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Abstract. This paper introduces a new capability of the group sig-
nature, called message-dependent opening. It is intended to weaken the
higher trust put on an opener, that is, no anonymity against an opener is
provided by ordinary group signature. In a group signature system with
message-dependent opening (GS-MDO), in addition to the opener, we set
up the admitter which is not able to open any user’s identity but admits
the opener to open signatures by specifying messages whose signatures
should be opened. For any signature whose corresponding message is not
specified by the admitter, the opener cannot extract the signer’s identity
from it. In this paper, we present formal definitions and constructions
of GS-MDO. Furthermore, we also show that GS-MDO implies identity-
based encryption, and thus for designing a GS-MDO scheme, identity-
based encryption is crucial. Actually, we propose a generic construction
of GS-MDO from identity-based encryption and adaptive NIZK proofs,
and its specific instantiation from the Groth-Sahai proof system by con-
structing a new (k-resilient) identity-based encryption scheme which is
compatible to the Groth-Sahai proof.

1 Introduction

Group signature [20] is a kind of anonymous signatures, which allows members
of a group to sign a message anonymously. Signatures are verified with a single
group public key, but the verification process does not reveal the identity of the
signer. In some exceptional case, a designated authority, called the opener, iden-
tifies the actual signer. However, ordinary group signature puts extremely strong
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privilege on the opener, i.e., the opener can freely identify the originator of any
signature of his choice. In other words, ordinary group signature schemes provide
no assurance on privacy against the opener at all. For example, in anonymous
auction (which will later be explained in more detail), the opener can extract all
bidders’ identities.

This paper investigates a way of decentralizing this strong power of the opener.
To this end, we propose a new kind of group signatures, group signature with a
message-dependent opening capability. It divides (or “decentralizes”) the strong
power of the opener by introducing another authority, called the admitter. In an
exceptional case in which, for example, a signature on a problematic message
is found, the admitter issues a token which corresponds to the message (not
the whole signed message). By using this token, the opener extracts the signer’s
identity from the signature while without the token, he is not able to do so. For
instance, if the admitter decides that a message “Mr. XXX is fool!” should not
be publicized as a signed message by an anonymous group member, he issues a
token on this message. Then, by using it, the opener can immediately open the
signer’s identity of any signature if it corresponds to the above message.

At a first glance, one may think that for achieving the above functionality, the
popular thresholding technique (i.e. thresholding the opener into multiple less-
trusted openers) would be already sufficient. However, this is not true. Namely,
in our context, the token is generated based on the message which the admitter
chooses but not the signature for such messages. Therefore, once a token un-
der a message (which is chosen by the admitter) is issued, for all signatures of
this message, the signer’s identity can be immediately extracted by the opener
without interacting with any other party. Consequently, for a message which has
already been specified as problematic, the opener can non-interactively open the
signer’s identity, and furthermore, if the admitter considers that there is no need
to specify further messages which should be opened anymore, then he can erase
his memory for avoiding leaking his secret. Notice that even when the admitter
erases his secret, the opener can still open the signer’s identity of any signature
provided that its corresponding message was specified by the admitter before.

Contributions. In this paper, we propose group signature with a new
additional capability, called group signature with message-dependent opening
(GS-MDO). In GS-MDO, as mentioned above, we introduce the admitter which
issues tokens for specific messages, and by using these tokens, the opener can
extract signers’ identities from signatures only if their corresponding messages
are those specific ones. Due to this functionality, we can flexibly restrict the abil-
ity of the opener without any complicated interactive procedure (e.g. threshold
decryption).

We first give a security definition of GS-MDO. Our security definition is an
extension of the Bellare-Micciancio-Warinschi model [7] which is considered as
the basic security definition for group signatures in the static setting, and more
specifically, our security model is a natural modification of this model according
to the difference between the standard group signature and ours which introduces
the functionality of the message-dependent opening. Next, we discuss technical
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hurdles for constructing GS-MDO which satisfies the above security requirement.
Especially, we show that it is possible to derive identity-based encryption (IBE)
from any GS-MDO scheme in a black-box manner if the underlying GS-MDO
is secure in the above sense. In other words, IBE is crucial for constructing GS-
MDO, and thus, it is impossible to construct GS-MDO without using IBE as a
building block. Then, based on this observation, we present a generic construc-
tion of GS-MDO from IBE and adaptive non-interactive zero-knowledge (NIZK)
proofs. Notice that in our generic construction, simulation-soundness [39] for
NIZK is not required while the generic construction of the (standard) group
signature [7] requires this strong property. Lastly, we propose an efficient in-
stantiation of GS-MDO by applying the Groth-Sahai proof [29] to our generic
construction. For utilizing the Groth-Sahai proof in our generic construction,
we see that an IBE scheme which is compatible to the Groth-Sahai proof (like
“structure preserving signatures” [4]) is necessary since our generic construction
requires IBE. Unfortunately, there is no known such primitive, and thus we also
construct a new IBE scheme which satisfies this requirement. By using our new
IBE together with the Groth-Sahai proof, a fairly practical GS-MDO can be con-
structed. Specifically, the size of a signature is approximately 16 kilobytes when
256-bit prime order group is used. However, we should also honestly mention
that our IBE has only k-resilient security [30], and consequently, the resulting
GS-MDO scheme inherits this restriction (i.e. the admitter can issues at most k
tokens).

Applications. As mentioned before, a straightforward application of GS-MDO
schemes is detecting the originator of inappropriate messages in an anonymous
bulletin board system. We further discuss more other potential applications of
message-dependent opening systems in the following.

The first application we discuss is anonymous auction. In this application,
the bidders form the group of anonymous signers. Each bidder produces a group
signature on his bidding price. To detect the winner(s), the admitter issues the
token for opening signatures on the highest price. Then the opener is only able
to open the signatures on the highest price.

The advantage (of the message-dependent opening approach) over the thresh-
old approach becomes clear in this application. Suppose that there are many
winners who all bid the highest price in a tie. In the threshold approach, an in-
teraction will be needed for each winner, hence the total communication cost will
be proportional to the number of winners. In contrast, if one takes the message-
dependent opening approach, only a small communication from the admitter
to the opener will be needed. The communication cost does not depend on the
number of winners.

Another application in which the message-dependent opening capability is
useful is identity escrow. Let us consider an automated parking garage [34], in
which when a customer enters the garage, he generates a group signature on a
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message which encodes the date when he enters the garage (say, the string “2012-
02-20”). Suppose a case in which there is an accident (a person is murdered, for
example) in the garage. In this case the opener will open the signatures on the
date when the accident occurs, in order to identify who is there at that day.

In this application, the opener needs to open many signatures on the same
message. If one adopts the threshold technique to decentralize the authority, a
large amount of interactions is required to open all the signatures. The message-
dependent opening capability removes interactions between authorities, that is,
the admitter issues a token for the day, and the opener opens all the signatures
without interaction.

Related Works. Since the first proposal of group signature by Chaum and van
Heyst [20], many efficient constructions have been proposed, most of which are
relying on the random oracle model [6,11,18,33,25,23,10]. Many initial schemes
were based on the strong-RSA assumption. Group signature schemes based on
assumptions of the discrete-logarithm type were achieved, to name a few, by
Camenisch and Lysyanskaya [18] and by Boneh, Boyen, and Shacham [11]. The
former scheme is based on the LRSW assumption, while the latter is based on
the q-strong Diffie-Hellman assumption.

Except generic constructions from general NIZK techniques, group signature
schemes without relying on the random oracles are only very recently achieved.
Ateniese, Camenisch, Hohenberger, and de Medeiros first proposed a group sig-
nature scheme from interactive assumptions avoiding random oracles [5]. Fol-
lowing to this scheme, Groth proposed a group signature scheme which avoids
random oracles and interactive assumptions [27], but the scheme has a very large
signature size. Boyen and Waters proposed highly efficient constructions [14,15],
although the security guarantee of their schemes are not very strong, i.e. they
only achieve so-called CPA-anonymity. Groth proposed another group signature
scheme [28], which is almost as efficient as the Boyen-Waters schemes and satis-
fies higher security guarantee of the Bellare-Shi-Zhang model [8].

As for decentralizing and distributing the power of the group manager, sepa-
rability of a cryptographic protocol was introduced by Kilian and Petrank [34]
in the context of identity escrow. Lately, this notion was refined and adopted
to the context of group signature by Camenisch and Michels [19]. The separa-
bility notion demands that keys of several entities involved in the cryptographic
primitive need to be generated independently each other. In their setting, the
power of a group manager is separated into two authorities. The first authority
is able to allow a new group member to join the group, but not able to identify
the originator of a group signature, and the other authority is vice versa. More
formal modeling of these separated authorities is put forward by Bellare, Shi,
and Zhang [8] and Kiayias and Yung [32].

Traceable signature is an extended notion of group signature, introduced by
Kiayias, Tsiounis, and Yung [31]. This primitive allows the group manager to
specify a group member as “misbehaving”. Once a member was specified by
the manager, anyone becomes able to detect the signatures of the specified user
without interacting with the manager. In this time signatures of other group
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members continue to be anonymous. In our terminology, this primitive achieves
somewhat “signer-dependent opening” capability, but no message-dependent
opening is achieved. A contractual anonymity system [40] has been proposed
based on group signatures with verifier-local revocation [13]. In this system,
when a user breaks a contract, an accountability server revokes anonymity of
the user and notices the identity of the user to the service provider (In the con-
tractual anonymity system, a user is said to break the contract when the user
sends a message specified by the contract policy of the service provider). Since
this scheme uses the conventional open algorithm, this system also differs from
message-dependent opening.

Paper Organization. The rest of the paper is structured as follows. Sect. 2
describes definitions and security notions of several building blocks briefly. Sect. 3
presents the notion of GS-MDO and its syntax and security definitions. Sect. 4
discusses difficulties behind constructing efficient GS-MDO schemes. Specifically
we argue that use of IBE in a construction of GS-MDO is essential by showing
a generic construction of IBE from GS-MDO. In Sect. 5 and 6, we propose a
generic construction of GS-MDO and its fairly efficient instantiation.

2 Preliminaries

Signatures. A signature scheme consists of the following three algorithms: A
key generation algorithm SigKg(1λ) outputs a pair (vk , sk). A signing algorithm
Signsk (M) generates a signature s for a message M . A verification algorithm
Verifyvk(M, s) outputs � or ⊥, which respectively indicate “accept” or “reject”.
As a correctness, for all λ ∈ N, all pairs (vk , sk) in the range of SigKg(1λ), and
all messages M , it is required to be satisfied that Pr[Verifyvk(M, Signsk (M)) =
�] = 1. A signature scheme is existentially unforgeable under chosen-message
attack (EUF-CMA) if all PPT adversaries, given vk generated from SigKg(1λ)
and an access to a signing oracle, which gives the adversary a signature of his
choice, have negligible probability of outputting a pair (M, s) where M was
never queried to the signing oracle and Verifyvk(M, s) = �. A signature scheme
is said to be strongly unforgeable one-time signature when no adversary, given vk
and allowed to access to a signing oracle only at most once, can output a valid
message-signature pair (M, s) (i.e. Verifyvk(M, s) = �) which is different from
the message-signature pair obtained from the signing oracle.

Tag-Based Key Encapsulation Mechanism. A tag-based key encapsulation
mechanism (tag-based KEM)1 [36,35] consists of the following three algorithms:
A key generation algorithm TKg(1λ) outputs a pair (pk , dk). An encapsulation

1 Tag-based encryption, an encryption analogue of tag-based KEM, is originally intro-
duced as “encryption with labels” by Shoup and Gennaro [42]. Tag-based KEM is
different from “tag-KEM”, introduced by Abe, Gennaro, Kurosawa, and Shoup [3].
However, any CCA-secure tag-KEM scheme can be immediately converted to a tag-
based KEM scheme which is sufficiently secure for our purpose.
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algorithm TEncpk (t) outputs (C,K) where a ciphertext C for a tag t encapsulates
a session keyK ∈ KPKE, where KPKE is the session key space associated with the
scheme. A decapsulation algorithm TDecdk (t, C) outputs a decapsulated session
keyK or a special symbol⊥ indicating an invalid ciphertext. A tag-based KEM is
said to be selective-tag weakly chosen-ciphertext secure when no PPT adversary
has non-negligible advantage in the following game: The adversary is given a
security parameter 1λ and output a target tag t∗, then the challenger gives a
public key pk . After receiving the public key, the adversary, in an arbitrary
order, issues decryption queries (t, C), to which the challenger responds with
the decryption result of C under the tag t. Here the adversary is not allowed
to issue queries with t = t∗. At some point the adversary requests a challenge.
The challenger flips a fair coin b′ and sends (C∗,K∗) where C∗ is a ciphertext
generated under the tag t∗ and K∗ is either the session key encapsulated in
C∗ when b′ = 0 or a random session key when b′ = 1. After receiving the
challenge the adversary is again allowed to issue decryption queries. The same
restriction for queries is applied as before. Finally the adversary outputs a bit
b. The advantage of the adversary is defined by the probability that b = b′

minus 1/2.

Identity-Based KEM and Its k-resilient Variant. A k-resilient identity-
based KEM [30] consists of the following four algorithms: A setup algorithm
ISetup(1λ, 1k) outputs a pair (par ,mk). A key extraction algorithm IExtmk (ID)
outputs a user decapsulation key dk ID . An encapsulation algorithm IEncpar (ID)
outputs (C,K) where a ciphertext C for an identity ID encapsulates a session
key K ∈ KIBE, where KIBE is the session key space associated with the scheme.
A decapsulation algorithm IDecdkID (C) outputs a decapsulated session key K
or a special symbol ⊥ indicating an invalid ciphertext. A k-resilient identity-
based KEM is said to be k-resilient if no PPT adversary has non-negligible
(in λ) advantage in the following game: The adversary first receives a public
parameter par . After receiving the parameter the adversary, in an arbitrary
order, issues extraction queries ID , to which the challenger responds with the
user decapsulation key for the user ID . At some point the adversary requests
a challenge with an identity ID∗. The challenger flips a fair coin b′ and sends
a pair (C∗,K∗) where C∗ is a ciphertext for the user ID∗ and K∗ is either
the session key encapsulated in C∗ when b′ = 0 or a random session key when
b′ = 1. The adversary is not allowed to request a challenge with an identity
whose user decapsulation key is queried before. After receiving the challenge the
adversary is again allowed to issue extraction queries. This time querying the
user decapsulation key for ID∗ is disallowed. The adversary is also restricted
that the total number of queries before and after the challenge is at most k.
Finally the adversary outputs a bit b. The advantage of the adversary is defined
by the probability that b = b′ minus 1/2. We also say that an identity-based
KEM is fully secure when any PPT adversary has non-negligible advantage in
the same game even when the number of extraction queries is unbounded.
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Non-Interactive Zero-Knowledge Proofs. A non-interactive proof system
for a polynomial-time computable relation R consists of three probabilistic al-
gorithms K, P , and V . The common reference string generation algorithm K
produces a common reference string Σ. The proof algorithm P takes a com-
mon reference string Σ, a theorem x, and a witness w, where R(x,w) = �, and
produces a proof π. The verification algorithm V takes as input (Σ, x, π), and
outputs either � or ⊥. We say that a non-interactive proof system (K,P, V )
has perfect completeness, when we have Pr[Σ ← K(1λ); (x,w) ← A(Σ);π ←
P (Σ, x,w) : V (Σ, x, π) = � ∨ R(x,w) = ⊥] = 1 for any adversary A. We
say that a non-interactive proof system (K,P, V ) has perfect soundness, when
we have Pr[Σ ← K(1λ); (x, π) ← A(Σ) : V (Σ, x, π) = ⊥ ∨ x ∈ L] = 1 for
all adversary A, where L denotes the set of all x that has at least one w
such that R(x,w) = �. We say that a non-interactive proof system (K,P, V )
is zero-knowledge when there exists a pair of probabilistic algorithms (S1, S2)
such that we have Pr[Σ ← K(1λ); (x,w) ← A(Σ);π ← P (Σ, x,w) : A(π) =
1]− Pr[(Σ, τ) ← S1(1

λ); (x,w) ← A(Σ);π ← S2(Σ, τ, x) : A(π) = 1] is negligi-
ble for all PPT adversaries A that do not output (x,w) with R(x,w) = ⊥.

3 Group Signatures with Message-Dependent Opening

Firstly we give an explanation of the scenario in which group signature with
message-dependent opening is used. As ordinary group signatures, a GS-MDO
scheme allows group members to sign a message anonymously, that is, without
revealing their identities but only showing that one of the group members ac-
tually signed. In exceptional cases, a designated third party, called the opener,
can “open” exceptional signatures, to identify the originator of signatures. In
contrast to ordinary group signature schemes, a GS-MDO scheme requires the
opener to cooperate with another authority, called the admitter, to open signa-
tures. The admitter issues a message-specific token, and the opener is able to
open signature on some message only when a token for the message is issued
from the admitter.

A formal model of this scenario is given by the following definition. A GS-
MDO scheme consists of the following five algorithms:

GKg: This algorithm takes as an input (1λ, 1n, 1k) where λ is a security param-
eter, n is the number of group members, and k is the maximum number
of message-specific tokens that can be issued, and returns a group public
key gpk , a message specification key msk , an opening key ok , and n group
signing keys {gsk i}i∈[n].

GSig: This algorithm takes as inputs gpk , gsk i, and a message M , and returns
a group signature σ.

Td: This algorithm takes as inputs gpk , msk , and M , and returns the token tM
for M .

GVf: This algorithm takes as inputs gpk , σ, and M , and returns � or ⊥.
Open: This algorithm takes as inputs gpk , ok , M , σ, and tM , and returns i ∈ N

or ⊥.



Group Signatures with Message-Dependent Opening 277

As a correctness, it is required that for all λ, n, k and for all (gpk ,msk , ok ,
{gsk i}i∈[n]) in the range of GKg(1λ, 1n, 1k), GVf(gpk ,M,GSig(gpk , gsk i,M)) =
� for all M ∈ {0, 1}∗ and i ∈ [n], and Open(gpk , ok ,M,GSig(gpk , gsk i,M),
Td(gpk ,msk ,M)) = i for all M ∈ {0, 1}∗ and i ∈ [n].

As in ordinary group signature, we need to ensure anonymity and traceability.
However, in contrast to ordinary group signature, we have to further ensure two
types of anonymity. It is related to the original motivation of the introduction of
the admitter. The introduction of the admitter is intended to strengthen signers’
anonymity against the authorities as strong as possible. To capture this intention,
we define the indistinguishability of the originator of the signature in the strong
setting that the opening key is given to the adversary. As a counterpart of this, we
also define the indistinguishability in the setting that the message-specification
key is given to the adversary.

For traceability, we just use the same definition to the ordinary group signa-
ture, in which the authorities are entirely corrupted by the adversary, since even
ordinary group signature schemes has ensured that traceability against entirely
corrupted openers.

Opener Anonymity. Here we give a formal definition of anonymity against the
opener, called opener anonymity. It is formalized as the indistinguishability of
signatures of two different signers of the adversary’s choice. In the indistinguisha-
bility game, the adversary is given the opening key, and is asked to distinguish
signatures of two different signers of its own choice. Opener anonymity is defined
by requiring that no adversary has non-negligible advantage in distinguishing
signatures.

We again remark that contrary to ordinary group signatures, the adversary
is allowed to have the opening key. This is intended for modeling “anonymity
against the opener.”

Definition 1. A GS-MDO scheme has opener anonymity if the advantage of
any PPT adversary A in the following game between a challenger and the ad-
versary is negligible in the security parameter λ:

Setup. The challenger runs GKg(1λ, 1n, 1k) to obtain (gpk , ok ,msk , {gsk i}i∈[n])
and sends (gpk , ok , {gsk i}i∈[n]) to A.

Token Query (Phase I). A adaptively issues token queries. For a token query
for a message M , the challenger responds with tM which is obtained by run-
ning Td(gpk ,msk ,M).

Challenge. At some point A requests a challenge for i0, i1 ∈ [n] and a message
M∗. The challenger chooses a random bit b, and responds with GSig(gpk ,
gsk ib ,M

∗). In this phase A is forbidden to submit M∗ whose token is previ-
ously queried in Phase I.

Token Query (Phase II). A continues to query tokens. In this phase A is
forbidden to query M∗, which is submitted in Challenge phase.

Guess. Finally A outputs a bit b′. The advantage of A is defined by the absolute
difference between the probability that b′ is equal to b and 1/2.



278 Y. Sakai et al.

We also say that a GS-MDO scheme has opener anonymity with k-bounded
tokens if any PPT adversary A which issues at most k token queries in total has
negligible advantage.

Admitter Anonymity. We then give a definition of anonymity against the
admitter, called admitter anonymity. It is formalized in a similar manner to
opener anonymity. That is, admitter anonymity requires signatures of two dif-
ferent signers are indistinguishable even when the adversary is given the message-
specification key. The formal definition is as follows:

Definition 2. A GS-MDO scheme has admitter anonymity if the advantage
of any PPT adversary A in the following game between a challenger and the
adversary is negligible in the security parameter λ:

Setup. The challenger runs GKg(1λ, 1n, 1k) to obtain (gpk , ok ,msk , {gsk i}i∈[n])
and sends (gpk ,msk , {gsk i}i∈[n]) to A.

Open Query (Phase I). A adaptively issues open queries. For an open query
for a message-signature pair (M,σ), the challenger generates tM by running
Td(gpk ,msk ,M) and responds with Open(gpk , ok ,M, σ, tM ).

Challenge. At some point A requests a challenge for i0, i1 ∈ [n] and a mes-
sage M∗. The challenger chooses a random bit b, and responds with σ∗ ←
GSig(gpk , gsk ib ,M

∗).
Open Query (Phase II). A continues to submit open queries. In this phase
A is forbidden to query σ∗, which is same as the signature produced in Chal-
lenge phase.

Guess. Finally A outputs a bit b′. The advantage of A is defined by the absolute
difference between the probability that b′ is equal to b and 1/2.

Notice that the number of opening queries the adversary issues is unbounded
(but of course polynomially many).

Traceability. The last notion is traceability, which requires that even if the
opener and the admitter collude and they further adaptively corrupt some group
members, the corrupted parties can produce neither forged signatures nor un-
traceable signatures. In contrast to the case of the anonymity notions, this case
considers a collusion of two authorities.

Definition 3. A GS-MDO scheme has traceability if the advantage of any PPT
adversary A in the following game between a challenger and the adversary is
negligible in the security parameter λ:

Setup. The challenger runs GKg(1λ, 1n, 1k) to obtain (gpk , ok ,msk , {gsk i}i∈[n])
and sends (gpk , ok ,msk) to A.

Query. A adaptively issues following two types of queries:
1. The first type of queries is key revealing query, in which A requests for

revealing the group signing key of the group member i. For this type of
queries the challenger responds with gsk i.
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ISetup(1λ):
(gpk , ok ,msk , {gsk1, gsk2})← GKg(1λ, 12);
par ← (gpk , ok , gsk1, gsk2); mk ← msk ;
Output (par ,mk).

IEncpar (ID):
For i ∈ {1, . . . , λ}:

Ki ← {0, 1};
σi ← GSig(gpk , gskKi+1, ID);

C ← (σ1, . . . , σλ);
K ← K1 · · ·Kλ;
Output (C,K).

IExtmk(ID):
dk ID ← Td(gpk ,mk , ID);
Output dk ID .

IDecdkID (C):
Parse C as (σ1, . . . , σλ);
For i ∈ {1, . . . , λ}:

Ki ← Open(gpk , ok , ID, σi, dk ID);
If Ki = ⊥ for some i

then Output ⊥;
Else Output K1 . . .Kλ.

Fig. 1. The black-box construction of identity-based KEM from group signature with
message-dependent opening

2. The second type of queries is signing query, in which A requests for a
signature on some message by some group member. For a query (i,M)
of this type, the challenger responds with GSig(gpk , gsk i,M).

Forge. Finally the challenger outputs a forgery (M∗, σ∗). A wins if GVf(gpk ,
M∗, σ∗) = � and one of the following two conditions holds: (1)
Open(gpk , ok ,M∗, σ∗,Td(gpk ,msk ,M∗)) = ⊥, or (2) Open(gpk , ok ,M∗, σ∗,
Td(gpk ,msk ,M∗)) = i∗ �= ⊥, and neither a key revealing query for the user
i∗ nor a signing query for (i∗,M∗) is submitted. The advantage of A is de-
fined by the probability that A wins.

4 Difficulty in Having Efficient Constructions

In this section we discuss several difficulties in designing efficient GS-MDO
schemes. We firstly investigate relationships between GS-MDO and other cryp-
tographic primitives, and then we discuss the difficulty that lies in designing
efficient constructions.

As for the relationship to other primitives, we show that the existence of a
GS-MDO scheme implies that of an IBE scheme. In other words, we will present
a black-box construction of IBE from any GS-MDO scheme. The same holds for
the k-resilient versions.

The formal theorems are as follows:

Theorem 1. If the underlying GS-MDO scheme satisfies opener anonymity, the
identity-based KEM in Fig. 1 is fully secure.

Theorem 2. If the underlying GS-MDO scheme satisfies opener anonymity
with k-bounded tokens, the identity-based KEM in Fig. 1 is k-resilient.

Formal proofs can be given by a straightforward modification from the proof
by Abdalla and Warinschi [1] or the similar technique used by Ohtake, Fujii,
Hanaoka, and Ogawa [37], hence we omit detailed proofs.
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We also note that Fig. 1 only shows a construction of identity-based key encap-
sulation mechanism rather than identity-based encryption. However, it suffices
for the theorems since we can obtain a secure encryption scheme by combining
the construction with an appropriate data encapsulation mechanism.

These theorems suggest that to use IBE is crucial for constructing a GS-MDO
scheme. Considering the fact that a black-box construction of IBE from trapdoor
permutation is impossible [12], we should conclude that it is almost unavoidable
for a GS-MDO scheme to relying on an IBE scheme or its equivalence, not only
on trapdoor permutation and NIZK proof. Otherwise one would construct an
IBE scheme from surprisingly weaker primitives.

Another important aspect to establish an efficient GS-MDO scheme is real-
izing a “Groth-Sahai compatible” IBE scheme. This is because the only known
construction of non-interactive zero-knowledge proof with reasonable efficiency
is limited to the Groth-Sahai proof system. Also note that a non-interactive
zero-knowledge proof system has been an important building block for almost
all group signature schemes ever.

However, no currently known IBE scheme is Groth-Sahai compatible in the
sense that the Groth-Sahai proof system cannot prove a kind of well-formedness
of an IBE ciphertext in a zero-knowledge manner.

To overcome this gap, we adopt k-resilient IBE instead of fully secure IBE. In
particular we design a k-resilient IBE scheme from the decision linear assumption
by modifying the Heng-Kurosawa scheme [30] for this purpose (We also note
that a similar construction can be obtained from a key-insulated encryption
scheme by Dodis, Katz, Xu, and Yung [24]). The modification is needed since the
original Heng-Kurosawa scheme is based on the decision Diffie-Hellman (DDH)
assumption, which does not hold in groups with a bilinear map, and the Groth-
Sahai proof system relies on a bilinear map in an essential way.

5 Generic Construction

In this section, we give a construction of a GS-MDO scheme. The construction
is built on an EUF-CMA secure signature scheme, a strongly unforgeable one-
time signature scheme, a selective-tag weakly chosen-ciphertext secure tag-based
KEM, a k-resilient identity-based KEM, and an adaptive NIZK proof system.

At a first glance there are various building blocks. However, our generic con-
struction is only relying on the existence of an IBE scheme and that of an NIZK
proof system. Indeed signature schemes and a chosen-ciphertext secure tag-based
encryption scheme can be constructed from a fully secure IBE.

The proposed construction shares an underlying idea with the generic con-
struction by Bellare, Micciancio, and Warinschi (the BMW construction) [7]
except the use of “simulation-sound” NIZK proofs. The proposed construction
no longer relies on such a strong security requirement of simulation-soundness,
which was exploited by the BMW construction [7]. Instead of the strong secu-
rity requirement of simulation-soundness, we combine (ordinary) NIZK proofs
with a strongly unforgeable one-time signature scheme. We remark that essen-
tially same techniques have been used in a variety of contexts. To name a few,
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Groth [28] used this technique for an efficient group signature scheme in a very
similar manner. Camenisch, Chandran, and Shoup [17,16] used this to construct
simulation-sound NIZK proofs, improving the result of Groth [27].

GKg(1λ, 1n, 1k):
(vk issue, sk issue)← SigKg(1λ);
(pk , dk)← TKg(1λ);
(par ,mk)← ISetup(1λ, 1k);
Σ ← K(1λ);
gpk ← (vk issue, pk , par , Σ);
ok ← dk ;
msk ← mk ;
For all i ∈ [1, n]:

(vk i, sk i)← SigKg(1λ);
cert i ← Signskissue(〈i, sk i〉);
gsk i ← (i, vk i, cert i, sk i);

Output (gpk , ok ,msk , {gsk i}i).

GSig(gpk , gsk i,M):
Parse gpk as (vk issue, pk , par , Σ);
Parse gsk i as (i, vk i, cert i, sk i);
s← Signski

(M);

(vkOT, skOT)← SigKgOT(1λ);
(CPKE,KPKE)← TEncpk (vkOT);
(CIBE,KIBE)← IEncpar (M);
χ← 〈i, vk i, cert i, s〉 �KPKE �KIBE;
π ← PNIZK(· · · );
σOT ← SignOT

skOT
(〈CPKE, CIBE, χ, π〉);

σ ← (vkOT, CPKE, CIBE, χ, π, σOT);
Output σ.

GVf(gpk ,M, σ):
Parse gpk as (vk issue, pk , par , Σ);
Parse σ as (vkOT, CPKE, CIBE, χ, π, σOT);

If VerifyOT
vkOT

(〈CPKE, CIBE, χ, π〉, σOT) = 1
and VNIZK(. . .) = 1 then Output �;
Else Output ⊥.

Td(gpk ,msk ,M):
Parse gpk as (vk issue, pk , par , Σ);
tM ← IExt(par ,msk ,M);
Output tM .

Open(gpk , ok ,M, σ, tM ):
Parse gpk as (vk issue, pk , par , Σ);
Parse σ as (vkOT, CPKE, CIBE, χ, π, σOT);
KPKE ← TDecok(vkOT, CPKE);
KIBE ← IDectM (M,CIBE);
〈i, vk i, cert i, s〉 ← χ�K−1

IBE �K−1
PKE;

If VerifyOT
vkOT

(〈CPKE, CIBE, χ, π〉, σOT) = 1
and VNIZK(. . .) = 1
then Output i;
else Output ⊥;

Fig. 2. The brief overview of the proposed GS-MDO scheme. The operator � denotes
some group operation. In the concrete instantiation, 〈· · ·〉 denotes a tuple consisting of
all group elements that appear in the bracket, and the operator � is the component-
wise group multiplication. The non-interactive proof system (K,PNIZK, VNIZK) is for
demonstrating the existence of a satisfying assignment of Eq. (1).

The Construction. In the construction, a group member has a key pair
(vk i, sk i) of the signature scheme in which vk i is authorized by another veri-
fication key vk issue at the setup time. When a member makes a group signature,
the member simply signs a message by sk i. To be anonymous, the member fur-
ther encrypts the signature together with the certificate (of the member), which
authorizes the verification key vk i, and attaches a non-interactive proof that
demonstrates that a signature of an authorized member is encrypted. To en-
crypt a signature, the member uses a multiple encryption technique to ensure
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neither the opener nor the admitter can reveal the identity as long as the admitter
does not issue a token to the opener. The complete description of the scheme is
shown in Fig. 2.

Let us explain the non-interactive proof that appears in the construction. The
signature of the proposed scheme is of the form as (vkOT, CPKE, CIBE, χ, π, σOT),
and, as mentioned above, the proof π demonstrates a valid signature of an autho-
rized group member is encrypted into (CPKE, CIBE, χ) in a kind of a “multiple
encryption” manner. In detail, the proof π proves that there exists a random-
ness r (for tag-based KEM), another randomness ρ (for identity-based KEM),
a group member i, and the verification key vk i, the certificate cert i, and the
signature s on a message M , such that

(CPKE,KPKE) = TEncpk (vkOT; r),

(CIBE,KIBE) = IEncpar (M ; ρ),

χ = 〈i, vk i, cert i, s〉 
KPKE 
KIBE,

Verifyvk issue
(〈i, vk i〉, cert i) = �,

Verifyvki
(M, s) = �.

(1)

Technically speaking, we need several requirements on the session key spaces of
tag-based KEM and k-resilient IBE. The requirements are: (i) The tag-based
KEM scheme and the k-resilient IBE scheme share the same session key space
KPKE = KIBE and (ii) this session key space forms a finite group. These require-
ments are needed because we do a one-time pad to encrypt a signature of the
group member. This group operation also needs to fall into the class of relations
that the used non-interactive proof system can represent.

Finally, there are two encoding functions needed for completing the generic
construction. The first is used to encode the identity of a group member and his
verification key into the message space of the signature scheme when generating
certificates of group members. The second one is used to encode (i, vk i, cert i, s)
into KPKE, where i is the identity of a group member and vk i, cert i, and s are his
verification key, certificate, and signature, respectively. It is used when issuing
group signatures, especially encrypting his signature in order to hide his identity.

As below, the generic construction will have desirable security properties when
all building blocks satisfy appropriate security properties.

Theorem 3. The proposed scheme satisfies opener anonymity with k-bounded
tokens if the identity-based KEM is k-resilient and the non-interactive proof sys-
tem is zero-knowledge.

Theorem 4. The proposed scheme satisfies admitter anonymity when the tag-
based KEM is selective-tag weakly chosen-ciphertext secure, the non-interactive
proof system is zero-knowledge, and the one-time signature scheme is strongly
unforgeable.

Theorem 5. The proposed scheme satisfies traceability when the non-interactive
proof system is sound and the signature scheme is EUF-CMA secure.

All the proofs of the theorems will appear in Appendix B.
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6 Efficient Instantiation

Toward an efficient scheme, we will discuss how to instantiate the building blocks
used in the generic constructions of the previous section.

As for the non-interactive proof, an obvious choice is the Groth-Sahai proof
system, since there is no known fairly practical construction of a NIZK proof
system except the Groth-Sahai proof system. However, to adopt the Groth-
Sahai proof system, other building blocks are subjected to restrictions, due to
the limitation of the type of theorems that the Groth-Sahai proof system can
prove. In other words, other building blocks need to be structure preserving [2],
and especially, the theorem should not involve elements of GT , where GT is the
target group of the underlying bilinear mapping. Hence, we have to choose an
IBE scheme which fulfills this requirement as a building block, but unfortunately,
there is no known such scheme. This means that it is not straightforward to
construct an efficient instantiation of our generic construction from the Groth-
Sahai proof.

In this section, we give an efficient instantiation by constructing a structure
preserving IBE scheme and choosing other appropriate building blocks. How-
ever, we must also honestly mention that our IBE does not provide full security
but only k-resilience [30]. It is also worth noting that constructing a structure-
preserving IBE scheme is already an important open problem.

Our structure-preserving k-resilient IBE scheme is obtained by means of mod-
ifying the Heng-Kurosawa scheme [30] which is secure under the decision Diffie-
Hellman (DDH) assumption in the sense of k-resilient security. Since the DDH
assumption does not hold in a bilinear group, it is not possible to utilize it as
it is, and thus, we construct a modified version of this scheme which is secure
under the decision linear (DLIN) assumption.

6.1 k-Resilient IBE from the Decision Linear Assumption

As mentioned above, our proposed k-resilient IBE scheme can be obtained by ap-
plying several modifications to the original Heng-Kurosawa scheme [30, Sect. 3.2]
which are as follows: (1) Basing on the DLIN assumption instead of the DDH
assumption2, (2) designing it as a key encapsulation mechanism instead of an
encryption scheme, and (3) modifying it to encapsulate a sufficiently long session
key in a constant size ciphertext (Indeed our proposed scheme encapsulates a
session key of l group elements in a ciphertext of three group elements). Our
proposed scheme is as follows:

2 If we adopt the SXDH assumption, we can plug in the original Heng-Kurosawa
scheme to the generic construction. However, in this case we need to set up two
instances of the original Heng-Kurosawa scheme for two different groups G1 and
G2, over which the bilinear map is defined. This is because the Abe-Haralambiev-
Ohkubo signature scheme contains elements of both groups in its signature value.
The same thing holds for the tag-based KEM.
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Setup. Let par = (u, v, h, {Di,j = udi,jhd′′
i,j , D̃i,j = vd

′
i,jhd′′

i,j}i∈[l],j∈[k]) and
mk = (di(X), d′i(X), d′′i (X))i∈[l] where di, d′i, and d′′i are the polynomi-

als defined as follows: di(X) =
∑k

j=0 di,jX
j, d′i(X) =

∑k
j=0 d

′
i,jX

j, and

d′′i (X) =
∑k

j=0 d
′′
i,jX

j for all i ∈ [l].
Key Extract. The decryption key for the user ID is derived as dk ID = {di(ID),

d′i(ID), d′′i (ID)}i∈[l].
Encrypt. To encapsulate a session key, choose ρ and ρ̃ from Zp randomly and

compute CIBE = (uρ, vρ̃, hρ+ρ̃), which encapsulates the session key KIBE =

((
∏k

j=0 D
IDj

1,j )ρ(
∏k

j=0 D̃
IDj

1,j )ρ̃, . . . , (
∏k

j=0 D
IDj

l,j )ρ(
∏k

j=0 D̃
IDj

l,j )ρ̃).
Decrypt. To decapsulate a session key from a ciphertext CIBE = (C1, C2, C3),

compute (C
d1(ID)
1 C

d′
1(ID)

2 C
d′′
1 (ID)

3 , . . . , C
dl(ID)
1 C

d′
l(ID)

2 C
d′′
l (ID)

3 ).

The security of this scheme is proved under the DLIN assumption, which says
that given a tuple (u, v, h, ur, vr̃, h

˜̃r) it is hard to efficiently decide r + r̃ = ˜̃r or
not. Formal statements of the assumption and the theorem are as follows.

Definition 4. We say that the decision linear assumption on G holds if for
any polynomial-time algorithm D, |Pr[D(u, v, h, ur, vr̃, h

˜̃r) → 1|r + r̃ = ˜̃r] −
Pr[D(u, v, h, ur, vr̃, h

˜̃r)→ 1|r + r̃ �= ˜̃r]| is negligible.

Theorem 6. The above construction is an adaptively secure k-resilient identity-
based KEM if the decision linear assumption on G holds.

Proof. Given an adversary A which attacks adaptive security against the above
scheme, we bound its advantage by constructing the simulator below:

Setup. The simulator B receives an instance (u, v, h, ur, vr̃, h
˜̃r) of the decision

linear problem, where ˜̃r is either r + r̃ or an independently random element
of Zp. The simulator generates random polynomials {di(x) = di,0 + · · · +
αi,kx

k, d′i(x) = d′i,0 + · · · + d′i,kx
k, d′′i (x) = d′′i,0 + · · · + d′′i,kx

k}i∈[l] of degree

k, sets Di,j ← udi,jhd′′
i,j and D̃i,j ← vd

′
i,jhd′′

i,j for all i ∈ [1, l] and j ∈ [0, k],

and runs A with input par = (u, v, h, {Di,j, D̃i,j}i∈[1,l],j∈[0,k]).
Key Extraction Query (Phase I). When A queries an identity ID , B re-

turns dk ID = {di(ID), d′i(ID), d′′i (ID)}i∈[l].
Challenge. When A requests a challenge for an identity ID∗, B computes C∗ =

(ur, vr̃, h
˜̃r) and K∗ = (K∗

1 , . . . ,K
∗
l ) = ((ur)d1(ID

∗)(vr̃)d
′
1(ID

∗)(h
˜̃r)d

′′
1 (ID

∗),

. . . , (ur)dl(ID
∗)(vr̃)d

′
l(ID

∗)(h
˜̃r)d

′′
l (ID

∗)). This C∗ and K∗ are given to A as
a challenge.

Key Extraction Query (Phase II). Again, A may request a decryption key
for ID and B responds as before.

Guess. Finally A outputs a bit b′ and B outputs the same bit.

When ˜̃r = r + r̃, a simple calculation shows that K∗ is the real session key
encapsulated in C∗. Otherwise when ˜̃r �= r+ r̃, we will show that K∗ distributes
independently from all other values seen by A. To see this, let ID1, . . ., IDk be
the decapsulation key queries issued by A during the simulation, and observe
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that queries reveal function values di(ID j), d
′
i(ID j), d

′′
i (ID j) to A, but di(ID∗),

d′i(ID
∗), and d′′i (ID

∗) are not revealed. However, par further reveals the value
di(ID

∗) + αd′′i (ID
∗) and d′i(ID

∗) + βd′′i (ID∗), where u = gα and v = gβ . The
equations A can observe is represented as

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎝dk ID1

⎞

⎠

...⎛

⎝dk IDk

⎞

⎠

logg u
xi(ID

∗)hx′′
i (ID

∗)

logg v
x′
i(ID

∗)hx′′
i (ID

∗)

logg K
∗
i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
1
1
. . .

1
1
1

α 1
β 1

rα r̃β ˜̃r

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

di(ID1)
d′i(ID1)
d′′i (ID1)

...
di(IDk)
d′i(IDk)
d′′i (IDk)
di(ID

∗)
d′i(ID

∗)
d′′i (ID

∗)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where this matrix is non-singular, and hence K∗ is uniformly distributed. All
these facts justify the fact that the quantity

Pr[A → 1 | K∗ is real]− Pr[A → 1 | K∗ is random]

is equal to

Pr[B(u, v, h, ur, vr̃, h
˜̃r)→ 1 | r + r̃ = ˜̃r]

− Pr[B(u, v, h, ur, vr̃, h
˜̃r)→ 1 | r + r̃ �= ˜̃r].

The decision linear assumption says that the latter is negligible, and so is the
former, which is what we wanted. �

6.2 Other Building Blocks

Other building blocks are instantiated as follows.

Groth-Sahai Proofs [29,26]. This is an efficient non-interactive proof system
for groups with a bilinear map. This proof system is able to demonstrate
quite broad types of algebraic equations hold in a zero-knowledge manner,
and is useful to avoid an expensive blowup from general NIZK techniques.

Abe-Haralambiev-Ohkubo Signature [4,2]. This is a structure-preserving
signature, in the sense that the signing and verification procedure has no
use of non-algebraic operation. This property is essential when the scheme
is used together with Groth-Sahai proofs, due to the restriction that Groth-
Sahai proofs are unable to treat a kind of non-algebraic relation such as
hashing.
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The Decision Linear Variant of Cramer-Shoup [41]. Groth-Sahai proofs
are highly relying on its use of pairing, and thus we can no longer expect the
DDH assumption to hold in our setting. This is why we need to modify the
Cramer-Shoup encryption to use the DLIN assumption instead of the classi-
cal DDH assumption. Such a DLIN variant of the Cramer-Shoup encryption
was proposed by Shacham [41], but we further modify the Shacham’s scheme
to be tag-based for adopting the one-time signature technique and to be a
key encapsulation mechanism for further efficiency than in a direct use of
public-key encryption3.

Encoding Functions. The first encoding function has to encode (i, vk i) into
the message space of the Abe-Haralambiev-Ohkubo scheme. The verification
key vk i is already represented by sixteen elements of G. The identity i of a
signer is an integer, but it can be efficiently encoded as gi. Notice that decod-
ing is also efficient, because the number of group members is polynomial, and
so is i. The same thing holds for the second encoding function. In this case,
(i, vk i, cert i, s) can be encoded as thirty-one group elements of G.4 Because
the Shacham PKE, as well as the Heng-Kurosawa IBE, can be modified to
have the session key space G

31, the identity encoding function suffices for
this purpose. Another important point is that 〈i, vk i, cert i, s〉 is masked by a
session key via the group operation of G for keeping the structure-preserving
property, which enables us to adopt Groth-Sahai proofs.

Theorem 7. When instantiating our construction in Fig. 2 with our decision
linear variant of the Heng-Kurosawa k-resilient IBE, the Groth-Sahai proof, the
decision linear variant of the Cramer-Shoup encryption, the Abe-Haralambiev-
Ohkubo signature scheme, and the one-time signature scheme from the Okamoto
identification scheme [38] via the transformation due to Bellare and Shoup [9],
the resulting scheme satisfies opener anonymity with k-bounded tokens, admitter
anonymity, and traceability.

6.3 Efficiency

Finally we give a brief efficiency comparison between the proposed scheme and
previous group signatures (without message-dependent opening capability).

In the instantiation in Theorem 7, a signature contains 501 elements ofG and 2
elements of Zp. For a reference, we remark that the group signature of Groth [28]
has a signature that consists of 52 elements of G and 1 elements of Zp. The
message-dependent opening capability is achieved by roughly 10 times blowup

3 A possible alternative choice here is Kiltz’s tag-based encryption [35], which could
reduce the size of NIZK proofs due to its public verifiability. One drawback of
this scheme is that, to the best of the authors’ knowledge, Kiltz’s encryption does
not allow encrypting multiple group elements with constant ciphertext overhead,
while the Cramer-Shoup scheme (and its DLIN variant by Shacham) allow such a
modification. See Sect. A.2 for details of this modification.

4 These thirty-one elements come form one element for gi, sixteen elements for the
verification key vk i, seven elements for cert i, and seven elements for s.
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of the signature size (The Groth scheme allows dynamic joining of members,
whereas ours does not, though). From this evaluation, we see that our scheme is
fairly practical, or at least implementable in a real system.

Acknowledgment. The authors would like to thank anonymous reviewers for
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A Building Blocks and Their Security Proofs

In the following, let G and GT be groups of a prime order p, e : G × G → GT

be a bilinear map.

A.1 Abe-Haralambiev-Ohkubo Signature

The Abe-Haralambiev-Ohkubo signature scheme is as follows [2,4]:
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Key Generation. The verification key is vk = (g′′, h′′, g′, h′, {gi, hi}i∈[l], a0,

ã0, b0, b̃0, a1, ã1, b1, b̃1), where g′, h′ ∈ G \ {1}, gi ← g′γi and hi ← h′δi
for random γi, δi ← Z

∗
p for i ∈ [l], g′′ ← g′γ

′′
, h′′ ← h′δ′′ for random

γ′′, δ′′ ← Z
∗
p, (a0, ã0, a1, ã1) ← Extend(g′, gα) for a random α ← Z

∗
p, and

(b0, b̃0, b1, b̃1) ← Extend(h′, gβ) for a random β ← Z
∗
p. The signing key is

sk = (α, β, γ′′, δ′′, {γi, δi}i∈[l]).

Signing. For a message (m1, . . . ,ml) ∈ G
l, choose randomly ζ, ρ, τ , ϕ, ω from

Zp, compute z = g̃ζ , r = g̃α−ρτ−γzζ
∏l

i=1 m
−γi

i , s = g′ρ, t = g̃τ , u =

g̃β−ϕω−δzζ
∏l

i=1 m
−δi
i , v = hϕ

r , and w = g̃ω, and output (z, r, s, t, u, v, w) as
a signature.

Verification. For a pair (m,σ) = ((m1, . . . ,ml), (z, r, s, t, u, v, w)) of a sig-
nature and a message, verify two equations e(a0, ã0)e(a1, ã1) = e(g′′, z)
e(g′, r)e(s, t)

∏k
i=1 e(gi,mi) and e(b0, b̃0)e(b1, b̃1) = e(h′′, z)e(h′, u)e(v, w)

∏l
i=1 e(hi,mi). If both equations hold, output �. Otherwise output ⊥.

Here, Extend(g, h) is the algorithm that takes two group elements g and h, picks
random x ∈ G and r ∈ Zp, and outputs (Rand(gxr, h),Rand(x, h−r)). Algorithm
Rand(g, h), when g �= 1 and h �= 1, outputs (gs, h1/s) for random s ∈ Z

∗
p. When

g = 1 or h = 1, it outputs (1, 1) with probability 1/(2p− 1), otherwise outputs
one of (1, x) or (x, 1) with probability 1/2 for random x ∈ G \ {1}.

A.2 Shacham’s Variant of Cramer-Shoup Encryption

Shacham [41] proposed a variant of the Cramer-Shoup encryption scheme [21,22]
modified to be based on the decision linear assumption. The scheme below further
modifies the Shacham’s variants in two points: (1) Used as a key encapsulation
mechanisms and (2) modified to encapsulate a long session key in a constant-size
ciphertext. This modified Shacham’s variant is as follows:

Key Generation. The public key is pk = (u, v, h,X = uxhx′′
, X̃ = vx

′
hx′′

, Y =
uyhy′′

, Ỹ = vy
′
hy′′

, {Zi = uzihz′
i , Z̃i = vz

′
ihz′′

i }i∈[l]), whose corresponding se-
cret key is dk = (x, x′, x′′, y, y′, y′′, {zi, z′i, z′′i }i∈[l]).

Encrypt. To encapsulate a session key with a tag t, choose random r and r̃
from Zp and compute a ciphertext as CPKE = (ur, vr̃, hr+r̃, (XY t)r(X̃Ỹ t)r̃).

The session key is (Zr
1 Z̃

r̃
1 , . . . , Z

r
l Z̃

r̃
l ).

Decrypt. To decapsulate a ciphertext (c1, c2, c3, c4) with a tag t, verify whether

cx+ty
1 cx

′+ty′
2 cx

′′+ty′′
3 = c4 holds. If it does not hold, output ⊥, and otherwise

output (cz11 c
z′
1

2 c
z′′
1

3 , . . . , czl1 c
z′
l

2 c
z′′
l

3 ).

B Security Proofs for the Construction in Sect. 5

B.1 Proof of Theorem 3

Proof. Let A be an opener anonymity adversary against the proposed scheme.
Let OAnonymA be the random variable that is 1 when A correctly guesses the
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bit b in the opener anonymity game and is 0 when it does not. Let OAnonym′
A

be a similar random variable with one exception that the common reference
string used in the scheme is generated with the zero-knowledge simulator S1.
This change does not affect the probability that the adversary A wins the game,
that is, |Pr[OAnonymA = 1] − Pr[OAnonym′

A = 1]| is negligible, due to the
zero-knowledge property of the underlying non-interactive proof system. We then
show that |Pr[OAnonym′

A = 1]− 1/2| is negligible, which concludes the proof.
We construct an adversary B which attacks the underlying (k-resilient) IBE

scheme, and then we relate its success probability to that of A (in the experiment
OAnonym′

A) to obtain the desired bound. The construction of B is as follows:

Setup. The adversary B is given as input the master public key par for the
identity-based KEM. The adversary B then generates the rest of a group pub-
lic key gpk as (vk issue, sk issue) ← SigKg(1λ), (pk , dk ) ← TKg(1λ), (Σ, τ) ←
S1(1λ), generates user signing keys (vk i, sk i)← SigKg(1λ) and their certifi-
cates cert i ← Signsk issue

(〈i, vk i〉) for all i ∈ [n]. The adversary then sets gpk
to (vk issue, par , pk , Σ), sets gsk i to (i, vk i, cert i, sk i), and run A with input
(gpk , dk , {gsk i}i∈[n]).

Token Query (Phase I). When A makes a token query for a message M , B
makes a key extraction query for M (as an identity) to obtain a decryption
key dkM , and responds A with dkM .

Challenge. When A requests a challenge for (i0, i1,M
∗), B proceeds as fol-

lows: B computes two signatures s0 ← Signvki0
(M∗) and s1 ← Signvki1

(M∗)
of the group members i0 and i1, generates a one-time signature key pair
(vk∗

OT, sk
∗
OT), and requests a challenge for an identity M∗. Then B re-

ceives a challenge (C∗
IBE,K

∗
IBE), computes a ciphertext (CPKE,KPKE) ←

TEncpk (vk
∗
OT), further computes χ∗ ← 〈ib, vk ib , cert ib , sb〉 
 KPKE 
 K∗

IBE

for a random bit b, generates a simulated proof π∗ with a token τ , and signs
〈C∗

PKE, C
∗
IBE, χ

∗, π∗〉 with the one-time signing key sk∗
OT to obtain σ∗

OT. Fi-
nally B sends (vk∗

OT, C
∗
PKE, C

∗
IBE, χ

∗, π∗, σ∗
OT) to A as a challenge.

Token Query (Phase II). The adversary A continue to issue token queries,
and they are answered by B as before.

Guess. At lastA outputs a bit b′, and B outputs 1 if and only if b′ = b, otherwise
outputs 0.

When the challenger gives the real session key (i.e. C∗
IBE is decrypted into K∗

IBE),
B perfectly simulates the experiment OAnonym′

A, whereas when a random
session key is given, the information on the bit b is perfectly hidden from A.
This fact justifies the equality below:

Pr[OAnonym′
A = 1]− 1

2
= Pr[B → 1 | K∗

PKE is real]− Pr[B → 1 | K∗
PKE is random].

Due to the security of the k resilient identity-based KEM, the right hand side is
negligible, and it completes the proof. �
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B.2 Proof of Theorem 4

Proof. Let A be an admitter anonymity adversary against the proposed scheme.
Let AAnonymA be a random variable that indicates A correctly guesses the
bit in the admitter anonymity game. Let AAnonym′

A be a similar random
variable with the exception that the common reference string is replaced to that
for simulation. Due to the zero-knowledge property of the proof system, A’s
success probability does not change non-negligibly, that is, |Pr[AAnonymA =
1]− Pr[AAnonym′

A = 1]| is negligible. We then show that |Pr[AAnonym′
A =

1]− 1/2| is negligible, which concludes the actual proof.
We construct an adversary B which attacks the underlying tag-based KEM.

The construction of B is as follows:

Setup. The adversaryB first runs SigKgOT(1λ) to generate a verification/signing
key pair (vk∗

OT, sk
∗
OT), outputs vk∗

OT as a target tag, and then receives the
public key pk of the tag-based KEM. The adversary B then generates the
rest of a group public key as (vk issue, sk issue) ← SigKg(1λ), (par ,mk) ←
ISetup(1λ), (Σ, τ) ← S1(1λ), user signing keys (vk i, sk i) ← SigKg(1λ) for
all i ∈ [n], and their certificates cert i ← Signsk issue

(〈i, vk i〉) for all i ∈
[n]. The adversary B then sets gpk ← (vk issue, pk , par , Σ) and gsk i ←
(i, vk i, cert i, sk i) and runs A with input (gpk ,mk , {gsk i}i∈[n]).

Open Query (Phase I). When the adversary A submits an open query for a
signature (vkOT, CPKE, CIBE, χ, π, σOT) and a message M , the adversary B
responds as follows: (i) when vkOT �= vk∗

OT, B makes a decapsulation query
for the ciphertext CPKE with a tag vkOT to obtain a session key KPKE (note
that this query is legitimate), and then extracts a user decryption key dkM

(of an identity-based KEM) from mk , decrypts CIBE with dkM to obtain a
session keyKIBE, and verifies whether VerifyOT

vkOT
(〈CPKE, CIBE, χ, π〉, σOT) =

1 and VNIZK(. . .) = 1 hold. If both of them hold, B further computes
〈i, vk , cert , s〉 ← χ
K−1

IBE
K−1
PKE and responds with i. Otherwise B responds

with ⊥. (ii) When vkOT = vk∗
OT, if Verifyvk∗

OT
(〈CPKE, CIBE, χ, π〉) = ⊥, B

responds with ⊥. Otherwise B aborts and outputs a random b′.
Challenge. At some time A requests a challenge for (i0, i1,M

∗), B computes
a challenge as follows: B generates signatures sb ← Signskib

(M∗) for a

random bit b, requests a challenge to obtain (C∗
PKE,K

∗
PKE), generates a

ciphertext and a session key as (C∗
IBE,KIBE) ← IEncpar (M

∗), computes
χ∗ ← 〈ib, vk ib , cert ib , sib〉 
 K∗

PKE 
 KIBE, and generates a fake proof π∗.
Finally B signs 〈vk∗

OT, C
∗
PKE, C

∗
IBE, χ

∗, π∗〉 with the one-time signing key
sk∗

OT to obtain σ∗
OT and sends (vk∗

OT, C
∗
PKE, C

∗
IBE, χ

∗, π∗, σ∗
OT) to A.

Open Query (Phase II). Again A submits more open queries and B responds
as before.

Guess. When A outputs a bit b, B outputs 1 if and only if b′ = b, otherwise
outputs 0.

Let F denote the event that the adversary A submits an open query (vkOT,
CPKE, CIBE, π, σOT) where vkOT = vk∗

OT and VerifyvkOT
(〈CPKE, CIBE, π〉) = �.

Due to its perfect simulation of the experiment AAnonym′
A(k, n) (with only
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exception of aborting in the event F ), when given the real session key K∗
PKE , B

outputs 1 whenever A successfully guesses a bit and the event F does not occur.
In addition, when given a random session key, B gives no information on the bit
b to A. The inequality below can be obtained from these two facts:

∣
∣
∣
∣Pr[AAnonym′

A = 1]− 1

2

∣
∣
∣
∣

=

∣
∣
∣
∣Pr[AAnonym′

A = 1 ∧ F ] + Pr[AAnonym′
A = 1 ∧ ¬F ]− 1

2

∣
∣
∣
∣

≤
∣
∣
∣
∣Pr[F ] + Pr[AAnonym′

A = 1 ∧ ¬F ]− 1

2

∣
∣
∣
∣

≤ Pr[F ] + |Pr[B → 1 | K∗
PKE is real]− Pr[B → 1 | K∗

PKE is random]|
Finally we prove Pr[F ] is negligible to complete the proof.

To prove Pr[F ] is negligible, we will construct another adversary F , which
attacks strong unforgeability of the one-time signature scheme and relate its
success probability with the probability of the event F . The construction of F
is as follows:

Setup. The adversary F first receives a verification key vk∗
OT for the one-time

signature scheme. The adversary then runs GKg(1λ, 1n, 1k) to obtain a group
public key gpk = (vk issue, pk , par , Σ), the opening key ok , the message-
specification key msk , and user signing keys gsk i = (i, vk i, cert i, sk i) for
all i ∈ [n].

Open Query (Phase I). Queries are answered with the opening key ok
and the message-specifying key msk . In addition, when A queries a
group signature (vkOT, CPKE, CIBE, χ, π, σOT) in which vkOT = vk∗

OT and
VerifyvkOT

(〈CPKE, CIBE, χ, π〉, σOT) = �, F stops the simulation and out-
puts this (〈CPKE, CIBE, χ, π〉, σOT) as a forgery.

Challenge. To respond to the challenge request (i0, i1,M
∗), F chooses a ran-

dom bit b and generate a group signature (vk∗
OT, C

∗
PKE, C

∗
IBE, χ

∗, π∗, σ∗
OT)

in the way exactly same to the construction with one exception that σ∗
OT is

obtained by querying 〈C∗
PKE, C

∗
IBE, χ

∗, π∗〉 to the signing oracle.
Open Query (Phase II). Further open queries are answered as in the phase I.
Guess. If A outputs a guess and halts, F halts without outputting a forgery.

Whenever the event F happens, this adversary F successfully outputs a forgery
and wins the game (Because (CPKE, CIBE, χ, π, σOT) must be different from
(C∗

PKE, C
∗
IBE, χ

∗, π∗, σ∗
OT), and it consists a legitimate strong forgery). Then we

can conclude Pr[F ] is negligible, because of the security of the underlying one-
time signature scheme. �

B.3 Proof of Theorem 5

Proof. Let A be a traceability adversary against the proposed scheme. We first
classify successful forgery that A may produce.
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The forgery is opened to ⊥: In this case, either CPKE or CIBE is invalid (de-
capsulated to ⊥) or χ
K−1

IBE
K−1
PKE cannot be parsed. In all of these case,

π is an invalid proof for a false statement.
The forgery is opened to i ∈ N: In this case all CPKE, CIBE, and χ have

been correctly decrypted, and when χ
K−1
IBE
K−1

PKE is parsed into 〈i′, vk ′,
cert ′, s′〉, either one of the following three cases will hold: (i) Verifyvk issue

(〈i′,
vk ′〉, cert ′) = ⊥ or Verifyvk ′(M, s) = ⊥, (ii) cert ′ is a valid signature, but
〈i′, vk ′〉 was not singed at the setup phase, or (iii) (〈i, vk ′〉, cert ′) is the same
one generated at the setup phase. Note that in case (i) the proof π is a valid
proof for the false statement, in case (ii) cert ′ is a forgery for the verification
key vk isuue, and in case (iii) s′ is a forgery for the user verification key vk i.

To bound the probability that A outputs a forgery of case (iii), we construct a
forger B against the underlying EUF-CMA signature scheme. The construction
of B is as follows: The forger B receives a verification key vk , and B uses this
verification key as a user verification key vk i∗ , where i

∗ is randomly chosen by B.
Other components of the public key and the secret keys for the group members
and the authorities are honestly generated by B. Then B runs A with input the
group public key gpk , the opener key ok , and the admitter key msk . Signing
queries for the user i∗ can be simulated with the signing oracle of the underlying
scheme, group signing key revealing query for the user i∗ cannot be simulated,
in which case B aborts. Other signing queries and key revealing queries can be
answered by B itself. When A outputs a forgery (M,σ), B verifies the one-time
signature and the non-interactive proof in σ, decrypts ciphertexts in σ to obtains
the plaintext 〈i′, vk ′, cert ′, s′〉, verifies cert ′ by vk issue and s′ by vk ′, confirms
that (i′, vk ′) = (i∗, vk ), and finally outputs (M, s) as a forgery. If one of these
procedures fails, B stops. Since B is a legitimate forger of the signature scheme
and whenever A produces a forgery of case (iii) also B does a successful forgery,
we obtains a bound for the case (iii).

To bound the probability that A outputs a forgery of case (ii), we construct
another forger B′. This time B receives a key vk and uses it as a certificate
verification key vk issue, and obtains certificates cert i for all groupmembers i ∈ [n]
by querying the signing oracle of the underlying scheme. Signing queries and
key revealing queries issued by A are correctly answered by B itself for all group
members. When A outputs (M,σ), B verifies the validity of σ, confirms that σ
contains a certificate forgery, and outputs this forged certificate, otherwise stops.
Also in this case B is a legitimate forger against the underlying scheme, and thus
the probability that A produces a forgery of the case (ii) is bounded.

Since the other cases of forgeries A may produce contains a valid proof of a
false statement, the probability that A produces such a forgery is bounded due
to the underlying non-interactive proof system. �
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