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1 Introduction 

Characterization of acoustic fields in the power ultrasound range in water is a 
common problem in diverse application areas like sonochemistry, biomedicine, or 
industrial cleaning. Different approaches exist for the visualization and mapping 
of such acoustic fields, being a classical solution the mechanical scanning with 
pressure sensors (typically, hydrophones) over a grid of points [1]. For high inten-
sity ultrasound, the analysis of bubbles trajectory has also been employed [2]. 
Alternative optical techniques are the scanning of a pointwise sensor (PIV, LDV) 
[3, 4], and also full field techniques like deflectometry or schlieren [5], smooth 
wavefront interferometry [6], holographic interferometry [7], ESPI and similar 
interferometric speckle techniques [4] or light diffraction tomography [8]. 

In spite of the wide variety of existing methods, most of them present short-
comings like the need of maintaining the acoustic field stable during the  
whole measurement process, or the sensitivity to environmental perturbations 
(very high for interferometric techniques) or the complexity, cost, fragility or lack 
of portability of the equipment, that may prevent making measurements in the 
field.  

One of the well-known techniques to analyze phase objects is moiré deflecto-
metry. This technique, developed in the nineteen-eighties [9], employs a well-
shaped laser illumination (collimated or spherical) and two gratings to measure  
the deflections of the rays after passing through the object. Although its sensitivity 
in practical terms is smaller than that of interferometric techniques, when the  
observed acoustic fields have enough intensity, moiré deflectometry combines  
a sufficient sensitivity to the measurand with appropriate insensitivity to perturba-
tions (environmental seismic and thermal effects, laser noise, etc.), with the  
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additional benefit of covering a wide field of view (typically 30x30 cm2) at a low 
cost, overcoming most of the aforementioned limitations. 

We present the analysis by moiré deflectometry of the field in a water tank, 
produced by an exciter designed for ultrasonic cleaning. We developed the expe-
rimental system and a specific data processing procedure, based on the variations 
of the visibility of the moiré fringes by using the Fourier transform method. 

 

Fig. 1 Layout of the experimental system. A standing acoustic wave of fundamental fre-
quency  f=20 kHz produced by reflection on an aluminium plate is analyzed. 

2 Materials and Methods 

As the temporal spectrum of the excited wave is not monochromatic, we avoided 
stroboscopic techniques, choosing instead to record time-average images of the 
moiré pattern under CW illumination. Although this acquisition scheme loses the 
acoustical phase, we still retain information about the acoustic amplitude, which is 
enough for many practical engineering tasks. 

We have adapted the paraxial model of moiré deflectometry under spherical il-
lumination [10] to our particular configuration. The distances (Fig. 1) are named 
as xop = xp – xo , zLPo = zPo – zL , etc. Under the assumptions: (H1) Fresnel diffrac-
tion (which can be assumed if the pitch of the gratings is much larger than the 
optical wavelength), (H2) xCG >> yGmax , zGmax , and (H3) xCG > 4 xGp , we obtained 
an expression of the time averaged intensity of the moiré pattern at the plane xp  
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where Fj are the fringe vectors of the undistorted grids (i. e., the carriers) and φj 
are their phase distortion distributions. Specifically, for the projected grating 1:  
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being θ[Po(xp), t] the instantaneous deflection angle of a generic ray passing 
through the point Po(xp) of the wavefield. In our application, Raman-Nath condi-
tions apply and θ is proportional to the instantaneous pressure gradient [11].  
The temporal dependence of this gradient is the cause of the reduction of the  
visibility of the pattern of Eq (1) in the areas where the gradient amplitude is 
greater. 

As shown in Fig. 2, we calculate the visibility of the moiré patterns as the 
modulus of the complex amplitude returned by the Fourier transform method [12] 
(without translating the filtered spectrum to the origin of the frequency space). 
Though the changes induced by the presence of an acoustic wave become already 
apparent in these “visibility maps”, we further improve their contrast by normaliz-
ing them with respect to the local maximum value of the visibility, obtained from 
a reference pattern (R) recorded with the fluid unaltered. We eventually invert the 
result, thus assigning the value “zero” to unaltered regions. 

 

Fig. 2 Flow diagram of the fringe processing algorithm: (S) signal pattern (an acoustic 
wave is present in the field of view), (R) reference pattern (the fluid remains unaltered) 

3 Results 

An “inverted relative visibility” map obtained by using the proposed setup and 
data processing procedure is shown in Fig. 3. The moiré pattern was produced by 
using a 500 mW Nd:YAG laser and two laser-printed gratings; it was recorded 
with a 1392x1049 pixel camera and an exposure time of 300 ms. 

An acoustic standing wave pattern can be noticed in the left hand side of the 
map. A graph of the rms pressure measured with a hydrophone along the centre of 
the acoustic beam is presented for comparison. 
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Fig. 3 Measured field of an acoustic wave. RMS pressure measured with a hydrophone 
along the axis zo vs. moiré inverted relative visibility map yielded by the proposed  
technique. 
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