 to q) and set Λi ←

VC.Openpp(Ci, i, auxVC). The soft equivocation is τi = (Λi, Ci, πi) where πi
is the output of SEquivPKTMC,tkTMC

(m, auxiTMC)

The correctness of the scheme easily follows from the correctness of the underly-
ing building blocks. Its security follows from the following theorem (whose proof
appears in the full version).

Theorem 6. Assuming that TMC is a trapdoor mercurial commitment and VC
is a vector commitment, then the scheme defined above is a trapdoor q-mercurial
commitment.

On the efficiency of the CDH instantiation. By instantiating the above
scheme with our vector commitment based on CDH (and with the discrete log
based TMC from [23]), one gets a qTMC based on CDH whose efficiency is
roughly the same as that of the scheme in [19] based on q-DHE. For the sake
of a fair comparison we notice that in our construction the reduction to CDH
is not tight (due to the non-tight reduction from Square-DH to CDH [22]), and
our scheme suffers from public parameters of size O(q2). In contrast, the scheme
by Libert and Yung has a tight reduction to the q-DHE problem and achieves
public parameters of size O(q). However, we think that the CDH and the q-
DHE assumptions are not easily comparable, especially given that the latter is
defined with instances of size O(q), where q is known to degrade the quality of
the assumption (see [13,28] for some attacks). Furthermore, a more careful look
shows that in our scheme the verifier does not need to store this many elements.
This is because the hi,j ’s are not required for verification. Thus, from the verifier
side, the space required is actually only O(q). In the application of ZK-EDBs
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such an optimization reflects on the size of the common reference string. More
precisely, while the server still needs to store a CRS of size O(q2), the client
is required to keep in memory only a portion of the CRS of size of O(q) (thus
allowing for comparable client-side requirements with respect to [19]).

4.2 Updatable ZK-EDBs with Short Proofs and Updates

In most practical applications databases are frequently updated. The construc-
tions of ZK-EDBs described so far do not deal with this and the only way of up-
dating a ZK-EDB is to actually recompute the entire commitment from scratch
every time the database changes. This is highly undesirable as previously issued
proofs can no longer be valid.

This problem was studied by Liskov in [20] where he showed how to build Up-
datable ZK EDB by appropriately modifying the basic approach of combining
Merkle trees and mercurial commitments. In particular, rather than using stan-
dard mercurial commitments, Liskov employed a new primitive called updatable
mercurial commitment. Very informally, updatable mercurial commitments are
like standard ones with the additional feature that they allow for two update
procedures. The committer can change the message inside the commitment and
produce: a new commitment and an update information. These can later be used
by verifiers to update their commitments and the associated proofs (that will be
valid w.r.t. the new commitment). Therefore whenever the prover changes some
value D(x) in the database, first he has to update the commitment in the leaf
labeled by x and then he updates all the commitments in the path from x to
the root. The new database commitment is the updated commitment in the root
node, while the database update information contains the update informations
for all the nodes involved in the update.

A natural question raised by the methodology above is whether the zero-
knowledge property remains preserved after an update occurs, as the latter re-
veals information about the updated key. To solve this issue Liskov proposed to
“mask” the label of each key x (i.e. the paths in the tree) using a pseudorandom
pseudonym N(x) and he relaxed the zero-knowledge property to hold w.r.t. N().
Further details can be found in [20].

In [20] two constructions of updatable mercurial commitments are given. One
is generic and uses both standard and mercurial commitments. The other one is
direct and builds from the DL-based mercurial commitment of [23].

Our Result. We introduce the notion of updatable q-mercurial commitments,
and then we show that these can be built from vector commitments and up-
datable mercurial commitments. Next, by applying the methodology of Liskov
sketched above, adapted with the compact construction of Catalano et al. [10],
we can build the first compact Updatable ZK-EDB. It is interesting to observe
that by using the compact construction the resulting ZK-EDB improves over the
scheme in [20] both in terms of proofs’ size and length of the update information,
as these both grow linearly in the height of the tree logq2

k (which is strictly less
than k for q > 2). For lack of space, we defer the interested reader to [20] for
formal definitions of (basic) updatable mercurial commitments.
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Updatable q-Mercurial Commitments. An updatable q-(trapdoor) mer-
curial commitment is defined like a qTMC with the following two additional
algorithms:

qUpdatepk(C, aux,m
′, i). This algorithm is run by the committer who produced

C (and holds the corresponding aux) and wants to change the i-th committed
message with m′. The algorithm takes as input m′ and the position i and
outputs a new commitment C′ and an update information U .

qProofUpdatepk(C, τj ,m
′, i, U). This algorithm can be run by any user who holds

a proof τj for some message at position j in C and allows the user to produce
a new proof τ ′j (and the updated commitment C′) which will be valid w.r.t.
C′ that contains m′ as the new message at position i. The value U contains
the update information which is needed to compute such values.

The q-mercurial binding property is defined as usual, namely for any PPT ad-
versary it is computationally infeasible to open a commitment (even an updated
one) to two different messages at the same position. Hiding and equivocations for
updatable qTMCs easily follow from those of updatable mercurial commitments
by extending them to the case of sequences of q messages.

Updatable q-mercurial Commitments from Vector Commitments. In
this section we show that an updatable qTMC can be built using an updatable
(trapdoor) mercurial commitment uTMC and a vector commitment VC. The
construction is essentially the same as that given in Section 4.1 augmented with
the following update algorithms:

qUpdatepk(C, aux,m
′, i). Parse aux as (m1, C1, aux

1
uTMC, . . . ,mq, Cq, aux

q
uTMC,

auxVC), extract (Ci,mi, aux
i
uTMC) from it and run (C′

i, UuTMC)←UpdatepkuTMC
(

Ci, aux
i
uTMC,m

′). Then update the vector commitment (C′, U ′)←
VC.Updatepp(C,Ci, C

′
i, i) and output C′ and U = (U ′, Ci, C

′
i, i, U

i
uTMC).

qProofUpdatepk(C, τj ,m
′, i, U). The client who holds a proof τj = (Λj , Cj , πj)

that is valid w.r.t. to C for some message at position j, can use the update
information U to compute the updated commitment C′ and produce a new
proof τ ′j which will be valid w.r.t. the new C′. We distinguish two cases:

1. i �= j. Compute (C′, Λ′
j) ← VC.ProofUpdatepp(C,Λj , C

′
i, i, U

′) and out-
put the updated commitment C′ and the updated proof τj = (Λ′

j , Cj , πj).

2. i = j. Let (C′
i, π

′
i)←ProofUpdatepkuTMC

(Ci,m
′, πi, U

i
uTMC). Compute the

updated commitment as (C′, Λ′
i) ← VC.ProofUpdatepp(C,Λi, C

′
i, i, U

′)
and the updated proof is τ ′i = (Λ′

i, C
′
i, π

′
i).

Theorem 7. If uTMC is an updatable trapdoor mercurial commitment and VC
is an updatable vector commitment, then the scheme given above is an updatable
concise trapdoor q-mercurial commitment.

The proof is very similar to that of Theorem 6 and is omitted here.
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Abstract. We present a general framework for efficient, universally
composable oblivious transfer (OT) protocols in which a single, global,
common reference string (CRS) can be used for multiple invocations of
oblivious transfer by arbitrary pairs of parties. In addition:

– Our framework is round-efficient. E.g., under the DLIN or SXDH
assumptions we achieve round-optimal protocols with static security,
or 3-round protocols with adaptive security (assuming erasure).

– Our resulting protocols are more efficient than any known previ-
ously, and in particular yield protocols for string OT using O(1)
exponentiations and communicating O(1) group elements.

Our result improves on that of Peikert et al. (Crypto 2008), which uses a
CRS whose length depends on the number of parties in the network and
achieves only static security. Compared to Garay et al. (Crypto 2009),
we achieve adaptive security with better round complexity and efficiency.

1 Introduction

In this work we study the construction of efficient protocols for universally
composable (UC) [5] oblivious transfer (OT). Our work is motivated by
the fact that, although UC commitments are complete for UC multiparty
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computation [9], the most efficient multiparty computation protocols (e.g.,
[29,28]) rely on universally composable OT as a building block. Relative to
UC commitments (see [27,16] and references therein), however, universally
composable OT has received less attention.

There is a long series of work on efficient OT protocols in the stand-alone
setting (e.g., [30,1,21,25]). Lindell [26] (also [23, Appendix A]) gave a generic
transformation from static security to adaptive security (assuming erasure) that
applied in the semi-honest setting and the stand-alone malicious setting, but not
in the UC setting.

Constructions of UC oblivious transfer from general assumptions were given
in [9]; these constructions are relatively inefficient. Garay, MacKenzie, and
Yang [17] constructed a constant-round protocol for committed OT under the
DDH and strong RSA assumptions. Their protocol yields bit OT rather than
string OT, so results in protocols for string OT with complexity linear in the
length of the sender’s inputs. Jarecki and Shmatikov show a four-round protocol
for committed string OT under the decisional composite residuosity (DCR)
assumption [24]. A round-optimal OT protocol appears in [22].

The most efficient known protocol for UC oblivious transfer is that of Peikert
et al. [33]. Their work, however, has several disadvantages. First, it requires an
independent common reference string1 (CRS) for every party in the network or,
equivalently, a single CRS of length linear in the number of parties. (Any pair of
parties can then run the protocol of Peikert et al. using the CRS of the receiver.)
Their protocols also only achieve security against a static adversary who decides
which parties to corrupt before the protocol begins (and even before the CRS
is chosen). They do not handle an adaptive adversary who may choose which
parties to corrupt during the course of the protocol execution.

Garay et al. [18] constructed efficient UC oblivious-transfer protocols that
address both the above-mentioned drawbacks. In their constructions, the parties
run a coin-tossing protocol whose outcome is then used as a common random
string for an OT protocol. This approach is not entirely satisfactory. First,
it increases the overall computation, communication, and round complexity;
second, it can (in general) only be instantiated with OT protocols that work
in the common random string model rather than the more general common
reference string model. Choi et al. [11,10] showed other approaches for obtaining
adaptively secure, constant-round UC oblivious transfer.

1.1 Our Results

Here, we present a new framework for constructing UC oblivious-transfer
protocols that require only a single, global CRS. We aim for efficient protocols
having low round complexity, and incurring only constant computation and
communication even when the sender’s inputs are long strings. We are also
interested in achieving adaptive security, under the assumption that parties erase

1 Some form of setup is known to be necessary for universally composable OT [7,8].
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portions of their local state that are no longer needed. (Note, however, that the
works of [11,18,10] do not make this assumption.)

Our framework is fairly general and can be instantiated from several
assumptions. Specifically:

– We obtain efficient, round-optimal OT protocols with static security under
the decisional linear (DLIN) [3] or symmetric external Diffie-Hellman
(SXDH) assumptions [34,3]. These protocols can be modified to achieve
adaptive security (assuming erasure) with one additional round and a slight
increase in communication and computation.

– We obtain efficient, four-round OT protocols under the decisional Diffie-
Hellman (DDH) or DCR [31] assumptions. Our basic constructions achieve
static security, and we present variants that are secure against adaptive
corruptions (assuming erasure) without any additional rounds, but with a
slight increase in communication and computation.

We compare our constructions with previous work in Table 12

Overview of Our Constructions. The starting point of our approach is
the Halevi-Kalai construction [21] of 2-round OT based on smooth projective
hashing. Their construction only achieves indistinguishability-based security
(and not even stand-alone simulation-based security) against a malicious
receiver. We show how to overcome this with the following modifications:

1. We require the receiver to commit to its input using CCA-secure encryption.
2. The receiver proves in zero knowledge that it is behaving consistently in the

underlying OT protocol (with respect to the input it committed to).

A similar high-level approach was taken in [22], but using generic simulation-
sound non-interactive zero knowledge [15]. Here, following recent constructions
of efficient UC commitments [27,16], we rely instead on efficient zero-knowledge
protocols that admit straight-line simulation in the CRS model. In particular,
for our two-round OT protocols we instantiate the underlying zero-knowledge
proofs using Groth-Sahai proofs [20], as in [16]. For our four-round OT protocols,
we rely on Damg̊ard’s three-round zero-knowledge proof system [14].

Achieving Adaptive Security. To achieve adaptive security, we first modify
our protocols so the final message is sent over an adaptively secure channel
(cf. functionality Fsmt in [5]). The latter can be realized at low cost if erasure
is assumed [2]. With this modification, security against adaptive corruption of
the sender is achieved automatically by simply having the sender erase its local
state at appropriate times. In our two-round protocols, security against adaptive
corruption of the receiver is similarly achieved. For our 4-round protocols, we
use techniques similar to those in [27,16]. Unlike this prior work, however, we do

2 The numbers for the adaptively secure protocol of [33]+[18]+[27] in Table 1 are
based on a preliminary version of [27], and could change once the author publishes
the fix to a bug in the protocol.
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Table 1. Efficient universally composable protocols for string OT. The number of
parties is n. Communication complexity and CRS size are measured in terms of the
number of group elements, with other values ignored. The numbers for [24] include the
cost of the pre-processing stage.

Reference Assumption Rounds
Communication CRS

complexity size

[33] DDH 2 6 n

[33]+[18]+[16] DLIN 4 78 12

Protocol 1∗ DLIN 2 54 12

[33]+[18]+[27] DDH 6 38 7

Protocol 2 DDH 4 32 6

[24] DCR 4 35 (ZN2) + 16 (ZN) 10

Protocol 2 DCR 4 18 (ZN2) + 7 (ZN ) 12

Protocols with static security.

Reference Assumption Rounds
Communication CRS

complexity size

[33]+[18]+[16] DLIN 4 83 12

Protocol 1∗ DLIN 3 59 12

[33]+[18]+[27] DDH 8 51 7

Protocol 2∗ DDH 4 35 6

Protocol 2∗ DCR 4 21 (ZN2) + 7 (ZN ) 12

Protocols with adaptive security (assuming erasure).

not introduce any additional overhead in communication or round complexity.
(We incur a modest increase in computational cost.)

Organization. We review some preliminaries in Section 2. Our framework for
2-round OT with static security (resp., 3-round OT with adaptive security) is
described in Section 3 Our framework for 4-round OT is given in Section 4.
Due to space limitations, further details, proofs, and discussions about concrete
instantiations have been deferred to the full version.

2 Preliminaries

We let λ be the security parameter. We let FMOT be the multi-session OT
functionality [5], and FP,D

CRS be the CRS functionality [6].
We use the standard notion of chosen-ciphertext security for labeled public-

key encryption [4].

HF =
{
hk : {0, 1}∗ → {0, 1}�(λ)

}
k∈{0,1}λ is a family of collision-resistant

hash functions if for any non-uniform PPT algorithm A, it holds that

Pr[k ← {0, 1}λ : A(k) = (x1, x2) s.t. x1 �= x2 and hk(x1) = hk(x2)] = negl(λ).
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2.1 Smooth Projective Hash Proof Systems

We recall the notion of a hard subset membership problem and smooth projective
hashing defined by Cramer and Shoup [13], following the notation of [21]. A hash
family H consists of the following PPT algorithms:

– The parameter-generator HashPG(1λ)→pp. We assume that the security
parameter λ can be inferred from pp. Let λ(pp) denote the security parameter
corresponding to pp.

– A pair of disjoint sets Λyes and Λno are associated to pp corresponding
to yes and no instances respectively. There exists a yes instance-sampler
SampYes(pp)→(x,w) where x is uniformly distributed over Λyes and w
is the corresponding witness. There also exists a no instance-sampler
SampNo(pp)→x′ where x′ is uniformly distributed over Λno.

– The hash-key generator HashKG(pp)→(hk, pk). Here hk is the primary
hashing key and pk is a projective key.

– The primary hash algorithm Hash(hk, x)→y for all x ∈ Λyes ∪ Λno.
– TheprojectionhashalgorithmpHash(pk, x, w)→y for all (x,w)←SampYes(pp).

We require that for all pp ∈ support(HashPG), every (hk, pk)←HashKG(pp), and
every (x,w)←SampYes(pp), we have pHash(pk, x, w) = Hash(hk, x).

Definition 1. H = (HashPG, SampYes, SampNo,HashKG,Hash, pHash) is a
smooth projective hash family if

Smoothness: Let (hk, pk)←HashKG(pp). For all x ∈ Λno, the distribution of
Hash(hk, x) given pk is statistically close to uniform. That is, the statistical
difference between the following two distributions is negligible in λ(pp).

{y←Hash(hk, x) : (pk, y, x)} s≡ {y←Γ : (pk, y, x)}

where Γ denotes the set of possible hash values with parameter pp.

Definition 2. A smooth projective hash family H = (HashPG, SampYes,
SampNo, HashKG, Hash, pHash) is said to have a hard subset membership
property if the following two ensembles are computationally indistinguishable:

-
{
pp←HashPG(1λ); (x,w)←SampYes(pp) : (pp, x)

}
λ∈N

-
{
pp←HashPG(1λ); x←SampNo(pp) : (pp, x)

}
λ∈N

.

2.2 Dual-Mode NIZK

Groth introduced non-interactive zero-knowledge (NIZK) proofs [19] that we call
dual-mode. In such a proof system, a common reference string crs is generated in
either a soundness mode or a zero-knowledge (ZK) mode; given crs, it is infeasible
to determine the mode in which it was generated. When crs is generated in the
soundness mode, the proof system is statistically sound. On the other hand, when
crs is generated in the ZK mode, the simulation is perfect. Groth and Sahai [20]
provide efficient dual-mode NIZK proofs for various equations in bilinear groups.
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Definition 3. A non-interactive proof system for a language L ∈ NP consists of
three algorithms (K,P ,V) where K is a CRS generation algorithm, P and V are
a prover and a verifier algorithm respectively. The system is required to satisfy
the following properties:

Completeness: For any λ, any x ∈ L, and any witness w for x, it holds that

Pr[crs←K(1λ); π←P(1λ, crs, x, w) : V(1λ, crs, x, π) = 1] = 1.

Adaptive soundness: For any λ and any adversary A, it holds that

Pr[crs←K(1λ); (x, π)←A(1λ, crs) : V(1λ, crs, x, π) = 1 ∧ x �∈ L] = negl(λ).

Definition 4. A non-interactive proof system (K,P ,V) for a language L ∈ NP
is said to be dual-mode NIZK if there is a pair of efficient algorithms (S1,S2)
such that for any λ ∈ N and for all non-uniform polynomial time adversary A,
it holds the following:

Indistinguishability of Modes:∣∣∣Pr[crs←K(1λ) : A(1λ, crs) = 1]−Pr[(crs, τ)←S1(1λ) : A(1λ, crs)=1]
∣∣∣=negl(λ).

Perfect Simulation in ZK Mode: The following two probabilities are equal.
- Pr[(crs, τ)←S1(1λ); (x,w)←A(1λ, crs, τ); π←P(1λ, crs, x, w) : A(π) = 1]
- Pr[(crs, τ)←S1(1λ); (x,w)←A(1λ, crs, τ); π←S2(τ, x) : A(π) = 1]
Here, A has to generate a pair (x,w) with w a witness for x.

2.3 Σ-Protocols

A Σ-protocol is a 3-round honest-verifier zero-knowledge protocol. We denote by
(a, e, z) the messages exchanged between the prover PΣ and the verifier VΣ . We
say a transcript (a, e, z) is an accepting transcript for x if VΣ would accept based
on the values (x, a, e, z). We use the standard definitions of special soundness
and special honest-verifier zero knowledge.

2.4 Equivocal Commitments

We define an equivocal commitment scheme as follows:

Definition 5. Let (Kcom,Com) be a non-interactive commitment scheme with
CRS where Kcom is a CRS generation algorithm, and Com is a commitment
algorithm. The scheme is said to be equivocal if there exists a tuple of PPT
algorithm (Scom1,Scom2,Scom3) that satisfies the following properties:

Computational Binding: For any non-uniform polynomial time adversary A
the following is negligible in λ:

Pr

[
crs←Kcom(1λ); (m,m′, r, r′)←A(crs) :

m �= m′∧Comcrs(m; r) = Comcrs(m
′; r′)

]
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Indistinguishability of Modes:{
crs←Kcom(1λ) : crs

}
λ∈N

c≈
{
(crs, t)←Scom1(1

λ) : crs
}
λ∈N

Equivocality: For any λ ∈ N, any (crs, t) ∈ support(Scom1(1
λ)), and any

adversary A, the following distributions are identical.

-
{
m←A(crs); r←R; c = Comcrs(m; r) : (m, r, c)

}
-
{
m←A(crs); (c, s)←Scom2(t); r←Scom3(s,m) : (m, r, c)

}

3 A Generic Framework for Two-Round OT

In this section we describe Protocol 1∗, an adaptively secure, 2-round protocol.
Let (K,P ,V) be a dual-mode NIZK proof system, (Gen,Enc,Dec) be a CCA-
secure labeled public-key encryption scheme, and H = (HashPG, SampYes,
SampNo, HashKG, Hash, pHash) be a smooth hash proof system with a hard

subset membership property. We assume for simplicity that {0, 1}� is the range
of the hash functions in H; known constructions can be modified to achieve this
property. Based on these components, we construct an OT protocol between a
sender Pi and a receiver Pj in the CRS model; refer also to Figure 1.

Common Reference String: Compute pp←HashPG(1λ), (pk , sk)←Gen(1λ),
and crsnizk←K(1λ). The common reference string is crsot = (pp, pk , crsnizk).

Oblivious Transfer: The protocol starts by having the receiver, holding
selection bit b, send two instances (x0, x1) for the hash proof system H with x1−b
a no-instance; the receiver sends Encpk (b) and a NIZK proof that x1−b is a no-
instance as well. In the second round, for σ ∈ {0, 1} the sender generates primary
and projection hash keys (hkσ, pkσ) and sends (pkσ,Hash(hkσ, xσ)⊕mσ) to the
receiver. The receiver recovers mb in the standard way. In more detail:

– On input a selection bit b, the receiver Pj proceeds as follows:

1. Compute (xb, w)←SampYes(pp) and x1−b = SampNo(pp; γ) for uni-
form γ. Compute Φ = EncLpk (b; ξ) with uniformly random ξ, where
L = (sid, ssid, Pi, Pj). Generate an NIZK proof π that there exist (b, γ, ξ)

such that x1−b = SampNo(pp; γ) and Φ = EncLpk (b; ξ).
2. Send 〈x0, x1, Φ, π〉.

– On input m0,m1 ∈ {0, 1}�, and after receiving the first-round message
〈x0, x1, Φ, π〉 from the receiver, the sender Pi proceeds as follows:

1. If the proof π does not verify, abort.
2. For σ ∈ {0, 1} compute (hkσ, pkσ) ← HashKG(pp) and Zσ = mσ ⊕

Hash(hkσ, xσ).
3. Send 〈pk0, Z0, pk1, Z1〉 to Pj .

– Upon receiving the second-round message 〈pk0, Z0, pk1, Z1〉, the receiver Pj
computes the output mb = Zb ⊕ pHash(pkb, xb, w).
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crsot = {pp, pk , crsnizk}

Pi(m0,m1) Pj(b)

L := (sid, ssid, Pi, Pj) L := (sid, ssid, Pi, Pj)
(xb, w) ← SampYes(pp)
x1−b ← SampNo(pp; γ)
Φ ← EncLpk (b; ξ)
X := (x0, x1, Φ)
Compute π

erase all state except
(b, w,X, π)

� x0, x1, Φ, π

V(crsnizk, (pp, pk , L,X), π)
?
= 1

for σ ∈ {0, 1} :
(hkσ, pkσ) ← HashKG(pp)
Zσ←mσ ⊕ Hash(hkσ, xσ)

erase all state except
(m0,m1, pk0, Z0, pk1, Z1)

pk0, Z0, pk1, Z1
�
�

mb←Zb ⊕ pHash(pkb, xb, w)
output mb

Fig. 1. An OT protocol in the FCRS-hybrid model (Protocol 1∗). For adaptive security,
the second-round message is sent over an adaptively secure channel.

Informally, security against a malicious sender holds because the sender
cannot guess the receiver’s selection bit due to the hard subset membership
property. On the other hand, a malicious receiver gets no information about
m1−b if x1−b is a no-instance, and this property is enforced by the NIZK proof.

Theorem 1. Say (Gen,Enc,Dec) is a CCA-secure labeled public-key encryption
scheme, (HashPG, SampYes, SampNo,HashKG,Hash, pHash) is a smooth projec-
tive hash proof system with hard subset membership property, and (K,P ,V) is a
dual-mode NIZK proof system. Then the protocol described above securely realizes
FMOT in the FCRS-hybrid model, for static corruptions. If the second round
message is sent over an adaptively secure channel, the protocol securely realizes
FMOT in the FCRS-hybrid model, for adaptive corruptions (assuming erasure).

In the full version of this work, we discuss concrete instantiations of this
framework based on the DLIN and SXDH assumptions.
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crsot = {pp, pk , crscom}
Pi(m0,m1) Pj(b)

L := (sid, ssid, Pi, Pj) L := (sid, ssid, Pi, Pj)
(xb, w) ← SampYes(pp)
x1−b←SampNo(pp; γ)
Φ←EncLpk (b; ξ);X := (x0, x1, Φ)
a ← PΣ((pp, pk , L,X), (b, γ, ξ))
c←Comcrscom (a; r)

� x0, x1, Φ, c

e←{0, 1}λ
e �

z←PΣ((pp, pk , L,X), (b, γ, ξ), e)

VΣ((pp, pk , L,X), a, e, z)
?
= 1 � (a, r), z

Comcrscom(a; r)
?
= c

for σ ∈ {0, 1} :
(hkσ, pkσ) ← HashKG(pp)

Zσ ← mσ ⊕ Hash(hkσ, xσ)
pk0, Z0, pk1, Z1� mb ← Zb ⊕ pHash(pkb, xb, w)

output mb

Fig. 2. A statically secure OT protocol in the FCRS-hybrid model (Protocol 2)

4 A Generic Framework for Four-Round OT

In this section, we describe a generic framework for constructing four-round OT
protocols. We begin by looking at the case of static security, and then show how
the ideas can be extended to achieve security against adaptive adversaries.

4.1 Static Security (Protocol 2)

The main idea is to adapt our previous two-round framework by replacing the
dual-mode NIZK proof with an interactive equivalent. In particular, the general
structure of the protocol is as follows: the protocol starts by having the receiver
send two instances (x0, x1) for hash proof system where x1−b being a no-instance;
also, in protection against a malicious behavior, Encpk (b) and a Sigma protocol
(augmented with an equivocal commitment) are attached. Then, the sender
generates primary and projective hash keys (hkσ, pkσ) for each instance xσ
and sends (pkσ,Hash(hkσ, xσ)⊕mσ) to the receiver. The security can be shown
similarly to the two-round OT case.

Here, instead of replicating all the details, we only describe how to combine
a Sigma protocol with an equivocal commitment scheme in order to replace the
NIZK part. The idea is having the prover commit to the first round message of
the Sigma protocol, and reveal it in the third round. Refer to Figure 2 for the
overall pictorial description of the protocol.
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CRS. Compute pp←HashPG(1λ), (pk , sk)←Gen(1λ), and crscom←Kcom(1λ).
The common reference string is crsot = (pp, pk , crscom).

Replacing NIZK. Recall in the two-round OT case, the receiver generates a
NIZK π to prove that (x0, x1, Φ) is valid message, i.e., Φ is an encryption of
b ∈ {0, 1} for some b and x1−b is no-instance. In this protocol, the receiver
proves it by running a Sigma protocol (PΣ ,VΣ), along with an equivocal
commitment scheme (Kcom,Com), with respect to the following language:

L∗ =

{
(pp, pk , L, x0, x1, Φ) :

∃(b, γ, ξ) s.t. x1−b = SampNo(pp; γ), Φ = EncLpk (b; ξ)

}
,

where L = (sid, ssid, Pi, Pj).
1. The receiver runs a←PΣ((pp, pk , L, x0, x1, Φ), (b, γ, ξ)), and computes
c = Comcrscom(a; r) with r chosen uniformly at random. It sends
(x0, x1, Φ, c).

2. The sender sends the challenge message e←{0, 1}λ of the Sigma protocol.
3. Upon receiving the challenge e, the receiver generates an answer by

running
z = PΣ((pp, pk , L, x0, x1, Φ), (b, γ, ξ), e).

It sends the sender the answer z along with the opening of the
commitment, i.e., ((a, r), z).

4. The sender verifies (a, e, z) is an accepting transcript and (a, r) is a valid
opening of c:

VΣ((pp, pk , L, x0, x1, Φ), a, e, z) ?
= 1, Comcrscom(a; r)

?
= c.

The security of the protocol can be proved similarly to the two-round case.

Theorem 2. Say (Gen,Enc,Dec) is a CCA-secure labeled public-key encryption
scheme, (HashPG, SampYes, SampNo,HashKG,Hash, pHash) is a smooth projec-
tive hash proof system with hard subset membership property, (PΣ ,VΣ) is a
Σ-protocol, and (Kcom,Com) is an equivocal commitment scheme. Then the
protocol of Figure 2 securely realizes FMOT in the FCRS-hybrid model, for static
corruptions.

4.2 Adaptive Security (Protocol 2∗)

As with the 2-round framework, the protocol first needs to be changed so that
the last round message is sent over a secure channel. This modification (along
with erasing the state appropriately), however, is not sufficient to deal with
adaptive corruption in the four-round case. For the NIZK, the receiver can
generate π and then erase the unnecessary internal state before sending out
(x0, x1, Φ, π). However, if the statement is composed with the interactive Sigma
protocol, some of the internal state cannot be erased until the last move. For
example, in the Sigma protocol, the receiver cannot erase the randomness used
for generating the no-instance x1−b until it receives the challenge e, since he has
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crsot = {pp, pk , crscom}
Pi(m0,m1) Pj(b)

L := (sid, ssid, Pi, Pj) L := (sid, ssid, Pi, Pj)
(xb, w) ← SampYes(pp)
x1−b←SampNo(pp; γ)
Φ←EncLpk (b; ξ);X := (x0, x1, Φ)
a ← PΣ((pp, pk , L,X), (b, γ, ξ))
c←Comcrscom((X, a); r)

� c

e←{0, 1}λ
e �

z←PΣ((pp, pk , L,X), (b, γ, ξ), e)

erase all state except
(b, w,X, a, r, z)

�((x0, x1, Φ, a), r), z

VΣ((pp, pk , L,X), a, e, z)
?
= 1

Comcrscom((X, a); r)
?
= c

for σ = 0, 1
(hkσ, pkσ) ← HashKG(pp)
Zσ ← mσ ⊕ Hash(hkσ, xσ)

erase all state except
(m0,m1, pk0, Z0, pk1, Z1)

pk0, Z0, pk1, Z1
�
�

mb ← Zb ⊕ pHash(pkb, xb, w)
output mb

Fig. 3. An adaptively secure OT protocol in the FCRS-hybrid model (Protocol 2∗).
The final message is sent over an adaptively secure channel.

to use the randomness as part of the witness in order to finish the proof. However,
recall that both x0 and x1 are yes instances in simulation; when the adversary
corrupts the receiver right before sending e, the simulator cannot return a valid
randomness for x1−b, and so the simulation breaks down.

Changing the Order of Messages. As in the commitment scheme [27], we
resolve this issue by switching the order of messages. That is, the message to
be committed to is not only the first message a of the Sigma protocol but also
the statement itself (i.e., (x0, x1, Φ)), and they are revealed at the last move of
the Sigma protocol. Now, thanks to the equivocality of the commitment scheme,
the protocol can achieve adaptive security. Refer to Figure 3 for the overall
pictorial description. Here, we only describe the aforementioned modification in
more detail. Recall in the statically secure protocol described in Section 4.1, the
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receiver sends (x0, x1, Φ) and the commitment c to the first message a of the
Sigma protocol (PΣ ,VΣ) for the language

L∗ =

{
(pp, pk , L, x0, x1, Φ) :

∃(b, γ, ξ) s.t. x1−b = SampNo(pp; γ), Φ = EncLpk (b; ξ)

}
,

where L = (sid, ssid, Pi, Pj). In this protocol, we change the order of messages as
follows:

1. The receiver runs a←PΣ((pp, pk , L, x0, x1, Φ), (b, γ, ξ)), and then computes
c←Comcrscom((x0, x1, Φ, a); r) with r chosen uniformly at random. It sends
c.

2. The sender sends the challenge message e←{0, 1}λ of the Sigma protocol.
3. Upon receiving the challenge e, the receiver generates an answer by running

z = PΣ((pp, pk , L, x0, x1, Φ), (b, γ, ξ), e).

It sends the sender the answer z along with the opening of the commitment,
i.e., ((x0, x1, Φ, a), r, z).

4. The sender verifies (a, e, z) is an accepting transcript and ((x0, x1, Φ, a), r)
is a valid opening of c:

VΣ((pp, pk , L, x0, x1, Φ), a, e, z) ?
= 1, Comcrscom((x0, x1, Φ, a); r)

?
= c.

Theorem 3. Under the same assumptions as in Theorem 2, the protocol
in Figure 3 securely realizes FMOT in the FCRS-hybrid model, for adaptive
corruptions (assuming erasure).

4.3 Instantiations from the DDH Assumption

We show a CCA-secure labeled public-key encryption scheme, a smooth hash
proof system, and an equivocal commitment scheme under the DDH assumption.
We then obtain a four-round OT protocol by combining these building blocks.

Decisional Diffie-Hellman Assumption. Let Gddh be a randomized algo-
rithm that takes a security parameter λ and outputs desc = (p,G, g) such that
G is the description of group of prime order p, and g is a generator of G.

Definition 6. The DDH problem is hard relative to G if for all ppt algorithms
A there exists a negligible function negl(λ) such that∣∣Pr[A(G, p, g, ga, gb, gc) = 1]− Pr[A(G, p, g, ga, gb, gab) = 1]

∣∣ ≤ negl(λ)

where in each case the probabilities are taken over the experiment in which the
group-generating algorithm outputs (G, p, g) and random a, b, c ∈ Zp are chosen.

CCA-secure Labeled Public-Key Encryption. Since the DDH assumption
holds in G1, we can use Cramer-Shoup encryption scheme [12]. As in the case
for the DLIN assumption, we slightly change the scheme to support labels, that
is, we use collision resistant hash functions instead of UOWHF and apply labels
to hash functions when performing encryptions and decryptions.
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Key generation (pk , sk)←Gen(desc): Choose random generators g1←G and

exponents β1, β2, γ1, γ2, δ1, δ2←Zp and compute c = gβ1

1 gβ2 , d = gγ11 g
γ2 , h =

gδ11 g
δ2 . Choose a hash function H←HF where HF is a family of collision-

resistant hash functions. Now set pk = (g1, g, c, d, h,H) and sk = (β1, β2, γ1,
γ2, δ1, δ2).

Encryption C ← EncLpk (m; r): Given the message m ∈ G under label L, choose
r←Zp and compute u1 = gr1 , u2 = gr, e = m · hr. Then compute α =
H(u1, u2, e, L) ∈ Zp and v = (cdα)r. The ciphertext is C = (u1, u2, e, v).

Decryption DecLsk (C): Parse C = (u1, u2, e, v) and sk = (β1, β2, γ1, γ2, δ1, δ2);

compute α←H(u1, u2, e, L) and test if uβ1+αγ1
1 · uβ2+αγ2

2
?
= v. If it does not,

output reject. Otherwise, output m = e/(uδ11 u
δ2
2 ).

Smooth Projective Hashing. We recall the smooth projective hashing based
on the DDH assumption [12,13].

Parameter Generation. Choose g1, g←G. Then pp = (g1, g,G).
Instance Sampling. To sample a yes instance, choose t←Zp, and compute

z1 = gt1, z2 = gt, and then return x = (z1, z2). To sample a no instance,
choose t←Zp, and then z1 = gt1, z2 = gt+1, and then return x = (z1, z2).

Hash Key Generation. Choose θ1, θ2←Zp and compute f = gθ11 g
θ2 . Return

hk = (θ1, θ2), and pk = f .
Primary Hashing. Given hk = (θ1, θ2) and x = (z1, z2), return y = zθ11 z

θ2
2 .

Projective Hashing. Given a projective hash key pk = f , an instance x =
(z1, z2), and its witness w = t such that z1 = gt1, z2 = gt, return y = f t.

Equivocal Commitment. We use a variant of the Pedersen commitment
scheme [32]. The main difference from the original Pedersen commitment is that
collision resilient hash function H : {0, 1}∗→Zp is used to commit to arbitrary
long message very efficiently. In particular, given the CRS (g, h1) ∈ G2, the

commitment to a message m is grh
H(m)
1 . We note that the binding property

is under the DLOG assumption and the collision resilient property of the hash
function. When a trapdoor ζ with h1 = gζ is known, it easy to equivocate a
commitment c = gs into any m by outputting r = s− ζ ·H(m).

By plugging these components into our generic framework for four-round OT,
we obtain an OT protocol based on the DDH assumption. It is only left to show
the concrete Σ-protocol that is used.

Protocol Details. Ignoring the description desc of the group G, the CRS is
crsot = (pp, pk , crscom) where pp = (g1, g) pk = (g1, g, c, d, h,H) crscom =
(h1, g). Therefore, the CRS can be represented with 6 group elements of G and
one hash function index, along with the description of the group G.

Let x0 = (z01, z02), x1 = (z11, z12), and Φ = (u1, u2, e, v) with α =
H(u1, u2, e, (sid, ssid, Pi, Pj)). Then, we use a standard Sigma protocol for the
following language:

L∗ =

⎧⎨⎩
(crsot, pk , x0, x1, Φ, α) :
∃(r, t) s.t. u1 = gr1, u2 = gr, e = hr, v = (cdα)r, z11 = gt1, z12 = gt+1

or u1 = gr1, u2 = gr, e = ghr, v = (cdα)r, z01 = gt1, z02 = gt+1

⎫⎬⎭ .
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1. Suppose that Φ = Enc(gb). Let b̄ = 1 − b. The prover chooses R, T←Zp,
η←[0, 2λ), and ρ, τ←Zp. Then, it computes and sends the verifier the
following:

U1b = gR1 , U2b = gR, Eb = hR,
Vb = (cdα)R, Z1b = gT1 , Z2b = gT

U1b̄ = gρ1/u
η
1, U2b̄ = gρ1/u

η
2 , Eb̄ = hρ/(e/gb̄)η,

Vb̄ = (cdα)ρ/vη, Z1b̄ = gτ1/z
η
b1, Z2b̄ = gτ/(zb2/g)

η.

2. The verifier chooses ε←[0, 2λ) and sends it to the prover.
3. The prover computes the following:

εb = ε− η mod 2λ εb̄ = η
ρb = R+ rεb ρb̄ = ρ
τb = T + tεb τb̄ = τ.

Then, it sends (ε0, ρ0, τ0, ρ1, τ1) to the verifier.
4. The verifier computes ε1 = ε−ε0 mod 2λ. It also checks if the following holds

for i ∈ {0, 1}.

gρi1 = U1i · uεi1 , gρi = U2i · uεi2 , hρi = Ei · (e/gi)εi ,
(cdα)ρi = Vi · vεi , gτi1 = Z1i · zεiī1, g

τi = Z2i · (zī2/g)εi .

Communication Complexity. The receiver message (x0, x1, Φ) needs 2+ 2+
4 = 8 group elements. The proof takes 13 elements in G and 7 elements in Zp. In
particular, the first message has one commitment (i.e., one element in G). The
second message has one element3 in Zp, and the third messages has 5 elements
in Zp along with the decommitment (i.e., 12 elements in G and 1 element in
Zp). The sender message (pk0, Z0, pk1, Z1) needs (1, 1, 1, 1) = 4 group elements
in G. Therefore, the total communication complexity amounts to 25 elements in
G and 7 elements in Zp.

Realizing an Adaptively Secure Channel. Note that the non-committing
encryption given in [2] runs in three rounds and needs one public key and
one ciphertext of a semantically secure public key encryption scheme. Since
the NCE protocol UC-realizes an adaptively secure channel [5, Section 6.3],
the NCE protocol messages can be overlapped with the OT protocol messages
(aligning the first message of the NCE protocol with the second message of
the OT protocol), and thus the final OT protocol runs in four rounds. We can
use ElGamal encryption, and the communication overhead amounts to 3 group
elements; the public key consists of one element excluding the generator in the
CRS, and the ciphertext consists of two elements.

Acknowledgments. We would like to thank the anonymous reviewers for
pointing out the need to transmit the sender’s messages over an adaptively secure
channel, and for additional helpful feedback.

3 The second message is in {0, 1}λ but we count it as an element of Zp for simplicity.
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Abstract. A Captcha is a puzzle that is easy for humans but hard to
solve for computers. A formal framework, modelling Captcha puzzles
(as hard AI problems), was introduced by Ahn, Blum, Hopper, and Lang-
ford ([1], Eurocrypt 2003). Despite their attractive features and wide
adoption in practice, the use of Captcha puzzles for general crypto-
graphic applications has been limited.

In this work, we explore various ways to formally model Captcha

puzzles and their human component and explore new applications for
Captcha. We show that by defining Captcha with additional (strong
but realistic) properties, it is possible to broaden Captcha applicability,
including using it to learning a machine’s “secret internal state.” To fa-
cilitate this, we introduce the notion of an human-extractable Captcha,
which we believe may be of independent interest. We show that this type
of Captcha yields a constant round protocol for fully concurrent non-
malleable zero-knowledge. To enable this we also define and construct
a Captcha-based commitment scheme which admits “straight line” ex-
traction. We also explore Captcha definitions in the setting of Universal
Composability (UC). We show that there are two (incomparable) ways to
model Captcha within the UC framework that lead to different results.
In particular, we show that in the so called indirect access model, for every
polynomial time functionality F there exists a protocol that UC-realizes
F using human-extractable Captcha, while for the so-called direct ac-
cess model, UC is impossible, even with the help of human-extractable
Captcha.

The security of our constructions using human-extractable Captcha

is proven against the (standard) class of all polynomial time adversaries.
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In contrast, most previous works guarantee security only against a very
limited class of adversaries, called the conservative adversaries.

Keywords: Captcha, concurrent non-malleable zero-knowledge, uni-
versal composability, human-extractable Captcha.

1 Introduction

Captcha is an acronym for Completely Automated Public Turing test to tell
Computers and Humans Apart. These are puzzles that are easy for humans but
hard to solve for automated computer programs. They are used to confirm the
“presence of a human” in a communication channel. As an illustration of a
scenario where such a confirmation is very important, consider the problem of
spam. To carry out their nefarious activities, spammers need to create a large
number of fake email accounts. Creating a new email account usually requires
the filling-in of an online form. If the spammers were to manually fill-in all
these forms, then the process would be too slow, and they would not be able to
generate a number of fake addresses. However, it is relatively simple to write a
script (or an automated bot) to quickly fill-in the forms automatically without
human intervention. Thus, it is crucial for the email service provider to ensure
that the party filling-in the form is an actual human, and not an automated
script. This is achieved by asking the party to solve a Captcha, which can only
be sovled by a human1. A common example of a Captcha puzzle involves the
distorted image of a word, and the party is asked to identify the word in the
image.

The definition of Captcha stipulates certain limitations on the power of
machines, in particular, that they cannot solve Captcha puzzles efficiently.
This gives rise to two distinct questions which are interesting from a crypto-
graphic point of view. Firstly, what are the underlying hard problems upon
which Captcha puzzles can be based? Von Ahn, Blum, Hopper and Lang-
ford [1] study this question formally, and provide constructions based on the
conjectured hardness of certain Artificial Intelligence problems.

The second direction of investigation, and the one which we are concerned
with in this paper, is to use Captchas as a tool for achieving general crypto-
graphic tasks. There have been only a few examples of use of Captchas in this
regard. Von Ahn, Blum, Hopper and Langford [1] useCaptchas for image-based
steganography. Canetti, Halevi and Steiner construct a scheme to thwart off-line
dictionary attacks on encrypted data using Captchas. And recently, Dziem-
bowski [3] constructs a “human” key agreement protocol using only Captchas.
We continue this line of work in the current paper, and investigate the use of
Captchas in zero-knowledge and UC secure protocols. On the face of it, it is
unclear how Captchas may be used for constructing such protocols, or even
for constructing building blocks for these protocols, like commitment schemes.

1 For many more uses of Captcha, see [2]
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However, motivated by current Captcha theory, we define a new extraction
property of Captchas that allows us to use them for designing these protocols.

We now give an overview of our contributions. We formally define Captchas
in Section 3, but give an informal overview of the model here to make the fol-
lowing discussion cogent. Firstly, modelling Captcha puzzles invariably involves
modelling humans who are the key tenets in distinguishing Captchas from just
another one-way function. Following [4] we model the presence of a human entity
as an oracle H that is capable of solving Captcha puzzles. A party generates a
Captcha puzzle by running a (standard) PPT generation algorithm denoted by
G. This algorithm outputs a puzzle-solution pair (z, a). All parties have access to
a “human” oracle denoted by H . To “solve” a Captcha puzzle, a party simply
queries its oracle with the puzzle and obtains the solution in response. This al-
lows us to distinguish between two classes of machines. Standard PPT machines
for which solving Captchas is a hard problem and oracle PPT machines with
oracle access to H which may solve Captchas efficiently.

The starting point of our work is the observation that if a machine must solve
a given Captcha puzzle (called challenge), it must send one or more Captcha-
queries to a human. These queries are likely to be correlated to the challenge
puzzle since otherwise they would be of no help in solving the challenge puzzle.
Access to these queries, with the help of another human, may therefore provide
us with some knowledge about the internal state of a (potentially) malicious
machine! This is formulated in our definition of an human extractable Captcha

(Definition 3). Informally, we make the following assumption about Captcha

puzzles. Consider two randomly chosen Captcha puzzles (p0, p1) of which an
adversary obtains only one to solve, say pb, where the value of b is not known to
the challenger. Then by merely looking at his queries to a human oracle H , and
with the help of a human, a challenger must be able to identify the value of b.
More precisely, we augment the human oracle H to possess this added ability.
We then model adversaries in our protocols as oracle PPT machines with access
to a Captcha solving oracle, but whose internal state can be “extracted” by
another oracle PPT machine.

It is clear that this idea, i.e.—the idea of learning something non-trivial about
a machine’s secret by looking at its Captcha-queries—connects Captcha puz-
zles with main-stream questions in cryptography much more than ever. This
work uses this feature present in Captchas to construct building blocks for
zero-knowledge protocols which admit “straight-line” simulation. It is then nat-
ural to investigate that if we can get “straight-line” simulation, then perhaps we
can answer the following questions as well: construction of plain-text aware en-
cryption schemes [5], “straight-line” extractable commitment schemes, constant-
round fully concurrent zero-knowledge for NP [6], fully concurrent two/multi-
party computation [7–9], universal composition without trusted setup assump-
tions [10, 11], and so on.

Our Contribution. In section 4 (theorem 5), as the first main result of this work,
we construct a commitment scheme which admits “straight-line” extraction.
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That is, the committed value can be extracted by looking at the Captcha-
queries made by the committer to a human oracle.

The starting point (ignoring for a moment an important difficulty) behind our
commitment protocol is the following. The receiver R chooses two independent
Captcha puzzles (z0, z1). To commit to a bit b, the sender C will select zb using
the 1-2-OT protocol and commit to its solution ab using an ordinary (perfectly-
binding) commitment scheme. Since the committer cannot solve the puzzle itself,
it must query a human to obtain the solution. By looking at the puzzles C queries
to the human, an extractor (with the help of another human oracle) can detect
the bit being committed. Since the other puzzle z1−b is computationally hidden
from C, this should indeed be possible.

As alluded above, the main difficulty with this approach is that a cheating
sender may not query the human on any of the two puzzles, but might still be
able to commit to a correct value by obtaining solutions to some related puzzles.
This is the issue of malleability that we discuss shortly, and also in section 3.

We then use this commitment scheme as a tool to obtain new results in proto-
col composition. First off, it is straightforward to see that given such a scheme,
one can obtain a constant-round concurrent zero-knowledge protocol for all of
NP. In fact, by using our commitment scheme in place of the “PRS-preamble”
[12] in the protocol of Barak, Prabhakaran, and Sahai [13], we obtain a constant-
round protocol for concurrent non-malleable zero-knowledge [13] (see appendix
D of the full version [14] ).2

As a natural extension, we investigate the issue of incorporating Captcha

puzzles in the UC framework introduced by Canetti [10]. The situation turns out
to be very sensitive to the modelling of Captcha puzzles in the UC framework.
We discuss two different ways of incorporating Captcha puzzles in the UC
framework: 3

– Indirect Access Model: In this model, the environment Z is not given
direct access to a human H . Instead, the environment is given access to
H only through the adversary A. This model was proposed in the work of
Canetti et. al. [4], who constructed a UC-secure protocol for password-based
key-generation functionality. We call this model the indirect access model.

– Direct Access Model: In this model, the environment is given a direct
access to H . In particular, the queries made by Z to H are not visible to
the adversary A, in this model.

In the indirect access model, we show how to construct UC-secure protocols
for all functionalities. In section 5, as the second main result of this work, we

2 For readers familiar with concurrent non-malleability, our protocol admits “straight-
line” simulation, but the extraction of witnesses from a man-in-the-middle is not
straight-line. Also, another modification is needed to the protocol of [13]: we need
to use a constant round non-malleable commitment scheme and not that of [15]. We
can use any of the schemes presented in [16–19].

3 We assume basic familiarity with the model of universal composition, and briefly
recall it in appendix C.1 of the full version [14] .
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construct a constant-round UC-puzzle protocol as defined by Lin, Pass, and
Venkitasubramaniam [20]. By the results of [20], UC-puzzles are sufficient to
obtain UC-secure protocols for general functionalities. Our protocol for UC-
puzzles is obtained by combining our commitment scheme with a “cut-and-
choose” protocol and (standard) zero-knowledge proofs for NP [21, 22].

In contrast, in the direct access model, it is easy to show that UC-secure
computation is impossible for most functionalities. A formal statement is ob-
tained by essentially reproducing the Canetti-Fischlin impossibility result for
UC-commitments [23] (details reproduced in appendix E.1 of the full version [14]
). The situation turns out to be the same for concurrent self-composition of
two-party protocols: by reproducing the steps of Lindell’s impossibility results
[24, 25], concurrent self-composition in this model can be shown equivalent to
universal composition. This means that secure computation of (most) functional-
ities in the concurrent self-composition model is impossible even with Captcha

puzzles.

On modelling Captcha puzzles in the UC framework. The fact that
UC-computation is possible in the indirect access model but concurrent self-
composition is impossible raises the question whether indirect access model is
the “right” model. What does a positive result in this model mean? To un-
derstand this, let us compare the indirect access model to the other “trusted
setup” models such as the Common-Random-String (CRS) model [26]. In the
CRS-model, the simulator S is in control of generating the CRS in the ideal
world—this enables S to have a “trapdoor” to continue its actions without hav-
ing to “rewind” the environment. We can view the indirect access model as some
sort of a setup (i.e., access to H) controlled by the simulator in the ideal world.
The fact that S can see the queries made by Z to H in the indirect-access-
model, is then analogous to S controlling the CRS in the CRS-model. The only
difference between these two settings is that the indirect-access-model does not
require any trusted third party. viewed this way, the indirect-access-model can
be seen as a “hybrid” model that stands somewhere between a trusted setup
(such as the CRS model) and the plain model.

Beyond Conservative Adversaries. An inherent difficulty when dealing with
Captcha puzzles, is that of malleability. Informally, this means that given a
challenge puzzle z, it might be possible for an algorithm A to efficiently gener-
ate a new puzzle z′ such that given the solution of z′, A can efficiently solve z.
Such a malleability attack makes it difficult to reduce the security of a crypto-
graphic scheme to the “hardness” of solving Captcha puzzles.

To overcome this, previous works [3, 4] only prove security against a very
restricted class of adversaries called conservative adversaries. Such adversaries
are essentially those who do not launch the ‘malleability’ attack: that is, they
only query H on Captcha instances that are provided to them by the system.
In both of these works, it is possible that a PPT adversary, on input a puzzle z
may produce a puzzle z′ such that the solutions of z and z′ are related. But both
works consider only restricted adversaries which are prohibited from querying H



94 A. Kumarasubramanian et al.

with such a mauled puzzle z′. As noted in [3, 4], this an unreasonable restriction,
especially knowing that Captcha puzzles are in fact easily malleable.

In contrast, in this work, we prove the security of our schemes against the
standard class of all probabilistic polynomial time (ppt) adversaries. The key-
idea that enables us to go beyond the class of conservative adversaries is the
formulation of the notion of an human-extractable Captcha puzzle. Informally
speaking, an human-extractable Captcha puzzle, has the following property:
suppose that a ppt algorithm A can solve a challenge puzzle z, and makes
queries q̄ to the human H during this process; then there is a ppt algorithm
which on input the queries q̄, can distinguish with the help of the human that q̄
are correlated to z and not to some other randomly generated puzzle, say z′′.

We discuss this notion at length in section 3, and many other issues related
to formalizing Captcha puzzles. This section essentially builds and improves
upon previous works of [1, 3, 4] to give a unified framework for working with
Captcha puzzles. We view the notion of human-extractable Captcha puzzles
as an important contribution to prove security beyond the class of conservative
adversaries.

2 Preliminaries

In this work, to model “access to a human”, we will provide some parties (mod-
eled as interactive Turing machines–ITM) oracle access to a functionH . An ITM
M with oracle access to H is an ordinary ITM except that it has two special
tapes: a write-only query tape and a read-only answer tape. When M writes a
string q on its query tape, the value H(q) is written on its answer tape. If q is
not a valid query (i.e., not in the domain of H), a special symbol ⊥ is written
on the output tape. Such a query and answer step is counted as one step in the
running time of M . We use the notation MH to mean that M has oracle access
to H . The reader is referred to [27, 28] for a detailed treatment of this notion.

Notation. The output of an oracle ITM MH is denoted by a triplet (out, q̄, ā)
where out, q̄, and ā denote the contents of M ’s output tape, a vector of strings
written to the query tape in the current execution, and the answer to the queries
present in q̄ respectively.

Let k ∈ N denote the security parameter, where N is the set of natural num-
bers. All parties are assumed to receive 1k as an implicit input (even if not
mentioned explicitly). When we say that an (I)TM M (perhaps with access to
an oracle H) runs in polynomial time, we mean that there exists a polynomial
T (·) such that for every input, the total number of steps taken by M are at
most T (k). For two strings a and b, their concatenation is denoted by a ◦ b. The
statistical distance between two distributions X , Y is denoted Δ(X,Y ).

In all places, we only use standard notations (with their usual meaning) for
describing algorithms, random variables, experiments, protocol transcripts and
so on. We assume familiarity with standard concepts such as computational
indistinguishability, negligible functions, and so on (see [27]).
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Statistically Secure Oblivious Transfer We now recall the notion of a statistically
secure, two message oblivious transfer (OT) protocol, as defined by Halevi and
Kalai [29].

Definition 1. (Statistically Secure Oblivious Transfer), [29] Let �(·) be a
polynomial and k ∈ N the security parameter. A two-message, two-party protocol
〈Sot, Rot〉 is said to be a statistically secure oblivious transfer protocol for bit-
strings of length �(k) such that both the sender Sot and the receiver Rot are ppt

ITMs receiving 1k as common input; in addition, Sot gets as input two strings

(m0,m1) ∈ {0, 1}�(k) × {0, 1}�(k) and Rot gets as input a choice bit b ∈ {0, 1}.
We require that the following conditions are satisfied:

– Functionality: If the sender and the receiver follow the protocol then for

every k ∈ N, every (m0,m1) ∈ {0, 1}�(k) × {0, 1}�(k), and every b ∈ {0, 1},
the receiver outputs mb.

– Receiver security: The ensembles {Rot(1
k, 0)}k∈N and {Rot(1

k, 1)}k∈N are
computationally indistinguishable, where {Rot(1

k, b)}k∈N denotes the (first
and only) message sent by Rot on input (1k, b). That is,

{Rot(1
k, 0)}k∈N

c≡{Rot(1
k, 1)}k∈N

– Sender security: There exists a negligible function negl(·) such that for every

(m0,m1) ∈ {0, 1}�(k) × {0, 1}�(k), every first message α ∈ {0, 1}∗ (from an
arbitrary and possibly unbounded malicious receiver), and every sufficiently
large k ∈ N, it holds that either

Δ0(k) := Δ(Sot(1
k,m0,m1, α), Sot(1

k,m0, 0
�(k), α)) or,

Δ1(k) := Δ(Sot(1
k,m0,m1, α), Sot(1

k, 0�(k),m1, α))

is negligible, where Sot(1
k,m0,m1, α) denotes the (only) response of the

honest sender Sot with input (1k,m0,m1) when the receiver’s first message
is α.

Statistically secure OT can be constructed from a vareity of cryptographic as-
sumptions. In [29], Halevi and Kalai construct protocols satisfying the above
definition under the assumption that verifiable smooth projective hash families
with hard subset membership problem exist (which in turn, can be constructed
from a variety of standard assumptions such as the quadratic-residue problem).
[30] show the equivalence of 2-message statistically secure oblivious transfer and
lossy encryption.

3 Modeling Captcha Puzzles

As said earlier, Captcha puzzles are problem instances that are easy for “hu-
mans” but hard for computers to solve. Let us first consider the “hardness” of
such puzzles for computers. To model “hardness,” one approach is to consider an
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asymptotic formulation. That is, we envision a randomized generation algorithm
G which on input a security parameter 1k, outputs a puzzle from a (discrete and
finite) set Pk called the puzzle-space. Indeed, this is the formulation that previ-
ous works [1, 3, 4] as well as our work here follow. assume that there is a fixed
polynomial �(·) such that every puzzle instance z ∈ Pk is a bit string of length
at most �(k).

Of course, not all Captcha puzzle systems satisfy such an asymptotic for-
mulation. It is possible to have a (natural) non-asymptotic formulation to define
Captcha puzzles which takes into consideration this issue and defines hardness
in terms of a “human population” [1]. However, a non-asymptotic formulation
will be insufficient for cryptographic purposes. For many puzzles, typically hard-
ness can be amplified by sequential or parallel repetition[31].

Usually, Captcha puzzles have a unique and well defined solution associated
with every puzzle instance. We capture this by introducing a discrete and finite
set Sk, called the solution-space, and a corresponding solution function Hk :
Pk → Sk which maps a puzzle instance z ∈ Pk to its corresponding solution.
Without loss of generality we assume that every element of Sk is a bit string of
length k. We will require that G generates puzzles together with their solutions.
This restriction is also required in previous works [1, 3]. To facilitate the idea
that the puzzle-generation is a completely automated process,G will not be given
“access to a human.”

With this formulation, we can view “humans” as computational devices which
can “efficiently” compute the solution function Hk. Therefore, to capture “access
to a human”, the algorithms can simply be provided with oracle access to the
family of solution functions H := {Hk}k∈N. Recall that by definition, oracle-
access to H means that algorithms can only provide an input z to some function
Hk′ in the family H , and then read its output Hk′(z); if z is not in the domain
Pk′ , the response to the query is set to a special symbol, denoted ⊥. Every query
toHk′ will be assumed to contribute one step to the running time of the querying
algorithm. The discussion so far leads to the following definition for Captcha

puzzles.

Definition 2. (Captcha Puzzles) Let �(·) be a polynomial, and S := {Sk}k∈N

and P := {Pk}k∈N be such that Pk ⊆ {0, 1}�(k) and Sk ⊆ {0, 1}k. A Captcha

puzzle system C := (G,H) over (P ,S) is a pair such that G is a randomized
polynomial time turing machine, called the generation algorithm, and H :=
{Hk}k∈N is a collection of solution functions such that Hk : Pk → Sk. Algorithm
G, on input a security parameter k ∈ N, outputs a tuple (z, a) ∈ Pk × Sk such
that Hk(z) = a. We require that there exists a negligible function negl(·) such
that for every ppt algorithm A, and every sufficiently large k ∈ N, we have that:

pinv(k) := Pr
[
(z, a)← G(1k);A(1k, z) = a

]
≤ negl(k)

where the probability is taken over the randomness of both G and A.

Turing Machines vs Oracle Turing Machines. We emphasize that the Captcha

puzzle generation algorithm G is an ordinary turing machine with no access to
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any oracles. Furthermore, the security of a Captcha system holds only against
ppt adversaries A who are turing machines. It does not hold against oracle
turing machines with oracle access to H . However, we use Captcha systems
defined as above in protocols which guarantee security against adversaries who
may even have access to the oracle H . This distinction between machines which
have access to an (human) oracle and machines which don’t occurs throughout
the text.

The Issue of Malleability. As noted earlier, Captcha puzzles are usually easily
malleable [15]. That is, given a challenge puzzle z, it might be possible for an
algorithm A to efficiently generate a new puzzle z′ �= z such that given the
solution of z′, A can efficiently solve z. It turns out that in all previous works
this creates several difficulties in the security proofs. In particular, in reducing
the “security” of a cryptographic scheme to the “hardness” of the Captcha

puzzle, it becomes unclear how to handle such an adversary.
Due to this, previous works [3, 4] only prove security against a very restricted

class of adversaries called the conservative adversaries. Such adversaries are es-
sentially those who do not query Hk on any Captcha instances other than the
ones that are provided to them by the system. To facilitate a proof against all ppt
adversaries, we develop the notion of human-extractableCaptcha puzzles below.

Human-Extractable Captcha Puzzles. The notion of human-extractable
Captcha puzzles stems from the intuition that if a ppt algorithm A can solve
a random instance z produced by G, then it must make queries q̄ = (q1, q2, . . .)
to (functions in) H that contain sufficient information about z. More formally,
suppose that z1 and z2 are generated by two random and independent execu-
tions of G. If A is given z1 as input and it produces the correct solution, then the
queries q̄ will contain sufficient information about z1 and no information about
z2 (since z2 is independent of z1 and never seen by A). Therefore, by looking at
the queries q̄, it should be possible with the help of the human to deduce which
of the two instances is solved by A. We say that a Captcha puzzle system is
human-extractable if there exists a ppt algorithm Extr which, by looking at the
queries q̄, can tell with the help of the human which of the two instances was
solved by A. The formal definition follows; recall the convention that output of
oracle Turing machines includes the queries q̄ they make to H and corresponding
answers ā received.

Definition 3. (Human-extractable Captcha) A Captcha puzzle system
C := (G,H) is said to be human-extractable if there exists an oracle ppt algo-
rithm ExtrH , called the extractor, and a negligible function negl(·), such that for
every oracle ppt algorithm AH , and every sufficiently large k ∈ N, we have that:

pfail(k) := Pr

⎡⎢⎣ (z0, s0)← G(1k); (z1, s1)← G(1k); b
$← {0, 1} ;

(s, q̄, ā)← AH(1k, zb); b
′ ← ExtrH(1k, (z0, z1), q̄);

s = sb ∧ b′ �= b

⎤⎥⎦ ≤ negl(k)

where the probability is taken over the randomness of G,A, and Extr.
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Observe that except with negligible probability, s0 �= s1, since otherwise one can
break the hardness of C(definition 2).

We believe that the notion of human-extractable Captcha puzzles is a very
natural notion; it may be of independent interest and find applications elsewhere.
We note that while assuming the existence of human-extractable Captcha puz-
zles may be a strong assumption, it is very different from the usual extractability
assumptions in the literature such as the Knowledge-Of-Exponent (koe) assump-
tion [32, 33]. In particular, often it might be possible to empirically test whether
a given Captcha system is human-extractable. For example, one approach for
such a test is to just ask sufficiently many humans to correlate the queries q̄ to
one of the puzzles z0 or z1. If sufficiently many humans can correctly correlate
q̄ to zb with probability noticeably better than 1/2, one can already conclude
some form of weak extraction. Such weak extractability can then be amplified
by using techniques from parallel repetition. In contrast, there is no such hope
for koe assumption (and other problems with similar “non-black-box” flavor)
since they are not falsifiable [34].

In this work, we only concern ourselves with human-extractable Captcha

puzzles. Thus we drop the adjective human-extractable as convenient.

Drawbacks of Our Approach and Other Considerations. While our framework
significantly improves upon previous works [3, 4], it still has certain drawbacks
which are impossible to eliminate in an asymptotic formulation such as ours.

The first drawback is that as the value of k increases, the solution becomes
larger. It is not clear if the humans can consistently answer such a long solution.
Therefore, such a formulation can become unsuitable for even very small values
of k. The second drawback is that the current formulation enforces strict “rules”
on how a human and a Turing machine communicate via oracle access to H .
This does not capture “malicious” humans who can communicate with their
computers in arbitrary ways. It is not even clear how to formally define such
“malicious” humans for our purpose.

Finally, definition 2 enforces the condition that |Sk| is super-polynomial in
k. For many Captcha puzzle systems in use today, |Sk| may be small (e.g.,
polynomial in k or even a constant). Such Captcha puzzles are not directly
usable in our setting. Observe that if |Sk| is small, clearly A can solve a given
challenge puzzle with noticeable probability. Therefore, it makes sense to con-
sider the following weaker variant in definition 2: instead of requiring pinv to be
negligible, we can consider it to be a small constant ε. Likewise, we can also
consider weakening the extractability condition by in definition 3 by requiring
pfail to be only noticeably better than 1/2.

A subtle point to observe here is that while it might be possible to individually
amplify pinv and pfail by using parallel or sequential repetitions, it may not
be possible to amplify both at the same time. Indeed, when |Sk| is small, the
adversary A can simply ask one Captcha puzzle for every solution a ∈ Sk
multiple times and “hide” the challenge puzzle zb (in some mauled form z′b)
somewhere in this large list of queries. Such a list of queries might have sufficient
correlation with both z0 and z1 simply because the solutions of these both are
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in Sk and A has asked at least one puzzle for each solution in the whole space.
In this case, even though parallel repetition may amplify pinv, extraction might
completely fail because the correlation corresponding to the challenge puzzle is
not easy to observe in A’s queries and answers.

As a consequence of this, our formulation essentially rules out the possibility
of using such “weak” Captcha puzzles for which both pinv and pfail are not
suitable. This is admittedly a strong limitation, which seems to come at the cost
of proving security beyond the class of conservative adversaries.

4 A Straight-Line Extractable Commitment Scheme

In this section we present a straight-line extractable commitment scheme which
uses human-extractable Captcha puzzles. The hiding and binding properties of
this commitment scheme rely on standard cryptographic assumptions, and the
straight-line extraction property relies on the extraction property of Captcha

puzzles.
We briefly recall the notion of secure commitment schemes, with emphasis on

the changes from the standard definition and then define the notion of straight-
line extractable commitments.

Commitment Schemes. First, we present a definition of commitment schemes
augmented with Captcha puzzles. Let C := (G,H) be a Captcha puzzle sys-
tem, and let ComC := 〈CH ,R〉 be a two-party interactive protocol where (only)
C has oracle access to the solution function family H4. We say that ComC is a
commitment scheme if: both C and R are ppt (interactive) TM receiving 1k as

the common input; in addition, C receives a string m ∈ {0, 1}k. Further, we re-
quire C to privately output a decommitment string d, and R to privately output
an auxiliary string aux. The transcript of the interaction is called the commit-
ment string, denoted by c. During the course of the interaction, let q̄ and ā be
the queries and answers obtained by C via queries to the Captcha oracle H .
To denote the sampling of an honest execution of ComC , we use the following
notation: (c, (d, q̄, ā), aux)← 〈CH(1k,m),R(1k)〉.

Notice that (d, q̄, ā) is the output of oracle ITM CH as defined in section 2.
For convenience, we associate a polynomial time algorithm DCom which on input
(c, d, aux) either outputs a message m, or ⊥. It is required that for all honest
executions where C commits to m, DCom always outputs m. We say that ComC
is an ordinary commitment scheme if q̄ (and hence ā) is an empty string.

Furthermore, our definition of a commitment scheme allows for stateful com-
mitments. In particular the output aux might be necessary for a successful de-
commitment of the committed message.

4 The reason we do not provide R with access to H , is because our construction does
not need it, and therefore we would like to avoid cluttering the notation. In general,
however, both parties can have access to H . Also, in our adversarial model, we
consider all malicious receivers to have access to the oracle H
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We assume that the reader is familiar with perfect/statistical binding and
computational hiding properties of a commitment scheme. Informally, straight-
line extraction property means that there exists an extractor ComExtrH which
on input the commitment string c (possibly from an interaction with a malicious
committer), aux (from an honest receiver), and q̄, outputs the committed message
m (if one exists), except with negligible probability. Ifm is not well defined, there
is no guarantee about the output of ComExtr.

For any commitment, we useM =M(c, aux) to denote a possible decommit-
ment message defined by the commitment string c and the receiver state aux. If
such a message is not well defined (say there could be multiple such messages or
none at all) for a particular (c, aux), then define M(c, aux) = ⊥.
Definition 4. (Straight-line Extractable Commitment) A statistically-
binding computationally-hiding commitment scheme ComC := 〈CH ,R〉 defined
over a human-extractable Captcha puzzle system C := (G,H) is said to admit
straight-line extraction if there exists a ppt algorithm ComExtrH (the extrac-

tor) and a negligible function negl(·), such that for every ppt algorithm Ĉ (a
malicious committer whose input could be arbitrary), and every sufficiently large
k ∈ N, we have that:

Pr

[
(c∗, (d∗, q̄, ā), aux)← 〈ĈH(1k, ·),R(1k)〉;M =M(c∗, aux);

m← ComExtrH(1k, q̄, (c∗, aux)) : (M �= ⊥) ∧ (m �=M)

]
≤ negl(k)

where the probability is taken over the randomness of Ĉ,R, and ComExtr.

The Commitment Protocol. At a high level, the receiver R of our protocol will
choose two Captcha puzzles (z0, z1) (along with their solutions s0, s1). To
commit to bit b, the sender C will select zb using the OT protocol and com-
mit to its solution sb using an ordinary (perfectly-binding) commitment scheme
〈Cpb, Rpb〉. The solution to the puzzle is obtained by querying H on zb. To
decommit, first decommit to sb which the receiver verifies; and then the receiver
accepts b as the decommitted bit if the solution it received is equal to sb. To
facilitate this task, the receiver outputs an auxiliary string aux which contains
(z0, z1, s0, s1). To commit to a k-bit string m ∈ {0, 1}k, this atomic protocol is
repeated in parallel k-times (with some minor modifications as in Figure 1)

For convenience we assume that 〈Cpb, Rpb〉 is non-interactive (i.e., C sends
only one message to R) for committing strings of length k2. The decommitment
string then consists of the committed messages and the randomness of Cpb. The
formal description of our protocol appears in figure 1.

Theorem 5. Assume that 〈Cpb, Rpb〉 is an ordinary, non-interactive,
perfectly-binding and computationally-hiding commitment scheme, C = (G,H)
is a human-extractable Captcha puzzle system, and 〈Sot, Rot〉 is a two-round
statistically-secure oblivious transfer protocol. Then, protocol ComC = 〈CH ,R〉
described in figure 1 is a 3-round perfectly-binding and computationally-hiding
commitment scheme which admits straight-line extraction.

Proof. A full proof may be found in Appendix A of the full version [14].
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Let k be the security parameter, C := (G,H) a human-extractable Captcha

puzzle system, 〈Cpb, Rpb〉 a non-interactive perfectly-binding commitment
scheme for strings of length k2, and 〈Sot, Rot〉 a two-message two-party OT
protocol.

Commitment. Let m = (m1, . . . ,mk) ∈ {0, 1}k be the message to be com-
mitted.

1. Captcha Generation: For every i ∈ [k], R generates a pair of indepen-
dent Captcha puzzles: (z0i , s

0
i ) ← G(1k) and (z1i , s

1
i ) ← G(1k).

2. Parallel OT: C and R perform k parallel executions of OT, where the
ith execution proceeds as follows. Party R acts as the OT-sender Sot on
input (z0i , z

1
i ) and party C acts the OT-receiver Rot on input the bit mi.

At the end of the execution, let the puzzle instances obtained by C be
zm1
1 , . . . , z

mk
k .

3. Commit to Captcha Solutions: For every i ∈ [k], C queries Hk on zmi
i

to obtain the solution smi
i . Let s̄ := sm1

1 ◦ . . . ◦ smk
k , which is of length k2.

C commits to s̄ using protocol 〈Cpb, Rpb〉. Let r be the randomness used
and c be the message sent by C in this step.

4. Outputs: R sets aux = {(z0i , z1i , s0i , s1i )}ki=1, and C sets d = (s̄, r).

Decommitment.On input the commitment transcript, and strings d = (s̄, r)
and aux = {(z0i , z1i , s0i , s1i )}ki=1 do the following: parse the transcript to obtain
string c from the last step, and verify that (s̄, r) is a valid decommitment for
c. If yes, parse s̄ = a1 ◦ . . . ◦ ak and test that for every i ∈ [k], there exists a
unique bit bi such that ai = sbii . If any test fails, output ⊥; otherwise output
m = (b1, . . . , bk).

Fig. 1. Straightline Extractable Commitment Protocol 〈CH ,R〉

5 Constructing UC-Puzzles Using Captcha

We provided a basic background in the section 1 to our results on protocol
composition, and mentioned that there are two ways in which we can incorporate
Captcha puzzles in the UC-framework: the indirect access model, and the direct
access model. This section is about constructing UC puzzles [20] in the indirect
access model. Recall that in the indirect access model, the environment Z is not
given direct access to a human (or the solution function family of the Captcha

system) H ; instead, Z must access H exclusively through the adversary A. This
allows the simulator to look at the queries of Z, which in turn allows for a
positive result. Due to space constraints, we shall assume basic familiarity with
the UC-framework [10], and directly work with the notion of UC-puzzles. A more
detailed review of the UC framework, and concurrent composition, is given in
appendix C of the full version [14] .

Lin, Pass and Venkitasubramaniam [20] defined the notion of a UC puzzle, and
demonstrated that to obtain universal-composition in a particular model (e.g.,
the CRS model), it suffices to construct a UC puzzle in that model. We will
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adopt this approach, and construct a UC puzzle using Captcha. We recall the
notion of a UC-puzzle with necessary details, and refer the reader to [20] for an
extensive exposition. Our formulation directly incorporates Captcha puzzles in
the definition and hence does not refer to any setup T ; other than this semantic
change, the description here is essentially identical to that of [20].

The UC-puzzle is a protocol which consists of two parties—a sender S, and
a receiver R, and a PPT-relation R. Let C := (G,H) be a Captcha puzzle
system. Only the sender will be given oracle access to H , and the resulting
protocol will be denoted by 〈SH , R〉. Informally, we want that the protocol be
sound : no efficient receiver R∗ can successfully complete an interaction with S
and also obtain a “trapdoor” y such that R(TRANS, y) = 1, where TRANS is the
transcript of that execution. We also require statistical UC-simulation: for every
efficient adversaryA participating as a sender in many executions of the protocol
with multiple receivers R1, . . . , Rm, and communicating with an environment Z
simultaneously, there exists a simulator Sim which can statistically simulate the
view of A for Z and output trapdoors to all successfully completed puzzles at
the same time.

Formally, we consider a concurrent execution of the protocol 〈SH , R〉 for an
adversary A. In the concurrent execution, A exchanges messages with a puzzle-
environmentZ and participates as a sender concurrently inm = poly(k) (puzzle)-
protocols with honest receivers R1, . . . , Rm. At the onset of a execution, Z out-
puts a session identifier sid that all receivers receive as input. Thereafter, Z is
allowed to exchange messages only with the adversary A. In particular, for any
queries to the Captcha solving oracle, Z cannot query H ; instead, it can send
its queries to A, who in turn, can query H for Z, and report the answer back to
Z. We compare a real and an ideal execution.

Real Execution. The real execution consists of the adversary A, which in-
teracts with Z, and participates as a sender in m concurrent interactions of
〈SH , R〉. Further, the adversary and the honest receivers have access to H which
they can query and receive the solutions over secure channels. The environment
Z does not have access to H ; it can query H , by sending its queries to A, who
queries H with the query and reports the answers back to Z. Without loss of
generality, we assume that after every interaction, A honestly sends TRANS to
Z, where TRANS is the transcript of execution. Let realHA,Z(k) be the random
variable that describes the output of Z in the real execution.

Ideal Execution. The ideal execution consists of a ppt machine (the simula-
tor) with oracle access to H , denoted SimH . On input 1k, SimH interacts with
the environment Z. At the end of the execution, the environment produces an
output. We denote the output of Z in the ideal execution by the random variable
idealSimH ,Z(k).

Definition 6. (UC-Puzzle, adapted from [20]) Let C := (G,H) be a
Captcha puzzle system. A pair (〈SH , R〉,R) is called UC-puzzle for a polynomial
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time computable relation R and the Captcha puzzle system C, if the following
conditions hold:

– Soundness. There exists a negligible function negl(·) such that for every
ppt receiver A, and every sufficiently large k, the probability that A, after
an execution with the sender SH on common input 1k, outputs y such that
y ∈ R(TRANS) where TRANS is the transcript of the message exchanged in
the interaction, is at most negl(k).

– Statistical Simulation. For every ppt adversary A participating in a
concurrent puzzle execution, there exists an oracle ppt machine called the
simulator, SimH , such that for every ppt environment Z and every suf-
ficiently large k, the random variables real

H
A,Z(k) and idealSimH ,Z(k) are

statistically close over k ∈ N, and whenever Sim sends a message of the form
TRANS to Z, it outputs y in its special output tape such that y ∈ R(TRANS).

The UC-puzzle System. Due to space constraints, here we only sketch the con-
struction of our UC-puzzle, and defer the details to the full version [14]. A
straightforward approach that does not quite work is to use our extractable
commitment from Figure 1. That is, the sender of the UC puzzle picks random
string s, which will serve as the trapdoor, and commits to it using our extractable
commitment. Although this scheme allows extraction of the trapdoor s, it is not
clear how, given a transcript and a purported trapdoor, it can be verified in
PPT whether it is the correct trapdoor or not. Further, a malicious sender may
commit to an invalid string (by using incorrect Captcha solution, for example).
The receiver can not detect this and will accept, while there is no well-defined
trapdoor for such a transcript. Moreover, we can not use the standard trick
of using zero-knowledge to enforce correct sender behaviour because checking
validity of Captcha solutions is not a PPT process.

We solve the first problem by making the sender additionally send z := f(s)
to the receiver, where f(·) is a one-way function. The idea is to make it easy to
verify the trapdoor, by simply checking if z is the image of the trapdoor under
f(·). However, for this to work, we must ensure that the pre-image of z and the
string committed in the extractable commitment are the same.

To solve this problem, we use the following modified commitment scheme in
the above protocol to commit to the trapdoor: to commit to a string s, the
sender commits s twice, first using our straight line extractable commitment
from Figure 1, and then using any non-interactive perfectly binding scheme
〈Cpb, Rpb〉 (which can be constructed from, for eg., one-way functions). Using
this, we tackle the aforementioned problem in two steps:

1. First, the committer proves that the commitment is ‘well-formed’: that is,
the string committed in both the commitments is the same. This is done by
using secret sharing and cut-and-choose.

2. Thereafter, the committer gives a zero-knowledge proof that the string com-
mitted using the commitment scheme 〈Cpb, Rpb〉 is the same as the pre-
image of z under f(·).
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The first step ensures that the string committed using the commitment scheme
of Figure 1 is the same as that committed by 〈Cpb, Rpb〉. As 〈Cpb, Rpb〉 is in
the plain model and does not involve Captcha, we can give a proof of cor-
rectness using standard zero-knowledge. For full details, please refer to the full
version [14].

6 Conclusion

Open Questions and Future Work. Our work presents a basic technique us-
ing human-extractable Captcha puzzles to enable straight-line extraction and
shows how to incorporate it into the framework of protocol composition to
obtain new and interesting feasibility results. However, many other important
questions remain to be answered. For examples, can we obtain zero-knowledge
proofs for NP in 3 or less rounds?5 Can we obtain plain-text aware encryption-
schemes?What about non-interactive non-malleable commitments without setup
[15, 17, 35, 36]?

One interesting direction is to consider improving upon the recent work of
Goyal, Jain, and Ostrovsky on generating a password-based session-keys in the
concurrent setting [37]. One of the main difficulties in [37] is to get a control on
the number of times the simulator rewinds any given session. They accomplish
this by using the technique of precise-simulation [38, 39]. However, since we
obtain straight-line simulation, it seems likely that our techniques could be used
to improve the results in [37]. The reason we are not able to do this is that our
techniques are limited to only simulation—they do not yield both straight-line
simulation and extraction, whereas [37] needs a control over both.

Another interesting direction is to explore the design of extractable Captcha

puzzles. In general, investigating the feasibility and drawbacks of the asymptotic
formulation for Captcha puzzles presented here and in [1, 3, 4] is an interesting
question in its own right. We presented a discussion of these details in section
3, however they still present numerous questions for future work.
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Abstract. In all existing efficient proofs of knowledge of a solution to
the infinity norm Inhomogeneous Small Integer Solution (ISIS∞) prob-
lem, the knowledge extractor outputs a solution vector that is only guar-
anteed to be Õ(n) times longer than the witness possessed by the prover.
As a consequence, in many cryptographic schemes that use these proof
systems as building blocks, there exists a gap between the hardness of
solving the underlying ISIS∞ problem and the hardness underlying the
security reductions. In this paper, we generalize Stern’s protocol to ob-
tain two statistical zero-knowledge proofs of knowledge for the ISIS∞

problem that remove this gap. Our result yields the potential of relying
on weaker security assumptions for various lattice-based cryptographic
constructions. As applications of our proof system, we introduce a con-
currently secure identity-based identification scheme based on the worst-
case hardness of the SIVPÕ(n1.5) problem (in the �2 norm) in general
lattices in the random oracle model, and an efficient statistical zero-
knowledge proof of plaintext knowledge with small constant gap factor
for Regev’s encryption scheme.

1 Introduction

Zero-knowledge proofs and proofs of knowledge are fundamental notions and
powerful tools in cryptography. In a zero-knowledge proof system [GMR89], a
prover convinces a verifier that some statement is true while leaking nothing
but the validity of the assertion. In a proof of knowledge ([GMR89, BG93]), the
prover also convinces the verifier that he indeed knows a satisfying “witness”
for the given statement. In the last 25 years, zero-knowledge proofs of knowl-
edge (ZKPoK) have been extensively studied ([FFS87, GQ90, FS89, RS92,
Mau09],...). These proof systems are the building blocks in many cryptographic
constructions (e.g., identification schemes, group signatures, anonymous creden-
tial systems, to name just a few). In this work, we focus on ZKPoK for an impor-
tant hard-on-average problem in lattice-based cryptography - the Inhomogeneous

K. Kurosawa and G. Hanaoka (Eds.): PKC 2013, LNCS 7778, pp. 107–124, 2013.
c© International Association for Cryptologic Research 2013
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Small Integer Solution (ISIS) problem, that was introduced in [GPV08] and has
since then been used extensively ([ABB10a, ABB10b, CHKP10, Boy10],...).

In recent years, lattice-based cryptography has received much attention from
the research community because it enjoys a unique combination of attractive
features: provable security under worst-case hardness assumptions, conjectured
resistance against quantum computers, and asymptotic efficiency. The rapid de-
velopment of the field yields an interesting challenge of designing and improving
proof systems for lattice problems. There exist several proof systems, both in-
teractive and non-interactive ([GG98, MV03, GMR05, PV08]) that exploit the
geometric structure of worst-case lattice problems. On the other hand, when
designing lattice-based cryptographic protocols, one essentially has to deal with
the average-case problems that enjoy worst-case to average-case reductions, such
as the SIS and ISIS problems ([Ajt96, MR07, GPV08]) and the Learning With
Errors (LWE) problem ([Reg05, Reg09, Pei09]). All existing proofs of knowl-
edge for the ISIS problem ([MV03, Lyu08]) have some limitations, most notably
the fact that there is a gap between the norm of the witness vector and the
norm of the vector computed by the knowledge extractor: The latter is only
guaranteed to be Õ(n) larger than the former in the case of the infinity norm,
where n denotes the dimension of the corresponding worst-case lattice problem.
As a consequence, cryptographic schemes using these proof systems as building
blocks rely on a stronger security assumption than the assumed hardness of find-
ing a witness for the ISIS instance, by a Õ(n) factor. This hints that the existing
ZKPoK for the ISIS∞ problem are sub-optimal: Is it possible to design an effi-
cient ZKPoK for ISIS∞ whose security provably relies on a weaker assumption
than the existing ones? In this work, we reply positively, and describe such a
ZKPoK, for which there is only a constant gap between the norm of the witness
vector and the norm of the vector computed by the extractor. We also briefly
describe a scheme with no gap (i.e., constant factor 1), but that is less efficient.
Notations. Throughout the paper, we assume that all vectors are column vec-
tors. We denote vectors by bold lower-case letters (e.g., x), and matrices by bold
upper-case letters (e.g., A). The Gram-Schmidt norm of a matrix A is denoted
by ‖Ã‖. We let the Hamming weight of a vector x ∈ {0, 1}m be denoted by
wt(x). We let B3m denote the set of all vectors x ∈ {−1, 0, 1}3m having ex-
actly m coordinates equal to −1; m coordinates equal to 0; and m coordinates
equal to 1. The symmetric group of all permutations of k elements is denoted
by Sk. We use the notation y $←− D when y is sampled from the distribution D.
When S is a finite set, y $←− S means that y is chosen uniformly at random from S.
We let n denote the security parameter of our schemes. A function ε : N→ R≥0

is said negligible in n (denoted by negl(n)) if it vanishes faster than the inverse
of any polynomial. We say that an event happens with overwhelming probability
if it happens with probability 1 − ε(n) for some negligible function ε. We often
use the soft-O notation: We write f(n) = Õ(g(n)) if f(n) = O(g(n) logc g(n))
for some constant c. The statistical distance between two distributions X and Y
over a countable domain D is 1

2

∑
d∈D |X(d) − Y(d)|. We say that X and Y are

statistically close (denoted by X ≈s Y) if their statistical distance is negligible.
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1.1 Related Works

We briefly review some of the results related to proofs of knowledge for the ISIS
problem. The ISISp

n,m,q,β problem in the �p norm with parameters (n,m, q, β)
asks to find a vector x ∈ Zm such that and ‖x‖p ≤ β and Ax = y mod q for a
uniformly chosen input matrix A ∈ Zn×m

q and a uniformly chosen input vector
y ∈ Zn

q . The hardness of the ISIS2
n,m,q,β problem is established by a worst-case

to average-case reduction from standard lattice problems, such as the Shortest
Independent Vectors Problem (SIVP).

Theorem 1 ([GPV08]). For any m, β = poly(n), and for any integer q ≥
β · ω(

√
n logn), solving a random instance of the ISIS2

n,m,q,β problem with non-
negligible probability is at least as hard as approximating the SIVP2

γ problem on
any lattice of dimension n to within certain γ = β · Õ(

√
n) factors.

By the relationship between the �2 and �∞ norms (i.e., for any vector x ∈ Rn,
we have ‖x‖∞ ≤ ‖x‖2 ≤ √n · ‖x‖∞), it follows that the ISIS∞

n,m,q,β problem is
at least as hard as SIVP2

γ (in the �2 norm) for some γ = β · Õ(n). Without loss
of generality, throughout this work, we will assume that β is a positive integer.
We define the relation RISIS∞

n,m,q,β
for this problem as

RISIS∞
n,m,q,β

=
{
((A,y),x) ∈ Zn×m

q × Zn
q × Zm: (‖x‖∞ ≤ β) ∧ (Ax = y [q])

}
.

Kawachi et al. [KTX08] adapted Stern’s identification scheme [Ste96] to the
lattice setting to obtain a ZKPoK for a restricted version of the ISIS∞ problem,
with respect to the relation

RKTXn,m,q,w
=

{
((A,y),x) ∈ Zn×m

q × Zn
q ×{0, 1}m: (wt(x) = w) ∧ (Ax = y [q])

}
.

This restriction of RISIS∞
n,m,q,β

does not seem to suffice for a wide range of
applications. For some cryptographic schemes that allow many users, such as
ID-based identification [Sha85] and group signature [CH91] schemes, the se-
cret keys of the users are typically generated from the public keys by a trusted
authority. For such schemes that rely on lattice-based hardness assumptions
([SSTX09, Rüc10a, CNR12, GKV10]), this task is performed by using a secret
trapdoor possessed by the trusted authority, consisting in a relatively short basis
of a publicly known lattice. As a result, a user secret key x is a general solution
to the ISIS∞

n,m,q,β problem, where β is typically Õ(
√
n). Whenever a user in the

scheme wants to identify himself, he must prove that he knows such a vector x.
In other words, these schemes require a PoK for the relation RISIS∞

n,m,q,β
, for

which, up to the best of our knowledge, there exist two options:

• A proof of knowledge for RISIS∞
n,m,q,β

was introduced by Lyubashevsky [Lyu08].
His protocol is efficient with low communication cost, but suffers from several
limitations: It is not proven zero-knowledge (it is only proven to be witness-
indistinguishable - a weaker notion than zero-knowledge [FS90]); It has a
constant completeness error in each round; And it relies on a relatively strong
hardness assumption for the ISIS∞ problem, with a Õ(n) gap factor.
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• Another proof system can be obtained by transforming the ISIS instance
into a GapCVP instance, and adapting the Micciancio-Vadhan ZKPoK for
GapCVP [MV03] to the infinity norm. Let B be any basis of the lattice Λ⊥

q (A) =
{x ∈ Zm : Ax = 0 mod q} and t be a vector in Zm such that At = y mod q.
Such B and t can be efficiently computed using linear algebra. Then run the
Micciancio-Vadhan protocol for GapCVP∞

γ with common input (B, t, β). The
prover’s auxiliary input is e = t− x ∈ Λ⊥

q (A). We note that the knowledge
extractor in [MV03] is only able to output a vector e′ ∈ Λ⊥

q (A), such that
‖t− e′‖∞ ≤ g · β for some g > 1. This implies that x′ = t− e′ is a solution to
the ISIS∞

n,m,q,g·β problem with respect to (A,y). However, in the infinity norm,
the smallest g that can be obtained is ≥ Θ(n/ logn) while the bit complexity
is relatively high. In more details, the gap factor g depends on some parame-
ter k as follows: g = m1+Ω(1) for k = ω(1); g = Ω(m) for k = ω(logm); and
g = Ω(m/ logm) for k = poly(m) - a sufficiently large polynomial. The commu-
nication cost of the protocol depends linearly on k. Alternatively, one could apply
the ISIS-GapCVP transformation to the Micciancio-Vadhan protocol for the �2
norm, and then use the relationship between the �2 and �∞ norms. However, in
this case, the gap is slightly bigger (at least Θ(n/

√
logn)).

We now shortly review a class of proof systems related to our work: zero-
knowledge proofs of plaintext knowledge (ZKPoPK) for Regev’s LWE-
based cryptosystem ([Reg05, Reg09]). All known ZKPoPK ([BD10, BDOZ11,
AJLA+12, DLA12]) were derived from Secure Multi-Party Computation proto-
cols, via the [IKOS07] transformation from MPC to ZK. The proof systems are
relatively inefficient and rely on the assumption that SIVP is hard for super-
polynomial approximation factors (i.e., γ = nω(1)). We observe (in Section 3.2)
that a PoPK for Regev’s cryptosystem can be obtained from a PoK for RISIS.
Thus, a ZKPoK for the ISIS problem with lower communication cost and a
weaker hardness assumption leads to a significant improvement in this direction.

1.2 Our Contributions and Techniques

The discussions above raise the question whether it is possible to design a
ZKPoK for the general ISIS problem that completely removes the gap. Even a
ZKPoK that has small constant gap factor while maintaining efficiency would be
desirable. In this work, we answer this question positively. Specifically, we show
that there exists a statistical ZKPoK (called Naive SternExt) for the rela-
tion RISIS∞

n,m,q,β
whose security relies on the assumed hardness of the ISIS∞

n,m,q,β .
This scheme achieves optimal gap, as the norm bounds for the witness and the
security assumptions are identical. However, its communication cost depends
linearly on β, which may be a significant drawback for large β. Our main result
is a statistical ZKPoK called SternExt achieving both security and efficiency
requirements: it has an almost optimal gap factor (g ≤ 2), while the communica-
tion cost compares favorably to the Micciancio-Vadhan proof system. We believe
that our result can be applied to many cryptographic primitives. In particular,
we will describe two applications of the SternExt proof system:
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1. A concurrently secure identity-based identification scheme that relies on
worst-case hardness of the SIVPÕ(n1.5) problem (in the �2 norm) in gen-
eral lattices. This is the weakest security assumption among contemporary
lattice-based ID-based ID schemes ([SSTX09, Rüc10a]).

2. An efficient statistical ZKPoPK for Regev’s cryptosystem with small con-
stant gap factor between the sizes of a valid plaintext and the output of
the knowledge extractor. In comparison with the results of [BD10, BDOZ11,
AJLA+12, DLA12], our proof system offers a noticeable improvement in
both security and efficiency points of view.

We now sketch our approach. While the [MV03] protocol exploits the geometric
aspect of the ISIS problem, our protocol exploits its combinatorial and algebraic
aspects. We first look at the scheme from [Ste96, KTX08], and investigate how to
loosen the restrictions on the witness x, which are x ∈ {0, 1}m and wt(x) = w.
Note that these conditions are invariant under all permutations of coordinates:
For π ∈ Sm, a vector x satisfies those restrictions if and only if π(x) also does.
Thus, a witness x with such constraints can be verified in zero-knowledge thanks
to the randomness of π. We then notice that the same statement still holds true
for x ∈ B3m, namely: for π ∈ S3m, x ∈ B3m ⇔ π(x) ∈ B3m. This basic fact
allows us to generalize the proof system from [Ste96, KTX08]. Our generalization
consists of two steps:
Step 1. Removing the restriction on the Hamming weight. Specifically, we ob-
serve that a ZKPoK for the relation

RISIS∞
n,m,q,1

=
{

((A,y),x) ∈ Zn×m
q × Zn

q × {−1, 0, 1}m: Ax = y mod q
}

can be derived from Stern’s scheme by the following extensions: For any vector
x ∈ {−1, 0, 1}m, append 2m coordinates from the set {−1, 0, 1} to x to obtain
x′ ∈ B3m. Next, append 2m zero-columns to matrix A to get A′ ∈ Zn×3m

q . We
then have:

x′ ∈ B3m ⇔ x ∈ {−1, 0, 1}m,
A′x′ = y mod q ⇔ Ax = y mod q.

In other words, if a verifier is convinced that x′ ∈ B3m and A′x′ = y mod q,
then he is also convinced that x is a valid witness for the relation RISIS∞

n,m,q,1
.

Step 2. Increasing the �∞ bound to β, for any β > 0. The principle of Step 1
can be generalized in a naive manner. For any x ∈ {−β, . . . , 0, . . . , β}m, one
can append 2βm coordinates to x to obtain an x∗ ∈ {−β, . . . , 0, . . . , β}(2β+1)m

that has exactly m coordinates equal to d for each d ∈ {−β, . . . , 0, . . . , β}. The
extended matrix A∗ ∈ Z

n×(2β+1)m
q is obtained by appending 2βm zero-columns

to matrix A. Then A∗x∗ = Ax mod q. Moreover, the constraints of x∗ can be
verified in zero-knowledge by using a uniform π ∈ S(2β+1)m. Therefore, we obtain
a ZKPoK for RISIS∞

n,m,q,β
, that we call Naive SternExt, where the extraction

gap factor is completely removed. However, as mentioned earlier, the proof is
inefficient for large β as its communication cost is β · Õ(n lg q).
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A much more efficient method to achieve our goal is based on the idea of repre-
senting any vector x ∈ {−β, . . . , 0, . . . , β}m by k = �lg β+1 vectors ũ0, . . . , ũk−1

in {−1, 0, 1}m via a binary decomposition, namely: x =
∑k−1

j=0 2j · ũj . Next we
apply the extension of Step 1: Extend each ũj to uj ∈ B3m, and extend A to
A′ ∈ Zn×3m

q . We then have:

A′( k−1∑
j=0

2j · uj

)
= y mod q ⇔ Ax = y mod q.

This allows us to combine k proofs for RISIS∞
n,m,q,1

into one proof RISIS∞
n,m,q,β

.1

We thus obtain a statistical ZKPoK for the general ISIS∞ problem, that we
call SternExt, with the following properties:
• The knowledge extractor obtains an x′ with ‖x′‖∞ ≤ β′, where β ≤ β′ ≤

2β− 1 (depending on the binary representation of β). Hence, the extraction
gap factor satisfies g < 2.
• The communication cost is lg β · Õ(n lg q). In particular, in most crypto-

graphic applications q is poly(n), and we then have lg β ≤ lg q = Õ(1).

Overall, SternExt provides a better proof system for RISIS∞
n,m,q,β

in both security
and efficiency aspects than the one derived from the Micciancio-Vadhan protocol.
We summarize the comparison among the PoK for RISIS∞

n,m,q,β
in Table 1. The

comparison data are for one round of protocol, in which case all the considered
proof systems admit a constant soundness error.

Table 1. Comparison among the proofs of knowledge for RISIS∞
n,m,q,β

. See discussion
in Section 1.1 for other security/efficiency trade-offs for the [MV03] scheme.

Schemes [Lyu08] [MV03] Naive
SternExt

SternExt

Zero-knowledge? ✗(WI) ✓ ✓ ✓

Perfect completeness? ✗ ✓ ✓ ✓

Norm bound in the
ISIS hardness assumption β · Õ(n) β · Õ(n) β ≤ 2β − 1

Communication cost Õ(n lg q) Õ(n lg q) β · Õ(n lg q) lg β · Õ(n lg q)

Outline. The rest of the paper is organized as follows: In Section 2, we present
the SternExt proof system; and in Section 3, we describe two cryptographic
applications. We refer the reader to [Gol04, Chap. 4] and [GPV08] for standard
definitions of zero-knowledge proof systems and lattice problems, respectively.
In the appendix, we adapt SternExt to the relation RSIS∞ associated to the
SIS problem: RSIS∞ corresponds to setting y = 0 and imposing x �= 0 in RISIS∞ .
1 This packing of proofs is akin to Jain et al.’s recent work on the Learning Parity

with Noise problem [JKPT12, Section 4.2].
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2 A Zero-Knowledge Proof of Knowledge for ISIS

Our scheme extends Stern’s ZKPoK [Ste96] for the Syndrome Decoding Prob-
lem (SDP). Stern’s proof system is a 3-move interactive protocol: the prover P
computes three commitments and sends them to the verifier V ; verifier V sends a
uniformly random challenge to P ; prover P reveals two of the three commitments
according to the challenge. Kawachi et al. [KTX08] adapted Stern’s scheme to
the lattice setting, exploiting the similarity between the SDP and ISIS problems.
Their construction makes use of a string commitment scheme that is statistically
hiding and computationally binding.

Definition 1. A statistically hiding, computationally binding string commit-
ment scheme is a PPT algorithm COM(s, ρ) satisfying:

• For all s0, s1 ∈ {0, 1}∗, we have (over the random coins of COM):

COM(s0; ·) ≈s COM(s1; ·),
• For all PPT algorithm A returning (s0, ρ0); (s1, ρ1), where s0 �= s1, we have

(over the random coins of A):

Pr[COM(s0; ρ0) = COM(s1; ρ1)] = negl(n).

2.1 Setup

For a security parameter n, let q be a positive integer. Let β be some positive
integer, and k = �lg β + 1. Let COM be a statistically hiding and computa-
tionally binding string commitment scheme. It was shown in [KTX08] that such
a scheme can be constructed based on the hardness of the ISIS∞

n,m,q,Õ(1)
prob-

lem. For simplicity, in the interactive protocol, we will not explicitly write the
randomness ρ of the commitment scheme COM.

The common input is a pair (A,y) such that y belongs to the image of A,
and the prover’s auxiliary input is vector x. Prior to the interaction, both P
and V form the extended matrix A′ ∈ Zn×3m

q by appending 2m zero-columns
to matrix A. In addition, prover P performs the following preparation
steps:

1. Decomposition. The goal is to represent vector x = (x1, x2, . . . , xm) by k
vectors in {−1, 0, 1}m. For each 1 ≤ i ≤ m, consider a binary representation
of coordinate xi, that is: xi = bi,0 · 20 + bi,1 · 21 + . . . + bi,k−1 · 2k−1, where
bi,j ∈ {−1, 0, 1}, for all j = 0, . . . , k − 1. Now for each index j, let ũj =
(b1,j , b2,j, . . . , bm,j) ∈ {−1, 0, 1}m. We observe that x =

∑k−1
j=0 2j · ũj .

2. Extension. For each index j = 0, . . . , k−1, extend ũj to a vector uj ∈ B3m

as follows: If the numbers of coordinates −1, 0, and 1 in vectors ũj are λ(−1)
j ,

λ
(0)
j and λ

(1)
j respectively, then choose a random vector tj ∈ {−1, 0, 1}2m

that has exactly (m− λ(−1)
j ) coordinates −1, (m− λ(0)

j ) coordinates 0, and
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(m− λ(1)
j ) coordinates 1; and append tj to ũj , i.e., set uj = (ũj‖tj). Since

the last 2m columns of matrix A′ are zero-columns, we have:

A′( k−1∑
j=0

2j · uj

)
= y mod q ⇔ Ax = y mod q.

2.2 The Interactive Proof System

The prover P and the verifier V interact as described in Figure 1.

1. Commitment. Prover P samples k vectors r0, . . . , rk−1
$←− Z3m

q ; k permuta-

tions π0, . . . , πk−1
$←− S3m, and sends the commitment CMT := (c1, c2, c3), where⎧⎪⎨⎪⎩

c1 = COM(π0, . . . , πk−1,A
′(

∑k−1
j=0 2j · rj) mod q)

c2 = COM(π0(r0), . . . , πk−1(rk−1))

c3 = COM(π0(u0 + r0), . . . , πk−1(uk−1 + rk−1))

2. Challenge. Receiving CMT, verifer V sends a challenge Ch $←− {1, 2, 3} to P .
3. Response. Prover P replies as follows:

• If Ch=1, then reveal c2 and c3. For each j, let vj=πj(uj), and wj =πj(rj).
Send RSP := (v0, . . . ,vk−1,w0, . . . ,wk−1).

• If Ch = 2, then reveal c1 and c3. For each j, let φj = πj , and zj = uj + rj .
Send RSP := (φ0, . . . , φk−1, z0, . . . , zk−1).

• If Ch = 3, then reveal c1 and c2. For each j, let ψj = πj , and sj = rj .
Send RSP := (ψ0, . . . , ψk−1, s0, . . . , sk−1).

Verification. Receiving the response RSP, verifier V performs the following checks:

• If Ch = 1: Check that vj ∈ B3m for all j = 0, . . . , k − 1, and{
c2 = COM(w0, . . . ,wk−1)

c3 = COM(v0 + w0, . . . ,vk−1 + wk−1)

• If Ch = 2: Check that{
c1 = COM(φ0, . . . , φk−1,A

′(
∑k−1

j=0 2j · zj)− y mod q)

c3 = COM(φ0(z0), . . . , φk−1(zk−1))

• If Ch = 3: Check that{
c1 = COM(ψ0, . . . , ψk−1,A

′(
∑k−1

j=0 2j · sj) mod q)

c2 = COM(ψ0(s0), . . . , ψk−1(sk−1))

In each case, verifier V outputs the decision d = 1 (Accept) if and only if all the
conditions hold. Otherwise, he outputs d = 0 (Reject).

Fig. 1. The SternExt proof system
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Completeness. We observe that if prover P has a valid witness x for the re-
lation RISIS∞

n,m,q,β
and follows the protocol, then he always gets accepted by V .

Therefore, the proof system has perfect completeness.
Communication Cost. The size of the commitment scheme from [KTX08] is
Õ(n lg q). If Ch = 1, then the size of RSP is 3km + 3km lg q. If Ch = 2 or
Ch = 3, then RSP consists of k vectors in Z3m

q and k permutations. Note that
in practice, instead of sending the permutations and vectors, one would send the
random seed of the PRNG used to generate these data, and thus significantly
reduce the communication cost. Overall, the total communication cost of the
protocol is lg β · Õ(n lg q).

2.3 Statistical Zero-Knowledge

We now prove that the proof system SternExt is statistically zero-knowledge,
by exhibiting a transcript simulator.

Theorem 2. If COM is a statistically hiding string commitment scheme, then
the proof system SternExt from Figure 1 is statistically zero-knowledge.

Proof. Adapting the techniques of [Ste96] and [KTX08], we construct a sim-
ulator S which has black-box access to a (possibly cheating) verifier V̂ , such
that on input the public parameters A (and implicitly its extension A′) and y,
outputs with probability 2/3 a successful transcript (i.e., an accepted interac-
tion), and the view of V̂ in the simulation is statistically close to that in the
real interaction. The simulator S begins by selecting a random Ch ∈ {1, 2, 3} (a
prediction of the challenge value that V̂ will not choose), and a random tape r′

of V̂ . We note that in all the cases we consider below, by the assumption on the
commitment scheme COM, the distributions of c′1, c′2, c′3 are statistically close
to the distributions of the commitments in the real interaction, and thus, the
distributions of the challenge Ch from V̂ is also statistically close to that in the
real interactions.

Case Ch = 1: The simulator S computes x′ ∈ Zm
q such that Ax′ = y mod q

using linear algebra. It picks k− 1 random vectors ũ′
1, . . . , ũ

′
k−1

$←− Zm
q and sets:

ũ′
0 := x′ −

k−1∑
j=1

2j · ũ′
j mod q.

In other words, we have x′ =
∑k−1

j=0 2j · ũ′
j mod q. Now for each j, the simulator

extends ũ′
j to u′

j ∈ Z3m
q by appending 2m random coordinates. It then picks k

vectors r′0, . . . , r
′
k−1

$←− Z3m
q ; k permutations π′

0, . . . , π
′
k−1

$←− S3m; and uniformly
random strings ρ′1, ρ′2, ρ′3. It sends the following commitments to V̂ :⎧⎪⎨⎪⎩

c′1 = COM(π′
0, . . . , π

′
k−1,A

′(
∑k−1

j=0 2j · r′j) mod q; ρ′1)
c′2 = COM(π′

0(r
′
0), . . . , π

′
k−1(r

′
k−1); ρ

′
2)

c′3 = COM(π′
0(u

′
0 + r′0), . . . , π

′
k−1(u

′
k−1 + r′k−1); ρ

′
3).
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Receiving a challenge Ch from V̂ , simulator S provides a transcript as follows:

• If Ch = 1: Output ⊥ and halt.
• If Ch = 2: Output(

r′, (c′1, c
′
2, c

′
3), 2, (π

′
0, π

′
1, . . . , π

′
k−1,u

′
0 + r′0, . . . ,u

′
k−1 + r′k−1); ρ

′
1, ρ

′
3

)
.

• If Ch = 3: Output
(
r′, (c′1, c

′
2, c

′
3), 3, (π

′
0, . . . , π

′
k−1, r

′
0, . . . , r

′
k−1); ρ

′
1, ρ

′
2

)
.

Case Ch = 2: The simulator S picks r′0, . . . , r
′
k−1

$←− Z3m
q ; u′

0, . . . ,u
′
k−1

$←− B3m;

permutations π′
0, . . . , π

′
k−1

$←− S3m; and uniformly random strings ρ′1, ρ′2, ρ′3. It
sends to V̂ the commitments:⎧⎪⎨⎪⎩

c′1 = COM(π′
0, . . . , π

′
k−1,A

′(
∑k−1

j=0 2j · r′j) mod q; ρ′1)
c′2 = COM(π′

0(r
′
0), . . . , π

′
k−1(r

′
k−1); ρ

′
2)

c′3 = COM(π′
0(u

′
0 + r′0), . . . , π

′
k−1(u

′
k−1 + r′k−1); ρ

′
3).

Receiving a challenge Ch from V̂ , simulator S computes the following transcript:

• If Ch = 1: Output(
r′, (c′1, c

′
2, c

′
3), 1, (π

′
0(u

′
0), . . . , π

′
k−1(u

′
k−1), π

′
0(r

′
0), . . . , π

′
k−1(r

′
k−1)); ρ

′
2, ρ

′
3

)
.

• If Ch = 2: Output ⊥ and halt.
• If Ch = 3: Output

(
r′, (c′1, c′2, c′3), 3, (π′

0, . . . , π
′
k−1, r

′
0, . . . , r

′
k−1); ρ

′
1, ρ

′
2

)
.

Case Ch = 3: The simulator picks the uniformly random vectors, permutations,
and strings exactly as in the case Ch = 2 above, but sends the following:⎧⎪⎨⎪⎩

c′1 = COM(π′
0, . . . , π

′
k−1,A

′(
∑k−1

j=0 2j · (u′
j + r′j))− y mod q; ρ′1)

c′2 = COM(π′
0(r

′
0), . . . , π

′
k−1(r

′
k−1); ρ

′
2)

c′3 = COM(π′
0(u

′
0 + r′0), . . . , π

′
k−1(u

′
k−1 + r′k−1); ρ

′
3).

Receiving a challenge Ch from V̂ , simulator S computes a transcript as follows:

• If Ch = 1: Output(
r′, (c′1, c

′
2, c

′
3), 1, (π

′
0(u

′
0), . . . , π

′
k−1(u

′
k−1), π

′
0(r

′
0), . . . , π

′
k−1(r

′
k−1)); ρ

′
2, ρ

′
3

)
.

• If Ch = 2: Output(
r′, (c′1, c

′
2, c

′
3), 2, (π

′
0, . . . , π

′
k−1,u

′
0 + r′0, . . . ,u

′
k−1 + r′k−1); ρ

′
1, ρ

′
3

)
.

• If Ch = 3: Output ⊥ and halt.

We observe that the probability that the simulator outputs ⊥ is negligibly close
to 1/3. Moreover, one can check that whenever S does not halt, it will provide a
successful transcript, and the distribution of the transcript is statistically close to
that of the prover in the real interaction. Hence, we have constructed a simulator
that can successfully impersonate the honest prover with probability 2/3, and
completed the proof.
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2.4 Proof of Knowledge

The fact that anyone can run the simulator to convince the verifier with proba-
bility 2/3 implies that the SternExt proof system has soundness error ≥ 2/3.
In the following, we prove that it is indeed a proof of knowledge for the relation
RISIS∞

n,m,q,β
with knowledge error κ = 2/3.

Theorem 3. Assume that COM is a computationally binding string commit-
ment scheme. Then there exists a knowledge extractor K such that the following
holds. If K has access to a cheating prover who convinces the verifier on in-
put (A,y) with probability 2/3+ ε for some ε > 0 and in time T , then K outputs
an x such that ((A,y);x) ∈ RISIS∞

n,m,q,2β−1
with overwhelming probability and

runtime T · poly(n,m, lg q, 1/ε).
As a corollary, SternExt is sound for uniform (A,y) under the assumption that
the ISIS∞

n,m,q,2β−1 problem is hard.

Proof. We apply the technique of [Vér96] relying on trees to model the probabil-
ity space corresponding to the protocol execution. Suppose a cheating prover P̂
can convince the verifier with probability 2/3 + ε. Then by rewinding P̂ a num-
ber of times polynomial in 1/ε, the knowledge extractor K can find with over-
whelming probability a node with 3 sons in the tree associated with the protocol
between P̂ and the verifier. This node corresponds to the reception of all 3 values
of the challenge. In other words, P̂ is able to answer correctly to all challenges
for the same commitment. Therefore, K can get the following relations:

COM(φ0, . . . , φk−1,A′(
k−1∑
j=0

2j · zj)− y) = COM(ψ0, . . . , ψk−1,A′(
k−1∑
j=0

2j · sj))

COM(w0, . . . ,wk−1) = COM(ψ0(s0), . . . , ψk−1(sk−1))
COM(φ0(z0), . . . , φk−1(zk−1)) = COM(v0 + w0, . . . ,vk−1 + wk−1),

and vj ∈ B3m for all j = 0, . . . , k− 1. Since COM is computationally binding, it
follows that:

A′
( k−1∑

j=0

2j · (zj − sj)
)

= y mod q,

and for all j, we have φj = ψj ;wj = ψj(sj);vj + wj = φj(zj);vj ∈ B3m. This
implies that φj(zj−sj) = vj ∈ B3m. Let v′

j := zj−sj = φ−1
j (vj), then we obtain

that A′
(∑k−1

j=0 2j ·v′
j

)
= y mod q and v′

j ∈ B3m. Then for each v′
j , we drop the

last 2m coordinates to obtain ṽ′
j ∈ {−1, 0, 1}m. Now we have A

(∑k−1
j=0 2j ·ṽ′

j

)
=

y mod q. Let x′ =
∑k−1

j=0 2j · ṽ′
j . Then Ax′ = y mod q, and

‖x′‖∞ ≤
k−1∑
j=0

2j · ‖ṽ′
j‖∞ ≤

k−1∑
j=0

2j =
	lg β
∑
j=0

2j = 2	lg β
+1 − 1 ≤ 2β − 1.

The knowledge extractor outputs x′, which satisfies ((A,y;x′) ∈ RISIS∞
n,m,q,2β−1

.
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2.5 A Scheme Variant with No Gap

In a personal communication, D. Micciancio indicated to the authors a modifi-
cation of the SternExt proof system that removes the extraction gap entirely.
Instead of relying on powers of 2, one can use the following sequence of integers:
b1 = �β/2�, b2 = �(β − b1)/2�, b3 = �(β − b1− b2)/2�, . . . , and 1. One obtains a
sequence of numbers of length k = �lg β+1, whose subset sums are precisely the
numbers between 0 and β. Finally, any integer in this interval can be efficiently
expressed as a subset sum of the integers in the sequence.

3 Applications

Our results described in Section 2 yield the potential of enabling weaker secu-
rity assumptions and lower complexities for various lattice-based cryptographic
constructions. In this section, we will describe two applications of the SternExt
proof system: an improved ID-based identification scheme and a new ZKPoPK
for Regev’s encryption scheme [Reg05, Reg09].

3.1 Identity-Based Identification

Definition 2 ([BNN09]). An identity-based identification (IBI) scheme is a
tuple of four PPT algorithms (MKg,UKg,P,V):

• MKg(1n): On input 1n, output a master public and master secret key pair
(mpk,msk).

• UKg(msk, id): On input msk and a user identity id ∈ {0, 1}∗, output a secret
key skid for this user.

• 〈P,V〉 is an interactive protocol. The prover P takes (mpk, id, skid) as input,
the verifier V takes (mpk, id) as input. At the end of the protocol, V outputs 1
(accept) or 0 (reject).

The completeness requirement for an IBI scheme is as follows: For any mpk
generated by MKg(1n), and skid extracted by UKg(msk, id), the decision of V
after interacting with P is always 1. We refer the reader to [BNN09] for formal
definitions of security notions for IBI schemes.

A common strategy in constructing IBI schemes consists in combining a sig-
nature scheme and a PoK in the following way: The trusted authority gener-
ates (mpk,msk) as a verification key - signing key pair of a signature scheme;
whenever a user id queries for his secret key, the authority returns skid as a
signature on id; for identification, the user plays the role of the prover, and runs
a PoK to prove the possession of skid. If the signature scheme is strongly secure
against existential forgery under chosen message attacks, and the PoK is at
least witness-indistinguishable, then the resulting IBI scheme is secure against
impersonation under concurrent attacks [BNN09]. This strategy is widely used
for lattice-based IBI schemes. Stehlé et al. [SSTX09] combined the GPV signa-
ture scheme [GPV08], and the Micciancio-Vadhan [MV03] PoK to obtain an
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IBI scheme based on the hardness of the SIVPÕ(n2) problem (in the �2 norm).
Rückert [Rüc10a] combined the Bonsai tree signature scheme [CHKP10] and
Lyubashevsky’s PoK [Lyu08] for ideal lattices to produce an IBI scheme based
on the hardness of the restriction of SVPÕ(n3.5) to ideal lattices (in the �∞ norm).

Following the same approach, the SternExt proof system allows us to achieve
better in terms of security assumption. Since SternExt is zero-knowledge, it
has the witness-indistinguishability (WI) property. As WI is preserved under
parallel composition [FS90], we can repeat the protocol ω(logn) times in parallel
to obtain a WIPoK with negligible soundness error. Combining with the GPV
signature scheme, we obtain a secure IBI scheme in the random oracle model with
hardness assumption SIVPÕ(n1.5). At first, we review the trapdoor generation
and preimage sampling algorithms used in [GPV08], which will essentially serve
as the MKg(1n) and UKg(msk, id) algorithms in our IBI scheme. The following
trapdoor generation algorithm was introduced in [Ajt99], improved in [AP11],
and recently simplified in [MP12].

Lemma 1 ([AP11, MP12]). Let q ≥ 2 and m ≥ 6n lg q. There is a PPT
algorithm TrapGen(n,m, q) that outputs a matrix A statistically close to uniform
in Zn×m

q , and a basis TA ∈ Zm×m for Λ⊥
q (A) satisfying ‖T̃A‖ ≤ O(

√
n lg q).

Given an integer lattice L, the discrete Gaussian distribution DL,σ,c with param-
eter σ is the m-dimensional Gaussian distribution centered at c, with support
restricted to the lattice L. Given a basis B for L, the distribution DL,σ,c can be
sampled efficiently for σ ≥ ‖B̃‖ω(

√
logm).

Lemma 2 ([GPV08]). Let q ≥ 2 and m ≥ n. Let A be a matrix in Zn×m
q and

TA be a basis for Λ⊥
q (A). Then for y in the image of A and σ≥ ‖T̃A‖ω(

√
logm),

there is a PPT algorithm SampleISIS(A,TA,y, σ) that outputs x ∈ Zm sampled
from the distribution DZm,σ,0, conditioned on the event that Ax = y mod q.

Let x be the output of SampleISIS(A,TA,y, σ). Gentry et al. [GPV08] noted
that for any fixed function t(m) ≥ ω(

√
logm), one has ‖x‖∞ ≤ σ · t with over-

whelming probability. If TA is a basis generated by TrapGen(n,m, q), then we
can take σ = O(

√
n lg q) · ω(

√
logm). In this case, let β = �σ · t� = Õ(

√
n).

Now let H : {0, 1}∗ → Zn
q be the random oracle used in the GPV signature. For

parameters (m, q, β, σ) as described above, we obtain the following IBI scheme:

• MKg(1n): Run algorithm TrapGen(n,m, q) to output a master public key
mpk = A ∈ Zn×m

q , and a master secret key msk = TA ∈ Zm×m.
• UKg(msk, id): For id ∈ {0, 1}∗, let skid = SampleISIS(A,TA,H(id), σ).

If ‖skid‖∞ > β (which happens with negligible probability) then restart.
Otherwise, output skid as the secret key for identity id. We note that skid

is the GPV signature for the message id, and is a solution to the ISIS∞
n,m,q,β

instance (A,H(id)).
• 〈P,V〉: The common input is the pair (A,H(id)). The auxiliary input of P

is skid. Then P and V play the roles of the prover and the verifier in the
SternExt protocol. The protocol is repeated l = ω(logn) times in parallel
to make the soundness error negligibly small.
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The completeness of the obtained IBI scheme follows from the perfect complete-
ness of SternExt. Since the GPV signature scheme is strongly secure against
existential forgery under chosen message attacks [GPV08], and the SternExt
protocol is a WIPoK, the obtained IBI scheme is secure against impersonation
under concurrent attacks. The scheme relies on the assumed hardness of the
ISIS∞

n,m,q,2β−1 problem, where β = Õ(
√
n). It follows from Theorem 1 that solv-

ing the ISIS∞
n,m,q,2β−1 problem is at least as hard as solving SIVP2

γ (in the �2
norm) with γ = (2β − 1) · Õ(n) = Õ(n1.5).

Theorem 4. The obtained IBI scheme is concurrently secure in the random
oracle model if the SIVPÕ(n1.5) problem is hard (in the worst-case).

Similarly, combining the SternExt proof system with lattice-based signature
schemes that are secure in the standard model (e.g., [CHKP10, Boy10, MP12])
we can obtain secure lattice-based IBI schemes in the standard model, with
weaker security assumptions than in the contemporary schemes.

3.2 Proof of Plaintext Knowledge for Regev’s Cryptosystem

Regev’s LWE-based encryption scheme is as follows:

• Parameters: Integers n,m, q, an integer p� q and a real α > 0.
• Private key: The private key is s $←− Zn

q .

• Public key: Let A $←− Zn×m
q and e $←− (Ψα(q))m , where Ψα(q) is the LWE

error distribution [Reg05, Reg09]. The public key is

(A,b = AT s + e) ∈ Zn×m
q × Zm

q .

• Encryption: The message space is {0, . . . , p − 1}. Given a message M ,
and the public key (A,b), choose a uniformly random2 integer vector r $←−
{0, . . . , p− 1}m, and output the ciphertext

(u, c) = (Ar,bT r +M · �q/p) ∈ Zn
q × Zq.

• Decryption: Given the ciphertext (u, c) ∈ Zn
q × Zq, and the private key

s ∈ Zn
q , output M = �(c− sTu) · p/q�.

For the correctness, security, and parameters selection of this cryptosystem we
refer to [Reg09]. We now show how to derive a PoPK for this encryption scheme
from a PoK for the relation RISIS∞ . A PoPK for Regev’s cryptosystem is a PoK
for the following relation:

RRegev =
{

((A,b), (u, c), r‖M) ∈ (Zn×m
q × Zm

q )×(Zn
q× Zq)×{0, . . . , p−1}m+1 :

(u = Ar) ∧ (c = bT r +M · �q/p)
}
.

2 In fact, the proof system can be adapted to any nonce distribution, as long as ‖r‖∞
is bounded by some B sufficiently smaller than q.
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We form the following matrix:

A′ =

⎡
⎢⎢⎢⎢⎣

0

A
...
0

bT �q/p�

⎤
⎥⎥⎥⎥⎦ ∈ Z(n+1)×(m+1)

q ,

and let y = (u‖c) ∈ Zn+1
q . Let x = (r‖M) be any witness of the relation

RRegev. Then we have x ∈ Zm+1, and ‖x‖∞ ≤ p− 1. Moreover, we observe that
A′x = y mod q. Therefore, vector x is a solution to the ISIS∞ problem with pa-
rameters (n+1,m+1, q, p−1) defined by (A′,y). In other words, we have shown
that the relation RRegev can be embedded into the relation RISIS∞

n+1,m+1,q,p−1
. We

then run the SternExt protocol for the relation RISIS∞
n+1,m+1,q,p−1

to obtain an
efficient ZKPoPK for Regev’s encryption scheme.

If a cheating prover succeeds in proving the knowledge of a plaintext x = (r‖M),
then we use the knowledge extractor to output a vector x′ = (r′‖M ′) ∈ Zm+1

such that ‖x′‖∞ ≤ 2 · (p− 1)− 1 = 2p− 3. In particular, we obtain r′ ∈ Zm such
that ‖r′‖∞ ≤ 2p−3 and Ar′ = u mod q. Since A is chosen uniformly at random
in Zn×m

q , and the distribution of u is statistically close to uniform over Zn
q

(see [Reg09, Section 5]), the vector r′ is a solution to the random ISIS∞
n,m,q,2p−3

instance (A,u). This implies that the security of our ZKPoPK for Regev’s
encryption scheme relies on the assumed hardness of SIVPp·Õ(n) (in the �2 norm).
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A A Zero-Knowledge Proof of Knowledge for SIS

We consider the relation associated to the SIS∞
n,m,q,β problem:

RSIS∞
n,m,q,β

=
{

(A,x) ∈ Zn×m
q × Zm: (0 < ‖x‖∞ ≤ β) ∧ (Ax = 0 mod q)

}
.

We now show how to modify the SternExt proof system for RISIS∞
n,m,q,β

in
Section 2 to handle the additional requirement on the witness, i.e., x �= 0. In
particular, the protocol must prevent a cheating prover using x = 0 from passing
the verification step. We look at the binary decomposition of x, i.e., x =

∑k−1
j=0 2j ·

ũj , and observe that x = 0 is equivalent to ∀j : ũj = 0. Our idea is to constrain
the prover to prove in zero-knowledge that (at least) one of his ũj ’s is non-zero.

Now, observe that if x = (x1, . . . , xm) is a valid witness for RSIS∞
n,m,q,β

, and 2l

is the highest power of 2 dividing gcd(x1, . . . , xm), then x∗ = (x1/2l, . . . , xm/2l)
is also a valid witness for RSIS∞

n,m,q,β
. Applying the binary decomposition to the

vector x∗, we note that the vector ũ∗
0, whose coordinates are the least significant

bits of x1/2l, . . . , xm/2l, must be non-zero. To prove the knowledge of such a
vector ũ∗

0, the prover can use the extension trick, but in dimension 3m − 1
instead of dimension 3m. More precisely, the prover appends 2m−1 coordinates
to ũ∗

0 to get a vector u∗
0 that has exactly m coordinates equal to 1; m coordinates

equal to −1; and m− 1 coordinates equal to 0. Seeing a permutation of u∗
0 that

has these constraints, the verifier will be convinced that the original vector ũ∗
0

must have at least one coordinate equal to 1 or −1, and thus it must be non-zero.
In summary, the modified SternExt proof system for RSIS∞

n,m,q,β
works as

follows: The common input is a matrix A ∈ Zn×m
q . The auxiliary input of the

prover is x. Prior to the interaction, both parties append 2m− 1 and 2m zero-
columns to the matrix A to get a matrix A∗, and a matrix A′, respectively. In
addition, the prover performs the following preparation steps:

• Shifting: Map x to x∗, as described above.
• Binary decomposition: Write x∗ =

∑k−1
j=0 2j · ũ∗

j .
• Extensions: Append (2m−1) coordinates to ũ∗

0 as described above, and per-
form the usual extension to dimension 3m for the other vectors ũ∗

1, . . . , ũ
∗
k−1.

We note that A∗u∗
0+A′(

∑k−1
j=1 2j ·u∗

j ) = 0 mod q is equivalent to Ax = 0 mod q.
Therefore, we can now apply the SternExt proof with a small tweak: The
constraints of u∗

0 are verified using a random permutation of 3m − 1 elements.
This leads to a ZKPoK for the SIS∞

n,m,q,β problem.
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Abstract. We present the first decentralized multi-authority attribute-
based signature (DMA-ABS) scheme, in which no central authority and
no trusted setup are required. The proposed DMA-ABS scheme for a large
class of (non-monotone) predicates is fully secure (adaptive-predicate
unforgeable and perfectly private) under a standard assumption, the deci-
sional linear (DLIN) assumption, in the random oracle model. Our DMA-
ABS scheme is comparably as efficient as the most efficient ABS scheme.
As a by-product, this paper also presents an adaptively secure DMA func-
tional encryption (DMA-FE) scheme under the DLIN assumption.

1 Introduction

1.1 Background

Recently a versatile and privacy-enhanced class of digital signatures have been
studied as attribute-based signatures (ABS) [11, 14, 17, 18, 21–24, 27, 30, 32].
A signing (secret) key, skx, in ABS is parameterized by attribute x, and the
verification is executed using public key pk and predicate (or policy) Υ . A mes-
sage m along with predicate Υ can be signed by signing key skx (i.e., signature
σ := Sig(skx,m, Υ )), if and only if x satisfies Υ . Signed message (m,Υ, σ) is ver-
ified by using public-key pk and predicate Υ , i.e., Ver(pk,m, Υ, σ) ∈ {0, 1}. The
privacy of a signer in this class of signatures requires that a signature (m,Υ, σ)
generated by skx (where x satisfies Υ ) release no information regarding x except
that x satisfies Υ .

There aremany applications of ABS such as attribute-basedmessaging (ABM),
attribute-based authentication, trust-negotiation and leaking secrets (see [24] for
more details). For example, in a country (say country U), public comments on a
new government’s policy on scientific research are widely requested, especially to
a class of people who should be responsible or heavily related to this topic from
academia, government and industries. Comments from this class of people are re-
quested to be signed (authenticated) to prove that the comments are from such
people. In addition, the privacy of the people who send comments should be en-
sured. So there are contradictory requirements on authentication and privacy. The
concept of ABS provides a nice solution to this type of problems. For example, a
professor of University A sends a comment signed through ABS with a predicate

K. Kurosawa and G. Hanaoka (Eds.): PKC 2013, LNCS 7778, pp. 125–142, 2013.
c© International Association for Cryptologic Research 2013
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such that ((Affiliation=UniversityA ORB ORC) AND (Position=ProfessorORLec-
turer)) OR ((Affiliation = Government of Country U) AND (Qualification = PhD))
OR ((Affiliation =CompanyX ORY OR Z) AND (Position=Chief Scientist OR Senior
Manager)). A recipient of this signed comment can confirm that the signer of this
comment is from the class of people, and the privacy is also preserved since there
are too many people who satisfy the predicate and it is hard to identify the actual
signer among so many possible signers due to the privacy condition of ABS.

The basic concept of ABS, however, has a serious problem that only a single
authority exists in a system. Therefore, the single authority should issue to all
users their secret keys (certificates/credentials) associated with all attributes in
the system, i.e., all positions of all organizations (e.g., all positions of Universities
A, B and C, Governments of Countries U, V and W, and Companies X, Y and
Z). If the party is corrupted, the system will be totally broken.

To overcome the drawback, the concept of multi-authority (MA-)ABS, was
introduced [23, 24, 27], in which there are multiple authorities and each authority
is responsible for issuing a secret key associated with a category or sub-universe of
attributes, i.e., a user obtains several secret keys, each of which is issued by each
authority. For example, a professor of university A obtains a secret key (for the
position) from university A, a secret key for the citizenship from country U, and a
secret key for a consultant position from company X, where university A, country
U and company X are individual authorities. An important requirement for MA-
ABS is the security (unforgeability) against collusion attacks. For example, it is
required that a professor of university A, Alice, with a secret key for her position
and a student, Bob, with a secret key for his citizenship of country W cannot
collude to forge a signature endorsed by a professor of university A with the
citizenship of country W.

The existing MA-ABS schemes, however, still have a problem that a special
central authority is required in addition to multiple authorities regarding at-
tributes, and if the central authority is corrupted, the security (unforgeability)
of the system will be totally broken. As a typical example, we show in the full
version of this paper [26] that all MA-ABS schemes in [24] will be totally broken
if the central authority is corrupted.

Any MA-ABS scheme with no central authority, decentralized MA-ABS
(DMA-ABS) scheme, has not been proposed.

Recently, Lewko andWaters [20] presented the first DMA system for attribute-
based encryption (ABE) (but not for ABS). Their scheme, however, still has a
problem. It requires a trusted setup of a parameter, composite number N :=
p1p2p3 (p1, p2, p3 are primes) and a generator g1 of secret subgroup Gp1 . That
is, there exists a trapdoor, (p1, p2, p3), and the security of the system will not
be guaranteed by the security proof, if the trapdoor is compromised. In other
words, their system requires a trusted setup. A generic conversion method from
a composite-order-group-based system to a prime-order-group-based system has
been presented by Lewko [19] and it may be applicable to the DMA-ABE
scheme.
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1.2 Our Results

– This paper proposes the first DMA-ABS scheme, which supports a large
class of relations, non-monotone access structures, in which no central au-
thority exists and no global coordination is required except for the setting
of a parameter for a prime order bilinear group and hash functions. Note
that parameters for a prime order bilinear group on supersingular and some
ordinary elliptic curves and specification of hash functions such as the SHA
families can be available from public documents, e.g., ISO and FIPS official
documents [13, 16] and [12], or can be included in the specification of the
scheme. That is, no trusted setup is necessary in the proposed DMA-ABS
system.

In the proposed DMA-ABS schemes, every process can be executed in a
decentralized manner; any party can become an authority and issue a (piece
of a) secret key to a user without interacting with any other party, and
each user obtains a (piece of a) secret key from the associated authority
without interacting with any other party. While enjoying such decentralized
processes, the proposed schemes are still secure against collusion attacks. i.e.,
multiple pieces issued to a user by different authorities can form a (collusion
resistant) single secret key, composed of the pieces, of the user.

– This paper also proposes a more general signature scheme, DMA func-
tional signature (FS) scheme, which supports more general predicates, non-
monotone access structures combined with inner-product relations [25]. The
proposed DMA-ABS scheme is a special case of the DMA-FS scheme, where
the underlying inner-product relations are specialized to be two-dimensional
inner-product relations for equality.

Remark: The general relations (non-monotone access structures combined
with inner-product relations [25]) supported by the proposedDMA-FS scheme
are:x := (�x1, . . . , �xi) ∈ Fn1+···+ni

q for verification, andΥ := (M̂, (�v1, . . . , �vi) ∈
Fn1+···+ni
q ) for a secret key. The component-wise inner-product relations for

attribute vector components, e.g., {�xt · �vt = 0 or not }t∈{1,...,i}, are input to

span program M̂ , and x satisfies Υ iff the truth-value vector of (T(�x1 · �v1 =
0), . . . ,T(�xi · �vi = 0)) is accepted by span program M̂ . If the DMA-FS is spe-
cialized to DMA-ABS, then nt := 2, i.e., �xt := (1, xt) and�vt := (vt,−1), where
�xt · �vt = 0 iff xt = vt.

– This paper proves that the proposedDMA-FS scheme is fully secure (adaptive-
predicate unforgeable and perfectly private in the DMA securitymodel) under
theDLIN assumption in the randomoraclemodel. It implies that the proposed
DMA-ABS scheme is fully secure under the DLIN assumption in the random
oracle model.

– The efficiency of the DMA-ABS scheme is comparable to those of the existing
ABS schemes (e.g., [24, 27]). See Table 1 in Section 4.5.

– Although the main aim of this paper is to propose the first DMA-ABS
scheme, there is a by-product, a new DMA-FE (or DMA-ABE) scheme,
which is an adaptively secure DMA-FE scheme without a trusted setup un-
der the DLIN assumption in the random oracle model.
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Our DMA-ABS scheme is considered to be a natural extension of ring signa-
tures [28, 29]. In ring signatures, no central authority and no trusted setup are
required and every process is fully distributed. Our DMA-ABS also requires no
central authority and no trusted setup and every process is fully distributed. In
other words, ring signatures are a very special case of our DMA-ABS where the
underlying predicate is just a disjunction and each authority is a user in a ring.
For many applications of ring signatures, our DMA-ABS is more suitable. For
example, in an application to whistle-blowing, an expose document on a financial
scandal to a newspaper company would be better to be endorsed by someone
with certain possible positions and qualifications related to the scandal than by
someone in a list of real persons.

1.3 Key Techniques

There are two major requirements for DMA-ABS, (collusion resistant) unforge-
ability and privacy in the decentralized multi-authority model. Our target is to
construct a DMA-ABS scheme that is secure (unforgeable and private in the
decentralized multi-authority model) under a standard assumption, the DLIN
assumption. It is a challenging task even in the random oracle model. For some
notations hereafter, see Section 1.5.

To realize such a DMA-ABS scheme, the top level strategy is based on Naor’s
paradigm [4], which is originally a conversion from identity-based encryption
(IBE) to (ordinary) digital signatures, but in our case, an encryption counter-
part, DMA-ABE, is converted to DMA-ABS. Therefore, DMA-ABE scheme is
designed first, and then DMA-ABS is constructed on it.

To construct a DMA-ABE (or more generally DMA-FE) scheme for this
purpose, we follow several established key ideas; dual pairing vector spaces
(DPVS) [25, 27], global identifier gid [9], (random oracle) hashing of gid [20],
dual system encryption [20, 31], and the linear transformation technique to
produce (δ�xt, . . .)B∗

t
by using Xt (the master secret key of authority t) and

δG := H(gid) ∈ G [27], which is essentially different from the technique using
H(gid) in [20] (see Section 4.3 for the details). Note that, although our design
strategy is based on Naor’s paradigm, this paper directly proves the security of
the proposed DMA-ABS scheme from the DLIN assumption.

A specific central space, V0 (t = 0), played an essential role in the security
proof (based on the dual system encryption technique) of previous ABS and ABE
(FS and FE) schemes in [25, 27]. No such a central space, however, is allowed in
our DMA setting, where only spaces, Vt (t = 1, . . .), generated by decentralized
authorities are available. A crucial part of the key techniques in our DMA-ABS
andDMA-ABE (DMA-FS andDMA-FE) schemes is to distribute the dual system
encryption trick for the central space in the previous schemes into all the spaces.

More precisely, the secret-key and verification-text (where the negative term
case in the span program, i.e., ρ(i) = ¬(t, �vi), is used, for simplicity of expres-
sion) are of the forms of (�xt, δ�xt, 0

nt , 0nt , . . .)B∗
t
and (si�vi, s

′
i�vi, 0

nt , 0nt , . . .)Bt ,
respectively. Here, si and s

′
i are shares from an access structure with a signature.
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Subspaces with {si�vi} and {�xt} are used for verification (or decryption), and
subspaces with {s′i�vi} and {δ�xt} are for the distributed dual system encryption
trick. To execute the trick over the subspaces, we develop a new technique, swap
and conceptual change, in which 4-dimensional (in DMA-FS and DMA-FE, 2nt-
dimensional) hidden subspaces are employed for semi-functional forms of secret-
keys and verification-texts. In the previous dual system encryption tricks [25, 27],
the semi-functional form of secret-keys and verification-texts in a central space
V0 (t = 0) played a key role. In our distributed dual system encryption trick, the
left 2-dimensional subspaces in the 4-dimensional hidden subspaces are used for
a computational change of secret-keys from DLIN and a conceptual change on
key query restrictions. The right 2-dimensional subspaces are swapped with the
left ones through a computational change from DLIN, and these subspaces for
all Vt (t = 1, . . .) play the key role in a distributed manner that corresponds to
that of V0 (t = 0) in the previous schemes (see the full version [26]).

A new idea is also required to achieve the privacy condition for DMA-ABS,
since no privacy condition is required for DMA-ABE or included in Naor’s
paradigm. Moreover, a new re-randomization technique should be developed in
this paper to achieve the privacy of DMA-ABS, since the re-randomization tech-
nique for privacy in [27] is not effective in the DMA-ABS setting due to the fully
distributed structure (see Section 4.2).

For more details on the techniques in the security proofs of DMA-ABS, see
the full version [26].

1.4 Related Works

1. Themesh signatures [5] are a variation of ring signatures, where the predicate
is an access structure on a list of pairs comprising a message and public key
(mi, pki), and a valid mesh signature can be generated by a person who has
enough standard signatures σi on mi, each valid under pki, to satisfy the
given access structure.

A crucial difference between mesh signatures and DMA-ABS is the se-
curity against the collusion of users. In mesh signatures, several users can
collude by pooling their signatures together and create signatures that none
of them could produce individually. That is, such collusion is considered to
be legitimate in mesh signatures. In contrast, the security against collusion
attacks is one of the basic requirements in ABS and DMA-ABS.

2. Another related concept is anonymous credentials (ACs) [2, 3, 6–8, 10]. The
notion of ACs also provides a functionality for users to demonstrate anony-
mously possession of attributes, but the goals of ACs and (DMA-)ABS differ
in several points.

As described in [24], ACs and (DMA-)ABS aim at different goals: ACs tar-
get very strong anonymity even in the registration phase, whereas under less
demanding anonymity requirements in the registration phase, (DMA-)ABS
aims to achieve more expressive functionalities, more efficient constructions
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and new applications. In addition, (DMA-)ABS is a signature scheme and a
simpler primitive compared with ACs. See the full version of this paper [26]
for more details.

1.5 Notations

When A is a random variable or distribution, y
R← A denotes that y is randomly

selected from A according to its distribution. When A is a set, y
U← A denotes

that y is uniformly selected from A. We denote the finite field of order q by
Fq, and Fq \ {0} by F×

q . A vector symbol denotes a vector representation over
Fq, e.g., �x denotes (x1, . . . , xn) ∈ Fnq . For two vectors �x = (x1, . . . , xn) and

�v = (v1, . . . , vn), �x·�v denotes the inner-product
∑n
i=1 xivi. The vector

�0 is abused
as the zero vector in Fnq for any n. XT denotes the transpose of matrix X . I� and
0� denote the �×� identity matrix and the �×� zero matrix, respectively. A bold
face letter denotes an element of vector space V, e.g., x ∈ V. When bi ∈ V (i =
1, . . . , n), span〈b1, . . . , bn〉 ⊆ V (resp. span〈�x1, . . . , �xn〉) denotes the subspace
generated by b1, . . . , bn (resp. �x1, . . . , �xn). For bases B := (b1, . . . , bN ) and B∗ :=

(b∗1, . . . , b
∗
N ), (x1, . . . , xN )B :=

∑N
i=1 xibi and (y1, . . . , yN)B∗ :=

∑N
i=1 yib

∗
i . For

a format of attribute vectors �n := (d;n1, . . . , nd) that indicates dimensions of

vector spaces, �et,j denotes the canonical basis vector (

j−1︷ ︸︸ ︷
0 · · · 0, 1,

nt−j︷ ︸︸ ︷
0 · · · 0) ∈ Fnt

q for
t = 1, . . . , d and j = 1, . . . , nt. GL(n,Fq) denotes the general linear group of
degree n over Fq.

2 Dual Pairing Vector Spaces by Direct Product of
Symmetric Pairing Groups

Definition 1. “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple
of a prime q, cyclic additive group G and multiplicative group GT of order q,
G �= 0 ∈ G, and a polynomial-time computable nondegenerate bilinear pairing
e : G × G → GT i.e., e(sG, tG) = e(G,G)st and e(G,G) �= 1. Let Gbpg be an
algorithm that takes input 1λ and outputs a description of bilinear pairing groups
(q,G,GT , G, e) with security parameter λ.

Definition 2. “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct
product of symmetric pairing groups (q,G,GT , G, e) are a tuple of prime q, N -

dimensional vector space V :=

N︷ ︸︸ ︷
G× · · · ×G over Fq, cyclic group GT of order

q, canonical basis A := (a1, . . . ,aN) of V, where ai := (

i−1︷ ︸︸ ︷
0, . . . , 0, G,

N−i︷ ︸︸ ︷
0, . . . , 0),

and pairing e : V × V → GT . (Symbol e is abused as pairing for G and for V.)

The pairing is defined by e(x,y) :=
∏N
i=1 e(Gi, Hi) ∈ GT where x := (G1, . . . ,

GN ) ∈ V and y := (H1, . . . , HN ) ∈ V. This is nondegenerate bilinear i.e.,
e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then x = 0. For all
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i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and 0 otherwise, and
e(G,G) �= 1 ∈ GT . DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N)
and N ∈ N, and outputs a description of paramV := (q,V,GT ,A, e) with security
parameter λ and N -dimensional V. It can be constructed by using Gbpg.

For the asymmetric version of DPVS, (q,V,V∗,GT ,A,A
∗, e), see Appendix A.2

in the full version of [25].

3 Non-monotone Access Structures with Inner-Product
Relations

3.1 Span Programs and Non-monotone Access Structures

Definition 3 (Span Programs [1]). Let {p1, . . . , pn} be a set of variables. A
span program over Fq is a labeled matrix M̂ := (M,ρ) whereM is a (�×r) matrix
over Fq and ρ is a labeling of the rows of M by literals from {p1, . . . , pn,¬p1, . . . ,
¬pn} (every row is labeled by one literal), i.e., ρ : {1, . . . , �} → {p1, . . . , pn,¬p1,
. . . , ¬pn}. A span program accepts or rejects an input by the following criterion.
For every input sequence δ ∈ {0, 1}n define the submatrix Mδ of M consisting
of those rows whose labels are set to 1 by the input δ, i.e., either rows labeled
by some pi such that δi = 1 or rows labeled by some ¬pi such that δi = 0.
(i.e., γ : {1, . . . , �} → {0, 1} is defined by γ(j) = 1 if [ρ(j) = pi] ∧ [δi = 1] or
[ρ(j) = ¬pi] ∧ [δi = 0], and γ(j) = 0 otherwise. Mδ := (Mj)γ(j)=1, where Mj is
the j-th row of M .)

The span program M̂ accepts δ if and only if �1 ∈ span〈Mδ〉, i.e., some linear
combination of the rows of Mδ gives the all one vector �1. (The row vector has
the value 1 in each coordinate.) A span program computes a Boolean function f
if it accepts exactly those inputs δ where f(δ) = 1.

A span program is called monotone if the labels of the rows are only the positive
literals {p1, . . . , pn}. Monotone span programs compute monotone functions. (So,
a span program in general is “non”-monotone.)

We assume that no rowMi (i = 1, . . . , �) of the matrixM is �0. We now introduce
a non-monotone access structure with evaluating map γ by using the inner-
product of attribute vectors, that is employed in the proposed DMA-ABS (and
DMA-FS, DMA-FE) scheme.

Definition 4 (Inner-Products of Attribute Vectors and Access Struc-
tures). Ut (t = 1, . . . , d and Ut ⊂ {0, 1}∗) is a sub-universe, a set of attributes,
each of which is expressed by a pair of sub-universe id and nt-dimensional vector,
i.e., (t, �v), where t ∈ {1, . . . , d} and �v ∈ Fnt

q \ {�0}.
We now define such an attribute to be a variable p of a span program M̂ :=

(M,ρ), i.e., p := (t, �v). An access structure S is a span program M̂ := (M,ρ)
along with variables p := (t, �v), p′ := (t′, �v′), . . ., i.e., S := (M,ρ) such that ρ :
{1, . . . , �} → {(t, �v), (t′, �v′), . . ., ¬(t, �v),¬(t′, �v′), . . .}. Let Γ be a set of attributes,
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i.e., Γ := {(t, �xt) | �xt ∈ Fnt
q \ {�0}, 1 ≤ t ≤ d}, where t runs through some subset

of {1, . . . , d}, not necessarily the whole indices.
When Γ is given to access structure S, map γ : {1, . . . , �} → {0, 1} for span

program M̂ := (M,ρ) is defined as follows: For i = 1, . . . , �, set γ(i) = 1 if
[ρ(i) = (t, �vi)] ∧[(t, �xt) ∈ Γ ] ∧[�vi · �xt = 0] or [ρ(i) = ¬(t, �vi)] ∧[(t, �xt) ∈ Γ ]
∧[�vi · �xt �= 0]. Set γ(i) = 0 otherwise.

Access structure S := (M,ρ) accepts Γ iff �1 ∈ span〈(Mi)γ(i)=1〉.

Remark 1. The simplest form of the inner-product relations in the above-
mentioned access structures, that is for ABS and ABE, is a special case when
nt = 2 for all t ∈ {1, . . . , d}, and �x := (1, x) and �v := (v,−1). Hence, (t, �xt) :=
(t, (1, xt)) and (t, �vi) := (t, (vi,−1)), but we often denote them shortly by (t, xt)
and (t, vi). Then, S := (M,ρ) such that ρ : {1, . . . , �} → {(t, v), (t′, v′), . . .
¬(t, v),¬(t′, v′), . . .} (v, v′, . . . ∈ Fq), and Γ := {(t, xt) | xt ∈ Fq, 1 ≤ t ≤ d}.

When Γ is given to access structure S, map γ : {1, . . . , �} → {0, 1} for span
program M̂ := (M,ρ) is defined as follows: For i = 1, . . . , �, set γ(i) = 1 if [ρ(i) =
(t, vi)] ∧[(t, xt) ∈ Γ ] ∧[vi = xt] or [ρ(i) = ¬(t, vi)] ∧[(t, xt) ∈ Γ ] ∧[vi �= xt]. Set
γ(i) = 0 otherwise.

Remark 2. When a user has multiple attributes in a sub-universe (category)
t, we can employ dimension nt > 2. For instance, a professor (say Alice) in the
science faculty of a university is also a professor in the engineering faculty of this
university. If the attribute authority of this university manages sub-universe t :=
“faculties of this university”, Alice obtains a secret key for (t, �xt := (1,−(a +
b), ab) ∈ F3

q) with a := “science” and b := “engineering” from the authority.
When a user verifies a signature for an access structure with a single negative
attribute ¬(t, “science”), the verification text is encoded as ¬(t, �vi := (a2, a, 1))
with a := “science”. Since �xt · �vi = 0, Alice cannot make a valid signature for
an access structure with the negative attribute ¬(t, “science”). For such a case
with nt > 2, see the full version [26] with our DMA-FS scheme.

We now construct a secret-sharing scheme for a span program.

Definition 5. A secret-sharing scheme for span program M̂ := (M,ρ) is:

1. Let M be � × r matrix. Let column vector �fT := (f1, . . . , fr)
T U← F rq . Then,

s0 := �1 · �fT =
∑r

k=1 fk is the secret to be shared, and �sT := (s1, . . . , s�)
T :=

M · �fT is the vector of � shares of the secret s0 and the share si belongs to
ρ(i).

2. If span program M̂ := (M,ρ) accept δ, or access structure S := (M,ρ) accepts
Γ , i.e., �1 ∈ span〈(Mi)γ(i)=1〉 with γ : {1, . . . , �} → {0, 1}, then there exist
constants {αi ∈ Fq | i ∈ I} such that I ⊆ {i ∈ {1, . . . , �} | γ(i) = 1} and∑

i∈I αisi = s0. Furthermore, these constants {αi} can be computed in time
polynomial in the size of matrix M .
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4 Decentralized Multi-Authority Attribute-Based
Signatures (DMA-ABS)

4.1 Definitions for DMA-ABS

Definition 6 (Decentralized Multi-Authority ABS : DMA-ABS). A de-
centralized multi-authority ABS scheme consists of the following algorithms/
protocols.

GSetup A party runs the algorithm GSetup(1λ) which outputs a global parameter
gparam. The party publishes gparam.

ASetup An attribute authority t (1 ≤ t ≤ d) who wishes to issue attributes runs
ASetup(gparam, t, nt) which outputs an attribute-authority public key apkt
and an attribute-authority secret key askt. The attribute authority t publishes
apkt and stores askt.

AttrGen When an attribute authority t issues user gid a secret key associated
with an attribute xt, it runs AttrGen(gparam, t, askt, gid, xt) that outputs
an attribute secret key uskgid,(t,xt). The attribute authority gives uskgid,(t,xt)

to the user.
Sig This is a randomized algorithm. A user signs message m with claim-predicate

(access structure) S := (M,ρ), only if there is a set of attributes Γ such
that S accepts Γ , the user has obtained a set of keys {uskgid,(t,xt) | (t, xt) ∈
Γ} from the attribute authorities. Then signature σ can be generated using

Sig(gparam, {apkt, uskgid,(t,xt)}, m, S), where uskgid,(t,xt)
R← AttrGen(gparam,

t, askt, gid, xt).
Ver To verify signature σ on message m with claim-predicate (access struc-

ture) S, using a set of public keys for relevant authorities {apkt}, a user
runs Ver(gparam, {apkt},m, S, σ) which outputs boolean value accept := 1 or
reject := 0.

Definition 7 (Perfect Privacy of DMA-ABS). A DMA-ABS scheme is per-

fectly private, if, for all gparam
R← GSetup(1λ), for all (askt, apkt)

R← ASetup(
gparam, t) (1 ≤ t ≤ d), all messages m, all attribute sets Γ1 associated with gid1

and Γ2 associated with gid2, all signing keys {uskt,1
R← AttrGen(gparam, t, askt,

gid1, xt,1)}(t,xt,1)∈Γ1
and {uskt,2 R← AttrGen(gparam, t, askt, gid2, xt,2)}(t,xt,2)∈Γ2

,
all access structures S such that S accepts Γ1 and S accepts Γ2, the distributions
Sig(gparam, {apkt, uskt,1 | (t, xt,1) ∈ Γ1},m, S) and Sig(gparam, {apkt, uskt,2 |
(t, xt,2) ∈ Γ2},m, S) are equal.

Note that the above definition of perfect privacy is weaker than that in [24],
since the attribute authorities are assumed to be honest in our definition, while
they can be malicious in [24].

For a DMA-ABS scheme with perfect privacy, we define algorithm AltSig(
gparam, {apkt, askt}, m, S) with S and master key askt instead of Γ and

{uskgid,(t,xt)}(t,xt)∈Γ : First, generate uskgid,(t,xt)
R← AttrGen(gparam, t, askt, gid,

xt) for arbitrary Γ := {(t, xt)} which satisfies S, then σ
R← Sig(gparam, {apkt,

uskgid,(t,xt)},m, S). Return σ.
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Let T be the set of authorities. We assume each attribute is assigned to one
authority.

Definition 8 (Unforgeability of DMA-ABS). For an adversary A, we de-

fine AdvDMA-ABS,UF
A (λ) to be the success probability in the following experiment

for any security parameter λ. A DMA-ABS scheme is unforgeable if the success
probability of any polynomial-time adversary A is negligible:

1. Run gparam
R← GSetup(1λ) and give gparam to adversary A. For author-

ities t ∈ T , run (askt, apkt)
R← ASetup(gparam) and give {apkt}t∈T to A.

Adversary A specifies a set T̃ ⊂ T of corrupt attribute authorities, and gets
{askt}t∈T̃ .

2. The adversary A is given access to oracles AttrGen and AltSig with queries
including attribute authorities, t, from S := T \ T̃ alone.

3. At the end, the adversary outputs (m′, S′, σ′).

Let Γgid := {(t, xt) | (t ∈ S, xt, gid) is queried to AttrGen oracle by A}. We say
the adversary succeeds, if (m′, S′) was never queried to AltSig oracle, S′ does not
accept Γgid for any gid, S′ includes attributes authorities, t, from S alone, and
Ver(pk,m′, S′, σ′) = 1.

Remark 3. The unforgeability defined above ensures that adversary A cannot
forge a signature regarding uncorrupt authorities even if A makes key and signa-
ture queries to uncorrupt authorities. That is, the forging capability of any A is
limited or localized to that of corrupt authorities as expected in DMA schemes
(in contrast, it can be expanded to the whole system in MA schemes).

The model regarding corrupt authorities in this definition, however, is weaker
than that in [24]. Roughly, the security on this model implies that no adversary
A can forge a signature with a predicate S′S unless A issues key queries for
ΓS such that S′S accepts ΓS , where S′S and ΓS are a predicate and attributes
including uncorrupt parties from S alone. On the other hand, the security on the
model in [24] implies that no adversary A can forge a signature with a predicate
S′
S∪T̃ unless A issues key queries for ΓS such that, for some ΓT̃ , S

′
S∪T̃ accepts

(ΓS ∪ ΓT̃ ). Namely, the scope of forgery in [24] is wider (i.e., it covers a policy

over S ∪ T̃ ) than that in our definition (i.e., it is limited to a policy over S). 1

4.2 Construction Idea of the Proposed DMA-ABS Scheme

Here we will show some basic idea to construct the proposed DMA-ABS scheme,
which is designed on the DMA-FE scheme (Appendix A) through Naor’s
paradigm. For the key techniques to construct DMA-FE from (non-decentralized)
FE [25], we refer to Section 1.3. In the paradigm, collusion-resistant identity-
based encryption (IBE) is transformed to unforgeable signatures, where (a hash

1 The proposed scheme in this paper has been proven unforgeable only in our model
due to some technical reason caused by no trusted setup (or no trapdoor) of our
scheme.



Decentralized Attribute-Based Signatures 135

value of) a message is used for an identity in IBE. To realize the Naor-like trans-
formation in our DMA-FE, two-dimensional subspaces span〈bt,5, bt,6〉 (and their
dual subspaces) are newly added for identity (message) embedding to all spaces
Vt for t > 0. Note that the privacy condition is not included in Naor’s paradigm.

In our variant of Naor’s paradigm, a secret signing key skΓ with attribute set
Γ and a verification text �c with access structure S (for signature verification) in
our DMA-ABS scheme correspond to a secret decryption key skΓ with Γ and a
ciphertext �c with S in the DMA-FE scheme, respectively. No counterpart of a
signature �s∗ in the DMA-ABS exists in the DMA-FE, and the privacy property
for signature �s∗ is also specific in DMA-ABS. Signature �s∗ in DMA-ABS may
be interpreted to be a decryption key specialized to decrypt a ciphertext with
access structure S, that is delegated from secret key skΓ . The algorithms of the
proposed DMA-ABS scheme can be described in the light of such correspondence
to the DMA-FE scheme:

GSetup. Almost the same as that in the DMA-FE scheme except that a hash
function, H2, is added in gparam. This is used for hashing of message and
access structure in the signing and verification algorithms.

ASetup. Almost the same as that in the DMA-FE scheme except that B̂∗
t is

published in our DMA-ABS, while it is secret in the DMA-FE scheme. They
are used in our DMA-ABS for the signature generation procedure Sig to
meet the privacy of signers (for randomization). This is an essential difference
between DMA-FE and DMA-ABS.
Here, we remark an important difference in setup between (non-decentralized)

ABS and DMA-ABS: While a part of B̂∗
0, b

∗
0,1, is a master secret in ABS [27],

there is no central spaceV0 in our DMA-ABS. To obtain unforgeability in our
setting, the secret key b∗0,1 inABS is distributed to all (b

∗
t,ι)t>0;ι=1,2. Therefore,

we modify them to (b̃∗t,ι := πb∗t,ι)t>0;ι=1,2 with π
U← Fq as a part of public key

{B̂∗
t }t>0.

AttrGen. The same as that in the DMA-FE scheme.
Sig. Specific in DMA-ABS. To meet the privacy condition for �s∗, a novel tech-

nique is employed to randomly generate a signature from skΓ and {B̂∗
t }(t,xt)∈Γ .

Since our DMA-FE (andDMA-ABS) lacks the central spaceV0, attribute vec-

tors (1, xt) and δ(1, xt) with δ
U← Fq are encoded in subspaces span〈b∗t,1, b∗t,2〉

and span〈b∗t,3, b∗t,4〉, for skΓ with Γ := {(t, xt)}. In signature generation, both

vectors are re-randomized independently using (b̃∗t,ι, b
∗
t,2+ι)ι=1,2, in a manner

consistent with predicate S.
Ver. The signature verification in our DMA-ABS checks whether a signature

(or a specific decryption key) �s∗ works as a decryption key to decrypt a
verification text (or a ciphertext) associated with S and H2(m, S).

4.3 Proposed DMA-ABS Scheme

For matrix X := (χi,j)i,j=1,...,N ∈ FN×N
q and element g := (G1, . . . , GN ) in N -

dimensional V, gX denotes (
∑N

i=1Giχi,1, . . . ,
∑N

i=1Giχi,N ) =(
∑N

i=1 χi,1Gi, . . . ,
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i=1 χi,NGi) by a natural multiplication of a N -dim. row vector and a N ×N

matrix. Thus, it holds that e(gX,h(X−1)T) = e(g,h) for any g,h ∈ V. The
proposed scheme is given as:

GSetup(1λ) : paramG := (q,G,GT , G, e)
R← Gbpg(1λ),

H1 : {0, 1}∗ → G; H2 : {0, 1}∗ → Fq; return gparam := (paramG, H1, H2).

Remark : Given gparam, the following values can be computed by

anyone and shared by all parties: G0 := H1(0
λ) ∈ G,

G1 := H1(0
λ−1, 1) ∈ G, G2 := H1(0

λ−2, 1, 0) ∈ G, gT := e(G0, G1).

ASetup(gparam, t) : paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1λ, 13, paramG),

Xt
U← GL(13,Fq), (ϕ̃t,ι,1, ϕ̃t,ι,2)

U← F 2
q for ι = 1, 2,

bt,ι := (0ι−1, G0, 0
13−ι)Xt, b

∗
t,ι := (0ι−1, G1, 0

13−ι)(X−1
t )T

for ι = 1, . . . , 13,
2︷ ︸︸ ︷ 8︷ ︸︸ ︷ 2︷ ︸︸ ︷ 1︷︸︸︷

b̃∗t,1 := ( G2, 0, 08, ϕ̃t,1,1G1, ϕ̃t,1,2G1, 0 )(X−1
t )T,

2︷ ︸︸ ︷ 8︷ ︸︸ ︷ 2︷ ︸︸ ︷ 1︷︸︸︷
b̃∗t,2 := ( 0, G2, 08, ϕ̃t,2,1G1, ϕ̃t,2,2G1, 0 )(X−1

t )T,

Bt := (bt,1, . . . , bt,13), B∗
t := (b∗t,1, . . . , b

∗
t,13), B̂t := (bt,1, . . . , bt,6, bt,13),

B̂∗
t := (b̃∗t,1, b̃

∗
t,2, b

∗
t,3, . . . , b

∗
t,6, b

∗
t,11, b

∗
t,12),

return askt := Xt, apkt := (paramVt
, B̂t, B̂

∗
t ).

Remark : Let π ∈ Fq s.t. G2 = πG1,

then b̃∗t,1 = (

2︷︸︸︷
π, 0 ,

8︷︸︸︷
08 ,

2︷ ︸︸ ︷
ϕ̃t,1,1, ϕ̃t,1,2,

1︷︸︸︷
0 )B∗

t
,

b̃∗t,2 = (

2︷︸︸︷
0, π ,

8︷︸︸︷
08 ,

2︷ ︸︸ ︷
ϕ̃t,2,1, ϕ̃t,2,2,

1︷︸︸︷
0 )B∗

t
.

AttrGen(gparam, t, askt, gid, xt ∈ Fq) : Ggid := H1(gid), (ϕt,1, ϕt,2)
U← F 2

q ,

2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 6︷︸︸︷ 2︷ ︸︸ ︷ 1︷︸︸︷
k∗
t := ( G1, xtG1, Ggid, xtGgid, 06, ϕt,1G1, ϕt,2G1, 0 )(X−1

t )T,

return uskgid,(t,xt) := (gid, (t, xt),k
∗
t ).

Remark : Let δ ∈ Fq s.t. Ggid = δG1,

then k∗
t = (

2︷ ︸︸ ︷
(1, xt),

2︷ ︸︸ ︷
δ(1, xt),

6︷︸︸︷
06 ,

2︷ ︸︸ ︷
ϕt,1, ϕt,2, 0 )B∗

t
.

Sig(gparam, {apkt, uskgid,(t,xt) := (gid, (t, xt),k
∗
t )}, m, S := (M,ρ)) :

If S :=(M,ρ) accepts Γ :={(t, xt) ∈ uskgid,(t,xt)}, then compute I and {αi}i∈I
such that �1 =

∑
i∈I αiMi, where Mi is the i-th row of M, and
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I ⊆ {i ∈ {1, . . . , �}| [ρ(i) = (t, vi) ∧ (t, xt) ∈ Γ ∧ vi = xt]

∨ [ρ(i) = ¬(t, vi) ∧ (t, xt) ∈ Γ ∧ vi �= xt] },

ψ
U← Fq, ψi := ψ if i ∈ I, ψi := 0 if i �∈ I for i = 1, . . . , �,

for i = 1, . . . , �, ζi
U← Fq, (βi,0), (βi,1)

U← {(β1, . . . , β�) |
∑�

i=1 βiMi = �0},
Remark : If rank(M) ≥ �, the set contains only 0�, i.e., βi = 0 for i = 1, .., �.

s∗i := γi · k∗
t + ψi(b

∗
t,3 + xtb

∗
t,4) +

∑2
ι=1

(
yi,0,ιb̃

∗
t,ι + yi,1,ιb

∗
t,2+ι

)
+ζi
(
b∗t,5 +H2(m, S)b

∗
t,6

)
+ r∗

i ,

where r∗
i

U← span〈b∗t,11, b∗t,12〉, and γi, �yi,j := (yi,j,1, yi,j,2) for j = 0, 1,

are defined as

if i ∈ I ∧ ρ(i) = (t, vi), γi := αi, �yi,j := βi,j(1, vi),

if i ∈ I ∧ ρ(i) = ¬(t, vi), γi :=
αi

vi − xt
, �yi,j :=

βi,j
vi − yi,j

(1, yi,j)

where yi,j
U← Fq \ {vi},

if i �∈ I ∧ ρ(i) = (t, vi), γi := 0, �yi,j := βi,j(1, vi),

if i �∈ I ∧ ρ(i) = ¬(t, vi), γi := 0, �yi,j :=
βi,j

vi − yi,j
(1, yi,j)

where yi,j
U← Fq \ {vi},

return �s∗ := (s∗1, . . . , s
∗
� ).

Ver(gparam, {apkt},m, S := (M,ρ), �s∗) : �f
U← Frq, �s

T := (s1, . . . , s�)
T :=M · �fT,

s0 := �1 · �fT, �f ′ U← Frq s.t. �1 · �f ′T = 0, �s′T := (s′1, . . . , s
′
�)

T :=M · �f ′T,

for i = 1, . . . , �, θi, θ
′
i, θ

′′
i , ηi

U← Fq,

if ρ(i) = (t, vi),
2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 6︷ ︸︸ ︷ 1︷︸︸︷

ci := ( si + θivi, −θi, s′i + θ′ivi, −θ′i, θ′′i (H2(m, S),−1), 06, ηi )Bt ,

if ρ(i) = ¬(t, vi),
2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 6︷ ︸︸ ︷ 1︷︸︸︷

ci := ( si(vi, −1), s′i(vi, −1), θ′′i (H2(m, S),−1), 06, ηi )Bt ,

cd+1 := gs0T , return 1 if
∏�
i=1 e(ci, s

∗
i ) = cd+1, return 0 otherwise.

[Correctness] If S := (M,ρ) accepts Γ := {(t, xt) ∈ uskgid,(t,xt)},
∏�
i=1 e(ci, s

∗
i )

=
∏

i∈I

(
e(ci,k

∗
t )

γie(ci, b
∗
3 + xt,ιb

∗
4)

ψ
)
·
∏�

i=1

∏2
ι=1 e(ci, b̃

∗
ι )

yi,0,ιe(ci, b
∗
2+ι)

yi,1,ι

=
∏

i∈I g
αi(si+(δ+ψ)s′i)
T ·

∏�
i=1 g

πβi,0si+βi,1s
′
i

T = g
∑

i∈I αi(si+(δ+ψ)s′i)
T ·g

∑�
i=1(πβi,0si+βi,1s

′
i)

T

= gs0T , since
∑

i∈I αisi = s0 and
∑

i∈I αis
′
i =

∑�
i=1 βi,0si =

∑�
i=1 βi,1s

′
i = 0.
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Comparison with the MA-ABS Scheme in [27]. Okamoto-Takashima [27]
gave a fully secure (non-decentralized) MA-ABS scheme on the DPVS frame-
work. In their scheme, a signature (SIG) associated with a policy of size �
consists of (� + 2) components, (s∗0, . . . , s

∗
�+1), which are categorized into three

roles. The first one, s∗0 ∈ V0 (for t = 0), is for embedding/recovering a secret,
the second, (s∗1, . . . , s

∗
� ), for secret shares on the policy (access structure), and

the last, s∗�+1 ∈ Vd+1 (for t = d + 1), is for embedding/verifying the hashed
value, H2(m, S). The secret share components, (s∗1, . . . , s

∗
� ), are 7-dimensional

(7 = 2 + 2 + 2 + 1), where the first 2-dimensional part is the real-encoding part
(real part, for short) for shared secrets, the second the hidden part for semi-
functional signatures, the third the signature randomness part, and the last is
the verification text (VT) randomness part.

In the DMA setting, we cannot use special (central) spaces, V0 and Vd+1.
Instead, we should distribute the roles of these spaces into the secret share
components, (s∗1, . . . , s

∗
� ). As a result, these components become 13-dimensional

(13 = 6 + 4 + 2 + 1), where the real part (hidden part, resp.) is expanded to
6-dimensions (4-dimensions, resp.) (see the figure below). The 6-dimensional real
part consists of 2 dimensions to distribute the role of V0, 2 dimensions for secret
shares, and 2 dimensions to distribute the role of Vd+1. We also use additional 2
dimensions in the hidden part to execute the swapping technique in the security
proof.

SIG component (t �= 0, d+ 1)
in [27] MA-ABS :

2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷ ︸︸ ︷ 1︷︸︸︷
( real hidden SIG ran. VTran. ),

SIG component
in our DMA-ABS:

6︷ ︸︸ ︷ 4︷ ︸︸ ︷ 2︷ ︸︸ ︷ 1︷︸︸︷
( real hidden SIG ran. VTran. ).

4.4 Security of the Proposed DMA-ABS

The (standard) DLIN assumption is given in the full version [26].

Theorem 1. The proposed DMA-ABS scheme is perfectly private.

Theorem 2. The proposed DMA-ABS scheme is unforgeable (adaptive-predicate
unforgeable) under the DLIN assumption in the random oracle model.

The proofs of Theorems 1 and 2 are given in the full version of this paper [26].

4.5 Performance

In this section, we compare the efficiency and security of the proposed DMA-ABS
scheme with the existing MA-ABS schemes in the standard model (instantiation
2 in [24] and MA-ABS in [27]) as well as the ABS scheme in the generic group
model (instantiation 3 in [24]) as a benchmark. Since all of these schemes can be
implemented over a prime order pairing group, the size of a group element can
be around the size of Fq (e.g., 256 bits). In Table 1, � and r represent the size of
the underlying access structure matrix M for a predicate, i.e., M ∈ F �×rq .
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Table 1. Comparison with the Existing MA-ABS Schemes

MPR10 [24] MPR10 [24] OT11 [27] Proposed
Instantiation 3 Instantiation 2

Signature size
(# of group elts)

�+ r + 2
36�+ 2r
+9λ+ 12

7� + 11 13�

Decentralized × × × �

Model
generic group

model
standard
model

standard
model

random oracle
model

Security full full full full

Authority
Corruption Type

strong strong weak weak

Assumptions CR hash DLIN
DLIN and
CR hash

DLIN

Predicates monotone monotone non-monotone non-monotone

Sig. size example 1
(� = 10, r = 5,

λ = 128)
17 1534 81 130

Sig. size example 2
(� = 100, r = 50,

λ = 128)
152 4864 711 1300

For example, some predicate with 4 AND and 5 OR gates as well as 10 vari-
ables may be expressed by a 10× 5 matrix, and a predicate with 49 AND and
50 OR gates as well as 100 variables may be expressed by a 100× 50 matrix (see
the appendix of [20]). λ is the security parameter (e.g., 128).

5 Concluding Remarks

We presented the first DMA-ABS scheme, in which no central authority and
no trusted setup are required. An adaptively secure DMA-FE scheme with no
trusted setup was also presented.

One of the most important remaining problems in this paper is to construct
a DMA-ABS (and DMA-FE) scheme in the standard model (without random
oracles). It would be also important to realize a DMA-ABS (and DMA-FE)
scheme with no trusted setup in a stronger authority corruption model (like
that in [24]), and to introduce a revocation mechanism in a DMA-ABS scheme.
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A Proposed DMA-FE

We define function ρ̃ : {1, . . . , �} → {1, . . . , d} by ρ̃(i) := t if ρ(i) = (t, �v) or
ρ(i) = ¬(t, �v), where ρ is given in access structure S := (M,ρ). In the proposed
scheme, we assume that ρ̃ is injective for S := (M,ρ) with ciphertext c = cS. We
will show how to relax the restriction in the full version [26]. In the description
of the scheme, we assume that input vector �xt := (xt,1, . . . , xt,nt) is normalized
such that xt,1 := 1. (If �xt is not normalized, change it to a normalized one
by (1/xt,1) · �xt assuming that xt,1 is non-zero). In addition, we assume that
input vector �vi := (vi,1, . . . , vi,nt) satisfies that vi,nt �= 0. For matrix X :=
(χi,j)i,j=1,...,N ∈ FN×N

q and element g := (G1, . . . , GN ) in N -dimensional V, for
notation gX , refer to Section 4.3.

GSetup(1λ) : paramG := (q,G,GT , G, e)
R← Gbpg(1λ), H : {0, 1}∗ → G;

return gparam := (paramG, H).

Remark : Given gparam, the following values can be computed by

http://eprint.iacr.org/2010/563
http://eprint.iacr.org/2011/701
http://eprint.iacr.org/2011/700
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anyone and shared by all parties:

G0 := H1(0
λ) ∈ G, G1 := H1(0

λ−1, 1) ∈ G, gT := e(G0, G1),

ASetup(gparam, t, nt) : paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1λ, 5nt + 1, paramG),

Xt
U← GL(5nt + 1,Fq), bt,i := (0i−1, G0, 0

5nt+1−i)Xt for i = 1, . . . , 5nt + 1,

B̂t := (bt,1, . . . , bt,2nt , bt,5nt+1), askt := Xt, apkt := (paramVt
, B̂t),

return (askt, apkt).

AttrGen(gparam, t, askt, gid, �xt := (xt,1, . . . , xt,nt) ∈ Fnt
q \ {�0} s.t. xt,1 := 1) :

Ggid := H(gid) ∈ G, �ϕt := (ϕt,1, . . . , ϕt,nt)
U← Fnt

q ,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷
k∗
t := ( xt,1G1, .., xt,ntG1, xt,1Ggid, .., xt,ntGgid, 02nt ,

nt︷ ︸︸ ︷ 1︷︸︸︷
ϕt,1G1, .., ϕt,ntG1, 0 )(X−1

t )T,

return uskgid,(t,�xt) := (gid, (t, �xt),k
∗
t ).

Remark : Let b∗t,i := (0i−1, G1, 0
5nt+1−i)(X−1

t )T,

B∗
t := (b∗t,1, . . . , b

∗
t,5nt+1) and δ ∈ Fq s.t. Ggid = δG1. Then k∗

t is

represented as k∗
t = (

nt︷︸︸︷
�xt ,

nt︷︸︸︷
δ�xt ,

2nt︷︸︸︷
02nt ,

nt︷︸︸︷
�ϕt , 0 )B∗

t
.

Enc(gparam, {apkt}, m, S := (M,ρ)) :

�f
U← F rq , �s

T := (s1, . . . , s�)
T :=M · �fT, s0 := �1 · �fT, �f ′ R← F rq s.t. �1 · �f ′T = 0,

�s′T := (s′1, . . . , s
′
�)

T :=M · �f ′T, ηi, θi, θ
′
i

U← Fq (i = 1, .., �),

for i = 1, . . . , �,

if ρ(i) = (t, �vi := (vi,1, . . . , vi,nt) ∈ Fnt
q \ {�0} such that vi,nt �= 0),

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
ci := ( si�et,1 + θi�vi, s′i�et,1 + θ′i�vi, 02nt , 0nt , ηi )Bt ,

nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 2nt︷ ︸︸ ︷ nt︷ ︸︸ ︷ 1︷︸︸︷
if ρ(i) = ¬(t, �vi), ci := ( si�vi, s′i�vi, 02nt , 0nt , ηi )Bt ,

cd+1 := gs0T m, ctS := (S, c1, . . . , c�, cd+1), return ctS.

Dec(gparam, {apkt, uskgid,(t,�xt) := (gid, (t, �xt),k
∗
t )}, ctS := (S, c1, . . . , c�, cd+1)) :

If S :=(M,ρ) accepts Γ :={(t, �xt) ∈ uskgid,(t,�xt)}, then compute I and {αi}i∈I
such that �1 =

∑
i∈I αiMi, where Mi is the i-th row of M, and

I ⊆ {i ∈ {1, . . . , �}| [ρ(i) = (t, �vi) ∧ (t, �xt) ∈ Γ ∧ �vi · �xt = 0]

∨ [ρ(i) = ¬(t, �vi) ∧ (t, �xt) ∈ Γ ∧ �vi · �xt �= 0] },
K :=

∏
i∈I ∧ ρ(i)=(t,�vi)

e(ci,k
∗
t )
αi ·

∏
i∈I ∧ ρ(i)=¬(t,�vi)

e(ci,k
∗
t )
αi/(�vi·�xt),

return m′ := cd+1/K.
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Abstract. Functional encryption (FE) is a powerful cryptographic primitive that
generalizes many asymmetric encryption systems proposed in recent years. Syn-
tax and security definitions for FE were proposed by Boneh, Sahai, and Waters
(BSW) (TCC 2011) and independently by O’Neill (ePrint 2010/556). In this pa-
per we revisit these definitions, identify several shortcomings in them, and pro-
pose a new definitional approach that overcomes these limitations. Our definitions
display good compositionality properties and allow us to obtain new feasibility
and impossibility results for adaptive token-extraction attack scenarios that shed
further light on the potential reach of general FE for practical applications.
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1 Introduction

Functional encryption (FE) is a public-key primitive that generalizes many encryp-
tion systems, including public-key encryption (PKE), identity-based encryption (IBE),
searchable encryption, attribute-based encryption (ABE), and all other variants of predi-
cate encryption systems [5]. In such a system, each decryption key TKf (called a token)
is associated with a function f (which may be viewed as a circuit). When a token holder
runs the decryption algorithm on a ciphertext encrypting a message m, it recovers the
image f(m). A trusted authority holding a master secret key is responsible for issu-
ing tokens. This allows the TA to control which users can recover which images from
encrypted data. Realizing such a powerful primitive for complex functionalities could
revolutionize information security applications in a way that is comparable to the no-
table case of fully homomorphic encryption. Interestingly, very recent developments in
this area indicate that this may indeed be within our reach. For example, a concrete real-
ization of functional encryption for arbitrary functionalities has been recently proposed
in [9], as well as functional encryption for regular languages in [15].

The intuitive security requirement for a functional encryption scheme is that no
information should leak from a ciphertext bar that which can be recovered via legit-
imately obtained decryption tokens. As for other encryption primitives, there are vari-
ous ways in which this intuition can be formalized. In the case of PKE, for example, the
two standard formalizations are semantic security and ciphertext indistinguishability,
which were shown to be equivalent in the seminal work of Goldwasser and Micali [8].

K. Kurosawa and G. Hanaoka (Eds.): PKC 2013, LNCS 7778, pp. 143–161, 2013.
c© International Association for Cryptologic Research 2013
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Somewhat surprisingly, in independent works, Boneh, Sahai, and Waters [5] (BSW) and
O’Neill [14] have shown that this is not the case for FE schemes supporting complex
functionalities. Indeed, both works demonstrated limitations in the indistinguishability-
based notion for functional encryption and proposed strictly stronger semantic security
notions to overcome these problems. This highlights the importance of converging to
a definition of semantic security for FE that can be adopted as a de facto standard by
the community. However, the definitional approaches adopted in both works are signif-
icantly different and the relation between the two is not well understood. In particular,
it is not clear whether there are fundamental differences between the two so as to de-
termine which one of them should be favored in detriment of the other. The goal of this
paper is to change this state of affairs. We analyze the positive and negative aspects of
the definitions by BSW and O’Neill and find that both approaches have strengths that
should be preserved, and yet they also have weaknesses that should be reconsidered.
We propose a new balanced set of definitions incorporating these results.

ANALYSIS OF PREVIOUS DEFINITIONS. Boneh et al. [5] provide an elegant general-
ization of the syntax of FE schemes. The authors propose a natural indistinguishability-
based security definition, but then present a counterexample showing that this notion of
security is generally inadequate: a scheme that is intuitively insecure, but can be proven
IND-CPA-secure. A notion of semantic security using black-box simulators is then pro-
posed to address this problem. The paper concludes with a series of feasibility results.
Most notably, BSW show that semantically secure schemes do not exist even for simple
functionalities such as IBE. This result hinges on the adversary’s capability to perform
adaptive token-extraction queries. Nevertheless, in this work we show that the BSW
definition is too weak in the sense that it also fails to exclude some intuitively insecure
schemes. The problem is that the ideal-world simulator controls the generation of the
global parameters for the FE scheme. We show that this renders the simulator unreason-
ably more powerful than the real-world adversary, as it can retain trapdoor information
that permits recovering information from images f(m) that is hidden in the real world.

Independently, O’Neill [14] proposed an alternative definitional approach to FE
schemes for general functionalities. The author presents alternative syntax, correct-
ness, and indistinguishability-based security notions that are conceptually close to those
in [5], but proposes a significantly different semantic security definition. The paper then
discusses the feasibility of achieving semantic security, by first presenting a separation
to the indistinguishability notion, and then introducing a simple property for supported
functionalities, called preimage samplability, under which the two notions are equiva-
lent for non-adaptive token-extraction attacks. The fact that functionalities such as IBE
and inner-product encryption [10] are shown to be preimage samplable provide positive
results for semantically secure FE schemes for such functionalities.

The semantic security model proposed by O’Neill does not suffer from the same
problem we identified for the BSW definition. Indeed, the ideal-world simulator in
O’Neill’s definition must work with honestly sampled global parameters. Nevertheless,
we present other counterexamples for which the intuitive notion of security is not at
all clear, but which can be proven secure under O’Neill’s model. The crux of the mat-
ter here is that information is leaked via tokens, rather than by the ciphertext, which
raises the question of whether such a scheme should be rejected by a semantic security
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definition. However, one can also argue that a security definition for FE should reject
schemes that fail to preserve the security properties of the supported functionalities. Fi-
nally, as acknowledged in [14], O’Neill’s notion of semantic security does not suitably
deal with adaptive token-extraction attacks.

RECENT WORK. In independent work, Bellare and O’Neill [4] proposed syntax and
security definitions for FE that go in the same direction as those proposed here. Their
notions of correctness and SS3 security are similar in spirit to ours, and their resam-
plability notion is akin to our notion of restricted preimage samplability. Gorbunov,
Vaikuntanathan, and Wee [9] have also presented a new semantic security model. Sim-
ilarly to our definition, their simulator does not control the generation of the global
parameters. However, the simulators considered there are black-box and follow a spe-
cific simulation structure. We leave a detailed comparison to future work.

MAIN CONTRIBUTIONS. We now detail our main contributions.

Syntax. We start in Section 2 by tailoring the syntax and correctness definitions of
functional encryption so as to capture the standard definitions for primitives such as
IBE, ABE, PE, etc., as particular cases. This was not strictly the case with previous
approaches. In particular, we identify a notion of full correctness, which maps to the
notions adopted in [14,5], and imposes that the decryption operation explicitly returns
a failure symbol when the functionality is undefined for a particular input value.

Indistinguishability. We modify the notion of intentional leakage [5] to the slightly dif-
ferent concept of potential leakage in Section 3. This allows us to dissociate syntactic
aspects (e.g., we do not need to include a special empty token in the syntax of the prim-
itive) from the security aspects of an FE scheme. Potential leakage captures the general
restrictions that must be in place to ensure that various security models exclude attacks
on functional encryption schemes based on information that the scheme is not designed
to conceal, e.g., the length of messages or the identity of the receivers. Through this
notion we are able to define indistinguishability-based security as a natural generaliza-
tion of the equivalent notions for standard primitives, and automatically get feasibility
results that do not require transforming the original schemes.

Semantic security. Having identified a number of limitations of the semantic security
models proposed by BSW and O’Neill (Section 4), in Section 5 we propose a notion of
semantic security that incorporates features from the definitions by BSW, and also by
O’Neill. Again, our goal is to faithfully generalize the definitions of semantic security
for primitives like PKE [7] and IBE [1]. We observe that full adaptive token extraction
models are not typically considered in such schemes, and so we propose a restricted
adaptive token-extraction attack model. The restriction we impose intuitively prevents
an attacker from obtaining decryption tokens that would allow it to trivially corrupt an
encrypted ciphertext a posteriori, in the style of non-committing encryption [13]. Put
another way, our semantic security definition permits specifying the message distribu-
tions from which encrypted messages may be drawn, along with matching restrictions
on the tokens that can be issued by the TA a posteriori, in order to provide FE secu-
rity guarantees in a more flexible usage scenario. Using this strategy we circumvent
impossibility results for unrestricted token extractions [5]. Finally, we show that our
semantic security definition displays a desirable composition property: security against
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single-message attacks implies security against multi-message attacks, even under re-
stricted adaptive token-extraction attacks, thereby allowing us to present our results in
the simpler single-message scenario.

Setup security. Our definition of semantic security preserves the resilience of O’Neill’s
definition in rejecting schemes that leak information to the adversary via the ciphertext.
However, like all previous definitions, it does not provide any safeguards against leak-
age via decryption tokens or the master secret key. We therefore go on to introduce a
new notion of setup security which enforces that tokens (or more strongly the setup pro-
cedure of the system) do not release any privileged information that might enable token
holders or the trusted authority to obtain information which would otherwise be hidden
by images values (Section 6). We show that setup security excludes all intuitively in-
secure schemes that we consider in the paper, while being inclusive enough to enable
positive results for existing FE schemes. More precisely, we show that functionalities
admitting a conditional preimage sampling procedure have an intrinsically secure setup
procedure. We show PKE and IBE schemes, and more generally FE schemes supporting
all-or-nothing functionalities are conditionally preimage samplable.

Adaptive equivalence. In Section 7 we present some positive feasibility results for
our proposed notion of semantic security. There we extend O’Neill’s results for non-
adaptive token-extraction attacks and propose a variant of preimage samplability (PS)
that enables us to obtain an equivalence between IND-CPA-secure and semantically
secure functional encryption under restricted adaptive token extraction. Moreover, our
requirement is weaker than that of O’Neill if we are only interested in the non-adaptive
token extraction scenario. Finally, we show that conditional preimage samplability (as
defined to establish setup security) also implies our stronger notion of preimage sam-
plability. We immediately get that indistinguishability-based security is equivalent to
semantic security under restricted adaptive token-extraction attacks for all-or-nothing
functionalities. This gives a wide range of positive results for (multi-message) semanti-
cally secure functional encryption that extends previous known results.

Inner products. We conclude the paper in Section 8 by presenting negative results for
inner-product encryption (IPE). These results bring a twist to our extension of O’Neill’s
work: it is not the case that all the equivalences between semantic security and indistin-
guishability established by O’Neill for non-adaptive token extractions carry over to our
restricted adaptive scenario. Concretely, we show that although inner-product encryp-
tion is proven by O’Neill to satisfy the preimage sampling property [14], this function-
ality is provably not preimage samplable under the more restrictive PS notion that we
introduce: for certain parameterizations of the inner-product functionality, a success-
ful preimage sampler can be used to break the Small Integer Solution (SIS) problem.
This leaves open the question of proving the semantic security of existing inner-product
encryption schemes under restricted adaptive token-extraction attacks.

2 Functional Encryption Syntax and Correctness

NOTATION. We start by introducing notation. We denote assigning y to x by x ← y
and use x←$ X for sampling x from set X uniformly at random. IfA is a probabilistic
algorithm, y ←$ A(x1, . . . , xn) denotes running A on x1, . . . , xn with random coins
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chosen uniformly at random, assigning the result to y. We use “:” for appending to a
list. We denote by [X ] the support of random variable X . We say ν(λ) is negligible if
|ν(λ)| ∈ λ−ω(1). We use bold font to denote a vector, and abuse notation when applying
a function to each element of a vector, writing f(m). We use [X ]i for the ith component
of X , and [X ]ji for the ith to jth components. We denote the �2 norm of x by ‖x‖2.

SYNTAX. We now define the syntax for a functional encryption (FE) scheme, where the
function space may, in general, depend on the public parameters of the system; see the
discussion below. Such a scheme is specified by four PPT algorithms as follows.

1. Setup(1λ): This is the setup algorithm. On input a security parameter 1λ, it outputs
a master secret key Msk and a master public key Mpk. Implicitly included in Mpk
are a function/circuit space description FunSp and a message space MsgSp. The
function space FunSp consists of circuit descriptions f : MsgSp→ MsgSp∪ {⊥}.

2. TKGen(f,Msk): This is the token-generation algorithm. On input a function f and
a master secret key Msk, it outputs a token TK for f .

3. Enc(m,Mpk): This is the encryption algorithm. On input a message m and the
master public key Mpk, it outputs a ciphertext c.

4. Dec(c,TK): This is the deterministic decryption algorithm. On input a ciphertext c
and a token TK, it outputs a message m ∈ MsgSp or the special failure symbol ⊥.

CORRECTNESS. The special symbol⊥ in the co-domain of functions accounts for func-
tions that may be undefined on parts of their domain, or for which we do not expect the
cryptosystem to behave correctly. We call an FE scheme correct if, for all λ ∈ N,
all (Mpk,Msk) ∈ [Setup(1λ)], all m ∈ MsgSp(Mpk), all c ∈ [Enc(m,Mpk)], all
f ∈ FunSp(Mpk), and all TK ∈ [TKGen(f,Msk)], we have that f(m) �=⊥ =⇒
Dec(c,TK) = f(m). We call an FE scheme fully correct when the f(m) �=⊥ restriction
is removed, i.e., when the decryption algorithm must return⊥ whenever f(m) =⊥.

In the full version [2] we show that a number of standard cryptographic primitives can
be seen as special cases of the FE syntax and correctness conditions defined above.

COMPARISON WITH THE PREVIOUS DEFINITIONS. There are two differences to the
definition in [14]. First, O’Neill stipulates that the function space is indexed by the
security parameter, yet it is fixed and independent of the setup algorithm. However, for
a number of primitives such as inner-product encryption and attribute-based encryption,
the function space may depend on the parameters generated by the setup algorithm.
Second, we do not require correctness to hold when the function evaluates to ⊥. As
we will see, this weaker correctness notion allows us to see standard PKE, IBE, and
other schemes as particular cases of functional encryption. Strictly speaking, this was
not possible with the definition in [14]. A correct FE scheme according to [14] can be
written as a fully correct scheme in our syntax, and vice versa.

One presentational difference between the definition in [5] and that of ours is that
we treat functions explicitly whereas BSW define a general functionality F (K, ·) in-
dexed by keys K . This difference is inconsequential as the description of a function
can be interpreted as a key. In both definitions various spaces can depend on the public
parameters. Furthermore, we do not rely on a special empty key to model leakage of
side information such as plaintext length. We will deal with this issue when defining
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the security of an FE scheme later on. Finally, our definition of correctness differs from
BSW in the same way as it differs from that of O’Neill.

3 Indistinguishability

We define an indistinguishability-based notion of security tailored to capture different
gradings of security for the same functionality. The game is parameterized by a PPT
relation R that defines the admissible set of challenge queries. This generalizes the
restriction of choosing challenge messages with the same length in PKE. By requiring
R(m0,m1) to hold in the challenge query, one acknowledges that challenge queries that
violate this restriction may lead to a (trivial) break. This decouples security concerns
from the correctness of the scheme. We refer to R as the potential leakage relation.

Definition 1 (IND-CPA Security). Let game IND-CPAFE,R,A be as defined in Figure 1.
The IND-CPA security of an FE scheme relative to potential leakage relationR, requires
the advantage of any adversary A = (A1,A2) to be negligible, when this is defined as

Advind-cpa
FE,R,A(λ) := 2 · Pr [IND-CPAFE,R,A(λ)⇒ T]− 1.

Game IND-CPAFE,R,A(λ):

b ←$ {0, 1}; TKList ← [ ]

(Msk,Mpk) ←$ Setup(1λ)
b′ ←$ AO(Mpk)
Return (b′ = b)

oracle LR(m0,m1):

c ←$ Enc(mb,Mpk)
Return c

oracle Token(f):

TK ←$ TKGen(f,Msk)
TKList ← f : TKList
Return TK

Fig. 1. Game defining the IND-CPA security of an FE scheme. An adversary is legitimate if: 1) it
calls LR once and with a pair (m0,m1) such that R(m0,m1) holds; 2) for all f ∈ TKList have
f(m0) = f(m1); and 3) in the token non-adaptive model, it does not call Token after LR.

SECURITY. Not only can we relate the syntax of functional encryption schemes to that
of existing primitives but, under the appropriate potential leakage relations, we can also
reduce IND-CPA security of an FE scheme to an existing primitive and vice versa.
Our choices therefore lead to a notion of functional encryption scheme that is indeed a
generalization of existing cryptographic primitives.

RELATION WITH O’NEILL’S DEFINITION. In [14] the implicit potential leakage rela-
tion is the equality of the message lengths, i.e., R(m0,m1) := (|m0| = |m1|). Although
this is a natural choice, the resulting security definition fails to generalize those for IBE
schemes (be it anonymous or non-anonymous). Our choice for the potential leakage
relation deals with these issues in a cleaner way and is closer in spirit to that in [5].
It is straightforward to see that a feasibility result under O’Neill’s definitional choices
leads to a feasibility result in our setting with a fixed function space, full correctness,
and with respect to the length equality relation. The converse also holds.

RELATION WITH BSW. Boneh et al. [5] define a special empty key (function) ε that
is aimed at capturing information about encrypted messages that might be publicly
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recoverable from ciphertexts (typically including the message length). However, this
requirement implies that the standard syntax definitions for PKE, IBE, and other primi-
tives do not naturally generalize to functional encryption and deviates from our goal. In
BSW, for example, it is stated that an IBE should attach the message length and target
identity to the ciphertext to strictly meet this requirement. We believe that our approach
via relation R separates security issues from syntactic and correctness issues, while still
maintaining the flexibility of the BSW definition. More formally, if the potential leakage
relation is defined to be R(m0,m1) := (ε(m0) = ε(m1)), queries that allow adversaries
to exploit the empty token are excluded.

Given the discussion above, we can translate between feasibility results for the BSW
definition and our definition. Any scheme that is secure under the BSW definition yields
a fully correct and secure scheme under our definition, when one introduces the appro-
priate syntactic changes and adopts an adequate potential leakage relation. A conversion
in the other direction implies transforming the scheme so that it explicitly leaks infor-
mation through the empty token to match the restrictions imposed by R. In this case,
full correctness and security in our model, yields a BSW-secure scheme.

4 Limitations of the Models by BSW and O’Neill

A closer look at the IND-CPA notion of security for FE schemes reveals that it is inade-
quate for general functionalities. The problem is as follows [5]. For some functionalities
the restriction on the LR oracle imposing that f(m0) = f(m1) can prevent the adver-
sary from simultaneously extracting the token for f and launching a meaningful attack.
For example, if the function is injective, any adversary extracting the token for this func-
tion will be prevented from querying anything other than m0 = m1 from the challenge
oracle. However, in this case, the adversary will have no chance of winning.

Boneh et al. go on to turn this observation into a concrete functional encryption
scheme supporting a one-way permutation that is intuitively insecure, but can be easily
shown to satisfy the IND-CPA security definition. Roughly speaking, in this scheme
one encrypts m under a standard PKE scheme. The token for the one-way permutation
function f is the secret key for the PKE. Upon decryption, one first recoversm and then
computes f(m). The scheme is clearly correct. However, since f(m) hides m computa-
tionally, the functional encryption scheme is not guaranteeing that the decryptor learns
no more about the encrypted message than that which is leaked by f(m). On the other
hand, one can easily show that this FE scheme is IND-CPA-secure if the underlying
PKE is itself IND-CPA-secure: if an adversary extracts the token for f , which is a per-
mutation, then it is bound to calling the challenge oracle on m0 = m1; if it does not
extract the token, then a simple reduction shows that it is attacking the PKE scheme.
Boneh et al. also show that this scheme cannot be proven semantically secure, providing
evidence that this is the correct notion of security for FE.

A Weakness in the BSW Model. We now follow the same approach to demonstrate
an intuitively insecure scheme that can be proven BSW semantically secure. We re-
strict ourselves to the non-adaptive token extraction model so as not to fall within the
range of impossibility results established in [5]. (This only strengthens our argument.)
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Our argument also goes through for the weaker definition of semantic security that is
used in [5, Definition 5] to present a (stronger) impossibility result.

Consider an FE scheme constructed from a PKE scheme and a one-way trapdoor
permutation TDP. The scheme provides the expected functionality by encrypting an
input message under a standard PKE, and evaluating the TDP upon decryption. The
token corresponding to the TDP is simply the PKE secret key. The trapdoor for the TDP
is not kept as part of the secret parameters, and to make the point clearer one should
think of it as being “destroyed” upon generation. Consider also that the intentional
leakage for this scheme is defined as |m|. The scheme is clearly correct. Following
the same reasoning as in the previous counterexample, this scheme leaks too much
information to a decryptor holding a token for f : it will learn m, whereas only the
image under the TDP should be leaked.

In the full version [2] we present a BSW simulator that always succeeds in simu-
lating A’s output, as long as the underlying PKE is IND-CPA-secure. If the adversary
extracts the token for f , then the simulator is able reconstruct a perfect simulation of the
ciphertext in the real game using the trapdoor for the TDP that it (abusively) keeps in
its state. On the other hand, if the adversary does not extract the token, then any adver-
sary/distinguisher pair that distinguish the simulation can be used to break the IND-CPA
security of the underlying PKE scheme. This counterexample can be extended to FE
schemes where the function space is fixed and independent of the global parameters.

Potential Shortcomings in O’Neill’s Model. There is a fundamental difference be-
tween O’Neill’s definition of semantic security and that of BSW: the simulator is no
longer in control of the generation of systems parameters. In return, a token-extraction
oracle is provided in the ideal game. This means that the same strategy we presented
above to argue for the inadequacy of the BSW definition does not directly apply. Nev-
ertheless, other potential problems remain that we discuss next.

POTENTIALLY INSECURE SCHEME 1. We modify the BSW counterexample scheme as
follows. The setup procedure is similar to before, except that the trapdoor for the ran-
domly chosen permutation f is no longer destroyed but kept in the master secret key.
The token-generation algorithm is modified so that the token for the TDP now also con-
tains the trapdoor. The encryption and decryption routines are as before. This scheme
can be proven secure under O’Neill’s definition: although the simulator cannot generate
the trapdoor information itself, this will become available once the adversary extracts
the token for f . It is unclear if this scheme is intuitively insecure as the ciphertext does
not leak any information beyond that leaked by images and tokens.

POTENTIALLY INSECURE SCHEME 2. Consider the following trivial construction of an
FE scheme supporting its own encryption circuit. Take a PKE scheme and set the mes-
sage space of the FE scheme to be (m, r) pairs. Take a PKE keys (sk, pk) and set the
master secret key to be sk and the master public key to be pk. To functionally encrypt
m re-encrypts under pk the ciphertext c resulting from Enc(m, pk; r). The decryption
token is simply sk and decryption recovers and outputs c. This construction is correct
and it can be shown to be semantically secure under the previous semantic security def-
initions. It is also unclear whether it should be classified as insecure. On the one hand,
it is hard to argue that it is intuitively insecure. This is because the function is evaluated
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on the sender’s side and encrypted under a secure encryption scheme. Furthermore, the
decryptor is the legitimate holder of the decryption key, and hence from its perspective
there is no security property associated with the evaluated function. However, one can
also consider things from the perspective of the encryptor, e.g., she might expect that
token holders recover nothing but a ciphertext, but this is not the case.

5 The New Semantic Security Model

We now propose a new definition of semantic security that avoids the above problems
while simultaneously achieving several other goals of interest. Our definition is de-
signed to be strong enough to exclude the clearly intuitively insecure counterexample
we presented for the BSW definition and capture adaptive token extractions, without be-
ing infeasible to achieve due to its excessive strength. Furthermore, the definition should
be compatible with the standard definitional approaches for PKE and IBE schemes.

Definition 2 (Semantic Security). Let games SS-RealFE,R,A,D and SS-IdealFE,R,S,D
be as shown in Figure 2. The semantic security of an FE scheme relative to potential
leakage relation R requires that for any PPT adversary A = (A1,A2), there exists
a legitimate PPT simulator S = (S1,S2) such that for all PPT distinguishers D the
following advantage function is negligible.

Advss-cpa
FE,R,A,S,D(λ) := Pr [SS-RealFE,R,A,D(λ)⇒ T]− Pr [SS-IdealFE,R,S,D(λ)⇒ T]

Game SS-RealFE,R,A,D(λ):

FuncList ← [ ]

(Msk,Mpk) ←$ Setup(1λ)
(M, st) ←$ AToken

1 (Mpk)
(m, h, t) ←$ M
c ←$ Enc(m,Mpk)

v ←$ AToken
2 (c, h, st)

trace ← (Mpk,M, t, FuncList)
Return D(trace, v)

Game SS-IdealFE,R,S,D(λ):

FuncList ← [ ]; m ←⊥
(Msk,Mpk) ←$ Setup(1λ)
(M, st) ←$ SEval

1 (Mpk)
(m, h, t) ←$ M
ImgList ← [f(m) : f ∈ FuncList]

v ←$ SEval
2 (ImgList, h, st)

trace ← (Mpk,M, t, FuncList)
Return D(trace, v)

oracle Eval(f):

TK ←$ TKGen(f,Msk)
FuncList ← f : FuncList
Return (TK, f(m))

oracle Token(f):

TK ←$ TKGen(f,Msk)
FuncList ← f : FuncList
Return TK

Fig. 2. Games defining the semantic security of an FE scheme. An adversary is legitimate if:
1) R(m0,m1) holds for every pair of messages in [M]1; 2) for all second-stage Token queries
f , we have that f(m0) = f(m1) for all m0,m1 ∈ [M]1; and 3) in the token non-adaptive model,
A2 and S2 do not call Token and Eval respectively.

The intuition behind the definition is as in the previous definitional approaches: an
adversary should learn no more about an encrypted message than that which is explic-
itly revealed by the functions associated to the decryption tokens that it obtains. To this
end, we require the existence of a simulator that does not have access to the ciphertext,
but only to the images of the encrypted message under the same set of functions. This
simulator is bound to producing an output that essentially looks like that produced by
the adversary in the real world, which implies the ciphertext indeed reveals no extra
information. More in detail, the simulator must emulate A1’s output and produce an
output v that matches the information recovered by A2 from the ciphertext. However,
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the simulator is denied access to the ciphertext, and is bound to obtaining a set of im-
ages that matches those recovered by the real-world adversary via its Token oracle
(this last restriction is imposed by including FuncList in trace). Like in the indistin-
guishability model, the potential leakage relation can be used to exclude trivial attacks
whereby the real-world adversary would obtain information trivially leaked by the ci-
phertext (whereas this would not be available in the ideal world). Finally, we observe
that the token-extraction queries performed by the adversary in the second stage are
restricted to functions that are constant over the support of the message distribution.
This allows us to generalize the feasibility results that are well known for particular
instances of functional encryption, namely IBE schemes. For this reason, we call this
model semantic security under restricted adaptive token-extraction attacks.

In the full version [2] we present a detailed justification of our definitional choices.
Here we summarize the main features of our definition: 1) free simulators, 2) honest
parameter generation (as in O’Neill), 3) use of general distinguishers (closer to BSW),
4) message generation via a message distribution (closer to O’Neill), 5) history informa-
tion (closer to BSW), and 6) hint for distinguisher (present in both O’Neill and BSW).

COMPOSITION. Observe that the IND-CPA definition can be shown to compose from
single to multiple LR queries (i.e., from a single-message to a multi-message attack
scenario) using a standard hybrid argument [3]. One of the crucial features of our se-
mantic security definition is that it also composes. Below we show that a multi-message
variant of our definition where the message distribution outputs a vector of messages
(see the full version [2] for the details) is equivalent to the definition above.

Theorem 1 (Composition). Let FE be a functional encryption scheme that is seman-
tically secure under the (single-message) definition in Figure 2. Suppose that there is
a polynomial poly such that for any single-message adversary A, there is a semantic
security simulator S[A] such that

TimeS[A](λ) ≤ TimeA(λ) + TimeM(λ) + poly(λ)

TimeS[M](λ) ≤ TimeM(λ) + poly(λ)

where M is the distribution output by A and S[M] is the simulated message distri-
bution. Then for every real-world multi-message PPT adversary A′, there exist a real-
world single-message PPT adversary A and a multi-message PPT simulator S′ such
that for any distinguisherD′, there exists a distinguisherD for which

Advm-ss-cpa
FE,R,A′,S′,D′(λ) ≤ Q(λ) ·Advss-cpa

FE,R,A,S,D(λ) ,

where S is the simulator implied by the single-message semantic security and Q(λ) is
an upper bound on the number of messages output by message distributions.

Proof (Overview). We give an overview of the proof for the non-adaptive case here and
leave the details to in the full version [2]. The proof is essentially a simulation-based
hybrid argument. Consider the attack models where in the ith hybrid, for i = 0, . . . , q,
the adversary has access to (q− i) ciphertexts and i image lists. In each step we change
a ciphertext to the corresponding image list. We show that for any adversary in the ith
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hybrid model, there is an adversary in the (i + 1)st hybrid that does equally well. To
see this, note that the adversary in the ith hybrid can be viewed as a single-message
real-world adversary that also receives some extra auxiliary information consisting of
ciphertexts and image lists. By the semantic security guarantees of the scheme we may
replace this adversary by an equally good one that only gets the image list for the re-
placed ciphertext. This concludes the proof as the qth hybrid corresponds to the ideal-
world multi-message semantic security game. Note that the running time of the final
simulator in the ideal game, which recursively depends on the previous simulators,
stays polynomial if the condition given in the theorem is satisfied. ��

6 Setup Security

Similarly to O’Neill’s model, our definition of semantic security fails to exclude the
counterexamples from Section 4 (because the simulator also has access to decryption
tokens). This raises the question of whether our model can be strengthened further so
these schemes are also ruled out. One direct approach to achieve this would be to further
restrict the simulator by denying it access to tokens (as well as the master secret key)
in the ideal world. We present this model in the full version of this paper [2] and show
that it is infeasible to achieve (essentially because a correct simulation of tokens would
imply breaking the functional encryption scheme one is trying to prove semantically
secure). We therefore take a different approach.

The first observation we make is that our definition accepts these counterexamples
because indeed they do not leak information through the ciphertext. In fact, leakage
is enabled by the combined information provided by images and decryption tokens (or
more generally the master secret key). Intuitively, once a trapdoor for a TDP is provided
to a token holder, the TDP circuit essentially becomes an efficiently invertible encod-
ing function from messages onto images, offering no (intuitive) security whatsoever.
From the point of view of the semantic security definition, where the aim is to exclude
schemes where ciphertexts leak more information than that which is leaked by images,
these counterexample schemes should therefore be considered secure.

However, it is still a reasonable security goal to expect that tokens do not help a
token holder to extract information from images that would otherwise be hidden by the
functionality. We therefore consider the stronger setting where the master secret key
is required not to compromise the security properties of the supported functionalities.
Informally, this means that even the trusted authority holding the master secret key
should not be able to hold any “trapdoor” information on the functionalities supported
by the functional encryption scheme.

A NEW NOTION OF SECURITY. Our approach to formalizing this security notion, which
we call setup security, is as follows. We consider an attack scenario where an adversary
is given the master secret key Msk and adaptively interacts with an evaluation oracle
for the functionality in order to construct a trace that contains the master public key,
a list of functions, a message distribution, a list of images, and a function func that
models leaked information. This trace establishes the adversary’s claim as to his ability
to extract information from the images, which is specified by the leakage function. The
FE scheme will then be setup-secure if a simulator given only the trace and the same
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set of images provided to the adversary, i.e., without having access to the master secret
key, can extract essentially the same information.

Definition 3 (Setup Security). Let game SetSecFE,R,A be as shown in Figure 3. The
setup security of an FE scheme relative to potential leakage relation R requires that
for any adversary A = (A1,A2), there exists a simulator S such that the following
advantage function is negligible.

Advsetsec
FE,R,A,S(λ) := 2 · Pr [SetSecFE,R,A,S(λ)⇒ T]− 1 .

Game SetSecFE,R,A,S(λ):
FuncList ← [ ]; b ←$ {0, 1}
(Msk,Mpk) ←$ Setup(1λ)
(M, st) ←$ A1(Msk,Mpk)
m ←$ M
(func, v0) ←$ AEval

2 (st)
ImgList ← [f(m) : f ∈ FuncList]
trace ← (Mpk,M,FuncList, ImgList, func)
v1 ←$ S(trace)
Return (vb = func(m))

oracle Eval(f):

FuncList ← f : FuncList
Return f(m)

Fig. 3. Game defining the setup security of an FE scheme. An adversary is legitimate if
R(m0,m1) holds for every pair of messages in [M].

SETUP SECURITY VIA CONDITIONAL PREIMAGE SAMPLING. It is easy to see that all
the potentially insecure TDP-based counterexamples that we have introduced are ex-
cluded by the setup security definition. We now show that the definition allows natural
classes of functionalities to be proven setup secure. To this end, we introduce a notion
of conditional preimage samplability. Roughly speaking, this asserts that given a mes-
sage distribution M and a list of functions [fi]ni=1, it is possible to efficiently sample
from M when this is conditioned on a set of images [fi(m)]ni=1 for some m ∈ [M].
The actual definition is slightly more complex, as we need to deal with possible adver-
sarial adaptiveness as well as define indistinguishability of conditional distributions in
a meaningful way. We leave the details to the full version [2], where we also prove the
results in this section. The following theorem shows that conditional preimage sampla-
bility is a sufficient condition for setup security.

Theorem 2 (CPS⇒ Secure Setup). Any functional encryption supporting a CPS func-
tionality relative to potential leakage relation R is setup-secure with respect to R.

CONCRETE SETUP-SECURE SCHEMES. We now look at concrete functionalities and
show that setup security is already achieved by many existing functional encryption
schemes. We begin by defining a broad class of functionalities where an image either
entirely reveals the encrypted message, or nothing at all.

Definition 4 (All-or-Nothing Functionality). We say a functional encryption scheme
supports an all-or-nothing (ANOT) functionality if for all λ ∈ N, all (Mpk,Msk) ∈
[Setup(1λ)], all f ∈ FunSp, and all m ∈ MsgSp we have that f(m) ∈ {m,⊥}.
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As an example, consider predicate encryption systems [5] where the message space
is partitioned into pairs m = (x, idx). Here, x is a hidden payload and idx is extra
information that determines which tokens can be used to recover x from a ciphertext
encrypting m. More precisely, each secret key is associated with a predicate P , and the
payload can be recovered whenever P (idx) = T. Formally,

fP (x, idx) :=

{
(x, idx) if P (idx) = T ;

⊥ otherwise.

Observe that we include idx in the output of the functionality when the predicate eval-
uates to T, thereby rendering the functionality all-or-nothing. It is easy to see that PKE
and IBE schemes are examples of ANOT schemes. For PKE schemes this is obvious,
since the functionality is the identity function and the index space is empty. For IBE,
observe that whenever the output of the functionality is not ⊥, the identity (i.e., the
index) is also implicitly leaked by the functionality, thereby revealing the full message.
Furthermore, this also includes variants of inner-product encryption, hidden vector en-
cryption, etc., where a successful decryption operation explicitly reveals the encrypted
index. Our first positive result for setup security is given by the following theorem.

Theorem 3 (ANOT⇒ CPS). Any ANOT functionality is conditionally preimage sam-
plable in expected polynomial time (for any potential leakage relation).

The intuition behind the proof is as follows. Since the functionality is ANOT, there are
two possible trace outcomes. In the first, the adversary queries a function which acts
as the identity map on the message sampled from M. Here the sampler can simply
return the message. In the second, all the image values are ⊥. Here the sampler will
repeatedly sample a message from M until it maps to ⊥ under all functions given to
it in the trace. The number of retries, conditioned on a given trace, will depend on the
probability that the image list is all ⊥. However, the overall expected number of retries
can be shown to be 1. In the full version [2] we discuss why the sampler we construct
cannot be converted into a strict PPT black-box sampler by truncating the execution
time. Combining Theorems 2 and 3 we obtain the following corollary.

Corollary 1. Any FE scheme supporting an ANOT functionality has a secure setup
procedure w.r.t. expected PPT simulators and arbitrary potential leakage relations.

PUBLIC-INDEX PREDICATE ENCRYPTION. We now show that there exists a large class
of FE schemes for which we can construct a strict PPT conditional preimage sampler.
Intuitively, such schemes leak more information about encrypted messages which, when
provided to the sampler, allows this stronger result to go through (in our framework, this
is captured by the potential leakage relation.

Definition 5 (Jointly All-or-Nothing Functionality). We say an FE scheme supports
a jointly all-or-nothing (JNOT) functionality relative to potential leakage relation R if,
for all λ ∈ N, all (Msk,Mpk) ∈ [Setup(1λ)], all subsets F ⊆ FunSp, all message
distributionsM where R(m0,m1) = T for all m0,m1 ∈ [M], we have that

∀m ∈ [M], ∃f ∈ F , f(m) = m ∨ ∀m ∈ [M], ∀f ∈ F , f(m) =⊥ .
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In this definition the all-or-nothing property is no longer formulated over a class of ad-
missible message distributions defined by the potential leakage relation. Concretely, R
constrains the support of the message distributionM in such a way that, for any subset
of functions F extracted from the function space, the list of images will be guaranteed
to, either totally reveal m, or to information theoretically preserve the entropy of the
message distribution. We now show that this definition is satisfied by a large class of
all-or-nothing functionalities, corresponding to predicate encryption systems with pub-
lic index [5]. For such schemes, no claim about hiding idx is made. This means that
their security is analyzed with respect to the special potential leakage relation

R∗((x0, idx0), (x1, idx1)) := (|x0| = |x1| ∧ idx0 = idx1) .

The fact that message distributions are now restricted by R∗ yields the following result.

Theorem 4. All predicate encryption systems are JNOT with respect to R∗.

The previous result includes primitives such as PKE, (non-anonymous) IBE, non-attri-
bute-hiding ABE, and inner-product encryption that reveals the index in the ciphertext.
We now state the final result of this section.

Theorem 5 (JNOT ⇒ CPS). Take an FE scheme supporting a JNOT functionality
with respect to potential leakage relation R. Then this scheme is conditionally preimage
samplable (in strict polynomial time) with respect to R.

The intuition behind the proof of this theorem is exactly the same as in Theorem 3. The
difference to all-or-nothing functionalities is that the JNOT property guarantees that,
either the sampler gets the challenge message in the image list, or sampling a message
from the message distribution yields a valid result. We obtain the following corollary.

Corollary 2. All (public-index) predicate encryption systems are setup-secure with re-
spect to potential leakage relation R∗.

7 Preimage Samplability

Despite the shortcomings of indistinguishability models highlighted in [14,5], O’Neill
shows that, for certain classes of functionalities, indistinguishability-based security is
no less adequate than his proposed notion of semantic security. Indeed, it is shown
in [14] that if an FE scheme is preimage samplable (see the full version [2]) then,
in the non-adaptive token-extraction attack scenario, indistinguishability and semantic
security are equivalent. Furthermore, functionalities such as those for IBE and inner-
product encryption are shown to be preimage samplable. In light of the new syntactical
and definitional approach introduced above, we propose a modified definition of preim-
age samplability and show that a similar result holds. Our definition, however, permits
extending the equivalence result to the multi-message and restricted adaptive token ex-
traction model, and hence generalizes known results for, e.g., IBE schemes, in this area.
This is an important extension, as (restricted) adaptive extraction of secret keys is the
standard attack model for all predicate encryption systems.
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Definition 6 ((Un)Restricted Preimage Samplability). Let game PSFE,R,A,Samp,mode

be as defined in Figure 4. We call an FE (un)restricted preimage samplable for the
potential leakage relation R if, for any algorithm A there exists a sampling algo-
rithm Samp such that the following advantage function is negligible.

Advmode-ps
FE,R,A,Samp(λ) := Pr [PSFE,R,A,Samp,mode(λ)⇒ F] .

Game PSFE,R,A,Samp,mode(λ):

(Msk,Mpk) ←$ Setup(1λ)
(M, [fj ]

n
j=1) ←$ A(Msk,Mpk)

m0 ←$ M
m1 ←$ Samp(M, [(fj , fj(m0))]

n
j=1,Mpk)

If (∃j : fj(m0) �= fj(m1)) Return F
If ¬R(m0,m1) Return F
If (mode = res ∧m1 /∈ [M]) Return F
Return T

Fig. 4. Game defining (un)restricted preimage samplability, for mode mode ∈ {res, unres}. A is
legitimate if R(m0,m1) holds for all m0,m1 ∈ [M].

COMPARISON WITH O’NEILL PS DEFINITION. Our definition differs from that in [14]
in several aspects. First, the adversary now has access to (Msk,Mpk) rather than 1λ

only. Access to Mpk is consistent with our syntax of FE schemes, which permits gen-
eration of function space together with the master public key. Access to Msk in needed
when arguing that the actions of some IND-CPA adversary contradict preimage sampla-
bility. More precisely, the adversary may use information dependent on the Msk (i.e.,
decryption tokens) to come up with a non-samplable message. This issue seems to have
been overlooked in [14]. Second, the definition is parameterized by a potential leakage
relation R. This ensures that the sampler obtains as much information about the chal-
lenge message as a real-world semantic security adversary. Technically, this allows the
equivalence proof to go through (for the non-adaptive case) for a larger class of func-
tional encryption schemes than those covered by O’Neill. For example, our results cover
those schemes that can be captured using our syntactic conventions, but not under those
in [14]. (A simple example of this is standard (non-anonymous) IBE.) Finally, the adver-
sary now outputs a message distribution rather than a single message. The unrestricted
sampler, similar to O’Neill’s, is only bound to producing a message that collides with
m0 on all functions. The (stronger) restricted sampler is bound to return an m1 that is in
the support ofM. As we shall see, this is necessary to enable extending the equivalence
result to the restricted adaptive token extraction setting. For the unrestricted case this
condition is dropped, and we end up with a definition which is implied by (and hence
weaker than) O’Neill PS definition (the M and A can be merged). Consequently, all
positive feasibility results in [14] carry over to our setting.

The following theorem, proven in the full version of this paper [2], establishes equiv-
alence between our two notions of FE security for restricted preimage samplable
schemes and restricted adaptive token extraction scenarios.
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Theorem 6 (Equivalence under PS). Fix potential leakage relation R. For every ad-
versary A against the IND-CPA security of scheme FE, there exist a (single-message)
SS-Real adversary B and a distinguisherD such that for any simulator S

Advind-cpa
FE,R,A(λ) ≤ 2 ·Advss-cpa

FE,R,B,S,D(λ) .

Furthermore, for every single-message SS-Real adversary A, there is a PS adversary
C with sampler Samp, and a SS-Ideal simulator S such that for every distinguisher D
there is an IND-CPA adversary B with

Advss-cpa
FE,R,A,S,D(λ) ≤ Advind-cpa

FE,R,B(λ) +Advres-ps
FE,R,C,Samp(λ) .

The running time of S in the ideal world is that of runningA in the real world plus the
running time of Samp.

The guarantee on the running time of the simulator allows us to obtain semantic security
in the multi-message scenario from single-message indistinguishability via Theorem 1,
provided that the running time of the sampler is independent of the running time of the
adversary. This is indeed the case in our feasibility results below.

REMARK. The above result can be extended to a setting where samplers, adversaries
and simulators may execute in expected polynomial time. More precisely, for expected
PPT preimage samplers, one can prove that IND-CPA security with respect to expected
PPT adversaries is equivalent to semantic security when both the real-world adversary
and the ideal-world simulator may run in expected polynomial time.

FEASIBILITY. We conclude this section with a discussion of the feasibility results we
obtain with the new definition of preimage samplability. On the negative side, it is easy
to see that no FE scheme supporting a one-way function can be preimage samplable
with respect to O’Neill’s or our definition. On the positive side, and on top of all of
O’Neill’s feasibility results for the non-adaptive token extraction scenario, the following
theorem yields feasibility results for restricted preimage samplability for a large class of
functionalities, which in turn immediately yield positive feasibility results for semanti-
cally secure functional encryption under restricted adaptive token extraction scenarios.

Theorem 7 (CPS⇒ PS). Any conditionally preimage samplable functional encryption
scheme is also restricted preimage samplable.

Combining this theorem (proved in the full version [2]) with the previous results we get
that any IND-CPA-secure FE scheme supporting an ANOT functionality is semantically
secure under restricted adaptive token-extraction attacks and also enjoys setup security,
both with respect to expected PPT simulators. For the special cases where the potential
leakage relation allows us to construct a strict PPT preimage sampler (e.g., PKE, IBE,
and other predicate encryption schemes that explicitly leak the index) the result holds
for strict PPT simulators. Furthermore, since the sampler executesM once, this allows
us to extend the implication from single-message IND-CPA security to multi-message
semantic security under restricted adaptive token-extraction attacks.
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8 Inner-Product Encryption

Inner-product encryption (IPE) [10] is a form of functional encryption where the index
space corresponds to vectors x in Zmq , and each secret key is also associated with a
vector y in Zmq . The associated predicate is given by

Py(x) :=

{
T if 〈x,y〉 = 0 mod q ;

F otherwise.

Without loss of generality, we will concentrate on the predicate-only version of inner-
product encryption, where the payload is empty and the functionality is fy(m) =
Py(x). Note that IPE is not an all-or-nothing functionality, since upon successful de-
cryption one does not learn x.

Our goal is to show that inner-product encryption is not restricted preimage sam-
plable. To this end, we will rely on well-established intractable problems related to find-
ing short solutions to linear equations. More precisely, we will be relying on the Small
Integer Solution (SIS) problem and a decisional variant of it that we call DSIS [12,6,11]
(see the full version [2] for the details). We will show that, for certain parameters q,
m in the inner-product functionality, no restricted preimage sampler can be successful
against the PS adversaryA shown in Figure 5. This adversary is parameterized by four
values n, m, q, and d, which we assume to be polynomial in the security parameter.
This guarantees that the algorithm runs in PPT.

Algorithm Aq,n,m,d(Msk,Mpk):

For i from 1 to n do
yi ←$ Zm

q

Set M to uniform on B(d)m

Return (M,y1, . . . ,yn)

Fig. 5. PS adversary for the inner-product encryption

The formal statement of our result is as follows.

Theorem 8 (IPE Is Not Restricted PS). Let A be the PS adversary in Figure 5. Then
for any PPT sampler Samp, there exist PPT adversaries B1 and B2 such that

1−Advres-ps
FE,R,Aq,n,m,d,Samp(λ) ≤ Adv

(q,m,n,d)-dsis
B1

(λ)+Adv
(q′,m′,n′,β)-sis
B2

(λ)+ν(λ) ,

where d = qn/m, q′ = q, m′ = m, n′ = n/q −
√
n/q log(n/q), β = d

√
m, and ν(λ)

is a negligible function depending on q and n.

We note that this is a stronger result than what we need as it establishes that the sampler
will fail with overwhelming probability. We leave the details of the proof to the full
version [2], where we also briefly discuss how to extend the theorem to large values of
q, and give a high-level overview here.

The main idea behind the proof is that a successful sampler should match the zero
values in the image list it receives, while being restricted to outputting solutions in the
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support of the message distribution, which consists of small vectors. In other words,
the sampler is solving a system of linear equations with a small solution. This allows
us to establish a connection with the SIS problem. Despite this, in order to solve a SIS
problem instance using the sampler, we need to make sure that the sampler is forced
to match sufficiently many zeros. (Note it cannot be the case that sampling a random
message leads to only zero image values as otherwise we can preimage sample by re-
peated sampling as before.) Hence enough zero and nonzero values must be present in
the image list. We achieve this by making sure the adversaryA returns more vectors yi
than the SIS dimension n′. But now there is a problem as we do not know the image
values for the newly generated vectors. This is where we appeal to the DSIS problem
and simply assume these values are random: any change in the sampler’s success prob-
ability would translate to a DSIS break. We are now in a position where we can reduce
to the SIS problem. We assign the rows of the SIS matrix to (some of) the zeros in the
randomly generated values, and assign the newly generated rows to the remaining ones.
A successful sampler for this set of images would also solve the SIS problem instance.
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Abstract. Attribute-based encryption (ABE) is a vision of public key
encryption that allows users to encrypt and decrypt messages based on
user attributes. This functionality comes at a cost. In a typical imple-
mentation, the size of the ciphertext is proportional to the number of
attributes associated with it and the decryption time is proportional to
the number of attributes used during decryption. Specifically, many prac-
tical ABE implementations require one pairing operation per attribute
used during decryption.

This work focuses on designing ABE schemes with fast decryption
algorithms. We restrict our attention to expressive systems without
system-wide bounds or limitations, such as placing a limit on the num-
ber of attributes used in a ciphertext or a private key. In this setting,
we present the first key-policy ABE system where ciphertexts can be
decrypted with a constant number of pairings. We show that GPSW ci-
phertexts can be decrypted with only 2 pairings by increasing the private
key size by a factor of |Γ |, where Γ is the set of distinct attributes that
appear in the private key. We then present a generalized construction
that allows each system user to independently tune various efficiency
tradeoffs to their liking on a spectrum where the extremes are GPSW on
one end and our very fast scheme on the other. This tuning requires no
changes to the public parameters or the encryption algorithm. Strate-
gies for choosing an individualized user optimization plan are discussed.
Finally, we discuss how these ideas can be translated into the ciphertext-
policy ABE setting at a higher cost.

1 Introduction

Attribute-based encryption (ABE) [18] is an expansion of public key encryption
that allows users to encrypt and decrypt messages based on user attributes. In
a key-policy ABE (KP-ABE) system, an encrypted message can be tagged with
a set of attributes, such as tagging an email with the metadata “from: Alice”,
“to: IACR board”, “subject: voting”, “date: October 1, 2012”, etc. The master
authority for the system can issue private decryption keys to users including an
access policy, such as giving to Bob a decryption key that enables him to decrypt

K. Kurosawa and G. Hanaoka (Eds.): PKC 2013, LNCS 7778, pp. 162–179, 2013.
c© International Association for Cryptologic Research 2013
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any ciphertexts that satisfy “to: Bob” OR (“to: IACR board” AND (January 1,
2011 ≤“date” ≤ December 31, 2012)).

This access control functionality can be very powerful, but also costly. In this
work, we focus on the cost of decryption. In many key-policy ABE systems,
such as that of Goyal, Pandey, Sahai and Waters (GPSW) [13], the decryption
algorithm requires one pairing for each attribute used during decryption. (En-
cryption does not require any pairings, and is thus already fast by comparison.)

It seems conceivable that one might reduce the cost of decryption by making
tradeoffs elsewhere. One tradeoff we allow ourselves in this work is to increase
the private key size, although we ideally want to limit any increase as much
as possible. We do not, however, consider tradeoffs that increase the ciphertext
size or that place any limitations on how the ABE system can be used. That is,
we focus on fast decryption for the most general setting possible – an expres-
sive, large-universe system, where there are no bounds on, say, the number of
attributes that can appear in a ciphertext or private key. While good progress
has been made on efficient ABE in “bounded settings”, as we discuss shortly,
our focus is to develop techniques for improving efficiency in the most general
setting and for applications where it is infeasible to trade system-wide usability
for performance.

Our Contributions. We present the first expressive and “unbounded” key-policy
ABE (KP-ABE) system in a pairing setting, which requires only a constant num-
ber of pairings to decrypt any ciphertext. It builds upon the GPSW system [13].
It reduces the decryption requirements to two pairings and two exponentiations
(these exponents are 1 or 0 if the access policy is a boolean formula), while in-
creasing the number of multiplications by a factor of |Δ|, where Δ is the set of
distinct attributes used during decryption. It also increases the private key size
by a factor of |Γ |, where Γ is the set of distinct attributes used in the private
key.

We discuss several variants of this system, including a method for reducing
the ciphertext size from O(|Δ|) to three group elements (in the small universe
setting only) at the cost of larger private keys. We also discuss the difficulties
of achieving fast decryption for ciphertext-policy ABE (CP-ABE) systems in an
unbounded setting, as well as progress in the bounded setting.

In Section 5, we present generalized decryption and “key storage” algorithms
that allow each system user to independently tune various efficiency tradeoffs to
their liking on a spectrum that ranges from GPSW (shorter keys, slow decryp-
tion) on one end to our main KP-ABE construction (longer keys, fast decryption)
on the other. This tuning requires no changes to the setup, encryption or key
generation algorithms of our base construction. Rather, it is managed transpar-
ently by each user, who can choose among many possible decryption algorithms
where the amount of her private key that she needs to securely store scales ac-
cordingly. We conclude with some strategies for choosing an individualized user
optimization plan.
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1.1 Related Work

To our knowledge, the only prior work to achieve constant pairings in decryption
for an expressive KP-ABE system is that of Attrapadung, Herranz, Laguillaumie,
Libert, de Panafieu and Ráfols [3,2]. The goal of their work was on achieving short
ciphertexts. They were able to achieve very short ciphertexts (constant number
of group elements) using novel applications of aggregation techniques that have
roots in those used to achieve hierarchical identity-based encryption [14,11] with
constant size ciphertexts by Boneh, Boyen and Goh [6] and those used to achieve
practical broadcast encryption by Boneh, Gentry and Waters [8]. Our ideas begin
at this starting point as well. However, Attrapadung et al. brought in an inner
product instance as a base building block which fundamentally demands a bound,
n, on the maximum number of attributes that can appear in a ciphertext. This
choice of n forces a tradeoff between flexibility and performance.

One needs to set n high to cover the “worst” case even if the typical encryption
uses far fewer attributes. Unfortunately, their private key size blows up by a
factor of n, whereas our key size only increases by a factor of the number of
distinct attributes used in that particular key. Moreover, for a ciphertext that
encrypts with |S| attributes, they have an added cost of |S| exponentiations
during decryption. This could be very costly in some situations. Suppose Alice
has the key policy (A1 AND A2) and receives a ciphertext with many attributes
A1, A2, . . . , A1000. In their system, Alice must do 1000 exponentiations, which is
actually much worse than if she was only required to do one pairing per attribute
used in decryption.1

This work aims to avoid these “worst case” penalties. In particular, we want
that a user’s key size be related to the complexity of her key. In their scheme,
it grows with n. In decryption, the computational cost should be related to
how many rows of the LSSS one must use. In their scheme, the number of
exponentiations grows with the number of attributes in the ciphertext. This
is a tradeoff relative to GPSW [13]. Finally, in their scheme, the number of
multiplications is roughly |I| · |S|, the number of rows used in decryption times
the number of attributes in a ciphertext. Ours is |I| · |Δ|, the number of rows
used in decryption times the number of distinct attributes used in decryption.
Note that |Δ| ≤ |S|.

While we have pointed out some of the areas for improvement in Attrapadung
et al. for comparison’s sake, we do wish to stress that this was a pioneering work
that showed that short ciphertexts and fast decryption was possible at all for
KP-ABE. We also refer the reader to that work for an excellent summary of
the efficiency of prior ABE schemes. Our work compliments theirs by taking the
study of fast decryption for ABE into the unbounded realm with tighter growth.

We note that Identity-Based Encryption [19,7,10] was an early forerunner
of ABE and several technique from IBE impact ABE systems. Finally, in this
work, we only consider selective security [9], however, we believe our techniques

1 The polynomial related to Y in their construction grows with the number of at-
tributes in the ciphertext.
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could apply to more recent systems proven adaptively secure using dual system
encryption [15,17].

2 Background

This section covers background information. We make use of the standard def-
initions for access structures and linear secret sharing schemes (LSSS), as well
as the conventions and notation for these employed in several prior ABE works.
These are included in Appendix A for reference.

2.1 Definitions of Security for Key Policy ABE Schemes

Definition 1 (KP-ABE Algorithm Specification). A key-policy attribute-
based encryption system for message space M and access structure space G is a
tuple of the following algorithms:

Setup(λ, U)→ (PK,MK). The setup algorithm takes as input a security pa-
rameter λ and a universe description U , which defines the set of allowed
attributes in the system. It outputs the public parameters PK and the master
secret key MK.

Encrypt(PK,M, S)→ CT. The encryption algorithm takes as input the pub-
lic parameters PK, a message M and a set of attributes S and outputs a
ciphertext CT associated with the attribute set.

KeyGen(MK,A)→ SK. The key generation algorithm takes as input the mas-
ter secret key MK and an access structure A and outputs a private key SK
associated with the attributes.

Decrypt(SK,CT)→M . The decryption algorithm takes as input a private key
SK associated with access structure A and a ciphertext CT associated with
attribute set S and outputs a message M if S satisfies A or the error message
⊥ otherwise.

The correctness property requires that for all sufficiently large λ ∈ N, all universe
descriptions U , all (PK,MK) ∈ Setup(λ, U), all S ⊆ U , all SK ∈ KeyGen(MK,A),
all M ∈ M, all A ∈ G and all CT ∈ Encrypt(PK,M, S), if S satisfies A, then
Decrypt(SK,CT) outputs M .

Security Model for KP-ABE LetΠ = (Setup,Encrypt,KeyGen,Decrypt) be a KP-
ABE scheme for message space M and access structure space G, and consider
the following experiment for an adversaryA, parameter λ and attribute universe
U :

The KP-ABE Experiment KP-ABE-ExpA,Π(λ, U):

Setup. The challenger runs the Setup algorithm and gives the public parame-
ters, PK to the adversary.

Phase 1. The challenger initializes an empty table T , an empty set D and an
integer counter j = 0. Proceeding adaptively, the adversary can repeatedly
make any of the following queries:
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– Create(A): The challenger sets j := j + 1. It runs the key generation
algorithm on A to obtain the private key SK and stores in table T the
entry (j,A, SK).
Note: Create can be repeatedly queried with the same input.

– Corrupt(i): If there exists an ith entry in table T , then the challenger
obtains the entry (i,A, SK) and sets D := D ∪ {A}. It then returns to
the adversary the private key SK. If no such entry exists, then it returns
⊥.

– Decrypt(i,CT): If there exists an ith entry in table T , then the challenger
obtains the entry (i,A, SK) and returns to the adversary the output of
the decryption algorithm on input (SK,CT). If no such entry exists, then
it returns ⊥.

Challenge. The adversary submits two equal length messages M0 and M1. In
addition the adversary gives a set of attributes S∗ such that for all A ∈ D,
the set S∗ does not satisfy the access structure A. The challenger flips a
random coin b, and encrypts Mb under S

∗. The resulting ciphertext CT∗ is
given to the adversary.

Phase 2. Phase 1 is repeated with the restrictions that the adversary cannot
– trivially obtain a private key for the challenge ciphertext. That is, it

cannot issue a Corrupt query that would result in an access structure A

which S∗ satisfies being added to D.
– issue a decryption query on the challenge ciphertext CT∗.

Guess. The adversary outputs a guess b′ of b. The output of the experiment is
1 if and only if b = b′.

Definition 2 (KP-ABE Security). A KP-ABE scheme Π is CCA-secure (or
secure against chosen-ciphertext attacks) for attribute universe U if for all prob-
abilistic polynomial-time adversaries A, there exists a negligible function negl
such that:

Pr[KP-ABE-ExpA,Π(λ, U) = 1] ≤ 1

2
+ negl(λ).

CPA Security. We say that a system is CPA-secure (or secure against chosen-
plaintext attacks) if we remove the Decrypt oracle in both Phase 1 and 2.

Selective Security. We say that a system is selectively secure if we add an Init
stage before Start where the adversary outputs the challenge attribute set S∗

(instead of waiting until Challenge).

2.2 Bilinear Maps

Let G and GT be two multiplicative cyclic groups of prime order p. Let g be
a generator of G and e : G × G → GT be a bilinear map with the properties:
(1) Bilinearity: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab

and (2) Non-degeneracy: e(g, g) �= 1. We say that G is a bilinear group if the
group operation in G and the bilinear map e : G× G→ GT are both efficiently
computable. We now state an assumption used in the constructions.
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Definition 3 (Decisional BDHE [6]). Let a, s ∈ Zp be chosen at random and
g be a generator of group G of prime order p ∈ Θ(2λ). The decisional q-BDHE
assumption is that all probabilistic polynomial-time algorithms A given the vector
y=

G, p, g, gs, ga, . . . , g(a
q), g(a

q+2), . . . , g(a
2q)

have an advantage negligible in λ of distinguishing e(g, g)a
q+1s ∈ GT from a

random element in R ∈ GT . The advantage of A is defined as∣∣∣∣Pr [A(y, e(g, g)aq+1s) = 0
]
− Pr

[
A
(
y, R
)
= 0
] ∣∣∣∣

where the probability is taken over the random choice of a, s in Zp, R in GT and
the generator g, and the random bits consumed by A.

3 ABE with Fast Decryption

3.1 The Base Construction: Small Universe KP-ABE

We first describe a system for a small universe U of attributes, where |U | is a
polynomial in 1λ, and the attributes are the integers 1, . . . , U . Subsequently, we
will describe how to alter this construction to accommodate a large universe
U = {0, 1}∗ of attributes in the random oracle model. When we refer to our base
construction in a setting where large universes are assumed, we mean this close
variant. The message space is GT .

Setup(λ, U)→ (PK,MK). The setup algorithm first chooses a bilinear group G

of prime order p ∈ Θ(2λ). It selects a random generator g ∈ G. It next selects
random values h1, . . . , h|U| ∈ G and α ∈ Zp. It then sets the keys as:

PK = (G, p, g, e(g, g)α, h1, . . . , h|U|), MK = (PK, α).

Encrypt(PK,M, S)→ CT. The encryption algorithm takes as input the public
parameters PK, a message M ∈ GT to encrypt, and a set of attributes S. It
chooses a random s ∈ Zp. The ciphertext is published as CT = (S,C, Ĉ, {Cx})
where

C =M · e(g, g)αs, Ĉ = gs, {Cx = hsx}x∈S.

KeyGen(MK,A)→ SK. The key generation algorithm takes as input the master
secret key and an LSSS access structure (W,ρ). Let W be an �× n matrix. The
function ρ associates rows of W to attributes. Let Γ denote the set of distinct
attributes the appear in the access structure matrix W ; that is, Γ = {d : ∃i ∈
[1, �], ρ(i) = d}. The algorithm first chooses a random vector v = (α, y2, ..., yn) ∈
Znp . These values will be used to share the master secret α. For i = 1 to �, it
calculates λi = v ·Wi, where Wi is the vector corresponding to the ith row of
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W . In addition, the algorithm chooses random r1, . . . , r� ∈ Zp. It sets the private
key SK as:

PK, (D1 = gλ1 · hr1ρ(1), R1 = gr1 , ∀d ∈ Γ/ρ(1), Q1,d = hr1d ), . . . ,

(D� = gλ� · hr�ρ(�), R� = gr� , ∀d ∈ Γ/ρ(�), Q�,d = hr�d ).

In our notation above, we slightly abuse the set minus notation, and by Γ/x,
where Γ is a set and x is a single element, we mean Γ/{x}; i.e., the set Γ with
the element x removed if present.

These keys contain GPSW [13] keys with the addition of the “helper values”
Qi,d. The key size is proportional to |Γ | · �, which is the number of distinct
attributes that appear in the access matrix times the number of rows in the
matrix. Since |Γ | ≤ �, we have |Γ | · � ≤ �2.

Decrypt(SK,CT) → M . The decryption algorithm takes as input a key SK =
(PK, (D1, R1, {Q1,d}), . . . , (D�, R�, {Q�,d})) for access structure (W,ρ) and a ci-

phertext CT = (C, Ĉ, {Cx}x∈S) for set S. LetW be an �×nmatrix. The function
ρ associates rows ofW to attributes. If S does not satisfy the access structure, it
outputs ⊥. Suppose that S satisfies the access structure and let I ⊆ {1, 2, . . . , �}
be a set of indices and {ωi}i∈I ∈ Zp be a set of constants such that:

1. For all i ∈ I, ρ(i) ∈ S.
2.
∑

i∈I ωi ·Wi = (1, 0, 0, . . . , 0).

We then define Δ = {x : ∃i ∈ I, ρ(i) = x}. That is, I is the set of indices
corresponding to the rows used in one possible way to decrypt the ciphertext
and Δ is the set of distinct attributes associated with these rows. In general,
there can be multiple such I that satisfy the above constraints. Typically, one
will wish to minimize the size of I. Note that Δ ⊆ S, where S is the attributes
used to encrypt the ciphertext, and Δ ⊆ Γ , the set of attributes used to create
the private key.

Next we define the function f which transforms a set of attributes into an
element of G as:

f(Δ) =
∏
x∈Δ

hx.

To decrypt, the algorithm will first do a pre-processing step on the private key.
For each i ∈ I, it will compute the value

D̂i = Di ·
∏

x∈Δ/ρ(i)
Qi,x = gλif(Δ)ri .

Next, the algorithm will do a pre-processing step on the ciphertext by computing
the value

L =
∏
x∈Δ

Cx =
∏
x∈Δ

hsx = f(Δ)s.
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The algorithm now recovers the value e(g, g)αs by computing

e(Ĉ,
∏
i∈I

D̂ωi

i )/e(
∏
i∈I

Rωi

i , L) =

e(gs,
∏
i∈I

gλiωif(Δ)riωi)/e(
∏
i∈I

griωi , f(Δ)s) =

e(g, g)αs · e(g, f(Δ))s
∑

i∈I riωi/e(g, f(Δ))s
∑

i∈I riωi = e(g, g)αs.

The decryption algorithm can then divide out this value from C and obtain
the message M . The decryption algorithm requires the computation of only two
pairing operations.

3.2 Efficiency and Tradeoffs

The main feature of the above scheme is that decryption only requires two pair-
ings. While decryption also requires two exponentiations per row used, if the
LSSS is derived from an AND/OR tree then the exponents wi will be 1. (That
is, they will be either 0 or 1, but the wi = 0 rows should not be used.) Thus,
decryption can be very fast. There are two tradeoffs:

1. The private key size and generation time blows up by roughly a factor of |Γ |
compared to GPSW, where Γ is the set of distinct attributes used in making
the key.

2. Decryption reduces the number of pairings, but requires modular multipli-
cations of roughly a factor of |Δ| compared to GPSW, where Δ is the set of
distinct attributes used in decryption.

Thus, while there is a blow-up, this increase is tied only to the number of distinct
attributes “touched” by the corresponding operation, and not by a global bound.
Depending on the application, one should take into consideration whether the
blow up in key size is worth it. Moreover, the decryption time could actually
increase over GPSW [13] once Δ becomes sufficiently large. However, it would
have to be so large that 2 pairings plus |I| · |Δ| multiplications dominates |Δ|
pairings and |I| multiplications. As one benchmark, it required 8.22ms to com-
pute a pairing for a BN256 curve with the RELIC library on a modern PC while
roughly 0.0034ms to compute a modular multiplication. Thus, in a setting where
|I| = |Δ| (the number of rows of the access matrix touched during decryption
is the same as the number of distinct attributes touched), the decryption algo-
rithm would need to touch over 2416 distinct attributes before GPSW would
be faster. Should this occur, however, it is worth noting that the above private
keys actually contain a GPSW key; thus, if this threshold was ever reached, one
could revert back to doing GPSW decryption.

In Section 5, we will provide a generalized construction for finer-grained trade-
off optimization.
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3.3 Large Universe Realizations

The construction in Section 3.1 can be transformed so that any string can be
a valid attribute; that is, U = {0, 1}∗, as follows: Assume that all parties have
access to a hash function H : {0, 1}∗ → G, which will be treated as a random
oracle. Remove the values h1, . . . , h|U| from the public parameters PK. For any
attribute x ∈ {0, 1}∗, define the value hx = H(x). Otherwise, follow the con-
struction as written. Thus, the efficiency is the same, modulo additional hash
function evaluations. Regarding the proof of security, let q be the maximum
number of unique queries made to the random oracle. Then, this large universe
construction is selectively, CPA-secure under the Decisional q-BDHE assump-
tion in the random oracle model. The proof will follow the outline of that in
Section 4 except that Setup no longer outputs any hx values and instead B must
simulate the random oracle as follows. It should initialize an empty table TRO
at the beginning of the experiment. On each query for attribute x to the ran-
dom oracle, B should first look to see if x is in TRO and if so, return the value
associated with it.

If x is not in TRO, B creates a new table entry (x, i, hx) for it as follows. Let i
be the number of unique attributes queried to the random oracle (including x)
at the time of this query. Let zx be a random value in Zp. Then set

hx :=

{
gzx if x ∈ S∗;

gzxga
i

if x �∈ S∗.

An interesting question is whether one can achieve fast decryption for a large
universe in the standard model. Lewko and Waters [16] gave a large universe con-
struction for KP-ABE in the standard model. However, their technique requires
that each attribute in the ciphertext have some “local” randomness associated
with it. This does not work with our methods here which leverage the fact that
there is only one random exponent that propagates through the ciphertext.

3.4 Short Ciphertext Realizations

In Section 3.1, we focused on optimizing decryption time. For some applications
where bandwidth or storage space is a practical concern, one might prefer to
optimize on ciphertext size. In the small universe construction, we can compress
the ciphertext into only three group elements (as opposed to 2 + |S| group
elements in Section 3.1) plus the description of the attribute set S. The main
tradeoff is that private key sizes must scale by a factor of the size |U | of the
universe (compared to GPSW [13]), as opposed to scaling by only Γ as above.

We now sketch the main idea. During encryption, instead of including the set
{Cx = hsx}x∈S in the ciphertext, it now includes the product of these values,
the “aggregate”

∏
x∈S Cx = f(S)s. Thus, the ciphertext contains three group

elements of the form:

C =M · e(g, g)αs, Ĉ = gs,
∏
x∈S

Cx = f(S)s.
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When generating the private key, replace Γ with U ; that is, instead of only having
“helper values” Qi,x for attributes x used in the access matrix, one now must
include helpers for any attribute in the universe. This will allow the decryptor to
handle an aggregate of any set of attributes. Thus, following the setup as before,
the private keys are of the form:

PK, (D1 = gλ1 · hr1ρ(1), R1 = gr1 , ∀d ∈ U/ρ(1), Q1,d = hr1d ), . . . ,

(D� = gλ� · hr�ρ(�), R� = gr� , ∀d ∈ U/ρ(�), Q�,d = hr�d ).

The key size is proportional to |U | · �, which is size of the attribute universe
times the number of rows in the matrix. Due to the dependence on |U |, this
aggregation unfortunately only works for small universes of attributes.

Finally, run the decryption algorithm as it is written, but understand that Δ
will always be S due to the aggregate. This will increase the number of modular
multiplications over Section 3.1, but not the number of pairings.

3.5 CP-ABE Variants

One might consider trying to apply these techniques in the CP-ABE setting [5,12]
by analogously modifying an “unrestricted” CP-ABE construction, such as Wa-
ters [20, Section 3]. A natural analogy would arise in a CP-ABE system where
the ciphertext size and encryption time blows up by a factor of X, where X is the
number of distinct attributes used in the ciphertext access structure. In some
applications, one might consider this to be a less palatable tradeoff. That is, one
might not be willing to increase the transmission costs (i.e., ciphertext size) and
encryption time, even if it meant faster decryption times.

We note, however, that if one is willing to consider “bounded” systems, where
a value kmax can be set system-wide as the maximum number of times a single
attribute can appear in a particular formula (or access structure), then one can
achieve fast decryption without an increase in ciphertext size or encryption time.
One such example is the CP-ABE construction of Waters [20, Section 5]. The
critical part of the decryption algorithm appears in that paper as

e(C′,K)/

(∏
i∈I

(e(Ci, L) · e(C′,Kρ(i)))
ωi

)

which seems to require a non-constant (2|I|+1) pairings. However, this equation
is identical to:

e(
∏
i∈I

C−ωi

i , L) · e(C′,K
∏
i∈I

K−ωi

ρ(i) )

which requires only two pairings. The observation that this bounded scheme
offers fast decryption was previously made in its Charm [1] implementation.
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4 Proof of the Base Construction

Theorem 1 (Security of the Small Universe KP-ABE). The KP-ABE
scheme Π in Section 3.1 for attribute universe U is selectively secure against
chosen-plaintext attacks under the Decisional |U |-BDHE assumption in G.

Proof. Let U be an attribute universe, where |U | is a polynomial in 1λ. For
notational convenience, we will assume each of the |U | attributes is a unique
integer between 1 and |U |.2 Next suppose there exists a PPT adversary A that
causes the selective, CPA security experiment KP-ABE-Expsel-CPAA,Π (λ, U) to output
1 with non-negligible probability. Then, we can construct a PPT adversary B
that violates the Decisional |U |-BDHE assumption in G as follows:

Init: A outputs a set S∗ of attributes for the challenge ciphertext.
Setup: B receives the Decisional |U |-BDHE challenge input

(G, p, g, gs, ga, . . . , g(a
|U|), g(a

|U|+2), . . . , g(a
2|U|), P )

for security parameter λ. It chooses random α′, z1, . . . , z|U| ∈ Zp and sets

e(g, g)α := e(g, g)α
′ · e(ga, ga|U|

) (implicitly defining α as (α′ + a|U|+1)) and

for x ∈ [1, |U |], sets hx :=

{
gzx if x ∈ S∗;

gzxga
x

if x �∈ S∗.

It sets the public parameters PK as (G, p, g, e(g, g)α, h1, . . . , h|U|) and sends
them to A. Note that all parameters are well distributed due to the α′ and
zx values.

Phase 1: B initializes an empty table T , an empty set D and a counter j = 0.
B responds to A’s queries as follows:
1. Create(A): B sets j := j + 1. It parses A as (W,ρ), where W is an � × n
matrix. B will now work in two steps. First, it will create a valid private key,
but not necessarily a well-distributed one. Then, it will re-randomize the key
to ensure it is well distributed.

Let K be the set of rows where the attributes are in S∗ (i.e., for i ∈
K, ρ(i) ∈ S∗.) and K ′ be the rows where attributes are not in S∗ (i.e.,
K ′ = [1, �]/K). Define an n dimensional vector v over Zp. Let v1 = 1 (i.e.,
first element of v is 1) and for all i ∈ K,v · Wi = 0. (Here Wi is the
n-dimensional vector that is row i of the matrix W .) To see that this is
well-defined, consider that since S∗ does not satisfy W , it must be the case
that (1, 0, 0..., 0) is not in the span of rowsWi for i ∈ K. It then follows from
linear algebra that such a vector v exists.

Next, B will make a private key for secret sharing with the vector αv (i.e.,
the vector v with all the components scaled up by α.) This shares the secret

2 A more proper notation would define an injective function t() mapping attributes to
integers from 1 to |U | and then wherever we refer to an attribute x to instead refer
to t(x). However, this is more cumbersome.
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α since v1 = 1, although the key may not be well distributed. This will be
addressed later through re-randomization. The shares λi for i ∈ [1, �] are
computed as (αv) ·Wi.

For i ∈ K, we have that all components are just the identity element
(recall that the key is not re-randomized yet; we add the hx components in
shortly with the randomization): Di = Ri = Hi,x = g0 for x ∈ Γ (recall Γ
is the set of distinct attributes used in key generation). This follows because
for all i ∈ K,λi = 0.

For i ∈ K ′, we first compute ci = v ·Wi. Note that λi = ci · α = ci · (α′ +
a|U|+1). To produce these key components, we need a cancellation technique.

Set Ri = g−cia
(|U|+1)−ρ(i)

, which implicitly defines ri = −ci·a(|U|+1)−ρ(i). This
is computable from B’s challenge input since ρ(i) is between 1 and |U |. Set

Di = gciα
′ ·Rzii

= gciα
′ · g−zicia(|U|+1)−ρ(i)

= gciα
′ · gcia|U|+1 · g−zicia(|U|+1)−ρ(i) · g−cia|U|+1

= gciα · (gzi)ri · (ga
ρ(i)

)ri

= gciα · hriρ(i)

Next, we turn to computing the helper values. For all x ∈ Γ/ρ(i), set Qi,x =
hrix by computing as follows:

hrix :=

{
(gzx)ri = g−zxcia

(|U|+1)−ρ(i)

if x ∈ S∗;

(gzx)ri · (gax)ri = g−zxcia
(|U|+1)−ρ(i) · g−cia(|U|+1)−ρ(i)+x

if x �∈ S∗.

This last part is computable since ρ(i) �= x for the helper values and recall
that the zx values were chosen by B during Setup.

At this point, B has constructed the components of a valid private key.
Next, we give a public-key re-randomization algorithm that can be applied
by B to any valid private key, before it sends the key to A. To re-randomize,
choose random y2, ..., yn ∈ Zp. Consider the vector (0, y2, y3, ..., yn). This will
be used to secret share 0 to re-randomize the key. Let λ′i = (0, y2, y3, ..., yn) ·
Wi for i ∈ [1, �].

For all i ∈ [1, �], the first step to re-randomization is to let D#
i := Di ·gλ

′
i .

The next step is to re-randomize all the ri values, which are used in all key
components. To do this, choose a fresh r′i ∈ Zp and set

D′
i := D#

i · h
r′i
ρ(i) R

′
i := Ri · gr

′
i Q′

i,x := Qi,x · hr
′
i
x , ∀x ∈ Γ/ρ(i)

We claim that the above re-randomization procedure correctly re-randomizes
any “valid” key. A valid key is one which is generated from some sharing of
α, but not necessarily a well distributed one. The above algorithm propa-
gates new random values r′1, . . . , r

′
� completely through all key components,

and then also generates a fresh secret sharing for α used in D′
1, . . . , D

′
�.



174 S. Hohenberger and B. Waters

This properly redistributes the only variable parts of the key. That is the
distribution after applying this transformation to any valid key with policy
(W,ρ) has the same distribution as a fresh key generated by running KeyGen
for (W,ρ).

2. Corrupt(i): If there exists an ith entry in table T , then B obtains the
entry (i,A, SK) and sets D := D ∪ {A}. It then sends SK to A. If no such
entry exists, then it returns ⊥.

Challenge: A outputs two messages M0,M1 and B chooses a random bit b. B
then constructs and sends to A the challenge ciphertext

CT∗ = (C∗ :=Mb · P, C′ := gs, ∀x ∈ S∗, C∗
x := (gs)zx).

Phase 2: B responds to A’s queries in the same manner as in Phase 1, except
that it refuses to answer any Corrupt query that would result in an access
structure A which S∗ satisfies being added to D.

Guess: Eventually, A outputs a bit b′. If b = b′, then B outputs 0 (guessing

that P = e(g, g)a
|U|+1s), else it outputs 1 (guessing that P is random.)

Thus, B’s responses to A are distributed identically as in the KP-ABE-
Expsel-CPAA,Π (λ, U) experiment. Whenever A causes the output of this experiment
to be 1, B will also correctly answer its Decisional BDHE challenge.

5 Exploring a Spectrum of Efficiency Tradeoffs

We now focus on the tradeoff between private key size and decryption time. We
generalize the construction ideas of the last section to give a spectrum of possible
“unbounded” schemes, where GPSW is one extreme and Section 3 (longer keys,
faster decryption) is the other. We do this in two steps. We first present a
generalized decryption algorithm. We then show how the size of the private
key scales depending on how one chooses to take advantage of this generalized
decryption algorithm. We conclude with strategies for keeping both key size and
decryption time low.

5.1 A Generalized Decryption Algorithm

To begin, we present a generalized decryption algorithm for the GPSW cipher-
texts (which are the same as the encryption algorithm presented in Section 3.1).
The main idea is to break Δ (the set of distinct attributes associated with the
rows of the access matrix used in one chosen way to decrypt the ciphertext) into
y disjoint subsets Δ1, Δ2, . . . , Δy. Recall that we defined the function f as

f(Δ) =
∏
x∈Δ

hx ∈ G.

Further, let us establish the notation for a function w that (informally) takes in
a attribute and outputs which set the attribute is in. More formally, let w : Δ→
[1, y] be a map such that w(x) = j if and only if x ∈ Δj .
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The decryption algorithm then proceeds as follows. For each i ∈ I, it will
compute the value

D̂i = Di ·
∏

x∈Δw(ρ(i))/ρ(i)

Qi,x = gλif(Δw(ρ(i)))
ri .

Next, for each j ∈ [1, y], it will compute the value

Lj =
∏
x∈Δj

Cx =
∏
x∈Δj

hsx = f(Δj)
s.

The algorithm now recovers the value e(g, g)αs by computing

e(Ĉ,
∏
i∈I

D̂ωi

i )/

⎛⎝ y∏
j=1

e(
∏

i:ρ(i)∈Δi

Rωi

i , Lj)

⎞⎠ .
The decryption algorithm can then divide out this value from C and obtain the
message M .

We observe that this will take (1 + y) pairings and roughly |Δ1|2 + |Δ2|2 +
· · · + |Δy |2 modular multiplications. (Recall that the ωi values will be either 0
or 1 when the access structure is a boolean formula, so no exponentiations come
into play in this case.) Thus, when y = 1, we have the scheme from Section 3.1
(which can be trivially extended to large universes in the random oracle model
as shown in Section 3.3) and when y = |Δ|, this corresponds to GPSW.

5.2 Reducing Private Key Overhead

At this point, the private key still contains “helper” values such that each of the
� rows has helpers for all other attributes in Δ. However, we can reduce the size
of the private key by eliminating all helper values Qi,x where where attribute
ρ(i) ∈ Δd, attribute x ∈ Δd′ and d �= d′, i.e., where the two attributes were
separated into distinct subsets. This is because only helpers within subsets will
be used in the generalized decryption algorithm. We note that the security of
the base system trivially implies security of this system, since for each private
key in this reduced setting the components given out are a strict subset of the
private key components in the base system.

5.3 Different Tradeoff Strategies

We now discuss how one might take advantage of the generalized algorithm and
corresponding private key reduction. The choice of y and the subsets Δ1, . . . , Δy

is critical to the decryption performance of a particular user. Roughly, one ex-
pects decryption time to increase with y, but the size of the private key to
decrease as the size of each Δi decreases. However, a nice feature of this ap-
proach is that each user can tune their own performance based on how they
think they are likely to use their private key. A user might choose to retain her
entire private key on her PC, but upload only a portion of her private key to her
mobile device (where secure storage may be more limited.)
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1. Group attributes by expected ciphertext attributes. Group together any at-
tributes that are likely to appear together in a ciphertext, such as attributes
relating to a certain work project, activity, role or time period. For instance,
one might group together the attributes “cryptography”, “encryption”, and
“pairings” and form a distinct group for the attributes “audubon”, “pere-
grine falcon”, “glaucous gull”. Of course, the subsets of Δ need not be dis-
tinct3 and it could be more efficient to place an attribute into two or more
groups, but this should be done with care or the decryption time will increase
without reducing the private key size.

2. Group attributes by observing the private key. It may be possible to deduce
from the access structure which attributes are likely to be used together
during decryption. For instance, suppose the structure is a formula and the
only time that attributes A and B appear, they appear as “A AND B”. Then
clearly one should place A and B into the same group Δi.

3. Break into y equal sized subsets of attributes. One could also try the sim-
ple approach of choosing a y and randomly creating y equal-sized subsets.
In many practical applications, the average overhead incurred on future ci-
phertexts would be dependent on the overhead from past ciphertexts, so one
could try a random setting and then observe performance.

4. Benchmark and set experimentally. One can also imagine starting with any
combination of the three above techniques and then applying machine learn-
ing tools to evolve to a good balance point for any particular user.

We leave an evaluation of these strategies and their performance as an interesting
open problem.
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A Access Structures and Notation

A.1 Access Structures

Definition 1 (Access Structure [4]) Let {P1, P2, . . ., Pn} be a set of parties.
A collection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C : if B ∈ A and B ⊆ C then
C ∈ A. An access structure (respectively, monotone access structure) is a col-
lection (resp., monotone collection) A of non-empty subsets of {P1, P2, . . . , Pn},
i.e., A ⊆ 2{P1,P2,...,Pn}\{∅}. The sets in A are called the authorized sets, and
the sets not in A are called the unauthorized sets.

In our context, the role of the parties is taken by the attributes. Thus, the
access structure A will contain the authorized sets of attributes. We restrict our
attention to monotone access structures. However, it is also possible to (inef-
ficiently) realize general access structures using our techniques by defining the
“not” of an attribute as a separate attribute altogether. Thus, the number of
attributes in the system will be doubled. From now on, unless stated otherwise,
by an access structure we mean a monotone access structure.

A.2 Linear Secret Sharing Schemes

The construction will use linear secret sharing schemes, as slightly adapted from
Beimel [4]:

Definition 2 (Linear Secret-Sharing Schemes (LSSS)) A secret-sharing
scheme Π over a set of parties P is called linear (over Zp) if

1. The shares of the parties form a vector over Zp.
2. There exists a matrixM with � rows and n columns called the share-generating

matrix for Π. There exists a function ρ which maps each row of the matrix
to an associated party. That is for i = 1, . . . , �, the value ρ(i) is the party as-
sociated with row i. When we consider the column vector v = (s, r2, . . . , rn),
where s ∈ Zp is the secret to be shared, and r2, . . . , rn ∈ Zp are randomly
chosen, then Mv is the vector of � shares of the secret s according to Π. The
share (Mv)i belongs to party ρ(i).

It is shown in [4] that every linear secret sharing-scheme according to the above
definition also enjoys the linear reconstruction property, defined as follows: Sup-
pose that Π is an LSSS for the access structure A. Let S ∈ A be any authorized
set, and let I ⊆ {1, 2, . . . , �} be defined as I = {i : ρ(i) ∈ S}. Then, there exist
constants {ωi ∈ Zp}i∈I such that, if {λi} are valid shares of any secret s accord-
ing to Π , then

∑
i∈I ωiλi = s. It is shown in [4] that these constants {ωi} can

be found in time polynomial in the size of the share-generating matrix M .
Like any secret sharing scheme, it has the property that for any unauthorized

set S /∈ A, the secret s should be information theoretically hidden from the
parties in S.
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Note on Convention. We use the convention that vector (1, 0, 0, . . . , 0) is the
“target” vector for any linear secret sharing scheme. For any satisfying set of
rows I in M , we will have that the target vector is in the span of I.

For any unauthorized set of rows I the target vector is not in the span
of the rows of the set I. Moreover, there will exist a vector w such that w ·
(1, 0, 0 . . . , 0) = −1 and w ·Mi = 0 for all i ∈ I.
Using Access Trees. Some prior ABE works (e.g., [13]) described access formulas
in terms of binary trees. Using standard techniques [4] one can convert any
monotonic boolean formula into an LSSS representation. An access tree of �
nodes will result in an LSSS matrix of � rows.
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Abstract. We discuss how to recover RSA secret keys from noisy key
bits with erasures and errors. There are two known algorithms recover-
ing original secret keys from noisy keys. At Crypto 2009, Heninger and
Shacham proposed a method for the case where an erroneous version of
secret keys contains only erasures. Subsequently, Henecka et al. proposed
a method for an erroneous version containing only errors at Crypto 2010.
For physical attacks such as side-channel and cold boot attacks, we need
to study key recovery from a noisy secret key containing both erasures
and errors. In this paper, we propose a method to recover a secret key
from such an erroneous version and analyze the condition for error and
erasure rates so that our algorithm succeeds in finding the correct secret
key in polynomial time. We also evaluate a theoretical bound to recover
the secret key and discuss to what extent our algorithm achieves this
bound.

Keywords: RSA, Key-recovery, Cold Boot Attack, Side-channel At-
tack, Maximal Likelihood.

1 Introduction

1.1 Background

RSA [12] is a widely used cryptosystem. In RSA a public modulus N is chosen
to be a product of two distinct primes p and q. The key-pair e, d ∈ Z satisfies
ed ≡ 1 (mod (p− 1)(q− 1)). The encryption keys are (N, e) and the decryption
keys are (N, d). The PKCS#1 standard [10] specifies that the RSA secret key
includes the following information: (p, q, d, dp, dq, q

−1 mod p) in addition to d,
which allows a fast decryption process using the Chinese Remainder Theorem.

Secret keys must be kept secret. Nevertheless, some fractional amounts of
the secret information can be leaked by physical attacks such as side-channel
and cold boot attacks [4]. If the amount of leaked bits for secret keys is quite
small, it is impossible to recover the secret keys from the leaked information.
Conversely, it might be possible to recover them by using their redundancy if a
certain amount of bits are leaked. Note that all bits are not necessarily leaked.
For example, Coppersmith [2] showed that RSA can be broken if the upper half
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of the secret key p is revealed. Herrmann and May [7] showed that RSA can
be broken (in exponential time) if at least 70% of the bits for a prime factor
p of N are leaked. Their methods are based on the lattice reduction technique.
Note that the Herrmann-May method does not require that the leaked bits are
consecutive.

At Crypto 2009, Heninger and Shacham [6] proposed an algorithm that effi-
ciently recovers secret keys (p, q, d, dp, dq) given a random fraction of their bits.
Concretely, they showed that if at least 27% of the secret key bits are leaked at
random, the full secret keys can be recovered. Conversely, we can say that even
if 73% of original secret bits are erased, the key recovery succeeds.

As opposed to the Heninger-Shacham algorithm correcting erasures, Henecka
et al. [5] proposed an algorithm correcting error bits of secret keys at Crypto
2010. They showed that the secret key (p, q, d, dp, dq) can be fully recovered if
the error probability is less than 0.237. They also showed the bound for the error
probability is given by 0.084 if the involved secret key is (p, q).

Independently of our work, Paterson et al. proposed an algorithm correcting
error bits which asymmetrically occurs at Asiacrypt 2012 [9]. Their algorithm
works in a true cold boot setting. They took a coding theoretic approach for
designing a new algorithm and analyzing its performance.

1.2 Motivation: Attack Scenario

All existing works concerning key recovery from noisy secret keys have discussed
the erasure-only (error-free) case or error-only (erasure-free) case. This paper
deals with the key recovery for a noisy secret key with both erasures and errors.
We call the erroneous version of the secret key with both erasures and errors
noisy secret keys. We denote the correct secret key by sk, and the noisy secret
key corresponding to sk by sk. Before discussing the details, we address the
motivations of this study.

Cold Boot Attack Scenario: Under the cold boot attack scenario [4], (the
degraded version of) secret keys are observed with (almost) unidirectional bit
flipping. Assume that the flip of each bit occurs as completely unidirectional. For
simplicity, we assume that only the bit flipping of 1→ 0 occurs. If the observed
bit is 1, the corresponding bit of the correct secret key is definitely 1. In contract,
if the observed bit is 0, we cannot determine whether the corresponding bit is
0 or 1. Therefore, the observed bit 0 can be considered erasure. Heninger and
Shacham [6] proposed an efficient algorithm that recovers the secret key from
the degraded version of the secret key with erasure. However, as Heninger and
Shacham [6] pointed out, the bit flip with an opposite direction occurs with small
but non-zero probability. If the observed bit sequence contains errors, Heninger-
Shacham’s algorithm can never recover the correct secret key. This algorithm is
then no longer applicable for the noisy secret key containing both erasures and
errors.

Side-channel Attack Scenario: Henecka et al. [5] proposed an efficient al-
gorithm given a noisy secret key only with errors. The noisy keys are often
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provided through a side-channel attack. Under some attack situations, each bit
is provided with additional information: so-called reliability. Consider the follow-
ing situation: some bits of secret keys are 0 (or 1) with very high reliability and
others are 0 (or 1) with not so high reliability. One reasonable strategy is to set
a bit value as the observed bit if its reliability is sufficiently high. How should
we set a bit value with low reliability? We have two potential strategies. The
first is to set a bit value as the observed bit, which will cause a high number of
bit errors. The second strategy is to regard the bit as an erasure bit, which will
involve the observed secret key with (fewer) errors and erasures. So then which
of strategies is good for attackers? As Henecka et al. pointed out, the correction
of errors seems to be a much more difficult problem than the correction prob-
lem. We therefore expect that the second strategy leads to a better algorithm.
However, their algorithm is not applicable to a noisy secret key containing both
erasures and errors.

For both cases, studies for the key recovery for noisy secret keys with both
errors and erasures are important to maximize and evaluate the potential threat
of physical attacks and to consider the possible countermeasures against them.

1.3 Our Contributions

This paper discusses secret key recovery from noisy secret key sequences with
both errors and erasures. First, we present a polynomial time algorithm for
recovering secret keys and show an explicit success condition for recovering the
keys. We denote the erasure probability by δ and error probability by ε. We
also denote by m the number of involved secret keys. For example, m = 5 if
sk = (p, q, d, dp, dq) is involved. Our algorithm can asymptotically recover secret
keys in polynomial time with high probability provided that

1− δ − 2ε ≥
√

2(1− δ) ln 2
m

,

where we denote the natural logarithm of n to the base e by lnn. In special case,
our algorithm also includes previous methods. In fact, our algorithm achieves
the upper bound of Heninger-Shacham [6] and that of Henecka et al. [5] for
the error-free case (ε = 0) and erasure-free case (δ = 0), respectively. We ran
experiments to verify our analysis. We achieved to the error rates of up to 0.6
and the erasure rate ε = 0.01 for 1024-bit RSA with high success probability.

Second, we derive a theoretical bound for recovering the secret keys
from the noisy secret keys. We first introduce a natural abstract algorithm
(meta-algorithm) and derive a condition for δ and ε such that it needs ex-
ponential time for recovering keys. The binary Entropy function H(x) [3] is
defined by by −x log x− (1 − x) log(1 − x), where logn is the binary logarithm
of n to the base 2. Then, we prove that we cannot recover the secret keys in
polynomial time under our meta-algorithm if it holds that

(1− δ)
(
1−H

(
ε

1− δ

))
<

1

m
.
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Finally, we discuss the relation between the condition where our algorithm
can recover secret keys and the theoretical bound. We first see that there exists
a small gap between the success condition and the theoretical bound. Then, we
show that the proposed algorithm achieves the second order expansion of the
theoretical bound.

2 Preliminaries

This section presents an overview of methods using binary trees to recover the
secret key of the RSA cryptosystem [12]. In particular, we briefly explain two
known methods: Heninger-Shacham method [6] and the method of Henecka et
al. (abbreviated to HMM method) [5].

We use similar notations as [5]. For an n-bit sequence x = (xn−1, . . . , x0) ∈
{0, 1}n, we denote the i-th bit of x by x[i] = xi, where x[0] is the least significant
bit of x. Let τ(M) denote the largest exponent such that 2τ(M)|M . As well as
[5], Hoeffding’s bound [8] is the main tool in our analysis.

Theorem 1 (Hoeffding’s Bound). Let X1, . . . , Xk be a sequence of indepen-
dent Bernoulli trials with identical success probability Pr[Xi = 1] = p for all i.

Define X :=
∑k

i=1Xi. Then, for every 0 < γ < 1 we have Pr[X ≥ k(p + γ)] ≤
exp(−2kγ2) and Pr[X ≤ k(p− γ)] ≤ exp(−2kγ2).

2.1 Noise Models

We formalize (three) noise models discussed in this paper. Let ε and δ be real
numbers satisfying 0 ≤ ε < 1/2, 0 ≤ δ < 1 and 0 ≤ ε + δ < 1. In our noise
models, each bit in a secret bit sequence is either erased with probability δ or
flipped with probability ε, or remains unchanged with probability 1−δ−ε. Then,
only the transformed sequence is observed. Nevertheless, the original sequence is
not directly obtained. We refer to this noise model as the Binary Erasure-Error
model (BEE model). The error-free model, that is ε = 0 (but, δ > 0), is referred
to as the Binary Erasure model (BE model) and erasure-free model, that is δ = 0
(but, ε > 0), is referred to as the Binary Symmetric model (BS model).

Our target in this paper is to recover the original secret key from the observed
noisy sequence. We can say that Heninger and Shacham [6] have studied key
recovery from the noisy keys in the BE model and Henecka et al. [5] have studied
it in the BS model.

2.2 Recovering RSA Secret Key by Using Binary Trees

First, we review the key setting of the RSA cryptosystem [12], especially of
the PKCS #1 standard [10]. The public key is (N, e) and the secret key is
sk = (p, q, d, dp, dq, q

−1 mod p). As in the previous works, we also ignore the last
component q−1 mod p in the secret key. The public and secret keys have the
following relations:

N=pq, ed ≡ 1 (mod (p−1)(q−1)), edp ≡ 1 (mod p−1), edq ≡ 1 (mod q−1).
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From the key setting, there exist some integers k, kp, kq such that

N = pq, ed = 1 + k(p− 1)(q − 1), edp = 1 + kp(p− 1), edq = 1 + kq(q − 1). (1)

Suppose that we know the exact values of k, kp, and kq. There exist five un-
knowns (p, q, d, dp, dq) in Eq. (1). Then, if we know just one of the exact values
of unknowns, we can easily obtain the others.

The small public exponent e is usually used in practical applications [13], so
we suppose that e is small enough such that e = 216 + 1 in the same manner as
[5,6]. We need to find k, kp, and kq for small e. See the full version for how to
compute k, kp and kq in our method.

In the Heninger-Shacham method [6], HMM method [5] and our new method,
a secret key sk is recovered by using a binary-tree-based technique. Here we
explain how to recover secret keys, taking sk = (p, q, d, dp, dq) as an example.

First we mention generating the tree. Since p and q are n/2 bit prime numbers
and half of the most significant bit (MSB) of d is efficiently computable in the
Heninger-Shacham or HMM methods [5,6], there exist at most 2n/2 candidates
for each secret key in {p, q, d, dp, dq}.

Heninger and Shacham [6] define the i-th bit slice for each bit index i and we
denote by

slice(i) := (p[i], q[i], d[i+ τ(k)], dp[i+ τ(kp)], dq[i+ τ(kq)]).

Assume that we have computed a partial solution sk′ = (p′, q′, d′, d′p, d
′
q) up to

slice(i − 1). Heninger and Shacham [6] applied Hensel’s lemma to Eq. (1) and
presented the following equations

p[i] + q[i] = (N − p′q′)[i] mod 2, (2)

d[i+ τ(k)] + p[i] + q[i] = (k(N + 1) + 1− k(p′ + q′)− ed′)[i + τ(k)] mod 2,
(3)

dp[i+ τ(kp)] + p[i] = (kp(p
′ − 1) + 1− ed′p)[i+ τ(kp)] mod 2, (4)

dq[i+ τ(kq)] + q[i] = ((kq(q
′ − 1) + 1− ed′q)[i+ τ(kq)] mod 2. (5)

We can easily see that p[i], q[i], d[i+ τ(k)], dp[i+ τ(kp)], and dq[i+ τ(kq)] are not
independent and the degree of freedom is 1. Therefore, each Hensel lift yields
exactly two candidate solutions. Then, the number of all candidates is given by
2n/2. The root node is given by slice(0) = (1, 1, d[τ(k)], dp[τ(kp)], dq[τ(kq)]).

Next we explain a pruning step, in which we count the number of matching
bits between a bit sequence given by a node sequence and the corresponding bit
sequence of a noisy secret key. We then discard or leave each node according to
given criteria.

Section 2.3 briefly overviews the Heninger-Shacham method, which is for the
case of an erroneous version sk with an erasure rate δ of sk. And in section 2.4
we mention the HMM method for an erroneous version sk with error rate ε.
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2.3 Heninger-Shacham Method [6]

In the Heninger-Shacham method, a binary tree is constructed by iterating an
expansion phase and a pruning phase. At the pruning step, we compare a bit
sequence given by one node with the corresponding bit sequence given by sk.
Then we discard a node containing a bit not matching with the corresponding
bit of sk, skipping the bit corresponding to an erasure bit of sk.

In the Heninger-Shacham method, discarded nodes are exactly wrong nodes,
so the node corresponding to the correct solution consistently remains. Therefore,
the success probability of the Heninger-Shachammethod is 1. The computational
cost of Heninger-Shacham method is evaluated with the number of remaining
nodes of the binary tree, and depends on erasure rate δ. Therefore, Heninger
and Shacham estimated the upper bound of δ such that the expected number of
remaining nodes yielded from one wrong node is less than 1 under the following
assumption:

Assumption 1. The bit slice corresponding to a wrong node consists of random
bits.

This assumption is also used in the analysis of [5] and our new method.
Heninger and Shacham showed that their method recovers the secret keys

provided that δ ≤ 0.73 if the noisy secret key is of the form (p, q, d, dp, dq),
namely m = 5. If we use the noisy secret information (p, q), the secret key (p, q)
can be obtained provided that δ ≤ 0.43. For general m of the involved secret

information, the secret key can be recovered provided that δ ≤ 2
m−1
m −1. We can

see that the right-hand side of the above inequality is approximated by 1− 2 ln 2
m

for large m.
The Heninger-Shacham algorithm requires that the non-erasure bit is correct.

However, this requirement is too idealistic in the physical attacks such as a cold
boot attack, as described in Section 1.2. If the observed secret key contains an
error, the Heninger-Shacham algorithm never finds the correct secret keys. We
provide a simple example. Assuming that ε = 0.001, we can regard the error rate
as extremely small. Nevertheless, the number of errors in secret keys is expected
to be 512 × 5 × 0.001 = 2.56(> 2). Due to there being only two errors, the
Heninger-Shacham algorithm does not work.

2.4 Henecka-May-Meurer Method [5]

We briefly explain the HMM method. For an erroneous version sk with error
rate ε, if we discard every node having a bit not matching the corresponding bit
in sk, sk is never recovered since the leaf node corresponding to the correct so-
lution does not remain. Therefore, the binary tree is separated into partial trees
whose depth is t, and then the pruning step is performed for each partial tree.
Actually, mt bits of the node sequence from the root node of the partial tree to
the leaf node of the partial tree are compared with the corresponding bit of sk. If
the number of matches is less than C ∈ [0,mt], the leaf node is discarded. Since
the remaining nodes of the binary tree decrease if the threshold value C in-
creases, the computational cost decreases and the success probability decreases.
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Especially the pruning step is not practically performed when C = 0, and we
never obtain sk when C = mt. Henecka et al. considered the two following re-
strictions, which help to decide how to choose parameters (t, C). Note that E[X ]
is the mean of a random variable X .

Restriction 1. Let Zb,i be the number of bad candidates generated from one bad
partial solution at the i-th pruning step. Then, we choose parameters (t, C) so
that E[Zb,i] ≤ 1/2 holds.

Restriction 2. For each pruning step, we choose parameters (t, C) so that the
probability that the correct node is discarded is less than 1/n.

The HMM method recovers the secret keys (p, q, d, dp, dq) if the error rate ε of
the noisy keys is not larger than 0.237. If we use the noisy secret information or
(p, q), the secret key (p, q) can be obtained, provided that ε ≤ 0.084. For general
m of the involved secret information, the secret key can be recovered provided
that ε ≤ 1/2−

√
ln 2/2m.

2.5 Naive Method Based on HMM Method

As mentioned, our main purpose is to recover secret keys from the noisy keys
with both erasures and errors (that is, obtained through the BEE model). The
following naive algorithm, which is not described in the literature, is sufficient
for merely achieving this purpose.

Naive Method
Input: Public key (N, e), observed secret key sk, erasure probability δ and error

probability ε
Output: Correct secret key sk

Step 1: Transform sk to sk
′
by substituting random bits into erasure positions

of sk.
Step 2: Perform the HMM method with the sequence sk

′
and the error prob-

ability ε+ δ
2 as inputs.

We evaluate the success condition of the algorithm. Each erasure bit will change
a correct bit with probability 1/2 and a wrong bit with 1/2. The secret key
sequence transformed in Step 1 can be considered a sequence with erasure prob-
ability 0 and error probability ε + δ

2 . By applying the success condition for the
BS model, we have the following condition for the naive method:

ε+ δ/2 ≤ 1/2−
√
ln 2/(2m). (6)

Although the algorithm does work for the noisy secret key for the BEE model,
the above algorithm is not better than expected. There are some drawbacks
to the naive method. Assuming that ε = 0, the condition is described as δ ≤
1−
√
2 ln 2/m. This condition is clearly worse than that of Heninger-Shacham:
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δ ≤ 1 − 2 ln 2
m . Next, we discuss the case where the error probability ε is very

small but not zero, which is a natural situation in the cold boot attack scenario.
For example, we assume that m = 5, δ = 0.6 and ε = 0.001. Considering that
the Heninger-Shacham algorithm works well if δ = 0.73 and ε = 0, it is natural
that we expect that the key recovery succeeds if δ = 0.6, ε = 0.001. However,
the condition that δ = 0.6 and ε = 0.001 does not satisfy Eq. (6), and the naive
method then cannot recover the secret key if δ = 0.6 and ε = 0.001. Our main
goal in this paper is to propose a method that works in that case.

3 Recovering Secret Key from Noisy Secret Keys in BEE
Model

Let sk be an erroneous version of a secret key sk with erasure rate δ and error
rate ε. The main purpose of our algorithm is to recover the original secret key
from the observed sk with the help of redundancy. We propose an algorithm to
recover sk from sk by using the binary-tree-based technique as in the Heninger-
Shacham method [6] and HMM method [5]. Our algorithm is a combination of
the two methods.

In our algorithm, the binary tree is separated into partial trees, and the prun-
ing step is executed for every partial tree with threshold values as with the HMM
method. Analysis of our algorithms then requires Assumption 1, Restrictions 1
and 2 in the same manner as with the HMM method.

Lesson Learned from Failure of Naive Method. In the naive method
described in section 2.5, we transform the erasure bit to the error bit with prob-
ability 1/2. This worsens the success condition. Any erasure bit should then be
handled as erasure not error.

3.1 Our Proposed Method

In the HMM method [5], the noisy secret key sequence sk is divided in an mt-
bit subsequence to construct a partial tree, where t is a fixed integer. On the
other hand, in our new method we divide the sequence in a T -bit subsequence
skipping erasure bits in sk. We show a small example for m = 3 and T = 4.
First, we explain how to divide bits for the i-th pruning step. Let E be the
error symbol in sk. Suppose that we have divided bits until the bit ps in the
s-th node [ps, qs, E] at the (i − 1)-th pruning step, and the following nodes are
given: [ps, qs, E], [ps+1, E, ds+1], [ps+2, qs+2, ds+2]. Then, since the i-th pruning
step will be performed for T bits skipping bits corresponding to E in sk, we
check the bits corresponding to qs, ps+1, ds+1, ps+2. Here we denote by ti the
length of a node sequence that is newly generated for the i-th pruning step, and
denote by Δi the number of E in sk at the i-th pruning step. In the example,
ti = 2 and Δi = 2. Since the condition T ≥ m practically holds, we have that

ti = �(T +Δi)/m� or �(T +Δi)/m� − 1. (7)
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In the HMM method, only one threshold value C is used. In contrast, we use
threshold values C1, . . . , C� when sk is separated into � intervals. Theorem 2 in
Section 3.2 provides how to set each Ci. Note that unknown values of k, kp and
kq are efficiently computable from sk. We show the details of how to compute
them in the full version.

New method
Input: Public key (N, e), noisy secret key sk, error probability ε and erasure

probability δ
Output: Correct secret key sk.
Step 1: Compute k, kp, kq and slice(0).
Step 2: Compute (T,C1, . . . , C�).
Step 3: From i = 1 to �, perform the following computation. Set t0 = 0:

Compute ti slices: slice(1+
∑i−1

j=0 tj), slice(2+
∑i−1
j=0 tj), . . . , slice(

∑i
j=0 tj)

and generate a partial tree whose depth is ti+1. For T bits skipping erasure
bits sk, count the number of matches of bits in partial solutions with the
corresponding bits in sk. If it is not less than Ci, then set i = i + 1 and go
to the generating of a partial tree step. Otherwise, discard the node.

Step4: For each remaining leaf node, check whether the nodes are indeed the
valid secret key with the help of public information.

Remark 1. Suppose that ε = 0. Our method for T = C = 1 is equivalent
to the Heninger-Shacham method [6]. Suppose that δ = 0. Our method with
(T,C,C, . . . , C) is equivalent to the HMMmethod [5] with (T/m,C). Our method
includes both of the two methods.

3.2 Analysis of Our Proposed Method

This section provides the analysis of our proposed method. The proofs of theorem
and corollary in this section are given in Appendix A.

Theorem 2. Suppose that Assumption 1 holds. Let (N, e) be an RSA public key
with n-bit N and fixed e. We choose

T =

⌈
lnn

2ε′2

⌉
, γi =

√
ti + 1

T

ln 2

2
, Ci = T

(
1

2
+ γi

)
, (8)

where ti and Δi are defined in section 3.1. Furthermore, let sk = (sk1, . . . , skm)
be an RSA secret key with noise rate ε such that

1

2
+ γi ≤ 1− (T +Δi)ε

T
− ε′ (9)

for every i. Then, Restrictions 1 and 2 hold for every fixed ε′ > 0. Our method

also corrects sk in expected time O(n2+2( ln 2
2mε′2 +Δ

m
ln 2
lnn )) with success probability

at least 1−
(

(1−δ)mε′2
lnn + 1

n

)
, where Δ = max{Δi} and δmn/2 =

∑
Δi.

By Theorem 2, we have the corollary.
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Corollary 1. Suppose that Assumption 1 holds and that the number of erasure
bits is Δ for each block. We choose

T =

⌈
lnn

2ε′2

⌉
, t =

T +Δ

m
, γ =

√(
1 +

1

t

)
ln 2

2m
, C = T

(
1

2
+ γ

)
.

If δ and ε satisfy

ε +
δ

2
≤ 1

2
−

√(
1 +

1

t

)
(1− δ) ln 2

2m
− (1− δ)ε′, (10)

then our method satisfies Restrictions 1 and 2 for every fixed ε′ > 0. It also

corrects sk in expected time O(n2+2( ln 2
2mε′2 +δt ln 2

lnn )) with success probability at least

1−
(

(1−δ)mε′2
lnn + 1

n

)
.

Remark 2. For sufficiently large n, t goes to infinity and thus γ converges to√
ln 2
2m . This implies that our algorithm asymptotically works if

ε+
δ

2
≤ 1

2
−
√

(1− δ) ln 2
2m

− ε′ (11)

and succeeds with a probability close to 1. Hereafter, we ignore the term “−ε′”
for simplicity.

If the erasure rate δ is 0, then the new method is equivalent to the HMM
method [5] by Corollary 1. Therefore, the new method naturally combines the
results of the Heninger-Shacham and HMM methods. The upper bound of the
new method coincides with that of Heninger-Shacham for ε = 0 and that of
the HMM method for δ = 0. Finally, we confirm that our algorithm works
well for δ = 0.6, ε = 0.001. Remember that our algorithm works provided that
ε+ δ/2 ≤ 1/2− 0.263

√
1− δ. The left-hand side is given by 0.301 and the right-

hand side is given by 0.334; the left-hand side is less than the right-hand side.
Our algorithm works in that case.

4 Implementation and Experiments

We implemented our algorithm in the Risa/Asir [11] computer algebra system
and used the program on an Intel Xeon X5570 at 2.93 GHz with 72 GB memory
of DDR3 at 1333 MHz. In our experiments for 1024-bit RSA, we prepared 100
different tuples of secret keys sk, e.g. sk = (p, q, d, dp, dq). For a fixed ε and δ, we
generated one erroneous version sk for each of sk. For a given T , the threshold
value Ci is determined by using Eq. (8).

Table 1 shows the experimental results for the case of sk = (p, q, d, dp, dq),
ε = 0.01, and T = 40. Note that the erasure rate δ was selected to be smaller than
the theoretical bound 0.684 estimated by Eq. (11). Similarly, but for T = 75, we
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Table 1. Experiments for sk = (p, q, d, dp, dq), n = 1024, ε = 0.01, and T = 40

δ 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

success rate 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.91 0.42 0.02
average time (s) 0.45 0.57 0.83 0.98 0.99 1.41 1.75 1.91 2.05 2.24 2.07 1.56 0.97 0.59

Table 2. Experiments for sk = (p, q), n = 1024, ε = 0.01, and T = 75

δ 0 0.05 0.10 0.15 0.20 0.25

success rate 1.00 1.00 0.97 0.91 0.42 0.04
average time (s) 14.06 5.86 3.26 1.07 0.25 0.08

also conducted the experiments for the case of sk = (p, q) and the results are
given in Table 2.

For fixed n, ε, and T , if an erasure rate δ becomes large, then the average of
depth ti becomes large with the increase in δ by Eq. (7). The average of threshold
values Ci also increase because of the process of determining Ci, namely, Eq. (8).
We determine these Ci’s to satisfy Restriction 1 for the fixed T , so the success
rate of our algorithm becomes small as Tables 1 and 2 show. If we use T = 80
instead of T = 40 for the case of Table 1, the success rate for δ = 0.65 increases
to 0.21 from 0.02 and the average time becomes 40.14 seconds.

5 Theoretical Bound

This section derives a theoretical upper bound for key recovery from noisy secret
keys with errors and erasures in polynomial time.

First, we define the Hamming distance between two l-bit sequences; the sym-
bol of one sequence (Sequence 1) is {0, 1} and that of the other sequence (Se-
quence 2) is {0, 1, E}, where E is an erasure symbol. We denote the number of
positions at which the corresponding symbols are different by h. We also de-
note the number of symbols E in Sequence 2 by a. We define the Hamming
distance b between two sequences by b := h − a. We also have the equivalent
definition of Hamming distance as follows. First, remove the bit of the position
at which the symbol in Sequence 2 is E in Sequence 1 and remove the symbol
E in Sequence 2. We define the Hamming distance between Sequences 1 and 2
by the ordinary Hamming weight between resulting sequences. For example, the
Hamming weight between 1111 and 1E01 is 1.

We recall some known facts about the binary Entropy function. Remember
that the binary Entropy function H(x) is defined by H(x) = −x log x − (1 −
x) log(1 − x). It is well known that the following inequalities hold between the
number of combinations and the binary Entropy [3].

Lemma 1. For any positive integer n and w(≤ n), it holds that

1√
8w(1 − w/n)

2nH(w/n) ≤
w∑
i=0

(
n

i

)
≤ 2nH(w/n). (12)
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It is known that H(x) can be represented by the following sum of an infinite
series:

H(x) = 1− 1

ln 2

∞∑
u=1

1

2u(2u− 1)
(2x− 1)2u. (13)

5.1 Maximal-Likelihood-Based Approach

We consider the following meta-algorithm.

Meta-Algorithm for Recovering Keys
Input: Public key (N, e) and noisy secret key sk, (ε, δ)
Output: Correct secret key sk
Step 1: Expansion Phase (Virtually) generate a candidate set C by using the

public information and Eqs. (2)–(5). Note that the number of elements of C
is given by 2n/2−1.

Step 2: Pruning Phase Discard the candidate that is not consistent with sk.
We denote the obtained set by C∗.

Step 3: Finalization Phase Test whether each candidate solution in C∗ is in-
deed the correct sk with the help of public information

The design of Step 2 is crucial for our algorithm. It is important to adequately
determine criteria in Step 2 so that the correct solution c is not discarded dur-
ing Step 2 in C∗ and |C∗| is as small as possible. We discuss concrete criteria
for discarding a candidate solution in Step 2. In order to do so, we adopt the
maximal-likelihood-based approach.

Our analysis relies on a similar heuristic assumption as that in [5] and [6].

Assumption 2. Every candidate solution in C is a bit-wise sum of n/2 − 1
randomly chosen bit and the correct sequence c.

We denote a candidate solution by c ∈ C. We discuss the conditional proba-
bility that we observed sk under the condition that c is the correct solution.
We denote the conditional probability by Pr(sk; c) and we refer to Pr(sk; c) as
likelihood. In the maximal likelihood-based-approach, we decide that candidate
that maximizes Pr(sk; c) is the correct solution.

This probability is simply evaluated as follows:

Pr(sk; c) = δaεb(1 − ε− δ)mn/2−a−b = (δ/(1− ε− δ))aεb(1− ε − δ)mn/2−b,

where a is the number of erasure symbols in sk and b is the Hamming distance
between sk and c.

Since a does not depend on the choice of c, it is sufficient to find b that max-
imizes the likelihood. If b is smaller, the likelihood is obviously bigger. Then,
it is sufficient to find the solution c with the smallest Hamming distance to
sk for finding the solution that maximizes the likelihood. The Hamming dis-
tance bc between the correct solution and sk is bc ≈ mnε

2 with high probability.

Meanwhile, the Hamming distance bw between the wrong solution and sk is
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bw ≈ m× n
2 ×

1−δ
2 (> mnε

2 ) with high probability. Then, it is sufficient to find the
solution whose Hamming distance is mnε/2 in order to find the solution with
maximal likelihood.

Remark 3. The computation of our proposed algorithm described in section 3
corresponds to finding the solution whose Hamming distance is less than m ×
n
2 × (1− δ)× (12 − γ) for small positive γ. This implies that the correct solution
is not discarded and falls within C∗ with high probability. However, the size of
C∗ increases.

Remark 4. It is obviously impossible to execute Step 2 if the computational time
is limited to a polynomial of n. In practice, we need to divide the candidate se-
quence into several sub-sequences and execute the expansion and pruning phase
as in our proposed algorithm in section 3.

5.2 Deriving Theoretical Upper Bound

We derive the condition such that the meta-algorithm can never recover the
secret key in polynomial time. This can be done by counting up the candidate
solution that is not discarded during Step 2 and deriving the condition of (ε, δ)
when the number of candidate solutions exceeds the polynomial of n.

We note that the candidate solution c is consistent with the observed solution
sk in Step 2 of the meta-algorithm if the following criteria hold.

CRITERIA. The Hamming distance between c and sk is less than mnε/2.

Note that the expected bit length of the sequences removing erasures is given
by mn(1 − δ)/2. The probability Pr that one candidate c is consistent with sk
is evaluated by

Pr =

∑mnε/2
i=0

(
mn(1−δ)/2

i

)
2mn(1−δ)/2

. (14)

From Lemma 1, Eq. (14) is lower bounded by

Pr ≥ 2−mn(1−δ)(1−H(ε/(1−δ)))/2. (15)

We define C(ε, δ) by C(ε, δ) := (1− δ)(1−H(ε/(1− δ))). Then, the probability
is larger than 2−mnC(ε,δ)/2. Since the number of candidate solutions is 2n/2, the
expected number of candidate solutions consistent with the observed sequence
sk is lower bounded by 2n/22−mnC(ε,δ)/2 = 2n(1−mC(ε,δ))/2.

Suppose that ε and δ satisfy the condition: C(ε, δ) < 1/m. This implies that
1 −mC(ε, δ) > 0. Then, the expected number of candidate solutions consistent
with sk is an exponential function of n. Step 3 then requires the exponential
testing of whether the candidate is indeed the secret key. Hence, the total com-
putational time of the whole algorithm is actually exponential.

Conversely, suppose that C(ε, δ) ≥ 1/m. Then, the number of candidate solu-
tions is at most a polynomial of n and the total computational time dominates
Step2. This means that it depends on C(ε, δ) and 1/m whether there exists an al-
gorithm that recovers in polynomial time of n. We show an information-theoretic
view of our theoretical bound in the full version.
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5.3 Discussion

Fig.1 shows achievable regions for the naive method and our proposed method
in addition to the theoretical bound with m = 5. Note that all the values that lie
below the respective line concerning the naive method and proposed method are
vulnerable to each of the attacks and all the values that lie above the line about
theoretical limitation are not solvable in polynomial time. We can see that the
bound for our method nearly achieves the theoretical bound, but there is still a
small gap.

Fig. 1. Upper bounds of naive method and new method, and theoretical limitation

Table 3 shows the success conditions for three noise models; the upper is the
bound the best-known algorithm achieves and the lower is the theoretical bound.

Table 3. Success Conditions of Heninger-Shacham, HMM, and our Proposed Methods

model BE model (ε = 0) BS model (δ = 0) BEE model

best known algorithm Heninger-Shacham [6] HMM [5] Proposed Method in Sec. 3

2 algorithm δ ≤ 0.43 ε ≤ 0.084 ε+ δ/2 ≤ 1
2
− 0.416

√
1− δ

2 theoretical bound δ ≤ 0.5 ε ≤ 0.110 (ε, δ) s.t. C(ε, δ) ≥ 1/2

5 algorithm δ ≤ 0.73 ε ≤ 0.237 ε+ δ/2 ≤ 1
2
− 0.263

√
1− δ

5 theoretical bound δ ≤ 0.8 ε ≤ 0.243 (ε, δ) s.t. C(ε, δ) ≥ 1/5

m algorithm δ ≤ 1− 2 ln 2
m

ε ≤ 1
2
−

√
ln 2
2m

ε + δ
2
≤ 1

2
−

√
(1−δ) ln 2

2m

m theoretical bound δ ≤ 1− 1
m

ε s. t. H(ε) ≤ 1− 1
m

(ε, δ) s.t. C(ε, δ) ≥ 1/m

5.4 Our Algorithm Achieves Second-Order Expansion of
Theoretical Bound

We present a strong bridge between the theoretical bound and achieved regions.
We define the whole parameter space I by I := {(ε, δ)|0 ≤ ε < 1/2, 0 ≤ δ < 1}
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and define H by

H :=

{
(ε, δ)|0 ≤ ε < 1/2, 0 ≤ δ < 1, (1− δ)

(
1−H

(
ε

1− δ

))
≥ 1

m

}
.

The discussion in Section 5.3 shows that we cannot recover the secret keys in
polynomial time if (ε, δ) ∈ I/H. This argument suggests that we have a chance
to recover the secret key in polynomial time if (ε, δ) ∈ H. However, it does not
guarantee that we can recover the secret keys if (ε, δ) ∈ H. As shown in Fig. 1,
there exists a small gap between our theoretical bound and the achieved regions.
We give a strong relation between the two regions.

From Eq. (13), C(ε, δ) < 1/m can be represented as follows:

∞∑
u=1

(1 − δ)
2u(2u− 1)

(
1− δ − 2ε

1− δ

)2u

≤ ln 2

m
, (16)

which is a representation not explicitly used by the binary Entropy H(·). Con-
sider the condition truncated by u = k and denote the condition by Hk

Hk :=

{
(ε, δ)|0 ≤ ε < 1/2, 0 ≤ δ < 1,

k∑
u=1

(1− δ)
2u(2u− 1)

(
1− δ − 2ε

1− δ

)2u

≤ ln 2

m

}
.

Obviously, it holds that Hi ⊆ Hj if i ≤ j for any i, j ∈ Z and it holds that
limk→∞Hk = H.

We focus on the regionH1. By simplifying the condition corresponding to H1,
we have the equivalent condition:

1− δ − 2ε ≥
√
2(1− δ) ln 2/m.

This is equivalent to the condition obtained in section 3: Eq. (11) if we neglect
the small term ε. This implies that our proposed algorithm can recover the secret
key in polynomial time if (ε, δ) ∈ H1.
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A Proofs of Theorem 2 and Corollary 1

A.1 Proofs of Theorem 2

First, we discuss how to determine the threshold value Ci satisfying Restriction 1
for a fixed T . Note that ti and Δi are uniquely determined if T is fixed once.

In one i-th partial tree of the binary tree, there are 2ti candidates. Thus we
defines 2ti variables Zjb,i for j = 1, . . . , 2ti as

Zjb,i =

{
1 (j-th bad candidate passes)
0 (otherwise.)

Then, the number of bad candidates Zb,i given in Restriction 1 is described as

Zb,i =
∑2ti

j=1 Z
j
b,i. Since all Z

j
b,i are identically distributed, there exists an integer

j such that E[Zb,i] = 2tiE[Zjb,i].

Here we consider the number Xb,i of matching bits between sk and one bad
candidate at the i-th pruning step skipping bits corresponding to erasure posi-
tions of sk. Since T bits of a bad candidate are compared with the corresponding
bits of sk, we have that Xb,i ∼ Bin(T, 1/2) by Assumption 1. The condition

http://www.rsa.com/rsalabs/node.asp?id=2125
http://www.math.kobe-u.ac.jp/Asir/asir.html
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Zjb,i = 1 is equivalent to that Xb,i ≥ Ci, and thus E[Zjb,i] = Pr[Zjb,i = 1] =
Pr[Xb,i ≥ Ci]. Supposing that

Ci = T

(
1

2
+ γi

)
, (17)

we have Pr[Xb,i ≥ Ci] ≤ exp(−2Tγ2i ) from Theorem 1. Therefore, we obtain

that E[Zb,i]/2
ti = E[Zjb,i] ≤ exp(−2Tγ2i ). By setting

γi =

√
ti + 1

T

ln 2

2
, (18)

we have exp(−2Tγ2i ) = 2−(ti+1). Restriction 1 holds since E[Zb,i] ≤
2ti exp(−2Tγ2i ) = 1/2.

Let Yi be the number of all bad candidates passing the i-th pruning step.
Then, we have the following lemma.

Lemma 2. Suppose that γi and Ci satisfy Eqs. (17) and (18) for a fixed T .

Then, it holds that E[Yi] < 2max{tj}i
j=1+1.

Proof. At the i-th pruning step, let Zg,i be the number of bad candidates gener-
ated from the correct solution, and Zb,i the number of bad candidates generated
from one bad partial solution. Then, the following holds:

E[Y1] = E[Zg,1], E[Yi] = E[Zg,i] + E[Zb,i]E[Yi−1]. (19)

Since the number of candidates is 2ti , we have E[Zg,i] ≤ 2ti . For a given T ,
namely a fixed ti, we determine γi and Ci so that Restriction 1 holds. From
(19), we have

E[Yi] < 2ti +
E[Yi−1]

2
< 2max{tj}i

j=1
1− (1/2)i

1− 1/2
< 2max{tj}i

j=1+1.

Then, we have the lemma. �

Next we discuss T such that Restriction 2 holds. Let Xc,i be the number
of matching bits between sk and the correct solution at the i-th pruning step
without the bits corresponding to erasure positions of sk. Since we see total
(T +Δi) bits and the T bits of them correspond to the non-erasure position of
sk, the probability that a bit of a correct solution matches the corresponding
bit of sk is (T − (T + Δi)ε)/T = 1 − (T + Δi)ε/T . Therefore, since Xc,i ∼
Bin(T, 1− (T+Δi)ε

T ), we suppose that

1

2
+ γi ≤ 1− (T +Δi)ε

T
− ε′,

for any i. From Theorem 1, we have that

Pr[Xc,i < Ci] ≤ Pr

[
Xc,i < T

(
1− (T +Δi)ε

T
− ε′
)]
≤ exp(−2T ε′2).
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Since we consider T such that Restriction 2 holds, exp(−2T ε′2) ≤ 1/n. Therefore,
we have T ≥ lnn/2ε′2, and so we set T = �lnn/(2ε′2)�.

By considering the above discussion, we have Theorem 2. The proof of Theo-
rem 2 is given in detail below.

Proof. First we show that the total expected computational cost of the new

method is O(n2+2( ln 2
2mε′2 +Δ

m
ln 2
ln n )). One node is computable in time O(n), so the

partial tree is generated in time O(n2ti) since there are
∑ti−1
j=0 2j(< 2ti) nodes.

The pruning step can be performed in time O(ti) for each of 2ti candidates,
and thus the total time complexity for pruning is O(ti2ti). Therefore, the time
complexity for one partial tree is O((n + ti)2

ti) = O(n2ti). For a given T , we
suppose that the erroneous version sk is separated into � parts. By Eq. (7), ti
is bounded by t∗i = �T+Δi

m �. Let t∗ be the maximum integer of t∗1, . . . , t
∗
� . By

Lemma 2, the upper bound for the expected total number E[Y ] of partial trees

is given by E[Y ] < 1 +
∑�−1

j=1 E[Yj ] < �2t
∗+1 ≤ n2t

∗+1 = O(n2t∗). Let Δ be the
Δi corresponding to t∗. Then, the total expected computational cost is

O(n2t∗ · n2t∗) = O(n2n2t∗ ln 2
lnn ) = O(n2n2T+Δ

m
ln 2
lnn ) = O(n2+2( ln 2

2mε′2 +Δ
m

ln 2
lnn )).

Next we discuss the success probability of the new method. Note that Ci, γi and
T are determined so that Restriction 2 holds. Hence the success probability is
given by

�∏
i=1

(1− Pr[Xc < Ci]) ≥
(
1− 1

n

)�
≥ 1− �

n
≥ 1−

(
(1− δ)mε′2

lnn
+

1

n

)

since � ≤
n
2 (1−δ)m

T + 1. �

A.2 Proofs of Corollary 1

To give the proof of Corollary 1, we begin with the discussion of Eq. (9) in
the analysis of our method. For simplicity, we consider only the case where all
δi’s are the same1, for example, δi = δ. Suppose that sk is separated into �
fractions. Then, each part consists of mn/2� bits. By letting t = n/2�, we have
Δ = δtm and T = tm−Δ = (1 − δ)tm, so we can describe γi in Theorem 2 as√

t+1
(1−δ)tm

ln 2
2 . Hence, in this case, the upper bound (9) implies that

ε +
δ

2
≤ 1

2
−

√(
1 +

1

t

)
(1− δ) ln 2

2m
− (1− δ)ε′.

1 For a large enough T , it holds with high probability. More precisely, all of δi takes
the value close to δT/(1 − δ) with overwhelming probability, which can be proved
by the similar analysis of [6].
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Abstract. This article introduces a new Combined Attack on a CRT-
RSA implementation resistant against Side-Channel Analysis and Fault
Injection attacks. Such implementations prevent the attacker from ob-
taining the signature when a fault has been induced during the compu-
tation. Indeed, such a value would allow the attacker to recover the RSA
private key by computing the gcd of the public modulus and the faulty
signature. The principle of our attack is to inject a fault during the sig-
nature computation and to perform a Side-Channel Analysis targeting
a sensitive value processed during the Fault Injection countermeasure
execution. The resulting information is then used to factorize the public
modulus, leading to the disclosure of the whole RSA private key. After
presenting a detailed account of our attack, we explain how its complex-
ity can be significantly reduced by using lattice reduction techniques.
We also provide simulations that confirm the efficiency of our attack as
well as two different countermeasures having a very small impact on the
performance of the algorithm. As it performs a Side-Channel Analysis
during a Fault Injection countermeasure to retrieve the secret value, this
article recalls the need for Fault Injection and Side-Channel Analysis
countermeasures as monolithic implementations.

Keywords: CRT-RSA, Combined Attacks, Fault Injection, Side-
Channel Analysis, Coppersmith’s methods.

1 Introduction

Since the seminal work of Kocher published in 1996 [1], Side-Channel Analysis
(SCA) has raised a huge interest in both academic and industrial communities.
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This kind of attack is based on the fact that side-channel leakages of embedded
devices contain information on the values manipulated inside the device. There-
fore any sensitive variable carelessly used can be recovered by an attacker using
SCA. Originally, time execution was used as side-channel leakage but the ex-
ploitation of power consumption and electromagnetic radiation became quickly
the most efficient way to attack embedded cryptography [2, 3]. Over the years,
many improvements have been made leading to very efficient attacks and very
ingenious countermeasures [4].

In parallel to SCA, Fault Injection (FI) provides the attacker with another way
to attack embedded devices. Such attacks aim at disturbing cryptographic com-
putations and the analysis of corresponding faulty outputs allows the attacker
to recover the secret key [5]. Shortly after the original publication focusing on
RSA implementation [6], many other articles have been published to present
FI attacks on various cryptosystems such as DES, ElGamal or DSA signature
schemes [7,8]. As for SCA, FI has been deeply studied over the last decade [9] and
the consequences of both attacks on the industry are huge since secure products
must now be certified to prove their resistance against such threats.

Over the last few years, the cryptographic community has investigated the
possibility of combining the two previous kinds of attacks. This has resulted in
a new class of attacks called Combined Attacks (CA) that can defeat implemen-
tations which are meant to resist both SCA and FI. However, as far as we know
only four CA have been published since their introduction in 2007, proving the
difficulty to conceive such attacks [10–13].

Nowadays, most embedded devices implement a large variety of cryptosystems
to ensure the security of the sensitive assets they contain. As well as being the
first practical public-key cryptosystem published, RSA [14] has also been the
most widely used for many years. In particular, the RSA using the Chinese
Remainder Theorem (CRT), providing a speed-up factor of four compared to
the original implementation, is available on most ID, banking and mobile smart
cards. Obviously, this cryptosystem has been the main target of SCA and FI
attackers leading to the development of efficient countermeasures having the
smallest impact on both memory consumption and time execution due to the
constraints of embedded environment.

In this article, we describe a new Combined Attack against a CRT-RSA im-
plementation resistant to SCA by using blinding countermeasures and protected
against FI by verifying the signature using the public exponent. Such an im-
plementation is known to resist each and every kind of attack published so
far. However, we demonstrate that when injecting a fault during the signature
computation, a value depending on the message and on a multiple of a secret
prime is manipulated in plain during the public verification. Therefore, we no-
tice that one can use SCA to gain some information on such a sensitive value.
The recovered information can then be used to factorize the RSA modulus and
thus to reveal the whole private key. Besides, we exploit lattice techniques, and
in particular Coppersmith’s methods for finding small solutions to polynomial
equations [15, 16], to significantly reduce the complexity of our CA.
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The rest of this paper is organised as follows. In Section 2 we briefly recall
some basics on CRT-RSA signature as well as the corresponding attacks and
countermeasures. In Section 3 we describe our new CA on a CRT-RSA imple-
mentation that is known to resist both SCA and FI attacks. In Section 4 we
present the results of our simulations which prove the efficiency of our new at-
tack. We then improve its complexity by using lattice reduction techniques in
Section 5. Finally, we suggest in Section 6 possible countermeasures having a
negligible penalty on the performance of the algorithm.

2 Previous Works

In this section we briefly recall the RSA signature, in particular the CRT mode.
Secondly we present the principal attacks on such an algorithm as well as the
main countermeasures.

2.1 RSA on Embedded Systems

Since its introduction in 1978, the RSA cryptosystem has become one of the most
used public-key cryptosystems, especially in electronic signature schemes [14].
In the following we briefly recall how to compute the RSA signature in both
standard and CRT modes.

Let N denote the public modulus being the product of two secret large prime
integers p and q. Let d refer to the private exponent and e refer to the public
exponent satisfying de = 1 mod ϕ(N), where ϕ denotes Euler’s totient function.
The RSA signature of a message m ∈ ZN is then obtained by computing S =
md mod N . To verify the signature, one computes Se mod N and checks if the
corresponding result is equal to m.

In embedded systems, most RSA implementations use the Chinese Remainder
Theorem (CRT) which yields an expected speed-up factor of four [17]. Following
the CRT-RSA algorithm, the signature generation is composed of two exponen-
tiations Sp = mdp mod p and Sq = mdq mod q, where dp = d mod p − 1 and
dq = d mod q − 1. The signature is then obtained by recombining Sp and Sq,
which is usually done by using Garner’s formula [18]:

S = CRT (Sp, Sq) = Sq + q(iq(Sp − Sq) mod p) , (1)

where iq = q−1 mod p.

2.2 Attacks and Countermeasures

Side-Channel Analysis. Side-Channel Analysis (SCA) has been introduced
by the publication of the so-called timing attacks in 1996 [1]. SCA exploits the
dependency between the manipulated data or the executed instruction and the
side-channel leakages which can be monitored during the algorithm execution.
Examples of such leakages are the power consumption or the electromagnetic
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radiation of the device. When only one measure is required to exploit sensitive
information, the attack is called Simple Passive Analysis (SPA) [2]. In the case of
a straightforward Square-and-Multiply exponentiation, SPA consists for instance
in observing if the squaring and multiplication operations have different patterns
in the corresponding side-channel leakages [2]. Hence, the secret exponent can
be directly extracted from one measurement. In the literature, a common coun-
termeasures consists in using a so-called regular algorithm which performs the
same operation whatever the exponent bit value such as the Square-Always or
Montgomery ladder algorithms [19, 20].

Moreover, attacks based on side-channel leakages have evolved to a type of
SCA called Differential Passive Analysis (DPA) [2] which requires a large number
of measurements. This type of attack applies a statistical treatment on the curves
to recover information on the manipulated values.Nowadays a common statistic
tool used to perform such a statistical treatment, is the Pearson correlation
coefficient:

ρk =
cov(L, H)

σLσH
, (2)

where L is the set of curves and H depends on a known value m and on a guess
of a small part of a secret k. Such an attack is called Correlation Power Analysis
(CPA) [21]. In the literature, many different CPAs have been published to attack
the RSA cryptosystem [22]. For instance in the CRT-mode, an attacker can
mount a CPA to recover the private parameter q during the CRT-recombination,
cf. Rel. (1), by observing the leakage obtained during the manipulation of the
value iq(Sp − Sq) mod p and by making a guess on a few bits of q. Hence, an
attacker can obtain the whole secret q by performing a CPA for each of its
subpart (typically for each byte). However, half of q is sufficient to recover the
rest of q by using Coppersmith’s attack [23]. Classical countermeasures to resist
CPA consist in randomizing the modulus, the message and the exponent [22].

Fault Injection. RSA has been the first cryptosystem to succumb to Fault
Injection [24]. In the following, we describe such an attack in the CRT case.
Assume that a fault is injected during the computation of Sp leading to a faulty

signature S̃. Since S ≡ Sp mod p and S ≡ Sq mod q, one can notice that S̃ ≡
S mod q but S̃ �≡ S mod p. Therefore, the secret parameter q can be easily
recovered by computing the gcd of S− S̃ and N . The rest of the private key can
then be straightforwardly deduced.

When it is not possible to sign the same message twice and if the message is
known to the attacker, a variant of this attack consists in computing the gcd of
S̃e −m and N to obtain the secret value q [25].

Moreover, the effect of fault injections on CRT-RSA is not limited to the
disturbance of Sp or Sq. Indeed, a fault injected in any part of the key parameters
(i.e. p, q, dp, dq or iq), in the message m at the beginning of either Sp or Sq
computation, or even during the CRT-recombination can lead to a useful faulty
signature.
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In the literature, four different fault models are generally considered to define
the attacker’s capabilities [26]:

– the random fault model: the bits are changed to a uniformly distributed
random value;

– the bit-flip fault model: in that case, affected bits are flipped to their com-
plementary value;

– the stuck-at fault model: the fault sets the bits to 0 or to 1, depending on
the underlying hardware;

– the unknown constant fault model: the fault always sets the bits to the same
unknown value.

Moreover, these faults do not necessarily modify a whole temporary result. In-
deed, it is generally considered that the number of bits affected by the fault is
linked to the CPU word-size which is generally 8, 16 or 32 bits.

The most natural way to counteract fault injection on RSA-type signature is to
check the correctness of the signature S before outputting it [24]. More precisely,
the signature is returned iff Se mod N = m. Moreover, such a method requires
very little overhead since the public exponent e is usually small in practice
(typically 3, 17 or 216 + 1).

Other methods getting rid of e have also been proposed but they do not
offer the same level of security and are generally slower than the public verifica-
tion [27–29].

Combined Attacks. The idea to combine SCA and FI appeared in 2007 when
Amiel et al. proposed a so-called Combined Attack (CA) on an RSA implemen-
tation protected against FI and SPA [10]. They noticed that by setting to zero
one of the temporary registers used in the Montgomery ladder, its structure be-
comes unbalanced, revealing the value of the secret exponent by SPA. Following
this publication, three other papers have been published taking advantage of this
new way of defeating embedded security. Two of them present a CA against a
secured AES implementation [12,13]. The third one focuses on the elliptic curve
scalar multiplication [11].

Despite its theoretical effectiveness, the combination of SCA and FI is very
difficult in practice, explaining the lack of practical experiments in the current
literature.

Lattices. Randomized RSA encoding schemes are usually considered to be re-
sistant to traditional FI attacks since a part of the message is unknown to the
attacker and varies for each signature computation. However this common as-
sumption has to be mitigated regarding the works of [30] and [31] which de-
feat two randomised RSA encoding schemes. These attacks use Coppersmiths
method to solve a bivariate polynomial whose coefficients are built thanks to the
generated faulty signatures.

More recently in [32], the authors present an attack taking advantage of the
disturbance of the public modulus. The generated faulty signatures allow them
to build a lattice, which in turns leads to factorize the public modulus.
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Although [30], [31] and [32] also apply lattice reduction techniques as carried
out in this paper, the attack presented hereafter does not share the same con-
text since we consider a secured implementation which never returns the faulty
signature.

3 A New Combined Attack on CRT-RSA

3.1 Context and Principle

As stated in Section 2, several countermeasures have been developed to pro-
tect CRT-RSA embedded implementations against both SCA and FI. In the
framework of this article, we consider an algorithm protected:

– against SCA by using message and exponent blinding as suggested in [33],
a regular exponentiation algorithm such as the Square Always [20] and a
mask refreshing method along the exponentiation such as the one presented
in [34]. Moreover, the blinding is kept all along the CRT-recombination.

– against FI by verifying the signature using the public exponent e [24]. In
addition, we also use the approach presented in [35] which mainly consists in
checking the result of the verification twice to counteract double FI attacks.

Fig. 1 depicts the main steps of such an implementation where the ki’s are
random values (typically of 64 bits) generated at each execution of the algorithm
and S′

p, S
′
q and S′ represent the blinded version of Sp, Sq and S respectively.

In the following, we assume that the fault injected by the attacker follows
either the bit-fault, the stuck-at or the unknown constant fault models (cf. Sec-
tion 2.2). Moreover, we assume the attacker is able to choose which byte of the
message is affected by the fault.

As mentioned in Section 2.2, injecting a fault during the signature computa-
tion leads to a faulty signature that allows the attacker to recover the private
key. However in the implementation considered in this paper, the verification
with the public exponent detects such a disturbance and the faulty signature is
never revealed to the attacker. The main contribution of this paper is to show
that in this case, an SCA can still allow the attacker to gain enough information
on the faulty signature to recover the private key.

At first glance, it seems impossible to perform such an attack during the
signature process due to the blinding countermeasure. However by observing
Fig. 1, one may note that the faulty signature S̃ remains blinded until the end
of exponentiation with e modulo N . Therefore if we can express S̃e mod N in
terms of the message m and of the private key then we can perform an SCA on
this value. In the next section, we exhibit such a relation allowing us to mount
a CA on an SCA-FI-resistant CRT-RSA implementation.
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False True

Return S′ mod N

S′e mod N
?
= m

S′ mod k4N

SCA-resistant CRT-recombination

S′
q mod k3qS′

p mod k1p

SCA-resistant expo SCA-resistant expo

m+ k2q mod k3qm+ k0p mod k1p

Blinding Blinding

m

Security action

Fig. 1. Main steps of a CRT-RSA implementation secure against SCA and FI.

3.2 A Useful Relation

Proposition 1. If a fault ε is induced in m such that the faulty message m̃ is
equal to m+ ε at the very beginning of the computation of Sp then

S̃e ≡ m+ εqiq mod N , (3)

where S̃ corresponds to the faulty signature.

Proof. By definition of the CRT-RSA signature, we have:{
S̃ ≡ (m+ ε)d mod p

S̃ ≡ md mod q
(4)

It comes then straightforwardly that:{
S̃e ≡ m+ ε mod p

S̃e ≡ m mod q
(5)
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Finally, applying Gauss recombination to (5) leads to (3) since:

S̃e ≡ pipm+ qiq(m+ ε) mod N (6)

≡ (pipm+ qiqm) + εqiq mod N (7)

≡ m+ εqiq mod N , (8)

where ip = p−1 mod q. ��

One may note that a similar relation holds ifm is disturbed at the very beginning
of Sq computation due to the symmetrical roles of p and q in both branches of the
CRT-RSA. For the sake of simplicity, we will use the case where Sp computation
is disturbed in the rest of this paper.

3.3 Recovering the Private Key

Following the attack’s principle depicted in Section 3.1 and using Proposition 1,
we will now present in detail the main steps of our attack.

Firstly, the attacker asks the embedded device to sign several messages mi

through a CRT-RSA implemented as described in Section 3.1. For each signature,
the computation of Sq is performed correctly and a constant additive error ε is
injected on the messagemi at the beginning of each Sp computation. Then during
each signature verification, the attacker monitors the corresponding side-channel
leakage Li which represents the manipulation of S̃ei mod N .

From Proposition 1, we know that there exists a sensitive value k satisfying
the relation S̃ei mod N = mi + k. Therefore, the attacker will perform a CPA
to recover this sensitive value by computing ρk(mi + k,Li) for all the possible
values of k (cf. Section 2.2).

Depending on the set {(mi, S̃
e
i mod N)}i, it follows from Rel. (3) that k will

be equal either to εqiq mod N or to εqiq mod N − N . Therefore, the value k̂
producing the strongest correlation at the end of the CPA will be one of these
two values. Once k̂ recovered, the attacker must then compute the gcd between
k̂ and N , which leads to the disclosure of q. From this value, the private key is
straightforwardly computed.

Regarding the practicality of our fault model (i.e. a constant additive fault),
one may note that by fixing a small part of the message (e.g. a byte), the distur-
bance of such a part in either the stuck-at, the bit-flip or the unknown constant
fault model results in a constant additive error during the different signature
computations. Therefore our fault model is definitely valid if the attacker can
choose the messages to sign, or even if she can only have the knowledge of the
messages and attack only those with a given common part.

Finally, one may note that it is not possible to perform a statistical attack
targeting the full value of k at once due to its large size (i.e. �log2(N)� bits).
However, one can attack each subpart of this value, for instance by attacking byte
per byte starting with the least significant one in order to be able to propagate
easily the carry. It is worth noticing that CPA only applies when the correspond-
ing part of the message varies. Therefore, if the attacker fixes the MSB of the
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message, then the corresponding set of measurements can be used to recover the
whole but last byte of k̂. In such a case, a brute force search can be used to
recover the missing byte.

In the next section, we present simulations of our attack which prove the
efficiency of our method and which are based on the attacker’s capability to
inject the same fault and on the noise of the side-channel measurements.

4 Experiments

The success of the attack presented in Section 3 relies on the ability of the
attacker to both measure the side-channel leakage of the system during the
signature verification and induce the same fault ε on the different manipulated
messages.

In order to evaluate the effectiveness of this attack, we have experimented it
on simulated curves of the side-channel leakage L, according to the following
leakage model:

L(d) = HW (d) +N (μ, σ) (9)

with N (μ, σ) a Gaussian noise of mean μ and standard deviation σ, and HW (d)
the Hamming weight function evaluated for the manipulated data d. In the
framework of our experiments, we consider that the processor manipulates 8-bit
words and we use three different levels of noise, namely σ = 0.1, 1 and 5.

As well as the side-channel leakage, the faults were also simulated by setting
the most significant word of the message m to all-0 at the very beginning of the
Sp computation. These faults were induced with a given success rate r, varying
in our different experiment campaigns (namely 50%, 10% and 1%).

Depending on the experimental settings, all the different words of the secret
value will be equivalently correlated with the simulated curves. The graphs pre-
sented in Fig. 2 present the convergence of the correlation for each possible value
k of one particular byte (the 5th least-significant byte) of the secret depending
on the number of side-channel measurements with different simulation settings
σ and r.

As exposed in Fig. 2, the number of traces required to recover the secret value
depends essentially on the fault injection success rate. This comes from the fact
that every wrongly-faulted computation can be considered as noise in the scope
of our statistical analysis. The number of curves required to retrieve the secret
word grows as the fault injection success rate decreases and to a fewer extent as
the noise of the side-channel leakage increases.

With regards to the results obtained when σ = 5 and r = 10%, which appear
to be plausible values in practice, it took us 3.35 seconds to retrieve one byte of
the secret value by performing the CPA on 15, 000 curves of 128 points each1.
Assuming a genuine curve should be made of at least 5, 000 points, we can
estimate the time required to practically perform the attack to about 1 minute

1 The execution time given here and in Section 5.2 have been obtained on a 32-bit
CPU @3.2GHz.
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Fig. 2. Convergence of the correlation for the 256 possible values ki for the secret
(the correct one being depicted in black) depending on the number of side-channel
measurements (×500) for different levels of noise σ and fault injection success rates r

5 seconds per byte. That is to say, it takes about 2 hours 20 minutes to recover
the complete secret value if we consider a 1024-bit RSA module.

For the sake of clarity, we restrained the experiments presented here to the
case where the processor manipulates 8-bit words, and thus ε is an 8-bit error.
The same experiments have been run for processor word-size up to 32 bits with
success. Besides, about the same number of curves were necessary for the CPA
to highlight the correct secret byte.

Section 5 shows how it is possible to considerably reduce the complexity of
our attack thanks to the use of lattice techniques.

5 Reducing the Attack Complexity Using Coppersmith’s
Methods

This section aims at improving the attack complexity using Coppersmith’s meth-
ods. It is in line with the problem of factorizing N knowing half part of prime p
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(or q), that was solved in [16]. With respect to our case, we highlight that if the
CA presented in Section 3 provides about half of the secret εqiq mod N , then
the other half part can be straightforwardly computed by solving a well-designed
modular polynomial equation that we elaborate in the sequel. Besides, we deal
with two cases (ε known and unknown), depending on the fault model that is
considered.

5.1 Bringing Up the Original Problem to Solving a Modular
Equation

Suppose we are given the t least significant bits (LSB) of the secret εqiq mod N .
The latter value can be rewritten as follows:

εqiq ≡ 2tx0 + k mod N , (10)

where t and k are known values, and x0 is the �log2(N)− t�-bit unknown integer
that is to be recovered.

Lemma 1. The unknown secret part x0 is solution of the polynomial Pε(x):

Pε(x) = x2 + c (2t+1k − 2tε) x+ c (k2 − kε) ≡ 0 mod N , (11)

where c = (22t)−1 mod N , k, t, N are known, and ε is the induced fault.

Proof. The Bézout identity applied to our context yields that primes p and q
interrelate with integers ip = p−1 mod q and iq = q−1 mod p by the following
relation:

pip + qiq ≡ 1 mod N . (12)

Multiplying (12) by ε leads to the relation εpip+εqiq ≡ ε mod N , or equivalently
to εpip ≡ ε−εqiq mod N . Therefore, replacing εqiq using (10) allows us to deduce
an equivalence for εpip:

εpip ≡ ε− 2tx0 − k mod N . (13)

As N = pq, we then multiply (10) by (13), to get the relation:

εqiq · εpip ≡ (2tx0 + k) · (ε− 2tx0 − k) ≡ 0 mod N . (14)

Eventually, developing the right-hand side of (14), and multiplying it by c =
(22t)−1 mod N leads to the obtention of the monic polynomial Pε(x). ��

The initial problem of retrieving the unknown part of εqiq mod N is thereby
altered in solving the modular polynomial equation (11). In the sequel, we deal
with two possible cases regarding ε, whether it is known to the adversary or
not.
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Case 1. The fault ε is known to the adversary

This case corresponds to the bit-flip and stuck-at fault models (Section 2.2) since
the message is known to the attacker and the fault location can be chosen. In both
cases, since the fault ε is known, the problem is reduced to solving a univariate
modular polynomial equation, cf. Rel. (11). This problem is known to be hard.
However, when the integer solution x0 is small, Coppersmith showed [23] that
it can be retrieved using the well-known LLL algorithm. Accordingly, we induce
the following proposition:

Proposition 2. Given N = pq and the low order 1/2 log2(N) bits of εqiq mod
N and assuming ε is known, one can recover in time polynomial in (log2(N), d)
the factorization of N .

Proof. From Coppersmith’s Theorem [16], we know that, given a monic polyno-
mial P (x) of degree d, modulo an integer N of unknown factorization, and an
upper bound X on the desired solution x0, one can find in polynomial time all
integers x0 such that

P (x0) ≡ 0 mod N and |X | < N1/d . (15)

In our case we have d = 2, and since x0 is a �log2(N) − t�-bit integer, we
know that |x0| < X = 2�log2(N)−t� . Thus, the condition in (15) becomes
2�log2(N)−t� < N1/2 , i.e.

t >
1

2
log2(N) . (16)

Therefore, knowing at least half part of the secret εqiq mod N allows to recover
the whole secret. As previously done, computing gcd(εqiq mod N,N) provides
the factorization of N . ��

Note that the method is deterministic, and as will be seen further (Table 1), it
is reasonably fast.

Case 2. The fault ε is unknown to the adversary

This case is met in the unknown constant fault model (Section 2.2). In such a
case, one can consider the polynomial Pε(x) as a bivariate modular polynomial
equation with unknown values x and ε. This specific scheme has also been stud-
ied by Coppersmith and includes an additional difficulty of algebraic dependency
of vectors which induces the heuristic characteristic of the method [15]. As de-
picted in Section 5.2, in our experiments nearly 100% of the tests verified the
favorable property of independency. Accordingly, in this vast majority of cases,
the following proposition holds:

Proposition 3. Under an hypothesis of independency (see discussion above),
given N = pq and the low order 1/2 log2(N) + s bits of εqiq mod N , where s
denotes the bitsize of ε, and assuming ε is unknown, one can recover in time
polynomial in (log2(N), d) the factorization of N .
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Proof. Coppersmith’s Theorem for the bivariate modular case [15] notifies that
given a polynomial P (x, ε) of total degree d, modulo an integer N of unknown
factorization, and upper bounds X and E on the desired solutions x0, ε0, it may
be possible (heuristic) to find in polynomial time all integer couples (x0, ε0) such
that

P (x0, ε0) ≡ 0 mod N and |X · E| < N1/d . (17)

In our case, we have d = 2 and E = 2s. The integer x0 is �log2(N) − t�-bit
long, therefore we have X = 2�log2(N)−t�. Thus, the condition in (17) becomes
2�log2(N)−t� · 2s < N1/2 , i.e.

t >
1

2
log2(N) + s . (18)

This means that knowing s more bits of the secret εqiq mod N than before,
would allow the recovering of the whole secret. ��

Remark 1. The bound of success in Proposition 3 can actually be slightly im-
proved using results of [36]. Indeed, Coppersmith’s bound applies to polynomials
whose monomials shape is rectangular, while in our case the monomial ε2 does
not appear in P (x, ε) which corresponds to what they called an extended rectan-
gle in [36]. For the sake of simplicity, we only mentioned Coppersmith’s bound
since practical results are similar.

5.2 Results from Our Implementation

We have implemented this lattice-based improvement using Magma Software
[37], with N a 1024-bit integer i.e. 128 bytes long, in the cases where ε is an 8-
bit known value (for Case 1) and a 32-bit unknown value (for Case 2). We chose
Howgrave-Graham’s method [38] for the univariate case, and its generalization
by Jochemsz et al. [39] for the bivariate case since both have the same bound of
success as Coppersmith’s method (sometimes even better for [39]) and they are
easier to implement. As we know, the theoretical bound given in Coppersmith’s
method is only asymptotic [16]. Thus, we report in Table 1 (for Case 1) and in
Table 2 (for Case 2) the size t (in bytes) of the secret εqiq mod N that is known
to the attacker before applying Coppersmith’s method, the lattice dimension
used to solve (11) and finally the timings of our attack.

As depicted in Table 1, and combining these results with the experiments of
Section 4, the best trade-off is to perform a CPA on the 66 first bytes, taking
66×1m05s= 1h11m30s, and to retrieve the 62 remaining bytes using lattices in
34.25s, bringing the total time up to 1 hour 12 minutes, instead of the previous
2 hours 20 minutes.

In order to illustrate Case 2, we have chosen to rather show our results for
ε being a 32-bit value, since when ε is 8-bit long, we obtained slightly bet-
ter results by considering the 255 possible values of the variable ε together
with their corresponding polynomials Pε(x), and by running the method on
each of the polynomials until finding the solution x0 that allows to factorize N.
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Table 1. Size t required (in bytes) for the method to work and timings (Magma V2.17-
1), as a function of the lattice dimension in Case 1 (ε known, being an 8-bit integer)

Size t required
86 72 70 69 68 67 66 65 64

(bytes)

Dimension of
3 9 11 15 17 23 37 73 Theoretical

the lattice
Time for LLL

< 0.01 0.03 0.07 0.29 0.52 2.63 34.25 2587.7 bound
(seconds)

Table 2. Size t required (in bytes) for the method to work and timings (Magma V2.17-
1), as a function of the lattice dimension in Case 2 (ε unknown, being a 32-bit integer)

Size t required
86 78 76 74 73 72 71 70 69

(bytes)

Dimension of
5 12 22 35 51 70 117 201 Theoretical

the lattice
Time for LLL

< 0.01 0.02 0.16 1.17 5.88 30.22 605.9 12071.1 bound
(seconds)

This indeed leads to a best trade-off of 70 bytes required from the CPA and the
58 remaining bytes computed with lattices by performing 255 times the LLL
algorithm in the worst case, for a total of 68× 1m05s+ 255× 0.52s, i.e. 1 hour
16 minutes instead of 2 hours 20 minutes. Besides, this exhaustive search can be
performed in parallel and it also has the advantage to be deterministic.

However, when ε is 32-bit long, an exhaustive search becomes impractical and,
as depicted in Table 2, the best trade-off would be to perform a CPA on 72 bytes
and to compute the 56 remaining bytes with lattices (even if heuristic, it worked
in nearly 100% of the tests in practice), resulting in a total of 72×1m05s+30.22s,
i.e. 1 hour 18 minutes instead of the previous 2 hours 20 minutes.

6 Countermeasures

In this section, we describe different countermeasures to protect an implemen-
tation against the CA presented in Section 3.

6.1 Blind before Splitting

Our first proposition consists in avoiding the possibility to inject the same fault
during several signature computations. To do so, we deport the blinding of the
input message m before executing the two exponentiations modulo p and q:

m′ = m+ k0N mod k1N , (19)
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with k0 and k1 two n-bit random values generated at each algorithm execution
(n being typically 64). Hence S′

p = m′dp mod k2p and S′
q = m′dq mod k3q.

This countermeasure prevents an attacker from injecting always the same
error during the signature computation. Indeed if the fault is injected on m at
the very beginning of one exponentiation, then the corresponding error cannot
be fixed due to the blinding injected by Rel. (19).

Moreover, if the fault is injected when the message m is manipulated during
(19), then the error ε impacts the computation of both S′

p and S′
q, leading to

inexploitable faulty outputs.
Such a countermeasure induces a small overhead in terms of memory space

since m′ must be kept in memory during the first exponentiation but the execu-
tion time remains the same.

6.2 Verification Blinding

Our second countermeasure aims at annihilating the second hypothesis of our
attack: a predictive variable is manipulated in plain during the verification. To
do so, we inject a �log2(N)�-bit random r before performing the final reduction
with N , cf. Rel. (20). Therefore, each and every variable manipulated during the
verification is blinded.

((S̃e + r −m) mod k1N) mod N
?
= r . (20)

One may note that the final comparison should be performed securely with
regards to the attack described in [40] since information on εqiq could leak if
such a comparison was performed through a substraction.

The cost of such a countermeasure is negligible since it mainly consists in
generating a �log2(N)�-bit random variable.

7 Conclusion

This paper introduces a new Combined Attack on CRT-RSA. Even if a secure
implementation does not return the faulty signature when the computation is
disturbed, we show how to combine FI with SCA during the verification pro-
cess to obtain information on the faulty signature. Such information allows us
to factorize the public modulus and thus to recover the whole private key. We
also show that Coppersmith’s methods to solve univariate and bivariate modu-
lar polynomial equations can be used to significantly reduce the complexity of
our new attack. Finally, we provide simulations to confirm the efficiency of our
method and we present two countermeasures which have a very small penalty
on the performance of the algorithm.

Our main objective was to prove that stacking several countermeasures does
not provide global security despite addressing each and every attack separately.
Therefore, the main consequence of this paper is that fault injection counter-
measures must also be designed to resist SCA and vice versa.
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36. Blömer, J., May, A.: A Tool Kit for Finding Small Roots of Bivariate Polynomials
over the Integers. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
251–267. Springer, Heidelberg (2005)

37. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user
language. J. Symbolic Comput. 24, 235–265 (1997)

38. Howgrave-Graham, N.: Finding Small Roots of Univariate Modular Equations Re-
visited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355,
pp. 131–142. Springer, Heidelberg (1997)

39. Jochemsz, E., May, A.: A Strategy for Finding Roots of Multivariate Polynomials
with New Applications in Attacking RSA Variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

40. Lomne, V., Roche, T., Thillard, A.: On the Need of Randomness in Fault At-
tack Countermeasures – Application to AES. In: FDTC 2012, pp. 85–94. IEEE
Computer Society (2012)



Revocable Identity-Based Encryption Revisited:

Security Model and Construction

Jae Hong Seo and Keita Emura

National Institute of Information and Communications Technology (NICT), 4-2-1,
Nukui-kitamachi, Koganei, Tokyo, 184-8795, Japan

{jaehong,k-emura}@nict.go.jp

Abstract. In ACM CCS 2008, Boldyreva et al. proposed an elegant way
of achieving an Identity-based Encryption (IBE) with efficient revoca-
tion, which we call revocable IBE (RIBE). One of the significant benefit
of their construction is scalability, where the overhead of the trusted
authority is logarithmically increased in the number of users, whereas
that in the Boneh-Franklin naive revocation way is linearly increased.
All subsequent RIBE schemes follow the Boldyreva et al. security model
and syntax. In this paper, we first revisit the Boldyreva et al. security
model, and aim at capturing the exact notion for the security of the naive
but non-scalable Boneh-Franklin RIBE scheme. To this end, we con-
sider a realistic threat, which we call decryption key exposure. We also
show that all prior RIBE constructions except for the Boneh-Franklin
one are vulnerable to decryption key exposure. As the second contribu-
tion, we revisit approaches to achieve (efficient and adaptively secure)
scalable RIBE schemes, and propose a simple RIBE scheme, which is
the first scalable RIBE scheme with decryption key exposure resistance,
and is more efficient than previous (adaptively secure) scalable RIBE
schemes. In particular, our construction has the shortest ciphertext size
and the fastest decryption algorithm even compared with all scalable
RIBE schemes without decryption key exposure resistance.

Keywords: Identity-based encryption with revocation, decryption key
exposure.

1 Introduction

Identity-based Encryption (IBE) provides an important alternative way to avoid
the need for a public key infrastructure (PKI). Revocation capability is very
important for IBE setting as well as PKI setting. An efficient way to revoke
users in the traditional PKI setting has been studied in numerous studies
[2, 17, 18, 20, 30–33]. In contrast to PKI setting, there are only a few stud-
ies on IBE setting. First, Boneh and Franklin [11] consider one naive revocation
way as follows. Let ID be a receiver’s identity and T be a time to be decrypted.
An encryptor uses (ID, T ) as the public key, and a trusted authority, called key
generation center (KGC), issues private keys pvk(ID,T ) for all non-revoked user

K. Kurosawa and G. Hanaoka (Eds.): PKC 2013, LNCS 7778, pp. 216–234, 2013.
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IDs on each time period T via secure channels.1 We call the Boneh-Franklin
revocable IBE (RIBE) scheme BF-RIBE. However, the BF-RIBE does not scale
well; that is, the overhead on KGC is linearly increased in the number of users.
Recently, some studies [7, 13, 28] have aimed at offering scalability in the RIBE
scheme while preserving the same security level as the BF-RIBE.

For the first time, Boldyreva et al. [7] formalized the security model of RIBE
by capturing possible threats, and proposed the first scalable RIBE (BGK-RIBE)
scheme by combining Fuzzy IBE [36] with a binary tree data structure, which
was previously used in a revocation scheme [32]; Each user is given a long-term
secret key skID from KGC (via a secure channel as in IBE), and KGC broadcasts
key update kuT in each time period T (i.e., no secure channel is required in
this phase). Only a non-revoked user can generate a short-term decryption key
dkID,T from skID and kuT , which can be used to decrypt ciphertexts in time T .
By using a binary tree data structure, the size of kuT can be much smaller than
the overhead of KGC in the BF-RIBE scheme.2 Several scalable RIBE schemes
have been proposed and those are provably secure in the Boldyreva et al. security
model.

Our Contribution. Our contribution consists of two parts. First, we separate
the Boldyreva et al. security model and the security level of the BF-RIBE by
introducing a new realistic threat, which we call decryption key exposure, and
also show that all previous RIBE schemes, except the BF-RIBE, are vulnerable
to decryption key exposure.3 That is, we show that the Boldyreva et al. secu-
rity model does not fully capture the exact notion for security of the BF-RIBE
scheme. Roughly speaking, the Boldyreva et al. security model allows an ad-
versary to obtain any secret keys of a chosen identity. The only one restriction
is that if the adversary obtains skID∗ of the challenge identity ID∗, then ID∗

should be revoked before the challenge time T ∗. This model is a natural ex-
tension of the security of the ordinary IBE scheme. However, does this security
model formalize all realistic threats? For example, if the short-term decryption
key dkID,T (T �= T ∗) is leaked, is the RIBE scheme still secure? The answer to
this question may naturally appear to be ‘yes’ since the adversary can obtain
secret keys of any chosen identity, and the decryption key can be generated from
a secret key and (public) key update. But to show this thinking is wrong, we
give an exceptional attack (decryption key exposure), wherein an adversary is
allowed to obtain a decryption key dkID∗,T with the condition T �= T ∗. This
setting is based on the similar attitude of key-insulated PKE [16], where it is
desired that no information of the plaintext is revealed from a ciphertext even if

1 Boldyreva et al. [7] provided an alternative way for this naive solution to avoid a
secure channel, wherein the previous-time key is used to establish a public channel.
However, this does not match the framework of RIBE, and thus we do not discuss
it in this paper.

2 In fact, the size of kuT is O(R log(N/R)) if R ≤ N/2, and O(N − R), otherwise,
where N is the number of users and R is the number of revoked users.

3 We do not contradict the security proofs given in previous schemes. Our attack is
positioned in outside of their security models.
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Table 1. (Pairing-based) Revocable IBE schemes

CT Dec. Mpk Model Scalability DKE Assumption
size cost size resistance

BF [11] 1τG + 1τH 1p 3τG RO,
√

BDH
+2hash ft. Adaptive

BGK [7] 3τG + 1τGt 4p 6τG Standard,
√

DBDH
Selective

LV [28] 3τG + 2τGt 3p (n+ 6)τG Standard,
√

DBDH
Adaptive

Ours 3τG + 1τGt 3p (n+ 6)τG Standard,
√ √

DBDH
Adaptive

τG and τGt are the sizes of groups G and Gt, respectively, over which a bilinear pairing
e : G × G → Gt is defined. τH is the range-size of a hash function. p is the cost for
performing a bilinear pairing e. n is the size of the identity space. RO (Standard, respec-
tively) is a random oracle model (standard model, respectively). Selective (Adaptive,
respectively) means a selective-security model (adaptive-security model, respectively).
‘DKE’ means decryption key exposure. (D)BDH is (Decisional) Bilinear Diffie-Hellman
assumption.

all (short-term) decryption keys of a “different time period” are exposed. This
kind of attack is not covered by the Boldyreva et al. security model; that is,
the adversary may obtain not a secret key skID∗ but a decryption key dkID∗,T ,
and ID∗ can still be alive in the system in the challenge time period T ∗ �= T .
However, we can easily show that the BF-RIBE is still secure against decryption
key exposure since every decryption key in the BF-RIBE is a private key with a
distinct identity (ID, T ) in the Boneh-Franklin IBE scheme.

Next, we revisit approaches to achieve (adaptively secure) scalable RIBE
schemes, and propose a simple RIBE scheme by combining the (adaptively se-
cure) Waters IBE scheme [38] and the (selectively secure) Boneh-Boyen IBE
scheme [8]. This is the first scalable RIBE scheme with decryption key expo-
sure resistance, and is more efficient than previous (adaptively secure) scalable
RIBE schemes. Surprisingly, our construction does not require any additional
efficiency cost for achieving decryption key exposure resistance. In particular,
our construction has the shortest ciphertext size and a fastest decryption algo-
rithm even compared with all scalable RIBE schemes without decryption key
exposure resistance. Table 1 gives a detailed comparison with previous (efficient
pairing-based) schemes. From our standard model RIBE construction, we can
easily obtain more efficient RIBE construction in the random oracle model, by
replacing both the Waters hash and the Boneh-Boyen hash into cryptographic
hash functions that are modeled as random oracles.

Our construction is natural in the sense that its security can be reduced to
the original (non-revocable) Waters IBE scheme. However, in [28], Libert and
Vergnaud mentioned that this kind of simple construction using the original
Waters IBE scheme will face with the difficulty in the security proof, and they
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circumvented this by using a variant of the Waters IBE scheme [29] instead of
the original.4 We resolve this difficulty by carefully dealing with the means of
assigning nodes of a binary tree to each user, which we call random node assign-
ment technique. This allows us to circumvent the difficulty, and is explained in
section 4. Surprisingly, such a simple construction is secure against decryption
key exposure. The main difference between ours and previous constructions is
the re-randomizable property of the decryption key, whereas decryption keys use
the same randomness used in the secret key in all previous constructions.

Related Work. After the Boneh-Franklin RIBE scheme [11] and the Boldyreva
et al. scalable (but selectively secure) RIBE scheme [7], there were some results.
Libert and Vergnaud [28] proposed the first adaptively secure RIBE scheme (LV-
RIBE) without assuming any stronger assumption compared with that of the
Boldyreva et al.5 Later an RIBE scheme from lattices [13] also have proposed.
All these RIBE schemes are proven secure in the security model proposed by
Boldyreva et al. [7].

Revocable IBE with mediators [5, 10, 14, 26] has been considered, where
a special semi-trusted authority called a mediator who helps users to decrypt
each ciphertext. However, this essentially requires communication between users
and the mediator at each decryption and so is not totally satisfactory in some
practical circumstances.

Recently, several functional encryption (FE) schemes, which are generaliza-
tions of the IBE scheme, have been proposed [23, 36], and the revocation ca-
pability in FE has also been studied [3, 4, 34]. The revocation method used
in [4, 34] differs from RIBE contexts; the senders carry out the revocation, so it
does not require any private key update procedures on the recipient’s side. In [3]
Attrapadung and Imai considered two different ways for revocation method; one
is similar to that in [4, 34], and the other is similar to that in RIBE schemes.
However, decryption key exposure is not considered in [3], so achieving revo-
cation capabilities in FE with decryption key exposure resistance would be an
interesting future area of study.

All revocable IBE schemes use a strategy in which only decryption keys of
users who are not revoked in a time period T can be updated in time period
T . This strategy is similar to those for cryptosystems against key exposure such
as key-insulated PKE [6, 16, 27] and IBE [21, 22, 39, 40], forward secure en-
cryption [12], and intrusion-resilient PKE [15]. However, these systems require
a secure channel between a user and a key issuer or do not support scalability.

Outline. The next section gives preliminaries. In Section 3, we provide def-
initions for the RIBE scheme and explain the vulnerability of previous RIBE
schemes against decryption key exposure. Section 4 gives our construction for a

4 In a footnote of [28], there is a remark that a two-level hierarchical version of the
Waters original IBE seems to work, however the details are not provided.

5 Both schemes are secure under the Decisional Bilinear Diffie-Hellman (DBDH) as-
sumption.
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scalable RIBE scheme (with decryption key exposure resistance) and a high-level
description of its security proof. We discuss about a room for extention of our
RIBE scheme in Section 5. Finally, we summarize our result and leave several
interesting open problems in Section 6.

2 Bilinear Groups and Waters IBE Scheme

Definition 1 (Bilinear Groups). A bilinear group generator G(·) is an algo-
rithm that takes as input a security parameter λ and outputs a bilinear group
(p,G,Gt, e), where p is a prime of size 2λ, G and Gt are cyclic groups of order
p, and e is an efficiently computable bilinear map e : G×G→ GT with

– Bilinearity : for all u, u′, v, v′ ∈ G, e(uu′, v) = e(u, v)e(u′, v) and e(u, vv′) =
e(u, v)e(u, v′),

– Non-degeneracy : for a generator g of G, e(g, g) �= 1Gt , where 1Gt is the
identity element in Gt.

In the security proof of our RIBE construction, we provide a reduction from
our IND-RID-CPA secure RIBE scheme to the IND-ID-CPA secure Waters IBE
scheme, which is secure under the DBDH assumption. We give the definition of
the DBDH assumption, description of the Waters IBE scheme, and IND-ID-CPA
security of ordinary IBE schemes.

Definition 2 (Decision Bilinear Diffie-Hellman (DBDH) Assumption).
Given a bilinear group (p,G,Gt, e) generated by G(λ), define two distributions
D0(λ) = (g, ga, gb, gc, e(g, g)abc) ∈ G4×GT and D1(λ) = (g, ga, gb, gc, e(g, g)z) ∈
G4 × GT , where g

$← G and a, b, c, z
$← Zp. The DBDH problem in the bilinear

group (p,G,Gt, e) is to decide a bit b from given Db, where b
$← {0, 1}. The

advantage of A in solving the DBDH problem in the bilinear group (p,G,Gt, e)
is defined by

AdvDBDHG,A (λ) =
∣∣∣Pr[A(D0(λ))→ 1]− Pr[A(D1(λ))→ 1]

∣∣∣.
We say that the DBDH assumption holds in the bilinear group (p,G,Gt, e) if no
Probabilistic Polynomial Time (PPT) algorithm has a non-negligible advantage
in solving the DBDH problem in the bilinear group (p,G,Gt, e).

Definition 3 (Waters IBE). The Waters IBE consists of four algorithms
SetupWat, PKGWat, EncWat, and DecWat.

– SetupWat(λ) : Generate a bilinear group (p,G,Gt, e)← G(λ). Choose g, g2, u′,
u1, . . . , un

$← G and α
$← Zp. Set g1 = gα. Publish a master public key

mpkWat = {g, g1, g2, u′, u1, . . . , un} and keep a master secret key mskWat =
{gα2 }.
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– PKGWat(mpkWat,mskWat, ID) : Parse ID = (b1, . . . , bn) ∈ {0, 1}n, where for

all i ∈ [1, n], bi ∈ {0, 1}. Choose r $← Zp and return the private key

pvkID = (gα2 (u
′
n∏
i=1

ubii )
r, gr).

– EncWat(mpkWat, ID,M) : Parse ID = (b1, . . . , bn) ∈ {0, 1}n. Choose t $← Zp
and return a ciphertext

CTWat := (M · e(g1, g2)t, g−t, (u′
n∏
i=1

ubii )
t).

– DecWat(mpkWat, pvkID,CTWat) : Parse CTWat = (C0, C1, C2) and pvkID =
(d0, d1) and return

C0 · e(C1, d0) · e(C2, d1).

Definition 4 (IND-ID-CPA). Let IBE = (Setup,PKG,Enc,Dec) be an IBE
scheme. For adversary A define the following experiment:

ExpIND-ID-CPA
IBE,A (λ)
(mpk,msk)← Setup(λ);
(M∗

0 ,M
∗
1 , ID

∗, st)← APKG(·)(mpk) such that |M∗
0 | = |M∗

1 |;
b

$← {0, 1};
CT∗ ← Enc(mpk, ID∗,M∗

b );

b′ ← APKG(·)(CT∗, st);
If b = b′ return 1 else return 0.

In the above experiment, PKG(·) is an oracle, which returns a private key pvkID
of given identity ID, and A is not allowed to send ID∗ to PKG(·).

An IBE scheme is said to be IND-ID-CPA if for all PPT adversaries A the
following advantage is negligible in the security parameter λ.

AdvIND-ID-CPA
IBE,A (λ) =

∣∣∣Pr [ExpIND-ID-CPA
IBE,A (λ) = 1

]
− 1

2

∣∣∣.
Theorem 1 ([38]). The Waters IBE scheme is IND-ID-CPA secure under
DBDH assumption. More precisely, if there exists an adversary A breaking IND-
ID-CPA security of the Waters IBE scheme with ε advantage, then by using A,
we can construct an algorithm B solving DBDH problem in the same bilinear
group, over which the Waters IBE scheme is defined, with O( ε

nq ) advantage,
where q is the maximum number of key extraction queries issued by A.

3 Definition of RIBE Scheme

In this subsection, we give the formal definition of the syntax and the security
model of our RIBE construction. First, we give the syntax of RIBE scheme.
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Our syntax of RIBE scheme is slightly different from previous one [7, 28]6 ; Our
DKG algorithm is probabilistic, whereas the Boldyreva et al. one is deterministic.7

ARIBE schemeRIBE consists of seven algorithms (Setup,PKG,KeyUp,DKG,Enc,
Dec,Revoke). LetM, I, and T be a message space, an identity space, and a time
space, respectively.

Definition 5 (Syntax of RIBE).

Setup : This is the (stateful) setup algorithm which takes as input the security
parameter λ and the number of users N , and outputs the public parameter
mpk, the master secret key msk, the initial revocation list RL = ∅, and a
state st.

PKG : This is the (stateful) private key generation algorithm which takes as input
mpk, msk, an identity ID ∈ I, and outputs a secret key skID associated with
ID and an updated state st.

KeyUp : This is the key update generation algorithm which takes as input mpk,
msk, the key update time T ∈ T , the current revocation list RL, and st, and
outputs the key update kuT .

DKG : This is the probabilistic decryption key algorithm which takes as input
mpk, skID, and kuT , and outputs a decryption key dkID,T or ⊥ if ID has
been revoked.

Enc : This is the probabilistic encryption algorithm which takes as input mpk,
ID ∈ I, T ∈ T , and a message M ∈M, and outputs a ciphertext CT.

Dec : This is the deterministic decryption algorithm which takes as input mpk,
dkID,T , and CT, and outputs M or ⊥ if CT is an invalid ciphertext.

Revoke : This is the stateful revocation algorithm which takes as input an identity
to be revoked ID ∈ I, a revocation time T ∈ T , the current revocation list
RL, and a state st, and outputs an updated RL.

Every RIBE scheme should satisfy the following correctness condition: For any
(mpk,msk)← Setup(λ),M ∈M, all possible state st, and a revocation list RL, if
ID ∈ I is not revoked on a time T ∈ T , then for (skID, st)← PKG(mpk,msk, ID,
st), kuT ← KeyUp(mpk, msk, T, RL, st), and dkID,T ← DKG(mpk, skID, kuT ),

Dec(mpk, dkID,T ,Enc(mpk, ID, T,M)) =M holds.

Next, we provide a security definition of RIBE scheme that captures realistic
threats including decryption key exposure.

Definition 6 (IND-RID-CPA). Let RIBE = (Setup,PKG,KeyUP,DKG,Enc,
Dec,Revoke) be a RIBE scheme. For an adversary A define the following exper-
iment:
6 Boldyreva et al. [7] define the selective security, and Libert-Vergnaud [28] extends it
to adaptive security.

7 All DKG algorithms in the previous constructions are deterministic and invertible in
the sense that a secret key can be recovered from a corresponding decryption key (and
key update), and so previous schemes are vulnerable against decryption key exposure.
To prevent such an attack by inversion, we define DKG to be probabilistic.
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ExpIND-RID-CPA
RIBE,A (λ,N)
(mpk,msk)← Setup(λ,N);
(M∗

0 ,M
∗
1 , ID

∗, T ∗, st)← AO(mpk) such that |M∗
0 | = |M∗

1 |;
b

$← {0, 1};
CT∗ ← Enc(mpk, ID∗, T ∗,M∗

b );
b′ ← AO(CT∗, st);
If b = b′ return 1 else return 0.

In the above experiment, O is a set of oracles {PKG(·),KeyUp(·),Revoke(·, ·),
DKG(·, ·)} defined as follows:

PKG(·) : For ID ∈ I, it returns skID (by running PKG(mpk,msk, ID, st) →
skID).

KeyUp(·) : For T ∈ T , it returns kuT (by running KeyUp(mpk,msk, T, RL, st)→
kuT ).

Revoke(·, ·) : For ID ∈ I and T ∈ T , it returns the updated revocation list RL
(by running Revoke(mpk, ID, T,RL, st)→ RL).

DKG(·, ·) : For ID ∈ I and T ∈ T , it returns dkID,T (by running PKG(mpk,msk,
ID, st))→ skID and DKG(mpk, skID, kuT )→ dkID,T ).

A is allowed to issue the above oracles with the following restrictions:8

1. KeyUp(·) and Revoke(·, ·) can be queried on time which is greater than or
equal to the time of all previous queries.

2. Revoke(·, ·) cannot be queried on time T if KeyUp(·) was queried on T .
3. If PKG(ID∗) was queried, then Revoke(ID∗, T ) must be queried for T ≤ T ∗.
4. DKG(·, ·) cannot be queried on time T before KeyUp(·) was queried on T .
5. DKG(ID∗, T ∗) cannot be queried.

A RIBE scheme is said to be IND-RID-CPA if for all PPT adversaries A and
polynomials N , the following advantage is negligible in the security parameter λ.

AdvIND-RID-CPA
RIBE,A (λ,N) =

∣∣∣Pr [ExpIND-RID-CPA
RIBE,A (λ,N) = 1

]
− 1

2

∣∣∣.
3.1 Security Analysis of Previous RIBE Schemes

In this section, we analyze the security of previous RIBE schemes in our secu-
rity model, which assumes a stronger adversary than Boldyreva et al. adver-
sarial model: our adversary can access the decryption key oracle, which is not
given in the Boldyreva et al. model. First, we show that the (simple but non-
scalable) BF-RIBE scheme is secure in the new adversarial model. Next, we show
that all previous RIBE schemes except for the BF-RIBE are vulnerable against

8 The fourth and fifth restrictions are the difference between our definition and
Boldyreva et al.’s one [7].
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decryption key exposure. More precisely, we can construct polynomial time adver-
saries using decryption key oracles.9 We briefly explain the BGK-RIBE scheme
and the LV-RIBE scheme are vulnerable against decryption key exposure.

Boneh-Franklin RIBE Scheme: To fit the BF-RIBE scheme into our syntax
of the RIBE scheme, BF-RIBE can be instantiated with the IND-CPA secure
symmetric encryption scheme. Let EncBF(mpkBF, ID,M) and PKGBF(mskBF, ID)
be an encryption algorithm and private key generation algorithm for the BF-
IBE scheme, respectively, where (mpkBF,mskBF) is a pair of a master public
key and master secret key, ID is a receiver’s identity, and M is a message.
Let SE = (SEnc, SDec) be a symmetric encryption scheme. For each user ID,
KGC randomly chooses a secret key of SE and gives it to the user ID as
skID. The encryption algorithm of the (modified) BF-RIBE scheme is defined
as Enc(mpkBF, ID, T,M) := EncBF(mpkBF, (ID, T ),M). In each time period T ,
KGC runs PKGBF(mskBF, (ID, T )) → pvk(ID,T ), where pvk(ID,T ) will be a de-
cryption key for ID on time T , that is, pvk(ID,T ) = dkID,T . Then KGC posts
kuT = {SEncskID (dkID,T )|ID is a non-revoked user in time period T }. Then,
only non-revoked users can recover dkID,T . If the BF-IBE scheme is IND-ID-CPA
secure and the SE is IND-CPA secure, then the (modified) BF-RIBE scheme is
IND-RID-CPA secure, which can easily be proven by using the standard hybrid
argument.

Boldyreva-Goyal-Kumar RIBE Scheme: Boldyreva et al. [7] proposed the
first scalable but selectively secure RIBE scheme by using Fuzzy IBE [36]. Due to
the collusion resistance of the Fuzzy IBE scheme, no revoked user can compute
its decryption key. The user’s decryption keys are associated with two attributes:
identity ID and time period T . The decryption key is split into two components
corresponding to ID and T . A secret key skID is associated with ID and key
update kuT is associated with T . The DKG algorithm is only to put parts of skID
and kuT together.10 More concretely, the PKG algorithm returns {(x,Dx, dx)}x∈I

which is a private key of a user who is assigned to a leaf node η, and the KeyUp
algorithm returns {(y, Ey, ey)}y∈J. If a user is not revoked on T , then there exist
x where x ∈ I∩J. The DKG algorithm finds such a x, and returns (Dx, Ex, dx, ex)
which is a decryption key dkID,T of this user on time T . Therefore, an adversary
that has dkID∗,T and kuT can always recover a part (Dx∗ , dx∗) of skID∗ for
some x∗ if ID∗ is not revoked in time T , and can always compute dkID∗,T∗ =
(Dx∗ , Ex∗ , dx∗ , ex∗) from the parts (Dx∗ , dx∗) of skID∗ and (Ex∗ , ex∗) of kuT∗ if
ID∗ is still not revoked in the challenge time T ∗.

9 As we mentioned in the introduction, a goal of this subsection is to not contradict the
security proofs of previous RIBE schemes. Our attack is positioned outside of their
security models.

10 Chen et al. [13] proposed an RIBE scheme based on lattices by applying the Agrawal
et al. lattice-based IBE [1]. They used the same methodology as that of BGK-RIBE,
where a private key itself is contained in a corresponding decryption key. Therefore,
the same attack works.
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Libert-Vergnaud RIBE Scheme: Libert and Vergnaud [28] proposed the
first adaptively secure RIBE scheme without random oracles. In the LV-RIBE
scheme, the process of DKG(mpk, skID, kuT ) is component-wise multiplications
or additions between skID and kuT . Since kuT is public information, if an ad-
versary obtains a decryption key dkID∗,T , where T �= T ∗, it can then recover
skID in polynomial-time by performing the inverse process of DKG, that is, di-
visions or subtractions. More concretely, the PKG algorithm returns skID =
{(i, dID,i)}i∈I, where dID,i := (d1,i, d2,i, r1,i), and the KeyUp algorithm returns
kuT = {kuT,j}j∈J, where kuT,j := (ku1,j , ku2,j , r2,j). The DKG algorithm parses
skID = {(i, dID,i)}i∈I and kuT = {(j, kuT,j}j∈J. If there is no pair (i, j) ∈ I × J

such that i = j, then return ⊥. Otherwise, choose such pair i = j. Return
dkID,T = (dT,1, dT,2, dT,3, dT,4) = (d1,i · ku1,i, d2,i, ku2,i, r1,i + r2,i). Therefore,
anyone can easily compute (d1,i, d2,i, r1,i) ∈ skID from “both” dkID,T and kuT,i
such that d1,i = dT,1/ku1,i and r1,i = dT,4 − r2,i. Moreover, d2,i is directly
contained in dkID,T .

One may expect that we can impede this attack by adding a randomization
process in DKG, but it does not seem easy to prove the security of such a mod-
ification of the LV-RIBE scheme. LV-RIBE scheme is based on a variant of the
Waters IBE (LV-IBE) scheme proposed in [29]. The security strategy of the LV-
IBE is somewhat similar to the Gentry IBE [19] such that the simulator can
compute a private key for any identity, even the challenge identity, in the proof.
The simulator can generate a private key using “fixed” randomness and this
fixed randomness is also used in making the challenge ciphertext.11 Therefore,
in the adversarial view, the challenge ciphertext is uniformly generated since it
cannot obtain the corresponding private key of the challenge ciphertext. Since
the LV-RIBE is based on the LV-IBE, the LV-RIBE does not support full re-
randomization of the decryption key. Therefore, decryption key exposure reveals
randomness used in the secret key. Since kuT∗ is public, if dkID∗,T∗ is leaked, the
randomness of skID∗ will be also leaked. (Not all parts of the randomness, but
fixed randomness, which is essentially used in the security proof, will be leaked.)
As mentioned, the simulation of this type of IBE scheme, such as the LV-IBE
and the Gentry IBE scheme, succeeds only when the fixed randomness of the
private key is hidden from the adversary’s view. Therefore, we cannot construct
a simulator for the LV-RIBE scheme when we directly follow the same strategy
used in the LV-IBE scheme.

4 Our Construction

In this section, we propose an RIBE scheme. For the revocation process, we
basically follow previous RIBE schemes’ strategy using a binary tree structure;
that is, to reduce the key update costs, we apply a binary tree structure and

11 The term “fixed” means that the simulator can generate only one private key using
fixed randomness per each identity after publishing mpk. A decryption key may
have other flexible randomness, but at least a part of the randomness should be
fixed according to the identity.
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7654

2 3

root

8 9 10 11 12 13 14 15

Fig. 1. Example of KUNode

define the KUNode algorithm. In the actual schemes, this algorithm is used in a
black-box manner.

4.1 KUNode Algorithm

We introduce the KUNode algorithm and Boldyreva et al.’s idea for efficient
revocation.

Definition 7 (KUNode Algorithm [7]). This algorithm takes as input a binary
tree BT, revocation list RL, and time T , and outputs a set of nodes. A formal
description of this algorithm is as follows: If η is a non-leaf node, then ηleft and
ηright denote the left and right child of η, respectively. Each user is assigned to
a leaf node. If a user (assigned to η) is revoked on time T , then (η, T ) ∈ RL.
Path(η) denotes the set of nodes on the path from η to root. The description of
KUNode is given below.

KUNode(BT, RL, T ) :

X, Y← ∅;
∀(ηi, Ti) ∈ RL

If Ti ≤ T then add Path(ηi) to X

∀x ∈ X

If xleft �∈ X then add xleft to Y

If xright �∈ X then add xright to Y

If Y = ∅ then add root to Y

Return Y

Figure 1 gives a simple example to help the readers easily understand KUNode(BT,
RL, T ). In the example, let a user u3 (assigned to x10) be revoked.
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Then, X = Path(x10) = {x10, x5, x2, root = x1}, and Y = {x3, x4, x11}. Intu-
itively, all users, except u3, have a node x ∈ Y that is contained in the set of
nodes on the path from their assigned node to root: e.g., x4 for u1 and u2, x11
for u4, and x3 for u5, u6, u7, and u8, whereas Y ∩ Path(x10) = ∅.

When a user joins the system, KGC assigns it to the leaf node η of a com-
plete binary tree, and issues a set of keys, wherein each key is associated with
each node on Path(η). At time period T , KGC publishes key updates for a set
KUNode(BT, RL, T ). Then, only non-revoked users have at least one key corre-
sponding to a node in KUNode(BT, RL, T ) and are able to generate decryption
keys on time T .

4.2 Our Construction

For a simple description of our RIBE scheme, we use notation FWat and FBB to
denote the respective hash functions used in the Waters IBE scheme and Boneh-
Boyen IBE scheme. More precisely, for an identity space I and time space T ,
define FWat : I → G and FBB : T → G by

FWat(ID) = u′
n∏
i=1

ubii and FBB(T ) = v′vT , respectively,

where ID = (b1, b2, . . . , bn) ∈ {0, 1}n.
Before describing our construction, we will explain the intuition behind it.

As mentioned, we need a different approach to achieve an (adaptively secure)
RIBE scheme with decryption key exposure. To this end, we begin with a simple
two-level HIBE scheme (without delegating property). More precisely, the first
level is assigned for identity and the second level is assigned for the time pe-
riod. Since we consider only polynomially bounded time (as all previous RIBE
schemes), we combine the adaptively secure Waters IBE scheme (for the first
level) and the selectively secure Boneh-Boyen IBE scheme (for the second level).
The decryption key of our RIBE scheme is exact second level secret key of the
HIBE scheme, that is,

dkID,T = (gα2 FWat(ID)rFBB(T )
s, gr, gs).

The above decryption key allows user to re-randomize r and s in the exponent
without knowing master key gα2 .

12 Decryption key exposure will then not be
helpful for the adversary in obtaining information about the challenge ciphertext
since this combined two-level hierarchical extension can be considered as a secure
HIBE scheme (for exponentially many identities and polynomially many time
periods) in the sense that it has resistance against collusion attacks. To generate
secret keys and key updates, we use a technique similar to that used in [28].

12 As mentioned in section 3.1, the LV-RIBE does not support such re-randomization
process in decryption keys, and this is the essential difference between ours and
previous schemes.
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The master secret key is randomly divided into two parts, which are respectively
contained in the secret key and key updates, that is,

(gαθ FWat(ID)rθ , grθ) ∈ skID and (g̃αθ FBB(T )
sθ , gsθ ) ∈ kuT ,

where gθ · g̃θ = g2. Therefore, if the adversary cannot obtain both the secret
key and key updates, which will contribute to computing the target decryption
key dkID∗,T∗ , then in the security proof we can simulate either the secret key or
key update. (We can assume that the part not given to the adversary contains
information about the master key and the other part is a random element.)

Even if the above intuition explains the decryption key exposure resistance of a
combination of the Waters IBE and the Boneh-Boyen IBE, we need an additional
technique to circumvent the difficulty pointed out in [28]. The difficulty occurs
when the adversary issues a secret key query for the target identity ID∗. For
each node θ in the binary tree, a random value gθ is assigned. Whenever PKG
is run, the identity ID is assigned in the leaf node and the value gθ on the path
to the root node is used in the secret key skID. In the security proof, whenever
a secret key query or key update query regarding ID is issued, the simulator
should decide which of two shares gαθ and g̃αθ will contain the master secret key,
where θ is on the path to the root of tree; that is, one share is gα2 Sθ and the
other is S−1

θ for random group element Sθ. However, when the target identity
ID∗ is unknown and has yet to be assigned a leaf, the other path regarding the
different identity ID may or may not have connection with the path regarding
ID∗ (except the root node). To address this issue, Libert and Vergnaud used a
variant of the Waters IBE wherein the simulator can generate at least one valid
decryption key for each identity and can answer queries regardless of whether
nodes are on the path from ID∗ to the root node. However, our construction does
not support a simulation strategy such as is used in [28, 29] since the original
Waters IBE scheme uses a different proof strategy, called partitioning, in the
security proof. Instead, we carefully deal with the method to assign identity into
the tree. In our RIBE scheme, whenever a new identity joins the system, KGC
assigns a random leaf node among the undefined nodes.13 In the security proof,
this simple random node assignment technique allows the simulator to pre-assign
a random leaf node for the target identity (therefore nodes on the path to the
root node are also pre-determined) and to simulate for a secret key, decryption
key, and key update queries before receiving queries regarding ID∗. When the
first query regarding ID∗ is issued, the simulator can use the pre-assigned leaf
node for ID∗. We can show that this simulation for node assignment is identically
distributed to that in the real protocol.

We describe the proposed RIBE scheme below.

Setup(λ,N): Randomly choose g, g2, u
′, u1, . . . , un, v

′, v
$← G and α

$← Zp. Set
mpk = {g, g1 = gα, g2, u

′, u1, . . . , un, v
′, v}, msk = {gα2 }, RL = ∅, and st =

BT, where BT is a binary tree
with N leaves.

13 KGC can use a pseudorandom generator for this process.
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PKG(mpk,msk, ID, st): Randomly choose an unassigned leaf η from BT, and
store ID in the node η. For each node θ ∈ Path(η),

1. Recall gθ if it was defined. Otherwise, gθ
$← G and store (gθ, g̃θ = g2/gθ)

in the node θ.14

2. Choose rθ
$← Zp.

3. Compute (Dθ,0, Dθ,1) := (gαθ FWat(ID)rθ , grθ).
Return skID = {(θ,Dθ,0, Dθ,1)}θ∈Path(η).

KeyUp(mpk,msk, T, RL, st): Parse st=BT. For eachnode θ ∈ KUNode(BT, RL, T ),
1. Retrieve g̃θ (note that g̃θ is always pre-defined in the PKG algorithm).

2. Choose sθ
$← Zp.

3. Compute (D̃θ,0, D̃θ,1) := (g̃αθ FBB(T )
sθ , gsθ ).

Return kuT = {(θ, D̃θ,0, D̃θ,1)}θ∈KUNode(BT,RL,T ).

DKG(mpk, skID, kuT ): Parse skID = {(θ,Dθ,0, Dθ,1)}θ∈I and kuT = {(θ, D̃θ,0,

D̃θ,1)}θ∈J. If I ∩ J = ∅, then return ⊥. Otherwise, choose θ ∈ I ∩ J and

r, s
$← Zp and return

dkID,T = (Dθ,0 · D̃θ,0 · FWat(ID)r · FBB(T )
s, Dθ,1 · gr, D̃θ,1 · gs).

Enc(mpk, ID, T,M): Choose a random integer t
$← Zp and return

CT = (M · e(g1, g2)t, g−t, FWat(ID)t, FBB(T )
t).

Dec(mpk, dkID,T ,CT): Parse CT = (C0, C1, C2, C3) and dkID,T = (D1, D2, D3)
and return

C0

3∏
i=1

e(Ci, Di).

Revoke(mpk, ID, T,RL, st): Let η be the leaf node associated with ID. Update
the revocation list by RL← RL∪{(η, T )} and return the updated revocation
list.

We should check the correctness of our scheme: Assume that mpk, msk, M,
I, T , st, and RL are normally generated and fixed. Moreover, assume that
skID = {(θ,Dθ,0, Dθ,1)}θ∈Path(η) is a secret key of a non-revoked user ID on time

T and kuT = {(θ, D̃θ,0, D̃θ,1)}θ∈KUNode(BT,RL,T ). Then, for some θ ∈ Path(η) ∩
KUNode(BT, RL, T ), DKG should output

dkID,T = (Dθ,0 · D̃θ,0 · FWat(ID)r · FBB(T )
s, Dθ,1 · gr, D̃θ,1 · gs)

= (gα2 FWat(ID)rθ+rFBB(T )
sθ+s, grθ+r, gsθ+s).

For an encryption of M , CT = (M · e(g1, g2)t, g−t, FWat(ID)t, FBB(T )
t),

Dec(mpk, dkID,T ,CT)
=M · e(g1, g2)te(g−t, gα2 FWat(ID)rθ+rFBB(T )

sθ+s)e(FWat(ID)t, grθ+r)
·e(FBB(T )

t, gsθ+s)
=M.

14 As in the Libert-Vergnaud scheme, KGC can use a pseudorandom generator instead
of storing gθ.
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We provide a (polynomial-time) reduction to the Waters IBE scheme, which is
a non-revocable IBE secure under the DBDH assumption. Therefore, our scheme
is secure under the DBDH assumption.

Theorem 2. If there exists an adversary A attacking IND-RID-CPA security
of the proposed RIBE scheme, then there exists another adversary B breaking
IND-ID-CPA security of the Waters IBE scheme.

Because of space constraints, we relegate the proof of Theorem 2 in the full
version. Note that the reduction loss in our security proof is 2q|T |. Since the
security proof to show that the Waters IBE scheme is secure under DBDH as-
sumption losses O(nq) [38], our RIBE scheme is secure under DBDH assumption
with O(nq2|T |) reduction loss. Although our proof is loose, we note that the pre-
vious adaptively secure LV-RIBE scheme lose the same factor O(nq2|T |) in the
security proof.

5 Discussion

In this section, we discuss several issues related to RIBE schemes.

Short Public Parameters: In high level explanation, our technique is to add the
revocation capability to the IBE scheme without sacrificing efficiency, and we
show that the underlying IBE scheme supporting key re-randomization can be
provably secure against decryption key exposure. In fact, we essentially used the
Water IBE as the underlying IBE scheme of our RIBE construction. Therefore,
we may construct an RIBE scheme from other IBE schemes. We expect that a
scalable RIBE scheme with decryption key exposure resilience can be constructed
from the Lewko-Waters IBE [25], which supports key re-randomization. Then, we
can reduce the size of public parameter, though we need to use composite-order
bilinear groups and other complexity assumptions. Note that Lewko have shown
a Lewko-Waters IBE scheme under the prime-order group setting [24], however,
this scheme does not support key-rerandomization. It would be interesting to
construct a RIBE scheme with decryption key exposure resilience and short
public parameters in the prime-order group setting.

Better Efficiency from Random Oracle Heuristic: In our construction, we used
two level hierarchical construction by combining the Water IBE and the Boneh-
Boyen IBE, where both schemes are secure in the standard model. Both schemes
use hash functions FWat and FBB, respectively. The role of both hash functions
is to apply partitioning technique; that is, in the security proof, the simulator
divides the domain of hash functions into two subsets, one for the challenge
query and the other for key extraction queries. By changing these two hash
functions into cryptographic hash functions that are modeled as random oracles,
we can achieve better efficiency since the random oracles allow such a partitioning
technique but require low computational cost. Furthermore, by using one more
hash function and standard techniques for random oracle model schemes, we
can reduce the security of the random oracle model RIBE scheme to the BDH
problem.
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Revocable Identity-Based Signature (RIBS): We basically used two level hierar-
chical construction and it is not difficult to extend our construction to three level
hierarchical construction (but revocation capability is allowed only for the first
level). Therefore, we can apply the well-known Naor transformation from an IBE
scheme to a signature scheme. More precisely, from the three level hierarchical
construction, we can obtain a scalable identity-based signature scheme, where
the first level is for identity, the second level is for time period, and the third
level is for message. For better efficiency, we can apply the same transformation
used in the previous paragraph to here, and then obtain an efficent RIBS scheme
in the random oracle model.

Chosen Ciphertext Security: Due to the property of the underlying Waters IBE
scheme, we can extend our RIBE scheme to a HIBE scheme with efficient revo-
cation only for the first level users. There is a well-known transformation from
a two-level HIBE scheme to a CCA-secure IBE scheme [9]. Therefore, we can
obtain CCA-secure RIBE scheme by applying this transformation.

6 Conclusion

We revisited both the security model and construction methodology for RIBE
schemes. First, we pointed out a gap between the Boldyreva et al. security model
and the trivial but non-scalable BF-RIBE construction. We introduced a new
security model for RIBE scheme by capturing realistic threat, called decryption
key exposure, and proposed the first scalable RIBE construction in the new
security model.

There are several interesting remaining problems. From a theoretical point of
view, one natural question is how to construct a generic transformation from
IBE to RIBE. In the practice, revocation is a necessary functionality in the pub-
lic key encryption schemes. Therefore, finding efficient revocation methods in
other encryption schemes such as (hierarchical) inner-product encryption [35]
and attribute-based encryption [36] are also important. In this paper, we only
focused on the pairing-based schemes, but it is interesting to construct schemes
based on other mathematical structure such as lattice that are secure in our
security model. Recently, a revocable hierarchical IBE (RHIBE) scheme is pro-
posed, but its security is proven only in the weaker security notion, selective
security [37]. Achieving full security in RHIBE construction is a direct open
problem. To the best of our knowledge, all scalable RIBE use the Complete Sub-
tree [32] method for revocation capability. Therefore, it is interesting to combine
IBE with different revocation methods such as the Subset Difference [32].
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Abstract. Inner-product encryption (IPE) provides fine-grained access control
and has attractive applications. Agrawal, Freeman, and Vaikuntanathan (Asiacrypt
2011) proposed the first IPE scheme from lattices by twisting the identity-based
encryption (IBE) scheme by Agrawal, Boneh, and Boyen (Eurocrypt 2010). Their
IPE scheme supports inner-product predicates over Rμ, where the ring is R = Zq.
Several applications require the ring R to be exponentially large and, thus, they
set q = 2O(n) to implement such applications. This choice results in the AFV IPE
scheme with public parameters of size O(μn2 lg3 q) = O(μn5) and ciphertexts of
size O(μn lg3 q) = O(μn4), where n is the security parameter. Hence, this makes
the scheme impractical, as they noted.

We address this efficiency issue by “untwisting” their twist and providing an-
other twist. Our scheme supports inner-product predicates over Rμ where R =
GF(qn) instead of Zq. Our scheme has public parameters of size O(μn2 lg2 q) and
ciphertexts of size O(μn lg2 q). Since the cardinality of GF(qn) is inherently ex-
ponential in n, we have no need to set q as the exponential size for applications.

As side contributions, we extend our IPE scheme to a hierarchical IPE (HIPE)
scheme and propose a fuzzy IBE scheme from IPE. Our HIPE scheme is more ef-
ficient than that developed by Abdalla, De Caro, and Mochetti (Latincrypt 2012).
Our fuzzy IBE is secure under a much weaker assumption than that employed
by Agrawal et al. (PKC 2012), who constructed the first lattice-based fuzzy IBE
scheme.

Keywords: predicate encryption, (hierarchical) inner-product encryption, lattices,
learning with errors, full-rank difference encoding, pseudo-commutativity.

1 Introduction

Background: Predicate encryption (PE) gives fine-grained access control beyond
identity-based encryption (IBE). In a PE scheme, a receiver corresponding to a key
attribute v can decrypt a ciphertext corresponding to a ciphertext attribute w if and only
if P(v,w) = 1, where P is a predicate.

Katz, Sahai, and Waters [30] introduced inner-product encryption (IPE), which is
PE that supports the inner-product predicate: that is, predicate PIPE : Rμ × Rμ →
{0, 1}, where R is a finite ring, defined as PIPE( #„v , #„w) = 1 if and only if #„w� #„v = 0.
They showed that several predicates, for example, equalities, hidden-vector predicates,
polynomial evaluations, and CNF/DNF formulae, can be encoded as an inner product
that exemplifies the serviceability of IPE. Following their work and by exploiting the

K. Kurosawa and G. Hanaoka (Eds.): PKC 2013, LNCS 7778, pp. 235–252, 2013.
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properties of the pairing on composite-number or prime order groups, recent studies on
IPE have enhanced security or introduced compact schemes [30,36,31,37,10,40,38,39],
and have left an open problem of constructing IPE from other assumptions, say, factor-
ing, decisional Diffie-Hellman (DDH), or the learning with errors (LWE) assumptions.

In 2011, Agrawal, Freeman, and Vaikuntanathan [6] overcame the hurdle, i.e., the
problem of constructing IPE without pairing. They proposed the first IPE scheme based
on the LWE assumption [46] and left three open problems: improving security, effi-
ciency, and functionality.

Let us focus on the second problem, the efficiency issue. Their scheme supports an
inner-product predicate over R = Zq, and has public parameters of size Θ(μn2 lg3 q)
and ciphertexts of size Θ(μn lg3 q + � lg q), where n is the security parameter, μ is the
dimension of the vector space, and � is the length of a message. (In what follows, we
will ignore Θ(� lg q).) This seems satisfactory for actual use.

In several applications of IPE, we require exponentially large R (see below). To im-
plement such applications, Agrawal et al. set q = 2O(n) [6, Section 6]. This setting results
in the length of ciphertext Θ(μn4), which shows the impracticality of the scheme in the
real world.

Motivated by applications: We were motivated to improve the efficiency by applica-
tions of IPE that require large R, which we discuss here. Roughly speaking, we require
the ring R to be exponentially large in order to implement an application when we have
to take AND (logical conjunction) of predicates by using the technique proposed by
Katz, Sahai, and Waters [30]1. Since the existing pairing-based IPE serves inner prod-
ucts over the ring R = Zq or ZN , where q,N is an exponential of a security parameter,
there are no problematic issues. Unfortunately, the exponential magnitude of R makes
the AFV IPE scheme impractical, since the length of the ciphertext is the cubic order of
lg (#R) = lg q.

We have several attractive applications that are implemented by IPE with logical
conjunctions. These include CNF formulae [30], hidden vector encryption [15], which
serves a comparison and a range query on a small set, and wild-carded IBE [1]. We will
review and discuss the applications of IPE schemes in the full version.

Moreover, for a realistic scenario, we will treat a colossal set as a domain of the
predicate, e.g., one billion users (109 ≈ 230), addresses of IPv6 (2128), verification keys
of one-time signature (2128–), and hash values of SHA3 candidates (2256–2512). In such
a situation, even the equality predicate requires logical conjunctions to split them into
chunks in R.

Hence, we should make IPE efficient even for exponentially large R for the IPE
applications.

1 Suppose that we have two implementations of two predicates f and g; one is embedded as #„v f

and #„w f , and the other is embedded as #„v g and #„wg. The Katz-Sahai-Waters (KSW) technique
embeds f ∧ g into two vectors #„v f∧g = ( #„v f ,

#„wg) and #„w f∧g = (r f
#„v f , rg

#„wg), where r f , rg

are chosen uniformly at random from R. The inner product of #„v f∧g and #„w f∧g is r f
#„w�

f
#„v f +

rg
#„w�

g
#„v g. If the two inner products are 0, that is, two predicates f and g are true, then the inner

product becomes 0. The inversion is not true; if not, then the inner product is not 0 without
probability, say, 1/#R. This shows that R should be exponentially large, say, at least 280 from
the security requirement.
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1.1 Our Contribution

Our main contribution is to improve the efficiency of the AFV IPE scheme. More for-
mally, we construct an IPE scheme under the LWE assumption, which supports an
inner-product predicate over the field GF(qn) instead of Zq and has public parameters
of size Θ(μn2 lg2 q) and ciphertexts of size Θ(μn lg2 q + � lg q). Since the cardinality
of GF(qn) is qn = 2Ω(n), and GF(qn) is a field, we can set q = poly(n) even for the
above applications. We note that Agrawal et al. [6, Section 6] expected the ring-LWE
assumption [32] to resolve the issue, but we solve it without the ring-LWE assumption.

In addition, we have two side contributions; One is an extension of hierarchical inner-
product encryption (HIPE) [36], which implies spatial encryption (SE) [14,29,21]. We
apply our techniques to again drastically improve the existing HIPE scheme from lat-
tices [3] in the case of exponentially large R. The other is a fuzzy IBE (FIBE) scheme
over a small universe {0, 1} from IPE under the LWE assumption with conservative pa-
rameters, whereas the existing fuzzy IBE scheme from lattices are under the LWE as-
sumption with sub-exponential parameters [5].

Comparison: Since the description size of the public parameters is n times that of
ciphertexts, we compare the efficiency of the schemes by the length of the ciphertext.
For simplicity, we let Lours and LAFV denote the lengths of ciphertexts of our scheme
and the AFV scheme, respectively.

When q = poly(n), our scheme improves the size by only a factor of lg q = O(lg n)
(Lours = Θ(μn lg2 q) and LAFV = Θ(μn lg3 q)). Moreover, if we restrict #„v in a small
domain, say, {0, 1}μ, then LAFV = Θ(μn lg2 q), and there is no improvement.

On the other hand, if we set #R = 2Θ(n) to implement applications, the improvement
is drastic: Lours = Θ(μn lg2 q) since # GF(qn) = 2Ω(n) and LAFV = Θ(μn lg3 q) = Θ(μn4)
since they need to set q = 2Θ(n). In this case, efficiency is improved by a factor of Õ(n3).

Next, we compare the FIBE schemes with a small universe; that is, their identities are
binary vectors of length N. Agrawal, Boyen, Vaikuntanathan, Voulgaris, and Wee [5]
proposed a FIBE scheme based on the LWE assumption with sub-exponential parame-
ters. They restricted N = nε with ε ∈ (0, 1/2) in order to obtain the security under the
hardness of lattice problems. Their scheme is based on the worst-case hardness of lattice
problems of approximation factor 2O(N) = 2O(nε ) with a subexponential-time algorithm.
The length of their ciphertext is Θ(Nm lg q) = Θ(N2n lg2 n).

On the contrary, our scheme enjoys flexible N = poly(n) and a weaker assumption,
which is the worst-case hardness of lattice problem of approximation factor Õ(n4.5).
The length of our ciphertext is O(N2n lg2 n), which is the same as theirs.

We note that Agrawal et al. also extended their scheme to support identity space
(Zn

q)N without changing parameters or the assumption (see [5, Appendix B]).

On the ring-LWE assumption: We finally note that there are the variants of the ABB
IBE schemes based on the ring-LWE assumption and the variants of the AFV IPE
scheme also [35,34], which yield certain exponentially large R. Our technique is or-
thogonal to their techniques and improves the variants of the AFV IPE scheme by a
factor of lg q. We will describe concrete schemes in the full version.
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1.2 Related Works

IPE was introduced by Katz, Sahai, and Waters [30], who gave a fully attribute-hiding but
selectively secure IPE scheme based on the composite-order pairings. Following them,
several researchers proposed (H)IPE schemes based on the pairings [36,31,37,10,38,39].

On IPE based on lattices, Agrawal et al. [6] constructed the first IPE scheme which
is selectively secure and weakly attribute hiding under the LWE assumption. Another
study on a lattice-based HIPE scheme was done by Abdalla, De Caro, and Mochetti [3],
who extended the AFV IPE scheme to a HIPE scheme. They also proposed two exten-
sions of the HIPE scheme, a wild-carded IBE scheme and a CCA secure HIPE scheme.
The CCA2 construction exemplifies the requirement of large R, since, in the construc-
tion, the attribute space of the basic scheme includes a one-time verification key as
required for the CHK conversion [13].

Another line of study of IPE is initiated as spatial encryption (SE) defined by Boneh
and Hamburg [14]. Hamburg [29] observed that HIPE and SE are strongly related, and
Chen, Lim, Ling, and Wang [21] gave explicit property-preserving conversions between
them, which enable us to treat SE schemes as (H)IPE schemes. For SE, see Hamburg’s
thesis [29].

From the perspective of lattice-based encryption beyond IBE, we refer to fuzzy IBE
schemes by Agrawal et al. [5], a revocable IBE scheme by Chen, Lim, Ling, Wang, and
Ngyuen [22], and an attribute-based encryption scheme by Boyen [16].

1.3 Overview of Our Construction

We give an overview of our construction. For simplicity, we focus on the construction
of IPE and omit HIPE. After briefly explaining the basics and the AFV IPE, we present
our ideas for “half untwisting” and “half twisting.”

The basics: We first review the “dual” public-key encryption (PKE) scheme proposed
by Gentry, Peikert, and Vaikuntanathan [26] (or the Peikert KEM [41]). Their public
key is a random matrix A ∈ Zn×m

q . The ciphertext is a vector close to the lattice Λq(A) =
{z ∈ Zm : z ≡ A�s for some s ∈ Zn

q}. The secret key is a short basis of Λ⊥
q (A) = {z ∈

Z
m : Az ≡ 0}, which enables us to recover a lattice vector in Λq(A) from a vector close

to Λq(A). Cash, Hofheinz, Kiltz, and Peikert [20] proposed the first IBE scheme based
on the lattices in the standard model.

After that, Agrawal, Boneh, and Boyen [4] proposed a lattice analogue of the Boneh–
Boyen IBE [12] (and that of the Waters IBE [48]). Let id = w = w0 + w1X + · · · +
wn−1Xn−1 ∈ GF(qn). Let H be an invertible (or full-rank) difference encoding [23] that
maps a polynomial in GF(qn) to an n by n matrix of elements in Zq. 2 In the ABB IBE
scheme, the public parameters consist of A0, A1, and B, and the encryption lattice for
id is

2 Originally, H is called as “full-rank difference” encoding [23]. Recently, this concept was gen-
eralized for composite q and others [35,8]: The one of reviews suggested to call it “invertible
difference” and the author follows. We say that H : R → Zn×n

q is invertible difference if for any
distinct w � w′ ∈ R, matrix H(w) − H(w′) ∈ Zn×n

q is invertible (rather than the matrix has rank
n). See Section 4 for a concrete construction.
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Λid = Λq(A0 | A1 + H(id) · B).

The master has a short basis for Λ⊥
q (A0), and it can generate secret keys for Λ⊥

id using
the basis sampling techniques as in [20]. For the security proof, we require H to be
invertible difference.

The “twist” by Agrawal, Freeman, and Vaikuntanathan: Agrawal, Freeman, and
Vaikuntanathan [6] gave a novel twist on the ABB IBE [4] and obtained an IPE scheme.

In the AFV IPE scheme, the encryption lattice for ciphertext-attribute vector #„w ∈ Zμq
is defined as

Λ #„w = Λq

(
A0 | A1 + w1B | · · · | Aμ + wμB

)
.

The ciphertext is a vector c = (c0, . . . , cμ) ∈ (Zm
q )μ+1 close to Λ #„w .

They define the mapping F#„v : (Zm
q )μ+1 → (Zm

q )2 as

F#„v (c0, c1, . . . , cμ) =
(
c0,
∑μ

i=1vici

)
∈ Z2m

q

for decryption, where F means “fold.” Notice that, if #„v is a short vector, e.g., #„v ∈
{0, 1}μ ⊂ Zμq, then F#„v (c) is a vector close to the lattice

Λ #„v , #„w = Λq

(
A0

∣∣∣ ∑μ
i=1vi(Ai + wi B)

)
= Λq

(
A0

∣∣∣ ∑μ
i=1vi Ai + ( #„w� #„v )B

)
.

If #„w� #„v = 0 then the masking term, ( #„w� #„v )B, vanishes. The secret key for #„v ∈ Zμq is
defined as a short basis of Λ⊥

q (A0 | ∑μi=1 vi Ai).
They also gave a binary decomposition technique for #„v of long norm, which expands

the public parameters and ciphertext by a factor of lg q: they replaced #„w and #„v with
#„w ′ = (1, 2, . . . , 2k−1) ⊗ #„w , where k =

⌈
lg q
⌉

and ⊗ denotes the standard tensor product,
and #„v ∈ Zμq with #„v ′ ∈ {0, 1}μk such that #„w� #„v = ( #„w ′)� #„v ′. This technique is already
exploited in the constructions of fully homomorphic encryption [19,18,17].

Our Ideas: Here, we present our two ideas for changing R from Zq to GF(qn).

Half untwist: We first change the domain of attributes #„w from Zμq to GF(qn)μ, while
#„v ’s domain is the same as the original, Zμq ⊂ GF(qn)μ.

Let us turn back to the invertible difference encoding H, which appeared in the ABB
IBE but was omitted from the AFV IPE. We have the following facts on the typical
construction of H : GF(qn) → Zn×n

q :

– Fact 1: H maps w ∈ Zq ⊆ GF(qn) to H(w) = wIn, where In is the n-dimensional
identity matrix.

– Fact 2: H is Zq-linear and is an isomorphism from GF(qn) to a field contained in
Z

n×n
q .

From Fact 1, we have wB = wInB = H(w) · B. We can rewrite the encryption lattice of
the AFV IPE for #„w ∈ Zμq ⊆ GF(qn)μ as
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Λ #„w =Λq(A0 | A1+H(w1 + 0X + · · · + 0Xn−1)B | · · · | Aμ+H(wμ + 0X + · · · + 0Xn−1)B).

We discover the hidden H in the AFV IPE and find (n − 1) empty slots for each i ∈ [μ].
Now, we can change the domain of ciphertext-attribute vector #„w from Zμq to GF(qn)μ.

We naturally define Λ #„w for #„w = (w1, . . . ,wμ)� ∈ GF(qn)μ as

Λ #„w = Λq(A0 | A1 + H(w1)B | · · · | Aμ + H(wμ)B).

For a short key vector #„v ∈ Zμq ⊂ GF(qn)μ and a ciphertext c = (c0, . . . , cμ) close to Λ #„w ,
we observe that F#„v (c) = (c0,

∑μ
i=1 vicv) is close to

Λ #„w , #„v = Λq

(
A0

∣∣∣ ∑μ
i=1vi(Ai + H(wi) · B)

)
= Λq

(
A0

∣∣∣ ∑μ
i=1vi Ai + H( #„w� #„v ) · B

)
,

where the latter equality follows from the linearity of H (Fact 2). If #„w� #„v = 0 then
H( #„w� #„v ) = O. By using a short basis of Λ⊥

q (A0 | ∑μi=1 vi Ai), one can decrypt the
ciphertext if the inner product is 0. Otherwise, the masking matrix H( #„w� #„v ) · B survives
and H( #„w� #„v ) is invertible.

Half twist: We next change the domain of #„v from Zμq to GF(qn)μ.
We observe that the proof of security by Agrawal et al. [6] does not require ran-

domness of B. Hence, we can safely replace a random matrix B with a very structured
matrix G = In ⊗ (1, 2, 22, . . . , 2k−1) as in Micciancio and Peikert [35], where ⊗ denotes
the Kronecker product, and k =

⌈
lg q
⌉
,

We exploit the structure of G and define a new encoding, H′ : GF(qn) → {0, 1}m×m

(see Section 4), which gives pseudo-commutativity with respect to G and H, that is, for
any v ∈ GF(qn), it holds that G · H′(v) = H(v) · G.

We apply the above idea and new encoding to the half untwist version of the AFV
IPE. The encryption lattice for #„w is Λ #„w = Λq(A0 | A1+H(w1) ·G | · · · | Aμ+H(wμ) ·G)
as in the previous version. We modify the key-extraction and decryption algorithms for
#„v = (v1, . . . , vμ) ∈ GF(qn)μ. In decryption, a ciphertext (c0, . . . , cμ) is folded up by
H′(vi) instead of vi, that is,

F′
#„v (c0, . . . , cμ) =

(
c0,
∑μ

i=1H′(vi)� · ci

)
.

By the pseudo-commutativity, the sum F′
#„v (c0, . . . , cμ) is a vector close to the lattice

Λ #„w , #„v = Λq

(
A0

∣∣∣ ∑μ
i=1

(
Ai + H(wi) · G

) · H′(vi)
)

= Λq

(
A0

∣∣∣ ∑μ
i=1 Ai · H′(vi) +

∑μ
i=1H(wi) · H(vi) · G

)

= Λq

(
A0

∣∣∣ ∑μ
i=1 Ai · H′(vi) + H( #„w� #„v ) · G

)
,

since the matrix norm of H′(vi) ∈ {0, 1}m×m is at most m. The secret key is a short basis
of lattice Λ⊥

q (A0 | ∑μi=1 Ai · H′(vi)).
We note that the binary-decomposition technique is built into our new encoding H′

and the structured matrix G. Therefore, we can save the lg q factor introduced by the
binary decomposition in the AFV IPE scheme.
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2 Preliminaries

A security parameter is denoted by κ. We use the standard O-notations, O, Θ, Ω, and
ω. We use capital bold symbols A, B,C for matrices. In particular, In denotes an n by n
identity matrix. We use lower-case bold symbols a, b, c for vectors. In addition, we use
over-arrows to denote ciphertext- and key-attribute vectors as #„w , #„v . We use lower-case
fraktur symbols a, b, c for polynomials and elements of GF(qn). The abbreviations DPT
and PPT stand for deterministic polynomial time and probabilistic polynomial time. For
any integer q ≥ 3, we write Zq for the ring {−(q − 1)/2, . . . ,−1, 0, 1, . . . , (q − 1)/2} with
addition and multiplication modulo q.

A function f (κ) is said to be negligible if f (κ) = κ−ω(1). We denote a set of negligible
functions by negl(κ). For a positive integer n, [n] denotes {1, 2, . . . , n}. For x ∈ R, we
define �x� = �x − 1/2� as the integer closest to x. For x = (x1, . . . , x�) ∈ R�, we define
�x� as (�x1� , . . . , �x��) ∈ Z�. For two matrices X ∈ Rm×n1 and Y ∈ Rm×n2 , [X | Y] ∈
R

m×(n1+n2) is the concatenation of the columns of X and Y. For two matrices X ∈ Rm1×n

and Y ∈ Rm2×n, [X; Y] ∈ R(m1+m2)×n is the concatenation of the rows of X and Y. For
a vector x ∈ Rm, ‖x‖p denotes the �p norm of x. For ease of notation, we omit the
subscript if p = 2.

For matrix X = [x1 . . . xn], X̃ denotes the Gram-Schmidt orthogonalization of X.
For a matrix X = [x1; . . . ; xm] ∈ Rm×n, ‖X‖row = maxi ‖xi‖. For a matrix X ∈ Rm×n,
s1(X) denotes the largest singular value of X; we have that s1(X) = supu∈Rn,‖u‖=1 ‖Xu‖ =
supu′∈Rm,‖u′‖=1 ‖X�u′‖. For two matrices X ∈ Rn×m and Y ∈ Rm×k, we have s1(XY) ≤
s1(X) · s1(Y). We also have for any X ∈ Rn×m, ‖X‖row, ‖X�‖row ≤ s1(X). Finally, for ring
R and positive integer n, GLn(R) denotes the set of n by n invertible matrices whose
entries in R.

Distribution: We recall distributions in the lattice-based cryptography. For a distribu-
tion χ, we often write x ← χ, which indicates that we take a sample x from χ. For a fi-
nite set S , U(S ) denotes the uniform distribution over S . The Gaussian distribution with
mean 0 and variance s2, denoted by N(0, s2), is defined by density function (1/s

√
2π) ·

exp(−x2/2s2) over R. For α ∈ (0, 1) and positive integer q, we define the discretized
Gaussian Ψ̄α as: take sample x from N(0, α2/2π) and output �qx� mod q. For positive
real s, the n-dimensional Gaussian function is defined as ρs(x) = exp(−π‖x‖2/s2). For
positive real s and countable set A, the discrete Gaussian distribution DA,s is defined by
DA,s(x) = ρs(x)∑

y∈A ρs(y) .

2.1 Lattices

A (full-rank) lattice in Rn is Λ = {∑n
i=1 xi bi : xi ∈ Z}, where b1, . . . , bn ∈ Rn are linearly

independent over Rn. Matrix B = [b1 . . . bn] is a basis of lattice Λ. For A ∈ Zn×m
q and

u ∈ Zn
q, we define lattices and their shift:

Λq(A) = {y ∈ Zm : ∃s ∈ Zn
q such that y ≡ A�s (mod q)},

Λ⊥
q (A) = {e ∈ Zm : Ae ≡ 0 (mod q)},
Λu

q(A) = {e ∈ Zm : Ae ≡ u (mod q)}.
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We recall the property of very structured matrix G.

Theorem 2.1 (Adapted version of [35, Theorem 4.1]). Let q ≥ 2, n ≥ 1, k =
⌈
lg q
⌉
,

and m̄ = nk be integers. Let g = (1, 2, . . . , 2k−1) ∈ Zk and G = In ⊗ g. Then the lattice
Λ⊥

q (G) has a known basis S ∈ Zm̄×m̄ with ‖S̃‖ ≤ √
5 and ‖S‖ ≤ max{ √5,

√
k}.

Recently, Micciancio and Peikert introduced a new notion of “trapdoors” for lattices.
Let m = m̄ + nk, where k =

⌈
lg q
⌉
. We review their notion of trapdoors.

Definition 2.1 (Adapted, [35, Definition 5.2]). Let A ∈ Zn×m
q and G ∈ Zn×w

q be ma-
trices with m ≥ w ≥ n. We say a matrix R ∈ Z(m−w)×w is a G-trapdoor with tag
H ∈ GLn(Zq) ⊆ Zn×n

q if A [R; Iw] = HG. The quality of the trapdoor is measured
by s1(R).

Theorem 2.2. We borrow the following algorithms in [35], which are improvements of
those in the literature [7,26,9,4,42]. We set k =

⌈
lg q
⌉

and m = m̄ + nk for simplicity of
notation.

GenTrapD( Ā,H): Given a matrix Ā ∈ Zn×m̄
q , an invertible matrix H ∈ GLn(Zq), and a

distribution D over Zq, it outputs A = [ Ā | HG − ĀR] ∈ Zn×(m̄+nk)
q and its trapdoor

R ∈ Zm̄×nk
q with tag H, where R is chosen from distribution D.

In particular, we often set q as an odd prime, m̄ = n lg q+ω(lg κ), D = U({−1,+1}),
and choose Ā from Zn×m̄

q uniformly at random. These settings yield the obtained

matrix A as negl(κ)-uniform and s1(R) ≤ C(
√

m̄ +
√

nk) with overwhelming prob-
ability.

SampleD(R, A,H, u, s): The input is A ∈ Zn×m
q , its trapdoor R ∈ Zm̄×nk

q with tag H ∈
GLn(Zq), and a target vector u, and Gaussian parameter s >

√
s1(R)2 + 1 · √

7 ·
ω(
√

lg n). It outputs x according to a distribution statistically close to DΛu
q (A),s;

roughly speaking, it samples x from Dm
Z,s conditioned on Ax = u.

2.2 Assumption

The learning with errors (LWE) problem proposed by Regev [46] is a generalization of
the learning parity noise (LPN) problem.

For vector s ∈ Zn
q and distribution χ over Zq, let A(s, χ) be a distribution over Zn

q ×Zq

defined by taking samples a ← Zn
q and x ← χ, and outputting (a, a�s + x).

Definition 2.2 (The LWE problem and assumption). For integer q = q(n) and dis-
tribution χ over Zq, the learning with errors problem, LWE(q, χ), distinguishes oracle
A(s, χ) from oracle U(Zn

q × Zq) for uniformly random s ∈ Zn
q.

We say the LWE assumption holds if for any PPT adversary A, its advantage

AdvA,LWE(q,χ)(n) =
∣∣∣Pr[AA(s,χ)(1n) = 1] − Pr[AU(Zn

q×Zq)(1n) = 1]
∣∣∣ = negl(n),

where s ← Zn
q.
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It is well-known that under (quantum) reductions, solving the LWE problem on average
is as hard as the worst case of the approximation version of the shortest independent vec-
tor problem, SIVPγ, and the decision version of the shortest vector problem, GapSVPγ,
where γ is an approximation factor for appropriate parameters. In particular, we have a
reduction with parameter χ = Ψ̄α, αq ≥ 2

√
n, and γ = Õ(n/α). See [46,41] for details.

3 Predicate Encryption

We review the syntax of predicate encryption.

Definition 3.1. Let P : Φ × Σ → {0, 1} be a predicate where Φ and Σ denote “key
attribute” and “ciphertext attribute” spaces. A predicate encryption scheme for P is a
fourtuplet of algorithms.

Setup(1κ) → (pp,msk): The setup algorithm takes as input security parameter 1κ and
outputs public parameters pp and master secret key msk.

Extract(msk, φ) → dkφ: The extraction algorithm takes as input msk and key attribute
φ ∈ Φ. It outputs decryption key dkφ.

Enc(pp, σ,M) → ct: The encryption algorithm takes as input pp, ciphertext attribute
σ ∈ Σ, and message M ∈ M. It outputs ciphertext ct.

Dec(pp, dkφ, ct) → M or ⊥: The decryption algorithm takes as input decryption key
dkφ and ciphertext ct. It outputs either M ∈ M or rejection symbol ⊥.

We define slightly weak correctness for decryption. For any φ ∈ Φ, σ ∈ Σ, and M ∈ M,
if P(φ, σ) = 1 then

Pr

[
M = M̃ :

(pp,msk) ← Setup(1κ); dkφ ← Extract(msk, φ);
ct ← Enc(pp, σ,M); M̃ ← Dec(pp, dkφ, ct);

]

is overwhelming probability and if P(φ, σ) = 0 then

Pr

[
M̃ = ⊥ :

(pp,msk) ← Setup(1κ); dkφ ← Extract(msk, φ);
ct ← Enc(pp, σ,M); M̃ ← Dec(pp, dkφ, ct);

]

is overwhelming probability. As in [6], our construction satisfies the different correct-
ness condition: the latter condition is replaced with the condition that if P(φ, σ) = 0
then Dec(pp, dkφ, ct) is computationally indistinguishable from a uniformly random el-
ement in M. One can use a suitable message padding to obtain the original correctness,
if an IPE scheme has message space {0, 1}� for sufficiently large �.

We next review the security definition of predicate encryption. Roughly speaking,
we say that a PE scheme is weakly attribute hiding in a selective attribute setting
against chosen-plaintext attacks (wAH-sA-CPA), if any adversary cannot distinguish
Enc(pp, σ0,M0) or Enc(pp, σ1,M1), where σ0 and σ1 are declared at the initialization,
even if the adversary can query the decryption key dkφ for P(σ0, φ) = P(σ1, φ) = 0.
The precise definition follows:

Definition 3.2 (wAH-sA-CPA security). Let PE be a predicate encryption scheme, A
an adversary, and κ a security parameter. The experiment between a challenger and
adversary A, Exptwah-sa-cpa

A,PE (1κ), is defined as follows:
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Initialization: Given security parameter 1κ, run adversary A with 1κ. Receive two
ciphertext attributes σ0, σ1 ∈ Σ from A. Run (pp,msk) ← Setup(1κ). Flip a coin
b ← {0, 1}.

Learning Phase: Feed pp to adversary A. Adversary A could issue queries to the
following oracles in any order and many times except for the constraint regarding
oracle Challenge.

– Oracle Extract receives key attribute φ ∈ Φ subject to the restriction that
P(φ, σ0) = P(φ, σ1) = 0. If so, it obtains dkφ ← Extract(msk, φ) and provides
A with dkφ.

– Oracle Challenge receives two messages M0 and M1. It obtains C ← Enc(pp,
σb,Mb) and provides A with C.

Eventually, A halts after it outputs its decision, b′ ∈ {0, 1}.
Finalization: Output 1 if b′ = b. Otherwise, output 0.

We define the advantage of A as

Advwah-sa-cpa
A,PE (κ)=

∣∣∣∣Pr[Exptwah-sa-cpa
A,PE (1κ)=1 | b = 0] − Pr[Exptwah-sa-cpa

A,PE (1κ)=1 | b = 1]
∣∣∣∣ .

We say that PE is weakly attribute hiding against chosen-plaintext attacks in selective
attribute setting (wAH-sA-CPA-secure) if Advwah-sa-cpa

A,PE (κ) is negligible for every PPT
adversary A.

4 Pseudo-commutativity of Invertible Difference Encoding

In this section, we define H and Hg such that, for any a, H(a) · G = G · Hg(a) holds
and s1(Hg(a)) is small. We first recall the polynomial rings. After a reminder of the
invertible difference encoding, we define its companion Hg.

4.1 Quick Reminder of Rings

Consider a finite ring R = Zq[X]/〈g〉, where g ∈ Zq[X] is monic and of degree n. If q is
prime and g is irreducible over Zq, ring R is the field GF(qn).

We define the mapping τ : R → Zn
q by a = a0+a1X+ . . .an−1Xn−1 �→ (a0, . . . , an−1)�.

By this mapping (as known as “coefficient embedding”), we can identify a polynomial
in R with a vector in Zn

q. We next define Rot : R → Zn×n
q by

a = a0 + a1X + . . . an−1Xn−1 �→ [τ(a) τ(aX) . . . τ(aXn−1)],

which is borrowed from Micciancio [33]. We note that

Rot(a) · τ(b) = τ(ab),Rot(a) · Rot(b) = Rot(ab), and Rot(a) + Rot(b) = Rot(a + b),

and, thus, Rot is a ring-homomorphism from R into Zn×n
q .
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4.2 Invertible Difference Encoding H

Lattice-based cryptography often employs an encoding H : GF(qn) → Zn×n
q for prime

q, e.g., [43, due to Micciancio] and [4]. Hereafter we stick to prime q.
We say that H is an invertible difference if for any two distinct polynomials a � a′ ∈

GF(qn), the difference of outputs, H(a) − H(a′), is always invertible.
In this paper, we employ explicit H defined by H(a) := Rot(a). It holds that H(a) −

H(a′) = H(a−a′) for any a � a′. If a−a′ is a unit, that is, a � a′ ∈ GF(qn), then H(a−a′)
is also a unit in Zn×n

q . In addition, we note that for any constant a ∈ Zq ⊂ GF(qn),
H(a) = aIn.

4.3 New Encoding Hg

We define a new encoding, denoted by Hg, that maps an element in GF(qn) to matrices
in {0, 1, . . . , b − 1}nk×nk and gives pseudo-commutativity with G and H.

Let b ≥ 2 be a positive integer and let B be the range {0, 1, . . . , b−1} ⊂ Zq. We define
k =
⌈
logb q

⌉
and g = (1, b, . . . , bk−1). The gadget matrix G in [35] is defined by

G = In ⊗ g =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

—g—
—g—

. . .

—g—

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 b . . . bk−1

1 b . . . bk−1

. . .

1 b . . . bk−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Zn×nk

q .

For a ∈ Zq, we define b-ary decomposition of a by dg(a) = (a1, . . . , ak)� ∈ Bk, on which
we have that g · dg(a) =

∑k
i=1 ai · bi−1 = a.

We define Hg(a) as the b-ary decomposition of H(a). More formally, we first define
the mapping Dg by

Dg : a ∈ Zq �→ [dg(a) dg(ba) . . . dg(bk−1a)] ∈ Bk×k.

By the definition of Dg, we have that g · Dg(a) = (a, ba, . . . , bk−1a) = a · g, which is a
source of the pseudo-commutativity. Next, we extend the domain of Dg to any matrix
A = {ai, j} ∈ Zn×m

q as follows:

Dg(A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dg(a1,1) Dg(a1,2) . . . Dg(a1,m)
Dg(a2,1) Dg(a2,2) . . . Dg(a2,m)
...

...
. . .

...
Dg(an,1) Dg(an,2) . . . Dg(an,m)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Bnk×mk.

Finally, we define Hg that maps a polynomial into a matrix as follows:

a = a0 + a1x + · · · + an−1xn−1 ∈ GF(qn) �→ Dg(Rot(a)) ∈ Bnk×nk.

The mapping Hg has two properties that are crucial for our construction. One is pseudo-
commutativity with G and H and the other is a small matrix norm.

Lemma 4.1. Let G = In ⊗ g ∈ Zn×nk
q . It holds that, for any a ∈ GF(qn), G · Hg(a) =

H(a) · G.
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Proof. We show that for any matrix A ∈ Zn×n
q , G · Dg(A) = A · G, where A = [a1 |

· · · | an]. We divide the matrices into k submatrices; G · Dg(A) = [L1 | · · · | Lk] and
A · G = [R1 | · · · | Rk], where Li, Ri ∈ Zn×n

q . It is easy to check that Li = ai ⊗ g = Ri for
any i. ��
Lemma 4.2. For any a ∈ GF(qn), ‖Hg(a)‖row ≤ (b−1) · √nk and s1(Hg(a)) ≤ (b−1)nk.

Proof. Since Hg ∈ Bnk×nk, the maximal length of the rows is at most (b − 1)
√

nk. The
latter bound is obtained by the upper bound on the length of (b − 1) · 1 · u, where 1 is an
nk-dimensional all-1 matrix and u is a unit vector. ��

4.4 On the Case Composite q

Although we have stuck to prime q here, lattice-based cryptography often employs q =
pe, say q = 2k, or q =

∏
i pi for small prime pi for the sake of easiness and speed of

implementations. Therefore, one would extend our technique into such cases.
Micciancio and Peikert [35, Section 6.1 of the ePrint version] and Alperin-Sheriff

and Peikert [8, Section 5.1] defined an encoding H : Zq[X]/〈g〉 → Zn×n
q , where g is a

monic degree-n polynomial in Z[X] and irreducible modulo every prime p dividing q.
In their constructions, H is a ring homomorphism from R = Zq[X]/〈g〉 into Zn×n

q . Thus,
if u ∈ R is a unit, then H(u) is invertible. In general, H(u) is not invertible even for
non-zero u ∈ R \ R∗.

This property suffices for public-key encryption, IBE, and signature, but, may trouble
designers of predicates. If one can ensure that the inner product results in either a unit
or zero of R, one can employ the above techniques.

4.5 On the Ring-LWE Setting

When q is a prime, we can extend our new encoding into the ring-LWE setting [32].
Let us consider the cyclotomic ring R = Z[X]/〈Φm(X)〉, where Φm(X) denotes the m-th
cyclotomic polynomial. Let n be the degree of Φm(X). For any poly(n)-bounded prime
q, we let Rq = R/qR.

The Micciancio–Peikert algorithm in the ring-LWE setting: Let g = (1, b, . . . , bk−1) ∈
Rk

q. In the ring setting, we will use g directly instead of G. Let us set R = Zq[X]/〈g〉 �
GF(qn) as in the LWE case.

Micciancio and Peikert [34] define R to be R-module 3 by extending the ideas in [35,
Section 6.1 of the ePrint version] and [8, Section 5.1]. Formally speaking, for a ∈ R and
b ∈ R, scalar multiplication a� b ∈ R is defined by σ−1(a ·σ(b)) ∈ R, where σ : R → R
is an additive isomorphism. (Notice that R and R are additively isomorphic to Zn

q.) By
the construction, R is an R-module and a acts as the linear transformation over R. Now,
the trapdoor of a ∈ Rm̄+k

q with tag h ∈ R is short R ∈ Rm̄+k
q satisfying a = [ā | h� g− āR].

We can define the new encoding hg : R → Rk×k in a similar way to the LWE case. We
defer the details to the full version.

3 We say R is R-module if for any r, s ∈ R and any x, y ∈ R, we have r(x + y) = rx + ry,
(r + s)x = rx + sx, (rs)x = r(sx), and 1R x = x.
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Langlois and Stehlé [47] also pointed out another way. Let us consider the case that
n is even and Φm(X) is split into two polynomials f1 and f2 of degree n/2 which are
irreducible over Zq. In such a case, we have Rq � Zq[X]/〈f1〉 × Zq[X]/〈f2〉 � GF(qn/2)2.
We let R = GF(qn/2) and consider H : R → Rq as follows:

We first define a duplicating function dp : GF(qn/2) → GF(qn/2)2 as a �→ (a, a).
By the Chinese remainder theorem, we have invertible mapping τ : Zq[X]/〈Φm(X)〉 →
Zq[X]/〈f1〉 × Zq[X]/〈f2〉 as a �→ (a mod g1, a mod g2). Then, we define the full-rank
difference encoding from GF(qn/2) to Rq as H = τ−1 ◦ dp. By the construction, H is an
isomorphism from GF(qn/2) to a sub-ring of Rq, which is a field.

Now, the trapdoor of a ∈ Rm̄+k
q with tag h ∈ R is R ∈ Rm̄+k

q satisfying a = [ā |
H(h)g − āR]. We can define the new encoding Hg : R → Rk×k

q in a similar way to the
LWE case. We defer the details to the full version.

5 Our Construction

We describe our IPE scheme that supports inner-product predicates over GF(qn)μ. The
scheme is obtained by applying our ideas in the introduction to the AFV IPE scheme.
The extension to HIPE is deferred to the full version.

Let κ ∈ N be a security parameter. Let μ be the length of predicate and attribute
vectors. Let n be a dimension of lattices and let q and m be the parameters that define
the matrices. Let g = g(x) ∈ Zq[x] be a monic, irreducible polynomial of degree n that
explicitly defines GF(qn).

For simplicity, we set b = 2, B = {0, 1}, and k = k(κ, μ) =
⌈
lg q
⌉
. Other choices

are possible. For simplicity, we let ζ = ζ(n) denote a fixed ω(
√

lg n) function. Let
s = s(κ, μ) and α = α(κ, μ) be positive reals that define the Gaussians.

5.1 Construction

Setup(1κ, n, q,m, �, s, α, g, k): On input a security parameter 1κ and additional parame-
ters:
1. Generate a random matrix with a trapdoor by running (A, RA) ← GenTrap(1κ,

q, n,m).
2. Choose μ uniformly random matrices Bi ← Zn×nk

q for i ∈ [μ].
3. Choose a random matrix U = [u1 | · · · | u�] ← Zn×�

q .
Output pp = ((n, q,m, �, s, α, g, k), A, {Bi},U) and msk = (RA, pp).

Extract(pp,msk, #„v ): On input a key-attribute vector #„v = (v1, . . . , vμ)� ∈ GF(qn)μ:
1. Define the matrices B#„v =

∑μ
i=1 Bi · Hg(vi) ∈ Zn×nk

q and A#„v = [A | B#„v ] ∈
Z

n×(m+nk)
q .

2. Sample vectors e1, . . . , e� by using the master secret key RA; Formally, for i =
1, . . . , �, take sample ei ← SampleD(RA, A#„v , I, ui, s).

3. Set E#„v = [e1 | · · · | e�]. (Notice that A#„v · E#„v = U.)
Output dk#„v = E#„v .

Enc(pp, #„w ,m): On input pp, a ciphertext-attribute vector #„w = (w1, . . . ,wμ)� ∈ GF(qn)μ,
and a message m ∈ {0, 1}�:
1. Choose a random vector s ← Zn

q.
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2. Set c0 ← A�s + x0, where x0 ← χm.
3. Set c′ ← U�s + x′ + �q/2 m, where x′ ← χ�.
4. For i = 1, . . . , μ; sample Ri ← {−1,+1}m×nk and set ci ← (Bi + H(wi) · G)�s +

R�
i x0 ∈ Znk

q .
5. Output ct = (c0, c1, . . . , cμ, c′).

Dec(pp, dk#„v , ct): On input pp, a decryption key E#„v , and ct = (c0, . . . , cμ, c′):
1. Compute c#„v ← ∑μi=1 H′

g(vi)� · ci.
2. Let c ← [c0; c#„v ] ∈ Zm+m̄

q .
3. Compute d ← c′ − E�

#„v c mod q and output �(2/q)d� mod 2.

Remark 5.1. In the following, we will take the noise of c0 and c′ from χ = Ψ̄α. We
note that Ψ̄α has a good tail bound on the inner product and this is why we employ the
conservative distribution Ψ̄α.

We can replace the distribution Ψ̄α with DZ,σ. We then change the noises xi with
xi ← Dnk

Z,r where r =
√‖x0‖2 + nkσ2 ·ζ as in the CCA2 secure PKE scheme in [35]. The

problem LWE(n, q,D
Z,

√
2·αq) is as hard as LWE(n, q, Ψ̄α), which is shown by Gordon,

Katz, and Vaikuntanathan [28, Lemma 1] employing [42, Theorem 3.1]. Hence, even if
we change the noise distribution from Ψ̄α to D

Z,
√

2αq, we can reduce the security to the
lattice problems.

5.2 Correctness, Security, and Parameters

The scheme is correct and secure as the following theorems.

Theorem 5.1. Let χ = Ψ̄α. Suppose that s > 4Cm · ω(
√

lg n) and (αq · ω(
√

lg κ) +√
m/2) · 4Cμsm2 < q/5. Then our scheme is correct.

Theorem 5.2. Let m = 2n lg q + ω(lg κ) and s ≥ 3Cμm1.5 · ω(
√

lg n). Suppose that
the LWE(n, q, χ) assumption holds. Then, the scheme is selectively and weakly attribute
hiding.

The proofs are obtained by merging those of [6] and [35]. We defer the proofs to the
full version of the paper.

Parameter settings: Let us summarize the constraints on the parameters:

– To satisfy the correctness (Theorem 5.1), we require that χ = Ψ̄α, s > 4Cmω(
√

lg n),
and (αq · ω(

√
lg κ) +

√
m/2) · 4Cμsm2 < q/5. For example, we can take q =

Ω(μm5/2s) and α ≤
(
μm2 s · ω(

√
lg κ)
)−1

to satisfy the above condition with qα ·
ω(
√

lg κ) =
√

m/2.
– From the security (Theorem 5.2), we obtain the bound that m = 2n lg q + ω(lg κ)

and s ≥ 3Cμm1.5 · ω(
√

lg n).
– In order to reduce the security to the worst-case hardness of lattice problems, we

require that qα > 2
√

n and 1/α = poly(n).
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For example, the following setting fulfills the above requirements:

k =
⌈
lg q
⌉
, ζ = ω(

√
lg(2m)), m = 3n lg q,

s = 3Cμm1.5 · ζ, q = 60C2μ2 · m4 · ζ, α = (120C2μ2 · m3.5 · ζ2)−1.

By these settings, the security is based on the worst-case hardness of GapSVPγ or
SIVPγ, where γ = Ω̃(μ2n4.5), while the AFV scheme is based on that with γ = Ω̃(μ2n4).
(We note that if the AFV scheme also employs the Micciancio–Peikert trapdoor [35] as
we did, γ is reduced to Ω̃(μ2n3.5).)

In our scheme, the size of the public parameter is nm lg q + μn2k lg q + �n lg q =
Θ(μn2 lg2 q) = Θ̃(μn2), and the size of the ciphertext is m lg q + μnk lg q + � lg q =
Θ(μn lg2 q), where � denotes the length of plaintexts.

6 Fuzzy Identity-Based Encryption

In this section, we construct a FIBE scheme from a weakly attribute-hiding IPE scheme
in general way. We first review the embedding of exact threshold by Katz, Sahai, and
Waters. If the IPE scheme hides attribute weakly, we can take logical disjunction in a
lazy way as Waters pointed out [6, Remark 5.1 of the ePrint version].

Exact threshold: For binary vector #„x ∈ {0, 1}N , Hw( #„x ) denotes a Hamming weight of
#„x , that is, the number of 1 in #„x . For binary vectors #„a , #„x ∈ {0, 1}u, the exact threshold
predicate is denoted by Pth

=t(
#„a , #„x ) and outputs 1 if and only if Hw( #„a & #„x ) = t, where &

denotes the logical conjunction. Suppose that t < q. Katz, Sahai, and Waters [30] gave
an embedding Pth

=t into Pipe as follows:

μ = N + 1, #„v = ( #„a , 1) ∈ Zμq, and #„w = ( #„x ,−t) ∈ Zμq.
We have that #„w� #„v = 0 if and only if Hw( #„a & #„x ) = t.

6.1 Construction

Now, we implement FIBE on small universe {0, 1} from IPE. Let {0, 1}N be a space of
identities. The threshold predicate over {0, 1}N is defined by Pth

≥t(
#„a , #„x ) = 1 if and only

if Hw( #„a & #„x ) ≥ t.
We observe that the above predicate can be written as

∨N
i=t Pth

=i(
#„a , #„x ). Hence, repeat-

ing ciphertexts of an IPE scheme that supports the relations Pth
=i for i = t, . . . ,N, we can

implement a FIBE scheme by the relation Pth
≥t.

When we employ our IPE scheme, the obtained scheme has a ciphertext of length
(N − t+1) ·O(Nm lg q) = O(N2n lg2 q) and enjoys the security reduced to the worst-case
hardness of lattice problems with approximation factor Õ(n4.5).

Comparison: Agrawal et al. already presented FIBE schemes from lattices [5]. Their
small-universe construction is defined with the identity space {0, 1}N as in our case.
They gave concrete parameter settings for ε ∈ (0, 1/2) as follows:

N = nε , q ∈ [n625N , 2n625N],m = n1.5 ≥ 5n lg q, and α = 2
√

m/q = 1/(25nε · poly(n)).
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The length of the ciphertext is N · O(m lg q) = O(n1.5+2ε lg n). The security is reduced
to the worst-case hardness of 2O(nε )-approximating GapSVP or SIVP using 2O(nε )-time
algorithms, which is stronger assumption than that we employ.

We finally note that, their scheme allows identity space (Zn
q)N without drastic changes

of parameters whereas our scheme cannot.

Acknowledgments. The author thanks Damien Stehlé, Chris Peikert, Daniele Miccian-
cio, and reviewers for helpful discussions and comments.
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wish to securely compute a function of their joint private inputs. The
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Abstract. Non-interactive key exchange (NIKE) is a fundamental but
much-overlooked cryptographic primitive. It appears as a major contri-
bution in the ground-breaking paper of Diffie and Hellman, but NIKE has
remained largely unstudied since then. In this paper, we provide different
security models for this primitive and explore the relationships between
them. We then give constructions for secure NIKE in the Random Ora-
cle Model based on the hardness of factoring and in the standard model
based on the hardness of a variant of the decisional Bilinear Diffie Hell-
man Problem for asymmetric pairings. We also study the relationship
between NIKE and public key encryption (PKE), showing that a secure
NIKE scheme can be generically converted into an IND-CCA secure PKE
scheme. Our conversion also illustrates the fundamental nature of NIKE
in public key cryptography.

Keywords: non-interactive key exchange, public-key cryptography,
pairings.

1 Introduction

Non-interactive key exchange (NIKE) is a cryptographic primitive which enables
two parties, who know each others’ public keys, to agree on a symmetric shared
key without requiring any interaction. The canonical example of a NIKE scheme
can be found in the seminal paper by Diffie and Hellman [1]: let G be a group
of prime order p with generator g, and assume Alice has public key gx ∈ G and
private key x ∈ Zp, while Bob has public key gy ∈ G and private key y ∈ Zp.
Then Alice and Bob can both compute the value gxy ∈ G without exchanging
any messages. More properly, Alice and Bob should hash this key together with
their identities in order to derive a symmetric key H(Alice, Bob, gxy).
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This example encapsulates in a nutshell all the basic features required of a
NIKE scheme: users should agree on some common parameters (p, G and g
here), then create their key pairs. Once these are computed and the public keys
distributed, any pair of users can set up a shared key without further exchange of
messages. The security properties desired of NIKE are, informally at least, clear:
compromise of one user’s private key should not affect the security of shared keys
between pairs of uncorrupted users; compromise of one shared key should not
undermine the security of other shared keys. Naturally, since the primitive is non-
interactive, one cannot hope to obtain any kind of forward security properties.
In practice, the public keys will be certified, and consideration needs to be given
to modelling the key registration process.

NIKE has real-world applications. In wireless and sensor networks, conserving
battery power is a prime concern, and so the energy cost of communication must
be minimised. Thus using key establishment methods that minimise the number
of bits that need to be transmitted is of fundamental importance. In particular,
when faced with a jamming adversary, reducing the total number of rounds of
interaction needed to establish a key is particularly helpful. NIKE is an excel-
lent option in solving this problem, since a key can be established with minimal
communication and interaction: assuming the public keys are pre-distributed,
all that is needed is an exchange of identifiers for those keys, and often this
exchange must take place anyway, in order to establish communications. A re-
cent paper [2] gives a detailed evaluation of the energy costs of interactive and
non-interactive key exchange protocols in the ID-based and PKI settings for
wireless communications with a jamming adversary, demonstrating that signif-
icant energy savings can be made by adopting a non-interactive approach to
key establishment. Its non-interactive nature makes NIKE an abstract building
block that is qualitatively different from interactive key exchange: e.g., to achieve
deniable authentication, [3] explicitly requires a non-interactive key exchange.
But NIKE can also be used as a basis for interactive key exhange [4]: one can
use the shared key in a MAC to authenticate an exchange of ephemeral Diffie-
Hellman values. Finally, NIKE can be used to build very simple non-interactive
designated verifier signature schemes [5], again using the shared key in a MAC
to authenticate messages. Thus NIKE appears in various guises throughout the
literature.

Despite its appearing in the very first paper on public key cryptography, the
NIKE primitive has so far received scant attention as a primitive in its own right.
Cash, Kiltz and Shoup (CKS) [6] provided a basic security model for NIKE and
analysed the Diffie-Hellman-based scheme above, as well as a twinned variant of
it, in the Random Oracle Model (ROM). There is also some work in the ID-based
setting [7,8,9,10], also all restricted to the ROM.

Our Contributions: Our contention is that NIKE is long overdue for more
serious attention and development. In this paper, we initiate the systematic study
of NIKE in the public key setting, providing: models and their relationships;
constructions for secure NIKE in the Random Oracle Model and in the standard
model in the challenging setting where the adversary can introduce arbitrary
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public keys into the system; and a construction for IND-CCA secure public
key encryption (PKE) from any secure NIKE. Let us expand on each of these
contributions in turn.

Models: It would seem that definitions and security models for interactive key
exchange (e.g., [11,12,13,14]) could provide a natural starting point for formalis-
ing NIKE. However, here we take the CKS definition [6] for NIKE as our starting
point. One reason for using a case-tailored NIKE definition is simplicity: exist-
ing security models for interactive key exchange give considerable attention to
properties which are irrelevant in the NIKE setting. (For instance, forward se-
curity, multiple sessions, and in particular the pairing of sessions play no role
in a non-interactive setting.) Another reason for a case-tailored NIKE definition
is that we can focus on adversarial key registration queries; these are usually
only implicitly [14] (or not at all [11,13]) considered in the standard models for
interactive key exchange1. However, in our setting, adversarial key registrations
pose the main technical obstacle to achieve NIKE security, as we will explain
below.

The CKS security model for NIKE uses an indistinguishability- and game-
based approach to define security, with the adversary being required to distin-
guish real from random keys in responses to its test queries. The model does
allow the adversary to register public keys of his choice in the system and then
to make queries for the shared keys between these “corrupted” users and honest
(non-adversarially controlled) users, so-called corrupt reveal queries. This trans-
lates in the real world to minimising the assumptions made about certification
procedures followed by the Certification Authority (CA) in the PKI supporting
the NIKE: it means that the CA is not assumed to check that a public key sub-
mitted for certification has not been submitted before, and does not check that
the party submitting the public key knows the corresponding private key. The
model for NIKE in [6] is similar to, and presumably inspired by, the early work of
Shoup [12] on interactive key exchange, where capturing so-called PKI attacks,
also known as rogue-key attacks, was intrinsic to the security modelling. This
modelling approach is referred to elsewhere in the literature as the plain setting
(see [16,17] and the references therein) or the bare PKI setting [3]. The CKS
model is certainly more challenging than settings where proofs of knowledge or
proofs of possession of private keys are assumed to be given during registration,
or where the adversary must reveal its secret key directly (as with the knowl-
edge of secret key assumption used in [18,19]). However, the CKS model has
some shortcomings: the adversary is not allowed to directly query for the shared
keys held between pairs of honest users, but instead only gets to see real or
random values for these via test queries. Moreover the model does not allow an
adversary to query for the private keys of honestly registered users.

Therefore, as a necessary precursor to the further development of NIKE, we
start by exploring different models for NIKE and their relationships (Section 2).

1 We mention that some security analyses (e.g., [15]) and Shoup’s security model [12]
do explicitly consider adversarial key registration queries.
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In summary, we introduce three new security models for NIKE and show that
they are all polynomially equivalent to one another and to the original CKS
model from [6]. One of our models, the m-CKS-heavy model, augments the
CKS model and effectively allows all conceivable queries, without allowing the
adversary to win trivially. It is our preferred security model for NIKE. Another
of our models, CKS-light, allows only two honest users, no corruption of honest
users, and a single test query. Thus it is particularly simple and so easy to use
when analyzing specific NIKE schemes; moreover our results showing equivalence
between the models ensure that security in this model implies security in the
preferred m-CKS-heavy model.

We stress that all these models allow the adversary to register public keys of
his choice in the system, so are in the plain setting.

Constructions for NIKE: In Section 4, we give two concrete constructions for
NIKE schemes meeting our CKS-light security definition, and hence secure in
our preferred m-CKS-heavy model (with dishonest key registrations).

Our two constructions are inspired by public key encryption (PKE) schemes
which are secure against chosen-ciphertext attacks (IND-CCA secure). We note
that dealing with corrupt reveal queries requires techniques to guard against ac-
tive attacks, which in part explains the connection to IND-CCA security. Indeed,
we will also show how to go in the reverse direction, converting any secure NIKE
scheme into an IND-CCA secure PKE scheme, see below. We stress, however,
that we cannot simply take any IND-CCA secure PKE scheme and directly inter-
pret it as a NIKE scheme.2 Rather, our constructions for NIKE exploit specific
properties of the underlying PKE schemes. In fact, our belief is that a generic
construction for secure NIKE from PKE is unlikely to be forthcoming.

The first scheme acts as a warm-up. It is provably secure under the fac-
toring assumption in the Random Oracle Model (ROM) and uses ideas from
[20] to analyse the basic Diffie-Hellman scheme, where keys are of the form
H(Alice, Bob, gxy), in the group of signed quadratic residues. We note that
closely related schemes were analysed in [6], but in different groups and under
different assumptions. Specifically, a twinned version of the scheme was proved
secure under the CDH assumption, while it is stated that the basic Diffie-Hellman
scheme is secure under the Strong DH assumption.

We remark that the latter claim of [6] is problematic. Concretely, the Strong
DH assumption is not (directly) sufficient to show that the basic Diffie-Hellman
scheme is secure. Namely, the corresponding security reduction requires two
DDH oracles – one for each of the two users sharing the key on which the
adversary wants to be challenged – while the Strong DH assumption supplies
only one. Certainly this problem could be solved instead by appealing to a suit-
able gap-DH assumption. We show how to overcome this problem in the group

2 One reason is that it is not clear what should correspond to the NIKE public key:
a PKE public key, a PKE ciphertext, or a combination of both? Besides, the cor-
responding security experiments for NIKE and PKE schemes are rather different:
there usually is one challenge ciphertext in a PKE security experiment, while there
are at least two challenge users in a NIKE security experiment.
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of signed quadratic residues without the need to rely on a gap assumption. We
then proceed to sketch how to transport this scheme to the standard model,
under the additional assumption that the adversary only registers valid public
keys. Because of the extra assumption, this scheme does not strictly speaking
meet our security definitions, and would require validity to be enforced by some
means in an interactive registration protocol (for example, via a proof of correct-
ness of the public key). This limitation of our standard model, factoring-based
solution reflects the technical challenge involved in achieving our “bare PKI”
security notions.

Our second NIKE scheme is provably secure in the standard model and com-
bines a specific weak Programmable Hash Function [21] whose output lies in a
pairing group and a Chameleon hash function [22]. This enables the simulation
in our security proof for the scheme to handle the tricky queries for shared keys
involving an honestly generated public key and an adversarially chosen public
key. Similar ideas were used in the context of HIBE in [23]. We also make use
of the pairing to provide a means of checking that public keys coming from the
adversary are in some sense well-formed. We work with asymmetric pairings for
efficiency at high security levels (and because it does not add any real complex-
ity to the description of our scheme). The scheme’s security relies on a natural
variant of the Decisional Bilinear Diffie-Hellman (DBDH) assumption for the
asymmetric setting.

From NIKE to PKE: In Section 5, we explore the connections between NIKE
and public key encryption (PKE). That such connections exist should not be too
much of a surprise: it is folklore that the ElGamal encryption scheme [24] can
be seen as arising from the Diffie-Hellman NIKE scheme by making the sender’s
key pair (gx, x) ephemeral and using the receiver’s public key gy to create the
basis for a shared key gxy. Similar connections were explored in the ID-based
setting in [10].

In our setting with dishonest key registrations, we provide a simple, generic
construction for PKE from NIKE that is also in the spirit of the original Diffie-
Hellman–to–ElGamal conversion. The construction takes a NIKE scheme that is
secure in our CKS-light model (with dishonest key registrations) and a strongly
one-time secure signature scheme as inputs, and produces from these components
a Key Encapsulation Mechanism (KEM) that we prove to be IND-CCA secure.
A secure PKE from such a KEM can be obtained using standard results. At a
high level, the key pair for the KEM is a randomly generated key pair (pk, sk)
from the NIKE scheme, ciphertexts are also randomly generated public keys pk′

from the NIKE scheme (together with a one-time signature that binds the public
key to an identity), while the encapsulated key is the shared key computed from
sk′ and pk; the receiver computes the same key from sk and pk′, assuming the
one-time signature verifies. In order to prove the KEM to be IND-CCA secure,
we exploit the presence of corrupt reveal queries in the NIKE security model in
an essential way to handle certain decapsulation queries. The resulting KEM is
almost as efficient as the underlying NIKE scheme.
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The fact that secure NIKE implies IND-CCA-secure PKE, one of the most
important primitives in cryptography, illustrates the fundamental role and utility
of NIKE. We believe that this connection should spur further research on the
topic.

2 Non-Interactive Key Exchange and Security Models

2.1 Non-Interactive Key Exchange

Following [6], we formally define a Non-Interactive Key Exchange (NIKE) scheme
in the public key setting to be a collection of three algorithms: CommonSetup,
NIKE.KeyGen and SharedKey together with an identity space IDS and a shared
key space SHK. Note that identities in the scheme and security model are merely
used to track which public keys are associated with which users – we are not in
the identity-based setting.

– CommonSetup: On input 1k, outputs params, a set of system parameters.
– NIKE.KeyGen: On input params and an identity ID ∈ IDS, outputs a pub-

lic key/secret key pair (pk, sk). This algorithm is probabilistic and can be
executed by any user. We assume, without loss of generality, that params is
included in pk.

– SharedKey: On input an identity ID1 ∈ IDS and a public key pk1 along with
another identity ID2 ∈ IDS and a secret key sk2, outputs either a shared
key in SHK for the two identities, or a failure symbol ⊥. This algorithm is
assumed to always output ⊥ if ID1 = ID2.

For correctness, we require that, for any pair of identities ID1, ID2, and corre-
sponding key pairs (pk1, sk1) and (pk2, sk2), algorithm SharedKey satisfies the
constraint:

SharedKey(ID1, pk1, ID2, sk2) = SharedKey(ID2, pk2, ID1, sk1).

2.2 Definitions of Security for Non-Interactive Key Exchange

Cash, Kiltz and Shoup [6] proposed a security model for NIKE schemes in the
public key setting, denoted here by the CKS model. This model abstracts away
all considerations concerning certification and PKI in a particularly nice way.
It allows an adversary to obtain honestly generated public keys, but also to
then associate such public keys with other identities, and to register dishonestly
generated public keys (for which the adversary need not know the corresponding
private keys). This dishonest key registration (DKR) setting (abstractly) models
a PKI where minimal assumptions are made about the actions of the Certificate
Authority (CA): the CA is not assumed to check that a public key has not been
previously registered to another user, and does not demand a proof of knowledge
or possession of the private key when issuing a certificate on a public key. This
conservative approach to modelling is fully appropriate given the great diversity
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in how CAs operate in the real world. The model can be seen as a natural
adaptation of the approach of Shoup [12] for modelling interactive key exchange
to the NIKE setting and is analogous to the plain setting studied in [16,17].

However, there are some obvious omissions from the model, including the
ability of an adversary to “corrupt” honestly generated public keys to learn
the corresponding private keys, and the ability of a user to directly learn the
key shared between two honest parties in the system (which could be possible,
for example, because of cryptanalysis of a scheme making use of the shared
key). Equivalent queries in the ID-based setting were permitted in the model
introduced in [10].

For this reason, we augment the original CKS model with the “missing”
queries, introducing the m-CKS-heavy model. We regard this as providing the
“correct” model for NIKE. We also introduce two further models, the CKS-
heavy and CKS-light models. These differ from m-CKS-heavy and the original
CKS model only in the numbers and types of query that the adversary is allowed
to make. Next we present in detail the m-CKS-heavy model. Then in Table 1 we
summarize the differences between these security models in the DKR setting.

The m-CKS-heavy model: Our model is stated in terms of a game between an
adversary A and a challenger C. In this game, C takes as input the security
parameter 1k, runs algorithm CommonSetup of the NIKE scheme and gives A
params. The challenger takes a random bit b and answers oracle queries for A
until A outputs a bit b̂. The challenger answers the following types of queries
for A:

– Register honest user ID : A supplies an identity ID ∈ IDS . On input params
and ID, the challenger runs NIKE.KeyGen to generate a public key/secret
key pair (pk, sk) and records the tuple (honest , ID, pk, sk). The challenger
returns pk to A.

– Register corrupt user ID : In this type of query, A supplies both an iden-
tity ID ∈ IDS and a public key pk. The challenger records the tuple
(corrupt , ID, pk,⊥). We stress that A may make multiple “Register corrupt
user ID” queries for the same ID during the experiment. In that case, only
the most recent (corrupt , ID, pk,⊥) entry is kept.

– Extract queries : Here A supplies an identity ID that was registered as an
honest user. The challenger looks for a tuple (honest , ID, pk, sk) containing
ID and returns sk to A.

– Reveal queries : HereA supplies a pair of registered identities ID1, ID2, subject
only to the restriction that at least one of the two identities was registered
as honest. The challenger runs SharedKey using the secret key of one of the
honest identities and the public key of the other identity and returns the
result to A. Note that here the adversary is allowed to make reveal queries
between two users that were originally registered as honest users. We denote
by honest reveal the queries involving two honest users and by corrupt reveal
the queries involving an honest user and a corrupt user.
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Table 1. Types of queries for different security models in the dishonest key registration
(DKR) PKI model (aka plain/bare model). Notation: �means that an adversary is
allowed to make an arbitrary number of queries; ✗ means that no queries can be made;
numbers represent the number of queries allowed to an adversary.

Model
Register Register

Extract
Honest Corrupt

Test
Honest Corrupt Reveal Reveal

CKS-light 2 � ✗ ✗ � 1
CKS � � ✗ ✗ � �
CKS-heavy � � � � � 1
m-CKS-heavy � � � � � �

– Test queries : Here A supplies two distinct identities ID1, ID2 that were both
registered as honest. The challenger returns ⊥ if ID1 = ID2. Otherwise, it
uses the bit b to answer the queries. If b = 0, the challenger runs SharedKey
using the public key for ID1 and the secret key for ID2 and returns the result
to A. If b = 1, the challenger generates a random key, records it for later,
and returns that key to the adversary. In this case, to keep things consistent,
the challenger returns the same random key for the pair ID1, ID2 every time
A queries for their paired key, in either order.

A’s queries may be made adaptively and are arbitrary in number. To prevent
trivial wins for the adversary, no query to the reveal oracle is allowed on any
pair of identities selected for test queries (in either order), and no extract query
is allowed on any of the identities involved in test queries. Also, we demand that
no identity registered as corrupt can later be the subject of a register honest
user ID query, and vice versa.

When the adversary finally outputs b̂, it wins the game if b̂ = b. For an
adversary A, we define its advantage in this security game as:

Advm-CKS-heavy
A (k, qH , qC , qE , qHR, qCR, qT ) = |Pr[b̂ = b]− 1/2|

where qH , qC , qE , qHR, qCR and qT are the numbers of register honest user ID
queries, register corrupt user ID queries, extract queries, honest reveal queries,
corrupt reveal queries and test queries made by A, respectively. We say that a
NIKE scheme is (t, ε, qH , qC , qE , qHR, qCR, qT )-secure in the m-CKS-heavy model
if there is no adversary with advantage at least ε that runs in time t and makes
at most qH register honest user ID queries, etc. Informally, we say that a NIKE
scheme is m-CKS-heavy secure if there is no efficient adversary having non-
negligible advantage in k, where efficient means that the running time and num-
bers of queries made by the adversary are bounded by polynomials in k.

Comparing the models: Table 1 outlines the properties of our other security
models in the DKR setting, in terms of restrictions on the queries that can
be made by the adversary. It is apparent that the m-CKS-heavy model is the
strongest model. It differs from the CKS-heavy model only in allowing multiple
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test queries. The m-CKS-heavy model represents a strengthening of the orig-
inal CKS model by allowing extract and honest reveal queries, whereas the
CKS model only allows the adversary to gain information about honestly gen-
erated shared keys via test queries. The CKS-light model is simplest of all, in-
volving only two honestly registered identities, removing the extract and honest
reveal queries, and allowing only a single test query. We prove that it is poly-
nomially equivalent to the m-CKS-heavy model. In fact, we prove the following
theorem:

Theorem 1. The m-CKS-heavy, CKS-heavy, CKS and CKS-light security mod-
els are all polynomially equivalent.

Proof. See the full version [25].

Thus, while the m-CKS-heavy model is our preferred model, it suffices to analyse
schemes in the CKS-light model if one is not overly concerned about concrete
security. However, we note that various factors are involved in the reductions. In
particular a factor of qT qH

2 is lost in going from the m-CKS-heavy to the CKS-
light model. This reflects the proof techniques used in establishing the bounds,
specifically the use of hybrid arguments. It is an interesting open problem to
either prove tighter relations between the models, or to prove that such results
are not possible.

3 Intractability Assumptions

3.1 The Group of Signed Quadratic Residues, the BBS generator,
and the Strong Diffie-Hellman Assumption

The factoring assumption: Let n(k) be a function and δ a constant with 0 ≤ δ <
1/2. Let RSAgen be an algorithm with input 1k that generates elements (N,P,Q)
such that N = PQ is an n-bit Blum integer and all prime factors of φ(N)/4 are
pairwise distinct and have at least δn bits. These conditions ensure that (JN , ·)
is cyclic and that the square g of a random element in Z∗

N , generates QRN with
high probability. That is, 〈g〉 = QRN . For such N , we recall the definition of
the group of signed quadratic residues QR+

N from [20] (see also [26,27]) which
is defined as the set {|x| : x ∈ QRN}, where |x| is the absolute value when
representing elements of ZN as the set {−(N − 1)/2, . . . , (N − 1)/2}. (QR+

N , ·) is
a cyclic group of order φ(N)/4 whose elements are efficiently recognisable given
only N as input.

For any algorithm A, we write

AdvfacA,RSAgen(k) = Pr[{P,Q} $←− A(N) : (N,P,Q)
$←− RSAgen(1k)].

The factoring assumption for RSAgen is that AdvfacA,RSAgen(k) is negligible for all
PPT algorithms A.
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The BBS generator: Let BBSN : QR+
N → {0, 1}k be the Blum-Blum-Shub pseu-

dorandom number generator. (That is, BBSN (X) = (lsbN (X), lsbN (X2), . . . ,

lsbN (X2k−1

)), where lsbN(X) denotes the least significant bit of X ∈ QR+
N .)

Recall that the factoring assumption implies the computational indistinguisha-
bility of the distributions

(N,X2k ,BBSN (X)) and (N,X2k , R),

where N
$←− RSAgen(1k), and X

$←− QR+
N and R

$←− {0, 1}k are chosen uniformly.
(See also [28, Theorem 2] for a summary why this holds.) Concretely, under the
factoring assumption, the advantage

AdvBBS
B,RSAgen(k) :=

∣∣∣Pr[B(N,X2k ,BBSN (X)) = 1]− Pr[B(N,X2k , R) = 1]
∣∣∣

is negligible for any PPT adversary B.

The Strong DH assumption: In [20] it is shown that if the factoring assumption
holds, then the Strong DH assumption holds relative to RSAgen. This assumption
is that there is no PPT algorithm having non-negligible advantage in solving the
CDH problem on input (N, g,X, Y ) when given an oracle for DDHg,X(·, ·). Here
g is a randomly selected generator of QR+

N , X and Y are selected uniformly from

QR+
N , the solution to the CDH problem is defined as g(dloggX)(dloggY ), and the

DDH oracle DDHg,X(Ŷ , Ẑ) returns 1 if Ŷ dloggX = Ẑ and 0 otherwise.
We will require a variant of the Strong DH assumption, which we name the

Double Strong DH (DSDH) assumption. This can be stated as follows. Let
(N,P,Q) ← RSAgen(1k) and let g be a randomly selected generator of QR+

N ,
and X , Y be selected uniformly from QR+

N . Then the Double Strong DH prob-
lem is to solve the CDH problem on input (N, g,X, Y ), that is to compute

g(dloggX)(dloggY ), when given oracles for DDHg,X(·, ·) and DDHg,Y (·, ·). The
DSDH assumption relative to RSAgen is that there is no PPT algorithm having
non-negligible advantage in solving this problem.

Theorem 2. If the factoring assumption holds relative to RSAgen, then the
DSDH assumption also holds relative to RSAgen. In particular, for every algo-
rithm A solving the Double Strong DH problem, there exists a factoring algorithm
B (with roughly the same running time as A) such that

AdvdsdhA,RSAgen(k) ≤ AdvfacB,RSAgen(k) +O(2−δn(k)).

Proof. The original proof of [20, Theorem 2] shows how to handle a single DDH
oracle DDHg,X(·, ·). By symmetry of the set-up used in the proof, the same
procedure can also be used to (simultaneously) handle the oracle DDHg,Y (·, ·).

3.2 Parameter Generation Algorithms for Asymmetric Pairings

Our pairing based scheme will be parameterized by a type 2 pairing parameter
generator, denoted by G2. This is a polynomial time algorithm that on input
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a security parameter 1k, returns the description of three multiplicative cyclic
groups G1, G2 and GT of the same prime order p, generators g1, g2 for G1, G2

respectively, and a bilinear non-degenerate and efficiently computable pairing e :
G1×G2 → GT . We assume that G2 also outputs the description of an efficiently
computable isomorphism ψ : G2 → G1 and that g1 = ψ(g2). Throughout, we
write PG2 = (G1,G2,GT , g1, g2, p, e, ψ) for a set of groups and other parameters
with the properties just described.

3.3 The Decisional Bilinear Diffie-Hellman Assumption for Type 2
Pairings (DBDH-2)

Let PG2 = (G1,G2,GT , g1, g2, p, e, ψ) as above. We consider the following ver-
sion of the Decisional Bilinear Diffie-Hellman problem for type 2 pairings, as
introduced by Galindo in [29]: Given (g2, g

a
2 , g

b
2, g

c
1, T ) ∈ G3

2×G1×GT as input,
the problem is to decide whether or not T = e(g1, g2)

abc, where g1 = ψ(g2). More
formally, we associate the following experiment to a type 2 pairing parameter
generator G2 and an adversary B.

Experiment Expdbdh-2B,G2 (k)

PG2 $←− G2(1k)
a, b, c, z

$←− Zp

β
$←− {0, 1}

If β = 1 then T ← e(g1, g2)
abc else T ← e(g1, g2)

z

β′ $←− B(1k,PG2, ga2 , gb2, gc1, T )
If β = β′ then return 0 else return 1

The advantage of B in the above experiment is defined as

Advdbdh-2B,G2 (k) =

∣∣∣∣Pr[Expdbdh-2B,G2 (k) = 1]− 1

2

∣∣∣∣ .
We say that the DBDH-2 assumption relative to G2 holds if Advdbdh-2B,G2 is negli-
gible in k for all PPT algorithms B.

4 Constructions for Non-Interactive Key Exchange

4.1 A Construction in the Random Oracle Model from Factoring

We specify how to build a NIKE scheme, NIKEfac, that is secure in the CKS-light
security model under the factoring assumption relative RSAgen in the ROM. Our
scheme makes use of a hash function H : {0, 1}∗ → {0, 1}k which is modelled as
a random oracle in the security proof. The component algorithms of the scheme
NIKEfac are defined as follows:
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CommonSetup(1k) NIKE.KeyGen(params, ID)

(N,P,Q)
$←− RSAgen(1k) x

$←− Z�N/4�;

g
$←− QR+

N , where 〈g〉 = QR+
N X ← gx

params← (H,N, g) pk ← X ; sk ← x
Return params Return (pk, sk)

SharedKey(ID1, pk1, ID2, sk2)
If (ID1 = ID2) or pk1 �∈ QR+

N or pk2 �∈ QR+
N return ⊥

else if

{
ID1 < ID2 return H(ID1, ID2, pk1

sk2)

ID2 < ID1 return H(ID2, ID1, pk1
sk2)

Here we are assuming that the identities ID come from a space with a natural
ordering <.

Theorem 3. The scheme NIKEfac is secure in the ROM under the factoring
assumption relative to RSAgen. In particular, suppose A is an adversary against
NIKEfac in the CKS-light security model. Then there exists a factoring adversary
C with:

AdvCKS-light
A,NIKEfac

(k) ≤ AdvfacC,RSAgen(k) +O(2−δn(k)).

Proof. See the full version [25].

4.2 Towards a Factoring-Based Scheme in the Standard Model

The security proof of NIKEfac above crucially uses the statistical properties of
the random oracleH . If we accept an interactive key registration, we can however
give a factoring-based NIKE scheme in the standard model. The basis of this
scheme is the factoring-based IND-CCA secure encryption scheme of Hofheinz
and Kiltz [28]. However, in adapting their scheme to the NIKE setting, we will
have to find a way to simultaneously cope with two challenge ciphertexts (which
correspond to the public keys of the challenge identities). To cope with this
modified setting, we will set up a simulation that is able to decrypt all but two
ciphertexts (resp. NIKE public keys).

In our description, let RSAgen as before, let ChamH : {0, 1}∗ × RCham →
Z2k be a chameleon hash function [22]. Now consider the following scheme
NIKEfac-int:

CommonSetup(1k)

(N,P,Q)
$←− RSAgen(1k)

g, u0, u1, u2
$←− QR+

N ,
where 〈g〉 = QR+

N

hk, ck
$←− Cham.KeyGen(1k)

params← (N, g, u0, u1, u2, hk)
Return params

NIKE.KeyGen(params, ID)

x
$←− Z�N/4�; r

$←− RCham

Z ← gx·2
3k

;
t← ChamHhk(Z||ID; r)
Y ← u0u

t
1u2

t2 ; X ← Y x

pk← (Z,X, r); sk← x
Return (pk, sk)
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SharedKey(ID1, pk1, ID2, sk2)
If (ID1 = ID2) or pk1 �∈ QR+

N ×QR+
N ×RCham or sk2 �∈ Z�N/4� return ⊥

Parse pk1 =: (Z1, X1, r1) and sk2 =: x2

Return BBSN (Zx2·22k
1 )

Note that correctness of the scheme follows from Zx2·22k
1 = gx1·x2·25k = Zx1·22k

2 .
To prove security, we need to rely on the consistency of public keys. Concretely,
the security reduction we will give can only authentically answer corrupt re-

veal queries for corrupt user keys pk = (Z,X, r) that satisfy Z = gx·2
3k

, X =

(u0u
t
1u
t2

2 )x for t = ChamHhk(Z||ID; r) and some x. Unlike in our upcoming
pairing-based scheme, this kind of consistency is not (obviously) efficiently veri-
fiable. Hence, the key registration process must ensure that only consistent user
keys are registered, e.g., by having the user prove consistency in zero-knowledge
(interactively, using x as witness).

On top of assuming consistent keys, we will also have to make an assumption
about the distribution of (or rather, the ability to generate) primes. Namely, we
will need to assume a PPT algorithm PrimeGen that, on input a 2k-bit prime ρ,
outputs a prime α such that α mod ρ has statistical distance O(2−k) from the
uniform distribution over Zρ. Such an algorithm PrimeGen exists. This is an easy
consequence of Dirichlet’s theorem on the distribution of primes in arithmetic
progressions: our generator simply samples integers of the form α0 + i · ρ for
uniformly chosen α0 ∈ Zρ and i = 1, 2, . . ., and checks them for primality. This
algorithm can be rigorously proven to be efficient under the Generalized Riemann
Hypothesis.

Theorem 4. Under the factoring assumption relative to RSAgen, given an al-
gorithm PrimeGen as above, and assuming that the chameleon hash function
ChamH is collision-resistant, the scheme NIKEfac-int is secure against all adver-
saries that only register consistent (in the sense above) user keys. In particular,
suppose A is such an adversary against NIKEfac in the CKS-light security model.
Then there exists a BBS distinguisher B and a collision-finder ACH with:

AdvCKS-light
A,NIKEfac-int

(k) ≤ AdvBBS
B,RSAgen(k) + AdvcollACH,ChamH(k) +O(2−k). (1)

Proof. See the full version [25].

4.3 A Construction in the Standard Model from Pairings

We specify how to build a NIKE scheme, NIKEdbdh-2, that is secure in the CKS-
light security model under the DBDH-2 assumption in the standard model. Our
construction makes use of a tuple PG2 = (G1,G2,GT , g1, g2, p, e, ψ), output by
a parameter generator G2, and a chameleon hash function ChamH : {0, 1}∗ ×
RCham → Zp. This can be instantiated efficiently using the discrete-log based
construction from [22]. The component algorithms of the scheme NIKEdbdh-2 are
defined as follows:
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CommonSetup(1k)

PG2 $←− G2(1k),
where PG2 = (G1,G2,GT , g1, g2, p, e, ψ)

u0, u1, u2, S
$←− G∗

1

hk, ck
$←− Cham.KeyGen(1k)

params← (PG2, u0, u1, u2, S, hk)
Return params

NIKE.KeyGen(params, ID)

x
$←− Zp; r

$←− RCham

Z ← gx2 ;
t← ChamHhk(Z||ID; r);
Y ← u0u

t
1u2

t2 ; X ← Y x

pk ← (X,Z, r); sk← x
Return (pk, sk)

SharedKey(ID1, pk1, ID2, sk2)
If ID1 = ID2 return ⊥
Parse pk1 as (X1, Z1, r1) and sk2 as x2
t1 ← ChamHhk(Z1||ID1; r1)

If e(X1, g2) �= e(u0u
t1
1 u2

t1
2

, Z1)
then K1,2 ←⊥
else K1,2 ← e(Sx2 , Z1)

Return K1,2

The check in the SharedKey algorithm for valid public keys can be implemented
by evaluating the bilinear map twice. It is clear that SharedKey defined in this
way satisfies the requirement that entities ID1 and ID2 are able to compute
a common key. To see this, note that e(Sx2 , Z1) = e(S, g2)

x1,x2 . The identity
space for this construction, IDS , is {0, 1}∗, while the space of shared keys is
SHK = GT . Public keys and parameters are compact. For example, at the 128-
bit security level, using BN curves [30] and point compression, public keys consist
of 768 bits plus an element from RCham.

As stated before, we can prove the above NIKE scheme to be secure under the
DBDH-2 assumption in the sense of the CKS-light security model. Interestingly,
our scheme can be generalised to use any weak (2, poly)-PHF [21] in combination
with a chameleon hash function. That is, Y (in the NIKE.KeyGen algorithm)
would be the output of the weak (2, poly)-PHF on input t, where t is the output of
the chameleon hash function. We have given a specific construction here because
suitable weak PHFs are currently rare. A further generalisation of our scheme
could use any randomised (2, poly)-PHF and avoid the chameleon hash, but no
constructions for these are currently known.

Theorem 5. Assume ChamH is a family of chameleon hash functions. Then
NIKEdbdh-2 is secure under the DBDH-2 assumption relative to generator G2.
In particular, suppose A is an adversary against NIKEdbdh-2 in the CKS-light
security model. Then there exists a DBDH-2 adversary B with:

Advdbdh-2B,G2 (k) ≥ AdvCKS-light
A,NIKEdbdh-2

(k)−AdvcollACH,ChamH(k).

Proof. See the full version [25].
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5 From Non-Interactive Key Exchange to Public Key
Encryption

We give a conversion that takes a NIKE scheme that is secure in the CKS-light
security model plus a strongly one-time secure signature (OTS) scheme, and
produces from it a KEM that is IND-CCA secure. From such a KEM, it is easy
to construct an IND-CCA secure public key encryption scheme [31].

The formal definitions of KEM and OTS schemes and their security can be
found in the full version [25].

5.1 The Conversion from NIKE to KEM

We now present our conversion from a NIKE scheme to a KEM. For a NIKE
scheme NIKE and an OTS scheme OTS, we construct a KEM KEM(NIKE, OTS) with
the following algorithms:

– KEM.KeyGen(1k): This algorithm runs the algorithm CommonSetup(1k) of
NIKE to obtain a set of system parameters, params. Then it picks ID ∈ IDS
uniformly and runs NIKE.KeyGen(params , ID) to obtain a key pair (pk, sk).
It sets pkKEM = (params , ID, pk) and skKEM = (ID, sk).

– Enc(pkKEM): This algorithm parses pkKEM as (params , ID, pk), runs OTSKeyGen
to obtain a pair (vk , sigk). This is repeated until vk �= ID. Next, it runs
NIKE.KeyGen(params , ID′ = vk) of NIKE to obtain a key pair (pk′, sk′) and
runs OTSSign(sigk , pk′) to obtain σ, a signature on pk′. It then runs
SharedKey(ID, pk, ID′ = vk , sk′) of scheme NIKE to obtain a key K ∈ SHK.
The output is (K,C = (vk , pk′, σ)).

– Dec(skKEM, C): This algorithm first parses C as (vk , pk′, σ) and skKEM as
(ID, sk). Next, it runs OTSVfy(vk , pk′, σ) and returns ⊥ if the output is
reject or if vk = ID. Otherwise, it runs SharedKey(ID′ = vk , pk′, ID, sk)
and outputs the result, which may be ⊥.

Notice that the ciphertexts in this scheme consist of a verification key from the
OTS scheme, a public key from the NIKE scheme, and a one-time signature,
while the encapsulated keys are elements of SHK. As our next result shows, the
resulting KEM is automatically IND-CCA secure if the NIKE scheme is secure
in the CKS-light security model.

Theorem 6. Suppose the NIKE scheme NIKE is secure in the CKS-light se-
curity model and OTS is a strongly secure one-time signature scheme. Then
KEM(NIKE, OTS) is an IND-CCA secure KEM. More precisely, for any adver-
sary A against KEM(NIKE, OTS), there exists an adversary B against NIKE in the
CKS-light security model or an adversary C against OTS having the same advan-
tage. Moreover, if A makes qD decapsulation queries, then B makes qD register
corrupt user queries and qD corrupt reveal queries, while B’s running time is
roughly the same as that of A.

Proof. See the full version [25].
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Applying the above construction to the pairing-based NIKE scheme from the
previous section results in an IND-CCA secure KEM with public keys (ID, pk)
that consist of an identity string, two group elements (one in G1 and one in G2),
and a key for the Chameleon hash function. Ciphertexts are slightly longer, con-
taining in addition a verification key and a signature from the one-time signature
scheme3.

6 Conclusions and Open Problems

We provided different security models for NIKE and explored the relationships
between them. We then gave constructions for secure NIKE in the ROM and in
the standard model. We also studied the relationship between NIKE and PKE,
showing that a secure NIKE implies an IND-CCA secure PKE scheme.

There are several interesting open problems that arise from our work. One is
to construct pairing-free NIKE schemes in the standard model. A challenge to
doing so is that our pairing-based construction uses the pairing in a fundamental
way in order to provide a publicly computable check on the validity of public
keys. The RSA/factoring setting seems particularly challenging in this respect
– we recall that our standard model, factoring-based scheme required that the
adversary only register valid public keys, a condition that could be enforced in
practice by having an interactive key registration protocol and insisting on proofs
of validity during that protocol. Clearly, it is desirable from both a practical and
a theoretical perspective to obtain schemes that are secure in the plain setting,
where no such protocol is required.

Another open problem is to construct ID-based NIKE schemes that are prov-
ably secure in the standard model, moving beyond the ROM schemes analysed
in [8,10]. Starting with known IBE schemes may be profitable, but the fact
that these generally have randomised private key generation algorithms seems
to make it hard to work backwards from IBE to ID-based NIKE.

Finally, it would be interesting to consider three-party NIKE schemes based
on Joux’s protocol [32]. Currently, there is no security model for such schemes,
and no constructions which can handle adversarially-generated public keys.
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Abstract. Authenticated Key Exchange (AKE) protocols enable two
parties to establish a shared, cryptographically strong key over an inse-
cure network using various authentication means, such as cryptographic
keys, short (i.e., low-entropy) secret keys or credentials. In this pa-
per, we provide a general framework, that encompasses several previous
AKE primitives such as (Verifier-based) Password-Authenticated Key Ex-
change or Secret Handshakes, we call LAKE for Language-Authenticated
Key Exchange.

We first model this general primitive in the Universal Composability
(UC) setting. Thereafter, we show that the Gennaro-Lindell approach
can efficiently address this goal. But we need smooth projective hash
functions on new languages, whose efficient implementations are of in-
dependent interest. We indeed provide such hash functions for languages
defined by combinations of linear pairing product equations.

Combined with an efficient commitment scheme, that is derived from
thehighly-efficientUC-secureLindell’s commitment,we obtain a very prac-
tical realization of Secret Handshakes, but also Credential-Authenticated
Key Exchange protocols. All the protocols are UC-secure, in the standard
model with a common reference string, under the classical Decisional Lin-
ear assumption.

1 Introduction

The main goal of an Authenticated Key Exchange (AKE) protocol is to enable
two parties to establish a shared cryptographically strong key over an insecure
network under the complete control of an adversary. AKE is one of the most
widely used and fundamental cryptographic primitives. In order for AKE to be
possible, the parties must have authentication means, e.g. (public or secret) cryp-
tographic keys, short (i.e., low-entropy) secret keys or credentials that satisfy a
(public or secret) policy.

Motivation. PAKE, for Password-Authenticated Key Exchange, was formalized
by Bellovin and Merritt [5] and followed by many proposals based on different
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cryptographic assumptions (see [1, 8] and references therein). It allows users
to generate a strong cryptographic key based on a shared “human-memorable”
(i.e. low-entropy) password without requiring a public-key infrastructure. In this
setting, an adversary controlling all communication in the network should not
be able to mount an off-line dictionary attack.

The concept of Secret Handshakes has been introduced in 2003 by Balfanz,
Durfee, Shankar, Smetters, Staddon and Wong [3] (see also [2,19]). It allows two
members of the same group to identify each other secretly, in the sense that each
party reveals his affiliation to the other only if they are members of the same
group. At the end of the protocol, the parties can set up an ephemeral session
key for securing further communication between them and an outsider is unable
to determine if the handshake succeeded. In case of failure, the players do not
learn any information about the other party’s affiliation.

More recently,Credential-Authenticated Key Exchange (CAKE) was presented
by Camenisch, Casati, Groß and Shoup [8]. In this primitive, a common key is
established if and only if a specific relation is satisfied between credentials hold
by the two players. This primitive includes variants of PAKE and Secret Hand-
shakes, and namely Verifier-based PAKE, where the client owns a password pw
and the server knows a one-way transformation v of the password only. It pre-
vents massive password recovering in case of server corruption. The two players
eventually agree on a common high entropy secret if and only if pw and v match
together, and off-line dictionary attacks are prevented for third-party players.

Our Results. We propose a new primitive that encompasses most of the pre-
vious notions of authenticated key exchange. It is closely related to CAKE and
we call it LAKE, for Language-Authenticated Key-Exchange, since parties estab-
lish a common key if and only if they hold credentials that belong to specific
(and possibly independent) languages. The definition of the primitive is more
practice-oriented than the definition of CAKE from [8] but the two notions are
very similar. In particular, the new primitive enables privacy-preserving authen-
tication and key exchange protocols by allowing two members of the same group
to secretly and privately authenticate to each other without revealing this group
beforehand.

In order to define the security of this primitive, we use the UC framework and
an appropriate definition for languages that permits to dissociate the public part
of the policy, the private common information the users want to check and the
(possibly independent) secret values each user owns that assess the membership
to the languages. We provide an ideal functionality for LAKE and give efficient
realizations of the new primitive (for a large family of languages) secure under
classical mild assumptions, in the standard model (with a common reference
string – CRS), with static corruptions.

We significantly improve the efficiency of several CAKE protocols [8] for spe-
cific languages and we enlarge the set of languages for which we can construct
practical schemes. Notably, we obtain a very practical realization of Secret Hand-
shakes and a Verifier-based Password-Authenticated Key Exchange.
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Our Techniques. A general framework to design PAKE in the CRS model was
proposed by Gennaro and Lindell [17] in 2003. This approach was applied to
the UC framework by Canetti, Halevi, Katz, Lindell, and MacKenzie [11], and
improved by Abdalla, Chevalier and Pointcheval [1]. It makes use of the smooth
projective hash functions (SPHF), introduced by Cramer and Shoup [14]. Such
a hashing family is a family of hash functions that can be evaluated in two ways:
using the (secret) hashing key, one can compute the function on every point
in its domain, whereas using the (public) projection key one can only compute
the function on a special subset of its domain. Our first contribution is the
description of smooth projective hash functions for new interesting languages:
Abdalla, Chevalier and Pointcheval [1] explained how to make disjunctions and
conjunctions of languages, we study here languages defined by linear pairing
product equations on committed values.

In 2011, Lindell [20] proposed a highly-efficient commitment scheme, with a
non-interactive opening algorithm, in the UC framework. We will not use it in
black-box, but instead we will patch it to make the initial Gennaro and Lindell’s
approach to work, without zero-knowledge proofs [11], using the equivocability
of the commitment.

Language Definition. In [1], Abdalla et al. already formalized languages to be
considered for SPHF. But, in the following, we will use a more simple formalism,
which is nevertheless more general: we consider any efficiently computable binary
relation R : {0, 1}∗ × P × S → {0, 1}, where the additional parameters pub ∈
{0, 1}∗ and priv ∈ P define a language LR(pub, priv) ⊆ S of the words W such
that R(pub, priv,W ) = 1:

– pub are public parameters;
– priv are private parameters the two players have in mind, and they should

think to the same values: they will be committed to, but never revealed;
– W is the word the sender claims to know in the language: it will be committed

to, but never revealed.

Our LAKE primitive, specific to two relations Ra and Rb, will allow two users,
Alice and Bob, owning a word Wa ∈ LRa(pub, priva) and Wb ∈ LRb

(pub, privb)
respectively, to agree on a session key under some specific conditions: they first
both agree on the public parameter pub, Bob will think about priv′a for his
expected value of priva, Alice will do the same with priv′b for privb; eventually, if
priv′a = priva and priv′b = privb, and if they both know words in the languages,
then the key agreement will succeed. In case of failure, no information should
leak about the reason of failure, except the inputs did not satisfy the relations
Ra or Rb, or the languages were not consistent.

We stress that each LAKE protocol will be specific to a pair of relations
(Ra,Rb) describing the way Alice and Bob will authenticate to each other. This
pair of relations (Ra,Rb) specifies the sets Pa, Pb and Sa, Sb (to which the
private parameters and the words should respectively belong). Therefore, the
formats of priva, privb and Wa and Wb are known in advance, but not their
values. When Ra and Rb are clearly defined from the context (e.g., PAKE),
we omit them in the notations. For example, these relations can formalize:
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– Password authentication: The language is defined by R(pub, priv,W ) = 1⇔
W = priv, and thus pub = ∅. The classical setting of PAKE requires the
players A and B to use the same password W , and thus we should have
priva = priv′b = privb = priv′a =Wa =Wb;

– Signature authentication: R(pub, priv,W ) = 1 ⇔ Verif(pub1, pub2,W ) = 1,
where pub = (pub1 = vk, pub2 = M) and priv = ∅. The word W is thus a
signature of M valid under vk, both specified in pub;

– Credential authentication: we can consider any mix for vk and M in pub
or priv, and even in W , for which the relation R verifies the validity of the
signature. When M and vk are in priv or W , we achieve affiliation-hiding
property.

In the two last cases, the parameter pub can thus consist of a message on which
the user is expected to know a signature valid under vk: either the user knows
the signing key and can generate the signature on the fly to run the protocol,
or the user has been given signatures on some messages (credentials). As a
consequence, we just assume that, after having publicly agreed on a common
pub, the two players have valid words in the appropriate languages. The way
they have obtained these words does not matter.

Following our generic construction, private elements will be committed using
encryption schemes, derived from Cramer-Shoup’s scheme, and will thus have
to be first encoded as n-tuples of elements in a group G. In the case of PAKE,
authentication will check that a player knows an appropriate password. The
relation is a simple equality test, and accepts for one word only. A random
commitment (and thus of a random group element) will succeed with negligible
probability. For signature-based authentication, the verification key can be kept
secret, but the signature should be unforgeable and thus a random word W
should quite unlikely satisfy the relation. We will often make this assumption
on useful relations R: for any pub, {(priv,W ) ∈ P × S,R(pub, priv,W ) = 1} is
sparse (negligible) in P × S, and a fortiori in the set Gn in which elements are
first embedded.

2 Definitions

In this section, we first briefly recall the notations and the security notions of
the basic primitives we will use in the rest of the paper, and namely public
key encryption and signature. More formal definitions, together with the clas-
sical computational assumptions (CDH, DDH, and DLin) are provided in the
full version [6]: A public-key encryption scheme is defined by four algorithms:
param← Setup(1k), (ek, dk)← KeyGen(param), c← Encrypt(ek,m; r), and m←
Decrypt(dk, c). We will need the classical notion of IND-CCA security. A sig-
nature scheme is defined by the four following algorithms: param ← Setup(1k),
(vk, sk)← KeyGen(param), σ ← Sign(sk,m; s), and Verif(vk,m, σ). We will need
the classical notion of EUF-CMA security. In both cases, the global parameters
param will be ignored, included in the CRS. We will furthermore make use of
collision-resistant hash function families.
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2.1 Universal Composability

Our main goal will be to provide protocols with security in the universal compos-
ability framework. The interested reader is referred to [10, 11] for details. More
precisely, we will work in the UC framework with joint state proposed by Canetti
and Rabin [12] (with the CRS as the joint state). Since players are not individu-
ally authenticated, but just afterward if the credentials are mutually consistent
with the two players’ languages, the adversary will be allowed to interact on
behalf of any player from the beginning of the protocol, either with the creden-
tials provided by the environment (static corruption) or without (impersonation
attempt). As with the Split Functionality [4], according to whom sends the first
flow for a player, either the player itself or the adversary, we know whether this is
an honest player or a dishonest player (corrupted or impersonation attempt, but
anyway controlled by the adversary). Then, our goal will be to prove that the
best an adversary can do is to try to play against one of the other players, as an
honest player would do, with a credential it guessed or obtained in any possible
way. This is exactly the so-called one-line dictionary attack when one considers
PAKE protocols. In the adaptive corruption setting, the adversary could get
complete access to the private credentials and the internal memory of an honest
player, and then get control of it, at any time. But we will restrict to the static
corruption setting in this paper. It is enough to deal with most of the concrete
requirements: related credentials, arbitrary compositions, and forward-secrecy.
To achieve our goal, for a UC-secure LAKE, we will use some other primitives
which are secure in the classical setting only.

2.2 Commitment

Commitments allow a user to commit to a value, without revealing it, but with-
out the possibility to later change his mind. It is composed of three algorithms:
Setup(1k) generates the system parameters, according to a security parameter k;
Commit(�,m; r) produces a commitment c on the input message m ∈ M using

the random coins r
$← R, under the label �, and the opening information d;

while Decommit(�, c,m, d) opens the commitment c with the message m and the
opening information d that proves the correct opening under the label �.

Such a commitment scheme should be both hiding, which says that the commit
phase does not leak any information about m, and binding, which says that the
decommit phase should not be able to open to two different messages. Additional
features will be required in the following, such as non-malleability, extractabil-
ity, and equivocability. We also included a label �, which can be empty or an
additional public information that has to be the same in both the commit and
the decommit phases. A labeled commitment that is both non-malleable and ex-
tractable can be instantiated by an IND-CCA labeled encryption scheme (see the
full version [6]). We will use the Linear Cramer-Shoup encryption scheme [13,21].
We will then patch it, using a technique inspired from [20], to make it addition-
ally equivocable (see Section 3). It will have an interactive commit phase, in two
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rounds: Commit(�,m; r) and a challenge ε from the receiver, which will define an
implicit full commitment to be open latter.

2.3 Smooth Projective Hash Functions

Smooth projective hash function (SPHF) systems have been defined by Cramer
and Shoup [14] in order to build a chosen-ciphertext secure encryption scheme.
They have thereafter been extended [1, 7, 17] and applied to several other prim-
itives. Such a system is defined on a language L, with five algorithms:

– Setup(1k) generates the system parameters, according to a security param-
eter k;

– HashKG(L) generates a hashing key hk for the language L;
– ProjKG(hk, L,W ) derives the projection key hp, possibly depending on a

word W ;
– Hash(hk, L,W ) outputs the hash value from the hashing key;
– ProjHash(hp, L,W,w) outputs the hash value from the projection key and

the witness w that W ∈ L.

The correctness of the scheme assures that ifW is in L with w as a witness, then
the two ways to compute the hash values give the same result: Hash(hk, L,W ) =
ProjHash(hp, L,W,w). In our setting, these hash values will belong to a group G.
The security is defined through two different notions: the smoothness property
guarantees that if W �∈ L, the hash value is statistically indistinguishable from a
random element, even knowing hp; the pseudo-randomness property guarantees
that even for a word W ∈ L, but without the knowledge of a witness w, the
hash value is computationally indistinguishable from a random element, even
knowing hp.

3 Double Linear Cramer-Shoup Encryption (DLCS)

As explained earlier, any IND-CCA labeled encryption scheme can be used as
a non-malleable and extractable labeled commitment scheme: we will focus on
the DLin-based primitives, and thus the Linear Cramer-Shoup scheme (see the
full version [6]), we call LCS. Committed/encrypted elements will either directly
be group elements, or bit-strings on which we apply a reversible mapping G
from {0, 1}n to G. In order to add the equivocability, one can use a technique
inspired from [20]. See the full version [6] for more details, but we briefly present
the commitment scheme we will use in the rest of this paper in conjunction
with SPHF.

Linear Cramer-Shoup Commitment Scheme. The parameters, in the CRS,
are a group G of prime order p, with three independent generators denoted by
(g1, g2, g3)

$← G3, a collision-resistant hash function HK , and possibly an ad-
ditional reversible mapping G from {0, 1}n to G to commit bit-strings. From

9 scalars (x1, x2, x3, y1, y2, y3, z1, z2, z3)
$← Z9

p, one also sets, for i = 1, 2,
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ci = gxi

i g
x3
3 , di = gyii g

y3
3 , and hi = gzii g

z3
3 . The public parameters consist of

the encryption key ek = (G, g1, g2, g3, c1, c2, d1, d2, h1, h2, HK), while the trap-
door for extraction is dk = (x1, x2, x3, y1, y2, y3, z1, z2, z3). One can define the
encryption process:

LCS(�, ek,M ; r, s) def= (u = (gr1, g
s
2, g

r+s
3 ), e =M · hr1hs2, v = (c1d

ξ
1)
r(c2d

ξ
2)
s)

where ξ = HK(�,u, e). When ξ is specified from outside, one additionally denotes
it LCS∗(�, ek,M, ξ; r, s). The commitment to a message M ∈ G, or M = G(m)
for m ∈ {0, 1}n, encrypts M under ek: LCSCom(�,M ; r, s) def= LCS(�, ek,M ; r, s).
The decommit process consists of M and (r, s) to check the correctness of the
encryption. It is possible to do implicit verification, without any decommit in-
formation, but just an SPHF on the language of the ciphertexts of M that is
privately shared by the two players. Since the underlying encryption scheme is
IND-CCA, this commitment scheme is non-malleable and extractable.

Double Linear Cramer-Shoup Commitment Schemes. To make it equiv-
ocable, we double the commitment process, in two steps. The CRS additionally
contains a scalar ℵ $← Zp, one also sets, ζ = gℵ1 . The trapdoor for equivocability
is ℵ. The Double Linear Cramer-Shoup encryption scheme, denoted DLCS and
detailed in the full version [6] is

DLCS(�, ek,M,N ; r, s, a, b) def= (C←LCS(�, ek,M ; r, s), C′←LCS∗(�, ek, N, ξ; a, b))

where ξ = HK(�,u, e) is computed during the generation of C and transfered
for the generation of C′. As above, we denote DLCSCom denotes the use of
DLCS with the encryption key ek. The usual commit/decommit processes are de-
scribed in the full version [6]. On Figure 1, one can find the DLCSCom′ scheme
where one can implicitly check the opening with an SPHF. These two con-
structions essentially differ with χ = HK(C′) (for the SPHF implicit check)
instead of χ = HK(M, C′) (for the explicit check). We stress that with this al-
teration, the DLCSCom′ scheme is not a real commitment scheme (not formally
extractable/binding): in DLCSCom′, the sender can indeed encrypt M in C and
N �= 1G in C′, and then, the global ciphertext C×C′ε containsM ′ =MNε �=M ,
whereas one would have extracted M from C. But M ′ is unknown before ε is
sent, and thus, if one checks the membership of M ′ to a sparse language, it will
unlikely be true.

Multi-message Schemes. One can extend these encryption and commitment
schemes to vectors of n messages (see the full version [6]). We will denote them
n-DLCSCom′ or n-DLCSCom for the commitment schemes. They consist in en-
crypting each message with independent random coins in Ci = (ui, ei, vi) but the
same ξ = HK(�, (ui), (ei)), together with independent companion ciphertexts C′i
of 1G, still with the same ξ for the doubled version. In the latter case, n indepen-
dent challenges εi

$← Z∗
p are then sent to lead to the full commitment (Ci×C′εii )

with random coins zri = ri + εiai and zsi = si + εibi. Again, if one of the com-
panion ciphertext C′i does not encrypt 1G, the full commitment encrypts a vector
with at least one unpredictable component M ′

i . Several non-unity components
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Commit(�,M ; r, s, a, b, t) : for (r, s, a, b, t)
$← Z5

p

(C, C′) ← DLCSCom(�,M, 1G; r, s, a, b)
χ = HK(C′), C′′ = gt1ζ

χ C, C′′
−−−−−−→

ε←−−−−−− ε
$← Z∗

pε
?

�= 0 mod p
z = (zr = r + εa mod p, zs = s+ εb mod p)

Decommit(�, C, C′, ε) : C′, t−−−−−−→ χ = HK(C′), C′′ ?= gt1ζ
χ

With z = (zr, zs), implicit check of C × C′ε ?= LCS∗(�, ek,M, ξ; zr, zs)

Fig. 1. DLCSCom′ Commitment Scheme for SPHF

in the companion ciphertexts would lead to independent components in the full
commitment. For languages sparse enough, this definitely turns out not to be in
the language.

4 SPHF for Implicit Proofs of Membership

In [1], Abdalla et al. presented a way to compute a conjunction or a disjunction
of languages by some simple operations on their projection keys. Therefore all
languages presented afterward can easily be combined together. However as the
original set of manageable languages was not really developed, we are going to
present several steps to extend it, and namely in order to cover some languages
useful in various AKE instantiations.

We will show that almost all the vast family of languages covered by the
Groth-Sahai methodology [18] can be addressed by our approach too. More pre-
cisely, we can handle all the linear pairing product equations, when witnesses are
committed using our above (multi-message) DLCSCom′ commitment scheme, or
even the non-equivocable LCSCom version. This will be strong enough for our ap-
plications. For using them in black-box to build our LAKE protocol, one should
note that the projection key is computed from the ciphertext C when using the
simple LCSCom commitment, but also when using the DLCSCom′ version. The
full commitment C × C′ε is not required, but ξ only, which is known as soon
as C is given (or the vector (Ci)i for the multi-message version). Of course, the
hash value will then depend on the full commitment (either C for the LCSCom
commitment, or C · C′ε for the DLCSCom′ commitment).

This will be relevant to our AKE problem: equality of two passwords, in PAKE
protocols; corresponding signing/verification keys associated with a valid signa-
ture on a pseudonym or a hidden identity, in secret handshakes; valid credentials,
in CAKE protocols. All those tests are quite similar: one has to show that the
ciphertexts are valid and that the plaintexts satisfy the expected relations in
a group. We first illustrate that with commitments of Waters signatures of a
public message under a committed verification key. We then explain the general
method. The formal proofs are provided in the full version [6].
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4.1 Commitments of Signatures

Let us consider the Waters signature [22] in a symmetric bilinear group, and
then we just need to recall that, in a pairing-friendly setting (p,G,GT , e), with
public parameters (F , g, h), and a verification key vk, a signature σ = (σ1, σ2)
is valid with respect to the message M under the key vk if it satisfies e(σ1, g) =
e(h, vk) · e(F(M), σ2).

A similar approach has already been followed in [7], however not with a Linear
Cramer-Shoup commitment scheme, nor with such general languages. We indeed
first consider the language of the signatures (σ1, σ2) ∈ G2 of a message M ∈
{0, 1}k under the verification key vk ∈ G, where M is public but vk is private:
L(pub, priv), where priv = vk and pub = M . One will thus commit the pair
(vk, σ1) ∈ G2 with the label � = (M,σ2) using a 2-DLCSCom′ commitment
and then prove the commitment actually contains (vk, σ1) such that e(σ1, g) =
e(h, vk) · e(F(M), σ2). We insist on the fact that σ1 only has to be encrypted,
and not σ2, in order to hide the signature, since the latter σ2 is a random group
element. If one wants unlinkability between signature commitments, one simply
needs to re-randomize (σ1, σ2) before encryption. Hence σ2 can be sent in clear,
but bounded to the commitment in the label, together with the pub part of
the language. In order to prove the above property on the committed values,
we will use conjunctions of SPHF: first, to show that each commitment is well-
formed (valid ciphertexts), and then that the associated plaintexts verify the
linear pairing equation, where the committed values are underlined: e(σ1, g) =
e(h, vk) · e(F(M), σ2) Note that vk is not used as a committed value for this
verification of the membership of σ to the language since this is the verification
key expected by the verifier, specified in the private part priv, which has to be
independently checked with respect to the committed verification key. This is
enough for the affiliation-hiding property. We could consider the similar language
where M ∈ {0, 1}k is in the word too: e(σ1, g) = e(h, vk) · e(F(M), σ2), and then

one should commitM , bit-by-bit, and then use a (k+2)-DLCSCom′ commitment.

4.2 Linear Pairing Product Equations

Instead of describing in details the SPHF for the above examples, let us show it
for a more general framework: we considered

e(σ1, g) = e(h, vk) · e(F(M), σ2) or e(σ1, g) = e(h, vk) · e(F(M), σ2),

where the unknowns are underlined. These are particular instantiations of t
simultaneous equations( ∏

i∈Ak

e(Yi,Ak,i)
)
·
( ∏
i∈Bk

Zizk,i

)
= Bk, for k = 1, . . . , t,

where Ak,i ∈ G, Bk ∈ GT , and zk,i ∈ Zp, as well as Ak ⊆ {1, . . . ,m} and
Bk ⊆ {m + 1, . . . , n} are public, but the Yi ∈ G and Zi ∈ GT are simultane-
ously committed using the multi-message DLCSCom′ or LCSCom commitments
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scheme, in G or GT respectively. This is more general than the relations cov-
ered by [8], since one can also commit scalars bit-by-bit. In the full version [6],
we detail how to build the corresponding SPHF, and prove the soundness of
our approach. For the sake of clarity, we focus here to a single equation only,
since multiple equations are just conjunctions. We can even consider the simpler
equation

∏i=m
i=1 Zi

zi = B, since one can lift any ciphertext from G to a cipher-
text in GT , setting Zi = e(Yi,Ai), as well as, for j = 1, 2, 3, Gi,j = e(gj ,Ai)
and for j = 1, 2, Hi,j = e(hj ,Ai), Ci,j = e(cj ,Ai), Di,j = e(dj ,Ai), to lift
all the group basis elements. Then, one transforms Ci = LCS∗(�, ek,Yi, ξ; zi) =
(ui = (g

zri
1 , g

zsi
2 , g

zri+zsi
3 ), ei = h

zri
1 h

zsi
2 · Yi, vi = (c1d

ξ
1)
zri · (c2dξ2)zsi ) into (Ui =

(G
zri
i,1 , G

zsi
i,2 , G

zri+zsi
i,3 ), Ei = H

zri
i,1 H

zsi
i,2 · Zi, Vi = (Ci,1D

ξ
i,1)

zri · (Ci,2Dξ
i,2)

zsi ). En-
cryptions of Zi originally in GT use constant basis elements for j = 1, 2, 3,
Gi,j = Gj = e(gj , g) and for j = 1, 2, Hi,j = Hj = e(hj , g), Ci,j = Cj = e(cj , g),
Di,j = Dj = e(dj , g).

The commitments have been generated in G and GT simultaneously using the
m-DLCSCom′ version, with a common ξ, where the possible combination with
the companion ciphertext to the power ε leads to the above Ci, thereafter lifted to
GT . For the hashing keys, one picks random scalars (λ, (ηi, θi, κi, μi)i=1,...,m)

$←
Z4m+1
p , and sets hki = (ηi, θi, κi, λ, μi). One then computes the projection keys

as hpi = (gηi1 g
κi
3 h

λ
1 (c1d

ξ
1)
μi , gθi2 g

κi
3 h

λ
2 (c2d

ξ
2)
μi ) ∈ G2. The hash value is∏

i

e(uηii,1 · u
θi
i,2 · u

κi

i,3 · eλi · v
μi

i ,Ai)× B−λ =
∏
i

e(hp
zri
i,1 hp

zsi
i,2 ,Ai),

where Ai is the constant used to compute Zi = e(Yi,Ai) and to lift ciphertexts
from G to GT , or Ai = gzi if the ciphertext was already in GT . These evaluations
can be computed either from the commitments and the hashing keys, or from
the projection keys and the witnesses. We insist on the fact that, whereas the
hash values are in GT , the projection keys are in G even if the ciphertexts are
initially in GT . We stress again that the projection keys require the knowledge of
ξ only: known from the LCSCom commitment or the first part C of the DLCSCom′

commitment.

5 Language-Authenticated Key Exchange

5.1 The Ideal Functionality

We generalize the Password-Authenticated Key Exchange functionality Fpake

(first provided in [11]) to more complex languages: the players agree on a common
secret key if and only if they own words that lie in the languages the partners
have in mind. More precisely, after an agreement on pub between Pi and Pj
(modeled here by the use of the split functionality, see below), player Pi uses
a word Wi belonging to Li = LRi(pub, privi) and it expects its partner Pj to
use a word Wj belonging to the language L′

j = LRj (pub, priv
′
j), and vice-versa

for Pj and Pi. We assume relations Ri and Rj to be specified by the kind of
protocol we study (PAKE, Verifier-based PAKE, secret handshakes, . . . ) and
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The functionality Flake is parametrized by a security parameter k and a public
parameter pub for the languages. It interacts with an adversary S and a set of
parties P1,. . . ,Pn via the following queries:

– New Session: Upon receiving a query (NewSession : sid, Pi, Pj ,Wi, Li =
L(pub, privi), L

′
j = L(pub, priv′j)) from Pi,

• If this is the first NewSession-query with identifier sid, record the tuple
(Pi, Pj ,Wi, Li, L

′
j , initiator). Send (NewSession; sid, Pi, Pj , pub, initiator)

to S and Pj .
• If this is the second NewSession-query with identifier sid and if

there is a record (Pj , Pi,Wj , Lj , L
′
i, initiator), then record the tu-

ple (Pj , Pi,Wj , Lj , L
′
i, initiator,Wi, Li, L

′
j , receiver) and send the answer

(NewSession; sid, Pi, Pj , pub, receiver) to S and Pj .

– Key Computation: Upon receiving a query (NewKey : sid) from S , if there
is a record of the form (Pi, Pj ,Wi, Li, L

′
j , initiator,Wj , Lj , L

′
i, receiver) and

this is the first NewKey-query for session sid, then
• If (L′

i = Li and Wi ∈ Li) and (L′
j = Lj and Wj ∈ Lj), then pick a

random key sk of length k and store (sid, sk). If one player is corrupted,
send (sid, success) to the adversary.

• Else, store (sid,⊥), and send (sid, fail) to the adversary if one player is
corrupted.

– Key Delivery: Upon receiving a query (SendKey : sid, Pi, sk) from S , then
• if there is a record of the form (sid, sk′), then, if both players are uncor-

rupted, output (sid, sk′) to Pi. Otherwise, output (sid, sk) to Pi.
• if there is a record of the form (sid,⊥), then pick a random key sk′ of

length k and output (sid, sk′) to Pi.

Fig. 2. Ideal Functionality Flake

so the languages are defined by the additional parameters pub, privi and privj
only: they both agree on the public part pub, to be possibly parsed in a different
way by each player for each language according to the relations. Note however
that the respective languages do not need to be the same or to use similar
relations: authentication means could be totally different for the 2 players. The
key exchange should succeed if and only if the two following pairs of equations
hold: (L′

i = Li and Wi ∈ Li) and (L′
j = Lj and Wj ∈ Lj).

Description. In the initial Fpake functionality [11], the adversary was given
access to a TestPwd-query, which modeled the on-line dictionary attack. But it
is known since [4] that it is equivalent to use the split functionality model [4],
generate the NewSession-queries corresponding to the corrupted players and tell
the adversary (on behalf of the corrupted player) whether the protocol should
succeed or not. Both methods enable the adversary to try a credential for a
player (on-line dictionary attack). The second method (that we use here) im-
plies allowing S to ask NewSession-queries on behalf of the corrupted player,
and letting it to be aware of the success or failure of the protocol in this case:
the adversary learns this information only when it plays on behalf of a player



Efficient UC-Secure LAKE 283

Given the functionality Flake, the split functionality sFlake proceeds as follows:

– Initialization:

• Upon receiving (Init, sid, pubi) from party Pi, send (Init, sid, Pi, pubi) to the
adversary.

• Upon receiving a message (Init, sid, Pi,H,pub, sidH) from S , where H =
{Pi, Pj} is a set of party identities, check that Pi has already sent
(Init, sid, pubi) and that for all recorded (H ′, pub′, sidH′), either H = H ′,
pub = pub′ and sidH = sidH′ or H and H ′ are disjoint and sidH �= sidH′ . If
so, record the pair (H, pub, sidH), send (Init, sid, sidH , pub) to Pi, and invoke

a new functionality (Flake, sidH , pub) denoted as F(H,pub)
lake and with set of

honest parties H .

– Computation:

• Upon receiving (Input, sid,m) from party Pi, find the setH such that Pi ∈ H ,

the public value pub recorded, and forward m to F(H,pub)
lake .

• Upon receiving (Input, sid, Pj ,H,m) from S , such that Pj /∈ H , forward m

to F(H,pub)
lake as if coming from Pj .

• When F(H,pub)
lake generates an output m for party Pi ∈ H , send m to Pi. If

the output is for Pj /∈ H or for the adversary, send m to the adversary.

Fig. 3. Split Functionality sFlake

(corruption or impersonation attempt). This is any way an information it would
learn at the end of the protocol. We insist that third parties will not learn whether
the protocol succeeded or not, as required for secret handshakes. To this aim,
the NewKey-query informs in this case the adversary whether the credentials
are consistent with the languages or not. In addition, the split functionality
model guarantees from the beginning which player is honest and which one is
controlled by the adversary. This finally allows us to get rid of the TestPwd-
query. The Flake functionality is presented in Figure 2 and the corresponding
split functionality sFlake in Figure 3, where the languages are formally described
and compared using the pub and priv parts.

The security goal is to show that the best attack for the adversary is a basic
trial execution with a credential of its guess or choice: the proof will thus consist
in emulating any real-life attack by either a trial execution by the adversary,
playing as an honest player would do, but with a credential chosen by the ad-
versary or obtained in any way; or a denial of service, where the adversary is
clearly aware that its behavior will make the execution fail.

5.2 A Generic UC-Secure LAKE Construction

Intuition. Using smooth projective hash functions on commitments, one can
generically define a LAKE protocol as done in [1]. The basic idea is to make the
player commit to their private information (for the expected languages and the
owned words), and eventually the smooth projective hash functions will be used
to make implicit validity checks of the global relation.
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To this aim, we use the commitments and associated smooth projective hash
functions as described in Sections 3 and 4. More precisely, all examples of SPHF
in Section 4 can be used on extractable commitments divided into one or two
parts (the non-equivocable LCSCom or the equivocable DLCSCom′ commitments,
see Figure 1). The relations on the committed values will not be explicitly
checked, since the values will never be revealed, but will be implicitly checked
using SPHF. It is interesting to note that in both cases (one-part or two-part
commitment), the projection key will only depend on the first part of the com-
mitment.

As it is often the case in the UC setting, we need the initiator to use stronger
primitives than the receiver. They both have to use non-malleable and ex-
tractable commitments, but the initiator will use a commitment that is ad-
ditionally equivocable, the DLCSCom′ in two parts ((Ci, C′i) and Comi = Ci · C′i

ε
),

while the receiver will only need the basic LCSCom commitment in one part
(Comj = Cj).

As already explained, SPHF will be used to implicitly check whether (L′
i = Li

and Wi ∈ Li) and (L′
j = Lj and Wj ∈ Lj). But since in our instantiations

private parameters priv and words W will have to be committed, the structure
of these commitments will thus be publicly known in advance: commitments of
P-elements and S-elements. Section 6 discusses on the languages captured by
our definition, and illustrates with some AKE protocols. However, while these
P and S sets are embedded in Gn from some n, it might be important to prove
that the committed values are actually in P and S (e.g., one can have to prove
it commits bits, whereas messages are first embedded as group elements in G of
large order p). This will be an additional language-membership to prove on the
commitments.

This leads to a very simple protocol described on Figure 4. Note that if a player
wants to make external adversaries think he owns an appropriate word, as it is
required for Secret Handshakes, he can still play, but will compute everything
with dummy words, and will replace the ProjHash evaluation by a random value,
which will lead to a random key at the end.

Security Analysis. Since we have to assume common pub, we make a first
round (with flows in each direction) where the players send their contribution,
to come up with pub. These flows will also be used to know if there is a player
controlled by the adversary (as with the Split Functionality [4]). In case the
languages have empty pub, these additional flows are not required, since the
Split Functionality can be applied on the committed values. The signing key for
the receiver is not required anymore since there is one flow only from its side.
This LAKE protocol is secure against static corruptions. The proof is provided
in the full version [6], and is in the same vein as the one in [1,11]. However, it is
a bit more intricate:

– in PAKE, when one is simulating a player, and knows the adversary used
the correct password, one simply uses this password for the simulated player.
In LAKE, when one knows the language expected by the adversary for the
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Execution between Pi and Pj , with session identifier sid.

– Preliminary Round: each user generates a pair of signing/verification keys
(SK,VK) and sends VK together with its contribution to the public part of the
language.

We denote by �i the label (sid, ssid, Pi, Pj , pub,VKi,VKj) and by �j the label
(sid, ssid, Pi, Pj , pub,VKj ,VKi), where pub is the combination of the contribu-
tions of the two players. The initiator now uses a word Wi in the language
L(pub, privi), and the receiver uses a word Wj in the language L(pub, privj), possi-
bly re-randomized from their long-term secrets (*). We assume commitments and
associated smooth projective hash functions exist for these languages.

– First Round: user Pi (with random tape ωi) generates a multi-DLCSCom′

commitment on (privi, priv
′
j ,Wi) in (Ci, C′

i), where Wi has been randomized in
the language, under the label �i. It also computes a Pedersen commitment on
C′
i in C′′

i (with random exponent t). It then sends (Ci, C′′
i ) to Pj ;

– Second Round: user Pj (with random tape ωj) computes a multi-LCS commit-
ment on (privj , priv

′
i,Wj) in Comj = Cj , with witness r, where Wj has been

randomized in the language, under the label �j . It then generates a challenge
ε on Ci and hashing/projection keys (**) hki and hpi associated to Ci (which
will be associated to the future Comi). It finally signs all the flows using SKj

in σj , and sends (Cj , ε, hpi, σj) to Pi;
– Third Round: user Pi first checks the signature σj , computes Comi = Ci ×C′

i
ε

and witness z (from ε and ωi), it generates hashing/projection keys hkj and
hpj associated to Comj . It finally signs all the flows using SKi in σi, and sends
(C′

i, t, hpj , σi) to Pj ;
– Hashing: Pj first checks the signature σi and the correct opening of C′′

i into
C′
i, it computes Comi = Ci × C′

i
ε
.

Pi computes Ki and Pj computes Kj as follows:

Ki = Hash(hkj , {(priv′j , privi)} × L(pub, priv′j), �j ,Comj)

×ProjHash(hpi, {(privi, priv
′
j)} × L(pub, privi), �i,Comi; z)

Kj = ProjHash(hpj , {(privj , priv
′
i)} × L(pub, privj), �j ,Comj ; r)

×Hash(hki, {(priv′i, privj)} × L(pub, priv′i), �i,Comi)

(*) As explained in Section 1, recall that the languages considered depend
on two possibly different relations, namely Li = LRi(pub, privi) and Lj =
LRj (pub, privj), but we omit them for the sake of clarity. We assume they are
both self-randomizable.
(**) Recall that the SPHF is constructed in such a way that this projection key
does not depend on C′

i and is indeed associated to the future whole Comi.

Fig. 4. Language-based Authenticated Key Exchange from a Smooth Projective Hash
Function on Commitments
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simulated player and has to simulate a successful execution (because of suc-
cess announced by the NewKey-query), one has to actually include a correct
word in the commitment: smooth projective hash functions do not allow the
simulator to cheat, equivocability of the commitment is the unique trapdoor,
but with a valid word. The languages must allow the simulator to produce
a valid word W in L(pub, priv), for any pub and priv ∈ P provided by the
adversary or the environment. This will be the case in all the interesting
applications of our protocol (see Section 6): if priv defines a Waters’ verifica-
tion key vk = gx, with the master key s such that h = gs, the signing key is
sk = hx = vks, and thus the simulator can sign any message; if such a master
key does not exist, one can restrict P , and implicitly check it with the SPHF
(the additional language-membership check, as said above). But since a ran-
dom word is generated by the simulator, we need the real player to derive a
random word from his own word, and the language to be self-randomizable.

– In addition, as already noted, our commitment DLCSCom′ is not formally
binding (contrarily to the much less efficient one used in [1]). The adversary
can indeed make the extraction giveM from Ci, whereas Comi will eventually
contain M ′ if C′i does not encrypt (1G)

n. However, since the actual value
M ′ depends on the random challenge ε, and the language is assumed sparse
(otherwise authentication is easy), the protocol will fail: this can be seen as
a denial of service from the adversary.

Theorem 1. Our LAKE scheme from Figure 4 realizes the sFlake functionality
in the Fcrs-hybrid model, in the presence of static adversaries, under the DLin
assumption and the security of the One-Time Signature.

Actually, from a closer look at the full proof, one can notice that Comj = Cj
needs to be extractable, but IND− CPA security is enough, which leads to a
shorter ciphertext (2 group elements less if one uses a Linear ciphertext instead
of LCS). Similarly, one will not have to extract Wi from Ci when simulating
sessions where Pi is corrupted. As a consequence, only the private parts of the
languages have to be committed to in Comi in the first and third rounds, whereas
Wi can be encrypted independently with an IND− CPA encryption scheme in the
third round only (5 group elements less in the first round, and 2 group elements
less in the third round if one uses a Linear ciphertext instead of LCS).

6 Concrete Instantiations and Comparisons

In this section, we first give some concrete instantiations of several AKE proto-
cols, using our generic protocol of LAKE, and compare the efficiencies of those
instantiations.

6.1 Possible Languages

As explained above, our LAKE protocol is provably secure for self-randomizable
languages only. While this notion may seem quite strong, most of the usual lan-
guages fall into it. For example, in a PAKE or a Verifier-based PAKE scheme,
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the languages consist of a single word and so trivially given a word, each user
is able to deduce all the words in the language. One may be a little more wor-
ried about Waters Signature in our Secret Handshake, and/or Linear pairing
equations. However the self-randomizability of the languages is easy to show:

– Given a Waters signature σ = (σ1, σ2) over a message m valid under a
verification key vk, one is able to randomize the signature into any signature
over the same message m valid under the same verification key vk simply by
picking a random s and computing σ′ = (σ1 · F(m)s, σ2 · gs).

– For linear pairing equations, with public parameters Ai for i = 1, . . . ,m
and γi for i = m + 1, . . . , n, and B, given (X1, . . . ,Xm,Zm+1, . . . ,Zn) veri-
fying

∏m
i=1 e(Xi,Ai) ·

∏n
i=m+1Z

γi
i = B, one can randomize the word in the

following way:
• If m < n, one simply picks random (X ′

1, . . . ,X ′
m), (Z ′

m+1, . . . ,Z ′
n−1) and

sets Z ′
n = (B/(

∏m
i=1 e(X ′

i ,Ai) ·
∏n−1
i=m+1Z ′

i
γi))1/γn ,

• Else, if m = n > 1, one picks random r1, . . . , rn−1 and set X ′
i = Xi · Arin ,

for i = 1, . . . ,m− 1 and X ′
m = Xm ·

∏m−1
i=1 A−ri

i ,
• Else m = n = 1, this means only one word satisfies the equation. So we
already have this word.

As we can see most of the common languages manageable with a SPHF are
already self-randomizable. We now show how to use them in concrete instantia-
tions.

6.2 Concrete Instantiations

Password-Authenticated Key Exchange. Using our generic construction,
we can easily obtain a PAKE protocol, as described on Figure 5, where we
optimize from the generic construction, since pub = ∅, removing the agreement
on pub, but still keeping the one-time signature keys (SKi,VKi) to avoid man-
in-the-middle attacks since it has another later flow: Pi uses a passwordWi and
expects Pj to own the same word, and thus in the language L′

j = Li = {Wi};
Pj uses a password Wj and expects Pi to own the same word, and thus in the
language L′

i = Lj = {Wj}; The relation is the equality test between privi and
privj , which both have no restriction in G (hence P = G). As the word Wi, the

language private parameters privi of a user and priv′j of the expected language
for the other user are the same, each user can commit in the protocol to only
one value: its password.

We kept the general description and notations in Figure 5, but Cj can be a
simply IND− CPA encryption scheme. It is quite efficient and relies on the DLin
assumption, with DLCS for (Ci, C′i) and thus 10 group elements, but a Linear
encryption for Cj and thus 3 group elements. Projection keys are both 2 group
elements. Globally, Pi sends 13 groups elements plus 1 scalar, a verification key
and a one-time signature, while Pj sends 5 group elements and 1 scalar: 18
group elements and 2 scalars in total. We can of course instantiate it with the
Cramer-Shoup and ElGamal variants, under the DDH assumption: Pi sends 8
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Pi uses a password Wi and Pj uses a password Wj . We denote � = (sid, ssid, Pi, Pj).

– First Round: Pi (with random tape ωi) first generates a pair of sign-
ing/verification keys (SKi,VKi) and a DLCSCom′ commitment on Wi in
(Ci, C′

i), under �i = (�,VKi). It also computes a Pedersen commitment on
C′
i in C′′

i (with random exponent t). It then sends (VKi, Ci, C′′
i ) to Pj ;

– Second Round: Pj (with random tape ωj) computes a LCSCom commitment
on Wj in Comj = Cj , with witness r, under the label �. It then generates a
challenge ε on Ci and hashing/projection keys hki and the corresponding hpi
for the equality test on Comi (”Comi is a valid commitment of Wj”, this only
requires the value ξi computable thanks to Ci). It then sends (Cj , ε, hpi) to Pi;

– Third Round: user Pi can compute Comi = Ci × C′
i
ε
and witness z (from ε

and ωi), it generates hashing/projection keys hkj and hpj for the equality test
on Comj . It finally signs all the flows using SKi in σi and send (C′

i, t, hpj , σi)
to Pj ;

– Hashing: Pj first checks the signature and the validity of the Pedersen com-
mitment (thanks to t), it computes Comi = Ci × C′

i
ε
. Pi computes Ki and Pj

computes Kj as follows:

Ki = Hash(hkj , L
′
j , �,Comj) · ProjHash(hpi, Li, �i,Comi; z)

Kj = ProjHash(hpj , Lj , �,Comj ; r) · Hash(hki, L′
i, �i,Comi)

Fig. 5. Password-based Authenticated Key Exchange

groups elements plus 1 scalar, a verification key and a one-time signature, while
Pj sends 3 group elements and 1 scalar (all group elements can be in the smallest
group): 11 group elements and 2 scalars in total.

Verifier-Based PAKE. The above scheme can be modified into an efficient
PAKE protocol that is additionally secure against server compromise: the so-
called verifier-based PAKE, where the client owns a password pw, while the
server knows a verifier only, such as gpw, so that in case of break-in to the server,
the adversary will not immediately get all the passwords.

To this aim, as usually done, one first does a PAKE with gpw as common
password, then asks the client to additionally prove it can compute the Diffie-
Hellman value hpw for a basis h chosen by the server. Ideally, we could implement
this trick, where the client Pj just considers the equality test between the gpw

and the value committed by the server for the language L′
i = Lj , while the server

Pi considers the equality test with (gpw, hpw), where h is sent as its contribution
to the public part of the language by the server Li = L′

j . Since the server
chooses h itself, it chooses it as h = gα, for an ephemeral random α, and can
thus compute hpw = (gpw)α. On its side, the client can compute this value since
it knows pw. The client could thus commit to (gpw, hpw), in order to prove its
knowledge of pw, whereas the server could just commit to gpw. Unfortunately,
from the extractability of the server commitment, one would just get gpw, which
is not enough to simulate the client.

To make it in a provable way, the server chooses an ephemeral h as above, and
they both run the previous PAKE protocol with (gpw, hpw) as common password,
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and mutually checked: h is seen as the pub part, hence the preliminary flows are
required.

Credential-Authenticated Key Exchange. In [8], the authors proposed in-
stantiations of the CAKE primitive for conjunctions of atomic policies that are

defined algebraically by relations of the form
∏k
j=1 g

Fj

j = 1 where the gj ’s are
elements of an abelian group and Fj ’s are integer polynomials in the variables
committed by the users.

The core of their constructions relies on their practical UC zero-knowledge
proof. There is no precise instantiation of such proof, but it is very likely to be
inefficient. Their proof technique indeed requires to transform the underlying
Σ-protocols into corresponding Ω-protocols [16] by verifiably encrypting the
witness. An Ω-protocol is a Σ-protocol with the additional property that it
admits a polynomial-time straight-line extractor. Since the witnesses are scalars
in their algebraic relations, their approach requires either inefficient bit-per-bit
encryption of these witnesses or Paillier encryption in which case the problem
of using group with different orders in the representation and in the encryption
requires additional overhead.

Even when used with Σ-protocols, their PAKE scheme without UC-security,
requires at least two proofs of knowledge of representations that involve at least
30 group elements (if we assume the encryption to be linear Cramer Shoup), and
some extra for the last proof of existence (cf. [9]), where our PAKE requires less
than 20 group elements. Anyway they say, their PAKE scheme is less efficient
than [11], which needed 6 rounds and around 30 modular exponentiations per
user, while our efficient PAKE requires less than 40 exponentiations, in total, in
only 3 rounds. Our scheme is therefore more efficient than the scheme from [11]
for the same security level (i.e. UC-security with static corruptions).

Secret-Handshakes. We can also instantiate a (linkable) Secret Handshakes
protocol, using our scheme with two different languages: Pi will commit to a
valid signature σi on a message mi (his identity for example), under a private
verification key vki, and expects Pj to commit to a valid signature on a message
m′
j under a private verification key vk′j ; but Pj will do analogously with a sig-

nature σj on mj under vkj , while expecting a signature on m′
i under vk′i. The

public parts of the signature (the second component) are sent in clear with the
commitments.

In a regular Secret Handshakes both users should use the same languages.
But here, we have a more general situation (called dynamic matching in [2]):
the two participants will have the same final value if and only if they both
belong to the organization the other expects. If one lies, our protocol guarantees
no information leakage. Furthermore, the semantic security of the session is
even guaranteed with respect to the authorities, in a forward-secure way (this
property is also achieved in [19] but in a weaker security model). Finally, our
scheme supports revocation and can handle roles as in [2].

Standard secret handshakes, like [2], usually work with credentials delivered
by a unique authority, this would remove our need for a hidden verification
key, and private part of the language. Both users would only need to commit
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to signatures on their identity/credential, and show that they are valid. This
would require a dozen of group elements with our approach. Their construction
requires only 4 elements under BDH, however it relies on the asymmetric Waters
IBE with only two elements, whereas the only security proof known for such
IBE [15] requires an extra term in G2 which would render their technique far
less efficient, as several extra terms would be needed to expect a provably secure
scheme. While sometimes less effective, our LAKE approach can manage Secret
Handshakes, and provide additional functionalities, like more granular control on
the credential as part of them can be expressly hidden by both the users. More
precisely, we provide affiliation-hiding property and let third parties unaware of
the success/failure of the protocol.

Unlinkable Secret-Handshakes. Moving the users’ identity from the public
pub part to individual private priv part, and combining our technique with [7],
it is also possible to design an unlinkable Secret Handshakes protocol [19] with
practical efficiency. It illustrates the case where committed values have to be
proven in a strict subset of G, as one has to commit to bits: the signed message
M is now committed and not in clear, it thus has to be done bit-by-bit since the
encoding G does not allow algebraic operations with the content to apply the
Waters function on the message. It is thus possible to prove the knowledge of a
Waters signature on a private message (identity) valid under a private verification
key. Additional relations can be required on the latter to make authentication
even stronger.
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Abstract. In this paper, we revisit the security of factoring-based sig-
nature schemes built via the Fiat-Shamir transform and show that they
can admit tighter reductions to certain decisional complexity assump-
tions such as the quadratic-residuosity, the high-residuosity, and the
φ-hiding assumptions. We do so by proving that the underlying identifi-
cation schemes used in these schemes are a particular case of the lossy
identification notion recently introduced by Abdalla et al. at Eurocrypt
2012. Next, we show how to extend these results to the forward-security
setting based on ideas from the Itkis-Reyzin forward-secure signature
scheme. Unlike the original Itkis-Reyzin scheme, our construction can be
instantiated under different decisional complexity assumptions and has a
much tighter security reduction. Finally, we show that the tighter secu-
rity reductions provided by our proof methodology can result in concrete
efficiency gains in practice, both in the standard and forward-security
setting, as long as the use of stronger security assumptions is deemed
acceptable. All of our results hold in the random oracle model.

1 Introduction

A common paradigm for constructing signature schemes is to apply the Fiat-
Shamir transform [9] to a secure three-move canonical identification protocol. In
these protocols, the prover first sends a commitment to the verifier, which in turn
chooses a random string from the challenge space and sends it back to the prover.
Upon receiving the challenge, the prover sends a response to the verifier, which
decides whether or not to accept based on the conversation transcript and the
public key. To obtain the corresponding signature scheme, one simply makes the
signing and verification algorithms non-interactive by computing the challenge as
the hash of the message and the commitment. As shown by Abdalla et al. in [1],
the resulting signature scheme can be proven secure in the random oracle model
as long as the identification scheme is secure against passive adversaries and the
commitment has large enough min-entropy. Unfortunately, the reduction to the
security of the identification scheme is not tight and loses a factor qh, where qh
denotes the number of queries to the random oracle.

If one assumes additional properties about the identification scheme, one can
avoid impossibility results such as those in [10,27,31] and obtain a signature

K. Kurosawa and G. Hanaoka (Eds.): PKC 2013, LNCS 7778, pp. 292–311, 2013.
c© International Association for Cryptologic Research 2013
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scheme with a tighter proof of security. For instance, in [22], Micali and Reyzin
introduced a new method for converting identification schemes into signature
schemes, known as the “swap method”, in which they reverse the roles of the
commitment and challenge. More precisely, in their transform, the challenge is
chosen uniformly at random from the challenge space and the commitment is
computed as the hash of the message and the challenge. Although they only
provided a tight security proof for the modified version of Micali’s signature
scheme [20], their method generalizes to any scheme in which the prover can
compute the response given only the challenge and the commitment, such as the
factoring-based schemes in [8,9,12,24,25]. This is due to the fact that the prover
in these schemes possesses a trapdoor (such as the factorization of the modulus
in the public key) which allows it to compute the response. On the other hand,
their method does not apply to discrete-log-based identification schemes in which
the prover needs to know the discrete log with respect to the commitment when
computing the response, such as in [30].

In 2003, Katz and Wang [17] showed that tighter security reductions can be
obtained even with respect to the Fiat-Shamir transform, by relying on a proof
of membership rather than a proof of knowledge. In particular, using this idea,
they proposed a signature scheme with a tight security reduction to the hard-
ness of the DDH problem. They also informally mentioned that one could obtain
similar results based on the quadratic-residuosity problem by relying on a proof
that shows that a set of elements in Z∗

N are all quadratic residues. This result
was recently extended to other settings by Abdalla et al. [3], who presented three
new signature schemes based on the hardness of the short exponent discrete log
problem [28,32], on the worst-case hardness of the shortest vector problem in
ideal lattices [18,29], and on the hardness of the Subset Sum problem [14,23].
Additionally, they also formalized the intuition in [17] by introducing the notion
of lossy identification schemes and showing that any such schemes can be trans-
formed into a signature scheme via the Fiat-Shamir transform while preserving
the tightness of the reduction.

Tight security from lossy identification. In light of these recent results,
we revisit in this paper the security of factoring-based signature schemes built
via the Fiat-Shamir transform. Even though the swap method from [22] could
be applied in this setting (resulting in a slightly different scheme), our first con-
tribution is to show that these signature schemes admit tight security reductions
to certain decisional complexity assumptions such as the quadratic-residuosity,
the high-residuosity [26], and the φ-hiding [6] assumptions. We do so by showing
that the underlying identification schemes used in these schemes are a particular
case of a lossy identification scheme [3]. As shown in Section 4.1 in the case of
the Guillou-Quisquater signature scheme [12], our tighter security reduction can
result in concrete efficiency gains with respect to the swap method. However,
this comes at the cost of relying on a stronger security assumption, namely the
φ-hiding [6] assumption.

Tighter reductions for forward-secure signatures. Unlike the swap
method of Micali and Reyzin, the prover in factoring-based signature schemes
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built via the Fiat-Shamir transform does not need to know the factorization of
the modulus in order to be able to compute the response. Using this crucial
fact, the second main contribution of this paper is to extend our results to the
forward-security setting. To achieve this goal, we first introduce in Section 3 the
notion of lossy key-evolving identification schemes and show how the latter can
be turned into forward-secure signature schemes using a generalized version of
the Fiat-Shamir transform. As in the case of standard signature schemes, this
transformation does not incur a loss of factor of qh in the security reduction.
Nevertheless, we remark that the reduction is not entirely tight as we lose a
factor T corresponding to the total number of time periods.

After introducing the notion of lossy key-evolving identification schemes, we
show in Section 4.2 that a variant of the Itkis-Reyzin forward-secure signature
scheme [15] (which can be seen as an extension of the Guillou-Quisquater scheme
to the forward-security setting) admits a much tighter security reduction, albeit
to a stronger assumption, namely the φ-hiding assumption.

Concrete security. As in the case of standard signature schemes, the tighter
security reductions provided by our proof methodology can result in concrete
efficiency gains in practice. More specifically, as we show in Section 5, our variant
of the Itkis-Reyzin scheme outperforms the original scheme for most concrete
choices of parameters.

Generic factoring-based signatures and forward-secure signatures.

As an additional contribution, we show in Section 6 that all the above-mentioned
schemes can be seen as straightforward instantiations of a generic factoring-based
forward-secure signature scheme. This enables us to not only easily prove the
security properties of these schemes, but to also design a new forward-secure
scheme based on a new assumption, the 2t-strong-residuosity.

Organization. After recalling some definitions in Section 2, we introduce the
notion of key-evolving lossy identification scheme and show how to transform
such a scheme into a forward-secure signature scheme in Section 3. Then, in
Section 4, we apply our security proof methodology to two cases: the Guillou-
Quisquater scheme and its extension to the forward-secure case (i.e., our variant
of the Itkis-Reyzin scheme). In Section 5, we compare this second scheme with
the original Itkis-Reyzin scheme and the MMM scheme by Malkin, Micciancio
and Miner [19]. Finally, we introduce our generic lossy key-evolving identification
scheme and show various instantiations of it in Section 6.

2 Definitions

2.1 Notation and Conventions

Let N denote the set of natural numbers. If n ∈ N, then {0, 1}n denotes the set of
n-bit strings, and {0, 1}∗ is the set of all bit strings. The empty string is denoted
⊥. If x is a string then |x| denotes its length, and if S is a set then |S| denotes its
size. If S is finite, then x

$← S denotes the assignment to x of an element chosen
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uniformly at random from S. If A is an algorithm, then y ← A(x) denotes the
assignment to y of the output of A on input x, and if A is randomized, then

y
$← A(x) denotes that the output of an execution of A(x) with fresh coins

assigned to y. Unless otherwise indicated, an algorithm may be randomized. We
denote by k ∈ N the security parameter. Let P denote the set of primes and P�e
denote the set of primes of length �e. All our schemes are in the random oracle
model [5].

2.2 Complexity Assumptions

The security of the signature schemes being analyzed in this paper will be based
on decisional assumptions over composite-order groups: the e-residuosity as-
sumption, the φ-hiding assumption and a new assumption called the strong-
2t-residuosity. We also need to recall the strong-RSA assumption to be able to
compare our scheme with the Itkis-Reyzin scheme [15].

Let N be the product of distinct large primes p1 and p2. We call such N an
RSA modulus. Informally, the e-residuosity assumption states that the prob-
lem of deciding whether a given element y in Z∗

N is an e-residue or not is in-
tractable without knowing the factorization of N . Remember that an element
y ∈ Z∗

N is said to be an e-residue if there exists an element x ∈ Z∗
N such that

y = xe mod N . If e = 2, this assumption is called the quadratic-residuosity
assumption. Furthermore, if we extend it to N = e2, with e an RSA modu-
lus, this is called the high-residuosity assumption [26]. Likewise, the φ-hiding
assumption, introduced by Cachin, Micali, and Stadler in [6], states that it is
hard for an adversary to tell whether a prime number e divides the order of the
group Z∗

N or not. Next, we introduce the strong-2t-residuosity assumption
that states that it is hard for an adversary to decide whether a given element y
in Z∗

N is a 2t-residue or is even not a 2-residue, when 2t divides p1−1 and p2−1.
Finally, the strong-RSA assumption states that, given an element y ∈ Z∗

N , it
is hard for an adversary to find an integer e ≥ 2 and an element x ∈ Z∗

N such
that y = xe mod N .

For each of these assumptions, the underlying problem is said to be (t, ε)-
hard, if no adversary running in time at most t is able to solve the problem
with probability at least ε. Formal descriptions of the assumptions can be found
in the full version [2].

2.3 Forward-Secure Signature Schemes

A forward-secure signature scheme is a key-evolving signature scheme in which
the secret key is updated periodically while the public key remains the same
throughout the lifetime of the scheme [4]. Each time period has a secret signing
key associated with it, which can be used to sign messages with respect to that
time period. The validity of these signatures can be checked with the help of a
verification algorithm. At the end of each time period, the signer in possession
of the current secret key can generate the secret key for the next time period via
an update algorithm. Moreover, old secret keys are erased after a key update.



296 M. Abdalla, F. Ben Hamouda, and D. Pointcheval

Formally, a key-evolving signature scheme is defined by a tuple of algorithms
FS = (KG, Sign,Ver,Update) and a message space M, providing the following

functionality. Via (pk , sk)
$← KG(1k , 1T ), a user can run the probabilistic key

generation algorithm KG to obtain a pair (pk , sk1) of public and secret keys for
a given security parameter k and a given total number of periods T . sk1 is the
secret key associated with time period 1. Via sk i+1 ← Update(sk i), the user in
possession of the secret key sk i associated with time period i ≤ T can generate
a secret key sk i+1 associated with time period i+1. By convention, skT+1 = ⊥.
Via 〈σ, i〉 $← Sign(sk i,M ), the user in possession of the secret key sk i associated
with time period i ≤ T can generate a signature 〈σ, i〉 for a message M ∈ M
for period i. Finally, via d ← Ver(pk , 〈σ, i〉,M ), one can run the deterministic
verification algorithm to check if σ is a valid signature for a message M ∈ M
for period i and public key pk , where d = 1 if the signature is correct and 0
otherwise. For correctness, it is required that for all honestly generated keys
(sk1, . . . , skT ) and for all messages M ∈ M, Ver(pk , Sign(sk i,M ),M ) = 1 holds
with all but negligible probability.

Informally, a key-evolving signature scheme is existentially forward-se-
cure under adaptive chosen-message attack (EUF-CMA), if it is infeasible for
an adversary —also called forger— to forge a signature σ∗ on a message M ∗ for
a time period i∗, even with access to the secret key for a period i > i∗ (and
thus to all the subsequent secret keys; this period i is called the breakin period)
and to signed messages of his choice for any period (via a signing oracle), as
long as he has not requested a signature on M ∗ for period i∗ to the signing
oracle. This notion is a generalization of the existential unforgeability under
adaptive chosen-message attacks (EUF-CMA for signature schemes) [11] to key-
evolving signature scheme and a slightly stronger variant of the definition in [4].
In particular, we do not restrict the adversary to only perform signing queries
with respect to the current time period.

In the remainder of the paper, we also use a stronger notion: forward secu-
rity (SUF-CMA). In this notion, the forger is allowed to produce a signature σ∗

on a messageM ∗ for a period i∗, such that the triple (M ∗, i∗, σ∗) is different from
all the triples produced by the signing oracle. More formally, a key-evolving sig-
nature scheme is (t, qh, qs, ε)-(existentially)-forward-secure if no adversary run-
ning in time at most t and making at most qh queries to the random oracle
and qs queries to the signing oracle can break the (existential) forward security
with probability at least ε. All the formal security notions and the comparison
with [4], together with other security notions (used for detailed comparisons),
can be found in the full version [2].

3 Lossy Key-Evolving Identification and Signature
Schemes

In this section, we present a new notion, called lossy key-evolving identification
scheme, which combines the notions of lossy identification schemes [3], which
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can be transformed to tightly secure signature scheme, and key-evolving identi-
fication schemes [4], which can be transformed to forward-secure signature via a
generalized Fiat-Shamir transform (not necessarily tight, and under some con-
ditions). Although this new primitive is not very useful for practical real-world
applications, it is a tool that will enable us to construct forward-secure signa-
tures with tight reductions, via the generalized Fiat-Shamir transform described
in Section 3.2.

3.1 Lossy Key-Evolving Identification Scheme

The operation of a key-evolving identification scheme is divided into time periods
1, . . . , T , where a different secret is used in each time period, and such that the
secret key for a period i+1 can be computed from the secret key for the period i.
The public key remains the same in every time period. In this paper, a key-
evolving identification scheme is a three-move protocol in which the prover first
sends a commitment cmt to the verifier, then the verifier sends a challenge
ch uniformly at random, and finally the prover answers by a response rsp.
The verifier’s final decision is a deterministic function of the conversation with
the prover (the triple (cmt , ch, rsp)), of the public key, and of the index of the
current time period.

Informally, a lossy key-evolving identification scheme has T +1 kinds of public
keys: normal public keys, which are used in the real protocol, and i-lossy public
keys, for i ∈ {1, . . . , T }, which are such that no prover (even not computationally
bounded) should be able to make the verifier accept for the period i with non-
negligible probability. Furthermore, for each period i, it is possible to generate a
i-lossy public key, such that the latter is indistinguishable from a normal public
key even if the adversary is given access to any secret key for period i′ > i.

More formally, a lossy key-evolving identification scheme ID is defined by a
tuple (KG, LKG,Update,Prove, �c,Ver) such that:

• KG is the normal key generation algorithm which takes as input the security
parameter k and the number of periods T and outputs a pair (pk , sk1)
containing the public key and the prover’s secret key for the first period.

• LKG is the lossy key generation algorithm which takes as input the security
parameter k and the number of periods T and a period i and outputs a pair
(pk , sk i+1) containing a i-lossy public key pk and a prover’s secret key for
period i+ 1 (skT+1 = ⊥).

• Update is the deterministic secret key update algorithm which takes as input
a secret key sk i for period i and outputs a secret key sk i+1 for period i+1
if sk i is a secret key for some period i < T , and ⊥ otherwise. We write
Updatej the function Update composed j times with itself (Updatej(sk i) is
a secret key sk i+j for period i+ j, if i+ j ≤ T ).

• Prove is the prover algorithm which takes as input the secret key for the
current period, the current conversation transcript (and the current state
st associated with it, if needed) and outputs the next message to be sent to
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the verifier, and the next state (if needed). We suppose that any secret key
sk i for period i always contains i, and so i is not an input of Prove.

• �c is a polynomial; �c(k) (often simply denoted �c) is the length of the
challenge sent by the verifier.

• Ver is the deterministic verification algorithm which takes as input the con-
versation transcript and the period i and outputs 1 to indicate acceptance,
and 0 otherwise.

A randomized transcript generation oracle TrID
pk ,ski,k is associated to each ID, k ,

and (pk , sk i). Tr
ID
pk ,ski,k takes no inputs and returns a random transcript of an

“honest” execution for period i. More precisely, the transcript generation oracle
TrID

pk ,ski,k is defined as follows:

function TrID
pk ,ski,k

(cmt , st)
$← Prove(sk i) ; ch

$← {0, 1}�c ; rsp
$← Prove(sk i, cmt , ch, st)

return (cmt , ch, rsp)
An identification scheme is said to be lossy if it has the following properties:

(1) Completeness of normal keys. ID is said to be complete, if for ev-
ery period i, every security parameter k and all honestly generated keys

(pk , sk1)
$← KG(1k ), Ver(pk , cmt , ch, rsp, i) = 1 holds with probability 1

when (cmt , ch, rsp)
$← TrID

pk ,ski,k (), with sk i = Updatei−1(sk1).

(2) Simulatability of transcripts. Let (pk , sk1) be the output of KG(1k ) for
a security parameter k , and sk i be the output of Update

i−1(sk1). Then, ID
is said to be ε-simulatable if there exists a probabilistic polynomial time

algorithm T̃r
ID
pk ,i,k with no access to any secret key, which can generate tran-

scripts {(cmt , ch, rsp)} whose distribution is statistically indistinguishable

from the transcripts output by TrID
pk ,ski,k , where ε is an upper-bound for

the statistical distance. When ε = 0, then ID is said to be simulatable.

(3) Indistinguishability of keys. Consider the two following experiments

Expind-keys-real
ID,k ,i (Di) and Expind-keys-lossy

ID,k ,i (Di) (i ∈ {1, . . . , T }):
Expind-keys-real

ID,k ,i (Di)

(pk , sk1)
$← KG(1k , 1T )

sk i+1
$← Updatei(sk1)

return Di(pk , sk i+1)

Expind-keys-lossy
ID,k ,i (Di)

(pk , sk i+1)
$← LKG(1k , 1T , i)

return Di(pk , sk i+1)

D is said to (t, ε)-solve the key-indistinguishability problem for period i if
it runs in time t and∣∣∣Pr [Expind-keys-real

ID,k ,i (Di) = 1
]
− Pr

[
Expind-keys-lossy

ID,k ,i (Di) = 1
]∣∣∣ ≥ ε.

Furthermore, we say that ID is (t, ε)-key-indistinguishable, if, for any i, no
algorithm (t, ε)-solves the key-indistinguishability problem for period i.

(4) Lossiness. Let Ii be an impersonator for period i (i ∈ {1, . . . , T }), st be its
state. We consider the experiment Explos-imp-pa

ID,k ,i (Ii) played between Ii and
a hypothetical challenger:
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KG(1k , 1T )

(pk , sk1)
$← KG(1k , 1T )

return (pk , sk1)

Update(sk i)

sk ← Update(sk i)
return sk

Sign(sk i,M )

(cmt , st)
$← Prove(sk i)

ch ← H(〈cmt ,M , i〉)
rsp

$← Prove(sk i, cmt , ch , st)
σ ← (cmt , rsp)
return 〈σ, i〉

Ver(pk , 〈σ, i〉,M )

(cmt , rsp) ← σ
ch ← H(〈cmt ,M , i〉)
d ← Ver(pk , cmt , ch , rsp, i)
return d

Fig. 1. Generalized Fiat-Shamir transform for forward-secure signature

Explos-imp-pa
ID,k ,i (Ii)

(pk , sk i+1)
$← LKG(1k , 1T , i) ; (cmt , st)

$← Ii(pk , sk i+1)

ch
$← {0, 1}�c ; rsp $← Ii(ch, st)

return Ver(pk , cmt , ch, rsp, i)

Ii is said to ε-solve the impersonation problem with respect to i-lossy public

keys if Pr
[
Explos-imp-pa

ID,k ,i (Ii) = 1
]
≥ ε. Furthermore, ID is said to be ε-

lossy if, for any period i ∈ {1, . . . , T }, no (computationally unrestricted)
algorithm ε-solves the impersonation problem with respect to i-lossy keys.

We remark that, for T = 1, a key-evolving lossy identification scheme becomes
a standard lossy identification scheme1, described in [3].

Finally, we say that ID is response-unique if for all normal public keys pk
or for all lossy keys pk , for all periods i ∈ {1, . . . , T }, for all messages M , for all
bit strings cmt2, and for all challenges ch, there exists at most one response rsp
such that Ver(pk , cmt , ch, rsp, i) = 1.

3.2 Generalized Fiat-Shamir Transform

The forward-secure signature schemes considered in this paper are built from
a key-evolving identification scheme via a straightforward generalization of the
Fiat-Shamir transform [9], depicted in Fig. 1. More precisely, the signature for
period i is just the signature obtained from a Fiat-Shamir transform with secret
key sk i = Updatei−1(sk1) (with the period i included in the random oracle
input).

Let FS [ID] = (KG, Sign,Ver) be the signature scheme obtained via this gen-
eralized Fiat-Shamir transform. The following theorem is a generalization of (a
special case of) Theorem 1 in [3], where we assume perfect completeness.

1 Contrary to the definition of lossiness given in [3], the impersonator I1 does not have

access to an oracle T̃r
ID
pk ,1,k in Explos-imp-pa

ID,k,1 (I1). However, we remark that this has

no impact on the security definition as the execution of T̃r
ID
pk ,1,k does not require any

secret information.
2 Not necessarily a correctly generated commitment, but any bit string.
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Theorem 1. Let ID = (KG, LKG,Update,Prove, �c,Ver) be a key-evolving lossy
identification scheme whose commitment space has min-entropy at least β (for
every period i), let H be a random oracle, and let FS [ID] = (KG, Sign,Ver) be the
signature scheme obtained via the generalized Fiat-Shamir transform. If ID is εs-
simulatable, complete, (t′, εk)-key-indistinguishable, and ε�-lossy, then FS [ID ] is
(t, qh, qs, ε)-existentially-forward-secure in the random oracle model for:

ε = T (εk + (qh + 1)ε�) + qsεs + (qh + 1)qs/2
β

t ≈ t′ − (qs tSim−Sign + (T − 1) tUpdate)

where tSim−Sign denotes the average time of a query to the simulated transcript

function T̃r
ID
pk ,i,k and tUpdate denotes the average time of a query to Update. Fur-

thermore, if ID is response-unique, FS [ID ] is also (t, qh, qs, ε)-forward-secure.

Actually, if we choose T = 1 in the previous theorem, we get a slightly improved
special case of Theorem 1 in [3], since the forward security for T = 1 is exactly
the strong unforgeability for a signature scheme. The proof of this theorem can
be found in the full version [2] and is very similar to the proof in [3], except that
we need to guess the period i∗ of the signature output by the adversary, in order
to choose the correct lossy key. That is why we lose a factor T in the reduction.

Remark 2. As in the standard Fiat-Shamir transform, the signature obtained
via the generalized transform consists of a commitment-response pair. However,
in all schemes proposed in this paper, the commitment can be recovered from
the challenge and the response. Hence, since the challenge is often shorter than
the commitment, it is generally better to use the challenge-response pair as the
signature in our schemes. Obviously, this change does not affect the security of
our schemes.

4 Tighter Security Reductions for Guillou-Quisquater-
Like Schemes

In this section, we prove tighter security reductions for the Guillou-Quisquater
scheme (GQ, [12]) and for a slight variant of the Itkis-Reyzin scheme (IR, [15]),
which can also be seen as a forward-secure extension of the GQ scheme. We
analyze the practical performance of this new scheme in the next section of this
article. Detailed proofs for these schemes are available in the full version [2].

4.1 Guillou-Quisquater Scheme

Let us describe the identification scheme corresponding to the GQ signature
scheme, before presenting our tight reduction and comparing it with the swap
method.
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Prover Verifier
Input: sk i = (N, e, S) Input: pk = (N, e, U)

R
$← Z∗

N

Y ← Re mod N Y �
c� c

$← {0, . . . , c− 1}
Z ← R · Sc mod N Z �

if Z /∈ Z∗
N or Ze �= Y · Uc

return reject
return accept

Fig. 2. Description of the GQ identification scheme (U = Se mod N)

Scheme. Let N be a product of two distinct �N -bit primes p1, p2 and let e be a
�e-bit prime, coprime with φ(N) = (p1−1)(p2−1), chosen uniformly at random.
Let S be an element chosen uniformly at random in Z∗

N and let U = Se mod N .
Let c = 2�e . The public key is pk = (N, e, U) and the secret key is sk = (N, e, S).

The goal of the identification scheme is to prove U is a e-residue. The iden-
tification scheme is depicted in Fig. 2 and works as follows. First, the prover
chooses a random element R ∈ Z∗

N , computes Y ← Re mod N . It sends Y to
the verifier, which in turn chooses c ∈ {0, . . . , c−1} and returns it to the prover.
Upon receiving c, the prover computes Z ← R · Sc mod N and sends this value
to the verifier. Finally, the verifier checks whether Z ∈ Z∗

N and Ze = Y ·Uc and
accepts only in this case3.

Security. The previous proofs of the GQ schemes looses a factor qh in the
reduction. In this paragraph, we prove the previously described identification
scheme ID is a lossy identification scheme, under the φ-hiding assumption. This
yields a security proof of the strong unforgeability of the GQ scheme, with a
tight reduction to this assumption.

The algorithm LKG chooses e and N = p1p2 such that e divides p1−1, instead
of being coprime with φ(N), and chooses U uniformly at random among the non-
e-residue modulo N . In the full version [2], we show that if U is chosen uniformly
at random in Z∗

N , it is not an e-residue with probability 1 − 1/e and that it is
possible to efficiently check whether U is an e-residue or not if the factorization
of N is known: U is a e-residue if and only if, for any k ∈ {1, 2}, e does not
divide pk − 1 or U (pk−1)/e = 1 mod pk.

The proof that ID is complete follows immediately from the fact that, if U =
Se mod N , an honest execution of the protocol will always result in acceptance
as Ze = (R · Sc)e = Re · (Se)c = Y · Uc.

The simulatability of ID follows from the fact that, given pk = (N, e, U), we
can easily generate transcripts whose distribution is perfectly indistinguishable
from the transcripts output by an honest execution of the protocol. This is

3 The test Z ∈ Z∗
N can be replaced by the less expensive test Z mod N �= 0, as

explained in the full version [2].
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done by choosing Z uniformly at random in Z∗
N and c uniformly at random in

{0, . . . , c− 1}, and setting Y = Ze/Uc.
Let us prove the key indistinguishability. The distribution of normal pub-

lic keys is indistinguishable from the one where e divides φ(N) and U is chosen
uniformly at random, according to the φ-hiding assumption. And in this latter
distribution, U is not a e-residue with probability 1 − 1/e, so this distribution
is statistically close to the distribution of lossy keys. Therefore, ID is key indis-
tinguishable.

To show that ID is lossy, we note that, when the public key is lossy, for
every element Y chosen by the adversary, there exists only one value of c ∈
{0, . . . , c − 1} for which there exists a response Z which is considered valid by
the verifier. To see why, assume for the sake of contradiction that there exist two
different values c1 and c2 in {0, . . . , c−1} for which there exists a valid response.
Denote by Z1 and Z2 one of the valid responses in each case. Without loss of
generality, assume that c1 < c2. Since Z

e
1 = Y · Uc1 and Ze2 = Y · Uc2 , we have

that (Z2/Z1)
e = Uc2−c1 . As c2 − c1 is a positive number smaller than 2�e , it is

coprime with e (since e is a prime and e ≥ 2�e). Therefore, according to Bezout
theorem, there exists two integers u, v such that: ue+ v(c1 − c2) = 1. So:

U = Uue+v(c1−c2) = (Uu)e(Uc2−c1)v = (Uu(Z2/Z1)
v)e

and U is a e-residue, which is impossible. This means that the probability that
a valid response Zi exists in the case where U is not a e-residue is at most 1/c.
It follows that ID is 1/c-lossy.

Comparison with the swap method. Applying the swap method [22] to the
GQ identification scheme can also provide a signature with a tight reduction, to
the RSA problem. However, in this case, the signing algorithm needs to compute
the e-root of the output of the random oracle modulo N . Therefore, instead
of requiring two exponentiation modulo N with a �e-bit exponent, the signing
algorithm requires one such exponentiation and one exponentiation modulo N
with a �N -bit exponent. And our signing algorithm will be �N/(2�e) faster, for
the same parameters and the same security level, if we consider the φ-hiding
problem is as hard as the RSA problem. Furthermore, the swap method cannot
be directly extended to the forward-secure extension of the GQ scheme, described
in the next section, because the prover has to know the factorization of N .

A slight variant of the scheme. We can also chooses e uniformly at random
among the �e-bit primes (without forcing that e is coprime with φ(N) in KG),
because, with high probability, such a prime number will be coprime with φ(N).

4.2 Variant of the Itkis-Reyzin Scheme

Scheme. The idea of this forward-secure extension of the GQ scheme consists
in using a different e for each period. More precisely, let e1, . . . , eT be T distinct
�e-bit primes chosen uniformly at random. Let fi = ei+1 . . . eT , fT = 1 and
E = e1 . . . eT . Let S be an element chosen uniformly at random in Z∗

N and let
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U = SE mod N . Let Si = SE/ei and S′
i = SE/fi . Then the public key is pk =

(N, e1, . . . , eT , U) and the secret key for period i is sk i = (N, ei, . . . , eT , Si, S
′
i).

We remark we can easily compute sk i+1 from sk i, since Si+1 = S′fi+1

i mod N
and S′

i+1 = S′ei+1

i mod N .
For period i, the identification scheme works exactly as the previous one with

public key pk = (N, ei, U) and secret key sk = (N, ei, Si).
For the sake of simplicity, in this naive description of the scheme, we store the

exponents e1, . . . , eT in the public key and in the secret key. Therefore, the keys
are linear in T , the number of periods. It is possible to have constant-size key,
either by using fixed exponents, or by computing the exponents using a random
oracle. This will be discussed in Section 5.1.

Security. The security proof is similar to the one for the previous scheme, with
the main difference being the description of the lossy key generation algorithm
LKG. More precisely, on input (1k , 1T , i), the algorithm LKG generates ei and
N = p1p2 such that ei divides p1 − 1, instead of being coprime with φ(N), and
chooses U ′ uniformly at random among the non-ei-residues modulo N . Then it
chooses T − 1 distinct random �e-bit primes e1, . . . , ei−1, ei+1, . . . , eT , and sets
U = U ′ei+1···eT mod N , Si+1 = U ′ei+2···eT mod N and S′

i+1 = U ′ei+1 mod N .
The public key is pk = (N, e1, . . . , eT , U) and the secret key for period i + 1 is
sk i+1 = (N, ei+1, . . . , eT , Si+1, S

′
i+1) (or ⊥ if i = T ). We remark that, since U ′

is a non-ei-residue, U is also a non-ei-residue and so the public key pk is i-lossy.

5 Analysis of Our Variant of the Itkis-Reyzin Scheme

In this section, we analyze our variant of the IR scheme and compare it with the
original IR scheme [15] and the MMM scheme [19].

5.1 Computation of the Exponents e1, . . . , eT

As explained before, storing the exponents e1, . . . , eT in the keys is not a good
idea since the key size becomes linear in T . Since we need e1, . . . , eT to be random
primes to be able to do the reduction of key indistinguishability to the φ-hiding
assumption, we can use a second random oracle H′ which outputs prime numbers
of length �e, and set ei = H′(i).

An implementation of a random oracle for prime numbers using a classical
random oracle is presented in the full version [2]. The construction is close to the
construction of a PRF mapping to prime numbers in [13]. The idea is to hash
the input value concatenated to a counter and to increment the counter until we
get a prime number. One can prove that it behaves like a random oracle uniform
over all primes, and that we can program it efficiently (property which is needed
for the security reductions).

We finally remark that, we can always store ei in the secret key for period i.
The secret key length is increased only by a small amount and the signing algo-
rithm becomes faster, since it does not need to recompute ei.
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Table 1. Choice of parameters

k qh qs �e εp �N

80 280 230 123 2−80 ≥ 1248
128 2128 246 171 2−128 ≥ 3248

5.2 Choice of Parameters

In order to be able to compare the original IR scheme with our scheme, we need to
choose various parameters. In Table 1, we show our choice of parameters for two
security levels: k = 80 bits and k = 128 bits. When choosing these parameters,
we considered a value of T = 220, as it enables to update the key every hour
for up to 120 years (please refer to the full version [2] for more details). In both
cases, εp denotes the maximum error probability of the probabilistic primality
test used in the random oracle for primes numbers H′, whereas qh and qs specify
the maximum number of queries to the random oracle and to the signing oracle,
respectively, in the forward-security game. In the sequel, all the parameters are
fixed except the length �N of the modulus.

5.3 Comparison with Existing Schemes

Comparison with the Itkis-Reyzin scheme. In this section, we compare the
original IR scheme without optimization with our scheme (in which ei is stored
in the secret key sk i, as in the IR scheme). The original IR scheme is very close
to our scheme. The only differences are that the IR scheme requires that the
factors p1 and p2 of the modulus N are safe primes4 and that IR signatures for
period i contain the used exponent ei. Therefore the IR verification algorithm
does not need to recompute the exponent, and is faster. In order to prevent an
adversary from using an exponent for the breakin period to sign messages for
an older period, the exponent has to be in a different set for each period. The
security of the scheme comes from the strong-RSA assumption. Unfortunately,
we cannot use such an optimization with our security reduction for our scheme,
because we need to know which exponent the adversary will use to make the key
lossy for this exponent. However, we remark in the full version [2] that the other
optimizations of the original IR scheme can also be applied to our scheme.

Let us now compare the two schemes with the same security parameters
(k , �e, �N ), before analyzing the exact security. We first remark that for the
same security parameters, our key generation algorithm is slightly faster since it
does not require safe primes; and our signing and key update algorithms are as
fast as the IR ones. The key and signature lengths of the signatures are nearly
the same as the IR ones (IR signatures are only �e-bits longer than our signa-
tures). The real difference is the verification time since our verification algorithm
needs to recompute the ei, contrary to the IR scheme. Verification consists of

4 A safe prime p is an odd prime such that (p − 1)/2 is also prime. This assumption
is needed for the security reduction of the IR scheme.
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Table 2. Time of verification algorithm (using parameters of Table 1)

exponentiation prime generation verification orig.a verification newb

k �N mul.c msd mul.c msd mul.c msd mul.c msd

k �N
3
2
�e �N

2 n/a ( 3
2
kp +

2 �e) �e
3

n/a 3 �e �N
2 n/a 3 �e �N

2 +
( 3
2
kp +

2 �e) �e
3

n/a

80 1248 0.29 · 109 0.15 0.68 · 109 0.26 0.58 · 109 0.30 1.26 · 109 0.56
80 1920 0.68 · 109 0.34 0.68 · 109 0.26 1.36 · 109 0.68 2.04 · 109 0.94
80 6848 8.65 · 109 3.09 0.68 · 109 0.26 17.3 · 109 6.18 1.26 · 109 6.44
128 3248 2.71 · 109 1.19 2.67 · 109 0.82 5.42 · 109 2.38 8.09 · 109 3.10

a verification time of the original scheme (also equal to the signature time for both
schemes), estimated using the time of the two exponentiations.

b verification time of our scheme, estimated using the time of the two exponentiations
and of the prime generation.

c approximate theoretical complexity (see the full version [2]).
d time on an Intel Core i5 750 (2.67 GHz), using GMP version 5.0.4
(http://gmplib.org, a pseudo-random number generator is used as a random
oracle.

two exponentiations (modulo N with a �e-bit exponent) for the original scheme
and two exponentiations and an evaluation of the random prime oracle (roughly
equivalent to a random prime generation) for our scheme.

Let us now focus on the exact security of the two schemes. As explained by
Kakvi and Kiltz in [16], the best known attacks against the φ-hiding problems
are the factorization of N . Let us also consider it is true for the strong RSA
problem (since it just strengthens our result if it is not the case). As shown in
the full version [2], with our choice of parameters, if we want k = 80 bits of
security, we need to choose a modulo length �N such that the factorization is
k + log2(T ) = 100-bit hard (for our scheme) and k + log2(Tqh) = 180-bit hard
(for the original scheme). This corresponds to about �N ≈ 1920 and �N ≈ 6848
respectively, according to Ecrypt II [7]. In this case, according to Table 2, our
verification algorithm is about 6 times faster (0.94ms vs 6.18ms) and our signing
algorithm is about 9 times faster (0.68ms vs 6.18ms). And our scheme generates
3.5 times shorter signatures.

Comparison with the MMM scheme. The MMM scheme [19] is one of the
most efficient generic constructions of forward-secure signatures (from any sig-
nature scheme), to the best of our knowledge. Furthermore, it does not require
to fix the number of periods T . However, in the security proof, we have to bound
the number of periods T the adversary can use (as query for the oracles Sign
and Breakin). Its forward security can be reduced to the strong unforgeability
of the underlying signature scheme with a loss of a factor T .

If we want to compare the MMM scheme with our variant of the IR scheme,
the fairest solution is to instantiate the MMM scheme with the GQ scheme. Then
we can use our tight reduction of the GQ scheme to the φ-hiding problem, to

http://gmplib.org
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prove that the resulting MMM scheme is forward-secure with a relatively tight
(losing only a factor T ) reduction to the φ-hiding problem. In this setting, the
MMM scheme and our scheme have approximatively the same proven security.
And the comparison of the MMM scheme with our scheme is roughly the same
as the comparison in [19] between the IR scheme and the MMM scheme (which
did not take into account the tightness of the reduction).

Very roughly, we can say that the MMM key generation and key update al-
gorithms are faster (about T times faster). However, MMM private keys are
longer. And, even if MMM public keys are shorter (more than 30 times for
k = 80, �N = 1248), in most cases, it is not really useful since signatures with
the MMM scheme are about four times longer than signatures with our scheme
(4�N+(log(k)+log T )k compared to �N+k), and also about twice as long as the
sum of the length of a public key of our scheme and a signature. Therefore, since
the public key is used for verification, the total memory needed to store input
data needed for the verification of a signature with the MMM scheme is still
twice the amount of the one needed with our scheme. Furthermore, our scheme
outperforms the MMM scheme with respect to verification time (considering
Table 2, since the MMM verification algorithm verifies two classical GQ signa-
tures). This means that, if verification time, signing time, and signature size are
critical (for example, if verification or signing has to be performed on a smart-
card), our scheme is better than the MMM scheme. And, even more generally,
if key updates are not performed often and if T can be bounded by a reasonable
constant (for example, if keys are updated each day and are expected to last 3
years, T = 210, and key update time is not really a problem), our scheme is also
better than the MMM scheme.

6 Generic Factoring-Based Forward-Secure Signature
Scheme

In this section, we show that all our previous results on the GQ scheme and
its forward-secure extension can be generalized and applied to several other
schemes. To do so, we first introduce a new generic factoring-based key-evolving
lossy identification scheme and then show that several factoring-based signature
and forward-secure signature schemes can be seen as simple instantiations of this
generic scheme.

6.1 Generic Factoring-Based Forward-Secure Signature Scheme

Let � be a security parameter, let N be a product of large primes, and let
e1, . . . , eT be T integers and E be the least common multiple of e1, . . . , eT . Let
S1, . . . , S� be a set of elements in Z∗

N
� and let U1, . . . , U� ∈ Z∗

N
� be the set of

elements containing the corresponding E-powers. That is, for each j ∈ {1, . . . , �},
Uj = SEj mod N . The public key is pk = (N, e1, . . . , eT , U1, . . . , U�) (as for our
variant of the IR scheme, we can use a random oracle to avoid storing the
exponents in the keys, as explained in Section 5.1). Let fi be the least common
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Prover Verifier
sk i = (N, e1, . . . , eT , pk = (N, e1, . . . , eT ,

S1,i, . . . , S�,i, . . . ) U1, . . . , U�)

for j = 1, . . . , �

Rj
$← Z∗

N

Yj ← Rei
j mod N Y1, . . . , Y� �

c1, . . . , c�� c1, . . . , c�
$← {0, . . . , c− 1}�

for j = 1, . . . , �
Zj ← Rj · Scj

j,i mod N Z1, . . . , Z� �
for j = 1, . . . , �

if Zj /∈ Z∗
N or Zei

j �= Yj · Ucj
j

return reject
return accept

Fig. 3.Description of the generic identification scheme ID for proving that the elements
U1, . . . , U� in pk are all ei-residues (for each j ∈ {1, . . . , �}, Uj = Se

j,i mod N)

multiple of ei+1, . . . , eT for each i ∈ {1, . . . , T } (fT = 1) and let Sj,i = S
E/ei
j

and S′
j,i = S

E/fi
j , for each 1 ≤ i ≤ T and each 1 ≤ j ≤ �. Then, the secret key

for period 1 ≤ i ≤ T is sk i = (i, N, ei, . . . , eT , S1,i, . . . , S�,i, S
′
1,i, . . . , S

′
�,i). We

remark that it is possible to compute sk i+1 from sk i by computing: Sj,i+1 =

S
′fi/ei+1

j,i mod N and S′
j,i+1 = S

′fi/fi+1

j,i mod N .
The identification scheme is depicted in Fig. 3 and is a straightforward exten-

sion of the one of our variant of the IR scheme in Section 4.2. For period i, its goal
is to prove that the elements U1, . . . , U� are all ei-residues, and works as follows.
First, the prover chooses an element Rj ∈ Z∗

N and computes Yj ← Reij mod N ,
for j ∈ {1, . . . , �}. It then sends Y1, . . . , Y� to the verifier, which in turn chooses
c1, . . . , c� ∈ {0, . . . , c−1}� and returns it to the prover. Upon receiving c1, . . . , c�,
the prover computes Zj ← Rj ·Scj

j,i mod N for j ∈ {1, . . . , �} and sends these val-

ues to the verifier. Finally, the verifier checks whether Zj ∈ Z∗
N and Zeij = Yj ·Ucj

j

for j ∈ {1, . . . , �} and accepts only if this is the case. The corresponding factoring-
based forward-secure signature scheme is depicted in Fig. 4.

In the full version [2], we prove that the previous scheme is existentially
forward-secure, under the following condition:

Condition 3. There exists a normal key generation algorithm KG and a lossy
key generation algorithm LKG which takes as input the security parameter and
the period i and outputs a pair (pk , sk ′

i+1) such that, for every i ∈ {1, . . . , T }:
• (pk , sk ′

i+1) is indistinguishable from a pair (pk , sk i+1) generated by KG and
i calls to Update (to get sk i+1 from sk1);

• for all c ∈ {0, . . . , c − 1}, none of U1, . . . , U� is a e′(e, c, N)-residue, where
e′(e, c, N) is:

e′(e, c, N) = gcd
i∈{1,...,m}

e ∧ (pkii − pki−1
i )

c ∧ e ∧ (pkii − p
ki−1
i )

e′i,
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KG(1k , 1T )

Generate N, e1, . . . , eT
E ← lcm(e1, . . . , eT )
for i = 1, . . . , T

fi ← lcm(ei+1, . . . , eT )
for j = 1, . . . , �

Sj
$← Z∗

N

Sj,1 ← S
E/e1
j mod N

S′
j,1 ← S

E/f1
j mod N

Uj ← SE
j mod N

pk ← (N, e1, . . . , eT ,
U1, . . . , U�)

sk1 ← (1, N, e1, . . . , eT ,
S1,1, . . . , S�,1,
S′
1,1, . . . , S

′
�,1)

return (pk , sk1)

Update(sk ,M )

(i,N, e1, . . . , eT ,
S1,i, . . . , S�,i,
S′
1,i, . . . , S

′
�,i) ← sk

if i = T then
return ⊥

fi ← lcm(ei+1, . . . , eT )
fi+1 ← lcm(ei+2, . . . , eT )
for j = 1, . . . , �

Sj,i+1 ← S
′fi/ei+1

j,i

S′
j,i+1 ← S

′fi/fi+1

j,i

sk i+1 ← (i+ 1, N, ei+1, . . . , eT ,
S1,i+1, . . . , S�,i+1,
S′
1,i+1, . . . , S

′
�,i+1)

return sk i+1

Ver(pk , 〈σ, i〉,M )

(N, e1, . . . , eT ,
U1, . . . , U�) ← pk
((Y1, . . . , Y�), (Z1, . . . , Z�)) ← σ
(c1, . . . , c�) ← H(〈(Y1, . . . , Y�),M , i〉)
for j = 1, . . . , �

if Zj /∈ Z∗
N or Zei

j �= Yj · Ucj
j then

return reject
return accept

Sign(sk ,M )

(i,N, ei, . . . , eT ,
S1,i, . . . , S�,i,
S′
1,i, . . . , S

′
�,i) ← sk

for j = 1, . . . , �

Rj
$← Z∗

N

Yj ← Rei
j mod N

(c1, . . . , c�) ← H(〈(Y1, . . . , Y�),M , i〉)
for j = 1, . . . , �

Zj ← Rj · Scj
j mod N

σ ← ((Y1, . . . , Y�), (Z1, . . . , Z�))
return 〈σ, i〉

Fig. 4. Factoring-based forward-secure signature scheme

with N = pk11 . . . pkmm the prime decomposition of N and e′i the greatest
divisor of e coprime with pkii −p

ki−1
i , and where a∧b is the greatest common

divisor (gcd) of a and b.

The second part of the condition ensures that the scheme is 1/c�-lossy.

6.2 Some Instantiations

In addition to the GQ scheme and our variant of the IR scheme, there are other
possible instantiations of our generic scheme.

Quadratic-Residuosity-Based Signature Scheme. The case where e =
c = 2 and T = 1 is an important instantiation of the generic scheme as it
coincides with the quadratic-residuosity-based scheme informally suggested by
Katz and Wang in [17]. This scheme is existentially unforgeable based on the
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hardness of the quadratic-residuosity problem as long as � is large enough to
make the term qh/2

�
negligible.

2t-Root Signature Scheme by Ong and Schnorr. The case where e = c =
2t, � = 1, and T = 1 coincides with the 2t-root identification scheme by Ong
and Schnorr [25]. If N = p1p2 is an RSA modulus such that 2t divides p1 − 1
and p2− 1, this scheme is existentially unforgeable based on the hardness of the
strong-2t-residuosity problem as long as t is large enough to make the term qh/2

t

negligible.

Paillier Signature Scheme. The case where � = 1, T = 1, and e = p1p2
is an RSA modulus, N = e2 = p21p

2
2 and c ≤ min(p1, p2) coincides with the

Paillier signature scheme [26]. This scheme is existentially unforgeable based on
the hardness of the high-residuosity problem of [26].

2t-Root Forward-Secure Signature Scheme. The case in which ei =
2t(T−i+1) with t a positive integer and c = 2i is a generalization of the quadratic-
residuosity-based scheme and the 2t-root scheme. In this case, fi = ei, and we
do not need to store S′

1,i. If N = p1p2 is an RSA modulus such that 2tT di-
vides p1 − 1 and p2 − 1, this scheme is existentially forward-secure based on the
hardness of a variant of the strong-2tT -assumption, as long as the exponents t
and � are large enough to make the term qh/2

t� negligible. Although this scheme
appears to be new, it is of limited interest as its public key and secret key sizes
are linear in the number T of time periods.

Proof details for the above instantiations can be found in the full version [2].
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Abstract. We present an efficient structure-preserving tagged one-time signa-
ture scheme with tight security reductions to the decision-linear assumption. Our
scheme features short tags consisting of a single group element and gives rise
to the currently most efficient structure-preserving signature scheme based on
the decision-liner assumption with constant-size signatures of only 14 group ele-
ments, where the record-so-far was 17 elements.

To demonstrate the advantages of our scheme, we revisit the work by Hofheinz
and Jager (CRYPTO 2012) and present the currently most efficient tightly se-
cure public-key encryption scheme. We also obtain the first structure-preserving
public-key encryption scheme featuring both tight security and public verifiability.

Keywords: Tagged One-Time Signatures, Structure-Preserving Signatures,
Tight Security Reduction, Decision Linear Assumption.

1 Introduction

Background. A tagged one-time signature (TOS, [1]) scheme is a signature scheme that
includes a fresh random tag in each signature. It is unforgeable if creating a signature
on a new message but with an old tag picked by an honest signer is hard. A TOS is a
special type of partial one-time signature (POS, [1]), that involves one-time keys and
long-term keys.1 Namely, a TOS is a POS with an empty one-time secret-key. For this
reason the one-time public-key is called a tag.

A TOS is structure-preserving [2] if its long-term public-keys, tags, messages, and
signatures consist only of elements of the base bilinear groups and the verification
only evaluates pairing product equations. Structure-preservation grants interoperabil-
ity among building blocks over the same bilinear groups and allows modular construc-
tions of conceptually complex cryptographic schemes, in particular when combined

1 POS also known as two-tier signatures [8].
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with the Groth-Sahai (GS) proof system [25]. So far, structure-preserving constructions
have been developed for signature [23,14,2,3,15,11,1] commitments [4,5], and public-
key encryption schemes [12]. The growing list of their applications include universally
composable adaptive oblivious transfer [22,21], anonymous proxy signatures [18], del-
egatable anonymous credentials [7], transferable e-cash [19], compact verifiable shuf-
fles [16], and network coding [6].

Efficiency and tight security is of general interest for cryptographic primitives. In
[26], a tightly-secure structure-preserving POS is used as a central building block for
constructing pubic-key encryption scheme secure against adaptive chosen-ciphertext
attacks with multiple challenges and users. Replacing the POS with a TOS gives an
immediate improvement. It is however seemingly more difficult to construct a TOS
with high efficiency and tight security at the same time due to the absence of one-
time secrets. To the best of our knowledge, the scheme in [1] is the only structure-
preserving TOS in the literature bases on the decision-linear assumption (DLIN, [9]).
Unfortunately, their reduction is not tight. For qs signing queries, it suffers a factor of
1/qs. Moreover, a tag requires two group elements for technical reasons. This contrasts
to the case of POS, where tight reductions to DLIN or SXDH are known, and the one-
time public-key can be a single group element [1].

Our Contribution. The main contribution of this paper is a structure-preserving TOS
with 1) optimally short tags consisting only of one group element, and 2) a tight se-
curity reduction to a computational assumption tightly implied by DLIN. Thus, when
compared with the TOS scheme in [1], our scheme improves both tag size and tightness.
The first application of our new TOS is a more efficient structure-preserving signature
(SPS) scheme based on DLIN. The signature consists of 14 group elements and the ver-
ification evaluates 7 pairing product equations. It saves 3 group elements and 2 equa-
tions over previous SPS in [1]. Our second application is a more efficient tightly secure
public-key encryption scheme. As a stepping stone we also obtain a more efficient and
tight secure structure-preserving tree-based signature schemes. We obtain these results
by revisiting the framework of [26]. In addition to the efficiency and key-management
improvements, our contributions include the first structure-preserving CCA-secure en-
cryption schemes featuring a tight security reduction, public verifiability, and leakage
resilience which we inherit from [17].

The combined length of a tag and the long-term public-key in the new TOS is shorter
than the one-time public-key of other structure-preserving one-time signature schemes
(OTS) in the literature. (It saves 2 group elements over the OTS in [4].) Using our
TOS as OTS is therefore beneficial even for applications that use the whole public-
key only once. Typical examples include the IBE-to-PKE transformation [13], NIZK-
to-SS-NIZK transformation [23], CCA-secure Group Signatures [24] where one-time
signatures are used to add non-malleability, and delegatable anonymous credentials [7].
Though the improvement in this direction is small, it is often considerably amplified
in applications, e.g., in delegatable anonymous credentials where the whole public key
needs to be concealed in Groth-Sahai commitments.

Many of the applications in this paper require hundreds of group elements and are
not necessarily practical. Nevertheless, the concrete efficiency assessment should serve
as a reference that shows how efficient instantiation of generic modular constructions
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can be. In particular, as the constants in generic constructions can be large, we observed
that small gains in the building blocks can result in significant efficiency improvements
in applications.

2 Preliminaries

2.1 Bilinear Groups

We work in a setting with a symmetric bilinear pairing (the Type-I setting of [20])
and use multiplicative notation. Let G be a bilinear group generator that takes security
parameter λ as input and outputs a description of bilinear groups Λ := (p,G,GT , e),
where G and GT are groups of prime order p, and e is an efficient and non-degenerating
bilinear map G × G → GT . We count the number of group elements to measure the
size of cryptographic objects such as keys, messages, and signatures. By Zp and Z∗

p, we
denote Z/pZ and Z/pZ \ {0}, respectively. We abuse the notation and denote G \ {1G}
by G∗.

The security of our schemes is based on the following computational assumption.

Definition 1 (Simultaneous Double Pairing Assumption : SDP [14]). For the bilin-
ear group generator G and any polynomial time A the probability

AdvsdpG,A(λ) := Pr

⎡⎣Λ← G(1λ)
(Gz , Gr, Hz, Hs)← G∗4

(Z,R, S)← A(Λ,Gz, Gr, Hz , Hs)
:
Z ∈ G∗ ∧
1 = e(Gz, Z) e(Gr, R) ∧
1 = e(Hz, Z) e(Hs, S)

⎤⎦
is negligible in λ.

SDP is random-self reducible. Given (Gz , Gr, Hz, Hs), another random instance
(GazG

b
r, G

c
r, H

a
zH

d
s , H

e
s ) can be generated by choosing a, b, c, d, and e uniformly from

Z∗
p. Given an answer (Z,R, S) to the new instance, (Za, RcZb, SeZd) is the answer to

the original instance. Furthermore, SDP is tightly reduced from DLIN as observed in
[14]. For a DLIN instance (G1, G2, G3, G

a
1 , G

b
2, G

c
3) for deciding c = a+b or not, con-

struct an SDP instance (Ga1 , G1, G
b
2, G2). Then, given an answer (Z,R, S) that satisfies

1 = e(Ga1 , Z) e(G1, R) and 1 = e(Gb2, Z) e(G2, S), one can conclude that c = a + b
if e(G3, R · S) = e(Gc3, Z) since R = Za and S = Zb. We restate this observation as
a lemma below.

Lemma 1 (DLIN ⇒ SDP). If there exists adversary A that solves SDP, then there
exists adversary B that solves DLIN with the same advantage and a runtime overhead
of a few exponentiations and pairings.

2.2 Syntax and Security Notions

We follow the syntax and security notions for TOS in [1]. Let Setup(1λ) be an algorithm
that takes security parameter λ and outputs common parameter gk. Parameters gk are
(sometimes implicit) input to all algorithms.
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Definition 2 (Tagged One-Time Signature Scheme). A tagged one-time signature
scheme TOS is a set of polynomial-time algorithms TOS.{Key,Tag, Sign,Vrf} that
takes gk generated by Setup. Each function works as follows.

TOS.Key(gk) generates a long-term public-key pk and a secret-key sk . Message
spaceMt and tag space T are determined by gk.

TOS.Tag(gk) takes gk as input and outputs tag ∈ T .
TOS.Sign(sk ,msg, tag) outputs signature σ for message msg based on secret-key sk

and tag tag .
TOS.Vrf(pk , tag,msg, σ) outputs 1 for acceptance, or 0 for rejection.

For any key (pk , sk) ← TOS.Key(Setup(1λ)), any message msg ∈ Mt, any tag
tag ← TOS.Tag(gk), and any signature σ ← TOS.Sign(sk ,msg, tag), verification
TOS.Vrf(pk , tag ,msg, σ) outputs 1.

TOS is called uniform-tag if the output distribution of tag is uniform over T . TOS
is structure-preserving over Λ if gk contains Λ and the public-keys, messages, tags,
and signatures consist only of elements of base groups of Λ and TOS.Vrf consists of
evaluating pairing product equations.

Definition 3 (Unforgeability against One-Time Tag Chosen-Message Attacks). For
tagged one-time signature scheme TOS and algorithm A, let Exprot-cma

TOS,A be an experi-
ment that:

Exprot-cma
TOS,A(1

λ) :=

gk ← Setup(1λ), (pk , sk)← TOS.Key(gk)
(tag†, σ†,msg†)← AOtag,Osig(pk )
If ∃(tag ,msg , σ) ∈ Qm s.t.

tag† = tag ∧ msg† �= msg ∧ 1 = TOS.Vrf(pk , tag†, σ†,msg†)
return 1. Return 0, otherwise.

Otag and Osig are tag and signature generation oracles, respectively. On receiving i-th
query, Otag returns tag tagi generated by TOS.Tag(gk). On receiving j-th query with
message msgj as input (if at this point Otag has been received i < j requests, Otag

is invoked to generate tagj), Osig performs σj ← TOS.Sign(sk ,msgj , tagj), appends
(tagj ,msgj , σj) to Qm, and returns σj (and tagj if generated) to A.

A tagged one-time signature scheme is unforgeable against one-time tag adaptive
chosen message attacks (OT-CMA) if for all polynomial-time oracle algorithms A the
advantage function Advot-cma

TOS,A := Pr[Exprot-cma
TOS,A(1

λ) = 1] is negligible in λ.

Strong unforgeability is a variation on this definition obtained by replacing the condi-
tion msg† �= msg in the experiment with (msg†, σ†) �= (msg , σ). Another variation is
non-adaptive attack unforgeability (OT-NACMA) defined by integratingOtag intoOsig

so that tagj and σj are returned to A at the same time. Namely, A must submit msgj
before seeing tagj . It is obvious that if a scheme is secure in the sense of OT-CMA,
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the scheme is also secure in the sense of OT-NACMA. By Advot-nacma
TOS,A (λ) we denote

the advantage ofA in this non-adaptive case. We use labels sot-cma and sot-nacma for
adaptive and non-adaptive strong unforgeability respectively.

For signatures we follow the standard syntax of digital signatures with common
setup. Namely, a signature scheme consists of three algorithms SIG.{Key, Sign,Vrf}
that take gk generated by Setup as additional input. SIG.Key is a key generation algo-
rithm, SIG.Sign is a signing algorithm and SIG.Vrf is a verification algorithm. We also
follow the standard security notion of existential unforgeability against adaptive chosen
message attacks.

2.3 A Framework of TOS + RMA-SIG

We review the framework of combining TOS and RMA signatures in [1] to obtain a
CMA-secure signature scheme. Let rSIG be a signature scheme with message spaceMr,
and TOS be a tagged one-time signature scheme with tag space T such that Mr = T .
We construct a signature scheme SIG from rSIG and TOS. Let gk be a global parameter
generated by Setup(1λ).

[Generic Construction: SIG]

SIG.Key(gk): Run (pk t, sk t) ← TOS.Key(gk), (vkr, skr) ← rSIG.Key(gk). Output
vk := (pk t, vkr) and sk := (sk t, skr).

SIG.Sign(sk,msg): Parse sk into (sk t, skr). Output σ := (tag , σt, σr) where tag ←
TOS.Tag(gk), σt ← TOS.Sign(sk t,msg, tag), and σr ← rSIG.Sign(skr, tag).

SIG.Vrf(vk, σ,msg): Parse vk and σ accordingly. Output 1, if 1 = TOS.Vrf(pk t, tag ,
σt,msg) and 1 = rSIG.Vrf(vkr , σr, tag). Output 0, otherwise.

The following theorems are due to [1].

Theorem 1. SIG is unforgeable against adaptive chosen message attacks (UF-CMA)
if TOS is uniform-tag and unforgeable against one-time non-adaptive chosen message
attacks (OT-NACMA), and rSIG is unforgeable against random message attacks (UF-
RMA). In particular, Advuf-cma

SIG,A (λ) ≤ Advot-nacma
TOS,B (λ) + Advuf-rma

rSIG,C(λ). The overhead of
adversary B against rSIG and C against TOS is proportional to the running time of the
key generation and signing operations of rSIG and TOS respectively.

Theorem 2. If TOS.Tag produces constant-size tags and signatures in the size of input
messages, the resulting SIG produces constant-size signatures as well. Furthermore, if
TOS and rSIG are structure-preserving, so is SIG.

3 Tightly-Secure TOS Based on DLIN

Let gk be a global parameter that specifiesΛ= (p,G,GT , e) generated by group genera-
torG(1λ). It also includes a generatorG ∈ G∗. We constructTOS.{Key,Tag, Sign,Vrf}
as shown in Fig. 1.
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[Scheme TOS]

TOS.Key(gk): Parse gk = (Λ,G). Choose wz, wr, μz, μs, τ randomly from Z∗
p and

compute Gz := Gwz , Gr := Gwr , Hz := Gμz , Hs := Gμs , Gt := Gτ and For
i = 1, . . . , k, uniformly choose χi, γi, δi from Zp and compute

Gi := Gχi
z Gγi

r , and Hi := Hχi
z Hδi

s . (1)

Output pk := (Gz, Gr,Hz, Hs, Gt, G1, . . . , Gk,H1, . . . ,Hk) ∈ G2k+5 and
sk := (χ1, γ1, δ1, . . . , χk, γk, δk, wz, wr, μz, μs, τ ) ∈ Z3k+5

p .

TOS.Tag(gk): Choose t ← Z∗
p and output tag := T = Gt ∈ G.

TOS.Sign(sk ,msg , tag): Parse msg into (M1, . . . ,Mk) ∈ Gk. Take T1 from tag . Parse
sk accordingly. Output σ := (Z,R,S) ∈ G3 that, for ζ ← Zp,

Z := Gζ ∏k
i=1 M

−χi
i , R := (T τG−ζ

z )
1

wr
∏k

i=1 M
−γi
i , and

S := (H−ζ
z )

1
μs

∏k
i=1 M

−δi
i .

TOS.Vrf(pk , tag ,msg , σ): Parse σ as (Z,R, S) ∈ G3, msg as (M1, . . . ,Mk) ∈ Gk , and
take T from tag . Return 1 if the following equations hold. Return 0, otherwise.

e(T,Gt) = e(Gz, Z) e(Gr, R)

k∏
i=1

e(Gi,Mi) (2)

1 = e(Hz, Z) e(Hs, S)

k∏
i=1

e(Hi,Mi) (3)

Fig. 1. Tagged One-Time Signature Scheme

Correctness is verified by inspecting the following relations.

For (2): e(Gz, Gζ
k∏
i=1

M−χi

i ) e(Gr, (T
τG−ζ

z )
1

wr

k∏
i=1

M−γi
i )

k∏
i=1

e(Gχi
z G

γi
r ,Mi)

= e(Gz , G
ζ) e(G, T τ )e(G,G−ζ

z ) = e(G, T τ) = e(T,Gt)

For (3): e(Hz, G
ζ
k∏
i=1

M−χi

i ) e(Hs, (H
−ζ
z )

1
μs

k∏
i=1

M−δi
i )

k∏
i=1

e(Hχi
z Hδi

s ,Mi)

= e(Hz , G
ζ) e(G,H−ζ

z ) = 1

We state the following theorems, of which the first one is immediate from the
construction.

Theorem 3. Above TOS is structure-preserving, and yields uniform tags and constant-
size signatures.
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Theorem 4. Above TOS is strongly unforgeable against one-time tag adaptive chosen
message attacks (SOT-CMA) if the SDP assumption holds. In particular, Advsot-cma

TOS,A ≤
AdvsdpG,B + 1/p and the runtime overhead of the reduction B is a small number of multi-
exponentiations per signing query.

Proof. Given successful forger A against TOS as a black-box, we construct B that
breaks SDP as follows. Let Isdp = (Λ,Gz , Gr, Hz, Hs) be an instance of SDP. Algo-
rithm B simulates the attack game againstTOS as follows. It first build gk := (Λ,G,G)
by choosingG randomly from G∗. This yields a gk in the same distribution as produced
by Setup. Next B simulates TOS.Key by taking (Gz , Gr, Hz, Hs) from Isdp and com-
puting Gt := Hτ

s for random τ in Z∗
p. It then generates Gi and Hi according to (1).

This perfectly simulates TOS.Key.
On receiving the j-th query to Otag, algorithm B computes

T := (GζzG
ρ
r)

1
τ (4)

for ζ, ρ ← Z∗
p. If T = 1, B sets Z� := Hs, S� := H−1

z , and R� := (Z�)ρ/ζ , outputs
(Z�, R�, S�) and stop. Otherwise, B stores (ζ, ρ) and returns tagj := T to A.

On receiving signing query msgj = (M1, . . . ,Mk), algorithm B takes ζ and ρ used
for computing tagj (if they are not yet defined, invoke the procedure for Otag) and
computes

Z := Hζ
s

k∏
i=1

M−χi

i , R := Hρ
s

k∏
i=1

M−γi
i , and S := H−ζ

z

k∏
i=1

M−δi
i . (5)

Then B returns σj := (Z,R, S) to A and record (tagj , σj ,msgj).
When A outputs a forgery (tag†, σ†,msg†), algorithm B searches the records for

(tag , σ,msg) such that tag† = tag and (msg†, σ†) �= (msg, σ). If no such entry exists,
B aborts. Otherwise, B computes

Z� :=
Z†

Z

k∏
i=1

(
M †
i

Mi

)χi

, R� :=
R†

R

k∏
i=1

(
M †
i

Mi

)γi
, and S� :=

S†

S

k∏
i=1

(
M †
i

Mi

)δi

where (Z,R, S), (M1, . . . ,Mk) and their dagger counterparts are taken from (σ,msg)
and (σ†,msg†), respectively. B finally outputs (Z�, R�, S�) and stops. This completes
the description of B.

We claim that B solves the problem by itself or the view ofA is perfectly simulated.
The correctness of key generation has been already inspected. In the simulation ofOtag,
there is a case of T = 1 that happens with probability 1/q. If it happens, B outputs a
correct answer to Isdp, which is inspected by observing Gz = G

−ρ/ζ
r , Z� = Hs �= 1,

e(Gz, Z
�)e(Gr, R

�) = e(G
−ρ/ζ
r , Z�)e(Gr, (Z

�)ρ/ζ) = 1 and e(Hz, Z
�)e(Hs, S

�) =
e(Hz, Hs)e(Hs, H

−1
z ) = 1. Otherwise, tag T uniformly distributes over G∗ and the

simulation is perfect.
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Oracle Osig is simulated perfectly as well. Correctness of simulated σj = (Z, R, S)
can be verified by inspecting the following relations.

(Right-hand of (2)) = e(Gz,H
ζ
s

k∏
i=1

M−χi
i ) e(Gr,H

ρ
s

k∏
i=1

M−γi
i )

k∏
i=1

e(Gχi
z Gγi

r ,Mi)

= e(Gζ
zG

ρ
r ,Hs) = e((Gζ

zG
ρ
r)

1
τ , Hτ

s ) = e(T1, Gt)

(Right-hand of (3)) = e(Hz,H
ζ
s

k∏
i=1

M−χi
i ) e(Hs, H

−ζ
z

k∏
i=1

M−δi
i )

k∏
i=1

e(Hχi
z Hδi

s ,Mi)

= e(Hz,H
ζ
s ) e(Hs,H

−ζ
z ) = 1

Every Z distributes uniformly over G due to the uniform choice of ζ. ThenR and S are
uniquely determined by following the distribution of Z .

Accordingly, A outputs successful forgery with noticeable probability and B finds
a corresponding record (tag , σ,msg). We show that output (Z�, R�, S�) from B is a
valid solution to Isdp. First, equation (2) is satisfied because

1 = e

(
Gz ,

Z†

Z

)
e

(
Gr,

R†

R

) k∏
i=1

e

(
Gχi
z G

γi
r ,

M †
i

Mi

)

= e

(
Gz ,

Z†

Z

k∏
i=1

(
M †
i

Mi

)χi
)
e

(
Gr,

R†

R

k∏
i=1

(
M †
i

Mi

)γi)
= e (Gz, Z

�) e (Gr, R
�) ,

holds. Equation (3) is verified similarly.
It remains to prove thatZ� �= 1. Since msg† �= msg , there exists � ∈ {1, . . . , k} such

thatM †
� /M� �= 1. We claim that, parameterχ1, . . . , χk are independent of the view ofA.

We prove it by showing that, for every possible assignment to χ1, . . . , χk, there exists an
assignment to other coins, i.e., (γ1, . . . , γk, δ1, . . . , δk) and (ζ(1), ρ(1), . . . , ζ(qs), ρ(qs))
for qs queries, that is consistent to the view of A. (By ζ(j), we denote ζ with respect to
the j-th query. We follow this convention hereafter. Without loss of generality, we as-
sume that A makes qs tag queries and the same number of signing queries.) Observe
that the view of A consists of independent group elements (G,Gz , Gr, Hz, Hs, Gt,

G1, H1, . . . , Gk, Hk) and (T (j), Z(j),M
(j)
1 , . . . ,M

(j)
k ) for j = 1, . . . , qs. (Note that

R(j) and S(j) are not in the view since they are uniquely determined from other compo-
nents.) We represent the view by the discrete-logarithms of these group elements with
respect to base G. Namely, the view is (1, wz, wr, μz, μs, τ, w1, μ1, . . . , wk, μk) and

(t(j), z(j),m
(j)
1 , . . . ,m

(j)
k ) for j = 1, . . . , qs. The view and the random coins follow

relations from (1), (4), and (5) translated to

wi = wzχi + wrγi, μi = μzχi + μsδi for i = 1, . . . , k, (6)
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τt(j) = wzζ
(j) + wrρ

(j), and (7)

z(j) = μs ζ
(j) −

k∑
i=1

m
(j)
i χi for j = 1, . . . , qs. (8)

Consider χ� for some � ∈ {1, . . . , k}. For every value of χ� in Zp, the linear equations

in (6) determine γ� and δ�. Then, if m(j)
� �= 0, equations in (8) determine ζ(j), ρ(j).

If m(j)
� = 0, then ζ(j), ρ(j) can be assigned independently from χ�. The above holds

for every � in {1, . . . , k}. Thus, if χ1, . . . , χk distributes uniformly over Zkp , then other
coins distribute uniformly as well retaining the consistency with the view of A.

Now we see that
(
M †
� /M�

)χ�

distributes uniformly over G. Therefore Z� = 1

happens only with probability 1/p. Thus, B outputs correct answer with probability
AdvsdpG,B = 1/p+(1−1/p)(1−1/p)Advsot-cma

TOS,A , which leads to Advsot-cma
TOS,A ≤ AdvsdpG,B+

1/p as claimed. �
Remark 1. On tag extension. The tag can be easily extended to the form (Gt, Gt1, G

t
2, ...)

for extra bases G1, G2, ... provided as a part of gk. (In the security proof, the extended
part is computed from the first element by using logGGi. This is possible since the extra
generators in gk are chosen by the reduction algorithm.) Such an extension is in par-
ticular needed when the TOS is coupled with other signature schemes whose message
space is structured as above. Indeed, it is the case for an application in Section 4.

Remark 2. Signing lengthy messages. The TOS can be used to sign messages of un-
bound length by chaining the signatures. Every message block except for the last one
is followed by a tag used to sign the next block. The signature consists of all internal
signatures and tags. The initial tag is considered as the tag. For a message consisting of
m group elements, it repeats τ := 1+max(0, �m−k

k−1 �) times. The signature consists of
4τ − 2 elements.

4 Efficient SPS Based on DLIN

As the first application of our TOS, we present an efficiet structure-preserving signature
scheme. The construction follows the framework suggested in Theorem 1. We begin
with introducing an RMA-secure SPS as a building block. The scheme in Fig. 2 is an
RMA-secure SPS for messages in the form (Cm, Fm, Um) ∈ G3 defined by generators
(C,F, U) provided in gk. The scheme is a modification of the one in Sec.5.3 of [1] that
signs longer message of the form {(Cm1 , Cm2 , Fm1 , Fm2 , Um1 , Um2)}. Our scheme
is obtained by restricting m2 = 0 and removing useless operations relevant to m2. The
security is stated in Theorem 5 below, whose proof is obtained as a trivial modification
of the proof of Theorem 24 in [1].

Theorem 5. The above rSIG scheme is secure against random message attacks under
the DLIN assumption. In particular, for any polynomial-time adversaryA against rSIG
that makes at most qs signing queries, there exists polynomial-time algorithm B for
DLIN such that Advuf-rma

rSIG,A(λ) ≤ (qs + 2) · AdvdlinG,B(λ).



Tagged One-Time Signatures: Tight Security and Optimal Tag Size 321

[Scheme rSIG]

Let gk be a common parameter that consists of group description Λ = (p,G,GT , e) and
default generator G. It also includes randomly chosen generators C,F , and U .

rSIG.Key(gk): Given gk := (Λ,G, C, F, U) as input, uniformly select V, V1, V2,H
from G∗ and a1, a2, b, α, and ρ from Z∗

p. Then compute and output vk :=
(B,A1, A2, B1, B2, R1, R2,W1,W2, V, V1, V2,H,X1, X2) and sk := (vk,K1,K2)
where

B := Gb, A1 := Ga1 , A2 := Ga2 , B1 := Gb·a1 , B2 := Gb·a2

R1 := V V a1
1 , R2 := V V a2

2 , W1 := Rb
1, W2 := Rb

2,

X1 := Gρ, X2 := Gα·a1·b/ρ, K1 := Gα, K2 := Gα·a1 .

rSIG.Sign(sk,msg): Parse msg into (M1,M2,M3). Pick random r1, r2, z1, z2 ∈ Zp. Let
r = r1 + r2. Compute and output signature σ := (S0, S1, . . . S7) where

S0 := (M3H)r1 , S1 := K2V
r, S2 := K−1

1 V r
1 G

z1 , S3 := B−z1 ,

S4 := V r
2 G

z2 , S5 := B−z2 , S6 := Br2 , S7 := Gr1 .

rSIG.Vrf(vk, σ,msg): Parse msg into (M1,M2,M3) and σ into (S0, S1, . . . , S7). Also
parse vk accordingly. Verify the following pairing product equations:

e(S7,M3H) = e(G,S0),

e(S1, B) e(S2, B1) e(S3, A1) = e(S6, R1) e(S7,W1),

e(S1, B) e(S4, B2) e(S5, A2) = e(S6, R2) e(S7,W2) e(X1, X2),

e(F,M1) = e(C,M2), e(U,M1) = e(C,M3)

Fig. 2. RMA-secure SPS for 1 message block based on DLIN

According to Theorem 1, combining TOS in Section 3 and rSIG in Fig. 2 results in
a chosen-message-secure SPS. (Note that tags of TOS are extended as explained in the
remark in the end of Section 3 so that they fit to the message space of rSIG. Concretely,
by using generator C from rSIG as G in the description of TOS, and also using extra
generators F and U , a tag is defined as (T1, T2, T3) := (Ct, F t, U t).) The resulting
SPS yields signatures consisting of 14 group elements (T1, T2, T3, Z,R, S, S0, . . . , S7)
and evaluates 7 pairing product equations in the verification. Since both TOS and rSIG
are based on DLIN, the resulting SPS is secure under DLIN as well. (They are actually
based on SDP that is a seemingly weaker computational assumption.)

The efficiency is summarised in Table 1. It is compared to existing efficient structure-
preserving schemes over symmetric bilinear groups. We measure efficiency by counting
the number of group elements and the number of pairing product equations for verifying
a signature. The figures do not count default generator G in gk.
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To see how a small difference in the size of signatures and the number of PPEs
impacts the efficiency in applications, we assess the cost of proving possession of valid
signatures and messages by using Groth-Sahai NIWI proof system. Column ”Proof Cost
σ” shows the number of group elements in the commitment of a signature and the proof.
If there are randomizable parts in a signature, they are put in the clear. It is the case for
the scheme in [2]. Similarly, column ”Proof Cost (σ,msg)” shows the size when both
messages and signatures are committed as witnesses.

Table 1. Comparison of constant-size SPS over symmetric bilinear groups. ”Reduction Cost”
shows the loss factor to the underlying assumptions. ”Proof Cost” is the number of group elements
in the Groth-Sahai NIWI proof of knowledge about a valid signature.

Reduction Proof Cost
Scheme |msg | |gk|+ |vk| |σ| #(PPE) Assumption Cost σ (msg, σ)

[2] k 2k + 12 7 2 q-SFP 1 19 3k+19
[1] k 2k + 25 17 9 DLIN (2q)−1 84 3k+84

this paper k 2k + 20 14 7 DLIN (q + 1)−1 69 3k+69

5 Chosen-Ciphertext Secure Public-Key Encryption

5.1 Simulation Extractable NIZK

A non-interactive zero-knowledge argument system NIZK = NIZK.{Crs,Prv,Vrf} for
a relation R consists of three algorithms: NIZK.Crs that takes a common setup parame-
ter and generates a common reference string crs , the proof algorithm NIZK.Prv which
on input crs , an instance x and a witness w for the truth of the statement R, outputs a
proof π, and the verification algorithm NIZK.Vrf that on input crs, an instance x, and
a proof π either accepts or rejects the proof. It is equipped with a pair of algorithms,
NIZK.CrsSim and NIZK.PrvSim, that simulates NIZK.Crs and NIZK.Prv, respectively.
NIZK.CrsSim outputs crs and a simulation-trapdoor, τzk, and NIZK.PrvSim produces
proofs by using the trapdoor. NIZK is (unbounded multi-theorem) zero-knowledge,
if given oracle access to either NIZK.PrvSim(τzk, ·) or NIZK.Prv(crs , ·, ·), with true
statements as inputs, any polynomial-time adversary trying to distinguish the oracles
has advantage upper bounded by a negligible function, εzk, in the security parame-
ter. A NIZK is strongly simulation-sound if adversary A is given oracle access to
NIZK.PrvSim(τzk, ·) and outputs valid (x, π) only with negligible probability. It can
be relaxed to standard simulation soundness by requiring that only x is not reused.

A NIZK is a non-interactive proof of knowledge [28] if NIZK.Crs additionally out-
puts an extraction trapdoor, τex, and there exists an efficient algorithm, NIZK.Ext, that
extracts a correct witness w from any (x, π) that 1 = NIZK.Vrf(crs , x, π) with prob-
ability 1 − εks for some negligible function εks. This property is called knowledge
soundness. A simulation-extractable NIZK extends a NIZK proof of knowledge so that
NIZK.Crs outputs extraction trapdoor τex and simulation trapdoor τzk at the same time.
Then it is simulation-extractable if NIZK.Ext works even if an adversary is given oracle
access to NIZK.PrvSim(τzk, ·). More precisely,
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Pr

⎡⎣ (crs , τex, τzk)← NIZK.Crs
(x, π)← ANIZK.PrvSim(τzk,·)(crs)
w ← NIZK.Ext(crs , x, π, τex)

∣∣∣∣∣∣ NIZK.Vrf(crs , x, π) = 1∧
R(x,w) �= 1

⎤⎦ < εse (9)

holds for a negligible function εse.
Recall that simulation soundness only guarantees that x is a true statement

whereas simulation extractability additionally guarantees that the witness be efficiently
extractable. When the number of oracle access is unlimited (limited to only once, resp.),
it is called unbounded (one-time, resp.) simulation extractability.

We show that the simulation-sound NIZK of [26] is simulation extractable if the un-
derlying NIZK is a proof of knowledge system. Let POK = POK.{Crs,Prv,Vrf,Ext}
be a NIZK proof of knowledge system, SIG = SIG.{Key, Sign,Vrf} be a signature
scheme, and OTS = OTS.{Key, Sign,Vrf} be a one-time signature scheme. Their
construction of SE-NIZK = SE-NIZK.{Crs,Prv,Vrf,PrvSim,Ext} is shown in Fig. 3

[Scheme SE-NIZK]

SE-NIZK.Crs(gk): It takes gk and runs (crspok, τex) ← POK.Crs(gk),
(vk, sk) ← SIG.Key(gk). It then outputs crs := (gk, crspok, vk), τex := τex,
and τzk := sk.

SE-NIZK.Prv(crs , x, w): Run opk ← OTS.Key(gk). Set σ = ⊥. Let xse := (x,opk)
and wse := (w, σ). Set relation Rse be

Rse(xse, wse) := (R(x,w) = 1) ∨ (SIG.Vrf(vk, σ, opk) = 1) .

Run π ← POK.Prv(crspok, xse, wse), and σo ← OTS.Sign(osk , π). Output
πse := (π,opk , σo).

SE-NIZK.Vrf(crs , x, πse): Parse (π, opk , σo) ← πse. Verify both σo and π.

SE-NIZK.PrvSim(crs , τzk, x): Parse (gk, crspok, vk) ← crs and sk ← τzk. Run
opk ← OTS.Key(gk) and σ ← SIG.Sign(sk, opk). Set wse := (⊥, σ).
Run π ← POK.Prv(crspok, xse, wse) and σo ← OTS.Sign(osk , π). Output
πse := (π,opk , σo).

SE-NIZK.Ext(crs , τex, x, πse): Parse (gk, crspok, vk) ← crs and (π, opk , σo) ← πse.
Run wse ← POK.Ext(crspok, τex, π, (x,opk)) and return w in wse = (w, σ).

Fig. 3. Simulation-Extractable Non-Interactive Zero-Knowledge Proof System

Theorem 6. If POK is a witness indistinguishable proof of knowledge system with
knowledge-soundness error εks, SIG is unforgeable against non-adaptive chosen mes-
sage attacks with advantage εsig, and OTS is strongly one-time unforgeable against
chosen message attacks with advantage εots, then SE-NIZK is strongly simulation-
extractable NIZK with simulation-extraction error εse ≤ εots + εks + εsig.
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Proof. Correctness of the scheme and zero-knowledge property is verified by inspecting
the construction. Computational zero-knowledge is not hard to verify due to the witness
indistinguishability of POK and the construction of SE-NIZK.PrvSim.

We focus on showing simulation extractability. Suppose that adversary A accesses
SE-NIZK.PrvSim(crs , τzk, ·) as an oracle and eventually outputs x� and π�=(π�, opk�,
σ�) that passes SE-NIZK.Vrf . ForA to be successful, it must be the case that (x�, π�) /∈
{xi, πi} and (x�, π�) /∈ R. Recall that π�se = (π�, opk�, σ�). We distinguish two cases:

Case 1: opk� = opk i happens for opk i returned from the oracle. In this case,
(x�, π�, σ�) �= (xi, πi, σi) and we have a valid forgery for OTS. This happens with
probability at most εots due to the strong one-time unforgeability of OTS.

Case 2: opk� �= opk i for all opk i. By executing SE-NIZK.Ext(crs , τex, x�, π�), we
have wse = (w, σ) that either R(x�, w) = 1 or SIG.Vrf(vk, σ, opk �) = 1 for vk in-
cluded in crs . The extraction is successful with probability 1−εks due to the knowledge-
soundness of NIZK. Then, if the former happens, we have extracted correct witness for
x� and A is unsuccessful. Otherwise, we have a valid forgery for SIG since its mes-
sage opk� is fresh. This happens with probability at most εsig due to the unforgeability
against non-adaptive chosen-message attacks for SIG. (The non-adaptiveness is due to
the fact that all opk i can be generated in advance.)

In total, the extraction is successful with probability (1− εse) = (1− εots)(1− εks)(1−
εsig) which leads to εse ≤ εots + εks + εsig as stated. �

Instantiating SE-NIZK. We instantiate the above generic SE-NIZK in several ways.
The result is several SE-NIZKs that have different sets of properties as summarised in
Table 2.

SE-NIZK0: The original instantiation in [26]. SIG is a tree-based signature scheme
with their original one-time signature scheme, and OTS is instantiated with the
Pedersen commitment as a one-time signature that is not structure-preserving. The
result is a unbounded SE-NIZK.

SE-NIZK1: SIG remains a tree-based scheme but we replace the internal one-time sig-
natures with our TOS in plug-in manner. The result is a more efficient unbounded
SE-NIZK. This shows how plug-in replacement of low-level building block impacts
to the efficiency.

SE-NIZK2: The same as SE-NIZK1 but we instantiate OTS with our TOS as well.
Since that OTS is the only non-structure-preserving component in SE-NIZK1, the
result is structure-preserving unbounded SE-NIZK. A problem is that theTOS must
be able to sign the entire proof that linearly grows in the size of the public-key
of the TOS itself. We therefore use the technique of chaining the signatures as
mentioned in Remark 2 in Section 3. The same technique is used when the one-
time key is signed at the bottom of the tree-based signing. The resulting SE-NIZK
is used in constructing structure-preserving publicly verifiable CCA-secure PKE
tightly-secure with multiple challenges.

SE-NIZK3: We use TOS for SIG. No tree-based construction here. This means the
signature can be generated only once for simulation and the result is structure-
preserving one-time SE-NIZK. As well as SE-NIZK2, we use the signatrue
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chaining. The resulting scheme can be used in constructing efficient structure-
preserving publicly verifiable CCA-secure PKE. We can add leakage resilience
(LR) if desired.

SE-NIZK4: As well as SE-NIZK3 we instantiate SIG with our TOS but leave OTS
with the one based on the Pedersen commitment for the sake of efficiency. In ex-
change of losing structure-preservation, it results in a very efficient one-time SE-
NIZK. It will be used for publicly verifiable CCA-secure PKE (with LR if desired).

Table 2. Properties of the instantiations of SE-NIZK. Efficiency is presented in subjective term.
Objective evaluation of efficiency is in Table 3.

scheme efficiency simulatability structure-preservance
SE-NIZK0 less efficient unbounded no
SE-NIZK1 moderate unbounded no
SE-NIZK2 less efficient unbounded yes
SE-NIZK3 efficient one-time yes
SE-NIZK4 very efficient one-time no

We give a general formula that evaluate the cost of the generic construction. The generic
SE-NIZK uses theS0-or-S1 structure so that real proof is done for statement S0 whereas
simulation is done with a witness for statement S1. It is however believed that the OR
structure with Groth-Sahai proof system is as costly as doubling the number of elements
in a proof. It is true for general statements. But for the specific construction of SE-NIZK,
it can be done much less costly. taking the advantage of the fact that there is no common
witnesses shared by statements S0 and S1.

Regarding the proof of disjunction, we sketch the construction of [10] and refer to
[10] for details. The prover commits to 1G or G with X , and show its correctness by
proving a single non-linear relation e(X,X) = e(X,G). We call X a switcher as it
switches the statement that is really proven. Let X0 = X and X1 = G ·X−1. Then for
every pairing product equation in Sb, if pairing e(A,B) with some constants A and B
is involved, one of them say A is transformed to variable Y and prove its correctness
by showing e(Y,G) = e(A,Xb) holds. (Observe that if Xb = G, it guarantees that
Y = A. Otherwise, if Xb = 1, it holds for Y = 1.) After that, every pairing in every
relation in Sb includes at least one variable. Now, if Xb = G, one can still satisfy the
relations with the legitimate witnesses. Otherwise, if Xb = 1G, they can be satisfied by
setting 1G to all variables, which allows zero-knowledge simulation.

Now the number of group elements in a proof of SE-NIZK is counted as follows. Let
S0 : (R(x,w) = 1) and S1 : (SIG.Vrf(vk, σ, opk ) = 1) be the statements represented
by pairing product equations. The proof size of SE-NIZK is as follows:

(cost for S0) + (cost for switcher) + (cost for S1) + (cost for OTS)

= (cost for S0) (10)

+ (|com| × 1 + |πNL| × 1) (11)

+ (|com| × (|σsig|+ S1(C)) + |πL| × (S1(L) + S1(C)) + |πNL| × S1(NL) (12)

+ (|opk o|+ |σo|) (13)
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Here, parameters |πL/NL|, |opko|, |σo|, |σsig|, |com| are the size of a proof for a
linear/non-linear relation, a one-time public-key of OTS, a signature of OTS, a signa-
ture of SIG, and commitment per variable, respectively. Also, S1(L/NL) and S1(C),
denote the number of linear/non-linear relations and constant pairings, respectively, in
SIG.Vrf where signatures are considered as variables. By ”overhead”, we mean the size
of (11)+(12)+ (13) since it is the cost for achieving simulation extractability on top of
simply proving the original statement S0.

With the Groth-Sahai proof over the DLIN setting, we have (|com|, |πL|, |πNL|) =
(3, 3, 9). Other parameters (|σsig|, S1(C), S1(L), S1(NL), |opko|, |σo|) differ in every
instantiation and summarised as in Table 3. For SE-NIZK2,3 that uses the signature
chaining, let k1 and k2 be block size of a message for SIG and OTS, respectively. Also
let τ1 and τ2 be the length of the chains determined by τ2 := 1 + max(0, �m2−k2

k2−1 �)
and τ1 := 1 + max(0, �m1−k1

k1−1 �) where m2 := |opko| and m1 := (cost for S0) +
(cost for switcher)+(cost for S0). Then the overhead in a proof is ψ2 := 21d+18τ2+
4τ1 + 14k1 + 45 for SE-NIZK2 and ψ3 := 18τ2 + 4τ1 + 14k1 + 45 for SE-NIZK3.
When those schemes are used, parameters k1 and k2 should be chosen to minimize
the overhead. Unfortunately, the general assessment in Table 3 is not intuitive enough
to see the difference of efficiency due to the several parameters involved. One can see
their difference in more concrete manner in the next section.

Table 3. Parameterized costs for simulation extractable NIZKs. See the main text for the meaning
of parameters.

scheme |σsig| S1(C) S1(L) S1(NL) |opko| |σo| overhead
SE-NIZK0 10d + 2 5 3 3d 2 2 57d + 61
SE-NIZK1 5d + 1 3 2(d+ 1) 0 2 2 21d + 43
SE-NIZK2 5d+ 4τ2 − 2 2k1 + 6 2(d+ τ2) 0 2k1 + 5 4τ1 − 2 ψ2

SE-NIZK3 4τ2 − 2 2k1 + 6 2τ2 0 2k1 + 5 4τ1 − 2 ψ3

SE-NIZK4 3 2 3 0 2 2 46

We note that the instantiations follow the generic construction rigorously. Some
hand-crafted optimization is possible in reality by carefully choosing variables and con-
stants in GS-proofs. In particular, it is not necessary to commit the entire signature when
we compute π. The tag and Z in every signature can be sent in the clear. Such optimiza-
tion saves considerable number of group elements. The impact of optimization will be
discussed in the next section with concrete numbers.

5.2 Tight/Structure-Preserving CCA-Secure Encryption from SE-NIZK

In [26], the SS-NIZK is used to construct a chosen-ciphertext-secure (CCA) PKE that
is secure against multiple challenges retaining the tightness property. It follows the
Naor-Yung paradigm that combines two chosen-plaintext-secure public-key encryption
schemes (CPA-secure PKE) with an SS-NIZK. As we now know that their instantia-
tion of SS-NIZK actually gives SE-NIZK, we rather follow more efficient generic con-
struction by Dodis, et. al.,[17] that combines one CPA-secure PKE with SE-NIZK. This
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results in more efficient CCA PKE. Since slightly different components is used in [17]
for their purpose of adding leakage resilience and no quantified evaluation was pre-
sented, we restate their theorem in a simplified form with a proof in the following.

Let CPA be a CPA-secure encryption scheme and SE-NIZK be simulation extractable
NIZK. We construct CCA-secure encryption scheme PKE := PKE.{Key,Enc,Dec} by
combining CPA and SE-NIZK as shown in Fig. 4. Let gk be a common parameter gen-
erated by Setup(1λ). Underlying encryption scheme CPA must satisfy the following
property. There exists efficiently computable functionW and efficiently verifiable rela-
tion R such that

(R((ek cpa, ccpa), (msg ,W (r)) = 1) ⇐⇒ (ccpa = CPA.Enc(ek cpa,msg; r)). (14)

FunctionW is understood as a converter that transforms random coin r into a form that
is easily handled in verifying relation R. In our instantiation with Groth-Sahai proof
system, W transforms r ∈ Zp to a vector of group elements.

[Scheme PKE]

PKE.Key(gk): Run (crsnizk, τzk, τex) ← SE-NIZK.Crs(gk), (ek cpa, dk cpa) ←
CPA.Key(gk). Set ek := (crsnizk, ek cpa) and dk := dk cpa.

PKE.Enc(ek ,msg): Run ccpa ← CPA.Enc(ek cpa,msg ; r) and π ←
SE-NIZK.Prv(crsnizk, ccpa, (msg , r)). The proof is for relation 1 =
R((ek cpa, ccpa), (msg , r)). Output ciphertext c := (ccpa, π).

PKE.Dec(dk , c): Parse c into (ccpa, π). If 0 ← SE-NIZK.Vrf(crsnizk, ccpa, π), return ⊥.
Otherwise, output msg := CPA.Dec(dk cpa, ccpa).

Fig. 4. CCA-secure PKE from SE-NIZK

In addition to the use of only one CPA-secure encryption, the construction in Fig. 4
is different from [26] in the following sense. In [26], crsnizk is included in gk and com-
mon for all users. Hence the security of resulting CCA PKE fully relies on the secrecy
of the trapdoors behind crsnizk. In our case, fresh crsnizk is selected for every public-key.
If gk includes no trapdoors (as is usually the case in the certified group model where
only the group description Λ is included in gk), the security of the resulting CCA PKE
is reduced to complexity assumptions defined over gk. In fact, when gk does not in-
clude trapdoors, and the underlying complexity assumption is random self reducible,
it is rather trivial to preserve tightness when extending the security reduction from the
single-user to the multi-user setting because no secret information is shared between
users. On the contrary, it is not trivial to preserve tightness in the multi-challenge set-
ting since every challenge is related to the same public-key which involves a trapdoor.
We therefore focus on security in the multi-challenge and single-user setting in the fol-
lowing argument.
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Theorem 7. If CPA is left-or-right CPA secure encryption scheme with advantage εcpa
and SE-NIZK be unbounded (or one-time, resp.) simulation-extractable NIZK with zero-
knowledge error εzk and simulation-extraction error εse, thenPKE is multi-challenge (or
standard single-challenge, resp.) CCA-secure with advantage εcca ≤ 2·(εzk+εse)+εcpa.

Proof. The proof structure follows [17]. Games are numbered by the combination of
an idealization step counter and a bit indicating whether to encrypt the left or the right
side to visualize its inherent symmetry.

Game 0.0. This is the IND-CCA security experiment from [26], executed with b = 0.
The challenger always returns encryptions of msg0.

Game 1.0. This game is identical to Game 0.0, except that we use the zero-knowledge
simulator of SE-NIZK to generate proofs in the challenge ciphertexts. (If SE-NIZK
is one-time simulation extractable, this is limited to a single challenge.) We have
[Pr[Win1.0]− Pr[Win0.0] ≤ εzk.

Game 2.0 This game is identical to Game 1.0, except that decryption queries c =
(ccpa, π) are answered by running SE-NIZK.Ext on π to extract msg . (This mod-
ification accommodates with the previous one since SE-NIZK.Crs outputs trap-
doors for simulation and extraction at the same time.) We have Pr[Win2.0] −
Pr[Win1.0] ≤ εse.

Game 2.1 This game is identical to Game 2.0, except that the challenger always returns
encryptions of msg1. As we do not use dk cpa anywhere we can do a reduction to
IND-CPA security and have Pr[Win2.1]− Pr[Win2.0] ≤ εcpa.

Game 1.1. This game is identical to Game 2.1, except that decryption queries c =
(ccpa, π) are no longer answered by running the extractor but by decrypting ccpa to
obtain msg . We have Pr[Win1.1]− Pr[Win2.1] ≤ εse.

Game 0.1. This game is identical to Game 1.1, except that we no longer use the zero-
knowledge simulator of SE-NIZK to generate all proofs but generate them honestly.
We have Pr[Win0.1] − Pr[Win1.1] ≤ εzk. This is the IND-CCA security experi-
ment executed with b = 1.

By accumulating the differences, we have εcca ≤ 2 · (εzk + εse) + εcpa as stated. �

We instantiate CPA with the linear encryption scheme [27,29] shown in Fig. 5. It is
IND-CPA secure and tightly reducible to DLIN in the multi-challenge and multi-user
setting as formally proven in [26]. Well formness of a ciphertext can be proven by
providing a GS proof for relations

e(C1, G) = e(G1,W1), e(C2, G) = e(G2,W2),

e(W1W2, G) = e(C3/M,G), e(G,G) = e(G,X0).

The underlined variables G,W1 := Gr1 ,W2 := Gr2 ,M are witneses and X0 is a
switcher as explained in Section 5.1. Accordingly, the ”cost for S0” in (10) is 24 group
elements (12 for four commitments and 12 for proof of four linear equations).

The SE-NIZK in the construction of PKE can be instantiated with any SE-NIZKi
in Section 5.1. The efficiency and properties of the resulting PKE is shown in Table 4.
For SE-NIZK1,2,3 that uses a tree-based signature scheme, we set the depth of the tree
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[Scheme CPA]
Let gk include Λ = (p,G,GT , e) and generator G ∈ G as global parameters.

CPA.Key(gk): Uniformly select y1, y2 from Z∗
p. Compute G1 = Gy1 and G2 = Gy2 ,

And then output ek := (Λ,G1, G2) and dk := (ek , y1, y2). The message space is G.

CPA.Enc(ek ,msg): Parse msg into M ∈ G and ek accordingly. Pick random r1, r2 ∈ Zp.
Compute and output signature c := (C1, C2, C3) where C1 := Gr1

1 , C2 := Gr2
2 , and

C3 := M Gr1+r2 .

CPA.Dec(dk , c): Parse c into (C1, C2, C3), and dk into (y1, y2). Then output M :=

C3 C
−1/y1
1 C

−1/y2
2 .

Fig. 5. The Linear Encryption Scheme

Table 4. Properties and ciphertext size of CCA PKE constructed with SE-NIZKi. Tight security
is for multiple challenges and users.

Cipheretxt Size Properties Parameter
SE-NIZKi Size Publicly-Verifiable Tightly-Secure Strucure-Preserving Setting

0 1228 yes yes no d=20
1 490 yes yes no d=20
2 916 yes yes yes d=20, k1=31, k2=13
3 304 yes no yes k1=19, k2=7
4 73 yes no no

to d = 20, which allows up to 220 simulations. (If one demands virtually unbounded
simulatability, d should equal to the security parameter as suggested in [26].) For SE-
NIZK3,4 that uses TOS as OTS, we seek for optimal value for parameter k1 and k2 that
minimizes the size of the cipehrtext. As originally stated in [17], leakage resilience can
be added by using a leakage resilient CPA encryption from [17] while retaining other
properties.

We finally remark that the ciphertext size is assessed with non-optimized instantia-
tions of SE-NIZKi. Following the already mentioned observation that only a part of a
simulated signature in NIZK must be committed, one can optimize the GS proofs and
reduce the size of ciphertext to 398 from 490 with SE-NIZK1 at d = 20, 731 from 916
with with SE-NIZK2 at d = 20, k1 = 27, k2 = 11, and 273 from 304 with SE-NIZK3
at d = 20, k1 = 17, k2 = 6.

6 Conclusion

We present a new efficient tagged one-time signature scheme that features tight reduc-
tion to DLIN and optimal tag size. We then revisit several generic constructions where
(tagged) one-time signatures play a central role, and build structure preserving signa-
ture and public-key encryption schemes that for the first time simultaneously achieve
several desirable properties. Although many of our instantiations are not necessarily
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practical with hundreds of group elements, the concrete efficiency assessment should
serve as a reference and as a first step.

Our construction uses the symmetry of the pairing in an essential way. It is left as
an open problem to construct TOS schemes with optimal tag size and a tight security
reduction over asymmetric pairings.
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Abstract. In CRYPTO 2010, Wee proposed the notion of “extractable hash proof
systems” (XHPS), and its richer version, “all-but-one XHPS” (ABO-XHPS), and
showed that chosen ciphertext secure (CCA secure) key encapsulation mech-
anisms (KEM) can be constructed from them. This elegantly explains several
recently proposed practical KEMs constructed based on the “all-but-one” simu-
lation paradigm in a unified framework. Somewhat frustratingly, however, there
still exist popular KEMs whose construction and security proofs are not
captured by this framework. In this paper, we revisit the framework of the ABO-
XHPS-based KEM. Firstly, we show that to prove CCA security of the ABO-
XHPS-based KEM, some requirements can be relaxed. This relaxation widens the
applicability of the original framework, and explains why many known practical
KEMs can be proved CCA secure. Moreover, we introduce new properties for
ABO-XHPS, and show how one of the properties leads to KEMs that achieve
“constrained” CCA security, which is a useful security notion of KEMs for ob-
taining CCA secure public key encryption via hybrid encryption. Thirdly, we
investigate the relationships among computational properties that we introduce
in this paper, and derive a useful theorem that enables us to understand the struc-
ture of KEMs of a certain type in a modular manner. Finally, we show that the
ABO-XHPS-based KEM can be extended to efficient multi-recipient KEMs. Our
results significantly extend the framework for constructing a KEM from ABO-
XHPS, enables us to capture and explain more existing practical CCA secure
schemes (most notably those based on the decisional Diffie-Hellman assump-
tion) in the framework, and leads to a number of new instantiations of (single-
and multi-recipient) KEMs.

Keywords: key encapsulation mechanism, extractable hash proof system, cho-
sen ciphertext security, constrained chosen ciphertext security.

1 Introduction

Background and Motivation. Studies on constructing and understanding practical pub-
lic key encryption (PKE) schemes secure against chosen ciphertext attacks (CCA secu-
rity) [24,9] are important research themes in the area of cryptography. Among several
approaches towards practical CCA secure PKE schemes, the promising approach is to
construct a PKE scheme via the hybrid encryption methodologies using a key encap-
sulation mechanism (KEM) and a data encapsulation mechanism (DEM). Cramer and

K. Kurosawa and G. Hanaoka (Eds.): PKC 2013, LNCS 7778, pp. 332–351, 2013.
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Shoup [8] show that if we combine a CCA secure KEM and a CCA secure DEM, then
we obtain a hybrid PKE scheme which is CCA secure. Hofheinz and Kiltz [17] intro-
duce a security notion called constrained CCA security (CCCA security), and show that
a CCA secure PKE scheme can be constructed by combining a CCCA secure KEM and
a DEM satisfying the security of (one-time) authenticated encryption [2]. These results
enable us to concentrate on studying practical constructions of (C)CCA secure KEMs,
for obtaining practical PKE schemes.

Seeing in a larger perspective, there are two general paradigms towards CCA secure
PKE schemes: the first paradigm uses non-interactive proofs of “well-formedness” [10],
which includes the constructions with non-interactive zero-knowledge proofs [22,9,25]
that cover generic constructions from cryptographic primitives, and the constructions
with universal hash proof systems [7,17] that cover practical and efficient schemes
based on specific intractability of decision problems.; The second paradigm uses the
so-called “all-but-one” simulation technique, (e.g. [3,5,19,17,23,12,18,27]). In fact, [9]
can also be seen to be included in this paradigm. These two paradigms in fact cover
almost all known constructions of CCA secure PKE schemes and KEMs. Our focus in
this paper is on KEMs constructed based on the second paradigm.

In CRYPTO’10, Wee [27] introduced the notion of “extractable hash proof systems”
(XHPS) and its richer version “all-but-one XHPS” (ABO-XHPS), which are both a
special kind of non-interactive proof system for a family of one-way relations (which
defines a hard search problem, such as the computational Diffie-Hellman problem), and
showed that CCA secure KEMs can be constructed from them. This framework elegantly
explains the constructions and the security proofs of several (variants of) recently pro-
posed KEMs (e.g. [6,18]) based on hardness of “search” problems (not only “decision”
problems), which are proved with the “all-but-one” simulation paradigm.

Somewhat frustratingly, however, there still exist several popular KEMs (e.g.
[17,6,12]) whose construction and (C)CCA security are not explained by the framework
in [27], although those that cannot be explained by the framework in [27] are quite sim-
ilar to those that can be explained. The main motivation of this work is to extend the
framework of KEMs based on ABO-XHPS to capture a wider class of constructions and
security proofs of CCA secure, and even CCCA secure, KEMs, so that it works as a more
general framework capturing a wider class of constructions based on the “all-but-one”
simulation paradigm as we categorized above. Such general framework can be expected
to lead to deeper understanding of constructions and security proofs of KEMs and be
useful for future design of (C)CCA secure practical KEMs and PKE schemes, and higher
level primitives/protocols that use those as building blocks.

Our Contribution. In this paper, we revisit and extend the framework for constructing
a KEM based on ABO-XHPS in [27] in several different aspects:

Firstly, we show that to prove CCA security of the ABO-XHPS-based KEM, some
requirement of ABO-XHPS and its associated one-way relation family can be relaxed.
More specifically, the original definition of an ABO-XHPS in [27] requires some un-
necessarily strong “correctness” requirement and a underlying one-way relation family
with which the ABO-XHPS is associated needs to satisfy “gap”-type one-wayness,
which requires that one-wayness holds even in the presence of the decision oracle, and
thus is a stronger type of one-wayness. Instead, we show that as long as the ABO-XHPS
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satisfies the property which we call computational soundness (CS security, for short),
the ABO-XHPS-based KEM can be shown to be CCA secure with a weaker correct-
ness requirement for the underlying ABO-XHPS and a weaker (non-gap) one-way re-
lation. (The formal definitions of an ABO-XHPS and a family of one-way relations
are given in Section 3.) Due to these relaxations, we can treat a wider class of com-
putational assumptions, and the class of CCA secure KEMs that can be captured by the
framework becomes significantly wider. Most notably, we can now treat the decisional
Diffie-Hellman (DDH) assumption as a one-way relation family, and thus several prac-
tical DDH-based KEMs (e.g. [6,12]), which was not possible by the original framework
because of the requirement of the “gap”-type one-wayness.

Secondly, we propose another computational property of ABO-XHPS which we call
“pseudorandom extraction property” (PR-Ext security, for short), and show that if an
ABO-XHPS satisfies the property, then the ABO-XHPS-based KEM achieves CCCA se-
curity. This result enables us to explain CCCA security of the KEMs whose construction
and security proof can be understood in the “all-but-one” simulation paradigm. This en-
ables us to cast CCCA secure KEMs proposed in [17] and in [13, Sect. 6] in our extended
framework.

Thirdly, we study the computational properties of ABO-XHPS themselves. Specif-
ically, we introduce yet another computational property which we call weak compu-
tational soundness (wCS security, for short), and show that wCS security is implied by
both CS security and PR-Ext security. Furthermore, we show how to combine a PR-Ext
secure ABO-XHPS and a wCS secure ABO-XHPS to obtain a CS secure ABO-XHPS.
This “transformation,” together with the above mentioned results, enables us to under-
stand the constructions and CCA security of KEMs in a modular manner. For example,
this provides us with an alternative security proof of the Cash et al. KEM [6, Sect. 5.2],
without the “trapdoor test” theorem [6, Theorem 2] that was originally used to prove its
CCA security. Moreover, combined with the above mentioned results, this result enables
us to derive a number of new variants of KEMs [8,19,17,6,12] that can be shown to be
CCA secure under the DDH or the Hashed DH (HDH) assumption [11].

Finally, we show that the ABO-XHPS-based KEM can be extended to be a multi-
recipient KEM (MR-KEM) [26,16]. Here, by MR-KEM we mean the one formalized
by Smart [26] in which all recipients recover a same session-key. (This differs from
multi-recipient PKE by Bellare et al. [1] in which each receiver may recover differ-
ent message.) From this result, we derive a number of new practical (C)CCA secure
MR-KEMs.

The results in this paper are summarized in Fig. 1. Our results enable us to capture
more existing practical CCA secure schemes than the original framework [27], derive
a number of new practical instantiations of (C)CCA secure (MR-)KEMs, and understand
the structures and security proofs of these schemes. (See Section 6 for more details.)
We believe that the framework of ABO-XHPS extended by our results widely captures
the constructions of KEMs based on the “all-but-one” simulation paradigm and leads to
deeper understanding of the constructions and security proofs of practical KEMs, and
is useful for future design of (C)CCA secure practical (MR-)KEMs.

Due to space limitations, the full proofs of the theorems in this paper will be given
in the full version. We instead give intuitive explanations for each theorem.
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Fig. 1. Summary of our results. Each box with label “X” denotes an X-secure primitive. The arrow
(X → Y) indicates that an X-secure primitive can be used to construct a Y-secure primitive.

Related Work. The relevant general framework of constructions of PKE schemes and
KEMs is be the framework using universal hash proof systems introduced by Cramer
and Shoup [7]. This framework, as we mentioned above, can be seen as one of the gen-
eral paradigms using non-interactive proof of “well-formedness”, and captures a wide
class of practical constructions of PKE schemes and KEMs, such as Cramer-Shoup PKE
scheme [8]. Kurosawa and Desmedt [20] showed how to construct CCA secure KEM
directly from hash proof systems. The requirements in the original definition of a uni-
versal hash proof system in [7] (and in [20]) were all statistical (information-theoretic)
ones. Hofheinz and Kiltz [17] introduced computational relaxation for a universal hash
proof system, and showed that the KEM based on a hash proof system in [20] can be
shown to be CCCA secure if the underlying hash proof system satisfies some computa-
tional property.

Wee [28] recently proposed the notion of threshold extractable hash proof system,
which can be seen as a generalization of an ABO-XHPS, from “all-but-one” to “all-
but-t.” From it, he showed how to construct threshold signature schemes, threshold
encryption schemes, and broadcast encryption schemes.

2 Preliminaries

In this section, we review the basic notation and the definitions for a (multi-recipient)
KEM. Due to space limitation, the definitions for other basic primitives and computa-
tional intractability assumptions will be given in the full version.

Basic Notation. N denotes the set of all natural numbers, and if n ∈ N then [n] =
{1, . . . , n}. “x← y” denotes that x is chosen uniformly at random from y if y is a finite
set, or y is assigned to x otherwise. If S is a set, then “|S|” denotes its size. “PPTA”
denotes a probabilistic polynomial time algorithm. Unless otherwise stated, k denotes
the security parameter. IfA is an algorithm andO is a function, then “AO” denotes that
A has oracle access to O. A function f(k) : N→ [0, 1] is said to be negligible if for all
positive polynomials p(k) and all sufficiently large k ∈ N, we have f(k) < 1/p(k).

Multi-Recipient KEM. Here, we review the definition of a multi-recipient KEM (MR-
KEM). We use the definition formalized by Smart [26], where all recipients recover a
same session-key. A MR-KEM Γ consists of the following five PPTAs:
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MSetup: The setup algorithm that takes 1k as input, and outputs a set of public param-
eters pub. pub specifies the session-key space K.

MKG: The (user’s) key generation algorithm that takes pub as input, and outputs a
public/secret key pair (pk, sk). Without loss of generality, we assume that the in-
formation on pub is contained in pk and sk, and we do not write pub for the inputs
of the following algorithms.

MEnc: The encapsulation algorithm that takes a set of public keyspk = (pk1, . . . , pkn)
as input, and outputs a ciphertext c and a session-key K ∈ K.

MExt: The (deterministic) user’s ciphertext extraction algorithm that takes a user i’s
public key pki, and a ciphertext c (which is output fromMEnc) as input, and outputs
the user i’s ciphertext ci.

MDec: The (deterministic) decapsulation algorithm that takes a user i’s secret key ski
and a user i’s ciphertext ci as input, and outputs a session-key K which could be a
special symbol ⊥ meaning “invalid”.

We say that a MR-KEM satisfies correctness (resp. almost-correctness), if for all pub←
MSetup(1k) and all polynomials n = n(k), the following probability is zero (resp.
negligible).

Pr[ (pki, ski)← MKG(pub) for i ∈ [n]; (c,K)← MEnc(pk = (pk1, . . . , pkn)) :

MDec(ski,MExt(pki, c)) �= K for some i ∈ [n] ]

Security Notions. Here, we recall the definitions of indistinguishability against cho-
sen ciphertext attacks (CCA security) and against constrained chosen ciphertext attacks
(CCCA security) [17].

Let ATK ∈ {CCA, CCCA} and n ∈ N. For a MR-KEM Γ = (MSetup,MKG,MEnc,
MExt,MDec), we define the experiment ExptATKΓ,A,n(k) that an adversary A attacks Γ
under the attack type ATK as follows:

ExptATKΓ,A,n(k) : [ pub← MSetup(1k); (pki, ski)← MKG(pub) for i ∈ [n];

pk← (pk1, . . . , pkn); (c
∗,K∗

1 )← MEnc(pk); K∗
0 ← K; b← {0, 1};

b′ ← AO(pub,pk, c∗,K∗
b ); If b′ = b then return 1 else return 0 ],

where the oracle O is determined by ATK in the following ways: If ATK = CCA, then
the oracleO is the decapsulation oracleO(·, ·) which takes a user index/ciphertext pair
(i, c) as input, and outputs the result of tMDec(ski,MExt(pki, c)). If ATK = CCCA then
the oracleO is the constrained decapsulation (CDEC) oracleOcdec(·, ·, ·), which takes
a user index i, a predicate pred : K → {0, 1}, and a ciphertext c as input, and outputs a
response that is calculated as follows:

Ocdec(i, pred, c) =
{
K If MDec(ski,MExt(pki, c)) = K �= ⊥ ∧ pred(K) = 1

⊥ Otherwise

Moreover, in both cases ATK ∈ {CCA, CCCA}, A is not allowed to submit a query that
contains a user index/ciphertext pair (i, c) satisfying MExt(pki, c) = MExt(pki, c

∗) to
the oracle.
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Let A be an adversary that runs in a CCCA experiment and makes in total q queries,
and let (ij , predj , cj) be A’s j-th CDEC query. “The running time of A in the CCCA

experiment” is defined as the sum of A’s running time and the total of the maximum
running time for evaluating each predj submitted by A. “The running time of the CCCA
experiment” is defined as the total running time of ExptCCCAΓ,A (k) minus “the running time
ofA in the CCCA experiment.” For a CCCA adversaryA and an experiment E (not neces-
sarily ExptCCCAΓ,A (k)) thatA runs in, we define the parameter called (plaintext) uncertainty
uncertA,E(k) by:

uncertA,E(k) =
1

q

∑
j∈[q]

Pr[E ;K ← K : predj(K) = 1].

Finally, we say that an adversary A is a valid CCCA adversary if (1) “the running time
ofA in the CCCA experiment” is polynomial in k, and (2) uncertA,E(k) is negligible for
all experiments E whose running time is at most that of “the running time of the CCCA
experiment” thatA runs in.

For a KEM Γ , an adversary A, ATK ∈ {CCA, CCCA}, and n ∈ N we define ATK

advantage AdvATKΓ,A,n(k) of A by AdvATKΓ,A,n(k) = |Pr[ExptATKΓ,A,n(k) = 1]− 1/2|.

Definition 1. We say that a MR-KEM Γ is CCA secure if AdvCCAΓ,A,n(k) is negligible for
any PPTA A and any polynomial n = n(k). Furthermore, we say that a MR-KEM Γ
is CCCA secure if AdvCCCAΓ,A,n(k) is negligible for any valid CCCA adversary A and any
polynomial n = n(k).

Single-Recipient KEM. When we talk about ordinary “single-recipient” KEMs, we
need not consider the setup and user key generation algorithms separately. Therefore,
in order to clarify the difference between multi-recipient KEMs and ordinary KEMs,
we write the key generation, the encapsulation, and the decapsulation algorithms of a
single-recipient KEM by KG, Enc, and Dec, respectively (without the prefix “M”). The
syntax and the security notions for single-recipient KEMs are defined similarly to those
of MR-KEMs.

3 Definitions for All-But-One Extractable Hash Proof Systems

In this section, we define an ABO-XHPS and one-way relations which are necessary
for ABO-XHPS, following the definitions in [27]. However, our definitions here are
slightly different from ones in [27], and we also highlight the difference.

3.1 One-Way Relation Families

A family of relations (relation family, for short) R (that supports a PRG) is associated
with the following three PPTAs (RSetup, RSamp, G):

RSetup: The setup algorithm that takes 1k as input, and outputs a public/private pa-
rameter pair (pub, pri). pub contains the description of sets U , S, W , and K, from
which we can efficiently sample elements uniformly. pub also fixes one relation
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Rpub over U × S. We require that: (1) for all u, there is at most one s such that
(u, s) ∈ Rpub (with overwhelming probability over the choice of pub), and (2)
given pri (corresponding to pub) and (u, s) ∈ U × S, whether (u, s) ∈ Rpub or not
is efficiently decidable. For notational convenience, we assume that pub is provided
as input to the following algorithms, and do not write it explicitly.

RSamp: The sampling algorithm that (takes pub as input, and) outputs a pair (u, s) ∈
Rpub so that u is distributed uniformly over U . The randomness space of RSamp
is W , and when we need to make the randomness used to sample (u, s) explicit,
we write this process as “(u, s)← RSamp(w)” (in this case, RSamp is treated as a
deterministic algorithm).

G: The (pseudorandom) generator that takes (pub and) an element s ∈ S as input, and
outputs K ∈ K.

Hereafter, we identify a relation familyR with the associated PPTAs (RSetup,RSamp,
G), and in particular, write R = (RSetup,RSamp,G).

Definition 2. We say thatR = (RSetup,RSamp,G) is a one-way relation family if the
advantage AdvPRGR,A(k) defined below is negligible for any PPTA A:

AdvPRGR,A(k) = |Pr[(pub, pri)← RSetup(1k); (u, s)← RSamp;

K∗
1 ← G(s);K∗

0 ← K; b← {0, 1}; b′ ← A(pub, u,K∗
b ) : b

′ = b]− 1

2
|.

Furthermore, we say thatR is a gap one-way relation family if the advantage is negli-
gible for any PPTA adversary that is given access to the “relation” oracle which takes
(u, s) ∈ U × S as input and tells if (u, s) ∈ Rpub or not.

Difference from the Definition in [27]. The original definition of one-way relation fam-
ilies in [27] is the “gap” version here. The definition of (non-gap-)one-way relation
family is clearly weaker, thus potentially easier to achieve and captures wider class of
relation families than the gap version. For example, the “gap” one-way relation of [27]
does not capture the HDH-based Diffie-Hellman relation family we introduce below.1

Concrete Example of One-Way Relation Families: Diffie-Hellman Relation. Let G

be a group of prime order p and let H : G → K be a hash function. We say that
the hashed Diffie-Hellman (HDH) assumption holds in (G, H) if the distributions of
(g, ga, gb, H(gab)) and (g, ga, gb,K) are computationally indistinguishable, where g ∈
G, a, b ∈ Zp, and K ∈ K are chosen randomly.2

The Diffie-Hellman relation family (that supports a PRGH)RDH, indexed by pub =
(g, gα) ∈ (G)2, is defined by RDH

(g,gα) = {(u, s) ∈ (G)2|s = uα}. The associated
algorithms (RSetup,RSamp,G) are as follows: RSetup sets U = S = G andW = Zp,

1 We note that in [28], Wee introduced the definition of one-way relation families in the same
sense as the one defined here.

2 The DDH assumption is the special case of the HDH assumption in which H is the identity
function. It is possible that the DDH assumption in G is false while the HDH assumption in
(G,H) holds for some H . For more details about the HDH assumption, see [11,19,6,12] and
the full version of this paper.
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picks random elements g ∈ G and α ∈ Zp, and sets pub = (g, h) = (g, gα) and
pri = α. RSamp(w) := (gw, hw). G(s) := H(s). It is straightforward to see thatRDH

is a one-way relation family under the HDH assumption in (G, H).

3.2 All-But-One Extractable Hash Proof Systems

An ABO-XHPS is always associated with a relation family. Thus, for notational con-
venience, we denote by “XR” an ABO-XHPS X associated with a relation family R.
(If R is clear from the context, we often omit R and just write X .) Informally, an
ABO-XHPS is a special type of “designated-verifier non-interactive zero-knowledge
proof of knowledge,” and it has, as its internal structure, a family of “tag-based” hash
functions Hpk : T × U → {0, 1}∗ indexed by a public key pk (where T is the tag
space) which represents the relation of an instance u ∈ U and a (tag-based) “proof”
π = Hpk(tag, u) (with some tag ∈ T ). If π is in a valid form, we can “extract” the
answer s to the instance u satisfying (u, s) ∈ Rpub, using the secret key correspond-
ing to pk. It is possible that H itself is not efficiently computable. Furthermore, X has
“simulation” algorithms for key generation, extraction, and generating a proof. The first
two algorithms work normally as above, except for one particular tag tag∗ (used for the
simulated key generation process) under which one can generate a valid proof without
a witness (hence the name “all-but-one”).

Formally, an ABO-XHPSX , associated with a relation familyR = (RSetup,RSamp,

G), consists of six PPTAs (XKG, Pub, Ext, X̂KG, P̂riv, Êxt) that satisfy the following
“functional requirements” (correctness) with overwhelming probability over the choice
of (pub, pri)← RSetup(1k):

Extraction Mode. For all (pk, sk) ← XKG(pub, pri) and all tuples (tag, u, π): If π
= Hpk(tag, u) then (u,Ext(sk, tag, u, π)) ∈ Rpub, and if π �= Hpk(tag, u) then
Ext(sk, tag, u, π) = ⊥.

All-But-One Mode. For all tag∗ and all (pk, ŝk)← X̂KG(pub, tag∗):
Private Evaluation under tag∗: For all (u, s) ∈ Rpub: P̂riv(ŝk, u) = Hpk(tag

∗, u).
Extraction: For all tag �= tag∗ and all (u, π): If π = Hpk(tag, u) then (u, s) ∈
Rpub, where s = Êxt(ŝk, tag, u, π). (The case of π �= Hpk(tag, u) is unspecified.)

Public Evaluation. For all pk (output from either XKG or X̂KG), tag, and (u, s) =
RSamp(w): Pub(pk, tag, w) = Hpk(tag, u).

Indistinguishability of Two Modes. For all tag∗, the two distributions,
{(pk, sk) ← XKG(pub, pri) : pk} and {(pk, ŝk) ← X̂KG(pub, tag∗) : pk}, are
statistically indistinguishable.

In this paper, we also consider a slight relaxation of the extraction property of the
“all-but-one” mode. We say that an ABO-XHPS satisfies almost-correctness if for all
(pub, pri) ← RSetup(1k), all (u, s) = RSamp(w), and all (tag, tag∗) such that tag �=
tag∗, the following probability is overwhelming: Pr[(pk, ŝk) ← X̂KG(pub, tag∗) :

Êxt(ŝk, tag, u,Hpk(tag, u)) = s].
We note that the indistinguishability of the two modes implies that the information

on a tag tag∗ is statistically hidden from pk output from X̂KG(pub, tag∗).
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Difference from the Definition in [27]. Here, we explain the difference of our definition
of ABO-XHPS and the definition by Wee [27, Sect. 3.4]. Firstly, XKG algorithm in
[27] does not take the private parameter pri as input (while ours does). However, this
restriction is unnecessary for proving (C)CCA security of the ABO-XHPS-based KEM,
and thus we allow XKG to take pri as input.

Secondly, the correctness requirements of Ext and Êxt algorithms in [27] are defined
in an “if-and-only-if” style. More specifically, the correctness requirements of Ext and
Êxt algorithms in [27] are: (i) “π = Hpk(tag, u) ⇔ (u,Ext(sk, tag, u, π)) ∈ Rpub,”

and (ii) “π = Hpk(tag, u) ⇔ (u, Êxt(ŝk, tag, u, π)) ∈ Rpub.” Regarding (i), since the
definition of [27] does not specify what is output from Ext when Hpk(tag, u) �= π,
we require that it output ⊥. We stress that this is without loss of generality because
given pri, it is possible to tell whether (u,Ext(sk, tag, u, π)) ∈ Rpub or not, and pri
can be contained in sk in our definition. The main difference from the definition in this
paper and the one in [27] is regarding (ii), i.e. correctness of Êxt algorithm. It is clear
that ours requires weaker correctness since we do not specify the behavior of Êxt in
case Hpk(tag, u) �= π, while the definition in [27] does. As will be shown later, this
relaxation is the main reason that makes the framework of the ABO-XHPS-based KEM
much wider, and makes it possible to capture most known practical CCA secure KEMs,
and even CCCA secure schemes.

4 Computational Properties of ABO-XHPS

In this section, we introduce three computational properties of ABO-XHPS which are
all related to the behavior of the extraction algorithm for the all-but-one mode, i.e. Êxt,
and play important roles for proving (C)CCA security of the ABO-XHPS-based KEMs
in the next section. We also show the relationships among these properties.

4.1 Computational Soundness (CS)

“Computational soundness” (CS security) captures soundness of the Êxt algorithm, and
roughly means that it is hard to find an “invalid proof” π from which Êxt extracts some
value that is not ⊥. This is, it is hard to find a tuple (tag, u, π) satisfying tag �= tag∗,

Hpk(tag, u) �= π, and Êxt(ŝk, tag, u, π) �= ⊥, where (pk, sk) ← X̂KG(pub, tag∗).
Formally, consider the experiment ExptCSX ,A(k) that an adversaryA = (A1,A2) runs in
as in Fig. 2 (top-left).

Definition 3. We say that an ABO-XHPS X satisfies computational soundness (CS se-
cure, for short), if the advantage AdvCSX ,A(k) = Pr[ExptCSX ,A(k) = 1] is negligible for
any PPTAA.

Concrete CS Secure ABO-XHPS. The factoring-based ABO-XHPS [27, Sect. 4.2], the
(non-twin-)Diffie-Hellman-based one [27, Sect. 5.1] in case instantiated with bilinear
groups, and the twin Diffie-Hellman-based one [27, Sect. 5,2] shown by Wee, are in fact
all CS secure. The Êxt algorithm of these ABO-XHPS satisfy the “if-and-only-if”-style
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ExptCSX ,A(k) :

(pub, pri) ← RSetup(1k);
(tag∗, st) ← A1(pub);

(pk, ŝk) ← X̂KG(pub, tag∗);
AOCS

2 (pk, st);
If A2 submits to oracle OCS

at least one query
(tag′, u′, π′) such that

tag′ �= tag∗

∧ Hpk(tag
′, u′) �= π′

∧ Êxt(ŝk, tag′, u′, π′) �= ⊥
then return 1 else return 0

The oracle in ExptCSX ,A(k):

OCS(tag, u, π) ={
Êxt(ŝk, tag, u, π) If tag �= tag∗

⊥ Otherwise

The oracle in ExptPR-ExtX ,A (k) and ExptwCSX ,A(k):

OPR-Ext(tag, u, π) = OwCS(tag, u, π) ={
Êxt(ŝk, tag, u, π) If tag �= tag∗ ∧ Hpk(tag, u) = π

⊥ Otherwise

ExptPR-ExtX ,A (k) :

(pub, pri) ← RSetup(1k);
(tag∗, st) ← A1(pub);

(pk, ŝk) ← X̂KG(pub, tag∗);
(tag′, u′, π′, st′) ← AOPR-Ext

2 (pk, st);
s′1 ← Êxt(ŝk, tag′, u′, π′);
s′0 ← S ;
b ← {0, 1};
b′ ← A3(s

′
b, st

′);
If b′ = b then return 1 else return 0

ExptwCSX ,A(k) :

(pub, pri) ← RSetup(1k);
(tag∗, st) ← A1(pub);

(pk, ŝk) ← X̂KG(pub, tag∗);
(tag′, u′, π′, s′) ← AOwCS

2 (pk, st);
If tag′ �= tag∗

∧ Hpk(tag
′, u′) �= π′

∧ s′ = Êxt(ŝk, tag′, u′, π′)
= Êxt(ŝk, tag′, u′,Hpk(tag

′, u′))
then return 1 else return 0

Fig. 2. The CS experiment (top-left), the PR-Ext experiment (bottom-left), the wCS experiment
(bottom-right), and the definitions of the oracles (top-right)

correctness, and additionally have the property that invalid proofs π �= Hpk(tag, u)
can be detected publicly or by using a secret key of the ABO-XHPS. Furthermore,
the recently proposed practical CCA secure KEMs based on the HDH and the DBDH
assumptions can be understood as CS secure ABO-XHPS. These include (a simplified
version of) the KEM in [5], [6, Sect. 5.2], and [13, Sect. 4]. Concretely, here we show the
ABO-XHPS XCKS based on the KEM by Cash et al. [6, Sect. 5.2], which is associated
with the HDH-based Diffie-Hellman relation family RDH, as in Fig. 3. XCKS can be
proved to be CS secure because the truth value of the validity check in the Êxt algorithm
of XCKS is the same as the truth value of the validity check in the Ext algorithm with
overwhelming probability, due to the “trapdoor test” [6, Theorem 2]. In the full version,
we also show ABO-XHPS based on the KEMs in [5] and [13, Sect. 4].

4.2 Pseudorandom Extraction Property (PR-Ext)

The “pseudorandom extraction property” (PR-Ext security) guarantees that if the Êxt
algorithm is given (tag, u, π) such that Hpk(tag, u) �= π and tag �= tag∗, then the

extracted value s = Êxt(ŝk, tag, u, π) looks pseudorandom. In the context of the ABO-
XHPS-based KEMs (that will be shown later), this property means that when c = (u, π)

is an inconsistent ciphertext, if we extract s from Êxt, then the seed s of the session-key
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XKG(pub = (g, h), pri = α) :
x, y1, y2 ← Zp; X ← gx

Yi ← gyi for i ∈ [2]
pk ← (g, h,X, Y1, Y2)
sk ← (α, x, y1, y2)
Return (pk, sk)

X̂KG(pub = (g, h), tag∗) :
z′, z1, z2, z3 ← Zp; X ← gz

′
h−tag∗

Y1 ← gz1h−z2 ; Y2 ← gz3Y −tag∗
1

pk ← (g, h,X, Y1, Y2)

ŝk ← (z′, z1, z2, z3, tag∗)
Return (pk, ŝk)

Pub(pk, tag, w) :
π1 ← (htagX)w; π2 ← (Y tag

1 Y2)
w

Return π ← (π1, π2)

P̂riv(ŝk, u) :

π1 ← uz′ ; π2 ← uz3

Return π ← (π1, π2)

Ext(sk, tag, u, π) :
If uα·tag+x = π1 and uy1·tag+y2 = π2

then return s ← uα else return ⊥

Êxt(ŝk, tag, u, π) :

s ← (π1 · u−z′)
1

tag−tag∗ ; s′ ← (π2 · u−z3)
1

tag−tag∗

If sz2s′ = uz1 then return s else return ⊥

Fig. 3. The CS secure ABO-XHPS XCKS. The internal hash function family is defined by
Hpk(tag, u) = ((htagX)w, (Y tag

1 Y2)
w) where u = gw.

K = G(s) looks like a uniformly random value. This property is like computational
universal2 [17] for a “Cramer-Shoup” type HPS [7], and plays a key role for showing
CCCA security of the ABO-XHPS-based KEMs that will be given in the next section.
Formally, consider the experiment ExptPR-ExtX ,A (k) that an adversary A = (A1,A2,A3)
runs in as in Fig. 2 (bottom-left). In the experiment, it is required that (tag′, u′, π′) in
A2’s output satisfy tag′ �= tag∗ and Hpk(tag

′, u′) �= π′.

Definition 4. We say that an ABO-XHPS X has the pseudorandom extraction property
(PR-Ext secure, for short), if the advantage AdvPR-ExtX ,A (k) = |Pr[ExptPR-ExtX ,A (k) =
1]− 1/2| is negligible for any PPTA A.

Concrete PR-Ext Secure ABO-XHPS. Here, we show a concrete ABO-XHPS based on
the KEM by Hofheinz and Kiltz [17] and the KEM by Hanaoka and Kurosawa [13, Sect.
6], both of which are associated with the HDH-based Diffie-Hellman relation RDH.
The ABO-XHPS XHoKi based on [17] and the ABO-XHPS XHaKu based on [13, Sect.
6] are constructed as in Fig. 4. XHoKi can be proved PR-Ext secure roughly because
the value z2 generated in X̂KG is information-theoretically hidden from pk and values
s extracted from a “correct” proof π = Hpk(tag, u) using Êxt, while it appears in a
value s extracted from an “invalid proof π satisfying π �= Hpk(tag, u) and makes the

extracted value s look like a random value in G. The value β generated in X̂KG of
XHaKu plays a similar role. We also note that XHaKu satisfies only almost-correctness,
as Êxt cannot extract a value when tag = β. However, it suffices for showing CCCA

security of the ABO-XHPS-based KEM shown in the next section.

4.3 Weak Computational Soundness (wCS)

“Weak computational soundness” (wCS security) guarantees that it is hard to find an
“invalid” proof π �= Hpk(tag, u) such that if we extract a value s with Êxt from the in-
valid π, then the value s is the same as the value that is extracted from a “correct” proof
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XKG(pub = (g, h), pri = α) :
x1, x2 ← Zp

Xi ← gxi for i ∈ [2]
pk ← (g, h,X1, X2)
sk ← (α, x1, x2)
Return (pk, sk)

X̂KG(pub = (g, h), tag∗) :
z1, z2, z3 ← Zp

X1 ← gz1hz2 ; X2 ← gz3h−z2·tag∗

pk ← (g, h,X1, X2)

ŝk ← (z1, z2, z3, tag
∗)

Return (pk, ŝk)

Pub(pk, tag, w) : P̂riv(ŝk, u) :

π ← (Xtag
1 X2)

w π ← uz1·tag∗+z3

Return π Return π

Ext(sk, tag, u, π) :
If ux1·tag+x2 = π then
return s ← uα else return ⊥

Êxt(ŝk, tag, u, π) :

s ← (π · u−(z1·tag+z3))
1

z2(tag−tag∗)

Return s

XKG(pub = (g, h), pri = α) :
a0 ← α; A0 ← h; a1, a2 ← Zp

Ai ← gxi for i ∈ [2]; Let f(x) :=
∑2

i=0 aix
i

pk ← (g,A0, A1, A2); sk ← f(·)
Return (pk, sk)

X̂KG(pub = (g, h), tag∗) :
β, z1, z2 ← Zp; A0 ← h

Compute(∗) A1 = ga1 and A2 = ga2 s.t.
(f(0), f(tag∗), f(β)) = (α, z1, z2)

pk ← (g,A0, A1, A2); ŝk ← (β, z1, z2, tag
∗)

Return (pk, ŝk)

Pub(pk, tag, w) : P̂riv(ŝk, u) :

Return π ← (A0A
tag
1 Atag2

2 )w Return π ← uz1

Ext(sk, tag, u, π) :

If uf(tag) = π then
return s ← uα else return ⊥

Êxt(ŝk, tag, u, π) :
If tag = β then return ⊥
Let f ′ be a degree-2 polynomial s.t.
(f ′(tag), f ′(tag∗), f ′(β)) = (logu π, z1, z2)

Compute(∗) and return s ← uf ′(0)

Fig. 4. The PR-Ext secure ABO-XHPS XHoKi (left) and XHaKu (right). The internal hash func-
tion family of XHoKi is defined by Hpk(tag, u) = (Xtag

1 X2)
w, and that of XHaKu is defined by

Hpk(tag, u) = (A0A
tag
1 Atag2

2 )w, where u = gw. (∗) In XHaKu, The values A1 and A2 in X̂KG

and the value uf ′(0) in Êxt can be computed by Lagrange interpolation in the exponent [13].

π′ = Hpk(tag, u). Formally, consider the experiment ExptwCSX ,A(k) that an adversary
A = (A1,A2) runs in as in Fig. 2 (bottom-right).

Definition 5. We say that an ABO-XHPS X satisfies weak computational soundness
(wCS secure, for short), if the advantage AdvwCSX ,A(k) = Pr[ExptwCSX ,A(k) = 1] is negligi-
ble for any PPTA A.

We show that wCS security is indeed weaker than both CS and PR-Ext security.

Theorem 1. Let R be a relation family and let X be an ABO-XHPS associated with
R. Assume that R is a one-way relation family, and X is either CS secure or PR-Ext
secure. Then X is wCS secure.

Intuition. If X is CS secure, then it is hard to find an invalid proof π �= Hpk(tag, u)
from which we can extract some value that is not ⊥, and thus wCS security is satisfied.
If X is PR-Ext secure, then an extracted value s from an invalid proof π �= Hpk(tag, u)

is pseudorandom, which will be different from the value Êxt(ŝk, tag, u,Hpk(tag, u))
with overwhelming probability, and thus wCS security is satisfied.

Concrete wCS Secure ABO-XHPS. By definition, any ABO-XHPS whose Êxt algorithm
satisfies the “if-and-only-if”-style correctness of [27], is automatically wCS secure (and
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XKG(pub = (g, h), pri = α) :
x ← Zp; X ← gx

Return pk ← (g, h,X) and sk ← (α, x)

X̂KG(pub = (g, h), tag∗) :
z ← Zp; X ← gzh−tag∗

Return pk ← (g, h,X) and ŝk ← (z, tag∗)
Pub(pk, tag, w) :
Return π ← (htagX)w

P̂riv(ŝk, u) :
Return π ← uz

Ext(sk, tag, u, π) :
If uα·tag+x = π then
return s ← uα else return ⊥

Êxt(ŝk, tag, u, π) :

Return s ← (π · u−z)
1

tag−tag∗

Fig. 5. The wCS secure ABO-XHPS XKiltz . The internal hash function family is defined by
Hpk(tag, u) = (htagX)w where u = gw.

hence all XHPS shown in [27] is wCS secure). Here, we show another concrete ex-
ample of a wCS secure ABO-XHPS, which is based on the KEM by Kiltz [19] and is
associated with the Diffie-Hellman relation family RDH. (This is a variant of the (non-
twin-)Diffie-Hellman-based ABO-XHPS in [27, Sect. 5.1].) Specifically, the example
of the ABO-XHPS, which we call XKiltz, is as in Fig. 5. XKiltz can be shown to be wCS
secure because there is no tuple (tag, u, π, s) that satisfies the winning condition of an
adversary A in the wCS experiment. Namely, if tag �= tag∗ and π �= Hpk(tag, u), then

it is guaranteed that Êxt(ŝk, tag, u, π) �= Êxt(ŝk, tag, u,Hpk(tag, u)).

4.4 Combining PR-Ext and wCS to Obtain CS

Here, we propose a “transformation” for obtaining a CS secure ABO-XHPS from
PR-Ext secure one and wCS secure one. Let R be a relation family, and for i ∈ [2],

let Xi = (XKGi,Pubi,Exti, X̂KGi, P̂rivi, Êxti) be an ABO-XHPS which is associated
with R. Furthermore, let H(i) be the internal hash function family of Xi. Then, us-
ing X1 and X2 as building blocks, we construct another ABO-XHPS X ′ = (XKG′,

Pub′, Ext′, X̂KG
′
, P̂riv

′
, Êxt

′
), which is associated with the same R, as in Fig. 6. Let

PK = (pk1, pk2) be a public key of X ′. Then the internal hash function family H′ of
X ′ is defined by H′

PK(tag, u) = (π1, π2) = (H
(1)
pk1

(tag, u),H
(2)
pk2

(tag, u)).
The following theorem holds.

Theorem 2. Let R be a relation family and let X1 and X2 be ABO-XHPS associated
withR. Assume thatR is a one-way relation family, X1 andX2 are PR-Ext secure and
wCS secure, respectively. Then the ABO-XHPS X ′ constructed as in Fig. 6 is CS secure.

Intuition. In order for an adversary A against the CS security of X ′ to win, it has to
make a query (tag, u, π = (π1, π2)) of either of the following types: (1) tag �= tag∗

∧ H
(1)
pk1

(tag, u) �= π1 ∧ Êxt1(ŝk1, tag, u, π1) = Êxt2(ŝk2, tag, u, π2) �= ⊥, or (2)

tag �= tag∗ ∧ H
(1)
pk1

(tag, u) = π1 ∧ H
(2)
pk2

(tag, u) �= π2 ∧ Êxt1(ŝk1, tag, u, π1) =

Êxt2(ŝk2, tag, u, π2) �= ⊥. However, a tuple of the first type is hard to find due to the
PR-Ext security ofX1, because if the query is of first type, then the extracted value s1 =

Êxt1(ŝk1, tag, u, π1) is a pseudorandom and is different from s2 = Êxt2(ŝk2, tag, u, π2)
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XKG′(pub, pri) :
(pki, ski) ← XKGi(pub, pri) for i ∈ [2]
PK ← (pk1, pk2); SK ← (sk1, sk2)
Return (PK,SK)

X̂KG
′
(pub, tag∗) :

(pki, ŝki) ← X̂KGi(pub, tag
∗) for i ∈ [2]

PK ← (pk1, pk2); ŜK ← (ŝk1, ŝk2)

Return (PK, ŜK)

Pub′(PK, tag, w) :
πi ← Pubi(pki, tag, w) for i ∈ [2]
Return π ← (π1, π2)

P̂riv
′
(ŜK, u) :

πi ← P̂rivi(ŝki, u) for i ∈ [2]
Return π ← (π1, π2)

Ext′(SK, tag, u, π) :
si ← Exti(ski, tag, u, πi) for i ∈ [2]
If s1 = s2 �= ⊥ then return s1

else return ⊥

Êxt
′
(ŜK, tag, u, π) :

si ← Êxti(ŝki, tag, u, πi) for i ∈ [2]
If s1 = s2 �= ⊥ then return s1

else return ⊥

Fig. 6. The transformation for obtaining a CS secure ABO-XHPS X ′ from a PR-Ext secure ABO-
XHPS X1 and a wCS secure ABO-XHPS X2

with overwhelming probability, regardless of the value s2. Furthermore, a query of the
second type is also hard to find because such tuple can be directly used to break the
wCS security of X2. More specifically, the condition H

(1)
pk1

(tag, u) = π1 guarantees s1

= Êxt1(ŝk1, tag, u, π1) = Êxt2(ŝk2, tag, u,H
(2)
pk2

(tag, u)) due to the correctness of the
all-but-one mode of ABO-XHPS. Therefore, the tuple (tag, u, π2, s1) with tag �= tag∗

and H
(2)
pk2

(tag, u) �= π2 satisfies the winning condition of the wCS experiment.

5 KEMs Based on ABO-XHPS

In this section, we show our results regarding the KEMs based on ABO-XHPS. Specif-
ically, we show that CCA security of the ABO-XHPS-based KEM can be shown without
using gap version of one-way relation families and the stronger correctness requirement
defined in [27], and instead a (non-gap) one-way relation family and our weaker cor-
rectness, together with CS security, suffices. Furthermore, we show that the KEM can be
shown to be CCCA secure if the ABO-XHPS satisfies PR-Ext security. Finally, we show
that using the ABO-XHPS in a slightly different way, the ABO-XHPS-based KEM can
be extended to be a (C)CCA secure MR-KEM.

5.1 Single-Recipient KEM

Let R = (RSetup,RSamp,G) be a relation family, X = (XKG, Pub, Ext, X̂KG, P̂riv,
Êxt) be an ABO-XHPS associated with R, and TCR : U → T be a target collision
resistant hash function (TCRHF).3 Then we construct a KEM Γ1 = (KG,Enc,Dec)
based on the ABO-XHPS X as in Fig. 7 (left).

3 Roughly, an efficiently computable function TCR is said to be a TCRHF if given a random
input x, it is hard to find another input x′ such that TCR(x) = TCR(x′)∧x �= x′. The formal
definition can be found in the full version or in the papers [19,17,12,18,27].
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KG(1k) :
(pub, pri) ← RSetup(1k)
(pk, sk) ← XKG(pub, pri)
Return (pk, sk)

Enc(pk) :
w ← W
(u, s) ← RSamp(w)
tag ← TCR(u)
π ← Pub(pk, tag, w)
c ← (u, π); K ← G(s)
Return (c,K)

Dec(sk, c) :
(u, π) ← c; tag ← TCR(u)
s ← Ext(sk, tag, u, π)
If s = ⊥ then return ⊥
Return K ← G(s)

MSetup(1k) :
(pub, pri) ← RSetup(1k)
Return pub

MKG(pub) :
dummy ← T
(pk, ŝk) ← X̂KG(pub, dummy)

SK ← (ŝk, dummy)
Return (pk, SK)

MExt(pki, c) :
(u,π) ← c; (π1, . . . , πn) ← π
Return ci ← (u, πi)

MEnc(pk) :
(pk1, . . . , pkn) ← pk
w ← W
(u, s) ← RSamp(w)
tag ← TCR(u)
πi ← Pub(pki, tag, w)

for i ∈ [n]
π ← (π1, . . . , πn)
c ← (u,π); K ← G(s)
Return (c,K)

MDec(SKi, ci) :

(ŝki, dummyi) ← SKi; (u, πi) ← ci; tag ← TCR(u)

If tag �= dummyi and s = Êxt(ŝki, tag, u, πi) �= ⊥
then return K ← G(s) else return ⊥

Fig. 7. The (single-recipient) KEM Γ1 (left) and the MR-KEM ΓM (right)

CCA Security. Wee [27] showed the following.4

Theorem 3. ([27]) If R is a gap one-way relation family, XR is an ABO-XHPS, and
TCR is a TCRHF, then the KEM Γ1 is CCA secure.

We show that the same KEM Γ1 can be proved in the following way, without using a
“gap” one-way relation family.

Theorem 4. IfR is a one-way relation family, XR is an ABO-XHPS which satisfies CS
security, and TCR is a TCRHF, then the KEM Γ1 is CCA secure.

Intuition. To ensure that the real challenge keyK∗
1 = G(s∗) looks random for a CCA ad-

versaryA, we have to use pseudorandomness of the generatorG of the one-way relation
R. However, the reduction algorithm B, who attacks pseudorandomness of G, needs to
simulate the CCA experiment for A without knowing the private parameter pri or the
randomness w∗ used to sample (u∗, s∗) ∈ Rpub. B therefore simulates the CCA exper-

iment for A by using the all-but-one mode of the ABO-XHPS X . The P̂riv algorithm
enables B to generate the challenge ciphertext c∗ = (u∗, π∗) correctly, using ŝk output

from X̂KG(pub, tag∗) where tag∗ = TCR(u∗). However, since we do not use “gap”
one-way relation family, B does not have access to the relation oracle Rpub, and thus
cannot check inconsistency of a ciphertext by itself. Here, CS security of X guarantees
that even if A submits an invalid ciphertext c = (u, π) with Hpk(TCR(u), u) �= π, the

Êxt algorithm almost perfectly works like the Ext algorithm in the real decapsulation
algorithm in Dec of Γ1. In doing so, the TCRHF TCR enables B to always use Êxt,

4 As we have mentioned, Wee’s definition of ABO-XHPS in [27] requires stronger correctness
for Êxt algorithm. However, CCA security of the ABO-XHPS-based KEM can be shown with-
out this requirement.
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so that the problematic situation where tag = TCR(u) = tag∗ never occurs. Then, in-
distinguishability of two modes guarantees that A’s behavior cannot be non-negligibly
different between the case in which the experiment is simulated by B with the all-but-
one mode, and the case in which A is in the original CCA experiment.

CCCA Security. We show that the KEM Γ1 based on the ABO-XHPS X is CCCA secure,
when X is PR-Ext secure.

Theorem 5. If R is a one-way relation family, XR is an ABO-XHPS which satisfies
PR-Ext security, and TCR is a TCRHF, then the KEM Γ1 is CCCA secure.

Intuition. The intuitive explanation on the proof of this theorem is very close to that of
Theorem 4. The difference is that we can no longer expect that the Êxt algorithm can be
used to reject an invalid ciphertext c = (u, π) with π �= Hpk(TCR(u), u), because X is
not guaranteed to be CS secure. However, recall that PR-Ext security of X guarantees
that an extracted value s from an invalid input is a pseudorandom value in S, which in
turn guarantees thatK = G(s) ∈ K is also pseudorandom and thus unpredictable to the
adversaryA. Recall also that a valid CCCA adversary has to control its “uncertainty” to
be negligible. These help thatA’s CDEC query with an invalid ciphertext is “implicitly”
rejected, and thus the main reduction algorithm B’s simulation of the CCCA experiment
forA are guaranteed to be almost perfect.

5.2 Multi-Recipient KEM

Here, we show how to construct a MR-KEM using ABO-XHPS. Using the same build-
ing blocks (R,X , and TCR) as in Γ1, we construct a MR-KEM ΓM = (MSetup,MKG,
MEnc,MExt,MDec) as in Fig. 7 (right).

The main feature of the MR-KEM ΓM is that we use the all-but-one mode of the
underlying ABO-XHPS X even for normal operations, namely, each user’s key is setup
with X̂KG using a “dummy tag” dummy. This is to setup users’ keys without using the
private parameter pri corresponding to pub, which makes it possible to share pub with
many users. Since Êxt cannot extract a value when it is invoked with the tag that is
used to generate ŝk, the decapsulation algorithm MDec rejects a user i’s ciphertext c =
(u, πi) satisfying TCR(u) = dummy, even if c is honestly generated by using MEnc.
Therefore, our MR-KEM ΓM does not have perfect correctness. However, it satisfies
almost-correctness: The information on dummy in a user’s secret key is information-
theoretically hidden from entities other than the user who holds dummy. Therefore, it
is hard to find a ciphertext c = (u,π) that satisfies TCR(u) = dummy, regardless of
the validity of c.

Hiwatari et al. [16] proposed two MR-KEMs. Their first scheme, which is CCA se-
cure, is based on the KEM by [6, Sect. 5.2], while their second scheme, which is CCCA
secure, is based on the KEM by [13, Sect. 5]. Both of their schemes can be seen as con-
crete instantiations of the MR-KEM ΓM : Their first one is based on the ABO-XHPS
XCKS, while their second one is based on the ABO-XHPS XHaKu. From another view-
point, our MR-KEM based on ABO-XHPS is a generalization of Hiwatari et al.

Theorem 6. IfR is a one-way relation, XR is an ABO-XHPS which satisfies CS secu-
rity, and TCR is a TCRHF, then the MR-KEM ΓM is CCA secure.
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Theorem 7. If R is a one-way relation, XR is an ABO-XHPS which satisfies PR-Ext
security, and TCR is a TCRHF, then the MR-KEM ΓM is CCCA secure.

The proofs proceed similarly to those of Theorems 4 and 5. The difference is that here,
we start from the situation in which each user’s key is generated by X̂KG with dummy
tag dummy, while in the proofs of Theorems 4 and 5, we started from the situation in
which each user’s key is generated by XKG. We also have to deal with the difference
between multi-recipient (n users) and single-recipient environments, but this can be
essentially dealt with users’ key-wise hybrid argument.

6 Discussion

Capturing a Wider Class of Constructions and Security Proofs. We see that by our
results, the framework of KEMs based on ABO-XHPS captures most practical (C)CCA
secure KEMs. Concretely, many existing CCA secure KEMs can be seen as concrete
instantiations derived from our extended framework, which include KEMs by Boyen et
al. [5], Cash et al. [6, Sect. 5.2], and Hanaoka and Kurosawa [13, Sect. 4], and the CCCA
secure KEMs by Hofheinz and Kiltz [17] and Hanaoka and Kurosawa [13, Sect. 6].

Interestingly, the extraction mode of the ABO-XHPS XCKS based on the Cash et al.
KEM [6, Sect. 5.2] is exactly the same as that of the CS secure ABO-XHPS obtained
via the transformation (Theorem 2) using the PR-Ext secure ABO-XHPS XHoKi and
the wCS secure ABO-XHPS XKiltz. Therefore, Theorems 2 and 4 provide us with an
alternative proof of CCA security of Cash et al. KEM, without using the trapdoor test
theorem [6, Theorem 2]. We see that this is a concrete evidence that our results are use-
ful for understanding constructions and security proofs of practical CCA secure KEMs
in a modular manner.

As is the same with the original framework [27], our results also work for k-wise
product relation (i.e. k-independent copies of relation families). This extension is useful
to capture hardcore bit-based constructions of KEMs in the framework of ABO-XHPS.
However, the clear disadvantage of this approach is that the ciphertext size of the KEM
derived from the ABO-XHPS for the k-wise product relation becomes linear in k.

Strictly speaking, ours (and the original framework in [27]) still does not capture
the CCA secure KEMs whose session-key is derived using hardcore bits but whose ci-
phertext size is constant (e.g. [13,14,15,29]). Technically, the security proofs of these
KEMs require hybrid argument to replace the real session-key bit-by-bit to finally reach
the game in which the real session-key is truly random (and thus an adversary has
zero advantage), while the security proofs of the ABO-XHPS-based KEMs in our work
and in [27], do not allow this approach. Moreover, it seems to us that how to derive
many hardcore-bits in each scheme is quite dependent on the algebraic structure of
the constructions. However, we note that at least the “basic structures” of the KEMs
in [15,29], which do not consider hardcore-bit-based session-key derivation but derive
key by considering “the corresponding (hashed version of) decisional problems, can
be seen as concrete instantiations from our extended framework. To extend the frame-
work of ABO-XHPS-based KEMs further to capture these constructions will be worth
tackling.
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New Instantiations of (MR-)KEMs. Due to Theorems 4, 5, 6, and 7, we can derive
a number of new (C)CCA secure (MR-)KEMs. Specifically, due to Theorem 2, we can
construct a CS secure ABO-XHPS from a PR-Ext secure ABO-XHPS and a wCS secure
ABO-XHPS, or from two PR-Ext secure ABO-XHPS via Theorem 1 (i.e. one of the
two ABO-XHPS is treated as a wCS secure ABO-XHPS). Therefore, using the ABO-
XHPS we show in Section 4, we can derive a number of variants of KEMs [8,6,12]:
we can obtain a CS secure ABO-XHPS by the combination of XHoKi and XKiltz (which
happens to be essentially identical to XCKS as mentioned above) and the combination of
XHaKu and XKiltz. We can also obtain a new CS ABO-XHPS by combining XHoKi and
XHaKu, two independent instances of XHoKi, and two independent instances of XHaKu.
Then, from these CS secure ABO-XHPS, we derive new CCA secure KEMs and MR-
KEMs, due to Theorems 4 and 6, respectively.

Furthermore, we can also obtain a number of practical MR-KEMs from existing
ABO-XHPS. For example, from the CS secure ABO-XHPS based on the KEM by
Boyen et al. [5] (which can be found the full version), we obtain a CCA secure MR-
KEM based on the DBDH assumption whose ciphertext size is n + 1 group elements
when sending to n recipients. This construction is the most efficient CCA secure MR-
KEM in terms of ciphertext size. Moreover, by using the factoring-based ABO-XHPS
shown in [27, Sect. 4.2] (which is CS secure), we obtain a CCA secure factoring-based
MR-KEM which is more efficient than the construction that naively concatenates the
ciphertexts from a single-recipient KEM by Hofheinz and Kiltz [18].

Finally, we stress that the advantages of our results are not only the efficiency of the
concretely derived (MR-)KEMs, but also the strengthening of the framework of [27],
which we believe is useful for future design of (C)CCA secure (MR-)KEMs.
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Abstract. We revisit the notions of robustness introduced by Abdalla,
Bellare, and Neven (TCC 2010). One of the main motivations for the
introduction of strong robustness for public-key encryption (PKE) by
Abdalla et al. is to prevent certain types of attack on Sako’s auction
protocol. We show, perhaps surprisingly, that Sako’s protocol is still vul-
nerable to attacks exploiting robustness problems in the underlying PKE
scheme, even when it is instantiated with a strongly robust scheme. This
demonstrates that current notions of robustness are insufficient even for
one of its most natural applications. To address this and other limitations
in existing notions, we introduce a series of new robustness notions for
PKE and explore their relationships. In particular, we introduce complete
robustness, our strongest new notion of robustness, and give a number
of constructions for completely robust PKE schemes.

Keywords: Robustness, Anonymity, Public-key encryption, Security
proofs.

1 Introduction

A commonly pursued goal in cryptography is message privacy, which is typically
achieved by means of encryption. In recent years, the privacy of users has be-
come an equally relevant concern. It has led the research community to strive
for anonymity properties when designing cryptographic primitives. In public-key
encryption, in particular, key-privacy (a.k.a. receiver anonymity) was introduced
in [4] to capture the idea that a ciphertext does not leak any information about
the public key under which it was created, thereby making the communication
anonymous. In this context, Abdalla, Bellare, and Neven [2] raised a fundamen-
tal question: how does a legitimate user know if an anonymous ciphertext is
intended for him? Moreover, what happens if he uses his secret key on a cipher-
text not created under his public key? To address this question, Abdalla et al.
formalized a property called robustness, which (informally speaking) guarantees
that decryption attempts fail with high probability if the “wrong” private key
is used. They argued that, in all applications requiring anonymous public-key
encryption, robustness is usually needed as well. These applications include auc-
tion protocols with bid privacy [23], consistency [1] in searchable encryption [7]
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and anonymous broadcast encryption [3,21]. As shown by Mohassel [22], ro-
bustness is also important in guaranteeing the anonymity of hybrid encryption
schemes resulting from the combination of anonymous asymmetric and symmet-
ric components.

1.1 Robust Public-Key Encryption

Robustness ensures that a ciphertext cannot correctly decrypt under two differ-
ent secret keys. This notion has (often implicitly) been present in the literature
(e.g., [23,7,9,19,3]), but formal definitions remained lacking until the recent foun-
dational work of Abdalla et al. [2]. In particular, Abdalla et al. introduced two
flavors of encryption robustness: weak and strong robustness.

Weak robustness is modeled as a game in which a winning adversary outputs
a valid message M and two distinct public keys pk0 and pk1 such that the
encryption of M under pk0 decrypts to a valid message under sk1, the secret
key corresponding to pk1. This notion is of interest since it precisely addresses
the issue of using the wrong key that arises in anonymity contexts (such as
anonymous broadcast encryption [3,21], for instance), but it is also useful in
achieving the stronger notion of strong robustness.

Strong robustness—also called SROB-CCA when the adversary has access
to a decryption oracle—allows for a more powerful adversary which chooses
a ciphertext C (as opposed to a message which will be honestly encrypted)
and two distinct public keys, and wins if C decrypts to a valid message under
both corresponding secret keys. In [2] the need for this notion is motivated by
scenarios where ciphertexts can be adversarially chosen. The authors of [2] give
Sako’s auction protocol [23] as an example of such a situation, explaining that
strong robustness is required in order to prevent an attack on the fairness of this
protocol by a cheating bidder and a colluding auctioneer.

As pointed out by Abdalla et al. [2], merely appending the receiver’s public
key to the ciphertext is not an option for providing robustness, since it destroys
key-privacy properties. Abdalla et al. also showed that the seemingly natural
solution of using an unkeyed redundancy function to modify the message be-
fore encryption does not achieve even weak robustness, thus demonstrating the
non-triviality of the problem. They then gave several anonymity-preserving con-
structions to obtain both weak and strong robustness for public-key encryption.
Using a simple tweak, they also showed how to render the Cramer–Shoup cryp-
tosystem [12] strongly robust without introducing any overhead.

More recently, Mohassel [22] studied robustness in the context of hybrid
encryption [13]. He showed that weak robustness (and not only anonymity)
is needed in the asymmetric part of a hybrid encryption scheme to ensure
anonymity of the overall scheme. Mohassel also considered relaxations, called
collision-freeness, of both weak and strong robustness. He showed that many
constructions in the literature are natively collision-free and showed how to
generically turn any weakly (resp., strongly) collision-free scheme into a weakly
(resp., strongly) robust one.
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1.2 Our Contributions

The need for stronger definitions. In this paper, we argue that some
applications require even stronger forms of robustness than those considered
in [2,22]. The first such application is, perhaps surprisingly, the construction of
auction protocols with bid privacy, like that of Sako [23]. Recall that this was
one of the initial motivations for analyzing robustness in [2]. Strong robustness
actually turns out not to suffice for thwarting attacks against the fairness of
Sako’s auction protocol [23]: strong robustness assumes honestly generated pub-
lic keys whereas, if the auctioneer can collude with cheating bidders (as assumed
in [2]), what really needs to be considered is an adversary who can maliciously
generate ciphertexts and the public keys. To illustrate this, we show an at-
tack on the fairness of Sako’s protocol when instantiated with CS�, a variant of
the Cramer–Shoup encryption scheme which was proven to be key-private and
strongly robust in [2]. This observation, then, motivates us to introduce notions
of robustness where keys may be maliciously generated. We do not offer a full
treatment of the delicate issue of fairness in auction protocols and its relation
to robustness, since that is beyond the scope of this paper. Rather, as with [2],
we use Sako’s protocol as a motivation for introducing and studying stronger
robustness notions.

The limitations of existing robustness notions, and therefore the motivation
for this work, are not solely restricted to Sako’s protocol. For instance, existing
notions are not necessarily strong enough to provide robustness guarantees if
the scheme is used to encrypt key-dependent messages [6] or messages encrypted
under related keys [5]. This is because the adversary is denied access to the
secret keys in these notions. The strongest of our new notions gives the adversary
sufficient power and automatically provides robustness in these more challenging
settings.

New notions of robustness and their relations. Our strongest new no-
tion is called complete robustness (CROB) and is obtained by progressively
removing various restrictions on adversarial capabilities in the strong robustness
security model. First, we give access to honestly generated secret keys and arrive
at an intermediate notion which we term unrestricted (strong) robustness (US-
ROB). Next, we also remove the honest key-generation requirement to get to the
notion of full robustness (or FROB for short). We then view robustness in terms
of the behavior of the encryption and decryption algorithms with respect to each
other, and obtain our CROB notion. Roughly speaking, in CROB, the adversary
should not be able to find “collisions” in the scheme beyond those which are al-
ready implied by the correctness property of the scheme. For example, he should
not be able to “explain” a ciphertext C of his choice as an encryption under
two different adversarially chosen public keys pk0, pk1 by revealing the plaintext
and the encryption coins for pk0 and the secret key sk1 for pk1. As we will see,
full robustness can be viewed as the “decryption-only part” of CROB. Another
natural notion of robustness, which we call key-less robustness (KROB), arises
as the dual notion corresponding to the “encryption-only part” of CROB, and is
also implied by CROB. Finally, XROB is a “mixed” notion derived from FROB
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Fig. 1. Relations among notions of robustness

and KROB that has no natural interpretation but is a useful tool in establishing
results about these notions.

We next study how these new notions of robustness relate to each other and to
existing notions. Figure 1 summarizes the main relations that we prove between
our new and existing robustness notions. In this figure, the lack of an impli-
cation between two notions should be interpreted as meaning that we prove a
separation. Thus, for example, we will show that CROB is strictly stronger than
FROB. It is apparent from the figure that we provide a complete account of the
pairwise relations between the various robustness notions. In addition to these
relations, we can prove several pairwise separations. For example, we will show
that no two of the three notions from {FROB,KROB,XROB} are sufficient to
prove CROB, but that their combination is. Thus we obtain a characterization
of CROB in terms of the three intermediate notions. These separations are not
displayed in the figure for ease of visual presentation.

That robustness can come in so many flavors may be unsettling to some
readers. Certainly, one should not seek to clutter the definitional landscape un-
necessarily. Yet, with the exception of XROB, all of our notions arise as natural
generalizations of the existing notions. Exploring their relations is then a natural
endeavor. This is not so different from the situation for, say, confidentiality and
anonymity notions for public-key encryption, where we now have many different
security definitions and developing an understanding of their relations has taken
several years.

Constructions of completely robust encryption. Having defined CROB
and its weaker relatives, we prove it to be achievable via a variety of efficient
and natural constructions.

We first show that the generic construction for strong robustness presented
in [2] is already powerful enough as to also achieve CROB. Further, we ob-
serve that a slight modification of this transformation allows dispensing with
the weak robustness assumption—which was necessary in [2]—on the underly-
ing PKE scheme. Moreover, we point out that the random-oracle-based generic
transformation of Mohassel [22] also achieves CROB.
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In the standard model, we also answer in a positive sense a question left
open in [2] as to whether the Canetti–Halevi–Katz [11] (CHK) paradigm—which
is known to provide chosen-ciphertext secure cryptosystems from weakly se-
cure identity-based encryption (IBE) schemes—can be leveraged to construct
systems that are simultaneously anonymous and offer message privacy under
chosen-ciphertext attacks (AI-CCA security) and are robust in a strong sense.
Answering this question is non-trivial: Abdalla et al. pinpointed that applying
the one-time-signature-based CHK transformation to, say, the Boyen–Waters
IBE [10] does not provide SROB-CCA or even SROB-CPA. Here, we show how
to obtain AI-CCA-secure, completely robust PKE schemes from weakly secure
IBE schemes. Our construction is a variant of the Boneh–Katz construction
for chosen-ciphertext security [8], and it only requires the underlying IBE to
satisfy a weak level of security under chosen-plaintext attacks. In comparison,
the most powerful transformation of [2] must start from a scheme that is al-
ready AI-CCA-secure to achieve a comparable result. Because our technique
simultaneously provides complete robustness and AI-CCA security, it enjoys
better efficiency than applying the strongest robustness-conferring transforma-
tion of [2] to an AI-CCA-secure scheme obtained from the original Boneh–Katz
transformation.

Finally, we also ask whether we can improve upon the efficiency of generic
constructions with concrete schemes whose security rests on specific compu-
tational assumptions. By giving a concrete construction of a scheme that is
CROB and AI-CCA-secure, we present a different and potentially more effi-
cient way of directly achieving CROB for certain hybrid encryption schemes
such as the Hofheinz–Kiltz [17] or Kurosawa–Desmedt [20] schemes. To do so,
we take advantage of certain properties in the underlying symmetric compo-
nents. Namely, we consider hybrid schemes that build on the encrypt-then-MAC
paradigm in their symmetric part to obtain a suitably secure symmetric cipher.
We show that, if the message authentication code (MAC) is what we call commit-
ting, then a simple modification in the hybrid scheme gives complete robustness
without any significant computational overhead. The use of committing MACs
readily extends as a tool to design AI-CCA-secure CROB hybrid constructions
via the KEM/DEM framework [13]. Concretely, Mohassel [22] showed that the
KEM/DEM framework gives an AI-CCA-secure hybrid encryption scheme when
the KEM component is weakly robust and AI-CCA, and the DEM component
is an authenticated symmetric encryption scheme. If the latter part is further-
more realized using the encrypt-then-MAC approach with a committing MAC,
we easily obtain complete robustness as well. As we will see, the committing
MAC technique can also offer certain advantages.

Taken altogether, our constructions achieving CROB rely on different building
blocks and, when fully instantiated, allow us to rely on a variety of different
hardness assumptions. They demonstrate that CROB, while providing strong
guarantees, is attainable in an efficient and flexible manner.

Organization. We start by highlighting the limitations of previous notions
of robustness in Section 2. Section 3 presents our new notions. In Section 4,
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we study the relations among notions of robustness. We describe our generic
constructions in Section 5 and give an efficient construction in Section 6. We
close by some concluding remarks in Section 7. Many details and all proofs are
deferred to the full version [15].

2 Strong Robustness Does Not Suffice for Auction
Protocols

Sako’s auction protocol [23] was the first practical protocol to ensure bid pri-
vacy, i.e., to hide the bids of losers. The basic idea is as follows. Let V =
{v1, ..., vN} be the set of possible bid values. The auctioneer prepares N key-
pairs (sk i, pk i)i∈{1,...,N} and publishes the N public keys. To bid for a value vi
a bidder encrypts a pre-determined message M under the public key pk i. This
is signed and posted by the bidder. To open a bid the auctioneer attempts to
decrypt the encrypted bids one by one using skN . If at least one decrypts to M ,
the auctioneer publishes the winning bid vN , a list of all the winning bidders
and the secret key skN for the bidders to verify correctness of the result. If no
decryption returnsM , the auctioneer repeats the procedure using skN−1, and so
on. For the auction to hide the bid values, the underlying public-key encryption
scheme needs to be key-private, in the sense of [4].

In [23], Sako provided an example of an auction protocol scheme based on
the ElGamal public-key encryption scheme, which is key-private. In [2], Abdalla
et al. gave an attack which allows a cheating bidder and a colluding auctioneer
to break the fairness of the protocol. This attack is based on the fact that
the ElGamal scheme is not robust and therefore the auctioneer can open the
cheating bidder’s bid to an arbitrary (winning) value. To prevent this attack,
the authors of [2] suggest using any strongly robust scheme (strong robustness,
instead of simply weak robustness, is required since the ciphertexts are generated
adversarially; see [2,15] for the details).

We show that strong robustness is not sufficient to prevent an attack of the
above type on Sako’s protocol. More precisely, in [15, Appendix C] we present an
attack on the protocol when it is instantiated with a variant of the Cramer–Shoup
encryption scheme, CS�, which is known to be key-private and strongly robust
(the latter result was proved in [2]). Just as with the attack of Abdalla et al. [2],
the attack we present assumes a cheating bidder and a colluding auctioneer.
The key idea behind the attack is that an auctioneer can maliciously prepare
the public keys so that the cheating bidder’s encryption decrypts to M under
any secret key.

This attack shows that strong robustness is not enough to guarantee fairness
in Sako’s auction protocol. Intuitively what is needed here is a form of robustness
wherein all the public keys and ciphertexts in the system may be adversarially
generated. In the coming sections we will formalize stronger notions of robustness
which rule out such attacks.
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3 New Notions of Robustness

3.1 A Direct Strengthening: Full Robustness

Recall that an SROB adversary has to output a ciphertext C and two public
keys pk0 and pk1 such that C decrypts to a message M0 under (sk0, pk0) and
a message M1 under (sk1, pk1). The notion poses three restrictions on the ad-
versary: (1) pk0 and pk1 have to be distinct; (2) The corresponding secret keys
cannot have been queried by the adversary; (3) The public keys are honestly
generated.

The first condition is inherent to modeling the behavior of an encryption
scheme when used on different public keys, and removing it would make it trivial
for an adversary to win.

We now look at the notion resulting from the removal of the second restric-
tion, i.e., when the adversary is allowed to query secret keys even for the finally
output public keys. We call this notion unrestricted strong robustness (USROB).
This notion is powerful enough to model scenarios where keys are honestly gen-
erated, but an adversary may know the secret keys. This, for example, includes
robustness for the encryption of key-dependent messages as discussed in the
introduction.

However, as we have seen in the previous section, if an adversary can con-
trol the generation of keys, it may be unreasonable to assume that it can only
generate the keys honestly. We therefore can strengthen USROB further by re-
moving the third restriction on the adversary. We, however, ask the adversary
to return secret keys for the public keys that it chooses. Two points deserve
further attention at this point. First, returning the secret keys is to allow for
a polynomial-time game definition which is not excessively strong. Second, we
do not require the secret keys to be valid. Indeed, it is the responsibility of the
decryption algorithm to check that the key-pair it receives is valid. Note that
as a result of removing the two restrictions, the adversary has now full con-
trol over the keys, and we no longer need to provide the adversary with the
oracles present in the SROB and USROB games. These modifications result in
a simple, but strong, notion we call full robustness (FROB), and formalize in
Figure 2.

proc Initialize

pars ←$ PG
Return pars

proc Finalize(C,pk0, pk1, sk0, sk1) // FROB

If (pk0 = pk1) Then Return F
M0 ← Dec(pars , pk0, sk0, C)
M1 ← Dec(pars , pk1, sk1, C)
Return (M0 �=⊥) ∧ (M1 �=⊥)

Fig. 2. Game defining full robustness
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3.2 A Unified Approach: Complete Robustness

At this point it can be asked if there are attacks which fall outside the FROB
model. To answer this question, we take a somewhat different approach towards
robustness and view it in terms of the behavior of the encryption and decryption
routines of a scheme with respect to each other. In fact, this is the underlying
intuition behind not only the original weak robustness notion,1 but also the
standard correctness criterion for a PKE scheme (albeit for a single key). This
leads us to a new notion which we term complete robustness (CROB). In this
game the shared parameters of the system are passed to an adversary, which then
arbitrarily interacts with the encryption and decryption routines on plaintexts,
ciphertexts, keys, and even random coins of its choice. Its goal is to find an
“unexpected collision” in the cryptosystem (i.e., one outside that imposed by
the correctness criterion). We formalize the CROB game in Figure 3.

proc Initialize

List ← [ ]
pars ←$ PG
Return pars

proc Enc(pk ,M, r)

C ← Enc(pars , pk ,M ; r)
List ← (pk ,M,C) ∪ List

proc Dec(pk , sk , C)

M ← Dec(pars , pk , sk , C)
List ← (pk ,M,C) ∪ List

proc Finalize() // CROB

For (pk0,M0, C0), (pk1,M1, C1) ∈ List
If (C0 = C1 �=⊥) ∧ (pk0 �= pk1)∧
(M0 �=⊥ ∧M1 �=⊥) Return T

Return F

Fig. 3. Game defining complete robustness

Key-less robustness. It can be seen through an easy inspection that full
robustness is a sub-case of complete robustness where the adversary is restricted
to querying the Dec oracle. One can also consider the dual case where the
adversary only queries the Enc oracle. This results in a new notion which we
call key-less robustness (KROB). Key-less robustness differs from full robustness
in that an adversary no longer needs to return any secret keys, but instead
“opens” a ciphertext by providing the random coins and the message used in
the encryption. More precisely, the adversary outputs two messages, two distinct
public keys and two sets of random coins, and its goal is to invoke a collision in
the encryption algorithm. The game is shown in Figure 4.

In the next section we give a complete treatment of relations among different
notions.

Identity-based encryption. In the IBE setting the identities (analogous to
public keys in the PKE setting) are already chosen maliciously, while the natural
extension of our notions would allow the adversary to also choose the IBE mas-
ter keys maliciously. In particular, the identity-based analogue of FROB would
be strong enough to guarantee well-addressedness according to the definition
proposed by Hofheinz and Weinreb [18] (see also [15, Appendix B]), whereas

1 This then disappears in the SROB game as the adversary outputs ciphertexts.
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proc Initialize

pars ←$ PG
Return pars

proc Finalize(M0,M1, pk0, pk1, r0, r1) // KROB

If (pk0 = pk1) Then Return F
C0 ← Enc(pars ,M0, pk0; r0)
C1 ← Enc(pars ,M1, pk1; r1)
Return (C0 = C1 �=⊥)

Fig. 4. Game defining key-less robustness

SROB-CCA may not always do so. We leave the further development of the
ID-based setting to future work.

4 Relations among Notions of Robustness

We now study how the various notions of robustness relate to each other. Starting
with complete robustness, it may be asked if KROB and FROB are strong enough
together to jointly imply CROB. We show that this is not the case. Indeed,
there is a third “mixed” notion of robustness implicit in CROB, which we term
XROB and formalize in Figure 5. As the next theorem shows, the XROB notion
is necessary in the sense that it is not implied by KROB and FROB together.

In fact, no pair of the notions from {FROB,KROB,XROB} implies the third.
Furthermore, the conjunction of all three notions is sufficient to imply CROB.

Theorem 1 (CROB characterization). A PKE scheme is CROB if and only
if it is simultaneously FROB, KROB, and XROB. Furthermore, no combination
of at most two of FROB, KROB, and XROB is sufficient to provide the CROB
guarantees.

We prove the theorem via a sequence of propositions in [15, Appendix E].

proc Initialize

pars ←$ PG
Return pars

proc Finalize(M0, pk0, r0, C1, pk1, sk1) // XROB

If (pk0 = pk1) Then Return F
C0 ← Enc(pars ,M0, pk0; r0)
M1 ← Dec(pars , pk1, sk1, C1)
Return (C0 = C1) ∧ (M0 �=⊥) ∧ (M1 �=⊥)

Fig. 5. Game defining mixed robustness

As a next step we study how our new notions relate to the existing notions
from Abdalla et al. [2]. Since USROB is a natural intermediate notion, for the
sake of completeness, we also investigate where it stands in relation to existing
notions. We start by observing that FROB =⇒ USROB =⇒ SROB-CCA as
the adversary becomes progressively more restricted in each game. Moreover, in
the first part of the following theorem, we show that USROB is strictly stronger
than SROB-CCA, and that FROB is strictly stronger than USROB. In the sec-
ond part of the theorem we show that KROB does not even imply WROB-CPA,
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separating this notion from all notions other than complete robustness. Finally,
we show XROB implies WROB-CCA but not SROB-CPA. Hence XROB can
be seen a strengthened version of weak robustness in a direction orthogonal to
strong robustness.

Theorem 2 (Relation with WROB and SROB). Let PKE be a PKE scheme.
We have the following.

– FROB: If PKE is FROB, then it is also USROB. If PKE is USROB then
it is also SROB-CCA. Moreover, these implications are strict.

– KROB: KROB does not imply WROB-CPA and SROB-CCA does not imply
KROB.

– XROB: If PKE is XROB, then it is also WROB-CCA. Furthermore, XROB
does not imply SROB-CPA and SROB-CCA does not imply XROB.

We prove the theorem in [15, Appendix F]. The results of [2] together with The-
orems 1 and 2 resolve all the relations between any pair of robustness notions as
we have summarized in Figure 1. For example, to see that KROB �=⇒ FROB,
we use the facts that FROB =⇒ SROB-ATK but KROB ∧ XROB �=⇒
SROB-ATK. Moreover, although we do not formally prove it here, all our sepa-
rating examples are designed such that they preserve the AI-ATK security of the
underlying PKE schemes. Hence Figure 1 also applies in the presence of AI-ATK
security.

5 Generic Constructions of Completely Robust
Public-Key Encryption

5.1 Mohassel’s Transformation

Mohassel [22] gives a generic transformation in the random-oracle model that
converts an AI-ATK encryption scheme into one which is SROB-CCA with-
out compromising its AI-ATK security. This construction also achieves complete
robustness. In this construction, the hash value H(pk , r,M), where r is the ran-
domness used in the encryption, is attached to ciphertexts. This immediately
rules out all forms of collisions between ciphertexts, as the hash values are un-
likely to collide on two distinct public keys.

5.2 The ABN Transformation

In [2, Theorem 4.2] the authors give a generic construction for a scheme PKE
which confers strong robustness and preserves the AI-ATK security of the start-
ing scheme PKE , provided that the latter scheme is additionally WROB. We
briefly describe how the transformation works, and refer the reader to the orig-
inal work for the details. At setup, include in pars for PKE the parameters of a
commitment scheme (see [15, Appendix G] for the definitions). When encrypt-
ing, commit to the public key, and encrypt the de-commitment along with the
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message. Also include the commitment as a ciphertext component. Decryption
checks the commitment/de-commitment pair for consistency and rejects if this
is not the case. We strengthen the result of [2], showing that this construction
achieves complete robustness:

Theorem 3 (The ABN transformation achieves CROB). Let A be a PPT
CROB adversary against PKE . Then there exist PPT adversaries B1, B2, and
B3 against the binding property of CMT such that

Advcrob
PKE(A) ≤ Advbind

CMT (B1) +Advbind
CMT (B2) +Advbind

CMT (B3).

The proof of this theorem is given in [15, Appendix H], where we show scheme
PKE is simultaneously FROB, KROB, and XROB.

5.3 A Modification of the ABN Transformation

While the original transformation [2] does provide AI-ATK and CROB guaran-
tees, the AI-ATK security of the transformed scheme PKE relies on the weak
robustness of the underlying encryption scheme PKE in the case of chosen-
ciphertext adversaries (i.e., when ATK = CCA). We show that, if the under-
lying encryption scheme supports labels [24] (in which case the encryption and
decryption algorithms both take an additional public string L as input; see [15,
Appendix A]), this assumption can be eliminated and we only need PKE to be
AI-ATK-secure.

Although the weak robustness assumption is not too demanding in theory
(since any encryption scheme can be made weakly robust by means of a keyed
redundancy-based transformation [2]), our construction provides better efficiency
in some settings since many AI-CCA encryption schemes, such as the Cramer–
Shoup or the Kurosawa–Desmedt scheme, natively support labels.2

Our transformation, which relies on a commitment scheme CMT consisting
of algorithms (CPG,Com,Ver), is as follows.

PG(1λ): Run pars ←$ PG(1λ) to obtain public parameters pars for PKE . Then,
generate cpars ←$ CPG(1λ) for CMT . Finally, return (pars , cpars).

KG(pars , cpars): Compute and return (sk , pk)←$ KG(pars).

Enc
(
(pars , cpars), pk ,M

)
: The algorithm proceeds in two steps.

1. Commit to pk by computing a pair (com, dec)←$ Com(cpars , pk ).
2. Encrypt M‖dec under the label L = com by setting the ciphertext C to

be Enc(pars , pk ,M‖dec, L).
Return (C, com) as the final ciphertext.

Dec
(
(pars , cpars), pk , sk , (C, com)

)
: The algorithm proceeds in two steps.

2 In the worst case, labeled public-key encryption schemes can always be obtained by
appending the label to the encrypted plaintext and checking whether the correct
label is recovered at decryption.
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1. Compute M ′ ← Dec
(
pars , pk , sk , (C, com), L

)
, with L = com. Then,

parse M ′ as M‖dec (and return ⊥ if M ′ cannot be parsed properly).
2. Return M if Ver(cpars , pk , com, dec) = 1. Else return ⊥.

Theorem 4, whose proof is in [15, Appendix I], shows that thanks to the use of
labels, we do not have to rely on any weaker form of robustness of PKE when
proving the AI-ATK security of PKE .
Theorem 4. If PKE is AI-ATK-secure and CMT is a hiding commitment,
then PKE is AI-ATK-secure. More precisely, for any PPT AI-ATK adversary
A against PKE , there exists a PPT AI-ATK adversary B1 against PKE and a
PPT distinguisher B2 against CMT such that

Advai-atk
PKE (A) ≤ 2 ·Advai-atk

PKE (B1) +Advhide
CMT (B2).

Furthermore, the above construction is CROB if CMT is a binding commitment.
More precisely, for any PPT CROB adversary A, there exists a PPT adversary
B against the binding property of the commitment scheme such that

Advcrob
PKE(A) ≤ Advbind

CMT (B).

5.4 Completely Robust AI-CCA-Secure PKE from Selectively
Secure IBE

Next, we present a modification of the Boneh–Katz approach [8] which provides
both CROB and AI-CCA security when applied to any IBE scheme that only pro-
vides TA anonymity in the multi-authority selective-ID setting (or sID-TAA-CPA
security, as defined in [15, Appendix J]). In particular, this positively answers
the question of whether CHK-like techniques can be used to achieve a strong
flavor of robustness from weakly secure IBE.

Let IBE be an sID-TAA-CPA secure IBE scheme. We obtain a completely
robust AI-CCA-secure public-key encryption scheme PKE by combining IBE
with a strongly secure message authentication code MAC and a trapdoor com-
mitment scheme T CMT .

Recall that a trapdoor commitment scheme T CMT consists of efficient al-
gorithms (CPG,Com,Ver,Equiv) where (CPG,Com,Ver) function as in an or-
dinary commitment except that CPG outputs public parameters cpars and a
trapdoor td . In addition, Equiv allows equivocating a commitment using the
trapdoor td : for any two messages m1,m2 and any tuple (com, dec1) produced
as (com, dec1)←$ Com(cpars ,m1), the trapdoor td allows computing the value
dec2 ←$ Equiv(td , com,m1, dec1,m2) such that Ver(cpars , com,m2, dec2) = 1.
Moreover, (com, dec2) has the same distribution as Com(cpars ,m2).

Our IBE-based construction PKE = (PG,KG,Enc,Dec) is as follows.

PG(1λ): Run pars ←$ IBE.PG(1λ) to obtain common public parameters pars .
Also run cpars ←$ CPG(1λ) to obtain public parameters for a trapdoor com-
mitment scheme T CMT . Then, choose a message authentication codeMAC
with key length � ∈ poly(λ). Finally, return (pars , cpars ,MAC).
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KG(pars , cpars ,MAC): Generate (msk ,mpk)←$ IBE .MPG(pars) for IBE . Re-
turn the key pair (sk , pk) := (msk ,mpk).

Enc
(
(pars , cpars ,MAC), pk ,M

)
: To encryptM under pk = mpk , the algorithm

proceeds as follows.
1. Choose a random MAC key k ←$ {0, 1}�.
2. Commit to mpk‖k by computing (com, dec)←$ Com(cpars ,mpk‖k).
3. Encrypt M‖k‖dec under the identity com by setting C to the output of
IBE .Enc(pars ,mpk , com,M‖k‖dec).

4. Compute tag = MacGenk(C) and return (C, com, tag) as the final ci-
phertext.

Dec
(
(pars , cpars ,MAC), pk , sk , (C, com, tag)

)
: Given pk = mpk and sk = msk ,

conduct the following steps.

1. Compute dk com ←$ IBE .KG(pars ,msk , com) and then set M ′ to be
IBE .Dec

(
pars ,mpk ,dkcom,com,C

)
. Then, parseM ′ asM‖k‖dec (and re-

turn ⊥ if M ′ =⊥ or if M ′ cannot be parsed properly).
2. If MacVerk

(
C, tag

)
= 1 and Ver(cpars ,mpk‖k, com, dec) = 1, return M .

Otherwise, return ⊥.
A difference with the original Boneh–Katz construction—which can use a weak
form of commitment called encapsulation—is that our construction requires a
full-fledged commitment scheme. This is because, in order to achieve complete
robustness, we need to commit to the master public key of the scheme at the
same time as the MAC key in the encryption algorithm. Moreover, the proof of
AI-CCA security requires the commitment to be a trapdoor commitment: the
trapdoor plays an essential role when we reduce the sID-TAA-CPA security of
the IBE to the AI-CCA security of the encryption scheme.

The proof of the following theorem can be found in [15, Appendix J].

Theorem 5. If IBE is sID-TAA-CPA-secure, MAC is strongly unforgeable,
and T CMT is a computationally binding trapdoor commitment scheme, then
PKE is AI-CCA-secure. Moreover, the scheme PKE is CROB if T CMT is
computationally binding.

6 A Concrete CROB Scheme

In this section, we describe a simple way to achieve complete robustness using
hybrid encryption where the symmetric component uses the encrypt-then-MAC
approach. To this end, we require the MAC to satisfy a “MAC analogue” of the
notion of committing symmetric encryption [16]. Informally this notion requires
that a given MAC tag is valid for a single message regardless of the key used.

Committing MAC. We say MAC = (MacGen,MacVer) is committing if for
any message m and any key k, there exists no message-key pair (m′, k′) such
that m′ �= m and MacVerk′(m

′,MacGenk(m)) = 1.

We also need the MAC to computationally hide the message. Note that the
following definition is implied by the definition of message-hiding security used
in [14, Definition 2.2].
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Indistinguishable MAC. We say a message authentication code MAC =
(MacGen,MacVer) with key space KSp provides indistinguishability if, for any two
messagesm0,m1, it is computationally infeasible to distinguish the distributions
Db := {tag ←$ MacGenk(mb) : k ←$ KSp} for b ∈ {0, 1}.

For our purposes, the MAC only has to provide one-time strong unforgeability.
Namely, the adversary is allowed to see one pair of the form (m, tag), where
tag = MacGenk(m), and should not be able to produce a pair (m′, tag ′) such
that (m′, tag ′) �= (m, tag) and MacVerk(m

′, tag ′) = 1.
Using ideas from [16], it is easy to construct a MAC which is simultaneously

committing, indistinguishable, and strongly unforgeable. The idea is to use a
family of injective and key-binding pseudorandom functions: for any distinct
keys k1, k2, the functions fk1(·) and fk2(·) have disjoint ranges, i.e., there exist
no two pairs (k1, x1), (k2, x2) such that k1 �= k2 and fk1(x1) = fk2(x2). The
key space of the MAC is that of the PRF. For any message m �= 1λ, the MAC
generation computes and outputs the pair (fk(1

λ), fk(m)). The first component
serves as a perfectly binding commitment to the key k while the injectivity of
fk(·) guarantees that the MAC is only valid for one message. In addition, its
strong unforgeability and indistinguishability properties are both implied by the
pseudorandomness of {fk}k as long as the message space of the MAC, MSpmac,
does not include 1λ (the proof is straightforward).

We show a simple variant of the Hofheinz–Kiltz (HK) hybrid encryption
scheme [17] that provides CROB and AI-CCA security when the underlying
authenticated symmetric encryption scheme uses a MAC with the aforemen-
tioned properties. Besides providing new ways to achieve robustness, our scheme
comes with the advantage that its computational efficiency is the same as the
original HK scheme and in particular it is more efficient than combining HK
with a commitment using the ABN transformation.

PG(1λ): Choose a group G of prime order p > 2λ with g ←$ G. Also, choose a
symmetric encryption scheme (E,D) of key length �0 and a message authen-
tication code MAC = (MacGen,MacVer) of key length �1. Finally, choose a
key-derivation function KDF : G → {0, 1}�0+�1 , a target collision-resistant
hash function3 TCR : G → Zp, and a collision-resistant hash function H :
{0, 1}∗ → MSpmac, where MSpmac is the message space ofMAC. The public
parameters consist of pars :=

(
G, p, g, (E,D), MAC,

TCR, KDF, H
)
.

KG(pars): Choose x, y, z ←$ Z∗
p and compute u = gx, v = gy, and h = gz. The

public key is pk =
(
u, v, h

)
and the private key is sk = (x, y, z) ∈ (Z∗

p)
3.

Enc
(
pars , pk ,M

)
: Choose s←$ Z∗

p and compute

C1=g
s, C2 = (uτ · v)s, C3 ←$ EK0(M), tag=MacGenK1(H(C3, u, v, h))

where τ = TCR(C1) ∈ Z∗
p and (K0,K1) = KDF(hs) ∈ {0, 1}�0+�1 . Return

C = (C1, C2, C3, tag).

3 As in [17], this function can be replaced by an injective encoding from G to Zp.
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Dec
(
pars , pk , sk , C

)
: Given C = (C1, C2, C3, tag), return ⊥ if C2 �= Cτ ·x+y1 ,

where τ = TCR(C1). Else, compute (K0,K1) = KDF(Cz1 ) andM ← DK0(C3).
Return M if MacVerK1(H(C3, pk ), tag) = 1. Else, return ⊥.

The scheme was known to be IND-CCA-secure. We are also able to prove that it
provides AI-CCA security, essentially because the ciphertexts can be shown to
be indistinguishable from dummy ciphertexts that are statistically independent
of the public key, even in the presence of a decryption oracle. Proofs of the
following results may be found in [15, Appendix K].

Theorem 6. The scheme provides AI-CCA security assuming that: (1) The
DDH assumption holds in G; (2) (E,D) is a semantically secure symmetric en-
cryption scheme; (3) KDF is a secure key-derivation function;4 (4) MAC is
one-time strongly unforgeable and provides indistinguishability; (5) H and TCR
are collision-resistant and target collision-resistant, respectively. Furthermore,
the scheme is CROB if H is collision-resistant and MAC is committing.

Interestingly, if the construction of Section 5.4 is modified to use a committing
MAC, it can be instantiated using any commitment scheme and in particular a
perfectly binding commitment or even an encapsulation scheme (as in the origi-
nal Boneh–Katz construction) also work. In this case, the sender no longer needs
to commit to the master public key: (com, dec) is generated by committing to the
MAC key only. Instead, the sender computes tag as tag = MacGenk(H(C,mpk ))
using a collision-resistant hash function H . If the MAC is committing, the result-
ing construction is easily seen to provide complete robustness. It also remains
AI-CCA-secure provided the MAC satisfies the notion of indistinguishability.

7 Closing Remarks

Motivated in part by the shortcomings of existing definitions of robustness, we
have made a thorough exploration of the landscape of robustness definitions and
their relations, and given a suite of flexible and efficient methods for obtain-
ing completely robust AI-CCA-secure public-key encryption schemes. In future
work, one could explore the situation in the ID-based setting. Another open
question, well beyond the remit of this paper, is to formalize the fairness of auc-
tions and formally prove that our CROB notion is strong enough to ensure this
property for Sako’s protocol or its variants.
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Abstract. In Eurocrypt 2010, Fehr et al. proposed the first sender-
equivocable encryption scheme secure against chosen-ciphertext attacks
(NC-CCA) and proved that NC-CCA security implies security against
selective opening chosen-ciphertext attacks (SO-CCA). The NC-CCA se-
curity proof of the scheme relies on security against substitution attacks
of a new primitive, “cross-authentication code”. However, the security of
cross-authentication code can not be guaranteed when all the keys used
in the code are exposed. Our key observation is that in the NC-CCA
security game, the randomness used in the generation of the challenge
ciphertext is exposed to the adversary. This random information can be
used to recover all the keys involved in the cross-authentication code,
and forge a ciphertext (like a substitution attack of cross-authentication
code) that is different from but related to the challenge ciphertext. And
the response of the decryption oracle, with respect to the forged cipher-
text, leaks information. This leaked information can be employed by an
adversary to spoil the NC-CCA security proof of Fehr et al.’s scheme
encrypting multi-bit plaintexts. We also show that Fehr et al.’s scheme
encrypting single-bit plaintexts can be refined to achieve NC-CCA secu-
rity, free of any cross-authentication code.

Keywords: sender-equivocable encryption, chosen-ciphertext attack,
cross-authentication code.

1 Introduction

The notion of sender equivocability for a public-key encryption (PKE) scheme
was formalized by Fehr et al. [7] in Eurocrypt 2010. It is an important tool
to construct PKE schemes secure against chosen-plaintext/ciphertext selective
opening attacks (SO-CPA/CCA). Sender equivocability focuses on the ability
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of a PKE scheme to generate some “equivocable” ciphertexts which can be
efficiently opened arbitrarily. More specifically, a PKE scheme is called
sender-equivocable, if there is a simulator which can generate non-committing ci-
phertexts and later open them to any requested plaintexts by releasing some ran-
domness, such that the simulation and real encryption are indistinguishable. This
notion is similar to non-committing encryption [5]. In fact, Fehr et al. [7] have
pointed out that sender-equivocable encryption secure under chosen-plaintext at-
tacks (CPA) is a variant of non-committing encryption defined in [5]. Following
the notations in [7], security of a sender-equivocable encryption scheme against
chosen-plaintext/ciphertext attacks is denoted by NC-CPA/CCA security.

As proved in [7], NC-CPA/CCA security implies simulation-based selective
opening security against chosen-plaintext/ciphertext attacks (SIM-SO-CPA/CCA
security). This fact suggests an alternative way of constructing PKE secure
against selective opening attacks, besides the construction from lossy encryption
proposed in [3].

Discussion and Related Work. In Eurocrypt 2009, Bellare et al. [3] for-
malized the notion of security against selective opening attacks (SOA security)
for sender corruptions. This security notion captures a situation that n senders
encrypt their own messages and send the ciphertexts to a single receiver. Some
subset of the senders can be corrupted by an adversary, exposing their messages
and randomness to the adversary. SOA security requires that the unopened ci-
phertexts remain secure.

In [3], Bellare et al. proposed two kinds of SOA security: simulation-based se-
lective opening (SIM-SO) security and indistinguishability-based selective open-
ing (IND-SO) security. The relations between the two notions are figured out
by Böhl et al. [2]. Bellare et al. [1] showed that the standard security of PKE
does not imply SIM-SO security. Bellare et al. [3] proposed that IND-SO-CPA
security and SIM-SO-CPA security can be achieved through a special class of en-
cryption named lossy encryption, and lossy encryption can be constructed from
lossy trapdoor functions [13]. Hemenway et al. [10] showed more constructions of
lossy encryption, which achieved IND-SO-CCA security with a-priori bounded
number of challenge ciphertexts. In Eurocrypt 2012, Hofheinz [9] proposed a new
primitive called all-but-many lossy trapdoor functions, which were employed to
construct IND-SO-CCA secure and SIM-SO-CCA secure PKE with unbounded
number of challenge ciphertexts. In [4], Bellare et al. extended SOA security
from PKE to IBE.

In [7], Fehr et al. presented a totally different way of achieving SIM-SO-CCA
security, also with unbounded number of challenge ciphertexts. They formalized
the security notion of sender equivocability under chosen-plaintext/ciphertext
attacks (NC-CPA/CCA security), and proved that NC-CPA (resp. NC-CCA)
security implies SIM-SO-CPA (resp. SIM-SO-CCA) security. In [7], two PKE
schemes were proposed. The first one, constructed from trapdoor one-way per-
mutations, is NC-CPA secure, so it is SIM-SO-CPA secure. The second one
(denoted by the FHKW scheme) is constructed from an extended hash proof
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system [6] and a new primitive, “cross-authentication code”. They proved that
the FHKW scheme is NC-CCA secure.

With help of similar techniques as those in the FHKW scheme, Gao et al.
[8] presented a deniable encryption scheme in 2012. The CCA security of their
scheme was guaranteed mainly by an extended hash proof system of [6] and a
cross-authentication code of [7].

In this paper, we will analyze the security proof of the FHKW scheme and
show that its NC-CCA security can not be guaranteed by their proof. The GXW
scheme suffers from the similar security problem. We also offer a refined version
of the FHKW scheme for single bit with NC-CCA security.

Our Contribution. In this paper, we focus on NC-CCA security.

– We provide an analysis of the security proof of the FHKW scheme in [7], and
show the proof of NC-CCA security in [7] is flawed by showing an attack.
The key observation is: In the definition of NC-CCA security, the random-
ness used in the generation of the challenge ciphertext C∗ is offered to the
adversary. The adversary is able to use the randomness to forge a cipher-
text and obtain useful information by querying the forged ciphertext to the
decryption oracle. Assume that the plaintext consists of L bits. We present
a PPT adversary who can always distinguish the real experiment and the
simulated experiment for L > 1. We also show that the security requirement
of “L-cross-authentication codes” is not enough in the proof of NC-CCA
security in [7] for any positive integer L.

– We refine the FHKW scheme encrypting one bit. Although we showed that
“L-cross-authentication codes” are generally not sufficient to prove NC-CCA
security, some specific instances of “1-cross-authentication codes” are helpful
to finish the proof of NC-CCA security of the FHKW scheme [7], but lim-
ited to encryption of a single bit. We provide a simpler encryption scheme
for single-bit plaintexts, free of any cross-authentication code.

Organization. We start by notations and definitions in Section 2. We recall the
FHKW scheme in Section 3, and then provide a security analysis of it in Section
4. We present a refined version of the FHKW scheme for single-bit plaintexts in
Section 5 and leave the proof in the Appendix. Finally, we give a summary of
our work in Section 6.

2 Preliminaries

2.1 Notations

Let N denote the set of natural numbers. We use k ∈ N as the security parameter
throughout the paper. For n ∈ N, let [n] denote the set {1, 2, · · · , n} and {0, 1}n
the set of bitstrings of length n. For a finite set S, let s ← S denote the pro-
cess of sampling s uniformly at random from S. If A is a probabilistic algorithm,
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we denote by RA the randomness set of A. Let y ← A(x1, x2, · · · , xt) denote the
process of running A on inputs {x1, x2, · · · , xt} and inner randomness R←RA,
and outputting y. If the running time of probabilistic algorithm A is polynomial
in k, then A is a probabilistic polynomial time (PPT) algorithm.

2.2 Sender-Equivocable Encryption Schemes

The notion of Sender Equivocability was formalized by Fehr et al. [7] in 2010. For
a public-key encryption scheme

∏
= (Gen,Enc,Dec), let A = (A1, A2) denote

a stateful adversary, S = (S1, S2) denote a stateful simulator, and M denote
a plaintext. Let state denote some state information output by A1 and then is
passed to A2. Sender equivocability under adaptive chosen-ciphertext attacks is
defined through the following two experiments.

Experiment ExpNC-CCA-Real∏
,A (k):

(pk, sk)← Gen(1k)

(M, state)← A
Decsk(·)
1 (pk)

R←REnc

C ← Encpk(M ;R)

return A
Decsk(·)
2 (M,C,R, state)

Experiment ExpNC-CCA-Sim∏
,A (k):

(pk, sk)← Gen(1k)

(M, state)← A
Decsk(·)
1 (pk)

C ← S1(pk, 1
|M|)

R← S2(M)

return A
Decsk(·)
2 (M,C,R, state)

In both experiments, A = (A1, A2) is allowed to access to a decryption oracle
Decsk(·) with constraint that A2 is not allowed to query C.

The advantage of adversary A is defined as follows.

AdvNC-CCA∏
,A,S (k) :=

∣∣∣Pr [ExpNC-CCA-Real∏
,A (k) = 1

]
− Pr

[
ExpNC-CCA-Sim∏

,A (k) = 1
]∣∣∣ .

Definition 1 (NC-CCA security). A public-key encryption scheme
∏

=
(Gen,Enc,Dec) is sender-equivocable under adaptive chosen-ciphertext attacks
(NC-CCA secure), if there is a stateful PPT algorithm S (the simulator), such
that for any PPT algorithm A (the adversary), the advantage AdvNC-CCA∏

,A,S (k) is
negligible.

2.3 Building Blocks of the FHKW Scheme

In [7], Fehr et al. presented a construction of PKE with NC-CCA security. We
will call their scheme the FHKW scheme. The FHKW scheme was built from
the following cryptographic primitives: a collision-resistant hash function (in-
formally, a function is collision-resistant if any PPT adversary cannot find two
distinct inputs hashing to the same output except with negligible probability), a
subset membership problem, an extended version of hash proof system [6], and
a cross-authentication code [7].

Definition 2 (Subsetmembershipproblem).A subset membership problem
consists of the following PPT algorithms.
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– SmpGen(1k): On input 1k, algorithm SmpGen outputs a parameter Λ, which
specifies a set XΛ and its subset LΛ ⊆ XΛ. Set XΛ is required to be easily
recognizable with Λ.

– SampleL(LΛ;W ): Algorithm SampleL samples X ∈ LΛ using randomness
W ∈ RSampleL.

A subset membership problem SMP is hard, if for any PPT distinguisher D, D’s
advantage

AdvSMP,D(k) := | Pr[Λ← SmpGen(1k), X ← LΛ : D(X) = 1]
− Pr[Λ← SmpGen(1k), X ← XΛ : D(X) = 1] |

is negligible.

Definition 3 (Subset sparseness). A subset membership problem SMP has
the property of subset sparseness, if the probability Pr[Λ ← SmpGen(1k), X ←
XΛ : X ∈ LΛ] is negligible.

Definition 4 (Hash Proof System and Extended Hash Proof System).
A hash proof system HPS for a subset membership problem SMP associates each
Λ← SmpGen(1k) with an efficiently recognizable key space KΛ and the following
PPT algorithms:

– HashGen(Λ): On input Λ, HashGen outputs a public key hpk and a secret key
hsk, both containing the parameter Λ.

– SecEvl(hsk,X): It is a deterministic algorithm. On input a secret key hsk
and an element X ∈ XΛ, SecEvl outputs a key K ∈ KΛ.

– PubEvl(hpk,X,W ): It is a deterministic algorithm. On input a public key
hpk, an element X ∈ XΛ and a witness W for X ∈ LΛ, PubEvl out-
puts a key K ∈ KΛ. The correctness requires that PubEvl(hpk,X,W ) =
SecEvl(hsk,X) for all Λ ← SmpGen(1k), (hpk, hsk) ← HashGen(Λ) and
X ← SampleL(LΛ;W ).

An extended hash proof system EHPS is a variation of a hash proof system HPS,
extending the sets XΛ and LΛ by taking the Cartesian product of these sets with
an efficiently recognizable tag space TΛ. Hence, the tuple of the three algorithms
(HashGen, SecEvl, PubEvl) of EHPS is changed to (hpk, hsk) ← HashGen(Λ),
K ← SecEvl(hsk,X, t) and K ← PubEvl(hpk,X,W, t), with t ∈ TΛ.

The public key hpk in a hash proof system HPS uniquely determines the action
of algorithm SecEvl for allX ∈ LΛ. However, the action of SecEvl forX ∈ XΛ\LΛ
is still undetermined by hpk. This is defined by a perfectly 2-universal property.

Definition 5 (perfectly 2-universal). A hash proof system HPS for SMP is
perfectly 2-universal if for any Λ ← SmpGen(1k), any hpk from HashGen(Λ),
any distinct X1, X2 ∈ XΛ \ LΛ, and any K1,K2 ∈ KΛ,

Pr[SecEvl(hsk,X2) = K2 | SecEvl(hsk,X1) = K1] =
1

|KΛ|
,

where the probability is taken over all possible hsk with (hpk, hsk)← HashGen(Λ).
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Definition 6 (Efficiently samplable and explainable domain). A domain
D is efficiently samplable and explainable, if there exists two PPT algorithms:

– Sample(D;R): On input a random coin R ← RSample and a domain D, it
outputs an element uniformly distributed over D.

– Explain(D, x): On input D and x ∈ D, this algorithm outputs R that is uni-
formly distributed over the set {R ∈ RSample | Sample(D;R) = x}.

Definition 7 (L-Cross-Authentication Code [7]). For any L ∈ N, an L-
cross-authentication code XAC, associated with a key space XK and a tag space
XT , consists of three PPT algorithms (XGen, XAuth, XVer). Algorithm XGen(1k)
generates a uniformly random key K ∈ XK, XAuth(K1, · · · ,KL) produces a tag
T ∈ XT , and XVer(K, i, T ) outputs b ∈ {0, 1}. The following properties are
required:

Correctness. The function

failcorrectXAC (k) := max
i∈[L]

Pr[XVer(Ki, i,XAuth(K1, · · · ,KL)) �= 1]

is negligible in k, where the max is over all i ∈ [L] and the probability is
taken over all possible K1, · · · ,KL ← XGen(1k).

Security against impersonation and substitution attacks. The advan-
tages AdvimpXAC(k) and AdvsubXAC(k), defined as follows, are both negligible.

AdvimpXAC(k) := max
i,T ′

Pr[K ← XGen(1k) : XVer(K, i, T ′) = 1]

where the max is over all i ∈ [L] and T ′ ∈ XT .

AdvsubXAC(k) := max
i,K �=i,Func

Pr

⎡⎣Ki ← XGen(1k)
T ← XAuth(K1, · · · ,KL)
T ′ ← Func(T )

:T
′ �= T∧

XVer(Ki, i, T
′) = 1

⎤⎦
where the max is over all i ∈ [L], all K 
=i := (Kj)j 
=i ∈ XKL−1 and all
possibly randomized functions Func : XT → XT .

3 Review on the FHKW Scheme in [7]

With the above cryptographic primitives, we now present the FHKW scheme
[7].

Let SMP be a hard subset membership problem that has the property of subset
sparseness. Let XΛ, with Λ← SmpGen(1k), be efficiently samplable and explain-
able. Let EHPS be a perfectly 2-universal extended hash proof system for SMP
with tag space TΛ and key space (range) KΛ, which is efficiently samplable and
explainable as well. Let H : (XΛ)L → TΛ be a family of collision-resistant hash
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functions, and XAC be an L-cross-authentication code with key space XK = KΛ
and tag space XT .

The FHKW Scheme

Gen(1k): On input 1k, algorithm Gen runs Λ ← SmpGen(1k), (hpk, hsk) ←
HashGen(Λ), H ← H, and outputs (pk, sk), where pk = (hpk,H) and sk =
(hsk,H).

Enc(pk,M ;R): To encrypt a plaintext M = (M1, · · · ,ML) ∈ {0, 1}L under
a public key pk = (hpk,H) with randomness R = (Wi, R

XΛ

i , RKΛ

i )i∈[L] ∈
(RSampleL ×RSample ×RSample)

L, algorithm Enc runs as follows:
For i ∈ [L], set

Xi :=

{
Sample(XΛ;RXΛ

i ) if Mi = 0

SampleL(LΛ;Wi) if Mi = 1

and t := H(X1, · · · , XL). Then for i ∈ [L], set the keys

Ki :=

{
Sample(KΛ;RKΛ

i ) if Mi = 0

PubEvl(hpk,Xi,Wi, t) if Mi = 1

and the tag T := XAuth(K1, · · · ,KL). Finally, return C = (X1, · · · , XL, T )
as the ciphertext.

Dec(sk, C): To decrypt a ciphertext C = (X1, · · · , XL, T ) ∈ XL
Λ × XT under

a secret key sk = (hsk,H), algorithm Dec computes t = H(X1, · · · , XL), for
i ∈ [L] sets Ki := SecEvl(hsk,Xi, t) and Mi = XVer(Ki, i, T ), and returns
M = (M1, · · · ,ML) as the plaintext.

The correctness of the FHKW scheme is proved by [7], which we omit here.

4 Security Analysis of the FHKW Scheme

According to the definition of NC-CCA security, the FHKW scheme is NC-CCA
secure, if and only if there exists a simulator S such that for any PPT algorithm
A, the two experiments ExpNC-CCA-Real

FHKW,A (k) and ExpNC-CCA-Sim
FHKW,A (k), defined in

Section 2, are indistinguishable.
In order to prove NC-CCA security of the FHKW scheme, Fehr et al. [7] con-

structed the following simulator S = (S1, S2).

Simulator S:

– S1(pk, 1
|M|): Parse pk = (hpk,H). For i ∈ [L], choose W̃i ← RSampleL and

set Xi := SampleL(LΛ; W̃i). Compute t := H(X1, · · · , XL). For i ∈ [L],

set Ki := PubEvl(hpk,Xi, W̃i, t). Set T ← XAuth(K1, · · · ,KL). Return the
ciphertext C = (X1, · · · , XL, T ).
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– S2(M): ParseM = (M1, · · · ,ML). For i ∈ [L], if Mi = 1, set Wi := W̃i, and
choose RXΛ

i ←RSample, R
KΛ

i ←RSample; else, choose Wi ←RSampleL, and set

RXΛ

i ← Explain(XΛ, Xi), R
KΛ

i ← Explain(KΛ,Ki). Return the randomness

R = (Wi, R
XΛ

i , RKΛ

i )i∈[L].

With simulator S, Fehr et al. [7] proved that the FHKW scheme is NC-CCA
secure. However, we will show that this specific simulator S does not guarantee
NC-CCA security of the FHKW scheme for any positive integer L.

4.1 The Problem of Security Proof in [7]

To prove NC-CCA security, it is essential to show that the decryption oracle
will not leak any useful information to any PPT adversary. As to the FHKW
scheme, given a challenge ciphertext C = (X1, · · · , XL, T ), an adversaryA comes
up with a decryption query C′ = (X1, · · · , XL, T

′) where T ′ �= T . NC-CCA se-
curity expects the decryption of C′ by the oracle will not help the adversary
to distinguish the two experiments ExpNC-CCA-Real

FHKW,A (k) and ExpNC-CCA-Sim
FHKW,A (k)(see

the proof of [7, Lemma 5]). This strongly relies on the security against substi-
tution attacks of cross-authentication code, which requires that “given T and
K 
=i, it is difficult to output a T ′ �= T such that XVer(Ki, i, T

′) = 1, where Ki is
uniformly distributed”. However, in the NC-CCA game, adversary A KNOWs
Ki for any i ∈ [L]! The reason is as follows. Upon returning a plaintext M ,
adversary A receives not only a challenge ciphertext C, but also some related
random coins R which are supposed to have been consumed in the challenge ci-
phertext generation. With R andM , adversary A can recover Ki for any i ∈ [L].
Then, it is possible for A to output a T ′ �= T such that XVer(Ki, i, T

′) = 1.
Hence, the XAC’s security against substitution attacks is not sufficient to guar-
antee the aforementioned property. That is why the security proof of [7] fails
(more precisely, the proof of [7, Lemma 5] fails).

In fact, this kind of adversary, which can output a T ′ �= T such that XVer(Ki,
i, T ′) = 1 given T and Ki for any i ∈ [L], does exist. In Section 4.2, we will
present such an adversary A to destroy the security proof of the FHKW scheme
for L > 1.

Gao et al.’s Deniable Scheme in [8]. In [8], Gao et al. utilized exactly the
same technique as that in the FHKW scheme to construct a deniable encryption
scheme and “proved” the CCA security. The similar problem we pointed out
above also exists in their security proof (more specifically, the proof of [8, Claim
1]). As a result, our following attack in Section 4.2 applies to their scheme and
ruins their proof, too.

4.2 Security Analysis of the FHKW Scheme - L > 1

Before going into a formal statement and its proof, we briefly give a high-level
description of our security analysis for L > 1.
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With the aforementioned simulator S, for any L > 1, our aim is to construct
an adversaryA = (A1, A2) to distinguish the two experiments ExpNC-CCA-Real

FHKW,A (k)

and ExpNC-CCA-Sim
FHKW,A (k). The construction of adversary A is as follows.

In an experiment environment (either ExpNC-CCA-Real
FHKW,A (k) or ExpNC-CCA-Sim

FHKW,A (k)),
upon receiving pk, A1 returns M = (0, · · · , 0). Then, upon receiving a cipher-
text C = (X1, · · · , XL, T ) and randomness R, A2 returns C′ = (X1, · · · , XL, T

′)
as his decryption query, where T ′ ← XAuth(K ′

1,K2, · · · ,KL), K
′
1 is uniformly

random chosen from KΛ and K2, · · · ,KL are all recovered from R. Finally, if the
decryption oracle returns M ′ = (0, · · · , 0), A2 will output b = 1, and otherwise,
A2 will output b = 0.

Now, we consider the probabilities that A outputs 1 in the two experiments,
respectively. In ExpNC-CCA-Real

FHKW,A (k), for i ∈ [L], Xi (resp. Ki) is chosen uniformly
random from XΛ (resp. KΛ), so the subset sparseness of SMP and the perfect
2-universality of HPS guarantee that for i ∈ [L], K ′

i = SecEvl(hsk,Xi, t) is uni-
formly random in KΛ from A’s point of view. Due to the security of XAC, the
decryption oracle returns M ′ = (0, 0, ..., 0) for the queried ciphertext C′. Conse-
quently, A outputs b = 1 with overwhelming probability in ExpNC-CCA-Real

FHKW,A (k).

On the other hand, in ExpNC-CCA-Sim
FHKW,A (k), for i ∈ [L], Xi is chosen uniformly ran-

dom from LΛ and Ki = PubEvl(hpk,Xi,Wi, t), so the property of HPS guaran-
tees that for i ∈ [L],K ′

i = SecEvl(hsk,Xi, t) = Ki. Due to the correctness of XAC

and the facts that T ′ ← XAuth(K ′
1,K2, · · · ,KL) and M ′

i = XVer(K ′
i, i, T

′) = 1
for i ∈ {2, 3, · · · , L}, the decryption oracle returns M ′ = (0, 1, · · · , 1) with over-
whelming probability. As a result, A outputs b = 1 with negligible probability in
ExpNC-CCA-Sim

FHKW,A (k). The two experiments ExpNC-CCA-Real
FHKW,A (k) and ExpNC-CCA-Sim

FHKW,A (k)
have been distinguished by A with overwhelming advantage.

A formal statement of the result and its corresponding proof are as follows.

Theorem 1. With the aforementioned simulator S, the FHKW scheme cannot
be proved to be NC-CCA secure for any L > 1. More specifically, there exists
an adversary A distinguishing the real and the simulated NC-CCA experiments,
with advantage

AdvNC-CCA
FHKW,A,S(k) ≥ 1− 2AdvimpXAC(k)− failcorrectXAC (k).

Proof. For simplicity, we consider the case of L = 2. We note that this attack is
applicable to any L > 1.

Our aim is to construct a specific adversary A = (A1, A2) to distinguish the
two experiments ExpNC-CCA-Real

FHKW,A (k) and ExpNC-CCA-Sim
FHKW,A (k) with non-negligible

advantage.
Specifically, given an experiment environment (either ExpNC-CCA-Real

FHKW,A (k) or

ExpNC-CCA-Sim
FHKW,A (k)), the adversary A = (A1, A2) behaves as follows.

– Upon receiving pk = (hpk,H), A1 returns M = (0, 0), i.e. M1 =M2 = 0.

– Upon receiving a ciphertext C = (X1, X2, T ) and randomnessR = ((W1, R
XΛ
1 ,

RKΛ
1 ), (W2, R

XΛ
2 , RKΛ

2 )), A2 creates a new ciphertext C′ according to C.
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• Set X ′
1 := X1, X

′
2 := X2.

• Set K ′
1 ← KΛ,K ′

2 ← Sample(KΛ;RKΛ
2 ).

• Compute T ′ ← XAuth(K ′
1,K

′
2).

• Check that T ′ �= T . If T ′ = T , choose another random value for K ′
1 and

repeat the above steps, until T ′ �= T .
• Set C′ := (X ′

1, X
′
2, T

′).

Then A2 submits C′ to the decryption oracle.
– Let M ′ ← Dec(sk, C′). A2 outputs b, where

b =

{
1 ifM ′ = (0, 0);
0 ifM ′ �= (0, 0).

Now we analyze the probabilities that A2 outputs b = 1 in the real experiment
and the simulated experiment, respectively.

In both experiments, A2 receives a ciphertext C = (X1, X2, T ) and random-
ness R = ((W1, R

XΛ
1 , RKΛ

1 ), (W2, R
XΛ
2 , RKΛ

2 )). The ciphertext created and sub-
mitted to the decryption oracle by A2 is C′ = (X ′

1, X
′
2, T

′) = (X1, X2, T
′), where

T ′ = XAuth(K ′
1,K

′
2) = XAuth(K ′

1,K2) (due to K ′
2 = K2) and T

′ �= T .

The Real Experiment. The challenge ciphertext C = (X1, X2, T ) satisfies
X1 ← Sample(XΛ;RXΛ

1 ), X2 ← Sample(XΛ;RXΛ
2 ), and T = XAuth(K1,K2),

where K1 ← Sample(KΛ;RKΛ

1 ) and K2 ← Sample(KΛ;RKΛ

2 ).
The decryption of C′ by the decryption oracle Dec(sk, ·) involves the compu-
tation of t′ := H(X ′

1, X
′
2) = H(X1, X2) = t and K ′

i := SecEvl(hsk,X ′
i, t

′) =
SecEvl(hsk,Xi, t), for i ∈ {1, 2}.
Due to the perfect 2-universality of EHPS, K ′

i is uniformly random dis-
tributed in KΛ. Hence, for i ∈ {1, 2},

Pr
[
XVer(K ′

i, i, T
′) = 1 | in ExpNC-CCA-Real

FHKW,A (k)
]
≤ AdvimpXAC(k).

Let M ′ = (M ′
1,M

′
2) denote the decryption result of C′ by the decryption

oracle Dec(sk, ·). Then for i ∈ {1, 2},

Pr
[
M ′
i = 1 | in ExpNC-CCA-Real

FHKW,A (k)
]

= Pr
[
XVer(K ′

i, i, T
′) = 1 | in ExpNC-CCA-Real

FHKW,A (k)
]

≤ AdvimpXAC(k).

The probability that A2 outputs b = 1 in the real experiment is given by

Pr
[
ExpNC-CCA-Real

FHKW,A (k) = 1
]

= Pr
[
M ′ = (0, 0) | in ExpNC-CCA-Real

FHKW,A (k)
]

= 1− Pr
[
M ′ �= (0, 0) | in ExpNC-CCA-Real

FHKW,A (k)
]

= 1− Pr
[
M ′

1 = 1 ∨M ′
2 = 1 | in ExpNC-CCA-Real

FHKW,A (k)
]

≥ 1− 2AdvimpXAC(k).
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The Simulated Experiment. The ciphertext C = (X1, X2, T ) satisfies X1 ←
SampleL(LΛ; W̃1), X2 ← SampleL(LΛ; W̃2), and T = XAuth(K1,K2), where

for i ∈ {1, 2}, W̃i ← RSampleL and Ki = PubEvl(hpk,Xi, W̃i, t) with t =
H(X1, X2).

The decryption of C′ by the decryption oracle Dec(sk, ·) involves the com-
putation of t′ = H(X ′

1, X
′
2) = H(X1, X2) = t and K ′

i = SecEvl(hsk,X ′
i, t

′) =
SecEvl(hsk,Xi, t), for i ∈ {1, 2}. On the other hand, we know that K ′

2 = K2

and K2 = PubEvl(hpk,X2,W2, t). Since X2 ∈ LΛ, the property of EHPS
guarantees that SecEvl(hsk,X2, t) = PubEvl(hpk,X2,W2, t), which means
that K ′

2 = K2 = K ′
2. Note that M ′

2 = XVer(K ′
2, 2, T

′). Hence, we have

Pr
[
M ′

2 = 1 | in ExpNC-CCA-Sim
FHKW,A (k)

]
= Pr

[
XVer(K ′

2, 2, T
′) = 1 | in ExpNC-CCA-Sim

FHKW,A (k)
]

= Pr
[
XVer(K ′

2, 2, T
′) = 1 | in ExpNC-CCA-Sim

FHKW,A (k)
]

≥ 1− failcorrectXAC (k).

The probability that A2 outputs b = 1 in the simulated experiment is given
by

Pr
[
ExpNC-CCA-Sim

FHKW,A (k) = 1
]

= Pr
[
M ′ = (0, 0) | in ExpNC-CCA-Sim

FHKW,A (k)
]

= 1− Pr
[
M ′ �= (0, 0) | in ExpNC-CCA-Sim

FHKW,A (k)
]

≤ 1− Pr
[
M ′

2 = 1 | in ExpNC-CCA-Sim
FHKW,A (k)

]
≤ failcorrectXAC (k).

The advantage of adversary A is given by

AdvNC-CCA
FHKW,A,S(k) =

∣∣∣Pr [ExpNC-CCA-Real
FHKW,A (k) = 1

]
− Pr

[
ExpNC-CCA-Sim

FHKW,A (k) = 1
]∣∣∣

≥ 1− 2AdvimpXAC(k)− failcorrectXAC (k).

Note that both AdvimpXAC(k) and failcorrectXAC (k) are negligible. So A’s advantage

AdvNC-CCA
FHKW,A,S(k) is non-negligible (in fact, it is overwhelming), i.e., the security

proof of the FHKW scheme in [7] is incorrect. ��

4.3 Security Analysis of the FHKW Scheme - L = 1

Note that our attack in the previous section does not apply to the case L = 1.
In the previous section, upon receiving the ciphertext C and randomness R, the
adversary A recovers K and switches the first element of K with a random one.
If L = 1, A will get a new K ′ = K ′

1 and then T ′ = XAuth(K ′
1). Afterwards, A
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will return C′ = (X1, T
′) as his decryption query. Then, A will receive M ′ = 0

with overwhelming probability in both ExpNC-CCA-Real
FHKW,A (k) and ExpNC-CCA-Sim

FHKW,A (k).
Hence, the two experiments are still indistinguishable for A.

As we have pointed out earlier, the security of L-cross-authentication code
against substitution attacks is not sufficient for the security proof of the FHKW
scheme for any value of L. But our above attack only works for L > 1. Therefore,
the remaining problem is whether it is possible for the FHKW scheme to achieve
NC-CCA security for L = 1, still with the aforementioned simulator S.

Before solving the problem, we claim that algorithm XAuth of XAC in the
FHKW scheme is deterministic (this is not explicitly expressed in [7]). That’s
because R = (Wi, R

XΛ

i , RKΛ

i )i∈[L] is the only randomness used in the encryption
process. In other words, if XAuth is probabilistic, the inner random number
used by XAuth should be contained in the randomness R (and then passed to
the adversary, according to the definition of NC-CCA security). On the other
hand, if algorithm XAuth of XAC in the FHKW scheme is probabilistic, with the
aforementioned simulator S, the FHKW scheme cannot be proved secure in the
sense of NC-CCA for any positive integer L. (See Appendix A for the proof.)

In fact, the security proof of the FHKW scheme expected such a property
from L-cross-authentication code: “given (K1,K2, · · · ,KL) and T = XAuth(K1,
· · · ,KL), it is difficult to output a T ′ �= T such that XVer(Ki, i, T

′) = 1 for some
i ∈ [L]”. This property generally does not hold for L-cross-authentication code.
However, it is true for some special 1-cross-authentication code, for example, the
instance of L-cross-authentication code given by Fehr et al. [7] when constricted
to L = 1. For that special instance, when L = 1, given K = K1 and T =
XAuth(K1) (note that XAuth is deterministic), it is impossible to find a T ′ �= T
such that XVer(K1, 1, T

′) = 1, since only T = XAuth(K1) itself could pass the
verification. Therefore, with the special 1-cross-authentication code instance (or
other instance with similar property) as ingredient, the FHKW scheme is NC-
CCA secure for L = 1.

5 Sender-Equivocable Encryption Scheme for Single Bit

In this section, we will refine the FHKW scheme for L = 1. Specifically, we will
present a PKE scheme with NC-CCA security for L = 1 without any L-cross-
authentication code.

Our scheme can be seen as a simplified version of the FHKW scheme in-
stantiated with a special 1-cross-authentication code. As we pointed earlier, the
special property of 1-cross-authentication code requires that each K determines
a unique tag T satisfying XVer(K,T ) = 1. In our scheme, the encryption al-
gorithm replaces the tag T by the key K directly. In the decryption, whether
the plaintext is 1 or 0 depends on the equality of K in the ciphertext and K
computed by SecEvl(hsk,X), while in the FHKW scheme the plaintext bit is
determined by whether XVer(K,T ′) = 1 or not.

Below describes our scheme E = (GenE ,EncE ,DecE). The scheme consists of
a hard subset membership problem SMP, with subset sparseness, and its cor-
responding perfectly 2-universal hash proof system HPS. We require that for
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any Λ ← SmpGen(1k), both XΛ (with respect to SMP) and KΛ (with respect
to HPS) are efficiently explainable. As suggested in [7], the requirement of effi-
cient samplability and explainability on KΛ imposes no real restriction, and it
has shown in [6] that both the above ingredients can be constructed based on
some standard number-theoretic assumptions, such as the DDH, DCR and QR
assumptions.

Scheme E = (GenE ,EncE ,DecE)

GenE(1
k): On input 1k, algorithm GenE runs Λ ← SmpGen(1k), (hpk, hsk)←

HashGen(Λ), and outputs (pk, sk), where pk = hpk and sk = hsk.
EncE(pk,M ;R): To encrypt a plaintext M ∈ {0, 1} under a public key pk =
hpk with randomness R = (W,RXΛ , RKΛ) ∈ RSampleL × RSample × RSample,
algorithm EncE sets

X :=

{
Sample(XΛ;RXΛ) if M = 0

SampleL(LΛ;W ) if M = 1

and

K :=

{
Sample(KΛ;RKΛ) if M = 0

PubEvl(hpk,X,W ) if M = 1

then returns ciphertext C = (X,K).
DecE(sk, C): To decrypt a ciphertext C = (X,K) ∈ XΛ × KΛ under a secret

key sk = hsk, algorithm DecE sets K := SecEvl(hsk,X). If K = K, return
M = 1; else, return M = 0.

Correctness: On one hand, if C = (X,K) is a ciphertext of M = 1, then
K = SecEvl(hsk,X) = PubEvl(hpk,X,W ) = K due to the property of HPS. So
DecE(sk, C) returns M = 1. On the other hand, if C = (X,K) is a ciphertext of
M = 0, then X ← XΛ,K ← KΛ andK = SecEvl(hsk,X). So Pr[K = K] = 1

|KΛ| .

Hence, with probability 1− 1
|KΛ| , DecE(sk, C) returns M = 0.

Security: As for the security of scheme E , we have the following Theorem 2.
The proof is similar to that of the FHKW scheme in [7]. But the key observation
is: given C = (X,K), it is impossible to create C′ = (X,K ′), K �= K ′, such
that K ′ = K ′. Note that the security proof of our scheme doesn’t involve any
cross-authentication code. Details of the proof are in Appendix B.

Theorem 2. Scheme E = (GenE ,EncE ,DecE) is NC-CCA secure.

6 Conclusion

We provided a security analysis of the FHKW scheme in [7] and showed that the
original simulator constructed in [7] is not sufficient to prove NC-CCA security.
However, some specific instances of 1-cross-authentication codes help the FHKW
scheme to obtain NC-CCA security for encryption of single-bit plaintexts. We
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provided a refined version of the FHKW scheme for single bit and proved its
NC-CCA security. Our scheme does not involve any cross-authentication code,
avoiding the security problem that annoys the FHKW scheme.

Open Questions. (1) The failure of the simulator proposed in [7] does not
rule out the existence of other simulators working properly for the NC-CCA
security proof of the FHKW scheme. Therefore, it is still open whether the
FHKW scheme is NC-CCA secure or not. (2) Even if the FHKW scheme is not
NC-CCA secure, it might still possess SIM-SO-CCA security. Hence, another
question is whether it is SIM-SO-CCA secure or not. (3) Now that an NC-CCA
secure PKE encrypting single bits is available in this paper, it may be interesting
to construct an NC-CCA secure PKE encrypting multiple bits from an NC-CCA
secure PKE encrypting single bits. This question in the relaxed setting of IND-
CCA2 has been answered by Myers and Shelat [12]. But the selective opening
scenario is much more complicated and we believe that the problem is much
harder. (4) The last open question is how to construct a public-key encryption
scheme that is NC-CCA secure for multi-bit plaintexts directly. We believe that
with some extra property, the underlying cross-authentication code might be
sufficient for the NC-CCA security proof of the FHKW scheme. We are working
on this question. See [11] for details.
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A In Case Algorithm XAuth Is Probabilistic

In Section 4.3, we have claimed that if algorithm XAuth of XAC in the FHKW
scheme is probabilistic, with the aforementioned simulator S in Section 4, the
FHKW scheme can not be proved NC-CCA secure for any positive integer L.
Now we show the reason.

Firstly, a slight modification to XAuth is needed. Because XAuth is proba-
bilistic, there exists an inner random number RXAuth used by XAuth during the
encryption process (i.e., T ← XAuth(K1, · · · ,KL;R

XAuth)). Note that the afore-
mentioned simulator S should output randomness R = ((Wi, R

XΛ

i , RKΛ

i )i∈[L],

RXAuth) according to the ciphertext C and its related plaintext M . In the mean
time, the original simulator S can recover (Wi, R

XΛ

i , RKΛ

i )i∈[L]. Therefore, S

should generate RXAuth according to T and (K1, · · · ,KL), which can be recov-
ered from R = (Wi, R

XΛ

i , RKΛ

i )i∈[L]. Now we make a modification to XAuth: we
require that XAuth is efficiently “explainable”, which means that there is an effi-
cient algorithm ExplainXAuth such that RXAuth ← ExplainXAuth((K1, · · · ,KL), T ).
For simplicity, we still use the original notations S and XAuth after this modifi-
cation.

Secondly, with the above modification, consider our main conclusion of this
Appendix. As the proof of Theorem 1, our aim is to construct an adversary A =
(A1, A2) to distinguish the two experiments ExpNC-CCA-Real

FHKW,A (k) and ExpNC-CCA-Sim
FHKW,A

(k). The adversary A is the same as the one in the proof of Theorem 1, ex-
cept that in the decryption query stage, instead of choosing a random K ′

1,
the adversary A uses the original K1, which can be recovered from random-
ness R = ((Wi, R

XΛ

i , RKΛ

i )i∈[L], R
XAuth). More specifically, in the first stage,

A1 returns M = (0, · · · , 0) to the challenger, and in the second stage, upon
receiving the ciphertext C = (X1, · · · , XL, T ) and randomness R, A2 recovers

(K1, · · · ,KL) fromR, computes T ′ ← XAuth(K1, · · · ,KL; R̃
XAuth), where R̃XAuth

is uniformly random chosen from RXAuth, and returns C′ = (X1, · · · , XL, T
′) as

his decryption query. Because XAuth is probabilistic, it is very easy for A to get
a T ′ �= T with the above method. As a result, with overwhelming probability, A2

will receive M ′ = (0, · · · , 0) as the decryption result of C′ in ExpNC-CCA-Real
FHKW,A (k),

and receive M ′ = (1, · · · , 1) in ExpNC-CCA-Sim
FHKW,A (k). Hence, A can distinguish

ExpNC-CCA-Real
FHKW,A (k) and ExpNC-CCA-Sim

FHKW,A (k).



384 Z. Huang, S. Liu, and B. Qin

B Proof of Theorem 2

Proof. First, we construct a simulator SE for scheme E = (GenE ,EncE ,DecE).

Simulator SE :

– SE1(pk, 1): With pk = hpk, choose W̃ ←RSampleL and setX := SampleL(LΛ;
W̃ ). Then set K := PubEvl(hpk,X, W̃ ). Return the ciphertext C = (X,K).

– SE2(M): If M = 1, set W := W̃ and choose RXΛ ← RSample, R
KΛ ←

RSample; otherwise choose W ← RSampleL, and set RXΛ ← Explain(XΛ, X),
RKΛ ← Explain(KΛ,K). Return the randomness R = (W,RXΛ , RKΛ).

With simulator SE , we will show that for any PPT adversary A, the two ex-
periments ExpNC-CCA-Real

E,A (k) and ExpNC-CCA-Sim
E,A (k) are computationally indis-

tinguishable through a series of indistinguishable games. Technically, we denote
the challenge ciphertext and its corresponding plaintext by C∗ and M∗, and
write C∗ := (X∗,K∗). Without loss of generality, we assume that A always
makes q decryption queries, where q = poly(k). For j ∈ [q], denote A’s j-th
decryption query by Cj := (Xj,Kj) and let its corresponding plaintext be M j .

At the same time, we define K∗ := SecEvl(hsk,X∗), Kj := SecEvl(hsk,Xj) for
j ∈ [q], and denote the final output of A in Game i by outputA,i.

Game 0: Game 0 is the real experiment ExpNC-CCA-Real
E,A (k). By our above no-

tations,

Pr
[
outputA,0 = 1

]
= Pr

[
ExpNC-CCA-Real

E,A (k) = 1
]
.

Game 1: Game 1 is the same as Game 0, except for the decryption oracle. In
Game 1, for any decryption query Cj = (Xj ,Kj) made by A, ifXj /∈ LΛ, the
challenger will return M j = 0 directly, and if Xj ∈ LΛ, the challenger will
answer the query as in Game 0: compute Kj = SecEvl(hsk,Xj), and if Kj =
Kj, return M j = 1, else return M j = 0. Note that the decryption oracle in
Game 1 is inefficient and it doesn’t leak any information on hsk beyond hpk.
Let badi denote the event that in Game i, A makes some decryption query
Cj = (Xj,Kj) such that Xj /∈ LΛ and Kj = Kj . Note that Pr[bad1] =
Pr[bad0] and that Game 1 and Game 0 are identical unless events bad1
or bad0 occurs. By the perfect 2-universality of HPS and a union bound,
Pr[bad1] = Pr[bad0] ≤ q

|KΛ| . So we have

|Pr
[
outputA,1 = 1

]
− Pr

[
outputA,0 = 1

]
| ≤ Pr [bad1] =

q

|KΛ|
.

Game 2: Game 2 is the same as Game 1, except that in the challenge ciphertext
generation, set K∗ = SecEvl(hsk,X∗) for M∗ = 0 and then the randomness
of K∗ is opened as Explain(KΛ,K∗). In Game 1 if M∗ = 0, K∗ also can
be seen as being opened by Explain(KΛ,K∗). In Game 2, since the only
information on hsk beyond hpk is released in the computation of K∗, the
perfect 2-universality of HPS implies that if X∗ /∈ LΛ, K∗ is uniformly
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distributed in KΛ. Let subi denote the event that in Game i when M∗ = 0,
X∗ ∈ LΛ. Note that Pr[sub2] = Pr[sub1] and that Game 2 and Game 1 are
the same unless events sub2 or sub1 occurs. So we have

|Pr
[
outputA,2 = 1

]
− Pr

[
outputA,1 = 1

]
| ≤ Pr [sub2] =

|LΛ|
|XΛ|

.

Game 3: Game 3 is the same as Game 2, except that the decryption oracle
works with the original decryption rule. In Game 3, for any decryption query
Cj = (Xj ,Kj), the challenger sets Kj = SecEvl(hsk,Xj), then returns

M j = 1 ifKj = Kj, or returnsM j = 0 ifKj �= Kj . Note that the decryption
oracle in Game 3 is efficient. Similarly, badi denotes the event that in Game
i, A makes some decryption query Cj = (Xj ,Kj) such that Xj /∈ LΛ and

Kj = Kj. Note that Pr[bad3] = Pr[bad2] and that Game 3 and Game 2
are identical unless events bad3 or bad2 occurs. Since the only information
on hsk beyond hpk is released in the computation of K∗, by the perfect
2-universality of HPS and a union bound, Pr[bad3] = Pr[bad2] =

q
|KΛ| . So

|Pr
[
outputA,3 = 1

]
− Pr

[
outputA,2 = 1

]
| ≤ Pr [bad3] =

q

|KΛ|
.

Game 4: Game 4 is the same as Game 3, except that in the challenge ciphertext
generation, the challenger chooses X∗ ← LΛ if M∗ = 0. That is to say,
choose X∗ ← LΛ no matter whether M∗ is 0 or 1, and X∗ is opened as
Explain(XΛ, X∗) if M∗ = 0. Since SMP is hard,

|Pr
[
outputA,4 = 1

]
− Pr

[
outputA,3 = 1

]
| ≤ AdvSMP,A(k).

Combining all the above results, we have

|Pr
[
outputA,0 = 1

]
− Pr

[
outputA,4 = 1

]
| ≤ 2q

|KΛ|
+
|LΛ|
|XΛ|

+AdvSMP,A(k).

Note that Game 4 is just the experiment ExpNC-CCA-Sim
E,A (k). So we have

AdvNC-CCA
E,A,S (k) = | Pr

[
ExpNC-CCA-Real

E,A (k) = 1
]
− Pr

[
ExpNC-CCA-Sim

E,A (k) = 1
]
|

≤ 2q
|KΛ| +

|LΛ|
|XΛ| +AdvSMP,A(k).

��
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Abstract. Homomorphic signatures are primitives that allow for pub-
lic computations for a class of specified predicates over authenticated
data. An enhanced privacy notion, called complete context-hiding secu-
rity, was recently motivated by Attrapadung et al. (Asiacrypt’12). This
notion ensures that a signature derived from any valid signatures is per-
fectly indistinguishable from a newly generated signatures (on the same
message), and seems desirable in many applications requiring to compute
on authenticated data. In this paper, we focus on two useful predicates
– namely, substring quotation predicates and linear dependency predi-
cates – and present the first completely context-hiding schemes for these
in the standard model. Moreover, our new quotable signature scheme is
the first such construction with signatures of linear size. In comparison
with the initial scheme of Ahn et al. (TCC 2012), we thus reduce the
signature size from O(n log n) to O(n), where n is the message size. Our
scheme also allows signing messages of arbitrary length using constant-
size public keys.

Keywords: Homomorphic signatures, provable security, privacy, un-
linkability, standard model.

1 Introduction

The recent years, much attention has been paid to homomorphic cryptographic
primitives, which make it possible to publicly compute over encrypted [24,34] or
signed [30,10,12] datasets.

In the latter case, anyone holding signatures {σi = Sign(sk,mi)}ki=1 on mes-
sages {mi}ki=1 can publicly derive pairs (m,σ) = Evaluate(pk, {(mi, σi)}ki=1, f)
such that Verify(pk,m, σ) = 1, where m = f(m1, . . . ,mk) for certain functions f .
This has been possible for arithmetic functions [10,22,11,12], logical predicates
[33,26,14,15,13] and other kinds of algebraic signatures [32,8,27,28]. In the case
of arithmetic manipulations, homomorphic signatures notably allow untrusted
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remote parties (e.g. storage servers in cloud computing services) to authenticate
their calculations on the clients’ data. They also proved useful to prevent pollu-
tion attacks in network coding [10,3,22].

At TCC 2012, Ahn et al. [4] defined the general notion of P -homomorphic
signature – for a predicate P – that captures all the aforementioned forms of ho-
momorphic signatures. Specifically, it allows anybody who sees a signature on a
messagem to publicly obtain signatures on messagesm′ such that P (m,m′) = 1.
Informally, a P -homomorphic signature is said unforgeable when a signature on
m only makes it possible to publicly derive signatures on messages m′ such that
P (m,m′) = 1. Ahn et al. also formalized a strong privacy property, called strong
context hiding, which mandates that original and derived signatures be uncon-
ditionally unlinkable.

Quite recently, Attrapadung, Libert and Peters [6] suggested even stronger
privacy notions, of which the strongest one is termed complete context-hiding
security. The difference between the definition of Ahn et al. [4] and the one of
[6] lies in that the former requires the unlinkability of derived signatures to only
honestly generated signatures. In contrast, the stronger complete context hiding
property [6] requires unlinkability with respect to any valid signatures, including
those signatures that might have been somehow maliciously re-randomized by
the adversary. Not achieving this kind of security may raise some concerns in
certain applications such as collusion attacks in network coding, as motivated
in [6].

So far, in the standard model, complete context-hiding security has been
achieved for only one specific kind of predicates, namely subset predicates [6].
For other predicates, completely context-hiding constructions are currently lack-
ing. In particular, this is true for substring quotations – which were addressed
by the main construction of [4] – and linear homomorphisms, that have been ex-
tensively studied in recent years [10,22,11,5,16,17,20]. This paper aims at filling
these gaps by proposing the first completely context-hiding schemes for these
predicates. Along the way, we also improve upon the best previously achieved
efficiency for quoting predicates.

1.1 Related Work

Homomorphic signatures were first suggested by Desmedt [19] and further stud-
ied by Johnson, Molnar, Song and Wagner [30]. Later on, they were considered
by Boneh, Freeman, Katz and Waters [10] who used them to sign linear sub-
spaces so as to thwart pollution attacks in network coding. In the random oracle
model, Boneh et al. [10] described a pairing-based scheme with short per-vector
signatures. In a follow-up work, Gennaro, Katz, Krawczyk and Rabin [22] gave
an RSA-based linearly homomorphic system [22] over the integers in the random
oracle model. Boneh and Freeman [11] suggested to work over binary fields us-
ing lattices. They also motivated a notion, termed weak privacy, which requires
derived signatures not to leak the original dataset they were derived from.

Constructions in the standard model came out in two independent papers
by Attrapadung and Libert [5] and Catalano, Fiore and Warinschi [16,17]. The
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construction of [5] was extended by Freeman [20] who defined a framework for
the design of linearly homomorphic signatures satisfying a stronger definition
of unforgeability. The latter framework of [20] was notably instantiated under
standard assumptions like RSA, Diffie-Hellman and, more efficiently, the Strong
Diffie-Hellman assumption. In the random oracle model, Boneh and Freeman
[12] designed lattice-based homomorphic signatures for multivariate polynomial
functions. Except [10,5], all the aforementioned constructions are only weakly
context-hiding in the sense of [11].

Strongly context-hiding P -homomorphic signatures were recently given by
Ahn et al. [4] for both quoting and subset predicates. In [4], linearly homomor-
phic signatures [10,11,16,20] were also shown to imply P -homomorphic signa-
tures allowing for the computation of weighted averages and Fourier transforms.
It was pinpointed in [4] that the Boneh et al. [10] system is strongly context-
hiding thanks to the uniqueness of its signatures (in the random oracle model).

In the standard model, the construction of Attrapadung and Libert [5] can
be proved strongly context hiding as well (unlike the schemes of [16,17,20]) but,
as discussed in [6], it is demonstrably not completely context-hiding. Attra-
padung et al. [6] came close to filling this gap by describing a more efficient
strongly context-hiding realization simultaneously satisfying another privacy no-
tion which had been elusive so far. Still, their use of the dual system technique
[36,23] prevented them from reaching the desired complete context-hiding level.
In the standard model, no completely context-hiding linearly homomorphic sig-
nature has ever been reported to date.

1.2 Our Contributions

Linear-Size Homomorphic Signatures for Quoting Substring. Given
a signature on a message m, quotable signatures allow for the public deriva-
tion of signatures on any substring of m. Ahn et al. [4] gave a system where
signatures have quasi-linear size: for a message consisting of n symbols, each
signature contains O(n log n) group elements1. Their construction is known to
be only strongly context-hiding (in the sense of [4]) and selectively unforgeable
in the random oracle model. It was argued that their scheme can be modified so
as to be proved fully unforgeable in the standard model using the dual system
encryption technique of Waters [36] (or, more precisely, its signature analogue
[23]). The latter inherently involves two distinct distributions of signatures satis-
fying the verification algorithm. The very existence of an alternative distribution
of valid signatures implies that the resulting system can hardly be completely
context-hiding.

The first contribution of this paper is a quotable signature scheme whose
design principle is very different from [4]. The new scheme is proved fully un-
forgeable in the standard model and also turns out to be the first completely

1 In the signature derivation algorithm of [4], two kinds of signatures can be produced.
Apart from Type I signatures, which are distributed as original signatures, Type II
signatures have O(log n)-size signatures but cannot be quoted any further.
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context-hiding quotable signature. Moreover, it improves upon the worst-case
efficiency of [4] in that a n-symbol message can be signed using O(n) group
elements.

Our construction builds on the structure-preserving signature of Abe, Har-
alambiev and Ohkubo [1], which is used to sign individual message symbols.
An important property of the structure-preserving signature in [1] is that cer-
tain signature components can serve as a commitment to the message. Our
quotable signature exploits this property to link signatures on individual sym-
bols: each symbol is signed with a commitment to the next symbol. Quotable
signatures are then obtained as a sequence of perfectly hiding commitments to
these underlying signatures and non-interactive randomizable arguments of their
validity.

Beyond its asymptotically shorter signatures, our scheme also allows signing
messages of arbitrary length using a constant-size public key. In contrast, [4]
requires the key generation algorithm to define a logarithmic bound on the max-
imal number of symbols in messages to be signed.

Completely Context-Hiding Linearly Homomorphic Signatures. We
provide the first completely context-hiding linearly homomorphic signature in
the standard model. So far, the random-oracle-based construction of Boneh et
al. [10] was the only linearly homomorphic signatures satisfying that level of
privacy. The scheme of [5] is strongly context-hiding in the standard model
but, as pointed out in [6], it falls short of the enhanced privacy level advocated
by [6].

To bypass the latter limitation – which seems inherent to all signature schemes
[5,23] based on the dual system technique – we take further advantage of the
malleability properties [7,21] of Groth-Sahai proofs [25] and build on a linearly
homomorphic signature proposed by Attrapadung et al. [6]. The latter scheme
is only weakly context-hiding (i.e., the original message remains hidden as long
as the original signature is not given) as its signatures contain components that
cannot be randomized at each derivation and thus carry information about the
original signatures. Our idea is to replace these signature components by per-
fectly hiding commitments to these values. The commitments are accompanied
with non-interactive (randomizable) witness indistinguishable arguments that
committed values satisfy appropriate algebraic relations.

One difficulty to solve is that, in the underlying weakly context-hiding con-
struction [6], the “problematic” signature components are actually exponents
that the reduction has to compute in the security proof. When Groth-Sahai
proofs are used in their extractable mode, committed exponents cannot be fully
extracted from their commitments. To solve this problem, we need to modify
the weakly context-hiding scheme of [6] in such a way that its signatures only
consist of group elements. We were able to do this at the expense of relying on a
slightly stronger assumption in the security proof: instead of the standard Diffie-
Hellman assumption, the unforgeability now relies on the Flexible Diffie-Hellman
assumption [29], which is still a simple assumption.
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2 Background

2.1 Definitions for Homomorphic Signatures

Definition 1 ([4]). Let M be a message space and 2M be its powerset. Let
P : 2M ×M → {0, 1} be a predicate. A message m′ is said derivable from
M ⊂ M if P (M,m′) = 1. As in [4], P i(M) is the set of messages derivable
from P i−1(M), where P 0(M) := {m′ ∈M | P (M,m′) = 1}. Finally, P ∗(M) :=
∪∞
i=0P

i(M) denotes the set of messages derivable from M by iterated derivation.

Definition 2 ([4]). A P-homomorphic signature for a predicate P : 2M×M→
{0, 1} is a triple of algorithms (Keygen, SignDerive,Verify) with the following
properties.

Keygen(λ): takes as input a security parameter λ ∈ N and outputs a key pair
(sk, pk). As in [4], the private key sk is seen as a signature on the empty
tuple ε ∈ M.

SignDerive
(
pk, ({σm}m∈M ,M),m′): is a possibly randomized algorithm that

takes as input a public key pk, a set of messagesM ⊂M, a corresponding set
of signatures {σm}m∈M and a derived message m′ ∈ M. If P (M,m′) = 0,
it returns ⊥. Otherwise, it outputs a derived signature σ′

Verify(pk, σ,m): is a deterministic algorithm that takes as input a public key pk,
a signature σ and a message m. It outputs 0 or 1.

Note that the empty tuple ε ∈ M satisfies P (ε,m) = 1 for each message
m ∈ M. Similarly to [4], we define the algorithm Sign(pk, sk,m) that runs2

SignDerive(pk, (sk, ε),m) and returns the output. For any M = {m1, . . . ,mk} ⊂
M, we define Sign(sk,M) := {Sign(sk,m1), . . . , Sign(sk,mk)} . Also, we write
Verify(pk,M, {σm}m∈M ) = 1 to express that Verify(pk,m, σm) = 1 for each
m ∈M .

Correctness. It is required that, for all key pairs (pk, sk)← Keygen(λ), for any
message set M ⊂ M, any message m′ ∈ M such that P (M,m′) = 1, the fol-
lowing conditions must be satisfied: (i) SignDerive(pk, (Sign(sk,M),M),m′) �=⊥;
(ii) Verify

(
pk,m′, SignDerive(pk, (Sign(sk,M),M),m′)

)
= 1.

Definition 3 ([4]). A P -homomorphic signature (Keygen, SignDerive,Verify) is
said unforgeable if no probabilistic polynomial-time (PPT) adversary has non-
negligible advantage in this game:

1. The challenger generates (pk, sk)← Keygen(λ) and gives pk to the adversary
A. It initializes two initially empty tables T and Q.

2. A adaptively interleaves the following queries.

- Signing queries: A chooses a message m ∈ M. The challenger replies
by choosing a handle h, runs σ ← Sign(sk,m) and stores (h,m, σ) in a
table T . The handle h is returned to A.

2 The intuition is that any message can be derived when the original message contains
the signing key.
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- Derivation queries: A chooses a vector of handles �h = (h1, . . . , hk) and
a message m′ ∈ M. The challenger retrieves the tuples {(hi,mi, σi)}ki=1

from T and returns ⊥ if one of these does not exist. Otherwise, it defines
M := (m1, . . . ,mk) and {σm}m∈M = {σ1, . . . , σk}. If P (M,m′) = 1,
the challenger runs σ′ ← SignDerive

(
pk, ({σm}m∈M ,M),m′), chooses a

handle h′, stores (h′,m′, σ′) in T and returns h′ to A.
- Reveal queries: A chooses a handle h. If no tuple of the form (h,m′, σ′)
exists in T , the challenger returns ⊥. Otherwise, it returns σ′ to A and
adds (m′, σ′) to the set Q.

3. A outputs a pair (σ′,m′) and wins if: (i) Verify(pk,m′, σ′) = 1; (ii) If M ⊂
M is the set of messages in Q, then m′ �∈ P ∗(M).

Ahn et al. [4] formalized a strong notion of privacy that captures the inability of
distinguishing derived signatures from original ones, even when these are given
along with the private key. In [4], it was shown that, if a scheme is strongly con-
text hiding, then Definition 3 can be simplified by only providing the adversary
with an ordinary signing oracle.

As noted in [6], specific applications may require an even stronger definition.
In particular, the following definition makes sense when homomorphic signa-
ture schemes are randomizable and/or the verification algorithm accepts several
distributions of valid-looking signatures.

Definition 4 ([6]). A homomorphic signature (Keygen, Sign, SignDerive,Verify)
is completely context hiding for the predicate P if, for all key pairs (pk, sk)←
Keygen(λ), for all message sets M ⊂M∗ and m′ ∈M such that P (M,m′) = 1,
for all {σm}m∈M such that Verify(pk,M, {σm}m∈M ) = 1, the following distribu-
tions are statistically close

{(sk, {σm}m∈M , Sign(sk,m′))}sk,M,m′ ,{(
sk, {σm}m∈M , SignDerive

(
pk, ({σm}m∈M ,M),m′))}

sk,M,m′ .

2.2 Hardness Assumptions

We consider bilinear maps e : G × G → GT over groups of prime order p. In
these groups, we rely on the following hardness assumptions.

Definition 5 ([9]). The Decision Linear Problem (DLIN) in G consists
in distinguishing the distributions (ga, gb, gac, gbd, gc+d) and (ga, gb, gac, gbd, gz),
with a, b, c, d R← Z∗

p, z
R← Z∗

p. The Decision Linear Assumption is the in-
tractability of DLIN for any PPT distinguisher D.

We also use a weaker variant of an assumption used in [29,31]. The latter is a
variant of the Diffie-Hellman assumption, which posits the infeasibility of finding
a pair (gμ, gab·μ) given (g, ga, gb) ∈ G3.

Definition 6. The Flexible Diffie-Hellman Problem (FlexDH) in G, is
given (g, ga, gb), where a, b R← Zp, to find a triple (gμ, ga·μ, gab·μ) ∈ G3 such
that μ �= 0.
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The FlexDH assumption is known to imply the intractability of distinguishing
gabc from random given (g, ga, gb, gc). For this reason, it can be seen as a simple
assumption.

Finally, we also use the following q-type assumption.

Definition 7 ([1]). In a group G, the q-Simultaneous Flexible Pairing
Problem (q-SFP) is, given

(
gz, hz, gr, hr, a, ã, b, b̃

)
∈ G8 as well as a set of

q tuples (zj , rj , sj , tj , uj , vj , wj) ∈ G7 such that

e(a, ã) = e(gz, zj) · e(gr, rj) · e(sj , tj), (1)

e(b, b̃) = e(hz, zj) · e(hr, uj) · e(vj , wj),

to find a new tuple (z�, r�, s�, t�, u�, v�, w�) ∈ G7 satisfying (1) and such that
z� �∈ {1G, z1, . . . , zq}.

2.3 Structure-Preserving Signatures

Many protocols require to sign elements of bilinear groups while preserving
their structure and, in particular, without hashing them. Abe, Haralambiev and
Ohkubo [1,2] (AHO) described such a signature. The description below assumes
common public parameters pp =

(
(G,GT ), g

)
consisting of symmetric bilinear

groups (G,GT ) of prime order p > 2λ, where λ ∈ N and a generator g ∈ G.

Keygen(pp, n): given an upper bound n ∈ N on the number of group elements
per message to be signed, choose generators Gr, Hr

R← G. Pick γz, δz
R← Zp

and γi, δi
R← Zp, for i = 1 to n. Then, compute Gz = Gγzr , Hz = Hδz

r and

Gi = Gγir , Hi = Hδi
r for each i ∈ {1, . . . , n}. Finally, choose αa, αb R← Zp and

define A = e(Gr, g
αa) and B = e(Hr, g

αb). The public key is defined to be

pk =
(
Gr, Hr, Gz, Hz, {Gi, Hi}ni=1, A, B

)
∈ G2n+4 ×G2

T

while the private key is sk =
(
αa, αb, γz, δz, {γi, δi}ni=1

)
.

Sign(sk, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ Gn using the private
key sk = (αa, αb, γz, δz, {γi, δi}ni=1), choose ζ, ρa, ρb, ωa, ωb

R← Zp and com-
pute θ1 = gζ as well as

θ2 = gρa−γzζ ·
n∏
i=1

M−γi
i , θ3 = Gωa

r , θ4 = g(αa−ρa)/ωa ,

θ5 = gρb−δzζ ·
n∏
i=1

M−δi
i , θ6 = Hωb

r , θ7 = g(αb−ρb)/ωb ,

The signature consists of σ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7) ∈ G7.
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Verify(pk, σ, (M1, . . . ,Mn)): given a signature σ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7) ∈ G7,
return 1 if and only if these values satisfy the equalities

A = e(Gz, θ1) · e(Gr, θ2) · e(θ3, θ4) ·
n∏
i=1

e(Gi,Mi)

B = e(Hz, θ1) · e(Hr, θ5) · e(θ6, θ7) ·
n∏
i=1

e(Hi,Mi).

The scheme is known [1,2] to be existentially unforgeable under chosen-message
attacks under the q-SFP assumption, where q is the number of signing
queries.

As pointed out in [1,2], signature components {θi}7i=2 can be publicly re-
randomized so as to obtain a different signature {θ′i}7i=1 ← ReRand(pk, σ) on
(M1, . . . ,Mn). After each randomization, we have θ′1 = θ1 whereas {θ′i}7i=2 are
uniformly distributed among the set of group elements (θ2, . . . , θ7) for which the
equalities e(Gr, θ

′
2) · e(θ′3, θ′4) = e(Gr, θ2) · e(θ3, θ4) and e(Hr, θ

′
5) · e(θ′6, θ′7) =

e(Hr, θ5) · e(θ6, θ7) hold. As a result, {θ′i}i∈{3,6} are statistically independent of
the message and other signature components.

It was also observed [1,2] that signature components (θ3, θ6) can be used as
a commitment to the message. Under the q-SFP assumption, it is infeasible to
find signatures σ = (θ1, . . . , θ7), σ

′ = (θ′1, . . . , θ
′
7) on two distinct messagesM,M ′

such that (θ3, θ6) = (θ′3, θ
′
6). This is true even if the adversary has access to a

signing oracle and obtains signatures on both M and M ′.

2.4 Groth-Sahai Proof Systems

In [25], Groth and Sahai described efficient non-interactive witness indistin-
guishable (NIWI) proof systems that can be based on the DLIN assumption.
In this case, they use prime order groups and a common reference string con-
taining three vectors �f1, �f2, �f3 ∈ G3, where �f1 = (f1, 1, g), �f2 = (1, f2, g) for
some f1, f2 ∈ G. To commit to a group element X ∈ G, the prover chooses

r, s, t R← Z∗
p and computes �C = (1, 1, X) · �f1

r
· �f2

s
· �f3

t
. On a perfectly sound

common reference string, we have �f3 = �f1
ξ1 · �f2

ξ2
where ξ1, ξ2 ∈ Z∗

p. Commit-

ments �C = (f r+ξ1t1 , f s+ξ2t2 , X ·gr+s+t(ξ1+ξ2)) are extractable commitments whose
distribution is that of Boneh-Boyen-Shacham (BBS) ciphertexts [9]: committed
values can be extracted using β1 = logg(f1), β2 = logg(f2). In the witness indis-

tinguishability (WI) setting, vectors �f3 is chosen outside the span of (�f1, �f2), so

that �C is a perfectly hiding commitment. Under the DLIN assumption, the two
kinds of CRS are computationally indistinguishable.

To provide evidence that committed variables satisfy a set of relations, the
prover computes one commitment per variable and one proof element per re-
lation. Such efficient NIWI proofs are available for pairing-product equations,
which are relations of the type.
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n∏
i=1

e(Ai,Xi) ·
n∏
i=1

·
n∏
j=1

e(Xi,Xj)aij = tT , (2)

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ Zp,
for i, j ∈ {1, . . . , n}.

In pairing-product equations, proofs for quadratic equations require 9 group
elements whereas linear equations (i.e., where aij = 0 for all i, j in equation (2))
only cost 3 group elements each.

Belenkiy et al. [7] showed that Groth-Sahai proofs are perfectly randomizable.

Given commitments { �CXi}ni=1 and a NIWI proof �πPPE that committed variables
{X}ni=1 satisfy (2), anyone can publicly (i.e., without knowing the witnesses)

compute re-randomized commitments { �CX ′
i
}ni=1 and a re-randomized proof �π′

PPE

of the same statement. Moreover, { �CX ′
i
}ni=1 and �π′

PPE are distributed as freshly
generated commitments and proof. This property was notably used in [21,18].

3 Linear-Size Quotable Signatures

In quotable signatures, given a signature on some message, one should only be
able to derive signatures on arbitrary substrings of the original message. The
message space M is also defined as the set of strings M := Σ∗, where Σ is a
set of symbols. The predicate P is univariate (i.e., |M | = 1) and defined to have
P
(
{Msg1},Msg2

)
= 1 whenever Msg2 is a substring of Msg1.

The scheme bears resemblance with the homomorphic signature for subset
predicates of [6] which also builds on structure-preserving signatures. In fact,
the construction is itself a structure-preserving quotable signature as it allows
signing sequences of group elements.

We actually use a variant of the unbounded AHO signature scheme which
allows signing messages of arbitrary length with a public key of fixed size. In [1],
this is achieved by taking advantage of the property called “signature binding”
(and proved in [1, Lemma 3]), which informally says that signature compo-
nents (θ3, θ6) can be used as a commitment to the message: namely, given only
the public key and access to a signing oracle, unless the scheme is existentially
forgeable under chosen-message attacks, it is infeasible to come up with two dis-
tinct messages (M1, . . . ,Mn), (M

′
1, . . . ,M

′
n) with corresponding valid signatures

σ = (θ1, . . . , θ7) and σ′ = (θ′1, . . . , θ
′
7) such that θ3 = θ′3 and θ6 = θ′6. This

remains true even if (M1, . . . ,Mn) and (M ′
1, . . . ,M

′
n) are both submitted to the

signing oracle during the game. Using this observation, a basic signature scheme
where the message space is G3 can be turned into an “unbounded” structure-
preserving signature, where the signer can sign messages of arbitrary length.
The idea is to use signature components {(θi,3, θi,6)}ni=1 to link adjacent mes-
sage blocks together: each block mi ∈ G is signed along with the (θi−1,3, θi−1,6)
components of the signature on the previous block mi−1 ∈ G. In our scheme, we
proceed in the same way but, unlike [1], we do not encode the total number of
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blocks within the message. This modification allows anyone to quote signatures
by removing portions of the chain in its extremities. In order to prevent illegal
combinations of two different chains, the signer processes the last block mn of
each message (m1, . . . ,mn) by signing it with a pair of random group elements
(θ̃3, θ̃6) which are part of the private key. This allows us to prove security using
the same arguments as in [1].

For the sake of privacy, the components of {σi}ni=1 are not explicitly given out
but only appear within perfectly hiding Groth-Sahai commitments accompanied
with appropriate NIWI arguments. At each signature derivation, commitments
and NIWI arguments are suitably re-randomized.

An important difference with the construction for subset predicates in [6], is
that underlying AHO signatures entirely appear in committed form. The reason
is that using (θi,3, θi,6) in the chaining process prevents their re-randomization.
For this reason, they also have to be committed so that we need to work with
quadratic pairing-product equations.

In the following, when X ∈ G (resp. X ∈ GT ), the notation ι(X) (resp.
ιGT (X)) will be used to denote the vector (1, 1, X) ∈ G3 (resp. the 3 × 3 ma-
trix containing X in position (3, 3) and 1GT everywhere else). Finally, we also
use a symmetric bilinear map F : G3 × G3 → G9

T such that, for any two vec-

tors �X = (X1, X2, X3) ∈ G3 and �Y = (Y1, Y2, Y3) ∈ G3, F ( �X, �Y ) is defined to

be F ( �X, �Y ) = F̃ ( �X, �Y )1/2 · F̃ (�Y , �X)1/2, where the non-commutative mapping

F̃ : G3×G3 → G9
T sends ( �X, �Y ) onto the matrix F̃ ( �X, �Y ) of entry-wise pairings

(i.e., containing e(Xi, Yj) in its entry (i, j)).

Keygen(λ): given a security parameter λ ∈ N, choose bilinear groups (G,GT )
of prime order p > 2λ.

1. Choose a Groth-Sahai CRS f = (�f1, �f2, �f3) for the perfect WI setting.

More precisely, choose �f1 = (f1, 1, g), �f2 = (1, f2, g), and �f3 = �f1
ξ1 · �f2

ξ2 ·
(1, 1, g)−1, with f1, f2, g

R← G, ξ1, ξ2
R← Zp.

2. Generate a key pair (skaho, pkaho) for the AHO signature in order to sign
messages consisting of three group elements. This key pair consists of
skaho =

(
αa, αb, γz, δz, {γi, δi}3i=1

)
and

pkaho =
(
Gr, Hr, Gz = Gγzr , Hz = Hδz

r ,

{Gi = Gγir , Hi = Hδi
r }3i=1, A, B

)
.

3. Choose two uniformly random group elements θ̃3, θ̃6
R← G.

The public key consists of pk :=
(
(G,GT ), f , pkaho

)
whereas the private

key is defined to be sk =
(
skaho, (θ̃3, θ̃6)

)
. The public key defines the set of

symbols Σ = G.

Sign(sk,Msg): given sk =
(
skaho, (θ̃3, θ̃6)

)
and a length-n message Msg =

(m1, . . . ,mn) ∈ Gn, for some n ∈ poly(λ) and where mi ∈ G for each
i ∈ {1, . . . , n}, do the following.
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1. Define (θn+1,3, θn+1,6) = (θ̃3, θ̃6). Then, for k ∈ {3, 6}, compute Groth-

Sahai commitments �Cθn+1,k
= ι(θn+1,k) · �f1

rθn+1,k · �f2
sθn+1,k · �f3

tθn+1,k .
2. For each j = n down to 1, generate an AHO signature (θj,1, . . . , θj,7)

on the message (mj , θj+1,3, θj+1,6) ∈ G3. For each k ∈ {1, . . . , 7} and
j ∈ {1, . . . , n}, generate commitments

�Cθj,k = ι(θj,k) · �f1
rθj,k · �f2

sθj,k · �f3
tθj,k .

Next, generate NIWI aruments �πaho,j,1, �πaho,j,2 ∈ G9 that committed
variables (θj,1, θj,2, θj,3, θj,4, θj,5, θj,6, θj,7) satisfy

A · e(G1,mj)
−1 = e(Gz, θj,1) · e(Gr, θj,2) · e(θj,3, θj,4)

·e(G2, θj+1,3) · e(G3, θj+1,6)

B · e(H1,mj)
−1 = e(Hz, θj,1) · e(Hr, θj,5) · e(θj,6, θj,7) (3)

·e(H2, θj+1,3) · e(H3, θj+1,6)

These equations are quadratic, so that {�πaho,j,1, �πaho,j,2}nj=1 consist of 9
group elements each.

3. Return the signature

σ =
(
{ �Cθn+1,k

}k∈{3,6},
{
{ �Cθj,k}7k=1, �πaho,j,1, �πaho,j,2

}n
j=1

)
. (4)

SignDerive(pk,Msg,Msg′, σ): given the public key pk as well as two messages
Msg = (m1, . . . ,mn) ∈ Gn and Msg′ = (m′

1, . . . ,m
′
n′) ∈ Gn′

, return ⊥ if
Msg′ is not a substring of Msg. Otherwise, there exists i ∈ {1, . . . , n−n′+1}
such that Msg′ = (m′

1, . . . ,m
′
n′) = (mi, . . . ,mi+n′−1). Then, parse σ as in

(4) and, for each i ∈ {1, . . . , n′}, conduct the following steps.

1. Define the sub-signature

σ̃ =
(
{ �Cθi+n′,k}k∈{3,6},

{
{ �Cθi+j,k

}7k=1, �πaho,i+j,1, �πaho,i+j,2
}n′−1

j=0

)
.

2. Re-randomize �C′
θi+j,k

= �Cθi+j,k
· �f1

r′θi+j,k · �f2
s′θi+j,k · �f3

t′θi+j,k for j = 0

to n′ − 1 and k = 1 to 7. Likewise, compute re-randomized versions
{ �C′

θi+n′,k
}k∈{3,6} of { �Cθi+n′,k}k∈{3,6}. Finally, re-randomize the proofs

{�πaho,i+j,1 = (�πi+j,1, �πi+j,2, �πi+j,3)}n
′−1
j=0

and
{�πaho,i+j,2 = (�πi+j,4, �πi+j,5, �πi+j,6)}n

′−1
j=0

as suggested in [7].
3. Return the signature

σ′ =
(
{ �C′

θi+n′,k}k∈{3,6},
{
{ �C′

θi+j,k
}7k=1, �π

′
aho,i+j,1, �π

′
aho,i+j,2

}n′−1

j=0

)
. (5)
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Verify(pk,Msg, σ): given pk, a signature σ and a messageMsg = (m1, . . . ,mn) ∈
Gn, parse σ as per (4) and do the following. For j = 1 to n, return 0 if
�πaho,j,1 = (�πj,1, �πj,2, �πj,3) and �πaho,j,2 = (�πj,4, �πj,5, �πj,6) do not satisfy the
equations below. Otherwise, return 1.

ιGT (A) / F
(
ι(G1), ι(mj)

)
= F
(
ι(Gz), �Cθj,1

)
· F
(
ι(Gr), �Cθj,2

)
· F
(
�Cθj,3 , �Cθj,4

)
·F
(
ι(G2), �Cθj+1,3

)
· F
(
ι(G3), �Cθj+1,6

)
·

3∏
k=1

F
(
�πj,k, �fk

)
(6)

ιGT (B) / F
(
ι(H1), ι(mj)

)
= F
(
ι(Hz), �Cθj,1

)
· F
(
ι(Hr), �Cθj,5

)
· F
(
�Cθj,6 , �Cθj,7

)
·F
(
ι(H2), �Cθj+1,3

)
· F
(
ι(H3), �Cθj+1,6

)
·

3∏
k=1

F
(
�πj,k+1, �fk

)
.

Unlike the scheme of [4], the above system allows signing arbitrarily long mes-
sages with a public key of constant size whereas [4] requires to set a logarithmic
bound on the length of signed messages at key generation. The signature length
is asymptotically optimal: a n-symbol message can be signed using 39n+6 group
elements.

On the other hand, we lose a useful feature of the construction in [4]. The
latter allows the derivation algorithm to produce two kinds of derived signatures:
when the message m′ consists of � symbols, Type I signatures contain O(� log �)
group elements and support subsequent quoting. Alternatively, the quoting al-
gorithm can derive a much shorter Type II signature, which comprises O(log �)
elements, but cannot be quoted any further. In our scheme, the quoter can only
produce Type I signatures and does not have the same flexibility as in [4].

We now turn to the security of the scheme and first observe that it is clearly
completely context-hiding due to the use of a witness indistinguishable Groth-
Sahai CRS.

Theorem 1. The above quotable signature scheme is completely context hiding.

Proof. The proof follows from the fact that each signature only consists of per-
fectly hiding commitments and perfectly NIWI arguments, which can be per-
fectly re-randomized at each derivation. ��

The unforgeability relies on the DLIN assumption and the security properties of
AHO signatures, as established by Theorem 2.

Theorem 2. The scheme is existentially unforgeable against chosen-message
attacks under the (q · L + 1)-SFP and DLIN assumptions, where q denotes the
maximal number of signing queries and L is the maximal number of symbols per
signing query.

Proof. Since the scheme is completely context hiding, we only need to prove
unforgeability using the simpler definition where the adversary A only has a
signing oracle. The proof uses a sequence of games where, for each i, Si stands
for the event that A produces a valid forgery in Gamei.
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Game0: This is the real game. We denote by S0 the event that the adversary A
manages to output a successful forgery. Obviously, A’s advantage is Pr[S0].

Game1: We change the generation of the public key and set up f = (�f1, �f2, �f3) as

a perfectly sound Groth-Sahai CRS. Concretely, the challenger B chooses �f3
in the span of �f1 = (f1, 1, g) and �f2 = (1, f2, g), where f1 = gφ1 and f2 = gφ2 ,
for random chosen φ1, φ2

R← Zp. Signing queries are answered as in Game0,

using the private key (skaho, (θ̃3, θ̃6)) and generating NIWI arguments faith-
fully. Under the DLIN assumption, this change should not significantly affect
A’s behavior and we have |Pr[S1]−Pr[S0]| ≤ AdvDLIN(B). Note that the re-
duction is immediate as B does not need the trapdoor (φ1, φ2) at any time. In
Game1, perfectly hiding Groth-Sahai commitments (and NIWI arguments)
are traded for perfectly binding commitments (and perfectly sound proofs).

Game2: This game is identical to Game 1 except that we bring a conceptual
change in the generation of sk. Instead of merely choosing (θ̃3, θ̃6) at ran-
dom, the challenger B picks a uniformly random group element m̃ R← G and
computes an AHO signature {θ̃k}7k=1 on the “dummy” message (m̃, 1, 1).

The resulting (θ̃3, θ̃6) are included in the private key sk whereas m̃ and
{θ̃k}k∈{1,2,4,5,7} are retained by B. We argue that this change does not alter

A’s view whatsoever since (θ̃3, θ̃6) have the same distribution either way.
Indeed, in Game2, they remain uniformly distributed in G2 and statistically
independent of the message m̃ and other signature components. We have
Pr[S2] = Pr[S1].

In Game2, B uses the values (φ1, φ2) = (logg(f1), logg(f2)) that were defined
in Game1. When A outputs a forgery σ� on a message (m�

1, . . . ,m
�
n�), B uses

(φ1, φ2) to extract (θ�n�+1,3, θ
�
n�+1,6) as well as a sequence of AHO signatures

{σ�j = (θ�j,1, . . . , θ
�
j,7)}n

�

j=1 from the Groth-Sahai commitments contained in σ�.

The perfect soundness of {�π�aho,j,1, �π�aho,j,2}n
�

j=1 guarantees that extracted values

(m�
1, . . . ,m

�
n�), {σ�j }n

�

j=1 and (θ�n�+1,3, θ
�
n�+1,6) satisfy equations (3).

In Game2, we can prove that event S2 occurs with negligible probability
if the (q · L + 1)-SFP assumption holds. Indeed, if A is successful in Game3,
{σ�j = (θ�j,1, . . . , θ

�
j,7)}n

�

j=1 is a sequence of valid AHO signatures on the messages

{(m�
j , θ

�
j+1,3, θ

�
j+1,6)}n

�

j=1 but (m�
1, . . . ,m

�
n�) is not a subsequence involved in any

of the signing queries. We can thus distinguish two situations.

Case A. There exists j† ∈ {1, . . . , n} such that B never had to sign the message
(m�

j† , θ
�
j†+1,3, θ

�
j†+1,6) in any signing query.

Case B. The messages {(m�
j , θ

�
j+1,3, θ

�
j+1,6)}n

�

j=1 were all signed by B at some
point of the game but not all of them were involved in the same query. This
covers the case of an adversary mixing substrings of two different messages
for which it received signatures.

In Case A, it is immediate that A necessarily broke the chosen-message security
of the AHO signature: the reduction B simply outputs (m�

j† , θ
�
j†+1,3, θ

�
j†+1,6) and

the signature σ�j† .
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We are thus left with Case B for which we know that (m�
1, θ

�
2,3, θ

�
2,6) was in-

volved in the κ-th signing query Msgκ = (mκ,1, . . . ,mκ,nκ), for some integers
κ ∈ {1, . . . , q} and nκ ∈ {1, . . . , L}. Let {(θκ,j,1, . . . , θκ,j,7)}nκ

j=1 be the AHO sig-
natures that were used to answer the κ-th signing query. Let also t ∈ {1, . . . , nκ}
be such that (mκ,t, θκ,t+1,3, θκ,t+1,6) = (m�

1, θ
�
2,3, θ

�
2,6).

We now define j� to be the largest index in {1, . . . , n� − 1} such that

(mκ,t+j�−1, θκ,t+j�,3, θκ,t+j�,6) = (m�
j� , θ

�
j�+1,3, θ

�
j�+1,6).

At this step, we further consider two sub-cases of Case B:

Case t+ j� < nκ + 1: Since mκ,t+j� �= mj�+1 or (θκ,t+j�+1,3, θκ,t+j�+1,6) �=
(θ�j�+2,3, θ

�
j�+2,6), the signature binding property of the AHO signature is

broken since we have two distinct messages whose signatures share the same
θ�j�+1,3, θ

�
j�+1,6 components. As implied by the results of [1], this contradicts

the (q · L + 1)-SFP assumption since B computes at most q · L + 1 AHO
signatures.

Case t+ j� = nκ + 1: We have the equality

(θ�j�+1,3, θ
�
j�+1,6) = (θκ,nκ+1,3, θκ,nκ+1,6) = (θ̃3, θ̃6),

which means that (m�
j� , θ

�
j�+1,3, θ

�
j�+1,6) was the message of an “end-of-

chain” signature produced by B. Said otherwise, this is a forgery where
(m�

1, . . . ,m
�
n�) is a super-string of (mκ,t, . . . ,mκ,nk

). In this case, thanks

to the modification introduced in Game2, B knows {θ̃k}k∈{1,2,4,5,7} as well

as a dummy message m̃ such that (θ̃1, . . . , θ̃7) is a valid AHO signature
on (m̃, 1, 1). With overwhelming probability, we obtain distinct messages
(m̃, 1, 1) and (m�

j�+1, θ
�
j�+2,3, θ

�
j�+2,6) that share the same signature com-

ponents (θ�j�+1,3, θ
�
j�+1,6) = (θ̃3, θ̃6). Indeed, the pair (θ̃3, θ̃6) is statistically

independent of the dummy message m̃ and the latter was uniformly chosen
in G. It comes that we can only have m�

j�+1 = m̃ by pure chance.

In Case B, the signature binding property of AHO signatures is thus broken
either way and we can eventually write Pr[S2] ≤ 2·Adv(q·L+1)-SFP(B), where the
factor 2 accounts for the fact that the reduction has to guess beforehand which
of Case A or Case B will come about. Depending on this guess, B undertakes
to either attack the standard unforgeability of AHO signatures or, alternatively,
break their signature-binding property. In either case, B answers A’s queries by
invoking the signing oracle in its interaction with the appropriate challenger.

Putting the above altogether, we find the upper bound

Pr[S0] ≤ AdvDLIN(B) + 2 ·Adv(q·L+1)-SFP(B)
on the forger’s advantage. ��

4 Completely Context-Hiding Linearly Homomorphic
Signatures

We now turn to linearly homomorphic signatures for which the syntax and the
security definitions of Section 2 can be simplified as explained in [6].
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Our starting point is the weakly context-hiding linearly homomorphic signa-
ture of [6]. Its public key includes group elements gα, v and {gi}ni=1, where n is
the dimension of vectors to be signed. Signatures of vectors �v = (v1, . . . , vn) are
of the form (σ1, σ2, s) =

(
(
∏n
i=1 g

vi
i · vs)α ·HG(τ)

r , gr, s
)
, where r, s ∈R Zp and

τ identifies the linear subspace.
The reason why the scheme is only weakly context-hiding is that the signa-

ture component s cannot be re-randomized. Hence, it always allows linking a
derived signature to those it was obtained from. To render the scheme com-
pletely context-hiding, we need to modify the signing algorithm so as to hide
s ∈ Zp. In signatures, the exponent s is replaced by Groth-Sahai commitments
to group elements (gs, gα·s), where gα is the public key, together with NIWI
arguments that these are correctly formed. Then, the randomizability properties
of Groth-Sahai proofs come in handy to guarantee that derived signatures will
be statistically independent of original signatures.

In the notations hereunder, for any h ∈ G and �g = (g1, g2, g3) ∈ G3, E(h,�g)
stands for the vector

(
e(h, g1), e(h, g2), e(h, g3)

)
∈ G3

T .

Keygen(λ, n): given a security parameter λ ∈ N and an integer n ∈ poly(λ),
choose bilinear groups (G,GT ) of prime order p > 2λ.

1. Choose α R← Zp, g, v
R← G and u0, u1, . . . , uL

R← G, for some L ∈ poly(λ).
Elements (u0, . . . , uL) ∈ GL+1 will define hash function HG : {0, 1}L →
G mapping any L-bit string m = m[1] . . .m[L] ∈ {0, 1}L onto a hash

value HG(m) = u0 ·
∏L
i=1 u

m[i]
i .

2. Pick gi
R← G for i = 1 to n. Also, define the identifier space T := {0, 1}L.

3. Generate Groth-Sahai common reference string f = (�f1, �f2, �f3) for the

perfect WI setting. Namely, choose vectors �f1 = (f1, 1, g), �f2 = (1, f2, g),

as well as �f3 = �f1
ξ1 · �f2

ξ2 · (1, 1, g)−1, with f1, f2
R← G, ξ1, ξ2

R← Zp.

The private key is sk := α and the public key consists of

pk :=
(
(G,GT ), g, g

α, v, {gi}ni=1, {ui}Li=0, f
)
.

Sign(sk, τ, �v): given a vector �v = (v1, . . . , vn) ∈ Znp , a file identifier τ ∈ {0, 1}L
and the private key sk = α ∈ Zp, do the following.

1. Choose r, s R← Zp and compute

σ1 = (gv11 · · · gvnn · vs)α ·HG(τ)
r , σ2 = gr, σ3 = gs, σ4 = gα·s.

2. Compute commitments to (σ1, σ3, σ4). Namely, for each j ∈ {1, 3, 4},
choose rσj , sσj , tσj

R← Zp and compute �Cσj = (1, 1, σj)· �f1
rσj · �f2

sσj · �f3
tσj .

3. Generate a NIWI proof that (σ1, σ3, σ4) ∈ G3 satisfy the linear equations

e(σ1, g) = e(

n∏
i=1

gvii , g
α) · e(v, σ4) · e(HG(τ), σ2), (7)

e(σ3, g
α) = e(g, σ4). (8)
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These proofs are obtained as

�π1 = (π1,1, π1,2, π1,3) =
(
grσ1 · v−rσ4 , gsσ1 · v−sσ4 , gtσ1 · v−tσ4

)
�π2 = (π2,1, π2,2, π2,3) =

(
(gα)rσ3 · g−rσ4 , (gα)sσ3 · g−sσ4 , (gα)tσ3 · g−tσ4

)
,

which satisfy the equations

E(g, �Cσ1) = E
( n∏
i=1

gvii , (1, 1, g
α)
)
·E(v, �Cσ4 ) (9)

·E
(
HG(τ), (1, 1, σ2)

)
·

3∏
j=1

E(π1,j , �fj)

E(gα, �Cσ3) = E(g, �Cσ4 ) ·
3∏
j=1

E(π2,j , �fj). (10)

The signature consists of σ =
(
�Cσ1 , σ2, �Cσ3 , �Cσ4 , �π1, �π2

)
∈ G16.

SignDerive(pk, τ, {(βi, σ(i))}�i=1): given pk, a file identifier τ and � tuples (βi, σ
(i)),

parse each signature σ(i) as σ(i) =
(
�Cσi,1 , σi,2, �Cσi,3 , �Cσi,4 , �πi,1, �πi,2

)
∈ G16.

1. Choose r̃ R← Zp. Then, compute σ2 =
∏�
i=1 σ

βi

i,2 · gr̃ and

�Cσ1 =

�∏
i=1

�Cβi
σi,1

· (1, 1, HG(τ)
r̃) �Cσ3 =

�∏
i=1

�Cβi
σi,3

�Cσ4 =

�∏
i=1

�Cβi
σi,4

as well as �π1 =
∏�
i=1 �π

βi

i,1 and �π2 =
∏�
i=1 �π

βi

i,2.

2. Re-randomize commitments �Cσ1 , �Cσ3 , �Cσ4 and the proofs �π1, �π2. Finally,

return the re-randomized signature σ′ =
(
�C′
σ1
, σ′

2,
�C′
σ3
, �C′

σ4
, �π′

1, �π
′
2

)
.

Verify(pk, τ, �y, σ): given pk, a signature σ =
(
�Cσ1 , σ2, �Cσ3 , �Cσ4 , �π1, �π2

)
∈ G16

and a message (τ, �y), where τ ∈ {0, 1}L and �y = (y1, . . . , yn) ∈ (Zp)
n, return

⊥ if �y = �0. Otherwise, return 1 if and only if equations (9)-(10) are satisfied.

The properties of Groth-Sahai proofs guarantee that the scheme is completely
hiding as established by Theorem 3.

Theorem 3. The scheme is completely context hiding.

Proof. The statement follows from the fact that, on a perfectly hiding CRS
(�f1, �f2, �f3), all commitments are perfectly hiding and arguments are perfectly

WI. Moreover, signature components σ2, commitments �Cσ1 , �Cσ3 , �Cσ4 and �π1, �π2
are perfectly re-randomized by the derivation algorithm. For this reason, the
output of SignDerive has the same distribution as a fresh signature. ��

In the proof of unforgeability, we will need a slightly stronger (but still simple)
assumption than the standard CDH assumption.
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The proof assumes that the adversary only obtains signatures on linearly inde-
pendent vectors. This is not a limitation since, in practice, one usually augments
the signed vectors (e.g., by unit vectors) so that they are always linearly inde-
pendent. As in [20] and [6, Appendix F], we also assume that a given pair (τ, �v)
is always signed using the same s. This can be enforced by deriving s from a
pseudo-random function of τ and �v.

Theorem 4. The scheme is unforgeable assuming that the DLIN and FlexDH
assumption both hold in the group G. (The proof is given in the full version of
the paper).

Acknowledgements. The authors thank the anonymous reviewers for useful
comments.
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Abstract. Verifiably encrypted signatures (VES) are signatures
encrypted by a public key of a trusted third party and we can ver-
ify their validity without decryption. This paper proposes a new VES
scheme which is secure under the decisional linear (DLIN) assumption
in the standard model. We also propose new obfuscators for encrypted
signatures (ES) and encrypted VES (EVES) which are secure under the
DLIN assumption.

All previous efficient VES schemes in the standard model are either
secure under standard assumptions (such as the computational Diffie-
Hellman assumption) with large verification (or secret) keys or secure
under (non-standard) dynamic q-type assumptions (such as the q-strong
Diffie-Hellman extraction assumption) with short verification keys. Our
construction is the first efficient VES scheme with short verification (and
secret) keys secure under a standard assumption (DLIN).

As by-products of our VES scheme, we construct new obfuscators
for ES/EVES based on our new VES scheme. They are more efficient
than previous obfuscators with respect to the public key size. Previous
obfuscators for EVES are secure under non-standard assumption and use
zero-knowledge (ZK) proof systems and Fiat-Shamir heuristics to obtain
non-interactive ZK, i.e., its security is considered in the random oracle
model. Thus, our construction also has an advantage with respect to
assumptions and security models. Our new obfuscator for ES is obtained
from our new obfuscator for EVES.

Keywords: verifiably encrypted signature, obfuscation, encrypted ver-
ifiably encrypted signature, decisional linear assumption.

1 Introduction

1.1 Background

In verifiably encrypted signature (VES) schemes, there are a signer, verifiers, and
a trusted third party, called the adjudicator. The signer generates a signature,
encrypts it under the public key of the adjudicator, and adds extra contents

K. Kurosawa and G. Hanaoka (Eds.): PKC 2013, LNCS 7778, pp. 405–422, 2013.
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to make it verifiable without decryption. The adjudicator can recover ordinary
signatures from encrypted ones by using his/her decryption key.

VES was introduced by Asokan, Shoup, and Waidner [2] and Boneh, Gentry,
Lynn, and Shacham proposed an efficient (non-interactive) VES scheme based
on Boneh-Lynn-Shacham signature scheme in the random oracle model (ROM)
[8,9]. VES has useful and important applications such as online contract signing
and optimistic fair exchange [2, 3]. Suppose a situation that a user, say Alice,
wants to buy digital goods from a company online. Alice gives the company
her VES for a contract instead of paying money and the company returns the
requested digital goods if it receive a valid VES. Alice sends an ordinary signature
as effective one to the company if she receives the goods. If a malicious company
does not return the requested goods when it receives a VES, Alice can claim that
the VES is of no use for the contract since it is encrypted. If malicious Alice does
not return a ordinary signature when she receives the goods, the company sends
the encrypted signature together with the transcript to the adjudicator and the
adjudicator extracts an ordinary signature from the VES by using the secret key
of the adjudicator and returns it to the company. The adjudicator is offline, that
is, it should be active only when malicious Alice cheats the company. As another
application, Fuchsbauer used a certain kind of VES to construct delegatable
anonymous credentials [16]. Anonymous credentials are very useful for access
control [5]. In some system with access control, users must prove to have the
required credential issued by an authority to use the system. The authority may
want to delegate its right to other entities to avoid centralization of power.

Lu, Ostrovsky, Sahai, Shacham, and Waters proposed a VES scheme which is
secure under the computational Diffie-Hellman (CDH) assumption in the stan-
dard model, but the verification key size is quite large [24]. Rückert and Schröder
proposed a VES scheme with short verification keys, but its security relies on a
non-standard q-type assumption, called q-strong DH extraction assumption [27].
They did not prove its hardness in the generic group model [28]. Thus, there is
no VES scheme that achieves constant size verification key and signature based
on standard assumptions.

Program Obfuscation and Encrypted Signature/VES. Encrypted VES (EVES) is
an extension of encrypted signature (ES) proposed by Hada [23]. ES/EVES func-
tionalities output encryption of signatures/VES. They do not encrypt messages
but signatures, and can be used as building blocks of signcryption functionali-
ties as Hada pointed out [23]. If Alice uses free web-mail services to send a mail
to Bob on low computational power devices such as smart-phones and her web
browsers do not have enough resources to sign messages and encrypt them with
Bob’s public key, then she wants web-mail providers to carry out its process
instead of her. However, she does not want to reveal her signing key. The obfus-
cation for ES/EVES will give a solution. A program obfuscator is an algorithm
which transforms a program into a completely unintelligible programwhose func-
tionality is the same as the original one [4,22]. Informally speaking, obfuscators
should guarantee that what is efficiently computed given an obfuscated program
is nothing more than what is computed given black-box access to the original
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program. If Alice gives an obfuscated program for ES/EVES functionalities, then
she can securely delegate her signing capability to web-mail providers. Moreover,
in a situation that president Alice on vacation want to have vice president Carol
sign contracts for Bob (only Alice to Bob) instead of her, Alice can give Carol
an obfuscated program for EVES functionality. In the case of the obfuscator for
ES by Hada, if a malicious party has access to Bob’s decryption key, then Alice’s
signing key is extracted from the obfuscated program [23]. However, in the case
of our obfuscator for EVES, even such a malicious party cannot extract Alice’s
key due to the existence of the adjudicator’s key. Thus, obfuscators for EVES
have useful applications.

Hada proposed a secure obfuscator for an ES functionality and its application
to signcryption [23]. His scheme is secure under the DLIN assumption in the stan-
dard model, but the verification key size is quite large. Cheng, Zhang, and Zhang
proposed a secure obfuscator for an EVES functionality at ProvSec’11 [13]. Their
VES scheme and obfuscator for EVES use zero-knowledge (ZK) proofs and Fiat-
Shamir heuristics to crash ZK proofs into non-interactive zero-knowledge (NIZK)
proofs. That is, their scheme and obfuscator are secure in the ROM. Furthermore,
they used a non-standard assumption, called exponent 3-weak DH assumption
to prove the unforgeability of their scheme and did not prove opacity (explained
in the next section), which is required for secure VES schemes, of their scheme.

In general, obfuscators for ES/EVES can be obtained from fully homomor-
phic encryption (FHE) schemes [17]. However, existing FHE schemes are still
inefficient [11,12,14,18–20,29]. so we do not rely on expensive FHE schemes but
directly construct obfuscators for ES/EVES.

1.2 Our Contributions and Constructions

We propose a new efficient VES scheme based on the decisional linear assumption
(DLIN) in the standard model. Our main advantages over previous VES schemes
are as follows:

1. It is efficient and secure under a standard (i.e., not q-type) assumption in
the standard model.

2. The verification key and signature size is small (constant).

As a by-product of ourVES scheme, we construct secure obfuscators for ES/EVES
functionality based on the DLIN assumption in the standard model. Main advan-
tages of our obfuscators for ES/EVES over previous obfuscators for ES/EVES are
as follows: They are secure under the DLIN assumption in the standard model with
short verification keys.

Comparison and Related Works. Comparisons of our results and previous results
of VES schemes and obfuscators for ES/EVES are shown in Table 1 and in Table
2, respectively. Let λ denote the security parameter. In this paper, the CDH
assumption is considered in bilinear groups. There is no efficient VES scheme
and obfuscator for ES/EVES which are secure under standard assumptions in
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Table 1. A summary of previous efficient schemes and ours for VES

Reference Key size (vk/sk) VES size Assumptions ROM

BGLS [8] 1G/1Zp 2G CDH Yes

ZSS [32] 2G/2Zp 1G CDH Yes

LOSSW [24] O(λ)G(> 160G)/1Zp 3G CDH No

RS [27] 4G/2Zp 2G + 1Zp q-strong DH extraction No

This work 16G + 1GT /3G 12G + 2Zp DLIN No

Table 2. A summary of previous obfuscation for encrypted ES/EVES

Reference ES/EVES Key size (vk) ROM Assumptions

Hada [23] ES O(λ) No DLIN

CZZ [13] EVES O(λ) Yes DLIN and Exponent 3-weak DH

This work ES O(1) No DLIN

This work EVES O(1) No DLIN

the standard model with short verification keys prior to our work. The VES
scheme by Lu et al. needs a quite large verification key but its signature size is
small and its security is based on a standard CDH assumption, so one may think
that the scheme of Lu et al. is better than our scheme in terms of signature size.
However, we think it is incomparable with our new scheme and we showed a
tradeoff between the verification key size and signature size. Rückert proposed
a VES scheme based on full-domain hash RSA signature, but it is secure in the
ROM [25]. Rückert, Schneider, and Schröder proposed generic constructions for
VES without NIZKs, pairings, and ROM. Their construction is very insightful,
but their schemes use an extra adjudication setup phase and Merkle trees, so
they need to setup large parameters and have large keys (non-constant size),
that is, they are inefficient [26].

Our Construction Technique. Loosely speaking, a VES scheme consists of a sig-
nature scheme and a encryption scheme as Lu et al. and Rückert and Schröder
[24, 27]. We use a signature scheme presented by Waters at CRYPTO’09 [31]
as an underlying signature scheme. We call it the Waters dual signature in
this paper to distinguish from Waters’ signature at Eurocrypt’05 [30]. Some-
one may think that a combination of the Waters dual signature and ElGamal
encryption easily yields a secure VES scheme under the DLIN assumption, but
that is not the case. The reason is as follows: We can prove unforgeability of
VES by relying on unforgeability of the underlying signature scheme as previous
schemes [8,24,27], but opacity is non-trivial. Opacity means that it is difficult to
extract ordinary signatures from VES, i.e., decrypt VES. Moreover, it is highly
non-trivial whether we can prove opacity from standard assumptions or not.
The reason is as follows: The VES scheme of Lu et al. is a combination of Wa-
ters’ signature (Eurocrypt’05) [30] and the ElGamal encryption scheme and they
proved its opacity from the aggregate extraction assumption [8] (fortunately, it is
equivalent to the CDH assumption [15]). On the other hand, the VES scheme of
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Rückert and Schröder is a combination of Boneh-Boyen signature scheme [6] and
the ElGamal encryption scheme, but they proved its opacity from q-strong DH
extraction assumption, which is a stronger assumption than that of underlying
Boneh-Boyen signature scheme [27].

Our construction is a combination of the Waters dual signature scheme and
the ElGamal encryption scheme. We encrypt only signature elements related
to signing keys. The security proof of the Waters dual signature is different
from that of many known secure signature schemes such as Boneh-Boyen [6],
Waters [30], so we must employ a different proof strategy from that of Lu et al.
and Rückert and Schröder. The Waters dual signature has two types of signature,
standard signature (which is called type A) and semi-functional signature (which
is called type B). Semi-functional signatures also pass the verification algorithm
as standard ones and are indistinguishable from standard ones [21,31]. We extend
the proof strategy of this dual form signature technique to prove opacity. First,
we employ type B signatures as normal signatures output by a normal signing
algorithm and type A signatures are used for simulation. Both type A and B
signatures are valid signatures and there is no essential difference in terms of
functionality as long as a normal verification algorithm is used. We employ this
swap of role since we do not know how to prove that the adversary cannot
extract a valid type A signature from given VES when the oracle answers type
A signatures.

In the experiment of opacity, the adversary can output a pair of a signature
and a message such that the message was queried to an oracle which returns
a VES for the queried message. This causes the main difficulty for proving the
opacity since the adversary may output a re-randomized signature obtained by
using valid signatures from oracles. Unfortunately, the Waters dual signature is
re-randomizable. Thus, we modify the Waters dual signature scheme to make it
strongly unforgeable. Strong unforgeability guarantees that the adversary cannot
output a forgery even for a queried message, so it must hold that if the adversary
output valid signature for queried message in the experiment of opacity, then
the signature is identical to the signature generated by the VES creation oracle
(otherwise, contradict to strong unforgeability). This fact can be used to prove
the opacity of our scheme.

In the proof of opacity, we must simulate two oracles. One is the creation
oracle, which answers VES for queried messages. The other is the adjudication
oracle, which extracts ordinary signatures from queried message/VES pairs and
returns them. When we answer only encryption of type B signature for VES
creation queries of the adversary, we can prove that the adversary cannot extract
type B signature from VES under the aggregate extraction assumption. This
is the reason why we swap the role of type A signatures for that of type B
signature. We have no way to prove that when we answer only encryption of
type A signature for VES creation queries of the adversary, adversary cannot
extracts type A signature from VES.

Thus, it is showed that the adversary cannot output a valid signature for
queried message to the VES creation oracle. For non-queried messages, we can
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use the proof technique for unforgeability of dual form signatures. We show that
the adversary cannot output a type A signature when the oracle returns type B
signatures (VES).

Next, we change the type of signatures used to generate VES which are an-
swered by the VES creation oracle. Answers of the adjudication oracle depend
on the type of the VES creation oracle. Thus, we show that the view of the
adversary is indistinguishable even if the type of answers are changed from type
B to type A one-by-one for each query. This order of change is reverse to the
original proof, but it is not essential difference. Lastly, we show that the adver-
sary cannot output a type B signature when the oracle returns type A signatures
(VES).

Secure obfuscations for ES and EVES based on the Waters dual signature
scheme are also non-trivial because the signing keys of the Waters dual signa-
ture scheme consist of multiple group elements and the signing algorithm com-
putes exponentiation of the signing keys with randomness in contrast to Waters’
signature presented at Eurocrypt’05, whose signing key is only one group ele-
ment and signing algorithm only multiplies it by other group elements [30]. We
overcome this hurdle by using additive homomorphic property of ElGamal and
the linear encryption schemes [7]. Cheng et al. use the linear encryption scheme
for not only encryption of VES but also the construction of VES itself, so their
VES scheme cannot check the validity of ciphertext by using only the pairing
technique and they need (NI)ZK [13]. We do not need (NI)ZK because our new
VES scheme uses the ElGamal encryption scheme and can verify the validity of
VES by using only pairings.

Remark. In this extended abstract, we do not have enough space to write com-
plete proofs and all definitions, so we omitted some of them.

2 Preliminaries

Notations and Conventions. For any n ∈ N \ {0}, let [n] be the set {1, . . . , n}.
When D is a random variable or distribution, y

R← D denote that y is randomly

selected from D according to its distribution. If S is a set, then x
U← S denotes

that x is uniformly selected from S. y := z denotes that y is set, defined or
substituted by z. When b is a fixed value, A(x)→ b (e.g., A(x)→ 1) denotes the
event that machine (or algorithm) A outputs a on input x. We say that function
f : N → R is negligible in λ ∈ N if for every constant c ∈ N there exists kc ∈ N

such that f(λ) < λ−c for any λ > kc. Hereafter, we use f < negl(λ) to mean that
f is negligible in λ. Let Γ := (p,G,GT , e, g) be a description of groups G and
GT of prime order p equipped with efficient bilinear map e : G × G → GT . We
often omit common parameters Γ . Let Gbmp be a standard parameter generation
algorithm for bilinear maps that outputs Γ .

Definition 1 (DLIN assumption). The DLIN problem is to guess β ∈ {0, 1},
given (Γ, g, f, ν, gx, fy, Qβ)

R← Gdlin
β (1λ), where Gdlin

β (1λ): Γ := (p,G,GT , e, g)
R←

Gbmp(1
λ), f, ν

U← G,x, y
U← Zp,Q0 :=ν

x+y,Q1
U← G, return (Γ, g, f, ν, gx, fy, Qβ).
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The advantage is AdvDLIN
A (λ) :=∣∣∣Pr [A(I)→ 1

∣∣∣ I R← Gdlin
0 (1λ)

]
− Pr

[
A(I)→ 1

∣∣∣ I R← Gdlin
1 (1λ)

]∣∣∣. We say that

the DLIN assumption holds if for all probabilistic polynomial-time (PPT) ad-
versary A, AdvDLIN

A (λ) < negl(λ).

Definition 2 (Aggregate Extraction (AgExt) assumption [8, 15]). The
AgExt problem in bilinear groups is to compute gxy, given Γ := (p,G,GT , e,

g)
R← Gbmp(1

λ) and (gx, gy, gβ, gδ, gxy+βδ) for x, y, β, δ
U← Zp. The advan-

tage is AdvAgExtA (λ) := Pr[z = gxy | Γ U← Gbmp(1
λ);x, y, β, δ

U← Zp; z
R←

A(Γ, gx, gy, gβ , gδ, gxy+βδ)]. We say that the AgExt assumption holds in bilin-

ear groups if for any PPT A, AdvAgExtA (λ) < negl(λ).

Definition 3 (CDH assumption). The CDH problem in bilinear groups is to

compute gxy, given Γ := (p,G,GT , e, g)
R← Gbmp(1

λ) and (gx, gy) for x, y
U← Zp.

The advantage is AdvCDH
A (λ) := Pr[z = gxy | Γ U← Gbmp(1

λ);x, y
U← Zp; z

R←
A(Γ, gx, gy)]. We say that the CDH assumption holds in bilinear groups if for
any PPT A, AdvCDH

A (λ) < negl(λ).

The AgExt assumption is equivalent to computational Diffie-Hellman (CDH)
assumption, which is implied by the DLIN assumption.

Theorem 1 ( [15]). The AgExt and CDH problems are Karp reducible to each
other with O(1) computation.

Verifiably Encrypted Signature (VES). A VES scheme consists of following seven
algorithms VES = {AdjGen,Gen, Sign,Vrfy,Create,VesVrfy,Adj}:

Adjudicator Key Generation: Algorithm AdjGen takes as input security pa-

rameter 1λ and outputs a pair of key for an adjudicator, that is, (apk, ask)
R←

AdjGen(1λ).
Key Generation: Algorithm Gen takes as input 1λ and outputs a pair of keys

for a signer, that is, (vk, sk)
R← Gen(1λ). They are called the verification key

and the signing key, respectively.
Signing: Algorithm Sign takes as input a signing key and a message and outputs

signature σ. That is, σ
R← Sign(sk,M), where M ∈ Mvk and Mvk is a

message space defined by vk.
Verification: Algorithm Vrfy is deterministic and takes as input vk, M , and

σ and outputs bit b. If b = 1 then the signature is valid. Else, it is invalid.
That is, Vrfy(vk, σ,m)→ b.

VES Creation: Algorithm Create takes as input sk, apk, and M and outputs

VES ω on M . That is, ω
R← Create(sk, apk,M).

VES Verification: Algorithm VesVrfy is deterministic and takes as input apk,
vk, ω, and M and outputs bit b, VesVrfy(apk, vk, ω,M)→ b.

Adjudication: Algorithm Adj takes as input ask, apk, vk, ω, and M . If ω is

valid, it extracts an ordinary signature σ on M and returns σ, that is σ
R←

Adj(ask, apk, vk, ω,M) if VesVrfy(apk, vk, ω,M)→ 1.
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For correctnes, it is required that ∀λ ∀(apk, ask) R← AdjGen(1λ) ∀(vk, sk) R←
Gen(1λ) ∀m ∈ Mvk VesVrfy(apk, pk,Create(sk, apk,M),M) → 1 and
Vrfy(vk,Adj(ask, apk, vk,Create(sk, apk,M)),M)→ 1.

Experiments VesForgeA(λ) and OpacA(λ) are defined as follows:

Experiment VesForgeA(λ)

(apk, ask)
R← AdjGen(1λ);

(vk, sk)
R← Gen(1λ);

(M∗, ω∗)
R←

ACO(sk,apk,·),AO(ask,apk,vk,·,·)(vk, apk);
Return 1 iff
VesVrfy(apk, vk, ω∗,M∗)→ 1 and
M∗ /∈ QC and M∗ /∈ QA.

Experiment OpacA(λ)

(apk, ask)
R← AdjGen(1λ);

(vk, sk)
R← Gen(1λ);

(M∗, σ∗)
R←

ACO(sk,apk,·),AO(ask,apk,vk,·,·)(vk, apk);
Return 1 iff
Vrfy(vk, σ∗,M∗)→ 1 and
M∗ /∈ QA.

where the creation oracle, CO(sk, apk, ·), returns a VES for a queried message,
the adjudication oracle, AO(ask, apk, vk, ·, ·), extracts and returns a signature
for a queried message/VES pair, and QC and QA are sets of messages queried
by the adversary to CO and AO, respectively.

Definition 4 (Secure VES [8]). A VES scheme is secure if it satisfies unforge-
ability and opacity, i.e., it holds for any PPT A, Pr[VesForgeA(λ)→ 1] < negl(λ)
and Pr[OpacA(λ)→ 1] < negl(λ).

Collision Resistant Hash Functions (CRHF). Let H := {Hk} be a keyed hash
family of functions Hk : {0, 1}∗ → {0, 1}n indexed by k ∈ Kλ where λ is a
security parameter.

Definition 5. We say that H is (t, ε)-collision-resistant if for any adversary
A running in time t, we have that AdvCRHF

A,H (λ) := Pr[m0 �= m1 ∧ Hk(m0) =

Hk(m1) | (m0,m1)
R← A(k)] < ε where the probability is taken over the random

choice of k ∈ Kλ and random coins of A.

3 Strongly Unforgeable Waters Dual Signature

Waters Dual Signature Scheme. We review a signature scheme presented by
Waters [31] since we use it as a essential building block. However, we add a few
minor changes to fit the scheme to this paper. We will explain the differences
between the original scheme and modified scheme WdSig.

Wd.Gen(1λ, Γ ): On input security parameter λ and Γ := (p,G,GT , e, g)
R←

Gbmp(1
λ), it chooses generators v, v1, v2, w, u, h

U← G and exponent

a1, a2, b, α
U← Zp, computes τ1 := vva11 , τ2 := vva22 , and sets V K :=

(Γ, gb, ga1 , ga2 , gba1 , gba2 , v, v1, v2, τ1, τ2, τ
b
1 , τ

b
2 , w, u, h, e(g, g)

αa1b) and SK
:= (V K, gα, gαa1 , ga1a2). Hereafter we often omit input 1λ.
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Wd.Sign(SK,M): On input message M ∈ Zp, it selects r1, r2, z1, z2, γ, stag
U←

Zp, sets r := r1 + r2, computes sig := (σ0, σ1, . . . , σ7, stag), where

σ0 := (uMwstagh)r1 , σ1 := gαa1vrg−a1a2γ , σ2 := g−αvr1g
z1ga2γ ,

σ3 := (gb)−z1 , σ4 := vr2g
z2ga1γ , σ5 := (gb)−z2 ,

σ6 := (gb)r2 , σ7 := gr1 .

Wd.Vrfy(V K, sig,M): On input V K,M , and sig, it outputs 1 if and only if it
holds that

e(uMwstagh, σ7) = e(g, σ0),

e(gb, σ1)e(g
ba1 , σ2)e(g

a1 , σ3) = e(τ1, σ6) e(τ
b
1 , σ7),

e(gb, σ1) e(g
ba2 , σ4) e(g

a2 , σ5) = e(τ2, σ6) e(τ
b
2 , σ7) e(g, g)

αa1b.

The differences are as follows: In the original Waters dual signature scheme,
(1) the verification equation is only one equation and probabilistic, (2) values
v, v1, v2 are included in secret keys, (3) value ga1a2 is not included in the signing
key, (4) the (normal) signing algorithm does not multiply g−a1a2γ , ga2γ , ga1γ in
σ1, σ2, σ4, respectively.

There are two types of signatures in the Waters dual signature scheme, type
A (if γ = 0) and type B (if γ �= 0) signatures. The modified three verifica-
tion equations above are introduced by Abe et al. [1]. They proved that if a
signature passes the equations, then the signature is either type A or B. The
original equations use ciphertexts and the decryption procedure of the Waters
dual encryption scheme, so it is probabilistic and has a semi-functional verifi-
cation algorithm that uses semi-functional ciphertexts [31]. Type A signatures
are signatures with γ = 0 and pass both the normal and semi-functional verifi-
cation equations. Type B signatures are signatures with γ �= 0 and cannot pass
the semi-functional verification equations (Gerbush, Lewko, O’Neill, and Wa-
ters defined them as backdoor verification tests [21]). As long as the verification
equations are normal, both type A and type B signatures are valid signatures
and there is no essential difference. Thus, we employ type B signatures in the
normal signing algorithm.

Even if v, v1, v2 are disclosed, we cannot compute vb2 (and semi-functional
ciphertexts of the dual system encryption of Waters [31]). Thus, we add (v, v1, v2)
to the verification key and this does not affect its security since gα and gαa1 (and
vb2) are kept secret and they are essential secret signing keys. This is observed
by Abe et al. [1]. For the minor changed version above, the following theorem
holds [1, 31].

Theorem 2. If the DLIN assumption holds, then WdSig := Wd.{Gen, Sign,Vrfy}
is existentially unforgeable against adaptive chosen message attacks (EUF-CMA).

The original Waters dual signature is not strongly unforgeable since it is re-
randomizable. “Strong” means that the adversary cannot forge a signature even
for a queried message to the signing oracle. In order to make our VES scheme
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satisfy opacity, we modify the Waters dual signature. We extend the technique by
Boneh, Shen, and Waters [10]. They introduced a property called 2-partitioned
to convert unforgeable signature schemes into strongly unforgeable signature
schemes. We extend 2-partitioned to 3-partitioned.

Definition 6. A signature scheme is 3-partitioned if it satisfies the following
two properties:

– The signing algorithm consists of three deterministic algorithms F1, F2, and
F3

1. chooses random R ∈ R (R is a space for randomness),
2. computes Σ1 := F1(M,R, V K), Σ2 := F2(R, V K), Σ3 := F3(R,SK),
3. and outputs signature σ := (Σ1, Σ2, Σ3).

– Given M and Σ2 there is at most one (Σ1, Σ3) such that (Σ1, Σ2, Σ3) is a
valid signature on M under VK.

A 2-partitioned signature is σ = (Σ′
1, Σ

′
2) where Σ

′
1 = F ′

1(M,R, SK) and Σ′
2 =

F ′
2(R,SK) [10]. Value Σ′

2 binds all randomness R, so M and R fully determine
Σ′

1. For VES, signature elements related to the secret signing key (i.e., Σ3) should
be encrypted, so we cannot use such elements as inputs to hash functions (we will
use hash functions to obtain strongly secure signature) and want to isolate the
secret signing key from Σ′

2. Otherwise, encrypted signatures are not verifiable.
If Σ3 is not used as an input of hash function, then hash values are not changed
even if Σ3 is encrypted. This is the reason why we introduced 3-partitioned and
Σ1 and Σ2 are independent of the secret signing key.

Let Π := (Gen, Sign,Vrfy) be an existentially unforgeable signature scheme.
New signature scheme Π ′ := (Gen′, Sign′,Vrfy′) is as follows:

Gen′(1λ): It generates (V K, SK)
R← Gen(1λ), chooses h̄

U← G and random hash
key k ∈ K, and sets (V K ′, SK ′) := ((V K, h̄, k), SK).

Sign′(SK ′,M): On input message M ∈ {0, 1}�, it chooses exponent ϕ
U← Zp

and randomness R ∈ R, computes Σ2 := F2(R, V K), ϑ := Hk(M ‖ Σ2)
(view ϑ as an element in Zp), m := Hk(g

ϑh̄ϕ), Σ1 := F1(m,R, V K) and
Σ3 := F3(R,SK), and outputs a signature sig := (Σ1, Σ2, Σ3, ϕ).

Vrfy′(V K ′, sig,M): On input V K ′,M , and signature sig = (Σ1, Σ2, Σ3, ϕ), it
computes ϑ′ := Hk(M ‖ Σ2) (view ϑ′ as an element Zp), m

′ := Hk(g
ϑ′
h̄ϕ),

It outputs 1 if and only if Vrfy(V K, (Σ1, Σ2, Σ3),m
′)→ 1.

Theorem 3. Signature scheme Π ′ is (t, q, ε)-strongly existentially unforgeable
if Π is (t, q, ε/3)-existentially unforgeable, the (t, ε/3)-DL assumption holds in
G, and H is (t, ε/3)-collision-resistant.

This is easily proved by extending the proof of Boneh, Shen, andWaters [10]. The
DL assumption means the discrete logarithm assumption. The essential point is
that given message M and partial signature Σ2, the randomness which is used
to generate the whole signature is determined and there is at most one (Σ1, Σ3)
such that (Σ1, Σ2, Σ3) is a valid signature on M under V K. Intuitively, in the
construction of Π ′, we sign not only message M but also randomness R to bind
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the randomness and prevent re-randomization. Moreover, in order to prevent
messagem being determined by randomness R, new randomness ϕ is introduced
and chameleon hash functions (gϑh̄ϕ) are used. Value m will be signed.

Theorem 4. The Waters dual signature is 3-partitioned.

Proof. Let R := {(r1, r2, z1, z2, stag, γ)| r1, r2, z1, z2, stag, γ U← Zp}, then func-

tions F1, F2, and F3 are defined as follows: R
R← R, F1(M,R, V K) :=

σ0 = (uMwstagh)r1 , F2(R, V K) := (σ3, . . . , σ7, stag) = (g−bz1 , vr2g
z2 ·

ga1γ , g−bz2 , gbr2 , gr1 , stag), F3(R,SK) := (σ1, σ2) = (gαa1vr · g−a1a2γ , g−αvr1gz1 ·
ga2γ) where γ

U← Zp is chosen for type B signatures. If the signature is
type A, then γ := 0. We can interpret σ3, σ5, σ6, σ7 (outputs of F2) as
g−bz1 , g−bz2 , gbr2 , gr1 , respectively and it follows σ0 = (uMwstagh)r1 from the
first verification equation, that is, the output of F1 is fixed. If we interpret σ4
as vr2g

z2 · ga1γ , then by the second and third equations two unknowns σ1 and σ2
are fixed to gαa1vr · g−a1a2γ and g−αvr1g

z1 , respectively, that is, the output of
F3 is fixed. Thus, if the output of F2 and M are fixed, then the outputs of F1

and F3 are also fixed.

We can see that even if (σ1, σ2) is encrypted by the ElGamal encryption, hash
value ϑ = Hk(M ‖ (σ3, . . . , σ7, stag)) is not changed, so it can be fitted to VES
schemes. Note that we assume that each element g ∈ G has a unique encoding.
We can obtain strongly secure scheme sWdSig:

sWd.Gen(1λ, Γ ): It generates (V K ′, SK ′)
R←Wd.Gen(1λ, Γ ), chooses h̄

U← G and
random hash key k ∈ K, and sets (V K, SK) := ((V K ′, h̄, k), SK ′).

sWd.Sign(SK,M): On input messageM ∈ Zp, it selects r1, r2, z1, z2, γ, stag, ϕ
U←

Zp, sets r := r1 + r2, computes σ1 := gαa1vr · g−a1a2γ , σ2 := g−αvr1g
z1 · ga2γ ,

σ3 := (gb)−z1 , σ4 := vr2g
z2 · ga1γ , σ5 := (gb)−z2 , σ6 := (gb)r2 , σ7 := gr1 ,

ϑ := Hk(M ‖ Σ2) where Σ2 = (σ3, . . . , σ7, stag) and view ϑ as an el-
ement in Zp, m := Hk(g

ϑh̄ϕ), σ0 := (umwstagh)r1 , and outputs sig :=
(σ0, σ1, . . . , σ7, stag, ϕ).

sWd.Vrfy(V K, sig,M): On input VK,M , and signature sig = (σ0, σ1, . . . ,
σ7, stag, ϕ), it computes ϑ′ := Hk(M ‖ (σ3, . . . , σ7, stag)), m′ := Hk(g

ϑ′
h̄ϕ),

and Wd.Vrfy(V K ′, sig′,m′) → b where sig′ := (σ0, . . . , σ7, stag), and
outputs b.

Corollary 1. The scheme above is strongly unforgeable against adaptive chosen
message attacks if the DLIN assumption holds. In particular, for any PPT ad-
versary F against sWdSig that makes at most q signing queries, there exists PPT
algorithm B′ for DLIN and C for CRHF, AdvsEUF-CMA

F ,sWdSig (λ) ≤ {(q+3)/3}AdvDLIN
B′ +

(1/3)AdvCRHF
C,H where AdvsEUF-CMA

F ,sWdSig (λ) and AdvEUF-CMA
F ′,WdSig (λ) is the advantage of the

adversary for sWdSig.

Note that the DL assumption is implied by the DLIN assumption.
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4 Construction of Our VES

We present our VES scheme, sWdVES, based on the strongly secure variant
the Waters dual signature scheme in this section. The proposed scheme is ba-
sically the same as the strongly unforgeable Waters dual signature scheme in
Section 3 except that we encrypt signature elements which include secret keys
(gα, gαa1 , ga1a2) by the ElGamal encryption scheme. That is, in our creation algo-
rithm, only σ1 and σ2 are encrypted. In order to verify encrypted signatures, we
add extra elements and cancel out group elements which are generated by pair-
ing computation of encrypted signatures in the verification equation. sWdVES is
as follows:

AdjGen(1λ): It selects β
U← Zp and sets apk := ζ := gβ and ask := β.

Gen(1λ): It generates (V K ′, SK ′) := ((g, gb, ga1 , ga2 , gba1 , gba2 , τ1, τ2, τ
b
1 , τ

b
2 ,

v, v1, v2, w, u, h, h̄, k, e(g, g)
αa1b), (gα, gαa1 , ga1a2))

R← sWd.Gen(1λ) and sets
vk := V K ′ and sk := (V K ′, SK ′).

Sign and Vrfy: Same as sWd.{Sign,Vrfy} in Section 3, respectively.

Create(sk, apk,M): It generates (σ0, . . . , σ7, stag, ϕ)
R← sWd.Sign(SK ′,M), se-

lects ρ1, ρ2
U← Zp, outputs ω := (K0, . . . ,K7,K

′
1,K

′
2, K̂1, K̂2, stag, ϕ), where

(K0,K3, . . . ,K7) := (σ0, σ3, . . . , σ7) and

K1 := σ1 · ζρ1 , K ′
1 := gρ1 , K̂1 := (gb)ρ1 ,

K2 := σ2 · ζρ2 , K ′
2 := gρ2 , K̂2 := (gba1)ρ2 .

VesVrfy(apk, vk, ω,M): It parses ω = (K0, . . . ,K7,K
′
1,K

′
2, K̂1, K̂2, stag, ϕ), and

computes ϑ′ := Hk(M ‖ (K3, . . . ,K7, stag)), m
′ := Hk(g

ϑ′
h̄ϕ), It outputs 1

if and only if it holds that

e(K ′
1, g

b) = e(g, K̂1) , e(K
′
2, g

ba1) = e(g, K̂2)

e(um
′
wstagh,K7) = e(g,K0)

e(gb,K1)

e(ζ, K̂1)
· e(g

ba1 ,K2)

e(ζ, K̂2)
· e(ga1 ,K3) = e(τ1,K6) e(τ

b
1 ,K7)

e(gb,K1)

e(ζ, K̂1)
· e(gba2 ,K4) e(g

a2 ,K5) = e(τ2,K6) e(τ
b
2 ,K7) e(g, g)

αa1b

Adj(ask, apk, vk, ω,M): It parses ω = (K0, . . . ,K7, stag, ϕ) and computes σ1 :=
K1 · (K ′

1)
−β , σ2 := K2 · (K ′

2)
−β , σ3 := K3, σ4 := K4, σ5 := K5, σ6 :=

K6, σ7 := K7, σ0 := K0. If VesVrfy(apk, vk, ω,M) → 1, then it outputs
(σ0, . . . , σ7, stag, ϕ). These are valid signatures.

Intuitively, the scheme above is secure because underlying signature scheme is
strongly unforgeable. The adversary has no choice but to decrypt valid VES given
by oracles to output a valid signature, but it contradicts to the one-wayness of
the ElGamal encryption scheme.
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Rückert and Schröder defined key-independence and extractability of VES to
prove unforgeability and collusion-resistance of VES in a modular way [26, 27].
Key-independence means that a VES creation algorithm consists of a signa-
ture generation part and a transformation (into VES) part and they are in-
dependent. Extractability means that if VES ω is valid, then the adjudicator
can extract a valid (ordinary) signature σ with except negligible probability.
Collusion-resistance means that no adversary can forge VES even if the ad-
judicator is corrupted, i.e., adversary obtains the secret decryption key of the
adjudicator. Rückert and Schröder showed the following theorem.

Theorem 5 ( [27]). Let VES be an extractable and key-independent verifiably
encrypted signature scheme. VES is unforgeable if and only if the underlying
signature scheme Sig is unforgeable.

As a corollary, sWdVES is unforgeable under the DLIN assumption since we
can easily show that our sWdVES based on sWdSig is key-independent and ex-
tractable though we omit proofs in this extended abstract.

Theorem 6. sWdVES is opaque if the DLIN assumption holds and there exists
CRHF.

Proof. If adversary A outputs forgery σ∗ = (σ∗
0 , . . . , σ

∗
7 , stag

∗, ϕ∗) and M∗ such
that M∗ is not queried to AO, then it means that A breaks opacity of sWdVES.
A directly forges a signature of underlying sWdSig or extracts a signature by
breaking the one-wayness of the ElGamal encryption scheme. In order to prove
opacity, we introduce the following games: Let Game-(i) denote a game where
CO answers encryption of type A signatures for the first i (i ∈ [qC] and qC is the
number of creation query by A) queries and encryption of type B signatures for
the remaining (qC−i) queries and AO answers signatures extracted from queried

VES for all qA (the number of adjudication query) queries. Let Advforge-Ai (resp.

Advforge-Bi ) denote the advantage of the adversary in Game-(i) for outputting type
A (resp. B) forgery for a non-queried message (a message which is not queried
to CO). Let Advextract-B0 denote the advantage of the adversary in Game-0 for
extracting a type B signature from a VES for a queried message (a message
which is queried to CO).

1. In Game-(0), CO returns encryption of type B signature and AO returns
type B signature. First, we show Lemma 1: If A outputs a valid type B
signature for message Mi which has been already queried to CO, then we
can construct algorithm E which solves the AgExt problem. Thus, in the
remaining games, we only consider A which outputs forgery for messageM∗

such that M∗ �=Mi for all i ∈ [q]. We can show that if A outputs forgery of
type A signature, then we can construct algorithm B1 which solves the CDH
problem.

2. Next, we consider Game-(i). We can show that if A detects the change from
type B answer to type A answer by CO, then we can construct algorithm B2

which solves the DLIN problem.
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3. Last, we consider Game-(qC), where all answers for VES queries of A are
encryption of type A signature. We can show that if A outputs a forgery
of type B signature, then we can construct algorithm B3 which solves the
DLIN problem.

Thus, if the DLIN assumption holds, the signature scheme is opaque. The core
part is Lemma 1. By statements described above except Lemma 1, we can show
AdvOpac

A (λ) = Advforge-A0 + Advextract-B0 + Advforge-B0 < Advextract-B0 + AdvEUF-CMA
F ,WdSig <

Advextract-B0 + (qC + 2)AdvDLIN
B . By Lemma 1, we can show

Advextract-B0 < qCAdv
AgExt
E + AdvsEUF-CMA

F ′,sWdSig + AdvCRHF
C

<
4qC + 3

3
AdvDLIN

B +
4

3
AdvCRHF

C .

Thus, it holds AdvOpac
A (λ) < ((7qC + 9)/3)AdvDLIN

B + (4/3)AdvCRHF
C .

Lemma 1. If there exists adversary A that outputs a type B forgery for a queried
messageMi in Game-(0), then we can construct algorithm E that solves the AgExt
problem.

Proof of lemma. E is given instance (Γ, gx, gy, gβ, gδ, gxy+βδ) of the AgExt
problem. E generates the verification key as follows: Chooses exponents

a1, b, yv, yv1 , yv2 , yw, yh, yu, η
U← Zp and hash key k ∈ K, computes g := g,

gb := gb, ga1 := ga1 , ga2 := gy, gba2 := (gy)b, gba1 := gba1 , v := gyv ,
v1 := gyv1 , v2 := gyv2 , w := gyw , u := gyu , h := gyh , h̄ := gη, ζ :=
gβ, e(g, g)αa1b := e(gx, gy)a1·b (it implicitly holds α = xy though E does
not have α), τ1 := vva11 , τb1 , τ2 := v(gy)yv2 , and τb2 , and sets V K :=
(g, gb, ga1 , ga2 , gba1 , gba2 , τ1, τ2, τ

b
1 , τ

b
2 , w, u, h, h̄, k, e(g, g)

αa1b) and apk := ζ = gβ .
Note that E does not have a2 = y and gα = gxy, so E cannot directly compute
Type B signature.

Simulation of Creation Oracle: E initializes list QList := ∅. E chooses random

index j
U← [qC], i.e., guesses which VES A selects and outputs its extraction.

E outputs encryption of Type B signatures for i-th VES creation query Mi as

follows: If i �= j, then chooses r1, r2, z1, z2, γ
′, stag, ϕi, ρ1, ρ2

U← Zp, sets r :=

r1 + r2 (we want to set γ := x+ γ′), computes σi,1 := (gy)−γ
′a1 · vr = (gαa1vr) ·

g−a1a2γ (where a2 = y and xy = α), σi,2 := (gy)γ
′
vr1g

z1 = (gαvr1g
z1) · ga2γ ,

K3 := σi,3 := (gb)−z1 , K4 := σi,4 := (gx)a1ga1γ
′
vr2g

z2 = (vr2g
z2) · ga1γ , K5 :=

σi,5 := (gb)−z2 , K6 := σi,6 := gr2b, K7 := σi,7 := gr1 , ϑi := Hk(Mi ‖ Σi,2)
where Σi,2 := (σi,3, . . . , σi,7), mi := Hk(g

ϑi h̄ϕi), K0 := σi,0 := (umiwstagh)r1 ,

K1 := σi,1 · ζρ1 , K ′
1 := gρ1 , K̂1 := (gb)ρ1 , K2 := σi,2 · ζρ2 , K ′

2 := gρ2 , K̂2 :=
(gba1)ρ2 , stores (Mi, σi, Ri := (r1, r2, z1, z2, stag, γi := γ′)) in QList where σi :=
(σi,0, . . . , σi,7, stag, ϕi) and outputs ω := (K0, . . . ,K7,K

′
1,K

′
2, K̂1, K̂2, stag, ϕi)

for Mi. We can verify σi is a correct type B signature.
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Embedding Instance: If i = j, then E chooses r∗1 , r
∗
2 , z

∗
1 , z

∗
2 , γ

∗, stag∗, ϕ∗,

ρ∗1, ρ
∗
2

U← Zp, sets r
∗ = r∗1 + r∗2 , answers K

∗
1 := (gxy+βδ)a1 · vr∗ · (gy)−a1γ∗

ζρ
∗
1 =

(gαa1vr
∗
)·g−a1a2γ∗

ζρ
′
1 (where a2 = y, xy = α, ρ′1 := a1δ+ρ

∗
1),K

∗′
1 := (gδ)a1gρ

∗
1 =

gρ
′
1 , K̂∗

1 := (gδ)ba1gbρ
∗
1 = (gb)ρ

′
1 , K∗

2 := (gxy+βδ)−1vr
∗

1 g
z∗1 · (ga2)γ∗

(gβ)ρ
∗
2 =

(g−αvr
∗

1 gz
∗
1 ) · ga2γ∗

ζρ
′
2 (where ρ′2 := −δ + ρ∗2), K

∗′
2 := (gδ)−1gρ

∗
2 = gρ

′
2 , K̂∗

2 :=
(gδ)−ba1gba1ρ

∗
2 = (gba1)ρ

′
2 , K∗

3 := (gb)−z
∗
1 , K∗

4 := vr
∗

2 gz
∗
2 ga1γ

∗
, K∗

5 := (gb)−z
∗
2 ,

K∗
6 := gr

∗
2b, K∗

7 := gr
∗
1 , ϑ∗ := Hk(K

∗
3 , . . . ,K

∗
7 , stag

∗), m∗ := Hk(g
ϑ∗
h̄ϕ

∗
), and

K∗
0 := (um

∗
wstag∗h)r

∗
1 and records (Mj , ω

∗ := (K∗
0 , . . . , ϕ

∗), j, γ∗) as the chal-
lenge instance. It can be verified ω∗ is a correct encryption of type B signature.

Simulation of Adjudication Oracle: When A makes �-th adjudication query
(M�, ω�), then we know that A must have queried M� to CO by the theorem
of Rückert and Schröder (Otherwise, it is a forgery. This is the same argument
by Rückert and Schröder in [27]). First, E verifies the query and returns ⊥ if it
is invalid. Otherwise, E acts as follows: If M� = Mj , that is, the guessed index
((Mj , . . .) /∈ QList), then E aborts. Otherwise, there exists (Mi, σi, Ri) ∈ QList
for some i �= j such that M� = Mi and the signature is Type B. In this
case (M� = Mi), for query (M�, ω = (K0, . . . ,K7,K

′
1,K

′
2, K̂1, K̂2, stag, ϕ)), if

ϕ �= ϕi, then A breaks strong unforgeability of our modified Waters dual sig-
nature. We consider an intermediate game where if ϕ �= ϕi, then E aborts.
The probability E aborts with this condition is less than the success proba-
bility of breaking strong unforgeability of sWdSig. That is, it holds ϕ = ϕi
without negligible probability. If ϕ = ϕi, then it holds K3 = σi,3, K4 = σi,4,
K5 = σi,5, K6 = σi,6, K7 = σi,7, stag = stagi since otherwise it means
A outputs (K3, . . . ,K7, stag) such that Hk(σi,3, . . . , σi,7, stagi) = ϕi = ϕ =
Hk(K3, . . . ,K7, stag) and (K3, . . . ,K7, stag) �= (σi,3, . . . , σi,7, stagi). This is a
collision of the hash function and contradicts to the collision-resistant prop-
erty. We consider an intermediate game where if Hk(σi,3, . . . , σi,7, stagi) = ϕi =
ϕ = Hk(K3, . . . ,K7, stag) and (K3, . . . ,K7, stag) �= (σi,3, . . . , σi,7, stagi), then
E aborts. The probability E aborts with this condition is less than the success
probability of breaking the CRHF. That is, randomness of (K3, . . . ,K7, stag) is
the same as that of (σi,3, . . . , σi,7, stagi) without negligible probability.

By using K3 = g−bz1 , K5 = g−bz2, K6 = gbr2 , K7 = gr1 , E can compute
gr2 = (K6)

1/b, gr1 = K7, g
z1 = (K3)

−1/b, gz2 = (K5)
−1/b, vr = (gr1 · gr2)yv ,

vr1 = (gr1 · gr2)yv1 , and vr2 = (gr1 · gr2)yv2 since E has b, yv, yv1 , yv2 and it holds
that v = gyv v1 = gyv1 v2 = gyv2 . E can use the same computation procedure in
the simulation of CO above by using γi stored in QList. Therefore, E can return
valid Type B signature (σ0, . . . , σ7, stag, ϕ) such that the randomness r in σ1,
σ2 is the same as that in K1, K2 by using stored information σi. That is, AO is
perfectly simulated by E .
Solving the Problem: At some point, A outputs a Type B extraction, M∗ =
Mj, stag

∗, σ∗
1 = gαa1vr

∗
g−a1a2γ

∗
, σ∗

2 = g−αvr
∗

1 gz
∗
1 ga2γ

∗
, σ∗

3 = (gb)−z
∗
1 , σ∗

4 =
vr

∗
2 gz

∗
2ga1γ

∗
, σ∗

5 = (gb)−z
∗
2 , σ∗

6 = gr
∗
2b, σ∗

7 = gr
∗
1 , ϑ∗ = Hk(σ3, . . . , σ7, stag

∗),
m∗ = Hk(g

ϑ∗
h̄ϕ), and σ∗

0 = (um
∗
wstag∗h)r

∗
1 (not queried to AO but CO) such

that randomness are the same as those used when B embedded the problem in-
stance at j-th query and (Mj , ω

∗, j, γ∗) is recorded as the challenge instance.
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This is guaranteed by the strong unforgeability and collision-resistance as we
discussed above. By using these values, E can compute gr

∗
2 = (σ∗

6)
1/b, gr

∗
1 = σ∗

7 ,
gz

∗
1 = (σ∗

3)
−1/b, gz

∗
2 = (σ∗

5)
−1/b, vr

∗
= (gr

∗
1 · gr∗2 )yv , vr∗1 = (gr

∗
1 · gr∗2 )yv1 ,

vr
∗

2 = (gr
∗
1 · gr∗2 )yv2 , since E has b, yv, yv1 , yv2 and it holds that v = gyv v1 = gyv1

v2 = gyv2 . Thus, E can compute gz
∗
1 ·vr∗1 ga2γ

∗
/σ∗

2 = gα = gxy since E has a1 and
γ∗ is recorded. That is, E can output solution gxy of the AgExt problem if the
adversary outputs a Type A extraction for queried messageMj to CO. E guesses
index j, so its success probability is degraded by a factor of 1/qC. However, it
still breaks the AgExt problem with non-negligible probability ε/qC where ε is
the success probability of A. �

5 Application to Obfuscators for ES and EVES

Our VES scheme can be used to construct new obfuscators for ES and EVES.
Hada constructed an obfuscator for ES by combining Waters’s signature (2005)
and the linear encryption scheme [23]. The linear encryption scheme proposed
by Boneh, Boyen, and Shacham [7] and is as follows:

L.Gen(1λ): It generates Γ
R← Gbmp(1

λ), selects exponents xe, ye
U← Zp, and out-

puts pk := (fe, he) := (gxe , gye), dk := (xe, ye).

L.Enc(pke,m): On input m ∈ G and pk = (fe, he) it selects r, s
U← Zp and

outputs c := (f re , h
s
e, g

r+sm).

Hada’s idea is as follows: Suppose that signature σ is computed as σ = sk ·G(m)
where sk ∈ G is the signing key, m ∈ Zp is the message and G : Zp → G is
an efficiently computable function. Then, for ciphertext c = L.Enc(pk, sk), we
can compute c̃ := c · G(m) = L.Enc(pk, sk · G(m)) by homomorphic property
of the linear encryption scheme. This is exactly an encrypted signature. The
ciphertext of sk can be seen as an obfuscated circuit for encrypted signatures
since the linear encryption scheme is semantically secure and no information
about sk is revealed. We extend Hada’s construction, that is, we combine our
VES scheme based on the strongly unforgeable Waters dual signature and the
linear encryption scheme. However, our VES scheme is based on the Waters dual
signature, which is more complex than Waters’ signature at Eurocrypt’05, so it
is non-trivial whether we can use Hada’s technique directly or not. Especially, in
Waters’ signature at Eurocrypt’05, the signing algorithm does not exponentiate
sk, but in the Waters dual signature, it does. We can resolve this problem by us-
ing the multiplicatively homomorphic property of the linear encryption scheme,
that is, we can compute cr · G(m) = L.Enc(pk, skr · G(m)). Therefore, if we
encrypt sk = (gα, gαa1 , ga1a2) by linear encryption, then we can construct an
obfuscator for ES/EVES. We omit details of these constructions since we do not
have space to present them. We will present them in a full version.
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Abstract. The notion of aggregate signature has been motivated by ap-
plications and it enables any user to compress different signatures signed
by different signers on different messages into a short signature. Sequen-
tial aggregate signature, in turn, is a special kind of aggregate signature
that only allows a signer to add his signature into an aggregate signature
in sequential order. This latter scheme has applications in diversified set-
tings, such as in reducing bandwidth of a certificate chains, and in secure
routing protocols. Lu, Ostrovsky, Sahai, Shacham, and Waters presented
the first sequential aggregate signature scheme in the standard (non ide-
alized ROM) model. The size of their public key, however, is quite large
(i.e., the number of group elements is proportional to the security param-
eter), and therefore they suggested as an open problem the construction
of such a scheme with short keys. Schröder recently proposed a sequential
aggregate signature (SAS) with short public keys using the Camenisch-
Lysyanskaya signature scheme, but the security is only proven under an
interactive assumption (which is considered a relaxed notion of security).
In this paper, we propose the first sequential aggregate signature scheme
with short public keys (i.e., a constant number of group elements) in
prime order (asymmetric) bilinear groups which is secure under static
assumptions in the standard model. Technically, we start with a pub-
lic key signature scheme based on the recent dual system encryption
technique of Lewko and Waters. This technique cannot give directly an
aggregate signature scheme since, as we observed, additional elements
should be published in the public key to support aggregation. Thus,
our construction is a careful augmentation technique for the dual system
technique to allow it to support a sequential aggregate signature scheme.
We further implemented our scheme and conducted a performance study
and implementation optimization.
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1 Introduction

Aggregate signature is a relatively new type of public key signature which enables
any user to combine n signatures signed by different n signers on different n
messages into a short signature. The concept of public key aggregate signature
(PKAS) was introduced by Boneh, Gentry, Lynn, and Shacham [9], and they
proposed an efficient PKAS scheme in the random oracle model using the bilinear
groups. After that, numerous PKAS schemes were proposed using bilinear groups
[14,22,6,7,1,15] or using trapdoor permutations [24,3,25].

One application of aggregate signature is the certificate chains of the public
key infrastructure (PKI) [9]. The PKI system has a tree structure, and a cer-
tificate for a user consists of a certificate chain from a root node to a leaf node,
each node in the chain signing its predecessor. If the signatures in the certificate
chain are replaced with a single aggregate signature, then the bandwidth for sig-
natures transfer can be significantly saved. Another application is to the secure
routing protocol of the internet protocol [9]. If each router which participates in
the routing protocol uses PKAS instead of a public key signature (PKS), then
the communication overload of signature transfer can be dramatically reduced.
Further, aggregate signatures have other applications such as reducing band-
width in sensor networks or ad-hoc networks, and in software authentication in
the presence of software update [1].

1.1 Previous Methods

Aggregate signature schemes are categorized as full aggregate signature, synchro-
nized aggregate signature, and sequential aggregate signature depending on the
type of signature aggregation. They have also been applied to regular signatures
in the PKI model, and to ID-based signatures (with trusted key server).

The first type of aggregate signature is full aggregate signature which enables
any user to freely aggregate different signatures of different signers. This full
aggregate signature is the most flexible aggregate signature since it does not re-
quire any restriction on the aggregation step (though, restriction may be needed
at times for certain applications). However, there is only one full aggregate sig-
nature scheme that was proposed by Boneh et al. [9]. Since this scheme is based
on the short signature scheme of Boneh et al. [10], the signature length it pro-
vides is also very short. However, the security of the scheme is just proven in the
idealized random oracle model and the number of pairing operations in the ag-
gregate signature verification algorithm is proportional to the number of signers
in the aggregate signature.

The second type of aggregate signature is synchronized aggregate signature
which enables any user to combine different signatures with the same synchro-
nizing information into a single signature. The synchronized aggregate signature
has a demerit which dictates that all signers should share the same synchroniz-
ing information (like a time clock or other shared value). Gentry and Ramzan
introduced the concept of synchronized aggregate signature, they proposed an
identity-based synchronized aggregate signature scheme using bilinear groups,
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and they proved its security in the random oracle model [14]. We note that
identity-based aggregate signature (IBAS) is an ID-based scheme and thus relies
on a trusted server knowing all private keys (i.e., its trust structure is different
than in regular PKI). However, it also has a notable advantage such that it is
not required to retrieve the public keys of signers in the verification algorithm
since an identity string plays the role of a public key (the lack of public key is
indicated in our comparison table as public key of no size!). Recently, Ahn et al.
presented a public key synchronized aggregate signature scheme without relying
on random oracles [1].

The third type of aggregate signature is sequential aggregate signature (SAS)
that enables each signer to aggregate his signature to a previously aggregated
signature in a sequential order. The sequential aggregate signature has the obvi-
ous limitation of signers being ordered to aggregate their signatures in contrast
to the full aggregate signature and the synchronized aggregate signature. How-
ever, it has an advantage such that it is not required to share synchronized
information among signers in contrast to the synchronized aggregate signature,
and many natural applications lead themselves to this setting. The concept of
sequential aggregate signature was introduced by Lysyanskaya et al., and they
proposed a public key sequential aggregate signature scheme using the certified
trapdoor permutations in the random oracle model [24]. Boldyreva et al. pre-
sented an identity-based sequential aggregate signature scheme in the random
oracle model using an interactive assumption [6], but it was shown that their
construction is not secure by Hwang et al. [17]. After that, Boldyreva et al. pro-
posed a new identity-based sequential aggregate signature by modifying their
previous construction and proved its security in the generic group model [7].
Recently, Gerbush et al. showed that the modified IBAS scheme of Boldyreva et
al. is secure under static assumptions using the dual form signatures framework
[15]. The first sequential aggregate signature scheme without the random oracle
idealization was proposed by Lu et al. [22]. They converted the PKS scheme of
Waters [28] to the PKAS scheme, and proved its security under the well known
CDH assumption. However, the scheme of Lu et al. has a demerit since the
number of group elements in the public key is proportional to the security pa-
rameter (for a security of 280 they need 160 elements or about 80 elements in
a larger group); they left as an open question to design a scheme with shorter
public key. Schröder proposed a PKAS scheme with short public keys relying on
the Camenisch-Lysyanskaya signature scheme [27], however the scheme’s secu-
rity is proven under an interactive assumption (which typically, is a relaxation
used when designs based on static assumptions are hard to find).1 Therefore,
the construction of sequential aggregate signature scheme with short public keys
without relaxations like random oracles or an interactive assumptions was left
as an open question.

1 Gerbush et al. showed that a modified Camenisch-Lysyanskaya signature scheme
in composite order groups is secure under static assumptions [15]. However, it is
unclear whether the construction of Schröder can be directly applied to this modified
Camenisch-Lysyanskaya signature scheme.



426 K. Lee, D.H. Lee, and M. Yung

Table 1. Comparison of aggregate signature schemes

Scheme Type ROM PK Size AS Size Sign Time Verify Time Assumption

BGLS [9] Full Yes 1kp 1kp 1E lP CDH

GR [14] IB, Sync Yes – 2kp + λ 3E 3P + lE CDH

AGH [1] Sync Yes 1kp 2kp + 32 6E 4P + lE CDH

AGH [1] Sync No 1kp 2kp + 32 10E 8P + lE CDH

LMRS [24] Seq Yes 1kf 1kf lE lE cert TDP

Neven [25] Seq Yes 1kf 1kf + 2λ 1E + 2lM 2lM uncert CFP

BGOY [7] IB, Seq Yes – 3kp 4P + lE 4P + lE Interactive

GLOW [15] IB, Seq Yes – 5kf 10P + 2lE 10P + 2lE Static

LOSSW [22] Seq No 2λkp 2kp 2P + 4λlM 2P + 2λlM CDH

Schröder [27] Seq No 2kp 4kp lP + 2lE lP + lE Interactive

Ours Seq No 11kp 8kp 8P + 5lE 8P + 4lE Static

ROM = random oracle model, IB = identity based, λ = security parameter

kp, kf = the bit size of element for pairing and factoring, l = the number of signers

P = pairing computation, E = exponentiation, M = multiplication

1.2 Our Contributions

Challenged by the above question, the motivation of our research is to construct
an efficient sequential aggregate signature scheme secure in the standard model
(i.e., without employing assumptions like random oracle or interactive assump-
tions as part of the proof) with short public keys (e.g., constant number of group
elements). To achieve this goal, we use the public key signature scheme derived
from the identity-based encryption (IBE) scheme that adopts the innovative
dual system encryption techniques of Waters [29,21]. That is, an IBE scheme
is first converted to a PKS scheme by the clever observation of Naor [8]. The
PKS schemes that adopt the dual system encryption techniques are the scheme
of Waters [29] which includes a random tag in a signature and the scheme of
Lewko and Waters [21] which does not include a random tag in a signature. The
scheme of Waters is not appropriate to aggregate signature since the random tags
in signatures cannot be compressed into a single value. The scheme of Lewko and
Waters in composite order groups is easily converted to an aggregate signature
scheme if the element of Gp3 is moved from a private key to a public key, but it is
inefficient because of composite order groups.2 Therefore, we start the construc-
tion from the IBE scheme in prime order (asymmetric) bilinear groups of Lewko
and Waters. However, this PKS scheme which is directly derived from the IBE
scheme of Lewko and Waters is not easily converted to a sequential aggregate

2 Lewko obtained a prime order IBE scheme by translating the Lewko-Waters com-
posite order IBE scheme using the dual pairing vector spaces [20]. One may consider
to construct an aggregate signature scheme using this IBE scheme. However, it is
not easy to aggregate individual signatures since the dual orthonormal basis vectors
of each users are randomly generated.
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signature scheme (as far as we see). The reason is that we need a PKS scheme
that supports multi-user setting and public re-randomization to construct a SAS
scheme by using the randomness reuse technique of Lu et al. [22], but this PKS
scheme does not support these two properties.

Here we first construct a PKS scheme in prime order (asymmetric) bilinear
groups which supports multi-user seting and public re-randomization by modi-
fying the PKS scheme of Lewko and Waters, and we prove its security using the
dual system encryption technique. Next, we convert the modified PKS scheme to
a SAS scheme with short public keys by using the randomness reuse technique
of Lu et al. [22], and we prove its security without random oracles and based
on the traditional static assumptions. Our security proof crucially relies on the
fact that we add additional randomization elements to the SAS verification al-
gorithm, so that we can expand these elements to a semi-functional space; this
allows us to introduce in the SAS scheme public-key elements used in aggrega-
tion. Note that Table 1 gives a comparison of past schemes to ours. Finally, to
support our claim of efficiency, we implemented our SAS scheme using the PBC
library and we measured the performance of the scheme. Additionally, as part
of the implementation we provide a computational preprocessing method which
improves the amortized performance of our scheme.

1.3 Additional Related Work

There are some work on aggregate signature schemes which allow signers to
communicate with each other or schemes which compress only partial elements
of a signature in the aggregate algorithm [4,2,16,11]. Generally, communication
resources of computer systems are very expensive compared to the computation
resources. Thus, it is preferred to perform several expensive computational op-
erations instead of a single communication exchange. Additionally, a signature
scheme with added communications does not correspond to a pure public key
signature schemes, but corresponds more to a multi-party protocol. In addition,
signature schemes which compress just partial elements of signatures cannot be
an aggregate signature since the total size of signatures is still proportional to
the number of signers.

Another research area related to aggregate signature is multi-signature [5,22].
Multi-signature is a special type of aggregate signature in which all signers gen-
erate signatures on the same message, and then any user can combine these sig-
nature to a single signature. Aggregate message authentication code (AMAC)
is the symmetric key analogue of aggregate signature: Katz and Lindell intro-
duced the concept of AMAC and showed that it is possible to construct AMAC
schemes based on any message authentication code schemes [18].

2 Preliminaries

We first define public key signature and sequential aggregate signature, and then
give the definition of their correctness and security.
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2.1 Public Key Signature

A public key signature (PKS) scheme consists of three PPT algorithmsKeyGen,
Sign, and Verify, which are defined as follows: The key generation algorithm
KeyGen(1λ) takes as input the security parameters 1λ, and outputs a public key
PK and a private key SK. The signing algorithm Sign(M,SK) takes as input
a messageM and a private key SK, and outputs a signature σ. The verification
algorithm Verify(σ,M,PK) takes as input a signature σ, a message M , and a
public key PK, and outputs either 1 or 0 depending on the validity of the signa-
ture. The correctness requirement is that for any (PK, SK) output by KeyGen
and any M ∈ M, we have that Verify(Sign(M,SK),M, PK) = 1. We can
relax this notion to require that the verification is correct with overwhelming
probability over all the randomness of the experiment.

The security notion of existential unforgeability under a chosen message attack
is defined in terms of the following experiment between a challenger C and a PPT
adversary A: C first generates a key pair (PK, SK) by running KeyGen, and
gives PK to A. Then A, adaptively and polynomially many times, requests a
signature query on a messageM under the challenge public key PK, and receives
a signature σ. Finally, A outputs a forged signature σ∗ on a messageM∗. C then
outputs 1 if the forged signature satisfies the following two conditions, or outputs
0 otherwise: 1) Verify(σ∗,M∗, PK) = 1 and 2)M∗ was not queried by A to the
signing oracle. The advantage of A is defined as AdvPKSA = Pr[C = 1] where the
probability is taken over all the randomness of the experiment. A PKS scheme
is existentially unforgeable under a chosen message attack if all PPT adversaries
have at most a negligible advantage in the above experiment (for large enough
security parameter).

2.2 Sequential Aggregate Signature

A sequential aggregate signature (SAS) scheme consists of four PPT algorithms
Setup, KeyGen, AggSign, and AggVerify, which are defined as follows: The
setup algorithm Setup(1λ) takes as input a security parameter 1λ and out-
puts public parameters PP . The key generation algorithm KeyGen(PP ) takes
as input the public parameters PP , and outputs a public key PK and a pri-
vate key SK. The aggregate signing algorithm AggSign(AS′,M,PK,M, SK)
takes as input an aggregate-so-far AS′ on messages M = (M1, . . . ,Ml) under
public keys PK = (PK1, . . . , PKl), a message M , and a private key SK, and
outputs a new aggregate signature AS. The aggregate verification algorithm
AggVerify(AS,M,PK) takes as input an aggregate signature AS on messages
M = (M1, . . . ,Ml) under public keys PK = (PK1, . . . , PKl), and outputs either
1 or 0 depending on the validity of the sequential aggregate signature. The cor-
rectness requirement is that for each PP output by Setup, for all (PK, SK) out-
put by KeyGen, anyM , we have that AggVerify(AggSign(AS′,M′,PK′,M,
SK),M′||M,PK′||PK) = 1 where AS′ is a valid aggregate-so-far signature on
messages M′ under public keys PK′.
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The security notion of existential unforgeability under a chosen message attack
is defined in terms of the following experiment between a challenger C and a PPT
adversary A:

Setup: C first initializes a certification list CL as empty. Next, it runs Setup to
obtain public parameters PP and KeyGen to obtain a key pair (PK, SK),
and gives PK to A.

Certification Query: A adaptively requests the certification of a public key
by providing a key pair (PK, SK). Then C adds the key pair (PK, SK) to
CL if the key pair is a valid one.

Signature Query: A adaptively requests a sequential aggregate signature (by
providing an aggregate-so-far AS′ on messages M′ under public keys PK′),
on a message M to sign under the challenge public key PK, and receives a
sequential aggregate signature AS.

Output: Finally (after a sequence of the above queries), A outputs a forged
sequential aggregate signature AS∗ on messagesM∗ under public keys PK∗.
C outputs 1 if the forged signature satisfies the following three conditions, or
outputs 0 otherwise: 1) AggVerify(AS∗,M∗,PK∗) = 1, 2) The challenge
public key PK must exists in PK∗ and each public key in PK∗ except the
challenge public key must be in CL, and 3) The corresponding message M
in M∗ of the challenge public key PK must not have been queried by A to
the sequential aggregate signing oracle.

The advantage of A is defined as AdvSASA = Pr[C = 1] where the probability
is taken over all the randomness of the experiment. A SAS scheme is existen-
tially unforgeable under a chosen message attack if all PPT adversaries have at
most a negligible advantage (for large enough security parameter) in the above
experiment.

2.3 Asymmetric Bilinear Groups

Let G, Ĝ and GT be multiplicative cyclic groups of prime order p. Let g, ĝ be
generators ofG, Ĝ. The bilinear map e : G×Ĝ→ GT has the following properties:

1. Bilinearity: ∀u ∈ G, ∀v̂ ∈ Ĝ and ∀a, b ∈ Zp, e(u
a, v̂b) = e(u, v̂)ab.

2. Non-degeneracy: ∃g, ĝ such that e(g, ĝ) has order p, that is, e(g, ĝ) is a gen-
erator of GT .

We say that G, Ĝ,GT are bilinear groups with no efficiently computable isomor-
phisms if the group operations in G, Ĝ, and GT as well as the bilinear map e are
all efficiently computable, but there are no efficiently computable isomorphisms
between G and Ĝ.

2.4 Complexity Assumptions

We employ three static assumptions in prime order bilinear groups. Assumptions
1 and 3 have been used extensively, while Assumption 2 was introduced by Lewko
and Waters [21].
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Assumption 1 (Symmetric eXternal Diffie-Hellman). Let (p,G, Ĝ,GT , e)
be a description of the asymmetric bilinear group of prime order p. Let g, ĝ be
generators of G, Ĝ respectively. The assumption is that if the challenge values

D = ((p,G, Ĝ,GT , e), g, ĝ, ĝ
a, ĝb) and T,

are given, no PPT algorithm B can distinguish T = T0 = ĝab from T = T1 =
ĝc with more than a negligible advantage. The advantage of B is defined as
AdvA1

B (λ) =
∣∣Pr[B(D,T0) = 0] − Pr[B(D,T1) = 0]

∣∣ where the probability is
taken over the random choice of a, b, c ∈ Zp.

Assumption 2 (LW2). Let (p,G, Ĝ,GT , e) be a description of the asymmetric

bilinear group of prime order p. Let g, ĝ be generators of G, Ĝ respectively. The
assumption is that if the challenge values

D = ((p,G, Ĝ,GT , e), g, g
a, gb, gc, ĝ, ĝa, ĝa

2

, ĝbx, ĝabx, ĝa
2x) and T,

are given, no PPT algorithm B can distinguish T = T0 = gbc from T = T1 =
gd with more than a negligible advantage. The advantage of B is defined as
AdvA2

B (λ) =
∣∣Pr[B(D,T0) = 0] − Pr[B(D,T1) = 0]

∣∣ where the probability is
taken over the random choice of a, b, c, x, d ∈ Zp.

Assumption 3 (Decisional Bilinear Diffie-Hellman). Let (p,G, Ĝ,GT , e)
be a description of the asymmetric bilinear group of prime order p. Let g, ĝ be
generators of G, Ĝ respectively. The assumption is that if the challenge values

D = ((p,G, Ĝ,GT , e), g, g
a, gb, gc, ĝ, ĝa, ĝb, ĝc) and T,

are given, no PPT algorithm B can distinguish T = T0 = e(g, ĝ)abc from
T = T1 = e(g, ĝ)d with more than a negligible advantage. The advantage of
B is defined as AdvA3

B (λ) =
∣∣Pr[B(D,T0) = 0] − Pr[B(D,T1) = 0]

∣∣ where the
probability is taken over the random choice of a, b, c, d ∈ Zp.

3 Aggregate Signature

We construct a SAS scheme in prime order (asymmetric) bilinear groups and
prove its existential unforgeability under a chosen message attack. The main
idea is to modify a PKS scheme to support multi-user setting and signature
aggregation by using the “randomness reuse” technique of Lu et al. [22]. To
support multi-user setting, it is required for all users to share common elements
in the public parameters. To use the randomness reuse technique, it is crucial for
a signer to publicly re-randomize a sequential aggregate signature to prevent a
forgery attack. Thus we need a PKS scheme with short public key that supports
“multi-user setting” and “public re-randomization”.

Before we present a SAS scheme, we first construct a PKS scheme with short
public key that will be augmented to support multi-user setting and public re-
randomization. One method to build a PKS scheme is to use the observation of
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Naor [8] that private keys of fully secure IBE are easily converted to signatures
of PKS. Thus we can convert the prime order IBE scheme of Lewko and Waters
[21] to a prime order PKS scheme. However, this directly converted PKS scheme
does not support multi-user setting and public re-randomization since it needs
to publish additional public key components: Specifically, we need to publish an
element g for multi-user setting and elements u, h for public re-randomization.
Note that ĝ, û, ĥ are already in the public key, but g, u, h are not. One may try
to publish g, u, h in the public key. The technical difficulty arising in this case
is that the simulator of the security proof can easily distinguish the changes of
the verification algorithm that checks the validity of the forged signature from
the normal verification algorithm to the semi-functional one, without using an
adversary.

To solve this problem, we devise a method that allows a PKS scheme to
safely publish elements g, u, h in the public key for multi-user setting and public
re-randomization. The main idea is to additionally randomize the verification
components using v̂, v̂ν3 , v̂−π in the verification algorithm. If a valid signature is
given in the verification algorithm, then the additionally added randomization
elements v̂, v̂ν3 , v̂−π are canceled. Otherwise, the added randomization compo-
nents prevent the verification of an invalid signature. Therefore, the simulator
of the security proof cannot distinguish the changes of the verification algorithm
even if g, u, h are published, since the additional elements v̂, v̂ν3 , v̂−π prevent the
signature verification.

3.1 Our PKS Scheme

The PKS scheme in prime order bilinear groups is described as follows:

PKS.KeyGen(1λ): This algorithm first generates the asymmetric bilinear

groups G, Ĝ of prime order p of bit size Θ(λ). It chooses random elements g, w ∈
G and ĝ, v̂ ∈ Ĝ. Next, it chooses random exponents ν1, ν2, ν3, φ1, φ2, φ3 ∈ Zp and
sets τ = φ1+ν1φ2+ν2φ3, π = φ2+ν3φ3. It selects random exponents α, x, y ∈ Zp

and sets u = gx, h = gy, û = ĝx, ĥ = ĝy. It outputs a private key SK = (α, x, y)
and a public key PK as

g, u, h, w1 = wφ1 , w2 = wφ2 , w3 = wφ3 , w, ĝ, ĝν1 , ĝν2 , ĝ−τ ,

û, ûν1 , ûν2 , û−τ , ĥ, ĥν1 , ĥν2 , ĥ−τ , v̂, v̂ν3 , v̂−π, Ω = e(g, ĝ)α.

PKS.Sign(M,SK): This algorithm takes as input a messageM ∈ {0, 1}k where
k < λ and a private key SK = (α, x, y). It selects random exponents r, c1, c2 ∈ Zp
and outputs a signature σ as

W1,1 = gα(uMh)rwc11 ,W1,2 = wc12 ,W1,3 = wc13 ,W1,4 = wc1 ,

W2,1 = grwc21 ,W2,2 = wc22 ,W2,3 = wc23 ,W2,4 = wc2 .

PKS.Verify(σ,M,PK): This algorithm takes as input a signature σ on a mes-
sage M ∈ {0, 1}k under a public key PK. It first chooses random exponents
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t, s1, s2 ∈ Zp and computes verification components as

V1,1 = ĝt, V1,2 = (ĝν1)tv̂s1 , V1,3 = (ĝν2)t(v̂ν3)s1 , V1,4 = (ĝ−τ )t(v̂−π)s1 ,

V2,1 = (ûM ĥ)t, V2,2 = ((ûν1)M ĥν1)tv̂s2 , V2,3 = ((ûν2)M ĥν2)t(v̂ν3 )s2 ,

V2,4 = ((û−τ )M ĥ−τ )t(v̂−π)s2 .

Next, it verifies that
∏4
i=1 e(W1,i, V1,i) ·

∏4
i=1 e(W2,i, V2,i)

−1 ?
= Ωt. If this equa-

tion holds, then it outputs 1. Otherwise, it outputs 0.

We first note that the inner product of (φ1, φ2, φ3, 1) and (1, ν1, ν2,−τ) is
zero since τ = φ1 + ν1φ2 + ν2φ3, and the inner product of (φ1, φ2, φ3, 1) and
(0, 1, ν3,−π) is zero since π = φ2 + ν3φ3. Using these facts, the correctness
requirement of the above PKS scheme is easily verified as

4∏
i=1

e(W1,i, V1,i) ·
4∏
i=1

e(W2,i, V2,i)
−1 = e(gα(uMh)r, ĝt) · e(gr, (ûM ĥ)t)−1 = Ωt.

Theorem 1. The above PKS scheme is existentially unforgeable under a chosen
message attack if Assumptions 1, 2, and 3 hold. That is, for any PPT adversary
A, there exist PPT algorithms B1,B2,B3 such that AdvPKSA (λ) ≤ AdvA1

B1
(λ) +

qAdvA2
B2

(λ) +AdvA3
B3

(λ) where q is the maximum number of signature queries of
A.

The proof of this theorem is given in Section 4.1.

3.2 Our SAS Scheme

The SAS scheme in prime order bilinear groups is described as follows:

SAS.Setup(1λ): This algorithm first generates the asymmetric bilinear groups

G, Ĝ of prime order p of bit size Θ(λ). It chooses random elements g, w ∈ G and

ĝ, v̂ ∈ Ĝ. Next, it chooses random exponents ν1, ν2, ν3, φ1, φ2, φ3 ∈ Zp and sets
τ = φ1 + ν1φ2 + ν2φ3, π = φ2 + ν3φ3. It publishes public parameters PP as

g, w1 = wφ1 , w2 = wφ2 , w3 = wφ3 , w, ĝ, ĝν1 , ĝν2 , ĝ−τ , v̂, v̂ν3 , v̂−π.

SAS.KeyGen(PP ): This algorithm takes as input the public parameters PP .
It selects random exponents α, x, y ∈ Zp and computes u = gx, h = gy, û =

ĝx, ûν1 = (ĝν1)x, ûν2 = (ĝν2)x, û−τ = (ĝ−τ )x, ĥ = ĝy, ĥν1 = (ĝν1)y , ĥν2 =

(ĝν2)y, ĥ−τ = (ĝ−τ )y . It outputs a private key SK = (α, x, y) and a public
key PK as

u, h, û, ûν1 , ûν2 , û−τ , ĥ, ĥν1 , ĥν2 , ĥ−τ , Ω = e(g, ĝ)α.

SAS.AggSign(AS′,M′,PK′,M, SK): This algorithm takes as input an
aggregate-so-far AS′ = (S′

1,1, . . . , S
′
2,4) on messages M′ = (M1, . . . ,Ml−1) under

public keys PK′ = (PK1, . . . , PKl−1) where PKi = (ui, hi, . . . , Ωi), a message
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M ∈ {0, 1}k where k < λ, a private key SK = (α, x, y) with PK = (u, h, . . . , Ω)
and PP . It first checks the validity of AS′ by calling AggVerify(AS′,M′,PK′).
If AS′ is not valid, then it halts. If the public key PK of SK does already exist in
PK′, then it halts. Next, it selects random exponents r, c1, c2 ∈ Zp and outputs
an aggregate signature AS as

S1,1 = S′
1,1g

α(S′
2,1)

xM+y ·
l−1∏
i=1

(uMi

i hi)
r(uMh)rwc11 ,

S1,2 = S′
1,2(S

′
2,2)

xM+y · wc12 , S1,3 = S′
1,3(S

′
2,3)

xM+y · wc13 ,
S1,4 = S′

1,4(S
′
2,4)

xM+y · wc1 , S2,1 = S′
2,1 · grwc21 ,

S2,2 = S′
2,2 · wc22 , S2,3 = S′

2,3 · wc23 , S2,4 = S′
2,4 · wc2 .

SAS.AggVerify(AS,M,PK): This algorithm takes as input a sequential ag-
gregate signature AS on messages M = (M1, . . . ,Ml) under public keys PK =
(PK1, . . . , PKl) where PKi = (ui, hi, . . . , Ωi). It first checks that any public key
does not appear twice in PK and that any public key in PK has been certified.
If these checks fail, then it outputs 0. If l = 0, then it outputs 1 if S1 = S2 = 1, 0
otherwise. It chooses random exponents t, s1, s2 ∈ Zp and computes verification
components as

C1,1 = ĝt, C1,2 = (ĝν1)tv̂s1 , C1,3 = (ĝν2)t(v̂ν3 )s1 , C1,4 = (ĝ−τ )t(v̂−π)s1 ,

C2,1 =

l∏
i=1

(ûMi

i ĥi)
t, C2,2 =

l∏
i=1

((ûν1i )Mi ĥν1i )tv̂s2 ,

C2,3 =

l∏
i=1

((ûν2i )Mi ĥν2i )t(v̂ν3 )s2 , C2,4 =

l∏
i=1

((û−τi )Mi ĥ−τi )t(v̂−π)s2 .

Next, it verifies that
∏4
i=1 e(S1,i, C1,i) ·

∏4
i=1 e(S2,i, C2,i)

−1 ?
=
∏l
i=1Ω

t
i . If this

equation holds, then it outputs 1. Otherwise, it outputs 0.

The aggregate signature AS is a valid sequential aggregate signature on mes-
sages M′||M under public keys PK′||PK with randomness r̃ = r′ + r, c̃1 =
c′1+ c

′
2(xM + y)+ c1, c̃2 = c′2+ c2 where r′, c′1, c

′
2 are random values in AS′. The

sequential aggregate signature has the following form

S1,1 =

l∏
i=1

gαi

l∏
i=1

(uMi

i hi)
r̃wc̃11 , S1,2 = wc̃12 , S1,3 = wc̃13 , S1,4 = wc̃1 ,

S2,1 = gr̃wc̃21 , S2,2 = wc̃22 , S2,3 = wc̃23 , S2,4 = wc̃2 .

Theorem 2. The above SAS scheme is existentially unforgeable under a chosen
message attack if the PKS scheme is existentially unforgeable under a chosen
message attack. That is, for any PPT adversary A for the above SAS scheme,
there exists a PPT algorithm B for the PKS scheme such that AdvSASA (λ) ≤
AdvPKSB (λ).

The proof of this theorem is given in Section 4.2.
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3.3 Extensions

In this section, we discuss various extensions of our SAS scheme.

Multiple Messages. To support multiple signing per one signer, we can use the
method of Lu et al. [22]. The basic idea of Lu et al. is to apply a collision resistant
hash function H to a message M before performing the signing algorithm. If a
signer wants to add a signature on a message M2 into the aggregate signature,
he first removes his previous signature on H(M1) from the aggregate signature
using his private key, and then he adds the new signature on the H(M1||M2) to
the aggregate signature.

Multi-signatures. The SAS scheme of this paper can be easily converted to a
multi-signature scheme. In case of multi-signature, some elements of public keys
in SAS can be moved to the public parameters since multi-signature only allows
signers to sign on the same message. Compared to the multi-signature scheme
of Lu et al. [22], our multi-signature scheme has short size public parameters.

4 Security Analysis

In this section, we analyze the security of the basic PKS scheme and our SAS
scheme.

4.1 Proof of Theorem 1

To prove the security of our PKS scheme, we use the dual system encryption
technique of Lewko and Waters [21]. We describe a semi-functional signing algo-
rithm and a semi-functional verification algorithm. They are not used in a real
system, rather they are used in the security proof. When comparing our proof
to that of Lewko and Waters, we employ a different assumption since we have
published additional elements g, u, h used in aggregation (in fact, direct adap-
tation of the earlier technique will break the assumption and thus the proof).
A crucial idea in our proof is that we have added elements v̂, v̂ν3 , v̂−π in the
public key which are used in randomization of the verification algorithm. In the
security proof when moving from normal to semi-functional verification, it is the
randomization elements v̂, v̂ν3 , v̂−π which are expanded to the semi-functional
space; this enables deriving semi-functional verification as part of the security
proof under our assumption, without being affected by the publication of the
additional public key elements used for aggregation.

For the semi-functional signing and verification we set f = gyf , f̂ = ĝyf where
yf is a random exponent in Zp.

PKS.SignSF. The semi-functional signing algorithm first creates a normal sig-
nature using the private key. Let (W ′

1,1, . . . ,W
′
2,4) be the normal signature of a

message M with random exponents r, c1, c2 ∈ Zp. It selects random exponents
sk, zk ∈ Zp and outputs a semi-functional signature σ as

W1,1=W
′
1,1(f

ν1ν3−ν2)skzk ,W1,2=W
′
1,2(f

−ν3)skzk ,W1,3=W
′
1,3f

skzk ,W1,4=W
′
1,4,

W2,1=W
′
2,1(f

ν1ν3−ν2)sk , W2,2=W
′
2,2(f

−ν3)sk , W2,3=W
′
2,3f

sk , W2,4=W
′
2,4.
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PKS.VerifySF. The semi-functional verification algorithm first creates a nor-
mal verification components using the public key. Let (V ′

1,1, . . . , V
′
2,4) be the

normal verification components with random exponents t, s1, s2 ∈ Zp. It chooses
random exponents sc, zc ∈ Zp and computes semi-functional verification compo-
nents as

V1,1 = V ′
1,1, V1,2 = V ′

1,2, V1,3 = V ′
1,3f̂

sc , V1,4 = V ′
1,4(f̂

−φ3)sc ,

V2,1 = V ′
2,1, V2,2 = V ′

2,2, V2,3 = V ′
2,3f̂

sczc , V2,4 = V ′
2,4(f̂

−φ3)sczc .

Next, it verifies that
∏4
i=1 e(W1,i, V1,i) ·

∏4
i=1 e(W2,i, V2,i)

−1 ?
= Ωt. If this equa-

tion holds, then it outputs 1. Otherwise, it outputs 0.

Note that if the semi-functional verification algorithm verifies a semi-functional
signature, then the left part of the above verification equation contains an ad-
ditional random element e(f, f̂)sksc(zk−zc). If zk = zc, then the semi-functional
verification algorithm succeeds. In this case, we say that the signature is nomi-
nally semi-functional.

The security proof uses a sequence of games G0,G1,G2,G3: The first game
G0 will be the original security game and the last game G3 will be a game such
that an adversary A has no advantage. Formally, the hybrid games are defined
as follows:

Game G0. In this game, the signatures that are given to A are normal and
the challenger use the normal verification algorithm PKS.Verify to check the
validity of the forged signature of A.
Game G1. This game is almost identical to G0 except that the challenger use
the semi-functional verification algorithm PKS.VerifySF to check the validity
of the forged signature of A.
Game G2. This game is the same as the G1 except that the signatures that
are given to A will be semi-functional. At this moment, the signatures are
semi-functional and the challenger use the semi-functional verification algorithm
PKS.VerifySF to check the validity of the forged signature. Suppose that A
makes at most q signature queries. For the security proof, we define a sequence
of hybrid games G1,0, . . . ,G1,k, . . . ,G1,q where G1,0 = G1. In G1,k, a normal
signature is given to A for all j-th signature queries such that j > k and a
semi-functional signature is given to A for all j-th signature queries such that
j ≤ k. It is obvious that G1,q is equal to G2.

Game G3. Finally, we define a new game G3. This game differs from G2 in that
the challenger always rejects the forged signature of A. Therefore, the advantage
of this game is zero since A cannot win this game.

For the security proof, we show the indistinguishability of each hybrid games.
We informally describe the meaning of each indistinguishability as follows:

– Indistinguishability of G0 and G1: This property shows that A cannot forge
a semi-functional signature if it is only given normal signatures. That is, if
A forges a semi-functional signature, then it can distinguish G0 from G1.
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– Indistinguishability of G1 and G2: This property shows that the probability
ofA to forge a normal signature is almost the same when the signatures given
to the adversary are changed from normal type to semi-functional type. That
is, if the probability of A to forge a normal signature is different in G1 and
G2, then A can distinguish two games.

– Indistinguishability of G2 and G3: This property shows that A cannot forge
a normal signature if it is only given semi-functional signatures. That is, if
A forges a normal signature, then it can distinguish G2 from G3.

The security (unforgeability) of our PKS scheme follows from a hybrid argument.
We first consider an adversary A to attack our PKS scheme in the original
security game G0. By the indistinguishability of G0 and G1, we have that A
can forge a normal signature with a non-negligible ε probability, but it can forge a
semi-functional signature with only a negligible probability. Now we should show
that the ε probability of A to forge a normal signature is also negligible. By the
indistinguishability of G1 and G2, we have that the ε probability of A to forge a
normal signature is almost the same when the signatures given to A are changed
from normal type to semi-functional type. Finally, by the indistinguishability of
G2 and G3, we have that A can forge a normal signature with only a negligible
probability. Summing up, we obtain that the probability of A to forge a semi-
functional signature is negligible (from the indistinguishability of G0 and G1)
and the probability of A to forge a normal signature is also negligible (from the
indistinguishability of G2 and G3).

Let Adv
Gj

A be the advantage of A in Gj for j = 0, . . . , 3. Let Adv
G1,k

A be the

advantage of A in G1,k for k = 0, . . . , q. It is clear that AdvG0

A = AdvPKSA (λ),

Adv
G1,0

A = AdvG1

A , Adv
G1,q

A = AdvG2

A , and AdvG3

A = 0. From the following
three Lemmas, we prove that it is hard for A to distinguish Gi−1 from Gi under
the given assumptions. Therefore, we have that

AdvPKSA (λ)

= AdvG0

A +

2∑
i=1

(
AdvGi

A −AdvGi

A
)
−AdvG3

A ≤
3∑
i=1

∣∣Adv
Gi−1

A −AdvGi

A
∣∣

= AdvA1
B1

(λ) +

q∑
k=1

AdvA2
B2

(λ) +AdvA3
B3

(λ).

This completes our proof.

Lemma 1. If Assumption 1 holds, then no polynomial-time adversary can dis-
tinguish between G0 and G1 with non-negligible advantage. That is, for any
adversary A, there exists a PPT algorithm B1 such that

∣∣AdvG0

A − AdvG1

A
∣∣ =

AdvA1
B1

(λ).

Lemma 2. If Assumption 2 holds, then no polynomial-time adversary can dis-
tinguish between G1 and G2 with non-negligible advantage. That is, for any ad-

versary A, there exists a PPT algorithm B2 such that
∣∣Adv

G1,k−1

A −Adv
G1,k

A
∣∣ =

AdvA2
B2

(λ).
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Lemma 3. If Assumption 3 holds, then no polynomial-time adversary can dis-
tinguish between G2 and G3 with non-negligible advantage. That is, for any
adversary A, there exists a PPT algorithm B3 such that

∣∣AdvG2

A − AdvG3

A
∣∣ =

AdvA3
B3

(λ).

The proofs of these lemmas are given in the full version of this paper [19].

4.2 Proof of Theorem 2

Our overall proof strategy for this part follows Lu et al. [22] and adapts it to our
setting. The proof uses two properties: the fact that the aggregated signature
result is independent of the order of aggregation, and the fact that the simulator
of the SAS system possesses the private keys of all but the target PKS.

Suppose there exists an adversary A that forges the above SAS scheme with
non-negligible advantage ε. A simulator B that forges the PKS scheme is first
given: a challenge public key PKPKS = (g, u, h, w1, . . . , w, ĝ, . . . , ĝ

−τ , û, . . . , û−τ ,

ĥ, . . . , ĥ−τ , v̂, v̂ν3 , v̂−π , Ω). Then B that interacts with A is described as fol-
lows: B first constructs PP = (g, w1, . . . , w, ĝ, . . . , ĝ

−τ , v̂, v̂ν3 , v̂−π) and PK∗ =

(u, h, û, . . . , û−τ , ĥ, . . . , ĥ−τ , Ω = e(g, ĝ)α) from PKPKS . Next, it initializes a
certification list CL as an empty one and gives PP and PK∗ to A. A may adap-
tively requests certification queries or sequential aggregate signature queries. If
A requests the certification of a public key by providing a public key PKi =
(ui, hi, . . . , Ωi) and its private key SKi = (αi, xi, yi), then B checks the pri-
vate key and adds the key pair (PKi, SKi) to CL. If A requests a sequential
aggregate signature by providing an aggregate-so-far AS′ on messages M′ =
(M1, . . . ,Ml−1) under public keys PK′ = (PK1, . . . , PKl−1), and a message M
to sign under the challenge private key of PK∗, then B proceeds the aggregate
signature query as follows:

1. It first checks that the signature AS′ is valid and that each public key in
PK′ exits in CL.

2. It queries its signing oracle that simulates PKS.Sign on the message M for
the challenge public key PK∗ and obtains a signature σ.

3. For each 1 ≤ i ≤ l − 1, it constructs an aggregate signature on message
Mi using SAS.AggSign since it knows the private key that corresponds
to PKi. The result signature is an aggregate signature for messages M′||M
under public keys PK′||PK∗ since this scheme does not check the order of
aggregation. It gives the result signature AS to A.

Finally, A outputs a forged aggregate signature AS∗ = (S∗
1,1, . . . , S

∗
2,4) on mes-

sages M∗ = (M1, . . . ,Ml) under public keys PK∗ = (PK1, . . . , PKl) for some l.
Without loss of generality, we assume that PK1 = PK∗. B proceeds as follows:

1. B first checks the validity of AS∗ by calling SAS.AggVerify. Additionally,
the forged signature should not be trivial: the challenge public key PK∗

must be in PK∗, and the message M1 must not be queried by A to the
signature query oracle.



438 K. Lee, D.H. Lee, and M. Yung

2. For each 2 ≤ i ≤ l, it parses PKi = (ui, hi, . . . , Ωi) from PK∗, and it
retrieves the private key SKi = (αi, xi, yi) of PKi from CL. It then computes

W1,1 = S∗
1,1 ·

l∏
i=2

(
gαj (S∗

2,1)
xiMi+yi

)−1
, W1,2 = S∗

1,2 ·
l∏
i=2

(
(S∗

2,2)
xiMi+yi

)−1
,

W1,3 = S∗
1,3 ·

l∏
i=2

(
(S∗

2,3)
xiMi+yi

)−1
, W1,4 = S∗

1,4 ·
l∏
i=2

(
(S∗

2,4)
xiMi+yi

)−1
,

W2,1 = S∗
2,1, W2,2 = S∗

2,2, W2,3 = S∗
2,3, W2,4 = S∗

2,4.

3. It outputs σ = (W1,1, . . . ,W2,4) as a non-trivial forgery of the PKS scheme
since it did not make a signing query on M1.

To finish the proof, we first show that the distribution of the simulation is cor-
rect. It is obvious that the public parameters and the public key are correctly
distributed. The sequential aggregate signatures is correctly distributed since
this scheme does not check the order of aggregation. Finally, we can show that
the result signature σ = (W1,1, . . . ,W2,4) of the simulator is a valid signature for
the PKS scheme on the message M1 under the public key PK∗ since it satisfies
the following equation:

4∏
i=1

e(W1,i, V1,i) ·
4∏

i=1

e(W2,i, V2,i)
−1

= e(S∗
1,1, ĝ

t) · e(S∗
1,2, ĝ

ν1tv̂s1) · e(S∗
1,3, ĝ

ν2tv̂ν3s1) · e(S∗
1,4, ĝ

−τtv̂−πs1) · e(
l∏

i=2

gαi , ĝt)−1·

e(S∗
2,1,

l∏
i=2

(ûMi
i ĥi)

t)−1 · e(S∗
2,2,

l∏
i=2

(ûMi
i ĥi)

ν1tv̂δis1)−1 · e(S∗
2,3,

l∏
i=2

(ûMi
i ĥi)

ν2tv̂δis1)−1·

e(S∗
2,4,

l∏
i=2

(ûMi
i ĥi)

−τtv̂−πδis1)−1 · e(S∗
2,1, (û

M1 ĥ)t)−1 · e(S∗
2,2, (û

M1 ĥ)ν1tv̂s2)−1·

e(S∗
2,3, (û

M1 ĥ)ν2tv̂ν3s2)−1 · e(S∗
2,4, (û

M1 ĥ)−τtv̂−πs2)−1

= e(S∗
1,1, C1,1) · e(S∗

1,2, C1,2) · e(S∗
1,3, C1,3) · e(S∗

1,4, C1,4) · e(
l∏

i=2

gαi , ĝt)−1·

e(S∗
2,1,

l∏
i=1

(ûMi
i ĥi)

t)−1 · e(S∗
2,2,

l∏
i=1

(ûMi
i ĥi)

ν1tv̂s̃2)−1 · e(S∗
2,3,

l∏
i=1

(ûMi
i ĥi)

ν2tv̂s̃2)−1·

e(S∗
2,4,

l∏
i=1

(ûMi
i ĥi)

−τtv̂−πs̃2)−1·

=
4∏

i=1

e(S∗
1,i, C1,i) ·

4∏
i=1

e(S∗
2,i, C2,i)

−1 · e(
l∏

i=2

gαi , ĝt)−1 =
l∏

i=1

Ωt
i ·

l∏
i=2

Ω−t
i = Ωt

1

where δi = xiMi + yi and s̃2 =
∑l

i=2(xiMi + yi)s1 + s2. This completes our
proof.
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5 Implementation

In this section, we report on the implementation of our SAS scheme and analysis
of its performance.

We used the Pairing Based Cryptography (PBC) library of Ben Lynn [23] to
implement our SAS scheme. According to the NIST recommendations for the 80-
bit security [26], the key size of elliptic curve systems should be at least 160 bits
and the key size of discrete logarithm systems should be at least 1024 bits. For
80-bit security, we, therefore, selected the Miyaji-Nakabayashi-Takano (MNT)
curve with embedding degree 6. In the MNT curve with embedding degree 6,
the group size of G should be at least 171 bits and the group size of GT should
be at least 1024 bits since the security of the GT group is related to the security
of the discrete logarithm [13]. Therefore, we used a 175-bit MNT curve that is
generated by the MNT parameter generation program in the PBC library.

5.1 Signature and Public Key Size

We compare the signature size and the public key size of Lu et al.’s SAS scheme
(the earlier scheme with non relaxed-model proof, based on a static assumption
and standard model) with our SAS scheme. The original SAS scheme of Lu et al.
is described using symmetric bilinear groups, but it can also be described using
asymmetric bilinear groups. In the 175-bit MNT curve with point compression,
the group size of G is about 175 bits, the group size of Ĝ is about 525 bits, and
the group size of GT is 1050 bits respectively.

In Lu et al. system, the size of an aggregate signature is about 350 bits and
the size of a public key is about 113,000 bits. Alternately, one may consider to
use the method of Chatterjee and Sarkar [12] to reduce the public key size of the
SAS scheme of Lu et al. However, this method obtains shorter public key size
by sacrificing the security reduction of the scheme. Thus, it should use a larger
size of prime for the order of groups to support the same security level of the
original scheme.

5.2 Performance Measurements

We implemented and measured the performance of our SAS scheme on a note-
book computer with an Intel Core i5-460M 2.53 GHz CPU. The PBC library
on the test machine can compute a pairing operation in 14.0 ms, an exponenti-
ation operation of G and Ĝ in 1.7 ms and 20.3 ms respectively. We assume that
there are 100 users who participate in the sequential aggregate signature system
(indexed 1 to 100).

At first, the setup algorithm takes about 0.159 seconds to generate the public
parameters and the key generation algorithm for each user takes about 0.185 sec-
onds. The aggregate signing algorithm mainly consists of verifying the previous
aggregate signature and adding its own signature into the aggregate signature.
The time to generate an aggregate signature is proportional to the index number
of the user who participates in the aggregate signing algorithm. Furthermore,
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Fig. 1. Performance of our SAS scheme

this algorithm spends nearly 98 percent of its time on verifying the previous
aggregate signature since it should compute 4l + 14 numbers of exponentiation
in Ĝ where l is the number of previous signers.

Optimization: We can improve the performance of the aggregate verification
algorithm by preprocessing the exponentiations in Ĝ. To use the preprocessing
method, users should keep the public keys of the previous users. If the set of users
who participate in the aggregate signature system is not changed or changed a
little (as in the routing and the certification cases), then users can preprocess the
public keys of previous users after running the first aggregate signing algorithm.

6 Conclusion

In this paper, we proposed a sequential aggregate signature scheme with a proof
of security in the standard model and with no relaxation of assumptions (i.e.,
employing neither random oracles nor interactive assumptions). The proposed
scheme is the first of this kind which has short (constant number of group ele-
ments) size public keys and constant number of pairing operations per message
in the verification algorithm. Also, we provided an implementation and perfor-
mance measurements of our scheme.
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Abstract. Trapdoor Decisional Diffie-Hellman (TDDH) groups, intro-
duced by Dent and Galbraith (ANTS 2006), are groups where the DDH
problem is hard, unless one is in possession of a secret trapdoor which en-
ables solving it efficiently. Despite their intuitively appealing properties,
they have found up to now very few cryptographic applications. More-
over, among the two constructions of such groups proposed by Dent and
Galbraith, only a single one based on hidden pairings remains unbroken.
In this paper, we extend the set of trapdoor DDH groups by giving a
construction based on composite residuosity. We also introduce a more
restrictive variant of these groups that we name static trapdoor DDH
groups, where the trapdoor only enables to solve the DDH problem with
respect to a fixed pair (G, Gx) of group elements. We give two construc-
tions for such groups whose security relies respectively on the RSA and
the factoring assumptions. Then, we show that static trapdoor DDH
groups yield elementary constructions of convertible undeniable signa-
ture schemes allowing delegatable verification. Using our constructions of
static trapdoor DDH groups from the RSA or the factoring assumption,
we obtain slightly simpler variants of the undeniable signature schemes
of respectively Gennaro, Rabin, and Krawczyk (J. Cryptology, 2000) and
Galbraith and Mao (CT-RSA 2003). These new schemes are conceptually
more satisfying since they can strictly be viewed as instantiations, in an
adequate group, of the original undeniable signature scheme of Chaum
and van Antwerpen (CRYPTO ’89).

1 Introduction

The CDH and DDH Problems. Given a group G and an element G ∈ G

of large order, the Computational Diffie-Hellman (CDH) problem is to com-
pute Gxy, given Gx and Gy for random integers x, y. The Decisional Diffie-
Hellman (DDH) problem is to distinguish the two distributions (Gx, Gy, Gxy)
and (Gx, Gy, Gz) for random and independent integers x, y, z. Usually, when
considering the status of various groups with respect to the CDH and DDH
problems, one of the following two cases arises: either the CDH and DDH prob-
lems are both presumably hard (this is the case for example for subgroups of
large prime order of Z∗

p, p prime), or the group is a so-called gap group: the
CDH problem is (presumably) hard while the DDH problem is universally easy
(i.e. easy given only the description of the group law, which seems to be the

K. Kurosawa and G. Hanaoka (Eds.): PKC 2013, LNCS 7778, pp. 443–460, 2013.
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minimal publicly available information to obtain useful applications). The lat-
ter case typically arises in certain elliptic curve groups equipped with bilinear
pairings [35,22], and has given rise to many important applications in cryptog-
raphy [32,3,4].

Trapdoor DDH Groups. Trapdoor DDH groups (TDDH groups for short),
introduced by Dent and Galbraith [18], lie somewhere between the above two
cases. These are groups where the DDH problem is hard, except if one possesses
a trapdoor for solving it efficiently. Dent and Galbraith gave two candidates for
such groups based on the concept of hidden pairings, one in elliptic curves over
the ring ZN , where N is hard to factor, and the other one based on Frey’s idea of
disguising an elliptic curve [21]. Subsequently, the second proposal was broken by
Morales [38]. Since the DDH problem is the basis of so many cryptosystems [2],
the concept of trapdoor DDH groups is very attractive. Indeed, it should enable
to control more precisely who is able to solve the DDH problem in a system.
This may help in situations where there is a conflict between security, which
requires a group where the DDH problem is hard, and some interesting additional
functionalities that could be achieved thanks to an algorithm for solving the DDH
problem. One example that comes to mind is threshold ElGamal encryption. In
threshold ElGamal encryption [19], given a secret/public key pair (x, X = Gx),
each decryption server is given a share xi of the secret key, to which is associated
a “partial” public key Gxi . In order to decrypt a ciphertext (R, Y ) = (Gr, MXr),
each server participating to decryption must compute a decryption share Si =
Rxi . Hence, checking whether a decryption share from a server is correct or
not amounts to deciding whether (Xi, R, Si) is a DDH tuple or not. Yet IND-
CPA-security of ElGamal encryption is equivalent to the hardness of the DDH
problem in the underlying group G [46]. Hence, there seems to be no other choice
than using a group where the DDH problem is hard, thereby condemning other
participants to be unable to distinguish correct decryption shares from incorrect
ones. We do not claim that TDDH groups are the best way to solve this problem
(this can be more easily achieved by having each server provide a non-interactive
zero-knowledge proof that his decryption share is correctly computed), and this
example only serves to argue that sometimes, one may want that only some
authorized party be able to solve the DDH problem. Despite these considerations,
TDDH groups have found up to now very few cryptographic applications. In
their original paper, Dent and Galbraith gave only one example, namely an
identification scheme. To the best of our knowledge, the only previous paper
proposing a non-trivial application of TDDH groups (namely the construction of
statistically hiding sets, a variant of zero-knowledge sets) is due to Prabhakaran
and Xue [43].

Contributions of This Work. The contributions of this paper can be sum-
marized as follows. First, at a conceptual level, we refine the definition of TDDH
groups of Dent and Galbraith by requiring that the CDH problem remain hard
even given the trapdoor for solving the DDH problem. This was not made explicit
in the formalization by Dent and Galbraith, yet we think that this is probably
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a key feature for many interesting applications, such as undeniable signatures
for example. We also broaden the set of constructions of trapdoor DDH groups.
We propose a new construction based on composite residuosity in Z∗

N2 (simi-
lar considerations have been made by [6], albeit not in the formalism of TDDH
groups), and identify under which hardness assumptions this group satisfies our
definition. A drawback of this construction is that it lacks what we call per-
fect soundness, meaning that the algorithm solving the DDH problem with the
trapdoor can sometimes err and declare valid a non-DH tuple.

Then, we introduce a variant of trapdoor DDH groups that we name static
trapdoor DDH groups. Their definition is very similar to the one of trapdoor
DDH groups, except that the trapdoor for solving the DDH problem is now
dedicated to a specific pair of group elements (G, Gx), hence the name static.
We then show that such groups can be easily constructed from the RSA and the
factoring problems. This concept abstracts some of the ideas underlying the work
of Hofheinz and Kiltz [31], who showed that the Strong Diffie-Hellman (SDH)
problem (i.e. solving the CDH problem given access to a static DDH oracle)
is hard in the so-called group of signed quadratic residues under the factoring
assumption.

Finally, we describe a very natural application of (static or not) TDDH groups
to convertible undeniable signature schemes. Namely, the construction we pro-
pose is exactly the original undeniable signature scheme proposed by Chaum and
van Antwerpen [12] (for which deciding the validity of a signature is equivalent
to solving the DDH problem), but in a TDDH group rather than simply a group
where the DDH problem is hard. The trapdoor for solving the DDH problem can
then be used to universally convert or delegate verification of signatures. Once
instantiated with our proposals of static TDDH groups based on the RSA or the
factoring problems, we obtain schemes similar to previous RSA-based undeni-
able signature schemes due to Gennaro, Rabin, and Krawczyk [26] and Galbraith
and Mao [23]. However, these new schemes are conceptually simpler and easier
to analyze. Moreover, since they are strict instantiations of the Chaum and van
Antwerpen scheme, their confirmation and disavowal protocols can use classical
proofs of equality or inequality of discrete logarithms, which are simpler and
more efficient than what was proposed previously for the schemes of [26,23].

Open Problems. Two key features of TDDH groups are perfect soundness (the
property that the algorithm for solving the DDH problem with the trapdoor
perfectly distinguishes DH tuples from non-DH tuples), and the possibility to
securely hash into the group (see discussion in Section 2.3). However, none of the
two candidates for TDDH groups (the hidden pairing based proposal of [18], and
our proposal in Section 3.2) fulfills both requirements. We think that providing
a plausible candidate possessing both properties is the key to enable powerful
applications of TDDH groups.1 A related open problem is whether there exists a
(plausible construction of a) TDDH group with publicly known (ideally prime)
order, since they are usually simpler to use in cryptography.
1 Our examples of static TDDH groups do fulfill both requirement, however non-static

TDDH groups would allow more flexibility in cryptographic applications.
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Organization. In Section 2 we give some basic definitions and introduce some
of the tools we will need in the remainder of the paper. In Section 3, we define
trapdoor DDH groups, and give a construction based on composite residuosity.
In Section 4, we introduce static trapdoor DDH groups, and give two construc-
tions based on respectively the RSA and the factoring assumptions. Finally,
in Section 5, we show how to obtain convertible undeniable signature schemes
from static TDDH groups, and discuss their instantiation with the constructions
described previously.

2 Preliminaries

2.1 Notation and Definitions

The set of integers i such that a ≤ i ≤ b will be denoted [a; b]. The security
parameter will be denoted k. A function f of the security parameter is said
negligible if for any c > 0, f(k) ≤ 1/kc for sufficiently large k. When S is a non-
empty finite set, we write s ←$ S to mean that a value is sampled uniformly
at random from S and assigned to s. By z ← AO1,O2,...(x, y, . . .) we denote the
operation of running the (possibly probabilistic) algorithm A on inputs x, y, . . .
with access to oracles O1, O2, . . . (possibly none), and letting z be the output.
PPT will stand for probabilistic polynomial-time. Given two Interactive Turing
Machines P and V , we denote w ← 〈P(x), V(y)〉(z) to mean that the output of
the interaction of P with private input x and V with private input y on common
input z is w.

Given an integer N , the multiplicative group of integers modulo N is denoted
Z∗

N . This group has order φ(N) where φ(·) is the Euler function and exponent
λ(N) where λ(·) is the Carmichael function. We denote JN the subgroup of Z∗

N

of all elements x ∈ Z∗
N with Jacobi symbol

(
x
N

)
= 1. This subgroup has index 2

and order φ(N)/2 in Z∗
N . Moreover it is efficiently recognizable even without the

factorization of N since the Jacobi symbol is efficiently computable given only N .
We also denote QRN the subgroup of quadratic residues of Z∗

N . This subgroup
is widely believed not to be efficiently recognizable when N is composite and
its factorization is unknown (this is the Quadratic Residuosity assumption). We
call a prime number p such that (p − 1)/2 is prime a safe prime.

In all the following, given a group G, we use the notation [G] to denote a
description of the group, i.e. an efficient algorithm for computing the group
operation. This notation always implies that G is efficiently recognizable. We
assume that it is always possible to derive from the description of the group
a negligibly close upper bound on the order |G| of the group (in some cases
the exact order may be efficiently computable), and we use the notation |G|+
to denote this upper bound.2 Given an element G ∈ G, we denote ord(G) its
order, 〈G〉 the group generated by G, DlogG(X) the discrete logarithm in base

2 E.g. when G = Z∗
p for some prime number p, |G|+ = p − 1, while when G = Z∗

N ,
where the factorization of N is secret, |G|+ = N .
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G of an element X ∈ 〈G〉, and CDHG(X, Y ) = GDlogG(X)DlogG(Y ). We also denote
DHG ⊂ 〈G〉3 the set of Diffie-Hellman (DH) tuples with respect to G:

DHG = {(Gx, Gy, Gxy), x, y ∈ [0; ord(G) − 1]} .

A group generator Gen is a PPT algorithm which on input a security parameter
1k, outputs a tuple ([G], G, γ) where [G] is the description of a group G, G ∈ G

is an element of order 2Θ(k), and γ is some arbitrary side information. We say
that the CDH problem is hard for Gen if for any PPT adversary A, the following
probability is negligible:

Pr
[
([G], G, γ) ← Gen(1k), (X, Y ) ←$ 〈G〉2, Z ← A([G], G, γ; X, Y ) :

Z = CDHG(X, Y )
]

.

We say that the DDH problem is hard for Gen if for any PPT adversary A, the
following advantage is negligible:

∣
∣
∣ Pr

[
([G], G, γ) ← Gen(1k), (X, Y ) ←$ 〈G〉2, Z ← CDHG(X, Y ) :

1 ← A([G], G, γ; X, Y, Z)
]

− Pr
[
([G], G, γ) ← Gen(1k), (X, Y, Z) ←$ 〈G〉3 :

1 ← A([G], G, γ; X, Y, Z)
]∣∣
∣ .

2.2 Proofs of Equality and Inequality of Discrete Logarithms

Protocols for proving, given (G, X, Y, Z) ∈ G, the equality of discrete logarithms
(EDL) DlogG(X) = DlogY (Z) or the inequality of discrete logarithms (IDL)
constitute (among many other applications) the heart of respectively the con-
firmation and disavowal protocols for many undeniable signature schemes, and
have therefore been the subject of many works. They vary depending on the exact
kind of zero-knowledge property one wants to achieve. The basic honest-verifier
zero-knowledge (HVZK) proof of EDL is due to Chaum and Pedersen [11], while
the simplest HVZK proof of IDL is due to Camenish and Shoup [9]. These pro-
tocols are usually described for ambient groups G with publicly known prime
order, in which case recognizing 〈G〉 is trivial, so that these protocols are actu-
ally proofs that a tuple (X, Y, Z) ∈ G3 is in DHG or not. They can be adapted
to the case where the order of the ambient group is composite and secret using
well-known techniques [27,28], with the caveat that if 〈G〉 is not efficiently rec-
ognizable, the verifier must be promised that X, Y, Z ∈ 〈G〉 since these proofs
do not in general ensure membership of X, Y, Z in 〈G〉 with negligible sound-
ness.3 Stated differently, if G′ is a cyclic and efficiently recognizable subgroup
of G (e.g. G = Z∗

N and G′ = JN when JN is cyclic), these protocols are ac-
tually proofs that a tuple (X, Y, Z) ∈ G′ is a DH tuple with respect to G or
not, assuming that the verifier is guaranteed that G is indeed a generator of
3 The soundness of the Schnorr protocol [44], seen as a proof of membership in 〈G〉,

is 1/�, where � is the smallest prime factor of the order of the ambient group G.
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G′ (which may not be efficiently checkable). The HVZK protocols for EDL and
IDL are described in the full version of the paper [45]. They can be strengthen
to achieve various notions of zero-knowledge (against cheating verifiers) using
known techniques [29,14,16,25] that we do not discuss in this paper.

The HVZK proofs of EDL and IDL can be made non-interactive in the Ran-
dom Oracle Model using the Fiat-Shamir transformation [20], i.e. by having the
prover compute the challenge (first message from the verifier) by itself by ap-
plying a hash function to the commitment (first message from the prover). Note
that these proofs then become universally convincing.

2.3 Hashing into Groups

For many applications (and in particular for undeniable signatures based on the
Chaum and van Antwerpen scheme [12]), it is required to securely hash into
the subgroup 〈G〉 specified by the group generator Gen. We discuss this in more
details in the full version of the paper [45].

3 Trapdoor DDH Groups

We start by defining trapdoor DDH groups. Our definition is a refinement of
the one of Dent and Galbraith [18] in that we explicitly require that the CDH
problem remain hard even given the trapdoor τ enabling to solve the DDH
problem.

3.1 Definition

Definition 1. A trapdoor DDH group T DDH is a pair of algorithms
(Gen, Solve) with the following properties. The trapdoor DDH group generator
algorithm Gen is a PPT algorithm which takes as input a security parameter 1k

and outputs a tuple ([G], G, τ) where [G] is the description of a group G, G ∈ G

is a group element of order 2Θ(k), and τ is a trapdoor information, such that:

i) hardness of DDH without the trapdoor: the DDH problem is hard for the
group generator Gen′ which outputs only ([G], G);

ii) hardness of CDH with the trapdoor: the CDH problem is hard for Gen.

Solve is a deterministic polynomial-time algorithm which takes as input
([G], G, τ) and a tuple (X, Y, Z) ∈ G3, either accepts (outputs 1) or rejects (out-
puts 0), and satisfies the following:

iii) completeness: for all ([G], G, τ) possibly output by Gen, Solve always accepts
on input a DH tuple (X, Y, Z) ∈ DHG;

iv) soundness: for any PPT adversary A, the following probability is negligible:

Pr
[
([G], G, τ) ← Gen(1k), (X, Y ) ←$ 〈G〉2, Z ← A([G], G; X, Y ) :

1 ← Solve([G], G, τ ; X, Y, Z) ∧ (X, Y, Z) /∈ DHG

]
.
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We say that T DDH has perfect soundness when Solve always rejects on input
a non-DH tuple (X, Y, Z), so that the above probability is zero.

Note that the soundness condition implies in particular that Solve, on input a
uniformly random tuple (X, Y, Z) ∈ G3, accepts only with negligible probability.
We silently assumed in the above definition that Solve is always run with a
correctly generated trapdoor. This is safe for all examples presented below since
there is an efficient way, given ([G], G, τ), to check whether the trapdoor is
correct. We assume that Solve outputs a special symbol ⊥ when this is not the
case. We recall the original proposal of a TDDH group based on hidden pairings
by Dent and Galbraith [18] in the full version of the paper [45].

3.2 A TDDH Group Based on Composite Residuosity

In this section, we describe a TDDH group T DDHBCP based on the group of
quadratic residues modulo N2, where N is an RSA modulus. This group was
first considered by Bresson, Catalano, and Pointcheval [6], who noticed that
when the factorization of N is publicly available, this constitutes a gap group,
i.e. a group where the CDH problem is hard and the DDH problem is easy. Here,
we show that it constitutes in fact a TDDH group when the factorization of N
is kept secret and used as the trapdoor.

We first recall some basic facts about the group of quadratic residues modulo
N2, where N is an RSA modulus. Let p, q be two safe primes where p = 2p′ + 1
and q = 2q′ + 1 (p′ and q′ primes), and N = pq. The group QRN2 of quadratic
residues modulo N2 is a cyclic group of order m = Np′q′. We define the notion
of partial discrete logarithm.

Definition 2 (Partial Discrete Logarithm). Given a generator G of QRN2 ,
the partial discrete logarithm of a group element X ∈ QRN2 is defined as
PDlogG(X) = DlogG(X) mod N .

Computing the partial discrete logarithm is believed to be hard without the
factorization of N .4 However, it can be efficiently computed given the prime
factors of N (or simply λ(N)) as follows [42]:

1. input: N , λ(N), generator G of QRN2 and X ∈ QRN2 ; output: PDlogG(X)
2. for integers u ∈ [0; N2 − 1] such that u = 1 mod N , define the function

(having integer values) L(u) = (u − 1)/N
3. return

L(Xλ(N) mod N2)
L(Gλ(N) mod N2)

mod N .

We now formally describe the TDDH group T DDHBCP. On input the security
parameter 1k, GenBCP selects two k-bit safe primes p = 2p′ + 1 and q = 2q′ + 1,
4 As noted by Paillier [42] and in [6], the Partial Discrete Logarithm problem can be

shown equivalent to the Composite Residuosity Class problem in the particular case
considered here.
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sets N = pq, selects a random generator G of QRN2 , and outputs ([Z∗
N2 ], G, τ =

(p, q)). The SolveBCP algorithm works as follows: on input a tuple (X, Y, Z) ∈
(Z∗

N2 )3 (as well as the trapdoor τ = (p, q)), it checks whether X, Y, Z ∈ QRN2 ,
computes x′ = PDlogG(X), y′ = PDlogG(Y ), and z′ = PDlogG(Z) as described
above, and checks whether z′ = x′y′ mod N . It accepts if this holds and rejects
otherwise. The security of this TDDH group relies on a “partial” version of the
CDH problem, defined as follows.

Definition 3 (Partial CDH Problem). We say that the Partial CDH prob-
lem is hard if for any PPT algorithm A, the following probability is negligible:

Pr[([Z∗
N2 ], G, τ) ← GenBCP(1k), (X, Y ) ←$ 〈G〉2, Z ← A([Z∗

N2 ], G; X, Y ) :
DlogG(Z) ≡ DlogG(X)DlogG(Y ) mod N ] .

Theorem 1. Assuming that the DDH problem (without the factorization of N),
the CDH problem (with the factorization of N), and the Partial CDH problem
(without the factorization of N) are hard for QRN2 , T DDHBCP is a trapdoor
DDH group.

Proof. We prove that properties i) to iv) of Definition 1 are satisfied. Proper-
ties i) and ii) follow directly from the assumptions that respectively the DDH
(without the factorization of N) and the CDH (with the factorization of N)
problems are hard in QRN2 . Property iii) is straightforward to verify by defini-
tion of SolveBCP. Finally, property iv) follows from the hardness of the Partial
CDH problem. ��

Note that this TDDH group does not have perfect soundness. In particular, on
input a random tuple (X, Y, Z) ∈ (QRN2 )3, there is a negligible probability that
SolveBCP accepts and yet (X, Y, Z) /∈ DHG (this probability can easily be seen
to be O(1/N) [6]). Moreover, given the trapdoor τ = (p, q), and two random
elements (X, Y ) ∈ (QRN2 )2, it is easy to generate Z such that (X, Y, Z) /∈ DHG

and yet SolveBCP accepts on input (X, Y, Z): simply compute x′ = PDlogG(X)
and y′ = PDlogG(Y ) and output Gx′y′ mod N . Alternatively, given two random
elements (X, Y ) ∈ (QRN2)2 and Z = CDHG(X, Y ), it is easy to compute Z ′ = Z
such that SolveBCP accepts on input (X, Y, Z ′): simply compute Z ′ = ZUN

for some random U ∈ QRN2 . This may be of concern in some applications,
especially for undeniable signature schemes where Solve is typically used to
check the validity of signatures (see Section 5).5

4 Static Trapdoor DDH Groups

In this section, we define and construct static trapdoor DDH groups. They are
similar to trapdoor DDH groups as defined in Section 3, except that the trapdoor
only allows to solve the DDH problem with respect to a specific pair of group
elements (G, Gx).
5 We note however that imperfect soundness is not a problem for the identification

scheme outlined in [18].
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4.1 Definition

Definition 4. A static trapdoor DDH group ST DDH is a tuple of algorithms
(Gen, Samp, Solve) with the following properties. The static trapdoor DDH group
generator algorithm Gen is a PPT algorithm which takes as input a security
parameter 1k and outputs a tuple ([G], G, τ) where [G] is the description of a
group G, G ∈ G is a group element of order 2Θ(k), and τ is a (master) trapdoor
information, such that:

i) hardness of DDH without the trapdoor: the DDH problem is hard for the
group generator Gen′ which outputs only ([G], G).

Samp is a PPT algorithm which on input ([G], G, τ), samples uniformly at ran-
dom a group element X ←$ 〈G〉, and outputs6 (X, x, τx) where x = DlogG(X)
and τx is a (static) trapdoor information, such that:

ii) hardness of CDH with the static trapdoor: for any PPT algorithm A, the
following probability is negligible:

Pr
[
([G], G, τ) ← Gen(1k), (X, x, τx) ← Samp([G], G, τ), Y ←$ 〈G〉,

Z ← A([G], G; X, Y ; τx) : Z = CDHG(X, Y )
]

.

Solve is a deterministic polynomial-time algorithm which takes as input ([G], G),
a tuple (X, Y, Z) ∈ 〈G〉 ×G2, and the trapdoor τx for X, either accepts (outputs
1) or rejects (outputs 0), and satisfies the following:

iii) completeness: for all ([G], G, τ) and (X, x, τx) possibly output by Gen and
Samp, and any (Y, Z) ∈ G2, Solve always accepts when (X, Y, Z) ∈ DHG;

iv) soundness: for any PPT adversary A, the following probability is negligible:

Pr
[
([G], G, τ) ← Gen(1k), (X, x, τx) ← Samp([G], G, τ), Y ←$ 〈G〉,

Z ← A([G], G; X, Y ) : 1 ← Solve([G], G; X, Y, Z; τx) ∧ (X, Y, Z) /∈ DHG

]

We say that ST DDH has perfect soundness when Solve always rejects on input
a non-DH tuple (X, Y, Z), so that the above probability is zero.

Again, we silently assumed that Solve is always run with the correct trapdoor
τx because in all examples below this can be checked efficiently. In the remain-
der of this section, we propose two constructions of static TDDH groups based
respectively on the RSA problem and the factoring problem.

4.2 A Construction Based on the RSA Problem

We first show how a static TDDH group can be obtained from the RSA problem.
Let N = pq be an RSA modulus. When (p − 1)/2 and (q − 1)/2 are coprime,
6 We stress that in typical applications, x is retained by an authorized user and is

never made available to the adversary.
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then the subgroup JN of Z∗
N is cyclic. Moreover, when p and q are distinct safe

primes, the DDH problem is widely believed to be hard in JN [2]. We define the
static TDDH group ST DDHRSA as follows. On input 1k, the group generator
GenRSA selects two k-bit safe primes p = 2p′ + 1 and q = 2q′ + 1, defines N = pq
and m = (p − 1)(q − 1)/2 = 2p′q′, selects a generator G of JN , and outputs
([JN ], G, τ = m). The SampRSA algorithm, on input ([JN ], G, m), draws a random
x ←$ Z∗

m, computes X = Gx, τx = 1/x mod m, and outputs (X, x, τx) (note
that we slightly deviate from Definition 4 here since X is not uniformly random
in 〈G〉, but the statistical distance is negligible). Algorithm SolveRSA, on input
([JN ], G; X, Y, Z; τx), first checks that X, Y, Z ∈ JN , that the trapdoor is correct
by verifying whether Xτx = G (it outputs ⊥ if this does not hold), and outputs
1 iff Zτx = Y .

Definition 5. We say that the RSA problem is hard for JN if for any PPT
adversary A, the following probability is negligible:

Pr
[
([JN ], G, m) ← GenRSA(1k), e ←$ Z∗

m, Y ←$ JN , Z ← A([JN ], Y, e) : Ze = Y
]

Theorem 2. Assuming that the DDH problem and the RSA problem are hard
in JN (for N the product of two distinct safe primes), ST DDHRSA is a static
TDDH group with perfect soundness.

Proof. We show that properties i) to iv) of Definition 4 hold. Property i) holds
by assumption that DDH is hard for JN . We now prove property ii). Assume
that there is an adversary A breaking property ii). We construct a reduction
R that solves the RSA problem as follows. The reduction is given the product
N = pq of two safe primes, a random e coprime with m = (p−1)(q −1)/2, and a
random challenge Y ∈ JN of which it must compute the e-th root. The reduction
draws a random X ←$ JN . With overwhelming probability, X is a generator of
JN since p and q are safe primes. The reduction defines G = Xe, and runs A
on input ([JN ], G; X, Y ; e). The statistical distance between inputs (G, X, Y ) in
the simulated experiment and in the real CDH experiment defining property ii)
is negligible (the difference coming from cases where X does not generate JN).
Moreover, e is the correct trapdoor for X since G = Xe implies e = 1/x mod m,
where x = DlogG(X). Hence, A returns the correct value Z = CDHG(X, Y ) with
probability negligibly close to its advantage, in which case Z = Y x, which implies
Ze = Y , so that Z is indeed the e-th root of Y . The running time of R is similar
to the one of A and its success probability is negligibly close to the one of A.
Property iii) is clear, and ST DDHRSA has perfect soundness since by definition
of SampRSA, x is coprime to m so that Zτx = Y ⇔ Zxτx = Y x ⇔ Z = Y x. ��

4.3 A Construction Based on Signed Quadratic Residues

In this section, we describe a static TDDH group based on signed quadratic
residues, whose usefulness for cryptography was first noticed by Hofheinz and
Kiltz [31]. This can be seen as a variant of ST DDHRSA described above, whose
security relies on the factoring problem rather than the RSA problem. We first
give some definitions.
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Definition 6. Let N be an odd positive integer such that −1 ∈ JN . We denote
J+

N the quotient group JN /{−1, 1}. We identify J+
N with the set JN ∩[1; (N −1)/2]

equipped with the group operation ◦ defined as a ◦ b = |ab mod N |, where |x mod
N | is defined as the absolute value of x mod N when representing elements of
ZN as integers in [−(N − 1)/2; (N − 1)/2].

To be completely rigorous, the mapping which to an element {−x, x} ∈ J+
N

associates |x| is a group isomorphism between J+
N and (JN ∩ [1, (N − 1)/2], ◦).

Let N = pq be a Blum integer (i.e. p and q are two primes such that p ≡ q ≡
3 mod 4). Then −1 ∈ JN so that we can define J+

N , which in this particular case
is named the group of signed quadratic residues and denoted QR+

N .7 Its order is
φ(N)/4 = (p−1)(q−1)/4. The most interesting points to notice about this group
is that it is efficiently recognizable (since it is isomorphic to JN ∩ [1; (N − 1)/2]),
and that the squaring operation is one-to-one so that any x ∈ QR+

N has a unique
square root in QR+

N (more precisely, for any x ∈ QR+
N , either x or −x mod N

is a quadratic residue mod N , and exactly one corresponding square root is in
QR+

N ). Moreover, when (p − 1)/2 and (q − 1)/2 are coprime, then JN is cyclic
and so is QR+

N . See [31] for proofs of these basic facts.
In the following, we restrict ourselves for simplicity to the special case where N

is the product of two distinct safe primes. This implies that N is a Blum integer,
and that (p − 1)/2 and (q − 1)/2 are coprime so that QR+

N is cyclic. Moreover, a
uniformly random element of QR+

N is a generator with overwhelming probability
since the number of generators of QR+

N is φ((p − 1)(q − 1)/4) = (p − 3)(q − 3)/4.
Let G be a generator of QR+

N , and denote m = |QR+
N | = (p − 1)(q − 1)/4.

Let x ∈ [0; m − 1] and X = Gx. To build a trapdoor enabling to solve the
static DDH problem for (G, X), we use the following idea: the trapdoor will
be t = 2x ± m (computed over Z), i.e. the value 2x masked with the group
order m. Since computing the group order m is as hard as factoring N , t does
not reveal x. Now, given a group element Y = Gy ∈ G, t enables computing
Y t = G2xy = CDHG(X, Y )2. This enables testing whether an element Z is a
correct solution to the static CDH problem (in other words to solve the static
DDH problem) by simply checking whether Z2 = Y t. However, as we will see,
the static CDH problem remains as hard as computing square roots in QR+

N ,
which in turn is equivalent to factoring N . For what follows, we will also make
the assumption that the DDH problem is hard in QR+

N . The DDH problem in
QR+

N can easily shown to be equivalent to the DDH problem in JN , which as
already pointed out is widely believed to be hard when N is the product of two
distinct safe primes [2].

We now formally define the static TDDH group ST DDHSQR. For ease of ex-
position, given an odd integer m, we define the function ξ from [0; m − 1] to
{1, 3, 5, . . . , 2m − 3, 2m − 1} as:

{
ξ(x) = 2x + m if x ∈ [0; (m − 1)/2]
ξ(x) = 2x − m if x ∈ [(m + 1)/2; m − 1] .

7 We warn that QR+
N is not equal to QRN /{−1, 1} for the good reason that −1 /∈ QRN

when N is a Blum integer.
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ξ(x) is the unique odd integer t ∈ [1; 2m − 1] such that t = 2x ± m.
On input the security parameter 1k, GenSQR selects two k-bit safe primes p =

2p′+1 and q = 2q′+1, sets N = pq, m = p′q′, selects a generator G of the group of
signed quadratic residues QR+

N , and outputs ([QR+
N ], G, m). Algorithm SampSQR,

on input ([QR+
N ], G, m), selects a random x ∈ [0; m−1], sets X = Gx, τx = ξ(x),

and outputs (X, x, τx). The algorithm SolveSQR, on input ([QR+
N ], G; X, Y, Z; τx),

first checks that the trapdoor is correct by verifying whether Gτx = X2 (it
outputs ⊥ if this does not hold), and outputs 1 iff Y τx = Z2. We now formally
prove that this constitutes a static TDDH group under appropriate assumptions
(the proof of property ii) is reminiscent of the one of Theorem 3.2 in [31]).

Theorem 3. Under the factoring assumption (for the product of safe primes)
and the DDH assumption for QR+

N , ST DDHSQR is a static TDDH group with
perfect soundness.

Proof. Deferred to the full version of the paper [45] for reasons of space. ��

4.4 Relation to the Strong Diffie-Hellman Problem

We note that in a static TDDH group with perfect soundness, the Strong Diffie-
Hellman (SDH) problem [1] is always hard.8 The SDH problem is to compute
CDHG(X, Y ) given X, Y ∈ 〈G〉, and being granted access to a static DDH oracle
which on input (Y ′, Z ′) ∈ G2 outputs 1 iff (X, Y ′, Z ′) ∈ DHG. Clearly, an
adversary A breaking the SDH problem can be turned into an adversary B
breaking property ii) of the static TDDH group (B can answer queries of A to
the static DDH oracle thanks to the trapdoor τx it is given as input). Applying
this observation to ST DDHSQR, we recover Theorem 3.2 of [31] which states that
SDH is hard in QR+

N under the factoring assumption. Hence, the concept of static
TDDH group allows to cast the result of [31] in a more general framework. In
particular, Theorem 2 directly implies that under the RSA assumption, the SDH
problem is hard in JN , which complements the result of [31].9 As an immediate
consequence of the results of [1,15], we obtain that Hybrid ElGamal encryption
over JN is IND-CCA2-secure in the ROM under the RSA assumption.

5 Convertible Undeniable Signatures

5.1 Background on Undeniable Signatures

In this section, we show how TDDH groups can be used to build simple and
natural undeniable signature schemes with attractive properties such as univer-
sal convertibility and delegation. Undeniable signatures, introduced by Chaum
8 More precisely, the SDH problem is hard for the group generator which only outputs

([G], G).
9 Note that, by inspection of the proof of property ii), this result holds in fact for all

RSA moduli N such that JN is cyclic, not only the product of safe primes.
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and van Antwerpen [12], are signatures that cannot be universally verified: con-
firmation (or disavowal) of a signature requires the cooperation of the signer
(however a signer cannot deny the validity of a correct signature, hence the
name undeniable). Later, Boyar et al. [5] proposed the refined notion of convert-
ible undeniable signature (CUS) scheme, where a mechanism allows the signer to
selectively or globally transform undeniable signatures into self-authenticating
signatures. The particular scheme proposed in [5] was later broken in [36]. Sub-
sequently, schemes based on usual signatures such as ElGamal [17], Schnorr [37],
and RSA [26,24,23] were proposed.

We first recall the basic Chaum and van Antwerpen undeniable signature
scheme [12] (in its Full Domain Hash version [41,39]). Let G be a group, G′ be
a cyclic and efficiently recognizable subgroup of G, G be a (certified) generator
of G′, and H : {0, 1}∗ → G′ be a hash function (modeled as a random oracle
in security proofs). Assume the DDH problem is hard for G′. The secret and
public keys of a user are x ∈ Z|G′|+ and X = Gx respectively. To sign a message
μ ∈ {0, 1}∗, the signer computes M = H(μ) ∈ G′, and S = Mx. The signature is
S. A signature S on μ is valid iff (X, H(μ), S) is a valid DH tuple (with respect
to G). Since we assumed that the DDH problem is hard, checking the validity
of a signature cannot be done without knowledge of x.10 Hence, the signer must
cooperate with the verifier in order to confirm or disavow a purported signature.
The confirmation protocol is a proof that (X, H(μ), S) ∈ DHG (i.e. a proof
of EDL since G is guaranteed to be a generator of G′), whereas the disavowal
protocol is a proof that (X, H(μ), S) /∈ DHG (i.e. a proof of IDL). The security
of this scheme (depending on which type of EDL and IDL proofs are used) has
been studied in [41,34,39,33].

The idea to allow efficient universal conversion of signatures is simply to use
a Chaum and van Antwerpen undeniable signature with a (static or not) TDDH
group, and to use the trapdoor to delegate the ability to verify undeniable sig-
natures and to universally convert them. In the following, we describe the con-
struction using static TDDH groups since the instantiations using constructions
of Sections 4.2 and 4.3 are particularly interesting.

5.2 Construction of a CUS scheme from a Static TDDH Group

Let ST DDH = (Gen, Samp, Solve) be a static TDDH group with perfect sound-
ness. For this part, we assume that Gen outputs a tuple ([G], G, τ) such that G

is cyclic and efficiently recognizable, and G is a generator of G. This assumption
is satisfied by ST DDHRSA and ST DDHSQR. Note that there is not necessarily
an efficient way to check that G is indeed a generator; we come back on this
issue later. We construct a CUS scheme CUS as follows (see the full version of
the paper [45] for a more formal description). To construct his public/secret key
pair, the signer runs Gen(1k) to obtain ([G], G, τ) and then Samp([G], G, τ) to
10 When the DDH problem is easy in G′, signatures can be universally verified. For

example, using bilinear groups (where a pairing can be used to solve the DDH
problem), one obtains the Boneh-Lynn-Shacham signature scheme [4].
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obtain (X, x, τx). It also selects a hash function H : {0, 1}∗ → G. The public
key of the signer is pk = ([G], G, X, H) and its secret key is sk = (x, τx). To
sign a message μ ∈ {0, 1}∗, the signer computes M = H(μ), and S = Mx. The
signature is S. The signer can confirm or disavow a signature by running a proof
of EDL or IDL respectively with the verifier. To individually convert a signature,
the signer produces a NIZK proof of EDL (using an independent hash function
HFS to apply the Fiat-Shamir transform). To universally convert signatures, the
signer releases τx as universal receipt. A signature S for message μ can then be
verified by running Solve([G], G; X, H(μ), S; τx).

Informally, the two main security properties of a CUS scheme (beside sound-
ness of the confirmation and disavowal protocols) are (see the full version of the
paper [45] for details):

– security against existential forgery under chosen-message attacks (EF-CMA-
security): any PPT attacker, given the receipt for universal verification τx,
and with access to a signing oracle, can forge a new signature with only
negligible probability (note that access to confirmation or disavowal oracles
is unnecessary here since the adversary is given the universal receipt τx for
checking signatures);

– invisibility under chosen-message attacks (INV-CMA-security): any PPT ad-
versary can distinguish a valid signature for a message of its choice from a
string sampled uniformly at random from the signature space with only neg-
ligible probability. The adversary is granted access to the signing oracle, the
confirmation and disavowal protocols, and the individual signature conver-
sion oracle (with the restriction that they cannot be queried on the challenge
message).

We stress that formalizing the invisibility notion is quite subtle (many variations
appear in the literature [13,17,8,23]), and that the exact property that is achieved
is dependent on the nature of the confirmation and disavowal protocols [39,33].
Theorem 4. When instantiated with a static TDDH group with perfect sound-
ness, and when the confirmation and disavowal protocols are zero-knowledge, the
CUS scheme described above is EF-CMA-secure and INV-CMA-secure in the
ROM (for H and HFS).
Proof. Deferred to the full version of the paper [45] for reasons of space. ��

Delegation. The ability to verify (confirm or disavow) and convert (either
individually or universally) signatures can easily be delegated to a semi-trusted
party by simply giving him the trapdoor τx. Since the CDH problem remains
hard even with the trapdoor, the third party cannot forge signatures on behalf
of the signer. It can however prove in zero-knowledge whether a signature is
valid or invalid (since it knows the witness τx for this). We avoid using the term
designated confirmer signatures [10] here since this usually refers to schemes
(mostly following the “encryption of a signature” paradigm [40,8]) where the
signer can create designated confirmer undeniable signatures without having
beforehand to transmit some secret information to the confirmer (in our case
the trapdoor τx).
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Instantiation with ST DDHRSA and ST DDHSQR. The CUS scheme de-
scribed above can be instantiated with the two static TDDH groups described
in Sections 4.2 and 4.3. The schemes obtained this way are similar respectively to
the scheme of Gennaro, Rabin, and Krawczyk [26] and Galbraith and Mao [23],
with important distinctions though. Both schemes work over Z∗

N , but without
explicitly restricting in which subgroup. As a consequence, they cannot be ex-
actly seen as an instantiation of the Chaum and van Antwerpen scheme, and
specific confirmation and disavowal protocols were therefore proposed for them
(see also [24]). On the contrary, our schemes are strict instantiations of the
Chaum and van Antwerpen scheme, and in particular the confirmation and dis-
avowal protocols can use zero-knowledge proofs of EDL and IDL derived from
the HVZK protocols described in the full version of the paper [45]. This is con-
ceptually simpler and more efficient (especially for the disavowal protocol).

Certifying Signers Public Keys. Correct key generation is of primary im-
portance in factoring-based undeniable signatures, since a cheating signer may
generate its secret/public key in a different way than the one expected by veri-
fiers, which may enable him to confirm invalid signatures or disavow valid ones
(see [24]). Hence, the signer, when registering his public key, must prove to the
certification authority (CA) that it was generated according to the specification
of the static TDDH group generator. We now discuss this issue with respect to
ST DDHRSA and ST DDHSQR. For both schemes, the signer must first prove to the
CA that its modulus N is the product of two safe primes. A zero-knowledge pro-
tocol for this was proposed by Camenish and Michels [7]. Though expensive, this
protocol must be run only once at key registration time. Then, the signer must
prove that G is indeed a generator of either JN or QR+

N . The situation is slightly
different in the two cases. Denote N = pq with p = 2p′ +1 and q = 2q′ +1. When
p and q are safe primes, then an integer g ∈ Z∗

N such that g2 = 1 mod N and
gcd(g2 − 1, N) = 1 necessarily has order in {p′q′, 2p′q′} [26, Lemma 1]. Hence,
an ad-hoc solution for ensuring that the element G provided by the signer is
a generator of the intended group is as follows. Restrict the scheme to moduli
N such that N ≡ 1 mod 8 and fix g0 = 2 so that g0 ∈ JN . Since an element
g ∈ QR+

N generates QR+
N exactly when g has multiplicative order modulo N

in {p′q′, 2p′q′}, we see by the previous remark that g0 is always a generator of
QR+

N . Hence, when using ST DDHSQR, we can impose to the signer to always use
G = g0. Things are a bit more complicated when using ST DDHRSA, since for an
element g ∈ Z∗

N with order in {p′q′, 2p′q′} to generate JN , one has to check that
it is a quadratic non-residue. What we propose for this is that the signer proves
in zero-knowledge to the CA whether g0 ∈ QRN or not [30]. If it is in QRN ,
then the signer tries with g0 + 1, g0 + 2, etc. until a quadratic non-residue in JN

is found. The signer then has to use G = g0 + i for the smallest i ≥ 0 such that
g0 + i ∈ JN \ QRN .

As a matter of fact, there seems to be no reason to instantiate the CUS
scheme with ST DDHRSA rather than ST DDHSQR since both schemes are almost
identical, except that the key registration step is simpler for ST DDHSQR.
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Abstract. We introduce the notion of rate-limited secure function eval-
uation (RL-SFE). Loosely speaking, in an RL-SFE protocol participants
can monitor and limit the number of distinct inputs (i.e., rate) used by
their counterparts in multiple executions of an SFE, in a private and
verifiable manner. The need for RL-SFE naturally arises in a variety of
scenarios: e.g., it enables service providers to “meter” their customers’
usage without compromising their privacy, or can be used to prevent
oracle attacks against SFE constructions.

We consider three variants of RL-SFE providing different levels of se-
curity. As a stepping stone, we also formalize the notion of commit-first
SFE (cf-SFE) wherein parties are committed to their inputs before each
SFE execution. We provide compilers for transforming any cf-SFE proto-
col into each of the three RL-SFE variants. Our compilers are accompa-
nied with simulation-based proofs of security in the standard model and
show a clear tradeoff between the level of security offered and the over-
head required. Moreover, motivated by the fact that in many client-server
applications clients do not keep state, we also describe a general approach
for transforming the resulting RL-SFE protocols into stateless ones.

As a case study, we take a closer look at the oblivious polynomial
evaluation (OPE) protocol of Hazay and Lindell, show that it is commit-
first and instantiate efficient rate-limited variants of it.

Keywords: secure function evaluation, foundations, secure metering,
oracle attacks, oblivious polynomial evaluation.

1 Introduction

Secure function evaluation (SFE) allows a set of mutually distrustful parties
to securely compute a function f of their private inputs. Roughly speaking,
SFE protocols guarantee that the function is computed correctly and that the
parties will not learn any information from the interaction other than their
output and what is inherently leaked from it. Seminal results in SFE show that
one can securely compute any functionality [29,30,15,8,2]. There has been a
large number of follow-up work improving the security, strengthening adversarial
models, and studying efficiency. Recent work on practical SFE has also led to
real-world deployments [7,6], and the design and implementation of several SFE
frameworks [24,5,12,20,21].

K. Kurosawa and G. Hanaoka (Eds.): PKC 2013, LNCS 7778, pp. 461–478, 2013.
c© International Association for Cryptologic Research 2013
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In practice, most applications of SFE considered in the literature need to ac-
commodatemultiple executions of a protocol.1 Consider a client that searches for
multiple patterns in a large text via a secure pattern matching protocol [17,19],
searches several keywords in a private database via an oblivious keyword search
[27,13], or an individual who needs to run a software diagnostic program, or
an intrusion detection system (IDS) to analyze data via an oblivious branching
program (OBP) or an automaton evaluation (OAE) protocol [22,28].

Invoking an SFE protocol multiple times raises important practical issues that
are outside the scope of standard SFE, and hence are not addressed by the ex-
isting solutions. We point out two such issues and introduce rate-limited SFE as
a means to address them. The reason for the choice of name is that rate-limiting
is commonly used in network and web applications to refer to restrictions put on
clients’ usage (on a per user, or a per IP address basis). In this work we consider
similar restrictions on a user’s inputs to services that maybe implemented using
SFE.

Secure Metering of SFE. Service providers tend to charge their clients ac-
cording to their level of usage: a location-based service may wish to charge its
clients based on the number of locations they use the service from; a database
owner based on the number of distinct search queries; an IDS provider based on
the number of suspicious files sent for vulnerability analysis. Service providers
would be more willing to adopt SFE protocols if it is possible to efficiently enforce
such a metering mechanism. The challenge is to do so without compromising the
client’s privacy, or allowing the server or the client to cheat the metering system.

Oracle attacks. Consider multiple executions of a two-party SFE protocol
(such as those mentioned above), where the first party’s input stays the same
in different executions but the second party’s input varies. A malicious second
party who “adaptively” uses different inputs in each execution, can gradually
learn significant information about the first party’s input, and, in the worst
case, fully recover it. For instance, consider an oblivious polynomial evaluation
(OPE) protocol (e.g., used in oblivious keyword search) wherein the server holds
a polynomial p while the client holds a private point x and wants to learn p(x),
but cannot learn more than it. Evaluating the polynomial p on sufficiently many
points allows a malicious client to interpolate and recover p. A similar attack can
be applied to OBP and OAE protocols to learn the private branching program
or automaton which may embed propriety information. Learning attacks of this
sort are well-understood and have been previously identified as important threats
in the context of SFE; they are sometimes referred to as oracle attacks since the
attacker has black-box access to input/output values from multiple executions
(e.g., see the discussion in [1]).

A näıve solution to the problems discussed above is to limit the total number
of executions of an SFE protocol, ignoring the actual input values. However,
this approach does not provide a satisfactory solution in most scenarios. For

1 Depending on the application, a subset of the participants may use the same input
in different executions.
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example, in case of secure metering, fixing an a priori upper bound on the total
number of executions would mean charging legitimate clients multiple times
for using the service with the same input; a disadvantage for clients who may
need to use the same input from multiple devices, or reproduce a result due to
communication errors, device upgrades, or perhaps to prove the validity of the
outcome to a third-party by re-running the protocol. Similarly, in case of oracle
attacks, clients need not be disallowed to use the same input multiple times
since querying the same input many times does not yield new information to an
attacker.

Rate-limited SFE. A more accurate (and challenging) solution is to limit
and/or monitor the number of distinct inputs used by an SFE participant in
multiple executions. Obviously, this should be done in a secure and efficient
manner, i.e., a party should not be able to exceed an agreed-upon limit, and its
counterpart should not learn any additional information about his private inputs,
or impose a lower limit than the one they agreed on.2 We refer to the number
of distinct inputs used by a participant as his rate, and call a SFE protocol that
monitors/limits this number, a rate-limited SFE.

Of course, achieving RL-SFE is more costly than the näıve solution discussed
above. However, at a minimum we require the proposed solution to avoid stor-
ing and/or processing the complete transcripts of all previous executions. (We
discuss the exact overhead of our solutions in detail below.)

We note that the complementary question of what functions are unsafe for
use in SFE (leak too much information) has also been studied, e.g., by combining
SFE and differential privacy [3,26], or belief tracking techniques [25]. These works
are orthogonal to ours, and can potentially be used in conjunction with rate-
limited SFE as an enforcement mechanism. For instance, the former works can
be invoked to negotiate on a function f with a measurable “safeness” from which
the rate for each user can be derived. Subsequently, the abidance of this rate can
be enforced through our rate-limited SFE.

Our Contribution. Motivated by the discussion above, we initiate the study
of rate-limited SFE. For simplicity, in this paper we focus on the two-party
case, but point out that the definitions and some of the constructions are easily
extendible to the multiparty setting. Our main contributions are as follows.

Definitions. We introduce three definitions for rate-limited secure function
evaluation: (i) rate-hiding, (ii) rate-revealing and (iii) pattern-revealing. All our
definitions are in the real-world/ideal-world simulation paradigm and are con-
cerned with multiple sequential executions of an SFE protocol. They reduce to
the standard simulation-based definition (stand alone) for SFE, when applied to
a single execution.

In a rate-hiding RL-SFE, in each execution, the only information revealed
to the parties is whether the agreed-upon rate limit has been exceeded or not.

2 In fact the problem becomes significantly easier when the parties are assumed to be
semi-honest.
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In a rate-revealing RL-SFE, the parties additionally learn the current rate (i.e.,
the number of distinct inputs used by their counterpart so far). In a pattern-
revealing RL-SFE, parties also learn the pattern of occurrences of each other’s
inputs during the previous executions. These notions provide a useful spectrum of
tradeoffs between security and efficiency: our constructions become more efficient
as we move to the more relaxed notions, to the extent that our pattern-revealing
transformation essentially adds no overhead to the underlying SFE protocol.

Commit-first SFE. In order to design rate-limited SFE protocols, we formalize
the auxiliary notion of commit-first SFE (cf-SFE). Roughly speaking, a proto-
col is commit-first if it can be naturally divided into a (i) committing phase,
where each party becomes committed to its input for the second phase, and (ii)
a function evaluation phase, where the function f is computed on the inputs
committed to in the first phase.3

We utilize cf-SFE as a stepping stone to design rate-limited SFE. It turns out
that the separation between the input commitment phase and the function eval-
uation phase facilitates the design of efficient rate-limited SFE. In particular,
now a party only needs to provide some evidence of a particular relation be-
tween the committed inputs in the first phase. In contrast, if we had not started
with a commit-first protocol, such an argument would have involved the com-
plete history of the transcripts for all the previous executions, rendering such an
approach impractical.

The related notion of “evaluating on committed inputs” is well-known (e.g.
see [15,23]), but we need and put forth a formal (and general) definition for cf-
SFE in order to prove our RL-SFE protocols secure. We then show that several
existing SFE constructions are either commit-first or can be efficiently trans-
formed into one. Examples include variants of Yao’s garbled circuit protocol,
the oblivious polynomial evaluation of Hazay and Lindell [16], the private set
intersection protocol of Hazay and Nissim [18], and oblivious automaton evalua-
tion of Gennaro et al. [14]. We also show that the GMW compiler [15], outputs a
commit-first protocol. This is of theoretical interest as it provides a general com-
piler for transforming a semi-honest SFE protocol into a malicious cf-SFE (and
eventually a rate-limited SFE using the compilers in this paper). We elaborate
on these cf-SFE instantiations in the full version of this paper [11].

Compilers & Techniques. We design three compilers for transforming a cf-
SFE into each of the three variants of RL-SFE discussed above, and provide
simulation-based proofs of their security. All our compilers start from a cf-SFE
protocol and add a “proof of repeated-input phase” between the committing
phase and the function evaluation phase. An exception is our pattern-revealing
compiler, where a proof of repeated-input is implicit given that we force the
commitments to be deterministic. In our first compiler (rate-hiding), whenever
the j-th execution begins, party P1 first checks whether its input is “fresh” or has

3 Note that adding input commitments to the beginning of a protocol does not au-
tomatically yield a cf-SFE, since parties are not necessarily bound to using the
committed inputs in their evaluation.
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already been used in a previous run. In the former case, P1 encrypts the value “1”
and, otherwise, the value “0” using a semantically secure public-key encryption
scheme (E,D) for which it holds the secret key sk. Denote the resulting ciphertext
with cj . Party P1 forwards to P2 a ZK proof of the following statement:

(“committed to old input” ∧ E(0)

∨ (“committed to new input” ∧ E(1) ∧ “
∑
i≤j D(sk, c

i) ≤ rate”).

Intuitively, the proof above only leaks the fact that the rate is not exceeded in the
current execution, but nothing else. In order to generate this proof (resp. verify
the proof generated by the counterpart), P1 needs to store all the commitments
and ciphertexts sent to (resp. received from) P2 in previous executions.

For our second compiler (rate-revealing), we can do without the encryptions.
Parties can instead prove a simpler statement giving evidence that the current
(committed) input corresponds to one of the commitments the other party re-
ceived earlier. Clearly, this approach reveals the current rate, but as we prove
nothing more.

Finally, our third compiler (pattern-revealing) exploits a PRF to generate the
randomness used in the committing phase of the underlying cf-SFE protocol. In
this way, the commitment becomes deterministic (given the input), allowing the
other party to check whether the current input has already been used and in
which runs. This approach discloses the pattern of inputs used by the parties;
on the other hand, it is extremely efficient adding little computational overhead
(merely one invocation of a PRF) to the original cf-SFE protocol.

Making RL-SFE stateless. The above compilers suffer from the limitation
that the parties need to keep a state which grows linearly in the total number of
executions of the underlying SFE protocol. In many applications, clients do not
keep state (and outsource this task to the servers), either due to lack of resources
or because they need to use the service from multiple locations/devices. We show
a general approach for transforming the stateful RL-SFE protocols generated
above into stateless ones. Here, the client keeps merely a small secret (whose
size is independent of the total number of executions), but is still able to prevent
cheating by a malicious server, and preserve privacy of his inputs. At a high
level, the transformation requires the client to store its authenticated (MACed)
state information on the server side and retrieve/verify/update it on-the-fly as
needed. We show how to apply this transformation to our rate-revealing compiler
to obtain a stateless variant and prove its security. A similar technique can be
applied to our rate-hiding compiler. Our pattern-revealing compiler is already
stateless (client only needs to store a PRF key) for the party who plays the role
of the client.

Case Study. We take a closer look at the oblivious polynomial evaluation
protocol of Hazay and Lindell [16]. Their protocol is secure against malicious
adversaries. We show that it is also a commit-first OPE, by observing that a
homomorphic encryption of the parties’ inputs together with ZK proofs of their
validity, can be interpreted as a commitment to their inputs. This immediately
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yields an efficient pattern-revealing RL-SFE for the OPE problem, based on the
compiler we design. We also provide an efficient rate-hiding and rate-revealing
RL-OPE by instantiating the ZK proofs for membership in the necessary lan-
guages, efficiently.

Roadmap. We start introducing notations and our model for commit-first SFE
in Section 2 and 3. In Section 4 we give the definition of rate-limited SFE. A
fortaste of our rate-hiding, rate-revealing and pattern-revealing compilers are
given in Section 5, whereas Section 6 describes the stateless version of the rate-
revealing compiler. Finally, Section 7 deals with concrete instantiations for the
case of OPE.

2 Preliminaries

Throughout the paper, we denote the security parameter by λ. A function negl(λ)
is negligible in λ (or just negligible) if it decreases faster than the inverse of every
polynomial in λ. A machine is said to run in polynomial-time if its number of
steps is polynomial in the security parameter.

Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be two distribution ensembles. We
say X and Y are computationally indistinguishable (and we write X ≡c Y )
if for every non-uniform polynomial-time adversary A there exists a negligible
function negl such that |Pr [A(X) = 1]−Pr [A(Y ) = 1] | ≤ negl(λ). Note that all
our security statements can be straightforwardly proven for uniform polynomial-
time adversaries, as well.

If x is a string, |x| denotes the length of x. Vectors are denoted boldface; given
vector x, we write x[j] for the j-th element of x. If X is a set, #X represents the
number of elements in X . When x is chosen randomly in X , we write x ← X .
When A is an algorithm, y ← A(x) denotes a run of A on input x and output
y; if A is randomized, then y is a random variable and A(x; r) denotes a run of
A on input x and random coins r.

Our compilers make use of standard cryptographic primitives. Due to space
limitations, we assume familiarity of these primitives and define them formally
in the full version of this paper [11].

3 Commit-First SFE

In this section, we formally define the notion of commit-first secure function eval-
uation (cf-SFE). Our three compilers ΨRH, ΨRR and ΨPR for designing rate-limited
SFE, leverage commit-first protocols as a building block. We call a protocol π
commit-first if it can be naturally divided into two phases. In the first phase
(committing phase), both parties P1 and P2 become committed to their inputs.
At the end of this phase, no information about the parties’ inputs is revealed
(the hiding property), and neither party can use a different input than what it
is committed to in the remainder of the protocol (the binding property). In the
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second phase (function evaluation phase), the function f will be computed on
the inputs committed to in the last phase.

We now specify the two separate phases. Consider a polynomial-time function-
ality f = (f1, f2) with fi : {0, 1}∗ × {0, 1}∗ → {0, 1}∗. Then, a cf-SFE protocol
π = (π1, π2) for evaluating f on parties’ inputs x1 and x2 proceeds as follows.

Committing Phase: Parties P1 and P2 execute π1 which is defined by the
functionality ((x1, r1), (x2, r2)) (→ (C2(x2, r2),C1(x1, r1)). Note that the com-
mitment schemes C1,C2 can be arbitrary schemes (often different for each
cf-SFE protocol), as long as they satisfy the hiding and the binding proper-
ties required.

Function Evaluation Phase: Afterwards, P1 and P2 execute π2 on the same
inputs as in the committing phase; π2 is defined by the functionality
((x1,C2(x2)), (x2,C1(x1))) (→ (f1(x1, x2), f2(x1, x2)). Note that P1 and P2,
can use their state information from the previous phase in the function eval-
uation phase, too.

Next, we formalize the security definition for a cf-SFE using the real/ideal world
simulation paradigm.

The real world. In each execution, a non-uniform adversary A following
an arbitrary polynomial-time strategy can send messages in place of the cor-
rupted parties (whereas the honest parties continue to follow π). Let i ∈ {1, 2}
be the index of the corrupted party. A real execution of π = (π1, π2) on in-
puts (x1, x2), auxiliary input z to A and the security parameter λ, denoted
by real

cf−SFE
π,A(z),i(x1, x2, λ) is defined as the output of the honest party and the

adversary upon execution of π.

The ideal world. Let i ∈ {1, 2} be the index of the corrupted party. We define
the ideal world in two steps. During the ideal execution, the honest party sends
its input x3−i, and a uniformly random string r3−i used by the commitment
scheme, to the trusted party. Party Pi which is controlled by the ideal adversary
S, called the simulator, may either abort (sending a special symbol ⊥) or send
input x′i, and an arbitrary randomness r′i (not necessarily uniform) chosen based
on the auxiliary input z, and Pi’s original input xi. Denote by ((x′1, r

′
1), (x

′
2, r

′
2))

the values received by the trusted party. If the trusted party receives ⊥, the
value ⊥ is forwarded to both P1 and P2 and the ideal execution terminates; else
the trusted party computes γ1 = C1(x

′
1; r

′
1) and γ2 = C2(x

′
2; r

′
2), respectively.

The TTP sends γ3−i to S, which can either continue or abort by sending ⊥ to
the TTP. In case of an abort, the TTP sends ⊥ to the honest party; otherwise,
it sends γi.

In the second phase, the honest party continues the ideal execution by sending
to the TTP a continue flag, or abort by sending ⊥. S sends either ⊥ or continue
based on the auxiliary input z, Pi’s original input, and the value γ3−i. If the
trusted party receives ⊥, the value ⊥ is forwarded to both P1 and P2 and the
ideal execution terminates; else the trusted party computes y1 = f1(x

′
1, x

′
2) (resp.

y2 = f2(x
′
1, x

′
2)).
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The TTP sends yi to S. At this point, S can decide whether the trusted party
should continue, and thus send the output y3−i to the honest party, or halt,
in which case the honest party receives ⊥. The honest party outputs the re-
ceived value. The simulator S outputs an arbitrary polynomial-time computable
function of (z, xi, yi).

The ideal execution of f on inputs (x1, x2), auxiliary input z to S and security
parameter λ, denoted by ideal

cf−SFE
f,C1,C2,S(z),i(x1, x2, λ) is defined as the output of

the honest party and the simulator.

Emulating the ideal world. We define a secure commit-first protocol π as
follows:

Definition 1 (Commit-first Protocols). Let π and f be as above. We say
that π is a commit-first protocol for computing f = (f1, f2) in the presence of mali-
cious adversaries with abort if for every non-uniform probabilistic polynomial-time
adversary A in the real world there exists a non-uniform probabilistic polynomial-
time simulator S in the ideal world, such that for every i ∈ {1, 2},{

real
cf−SFE
π,A(z),i(x1, x2, λ)

}
x1,x2,z,λ

≡c
{
ideal

cf−SFE
f,C1,C2,S(z),i(x1, x2, λ)

}
x1,x2,z,λ

where x1, x2, z ∈ {0, 1}∗ and λ ∈ N.

4 Rate-Limited Secure Function Evaluation

In this section, we introduce three notions for rate-limited secure function eval-
uation (RL-SFE). In particular, we augment the standard notion of two-party
SFE by allowing each player to monitor and/or limit, the number of distinct
inputs (the rate) the other player uses in multiple executions. The idea is that
each party can abort the protocol if the number of distinct inputs used in the
previous executions raises above a threshold ��� ∈ N. We call this threshold the
rate limit, i.e. the maximum number of allowable executions with distinct inputs.

Naturally, our security definitions for RL-SFE are concerned with multiple
executions of an SFE protocol and reduce to the standard simulation-based
definition (stand alone) for SFE, when applied to a single run. We call a sequence
of executions of a protocol π (���1, ���2)-limited if party P1 (resp. P2) can use at
most ���1 (resp. ���2) distinct inputs in the executions. In this work, we assume
that the executions take place sequentially, i.e. one execution after the other.
We emphasize that the inputs used by the parties in each execution can depend
on the transcripts of the previous executions, but honest parties will always use
fresh randomness in their computation.

We provide three security definitions for rate-limited SFE: (i) rate-hiding,
(ii) rate-revealing and (iii) pattern-revealing. In a rate-hiding RL-SFE, at the
end of each execution, the only information revealed to the parties (besides
the output from the function being computed), is whether the agreed-upon
rate limit (threshold) has been exceeded or not, but nothing else. In a rate-
revealing RL-SFE, in addition to the above, parties also learn the current rates
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(i.e., the number of distinct inputs used by their counterpart so far). Finally, in
a pattern-revealing RL-SFE, parties further learn the pattern of occurrences of
each others’ inputs in the previous executions. In particular, each party learns
which executions were invoked by the same input and which ones used different
ones, but nothing else.

High Level Description. Let f = (f1, f2) be a pair of polynomial-time func-
tions such that fi is of type fi : {0, 1}∗×{0, 1}∗ → {0, 1}∗. Consider an arbitrary
number � of sequential executions of two-party SFE protocol π for evaluating f
on parties’ inputs. During the j-th execution, party Pi has input x

j
i and should

learn yji = fi(x
j
1, x

j
2). We will define rate-limited SFE in the general case where

both parties are allowed to change their input in each execution. The case of
oracle attacks and secure metering, where one party’s input is fixed and the
other party’s input changes, are found as a special case. (In the case of secure
metering one can also think that a change in the service provider’s input reflects
a software update.)

In the ideal world, during the j-th execution, each party sends its input to a
trusted authority. The following is then performed for both i = 1, 2. The trusted
party checks whether value xji was already sent in a previous execution; in case it

was not, a new entry (xji , j) is stored in an initially empty set Xi. Otherwise, the
index j′ < j corresponding to such input is recovered. Whenever #Xi exceeds
���i the trusted party aborts. Otherwise, the current outputs yji = fi(x

j
1, x

j
2) are

computed. Finally: (i) in the rate-hiding definition party Pi learns only y
j
i ; (ii)

in the rate-revealing definition party Pi learns also #X3−i, i.e. the (partial)
total number of distinct inputs used by P3−i until the j-th execution; (iii) in the
pattern-revealing definition party Pi learns j

′, i.e. the index corresponding to the
query where xji was asked for the first time. Note that if the rate is exceeded,
the trusted party aborts here, but, equivalently, we could simply ignore this
execution and still allow to query previous inputs in subsequent executions.

We formalize the above intuitive security notions for all three flavors using the
simulation-based ideal/real world paradigm. We first review the real execution
which all three notions share.

The real world. In each execution, a non-uniform adversary A following an
arbitrary polynomial-time strategy can send messages in place of the corrupted
party (whereas the honest party continues to follow π). Let i ∈ {1, 2} be the index
of the corrupted party. The j-th real execution of π on inputs (xj1, x

j
2), auxiliary

input zj to A and security parameter λ, denoted by real
���

π,A(zj),i(x
j
1, x

j
2, λ)j is

defined as the output of the honest party and the adversary in the j-th real exe-
cution of π. We denote by real

���

π,A(z),i(x1,x2, λ, �) the accumulative distribution
at the end of the �-th execution, i.e.,

real
���

π,A(z),i(x1,x2, λ, �) = real
���

π,A(z1),i(x
1
1, x

1
2, λ)1, . . . ,real

���

π,A(z�),i(x
�
1, x

�
2, λ)�

where x1 = (x11, . . . , x
�
1), x2 = (x12, . . . , x

�
2) and z = (z1, . . . , z�).

The ideal world. The trusted party keeps two sets X1, and X2 initially set
to ∅. Let i ∈ {1, 2} be the index of the corrupted party. During the j-th ideal
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execution, the honest party sends its input to the trusted party. Party Pi, which
is controlled by the ideal adversary S, called the simulator, may either abort
(sending a special symbol ⊥) or send input x′ji to the trusted party chosen based

on the auxiliary input zj, Pi’s original input xji , and its view in the previous

j − 1 ideal executions. Denote with (x′j1 , x
′j
2 ) the values received by the trusted

party (note that if i = 2 then x′j1 = xj1).
If the trusted party receives ⊥, the value ⊥ is forwarded to both P1 and P2

and the ideal execution terminates; else when the trusted party receives x′j1 as

the first party’s input, it checks whether an entry (x′j1 , j
′) ∈ X1 already exists; if

so, it sets J1 = j′. Otherwise, it creates a new entry (x′j1 , j), adds it to X1, and

sets J1 = j. An identical procedure is applied to input of the second party x′j2 to
determine an index J2. At the end of the j-th ideal execution if σ1 := #X1 ≥ ���1

or σ2 := #X2 > ���2, the value ⊥ is forwarded to both P1 and P2 and the ideal
execution terminates. Otherwise, the pair (yj1, y

j
2) = (f1(x

′j
1 , x

′j
2 ), f2(x

′j
1 , x

′j
2 )) is

computed.
At this point, the ideal executions will be different depending on the variant

of RL-SFE being considered.

Rate-Hiding. The trusted party forwards to the malicious party Pi the output
yji . At this point, S can decide whether the trusted party should continue,
and thus send the pair y3−i to the honest party, or halt, in which case the
honest party receives ⊥.

Rate-Revealing. The trusted party forwards to the malicious party Pi the
pair (yji , σ3−i). At this point, S can decide whether the trusted party should

continue, and thus send the pair (yj3−i, σi) to the honest party, or halt, in
which case the honest party receives ⊥.

Pattern-Revealing. The trusted party forwards to the malicious party Pi the
pair (yji , J3−i). The integer 1 ≤ J3−i ≤ j represents the index of the first

execution where the input xj3−i has been used. At this point, S can decide

whether the trusted party should continue, and thus send the pair (yj3−i, Ji)
to the honest party, or halt, in which case the honest party receives ⊥.

The honest party outputs the received value. The simulator S outputs an arbi-
trary polynomial-time computable function of (zj , xji , y

j
i ).

The j-th ideal execution of f on inputs (xj1, x
j
2), auxiliary input zj to S and

security parameter λ, denoted by ideal
���−X
f,S(zj),i(x

j
1, x

j
2, λ)j is defined as the out-

put of the honest party and the simulator in the above j-th ideal execution.
Here, X ∈ {RH,RR,PR} determines the flavor of rate-limited SFE. We denote
by ideal

���−X
f,S(z),i(x1,x2, λ, �) the accumulative distribution at the end of the �-th

execution, i.e.,

ideal
���−X
f,S(z),i(x1,x2, λ, �) = ideal

���−X
f,S(z1),i(x

1
1, x

1
2, λ)1, . . . , ideal

���−X
f,S(z�),i

(x�1, x
�
2, λ)�

where x1 = (x11, . . . , x
�
1), x2 = (x12, . . . , x

�
2) and z = (z1, . . . , z�).

Emulating the ideal world. Roughly speaking, � sequential executions of
a protocol π are secure under the rate limit ��� = (���1, ���2) if the real executions
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can be simulated in the above mentioned ideal world. More formally, we define
a secure (���1, ���2)-limited protocol π as follows:

Definition 2 (RL-SFE). Let π and f be as above, and consider � = poly(λ)
sequential executions of protocol π. For X ∈ {RH,RR,PR}, we say protocol π
is a secure X ���-limited SFE for computing f = (f1, f2), in presence of malicious
adversaries with abort with ��� = (���1, ���2), if for every non-uniform probabilistic
polynomial-time adversary A there exists a non-uniform probabilistic polynomial-
time simulator S, such that for every i ∈ {1, 2},{

real
���

π,A(z),i(x1,x2, λ, �)
}
x1,x2,z,λ

≡c
{
ideal

���−X
f,S(z),i(x1,x2, λ, �)

}
x1,x2,z,λ

where x1,x2, z ∈ ({0, 1}∗)�, such that |x1[j]| = |x2[j]| for all j, and λ ∈ N.

It is easy to see that the rate-hiding notion is strictly stronger than the rate-
revealing notion, which in turn is strictly stronger than the pattern-revealing
notion. A proof to this fact can be found in the full version [11].

5 Compilers for Rate-Limited SFE

In this section, we introduce our three compilers to transform an arbitrary (two-
party) cf-SFE protocol into a rate-limited protocol for the same functionality.

Our first compiler ΨRH achieves the notion of rate-hiding RL-SFE through the
use of general ZK proofs and (additively) homomorphic public key encryption.
Our second compiler ΨRR achieves the notion of rate-revealing RL-SFE and is
more efficient in that it needs to prove a simpler statement and does not rely
on homomorphic encryption. Our last compiler ΨPR introduces essentially no
overhead and avoids the use of general ZK proofs, yielding our third notion of
pattern-revealing RL-SFE.

Let πf be a two-party (single-run) commit-first protocol for secure function
evaluation of a function f = (f1, f2) (cf. Definition 1). Our compilers get as
input (a description of) πf , together with the rate ��� = (���1, ���2), and the number
of executions �, and output (a description of) π̂f ← Ψ(πf , ���, �). The compilers
are functionality preserving, meaning that protocol π̂ repeatedly computes the
same functionality f .

Due to space limitations, in this section we only provide a full description and
analysis for the rate-revealing compiler. The other two compilers (rate-hiding
ΨRH, and pattern-revealing ΨPR) are only covered at a high level here. The com-
plete descriptions and analyses are given in the full version of this paper [11].

5.1 A Rate-Hiding Compiler

The Overview. We naturally divide the cf-SFE protocol into a committing
phase and a function evaluation phase and introduce a new phase in between
where P1 and P2 convince each other that they have not exceeded the rate limit.



472 Ö. Dagdelen, P. Mohassel, and D. Venturi

The latter step is achieved as follows. Whenever one of the parties is going to use
a “fresh” input, it transmits an encryption of “1” to the other party; otherwise,
it sends an encryption of “0”. The encryptions are obtained using a CPA-secure
(homomorphic) PKE scheme (G̃, Ẽ, D̃). Then, the party proves in ZK that “the
last commitment transmitted hides an already used input and it encrypted 0,
or the last commitment transmitted hides a fresh input and it encrypted 1 and
the sum of all the plaintexts, encrypted until now, does not exceed the rate”. A
successful verification of this proof convinces the other party that the rate is not
exceeded, leaking nothing more than this. We instantiate such ZK proofs for the
OPE problem in Section 7. Notice that to generate such a proof each party needs
to store all the ciphertexts transmitted to the other player, together with all the
inputs and randomness used to generate the previous commitments. On the
other hand, to verify the other party’s proof, one needs to store the ciphertexts
and the commitments received in all earlier executions. The remainder of the
messages exchanged during each execution, however, can be discarded.

Theorem 1. Let πf be a cf-SFE securely evaluating function f and (G̃, Ẽ, D̃) be
a CPA-secure PKE scheme. Then π̂f ← ΨRH(πf , ���1, ���2, �) is a secure rate-hiding
(���1, ���2)-limited protocol for the function f .

5.2 A Rate-Revealing Compiler

The Overview. Once again, we divide the cf-SFE protocol into a committing
phase and a function evaluation phase and introduce a new phase in between
where P1 and P2 convince each other that the current input has already been
used in a previous execution. Note that the parties need to maintain a state
variable Γ collecting the input commitments sent and received in all earlier
executions. During the j-th execution, given a list of input commitments (and
the corresponding inputs and randomness) for all the previous executions, party
Pi can prove in ZK that the input commitment generated in the current execution
is for the same value as one of the commitments collected previously. Party P3−i
also needs to collect the same set of commitments in order to verify the statement
proven by Pi. The remainder of the messages exchanged during each execution,
however, can be discarded. We note that while in general efficient ZK proofs of
repeated inputs might be hard to find, for discrete-logarithm based statements,
there exist efficient techniques for proving such statements. We refer the reader
to the full version for more details. We also instantiate such ZK proofs for the
OPE problem in Section 7. A complete description of the compiler is depicted
in Figure 1. We prove the following result:

Theorem 2. Let πf be a cf-SFE securely evaluating function f . Then π̂f ←
ΨRR(πf , ���1, ���2, �) is a secure rate-revealing (���1, ���2)-limited protocol for f .

5.3 A Pattern-Revealing Compiler

In this section, we introduce a more efficient compiler ΨPR for designing rate-
limited SFE. Given as input a cf-SFE protocol, our compiler ΨPR outputs a
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Rate-Revealing Compiler ΨRR:

Given as input a commit-first protocol πf = (π1
f , π

2
f ), a rate ��� = (���1, ���2), and a number of executions

�, the compiled protocol π̂f is made of three phases, described below. Party P1 and P2 keep the
state variables Γ1, Γ2 := ∅, respectively. For each execution j ∈ [�], π̂f proceeds as follows.

Committing Phase: Parties P1 and P2, holding respectively inputs xj
1 and xj

2, run the protocol
π1
f yielding the output (γj

2 = C(pk2, x
j
2; r

j
2), γ

j
1 = C(pk1, x

j
1; r

j
1)).

Proof of Repeated-Input Phase: Consider the following language: Li = {γ ∈
Cpki : ∃(x, r, r′) s.t. γ = C(pki, x; r) ∧ C(pki, x; r

′) ∈ Γ3−i}, and let (Pr,Vr) be a ZK
proof system for Li. The following is executed for all i ∈ {1, 2}. When the input xj

i of party
Pi is not fresh—i.e., it has already been used in a previous execution—Pi plays the role of
the prover in (Pr,Vr). When the input xj

i is fresh, Pi just forwards the empty string ε. Also,
party Pi plays the role of the verifier in (Pr,Vr) (with P3−i being the prover and L3−i being
the underlying language). If the value ε is received or if the verification of the proof fails, Pi

updates the rate by letting ���i := ���i − 1 and the state by letting Γi := Γi ∪ {γj
3−i}. Otherwise,

if the verification is successful, the state and rate information will not be modified.
Protocol Emulation Phase: P1 and P2 run the protocol π2

f on the same inputs as in the com-

mitting phase, yielding the output (yj
1, y

j
2).

Fig. 1. A compiler for rate-revealing rate-limited SFE

weaker form of rate-limited SFE where each party not only learns the current
rate for its counterpart during each execution, but also the pattern of already
used inputs. The main advantage is that this new compiler adds very little
overhead to the original cf-SFE.

The Overview. The idea is as follows. Besides their input, each party also
stores a secret key for a PRF (a different key for each party). Before invoking
the commit-first SFE protocol, each player generates the randomness it needs
for the committing phase by applying the PRF on the chosen input for this
execution. With this modification in place, the committing phase for each party
becomes deterministic. If a party uses the same input in two executions, the two
commitments its counterpart receives will be identical. As a result, to prove a
repeated-input, each party can compare the commitment for the current execu-
tion with those used in the previous ones, and determine if the input is new or
being repeated (hence also revealing the pattern). Note that the commitments
still provide the required hiding and binding properties. The only overhead im-
posed by this compiler is the application of a PRF to generate the randomness
for the committing phase.

Theorem 3. Let πf be a cf-SFE securely evaluating function f . Then π̂f ←
ΨPR(πf , ���1, ���2, �) is a secure pattern-revealing (���1, ���2)-limited SFE for f .

6 Making the Compilers Stateless

One drawback of the compilers described in the previous section is that both
P1 and P2 need to maintain state. To some extent, this assumption is necessary.
It is not too hard to see that RL-SFE is impossible to achieve if neither party
is keeping any information about the previous executions (we omit a formal
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argument of this statement). However, as discussed earlier, in many natural
client-server applications of SFE in the real world, it is reasonable to assume
that the servers keep state, while the clients typically do not.

In this section, we show how to modify the compilers from Section 5 in such
a way that only one of the parties needs to keep state. Our solution is efficient
and works for all three compilers we discussed earlier. Throughout this section,
we assume P1 is the client and P2 is the server. Server P2 receives no output (as
it is usually the case in the client-server setting) and wants to enforce the rate
limit ��� for the client. Although P1 does not maintain any state, it needs to make
sure that P2 handles the rate, honestly. On the other hand, the server also needs
to be convinced that the client is not cheating, by exceeding the rate limit ���.

The Overview. Note that in the stateful versions of our compilers, P1 needs
to keep state in order to generate a ZK proof of repeated inputs, and verify the
corresponding statement being proven by P2. Since we are only enforcing the
rate for P1, we can eliminate the latter ZK proofs, and focus on the first one.
Although our approach is general, for the sake of simplicity, we describe it in
relation to our rate-revealing compiler from Section 5.2. The same idea can be
applied to make the other compilers stateless. The basic idea is simple: We ask
the server to store the list of all the commitments previously sent by P1 sends
the list to the client, during each run. For this simple approach to work, we need
to address several important issues:

– For the client to learn the current rate and the previously queried inputs
before each execution, it needs to store these values on the server side in a
secure way. This can be easily addressed by having P1 encrypt the message
and randomness for each commitment (using a symmetric-key encryption)
and send it along with the commitment itself. P1 will just keep the private
key for the encryption scheme.

– The client needs to verify that the list of commitments it receives from the
server are the original commitments it sent in the previous executions. To do
so, in each run P1 computes a MAC φ of the string obtained by hashing all
the commitments (i.e., the concatenation of the list it obtains from the server
and the one it creates in the current execution) and sends it to the server.4

In each execution, it requests this MAC, the list of commitments along with
the ciphertext storing the inputs and random coins from the server. Due to
the unforgeability of the MAC, the server will only be able to use a correct
list of commitments, previously issued and MACed by the client itself.

– It may seem that the above solution still allows the server to cheat and only
send a subset of the commitment list along with a tag generated for that
subset in one of the earlier executions, to the client. This would potentially
make the input to the current execution look “new” and allow the server to
decrease the rate. The client would not be able to detect this attack since it
does not keep state and does not know the total number of commitments.

4 To save on computation, one could let the client obtain the previous hash value and
compute the new one via incremental hashing [9,4].
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However, a more careful inspection shows that the above does not really
constitute an attack. In fact, the tag φ already binds the current rate to the
current list of commitments, and prevents the server from decreasing the
rate in this fashion. In particular, it is hard for the server to cook-up a state
such that the verification of the tag is successful, and the client will think
its rate is already exceeded when it is not. Essentially, coming up with such
a state requires to find a collision in H or forging a tag for a fake list of
commitments.

A detailed description of the compiler ΨRR and a proof of the following theorem
are given in our full version [11].

Theorem 4. Let πf be a cf-SFE securely evaluating function f = (f1,−) and

(G,T,V) be a UNF-CMA MAC scheme, (G̃, Ẽ, D̃) be a CPA-secure PKE scheme,
and H being picked from a family of CRHFs. Then, π̂f ← ΨRR(πf , ���, �) is a
secure rate-revealing ���-limited protocol for f .

7 Rate-Limited OPE

Hazay and Lindell [16] design an efficient two-party protocol for oblivious poly-
nomial evaluation (OPE) with security against malicious adversaries. In an OPE
protocol, the first party holds a value t while the second party holds a polyno-
mial p of degree d. Their goal is to let the first party learn p(t) without reveal-
ing anything else. The protocol takes advantage of an additively homomorphic
encryption scheme (Paillier’s encryption) and efficient ZK proofs of a few state-
ments related to the encryption scheme. While the authors (only) prove security
against malicious adversaries, we observe that, with a small modification, their
construction is indeed a commit-first protocol for OPE as well.

First party’s commitment. Consider an additively homomorphic encryption
scheme (G,E,D). The first few steps performed by the first party (the party
holding the value t) are as follows: (i) it runs the key generation for the en-
cryption scheme to generate a key pair (pk, sk) ← G(1λ), accompanied by a
ZK proof of knowledge of the secret key; (ii) then, it encrypts powers of t, i.e.
E(pk, t),E(pk, t2), . . . ,E(pk, td), and sends the resulting ciphertexts along with a
ZK proof of the validity of the ciphertexts to the other party.

We observe that sending E(pk, t) and a ZK proof of its validity constitutes a
commitment by the first party to its input t. This commitment scheme realizes
the ideal functionality of the first phase in our definition of commit-first proto-
cols. (Recall that this means the simulator can extract both the input and the
randomness used to generate the commitment.) In particular, a careful inspec-
tion of the security proof of [16] reveals that the simulator can extract both t
and the randomness used to encrypt it during the simulation. Extracting the
randomness is possible since in Paillier’s encryption scheme, given the secret key
sk and a ciphertext c, one can recover both the randomness and the message.

Second party’s commitment. The commitment of the second party to its
input polynomial is slightly more subtle, and requires a small modification to the
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original design. In the first few steps, the second party does the following: (i) it
runs the key generation to generate a key pair (pk′, sk′)← G(1λ), accompanied by
a ZK proof of knowledge of the secret key; (ii) it computes ((E(pk′, q1),E(pk

′, p−
q1)), . . . , (E(pk

′, qs),E(pk
′, p−qs)) where qi’s are random polynomials of degree d

for some security parameter s; (iii) it sends all the ciphertext pairs along with ZK
proofs of the fact that the homomorphic addition of every pair encrypts the same
polynomial (i.e., p), to the first party. We need to slightly modify this step to
realize our ideal commitment functionality: For the first pair of ciphertexts, the
second party will also include a ZK proof of validity of (E(pk′, q1),E(pk

′, p−q1)).
The pair of ciphertexts (E(pk′, q1),E(pk

′, p − q1)) and the accompanied ZK
proof of their validity, constitute the commitment by the second party to its
input polynomial p. Once again, we note that the simulator in the proof is able
to extract q1, p, and the randomness used in the two encryptions, due to the
randomness recovering property of Paillier’s encryption. The proof of security
provided in [16] can be easily modified to show the commit-first property of the
above-mentioned variant of their OPE construction.

Claim. The modified oblivious polynomial evaluation protocol of [16] is a commit-
first SFE with security against malicious adversaries.

7.1 ZK Proofs for Rate-Limited OPE

We now explain how to derive rate-limited OPE protocols from the scheme
of [16], by giving concrete instantiation of our compilers from Section 5 and 6.

Rate-Revealing OPE. Consider first our rate-revealing compiler from Fig-
ure 1. A proof of repeated-input, here, is equivalent to proving a statement for
the following language:

Lope(n) =

{
(pk, ĉ, c1, . . . , cn) : ∃λ, r s.t. (pk, sk)← G(1λ, r) and
(D(sk, ĉ) = D(sk, c1) ∨ . . . ∨ D(sk, ĉ) = D(sk, cn))

}
,

where the ciphertexts c1, . . . , cn are encryptions of the inputs for n previous
executions of the OPE protocol. The ciphertext ĉ is the encryption of the input
for the current execution.

Such a proof can be obtained by exploiting ZK proofs for the languages Lzero

and Lmult defined in [16]. Informally, a valid proof of a statement in the language
Lzero says that a ciphertext is an encryption of 0. Language Lmult allows us
to prove that given three ciphertexts, one of them decrypts to the product of
the other two underlying plaintexts. Denote the plaintext for each ci by mi

and the one for ĉ by m̂. The high level idea is to have the prover compute
E(pk, (m̂ −m1) · · · (m̂ −mn)), prove correctness of this computation and show
that the final ciphertext is an encryption of zero. This clearly ensures correctness
when the current input equals one of the inputs used in previous executions. See
the full version [11] for a complete description.

Rate-Hiding OPE. In the rate-hiding case, besides a standard proof of the
statement “a ciphertext is a valid encryption of bit b”, the prover also needs
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to prove that: (i) “the current commitment corresponds to a fresh input”; (ii)
“given a collection of ciphertexts, the sum of the corresponding plaintexts is
below some threshold ���”.

Note that a proof for the first statement is equivalent to proving that an
element is not in Lope (denoted by Lope). Moreover, we show that a proof for
the second statement can also be reduced to a proof of membership in Lope by
relying on the homomorphic properties of the underlying encryption scheme. It
remains to show ZK proofs for Lope. It is possible to do so using range proofs,
but we show a simple and more efficient construction.

Using techniques of [10], the proofs discussed above can be combined (via
conjuctive/disjunctive formulas) to generate a ZK proof of membership for the
language used in our rate-hiding compiler. A detailed description of the compiler
and the proof of the theorem below is given in this paper’s full version [11].
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Abstract. In order to guarantee a fair and transparent voting process,
electronic voting schemes must be verifiable. Most of the time, however, it
is important that elections also be anonymous. The notion of a verifiable
shuffle describes how to satisfy both properties at the same time: ballots
are submitted to a public bulletin board in encrypted form, verifiably
shuffled by several mix servers (thus guaranteeing anonymity), and then
verifiably decrypted by an appropriate threshold decryption mechanism.
To guarantee transparency, the intermediate shuffles and decryption re-
sults, together with proofs of their correctness, are posted on the bulletin
board throughout this process.

In this paper, we present a verifiable shuffle and threshold decryption
scheme in which, for security parameter k, L voters, M mix servers, and
N decryption servers, the proof that the end tally corresponds to the
original encrypted ballots is only O(k(L + M + N)) bits long. Previ-
ous verifiable shuffle constructions had proofs of size O(kLM + kLN),
which, for elections with thousands of voters, mix servers, and decryp-
tion servers, meant that verifying an election on an ordinary computer
in a reasonable amount of time was out of the question.

The linchpin of each construction is a controlled-malleable proof (cm-
NIZK), which allows each server, in turn, to take a current set of ci-
phertexts and a proof that the computation done by other servers has
proceeded correctly so far. After shuffling or partially decrypting these
ciphertexts, the server can also update the proof of correctness, obtain-
ing as a result a cumulative proof that the computation is correct so far.
In order to verify the end result, it is therefore sufficient to verify just
the proof produced by the last server.

1 Introduction

Electronic voting is one of the most compelling applications of cryptography [3].
An approach popular in cryptographic literature is voting via a verifiable shuf-
fle [22,11,16,17,19], which consists of L voters V1, . . . , VL, M mix servers S1, . . . ,
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SM (that are needed for the election to be anonymous) and N threshold de-
cryption servers D1, . . . , DN (that are responsible for setting up the system and,
in the end, tallying the results). This approach requires a secure rerandomiz-
able encryption scheme, in which given the public key and a ciphertext c for
some message m, one can efficiently find a random ciphertext c′ for the same
message m. Further, it requires that there be a threshold realization of the cryp-
tosystem [13,24,6]; i.e., the secret key can be split up into “shares” such that
each server can use its share to partially decrypt a ciphertext, and the correct
decryption can be obtained by putting all the decryption shares together.

On a high level, once the decryption servers set up the system, a verifiable
election works in the following three phases [21,4]: first, each voter Vi submits to

a public bulletin board a ciphertext c
(0)
i containing his or her encrypted ballot

(in one variation [22,23,2], a trusted device submits this ciphertext on the user’s
behalf, so that the user does not know the randomness that went into forming
the encryption and thus is unable to demonstrate that he voted a certain way).
Next, in the ballot processing phase, each mix server Si in turn takes as input the

set of encrypted ballots (c
(i−1)
1 , . . . , c

(i−1)
L ) and randomizes and permutes (i.e.,

shuffles) them, posting to the public bulletin board the ciphertexts (c
(i)
1 , . . . , c

(i)
L )

together with a zero-knowledge proof πi that this was done correctly. Finally,

in the tallying phase, on input (c
(M)
1 , . . . , c

(M)
L ), each decryption server Di pub-

licly outputs its decryption shares (d
(i)
1 , . . . , d

(i)
L ), together with a zero-knowledge

proof π′
i that this was done correctly. The tally is now publicly computable by

putting together the decryption shares for each ciphertext.
How much data does an elections monitor have to process in order to verify

the tally? Suppose the monitor observes and verifies every step of both mixing
and decrypting. This means verifying that, in the ballot processing step, the mix
servers correctly formed LM ciphertexts, and then that the decryption servers
correctly computed LN decryption shares. This multiplicative blow-up is very
unfortunate if these algorithms are used on a large scale; indeed, the very vision
of universally verifiable elections is that it should be easy for anyone, including
the voters themselves, to participate in guaranteeing both the anonymity and the
correctness of the election. This means that it should scale well as the number
of mix and decryption servers grows. Can the work of the elections monitors be
reduced to O(k(L +M +N)) for security parameter k?

(Note that a verifiable shuffle has the attractive property that the set of
ballots output in the end is the same as the set of ballots that were encrypted and
submitted to the bulletin board. In particular, this allows for write-in candidates.
If an election is simply binary, then an encrypted tally can be computed if the
underlying cryptosystem is additively homomorphic, and the resulting ciphertext
can be decrypted by the decryption servers.)

In a recent result [7], we (referred to ask CKLM in what follows to distin-
guish between our current and prior work) proposed an idea for overcoming this
blow-up as far as the ballot processing phase was concerned. Before, all known
aggregation results [1,15] required complex interactions between shuffling au-
thorities and, for non-interactive verification, were based on the Fiat-Shamir [14]



Verifiable Elections That Scale for Free 481

heuristic and thus the random oracle model. The crucial observation of CKLM is
that the monitor does not need to verify every step of the shuffle: it is sufficient

to just verify the last set of ciphertexts (c
(M)
1 , . . . , c

(M)
L ), as long as the proof πM

produced by the last mix server SM attests to the fact that these were correctly

computed from the original ballots (c
(0)
1 , . . . , c

(0)
L ). Of course, the last mix server

SM does not have the witness to this statement: it knows only the random-

ness it used to randomize and shuffle the ciphertexts (c
(M−1)
1 , . . . , c

(M−1)
L ). To

nevertheless allow πM to suffice for the entire shuffle, CKLM proposed a cryp-
tographic tool, called controlled-malleable proofs (cm-NIZKs), that allows each
server Si to build on the proof πi−1 that attests to the validity of the cipher-

texts (c
(i−1)
1 , . . . , c

(i−1)
L ) in order to obtain the proof πi attesting to the validity

of (c
(i)
1 , . . . , c

(i)
L ); importantly, cm-NIZKs allow πi to be the same size as πi−1.

As a result, the proof πM suffices, and the elections monitor need not verify
any of the intermediate ciphertexts and proofs. CKLM then gave a construc-
tion of cm-NIZKs by taking advantage of certain convenient properties of GS
proofs [20].

The CKLM result came with a significant caveat that made it almost irrele-
vant in practice as far as verifiable shuffles are concerned: they used permutation
matrices to represent the statement that there exists a permutation and a ran-

domization that, when applied to (c
(i−1)
1 , . . . , c

(i−1)
L ), result in (c

(i)
1 , . . . , c

(i)
L ). A

permutation matrix is L × L, and so, by necessity, each proof πi was Θ(L
2k)

bits, for the security parameter k. The elections monitor would thus have to
read Θ(k(L2 +M)) bits in order to verify the correctness of a shuffle, rather
than Θ(LMk) bits when using, for example, the verifiable shuffle of Groth and
Lu [19], which does require the monitor to check intermediate ciphertexts and
proofs (hence the factor ofM), but in which each proof is only of size Θ(Lk) be-
cause Groth and Lu represent a permutation as a list rather than a matrix. The
CKLM solution is therefore asymptotically superior only in the case where there
are more mix servers than voters. In recent follow-up work, CKLM extended
their results [8] in a way that would allow permutations to be represented as
lists rather than matrices, but the extension does not apply for the scenario at
hand because it can only tolerate a constant number of mix servers. A natural
question, therefore, is the following: Is it possible to combine the CKLM tech-
niques with the Groth-Lu techniques to get a cm-NIZK for the correctness of
a shuffle of size Θ(k(L +M))? In this paper, we answer it in the affirmative,
obtaining a verifiable shuffle construction in which elections monitors only read
Θ(k(L +M)) bits to verify that the ballot processing step was done correctly.

Next, we focus on the application of cm-NIZKs to the verification of threshold
decryption (i.e., the tallying phase). In a näıve approach, each decryption server

Di, on input the ciphertexts (c
(M)
1 , . . . , c

(M)
L ), outputs the decryption shares

(d
(i)
1 , . . . , d

(i)
L ) and the proofs (π

(i)
1 , . . . , π

(i)
L ) that these decryption shares were

correct. It is natural to ask whether, by taking turns processing these cipher-
texts and using cm-NIZK techniques, it is possible to achieve compact verifi-
able threshold decryption, in which each server builds on the decryption share
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and proof of the previous server to arrive, at the end, at the vector of decryp-
tions (m1, . . . ,mL) for the original L ciphertexts and a single vector of proofs

(π
(N)
1 , . . . , π

(N)
L ) that attests to the correct decryption and requires Θ(k(L+N))

bits to verify. In this paper we answer this question in the affirmative as well.
Rather than have each decryption server produce its own decryption share and
proof of correctness, we instead have the decryption servers pass around a single
cumulative share, along with a malleable proof of correctness. When one au-
thority receives the share and proof from the previous authority, it can therefore
fold in its own share, and update, or “maul”, the proof to obtain a new proof of
correctness that takes into account this new share.

To the best of our knowledge, the question of compact verifiable threshold de-
cryption has not been previously considered: the standard approach in threshold
cryptography [13,24,6] is that, on input the ciphertext and a share of the secret
key, each decryption server computes a share of the decryption and a proof that
this share was computed correctly. These shares are then publicly output, and
the decryption can be computed; one can verify that the decryption is correct by
verifying the proofs. In a t-out-of-N threshold cryptosystem, t+1 correct shares
are sufficient, while no malicious coalition of t servers can break the security of
the cryptosystem or cause incorrect decryption. An advantage of this approach is
that no communication need be required between servers; in the public bulletin
board model of electronic voting, however, this is not as important as compact
verification. Our approach, instead, has the decryption servers communicate via
the public bulletin board. Each server, in turn, takes as input the cumulative
decryptions and their proofs of correctness so far (if any), carries out its share
of the decryption, and outputs the resulting cumulative decryption shares and
the resulting cumulative cm-NIZK proof of their correctness. The overall process
results in the correct decryption if no server fails to produce a valid proof.

2 Definitions and Notation

In this section, we present building blocks and definitions for our voting scheme.
First, we recall the malleable proof system due to CKLM [7] used by both our
shuffle and threshold decryption constructions. Then, we give the CKLM defi-
nition of a verifiable shuffle, which takes into account that one proof is used to
prove correctness of the entire shuffle. Next, we give a new definition, analogous
to the definition for the shuffle, of compact threshold encryption; here, the mal-
leable proof is used to prove correct partial decryption. Finally, in order to show
that these two notions fit together, we present a simple definition of a secure
voting scheme.

2.1 Controlled Malleable Proofs (cm-NIZKs)

As defined by CKLM, a controlled malleable proof for a relation R and transfor-
mation class T consists of four algorithms (CRSSetup,P ,V ,ZKEval): CRSSetup
generates a common reference string crs, the prover P takes as input the crs,
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the instance x, and a witness w for the truth of the statement (x,w) ∈ R and
outputs a proof π, and the verifier V takes as input the crs, an instance x, and
a proof π and either accepts or rejects the proof.

These three algorithms constitute a regular non-interactive proof (which we
define formally in the full version of the paper [9]); such a proof is further called
zero knowledge (NIZK) if there exists a PPT simulator (S1, S2) such that an
adversary can’t distinguish between proofs formed by the prover and proofs
formed by the simulator, and a proof of knowledge (NIZKPoK) if there exists
a PPT extractor (E1, E2) that can produce a valid witness from any accepting
proof.

The fourth algorithm, specific to malleable proof systems, is ZKEval, which,
on input crs, a transformation T = (Tinst, Twit) (in some transformation class T ),
an instance x, and a proof π, outputs a mauled proof π′ for instance Tinst(x).
The main definition of CKLM for controlled malleable proofs then reconciles mal-
leability with extractability (specifically, simulation-sound extractability [12,18])
and requires that, for any instance x, if an adversary can produce a valid proof
π that x ∈ LR then an extractor can extract from π either a witness w such that
(x,w) ∈ R or a previously proved instance x′ and transformation T ∈ T such
that x = Tinst(x

′). Intuitively this guarantees that any proof that the adversary
produces is either generated from scratch using a valid witness, or formed by
applying a transformation from the class T to an existing proof. They define
this formally as follows:

Definition 2.1. [7] Let (CRSSetup,P ,V ,ZKEval) be a NIZKPoK system for an
efficient relation R, with a simulator (S1, S2) and an extractor (E1, E2). Let
T be an allowable set of unary transformations for the relation R such that
membership in T is efficiently testable. Let SE1 be an algorithm that, on input
1k, outputs (crs, τs, τe) such that (crs, τs) is distributed identically to the output
of S1. Let A be given, and consider the following game:

– Step 1. (crs, τs, τe)
$←− SE1(1

k).

– Step 2. (x, π)
$←− AS2(crs,τs,·)(crs, τe).

– Step 3. (w, x′, T )← E2(crs, τe, x, π).

The proof system satisfies controlled-malleable simulation-sound extractability
(CM-SSE, for short) with respect to T if for all PPT algorithms A there exists a
negligible function ν(·) such that the probability (over the choices of SE1, A, and
S2) that V(crs, x, π) = 1 and (x, π) �∈ Q (where Q is the set of queried statements
and their responses) but either (1) w �= ⊥ and (x,w) /∈ R; (2) (x′, T ) �= (⊥,⊥)
and either x′ /∈ Qx (the set of queried instances), x �= Tinst(x

′), or T /∈ T ; or
(3) (w, x′, T ) = (⊥,⊥,⊥) is at most ν(k).

In addition, CKLM define the notion of strong derivation privacy for such proofs,
in which simulated proofs are indistinguishable from those formed via transfor-
mation. This is defined formally as follows:
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Definition 2.2. [7] For a malleable NIZK (CRSSetup,P ,V ,ZKEval) with an
associated simulator (S1, S2), a given adversary A, and a bit b, let pAb (k) be the
probability of the event that b′ = 0 in the following game:

– Step 1. (σsim, τs)
$←− S1(1

k).

– Step 2. (state, x1, π1, . . . , xq, πq, T )
$←− A(σsim, τs).

– Step 3. If V(σsim, xi, πi) = 0 for some i, (x1, . . . , xq) is not in the domain of
Tinst, or T /∈ T , abort and output ⊥. Otherwise, form

π
$←−
{
S2(σsim, τs, Tinst(x1, . . . , xq)) if b = 0
ZKEval(σsim, T, {xi, πi}i) if b = 1.

– Step 4. b′
$←− A(state, π).

The proof system is strongly derivation private if for all PPT algorithms A there
exists a negligible function ν(·) such that |pA0 (k)− pA1 (k)| < ν(k).

Putting these two definitions together, if a proof system is CM-SSE, strongly
derivation private, and zero knowledge, then CKLM call it a cm-NIZK.

2.2 Compactly Verifiable Shuffles

In a compact verifiable shuffle, as defined by CKLM, a single (malleable) proof
is used to prove the correctness of an entire multi-step shuffle. Formally, a com-
pact verifiable shuffle (Setup, ShuffleKg, Shuffle,Verify) is parameterized by a re-
randomizable encryption scheme (EncKg,Enc,Dec): Setup generates parameters
params ; ShuffleKg outputs key pairs (pk j , sk j) chosen from a hard relation Rpk

that are used by mix servers as a stamp of participation; Shuffle takes the original
ciphertexts {ci, πi}i, the shuffled ciphertexts {c′i}i and proof thus far (π, {pk j}j),
and a pair of keys (pkm, skm) ∈ Rpk , and outputs ({c′′i }i, π′, {pk j}j ∪ {pkm});
and Verify ensures that the shuffle has been performed correctly.

Before giving the compact verifiability definition, we recall the relation that is
proved by the shuffle. Instances are of the form (pk , {ci}i, {c′i}i, {pk j}j), where
pk is a public key produced by EncKg, {ci}i are ciphertexts produced by Enc
through the voting process, {c′i}i are the shuffled ciphertexts, and {pk j}j are
the public keys for Rpk that are used to identify the mix servers that have
participated in the shuffle thus far. Witnesses are of the form (ϕ, {Ri}i, {sk j}j),
where ϕ is a permutation, {Ri}i are re-randomization factors, and {sk j}j are
the secret keys for the mix servers. Then the relation R is defined by

((pk , {ci}i, {c′i}i, {pk j}j), (ϕ, {Ri}i, {skj}j)) ∈ R
⇔{c′i}i = {ReRand(pk , ϕ(ci);Ri)}i ∧ ∀j(pk j , sk j) ∈ Rpk .

Definition 2.3. [7] Let (Setup, ShuffleKg, Shuffle,Verify) be a verifiable shuffle
with respect to an encryption scheme (EncKg,Enc,Dec). For an adversary A
and a bit b ∈ {0, 1}, let pAb (k) be the probability that b′ = 0 in the following
experiment:
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– Step 1. params
$←− Setup(1k), (pk , sk)

$←− EncKg(params), and (T = {pk i}i,
{sk i}i) $←− ShuffleKg(1k).

– Step 2. A gets params, pk, T , and access to the following two oracles:
an initial shuffle oracle that, on input ({ci, πi}i, pk �) for pk � ∈ T , out-
puts ({c′i}i, π, {pk �}�) (if all the proofs of knowledge πi verify), where π is
a proof that the {c′i}i constitute a valid shuffle of the {ci}i performed by
the user corresponding to pk � (i.e., the user who knows sk �); and a shuffle
oracle that, on input ({ci, πi}i, {c′i}i, π, {pk j}j, pkm) for pkm ∈ T , outputs
({c′′i }i, π′, {pk j}j ∪ {pkm}).

– Step 3. Eventually, A outputs a tuple ({ci, πi}i, {c′i}i, π, T ′ = {pk j}j).
– Step 4. If Verify(params , ({ci, πi}i, {c′i}i, π, {pk j}j)) = 1 and T ∩T ′ �= ∅ then

continue; otherwise simply abort and output ⊥. If b = 0 give A {Dec(sk , c′i)}i,
and if b = 1 then give A ϕ({Dec(sk , ci)}i), where ϕ is a random permutation.

– Step 5. A outputs a guess bit b′.

Then the shuffle is compactly verifiable if for all PPT algorithms A there exists
a negligible function ν(·) such that |pA0 (k)− pA1 (k)| < ν(k).

In addition to defining such a shuffle, CKLM also provide a generic construction
using a hard relation [10], a proof of knowledge, and a cm-NIZK. Since we use
this generic construction as a template for our shuffle construction in Section 3,
for completeness we provide an outline of it in the full version of the paper.

2.3 Threshold Encryption

As discussed in the introduction, the previous model for threshold encryption
had each participant generate a share and proof of correctness separately; the
proofs of correctness would then be verified separately, and the shares would
all be combined at the end to produce the decrypted ciphertext. As we now
assume that the participants compute a single share and proof cumulatively (by
computing their own shares and then folding them into a single one that gets
passed around and mauling the accompanying proof appropriately), the model
must be changed to reflect these differences.

With this in mind, we define a threshold encryption scheme to be a tuple of
four algorithms (EncKg,Enc, ShareDec, ShareVerify). The first, EncKg, generates
a public encryption key pk , a verification key vk that is used to check the validity
of a share, and a set of secret key shares {sk i}i. The next, Enc, performs regular
public-key encryption. The next, ShareDec, takes in a share sk i of the secret key,
a ciphertext c, and the decryption share/proof thus far. It first computes its own
partial decryption of c, and then folds this value into the cumulative share and
outputs this new share; it also mauls the proof to take into account that the
value it has folded in is correct, and thus the new share is the correct cumulative
share for the participants thus far. Finally, ShareVerify takes in the cumulative
share and proof and verifies that the share is indeed correct. In this paper we
focus on n-out-of-n threshold decryption, in which all n parties must participate
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in the decryption; our results should generalize to the t-out-of-n case as well,
but we leave that as an open problem.

There are a number of desirable properties of a threshold encryption scheme.
Functionally, we require completeness, which says that if everyone is behav-
ing honestly then the scheme works as it should; i.e., the proofs of correct-
ness verify and the ciphertexts decrypt correctly. Completeness therefore re-
quires that the threshold encryption scheme also yields a regular encryption
scheme: the Dec algorithm would take as input sk := {skj}j and compute the
cumulative shares; it would then output the final cumulative share, which by
completeness is equal to the message m. This essentially means Dec(sk , c) =
ShareDec(pk , vk , sk , c, (⊥,⊥,⊥)).

In terms of security properties, we would first like our scheme to satisfy IND-
CPA security; to capture this, we can use the usual IND-CPA security experi-
ment, in which an adversary A outputs message (m0,m1) such that |m0| = |m1|
and is asked to guess which one of them a challenge ciphertext c∗ encrypts. In
addition to IND-CPA security, in the threshold setting we would also like to
guarantee that partial decryption shares do not reveal anything about the secret
key shares, even in the face of malicious participants (which also means that
these malicious participants should not be able to recover the message without
a sufficient number of collaborators). To capture this requirement, which we call
share simulatability, we have the following definition:

Definition 2.4. Let (EncKg,Enc, ShareDec, ShareVerify) be a threshold encryp-
tion scheme with N decryption participants. For an adversary A and a bit b, let
pAb (k) be the probability of the event that b′ = 0 in the following game:

– Step 1. {1, . . . , N} ⊃ S
$←− A(1k, N).

– Step 2. (pk , vk , {sk i}i) $←− K(1k, N, S).

– Step 3. b′
$←− ASD(pk , vk , {sk i}i∈S),

where (K,SD) are defined as (EncKg, ShareDec) if b = 0 and the following algo-
rithms if b = 1:

Procedure K(1k, n, S) Procedure SD(t := (i, c, s, I, π))

(pk , vk ′, {sk ′
j}Nj=1)

$←− EncKg(1k, N) m← Dec({sk j}Nj=1, c)

(vk , {sk j}j∈S , τ)
$←− SimKg(pk , vk ′, N, S) (s′, π′)

$←− SimShareDec(pk , vk , τ, t,m)
output (pk , vk , {skj}j∈S ∪ {sk ′j}j∈[N ]\S) output (s′, I ∪ {i}, π′)

Then the threshold encryption scheme is share simulatable if there exist PPT al-
gorithms SimKg and SimShareDec as used above such that for all PPT algorithms
A there exists a negligible function ν(·) such that |pA0 (k)− pA1 (k)| < ν(k).

As SimShareDec can therefore simulate the decryption process without access
to the secret key, we can argue that the shares produced by ShareDec do not
reveal anything more than what an honest decryption would reveal. Finally, we
require that the proof of correctness is meaningful; i.e., that it is hard for an
adversary to produce a ciphertext c, a message m and an accepting proof π such
that m �= Dec(sk , c). More formally:
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Definition 2.5. Let (EncKg,Enc, ShareDec, ShareVerify) be a threshold encryp-
tion scheme with N decryption participants. For an adversary A, define the
following game:

– Step 1. (pk , vk , {sk i}i)
$←− EncKg(1k, N).

– Step 2. (c,m, π)
$←− A(pk , vk , {sk i}i),

Then the threshold encryption scheme is sound if for all PPT algorithms A there
exists a negligible function ν(·) such that the probability that ShareVerify(pk , vk , c,
(m, [N ], π)) = 1 but m �= Dec({sk i}i, c) is at most ν(k).

Putting everything together, we say that a threshold encryption scheme is secure
if it satisfies IND-CPA security, share simulatability, and soundness.

2.4 Compactly Verifiable Voting

In order for ballots to be cast and elections to be publicly verifiable, verifiable
voting schemes use a public space (in practice, an append-only authenticated
storage system) commonly referred to as a bulletin board. To describe an election,
we break it up into several phases, which we describe here. To ease exposition, we
implicitly assume that all parties are informed and agree about when a particular
phase ends and the next one starts; e.g., by a particular symbol being written
on the bulletin board.

– Setup. All authorities meet and jointly compute the public parameters of
the election, while also keeping some correlated secrets private. All public
parameters are published on the bulletin board.

– Voting. Each voter now uses these public parameters to encrypt his vote v
and produce a ballot. All ballots are written on the bulletin board.

– Ballot processing. Next, once all ballots have been cast, they are examined
to weed out invalid or duplicate ballots, and a set of mix authorities shuffle
the remaining valid ballots.

– Tallying. Finally, a set of decryption authorities work together to decrypt
the shuffled ballots. After decryption, the actual count of the votes can be
performed publicly.

This multi-phase model of elections is inspired by the work of Juels et al. [21]
and Bernhard et al. [4], although with some crucial modifications: unlike the
former, we do not address coercion resistance, and unlike the latter we consider
both shuffling and threshold decryption.

As far as security is concerned, there are a wide variety of properties we might
want a voting scheme to satisfy; e.g., keeping users’ votes private, coercion re-
sistance, end-to-end verifiability, etc. In this paper, we focus mainly on this
first property. As did Benaloh [3], we observe that we can provide voter privacy
only up to a certain point; for example, if the election consisted of only one vote
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(or only one vote not controlled by some adversary), then voter privacy would
be quite difficult to enforce! We therefore follow Benaloh’s approach in requiring
that votes can be private only in elections in which different assignments of
honest votes still lead to the same outcome. To capture this property formally,
we say that an election with N decryption authorities, L voters, and M mix

authorities satisfies basic vote privacy if, for a random bit b
$←− {0, 1}, no PPT

adversary A can win the following game with more than negligible advantage:

– Setup. First, a random bit b
$←− {0, 1} is chosen. Then, A picks the decryption

authorities to corrupt as [N ] ⊃ S
$←− A(1k). Then, params

$←− Setup(1k),

({pk i}i, {sk i}i)
$←− ShuffleKg(params), (pk , vk , {dk j}j) $←− EncKg(params).

At the end of the setup phase (params , pk , vk) are added to the bulletin
board, and A gets to see {dk j}j∈S and T := {pk i}i.

– Voting. Proceeding adaptively, the adversary can either provide his own
ballot B, or a vote pair (v0, v1). For the former, the ballot is simply added
to the bulletin board, while for the latter he gets back the ballot Bb (i.e., the
ballot corresponding to either v0 or v1), which is also added to the bulletin
board. At the end of the phase (i.e., once there are L votes on the board), A
automatically loses if the election outcome differs between b = 0 and b = 1.

– Ballot processing. In this phase, in addition to access to the bulletin board,
we give the adversary access to two shuffle oracles: an initial shuffle oracle
that, on input pk � for pk � ∈ T , writes ({c′i}i, π, {pk �}�) on the bulletin board
(if all the ballots on the bulletin board are valid), where π is a proof that
the {c′i}i constitute a valid shuffle of the initial ballots {Bi}i performed by
the user corresponding to pk � (i.e., the user who knows sk �); and a reg-
ular shuffle oracle that, on input ({c′i}i, π, {pk j}j, pk �) for pk � ∈ T , adds
both ({c′i}i, π, {pk j}j) (if it cannot be found there already) and the shuffled
({c′′i }i, π′, {pk j}j ∪ {pk �}) to the bulletin board. The phase ends when the
final shuffle ({c′i}i, π, {pk j}j) such that |{pk j}j| =M and {pk j}j ∩ T �= ∅ is
written to the bulletin board, either by the shuffle oracle or by the adversary.

– Tallying. The adversary can ask for decryption shares for the shuffled {c′i}i
through an oracle that, on input (j, k, sk, I, φk), computes (s′k, I∪{j}, φ′k)

$←−
ShareDec(pk , vk , dk j , c

′
k, (sk, I, φk)) and posts both (sk, I, φk) (if it cannot be

found there already; sk = ⊥ and I = ∅ denotes an initial decryption) and
the share (s′k, I ∪ {j}, φ′k) with its new contribution. The phase ends when,
for every i, 1 ≤ i ≤ L, the final decryption share (si, [N ], φi) is written to
the bulletin board, either by the share decryption oracle or by the adversary.

– Winning the game. The adversary outputs b′, and wins if b′ = b.

While the above definition explicitly captures vote privacy, we could also attempt
to extend it to deal with verifiability by requiring that, if π and φi verify for all
i, then the expected outcome (based on the vi and the decryption of ci in the
adversary’s ballots) should match the real outcome. While the soundness of the
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proofs used in our construction in Section 5 should guarantee that this holds,
we focus solely on privacy in this work and leave a formal proof of verifiability
as an interesting open problem.

3 A Compactly Verifiable Shuffle

In this section, we show how to achieve a compactly verifiable shuffle, as defined
in Definition 2.3, with parameter size O(L) and proof size O(L +M) by using
the verifiable shuffle due to Groth and Lu [19]. To do this, we use the following
outline: first, we show that an adapted version of the Groth-Lu construction is
what CKLM call CM-friendly, meaning that a pairing-based cm-NIZK can be
constructed based on it. We then observe that, once we have a cm-NIZK, we can
plug it into the generic construction of CKLM to obtain a compactly verifiable
shuffle.

In the definition of CM-friendliness as proposed by CKLM [7, Definition 4.3],
they assigned the property of CM-friendliness to a relation and transformation;
in the case of a shuffle, this relation and the set of transformations describe the
permutation and randomization of ciphertexts, as we saw formally in Section 2.2.
We propose a useful weakening of this definition that shifts the assignation of
CM-friendliness from the relation to its specific instantiation using a sound proof
system; as we will see, this allows the definition to accomodate computationally
sound proofs (i.e., arguments) as well as the perfectly sound proofs that the
previous definition required. We capture the previous definition as perfect CM-
friendliness.

Due to space constraints, we present here only an informal version of our
definition; the formal definition can be found in the full version of the paper.

Definition 3.1. (Informal.) For sets S and S′ of pairing product equations

and a PPT setup algorithm params
$←− CRSSetup(1k) that specifies some group

G, we say that (S, S′,CRSSetup) is a CM-friendly instantiation for a relation
R and transformation class T if the following six properties hold: (1) repre-
sentable statements: any instance and witness of R can be represented as a set
of group elements; (2) representable transformations: any transformation in T
can be represented as a set of group elements; (3) provable statements: prov-
ing satisfaction of S constitutes a computationally sound proof for the state-
ment “(x,w) ∈ R” using the above representations for x and w; (4) provable
transformations: proving satisfaction of S′ constitutes a computationally sound
proof for the statement “Tinst(x

′) = x for T ∈ T ” using the above representa-
tions for x and T ; (5) transformable statements: for any T ∈ T the statement
“(x,w) ∈ R” (phrased using S as above) can be transformed into the state-
ment “(Tinst(x), Twit(w)) ∈ R”; and (6) transformable transformations: for any
T, T ′ ∈ T , the statement “Tinst(x

′) = x for T ∈ T ” (phrased using S′ as above)
can be transformed using valid transformations into the statement “T̂x(x

′) = x̂
for T̂ ∈ T ” where T̂ = T ′ ◦ T and x̂ = T̂x(x). We say that (S, S′,CRSSetup)
is a perfect CM-friendly instantiation if the probabilities in the third and fourth
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properties are zero. A relation and transformation class (R, T ) are (perfectly)
CM-friendly, if they have a (perfect) CM-friendly instantiation.

To instantiate the shuffle relation and transformations from Section 2.2, we com-
bine the proof of hard relation instances of CKLM and an adapted version of
the Groth-Lu protocol for the permutation proof. We omit the proof that the
{pk j}j are the public keys for Rpk in our exposition as it is unchanged from the
original CKLM shuffle.

Our adapted version Groth-Lu protocol is slightly less efficient than theirs
and achieves a weaker notion of zero knowledge (theirs is perfect whereas ours is
computational) but a stronger notion of soundness (theirs achieves the slightly
non-standard notion of Lco-soundness, whereas ours is computationally sound).
These tradeoffs seem necessary, as it is not clear how to accomodate the def-
inition of CM-friendliness (or of a cm-NIZK or compact shuffle) to allow for
Lco-soundness.

Following Groth and Lu, the instantiation we use for the shuffle encryption
scheme is Boneh-Boyen-Shacham (BBS) encryption [5], which uses a prime-order
bilinear group setting (p,G,GT , g, e) with public keys of the form pk := (f, h)

for f := gα and h := gβ (for random α, β
$←− Fp) and ciphertexts of the form

c := (u, v, w) for u := f r, v := hs, and w := gr+sm (for the message m and

r, s
$←− Fp). Using this, we can show how to satisfy CM-friendliness, starting

with CRSSetup(1k):

– CRSSetup(1k): First generate a prime-order bilinear group (p,G,GT , e, g). To

allow for a shuffle over L ciphertexts, pick x1, . . . , xL
$←− Fp and set gi := gxi

and γi := gx
2
i for all i. Output crs := (p,G,Gt, e, g, {gi}i, {γi}i).

With this in place, we now describe how the six properties of CM-friendliness
are met; in what follows, we highlight the involvement of the permutation by
using ϕ(gi) in place of gϕ(i) (and similarly for other variables):

1. Representable statements. Because we are using BBS encryption, instances
will use pk = (f, h), ci = (ui, vi, wi), and c

′
i = (u′i, v

′
i, w

′
i). We represent the

witness as follows: to represent ϕ, we use ({ai}i, {bi}i), where ai = ϕ(gi) and
bi = ϕ(γi) for all i, 1 ≤ i ≤ L, and to represent Ri we use (f r

′
i , hs

′
i , gr

′
i , gs

′
i)

for random r′i, s
′
i

$←− Fp.

2. Representable transformations. We represent T(ϕ,{Ri}i) = (Tinst, Twit) in the

same form as witnesses; i.e., ({ai}i, {bi}i) for ϕ and (f r
′
i , hs

′
i , gr

′
i, gs

′
i) for all

Ri.

3. Provable statements. To prove that, under the public key pk = (f, h), the
set of ciphertexts {(u′i, v′i, w′

i)}i is a shuffle of {(ui, vi, wi)}i using the per-
mutation represented by ({ai}i, {bi}i) and re-randomization represented by
{(f r′i , hs′i , gr′i , gs′i)}i, we use the set S of pairing product equations defined
as follows:
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(1)

L∏
i=1

e(ai, u
′
i) =

L∏
i=1

e(ai, f
r′i)e(gi, ui), (2)

L∏
i=1

e(bi, u
′
i) =

L∏
i=1

e(bi, f
r′i)e(γi, ui),

(3)

L∏
i=1

e(ai, v
′
i) =

L∏
i=1

e(ai, h
s′i)e(gi, vi), (4)

L∏
i=1

e(bi, v
′
i) =

L∏
i=1

e(bi, h
s′i)e(γi, vi),

(5)
L∏

i=1

e(ai, w
′
i) =

L∏
i=1

e(ai, g
r′igs

′
i)e(gi, wi),

(6)
L∏

i=1

e(bi, w
′
i) =

L∏
i=1

e(bi, g
r′igs

′
i)e(γi, wi),

(7)
L∏

i=1

aig
−1
i = 1, (8)

L∏
i=1

biγ
−1
i = 1, (9) e(ai, ai) = e(g, bi) for all i, 1 ≤ i ≤ L,

(10) e(fr′i , g) = e(f, gr
′
i) for all i, and (11) e(hs′i , g) = e(h, gs

′
i) for all i.

4. Provable transformations. To prove Tinst(x
′) = x for T ∈ T , we use the

same equations from the above set S. We must additionally prove that the
transformation does not change pk or {ci}i; to do this, we form an aug-
mented set S′, which consists of all the equations in S as well as equa-
tions to check that these values stay fixed. More formally, if we represent X
as (pk , {(ui, vi, wi)}i, {(u′i, v′i, w′

i)}i) and X ′ as (pk ′, {(Ui, Vi,Wi)}i, {U ′
i , V

′
i ,

W ′
i}i), then our extra checks ensure that pk = pk ′ and ui = Ui, vi = Vi,

wi =Wi for all i, 1 ≤ i ≤ L. We can then run the checks in S using Tinst as
the witness and XT := (pk , {(u′i, v′i, w′

i)}i, {(U ′
i , V

′
i ,W

′
i )}i) as the instance.

5. Transformable statements. CKLM already show how to permute variables
by a permutation ϕ and multiply re-randomization factors into ciphertexts
using valid transformations; we therefore assume these operations exist and
are valid. To change the statement (x,w) ∈ R into (Tinst(x), Twit(w)) ∈ R
for X = (pk , {(ui, vi, wi)}i, {(u′i, v′i, w′

i)}i), W = (({ai}i, {bi}i), {Ri}i), and
T = (ϕ′, {R′

i}i), we therefore begin by permuting the values {(u′i, v′i, w′
i)}i,

{ai}i, and {bi}i by ϕ′; this operation affects Equations 1 through 9 in S. We
then multiply the additional randomness {R′

i}i into Equations 1 through 6,
as well as Equations 10 and 11.

6. Transformable transformations. To change the statement Tinst(x
′) = x into

T ′
inst◦Tinst(x′) = T ′

inst(x), we leave the additional checks in S
′ (i.e., the checks

that ensure that pk and {ci}i go unchanged) as they are. We then transform
S as we did above using the values (ϕ′, {R′

i}i) specified in T ′
inst, so that we

permute the values {(u′i, v′i, w′
i)}i, {ai}i, and {bi}i by ϕ′ and multiply the

additional randomness into Equations 1 through 6 and 10 and 11.

Due to space constraints, a proof of the following theorem can be found in the
full version of the paper:
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Theorem 3.1. If both the Permutation Pairing and Simultaneous Pairing as-
sumptions hold, then (S, S′,CRSSetup) as defined above is a CM-friendly instan-
tiation for the shuffle relation R (defined in Section 2.2) and the transformation
class T consisting of all valid shuffles.

Now that we have a CM-friendly instantiation for the shuffle relation, we can use
the results of CKLM to construct a cm-NIZK for this relation. As we slightly
weakened the notion of CM-friendliness, we argue in the full version of the pa-
per that their results still carry through to produce a cm-NIZK; we mention here
that our proof is nearly identical, as the notion of soundness used for cm-NIZKs
is already computational.

Armed with our cm-NIZK, we now plug it into the generic verifiable shuffle
construction of CKLM , which they already proved secure. We can even use
the same representation of mix server keys as CKLM, which means pk j := gαj

and sk j := hαj for αj
$←− Fp and h := gβ for some β

$←− Fp. As for the size,
looking at the construction above we see that the CRS must contain the gi and
γi elements for all i (and adding in the parameters for Rpk adds only the single
group element h), which means the parameters are of size O(L). For the proofs,
Equations 9, 10, and 11 in S are required for every i, so the size of the proof
is also O(L). In addition, a constant number of equations is required to check
that (pk j , sk j) ∈ Rpk for every value of j; if the number of mix authorities is M ,
then this adds a proof component of size O(M) and thus our total proof size is
O(L +M).

4 Threshold Decryption

In this section, we provide our construction of a threshold encryption scheme that
satisfies the notions of security defined in Section 2.3; i.e., IND-CPA security,
share simulatability, and soundness. We provide first a construction using a
generic malleable NIZK proof of knowledge (NIZKPoK), and then describe in
the full version of the paper [9]how to instantiate this proof system concretely.

4.1 Our Construction

In threshold decryption, the statement that each participant i wants to prove is
that the share s he produces is a correct partial decryption of some ciphertext c.
Formally, we represent instances as x = (vkc, c, s), where c is a ciphertext, and s
is the cumulative decryption share produced by the combined user represented
in vkc, and witnesses as (t, open), where t is a secret token (in our case, a
bijection applied to the cumulative secret key) used to prove correctness of partial
decryption, and vk c = Com(t; open) for some commitment scheme Com. The
statement we want to prove is then

((vk c, c, s),(t, open)) ∈ R⇔
∃skc : vkc = Com(t; open) ∧ t = F (sk c) ∧ s = Dec(sk c, c), (1)
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where F is the bijection between cumulative secret keys and tokens.
Transformations for this relation correspond to a new set of users J folding in

their shares. This means we represent transformations as T = (ŝ, t̂, ôpen), where
Tinst(vk c, c, s) := (vk c ·Com(t̂; ôpen), c, s · ŝ) and Twit(t, open) = (t · t̂, open · ôpen);
the transformation is considered allowable if ŝ is a valid share using the token t̂;
i.e., ŝ was computed using the secret key ŝk corresponding to t̂.

Our concrete instantiation uses BBS encryption [5], which is multiplicatively
homomorphic; this is why we multiply both the shares and the tokens to combine
them. We also use a commitment scheme Com and a strongly derivation-private
malleable NIZK proof of knowledge (CRSSetup,P ,V ,ZKEval). We will see later
how to instantiate the NIZK concretely; for the commitment scheme (which we
use to commit to the two components of t) we can use the instantiation of Groth-
Sahai commitments under Decision Linear, which are almost identical to BBS
encryption (and thus also multiplicatively homomorphic). We thus usually keep
these parameters implicit.

– EncKg(1k): Generate crs
$←− CRSSetup(1k) and par

$←− ComSetup(1k); these

are defined over a shared bilinear group (p,G,GT , e, g). Pick random α, β
$←−

Fp, set f := gα and h := gβ, and set pk := (f, h). Next, to allow N par-

ties to partake in decryption, compute a1, b1, . . . , aN−1, bN−1
$←− Fp and

aN := −1/α −
∑
i ai and bN := −1/β −

∑
i bi. Next, for all i, set t1i :=

gai , t2i := gbi , and form commitments Ai
$←− Com(t1i; open1i) and Bi

$←−
Com(t2i; open2i) using random openings. Set vk ′ := {(Ai, Bi)}i and sk i :=
(ai, bi, t1i, t2i, open1i, open2i) for all i, 1 ≤ i ≤ n. Output pk , vk := (crs, par,
vk ′), and {sk i}i.

– Enc(pk ,m): Parse pk = (f, h) and pick random r, s
$←− Fp. Set u := f r,

v := hs, w := gr+sm, and output c := (u, v, w).

– Dec({sk i}ni=1, c): Parse c = (u, v, w) and sk i = (ai, bi, t1i, t2i, open1i, open2i)
for all i, and compute a :=

∑
i ai and b :=

∑
i bi. Output m := ua · vbw. (By

definition, a = −1/α and b = −1/β, so this is just standard BBS decryption
with a reconstructed key.)

– ShareDec(pk , vk , sk j , c, (s, I, π)): Parse sk j = (aj , bj , t1j , t2j , open1j , open2j).
If (s, I, π) = (⊥,⊥,⊥), then this is the initial decryption. Compute the

share sj := uajvbjw and π
$←− P(crs, (vk j , c, sj), (t1j , t2j, open1j , open2j)),

and output (sj , {j}, π).
Otherwise, define vkc :=

∏
i∈I vk

′
i and check that V(crs, (pk , vkc, c, s), π) = 1;

abort and output ⊥ if not. Otherwise continue and compute sj := uajvbj

and s′ := s · sj ; then set T := (sj , (t1j , t2j), (open1i, open2i)). Compute π′ $←−
ZKEval(crs, T, (vkc, c, s), π), and output (s′, I ′ := I ∪ {j}, π′).

– ShareVerify(pk , vk , c, (s, I, π)): Parse vk = (crs, par, vk ′) and output V(crs,
(pk ,
∏
i∈I vk

′
i, c, s), π).

As the security of both BBS encryption and our cm-NIZK come from Decision
Linear, we obtain the following theorem.
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Theorem 4.1. If Decision Linear holds in G then we can instantiate the above
construction to obtain a secure threshold decryption scheme, as defined in Sec-
tion 2.3.

To prove this, we must prove that four properties are satisfied: completeness,
IND-CPA security, soundness, and share simulatability. The first of these, com-
pleteness, follows directly by inspection; similarly, for IND-CPA security, as we
use BBS encryption, IND-CPA follows directly from their result and holds under
Decision Linear.

For the latter two, we prove them using the security of the commitment scheme
and NIZK. Interestingly, while the proof system is required to be malleable,
strongly derivation private, and zero knowledge, for soundness we require not
the strong notion of CM-SSE for cm-NIZKs, but instead regular extractability
(i.e., we require the proof to be a proof of knowledge). Intuitively, the reason for
this is that in the soundness game the adversary is not provided with simulated
proofs, and we can therefore always expect to be able to extract a witness (rather
than just a transformation as we do with CM-SSE).

Lemma 4.1. If (CRSSetup,P ,V ,ZKEval) is extractable and Com is binding, the
threshold encryption scheme describe above is sound, as defined in Definition 2.5.

Lemma 4.2. If (CRSSetup,P ,V ,ZKEval) is zero knowledge and strongly deriva-
tion private, and Com is hiding, the threshold encryption scheme described above
is share simulatable, as defined in Definition 2.4.

Due to space constraints, the proofs of these lemmas and the concrete imple-
mentation of the cm-NIZK, using Groth-Sahai proofs, can be found in the full
version of the paper. For our concrete instantiation, we mention here that we
follow the same outline as in Section 3 to show that R has a CM-friendly in-
stantiation. In fact, as we encode x, w, and T directly without relying on any
computational assumptions, we can achieve perfect CM-friendliness.

5 A Secure Voting Scheme

In this section, we bring together the components constructed in the previ-
ous two sections to construct an electronic voting scheme from a compactly
verifiable shuffle (Setup, ShuffleKg, Shuffle,Verify), a secure threshold decryption
scheme (EncKg,Enc, ShareDec, ShareVerify), and a simulation-sound extractable
proof (CRSSetup,P ,V).

– Setup. The voting authorities jointly compute the parameters params
$←−

Setup(1k) and threshold keys (pk , vk , {dk j}j)
$←− EncKg(params). The mix

authorities compute the shuffling keys ({pk i}i, {sk i}i)
$←− ShuffleKg(params),

and the values params , pk , and vk are added to the bulletin board.

– Voting. Each voter i forms ci
$←− Enc(pk , vi) (using some randomness ri) and

proves knowledge of his vote by computing πi
$←− P(crs, (pk , c), (vi, ri)). The

resulting ballot (ci, πi) is added to the bulletin board.
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– Ballot processing. The mix authority with public key pkk picks the most
recent valid shuffle ({c′i}i, π, {pk j}j); e.g., the one with the most public keys,
or the one that has used the correct sequence of public keys (if an order has

been imposed). It performs ({c′′i }i, π′)
$←− Shuffle(params , {ci, πi}i, {c′i}i, π,

{pk j}j , (pkk, skk)) and posts ({c′′i }i, π′, {pk j}j∪{pkk}) to the bulletin board.
The ballot processing phase ends once there is a valid sequence of shuffle
proofs with sufficiently many mix authorities.

– Tallying. Let ({c′i}i, π, {pk j}j) be the completed shuffle. Each decryption au-
thority looks for the valid decryption shares (si, I, φi) with the largest set I.

The k-th decryption authority performs (s′i, I ∪ {k}, φ′i)
$←− ShareDec(pk , vk ,

dkk, ci, (si, I, φi)) for all i and posts (s′i, I ∪ {k}, φ′i) on the bulletin board.

Theorem 5.1. The voting scheme outlined above satisfies basic voter privacy,
as defined in Section 2.4.

To prove this, we proceed through a series of game transformations; due to space
constraints, the transformations and proofs of their indistinguishability can be
found in the full version of the paper.
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Abstract. We revisit the context of leakage-tolerant interactive proto-
cols as defined by Bitanski, Canetti and Halevi (TCC 2012). Our contri-
butions can be summarized as follows:

1. For the purpose of secure message transmission, any encryption pro-
tocol with message space M and secret key space SK tolerating
poly-logarithmic leakage on the secret state of the receiver must sat-
isfy |SK| ≥ (1− ε)|M|, for every 0 < ε ≤ 1, and if |SK| = |M|, then
the scheme must use a fresh key pair to encrypt each message.

2. More generally, we show that any n party protocol tolerates leak-
age of ≈ poly(log κ) bits from one party at the end of the protocol
execution, if and only if the protocol has passive adaptive security
against an adaptive corruption of one party at the end of the proto-
col execution. This shows that as soon as a little leakage is tolerated,
one needs full adaptive security.

3. In case more than one party can be corrupted, we get that leak-
age tolerance is equivalent to a weaker form of adaptivity, which we
call semi-adaptivity. Roughly, a protocol has semi-adaptive security
if there exist a simulator which can simulate the internal state of
corrupted parties, however, such a state is not required to be indis-
tinguishable from a real state, only that it would have lead to the
simulated communication.

All our results can be based on the solely assumption that collision-
resistant function ensembles exist.

Keywords: simulation-based security, leakage tolerance, adaptive secu-
rity, arguments of knowledge.

1 Introduction

Would you trust your partner when you don’t trust his secrets? Suppose that
Alice has a confidential message m she wants to communicate to Bob, in a way
that the content of m is protected from outsiders. In a world where public key
cryptography exists, Bob can sample a fresh public key pk and hands it to Alice
via an authenticated channel (while keeping the corresponding secret key sk).
Now Alice can use pk to encrypt m and send the resulting ciphertext c to Bob,
who in turn can decrypt using sk and recover the message.

The problem sketched above, also known as the problem of secure message
transmission, is one of the most basic questions in cryptography. For instance we
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know that when Bob’s secret key is uniform and “well protected”, any semanti-
cally secure encryption scheme would suffice for the purpose of secure message
transmission. But what if (part of) Bob’s secrets can leak to an outsider? Even
when Bob’s secret is not exposed, what if the randomness Alice used to encrypt
can leak? Can Alice still trust the protocol above?

Leakage-resilient cryptography. In the last few years, questions of this kind
gained momentum in the cryptographic community due to the spread of side-
channel attacks. Starting from the early 90s’, it has become clear that an adver-
sary can potentially gain partial information on the secret state of uncorrupted
players in a variety of ways, e.g. by measuring time [26], power [27] and electro-
magnetic emission [34]. This information, often called leakage, can be powerful
knowledge in the hands of an adversary, putting security of the cryptographic
primitive under attack on edge.

Indeed, cryptographic algorithms are typically analyzed in a black-box fashion
where secrets are assumed to be completely oblivious to an adversary; in partic-
ular they offer no guarantees in the presence of side-channel attacks. To change
the above state of affairs, researchers started to investigate the possibility of
constructing schemes which preserve both their functionality and their security
properties even in the presence of (an as large as possible class of) leakage. As
a result, we now possess a rich list of leakage-resilient (a.k.a. leakage-tolerant)
schemes, e.g., for pseudorandomness generation [14,32], storage [8,11], encryp-
tion [30,9], signatures [24,15] and general non-interactive circuits [22,16,13].

However, in order to have a scheme Π which maintains (in the presence of
leakage) exactly the same security guarantees it has in a leak-free setting, some
restriction on the leakage itself must be placed as to escape trivial attacks.
Examples include putting a bound on the total information leaked, assuming that
“only computation leaks information” [29], that different parts of the memory
leak independently [8,11,12], that leakage occurs only in specific times or that
the leakage is “hard to invert” [10]. Two general approaches have emerged:

- In the game-based approach, one augments the standard cryptographic game
for Π by giving the adversary A access to an auxiliary interface from which
she can input some function (within a set of admissible leakage functions)
and receive back the value of the function applied to the secret state of Π .

- In the simulation-based approach, one shows that Π (augmented with a
leakage interface) achieves the same properties of an ideal execution where
a simulator S interacts with a functionality F (augmented with a leakage
interface) and no communication between parties takes place. Hence, security
is achieved if A can be simulated in the UC framework [6], i.e. for any A

attacking Π there exists a simulator S such that no environment Z can tell
whether it is interacting with A and Π or with S and F.

Both approaches have advantages and disadvantages. Sometimes, game-based
notions do not exactly capture the realistic security threats they wish to model
and do not come in general with easy composition rules. Simulation-based no-
tions are harder to achieve and often require the use of expensive tools.
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The model of Bitanski, Canetti and Halevi. In this paper we focus on the second
approach, building upon previous work of Bitanski et al. [5]. In their model,
leakage queries from an adversary A are viewed as a form of partial corruption,
where A does not receive the complete state of the chosen party but just some
function fA(·) of it.

Note that without any help the simulator S would have a very hard life.
Consider for instance the case of secure message transmission: Already a single
bit of arbitrary leakage, say the first bit of the transmitted message, makes
it impossible to achieve semantic security! The solution is to allow also the
simulator to leak on the “ideal state” of the protocol, by specifying some function
fS(·). Now, security means that a real world attacker leaking λ bits from the
entire secret state of the implementation can be simulated given λ bits of leakage
on the corresponding ideal state (i.e., on the message alone in case of secure
message transmission).

The functionality is also able to react to leakage, in the sense that it can
be asked to “give-up” on security when too much leakage occurred. This feature
allows us to model relaxed security notions of protocols in the presence of leakage,
and in particular to specify how the security degrades with the leakage.

1.1 Our Contribution

We revisit the context of leakage-tolerant interactive protocols. Our results give
strong evidence that leakage tolerance in the simulation-based setting requires
expensive tools already when a small amount of leakage needs to be tolerated.
Our main contributions are outlined below:

1. For the concrete case of secure message transmission, we show that any
encryption protocol Π tolerating a poly-logarithmic amount of leakage in
the definition of Bitanski et al. [5] must satisfy |SK| ≥ (1 − ε)|M| for all
0 < ε ≤ 1, whereM is the message space and SK is the space of secret keys.
In other words, the decryption key must be essentially as long as the message
being encrypted. Furthermore, if the messages and the secret keys have the
same length, then a fresh key must be used to encrypt every message.

2. We prove that Π is secure against one adaptive corruption of the receiver at
the end of the protocol execution if and only if Π is secure against leakage
of ≈ poly(log κ) bits from the receiver’s internal state at the end of the
protocol execution. More in general, we prove that any n-party protocol
tolerates leakage of ≈ poly(log κ) bits from one party at the end of the
protocol execution, if and only if the protocol has passive security against
an adaptive corruption. This shows that simulation-based leakage tolerance
becomes identical to full adaptive security already for very little leakage, as
long as at most one party can be corrupted.

3. We further explain how to generalize our result from 2 to adaptive corruption
of an arbitrary number of parties in a leakage-tolerant protocol.

All our results can be based on the solely assumption that collision-resistant
function ensembles exist.
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1.2 Our Techniques

At the heart of our results there is a novel technique exploiting succinct inter-
active arguments for NP. These are argument systems where the total amount
of communication is at most poly-logarithmic in the length of the witness and
the instance being proven. Succinct interactive arguments (with a constant num-
ber of rounds) are known to exist given any collision-resistant function ensem-
ble [25,36].

Proof outline We now sketch the proof of our main result. Since protocol Π is
leakage-tolerant, there exists a simulator S producing a “convincing” view of the
protocol for A. In addition, S can handle leakage queries from A.

We exhibit an environment Z for which the existence of a simulator yields
our bound. The environment inputs a uniformly random m ∈ M. Then, it lets
the protocol terminate without making any leakage query or any corruption,
i.e. it simply delivers all messages between Alice (the sender) and Bob (the
receiver). As part of this, Z learns pk and the ciphertext c from observing the
communication on the authenticated channel. After the protocol terminates, Z
asks the receiver to prove the following NP-statement via a succinct argument
system: “There exists some sk that explains c as an encryption of m”. Notice
that the receiver can do this as it knows the secret key (i.e., a valid witness).

The crux of the strategy above is that Z can play the role of the verifier in the
interactive argument by using the leakage queries on the state of the receiver to
“extract” the massages of the prover.

Now, by completeness of the argument system, in the real world the proof
will be accepting with overwhelming probability. On the other hand, leakage
tolerance of Π implies that the simulator must cook-up an indistinguishable
output in the ideal world. However, S has to choose c beforehand to simulate
A’s view, and later answer leakage queries consistently by “explaining” c as an
encryption of m for decryption key sk. It follows from (computational) sound-
ness of the proof system that this is only possible if for a large fraction of the
messages in M there exists a secret key sk′ which explains c consistently. From
this, a simple counting argument shows that |M| must be negligibly close to
|SK|.

Extracting the state Let H(·) be a collision-resistant hash function with range
μ bits. When the argument system from above is an argument of knowledge
(i.e., there exists a knowledge extractor which is able to extract a valid witness
for a statement when given access to a successful prover with respect to that
statement), we are able to show that Π is leakage-tolerant against 2poly(log κ)+
μ+1 bits of leakage from the receiver’s internal state, if and only if Π has semi-
honest adaptive security. The second direction follows directly from the result
of [5] that adaptive (semi-honest) security is sufficient to obtain leakage tolerance
for a broad class of functionalities.
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To prove the first direction, one has to construct a simulator S′ which simulates
first the communication (pk, c) of the protocol to adversary A′, and then after
being given m simulates the internal state of the receiver consistently. Roughly,
we do this as follows. We start by considering an adversary A against leakage
tolerance of Π ; from the definition of leakage tolerance, we know there exists a
simulator S. Hence, we use S to construct S′. The adversary starts by leaking
the value h obtained by applying H(·) on the final state of the receiver; then
A uses an argument of knowledge to ask for a proof that there is a consistent
state inside the receiver which could be extracted (consistent also with the above
value of h). Now, A uses an additional leakage query to “send” a distinguisher
Z′ (attacking adaptive security of Π) inside the receiver, have a look at the state
and output its guess b. Finally, the adversary leaks a proof that the bit b was
actually computed by Z′ from the same state which could be extracted from the
first argument of knowledge. Note that the latter can be achieved by using the
same value of h in both arguments.

It follows that if we later use a simulator S′ for this attack and extract from
its first argument of knowledge some state, this state will have to look indis-
tinguishable from a real state to any Z′ (as long as finding collisions in H(·) is
hard). Adaptive security follows.

Semi-adaptive security The above proof technique is quite general, and in fact
it can be applied to any leakage-tolerant interactive n-party protocol, where at
most one party gets corrupted. The n-party case with arbitrary corruptions is
more subtle as now a distinguisher for the adaptive security game should have
access to the state of all parties when it makes its guess, and it is not clear how
to simulate this given short leakages from each state. In particular, we cannot
“send” a distinguisher Z′ into each of the parties one by one, as sending Z′

out of the parties again could require too much leakage. Indeed, in this case we
do not know how to force the extracted internal states from the parties to be
indistinguishable from the internal state in the real world. All that is guaranteed
is that the states are consistent with the simulated public communication.

We say that Π has semi-adaptive security if there exist a simulator which can
simulate the internal state of corrupted parties, in the sense that it can output
some internal state consistent with what the party has sent and received. Notice
that the state may not look indistinguishable from a real state, but it would have
lead to the simulated communication. Hence, one can show that if an arbitrary
interactive n-party protocol Π is able to tolerate a little leakage from t parties
at the end of the execution of the protocol, then Π must be semi-adaptive secure
against a semi-honest adversary which is allowed to do t adaptive corruptions.

1.3 Related Work

Simulation-based notions of leakage tolerance have been considered also for pub-
lic key encryption schemes by Halevi and Lin [20] and in the context of zero-
knowledge protocols by Garg et al. [18].
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We mention a few other papers exploiting argument systems for negative
results. The first one is the work on “seed-incompressible functions” of Halevi,
Myers and Rackoff [21], who use CS proofs [28] to show that no pseudorandom
function exists which remains secure after one leaks a “compressed” key. Another
example is the work of [33] on parallel repetition of computationally sound proofs
and the work of Jain and Pietrzak [23], who show that (game-based) leakage
resilience for natural primitives like signatures and encryption does not always
amplify in case of parallel repetition. The first and the last results rely on random
oracles, whereas the second one is based on universal arguments [1].

We stress that the techniques used in all the above works are substantially
different than ours.

2 Preliminaries

2.1 Notation

We let N denote the naturals and R denote the reals. For a, b ∈ R, we let
[a, b] = {x ∈ R ; a ≤ x ≤ b}; for a ∈ N we let [a] = {1, 2, . . . , a}. If x is a
string, we denote its length by |x|; if X is a set, |X | represents the number of
elements in X . When x is chosen randomly in X , we write x ← X . When A is
an algorithm, we write y ← A(x) to denote a run of A on input x and output
y; if A is randomized, then y is a random variable and A(x; r) denotes a run
of A on input x and randomness r. An algorithm A is probabilistic polynomial-
time (PPT) if A is allowed to use randomness as part of its logic (i.e., A is
probabilistic) and for any input x ∈ {0, 1}∗ the computation of A(x) terminates
in at most poly(|x|) steps.

Let κ be a security parameter. A function negl is called negligible in κ (or
simply negligible) if it vanishes faster than the inverse of any polynomial in κ.
For a relation R ⊆ {0, 1}∗ × {0, 1}∗, the language associated with R is LR =
{x : ∃w s.t. (x,w) ∈ R}.

For two ensembles X = {Xκ}κ∈N,Y = {Yκ}κ∈N, we write X ≈ Y, meaning
that every probabilistic polynomial-time distinguisher has negligible advantage
in distinguishing X and Y.

2.2 Interactive Argument Systems

Our results are based on the existence of round-efficient interactive argument
systems. The definition below is taken from [36].

Definition 1 (Round-efficient interactive argument system). An inter-
active protocol (P, V ) is an interactive argument system for a language L if
there is a relation R such that L = LR, and functions ν, s : N→ [0, 1] such that
1− ν(κ) > s(κ) + 1/poly(κ) and the following holds:

- (Efficiency): The length of all the exchanged messages is polynomially bounded
and both P and V are computable in probabilistic polynomial time;
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- (Completeness): If (x,w) ∈ R, then V accepts in (P (w), V )(x) with proba-
bility at least 1− ν(|x|).

- (Computational soundness): If x �∈ L, then for every non-uniform proba-
bilistic polynomial-time P ∗ and for all sufficiently long x �∈ L, the verifier V
accepts in (P ∗, V )(x) with probability at most s(|x|).

The value ν(·) is called the completeness error and the value s(·) is called the
soundness error. We say (P, V ) has perfect completeness if ν = 0. The commu-
nication complexity of the argument system is the total length of all messages
exchanged during an execution; the round complexity is the total number of
exchanged messages. The protocol is called public-coin when the verifier’s moves
consist merely of tossing coins and sending their outcomes to the prover.We write
AMν,s(ρ(κ), λ(κ)) to denote public-coin interactive argument systems with com-
pleteness error ν, soundness error s, round-complexity ρ(κ) and communication
complexity λ(κ). Sometimes we also write λ(κ) = λP (κ)+λV (κ) to differentiate
between the communication complexity of the prover and of the verifier. We say
(P, V ) is succinct if λ(κ) is poly-logarithmic in the length of the witness and the
statement being proven.

We get an argument of knowledge whenever it is possible to extract a witness
from any successful prover:

Definition 2 (Argument of knowledge). An interactive protocol (P, V ) is
an interactive argument of knowledge for a language L if it is an interactive
argument system, where the computational soundness condition is replaced by
the following:

- (Argument of knowledge): For every non-uniform probabilistic polynomial-
time P ∗ such that V accepts in (P ∗, V )(x) with overwhelming probability,
there exists a non-uniform probabilistic polynomial-time extractor EP∗ out-
putting (x,w) such that (x,w) ∈ R with overwhelming probability.

There are other forms of extractability, where from any prover succeeding to
convince V with probability p(·), one can extract a witness with probability
which is polynomially related to p(·) [2,35]. Here we only need the weak notion
above, where extraction is only guaranteed if the prover convinces the verifier
with probability close to 1. The technical reason is that in the real world we will
ask a party to “leak” an argument of knowledge of its internal state, which will
succeed with overwhelming probability by completeness.

Instantiations Kilian [25] constructs a 4-round public-coin succinct argument of
knowledge for NP based on a probabilistically checkable proof (PCP) system
for NP and a collision-resistant function ensemble. Gentry and Wichs [19] prove
that non-interactive succinct arguments, so called SNARGs, cannot exist given a
black-box reduction to any falsifiable assumption. In fact, the only constructions
of SNARGs we know of are either based on the random oracle model of Bellare
and Rogaway [3] (as shows Micali [28] by applying the Fiat-Shamir transform [17]
to Kilian’s protocol) or under so-called “knowledge of exponent” assumptions [4].



504 J.B. Nielsen, D. Venturi, and A. Zottarel

We remark that for our results interactive arguments are sufficient; in particu-
lar our theorems can be based on the assumption that collision-resistant function
ensembles exist.

2.3 Leakage-Tolerant Secure Message Transmission

Syntax of public-key encryption A public-key encryption (PKE) scheme is a tuple
of algorithms (Gen,Enc,Dec) defined as follows. The key generation algorithm
Gen takes as input a security parameter κ and outputs (pk, sk) ← Gen(1κ);
we let PK × SK be the key space. The encryption algorithm takes as input a
message m ∈ M and outputs a ciphertext c ← Enc(pk,m) in some ciphertext
space C. The decryption algorithm takes as input a ciphertext c ∈ C and a secret
key sk ∈ SK and outputs m← Dec(sk, c).

Since we aim to apply our result to arbitrary encryption schemes, we will
assume that decryption is also randomized. We say that (Gen,Enc,Dec) has
negligible completeness error if it holds that Pr[Dec(sk, (Enc(pk,m))→ m] with
overwhelming probability over the coin tosses of (Enc,Dec) and the choices of
(pk, sk)← Gen(1κ) and m ∈M.

Leakage-tolerant PKE We recall the simulation-based notion of leakage tolerance
introduce by Bitansky et al. [5]. Informally, leakage queries from an adversary
A are viewed as a form of partial corruptions, where A does not received the
complete state of the chosen party but just some function of it. Security is then
achieved if such an adversary can be simulated in the UC framework. Without
loss of generality we will consider only dummy adversaries — adversaries which
just carry out the commands of the environment. I.e., it is the environment which
specifies all leakage queries. We will therefore completely drop the adversary in
the notation for clarity.

Let Π be a protocol implementing an ideal functionality F. Let Z be an
environment trying to “break” security ofΠ . The environment specifies all inputs
to the protocol, sees all messages sent, schedules all message deliveries, sees all
outputs and is in addition allowed to make leakage queries during the run of
the protocol. Such queries are modelled in the following way: When Z wants to
leak from the state of player X , it sends a leakage request (X, fZ) upon which
it receives fZ(σX), where σX is the current secret state of X . The function fZ
can be any function within a set of admissible leakage functions F , which is a
parameter in the definition.

In the ideal world, a trusted party is running F and a simulator S is interacting
with it. The simulator must then simulate the protocol to the environment Z.
All inputs specified by Z go directly to F; the simulator only sees the input
of corrupted parties. The simulator must then simulate the communication of
the protocol to Z. In addition, all leakage queries (leak, X, fZ) from Z goes to
the simulator. When a query (leak, X, fZ) arrives, the simulator is allowed to
make its own leakage query (leak, X, fS) to the ideal functionality, under the
restriction that the length of the leakage requested by S does not exceed the
length of the leakage requested by Z.
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Functionality F+lk
SMT

Running with parties R,S and adversary S, the functionality F+lk
SMT is parametrized

by the security parameter κ, message space M and the set of all admissible leakage
functions F . Hence, F+lk

SMT behaves as follows:

– Upon input (send, S,R,m) send a message (send, S,R, |m|) to S. Once S allows
to forward the message, send (sent, S,m) to R.

– Upon input (leak, X, fZ) for X ∈ {S,R} and fZ ∈ F send a message (leak, X)
to S. Receive (leak, X ′, fS) from S, check that fS ∈ F , and that |fZ(·)| = |fS(·)|
and X ′ = X. Send (leak, fS(m)) to S and (leaked, |fS(m)|) to X ′.

Fig. 1. Ideal functionality F+lk
SMT for secure message transmission with leakage

We say that Π is a leakage-tolerant secure implementation of F if there ex-
ists a simulator S such that no environment can distinguish between the real
life protocol Π and S interacting with the ideal functionality F. More for-
mally, consider the ideal functionality F+lk

SMT, depicted in Figure 1. Denote with
IDEALF+lk

SMT
,S,Z(F , κ) the output of the environment Z when interacting with

simulator S in the simulation.
Consider the following protocol Π between a sender S and a receiver R,

supposed to realizeF+lk
SMT via a public-key encryption scheme (Gen,Enc,Dec) with

message space M and key space PK × SK, assuming authenticated channels:

1. S transmits to R its willing to forward a message m ∈ M;
2. R samples (pk, sk) = Gen(1κ; rG), where pk ∈ PK and sk ∈ SK, and sends

pk to S;
3. S computes c = Enc(pk,m; rE) and forwards the result to R;
4. R outputs m′ = Dec(sk, c; rD).

Note that at the end of the execution of Π the state of S is σS = (m, rE) whereas
the state of R is σR = (sk, rG, rD,m

′). Denote with REALΠ,Z(F , κ) the output
of the environment Z after interacting with parties R,S in a real execution of
Π .

Definition 3 (Leakage-tolerant PKE protocol).We say that Π is a leakage-
tolerant public-key encryption protocol (w.r.t. a set of leakage functions F) if Π
securely implements F+lk

SMT, i.e., there exists a probabilistic polynomial-time sim-
ulator S such that for any environment Z it holds that

{IDEALF+lk
SMT,S,Z

(F , κ)}κ∈N ≈ {REALΠ,Z(F , κ)}κ∈N.

When the total amount of leaked information is λ =
∑
i |f

(i)
Z

(·)|, we say that Π
tolerates λ bits of leakage.
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3 Upper Bounds on Leakage-Tolerant PKE

In this section we present a result regarding the complexity of encryption schemes
that are leakage-resilient according to Definition 3. Looking ahead, we will prove
that it is not possible to achieve security in this setting without relying on an
encryption scheme having similar properties to non-committing encryption [7].

Theorem 1 (Definition 3 requires long keys). Assume the existence of
AMnegl(κ),negl(κ)(O(1), λ(κ)) argument systems for NP, where λ(κ) = λP (κ) +
λV (κ). Let Π be a leakage-tolerant public-key encryption protocol with key space
PK×SK and message space M. Then, whenever Π tolerates λ′(κ) = λP (κ) bits
of leakage it must be that |SK| ≥ (1 − ε)|M| for all 1 ≥ ε > 0. In particular, if
�(SK) and �(M) are resp. the bit length of the secret key and of the messages,
we have �(SK) ≥ �(M)− 1, i.e. to encrypt a message of length � bits one needs
a key of length at least �− 1 bits.

Proof. Assume first that the decryption algorithm is deterministic and that the
encryption scheme has perfect correctness, i.e., Dec(sk,Enc(pk,m; rE)) = m for
all rE when (pk, sk)← Gen(1κ).

Since protocol Π is leakage-tolerant, we know that there exist a simulator S
producing a “convincing” view of the protocol. Moreover, S can handle requests
of the kind (leak, X, fZ), where X is either S or R and fZ is a leakage function
(chosen by the environment) to be applied to the internal state σX of X .

We construct an environment Z which uses λP bits of leakage on the receiver’s
state after the execution of Π , for which the existence of simulator S implies our
bound. Consider the following relation:

R := {((pk, c,m), (sk, rG)) : (pk, sk) = Gen(1κ; rG) ∧ Dec(sk, c) = m} , (1)

and let (P, V ) be an AMnegl(κ),negl(κ)(O(1), λ(κ)) argument system for L =
L(R). The main idea will be to let Z play the role of the verifier in the argument
system, while running the prover with the help of the leakage queries on the
state of the receiver. The environment Z works as follows:

1. Input a uniformly random m ∈M to S.
2. Let the protocol terminate without any leakage queries or any corruptions,

i.e., simply deliver all messages between S and R. As part of this Z learns
pk and c from observing the authenticated channel between S and R.

3. After the protocol terminates, let R prove via leakage queries that x =
(pk, c,m) ∈ L. Notice that R can do this as it knows the witness w =
(sk, rG). Details follow.

We now show how to generate an interactive argument for L, by letting Z (hold-
ing the instance x = (pk, c,m)) play the role of the verifier and using the leakage
queries on the receiver’s state w = (sk, rG) to generate the interaction with the
prover. Wlog. assume the verifier talks first, and denote with ρ(κ) = poly(κ) the
total number of rounds. (The case where the prover talks first can be derived
similarly.)
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We introduce some auxiliary notation. Let rP (rV ) be a random string long
enough to specify all random choices done by the prover (verifier), such that
for fixed rP (rV ), the prover (verifier) is deterministic. For all i = 0, . . . , ρ/2 −
1, denote with y2i+1 = V (x, 2i + 1, view2i; rV ) the next message sent by the
verifier, where the variable viewj is defined as the entire view until round j ∈
[ρ]. Similarly, the next message computed by the prover is computed as y2i =
P (x,w, 2i, view2i−1; rP ) for all i = 1, . . . , ρ/2. Note that, with this notation, the
complete view consists of (y1, y2, . . . , yρ). At the end the verifier computes a
judgement J(x, viewρ; rV ) ∈ {0, 1}, where 1 indicates accept.

Therefore, it suffices to specify how Z (holding only (pk, c,m)) can generate
the messages of the prover. It proceeds as follows:

1. Z samples uniformly random rP and rV .

2. Z computes y1 = V (x, 1,⊥; rV ) and then sets the leakage function f
(1)
Z

to be

the function f
(1)
Z

(w) = P (x,w, 2, y1; rP ). (This can be done by “hard-wiring”
the values x and y1 into the leakage function.)

3. In general, given view2i = (y1, y2, . . . , y2i), the adversary Z can compute

y2i+1, hard-wire this value into f
(i)
Z

and get y2i+2 = P (x,w, 2i+2, y2i+1; rP ).
This can be done for all i ∈ [ρ], until the last message yρ of the argument
system is obtained.

4. Then Z outputs J(x, viewρ; rV ) as its guess.

Note that the total amount of leaked information is the communication com-
plexity of the prover in (P, V ), i.e., λP bits. By completeness of the argument
system, we know that REALΠ,Z(F , κ) = 1, except with negligible probability.
From this we conclude that IDEALF+lk

SMT,S,Z
(F , κ) = 1 except with negligible

probability, by security of the protocol. We write out what this means. The
simulation proceeds as follows:

1. First Z inputs a uniformly random m ∈ M to the ideal functionality on
behalf of S. As a result S is given (send, S, R, |m|).

2. Then Smust simulate the communication of the protocol, which in particular
means that it must output some pk and c to Z.

3. After the simulation of the protocol terminates, the environment makes the
leakage queries with which R proves that x = (pk, c,m) ∈ L. The leakage
queries are answered by S. In more detail:

(a) Z samples uniformly random rP and rV .

(b) Z sets the leakage function f
(1)
Z

to be the function f
(1)
Z

(w) = P (x,w, 2, y1;
rP ). The function is sent to S, who must choose some function fS pro-
ducing value y2.

(c) In general, given view2i = (y1, y2, . . . , y2i), the environment Z specify f
(i)
Z

and sends the same f
(i)
Z

as in the protocol to S which in turn chooses f
(i)
S

defining some y2i+1. This is done for all i ∈ [ρ], until the last message yρ
of the argument system is obtained.

(d) Then Z outputs J(x, viewρ; rV ) as its guess.
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Since Z is computing its own messages y2i+1 as the verifier of (P, V ) would have
done, and the messages y2i are computed by S which is PPT, and J(x, viewρ;
rV ) = 1, it follows from soundness that x ∈ L except with negligible probabil-
ity. This means that there exist (sk, rG) such that (pk, sk) = Gen(1κ; rG) and
m = Dec(sk, c). In particular, there exist sk ∈ SK such that m = Dec(sk, c).
Let Mpk,c ⊂ M denote the subset of m′ ∈ M for which there exist sk′ ∈
SK such that m′ = Dec(sk′, c). We have that m ∈ Mpk,c. Notice, that if it
was the case that m �∈ Mpk,c, then it would be the case that (pk, c,m) �∈
L and hence S would not be able to answer the leakage queries such that
J(x, viewρ; rV ) = 1, except with negligible probability, by soundness. Hence,
it follows from {IDEALF+lk

SMT,S,Z
(F , κ)}κ∈N ≈ {REALΠ,Z(F , κ)}κ∈N that the

probability that m ∈ Mpk,c is overwhelming. This implies that |Mpk,c|/|M| is
negligibly close to 1, in particular |Mpk,c| ≥ (1 − ε)|M| for all 0 < ε ≤ 1.
Take two m0 �= m1 ∈ Mpk,c. By definition there exist sk0, sk1 ∈ SK such that
m0 = Dec(sk0, c) and m1 = Dec(sk1, c). From m0 �= m1, we conclude that
sk0 �= sk1, so |SK| ≥ |Mpk,c|. From this we get the theorem.

To handle randomized decryption functions, we let the environment pick the
randomness which should be used for decryption. I.e., Z hard-wires a random
string rD into the instance x and asks the receiver to prove that there exists rG,
sk such that (pk, sk) = Gen(1κ; rG) and Dec(sk, c; rD) = m. In the real world,
this will hold with overwhelming probability, and hence in the ideal world we
can, along the lines above, conclude that for any two messages m0 and m1, there
exists sk0, sk1 ∈ SK such that m0 = Dec(sk0, c; rD) and m1 = Dec(sk1, c; rD).
This again allows to conclude that sk0 �= sk1. Note that it is important that
Z picks rD. If it was considered part of the witness, we would only get that
there exists sk0, sk1 ∈ SK and r0D, r

1
D such that m0 = Dec(sk0, c; r

0
D) and m1 =

Dec(sk1, c; r
1
D), from which we cannot conclude that sk0 �= sk1, as r

0
D �= r1D

might be enough to give different decryptions for a fixed sk0 = sk1. ��

Remark 1. Assuming the existence of collision-resistant function ensembles
(which implies an argument system for AMnegl(κ),negl(κ)(4, poly(log κ))), we get
that Theorem 1 holds for any leakage-tolerant public-key encryption protocol
tolerating poly-logarithmic leakage on the receiver’s state.

On re-using keys One could still hope that it is possible to use the same key to
encrypt more than one message. Below, we prove that this hope is also vacuous.

Corollary 1 (Fresh key for every message). If Π is a leakage-tolerant
public-key encryption protocol tolerating poly-logarithmic leakage and such that
2�(M)− 1 > �(SK) ≥ �(M)− 1, then a fresh key must be used to encrypt every
message.

Proof. We prove this by contradiction to Theorem 1. Namely, assume Π =
(Gen,Enc,Dec) has message spaceM, key space PK×SK and uses a single pair
(pk, sk) ← Gen(1κ) to encrypt two messages m′ and m′′ sequentially. Denote
with c′ ← Enc(pk,m′) and c′′ ← Enc(pk,m′′) the corresponding ciphertexts.
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Now consider the following public-key encryption scheme Π = (Gen,Enc,
Dec). The key generation algorithm Gen simply runs (pk, sk) ← Gen(1κ). The
encryption algorithm takes as input a messagem ∈M2, writes it asm = m′||m′′

and outputs

Enc(pk,m) = Enc(pk,m′)||Enc(pk,m′′) = c′||c′′ = c.

The decryption algorithm Dec parses c as c′||c′′ and outputs m ← Dec(sk, c′)||
Dec(sk, c′′).

Since Π securely realizes F+lk
SMT in the presence of λ bits of leakage, Theorem 1

implies �(SK) ≥ �(M) − 1. On the other hand, the notion of leakage tolerance
composes sequentially, so that Π securely realizes F+lk

SMT (with the same leakage
bound). However, Π has message space M = M2 and key space SK = SK.
Hence, Theorem 1 yields

�(SK) = �(SK) ≥ �(M)− 1 = 2�(M)− 1,

a contradiction.

Connection with Bitanski et al. The authors in [5] show that any non-committing
encryption protocol [7] suffices to securely realize F+lk

SMT. It is understood that
every non-committing encryption protocol must satisfy the property that both
the public and the secret key are as long as the total number of message bits
ever encrypted [31].

4 Generalizing Our Result

It is possible to make generalizations of our results in two directions.

1. We can show that being secure against a semi-honest adversary which is
allowed to do one adaptive corruption after the execution of the protocol is
equivalent to being secure against a little leakage from a single party after
the execution of the protocol.

2. Furthermore, say that a protocol has semi-adaptive security if there exists a
simulator which can simulate the internal state of corrupted parties in the
sense that it can output some internal state consistent with what the party
has sent and received (but not necessarily distributed as a real-world state
would be).

We can show that for a protocol being secure against a little leakage from
t parties after the execution of the protocol implies that it is semi-adaptive
secure against a semi-honest adversary which is allowed to do t adaptive
corruptions.

4.1 Equivalence to Adaptive Security

Assume that there exists an AMnegl(κ),negl(κ)(O(1), λ(κ)) argument system,
which is also an argument of knowledge. Also assume there exists a family of
collision resistant hash functions H = {Hs}s with output length μ(κ).
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We now prove that it holds for any leakage-tolerant PKE protocolΠ , as in the
above section, that Π is secure against one adaptive corruption of R after the
protocol execution if and only if Π is secure against leakage of ≈ λ(κ)+μ(κ) bits
fromR after the protocol execution. Note that the above statement is clearly true
when λ is large, as this would mean that the adversary is essentially leaking the
entire state. Interestingly, we prove that also for a small amount of leakage (how
small depends on the communication complexity of the underlying argument
of knowledge) simulation-based leakage tolerance becomes identical to adaptive
security.

Assume that Π is secure against one adaptive corruption of R after the pro-
tocol execution. In that case Π is also secure against any leakage queries from
R after the protocol execution. This follows from [4], as leakage is weaker than
adaptive corruption. We therefore focus on the other direction.

Theorem 2 (Equivalence to adaptive security). Assume the existence of
AMnegl(κ),negl(κ)(O(1), λ(κ)) argument of knowledge systems for NP, where λ(κ)
= λP (κ) + λV (κ). Let H be afamily of collision-resistant hash functions with
range μ and Π be a leakage-tolerant public-key encryption protocol. If Π toler-
ates λ′(κ) = 2λP (κ)+μ(κ)+1 bits of leakage from R after the protocol execution,
then Π is passive secure against an adaptive corruption of R after the protocol
execution.

Proof. For simplicity we prove the theorem in the case where decryption is de-
terministic. One can handle randomized decryption using the same technique as
in the proof of Theorem 1.

Let FSMT be the ideal functionality for secure message transmission with-
out leakage (featuring simulator S′), and denote with IDEALFSMT,S′,Z′(κ) and
REALΠ,Z′(κ) the real and ideal distributions in the adaptive security game. To
prove that Π is secure against one adaptive corruption of R after the protocol
execution, we have to construct a simulator S′ such that for all environments Z′

(corrupting R at the end of the protocol execution) and for all κ ∈ N it holds
that REALΠ,Z′(κ) ≈ IDEALFSMT,S′,Z′(κ).

Note that S′ needs to simulate first the communication (pk, c) of the protocol,
and then after being given m simulates the internal state (sk, rG) of R. We will
build S′ by constructing an environment Z attacking Π in the leakage game.
Then we will get a simulator S which can simulate the attack of Z in the ideal
world, by the assumption that Π is secure. From S we will then construct S′. For
later use, Z will depend on an environment Z′ for the adaptive security game.
Specifically we will assume that Z′ does a normal adaptive corruption of R after
the execution of the protocol. The environment Z(Z′) runs as follows.

1. Z(Z′) runs an internal copy of Z′.
2. Until the protocol Π is running Z simply runs Z′, using the same inputs

to Π and delivering messages in the same way. This is possible as the real
world for leakage tolerance and adaptive security are identical as long as no
leakage queries and no corruption queries are issued.

3. If Z′ does not make an adaptive corruption of R after the execution of Π
terminated, then Z just terminates with the same guess as Z′.
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4. If Z′ makes an adaptive corruption of R, then Z proceeds as follows.

(a) Ask R to leak h = Hs(w), where w = (sk, rG) and s is a random seed
for the hash family H.

(b) Ask R to leak an argument of knowledge of w = (sk, rG) such that
h = Hs(w) and (pk, sk) = Gen(1κ; rG) and Dec(sk, c) = m. (This can be
done exactly in the same way as in the proof of Theorem 1, by letting
Z(Z′) play the role of the verifier and simulating the interaction with the
prover via leakage queries.)

(c) Let σ be the current state of Z′. We can without loss of generality assume
that Z′ is deterministic and that it terminates with its guess b after seeing
the internal state (sk, rG,m) of R; we write b = Z′(σ, sk, rG,m). Now Z

leaks f(sk, rG) = Z′(σ, sk, rG,m). Note that Z knows m as this was a
value it input to Π itself, and that it knows σ as it is Z which is running
Z′ (so these values can be hard-wired into the leakage function).

(d) Finally ask R to leak an argument of knowledge for w = (sk, rG) such
that h = Hs(w) and b = Z′(σ, sk, rG,m).

(e) Output b.

Note that the total amount of leakage is twice the communication complexity of
the prover for the arguments of knowledge, plus μ bits of Hs’s output and one
additional bit for the output of Z′, i.e., λ′ = 2λP + μ+ 1. By leakage tolerance,
there exists a simulator S for the above Z(Z′). Since S is required to work for all
environments, it in particular works for Z(Z′) for all Z′, from which we get

{IDEALF+lk
SMT,S,Z(Z

′)(F , κ)}κ∈N ≈ {REALΠ,Z(Z′)(F , κ)}κ∈N, (2)

which we use later. Note, first, however, that by leakage resilience, it holds that
in the view simulated by S, the arguments of knowledge accept with probability
negligibly close to 1, or we could easily construct a distinguisher between the
real world and the simulation. Furthermore, the distributions of the bit b in the
real world and in the simulation are computationally indistinguishable.

Consider now the following simulator S′, interacting with FSMT in the adaptive
security game.

1. Until the protocol Π is running, simulate using S.
2. When Z′ adaptively corrupted R, receive m from the ideal functionality.
3. Give the leakage function Hs(·) to S to make it generate a simulated value
h. Note that S is a simulator for the ideal world in the definition of leakage
tolerance, i.e., it might issue leakage queries fS to the ideal functionality.
Answer these with fS(m) — the trick is that S′ at this point knows m.

4. Similarly, make S give an argument of knowledge of w = (sk, rG) such that
h = Hs(w) and (pk, sk) = Gen(1κ; rG) and Dec(sk, c) = m.

5. By an above comment we know that this argument accepts except with
negligible probability, so S′ can extract from P ∗ := S a witness w = (sk, rG)
such that h = Hs(w) and (pk, sk) = Gen(1κ; rG) and Dec(sk, c) = m.

6. Output w.
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It only remains to argue that the w output by S′ has a distribution computa-
tionally indistinguishable from the internal state of R in the real world. Assume
for the sake of contradiction that it is not. Then there exists an environment
Z′ which can distinguish. This means that b = Z′(w) has distinguishable distri-
butions in the real world and the simulation (for the adaptive security game).
Consider then the adversary Z(Z′) for the leakage resilience game.

Claim. {REALΠ,Z(Z′)(F , κ)}κ∈N ≡ {REALΠ,Z′(κ)}κ∈N.

Proof (of claim). In words, the output distribution of Z(Z′) in the real world
of the leakage game and Z′ in the real world of the adaptive security game are
the same. This follows simply by construction of Z(Z′), which runs Z′ on the
internal state w of R. ��

Claim. {IDEALF+lk
SMT,S,Z(Z

′)(F , κ)}κ∈N ≈ {IDEALFSMT,S′,Z′(κ)}κ∈N.

Proof (of claim). In words, the output distribution of Z(Z′) in the ideal world
of the leakage game and Z′ in the ideal world of the adaptive security game are
computationally indistinguishable.

The output distribution of Z(Z′) in the ideal world of the leakage game is
the value b simulated by S. The output distribution of Z′ in the ideal world
of the adaptive security game is Z′ applied to the value w extracted from
P ∗ := S. We need to prove that these two distributions are indistinguish-
able. To analyze the distribution of the b returned by S in the simulation of
the leakage game, notice that since both the arguments of knowledge given by
S are accepting, we can extract w = (sk, rG) and w′ = (sk′, r′G) such that
h = Hs(w) and (pk, sk) = Gen(1κ; rG) and Dec(sk, c) = m, and h = Hs(w

′) and
b = Z′(σ, sk′, r′G,m). From Hs(·) being collision resistant we can assume that
w = w′, so we conclude that it holds from the w extracted from the first argu-
ment of knowledge generated by S that w = (sk, rG), (pk, sk) = Gen(1κ; rG),
Dec(sk, c) = m and b = Z′(σ, sk, rG,m). This means that unless the collision
resistance of Hs(·) is broken, the output distribution of Z(Z′) in the ideal world
of the leakage game and Z′ in the ideal world of the adaptive security game are
the same. ��

The two claims above together with the assumption that Z′ can distinguish,
imply that that Z(Z′) has distinguishable outputs in the real world and the ideal
world for the leakage game, contradicting Eq. (2) above. From this we conclude
that {REALΠ,Z′(κ)}κ∈N ≈ {IDEALFSMT,S′Z′(κ)}κ∈N for all environments Z′,
which proves the theorem. ��

4.2 Equivalence to Semi-adaptive Security for Many Parties

We note that the proof technique from the previous section can be easily gener-
alized to show that an arbitrary two-party protocol Π is secure against one
adaptive corruption after the protocol execution if and only if Π tolerates
≈ poly(log κ) bits of leakage from one of the parties after the protocol execution.
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A variant of the above proof technique works also for an arbitrary protocol
and if we allow that many parties can be corrupted/leaked from after the pro-
tocol execution. The environment will ask each party to leak an argument of
knowledge of an internal state consistent with its inputs and outputs. A sim-
ulator which can simulate such an argument could also “by extracting itself”
have output the entire internal state. We cannot, however, perform the trick
where we send the distinguisher Z′ into the parties to leak Z′(w), as now a dis-
tinguisher for the adaptive security game should have access to (w1, . . . , wn),
where wi is the internal state of party i, and (w1, . . . , wn) is not sitting inside a
single party, so Z′(w1, . . . , wn) cannot per se be computed using short leakages
f1(w1), . . . , fn(wn). Hence we cannot force the extracted internal state to be in-
distinguishable from the internal state in the real world, all that is guaranteed
is that the state is consistent with the simulated public communication.
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