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Preface

Pairing 2012 was the 5th International Conference on Pairing-Based Cryptogra-
phy and took place during May 16–18, 2012, in Cologne, Germany. The confer-
ence was organized by the Coding Theory and Cryptology group at the Eindhoven
Institute for the Protection of Systems and Information, Department of Mathe-
matics and Computer Science, Technische Universiteit Eindhoven, with the aim
of bringing together leading researchers and practitioners from academia and in-
dustry, all concerned with problems related to pairing-based cryptography. The
General Chairs of the conference were Tanja Lange and Michael Naehrig, and the
secretarial support was provided by Anita Klooster from the Technische Univer-
siteit Eindhoven. We thank both Michael and Anita for their constant efforts and
for making this conference possible.

The conference received 49 submissions and each submission was assigned to
at least three committee members. Submissions co-authored by members of the
Program Committee were assigned to at least four committee members. We were
happy to receive a good number of high-quality submissions, and we are grateful
to the committee members and external reviewers for their outstanding work in
thoroughly reviewing all papers in a timely manner. After a discussion phase of
19 days, leading to 290 comments on the submissions, the Program Committee,
selected 17 submissions for presentation in the academic track. Additionally,
three other submissions were selected for presentation in the industrial track. The
final versions of these submissions were not checked by the Program Committee
and the authors bear full responsibility for their contents.

The program included four invited talks in addition to the academic and
industrial tracks. These talks were given by Jean-Luc Beuchat, Jung-Hee Cheon,
Dennis Hofheinz, and Hovav Shacham, and covered a wide range of topics in
pairing-based cryptography. In addition, the program included shorter invited
talks by Benôıt Libert and Katsuyuki Takashima in a session about hot topics
in pairings, following a trend established in previous editions of this conference.
The abstracts of these invited talks were also included in this volume.

The reviewing process was run using the iChair software, written by Thomas
Baignères from CryptoExperts, France and Matthieu Finiasz from EPFL, LASEC,
Switzerland. We are grateful to them for letting us use their software.

Finally, we would like to thank our sponsors Netherlands Organization for
Scientific Research (NWO), Microsoft Research, and Voltage Security for their
financial support as well as all the Pairing Steering Committee for selecting us as
Program Chairs. We would also like to thank Springer for accepting to publish
the proceedings in the Lecture Notes in Computer Science series.

December 2012 Michel Abdalla
Tanja Lange
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Hardware Architectures

for the Cryptographic Tate Pairing
(Invited Talk)

Jean-Luc Beuchat

Faculty of Engineering, Information and Systems,
University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan

jeanluc.beuchat@gmail.com

Abstract. In the mid-nineties of the last century, Menezes, Okamoto
& Vanstone and Frey & Rück introduced the Weil and Tate pairings in
cryptography as a tool to attack the discrete logarithm problem on some
classes of elliptic curves defined over finite fields. The discovery of con-
structive properties by Joux, Mitsunari, Sakai & Kasahara, and Sakai,
Oghishi & Kasahara initiated the proposal of an ever-increasing number
of protocols based on bilinear pairings: identity-based encryption, short
signature, and efficient broadcast encryption, to mention but a few. How-
ever, such protocols rely critically on efficient implementations of pairing
primitives at high security levels on a wide range of targets.

Miller described the first iterative algorithm to compute the Weil and
Tate pairings back in 1986. The Tate pairing seems to be more suited
to efficient implementations, and has therefore attracted a lot of interest
from the research community. A large number of articles, culminating
in the ηT pairing algorithm, focused on shortening the loop of Miller’s
algorithm in the case of supersingular abelian varieties. The Ate pairing,
introduced by Hess et al. for elliptic curves and by Granger et al. in the
hyperelliptic case, generalizes the ηT approach to ordinary curves. Even-
tually, several variants of the Ate pairing aiming at optimally reducing
the loop length of Miller’s algorithm have been proposed in 2008.

We sketch here several hardware architectures for the Tate pairing
on supersingular and ordinary curves. First, we emphasize on reducing
the silicon footprint of the circuit to ensure scalability, while trying to
minimize the impact on the overall performances. Then, we focus on the
other end of the hardware design spectrum and explain how to achieve
much lower computation times, at the expense of extra hardware re-
sources. The main lesson learned from this study is that an appropriate
mix of theoretical foundations and practical considerations is essential to
design cryptographic hardware: fine-tuning of the algorithms, arithmetic
operand encoding, scheduling, etc.



Discrete Logarithm in Pairing Groups

(Invited Talk)

Jung Hee Cheon

ISaC & Department of Mathematical Sciences, Seoul National University

jhcheon@snu.ac.kr

Abstract. In recent years, bilinear pairings have found various applica-
tions in cryptography to construct new cryptographic primitives. Pairing-
based cryptography raises lots of new computational problems, but they
have not been studied very well in the literature. In this talk, we survey
recent progress in this field and then would like to address some open
questions on the discrete logarithm problems in pairing groups. For this
purpose, this talk is roughly comprised of three parts. The first part
mainly focuses on the Pollard rho algorithm on pairing groups. We in-
troduce the Tag Tracing technique to speed up Pollard rho algorithm
and investigate how to apply this technique to elliptic curves with bi-
linear maps. The second topic is on the pairing inversion problem. We
discuss about polynomial representations of this problem and show how
to reduce the degree of the corresponding polynomial. The last topic is
related to the strong DH assumption, which is one of the most popular
cryptographic assumptions in the field of pairing-based cryptography.
We take a look around the security of the strong DH assumption and
its following variants with auxiliary inputs. It was proved that they have
less security than the square-root of p when either p− 1 or p+ 1 has an
appropriate divisor of the base group order p. We introduce an attempt
to generalize this attack by using an embedding to an extension field or
elliptic curves, or by exploiting a polynomial with small image size.

Keywords: Discrete Logarithm, Pollard rho, Tag Tracing, Bilinear Maps,
Pairing Inversion, Auxiliary Inputs.



Structure-Preserving Cryptography

(Invited Talk)

Dennis Hofheinz

Karlsruhe Institute of Technology
Institut für Kryptographie und Sicherheit

Building 50.34, room 279, Am Fasanengarten 5, 76131 Karlsruhe, Germany

dennis.hofheinz@kit.edu

Abstract. A cryptographic scheme is called structure-preserving, if the
performed operations are solely abstract group operations. (In particu-
lar, this disallows the explicit use of, say, the bit representation of group
elements.) Structure-preserving schemes are interesting because they are
compatible with non-interactive proof systems for equations over groups.
For instance, efficient Groth-Sahai proofs can be used to prove knowl-
edge of a signature (of a structure-preserving signature scheme). This
allows to transport generic paradigms (such as the Naor-Yung paradigm
to achieve chosen-ciphertext encryption security) to an efficient group-
based setting. This talk first gives an overview over structure-preserving
schemes, and then presents a new result that uses a structure-preserving
signature scheme as an essential building block. Concretely, we show how
to construct a chosen-ciphertext secure public-key encryption scheme
with a tight security reduction in the multi-user, multi-challenge setting.



Alternative Structure for Bilinear Groups

(Invited Talk)

Hovav Shacham

Department of Computer Science and Engineering
University of California, San Diego

9500 Gilman Drive, La Jolla, CA 92093-0404

hovav@cs.ucsd.edu

Abstract. Pairing-based cryptography is a striking illustration of the
value of algebraic structure for constructing crypto schemes: A richer
structure allows for a wider variety of crypto schemes. It is perhaps
surprising, then, that the way in which pairings are used have become
quite standard. Most often, we imagine a bilinear group G to be a cyclic
group of prime order that induces a map e : G×G → GT (where GT is
treated in a similarly abstract manner).

In this talk, I survey two lines of work that seek to generalize this
understanding of pairings. One line considers bilinear groups G of com-
posite order; the other line reconsiders the mathematical structure of the
group G, for example to support asymmetric pairings e : G1 ×G2 → GT .
Both these lines of work have been exploited to construct new crypto-
graphic schemes.

In addition, I consider one of the instantiations of pairing-friendly el-
liptic curves proposed in a recent paper of Boneh, Rubin, and Silverberg.
I show that this instantiation exhibits surprising and unprecedented new
structure: projecting a point from the group G onto a subgroup G1 or G2

requires knowledge of a trapdoor. I propose new hardness assumptions
for this setting and protocols that rely on them.

This is joint work with Sarah Meiklejohn.



Revocable Group Signatures

from the NNL Subset Cover Framework
(Invited Session: Hot Topics in Pairings)

Benôıt Libert

Technicolor
975 Avenue des Champs Blancs
35510 Cesson-Sévigné, France

benoit.libert@technicolor.com

Abstract. Group signatures are a central cryptographic primitive where
users can anonymously sign messages in the name of a group they be-
long to. Despite years of research, membership revocation remains a non-
trivial problem. Existing solutions either suffer from important overheads
or require unrevoked users to update their keys after each revocation.
We describe a new scalable revocation method, based on the Naor-Naor-
Lotspiech (NNL) broadcast encryption framework, that interacts nicely
with techniques for building group signatures in the standard model. We
eventually obtain a scheme which is truly competitive with group signa-
tures without revocation. Moreover, unrevoked members do not need to
update their keys at each revocation.



Adaptively Attribute-Hiding

(Hierarchical) Inner Product Encryption
(Invited Session: Hot Topics in Pairings)

Katsuyuki Takashima

Mitsubishi Electric, Japan

Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

Abstract. We present the first inner product encryption (IPE) scheme
that is adaptively secure and fully attribute-hiding (attribute-hiding in
the sense of the definition by Katz, Sahai and Waters), while the exist-
ing IPE schemes are either fully attribute-hiding but selectively secure or
adaptively secure but weakly attribute-hiding. The IPE scheme was pro-
posed in Eurocrypt 2012 [1], and is proven to be adaptively secure and
fully attribute-hiding under the decisional linear assumption in the stan-
dard model. The IPE scheme is comparably as efficient as the existing
attribute-hiding IPE schemes. We also present a variant of the proposed
IPE scheme with the same security that achieves shorter public and se-
cret keys. A hierarchical IPE scheme can be constructed that is also
adaptively secure and fully attribute-hiding under the same assumption.
In this work, we extend the dual system encryption technique by Waters
into a more general manner, in which new forms of ciphertext and secret
keys are employed and new types of information theoretical tricks are
introduced along with several forms of computational reduction. This is
joint work with Tatsuaki Okamoto.

Reference

1. Okamoto, T., Takashima, K.: Adaptively Attribute-Hiding (Hierarchical) Inner
Product Encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012), full version is available
at http://eprint.iacr.org/2011/543
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On Efficient Pairings on Elliptic Curves

over Extension Fields

Xusheng Zhang1,2, Kunpeng Wang3, and Dongdai Lin3

1 Institute of Software, Chinese Academy of Sciences, Beijing, 100190, China
2 Graduate University of Chinese Academy of Sciences, Beijing, 100049, China

xszhang.is@gmail.com
3 SKLOIS, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing, 100195, China
kunpengwang@263.net, ddlin@iie.ac.cn

Abstract. In implementation of elliptic curve cryptography, three kinds
of finite fields have been widely studied, i.e. prime field, binary field and
optimal extension field. In pairing-based cryptography, however, pairing-
friendly curves are usually chosen among ordinary curves over prime
fields and supersingular curves over extension fields with small charac-
teristics. In this paper, we study pairings on elliptic curves over exten-
sion fields from the point of view of accelerating the Miller’s algorithm
to present further advantage of pairing-friendly curves over extension
fields, not relying on the much faster field arithmetic. We propose new
pairings on elliptic curves over extension fields can make better use of the
multi-pairing technique for the efficient implementation. By using some
implementation skills, our new pairings could be implemented much more
efficiently than the optimal ate pairing and the optimal twisted ate pair-
ing on elliptic curves over extension fields. At last, we use the similar
method to give more efficient pairings on Estibals’s supersingular curves
over composite extension fields in parallel implementation.

Keywords: pairing, elliptic curve over extension field, multi-pairing
technique.

1 Introduction

Elliptic curve cryptography (ECC) has the shorter key length requirement in
comparison with other public-key cryptosystems such as RSA. This means faster
implementation as well as more efficient use of power, bandwidth and storage.
In particular, much research has been conducted on fast algorithms and imple-
mentation techniques of elliptic curve arithmetic over various finite fields. Up to
now, three kinds of finite fields are widely used for ECC, i.e. prime field, binary
field and optimal extension field. Binary fields F(2m) are especially attractive for
hardware circuit design, but does not offer the same computational advantages in
a software implementation. Similarly, prime fields F(p) also have computational
difficulties on standard computers. Optimal extension fields F(pm) introduced
in [1,2], offer considerable computational advantages in software by selecting p

M. Abdalla and T. Lange (Eds.): Pairing 2012, LNCS 7708, pp. 1–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 X. Zhang, K. Wang, and D. Lin

and m specifically to match the underlying hardware used to perform the arith-
metic. Besides, efficient methods have been devised in [27,3] for speeding up field
arithmetic for elliptic curves over general extension fields.

In recent years, there has been much interest in cryptographic schemes based
on bilinear pairings on elliptic curves. So efficient implementation of pairings
is of great importance. Miller [29] proposed the first effective algorithm named
Miller’s algorithm to compute Weil pairing and Tate pairing. As the important
breakthroughs, there are many optimizations and adaptations of these pairings
which offer implementation improvements, such as speeding up each Miller’s
iteration and the final exponentiation of the Tate pairing, and developing many
truncated loop variant pairings: Eta pairing [5], ate pairing and twisted ate
pairing [22], R-ate pairing [26], and optimal pairing [33]. Recently, pairing lattices
[21] were proposed as the generalization contained all former pairings.

On the other side, there is much research on the generation of suitable elliptic
curves for pairings, namely pairing-friendly curves, which contain the large prime
subgroup and the small embedding degree. Please refer to the in-depth overview
[12] for details. Whereas strong elliptic curves used in ECC can be generated
randomly, the pairing-friendly curves are rare and require specific constructions.
All the time, pairing-friendly curves are chosen among ordinary curves over prime
fields and supersingular curves over extension fields with the characteristic 2
and 3. In the latter case, pairings are suitable for hardware implementation
in lightweight cryptosystems. For higher security, pairings on ordinary pairing-
friendly curves are preferred in practice.

In implementation, there are always some strong requests to use curves defined
over certain extension fields, such as the extension fields with small characteris-
tics, and the optimal extension fields which possess the fast field multiplication
and inversion. So there are theoretical advantages to using pairing-friendly ellip-
tic curves over carefully chosen finite fields. Recently, Hitt [23] and Benger et al.
[6] outlined possible security concerns for using pairing-friendly elliptic curves
defined over extension fields, and Benger et al. [6] gave a method for selecting
curves with the highest possible security against ECDLP and DLP solving at-
tacks, given currently known methods. To the best of our knowledge, there is
still no known example of an ordinary pairing-friendly curve defined over the
extension field Fpm or F2m . Hence, we present results which may motivate fur-
ther research into the generation of pairing-friendly elliptic curves defined over
extension fields.

In this paper, our main aim is to present further evidence of an advantage of
using pairing-friendly elliptic curves defined over extension fields by introducing a
pairing which can be computed using an accelerated version of Miller’s algorithm,
using the multi-pairing technique. We develop new pairings on an elliptic curve
over an extension field which could be computed more efficiently not relying on
the fast field arithmetic of the extension field. Concretely, for an ordinary curve E
over an extension field Fpm , we modify the ate pairing and the twisted ate pairing
to define new pairings as the products of several rational functions with the same
Miller loop on the curves {E(pi)}0≤i<m defined by raising the coefficients of the
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equations for E to the pi-power. These new pairings can be implemented with
the multi-pairing technique which was proposed in [31,19] and first applied to
a single pairing computation by Sakemi et al. [30]. Then we give the optimal
versions of our new pairings according to the theory of pairing lattice [21], which
can make better use of the multi-pairing technique for efficient implementation.
Specially, our method can explain Sakemi’s acceleration [30] of the twisted ate
pairing on the BN curves and extend it further. Given a theoretical comparison
with some implementation skills, our new optimal pairings could have more
efficient performance than the optimal ate pairing and the optimal twisted ate
pairing. Specially in many protocols, with the fixed argument optimization, the
performance of our new optimal pairing could offer a speed up of between 30%
and 43% faster than the performance of the optimal ate pairing when m is
greater than 6. Finally, we develop similar pairings having much faster parallel
implementation on supersingular curves over composite extension fields, and
then construct concrete pairings on Estibals’s supersingular curves E1(F35×97)
and E2(F317×67) respectively.

The organization is given as: Section 2 recalls basics of pairing on elliptic
curve and multi-pairing technique, and lists known conditions on suitably chosen
extension fields for pairing-based cryptography; in Section 3 we propose new
faster pairings on ordinary curves over extension fields; then in Section 4 we
analyze the theoretical performance of our new optimal pairings compared to
the optimal ate pairing and optimal twisted ate pairing; in Section 5 we extend
the similar method to supersingular curves over composite extension fields.

2 Background

2.1 Bilinear Pairing

Let E be an elliptic curve defined over a finite field Fq where q is a prime power,
and the neutral element of which is denoted by O. Let r ≥ 5 be a prime factor of
|E(Fq)| and let k > 1 be the smallest integer such that r|qk − 1 which is named
the embedding degree with respect to r. Here we define G1 = E[r]∩Ker(πq − 1)
and G2 = E[r] ∩ Ker(πq − q) as the two eigenspaces of the q-power Frobenius
endomorphism πq on E. Let μr ⊂ F∗

qk denote the group of r-th roots of unity. For

s ∈ Z and R ∈ E[r], let fs,R be a Fqk -rational function with divisor div(fs,R) =
s(R)− ([s]R)− (s− 1)(O).

Tate Pairing and Its Variants. The reduced Tate pairing [4] is given by

tr : G1 ×G2 → μr, (P,Q) �→ fr,P (Q)(q
k−1)/r.

Let s be an integer such that s ≡ q (mod r). When r � c≡
∑k−1

j=0 sk−1−jqj (mod r),
the modified ate pairing [22] is given by

as : G2 ×G1 → μr, (Q,P ) �→ fs,Q(P )(q
k−1)/r.
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Assume that E/Fq admits a degree-d twist. Let e = k/ gcd(k, d) and s′ ∈ Z

satisfy that s′ ≡ qe (mod r). The modified twisted ate pairing [22] is given by

atwists′ : G1 ×G2 → μr, (P,Q) �→ fs′,P (Q)(q
k−1)/r.

Then as and atwists′ are non-degenerate if and only if r � L = (sk − 1)/r.
For the convenience of the construction of new pairings, we use the variants

a(Q,P ) = fq,Q(P )(q
k−1)/r and atwist(P,Q) = fqe,P (Q)(q

k−1)/r instead of the
above ate pairing and twisted ate pairing in the rest of this paper.

Miller’s Algorithm. Let fi,P be the rational function with divisor div(fi,P ) =
i(P )− ([i]P )− (i− 1)(O), and lR,S is the line passing through points R,S and
vR+S is the vertical line passing through point R + S with divisor div(lR,S) =
(R) + (S) + (−(R+ S))− 3(O) and div(vR+S) = (R+ S) + (−(R+ S))− 2(O).
Using the fact that fi1+i2,P = fi1,P fi2,P l[i1]P,[i2]P /v[i1+i2]P , Miller’s algorithm
[29] calculates the evaluation of fi,P (Q) recursively. In §2.2 Algorithm 1 is just
the classical Miller’s algorithm when assuming N = 1.

Optimal Pairing. In [33], Vercauteren proposed an important conception of a
pairing having the “optimal” loop length. Let e : G1 × G2 → μr be a non-
degenerate pairing with |G1| = |G2| = r, then e is called an optimal pairing
if it can be computed in 1

ϕ(k) log2 r + ε(k) basic Miller iterations, with ε(k) ≤
log2 k. Furthermore, Vercauteren conjectured that any non-degenerate pairing on
an elliptic curve without efficiently computable endomorphisms different from
powers of Frobenius, requires at least O(log2(r)/ϕ(k)) basic Miller iterations,
where the O-constant only depends on k.

Pairing Lattices. Hess [21] generalized the conception of the optimal pairing
to provide pairing lattices as a convenient mathematical framework to create
pairings with optimal degrees of the divisors of pairing functions. Let r ∈ Z be an
integer, and let s be a primitive n-th root of unity modulo ri for n ≥ 2 and i ≥ 1.
Define the Z-module I(i) = {h(t) + (tn − 1)Z[t]|h(s) ≡ 0 (mod ri)}, and ||h||1 =∑m

i=0 |hi|. For h(t) =
∑m

i=0 hit
i ∈ I(1) and R ∈ E(Fqk)[r], let fs,h,R be the Fqk -

rational function with divisor div(fs,h,R) =
∑m

i=0 hi
(
([si]R) − (O)

)
. It is easy

to deduce that div(fs,ht,R) = div(fs,h,[s]R) and div(fs,h+g,R) = div(fs,h,Rfs,g,R)

for g(t) ∈ I(1).
The evaluation of fs,h,R(P ) can be calculated analogously to the method for

the optimal ate pairing in [33] (also cf. [34]). Following this analysis, we may
assume that the length of the Miller loop for calculating fs,h,R is approximated
by log2 ||h||1 + ε, where ε ≤ log2 n.

Theorem 1. ([21], Theorem 6) Assume that r is a prime, and s is a primitive
n-th root of unity modulo r2. Let W denote the multiplicative group of functions
G1 × G2 → μr, and W bilin denote the subgroup of bilinear functions. Let as :
I(1) → W,h �→ as,h be a map with the following properties:
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1. as,g+h = as,gas,h for all g, h ∈ I(1),
2. as,hx = ass,h for all h ∈ I(1) with as,h ∈ W bilin,

3. as,r ∈ W bilin \ {1} and as,x−s = 1.

Then Im(as) = W bilin, ker(as) = I(2). More precisely, as,h = a
h(s)/r
s,r for all

h ∈ I(1). There exists an efficiently computable h ∈ I(1) with ‖h‖1 = O(r1/ϕ(n)).
Any h ∈ I(1) with as,h �= 1 satisfies ‖h‖1 ≥ r1/ϕ(n).

Especially, the optimal ate pairing and the optimal twisted ate pairing are well-
defined and probably constructed in the ate pairing lattice and the twisted
ate pairing lattice in [21] with the optimal loop length log2(r)/ϕ(k) + ε1 and
log2(r)/ϕ(d) + ε2.

2.2 Multi-pairing Technique

In many protocols the evaluation of the products of the form
∏N
i=1 tr(Pi, Qi)

is required. A naive way to calculate it is to evaluate each tr(Pi, Qi) indepen-
dently, and then multiply the results. Since all tr(Pi, Qi) share some same Miller
operations, Scott [31] and Granger and Smart [19] showed the products can be
calculated in a single Miller algorithm rather than the naive way. The multi-
Miller algorithm only needs a single squaring in the extension field per doubling,
instead of N squarings in the naive method, and also combines the final pow-
erings required in each pairing evaluation. As far as we know, this method is
usually named multi-pairing algorithm given in Algorithm 1.

Algorithm 1. Miller’s Algorithm for Multi-pairing

Input: s =
∑L

j=0 sj2
j ∈ N (2-adic), N ∈ N, {P1, P2, · · · , PN}, {Q1, Q2, · · · , QN}

Output:
∏N

i=1 fs,Pi(Qi), {[s]P1, [s]P2, · · · , [s]PN}
1: f ← 1
2: for i from N downto 1 do
3: Ti ← Pi

4: for j from L− 1 downto 0 do
5: f ← f2

6: for i from N downto 1 do
7: f ← f · lTi,Ti(Q)/v[2]Ti

(Qi); Ti ← [2]Ti

8: if sj = 1 then
9: for i from N downto 1 do
10: f ← f · lTi,Pi(Qi)/vTi+Pi(Qi); Ti ← Ti + Pi

11: return f.

However, not only can the multi-pairing technique be used to calculate the
products of pairings, but it also can be applied to calculate a single pairing
defined as the products of several rational functions with the same Miller loop. In
[30], Sakemi et al. utilized the multi-pairing technique to calculate the improved
twisted ate pairing on the BN curves with the sophisticated reduction. We extend
this idea to the implementation of pairings considered in this paper.
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2.3 Suitable Extension Field for Pairing-Based Cryptography

In the rest of this paper we always assume that there is a pairing-friendly curve
E defined over an extension field Fq with q = pm. Let r divide |E(Fq)| but do
not divide any other |E(Fpi)| for 1 ≤ i < m. We list some well-known results
of the security extension fields for ECC and Pairing-Based Cryptography, and
show our suitable choice of the extension fields for the comparison in Section 4.

Attack on ECDLP over Extension Field. Weil descent proposed by Frey [13]
aims at transferring the DLP from E(Fqm) to the Jacobian of a curve C over
Fq and then computes the logarithm on this Jacobian by using index calculus.
Many researches [15,17,14,20,28] have studied on the scope of this technique on
the vulnerable curves over binary fields. Diem [9] extended this attack in odd
characteristic.

Later, Gaudry [16] developed decomposition-based index calculus, which ap-
plies to all (hyper-)elliptic curves defined over small degree extension field with
the running time O(q2−2/m) for m ≥ 3. Diem [10] proved that Gaudry’s algo-
rithm has subexponential running time when the field order pm increases in such
a way that m2 is of order log2 p. Later, Joux and Vitse [24] improved this index
calculus, when m > 5 and log2 p ≤ O(m3).

But, both Weil descent and decomposition-based index calculus are often just
a little more efficient than generic attacks, and ineffective for solving the ECDLP
in practice.

The Static Diffie-Hellman Problem. The Static Diffie-Hellman problem (Static
DHP) on an elliptic curve consists of: for a secret integer d, given two points
P, [d]P ∈ E(Fq) and an oracle Q �→ [d]Q, compute [d]R where R is randomly
chosen point. Recently Granger [18] discovered the best known algorithm that
solves the Static DHP problem on elliptic curves defined over a finite field of

composite extension degree Fqn by making O(q1−
1

n+1 ) Static DHP oracle queries

and in heuristic time O(q1−
1

n+1 ). Estibals [11] showed that a simple but efficient
protection against this attack is revoking a key after a certain amount of use.

Minimal Embedding Field. The embedding degree k should be small enough
that the pairing is efficiently computable, but large enough that the DLP in
F∗
qk is hard. However, Hitt [23] showed that the minimal finite field ensures

the ECDLP of E(Fq)[r] secure is not necessarily Fqk , but rather is Fpordr(p) =
Fqordr(p)/m . Then Fqordr(p)/m is named the minimal embedding field and coincides
with the traditional assumptions when m = 1. Later, Benger et al. [6] gave
explicit conditions on q, k, and r, which (when satisfied) imply that the minimal
embedding field of E with respect to r is Fqk .

Theorem 2. ([6], Corollary 2.10) Let A be an abelian variety over Fq, where
q = pm with p prime. Let r �= p be a prime dividing |A(Fq)|, and suppose A has
embedding degree k with respect to r. Assume that r � km. Write m = αβ, where
every prime dividing α also divides k and gcd(k, β) = 1. (This factorization is
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unique.) Denote by e the smallest prime factor of β. If q, k, and r satisfy any
of the following conditions:

1. m = α (and β = 1);
2. β is prime and r > Φkα(p);
3. r > pkm/e;
4. 4|m or 2|k and r > pkm/2e + 1.

Then the minimal embedding field of A with respect to r is Fpkm .

Hence, in this paper we prefer to choose a large prime p and an integer m ≥ 5
to prevent the known attacks in practice. If there exist algorithms to generate
pairing-friendly curves over Fpm defined in [12], we may restrict m, p, k and r to
satisfy one of the conditions in Theorem 2. For the comparison in Section 4, we
use even embedding degrees of the form k = 2i3j and examine examples using:
m = 7, 11 (m > φ(k)), such that condition (2) of Theorem 2 is satisfied; and,
m = 8, 9, such that condition (1) of Theorem 2 is satisfied.

3 New Pairings on Elliptic Curve over Extension Field

In this section we propose new pairings on an elliptic curve E over an extension
field Fq which make better use of the multi-pairing technique to speed up their

implementation. We first transform the ate pairing a(Q,P ) = fq,Q(P )(q
k−1)/r

and the twisted ate pairing atwist(P,Q) = fqe,P (Q)(q
k−1)/r as follows.

Theorem 3. Let E be an ordinary elliptic curve defined over Fq with q = pm.
Let r be a prime such that r divides |E(Fq)| and gcd(r, p) = 1. Let k be the

minimal embedding degree with respect to r. Let E(pi) be denoted the curve defined
by raising the coefficients of the equation for E to the pi-power for 0 ≤ i < m.
Let πpi and π̂pi be the pi-power Frobenius isogeny and its dual isogeny from every

E(pj) to E(pj+i). For P ∈ G1 and Q ∈ G2, then

ā(Q,P ) =

(m−1∏
i=0

fp,π̂pi (Q)

(
πpm−i(P )

))(pmk−1)/r

defines a pairing.
Assume that E/Fq admits a degree-d twist E′/Fqe with e = k/ gcd(k, d) and

d ≥ 2. Let ψ be the associated twist isomorphism ψ : E → E′. Then

â(Q,P ) =

(m−1∏
i=0

fp,π̂pi◦ψ(Q)

(
πpmk−i ◦ ψ(P )

))(pmk−1)/r

and

ātwist(P,Q) =

(m−1∏
i=0

e−1∏
j=0

fp,π̂pi([p
mj ]P )

(
πpmk−i(Qe−j−1)

))(pmk−1)/r

define pairings, where Qj = πpmj (Q) for 0 ≤ j ≤ e− 1.
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Proof. Since [pi] = πpi ◦ π̂pi with πpi : E(pm−i) → E for some i, it follows that
for R ∈ E(Fpk)[r], π∗

pidiv(fp,[pi]R) = π∗
pi

(
p([pi]R) − ([pi+1]R) − (p − 1)(O)

)
=

pi
(
p(π̂pi(R))−(π̂pi ([p]R))−(p−1)(O)

)
= div(fp

i

p,π̂pi (R)), where π∗
pi is the pullback

of πpi . Thus fp,[pi]R◦πpi = fp
i

p,π̂pi(R) ∈ Fqk(E
(pm−i)). If R = Q, then fp,[pi]Q(P ) =

fp,π̂pi(Q)(πpm−i(P ))p
i

; ifR = P , then fp,[pi]P (Q) = fp,π̂pi (P )(πpmk−i (Q))p
i

. When

E admits a twist of degree d, if R = Q′ = ψ(Q) ∈ E′(Fqe)[r] and P ′ = ψ(P ) ∈
E′(Fqk)[r], then fp,[pi]Q′(P ′) = fp,π̂pi (Q

′)(πpmk−i(P ′))p
i

.

Since gcd(p, r) = 1, there exits an integer M such that Mpm−1 ≡ 1 (mod r).
Note that a power of a nondegenerate pairing is also a nondegenerate pairing
when the power and the pairing order are coprime. Thus we can do the following
reduction for a fixed power M of the ate pairing a(Q,P ).

a(Q,P )M = fq,Q(P )M(qk−1)/r =

m−1∏
i=0

fp,[pi]Q(P )p
m−i−1M(qk−1)/r

=

m−1∏
i=0

fp,π̂pi (Q)(πpm−i(P ))Mpm−1(qk−1)/r =

m−1∏
i=0

fp,π̂pi (Q)(πpm−i(P ))(q
k−1)/r.

When E admits a twist of degree d, then a(Q′, P ′) = fq,Q′(P ′)(q
k−1)/r also

defines a pairing from Theorem 1 in [7], where P ′ = ψ(P ) ∈ E′(Fqk)[r] and
Q′ = ψ(Q) ∈ E′(Fqe)[r]. So a similar reduction can be done for a(Q′, P ′)M as

a(Q′, P ′)M = fq,Q′(P ′)M(qk−1)/r =
m−1∏
i=0

fp,[pi]Q′(P ′)p
m−i−1M(qk−1)/r

=
m−1∏
i=0

fp,π̂pi(Q
′)(πpmk−i(P ′))Mpm−1(qk−1)/r =

m−1∏
i=0

fp,π̂pi (Q
′)(πpmk−i(P ′))(q

k−1)/r.

For the twisted ate pairing, since fp,π̂pi(P ) ∈ Fq(E
(pm−i)), let Qj = πqj (Q) for

0 ≤ j ≤ e − 1, it follows that fp,π̂pi(P )(πpmk−i(Q))q
j

= fp,π̂pi (P )(πpmk−i(Qj)).

Thus we have that

atwist(P,Q)M = fqe,P (Q)M(qk−1)/r =

e−1∏
j=0

fq,[qi]P (Q)q
e−i−1M(qk−1)/r

=

e−1∏
j=0

m−1∏
i=0

fp,[pmj+i]P (Q)q
e−i−1pm−i−1M(qk−1)/r

=

e−1∏
j=0

m−1∏
i=0

fp,[pmj+i]P (Qe−j−1)
pm−i−1M(qk−1)/r

=
e−1∏
j=0

m−1∏
i=0

fp,π̂pi ([p
mj ]P )(πpmk−i(Qe−j−1))

(qk−1)/r.
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Write ā(Q,P ) = a(Q,P )M , â(Q,P ) = a(Q′, P ′)M = a(ψ(Q), ψ(P ))M and
ātwist(P,Q) = atwist(P,Q)M . Thus they define new pairings. 
�

Theorem 3 shows that the ate pairing and the twisted ate pairing on the curve E
over Fpm can be modified as the products of several rational functions with the

same Miller loop on the curves {E(pi)}0≤i<m. Next we give the optimal versions
of the new pairings in Theorem 3 according to the theory of pairing lattices.

Theorem 4. Use the notations in Theorem 3. Let s be a primitive (mk)-th root
of unity modulo r2 such that s ≡ q (mod r). Let h ∈ Z[t] satisfy h(s) ≡ 0 (mod r).
For P ∈ G1 and Q ∈ G2, following the respective assumptions for ā, â, ātwist of
Theorem 3, then

ās,h(Q,P ) =

(m−1∏
i=0

fs,h,π̂pi(Q)

(
πpm−i(P )

))(pmk−1)/r

,

âs,h(Q,P ) =

(m−1∏
i=0

fs,h,π̂pi◦ψ(Q)

(
πpmk−i ◦ ψ(P )

))(pmk−1)/r

,

ātwists,h (P,Q) =

(m−1∏
i=0

e−1∏
j=0

fs,h,π̂pi([p
mj ]P )

(
πpmk−i(Qe−j−1)

))(pmk−1)/r

define pairings, which are nondegenerate if and only if h(s) �≡ 0 (mod r2).
There exists an efficiently computable h ∈ I(1) with ‖h‖1 = O(r1/ϕ(mk)). Any

h ∈ I(1) with as,h �= 1 satisfies ‖h‖1 ≥ r1/ϕ(mk).

Proof. Since fs,g+h,R = fs,g,Rfs,h,R and fs,hx,R = fs,h,[s]R for h, g ∈ I(1), it
follows that ās,g+h = ās,g ās,h, âs,g+h = âs,g âs,h, ātwists,g+h = ātwists,g ātwists,h , and

ās,hx = (ās,h)
s, âs,hx = (âs,h)

s, ātwists,hx = (ātwists,h )s for the pairings ās,h, âs,h and

ātwists,h . Let t
(i)
r denote the Tate pairing on E(pi)[r]. Since fr,R = fs,r,R, we have

ās,r(Q,P ) =
(m−1∏
i=0

fr,π̂pi (Q)(πpm−i(P ))
)(pmk−1)/r

=

m−1∏
i=0

t(i)r (π̂pi(Q), πpm−i(P )).

Write ti(Q,P ) = t
(i)
r (π̂pi(Q), πpm−i(P )), then each ti(Q,P ) is a pairing on E[r].

As with the proof of Theorem 3, we have fr,[pi]Q(P ) = fr,π̂pi (Q)(πpm−i(P ))p
i

, and

furthermore t([pi]Q,P ) = ti(Q,P )p
i

. Thus ās,r(Q,P ) = tr(Q,P )m is a pairing
on E[r].

Let c ∈ Z satisfy s = p + cr and let c0 ∈ Z satisfy pmk ≡ 1 + c0r (mod r2),
then smk = (p + cr)mk ≡ 1 + c0r + mkpmk−1cr ≡ 1 (mod r2). Thus c0 ≡
−mkpmk−1c (mod r). We know that a(Q,P )kp

m(k−1)

= tr(Q,P )c0 in [22]. From

the proof Theorem 3, we have ā(Q,P )p
m−1

= a(Q,P ) = tr(Q,P )−mp
m−1c. We

conclude that ās,x−s(Q,P )−1 = ās,s−x(Q,P ) = ā(Q,P )ās,r(Q,P )c = 1.
Similarly, it can be demonstrated that âs,x−s(P,Q) = 1, ātwists,x−s(P,Q) = 1,

and âs,r(Q,P ) = t(Q′, P ′)m, ātwists,r (P,Q) = t(P,Q)me are pairings.
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From Theorem 1, we conclude that for every h satisfying the conditions, ās,h,
âs,r, and ātwists,h are nondegenerate if and only if h(s) �≡ 0 (mod r2). 
�

From Theorem 4, we may construct an optimal h satisfying the conditions of
Theorem 4 and ‖h‖1 = O(r1/ϕ(mk)) so that each pairing ās,h, âs,h and ātwists,h

has the optimal multi-Miller loop length log2(r)/ϕ(mk) + ε, which is smaller
than the traditional optimal loop length. We name these pairings the optimal
ās,h, âs,h and ātwists,h . However, the implementations of these pairings involve the
calculations of π̂pi(R) and πpj (R

′) for some R and R′. In practice, the imple-
mentation of the Frobenius power costs little, but the implementation of the
dual Frobenius isogeny (also called Verschiebung) might be costly. We introduce
skills to perform this costly calculation in Section 4.

Explanation and Extension of Sakemi’s Method. In [30], Sakemi et al. proposed
a variant of the twisted ate pairing on the BN curves with e = 2 (and m = 1 in
the setting of this paper), whose pairing function is given as

f̂χ,P (Q) =
(
f2χ,P (πp(Q))f2χ,[p]P (Q)

)p10+1(
l[2χ]P,−P (πp(Q))l[2χp]P,[−p]P (Q)

)p10
·l[(2χ−1)p10]P,[2χ]P (πp(Q))l[(2χ−1)p11]P,[2χp]P (Q).

Using the method of this paper and the property of the twisted ate pairing [22],

we conclude that fT,[pje]P (Q) = fT,P (Q)p
je

for any T ∈ Z and j ≥ 1, and then

choose ĥ(t) = (2χ− 1)t10 − t+ 2χ to transform the pairing function of ātwist
s,ĥ

in

Theorem 4 under the final exponentiation (using subfield elimination) as follows.

fs,ĥ,P (πp(Q))fs,ĥ,[p]P (Q)

≡
∏
i=0,1

f2χ−1,[p10+i]P (πp1−i(Q))f2χ,[pi]P (πp1−i (Q))l[(2χ−1)p10+i]P,[2χpi]P (πp1−i (Q))

≡
∏
i=0,1

(
f2χ,[pi]P (πp1−i(Q))f[2χ]P,−P (πp1−i (Q))

)p10 · f2χ,[pi]P (πp1−i(Q))

·l[(2χ−1)p10+i]P,[2χpi]P (πp1−i (Q))

= f̂χ,P (Q).

As a further extension, we utilize h(t) = t3 − t2 + t+ 6χ+ 2, originally used for
the optimal ate pairing on the BN curves in [33], to obtain another variant as

fs,h,P (πp(Q))fs,h,[p]P (Q)

≡
∏
i=0,1

f6χ+2,[pi]P (πp1−i(Q))
(
l[p3+i]P,[−p2+i]P l[p3+i−p2+i]P,[p1+i]P

)
(πp1−i(Q)).

The linear part of the above pairing function of ātwists,h (P,Q) is calculated effi-
ciently by using the skew Frobenius map π̃p2 as in [30] and the new congruence
(1−2χ)p2−p+4χ−1 ≡ 0, and the hard part can be carried out by [p2]P = π̃p2(P ),
[p4]P = π̃2

p2(P ), [p]P = [4χ− 1]P − π̃p2([(2χ− 1)]P ), [p3]P = π̃p2([p]P ).
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4 Comparison

In this section we make a theoretical comparison between the optimal pairings
in the pairing lattices in Theorem 4 and the optimal ate pairing and optimal
twisted ate pairing, which depends on the assumptions of the existence of the
optimal pairings for all pairing lattices and the existence of the pairing-friendly
curves over extension fields.

Following the analysis in [19], we assume that Fpmk is a pairing-friendly field
with pm ≡ 1 (mod 12) and k = 2i3j , and quantify the cost of a multiplication
in Fpmk as 3i5j multiplications in Fpm (cf. [25]). In implementation, the loop
parameter usually has a negligible Hamming weight so that few addition steps
are encountered throughout the loop. Thus we only compare the operation counts
for the doubling steps in Miller’s algorithm. We list the up-to-date known results
[7] of operation counts for the doubling step in Table 1.

Let m1, me, mk denote multiplication in Fq, Fqe , Fqk ; let s1, se, sk denote
squaring in Fq, Fqe , Fqk . The cost part 1 is taken to update the point used for
constructing the new rational function; the cost part 2 is taken to evaluate the
new rational function at the right argument; then the cost part 3 is taken to
update the final rational function.

Table 1. Operation counts for single doubling step for the ate pairing and the twisted
ate pairing

Curve & twist degree Cost part 1 Cost part 2 Cost part 3

ate
a(Q′, P ′)

y2 = x3 + ax, d = 2, 4
y2 = x3 + b, d = 2, 6

2me + 8se + 1da

2me + 7se + 1db
2( k

d
)m1 1mk + 1sk

twisted ate
atwist(P,Q)

y2 = x3 + ax, d = 2, 4
y2 = x3 + b, d = 2, 6

2m1 + 8s1 + 1da

2m1 + 7s1 + 1db
2( k

d
)m1 1mk + 1sk

Since the multi-pairing technique can save m− 1 squarings (using 2-basis) in
each iteration when computing the products of m pairings (or functions with
the same Miller loop), it follows that it is less efficient for the ate-like pairing
computation compared with the twisted ate-like case. However, when the high-
degree twist technique in [7] is available, the ate-like pairing computation can
be still more efficient with the multi-pairing technique. Thus we assume that
E admits a high-degree twist, and both the optimal ate pairing and twisted
ate pairing have the loop length �log2(r)/ϕ(k)�, and both the optimal âs,h and
ātwists,h have the loop length �log2(r)/ϕ(mk)�. We show that the optimal âs,h and

ātwists,h could be implemented more efficient than the optimal ate pairing and the
optimal twisted ate pairing when choosing suitable values of m and k in §2.3.

Precomputation vs. Storage. The calculation of pairings in Theorem 4 involves
the calculation of π̂pi(R) for R ∈ E(Fpmk) and 1 ≤ i < m. As far as we know,
there is no efficient method to calculate the dual Frobenius isogeny on the general
curves. Here we rewrite π̂pi(R) = πpmk−i([pi]R) by using π̂pi ◦ πpi = [pi] and
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πpmk(R) = R. Thus the costly part of this calculation is the multiplication by
pi. We introduce two skills to deal with it. One named the precomputation skill
(P) utilizes the fixed argument optimization first pointed out by Scott [31] and
recently analyzed in more detail (cf. [8,32]); the other named the storage skill
(S) is proposed in this paper for computing our new pairings.

The first skill can be applied to many protocols in which the fixed argu-
ment optimization is feasible. With the fixed argument optimization, we can
precompute all calculations depending solely on the lift argument R including
the calculations of all {π̂pi(R)}1≤i<m. Hence, in each Miller iteration, the op-
erations for the doubling step only involve the cost part 2 and the cost part 3
in Table 1. Besides, in this situation, there is no advantage of using a pairing-
friendly curve with the maximal twist, and calculating a pairing in the twisted
ate pairing family.

When the fixed argument optimization is infeasible, the precomputation is
useless. But we could still store these calculations depending solely on the lift
argument in each pairing computation, which are useful for the calculations of
π̂pi(R), and then we do the other calculations depending on the right argument.
Taking the pairing ā(Q,P ) in Theorem 3 for example, we assume that π̂pi(Q) is
given for some i ∈ [1,m− 2]. Then the calculation of the coefficients of fp,π̂pi(Q)

involves [p]π̂pi(Q) = πpmk−i([pi+1]Q) = πp(π̂pi+1(Q)). Thus we can compute
π̂pi+1(Q) easily by using πpmk−1([p]π̂pi (Q)) = π̂pi+1(Q), which is essential to the
construction of fp,π̂pi+1(Q). This process only increases a few costs for imple-

menting the Frobenius power, and needs the same additional memory compared
with the precomputation skill which may be feasible in modern devices. Hence,
we may omit the calculations of π̂pi(R) when using our storage skill, and then
give the comparisons below.

Table 2. The proportion of the runtime cost of the Miller loop of the optimal ate
pairing to the optimal âs,h

Skill
k = 8
d = 4

k = 12
d = 6

k = 16
d = 4

k = 18
d = 6

k = 24
d = 6

k = 32
d = 4

k = 36
d = 6

m = 7 S 1 : 0.860 1 : 0.795 — 1 : 0.794 — — —
P 1 : 0.701 1 : 0.688 — 1 : 0.686 — — —

m = 8 S 1 : 0.732 1 : 0.675 1 : 0.727 1 : 0.673 1 : 0.671 1 : 0.725 1 : 0.670
P 1 : 0.593 1 : 0.581 1 : 0.583 1 : 0.579 1 : 0.575 1 : 0.576 1 : 0.574

m = 9 S — 1 : 0.669 — 1 : 0.668 1 : 0.666 — 1 : 0.665
P — 1 : 0.574 — 1 : 0.573 1 : 0.568 — 1 : 0.567

m = 11 S 1 : 0.793 1 : 0.728 1 : 0.789 1 : 0.727 1 : 0.724 — —
P 1 : 0.669 1 : 0.621 1 : 0.623 1 : 0.619 1 : 0.614 — —

Optimal Ate Pairing vs. Optimal âs,h. In Table 2 we make a theoretical im-
plementation comparison between the optimal ate pairing and the optimal âs,h
for some suitable embedding degrees and extension degrees, when ignoring the
final exponentiation and using the precomputation skill or the storage skill.
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Table 2 shows that the implementation of the optimal âs,h improves the runtime
cost of the Miller iterations by between 30% and 43% when using the precom-
putation skill, and between 14% and 34% when using the storage skill.

Optimal Twisted Ate Pairing vs. Optimal ātwists,h . Since the fixed argument tech-
nique is mainly used for pairings of the ate family in practice, we only compare
the theoretical implementation of the optimal twisted ate pairing with the opti-
mal âtwists,h for some suitable embedding degrees and extension degrees, by using
the storage skill and ignoring the final exponentiation. Table 3 shows that the
implementation of the optimal ātwists,h improves the runtime cost of the Miller
iterations by between 26% and 47%.

Table 3. The proportion of the runtime cost of the Miller loop of the optimal twisted
ate pairing to the optimal ātwist

s,h

Skill
k = 8
d = 4

k = 12
d = 6

k = 16
d = 4

k = 18
d = 6

k = 24
d = 6

k = 32
d = 4

k = 36
d = 6

m = 7 S 1 : 0.736 1 : 0.693 — 1 : 0.662 — — —

m = 8 S 1 : 0.628 1 : 0.590 1 : 0.564 1 : 0.564 1 : 0.544 1 : 0.533 1 : 0.532

m = 9 S — 1 : 0.587 — 1 : 0.562 1 : 0.543 — 1 : 0.531

m = 11 S 1 : 0.683 1 : 0.641 1 : 0.616 1 : 0.615 1 : 0.594 — —

5 Our Method for Supersingular Curve over Extension
Field

As the earliest pairing-friendly curves utilized in pairing-based cryptography,
supersingular curves have embedding degree k = 2, 3, 4 and 6. However, for
the recommended supersingular pairing-friendly curves with k = 4 and 6, there
are two obstacles to applying our method: (1) their defining fields F2n and F3n

usually have large prime extension degrees; (2) the main advantage of applying
multi-pairing technique, namely saving squarings (using 2-basis) or cubings (us-
ing 3-basis) in each iteration, might be worthless for these supersingular curves,
since squaring or cubing can be implemented very fast.

But recently, Estibals [11] first considered the Tate pairing computation for su-
persingular curves over moderately-composite extension fields taking advantage
of a much easier tower field arithmetic. Our method can be applied to Estibals’s
curves over composite extension fields to define new pairings η̄s,h, which can be
implemented in an efficient and parallel way.

Theorem 5. Let E be a supersingular curve over a composite extension field
Fqm with the embedding degree k. Let r be a large integer dividing |E(Fqm)| and
let ψ be the distortion map. Let s be a primitive (mk)-th root of unity modulo
r2 such that s ≡ q (mod r). Let h(t) ∈ Z[t] such that h(s) ≡ 0 (mod r). For
P,Q ∈ E(Fqm)[r], then
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η̄s,h(P,Q) =

(m−1∏
i=0

fs,h,P

(
ψ([q−i]Q)

)qi)(qmk−1)/r

.

defines a pairing, which is non-degenerate if and only if h(s) �≡ 0 (mod r2).

Proof. Given in Appendix A. 
�

Write fi(P,Q) = fs,h,P
(
ψ([q−i]Q)

)pi
, then η̄s,h(P,Q) =

∏m−1
i=0 fi(P,Q)(q

mk−1)/r.
When precomputing all [q−i]Q for 1 ≤ i ≤ m − 1, we could compute these
fi(P,Q) in a natural parallel and efficient way, since they share the common
pairing function fs,h,P whose coefficients could be computed and stored first.

5.1 Estibals’s Supersingular Curve over Composite Extension Field

There are several supersingular curves of characteristic 2 and 3 on fields with
composite extension degree large enough for the 128-bit or 192-bit security level
given in [11]. Here, we take two most important curves E1(F35×97 ) (128-bit secu-
rity level) and E2(F317×67 ) (192-bit security level) for example to construct the
corresponding η̄s,h.

– E1(F35×97) : y2 = x3 − x− 1, (q1 = 397,m1 = 5, k = 6)
r1 = 434A97AFECDEB84F16624099C436CA9DE0CE4526690A8F0B24
09B61DACB97A4411F3ED1CD3F39A6647D45 (338 bits)

– E2(F317×67) : y2 = x3 − x+ 1, (q2 = 367,m2 = 17, k = 6)
r2 = 4A40FE5A48A1956BEEEC98D0147445A190711D0FCA4FCD5A65
598194911D4D9F5D32156CAB3B4C9D53D02B3793E8AA2B1BAD8383
2815DABA55EE9A2CD28A38027D2EB2FD0B6E4BEFD03DA273CD
DDC19A1507E36281BC212F28F78EA379AEE4A3353C8348E13F5890D
AA8367040520FC04B2E073193BE13922CEA13F106C9D8A8FE546D2F
27FE2FBEE373F79B198FC7F1A3FB5594FE97B2D6EE6ADA84E6D
726A709370D86FEEFAFD20300BFBD72B4F162A26C70F9F1927AB6
6111B1FD5E7C1197AAEDD81776BFE079449A11A1AC849 (1650 bits)

Using the method of [21] (or [33]) to construct the ϕ(mk) dimensional lattice
L = I(1) = {h(t)|h(s) ≡ 0 (mod r)}, we find a approximative “short vector” of
the polynomial form h1(t) = t5 + c1t

2 + 1 with c1 = 349 for E1(F35×97); and,
h2(t) = t17 + c2t

8 + 1 with c2 = 334 for E2(F317×67). Form the theory of pairing
lattice, it follows that

fs1,h1,P1 = fc1,P1

l[qm1
1 ]P1,[−qm1

1 −1]P1
l−P1,P1

v−P1

,

fs2,h2,P2 = fc2,P2

l[qm2
2 ]P2,[−qm2

2 −1]P2
l−P2,P2

v−P2

,

where Pi ∈ Ei(Fqmi
i

)[ri] and si ≡ qi (mod ri) for i = 0, 1. We note that the

calculations of [qmi

i ]Pi and [−qmi

i − 1]Pi are very fast by using Frobenius map
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πqmi
i

and the trace equation. Thus, assuming that mi multiprocessors (i = 1, 2)

perform in parallel, the Miller’s loop length of η̄si,hi for Ei[ri] can reach an
small value log3(ci), although which is still a little worse than the theoretical
minimal length log3(r)/ϕ(mk), when using 3-basis in Miller algorithm. Further,
with Estibals’s compact hardware implementation of these fields arithmetic, we
believe that our pairing η̄s,h would be implemented at much higher speed in
parallel way.

6 Conclusion

We have shown that pairing-friendly curves over extension fields could be more
suitable for the pairing implementation not relying on a fast field arithmetic of
certain extension field. When assuming there exists a pairing-friendly curve de-
fined over an extension field, we have proposed new pairings and pairing lattices
on this curve making better use of the multi-pairing technique to obtain a fast
implementation. By the theoretical analysis in an ideal model, the performance
of the optimal ones of our pairings could offer a speed up of between 30% and
43% with the fixed argument optimization, or by up to 47% with our new storage
skill, compared to the performance of the optimal ate pairing and the optimal
twisted ate pairing, when m is greater than 6. In addition, we have extended the
similar method to supersingular curves over composite extension fields to con-
struct more efficient pairings in parallel implementation. To sum up, our work
has presented further important evidence of the advantage of pairing-friendly
curves over extension fields.

In future, there are needs for careful study of the generation of pairing-friendly
curves over suitably chosen extension fields, and further study of the paral-
lel implementation of η̄s,h on Estibals’s supersingular curves E1(F35×97) and
E2(F317×67 ).
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A Proof of Theorem 5

We do the similar reduction as Theorem 3 for the modified Eta pairing to obtain
that

η(P,Q) = fqm,P
(
ψ(Q)

)(qmk−1)/r
=

(m−1∏
i=0

fq,[qi]P
(
ψ(Q)

)qm−i−1
)(qmk−1)/r

.

Since the multiplication by qi on the supersingular curve is inseparable, it follows

that [qi]∗div(fq,[qi]P ) = div(f q
2i

q,P ) and then fq,[qi]P (ψ(Q)) = fq,P (ψ([q
−i]Q))q

2i

.
Thus we have

η(P,Q) =

(m−1∏
i=0

fq,P

(
ψ([q−i]Q)

)qi)qm−1(qmk−1)/r

.
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Since gcd(q, r) = 1, we can omit the power qm−1 to obtain the new pairing

η̄(P,Q) =

(m−1∏
i=0

fq,P

(
ψ([q−i]Q)

)qi)(qmk−1)/r

.

Then, as with the proof of Theorem 4, we can construct η̄s,h as

η̄s,h(P,Q) =

(m−1∏
i=0

fs,h,P

(
ψ([q−i]Q)

)qi)(qmk−1)/r

.

and demonstrate it defines a pairing using Theorem 1 similarly (omitted here).
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Abstract. The security of pairing-based cryptosystems relies on the
hardness of the discrete logarithm problems in elliptic curves and in fi-
nite fields related to the curves, namely, their embedding fields. Public
keys and ciphertexts in the pairing-based cryptosystems are composed
of points on the curves or values of pairings. Although the values of the
pairings belong to the embedding fields, the representation of the field is
inefficient in size because the size of the embedding fields is usually larger
than the size of the elliptic curves. We show factor-4 and 6 compression
and decompression for the values of the pairings with the supersingular
elliptic curves of embedding degrees 4 and 6, respectively. For compres-
sion, we use the fact that the values of the pairings belong to algebraic
tori that are multiplicative subgroups of the embedding fields. The al-
gebraic tori can be expressed by the affine representation or the trace
representation. Although the affine representation allows decompression
maps, decompression maps for the trace representation has not been
known. In this paper, we propose a trace representation with decom-
pression maps for the characteristics 2 and 3. We first construct efficient
decompression maps for trace maps by adding extra information to the
trace representation. Our decompressible trace representation with ad-
ditional information is as efficient as the affine representation is in terms
of the costs of compression, decompression and exponentiation, and the
size.

Keywords: public-key cryptosystems, the discrete logarithm problem,
algebraic tori, compression, decompression.

1 Introduction

Practical public-key cryptography is fundamental technology in the field of net-
work security. Current security standards recommend the use of 2048-bit or
larger RSA keys [2] and history in these decades suggests that this figure may
increase with advances in computational power. Such key sizes are problem-
atic for devices with limited storage, computational power or network band-
width. One approach to overcome these limitations is a safe key compression
[19,6,14,16,5,18,12,13], but these compression techniques are unsuited to RSA
keys. Therefore, we focus on cryptosystems based on the discrete logarithm
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problem in a prime-order group. To compress the public-key size is to repre-
sent the prime-order group with fewer bits than the size of the embedding field.
For instance, the recommended size of the finite field is 2048 bits, and the cor-
responding size of the prime-order group is 224 bits [2], because the discrete
logarithm problem in the finite field is easier than in the general group, namely,
the elliptic curve.

The index calculus is a relatively efficient algorithm to solve the discrete loga-
rithm problem in finite fields. The time complexity of the index calculus is subex-
ponential Lq[1/3, c] = exp((c+o(1))(log q)1/3(log log q)2/3) for the finite field Fq,
and does not depend on the characteristic or the extension degree [7,1,10,11] ex-
cept the constant c. On the other hand, there are only exponential algorithms
for solving the discrete logarithm problem in the elliptic curves.

Pairings map a pair of elliptic curve points to an element of the multiplica-
tive group of a finite field, namely, the curve’s embedding field. Since pairings
are bilinear, the discrete logarithm problem in elliptic curves is also solved in
their embedding fields. The bilinearity is used to develop efficient cryptographic
schemes [17,9,3]. In pairing-based cryptosystems, we deal with both rational
points of elliptic curves and values of pairings. Although the values of the pair-
ings belong to the embedding fields, the representation of the field is inefficient
in the size. We show factor-4 and 6 compression and decompression for the val-
ues of the pairings with the supersingular elliptic curves of embedding degrees
4 and 6, respectively. For compression, we use the fact that the values of the
pairings belong to also algebraic tori that are the multiplicative subgroups of
the embedding fields.

Related Work. Table 1 presents existing compression methods. There are two
kinds of compression methods: the affine representation and the trace repre-
sentation. Algebraic tori (T2, T6, LUC, XTR) and their subgroups (Karabina,
Shirase) have compact expressions.

In the affine representation, elements of algebraic tori are embedded in ex-
tension fields and identified by an element / elements from subfields. Elements

Table 1. compression methods:ECC, FFC and ATC mean the elliptic curve cryptosys-
tems, the finite field cryptosystems and the algebraic torus cryptosystems, respectively

system ECC FFC ATC

class - - the affine representation the trace representation

name - - T2 T6 Karabina Karabina LUC XTR Karabina Shirase

factor - 1 2 3 4 6 2 3 4 6

public-key 160 1024 512 341 256 170 512 341 256 170
size (bit) 224 2048 1024 683 512 341 1024 683 512 341

256 3072 1536 1024 768 512 1536 1024 768 512

reference - - [16] [16] [13] [13] [19] [14] [12] [18]

comp. - - available available

decomp. - - available no
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of subgroups of algebraic tori are identified by a tuple of an element from sub-
fields and additional information, namely, 1 bit for factor 4 or 1 trit (ternary
digit) for factor 6. Each affine representation has efficient inverse map allowing
multiplication and exponentiation in the embedding fields.

In the trace representation, elements of algebraic tori or these subgroups are
identified by a trace value. Because conjugates are mapped to a same trace
value, no inverse map exists. Therefore, multiplication could not be defined in
the trace representation. On the other hand, exponentiation can be calculated
without decompression or without distinction among conjugates. Although Kara-
bina discusses “decompression” without distinction among conjugates, no effi-
cient “decompression” maps are presented [12]. Most cryptosystems use not only
exponentiation but also multiplication. The existing trace representation is not
useful because of lack of multiplication.

Our Contributions. We propose factor-4 and 6 decompressible trace represen-
tation with additional information for characteristics 2 and 3, respectively. We
construct decompression maps for the trace representation by adding extra infor-
mation. Our decompression maps are efficient. Since our representation permits
decompression, we are able to introduce multiplication in the trace representa-
tion for the first time. All cryptographic protocols based on group law and the
discrete logarithm problem can be implemented on this representation. Why do
we focus not on the affine representation, but on the trace representation? One
of the reasons is the trace representation seems to be suited to improving the
compression factor.

There are two steps for the construction of our representation: Firstly, we
find easily solvable equations whose coefficients are written by the trace value
to obtain the elements of the algebraic tori in the embedding fields as solutions.
Secondly, we distinguish these solutions by additional information, namely, 2
bits for factor 4 or 1 bit and 1 trit for factor 6.

In order to improve the compression factor, it is required that the tuple of
a trace value and additional information have to achieve a better compression
factor than Bosma’s conjecture. Bosma’s conjecture on generalization of XTR
mentioned the tuple of a trace value and other fundamental symmetric polyno-
mials to improve the compression factor [4]. However, the additional information
is much smaller than the fundamental symmetric polynomials.

Structure of This Paper. In section 2 and 3, we present the necessary prelimi-
naries and literature review respectively. In section 4, we propose decompression
maps for the trace representation with additional information. In section 5, we
compare the efficiency of our representation with existing affine representation.

2 Preliminaries and Notation

Let p be a prime, and n, m and d be positive integers. Let Fpm be a finite field of
order pm. Id, Md, and Sd are costs of inversion, multiplication, and square in the
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field F(pm)d . We ignore costs of Frobenius maps and addition in F(pm)d that are
small compared with the above costs. Maps TrF(pm)n/F(pm)d

and NF(pm)n/F(pm)d

denote a trace map and a norm map from F(pm)n to F(pm)d , respectively, where,
d divides n. Maps Trn/d and Nn/d are short for the above maps.

Definition 1. An algebraic torus Tn over Fpm is defined by

Tn(Fpm) =
⋂

Fpm⊂F�F(pm)n

Ker
[
NF(pm)n/F

]
. (1)

Definition 2. Let μ be the Möbius function. The n-th cyclotomic polynomial
Φn(x) is defined by Φn(x) =

∏
d|n(x

d − 1)μ(n/d).

Theorem 1. (a) #Tn(Fpm) = Φn(p
m).

(b) If h ∈ Tn(Fpm) has a prime order not dividing n, then h /∈ F(pm)d for any
d|n with d < n.

Proof. (a) Note that F can be F(pm)d for any d|n with d < n. See also [16].
(b) Let prime r be the order of h. Since r � |n, Xn − 1 has no repeated roots in

the algebraic closure of Fr. See also [4]. 
�

In the case of m > 1, #Tmn(Fp) = Φmn(p). If h ∈ Tmn(Fp) has a prime order
not dividing mn, then h /∈ Fpd for any d|mn with d < mn. On the other hand,
the order of the finite field F(pm)n is factored as in eq. (2) by using cyclotomic
polynomials.

(pmn − 1) =
∏
d|mn

Φd(x) (2)

The secure subgroup of the multiplicative group F×
(pm)n is not covered in proper

subfield Fpd . In other words, it is a subgroup of Tmn(Fp), and is not a subgroup
of Td(Fp). Therefore, public-key cryptosystems defined on prime-order subgroup
not dividing mn of the algebraic tori Tmn(Fp) have the same security level as
the multiplicative group F×

(pm)n .

Let E be an elliptic curve defined over Fpm , and let r be a positive integer
such that r|#E(Fpm). A subgroup of E(Fpm) with order r has the embedding
degree k, and k is the smallest integer such that r|{(pm)k−1}. The Tate pairing
is a function

〈·, ·〉r : E(Fpm)[r] × E(F(pm)k)/rE(F(pm)k) → F×
(pm)k

/{F×
(pm)k

}r.

A value of the Tate pairing is an equivalence class in F×
(pm)k

/{F×
(pm)k

}r. For prac-

tical purposes, we obtain the reduced Tate pairing e(P,Q) = 〈P,Q〉{(p
m)k−1}/r

r ∈
μr ⊂ F×

(pm)k
as a unique representative of this class, where μr is a set of r-th

roots of unity. There is an important fact μr ⊂ Tk(Fpm) ⊂ F×
(pm)k

. By definition

of the embedding degree, r � |{(pm)d − 1} with d < k. In other words, μr is a
subgroup of Tk(Fpm), and is not a subgroup of Td(Fpm).

The supersingular elliptic curves over Fpm have the following order [15]. For
embedding degree k = 4,
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– p = 2 and Ei : y
2 + y = x3 + x+ ai, where a1 = 0 and a2 = 1.

– #Ei(Fpm) = pm ±
√
2pm + 1, where m is odd.

For embedding degree k = 6,

– p = 3 and Ei : y
2 = x3 − x+ ai, where a1 = 1 and a2 = −1.

– #Ei(Fpm) = pm ±
√
3pm + 1, where m is odd.

3 Literature Review

3.1 The Affine Representation

In this section, we recall the definition of T2. We use the T2 affine representation
as the special case of the projective representation for the following construction
of decompression for trace maps. Because operations are more efficient in the
projective representation than the affine representation, operations are done in
the projective representation. Maps between the affine representation and the
projective representation are called a compression map and a decompression
map.

T2. This is the factor-2 compression and decompression method by Rubin and
Silverberg. An element of T2(Fpm) is identified by an element of Fpm . Let an
element a+bσ

a+bσpm of T2(Fpm) be corresponding to (a, b). Where a, b ∈ Fpm and

(a, b) �= (0, 0), F(pm)2 = Fpm(σ), and σ ∈ F×
(pm)2 . This representation has a

natural projective equivalence relation. The element corresponding to (a, b) is
equivalent to the element corresponding to (ac, bc) for any c ∈ F×

pm . So, this rep-
resentation can be called the projective representation. We obtain (a/b, 1) as the
representative point of (a, b) and it is the affine representation of T2(Fpm)\{1}.

The compression map (from the projective representation to the affine repre-
sentation) C and the decompression map (from the affine representation to the
projective representation) D are as follows:

C : T2(Fpm)\{1} → Fpm D : Fpm → T2(Fpm)\{1}
a+ bσ

a+ bσpm
�→ a/b, a′ �→ a′ + σ

a′ + σpm
.

3.2 The Trace Representation – Compression by Trace Maps

In this section, we explain Karabina and Shirase. We construct decompression
maps for the compression in the next section. Note that exponentiation in the
trace representation itself can be calculated, but multiplication is not done.

Karabina. This is the factor-4 compression method. Let p = 2 and m be odd.
An element of groups G±, #G± = pm±

√
2pm+1, is identified by an element of

Fpm without distinction among conjugates. The compression map is as follows:

Tr4/1 : F(pm)4 → Fpm

g �→ g + gp
m

+ g(p
m)2 + g(p

m)3 .
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Since #G+#G− = Φ4(p
m), The groups G± are subgroups of T4(Fpm). Such

subgroups are related to supersingular elliptic curves of embedding degree 4.
Karabina also proposed some exponentiation formulas. Although there is “de-
compression” without distinction between conjugates, he didn’t give any efficient
decompression maps.

Shirase. This is the factor-6 compression method. Let p = 3 and m be odd. An
element of groups G±, #G± = pm ±

√
3pm + 1, is identified by an element of

Fpm without distinction among conjugates. The compression map is as follows:

Tr6/1 : F(pm)6 → Fpm

g �→ g + gp
m

+ g(p
m)2 + g(p

m)3 + g(p
m)4 + g(p

m)5 .

Since #G+#G− = Φ6(p
m), The groups G± are subgroups of T6(Fpm). Such

subgroups are related to supersingular elliptic curves of embedding degree 6.

4 Construction of Decompression for Trace Maps

We propose the decompressible trace representation with additional informa-
tion. The trace representation is decompressed to the projective representation
for factor 4 and 6, and then multiplication can be calculated. Therefore, all cryp-
tographic protocols based on group law and the discrete logarithm problem can
be implemented on this representation.

4.1 Factor 4

We show decompression from (i, T r4/1(g)) ∈ {0, 1}2 × Fpm to g ∈ G− ⊂
T4(Fpm) ⊂ F(pm)4 . Firstly, we find equations to obtain four possible solutions by
Tr4/1(g). Secondly, we distinguish the conjugates by the additional information
i. The finite field F(pm)4 is constructed as follows:

– primitive polynomial: Φ5(x) = x4 + x3 + x2 + x+ 1,

– basis: {x, xpm , x(pm)2 , x(pm)3} = {x, x2, x4, x3}.

We use pm mod 5 = 2, z = x + xp
m

and y = x + x(pm)2 . One can also use
pm mod 5 = 3.

Theorem 2. Suppose p = 2, m is odd, t =
√
2pm and G− is a group of order

pm − t+ 1, then there exist the compression map C described by eq. (3) and the
decompression map D described by eq. (4).

C : G−\{1} → {0, 1}2 × Fpm

h

h(pm)2
�→ (i, T r4/1(g))

(3)
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D : {0, 1}2 × Fpm → G−\{1}

(i, T r4/1(g)) �→
f + z

f + z(pm)2

(4)

Where, the projective representation of g is h

h(pm)2
, h ∈ F(pm)4 , and the T2 affine

representation of g is f+z

f+z(pm)2
, f = δ1y+δ2y

pm ∈ F(pm)2 for some δ1, δ2 ∈ Fpm .

Let i be a tuple of the least bits in the vector representation of δ1 and δ2.

Proof. The decompression map D is calculated by solving eq. (5) in Lemma 2
and eq. (6) in Lemma 3. The following Lemma 1 is condition for the element
in the subgroup of the algebraic torus, and leads to Lemma 2 and 3. Lemma 4
shows why i distinguishes the four solutions. 
�

Calculations of the compression map C and the decompression map D are shown
in Algorithm 1 and 2.

Algorithm 1. Factor-4 compression C
Input: the projective representation h

h(pm)2
= h0+h1z

h0+h1z
(pm)2

for g

Output: (i, T r4/1(g))

1: f = δ1y + δ2y
pm ← h0/h1

2: i1 ← the least bit of δ1 in the vector representation
3: i2 ← the least bit of δ2 in the vector representation
4: i← (i1, i2)

5: Tr4/1(g)← δ21+δ22+δ1+δ2+1

δ41+δ21δ
2
2+δ42+δ31+δ32+δ1δ2+δ22+δ2+1

Algorithm 2. Factor-4 decompression D
Input: (i, T r4/1(g))

Output: the T2 affine representation f+z

f+z(p
m)2

, f = δ1y + δ2y
pm for g

1: solve D2 +D + 1 = {Tr4/1(g)}p
m−t for D and obtain a solution D with the least

bit i1 + i2 in the vector representation
2: solve δ22 + δ2 = D2 + {Tr4/1(g)}p

m−tDt for δ2 and obtain δ2 with the least bit i2
in the vector representation

3: δ1 ← δ2 +D

Lemma 1. Use the notation in Theorem 2. Let g = f+z

f+z(pm)2
∈ G−\{1}. When

t mod 5 = 2, δ1 and δ2 satisfy

(δ1 + δ2)
t+1 = δt1 + δ2 + 1.
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Proof. The condition g ∈ G−\{1} leads to gp
m+1 = gt. We substitute g =

f+z

f+z(pm)2
in the above equation, and then

{δt+1
1 + δ1δ

t
2 + δt1 + (δ21 + δ1δ2 + δ22 + δ1 + δt2)}y

+ {δt+1
2 + δt1δ2 + δ2 + 1 + (δ21 + δ1δ2 + δ22 + δ1 + δt2)}yp

m

= 0.

We obtain the desired equation from the sum of coefficients for y and yp
m

. 
�

Lemma 2. Use the notation in Theorem 2. D = δ1 + δ2 ∈ Fpm satisfies

D2 +D + 1 = {Tr4/1(g)}p
m−t. (5)

Proof. Lemma 1 leads to{
δ21 + δ2 = (δt1 + δt2)(δ

2
1 + δ22 + δ1 + δ2 + 1),

δ1 + δ22 = (δt1 + δt2 + 1)(δ21 + δ22 + δ1 + δ2 + 1) + 1.

We substitute the above equations to the trace value

Tr4/1(g) =
δ21 + δ22 + δ1 + δ2 + 1

δ41 + δ21δ
2
2 + δ42 + δ31 + δ32 + δ1δ2 + δ22 + δ2 + 1

,

and then we obtain

(δ21 + δ22 + δ1 + δ2 + 1)t+1 = Tr4/1(g)
−1.

Where t2 = 2pm and δ1, δ2, T r4/1(g) ∈ Fpm , we obtain

δ21 + δ22 + δ1 + δ2 + 1 = {Tr4/1(g)}p
m−t.


�

Note that the characteristic is 2, and square is calculated by the Frobenius map
involving rotation of elements in the normal basis. We obtain two solutions D0

and D1 of eq. (5) immediately.

Lemma 3. Use the notation in Theorem 2. The element δ2 satisfies

δ22 + δ2 = D2 + {Tr4/1(g)}p
m−tDt. (6)

Proof. Lemma 1 leads to

δ21 + δ2 = (δt1 + δt2)(δ
2
1 + δ22 + δ1 + δ2 + 1).

We show how to transform the equation of Lemma 1 to the above equation later.
The left-hand side of the above equation is (D + δ2)

2 + δ2 = D2 + δ22 + δ2, and
then we obtain eq.(6).

Where t2 = 2pm and δ1, δ2 ∈ Fpm , the equation of Lemma 1 to the power of
(t− 1) is

(δ1 + δ2) = (δt1 + δ2 + 1)t−1,
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and then we obtain

(δ1 + δ2)(δ
t
1 + δ2 + 1) = δ21 + δt2 + 1.

We add δt1 + δt2 to the equation of Lemma 1 multiplied by δ1 + δ2 + 1,

(δt1 + δt2)(δ
2
1 + δ22 + δ1 + δ2 + 1) = (δ1 + δ2)(δ

t
1 + δ2 + 1) + δt2 + δ2 + 1.

We substitute (δ1 + δ2)(δ
t
1 + δ2 + 1) = δ21 + δt2 + 1 to the above equation, and

then we obtain the first equation in this proof. 
�

We obtain two δ2 by solving eq. (6) with fixed D. Therefore, we obtain four
solutions for (δ1, δ2).

Lemma 4. Use the notation in Theorem 2. The least bits in the vector repre-
sentation of δ1 and δ2 identify g ∈ G−\{1} from solutions of eq. (5) and (6).

Proof. The element g changes by pm power: (δ1, δ2) → (δ2+1, δ1) → (δ1+1, δ2+
1) → (δ2 + 1, δ1). 
�

4.2 Factor 6

We show decompression from (i, T r(g)) ∈ {0, 1} × {0, 1, 2} × Fpm to g ∈ G− ⊂
T6(Fpm) ⊂ F(pm)6 . Firstly, we find equations to obtain six possible solutions by
Tr6/1(g). Secondly, we distinguish the conjugates by the additional information
i. The finite field F(pm)6 is constructed as follows:

– primitive polynomial: Φ7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1,

– basis: {x, xpm , x(pm)2 , x(pm)3 , x(pm)4 , x(pm)5} = {x, x5, x4, x6, x2, x3}.

We use pm mod 7 = 5, z = x+ x(pm)2 + x(pm)4 and y = x+ x(pm)3 . One can also
use pm mod 7 = 3.

Theorem 3. Suppose p = 3, m is odd, t =
√
3pm and G− is a group of order

pm − t+ 1, then there exist the compression map C described by eq. (7) and the
decompression map D described by eq. (8).

C : G−\{1} → {0, 1} × {0, 1, 2}× Fpm

h

h(pm)3
�→ (i, T r6/1(g))

(7)

D : {0, 1} × {0, 1, 2} × Fpm → G−\{1}

(i, T r6/1(g)) �→
f + z

f + zpm
(8)

Where, the projective representation of g is h

h(pm)3
, h ∈ F(pm)6 , and the T2 affine

representation of g is f+z
f+zpm

, f = δ1y + δ2y
pm + δ3y

(pm)2 ∈ F(pm)3 for some δ1,

δ2, δ3 ∈ Fpm . The bit {1, 0} is transformed from {1, 2} of a trit in A−1 for
A = δ1 + δ2 + δ3. The trit is in β′ calculated from δ2.
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Proof. The decompression map D is calculated by solving eq. (9) in Lemma 6
and eq. (10) in Lemma 7. The following Lemma 5 is condition for the element
in the subgroup of the algebraic torus, and leads to Lemma 6, 7 and 8. Lemma
9 shows why i distinguishes the six solutions. 
�

Calculations of the compression map C and the decompression map D are shown
in Algorithm 3 and 4.

Algorithm 3. Factor-6 compression C
Input: the projective representation h

h(pm)2
= h0+h1z

h0+h1zp
m for g

Output: (i, T r6/1(g))

1: f = δ1y + δ2y
pm + δ3y

(pm)2 ← h0/h1

2: α← δ1 − 1
3: β ← δ2 − 1
4: γ ← δ3 − 1
5: A← α+ β + γ(= δ1 + δ2 + δ3)
6: B ← αβ2 + βγ2 + γα2

7: C ← αβγ
8: i1 ← ai mod 2 for ai that is the smallest nonzero trit of A−1 in the vector rep.

9: β′ ← At+3+A2+1
At+1(A2−1−Aβ)

10: i2 ← the least trit of β′ in the vector representation
11: i← (i1, i2)
12: Tr6/1(g)← A

B+C−A3−A

Algorithm 4. Factor-6 decompression D
Input: (i, T r6/1(g))

Output: the T2 affine representation f+z

f+zp
m , f = δ1y + δ2y

pm + δ3y
(pm)2 for g

1: solve A−2 = −[{Tr6/1(g)}t−2 + 1] for A−1 and obtain solutions A−1
0 , A−1

1

2: if i1 = 1 then
3: select A−1

1 with ai = 1 for the least nonzero trit ai in the vector representation
4: else if i1 = 0 then
5: select A−1

0 with ai = 2 for the least nonzero trit ai in the vector representation
6: end if
7: solve β′3 − β′ − (A

2+1
At+3 + 1) = 0 and obtain a solution β′ with the least trit i2

8: β ← −A{(A2+1
At+3 + 1) 1

β′ + 1− A−2}
9: tb ← −(1 + A−2)A−t − A−1

10: tc ← A2 − Atb + A−1tb − t2b − A−4

11: γ ← (1−A−2)β2+tbβ−tc
−A−1β2+(1−A−2)β
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Lemma 5. Use the notation in Theorem 3. Let g = f+z
f+zpm

. Note z(p
m)3 = zp

m

.

When m mod 12 = 5, δ1, δ2 and δ3 satisfy

δt1(δ3 − δ2) + δt3(δ1 + δ2 + δ3) + 2δ3δ1 + δ1δ2 + δ21 + δ22 − δ3 = 2,

δt2(δ1 − δ3) + δt1(δ1 + δ2 + δ3) + 2δ1δ2 + δ2δ3 + δ22 + δ23 − δ1 = 2,

δt3(δ2 − δ1) + δt2(δ1 + δ2 + δ3) + 2δ2δ3 + δ3δ1 + δ23 + δ21 − δ2 = 2.

Proof. g ∈ G−\{1} leads to gp
m+1 = gt. We substitute g = f+z

f+z(pm)2
in gp

m+1 =

gt, and then we obtain the desired equations from coefficients for y, yp
m

and
y(p

m)2 . 
�

Lemma 6. Use the notation in Theorem 3. Let α = δ1−1, β = δ2−1, γ = δ3−1,
A = α+β+γ, B = αβ2+βγ2+γα2 and C = αβγ, where, α, β, γ, A,B,C ∈ Fpm .
A satisfies

A−2 = −[{Tr6/1(g)}t−2 + 1]. (9)

Where B = ((−1−A2)/At)−A and C = A3 −B + (AB −B2 − 1)/A3.

Proof. We substitute the equations of Lemma 5 to the trace value

Tr6/1(g) =
A

B + C −A3 −A
,

and then we obtain eq. (9). 
�

Two solutions A0 and A1 of eq. (9) are calculated by square root.

Lemma 7. Use the notation in Theorem 3. The element β satisfies

β3 −Aβ2 − (A2 − 1)β − C = 0. (10)

Proof. g ∈ T2(F(pm)3) leads α
2+β2+γ2 = 1. Eq. (10) is obtained from the above

equation, B = ((−1−A2)/At)−A and C = A3 −B + (AB −B2 − 1)/A3. 
�

We obtain three β by solving eq. (10).

Lemma 8. Use the notation in Theorem 3. The element γ satisfies

(−Aβ2 + (A2 − 1)β)γ + (−A2 + 1)β2 −Bβ +AC = 0. (11)

Proof. Eq. (11) is obtained from α2 + β2 + γ2 = 1.

We obtain γ by solving eq. (11). Therefore we obtain six solutions for (δ1, δ2, δ3).

Lemma 9. Use the notation in Theorem 3. The additional information i =
(i1, i2) identify g ∈ G−\{1} from solutions of eq. (9) and eq. (10). Let i1 =
ai mod 2 for the least nonzero trit ai of A−1, and i2 be the least trit of β′ =
At+3+A2+1

At+1(A2−1−Aβ) in the vector representation.

Proof. A trit of A−1
0 and a trit of A−1

1 in the same place are different unless
the trit is zero because of A−1

1 = −A−1
0 . Solutions of the degree-3 equation are

{β′
0, β

′
0+1, β′

0−1}, and then trits of these solutions are different in all places. 
�
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5 Performance

In this section, we compare costs of compression, decompression and exponenti-
ation in our representation with existing schemes using the affine representation.
We summarize our findings first and then present the detailed calculations.

Table 2 shows that compression and decompression costs are comparable.
Note that the cost of solving the equation Xp ±X + C = 0 is negligible, where
X,C ∈ Fpm , C is constant. Exponentiation costs are the same, because we
can use the projective representation and store precomputed information in the
T2 affine representation. In the future, there is hope to improve upon naive
exponentiation in the trace representation by using precomputation. The size of
the additional information is comparable. We consider the computations of our
representation with the compression factor of 4 and 6 in detail.

Factor 4. The compression map C described by eq. (3) costs I2 + I1+M2+4M1

to calculate f for i and Tr4/1. Alternatively, we can also calculate Tr4/1 using
h rather than f . In this case, C costs I2 +M4 + S4 + 4M2 + 6M1 ∼ I1 + 42M1.
The decompression map D described by eq. (4) costs I1 +2M1 +S1 to calculate
the coefficient of eq. (5) and eq. (6).

Because the image of the decompression map is in the projective representa-
tion in both cases of the affine representation and our representation, operations
are calculated similarly. There is an exponentiation formula for the trace repre-
sentation [12]. Its cost is estimated to be (4M1 + 1S1) log2 r, which is efficient
compared with cost of simple square and multiplying (M4 + S4) log2 r. How-
ever, this is inefficient compared with cost of width-w NAF in the projective
representation.

Factor 6. The compression map C described by eq. (7) costs I3 + I1 + M3 +
18M1 + 2S1 to calculate f and A−1 for i and also to calculate Tr6/1. Where,
A−1, {At+1(A2 − 1−Aβ)}−1 and (B+C −A3 −A)−1 can be calculated by one
inversion of the product A · {At+1(A2−1−Aβ)} · (B+C−A3−A) in Algorithm
3. The decompression map D described by eq. (8) costs 4I1+SqRt+10M1+5S1

to perform the following calculations: to calculate the coefficient of eq. (9) and

Table 2. costs: let M6 = 18M1, M4 = 9M1, M3 = 6M1, M2 = 3M1 (by Karatsuba’s
method), S6 = M6, S1 = M1 (for simplicity), I3 = I1 + 3M3 and I2 = I1 + 2M2 (by
Itoh-Tsujii’s method [8]). SqRt = {log2

m−1
2

+HW (m−1
2

)}M1 + S1 [12].

class the affine representation the trace representation

name Karabina Karabina this work this work

factor 4 6 4 6

comp. I1 + 9M1 I1 + 24M1 2I1 + 16M1 2I1 + 44M1

decomp. 3M1 I1 + 9M1 I1 + 3M1 4I1 + SqRt+ 15M1

exp. 6
w+1

log2 rM1
24

2w+1
log3 rM1

6
w+1

log2 rM1
24

2w+1
log3 rM1

added info. 1 bit 1 trit 2 bits 1 bit and 1 trit
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the square root, to solve degree-3 equation, to transform the solution and to

calculate γ. We explain solving degree-3 equation in detail. Let β = −A{(A2+1
At+3 +

1) 1
β′ +

A2−1
A2 }, then eq. (10) is written β′3 − β′ − (A

2+1
At+3 + 1) = 0 by using β′.

Note that the characteristic is 3, cubing is calculated by the Frobenius map
involving rotation of elements in the normal basis. We obtain three solutions β′

of the above equation immediately. One calculates the coefficient of the above
equation and the transformation from β′ for β.

The cost of an exponentiation formula for the trace representation [12] is
estimated to be (23M1 + S1) log3 r, which is efficient compared with cost of
simple cubing and multiplying (2M6 + C6) log3 r. However, this is inefficient
compared with cost of width-w radix-3 NAF in the projective representation.

6 Conclusion

In this paper, we proposed the factor-4 and 6 decompressible trace representa-
tion with additional information for the characteristics 2 and 3, respectively. This
representation has an efficient decompression map for the trace representation
distinguishing conjugates by using the additional information. Since this rep-
resentation permits decompression, we succeed in introducing multiplication in
the trace representation for the first time. Practically, this representation is not
worse than the affine representation. Although compression and decompression
incur some extra field inversions in comparison with the affine representation,
this fact is not a serious disadvantage of the proposed representation because
the costs of compression and decompression is much smaller than the costs of
encryption and decryption. It is clear that the cost of inversion in the base field
is much smaller than the cost of exponentiation in the embedding field. In fu-
ture work, we intend to improve the compression factor and reduce costs for the
exponentiation, the compression and the decompression.
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A The Affine Representation

Compression and decompression costs of the affine representation [13] are calcu-
lated as follows.

Factor 4. The point is that the condition for the element in the subgroup of
the algebraic torus Tn(Fpm) is solved and n/2 solutions are distinguished by
using additional information in the T2 affine representation. The order of the
subgroups is #G± = pm ± t+ 1, t =

√
2pm, where, p = 2, m is odd.

The compression map C is described by eq. (12) and the decompression map
D is described by eq. (13). Where, G ∈ {G−, G+}.

C : G\{1} → {0, 1} × Fpm

α+ βσ

α+ β(1 + σ)
�→ (i, b)

(12)

D : {0, 1} × Fpm → G\{1}

(i, b) �→ (a+ bw) + σ

(a+ bw) + 1 + σ

(13)
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Let F(pm)4 = F(pm)2(σ), F(pm)2 = Fpm(w), σ ∈ F(pm)4 , w ∈ F(pm)2 . We obtain
a, b ∈ Fpm by α/β = a+bw from α, β ∈ F(pm)2 . We calculate roots of polynomial

P1(x, b) = xt+x+u(b) ∈ Fpm [x] led by gp
m±t+1 = 1 in order to obtain a from b. If

the above polynomial P1(x) has two distinct roots a0 and a1, then a1 = a0 + 1.
Note that if the characteristic is 2, solving P1(x) = 0 is easy. The additional
information i is a bit of a in the vector representation.

The compression map C described by eq. (12) costs I2+M2 to calculate α/β =
a + bw, a, b ∈ Fpm from α, β ∈ F(pm)2 . The decompression map D described by
eq. (13) costs 3M1 to calculate u(b). Because u(b) is{

u(b) = bt+1 + (u0 + u4)b
t + (u0 + u3 + 1)b+ (u0u3 + u2 + u6) for G−

u(b) = bt+1 + (u0 + u4)b
t + (u0 + u3 + 1)b+ (u0u3 + u2 + u6 + 1) for G+

where u0, u2, u3, u4, u6 ∈ Fpm are precomputable parameters.
We recall an estimation of exponentiation cost [13]. We determine the width-w

NAF representation of the power r, and then it contains on average log2 r/(w+1)
nonzero digits. After precomputing gi = gi, i ∈ {±1,±3,±5, · · · ,±2w−1 − 1},
it costs log2 rS4 + log2 r/(w + 1)M4 to calculate gr on average. If we calculate
in the projective representation and store results of precomputation in the T2

affine representation, then we can replace M4 with 2M2 = 6M1.

Factor 6. Let #G± = pm ± t+ 1, t =
√
3pm, p = 3 and m be odd.

The compression map C is described by eq. (14) and the decompression map
D is described by eq. (15).

C : G−\{1} → {0, 1, 2} × Fpm

α+ βσ

α− βσ
�→ (i, c)

(14)

D : {0, 1, 2} × Fpm → G−\{1}

(i, c) �→ (a+ bw + cw2) + σ

(a+ bw + cw2)− σ

(15)

Let F(pm)6 = F(pm)3(σ), F(pm)3 = Fpm(w), σ ∈ F(pm)6 ,w ∈ F(pm)3 . We obtain
a, b, c ∈ Fpm by α/β = a + bw + cw2 from α, β ∈ F(pm)3 . We calculate roots of

P6(x, c) = x3 + 2c2tx + C(c) ∈ Fpm [x] led by gp
m−t+1 = 1 in order to obtain

a, b from c. Where, C(c) = 2(c3t+3+c2t+1)
c3 . The above polynomial P6(x) has roots

{ctR, ct(R+1), ct(R−1)} as bt. R is a solution of x3−x+D(c) = 0. Note that if
the characteristic is 3, solving the above equation is easy. at is a root of degree-1
polynomial P2(x) ∈ Fpm [x]. Therefore, three solutions are {(a, b, c), (a−b+c, b+
c, c), (a+ b+ c, b− c, c)}. The additional information i is a trit of b in the vector
representation. The place is the same for the least nonzero trit of c.

The compression map C described by eq. (14) costs I3 + M3 to calculate
α/β = a + bw + cw2, a, b, c ∈ Fpm from α, β ∈ F(pm)3 . The decompression map
D described by eq. (15) costs I1 + 7M1 + 2S1 to calculate

D(c) =
2(c3t+3 + c2t + 1)

c3t+3
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and to solve the following degree-1 polynomial

P2(x) = x+ 2b2t+3 + 2b2tc3 + btct+3 + c2t+3 + 2ct ∈ Fpm [x].

We recall an estimation of exponentiation cost [13]. We determine the width-
w radix-3 NAF representation of the power r, and then it contains on aver-
age 2 log3 r/(2w + 1) nonzero digits. After precomputation, it costs log3 rC6 +
2 log3 r/(2w+1)M6 to calculate gr on average. If we use the projective represen-
tation and the T2 affine representation, then we replace M6 with 2M3 = 12M1.
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Abstract. When implementing an efficient pairing calculation over KSS
curves with embedding degree 18 and order r, the lower bound of the
number of loop iterations of Miller’s algorithm is 1

6
�log2 r�. But the

twisted Ate pairing requires 1
2
�log2 r� loop iterations, and thus is slower

than the optimal Ate pairing which achieves the lower bound. This paper
proposes an improved twisted Ate pairing and uses multi-pairing tech-
niques to compute it. Therefore, the number of loop iterations in Miller’s
algorithm for the new pairing achieves the lower bound and it becomes
faster than the original twisted Ate pairing by 30%.

Keywords: pairing-based cryptography, Miller’s algorithm, twisted Ate
pairing, multi-pairing, KSS curves.

1 Introduction

In the past years, pairing-based cryptographic applications have developed at
an extraordinary pace for bilinear pairings can be used in many “constructive”
ways, such as key agreement schemes [8], ID-based cryptography [5] and group
signature schemes [12]. Since the implementation of pairing-based cryptosystems
involves pairing evaluation, the development of efficient pairing calculations be-
comes a significant topic of research. The most common pairings used in applica-
tions are the Tate and Weil pairings on elliptic curves over finite fields. In general,
pairing calculation can be divided into two parts, the first one being Miller’s al-
gorithm [11] and the second one the final exponentiation. Miller’s algorithm is an
iterative algorithm that can evaluate rational functions from scalar multiplica-
tions of divisors, and compute bilinear pairings at a linear complexity cost with
respect to the size of the input. In practice, many methods have been designed to
optimize Miller’s algorithm, such as denominator elimination [3], the selection of
pairing-friendly groups [4] and the methods to shorten the Miller loop [2,13,20].
During all these methods, shortening the Miller loop is regarded as one of the
most important methods. Following this idea, several efficient pairings have been
proposed, such as the Ate pairings [13], the twisted Ate pairings [13], the R-ate
pairings [10] and optimal pairings [20]. It is proved that all pairings are in a
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group from an abstract point of view [22]. Hess’s research [14] proves the lower
bound of loop iterations of Miller’s algorithm is log2 r/ϕ(k). It means that any
non-degenerate pairing on an elliptic curve without extra efficiently computable
endomorphisms different from the Frobenius requires at least log2 r/ϕ(k) basic
Miller operations. Optimal pairings attain this lower bound by their definition.

It is well known that the Ate pairing and the twisted Ate pairing are defined
on G2×G1 and G1×G2, respectively. Generally, the group G1 is defined over a
prime field Fp, and the group G2 is defined over an extension of Fp. Their precise
definitions can be found in Section 2. Recently, many efficiency improvements
for the Ate pairing are proposed, such as Atei pairings [21], the R-ate pairings
and optimal pairings. Comparing with them, the twisted Ate pairing is usually
slower for its large number of loop iterations. But the twisted Ate pairing is
defined by the points in G1, so its calculation requires less operations in the
extended field than that of Ate-type pairings. From this view, it is meaningful
to accelerate the twisted Ate pairing by shortening its number of loop iterations.

Recently, Sakemi et al. [15] propose an improved twisted Ate pairing using
Frobenius maps and a small scalar multiplication over BN elliptic curves. The
proposal splits Miller’s algorithm into several independent parts, for which multi-
pairing techniques apply efficiently. So the proposed twisted Ate pairing with
multi-pairing techniques becomes faster than the original twisted Ate pairing.
However, as the authors of [15] mention, the target pairing-friendly curves on
which the proposed twisted Ate pairing becomes more efficient than the original
twisted Ate pairing are restricted. And it is not always possible to combine an
efficient split together with an efficient multi-pairing techniques. Fortunately,
we find this method can also be applied to KSS curves with embedding degree
k = 18 [9] which have already been identified as a suitable candidate for secure
pairings at the 192-bit security level by Scott [18]. Similarly, we propose an
improved twisted Ate pairing over this family of elliptic curves.

In this paper, we consider the family of KSS curves with embedding degree k =
18 [6], which is a class of ordinary pairing-friendly elliptic curves. For KSS curves
the number of loop iterations of the Ate pairing, the twisted Ate pairing, and
the optimal Ate pairing are about 2

3�log2 r�,
1
2�log2 r�,

1
6�log2 r�, respectively.

So the twisted Ate pairing is often slower than the optimal Ate pairing. Here,
we use a special feature of this family to give an improved twisted Ate pairing,
whose loop iterations can achieve 1

6�log2 r� when using multi-pairing techniques.
Therefore, the new pairing is faster than the original twisted Ate pairing by 30%.
Embedding degree 18 is useful and practical because many techniques promoting
the efficiency of pairings are available. And the proposed pairing is of twisted
type and optimal. So our proposal may provide efficient algorithms in many
protocols.

This paper is organized as follows. Section 2 and 3 recall the fundamentals
from [15]. Section 4 gives new results of this paper. In Section 5, we compare
the proposed pairing and the original twisted Ate pairing.
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2 Twisted Ate Pairing for KSS Curves with k = 18

Let E/Fp be an elliptic curve over a finite field Fp and p is a prime number.
Denote be E(Fp) the set of rational points on the curve, which is an additive
Abelian group with the infinity point O as the identity element. Let r be a
prime number that divides #E(Fp). The smallest positive integer k such that
r divides pk − 1 is called the embedding degree. Then we have the relationship
#E(Fp) = p+ 1− t, where t is the Frobenius trace of E(Fp).

KSS curves with embedding degree k = 18 , constructed in paper [9], are a
class of ordinary pairing-friendly elliptic curves. They are defined over a prime
field Fp and have the short Weierstrass equation E : y2 = x3 + b, b ∈ Fp. The
related parameters of the KSS curves are given with an integer χ as follows:⎧⎨⎩

p(χ) = 1
21 (χ

8 + 5χ7 + 7χ6 + 37χ5 + 188χ4 + 259χ3 + 343χ2 + 1763χ+ 2401),
r(χ) = 1

343 (χ
6 + 37χ3 + 343),

t(χ) = 1
7 (χ

4 + 16χ+ 7).
(1)

In order to keep p and r being primes, we just consider the case in which χ ≡ 14
mod 42. In the following of this paper, we will substitute χ with 14+42χ. Since
the explicit coefficients of the new parameters are too large, we won’t list them
here.

The general definition of the twisted Ate pairing on elliptic curves can be
found in paper [13]. Here we give the twisted Ate pairing on KSS curves with
k = 18 according to the general definition. Let φ : E(Fp18 ) → E(Fp18) be the
Frobenius endomorphism, E(Fp18)[r] denote the subgroup of rational points of
order r in E(Fp18 ) and let ζ6 be a primitive 6-th root of unity. Define

[ζ6] : E → E, (x, y) �→ (ζ6
2x, ζ6

3y).

Let

G1 = 〈P 〉 = E(Fp18)[r] ∩Ker(φ− [1]),
G2 = 〈Q〉 = E(Fp18 )[r] ∩Ker([ζ6]φ

3 − [1]) = E(Fp18)[r] ∩Ker(φ− [p]).

Then the twisted Ate pairing is defined as

α(·, ·) : G1 ×G2 → F∗
p18/F

∗r
p18 , (P,Q) �→ fT 3,P (Q)(p

18−1)/r,

where P ∈ G1, Q ∈ G2 and T 3 ≡ p3 mod r. When fT 3,P (Q)(p
18−1)/r is calcu-

lated using Miller’s algorithm and the final exponentiation, the number of loop
iterations of Miller’s algorithm to compute the twisted Ate pairing is determined
by log2 T

3, and

T 3 ≡ p3 ≡ −74088χ3 − 74088χ2 − 24696χ− 2762 mod r. (2)

3 Review of Useful Tools

In this section, we cite some useful tools which are already known in the liter-
ature, concluding divisor theory, skew Frobenius maps and multi-pairing tech-
niques. In fact, all these objects have been explained carefully by Sakemi et al. in
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the section 2 of [15] when they improve the twisted Ate pairing over BN elliptic
curves. But for the integrality of this article, we list them again.

3.1 Divisors

For a, b ∈ Z and Q ∈ E[r] , let fa,Q, fb,Q ∈ Fpk(E) be the uniquely determined
monic functions with

div(fa,Q) = a(Q)− ([a]Q)− (a− 1)(O),
div(fb,Q) = b(Q)− ([b]Q)− (b− 1)(O).

Then there exist the following relations [15]:

fa+b,Q = fa,Q · fb,Q · g[a]Q,[b]Q,
fab,Q = f ba,Q · fb,[a]Q = fab,Q · fa,[b]Q,

where g[a]Q,[b]Q = l[a]Q,[b]Q/v[a]Q+[b]Q, l[a]Q,[b]Q denotes the line which passes
through [a]Q and [b]Q, and v[a]Q+[b]Q denotes the vertical line which passes
through the point [a]Q + [b]Q.

3.2 Skew Frobenius Maps

Let E be an ordinary elliptic curve over a finite field Fp and E′ be the twisted
elliptic curve of E with degree d defined over the finite field Fpe , where e is a
positive integer. Then the embedding degree k = de and the twist isomorphism
is given as follows:

ψd : E
′
(Fpe) → E(Fpde), (x, y) �→ (xv2/d, yv3/d).

Corresponding to the twist degree d, v is chosen as a quadratic non residue, a
cubic non residue, or a quadratic and cubic non residue in Fpe .

Since P
′
= ψ−1

d (P ) ⊂ E
′
(Fpk) for an arbitrary rational point P ∈ G1 ⊂

E(Fp), the following relation [13] holds,

(φe − [pe])P
′
= O, φe(P

′
) = (xp

e

P ′ , y
pe

P ′ ),

where P
′
= (xP ′ , yP ′ ). Then the skew Frobenius map φ̃e is defined as [16] :

φ̃e : G1 → G1, (x, y) �→ (xp/v2(p
e−1)/d, yp/v3(p

e−1)/d).

And the following relation holds, φ̃e(P ) = [pe]P, which will be used in Algo-
rithm 2.

In the case of KSS curves considered in this paper, since k = 18, d = 6, e =
k/d = 3, the skew Frobenius map φ̃3 is

φ̃3 : G1 → G1, (x, y) �→ (x/v(p
3−1)/3, y/v(p

3−1)/2),

and φ̃3(P ) = [p3]P.
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3.3 Multi-pairing

In order to calculate the product of pairings efficiently, Granger et al. have
provided the multi-pairing algorithm in [7]. Let

SP = {P1, P2, · · · , PN ∈ G1},
SQ = {Q1, Q2, · · · , QN ∈ G2},

then the product of N pairings MN =
∏N
i=1 fs,Pi(Qi)

(pk−1)/r
can be calcu-

lated by Algorithm 1, called MMA(s,N, SP , SQ), which is shown in Section 2.8
of [15].

Algorithm 1. Miller’s Algorithm for multi-pairing MMA(s,N, SP , SQ)

Input: s,N ∈ N, SP = {P1, P2, · · · , PN ∈ G1}, SQ = {Q1, Q2, · · · , QN ∈ G2}
Output:

∏N
i=1 fs,Pi(Qi), SR = {[s]P1, [s]P2, · · · , [s]PN ∈ G1}

1: Write s =
∑L
j=0 sj2

j, with sj ∈ {0, 1} and sL = 1

2: f ← 1
3: for i from N downto 1 do
4: Ri ← Pi
5: end for
6: for j from L− 1 downto 0 do
7: f ← f2

8: for i from N downto 1 do
9: f ← f · gRi,Ri(Qi); Ri ← [2]Ri
10: end for
11: if sj = 1 then
12: for i from N downto 1 do
13: f ← f · gRi,Pi(Qi); Ri ← Ri + Pi
14: end for
15: end if
16: end for
17: return f, [R1, R2, · · · , RN ]

4 New Results

In this section, we propose an improved twisted Ate pairing over KSS curves with
k = 18. The new pairing can be calculated efficiently when we use multi-pairing
techniques. In fact, this pairing is based on the relation given by an equation

p ≡ 2z0 + z0p
3 mod r, (3)

which is from the example in [20] of an optimal pairing over KSS curves with
k = 18. First, we use the special equation to construct the new pairing. Then we
give the complete proof of the bi-linearity and non-degeneracy of the improved
twisted Ate pairing in the appendix. At last, we use the multi-pairing techniques
to calculate it and give the explicit algorithm.
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4.1 Construction

In this subsection, we will give the new pairing which is denoted by αpt(·, ·). The
shortest vector V = [2z, 1, 0, z, 0, 0] in [20] means that, there exists an integer m
such that

mr = 2z + p+ zp3.

Set z0 = −z = −χ/7, then an equation p ≡ 2z0 + z0p
3 mod r can be obtained

easily. It is well known that, when the embedding degree k is an even number
such as in the case of KSS curves with k = 18 , all terms of v[a]P+[b]P (Q) lie in
a subfield of F∗

p18 and thus may be eliminated in the final exponentiation. So in

the following calculation, we use l[a]P,[b]P (Q) instead of g[a]P,[b]P (Q).

According to Section 3.1, the calculation of the pairing fp3,P (Q)(p
18−1)/r over

KSS curves is given by

fp3,P (Q)(p
18−1)/r = (fp

2

p,P (Q) · fpp,[p]P (Q) · fp,[p2]P (Q))(p
18−1)/r.

Let Pp = [p]P, Pp2 = [p2]P, Qp = [p]Q, Qp2 = [p2]Q. Since P ∈ G1, Q ∈ G2,
particularly, φ(P ) = P, φ(Q) = [p]Q = Qp, then we can see

fpp,P (Q) = fp,φ(P )(φ(Q)) = fp,P (Qp).

It follows that

fp3,P (Q)(p
18−1)/r = (fp

2

p,P (Q) · fpp,[p]P (Q) · fp,[p2]P (Q))(p
18−1)/r

= (fp,P (Qp2) · fp,[p]P (Qp) · fp,[p2]P (Q))(p
18−1)/r

= (fp,P (Qp2) · fp,Pp(Qp) · fp,Pp2
(Q))(p

18−1)/r.

Let p = 2z0 + z0p
3 + cr, c ∈ Z, then we obtain

fp,P (Qp2) = f2z0+z0p3+cr,P (Qp2)

= (fp
3+2
z0,P

· l[z0]P,[z0]P · l[2z0]P,[z0p3]P · fp3,[z0]P · f cr,P )(Qp2),

fp,Pp(Qp) = f2z0+z0p3+cr,Pp
(Qp)

= (fp
3+2
z0,Pp

· l[z0]Pp,[z0]Pp
· l[2z0]Pp,[z0p3]Pp

· fp3,[z0]Pp
· f cr,Pp

)(Qp),

fp,Pp2
(Q) = f2z0+z0p3+cr,Pp2

(Q)

= (fp
3+2
z0,Pp2

· l[z0]Pp2 ,[z0]Pp2
· l[2z0]Pp2 ,[z0p

3]Pp2
· fp3,[z0]Pp2

· f cr,Pp2
)(Q).

Define

f̃z0,P (Q) = [fz0,P (Qp2) · fz0,Pp(Qp) · fz0,Pp2
(Q)]p

3+2

·(l[z0]P,[z0]P · l[2z0]P,[z0p3]P )(Qp2) · (l[z0]Pp,[z0]Pp
· l[2z0]Pp,[z0p3]Pp

)(Qp)
·(l[z0]Pp2 ,[z0]Pp2

· l[2z0]Pp2 ,[z0p
3]Pp2

)(Q),

(4)
then we can define the improved twisted Ate pairing αpt(·, ·) as

αpt(·, ·) : G1 ×G2 → F∗
p18/F

∗r
p18 , (P,Q) �→ f̃z0,P (Q)(p

18−1)/r, (5)

where P ∈ G1, Q ∈ G2. The bi-linearity and non-degeneracy of αpt(·, ·) is shown
in the appendix.
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4.2 Calculation

In this subsection, we discuss how to use multi-pairing techniques to calcu-
late the new pairing αpt(·, ·) and give the explicit algorithm which is shown in
Algorithm 2.

Algorithm 2. Miller’s Algorithm for f̃z0,P (Q)

Input: P ∈ G1, Q ∈ G2, z0, p

Output: f̃z0,P (Q)
1: P1 ← [z0]P
2: P2 ← [2]P1

3: P3 ← φ̃3(P1)
4: Q3 ← Q,Q2 ← φ(Q), Q1 ← φ2(Q)
5: B ← lP1,P1(Q1)
6: C ← lP2,P3(Q1)
7: f ← B · C
8:Pp ← P2 + P3

9:P1 ← [z0]Pp
10:P2 ← [2]P1

11:P3 ← φ̃3(P1)
12:B ← lP1,P1(Q2)
13:C ← lP2,P3(Q2)
14:f ← f · B · C
15:Pp2 ← P2 + P3

16:P1 ← P, P2 ← Pp, P3 ← Pp2
17:A ← MMA(z0, 3, SP , SQ)
18:P1 ← R3

19:P2 ← [2]P1

20:P3 ← φ̃3(P1)
21:B ← lP1,P1(Q3)
22:C ← lP2,P3(Q3)
23:f ← f · B · C
24:f ← Ap

3+2 · f
25:return f

Set
A = fz0,P (Qp2) · fz0,Pp(Qp) · fz0,Pp2

(Q),

L = (l[z0]P,[z0]P · l[2z0]P,[z0p3]P )(Qp2)
·(l[z0]Pp,[z0]Pp

· l[2z0]Pp,[z0p3]Pp
)(Qp)

·(l[z0]Pp2 ,[z0]Pp2
· l[2z0]Pp2 ,[z0p

3]Pp2
)(Q),

then f̃z0,P (Q) = Ap
3+2 · L. In order to use multi-pairing techniques to calculate

A, we set SP = {P, Pp, Pp2}, SQ = {Qp2 , Qp, Q}, N = 3, s = z0. Then A =
MMA(z0, 3, SP , SQ). When it comes to L, we can compute Pp and Pp2 by using
the equation p ≡ 2z0 + z0p

3 mod r as follows:
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Pp = [p]P = [2z0]P + [z0p
3]P = [2z0]P + [z0]φ̃3(P ),

Pp2 = [p]Pp = [2z0]Pp + [z0p
3]Pp = [2z0]Pp + [z0]φ̃3(Pp),

where φ̃3 is the skew Frobenius map introduced in Section 3.2, thus [p3]P =
φ̃3(P ). On the other hand, Qp = [p]Q = φ(Q) is easily computed by
the Frobenius map. Since [z0]Pp2 can be obtained for free as the output of
MMA(z0, 3, SP , SQ), the main part of computing L is [z0]P and [z0]Pp. But
they are just scalar multiplications over the base field and z0 is usually very
short, so these calculations are much cheaper than the calculation of MMA. In
conclusion, L can be calculated efficiently and cheaply. The complete algorithm
is shown in Algorithm 2.

When it comes to the implementation of the improved twisted Ate pairing,
besides the multi-pairing techniques, there are many other general techniques
that can be used. Roughly speaking, the extension tower:

Fp ⊂ Fp3 ⊂ Fp18

can be used to construct the finite field Fp18 by simple polynomials. Sextic twists
of KSS curves with embedding degree k = 18 can be used for pairing calculation
and rational point compression. The final exponentiation can be dealt with by
the Frobenius map in the finite field and the details about this techniques can
be found in [19]. But all these general techniques are not the important topics
in this paper. We just focus on the multi-pairing techniques, which is the point
why the proposed twisted Ate pairing is faster than the conventional twisted
pairing.

5 Efficiency Comparison

This section compares the calculation costs of the new pairing

αpt(·, ·) = f̃z0,P (Q)(p
18−1)/r = (Ap

3+2 · L)(p18−1)/r

with the conventional twisted Ate pairing

α(·, ·) = fT 3,P (Q)(p
18−1)/r.

Since both of them involve the same final powering step , L can be computed
almost for free and the small cost of Ap

3+2 can be ignored for Frobenius map in
the finite field is efficient, we need only focus on comparing the costs of A and
fT 3,P (Q).

Following [13], let Ms, Ss denote the cost of Multiplication and Squaring in the
finite field Fqs . If we use the pairing-friendly fields with s = 2i3j, then we have
Ms = 3i5jM1, Ss = 3i5jS1. We refer to the fN,P (Q) as a Miller-Lite operation
and denote the cost of Miller-Lite algorithm by CLite. Then for the elliptic curves
of the form

Y 2 = X3 +B,

the cost of fN,P (Q) is
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CLite = (5S1 + (2e+ 6)M1 + Sk +Mk)�log2 N�.

In the case of KSS curves, s = 18, i = 1, j = 2, e = 3, k = 18, and in
order to compare the costs of two pairings explicitly, we assume S1 = M1.
Then CLite = 167S1�log2 N�. Denote the costs of fT 3,P (Q) and A by c1 and c2,
respectively. Considering equation (3) and z0, we have

c1 = 167S1�log2 T 3� ≈ 501S1�log2 χ�,

c2 = 351S1�log2 z0� ≈ 351S1�log2 χ�,

where χ is the curve parameter. So the new pairing with the multi-pairing tech-
niques becomes faster than the original twisted Ate pairing by 30%. For ex-
ample, set χ = −262 − 1, then �log2 z0� = 64, �log2 T 3� = 202, it follows that
c1 = 167× 202S1 = 33734S1, c2 = 351× 64S1 = 22464S1.

6 Conclusion and Future Work

This paper uses the special equation p ≡ 2z0 + z0p
3 mod r to construct a new

pairing αpt(·, ·) defined over G1 × G2 on KSS curves with embedding degree
k = 18. Following the multi-pairing techniques, the maximum of the length of
loop reaches the lower bound 1

6�log2 r� . Thus the improved twisted Ate pairing
is faster than the original one by 30%.

Neither the new pairing nor the algorithms considered herein are exhaustive;
we thus hope that these are the first steps toward further improvement of the
twisted Ate pairing. We leave it as future work to find useful equations for other
pairing-friendly curve families to give more improved twisted Ate pairings and to
compute them using the multi-core parallelization approach proposed by Aranha
et al. in [1].
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A The Bi-linearity and Non-degeneracy

This part can be divided into two parts, one is about the bi-linearity of fp3,P (Q),
the other is about the bi-linearity and non-degeneracy of αpt(·, ·).

Let γ = [ζ6] ◦ φ3, then γ(P ) = [p3]P, γ(Q) = Q. Since γ is purely inseparable
of degree p3, we obtain from Lemma 4 in [13]

fp3,γ(P ) ◦ γ = fp
3

p3,P .

Then we have
fp3,[p3]P (Q) = fp3,γ(P ) ◦ γ(Q) = fp

3

p3,P (Q).

Since p18 ≡ 1 mod r, we can set mr = p18 − 1 = (p3)6 − 1, thus

fmr,P (Q) = fmr,P (Q)

= fp18−1,P (Q)
= fp18,P (Q)
= f(p3)6,P (Q)

= f
(p3)5

p3,P (Q) · f (p3)4

p3,[p3]P (Q) . . . fp3,[(p3)5]P (Q)

= f6×p15
p3,P (Q).

Then fp3,P (Q) = f
m/(6×p15)
r,P (Q) = f

mp3/6
r,P (Q) is a bi-linear pairing for the Tate

pairing fr,P (Q) is bi-linear.

Section 3.1 shows that

fp3,P (Q)(p
18−1)/r = f̃z0,P (Q)(p

18−1)/r · [fp3,[z0]P (Qp2) · f cr,P (Qp2) · fp3,[z0]Pp
(Qp)

·f cr,Pp
(Qp) · fp3,[z0]Pp2

(Q) · f cr,Pp2
(Q)](p

18−1)/r

= f̃z0,P (Q)(p
18−1)/r · [f3z0p

2

p3,P (Q) · f3cp2

r,P (Q)](p
18−1)/r.

Therefore

f̃z0,P (Q)(p
18−1)/r = [f1−3z0p

2

p3,P (Q) · f3cp2

r,P (Q)](p
18−1)/r.

Since fp3,P (Q) = f
mp3/6
r,P (Q), then it follows that

f̃z0,P (Q)(p
18−1)/r = [f

mp3(1−3z0p
2)/6−3cp2

r,P (Q)](p
18−1)/r.

Set
N = mp3(1− 3z0p

2)/6− 3cp2 mod r,

then N and r are polynomials of integer χ. Through calculation, it can be proved
that r � N. So

αpt(·, ·) = f̃z0,P (Q)(p
18−1)/r

is a pairing with bi-linearity and non-degeneracy.
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Abstract. If a user encrypts data, stores them in a relational database
(RDB), and keeps the key for both encryption and decryption by himself,
then the risk of leaking data from the RDB directly can be mitigated.
Such a strategy can be considered as a natural solution for preventing
data leakage when the manager of the database cannot be entirely trusted
or the burden of managing the database needs to be lightened. However,
if the database cannot access to this key, it can execute only a few re-
lational algebraic operations by itself, which spoils the serviceability of
the database.

This paper first introduces the notion of an encryption for controlled
joining (ECJ), which enables RDB to execute “natural join” of tables
when and only when its user required it. This technique can directly
be applied for union, difference, and intersection of tables also. Then,
the paper proposes an instance under a novel but natural assumption on
asymmetric bilinear group. Combining an ECJ with a searchable encryp-
tion and an order-preserving encryption, one can construct an encrypted
database which can executes the major part of relational algebraic op-
erations. The proposed instance is efficient in a reasonable extent and
sacrifices its security only in a minimum extent. We consider such a
technique can bring an enhanced security into the database-as-service
environment.

Keywords: encrypted RDB, natural join, union, difference, intersec-
tion, asymmetric bilinear group, non-transitivity.

1 Introduction

1.1 Encryption of Relational Database

A database (DB) is a system in which a large amount of data is stored and
portions of it can be retrieved smoothly. It has been an indispensable platform
for providing variety of services through the network. Since many of DBs store
sensitive information such as customer information, private information, or trade
secrets, they are potentially vulnerable to abuse, leakage, and theft. Hence, it is
crucially important to unfailingly protect confidentiality of data in many DBs.

The primary method of protecting data in today’s DB systems is access con-
trol. Although this has been a fairly effective approach, it can no longer be highly
reliable if the DB can potentially be compromised. And DBs, indeed, may be
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compromised in diverse ways, e.g., physical theft of hard disks or other memo-
ries, data leakage by malicious or careless system managers, leakage by viruses
infected, via unpatched vulnerability of the system, design error, configuration
fault, etc. Hence, in addition to access control, it is desirable to enforce the con-
fidentiality of DBs by encryption. Such a succinct strategy is considered to be
especially effective for the database-as-service environment.

Encryption is already an accepted approach to data protection for DBs. For
example, PCI DSS (PCI Data Security Standard) [32] which is for to enforce
payment account data security requires stored card-holder data to be encrypted.
And several existing DB applications such as [18,29,31] actually support encryp-
tion of stored data. Since the outsourcing of data and services are getting more
common, as we can also recognize in the recent widespread of cloud comput-
ing services, the situation are getting worse and more complicated. Hence, it is
envisaged that encryption of DBs will become more common and vital.

In encryption mechanisms of DBs that are already in use [18,29,31], the keys
used to encrypt data are kept within their systems. Hence, these keys may be
leaked with the data themselves when the DBs are compromised. In this sense,
such mechanisms are still not a satisfactory approach for high leakage resistant
DB systems. Improving these solutions, several systems such as [15,24,25,33]
encrypt sensitive data, store them in an outsourced DB, and keep the key for
the encryption under control of the user. The main challenge in this approach
is to avoid imposing users to retrieve all data in the DB, decrypt them, and
find necessary data among them when they use the DB. This is because the
most significant serviceability of DBs is spoiled if it imposes a large amount of
computation and communication on users.

A searchable encryption [3,5,21,23] and an order preserving encryption [2,9,10]
provide away to salvage, in a decent extent, the serviceability of DBswhen data are
encrypted by keys kept by users themselves. The searchable encryption enables a
DB to search necessary data among those encrypted by users without decrypting
them. The order preserving encryption enables a DB to compare numerical size
of data that are encrypted by users without decrypting them. Because of these
ability, a DB is able to return only ciphertexts of data that are required by users.
Hence, communication and computational complexity of users are substantially
reduced, and thus the serviceability of DB is salvaged.

However, searchable encryption alone is often insufficient for searching data in
a DB since the most used DB is relational database (RDB) [20]. An RDB system
decomposes each large table (relation) into smaller and well-formed (normalized)
tables so as to prevent data manipulation anomaly and data integrity loss. Then,
the DB often needs to partially reconstruct the original table from normalized
tables before searching data. This is done by “natural join” procedure in Struc-
tured Query Language (SQL) [20]. Therefore, without natural join, searchable
encryption is incapable of salvaging serviceability of encrypted RDBs. Moreover,
the natural join, union, difference, and intersection of tables are also indispens-
able to generate a wide variety of tables and views for variety of purposes. These
are issues we focus in this paper.
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More precisely, we consider the following concrete example to obtain clear
understanding of the problem. Suppose that a user specifies two tables I and II.
Table I has two columns, one is for attribute A and the other is for attribute B.
Table II has two columns, one is for attribute C and the other is for attribute
D. Then the user requires a database to join Table I and II with respect to
attributes A and C, and returns a row whose attribute B is X. If the columns for
attribute A of Table I and attribute C of Table II are encrypted by, for example,
with different key or different randomness, the DB is unable to join them by
himself. In such a case, the DB is only able to choose a row whose attribute B
is X from Table I. But it is unable to choose a row in Table II that is supposed
to be joined to the above chosen row in Table I. The only way that the DB can
do to meet the need of the user is to send whole Table II. Consequently such a
DB is not useful any more.

1.2 Encryption for Controlled Joining

As discussed in the Section 1.1, an encrypted RDB needs measures to run
many SQL procedures such as a natural join without sacrificing efficiency
of the users. Such an issue has been considered also in previous works
[1,15,19,22,24,25,26,34,35,33]. Some works consider to bucketize encrypted
data, where rough join is executed in DB using special indices, but the de-
cryption and the final tuning of the join is executed by users themselves. This
approach has a trade-off between amount of data leaked to the DB and the
computation the users are required. Some works consider to fragment data
in several DBs so that none of them can recover confidential relations by itself.
This approach requires multiple DBs, which need to be trusted as a whole. Some
works consider to progressively decrypt data, encrypted in layer, until they
become comparable.

Another strategy is to encrypt every data deterministically as in the case
of searchable encryption but with the same key for all data in the DB. Then,
since values in different tables can be compared, the DB can join tables without
decrypting them. However, this strategy leads to security concerns by leaking
relations. Suppose that Table I contains names of card holders and encrypted
credit card numbers and that Table II contains encrypted credit card numbers
and invalidated dates. If the numbers in the both tables are encrypted determin-
istically, it is easy to recognize whose card is invalidated from the leaked tables.
This is because the relation is leaked from the encrypted tables. In contrast,
if the numbers in both tables are encrypted by different keys or with different
randomness, it is unlikely that leakage of these tables are serious privacy expo-
sure. Although the public-key encryption with keyword search [12] cannot solve
this problem, the works [13,37], following [38], present interesting idea that key
words can be searched only by delegated entities.

In this paper, we choose a novel approach and propose such an encryption
scheme that the DB is able to check equivalence of encrypted values in two
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columns, without decrypting them completely. This check is possible only when
the user requested it to do so and only in the minimum extent. And, this
request is quite easy for the user. With this scheme, the DB manager is able
to execute natural join, union, difference, and intersection of tables once it
receives the request. We call such scheme “encryption for controlled joining
(ECJ)”.

Schemes with bucketization such as those in [15,26,24] and schemes with frag-
mentation such as those in [19,1,22] suffer the trade-off between user’s cost and
data confidentiality. That means users need additional computation to enhance
the confidentiality of the data. On the other hand, our scheme requires users no
additional computation except the decryption of received result. Schemes with
fragmentation such as those in [19,1,22] also require servers to be trusted not
to collude, but our scheme does not. Although searchable encryption schemes
such as those in [5,21,23], like our scheme, require users no additional computa-
tion except the decryption of received result, they leak relations to the DB as is
discussed above.

We note that our scheme does not succeed in preventing the DB from obtain-
ing relations (each data is still encrypted) between two columns when the user
required to join them. Such a prevention is out of our security goal since it is
likely to be impossible to prevent it unless we use such a heavy1 cryptographic
primitive as “private information retrieval protocol” introduced in [16,17,28].
DB users usually do not accept such inefficiency. However, unlike deterministic
encryption approach, the leak of relations in our scheme is the minimum in the
sense that each relation is hidden unless the user requires to use it for relational
algebraic operations and also in the sense that the revealed relation does not
unnecessary reveal other relations.

We now roughly introduce the model of the novel encryption scheme “ECJ”
that satisfies the above properties:

1. Each data is encrypted with respect to some label.
2. The encryption is of symmetric key and probabilistic.
3. From any pair of two labels and the symmetric key, one can generate a pro-

jection key. With this key, the equivalence of two data which are encrypted
with respect to either of these two labels can be checked.

4. The projection key is short, its generation costs is small, and the cost for
checking equivalence of m encrypted values mutually is at most of order m.

We illustrate how this ECJ can be applied to an RDB system. We associate
each column of tables in the DB with a label, and encrypt data in the column
with respect to this associated label by using Property 1. Because of Property 2,
ciphertexts alone do not give knowledge (except the size of each table and length
of each data in tables) to the DB. Exploiting Property 3, the user can generate
a projection key from the symmetric key and the two labels for arbitrary pair
of two columns. By sending this key to the DB, the DB is able to check the

1 Operations such as “join and select” requires a large amount of computation and
communication.
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equivalence of encrypted values in these two columns, each of which is related
to either of the two labels (This function can simulate the equivalence condition
in “WHERE a column name = another column name” clause for join in SQL).
Hence, the RDB is able to execute natural join, union, difference, and intersection
of tables without decrypting their data. As ECJ satisfies Property 4, the user
can generates a projection key and send it to the DB very easily. The cost for
the DB to join two tables at most order of the size of the relevant tables. After
the tables are joined, the user is able to request the DB to select necessary rows
from the joined table by using a searchable encryption or an order-preserving
encryption. Hence, the amount of data the DB sends to the user as the response
to the query is as small as that in ordinary DB systems.

The essentials of ECJ are that it enables RDBs to check equivalence of en-
crypted values in different tables when required but it allows the equivalence
check only in the minimum extent. Only when furnished with this ability, an
RDB is able to efficiently take a union, difference, intersection of tables as well
as take natural join of tables. These are indubitably major relational algebraic
operations in RDB. The major difficulty of the ECJ lies in avoiding values in
two tables, say, I and II being compared unlimitedly even when there exists a
table III such that values in Table I and III are comparable (by user’s request)
and values in Table II and III are comparable (by user’s request). Obviously a
value X in Table I and a value Y in Table II are comparable if there exists either
X or Y in Table III, but comparison should be possible only to that extent. In
other words, equivalence check needs to be non-transitive.

As a concrete scheme that realizes our ECJ, we also proposes a scheme by
using asymmetric bilinear group under a novel but natural assumption. The
use of bilinear groups imposes users a rather heavy pairing computation, but
is necessary to avoid the unlimited comparison. A proxy-reencryptions [8,27,4]
also depend on bilinear groups if they avoid unrestricted transitivity for a similar
reason. If unlimited comparison is allowed, a simple exponentiation serves well2.
But we consider this privacy gain by the heavy pairing computation is beneficial
in some applications since it can avoid complex and fallible policy checking that
decides who (the user of the DB) joins the tables. We estimate its efficiency and
conclude that the scheme achieves practical efficiency for some applications. The
proof of its security is in the random oracle model.

1.3 Organization

Section 2 introduces the formal model of ECJ, that is, its algorithms and security
requirements. Section 3 presents a concrete scheme of ECJ and consider its
efficiency. Section 4 analyses the security of the proposed scheme. Section 5
concludes the paper and poses an open problem.

2 Let value x in column A be encrypted as xHash(A,key) and compare it with val-
ues in column B by giving pjkey = Hash(B, key)/Hash(A,key) and generating

xHash(B,key) = (xHash(A,key))pjkey.
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2 The Formal Model of ECJ

2.1 Algorithms

The algorithms for ECJ are given as in the following. Here, {lab, lab′} denotes the
set of lab and lab′. Since both notations {lab, lab′} and {lab′, lab} indicate the
same set, they are encoded into the same code when they are given to algorithms
as an input.

KeyGen: An algorithm for DB users that, given a security parameter κ ∈
N, generates a master key mkey and a system parameter param as
(mkey, param) ← KeyGen(κ). The system parameter defines the spaces of
labels, plaintexts, ciphertexts, etc.

Enc: An algorithm for users that, given param, mkey, a label lab, a plaintext
msg, outputs a ciphertext ciph as ciph ← Enc(param,mkey, lab,msg).

Dec: An algorithm for users that, given param, mkey, and a ciphertext ciph,
outputs a plaintext msg as msg ← Dec(param,mkey, ciph).

ProKeyGen: An algorithm for users that, given param, mkey, and a set of two
labels {lab1, lab2}, outputs projection key pjkey as
pjkey ← ProKeyGen(param,mkey, {lab1, lab2}).

Project: An algorithm for the DB manager that, given param, pjkey,
a set of two labels {lab1, lab2}, a ciphertext ciph, and a la-
bel lab ∈ {lab1, lab2}, outputs comparison value cv as cv ←
Project(param, pjkey, {lab1, lab2}, ciph, lab). (Here, ciph is supposed to be
encrypted with respect to lab.)

2.2 Security Requirements

Definition 1. An ECJ is complete if the following two conditions are satisfied.

Condition 1: For every κ, lab,msg, the followings hold;

(mkey, param) ← KeyGen(κ), ciph ← Enc(param,mkey, lab,msg)

msg ← Dec(param,mkey, ciph),

Condition 2: It is computationally difficult (with respect to the security param-
eter κ) to find lab, lab′,msg,msg′ such the followings hold;

(mkey, param)← KeyGen(κ), ciph← Enc(param,mkey, lab,msg)

ciph′ ← Enc(param,mkey, lab′,msg′), pjkey← ProKeyGen(param,mkey, {lab, lab′})
cv← Project(param,pjkey, {lab, lab′}, ciph, lab),
cv′ ← Project(param,pjkey, {lab′, lab}, ciph′, lab′)
(
(cv �= cv′) ∧ (msg = msg′)

) ∨ (
(cv = cv′) ∧ (msg �= msg′)

)

Since the completeness guarantees that the comparison values generated from
the two ciphertexts are the same if and only if the ciphertexts are of the same
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message, the DB manager is able to compare whether or not two ciphertexts are
of the same message.

We next define indistinguishability of ECJ. As a preliminary, we define a
distinguishing game and the validness.

Definition 2. The distinguishing game is played between challenger C and
adversary A as in the following. It begins when C is given κ ∈ N, runs
(mkey, param) ← KeyGen(κ), and gives param to A. C randomly chooses b ∈
{0, 1} and responds to queries from A as in the following.

– When C receives (encrypt, lab,msg), it returns ciph = Enc(param,mkey, lab,msg)
to A.

– When C receives (prokey, {lab, lab′}), it returns
pjkey = ProKeyGen(param,mkey, {lab, lab′}) to A.

– C receives (target,msg∗0,msg∗1) such that |msg∗0| = |msg∗1| only once in the game.
– When C receives (test, lab) after C has received (target,msg∗0,msg∗1), it returns

ciph = Enc(param,mkey, lab,msg∗b) to A.

At the end of the game, A sends b′ ∈ {0, 1} to C. The result of the game ExpκC,A
is 1 if b = b′; otherwise 0.

A is allowed to query (test, lab) for multiple times for various lab’s. This is nat-
ural since the same value can be stored in many tables. The game considers
only of type “chosen plaintext attacks” but not “chosen ciphertext attacks”.
Consequently, the Definitions 4 and 6 presented below do not consider cho-
sen ciphertext attacks, which is stronger and commonly considered. However,
encrypt-then-MAC [6] generic construction can easily make the scheme resistant
for them.

The distinguishing game challenges the adversary’s ability to distinguish ci-
phertexts. However, if a certain set of queries is sent to the challenger, it is in-
evitable to prevent rational adversaries from distinguishing ciphertexts. Hence,
the cases and only the case when such queries are sent needs to be excluded to
measures the strength of ECJ scheme. For this purpose we introduce the notion
of validness.

Definition 3. Let L∗ denote the set of all lab’s such that a query (test, lab) ex-
ists. Let L̄ be the set of all lab’s such that there exists a query (encrypt, lab,msg∗β)
for some β ∈ {0, 1}. We say a distinguishing game is valid if, for every
query (prokey, {lab, lab∗}) by the challenger, it holds that {lab, lab∗} ∩ L̄ = ∅
or {lab, lab∗} ∩ L∗ = ∅.

If the adversary asks (prokey, {lab, lab∗}) such that lab ∈ L̄ and lab∗ ∈ L∗, the
adversary is able to directly compare a known message msg∗β∈{0,1} (β is known

also) encrypted with respect to lab and the unknown test message msg∗b en-
crypted with respect to lab∗. If the adversary asks (prokey, {lab, lab∗}) such that
lab ∈ L̄ ∩ L∗ for an arbitrary lab∗, the adversary is able to directly compare
a known message msg∗β∈{0,1} encrypted with respect to lab and the unknown
test message msg∗b encrypted with respect to lab. These are cases in which the
adversary can trivially check the value of the test message msg∗b as long as the
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scheme is complete. That is, it does not make sense to require the indistinguisha-
bility in these cases. Excluding these cases from valid games yields our notion
of validness.

Definition 4. We say that an ECJ is indistinguishable if, for every polyno-
mial time adversary A∗, AdvκC,A∗ := |Pr[ExpκC,A∗ = 0] − Pr[ExpκC,A∗ = 1]| is
negligible with respect to κ in valid games.

Definition 5. Selective distinguishing game is the exactly the same as the
game defined in Definition 2 except that A sends two sets of labels L∗, L̄ to C
before the game begins.

Definition 6. We say that an ECJ is selectively indistinguishable if it is
indistinguishable as Defined in 4 but with the selective distinguishing game

Definition 6 assumes that two sets of labels are given to the challenger in advance,
which is not a realistic scenario for attacks. It is quite easy to construct a scheme
that is secure under such an assumption but is totally not secure without it. This
situation is very similar to that given in [14]. Here, it is shown that one can easily
construct a scheme which is proven to be secure in the random oracle model but
is totally vulnerable with any real hash function. In this sense, the security that
is guaranteed by Definition 6 is only heuristic just as that guaranteed by the
random oracle model.

2.3 Complement to Security Requirements

Since the encryption is probabilistic, neither the data themselves nor relations is
recognized by the DB unless projection keys are given. However, once a projec-
tion key is given, relevant ciphertexts are no longer probabilistic. Such property
seems to be a weakness of our model. However, we consider this model still has
a significance as justified in the following.

We suppose that honest managers of DB systems erase each query of ECJ
after responding to this query. Then, as long as intrusions of an adversary is
instantaneous, the chance for the adversary to obtain SQL queries may be little
while it may obtain a large portion of data in the DB. If the adversary obtains no
query, the data that the adversary obtained from the DB are only the ciphertexts
of semantically secure encryption scheme. Thus, in such a case, the confidentiality
of data in the DBs is strongly protected. The adversary may obtains several
queries during it is intruding into the DB. However, if what the adversary can
obtain from these queries and encrypted data are no more than what the DB
manager needs for required relational algebraic operation, we can consider the
leakage is the minimum. Here, we particularly concern whether the combination
of queries may leak more than the sum of leakage of each query.

Suppose that we want to join two tables of size n and m. Then, unless the
data in these tables are encrypted in deterministic way so as the data in them are
directly comparable3, the required computational cost for their join is at least

3 We say two values are directly comparable if no operation other than comparison of
two numerical values is required for the comparison.
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O(nm). This cost is unacceptably high for the most of practical DB systems.
Hence, we allow the DB to directly check equivalence of the indices. At the cost
of introducing this functionality, some knowledge about data structure is leaked
to the DB. However, we require this direct comparison is limited to the minimum
in the sense that the comparison is possible only within the tables with respect
to which the query is generated. Therefore, we consider that the amount of this
knowledge leaked to the DB in our scheme is the minimum and acceptable for
the DB to maintain its serviceability.

In case such a minimum leakage is not allowed, users should not use ECJ in
its query. But they should simply retrieve the entire encrypted tables, decrypt
them, and join them with in their system. We also note that the DB is able to
join two tables A and B to obtain a table C, and is still able to join tables C and
D if it is requested to do so. This is possible by letting the column of table C,
with respect to which join is executed, to inherit label of either A or B. Hence,
any number of consecutive joins is possible.

3 Proposed ECJ Scheme

3.1 Asymmetric Bilinear Groups and Preliminary

Let G1,G2,GT be cyclic groups of order prime p such that an efficiently com-
putable bilinear map e : G1 × G2 → GT and homomorphism σ : G2 → G1 exist
and that the decision Diffie-Hellman problems in G1 and GT are infeasible to
solve in polynomial time. Note that, in contrast, the decision Diffie-Hellman
problems in G2 is easy because of the map σ and e. Elliptic curves introduced in
[30] (MNT curves) are considered to satisfy these properties.

Let κ be a security parameter and IV = {0, 1}κ be a space of initial vec-
tors. Initial vectors are used to label columns. Let (enc, dec) be a symmetric-
key cryptosystem. For each security parameter κ, it specifies K = {0, 1}κ and
M′ = C = {0, 1}∗ which are, respectively, its key space, message space, and ci-
phertext space. Functions are such that enc : K×M′ → C and dec : K×C →M′.
LetM be such that M′ = IV×M. For a space R, let HashR be a cryptographic
hash function HashR : {0, 1}∗ →R. We assume HashR and HashR′ are indepen-
dent if R �= R′.

The decryption algorithm Dec is trivial and is not necessary for joining pro-
cedure. Hence, we may omit to consider it. However, we do present it so as to
comfortably call our proposal an encryption scheme.

3.2 Scheme

KeyGen: Given a security parameter κ ∈ N, KeyGen specifies a prime q of size
polynomial of κ, order q cyclic groups G1,G2,GT , a generator g1 of G1, a
generator g2 of G2, a symmetric-key encryption scheme (enc, dec), and hash
functions HashZq , HashK, HashG1 . Let param denotes the parameter that
specifies the above. KeyGen randomly chooses a master key mkey ∈ {0, 1}κ
and outputs mkey and param.
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Enc: Given a system parameter param, a master key mkey, a label lab ∈ IV ,
and a message msg ∈ M, Enc randomly chooses r1, r2 ∈ IV and generates

f = HashZq (1, param,mkey,msg), x = HashZq (2, param,mkey, lab)

h = g1
xf , c = HashG1(HashK(1, param,mkey, lab), r1) · h

d = enc(HashK(2, param,mkey), (r2,msg)).

Then, Enc outputs ciphertext ciph = (r1, c, d).
Dec: Given a master key mkey and a ciphertext ciph = (r1, c, d), Dec generates

(r2,msg) = dec(HashK(2, param,mkey), d) and outputs msg.
ProKeyGen: Given a system parameter param, a master key mkey, and a set of

two labels {lab1, lab2}, ProKeyGen generates

k1 = HashK(1, param,mkey, lab1), k2 = HashK(1, param,mkey, lab2)

x1 = HashZq (2, param,mkey, lab1), x2 = HashZq (2, param,mkey, lab2)

z1 = g2
x1 , z2 = g2

x2 , p = HashZq (3, param,mkey, {lab1, lab2})
w1 = z2

p , w2 = z1
p

and outputs projection key pjkey = {(lab1, k1, w1), (lab2, k2, w2)}.
Project: Given a system parameter param, a set of two labels

{lab1, lab2}, a ciphertext ciph = (r1, c, d), a projection key
pjkey = {(lab1, k1, w2), (lab2, k2, w2)}, and a label lab� for � ∈ {1, 2},
Project generates h′ = c · HashG1(k�, r1)

−1, cv = e(h′, w�) and outputs cv.

3.3 Completeness

How and why the proposed scheme works is described in the proof of the following
theorem.

Theorem 1. The proposed scheme is complete

Proof. Condition 1 holds from the fact that (enc, dec) is a symmetric-key en-
cryption scheme. That means encrypted data can correctly be decrypted.

Condition 2 holds as shown below. Let

f = HashZq (1,param,mkey,msg), f ′ = HashZq (1,param,mkey,msg′)

x = HashZq (2,param,mkey, lab), h = g1
xf , x′ = HashZq (2,param,mkey, lab′),

h′=g1
x′f ′

, z = g2
x, z′ = g2

x′
, p = HashZq (3, param,mkey, {lab, lab′}), w=z′p, w′=zp.

Then, it holds that

Project(param,pjkey, {lab′, lab}, ciph, lab) = e(h,w) = e(g1
xf , z′p) = e(g1

x, z′)fp

= e(g1
x, g2

x′
)fp

iff f=f ′
= e(g1

x′
, g2

x)f
′p = e(g1

x′
, z)f

′p = e(g1
x′f ′

, zp) = e(h′, w′)

= Project(param,pjkey, {lab, lab′}, ciph′, lab′).

With respect to 5th equation, it is computationally difficult find a pair of msg
and msg′ such that (f = f ′) ∧ (msg �= msg′). Thus, the theorem follows.



56 J. Furukawa and T. Isshiki

3.4 Efficiency

Pairing is considered to be a very heavy operation even among asymmetric key
cryptographic operations. In our scheme, this pairing is absolutely the domi-
nant time consuming operation. However, recent efforts have greatly enhanced
its efficiency. J. -L. Beuchat et al. [7] reported an implementation of pairing
(ate pairing) over a 254-bit prime field in just 2.33 million of clock cycles on a
single core of an Intel Core i7 2.8GHz processor. This implies that the pairing
computation takes only 0.832msec. If we join two tables of size 100,000 rows, it
is estimated that it takes 10 seconds with 16 cores. This is not very fast though
a large resources are consumed, but we consider it acceptable time for handling
highly confidential data in many cases.

4 Security

The security of ours scheme depends on the new assumption that we introduce
below.

Assumption 1. (Chained Decision Bilinear Diffie-Hellman Assump-
tion)
Let x1, x2, x3, α, β, γ, δ ∈ Zq and yi = g1

xi , zi = g2
xi for i = 1, 2, 3. We also let

W :=

⎛⎜⎜⎝
w1 w2 w3

w4 w5

w6 w7

w8 w9

⎞⎟⎟⎠ =

⎛⎜⎜⎝
y1 y2 y3
y1
γ y2

δ

z1
α z3

α

z2
β z3

β

⎞⎟⎟⎠ .

For every polynomial time adversary A that is given W , the probability, that A
distinguishes whether x1, x2, x3, α, β, γ, δ ∈ Zq are randomly and independently
chosen or they are so except with the restriction δ = γ, is negligible in κ.

Roughly, Assumption 1 is a stronger variant of decisional Diffie-Hellman as-
sumption. It claims that a deciding whether (w1, w2, w4, w5) ∈ G1

4 is a Diffie-
Hellman tuple or not (γ = δ or not) is infeasible even if w6, w7, w8, and w9

are given. By contrast, deciding whether y1, y3, y1
γ , y3

ε is a Diffie-Hellman tu-
ple or not (γ = ε or not) is easy because of w6 and w7. We only needs to check

e(y1
γ , w7)

?
= e(y3

ε, w6). Deciding whether y2, y3, y2
δ, y3

ε is a Diffie-Hellman tuple
or not (δ = ε or not) is also easy because of w8 and w9.

Note that deciding whether or not (w1, w2, w4, w5) is a Diffie-Hellman is
always easy if G1,G2 are supersingular curve. Hence, we need an ordinary el-
liptic curve with pairing that forms asymmetric bilinear groups such as MNT
curves [30].

Theorem 2. Assumption 1 is valid in the generic asymmetric bilinear groups.

Proof. The proof is given in Appendix A.
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Intuition for the indistinguishability of the proposed scheme is as follows. Sup-
pose that there are three labels lab1, lab2, and lab3 and that labi corresponds
to yi and zi for each i = 1, 2, 3. In our scheme, distinguishing ciphertexts with
respect to lab1 and lab2 corresponds to deciding whether or not (y1, y2, y1

γ , y2
δ)

is a Diffie-Hellman tuple (δ = γ or not). Similarly, distinguishing ciphertexts
with respect to lab1 and lab3 corresponds to deciding whether y1, y3, y1

γ , y3
ε

is a Diffie-Hellman tuple or not (γ = ε or not), and distinguishing ciphertexts
with respect to lab2 and lab3 corresponds to deciding whether y2, y3, y2

δ, y3
ε is

a Diffie-Hellman tuple or not (δ = ε or not). The projection key with respect
to {lab1, lab3} and that with respect to {lab2, lab3}, respectively, correspond
to (w6, w7) and (w8, w9). Now, given these projection keys, while distinguishing
ciphertexts with respect to lab1 and lab3 and that with respect to lab2 and lab3
are easy, that with respect to lab1 and lab2 is difficult. And the adversary’s goal
is distinguishing ciphertexts with respect to lab1 and lab2.

Theorem 3. The proposed scheme is selectively indistinguishable under As-
sumption 1 in the random oracle model.

Proof. The proof is by contraposition. Suppose that there exists an adversaryA∗

such that AdvκC,A∗ := |Pr[ExpκC,A∗ = 0]−Pr[ExpκC,A∗ = 1]| is non negligible in κ.
We shows that the existence of A∗ contradicts to the Assumption 1. In particular,
the contradiction follows by the hybrid argument from the lemmas 1, 2, 3, 4, 5,
and 6 with respect to the sequence of games by challengers C1, C2, C3, C4, and
C5. Proofs of lemmas 1, 2, 3, 4, and 6 are given in Appendix B.

Definition 7. Challenger C1 is the same as the challenger C in Definition 2
except in the following:

– C1 prepares tables for the random oracles HashK,HashZq and use them to
simulate them. That is, when the input to the random oracles is not on the
tables, C1 chooses random number from K or Zq, returns it as the output,
and writes the pair of the input and the output on the table. Otherwise, it
returns the corresponding output that exists on the table.

– If A∗ sends mkey to the random oracles HashK or HashZq , aborts the game.

Lemma 1. For every polynomial time A∗, |AdvκC1,A∗ − AdvκC,A∗ | is negligible
in κ.

Definition 8. Challenger C2 is the same as the challenger C1 except in the
following:

– Let R∗
2 be the set of all r∗2 that C2 used in encryption procedures such as

enc(HashK(2, param,mkey), (r∗2 ,msg∗b )) for responding queries (test, ·). Let R2 be
the set of all r2 that C2 used in encryption procedures such as
enc(HashK(2, param,mkey), (r2,msg)) for responding queries (encrypt, lab,msg). If
R2 ∩ R∗

2 �= ∅, C2 aborts the game.

Lemma 2. For every polynomial time A∗, |AdvκC2,A∗ − AdvκC1,A∗ | is negligible
in κ.



58 J. Furukawa and T. Isshiki

Definition 9. Challenger C3 is the same as the challenger C2 except in the
following:

– Suppose that the original answer to a query (test, lab) is ciph = (r∗1 , c
∗, d∗).

With appropriate K and r∗2, C3 replaces d∗ with d† := enc(K, (r∗2 ,msg†))
where msg† is randomly chosen string such that |msg†| = |msg∗b | with appro-
priate K and r∗2 .

– Suppose that the original answer to a query (encrypt, lab,msg) is ciph =
(r∗1 , c

∗, d∗). With appropriate K and r∗2 , C3 replaces d∗ with
d† := enc(K, (r∗2 ,msg†)) where msg† is randomly chosen string such that
|msg†| = |msg|.

Lemma 3. For every polynomial time A∗, |AdvκC3,A∗ − AdvκC2,A∗ | is negligible
in κ.

Definition 10. Challenger C4 is the same as the challenger C3 except in the
following:

– When C4 receives (encrypt, lab†,msg∗β) for some β ∈ {0, 1} and lab† ∈ L∗∩L̄,
C4 answers it as if C4 received (encrypt, lab†,msg†) with randomly chosen
msg† such that |msg†| = |msg∗β|.

Lemma 4. For every polynomial time A∗, |AdvκC4,A∗ − AdvκC3,A∗ | is negligible
in κ.

Definition 11. Challenger C5 is the same as the challenger C4 except in the
following:

– Let ciph = (r∗1 , c∗, d†) be the response to (test, lab). Suppose that part of this
response is generated as in the following.

r∗1 , r
∗
2 ∈R Zq, f

∗ = HashZq (6, param,mkey), x∗ = HashZq (2, param,mkey, lab)

h∗ = g1
x∗f∗

, c∗ = HashG1(HashK(1, param,mkey∗, lab∗), r∗1) · h∗

If lab is the first to appear, C5 randomly chooses h† ∈ G1 and replaces h∗

with it. If lab has appeared before, use the same h† to replace h∗ with.

Lemma 5. For every polynomial time A∗, |AdvκC5,A∗ − AdvκC4,A∗ | is negligible
in κ under Assumption 1.

Proof. We prove that if |AdvκC5,A∗ −AdvκC4,A∗ | is non negligible, an adversary S
that breaks Assumption 1 can be constructed from A∗. Suppose that S is given

W =

⎛⎜⎜⎝
w1 w2 w3

w4 w5

w6 w7

w8 w9

⎞⎟⎟⎠ .

Then, S simulates the game and distinguishes from which distribution W is
chosen by using the guess of A∗ as follows. When A∗ sends (1, param,mkey,msg)
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to the random oracle HashZq for some msg, S guess whether or not msg ∈
{msg∗0,msg∗1}. When A∗ sends (encrypt, lab,msg) to S for some msg, S guess
whether or not msg ∈ {msg∗0,msg∗1} also. When S receives (target,msg∗0,msg∗1),
whether or not these guesses was correct becomes evident. And after that, the
S is able to guess them correctly. Since the number of messages, including those
in (target,msg∗0,msg∗1), that appear in the game are of polynomial, S is able to
guess them correctly in some reasonable way with non negligible probability.

In what follows, we assume S succeeded in these guessing. We describe how
S responds to A∗ for randomly chosen b ∈ {0, 1}.
– S first generates param appropriately and gives it to A∗. S generates mkey

randomly.
– When S receives (encrypt, lab,msg), it generates ciph = (r1, c, d

†) and re-
turns it to A as follows. First, S generates

α = HashZq (4, param,mkey, lab), f = HashZq (1, param,mkey,msg),

r1, r2 ∈R Zq, Klab = HashK(1, param,mkey, lab),

K = HashK(2, param,mkey),

msg† ∈R {msg′|msg′ ∈ M∧ |msg′| = |msg|}.

Here, hash functions are random oracles that S simulates.
• In case lab ∈ L∗ ∩ L̄, S generates

x = HashZq (2, param,mkey, lab), h = g1
x·f

c = HashG1(Klab, r1) · h, d† = enc(K, r2,msg†).

• In case lab �∈ L∗ ∪ L̄, where msg �∈ {msg∗0,msg∗1} by definition, S gener-
ates,

h = w3
α·f , c = HashG1c(Klab, r1) · h, d† = enc(K, r2,msg†).

• In case lab ∈ L̄ \ L∗;
∗ If msg �= msg∗b , S generates

h = w2
α·f , c = HashG1(Klab, r1) · h, d† = enc(K, r2,msg†).

∗ If msg = msg∗b , S generates

h = w5
α, c = HashG1(Klab, r1) · h, d† = enc(K, r2,msg†).

• In case lab ∈ L∗ \ L̄, where msg �= msg∗b by definition, S generates

h = w1
α·f , c = HashG1(Klab, r1) · h, d† = enc(K, r2,msg†).

– When S receives (test, lab), it generates ciph = (r1, c, d
†) and returns it to

A as follows.

msg† ∈R {msg′|msg′ ∈ M∧ |msg′| = |msg|}
Klab = HashK(1, param,mkey, lab), K = HashK(2, param,mkey)

α = HashZq(4, param,mkey, lab), h = w4
α,

c = HashG1(Klab, r1) · h
∗, d† = enc(K, r2,msg†)
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– When S receives (prokey, {lab, lab′}), it generates pjkey and returns it to A
as follows. Since the case when lab and lab′ are exchanged are clear, we only
gives one. If a set Q ∈ IV , we letQc denotes IV \Q.

First, S generates

α = HashZq(4, param,mkey, lab), α′ = HashZq (4, param,mkey, lab′)
p = HashZq (3, param,mkey, {lab, lab′}), Klab = HashK(1, param,mkey, lab)

K = HashK(2, param,mkey).

Next;

• In case (lab, lab′) ∈ (L∗ \ L̄)× (L∗ ∪ L̄)c, S generates;

w = w7
α′p , w′ = w6

αp.

• In case (lab, lab′) ∈ (L̄ \ L∗)× (L∗ ∪ L̄)c, S generates;

w = w9
α′p , w′ = w8

αp.

• In case (lab, lab′) ∈ (L̄ \ L∗)× (L̄ \ L∗), S generates;

w = w8
α′p , w′ = w8

αp.

• In case (lab, lab′) ∈ (L∗ \ L̄)× (L∗ \ L̄), S generates;

w = w9
α′p , w′ = w9

αp.

• In case (lab, lab′) ∈ (L∗ ∪ L̄)c × (L∗ ∪ L̄)c, S generates;

w = w6
α′p , w′ = w6

αp.

S assigns pjkey = {(lab, k, w), (lab′, k′, w′)}.

The distribution of the view of the simulated game by S is exactly the same
as that by C4 if W is such that x1, x2, x3, α, β, γ, δ ∈ Zq are randomly and
independently chosen. On the other hand, the distribution is exactly the same
as that by C5 if W is such that x1, x2, x3, α, β, γ, δ ∈ Zq are randomly and
independently chosen with the restriction δ = γ. Therefore, if the advantages
of A∗ in games C4 and C5 differ with non negligible probability, S is able to
distinguish from which distribution W is chosen. In particular, S outputs 1 if
the output of A∗ coincides with b but 0 otherwise. Hence, from Assumption 1,
the lemma follows.

Lemma 6. For every polynomial time A∗, |AdvκC5,A∗ | is negligible in κ.
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5 Conclusion and Open Problem

We proposed a novel notion of encryption for controlled joining (ECJ) and its
instance. The ECJ enables RDB to execute natural join of tables when and
only when required by user with reasonable efficiency. The natural join is most
frequently used relational algebraic operation in RDB. We instantiated a novel
ECJ scheme by using asymmetric pairing. The cost the proposed scheme requires
is at most linear to the size of joined tables. Our ECJ also enables RDB to
efficiently execute relational algebraic operations such as union, difference, and
intersection for tables.

It it an open problem to propose a scheme that is provably secure in non se-
lective model.We consider dedicated hardware accelerators are still necessary for
the state-of-the-art ECJ to be applied to practical RDB. More efficient schemes
are strongly desired.
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25. Hacigümüs, H., Mehrotra, S., Iyer, B.R.: Providing database as a service. In: ICDE,
p. 29. IEEE Computer Society (2002)

26. Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries.
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A Proof of Theorem 2

The generic group of asymmetric bilinear group is modeled as follows. Let q
be a prime, G1,G2,GT be cyclic groups of order q such that allowed operations
are additions in G1,G2,GT , bilinear map e : G1 × G2 → GT , homomorphism
σ : G2 → G1, and generations of random elements in G1,GT .

Let (p1, . . . , p5) = (1, x1, x2, x3, x1γ), (q1, . . . , q5) = (1, x1α, x3α, x2β, x3β)
where x1, x2, x3, α, β, γ ∈ Zq are randomly chosen. Note that these variables
represent the exponents of elements, excluding w5, in W .

Then consider polynomials D1(p6) and D2(p6) with a set F of coefficients
{ai}i=1,...,6, {bi}i=1,...,5, {cij}i=1,...,6;j=1,...,5, {dij}i=1,...,5;j=1,...,5, e1 in Zq as
follows.

D1(p6) =

6∑
i=1

aipi +

5∑
i=1

biqi , D2(p6) =

6∑
i=1

5∑
j=1

cijpiqj +

5∑
i,j=1

dijqiqj + e1.

From the logic demonstrated in [11], Assumption 1 holds in the generic asym-
metric bilinear group model when the following conditions are satisfied.
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1. There exists no Set F such that D1(x2γ) ≡ 0 but D1(x2δ) �≡ 0.
2. There exists no Set F such that D2(x2γ) ≡ 0 but D2(x2δ) �≡ 0.

Since only equality check can be used for distinction, distinguisher need to com-
putes that is 0 when δ = γ but is not when δ is independently chosen. The
condition 1 comes from the equality check in G1. The condition 2 comes from
the equality check in GT . Since the equality check in G2 can be done in G1, these
two conditions are sufficient.

Since Condition 1 holds clearly, we focus on proving that Condition 2 holds.
This is done if we show that for every set F of coefficients such that c6i = 0

for some i = 1, . . . , 6, D(x2γ) ≡ 0 does not hold.
Focusing on γ, requiring D(x2γ) ≡ 0 implies the following.

0 ≡ c51x1 + c52x1x1α+ c53x1x3α+ c54x1x2β + c55x1x3β

+c61x2 + c62x2x1α+ c63x2x3α+ c64x2x2β + c65x2x3β

≡ c52αx1x1 + x1(x2(c62α+ c54β) + x3(c53α+ c55β) + c51)

+c64βx2x2 + x2(x3(c63α+ c65β) + c61)

Hence, all coefficients here needs to be 0. Therefore, the theorem follows.

B Proofs of Lemmas 1, 2, 3, 4, and 6

Proof. (Lemma 1) mkey appears only as the input to the random oracles. Hence,
the game is aborted only when the random guess of mkey is successful, which
probability is negligible. From the fact that AdvκC1,A∗ = AdvκC,A∗ as long as the
game is not aborted and Lemma 1 (Difference Lemma) in [36], the lemma follows.

Proof. (Lemma 2) R2 ∩ R∗
2 �= ∅ only with negligible probability since their ele-

ments are randomly chosen. Hence, the lemma follows from Difference Lemma
in [36].

Proof. (Lemma 3) Since the employed encryption scheme is secure from the
premise, the lemma follows.

Note that the adversary never queries decryption queries since we are not
considering chosen ciphertext attacks here.

Proof. (Lemma 4) Since the validness of the game guarantees that A∗

never receives (prokey, {lab†, lab}) for any lab† ∈ L∗ ∩ L̄ and any lab,
HashK(1, param,mkey, lab†) is never given to A∗. Among the elements of
(r1, c, d), which is the response to (encrypt, lab†,msg∗β) by C3, only c de-

pends on b. But, as HashK(1, param,mkey, lab†) is never given to A∗,
HashG1(HashK(1, param,mkey, lab†), r1) will never be generated. Hence, the in-
distinguishability is due to the random oracle. Therefore, the lemma follows.

Proof. (Lemma 6) Since f for msg1−b is also chosen randomly, the output of C5

does not depends on b. Hence the lemma follows.
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Abstract. In CT-RSA 2010, Yang et al. suggested a new category
of probabilistic public-key encryption (PKE) schemes, called public-
key encryption with equality test (PKET), which supports searching
on ciphertexts without decrypting them. Typical applications include
management of encrypted data in an outsourced database. They pre-
sented a construction in bilinear groups, and proved that it is one-way
against chosen ciphertext attack (OW-CCA) in the random oracle model.
We argue that OW-CCA security may be too weak for database appli-
cations, because partial information leakage from the ciphertext is not
considered in the model. In this paper, we revisit the security models
for PKET, and introduce a number of new security definitions. To re-
mark, the weakest of our definitions is still stronger than OW-CCA. We
then investigate relations among these security definitions. Finally, to
illustrate the usefulness of our definitions, we analyze the security of a
PKET scheme [24], showing the scheme actually provides much stronger
security than that was proven previously.

Keywords: Public-Key Encryption with Equality Test, Deterministic
Encryption, Searchable Encryption, Semantic Security.

1 Introduction

Background. Public-Key Encryption with Equality Test (PKET), proposed by
Yang et al. [24], allows anyone to test whether two ciphertexts contain the same
message. PKET has many important applications, e.g., a database can use it to
implement searchable encrypted databases to with enhanced privacy. Compared
with the previous public-key solutions [9,3], a remarkable property of PKET is
that it supports searching on ciphertexts produced under different public keys.
It is worth reminding that one has to assume the plaintext space of PKET must
be large, otherwise, an adversary can simply “guess” the correct content of the
message. Fortunately, this requirement is fulfilled by all interesting applications.

In [24], Yang et al. showed that no PKET scheme can achieve indistinguisha-
bility against even chosen plaintext attack (IND-CPA), and naturally, only one-
wayness was considered. However, one-wayness can merely guarantee the whole
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plaintext is unrecoverable, and cannot capture any partial information leakage
of the plaintext (See detailed explanations in Lemma 1). For most interesting
applications of PKET, one-wayness is far from sufficient. In order to motivate
more applications and to understand this new primitive better, in the paper, we
investigate stronger security notions regarding PKET.

In particular, our goal is to have security definitions that are natural, conve-
nient to use and “properly” strong. We noticed that PKET and deterministic
encryption (DE) [3] are similar in functionalities. They can both be used as
searchable encryption, and neither of them can satisfy any meaningful notion
of security if the plaintext is distributed over a small space. DE was somehow
well-studied [3,7,5,21] and a semantic security style definition of privacy, called
PRIV, was well-known [3] in the literature. Adapting PRIV security to PKET
will be an immediate solution to our problems, but this also introduces some
undesirable issues.

Let us take a closer look at PRIV security. Informally speaking, PRIV requires
that any polynomial-time adversary A = (Am,Ag) should not win the following
game: In phase 1, Am selects a plaintext m from a space of large min-entropy
and a partial information t about m, and sets t as the challenge. In phase 2,
Ag tries to find the exact value of t, given the target ciphertext c, where c
is the encryption of message m. We insist that (Am,Ag) share no common
random tape and do not communicate. For a DE scheme, the ciphertext can be
computed efficiently using the public key, which leaks non-trivial information
about the plaintext. Thus in the formulation of PRIV security the public key is
not included in the input for Am, and PRIV security is meaningful only if the
plaintext is independent from the public key.

However, for a PKET scheme, thanks to the probabilistic encryption algo-
rithm, every valid ciphertext is masked by additional randomness, the informa-
tion regarding the plaintext that the adversary tries to extract from a ciphertext
might be negligible. In this case, the above constraint disappears, we can pass
the public key to Am, then get a stronger security notion. To summarize, we can
expect stronger security from PKET than DE.

Related Work. In [9], Boneh et al. introduced the notion of public-key en-
cryption with keyword search (PEKS) and several constructions that achieve
semantic security. Informally, PEKS provides a mechanism that allows senders
to store encrypted messages at a server, to each message one or more tags are
attached that are keywords encrypted with the receiver’s public key, the receiver
may send a trapdoor, generated based on the receiver’s private key, to the server
so that the latter can search the tags attached to each encrypted message, while
the server and other parties exclude receiver do not learn anything else about
the tags. Abdalla et al. [1] provided a transform from any anonymous Identity-
Based Encryption (IBE) scheme to a secure PEKS scheme. Crescenzo et al. [14]
proposed a PEKS construction based on Jacobi symbols.

In [3], Bellare et al. formally studied a notion of security for deterministic
public-key encryption that essentially guarantees semantic security for high-
entropy messages, and showed how to achieve it in the random oracle model.
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Boldyreva et al. [7] introduced a slightly weaker notion of security, which no
partial information about encrypted messages should be leaked as long as each
message is a-priori hard-to-guess given the others, and give general constructions
without random oracles. Subsequent works by Bellare et al. [5] provided alterna-
tive security definitions and proved definitional equivalences for DE. Recently a
similar formalization of security notions was presented in [11] for “plaintext-
checkable encryption” (PCE) which is a probabilistic public-key encryption
scheme with an additional functionality that anyone can test whether a cipher-
text c is the encryption of a given plaintext m under a public encryption key pk.

Our Contributions. We establish various security definitions for PKET,
which fall in two flavors: semantic security style notions and sources
indistinguishability-based style notions. To distinguish our new definitions from
those for DE, we use “PRIV-P” to denote PRIV security in the setting of prob-
abilistic encryption, where “-P” stands for “probabilistic”. As mentioned above,
PRIV security assume that plaintexts are chosen independently from the public
key, thus only capture a weak security. We remove such assumptions, and obtain
a stronger security notion, called “S-PRIV-P” security, where “S-” stands for
“strong”. Note that a single-message actually results in weaker security than the
multi-message, so we additionally consider weaker notions such as “PRIV1-P”
and “S-PRIV1-P” where “1” stands for single-message.

Furthermore, we consider a sources indistinguishability-based notion for
PKET (called IND-P), which asks that a scheme hides the “source” from which
the data is drawn, meaning it is hard to distinguish ciphertext whose corre-
sponding plaintexts are drawn from one of two possible distributions. Similar to
semantic security style notion, we get notions: S-IND-P, IND1-P, and S-IND1-P.

The above discussions are within security goals, and one can further com-
bine attack models such as CPA or CCA to describe security requirements for
concrete systems. Similar results as [4] can be gained. However, we consider it
less important and omit it here. We analyze relations among the eight notions
discussed above, and our results are summarized in Fig.1. We can see that the
semantic security style notion and sources indistinguishability-based style no-
tion are equivalent. The weakest notion is PRIV1-P which equals to IND1-P,
however, it still stronger than OW security.

Finally we review the two schemes for PKET in [24]: for the first one, we
explain why it cannot be proved using general strategies; for the modified one
designed for encrypting long messages, we prove that it can actually achieve
S-PRIV-P security in the random oracle model.

Organization. The paper is organized as follows. In section 2 we give the pre-
liminary. In section 3 we establish our security models and analyze the relations
among them. In section 4 we review the schemes in [24] and prove that the
second one actually can achieve S-PRIV-P security.
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PRIV-P IND-P

S-IND-P

IND1-P

S-IND1-P

S-PRIV-P

PRIV1-P

S-PRIV1-P

An arrow X → Y means any scheme secure under definition X is also secure under
definition Y , and X � Y means a scheme secure under definition X may not be secure
under definition Y .

Fig. 1. The Relations Among the Security Notions for PKET

2 Preliminaries

In this section, we review the model of PKET and some mathematical assump-
tions.

Notations. 1k denotes the string of k ones. If x is a string |x| denotes its length.
If S is a set, x ← S denotes that x is sampled at random from S. We let x[1]
denote the most significance bit (MSB) of x, and let x[i] denote the ith MSB
in x. Vectors are denoted in boldface, for example x. If x is a vector then |x|
denotes the number of components of x and x[i] denotes its ith component for
1 ≤ i ≤ |x|. A function f(k): N → (0, 1) is called negligible if it approaches
zero faster than k−c, where c ∈ N is a constant. We use PtSp(k) to denote the
plaintext space.

2.1 Public-Key Encryption with Equality Test (PKET)

Syntax. A probabilistic public-key encryption with equality test scheme Π =
(K, E ,D, T ) consists of the following algorithms:

– K, a probabilistic key generation algorithm, takes a security parameter k ∈ N

as input and outputs a public/private key pair (pk, sk).
– E , a probabilistic encryption algorithm, takes a message m and the public

key pk as input, and outputs a ciphertext c.
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– D, a deterministic decryption algorithm, takes sk and c as input, and outputs
m or ⊥ (which indicates decryption failure).

– T , a deterministic ciphertext comparison algorithm, takes two ciphertexts
c1 and c2 which generated under public keys pk and pk

′
as input, outputs 1

if and only if c1 and c2 are encrypting the same message, otherwise 0.

In [24], it was shown that IND-ATK cannot be satisfied by any PKET schemes
because of the equality test algorithm. Therefore only one-wayness for PKET
schemes was considered.

Definition 1. (OW-ATK) Π = (K, E ,D, T ) is a PKET scheme. A is a
polynomial-time adversary. For atk ∈ {cpa, cca} and k ∈ N, let

Advow-atkA,Π = Pr

[
m

′
= m | (pk, sk) ← K(1k),m ← PtSp(k)

y ← E(1k, pk,m),m
′ ← AO(1k, pk, y)

]
where

If atk=cpa then O(·) = ε
If atk=cca then O(·) = D(·)

In the case of cca, we insist that A does not query D on y. Π is OW-ATK secure
if Advow-atkA,Π (k) is negligible for every polynomial-time adversary A.

2.2 Mathematical Assumptions

Let G1, G2 be two multiplicative cyclic groups of prime order p and g be a gen-
erator of G1. A bilinear map ê: G1 ×G1 → G2 satisfies the following properties:

1. Bilinear : For any x, y ∈ G1, and a, b ∈ Zq, ê(x
a, yb) = ê(x, y)ab;

2. Non-degenerate: ê(g, g) �= 1;
3. Computable: There is an efficient algorithm to compute ê(x, y) for any x,

y ∈ G1.

Computational Diffie-Hellman (CDH) Problem : We say that CDH prob-
lem is (ε, T )-hard in G, if given 3-tuple (g, ga, gb) ∈ (G)3 as input, any random-
ized algorithm A with running time at most T , computes gab with advantage at
most ε.

AdvcdhA,G
def
= Pr[A(g, ga, gb) = gab]

We say that the CDH assumption holds if for any polynomial-time algorithm A,
its advantage AdvcdhA,G is negligible.

3 New Security Definitions for PKET

In this section we present two types of security definitions for PKET, i.e., se-
mantic security style definitions and sources indistinguishability-based style def-
initions, and investigate relations among these security definitions.
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3.1 Semantic Security Style Definitions

Loosely speaking, an encryption scheme is semantically secure if it is infeasible
to learn any information about the plaintext from the ciphertext. In the context
of DE, Bellare et al. [3] formalize a semantic security style notion PRIV that
captures the intuition. Due to the ciphertext comparability in PKET scheme,
the security notions we consider here have some connections with those for DE.
Similar to the notion PRIV for DE, we can define PRIV-P for PKET, where
“-P” stands for “probabilistic”. Furthermore, we extend the definition PRIV-P,
and obtain a stronger definition called S-PRIV-P, where “-S” stands for “strong”

A priv-p-adversary A = (Am,Ag) is a 2-tuple algorithm. Am takes 1k as
input, and returns a vector of challenge message x together with a test string
t that represents some partial information about x. Ag takes 1k, pk, c (the
encryption of x under pk) as input, and tries to compute t. The adversary is
legitimate if it obeys the following rules. First, there must exist function v(·),
l(·) such that |x| = v(k) and |x[i]| = l(k) for all k, all (x, t) output by Am(1k).
Second, all plaintext vectors must have the same equality pattern, meaning for
all 1 ≤ i, j ≤ v(k) there is a symbol ♦ ∈ {=, �=} such that x[i]♦x[j] for all (x, t)
output by Am(1k).

We say that an adversary A has min-entropy μ if

Pr[x[i] = x : (x, t) ← Am(1k)] ≤ 2−μ(k)

for all 1 ≤ i ≤ υ(k), all k, and all x ∈ {0, 1}∗. A is said to have high min-entropy
if it has min-entropy μ with μ(k) ∈ ω(log(k)).

Definition 2. (PRIV-P) Π = (K, E ,D, T ) is a PKET scheme. A = (Am,Ag)
is a polynomial-time adversary. Am and Ag share neither coins nor state. For
atk ∈ {cpa, cca} and k ∈ N , let

Advpriv-p-atkA,Π (k) = 2Pr[Exppriv-pA,Π (k) ⇒ true]− 1

where:

Pr[Exppriv-pA,Π (k) ⇒ true] = Pr

⎡⎢⎢⎣
b
′
= b | b ← {0, 1}, (pk, sk)← K(1k),

(x0, t0) ← Am(1k), (x1, t1) ← Am(1k),
c ← E(1k, pk,xb), h ← AO

g (1
k, pk, c),

If h = t1 then b
′ ← 1 Else b

′ ← 0

⎤⎥⎥⎦
and

If atk=cpa then O(·) = ε
If atk=cca then O(·) = D(·)

In the case of cca, we insist that Ag can query on any ciphertext not having

appeared in c. Π is PRIV-P secure if Advpriv-p-atkA,Π (k) is negligible for every
polynomial-time adversary A with high min-entropy.
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The above definition is for the multi-message case. We can define an another
notion PRIV1-P accordingly: Π is PRIV1-P secure if Advpriv-atkA,Π (k) is negli-
gible for every polynomial-time privacy adversary A with Pr[|x| = 1 : (x, t) ←
Am(1k)] = 1 for all k ∈ N.

Lemma 1. For a PKET scheme, OW security is strictly weaker than PRIV1-P
security.

Proof. To prove this, we construct an encryption scheme Π
′
which is OW secure

but not PRIV1-P secure. Let Π = (K, E ,D, T ) be a OW secure PKET scheme.
We define Π

′
= (K, E ′

,D′
, T ′

) as follows:

Algorithm E ′
(1k, pk, x) AlgorithmD′

(1k, pk, sk, c) Algorithm T ′
(1k, c1, c2)

y ← E(1k, pk, x) y ‖ d ← c y1 ‖ d1 ← c1
return y ‖ x[1] x ← D(1k, pk, sk, y) y2 ‖ d2 ← c2

if x[1] = d then return x return
else return ⊥ T (y1, y2) ∧ ¬(d1 ⊕ d2)

The assumption that Π is OW secure implies that Π ′ is OW secure. However,
the following attack shows Π ′ is not PRIV1-P secure. Consider Am(1k) outputs
(x, t) where t = x[1], then Ag(1k, pk, c (c = y ‖ d)) return d. Therefore, the

advantage of the priv1-p adversary is Advpriv-pA,Π′ � 1/2. 
�

Just like DE scheme [3], the single-message security definition and the multi-
message version have different security level for PKET scheme.

Lemma 2. For a PKET scheme, PRIV1-P security is strictly weaker than
PRIV-P security.

Proof. To prove this, we give an example of an encryption scheme Π
′
which is

PRIV1-P secure but not PRIV-P secure. Let Π = (K, E ,D, T ) be a PRIV-P
secure PKET scheme. We define Π

′
= (K, E ′

,D′
, T ′

) as follows:

Algorithm E ′
(1k, pk, x) AlgorithmD′

(1k, pk, sk, c) Algorithm T ′
(1k, c1, c2)

y ← E(1k, pk, x) y ‖ z ← c y1 ‖ z1 ← c1
z ← E(1k, pk, x̄) x ← D(1k, pk, sk, y) y2 ‖ z2 ← c2
return y ‖ z x

′ ← D(1k, pk, sk, z) return

if x
′
= x̄ then return x T (y1, y2) ∧ T (z1, z2)

else return ⊥

Here x̄ denotes the bitwise complement of a string s. The assumption that Π is
PRIV-P secure implies that Π ′ is PRIV1-P secure. However, the following attack
shows Π ′ is not PRIV-P secure. Consider Am(1k) that picks x1, x2 from {0, 1}k
and outputs (x1(x1 = (x1, x̄1)), 1), (x2(x2 = (x1, x2)), 0). Let Ag(1k, pk, (y1 ‖
z1, y2 ‖ z2) outputs T (z1, y2), and we have Advpriv-pA,Π′ ≥ 1/2. 
�
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In the previous definitions for PRIV security [3], Am cannot be given pk, oth-
erwise the ciphertext itself leaks partial information about the plaintext, as a
result, the PRIV security would be unachievable. However, for probabilistic en-
cryption schemes this restriction no longer exists, since ciphertext c is masked
by additional randomness used in the encryption algorithm. Therefore, we can
give a strong privacy regarding probabilistic definition, namely, S-PRIV-P.

Definition 3. Π = (K, E ,D, T ) is a PKET scheme. Compared with Definition
2, Am is additionally given pk, We say that Π is S-PRIV-P secure if for any
polynomial-time attacker A, we have that Advs-priv-pA,Π (k) is negligible.

For the single-message scenario, we define S-PRIV1-P security accordingly.
We note that the above definition is strictly stronger than PRIV security, for

simplicity, we consider the single-message scenario. We can get similar result for
the multi-message scenario.

Lemma 3. For a PKET scheme, PRIV1-P security is strictly weaker than S-
PRIV1-P security.

Proof. To prove this, we construct an encryption scheme Π
′
which is PRIV1-P

secure but not S-PRIV1-P secure. Let Π = (K, E ,D, T ) be a S-PRIV1-P secure
PKET scheme. H : {0, 1}∗ → {0, 1}k be a collision resistant hash function
with the property that H(pk) ∈ PtSp(k) for all pk ∈ {0, 1}∗. We define Π

′
=

(K, E ′
,D′

, T ′
) as follows:

Algorithm E ′
(1k, pk, x) AlgorithmD′

(1k, pk, sk, c) Algorithm T ′
(1k, c1, c2)

r ← {0, 1}k y ‖ z ← c y1 ‖ z1 ← c1
y ← E(1k, pk, x) x ← D(1k, pk, sk, y) y2 ‖ z2 ← c2
if x = H(pk) then return x return T (y1, y2)
return y ‖ x
else return y ‖ r

We can see that Π
′
is a PKET scheme with PRIV1-P security. However,

the following attack shows that Π
′
is not S-PRIV1-P secure. Consider that

Am(1k, pk) outputs (x0, t0), (x1, t1), where x1 = H(pk), tb = xb(b ∈ {0, 1}). Let
Ag(1k, pk, c(c = y ‖ z)) outputs z, and Advs-priv1-pA,Π ≥ 1 − ε(k) (since H is a
collision resistant hash function, ε(k) is negligible). 
�

3.2 Sources Indistinguishability-Based Style Definitions

We consider sources indistinguishability-based definitions, which are easier to
deal with. It requires that the adversary is unable to distinguish encryp-
tion of plaintexts drawn from two adversary-specified, high-entropy message
spaces. Similar to the semantic security style definitions, we get four sources
indistinguishability-based definitions.

An ind-p-adversary I = (Im, Ig) is a 2-tuple algorithm. Im takes 1k, a bit b
as input, and returns a vector of message x. Ig takes 1k, pk, c (the encryption
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of x under pk) as input, and tries to guess the bit b. The adversary is legitimate
if it obeys the following rules. First, there must exist function v(·), l(·) such that
|x| = v(k) and |x[i]| = l(k) for all k, all (x, t) output by Im(1k, b) (b ∈ {0, 1}),
and all 1 ≤ i ≤ v. Second, all plaintext vectors must have the same equality
pattern, which was explained above.

We say that an adversary I has min-entropy μ if

Pr[x[i] = x : (x, t) ← Im(1k, b)] ≤ 2−μ(k)

for all 1 ≤ i ≤ υ(k), all k, and all x ∈ {0, 1}∗. I is said to have high min-entropy
if it has min-entropy μ with μ(k) ∈ ω(log(k)).

Definition 4. (IND-P) Π = (K, E ,D, T ) is a PKET scheme. I = (Im, Ig) is
a polynomial-time adversary. Im, Ig share neither coins nor state. For atk ∈
{cpa, cca} and k ∈ N, let

Advind-p-atkI,Π (k) = 2Pr

⎡⎣ b
′
= b | b ← (0, 1),

(pk, sk) ← K(1k),xb ← Im(1k, b),

c ← E(1k, pk,xb), b
′ ← IO

g (1k, pk, c)

⎤⎦− 1

and
If atk=cpa then O(·) = ε
If atk=cca then O(·) = D(·)

In the case of cca, we insist that Ig can query on any ciphertext not having

appeared in c. Π is IND-P secure if Advind-p-atkI,Π (k) is negligible for every
polynomial-time adversary I with high min-entropy.

The above definition is for the multi-message case. We can define an another
notion IND1-P accordingly: Π is IND1-P secure if Advind-p-atkI,Π (k) is negligible

for every privacy adversary I with Pr[|x| = 1 : (x, t) ← Im(1k, b)] = 1 for all
k ∈ N .

Similar to Definition 3, if Im is given pk, we can get a stronger security
definition.

Definition 5. Π = (K, E ,D, T ) is a PKET scheme. Compared with Definition
4, Im is additionally given pk, we say that Π is S-IND-P secure if for any
polynomial-time attacker I, we have that Advind-pI,Π (k) is negligible.

For the single-message scenario, we can define S-IND1-P similarly. Using similar
techniques in section 3.1, we get the following results.

Lemma 4. For a PKET scheme, IND1-P security is strictly weaker than IND-P
security.

Lemma 5. For a PKET scheme, IND1-P security is strictly weaker than S-
IND1-P security.
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3.3 Equivalence of the Security Definitions

In this section we show the relations among the semantic security style definitions
and the sources indistinguishability-based security style definitions. In particular,
four pairs of the definitions: PRIV1-P and IND1-P, PRIV-P and IND-P, S-
PRIV1-P and S-IND1-P, S-PRIV-P and S-IND-P are equivalent. We just need
to show that PRIV-P is equivalent to IND-P, other pairs follow the similar
technique, since the techniques we used are independent no matter whether pk
is given to Am. Now we give the main theorem of the section.

Theorem 1. Π = (K, E ,D, T ) is a PKET scheme, let A be a PRIV-P adversary
against Π, then there is a IND-P adversary such that for all k ∈ N

Advs-priv-pA,Π (k) ≤ 6Advs-ind-pI,Π (k) + (
2

3
)k

and the running-time of I is the time for at most that for k executions of A.

Here we focus on the IND-P to PRIV-P implication, for the opposite direction is
straightforward. The proof is identical to [21] apart from a few minor differences.
We give the entire proof in appendix.
In the rest part of this paper, without loss of generality we limit the adversary
A as a 0-balanced boolean function, which means the probability the partial
information is 1 or 0 is 1/2.

4 Revisiting Security of Yang et al.’s Schemes

The description of Yang et al.’s scheme is given in Figure 2. We remark that
the scheme seems difficult to be proved PRIV1-P secure (the weakest notion
we define in the section 3). Because in the security proof, to show a meaningful
reduction, the simulator should generate a valid challenge cipertext, but it cannot
compute mr, thus fails.

In [24], the authors also present a modified scheme to encrypt long messages
and prove that it is OW-CCA secure. We review it here and show that it satisfies
S-PRIV1-P-CCA security. We give the description of the modified scheme in
Figure 3 (The different parts of the two schemes are labeled out with boxes).

Theorem 2. The PKET scheme in Figure 3 is S-PRIV-P-CCA secure in the
random oracle model assuming PRG is a secure pseudo-random bit generator
and CDH problem is intractable.

Proof. Let A is an algorithm that has advantage ε in breaking the above PKET
scheme. Suppose that A runs in time t and makes at most qG hash G function
queries, qH hashH function queries and qD decryption queries. Now we construct
an algorithm B that can solve CDH problem with probability at least ε

′
, where

ε
′ ≥ ε

(
1− qD

2k
− qD

2k+l

)(
1− v

2μ

)qG
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K(1k): D(sk, C):
x← Z∗

q ; C = (U,V,W );
y = gx; m||r ← H(U,V, Ux)⊕W ;
pk = (y); If (m ∈ G∗

1 ∧ r ∈ Z∗
q ∧ U = gr ∧ V = mr);

sk = (x); return m;
return (pk,sk); otherwise, return ⊥;

E(pk,m): T (C1, C2):
r ← Z∗

q ; C1 = (U1, V1,W1);
U ← gr; C2 = (U2, V2,W2);
V ← mr(m ∈ G∗

1); if ê(U1, V2) = ê(U2, V1);
W ← H(U,V, yr)⊕m||r; return 1;
C = (U, V,W ); otherwise, return 0;
return(C);

H is a hash function: G3
1 → {0, 1}k+l, where k and l are security parameters such that

elements of G1 can be represented with k bits and elements of Zq can be represented
with l bits.

Fig. 2. Yang et al.’s PKET Scheme

K(1k): D(sk, C):
x← Z∗

q ; C = (U, V,W );
y = gx; K ← H(U,V, Ux)
pk = (y); m||r ← PRG(K)⊕W ;

sk = (x); If (r ∈ Z∗
q ∧ U = gr ∧ V = G(m)r );

return (pk,sk); return m;
otherwise, return ⊥;

E(pk,m): T (C1, C2):
r ← Z∗

q ; C1 = (U1, V1,W1);
U ← gr; C2 = (U2, V2,W2);

V ← G(m)r; if ê(U1, V2) = ê(U2, V1);

K ← H(U, V, yr) return 1;
W ← PRG(K)⊕m||r; otherwise, return 0;
C = (U, V,W ); ;
return(C).

G is a collision resistant hash function: {0, 1}∗ → G∗
1. H is a hash function: G3

1 →
{0, 1}k+l, where k and l are security parameters such that elements of G1 can be
represented with k bits and elements of Zq can be represented with l bits. PRG is a
pseudo-random bit generator.

Fig. 3. The Modified Scheme
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Let g be a generator of G1. Algorithm B is given a tuple (g, ga, gc) ∈ G3
1. Its

goal is to compute gac. We describe algorithm B as follows:

SetUp. Algorithm B sets the public key pk = y which y = ga, the secret key
a which is unknown to B. OG, OH are random oracles which are controlled
by B;

Challenge. First, (m∗, t∗) ← Am(g, y, 1k), and (m
′
, t

′
) ← Am(g, y, 1k). Here

m∗ and m
′
have the same equality pattern, we assume |m∗| = v, |m∗[i]| =

d(1 � i � v, d � k), and m∗[i] �= m∗[j] for all 1 � i, j � v (other message
patterns can be handled using similar technique). Then B sets the target
ciphertext C∗ = (U∗,V∗,W∗) which U∗[i] = gc, V∗[i] ← {0, 1}k, W∗[i] ←
{0, 1}d+l, for all i which 1 � i � v.

Guess t
′ ← AOG,OH ,OD

g (g, y,U∗,V∗,W∗). In the phase, the oracles for Ag are
simulated as follows:
– OG: On input m ∈ G1, if m = m∗[i] for any 1 � i � v, the algorithm
B aborts with failure. If there is an entry (m,h1) in the hash table T1

maintained by B, h1 is returned; otherwise, a random value h1 is selected
from G∗

1 and returned, and (m,h1) is added into T1.
– OH : On input (U, V, Z) ∈ G3

1, if U = U∗, B checks if ê(g, Z) = ê(y, U∗),
if the equation holds, B outputs Z and aborts the algorithm. Or if there
is an entry (U, V, Z, h2) in the hash table T2 maintained by B, h2 is
returned; otherwise, a random value h2 is selected and returned, and
(U, V, Z, h2) is added into T2.

– OD: On input a ciphertext C = (U,V,W), we deal with the messages
separately.
For each C[j] = (U[j],V[j],W[j]), if the input is U[j] = U∗[i], V[j] =
V∗[i] and W[j] �= W∗[i] for any 1 � i � v, B returns ⊥. Otherwise B
searches T2 for an entry of the form (U, V, ·, ·). For each item (U, V, Z, h),
B computes m||r = PRG(h)⊕W and proceeds as follows:

1. B searches T1 for m, if m is not in the list, B returns ⊥; when h1

is returned, check if U = gr, V = hr1 and Z = yr. If the equations
holds, B obtains m.

2. Otherwise, B continues to search T2 for the next entry of the form
(U, V, ·, ·).

If nothing is returned to B in the above loop for all entries (U, V, ·, ·) in
T2, B returns ⊥. Finally, combining all the messages, B returns m.

This completes the description of B. As OG is a random oracle, the challenge
ciphertext is always valid. Next we show that B correctly output gac with prob-
ability at least ε

′
. First we define three events:

E In the simulation the adversary A queries OH on input (gc, ·, gac).
F In the simulation the adversary A queries OG on input m∗[i].
I In the simulation a valid ciphertext is rejected.

Claim 1: Pr[E] = ε
′
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This is straightforward, we don’t give further explanation.

Claim 2: Pr[I] ≤ qD
2k + qD

2k+l

Proof. Algorithm B will simulate the decryption oracle perfectly except for the
following two cases.

• Case 1: (U, V, Ua) has never been queried to OH before a decryption query
(U, V,W ) is issued. In the case, ⊥ is returned by the decryption oracle. The
simulation fails if (U, V,W ) is a valid ciphertext. Due to the idealness of the
random oracle, this happens with probability 1/2k+l.

• Case 2: (U, V, Ua) has been queried to OH before a decryption query (U, V,W )
is issued, and m can be computed from W ⊕H(U, V, Ua), but m has never
been queried to OG. In the case, ⊥ is returned by the decryption oracle. The
simulation fails if (U, V,W ) is a valid ciphertext. Due to the idealness of the
random oracle, this happens with probability 1/2k.

Combining the above two cases, we get the final result Pr[I] ≤ qD
2k + qD

2k+l 
�

Claim 3: Pr[F] ≤ 1− (1 − v
2μ )

qG

Proof. In the simulation, if event E occurs, the algorithm B aborts. So if event F
occurs before event E occurs, then the adversary A can not get any information
for m. We assume that the distribution of plaintext messages has min-entropy
μ, then we get the result of Pr[F ].

Pr[F] = Pr[F|¬E] ≤ 1− (1− v

2μ
)qG


�

Claim 4: Suppose that in a real attack Am is given the public key pk = ga, and
selects (m0, t0), (m

∗, t∗), Ag is given the target ciphertext C∗, and guesses b
′
at

last. Then in the real attack Ag queries OH for (gc, ·, gac) with probability at
least ε.

Proof. Denote E
′
be the event that in the real attack Ag queries OH for

(gc, ·, gac). If E
′
does not occur, we have that the bit t ∈ {0, 1} is indepen-

dent of Ag’s view, since f is a balanced boolean function, then Ag outputs b
′

which satisfies b = b
′
with probability at most 1/2. By the assumption of Ag,

we know that in the real attack 2Pr[b = b
′
] − 1 = ε. Combining with the two

facts, we show that Pr[E
′
] � ε.

Pr[b = b
′
] = Pr[b = b

′
|E

′
]Pr[E

′
] + Pr[b = b

′
|¬E

′
]Pr[¬E

′
]

≤ Pr[E
′
] +

1

2
Pr[¬E′

]

≤ 1

2
+

1

2
Pr[E

′
]
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In the end, we get the result:

Pr[E
′
] � 2Pr[b = b

′
]− 1 � ε


�

At last, we get the probability that solving CDH problem:

ε
′ ≥ ε

(
1− qD

2k
− qD

2k+l

)(
1− v

2μ

)qG
So we get a non-negligible advantage solving CDH problem, this is a contradic-
tion to the assumption. This completes the proof of Theorem 2. 
�
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A Proof of Theorem 1

We first show that is suffices to sonsider boolean PRIV adversaries (call a PRIV-
P adversary A boolean if it outputs test strings of length 1).
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Proposition 1. Let Π = (K, E ,D, T ) be a PKET scheme, and A be a PRIV-
P adversary that outputs test strings of length l. Then there exists a boolean
PRIV-P adversary B such that

Advpriv−pΠ,A (k) � 2 ·Advpriv−pΠ,B (k)

B has same message space as A and its running time is the time to run A plus
O(l).

Proof. The proof is identical to the argument in [5,21]. To make sure the length
of the test strings is 1, we suppose two public parameters: (r, s)(r ← {0, 1}l,
s ← {0, 1}). Adversary B works as follows:

Algorithm Bm(1k) Algorithm Bg(1k, pk, c)
(x, t) ← Am(1k) g ← Ag(1k, pk, c)
return (x, (〈r, t〉

⊕
s)) return 〈r, g〉

⊕
s

Then B is boolean, let Ad denotes the event Exppriv−p−dΠ,A (k) ⇒ true and

similarly Bd denotes Exppriv−p−dΠ,B (k) ⇒ true (d ∈ {0, 1}). Then

Advpriv−pΠ,B (k) = Pr[B1]− Pr[B0]

=

(
Pr[A1] +

1

2
· (1 − Pr[A1])

)
−
(
Pr[A0] +

1

2
· (1− Pr[A0])

)
=

1

2
· (Pr[A1]− Pr[A0])

=
1

2
·Advpriv−pΠ,A (k)

In the next step, we show that it in fact suffices to consider PRIV-P adversaries
for which B is not just boolean but also balanced, meaning the probability the
partial information is 1 or 0 cannot be negligible. Namly, call a boolean PRIV-P
adversary B δ-balanced if for all b ∈ {0, 1}

| Pr[t = b : (x, t) ← Bm(1k)]−
1

2
|≤ δ

Proposition 2. Let Π = (K, E ,D, T ) be a PKET scheme, and B be a boolean
1/2-balanced PRIV-P adversary. Then for any 0 � δ < 1/2 there is a δ-balanced
boolean PRIV-P adversary B′

such that

Advpriv−pΠ,B (k) � 2δ ·Advpriv−p
Π,B′ (k)

B′
has same message space as B and its running time is the time to run B plus

O(1/δ).
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Proof. For simplicity we assume 1/2δ is odd. Adversary B′
works as follows:

Algorithm B′
m(1

k) Algorithm B′
g(1

k, pk, c)
(x, t) ← Bm(1k) g ← Bg(1k, pk, c)
i ← [1, · · · , 1/2δ] return g
if i � 1/4δ − 1/2 then return (x, 0)
else if i � 1/2δ − 1 then return (x, 1)
else return (x, t)

After some calculations, we can get

| Pr[t = b : (x, t) ← B′
m(1

k)]− 1

2
|≤ δ

Let Bd denotes the event Exppriv−p−dΠ,B (k) ⇒ true, similarly B
′
d denotes

Exppriv−p−d
Π,B′ (k) ⇒ true (d ∈ {0, 1}), and E denotes that B′

m picks i = 1/2δ.

Then

Advpriv−p
Π,B′ (k) = Pr[B

′
1]− Pr[B

′
0]

= Pr[E] · (Pr[B1|E]− Pr[B0|E]) + Pr[Ē] · (Pr[B1|Ē]− Pr[B0|Ē])

= Pr[E] · (Pr[B1|E]− Pr[B0|E]) + Pr[Ē] · (1
2
− 1

2
)

=
1

2δ
·Advpriv−pΠ,B (k)

The final component for the proof is as follows.

Proposition 3. Let Π = (K, E ,D, T ) be a PKET scheme, and B′
be a δ-

balanced boolean PRIV-P adversary (0 � δ < 1/2). Then there is an IND-P
adversary I with min-entropy μ− log(1− 2δ) + 1 such that

Advpriv−p
Π,B′ (k) � Advind−pΠ,I (k) + (

1

2
+ δ)k

its running time is the time at most k executions of B.

Proof. Algorithm I works as follows:

Algorithm Im(1k, b) Algorithm Ig(1k, pk, c)
For i = 1, . . . , n do g ← B′

g(1
k, pk, c)

(x, t) ← B′
m(1k) return g

if t = b then return x
return x

Let Fd denotes the event that d = b when the final return statement is exe-
cuted. B

′
d denotes the event Exppriv−p−d

Π,B′ (k) ⇒ true (d ∈ {0, 1}), similarly Ib

denotes Expind−p−bΠ,I (k) ⇒ true. Then
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Advind−p
Π,I (k) = Pr[I1] − Pr[I0]

= Pr[E1] · Pr[I1|E1]− Pr[E0] · Pr[I0|E0] + Pr[Ē] · Pr[I1|Ē] − Pr[Ē] · Pr[I0|Ē]

= (1 − (
1

2
+ δ)k) · Pr[B′

1] − (1 − (
1

2
− δ)k) · Pr[B′

0]

� Advpriv−p

Π,B′ (k) − (
1

2
+ δ)k

Next we explain that the min-entropy of I is μ− log(1− 2δ) + 1.

Let b ∈ {0, 1}, Denote Pr[t = b : (x, t) ← B′
m(1k)] by PB′ (b), Pr[x[i] = x :

(x, t) ← B′
m(1

k)] by PB′ (x, i), and Pr[x[i] = x ∧ t = b : (x, t) ← B′
m(1k)] by

PB′ (x, i, b), According to the definition of min-entropy of B′
, we have

Pr[x[i] = x : (x, t)← Im(1k, b)] =

k−1∑
i=1

PB
′ (b̄)i−1PB

′ (x, i, b) + PB
′ (b̄)k−1PB

′ (x, i, b̄)

= PB
′ (x, i, b)

1− PB
′ (b̄)k

PB
′ (b)

+ PB
′ (b̄)k−1PB

′ (x, i, b̄)

� 1

PB
′ (b)
· (PB

′ (x, i, b) + PB
′ (x, i, B̄))

=
1

PB
′ (b)
· PB

′ (x, i)

=
1

1/2− δ
· 2−μ

Theorem 1 follows by combining Propositions 1, 2, and 3 with δ = 1/6.
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Abstract. Secrecy of decryption keys is an important pre-requisite for
security of any encryption scheme. Forward Security (FS) reduces dam-
age from compromised keys by guaranteeing confidentiality of messages
that were encrypted prior to the compromise event. In this paper we in-
troduce FS to the powerful setting of Hierarchical Predicate Encryption
(HPE), proposed by Okamoto and Takashima (Asiacrypt 2009). Our FS-
HPE scheme guarantees forward security for plaintexts and for attributes
that are hidden in HPE ciphertexts. It further allows delegation of de-
crypting abilities at any point in time, independent of FS time evolution.
It realizes zero-inner-product predicates and is proven adaptively secure
under standard assumptions. As the “cross-product” approach taken in
FS-HIBE is not directly applicable to the HPE setting, our construc-
tion resorts to techniques that are specific to existing HPE schemes and
extends them with what can be seen as a reminiscent of binary tree
encryption from FS-PKE.

Keywords: Forward Security, Predicate Encryption, Inner Product.

1 Introduction

Predicate Encryption. We focus on the notion of Predicate Encryption
(PE), formalized by Katz, Sahai, and Waters [21], building on Hidden Vector
Encryption (HVE) [6], and further studied in [22, 24, 25, 27, 28, 33, 34]. In PE
schemes users’ decryption keys are associated with predicates f and ciphertexts
encode attributes a that are specified during the encryption procedure. A user
can successfully decrypt if and only if f(a) = 1. Otherwise, the decryption pro-
cess preserves plaintext hiding and thus leaks no information about the encrypted
message. Unlike Attribute-Based Encryption (ABE) [2, 11, 15, 29] that imposes
the same requirement, PE schemes have a distinguished privacy goal of attribute
hiding to prevent ciphertext leaking attributes. Existing PE schemes typically
realize concrete predicates f . For example, predicates based on the inner product
of vectors (over a field or ring) — Inner-Product Encryption (IPE) [21] — are
particularly powerful since they can be used to evaluate a large class of predi-
cates, including conjunctions or disjunctions of equality tests, comparisons, and
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subset tests, or more generally, arbitrary CNF or DNF formulae. In IPE schemes,
attributes are represented by a vector −→y while the choice of another vector −→x
defines the predicate f−→x such that f−→x (

−→y ) = 1 iff the inner product −→x · −→y = 0.
While the original scheme from [21] was proven to be selectively secure under
non-standard assumptions, recent result of Lewko et al. [22] provided more so-
phisticated PE constructions achieving (stronger) adaptive security under non-
standard assumptions. Furthermore, Okamoto and Takashima [25] investigated
Functional Encryption that is adaptive security under standard assumptions.
In [22, 24] the authors also explored constructions of Hierarchical PE (HPE)
schemes providing their users with the ability to delegate their decryption keys
down the hierarchy by restricting predicates associated to the delegated keys and
by this restricting the abilities of lower-level users to decrypt. It should be noted
that existing PE (and ABE) schemes emerged from Identity-Based Encryption
(IBE) [5, 32] and the majority of these schemes are pairing-based.

Forward Security. Forward Security (FS) offers meaningful protection in
cryptographic applications with long-term (aka. static) private keys in the unfor-
tunate case when these keys become compromised. Being a standard requirement
in authenticated key exchange protocols, where it also takes its origin [12, 16],
forward security has further been explored in digital signatures [1,18] and in pub-
lic key encryption (PKE) [8]; see [18] for a nice survey and strong motivation
of forward security. The concept of time evolution is central to forward security
since from the moment the private key is exposed the intended security goals
can no longer be guaranteed and the key must be changed. FS aims to tame
potential damage by offering protection with respect to earlier time periods. For
example, in forward secure digital signatures signing keys that are exposed in
one time period cannot be used to forge signatures related to prior time periods.
Similarly, in the case of forward secure encryption decryption keys used in one
time period cannot be used to decrypt ciphertexts generated in the past.

The first forward-secure PKE scheme, due to Canetti, Halevi, and Katz [8],
was built from the technical tool, called binary tree encryption [20], which in
turn is implied by Hierarchical IBE (HIBE) [14, 17] by considering identities as
nodes of the tree and restricting the intermediate nodes to have exactly two
descendants: a parent node with identity string id ∈ {0, 1}� is split into two
child nodes with identities id0, id1 ∈ {0, 1}�+1. For each node id there exists a
secret key SKid, which can be used to derive secret keys SKid0 and SKid1 in a
one-way fashion. The intuition behind FS-PKE is to split the entire lifetime of
the scheme into N time periods and construct a binary tree with depth logN ,
where each node corresponds to a unique time period. In order to encrypt a
message for some time period i ∈ [1, N ] one uses the master public key of HIBE
and the identity string idi of the node i. At any period i ∈ [1, N ] the private
decryption key of the user contains the secret key SKidi as well as secret keys
for all right siblings of the nodes on the path from the root to node i. The latter
keys can be used to derive secret keys SKidj for all subsequent periods j ∈ [i, N ].
The actual FS property is obtained by erasing SKidi (and all secret keys that
can be used to derive it) from the private key upon transition to period i+ 1.



Forward-Secure Hierarchical Predicate Encryption 85

These ideas were extended by Yao et al. [36] to obtain FS in the identity-based
setting. More precisely, they came up with a forward-secure HIBE (FS-HIBE)
constructed via a “cross-product” combination of two HIBE schemes, in the
random oracle model. Boneh, Boyen, and Goh [3] offered more efficient FS-HIBE
constructions, with selective security in the standard model and with adaptive
security in the random oracle model. The first adaptively secure FS-HIBE scheme
in the standard model is due to Lewko and Waters [23]. As mentioned by Boyen
and Waters [7] and also explored in [10, 13, 30, 31, 34] FS is also achievable for
anonymous HIBE systems, whose ciphertexts hide the (hierarchy of) identities
for which messages were encrypted. Since HIBE generalizes IBE (anonymous)
FS-HIBE covers (anonymous) FS-IBE.

Forward Security in ABE/PE. A message encrypted with an ABE/PE
scheme can potentially be decrypted by many users. Exposure of some user’s
private key in these schemes is likely to cause more damage in comparison to
PKE or IBE schemes since the adversary could obtain messages that were en-
crypted for more than one user. Adding forward security to ABE/PE schemes
is thus desirable to alleviate this problem. A näıve approach, i.e., to change all
keys (incl. public ones) for each new time period, has already been ruled out
as being impractical in PKE and IBE schemes, and it seems even more compli-
cated in the ABE/PE setting. In this work we formalize and construct the first
forward-secure hierarchical predicate encryption (FS-HPE). Since HPE includes
PE/ABE [22,24], our FS-HPE scheme also implies constructions of first forward
secure ABE/PE schemes.

Although forward-secure HIBE constructions exist, formalizing and designing
FS-HPE is challenging due to a number of advanced properties that must be
considered. In HPE schemes predicates (and by this indirectly private keys) are
organized in a hierarchy — any ciphertext that can be decrypted by a low-level
predicate must also be decryptable by a high-level predicate but the converse
may not be true. In contrast to HIBE, where delegation is performed by extend-
ing the parent identity with a substring, predicates in HPE have more complex
structures and their delegation requires different techniques. Moreover, predi-
cates should be delegatable at any period in time, irrespective of time evolution
for FS. Another aspect is that encryption of messages in forward-secure HPE
must be possible only using the master public key, the set of attributes, and
the current time period, without having á priori knowledge of predicates at any
level of the hierarchy, whereas in FS-HIBE schemes encryption is performed
with respect to a given identity at one of the hierarchy levels. We note that ob-
taining forward security in HPE schemes by applying techniques from existing
FS-PKE [8] and FS-HIBE [36] results in a number of obstacles. For example, a
“cross-product” combination of two HPE schemes [22, 24], akin to the case of
two HIBE schemes for FS-HIBE in [36], seems not feasible due to the unique
delegation and randomization mechanisms used in those HPE schemes. Finally,
an FS-HPE scheme should still provide attribute-hiding, which could be threat-
ened if (public) time periods for FS are mixed up with attributes during the
encryption.
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1.1 Our Contributions

FS-HPE:Model andScheme. We formalize and design the first forward-secure
hierarchical predicate encryption (FS-HPE) scheme, for zero-inner-product predi-
cates [21].Our scheme is secure (adaptively attribute-hiding) in the standardmodel
under the well-known Decision Linear (DLIN) assumption [4] in bilinear groups of
prime order. We first present a new syntax and security definitions that are spe-
cific to FS-HPE, in particular definition of attribute hiding had to be extended
in order to account for FS, in a more complex way than in FS-HIBE definitions
from [23, 36], as explained in Section 3.3. Our FS-HPE scheme offers some desir-
able properties: time-independent delegation of predicates (to support dynamic
behavior for delegation of decrypting rights to new users), local update for users’
private keys (i.e., no master authority needs to be contacted), forward security,
and the scheme’s encryption process doesn’t require knowledge of predicates at
any level including when those predicates join the hierarchy. Considering the rela-
tionships amongst the encryption flavors, we can restrict our scheme to level-1 hi-
erarchy and obtain first adaptively-secureFS-PE/ABE construction, or we can set
the inner-product predicate to perform the equality test, in which case we would
obtain the first adaptively-secure anonymous FS-HIBE scheme under the basic
DLIN assumption (as an alternative to [10] that works in bilinear groups of com-
posite order and requires new hardness assumptions).

Techniques. Our FS-HPE scheme is built based on the dual system encryption
approach introduced by Waters [35] and uses the concept of dual pairing vector
spaces (DPVS) of Okamoto and Takashima [24]. Techniques underlying forward
security of the scheme can be seen as reminiscent of binary tree encryption [8]
that was invented for FS-PKE and doesn’t apply immediately to the more com-
plex HPE setting. We had to resort to those techniques and modify them for
integration with HPE since obtaining FS-HPE in a more direct way, e.g. by
adopting the “cross-product” idea from [36], seems not feasible with existing
HPE constructions [22,24]. On a high level, we modify the existing HPE scheme
from [22] and combine two of its instances in a non-trivial way to achieve a
FS-HPE scheme. One of the HPE schemes handles predicate/attibute hierarchy
while another one is used for maintaining time periods using the concept behind
binary tree encryption [8]. The modification of the scheme in [22] is necessary to
prove security the stringent security definitions involving FS. The combination of
two schemes is non-trivial due to the delegation and randomization components
inherited from HPE. Our scheme perfectly synchronizes all private key com-
ponents (decryption, delegation and randomization) from both HPE instances.
These components are updated at each new time period and they are also used
for time-independent delegation of predicates. We apply game-hopping proofs,
following the general proof strategy from [25], i.e. we first define several hard
problems and prove that security of our scheme relies on them, then we prove
that those hard problems can individually be used to solve the DLIN problem.
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2 Background on Dual Pairing Vector Spaces and
Complexity Assumption

Groups. Let Gbpg be an algorithm that on input a security parameter 1λ outputs
a description of the symmetric bilinear group setting (q,G,GT , G, e) where q is
a prime, G and GT are two cyclic groups of order q, G is the generator of G, e is
a non-degenerate bilinear map e : G× G → GT , i.e., e(sG, tG) = e(G,G)st and
e(G,G) �= 1. We also define cyclic additive group G and multiplicative group
GT of order q.

Vector Spaces. Let V =

N︷ ︸︸ ︷
G× · · · ×G be a vector space and each element

in V be expressed by N-dimensional vector. x = (x1G, . . . , xNG) (xi ∈ Fq for
i = 1, . . . , N). The canonical base A of V is A = (a1, . . . ,aN), where a1 =
(G, 0, . . . , 0), a2 = (0, G, 0, . . . , 0), . . . ,aN = (0, . . . , 0, G). Given two vectors
x = (x1G, . . . , xNG) = x1a1 + · · · + xNaN ∈ V and y = (y1G, . . . , yNG) =
y1a1 + · · · + yNaN ∈ V, where −→x = (x1, . . . , xN ) and −→y = (y1, . . . , yN), the

pairing operation is defined as e(x,y) =
∏N
i=1 e(xiG, yiG) = e(G,G)

∑N
i=1 xiyi =

g
−→x−→y
T ∈ GT .

Definition 1 (Dual Pairing Vector Space (DPVS) [24]). Let
(q,G,GT , G, e) be a symmetric bilinear pairing group. A Dual Pairing
Vector Space (q,V,GT ,A, e), generated by an algorithm denoted Gdpvs, is a
tuple containing a prime q, an N -dimensional vector space V over Fq, a cyclic
group GT of order q, a canonical base A = (a1, . . . ,aN ) of V, and a pairing
e : G×G → GT that satisfy the following conditions:

1. Non-degenerate bilinear pairing: There exists a polynomial-time com-
putable non-degenerate bilinear pairing e(x,y) =

∏N
i=1 e(Gi, Hi) where x =

(G1, . . . , GN ) ∈ V and y = (H1, . . . , HN ) ∈ V. This is non-degenerate bilin-
ear pairing i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then
x = 0.

2. Dual orthonormal bases: A and e satisfy that e(ai,aj) = g
δi,j
T for all i

and j, where δi,j = 1 if i = j, and 0 otherwise, and gT �= 1 ∈ GT .
3. Distortion maps: Linear transformations φi,j on V s.t. φi,j(aj) = ai and

φi,j(ak) = 0 if k �= j are polynomial-time computable. We call φi,j “distor-
tion maps”.

Orthonormal Bases. Let B = (b1, . . . , bN ) be a basis of vector space V

which is obtained from its canonical basis A using a uniformly chosen linear

transformation Λ = (λi,j)
U← GL(N,Fq). Note that GL(N,Fq) creates a matrix

of size N×N in which each element is uniformly selected from Fq such that bi =∑N
j=1 λi,jaj , for i = 1, . . . , N . Similarly, let B∗ = (b∗1, . . . , b∗N ) be another basis

of V which is also obtained from A using μi,j = (ΛT )
−1

as b∗i =
∑N

j=1 μi,jaj ,

for i = 1, . . . , N . It can be shown that e(bi, b
∗
j ) = g

δi,j
T , where δi,j = 1 if i = j,

and δi,j = 0 if i �= j. That is B and B∗ are dual orthonormal bases of V. In our
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scheme we will use the following probabilistic algorithm Gob to generate group
and DPSV parameters and the two dual orthonormal bases:

Gob(1
λ , −→n = (d;n1, . . . , nd)) : paramG = (q,G,GT , G, e)

R← Gbpg(1
λ),

ψ
U← F×

q , N0 = 5, Nt = 3nt + 1 for t = 1, . . . , d;

For t = 0, . . . , d :

paramVt
= (q,Vt,GT ,At, e)

R← Gdpvs(1
λ, Nt, paramG),

Λ(t) = (λ
(t)
i,j )

U← GL(Nt,Fq), (μ
(t)
i,j ) = ψ · (Λ(t)T )

−1

,

bi
(t) =

Nt∑
j=1

λ
(t)
i,ja

(t)
j for i = 1, . . . , Nt,B

(t) = (b
(t)
1 , . . . , b

(t)
Nt

),

b
∗(t)
i =

Nt∑
j=1

μ
(t)
i,ja

(t)
j for i = 1, . . . , Nt,B

∗(t) = (b
∗(t)
1 , . . . , b

∗(t)
Nt

),

gT = e(G,G)ψ , param−→n = ({paramVt
}t=0,...,d, gT ),

Output (param−→n , {B(t),B∗(t)}t=0,...,d).

Note that gT = e(bi
(t), b

∗(t)
i ) for t = 0, . . . , d; i = 1, . . . , Nt.

Definition 2 (Decisional Linear Assumption (DLIN) [4]). The DLIN
problem is to decide on bit β ∈ {0, 1}, given the output (paramG, G, aG, bG,
acG, bdG, Yβ) of the probabilistic algorithm

GDLIN
β (1λ) : paramG = (q,G,GT , G, e)

R← Gbpg(1
λ), a, b, c, d

U← Fq,

Y0 = (c+ d)G, Y1
U← G, β

U← {0, 1};
Output (paramG, G, aG, bG, acG, bdG, Yβ).

The advantage AdvDLIN
D (λ) of a probabilistic polynomial-time DLIN solver D is

defined as follows:∣∣∣ Pr[D(1λ, �) → 1
∣∣∣ � R← GDLIN

0 (1λ)
]
− Pr

[
D(1λ, �) → 1

∣∣∣ � R← GDLIN
1 (1λ)

] ∣∣∣.
The DLIN assumption states that for any D this advantage is negligible in λ.

3 Forward-Secure Hierarchical Predicate Encryption

In this section we present our model for forward secure hierarchical predicate
encryption (FS-HPE). First, we highlight the idea behind FS-HPE concept and
introduce some notations. In FS-HPE private keys are associated with predicate
vectors and evolve over the time. At any time period i a user may join the
hierarchy and receive delegated private keys. These keys are computed by the
parent user for time period i and together with further secret information that
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is necessary to derive private keys for later time periods is handed over to the
joined user. Once the user receives this secret information, at the end of each
period the user updates his private key locally and erases secrets that are no
longer needed. Additionally, at any time j ≥ i the user may delegate its private
key down the hierarchy without contacting its parent. In any time period i a
message can be encrypted using public parameters, the attribute vectors, and i.
In order to decrypt for time period i users must possess private keys satisfying
attributes from the ciphertext for that time.

3.1 Notations

Time Period. Let the total number of time periods N = 2κ, where κ ∈ N.
Hierarchical Inner-Product Predicate Encryption. We borrow some no-

tations from [22] to describe our HPE with inner-product predicates. Let
−→μ = (n; d, μ1, . . . , μd) be a tuple of positive integers such that μ0 = 0 <
μ1 < μ2 < · · · < μd = n. We call −→μ a format of hierarchy of depth d
attribute spaces. With Σl, l = 1, . . . , d we denote attribute sets and each
Σl = F

μl−μl−1
q \ {0}. A hierarchical attribute Σ = ∪dl=1(Σ1 × . . . × Σl)

is defined using the disjoint union. For −→v i ∈ F
μi−μi−1
q \ {−→0 }, a hierar-

chical attribute (−→y 1, . . . ,
−→y h) ∈ Σ is said to satisfy a hierarchical pred-

icate f(−→x 1,...,
−→x l) iff l ≤ h and −→x i · −→y i = 0 for 1 ≤ i ≤ l, which we

denote as f(−→x 1,...,
−→x l)(

−→y 1, . . . ,
−→y h) = 1. The space of hierarchical predi-

cates is F = {f(−→x 1,...,
−→x l)|

−→x i ∈ F
μi−μi−1
q \ {−→0 }}. We call h (resp. l) the

level of (−→y 1, . . . ,
−→y h) (resp. (−→x 1, . . . ,

−→x l)). Throughout the paper we will
assume that an attribute vector −→y 1 = (y1, . . . , yμ1) is normalized such
that y1 = 1 (note that −→y 1 can be normalized via (1/y1) · −→y 1, assum-

ing that y1 is non-zero). By −→e (k)
i we denote the canonical basis vector

(

i−1︷ ︸︸ ︷
0, . . . , 0, 1,

nk−i︷ ︸︸ ︷
0, . . . , 0) ∈ Fnk

q for k = 1, 2 and i = 1, . . . , nk.
Keys. We use two notations for secret keys: skw,(−→x 1,...,

−→x l) is the key associ-
ated with some prefix w of the bit representation of a time period i and a
hierarchical predicate (−→x 1, . . . ,

−→x l), whereas SKi,(−→x 1,...,
−→x l) denotes the key

associated with time i and a hierarchical predicate (−→x 1, . . . ,
−→x l). That is,

SKi,(−→x 1,...,
−→x l) = {ski,(−→x 1,...,

−→x l), skw1,(−→x 1,...,
−→x l) : w0 is a prefix of i}.

3.2 Syntax

Definition 3 (FS-HPE). A forward secure hierarchical
predicate encryption scheme is a tuple of five algorithms
(RootSetup,Delegate,Update,Encrypt,Decrypt) described in the following:

RootSetup(1λ, N,−→μ ) This algorithm takes as input a security parameter 1λ, the
total number of time periods N and the format of hierarchy −→μ . It outputs
public parameters of the system, incl. public key PK , and a root secret key
SK 0,1, which is assumed to be known only to the master authority of the
hierarchy.
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Delegate(SK i,l, i,
−→x l+1) This algorithm takes as input a secret key SK i,l asso-

ciated with time i on hierarchy level l and an (l+1)-th level predicate vector
−→x l+1. It outputs the delegated secret key SK i,l+1. This key is intended for
the direct descendant at level l+1. It is assumed that predicate vector −→x l+1

is added to the predicate hierarchy during the time period i.
Update(SK i,l, i) This algorithm takes as input a secret key SK i,l and the current

time period i. It outputs an updated secret key SK i+1,l for the following time
period i+ 1 and erases SK i,l.

Encrypt(PK, (−→y 1, . . . ,
−→y h), i,M) This algorithm takes as input the public key

PK, hierarchical attribute vectors (−→y 1, . . . ,
−→y h), a time period i, and a mes-

sage M from the associated message space. It outputs a ciphertext C. We
assume that i is included in C.

Decrypt(C, SK i,l) This algorithm takes as input a ciphertext C and a secret key
SK i,l for the time period i and predicate vectors (−→x 1, . . . ,

−→x l). It outputs
either a message M or the distinguished symbol ⊥ (to indicate a failure).

Correctness. For all correctly generated PK and SK i,l associated with predicate

vectors (−→x 1, . . . ,
−→x l) and a time period i, let C

R← Encrypt(PK, (−→y 1, . . . ,
−→y h), i,

M) and M ′ = Decrypt(C, SK i,l). Then, if f(−→x 1,...,
−→x l)(

−→y 1, . . . ,
−→y h) = 1 then

M = M ′; otherwise, M �= M ′ with all but negligible probability.

3.3 Security Definition

Definition 4. A FS-HPE scheme is adaptively attribute hiding against cho-
sen plaintext attacks if for all PPT adversaries A, the advantage of A in the
following game is negligible in the security parameter:

Setup. RootSetup algorithm is run by the challenger C to generate public key
PK and root secret key SK 0,1. PK is given to A.

Queries I. A may adaptively make a polynomial number of delegation queries
by asking C to create a secret key for any given time period i and hierarchical
predicate vectors (−→x 1, . . . ,

−→x l). In response, C computes the secret key SKi,l

and reveals it to A. (Note that C computes SKi,l with the help of algorithms
Delegate and Update that it may need to execute several times, i.e. depending
on the input time period i and hierarchy level l.)

Challenge. A outputs its challenge: two attribute vectors (Y (0), Y (1)) =

((−→y (0)
1 , . . . ,−→y (0)

h(0)), (
−→y (1)

1 , . . . ,−→y (1)

h(1))), two plaintexts (M (0),M (1)), and
a time period I, such that either i > I, or i ≤ I and

f(−→x 1,...,
−→x l)(

−→y (0)
1 , . . . ,−→y (0)

h(0)) = f(−→x 1,...,
−→x l)(

−→y (1)
1 , . . . ,−→y (1)

h(1)) = 0 for each re-
vealed key for f(−→x 1,...,

−→x l) and time period i. C then flips a random coin b. If

b = 0 then A is given C = Encrypt(PK, Y (0), I,M (0)) and if b = 1 then A
is given C = Encrypt(PK, Y (1), I,M (1)).

Query phase 2. Repeat the Query phase 1 subject to the restrictions as in
the challenge phase.

Guess. A outputs a bit b′, and succeeds if b′ = b.
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We define the advantage of A as a quantity AdvFS-HPE
A (λ) = |Pr[b = b′]− 1/2|.

Remark 1. In Definition 4, adversary A is not allowed to ask a key query for
time period i and hierarchical predicate vectors (−→x 1, . . . ,

−→x l) such that i ≤
I and f(−→x 1,...,

−→x l)(
−→y (b)

1 , . . . ,−→y (b)

h(b)) = 1 for some b ∈ {0, 1}, i.e., the queried
key is not allowed to decrypt the challenge ciphertext. Recently, Okamoto and
Takashima [28] proposed a PE (HPE) which allow such key query, provided that
M (0) = M (1). The technique of Okamoto and Takashima [28] can be applied in
our scheme to achieve strong security.

Remark 2. In Definition 4, Amay ask delegation queries and obtain the resulting
keys. This contrasts slightly with the HPE security definition in [22], where A
may ask the challenger to create and delegate private keys but will not be given
any of them, unless it explicitly asks a separate reveal query. This is because
HPE in [22] has two algorithms for computing secret keys, either directly (using
the master secret key) or through delegation (using secret key of the parent
node). In our FS-HPE syntax we compute secret keys through delegation only
and in the security definition we are mainly concerned with maintaining time
evolution for delegated keys.

Remark 3. Definition 4 can be easily extended to address chosen-ciphertext at-
tacks (CCA) by allowing decryption queries. The usual restriction is that de-
cryption queries cannot be used for the challenge ciphertext. Our CPA-secure
FS-HPE scheme from Section 4 can be strengthened to resist CCA by applying
the well-known CHK transformation from [9] that uses one-time signatures to
authenticate the ciphertext.

4 Our Forward-Secure HPE Scheme

High-Level Description. For simplicity of presentation, our FS-HPE makes
use of a version of FS-PKE scheme by Katz [19]. In Katz’s scheme, time periods
are associated with the leaf nodes of a binary tree while in Canetti et al. scheme
[8], time periods correspond to all nodes of the tree. Our scheme can also be
realized based on the FS-PKE scheme by Canetti et al., which will give faster
key update time. We utilize a full binary tree of height κ, whose root is labeled
ε and all other nodes are labeled recursively: if the label of a node is w, then its
left child is w0, and its right child is w1. Each time period i ∈ {0, . . . , N − 1}
corresponds to a leaf identified via the binary representation of i. We denote the
k-bit prefix of a d-length word w = w1w2 . . . wd by w|k, i.e. w|k = w1w2 . . . wk
for k ≤ d. Let w|0 = ε and w = w|d.

We use two HPE schemes in parallel. Private keys in each scheme contain
three components: decryption, delegation and randomness. Private key of a user
contains private keys from both schemes that are linked together using secret
sharing. One HPE scheme is used to handle predicate/attribute hierarchy, while
the other one is used to handle time evolution. Each of the two HPE schemes is
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a modification of the scheme in [22], in a way that allows us to prove attribute-
hiding property under more sophisticated conditions involving time evolution.
The efficiency of the modified scheme is still comparable to the one in [22], i.e. it
increases the ciphertext by an additional component (master component) that
is used to combine both HPE schemes and is crucial for the security proof. This
change implies that the length of the orthonormal bases grows from (2n+3) · |G|
in [22] to (3n+ 1) · |G| in our scheme, where n is the dimension of the attribute
vectors, and |G| is the length of a group element from G.

At time period i, the entity at level l with a hierarchical predicate
(−→x 1, . . . ,

−→x l) holds a secret key SKi,(−→x 1,...,
−→x l), denoted for simplicity as SKi,l.

It contains secret keys ski,l and {skw,l}) for each label w corresponding to a
right sibling node (if one exists) on the path from l to the root. We view ski,l
as a decryption key, which is associated with current time i and the predicate
(−→x 1, . . . ,

−→x l). The secret keys in {skw,l} contain auxiliary information used to
update ski,l for future time periods and to derive its lower-level predicates. The
initial keys sk0,1 and sk1,1 are computed in the RootSetup algorithm and are asso-
ciated with the predicate −→x 1. In general, each skw,l contains three secret com-

ponents: the decryption component (k
(0)
w,l,dec,k

(1)
w,l,dec,k

(2)
w,l,dec), the randomness

component (k
(1)
w,l,ran,1, . . . ,k

(1)
w,l,ran,l+1,k

(2)
w,l,ran,1, . . . ,k

(2)
w,l,ran,|w|+1) and the del-

egation component (k
(1)
w,l,del,μl+1, . . . ,k

(1)
w,l,del,n,k

(2)
w,l,del,2|w|+1, . . . ,k

(2)
w,l,del,L). All

above components are constructed using orthonormal bases B∗ specified in Sec-
tion 2. There are three different bases in the system. The superscript of each key

component denotes its base. k
(0)
w,l,dec is the mentioned master component that

links k
(1)
w,l,dec and k

(2)
w,l,dec using the secret sharing techniques. In turn, k

(1)
w,l,dec

and k
(2)
w,l,dec are used in respective HPE schemes. If w represents a leaf of the

binary tree then the decryption component (k
(0)
w,l,dec,k

(1)
w,l,dec,k

(2)
w,l,dec) is used for

decryption at time represented by w.
Delegation and randomization of private keys are processed similarly as in [22],

except that upon derivation of keys for lower level predicates, we also delegate
and randomize their time-dependent part. In particular, the delegation compo-
nent of the l-th level key is essential to compute the (l + 1)-th level child key,
and the randomness component of the l-th level key is used to re-randomize
the latter’s coefficients. To handle time hierarchy we deploy “dummy” nodes.
Similarly, we will compute the dummy child for predicate hierarchy when time
evolves. In this way, all derived keys are re-randomized.

We define a helper algorithm ComputeNext that will be called from RootSetup
and Update. Given a secret key skw,l for node w and a hierarchical predicate
(−→x 1, . . . ,

−→x l) it outputs sk(wb),l, b ∈ {0, 1} for the nodes w0 and w1 by updating
the three components of skw,l. The algorithm Update computes secret keys for
the next time period through the internal call to ComputeNext and erases all
secret information that was used to derive the key for the current time period.
The update procedure involves all three components of the secret key. For exam-
ple, for a given secret key SKi,l = (ski,l, {skw,l}), forward security is achieved
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by deleting its component ski,l and using all three components of {skw,l}, where
w is now the label of an internal node, to derive SKi+1,l for the following time
period with the help of ComputeNext.

In algorithm Delegate, a secret key skw,l for a string w is used to derive
skw,u for a lower hierarchy level u > l and a hierarchical predicate (−→x 1, . . . ,

−→x u)
that has restricted capabilities in comparison to (−→x 1, . . . ,

−→x l). As mentioned,
the delegation component for hierarchical predicates of skw,l is essential for the
derivation of skw,u, whose coefficients are re-randomized with the randomization
component.

The algorithm Encrypt requires only a time period t and a hierarchical at-
tribute (−→y 1, . . . ,

−→y h) to encrypt the message. We note that during encryption
attributes (−→y 1, . . . ,

−→y h) are extended with random elements from level h + 1
down to the leaf, i.e., the scheme encrypts attribute vectors on all levels in the
hierarchy instead of encrypting only the input vectors. In this way, parent keys
can directly decrypt ciphertexts produced for their children without taking effort
to derive child keys first.

The algorithm Decrypt uses the decryption key ski,l, which is associated with
time period i and hierarchical predicate (−→x 1, . . . ,

−→x l). The message is decrypted
iff the attributes in the ciphertext satisfy the predicates in the decryption com-
ponent of the key and the ciphertext is created at time i.

Detailed Description. The five algorithms of our FS-HPE scheme are de-
tailed in the following:
RootSetup

(
1λ, N = 2κ,−→μ = (n; d, μ1, . . . , μd)

)
:

Let −→x 1 be the root predicate and let L = 2κ and −→n = (2;n, L). Compute

(param−→n ,B(0),B∗(0),B(1),B∗(1),B(2),B∗(2)) R← Gob(1
λ,−→n ),

B̃(0) = (b
(0)
1 , b

(0)
3 , b

(0)
5 ), B̃(1) = (b

(1)
1 , . . . , b

(1)
n , b

(1)
3n+1), B̃

(2) = (b
(2)
1 , . . . , b

(2)
L ,

b
(2)
3L+1),

B̃∗(0) = (b
∗(0)
1 , b

∗(0)
3 ), B̃∗(1) = (b

∗(1)
1 , . . . , b

∗(1)
n ), B̃∗(2) = (b

∗(2)
1 , . . . , b

∗(2)
L ),

B̂∗(1) = (b
∗(1)
2n+1, . . . , b

∗(1)
3n ), B̂∗(2) = (b

∗(2)
2L+1, . . . , b

∗(2)
3L ).

The master authority needs to generate not only the secret key associated with
the current time period 0 but also secret keys corresponding to the internal
nodes on the binary tree whose bit representations are all 0 except for the last
bit. The secret key for time 0 and predicate −→x 1 is denoted as sk0κ,1. Secret
keys that will be used to derive keys for future time periods are denoted as
{sk1,1, sk(01),1, . . . , sk0κ−11,1}. These values are generated recursively as follows,
starting with sk0,1 and sk1,1.

Computing sk0,1: Pick ψ, ψ′, αdec, α
(1)
dec, α

(2)
dec

U← Fq such that αdec = α
(1)
dec + α

(2)
dec.

Pick η
(0)
dec, β

(1)
dec,1, β

(2)
dec,1, β

(1)
ran,j,1(j = 1, 2), β

(2)
ran,j,1(j = 1, 2), β

(1)
del,j,1(j = 1, . . . , n),

β
(2)
del,j,1(j = 1, . . . , L)

U← Fq,
−→η (2)

dec,
−→η (2)

ran,j(j = 1, 2),−→η (2)
del,j(j = 1, . . . , L)

U← FLq ,



94 J.M. González Nieto, M. Manulis, and D. Sun

−→η (1)
dec,

−→η (1)
ran,j(j = 1, 2),−→η (1)

del,j(j = 1, . . . , n)
U← Fnq . Compute

k
(0)
0,1,dec = (−αdec, 0, 1, η

(0)
dec, 0)B∗(0) ,

k
(1)
0,1,dec = (α

(1)
dec
−→e (1)

1 + β
(1)
dec,1

−→x 1, 0
2n−μ1 ,−→η (1)

dec, 0)B∗(1) ,

k
(2)
0,1,dec = (α

(2)
dec, β

(2)
dec,1, 0

2L−2,−→η (2)
dec, 0)B∗(2) ,

k
(1)
0,1,ran,j = (β

(1)
ran,j,1

−→x 1, 0
2n−μ1 ,−→η (1)

ran,j , 0)B∗(1) , for j = 1, 2,

k
(2)
0,1,ran,j = (0, β

(2)
ran,j,1, 0

2L−2,−→η (2)
ran,j , 0)B∗(2) , for j = 1, 2,

k
(1)
0,1,del,j = (β

(1)
del,j,1

−→x 1, 0
j−μ1−1, ψ, 02n−j,−→η (1)

del,j , 0)B∗(1) , for j = μ1 + 1, . . . , n,

k
(2)
0,1,del,j = (0, β

(2)
del,j,1, 0

j−3, ψ′, 02L−j,−→η (2)
del,j, 0)B∗(2) , for j = 3, . . . , L.

Let sk0,1 = (k
(0)
0,1,dec,k

(1)
0,1,dec,k

(2)
0,1,dec,k

(1)
0,1,ran,1,k

(1)
0,1,ran,2,k

(2)
0,1,ran,1,k

(2)
0,1,ran,2,

k
(1)
0,1,del,μ1+1, . . . ,k

(1)
0,1,del,n,k

(2)
0,1,del,3, . . . ,k

(2)
0,1,del,L).

Computing sk1,1: Pick π, π′, δdec, δ
(1)
dec, δ

(2)
dec

U← Fq such that δdec = δ
(1)
dec +

δ
(2)
dec. Pick γ

(0)
dec , θ

(1)
dec,1, θ

(2)
dec,1, θ

(1)
ran,j,1(j = 1, 2), θ

(2)
ran,j,1(j = 1, 2), θ

(1)
del,j,1(j =

1, . . . , n), θ
(2)
del,j,1(j = 1, . . . , L)

U← Fq,
−→γ (1)

dec,
−→γ (1)

ran,j(j = 1, 2),−→γ (1)
del,j(j =

1, . . . , n)
U← Fnq ,

−→γ (2)
dec,

−→γ (2)
ran,j(j = 1, 2),−→γ (2)

del,j(j = 1, . . . , L)
U← FLq . Compute

k
(0)
1,1,dec = (−δdec, 0, 1, γ

(0)
dec, 0)B∗(0) ,

k
(1)
1,1,dec = (δ

(1)
dec
−→e (1)

1 + θ
(1)
dec,1

−→x 1, 0
2n−μ1 ,−→γ (1)

dec, 0)B∗(1) ,

k
(2)
1,1,dec = (δ

(2)
dec + θ

(2)
dec,1, θ

(2)
dec,1, 0

2L−2,−→γ (2)
dec, 0)B∗(2) ,

k
(1)
1,1,ran,j = (θ

(1)
ran,j,1

−→x 1, 0
2n−μ1 ,−→γ (1)

ran,j , 0)B∗(1) , for j = 1, 2,

k
(2)
1,1,ran,j = (θ

(2)
ran,j,1, θ

(2)
ran,j,1, 0

2L−2,−→γ (2)
ran,j , 0)B∗(2) , for j = 1, 2,

k
(1)
1,1,del,j = (θ

(1)
del,j,1

−→x 1, 0
j−μ1−1, π, 02n−j ,−→γ (1)

del,j , 0)B∗(1) , for j = μ1 + 1, . . . , n,

k
(2)
1,1,del,j = (θ

(2)
del,j,1, θ

(2)
del,j,1, 0

j−3, π′, 02L−j,−→γ (2)
del,j, 0)B∗(2) , for j = 3, . . . , L.

Let sk1,1 = (k
(0)
1,1,dec,k

(1)
1,1,dec,k

(2)
1,1,dec,k

(1)
1,1,ran,1,k

(1)
1,1,ran,2,k

(2)
1,1,ran,1,k

(2)
1,1,ran,2,

k
(1)
1,1,del,μ1+1, . . . ,k

(1)
1,1,del,n,k

(2)
1,1,del,3, . . . ,k

(2)
1,1,del,L).

Recursion: Use sk0,1 to recursively invoke algorithm ComputeNext, i.e. compute

(skw00,1, skw01,1) = ComputeNext(PK , skw0,1, w0), for all 1 ≤ |w0| ≤ κ− 1.

Output: Output public key PK =
(
1λ, param−→n , {B̃(k)}k=0,1,2, B̂

∗(1), B̂∗(2), b∗(0)4

)
and the root secret key SK 0,1 = (sk0κ,1, {sk1,1, sk(01),1, . . . , sk(0κ−11),1}).
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ComputeNext(PK , skw,l, w): This is a helper method and is called by the Root
Setup and Update algorithms. It takes a public key PK , a secret key skw,l, a
node w, and outputs keys skw0,l, skw1,l for time nodes w0 and w1 of predicate
vectors (−→x 1, . . . ,

−→x l). Parse w as w1, . . . , wr , where |w| = r. Parse skw,l as

(k
(0)
w,l,dec,k

(1)
w,l,dec,k

(2)
w,l,dec,k

(1)
w,l,ran,1, . . . ,k

(1)
w,l,ran,l+1, k

(2)
w,l,ran,1, . . . ,k

(2)
w,l,ran,r+1,

k
(1)
w,l,del,μl+1, . . . ,k

(1)
w,l,del,n,k

(2)
w,l,del,(2r+1), . . . ,k

(2)
w,l,del,L).

Computing skw0,l: Pick ψ, ψ′, ε(0)dec, ε
(1)
dec,t, ε

(1)
ran,j,t(j = 1, . . . , l + 1), ε

(1)
del,j,t(j = 1,

. . . , n)
U← Fq for t = 1, . . . , l+1. Pick ε

(2)
dec,t, σdec, ε

(2)
ran,j,t(j = 1, . . . , r+2), σran,j(j =

1, . . . , r + 2), ε
(2)
del,j,t(j = 1, . . . , L), σdel,j(j = 1, . . . , L)

U← Fq for t = 1, . . . , r + 1.

r
(1)
dec, r

(1)
ran,j(j = 1, . . . , l + 1), r

(1)
del,j(j = 1, . . . , n)

U← span〈b∗(1)2n+1, . . . , b
∗(1)
3n 〉,

r
(2)
dec, r

(2)
ran,j(j = 1, . . . , r + 2), r

(2)
del,j(j = 1, . . . , L)

U← span〈b∗(2)2L+1, . . . , b
∗(2)
3L 〉.

Compute

k
(0)
w0,l,dec = k

(0)
w,l,dec + ε

(0)
decb

∗(0)
4 ,

k
(1)
w0,l,dec = k

(1)
w,l,dec +

l+1∑
t=1

ε
(1)
dec,tk

(1)
w,l,ran,t + r

(1)
dec,

k
(2)
w0,l,dec = k

(2)
w,l,dec +

r+1∑
t=1

ε
(2)
dec,tk

(2)
w,l,ran,t + σdeck

(2)
w,l,del,2(r+1) + r

(2)
dec,

k
(1)
w0,l,ran,j =

l+1∑
t=1

ε
(1)
ran,j,tk

(1)
w,l,ran,t + r

(1)
ran,j , for j = 1, . . . , l + 1,

k
(2)
w0,l,ran,j =

r+1∑
t=1

ε
(2)
ran,j,tk

(2)
w,l,ran,t + σran,jk

(2)
w,l,del,2(r+1) + r

(2)
ran,j , for j = 1, . . . , r + 2,

k
(1)
w0,l,del,j =

l+1∑
t=1

ε
(1)
del,j,tk

(1)
w,l,ran,t + ψk

(1)
w,l,del,j + r

(1)
del,j, for j = μl + 1, . . . , n,

k
(2)
w0,l,del,j =

r+1∑
t=1

ε
(2)
del,j,tk

(2)
w,l,ran,t + σdel,jk

(2)
w,l,del,2(r+1) + ψ′k(2)

w,l,del,j + r
(2)
del,j,

for j=2(r + 1) + 1, . . . , L.

Let skw0,l = (k
(0)
w0,l,dec,k

(1)
w0,l,dec,k

(2)
w0,l,dec,k

(1)
w0,l,ran,1, . . . ,k

(1)
w0,l,ran,l+1,k

(2)
w0,l,ran,1, . . . ,

k
(2)
w0,l,ran,r+2,k

(1)
w0,l,del,μl+1, . . . ,k

(1)
w0,l,del,n,k

(2)

w0,l,del,(2(r+1)+1), . . . ,k
(2)
w0,l,del,L).

Computing skw1,l: Pick τ, τ ′, ε(0)dec, ε
(1)
dec,t, ε

(1)
ran,j,t(j = 1, . . . , l + 1), ε

(1)
del,j,t(j = 1,

. . . , n)
U← Fq for t = 1, . . . , l+1. Pick ε

(2)
dec,t, ςdec, ε

(2)
ran,j,t(j = 1, . . . , r+2), ςran,j(j =

1, . . . , r + 2), ε
(2)
del,j,t(j = 1, . . . , L), ςdel,j(j = 1, . . . , L)

U← Fq for t = 1, . . . , r + 1.

t
(1)
dec, t

(1)
ran,j(j = 1, . . . , l + 1), t

(1)
del,j(j = 1, . . . , n)

U← span〈b∗(1)2n+1, . . . , b
∗(1)
3n 〉, t(2)dec,
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t
(2)
ran,j(j = 1, . . . , r + 2), t

(2)
del,j(j = 1, . . . , L)

U← span〈b∗(2)2L+1, . . . , b
∗(2)
3L 〉. Compute

k
(0)
w1,l,dec = k

(0)
w,l,dec + ε

(0)
decb

∗(0)
4 ,

k
(1)
w1,l,dec = k

(1)
w,l,dec +

l+1∑
t=1

ε
(1)
dec,tk

(1)
w,l,ran,t + t

(1)
dec,

k
(2)
w1,l,dec = k

(2)
w,l,dec +

r+1∑
t=1

ε
(2)
dec,tk

(2)
w,l,ran,t + ςdec

(
2r+2∑
i=2r+1

k
(2)
w,l,del,i

)
+ t

(2)
dec,

k
(1)
w1,l,ran,j =

l+1∑
t=1

ε
(1)
ran,j,tk

(1)
w,l,ran,t + t

(1)
ran,j , for j = 1, . . . , l + 1,

k
(2)
w1,l,ran,j =

r+1∑
t=1

ε
(2)
ran,j,tk

(2)
w,l,ran,t + ςran,j

(
2r+2∑
i=2r+1

k
(2)
w,l,del,i

)
+ t

(2)
ran,j ,

for j = 1, . . . , r + 2,

k
(1)
w1,l,del,j =

l+1∑
t=1

ε
(1)
del,j,tk

(1)
w,l,ran,t + τk

(1)
w,l,del,j + t

(1)
del,j , for j = μl + 1, . . . , n,

k
(2)
w1,l,del,j =

r+1∑
t=1

ε
(2)
del,j,tk

(2)
w,l,ran,t + ςdel,j

(
2r+2∑
i=2r+1

k
(2)
w,l,del,i

)
+ τ ′k(2)

w,l,del,j + t
(2)
del,j ,

for j = 2(r + 1) + 1, . . . , L.

Let skw1,l = (k
(0)
w1,l,dec,k

(1)
w1,l,dec,k

(2)
w1,l,dec,k

(1)
w1,l,ran,1, . . . ,k

(1)
w1,l,ran,l+1,k

(2)
w1,l,ran,1, . . . ,

k
(2)
w1,l,ran,r+2,k

(1)
w1,l,del,μl+1, . . . ,k

(1)
w1,l,del,n,k

(2)

w1,l,del,(2(r+1)+1), . . . ,k
(2)
w1,l,del,L).

Output: Output (skw0,l, skw1,l).

Delegate(SKi,l, i,
−→x l+1 = (xμl+1, . . . , xμl+1

)): Parse i as i1, . . . , iκ where κ =
log2 N . Parse SKi,l as (ski,l, {ski|k−11,l

}ik=0). For each skw,l in SKi,l compute
skw,l+1 as follows:

Parse w as w1, . . . , wr, where |w| = r. Pick ψ, ψ′, γ(0)
dec , γ

(1)
dec,t, γ

(1)
ran,j,t(j = 1, . . . , l+

2), γ
(1)
del,j,t(j = 1, . . . , n)

U← Fq for t = 1, . . . , l + 1. Pick γ
(2)
dec,t, σdec, γ

(2)
ran,j,t(j =

1, . . . , r+1), σran,j(j = 1, . . . , l+2), γ
(2)
del,j,t(j = 1, . . . , L), σdel,j(j = 1, . . . , n)

U← Fq

for t = 1, . . . , r + 1. r
(1)
dec, r

(1)
ran,j(j = 1, . . . , l + 2), r

(1)
del,j(j = 1, . . . , n)

U←
span〈b∗(1)2n+1, . . . , b

∗(1)
3n 〉, r(2)

dec, r
(2)
ran,j(j = 1, . . . , r + 1), r

(2)
del,j(j = 1, . . . , L)

U← span

〈b∗(2)2L+1, . . . , b
∗(2)
3L 〉. Compute

k
(0)
w,l+1,dec = k

(0)
w,l,dec + γ

(0)
decb

∗(0)
4 ,
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k
(1)
w,l+1,dec = k

(1)
w,l,dec +

l+1∑
t=1

γ
(1)
dec,tk

(1)
w,l,ran,t + σdec

⎛⎝ μl+1∑
i=μl+1

xik
(1)
w,l,del,i

⎞⎠+ r
(1)
dec,

k
(2)
w,l+1,dec = k

(2)
w,l,dec +

r+1∑
t=1

γ
(2)
dec,tk

(2)
w,l,ran,t + r

(2)
dec,

k
(1)
w,l+1,ran,j =

l+1∑
t=1

γ
(1)
ran,j,tk

(1)
w,l,ran,t + σran,j

⎛⎝ μl+1∑
i=μl+1

xik
(1)
w,l,del,i

⎞⎠+ r
(1)
ran,j ,

for j = 1, . . . , l + 2,

k
(2)
w,l+1,ran,j =

r+1∑
t=1

γ
(2)
ran,j,tk

(2)
w,l,ran,t + r

(2)
ran,j , for j = 1, . . . , r + 1,

k
(1)
w,l+1,del,j =

l+1∑
t=1

γ
(1)
del,j,tk

(1)
w,l,ran,t + σdel,j

⎛⎝ μl+1∑
i=μl+1

xik
(1)
w,l,del,i

⎞⎠+ ψk
(1)
w,l,del,j + r

(1)
del,j ,

for j = μl+1 + 1, . . . , n,

k
(2)
w,l+1,del,j =

r+1∑
t=1

γ
(2)
del,j,tk

(2)
w,l,ran,t + ψ′k(2)

w,l,del,j + r
(2)
del,j , for j = 2r + 1, . . . , L.

Let skw,l+1 = (k
(0)
w,l+1,dec,k

(1)
w,l+1,dec,k

(2)
w,l+1,dec,k

(1)
w,l+1,ran,1, . . . ,k

(1)
w,l+1,ran,l+2,

k
(2)
w,l+1,ran,1, . . . ,k

(2)
w,l+1,ran,r+1,k

(1)
w,l+1,del,μl+1+1, . . . ,k

(1)
w,l+1,del,n,k

(2)
w,l+1,del,2r+1,

. . . ,k
(2)
w,l+1,del,L).

Output SKi,l+1 = (ski,l+1, {ski|k−11,l+1}ik=0) and erase all other information.

Update(SKi,l, i): This algorithm follows the concept from [8, 19] to compute a
private key for the next time period i + 1. Parse i as i1, . . . , iκ where |i| = κ.
Parse SKi,l as (ski,l, {ski|k−11,l

}ik=0). Erase ski,l. If iκ = 0, simply output the

remaining keys as the key SK(i+1),l for the next period. Otherwise, let k̃ be
the largest value such that ik̃ = 0. Let i′ = i|k̃−11. Using ski′,l, which is part
of SKi,l, recursively apply algorithm ComputeNext to generate keys sk(i′0d1),l
for 0 ≤ d ≤ l − k̃ − 1 and sk(i′0d−k̃,l). (The key sk(i′0d−k̃,l) will be used for
decryption in the next time period i + 1, whereas other generated secret keys
will be used to compute private key of the next period.) Erase ski′,l and output
the remaining keys as SK(i+1),l.

Encrypt(PK, (−→y 1, . . . ,
−→y h) = ((y1, . . . , yμ1), . . . , (yμh−1+1, . . . , yμh

)), i,M ∈
GT ):
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Parse i as i1, . . . , iκ. Pick (−→y h+1, . . . ,
−→y d) U← F

μh+1−μh
q × . . . × F

n−μd−1
q ,

δ, ζ, ϕ, ϕ(1), ϕ(2) U← Fq, compute

c(0) = (δ, 0, ζ, 0, ϕ)B(0) ,

c(1) = (δ(−→y 1, . . . ,
−→y d), 02n, ϕ(1))

B(1) ,

c(2) = (δ((1,−i1), . . . , (1,−iκ)), 0
2L, ϕ(2))

B(2) ,

c(M) = gζTM.

Output ciphertext C = (c(0), c(1), c(2), c(M)).

Decrypt(C, SKi,l): Parse ciphertext C as (c(0), c(1), c(2), c(M)) and secret key
SKi,l as (ski,l, {ski|k−11,l

}ik=0). Use ski,l to decrypt and output

M =
c(M)

e(c(0),k
(0)
i,l,dec)e(c

(1),k
(1)
i,l,dec)e(c

(2),k
(2)
i,l,dec)

.

Correctness. To see why the scheme is correct, let C and SKi,l be as above. If
−→x i·−→y i = 0 for 1 ≤ i ≤ l, and C and SKi,l are encoded with the same time period

i thenM can be recovered by computing c(M)/e(c(0),k
(0)
i,l,dec)e(c

(1),k
(1)
i,l,dec)e(c

(2),

k
(2)
i,l,dec), since

e(c(0),k
(0)
i,l,dec)e(c

(1),k
(1)
i,l,dec)e(c

(2),k
(2)
i,l,dec) = g−αdecδ+ζ

T g
α

(1)
dec
δ

T g
α

(2)
dec
δ

T = g−αδ+ζT gαδT .

Remark 4. Recently, Okamoto and Takashima [27] proposed a PE with short
secret keys. We note that their scheme can be easily applied to our system
to achieve better efficiency in key size. Moreover, in an updated version [26],
Okamoto and Takashima devised a payload-hiding HIPE with compact secret
keys. The technique [26] can also be applied in our system, specifically, for the
time period subtree.

Theorem 1. Our FS-HPE scheme is adaptively attribute-hiding against chosen
plaintext attacks under the DLIN assumption. For any adversary A, there exists
a PPT machine D such that for any security parameter λ,

AdvFS-HPE
A (λ) ≤ (2ν(κ+ 1)(n+ L+ 1) + 1)AdvDLIN

D (λ) + ψ,

where ν is the maximum number of A’s key queries, κ is the depth of the time
tree, and ψ = (20ν(κ+ 1)(n+ L+ 1) + 9)/q.

The proof of Theorem 1 is provided in the full version.

5 Conclusion

In this paper, we introduced the notion of forward security to the powerful set-
ting of hierarchical predicate encryption. The resulting FS-HPE scheme offers



Forward-Secure Hierarchical Predicate Encryption 99

time-independent delegation of predicates, autonomous update for users’ pri-
vate keys, and its encryption process doesn’t require knowledge of time periods
at which particular predicates joined the predicate hierarchy. The scheme is
forward-secure and adaptively attribute-hiding under chosen plaintext attacks,
under the DLIN assumption in the standard model. Using level-1 hierarchy we
obtain first adaptively-secure FS-PE/ABE construction. By setting the inner-
product predicate to perform the equality test, we achieve the first adaptively-
secure anonymous FS-HIBE scheme under the DLIN assumption.
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Abstract. Predicate encryption is an important cryptographic primi-
tive (see [3,5,9,11]) that enables fine-grained control on the decryption
keys. Roughly speaking, in a predicate encryption scheme the owner of
the master secret key Msk can derive secret key SkP , for any predicate
P from a specified class of predicates P. In encrypting a message M ,
the sender can specify an attribute vector x and the resulting cipher-
text X̃ can be decrypted only by using keys SkP such that P (x) = 1.
Security is modeled by means of a game between a challenger C and a
PPT adversary A that sees the public key, is allowed to ask for keys of
predicates P of his choice and gives two challenge vectors x0 and x1. A
then receives a challenge ciphertext (an encryption of a randomly chosen
challenge vector) and has to guess which of the two challenge vectors
has been encrypted. The adversary A is allowed to ask queries even after
seeing the challenge ciphertext. In the unrestricted queries model, it is
required the adversary A to ask for keys of predicates P that do not dis-
criminate the two challenge vectors; that is, for which P (x0) = P (x1).
It can be readily seen that this condition is necessary. In this paper,
we consider hidden vector encryption (HVE in short), a notable case of
predicate encryption introduced by Boneh and Waters [5] and further
developed in [16,10,15]. In a HVE scheme, the ciphertext attributes are
vectors x = 〈x1, . . . , x�〉 of length � over alphabet Σ, keys are associated
with vectors y = 〈y1, . . . , y�〉 of length � over alphabet Σ ∪ {�} and we
consider the Match(x,y) predicate which is true if and only if, for all i,
yi 
= � implies xi = yi. In [5], it is shown that HVE implies predicate en-
cryption schemes for conjunctions, comparison, range queries and subset
queries. We describe also constructions of secure predicate encryption for
Boolean predicates that can be expressed as k-CNF and k-DNF (for any
constant k) over binary variables.

Our main contribution is a very simple, in terms of construction and
security proof, implementation of the HVE primitive that can be proved
fully secure against probabilistic polynomial-time adversaries in the un-
restricted queries model under non-interactive constant sized (that is
independent of �) hardness assumptions on bilinear groups of composite
order. Our proof employs the dual system methodology of Waters [18],
that gave one of the first fully secure construction in this area, blended
with a careful design of intermediate security games that keep into ac-
count the relationship between challenge ciphertext and key queries.
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1 Introduction and Related Work

Predicate encryption is an important cryptographic primitive (see [3,5,9,11])
that enables fine-grained control on the decryption keys. Roughly speaking, in
a predicate encryption scheme for a class P of �-ary predicates, the owner of the
master secret key Msk can derive secret key SkP for any predicate P ∈ P. In
encrypting a message M , the sender can specify an attribute vector x of length �
and the resulting ciphertextX can be decrypted only by using keys SkP such that
P (x) = 1. Thus a predicate encryption scheme enables the owner of the master
secret key to delegate the decryption of different types of ciphertexts to different
entities by releasing the appropriate key. In the context of predicate encryption,
security is modeled by means of a game between a challenger C and a PPT
adversary A that sees the public key, is allowed to ask for keys of predicates
P of his choice and gives two challenge vectors x0 and x1. A then receives
a challenge ciphertext (an encryption of a randomly chosen challenge vector)
and has to guess which of the two challenge vectors has been encrypted. The
adversary A is allowed to ask queries even after seeing the challenge ciphertext.
In the unrestricted queries model, it is required the adversary A to ask for keys
of predicates P that do not discriminate the two challenge vectors; that is, for
which P (x0) = P (x1). It can be readily seen that this condition is necessary.
Many previous works restricted the proof of security to adversaries that could
ask only non-satisfying queries (restricted queries model); that is, ask for keys
of predicates P such that P (x0) = P (x1) = 0.

We consider hidden vector encryption (HVE in short), a notable case of pred-
icate encryption introduced by [5]. In a HVE scheme, the ciphertext attributes
are vectors x = 〈x1, . . . , x�〉 of length � over alphabet Σ and predicates are de-
scribed by vectors y = 〈y1, . . . , y�〉 of length � over alphabet Σ ∪ {�}. The class
P of predicates for HVE consists of all predicates Matchy defined as follows:
Matchy(x) is true if and only if, for all i, yi �= � implies xi = yi. In the rest of
the paper we will adopt the writing Match(x,y) instead of Matchy(x). Besides
being one of the first predicates for which constructions have been given, HVE
can be used as building block for several other predicates. Specifically in [5], it
is shown that HVE implies predicate encryption schemes for conjunctions, com-
parison, range queries and subset queries. For completeness, in Appendix 6, we
describe also constructions of secure predicate encryption for Boolean predicates
that can be expressed as k-CNF and k-DNF (for any constant k).

Our main contribution is a very simple, in terms of construction and secu-
rity proof, implementation of the HVE primitive that can be proved fully se-
cure against probabilistic polynomial-time adversaries in the unrestricted queries
model under non-interactive constant sized (that is independent of �) hardness
assumptions on bilinear groups of composite order. Specifically, our two assump-
tions posit the difficulty of a subgroup decision problem and of a problem that
can be seen as the generalization of Decision Diffie-Hellman to groups of com-
posite order.
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Related Work. The first implementation of HVE is due to [5] that proved the
security of their construction under assumptions on bilinear groups of composite
order in the selective model. In this security model (introduced by [6] in the
context of IBE), the adversary must announce to its challenge vectors before
seeing the public key of the HVE scheme. In a recent series of papers Waters
[18] and Lewko and Waters [12] introduced the concept of a dual system encryp-
tion scheme that was used to construct efficient and fully secure Identity Based
Encryption (IBE) and Hierarchical IBE from simple assumptions. Previous fully
secure constructions of these primitives either used a partitioning strategy (see
[2],[17]) or used complexity assumptions of non-constant size (see [7],[8]). Par-
titioning strategy and the approaches of [7] and [8] do not seem to be helpful
in proving full security of more complex primitives like HVE. Fully secure con-
structions of HVE in the unrestricted queries model can be already derived, via
the reduction given in [11], from the fully secure constructions for inner-product
encryption given by [13]. Anyway, we stress that the main goal of this paper is
to present a very simple, in terms of construction and security proof, and direct
implementation of the HVE primitive that can be still proved fully secure in the
unrestricted queries model.

Proof Technique. Our proof of security is based on the dual system encryption
methodology introduced by Waters [18] and gives extra evidence of the power of
this proof technique. However, to overcome the difficulty of having to deal also
with the unrestricted queries model, we have to carefully look at the space of
matching queries and at how they relate to the challenge vectors. This enables
us to craft a new security game in which the challenge ciphertext is constructed
in a way that guarantees that keys obtained by the adversary give the expected
result when tested against the challenge ciphertext and, at the same time, the
challenge ciphertext is independent from the challenge vector used to construct
it. Then we show, by means of a sequence of intermediate security games, that
the real security game is computationally indistinguishable from this new game

2 Hidden Vector Encryption

In this section we give formal definitions for Hidden Vector Encryption (HVE)
and its security properties. For sake of simplicity, we present predicate-only
definitions and constructions for HVE instead of full-fledged ones. For the same
reason, we give our definitions and constructions for binary alphabets.

Following standard terminology, we call a function ν(λ) negligible if for all
constants c > 0 and sufficiently large λ, ν(λ) < 1/λc and denote by [n] the set
of integers {1, . . . , n}. Moreover the writing “a ← A”, for a finite set A, denotes
that a is randomly and uniformly selected from A.

Hidden Vector Encryption. Let x be a binary vector of length � and y a
vector of the same length over {0, 1, �}. We remind that predicate Match(x,y)
is defined to be true if and only if the two vectors agree in all positions i where
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yj �= �. A Hidden Vector Encryption scheme is a tuple of four efficient proba-
bilistic algorithms (Setup, Encrypt, KeyGen, Test) with the following semantics.

Setup(1λ, 1�): takes as input a security parameter λ and a length parameter �
(given in unary), and outputs public parameters Pk and master secret key Msk.

KeyGen(Msk,y): takes as input the master secret key Msk and a vector y ∈
{0, 1, �}�, and outputs a secret key Sky.

Encrypt(Pk,x): takes as input the public parameters Pk and a vector x ∈
{0, 1}� and outputs a ciphertext Ct.

Test(Pk,Ct, Sky): takes as input the public parameters Pk, a ciphertext Ct
encrypting x and a secret key Sky and outputs Match(x,y).

For correctness we require that, for pairs (Pk,Msk) ← Setup(1λ, 1�), it holds
that for all vectors x ∈ {0, 1}� and y ∈ {0, 1, �}�, we have that Test(Pk,
Encrypt(Pk,x),KeyGen(Msk,y)) = Match(x,y) with very hight probability.

Security Definitions for HVE. In this section we formalize our security re-
quirement by means of a security game GReal between a probabilistic polynomial
time adversary A and a challenger C. GReal consists of a Setup phase and of a
Query Answering phase. In the Query Answering phase, the adversary can issue
a polynomial number of Key Queries and one Challenge Construction query and
at the end of this phase A outputs a guess. We stress that key queries can be is-
sued by A even after he has received the challenge from C. In GReal the adversary
is restricted to queries for vectors y such that Match(y, x0) = Match(y, x1).

More precisely, we define game GReal in the following way.

Setup. C runs the Setup algorithm on input the security parameter λ and the
length parameter � (given in unary) to generate public parameters Pk and master
secret key Msk. C starts the interaction with A on input Pk.

Key Query Answering(y). C returns KeyGen(Msk,y).

Challenge Query Answering(x0,x1). C picks random η ∈ {0, 1} and returns
the challenge ciphertext computed by executing Encrypt(Pk,xη).

Winning Condition. Let η′ be A’s output. A wins the game if η = η′ and for
all y for which A has issued a Key Query, it holds Match(x0,y) = Match(x1,y).

We define the advantage AdvAHVE(λ) of A in GReal to be the probability of
winning minus 1/2.

Definition 1. An Hidden Vector Encryption scheme is secure if for all prob-
abilistic polynomial time adversaries A, we have that AdvAHVE(λ) is a negligible
function of λ.

Larger Alphabet. One can easily observe that an HVE scheme for a general
alphabet Σ can be obtained with an expansion of log2 |Σ|: the encryption simply
encrypts bit by bit by using the binary HVE, and the key generation procedure
proceeds analogously. We stress that this reduction is black-box and does not
depend on our specific scheme.
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3 Complexity Assumptions

We work with symmetric bilinear groups of composite order. Our construction
can be adapted to the asymmetric setting in a straightforward way. Composite
order bilinear groups were first used in Cryptography by [4] (see also [1]). We
suppose the existence of an efficient group generator algorithm G which takes as
input the security parameter λ and outputs a description I = (N,G,GT , e) of a
bilinear setting, where G and GT are cyclic groups of order N , and e : G2 → GT
is a map with the following properties:

1. (Bilinearity) ∀ g, h ∈ G and a, b ∈ ZN it holds that e(ga, hb) = e(g, h)ab.

2. (Non-degeneracy) ∃ g ∈ G such that e(g, g) has order N in GT .

We assume that the group descriptions of G and GT include generators of the
respective cyclic subgroups. We require that the group operations in G and GT
as well as the bilinear map e are computable in deterministic polynomial time in
λ. In our construction we will make hardness assumptions for bilinear settings
whose order N is product of four distinct primes each of length Θ(λ). For an
integer m dividing N , we let Gm denote the subgroup of G of order m. From
the fact that the group is cyclic, it is easy to verify that if g and h are group
elements of co-prime orders then e(g, h) = 1. This is called the orthogonality
property and is a crucial tool in our constructions. We are now ready to give our
complexity assumptions.

Assumption 1. The first assumption is a subgroup-decision type assumption for
bilinear settings. More formally, we have the following definition. First pick a
random bilinear setting I = (N = p1p2p3p4,G,GT , e) ← G(1λ) and then pick
A3 ← Gp3 , A13 ← Gp1p3 , A12 ← Gp1p2 , A4 ←∈ Gp4 , T1 ← Gp1p3 , T2 ← Gp2p3 ,
and set D = (I, A3, A4, A13, A12). We define the advantage of any A in breaking
Assumption 1 to be AdvA1 (λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|

Assumption 1. We say that Assumption 1 holds for generator G if for all prob-
abilistic polynomial-time algorithms A, AdvA1 (λ) is a negligible function of λ.

Assumption 2. Our second assumption can be seen as the Decision Diffie-Hellman
Assumption for composite order groups. More formally, we have the following
definition. First pick a random bilinear setting I = (N = p1p2p3p4,G,GT , e) ←
G(1λ) and then pick A1 ← Gp1 , A2 ← Gp2 , A3 ← Gp3 , A4, B4, C4, D4 ← Gp4 , α, β

← Zp1 , T2 ← Gp1p4 , and set T1 = Aαβ1 · D4 and D = (I, A1, A2, A3, A4, A
α
1 ·

B4, A
β
1 ·C4). We define the advantage of any A in breaking Assumption 2 to be

AdvA2 (λ) = |Prob[A(D,T1) = 1]− Prob[A(D,T2) = 1]|

Assumption 2. We say that Assumption 2 holds for generator G if for all prob-
abilistic polynomial-time algorithms A, AdvA2 (λ) is a negligible function of λ.
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4 Constructing HVE

In this section we describe our HVE scheme. To make our description and proofs
simpler, we add to all vectors x and y two dummy components and set both of
them equal to 0. We can thus assume that all vectors have at least two non-star
positions.

Setup(1λ, 1�): The setup algorithm chooses a description of a bilinear group
I = (N = p1p2p3p4, G,GT , e) ← G(1λ) with known factorization, and random
g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 , and, for i ∈ [�] and b ∈ {0, 1},
random ti,b ∈ ZN and random Ri,b ∈ Gp3 and sets Ti,b = g

ti,b
1 · Ri,b. The

public parameters are Pk = [N, g3, (Ti,b)i∈[�],b∈{0,1}] and the master secret key is
Msk = [g12, g4, (ti,b)i∈[�],b∈{0,1}], where g12 = g1 · g2.

KeyGen(Msk,y): Let Sy be the set of indices i such that yi �= �. The key
generation algorithm chooses random ai ∈ ZN for i ∈ Sy under the constraint
that

∑
i∈Sy

ai = 0. For i ∈ Sy, the algorithm chooses random Wi ∈ Gp4 and

sets Yi = g
ai/ti,yi
12 · Wi. The algorithm returns the tuple (Yi)i∈Sy . Here we use

the fact that Sy has size at least 2.
Encrypt(Pk,x): The encryption algorithm chooses random s ∈ ZN . For i ∈ [�],

the algorithm chooses random Zi ∈ Gp3 and sets Xi = T si,xi
·Zi, and returns the

tuple (Xi)i∈[�].
Test(Ct, Sky): The test algorithm computes T =

∏
i∈Sy

e(Xi, Yi). It returns
TRUE if T = 1, FALSE otherwise.

Correctness. It easy to see that the scheme is correct.

Remark 1. In our construction the Match predicate is computed in the subgroup
of G of order p1, Gp1 . Notice that the other subgroups do not interfere during
the evaluation of the predicate due to the orthogonality property. The subgroup
of G of order p2, Gp2 , represents the semi-functional space and it is used to prove
the security of the scheme. Notice that at this stage it can be removed from our
construction at the expense of introducing another game in the security proof.
To simplify the proof we have decide to include that subgroup directly. Finally,
the subgroups Gp3 and Gp4 are used to re-randomize the public key and the
ciphertexts, and the secret keys respectively. Their main role is to create enough
room to manipulate the semi-functional space.

Remark 2. Let Pk = [N, g3, (Ti,b)i∈[�],b∈{0,1}] and Msk = [g1g2, g4,
(ti,b)i∈[�],b∈{0,1}] be a pair of public parameter and master secret key out-
put by the Setup algorithm and consider Pk′ = [N, g3, (T

′
i,b)i∈[�],b∈{0,1}] and

Msk′ = [ĝ1 · g2, g4, (ti,b)i∈[�],b∈{0,1}] with T ′
i,b = ĝ

ti,b
1 ·R′

i,b for some ĝ1 ∈ Gp1 and

R′
i,b ∈ Gp3 . We make the following easy observations: (1) For every y ∈ {0, 1, �}�,

KeyGen(Msk,y) and KeyGen(Msk′,y) are identical distributed. (2) Similarly, for
every x ∈ {0, 1}�, Encrypt(Pk,x) and Encrypt(Pk′,x) are identical distributed.
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5 Security of Our HVE Scheme

We start by giving an informal description of the ideas behind our proof of
security and show how we overcome the main technical difficulty of having to
deal with adversaries that possess keys that match the challenge ciphertext.
The first step of our proof strategy consists in projecting the public key (and
thus the ciphertexts the adversary constructs by himself) into the semi functional
space and thus to a different subgroup from the one of the challenge ciphertext.
Specifically, we defined a new security game GPK in which the ti,b’s are encoded
in the Gp2 part of the Ti,b’s from the public key (instead of the the Gp1 part as in
normal public key in the real game). The challenge ciphertext and the answers
to the key queries are instead constructed as in the real security game GReal.
Thus, ciphertexts constructed by the adversary are completely independent from
the challenge ciphertext (as they encode information in two different subgroups).
We observe that since keys are constructed as in the real security game, they
carry information about y both in the Gp1 and Gp2 parts. Thus when the ad-
versary tests a ciphertext he has constructed by using the public key against
a key obtained by means of a query, he obtains the expected result because of
the information encoded in the Gp2 part of the key and of the ciphertext. The
challenge ciphertext instead interacts with the Gp1 part of the keys. The only
difference between the two games is in the public key but, under Assumption 1
(a natural subgroup decision hardness assumption), we can prove that the two
games are indistinguishable. Here a crucial role is played by Gp3 as it enables
the challenger of GPK to move the public key to the semi-functional space and
to create the challenge ciphertext with the respect to an independent public key.
Without Gp3 , a normal public key (as seen by the adversary in GReal) would
be in Gp1 whereas a semi-functional public key (as seen by the adversary in
GPK) would be in Gp2 . Moreover, in both games, the adversary will be given
a challenge ciphertext in Gp1 and thus, by orthogonality, it would be able to
distinguish the two games. The second step proves that the keys obtained
from queries do not help the adversary. Since the challenge ciphertext carries
information about the randomly selected challenge vector xη in its Gp1 part, in
this informal discussion when we refer to key we mean its Gp1 part. The Gp2
parts of the keys are always correctly computed. In our construction, testing a
ciphertext against a non-matching key gives a random value (from the target
group) whereas testing it against a matching key returns a specified value (the
identity of the target group). If we had to prove security against an adversary
that asked only non-matching queries we could consider the experiment in which
key queries were replied by returning a key with random Gp1 parts. Such a game
can be proved indistinguishable from GPK (under an appropriate complexity
assumption) and it is easy to prove that it gives no advantage to an adversary.
This approach fails for matching queries as such a key will return the wrong an-
swer with high probability when tested against the challenge ciphertext. Instead
we modify the construction of the challenge ciphertext in the following way:
the challenge ciphertext is well-formed in all the positions where the two chal-
lenge vectors are equal and random in all the other positions. We observe that
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testing such a challenge ciphertext against matching and non-matching keys al-
ways gives the correct answer and that no adversary (even an all powerful one)
can guess which of the two challenge vectors has been used to construct the
challenge ciphertext (see the discussion in Section 5.2).

5.1 The First Step of the Proof

We start by defining game GPK(λ, �) (see Figure 1) that differs from GReal(λ, �)
as in the Setup phase, C prepares two sets of public parameters, Pk and Pk′,
and one master secret key Msk. Pk is given as input to A, Msk is used to answer
A’s key queries and Pk′ is used to construct the challenge ciphertext. The next

Game GPK(λ, �)
Setup. C chooses a description of a bilinear group I = (N = p1p2p3p4, G,GT , e)←
G(1λ) with known factorization and random g1 ∈ Gp1 , g2 ∈ Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4

and sets g12 = g1 · g2. For each i ∈ [�] and b ∈ {0, 1}, C chooses random

ti,b ∈ ZN and Ri,b ∈ Gp3 and sets T ′
i,b = g

ti,b
1 · Ri,b and Ti,b = g

ti,b
2 · Ri,b.

Then C sets Pk = [N, g3, (Ti,b)i∈[�],b∈{0,1}], Pk′ = [N, g3, (T
′
i,b)i∈[�],b∈{0,1}], and

Msk = [g12, g4, (ti,b)i∈[�],b∈{0,1}]. Finally, C sends Pk to A.
Key Query Answering(y). C returns the output of KeyGen(Msk,y).
Challenge Query Answering(x0,x1). Upon receiving the pair (x0,x1) of challenge
vectors, C picks random η ∈ {0, 1} and returns the output of Encrypt(Pk′,xη).
Winning Condition. Like in GReal(λ, �).

Fig. 1. A formal description of GPK

lemma shows that, the advantages of an adversary in GReal(λ, �) and GPK(λ, �)
are the same, up to a negligible factor.

Lemma 1. If Assumption 1 holds, GReal(λ, �) ≈c GPK(λ, �)

Proof. We show a PPT algorithm B which receives (I, A3, A4, A13, A12) and
T and, depending on the nature of T , simulates GReal(λ, �) or GPK(λ, �) with
A. This suffices to prove the Lemma.

Setup. B starts by constructing public parameters Pk and Pk′ in the following
way. B sets g12 = A12, g3 = A3, g4 = A4 and, for each i ∈ [�] and b ∈ {0, 1},
B chooses random ti,b ∈ ZN and sets Ti,b = T ti,b and T ′

i,b = A
ti,b
13 . Then B

sets Pk = [N, g3, (Ti,b)i∈[�],b∈{0,1}], Msk = [g12, g4, (ti,b)i∈[�],b∈{0,1}], and Pk′ =
[N, g3, (T

′
i,b)i∈[�],b∈{0,1}] and starts the interaction with A on input Pk.

Answering Key Query for (y). B returns KeyGen(Msk,y).

Answering Challenge Query for (x0,x1). The challenge is created by B by
picking random η ∈ {0, 1} and running Encrypt(Pk′,xη).

This concludes the description of algorithm B. Now suppose T ∈ Gp1p3 , and
thus it can be written as T = h1 ·h3 for h1 ∈ Gp1 and h3 ∈ Gp3 . This implies that
Pk received in input by A in the interaction with B has the same distribution as
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Game GBadQ(f, k)
Setup. Like in GPK. That is, C chooses a description of a bilinear group I = (N =
p1p2p3p4, G,GT , e) ← G(1λ) with known factorization and random g1 ∈ Gp1 , g2 ∈
Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 and sets g12 = g1 · g2. For each i ∈ [�] and b ∈ {0, 1}, C
chooses random ti,b ∈ ZN and Ri,b ∈ Gp3 and sets T ′

i,b = g
ti,b
1 · Ri,b and Ti,b =

g
ti,b
2 ·Ri,b. Then C sets Pk = [N, g3, (Ti,b)i∈[�],b∈{0,1}], Pk′ = [N, g3, (T

′
i,b)i∈[�],b∈{0,1}],

and Msk = [g12, g4, (ti,b)i∈[�],b∈{0,1}]. Finally, C sends Pk to A.
Answering Key-Query for y = 〈y1, . . . , y�〉. C answers the first k queries in the
following way.

– If yf 
= �, C returns a key whose Gp1 parts is random. More specifically, C chooses,
for each i ∈ Sy, random Wi ∈ Gp4 , random Ci ∈ Gp1 and random ai ∈ ZN under

the constraint that
∑

i∈Sy
ai = 0 and sets Yi = Ci · g

ai/ti,yi
2 ·Wi.

– If yf = � then C returns the output of KeyGen(y,Msk).

The remaining q − k queries are answered by running KeyGen(y,Msk).
Answering Challenge Query for (x0,x1). C chooses random s ∈ ZN and η ∈
{0, 1} and sets x = xη. For each i ∈ [f − 1] such that x0,i 
= x1,i, C chooses random
Xi ∈ Gp1p3 . Then, for each remaining i, C chooses random Zi ∈ Gp3 and sets Xi =

T
′s
i,xi
· Zi. C returns the tuple (Xi)i∈[�].

Winning Condition. Like in GReal.

Fig. 2. A formal description of game GBadQ(f, k)

in GReal. Moreover, by writing A13 as A13 = ĥ1 · ĥ3 for ĥ1 ∈ Gp1 and ĥ3 ∈ Gp3
which is possible since by assumption A13 ∈ Gp1p3 , we notice that that Pk and

Pk′ are as in the hypothesis of Remark 2 (with g1 = h1 and ĝ1 = ĥ1). Therefore
the answers to key queries and the challenge ciphertext given by B to A have
the same distribution as the answers and the challenge ciphertext received by
A in GReal(λ, �). We can thus conclude that, when T ∈ Gp1p3 , C has simulated
GReal(λ, �) with A. Let us discuss now the case T ∈ Gp2p3 . In this case, Pk
provided by B has the same distribution as the public parameters produced by
C in GPK(λ, �). Therefore, C is simulating GPK(λ, �) for A. �

5.2 The Second Step of the Proof

We start the second step of the proof by describing in Figure 2, for 1 ≤ f ≤ �+1
and 0 ≤ k ≤ q, game GBadQ(f, k) between the challenger C and an adversary A
that asks q queries. Not to overburden our notation, we omitted λ and � from
the name of the games. GBadQ(f, k) differs from GPK both in the way in which
key queries are answered and in the way in which the challenge ciphertext is
constructed. Specifically, in GBadQ(f, k) the first k key queries are answered by
distinguishing two cases. Queries for y such that yf = � are answered by running
KeyGen(Msk,y). Instead queries for y such that yf �= � are answered by returning
keys whoseGp1 part is random for all components. Moreover, in GBadQ(f, k), the
Gp1 part of the first f − 1 components of the challenge ciphertext corresponding
to positions in which the two challenges differ are random.
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In the proofs, we will use the shorthand GBadCh(f) to denote the game
GBadQ(f, 0) in which only the challenge ciphertext is modified whereas all the
replies to the key queries are correctly computed. We define GBadQ2(f, k), for
1 ≤ f ≤ � and 0 ≤ k ≤ q, as a game in which the setup phase is like in
GBadQ(f, k), key queries are answered like in GBadQ(f, k) and the challenge
ciphertext is constructed like in GBadQ(f + 1, k).

Observation 1. GPK = GBadQ(1, 0) = GBadCh(1). By definitions of the games.

Observation 2. GBadQ(f, q) = GBadQ2(f, q) for f = 1, . . . , �. From the def-
initions of the two games, it is clear that all key queries are answered in the
same way in both the games and all components Xi for i �= f of the challenge
ciphertext are computed in the same way. Let us now look at Xf and more pre-

cisely to its Gp1 part. In GBadQ(f, q), the Gp1 part of Xf is computed as T
′s
f,xf

which is exactly how it is computed in GBadQ2(f, q) when x0,f = x1,f . On the
other hand, when x0,f �= x1,f , the Gp1 part of Xf is chosen at random. However,
observe that exponents tf,0 mod p1 and tf,1 mod p1 have not appeared in the
answers to key queries since every query has either a � in position f (in which
case position f of the answer is empty) or a non-� value in position f (in which
case the Gp1 part of the position f of the answer is random since k = q). There-
fore, we can conclude that the Gp1 part of the component Xf of the answer to
the challenge query is also random in Gp1 .

Observation 3. GBadQ2(f, 0) = GBadQ(f + 1, 0) for f = 1, . . . , �− 1. Indeed,
in both games all key queries are answered correctly, and the challenge query in
GBadQ2(f, 0) is by definition answered in the same way as in GBadQ(f + 1, 0).

Observation 4. For f = 1, . . . , �−1, if x0,f = x1,f , GBadCh(f) = GBadCh(f+
1). By definition, in GBadCh(f) = GBadQ(f, 0) the f -th component of the chal-
lenge ciphertext is well formed, namely Xf = T

′s
f,xf

· Zf . This is the same in

GBadCh(f + 1) = GBadQ(f + 1, 0) under the condition that x0,f = x1,f .

Observation 5. In GBadCh(� + 1) = GBadQ(� + 1, 0) all adversaries have no
advantage. This follows from the fact that, for positions i such that x0,i �= x1,i,
the Gp1 part of Xi is random. Thus the challenge ciphertext of GBadCh(� + 1)
is independent from η.

Overview of the proof second step. Consider the sequence GPK = GBadCh(1),
GBadCh(2), . . . ,GBadCh(�),GBadCh(�+1) of �+1 experiments. By Observation 5,
if an adversaryA has a non negligible advantage in GPK then it must be the case
that there exists 1 ≤ f ≤ � such that the difference between A’s advantages in
GBadCh(f) and GBadCh(f+1) is non-negligible. Moreover, by Observation 4, for
this to happen it must be the case thatA has non-negligible probability to output
two challenges that differ in the f -th component. Then, if A makes q key queries,
consider the following sequence GBadCh(f) = GBadQ(f, 0) . . .GBadQ(f, q − 1)
GBadQ(f, q) = GBadQ2(f, q) GBadQ2(f, q − 1) . . .GBadQ2(f, 0) = GBadCh(f +
1) of 2q + 1 games. If the difference in advantage between GBadCh(f) and
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GBadCh(f + 1) is non-negligible, then there must exist k such that the differ-
ence in advantage between either GBadQ(f, k) and GBadQ(f, k − 1) or between
GBadQ2(f, k) and GBadQ2(f, k − 1) is non-negligible.

Now it seems that we are stuck as, for all f and k, games GBadQ(f, k − 1)
and GBadQ(f, k) can be distinguished by an adversary A using the following
simple strategy. A prepares two challenges x0 and x1 that coincide in the f -th
component and asks as k-th key query the key Y for a vector y(k) such that
y(k)

f = x0,f = x1,f and Match(x0,y(k) ) = Match(x1,y(k) ) = 1. Let X be the
challenge ciphertext. Now, in GBadQ(f, k−1), the answer Y received by A to its
k-th query is well-formed and thus Test(X,Y ) = 1. Instead in GBadQ(f, k), Y is
random and thus Test(X,Y ) = 0 except with negligible probability. The above
strategy requires the two challenges to coincide in the f -th component. Indeed,
if x0,f �= x1,f then for y(k) to be matching it must the case that yf = � but then
in this case Y is well-formed in both games. This perfectly fits our strategy as we
have to prove that GBadQ(f, k) is indistinguishable from GBadQ(f, k − 1) only
for f for which A has a non-negligible probability of outputting two challenges
that differ in the f -th component. Exactly, the same reasoning holds for GBadQ2.

In the next section we describe a simulator S that takes as input the pair
of integers f and k and an instance of Assumption 2 and, provided that the
adversary does not output two challenges that coincide in the f -th component,
simulates with some non-negligible probability GBadQ(f, k) or GBadQ(f, k − 1)
depending on the nature of the challenge. A similar simulator can be constructed
for games GBadQ2(f, k) and GBadQ2(f, k − 1).

Description of simulator S Input to S. Integers 1 ≤ f ≤ � + 1 and 0 ≤
k ≤ q, and a randomly chosen instance (D,T ) of Assumption 2; recall that

D = (I, A1, A2, A3, A4, A
α
1B4, A

β
1C4) and T = Aαβ1 D4 or random Gp1p4 .

Setup. To simulate the Setup phase S executes the following steps.
1. S sets g1 = A1, g2 = A2, g3 = A3, g4 = A4 and g12 = A1 ·A2.
2. For each i ∈ [�] and b ∈ {0, 1},

S chooses random vi,b ∈ ZN and Ri,b ∈ Gp3 , and sets Ti,b = g
vi,b
2 · Ri,b.

3. S sets Pk = [N, g3, (Ti,b)i∈[�],b∈{0,1}].
4. S picks random ĵ ∈ [�] and b̂ ∈ {0, 1} and sets ĉ = 1− b̂.
5. For each i ∈ [�] \ {̂j} and b ∈ {0, 1}, S chooses random ri,b ∈ ZN and

R′
i,b ∈ Gp3 and sets T ′

i,b = g
ri,b
1 · R′

i,b.
6. S chooses random r̂j,ĉ ∈ ZN and R′

ĵ,ĉ ∈ Gp3 .

S sets T ′
ĵ,ĉ = g

r̂j,ĉ
1 · R′

ĵ,ĉ, T
′
ĵ,b̂

=⊥ and r̂j,b̂ =⊥.

7. S sets Pk′=[N, g3, (T
′
i,b)i∈[�],b∈{0,1}] and Msk=[g12, g4, (ri,b, vi,b)i∈[�],b∈{0,1}].

Notice that the values r̂j,b̂ and T ′
ĵ,b̂

are unspecified and thus Pk′ and Msk are

incomplete. As we shall see below, in answering key queries, S will implicitly
set r̂j,b̂ = 1/β. Here β is the exponent of A1 in Aβ1 · C4 from instance D of
Assumption 2 and we stress that S does not have access to the actual value of
β. S starts the interaction with A on input Pk.
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Answering Key Query for y = 〈y1, . . . , y�〉.

– First k − 1 key queries. We have the following mutually exclusive cases.
Case A.1: yf �= �. In this case, S outputs a key whose Gp1 part is random.
More precisely, S executes the following steps. For each i ∈ Sy, S chooses
random a′′i such that

∑
i∈Sy

a′′i = 0, random Ci ∈ Gp1 , and random Wi ∈
Gp4 . Then, for each i ∈ Sy, S sets Yi = Ci · g

a′′i /vi,yi
2 ·Wi.

Case A.2: yf = �. In this case, S outputs a key that has the same distribu-
tion induced by algorithm KeyGen on input y and Msk. We observe that if
yĵ = ĉ then Msk includes all the ri,yi ’s and vi,yi ’s that are needed. If instead

yĵ = b̂, then Msk is missing r̂j,b̂. In this case S computes Yĵ by using Aβ1 ·C4

from the challenge D of Assumption 2 received in input.
More precisely, for each i ∈ Sy, S picks random Wi ∈ Gp4 and random
a′i, a

′′
i ∈ ZN under the constraint that

∑
i∈Sy

a′i =
∑

i∈Sy
a′′i = 0. Then for

each i �= ĵ, S sets Yi = g
a′i/ri,yi
1 · ga

′′
i /vi,yi

2 · Wi. Moreover, if yĵ = ĉ, S sets

Yĵ = g
a′ĵ/r̂j,ĉ
1 ·ga

′′
ĵ /v̂j,ĉ

2 ·Wĵ otherwise, if yĵ = b̂, S sets Yĵ = (Aβ1 ·C4)
a′ĵ ·ga

′′
ĵ /v̂j,b̂

2 ·
Wĵ = g

a′ĵβ
1 · ga

′′
ĵ /v̂j,b̂

2 · (Ca′ĵ
4 · Wĵ). Notice that this setting implicitly defines

r̂j,b̂ = 1/β which remains unknown to S.
– k-th query. Let y(k) = (y(k)

1 , . . . , y(k)

� ) be the k-th key query.
Case B.1: y(k)

f = �. S performs the same steps of Case A.2.

Case B.2: y(k)

f �= � and y(k)

ĵ �= b̂. In this case, S aborts.

Case B.3: y(k)

f �= � and y(k)

ĵ = b̂. Let S = Sy\{̂j, h}, where h is an index such

that y(k)

h �= �. Such an index h always exists since we assumed that each query
contains at least two non-� entries. Then, for each i ∈ S, S chooses random

Wi ∈ Gp4 and random a′i, a
′′
i ∈ ZN and sets Yi = g

a′i/ri,y(k)
i

1 · g
a′′i /vi,y(k)

i
2 ·Wi.

S then chooses random a′′ĵ ∈ ZN and Wĵ,Wh ∈ Gp4 and sets Yĵ = T ·ga
′′
ĵ /v̂j,b̂

2 ·

Wĵ and Yh = (Aα1B4)
−1/r

h,y
(k)
h ·g

−s′/r
h,y

(k)
h

1 ·g
−(s′′+a′′ĵ )/vh,y

(k)
h

2 ·Wh, where
s′ =

∑
i∈S a′i and s′′ =

∑
i∈S a′′i .

This terminates the description of how S handles the k-th key query.
– Remaining q−k queries. S handles the remaining q−k queries as in Case

A.2, independently from whether yf = � or yf �= �.
More precisely, if yĵ = ĉ then S runs KeyGen on input y and Msk and all the

needed ri,yi ’s and vi,yi ’s are found in Msk. On the other hand, if yĵ = b̂, S
can use Aβ1 · C4 from D.

Answering Challenge Query for (x0,x1). S picks random η ∈ {0, 1} and
sets x = xη. Then S tries to construct the challenge ciphertext by running
algorithm Encrypt on input the challenge vector x, public parameters Pk′ and
by randomizing the Gp1 part of all components Xi for i < f such that x0,i �= x1,i.
However, Pk′ is incomplete since it is missing T ′

ĵ,b̂
and thus S might have to abort.

More precisely, If xĵ = b̂, S aborts. Else (that is, if xĵ = ĉ) S chooses random
s ∈ ZN . For each i ∈ [f − 1] such that x0,i �= x1,i, S sets ri equal to a random
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element in ZN and ri = 1 for all remaining i’s. Then, for each i ∈ [�], S picks
random Zi ∈ Gp3 and sets Xi = T ′sri

i,xi
· Zi, and returns the tuple (Xi)i∈[�].

This ends the description of S.
The simulator S described will be used to prove properties of games GBadQ.

We can modify the simulator S so that, on input f and k, the challenge ciphertext
is constructed by randomizing the Gp1 part also of the f -th component. The so
modified simulator, that we call S2, closely simulates the work of games GBadQ2
and will be used to prove properties of these games.

A Sanity Check. We verify that S cannot test the nature of T and thus break
Assumption 2. Indeed to do so, S should use T to generate a key for y and
ciphertext for x such that Match(x,y) = 1. Then, if T = T1 the Test procedure
will have success; otherwise, it will fail. In constructing the key, S would use T
to construct the ĵ-th component (which forces yĵ = b̂) and then it would need
r̂j,b̂ = 1/β to construct the matching ciphertext. However, S does not have access
to this value as part of the challenge. If we modify Assumption 2 to include such
a value as part of the challenge then the resulting assumption doesn’t hold.

Why We Need Aborts. The aim of S is to use the value T from the challenge
to simulate either GBadQ(f, k− 1) or GBadQ(f, k) and it does so by embedding
T in the ĵ-th component of the reply to k-th key query. Suppose yf �= � and
thus the two games are supposed to differ in the reply to the k-th key query. If
y(k)

ĵ = � then the ĵ-th component is empty. Moreover, if y(k)

ĵ = ĉ then the ĵ-th
component can be computed using 1/r̂j,ĉ which is known to S but independent
from T . Thus in both case S’s plan fails and consequently S aborts (see Case

B.2). Moreover, if xĵ = b̂ then S should use T ′
ĵ,b̂

which is missing from Pk′. Thus
in this case S aborts too.

Notation. We use NotAbortA1,S(f, k) to denote the event that S does not abort
while computing the answer to the k-th query in an interaction withA on input f
and k. This is equivalent to the event that the k-th key query y(k) of adversaryA
is such that y(k)

f = � or y(k)

ĵ = b̂. In addition, we use NotAbortA2,S(f, k) to denote
the event that S does not abort while computing the challenge ciphertext in
an interaction with A on input f and k. This is equivalent to the event that
adversary A outputs challenge vectors x0 and x1 such that xη,̂j = ĉ.

For a game G between the challenger C and the adversary, we modify C so
that C picks ĵ and b̂ just like S does. This modification makes the definitions
of events NotAbortA1,G and NotAbortA2,G meaningful. Notice however that, unlike
the simulator S, C never aborts its interaction with A and that this modification
does not affect A’s view. We write NotAbortA2 as a shorthand for NotAbortA2,GPK.

Lemma 2. For all f, k and A, Prob[NotAbortA1,S(f, k)] ≥ 1
� .

Proof. The probability of NotAbortA1,S(f, k) is at least the probability that

y(k)

ĵ = b̂. Moreover, the view of A up to the k-th key query is independent from

b̂ and ĵ. Now observe that y(k) has at least two non-star entry and, provided that
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ĵ is one of these (which happens with probability at least 2/�), the probability

that y(k)

ĵ = b̂ is 1/2. �

Lemma 3. For all f, k and A, Prob[NotAbortA2,G(f, k)] ≥ 1
2� for G =

GBadQ(f, k).

Proof. NotAbortA2,G(f, k) is the event that y(k)

ĵ �= xη,̂j in the game G played by
the challenger C with A. It is easy to see that the probability that C correctly
guesses ĵ and b̂ such that xη,̂j = ĉ = 1− b̂ is at least 1/(2�), independently from
the view of A. �

Lemma 4. Suppose event NotAbortA1,S(f, k) occurs. If T = T1 then A’s view
up to the Challenge Query in the interaction with S running on input (f, k) is
the same as in GBadQ(f, k − 1). If instead T = T2 then A’s view up to the
Challenge Query in the interaction with S running on input (f, k) is the same
as in GBadQ(f, k).

Moreover, suppose events NotAbortA1,S(f, k) and NotAbortA2,S(f, k) occur. If
T = T1 then A’s total view in the interaction with S running on input (f, k) is
the same as in GBadQ(f, k − 1). If instead T = T2 then A’s total view in the
interaction with S running on input (f, k) is the same as in GBadQ(f, k).

Proof. First observe that Pk has the same distribution as the public parameters
seen by A in both games. The same holds for the answers to the first (k−1) Key
Queries and to the last (q − k) Key Queries. Let us now focus on the answer to
the k-th Key Query. We have two cases:

Case 1: y(k)

f = �. Then the view of A in the interaction with S is independent
from T (see Case B.1) and, on the other hand, by definition, the two games
coincide. Therefore the lemma holds in this case.

Case 2: y(k)

f �= �. Suppose T = T1 = Aαβ1 · D4 and that NotAbortA1,S(f, k)
occurs. Therefore, y(k)

ĵ = b̂ and S’s answer to the k-th key query has the same

distributions as in GBadQ(f, k − 1). Indeed, we have that Yĵ = g
a′ĵ/r̂j,b̂
1 · ga

′′
ĵ /v̂j,b̂

2 ·

D4 ·Wĵ with a′ĵ = α and r̂j,b̂ = 1/β and Yh = g
−(a′ĵ+s

′)/r
h,y

(k)
h

1 · g
−(a′′ĵ +s

′′)/v
h,y

(k)
h

2 ·

(B
−1/r

h,y
(k)
h

4 ·Wh) and thus the a′is and a′′i s are random and sum up to 0.
On the other hand if T is random in Gp1p4 and NotAbortA1,S(f, k) occurs, the

Gp1 parts of the Yi’s are random and thus the answer to the k-th query of A is
distributed as in GBadQ(f, k).

For the second part of the lemma, we observe that the challenge ciphertext
has the same distribution in both games and that, if NotAbortA2,S(f, k) occurs,
S properly constructs the challenge ciphertext. �

Next we define event EA
f as the event that in game GPK, the adversaryA declares

two challenge vectors that differ in the f -th component. When the adversary A
is clear from the context we will simply write Ef .

Next we define event EA
f,G as the event that in game G the adversary A

declares two challenge vectors that differ in the f -th component. When the
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adversary A is clear from the context we will simply write Ef,G. We extend the
definition of Ef,G to include the game played by A against the simulator S. Thus
we denote by EA

f,S(f
′, k) the event that in the interaction between A and S on

input f ′ and k, S does not abort and A declares two challenge vectors that differ
in the f -th component. If A, f ′ and k are clear from the context, we will simply
write Ef,S .

Lemma 5. If Assumption 2 holds, then for k = 1, . . . , q and f = 1, . . . , �+1, and

for all PPT adversaries A,
∣∣∣Prob[EA

f,G]−Prob[EA
f,H ]

∣∣∣ and
∣∣∣Prob[NotAbortA2,G]

−Prob[NotAbortA2,H ]
∣∣∣ are negligible functions of λ, for games G = GBadQ(f, k−

1) and H = GBadQ(f, k).

Proof. We prove the lemma for Ef,G and Ef,H . A similar reasoning holds

for NotAbortA2,G and NotAbortA2,H . For the sake of contradiction, suppose that

Prob[EA
f,G] ≥ Prob[EA

f,H ]+ε for some non-negligible ε. Then we can modify simu-
lator S into algorithm B with a non-negligible advantage in breaking Assumption
2. Algorithm B simply execute S’s code. By Lemma 2 event NotAbort1,S occurs
with probability at least 1/� and in this case B can continue the execution of S’s
code and receive the challenge vectors from A. At this point, B checks whether
they differ in the f -th component. If they do, B outputs 1; else B outputs 0.
It is easy to see that, by Lemma 4, the above algorithm has a non-negligible
advantage in breaking Assumption 2. �

The proof of the following corollary is straightforward from Lemma 5 and Ob-
servations 1-3.

Corollary 1. For all f = 1, . . . , � + 1 and k = 0, . . . , q, and all PPT adver-

saries A, we have that, for H = GBadQ(f, k)
∣∣∣Prob[EA

f,H ] − Prob[EA
f ]
∣∣∣ and∣∣∣Prob[NotAbortA2,H ]− Prob[NotAbortA2 ]

∣∣∣ are negligible.

We define event SuccA(f, k) as

SuccA(f, k) := NotAbortA1,S(f, k) ∧ NotAbortA2,S(f, k) ∧ EA
f,S(f, k). (1)

We are now ready to prove Lemma 6.

Lemma 6. Suppose there exists an adversary A and integers 1 ≤ f ≤ �+1 and

1 ≤ k ≤ q such that
∣∣∣AdvA [G]− AdvA [H ]

∣∣∣ ≥ ε, where G = GBadQ(f, k − 1),

H = GBadQ(f, k) and ε > 0. Then, there exists a PPT algorithm B with AdvB2 ≥
Prob[Ef ] · ε/(2 · �2)− ν(λ), for a negligible function ν.

Proof. Assume without loss of generality that AdvA [G] ≥ AdvA [H ] + ε and
consider the following algorithm B. B uses simulator S as a subroutine and
interacts with A on input integers f and k for which the above inequality holds,
and an instance (D,T ) of Assumption 2. If event SuccA(f, k) does not occur, B
outputs ⊥. Otherwise, B receives A’s output η′ and checks if η = η′ (recall that
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η is the random bit chosen by S in preparing the challenge ciphertext). If η = η′

then B outputs 1; otherwise B outputs 0. Therefore we have

Prob[B outputs 1|T = T1] = Prob[B outputs 1|T = T1 ∧ SuccA(f, k)] · (2)

Prob[SuccA(f, k)|T = T1]

By definition of SuccA(f, k) we have Prob[SuccA(f, k)|T = T1] = Prob[Ef,S ∧
NotAbort1,S ∧ NotAbort2,S |T = T1] = Prob[NotAbort1,S |T = T1] · Prob[Ef,S ∧
NotAbort2,S |NotAbort1,S∧T = T1]. Now observe that event NotAbort1,S is deter-
mined before S uses T and thus Prob[NotAbort1,S |T = T1] = Prob[NotAbort1,S ].
Moreover, by Lemma 4, if event NotAbort1,S occurs and T = T1, the view
of A up to Challenge Query is equal to the view of A in game G and thus
Prob[Ef,S ∧ NotAbort2,S |NotAbort1,S ∧ T = T1] = Prob[Ef,G ∧ NotAbort2,G]

whence Prob[SuccA(f, k)|T = T1] = Prob[NotAbort1,S ] · Prob[NotAbort2,G ∧
Ef,G] = Prob[NotAbort1,S ] · Prob[NotAbort2,G] · Prob[Ef,G], where NotAbort2,G
and Ef,G are independent. Finally, if T = T1 and SuccA(f, k) occures, then, by
Lemma 4, A’s view is exactly as in game G, and thus the probability that B out-
puts 1 is equal to the probability that A wins in game G. We can thus rewrite
Eq. 2 as Prob[B outputs 1|T = T1] = Prob[A wins in G] · Prob[NotAbort1,S ] ·
Prob[NotAbort2,G] ·Prob[Ef,G] A similar reasoning yields Prob[B outputs 1|T =
T2] = Prob[A wins in H ] · Prob[NotAbort1,S ] · Prob[NotAbort2,H ] · Prob[Ef,H ]
By using Corollary 1, Lemma 2 and Lemma 3, we can conclude that there
exists a negligible function ν such that we have AdvB2 = Prob[NotAbort1,S ] ·
Prob[NotAbort2] · Prob[Ef ] ·

(
Prob[A wins in G] − Prob[A wins in H ]

)
− ν(λ)

≥ ε
2�2 · Prob[Ef ]− ν(λ). �

The following Lemma can be proved by referring to simulator S2. We omit further
details since the proof is essentially the same as the one of Lemma 6.

Lemma 7. Suppose there exists an adversary A and integers 1 ≤ f ≤ �+1 and

1 ≤ k ≤ q such that
∣∣∣AdvA [G]− AdvA [H ]

∣∣∣ ≥ ε, where G = GBadQ2(f, k − 1),

H = GBadQ2(f, k) and ε > 0. Then, there exists a PPT algorithm B with
AdvB2 ≥ Prob[Ef ] · ε/(2 · �2)− ν(λ), for a negligible function ν.

The Advantage of A in GPK. We prove that, under Assumption 2, ev-
ery PPT adversary A has a negligible advantage in GPK = GBadCh(1) by
proving that it is computationally indistinguishable from GBadCh(� + 1) that,
by Observation 5, gives no advantage to any adversary. Proof. Let EA

f,f ′

denote the event that during the execution of GBadCh(f ′) adversary A out-
puts two challenge vectors that differ in the f -th component. For an event
E, we define the advantage AdvA[G|E] of A in G conditioned on event E as
AdvA[G|E] = Prob[A wins in game G|E]− 1

2 .

Observation 6. For all PPT adversaries A and all 1 ≤ f ≤ �, we have that
AdvA[GBadCh(f)|¬Ef,f ] = AdvA[GBadCh(f + 1)|¬Ef,f+1].
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Proof. By definition of GBadCh, if the challenge vectors coincide in the f -th
component, then A’s view in GBadCh(f) and GBadCh(f + 1) are the same. �

Observation 7. For all PPT adversaries A and all 1 ≤ f ≤ �, we have that
Prob[EA

f,f ] = Prob[EA
f,f+1].

Proof. The view of A in GBadCh(f) up to the Challenge Query is independent
from f . �

Therefore we can set Prob[EA
f,f ] = Prob[EA

f,1] = Prob[EA
f ]. �

Lemma 8. If Assumption 2 holds, then, for any PPT adversary A, AdvA[GPK]
is negligible. Specifically, if there is an adversary A with AdvA[GPK] = ε then

there exists an adversary B against Assumption 2 such that AdvB2 ≥ ε2

2q�4 − ν(λ),
for some negligible function ν.

Let A be a PPT adversary such that AdvA[GPK] ≥ ε. Since GPK = GBadCh(1)
and AdvA[GBadCh(�+ 1)] = 0 there must exist f ∈ [�] such that∣∣∣AdvA[GBadCh(f)]− AdvA[GBadCh(f + 1)]

∣∣∣ ≥ ε′ = ε/�. (3)

Now recall that GBadCh(f) = GBadQ(f, 0) and GBadCh(f +1) = GBadQ2(f, 0).

Thus, there exists k, 1 ≤ k ≤ q such that
∣∣∣AdvA[G]− AdvA[H ]

∣∣∣ ≥ ε′/(2q) where
G = GBadQ(f, k) and H = GBadQ(f, k − 1) or where G = GBadQ2(f, k) and
H = GBadQ2(f, k− 1). Then by Lemma 6, in the former case, and by Lemma 7
in the latter, we can construct an adversary B against Assumption 2, such that
AdvB2 ≥ ε

4q�3 · Prob[Ef ] − ν(λ) Now it remains to estimate Prob[Ef ]. Notice

that we can write AdvA[GBadCh(f)] = Prob[Ef,f ] · AdvA[GBadCh(f)|Ef,f ] +
Prob[¬Ef,f ]·AdvA[GBadCh(f)|¬Ef,f ]. and AdvA[GBadCh(f+1)] = Prob[Ef,f+1]

·AdvA[GBadCh(f +1)|Ef,f+1]+Prob[¬Ef,f+1] ·AdvA[GBadCh(f +1)]|¬Ef,f+1].
and, by combining Equation 3 and Observations 6 and 7, we obtain Prob[Ef ] ·∣∣∣AdvA[GBadCh(f)|Ef,f ]− AdvA[GBadCh(f + 1)|Ef,f+1]

∣∣∣ ≥ ε′. Since no advan-

tage is greater than 1/2, we can conclude that Prob[Ef ] ≥ 2 · ε′ and thus B as

advantage AdvB2 ≥ ε2

2q�4 − ν(λ)

5.3 Wrapping Up

By combining Lemma 1 and Lemma 8 we obtain our main result.

Theorem 8. If Assumption 1 and 2 hold, then the HVE scheme described in
Section 4 is secure (in the sense of Definition 1).

6 Reductions

In this section we show how to construct an encryption scheme for the class of
Boolean predicates that can be expressed as a k-CNF or k-DNF formula and
disjunctions over binary variables from an HVE scheme.



Fully Secure Hidden Vector Encryption 119

Reducing k-CNF to HVE. We consider formulae Φ in k-CNF, for constant k,
over n variables in which each clause C ∈ Φ contains exactly k distinct variables.
We call such a clause admissible and denote by Cn the set of all admissible clauses
over the n variables x1, . . . , xn and set Mn = |C|. Notice that Mn = Θ(nk).
We also fix a canonical ordering C1, . . . , CMn of the clauses in Cn. Let H =
(SetupH,KeyGenH,EncryptH,TestH) be an HVE scheme and construct a k-CNF
scheme kCNF = (SetupkCNF, KeyGenkCNF,EncryptkCNF,TestkCNF) as follows:

SetupkCNF(1
λ, 1n): The algorithm returns the output of SetupH(1λ, 1Mn).

KeyGenkCNF(Msk, Φ): For a k-CNF formula Φ, the key generation algorithm
constructs vector y ∈ {0, 1, �}Mn by setting, for each i ∈ {1, . . . ,Mn}, yi = 1 if
Ci ∈ Φ; yi = � otherwise. We denote this transformation by y = FEncode(Φ).
Then the key generation algorithm returns SkΦ = KeyGenH(Msk,y).

EncryptkCNF(Pk, z): The algorithm constructs vector x ∈ {0, 1}Mn in the fol-
lowing way: For each i ∈ {1, . . . ,Mn} the algorithms sets xi = 1 if Ci is satisfied
by z; xi = 0 if Ci is not satisfied by z. We denote this transformation by
x = AEncode(z). Then the encryption algorithm returns Ct = EncryptH(Pk,x).

TestkCNF(SkΦ,Ct): The algorithm returns the output of TestH(SkΦ,Ct).
Correctness. It follows from the observation that for tuple (Φ, z), we have that
Match(AEncode(z),FEncode(Φ)) = 1 if and only if Satisfy(Φ, z) = 1.
Security. Let A be an adversary for kCNF that tries to break the scheme for
n variables and consider the following adversary B for H that uses A as a sub-
routine and tries to break a H with � = Mn by interacting with challenger C. B
receives a Pk for H and passes it to A Whenever A asks for the key for formula
Φ, B constructs y = FEncode(Φ) and asks C for a key Sky for y and returns it
to A. When A asks for a challenge by providing truth assignments z0 and z1, B
simply computes x0 = AEncode(z0) and x1 = AEncode(z1) and gives the pair
(x0,x1) to C. B then returns the challenge ciphertext obtained from C to A.
Finally, B outputs A’s guess.

First, B’s simulation is perfect. Indeed, we have that if for all A’s queries Φ
we have that Satisfy(Φ, z0) = Satisfy(Φ, z1), then all B’s queries y to C also have
the property Match(y,x0) = Match(y,x1). Thus B’s advantage is the same as
A’s. By combining the above reduction with our constructions for HVE:

Theorem 9. For any constant k > 0, if Assumption 1 and 2 hold for generator
G then there exists a secure encryption scheme for the class of predicates that
can be represented by k-CNF formulae.

Reducing Disjunctions to HVE. In this section we consider the class of
Boolean predicates that can be expressed as a single disjunction. We assume
without loss of generality that a disjunction does not contain a variable and its
negated. Let H = (SetupH,KeyGenH,EncryptH,TestH) be an HVE scheme and
construct the predicate-only scheme ∨ = (Setup∨, KeyGen∨,Encrypt∨,Test∨) for
disjunctions in the following way:

Setup∨(1λ, 1n): the algorithm returns the output of SetupH(1λ, 1n).
KeyGen∨(Msk, C): For a clause C, the key generation algorithm constructs

vector y ∈ {0, 1, �}n in the following way. Let w be a truth assignment to the n
variables that does not satisfy clause C. For each i ∈ {1, . . . , n}, the algorithms
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sets yi = wi if the i-th variable appears in C; yi = � otherwise. We denote this
transformation by y = CEncode(C). The output is SkC = KeyGenH(Msk,y).

Encrypt∨(Pk, z): The encryption algorithm returns Ct = EncryptH(Pk, z).
Test∨(SkC ,Ct): The algorithm returns 1− TestH(SkC ,Ct).

Correctness. It follows from the observation that for a clause C and assignment
z, Satisfy(C, z) = 1 if and only if Match(CEncode(C), z) = 0.

Security. If H is secure then ∨ is secure. In particular, notice that if for A’s
query C we have that Satisfy(C, z0) = Satisfy(C, z1) = ξ ∈ {0, 1}, then for B’s
query y = CEncode(C) to C we have that Match(y, z0) = Match(y, z1) = 1− ξ.

Theorem 10. If Assumption 1 and 2 hold for generator G then there exists a
secure encryption scheme for disjunctions.

Reducing k-DNF to k-CNF. We observe that if Φ is a predicate repre-
sented by a k-DNF formula over binary variables then its negation Φ̄ can be
represented by a k-CNF formula. Therefore let kCNF = (SetupkCNF,KeyGenkCNF,
EncryptkCNF,TestkCNF) and consider the following scheme kDNF = (SetupkDNF,
KeyGenkDNF,EncryptkDNF,TestkDNF). The setup algorithm SetupkDNF is the same
as SetupkCNF. The key generation algorithm SetupkDNF for predicate Φ repre-
sented by a k-DNF simply invokes the key generation algorithm SetupkCNF for
Φ̄ that can be represented by a k-CNF formula. The encryption algorithm
EncryptkDNF is the same as EncryptkCNF. The test algorithm TestkDNF on input
ciphertext Ct and key for k-DNF formula Φ (that is actually a key for k-CNF
formula Φ̄) thus TestkCNF on Ct and the key and complements the result. Cor-
rectness and security can be easily argued as for Disjunctions. By combining the
above reduction with the construction given by Theorem 9.

Theorem 11. If Assumption 1 and 2 hold for generator G then there exists a
secure encryption scheme for k-DNF formulae.
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Abstract. We present efficient Identity-Based Encryption (IBE) and
signature schemes under the Symmetric External Diffie-Hellman (SXDH)
assumption in bilinear groups. In both the IBE and the signature schemes,
all parameters have constant numbers of group elements, and are shorter
than those of previous constructions based on Decisional Linear (DLIN)
assumption. Our constructions use both dual system encryption (Waters,
Crypto ’09) and dual pairing vector spaces (Okamoto and Takashima,
Pairing ’08, Asiacrypt ’09). Specifically, we show how to adapt the re-
cent DLIN-based instantiations of Lewko (Eurocrypt ’12) to the SXDH
assumption. To our knowledge, this is the first work to instantiate either
dual system encryption or dual pairing vector spaces under the SXDH
assumption.

1 Introduction

Identity-Based Encryption. The idea of using a user’s identity as her public
encryption key, and thus eliminating the need for a public key certificate, was
conceived by Shamir [34]. Such a primitive is known as Identity-Based Encryp-
tion (IBE), which has been extensively studied particularly over the last decade.
We now have constructions of IBE schemes from a large class of assumptions,
namely pairings, quadratic residuosity and lattices, starting with the early con-
structions in the random oracle model [9, 16, 22], to more recent constructions
in the standard model [14, 7, 8, 15, 2].

Short IBE. It is desirable that an IBE scheme be as efficient as possible, if
it were to have any impact on practical applications. Ideally, we would like to
have constant-size public parameters, secret keys, and ciphertexts. Moreover, the
scheme should ideally achieve full security, namely to be resilient even against
an adversary that adaptively selects an identity to attack based on previous
secret keys. The first fully secure efficient IBE with constant-size public param-
eters and ciphertexts under standard assumptions was obtained by Waters [37]
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c© Springer-Verlag Berlin Heidelberg 2013



Shorter IBE and Signatures via Asymmetric Pairings 123

in 2009; this scheme relied on the Decisional Bilinear Diffie-Hellman (DBDH)
and Decisional Linear (DLIN) assumptions. Since then, Lewko and Waters [26]
and Lewko [25] gave additional fully secure efficient IBE schemes that achieve
incomparable guarantees. Prior to these works, all known IBEs (in the standard
model) were either selectively secure [14, 7, 15, 2], or require long parameters
[8, 36, 15, 2], or were based on less standard assumptions that depended on the
query complexity of the adversary [21]. From a practical stand-point, Waters’
fully secure IBE [37] is still not very efficient as it has relatively large cipher-
texts and secret keys, i.e., eleven and nine group elements,1 respectively. Lewko’s
scheme [25] improved on both of these parameters at the cost of larger public
parameters and master key.

Shorter IBE? In his work, Waters also suggested obtaining even more efficient
IBE schemes by turning to asymmetric bilinear groups:

Using the SXDH assumption we might hope to shave off three group
elements from both ciphertexts and private keys.

In fact, improving the efficiency of a scheme using asymmetric pairings was first
observed by Boneh, Boyen and Shacham [10]. At a fixed security level, group
elements in the asymmetric setting are smaller and pairings can be computed
more efficiently [19]. (Estimated bit sizes of group elements for bilinear group
generators are given in Appendix A.) Informally, the SXDH assumption states
that there are prime-order groups (G1, G2, GT ) that admits a bilinear map e :
G1×G2 → GT such that the Decisional Diffie-Hellman (DDH) assumption holds
in both G1 and G2. The SXDH assumption was formally defined by Ballard et al.
[4] in their construction of a searchable encryption scheme, and has since been
used in a number of different contexts, including secret-handshake schemes [3],
anonymous IBE [17], continual leakage-resilience [12], and most notably, Groth-
Sahai proofs [24]. Evidence for the validity of this assumption were presented in
the works of Verheul [35] and Galbraith and Rotger [20].

1.1 Our Contributions

In this work, we present a more efficient IBE scheme under the SXDH assump-
tion; our scheme also achieves anonymity.2 The ciphertexts and secret keys con-
sist of only five and four group elements, respectively. That is, we shave off two
group elements from both ciphertexts and private keys in Lewko’s DLIN-based
IBE [25]. See Table 1 for a summary of comparisons between existing and our
IBE schemes, where λ is the security parameter. Applying Naor’s transform
[9, 11] to our scheme, we also obtain an efficient signature scheme.

1 Here, we do not separately consider group elements from target groups of pairings,
although a ciphertext typically has a group element that is from an associated target
group.

2 It follows from our analysis that Lewko’s IBE [25] is also anonymous, although this
was not pointed out in her paper.
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Table 1. Comparison between existing and our IBE schemes

Source # PP # MK # SK # CT # pairing anonymity assumptions

Waters [36] O(λ) 1 2 3 2 No DBDH

Waters [37] 13 5 9 11 9 No DLIN,DBDH

Lewko [25] 25 30 6 7 6 Yes DLIN

RCS [33] 9 7 7 9 7 No XDH, DLIN, DBDH

Ours 9 9 4 5 4 Yes SXDH

Our Approach. As with all known fully secure efficient IBEs, our construction
relies on Waters’ dual system encryption framework [37]. Following Lewko’s
DLIN-based IBE [25], we instantiate dual system encryption under the SXDH
assumption via dual pairing vector spaces [29, 30], which is a technique to achieve
orthogonality in prime-order groups. This is the first work to instantiate either
dual system encryption or dual pairing vector spaces under the SXDH assump-
tion. We proceed to highlight several salient features of our IBE scheme in rela-
tion to Lewko’s IBE [25]:

– Our scheme has an extremely simple structure, similar to the selectively
secure IBE of Boneh and Boyen [7], as well as the fully secure analogues
given by Lewko and Waters [26] and Lewko [25].

– By shifting from the DLIN assumption to the simpler SXDH assumption,
we obtain IBE schemes that are syntactically simpler and achieve shorter
parameters. Specifically, Lewko’s IBE scheme [25] relies on 6 basis vectors
to simulate the subgroup structure in the Lewko-Waters IBE scheme [26],
whereas our construction uses only 4 basis vectors. This means that we can
use a 4-dimensional vector space instead of a 6-dimensional one. As a result,
we save two group elements in both the secret key and the ciphertext, that
is, by a factor of 1/3. The savings for the public parameters and master
key is even more substantial, because we use only two basis vectors for the
main scheme, as opposed to four basis vectors in Lewko’s scheme. In both
our scheme and in Lewko’s, the remaining two basis vectors are used for the
semi-functional components in the proof of security.

– The final step of the proof of security (after switching to semi-functional
secret keys and ciphertexts) is different from that of Lewko’s. We rely on an
information theoretic argument similar to that in [32] instead of computa-
tional arguments.

Finally, we believe that our SXDH instantiations constitute a simpler demon-
stration of the power of dual pairing vector spaces.

Independent Work of Ramanna et al. An independent work of Ramanna, Chat-
terjee and Sarkar [33] also demonstrated how to obtain more efficient fully secure
IBE via asymmetric pairings. Similar to our work, their constructions rely on
dual system encryption; however, they do not make use of dual pairing vector
spaces. Our constructions achieve shorter ciphertexts and secret keys than their
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work, while relying on a single assumption (whereas their construction relies on
a triplet of assumptions). Moreover, our scheme achieves anonymity; theirs does
not. Finally, they obtain their schemes via careful optimizations, whereas our
scheme is derived via a more general framework.

Outline. In Section 2, we present the preliminaries, including security definitions
for IBE, our security assumptions, and an overview of dual pairing vector spaces.
In Section 3, we present the subspace assumptions based on SXDH. Finally, we
present our IBE and signature schemes in Sections 4 and 5.

2 Preliminaries

In this section, we first recall the definitions of security for IBE, and signatures.
We then present a few backgrounds related to groups with efficiently computable
bilinear maps and define the Symmetric External Diffie-Hellman assumption.

2.1 Identity-Based Encryption and Signatures

Identity-Based Encryption. An Identity-Based Encryption [9] scheme consists of
four algorithms: (Setup,KeyGen,Enc,Dec):

– Setup(λ) → PP,MK The setup algorithm takes in the security parameter λ,
and outputs the public parameters PP, and the master key MK.

– KeyGen(PP,MK, ID) → SKID The key generation algorithm takes in the
master key MK, and an identity ID, and produces a secret key SKID for
that identity.

– Enc(PP, ID,M) → CTID The encryption algorithm takes in an identity ID,
and a message M , and outputs a ciphertext CTID encrypted under that
identity.

– Dec(PP, SKID,CTID) → M The decryption algorithm takes in a secret key
SKID, and a ciphertext CTID, and outputs the message M when the CTID
is encrypted under the same ID.

Anonymous IBE. The security notion of anonymous IBE was formalized by
[1], which is defined by the following game, played by a challenger B and an
adversary A.

– Setup The challenger B runs the setup algorithm to generate PP and MK. It
gives PP to the adversary A.

– Phase 1 The challenger A adaptively requests keys for identities ID, and
is provided with corresponding secret keys SKID, which the challenger B
generates by running the key generation algorithm.

– Challenge The adversary A gives the challenger B two challenge pairs
(M0, ID

∗
0) and (M1, ID

∗
1). The challenge identities must not have been

queried in Phase 1. The challenger sets β ∈ {0, 1} randomly, and encrypts
Mβ under ID∗

β by running the encryption algorithm. It sends the ciphertext
to the adversary A.
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– Phase 2 This is the same as Phase 1, with the added restriction a secret key
for ID∗

0 , ID
∗
1 cannot be requested.

– Guess The adversary A must output a guess β′ for β.

The advantage AdvIBEA (λ) of an adversary A is defined to be Pr[β′ = β]− 1/2.

Definition 1. An Identity-Based Encryption scheme is secure and anonymous
if all PPT adversaries achieve at most a negligible advantage in the above security
game.

Remark: The security notion of non-anonymous IBE is defined as above with
restriction that ID∗

0 = ID∗
1 .

Signatures. A signature scheme is made up of three algorithms,
(KeyGen, Sign,Verify) for generating keys, signing, and verifying signatures,
respectively.

– KeyGen(1λ) → PK, SK The key generation algorithm takes in the security
parameter λ, and outputs the public key PK, and the secret key SK.

– Sign(SK,M) → σ The signing algorithm takes in the secret key SK, and a
message M , and produces a signature σ for that message.

– Verify(PK, σ,M) → CT The verifying algorithm takes in the public key PK,
and a signature pair (σ,M), and outputs valid or invalid.

The standard notion of security for a signature scheme is called existential un-
forgeability under a chosen message attack [23], which is defined using the fol-
lowing game between a challenger B and an adversary A.

– Setup The challenger B runs the setup algorithm to generate PK and SK. It
gives PK to the adversary A.

– Queries The adversary A adaptively requests for messages M1, . . . ,Mν ∈
{0, 1}∗, and is provided with corresponding signatures σ1, . . . , σν by running
the sign algorithm Sign.

– Output Eventually, the adversary A outputs a pair (M,σ).

The advantage AdvSigA (λ) of an adversary A is defined to be the probability that
A wins in the above game, namely

(1) M is not any of M1, . . . ,Mν ;

(2) Verify(PK, σ,M) outputs valid.

Definition 2. A signature scheme is existentially unforgeable under an adap-
tive chosen message attack if all PPT adversaries achieve at most a negligible
advantage in the above security game.

We assume that for any PPT algorithm A, the probability that A wins in the
above game is negligible in the security parameter λ.
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2.2 Dual Pairing Vector Spaces

Our constructions are based on dual pairing vector spaces proposed by Okamoto
and Takashima [29, 30]. In this paper, we concentrate on the asymmetric version
[32]. We only briefly describe how to generate random dual orthonormal bases.
See [29, 30, 32] for a full definition of dual pairing vector spaces.

Definition 3. “Asymmetric bilinear pairing groups” (q,G1, G2, GT , g1, g2, e) are
a tuple of a prime q, cyclic (multiplicative) groups G1, G2 and GT of order q,
g1 �= 1 ∈ G1, g2 �= 1 ∈ G2, and a polynomial-time computable nondegenerate
bilinear pairing e : G1 ×G2 → GT i.e., e(gs1, g

t
2) = e(g1, g2)

st and e(g1, g2) �= 1.

In addition to referring to individual elements of G1 or G2, we will also consider
“vectors” of group elements. For v = (v1, . . . , vn) ∈ Znq and gβ ∈ Gβ , we write
gvβ to denote a n-tuple of elements of Gβ for β = 1, 2:

gvβ := (gv1β , . . . , gvnβ ).

For any a ∈ Zq and v,w ∈ Znq , we have:

gavβ := (gav1β , . . . , gavnβ ), gv+w
β := (gv1+w1

β , . . . , gvn+wn

β ).

Then we define

e(gv1 , g
w
2 ) :=

n∏
i=1

e(gvi1 , gwi
2 ) = e(g1, g2)

v·w.

Here, the dot product is taken modulo q.

Dual Pairing Vector Spaces. For a fixed (constant) dimension n, we will choose
two random bases B := (b1, . . . , bn) and B∗ := (b∗1, . . . , b

∗
n) of Z

n
q , subject to the

constraint that they are “dual orthonormal”, meaning that

bi · b∗j = 0 (mod q)

whenever i �= j, and

bi · b∗i = ψ (mod q)

for all i, where ψ is a random element of Zq. We denote such algorithm as Dual(·).
Then for generators g1 ∈ G1 and g2 ∈ G2, we have

e(gbi
1 , g

b∗
j

2 ) = 1

whenever i �= j, where 1 here denotes the identity element in GT .
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2.3 SXDH Assumptions

Definition 4. [DDH1: Decisional Diffie-Hellman Assumption in G1] Given a
group generator G, we define the following distribution:

G := (q,G1, G2, GT , g1, g2, e)
R←− G,

a, b, c
R←− Zq,

D := (G; g1, g2, g
a
1 , g

b
1).

We assume that for any PPT algorithm A (with output in {0, 1}),

AdvDDH1
A (λ) :=

∣∣Pr[A(D, gab1 )− Pr[A(D, gab+c1 )]
∣∣ .

is negligible in the security parameter λ.

The dual of above assumption is Decisional Diffie-Hellman assumption in G2

(denoted as DDH2), which is identical to Definitions 4 with the roles of G1 and
G2 reversed. We say that:

Definition 5. The Symmetric External Diffie-Hellman assumption holds if
DDH problems are intractable in both G1 and G2.

2.4 Statistical Indistinguishability Lemma

We require the following lemma from [27] in our security proof.

Lemma 1. Let C := {(x,v)|x · v �= 0,x,v ∈ Znq }. For all (x,v) ∈ C, (r,w) ∈
C, ρ, τ ← Zq, and A

R←− Zn×nq ,

Pr[x(ρA−1) = r ∧ v(τAt) = w] =
1

#C
,

where #C = (qn − 1)(qn − qn−1).

In other words, (ρxA−1) and (τvAt) are uniformly and independently dis-

tributed (i.e., equivalently distributed to (r,w)
R←− Znq × Znq where r · w �= 0,

while Pr[r ·w = 0] = 1/q) when x · v �= 0.

3 Subspace Assumptions via SXDH

In this section, we present Subspace assumptions derived from the SXDH as-
sumption. We will rely on these assumptions later to instantiate our IBE scheme.
These are analogues of the DLIN-based Subspace assumptions given in [25, 31].
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Definition 6. [DS1: Decisional Subspace Assumption in G1] Given a group gen-
erator G(·), define the following distribution:

G := (q,G1, G2, GT , g1, g2, e)
R←− G(1λ),

(B,B∗) R←− Dual(Znq ),

τ1, τ2, μ1, μ2
R←− Zq,

U1 := g
μ1b

∗
1+μ2b

∗
k+1

2 , U2 := g
μ1b

∗
2+μ2b

∗
k+2

2 , . . . , . . . , Uk := g
μ1b

∗
k+μ2b

∗
2k

2 ,

V1 := gτ1b1
1 , V2 := gτ1b2

1 , . . . , Vk := gτ1bk
1 ,

W1 := g
τ1b1+τ2bk+1

1 ,W2 := g
τ1b2+τ2bk+2

1 , . . . ,Wk := gτ1bk+τ2b2k
1 ,

D := (G; g
b∗
1

2 , g
b∗2
2 , . . . , g

b∗k
2 , g

b∗2k+1

2 , . . . , g
b∗
n

2 , gb11 , . . . , gbn
1 , U1, U2, . . . , Uk, μ2),

where k, n are fixed positive integers that satisfy 2k ≤ n. We assume that for
any PPT algorithm A (with output in {0, 1}),

AdvDS1
A (λ) := |Pr[A(D,V1, . . . , Vk) = 1]− Pr[A(D,W1, . . . ,Wk) = 1]|

is negligible in the security parameter λ.

For our construction, we only require the assumption for n = 4, k = 2. Further-
more, we do not need to provide μ2 to the distinguisher. Informally, this means
that, given:

τ1, τ2, μ1, μ2
R←− Zq; and U1 := g

μ1b
∗
1+μ2b

∗
3

2 , U2 := g
μ1b

∗
2+μ2b

∗
4

2 ,

the distributions (V1, V2) and (W1,W2) are computationally indistinguishable,
where:

V1 := gτ1b1
1 , V2 := gτ1b2

1 ,

W1 := gτ1b1+τ2b3
1 ,W2 := gτ1b2+τ2b4

1 .

Lemma 2. If the DDH assumption in G1 holds, then the Subspace assumption
in G1 stated in Definition 6 also holds. More precisely, for any adversary A
against the Subspace assumption in G1, there exist probabilistic algorithms B
whose running times are essentially the same as that of A, such that

AdvDS1
A (λ) ≤ AdvDDH1

B (λ).

Proof. We assume there exists a PPT algorithm A breaking the Subspace as-
sumption with non-negligible advantage AdvDS1

A (λ) (for some fixed positive in-
tegers k, n satisfying n ≥ 2k). We create a PPT algorithm B which breaks the
DDH assumption in G1 with non-negligible advantage AdvDS1

A (λ). B is given
g1, g2, g

a
1 , g

b
1, T , where T is either gab1 or T is a uniformly random element of G1.

B first samples random dual orthonormal bases, denoted by f1, . . . ,fn and
f∗
1, . . . ,f

∗
n. From the definition, B chooses vectors f1, . . . ,fn,f

∗
1, . . . ,f

∗
n ran-

domly, subject to the constraints that f i · f∗
j ≡ 0 (mod q) when i �= j, and
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f i · f∗
i ≡ ψ (mod q) for all i from 1 to n, where ψ is a random element of Zq.

Then, B implicitly sets:

b1 := f1 + afk+1, b2 := f2 + afk+2, . . . , bk := fk + af2k,

bk+1 := fk+1, . . . , bn := fn.

B also sets the dual basis as:

b∗1 := f∗
1, b

∗
2 := f∗

2, . . . , b
∗
k := f∗

k,

b∗k+1 := f∗
k+1 − af∗

1, . . . , b
∗
2k := f∗

2k − af∗
k,

b∗2k+1 := f∗
2k+1, . . . , b

∗
n := f∗

n.

We observe that under these definitions, bi · b∗j ≡ 0 (mod q) when i �= j, and
bi · b∗i ≡ ψ (mod q) for all i from 1 to n. We note that B can produce all of

gb11 , . . . , gbn1 (given g1, g
a
1) as well as g

b∗
1

2 , . . . , g
b∗k
2 and g

b∗2k+1

2 , . . . , g
b∗
n

2 (given g2).

However, B cannot produce g
b∗
k+1

2 , . . . , g
b∗2k
2 (these require knowledge of ga2 ). It is

not difficult to check that b1, . . . , bn and b∗1, . . . , b
∗
n are properly distributed.

Now B creates U1, . . . , Uk by choosing random values μ′
1, μ

′
2 ∈ Zq and setting:

U1 := g
μ′
1b

∗
1+μ

′
2f

∗
k+1

2 := g
(μ′

1+aμ
′
2)b

∗
1+μ

′
2b

∗
k+1

2 .

In other words, B has implicitly set μ1 := μ′
1 + aμ′

2 and μ2 := μ′
2. We note

that these values are uniformly random, and μ2 is known to B. B can then form
U2, . . . , Uk as:

U2 := g
μ′
1b

∗
2+μ

′
2f

∗
k+2

2 , . . . , Uk := g
μ′
1b

∗
k+μ

′
2f

∗
2k

2 .

B implicitly sets τ1 := b, τ2 := c and computes:

T1 := T fk+1 · (gb1)f1 , . . . , Tk := T f2k · (gb1)fk .

If T = gab1 , then these are distributed as V1, . . . , Vk, since

T fk+i · (gb1)fi = gτ1bi
1 .

If T = gab+c1 , then these are distributed as W1, . . . ,Wk, since

T fk+i · (gb1)f i = g
τ1bi+τ2bk+i

1 .

B then gives

D := (G; g
b∗1
2 , g

b∗
2

2 , . . . , g
b∗
k

2 , g
b∗
2k+1

2 , . . . , g
b∗n
2 , gb1

1 , . . . , gbn1 , U1, U2, . . . , Uk, μ2)

to A, along with T1, . . . , Tk. B can then leverage A’s advantage AdvDS1
A (λ) in dis-

tinguishing between the distributions (V1, . . . , Vk) and (W1, . . . ,Wk) to achieve
an advantage AdvDDH1

B (λ) in distinguishing T = gab1 from T = gab+c1 , hence
violating the DDH assumption in G1.

The dual of the Subspace assumption in G1 is Subspace assumption in G2 (de-
noted as DS2), which is identical to Definitions 6 with the roles of G1 and G2

reversed. Similarly, we can prove that the Subspace assumption holds in G2 if
the DDH assumption in G2 holds.
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4 Identity-Based Encryption

We now present our IBE construction along with our proof of its security under
the SXDH assumption.

Construction. We begin with our IBE scheme:

– Setup(1λ) This algorithm takes in the security parameter λ and generates
a bilinear pairing G := (q,G1, G2, GT , g1, g2, e) for sufficiently large prime

order q. The algorithm samples random dual orthonormal bases, (D,D∗) R←−
Dual(Z4

q). Let d1, . . . ,d4 denote the elements of D and d∗
1, . . . ,d

∗
4 denote the

elements of D∗. It also picks α
R←− Zq and outputs the public parameters as

PP := {G; e(g1, g2)
αd1·d∗

1 , gd1
1 , gd2

1 },

and the master key

MK := {α, gd
∗
1

2 , g
d∗
2

2 }.

– KeyGen(PP,MK, ID) This algorithm picks r
R←− Zq. The secret key is com-

puted as

SKID := g
(α+rID)d∗

1−rd∗
2

2 .

– Enc(PP, ID,M) This algorithm picks s
R←− Zq and forms the ciphertext as

CTID :=
{
C0 := M · (e(g1, g2)αd1·d∗

1 )s, C1 := gsd1+sIDd2
1

}
.

– Dec(PP, SKID,CTID) This algorithm computes the message as

M := C0/e(C1, SKID).

Correctness. Correctness is straight-forward:

C0/e(C1, SKID) = M · (e(g1, g2)αd1·d∗
1 )s/e(gsd1+sIDd2

1 , g
(α+rID)d∗

1−rd∗
2

2 )

= M · (e(g1, g2)αd1·d∗
1 )s/

(
e(g1, g2)

αsd1·d∗
1

· e(g1, g2)srIDd1·d∗
1−srIDd2·d∗

2
)

= M · (e(g1, g2)αd1·d∗
1 )s/e(g1, g2)

αsd1·d∗
1 = M.

Proof of Security. We prove the following theorem by showing a series of lemmas.

Theorem 1. The IBE scheme is fully secure and anonymous under the Sym-
metric External Diffie-Hellman assumption. More precisely, for any adversary A
against the IBE scheme, there exist probabilistic algorithms B0,B1, . . . ,Bν whose
running times are essentially the same as that of A, such that

AdvIBEA (λ) ≤ AdvDDH1
B0

(λ) +

ν∑
κ=1

AdvDDH2
Bκ

(λ) +
ν

q

where ν is the maximum number of A’s key queries.
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We adopt the dual system encryption methodology by Waters [37] to prove the
security of our IBE scheme. We use the concepts of semi-functional ciphertexts
and semi-functional keys in our proof and provide algorithms that generate them.
We note that these algorithms are only provided for definitional purposes, and
are not part of the IBE system. In particular, they do not need to be efficiently
computable from the public parameters and the master key.

KeyGenSF. The algorithm picks random values r, t3, t4 ∈ Zq and forms a semi-
functional secret key as

SK
(SF )
ID := g

(α+rID)d∗
1−rd∗

2+t3d
∗
3+t4d

∗
4

2 .

EncryptSF. The algorithm picks random values random values s, z3, z4 ∈ Zq
and forms a semi-functional ciphertext as

CT
(SF )
ID :=

{
C0 := M · (e(g1, g2)αd1·d∗

1 )s, C1 := gsd1+sIDd2+z3d3+z4d4
1

}
.

We observe that if one applies the decryption procedure with a semi-functional
key and a normal ciphertext, decryption will succeed because d∗

3,d
∗
4 are orthogo-

nal to all of the vectors in exponent of C1, and hence have no effect on decryption.
Similarly, decryption of a semi-functional ciphertext by a normal key will also
succeed because d3,d4 are orthogonal to all of the vectors in the exponent of
the key. When both the ciphertext and key are semi-functional, the result of
e(C1, SKID) will have an additional term, namely

e(g1, g2)
t3z3d

∗
3·d3+t4z4d

∗
4·d4 = e(g1, g2)

(t3z3+t4z4)ψ.

Decryption will then fail unless t3z3 + t4z4 ≡ 0 mod q. If this modular equation
holds, we say that the key and ciphertext pair is nominally semi-functional.

For a probabilistic polynomial-time adversary A which makes ν key queries
ID1, . . . , IDν , our proof of security consists of the following sequence of games
between A and a challenger B.

– GameReal: is the real security game.
– Game0: is the same as GameReal except that the challenge ciphertext is semi-

functional.
– Gameκ: for κ from 1 to ν, Gameκ is the same as Game0 except that the first

κ keys are semi-functional and the remaining keys are normal.
– GameFinal: is the same as Gameν , except that the challenge ciphertext is a

semi-functional encryption of a random message in GT and under a random

identity in Zq. We denote the challenge ciphertext in GameFinal as CT
(R)
IDR

.

We prove following lemmas to show the above games are indistinguishable by
following an analogous strategy of [25]. Our main arguments are computational
indistinguishability (guaranteed by the Subspace assumptions, which are implied
by the SXDH assumption) and statistical indistinguishability. The advantage
gap between GameReal and Game0 is bounded by the advantage of the Subspace
assumption in G1. Additionally, we require a statistical indistinguishability ar-
gument to show that the distribution of the challenge ciphertext remains the
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same from the adversary’s view. For κ from 1 to ν, the advantage gap between
Gameκ−1 and Gameκ is bounded by the advantage of Subspace assumption in
G2. Similarly, we require a statistical indistinguishability argument to show that
the distribution of the the κ-th semi-functional key remains the same from the
adversary’s view. Finally, we statistically transform Gameν to GameFinal in one
step, i.e., we show the joint distributions of

(PP,CT
(SF )
ID∗

β
, {SK(SF )

ID�
}�=1,...,ν) and (PP,CT

(R)
IDR

, {SK(SF )
ID�

}�=1,...,ν)

are equivalent for the adversary’s view.
We let AdvGameReal

A denote an adversary A’s advantage in the real game.

Lemma 3. Suppose that there exists an adversary A where |AdvGameReal

A (λ) −
AdvGame0

A (λ)| = ε. Then there exists an algorithm B0 such that AdvDS1
B0

(λ) = ε,
with k = 2 and n = 4.

Proof. B0 is given

D := (G; g
b∗1
2 , g

b∗
2

2 , gb11 , . . . , gb4
1 , U1, U2, μ2).

along with T1, T2. We require that B0 decides whether T1, T2 are distributed as
gτ1b1
1 , gτ1b2

1 or gτ1b1+τ2b3
1 , gτ1b2+τ2b4

1 .
B0 simulates GameReal or Game0 with A, depending on the distribution of

T1, T2. To compute the public parameters and master secret key, B0 first chooses
a random invertible matrix A ∈ Z2×2

q (A is invertible with overwhelming proba-
bility if it is uniformly picked). We implicitly set dual orthonormal bases D,D∗

to:

d1 := b1, d2 := b2, (d3,d4) := (b3, b4)A,

d∗
1 := b∗1, d∗

2 := b∗2, (d∗
3,d

∗
4) := (b∗3, b

∗
4)(A

−1)t.

We note that D,D∗ are properly distributed, and reveal no information about A.

Moreover, B cannot generate g
d∗
3

2 , g
d∗
4

2 , but these will not be needed for creating
normal keys. B0 chooses random value α ∈ Zq and computes e(g1, g2)

αd1·d∗
1 . It

then gives A the public parameters

PP := {G; e(g1, g2)
αd1·d∗

1 , gd1
1 , gd2

1 }.

The master key

MK := {α, gd
∗
1

2 , g
d∗
2

2 }
is known to B0, which allows B0 to respond to all of A’s key queries by calling
the normal key generation algorithm.

A sends B0 two pairs (M0, ID
∗
0) and (M1, ID

∗
1). B0 chooses a random bit

β ∈ {0, 1} and encrypts Mβ under ID∗
β as follows:

C0 := Mβ

(
e(T1, g

b∗
1

2 )
)α

= Mβ

(
e(g1, g2)

αd1d
∗
1

)s
, C1 := T1(T2)

ID∗
β ,
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where B0 has implicitly set s := τ1. It gives the ciphertext CTID∗
β
to A.

Now, if T1, T2 are equal to gτ1b1
1 , gτ1b2

1 , then this is a properly distributed
normal encryption of Mβ. In this case, B0 has properly simulated GameReal. If

T1, T2 are equal to gτ1b1+τ2b3
1 , gτ1b2+τ2b4

1 instead, then the ciphertext element C1

has an additional term of

τ2b3 + ID∗
βτ2b4

in its exponent. The coefficients here in the basis b3, b4 form the vector τ2, ID
∗
βτ2.

To compute the coefficients in the basis d3,d4, we multiply the matrix A−1

by the transpose of this vector, obtaining τ2A
−1(1, ID∗

β)
t. Since A is random

(everything else given to A has been distributed independently of A), these
coefficients are uniformly random from Lemma 1. Therefore, in this case, B0 has
properly simulated Game0. This allows B0 to leverage A’s advantage ε between
GameReal and Game0 to achieve an advantage ε against the Subspace assumption
in G1, namely AdvDS1

B0
(λ) = ε. 
�

Lemma 4. Suppose that there exists an adversary A where |AdvGameκ−1

A (λ) −
AdvGameκ

A (λ)| = ε. Then there exists an algorithm Bκ such that AdvDS2
Bκ

(λ) =
ε− 1/q, with k = 2 and n = 4.

Proof. Bκ is given

D := (G; gb1
1 , gb2

1 , g
b∗
1

2 , . . . , g
b∗
4

2 , U1, U2, μ2)

along with T1, T2. We require that Bκ decides whether T1, T2 are distributed as

g
τ1b

∗
1

2 , g
τ1b

∗
2

2 or g
τ1b

∗
1+τ2b

∗
3

2 , g
τ1b

∗
2+τ2b

∗
4

2 .
Bκ simulates Gameκ or Gameκ−1 with A, depending on the distribution of

T1, T2. To compute the public parameters and master secret key, Bκ chooses a
random matrix A ∈ Z2×2

q (with all but negligible probability, A is invertible).
We then implicitly set dual orthonormal bases D,D∗ to:

d1 := b1, d2 := b2, (d3,d4) := (b3, b4)A,

d∗
1 := b∗1, d∗

2 := b∗2, (d∗
3,d

∗
4) := (b∗3, b

∗
4)(A

−1)t.

We note that D,D∗ are properly distributed, and reveal no information about
A. Bκ chooses random value α ∈ Zq and compute e(g1, g2)

αd1·d∗
1 . B can gives A

the public parameters

PP := {G; e(g1, g2)
αd1·d∗

1 , gd1
1 , gd2

1 }.

The master key

MK := {α, gd
∗
1

2 , g
d∗
2

2 }

is known to Bκ, which allows Bκ to respond to all of A’s key queries by calling

the normal key generation algorithm. Since Bκ also knows g
d∗
3

2 and g
d∗
4

2 , it can
easily produce semi-functional keys. To answer the first κ− 1 key queries that A
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makes, Bκ runs the semi-functional key generation algorithm to produce semi-
functional keys and gives these to A. To answer the κ-th key query for IDκ, Bκ
responds with:

SKIDκ := (g
b∗
1

2 )αT IDκ
1 (T2)

−1.

This implicitly sets r := τ1. If T1, T2 are equal to g
τ1b

∗
1

2 , g
τ1b

∗
2

2 , then this is a

properly distributed normal key. If T1, T2 are equal to g
τ1b

∗
1+τ2b

∗
3

2 , g
τ1b

∗
2+τ2b

∗
4

2 ,
then this is a semi-functional key, whose exponent vector includes

IDκτ2b
∗
3 − τ2b

∗
4 (1)

as its component in the span of b∗3, b
∗
4. To respond to the remaining key queries,

Bκ simply runs the normal key generation algorithm.
At some point, A sends Bκ two pairs (M0, ID

∗
0) and (M1, ID

∗
1). Bκ chooses a

random bit β ∈ {0, 1} and encrypts Mβ under ID∗
β as follows:

C0 := Mβ

(
e(U1, g

b∗
1

2 )
)α

= Mβ

(
e(g1, g2)

αd1d
∗
1

)s
, C1 := U1(U2)

ID∗
β ,

where Bκ has implicitly set s := μ1. The “semi-functional part” of the exponent
vector here is:

μ2b3 + ID∗μ2b4. (2)

We observe that if ID∗
β = IDκ (which is not allowed), then vectors 1 and 2 would

be orthogonal, resulting in a nominally semi-functional ciphertext and key pair.
It gives the ciphertext CTID∗

β
to A.

We now argue that since ID∗
β �= IDκ, in A’s view the vectors 1 and 2 are

distributed as random vectors in the spans of d∗
3,d

∗
4 and d3,d4 respectively.

To see this, we take the coefficients of vectors 1 and 2 in terms of the bases
b∗3, b

∗
4 and b3, b4 respectively and translate them into coefficients in terms of the

bases d∗
3,d

∗
4 and d3,d4. Using the change of basis matrix A, we obtain the new

coefficients (in vector form) as:

τ2A
t(IDκ,−1)t, μ2A

−1(1, ID∗
β).

Since the distribution of everything given to A except for the κ-th key and the
challenge ciphertext is independent of the random matrix A and ID∗

β �= IDκ,
we can conclude that these coefficients are uniformly random (except for 1/q
probability) from Lemma 1. Thus, Bκ has properly simulated Gameκ in this
case.

In summary, Bκ has properly simulated either Gameκ−1 or Gameκ for A,
depending on the distribution of T1, T2. It can therefore leverage A’s advantage
ε between these games to obtain an advantage ε − 1/q against the Subspace
assumption in G2, namely AdvDS2

Bκ
(λ) = ε− 1/q. 
�

Lemma 5. For any adversary A, AdvGameν
A (λ) = AdvGameFinal

A (λ).
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Proof. To prove this lemma, we show the joint distributions of

(PP,CT
(SF )
ID∗

β
, {SK(SF )

ID�
}�=1,...,ν)

in Gameν and that of

(PP,CT
(R)
IDR

, {SK(SF )
ID�

}�=1,...,ν)

in GameFinal are equivalent for the adversary’s view, where CT
(R)
IDR

is a semi-
functional encryption of a random message in GT and under a random identity
in Zq.

For this purpose, we pick A := (ξi,j)
R←− Z2×2

q and define new dual orthonor-
mal bases F := (f1, . . . ,f4), and F∗ := (f∗

1, . . . ,f
∗
4) as follows:⎛⎜⎜⎝

f1

f2

f3

f4

⎞⎟⎟⎠ :=

⎛⎜⎜⎝
1 0 0 0
0 1 0 0

ξ1,1 ξ1,2 1 0
ξ2,1 ξ2,2 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

d1

d2

d3

d4

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
f∗
1

f∗
2

f∗
3

f∗
4

⎞⎟⎟⎠ :=

⎛⎜⎜⎝
1 0 −ξ1,1 −ξ2,1
0 1 −ξ1,2 −ξ2,2
0 0 1 0
0 0 0 1

⎞⎟⎟⎠
⎛⎜⎜⎝

d∗
1

d∗
2

d∗
3

d∗
4

⎞⎟⎟⎠ .

It is easy to verify that F and F∗ are also dual orthonormal, and are distributed
the same as D and D∗.

Then the public parameters, challenge ciphertext, and queried secret keys

(PP,CT
(SF )
ID∗

β
, {SK(SF )

ID�
}�=1,...,ν) in Gameν are expressed over bases D and D∗ as

PP := {G; e(g1, g2)
αd1·d∗

1 , gd1
1 , gd2

1 },

CT
(SF )
ID∗

β
:=

{
C0 := M · (e(g1, g2)αd1·d∗

1 )s, C1 := g
sd1+sID

∗
βd2+z3d3+z4d4

1

}
,{

SK
(SF )
ID�

:= g
(α+r�ID�)d

∗
1−r�d∗

2+t�,3d
∗
3+t�,4d

∗
4

2

}
�=1,...,ν

.

Then we can express them over bases F and F∗ as

PP := {G; e(g1, g2)
αf1·f∗

1 , gf1

1 , gf2

1 },

CT
(SF )
ID∗

β
:=

{
C0 := M · (e(g1, g2)αf1·f∗

1 )s, C1 := gs
′f1+s

′′f2+z3f3+z4f4

1

}
,{

SK
(SF )
ID�

:= g
(α+r�ID�)f

∗
1−r�f∗

2+t
′
�,3f

∗
3+t

′
�,4f

∗
4

2

}
�=1,...,ν

,

where

s′ := s− z3ξ1,1 − z4ξ2,1, s′′ := sID∗
β − z3ξ1,2 − z4ξ2,2,{

t′�,3 := t�,3 + ξ1,1(α+ r�ID�)− r�ξ1,2,

t′�,4 := t�,4 + ξ2,1(α+ r�ID�)− r�ξ2,2

}
�=1,...,ν

,

which are all uniformly distributed since ξ1,1, ξ1,2, ξ2,1, ξ2,2, t1,3, t1,4, . . . , tν,3, tν,4
are all uniformly picked from Zq.
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In other words, the coefficients (s, sID∗
β) of d1,d2 in the C1 term of the

challenge ciphertext is changed to random coefficients (s′, s′′) ∈ Zq×Zq of f1,f2,
thus the challenge ciphertext can be viewed as a semi-functional encryption of
a random message in GT and under a random identity in Zq. Moreover, all

coefficients {(t′�,3, t′�,4)}�=1,...,ν of f1,f2 in the {SK(SF )
ID�

}�=1,...,ν are all uniformly
distributed since {(t�,3, t�,4)}�=1,...,ν of d∗

3,d
∗
4 are all independent random values.

Thus
(PP,CT

(SF )
ID∗

β
, {SK(SF )

ID�
}�=1,...,ν)

expressed over bases F and F∗ is properly distributed as

(PP,CT
(R)
IDR

, {SK(SF )
ID�

}�=1,...,ν)

in GameFinal.
In the adversary’s view, both (D,D∗) and (F,F∗) are consistent with the same

public key. Therefore, the challenge ciphertext and queried secret keys above can
be expressed as keys and ciphertext in two ways, in Gameν over bases (D,D∗)
and in GameFinal over bases (F,F

∗). Thus, Gameν and GameFinal are statistically
indistinguishable. 
�

Lemma 6. For any adversary A, AdvGameFinal

A (λ) = 0.

Proof. The value of β is independent from the adversary’s view in GameFinal.
Hence, AdvGameFinal

A (λ) = 0. 
�

In GameFinal, the challenge ciphertext is a semi-functional encryption of a ran-
dom message in GT and under a random identity in Zq, independent of the two
messages and the challenge identities provided by A. Thus, our IBE scheme is
anonymous.

5 A Signature Scheme

In this section, we present the signature scheme derived from the preceding IBE
scheme via Naor’s transform. The security of the signature scheme follows from
the full security of our IBE scheme.

– KeyGen(1λ) This algorithm takes in the security parameter λ and generates
a bilinear pairing G := (q,G1, G2, GT , g1, g2, e) for sufficiently large prime

order q. The algorithm samples random dual orthonormal bases, (D,D∗) R←−
Dual(Z4

q). Let d1, . . . ,d4 denote the elements of D and d∗
1, . . . ,d

∗
4 denote the

elements of D∗. It outputs the public key as

PK = {G; e(g1, g2)
αd1·d∗

1 , gd1
1 , gd2

1 },

and the signing key

SK = {α, gd
∗
1

2 , g
d∗
2

2 }.
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– Sign(PK, SK,M) This algorithm picks r
R←− Zq and computes the signature

as
σ = g

(α+rM)d∗
1−rd∗

2
2 .

– Verify(PK, σ,M) This algorithm verifies a signature σ by testing whether
e(gd1+Md2

1 , σ) = e(g1, g2)
αd1·d∗

1 .3 If the equality holds the signature is de-
clared valid; otherwise it is declared invalid.
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A Estimated Bit Sizes of Group Elements for Bilinear
Group Generators

The ordinary elliptic curves that give the best performance while providing dis-
crete log security comparable to three commonly proposed levels of AES security
are as follows. The group sizes follow the 2007 NIST recommendations [5], de-
scriptions of the elliptic curves are in [18].

80-bit security: A 170-bit MNT curve [28] with embedding degree k = 6.
128-bit security: A 256-bit Barreto-Naehrig curve [6] with k = 12.
256-bit security: A 640-bit Brezing-Weng curve [13] with k = 24.

Note that a symmetric pairing only exists on supersingular elliptic curves. The
restriction to supersingular elliptic curves means that at high security levels the
group G1 will be much larger than the group G1 on an equivalent ordinary curve.

Table 2. Estimated bit sizes of elements in bilinear groups

Pairings
80-bit AES 128-bit AES 256-bit AES
G1 G2 GT G1 G2 GT G1 G2 GT

Asymmetric 170 340 1020 256 512 3072 640 2560 15360

Symmetric 176 176 1056 512 512 3072 2560 2560 15360
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Abstract. This paper presents an efficient implementation of optimal-
ate pairing over BN curves. It exploits the highly optimized IP cores avail-
able in modern FPGAs to speed up pairing computation. The pipelined
datapaths for Fp-operations and suitable memory cores help to reduce the
overall clock cycle count more than 50%. The final design, on a Virtex-6
FPGA, computes an optimal-ate pairing having 126-bit security in 0.375
ms which is a 32% speedup from state of the art result.

Keywords: Pairing, BN curves, prime fields, FPGA, Karatsuba, Mont-
gomery, Pipeline, IP core.

1 Introduction

The use of pairings in constructive cryptographic applications are running in
their second decade. During this period it has gained a lot of importance because
it enables practical realization of numerous protocols. At the same time it is also
important to implement pairings for using those protocols in practice. Different
alternatives have been derived from the original proposal of Tate pairing for
its efficient computation. Optimal-ate pairing [24] is to date the most efficient
one computed over elliptic curves (E) defined over a large prime field (Fp).
On the other hand, several algebraic curves have been discovered for providing
better pairing computation technique as well as for achieving better security. We
call them pairing-friendly curves. Barreto-Naehrig curve [3] is the most popular
pairing-friendly curve in current days. It is well studied that the optimal-ate
pairing on BN curves is one of the best choices of selecting pairings in practice [2].

This paper aims to design an efficient hardware architecture for computing
optimal-ate pairing on BN curves. The architecture exploits highly optimized
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IP cores available for modern FPGAs. The in-built independencies of under-
lying operations of the pairing computation are fully utilized in order to run
an optimized pipeline datapath with reduced number of stall cycles. The mem-
ory architecture based on IP cores are efficiently used for generating pipeline
operands and storing intermediate results which reduces the use of registers in
the design too. The pipelined datapath together with said memory architecture
helps to reduce clock cycle count of the pairing computation. A dedicated inver-
sion unit is also incorporated into the design for reducing further cycle count. In
total, the final design achieves 32% speedup from the existing premier design [6]
for computing optimal-ate pairing.

We start with a brief overview of optimal-ate pairing and its computation
procedure over BN curves in § 2. The IP cores that are used in this design are
introduced in § 3. The design of the most important underlying Fp-arithmetic
block is described in § 4 followed by the description of overall core-based archi-
tecture in § 5. The scheduling of operations in order to compute different steps
of the pairing algorithm is given in § 6. In § 7, we provide the performance study
of the new design with respect to existing results. The paper is concluded in § 8.

2 Optimal-Ate Pairing

Optimal-ate pairing [24] is a non-degenerative bilinear map from G2×G1 to GT
where G2 and G1 to be specific subgroups of E(Fpk), and GT to be a subgroup
of F∗

pk . Let n is a large odd prime dividing #E(Fp), and k corresponds to the

embedding degree that is the smallest positive integer such that n|(pk− 1). This
paper focuses on the optimal-ate pairing on Barreto-Naehrig curve [3], which is
well-suited for 128-bit security level and has degree six twist.

A BN curve is an elliptic curve defined over Fp by following equation.

E : y2 = x3 + b,

where b �= 0 such that #E = n, and k = 12. The BN parameters are defined
by a suitable z ∈ Z such that p = 36z4 + 36z3 + 24z2 + 6z + 1 and n =
36z4+36z3+18z2+6z+1 are prime. This paper focuss on optimal-ate pairing
with r = 6z + 2 defined as [2]:

aopt : E(Fp12) ∩Ker(πp − p)× E(Fp[n]) → F∗
p12/(F

∗
p12)

n

(Q,P ) �→
(
f(r,Q)(P ) · g(rQ,πp(Q))(P ) · g(rQ+πp(Q),−π2

p(Q))(P )
)(p12−1)/n

where πp is the Frobenius map on the curve (πp(x, y) = (xp, yp)), and g(Q1,Q2)

is the line through Q1 and Q2.

2.1 Computation Procedure

Algorithm 1 computes above optimal-ate pairing. We choose BN curve E : y2 =
x3 + 2; z = −(262 + 255 + 1) < 0. The algorithm consists of two major parts
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: namely, Miller’s loop executed in line 2 to line 7, and final exponentiation
executed in line 12 to line 13. In order to accommodate the negative r, line 8
computes a negation in G2 to make the final accumulator T the result of [−|r|]Q,
and the value of f(r,Q)(P ) is raised to the power p6 which is equivalent to f−1

as shown in [2]. In line 10 to line 12, the algorithm computes g(rQ,πp(Q))(P ) and
g(rQ+πp(Q),−π2

p(Q))(P ), which are multiplied with f too. With above parameters

the addition steps (line 5) invokes only four times throughout the Miller’s loop
which at the end helps to achieve higher speed of the pairing computation.

Algorithm 1. Optimal-ate pairing on BN curve (t < 0)

Input: P = (xP , yP ) ∈ E(Fp[n]), Q = (xQγ
2, yQγ

3) ∈ E(Fp12) ∩Ker(πp − p)
with xQ and yQ ∈ Fp2 , r = |6t+ 2| = Σs−1

i=0 ri2
i.

Output: aopt(Q,P ) ∈ Fp12 .

1. T = (XT γ
2, YTγ

3, ZT )← (xQγ
2, yQγ

3, 1), f ← 1 ;
2. for i = s− 2 downto 0 do
3. g ← l(T,T )(P ), T ← 2T, f ← f2, f ← f · g ;
4. if ri = 1 then
5. g ← l(T,Q)(P ), T ← T +Q, f ← f · g ;
6. endif
7. endfor

8. T ← −T, f ← fp6 ;
9. Q1 ← πp(Q), Q2 ← −π2

p(Q) ;
10. g ← l(T,Q1)(P ), T ← T +Q1, f ← f · g ;
11. g ← l(T,Q2)(P ), T ← T +Q2, f ← f · g ;

12. f ←
(
fp6−1

)p2+1

;

13. f ← f (p4−p2+1)/n ;
14. return f ;

Algorithm 1 employs arithmetic in Fp12 . High-performance arithmetic over
extension fields is achieved through a tower of extensions using irreducible bi-
nomials [18]. Accordingly, in our targeted setting we represent Fp12 using the
towering scheme used in [2,22]:

Fp2 = Fp[i]/(i
2 − β), where β = −1.

Fp4 = Fp2 [s]/(s
2 − ξ), where ξ = 1 + i.

Fp12 = Fp4 [t]/(t
3 − s) = Fp2 [τ ]/(τ

6 − ξ).

Throughout the pairing computation we follow the towering Fp2 → Fp4 → Fp12

as it is shown in [7] that the arithmetic (mainly squaring) in this extension during
final exponentiation is much cheaper than other towering extensions. The choice
p ≡ 3 (mod 4) accelerates arithmetic in Fp2 , since multiplications by β = −1
can be computed as simple subtractions [22].
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3 IP Cores on Xilinx FPGA

Various soft cores, specifically for memory and arithmetic functions, are provided
by Xilinx which are easily configured into modern FPGAs like Virtex-6, Virtex-
5, or Virtex-4 devices. The Xilinx LogiCORE IP block memory generator [25]
core is an advanced memory constructor that generates area and performance-
optimized memories using embedded block-RAM (BRAM) resources in Xilinx
FPGAs. Available through the core generator software embedded with ISE tool,
users can quickly create optimized memories to amend the performance of a
design.

Two types of memory cores are used in the current design. Montgomery mul-
tiplication (Algorithm 2) uses P (i) = a(i) × b(i) further for computing the final
result (c(i)). The value of P (i) is 512-bit long in the current cryptoprocessor.
Therefore, we generate a memory core having 512-bit data width. This is a
single port memory as its demand of read and write access are exclusive. The
current multiplier performs at most 10 Montgomery multiplications in parallel.
Thus we generate a memory core having nearest smallest size of 24 locations
each of which are 512 bits long which is shown in Fig. 1. On the other hand, the
top level design integrates two memory cores having 256-bit data width for ac-
commodating one Fp-element in a single memory location. In the current design,
the datapath consists of several pipeline stages. Thus in order to avoid pipeline
stalls, we generate a 256-bit wide true-dual-port memory core, where both ports
are configured independently on the same shared memory space. The usage of
this memory core in current design is described in § 5.3.

Similarly, Xilinx LogiCORE IP multiplier [25] implements high-performance,
optimized multipliers. It allows the choice of LUTs or dedicated multiplier prim-
itives to be selected for the core implementation. It further provides options
for area or speed optimized design. The current design opts for the speed op-
timization on XtremeDSP slice that consists of dedicated multipliers. Thanks
to LogiCORE for permitting a maximum of 64-bit unsigned operands which
makes our design more simpler. The maximum speed of the 64-bit IP core is
achieved through its 18 pipeline stages. However, the utilization of such pipeline
depth is inconvenient for one pairing computation and need to allow several
pipeline stalls. Its full utilization is only feasible through hyperthreading tech-
nology which in our design can be achieved by sharing the pipeline stages among
several pairing computations. At the same time this advanced parallelism makes
data-flow more complex and demands adequately large on-chip memory too. The
current design tries to make a trade-off among speed, area, and design complex-
ity. It finds that five stage pipeline of a 64-bit multiplier core provides the most
suitable design with respect to computing one optimal-ate pairing at a time.
With such design choices the IP core achieves a maximum operating clock fre-
quency of 166 MHz on a Virtex-6 FPGA. Throughout the whole design process
we preserve this operating frequency and always maintain the register to register
combinatorial critical path having lesser delay than the period of above clock.
The construction of such a critical-path constrained datapath makes rest of the
design more challenging.
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4 Base Field Multiplier

Multiplication in base field is the most important operation for computing a cryp-
tographic pairing. In our case it is called Fp-multiplication which can be executed
by several techniques. This paper uses a straight forward Montgomery multipli-
cation algorithm. The algorithm is executed by exploiting underlying Karatsuba
multiplication for integers and by employing an efficient architecture. For execut-
ing extension field operations we always invoke our only multiplier for generating
reduced result for each Fp-multiplication. To speed up extension field arithmetic
sometimes a lazy reduction technique is used [6]. However, instead of lazy reduc-
tion, our new multiplier executes multiple simultaneous Fp-multiplications on
pipelined datapath which ultimately speed up the overall pairing computation.

4.1 Montgomery and Karatsuba Combination

Montgomery multiplication algorithm avoids the division by p. The finite field
multiplication is performed as modulo 2n having n = �log2 p� instead of modulo
p. It is necessary to convert each operand from integer to its equivalent Mont-
gomery form which costs another Montgomery multiplication. However, for re-
peated multiplications used in a pairing computation it is sufficient to convert
the operands once at the beginning which is converted back at the end.

The Montgomery multiplication algorithm for large characteristic field is
shown in Algorithm 2. The parenthesized indices represent the variables associ-
ated with that instruction. The indices are mainly used to identify an instruction
and its associate variables inside our pipeline architecture. Algorithm 2 consists
of three n bit integer multiplications, which determines the overall efficiency of
the algorithm. Here we propose an efficient Montgomery multiplier architecture
for modern FPGAs. Highly optimized IP cores available for FPGA devices to-
gether with our careful datapath design help to achieve an efficient pipelined
architecture for Montgomery multiplication.

Algorithm 2. Montgomery multiplication

Input: M = p; n = �log2 M�; R = 2n; M
′
= −M−1 mod R; a(i), b(i) ∈ ZM .

Output: a(i) · b(i) · R−1 mod M .

1. P (i) ← a(i) · b(i) ;

2. U (i) ← (P (i) mod R) ·M ′
mod R ;

3. c(i) ← (P (i) + U (i) ·M)/R ;

4. if c(i) ≥M then

5. c(i) ← c(i) −M ;

6. return c(i);

Figure 1 depicts the proposed Montgomery multiplier architecture. It consists
of a 256× 256 bit Karatsuba multiplier, which is constructed by nine 64× 64 bit
multiplier cores. There is a small memory unit for holding intermediate result
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of Montgomery multiplication which are used in later steps. Main novelty of the
current design lies to efficient utilization of in-built multiplier and memory cores
to achieve an optimized design on a modern FPGA platform. The top level of the
architecture computes three integer multiplications in serial. The result of third
multiplication is added with the result of the first one followed by a optional
reduction (subtraction) to compute the result of a Montgomery multiplication.
Although, the proposed design consists of a pipeline structure which is able to
compute more than one multiplication in parallel. The detailed construction and
its functionality is described in following sections.
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Fig. 1. The Montgomery multiplier

4.2 Delay Constrained Design

The proposed integer multiplier follows Karatsuba technique for performing
256-bit multiplications. Thus, three 128-bit multiplications, each of which is
computed by three 64-bit multiplier cores, are performed in parallel. The post-
multiplier operations are put into one additional pipeline stage for generating
an 128× 128 multiplication result. However, we find that the delay of datapath
of post-multiplier operations is in between one and two clock periods for getting
a 256× 256 bit multiplication results. Thus, it is broken into two parts − adds
two more pipeline stages. On the other hand, pre-multiplier datapath consists of
an input multiplexer, an 128-bit adder and a 64-bit adder circuits, which forms
two more pipeline stages. To sum up, the whole multiplier consists of 10 pipeline
stages on which 10 independent multiplications can be executed in parallel.

The Montgomery multiplication algorithm (Algorithm 2) consists of three
dependent integer multiplications. Therefore, we explore the parallelism at finite
field level for which 10 independent Fp-multiplications are fetched and issued
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in parallel. The proposed design performs each Montgomery multiplication by
executing operations divided in following five steps.

1. compute P (i) = a(i) × b(i)

2. store P (i) in RAM, and compute U (i) = (P (i) mod R)×M
′

3. compute V (i) = (U (i) mod R)×M

4. compute c(i) = (P (i) + V (i))/R

5. compute c(i) = c(i) −M , if c(i) ≥ M .

We schedule the computation of P (i), 1 ≤ i ≤ 10 first into the pipeline then
all U (i)s followed by 10 V (i)s. As soon as a P (i) gets out from the pipeline it is
scheduled on-the-fly for computing U (i) as defined in step 2. The P (i)s are also
stored into the 512-bit wide single-port-RAM (shown in Fig. 1) to use it fur-
ther in step 4. Except P (i) it is not necessary to store other intermediate results
(U (i), V (i)). They are scheduled on-the-fly for further processing. The 31-st clock
onwards from the beginning we start to receive V (i), which are then processed by
two additional steps (step 4 and step 5) in two consecutive clock cycles. There-
fore, to sum up, the cost of 10 Montgomery multiplications is 42 clock cycles
in the current design. During these 42 clock cycles the multiplier communicates
with external memory only at the first 10 clock cycles (to read a(i) and b(i))
and the last 10 clock cycles (to write c(i)). In between these two 10 clock cycles
periods there are remaining 22 clock cycles when the external memory is free
to access for other operations. These free cycles are utilized to accumulate Fp
multiplication results to produce results in extension fields, to perform constant
multiplications, and to perform other intermediate operations in pairing compu-
tation. This two levels of parallelism, namely, multiple Fp-multiplications on a
single unit and several Fp-operations on different units, help to speed up pairing
computation on the proposed design.

5 Architecture for Pairing

As shown in Algorithm 1, the pairing computation consists of following major
operations.

1. Doubling step: An elliptic curve point doubling operation together with the
computation of line function g.

2. Addition step: An elliptic curve point addition and the computation of g.

3. Squaring: Squaring of Miller variable f .

4. Sparse multiplication: A multiplication of Miller variable f with g having
only half of the non-zero coefficients.

5. Frobenius and Easy exponentiation: Intermediate operations of Miller loop
and hard exponentiation.

6. Hard exponentiation: Powering the intermediate result by φi(x)/n in cyclo-
tomic subgroup.
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In optimal-ate pairing on BN curve, first two steps are performed in Fp2 , and
most of the operations in other steps are performed in Fp12 . Several advanced
techniques can compute these extended field operations with much lower costs
compared to their straight forward computation [8,16]. We choose the techniques
having lower number of multiplications and squarings. The underlying operations
in each techniques are computed in the base field. Therefore, we visualize the
whole pairing computation as a sequence of Fp operations and try to execute
them as fast as possible on a target platform.

5.1 Overview of the Architecture

The cost of a pairing computation is normally represented by the number of
base field multiplications [17]. However, it is observed that apart from multipli-
cations, a pairing computation consists of huge number of additions, subtractions
and constant-multiplications. In current days the costs of a multiplication and
an addition/subtraction with respect to time is almost same. Thus, the cost of
a pairing computation equivalently depends on the efficiency of the ”architec-
ture“ of all such operations. Moreover, this cost varies with the efficiency of the
”scheduling“ technique used on a specific implementation. Therefore, through-
out the implementation we give equal attention to both architecture design and
scheduling which in together maximizes the utilization of individual components
and finally speeds up the pairing computation with constrained resources.
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Fig. 2. The architecture for pairing computation

Figure 2 depicts the datapath of the architecture for pairing computation.
It consists of a multiplier, two adder/subtractors, a constant-multiplier, and an
inversion unit. All of them can independently perform respective operations in
Fp. In order to maximize their utilization we incorporate two true-dual-port
RAM cores (call them RAM1 and RAM2) each of which contains identical data
during a pairing computation. The operations in extension fields need to execute
independent multiplications like a×b and (a±b)(c±d). In order to support them
without any pipeline stall, each of the multiplier inputs is multiplexed between
an output port of RAM1 and an output of adder/subtractor (± block). The
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architecture facilitates the port configuration in such a way that the output of
each of functional units can be written in the same address of both RAMs in
parallel. This helps to keep the identical data in both memory cores throughout
the pairing computation which are exploited to improve the degree of parallelism.

5.2 Architecture Details

The architecture is developed with several pipeline stages in each of the func-
tional units. Number of pipeline stages are identified to meet the maximum
operating frequency provided by the 64× 64 multiplier core as described in § 3.

Modular Adder Subtractor. The addition and subtraction in Fp can be
realized by two consecutive n-bit adder circuits which produce final result in only
one clock cycle. However, the latency of such a circuit in Virtex-6 FPGA is 11ns,
which is 1.8 times of our target critical path. We therefore divide this datapath
into two pipeline stages which is illustrated in Fig. 3. The whole design now
demands 130 Virtex-6 FPGA slices on which it achieves a maximum operating
frequency of 183 MHz. Due to the pipeline structure its throughput is one Fp
addition/subtraction per clock.
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Fig. 3. Two stage pipeline for Fp addition and subtraction

Constant Multiplier. There are some operations in doubling and addition
steps where a finite field element (a ∈ Fp) is multiplied with small integers
(≤ 6). We develop an adder based five stage pipeline structure for constant-
multiplications which executes the target operations by following an addition
chain. The first pipeline stage performs 2a mod p, where doubling is simple
rewiring followed by a conditional subtraction. Second and third stages is formed
by following modular adder/subtractor (Fig. 3) unit. The only difference is that
it performs both 3a = (2a + a) mod p and 4a = 2 × 2a mod p in parallel. The
second stage performs addition and doubling whereas we use the third stage for
their reductions. The results of 3a and 4a are produced at the end of third stage.
Similarly, fourth and fifth stages are formed to execute 5a = (2a+3a) mod p and
6a = 2 × 3a mod p. The pipeline registers are designed with optimum storage
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space. For example, after second stage the value of a is no longer being used,
so pipeline does not carry it beyond this point. Similarly, 4a is never used in
further pipeline stages and the values of 2a and 3a are last used in the fourth
stage. Through such observations, the pipelined constant-multiplier is designed,
which optimizes overall area as well as time. Respective life-time diagram is
shown in Fig. 4.

Clock cycle

a
2a

3a

4a
5a
6a

0 1 2 3 4 5

Fig. 4. Life time diagram of constant multiplication

Inversion Block. This block is developed as a dedicated unit for performing
inversion in Fp. It is based on the Extended Euclidean Algorithm. This unit
is rarely (only once) used for computing a pairing. The functionality of this is
described in § 6.4.

5.3 True Dual Port RAM

At this design stage we have already customized the datapath for pairing com-
putation. So further speedup could be gained through the maximization of dat-
apath utilization. A basic requirement for computing any two-input, one-output
operation is to have two operands in parallel at the input ports of respective
unit and an output destination available. This motivates the use of true-dual-
port RAM for current design. It is called true-dual-port because both ports can
independently perform read/write operations on the same shared memory space.

This RAM core is generated through Xilinx LogiCORE IP block generator
tool (introduced in § 3). In the current design it is configure in write first mode
having register at output port of the memory. Due to which we allow one clock
cycle delay between address generation and availability of data at respective
output port. At the same time, this register separates the datapath through
multiplexer inside the memory block from the datapath between memory ports
and the beginning of first pipeline stage of a functional unit. Otherwise, this
combined datapath becomes longer than our target critical path. Each of this
two memory cores contains 29 locations having 256-bit width that is sufficient
to hold local and global variables during a pairing computation.

5.4 Working Principle of the Architecture

The overall architecture is constructed by observing that the pairing compu-
tation has several sets of independent base field operations. We perform an in-
depth analysis on optimal-ate pairing algorithm to optimize such instruction sets
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in order to maximize the utilization of the customized datapath with minimum
storage space for temporary results. The analysis suggests that the formation of
such instruction sets each of which containing at most 10 base field multiplica-
tions can utilize the current multiplier with minimum stall cycles for computing
a single optimal-ate pairing. We call them opt set. It is already described in § 5.1
that our architecture generates the result of (a ± b) and (c ± d) on-the-fly for
performing (a± b)(c± d). Thus multiplications in this form are also counting as
a simple Fp-multiplication during formation of the opt set.

The execution of such an i-th opt set on our architecture is as follows:

• It first schedules 10 multiplications on the pipelined multiplier in 10 consec-
utive clock cycles.

• From 11-th clock cycle, it schedules the additions, subtractions, and constant-
multiplications on two adder/subtractor units and the constant-multiplier
such that their results are written back to the memory within 31-st clock
cycle. We perform those operations in this phase such that all multiplication
results of (i− 1)-th set are properly utilized and they are no longer used in
future. The operations to prepare operands for multiplications of (i + 1)-th
opt set are computed too in this phase.

• The results of the multiplications are available at multipliers output port
from 32-nd clocks. These results are written back to the specific 10 con-
jugative locations in both RAMs from which the multiplications results of
(i− 1)-th opt set are already utilized.

The execution of such a set takes 42 clock cycles, after which a new set is normally
scheduled immediately from the next clock. Remember that all memory write
operations in this implementation are performed in both RAMs (shown in Fig. 2
by mina1/mina2 and minb1/minb2) in same address for achieving higher degree
of parallelism.

6 Scheduling and Pairing Computation

The execution control and the scheduling of operations on different functional
units are performed by a state machine and few small counter logics. Here we
present the instruction set formations for executing every step of the pairing
computation. In the current design, the addition costs are hidden to multiplier
cycles and therefore we use the techniques for internal operations especially, for
extension-field arithmetic, having lower multiplications and squarings.

6.1 Execution of Doubling Step and f2

There is no dependency between doubling step and f2 computation which are
therefore scheduled together. The step-by-step computation of the doubling step
and f2 is provided in Algorithm 5 of A.2. The formula of doubling step is fol-
lowed from the state of the art existing pairing implementations [2,6,7]. We made
rearrangements of the computations for making it suitable for our design. On
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the other hand, it is shown in [16] that the representation of f in tower extension
F((p2)2)3 helps to reduce the operation count of f2 computation in final expo-
nentiation. Though this towering does not help to reduce the computation costs
of f2 within the Miller loop, but for simplicity, throughout the implementation
we use the same towering to represent f .

The operations in this steps as well as other parts of the pairing computation
described in this paper are performed either in Fq2 or in Fq3 . Various technique
for computing multiplication and squaring in such quadratic and cubic extension
fields are explained in [8]. In this paper, we follow Karatsuba technique for
computing both multiplication and squaring in Fq3 , whereas, in case of Fq2 we
use Karatsuba technique for multiplication and complex method for squaring.
Formula for all such used techniques are provided in A.1. We represent the Miller
variable f as :

f = f0 + f1τ + f2τ
2 + f3τ

3 + f4τ
4 + f5τ

5

= (f0 + f3s) + (f1 + f4s)t+ (f2 + f5s)t
2,

which is considered as: a0 + a1t + a2t
2 with aj ∈ Fq, q = p4, 0 ≤ j ≤ 2. Com-

putation of f2 in this towering extension consists of 36 multiplications in Fp,
which all are independent − though some of them need a few prior additions.
On the other hand the computation of doubling step in Projective coordinate
requires 27 multiplications in Fp, which are not free to schedule at any point of
time as they have several data dependencies. Thanks to our pipeline and mem-
ory architecture that we can manage all operations of this phase in 7 opt sets.
Among them first opt sets containing 10 multiplications, second one consists of 8
multiplications and each of the remaining five consist of 9 multiplications. After
receiving the multiplication results of final opt set a few additions are performed
for final accumulation.

6.2 The Addition Step

The addition step consists of 41 Fp-multiplications which have several data de-
pendencies. We compute them by forming five opt sets with few intermediate
additions during which the multiplier pipeline runs with bubbles. That is, we do
not start (i + 1)-th opt set immediately after completing the execution of i-th
opt set. However, due to the dual adder/subtractor units these stall cycles are
small compared to overall execution cycles. The formula for computing this step
in Projective coordinates is provided in [2,6,7]. Algorithm 6 in A.2 provides the
same with little rearrangements of operations to fit our current scheduling.

6.3 Computation of f · g
The Karatsuba technique costs 54 Fp-multiplications for computing a multipli-
cation in F((p2)2)3 . However, in the f · g computations of steps 3, 5, 10, and 11
of Algorithm 1 only half of the coefficients of g are non-zero. Due to the sparse
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value1 of g, f · g consists of 39 Fp-multiplications. The respective technique is
provided in Algorithm 3 of A.2. We accommodate them in four opt sets, where
except the last one each opt set contains 10 base field multiplications. A few ad-
ditions, which depend on the multiplication results of final opt set, are performed
and update the value of f at respective locations at the end.

6.4 Inversion in Fp

For powering f by p6 − 1 in step 12 of Algorithm 1 it is essential to compute an
inversion in Fp12 , which is easily deduced as a single inversion in Fp along with
several multiplications. The inverse of a ∈ Fp is in general computed by two
methods − Fermat’s Little Theorem or Extended Euclidean Algorithm (EEA).
The first one computes inversion through exponentiation a−1 ≡ ap−2 mod p. On
the other hand an efficient variant of EEA for Fp-inversion is known as Binary
Inversion Algorithm, which is primarily based on gcd computation. The expo-
nentiation is efficiently implemented through an iterated square-and-multiply
procedure for which an efficient implementation of the field multiplier is suffi-
cient. However in our pipelined multiplier, execution of a single exponentiation
is too costly as its i-th iteration cannot be started before completing (i − 1)-th
iteration. Thus, it will costs 33�log2 p� clock cycles with right-to-left execution.

On the other hand, an efficient implementation of binary inversion algorithm,
as shown in [13], takes 2�log2 p� clock cycles. The stand alone implementation
of this inversion unit requires 1350 Virtex-6 slices. On the other hand without
this unit the current design takes 33�log2 p� number of clock cycles, which is 16.5
times more than the time taken by dedicated inversion unit. Thus we incorporate
it into our design especially for computing a single inversion in final exponentia-
tion. With our parameter settings without this unit the current design requires
7, 874 additional clock cycles for computing an inversion.

6.5 Exponentiation by |z|

After executing step 12 of Algorithm 1, the value of f becomes an element of
the cyclotomic subgroup (Gφ12(p)) in Fp12 . An efficient technique used in this
design for computing step 13 of Algorithm 1 (hard part of final exponentiation)
is given in [23]. There are three exponentiations in Gφ12(p) by |z| which are the
most costly operations in this step. With our towering representation this squar-
ing (Algorithm 4 in A.2) is much cheaper than a squaring computed in Miller’s
loop [16]. This squaring is executed by two opt sets and few final additions and
constant multiplications by our design. The whole exponentiation is performed
by standard left-to-right square-and-multiply algorithm. Therefore, the multipli-
cation is performed only if the respective exponent bit is one. This multiplication
is a full multiplication (having no sparse operands) in Fp12 , which consists of 54

1 An operand in Fp12 is sparse when some of its coefficients are trivial (i.e., either zero
or one).
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independent Fp-multiplications. We schedule them on the pipelined multiplier
by forming six opt sets.

In contrasts to pipelined design of [6] the current design uses MSB first
method. Due to the low Hamming weight of |z| the multiplications cost is vary
low compared to the costs of squarings, and the current pipeline is suitable to
execute one individual non-linear operation in Fp12 . On the other hand, [2]
shows a compressed technique for exponentiation by |z| using Montgomery’s si-
multaneous inversion trick [20]. However, this technique does not help to speed
up pairing computation in our design as an inversion is 127 times slower than a
multiplication in the current design.

7 Results

The whole design has been done in Verilog (HDL). Implementation has been
performed on Xilinx ISE Design Suit 12.4. Table 1 shows the implementation
results. On a Virtex-6 xc6vlx240t-3ff1759 FPGA the proposed design runs at a
maximum frequency of 166MHz. In total, with dedicated inversion unit, this
design uses 5163 logic slices, 144 DSP slices and 21 BRAMS. It finishes compu-
tation of one 126-bit secure optimal-ate pairing in 375μs. Table 2 gives the clock
cycle counts required by the proposed design to computing different steps of an
optimal-ate pairing on 126-bit secure BN curve.

Table 1. Area utilization on Virtex-6 FPGA

Current design
Frequency

Multipliers
Logic Memory

[MHz] Elements

with inversion
166 144 DSP48E1s

5163 slice‡
21 RAMB36E1

without inversion 3813 slice‡

‡ : One Virtex-6 slice consists of four LUTs and eight flip-flops.

Table 2. Cycle count for different steps of optimal-ate pairing on BN126 curve

Current 2T , g(T,T )(P ), T +Q and
f.g

Miller’s a−1 mt Post
Total

design and f2 g(T,Q)(P ) Loop in Fp in Gφk(p) M. Loop

with inv. 314 235 192 34, 092 508 7, 018 28, 074 62, 166

without inv. 314 235 192 34, 092 8, 448 7, 018 36, 014 70, 106

7.1 Comparison with Recent Designs

Table 3 shows the comparative analysis of recent hardware and software results
of pairing. With respect to latency of a pairing computation over BN curves
with similar security level the present design achieves 32% speedup from the
existing premier design proposed in [6]. Its slice counts is also relatively less
with cost of more parallelism on higher number of DSP blocks. The clock cycle
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count of the current design is reduced drastically due to higher parallelism on
the pipelined datapath. In contrary the implementation of pairings over general
elliptic curves having 128-bit security is still slower than that over a supersingular
curves proposed in [14]. This may be due to the easier binary field arithmetic.

Table 3. Performance of hardware and software results of pairings

Designs Curve FPGA Area
Freq. Cycle Delay
[MHz] [×103] [μs]

This work (inv) BN126 xc6vlx240t-3 5163 Slices, 144 DSP 166 62 375
(without inv) BN126 xc6vlx240t-3 3813 Slices, 144 DSP 166 70 422

Cheung et al. [6] BN126 xc6vlx240t-2 7032 Slices, 32 DSP 250 143 573
BN192 Stratix-III 9910 A, 171 DSP 131 790 6030

Fan et al. [12] BN128 xc6vlx240t-3 4014 Slices, 42 DSP 210 245 1170

Ghosh et al. [15] BN128 xc4vlx200-12 52000 Slices 50 821 16400

Kammler et al. [19] BN128 130nm CMOS 97000 Gates 338 5,340∗ 15800

Ghosh et al. [14] E/F21223 xc6vlx130t-3 15167 Slices 250 76† 190

Estibals [10] E/F35·97 xc4vlx200-11 4755 Slices 192 429 2227

Aranha et al. [1] Co/F2367 xc4vlx25-11 4518 Slices 220 774∗ 3518

Naehrig et al. [21] BN128 core2 Q6600 − 2394 4,470 1860

Beuchat et al. [4] BN126 core i7 2.8GHz − 2800 2,330 830

Aranha et al. [2] BN126 Phenom II − 3000 1,562 520

Aranha et al. [1] genus-2 Core i5 − 2530 2,440 960

† Estimated by the authors. * Estimation provided in [6].

Till 2010, the software for pairing outperforms the hardware and it was a bit
uncomfortable to the hardware world. It was due to several unexplored in-built
features available in the hardware platforms, especially FPGA platforms for pair-
ing computation. However, at the end of last year it becomes true by the design
shown in [6,14] for pairing too that customized hardware always outperforms a
pure software. The current design in that respect not only gains the speedup
from existing design but also it shows a direction for further improvement of
pairing computations through exploitation of several highly optimized IP cores
in different platforms.

8 Conclusion

In this paper we have proposed a core based architecture for pairing computa-
tion on general elliptic curves defined over large prime fields. Due to intelligent
pipeline the proposed design has achieved a 32% speedup over existing designs.
Moreover, a dedicated field inversion unit has reduced the clock cycle count of
final exponentiation as well as a full pairing computation. The application of IP
cores with more pipeline-depth may be targeted in future for executing multiple
pairing computations at a time in order to handle several parallel client requests.
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8. Devegili, A., ÓhÉigeartaigh, C., Scott, M., Dahab, R.: Multiplication and squaring
on pairing-friendly fields. Cryptology ePrint, Report 2006/471 (2006)

9. Duquesne, S., Guillermin, N.: A FPGA pairing implementation using the residue
number system. Cryptology ePrint Archive, Report 2011/176 (2011),
http://eprint.iacr.org/

10. Estibals, N.: Compact Hardware for Computing the Tate Pairing over 128-Bit-
Security Supersingular Curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing
2010. LNCS, vol. 6487, pp. 397–416. Springer, Heidelberg (2010)

11. Fan, J., Vercauteren, F., Verbauwhede, I.: Faster Fp-Arithmetic for Cryptographic
Pairings on Barreto-Naehrig Curves. In: Clavier, C., Gaj, K. (eds.) CHES 2009.
LNCS, vol. 5747, pp. 240–253. Springer, Heidelberg (2009)

12. Fan, J., Vercauteren, F., Verbauwhede, I.: Efficient Hardware Implementation of
Fp-arithmetic for Pairing-Friendly Curves. IEEE Trasaction on Computers (2011),
http://dx.doi.org/10.1109/TC.2011.78

13. Ghosh, S., Mukhopadhyay, D., Roychowdhury, D.: Petrel: power and timing attack
resistant elliptic curve scalar multiplier based on programmable arithmetic unit.
IEEE Trans. on Circuits and Systems I 58(11), 1798–1812 (2011)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1109/TC.2011.78


Core Based Architecture to Speed Up Optimal Ate Pairing 157

14. Ghosh, S., Roychowdhury, D., Das, A.: High Speed Cryptoprocessor for ηT Pairing
on 128-bit Secure Supersingular Elliptic Curves over Characteristic Two Fields. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 442–458. Springer,
Heidelberg (2011)

15. Ghosh, S., Mukhopadhyay, D., Roychowdhury, D.: High Speed Flexible Pairing
Cryptoprocessor on FPGA Platform. In: Joye, M., Miyaji, A., Otsuka, A. (eds.)
Pairing 2010. LNCS, vol. 6487, pp. 450–466. Springer, Heidelberg (2010)

16. Granger, R., Scott, M.: Faster Squaring in the Cyclotomic Subgroup of Sixth
Degree Extensions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS,
vol. 6056, pp. 209–223. Springer, Heidelberg (2010)

17. Hankerson, D., Menezes, A., Scott, M.: Software implementation of pairings. Cryp-
tology and Info. Security Series, ch. 12, pp. 188–206. IOS Press (2009)

18. IEEE: P1363.3: Standard for Identity-Based Cryptographic Techniques using Pair-
ings (2006), http://grouper.ieee.org/groups/1363/IBC/submissions/

19. Kammler, D., Zhang, D., Schwabe, P., Scharwaechter, H., Langenberg, M., Auras,
D., Ascheid, G., Mathar, R.: Designing an ASIP for Cryptographic Pairings
over Barreto-Naehrig Curves. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS,
vol. 5747, pp. 254–271. Springer, Heidelberg (2009)

20. Montgomery, P.: Speeding the Pollard and Elliptic Curve Methods of Factorization.
Mathematics of Computation 48, 243–264 (1987)

21. Naehrig, M., Niederhagen, R., Schwabe, P.: New Software Speed Records for Cryp-
tographic Pairings. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010.
LNCS, vol. 6212, pp. 109–123. Springer, Heidelberg (2010)
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A Appendix

A.1 Multiplication and Squaring in Fq2 and Fq3

Let an element α ∈ Fq2 be represented as α0 + α1X , where α0, α1 ∈ Fq and X
is an indeterminate. The formula of Karatsuba multiplication c = ab on Fq2 is :
v0 = a0b0, v1 = a1b1, c0 = v0 + ζv1, c1 = (a0 + a1)(b0 + b1)− v0 − v1, where
v0, v1, c0, c1, a0, a1, b0, b1 ∈ Fq. Here ζ is a quadratic non-residue in Fq. The cost
of such a multiplication is (3m+5a+1ζm) in Fq. Similarly, the squaring c = a2

on Fq2 using Complex method is computed by : v0 = a0a1, c0 = (a0 + a1)(a0 +
ζa1)− v0 − ζv0, c1 = 2v0. The cost of such a squaring is (2m+5a+2ζm) in Fq.
The equation of c0 is easily deduced to a20 + ζa21, which eliminates additions but
needs two squaring instead of one multiplication. In the current design squaring
and multiplication is performed by same unit with same cost. On the other hand

http://grouper.ieee.org/groups/1363/IBC/submissions/
http://www.xilinx.com
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the addition costs are hidden to multiplication costs, thus we use above formula
to compute squaring in Fq2 .

Similarly, let an element α ∈ Fq3 be represented as α0 + α1X + α1X
2, where

αi ∈ Fq and X is an indeterminate. The formula of Karatsuba multiplication c =
ab on Fq3 is : v0 = a0b0, v1 = a1b1, v2 = a2b2, c0 = v0+ϑ((a1+a2)(b1+b2)−
v1−v2), c1 = (a0+a1)(b0+b1)−v0−v1+ϑv2, c2 = (a0+a2)(b0+b2)−v0+v1−v2,
where vi, ci, ai, bi,∈ Fq. Here ϑ is a cubic non-residue in Fq. The cost of such
a multiplication is (6m + 15a+ 2ϑm) in Fq. This multiplication formula is also
used for squaring c = a2 on Fq3 replacing b by a. Thus the cost estimation for
squaring replaces 6 multiplications by six squaring in Fq.

A.2 Sub-Routines for Optimal-Ate Pairing

Algorithm 3. Computation of f · g
Input: f = (f0 + f3s) + (f1 + f4s)t+ (f2 + f5s)t

2 and g = (g0 + g3s)
+g1t ∈ F((p2)2)3 with fj , g0, g1, g3 ∈ Fp2 , 0 ≤ j ≤ 5.

Output: f · g.
1. v0 ← (g0 + g3s)(f0 + f3s), v1 ← g1 · (f1 + f4s),
2. u0 ← g1 · ((f1 + f2) + (f4 + f5s),

u1 ← ((g0 + g1) + g3s)((f0 + f1) + (f3 + f4s)),
u2 ← (g0 + g3s)((f0 + f2) + (f3 + f5s));

3. c0 ← v0 + ξ(u0 − v1), c1 ← u1 − v0 − v1, c2 ← u2 − v0 + v1;
4. return c0 + c1t+ c2t

2;

Algorithm 4. Squaring of f in Gφ12(p) [16]
Input: f = (f0 + f3s) + (f1 + f4s)t+ (f2 + f5s)t

2 ∈ F((p2)2)3 with fj
∈ Fp2 , 0 ≤ j ≤ 5.

Output: f2.
1. v0 ← f0f3, v1 ← f1f4, v2 ← f2f5, A0 ← f0 + f3, A1 ← f0 + ξf3,

B0 ← f1 + f4, B1 ← f1 + ξf4, C0 ← f2 + f5, C1 ← f2 + ξf5;
2. u0 ← A0A1, u1 ← B0B1, u2 ← C0C1,

A0 ← v0 + ξv0, B0 ← v1 + ξv1, C0 ← v2 + ξv2;
3. c0 ← 3(u0 −A0)− 2f0, c1 ← 6v2 + 2f1, c2 ← 3(u1 −B0)− 2f2,

c3 ← 6v0 + 2f3, c4 ← 3(u2 − C0)− 2f4, c5 ← 6v1 + 2f5;
4. return (c0 + c3s) + (c1 + c4s)t+ (c2 + c5s)t

2;
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Algorithm 5. Doubling step and f2

Input: f = a0 + a1t+ a2t
2 with a0, a1, and a2 ∈ Fp4 ; P = (xP , yP ) ∈ E(Fp);

T = (XT τ
2, YT τ

3, ZT ) ∈ E(Fp12) with XT , YT , and ZT ∈ Fp2 .
Output: 2T , l(T,T )(P ) and f2.
1. B ← Y 2

T , E ← 2YTZT , C ← 3Z2
T , D ← 2XTYT ;

T0 ← a0,0 + a0,1, T1 ← a0,0 + ξa0,1;
2. A ← X2

T , U0 ← a0,0a0,1, U1 ← T0T1;
g3 ← B + iC, H ← 3C, F ← B + iH , G ← B − iH ;
T0 ← a1,0 + a1,1, T1 ← a1,0 + ξa1,1 ;

3. g0 ← EyP , J ← 4HC, g1 ← −3AxP , I ← G2;
V0,0 ← U1 − U0 − ξU0, V0,1 ← 2U0 ;

4. Z2T ← 4BE, X2T ← DF , U0 ← a1,0a1,1;
Y2T ← I + J , A0 ← a1,0 + a2,0, A1 ← a1,1 + a2,1;

5. U1 ← T0T1, W0 ← a2,0a2,1, Z0 ← A0A1;
T0 ← a2,0 + a2,1, T1 ← a2,0 + ξa2,1, X0 ← A0 +A1, X1 ← A0 + ξA1;
A0 ← a0,0 + a1,0, A1 ← a0,1 + a1,1;

6. W1 ← T0T1, Z1 ← X0X1, Y0 ← A0A1;
V1,0 ← U1 − U0 − ξU0, V1,1 ← 2U0, X0 ← A0 +A1, X1 ← A0 + ξA1;
A0 ← a0,0 + a2,0, A1 ← a0,1 + a2,1, T0 ← A0 +A1, T1 ← A0 + ξA1;

7. Y1 ← X0X1, W0 ← A0A1, W1 ← T0T1;
V2,0 ← W1 −W0 − ξW0, V2,1 ← 2W0, V3,0 ← Z1 − Z0 − ξZ0, V3,1 ← 2Z0;
V3,0 ← V3,0 − V1,0 − V2,0, V3,1 ← V3,1 − V1,1 − V2,1;

8. c0,0 ← V0,0 + ξV3,1, c0,1 ← V0,1 + V3,0, V3,0 ← Y1 − Y0 − ξY0, V3,1 ← 2Y0;
c1,0 ← V3,0 − V0,0 − V1,0 + ξV2,1, c1,1 ← V3,1 − V0,1 − V1,1 + V2,0;
T0 ← W1 −W0 − ξW0, T1 ← 2W0;
c2,0 ← T0 − V0,0 + V1,0 − V2,0, c2,1 ← T1 − V0,1 + V1,1 − V2,1;

9. return (X2T τ
2, Y2T τ

3, Z2T ), g0 + g1τ + g3τ
3, c0 + c1t+ c2t

2;

Algorithm 6. Addition step
Input: P = (xP , yP ) ∈ E(Fp), Q = (xQτ2, yQτ

3) ∈ E(Fp12) and
T = (XT τ

2, YT τ
3, ZT ) ∈ E(Fp12) with xQ, yQ, XT , YT , and ZT ∈ Fp2 .

Output: T +Q and l(T,Q)(P ).
1. E ← xQZT −XT , F ← yQZT − YT ;
2. E2 ← E2, F2 ← F 2, g3 ← xQF − yQE ;
3. B ← XTE2, E3 ← EE2, A ← ZTF2 − 2B − E3 ;
4. XT+Q ← AE, ZT+Q ← ZTE3, g0 ← EyP , g1 ← −FxP ;
5. YT+Q ← F (B −A)− yQE3 ;
6. return (XT+Qτ2, YT+Qτ

3, ZT+Q), g0 + g1τ + g3τ
3;
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Abstract. In this paper, we present a high-speed pairing coprocessor
using Residue Number System (RNS) which is intrinsically suitable for
parallel computation. This work improves the design of Cheung et al. [11]
using a carefully selected RNS base and an optimized pipeline design
of the modular multiplier. As a result, the cycle count for a modular
reduction has been halved. When combining with the lazy reduction,
Karatsuba-like formulas and optimal pipeline scheduling, a 128-bit op-
timal ate pairing computation can be completed in less than 100,000
cycles. We prototype the design on a Xilinx Virtex-6 FPGA using 5237
slices and 64 DSPs; a 128-bit pairing is computed in 0.358 ms running at
230MHz. To the best of our knowledge, this implementation outperforms
all reported hardware and software designs.

Keywords: Optimal pairing, Residue Number System (RNS), Field
Programmable Gate Array (FPGA).

1 Introduction

Pairing-Based Cryptography (PBC) has been applied to provide efficient solu-
tions to several long-standing problems in cryptography, such as three-way key
exchanges [22], identity-based encryptions [9], identity-based signatures [10], and
non-interactive zero-knowledge proof systems [19]. As cryptographic schemes
based on pairings are introduced and investigated, the performance of pairing
computations also receives increasing interest [1, 2, 7, 11, 13, 14, 16, 18, 20, 23, 30].

The pairing computation is relatively complex and slow compared with other
popular public-key primitives such as Rivest-Shamir-Adleman (RSA) [34] or El-
liptic Curve Cryptography (ECC) [25, 27]. For pairings over ordinary curves
defined over prime fields Fp, the computation can be broken down into modular
multiplications and additions in the underlying fields. For example, an optimal
ate pairing with 128-bit security consists of around ten thousand modular mul-
tiplications [2]. Thus, a faster pairing coprocessor is essential, and an efficient
modular multiplier is the key component to make this happen.

M. Abdalla and T. Lange (Eds.): Pairing 2012, LNCS 7708, pp. 160–176, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Due to the suitability for parallel implementation and the low cost for mul-
tiplications [31], Residue Number Systems (RNSs) have been introduced and
studied for long integer modular multiplications [4, 24, 33, 36]. With area com-
plexity of O�n�, the time complexity is O�1� for a multiplication and O�n� for
a modular reduction, where n is the number of machine-words to represent the
modulus p. Recently, [11] has proposed a novel parameter selection method to
ensure further complexity decrease for RNS modular reduction.

Moreover, lazy reduction and Karatsuba-like formulas are introduced to the
computation. These techniques were first deployed for pairing by Scott [35] and
then generalised by Aranha et al. [2]. In short, lazy reduction performs one
reduction for multiple multiplications, which is possible for expressions like

�
AB

in Fp; Karatsuba-like formulas save multiplications in extension fields. As such,
the number of modular reductions and multiplications decreases.

In this paper, we improve the design of Cheung et al. [11] with a higher
throughput. We show that reducing the number of moduli in the RNS basis
leads to a faster RNS reduction. Although the size of multipliers in each channel
is much larger than that of [11], the maximum frequency is only 8% lower due
to the increase of pipeline stages. We maximally explore parallelisms in RNS
arithmetic and the pairing algorithm to remove pipeline bubbles. As a result, our
implementation of 126-bit optimal ate pairing uses only 78�103 cycles, 45% less
than that of the design in [11]. Our pairing processor, implemented on a Xilinx
Virtex-6 FPGA, requires 0.338 ms to finish one 126-bit optimal ate pairing and
0.358 ms for a 128-bit one. To the best of our knowledge, this implementation
outperforms all previous hardware and software designs.

The rest of the paper is organized as follows: Section 2 provides a recap on
mathematical background. Section 3 emphasizes on the optimal parameter selec-
tion. We illustrate the architectural design and the scheduling on the proposed
architecture in detail in Section 4 and 5, respectively. Section 6 gives the FPGA
implementation results of the proposed architecture, and compares them with
recent results from the literatures. Finally, Section 7 concludes this paper.

2 Background

2.1 Bilinear Pairing

A bilinear pairing is a non-degenerate map e : G1�G2 � GT , where G1 and G2

are additive groups and GT is a subgroup of a multiplicative group. The core
property of map e is linearity in both components, which enables the construction
of novel cryptographic protocols. Popular pairings such as Tate pairing [5], ate
pairing [21], R-ate pairing [26], optimal pairing [37] choose G1 and G2 to be
specific cyclic subgroups of E�Fpk�, and GT to be a subgroup of F�

pk
.

The selection of parameters has an essential impact on the security and the
performance of a pairing computation, and not all elliptic curves are suitable.
We refer to Freeman et al. [15] for a summary of known pairing-friendly curves.
Among them, Barreto and Naehrig (BN) described a parameterized family of



162 G.X. Yao et al.

elliptic curves [6], and it is well-suited for computing asymmetric pairings. BN-
curves are defined with E : y2 � x3 � b, b � 0 over Fp, where p � 36u4� 36u3�
24u2 � 6u� 1 and g, the order of E, is 36u4 � 36u3 � 18u2 � 6u� 1. Note that
any u � Z that generates prime p and g will suffice. BN-curves have embedding
degree k � 12. Because of the limited space, we mainly focus on the discussion
of the optimal ate pairing on BN-curves.

Let E� : y2 � x3 � b	ζ be a sextic twist of E with ζ not a cube nor a square
in Fp2 , and E
g� be the subgroup of g-torsion points of E, then the optimal ate
pairing is defined as [2, 30]:

aopt : G2 �G1 � GT

�Q,P � � �fr,Q�P � � l�r�Q,πp�Q��P � � l�r�Q�πp�Q�,�π2
p�Q�

�P ��
p12�1

g

where r � 6u� 2. The group G1 � E
g�
�

Ker�πp 
 
1�� � E�Fp�
g� and G2 is
the preimage E��Fp2�
g� of E
g�

�
Ker�πp

p�� � E�Fp12�
g� under the twisting

isomorphism ψ : E� � E. The group GT is the subgroup of g-th roots of unity
μg � F�p12 . The map πp : E � E is the Frobenius endomorphism πp�x, y� �

�xp, yp�, and fr,Q�P � is a normalized function with divisor �fr,Q� � r�Q� 

�
r�Q�
�r
1��O�. The line function, lQ1,Q2�P �, is the line arising in the addition
of Q1 and Q2 evaluated at point P .

Miller [28] proposed an algorithm that constructs fr,Q in stages by using
double-and-add method. When u is selected as a negative integer, the corre-
sponding Miller algorithm is shown in Algorithm 1 [2].

Algorithm 1. Optimal ate pairing on BN curves for u � 0 [2]

Require: P � G1, Q � G2, r � �6u� 2� �
��log2 r�

i�0 ri2
i, where u � 0

Ensure: aopt�Q,P �
1: T � Q, f � 1
2: for i � �log2 r� 	 1 downto 0 do
3: f � f2 
 lT,T �P �, T � 2T
4: if ri � 1 then
5: f � f 
 lT,Q�P �, T � T �Q
6: end if
7: end for
8: Q1 � πp�Q�, Q2 � π2

p�Q�

9: T � 	T, f � fp6

10: f � f 
 lT,Q1�P �, T � T �Q1

11: f � f 
 lT,�Q2�P �, T � T 	Q2

12: f � f �p
6�1��p2�1��p4�p2�1��g

13: return f
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2.2 Residue Number System

A Residue Number System (RNS) uses a set of smaller integers to represent
a large integer. An RNS is defined by a set of n coprime integer constants,
B � �b1, b2, . . . , bn�. The set B is also known as a base, and the element bi,
1 � i � n, is called RNS modulus, and each modulus forms an RNS channel. Let
MB �

�n
i	1 bi. Let �a�b be a modulo b, then any integer X , 0 � X � MB, can

be uniquely represented as a set of smaller integers: �X�B � �x1, x2, . . . , xn�,
where xi � �X �bi, 1 � i � n. Similar to the radix-2w representation, we also call
xi a digit of X . The original value of X can be restored from �X�B using the
Chinese Remainder Theorem (CRT):

X �

�����
n�
i	1

���xi � B�1
i

���
bi
� Bi

�����
MB

, where Bi �
MB

bi
�

n�
j	1,j
i

bj, 1 � i � n. (1)

Using RNS, arithmetic operations in Z	MBZ can be efficiently performed. Con-
sider two integers X,Y and their RNS representations �X�B � �x1, x2, . . . , xn�
and �Y �B � �y1, y2, . . . , yn�, then

��X � Y �MB
�B � ��x1 � y1�b1 , . . . , �xn � yn�bn�.

for � � ��,
,�, 	�. The division is available only if Y is coprime with MB, i.e.
the multiplicative inverse of Y exists and is calculated in B.

Note that for all the basic operations (�,
,�, 	), computations between xi
and yi have no dependency on other digits, which largely simplifies the paral-
lelization of the operations. Besides, the complexity of a multiplication in RNS
is O�n�, while it is O�n2� using textbook arithmetics.

For every operation, there is an implicit channel reduction to bring the re-
sult in the range 
0, bi�. In order to accelerate the channel reduction, pseudo-
Mersenne numbers of the form bi � 2w 
 di, where di � 2�w

2 �, are commonly
chosen as moduli. To compute x � 22w modulo bi, one first performs the follow-
ing step twice:

x � �x mod 2w� � di � �x div 2w� (2)

Then, x will be in the range of 
0, 2w�1�, and after a conditional subtraction,
one finishes the residue calculation. If the Hamming weight of di is small, mul-
tiplications by di can also be replaced by a few additions.

2.3 RNS Montgomery Algorithm and Faster Base Extension

Most cryptographic applications, such as pairings, require the operations modulo
a prime, which prevents a direct utilization of RNS. This problem can be avoided
by combining RNS representation and the Montgomery reduction algorithm [29].

Algorithm 2 shows the Montgomery modular multiplication algorithmwithout
conditional subtraction in RNS context. A new base, C � �c1, c2, . . . , cn�, where
MC �

�n
i	1 ci is coprime with MB, is introduced to perform the division, and



164 G.X. Yao et al.

Algorithm 2. RNS Montgomery Modular Multiplication [24]

Require: RNS bases B and C with MB,MC � 2P
Require: P , MB, MC are pairwise coprime
Require: �X
B, �X
C, �Y 
B, �Y 
C with X,Y � 2P

Precompute: �P �
B � �� 	 P�1�MB
B
Precompute: �M �
C � ��M�1

B �MC
C and �P 
C
Ensure: �U
B, �U
C s.t. �U �P � �XYM�1

B �P , U � 2P

in B in C

1: �T 
B � �X
B � �Y 
B, �T 
C � �X
C � �Y 
C

2: �Q
B � �T 
B � �P �
B

3: �Q
B
Base Extension 1
������������� �Q
C

4: �U
C �
�
�T 
C � �Q
C � �P 
C

�
� �M �
C

5: �U
B
Base Extension 2
������������� �U
C

6: return �U
B and �U
C

all the moduli from both B and C are pairwise coprime as MB and MC are
coprime. The overhead is two Base Extensions (BEs) required in Algorithm 2.

BE is to compute �X�C � �x�1, x
�
2, . . . , x

�
n� given �X�B � �x1, x2, . . . , xn�. We

choose CRT method, specifically, the parallelizable Posch-Posch Method [24,32].
Given �X�B, for (1), there must exist a certain integer λ � n such that:

X �

�����
n�
i	1

���xi �B�1
i

���
bi
�Bi

�����
MB

�

�����
n�
i	1

ξi �Bi

�����
MB

�
n�
i	1

ξi � Bi 
 λ �MB (3)

where ξi �
���xi � B�1

i

���
bi
, 1 � i � n, and λ can be calculated by:

λ �

� n�
i	1

ξi � Bi
MB

�
�

� n�
i	1

ξi
bi

�
(4)

In [24], ξi	bi is further approximated by ξi	2
w as bi is of the form 2w
di, di � 0.

Once λ is obtained, �X�C can be computed by a matrix multiplication and
channel reductions:

	
x�1, . . . , x

�
n


T
:�

�
�

�B1�c1 � � � �Bn�c1

...
. . .

...
�B1�cn � � � �Bn�cn

�
Æ�
�
�


ξ1
...
ξn

�
Æ�
 λ

�
�

�MB�c1

...
�MB�cn

�
Æ� (5)

�X�C � �x�1, . . . , x
�
n� :� ��x�1�c1, . . . , �x

�
n�cn� (6)

Note that the elements in the matrix, �Bi�cj , 1 � i, j � n, are constants and are

determined as �Bi�cj �
����n

k	1,k
i bk

���
cj
�
����n

k	1,k
i�bk 
 cj�
���
cj
. In [11], it shows
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that the complexity of base extension can be reduced if the moduli in the two
bases are close to each other. Define B̃i,j :�

�n
k	1,k
i�bk 
 cj�. �Bi�cj or B̃i,j

makes no difference to the results but B̃i,j can be much smaller when bk 
 cj
and n are small. We denote v � w as the maximal bitlength of B̃i,j . Now the
w � w multiplications are substituted by the v � w multiplications.

Clearly, we need n w�w-bit multiplications to calculate ξi and n2 v�w-bit
multiplications for all

�n
i	1 ξi � �Bi�cj , 1 � j � n. In total, each reduction uses 4n

digit multiplications and 2n2 v�w-bit multiplications. Even though faster BE
reduces the complexity, RNS reductions cost more than multiplications. Recall
that a multiplication only takes 2n digit multiplications in Algorithm 2. Fortu-
nately, lazy reduction is commonly used to reduce the number of the expensive
modular reductions.

3 Parameter Selection

3.1 Pairing Parameter Selection

As stated in Section 2, we choose optimal ate pairing and BN-curve. Specifically,
in order to achieve 128-bit security level, we choose u � 
�263�222�218�27�1�
(p is 258-bit) as that in [11]. Also for comparison, we consider u � 
�262�255�1�
(p is 254-bit) which is used in [2, 11] and achieve 126-bit security level. We also
deploy the same tower extension field as in [2]:

– Fp2 � Fp
i�	�i
2 
 β�, where β � 
1;

– Fp12 � Fp2 
W �	�W 6 
 ζ�, where ζ � 1� i.

3.2 RNS Parameter Selection

As p is 258-bit, n � w should be greater than 258 to provide sufficient operating
range. In [11], the authors have shown that it takes two cycles for a multiplica-
tion and 2 � n	��w	v�� � 4 cycles for a modular reduction, where v is basically
determined by n. The authors choose n � 8 in [11], so that w � 33, v � 25. As
a result, a reduction takes 12 cycles, and 25�18-bit multipliers are in demand.
In this section, we show that if n � 4, w � 67, v will be � 18, hence a reduction
will only take six cycles; 18�18 multipliers are already competent.

The selected bases are chosen as follows: (w � 67)

B � �2w 
 1, 2w 
 7, 2w 
 9, 2w 
 15�,

C � �2w 
 0, 2w 
 3, 2w 
 5, 2w 
 31�.

We use LB̃ and LC̃ to show the bit-length of all B̃i,j and C̃i,j in the matrix form,
respectively.

LB̃ �

�
��


10 8 7 6
9 8 7 6
7 8 7 6

14 14 14 14

�
ÆÆ�, LC̃ �

�
��


8 7 6 4
8 9 10 6

10 10 11 8
11 12 12 11

�
ÆÆ�.
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The selected bases have the following features:

– All B̃i,j and C̃i,j are less than 18-bit. The largest element in B̃i,j and C̃i,j is
14-bit excluding the sign bit.

– The Hamming weights of all elements are less than 3 in non-adjacent form
(NAF). Therefore, the channel reduction can be performed efficiently.

– bi and ci have the same NAF representation. For instance, b3, 2
w 
 15, and

c3, 2
w 
 31 have the representation 2w 
 2k � 1, where k � 4, 5 respectively.

– All elements are equal to or less than 267, hence, after an addition or sub-
traction, the absolute value of the operand is less than 268, and can be
represented by 69 bits including the sign bit.

The advantages of using the above features will be elaborated in the next section.

4 Architectural Design and Finite Field Arithmetics

4.1 The Controller and the Cox-Rower Architecture

The top level architecture is depicted by Fig. 1(a). The coprocessor can be di-
vided into two major parts: the controller and the Arithmetic Logic Unit (ALU).
We use an efficient and flexible micro-coded sequencer as the controller. By doing
so, the controller maintains relatively small area, the ability to control accurately,
and the flexibility for different curve and pairing operation. In this paper, we
perform an optimal pairing computation on BN curves, however the proposed
hardware architecture is capable of performing other pairings when the charac-
teristic of the underlying field is less than 260 bits.

The ALU design is modified from that in [24]. We still call it the Cox-Rower
architecture. Each rower performs operations in one channel of B and one of
C. Therefore, we have four rowers as n � 4. As described in Section 2, most
operations are handled inside the channels independently, and the only step
which requires communication between rowers is the ξ distribution in BE. We
use a shared memory to redistribute the ξ values. Different from the original
design [24], all ξ values for one BE are used at the same cycle, and hence, the
ξ registers turn into a FIFO. The adder in the cox computes the value of λ for
BE operation (4).

4.2 The Rower Design and Finite Field Arithmetics

We adjust the rower design to perform pairing computation more efficiently. The
j-th rower architecture is shown in Fig. 1(b). For simplicity, we do not depict
the control signal for multiplexers in the figures.

Dual Mode Multiplier
Fig. 2(a) depicts the dual mode multiplier in detail. It contains four 69�18-bit
signed multipliers, and two different addition logics. One addition logic is for the
69�69-bit product, and the other is for the summation of four 69�18 products.
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(a) Top level architecture with Cox-Rower ALU (b) The j-th rower design in the Cox-
Rower architecture

Fig. 1. The Cox-Rower architecture

The sum of four 69�18 products is to perform one row of the matrix multiplica-
tion (5), since ξi is at most 69-bit and B̃i,j or C̃i,j is at most 18-bit. Therefore, a
matrix multiplication only takes one cycle. Apart from the matrix multiplication,
all the other multiplications are using full-length 69�69-bit signed representa-
tion. The four partial products are added up after the corresponding shift.

Preadders and Accumulators
Since the operation in Fp12 can be broken down to Fp2 , the operation in Fp2

is the fundamental arithmetic for pairing. The preadders and the accumulators
together provide fast Fp2 operation with Karatsuba-like formulas embedded. The
squaring and multiplication in Fp2 can be written as follows:

z0 � z1i � �x0 � x1i�
2

� x2
0 
 x2

1 � 2x0x1i

� �x0 � x1��x0 
 x1� � 2x0x1i (7)

z0 � z1i � �x0 � x1i��y0 � y1i�

� x0y0 
 x1y1 � �x0y1 � x1y0�i

� x0y0 
 x1y1 � ��x0 � x1��y0 � y1� 
 x0y0 
 x1y1�i (8)
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(a) Dual-mode multiplier design (b) Preadder design in each rower

Fig. 2. Architectural design of the components in a rower

When performing multiplication or squaring in Fp12 , there are also operations
as follows involved:

z0 � z1i � �x0 � x1i�
2ζ

� x2
0 
 x2

1 
 2x0x1 � �x2
0 
 x2

1 � 2x0x1�i

� �x0 � x1��x0 
 x1� 
 2x0x1 � ��x0 � x1��x0 
 x1� � 2x0x1�i (9)

z0 � z1i � �x0 � x1i��y0 � y1i�ζ

� x0y0 
 x1y1 
 x0y1 
 x1y0 � �x0y0 
 x1y1 � x0y1 � x1y0�i

� 2x0y0 
 �x0 � x1��y0 � y1� � ��x0 � x1��y0 � y1� 
 2x1y1�i (10)

The additions before multiplications are performed by the preadders and the
ones after are done by accumulators. Fig. 2(b) shows the pipelined design of the
preadders. There are only 2 patterns for Fp2 preaddition operations: squaring
(7)/(9), and multiplication (8)/(10). The input and output sequences for squar-
ing and multiplication are also provided in Fig. 2(b). We employ 2 accumulators
in Fig. 1(b) and compute both z0 and z1 at the same time, because the same
products are used for both z0 and z1 in (8), (9) and (10). As there are small
constant multiplications in the algorithm, we also integrate a constant multiplier
in the pipeline.

Channel Reducer
When performing the channel reduction, the multiplication by bi or ci in (2)
is achieved by shifts and additions, as bi and ci are of small Hamming weight.
Also as bi and ci are of the same NAF representations, the 2 channel reducers
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can be integrated into one with a signal to control the shift. Using Rower 3 as
an example, since d3 � 2k 
 1, k � 4, 5, (2) is performed by one subtraction and
one addition. To reduce modulo 2w and 2w 
 1, the arithmetic is even simpler
and the design occupies less area.

After the first execution of (2), the bit-length of x will be less than or equal
to �log2�di � 1���w, and it is only a few bits more than w as the selected di is
very small. We choose to put the accumulators here, because compared to ac-
cumulating immediately after multiplication, the bit-length of the accumulators
is shortened by almost a factor of 2. (Another choice is to put the accumulators
after the second execution of (2), which needs another channel reduction for
the accumulated results.) As long as the accumulated result x is smaller than
22w��log2�di�1�� (which is always the case), the second execution of (2) can bring
x less than 2w�1. Therefore, the channel reduction is divided into Level 1, which
performs the first execution, and Level 2, which performs the second reduction
and result correction.

Other Components
Each rower also has a 3-port RAM, one write port and two read ports, so that
the RAM can provide two operands at the same cycle. There is an adder and
a secondary RAM (sncd RAM) involved. The secondary RAM stores the values
for addition and the initial values for accumulation. For instance, the second
RAM stores the value of �T �C generated in Step 1 of Algorithm 2, and this
value is sent to accumulators as initial value in Step 4. Therefore, the addition
and the multiplication are performed in parallel. The adder takes the operation
which cannot be integrated in accumulation efficiently. The BE operation module
computes λ �Mj and adds it to the sum generated by the dual mode multiplier.

4.3 Cycle Count of Finite Field Operations

Since all the other operations (namely, preaddition, accumulation, channel re-
duction) are hidden in the pipeline, the cycle count for each operation is the cycle
used in the dual mode multiplier. For one modular reduction, there are one mul-
tiplication in B, three multiplications in C and two matrix multiplications. As
one matrix multiplication only takes 1 cycle, it takes 6 cycles to perform one
reduction. Essentially, at least k reductions are required for a multiplication in
Fpk , as the result has k coefficients. Excluding the reduction, one multiplication
or squaring in Fp takes 2 cycles, one squaring and one multiplication in Fp2 take
4 and 6 cycles, respectively. One squaring in Fp12 is equivalent to 6 Fp2 squar-
ings, 15 Fp2 multiplications and 12 reductions, while one normal multiplication
in Fp12 is equivalent to 36 multiplications and 12 reductions. The cycle count
provided in this section is under the condition that all the pipeline stages are
filled. For the latency and the pipeline bubbles, readers can refer to Section 5
for more information.
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5 Operation Scheduling

5.1 Optimal Pipeline Scheduling for RNS Montgomery Algorithm

While the pairing algorithm is more complex than ECC or RSA, it also contains
more parallelisms to be exploited. Utilizing these parallelisms, pipeline structure
is a popular technique to improve throughput with negligible latency overhead.
Typically, the pipeline depth is equal to or less than the level of parallelism,
otherwise, there will be pipeline bubbles introduced. On the other hand, adding
more pipeline stages can achieve a higher frequency. Hence, the throughput of the
implementation might still be higher even if new pipeline bubbles are introduced.

Before implementing Algorithm 2 using the proposed ALU, we first apply the
following optimizations on the algorithm:

– The multiplication by �M ��C is distributed to �T �C and �QP �C in Step 4.
– We directly compute �ξ�C for BE2, and then compute �U�C by �ξ�C��C�C.
– We pre-compute the products of the constant multiplicands, i.e. �P �B�1�B,
�M �C�1�C and �PM �C�1�C, which reduces the number of operations.

– We use the computation of �T �C, �R�C � �T �C � �M �C�1�C, and �U�C to
fill in the idle state.

Let the pipeline depth of the rower be τ , and assume that there are ρ modular
multiplications which can be pipelined. Also, as the ξ delivery is a shared oper-
ation between rowers, let it take ε cycles. We generalize η, the minimal number
of cycles to execute these ρ modular multiplications, as follows without detailed
elaboration due to paper length:

η �

����
���

8ρ, τ � ρ
2τ � 6ρ, ρ � τ � 2ρ
 ε
4τ � 2ρ� 2ε, 2ρ
 ε � τ � 2ρ
5τ � 2ε, τ � 2ρ

(11)

As each modular multiplication takes 8 cycles, the pipeline occupation rate is
given by 8ρ

η �100%, and the number of pipeline bubbles is η
8ρ. Typically, ε is

a very small number. Therefore, the pipeline occupation rate will be over 80% if
τ � 2ρ. In other words, if there are ρ concurrent reductions can be performed,
the number of pipeline stages can be up to 2ρ without introducing a lot of idle
cycles. Furthermore, if there is no dependency, one can use the multiplications
in the next pipeline round to fill in the idle states in the current round.

5.2 Scheduling of the Miller Loop

We examine the data dependency of Miller algorithm for the optimal ate pairing
on BN curve. The explict formulas, the pipeline grouping, and the cycle count
are provided by Table 1. The number of pipelined inputs, ρ, is the number of
reductions at the same pipeline group. In fact, τ � 18 for our FPGA prototype.
Using the scheduling shown in Table 1 for a single pairing, it guarantees τ � 2ρ,
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Table 1. Pipeline scheduling and operation counts of Miller loop

ρ for Cycle Count
Cond- Step Pipeline group and Formulas Single 3 Pair- Single
ition Pairing ings/3 Pairing

ri � 0

1
A � y2

1 , B � 3b�z21 , C � 2x1y1 16 180 180
D � 3x2

1, E � 2y1z1, f0,1,2 � �f2�0,1,2

2
x3 � �A	 3B�C, y3 � A2 � 6AB 	 3B2, z3 � 4AE 16 186 190
l3 � A	B, l1 � xPD, l0 � yPE, f3,4,5 � �f2�3,4,5

3
f � f 
 l 12 180 180

x1 � x3, y1 � y3, z1 � z3

ri � 1

1
A � y2

1 , B � 3b�z21 , C � 2x1y1 12 116 116
D � 3x2

1, E � 2y1z1, f2 � �f2�2

2
x3 � �A	 3B�C, y3 � A2 � 6AB 	 3B2, z3 � 4AE 16 186 190
l3 � A	B, l1 � xPD, l0 � yPE, f3,4,5 � �f2�3,4,5

x1 � x3, y1 � y3, z1 � z3

3
A � y1 	 yQz1, B � x1 	 xQz1 16 224 228

f � f 
 l

4
C � A2, D � B2 10 88 104

l3 � yQB 	 xQA, l1 � xPA, l0 � yPB

5
E � BD, C � BD � z1C 	 2x1D, 18 240 240

D � BD � z1C 	 2x1D 	 x1D, f � f 
 l

6
x3 � BC, y3 � 	AD 	 y1E, z3 � z1E 10 122 122
x1 � x3, y1 � y3, z1 � z3, f0,1 � �f2�0,1

and hence the pipeline occupation rate is over 80%. Moreover, we use multipli-
cations in the next group to fill in the idle state in the current, so that there is
only 6 idle cycle when ri � 0 (only 1% to the total cycles). For ri � 1, there are
26 idle cycles. However, as the r is chosen with small Hamming weight, ri � 1
rarely happens, and the pipeline occupation rate is over 98% for Miller loop.

To get rid of pipeline bubbles, one possible way is to perform multiple con-
current pairings, which happens to certain protocols [12] or the operation on a
server side. We use Block RAM on FPGA to serve as the Rower memory, and
even with the minimal configuration, it can store the intermediate values for 3
pairing computations with the same public parameter set. Therefore, our design
is naturally suitable for 3 pairing computations at the same time.

5.3 Scheduling of the Final Steps

The final steps of an optimal pairing include 2 final additions (Step 10, 11 in
Algorithm 1) and a final exponentiation (Step 12 in Algorithm 1). The operation
count is given in Table 2. The formulas for final additions are the same with the
point addition formulas in the Miller loop. The Frobenius endomorphism of
Q1, Q2 computation is also included in the cycle count.

For the final exponentiation, the power �p12
1	g� is factored into three small
exponents: �p6
1�, �p2�1�, and �p4
p2�1�	g. To compute �p6
1�, it requires
an inversion. The formulas from [35] is utilized to transform the inversion in Fp12
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Table 2. Cycle counts of final steps for the pairing computation

Step 3 pair- Occu. Single Occu. Step 3 pair- Occu. Single Occu.
ings/3 Rate Pair. Rate ings/3 Rate Pair. Rate

1st final add 502 99.2% 582 87.6% p2 � 1 356 100% 398 89.4%
2nd final add 284 98.6% 394 74.1% mul in hardexp 288 100% 300 96.0%

p6 	 1, before inv 237.6 86.9% 431 49.6% sq in hardexp 138 100% 150 92.0%
single sq in inv 28.3 42.4% 79 15.2% exp to p, 3p 90 100% 106 84.9%
p6 	 1, after inv 265.3 94.2% 374 69.0% exp to 2p 68 100% 98 69.4%

Table 3. Logic Utilizations of Virtex-6 XC6VLX240T-1

Logic # DSPs # LUTs # Reg. # Occupied # 18Kb
Utilization Slices BRAMs

Used 64 18,794 21,505 5,237 41
Available 768 150,720 301,440 37,680 832
Utilization 8% 12% 7% 13% 5%

to an inversion in Fp. To perform this inversion in Fp, we employ Fermat’s little
theorem, i.e. d�1 � dp�2 mod p if p is prime, and exponentiation with LSB-first
as [11]. The problem with this exponentiation in Fp is that the computation
cannot be pipelined. Indeed, only one stage is taken out of all pipeline stages,
which causes low pipeline occupation rate and a huge waste. We use the same
formulas as [11] for the exponentiation to �p4 
 p2 � 1�	g, also known as hard
exponentiation. We also use cyclotomic subgroup structure to accelerate squaring
Fp12 [2,11]. Finally, in one hard exponentiation, 3 exponentiations to u take most
of the time. Besides, there are 6 exponentiations to p or 3p, 1 exponentiation
to 2p, 13 multiplications, and 4 squarings. We also consider that potentially 3
pairings are computed at the same time.

6 Implementation and Comparisons

6.1 Implementation

The pairing coprocessor is implemented on a Xilinx Virtex-6 XC6VLX240T-1
FPGA, which embeds 25�18 DSP slices (in fact, 18�18 multipliers are suffi-
cient for our design). As there are 4 rowers and each rower contains 16 DSP
slices, the total number of used DSP is 64. Data RAMs used in each Rower
are implemented with 4 block RAMs. The block RAMs (BRAMs) also serve as
the microcode sequencer. We have designed an 18-depth carefully tuned pipeline
structure, which ensures the coprocessor to operate at 230MHz (with timing
constrains of 210MHz, the coprocessor only occupies 3879 slices). Note that the
logic utilization of DSPs and Slices is quite balanced (all around 10%), i.e. given
a bounded area, we use all the available logic resources efficiently.

Table 4 gives number of cycles used in optimal ate pairing for our design.
As expected, it provides better throughput if multiple pairings are computed at
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Table 4. The number of cycles for one pairing

Security Miller Final Exp to Exp to Hard Total Time
[bit] loops additions p6 	 1 p2 � 1 exp # Cycles [ns]

single pairing 126 37,000 976 20,792 398 34,934 94,100 409.1
3 pairings/3 126 36,664 786 7,663 356 32,300 77,769 338.1
single pairing 128 39,350 976 21,108 398 37,184 99,016 430.5
3 pairings/3 128 38,930 786 7,776 356 34,442 82,290 357.8

the same time. On the other hand, fine-pipelined architecture is affordable for
pairing computation, as RNS and pairing algorithm provide enough parallelism.
The increased frequency of the design could compensate the overhead induced
by the pipeline bubbles.

6.2 Comparison

Table 5 provides the area and timing information of recent reported pairing
implementations on both software and hardware platforms. The fastest FPGA
implementation of pairing on BN curve in literature is Design II [11]. Compared

Table 5. Performance comparison of software and hardware implementations of pair-
ings at around 128-bit security

Design Pairing Security Platform Algorithm Area Freq. Cycle Delay
[bit] [MHz] [�103] [ms]

Ours optimal ate
126 Xilinx FPGA RNS 5237 slices

210
78 0.338

128 (Virtex-6) (Parallel) 64 DSPs 82 0.358
[11]

optimal ate 126
Xilinx FPGA RNS 7032 slices

250 143 0.573
Design II (Virtex-6) (Parallel) 32 DSPs

[11]
optimal ate 126

Altera FPGA RNS 4233 ALMs
165 176 1.07

Design I (Stratix III) (Parallel) 72 DSPs

[14]
ate

128
Xilinx FPGA HMM 4014 slices

210
336 1.60

optimal ate (Virtex-6) (Parallel) 42 DSPs 245 1.17
Tate 1,730 34.6

[16] ate 128 Xilinx FPGA Blakley 52k Slices 50 1,207 24.2
optimal ate (Virtex-4) 821 16.4

Tate 11,627� 34.4
[23] ate 128 ASIC Montgomery 97 kGates 338 7,706� 22.8

optimal ate (130 nm) 5,340� 15.8

[17]
ηT over

128
Xilinx FPGA

-
15167

250 47.6 0.19
F21223 (Virtex-6) Slices

[13]
Tate over

128
Xilinx FPGA

-
4755 Slices

192 429 2.23
F35�97 (Virtex-4) 7 BRAMs

[1]
optimal Eta

128
Xilinx

-
4518

220 774� 3.52
over F2367 Virtex-4 Slices

[20]
ate

128 64-bit Core2 Montgomery
-

2400
15,000 6.25

optimal ate 10,000 4.17
[18] ate 128 64-bit Core2 Montgomery 2400 14,429 6.01
[30] optimal ate 128 Core2 Quad Hybrid Mult. - 2394 4,470 1.86
[7] optimal ate 126 Core i7 Montgomery - 2800 2,330 0.83
[2] optimal ate 126 Phenom II Montgomery - 3000 1,562 0.52

[3] ηT over F21223 128 Xeon (8 cores) - - 2000 3,020 1.51
[8] ηT over F3509 128 Core i7 (8 cores) - - 2900 5,423 1.87
[1] opt. Eta F2367 128 Core i5 - - 2530 2,440 0.96

� Estimated by the authors.
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with this work, our prototype provides 41.0% speed-up, and with 25.5% less
FPGA area. Also, the underlying multiplier used in our design is 18�18, which
is popular among the off-the-shelf products, while Design II [11] requires 25�18
multipliers, which are only available on high-end FPGAs. [17] provides almost
twice faster implementations on binary field, but with around 3 times of FPGA
area as ours. Also, our work is the first hardware design which outperforms
software implementations for pairing on BN curves.

7 Conclusions

In this paper, we present an efficient pairing coprocessor using RNS and lazy
reduction techniques. We introduce a set of RNS moduli that are suitable for
258-bit modular multiplications in the pairing computation. The proposed ar-
chitecture is prototyped on a Xilinx Virtex-6 FPGA, which utilizes 5237 slices
and 64 DSPs, and can run at 230 MHz. The coprocessor computes one optimal
pairing in 0.358 ms. To the best of our knowledge, this is a speed record for
hardware implementations for pairings on BN-curve that achieves 128-bit secu-
rity. For the future work, we plan to implement other curves and different types
of pairings on this architecture. Furthermore, we will provide an optimal param-
eter set and pairing implementations for higher security level including 192-bit
or 256-bit security.
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Formulas for Computing Pairings over Ordinary Curves. In: Paterson, K.G. (ed.)
EUROCRYPT 2011. LNCS, vol. 6632, pp. 48–68. Springer, Heidelberg (2011)
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Henŕıquez, F.: Multi-core Implementation of the Tate Pairing over Supersingular
Elliptic Curves. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS,
vol. 5888, pp. 413–432. Springer, Heidelberg (2009)

9. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

10. Cha, J.C., Cheon, J.H.: An Identity-Based Signature from Gap Diffie-Hellman
Groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer,
Heidelberg (2003)

11. Cheung, R.C.C., Duquesne, S., Fan, J., Guillermin, N., Verbauwhede, I., Yao, G.X.:
FPGA Implementation of Pairings Using Residue Number System and Lazy Reduc-
tion. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 421–441.
Springer, Heidelberg (2011)

12. Dutta, R., Barua, R., Sarkar, P.: Pairing-based cryptographic protocols: A survey.
Cryptology ePrint Archive, Report 2004/064 (2004)

13. Estibals, N.: Compact Hardware for Computing the Tate Pairing over 128-Bit-
Security Supersingular Curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing
2010. LNCS, vol. 6487, pp. 397–416. Springer, Heidelberg (2010)

14. Fan, J., Vercauteren, F., Verbauwhede, I.: Efficient hardware implementation of
Fp-arithmetic for pairing-friendly curves. IEEE Transactions on Computers 61(5),
676–685 (2012)

15. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
Journal of Cryptology 23, 224–280 (2010)

16. Ghosh, S., Mukhopadhyay, D., Roychowdhury, D.: High Speed Flexible Pairing
Cryptoprocessor on FPGA Platform. In: Joye, M., Miyaji, A., Otsuka, A. (eds.)
Pairing 2010. LNCS, vol. 6487, pp. 450–466. Springer, Heidelberg (2010)

17. Ghosh, S., Roychowdhury, D., Das, A.: High Speed Cryptoprocessor for ηT Pairing
on 128-bit Secure Supersingular Elliptic Curves over Characteristic Two Fields. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 442–458. Springer,
Heidelberg (2011)
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Abstract. We implement asymmetric pairings derived from Kachisa-
Schaefer-Scott (KSS), Barreto-Naehrig (BN), and Barreto-Lynn-Scott
(BLS) elliptic curves at the 192-bit security level. Somewhat surprisingly,
we find pairings derived from BLS curves with embedding degree 12
to be the fastest for our serial as well as our parallel implementations.
Our serial implementations provide a factor-3 speedup over the previous
state-of-the-art, demonstrating that pairing computation at the 192-bit
security level is not as expensive as previously thought. We also present
a general framework for deriving a Weil-type pairing that is well-suited
for computing a single pairing on a multi-processor machine.

1 Introduction

Since the advent of pairing-based cryptography, researchers have been devising
methods for constructing and efficiently implementing bilinear pairings. Initial
work [5,12] was focused on implementing pairings at (roughly) the 80-bit se-
curity level. Koblitz and Menezes [19] highlighted the performance drawbacks
of pairings at very high security levels. The subsequent discovery of Barreto-
Naehrig (BN) elliptic curves [7], ideally suited for implementing pairings at the
128-bit security level, spurred a lot of research culminating in the implemen-
tation of Aranha et al. [2] that achieved speeds of under 2 million cycles for a
128-bit pairing computation on a single core of Phenom II, Core i5 and Opteron
machines.

More recently, researchers have considered implementing pairings at even
higher security levels. Costello, Lauter and Naehrig [9] argued that a certain fam-
ily of embedding degree k = 24 Barreto-Lynn-Scott elliptic curves [6], henceforth
called BLS24 curves, are well-suited for implementing pairings at the 192, 224,
256, 288, and 320-bit security levels. Scott [28] implemented several pairing-based
protocols using BN curves at the 128-bit security level, Kachisa-Schaefer-Scott
(KSS) curves [17] with embedding degree k = 18 at the 192-bit security level,
and BLS24 curves at the 256-bit security level. Scott concludes that the best
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choice of pairing to implement a particular protocol can depend on a variety of
factors including the number and complexity of non-pairing operations in the
protocol, the number of pairing computations that are required, and the appli-
cability of several optimizations including fixed-argument pairings and products
of pairings [27].

In this paper, we focus on fast implementations of a single pairing at the
192-bit security level. We chose the 192-bit level because it is the higher security
level (the other is 128-bit) for public-key operations in the National Security
Agency’s Suite B Cryptography standard [23]. Moreover, as mentioned by Scott
[28], the optimum choice of pairing-friendly curve for the 192-bit security level
from the many available candidates [10] is not straightforward.

We examine a family of embedding degree k = 12 elliptic curves, henceforth
called BLS12 curves, first proposed by Barreto, Lynn and Scott [6] (see also [8]).
Unlike BN curves, the BLS12 curves are not ideal for the 128-bit security level
since the group order #E(Fp) is not prime. Nevertheless, our careful estimates
and implementation results demonstrate that they outperform KSS, BN and
BLS24 curves at the 192-bit security level. We also present a general framework
for deriving analogues of the β Weil pairing, first presented in [3] for BN curves.
This pairing is well-suited for computing a single pairing on a multi-processor
machine since it avoids the relatively-costly final exponentiation that cannot be
effectively parallelized and is present in all Tate-type pairings.

The remainder of the paper is organized as follows. The salient parameters
of KSS, BN, BLS12 and BLS24 curves are presented in §2. In §3, we review
Vercauteren’s notion of an optimal pairing and present the β Weil pairing. The
cost of the BLS12, KSS and BN pairings are estimated in §4, §5 and §6. Estimates
for the BLS24 pairing are omitted due to a lack of space. Finally, §7 compares the
estimated speeds of the four pairings and reports on our implementation. Our
results show a significant performance improvement over the previous state-of-
the-art for serial pairing implementation of the optimal ate pairing at the 192-bit
security level, and an increased scalability of the β Weil pairing in relation to
the optimal ate pairing.

2 Pairing-Friendly Elliptic Curves

Let p be a prime, and let E be an elliptic curve defined over the finite field Fp. Let
r be a prime with r | #E(Fp) and gcd(r, p) = 1. The cofactor is ρ = log p/ log r.
The embedding degree k is the smallest positive integer with r | (pk− 1). We will
assume that k is even, whence k > 1 and E[r] ⊆ E(Fpk).

Let π : (x, y) �→ (xp, yp) be the p-th power Frobenius endomorphism. The
trace of the Frobenius is t = p + 1 − #E(Fp). Let G1 = {P ∈ E[r] : π(P ) =
P} = E(Fp)[r]; G1 is the 1-eigenspace of π acting on E[r]. Let d be the order of
the automorphism group of E, and suppose that d | k. Let e = k/d and q = pe.
Then there is a unique degree-d twist Ẽ of E over Fq with r | #Ẽ(Fq) [16]; let

Ψ : Ẽ → E be the associated twisting isomorphism. Let Q̃ ∈ Ẽ(Fq) be a point

of order r; then Q = Ψ(Q̃) �∈ E(Fp). The group G2 = 〈Q〉 is the p-eigenspace of
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π acting on E[r]. Let GT denote the order-r subgroup of F∗
pk . The pairings we

study in this paper are non-degenerate bilinear maps from G1 × G2 to GT and
are called Type 3 pairings in the literature [13].

Table 1 summarizes the salient parameters of the KSS [17], BN [7], BLS12 [6]
and BLS24 [6] families of elliptic curves. All these curves are parameterized by a
positive integer z, are defined by an equation of the form Y 2 = X3+ b, and have
a twist of order d = 6. Table 2 lists the important parameters of the particular
KSS, BN, BLS12 and BLS24 curves that are suitable for implementing pairing-
based protocols at the 192-bit security level. The requirements for this security
level are that the bitlength of r be at least 384 (in order to resist Pollard’s rho
attack [25] on the discrete logarithm problem in G1), and that the bitlength of
pk should be at least 7680 (in order to resist the number field sieve attack [26]
on the discrete logarithm problem in F∗

pk).

Table 1. Important parameters for the KSS, BN, BLS12 and BLS24 families

KSS curves: k = 18, ρ ≈ 4/3
p(z) = (z8 + 5z7 + 7z6 + 37z5 + 188z4 + 259z3 + 343z2 + 1763z + 2401)/21
r(z) = (z6 + 37z3 + 343)/343, t(z) = (z4 + 16z + 7)/7

BN curves: k = 12, ρ ≈ 1
p(z) = 36z4 + 36z3 + 24z2 + 6z + 1
r(z) = 36z4 + 36z3 + 18z2 + 6z + 1, t(z) = 6z2 + 1

BLS12 curves: k = 12, ρ ≈ 1.5
p(z) = (z − 1)2(z4 − z2 + 1)/3 + z, r(z) = z4 − z2 + 1, t(z) = z + 1

BLS24 curves: k = 24, ρ ≈ 1.25
p(z) = (z − 1)2(z8 − z4 + 1)/3 + z, r(z) = z8 − z4 + 1, t(z) = z + 1

Table 2. Important parameters for the chosen KSS, BN, BLS12, BLS24 curves

Curve b k z �log2 p� �log2 r� ρ �log2 q� �log2 p
k�

KSS 2 18 −264 − 251 + 246 + 212 508 376 1.35 1523 9137
BN 5 12 2158 − 2128 − 268 + 1 638 638 1 1275 7647

BLS12 4 12 −2107 + 2105 + 293 + 25 638 427 1.49 1276 7656
BLS24 4 24 −248 + 245 + 231 − 27 477 383 1.25 1914 11482

3 Optimal Pairings

Let R ∈ E(Fpk) and let s be a non-negative integer. A Miller function fs,R [22]
of length s is a function in Fpk(E) with divisor (fs,R) = s(R)−(sR)−(s−1)(∞).
Note that fs,R is uniquely defined up to multiplication by nonzero constants in
Fpk . The length s of a Miller function determines the number �log2 s� of doubling
steps, and the Hamming weight of s determines the number of addition steps in
Miller’s algorithm for computing fs,R [22]. We will always assume that Miller
functions are minimally defined; that is, if R ∈ E(Fp�), then fs,R is selected from
the function field Fp�(E).
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The Optimal Ate Pairing. Vercauteren’s optimal pairing framework [30] al-
lows one to compute a pairing using Miller functions each of length approxi-
mately (1/ϕ(k)) log r.

For a point R ∈ E[r] and polynomial h =
∑

hix
i ∈ Z[x] such that h(s) ≡ 0

(mod r), define the extended Miller function fs,h,R to be the normalized rational
function with divisor

deg h∑
i=0

hi[(s
iR)− (∞)].

The length of the extended Miller function fs,h,R is the maximum of the absolute
values of the hi’s. Observing that fs,h1,R · fs,h2,R = fs,h1+h2,R and the polyno-
mials h(x) = r, h(x) = xi − pi satisfy the congruence condition with s = p, we
desire elements in the following lattice which have small coefficients:[

r(z) 0
v Iϕ(k)−1

]
,

where v is the column vector with i-th entry −p(z)i. This leads to the following
result of Vercauteren’s.

Theorem 1 ([30]). There exists h such that |hi| ≤ r1/ϕ(k) and (P,Q) �→
fp,h,Q(P )(p

k−1)/r is a pairing.

For parameterized curves, the function fp,h,Q where |hi| ≤ r1/ϕ(k) can be
computed as a product of Miller functions each having length approximately
(1/ϕ(k)) log r. Optimal ate pairings for KSS [30], BN [30], BLS12 [16] and BLS24
[16] curves are given in Table 3. In the table, �S,T denotes the line through points
S and T .

Table 3. Optimal ate pairings

Curve Optimal ate pairing: (P,Q) �→ h(x)

KSS
(
fz,Q · fp

3,Q · �z[Q],[3p]Q(P )
)(p18−1)/r

z + 3x− x4

BN
(
f6z+2,Q · �[6z+2]Q,[p]Q · �[6z+2+p]Q,[−p2]Q(P )

)(p12−1)/r
6z + 2 + x− x2 + x3

BLS12 (fz,Q(P ))(p
12−1)/r z − x

BLS24 (fz,Q(P ))(p
24−1)/r z − x

The β Weil Pairing. Set k = ed, where d is the order of the automorphism
group of E. Define ws and ws,h as

ws(P,Q) =

(
fs,Q(P )

fs,P (Q)

)pk/2−1

and ws,h(P,Q) =

(
fs,h,Q(P )

fs,h,P (Q)

)pk/2−1

. (1)
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Hess [15] gave a framework for computing optimal Weil pairings, building on
the methods of Vercauteren as expressed in Theorem 1.

Theorem 2 (Theorem 1 in [15]). There exists h such that |hi| ≤ r1/2 and
wpe,h is a pairing.

The pairing wpe,h with |hi| ≤ r1/2 can be computed using two extended Miller
functions of length approximately 1

2 log r. We present a framework for construct-
ing Weil-type pairings, called β pairings, which can be computed using 2e ex-
tended Miller functions each of length approximately (1/ϕ(k)) log r. In particu-
lar, we prove that for a polynomial h for which h(p) ≡ 0 (mod r), the following
is a pairing:

β : G1 ×G2 → GT : (P,Q) �→
e−1∏
i=0

wp,h([p
i]P,Q)p

e−1−i

. (2)

To establish that (2) is a pairing, we require a few technical lemmas, building on
the work of Hess and Vercauteren. Lemma 1 gives a pairing which is the product
of Weil pairings consisting of Miller functions having ate-like lengths.

Lemma 1. For all positive integers s, the following map from G1 × G2 to GT
is a pairing:

(P,Q) �→
(
e−1∏
i=0

(
fps,[pi]Q(P )

fps,[pi]P (Q)

)pe−1−i)pk/2−1

.

Proof. It follows from Theorem 1 of [15] that the map

(P,Q) �→
(
fpe,Q(P )

fpe,P (Q)

)pk/2−1

is a pairing. Using Lemma 3(ii), one can see that

fpe,P =

e−1∏
i=0

(fp,[pi]P )
pe−1−i

.

Hence, the result holds for s = 1.
Since

fps,P =
s−1∏
j=0

(fp,[pj ]P )
ps−1−j

,
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we have that

e−1∏
i=0

(fps,[pi]P )
pe−1−i

=

e−1∏
i=0

⎛⎝s−1∏
j=0

(fp,[pi][pj ]P )
ps−1−j

⎞⎠pe−1−i

=

s−1∏
j=0

(
e−1∏
i=0

(fp,[pi]([pj ]P ))
pe−1−i

)ps−1−j

=

s−1∏
j=0

(
fpe,[pj]P

)ps−1−j

.

From this, we can observe that

(
e−1∏
i=0

(
fps,[pi]Q(P )

fps,[pi]P (Q)

)pe−1−i)pk/2−1

=

(
s−1∏
i=0

(
fpe,[pi]Q(P )

fpe,[pi]P (Q)

)ps−1−i)pk/2−1

. (3)

By Lemma 6 of [14], the map (P,Q) �→ fpe,Q(P ) is a pairing. Thus, the right
hand side of (3) is a product of pairings. �

The next lemma relates the previous pairing to the Weil pairing notation defined
in (1).

Lemma 2. The following identity holds for all positive integers s:

(
e−1∏
i=0

(
fps,[pi]Q(P )

fps,[pi]P (Q)

)pe−1−i)pk/2−1

=

e−1∏
i=0

wps([p
i]P,Q)p

e−1−i

.

Proof. By Lemma 6 of [14], the map (P,Q) �→ fps,Q(P ) is a pairing and so

(
e−1∏
i=0

(
fps,[pi]Q(P )

fps,[pi]P (Q)

)pe−1−i)pk/2−1

=

(
e−1∏
i=0

(
fps,Q([p

i]P )

fps,[pi]P (Q)

)pe−1−i)pk/2−1

=
e−1∏
i=0

wps([p
i]P,Q)p

e−1−i

. �

Finally, using the pairing relation from Lemma 2, we can obtain a pairing com-
posed of Miller functions each with Vercauteren-style bound on the length.

Theorem 3. There exists h such that |hi| ≤ r1/ϕ(k) and the following is a
pairing:

β : G1 ×G2 → GT : (P,Q) �→
e−1∏
i=0

wp,h([p
i]P,Q)p

e−1−i

.
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Proof. Let h(x) =
∑c

i=0 hix
i be given by Vercauteren’s theorem and let h(p) =

rm. Since

fmr,P = fp,h,P ·
c∏
j=0

f
hj

pj ,P ,

we have that

wr(P,Q)m = wp,h(P,Q) ·
c∏
j=0

wpj (P,Q)hj .

Hence

e−1∏
i=0

wp,h([p
i]P,Q)p

e−1−i

=
e−1∏
i=0

⎛⎝wr([p
i]P,Q)m ·

c∏
j=0

wpj ([p
i]P,Q)−hj

⎞⎠pe−1−i

=

e−1∏
i=0

wr([p
i]P,Q)mp

e−1−i

·
c∏
j=0

(
e−1∏
i=0

wpj ([p
i]P,Q)p

e−1−i

)−hj

,

which by Lemmas 1 and 2 is a product of pairings. �

Using Theorem 3 and the polynomials h from Table 3, we found that the β Weil
pairings for BN, BLS12, KSS and BLS24 curves can be defined as follows:

KSS : (P,Q) �→
[(

fp,h,P (Q)

fp,h,Q(P )

)p2 ( fp,h,[p]P (Q)

fp,h,Q([p]P )

)p
fp,h,[p2]P (Q)

fp,h,Q([p2]P )

](p9−1)(p3+1)

,

(4)

BN : (P,Q) �→
[(

fp,h,P (Q)

fp,h,Q(P )

)p fp,h,[p]P (Q)

fp,h,Q([p]P )

](p6−1)(p2+1)

, (5)

BLS12 : (P,Q) �→
[(

fz,P (Q)

fz,Q(P )

)p fz,[p]P (Q)

fz,Q([p]P )

](p6−1)(p2+1)

, (6)

BLS24 : (P,Q) �→

⎡⎣ fp
3

z,P (Q) · fp
2

z,[p]P (Q) · fpz,[p2]P (Q) · fz,[p3]P (Q)

fp
3

z,Q(P ) · fp2z,Q([p]P ) · fpz,Q([p2]P ) · fz,Q([p3]P )

⎤⎦(p12−1)(p4+1)

.

(7)
For all four β Weil pairings, computing [p]P has approximately the same cost
as computing [z]P .

Parallelization of Pairings. Given two processors, the Weil pairing can be
trivially parallelized since the numerator and denominator of the Weil pairing are
independent operations. The ate pairing requires two serial operations, the Miller
loop and the final exponentiation. The next lemma can be used to parallelize
the computation of the Miller loop. We know of no way to parallelize the final
exponentiation.
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Lemma 3. Let a and b be non-negative integers, and let R ∈ E(Fqk). Then
(i) fa+b,R = fa,R · fb,R · �[a]R,[b]R/v[a+b]R, where vP denotes the vertical line
through P ; and (ii) fab,R = fab,R · fa,[b]R.

The method of Aranha et al. [4] for parallelizing the computation of a Miller
function fs,R is the following. We first write s = 2ws1 + s0 with s0 < 2w.
Applying Lemma 3, we obtain

fs,R = f2w

s1,R · f2w,[s1]R · fs0,R · �[2ws1]R,[s0]R/v[s]R. (8)

If s0 is small, then the Miller function fs0,R can be computed relatively cheaply.
Thus the computation of fs,R can be parallelized by computing f2w

s1,R
on one

processor and f2w,[s1]R on a second processor. The parameter w should be care-
fully selected in order to balance the time of the two function computations.
The relevant criteria for selecting w include the Hamming weight of s1 (which
determines the number of additions in the Miller loop for the first function),
and the cost of the w-fold squaring in the first function relative to the cost of
computing s1R in the second function. This idea can be extended to c processors
by writing s = 2wc−1sc−1 + · · ·+ 2w1s1 + s0.

Remark 1. (unsuitability of composite-order BN curves) Consider a BN curve at
the 192-bit security level. For such a curve, we desire a (sparse) BN parameter
z of approximately 160 bits. From the optimal pairing framework, we choose a
suitable vector [2z, z+1,−z, z] corresponding to the following pairing (with the
final exponentiation omitted):

(P,Q) �→ f2z,Q · fpz+1,Q · f−p2
z,Q · fp

3

z,Q · �[−zp2]Q,[zp3]Q · �[p(z+1)]Q,[−zp2+zp3]Q(P ).

Computation of the lines is relatively inexpensive. However, at first, it ap-
pears one must evaluate multiple Miller functions. Fortunately, for parameterized
curves, one can (usually) rearrange terms such that the computational bottle-
neck is fz,Q with only a few lines comprising the remaining computation. In the
above case, we obtain

(P,Q) �→ f2+p−p2+p3
z,Q ·�[z]Q,[z]Q·�[zp]Q,[p]Q·�[−zp2]Q,[zp3]Q·�[p(z+1)]Q,[−zp2+zp3]Q(P ).

At the 192-bit security level, we require that r have a prime divisor of at least
384 bits. We can easily choose r to be (a 640-bit) prime. However, given that the
optimal pairing framework gives a maximum Miller length of around (log n)/4
for BN curves where n is a large prime divisor of r, we should be tempted to
choose r with a 384-bit prime divisor. The fact that the coordinates of the vector
[2z, z+1,−z, z] have small coefficients when written in base z allowed us to write
the pairings as a power of fz,Q multiplied by a few lines. However, for composite
values of r, the vector with 96-bit elements which we obtain from the optimal
pairing framework does not, in general, have coordinates which we can relate
to each other. We would therefore require approximately 4 independent Miller
functions, negating most of the benefit of computing an optimal pairing, rather
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than the Tate pairing. The possibility of choosing a vector whose elements are
part of a short addition chain may still exist but the vectors produced by the LLL
algorithm [21] do not appear to maintain such structure. Thus, composite-order
BN curves would appear to yield inferior performance compared to prime-order
BN curves.

4 BLS12 Pairings

In this section, we consider the BLS12 curve Y 2 = X3 + 4 defined with the
parameter selection z = −2107 + 2105 + 293 + 25 which yields a 638-bit prime p
and a 427-bit prime r.

Extension Field Arithmetic for Pairings with k = 12. A tower extension
for Fp12 can be constructed as follows:

Fp2 = Fp[u]/(u
2 − β), where β ∈ Fp,

Fp6 = Fp2 [v]/(v
3 − ξ), where ξ ∈ Fp2 , and

Fp12 = Fp6 [w]/(w2 − γ), where γ ∈ Fp6 .

For our choice of parameters, we have the optimal β = −1, ξ = u + 1, γ = v.
Table 4 gives the computational costs of the tower extension field arithmetic for
curves with k = 12 in terms of a 640-bit multiplication (m640) and inversion
(i640) in Fp, with p a 638-bit prime.1 The cost of additions is ignored because of
their lower overall performance impact due to the larger field size in comparison
with [2,24]. Moreover, m̃, s̃, ı̃ denote the cost of multiplication, squaring and
inversion in Fp2 respectively.2 GΦ6(p2) denotes the order-Φ6(p

2) subgroup of F∗
p12 ,

where Φk denotes the k-th cyclotomic polynomial.

Miller Loop. For the parameter selection z = −2107 + 2105 + 293 + 25, the
Miller loop computation of fz,Q requires 107 point doublings and associated line
evaluations, 3 point additions with line evaluations, 109 sparse multiplications,
and 106 squarings in Fp12 . The computational costs of these operations can
be found in [2, Table 1]. We obtain a BLS12 Miller loop cost of 107(3m̃+ 6s̃+
4m640)+3(11m̃+2s̃+4m640)+109(13m̃)+106(12m̃) = 3043m̃+648s̃+440m640 =
10865m640.

Final Exponentiation. The final exponentiation consists of raising the Miller
loop result f ∈ Fpk to the e = (pk− 1)/r-th power. This task can be broken into
two parts since

e = (pk − 1)/r = [(pk − 1)/Φk(p)] · [Φk(p)/r].

Computing f (pk−1)/Φk(p) is considered easy, costing only a few multiplications,
inversions, and inexpensive p-th powerings in Fpk . Raising to the power d =

1 In the case of software implementation, this selection of the size of p facilitates the
usage of lazy reduction techniques as recommended in [2,24].

2 For further details on how these costs were deduced, the reader is referred to [2,24].
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Table 4. Costs of arithmetic operations in a tower extension field Fp12

Field Mult. Squaring Inversion

Fp2 m̃ = 3m640 s̃ = 2m640 ı̃ = 4m640 + i640
Fp6 6m̃ m̃+ 4s̃ 9m̃+ 3s̃+ ı̃

Fp12 18m̃ 12m̃ 23m̃+ 11s̃ + ı̃

GΦ6(p2)
18m̃ 9s̃ Conjugation

Operation Cost

Sparse Mult. 13m̃

Sparser Mult. 7m̃

Compressed Squaring 6s̃

Simult. decompression n(3m̃ + 3s̃)+
of n field elements (n− 1)3m̃+ ı̃

p/p2/p3-Frobenius 10m/15m/15m

Φk(p)/r is a more challenging task. Observing that p-th powering is much less
expensive than multiplication, Scott et al. [29] give a systematic method for
reducing the expense of exponentiating by d. In the case of BLS12 curves, it can
be shown that the exponent d can be written as d = λ0 + λ1p + λ2p

2 + λ3p
3

where λ0 = z5− 2z4+2z2− z+3, λ1 = z4− 2z3+2z− 1, λ2 = z3− 2z2+ z, and
λ3 = z2 − 2z + 1. The exponentiation fd can be computed using the following
addition-subtraction chain:

f → f−2 → fz → f2z → fz−2 → fz
2−2z → fz

3−2z2 → fz
4−2z3

→ fz
4−2z3+2z → fz

5−2z4+2z2 ,

which requires 5 exponentiations by z, 2 multiplications in Fp12 , and 2 cyclotomic
squarings. This allows fd to be computed as

fd = fz
5−2z4+2z2 ·(fz−2)−1 ·f ·(fz4−2z3+2z ·f−1)p ·(fz3−2z2 ·fz)p2 ·(fz2−2z ·f)p3 ,

which requires an additional 8 multiplications in Fp12 and 3 Frobenius maps.
This implies that the hard part of the final exponentiation requires 2 cyclotomic
squarings, 5 exponentiations by z, 10 multiplications in Fp12 , and 3 Frobenius
maps.

In total, the cost of computing the final exponentiation is 1 inversion in Fp12 ,
2 cyclotomic squarings, 12 multiplications in Fp12 , 4 Frobenius maps, and 5
exponentiations by z. It can be shown that exponentiation by our choice of the
z parameter requires 107 compressed squarings, simultaneous decompression of
4 field elements, and 3 multiplications in Fp12 when Karabina’s exponentiation
technique [18] is employed. The cost of an exponentiation by z is 107(6s̃)+4(3m̃+
3s̃) + 3(3m̃) + ı̃ + 3(18m̃) = 75m̃ + 654s̃+ ı̃, whence the total cost of the final
exponentiation is (23m̃+11s̃+ ı̃)+2(9s̃)+12(18m̃)+60m640+5(75m̃+654s̃+ ı̃)
= 614m̃+ 3299s̃+ 6ı̃ = 8464m640 + 6i640.
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Optimal Pairing Cost. From the above, we conclude that the estimated cost
of the optimal ate pairing for our chosen BLS12 curve is 10865m640+8464m640+
6i640 = 19329m640 + 6i640.

Parallelization. Figure 1 illustrates the execution path for the β Weil pairing
(6) when the four Miller functions are computed in parallel using 4 processors.
As with the optimal ate pairing, Lemma 3 was repeatedly applied to each Miller
function in the β Weil pairing in order to obtain a parallel implementation using
8 processors.

fz,Q(P )

[p]P

fz,P (Q)

[p]P

1.

2.

3.

4.

fp
z,Q(P )

fp
z,P (Q)

fz,Q([p]P )

fz,[p]P (Q)

fp
z,Q(P ) · fz,Q([p]P )

fp
z,P (Q) · fz,[p]P (Q)

Fig. 1. Execution path for computing the β Weil pairing for BLS12 curves on 4 pro-
cessors

5 KSS Pairings

In this section, we consider the KSS curve Y 2 = X3+2 defined with the param-
eter selection z = −264 − 261 + 246 + 212.

Extension Field Arithmetic for Pairings with k = 18. An element in Fp18

can be represented using the following towering scheme:

Fp3 = Fp[u]/(u
3 + 2),

Fp6 = Fp3 [v]/(v
2 − u),

Fp18 = Fp6 [w]/(w3 − v).

Table 5 gives the computational costs of the tower extensions field arithmetic
for curves with k = 18, where m512, i512 denote the cost of multiplication and
inversion in Fp, with p a 512-bit prime. Moreover, m̂, ŝ, ı̂ denote the cost of
multiplication, squaring and inversion in Fp3 respectively.

Computation of the Optimal Ate Pairing. For the parameter selection
z = −264− 251+246+212, the Miller loop executes 64 point doublings with line
evaluations, 4 point additions with line evaluations, 67 sparse multiplications and
63 squarings in Fp18 . We obtain a KSS Miller loop cost of 64(3m̂+6ŝ+6m512)+
4(11m̂+2ŝ+6m512)+67(13m̂)+63(11m̂) = 1800m̂+392ŝ+408m512 = 13168m512.
Furthermore, the final step executes 1 squaring in Fp18 , one p-power Frobe-
nius, 1 multiplication in Fp18 , 2 point additions with line evaluation, one point
doubling with line evaluation, 1 sparse multiplication, 1 sparser multiplication,
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Table 5. Costs of arithmetic operations in a tower extension field Fp18

Field Mult. Squaring Inversion

Fp3 m̂ = 6m512 ŝ = 5m512 ı̂ = 12m512 + i512
Fp6 3m̂ 2m̂ 2m̂+ 2ŝ+ ı̂

Fp18 18m̂ 11m̂ 20m̂ + 8ŝ + ı̂

Gϕ6(Fp3) 18m̂ 6m̂ Conjugation

Operation Cost

Sparse Mult. 13m̂

Sparser Mult. 7m̂

Compressed Squaring 4m̂

Simult. decompression n(3m̂+ 3ŝ)+
of n field elements (n− 1)3m̂+ ı̂

pth-Frobenius 15m

and the computation of the isomorphism ψ(Q). Thus the KSS final step cost
is 11m̂ + 18m̂ + 2(11m̂ + 2ŝ + 6m512) + 3m̂ + 6ŝ + 6m512 + 20m̂ + 28m512 =
74m̂ + 10ŝ + 40m512 = 534m512. The final exponentiation executes in total
one inversion in Fp18 , 8 cyclotomic squarings, 54 multiplications in Fp18 , 29 p-
power Frobenius, and 7 exponentiations by z [11]. The computational cost of
an exponentiation by z is 64 compressed squarings, decompression of 4 field
elements and 3 multiplications in Fp18 , for a total cost of 64(6ŝ) + 4(3ŝ+ 3m̂) +
9m̂+ ı̂+3(18m̂) = 75m̂+396ŝ+ ı̂. Hence, the total cost of the final exponentiation
is 20m̂+ 8ŝ+ ı̂+ 8(6m̂) + 54(18m̂) + 435m512 + 7(75m̂+ 396ŝ+ ı̂) = 1565m̂+
2780ŝ+ 8ı̂+ 435m512 = 23821m512 + 8i512 Finally, the total cost of computing
the KSS optimal ate pairing is 13168m512 + 534m512 + 23821m512 + 8i512 =
37523m512 + 8i512.

Computation of the β Weil Pairing. The most expensive part of the β
Weil pairing for KSS curves (4) are the six Miller functions fz,R. For parallel
implementation using 4 cores, repeated applications of Lemma 3 can be used to
write z = 2wz1 + z0 such that fz,R can be computed in the following way:

fz,R = f2w

z1,R · f2w,[z1]R · fz0,R · (�2w · [z1]R, [z0]R)/v[z]R.

For the KSS parameter z = −264 − 251 + 246 + 212, we chose w = 36, z1 =
−228 + 215 + 210, z0 = 212 and split the two most expensive Miller functions
fpz,Q([p]P ) and fz,Q([p

2]P ). Figure 2 illustrates an execution path. At the end, it

is necessary for each core to compute the additional functions (fp3,R ·�[z]R,[3p]R)p
i

and the exponentiation by (p9 − 1) · (p3 + 1).
For the case of an 8-core implementation, we simply reschedule these functions

so that each core takes approximately the same time.
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3. [p]P [p2]P

1. [p]P

2. [p]P
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f2w
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Fig. 2. Execution path for computing the β Weil pairing for KSS curves on 4 processors

6 BN Pairings

In this section, we consider the BN curve Y 2 = X3+5 defined with the parameter
selection z = 2158− 2128− 268+1. The extension fields are Fp2 = Fp[u]/(u

2+1),
Fp6 = Fp2 [v]/(v

3 − ξ) with ξ = u+ 2, and Fp12 = Fp6 [w]/(w2 − v).

Computation of the Optimal Ate Pairing. The Miller loop executes 160
point doublings with line evaluations, 6 point additions with line evaluations,
164 sparse multiplications, 1 sparser multiplication and 159 squarings in Fp12 .
We obtain a BN Miller loop cost of 160(3m̃+6s̃+4m640)+6(11m̃+2s̃+4m640)+
164(13m̃) + 7m̃+ 159(12m̃) = 4593m̃+ 972s̃+ 664m640 = 16387m640.

Furthermore, the final step executes ψ(Q), ψ2(Q), 2 point additions with
line evaluation, 1 sparser multiplication and 1 multiplication in Fp12 . The p-th
power Frobenius can be computed at a cost of about 5m640 and the p2-th power
Frobenius can be computed at a cost of about 4m640. Thus the BN final step cost
is 2(11m̃+2s̃+4m640)+7m̃+18m̃+9m640 = 47m̃+4s̃+17m640 = 166m640. The
final exponentiation executes in total 1 inversion in Fp12 , 3 cyclotomic squarings,
12 multiplications in Fp12 , 2 p-th power Frobenius, 1 p2-th power Frobenius, 1
p3-th power Frobenius, and 3 exponentiations by z [11]. The computational cost
of an exponentiation by z is: 158 compressed squarings, decompression of 3
field elements and 3 multiplications in Fp12 , for a total cost of 158(6s̃) + 3(3s̃+
3m̃) + 6m̃ + ı̃ + 3(18m̃) = 69m̃ + 957s̃ + ı̃. Hence, the total cost of the final
exponentiation is 23m̃+11s̃+ ı̃+3(9s̃)+ 12(18m̃)+ 50m640+3(69m̃+957s̃+ ı̃)
= 446m̃+ 2909s̃+ 62m640 + 4i640 = 7218m640 + 4i640. Finally, the total cost of
computing the BN optimal ate pairing is 16387m640 + 166m640 + 7218m640 +
4i640 = 23771m640 + 4i640.

Computation of the β Weil Pairing. For BN curves, we consider the β
pairing presented by Aranha et al. [3]. Lemma 3 was repeatedly applied in order
to estimate the cost of a parallel implementation using 8 processors.
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7 Comparisons

Estimates for Serial Implementations of the Optimal Ate Pairings. The
customary way to estimate the cost of a pairing is to count multiplications in
the underlying finite fields. Notice that in the case of software implementations
in modern desktop platforms, field elements a ∈ Fp can be represented with
� = 1 + �log2(p)� binary coefficients ai packed in n64 = � �64� 64-bit processor
words. If Montgomery representation is used to implement field multiplication in
Fp640 and Fp512 with complexity O(2n2

64 +n64), then it is reasonable to estimate
that we have m640 ≈ (210/136) ·m512 ≈ 1.544 ·m512.

Table 6 summarizes the costs in terms of finite field multiplications for com-
puting the optimal ate pairing over our choice of KSS, BN, BLS12 and BLS24
curves at the 192-bit security level.3 As can be seen, our estimates predict that
the optimal ate pairing over BLS12 curves is the most efficient choice at the 192-
bit security level, with KSS, BN and BLS24 curves being significantly slower.
The main computational bottleneck for BLS24 curves is their very expensive
final exponentiation.

Table 6. Cost estimates of the optimal ate pairing for KSS, BN, BLS12 and BLS24
curves at the 192-bit security level. Note that m480 = m512 in a 64-bit processor

Curve Phase Mult. in Fp Mult. in Fp512

Miller Loop 13168m512 13168m512

KSS Final Step 534m512 534m512

Final Exp. 23821m512 23821m512

ML + FS + FE 37523m512 37523m512

Miller Loop 16387m640 25301m512

BN Final Step 166m640 256m512

Final Exp. 7218m640 11145m512

ML + FS + FE 23771m640 36702m512

Miller Loop 10865m640 16775m512

BLS12 Final Exp. 8464m640 13068m512

ML + FE 19329m640 29843m512

Miller Loop 14927m480 14927m512

BLS24 Final Exp. 25412m480 25412m512

ML + FE 40339m480 40339m512

Estimates for Multi-core Implementations of the Optimal Ate and β
Weil Pairings. Table 7 (see also Figure 3) shows estimated speedups for the
parallel version of the optimal ate pairing using the partitions in Table 8 and
all the β Weil pairing variants considered here. All speedup factors are with
respect to the serial version of the KSS optimal ate pairing. It can be seen that

3 In the case of BN and KSS curves it is necessary to compute several extra lines and
Frobenius maps. We refer to these steps as the “Final step”. We stress that there is
no analogous final step in the case of BLS12 and BLS24 curves.
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the estimated performance for BLS12 curves when using 8 cores is of a factor-
3.29 acceleration, which is the highest speedup we obtain. Perhaps the most
notable observation from Table 7 is that, for eight-core implementations, the β
Weil pairing becomes more efficient than the optimal ate pairing for all the four
curves considered.

Table 7. Estimated speedups for the parallel version of the optimal ate pairing versus
the β Weil pairing. All speedup factors are with respect to the serial version of the
KSS optimal ate pairing.

Number of threads

Estimated speedup KSS 1 2 4 8

Optimal ate 1.00 1.17 1.28 1.33

β Weil 0.47 0.91 1.54 2.51

Estimated speedup BN 1 2 4 8

Optimal ate 1.02 1.36 1.61 1.76

β Weil 0.41 0.81 1.42 2.16

Estimated speedup BLS12 1 2 4 8

Optimal ate 1.26 1.56 1.76 1.88

β Weil 0.64 1.25 2.20 3.29

Estimated speedup BLS24 1 2 4 8

Optimal ate 0.93 1.05 1.12 1.14

β Weil 0.40 0.78 1.49 2.39

Table 8. Parameters wi, 0 < i < c, which define the partition of the form s =
2wc−1sc−1 + · · · + 2w1s1 + s0 for splitting the Miller loop according to Equation (8)
when computing a multi-thread optimal ate pairing among c processing units

Number of threads (c)

Curve 2 4 8

KSS 36 54, 39, 21 63, 58, 52, 45, 36, 26, 14
BN 86 129, 93, 50 149, 137, 122, 105, 85, 61, 33

BLS12 57 85, 61, 33 98, 90, 81, 70, 56, 40, 21
BLS24 26 38, 28, 15 44, 41, 37, 32, 26, 19, 10

Timings. We implemented the KSS, BN, BLS12 and BLS24 pairings following
the techniques described in [2] on two different 64-bit 32nm platforms, an Intel
Core i5 540M Nehalem and an Intel Core i7 2630QM Sandy Bridge. Field arith-
metic was implemented in Assembly for maximum efficiency and high-level code
was implemented in the C programming language. The GCC 4.7.0 compiler suite
was used with compilation flags for loop unrolling, inlining of small functions to
reduce function call overheads, and optimization level -O3. The implementation
was done on top of the RELIC cryptographic toolkit [1]. The code will eventually
be incorporated into the library.
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Table 9. Experimental results for serial/parallel executions of the KSS, BN and BLS12
optimal ate and β Weil pairings. Timings are presented in millions of clock cycles. The
speedups are with respect to the serial version of the KSS optimal ate pairing. The
columns marked with (*) present estimates based on per-thread data.

Number of threads

Platform 1 – Intel Core i5 Nehalem 32nm 1 2 4* 8*

KSS optimal ate – latency 23.40 20.91 19.75 19.17
KSS optimal ate – speedup 1.00 1.12 1.18 1.22
KSS β Weil – latency – – 15.04 9.18
KSS β Weil – speedup – – 1.56 2.55

BN optimal ate – latency 23.22 17.28 14.63 13.40
BN optimal ate – speedup 1.01 1.35 1.59 1.73
BN β Weil – latency – – 16.65 11.17
BN β Weil – speedup – – 1.39 2.08

BLS12 optimal ate – latency 18.67 15.15 13.49 12.58
BLS12 optimal ate – speedup 1.25 1.54 1.73 1.86
BLS12 β Weil – latency – 19.38 10.80 7.24
BLS12 β Weil – speedup – 1.21 2.17 3.23

BLS24 optimal ate – latency 26.32 24.00 22.82 22.27
BLS24 optimal ate – speedup 0.89 0.98 1.03 1.05
BLS24 β Weil – latency – – 17.83 10.26
BLS24 β Weil – speedup – – 1.31 2.28

Platform 2 – Intel Core i7 Sandy Bridge 32nm 1 2 4 8*

KSS optimal ate – latency 17.73 15.76 14.95 14.52
KSS optimal ate – speedup 1.00 1.12 1.19 1.22
KSS β Weil – latency – – 11.36 6.97
KSS β Weil – speedup – – 1.56 2.54

BN optimal ate – latency 17.43 13.00 10.98 10.05
BN optimal ate – speedup 1.02 1.36 1.61 1.76
BN β Weil – latency – – 12.58 8.45
BN β Weil – speedup – – 1.41 2.10

BLS12 optimal ate – latency 14.08 11.41 10.11 9.48
BLS12 optimal ate – speedup 1.26 1.55 1.75 1.87
BLS12 β Weil – latency – 14.58 8.13 5.47
BLS12 β Weil – speedup – 1.22 2.18 3.24

BLS24 optimal ate – latency 19.97 18.27 17.21 16.86
BLS24 optimal ate – speedup 0.89 0.97 1.03 1.05
BLS24 β Weil – latency – – 13.75 7.90
BLS24 β Weil – speedup – – 1.29 2.24
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Fig. 3. Expected speedups for KSS, BN, BLS12 and BLS24 optimal ate pairings at the
192-bit security level. All speedup factors are with respect to the serial version of the
KSS optimal ate pairing.

The m640 ≈ 1.544 · m512 estimate used above was experimentally confirmed
with carefully crafted Assembly code for multiplication and Montgomery reduc-
tion. Implementing the double-precision arithmetic needed for efficient applica-
tion of lazy reduction proved to be slightly cumbersome due to the exhaustion of
the 16 general-purpose registers available in the target platform (one of the regis-
ters is mostly reserved for keeping track of stack memory, aggravating the effect).
Naturally, this issue had a bigger performance impact on the larger 638-bit field,
introducing higher penalties for reading and writing values stored into memory.
By using a very efficient implementation of the Extended Euclidean Algorithm
imported from the GMP4 library, we obtained inversion-to-multiplication ratios
in Fp of around 16, suggesting the use of the projective coordinate system instead
of the affine coordinates recommended in [28] and [20], even after considering the
action of the norm map to simplify the inversion operation in extension fields.
Affine coordinates were only competitive for the BLS24 curve.

The resulting timings for the two platforms are presented in Table 9 (measured
with the Turbo Boost feature disabled). Timings for the parallel implementation
of pairings which were estimated to be slower than the reference performance of
the KSS pairing are omitted. We obtained results confirming our performance es-
timates, i.e., the BLS12 curve is the most efficient choice for pairing computation
at the 192-bit security level across all the considered scenarios. In particular, our
fastest serial implementation on the Intel Core i5 Nehalem machine can compute
a pairing in approximately 19 million cycles, more than 3 times faster than the
current state-of-the-art. The previous speed record for a single pairing compu-
tation without precomputation at this security level was presented in [28, Table

4 GUN Multiple Precision Arithmetic Library: http://www.gmplib.org
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2, column 4 halved] and achieves a latency of 60 million cycles on a very similar
machine when a factor of 1.22 is applied to the timings to adjust for the effect
of Turbo Boost.5 Additionally, the β Weil pairing presents itself as the most
efficient and scalable choice of pairing in a multiprocessor machine with more
than 4 processing units.
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1. Aranha, D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography,
http://code.google.com/p/relic-toolkit/

2. Aranha, D.F., Karabina, K., Longa, P., Gebotys, C.H., López, J.: Faster Explicit
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Abstract. The Boneh-Gentry-Waters (BGW) [3] broadcast encryption
scheme is optimal regarding the overhead size. This performance relies
on the use of a pairing. Hence this protocol can benefit from public key
improvements. The main lasting constraint is the computation time at
receiver end as it depends on the number of revoked users. In this pa-
per we describe two modifications to improve BGW bandwidth and time
complexity. First we rewrite the protocol with an asymmetric pairing
over Barreto-Naehrig (BN) curves instead of a symmetric one over su-
persingular curves. This modification leads to a practical gain of 60% in
speed and 84% in bandwidth. The second tweaks allows to reduce the
computation time from O(n − r) to min(O(r), O(n − r)) for the worst
case (and better for the average case). We give performance measures of
our implementation for a 128-bit security level of the modified protocol
on a smartphone.

Keywords: Broadcast encryption, asymmetric pairings, Barreto-Naehrig
curves, Android.

1 Introduction

A broadcast encryption scheme is a protocol allowing a broadcaster to send
messages to a large set U of users or receivers, n = #U . The set evolves at each
session in a dynamic way such that the broadcaster may choose any subset S of
privileged users ormembers from U .R is the set of revoked users (non-members),
r = #R. A broadcast protocol is secure under (t, n)-collusion if for all subsetR ⊂
U with r � t, the revoked users from R are not able to decipher. The classical
application of broadcast encryption protocols are pay-TV systems, broadcast of
content and over the air re-keying mechanisms (OTAR) in radio systems. The
content or payload is encrypted under a private key. Then the private key is
encrypted in a manner described by the chosen protocol. An overhead is added
to the encrypted data. It contains the encrypted session key and a description
of S. The system constraints are the bandwidth consumption, related to the
overhead size ω, the sender computation time τs, public key (resp. secret key)
memory PKs (resp. SKs), the users (receivers) computation time τu, public
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key (resp. secret key) memory PKu (resp. SKu). The naive solution encrypt
the session key one time per user, leading to a linear cost in bandwidth. Many
schemes have been suggested to provide an efficient broadcast.

Our Contributions. A practical instantiation was not explained in [3]. A straight-
forward implementation of the protocol uses a symmetric pairing e : G × G →
GT . We propose to design BGW with an appropriate asymmetric pairing e :
G1 × G2 → GT . In this way, the elements in G1 have the optimal size in public
key cryptography, i.e. 256 bits for the example above, rather than half a RSA
modulus size. We adapt the protocol and set in the right groups G1 or G2 the
different elements (public and private keys, bandwidth elements), knowing that
the elements in G1 have the smallest size, those of G2 have quite medium size
(at most half an RSA modulus) and those of GT are close to an RSA modulus
size. The resulting bandwidth consumption is divided by 6 at a 128-bit secu-
rity level. We adapt accordingly the security proof. We analyse the impact of
Cheon’s attacks [4] on �-BDHE and propose a resistant elliptic curve. We provide
an efficient trade-off between memory and precomputation. Finally our practi-
cal implementation on a smartphone shows that with all our improvements,
this BGW broadcast encryption scheme can be efficiently used for commercial
applications.

This paper is organized as follows: in Sec. 2 we describe how BGW can benefit
from the use of an asymmetric pairing and give hints to adapt the security proof.
In Sec. 3, we detail our choice of a pairing-friendly elliptic curve and consider
modifications due to Cheon’s attacks. In Sec. 4, we describe how to use well
chosen pre-computation to reduce dramatically the computation cost. Finally,
in Sec. 5 we give our results of a complete implementation of the protocol on a
smartphone. Full version of this paper will be available at [5].

2 BGW with an Asymmetric Pairing

Boneh, Gentry and Waters [3] describe a scheme with a minimal overhead. The
scheme use a pairing e : G1 ×G2 → GT . Definition and properties can be found
in [2, Ch. IX]. We will use the additive notation for both G1 and G2 and the
multiplicative notation for GT . In the original paper, the scheme is described
with a symmetric pairing. To this end, supersingular elliptic curves shall be
used, which is inefficient. We adapt the scheme to an asymmetric pairing in
order to have a group G1 with smaller coefficients. We reorganise the elements
and set in G1 those on which the bandwidth depends.

2.1 General Scheme

To reduce the public key size, the n users are organized into A groups of B users
with AB � n. In [3] the authors suggest to choose B = �

√
n� and A = � nB �.

We can also divide users into groups according to their country, subscription or
other criterion due to the system (Pay-TV, OTAR). A user i is referenced by its
group number (say a) and its range in that group (say b). Hence i = {a, b} with
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1 � a � A and 1 � b � B. The Hdr will contain A public elements (instead of
a unique C1), each one dedicated to a determined group of users. Here we see
relevant to set all these elements in G1. There is still a C0 element that we need
to set in G2 in order to keep in G1 the user public and private keys and a part
of the decryption.

SetupB(n) Let G1,G2,GT , P,Q as above. Let α a random element in Zm.
Compute Pi = αiP ∈ G1 for 1 � i �= B + 1 � 2B; this is the common pub-
lic key. In each group of users, the user i = {a, b} receives the set of (Pi) and
an additional public key Qb = αbQ ∈ G2. Then pick uniformly at random
γ1, ..., γA ← Zm and set V1 = γ1P, ..., VA = γAP ∈ G1. The centralized public
key is PKs = (P, P1, ..., PB , PB+2, ..., P2B , V1, ..., VA, Q,Q1) ∈ G2B+A

1 ×G2
2. The

secret key for the user number b in the group a is SKu,{a,b} = Da,b = γaPb ∈ G1.

Its public key is PKu,{a,b} =
(
Qb, (Pi)1�i�2B, i�=B+1

)
. The user doesn’t need the

others Q� hence to save memory on his constrained device (e.g. smartphone,
set-up box) we don’t add them. Note that this scheme is relevant even for un-
balanced group sizes. For large groups, the time computation will increase, but
the bandwidth consumption will be the same : one group element (in G1) per
group of users, whenever the size of the group is.

Encrypt(S,PKs) For each group a of users, denote by Sa the set of autho-
rized users in this group. Pick a random k in Zm and set K = e(PB+1, Q)k =
e(PB, Q1)

k ∈ GT . Set Hdr (∈ G2 ×GA1 ) =(
kQ, k

(
V1+

∑
j∈S1

PB+1−j
)
, k
(
V2+

∑
j∈S2

PB+1−j
)
, ..., k

(
VA+

∑
j∈SA

PB+1−j
))

Decrypt
(
i = {a, b},Sa,Hdr, SKu,{a,b},PKu,{a,b}

)
Let denote Hdr = (C0, C1, ...,

CA). The user i computes K = e(Ca, Qb)/e
(
Da,b +

∑
j∈Sa,j �=b PB+1−j+b, C0

)
.

The verification uses the relation e([i]P, [j]Q) = e(P,Q)ij = e([j]P, [i]Q). The
following table gives the protocol complexity with an asymmetric pairing, BGW1

denotes the one instance version, BGW2 denotes the parallel instance version.
ω is the bandwidth consumption, μs denotes the sender’s memory, τs the time
computation and respectively μu, τu denote the receiver’s ones. ra is the number
of revoked users in the group a. Note that they are at most B users in a group a.

Schema ω μs τs μr τr
BGW1 G2 ×G1 G2n+1

1 ×Gn+1
2 (n− r)AddG1 G2n−1

1 ×G2 (n− r)AddG1

BGW2 G2 ×GA1 G2B+A
1 ×GB+1

2 (n− r)AddG1 G2B−1
1 ×G2 (B − ra)AddG1

Theoretical complexity for BGW protocol, asymmetric pairing

2.2 Idea of the Security Proof

In [3, §3.3], the authors prove the semantic security of the general system. We
faced some trouble when adapting the security proof to an asymmetric pairing
in the setting above. We need to add a copy in G2 of the inputs elements in
G1 to the problem. This difficulty rises in the challenge phase. To generate a
consistent input for the adversary, the challenger must have a copy in G2 of the
inputs in G1. This is transparent with a symmetric pairing (an isomorphism from
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G1 into G2 is available). Such a map usually does not exists for ordinary pairing-
friendly elliptic curves. pairing. For ordinary elliptic curves, The trace map [2,
IX.7.4] is degenerated, as G2 is commonly built as the trace-zero subgroup.
With the notations from [6], the security proof must be written assuming that
the pairing is of Type 3 : G1 �= G2 and there are no efficiently computable
homomorphisms between G1 and G2. Hence the adversary needs to receive P

′
,

that is why it must appears in the challenger inputs. The security relies on the
�-Bilinear Diffie-Hellman Exponent assumption which is a weaker problem than
the Diffie-Hellman one. The difficulty of this problem was studied in [4], see Th.
1 and Th. 2. The main idea for the first theorem is to find a divisor d of m−1 in
the range 2 � d � B or B + 2 � d � 2B to reduce the complexity from O(

√
m)

to O(
√

m/d+
√
d).

3 Choice of the Pairing-Friendly Elliptic Curve

If the protocol relies exclusively on the Diffie-Hellman problem, for a N -bit
security level, prime order groups G1,G2 of size logm = 2N bits are convenient.
The group GT % F∗pk is exposed to the less difficult index calculus attack, its
size k log p must be a RSA modulus size. We have chosen a 128-bit security level
and consider NIST recommendations on key sizes. A supersingular curve (over a
prime field in large characteristic) has an embedding degree k at most 2 resulting
in log p = 1536, logm = 256+ δ (i.e. enlarging m by a few δ bits will not impact
on log p) and ρ = log p/ logm ≈ 6. The well-known Barreto-Naehrig curves
(BN, [1]) fit exactly the NIST recommended sizes of G1 and GT with k = 12,
log p = 256, k log p = 3072. In particular, for a 128 bit security level, using an
asymmetric pairing decreases the size of the element in the group G1 by a factor
of 6. To prevent from Cheon’s attacks, we can increase the size ofm by 12 bits but
it result in increasing the size of Fpk by 144 bits. To avoid this, we must generate
a strong BN curve, without any integer d dividing m and less than 212. The BN
curve generated by x = 0x4000000000087F7F = 248861 · 18531172093771 does
not have a smooth order. For this curve, 12 | m−1 and the next divisor is 248861;
2 | m + 1 and the next divisor is 480707. Because of the 12, we loose 4 bits. A
bypass would be to index the users from 13 instead of 1. Our implementation
doesn’t depends on a particular p or m hence changing their value will not infer
on the timings if their size remains the same.

4 Reducing Time Complexity

The public keys are points on an elliptic curve hence addition is as cheap
as subtraction. If the number of revoked users is small (r & n/2), the ini-
tial computation in O(n − r) is quite slow. We can instead consider that the
value Σn,i =

∑
1�j �=i�n Pn+1−j+i is precomputed for each user i. Then S =

Σn,i −
∑
j∈R Pn+1−j+i with R the set of revoked users. Now the complexity is

O(min(r, n − r)) (where O is the cost of a point addition, EllAdd). We can do
better with a precomputed tree.
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Binary Public Key Tree Precomputation. To decrease the computation
time from O(min(r, n − r)), we modify the public key into a binary public key
tree T twice long obtained by

– sorting all users in a binary tree whose leaves are the users;
– precomputing for each node the sum of each public key of the nodes below.

For each encryption and decryption, choose the optimal including/excluding tree
to compute the sum. A full description of the algorithm is given in [5]. In [3] the
authors propose to store the previous sum S from a session to the next, sub-
tract the new revoked users and add the no-longer revoked ones. This is efficient
only if the proportion of newly revoked and re-authorized users is very small.
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Example 1 (Computing S quickly in a tree). Consider a set of n = 16 users,
indexed from 1 to 16 as illustrated in two above figures (revoked users are
black). For user ’2’ compute the key session by subtracting the value in node
’1,3,4,8,9,12,24’ thus the cost is 6 EllAdd. Note that in the figure on the right
(sorted tree) the cost is only 3 EllAdd (subtract node ’30’ and ’6’, add node ’9’).
Cost would have been 8 in the original scheme.

The average case is hard to analyse as it strongly depends on the distribution
of revoked users in the tree. In practice the users are sorted by behaviour so
that nodes that are close are mostly to be revoked together. In a real world
application the behaviour is the subscription date or product. However some
random revocations (rare events) appear with compromising, expirations, etc.

5 Implementation on a Smartphone

We chose to develop a very generic library in C language which can use any mod-
ulus and any type of pairing-friendly elliptic curve in Weiertraß representation
over a prime finite field (i.e. in large characteristic). The BN curves and super-
singular curves have been implemented. The library is a proprietary industrial
library using a modular approach as in OpenSSL. It implements arithmetic over
Fp using Montgomery multiplication, elliptic curve computation over Fp and Fp2

using the modified Jacobian coordinates. The pairing computation is specific for
each Fpk field.

We now present some computational results of our improved implementation
for 128-bit security level. Our proof of concept consists in a standard PC to rep-
resent the sender, and a smartphone to represent the receiver. The smartphone
can be personalized with any secret key of the system. Thus the given results are
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the same as would be in a real system with a million smartphones. The smart-
phone is a dual core 1.2 Ghz Samsung Galaxy II with Android OS. The PC
is a 3Ghz Intel(R) Core(TM)2 Duo CPU with 2.9 Gio RAM. The broadcaster
runs the system initialization, the key attribution to a new user and the session
key encryption. First, we simulate the decryption time for an authorized user
on the PC to estimate the growing cost of decryption with respect to the total
number of users n.Smartphones with Android platform use the Java program-
ming language. Thanks to the Java Native Interface, we can load the library
in C language, run the decryption on the smartphone and measure its timing.
Results are presented in the following table.We measure the worst case r = n/2
of BGW2 so the improvements described in Sec. 4 are not visible. The users are
divided in A parallelized groups of B users with B = �√n�.

Number of Setup User Encryption Decryption Decryption
users n init. r = n/2 (simulation) (smartphone)
50000 22.15 s 0.03 s 3.58 s 1.10 s 1.44 s
100000 40.45 s 0.03 s 7.03 s 1.13 s 1.79 s
200000 1 m 16 s 0.03 s 14.72 s 1.14 s 2.08 s
500000 3 m 07 s 0.05 s 32.97 s 1.16 s 2.65 s
1000000 6 m 09 s 0.07 s 1 m 04 s 1.18 s 3.33 s
5000000 30 m 42 s 0.16 s 5 m 11 s 1.27 s 6.09 s

Computation time on a 3 Ghz PC (encryption) and a smartphone

An acceptable decryption time on the smartphone must be less than 2 seconds
from our point of view. Here this correspond to less than 200 000 users. For
larger n, we need to reduce this time. The pairing computation is not very time
consuming. The sum

∑
j∈Sa,j �=b PB+1−j+b is the most important part.With a

first trick: addition over Sa when n − r & n and subtraction over Ra (the
revoked users of group a) when r & n, the worst case of r = n/2 become the
upper bound. This means still at most 3.33s when r = n/2. With a precomputed
tree, the average case will have faster encryption and decryption times than those
presented.

6 Conclusion

We presented a well improved version of BGW suitable for use with a pairing
on one of the fastest pairing-friendly elliptic curves. Our presentation can be
easily adapted to other well-suited pairing friendly elliptic curves. We considered
the attacks on the underlying non-standard problem. We also provided time
computation on a prototype, the broadcaster hosted on a standard PC and each
receiver hosted on a Samsung Galaxy II smartphone with Android OS. For large
groups of users (more than 200000), the decryption time is up to 2s which can
be too slow. Hence we proposed improvements based on a time-memory trade-
off. Because of the use of an asymmetric pairing, the public key size remains
reasonable, hence doubling this size is feasible in order to reduce under 2s the
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decryption time. We then explained and justified all our choices to use in practice
in a real Pay-TV or OTAR system the BGW protocol.
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Abstract. We report on relative performance numbers for affine and
projective pairings on a dual-core Cortex A9 ARM processor. Using a
fast inversion in the base field and doing inversion in extension fields by
using the norm map to reduce to inversions in smaller fields, we find
a very low ratio of inversion-to-multiplication costs. In our implemen-
tation, this favors using affine coordinates, even for the current 128-bit
minimum security level specified by NIST. We use Barreto-Naehrig (BN)
curves and report on the performance of an optimal ate pairing for curves
covering security levels between 128 and 192 bits. We compare with other
reported performance numbers for pairing computation on ARM CPUs.

Keywords: Optimal ate pairing, BN curves, ARM architecture.

1 Introduction

For Elliptic Curve Cryptography (ECC) applications on NIST P-curves where
prime fields are chosen with Generalized Mersenne primes for fast modular reduc-
tion and multiplication, the base field inversion-to-multiplication ratio is often
reported to be 80 : 1 or higher. However, for pairing applications which require
fixed embedding degrees to control efficiency and security, special primes like
Mersenne primes cannot be used because there is no known way to generate
pairing-friendly curves over those particular fields. Instead, more general prime
fields arise, and much of the arithmetic in pairing computation is done in ex-
tension fields with degree 12 when using Barreto-Naehrig (BN) curves [3,14].
Computing in general prime fields using fast inversion techniques, a typical
inversion-to-multiplication ratio can be much lower than 80 : 1.

In [9], inversion-to-multiplication ratios in extension fields were given which
reflect faster inversion in extension fields by taking the norm down to smaller
fields and doing inversion there. For example, in an extension field of degree 12,
an inversion-to-multiplication ratio of 1.7 : 1 was reported for a 256-bit prime
base field. Even for implementations with much faster field multiplies, using that

� Acknowledges funding from the Netherlands Organisation for Scientific Research
(NWO) under project PACE - Pairing Acceleration for Cryptography using Elliptic
Curves.
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technique, the ratio decreases dramatically as the field extension degree increases,
which leads to the argument made in [9] that for any implementation, as the
security requirements and thus the field extension degrees grow, there exists a
cross-over point after which it becomes more efficient to use affine coordinates in
the pairing algorithm rather than projective coordinates. For the implementation
of field arithmetic in 256-bit prime fields discussed in [9] on the x86 and x86-
64 platforms, this cross-over point already occured when considering extension
degree 2.

This led us to wonder what the cross-over point might be on other platforms,
and how it would vary with different intrinsics or instruction sets. In this paper,
we give performance numbers for affine and projective pairings on a dual-core
Cortex A9 ARM processor. Our implementation targets a minimum 128-bit secu-
rity level. It thus works with BN curves with embedding degree 12, and involves
curve arithmetic in a degree-2 extension field by taking advantage of sextic twists
as usual. The high-level pairing implementation is very close to that reported in
[9]. We use intrinsics and assembly for the Montgomery multiplication implemen-
tation. Improving the underlying field multiplication algorithm would certainly
increase the degree at which one would switch from projective to affine pairings.

In our implementation, affine coordinates are the better choice for pairing
computation also on the ARM processor. Other implementations presented in
the literature recently have faster field multiplies that are optimized for specific
processor architectures to obtain pairing speed records [12,4,2], whereas our code
is not optimized for any particular architecture. Our implementation of affine
pairings compares favorably with all other reported ARM pairing timings we
have found in the literature (see Section 4).

2 Platform-Specific Improvements on ARM

The multiplication routines in our implementation utilize multiply, multiply-
accumulate, and Montgomery multiplication [11], and the compiler is Microsoft
Visual C++ on ARM (Thumb-2).

We used a Tegra 2 development platform from NVidia to obtain the bench-
mark figures in Table 1. This system features a dual-core Cortex A9 ARM CPU
running at 1GHz with 32KB/32KB (I/D) L1 cache per core, 1MB L2 cache,
and 1GB DDR2-667 main memory. The entire benchmark program fits in the
1MB L2 cache, and the core routines executed in tight loops fit in the 32KB
instruction cache.

The Montgomery multiplication function implements the CIOS method in [8],
and its performance is given in Table 1 for various moduli lengths. The C im-
plementation relies on the compiler support for double-length unsigned inte-
gers (unsigned __int64). The intrinsics method uses a few compiler-supported
ARM assembly instructions: umull, umaal, umlal while other operations are
implemented in C. The umull is an unsigned 32-bit integer multiplication instruc-
tion that generates an unsigned 64-bit product. The umlal is a 32-bit multiply
and 64-bit accumulate, and the umaal is a 32-bit multiply and double 32-bit
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accumulate instruction. The assembly row reports the benchmark figures where
the CIOS method is implemented in ARM Thumb-2 assembly language.

The difference between the assembly and the C-with-intrinsics implementa-
tion is in the Montgomery multiplication routine. Both implementations use
the above instrinsics in other primitive functions (e.g., multiply and multiply-
accumulate), such as inversion.

Table 1. Montgomery multiplication implementation choices and benchmark figures
in micro seconds.

Modulus length in bits
Implementation 160 224 288 480 640 3168

Intrinsics 2.07 2.55 3.17 5.66 9.26 147

Assembly 1.97 2.41 2.93 5.15 9.04 128

While the use of intrinsics provides an improvement over the C version, the as-
sembly implementation provides an incremental improvement over intrinsics. We
experimented with several implementation approaches such as loop unrolling, dif-
ferent instruction ordering, conditional instructions, and multi-word load/stores.
None of these approaches provided a measurable performance improvement on
our reference platform. Thus, we did not use any of these techniques to generate
the numbers on the table. Instead, we carefully crafted a straightforward as-
sembly implementation of the Montgomery multiplication CIOS algorithm in [8]
to form base reference benchmark numbers. The assembly implementation and
intrinsics only leverage the core ARM instruction set, but do not utilize SIMD
and NEON instructions.

3 Implementation and Performance

Here we present the timing results of our pairing implementation on BN curves
for the ARM instruction sets, for security levels of 128 bits or higher. Our pairing
code can be used to compute pairings on all 16 curves recently introduced in [14].
In particular, the code is not tailored for one specific curve. These curves are
easy to generate, have a very compact representation and were chosen to provide
very efficient implementation. The loop order 6u+2 for all curves is very sparse
when represented in non-adjacent form. Furthermore, the curve of size 254 bits
has recently been used to obtain the current software speed record for pairings
as outlined in [2].

Due to space constraints, we present performance results for only three of the
curves in [14], namely the curves bn254, bn446, and bn638 over prime fields of
respective bit sizes 254, 446, and 638 bits. The curve bn254 roughly provides 128
bits of security and bn638 yields about 192 bits.

Our implementation uses the optimal ate pairing on BN curves. For the pro-
jective version we used the explicit formulas in [6], but we obtained better results
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for the affine version. It uses the tower of field extensions Fp12/Fp6/Fp2/Fp via
the method described in [9] to realize field arithmetic in Fp12 . Fast methods for
doing inversion in the base field were described in [5, Appendix D]. The final
exponentiation is done using the Frobenius action and the addition chain from
[15] as well as the special squaring functions from [7].

Our implementation results are shown in Table 2. We give timings for the
finite field additions (add), subtractions (sub), multiplications (M), squarings
(S) and inversions (I) as well as the inversion-to-multiplication ratio (R = I/M)
for all fields in the tower of extensions.

We give timings for several pairing functions that use different optimizations
for different computing scenarios. The line entitled “20 at once (per pairing)”
gives the average timing for one pairing out of 20 that have been computed
at the same time. This function uses Montgomery’s inversion-sharing trick as
described in [9, Section 4.3]. The function corresponding to the line “product
of 20” computes the product of 20 pairings. The lines with the attribute “1st
arg. fixed”mean functions that compute multiple pairings, where the first input
point is fixed for all pairings, and only the second point varies. In this case,
the operations depending only on the first argument are done only once. We
list separately the final exponentiation timings. They are included in the pairing
timings of the other lines.

We do not give cycle counts for the ARM implementation in the tables since
high-frequency counters are currently not supported in our development envi-
ronment on the ARM. However, estimates for cycle counts can be easily read
off from the values given in μs and ms by multiplying them by 103 and 106,
respectively (note the clock frequency of 1GHz for the ARM processor).

3.1 Summary of our Implementation Performance Results

Here we summarize some of the results given in Table 2 on the performance of
our implementation across platforms and security levels. As high-level points of
comparison, we note that:

1. Affine coordinates are better than projective coordinates for optimal ate
pairing computation at all security levels. The trend is toward bigger differ-
ences at higher security levels. The affine pairing is roughly 20% better at
the 192-bit security level instead of 10% better at the 128-bit security level.
For example, for the 254-bit curve, an affine pairing takes 51 milliseconds
while the projective pairing takes 55 milliseconds, whereas for the 638-bit
curve, an affine pairing takes 650 milliseconds while the projective pairing
takes 768 milliseconds.

2. The inversion-to-multiplication ratio is lower in larger base fields. This largely
explains observation 1 above.

3. In the degree-12 extension fields, the inversion-to-multiplication ratio is close
to 1.7 : 1 at all security levels. There is very little variation in that, despite
big differences in ratios in the base fields.

4. The percentage of the computation time spent on the final exponentiation
goes up at the higher security levels, and this is true across platforms:
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Table 2. Field arithmetic timings in 254-, 446-, and 638-bit prime fields and opti-
mal ate pairing timings on corresponding BN curves. Field timings average over 1000
operations, pairing timings average over 20 pairings.

ARM, dual-core Cortex A9 @ 1GHz, Windows

254-bit add sub M S I R = I/M
prime field μs μs μs μs μs

Fp 0.67 0.61 1.72 1.68 18.35 10.67
Fp2 1.42 1.24 8.18 5.20 26.61 3.25
Fp6 4.43 3.96 69.83 48.24 136.68 1.96
Fp12 9.00 8.32 228.27 161.43 379.09 1.66

bn254 ms

projective 55.19

single pairing 51.01
20 at once (per pairing) 50.71

affine 20 at once, 1st argument fixed (per pairing) 46.06
product of 20 (per pairing) 17.44

single final exponentiation 24.69

446-bit add sub M S I R = I/M
prime field μs μs μs μs μs

Fp 1.17 1.03 4.01 3.92 35.85 8.94
Fp2 2.37 2.07 17.24 10.84 54.23 3.15
Fp6 7.77 7.15 152.79 109.74 302.34 1.98
Fp12 15.65 14.88 498.58 364.34 846.21 1.70

bn446 ms

projective 195.56

single pairing 184.28
20 at once (per pairing) 183.54

affine 20 at once, 1st argument fixed (per pairing) 167.83
product of 20 (per pairing) 62.33

single final exponentiation 86.75

638-bit add sub M S I R = I/M
prime field μs μs μs μs μs

Fp 1.71 1.53 8.22 8.18 56.09 6.82
Fp2 3.48 3.17 31.81 20.55 91.92 2.89
Fp6 10.63 10.09 261.87 186.21 535.42 2.04
Fp12 21.04 20.28 840.07 607.36 1454.38 1.73

bn638 ms

projective 768.06

single pairing 649.85
20 at once (per pairing) 650.08

affine 20 at once, 1st argument fixed (per pairing) 609.45
product of 20 (per pairing) 164.82

single final exponentiation 413.37



208 T. Acar et al.

For example, for the 254-bit curve, an affine pairing spends 48% of the time
on the final exponentiation, whereas for the 638-bit curve, an affine pairing
spends 63% of the time on the final exponentiation.

4 Related Work

For applications of pairings to privacy of electronic medical records using
Attribute-Based Encryption for key management, some recent performance num-
bers for pairings on ARM processors were reported in [1]. The comments in [1,
Section 6.1] give rough performance numbers for pairings on ARM: the Pairing-
Based Crypto (PBC) [10] library computes pairings in 135 milliseconds on an
ARM processor running on Apple A4 chip-based iPhone 4, running iOS 4 with
512MB of RAM and computing on a 224-bit MNT elliptic curve.

It is hard to compare across different hardware and operating systems, but as
a point of reference, our implementation of affine optimal ate pairings computes
pairings on curves of comparable security level, 222-bit BN curves, in 53 mil-
liseconds, on the hardware Tegra 2 NVidia, Dual-core ARM Cortex A9, 1GHz,
1MB L2 cache, 32KB/32KB (I/D) L1 per core, DDR2-667. Note that MNT
curves have embedding degree 6 instead of 12 as for BN curves, which means
less security and faster extension field operations and final exponentiation.

Working on elliptic curves over binary fields GF(2271) and using embedding
degree 4 on processors somewhat comparable to the ones considered here, the
Imote2 platform (13MHz PXA271, a 32-bit ARMv5TE with 32 KB data cache
and 32 KB instruction cache), [13, Table 3] shows a pairing computation in 140
milliseconds. Again these computations are not really comparable because of
the 70-bit security level, different hardware and operating system, binary fields,
different curve and embedding degree.

In [16] the authors report a performance of some optimal pairings on supersin-
gular elliptic curves in characteristic 3, using the BREW emulator on 150 MHz
and 225 MHz ARM9 processors. Their implementation achieves a pairing com-
putation in 401 and 262 milliseconds respectively over the base field GF(3193)
on curves claimed to be at the 80-bit security level.

Acknowledgements. We thank Patrick Longa and Diego F. Aranha for valu-
able comments on an earlier version of this work and interesting discussions. We
also thank the anonymous referees for their helpful comments.
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14. Pereira, G.C.C.F., Simpĺıcio, Jr., M.A., Naehrig, M., Barreto, P.S.L.M.: A family
of implementation-friendly BN elliptic curves. Journal of Systems and Software
(2011) (to appear), doi:10.1016/j.jss.2011.03.083

15. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.: On
the Final Exponentiation for Calculating Pairings on Ordinary Elliptic Curves. In:
Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88. Springer,
Heidelberg (2009)

16. Yoshitomi, M., Takagi, T., Kiyomoto, S., Tanaka, T.: Efficient Implementation of
the Pairing on Mobilephones Using BREW. In: Kim, S., Yung, M., Lee, H.-W.
(eds.) WISA 2007. LNCS, vol. 4867, pp. 203–214. Springer, Heidelberg (2008)

http://crypto.stanford.edu/pbc/
http://www.cryptojedi.org/papers/dclxvi-20100714.pdf


On the Implementation of a Pairing-Based
Cryptographic Protocol in a Constrained Device

Sébastien Canard1, Nicolas Desmoulins1, Julien Devigne1,2,
and Jacques Traoré1

1 Orange Labs, Applied Crypto Group, Caen, France
2 UCBN, GREYC, Caen, France

Abstract. In this paper, we consider a pairing-based cryptographic pro-
tocol and the way to implement it on a restricted device such as a mobile
phone or a smart card. Our aim is to show the different ways to do it,
regarding (i) the capacity for the restricted device to implement a bi-
linear pairing and/or (ii) the performance regarding the implemented
bilinear pairing. We show that there are different possibilities and study
the security and efficiency of each of them. To illustrate our purpose,
we make use of the Boneh-Boyen-Shacham group signature, which needs
one on-line pairing computation.

1 Introduction

When operating in devices with restricted capabilities w.r.t. space, memory and
computing performance, the implementation of some cryptographic algorithms
sometimes need to be further studied. In these cases, it is important to find tricks
to optimize the implementation until performance is acceptable by the customer.
This is in particular the case when the studied cryptographic algorithm includes
the use of one or several bilinear pairings.

In fact, bilinear pairings are today not studied enough to be embedded into
any mobile phone or smart card, as it is the case for e.g. RSA or EC-DSA. Then,
when one has to embed a pairing-based cryptographic algorithm onto e.g. a SIM
card for mobile phones, one has to make some choices on the way to implement
the whole algorithm, and in particular the bilinear pairing itself. In this paper,
we study several possibilities, giving for each of them pros and cons.

To illustrate the different possibilities we have studied, we take in this paper
the case of the implementation of the BBS group signature scheme [2] either
in a mobile phone connected to the outside world, or in a SIM card connected
to a mobile phone. Informally, in a group signature scheme [5], any member of
the group can sign a document and any verifier can confirm that the signature
has been computed by a member of the group. Moreover, group signatures are
anonymous and unlinkable for every verifier except, in case of a dispute, for a
given authority that knows some special information. In 2004, Boneh, Boyen and
Shacham [2] have proposed a short group signature based on the use of a bilinear
pairing (especially by the group member, during the group signature process).
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The group member is now represented by a mobile phone or a SIM card and is
connected to some device (a PC or a mobile phone resp.).

The paper is organized as follows. In Section 2, we introduce our study by
giving the description of the BBS group signature and a summary of the perfor-
mances one can obtain regarding mathematical operations related to a bilinear
pairing. In Section 3, we explain how one can avoid the need for group members
(the mobile phone or the SIM card) to produce a bilinear pairing by replacing
such operations by exponentiations in GT and state the expected results. In Sec-
tion 4, we show how the computation of a bilinear pairing can be delegated to
some more powerful entity (the connected device).

2 Introduction to Our Study

In this section, we introduce our study by describing the BBS group signature
scheme and then giving some implementation results regarding pairings and
related groups.

2.1 The BBS Group Signature Scheme

Boneh, Boyen and Shacham have proposed at CRYPTO 2004 a short group sig-
nature scheme [2] based on the Strong Diffie-Hellman and the Decisional Linear
assumptions1.

Key generation. Let G1, G2 and GT be cyclic groups of prime order r and let
g1 (resp. g2) be a generator of G1 (resp. G2). Let e : G1×G2 −→ GT be a bilinear
map such that for all (a, b) ∈ G1 ×G2 and all α, β ∈ Z, e([α]a, [β]b) = e(a, b)αβ

and e(g1, g2) �= 1.
Let h ∈ G1, ζ1, ζ2 ∈ Z∗

p and u, v ∈ G1 such that [ζ1]u = [ζ2]v = h. Let γ ∈ Z∗
p

and w = [γ]g2. Then, the tuple (ζ1, ζ2) composes the secret values to open a
signature (i.e. revoke the anonymity), γ is the secret key to add group members
and (p, g1, g2, h, u, v, w) is the public key of the whole group.

Each group member obtains from the group manager a tuple (A, x) ∈ G1×Z∗
p

such that A = [1/(γ+ x)]g1. This couple verifies e(A,w+ [x]g2) = e(g1, g2). The
value x is the member’s secret and A is the key used to retrieve the identity of
a member in case of opening (i.e. anonymity revocation).

Group signature generation. On input a message m and a tuple (A, x),
a group signature is executed as follows:

– choose at random α, β ∈ Zp and compute T1 = [α]u, T2 = [β]v and T3 =
A+ [α+ β]h;

– compute δ1 = xα and δ2 = xβ;
1 We used the additive notation for group laws in G1 and G2, which are elliptic curve

groups over some finite field Fp, and multiplicative notation for GT , which is a
subgroup of F∗

pk .
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– choose at random rα, rβ , rx, rδ1 , rδ2 ∈ Zp;
– compute t1 = [rα]u, t2 = [rβ ]v, t3 = [rx]T1 + [−rδ1 ]u, t4 = [rx]T2 + [−rδ2 ]v

and

t5 = e(T3, g2)rxe(h,w)−rα−rβe(h, g2)−rδ1−rδ2 ; (1)

– compute c = H(m‖T1‖T2‖T3‖t1‖t2‖t3‖t4‖t5);
– compute sα = rα + cα, sβ = rβ + cβ, sx = rx + cx, sδ1 = rδ1 + cδ1 and
sδ2 = rδ2 + cδ2.

A group signature is σ = (T1, T2, T3, c, sα, sβ , sx, sδ1 , sδ2). Here (T1, T2, T3)
is a linear encryption of A (see [2] for such encryption scheme) and
(c, sα, sβ , sx, sδ1 , sδ2) is a proof of knowledge of a valid certificate (using the
Fiat-Shamir heuristic [7]). The verification step consists then in verifying this
proof of knowledge, using standard techniques, and the open procedure is the
decryption of the linear encryption.

Implementation. We now focus on the group signature procedure and the way
to implement it on e.g. the mobile phone of the group member.

As e(h,w) and e(h, g2) depend only on public values, these pairings can be pre-
computed by e.g. the group manager (and directly put in the whole group public
key), it only remains one additional bilinear pairing to compute: e(T3, g2). As
a conclusion, the group member should perform 7 random generations, 5 scalar
multiplications in G1, 2 double-scalar multiplications in G1, 1 triple exponentia-
tion in GT , 1 pairing evaluation and a few operations in G1, GT and Zp (which
will be neglected in the following).

2.2 Implementation of a Bilinear Pairing

The security level implies minimal sizes for r (the size of the elliptic curve sub-
group in which pairing operands live) and pk (the size of the finite field which
receives pairing outputs). The integers r and p are prime numbers, and k is the
embedding degree. We have developed our own bilinear pairing e : G1×G2 −→ GT

with a Barreto-Naerhig elliptic curve E of equation Y 2 = X3 + 5 over Fp (with
p a prime number). More precisely, we have:

– G1 = E[r](Fp), where E[r] denotes the r-torsion group;
– G2 = E[r](Fp) ∪ Ker(πp − [p]) ⊆ E[r](Fpk ), where πp : E −→ E is the

Frobenius endomorphism; and
– GT = μr ⊂ F∗

pk where μr is the group of r-th roots of unity.

We have then chosen a 128-bit security level, which gives us log2 r = 256 and
log2 p

k = 3248. For k = 12, we obtain |p| = |r| = 256.

Some Optimizations. To accelerate the computation of pairings, some opti-
mizations were used. In particular, we make use of the results given in [6] for
some general low level optimizations (in particular the use of Jacobian coordi-
nates and the joint point-and-line computation).
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We have then implemented the Ate pairing as described in [1], which permits
us to boost the pairing computation. Our results are given in Table 1 for the
Samsung Galaxy S2 smartphone with a Dual-core Exynos 4210 1.2GHz processor
ARM Cortex-A9 with the Android OS, v2.3 (Gingerbread).

Table 1. Our implementation benchmark

operation notation time computation
(in ms)

Scalar multiplication in G1 = E[r](Fp) ε 5.7
Exponentiation in GT = F∗

p12 ζ 42
Ate pairing e ψ 63

Dealing with Multi-scalar Multiplications. The BBS scheme moreover needs to
implement the multi-scalar multiplication in G1 (resp. multi-exponentiation in
GT ), which are the most costly operations. One solution to improve multi-
scalar multiplication (resp. multi-exponentiation) is to use the generalization
of the Shamir’s trick which is presented in [9]. In that case, the computation
of c =

∑�
i=1[ei]gi (resp. c =

∏�
i=1 g

ei

i ) is accelerated since it is not necessary
to compute each scalar multiplication (resp. modular exponentiation) and add
(resp. multiply) the results since c can be computed globally. Using such trick,
the computation of c needs approximately 2�+1−1

3×2�−1 times the cost of a scalar
multiplication (resp. modular exponentiation).

Thus, for a triple scalar multiplication in G1 (resp. modular exponentiation
in GT ), the expected time complexity is approximately 1.25ε (resp. 1.25ζ).

2.3 BBS on a Restricted Device

Using the above benchmark for pairings and operations in the different used
groups, the whole BBS group signature represents the following complexity (ne-
glecting random generation and multiplications in Zp): 5 scalar multiplications
in G1, 2 double-scalar multiplications in G1, 1 triple exponentiation in GT , and
1 pairing, that is approximately (using the generalization of Shamir’s trick)
7.3ε + 1.25ζ + ψ. Using our above benchmark, we obtain an estimate of ap-
proximately 157 ms for this solution.

3 From a Bilinear Pairing to an Exponentiation in GT

We now give one possibility to implement such group signature, which is in
particular explained in the paragraph “Performance” of Section 6 in [2].
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3.1 Removing the Bilinear Pairing

One possibility is to consider that the group manager, when generating the
tuple (A, x) for the group member, already pre-computes Λ = e(A, g2) and gives
it to the group member. Then, using Λ and assuming that w̃ = e(h,w) and
h̃ = e(h, g2) are already precomputed (see above), we see easily that

Λh̃α+β = e(A, g2)e(h, g2)α+β = e(A+ [α+ β]h, g2) = e(T3, g2), (2)

which corresponds to the result we need. Then, Equation (1) becomes (in GT )

t5 = Λrxw̃−rα−rβ h̃rx(α+β)−rδ1−rδ2

which is a new way for the group member (the mobile phone) to compute t5.
As a result, using such technique, the group member has now to perform 7

random generations, 5 exponentiations in G1, 2 double exponentiations in G1, 1
triple exponentiation in GT , and no pairing evaluations.

3.2 Pros and Cons

Implementation. The main advantage of this method is that it is not neces-
sary to embed a pairing on the mobile phone, since the phone does not have to
compute any more pairing. However, in practice, this advantage is not as im-
portant as it seems since the mobile needs to perform multi-exponentiations in
GT and in G1. Thus, it is necessary to implement the algebraic structure of a
bilinear pairing, without implementing a bilinear pairing. Thus, regarding the
pure implementation aspects, the gain is not very important.

Efficiency. Regarding efficiency, the computation of the bilinear pairing plus
a triple exponentiation is replaced by only a triple exponentiation (and no pair-
ing!). The other operations are unchanged, except for some extra operations in
Zp which we neglect throughout the text (e.g. computing rx(α+ β)− rδ1 − rδ2).

In total, we obtain: 5 scalar multiplications in G1, 2 double-scalar multipli-
cations in G1 and 1 triple exponentiation in GT , that is 7.3ε+ 1.25ζ. Using our
above benchmark, we obtain an estimate of 94 ms for this solution.

Remark 1. As the most costly operation for a pairing is the final exponentiation
in GT , the gain is not always as important as it can be (for other schemes
than BBS). The different optimizations for this final exponentiation need to be
compared to the existing methods regarding multi-exponentiation (see above).
Then, depending on the number of components in the multi-exponentiations,
the results regarding efficiency can be different.

4 Delegating the Pairing Computation

We here give another possibility which consists in delegating the computation
of the bilinear pairings to a more powerful entity.
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4.1 How to Delegate

We first remark that the pairing computation which we focus on is e(T3, g2),
where T3 is part of the output group signature (and is consequently a public
value since the group signature is public) and g2 is a public parameter. As our
pairing needs no secret key and as it takes on input public values, the output is
also public (any verifier can compute it after the reception of a group signature).
Our idea is then to delegate this computation to another entity. This entity can
correspond to e.g. a more powerful laptop, or some kind of dedicated server
(e.g. a cloud for cryptographic operations) where it is easier to implement a fast
bilinear pairing. Another example is when the true group member corresponds
to the SIM card while the external helper is the mobile phone.

After having computed T3 (see above in Section 2.1), the mobile phone can
send it to this powerful entity which computes t̃ = e(T3, g2) and sends the results
to the mobile phone. In this case, Equation (1) becomes (in GT )

t5 = t̃rxe(h,w)−rα−rβe(h, g2)−rδ1−rδ2 . (3)

In this case, the mobile phone has to perform 7 random generations, 5 scalar mul-
tiplications in G1, 2 double-scalar multiplications in G1, 1 triple exponentiation
in GT , and no pairing evaluations.

4.2 Pros and Cons

Implementation. Again, in this solution, there is no need to implement a bi-
linear pairing in the mobile phone. Again also, it is still necessary to implement
most of the algebraic structure of the bilinear pairing. Thus, regarding the pure
implementation aspects, the gain is still not very important.

Efficiency. Regarding efficiency, the computation of the bilinear pairing plus
a triple exponentiation is replaced by the sole triple exponentiation. However,
we need to take into account the additional communication steps of this method
(the computation of the bilinear pairing by the powerful entity is not taken into
account as it can be executed in parallel with other computations performed by
the mobile phone). In the previous methods, there is only one communication
step of the whole group signature. Here, we add an additional communication
for sending and receiving T3 and t̃ respectively.

Practically speaking, we obtain (again neglecting random generation and mul-
tiplications in Zp): 5 scalar multiplications in G1, 2 double-scalar multiplications
in G1 and 1 triple exponentiation in GT , which corresponds exactly to the above
time complexity. This time, we also only need to compute additions in Zp (and
no multiplications as for the previous solution).

However, this does not include the additional communication. In practice,
we can approximate the communication between a mobile phone and the exte-
rior or between the SIM card and the mobile phone to 200 kbits/s (and thus
approximately 17 ms for the communication in our case). Using an 3G/UMTS
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communication, the resulting rate can reach 2 Mbits/s, which makes the com-
munication step negligible.

Facing corrupted delegate. One additional problem with this method is
that the powerful delegate can send to the mobile phone a wrong value t̃ so that
the resulting group signature will be rejected. There exists in the literature ver-
ifiable delegation of cryptographic operation, but, to the best of our knowledge,
no work has been done regarding pairings.

However, in some practical cases, this “attack” is not useful. In particular, if
the group signature generated by the mobile signature necessarily goes via this
delegate for the final sending to the true verifier, this one can easily send to
the verifier anything it wants to get the group signature rejected. If such group
signature is used for e.g. access control, the customer will see that she can not
access the place she wants and thus detect that something is wrong.

Remark 2. In some cases, such as for the identity-based encryption scheme of
Boneh-Franklin [3], the pairing evaluation includes a secret value, which may
make this method impossible. In fact, as proposed by Lefranc and Girault [8],
there exists some delegation technique for this case. For example, if one wants to
compute e(a, b) where a is secret and b is public, one possibility is for the mobile
phone to compute c = [α]a, where α is random, and for the delegate d = e(c, b).
The result e(a, b) is then d1/α.

5 Conclusion

With our practical results, it seems that the second solution, which consists in
replacing the bilinear pairing by operations in GT , is the best one. This also
shows that the optimizations regarding operations in GT are very important, as
well as the communication rate between e.g. the mobile phone and the exterior.
Note finally that the delegation technique can be extended to other operations
related to the BBS signature scheme, such as proposed in [4], which can make
the last solution better in some particular cases.

Acknowledgments. We are very grateful to Tanja Lange for her useful com-
ments and suggestions.
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Abstract. Recently, Stange proposed a new algorithm to compute the
Tate pairing on an elliptic curve. Her algorithm is based on elliptic nets,
which are also defined by Stange as a generalization of elliptic divisibility
sequences. In this paper, we define hyperelliptic nets as a generalization
of elliptic nets to hyperelliptic curves. We also give an expression for the
Tate-Lichtenbaum pairing on a hyperelliptic curve in terms of hyperel-
liptic nets. Using this expression, we give an algorithm to compute the
Tate-Lichtenbaum pairing on a hyperelliptic curve of genus 2.

Keywords: Tate-Lichtenbaum pairing, hyperelliptic curve, hyperellip-
tic net.

1 Introduction

In the area of elliptic and hyperelliptic curve cryptography, various pairings such
as the Weil and Tate-Lichtenbaum pairings play an important role. It is an im-
portant problem to find an algorithm to compute pairings efficiently. Among
these pairings, the Tate-Lichtenbaum pairing is studied well because of its effi-
ciency.

The Tate-Lichtenbaum pairing is usually computed by using Miller’s algo-
rithm as well as the Weil pairing (cf. [12,13]). Recently, Stange [17] proposed
another algorithm to compute the Tate(-Lichtenbaum) pairing on an elliptic
curve. Her algorithm is based on elliptic nets, which are defined as follows: Let
A be a free finitely generated Abelian group and R be an integral domain. A
map W : A → R is an elliptic net if W (0) = 0 and if

W (p+ q + s)W (p− q)W (r + s)W (r)

+W (q + r + s)W (q − r)W (p+ s)W (p)

+W (r + p+ s)W (r − p)W (q + s)W (q) = 0 (1)

holds for all p, q, r, s ∈ A. Stange defined the elliptic net WP associated to an
elliptic curve E and points P = (P1, . . . , Pn) on E, and described the Tate
pairing on E by using WP .

M. Abdalla and T. Lange (Eds.): Pairing 2012, LNCS 7708, pp. 218–233, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In this paper, we generalize Stange’s results to hyperelliptic curves. First, we
define a hyperelliptic net associated to a hyperelliptic curve and points on its
Jacobian variety and prove properties of hyperelliptic nets. Next, we give an ex-
pression for the Tate-Lichtenbaum pairing on a hyperelliptic curve in terms of hy-
perelliptic nets. Finally, we give an algorithm to compute the Tate-Lichtenbaum
pairing on a hyperelliptic curve of genus 2 via hyperelliptic nets.

This paper is organized as follows: In Sect. 2, we review the theory of the
hyperelliptic sigma function. In Sect. 3, we define hyperelliptic nets over the com-
plex numbers and describe some properties of them. In Sect. 4, we define hyper-
elliptic nets over arbitrary fields by using an existence theorem of certain rational
functions on a product of Jacobian varieties (Theorem 2), which is proved in the
Appendix. In Sect. 5, we give an expression of the Tate-Lichtenbaum pairing on
a hyperelliptic curve in terms of hyperelliptic nets. In Sect. 6, we give algorithms
to compute terms of hyperelliptic nets and the Tate-Lichtenbaum pairing in the
case of genus 2. Finally, we draw conclusions in Sect. 7.

Notation. For a matrix A, we denote by tA the transpose of A. Unless otherwise
stated, we regard a vector as a column vector. For a 2n × 2n skew-symmetric
matrix A, we denote by Pf A the Pfaffian of A.

2 The Hyperelliptic Sigma Function

In this section, we review the theory of the hyperelliptic sigma function and fix
the definitions. For details, we refer the reader to [3,16].

Let C be a smooth projective curve over C defined by

y2 = f(x) = x2g+1 + λ2gx
2g + · · ·+ λ1x+ λ0.

Then f(x) has no multiple roots, the genus of C is g, and C has the unique point
∞ at infinity. We define λ2g+1 = 1 for convention.

For j = 1, 2, . . . , g, we define differential forms

ωj =
xj−1dx

2y
, ηj =

1

2y

2g−j∑
k=j

(k + 1− j)λk+1+jx
kdx.

Let [ω′, ω′′] and [η′, η′′] be the period matrices with respect to ωj and ηj for a
symplectic basis of H1(C,Z) respectively. Let τ = ω′−1ω′′. It is known that τ is
symmetric and Im τ is positive definite.

We write e(z) = exp(2π
√
−1z) for z ∈ C. We define the theta function with

characteristics by

ϑ

[
a
b

]
(z, τ) =

∑
n∈Zg

e

(
1

2
t(n+ a)τ(n+ a) + t(n+ a)(z + b)

)
,

where z ∈ Cg and a, b ∈ Rg.
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Let Λ = ω′Zg + ω′′Zg. Then Λ is a lattice in Cg. Let

δ′′ =
t(

1

2
, . . . ,

1

2

)
, δ′ =

t(
g

2
,
g − 1

2
, . . . ,

1

2

)
, δ =

(
δ′′

δ′

)
.

We define the hyperelliptic sigma function on Cg by

σ(u) = c exp

(
1

2
tuη′ω′−1u

)
ϑ[δ](ω′−1u, τ),

where c is a certain constant. For the precise definition, see [16, Sect. 4].
Let l = ω′l′ + ω′′l′′ ∈ Λ, where l′, l′′ ∈ Zg. We define χ : Λ → {±1} by

χ(l) = exp
(
2π
√
−1

(
t
l′δ′′ − t

l′′δ′
)
+ π

√
−1

t
l′l′′

)
.

Proposition 1 (translational relation). Let u ∈ Cg and l = ω′l′+ω′′l′′ ∈ Λ,
where l′, l′′ ∈ Zg. Then we have

σ(u + l) = χ(l) exp
(
t(u+ l/2)(η′l′ + η′′l′′)

)
σ(u).

Proof. See [3, Theorem 1.1]. 
�

Proposition 2. The sigma function σ(u) is an odd function if g ≡ 1, 2 (mod 4),
and an even function if g ≡ 0, 3 (mod 4).

Proof. It follows from [14, Chap. II, Proposition 3.14]. 
�

We define the hyperelliptic ℘-functions by

℘ij(u) = − ∂2

∂ui∂uj
log σ(u), ℘ijk(u) = − ∂3

∂ui∂uj∂uk
log σ(u), . . . ,

where i, j, k, . . . ∈ {1, 2, . . . , g} and u = t(u1, . . . , ug). Obviously, the ℘-functions
do not depend on the order of their indices. For example, ℘ij(u) = ℘ji(u).

Let J = Cg/Λ be the Jacobian variety of C and κ : Cg → J be the natural
projection. By Proposition 1, the ℘-functions are periodic with respect to Λ.
Thus we may regard ℘ij , ℘ijk, . . . as meromorphic functions on J . We write
℘ij(P ) = ℘ij(u) for P = κ(u).

Let λ : C → J be an embedding such that λ(∞) = O. We define the theta
divisor Θ on J by Θ = λ(C) + · · ·+ λ(C) (g − 1 times).

Proposition 3. The divisor of σ(u) is κ−1(Θ).

Proof. See [15, pp. 3.80–82]. 
�
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We define a function Fg on Cg × Cg by

Fg(u, v) =
σ(u+ v)σ(u − v)

σ(u)2σ(v)2
.

Buchstaber, Enolskii, and Leykin [4, Theorem 3.3] proved that Fg is explicitly
expressed as a polynomial in the ℘-functions. Therefore we may regard Fg as a
rational function on J × J . When P = κ(u) and Q = κ(v), we write Fg(P,Q) =
Fg(u, v).

Finally, we review a classical relation satisfied by the sigma function.

Proposition 4 (Weierstrass, Frobenius, Caspary). Let n > 2g be an inte-
ger and u(1), u(2), . . . , u(n) ∈ Cg. We define an n× n matrix A by

A =
(
σ(u(i) + u(j))σ(u(i) − u(j))

)
1≤i,j≤n

.

Then we have detA = 0. In particular, if g ≡ 1, 2 (mod 4) and n is even, then
we have Pf A = 0.

Proof. See [19, Corollary 6.2] and the literature cited there. 
�

3 Hyperelliptic Nets over the Complex Numbers

We continue to use the notation in Sect. 2. Let n be a positive integer.

Definition 1. For v = (v1, . . . , vn) ∈ Zn, we define a meromorphic function
Φv : (C

g)n → C by

Φv(u
(1), . . . , u(n)) =

σ(v1u
(1) + · · ·+ vnu

(n))∏n
i=1 σ(u

(i))2v
2
i −

∑n
j=1 vivj

∏
1≤i<j≤n σ(u(i) + u(j))vivj

.

This definition is a generalization of the definition of Stange’s net polynomial
Ωv (see [18, Definition 3.1]). When n = 1, the functions Φv coincide with the
division polynomials defined in [8,9,19].

We describe some properties of Φv.

Proposition 5. For any v ∈ Zn, the function Φv is periodic with respect to Λ
in each variable.

Proof. The proposition follows from Proposition 1. 
�

By Proposition 5, we may regard Φv as a meromorphic function on Jn. When
Pi = κ(u(i)), we write Φv(P1, . . . , Pn) = Φv(u

(1), . . . , u(n)).

Proposition 6. For any v ∈ Zn, Φ−v = −Φv if g ≡ 1, 2 (mod 4), and Φ−v =
Φv if g ≡ 0, 3 (mod 4).

Proof. The proposition immediately follows from Proposition 2. 
�
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Let e1, . . . , en be the standard basis of Zn.

Proposition 7. Let v ∈ Zn.

(a) The function Φv identically equals zero if and only if v = 0.
(b) If v = ei or v = ei + ej with i �= j, then Φv = 1.
(c) Let P = (P1, . . . , Pn) ∈ Jn. If i �= j, then Φei−ej (P ) = Fg(Pi, Pj).

Proof. (a) follows from Proposition 3. (b) and (c) are clear by definition. 
�

Proposition 8. Let P = (P1, . . . , Pn) ∈ Jn and v ∈ Zm. Let T = (tij) be an
n×m matrix with entries in Z. Then we have

Φv(PT ) =
ΦTv(P )∏m

i=1 ΦTei(P )2v
2
i −

∑m
j=1 vivj

∏
1≤i<j≤m ΦT (ei+ej)(P )vivj

,

where PT stands for ([t11]P1 + · · ·+ [tn1]Pn, . . . , [t1m]P1 + · · ·+ [tnm]Pn).

Proof. The proposition follows from Definition 1 by a direct calculation. 
�

Proposition 9. Let P = (P1, . . . , Pn) ∈ Jn and v,w ∈ Zn. If v,w,v +w,v −
w �= 0, then we have

Φv+w(P )Φv−w(P )

Φv(P )2Φw(P )2
= Fg([v1]P1 + · · ·+ [vn]Pn, [w1]P1 + · · ·+ [wn]Pn).

Proof. The proposition easily follows from Definition 1. 
�

The functions Φv satisfy the following recurrence formula.

Theorem 1. Let m > 2g be an integer and v(i) ∈ ((1/2)Z)n for 1 ≤ i ≤ m.
We assume that v(i) + v(j),v(i) − v(j) ∈ Zn for all 1 ≤ i, j ≤ m. We define an
m×m matrix A by

A =
(
Φv(i)+v(j)Φv(i)−v(j)

)
1≤i,j≤m .

Then we have detA = 0. In particular, if g ≡ 1, 2 (mod 4) and m is even, then
we have Pf A = 0.

Remark 1. When n = 1, Theorem 1 was proved in [19, Theorem 6.4].

Proof. The theorem follows from Proposition 4. 
�

Example 1. We consider the case where g = 1 and m = 4. Then we have

Pf A = Φv(1)+v(2)Φv(1)−v(2)Φv(3)+v(4)Φv(3)−v(4)

− Φv(1)+v(3)Φv(1)−v(3)Φv(2)+v(4)Φv(2)−v(4)

+ Φv(1)+v(4)Φv(1)−v(4)Φv(2)+v(3)Φv(2)−v(3) = 0.

Let p, q, r, s ∈ Zn and

v(1) = p+
1

2
s, v(2) = q +

1

2
s, v(3) = r +

1

2
s, v(4) =

1

2
s.
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Then we have

Φp+q+sΦp−qΦr+sΦr + Φq+r+sΦq−rΦp+sΦp + Φr+p+sΦr−pΦq+sΦq = 0.

This formula coincides with the recurrence formula (1) defining Stange’s ellip-
tic nets. In other words, Theorem 1 is a generalization of Stange’s recurrence
formula.

The divisor of the function Φv is computed as follows. Let pi : J
n → J be the

i-th projection and sm : Jm → J be the summation of all components. Let

DJ,v = ([v1]× · · · × [vn])
∗s∗nΘ −

∑
1≤k<l≤n

vkvl(pk × pl)
∗s∗2Θ

−
n∑
k=1

(
2v2k −

n∑
l=1

vkvl

)
p∗kΘ.

Proposition 10. For v ∈ Zn \ {0}, we have div(Φv) = DJ,v.

Proof. The proposition follows from Proposition 3. 
�

Proposition 11. For any v ∈ Zn, Φv is a rational function on Jn defined over
Q(λ0, . . . , λ2g).

Proof. By the Frobenius-Stickelberger-type formula ([16, Theorem 8.2]), we ob-
tain a determinant expression for Φv (when n = 1, it is given in [19, Theo-
rem 5.5]). The proposition follows from this determinant expression. 
�

4 Hyperelliptic Nets over Arbitrary Fields

In this section, we define hyperelliptic nets over arbitrary fields. Let K be an
arbitrary field. Let C be a smooth projective hyperelliptic curve of genus g
defined over K defined by

y2 + (bgx
g + · · ·+ b0)y = x2g+1 + a2gx

2g + · · ·+ a0,

where a0, . . . , a2g, b0, . . . , bg ∈ K. The curve C has the unique point∞ at infinity.
Let J be the Jacobian variety of C. Let Θ be the theta divisor as in Sect. 2.

Let n be a positive integer. In the previous section, we have defined a rational
function Φv on Jn for any v ∈ Zn under the assumption that C is defined over
C and b0 = · · · = bg = 0. We will define a similar rational function on Jn when
C is defined over an arbitrary field K.

We first explain that the function Fg on J×J can be defined over an arbitrary
field. Arledge and Grant [1] constructed a rational function H on J × J over an
arbitrary field such that div(H) = s∗Θ+d∗Θ−2p∗1Θ−2p∗2Θ, where s, d : J×J →
J are defined by s(P,Q) = P + Q and d(P,Q) = P −Q. They constructed the
function H by using determinants. By [16, Theorem 8.2], we obtain Fg(P,Q) =
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±H(P,Q) over C. Therefore, we can define the function Fg over an arbitrary
field by using the function H .

We can also define Φv over arbitrary fields. More precisely, we have the fol-
lowing theorem, whose proof is given in the Appendix.

Theorem 2. There exists a family {Φv}v∈Zn of rational functions on Jn defined
over K such that Propositions 6–10 and Theorem 1 also hold for {Φv}.

Hyperelliptic nets associated to hyperelliptic curves are defined as follows:

Definition 2. Let P1, . . . , Pn ∈ J(K) with Pi /∈ Θ for 1 ≤ i ≤ n and Pi+Pj /∈ Θ
for 1 ≤ i < j ≤ n. We define WP1,...,Pn : Z

n → K by

WP1,...,Pn(v) = Φv(P1, . . . , Pn),

where Φv is the function as in Theorem 2. We call WP1,...,Pn the hyperelliptic
net associated to C and P1, . . . , Pn.

When g = 1, the map WP1,...,Pn is an elliptic net by Example 1.

Remark 2. Stange [17,18] defined elliptic nets by the recurrence (1). Then she
proved that there exists a bijection between the set of elliptic nets and the set
of elliptic curves with specified points [18, Theorem 7.4]. However, in the case
of higher genera, it would be an open problem to show the existence of such a
bijection. On the other hand, we can define a map from the set of hyperelliptic
curves with n points on their Jacobian varieties to the set of maps Zn → K which
satisfy a certain recurrence. It is sufficient for computing the Tate-Lichtenbaum
pairing.

5 The Tate-Lichtenbaum Pairing

In this section, we first review the Tate-Lichtenbaum paring. Then we give an
expression for the Tate-Lichtenbaum paring in terms of hyperelliptic nets.

Let K be a finite field with q elements and C be a projective irreducible
smooth curve of genus g defined over K. We assume that C has a K-rational
point ∞. Let m be a positive integer such that m divides q − 1.

Let D be a divisor with D ∈ Pic0(C)[m]. Since mD is linearly equivalent
to 0, there exists a rational function fD such that mD = div(fD). For E ∈
Pic0(C)/mPic0(C), choose a divisor E =

∑r
i=1 niPi such that D and E have

no common points. We define fD(E) =
∏r
i=1 fD(Pi)

ni .

Definition 3. We define the Tate-Lichtenbaum pairing

τm : Pic0(C)[m]× Pic0(C)/mPic0(C) → K×/(K×)m

by

τm(D,E) = fD(E).
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Theorem 3. The Tate-Lichtenbaum pairing τm is well-defined, bilinear, and
non-degenerate.

Proof. See [6, Sect. 1, Theorem]. 
�

Let J be the Jacobian variety of C and λ : C → J be an embedding such that
λ(∞) = O. We identify J(K) with Pic0(C) by extending λ. Then the Tate-
Lichtenbaum pairing τm may be regarded as a pairing on the Jacobian variety

J(K)[m]× J(K)/mJ(K) → K×/(K×)m.

For a point P ∈ J , we define a translation map tP : J → J by tP (Q) = P + Q.
Let Θ be the theta divisor as in the previous section.

We rewrite the Tate-Lichtenbaum pairing by using rational functions on the
Jacobian variety.

Lemma 1. Let P ∈ J(K)[m] and Q ∈ J(K). Let D = t∗−PΘ −Θ. Then mD is
linearly equivalent to 0. Take a rational function fP on J defined over K such
that div(fP ) = mD. Let R,S ∈ (J \ supp(D))(K) with Q = R − S. Then we
have

τm(P,Q) =
fP (R)

fP (S)

in K×/(K×)m.

Proof. The lemma was implicitly proved by Lichtenbaum [10, pp. 126–127]. 
�

Stange [17, Theorem 6] proved that the Tate(-Lichtenbaum) pairing on an el-
liptic curve is expressed in terms of elliptic nets. We generalize it to the case of
hyperelliptic curves.

Theorem 4. We assume that the curve C is a hyperelliptic curve. Let P,Q ∈
J(K) with [m]P = O. We assume that P,Q, P +Q /∈ Θ. Choose S ∈ J(K) such
that S, S+P, S+Q /∈ Θ. Let WS,P,Q be the hyperelliptic net associated to C, S,
P , Q. Then we have

τm(P,Q) =
WS,P,Q(1,m, 1)WS,P,Q(1, 0, 0)

WS,P,Q(1,m, 0)WS,P,Q(1, 0, 1)

in K×/(K×)m.

Proof. Let

fP (T ) =
Φ1,0,0(−T, P,Q)

Φ1,m,0(−T, P,Q)
.

By Proposition 10, we have

div(fP ) = −t∗−[m]PΘ + (1 −m)Θ +mt∗−PΘ = m
(
t∗−PΘ −Θ

)
.
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Since Q = (−S)− (−S −Q), by Proposition 8 and Lemma 1,

τm(P,Q) =
Φ1,0,0(S, P,Q)Φ1,m,0(S +Q,P,Q)

Φ1,m,0(S, P,Q)Φ1,0,0(S +Q,P,Q)

=
Φ1,0,0(S, P,Q)Φ1,m,1(S, P,Q)

Φ1,m,0(S, P,Q)Φ1,0,1(S, P,Q)

=
WS,P,Q(1,m, 1)WS,P,Q(1, 0, 0)

WS,P,Q(1,m, 0)WS,P,Q(1, 0, 1)

in K×/(K×)m. 
�
Corollary 1. Under the assumption of Theorem 4, let WP,Q be the hyperelliptic
net associated to C, P , Q. Then we have

τm(P,Q) =
WP,Q(m+ 1, 1)WP,Q(1, 0)

WP,Q(m+ 1, 0)WP,Q(1, 1)

in K×/(K×)m. Let WP be the hyperelliptic net associated to C, P . If [2]P /∈ Θ,
we have

τm(P, P ) =
WP (m+ 2)WP (1)

WP (m+ 1)WP (2)

in K×/(K×)m.

Proof. The corollary follows from Proposition 8 and Theorem 4 by putting
S = P . 
�

6 Algorithms for Curves of Genus 2

In this section, we give algorithms to compute terms of hyperelliptic nets and
the Tate-Lichtenbaum pairing on a curve of genus 2. Our algorithms are gener-
alizations of Stange’s algorithms [17, Sect. 4].

We use the following notation in this section. Let K be a finite field with q
elements and C be a hyperelliptic curve of genus 2 defined by

y2 + (b2x
2 + b1x+ b0)y = x5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0,

where a0, a1, a2, a3, a4, b0, b1, b2 ∈ K. Let J be the Jacobian variety of C and Θ
be the theta divisor on J . Let P,Q ∈ J(K) with P,Q, P +Q /∈ Θ and WP,Q be
the associated hyperelliptic net. For simplicity, we write W (m,n) = WP,Q(m,n).

6.1 Double and DoubleAdd

We compute the terms W (m, 0) and W (m, 1) by recurrence formulas. We first
give some definitions.

We define a block V centered on k as follows:

V = [[W (k − 7, 0),W (k − 6, 0), . . . ,W (k + 8, 0)],

[W (k − 3, 1),W (k − 2, 1), . . . ,W (k + 3, 1)]].

Let V be a given block centered on k. We define two functions:
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(a) Double(V ): Returns a block centered on 2k.
(b) DoubleAdd(V ): Returns a block centered on 2k + 1.

We compute blocks returned from these functions by the following formulas. Let
A be a 6× 6 skew-symmetric matrix defined by

A =
(
W (mi +mj , ni + nj)W (mi −mj , ni − nj)

)
1≤i,j≤6

,

where m1, . . . ,m6, n1, . . . , n6 ∈ Z. Then, by Theorem 1, we have

Pf A = 0. (2)

By substituting suitable integers for m1, . . . ,m6, n1, . . . , n6, we obtain recurrence
formulas needed to compute terms W (m, 0) and W (m, 1). We use the values in
Table 1, where −3 ≤ j ≤ 4.

Table 1. Values of the mi and ni

Term to compute m1 m2 m3 m4 m5 m6 n1 n2, . . . , n6

W (2k, 0) k + 1 k − 1 3 2 1 0 0 0
W (2k − 1, 0) k k − 1 3 2 1 0 0 0
W (2k + j, 1) k k + j 3 2 1 0 1 0

By the expansion formula of a Pfaffian, we can expand (2) as follows:

6∑
i=2

(−1)iW (m1 +mi, n1 + ni)W (m1 −mi, n1 − ni) Pf A
1,i = 0,

where A1,i is the submatrix of A obtained by removing the first and i-th rows
and columns. When we substitute the values in Table 1 for the mi and ni, the
term W (m1 + m2, n1 + n2) equals W (2k, 0), W (2k + 1, 0), and W (2k + j, 1)
respectively. Moreover, the other terms equal one of the following:

(a) terms in the block centered on k,
(b) W (m, 0) for 1 ≤ m ≤ 5 or
(c) W (m, 1) for −4 ≤ m ≤ 3.

Therefore we can compute the blocks centered on 2k and 2k + 1. Note that
we need the division by W (m1 −m2, n1 − n2) Pf A

1,2 to compute the terms of
a hyperelliptic net. For all values in Table 1, the expression for Pf A1,2 is the
same:

Pf A1,2 = W (5, 0)−W (4, 0)W (2, 0)3 +W (3, 0)3.

This value depends only on P . We denote it by Δ(P ), that is,

Δ(P ) = Pf A1,2 = W (5, 0)−W (4, 0)W (2, 0)3 +W (3, 0)3.

The algorithm to compute W (m, 0) and W (m, 1) is shown in Algorithm 1. Note
that Algorithm 1 requires the assumption that W (−4, 1),W (−3, 1), . . . , W (3, 1),
W (2, 0), and Δ(P ) are all non-zero.
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Algorithm 1. Hyperelliptic Net Algorithm

Input: Initial terms W (m, 0) for −6 ≤ m ≤ 9 and W (m, 1) for −4 ≤ m ≤ 4 of a
hyperelliptic net and an integer m = (dkdk−1 . . . d1)2 with dk = 1

Output: Hyperelliptic net elements W (m,0) and W (m,1)
1: V ← [[W (−6, 0),W (−5, 0), . . . ,W (9, 0)], [W (−2, 1),W (−1, 1), . . . ,W (4, 1)]]
2: for i = k − 1 down to 1 do
3: if di = 0 then
4: V ← Double(V )
5: else
6: V ← DoubleAdd(V )
7: end if
8: end for
9: return V [0, 7] and V [1, 3] // terms W (m, 0) and W (m, 1) respectively

6.2 Initial Values

In this subsection, we consider how to compute the initial values. In the case
of genus 2, expressions for the W (m,n) in terms of some coordinates of points
on the Jacobian variety are huge except for small m and n. In the following,
we compute the values of the W (m,n) by addition on the Jacobian variety and
Proposition 9.

Let (t2+u11t+u12, v11t+v12) and (t2+u21t+u22, v21t+v22) be the Mumford
representations of P and Q respectively. We first compute W (m,n) for small m
and n by the following formulas:

W (0, 0) = 0, W (1, 0) = W (0, 1) = W (1, 1) = 1,

W (2, 0) = (−4u12 + 6u11
2 + (−b2

2 − 4a4)u11 + b1b2 + 2a3)v12

+ 2v11
3 + (3b1 − 3b2u11)v11

2 + ((−8u11 + b2
2 + 4a4)u12 + 2u11

3

+ (b2
2 − 2a4)u11

2 + (2a3 − 2b1b2)u11 − b0b2 + b1
2 − 2a2)v11

+ 2b2u12
2 + (b2u11

2 − 4b1u11 − a3b2 + 2a4b1 − 2b0)u12 − b2u11
4

+ (a4b2 + b1)u11
3 + (−a3b2 − a4b1 + 3b0)u11

2

+ (a2b2 + a3b1 − 2a4b0)u11 − a2b1 + a3b0.

The expression for W (2, 0) is obtained from the following (cf. [8, p. 403]):

σ(2u)

σ(u)4
= ℘12(u)℘122(u)− ℘22(u)℘112(u)− ℘111(u).

Then the other initial terms are computed by the formulas

W (m+ 1, i)W (m− 1, i)

W (m, i)2
= F2([m]P + [i]Q,P ) (3)

for i = 0, 1. Here we use W (1, 0) = 1. Note that we need the division by W (m−
1, i) in (3). Therefore we require the assumption that W (m, 0) �= 0 for 2 ≤ m ≤ 8
and that W (m, 1) �= 0 for −3 ≤ m ≤ 3.
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The function F2(P,Q) is computed by

F2(P,Q) = −(v211 − b2u11v11 + b1v11 − u11u12 + u3
11 − a4u

2
11 + a3u11)

+ (v221 − b2u21v21 + b1v21 − u21u22 + u3
21 − a4u

2
21 + a3u21)− u12u21 + u11u22.

This expression is obtained from [4, Theorem 3.3] or [16, Theorem 8.2].
Summarizing the above discussion, we obtain the following theorem.

Theorem 5. Assume that the following values are all non-zero:

W (2, 0),W (3, 0), . . . ,W (8, 0),W (−4, 1),W (−3, 1), . . . ,W (3, 1), Δ(P ). (4)

Then we can compute the terms W (m, 0) and W (m, 1) in O(logm) operations
in K.

6.3 The Tate-Lichtenbaum Pairing

Now we can compute the Tate-Lichtenbaum pairing via hyperelliptic nets. Let m
be a positive integer with m | (q−1) and assume that [m]P = O. By Corollary 1
and Theorem 5, we have the following corollary.

Corollary 2. If the values in (4) are all non-zero, then we can compute the
pairing τm(P,Q) with O(logm) operations in K.

Note that the values in (4) are all non-zero for general points P and Q. In fact,
by Theorem 2 and Proposition 7 (a), WP,Q(m,n) is a non-zero function for all
(m,n) �= (0, 0). Moreover, by [7, Lemma 3.2], we have

Δ(P ) = −W (2, 0)2W (3, 0)2

∣∣∣∣∣∣
1 1 1

u1(P ) u1([2]P ) u1([3]P )
u2(P ) u2([2]P ) u2([3]P )

∣∣∣∣∣∣ ,
where (t2 + u1(R)t + u2(R), v1(R)t + v2(R)) is the Mumford representation of
R ∈ J . We can verify that the determinant is not zero for a general point P with
a computer algebra system. The author used Maxima [11].

6.4 An Example

The following example was computed with PARI/GP [20].
Let q = 47 and m = 23. We consider the curve C : y2 = x5 + x + 41 defined

over F47. Let D = (x2+6x+16, 31x+3) and E = (x2+29x+24, 22x+14), where
we use Mumford representations. Let P and Q be the points on J corresponding
to D and E respectively.

By using the algorithm described in this section, we have W (m + 1, 1) = 43
and W (m+ 1, 0) = 8. Therefore, by Corollary 1,

τm(D,E) =
43

8
mod (F×

47)
23 = 23 mod (F×

47)
23.
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7 Conclusions

In this paper, we first defined hyperelliptic nets associated to hyperelliptic curves
and points on their Jacobian varieties. Next, we described the Tate-Lichtenbaum
pairing on a hyperelliptic curve in terms of hyperelliptic nets. Finally, we gave
an algorithm to compute the Tate-Lichtenbaum pairing on a hyperelliptic curve
of genus 2 by using hyperelliptic nets.

Our algorithm has the same order of complexity as Miller’s algorithm. Since
our algorithm is a generalization of Stange’s algorithm, it has the same ad-
vantages as hers. For example, our algorithm requires few inversions, and the
complexity is independent of the Hamming weight.

We have another advantage in the case of genus 2. To compute the Tate-
Lichtenbaum pairing by using Miller’s algorithm, we need to evaluate some
rational functions at points defined over quadratic extensions of the field of
definition. Operations in these extension fields are reduced by computing norms
or resultants. However, our algorithm does not require such computations since
our algorithm does not involve operations in any extension fields.

If we consider a hyperelliptic curve of genus greater than 2, the recurrences
for hyperelliptic nets become too complicated. Thus algorithms based on the
recurrences may not be practical. More efficient algorithms to compute terms of
hyperelliptic nets are expected in future work.
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Birkhäuser, Boston (1983)

15. Mumford, D.: Tata Lectures on Theta II. Progress in Mathematics, vol. 43.
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Appendix: Proof of Theorem 2

In this appendix, we prove Theorem 2.
First we assume that char(K) = 0. Without loss of generality, we may assume

that K = Q(a0, . . . , a2g, b0, . . . , bg). Then there exists an embedding K → C. We
may regard K as a subfield of C through this embedding.

Let x′ = x and y′ = y + (bgx
g + · · · + b0)/2. Then we have another defining

equation of C:
(y′)2 = (x′)2g+1 + λ2g(x

′)2g + · · ·+ λ0,

where λ0, . . . , λ2g ∈ Q[a0, . . . , a2g, b0, . . . , bg]. As in Sect. 3, we can define rational
functions Φv on Jn by using this defining equation. By Proposition 11, Φv is
defined over K. It follows immediately that Propositions 6– 10 and Theorem 1
also hold for {Φv}.

Next we assume that char(K) > 0. We define Φv by reduction modulo a prime
ideal. We use Jacobians defined over discrete valuation rings (cf. [2, Chap. 9]
or [5, Chap. 9]).

Let R be a discrete valuation ring of mixed characteristic. Let L be the field
of fractions of R, K be the residue field of R, and p be the maximal ideal of R.
Note that, for any field K of positive characteristic, there exists such a discrete
valuation ring R.

Let C be a smooth projective scheme over R defined by

y2 + (bgx
g + · · ·+ b0)y = x2g+1 + a2gx

2g + · · ·+ a0,

http://maxima.sourceforge.net/
http://crypto.stanford.edu/miller/
http://pari.math.u-bordeaux.fr/
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where a0, . . . , a2g, b0, . . . , bg ∈ R. Let CL = C ×SpecR SpecL and CK = C ×SpecR

SpecK. Then CL and CK are smooth projective hyperelliptic curves over L and
K respectively.

We denote by PicC/R the Picard scheme of C over R. Let J = Pic0C/R be the
union of connected components of the identity element of the fibers of PicC/R,
that is, J is the union of JL and JK , where JL and JK are the Jacobian varieties
of CL and CK respectively. Since C is smooth and projective over R, J is a
projective Abelian R-scheme. The scheme J is called the Jacobian of C.

Let J n = J ×SpecR · · · ×SpecR J , JnL = JL ×SpecL · · · ×SpecL JL, and JnK =
JK ×SpecK · · · ×SpecK JK be n-fold fiber products. Then we have the following
commutative diagram:

JnL
i−−−−→ J n j←−−−− JnK⏐⏐3 ⏐⏐3 ⏐⏐3

SpecL −−−−→ SpecR ←−−−− SpecK

.

We will define a rational function Φ̃v on JnK by Φ̃v = j∗i∗Φv , where Φv in
the right-hand side has been already defined since L is a filed of characteristic
zero. The morphism i∗ : K(JnL) → K(J n) is an isomorphism of function fields.
To verify that j∗i∗Φv defines a non-zero rational function for any non-zero v, it
is sufficient to prove the following theorem.

Theorem 6. Let v be the valuation of K(J n) induced by the special fiber of J n.
Then, for any v ∈ Zn \ {0}, we have v(i∗Φv) = 0.

Proof. The proof is similar to that of the case of elliptic curves [18, Theorem 4.4].
By Proposition 9,

Φv+w(P )Φv−w(P )

Φv(P )2Φw(P )2
= Fg([v1]P1 + · · ·+ [vn]Pn, [w1]P1 + · · ·+ [wn]Pn) (5)

for v,w ∈ Zn with v,w,v+w,v−w �= 0. We define a function Fg(v,w) on JnL
by

Fg(v,w)(P ) = Fg([v1]P1 + · · ·+ [vn]Pn, [w1]P1 + · · ·+ [wn]Pn).

Through the isomorphism i∗, we may regard that Fg(v,w) ∈ K(J n). We prove
that v(Fg(v,w)) = 0.

We assume that v(Fg(v,w)) < 0. We define a morphism ϕ : JnK → JK × JK
by ϕ(P ) = ([v1]P1+ · · ·+ [vn]Pn, [w1]P1+ · · ·+ [wn]Pn). By the assumption and
the property of Fg, the image of ϕ is contained in Θ × JK ∪ JK × Θ. Since JnK
is irreducible, at least one of the following holds:

(a) [v1]P1 + · · ·+ [vn]Pn ∈ Θ for all P ∈ JnK , or
(b) [w1]P1 + · · ·+ [wn]Pn ∈ Θ for all P ∈ JnK .

We assume (a). Since the multiplication map [vi] is surjective whenever vi �= 0,
we have vi = 0 for all i. This contradicts the assumption v �= 0. Similarly, (b)
contradicts the assumption w �= 0. Therefore we obtain v(Fg(v,w)) ≥ 0.
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Next we assume that v(Fg(v,w)) > 0. By the same argument as above, we
have v +w = 0 or v −w = 0, which contradicts the assumption. Therefore we
obtain v(Fg(v,w)) = 0.

We define a function M : Zn → Z by M(v) = v(Φv) for v �= 0 and M(0) = 0.
We prove that M is a quadratic form.

If v,w,v +w,v −w �= 0, by (5) and v(Fg(v,w)) = 0, we have

M(v +w) +M(v −w) = 2M(v) + 2M(w). (6)

By Proposition 6, we have Φ−v = ±Φv. Hence M(−v) = M(v). Therefore (6)
holds if v = 0 or w = 0.

When v+w = 0 or v−w = 0, it is sufficient to prove that M(2u) = 4M(u)
for all u �= 0. This is obtained by taking the sums of the four instances of (6)
with (v,w) = (4u,u), (3u,u), (3u,u), (2u,u) and subtracting the instance of
(6) with (v,w) = (3u, 2u).

Now we have proved that M is a quadratic form, we have M(v) = 0 for all
v ∈ Zn by Proposition 7 and [18, Lemma 4.5]. Therefore v(Φv) = 0 for all v �= 0.


�

Now we have proved Theorem 6, we can define a function Φ̃v by Φ̃v = j∗i∗Φv . By
construction, the family {Φ̃v}v∈Zn of rational functions on JnK satisfies Proposi-
tions 6–10 and Theorem 1. This concludes the proof of Theorem 2.
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Abstract. The use of elliptic and hyperelliptic curves in cryptography
relies on the ability to compute the Jacobian order of a given curve. Re-
cently, Satoh proposed a probabilistic polynomial time algorithm to test
whether the Jacobian – over a finite field Fq – of a hyperelliptic curve
of the form Y 2 = X5 + aX3 + bX (with a, b ∈ F∗q) has a large prime
factor. His approach is to obtain candidates for the zeta function of the
Jacobian over F∗q from its zeta function over an extension field where the
Jacobian splits. We extend and generalize Satoh’s idea to provide explicit
formulas for the zeta function of the Jacobian of genus 2 hyperelliptic
curves of the form Y 2 = X5 + aX3 + bX and Y 2 = X6 + aX3 + b (with
a, b ∈ F∗q). Our results are proved by elementary (but intricate) polyno-
mial root-finding techniques. Hyperelliptic curves with small embedding
degree and large prime-order subgroup are key ingredients for implement-
ing pairing-based cryptographic systems. Using our closed formulas for
the Jacobian order, we propose two algorithms which complement those
of Freeman and Satoh to produce genus 2 pairing-friendly hyperelliptic
curves. Our method relies on techniques initially proposed to produce
pairing-friendly elliptic curves (namely, the Cocks-Pinch method and the
Brezing-Weng method). We show that the previous security considera-
tions about embedding degree are valid for an elliptic curve and can be
lightened for a Jacobian. We demonstrate this method by constructing
several interesting curves with ρ-values around 4 with a Cocks-Pinch-like
method and around 3 with a Brezing-Weng-like method.

Keywords: Hyperelliptic Curves, Genus 2, Order Computation, Ordi-
nary Curves, Pairing-Friendly Constructions, Cocks-Pinch Method, Bre-
zing-Weng Method.

1 Introduction

In 1985, the idea of using the group of rational points on an elliptic curve over a fi-
nite field in public-key cryptography was introduced independently by Miller [33]
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and Koblitz [27]. The main advantage of using elliptic curves is efficiency since
no sub-exponential algorithms are known for solving the discrete logarithm prob-
lem in these groups (and thus key sizes can remain small). In 1989, Koblitz [28]
suggested using Jacobians of hyperelliptic curves in cryptography. Genus 1 hy-
perelliptic curves are elliptic curves; genus 2 and 3 hyperelliptic curves are more
complicated but are an attractive replacement for elliptic curves in cryptogra-
phy. They are as efficient as genus one curves for bandwidth but still have a
slower group law.

As for any group used for the discrete logarithm problem, one needs the
order of the group to contain a large prime factor. This raised the problem of
finding hyperelliptic curves over a finite field whose Jacobian order is (almost)
a prime. For elliptic curves over finite fields, the Schoof-Elkies-Atkin (SEA)
algorithm [36,32] runs in polynomial time in any characteristic and in small
characteristic, there are even faster algorithms based on the so-called p-adic
method [34,32]. For genus 2 hyperelliptic curves, the p-adic method gives efficient
point counting algorithms in small characteristic, but up to now, no algorithms
as efficient as SEA are known when the characteristic of the underlying finite field
is large (though substantial progress has recently been made in [21] and [23]).
Using basic properties on character sums, Furukawa, Kawazoe and Takahashi
[15] gave an explicit closed formula for the order of Jacobians of very special
curves of type Y 2 = X5+bX where b ∈ Fq. Satoh [35] considered an intermediate
approach and showed that point counting on specific Jacobians of certain genus 2
curves can be performed much faster than point counting on Jacobians of generic
curves. He gave an algorithm to test whether the order of the Jacobian of a given
hyperelliptic curve in the form Y 2 = X5 + aX3 + bX has a large prime factor.
His method relies on the fact that the Jacobian of the curve is Fq4 -isogenous to a
square of an elliptic curve defined over Fq4 , hence their respective zeta functions
are the same over Fq4 and can be computed by the SEA algorithm. Satoh’s
method obtains candidates for the zeta function of the Jacobian over Fq from
the zeta function over Fq4 . The methodology can be formalized as an efficient
probabilistic polynomial algorithm but is not explicit and gives 26 possible orders
to test for the Jacobian.

In recent years, many useful cryptographic protocols have been proposed that
make use of a bilinear map, or pairing, between two groups in which the dis-
crete logarithm problem is hard (e.g. [4,5]). Pairing-based cryptosystems can be
constructed by using the Weil or Tate pairing on abelian varieties over finite
fields. These pairings take as input points on an abelian variety defined over the
field Fq and produce as output elements of an extension field Fqk . The degree
of this extension is known as the embedding degree. In cryptography, abelian
varieties obtained as Jacobians of hyperelliptic curves are often used. Suitable
hyperelliptic curves for pairing-based cryptography are called pairing-friendly.
Such pairing-friendly curves are rare and thus require specific constructions.

For a pairing-based cryptosystem to be secure and practical, the group of
rational points on the Jacobian should have a subgroup of large prime order r,
and the embedding degree k should be large enough so that the discrete loga-
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rithm problem in Fqk is difficult but small enough to make the pairing efficiently
computable. The efficiency parameter in pairing-friendly constructions is the so-
called ρ-value: for a Jacobian of hyperelliptic curve of genus g it is defined as
ρ = g log q/ log r. It measures the ratio of the bit-sizes of the order of the Jacobian
and the subgroup order r. The problem of constructing pairing-friendly elliptic
curves with small ρ-values has been studied extensively [12]. Unfortunately, there
are very few results for constructing pairing-friendly hyperelliptic curves of genus
g ≥ 2 with small ρ-values [17,2]. Galbraith, Pujolas, Ritzenthaler and Smith [18]
gave (supersingular) genus 2 pairing-friendly hyperelliptic curves with ρ-values
close to 1 but only for embedding degrees k ∈ {4, 5, 6, 12}. Freeman, Stevenhagen
and Streng presented in [13] a general method that produced pairing-friendly (or-
dinary) genus 2 pairing-friendly hyperelliptic curves with ρ % 8 for all embedding
degrees k. Kawazoe and Takahashi [26] (see also [25]) presented an algorithm
which constructed hyperelliptic curves of the form Y 2 = X5+bX (thanks to the
closed formula for its Jacobian order). Following Satoh’s approach, Freeman and
Satoh [14] constructed pairing-friendly genus 2 hyperelliptic curves of the form
Y 2 = X5+aX3+bX and Y 2 = X6+aX3+b (with a, b ∈ F

∗
q) by means of elliptic

curves that become pairing-friendly over a finite extension of the underlying fi-
nite field. Constructions from [26,25,14] produce pairing-friendly Jacobians with
2.22 � ρ � 4 only for embedding degrees divisible by 3 or 4.

Our Contributions. Satoh’s approach to compute the Jacobian order of a
hyperelliptic curve Y 2 = X5 + aX3 + bX is not explicit. For each candidate,
he has to check that the order is not weak for cryptographic use. In [22, § 4],
Gaudry and Schost showed that the Jacobians of hyperelliptic curves of the form
Y 2 = X6 + aX3 + b are also isogenous to a product of two elliptic curves over
an extension field. Satoh claimed that his method applies as well to this family
but did not derive an algorithm for it.

Our first contribution is to extend and generalize Satoh’s idea to provide
explicit formulas for the zeta function of the Jacobian of genus 2 hyperelliptic
curves of the form Y 2 = X5+aX3+bX and Y 2 = X6+aX3+b (with a, b ∈ F

∗
q).

Our results are proved by elementary polynomial root-finding techniques. This
permits to generate efficiently a random hyperelliptic curve, in one of these two
forms, suitable for cryptographic use. These curves enable various improvements
to make scalar multiplication in the Jacobian efficient (e.g. the Gallant-Lambert-
Vanstone algorithm [19], Takashima’s algorithm [38] or Gaudry’s algorithm [20]).
These large families of curves are still very specific but there is no evidence that
they should be more vulnerable to discrete logarithm attacks than the absolutely
simple Jacobians.

Two algorithms proposed in [14] to produce pairing-friendly genus 2 hyperel-
liptic curves are very general as they are still valid for arbitrary abelian varieties
over any finite field. Assuming that the finite field is a prime field and the
abelian variety is of the above form, we can consider any embedding degree.
The security restrictions concerning the embedding degree (which must be a
multiple of 3 or 4) made in [14] are unnecessary in this particular case. Satoh
and Freeman exclude constructions which need an elliptic curve defined over a
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quadratic extension of a prime field (with j-invariant in Fp2), resulting in re-
stricted sets of parameters a, b ∈ Fp. Using our closed formulas for the Jacobian
order, we use two approaches that construct pairing-friendly elliptic curves and
adapt them to produce pairing-friendly genus 2 curves. The first one is based on
the Cocks-Pinch method [9] (see also [16, Algorithm IX.4]) of constructing indi-
vidual ordinary pairing-friendly elliptic curves. The other is based on cyclotomic
polynomials as originally proposed by Brezing and Weng [7] which generates
families of curves while achieving better ρ-values. We adapt both constructions
using the elliptic curve complex multiplication method (CM) [1,16] to compute
one of the two elliptic curves to which the Jacobian is isogenous to (even if the
curve j-invariant is in Fp2 rather than in a prime field Fp). In particular, this
method can construct pairing-friendly elliptic curves over Fp2 but unfortunately
with ρ % 4.

Our approach contains the previous constructions by Kawazoe and Taka-
hashi [26] and is in a sense a specialization of Freeman and Satoh [14]. It also
produces new families for ordinary genus 2 hyperelliptic curves. Explicit exam-
ples of cryptographically interesting curves are given.

2 Explicit Computation of JC5 Order

Throughout this paper, p ≥ 5 denotes a prime number and q a power of p. In
this section, we consider the genus 2 hyperelliptic curve defined over a finite
field Fq:

C5(Fq) : Y 2 = X5 + aX3 + bX, with a, b �= 0 ∈ Fq .

The Jacobian of the curve is denoted JC5 and it splits into two isogenous elliptic
curves in an extension over Fq of degree 1, 2 or 4 [35]. These two elliptic curves
admit a quadratic twist which is half the time defined on a smaller extension.
As the trace computation is then more efficient, we will also consider directly
these quadratic twists, as in [14].

2.1 Splitting the Jacobian JC5 into Two Isogenous Elliptic Curves

Satoh showed in [35] that the Jacobian splits into two elliptic curves defined by

E1(Fq[
4
√
b]) : Y 2 = δ(X − 1)(X2 − γX + 1) and

E2(Fq[
4
√
b]) : Y 2 = −δ(X − 1)(X2 − γX + 1)

with γ = (2a − 12
√
b)/(a + 2

√
b) and δ = (a + 2

√
b)/(64 4

√
b
3
). The isogeny

between JC5 and E1 × E2 is defined over Fq[
4
√
b]. Using the notation c = a/

√
b

from [14], the curve parameters are

γ =
2c− 12

c+ 2
, δ =

c+ 2

26 4
√
b
and j(E1) = j(E2) = 26

(3c− 10)3

(c+ 2)2(c− 2)
.

Since E1 and E2 are isogenous over Fq[
4
√
b,
√
−1], they have the same order over

this field. They also admit a 2-torsion point P = (1, 0) over Fq[
4
√
b] (their order is



238 A. Guillevic and D. Vergnaud

therefore even). Let E
′
1 and E

′
2 denote the quadratic twists of E1 and E2 obtained

by removing the term 1/(26 4
√
b) in δ. They are isogenous over Fq[

√
b,
√
−1].

(E1 × E2)(Fq[
8
√
b])

isomorphism←→ (E
′
1 × E

′
2)(Fq[

8
√
b])

| |
JC5(Fq[

4
√
b])

isogeny←→ (E1 × E2)(Fq[
4
√
b]) (E

′
1 × E

′
2)(Fq[

4
√
b])

| |
JC5(Fq[

√
b]) (E

′
1 × E

′
2)(Fq[

√
b])

|
JC5(Fq)

The Jacobian JC5 has the same order as the product E1×E2 over the extension
field where the isogeny is defined. Computing the elliptic curve order is easy
with the SEA algorithm [36,32] which computes the trace. As the computation
is faster for the quadratic twist (which is defined over Fq[

√
b] instead of Fq[

4
√
b],

we will also consider the isogeny between JC5 and E
′
1 × E

′
2.

E
′
1(Fq[

√
b]) : Y 2 = (c+ 2)(X − 1)(X2 − γX + 1) and

E
′
2(Fq[

√
b]) : Y 2 = −(c+ 2)(X − 1)(X2 − γX + 1) .

It remains to compute the Jacobian order from #JC5(Fq[
4
√
b]) to #JC5(Fq). We

develop explicit formulas using the zeta function properties. Going down directly
from #JC5(Fq4) to #JC5(Fq) does not provide an explicit order. We compute step
by step the explicit order, descending by quadratic extensions.

2.2 Computing Explicit Order Using Zeta Function

Let ZJC5
denote the zeta function of the Jacobian JC5 which satisfies the following

properties [35]:

1. ZJC5
(T,Fq) ∈ Z[T ] i.e. the zeta function is a polynomial with integer coeffi-

cients;
2. the degree of the zeta function polynomial is degZJC5

(T,Fq) = 2g = 4;
3. the Jacobian order is related to the zeta function by #JC5(Fq) = ZJC5

(1,Fq);
4. let z1,q, z2,q, z3,q, z4,q be the four roots of ZJC5

(T,Fq) in C. Up to index per-
mutation, we have z1,qz2,q = q and z3,qz4,q = q;

5. the roots of ZJC5
(T,Fqn) the zeta function of the Jacobian considered over

a degree n extension Fqn are those over Fq to the power n: ZJC5
(T,Fqn) =

(T − zn1,q)(T − zn2,q)(T − zn3,q)(T − zn4,q).

Satoh’s method to compute the Jacobian order is derived from the fact that if JC5

is isogenous over Fq to E1 ×E2, then ZJC5
(T,Fq) = ZE1(T,Fq)× ZE2(T,Fq). We

have ZE1(T,Fq) = T 2− tqT +q with tq the trace of the Frobenius endomorphism
and #E1(Fq) = q + 1− tq = ZE1(1,Fq).

Let us denote ZJC5
(T,Fq) = T 4 − aqT

3 + bqT
2 − qaqT + q2 with

aq = z1,q + z2,q + z3,q + z4,q
bq = z1,qz2,q + z1,qz3,q + z1,qz4,q + z2,qz3,q + z2,qz4,q + z3,qz4,q

= 2q + (z1,q + z2,q)(z3,q + z4,q) .
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Our goal is to find two simple formulas for computing (aq, bq) in terms of
(aq2 , bq2) and apply the two formulas recursively. A careful computation gives

aq2 = (aq)
2 − 2bq (1)

bq2 = (bq)
2 − 4qbq + 2q2 − 2qaq2 (2)

Knowing aq2 and bq2 , we can solve1 equation (2) for bq then recover aq using (1).
We have to determine where the isogeny is defined in order to solve the cor-

responding system. In each case, two solutions are possible for bq. One of them
induces a square root in aq that must be an integer because the two coefficients
aq and bq are integers. This solution can be chosen if the isogeny is actually
defined over Fq2 and Fq or if the elliptic curve has an additional property. In
these two cases the Jacobian splits over Fq2 and over Fq.

When the isogeny between JC5 and E1 ×E2 is defined over Fq4 but not over a
subfield of Fq4 and the trace tq4 of the two elliptic curves is such that 2q2 + tq4
is not a square, we see an other simplification for the zeta function coefficients:
they are not squares but of the form two times a square. After easy (but cum-
bersome) calculation and a difficult identification of the special cases that do
not correspond to the general solution, we obtain the following theorem:

Theorem 1. Let C5 be a hyperelliptic curve defined over a finite field Fq by the
equation C5(Fq) : Y 2 = X5 + aX3 + bX with a, b �= 0 ∈ Fq. Let E1 and E2 be the

elliptic curves defined over Fq[
4
√
b] and E

′
1, E

′
2 their quadratic twists defined over

Fq[
√
b], isogenous over Fq[

√
b,
√
−1]. Let tq be the trace of E1(Fq) if b is a fourth

power, let t
′
q be the trace of E

′
1(Fq) if b is a square, let tq2 be the trace of E1(Fq2)

if b is not a square in Fq and let t
′
q2 be the trace of E

′
1(Fq2) and tq4 of E1(Fq4) if

b is neither a square nor a fourth power.

1. If b is a fourth power then #JC5(Fq) = (q + 1 − tq)
2 if

√
−1 ∈ Fq and

#JC5(Fq) = (q + 1− tq)(q + 1 + tq) if
√
−1 /∈ Fq.

2. If b is a square but not a fourth power (q ≡ 1 mod 4) and tq2 + 2q is not a

square, then #JC5(Fq) = (q − 1)2 + (t
′
q)

2.

3. If b is not a square and 4
√
b ∈ Fq2 (q ≡ 3 mod 4) and tq2 +2q is not a square,

then #JC5(Fq) = q2 + 1− tq2 .

4. If b is not a square and 4
√
b �∈ Fq2 (q ≡ 1 mod 4) and tq4+2q2 is not a square,

then #JC5(Fq) is equal to q2+1− 2n(q+1)+2n2 or q2+1+2n(q+1)+2n2

where n ∈ N is such that 2q + t
′
q2 = 2n2 if q ≡ 5 mod 8 or 2q − t

′
q2 = 2n2

if q ≡ 1 mod 8.

The case 1 of Th.1 is of no interest in cryptography as the Jacobian order factors
trivially. In the cases 2 and 3, we may as well work directly with the elliptic curve
E1(Fq2) (of even order) since the arithmetic is not (yet) as efficient in genus two
as in genus one. The case 4 provides ordinary Jacobians of hyperelliptic curves
with explicit order and of cryptographic interest. The very special cases excluded

1 Satoh [35] used only Equation (1) which resulted in a more intricate polynomial
system with degree 16 polynomial equations to solve.
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in the theorem with 2q2 + tq4 or 2q + tq2 squares give a Jacobian either which
splits over Fq or whose order is an elliptic curve order, as in case 3. They are
detailed in the following remark.

Remark 1. With the same notations as in the previous theorem,

1. If b is a square but not a fourth power (q ≡ 1 mod 4) and if tq2 + 2q = y2

(with y ∈ N∗), the Jacobian splits and its order is one of (q + 1 − y)2,
(q + 1 + y)2 or (q + 1− y)(q + 1 + y) = (q − 1)2 + (t

′
q)

2.

2. If b is not a square and 4
√
b ∈ Fq2 (q ≡ 3 mod 4) and if tq2 + 2q = y2 (with

y ∈ N∗), the Jacobian splits and its order is one of (q + 1− y)2, (q + 1+ y)2

or (q + 1− y)(q + 1 + y) = q2 + 1− tq2 .

3. If b is not a square and 4
√
b �∈ Fq2 (q ≡ 1 mod 4) and if tq4 + 2q2 = y2 (with

y ∈ N∗) then we decompose −Δ(E
′
1(Fq2 )) = −(t

′
q2)

2+4q2 = tq4 +2q2 = y2 in

the two factors (2q+ t
′
q2)(2q− t

′
q2). Let 2q+ t

′
q2 = D1y

2
1 and 2q− t

′
q2 = D2y

2
2

with D1, D2 square-free integers.
(a) if D1 �= 2 and D2 �= 2 then ±y + 2q2 is not a square and #JC5(Fq) is

equal to q2 + 1− y or q2 + 1 + y.
(b) if D1 = D2 = 2 then #JC5(Fq) = q2 + 1 − 2n(q + 1) + 2n2 (case 4

of Th. 1) can happen with n ∈ {y1,−y1, y2,−y2}. In the same time,
y+2q2 = (y1+y2)

2 and −y+2q2 = (y1−y2)
2 are squares hence #JC5(Fq)

can be (q + 1 − s)2 with s ∈ {y1 + y2,−y1 − y2, y1 − y2,−y1 + y2}. The
two last possibilities are q2 + 1− y and q2 + 1 + y.

The cases 1, 2 and 3 in the remark 1 are special (e.g. the cases 1 and 3 appear only
when the elliptic curves E1 and E2 have complex multiplication by i =

√
−1).

Moreover, in 1, 2 and 3b of Rem. 1 the Jacobian order splits. In 3a, the Jacobian
order is equal to the order of a quartic twist of E1(Fq2).

In practice, when the Th. 1 or Rem. 1 present several order possibilities one
can easily discriminate between them by checking whether the scalar multipli-
cation of a random point by the possible orders gives the infinity point.

In the two following examples, we took at random a prime p ≡ 1 mod 4 of
128 bits and started with a = −3 and b = −2 until b was not a square mod p.
Then let c = a/

√
b, E

′
1(Fp2) : y

2 = (x− 1)((c+ 2)x2 − (2c− 12)x+ (c+ 2)) and

t
′
p2 its trace. We deduced the Jacobian order and factorized it. We repeated this
process with subsequent b-values until the Jacobian order was almost prime.

Example 1. p = 0x84c4f7a6b9aee8c6b46b34fa2a2bae69 = 1 mod 8. The 17th test
provided b = −38, t

′
p2 = 0x702461acf6a929e295786868f846ab40 = 0 mod 2, bp =

2p−t
′
p2 = 2n2 as expected with n = − 0x8c1fc81b9542ce23. We found #JC5(Fp) =

25r with r a 250-bit prime of cryptographic size close to the 128-bit security level.
r = 0x226ddb780b2ded62d1d70138d9c7361794679a609fbe5ae85918c88f5b6ea7d.

Example 2. p = 0xb081d45d7d08109c2905dd6187f7cbbd = 5 mod 8. The 17th test
provided b = −41, t

′
p2 = -0x11753eaa61f725ff118f63bb131c8b8f2 = 0 mod 2,

bp = 2p + t
′
p2 = 2n2 as expected with n = − 0x611e298cc019b06e. We found
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#JC5(Fp) = 2 · 5 · r with r a 252-bit prime of cryptographic size close to the
128-bit security level:
r = 0xc2b7a2f39d49b6b579d4c15a8440315cd1ccc424df912e6748c949008ebd989.

3 Explicit Computation of JC6 Order

In this section, we consider the genus 2 hyperelliptic curves defined over a finite
field Fq:

C6(Fq) : Y 2 = X6 + aX3 + b with a, b �= 0 ∈ Fq .

The Jacobian of the curve is denoted JC6 and it splits into two isogenous elliptic
curves in an extension over Fq of degree 1, 2, 3 or 6 [22,14]. The computation
of the zeta function of JC6 over Fq is similar to those of JC5 from the previous
section but with more technical details.

3.1 Decomposition into Two Isogenous Elliptic Curves

Freeman and Satoh showed in [14] that JC6 is isogenous over Fq[
6
√
b] to the

Jacobian of another genus 2 hyperelliptic curve C′
6 defined over Fq[

√
b]. This

Jacobian JC′
6
splits into two elliptic curves Ec and E−c defined over Fq[

√
b] which

are isogenous over Fq[
√
b,
√
−3]. Let c = a/

√
b and assume c �= ±2. The two

elliptic curves are defined (in a reduced form) by

Ered
c (Fq[

√
b]) : Y 2 = X3 + 3(2c− 5)X + c2 − 14c+ 22 and

Ered−c(Fq[
√
b]) : Y 2 = X3 − 3(2c+ 5)X + c2 + 14c+ 22 .

Freeman and Satoh remarked that both elliptic curves admit the same 3-torsion
subgroup ([14, Proof of Prop. 4.2]). With Vélu’s formulas adapted to finite fields
(e.g. [31, p. 54]), we compute an isogeny from Ec into E−c with kernel equal
to this 3-torsion subgroup. Because of this isogeny, Ec and E−c have the same
order over Fq[

√
b,
√
−3] and moreover, this order is a multiple of 3.

JC6(Fq[
6
√
b])

isogeny←→ JC′
6
(Fq[

6
√
b])

| |
JC6(Fq[

√
b]) JC′

6
(Fq[

√
b])

isogeny←→ (Ec × E−c)(Fq[
√
b])

|
JC6(Fq)

In the two cases where b is not a cube, we have to deduce ZJC6
(T,Fq) from

ZJC6
(T,Fq3) or ZJC6

(T,Fq2) from ZJC6
(T,Fq6) which is equivalent. Note that we

do not see explicitly the simplification in the formula if we descent from Fq6 to
Fq3 then to Fq.

Eventually, we obtain the following theorem:

Theorem 2. Let C6 be a hyperelliptic curve defined over a finite field Fq by the
equation C6(Fq) : Y 2 = X6 + aX3 + b with a, b �= 0 ∈ Fq. Let Ec and E−c be

the elliptic curves defined over Fq[
√
b] isogenous over Fq[

√
b,
√
−3]. Let tq2 be the

trace of Ec(Fq2) and let tq be the trace of Ec(Fq) if it exists.
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1. If b is a sixth power then #JC6(Fq) = (q+1−tq)
2 if

√
−3 ∈ Fq and #JC6(Fq) =

(q + 1− tq)(q + 1+ tq) if
√
−3 /∈ Fq.

2. If b is a square but not a third power and if 3(4q− (tq)
2) is not a square then

#JC6(Fq) = q2 − q + 1 + (1 + q + tq)tq.

3. If b is a third power but not a square and if 2q + tq2 is not a square then
#JC6(Fq) = q2 + 1− tq2 .

4. If b is neither a cube nor a square and if 2q+ tq2 is not a square, then there
exists n ∈ N such that 2q−tq2 = 3n2 and #JC6(Fq) = q2+q+1+(q+1+n)3n
or #JC6(Fq) = q2 + q + 1− (q + 1− n)3n.

Once more, the first case is not interesting in cryptography as the Jacobian order
splits. The third case provides nothing more than an elliptic curve defined over
Fq2 . Whenever the group law computation on JC6(Fq) is not as efficient as a
point addition on Ec(Fq2 ), it will be more appropriate to work with the elliptic
curve. The case 2 might be interesting. The case 4 provides interesting genus 2
hyperelliptic curves.

Remark 2. With the same notations as in the previous theorem,

1. If b is a square but not a third power and if 4q − (tq)
2 = 3y2 then #JC6(Fq)

equals one of (q+1+(tq+3y)/2)(q+1+(tq−3y)/2) = q2−q+1+(1+q+tq)tq,
(q + 1 + (tq + 3y)/2)2, (q + 1 + (tq − 3y)/2)2.

2. If b is a third power but not a square and if 2q + tq2 = y2 is a square then
#JC6(Fq) equals one of (q+1−y)2, (q+1+y)2, (q+1−y)(q+1+y) = q2+1−tq2 .

3. If b is neither a cube nor a square,

(a) if 2q + tq2 = s2, s ∈ N, and 3(2q − tq2) is not a square then #JC6(Fq) =
q2 − q + 1− (1 + q)s+ s2 or q2 − q + 1 + (1 + q)s+ s2.

(b) if 2q + tq2 = s2 and 2q − tq2 = 3n2, #JC6(Fq) splits and equals one of
q2+q+1+(q+1+n)3n, q2+q+1−(q+1−n)3n, q2−q+1−(q+1−s)s,
q2− q+1+(q+1+ s)s, q2+1− (−tq2 +3y)/2), q2+1− (−tq2 − 3y)/2),
(q + 1 + s−3n

2 )2, (q + 1− s−3n
2 )2, (q + 1 + s+3n

2 )2, (q + 1− s+3n
2 )2.

Example 3. We consider the 127-bit Mersenne prime p = 2127 − 1 which al-
lows efficient implementation of the modular arithmetic operations required in
cryptography. Looking for a curve C6 over Fp with small parameters a and b and
suitable for a cryptographic use, we found easily C6(Fp) : Y 2 = X6−3X3−92 with
b = −92 which is neither a square nor a cube. Let Fp2 = Fp[X ]/(X2 +1) = Fp[i],

c = a/
√
b ∈ Fp2 \ Fp and Ec(Fp2) : Y 2 + X3 + 3(2c − 5)X + c2 − 14c + 22. A

few second computation gives us tp2 =0x6089c0341e5414a24bef1a1a93c54fd2 and
2p− tp2 = 3n2 as expected with n = ± 0x74a69cde5282dbb6. Hence #JC6(Fp) =
p2 + p+ 1+ 3n(p+1)+ 3n2. Using few random points on the Jacobian, we find
n < 0 and that #JC6(Fp) has a 250-bit prime factor:
r = 0x25ed097b425ed0974c75619931ea7f1271757b237c3ff3c5c00a037e7906557 and
provides a security level close to 128-bits.
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Efficiency. For a cryptographic application, we need #JC(Fq) be a large prime
r times a small (i.e. few bits) cofactor h. The prime r must be of size twice the
security level in bits. The common method consists in randomly generating the
coefficients a and b of the hyperelliptic curve and computing the order until it
is a large prime r times a small cofactor.

Here r ∼ q2 hence the size of q is a few bits more than the security level in
bits instead of twice with an elliptic curve. To compute the Jacobian order, we
have to run SEA algorithm once for an elliptic curve defined over Fq if b is a
square or over Fq2 otherwise. If b is a square our method is much faster than
generating a cryptographic elliptic curve and if b is not a square, our method is
roughly as efficient as finding an elliptic curve suitable for cryptography.

4 Pairing-Friendly Constructions

We have several constraints for suitable pairing-friendly constructions inherent
to elliptic curves:

1. The embedding degree k must be small, in order to achieve the same security
level in bits in the elliptic curve r-torsion subgroup E(Fp)[r] and in the
finite field extension Fpk . In practice, this means 6 � k � 60. More precise
recommendations are given in [12, Tab. 1]. For a random elliptic curve, we
have usually k % r so this is a huge constraint.

2. The trace t of the curve must satisfy |t| � 2
√
p.

3. The determinant of the curve Δ = t2 − 4p = −Dy2 must have a very small
square-free part D < 109 in order to run the CM-method in reasonable time.

4. The size log r of the subgroup must be close to the optimal case, that is
ρ = g log p/ log r ∼ 1 with g the genus of the curve. Quite generic methods
for elliptic curves achieve 1 � ρ � 2. We will try to find constructions for
genus 2 curves with 2 � ρ � 4.

The two methods use the same shortcuts in formulas. Let E an elliptic curve
and let #E(Fp) = p + 1 − t = hr with r a large prime and h the cofactor.
Hence p ≡ t− 1 mod r. Let Δ = t2 − 4p = −Dy2. The second useful formula is
Dy2 = 4p− t2 = 4hr − (t− 2)2, hence −Dy2 ≡ (t− 2)2 mod r.

4.1 Cocks-Pinch Method

We first recall the method proposed by Cocks and Pinch in 2001 to construct
pairing-friendly elliptic curves [9] (see also [16, Algorithm IX.4]):

We propose to adapt this method to the Jacobian families of cryptographic
interest presented above. See the size recommendations in [2, Tab. 3.1] depending
on the security level in bits to choose accordingly the embedding degree. First,
we know explicitly the Jacobian order. Just as in the case of elliptic curves,
the definition of the embedding degree is equivalent to ask for r | #JC(Fp) and
r | Φk(p). We will use the property p ≡ ζk mod r as well. The aim is to express
the other parameters, namely the square part y and the trace of the elliptic curve
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Algorithm 1. Cocks-Pinch method to find a pairing-friendly elliptic curve

Input: Square-free integer D, size of r and embedding degree k to match the
security level in bits, knowing that ρ ≈ 2.

Output: Prime order r, prime number p, elliptic curve parameters a, b ∈ Fp

such that E(Fp) : Y
2 = X3 + aX + b has a subgroup of order r and

embedding degree k with respect to r.
1 repeat
2 Pick at random a prime r of prescribed size until −D is a square in the

finite field Fr and Fr contains a primitive k-th root of unity ζk, that is r ≡ 1
mod k.

3 As r divides Φk(p), we can rewrite it as Φk(p) ≡ 0 mod r. With properties
of cyclotomic polynomials, we obtain p ≡ ζk mod r with ζk a primitive k-th
root of unity. Furthermore, t ≡ 1 + p mod r so this method chooses
t = 1 + ζk in Fr. Then y = (t− 2)/

√
−D in Fr.

4 Lift t and y from Fr to Z and set p = 1
4
(t2 +Dy2).

5 until p is prime.
6 return r, p, a, b ∈ Fp

isogenous to the Jacobian over some extension field, in terms of ζk mod r. We
will use the same notations as previously, see Th.1 and Th.2. Let i be a primitive
fourth root of unity an ω be a primitive third root of unity in Fr.

Pairing-Friendly Hyperelliptic Curve C5

If b is not a square in Fp but
√
b, 4
√
b ∈ Fp2 (p ≡ 3 mod 4), then #JC5(Fp) =

#E1(Fp2) = p2 +1− tp2 (Th.1(3.)). A pairing-friendly Jacobian of this type has
exactly the same order as the corresponding elliptic curve E1(Fp2). Hence any
pairing-friendly elliptic curve defined over a quadratic extension Fp2 (and of even
order) will provide a pairing-friendly Jacobian of this type over the prime field
Fp, with the same order and the same ρ-value. Choosing the Jacobian instead
of the elliptic curve will be appropriate only if the group law on the Jacobian
over Fp is faster than the group law on the elliptic curve over Fp2 . Note that
the methods described in [12] are suitable for generating pairing-friendly elliptic
curves over prime fields (in large characteristic), not over field extensions.

C5 with b a Square but Not a Fourth Power. This case is already almost solved
in [14]. The Cocks-Pinch method adapted with r | #JC5(Fp) = (p − 1)2 + (t

′
p)

2

instead of r | p + 1 − t
′
p produces indeed the same algorithm as [14, Alg. 5.5]

followed by [14, Alg. 5.11] with π = (t
′
p − y

√
−D)/2, d = 4. We show that d | k

is unnecessary. It is completely hopeless to expect a prime power q = ππ = pn

hence we assume that q = p is prime.

Definition 1. Embedding degree and embedding field[3, Def. 2.1 and 2.2] Let
A be an abelian variety defined over Fq, where q = pm for some prime p and
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integer m. Let r �= p be a prime dividing #A(Fq). The embedding degree of A
with respect to r is the smallest integer k such that r divides qk − 1.

The minimal embedding field of A with respect to r is the smallest extension
of Fp containing the rth roots of unity μr ⊂ Fp.

Let k be the embedding degree of the Jacobian JC5(Fp): r | #JC5(Fp), r | Φk(p).
From the Jacobian point of view, there is no security problem induced by a
difference between embedding degree and embedding field because Fp is a prime
field. From elliptic curve side, the one-dimensional part of the r-torsion arises in
E

′
1(Fp4), not below. An elementary observation about elliptic curve orders shows

that
#E

′
1(Fp) = p+ 1− t

′
p

#E
′
1(Fp2) = (p+ 1− t

′
p)(p+ 1 + t

′
p)

#E
′
1(Fp4) = (p+ 1− t

′
p)(p+ 1 + t

′
p)((p+ 1)2 + (t

′
p)

2)

and the last factor of #E
′
1(Fp4) is the Jacobian order. Hence r | #E

′
1(Fp4) but not

underneath. The full r-torsion arises in E
′
1(Fp4k/ gcd(4,k)) but the embedding field is

Fpk . So the elliptic curveE
′
1(Fp4) will not be suitable for a pairing implementation

when gcd(k, 4) ∈ {1, 2} which does not matter because we are interested in
Jacobians suitable for pairing, not elliptic curves. See Fig. 1.

JC(Fp)⊃ H1
subgroup
of order r

JC(Fpk ) ⊃ H1 ×H2

2-dimensional
independent
r-torsion

F∗pk

E(Fp)

E(Fpd)

E(Fpkd )

d

k

G1 ⊂subgroup
of order r

G1 ×G2 ⊂full
r-torsion

k

Pairing Pairing

Fig. 1. Difference between Jacobian and elliptic curve embedding degree

Moreover we note that taking an even trace t
′
p and a prime p ≡ 1 mod 4 per-

mits always to find valid parameters, namely a c ∈ Fp satisfying the j-invariant
equation, hence coefficients a, b ∈ Fp of C5.

C5 with b not a square and p ≡ 1 mod 4. In this case we have 4
√
b /∈ Fp2 ,

4
√
b ∈ Fp4

and #JC5(Fp) = p2+1+2n2−2n(1+p) = (p−n)2+(n−1)2 with 2p±t
′
p2 = 2n2.

The isogenous elliptic curve is defined over Fp2 . We have Δ = (t
′
p2)

2 − 4p2 =

(t
′
p2 +2p)(t

′
p2 − 2p). With 2p− t

′
p2 = 2n2 we obtain 2p+ t

′
p2 = 4p− 2n2 and find

Δ = −4n2(2p−n2). With 2p+ t
′
p2 = 2n2 we obtain 2p− t

′
p2 = 4p− 2n2 and find
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also Δ = −4n2(2p− n2). In both cases let Dy2 = 2p− n2 thus Δ = −D(2ny)2

and p = (Dy2 + n2)/2. The Jacobian order is a sum of two squares in p and n
hence n = (p+i)/(1+i) = (p+i)(1−i)/2 mod r. Furthermore y2 ≡ (2p−n2)/D
mod r with p ≡ ζk mod r and we find that

n ≡ (ζk + i)(1− i)/2 mod r and y ≡ ±(ζk − i)(1 + i)/(2
√
D) mod r .

The trace will be even by construction as t
′
p2 = ±(2p − 2n2) and to find valid

parameters, p ≡ 1 mod 4 is required. To find the coefficients of the curve C5(Fp),
do the following (Alg. 2).

Algorithm 2. Pairing-friendly Jacobian of type JC5 , Th.1(4)

Input: Square-free integer D, size of r and embedding degree k to match the
security level in bits, knowing that ρ ≈ 4.

Output: Prime order r, prime number p, Jacobian parameters a, b ∈ Fp such
that the Jacobian of the curve C5(Fp) : Y 2 = X5 + aX3 + bX has a
subgroup of order r and embedding degree k with respect to r.

1 repeat

2 Choose a prime r of prescribed size with i,
√
D, ζk ∈ Fr.

3 Let n = (ζk + i)(1− i)/2 and y = ±(ζk − i)(1 + i)/(2
√
D) ∈ Fr.

4 Lift n and y from Fr to Z and set p = (n2 +Dy2)/2 .

5 until p ≡ 1 mod 4 and p is prime.

6 Run the CM method to find the j-invariant of an elliptic curve E
′
1(Fp2) of trace

±t′p2 and Δ = −4D(ny)2.

7 Solve j(E
′
1) = 26 (3c−10)3

(c−2)(c+2)2
in Fp2 and choose the solution satisfying c2 ∈ Fp.

8 Choose a, b ∈ Fp such that a 
= 0 and b = (a/c)2 (b is a square in Fp2 but not in
Fp).

9 return r, p, a, b ∈ Fp

We adapt the program cm.cpp of Miracl2 [37] to compute the j-invariant of
an elliptic curve defined over Fp2 (instead of Fp). Indeed, it is not convenient for
step 5 as it searches for an elliptic curve defined over a prime field. We isolate
parts of the program which compute the Weber polynomial of a number field of
discriminant D. Then we call the factor function but to find a factor mod p
of degree 2 (instead of degree 1) of the Weber polynomial when D �≡ 3 mod 8
and a factor of degree 6 (instead of degree 3) when D ≡ 3 mod 8. The papers
[30,29] contain efficient formulas to recover Hilbert polynomial roots in Fp from
Weber polynomial roots in Fp or Fp3 . We find in Fp2 or Fp6 a root of the factor of
degree 2 or 6 of Weber polynomial and apply the corresponding transformation
to get an element in Fp2 . We obtain the j-invariant of (an isogenous curve to)

the curve E
′
1(Fp2). We solve j(E

′
1) = 26 (3c−10)3

(c−2)(c+2)2 and find for various examples

2 We learned very recently that the MIRACL library status has changed. This library
is now a commercial product of Certivox [8]. The CM software [11] can be an even
more efficient alternative to compute class polynomials.
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a solution c ∈ Fp2 satisfying c2 ∈ Fp. It comes from the appropriate restrictions

2p± t
′
p2 = 2n2, p ≡ 1 mod 4, n odd. Sometimes we have to choose a quadratic

twist of C5, of the form Y 2 = ν(X5 + aX3 + bX) with ν ∈ Fp non-square.

Example 4. k = 6, D = 516505, ρ = 4.1
p =0x9d3e97371e27d006f11762f0d56b4fbf2caca7d606e92e8b6f35189723f46f57ed46

e9650ce1cca1bd90dc393db35cc38970cb0abbe236bf2c4ac2f65f1b50afb135 (528 bits),

r=0x679d8c817e0401203364615b9d34bdb3a0b89e70fa8d6807fa646e25140f25ad(255b),

n =0x28f34a88ab9271c2ea6d70f4a3dc758a025ad6e4ee51c16867763e8d940022de5,

y =-0x65110defe8f4669a158149675afaa23dba326d49ce841d7ef9855c7d8a65df95,

a = 1, b =0x85eb6f5b5594c1bca596a53066216ad79588cf39984314609bbd7a3a3022

41fc786703a19bc1ccb44fc9e09b9c17ac62fc38d6bf82851d3d8b753c79da7338ca56b0,

C5(Fp) : Y 2 = 2(X5 + aX3 + bX).

Pairing-Friendly Hyperelliptic Curve C6

If b is a cube but not a square then #JC6(Fp) = p2 + 1 − tp2 (Th.2(3.)). This
case is close to the elliptic curve case. Actually, this is the same construction
as finding a pairing-friendly elliptic curve over a field Fp2 . But in practice the
methods to find such pairing-friendly elliptic curves over Fp fail over Fp2 . Indeed,

the expression for p is p2 = 1
4 ((t

′
p2)

2 +Dy2) but this is hopeless to find a prime
square. We did not find in the literature any such construction.

C6 with b a square but not a cube. This case is treated in [14, Alg. 5.5, Alg. 5.11]
and corresponds to d = 3 and π = (tp − y

√
−D)/2. This is also a Cocks-Pinch-

like method with r | p2− p+1+(1+ p)tp+(tp)
2 and r | Φk(p). As above for C5,

the condition “3 | k” is not necessary since we consider the embedding degree of
the Jacobian, not the elliptic curve.

We found that p ≡ 1 mod 3 and p + 1 ± tp ≡ 0 mod 3 are enough to
find always valid parameters. Freeman and Satoh pointed out that the equa-
tion j(Ec) = 2833(2c−5)3/((c−2)(c+2)3) has a solution in Fp in only one third
of the cases [14, § 6]. One can explain this phenomenon by simple arithmetic
considerations.

The elliptic curve Ec has a 3-torsion point which means p+1− tp ≡ 0 mod 3,
which happens one third of the cases when p ≡ 1 mod 3. Assuming that p ≡ 1
mod 3, if p + 1 + tp ≡ 0 mod 3 then Ec(Fp) has not 3-torsion point but its
quadratic twist has. These two elliptic curves have the same j-invariant and
admit a 3-torsion subgroup over Fp2 . In practice we verify that the equation has
a solution when p + 1 ± tp ≡ 0 mod 3. Combining the two conditions p ≡ 1
mod 3 and p+1± tp ≡ 0 mod 3, the equation from j(Ec) has indeed a solution
one third of the time (12 · 2

3 ). When p ≡ 1 mod 3 and tp ≡ 2 mod 3, we can
always find a solution in step 2 of [14, Alg. 5.11] and finish to run this algorithm.
When p ≡ 1 mod 3 and tp ≡ 1 mod 3, we can still find a solution in step 2 and
construct the coefficients of C6(Fp) in step 3 of [14, Alg. 5.11]. But in step 6, we
have to choose not C6 itself but its quadratic twist.
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C6 with b neither a square nor a cube. #JC6(Fp) = p2 + p+ 1− (p+1)3n+3n2.
Here the parameters satisfy 2p − tp2 = 3n2. Let 2p + tp2(= 4p − 3n2) = Dy2.
Hence

p =
1

4

(
3n2 +Dy2

)
.

Note that 3 � D otherwise p would not be prime. Solving p2+p+1− (p+1)3n+
3n2 ≡ 0 mod r gives p = (1−ω2)n+ω2 or p = (1−ω)n+ω with ω a primitive
third root of unity. As y2 = (4p − 3n2)/D mod r and with p ≡ ζk mod r we
find

n ≡ (ζk − ω)/(1− ω) mod r and y ≡ ±(ωζk + ω2)/
√
D mod r .

The last version of the Cocks-Pinch method is presented in Alg. 3.

Algorithm 3. Pairing-friendly Jacobian of type JC6 , Th.2(4)

Input: Square-free integer D, 3 � D, size of r and embedding degree k to match
the security level in bits, knowing that ρ ≈ 4.

Output: Prime order r, prime number p, Jacobian parameters a, b ∈ Fp such
that the Jacobian of the curve C6(Fp) : Y 2 = X6 + aX3 + b has a
subgroup of order r and embedding degree k with respect to r.

1 repeat

2 Choose a prime r of prescribed size such that a third root of unity ω,
√
D

and ζk ∈ Fr.

3 Let n = (ζk − ω)/(1− ω) and y = ±(ωζk + ω2)/
√
D ∈ Fr.

4 Lift n and y from Fr to Z and set p = (3n2 +Dy2)/4.

5 until p ≡ 1 mod 3 and p is prime.
6 Run the CM method to find the j-invariant of an elliptic curve Ec(Fp2) of trace

tp2 and Δ = −3D(ny)2. More precisely, run the CM method with 3D. Find a
degree 2 or 6 factor of the Weber polynomial mod p, then apply the right
transformation from [30,29] to obtain a root in Fp2 of the corresponding Hilbert
polynomial.

7 Solve j(Ec) = 2833 (2c−5)3

(c−2)(c+2)3
in Fp2 and choose a solution c ∈ Fp2 such that

c2 ∈ Fp. Choose a, b ∈ Fp such that (a/c)2 is not a cube and b = (a/c)2. Hence b
is neither a square nor a cube.

8 return r, p, a, b ∈ Fp

4.2 Brezing-Weng Method

The method proposed by Brezing-Weng is to use a polynomial ring built with
a cyclotomic polynomial instead of a finite prime field Fr. The parameters will
be polynomials modulo a cyclotomic polynomial instead of integers modulo a
prime. But the choice of D is limited to few values. We tried with D square-free
in the range 1 - 35 according to the embedding degree 5 � k � 36. We ran a
search (with Magma [6]) over different cyclotomic fields and with a change of
basis as in [24] and [25]. We obtained complete families with ρ % 3 and recover
constructions already mentioned in previous papers [26,14] and new complete
families for other embedding degrees:
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Example 5 (k = 22, D = 2, ρ = 2.8).
r = Φ88(x) = x40 − x36 + x32 − x28 + x24 − x20 + x16 − x12 + x8 − x4 + 1
n = 1

2

(
x28 − x22 − x6 + 1

)
y = 1

2

(
x17 + x11

)
t
′
p2 = 1

4

(
−x56 + 2x50 − x44 + 4x34 + 4x22 − x12 + 2x6 − 1

)
p = 1

8

(
x56 − 2x50 + x44 + 8x28 + x12 − 2x6 + 1

)
x ≡ 1 mod 2

Example 6 (k = 26, D = 2, ρ = 2.33).
r = Φ104(x) = x48−x44+x40−x36+x32−x28+x24−x20+x16−x12+x8−x4+1
n = 1

2

(
x28 − x26 − x2 + 1

)
y = 1

2

(
x15 + x13

)
t
′
p2 = 1

4

(
−x56 + 2x54 − x52 + 4x30 + 4x26 − x4 + 2x2 − 1

)
p = 1

8

(
x56 − 2x54 + x52 + 8x28 + x4 − 2x2 + 1

)
x ≡ 1 mod 2

Some constructions (k ∈ {7, 17, 19, 23, 29, 31}) have a cyclotomic polynomial of
too high degree for r. Hence there are very few possibilities for choosing a suitable
integer x such that p(x) and r(x) are prime and of the desired size. Moreover the
ρ-value is close to 4. It would be preferable to use the Cocks-Pinch-like method.

5 More Pairing-Friendly Constructions with D = 1, 2, 3

We observed that when D = 1, the obtained genus 2 hyperelliptic curve of the
form C5(Fp) with b a square splits actually into two non-isogenous elliptic curves
over Fp. We observed the same decomposition for genus 2 hyperelliptic curve of
the form C6 obtained with D = 3 and b a square but not a cube. A theoretical
explanation can be found in [14, Proposition 3.10]. ¿From Rem. 1 1 we get the
explicit decomposition. We give here a practical point of view from explicit zeta
function computation. Let E1(Fq) be an elliptic curve defined over a finite field
Fq of trace tq an satisfying (tq)

2 − 4q = −y2, i.e. D = 1. The zeta function of

E1 is ZE1(T,Fq) = T 2 − tqT + q = (T − tq+iy
2 )(T − tq−iy

2 ) with i ∈ C such that

i2 = −1. We will use the notation α =
tq+iy

2 . With the formula given in [14,
Proposition 3.4] we find that the zeta function of the order 4 Weil restriction of
E1(Fq) is

ZJC5
(T,Fq) = (T − iα)(T + iα)(T − iα)(T + iα) = (T 2 − yT + q)(T 2 + yT + q) .

Note that q + 1 − y and q + 1 + y are the orders of the two quartic twists of
E1(Fq). Hence the obtained Jacobian always splits into the two quartic twists of
E1(Fq).

For JC6(Fq) and D = 3 when b is a square but not a cube, a similar computa-
tion explains the matter. Here Ec is an elliptic curve defined over Fq of trace tq

and such that (tq)
2−4q = −3y2. Let us denote α =

tq+i
√
3y

2 one of the two roots
of its zeta function. The zeta function of the order 3 Weil restriction of Ec(Fq) is

ZJC6
(T,Fq) =

(
T 2 + t+3y

2 T + q
)(

T 2 + t−3y
2 T + q

)
.
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We recognize the two cubic twists of Ec(Fq). This confirm the results found in
Rem 2 1. Trying with an order 6 Weil restriction, we find

ZJC6
(T,Fq) =

(
T 2 − t−3y

2 T + q
)(

T 2 − t+3y
2 T + q

)
.

Hence the Jacobian splits into the two sextic twists of Ec(Fq). We recognize a
case described in Rem. 2 3b. Freeman and Satoh suggested to construct an order
8 Weil restriction when D = 1, 2 and an order 12 Weil restriction when D = 3.
For k = 32, 64, 88 and D = 2 this order 8 Weil restriction corresponds to families
previously found by Kawazoe and Takahashi.

5.1 Order-8 Weil Restriction When D = 1

Let E(Fp) an elliptic curve defined over a prime field Fp, of trace tp and satisfying
(tp)

2 − 4p = −y2 (that is, D = 1). The two roots of its zeta function over C are
α = (tp+ iy)/2 and α. Let ζ8 denotes an eighth root of unity. The zeta function
of the order 8 Weil restriction of E(Fp) is

Z(T, Fp) =
(
(T−ζ8α)(T−ζ78α)(T−ζ58α)(T−ζ38α)

)(
(T−ζ38α)(T−ζ58α)(T−ζ78α)(T−ζ8α)

)

= (T 4 + tyT 2 + p2)(T 4 − tyT 2 + p2)

We see this zeta function factors as two degree 4 zeta functions, that is into
two genus 2 hyperelliptic curve zeta functions. So we start from an elliptic curve
E(Fp) as above, with (tp)

2 − 4p = −y2 and search for suitable p, t, y such that
there exists a genus 2 hyperelliptic curve of order #JC(Fp) = p2+1± ty suitable
for pairing-based cryptography.

To apply one of the two previous methods (Cocks-Pinch or Brezing-Weng),
we have to find an expression of t and y in terms of p modulo r.

t = ζ8 + ζ78 ζk and y = −ζ78 − ζ8ζk mod r .

To finish, p = (t2 + y2)/4.

Example 7 (k = 8, D = 1, ρ = 3.0).
r = x4 + 2x2 + 4x+ 2
t = x
y = 1

3 (−x3 + 2x2 − 3x+ 2)
p = 1

36 (x
6 − 4x5 + 10x4 − 16x3 + 26x2 − 12x+ 4)

x ≡ 4 mod 6

5.2 Order-8 Weil Restriction When D = 2

Let E(Fp) an elliptic curve defined over a prime field Fp, of trace tp and satisfying
(tp)

2 − 4p = −2y2 (that is, D = 2). The two roots of its zeta function over C

are α = (tp + i
√
2y)/2 and α. Let ζ8 denotes an eighth root of unity. The zeta

function of the order 8 Weil restriction of E(Fp) is

Z(T, Fp) =
(
(T−ζ8α)(T−ζ78α)(T−ζ38α)(T−ζ58α)

)(
(T−ζ58α)(T−ζ38α)(T−ζ78α)(T−ζ8α)

)

= (T 4 − 2yT 3 + 2y2T 2 − 2ypT + p2)(T 4 + 2yT 3 + 2y2T 2 + 2ypT + p2)
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and #JC(Fp) = p2 + 1− 2yp+ 2y2 − 2y = (p− y)2 + (y− 1)2. We recognize the
order of JC5(Fp) when the considered isogeny is defined over Fp4 (and with n and
y swapped). Hence it is the construction detailed above in Alg. 2 with D = 2.

5.3 Order-12 Weil Restriction When D = 3

Let E(Fp) an elliptic curve defined over a prime field Fp, of trace tp and satisfying
(tp)

2 − 4p = −3y2 (i.e. D = 3). The two roots of its zeta function over C are

α = (tp + i
√
3y)/2 and α. Let ζ12 denotes a twelfth root of unity. The zeta

function of the order 12 Weil restriction of E(Fp) is

Z(T, Fp) =
(
(T−ζ12α)(T−ζ1112α)(T−ζ712α)(T−ζ512α)

)(
(T−ζ512α)(T−ζ712α)(T−ζ1112α)(T−ζ12α)

)

=
(
T 4 −

(
−p+ tp

tp+3y

2

)
T 2 + p2

)(
T 4 −

(
−p+ tp

tp−3y

2

)
T 2 + p2

)

which can be interpreted as the zeta functions of two Jacobians of hyperelliptic
curves defined over Fp of order p

2+p+1−tp(tp±3y)/2. For further simplifications,
we can also write #JC(Fp) = (p−1)2+((tp−3y)/2)2 = (p+1)2−3((tp+y)/2)2.

To apply the Cocks-Pinch or Brezing-Weng method, we use

tp ≡ −ω(ωp− 1)/i mod r, y ≡ −ω(ωp+ 1)/
√
3 mod r

with ω a third root of unity and i a fourth root of unity. We found new families
with ρ = 3 (with Brezing-Weng method). It would be interesting to know if these
quite special curves provide more features such as compression due to twists of
higher degree.

6 Conclusion

We provided explicit formulas for the zeta function of the Jacobian of genus 2
hyperelliptic curves of the form Y 2 = X5 + aX3 + bX and Y 2 = X6 + aX3 + b
(with a, b ∈ F∗q). We also presented several algorithms to obtain pairing-friendly
hyperelliptic families. The constructions require to run the CM method to find a
j-invariant in Fp2 . We explained the differences with a j-invariant in Fp and gave
references to fill the gap. There are some special issues for D = 1, 3: a ρ-value
of 2 can be achieved but the Jacobian is unfortunately not simple. However,
it is possible to construct suitable curves with D = 1 and D = 3 that achieve
ρ-value around 3 using Weil restriction of order 8 or 12. It is worth noting that it
is also possible to adapt the Dupont-Enge-Morain technique [10] to our setting
but unfortunately it provides curves with ρ % 4. It remains open to construct
pairing-friendly hyperelliptic curves with 1 � ρ < 2.
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Abstract. We propose for the first time the computation of the Tate
pairing on Jacobi intersection curves. For this, we use the geometric
interpretation of the group law and the quadratic twist of Jacobi inter-
section curves to obtain a doubling step formula which is efficient but not
competitive compared to the case of Weierstrass curves, Edwards curves
and Jacobi quartic curves. As a second contribution, we improve the
doubling and addition steps in Miller’s algorithm to compute the Tate
pairing on the special Jacobi quartic elliptic curve Y 2 = dX4 + Z4. We
use the birational equivalence between Jacobi quartic curves and Weier-
strass curves together with a specific point representation to obtain the
best result to date among all the curves with quartic twists. In particular
for the doubling step in Miller’s algorithm, we obtain a theoretical gain
between 6% and 21%, depending on the embedding degree and the ex-
tension field arithmetic, with respect to Weierstrass curves [6] and Jacobi
quartic curves [23].

Keywords: Jacobi quartic curves, Jacobi intersection curves, Tate pair-
ing, Miller function, group law, geometric interpretation, birational equiv-
alence.

1 Introduction

While first used to solve the discrete logarithm problem on elliptic curve group
[20,12], bilinear pairings are now useful to construct many public key protocols
for which no other efficient implementation is known [18,3]. A survey of some of
these protocols can be found in [9]. The efficient computation of pairings depends
on the model chosen for the curve. Pairing computation on the Edwards model
of elliptic curves have been done successively in [7], [17] and [1]. The recent
results on pairing computation using elliptic curves of Weierstrass form can be
found in [5,6]. Recently in [23] Wang et al. have computed the Tate pairing on
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Jacobi quartic elliptic curves using the geometric interpretation of the group
law. In this paper, we focus on Jacobi intersection curves and the special Jacobi
quartic elliptic curves Y 2 = dX4 +Z4 over the field of large characteristic p not
congruent to 3 modulo 4.

We use the geometric interpretation of the group law of Jacobi intersection
curves to obtain the first explicit formulas for the Miller function in Tate pairing
computation in this case. For pairing computation with even embedding degree,
we define and use the quadratic twist of this curve. This allows the Miller dou-
bling stage to be slightly more efficient than when using Weierstrass curves,
Edwards curves and Jacobi quartic curves. Moreover, for pairing computation
with embedding degree divisible by 4, we define and use the quartic twist of the
curve Y 2 = dX4 + Z4. Our result is an improvement of the result obtained by
Wang et al. in [23] and is to our knowledge the best result to date on pairing
computation among all curves with quartic twists.

The rest of this paper is organized as follows: Section 2 gives a background on
the two forms of Jacobi elliptic curves mentioned above, including background
on pairings that we will use in the remainder of the paper. In Section 3, we
first look for Miller functions on Jacobi intersection curves using the geomet-
ric interpretation of the group law and then compute the Tate pairing on this
curve. Section 4 presents the computation of the Tate pairing on the Jacobi quar-
tic curve mentioned above using birational equivalence. Finally, we conclude in
Section 5.

2 Background on Pairings and on Jacobi’s Elliptic Curves

In this section we briefly review pairings on elliptic curves, Jacobi intersection
curves and the Jacobi quartic curves. We also define twists of Jacobi’s curves.

2.1 The Tate Pairing

In this section E is an elliptic curve defined over a finite field Fq. The neutral
element is denoted O. Let r be a large prime divisor of the group order (E(Fq)
and k the embedding degree of E with respect to r, i.e the smallest integer such
that r divides qk − 1. Consider a point P ∈ E(Fq)[r] and the function fr,P with
divisor Div(fr,P ) = r(P )− r(O). Let Q ∈ E(Fqk)/rE(Fqk ) and μr be the group
of r-th roots of unity in F∗

qk . The reduced Tate pairing er is defined as

er(P,Q) = fr,P (Q)
qk−1

r ∈ μr.

If one knows the function hR,S such that Div(hR,S) = (R)+ (S)− (S+R)− (O)
where R and S are two points of E, then the Tate pairing can be computed
in an iterative way by Miller’s algorithm [22] in Algorithm 1. This algorithm
computes in the i-th iteration the evaluation at a point Q of the function fi,P
having divisor Div(fi,P ) = i(P )− ([i]P )− (i− 1)(O), called Miller’s function.
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Algorithm 1. Miller Algorithm
Input : P ∈ E(Fq)[r], Q ∈ E(Fqk )/rE(Fqk)
r = (rn−1, rn−2, ....r1, r0)2 with rn−1 = 1.

Output: The Tate pairing of P and Q : fr,P (Q)
qk−1

r

1.Set f ← 1 and R ← P
2.For i = n− 2 down to 0

Set f ← f2 · hR,R(Q) and R ← 2R
if ri = 1 then f ← f · hR,P (Q) and R ← R+ P

3. f ← f
qk−1

r

After n−1 iterations, the evaluation at Q of the function f having divisor r(P )−
r(O) is obtained. More informations on pairings can be found in
[13] and [8].

Notation 1. The following notations will be permanently used in this work.
m, s : cost of multiplication and squaring in the base field Fq
mc: cost of the multiplication by the constant c in Fq
M , S: cost of multiplication and squaring in the extension field Fqk

2.2 The Jacobi Intersection Curves

A Jacobi intersection form elliptic curve over Fq is defined by

Ea :

{
x2 + y2 = 1
ax2 + z2 = 1

where a belongs to Fq and a(a− 1) �= 0.

The Jacobi intersection curve Ea is isomorphic to an elliptic curve on the Weier-
strass form y2 = x(x − 1)(x − a). The affine version of the unified addition
formulas is given in [4] by (x3, y3, z3) = (x1, y1, z1) + (x2, y2, z2) such that :

x3 =
x1y2z2 + y1z1x2

y22 + z21x
2
2

, y3 =
y1y2 − x1z1x2z2

y22 + z21x
2
2

, z3 =
z1z2 − ax1y1x2y2

y22 + z21x
2
2

See [4,10] for further results on Jacobi intersection curves. An affine point (x, y, z)
on a Jacobi intersection curves is represented by the projective homogeneous
coordinates (X : Y : Z : T) satisfying{

X2 + Y 2 = T 2

aX2 + Z2 = T 2

and (x, y, z) = (X/T, Y/T, Z/T ) with T �= 0. The negative of (X : Y : Z : T )
is (−X : Y : Z : T ). The neutral element P0 = (0, 1, 1) is represented by
(0 : 1 : 1 : 1). By setting T = 0 we get four points at infinity: Ω1 = (1 : s : t : 0),
Ω2 = (1 : s : −t : 0), Ω3 = (1 : −s : t : 0) and Ω4 = (1 : −s : −t : 0) where
1 + s2 = 0 and a+ t2 = 0.
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Group Law on Jacobi Intersection Curves. The first formulas for addition
law on points of Jacobi intersection curves given by Chudnovsky and Chudnovsky
in [4] used projective homogeneous coordinates. In [15], Hisil et al. improved
these formulas by representing points as a sextuplet (X : Y : Z : T : XY : ZT )
as follows:

The sum of the points represented by (X1 : Y1 : Z1 : T1 : U1 : V1) and
(X2 : Y2 : Z2 : T2 : U2 : V2) where U1 = X1Y1; V1 = Z1T1 and U2 = X2Y2;
V2 = Z2T2 is the point (X3 : Y3 : Z3 : T3 : U3 : V3) such that:

X3 = X1T1Y2Z2 + Y1Z1X2T2,
Y3 = Y1T1Y2T2 −X1Z1X2Z2,
Z3 = Z1T1Z2T2 − aX1Y1X2Y2,
T3 = T 2

1 Y
2
2 + Z2

1X
2
2 ,

U3 = X3Y3,
V3 = Z3T3.

with the algorithm:
E ← X1Z2;F ← Y1T2;G ← Z1X2;H ← T1Y2; J ← U1V2;K ← V1U2;
X3 ← (H + F )(E +G)− J −K;Y3 ← (H + E)(F −G)− J +K;
Z3 ← (V1−aU1)(U2+V2)+aJ−K;T3 ← (H+G)2−2K;U3 ← X3Y3;V3 ← Z3T3.
This point addition costs 11m+ 1s+ 2ma.

The doubling of the point represented by (X1 : Y1 : Z1 : T1 : U1 : V1) is
the point (X3 : Y3 : Z3 : T3 : U3 : V3) such that:

X3 = 2X1Y1Z1T1,
Y3 = −Z2

1T
2
1 − aX2

1Y
2
1 + 2(X2

1Y
2
1 + Y 4

1 ),
Z3 = Z2

1T
2
1 − aX2

1Y
2
1 ,

T3 = Z2
1T

2
1 + aX2

1Y
2
1 ,

U3 = X3Y3,
V3 = Z3T3.

with the algorithm: E ← V 2
1 ;F ← U2

1 ;G ← aF ;T3 ← E+G;Z3 ← E−G;Y3 ←
2(F + Y 4

1 )− T3;X3 ← (U1 + V1)
2 − E − F ;U3 ← X3Y3;V3 ← Z3T3.

This point doubling costs 2m+ 5s+ 1ma.

2.3 The Jacobi Quartic Curve

A Jacobi quartic elliptic curve over a finite field Fq is defined by Ed : y2 =
dx4 + 2δx2 + 1 with discriminant ' = 256d(δ2 − d)2 �= 0. In [2] Billet and Joye
proved that if E : y2 = x3 + ax+ b has a point of order 2 denoted (θ, 0) then E
is birationally equivalent to the Jacobi quartic:

Y 2 = dX4 − 2δX2Z2 + Z4

where d = −(3θ2 + 4a)/16 and δ = 3θ/4. In the remainder of this paper, we
will focus our interest on the special Jacobi quartic curve Ed : Y 2 = dX4 + Z4
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because this curve has interesting properties such as quartic twist which con-
tribute to an efficient computation of pairing.
The affine model of this curve is y2 = dx4 + 1 with (x, y) = (XZ , YZ2 ). The spe-
cial Jacobi quartic curve Ed is birationally equivalent to the Weierstrass curve
E : y2 = x3 − 4dx using the maps

ϕ

⎧⎪⎨⎪⎩
(0 : 1 : 1) �−→ O
(0 : −1 : 1) �−→ (0, 0)

(X : Y : Z) �−→
(
2 (Y+Z2)

X2 , 4Z(Y+Z2)
X3

) ; ϕ−1

⎧⎨⎩
(0, 0) �−→ (0 : −1 : 1)
(x, y) �−→ (2x : 2x3 − y2 : y)
O �−→ (0 : 1 : 1)

Group Law on the Curve Y 2 = dX4 + Z4. Here we specialize formulas
for point doubling and point addition on the curve Ed from the formulas on the
affine model given in [16].

The point addition (x3, y3) = (x1, y1) + (x2, y2) on the affine model of Ed is
given by:

x3 =
x2
1−x2

2

x1y2−y1x2
and y3 = (x1−x2)

2

(x1y2−y1x2)2
(y1y2 + 1 + dx2

1x
2
2)− 1.

By replacing x1 by X1

Z1
, x2 by X2

Z2
, y1 by Y1

Z2
1
, y2 by Y2

Z2
2
, x3 = X3

Z3
and y3 by Y3

Z2
3
a

simple calculation yields to

X3 = X2
1Z

2
2 − Z2

1X
2
2 , Z3 = X1Z1Y2 −X2Z2Y1,

Y3 = (X1Z2 −X2Z1)
2(Y1Y2 + (Z1Z2)

2 + d(X1X2)
2)− Z2

3 .

The point doubling (x3, y3) = 2(x1, y1) on the affine model of Ed is given by :

x3 = 2y1
2−y21 x1 and y3 = 2y1

2−y21

(
2y1
2−y21 − y1

)
− 1.

By replacing x1 by X1

Z1
, y1 by Y1

Z2
1
, x3 by X3

Z3
and y3 by Y3

Z2
3
, a simple calculation

yields to:

X3 = 2X1Y1Z1,
Z3 = Z4

1 − dX4
1 ,

Y3 = 2Y 4
1 − Z2

3 .

2.4 Twists of Jacobi Curves

A twist of an elliptic curve E defined over a finite field Fq is an elliptic curve
E′ over Fq that is isomorphic to E over an algebraic closure of Fq. The smallest
integer t such that E and E′ are isomorphic over Fqt is called the degree of the
twist. The points input of a pairing on a curve of embedding degree k take the
form P ∈ E(Fq) and Q ∈ E(Fqk). However many authors have shown that one
can use the twist of a curve to take the input Q ∈ E′(Fqk/t) where operations
can be performed more efficiently [11].

Let E : y2 = x3 + ax+ b over Fq be an elliptic curve in Weierstrass form. The
equation defining the twist E′ has the form y2 = x3+aω4x+ bω6 where ω ∈ Fqk

and the isomorphism between E′ and E is
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ψ : E′ −→ E
(x′, y′) �−→ (x′/ω2, y′/ω3).

Some details on twists can be found in [6].

Quadratic Twist of Jacobi Intersection Curves

Definition 1. Let the Jacobi intersection curve Ea defined as in Subsection 2.2.
A quadratic (t = 2) twist of Ea over the extension Fqk/2 of Fq (k even) is the
curve {

δ2x2 + y2 = 1
aδ2x2 + z2 = 1

Where {1, δ} is the basis of Fqk as a Fqk/2-vector space and δ2 ∈ Fqk/2 .

Proposition 1. Let Ea,δ over Fqk/2 be a quadratic twist of Ea. The Fqk iso-
morphism between Ea,δ and Ea is given by

ψ : Ea,δ → Ea
(x, y, z) �→ (δx, y, z)

Twist of Jacobi Quartic Curves. To obtain the twist of the Jacobi quartic
curve defined by Y 2 = dX4 + Z4, we use the birational maps defined in Sub-
section 2.3 and the twist of Weierstrass curves defined at the beginning of this
subsection.

Definition 2. A quartic twist of the Jacobi quartic curve Y 2 = dX4 + Z4 over
the extension Fqk/4 of Fq is the curve

Ed,ω : Y 2 = dω4X4 + Z4

where ω ∈ Fqk is such that ω2 ∈ Fqk/2 , ω3 ∈ Fqk\Fqk/2 and ω4 ∈ Fqk/4 .
That is {1, ω, ω2, ω3} is a basis of Fqk as a vector space over Fqk/4 .

Proposition 2. Let Ed,ω over Fqk/4 be a twist of Ed. The Fqk isomorphism
between Ea,δ and Ea is given by

ψ : Ed,ω → Ed
(X : Y : Z) �→

(
X
ω2 : Y

ω6 : Z
ω3

)
3 Pairing on Jacobi Intersection Curves

3.1 Geometric Interpretation of the Group Law

The aim of this section is to find the function hR,S. For this, we give more details
on the geometric interpretation in [21] of the group law of Jacobi intersection
curves. We consider P0 = (0, 1, 1) the Fq-rational point on the curve which shall
be the identity. Three points P1, P2, P3 of the curve will sum to zero if and only
if the four points P0, P1, P2, P3 are coplanar. The negation of a point −P1 is
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given as the residual intersection of the plane through P1 containing the tangent
line to the curve at P0.

Let fP1,P2(x, y, z) = 0 be the equation of the plane defined by the points
P1, P2 and P0. If P1 = P2 take fP1,P1 to be the tangent plane to the curve at P1

passing through P0. This plane intersects Ea at R = −(P1 + P2) = −P3. Then
Div(fP1,P2) = (P1)+(P2)+(R)+(P0)−(Ω) where Ω = (Ω1)+(Ω2)+(Ω3)+(Ω4)
is a rational divisor.

Let gR(x, y, z) = 0 be the equation of the plane passing through R and con-
taining the tangent line to the curve at P0. This plane intersects the curve Ea
at the point −R. Then Div(gR) = (R) + 2(P0) + (−R)− (Ω)
Define

hP1,P2 =
fP1,P2

gR

then

Div (hP1,P2) = (P1) + (P2)− (P1 + P2)− (P0)

Theorem 1. The functions fP1,P2 and gR are defined as follows :

fP1,P2(x, y, z) = αx+ β(y − 1) + γ(z − 1)

with:

α =

{
(z2 − 1)(y1 − 1)− (y2 − 1)(z1 − 1) if P1 �= P2,
x1(−a(y1 − 1) + z1 − 1) if P1 = P2.

β =

{
x2(z1 − 1)− x1(z2 − 1) if P1 �= P2,
y1(z1 − 1) if P1 = P2.

γ =

{
x1(y2 − 1)− x2(y1 − 1) if P1 �= P2,
−z1(y1 − 1) if P1 = P2.

and

gP3(x, y, z) = (z3 − 1)(y − 1) + (1− y3)(z − 1).

Proof 1.
1. Let fP1,P2(x, y, z) = αx+βy+γz+θ = 0 be the equation of the plane. Because
P0 = (0, 1, 1) belongs to this plane we have θ = −β − γ. Thus fP1,P2(x, y, z) =
αx+ βy + γz − β − γ = 0.
If P1 and P2 are different then by evaluating the previous equation at the points
P1 and P2 we obtain two linear equations in α, β and γ :

αx1 + β(y1 − 1) + γ(z1 − 1) = 0

αx2 + β(y2 − 1) + γ(z2 − 1) = 0

with the solutions

α =

∣∣∣∣y1 − 1 z1 − 1
y2 − 1 z2 − 1

∣∣∣∣, β =

∣∣∣∣z1 − 1 x1

z2 − 1 x2

∣∣∣∣ , γ =

∣∣∣∣x1 y1 − 1
x2 y2 − 1

∣∣∣∣
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If P1 = P2 �= P0 then the tangent line to the curve at P1 is collinear to the
vector (y1z1,−x1z1,−ax1y1) = (x1, y1, 0) ∧ (ax1, 0, z1). Thus one can take −→n =
x1(−a(y1 − 1) + z1 − 1), y1(z1 − 1),−z1(y1 − 1)) = (α, β, γ) as a normal vector
to the plane.

2. Assume that gR(x, y, z) = ax + by + cz + d = 0. The tangent line to the
curve at P0 is the intersection of the planes v = 1 and w = 1. Thus P0 and
one arbitrary point (1, 1, 1) on the line belong to the plane. This implies that
a = 0 and b = −c − d such that gR(x, y, z) = c(−y + z) + d(−y + 1) = 0.
Because R = (u, v, w) belongs to the plane, we have c = d(−v + 1)/(v − w) and
by replacing this value of c in gR(x, y, z) = c(−y+ z) + d(−y+1) = 0 we obtain
the desired result.

3.2 Miller Function on Jacobi Intersection Curves

In this section we show how to use the geometric interpretation of the group law
to compute pairings. We assume that k is even. Let (xQ, yQ, zQ) ∈ Ea,δ(Fqk/2).
Twisting (xQ, yQ, zQ) with δ ensures that the second argument of the pairing is
on Ea(Fqk) and is of the form Q = (δxQ, yQ, zQ), where xQ, yQ and zQ are in
Fqk/2 .

Addition. By Theorem 1,

hP1,P2(δxQ, yQ, zQ) =
αxQδ+β(yQ−1)+γ(zQ−1)

(z3−1)yQ+(1−y3)zQ+(y3−z3)
=

zQ−1
(z3−1)yQ+(1−y3)zQ+(y3−z3)

(
α

xQ

zQ−1δ + β
yQ−1
zQ−1 + γ

)
To obtain the expression of this function in projective coordinates X , Y , Z and
T , we set xi =

Xi

Ti
, yi =

Yi

Ti
and zi =

Zi

Ti
; i=1, 2, 3. The point Q can be main-

tained in affine coordinates (TQ = 1). The function becomes:

hP1,P2(δxQ, yQ, zQ) =
T3(zQ−1)

(
α′ xQ

zQ−1 δ+β
′ yQ−1

zQ−1+γ
′
)

T1T2[(Z3−T3)yQ+(T3−Y3)zQ+(Y3−Z3)]

=
T3(zQ−1)

T1T2[(Z3−T3)yQ+(T3−Y3)zQ+(Y3−Z3)]
(α′M1δ + β′N1 + γ′)

where α′ = (Z2−T2)(Y1−T1)−(Y2−T2)(Z1−T1), β
′ = X2(Z1−T1)−X1(Z2−T2),

γ′ = X1(Y2 − Z2)−X2(Y1 − T1) and M1 =
xQ

zQ−1 , N1 =
yQ−1
zQ−1 .

we can easily see that
T3(zQ−1)

T1T2[(Z3−T3)yQ+(T3−Y3)zQ+(Y3−Z3)]
∈ Fqk/2 so it can be

discarded in pairing computation since the final output of Miller loop is raised
to the power (qk − 1)/r and qk/2 − 1 is a factor of (qk − 1)/r since k is even.
Thus we only have to evaluate

(α′M1)δ + β′N1 + γ′

Since Q = (δxQ, yQ, zQ) is fixed during pairing computation, the quantities

M1 =
xQ

zQ−1 , N1 =
yQ−1
zQ−1 can be precomputed in Fqk/2 . Each of the multiplication

of α′ by M1 ∈ Fqk/2 and β′ by N1 ∈ Fqk/2 costs k
2m. Computing the coefficients

α′ , β′ and γ′ requires 6m and the point addition in Subsection 2.2 requires
11m+ 1s+ 2c. Thus the point addition and Miller value computation require a
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total of 1M +(k+17)m+1s+2ma. The point P2 is not changed during pairing
computation and can be given in affine coordinates i.e. T2 = 1. Applying such a
mixed addition reduces the cost to 1M + (k + 16)m+ 1s+ 2ma.

Doubling. By Theorem 1,

hP1,P1(δxQ, yQ, zQ) =
x1(−a(y1−1)+z1−1)xQδ+y1(z1−1)(yQ−1)−z1(y1−1)(zQ−1)

(z3−1)yQ+(1−y3)zQ+(y3−z3)
=

x1(−a(y1−1)+z1−1)xQδ+y1(z1−1)(yQ−1)−z1(y1−1)(zQ−1)
(z3−1)yQ+(1−y3)zQ+(y3−z3)

=
(zQ−1)(x1(−a(y1−1)+z1−1))

xQ
zQ−1 δ+y1(z1−1)

yQ
zQ−1−z1(y1−1)

(z3−1)yQ+(1−y3)zQ+(y3−z3)

.

In projective coordinates the function becomes:

hP1,P1(δxQ, yQ, zQ) =
T3(zQ−1)

(
α′

1

xQ
zQ−1 δ+β

′
1

yQ
zQ−1−γ′

1)
)

T 3
1 [(Z3−T3)yQ+(T3−Y3)zQ+(Y3−Z3)]

=
T3(zQ−1)

T 3
1 [(Z3−T3)yQ+(T3−Y3)zQ+(Y3−Z3)]

(α′
1M2δ + β′

1N2 − γ′
1)
.

Where M2 = 2a
xQ

zQ−1 and N2 = a
yQ
zQ−1 . α′

1 = X1(−a(Y1 − T1) + Z1 − T1) ;

β′
1 = Y1(Z1 − T1); γ

′
1 = Z1(Y1 − T1).

We can also verify that
T3(zQ−1)

T 3
1 [(Z3−T3)yQ+(T3−Y3)zQ+(Y3−Z3)]

∈ Fqk/2 such that

it can be discarded thanks to the final exponentiation. Thus we only have to
evaluate

(α′
1M2)δ + β′

1N2 − γ′
1

Again the quantities M2 = 2a
xQ

zQ−1 and N2 = a
yQ
zQ−1 are precomputed in Fqk/2 .

Note that each of the multiplications α′
1M2 and β′

1N2 costs k
2m. Computing

α′
1,β

′
1 and γ′

1 requires 3m and the point doubling from Subsection 2.2 requires
2m+ 5s+ 1ma. Thus the point doubling and Miller value computation require
a total of 1M + 1S + (k + 5)m+ 5s+ 1ma.

3.3 Comparison of Results

The comparison of results is given in Table 1. These comparisons are made for
the Tate pairing and curves with a quadratic twist.

Table 1. Comparisons of our pairing formulas with the previous fastest formulas

Curves Doubling Mixed Addition
Weierstrass(a=0)[6] 1M + 1S + (k + 2)m+ 7s + 1mb 1M + (k + 10)m+ 2s
Twisted Edwards [1] 1M + 1S + (k + 6)m+ 5s + 2ma 1M + (k + 12)m+ 1ma

Jacobi quartic[23] 1M + 1S + (k + 4)m+ 8s + 1ma 1M + (k + 16)m+ 1s+ 4ma,d

This work 1M + 1S + (k + 5)m+ 5s + 1ma 1M + (k + 16)m+ 1s+ 2ma

4 Tate Pairing Computation on Ed : Y 2 = dX4 + Z4

Wang et al. in [23] considered pairings on Jacobi quartics and gave the geometric
interpretation of the group law. We use a different way, namely birational equiv-
alence between Jacobi quartic curves and Weierstrass curves, of obtaining the
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formulas. We specialize to the particular curves Ed : Y 2 = dX4 + Z4 to obtain
better results for these up to 26% improvement compared to the result in [23]. To
derive the Miller function H(X,Y, Z) for Ed, we first write the Miller function
h(x, y) on the Weierstrass curve E. Then by using the birational equivalence we
have H(X,Y, Z) = h(ϕ(X,Y, Z)).

4.1 The Miller Function

The Jacobi quartic curve Ed : Y 2 = dX4 + Z4 is birationally equivalent to
the Weierstrass curve E : y2 = x3 − 4dx. Given two points P1(x1, y1) and
P2(x2, y2) such that P3(x3, y3) = P1 + P2, then the Miller function h(x, y) for
this Weierstrass curve such that a relation Div(h) = (P1) + (P2) − (P3) − (O)
holds is given by:

h(x, y) = y−λx−α
x−x3

Where λ = y2−y1
x2−x1

if P1 �= P2 and λ =
3x2

1−4d
2y1

if P1 = P2 and α = y1 − λx1.
As explained at the beginning of this section, the Miller function for the Jacobi
quartic Ed : Y 2 = dX4 + Z4 is given by H(X,Y, Z) = h(ϕ(X,Y, Z)). A simple
calculation gives:

H(X,Y, Z) =
4X2

3X
2

2X2
3 (Y+Z2)−2X2(Y3+Z2

3)

(
ZY+Z3

X3 − 1
2λ
(
Y+Z2

X2

)
− α

4

)
where

λ =

{ −2X3
1Z2(Y2+Z

2
2)+2X3

2Z1(Y1+Z
2
1)

X1X2[−X2
1 (Y2+Z2

2 )+X
2
2 (Y1+Z2

1)]
if P1 �= P2,

Y1+2Z2
1

X1Z1
if P1 = P2.

and

α =

⎧⎨⎩
−4(Y1+Z

2
1 )(Y2+Z

2
2 )(Z2X1−Z1X2)

X1X2[−X2
1 (Y2+Z2

2 )+X
2
2 (Y1+Z2

1)]
if P1 �= P2,

−2Y1(Y1+Z
2
1)

X3
1Z1

if P1 = P2.

Remark 1. It is simple to verify that our formula obtained by change of variables
is exactly the same result obtained by Wang et al. in [23] using the geometric
interpretation of the group law.

Indeed, by setting x1 = X1

Z1
, x2 = X2

Z2
, y1 = Y1

Z2
1
and y2 = Y2

Z2
2
in their Miller

function obtained for the curve Ed,a : y2 = dx4 + 2ax+ 1 (by taking a = 0), we
get exactly the same result that we found above.
The correctness of the formulas in this work can be checked at
http://www.prmais.org/Jacobi-Formulas.txt.

4.2 Simplification of the Miller Function

By using twist technique as explained earlier, the point Q in the Tate pair-

ing computation can be chosen to be
(
XQ

ω2 :
YQ

ω6 :
ZQ

ω3

)
or (xQω, yQ, 1) in affine

coordinates where XQ, YQ, ZQ, xQ and yQ are in Fqk/4 . Thus
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H(xQω, yQ, 1) =
2X2

3x
2
Qω

2

X2
3 (yQ+1)−x2

Qω
2(Y3+Z2

3)

(
− 1

2λ
(
yQ+1

x2
Qω

4

)
ω2 +

(
yQ+1

x3
Qω

4

)
ω − α

4

)
.

Write −α
4 = A

D and − 1
2λ = B

D then

H(xQω, yQ, 1) =
2X2

3x
2
Qω

2D−1

X2
3 (yQ+1)−x2

Qω
2(Y3+Z2

3)

(
B
(
yQ+1

x2
Qω

4

)
ω2 +D

(
yQ+1

x3
Qω

4

)
ω +A

)
We can easily see that

2X2
3x

2
Qω

2

D(X2
3 (yQ+1)−x2

Qω
2(Y3+Z2

3 ))
∈ Fqk/2 so it can be discarded

in pairing computation thanks to the final exponentiation. Thus we only have
to evaluate

H = B
(
yQ+1

x2
Qω

4

)
ω2 +D

(
yQ+1

x3
Qω

4

)
ω +A

Since Q = (xQω, yQ, 1) is fixed during pairing computation, the quantities
yQ+1

x3
Qω

4

and
yQ+1

x2
Qω

4 can be precomputed in Fqk/4 . Note that each of the multiplications

D
(
yQ+1

x3
Qω

4

)
and B

(
yQ+1

x2
Qω

4

)
costs k

4m.

Remark 2. We can use the fact that in the expression of H the term ω3 is absent
and A ∈ Fq. Thus in Miller’s algorithm, the cost of the main multiplication in
Fqk is not 1M but

(
1
k + 1

2

)
M assuming that schoolbook multiplication is used.

But if we are using pairing friendly fields the embedding degree will be of the
form k = 2i3j. Then we follow [19] and the cost of a multiplication or a squaring
in the field Fqk is 3i5j multiplications or squaring in Fq using Karatsuba and (or)
Toom-Cook multiplication method. In this case, in Miller’s algorithm, the cost

of the main multiplication in Fqk is
(

7·3i−25j+2i−23j

3i5j

)
M . In the next sections ε

stands for 1
k + 1

2 or 7·3i−25j+2i−23j

3i5j . A summary of how to obtain these costs is
given in appendix.

In the next sections, we will compute A, B and D. In the work of Hisil et al.
[16], there are different formulas in affine version for scalar multiplication. They
used one of them to improve points addition and point doubling. These improved
formulas have been used by Wang et al. to compute pairings. But in our case
we obtained our formulas from a different affine version. For efficiency the point
is represented by (X : Y : Z : X2 : Z2) with Z �= 0. We present the first
time that this representation is used when d �= 1. Thus we will use the points
P1 = (X1 : Y1 : Z1 : U1 : V1) and P2 = (X2 : Y2 : Z2 : U2 : V2) where Ui = X2

i ,
Vi = Z2

i , i = 1, 2 .

Remark 3. Note that if X2 and Z2 are known then expressions of the form
XZ can be computed using the formula ((X + Z)2 −X2 − Z2)/2. This allows
the replacement of a multiplication by a squaring presuming a squaring and
three additions are more efficient. The operations concerned with this remark
are followed by ∗ in the Tables 2 and 3.
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4.3 Point Addition and Miller Iteration

When P1 �= P2 we have A = (Y1 + Z2
1 )(Y2 + Z2

2)(Z1X2 − Z2X1),
D = X1X2[−X2

1 (Y2+Z2
2 )+X2

2 (Y1+Z2
1 )] and B = X3

1Z2(Y2+Z2
2 )−X3

2Z1(Y1+
Z2
1 ).
Using the algorithm in Table 2 the computation of A, B, D and the point

addition can be done in 18m+5s+1md or 12m+11s+1md according to Remark
3. Applying mixed addition(Z2 = 1), this cost is reduced to 15m+ 4s+ 1md or
12m+7s+1md . Thus the point addition and Miller value computation require
a total of εM +1S+

(
k
2 + 15

)
m+4s+1md or εM +1S

(
k
2 + 12

)
m+7s+1md.

Table 2. Combined formulas for addition and Miller value computation

Operations V alues

U := Y1 + V1 U = Y1 + Z2
1

V := Y2 + V2 V = Y2 + Z2
2

R := Z2X1 * R = Z2X1

S := Z1X2 * S = Z1X2

A := S −R A = Z1X2 − Z2X1

A := AV A = (Y2 + Z2
2 )(Z1X2 − Z2X1)

A := AU A = (Y1 + Z2
1 )(Y2 + Z2

2 )(Z1X2 − Z2X1)
U := U2U U = X2

2 (Y1 + Z2
1 )

V := U1V V = X2
1 (Y2 + Z2

2 )
B := RV − SU B = X3

1Z2(Y2 + Z2
2 )−X3

2Z1(Y1 + Z2
1 )

D := X1X2 * D = X1X2

E := dD2 E = d(X1X2)
2

D := D(U − V ) D = X1X2[−X2
1 (Y2 + Z2

2 ) +X2
2 (Y1 + Z2

1 )]
X3 := (R + S)(R − S) X3 = X2

1Z
2
2 − Z2

1X
2
2

W1 := X1Z1 * W1 = X1Z1

W2 := X2Z2 * W2 = X2Z2

Z3 := W1Y2 −W2Y1 Z3 = X1Z1Y2 −X2Z2Y1

U := Y1Y2 U = Y1Y2

V := Z1Z2 * V = Z1Z2

V := V 2 + E V = (Z1Z2)
2 + d(X1X2)

2

E := (R− S)2 E = (X1Z2 −X2Z1)
2

U3 := X2
3 U3 = X2

3

V3 := Z2
3 V3 = Z2

3

Y3 := E(U + V )− V3 Y3 = (X1Z2 −X2Z1)
2(Y1Y2 + (Z1Z2)

2+
d(X1X2)

2)− Z2
3

4.4 Point Doubling and Miller Iteration

When P1 = P2 we have A = Y1(Y1+Z2
1) , D = 2X3

1Z1 and B = −X2
1 (Y1+2Z2

1).
The computation of A, B, D and the point doubling can be done using the
algorithm in Table 3 with 4m + 6s + 1md or 3m + 7s + 1md according to the
Remark 3.
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Table 3. Combined formulas for doubling and Miller value computation

Operations V alues

U := U2
1 U = X4

1

V := V 2
1 V = Z4

1

Z3 := V − dU Z3 = Z4
1 − dX4

1

E := X1Z1 ∗ E = X1Z1

D := 2U1E D = 2X3
1Z1

A := (2Y1 + V1)
2/4− U A = Y1(Y1 + Z2

1 )
B := −U1(Y1 + 2V1) B = −X2

1 (Y1 + 2Z2
1 )

X3 := 2EY1 X3 = 2X1Y1Z1

V3 := Z2
3 V3 = Z2

3

Y3 := 2V − Z3 Y3 = dX4
1 + Z4

1 = Y 2
1

Y3 := 2Y 2
3 − V3 Y3 = 2Y 4

1 − Z2
3

U3 := X2
3 U3 = X2

3

Thus the point doubling and Miller value computation require a total of εM+
1S + (k2 + 4)m+ 6s+ 1md or εM + 1S + (k2 + 3)m+ 7s+ 1md.

4.5 Comparison

The comparison of results is summarized in Table 4 and Table 5. These compar-
isons are made for the Tate pairing and curves with a quartic twist. In Table 4
we assume that Schoolbook multiplication method is used whereas the compar-
isons in Table 5 are made using Karatsuba and Toom-Cook method for curves
with k = 2i3j. We also present an example of comparison in the cases k = 8 and
k = 16 since these values are the most appropriate for cryptographic applications
when a quartic twist is used.

Table 4. Comparison of our pairing formulas with the previous fastest formulas with
an example using Schoolbook multiplication method

Curves Doubling Mixed Addition
Weierstrass(b=0)[6] 1M + 1S + ( k

2
+ 2)m+ 8s+ 1ma 1M + ( k

2
+ 9)m+ 5s

Jacobi quartic(a=0)[23] 1M + 1S + ( k
2
+ 5)m+ 6s 1M + ( k

2
+ 16)m + 1s+

1md

This work ( 1
k
+ 1

2
)M + 1S + ( k

2
+ 3)m+ ( 1

k
+ 1

2
)M + ( k

2
+ 12)m+

7s+ 1md 7s+ 1md

Example: k = 8

Weierstrass(b=0)[6] 98m+ 16s + 1ma 77m + 5s

Jacobi quartic (a=0)[23] 101m + 14s 84m + 1s + 1md

This work 75m+ 15s + 1md 57m + 6s + 1md

Remark 4. If we assume that m = s = mc and k = 8 then for the doubling
step the total costs are 115m, 115m and 91m for Weierstrass curve, Jacobi
quartic curve (a=0)[23] and this work respectively. Hence we obtain in this work
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a theoretical gain of 21% with respect to Weierstrass curves and Jacobi quartic
curves. Similarly for the addition step we obtain a theoretical gain of 22% and
26% over Weierstrass and Jacobi quartic curves respectively. This theoretical
gain increases together with the value of k.

Table 5. Comparison of our pairing formulas with the previous fastest formulas with
an example on pairing friendly fields

Curves Doubling Mixed Addition
Weierstrass(b=0)[6] 1M + 1S + ( k

2
+ 2)m+ 8s+ 1ma 1M + ( k

2
+ 9)m+ 5s

Jacobi quartic(a=0)[23] 1M + 1S + ( k
2
+ 5)m+ 6s 1M + ( k

2
+ 16)m+ 1s+

1md

This work
(

7·3i−25j+2i−23j

3i5j

)
M + 1S+

(
7·3i−25j+2i−23j

3i5j

)
M+

( k
2
+ 3)m+ 7s+ 1md ( k

2
+ 12)m + 7s+ 1md

Example 1 : k = 8

Weierstrass(b=0)[6] 33m + 35s+ 1ma 40m+ 5s

Jacobi quartic (a=0)[23] 36m + 33s 84m+ 1s+ 1md

This work 30m + 34s+ 1md 39m+ 7s+ 1md

Example 2 : k = 16

Weierstrass(b=0)[6] 91m + 89s+ 1ma 98m+ 5s

Jacobi quartic (a=0)[23] 94m + 87s 105m + 1s+ 1md

This work 78m + 88s+ 1md 87m+ 7s+ 1md

Remark 5. We assume again that m = s = mc. For k = 8 and for the doubling
step we obtain a theoretical gain of 6% overWeierstrass curves and Jacobi quartic
curves (a=0)[23]. This theoretical gain increases together with the value of k.
When k = 16 the gain is 8% both for the addition and doubling step over
Weierstrass curves. The improvement is 13% in addition step over Jacobi quartic
curves.

Remark 6. The security and the efficiency of pairing-based systems requires us-
ing pairing-friendly curves. The Jacobi models of elliptic curves studied in this
work are isomorphic to Weierstrass curves. Thus we can obtain pairing friendly
curves of such models using the construction given by Galbraith et al.[14] or by
Freeman et al.[11]. Some examples of pairing friendly curves of Jacobi quartic
form can be found in [23].

5 Conclusion

In this work we have computed the Tate pairing on Jacobi intersection curves
using the geometric interpretation of the group law. Our results show that the
doubling step is efficient but not competitive compared to the results using other
elliptic curves. The addition step may require further improvements. Further-
more we significantly improved the doubling and the addition step in Miller’s
algorithm to compute the Tate pairing on the special Jacobi quartic elliptic curve
Ed : Y

2 = dX4 + Z4. Our result is the best to date among all the curves with a
quartic twist.
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A Appendix: Cost of the Main Multiplication in Miller’s
Algorithm

The main multiplication in Miller’s algorithm is of the form f · h where f and h
are in Fqk . Since Fqk is a Fqk/4-vector space with basis {1, ω, ω2, ω3}, f and h can
be written as : f = f0+f1ω+f2ω

2+f3ω
3 and h = h0+h1ω+h2ω

2+h3ω
3 with

fi and hi in Fqk/4 , i = 0, 1, 2, 3. However in our case h3 = 0, h0 ∈ Fq and k = 2i3j .

Schoolbook Method: A full multiplication f.h costs k2 multiplications in the
base field Fq using schoolbook method. But thanks to the particular form of h0

and h3, each of the multiplications fi ·h0 costs k
4 and each of the multiplications

fi · h1, fi · h2 costs k2

16 , i = 0, 1, 2, 3. Then final cost of the product f · h in the

base field Fq is 8k
2

16 + 4k4 = k2

2 + k. Finally the ratio of the cost in this case by

the cost of the general multiplication is
k2

2 +k

k2 = 1
2 + 1

k .

Karatsuba Method: The computation of f ·h is done by computing the three
products: u = (f0 + f1ω)(h0 + h1ω) which costs 2i−23j +2(3i−25j), v = f2(h2 +
h3ω) which costs 2(3i−25j) and w = (f0+ f2+(f1+ f3)ω)(h0 +h2+(h1+h3)ω)
which costs 3(3i−25j). The final cost is then 7 · 3i−25j + 2i−23j .
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Abstract. This paper introduces a new capability of the group sig-
nature, called message-dependent opening. It is intended to weaken the
higher trust put on an opener, that is, no anonymity against an opener is
provided by ordinary group signature. In a group signature system with
message-dependent opening (GS-MDO), in addition to the opener, we set
up the admitter which is not able to open any user’s identity but admits
the opener to open signatures by specifying messages whose signatures
should be opened. For any signature whose corresponding message is not
specified by the admitter, the opener cannot extract the signer’s identity
from it. In this paper, we present formal definitions and constructions
of GS-MDO. Furthermore, we also show that GS-MDO implies identity-
based encryption, and thus for designing a GS-MDO scheme, identity-
based encryption is crucial. Actually, we propose a generic construction
of GS-MDO from identity-based encryption and adaptive NIZK proofs,
and its specific instantiation from the Groth-Sahai proof system by con-
structing a new (k-resilient) identity-based encryption scheme which is
compatible to the Groth-Sahai proof.

1 Introduction

Group signature [20] is a kind of anonymous signatures, which allows members
of a group to sign a message anonymously. Signatures are verified with a single
group public key, but the verification process does not reveal the identity of the
signer. In some exceptional case, a designated authority, called the opener, iden-
tifies the actual signer. However, ordinary group signature puts extremely strong

� The first author is supported by a JSPS Fellowship for Young Scientists.
�� This work was done when the second author was a postdoctoral researcher at

Center for Highly Dependable Embedded Systems Technology, Japan Advanced
Institute of Science and Technology (JAIST).

� � � This work was done when the fourth author was a doctoral student in The Uni-
versity of Tokyo, Japan.

† The fifth author is supported by a JSPS Fellowship for Young Scientists.

M. Abdalla and T. Lange (Eds.): Pairing 2012, LNCS 7708, pp. 270–294, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Group Signatures with Message-Dependent Opening 271

privilege on the opener, i.e., the opener can freely identify the originator of any
signature of his choice. In other words, ordinary group signature schemes provide
no assurance on privacy against the opener at all. For example, in anonymous
auction (which will later be explained in more detail), the opener can extract all
bidders’ identities.

This paper investigates a way of decentralizing this strong power of the opener.
To this end, we propose a new kind of group signatures, group signature with a
message-dependent opening capability. It divides (or “decentralizes”) the strong
power of the opener by introducing another authority, called the admitter. In an
exceptional case in which, for example, a signature on a problematic message
is found, the admitter issues a token which corresponds to the message (not
the whole signed message). By using this token, the opener extracts the signer’s
identity from the signature while without the token, he is not able to do so. For
instance, if the admitter decides that a message “Mr. XXX is fool!” should not
be publicized as a signed message by an anonymous group member, he issues a
token on this message. Then, by using it, the opener can immediately open the
signer’s identity of any signature if it corresponds to the above message.

At a first glance, one may think that for achieving the above functionality, the
popular thresholding technique (i.e. thresholding the opener into multiple less-
trusted openers) would be already sufficient. However, this is not true. Namely,
in our context, the token is generated based on the message which the admitter
chooses but not the signature for such messages. Therefore, once a token un-
der a message (which is chosen by the admitter) is issued, for all signatures of
this message, the signer’s identity can be immediately extracted by the opener
without interacting with any other party. Consequently, for a message which has
already been specified as problematic, the opener can non-interactively open the
signer’s identity, and furthermore, if the admitter considers that there is no need
to specify further messages which should be opened anymore, then he can erase
his memory for avoiding leaking his secret. Notice that even when the admitter
erases his secret, the opener can still open the signer’s identity of any signature
provided that its corresponding message was specified by the admitter before.

Contributions. In this paper, we propose group signature with a new
additional capability, called group signature with message-dependent opening
(GS-MDO). In GS-MDO, as mentioned above, we introduce the admitter which
issues tokens for specific messages, and by using these tokens, the opener can
extract signers’ identities from signatures only if their corresponding messages
are those specific ones. Due to this functionality, we can flexibly restrict the abil-
ity of the opener without any complicated interactive procedure (e.g. threshold
decryption).

We first give a security definition of GS-MDO. Our security definition is an
extension of the Bellare-Micciancio-Warinschi model [7] which is considered as
the basic security definition for group signatures in the static setting, and more
specifically, our security model is a natural modification of this model according
to the difference between the standard group signature and ours which introduces
the functionality of the message-dependent opening. Next, we discuss technical
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hurdles for constructing GS-MDO which satisfies the above security requirement.
Especially, we show that it is possible to derive identity-based encryption (IBE)
from any GS-MDO scheme in a black-box manner if the underlying GS-MDO
is secure in the above sense. In other words, IBE is crucial for constructing GS-
MDO, and thus, it is impossible to construct GS-MDO without using IBE as a
building block. Then, based on this observation, we present a generic construc-
tion of GS-MDO from IBE and adaptive non-interactive zero-knowledge (NIZK)
proofs. Notice that in our generic construction, simulation-soundness [39] for
NIZK is not required while the generic construction of the (standard) group
signature [7] requires this strong property. Lastly, we propose an efficient in-
stantiation of GS-MDO by applying the Groth-Sahai proof [29] to our generic
construction. For utilizing the Groth-Sahai proof in our generic construction,
we see that an IBE scheme which is compatible to the Groth-Sahai proof (like
“structure preserving signatures” [4]) is necessary since our generic construction
requires IBE. Unfortunately, there is no known such primitive, and thus we also
construct a new IBE scheme which satisfies this requirement. By using our new
IBE together with the Groth-Sahai proof, a fairly practical GS-MDO can be con-
structed. Specifically, the size of a signature is approximately 16 kilobytes when
256-bit prime order group is used. However, we should also honestly mention
that our IBE has only k-resilient security [30], and consequently, the resulting
GS-MDO scheme inherits this restriction (i.e. the admitter can issues at most k
tokens).

Applications. As mentioned before, a straightforward application of GS-MDO
schemes is detecting the originator of inappropriate messages in an anonymous
bulletin board system. We further discuss more other potential applications of
message-dependent opening systems in the following.

The first application we discuss is anonymous auction. In this application,
the bidders form the group of anonymous signers. Each bidder produces a group
signature on his bidding price. To detect the winner(s), the admitter issues the
token for opening signatures on the highest price. Then the opener is only able
to open the signatures on the highest price.

The advantage (of the message-dependent opening approach) over the thresh-
old approach becomes clear in this application. Suppose that there are many
winners who all bid the highest price in a tie. In the threshold approach, an in-
teraction will be needed for each winner, hence the total communication cost will
be proportional to the number of winners. In contrast, if one takes the message-
dependent opening approach, only a small communication from the admitter
to the opener will be needed. The communication cost does not depend on the
number of winners.

Another application in which the message-dependent opening capability is
useful is identity escrow. Let us consider an automated parking garage [34], in
which when a customer enters the garage, he generates a group signature on a



Group Signatures with Message-Dependent Opening 273

message which encodes the date when he enters the garage (say, the string “2012-
02-20”). Suppose a case in which there is an accident (a person is murdered, for
example) in the garage. In this case the opener will open the signatures on the
date when the accident occurs, in order to identify who is there at that day.

In this application, the opener needs to open many signatures on the same
message. If one adopts the threshold technique to decentralize the authority, a
large amount of interactions is required to open all the signatures. The message-
dependent opening capability removes interactions between authorities, that is,
the admitter issues a token for the day, and the opener opens all the signatures
without interaction.

Related Works. Since the first proposal of group signature by Chaum and van
Heyst [20], many efficient constructions have been proposed, most of which are
relying on the random oracle model [6,11,18,33,25,23,10]. Many initial schemes
were based on the strong-RSA assumption. Group signature schemes based on
assumptions of the discrete-logarithm type were achieved, to name a few, by
Camenisch and Lysyanskaya [18] and by Boneh, Boyen, and Shacham [11]. The
former scheme is based on the LRSW assumption, while the latter is based on
the q-strong Diffie-Hellman assumption.

Except generic constructions from general NIZK techniques, group signature
schemes without relying on the random oracles are only very recently achieved.
Ateniese, Camenisch, Hohenberger, and de Medeiros first proposed a group sig-
nature scheme from interactive assumptions avoiding random oracles [5]. Fol-
lowing to this scheme, Groth proposed a group signature scheme which avoids
random oracles and interactive assumptions [27], but the scheme has a very large
signature size. Boyen and Waters proposed highly efficient constructions [14,15],
although the security guarantee of their schemes are not very strong, i.e. they
only achieve so-called CPA-anonymity. Groth proposed another group signature
scheme [28], which is almost as efficient as the Boyen-Waters schemes and satis-
fies higher security guarantee of the Bellare-Shi-Zhang model [8].

As for decentralizing and distributing the power of the group manager, sepa-
rability of a cryptographic protocol was introduced by Kilian and Petrank [34]
in the context of identity escrow. Lately, this notion was refined and adopted
to the context of group signature by Camenisch and Michels [19]. The separa-
bility notion demands that keys of several entities involved in the cryptographic
primitive need to be generated independently each other. In their setting, the
power of a group manager is separated into two authorities. The first authority
is able to allow a new group member to join the group, but not able to identify
the originator of a group signature, and the other authority is vice versa. More
formal modeling of these separated authorities is put forward by Bellare, Shi,
and Zhang [8] and Kiayias and Yung [32].

Traceable signature is an extended notion of group signature, introduced by
Kiayias, Tsiounis, and Yung [31]. This primitive allows the group manager to
specify a group member as “misbehaving”. Once a member was specified by
the manager, anyone becomes able to detect the signatures of the specified user
without interacting with the manager. In this time signatures of other group
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members continue to be anonymous. In our terminology, this primitive achieves
somewhat “signer-dependent opening” capability, but no message-dependent
opening is achieved. A contractual anonymity system [40] has been proposed
based on group signatures with verifier-local revocation [13]. In this system,
when a user breaks a contract, an accountability server revokes anonymity of
the user and notices the identity of the user to the service provider (In the con-
tractual anonymity system, a user is said to break the contract when the user
sends a message specified by the contract policy of the service provider). Since
this scheme uses the conventional open algorithm, this system also differs from
message-dependent opening.

Paper Organization. The rest of the paper is structured as follows. Sect. 2
describes definitions and security notions of several building blocks briefly. Sect. 3
presents the notion of GS-MDO and its syntax and security definitions. Sect. 4
discusses difficulties behind constructing efficient GS-MDO schemes. Specifically
we argue that use of IBE in a construction of GS-MDO is essential by showing
a generic construction of IBE from GS-MDO. In Sect. 5 and 6, we propose a
generic construction of GS-MDO and its fairly efficient instantiation.

2 Preliminaries

Signatures. A signature scheme consists of the following three algorithms: A
key generation algorithm SigKg(1λ) outputs a pair (vk , sk). A signing algorithm
Signsk (M) generates a signature s for a message M . A verification algorithm
Verifyvk(M, s) outputs ( or ⊥, which respectively indicate “accept” or “reject”.
As a correctness, for all λ ∈ N, all pairs (vk , sk) in the range of SigKg(1λ), and
all messages M , it is required to be satisfied that Pr[Verifyvk(M, Signsk (M)) =
(] = 1. A signature scheme is existentially unforgeable under chosen-message
attack (EUF-CMA) if all PPT adversaries, given vk generated from SigKg(1λ)
and an access to a signing oracle, which gives the adversary a signature of his
choice, have negligible probability of outputting a pair (M, s) where M was
never queried to the signing oracle and Verifyvk(M, s) = (. A signature scheme
is said to be strongly unforgeable one-time signature when no adversary, given vk
and allowed to access to a signing oracle only at most once, can output a valid
message-signature pair (M, s) (i.e. Verifyvk(M, s) = () which is different from
the message-signature pair obtained from the signing oracle.

Tag-Based Key Encapsulation Mechanism. A tag-based key encapsulation
mechanism (tag-based KEM)1 [36,35] consists of the following three algorithms:
A key generation algorithm TKg(1λ) outputs a pair (pk , dk). An encapsulation

1 Tag-based encryption, an encryption analogue of tag-based KEM, is originally intro-
duced as “encryption with labels” by Shoup and Gennaro [42]. Tag-based KEM is
different from “tag-KEM”, introduced by Abe, Gennaro, Kurosawa, and Shoup [3].
However, any CCA-secure tag-KEM scheme can be immediately converted to a tag-
based KEM scheme which is sufficiently secure for our purpose.
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algorithm TEncpk (t) outputs (C,K) where a ciphertext C for a tag t encapsulates
a session key K ∈ KPKE, where KPKE is the session key space associated with the
scheme. A decapsulation algorithm TDecdk (t, C) outputs a decapsulated session
keyK or a special symbol⊥ indicating an invalid ciphertext. A tag-based KEM is
said to be selective-tag weakly chosen-ciphertext secure when no PPT adversary
has non-negligible advantage in the following game: The adversary is given a
security parameter 1λ and output a target tag t∗, then the challenger gives a
public key pk . After receiving the public key, the adversary, in an arbitrary
order, issues decryption queries (t, C), to which the challenger responds with
the decryption result of C under the tag t. Here the adversary is not allowed
to issue queries with t = t∗. At some point the adversary requests a challenge.
The challenger flips a fair coin b′ and sends (C∗,K∗) where C∗ is a ciphertext
generated under the tag t∗ and K∗ is either the session key encapsulated in
C∗ when b′ = 0 or a random session key when b′ = 1. After receiving the
challenge the adversary is again allowed to issue decryption queries. The same
restriction for queries is applied as before. Finally the adversary outputs a bit
b. The advantage of the adversary is defined by the probability that b = b′

minus 1/2.

Identity-Based KEM and Its k-resilient Variant. A k-resilient identity-
based KEM [30] consists of the following four algorithms: A setup algorithm
ISetup(1λ, 1k) outputs a pair (par ,mk). A key extraction algorithm IExtmk (ID)
outputs a user decapsulation key dk ID . An encapsulation algorithm IEncpar (ID)
outputs (C,K) where a ciphertext C for an identity ID encapsulates a session
key K ∈ KIBE, where KIBE is the session key space associated with the scheme.
A decapsulation algorithm IDecdkID (C) outputs a decapsulated session key K
or a special symbol ⊥ indicating an invalid ciphertext. A k-resilient identity-
based KEM is said to be k-resilient if no PPT adversary has non-negligible
(in λ) advantage in the following game: The adversary first receives a public
parameter par . After receiving the parameter the adversary, in an arbitrary
order, issues extraction queries ID , to which the challenger responds with the
user decapsulation key for the user ID . At some point the adversary requests
a challenge with an identity ID∗. The challenger flips a fair coin b′ and sends
a pair (C∗,K∗) where C∗ is a ciphertext for the user ID∗ and K∗ is either
the session key encapsulated in C∗ when b′ = 0 or a random session key when
b′ = 1. The adversary is not allowed to request a challenge with an identity
whose user decapsulation key is queried before. After receiving the challenge the
adversary is again allowed to issue extraction queries. This time querying the
user decapsulation key for ID∗ is disallowed. The adversary is also restricted
that the total number of queries before and after the challenge is at most k.
Finally the adversary outputs a bit b. The advantage of the adversary is defined
by the probability that b = b′ minus 1/2. We also say that an identity-based
KEM is fully secure when any PPT adversary has non-negligible advantage in
the same game even when the number of extraction queries is unbounded.
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Non-Interactive Zero-Knowledge Proofs. A non-interactive proof system
for a polynomial-time computable relation R consists of three probabilistic al-
gorithms K, P , and V . The common reference string generation algorithm K
produces a common reference string Σ. The proof algorithm P takes a com-
mon reference string Σ, a theorem x, and a witness w, where R(x,w) = (, and
produces a proof π. The verification algorithm V takes as input (Σ, x, π), and
outputs either ( or ⊥. We say that a non-interactive proof system (K,P, V )
has perfect completeness, when we have Pr[Σ ← K(1λ); (x,w) ← A(Σ);π ←
P (Σ, x,w) : V (Σ, x, π) = ( ∨ R(x,w) = ⊥] = 1 for any adversary A. We
say that a non-interactive proof system (K,P, V ) has perfect soundness, when
we have Pr[Σ ← K(1λ); (x, π) ← A(Σ) : V (Σ, x, π) = ⊥ ∨ x ∈ L] = 1 for
all adversary A, where L denotes the set of all x that has at least one w
such that R(x,w) = (. We say that a non-interactive proof system (K,P, V )
is zero-knowledge when there exists a pair of probabilistic algorithms (S1, S2)
such that we have Pr[Σ ← K(1λ); (x,w) ← A(Σ);π ← P (Σ, x,w) : A(π) =
1]− Pr[(Σ, τ) ← S1(1

λ); (x,w) ← A(Σ);π ← S2(Σ, τ, x) : A(π) = 1] is negligi-
ble for all PPT adversaries A that do not output (x,w) with R(x,w) = ⊥.

3 Group Signatures with Message-Dependent Opening

Firstly we give an explanation of the scenario in which group signature with
message-dependent opening is used. As ordinary group signatures, a GS-MDO
scheme allows group members to sign a message anonymously, that is, without
revealing their identities but only showing that one of the group members ac-
tually signed. In exceptional cases, a designated third party, called the opener,
can “open” exceptional signatures, to identify the originator of signatures. In
contrast to ordinary group signature schemes, a GS-MDO scheme requires the
opener to cooperate with another authority, called the admitter, to open signa-
tures. The admitter issues a message-specific token, and the opener is able to
open signature on some message only when a token for the message is issued
from the admitter.

A formal model of this scenario is given by the following definition. A GS-
MDO scheme consists of the following five algorithms:

GKg: This algorithm takes as an input (1λ, 1n, 1k) where λ is a security param-
eter, n is the number of group members, and k is the maximum number
of message-specific tokens that can be issued, and returns a group public
key gpk , a message specification key msk , an opening key ok , and n group
signing keys {gsk i}i∈[n].

GSig: This algorithm takes as inputs gpk , gsk i, and a message M , and returns
a group signature σ.

Td: This algorithm takes as inputs gpk , msk , and M , and returns the token tM
for M .

GVf: This algorithm takes as inputs gpk , σ, and M , and returns ( or ⊥.
Open: This algorithm takes as inputs gpk , ok , M , σ, and tM , and returns i ∈ N

or ⊥.
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As a correctness, it is required that for all λ, n, k and for all (gpk ,msk , ok ,
{gsk i}i∈[n]) in the range of GKg(1λ, 1n, 1k), GVf(gpk ,M,GSig(gpk , gsk i,M)) =
( for all M ∈ {0, 1}∗ and i ∈ [n], and Open(gpk , ok ,M,GSig(gpk , gsk i,M),
Td(gpk ,msk ,M)) = i for all M ∈ {0, 1}∗ and i ∈ [n].

As in ordinary group signature, we need to ensure anonymity and traceability.
However, in contrast to ordinary group signature, we have to further ensure two
types of anonymity. It is related to the original motivation of the introduction of
the admitter. The introduction of the admitter is intended to strengthen signers’
anonymity against the authorities as strong as possible. To capture this intention,
we define the indistinguishability of the originator of the signature in the strong
setting that the opening key is given to the adversary. As a counterpart of this, we
also define the indistinguishability in the setting that the message-specification
key is given to the adversary.

For traceability, we just use the same definition to the ordinary group signa-
ture, in which the authorities are entirely corrupted by the adversary, since even
ordinary group signature schemes has ensured that traceability against entirely
corrupted openers.

Opener Anonymity. Here we give a formal definition of anonymity against the
opener, called opener anonymity. It is formalized as the indistinguishability of
signatures of two different signers of the adversary’s choice. In the indistinguisha-
bility game, the adversary is given the opening key, and is asked to distinguish
signatures of two different signers of its own choice. Opener anonymity is defined
by requiring that no adversary has non-negligible advantage in distinguishing
signatures.

We again remark that contrary to ordinary group signatures, the adversary
is allowed to have the opening key. This is intended for modeling “anonymity
against the opener.”

Definition 1. A GS-MDO scheme has opener anonymity if the advantage of
any PPT adversary A in the following game between a challenger and the ad-
versary is negligible in the security parameter λ:

Setup. The challenger runs GKg(1λ, 1n, 1k) to obtain (gpk , ok ,msk , {gsk i}i∈[n])
and sends (gpk , ok , {gsk i}i∈[n]) to A.

Token Query (Phase I). A adaptively issues token queries. For a token query
for a message M , the challenger responds with tM which is obtained by run-
ning Td(gpk ,msk ,M).

Challenge. At some point A requests a challenge for i0, i1 ∈ [n] and a message
M∗. The challenger chooses a random bit b, and responds with GSig(gpk ,
gsk ib ,M

∗). In this phase A is forbidden to submit M∗ whose token is previ-
ously queried in Phase I.

Token Query (Phase II). A continues to query tokens. In this phase A is
forbidden to query M∗, which is submitted in Challenge phase.

Guess. Finally A outputs a bit b′. The advantage of A is defined by the absolute
difference between the probability that b′ is equal to b and 1/2.
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We also say that a GS-MDO scheme has opener anonymity with k-bounded
tokens if any PPT adversary A which issues at most k token queries in total has
negligible advantage.

Admitter Anonymity. We then give a definition of anonymity against the
admitter, called admitter anonymity. It is formalized in a similar manner to
opener anonymity. That is, admitter anonymity requires signatures of two dif-
ferent signers are indistinguishable even when the adversary is given the message-
specification key. The formal definition is as follows:

Definition 2. A GS-MDO scheme has admitter anonymity if the advantage
of any PPT adversary A in the following game between a challenger and the
adversary is negligible in the security parameter λ:

Setup. The challenger runs GKg(1λ, 1n, 1k) to obtain (gpk , ok ,msk , {gsk i}i∈[n])
and sends (gpk ,msk , {gsk i}i∈[n]) to A.

Open Query (Phase I). A adaptively issues open queries. For an open query
for a message-signature pair (M,σ), the challenger generates tM by running
Td(gpk ,msk ,M) and responds with Open(gpk , ok ,M, σ, tM ).

Challenge. At some point A requests a challenge for i0, i1 ∈ [n] and a mes-
sage M∗. The challenger chooses a random bit b, and responds with σ∗ ←
GSig(gpk , gsk ib ,M

∗).
Open Query (Phase II). A continues to submit open queries. In this phase

A is forbidden to query σ∗, which is same as the signature produced in Chal-
lenge phase.

Guess. Finally A outputs a bit b′. The advantage of A is defined by the absolute
difference between the probability that b′ is equal to b and 1/2.

Notice that the number of opening queries the adversary issues is unbounded
(but of course polynomially many).

Traceability. The last notion is traceability, which requires that even if the
opener and the admitter collude and they further adaptively corrupt some group
members, the corrupted parties can produce neither forged signatures nor un-
traceable signatures. In contrast to the case of the anonymity notions, this case
considers a collusion of two authorities.

Definition 3. A GS-MDO scheme has traceability if the advantage of any PPT
adversary A in the following game between a challenger and the adversary is
negligible in the security parameter λ:

Setup. The challenger runs GKg(1λ, 1n, 1k) to obtain (gpk , ok ,msk , {gsk i}i∈[n])
and sends (gpk , ok ,msk) to A.

Query. A adaptively issues following two types of queries:
1. The first type of queries is key revealing query, in which A requests for

revealing the group signing key of the group member i. For this type of
queries the challenger responds with gsk i.
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ISetup(1λ):
(gpk , ok ,msk , {gsk1, gsk2})← GKg(1λ, 12);
par ← (gpk , ok , gsk1, gsk2); mk ← msk ;
Output (par ,mk).

IEncpar (ID):
For i ∈ {1, . . . , λ}:

Ki ← {0, 1};
σi ← GSig(gpk , gskKi+1, ID);

C ← (σ1, . . . , σλ);
K ← K1 · · ·Kλ;
Output (C,K).

IExtmk(ID):
dk ID ← Td(gpk ,mk , ID);
Output dk ID .

IDecdkID (C):
Parse C as (σ1, . . . , σλ);
For i ∈ {1, . . . , λ}:

Ki ← Open(gpk , ok , ID, σi, dk ID);
If Ki = ⊥ for some i

then Output ⊥;
Else Output K1 . . .Kλ.

Fig. 1. The black-box construction of identity-based KEM from group signature with
message-dependent opening

2. The second type of queries is signing query, in which A requests for a
signature on some message by some group member. For a query (i,M)
of this type, the challenger responds with GSig(gpk , gsk i,M).

Forge. Finally the challenger outputs a forgery (M∗, σ∗). A wins if GVf(gpk ,
M∗, σ∗) = ( and one of the following two conditions holds: (1)
Open(gpk , ok ,M∗, σ∗,Td(gpk ,msk ,M∗)) = ⊥, or (2) Open(gpk , ok ,M∗, σ∗,
Td(gpk ,msk ,M∗)) = i∗ �= ⊥, and neither a key revealing query for the user
i∗ nor a signing query for (i∗,M∗) is submitted. The advantage of A is de-
fined by the probability that A wins.

4 Difficulty in Having Efficient Constructions

In this section we discuss several difficulties in designing efficient GS-MDO
schemes. We firstly investigate relationships between GS-MDO and other cryp-
tographic primitives, and then we discuss the difficulty that lies in designing
efficient constructions.

As for the relationship to other primitives, we show that the existence of a
GS-MDO scheme implies that of an IBE scheme. In other words, we will present
a black-box construction of IBE from any GS-MDO scheme. The same holds for
the k-resilient versions.

The formal theorems are as follows:

Theorem 1. If the underlying GS-MDO scheme satisfies opener anonymity, the
identity-based KEM in Fig. 1 is fully secure.

Theorem 2. If the underlying GS-MDO scheme satisfies opener anonymity
with k-bounded tokens, the identity-based KEM in Fig. 1 is k-resilient.

Formal proofs can be given by a straightforward modification from the proof
by Abdalla and Warinschi [1] or the similar technique used by Ohtake, Fujii,
Hanaoka, and Ogawa [37], hence we omit detailed proofs.
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We also note that Fig. 1 only shows a construction of identity-based key encap-
sulation mechanism rather than identity-based encryption. However, it suffices
for the theorems since we can obtain a secure encryption scheme by combining
the construction with an appropriate data encapsulation mechanism.

These theorems suggest that to use IBE is crucial for constructing a GS-MDO
scheme. Considering the fact that a black-box construction of IBE from trapdoor
permutation is impossible [12], we should conclude that it is almost unavoidable
for a GS-MDO scheme to relying on an IBE scheme or its equivalence, not only
on trapdoor permutation and NIZK proof. Otherwise one would construct an
IBE scheme from surprisingly weaker primitives.

Another important aspect to establish an efficient GS-MDO scheme is real-
izing a “Groth-Sahai compatible” IBE scheme. This is because the only known
construction of non-interactive zero-knowledge proof with reasonable efficiency
is limited to the Groth-Sahai proof system. Also note that a non-interactive
zero-knowledge proof system has been an important building block for almost
all group signature schemes ever.

However, no currently known IBE scheme is Groth-Sahai compatible in the
sense that the Groth-Sahai proof system cannot prove a kind of well-formedness
of an IBE ciphertext in a zero-knowledge manner.

To overcome this gap, we adopt k-resilient IBE instead of fully secure IBE. In
particular we design a k-resilient IBE scheme from the decision linear assumption
by modifying the Heng-Kurosawa scheme [30] for this purpose (We also note
that a similar construction can be obtained from a key-insulated encryption
scheme by Dodis, Katz, Xu, and Yung [24]). The modification is needed since the
original Heng-Kurosawa scheme is based on the decision Diffie-Hellman (DDH)
assumption, which does not hold in groups with a bilinear map, and the Groth-
Sahai proof system relies on a bilinear map in an essential way.

5 Generic Construction

In this section, we give a construction of a GS-MDO scheme. The construction
is built on an EUF-CMA secure signature scheme, a strongly unforgeable one-
time signature scheme, a selective-tag weakly chosen-ciphertext secure tag-based
KEM, a k-resilient identity-based KEM, and an adaptive NIZK proof system.

At a first glance there are various building blocks. However, our generic con-
struction is only relying on the existence of an IBE scheme and that of an NIZK
proof system. Indeed signature schemes and a chosen-ciphertext secure tag-based
encryption scheme can be constructed from a fully secure IBE.

The proposed construction shares an underlying idea with the generic con-
struction by Bellare, Micciancio, and Warinschi (the BMW construction) [7]
except the use of “simulation-sound” NIZK proofs. The proposed construction
no longer relies on such a strong security requirement of simulation-soundness,
which was exploited by the BMW construction [7]. Instead of the strong secu-
rity requirement of simulation-soundness, we combine (ordinary) NIZK proofs
with a strongly unforgeable one-time signature scheme. We remark that essen-
tially same techniques have been used in a variety of contexts. To name a few,
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Groth [28] used this technique for an efficient group signature scheme in a very
similar manner. Camenisch, Chandran, and Shoup [17,16] used this to construct
simulation-sound NIZK proofs, improving the result of Groth [27].

GKg(1λ, 1n, 1k):
(vk issue, sk issue)← SigKg(1λ);
(pk , dk)← TKg(1λ);
(par ,mk)← ISetup(1λ, 1k);
Σ ← K(1λ);
gpk ← (vk issue, pk , par , Σ);
ok ← dk ;
msk ← mk ;
For all i ∈ [1, n]:

(vk i, sk i)← SigKg(1λ);
cert i ← Signskissue(〈i, sk i〉);
gsk i ← (i, vk i, cert i, sk i);

Output (gpk , ok ,msk , {gsk i}i).

GSig(gpk , gsk i,M):
Parse gpk as (vk issue, pk , par , Σ);
Parse gsk i as (i, vk i, cert i, sk i);
s← Signski

(M);

(vkOT, skOT)← SigKgOT(1λ);
(CPKE,KPKE)← TEncpk (vkOT);
(CIBE,KIBE)← IEncpar (M);
χ← 〈i, vk i, cert i, s〉 �KPKE �KIBE;
π ← PNIZK(· · · );
σOT ← SignOT

skOT
(〈CPKE, CIBE, χ, π〉);

σ ← (vkOT, CPKE, CIBE, χ, π, σOT);
Output σ.

GVf(gpk ,M, σ):
Parse gpk as (vk issue, pk , par , Σ);
Parse σ as (vkOT, CPKE, CIBE, χ, π, σOT);

If VerifyOT
vkOT

(〈CPKE, CIBE, χ, π〉, σOT) = 1
and VNIZK(. . .) = 1 then Output �;
Else Output ⊥.

Td(gpk ,msk ,M):
Parse gpk as (vk issue, pk , par , Σ);
tM ← IExt(par ,msk ,M);
Output tM .

Open(gpk , ok ,M, σ, tM ):
Parse gpk as (vk issue, pk , par , Σ);
Parse σ as (vkOT, CPKE, CIBE, χ, π, σOT);
KPKE ← TDecok(vkOT, CPKE);
KIBE ← IDectM (M,CIBE);
〈i, vk i, cert i, s〉 ← χ�K−1

IBE �K−1
PKE;

If VerifyOT
vkOT

(〈CPKE, CIBE, χ, π〉, σOT) = 1
and VNIZK(. . .) = 1
then Output i;
else Output ⊥;

Fig. 2. The brief overview of the proposed GS-MDO scheme. The operator � denotes
some group operation. In the concrete instantiation, 〈· · ·〉 denotes a tuple consisting of
all group elements that appear in the bracket, and the operator � is the component-
wise group multiplication. The non-interactive proof system (K,PNIZK, VNIZK) is for
demonstrating the existence of a satisfying assignment of Eq. (1).

The Construction. In the construction, a group member has a key pair
(vk i, sk i) of the signature scheme in which vk i is authorized by another veri-
fication key vk issue at the setup time. When a member makes a group signature,
the member simply signs a message by sk i. To be anonymous, the member fur-
ther encrypts the signature together with the certificate (of the member), which
authorizes the verification key vk i, and attaches a non-interactive proof that
demonstrates that a signature of an authorized member is encrypted. To en-
crypt a signature, the member uses a multiple encryption technique to ensure
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neither the opener nor the admitter can reveal the identity as long as the admitter
does not issue a token to the opener. The complete description of the scheme is
shown in Fig. 2.

Let us explain the non-interactive proof that appears in the construction. The
signature of the proposed scheme is of the form as (vkOT, CPKE, CIBE, χ, π, σOT),
and, as mentioned above, the proof π demonstrates a valid signature of an autho-
rized group member is encrypted into (CPKE, CIBE, χ) in a kind of a “multiple
encryption” manner. In detail, the proof π proves that there exists a random-
ness r (for tag-based KEM), another randomness ρ (for identity-based KEM),
a group member i, and the verification key vk i, the certificate cert i, and the
signature s on a message M , such that

(CPKE,KPKE) = TEncpk (vkOT; r),

(CIBE,KIBE) = IEncpar (M ; ρ),

χ = 〈i, vk i, cert i, s〉 )KPKE )KIBE,

Verifyvk issue
(〈i, vk i〉, cert i) = (,

Verifyvki
(M, s) = (.

(1)

Technically speaking, we need several requirements on the session key spaces of
tag-based KEM and k-resilient IBE. The requirements are: (i) The tag-based
KEM scheme and the k-resilient IBE scheme share the same session key space
KPKE = KIBE and (ii) this session key space forms a finite group. These require-
ments are needed because we do a one-time pad to encrypt a signature of the
group member. This group operation also needs to fall into the class of relations
that the used non-interactive proof system can represent.

Finally, there are two encoding functions needed for completing the generic
construction. The first is used to encode the identity of a group member and his
verification key into the message space of the signature scheme when generating
certificates of group members. The second one is used to encode (i, vk i, cert i, s)
into KPKE, where i is the identity of a group member and vk i, cert i, and s are his
verification key, certificate, and signature, respectively. It is used when issuing
group signatures, especially encrypting his signature in order to hide his identity.

As below, the generic construction will have desirable security properties when
all building blocks satisfy appropriate security properties.

Theorem 3. The proposed scheme satisfies opener anonymity with k-bounded
tokens if the identity-based KEM is k-resilient and the non-interactive proof sys-
tem is zero-knowledge.

Theorem 4. The proposed scheme satisfies admitter anonymity when the tag-
based KEM is selective-tag weakly chosen-ciphertext secure, the non-interactive
proof system is zero-knowledge, and the one-time signature scheme is strongly
unforgeable.

Theorem 5. The proposed scheme satisfies traceability when the non-interactive
proof system is sound and the signature scheme is EUF-CMA secure.

All the proofs of the theorems will appear in Appendix B.
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6 Efficient Instantiation

Toward an efficient scheme, we will discuss how to instantiate the building blocks
used in the generic constructions of the previous section.

As for the non-interactive proof, an obvious choice is the Groth-Sahai proof
system, since there is no known fairly practical construction of a NIZK proof
system except the Groth-Sahai proof system. However, to adopt the Groth-
Sahai proof system, other building blocks are subjected to restrictions, due to
the limitation of the type of theorems that the Groth-Sahai proof system can
prove. In other words, other building blocks need to be structure preserving [2],
and especially, the theorem should not involve elements of GT , where GT is the
target group of the underlying bilinear mapping. Hence, we have to choose an
IBE scheme which fulfills this requirement as a building block, but unfortunately,
there is no known such scheme. This means that it is not straightforward to
construct an efficient instantiation of our generic construction from the Groth-
Sahai proof.

In this section, we give an efficient instantiation by constructing a structure
preserving IBE scheme and choosing other appropriate building blocks. How-
ever, we must also honestly mention that our IBE does not provide full security
but only k-resilience [30]. It is also worth noting that constructing a structure-
preserving IBE scheme is already an important open problem.

Our structure-preserving k-resilient IBE scheme is obtained by means of mod-
ifying the Heng-Kurosawa scheme [30] which is secure under the decision Diffie-
Hellman (DDH) assumption in the sense of k-resilient security. Since the DDH
assumption does not hold in a bilinear group, it is not possible to utilize it as
it is, and thus, we construct a modified version of this scheme which is secure
under the decision linear (DLIN) assumption.

6.1 k-Resilient IBE from the Decision Linear Assumption

As mentioned above, our proposed k-resilient IBE scheme can be obtained by ap-
plying several modifications to the original Heng-Kurosawa scheme [30, Sect. 3.2]
which are as follows: (1) Basing on the DLIN assumption instead of the DDH
assumption2, (2) designing it as a key encapsulation mechanism instead of an
encryption scheme, and (3) modifying it to encapsulate a sufficiently long session
key in a constant size ciphertext (Indeed our proposed scheme encapsulates a
session key of l group elements in a ciphertext of three group elements). Our
proposed scheme is as follows:

2 If we adopt the SXDH assumption, we can plug in the original Heng-Kurosawa
scheme to the generic construction. However, in this case we need to set up two
instances of the original Heng-Kurosawa scheme for two different groups G1 and
G2, over which the bilinear map is defined. This is because the Abe-Haralambiev-
Ohkubo signature scheme contains elements of both groups in its signature value.
The same thing holds for the tag-based KEM.
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Setup. Let par = (u, v, h, {Di,j = udi,jhd
′′
i,j , D̃i,j = vd

′
i,jhd

′′
i,j}i∈[l],j∈[k]) and

mk = (di(X), d′i(X), d′′i (X))i∈[l] where di, d′i, and d′′i are the polynomi-

als defined as follows: di(X) =
∑k
j=0 di,jX

j, d′i(X) =
∑k

j=0 d
′
i,jX

j, and

d′′i (X) =
∑k

j=0 d
′′
i,jX

j for all i ∈ [l].
Key Extract. The decryption key for the user ID is derived as dk ID = {di(ID),

d′i(ID), d′′i (ID)}i∈[l].
Encrypt. To encapsulate a session key, choose ρ and ρ̃ from Zp randomly and

compute CIBE = (uρ, vρ̃, hρ+ρ̃), which encapsulates the session key KIBE =

((
∏k
j=0 D

IDj

1,j )ρ(
∏k
j=0 D̃

IDj

1,j )ρ̃, . . . , (
∏k
j=0 D

IDj

l,j )ρ(
∏k
j=0 D̃

IDj

l,j )ρ̃).
Decrypt. To decapsulate a session key from a ciphertext CIBE = (C1, C2, C3),

compute (C
d1(ID)
1 C

d′1(ID)
2 C

d′′1 (ID)
3 , . . . , C

dl(ID)
1 C

d′l(ID)
2 C

d′′l (ID)
3 ).

The security of this scheme is proved under the DLIN assumption, which says
that given a tuple (u, v, h, ur, vr̃, h

˜̃r) it is hard to efficiently decide r + r̃ = ˜̃r or
not. Formal statements of the assumption and the theorem are as follows.

Definition 4. We say that the decision linear assumption on G holds if for
any polynomial-time algorithm D, |Pr[D(u, v, h, ur, vr̃, h

˜̃r) → 1|r + r̃ = ˜̃r] −
Pr[D(u, v, h, ur, vr̃, h

˜̃r) → 1|r + r̃ �= ˜̃r]| is negligible.

Theorem 6. The above construction is an adaptively secure k-resilient identity-
based KEM if the decision linear assumption on G holds.

Proof. Given an adversary A which attacks adaptive security against the above
scheme, we bound its advantage by constructing the simulator below:

Setup. The simulator B receives an instance (u, v, h, ur, vr̃, h
˜̃r) of the decision

linear problem, where ˜̃r is either r + r̃ or an independently random element
of Zp. The simulator generates random polynomials {di(x) = di,0 + · · · +
αi,kx

k, d′i(x) = d′i,0 + · · · + d′i,kx
k, d′′i (x) = d′′i,0 + · · · + d′′i,kx

k}i∈[l] of degree

k, sets Di,j ← udi,jhd
′′
i,j and D̃i,j ← vd

′
i,jhd

′′
i,j for all i ∈ [1, l] and j ∈ [0, k],

and runs A with input par = (u, v, h, {Di,j, D̃i,j}i∈[1,l],j∈[0,k]).
Key Extraction Query (Phase I). When A queries an identity ID , B re-

turns dk ID = {di(ID), d′i(ID), d′′i (ID)}i∈[l].
Challenge. When A requests a challenge for an identity ID∗, B computes C∗ =

(ur, vr̃, h
˜̃r) and K∗ = (K∗

1 , . . . ,K
∗
l ) = ((ur)d1(ID

∗)(vr̃)d
′
1(ID

∗)(h
˜̃r)d

′′
1 (ID

∗),

. . . , (ur)dl(ID
∗)(vr̃)d

′
l(ID

∗)(h
˜̃r)d

′′
l (ID

∗)). This C∗ and K∗ are given to A as
a challenge.

Key Extraction Query (Phase II). Again, A may request a decryption key
for ID and B responds as before.

Guess. Finally A outputs a bit b′ and B outputs the same bit.

When ˜̃r = r + r̃, a simple calculation shows that K∗ is the real session key
encapsulated in C∗. Otherwise when ˜̃r �= r+ r̃, we will show that K∗ distributes
independently from all other values seen by A. To see this, let ID1, . . ., IDk be
the decapsulation key queries issued by A during the simulation, and observe
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that queries reveal function values di(ID j), d
′
i(ID j), d

′′
i (ID j) to A, but di(ID

∗),
d′i(ID

∗), and d′′i (ID
∗) are not revealed. However, par further reveals the value

di(ID
∗) + αd′′i (ID

∗) and d′i(ID
∗) + βd′′i (ID∗), where u = gα and v = gβ . The

equations A can observe is represented as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝dk ID1

⎞⎠
...⎛⎝dk IDk

⎞⎠
logg u

xi(ID
∗)hx

′′
i (ID

∗)

logg v
x′
i(ID

∗)hx
′′
i (ID

∗)

loggK
∗
i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
. . .

1
1
1

α 1
β 1

rα r̃β ˜̃r

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

di(ID1)
d′i(ID1)
d′′i (ID1)

...
di(IDk)
d′i(IDk)
d′′i (IDk)
di(ID

∗)
d′i(ID

∗)
d′′i (ID

∗)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where this matrix is non-singular, and hence K∗ is uniformly distributed. All
these facts justify the fact that the quantity

Pr[A → 1 | K∗ is real]− Pr[A → 1 | K∗ is random]

is equal to

Pr[B(u, v, h, ur, vr̃, h˜̃r) → 1 | r + r̃ = ˜̃r]

− Pr[B(u, v, h, ur, vr̃, h˜̃r) → 1 | r + r̃ �= ˜̃r].

The decision linear assumption says that the latter is negligible, and so is the
former, which is what we wanted. 
�

6.2 Other Building Blocks

Other building blocks are instantiated as follows.

Groth-Sahai Proofs [29,26]. This is an efficient non-interactive proof system
for groups with a bilinear map. This proof system is able to demonstrate
quite broad types of algebraic equations hold in a zero-knowledge manner,
and is useful to avoid an expensive blowup from general NIZK techniques.

Abe-Haralambiev-Ohkubo Signature [4,2]. This is a structure-preserving
signature, in the sense that the signing and verification procedure has no
use of non-algebraic operation. This property is essential when the scheme
is used together with Groth-Sahai proofs, due to the restriction that Groth-
Sahai proofs are unable to treat a kind of non-algebraic relation such as
hashing.
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The Decision Linear Variant of Cramer-Shoup [41]. Groth-Sahai proofs
are highly relying on its use of pairing, and thus we can no longer expect the
DDH assumption to hold in our setting. This is why we need to modify the
Cramer-Shoup encryption to use the DLIN assumption instead of the classi-
cal DDH assumption. Such a DLIN variant of the Cramer-Shoup encryption
was proposed by Shacham [41], but we further modify the Shacham’s scheme
to be tag-based for adopting the one-time signature technique and to be a
key encapsulation mechanism for further efficiency than in a direct use of
public-key encryption3.

Encoding Functions. The first encoding function has to encode (i, vk i) into
the message space of the Abe-Haralambiev-Ohkubo scheme. The verification
key vk i is already represented by sixteen elements of G. The identity i of a
signer is an integer, but it can be efficiently encoded as gi. Notice that decod-
ing is also efficient, because the number of group members is polynomial, and
so is i. The same thing holds for the second encoding function. In this case,
(i, vk i, cert i, s) can be encoded as thirty-one group elements of G.4 Because
the Shacham PKE, as well as the Heng-Kurosawa IBE, can be modified to
have the session key space G31, the identity encoding function suffices for
this purpose. Another important point is that 〈i, vk i, cert i, s〉 is masked by a
session key via the group operation of G for keeping the structure-preserving
property, which enables us to adopt Groth-Sahai proofs.

Theorem 7. When instantiating our construction in Fig. 2 with our decision
linear variant of the Heng-Kurosawa k-resilient IBE, the Groth-Sahai proof, the
decision linear variant of the Cramer-Shoup encryption, the Abe-Haralambiev-
Ohkubo signature scheme, and the one-time signature scheme from the Okamoto
identification scheme [38] via the transformation due to Bellare and Shoup [9],
the resulting scheme satisfies opener anonymity with k-bounded tokens, admitter
anonymity, and traceability.

6.3 Efficiency

Finally we give a brief efficiency comparison between the proposed scheme and
previous group signatures (without message-dependent opening capability).

In the instantiation in Theorem 7, a signature contains 501 elements ofG and 2
elements of Zp. For a reference, we remark that the group signature of Groth [28]
has a signature that consists of 52 elements of G and 1 elements of Zp. The
message-dependent opening capability is achieved by roughly 10 times blowup

3 A possible alternative choice here is Kiltz’s tag-based encryption [35], which could
reduce the size of NIZK proofs due to its public verifiability. One drawback of
this scheme is that, to the best of the authors’ knowledge, Kiltz’s encryption does
not allow encrypting multiple group elements with constant ciphertext overhead,
while the Cramer-Shoup scheme (and its DLIN variant by Shacham) allow such a
modification. See Sect. A.2 for details of this modification.

4 These thirty-one elements come form one element for gi, sixteen elements for the
verification key vk i, seven elements for cert i, and seven elements for s.
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of the signature size (The Groth scheme allows dynamic joining of members,
whereas ours does not, though). From this evaluation, we see that our scheme is
fairly practical, or at least implementable in a real system.

Acknowledgment. The authors would like to thank anonymous reviewers for
their invaluable comments.
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A Building Blocks and Their Security Proofs

In the following, let G and GT be groups of a prime order p, e : G × G → GT
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A.1 Abe-Haralambiev-Ohkubo Signature

The Abe-Haralambiev-Ohkubo signature scheme is as follows [2,4]:
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Key Generation. The verification key is vk = (g′′, h′′, g′, h′, {gi, hi}i∈[l], a0,

ã0, b0, b̃0, a1, ã1, b1, b̃1), where g′, h′ ∈ G \ {1}, gi ← g′γi and hi ← h′δi
for random γi, δi ← Z∗

p for i ∈ [l], g′′ ← g′γ
′′
, h′′ ← h′δ′′ for random

γ′′, δ′′ ← Z∗
p, (a0, ã0, a1, ã1) ← Extend(g′, gα) for a random α ← Z∗

p, and

(b0, b̃0, b1, b̃1) ← Extend(h′, gβ) for a random β ← Z∗
p. The signing key is

sk = (α, β, γ′′, δ′′, {γi, δi}i∈[l]).

Signing. For a message (m1, . . . ,ml) ∈ Gl, choose randomly ζ, ρ, τ , ϕ, ω from

Zp, compute z = g̃ζ , r = g̃α−ρτ−γzζ
∏l
i=1 m

−γi
i , s = g′ρ, t = g̃τ , u =

g̃β−ϕω−δzζ
∏l
i=1 m

−δi
i , v = hϕr , and w = g̃ω, and output (z, r, s, t, u, v, w) as

a signature.
Verification. For a pair (m,σ) = ((m1, . . . ,ml), (z, r, s, t, u, v, w)) of a sig-

nature and a message, verify two equations e(a0, ã0)e(a1, ã1) = e(g′′, z)
e(g′, r)e(s, t)

∏k
i=1 e(gi,mi) and e(b0, b̃0)e(b1, b̃1) = e(h′′, z)e(h′, u)e(v, w)∏l

i=1 e(hi,mi). If both equations hold, output (. Otherwise output ⊥.

Here, Extend(g, h) is the algorithm that takes two group elements g and h, picks
random x ∈ G and r ∈ Zp, and outputs (Rand(gxr, h),Rand(x, h−r)). Algorithm
Rand(g, h), when g �= 1 and h �= 1, outputs (gs, h1/s) for random s ∈ Z∗

p. When
g = 1 or h = 1, it outputs (1, 1) with probability 1/(2p− 1), otherwise outputs
one of (1, x) or (x, 1) with probability 1/2 for random x ∈ G \ {1}.

A.2 Shacham’s Variant of Cramer-Shoup Encryption

Shacham [41] proposed a variant of the Cramer-Shoup encryption scheme [21,22]
modified to be based on the decision linear assumption. The scheme below further
modifies the Shacham’s variants in two points: (1) Used as a key encapsulation
mechanisms and (2) modified to encapsulate a long session key in a constant-size
ciphertext. This modified Shacham’s variant is as follows:

Key Generation. The public key is pk = (u, v, h,X = uxhx
′′
, X̃ = vx

′
hx

′′
, Y =

uyhy
′′
, Ỹ = vy

′
hy

′′
, {Zi = uzihz

′
i , Z̃i = vz

′
ihz

′′
i }i∈[l]), whose corresponding se-

cret key is dk = (x, x′, x′′, y, y′, y′′, {zi, z′i, z′′i }i∈[l]).
Encrypt. To encapsulate a session key with a tag t, choose random r and r̃

from Zp and compute a ciphertext as CPKE = (ur, vr̃, hr+r̃, (XY t)r(X̃Ỹ t)r̃).

The session key is (Zr1 Z̃
r̃
1 , . . . , Z

r
l Z̃

r̃
l ).

Decrypt. To decapsulate a ciphertext (c1, c2, c3, c4) with a tag t, verify whether

cx+ty1 cx
′+ty′

2 cx
′′+ty′′

3 = c4 holds. If it does not hold, output ⊥, and otherwise

output (cz11 c
z′1
2 c

z′′1
3 , . . . , czl1 c

z′l
2 c

z′′l
3 ).

B Security Proofs for the Construction in Sect. 5

B.1 Proof of Theorem 3

Proof. Let A be an opener anonymity adversary against the proposed scheme.
Let OAnonymA be the random variable that is 1 when A correctly guesses the
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bit b in the opener anonymity game and is 0 when it does not. Let OAnonym′
A

be a similar random variable with one exception that the common reference
string used in the scheme is generated with the zero-knowledge simulator S1.
This change does not affect the probability that the adversary A wins the game,
that is, |Pr[OAnonymA = 1] − Pr[OAnonym′

A = 1]| is negligible, due to the
zero-knowledge property of the underlying non-interactive proof system. We then
show that |Pr[OAnonym′

A = 1]− 1/2| is negligible, which concludes the proof.
We construct an adversary B which attacks the underlying (k-resilient) IBE

scheme, and then we relate its success probability to that of A (in the experiment
OAnonym′

A) to obtain the desired bound. The construction of B is as follows:

Setup. The adversary B is given as input the master public key par for the
identity-based KEM. The adversary B then generates the rest of a group pub-
lic key gpk as (vk issue, sk issue) ← SigKg(1λ), (pk , dk ) ← TKg(1λ), (Σ, τ) ←
S1(1

λ), generates user signing keys (vk i, sk i) ← SigKg(1λ) and their certifi-
cates cert i ← Signsk issue

(〈i, vk i〉) for all i ∈ [n]. The adversary then sets gpk
to (vk issue, par , pk , Σ), sets gsk i to (i, vk i, cert i, sk i), and run A with input
(gpk , dk , {gsk i}i∈[n]).

Token Query (Phase I). When A makes a token query for a message M , B
makes a key extraction query for M (as an identity) to obtain a decryption
key dkM , and responds A with dkM .

Challenge. When A requests a challenge for (i0, i1,M
∗), B proceeds as fol-

lows: B computes two signatures s0 ← Signvki0
(M∗) and s1 ← Signvki1

(M∗)
of the group members i0 and i1, generates a one-time signature key pair
(vk∗

OT, sk
∗
OT), and requests a challenge for an identity M∗. Then B re-

ceives a challenge (C∗
IBE,K

∗
IBE), computes a ciphertext (CPKE,KPKE) ←

TEncpk (vk
∗
OT), further computes χ∗ ← 〈ib, vk ib , cert ib , sb〉 ) KPKE ) K∗

IBE

for a random bit b, generates a simulated proof π∗ with a token τ , and signs
〈C∗

PKE, C
∗
IBE, χ

∗, π∗〉 with the one-time signing key sk∗
OT to obtain σ∗

OT. Fi-
nally B sends (vk∗

OT, C
∗
PKE, C

∗
IBE, χ

∗, π∗, σ∗
OT) to A as a challenge.

Token Query (Phase II). The adversary A continue to issue token queries,
and they are answered by B as before.

Guess. At lastA outputs a bit b′, and B outputs 1 if and only if b′ = b, otherwise
outputs 0.

When the challenger gives the real session key (i.e. C∗
IBE is decrypted into K∗

IBE),
B perfectly simulates the experiment OAnonym′

A, whereas when a random
session key is given, the information on the bit b is perfectly hidden from A.
This fact justifies the equality below:

Pr[OAnonym′
A = 1]− 1

2
= Pr[B → 1 | K∗

PKE is real]− Pr[B → 1 | K∗
PKE is random].

Due to the security of the k resilient identity-based KEM, the right hand side is
negligible, and it completes the proof. 
�
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B.2 Proof of Theorem 4

Proof. Let A be an admitter anonymity adversary against the proposed scheme.
Let AAnonymA be a random variable that indicates A correctly guesses the
bit in the admitter anonymity game. Let AAnonym′

A be a similar random
variable with the exception that the common reference string is replaced to that
for simulation. Due to the zero-knowledge property of the proof system, A’s
success probability does not change non-negligibly, that is, |Pr[AAnonymA =
1]− Pr[AAnonym′

A = 1]| is negligible. We then show that |Pr[AAnonym′
A =

1]− 1/2| is negligible, which concludes the actual proof.
We construct an adversary B which attacks the underlying tag-based KEM.

The construction of B is as follows:

Setup. The adversaryB first runs SigKgOT(1λ) to generate a verification/signing
key pair (vk∗

OT, sk
∗
OT), outputs vk∗

OT as a target tag, and then receives the
public key pk of the tag-based KEM. The adversary B then generates the
rest of a group public key as (vk issue, sk issue) ← SigKg(1λ), (par ,mk) ←
ISetup(1λ), (Σ, τ) ← S1(1

λ), user signing keys (vk i, sk i) ← SigKg(1λ) for
all i ∈ [n], and their certificates cert i ← Signsk issue

(〈i, vk i〉) for all i ∈
[n]. The adversary B then sets gpk ← (vk issue, pk , par , Σ) and gsk i ←
(i, vk i, cert i, sk i) and runs A with input (gpk ,mk , {gsk i}i∈[n]).

Open Query (Phase I). When the adversary A submits an open query for a
signature (vkOT, CPKE, CIBE, χ, π, σOT) and a message M , the adversary B
responds as follows: (i) when vkOT �= vk∗

OT, B makes a decapsulation query
for the ciphertext CPKE with a tag vkOT to obtain a session key KPKE (note
that this query is legitimate), and then extracts a user decryption key dkM
(of an identity-based KEM) from mk , decrypts CIBE with dkM to obtain a
session key KIBE, and verifies whether VerifyOT

vkOT
(〈CPKE, CIBE, χ, π〉, σOT) =

1 and VNIZK(. . .) = 1 hold. If both of them hold, B further computes
〈i, vk , cert , s〉 ← χ)K−1

IBE)K−1
PKE and responds with i. Otherwise B responds

with ⊥. (ii) When vkOT = vk∗
OT, if Verifyvk∗

OT
(〈CPKE, CIBE, χ, π〉) = ⊥, B

responds with ⊥. Otherwise B aborts and outputs a random b′.
Challenge. At some time A requests a challenge for (i0, i1,M

∗), B computes
a challenge as follows: B generates signatures sb ← Signskib

(M∗) for a

random bit b, requests a challenge to obtain (C∗
PKE,K

∗
PKE), generates a

ciphertext and a session key as (C∗
IBE,KIBE) ← IEncpar (M

∗), computes
χ∗ ← 〈ib, vk ib , cert ib , sib〉 ) K∗

PKE ) KIBE, and generates a fake proof π∗.
Finally B signs 〈vk∗

OT, C
∗
PKE, C

∗
IBE, χ

∗, π∗〉 with the one-time signing key
sk∗

OT to obtain σ∗
OT and sends (vk∗

OT, C
∗
PKE, C

∗
IBE, χ

∗, π∗, σ∗
OT) to A.

Open Query (Phase II). Again A submits more open queries and B responds
as before.

Guess. When A outputs a bit b, B outputs 1 if and only if b′ = b, otherwise
outputs 0.

Let F denote the event that the adversary A submits an open query (vkOT,
CPKE, CIBE, π, σOT) where vkOT = vk∗

OT and VerifyvkOT
(〈CPKE, CIBE, π〉) = (.

Due to its perfect simulation of the experiment AAnonym′
A(k, n) (with only
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exception of aborting in the event F ), when given the real session key K∗
PKE , B

outputs 1 whenever A successfully guesses a bit and the event F does not occur.
In addition, when given a random session key, B gives no information on the bit
b to A. The inequality below can be obtained from these two facts:∣∣∣∣Pr[AAnonym′

A = 1]− 1

2

∣∣∣∣
=

∣∣∣∣Pr[AAnonym′
A = 1 ∧ F ] + Pr[AAnonym′

A = 1 ∧ ¬F ]− 1

2

∣∣∣∣
≤
∣∣∣∣Pr[F ] + Pr[AAnonym′

A = 1 ∧ ¬F ]− 1

2

∣∣∣∣
≤ Pr[F ] + |Pr[B → 1 | K∗

PKE is real]− Pr[B → 1 | K∗
PKE is random]|

Finally we prove Pr[F ] is negligible to complete the proof.
To prove Pr[F ] is negligible, we will construct another adversary F , which

attacks strong unforgeability of the one-time signature scheme and relate its
success probability with the probability of the event F . The construction of F
is as follows:

Setup. The adversary F first receives a verification key vk∗
OT for the one-time

signature scheme. The adversary then runs GKg(1λ, 1n, 1k) to obtain a group
public key gpk = (vk issue, pk , par , Σ), the opening key ok , the message-
specification key msk , and user signing keys gsk i = (i, vk i, cert i, sk i) for
all i ∈ [n].

Open Query (Phase I). Queries are answered with the opening key ok
and the message-specifying key msk . In addition, when A queries a
group signature (vkOT, CPKE, CIBE, χ, π, σOT) in which vkOT = vk∗

OT and
VerifyvkOT

(〈CPKE, CIBE, χ, π〉, σOT) = (, F stops the simulation and out-
puts this (〈CPKE, CIBE, χ, π〉, σOT) as a forgery.

Challenge. To respond to the challenge request (i0, i1,M
∗), F chooses a ran-

dom bit b and generate a group signature (vk∗
OT, C

∗
PKE, C

∗
IBE, χ

∗, π∗, σ∗
OT)

in the way exactly same to the construction with one exception that σ∗
OT is

obtained by querying 〈C∗
PKE, C

∗
IBE, χ

∗, π∗〉 to the signing oracle.
Open Query (Phase II). Further open queries are answered as in the phase I.
Guess. If A outputs a guess and halts, F halts without outputting a forgery.

Whenever the event F happens, this adversary F successfully outputs a forgery
and wins the game (Because (CPKE, CIBE, χ, π, σOT) must be different from
(C∗

PKE, C
∗
IBE, χ

∗, π∗, σ∗
OT), and it consists a legitimate strong forgery). Then we

can conclude Pr[F ] is negligible, because of the security of the underlying one-
time signature scheme. 
�

B.3 Proof of Theorem 5

Proof. Let A be a traceability adversary against the proposed scheme. We first
classify successful forgery that A may produce.
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The forgery is opened to ⊥: In this case, either CPKE or CIBE is invalid (de-
capsulated to ⊥) or χ)K−1

IBE)K−1
PKE cannot be parsed. In all of these case,

π is an invalid proof for a false statement.
The forgery is opened to i ∈ N: In this case all CPKE, CIBE, and χ have

been correctly decrypted, and when χ)K−1
IBE)K−1

PKE is parsed into 〈i′, vk ′,
cert ′, s′〉, either one of the following three cases will hold: (i) Verifyvk issue

(〈i′,
vk ′〉, cert ′) = ⊥ or Verifyvk ′(M, s) = ⊥, (ii) cert ′ is a valid signature, but
〈i′, vk ′〉 was not singed at the setup phase, or (iii) (〈i, vk ′〉, cert ′) is the same
one generated at the setup phase. Note that in case (i) the proof π is a valid
proof for the false statement, in case (ii) cert ′ is a forgery for the verification
key vk isuue, and in case (iii) s′ is a forgery for the user verification key vk i.

To bound the probability that A outputs a forgery of case (iii), we construct a
forger B against the underlying EUF-CMA signature scheme. The construction
of B is as follows: The forger B receives a verification key vk , and B uses this
verification key as a user verification key vk i∗ , where i∗ is randomly chosen by B.
Other components of the public key and the secret keys for the group members
and the authorities are honestly generated by B. Then B runs A with input the
group public key gpk , the opener key ok , and the admitter key msk . Signing
queries for the user i∗ can be simulated with the signing oracle of the underlying
scheme, group signing key revealing query for the user i∗ cannot be simulated,
in which case B aborts. Other signing queries and key revealing queries can be
answered by B itself. When A outputs a forgery (M,σ), B verifies the one-time
signature and the non-interactive proof in σ, decrypts ciphertexts in σ to obtains
the plaintext 〈i′, vk ′, cert ′, s′〉, verifies cert ′ by vk issue and s′ by vk ′, confirms
that (i′, vk ′) = (i∗, vk ), and finally outputs (M, s) as a forgery. If one of these
procedures fails, B stops. Since B is a legitimate forger of the signature scheme
and whenever A produces a forgery of case (iii) also B does a successful forgery,
we obtains a bound for the case (iii).

To bound the probability that A outputs a forgery of case (ii), we construct
another forger B′. This time B receives a key vk and uses it as a certificate
verification key vk issue, and obtains certificates cert i for all groupmembers i ∈ [n]
by querying the signing oracle of the underlying scheme. Signing queries and
key revealing queries issued by A are correctly answered by B itself for all group
members. When A outputs (M,σ), B verifies the validity of σ, confirms that σ
contains a certificate forgery, and outputs this forged certificate, otherwise stops.
Also in this case B is a legitimate forger against the underlying scheme, and thus
the probability that A produces a forgery of the case (ii) is bounded.

Since the other cases of forgeries A may produce contains a valid proof of a
false statement, the probability that A produces such a forgery is bounded due
to the underlying non-interactive proof system. 
�
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Abstract. In this paper, we construct a new threshold-attribute-based
signature (t-ABS) scheme that is significantly more efficient than all
previous t-ABS schemes. The verification algorithm requires the compu-
tation of only 3 pairing operations, independently of the attribute set
of the signature, and the size of the signature is also independent of
the number of attributes. The security of all our schemes is reduced to
the computational Diffie-Hellman problem. We also show how to achieve
shorter public parameters based on the intractability of computational
Diffie-Hellman assumption in the random oracle model.

1 Introduction

Attribute-based cryptography has received much attention in recent years. It
provides an elegant cryptographic solution for enforcing role-based and attribute-
based access policies. Attribute-based encryption (ABE) schemes [8,2] were first
proposed to control decryption of messages by attaching attributes to the cipher-
text. In these schemes, access policy is associated with users’ private key and the
decryption of the ciphertext is conditional on the set of attributes attached to a
ciphertext, to satisfy the users’ private key policy. Such ABE is called key-policy
ABE. Bethencourt et al [1] later proposed ciphertext-policy ABE where poli-
cies are attached to ciphertexts, and decryption is conditional on users’ having
private key for attributes satisfying the ciphertext-policy.

Threshold-attribute-based signatures (ABS), proposed in [9] and referred to
as t-ABS, can be seen as a generalization of identity-based signatures, where
private keys are associated with a set of n attributes satisfying a (t, n) thresh-
old policy. A signature of the user can use a subset of size n′, t ≤ n′ ≤ n of
attributes. A signed message can be verified against a verification attribute set,
and verification will succeed if t of the attributes in the verification attribute set
match the attributes of the signature attribute set. Threshold ABS lets a user
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sign a message once with a subset of his attributes without leaking any infor-
mation about the other attributes he holds. He can also sign a message with
a number n of attributes larger than the threshold, which allows verification
for any

(
n
t

)
possible verification sets. t-ABSs have been used [9] to construct

attribute-based anonymous credential systems, in which a user’s credential is a
message that includes n attributes of the user, and is signed by a trusted au-
thority using a t-ABS. Instead of directly presenting the signed credentials to
a verifier, the system is equipped with protocols that allow credential holders
to “prepare” (convert) and “show” their credentials such that verification only
guarantees that the credential has t common attributes with the verification
attribute set and nothing else.

Important efficiency measures of ABS schemes are the signature length (com-
munication cost) and the computation required for signature and verification.
Most ABS schemes are defined over groups which admit efficient bilinear pair-
ing, where the pairing operation is used in signature verification. All known ABS
schemes have signature sizes that are linear in the number of attributes used to
generate the signature. Moreover, verification usually requires the computation
of a number of pairing operation linear in the number of attributes used in ver-
ification. Pairings are costly operation when compared to exponentiation in the
base group – when pairings are used on an elliptic curve defined over a field of
q elements, the last operation of the pairing computation is an exponentiation
in a field of qk elements, where k is the embedding degree of the elliptic curve,
which alone tends to be more expensive than an exponentiation on the elliptic
curve. While recent results by Lauter et al. [3] have dramatically reduced the
computational cost of pairings, their best techniques require the simultaneous
computation of many pairings, something that may not be possible on memory-
restricted devices.

In this paper, we focus on signature size and number of pairing operations
required for signature verification as the main efficiency measures. These are the
most important measures in applications where reducing the server computation
and communication bandwidth are important. For example, consider a scenario
where a server in a mobile service provider company needs to respond (verify)
to high volumes of credential verification requests received from mobile devices.
Here, small size of signatures save the communication cost and lower verifica-
tion computation will reduce the computation load of the server. Our choice to
restrict ourselves to threshold-attribute-based signature enables us to obtain an
extremely efficient scheme, which we could not obtain for more general attribute
policies, but still retain enough functionality for practical applications.

1.1 Our Contributions

We give constructions of t-ABS schemes with constant number of pairing op-
erations (3) for verification and constant size signature. We give two variants
of these schemes: the first for fixed verification attribute set, and the second
for general verification attribute set and threshold verification. We discuss the
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notion of privacy for t-ABS, and show that the constructions presented provide
signer-attribute privacy.

* t-ABS: We present a (t, t)-ABS scheme in which the verification requires
all the t attributes used for signing. The (t, t)-ABS scheme is first constructed
for small attribute universe, then generalized for large universe (or for when
the number of attributes is a priori unknown). The attribute universe in the
small universe attribute construction consists of integers 1 to n̂, while for large
universe case, it consists of all binary strings of arbitrary size. Both schemes have
constant size (2 group elements) signatures and require 3 pairing operations
for signature verification. While both schemes still require a linear number of
exponentiations for verification – and therefore this result does not present an
asymptotic improvement over previous results – this still represents an important
speedup over other schemes. They are also the first t-ABS schemes that have
signature size independent from the size of the attribute set. Security of both
schemes is proven against chosen message attack in standard model and relies
on the difficulty of the computational Diffie-Hellman problem.

Next we show how to construct a (t, n)-ABS scheme from our (t, t)-ABS
scheme such that the computation cost of verification remains 3 pairing op-
erations (and a linear number of exponentiations). The signature length now
grows linearly with the size of the attribute set used for signing. This how-
ever is inevitable as the signature needs to include all the attributes that are
used for signing. We prove security of the (t, n)-ABS in the same framework
(standard model and against chosen message attack) based on computational
Diffie-Hellman assumption.

In Table 1 in Section 4, we compare the efficiency of our scheme with the
known ABS, with special attention given to signature size and verification com-
putation. We note that the computation cost of signature generation in all
schemes are similar to previous schemes, and so have not been included. The
size of public parameters in all schemes is linear in either the size of attribute
universe (small attribute universe) or the maximum size of a user attribute set
(large attribute universe).

* Signer-Attribute Privacy: Our signature scheme protects the privacy of
the signer in that it is not possible from a signature to deduce anything about
attributes of the signer other than the set of attributes that are attached to the
signature, the other attributes of the signer remain hidden.

* Extensions: Finally, in Section 5, we discuss how the size of the system param-
eters can be reduced and the reduction tightened in the random oracle model.
We also discuss different techniques that could be used to make the scheme more
versatile by allowing for flexible thresholds, and how different pairing types could
be used.

* Relevance of the Result: Digital signatures provide a powerful mechanism
for authentication ensuring the origin of of signed documents. Threshold-ABS
schemes allow authentication to be based on the users’ attributes instead of
their identities, and so protect identities of the users and also attributes that
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are not used for signing. As shown in [9], they can be used as the main building
block of an attributed based credential system also. The t-ABS signatures in
this paper require 3 pairings for verification. The signatures are short (2 group
elements for (t, t) signature, and (n+ 1) group elements for t, n signature), and
their security rely on the hardness of the well established computational Diffie-
Hellman problem. This, together with efficient verification and short signature
size, makes our proposed schemes truly practical.

1.2 Related Work

There exist two variants for attribute-based signature: key-policy ABS, in which
the signing key is associated with a policy and a message is signed with an
attribute set satisfying the policy, and signature-policy ABS, in which the signing
key is associated with an attribute set and a message is signed with a policy
satisfied by the attribute set.

In [9], a formal definition and security model for threshold key-policy ABS
were proposed and constructions for small attribute universe and large attribute
universe were given. The proposed schemes provide existential unforgeability for
selective message and selective attribute security model. These signatures require
2(n+1) group elements, and verification consists of t pairings and 3t exponenti-
ations, where n and t denote the number of attributes used for signing, and the
threshold, respectively. Authors show application of ABS to credential systems
and construct protocols that allow the holder of a credential that is generated
by a t-ABS, to prove the ownership of the credential in a privacy preserving way.
Li et al., [5] presented an efficient t-ABS which compared to [9], improves verifi-
cation cost of the signature by 60% and the signature size by 50%. The signature
size of the scheme is |B| + d − k + 2 group elements, where B denotes the set
of attributes of the claim predicate, k denotes the threshold of the policy and
d is a parameter that allows threshold to be varied from 1 to d − 1. The verifi-
cation requires (|B|+ d− k + 2) pairing operations. The scheme is existentially
unforgeable in the selective attribute model against chosen message attack.

Maji et al., in [6] presented a general framework for constructing signature-
policy ABS schemes which are fully secure in the adaptive attribute security
model. In the fully secure model, the adversary does not commit to the at-
tribute set of the forged message, and the attack is successful in existential sense
(see Section 2.2). They showed how to construct signature-policy ABS schemes
using credential bundles and non-interactive witness indistinguishable proofs.
Two of their schemes are proven secure in the standard model using the strong
Diffie-Hellman problem and symmetric external Diffie-Hellman problem, but are
inefficient. Their third scheme is much more efficient, but is only proven secure in
the generic group model. Recently, Okamoto and Takashima [7] presented an ef-
ficient signature-policy ABS scheme that can even accommodate non-monotone
policies, and which can be proven secure in the standard model under the deci-
sion linear assumption. However, the length of their signatures and the number
of pairing operations required for verification is still linear in the size of the
access policy.
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Attribute-based signatures in [6,5,9] also provide the additional property of
attribute privacy. In Maji et al. [6], the signer privacy for signature policy ABS is
defined as the property where the signature reveals nothing about the attributes
used to produce the signature. Li et al. in [5] define signer attribute privacy for
their key-policy ABS as, the signature reveals nothing about the identity or the
attributes of the signer beyond what is explicitly revealed by the claim. In [9] the
authors define two notions of attribute privacy for signature holder called weak
signer-attribute privacy and full signer-attribute privacy. In the weak signer-
attribute privacy t-ABS, the signature should not reveal any attributes of the
signer other than the threshold t number of attributes in common with the ver-
ification attribute set. In full signer-attribute privacy, the signature verification
proof reveals no information other than the validity of the prover’s signature to
the verifier.

2 Background

In this section, we recall the definition of threshold attribute-based signature, its
security notions and the intractability assumptions used to construct our scheme.
We assume there is a universal set of attributes U which is publicly available to
all users. Each signer holds a set of attributes ωu where ωu ⊂ U . There exists a
Trusted Authority (TA) who verifies attributes of users and issues private keys
that match their attributes.

2.1 Threshold Attribute-Based Signature

A threshold attribute-based signature (t-ABS) scheme consists of four algo-
rithms: Setup, Extract, Sign and Verify. For simplicity of exposition, we
describe a scheme in which the threshold t in the key policy is always the same.
It is straightforward to generalize these schemes to allow each key policy to have
its own threshold.

Setup: This algorithm is run by the TA. Given a security parameter κ, the
algorithm outputs the system public parameters params and master secret key
msk.

Extract: This algorithm is run by the TA. Given an attribute set ωu ⊂ U of
size at least t, the algorithm outputs the private key skωu .

Sign: Given a message m, a secret key skωu and an attribute set ωs ⊆ ωu of
size t, this algorithm to produce a signature σ on m that attests that the user
possesses the attributes in ωs.

Verify: Given a message m, a signature σ and a verification attribute set
ωv of size t, this algorithm outputs 1 if σ is a valid signature on attributes ωv,
otherwise, it returns 0.

Note that the attribute set ωu given as input to the Extract algorithm is
really a shorthand for a t-out-of-ωu policy, and that the key returned is a key
for that policy.
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2.2 Security Notions for Attribute-Based Signature

Existential Unforgeability. The standard notion of security for attribute-
based signature is existential unforgeability under an adaptive chosen message
attack (EUF-CMA). This notion is defined by the following game between an
adversary A who tries to break the scheme, and a challenger C who provides the
environment for the attack:

Setup: The challenger C chooses a security parameter 1λ and runs Setup. C
keeps the master secret and returns the params to the adversary A.

Query Phase: This is the phase during which A can perform polynomially
bounded number of Extract and Sign queries to C for any user attribute
set ωu and (m,ωu, ωs), respectively. The challenger responds with the the
private key and the signature, respectively.

Forgery Phase: A outputs a signature pair (σ∗,m∗), and an attribute set ω∗
s .

A wins if σ∗ is a valid signature provided for all queried sets of attributes
ωu during the query phase, we have |ωu ∩ ω∗

s | ≤ t − 1, and for all queried
pairs (m,ωu, ωs) during Query Phase, we have m �= m∗ or |ωu ∩ω∗

s | ≤ t− 1.

The adversary succeeds in the above attack game if it produces a valid forgery.
A weaker notion of security for signature schemes is existential unforgeability
under selective chosen message attack (EUF-sCMA), in which the adversary has
commit to a chosen message before seeing the public parameters and the forgery
must be produced on that message.

An even weaker notion of security is selective attribute unforgeability, which
can be considered under adaptive chosen message attack (s-EUF-CMA), or se-
lective chosen message attack (s-EUF-sCMA).
The attack game for s-EUF-CMA is as follows:

Commit: The adversary commits on a chosen attribute set ω∗
u for which it

produces the forgery.
Setup: Same as the Setup in EUF-CMA game presented above.
Query Phase: A can perform polynomially bounded number of Extract and

Sign queries to C for any user attribute set ωu such that |ωu∩ω∗
u| < t and for

any (m,ωu, ωs), respectively. The challenger responds with the the private
key and the signature, respectively.

Forgery Phase: A outputs a signature pair (σ∗,m∗), and the attribute set
ω∗
s ⊆ ω∗

u. A wins if σ∗ is a valid signature provided for all queried sets
of attributes ωu during the query phase, we have |ωu ∩ ω∗

s | ≤ t − 1, and
for all queried pairs (m,ωu, ωs) during Query Phase, we have m �= m∗ or
|ωu ∩ ω∗

s | ≤ t− 1.

The adversary succeeds in the above attack game if it produces a valid forgery.
The attack game for s-EUF-sCMA is similar, except that the attacker has to
commit to both an attribute set and a message before receiving the public pa-
rameters.

The ABS constructions in [6], are proven secure against existential forgery
under adaptive chosen message attack (EUF-CMA). The ABS scheme of [9] was
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proven secure using the weaker notion of existential unforgeability under the
selective attribute and selective chosen message attack in the standard model,
whereas the ABS scheme of [5], is proven secure under the selective attribute,
adaptive chosen message attack.

In this paper, we use the selective attribute existential unforgeability property
under adaptive chosen message attack (s-EUF-CMA). Recently, Lewko et al. [4]
presented the first adaptive attribute secure ABE scheme over composite groups.
However the security of all t-ABS so far, has been proven in selective attribute
model.

Definition 2.21. A threshold attribute-based signature is existentially unforge-
able against chosen message attack property in the selective attribute model, if
no polynomially bounded adversary A can succeed in producing a valid forgery
in the s-EUF-CMA attack game presented above. The adversary’s advantage is:

Advs-EUF-CMA
A = Pr[Verify(m∗, σ∗, ω∗

s ) = 1].

Privacy. An attribute-based signature scheme is private if the distribution of
the signature is independent of the key that was used to produce it. This has
very different implications depending on whether one is considering an signature-
policy ABS or a key-policy ABS. In the former case, privacy means that one
cannot guess from a signature with policy ρ which attribute set, among all
attribute sets satisfying the policy ρ, is held by the signer. In the latter case,
privacy means that one cannot divine, from a signature on an attribute set ω,
any information about the key-policy ρ held by the signer, other than the fact
that is satisfies ω.

We specialize the definition of privacy to key-policy threshold-ABS as follows.

Definition 2.22. A key-policy threshold ABS is private if for any message m,
all (params,msk) produced by the Setup algorithm, all attribute sets ω1, ω2, all

signing keys skω1

$←− Extract(msk, ω1) and skω2

$←− Extract(msk, ω2), all at-
tribute sets ωs with ωs ⊂ ω1∩ω2, the distributions of Sign(params, skω1 , ωs,m)
and Sign(params, skω2 , ωs,m) are equal.

We note that Li et al. [5] present a key-policy threshold ABS scheme in which
the attribute set ωs of a signature can be further ‘hidden’ inside a threshold
signature policy. The resulting scheme is therefore a hybrid of key-policy and
signature-policy ABS, and offers the privacy guarantees of both variants. Since
the main focus of this paper is efficiency, we leave it as an open problem to
determine if the same can be done with our scheme.

2.3 Complexity Assumptions

Computational Diffie-Hellman Problem:
Given the values (g, ga, gb) ∈ G where a, b ∈ Z∗

p , and g is the generator of G, the

computational Diffie-Hellman problem is to compute the value gab.
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We define the advantage of an adversary B in solving the computational Diffie-
Hellman problem as,

AdvCDHB = Pr[B(G, p, g, ga, gb) = gab],

where the probability is over the choice of a, b and the coins of algorithm B. We
say that the computational Diffie-Hellman assumption holds if AdvCDHB is neg-
ligible in terms of the input for all probabilistic polynomial-time algorithms B.
Collision Resistant Hash Function:
Let F = {H : {0, 1}m → {0, 1}l} be a family of hash functions, where m and
l are functions of the security parameter κ such that m > l. We define the
advantage of an adversary C in breaking the collision resistance of F as

AdvCRC = Pr[(x, y) ← C(H);H(x) = H(y)],

where the probability is over the random choice of H in F and the random coins
of the algorithm C. We say that the family of functions F is collision resistant if
AdvCRC is negligible for all probabilistic polynomial-time algorithms C.

2.4 Bilinear Maps

Let G and GT be cyclic groups of prime order p. A bilinear map is a function
e : G×G → GT , satisfying the following properties.

- e is bilinear, i.e. for all g ∈ G and a, b ∈ Z∗
p, e(g

a, gb) = e(g, g)ab.
- e is non-degenerate, i.e. given g1, g2 ∈ G \ {1G}, e(g1, g2) �= 1GT .
- e is efficiently computable.

3 Constructing Attribute-Based Signatures

In this section we provide the constructions for ABS and prove their security.
We first describe two (t, t)-ABS schemes which allow a signer to generate a sig-
nature for a subset of t attributes and verification algorithm is on the same
set. The first scheme is for a small attribute universe in which we assume that
|U| = n̂. The second scheme we describe admits a large attribute universe, in
which any elements of Zp can be an attribute. Both schemes are proven secure
against chosen message attack based on the intractability of the computational
Diffie-Hellman assumption. In both constructions the signature size is constant
(two group elements), and verification cost for both schemes is only three pairing
operations. In Section 3.3, we extend the construction to a (t, n)-ABS. The main
difference between the (t, t)-ABS scheme and (t, n)-ABS scheme is that in the
former we can aggregate components of the signature (each corresponding to an
attribute) since the verification is performed on the same t signing attributes,
whereas in the (t, n)-ABS construction the signer can choose to reveal any num-
ber n ≥ t of his attributes, and the verification can be on any t-of-n attributes,
so components of the signature cannot be aggregated.
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3.1 (t,t)-ABS Scheme - Small Attribute Universe

In this construction we assume the universe U is of fixed size n̂. This construction
requires the universe to be relatively small, as the length of the public parameters
grows linearly with the size of the universe.

We assume, without loss of generality, that attribute universe is {1, . . . , n̂}.
In practice, one would simply need to establish a mapping from the real at-
tribute set {attr1, . . . , attrn̂} to {1, . . . , n̂}. We also denote the Lagrange coeffi-
cient Δi,N (x) =

∏
j �=i,j∈N

x−j
i−j for i ∈ Z∗

q , and a set N of elements in Zp.

Setup: Let G and GT be groups of prime order p, e : G×G → GT be a bilinear
map, and let g be a generator for G. H : {0, 1}∗ → {0, 1}nm is sampled
from appropriate families of collision-resistant hash functions. Compute the
following:
• Sample a, b ∈R Z∗

p, and set g1 = ga, g2 = gb

• Sample zi ∈R Z∗
p for 1 ≤ i ≤ n̂, and set hi = gzi

• Sample h0, u0, . . . , unm ∈R G \ {1G}
The public parameters are: {G,GT , e, p, g, g1, g2, h0, . . . , hn̂, u0, . . ., unm , H},
and the master secret is: {a, b, z1, . . . , zn̂}.
We define the function W (x) = u0

∏nm

i=1 u
x[i]
i , where x is a binary string of

length nm and x[i] represents the i-th bit of x.

Extract: Let ωu be the attribute set of a user such that ωu ⊆ U . The private
key of ωu is constructed as follows:

1. Let fu be a random polynomial of degree t− 1 such that fu(0) = a.

2. For each i ∈ ωu, compute Di =
g
fu(i)+zi
2

h0
zi

3. The private key of a user is: ({Di}i∈ωu).

Sign: Given a signing key skωu and a signing attribute set ωs ⊂ ωu with |ωs| = t,
the signature of a message m ∈ {0, 1}∗ is calculated as follows:

1. Sample c ∈R Z∗
p.

2. Compute ρ = H(m||ωs) and S = W (ρ)c ·
∏
i∈ωs

(Di)
Δi,ωs (0)

3. The signature is: (S, gc).
Verify: Given a message m and signature (S1, S2) and verification attribute set

ωv of size t, a verifier proceeds as follows:

1. Compute ρ̂ = H(m||ωv) (Note, ωs = ωv).

2. Verify that the following equation holds:
e(g,S1)e(h0·g2−1,

∏
i∈ωv

h
Δi,ωv

(0)

i )

e(W (ρ̂),S2)
=

e(g1, g2). If so, output 1, else, output 0.

Since e(g1, g2) can be pre-computed, it is easy to see that signature verification
requires only three pairings. One can easily verify that, when the algorithms
are executed correctly, the verification algorithm will always accept a signature
produced by the signing algorithm.

Theorem 3.11. Under the assumption that the hash function H possess the
property stated above, any s-EUF-CMA adversary A against the scheme above
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can be used to construct algorithms B and C that have essentially the same run-
ning time as A and that solve the computational Diffie-Hellman problem and
break the collision-resistance of H respectively, with

AdvCMA
A ≤ 8Q(nm + 1)AdvCDHB +AdvCRC,H ,

where Q is the number of signature queries made by A and nm is the output size
of the hash function.

A sketch of the proof of this theorem is in Appendix A.

Theorem 3.12. The scheme above is private

Proof 3.11 A signature on attribute set ωs is always of the form: (ga2 ·W (ρ)c·∏
i∈ωs

(
gzi2 h−zi

0

)Δi,ωs (0) , gc
)
for random c and ρ = H(m‖ωs). The distribution

of the signature is therefore clearly the same regardless of the key that was used
to produce it.

3.2 (t, t)-ABS Large Universe Scheme

In our first construction, the size of the public parameters grows linearly with
the number of attributes in the universe. In this section we present a scheme
which uses all elements of Zp as the attribute universe U . The scheme requires
a pre-defined number ñ which represents the maximum size of an attribute set
a user can possess. This kind of ‘large universe’ construction is of particular
interest when the whole attribute set is not known a priori, or when the total
number of attribute is so large and the previous scheme becomes impractical.

In practice, one would use a collision resistant hash function to map the
description of each attribute to an element in Zp.

Setup: Let (G,GT , e, p, g, g1, g2, h0, u0, . . ., unm , H) be defined as in Scheme 3.1.
In addition, we sample z′i ∈R Z∗

p for 1 ≤ i ≤ ñ+ 1, and set hi = gz
′
i

We also define the function T (x) = gx
ñ

1

∏ñ+1
j=1 h

Δj,N (x)
j , where Δj,S(x) =∏

k �=j,k∈S
x−k
j−k is the Lagrange coefficient and N is the set {1, . . . , ñ+ 1}.

The public parameters are {G,GT , e, p, g, g1, g2, h0, . . ., hñ+1, u0, . . ., unm , H}
and the master secret is: {a, b, z′1, . . . , z′ñ+1}.

Extract: Let ωu be the attribute set of a user such that ωu ⊆ U . The private
key of ωu is constructed as follows:

1. Let fu be a random polynomial of degree t− 1 such that fu(0) = a.

2. For all i ∈ ωu, compute Di =
g
fu(i)+zi
2

h0
zi

, with zi = aiñ+
∑ñ+1
j=1 (z

′
iΔj,N (i)).

3. The private key of a user is ({Di}i∈ωu).

Sign: Follows the signature algorithm of Scheme 3.1.
Verify: Given a message m and signature (S1, S2) and verification attribute set

ωv, a verifier proceeds as follows:

1. Compute ρ̂ = H(m||ωv) (Note, ωs = ωv).
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2. Check if:
e(g,S1)e(h0·g2−1,

∏
i∈ωv

T (i)Δi,ωv
(0))

e(S2,W (ρ̂)) = e(g1, g2). If true, output 1,

else, output 0.

Theorem 3.21. Under the same assumption about the distribution of the output
of H as in Theorem 3.11, any s-EUF-CMA adversary A against the scheme
above can be used to construct algorithms B, and C that have essentially the same
running time as A and that solve the computational Diffie-Hellman problem, and
break the collision-resistance of H respectively, with

AdvCMA
A ≤ 8Q(nm + 1)AdvCDHB +AdvCRC,H ,

where Q is the number of signature queries made by A and nm is the output size
of the hash function.

The proof of this theorem is similar to the proof of the small universe scheme,
we refer to the full version of this paper for the details.

Theorem 3.22. The scheme above is private

The proof is similar to the proof of Theorem 3.12

3.3 (t, n)-ABS Scheme: Threshold Verification

In a (t, n)-ABS [9], a signature is attached with n attributes of the signer, any
t of which can be used for verification. This is a useful property that allows
verifiers to select any subset of t attributes as the verification set and prove the
sender’s authenticity with respect to those attributes.

We show here how our (t, t)-ABS can be modified to allow for threshold veri-
fication. We only show the modification of our first scheme presented in Section
3.1. A similar approach can be used for the large universe construction. The re-
sulting (t, n)-ABS scheme no longer has constant size signature, but still requires
only three pairings for verification.

Setup: Same as in Scheme 3.1.
Extract: Same as in Scheme 3.1.
Sign: Given a signing key skωu and a signing attribute set ωs ⊂ ωu with |ωs| ≥ t,

the signature of a message m ∈ {0, 1}∗ is calculated as follows:
1. Sample c ∈R Z∗

p.
2. Compute ρ = H(m||ωs) and Si = (Di) (W (ρ))c for each i ∈ ωs.
3. The signature is: ({Si}i∈ωs , g

c).
Verify: On receiving a message m, ωs and signature ({S1i}i∈ωs , S2), a verifier

proceeds as follows:
1. Let Ω ⊂ ωs be a set of attributes of size at least t against which the

verifier wishes to verify the signature
2. Compute ρ̂ = H(m||ωs).

3. Verify the following:
e

(
g,
∏

i∈Ω S
Δi,S(0)

1i

)
e

(
h0·g2−1,

∏
i∈Ω h

Δi,S(0)

i

)
e(W (ρ̂),S2)

= e(g1, g2).

If true, output 1, else, output 0.
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Theorem 3.31. Under the same assumption about the distribution of the output
of H as in Theorem 3.11, any s-EUF-CMA adversary A against the (t, n)-ABS
scheme can be used to construct algorithms B, and C that have essentially the
same running time as A and that solves the computational Diffie-Hellman prob-
lem and break the collision-resistance of H respectively, with

AdvCMA
A ≤ 8Q(nm + 1)AdvCDHB +AdvCRC,H ,

where Q is the number of signature queries made by A and nm is the output size
of the hash function.

The security of the scheme follows from the (t, t)-ABS scheme presented in
Section 3.1.

Since this scheme follows a slightly different model from the schemes of the
two previous sections, formally proving its signer-attribute privacy would require
a new security definition since the signer can now display more attributes than
is required by the threshold. However, like in the previous schemes, it should
be obvious that all the attributes that the signer decides not to publish in the
signature remain secret since the signature is independent from all the attribute
which are not present in the signature.

4 Efficiency Analysis

In this section we analyze the efficiency of our signatures schemes using the
public parameter size and signature size, both measured in number of group
elements, and computations required for verification. In Table 1, n denotes the
size of signing attribute set, n̂ denotes the size of small attribute universe, ñ
denotes the maximum size of an attribute set, nm denotes the length of collision
resistant hash function H output, k denotes the threshold of the policy in [5],
and d denotes the size of default attribute set as defined in [5]. It can be seen
that the all (t, n)-ABS schemes, both ours and the existing ones, have a signature
size which is linear in the number of signing attributes. Our (t, t)-ABS schemes,
however have signature size that is constant, while the (t, t)-schemes that can be
derived from the (t, n)-ABS schemes in [9] and [5] have signature size (2t+1)|G|
and (t+ d+2)|G| respectively (note that if the individual signature components
can be aggregated then these scheme would also have a constant signature size).
The main advantage of all our (t, t)-ABS and (t, n)-ABS construction is that the
number of pairing operations in verification and the signature size is indepen-
dent of the size of attribute sets used in signature generation and verification,
whereas all other schemes need a linear number or pairing operations. Further,
the signature verification in all ABS except (t, t)-ABS of [5], requires linear num-
ber of exponentiations, thus we do not achieve constant pairing at the expense
of exponentiation operations.
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Table 1. Scheme Efficiency

Type Schemes Params Size Signature Size Pairings Exp. Exp.
to Verify to Sign to Verify

Scheme 1 (n̂+ nm + 4) 2 3 t+ 1 t
(t, t) Scheme 2 (ñ+ nm + 5) 2 3 t+ 1 t

[9] (ñ+ 4) (2t+ 1) 1 t 3t t
[5] (ñ+ d+ 3) (t+ d− k + 2) t (t+ 2) 0

Scheme 3 (n̂+ nm + 5) (n+ 1) 3 1 2t
(t, n) [9] (ñ+ 4) (2n+ 1) 2 t 3t t

[5] (ñ+ d+ 3) (n+ d− k + 2) t (t+ 2) t

5 Extensions

5.1 Reducing Public Parameters Size in Random Oracle Model

The public parameter size of our schemes can be reduced if we can model one
of the hash functions as a random oracle. In this case, we replace the function
W : {0, 1}nm → G used in the schemes presented in Section 3 by a random
oracle H : {0, 1}∗ × Z∗

p → G which reduces the public parameter size by nm
group elements.

We show here how to modify our small universe construction, but a similar
approach can be applied to both (t, t)-ABS large attribute universe scheme, and
(t, n)-ABS. In addition to reducing the public parameter size, the use of the
random oracle model allows us to obtain a tighter reduction.

Setup: Let G and GT be groups of prime order p, e : G×G → GT be a bilinear
map, and let g be a generator for G. Compute
• Sample a, b ∈R Z∗

p, and set g1 = ga, g2 = gb

• h0 ∈R G \ {1G}
• Sample zi ∈R Z∗

p for 1 ≤ i ≤ n̂ and set hj = gzi

• H : {0, 1}∗ × Z∗
p → G∗ be a hash function. This function is modeled as a

random oracle in the proof.
The public parameters are {G,GT , e, p, g, g1, g2, h0, . . . , hn̂,H}.
The master secret is: {a, b, z1, . . . , zn}.

Extract: Let ωu be the attribute set of a user such that ωu ⊆ U . The private
key of ωu is constructed as follows:
1. Let fu be a random polynomial of degree t− 1 such that fu(0) = a.

2. For each i ∈ ωu, compute Di =
g
fu(i)+zi
2

h
zi
0

1 Note that the signature length of the scheme presented in [9] is 3t. The value 2t+1
is the reduced signature size if the randomness used in sign is r for t attributes,
instead of ri for i = 1 to t.

2 Note that the signature length of the scheme presented in [9] is 3n. The value 2n+1
is the reduced signature size if the randomness used in sign is r for n attributes,
instead of ri for i = 1 to n.
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3. The private key is ({Di}i∈ωu).

Sign: Given a signing key skωu and a signing attribute set ωs ⊂ ωu with |ωs| = t,
the signature of a message m ∈ {0, 1}∗ is performed as follows:

1. Sample c, c1 ∈R Z∗
p.

2. Compute gm = H(c1||m||ωs).
3. Compute S = gm

c ·
∏
i∈ωs

(Di)
Δi,ωs (0).

4. The signature is: (S, gc, c1) .
Verify: Given a message m and signature (S1, S2, S3) and verification attribute

set ωv, a verifier proceeds as follows:

1. Compute g′m = H(S3||m||ωv) (Note, ωs = ωv).

2. Verify that the following equation holds
e(g,S1)e(h0·g2−1,

∏
i∈ωv

h
Δi,ωv

(0)

i )

e(S2,g′m) =

e(g1, g2). If so, output 1, else, output 0.

Theorem 5.11. Any s-EUF-CMA adversary A against the scheme above can
be used to construct algorithm B that has essentially the same running time as
A and that solves the computational Diffie-Hellman problem with

AdvCMA
A ≤ AdvCDHB +

QS(QH +QS) + 1

p
,

where QH and QS are the number of random oracle and signing queries made
by the adversary A and p is the size of the cyclic group.

The proof is essentially the same as the proof of Theorem 3.11, except that the
function W is replaced by a random oracle. This allows us to ‘program’ the oracle
differently when answering a signing query and a standard oracle query (which
will almost never intersect because of the random value c1 in the signature),
thereby obtaining a tight reduction. The factor (Qs(QH + QS) + 1)/p comes
from the probability that the same value c1 is used for two signing queries, and
the probability that the adversary is able to forge a signature without querying
the random oracle for his forgery. We refer to the complete version of this paper
for the details.

5.2 Flexible Threshold

We mentioned that we chose to present our scheme with a fixed threshold for
simplicity. The scheme can easily be modified to allow for a flexible threshold.
This can be done using either or both of the following techniques.

First, the key generation algorithm could give a different threshold to each
user by generating a polynomial of a different degree when answering each key
generation query. One can find that this generalization does not affect the secu-
rity proof.

Second, the key generation algorithm could include a number d of dummy
attributes in the attribute set of the user. This would allow a user with threshold
t to produce a signature with a range of t− d to t attributes.
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5.3 Type 2 and Type 3 Pairings

For simplicity of exposition, we used a type 1 bilinear pairing, that is, a pairing of
the form e : G×G → GT . We note that it would be easy to modify our schemes
so that a type 2 or type 3 pairings (of the form e : G1 × G2 → GT ) could be
used. This would require slightly longer public parameters, as, in addition to
the current values, they would have to contain a generator for G2, �, as well as
values �2, �

′, �0, �0, . . . , �nm with log� �2 = logg g2, log� �0 = logg h0, etc. These

values would be used to compute the values �, �2, �0�
−1
2 and W (ρ) used in

the pairings in the verification algorithm. All other computations would remain
in G1.

6 Conclusion

We presented (t, t)-ABS schemes with constant size signature and constant pair-
ing computation for verification. We also extended these schemes to the general
(t, n)-ABS case while maintaining the constant pairing property for verification.
Security of all schemes are reduced in the standard model to the well established
computational Diffie-Hellman problem. Security of the schemes presented are in
s-EUF-CMA model. We also discussed privacy property of our scheme and in
particular showed it satisfies a privacy definition adapted from signature-policy
ABS.

Interesting questions left open by this paper would be to apply the techniques
of Shahandashti and Safavi-Naini [9] to obtain an efficient attribute-based cre-
dential system determine if recent techniques for adaptively secure attribute-
based encryption and signature ([4,6,7]) could be used to obtain an adaptively
secure scheme, and see if it is possible to construct ABS schemes with constant
pairings for verification or short signatures for more general policies.
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A Sketch of Proof of the (t, t)-ABS Small Universe
Scheme

Let C be the event that A outputs a forgery (m∗, (S∗
1 , S

∗
2)) such that the hash

H(m∗‖ω∗
u) is the same as one of the hashes produced by the challenger when

answering one of the signing queries. We show that there exists an algorithm C
can break the hash function with probability at least Pr[C occurs]. Then, given
that C does not occurs, we show how an algorithm B can use a forgery produced
by algorithm A to break the CDH problem. Throughout the reduction, we let
Q be the number of signature queries made by adversary A.

Algorithm B
B is given the computational Diffie-Hellman problem instance (G, p, g, A =
ga, B = gb), where a, b ∈R Z∗

p, and g ∈ G is the generator. B runs algorithm A
answering its queries in each phase of the security game as follows:
Commit: A sends the challenge attribute set (ω∗

u) to B.

Setup: Algorithm B computes the system parameters as follows:
• g1 = A, g2 = B
• Sample w1, w2, v ∈R Z∗

p, and set h0 = (g2(g
w2)1/vw1)

• Sample γi ∈R Z∗
p for i ∈ ω∗

u, and set hi = gγi

• Sample γi, νi ∈R Z∗
p for i ∈ U \ ω∗

u, and set hi = gγig−νi1

• Sample k ∈R {0, . . . , nm} ζ ∈R {0, . . . , 4Q − 1} and ξ ∈R Z∗
p, and set

u0 = g−4kQ+ζ
2 gξ

• Sample ζi ∈R {0, . . . , 4Q − 1} and ξi ∈R Z∗
p for i = 1 to nm, and set

ui = gζi2 gξi

By setting up this way we have, W (x) = u0

∏nm

i=1 u
x[i]
i = g

Fu(x)
2 gJu(x), where
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Fu(x) = −4kQ+ ζ +
∑nm

i=1 x[i]ζi mod p and Ju(x) = ξ +
∑nm

i=1 x[i]ξi mod p.
To simplify the analysis of the algorithm, we also define the function Ku(x)
as

Ku(x) =

{
0 if Fu(x) = 0 mod 4Q
1 otherwise

.

Clearly, if Ku(x) = 1, then Fu(x) �= 0 mod p because p is much larger thanQ.
Algorithm B then gives the public parameters {G,GT , e, p, g, g1, g2, h0, . . ., hn̂,
u0, . . ., unm , H} to A. Notice that from A’s point of view, all parameters have
the same distribution as in the real construction.

Query Phase:

Extract: A queries B on an attribute set ωu, such that |ωu ∩ ω∗
u| < t. The

private key is issued as follows:
− Let zi be the discrete logarithm base g of hi. Observe that for i �∈ ω∗

u,
hi = gγi−νia = gzi. Therefore, zi = γi − νia. For i ∈ ω∗

u, hi = gγi = gzi ,
zi = γi.
− Let Γ, Γ ′, S be three sets such that, Γ = ωu∩ω∗

u and Γ ′ be a set such that
Γ ⊆ Γ ′ ⊆ ωu and |Γ ′| = t − 1 and S = Γ ′ ∪ {0}. We will choose a random
t − 1 degree polynomial fu(x) by randomly choosing t − 1 points λi ∈ Zp
and setting fu(i) = λi for every i ∈ Γ ′, in addition to having fu(0) = a.
The secret key components corresponding to ωu−Γ ′ will then be calculated
consistently with our choice of fu(x).
1.1 For all i ∈ Γ , randomly sample λi ∈R Z∗

p and compute

Di =
g
λi+γi
2

h
γi
0

=
g
λi+zi
2

h
zi
0

1.2 For all i ∈ Γ ′ − Γ , randomly sample λi ∈R Z∗
p, and compute

D′
i = gλi+γi

2

D′′
i = g

−w2νi/w1v
1 (gw1v

2 gw2)γi/w1v

Di =
D′

i

D′′
i
=

g
λi+zi
2

h
zi
0

Due to our choice of λi, the polynomial fu(x) defined by fu(i) = λi
for i ∈ Γ ′ and fu(0) = a is a random polynomial of degree t − 1 with
fu(0) = a.

1.3 For all i ∈ ωu − Γ ′, set γ′
i = γi − aΔi,S(0) and compute

D′
i = g

(
∑

j∈Γ ′ Δj,S(i)λj)+γi
2

D′′
i = g

−w2νi+w2Δi,S(0)/(w1v)
1 (gw1v

2 gw2)γ
′
i/w1v

Di =
D′

i

D′′
i
=

g
fu(i)+zi
2

h
zi
0

Sign: A queries B on a message m, and signature attribute set ωs. First, if
|ωs ∩ ω∗

u| < t, then B can simply use the procedure above to get the secret
key corresponding to (ωs) and sign the message using the Sign algorithm.
For signature queries on attribute set ωs ⊂ ω∗

u, |ωs| = t, B does the following:
1. Compute ρ = H(m||ωs).
2. If Ku(ρ) = 0, algorithm B stops and fails.
3. Sample a c′ ∈R Z∗

p and set gc = gc
′−a/Fu(ρ).
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4. Compute: S = g
−Ju(ρ)
Fu(ρ)

1 ·W (ρ)c
′ ·
∏
i∈ωs

(
g
γi
2

h0
γi

)Δi,ωs (0)

5. The signature is:
(
S, gc′g−1/Fu(ρ)

1

)
.

Forgery: Eventually, A return a signature (S∗
1 , S

∗
2 ) on a message m∗ for the

challenge attribute set ω∗
u. If H(m∗||ω∗

u) is equal to the hash obtained while
answering one of A’s signing queries or if Fu(H(m∗||ω∗

u)) �= 0, then B aborts,

else B computes and outputs:
S∗
1

∏
i∈ω∗

u
h
γiΔi,ω∗

u
(0)

0

(S∗
2 )

Ju(ρ̂)
∏

i∈ω∗
u
B

γiΔi,ω∗
u

(0) = gab.

Algorithm C
C is given the description of a hash function H∗ sampled at random from the
family of collision-resistant hash function used in the scheme.
C initializes an empty list H∗

list and runs algorithm A answering its queries in
each phase of the security game as follows:
Commit: A sends the challenge attribute set ω∗

u to C
Setup: C runs the normal Setup algorithm from the scheme, except that instead
of sampling the hash function H at random, it uses the function H∗ it received
as input.
Query Phase:
Extract: C answers those queries as in the security game.
Sign: C answers those queries as in the security game, and for each signing query
(m,ωs), C adds (m||ωs, H∗(m||ωs)) to H∗

list.
Forgery: when A outputs its attempted forgery (S∗

1 , S
∗
2 ) on a message m∗, C

adds (m∗||ω∗
u, H

∗(m||ω∗
u)) to H∗

list and then searches H∗
list for a collision in the

hash function. If it finds one, it outputs it, otherwise, it halts and indicates
failure.

Analysis:
Let C be the event that A outputs a forgery (m∗, (S∗

1 , S
∗
2)) such that the hash

H(m∗‖ω∗
u) is the same as the one produced when answering one of the signing

queries, and let Forge be the event that algorithm A successfully outputs a
valid forgery. It is clear that whenever C occurs, algorithm C successfully finds
a collision in his given hash function H∗. Therefore,

AdvCMA
A = Pr[Forge] = Pr[Forge ∧ C] + Pr[Forge ∧ C]

= AdvCRC,H + Pr[Forge|C]Pr[C]

≤ AdvCRC,H + Pr[Forge|C]

Then, we note that, whenever B does not abort, its simulation ofA’s environment
is perfect. Given that no hash collision occurs at the forgery step, B can only
abort when answering a signing query (m,ωs) if Ku(H(m‖ωs)) = 0, or at the
forgery step if Fu(H(m∗‖ω∗

u)) �= 0. We denote by ρi the hash obtained when
answering the ith signing query, and by ρ∗ the hash obtained at the forgery step.
Using a technique identical to that in Waters’ paper [10] (also detailed in the
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full version of this paper), we can find that

Pr

[
Fu(ρ

∗) = 0 ∧
(

Q∧
i=1

Ku(ρi) �= 0

)]
≥ 1

8Q(nm + 1)

Thus, we have

AdvCDHB ≥ 1

8Qnm + 1

(
Pr[Forge|C]

)
Hence

AdvCMA
A ≤ 8Q(nm + 1)AdvCDHB +AdvCRC,H
�
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Abstract. Off-line e-cash systems are the digital analogue of regular
cash. One of the main desirable properties is anonymity: spending a coin
should not reveal the identity of the spender and, at the same time,
users should not be able to double-spend coins without being detected.
Compact e-cash systems make it possible to store a wallet of O(2L) coins
using O(L+ λ) bits, where λ is the security parameter. They are called
divisible whenever the user has the flexibility of spending an amount
of 2�, for some � ≤ L, more efficiently than by repeatedly spending
individual coins. This paper presents the first construction of divisible
e-cash in the standard model (i.e., without the random oracle heuristic).
The scheme allows a user to obtain a wallet of 2L coins by running
a withdrawal protocol with the bank. Our construction is built on the
traditional binary tree approach, where the wallet is organized in such a
way that the monetary value of a coin depends on how deep the coin is
in the tree.

Keywords: E-Cash, provable security, anonymity, non-interactive proofs.

1 Introduction

Introduced by Chaum [22,23] and developed in [24,20,25,40,29], electronic cash
is the digital equivalent of regular money. It allows a user to withdraw a wallet
of electronic coins from a bank so that e-coins can be spent to merchants who
can then deposit them back to the bank.

The withdrawal, spending and deposit protocols should be designed in such a
way that it is infeasible to determine when a particular coin was spent: even if the
bank colludes with the merchant, after the deposit protocol, it should be unable
to link a received coin to a particular withdrawal protocol. At the same time,
users should not be able to covertly double-spend coins: should a cheating user
attempt to spend a given coin twice, his identity must be exposed and evidence
of his misbehavior must be given. Ideally, dishonest users should be identified
without the help of a trusted third party and, as in the off-line scenario [24], the
bank should preferably not intervene in the spending protocol between the user
and the merchant.
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Related Work. In 2005, Camenisch, Hohenberger and Lysyanskaya [10] de-
scribed a compact e-cash system allowing a user to withdraw a wallet of 2L coins
with a computational cost of O(L+λ), where λ is the security parameter, in the
spending and withdrawal protocols. Using appropriate choices [27,28] of verifi-
able random functions [34], they also showed how to store a wallet using only
O(L + λ) bits and additionally described a coin tracing mechanism allowing to
trace all the coins of a misbehaving user. The protocol of Camenisch et al. was
subsequently extended into e-cash systems with coin endorsement [13] or trans-
ferability properties [15,16].

The aforementioned e-cash realizations all appeal to the random oracle model
[6] – at least if the amount of interaction is to be minimized in the spend-
ing protocol – which is known not to accurately reflect real world situations
(see [19] for instance). To fill this gap, Belenkiy, Chase, Kohlweiss and Lysyan-
skaya [5] described a compact e-cash system with non-interactive spending in the
standard model. Their construction cleverly combines multi-block extensions of
P-signatures [3] and simulatable verifiable random functions [21] with the Groth-
Sahai non-interactive proof systems [31]. Independently, Fuchsbauer, Pointcheval
and Vergnaud also used Groth-Sahai proofs [30] to build a transferable fair (i.e.,
involving a semi-trusted third party) e-cash system in the standard model. More
recently, Blazy et al. [7] gave a similar construction with stronger anonymity
properties.

Divisible E-Cash. In the constructions of [10], users have to run the spending
protocol N times if the amount to be paid is the equivalent of N coins. One
possible improvement is to use wallets containing coins of distinct monetary val-
ues as in [17]. Unfortunately, this approach does not allow to split individual
coins of large value. This problem is addressed by divisible e-cash systems where
users can withdraw a coin of value 2L that can be spent in several times by
dividing the value of that coin. Divisible e-cash makes it possible for users to
spend the equivalent of N = 2� (with 0 ≤ � ≤ L) coins more efficiently than by
iterating the spending protocol 2� times. Constructions of divisible e-cash were
proposed in the 90’s [36,38,26,37,20]. Okamoto provided a practical realization
[37] that was subsequently improved in [20]. Unfortunately, these schemes are
not fully unlinkable since several spends of a given divisible coin can be linked.
To address this concern, Nakanishi and Sugiyama [35] described an unlinkable
divisible e-cash system but their scheme requires a trusted third party to un-
cover the identity of double-spenders. In addition, by colluding with the bank,
the merchant can obtain information on which part of the divisible coin the user
is spending.

In 2007, Canard and Gouget [14] designed the first divisible e-cash system
with full anonymity (and unlinkability) where misbehaving users can be identi-
fied without involving a trusted third party. Later on, Au et al. [1] came up with
a more efficient implementation at the expense of substantially weaker security
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guarantees. More recently, Canard and Gouget [18] showed how to improve upon
the efficiency of their original proposal without sacrificing the original security.
Our Contribution. Prior implementations of truly anonymous divisible e-
cash all require the random oracle idealization in their security analysis. In this
paper, we describe the first anonymous divisible e-cash in the standard model.
Like the scheme of Belenkiy et al. [5], our construction relies on the Groth-Sahai
non-interactive proof systems [31].

Our scheme is less efficient than the fastest random-oracle-based scheme [18]
in several metrics. While the spending phase has constant (i.e., independent
of the value 2L of the wallet) communication complexity in [18], our spending
protocol requires users to transmit O(L) group elements to the merchant in the
worst case. On the other hand, due to the use of bounded accumulators [2], the
bank has to set up a public key of size O(2L) in [18]1 whereas we only need the
bank to have a key of size O(1).

Achieving divisibility without resorting to random oracles requires to solve
several technical issues. The solutions of Canard and Gouget [14,18] associate
each wallet with a binary tree – where nodes correspond to expandable amounts
– combined with cyclic groups of distinct but related orders. Since these tech-
niques do not appear compatible with the Groth-Sahai toolbox, we had to find
other techniques to split the wallet across the nodes of a binary tree. In partic-
ular, we use a different method to authenticate the node corresponding to the
spent divided coin in the tree.

As in the first truly anonymous construction of divisible e-cash [14], the com-
munication complexity of our spending algorithm depends on how much the
initial amount 2L has to be divided: from an initial tree of value 2L, when a
coin of value 2� has to be spent, the communication cost of the spending phase
is O(L − �). Hence, the more we want to divide the wallet into small coins, the
more expensive the spending phase is.

The downside of our e-cash construction is the complexity of the deposit
phase, where the computational workload of the bank depends on the number of
previously received coins when it comes to check that the received coin does not
constitute a double-spending. Even though the bank can be expected to have
significant computational resources (and although the double-spending checks
can be performed in parallel by clerks testing a subset of previously spent coins
each), this would be a real bottleneck in practice. For this reason, our system
is not meant to be a practical solution and should only be seen as a feasibility
result. We leave it as an open problem to build such a system with a more effi-
cient deposit procedure from the bank’s standpoint: as in previous constructions
of compact e-cash (e.g. [10,5]), the bank should only have to look up the coin’s
serial number in a table of previously spent coins. It would also be interesting
to reduce the communication complexity of the spending phase so as to only
transmit a constant number of group elements.

1 The reason is that, in all known bounded accumulators, the public key has linear
size in the maximal number of accumulated values.
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2 Background and Definitions

2.1 Definitions for Divisible E-Cash

An e-cash scheme involves a bank B, many users U and merchants M (who can
be viewed as special users). All these parties interact together with respect to
the following protocols:

CashSetup(λ): takes as input a security parameter λ and outputs the public
parameters params.

BankKG(params, L): generates bank’s public and secret parameters (skB, pkB)
that allow B to issue wallets of value 2L (we assume that L is part of pkB).
It also defines an empty database DBB for later use.

UserKG(params): generates a user key pair (skU , pkU ). We denote as HU the set
of honestly generated public keys.

Withdraw
(
U(params, pkB, skU ),B(params, pkU , skB)

)
: is an interactive protocol

between a user U and the bank B that allows an honest user to obtain a
coin of value 2L. The wallet W comprises the coins, the user’s secret key, a
signature from the bank on it and some state information state. The bank
debits U ’s account and stores a piece of tracing information TW in a database
T that allows uncovering the identity of double-spenders.

Spend
(
params, pkB, W , 2�, pkM, info

)
: is invoked by U to spend a coin of value

2� from his wallet and generates a proof Π that the coin is valid. The output
is the coin that includes the proof Π and some fresh public information info

specifying the transaction.
VerifyCoin

(
params, pkM, pkB, coin, v = 2�

)
: allows M to check the validity of a

given coin and outputs a bit depending on whether the test is successful.

Deposit
(
params, pkB, pkM, coin, 2�,DBB

)
: B updates the database DBB with

{(coin, flag, 2�)} where flag indicates whether coin is a valid coin of value 2�

and whether a cheating attempt is detected.

- If coin does not verify, B rejects it and sets flag = “M” to indicate a
cheating merchant.

- If coin verifies, B runs a double spending detection algorithm, using
the database DBB containing already received coins. If an overspent is
detected, the bank sets flag = “U”, outputs the two coins and reports
the double-spending.

- If the coin passes all the tests, the bank accepts the coin, sets flag =
“accept” and credits the merchant’s account.

Identify
(
params, pkB, coina, coinb

)
: the bank retrieves the double-spender’s pub-

lic key pkU using its database DBB and the two different coins.

The security model builds on the model of non-interactive compact e-cash from
[5]. An e-cash scheme is secure if it provides Correctness, Anonymity, Balance,
Identification and Exculpability simultaneously.

Anonymity. Unlike the model of [14], ours adopts a simulation-based formula-
tion of anonymity (note that simulation-based definitions are often stronger than
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indistinguishability-based ones). No coalition of banks and merchants should dis-
tinguish a real execution of the Spend protocol from a simulated one. In the secu-
rity experiment, the adversary is allowed to obtain users’ public keys, withdraw
and spend coins using the oracles QGetKey,Qwithdraw,QSpend, respectively, which
are defined below. Formally, an e-cash system is anonymous if there exists a
simulator (SimCashSetup, SimSpend) such that, for any adversary A = (A1,A2),
there is a negligible function negl : N → R such that:

| Pr[params← CashSetup(λ); (pkB, state)← A1(params) :

AQSpend(params,pkB,·,·),QGetKey(params,·),Qwithdraw(params,pkB,·,·)
2 (state) = 1]

− Pr[(params,Sim)← SimCashSetup(λ); (pkB, state)← A1(params) :

AQSimSpend(params,pkB,·,·),QGetKey(params,·),Qwithdraw(params,pkB,·,·)
2 (state) = 1] |< negl(λ)

To formalize security against coalition of users, bank and merchants, the
anonymity game allows the adversary to generate the bank’s public key. It is
granted dynamic access to the list of oracles hereafter and has to decide whether
it is playing the real game, where the spending oracle is an actual oracle, or the
simulation, where the spending oracle is a simulator.

– QGetKey(params, j): outputs pkUj . If Uj does not exist, the oracle generates
(skUj , pkUj ) ← UserKG(params) and outputs pkUj .

– Qwithdraw(params, pkB, j, f): given a wallet identifier f , this oracle plays the
role of user j – and creates the key pair (skUj , pkUj ) if it does not exist yet
– in an execution of Withdraw

(
U(params, pkB, skUj ),A(states)

)
, while the

adversary A plays the role of the bank. The oracle then creates a wallet Wf

of value 2i.
– QSpend

(
params, pkB, f, v = 2�, pkM, info

)
: the oracle firstly checks if wal-

let Wf has been created via an invocation of Qwithdraw(params, pkB, j, f). If
not, the oracle outputs ⊥. Otherwise, if Wf contains a sufficient amount,
QSpend runs Spend

(
params, pkB, Wf , i, v = 2�, pkM, info

)
and outputs a coin

of value v from the wallet Wf . In any other case (e.g. if the expandable
amount of Wf is less than 2�), it outputs ⊥.

– QSimSpend

(
params, pkB, f, v = 2�, pkM, info

)
: if f is not the index of a valid

withdrawn wallet obtained from Qwithdraw, QSimSpend outputs ⊥. Otherwise,
it runs a simulator SimSpend on input of

(
params, pkB, pkM, v = 2�, info

)
.

Note that SimSpend does not use the user’s wallet or his public key.

Balance. No coalition of users can spend more coins than they withdrew. The
adversary is a user and can withdraw or spend coins via oracles defined below.
An e-cash system provides the Balance property if, for any adversary, every value
L ∈ poly(λ), we have:

Pr [params← CashSetup(λ); (pkB, skB)← BankKG(params, L);

(qw, nd)← AQwithdraw(params,·,pkB,·)(),Qdeposit(params,pkB,DBB) : qw · 2L < nd] < negl(λ),
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where nd is the total amount of deposited money after qd successful calls to
oracle Qdeposit (by successful, we mean that the oracle sets flag = “accept”), qw
is the number of successful calls to QWithdraw.

– Qwithdraw

(
params, pkU , skB

)
: the oracle plays the role of the bank in an exe-

cution of the Withdraw protocol, on input
(
A(states),B(params, pkU , skB)

)
,

in interaction with the adversary acting as a cheating user. At the end of the
protocol, Qwithdraw stores a piece of tracing information TW in a database T.

– Qdeposit

(
params, pkB, pkM, coin, v,DBB

)
: this oracle plays the role of the bank

while the adversary plays the role of the merchant in the protocol. The ora-
cle initializes the bank database DBB at ∅ and returns the same response as
Deposit

(
params, pkB, pkM, coin, v,DBB

)
.

Identification. Given two fraudulent but well-formed coins, the bank should
identify the double-spender. This property is defined via an experiment where
the adversaryA is the double-spender and has access to a Qwithdraw oracle defined
hereafter. Its goal is to deposit a coin twice without being identified by the bank.
We denote by coina and coinb the two coins produced by A. Their corresponding
entries in DBB are of the form (coina, flaga, va, pkMa

) and (coinb, flagb, vb, pkMb
)

with coina = (infoa; ∗) and coinb = (infob; ∗), respectively. We also define a
predicate SameCoin that given two coins coina and coinb and their respective
values va and vb, outputs 1 if the bank detects a double-spending during the
deposit of coina and coinb: in the context of divisible e-cash, it means that
either coina and coinb are the same coin or that one of them, say coina, is
the result of dividing the other one (and thus va divides vb). The adversary
is successful if its coins satisfy SameCoin(coina, coinb, va, vb) = 1 but the bank
fails to identify the user using the database T of tracing pieces of information
that were collected during executions of Qwithdraw. An e-cash scheme provides
double-spenders identification if for any adversary A and any L ∈ poly(λ),

Pr [params ← CashSetup(λ); (pkB , skB) ← BankKG(params, L);(
(coina, va), (coinb, vb)

)
← AQwithdraw(params,·,skB,·)(params, pkB) :

(infoa; pkMa) �= (infob; pkMb
) ∧ SameCoin(coina, coinb, va, vb) = 1

∧ VerifyCoin(params, pkMt , pkB, coint, vt) = 1 for t ∈ {a, b}
∧ Identify(params, pkB, coina, coinb) /∈ T] < negl(λ)

The oracle Qwithdraw has the same specification as in the Balance property.

Exculpability. No coalition of bank and merchants interacting with an
honest user U should be able to produce two coins (coina, coinb) such that
Identify(params, pkB, coina, coinb) = pkU while user U never double-spent. More
formally, we define a game with the challenger playing the role of an honest user
and the adversary playing the role of the bank and merchants. The adversary A
is given access to oracles QGetKey,Qwithdraw,QSpend that allow it to obtain users’
keys, create wallets and spend coins. The exculpability property holds if, for any
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PPT adversary A, we have

Pr [params ← CashSetup(λ); (pkB, st) ← A(params);

(pkB, coina, coinb, va, vb)
← AQSpend(params,pkB,·,·),QGetKey(params,·),Qwithdraw(params,·,·,·)(params, st);

SameCoin(coina, coinb, va, vb) = 1;

pkU ← Identify(params, coina, coinb) : pkU ∈ HU ] < negl(λ),

where HU denotes the set of honest users. Oracles QGetKey, Qwithdraw and QSpend

are defined exactly as in the notion of anonymity.

2.2 F-Unforgeable Signatures

Since the e-cash construction described in the paper relies on a common refer-
ence string, the following algorithms all take as input a set of common public
parameters paramsGS. To lighten notations, we omit to explicitly write them in
the syntax hereafter.

Definition 1. A multi-block signature scheme consists of efficient algorithms
Σ = (SigSetup,KeyGen, Sign,Verify) with the following specification.

SigSetup(λ): takes as input a security parameter λ ∈ N and outputs params that
gives the length n ∈ poly(λ) of message vectors to be signed.

Keygen(params): takes as input the public parameters and outputs a key pair
(pk, sk).

Sign(sk, *m): is a (possibly randomized) algorithm that takes as input a private
key sk and a vector *m = (m1, . . . ,mn) of messages. It outputs a signature
σ.

Verify(pk, *m, σ): is a deterministic algorithm that takes as input a public key
pk, a signature σ and a message vector *m = (m1, . . . ,mn). It outputs 1 if σ
is deemed valid for *m and 0 otherwise.

Definition 2 ([5]). A multi-block signature scheme Σ is F-unforgeable, for
some injective function F (.), if no probabilistic polynomial time (PPT) adversary
has non-negligible advantage in the following game:

1. The challenger runs Setup and Keygen to obtain a pair (pk, sk), it then sends
pk to A.

2. A adaptively queries a signing oracle. At each query i, A chooses a vector
*m = (m1, . . . ,mn) and obtains σi = Sign(sk, *m).

3. The adversary A outputs a pair
(
(F (m�

1), . . . , F (m�
n)), σ

�
)
and wins if: (a)

Verify(pk,m�, σ�) = 1; (b) A did not obtain any signature on the vector
(m�

1, . . . ,m
�
n).

Definition 3 ([5]). A multi-block P-signature combines an F-unforgeable multi-
block signature scheme Σ with a commitment scheme (Com,Open) and three
protocols:
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1. An algorithm SigProve(params, pk, σ, *m = (m1, . . . ,mn)) that generates a
series of n commitments Cσ, Cm1 , . . . , Cmn and a NIZK proof

π ← NIZPK
(
m1 in Cm1 , . . . ,mn in Cmn , σ in Cσ

| {(F (m1), . . . , F (mn), σ) : Verify(pk, *m, σ) = 1}
)

and the corresponding VerifyProof(params, pk, Cm1 , . . . , Cmn , Cσ) algorithm.
2. A NIZK proof that two commitments open to the same value, i.e., a proof

for the relation

R = {((x, y), (openx, openy))
| C = Com(x, openx) ∧ D = Com(y, openy) ∧ x = y}.

3. A protocol SigIssue � SigObtain allowing a user to obtain a signature on
a committed vector *m = (m1, . . . ,mn) without letting the signer learn any
information on *m.

2.3 Bilinear Maps and Complexity Assumptions

We consider a configuration of asymmetric bilinear groups (G1,G2,GT ) of prime
order p with a mapping e : G1 × G2 → GT such that: (1) e(ga, hb) = e(g, h)ab

for any (g, h) ∈ G1 × G2 and a, b ∈ Z; (2) e(g, h) �= 1GT whenever g �= 1G1 and
h �= 1G2 . Since we rely on the hardness of DDH in G1 and G2, we additionally
require that there is no efficiently computable isomorphism between G2 and G1.

Definition 4. The q-Hidden Strong Diffie-Hellman problem (q-HSDH) in
(G1,G2) is, given (g, u, h,Ω = hω) ∈ G2

1 ×G2
2 and tuples (g1/(ω+ci), gci , hci , uci)

with c1, . . . , cq
R← Z∗

p, finding (g1/(ω+c), hc, uc) such that c �= ci for i = 1, . . . , q.

Definition 5. The q-Decision Diffie-Hellman Inversion problem (q-
DDHI) in (G1,G2) consists in, given (g, g(α), . . . , g(α

q)) ∈ G
q+1
1 and η ∈ G1,

deciding if η = g1/α or η ∈R G1.

Definition 6 ([3]). The Triple Diffie-Hellman problem (TDH) in (G1,G2)
is, given a tuple (g, ga, gb, h, ha) ∈ G3

1 ×G2
2, and pairs (ci, g

1/a+ci)i=1,...,q where

a, b, c1, . . . , cq
R← Z∗

p, to find a triple (gμb, hμa, gμab) such that μ �= 0.

Definition 7. The Decision 3-party Diffie-Hellman problem (D3DH) in
(G1,G2) is, given elements (g, ga, gb, gc, h, ha, hb, hc, Γ ) ∈ G4

1 ×G4
2 × G1, where

a, b, c R← Zp, to decide if Γ = gabc or Γ ∈R G1.

2.4 Building Blocks

Non-interactive Witness Indistinguishable Proofs. Our construction uses
Groth-Sahai proofs for pairing product equations (PPE) of the form:

n∏
j=1

e(Aj ,Yj)
n∏
j=1

e(Xi,Bi)
m∏
i=1

n∏
j=1

e(Xi,Yj)γi,j = tT ,
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where Xi,Yj are variables in G1 and G2, respectively, and Aj ∈ G1,Bi ∈ G2 and
tT ∈ GT are constants for i ∈ [1,m] and j ∈ [1, n].

A proof system is a tuple of four algorithms (SetupGS,ProveGS,VerifyProofGS):
SetupGS outputs a common reference string (CRS) crs, ProveGS first gener-
ates commitments of variables and constructs proofs that these variables sat-
isfy the statement, and VerifyProofGS verifies the proof. GS proofs are witness-
indistinguishable and some of these can be made zero-knowledge as shown later.
The proofs satisfy correctness, soundness and witness-indistinguishability. Cor-
rectness requires that a verifier always accepts honestly generated proofs for
true statements. Soundness guarantees that cheating provers can only prove
true statements. Witness-indistinguishability requires that an efficient simulator
GSSimSetup should be able to produce a common reference string (CRS) crs′

that is computationally indistinguishable from a normal crs. When commitments
are computed using crs′, they are perfectly hiding and the corresponding non-
interactive proofs are witness indistinguishable: i.e., they leak no information on
the underlying witnesses. Zero-knowledge additionally requires the existence of
an algorithm GSSimProve that, given a simulated CRS crs′ and some trapdoor
information τ , generates a simulated proof of the statement without using the
witnesses and in such a way that the proof is indistinguishable from a real proof.

As a building block, we will use a NIZK proof of equality of committed group
elements as defined in [3,5].

If Cx = GSCom(x, openx) and Cy = GSCom(y, openy) are Groth-Sahai com-
mitments to the group element x = y ∈ G1, the NIZK proof can be a proof that
committed variables (x, y, θ) ∈ G2

1×Zp satisfy the equations e(x/y, hθ) = 1 and
e(g, hθ)e(1/g, h) = 1GT . Using the trapdoor of the CRS, we can trapdoor open
to 1 a commitment to 0 and generate fake proofs for the latter relation. Setting
θ = 0 and θ = 1, respectively, allows to construct a valid (simulated) witness for
each of the two equations. Under the SXDH assumption, commitments cost 2
elements in the group. Thus, if the commitment to y is in G2

1, the proof above
costs 8 elements G1 and 6 in G2, 6 multi-exponentiations and 26 pairings (to
verify). This includes commitments to y ∈ Zp and hθ.

Multi Block P-signatures. In [5], a multi-block P-signature was proved F-
secure under the HSDH and the TDH assumptions. Let (p,G1,G2, GT , e, g, h)
be parameters for a bilinear map, the public parameters are then defined as
(p,G1,G2, GT , e, g, h, paramsGS, e(g, h)), where g and h are random elements of
G1 and G2 respectively. The public key and the private key are defined to be
pk = (u, U = gβ , Ũ = hβ, {Vi = gai , Ṽi = hai}ni=1) and sk = (β,*a = (a1, . . . , an)),
where u R← G1 and for random scalars β, a1, . . . , an. To sign a vector of message
*m = (m1, . . . ,mn), the signer chooses r R← Zp such that r �= −(β +

∑n
i=1 aimi)

and computes σ = (g1/β+r+
∑n

i=1 aimi , hr, ur). Verification of a signature σ =
(σ1, σ2, σ3) on some block *m is done by checking whether

e
(
σ1, Ũ · σ2 ·

n∏
i=1

Ṽ mi

i

)
= e(g, h) and e(u, σ2) = e(σ3, h).
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As shown in [5], the above scheme can be augmented with the following P-
signature protocols.

SigProve(params, pk, σ, *m): parse the signature σ as (σ1, σ2, σ3) and the vector
*m as (m1, . . . ,mn). To commit to an exponent mi ∈ Zp, compute Groth-
Sahai commitments of hmi and umi as

(Ci,1, Ci,2, Ci,3) = Com
(
mi, (openmi,1, openmi,2, openmi,3)

)
=
(
GSCom(hmi , openmi,1),

GSCom(umi , openmi,2),GSCom(Ṽ mi

i , openmi,3)
)
.

Generate an auxiliary variable θ = 1 ∈ Zp with its own commitment Cθ =
GSCom(θ, openθ). Then, generate commitments {Cστ }3τ=1 to {στ}3τ=1 and
give a NIZK proof that

e(gθ, h) = e
(
σ1, Ũ · σ2 ·

n∏
i=1

Ṽ mi

i

)
,

e(u, σ2) = e(σ3, h),

θ = 1

e(g, Ṽmi

i ) = e(Vi, h
mi), e(u, hmi) = e(umi , h) for i ∈ {1, . . . , n}

We denote the complete proof by

πsig =
(
{Cστ }3τ=1, π

sig
1 , πsig2 , πsigθ , {πsigmi,1

, πsigmi,2
}ni=1

)
.

Note that πsig1 is a proof for a quadratic equation and requires 4 elements

of G1 and 4 elements of G2. Other equations are linear: each of πsig2 and

{πsigmi,2
}ni=1 demands 2 elements of G1 and 2 elements of G2 whereas proofs

{πsigmi,1
}ni=1 only takes two elements of G1 each since all variables are in

G2. The NIZK property stems from the fact that, on a simulated CRS, a
commitment to 0 can be trapdoor opened to 1. For this reason, except for
the equation θ = 1 (for which one can simply equivocate the commitment),
all other proofs can be simulated using the witnesses 1G1 , 1G2 and θ = 0.

VerifyProof(params, pk, πsig, (C1, . . . , Cn)): works in the obvious way and re-
turns 1 if and only if the proof πsig generated by SigProve is convincing.

EqComProve(params, pk, x, y): the protocol for proving that two commitments
open to the same value employ the usual technique already used in [3,5] and
is reviewed section 2.4.

SigIssue(sk, (C1, . . . , Cn)) � SigObtain(params, pk, *m, {(Ci, openi)}ni=1): is a se-
cure two-party protocol between the issuer and the receiver where the latter
obtains a signature on a committed vector of messages. As suggested in [5],
this can be done using the 2-party protocol of [32] for computing a cir-
cuit on committed inputs. Another option would be to use the two-party
computation protocol from [4] that relies on homomorphic encryption.

Theorem 1 ([5]). If the HSDH and the TDH assumptions hold in (G1,G2),
the scheme is F-unforgeable w.r.t. the injective function F (m) = (hm, um).
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3 Construction of Divisible E-cash

Known approaches for divisible e-cash [37,35,15,18] make use of a binary tree
with L + 1 levels (for a monetary value of 2L) where each node corresponds
to an amount of money which is exactly one of half the amount of its father.
Double-spenders are detected by making sure that each user cannot spend a coin
corresponding to a node and one of its descendants or one of its ancestors.

In these tree-based constructions, one difficulty is for the user to efficiently
prove that the path connecting the spent node to the root is well-formed. In
[14,18], this problem is solved using groups of distinct order: [14] uses a sequence
of L+1 groups G1, . . . ,GL+1 of prime order pν where Gν is a subgroup of Z�pν−1

for ν = 1, . . . , L+ 1. The solution of [18] uses L+ 2 bounded accumulators (one
for each level of the tree and one for the whole tree) so as to only use two distinct
group orders. The use of groups of distinct order (and double discrete logarithms
in [14]) is hardly compatible with Groth-Sahai proofs and, in our system we need
to find a different technique to prevent users from spending coins associated with
a node and one of its ancestors in the same tree.

3.1 General Description of the Scheme

Our construction uses the tree-based approach. Each wallet W consists of a
divisible coin of value 2L, for some L ∈ N, and the complexity of the spending
phase depends on the depth of the node in the tree W : the deeper the node is, the
more expensive the spending phase will be. When an honest user U with key pairs
(pkU , skU ) interacts with the bank B, he obtains a wallet W = (s, t, skU , σ, state)
consisting of the bank’s signature σ on the vector (s, t, skU ) where s, t are seeds
for the Dodis-Yampolskiy PRF [28]. In our notation, state is a variable indicating
the availability of coins.

To spend a coin of value v = 2� (with � ≤ L) in the tree, the user U determines
the next node corresponding to an unspent coin at height �: the root of the tree
is used if the user wants to spend his entire wallet at once whereas the leaves
correspond to the smallest expandable amounts. Each node will be assigned
a unique label consisting of an integer in the interval [1, 2L+1 − 1]. A simple
assignment is obtained by labeling the root as x0 = 1 and the rightmost leaf as

No coin is spent One coin is spent

Fig. 1. Binary tree for spending one coin in a wallet of 24 coins
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2L+1− 1, all other nodes being considered, in order of appearance, from the left
to the right and starting from the root.

In order to construct a valid coin, the user has to choose a previously unspent
node of label xcoin at the appropriate level and do the following: (1) Prove
his knowledge of a valid signature on committed messages (s, t, skU ) and his
knowledge of skU . (2) Commit to the PRF seeds via commitments to the group
elements (S, T ) = (hs, ht). (3) Commit to the path that connects xcoin to the
root and prove that commitments pertain to a valid path. (4) Evaluate a coin
serial number YL−� = g1/(s+xcoin) where the input is the label of the node to be
spent. (5) Generate NIZK proofs that everything was done consistently. (6) Add
some material that makes it impossible to subsequently spend an ancestor or a
descendant of xcoin without being detected.

At step (1), we use the multi-block P-signature scheme to sign the block
(s, t, skU ). Using the proof produced by SigProve in the P-signature, we can
efficiently prove knowledge of a signature on committed inputs in NIZK.

The trickiest problem to solve is actually (6). If {x0, . . . , xL−�} denotes the
path from the root x0 to xL−� = xcoin, for each j ∈ {0, . . . , L − �}, we include
in the coin a pair (Tj,1, Tj,2) where Tj,1 = hδj,1 , for some random δj,1

R← Zp, and
Tj,2 = e(Yj , Tj,1), where Yj = g1/(s+xj) is the value of the PRF for the label xj .
In addition, U must add a NIZK proof that the pair (Tj,1, Tj,2) was correctly
calculated. By doing so, at the expense of ns pairing evaluations at each deposit
(where ns denotes the number of previously spent coins), the bank will be able
to detect whether a spent node is in the path connecting a previously spent node
to the root. At the same time, if U does not overspend at any time, the coins he
spends remain computationally unlinkable.

By itself, the pair (Tj,1, Tj,2) only renders cheating attempts evident. In order
to expose the public key pkU of double spenders, U is required to add a pair
(Tj,3, Tj,4) = (hδj,2 , pkU · e(Yj , Tj,3)) at each node of the path: by doing so, pkU
is exposed if U subsequently spends a node above xcoin in the path. However,
we have to consider a second kind of double-spending, where the two coins
involve the same tree node xcoin = xL−�. To deal with this case, we require U to
additionally use the seed t of his wallet and the merchant’s data R and compute
another security tag ZL−� = gskU gR/(t+xL−�). The latter will be used to identify
cheating users in the same way as in [10].

Finally, in order to obtain the exculpability property (and prevent a dishonest
bank from wrongly accusing the user of double-spending coins), we need to add
yet another pair of the form (hδj,3 , e(g0, h

skU ) · e(Yj , hδ3)), where g0 ∈ G1 is part
of the CRS, in such a way that framing the user requires to compute e(g0, h

skU )
and solve a (computational) Bilinear Diffie-Hellman instance.

In order to solve problem (5), we need to generate non-interactive proofs for
a number of pairing-product equations. Since the notion of anonymity requires
to build a simulator that emulates the prover without knowing any witness,
it means that we need NIZK proofs for pairing product equations on multiple
occasions. Fortunately, the specific equations fall into the category of equations
for which NIZK proofs are possible at the cost of introducing extra variables.
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For this reason, we will have to introduce auxiliary variables for each pairing
product equations.

Example. Suppose that, in his wallet L = 4, U uses the seed s to spend the
amount of v = 22. The left part of Figure 1 represents the state of the wallet
when no coin has been spent. In the rightmost tree, the black node indicates the
target node xcoin of value v and greyed nodes are those that cannot be spent
any longer once the black node was spent.

3.2 Construction

We now describe our divisible e-cash system where the withdrawal protocol
allows users to obtain a wallet of a divisible coin of value 2L.

CashSetup(λ): chooses bilinear groups (G1,G2,GT ) of order p > 2λ and genera-
tors g, g0

R← G1, h
R← G2. It also generates a Groth-Sahai common reference

string paramsGS = {g, h, *u1, *u2, *v1, *v2} for the perfectly soundness setting.
The algorithm also selects a collision-resistant hash function H : {0, 1}∗ →
Zp. The output is params := {(G1,G2,GT ), g0, paramsGS , H}.

BankKG(params, L): runs SigSetup(λ, n) with n = 3 to obtain a key pair (sk, pk)
for the P-signature of section 2.4. The bank’s key pair is defined to be
(skB, pkB) = (sk, pk) and pkB consists of

pkB =
(
u, U = gβ, Ũ = hβ, {Vi = gai , Ṽi = hai}3i=1, L

)
.

UserKG(params): the user U defines his key pair as (skU , pkU = e(g, h)skU ) for
a random skU

R← Zp.

Withdraw
(
U(params, pkB, skU ),B(params, pkU , skB)

)
: U and B run the following

interactive protocol:

1. The user U first picks s′, t′ R← Zp at random and computes perfectly
hiding commitments Cs′ = Com(s′, opens′), Ct′ = Com(t′, opent′) and
CskU = Com(skU ; openskU ). The user sends (Cs′ , Ct′ , CskU ) to B and pro-
vides interactive witness indistinguishable proofs that he knows how to
open (Cs′ , Ct′). In addition, he provides an interactive zero-knowledge2

proof that CskU is a commitment to the private key skU that was used
to generate pkU .

2. If the proofs verifies, B picks (s′′, t′′) ← Z2
p which are sent to U .

3. The user U sets s = s′+s′′ and t = t′+t′′, updates commitments Cs′ and
Ct′ into commitments Cs = Com(s, opens) and Ct = Com(t, opent). The
user sends (Cs, Ct) to the bank with a proof that these commitments
were properly calculated.

4. U and B jointly run the protocol

SigIssue(params, sk, (Cs, Ct, CskU ))

� SigObtain(params, pk, (s, t, skU ), (opens, opent, openskU ))

2 The zero-knowledge property will be needed in the proof of weak exculpability.
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in such a way that U eventually obtains B’s signature σ on (s, t, skU).
The user U stores the wallet W = (s, t, skU , σ, state), where state = ∅.

5. B records a debit of value v = 2L on U ’s account. It stores the transcript
of the protocol and the tracing information pkU in its database T.

Spend
(
params, pkB, W = (s, t, skU , σ, state), 2�, pkM, info

)
: Let us assume that

U wants to spend a coin of value 2� for the wallet W of initial value 2L.
Using state, U determines the label xcoin ∈ [1, 2L+1 − 1] of the first node
corresponding to an unspent coin at height � in the tree associated with the
wallet. Let {x0, x1, . . . , xL−�} denote the path connecting node xcoin = xL−�
to the root x0 = 1 of the tree. The user U computes S = hs and T = ht and
conducts the following steps.

1. U has to prove that he knows a signature σ on the committed
vector (s, t, skU ) ∈ Z3

p. To this end, he first generates com-

mitments and proofs
(
{CS,i}3i=1, {CT,i}3i=1, {CU ,i}3i=1, π

sig
)

←
SigProve(params, pk, σ, (s, t, skU )). The output of SigProve in-
cludes {CU ,i}3i=1, which are commitments to (LU ,1, LU ,2, LU ,3) =

(hskU , uskU , Ṽ skU
3 ), and {CS,i, CT,i}3i=1, that contain (LS,1, LS,2, LS,3) =

(hs, us, Ṽ s
1 ) and (LT,1, LT,2, LT,3) = (ht, ut, Ṽ t

2 ), respectively. In ad-
dition, U computes CKU = GSCom(hskU , open′

U) as a commitment to
KU = hskU and generates a NIZK proof πKU ← EqComProve(LU ,1,KU)
that CKU and CU ,1 are commitment to the same value. This amounts
to prove that

e(LU ,1/KU , hθ) = 1GT and θ = 1, (1)

for some variable θ ∈ Zp contained in Cθ = GSCom(θ, openθ) and that
will be re-used in subsequent steps of the spending protocol.

2. For j = 0 to L− � do the following.

a. If j > 0, generate a commitment CXj = GSCom(hxj , openxj) to
Xj = hxj and a proof that xj = 2xj−1 + bj , for some bit bj ∈ {0, 1}.
To this end, generate the commitments Cbj = GSCom(gbj , openbj)
and C′

bj
= GSCom(hbj , open′

bj
) as well as a NIZK proof πxj ←

EqComProve(CXj , C
′
Xj

) that CXj and C′
Xj

= C2
Xj−1

· C′
bj

open to

the same value. To prove that bj ∈ {0, 1}, U generates a NIZK proof
(πbj ,1, πbj ,2) for the pairing-product equations e(gbj , h) = e(g, hbj)
and e(gbj , hbj ) = e(gbj , h), which guarantee that b2j = bj , so that
bj ∈ {0, 1}.

b. If j < L − �, generate a commitment CYj = GSCom(Yj , openYj ) to

the PRF value Yj = g1/(s+xj) as well as a NIZK proof πYj that
it satisfies e(Yj , LS,1 · Xj) = e(g, h), where Xj = hxj . This con-
sists of a commitment CΦYj

to a variable ΦYj ∈ G1 and a proof

that e(ΦYj , LS,1 ·Xj) = e(g, h) and e(Yj/ΦYj , h
θ) = 1GT . Then, pick
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δj,1, δj,2, δj,3
R← Zp and compute

Tj,1 = hδj,1 , Tj,2 = e(Yj , h)
δj,1

Tj,3 = hδj,2 , Tj,4 = pkU · e(Yj , h)δj,2 ,
Tj,5 = hδj,3 , Tj,6 = e(g0, h

skU ) · e(Yj , h)δj,3 .

Generate NIZK proofs (πj,T1 , πj,T3 , πj,T5) that (Yj ,KU) satisfy

Tj,2 = e(Yj , Tj,1)

Tj,4 = e(g,KU) · e(Yj , Tj,3) (2)

Tj,6 = e(g0,KU) · e(Yj , Tj,5).

These proofs require new commitments {CΦj,k
}k=1,3,5, CΦ′

Yj
and

CΦ′′
Yj

to auxiliary variables {Φj,k}k=1,3,5, Φ
′
Yj

, Φ′′
Yj

∈ G1 respectively

and proofs for relations

Tj,2 = e(Yj, Φj,1),
Tj,4 = e(g,KU ) · e(ΦY ′

j
, Φj,3)

Tj,6 = e(g0,KU) · e(ΦY ′′
j
, Φj,5),

e(Yj/ΦY ′
j
, hθ) = 1GT ,

e(Yj/ΦY ′′
j
, hθ) = 1GT ,

{e(gθ, Tj,k/Φj,k) = 1GT }k∈{1,3,5}.

c. If j = L − �, compute the serial number YL−� = g1/(s+xL−�) and
generate a NIZK proof πYL−�

that e(YL−�, LS,1 · XL−�) = e(g, h).
This proof consists of a commitment CΦYL−�

to ΦYL−�
∈ G1 and

proofs for equations

e(ΦYL−�
, LS,1 ·XL−�) = e(g, h), e(YL−�/ΦYL−�

, hθ) = 1GT .

Compute ZL−� = gskU ·gR/(t+xL−�), where R = H(info, pkM) ∈ Zp,
and a NIZK proof πZL−�

that ZL−� is well-formed. This requires
new Groth-Sahai commitments CWL−�

, CΦWL−�
to auxiliary variables

WL−� = g1/(t+xL−�), ΦWL−�
= g1/(t+xL−�) and a proof that:

e(g,KU) · e(WL−�, hR) = e(ZL−�, h),
e(WL−�, LT,1 ·XL−�) = e(g, h)

e(WL−�/ΦWL−�
, hθ) = 1GT .

Finally, update state into state′ = state ∪ {(xcoin)} and output the coin

coin =
(
{CS,i}3i=1, {CT,i}3i=1, {CU ,i}3i=1, CKU , πKU , πsig,

{CXj , Cbj , C′
bj , πxj , πbj ,1 πbj ,2}L−�j=1 ,

{(Tj,1, Tj,2, Tj,3, Tj,4, Tj,5, Tj,6), CYj , CΦYj
, C′

ΦYj
, C′′

ΦYj
,

{CΦj,k
}k∈{1,3,5}, πYj , πj,T1 , πj,T3 , πj,T5}L−�−1

j=0 ,

YL−�, ZL−�, CΦYL−�
, CWL−�

, CΦWL−�
, πYL−�

, πZL−�
, info

)
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VerifyCoin
(
params, pkM, pkB, v = 2�, coin

)
: parse coin as above. Return 1 iff all

proofs verify.

Deposit
(
params, pkB, pkM, coin, 2�,DBB

)
: parse coin as above and perform the

same checks as VerifyCoin. Then, define DB′
B = DBB∪{(coin, flag, 2�, pkM)}

where the value of flag depends on whether coin is a valid coin of value 2�

and whether a cheating attempt is detected.

- If coin does not properly verify, B sets flag = “M” to indicate a cheating
merchant.

- If coin properly verifies, the bank B runs the following test. For each en-
try (coins, flags, 2

�s , pkMs) ∈ DBB, where s = 1 to |DBB|, B parses coins
as above. If (infos, pkMs) = (info, pkM), B sets flag = “M”. Other-
wise, from coins, it extracts the path {(Ts,j,1, Ts,j,2, Ts,j,3, Ts,j,4)}L−�s−1

j=0 ,
the serial number YL−�s ∈ G1 and the tag ZL−�s ∈ G1. It also parses
coin to extract the path {(Tj,1, Tj,2, Tj,3, Tj,4)}L−�−1

j=0 , the serial number
YL−� ∈ G1 and the tag ZL−�. If � < �s and TL−�s,2 = e(YL−�s , TL−�s,1),
B sets flag = “U”, outputs coins and coin and reports a double-spending.
Likewise, if � > �s and Ts,L−�,2 = e(YL−�, Ts,L−�,1), B also sets flag =
“U” and outputs coins and coin. Finally, if � = �s, B sets flag = “U” if
and only if YL−� = YL−�s .

- If coin verifies and no double-spending is detected, B sets flag = “accept”
and credits the account of pkM by the amount of 2�.

After the above tests, the updated database DB′
B supersedes DBB.

Identify
(
params, pkB, coina, coinb

)
: on input of fraudulent coins coina and coinb,

the bank B can identify the double-spender as follows.

1. Extract infoa, {(T (a)
j,1 , T

(a)
j,2 , T

(a)
j,3 , T

(a)
j,4 )}

L−�a−1
j=0 , (Y

(a)
L−�a , Z

(a)
L−�a) ∈

G2
1 from coina. Also, parse coinb to retrieve infob,

{(T (b)
j,1 , T

(b)
j,2 , T

(b)
j,3 , T

(b)
j,4 )}

L−�b−1
j=0 and (Y

(b)
L−�b , Z

(b)
L−�b) ∈ G2

1.

2. If �b > �a, recover pkU as pkU = T
(a)
L−�b,4/e(Y

(b)
L−�b , T

(a)
L−�b,3). If �b < �a, pkU

can be obtained as pkU = T
(b)
L−�a,4/e(Y

(a)
L−�a , T

(b)
L−�a,3). In the case �a = �b,

we must have Y�a = Y�b . Then, B computes Ra = H(infoa, pkMa),

Rb = H(infob, pkMb
) and then κ = (Z

(a)
L−�a/Z

(b)
L−�b)

1/(Ra−Rb), which

allows recovering gskU = Z
(a)
L−�a/κ

Ra and thus pkU = e(gskU , h).

The security of the scheme relies on the collision-resistance of H and the in-
tractability assumptions recalled in Section 2.3. More precisely, we state the
following theorem for which a proof is given in the full version of the paper.

Theorem 2. Assuming that H is a collision-resistant hash function and that
the SXDH, D3DH, TDH, D3DH, qw-HSDH and the 2L+2-DDHI assumptions
where qw denotes the number of Qwithdraw queries all hold in (G1,G2), our e-cash
scheme provides anonymity, balance, identification and weak-exculpability.

The most difficult part of the security proof is the proof of anonymity. More
precisely, when it comes to build a simulator, we need to simulate NIZK proofs
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for pairing product equations of the form (2), which is non-trivial. Indeed, as
noted in [31], this is only known to be possible when the target element of the
equation (which lives in GT ) can be written as a pairing of known elements of
G1 and G2. The problem is that, in equations like (2), some pairing values have
to be gradually replaced by uniformly random values of GT . To deal with this
problem, we appeal to the D3DH assumption in a similar way to [33]. Namely,
the D3DH input element Γ , which is either gabc or a random element of G1,
is available as a “pre-image” of the target pairing value and makes it possible
to simulate proofs for pairing product equations at the expense of introducing
auxiliary variables.
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