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Abstract. Secrecy of decryption keys is an important pre-requisite for
security of any encryption scheme. Forward Security (FS) reduces dam-
age from compromised keys by guaranteeing confidentiality of messages
that were encrypted prior to the compromise event. In this paper we in-
troduce FS to the powerful setting of Hierarchical Predicate Encryption
(HPE), proposed by Okamoto and Takashima (Asiacrypt 2009). Our FS-
HPE scheme guarantees forward security for plaintexts and for attributes
that are hidden in HPE ciphertexts. It further allows delegation of de-
crypting abilities at any point in time, independent of FS time evolution.
It realizes zero-inner-product predicates and is proven adaptively secure
under standard assumptions. As the “cross-product” approach taken in
FS-HIBE is not directly applicable to the HPE setting, our construc-
tion resorts to techniques that are specific to existing HPE schemes and
extends them with what can be seen as a reminiscent of binary tree
encryption from FS-PKE.

Keywords: Forward Security, Predicate Encryption, Inner Product.

1 Introduction

Predicate Encryption. We focus on the notion of Predicate Encryption
(PE), formalized by Katz, Sahai, and Waters [21], building on Hidden Vector
Encryption (HVE) [6], and further studied in [22, 24, 25, 27, 28, 33, 34]. In PE
schemes users’ decryption keys are associated with predicates f and ciphertexts
encode attributes a that are specified during the encryption procedure. A user
can successfully decrypt if and only if f(a) = 1. Otherwise, the decryption pro-
cess preserves plaintext hiding and thus leaks no information about the encrypted
message. Unlike Attribute-Based Encryption (ABE) [2, 11, 15, 29] that imposes
the same requirement, PE schemes have a distinguished privacy goal of attribute
hiding to prevent ciphertext leaking attributes. Existing PE schemes typically
realize concrete predicates f . For example, predicates based on the inner product
of vectors (over a field or ring) — Inner-Product Encryption (IPE) [21] — are
particularly powerful since they can be used to evaluate a large class of predi-
cates, including conjunctions or disjunctions of equality tests, comparisons, and
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subset tests, or more generally, arbitrary CNF or DNF formulae. In IPE schemes,
attributes are represented by a vector −→y while the choice of another vector −→x
defines the predicate f−→x such that f−→x (

−→y ) = 1 iff the inner product −→x · −→y = 0.
While the original scheme from [21] was proven to be selectively secure under
non-standard assumptions, recent result of Lewko et al. [22] provided more so-
phisticated PE constructions achieving (stronger) adaptive security under non-
standard assumptions. Furthermore, Okamoto and Takashima [25] investigated
Functional Encryption that is adaptive security under standard assumptions.
In [22, 24] the authors also explored constructions of Hierarchical PE (HPE)
schemes providing their users with the ability to delegate their decryption keys
down the hierarchy by restricting predicates associated to the delegated keys and
by this restricting the abilities of lower-level users to decrypt. It should be noted
that existing PE (and ABE) schemes emerged from Identity-Based Encryption
(IBE) [5, 32] and the majority of these schemes are pairing-based.

Forward Security. Forward Security (FS) offers meaningful protection in
cryptographic applications with long-term (aka. static) private keys in the unfor-
tunate case when these keys become compromised. Being a standard requirement
in authenticated key exchange protocols, where it also takes its origin [12, 16],
forward security has further been explored in digital signatures [1,18] and in pub-
lic key encryption (PKE) [8]; see [18] for a nice survey and strong motivation
of forward security. The concept of time evolution is central to forward security
since from the moment the private key is exposed the intended security goals
can no longer be guaranteed and the key must be changed. FS aims to tame
potential damage by offering protection with respect to earlier time periods. For
example, in forward secure digital signatures signing keys that are exposed in
one time period cannot be used to forge signatures related to prior time periods.
Similarly, in the case of forward secure encryption decryption keys used in one
time period cannot be used to decrypt ciphertexts generated in the past.

The first forward-secure PKE scheme, due to Canetti, Halevi, and Katz [8],
was built from the technical tool, called binary tree encryption [20], which in
turn is implied by Hierarchical IBE (HIBE) [14, 17] by considering identities as
nodes of the tree and restricting the intermediate nodes to have exactly two
descendants: a parent node with identity string id ∈ {0, 1}� is split into two
child nodes with identities id0, id1 ∈ {0, 1}�+1. For each node id there exists a
secret key SKid, which can be used to derive secret keys SKid0 and SKid1 in a
one-way fashion. The intuition behind FS-PKE is to split the entire lifetime of
the scheme into N time periods and construct a binary tree with depth logN ,
where each node corresponds to a unique time period. In order to encrypt a
message for some time period i ∈ [1, N ] one uses the master public key of HIBE
and the identity string idi of the node i. At any period i ∈ [1, N ] the private
decryption key of the user contains the secret key SKidi as well as secret keys
for all right siblings of the nodes on the path from the root to node i. The latter
keys can be used to derive secret keys SKidj for all subsequent periods j ∈ [i, N ].
The actual FS property is obtained by erasing SKidi (and all secret keys that
can be used to derive it) from the private key upon transition to period i+ 1.
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These ideas were extended by Yao et al. [36] to obtain FS in the identity-based
setting. More precisely, they came up with a forward-secure HIBE (FS-HIBE)
constructed via a “cross-product” combination of two HIBE schemes, in the
random oracle model. Boneh, Boyen, and Goh [3] offered more efficient FS-HIBE
constructions, with selective security in the standard model and with adaptive
security in the random oracle model. The first adaptively secure FS-HIBE scheme
in the standard model is due to Lewko and Waters [23]. As mentioned by Boyen
and Waters [7] and also explored in [10, 13, 30, 31, 34] FS is also achievable for
anonymous HIBE systems, whose ciphertexts hide the (hierarchy of) identities
for which messages were encrypted. Since HIBE generalizes IBE (anonymous)
FS-HIBE covers (anonymous) FS-IBE.

Forward Security in ABE/PE. A message encrypted with an ABE/PE
scheme can potentially be decrypted by many users. Exposure of some user’s
private key in these schemes is likely to cause more damage in comparison to
PKE or IBE schemes since the adversary could obtain messages that were en-
crypted for more than one user. Adding forward security to ABE/PE schemes
is thus desirable to alleviate this problem. A näıve approach, i.e., to change all
keys (incl. public ones) for each new time period, has already been ruled out
as being impractical in PKE and IBE schemes, and it seems even more compli-
cated in the ABE/PE setting. In this work we formalize and construct the first
forward-secure hierarchical predicate encryption (FS-HPE). Since HPE includes
PE/ABE [22,24], our FS-HPE scheme also implies constructions of first forward
secure ABE/PE schemes.

Although forward-secure HIBE constructions exist, formalizing and designing
FS-HPE is challenging due to a number of advanced properties that must be
considered. In HPE schemes predicates (and by this indirectly private keys) are
organized in a hierarchy — any ciphertext that can be decrypted by a low-level
predicate must also be decryptable by a high-level predicate but the converse
may not be true. In contrast to HIBE, where delegation is performed by extend-
ing the parent identity with a substring, predicates in HPE have more complex
structures and their delegation requires different techniques. Moreover, predi-
cates should be delegatable at any period in time, irrespective of time evolution
for FS. Another aspect is that encryption of messages in forward-secure HPE
must be possible only using the master public key, the set of attributes, and
the current time period, without having á priori knowledge of predicates at any
level of the hierarchy, whereas in FS-HIBE schemes encryption is performed
with respect to a given identity at one of the hierarchy levels. We note that ob-
taining forward security in HPE schemes by applying techniques from existing
FS-PKE [8] and FS-HIBE [36] results in a number of obstacles. For example, a
“cross-product” combination of two HPE schemes [22, 24], akin to the case of
two HIBE schemes for FS-HIBE in [36], seems not feasible due to the unique
delegation and randomization mechanisms used in those HPE schemes. Finally,
an FS-HPE scheme should still provide attribute-hiding, which could be threat-
ened if (public) time periods for FS are mixed up with attributes during the
encryption.
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1.1 Our Contributions

FS-HPE:Model andScheme. We formalize and design the first forward-secure
hierarchical predicate encryption (FS-HPE) scheme, for zero-inner-product predi-
cates [21].Our scheme is secure (adaptively attribute-hiding) in the standardmodel
under the well-known Decision Linear (DLIN) assumption [4] in bilinear groups of
prime order. We first present a new syntax and security definitions that are spe-
cific to FS-HPE, in particular definition of attribute hiding had to be extended
in order to account for FS, in a more complex way than in FS-HIBE definitions
from [23, 36], as explained in Section 3.3. Our FS-HPE scheme offers some desir-
able properties: time-independent delegation of predicates (to support dynamic
behavior for delegation of decrypting rights to new users), local update for users’
private keys (i.e., no master authority needs to be contacted), forward security,
and the scheme’s encryption process doesn’t require knowledge of predicates at
any level including when those predicates join the hierarchy. Considering the rela-
tionships amongst the encryption flavors, we can restrict our scheme to level-1 hi-
erarchy and obtain first adaptively-secureFS-PE/ABE construction, or we can set
the inner-product predicate to perform the equality test, in which case we would
obtain the first adaptively-secure anonymous FS-HIBE scheme under the basic
DLIN assumption (as an alternative to [10] that works in bilinear groups of com-
posite order and requires new hardness assumptions).

Techniques. Our FS-HPE scheme is built based on the dual system encryption
approach introduced by Waters [35] and uses the concept of dual pairing vector
spaces (DPVS) of Okamoto and Takashima [24]. Techniques underlying forward
security of the scheme can be seen as reminiscent of binary tree encryption [8]
that was invented for FS-PKE and doesn’t apply immediately to the more com-
plex HPE setting. We had to resort to those techniques and modify them for
integration with HPE since obtaining FS-HPE in a more direct way, e.g. by
adopting the “cross-product” idea from [36], seems not feasible with existing
HPE constructions [22,24]. On a high level, we modify the existing HPE scheme
from [22] and combine two of its instances in a non-trivial way to achieve a
FS-HPE scheme. One of the HPE schemes handles predicate/attibute hierarchy
while another one is used for maintaining time periods using the concept behind
binary tree encryption [8]. The modification of the scheme in [22] is necessary to
prove security the stringent security definitions involving FS. The combination of
two schemes is non-trivial due to the delegation and randomization components
inherited from HPE. Our scheme perfectly synchronizes all private key com-
ponents (decryption, delegation and randomization) from both HPE instances.
These components are updated at each new time period and they are also used
for time-independent delegation of predicates. We apply game-hopping proofs,
following the general proof strategy from [25], i.e. we first define several hard
problems and prove that security of our scheme relies on them, then we prove
that those hard problems can individually be used to solve the DLIN problem.
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2 Background on Dual Pairing Vector Spaces and
Complexity Assumption

Groups. Let Gbpg be an algorithm that on input a security parameter 1λ outputs
a description of the symmetric bilinear group setting (q,G,GT , G, e) where q is
a prime, G and GT are two cyclic groups of order q, G is the generator of G, e is
a non-degenerate bilinear map e : G× G→ GT , i.e., e(sG, tG) = e(G,G)st and
e(G,G) �= 1. We also define cyclic additive group G and multiplicative group
GT of order q.

Vector Spaces. Let V =

N
︷ ︸︸ ︷

G× · · · ×G be a vector space and each element
in V be expressed by N-dimensional vector. x = (x1G, . . . , xNG) (xi ∈ Fq for
i = 1, . . . , N). The canonical base A of V is A = (a1, . . . ,aN), where a1 =
(G, 0, . . . , 0), a2 = (0, G, 0, . . . , 0), . . . ,aN = (0, . . . , 0, G). Given two vectors
x = (x1G, . . . , xNG) = x1a1 + · · · + xNaN ∈ V and y = (y1G, . . . , yNG) =
y1a1 + · · · + yNaN ∈ V, where −→x = (x1, . . . , xN ) and −→y = (y1, . . . , yN), the

pairing operation is defined as e(x,y) =
∏N
i=1 e(xiG, yiG) = e(G,G)

∑N
i=1 xiyi =

g
−→x−→y
T ∈ GT .

Definition 1 (Dual Pairing Vector Space (DPVS) [24]). Let
(q,G,GT , G, e) be a symmetric bilinear pairing group. A Dual Pairing
Vector Space (q,V,GT ,A, e), generated by an algorithm denoted Gdpvs, is a
tuple containing a prime q, an N -dimensional vector space V over Fq, a cyclic
group GT of order q, a canonical base A = (a1, . . . ,aN ) of V, and a pairing
e : G×G→ GT that satisfy the following conditions:

1. Non-degenerate bilinear pairing: There exists a polynomial-time com-
putable non-degenerate bilinear pairing e(x,y) =

∏N
i=1 e(Gi, Hi) where x =

(G1, . . . , GN ) ∈ V and y = (H1, . . . , HN ) ∈ V. This is non-degenerate bilin-
ear pairing i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then
x = 0.

2. Dual orthonormal bases: A and e satisfy that e(ai,aj) = g
δi,j
T for all i

and j, where δi,j = 1 if i = j, and 0 otherwise, and gT �= 1 ∈ GT .
3. Distortion maps: Linear transformations φi,j on V s.t. φi,j(aj) = ai and

φi,j(ak) = 0 if k �= j are polynomial-time computable. We call φi,j “distor-
tion maps”.

Orthonormal Bases. Let B = (b1, . . . , bN ) be a basis of vector space V

which is obtained from its canonical basis A using a uniformly chosen linear

transformation Λ = (λi,j)
U← GL(N,Fq). Note that GL(N,Fq) creates a matrix

of size N×N in which each element is uniformly selected from Fq such that bi =
∑N

j=1 λi,jaj , for i = 1, . . . , N . Similarly, let B∗ = (b∗1, . . . , b∗N ) be another basis

of V which is also obtained from A using μi,j = (ΛT )
−1

as b∗i =
∑N

j=1 μi,jaj ,

for i = 1, . . . , N . It can be shown that e(bi, b
∗
j ) = g

δi,j
T , where δi,j = 1 if i = j,

and δi,j = 0 if i �= j. That is B and B
∗ are dual orthonormal bases of V. In our



88 J.M. González Nieto, M. Manulis, and D. Sun

scheme we will use the following probabilistic algorithm Gob to generate group
and DPSV parameters and the two dual orthonormal bases:

Gob(1λ , −→n = (d;n1, . . . , nd)) : paramG = (q,G,GT , G, e)
R← Gbpg(1λ),

ψ
U← F

×
q , N0 = 5, Nt = 3nt + 1 for t = 1, . . . , d;

For t = 0, . . . , d :

paramVt
= (q,Vt,GT ,At, e)

R← Gdpvs(1λ, Nt, paramG),

Λ(t) = (λ
(t)
i,j )

U← GL(Nt,Fq), (μ
(t)
i,j ) = ψ · (Λ(t)T )

−1

,

bi
(t) =

Nt
∑

j=1

λ
(t)
i,ja

(t)
j for i = 1, . . . , Nt,B

(t) = (b
(t)
1 , . . . , b

(t)
Nt

),

b
∗(t)
i =

Nt
∑

j=1

μ
(t)
i,ja

(t)
j for i = 1, . . . , Nt,B

∗(t) = (b
∗(t)
1 , . . . , b

∗(t)
Nt

),

gT = e(G,G)ψ , param−→n = ({paramVt
}t=0,...,d, gT ),

Output (param−→n , {B(t),B∗(t)}t=0,...,d).

Note that gT = e(bi
(t), b

∗(t)
i ) for t = 0, . . . , d; i = 1, . . . , Nt.

Definition 2 (Decisional Linear Assumption (DLIN) [4]). The DLIN
problem is to decide on bit β ∈ {0, 1}, given the output (paramG, G, aG, bG,
acG, bdG, Yβ) of the probabilistic algorithm

GDLIN
β (1λ) : paramG = (q,G,GT , G, e)

R← Gbpg(1λ), a, b, c, d U← Fq,

Y0 = (c+ d)G, Y1
U← G, β

U← {0, 1};
Output (paramG, G, aG, bG, acG, bdG, Yβ).

The advantage AdvDLIN
D (λ) of a probabilistic polynomial-time DLIN solver D is

defined as follows:
∣

∣

∣ Pr
[

D(1λ, �)→ 1
∣

∣

∣ �
R← GDLIN

0 (1λ)
]

− Pr
[

D(1λ, �)→ 1
∣

∣

∣ �
R← GDLIN

1 (1λ)
] ∣

∣

∣.

The DLIN assumption states that for any D this advantage is negligible in λ.

3 Forward-Secure Hierarchical Predicate Encryption

In this section we present our model for forward secure hierarchical predicate
encryption (FS-HPE). First, we highlight the idea behind FS-HPE concept and
introduce some notations. In FS-HPE private keys are associated with predicate
vectors and evolve over the time. At any time period i a user may join the
hierarchy and receive delegated private keys. These keys are computed by the
parent user for time period i and together with further secret information that
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is necessary to derive private keys for later time periods is handed over to the
joined user. Once the user receives this secret information, at the end of each
period the user updates his private key locally and erases secrets that are no
longer needed. Additionally, at any time j ≥ i the user may delegate its private
key down the hierarchy without contacting its parent. In any time period i a
message can be encrypted using public parameters, the attribute vectors, and i.
In order to decrypt for time period i users must possess private keys satisfying
attributes from the ciphertext for that time.

3.1 Notations

Time Period. Let the total number of time periods N = 2κ, where κ ∈ N.
Hierarchical Inner-Product Predicate Encryption. We borrow some no-

tations from [22] to describe our HPE with inner-product predicates. Let−→μ = (n; d, μ1, . . . , μd) be a tuple of positive integers such that μ0 = 0 <
μ1 < μ2 < · · · < μd = n. We call −→μ a format of hierarchy of depth d
attribute spaces. With Σl, l = 1, . . . , d we denote attribute sets and each
Σl = F

μl−μl−1
q \ {0}. A hierarchical attribute Σ = ∪dl=1(Σ1 × . . . × Σl)

is defined using the disjoint union. For −→v i ∈ F
μi−μi−1
q \ {−→0 }, a hierar-

chical attribute (−→y 1, . . . ,
−→y h) ∈ Σ is said to satisfy a hierarchical pred-

icate f(−→x 1,...,
−→x l) iff l ≤ h and −→x i · −→y i = 0 for 1 ≤ i ≤ l, which we

denote as f(−→x 1,...,
−→x l)(
−→y 1, . . . ,

−→y h) = 1. The space of hierarchical predi-

cates is F = {f(−→x 1,...,
−→x l)|−→x i ∈ F

μi−μi−1
q \ {−→0 }}. We call h (resp. l) the

level of (−→y 1, . . . ,
−→y h) (resp. (−→x 1, . . . ,

−→x l)). Throughout the paper we will
assume that an attribute vector −→y 1 = (y1, . . . , yμ1) is normalized such
that y1 = 1 (note that −→y 1 can be normalized via (1/y1) · −→y 1, assum-

ing that y1 is non-zero). By −→e (k)
i we denote the canonical basis vector

(

i−1
︷ ︸︸ ︷

0, . . . , 0, 1,

nk−i
︷ ︸︸ ︷

0, . . . , 0) ∈ Fnk
q for k = 1, 2 and i = 1, . . . , nk.

Keys. We use two notations for secret keys: skw,(−→x 1,...,
−→x l) is the key associ-

ated with some prefix w of the bit representation of a time period i and a
hierarchical predicate (−→x 1, . . . ,

−→x l), whereas SKi,(−→x 1,...,
−→x l) denotes the key

associated with time i and a hierarchical predicate (−→x 1, . . . ,
−→x l). That is,

SKi,(−→x 1,...,
−→x l) = {ski,(−→x 1,...,

−→x l), skw1,(−→x 1,...,
−→x l) : w0 is a prefix of i}.

3.2 Syntax

Definition 3 (FS-HPE). A forward secure hierarchical
predicate encryption scheme is a tuple of five algorithms
(RootSetup,Delegate,Update,Encrypt,Decrypt) described in the following:

RootSetup(1λ, N,−→μ ) This algorithm takes as input a security parameter 1λ, the
total number of time periods N and the format of hierarchy −→μ . It outputs
public parameters of the system, incl. public key PK , and a root secret key
SK 0,1, which is assumed to be known only to the master authority of the
hierarchy.
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Delegate(SK i,l, i,
−→x l+1) This algorithm takes as input a secret key SK i,l asso-

ciated with time i on hierarchy level l and an (l+1)-th level predicate vector−→x l+1. It outputs the delegated secret key SK i,l+1. This key is intended for
the direct descendant at level l+1. It is assumed that predicate vector −→x l+1

is added to the predicate hierarchy during the time period i.
Update(SK i,l, i) This algorithm takes as input a secret key SK i,l and the current

time period i. It outputs an updated secret key SK i+1,l for the following time
period i+ 1 and erases SK i,l.

Encrypt(PK, (−→y 1, . . . ,
−→y h), i,M) This algorithm takes as input the public key

PK, hierarchical attribute vectors (−→y 1, . . . ,
−→y h), a time period i, and a mes-

sage M from the associated message space. It outputs a ciphertext C. We
assume that i is included in C.

Decrypt(C, SK i,l) This algorithm takes as input a ciphertext C and a secret key
SK i,l for the time period i and predicate vectors (−→x 1, . . . ,

−→x l). It outputs
either a message M or the distinguished symbol ⊥ (to indicate a failure).

Correctness. For all correctly generated PK and SK i,l associated with predicate

vectors (−→x 1, . . . ,
−→x l) and a time period i, let C

R← Encrypt(PK, (−→y 1, . . . ,
−→y h), i,

M) and M ′ = Decrypt(C, SK i,l). Then, if f(−→x 1,...,
−→x l)(
−→y 1, . . . ,

−→y h) = 1 then
M =M ′; otherwise, M �=M ′ with all but negligible probability.

3.3 Security Definition

Definition 4. A FS-HPE scheme is adaptively attribute hiding against cho-
sen plaintext attacks if for all PPT adversaries A, the advantage of A in the
following game is negligible in the security parameter:

Setup. RootSetup algorithm is run by the challenger C to generate public key
PK and root secret key SK 0,1. PK is given to A.

Queries I. A may adaptively make a polynomial number of delegation queries
by asking C to create a secret key for any given time period i and hierarchical
predicate vectors (−→x 1, . . . ,

−→x l). In response, C computes the secret key SKi,l

and reveals it to A. (Note that C computes SKi,l with the help of algorithms
Delegate and Update that it may need to execute several times, i.e. depending
on the input time period i and hierarchy level l.)

Challenge. A outputs its challenge: two attribute vectors (Y (0), Y (1)) =

((−→y (0)
1 , . . . ,−→y (0)

h(0)), (
−→y (1)

1 , . . . ,−→y (1)

h(1))), two plaintexts (M (0),M (1)), and
a time period I, such that either i > I, or i ≤ I and

f(−→x 1,...,
−→x l)(
−→y (0)

1 , . . . ,−→y (0)

h(0)) = f(−→x 1,...,
−→x l)(
−→y (1)

1 , . . . ,−→y (1)

h(1)) = 0 for each re-
vealed key for f(−→x 1,...,

−→x l) and time period i. C then flips a random coin b. If

b = 0 then A is given C = Encrypt(PK, Y (0), I,M (0)) and if b = 1 then A
is given C = Encrypt(PK, Y (1), I,M (1)).

Query phase 2. Repeat the Query phase 1 subject to the restrictions as in
the challenge phase.

Guess. A outputs a bit b′, and succeeds if b′ = b.
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We define the advantage of A as a quantity AdvFS-HPE
A (λ) = |Pr[b = b′]− 1/2|.

Remark 1. In Definition 4, adversary A is not allowed to ask a key query for
time period i and hierarchical predicate vectors (−→x 1, . . . ,

−→x l) such that i ≤
I and f(−→x 1,...,

−→x l)(
−→y (b)

1 , . . . ,−→y (b)

h(b)) = 1 for some b ∈ {0, 1}, i.e., the queried
key is not allowed to decrypt the challenge ciphertext. Recently, Okamoto and
Takashima [28] proposed a PE (HPE) which allow such key query, provided that
M (0) =M (1). The technique of Okamoto and Takashima [28] can be applied in
our scheme to achieve strong security.

Remark 2. In Definition 4, Amay ask delegation queries and obtain the resulting
keys. This contrasts slightly with the HPE security definition in [22], where A
may ask the challenger to create and delegate private keys but will not be given
any of them, unless it explicitly asks a separate reveal query. This is because
HPE in [22] has two algorithms for computing secret keys, either directly (using
the master secret key) or through delegation (using secret key of the parent
node). In our FS-HPE syntax we compute secret keys through delegation only
and in the security definition we are mainly concerned with maintaining time
evolution for delegated keys.

Remark 3. Definition 4 can be easily extended to address chosen-ciphertext at-
tacks (CCA) by allowing decryption queries. The usual restriction is that de-
cryption queries cannot be used for the challenge ciphertext. Our CPA-secure
FS-HPE scheme from Section 4 can be strengthened to resist CCA by applying
the well-known CHK transformation from [9] that uses one-time signatures to
authenticate the ciphertext.

4 Our Forward-Secure HPE Scheme

High-Level Description. For simplicity of presentation, our FS-HPE makes
use of a version of FS-PKE scheme by Katz [19]. In Katz’s scheme, time periods
are associated with the leaf nodes of a binary tree while in Canetti et al. scheme
[8], time periods correspond to all nodes of the tree. Our scheme can also be
realized based on the FS-PKE scheme by Canetti et al., which will give faster
key update time. We utilize a full binary tree of height κ, whose root is labeled
ε and all other nodes are labeled recursively: if the label of a node is w, then its
left child is w0, and its right child is w1. Each time period i ∈ {0, . . . , N − 1}
corresponds to a leaf identified via the binary representation of i. We denote the
k-bit prefix of a d-length word w = w1w2 . . . wd by w|k, i.e. w|k = w1w2 . . . wk
for k ≤ d. Let w|0 = ε and w = w|d.

We use two HPE schemes in parallel. Private keys in each scheme contain
three components: decryption, delegation and randomness. Private key of a user
contains private keys from both schemes that are linked together using secret
sharing. One HPE scheme is used to handle predicate/attribute hierarchy, while
the other one is used to handle time evolution. Each of the two HPE schemes is
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a modification of the scheme in [22], in a way that allows us to prove attribute-
hiding property under more sophisticated conditions involving time evolution.
The efficiency of the modified scheme is still comparable to the one in [22], i.e. it
increases the ciphertext by an additional component (master component) that
is used to combine both HPE schemes and is crucial for the security proof. This
change implies that the length of the orthonormal bases grows from (2n+3) · |G|
in [22] to (3n+ 1) · |G| in our scheme, where n is the dimension of the attribute
vectors, and |G| is the length of a group element from G.

At time period i, the entity at level l with a hierarchical predicate
(−→x 1, . . . ,

−→x l) holds a secret key SKi,(−→x 1,...,
−→x l), denoted for simplicity as SKi,l.

It contains secret keys ski,l and {skw,l}) for each label w corresponding to a
right sibling node (if one exists) on the path from l to the root. We view ski,l
as a decryption key, which is associated with current time i and the predicate
(−→x 1, . . . ,

−→x l). The secret keys in {skw,l} contain auxiliary information used to
update ski,l for future time periods and to derive its lower-level predicates. The
initial keys sk0,1 and sk1,1 are computed in the RootSetup algorithm and are asso-
ciated with the predicate −→x 1. In general, each skw,l contains three secret com-

ponents: the decryption component (k
(0)
w,l,dec,k

(1)
w,l,dec,k

(2)
w,l,dec), the randomness

component (k
(1)
w,l,ran,1, . . . ,k

(1)
w,l,ran,l+1,k

(2)
w,l,ran,1, . . . ,k

(2)
w,l,ran,|w|+1) and the del-

egation component (k
(1)
w,l,del,μl+1, . . . ,k

(1)
w,l,del,n,k

(2)
w,l,del,2|w|+1, . . . ,k

(2)
w,l,del,L). All

above components are constructed using orthonormal bases B∗ specified in Sec-
tion 2. There are three different bases in the system. The superscript of each key

component denotes its base. k
(0)
w,l,dec is the mentioned master component that

links k
(1)
w,l,dec and k

(2)
w,l,dec using the secret sharing techniques. In turn, k

(1)
w,l,dec

and k
(2)
w,l,dec are used in respective HPE schemes. If w represents a leaf of the

binary tree then the decryption component (k
(0)
w,l,dec,k

(1)
w,l,dec,k

(2)
w,l,dec) is used for

decryption at time represented by w.
Delegation and randomization of private keys are processed similarly as in [22],

except that upon derivation of keys for lower level predicates, we also delegate
and randomize their time-dependent part. In particular, the delegation compo-
nent of the l-th level key is essential to compute the (l + 1)-th level child key,
and the randomness component of the l-th level key is used to re-randomize
the latter’s coefficients. To handle time hierarchy we deploy “dummy” nodes.
Similarly, we will compute the dummy child for predicate hierarchy when time
evolves. In this way, all derived keys are re-randomized.

We define a helper algorithm ComputeNext that will be called from RootSetup
and Update. Given a secret key skw,l for node w and a hierarchical predicate
(−→x 1, . . . ,

−→x l) it outputs sk(wb),l, b ∈ {0, 1} for the nodes w0 and w1 by updating
the three components of skw,l. The algorithm Update computes secret keys for
the next time period through the internal call to ComputeNext and erases all
secret information that was used to derive the key for the current time period.
The update procedure involves all three components of the secret key. For exam-
ple, for a given secret key SKi,l = (ski,l, {skw,l}), forward security is achieved
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by deleting its component ski,l and using all three components of {skw,l}, where
w is now the label of an internal node, to derive SKi+1,l for the following time
period with the help of ComputeNext.

In algorithm Delegate, a secret key skw,l for a string w is used to derive
skw,u for a lower hierarchy level u > l and a hierarchical predicate (−→x 1, . . . ,

−→x u)
that has restricted capabilities in comparison to (−→x 1, . . . ,

−→x l). As mentioned,
the delegation component for hierarchical predicates of skw,l is essential for the
derivation of skw,u, whose coefficients are re-randomized with the randomization
component.

The algorithm Encrypt requires only a time period t and a hierarchical at-
tribute (−→y 1, . . . ,

−→y h) to encrypt the message. We note that during encryption
attributes (−→y 1, . . . ,

−→y h) are extended with random elements from level h + 1
down to the leaf, i.e., the scheme encrypts attribute vectors on all levels in the
hierarchy instead of encrypting only the input vectors. In this way, parent keys
can directly decrypt ciphertexts produced for their children without taking effort
to derive child keys first.

The algorithm Decrypt uses the decryption key ski,l, which is associated with
time period i and hierarchical predicate (−→x 1, . . . ,

−→x l). The message is decrypted
iff the attributes in the ciphertext satisfy the predicates in the decryption com-
ponent of the key and the ciphertext is created at time i.

Detailed Description. The five algorithms of our FS-HPE scheme are de-
tailed in the following:
RootSetup

(

1λ, N = 2κ,−→μ = (n; d, μ1, . . . , μd)
)

:
Let −→x 1 be the root predicate and let L = 2κ and −→n = (2;n, L). Compute

(param−→n ,B
(0),B∗(0),B(1),B∗(1),B(2),B∗(2)) R← Gob(1λ,−→n ),

˜B(0) = (b
(0)
1 , b

(0)
3 , b

(0)
5 ), ˜B(1) = (b

(1)
1 , . . . , b

(1)
n , b

(1)
3n+1),

˜B(2) = (b
(2)
1 , . . . , b

(2)
L ,

b
(2)
3L+1),

˜B∗(0) = (b
∗(0)
1 , b

∗(0)
3 ), ˜B∗(1) = (b

∗(1)
1 , . . . , b

∗(1)
n ), ˜B∗(2) = (b

∗(2)
1 , . . . , b

∗(2)
L ),

̂B∗(1) = (b
∗(1)
2n+1, . . . , b

∗(1)
3n ), ̂B∗(2) = (b

∗(2)
2L+1, . . . , b

∗(2)
3L ).

The master authority needs to generate not only the secret key associated with
the current time period 0 but also secret keys corresponding to the internal
nodes on the binary tree whose bit representations are all 0 except for the last
bit. The secret key for time 0 and predicate −→x 1 is denoted as sk0κ,1. Secret
keys that will be used to derive keys for future time periods are denoted as
{sk1,1, sk(01),1, . . . , sk0κ−11,1}. These values are generated recursively as follows,
starting with sk0,1 and sk1,1.

Computing sk0,1: Pick ψ, ψ
′, αdec, α

(1)
dec, α

(2)
dec

U← Fq such that αdec = α
(1)
dec + α

(2)
dec.

Pick η
(0)
dec, β

(1)
dec,1, β

(2)
dec,1, β

(1)
ran,j,1(j = 1, 2), β

(2)
ran,j,1(j = 1, 2), β

(1)
del,j,1(j = 1, . . . , n),

β
(2)
del,j,1(j = 1, . . . , L)

U← Fq,
−→η (2)

dec,
−→η (2)

ran,j(j = 1, 2),−→η (2)
del,j(j = 1, . . . , L)

U← F
L
q ,
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−→η (1)
dec,
−→η (1)

ran,j(j = 1, 2),−→η (1)
del,j(j = 1, . . . , n)

U← Fnq . Compute

k
(0)
0,1,dec = (−αdec, 0, 1, η

(0)
dec, 0)B∗(0) ,

k
(1)
0,1,dec = (α

(1)
dec
−→e (1)

1 + β
(1)
dec,1
−→x 1, 0

2n−μ1 ,−→η (1)
dec, 0)B∗(1) ,

k
(2)
0,1,dec = (α

(2)
dec, β

(2)
dec,1, 0

2L−2,−→η (2)
dec, 0)B∗(2) ,

k
(1)
0,1,ran,j = (β

(1)
ran,j,1

−→x 1, 0
2n−μ1 ,−→η (1)

ran,j , 0)B∗(1) , for j = 1, 2,

k
(2)
0,1,ran,j = (0, β

(2)
ran,j,1, 0

2L−2,−→η (2)
ran,j , 0)B∗(2) , for j = 1, 2,

k
(1)
0,1,del,j = (β

(1)
del,j,1

−→x 1, 0
j−μ1−1, ψ, 02n−j,−→η (1)

del,j , 0)B∗(1) , for j = μ1 + 1, . . . , n,

k
(2)
0,1,del,j = (0, β

(2)
del,j,1, 0

j−3, ψ′, 02L−j,−→η (2)
del,j, 0)B∗(2) , for j = 3, . . . , L.

Let sk0,1 = (k
(0)
0,1,dec,k

(1)
0,1,dec,k

(2)
0,1,dec,k

(1)
0,1,ran,1,k

(1)
0,1,ran,2,k

(2)
0,1,ran,1,k

(2)
0,1,ran,2,

k
(1)
0,1,del,μ1+1, . . . ,k

(1)
0,1,del,n,k

(2)
0,1,del,3, . . . ,k

(2)
0,1,del,L).

Computing sk1,1: Pick π, π′, δdec, δ
(1)
dec, δ

(2)
dec

U← Fq such that δdec = δ
(1)
dec +

δ
(2)
dec. Pick γ

(0)
dec , θ

(1)
dec,1, θ

(2)
dec,1, θ

(1)
ran,j,1(j = 1, 2), θ

(2)
ran,j,1(j = 1, 2), θ

(1)
del,j,1(j =

1, . . . , n), θ
(2)
del,j,1(j = 1, . . . , L)

U← Fq,
−→γ (1)

dec,
−→γ (1)

ran,j(j = 1, 2),−→γ (1)
del,j(j =

1, . . . , n)
U← Fnq ,

−→γ (2)
dec,
−→γ (2)

ran,j(j = 1, 2),−→γ (2)
del,j(j = 1, . . . , L)

U← FLq . Compute

k
(0)
1,1,dec = (−δdec, 0, 1, γ(0)dec, 0)B∗(0) ,

k
(1)
1,1,dec = (δ

(1)
dec
−→e (1)

1 + θ
(1)
dec,1
−→x 1, 0

2n−μ1 ,−→γ (1)
dec, 0)B∗(1) ,

k
(2)
1,1,dec = (δ

(2)
dec + θ

(2)
dec,1, θ

(2)
dec,1, 0

2L−2,−→γ (2)
dec, 0)B∗(2) ,

k
(1)
1,1,ran,j = (θ

(1)
ran,j,1

−→x 1, 0
2n−μ1 ,−→γ (1)

ran,j , 0)B∗(1) , for j = 1, 2,

k
(2)
1,1,ran,j = (θ

(2)
ran,j,1, θ

(2)
ran,j,1, 0

2L−2,−→γ (2)
ran,j , 0)B∗(2) , for j = 1, 2,

k
(1)
1,1,del,j = (θ

(1)
del,j,1

−→x 1, 0
j−μ1−1, π, 02n−j ,−→γ (1)

del,j , 0)B∗(1) , for j = μ1 + 1, . . . , n,

k
(2)
1,1,del,j = (θ

(2)
del,j,1, θ

(2)
del,j,1, 0

j−3, π′, 02L−j,−→γ (2)
del,j, 0)B∗(2) , for j = 3, . . . , L.

Let sk1,1 = (k
(0)
1,1,dec,k

(1)
1,1,dec,k

(2)
1,1,dec,k

(1)
1,1,ran,1,k

(1)
1,1,ran,2,k

(2)
1,1,ran,1,k

(2)
1,1,ran,2,

k
(1)
1,1,del,μ1+1, . . . ,k

(1)
1,1,del,n,k

(2)
1,1,del,3, . . . ,k

(2)
1,1,del,L).

Recursion: Use sk0,1 to recursively invoke algorithm ComputeNext, i.e. compute

(skw00,1, skw01,1) = ComputeNext(PK , skw0,1, w0), for all 1 ≤ |w0| ≤ κ− 1.

Output: Output public key PK =
(

1λ, param−→n , {˜B(k)}k=0,1,2, ̂B
∗(1), ̂B∗(2), b∗(0)4

)

and the root secret key SK 0,1 = (sk0κ,1, {sk1,1, sk(01),1, . . . , sk(0κ−11),1}).
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ComputeNext(PK , skw,l, w): This is a helper method and is called by the Root
Setup and Update algorithms. It takes a public key PK , a secret key skw,l, a
node w, and outputs keys skw0,l, skw1,l for time nodes w0 and w1 of predicate
vectors (−→x 1, . . . ,

−→x l). Parse w as w1, . . . , wr , where |w| = r. Parse skw,l as

(k
(0)
w,l,dec,k

(1)
w,l,dec,k

(2)
w,l,dec,k

(1)
w,l,ran,1, . . . ,k

(1)
w,l,ran,l+1, k

(2)
w,l,ran,1, . . . ,k

(2)
w,l,ran,r+1,

k
(1)
w,l,del,μl+1, . . . ,k

(1)
w,l,del,n,k

(2)
w,l,del,(2r+1), . . . ,k

(2)
w,l,del,L).

Computing skw0,l: Pick ψ, ψ′, ε(0)dec, ε
(1)
dec,t, ε

(1)
ran,j,t(j = 1, . . . , l + 1), ε

(1)
del,j,t(j = 1,

. . . , n)
U← Fq for t = 1, . . . , l+1. Pick ε

(2)
dec,t, σdec, ε

(2)
ran,j,t(j = 1, . . . , r+2), σran,j(j =

1, . . . , r + 2), ε
(2)
del,j,t(j = 1, . . . , L), σdel,j(j = 1, . . . , L)

U← Fq for t = 1, . . . , r + 1.

r
(1)
dec, r

(1)
ran,j(j = 1, . . . , l + 1), r

(1)
del,j(j = 1, . . . , n)

U← span〈b∗(1)2n+1, . . . , b
∗(1)
3n 〉,

r
(2)
dec, r

(2)
ran,j(j = 1, . . . , r + 2), r

(2)
del,j(j = 1, . . . , L)

U← span〈b∗(2)2L+1, . . . , b
∗(2)
3L 〉.

Compute

k
(0)
w0,l,dec = k

(0)
w,l,dec + ε

(0)
decb

∗(0)
4 ,

k
(1)
w0,l,dec = k

(1)
w,l,dec +

l+1
∑

t=1

ε
(1)
dec,tk

(1)
w,l,ran,t + r

(1)
dec,

k
(2)
w0,l,dec = k

(2)
w,l,dec +

r+1
∑

t=1

ε
(2)
dec,tk

(2)
w,l,ran,t + σdeck

(2)
w,l,del,2(r+1) + r

(2)
dec,

k
(1)
w0,l,ran,j =

l+1
∑

t=1

ε
(1)
ran,j,tk

(1)
w,l,ran,t + r

(1)
ran,j , for j = 1, . . . , l + 1,

k
(2)
w0,l,ran,j =

r+1
∑

t=1

ε
(2)
ran,j,tk

(2)
w,l,ran,t + σran,jk

(2)
w,l,del,2(r+1) + r

(2)
ran,j , for j = 1, . . . , r + 2,

k
(1)
w0,l,del,j =

l+1
∑

t=1

ε
(1)
del,j,tk

(1)
w,l,ran,t + ψk

(1)
w,l,del,j + r

(1)
del,j, for j = μl + 1, . . . , n,

k
(2)
w0,l,del,j =

r+1
∑

t=1

ε
(2)
del,j,tk

(2)
w,l,ran,t + σdel,jk

(2)
w,l,del,2(r+1) + ψ′k(2)

w,l,del,j + r
(2)
del,j,

for j=2(r + 1) + 1, . . . , L.

Let skw0,l = (k
(0)
w0,l,dec,k

(1)
w0,l,dec,k

(2)
w0,l,dec,k

(1)
w0,l,ran,1, . . . ,k

(1)
w0,l,ran,l+1,k

(2)
w0,l,ran,1, . . . ,

k
(2)
w0,l,ran,r+2,k

(1)
w0,l,del,µl+1, . . . ,k

(1)
w0,l,del,n,k

(2)

w0,l,del,(2(r+1)+1), . . . ,k
(2)
w0,l,del,L).

Computing skw1,l: Pick τ, τ ′, ε(0)dec, ε
(1)
dec,t, ε

(1)
ran,j,t(j = 1, . . . , l + 1), ε

(1)
del,j,t(j = 1,

. . . , n)
U← Fq for t = 1, . . . , l+1. Pick ε

(2)
dec,t, ςdec, ε

(2)
ran,j,t(j = 1, . . . , r+2), ςran,j(j =

1, . . . , r + 2), ε
(2)
del,j,t(j = 1, . . . , L), ςdel,j(j = 1, . . . , L)

U← Fq for t = 1, . . . , r + 1.

t
(1)
dec, t

(1)
ran,j(j = 1, . . . , l + 1), t

(1)
del,j(j = 1, . . . , n)

U← span〈b∗(1)2n+1, . . . , b
∗(1)
3n 〉, t(2)dec,
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t
(2)
ran,j(j = 1, . . . , r + 2), t

(2)
del,j(j = 1, . . . , L)

U← span〈b∗(2)2L+1, . . . , b
∗(2)
3L 〉. Compute

k
(0)
w1,l,dec = k

(0)
w,l,dec + ε

(0)
decb

∗(0)
4 ,

k
(1)
w1,l,dec = k

(1)
w,l,dec +

l+1
∑

t=1

ε
(1)
dec,tk

(1)
w,l,ran,t + t

(1)
dec,

k
(2)
w1,l,dec = k

(2)
w,l,dec +

r+1
∑

t=1

ε
(2)
dec,tk

(2)
w,l,ran,t + ςdec

(

2r+2
∑

i=2r+1

k
(2)
w,l,del,i

)

+ t
(2)
dec,

k
(1)
w1,l,ran,j =

l+1
∑

t=1

ε
(1)
ran,j,tk

(1)
w,l,ran,t + t

(1)
ran,j , for j = 1, . . . , l + 1,

k
(2)
w1,l,ran,j =

r+1
∑

t=1

ε
(2)
ran,j,tk

(2)
w,l,ran,t + ςran,j

(

2r+2
∑

i=2r+1

k
(2)
w,l,del,i

)

+ t
(2)
ran,j ,

for j = 1, . . . , r + 2,

k
(1)
w1,l,del,j =

l+1
∑

t=1

ε
(1)
del,j,tk

(1)
w,l,ran,t + τk

(1)
w,l,del,j + t

(1)
del,j , for j = μl + 1, . . . , n,

k
(2)
w1,l,del,j =

r+1
∑

t=1

ε
(2)
del,j,tk

(2)
w,l,ran,t + ςdel,j

(

2r+2
∑

i=2r+1

k
(2)
w,l,del,i

)

+ τ ′k(2)
w,l,del,j + t

(2)
del,j ,

for j = 2(r + 1) + 1, . . . , L.

Let skw1,l = (k
(0)
w1,l,dec,k

(1)
w1,l,dec,k

(2)
w1,l,dec,k

(1)
w1,l,ran,1, . . . ,k

(1)
w1,l,ran,l+1,k

(2)
w1,l,ran,1, . . . ,

k
(2)
w1,l,ran,r+2,k

(1)
w1,l,del,µl+1, . . . ,k

(1)
w1,l,del,n,k

(2)

w1,l,del,(2(r+1)+1), . . . ,k
(2)
w1,l,del,L).

Output: Output (skw0,l, skw1,l).

Delegate(SKi,l, i,
−→x l+1 = (xμl+1, . . . , xμl+1

)): Parse i as i1, . . . , iκ where κ =
log2N . Parse SKi,l as (ski,l, {ski|k−11,l

}ik=0). For each skw,l in SKi,l compute
skw,l+1 as follows:

Parse w as w1, . . . , wr, where |w| = r. Pick ψ, ψ′, γ(0)dec , γ
(1)
dec,t, γ

(1)
ran,j,t(j = 1, . . . , l+

2), γ
(1)
del,j,t(j = 1, . . . , n)

U← Fq for t = 1, . . . , l + 1. Pick γ
(2)
dec,t, σdec, γ

(2)
ran,j,t(j =

1, . . . , r+1), σran,j(j = 1, . . . , l+2), γ
(2)
del,j,t(j = 1, . . . , L), σdel,j(j = 1, . . . , n)

U← Fq

for t = 1, . . . , r + 1. r
(1)
dec, r

(1)
ran,j(j = 1, . . . , l + 2), r

(1)
del,j(j = 1, . . . , n)

U←
span〈b∗(1)2n+1, . . . , b

∗(1)
3n 〉, r(2)

dec, r
(2)
ran,j(j = 1, . . . , r + 1), r

(2)
del,j(j = 1, . . . , L)

U← span

〈b∗(2)2L+1, . . . , b
∗(2)
3L 〉. Compute

k
(0)
w,l+1,dec = k

(0)
w,l,dec + γ

(0)
decb

∗(0)
4 ,
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k
(1)
w,l+1,dec = k

(1)
w,l,dec +

l+1
∑

t=1

γ
(1)
dec,tk

(1)
w,l,ran,t + σdec

⎛

⎝

μl+1
∑

i=μl+1

xik
(1)
w,l,del,i

⎞

⎠+ r
(1)
dec,

k
(2)
w,l+1,dec = k

(2)
w,l,dec +

r+1
∑

t=1

γ
(2)
dec,tk

(2)
w,l,ran,t + r

(2)
dec,

k
(1)
w,l+1,ran,j =

l+1
∑

t=1

γ
(1)
ran,j,tk

(1)
w,l,ran,t + σran,j

⎛

⎝

μl+1
∑

i=μl+1

xik
(1)
w,l,del,i

⎞

⎠+ r
(1)
ran,j ,

for j = 1, . . . , l + 2,

k
(2)
w,l+1,ran,j =

r+1
∑

t=1

γ
(2)
ran,j,tk

(2)
w,l,ran,t + r

(2)
ran,j , for j = 1, . . . , r + 1,

k
(1)
w,l+1,del,j =

l+1
∑

t=1

γ
(1)
del,j,tk

(1)
w,l,ran,t + σdel,j

⎛

⎝

μl+1
∑

i=μl+1

xik
(1)
w,l,del,i

⎞

⎠+ ψk
(1)
w,l,del,j + r

(1)
del,j ,

for j = μl+1 + 1, . . . , n,

k
(2)
w,l+1,del,j =

r+1
∑

t=1

γ
(2)
del,j,tk

(2)
w,l,ran,t + ψ′k(2)

w,l,del,j + r
(2)
del,j , for j = 2r + 1, . . . , L.

Let skw,l+1 = (k
(0)
w,l+1,dec,k

(1)
w,l+1,dec,k

(2)
w,l+1,dec,k

(1)
w,l+1,ran,1, . . . ,k

(1)
w,l+1,ran,l+2,

k
(2)
w,l+1,ran,1, . . . ,k

(2)
w,l+1,ran,r+1,k

(1)
w,l+1,del,μl+1+1, . . . ,k

(1)
w,l+1,del,n,k

(2)
w,l+1,del,2r+1,

. . . ,k
(2)
w,l+1,del,L).

Output SKi,l+1 = (ski,l+1, {ski|k−11,l+1}ik=0) and erase all other information.

Update(SKi,l, i): This algorithm follows the concept from [8, 19] to compute a
private key for the next time period i + 1. Parse i as i1, . . . , iκ where |i| = κ.
Parse SKi,l as (ski,l, {ski|k−11,l

}ik=0). Erase ski,l. If iκ = 0, simply output the

remaining keys as the key SK(i+1),l for the next period. Otherwise, let k̃ be
the largest value such that ik̃ = 0. Let i′ = i|k̃−11. Using ski′,l, which is part
of SKi,l, recursively apply algorithm ComputeNext to generate keys sk(i′0d1),l
for 0 ≤ d ≤ l − k̃ − 1 and sk(i′0d−k̃,l). (The key sk(i′0d−k̃,l) will be used for
decryption in the next time period i + 1, whereas other generated secret keys
will be used to compute private key of the next period.) Erase ski′,l and output
the remaining keys as SK(i+1),l.

Encrypt(PK, (−→y 1, . . . ,
−→y h) = ((y1, . . . , yμ1), . . . , (yμh−1+1, . . . , yμh

)), i,M ∈
GT ):
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Parse i as i1, . . . , iκ. Pick (−→y h+1, . . . ,
−→y d) U← F

μh+1−μh
q × . . . × F

n−μd−1
q ,

δ, ζ, ϕ, ϕ(1), ϕ(2) U← Fq, compute

c(0) = (δ, 0, ζ, 0, ϕ)B(0) ,

c(1) = (δ(−→y 1, . . . ,
−→y d), 02n, ϕ(1))

B(1) ,

c(2) = (δ((1,−i1), . . . , (1,−iκ)), 02L, ϕ(2))
B(2) ,

c(M) = gζTM.

Output ciphertext C = (c(0), c(1), c(2), c(M)).

Decrypt(C, SKi,l): Parse ciphertext C as (c(0), c(1), c(2), c(M)) and secret key
SKi,l as (ski,l, {ski|k−11,l

}ik=0). Use ski,l to decrypt and output

M =
c(M)

e(c(0),k
(0)
i,l,dec)e(c

(1),k
(1)
i,l,dec)e(c

(2),k
(2)
i,l,dec)

.

Correctness. To see why the scheme is correct, let C and SKi,l be as above. If−→x i·−→y i = 0 for 1 ≤ i ≤ l, and C and SKi,l are encoded with the same time period

i thenM can be recovered by computing c(M)/e(c(0),k
(0)
i,l,dec)e(c

(1),k
(1)
i,l,dec)e(c

(2),

k
(2)
i,l,dec), since

e(c(0),k
(0)
i,l,dec)e(c

(1),k
(1)
i,l,dec)e(c

(2),k
(2)
i,l,dec) = g−αdecδ+ζ

T g
α

(1)
dec
δ

T g
α

(2)
dec
δ

T = g−αδ+ζT gαδT .

Remark 4. Recently, Okamoto and Takashima [27] proposed a PE with short
secret keys. We note that their scheme can be easily applied to our system
to achieve better efficiency in key size. Moreover, in an updated version [26],
Okamoto and Takashima devised a payload-hiding HIPE with compact secret
keys. The technique [26] can also be applied in our system, specifically, for the
time period subtree.

Theorem 1. Our FS-HPE scheme is adaptively attribute-hiding against chosen
plaintext attacks under the DLIN assumption. For any adversary A, there exists
a PPT machine D such that for any security parameter λ,

AdvFS-HPE
A (λ) ≤ (2ν(κ+ 1)(n+ L+ 1) + 1)AdvDLIN

D (λ) + ψ,

where ν is the maximum number of A’s key queries, κ is the depth of the time
tree, and ψ = (20ν(κ+ 1)(n+ L+ 1) + 9)/q.

The proof of Theorem 1 is provided in the full version.

5 Conclusion

In this paper, we introduced the notion of forward security to the powerful set-
ting of hierarchical predicate encryption. The resulting FS-HPE scheme offers
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time-independent delegation of predicates, autonomous update for users’ pri-
vate keys, and its encryption process doesn’t require knowledge of time periods
at which particular predicates joined the predicate hierarchy. The scheme is
forward-secure and adaptively attribute-hiding under chosen plaintext attacks,
under the DLIN assumption in the standard model. Using level-1 hierarchy we
obtain first adaptively-secure FS-PE/ABE construction. By setting the inner-
product predicate to perform the equality test, we achieve the first adaptively-
secure anonymous FS-HIBE scheme under the DLIN assumption.
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Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 560–578. Springer,
Heidelberg (2008)

35. Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under
Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
619–636. Springer, Heidelberg (2009)

36. Yao, D., Fazio, N., Dodis, Y., Lysyanskaya, A.: Id-based encryption for complex
hierarchies with applications to forward security and broadcast encryption. In:
ACM CCS 2004, pp. 354–363. ACM (2004)


	Forward-Secure Hierarchical PredicateEncryption
	Introduction
	Our Contributions

	Background on Dual Pairing Vector Spaces and Complexity Assumption
	Forward-Secure Hierarchical Predicate Encryption
	Notations
	Syntax
	Security Definition

	Our Forward-Secure HPE Scheme
	Conclusion
	References




