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Preface

Pairing 2012 was the 5th International Conference on Pairing-Based Cryptogra-
phy and took place during May 16-18, 2012, in Cologne, Germany. The confer-
ence was organized by the Coding Theory and Cryptology group at the Eindhoven
Institute for the Protection of Systems and Information, Department of Mathe-
matics and Computer Science, Technische Universiteit Eindhoven, with the aim
of bringing together leading researchers and practitioners from academia and in-
dustry, all concerned with problems related to pairing-based cryptography. The
General Chairs of the conference were Tanja Lange and Michael Naehrig, and the
secretarial support was provided by Anita Klooster from the Technische Univer-
siteit Eindhoven. We thank both Michael and Anita for their constant efforts and
for making this conference possible.

The conference received 49 submissions and each submission was assigned to
at least three committee members. Submissions co-authored by members of the
Program Committee were assigned to at least four committee members. We were
happy to receive a good number of high-quality submissions, and we are grateful
to the committee members and external reviewers for their outstanding work in
thoroughly reviewing all papers in a timely manner. After a discussion phase of
19 days, leading to 290 comments on the submissions, the Program Committee,
selected 17 submissions for presentation in the academic track. Additionally,
three other submissions were selected for presentation in the industrial track. The
final versions of these submissions were not checked by the Program Committee
and the authors bear full responsibility for their contents.

The program included four invited talks in addition to the academic and
industrial tracks. These talks were given by Jean-Luc Beuchat, Jung-Hee Cheon,
Dennis Hofheinz, and Hovav Shacham, and covered a wide range of topics in
pairing-based cryptography. In addition, the program included shorter invited
talks by Benoit Libert and Katsuyuki Takashima in a session about hot topics
in pairings, following a trend established in previous editions of this conference.
The abstracts of these invited talks were also included in this volume.

The reviewing process was run using the iChair software, written by Thomas
Baigneres from CryptoExperts, France and Matthieu Finiasz from EPFL, LASEC,
Switzerland. We are grateful to them for letting us use their software.

Finally, we would like to thank our sponsors Netherlands Organization for
Scientific Research (NWO), Microsoft Research, and Voltage Security for their
financial support as well as all the Pairing Steering Committee for selecting us as
Program Chairs. We would also like to thank Springer for accepting to publish
the proceedings in the Lecture Notes in Computer Science series.

December 2012 Michel Abdalla
Tanja Lange
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Hardware Architectures
for the Cryptographic Tate Pairing
(Invited Talk)

Jean-Luc Beuchat

Faculty of Engineering, Information and Systems,
University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
jeanluc.beuchat@gmail.com

Abstract. In the mid-nineties of the last century, Menezes, Okamoto
& Vanstone and Frey & Riick introduced the Weil and Tate pairings in
cryptography as a tool to attack the discrete logarithm problem on some
classes of elliptic curves defined over finite fields. The discovery of con-
structive properties by Joux, Mitsunari, Sakai & Kasahara, and Sakai,
Oghishi & Kasahara initiated the proposal of an ever-increasing number
of protocols based on bilinear pairings: identity-based encryption, short
signature, and efficient broadcast encryption, to mention but a few. How-
ever, such protocols rely critically on efficient implementations of pairing
primitives at high security levels on a wide range of targets.

Miller described the first iterative algorithm to compute the Weil and
Tate pairings back in 1986. The Tate pairing seems to be more suited
to efficient implementations, and has therefore attracted a lot of interest
from the research community. A large number of articles, culminating
in the nr pairing algorithm, focused on shortening the loop of Miller’s
algorithm in the case of supersingular abelian varieties. The Ate pairing,
introduced by Hess et al. for elliptic curves and by Granger et al. in the
hyperelliptic case, generalizes the nr approach to ordinary curves. Even-
tually, several variants of the Ate pairing aiming at optimally reducing
the loop length of Miller’s algorithm have been proposed in 2008.

We sketch here several hardware architectures for the Tate pairing
on supersingular and ordinary curves. First, we emphasize on reducing
the silicon footprint of the circuit to ensure scalability, while trying to
minimize the impact on the overall performances. Then, we focus on the
other end of the hardware design spectrum and explain how to achieve
much lower computation times, at the expense of extra hardware re-
sources. The main lesson learned from this study is that an appropriate
mix of theoretical foundations and practical considerations is essential to
design cryptographic hardware: fine-tuning of the algorithms, arithmetic
operand encoding, scheduling, etc.



Discrete Logarithm in Pairing Groups
(Invited Talk)

Jung Hee Cheon

ISaC & Department of Mathematical Sciences, Seoul National University
jhcheon@snu.ac.kr

Abstract. In recent years, bilinear pairings have found various applica-
tions in cryptography to construct new cryptographic primitives. Pairing-
based cryptography raises lots of new computational problems, but they
have not been studied very well in the literature. In this talk, we survey
recent progress in this field and then would like to address some open
questions on the discrete logarithm problems in pairing groups. For this
purpose, this talk is roughly comprised of three parts. The first part
mainly focuses on the Pollard rho algorithm on pairing groups. We in-
troduce the Tag Tracing technique to speed up Pollard rho algorithm
and investigate how to apply this technique to elliptic curves with bi-
linear maps. The second topic is on the pairing inversion problem. We
discuss about polynomial representations of this problem and show how
to reduce the degree of the corresponding polynomial. The last topic is
related to the strong DH assumption, which is one of the most popular
cryptographic assumptions in the field of pairing-based cryptography.
We take a look around the security of the strong DH assumption and
its following variants with auxiliary inputs. It was proved that they have
less security than the square-root of p when either p — 1 or p + 1 has an
appropriate divisor of the base group order p. We introduce an attempt
to generalize this attack by using an embedding to an extension field or
elliptic curves, or by exploiting a polynomial with small image size.

Keywords: Discrete Logarithm, Pollard rho, Tag Tracing, Bilinear Maps,
Pairing Inversion, Auxiliary Inputs.



Structure-Preserving Cryptography
(Invited Talk)

Dennis Hofheinz

Karlsruhe Institute of Technology
Institut fiir Kryptographie und Sicherheit
Building 50.34, room 279, Am Fasanengarten 5, 76131 Karlsruhe, Germany
dennis.hofheinz@kit.edu

Abstract. A cryptographic scheme is called structure-preserving, if the
performed operations are solely abstract group operations. (In particu-
lar, this disallows the explicit use of, say, the bit representation of group
elements.) Structure-preserving schemes are interesting because they are
compatible with non-interactive proof systems for equations over groups.
For instance, efficient Groth-Sahai proofs can be used to prove knowl-
edge of a signature (of a structure-preserving signature scheme). This
allows to transport generic paradigms (such as the Naor-Yung paradigm
to achieve chosen-ciphertext encryption security) to an efficient group-
based setting. This talk first gives an overview over structure-preserving
schemes, and then presents a new result that uses a structure-preserving
signature scheme as an essential building block. Concretely, we show how
to construct a chosen-ciphertext secure public-key encryption scheme
with a tight security reduction in the multi-user, multi-challenge setting.



Alternative Structure for Bilinear Groups
(Invited Talk)

Hovav Shacham

Department of Computer Science and Engineering
University of California, San Diego
9500 Gilman Drive, La Jolla, CA 92093-0404

hovav@cs.ucsd.edu

Abstract. Pairing-based cryptography is a striking illustration of the
value of algebraic structure for constructing crypto schemes: A richer
structure allows for a wider variety of crypto schemes. It is perhaps
surprising, then, that the way in which pairings are used have become
quite standard. Most often, we imagine a bilinear group G to be a cyclic
group of prime order that induces a map e: G X G — Gr (where Gr is
treated in a similarly abstract manner).

In this talk, I survey two lines of work that seek to generalize this
understanding of pairings. One line considers bilinear groups G of com-
posite order; the other line reconsiders the mathematical structure of the
group G, for example to support asymmetric pairings e: G1 X G2 — Gr.
Both these lines of work have been exploited to construct new crypto-
graphic schemes.

In addition, I consider one of the instantiations of pairing-friendly el-
liptic curves proposed in a recent paper of Boneh, Rubin, and Silverberg.
I show that this instantiation exhibits surprising and unprecedented new
structure: projecting a point from the group G onto a subgroup G1 or G2
requires knowledge of a trapdoor. I propose new hardness assumptions
for this setting and protocols that rely on them.

This is joint work with Sarah Meiklejohn.



Revocable Group Signatures
from the NNL Subset Cover Framework

(Invited Session: Hot Topics in Pairings)

Benoit Libert

Technicolor
975 Avenue des Champs Blancs
35510 Cesson-Sévigné, France
benoit.libert@technicolor.com

Abstract. Group signatures are a central cryptographic primitive where
users can anonymously sign messages in the name of a group they be-
long to. Despite years of research, membership revocation remains a non-
trivial problem. Existing solutions either suffer from important overheads
or require unrevoked users to update their keys after each revocation.
We describe a new scalable revocation method, based on the Naor-Naor-
Lotspiech (NNL) broadcast encryption framework, that interacts nicely
with techniques for building group signatures in the standard model. We
eventually obtain a scheme which is truly competitive with group signa-
tures without revocation. Moreover, unrevoked members do not need to
update their keys at each revocation.



Adaptively Attribute-Hiding
(Hierarchical) Inner Product Encryption

(Invited Session: Hot Topics in Pairings)

Katsuyuki Takashima

Mitsubishi Electric, Japan
Takashima.Katsuyuki@aj.MitsubishiElectric.co.jp

Abstract. We present the first inner product encryption (IPE) scheme
that is adaptively secure and fully attribute-hiding (attribute-hiding in
the sense of the definition by Katz, Sahai and Waters), while the exist-
ing IPE schemes are either fully attribute-hiding but selectively secure or
adaptively secure but weakly attribute-hiding. The IPE scheme was pro-
posed in Eurocrypt 2012 [1], and is proven to be adaptively secure and
fully attribute-hiding under the decisional linear assumption in the stan-
dard model. The IPE scheme is comparably as efficient as the existing
attribute-hiding IPE schemes. We also present a variant of the proposed
IPE scheme with the same security that achieves shorter public and se-
cret keys. A hierarchical IPE scheme can be constructed that is also
adaptively secure and fully attribute-hiding under the same assumption.
In this work, we extend the dual system encryption technique by Waters
into a more general manner, in which new forms of ciphertext and secret
keys are employed and new types of information theoretical tricks are
introduced along with several forms of computational reduction. This is
joint work with Tatsuaki Okamoto.

Reference

1. Okamoto, T., Takashima, K.: Adaptively Attribute-Hiding (Hierarchical) Inner
Product Encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 591-608. Springer, Heidelberg (2012), full version is available
at http://eprint.iacr.org/2011/543
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On Efficient Pairings on Elliptic Curves
over Extension Fields

Xusheng Zhang!-2, Kunpeng Wang?, and Dongdai Lin®

! Institute of Software, Chinese Academy of Sciences, Beijing, 100190, China
2 Qraduate University of Chinese Academy of Sciences, Beijing, 100049, China
xszhang.is@gmail.com
3 SKLOIS, Institute of Information Engineering,

Chinese Academy of Sciences, Beijing, 100195, China
kunpengwang@263.net, ddlin@iie.ac.cn

Abstract. Inimplementation of elliptic curve cryptography, three kinds
of finite fields have been widely studied, i.e. prime field, binary field and
optimal extension field. In pairing-based cryptography, however, pairing-
friendly curves are usually chosen among ordinary curves over prime
fields and supersingular curves over extension fields with small charac-
teristics. In this paper, we study pairings on elliptic curves over exten-
sion fields from the point of view of accelerating the Miller’s algorithm
to present further advantage of pairing-friendly curves over extension
fields, not relying on the much faster field arithmetic. We propose new
pairings on elliptic curves over extension fields can make better use of the
multi-pairing technique for the efficient implementation. By using some
implementation skills, our new pairings could be implemented much more
efficiently than the optimal ate pairing and the optimal twisted ate pair-
ing on elliptic curves over extension fields. At last, we use the similar
method to give more efficient pairings on Estibals’s supersingular curves
over composite extension fields in parallel implementation.

Keywords: pairing, elliptic curve over extension field, multi-pairing
technique.

1 Introduction

Elliptic curve cryptography (ECC) has the shorter key length requirement in
comparison with other public-key cryptosystems such as RSA. This means faster
implementation as well as more efficient use of power, bandwidth and storage.
In particular, much research has been conducted on fast algorithms and imple-
mentation techniques of elliptic curve arithmetic over various finite fields. Up to
now, three kinds of finite fields are widely used for ECC, i.e. prime field, binary
field and optimal extension field. Binary fields F(2") are especially attractive for
hardware circuit design, but does not offer the same computational advantages in
a software implementation. Similarly, prime fields F(p) also have computational
difficulties on standard computers. Optimal extension fields F(p™) introduced
in [112], offer considerable computational advantages in software by selecting p

M. Abdalla and T. Lange (Eds.): Pairing 2012, LNCS 7708, pp. 1-[[8] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



2 X. Zhang, K. Wang, and D. Lin

and m specifically to match the underlying hardware used to perform the arith-
metic. Besides, efficient methods have been devised in [273] for speeding up field
arithmetic for elliptic curves over general extension fields.

In recent years, there has been much interest in cryptographic schemes based
on bilinear pairings on elliptic curves. So efficient implementation of pairings
is of great importance. Miller [29] proposed the first effective algorithm named
Miller’s algorithm to compute Weil pairing and Tate pairing. As the important
breakthroughs, there are many optimizations and adaptations of these pairings
which offer implementation improvements, such as speeding up each Miller’s
iteration and the final exponentiation of the Tate pairing, and developing many
truncated loop variant pairings: Eta pairing [5], ate pairing and twisted ate
pairing [22], R-ate pairing [26], and optimal pairing [33]. Recently, pairing lattices
[21] were proposed as the generalization contained all former pairings.

On the other side, there is much research on the generation of suitable elliptic
curves for pairings, namely pairing-friendly curves, which contain the large prime
subgroup and the small embedding degree. Please refer to the in-depth overview
[12] for details. Whereas strong elliptic curves used in ECC can be generated
randomly, the pairing-friendly curves are rare and require specific constructions.
All the time, pairing-friendly curves are chosen among ordinary curves over prime
fields and supersingular curves over extension fields with the characteristic 2
and 3. In the latter case, pairings are suitable for hardware implementation
in lightweight cryptosystems. For higher security, pairings on ordinary pairing-
friendly curves are preferred in practice.

In implementation, there are always some strong requests to use curves defined
over certain extension fields, such as the extension fields with small characteris-
tics, and the optimal extension fields which possess the fast field multiplication
and inversion. So there are theoretical advantages to using pairing-friendly ellip-
tic curves over carefully chosen finite fields. Recently, Hitt [23] and Benger et al.
[6] outlined possible security concerns for using pairing-friendly elliptic curves
defined over extension fields, and Benger et al. [6] gave a method for selecting
curves with the highest possible security against ECDLP and DLP solving at-
tacks, given currently known methods. To the best of our knowledge, there is
still no known example of an ordinary pairing-friendly curve defined over the
extension field Fpm or Faom. Hence, we present results which may motivate fur-
ther research into the generation of pairing-friendly elliptic curves defined over
extension fields.

In this paper, our main aim is to present further evidence of an advantage of
using pairing-friendly elliptic curves defined over extension fields by introducing a
pairing which can be computed using an accelerated version of Miller’s algorithm,
using the multi-pairing technique. We develop new pairings on an elliptic curve
over an extension field which could be computed more efficiently not relying on
the fast field arithmetic of the extension field. Concretely, for an ordinary curve £
over an extension field F,m, we modify the ate pairing and the twisted ate pairing
to define new pairings as the products of several rational functions with the same
Miller loop on the curves {F (p[)}0§i<m defined by raising the coefficients of the
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equations for E to the p’-power. These new pairings can be implemented with
the multi-pairing technique which was proposed in [3IIT9] and first applied to
a single pairing computation by Sakemi et al. [30]. Then we give the optimal
versions of our new pairings according to the theory of pairing lattice [21], which
can make better use of the multi-pairing technique for efficient implementation.
Specially, our method can explain Sakemi’s acceleration [30] of the twisted ate
pairing on the BN curves and extend it further. Given a theoretical comparison
with some implementation skills, our new optimal pairings could have more
efficient performance than the optimal ate pairing and the optimal twisted ate
pairing. Specially in many protocols, with the fixed argument optimization, the
performance of our new optimal pairing could offer a speed up of between 30%
and 43% faster than the performance of the optimal ate pairing when m is
greater than 6. Finally, we develop similar pairings having much faster parallel
implementation on supersingular curves over composite extension fields, and
then construct concrete pairings on Estibals’s supersingular curves E7(F3sxo7)
and Fs(F3i7xe7) respectively.

The organization is given as: Section 2 recalls basics of pairing on elliptic
curve and multi-pairing technique, and lists known conditions on suitably chosen
extension fields for pairing-based cryptography; in Section 3 we propose new
faster pairings on ordinary curves over extension fields; then in Section 4 we
analyze the theoretical performance of our new optimal pairings compared to
the optimal ate pairing and optimal twisted ate pairing; in Section 5 we extend
the similar method to supersingular curves over composite extension fields.

2 Background

2.1 Bilinear Pairing

Let E be an elliptic curve defined over a finite field F; where ¢ is a prime power,
and the neutral element of which is denoted by O. Let r > 5 be a prime factor of
|E(F,)| and let k > 1 be the smallest integer such that r|¢¥ — 1 which is named
the embedding degree with respect to r. Here we define G; = Efr]NKer(my — 1)
and Gy = E[r] N Ker(m, — ¢) as the two eigenspaces of the g-power Frobenius
endomorphism 7, on E. Let p,, C sz denote the group of r-th roots of unity. For
s € Zand R € Elr], let f, g be a F x-rational function with divisor div(fs r) =
S(R) — ([s]R) — (s — 1)(O).

Tate Pairing and Its Variants. The reduced Tate pairing [4] is given by

tr : Gl X G2 — M, (P7 Q) = fT,P(Q)(qk_l)/r.

Let s be an integer such that s = ¢ (mod 7). When r { c= Zf;é sF=1=7¢J (mod r),

the modified ate pairing [22] is given by

as: Gy x Gy — pry, (Q,P)— fS’Q(P)(q"_l)/r.
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Assume that E/F, admits a degree-d twist. Let e = k/gcd(k,d) and s’ € Z
satisfy that s’ = ¢° (mod r). The modified twisted ate pairing [22] is given by

. k
Al Gy X Go i, (P,Q) v fu (@) I
Then a; and al***! are non-degenerate if and only if r { L = (s* — 1) /r.

For the convenience of the construction of new pairings, we use the variants
a(Q,P) = f,.0(P)@"=D/" and a"st(P,Q) = fue.p(Q)@ ~V/" instead of the
above ate pairing and twisted ate pairing in the rest of this paper.

Miller’s Algorithm. Let f; p be the rational function with divisor div(f; p) =
i(P) — ([{]P) — (i — 1)(O), and IR g is the line passing through points R, S and
URr+g is the vertical line passing through point R + S with divisor div(lg g) =
(R)+ (S)+ (=(R+S)) — 3(0) and div(vgts) = (R+S) + (—(R+ S)) — 2(0).
Using the fact that fi,4i, p = fi, P fir,Pli,]P,[is] P/ Vi1 +is P, Miller’s algorithm
[29] calculates the evaluation of f; p(Q) recursively. In §2.2 Algorithm 1 is just
the classical Miller’s algorithm when assuming N = 1.

Optimal Pairing. In [33], Vercauteren proposed an important conception of a
pairing having the “optimal” loop length. Let e : G; x Go — p, be a non-
degenerate pairing with |G1| = |G2| = r, then e is called an optimal pairing
if it can be computed in ¢(1k) log, r + €(k) basic Miller iterations, with e(k) <
log, k. Furthermore, Vercauteren conjectured that any non-degenerate pairing on
an elliptic curve without efficiently computable endomorphisms different from
powers of Frobenius, requires at least O(log,(r)/¢(k)) basic Miller iterations,
where the O-constant only depends on k.

Pairing Lattices. Hess [21] generalized the conception of the optimal pairing
to provide pairing lattices as a convenient mathematical framework to create
pairings with optimal degrees of the divisors of pairing functions. Let r € Z be an
integer, and let s be a primitive n-th root of unity modulo r* for n > 2 and i > 1.
Define the Z-module 1) = {h(t) + (t" — 1)Z[t]|h(s) = 0 (mod %)}, and ||h||; =
S kil For h(t) = Y10 hit' € I and R € E(F)[r], let fn g be the F -
rational function with divisor div(fsn,r) = Y ivg hi(([s']R) — (O)). It is easy
to deduce that div(fs nt,r) = div(fsn,1s)r) and div(fs nig,r) = div(fsn,rfs,9,R)
for g(t) € 1),

The evaluation of f, , r(P) can be calculated analogously to the method for
the optimal ate pairing in [33] (also cf. [34]). Following this analysis, we may
assume that the length of the Miller loop for calculating f;  r is approximated
by logs ||h||1 + €, where € < log, n.

Theorem 1. (21, Theorem 6) Assume that r is a prime, and s is a primitive
n-th root of unity modulo v2. Let W denote the multiplicative group of functions
G, x Gy = pp, and WP denote the subgroup of bilinear functions. Let ay :
IM S5 W, h— as,p, be a map with the following properties:
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1. a5 g4n = asgasp for all g,h e I,
2. Gsne = agy, for all h € ID with asp € Whitin,
3. as, € WP\ {1} and as -5 = 1.

Then Im(as) = WP ker(as) = I®). More precisely, Qs = ai},(f)/r for all
h € IV, There exists an efficiently computable h € IV with ||h||; = O(r*/#M).
Any h € T with asn # 1 satisfies ||h]j1 > ri/en),

Especially, the optimal ate pairing and the optimal twisted ate pairing are well-
defined and probably constructed in the ate pairing lattice and the twisted
ate pairing lattice in [21] with the optimal loop length log,(r)/¢(k) + €1 and
logy(r)/@(d) + €ea.

2.2 Multi-pairing Technique

In many protocols the evaluation of the products of the form Hfi1 te (P, Q)
is required. A naive way to calculate it is to evaluate each ¢,(P;, @Q;) indepen-
dently, and then multiply the results. Since all ¢, (P;, Q;) share some same Miller
operations, Scott [31] and Granger and Smart [19] showed the products can be
calculated in a single Miller algorithm rather than the naive way. The multi-
Miller algorithm only needs a single squaring in the extension field per doubling,
instead of N squarings in the naive method, and also combines the final pow-
erings required in each pairing evaluation. As far as we know, this method is
usually named multi-pairing algorithm given in Algorithm 1.

Algorithm 1. Miller’s Algorithm for Multi-pairing
Input: s = Y1 15,27 € N (2-adic), N € N, {P1, Ps,--+, Pn}, {Q1,Q2,- -+, Qn}

Output: Hivzl fs,P; (Ql)v {[S]Ph [5]P27 Tt [S]PN}
1. f+1

2: for i from N downto 1 do

3 T+ F;

4: for j from L — 1 downto 0 do

5: [+ f2

6 for i from N downto 1 do

7 [ folnr(Q) /v (Qi); Ti < [2]T;
8 if s; =1 then

9: for i from N downto 1 do

10: [ folmp Qi) /vri+p (Qi); Ti < Ti + P

11: return f.

However, not only can the multi-pairing technique be used to calculate the
products of pairings, but it also can be applied to calculate a single pairing
defined as the products of several rational functions with the same Miller loop. In
[30], Sakemi et al. utilized the multi-pairing technique to calculate the improved
twisted ate pairing on the BN curves with the sophisticated reduction. We extend
this idea to the implementation of pairings considered in this paper.
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2.3 Suitable Extension Field for Pairing-Based Cryptography

In the rest of this paper we always assume that there is a pairing-friendly curve
E defined over an extension field F, with ¢ = p™. Let r divide |E(F,)| but do
not divide any other |E(F,:)| for 1 < i < m. We list some well-known results
of the security extension fields for ECC and Pairing-Based Cryptography, and
show our suitable choice of the extension fields for the comparison in Section [4l

Attack on ECDLP over Extension Field. Weil descent proposed by Frey [L3]
aims at transferring the DLP from E(Fm) to the Jacobian of a curve C' over
F, and then computes the logarithm on this Jacobian by using index calculus.
Many researches [I5[17IT4/20/28] have studied on the scope of this technique on
the vulnerable curves over binary fields. Diem [J] extended this attack in odd
characteristic.

Later, Gaudry [16] developed decomposition-based index calculus, which ap-
plies to all (hyper-)elliptic curves defined over small degree extension field with
the running time O(¢?>~2/™) for m > 3. Diem [I0] proved that Gaudry’s algo-
rithm has subexponential running time when the field order p™ increases in such
a way that m? is of order log, p. Later, Joux and Vitse [24] improved this index
calculus, when m > 5 and log, p < O(m?).

But, both Weil descent and decomposition-based index calculus are often just
a little more efficient than generic attacks, and ineffective for solving the ECDLP
in practice.

The Static Diffie-Hellman Problem. The Static Diffie-Hellman problem (Static
DHP) on an elliptic curve consists of: for a secret integer d, given two points
P, [d]P € E(F,) and an oracle Q — [d]Q, compute [d]R where R is randomly
chosen point. Recently Granger [I8] discovered the best known algorithm that
solves the Static DHP problem on elliptic curves defined over a finite field of
composite extension degree Fy» by making O(qlf n1 ) Static DHP oracle queries

and in heuristic time O(q"~ nii ). Estibals [IT] showed that a simple but efficient
protection against this attack is revoking a key after a certain amount of use.

Minimal Embedding Field. The embedding degree k should be small enough
that the pairing is efficiently computable, but large enough that the DLP in
F?. is hard. However, Hitt [23] showed that the minimal finite field ensures
the ECDLP of E(FF,)[r] secure is not necessarily Fyr, but rather is Fpoa, ) =
Fyordre)/m. Then Fora, )/m is named the minimal embedding field and coincides
with the traditional assumptions when m = 1. Later, Benger et al. [6] gave
explicit conditions on ¢, k, and r, which (when satisfied) imply that the minimal
embedding field of E with respect to r is F .

Theorem 2. ([6], Corollary 2.10) Let A be an abelian variety over F,, where
q = p™ with p prime. Let r # p be a prime dwiding |A(F,)|, and suppose A has
embedding degree k with respect to r. Assume that r  km. Write m = a3, where
every prime diwiding o also divides k and ged(k, 8) = 1. (This factorization is
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unique.) Denote by e the smallest prime factor of 8. If q, k, and r satisfy any
of the following conditions:

I. m=a«a (and B =1);

2. B is prime and r > ®Pro(p);

3 r> pkm/e’.

4. Alm or 2|k and r > p*F™/2¢ 4 1.

Then the minimal embedding field of A with respect to r is Fpkm.

Hence, in this paper we prefer to choose a large prime p and an integer m > 5
to prevent the known attacks in practice. If there exist algorithms to generate
pairing-friendly curves over Fpm defined in [12], we may restrict m, p, k and r to
satisfy one of the conditions in Theorem 2l For the comparison in Section [E] we
use even embedding degrees of the form k = 2?37 and examine examples using:
m = 7,11 (m > ¢(k)), such that condition (2) of Theorem [ is satisfied; and,
m = 8,9, such that condition (1) of Theorem [is satisfied.

3 New Pairings on Elliptic Curve over Extension Field

In this section we propose new pairings on an elliptic curve F over an extension
field F; which make better use of the multi-pairing technique to speed up their

implementation. We first transform the ate pairing a(Q, P) = qu(P)(qk—n/r
and the twisted ate pairing a'*!(P, Q) = fqe7P(Q)(qk_1)/r as follows.

Theorem 3. Let E be an ordinary elliptic curve defined over F, with ¢ = p™
Let r be a prime such that r divides |E(Fy)| and ged(r,p) = 1. Let k be the

minimal embedding degree with respect to r. Let E(® ) be denoted the curve defined
by raising the coefficients of the equation for E to the p'-power for 0 < i < m.
Let m,: and 7y be the p-power Frobenius isogeny and its dual isogeny from every

E®) to E®P™) . For P e G1 and @ € G4, then
m—1 (pm*-1)/r
= ( Il fo7, @ (mei(P)))
i=0
defines a pairing.

Assume that E/F, admits a degree-d twist E'/Fge with e = k/ged(k,d) and
d > 2. Let v be the associated twist isomorphism ¢ : E — E'. Then

m—1 (™ —1)/r
P)= ( LT fo7, ou@ (mpmes OT/J(P)))
=0

and
k1) /7

m—1le—1

(p
glwist (P,Q) = <H pr’ il mJ]P)( mlci(QEjl)))

=0 j=0

define pairings, where Q; = mpm;i (Q) for 0 < j <e—1.
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Proof. Since [p'] = myi o Ty with i E®"™) - E for some i, it follows that
for B € E(Fy)[r], mydiv(fypir) = m (p(Ip'1R) = (PHIR) = (p = 1)(0)) =
P! (p(7pi (R)— (7 ([PIR))— (p—1)(0)) = div(fpl .(r))> Where 77, is the pullback
of 7. Thus f,, ] ROy = prr m €F (BT ‘>) If R = Q, then f, ,io(P) =

fp, (Q) (7rp'" 1( )) ;if R = P, then fp, [p? ]P(Q) = fp,%pi (P) (ﬂ-pmk_i’ (Q))ﬂ When
E admlts a twist of degree d, if R = Q' = ¢(Q) € E'(Fye)[r] and P’ = ¢(P) €
E'(Fg)[r], then fp g (P') = fpv.,’;pi(Q/)('ﬂ—pmk—i(Pl))pz.

Since ged(p,r) = 1, there exits an integer M such that Mp™~! =1 (mod 7).
Note that a power of a nondegenerate pairing is also a nondegenerate pairing
when the power and the pairing order are coprime. Thus we can do the following

reduction for a fixed power M of the ate pairing a(Q, P).

*ti:‘* *ti:‘

1) /r pm—i=l k_1y/r
a(Q,PYM = f, o(P) M(q 1)/ H Fopiio(P M(q*-1)/

m—1
m—1, k_ 1)/
= [ for, @ @pm—s (PN (@1 H Foir 1) (mm—s (P)) @ /7.
=0

When E admits a twist of degree d, then a(Q', P') = f,¢ (P’)(qk_l)/r also
defines a pairing from Theorem 1 in [7], where P’ = ¢(P) € E'(F)[r] and
Q' =(Q) € E'(Fye)[r]. So a similar reduction can be done for a(Q’, P')M as

m—1

a(Ql7P/)M — fqu/(P/)M(qk—l)/r _ H fp7[pi]Ql(P/)pnt—i—lM(qk_l)/r
i=0

m—1 m—1

m—1/ k__ k_1Y/r
—pr,m(Q) pries (P MPT 0 prm(m prii (P1)) 707

For the twisted ate pairing, since fp’ﬁpi(p) € IFq(E(p"hi))7 let Q; = 7, (Q) for

0 <j<e—1,it follows that fp’ﬁpi(P)(ﬂ'pmk—i(Q))qj = fp’ﬁpi(P)(ﬂ'pmk—i(Qj)).
Thus we have that

gt k_1y/p
thst(P Q) _ fqe,P( -1)/r _ H fq, " ]P M(q"-1)/

e—1m—1 ] ]
_ H H fp "LJ+1]P ) e— 1—1p'm71—1M(qk_1)/r
7=0 =0
e—1m—1
m—i—1 k
- H fopmi+itp(Qe—j—1)" Ml =D/

7=0 i=0

e—1m-—1

k— T
=TI IT for,comom (mpme—i (Qe—j—r)@ ~V7".

7=0 i=0
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Write a(Q,P) = a(Q,P)™, a(Q,P) = a(Q,P)M = a(¥(Q),(P))" and
atvst(P,Q) = a'*(P,Q)™. Thus they define new pairings. O

Theorem [3]shows that the ate pairing and the twisted ate pairing on the curve E
over Fpm can be modified as the products of several rational functions with the
same Miller loop on the curves {F (pi)}ogkm. Next we give the optimal versions
of the new pairings in Theorem [3] according to the theory of pairing lattices.

Theorem 4. Use the notations in Theorem[3 Let s be a primitive (mk)-th root
of unity modulo r* such that s = q (mod r). Let h € Z[t] satisfy h(s) = 0 (mod 7).
For P € Gy and Q € G2, following the respective assumptions for a,a,a* ! of
Theorem [3, then

m—1 (pPmF-1)/r
ds,h(QaP) = < H fs,hﬁpi,(Q) (Wp”‘_i(P))) 5
=0
m—1 (e™F=1)/r
as,n(Q, P) ( H fshz,i00(Q) ) (Tpmi—i 0¢(P))) ,

‘ m—1le—1 (pmkfl)/"'
ali*(P,Q) = ( II I1 fon e (wpm@ejl)))

i=0 j=0

define pairings, which are nondegenerate if and only if h(s) Z 0 (mod 72).
There exists an efficiently computable h € IV with ||k, = O(rY/¢(mk)) . Any
h € IM with asp, # 1 satisfies ||h||y > r/#(mk),

Proof. Since foginr = fogrfsnr and foner = fonsr for h,g € I, it

follows that s gin = s gls h, Gsgrh = Gs,glsh, at“’wt = ghwistgtwist  and

s,9+h 8,9 s,h
= _ (7 s 5 _ (A ~twist __ twist)s 1l = ~
Qs he = (Gs,0)°%, Qs he = (Gs,1)®, age (as’h )® for the pairings @ p, Gs,5 and

at’st. Let # denote the Tate pairing on E®)[r]. Since f, r = fsr.r, we have

m—1 ( ""k—l)/r m—
s, (Q, P) = < H frﬁpi(Q)(']Tp’"—i(P))) ’ H £~ (i (@), mpm—i (P)).
i=0 o

Write ¢;(Q, P) = tEf) (7pi (Q), mpm—i(P)), then each t;(Q, P) is a pairing on E[r].
As with the proof of Theorem[3] we have frw1Q(P) = frz (@) (Tpm- i(P))P', and
furthermore ¢([p’]Q, P) = t;(Q, P)?". Thus s, T(Q P) =t,.(Q, P)™ is a pairing
on E[r].

Let ¢ € Z satisfy s = p + cr and let ¢y € 7Z satisfy p™* = 1 4 cor (mod r?),
then s™ = (p + er)™ = 1 + cor + mkp™~ler = 1 (mod r?). Thus ¢g =
—mkp™ ¢ (mod r). We know that a(Q, P)*" """ =+.(Q, P)® in [22]. From

m—1 m—1

the proof Theorem B} we have a(Q, PP = a(Q,P) = tT(Q,P)_’”p S We
conclude that @, ,—s(Q, P)™! = a5, (Q, P) = a(Q, P)aw(Q P) =
Similarly, it can be demonstrated that as ., s(P,Q) = 1, ’g“;f‘gts(P Q)

and a5, (Q, P) = t(Q', P")™, al"*'(P, Q) = t(P,Q)™* are pairings.
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From Theorem [I we conclude that for every h satisfying the conditions, as p,
as,r, and aly’*" are nondegenerate if and only if h(s) # 0 (mod r?). O

From Theorem @ we may construct an optimal h satisfying the conditions of
Theorem [ and ||h|j; = O(r}/#(mk)) so that each pairing @ p, Gs, and a“’”St
has the optimal multi-Miller loop length log,(r)/¢(mk) + €, which is smaller
than the traditional optimal loop length. We name these pairings the optimal
Gs.h, Gs,p and at“’hwt However, the implementations of these pairings involve the
calculations of 7, (R) and m,; (R’) for some R and R’. In practice, the imple-
mentation of the Frobenius power costs little, but the implementation of the
dual Frobenius isogeny (also called Verschiebung) might be costly. We introduce
skills to perform this costly calculation in Section El

Ezplanation and Extension of Sakemi’s Method. In [30], Sakemi et al. proposed
a variant of the twisted ate pairing on the BN curves with e =2 (and m =1 in
the setting of this paper), whose pairing function is given as

10

fx,P(Q) = (sz,P( »(Q) fzx [p]P ) (l[2x P7P(7rp(Q))l[b(p]P,[fp]P(Q))p
liox- 1)pw]P[2x]P(7Tp(Q))l[(2x 1] P [2xp] P (Q)-

Using the method of this paper and the property of the twisted ate pairing [22],

we conclude that fr ,i)p(Q) = fr, p(Q)?"" for any T € Z and j > 1, and then

choose h(t) = (2 — 1)t*° — t + 2x to transform the pairing function of at“;l’St

s

Theorem [ under the final exponentiation (using subfield elimination) as follows.

fsjlvp(WP(Q))fsjh[p]p(Q)
H Sox—1,[pro+i1p (1= (@) fax, (p) P (Tpr-: (@) (25— 1)p10+1] P, 2591 P (Tp1-1 (Q)

i=0,1

= [ (fowiprp(mp- (@) iz (T Q) far i1 (mps(@)

i=0,1

U2x—1)p10+1] P 2xpi] P (Tp1-1 (Q))

= fx,P(Q)'

As a further extension, we utilize h(t) = t3 — 2 +t + 6y + 2, originally used for
the optimal ate pairing on the BN curves in [33], to obtain another variant as

fs,h,P(ﬂ'p(Q))fs,h,[p]P(Q)

= H Joxa2,pi1p (111 (Q)) (Z[p“i]P’[fp“"]Pl[p“"fp“i]P,[pl“]P) (mp1-:(Q))-
i=0,1

The linear part of the above pairing function of ’tw’St(P Q) is calculated effi-
ciently by using the skew Frobenius map 7,2 as in [3()] and the new congruence
(1—2x)p?—p+4x—1 = 0, and the hard part can be carried out by [p?|P = 7,2 (P),
PP =75 (P), [p|P = [4x — 1]P — 7 ([(2x — DIP), [p*|P = 72 ([p] P).
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4 Comparison

In this section we make a theoretical comparison between the optimal pairings
in the pairing lattices in Theorem [] and the optimal ate pairing and optimal
twisted ate pairing, which depends on the assumptions of the existence of the
optimal pairings for all pairing lattices and the existence of the pairing-friendly
curves over extension fields.

Following the analysis in [19], we assume that F,m« is a pairing-friendly field
with p™ = 1 (mod 12) and k = 2?37, and quantify the cost of a multiplication
in Fpmr as 357 multiplications in Fym (cf. [25]). In implementation, the loop
parameter usually has a negligible Hamming weight so that few addition steps
are encountered throughout the loop. Thus we only compare the operation counts
for the doubling steps in Miller’s algorithm. We list the up-to-date known results
[7] of operation counts for the doubling step in Table [1l

Let m;, m., my denote multiplication in Fy, Fge, For; let s1, se, s, denote
squaring in Fy, Fge, Fox. The cost part 1 is taken to update the point used for
constructing the new rational function; the cost part 2 is taken to evaluate the
new rational function at the right argument; then the cost part 3 is taken to
update the final rational function.

Table 1. Operation counts for single doubling step for the ate pairing and the twisted
ate pairing

Curve & twist degree Cost part 1 Cost part 2 Cost part 3

ate vy =2 +ax, d=2,4 2m, + 8s. + 1d,
a(Q,P) y*=2%+b d=2,6 2m.+T7s.+1d,
twisted ate y? = 2> +azx, d=2,4 2m; + 8s; + 1d,
a™ t(P,Q) y*=2°+b, d=2,6 2mi+T7s1+ 1ds

2(§)m1 1my, + 1sk

2(k)m1 1my, + 1sk

Since the multi-pairing technique can save m — 1 squarings (using 2-basis) in
each iteration when computing the products of m pairings (or functions with
the same Miller loop), it follows that it is less efficient for the ate-like pairing
computation compared with the twisted ate-like case. However, when the high-
degree twist technique in [7] is available, the ate-like pairing computation can
be still more efficient with the multi-pairing technique. Thus we assume that
FE admits a high-degree twist, and both the optimal ate pairing and twisted
ate pairing have the loop length [log,(r)/¢(k)], and both the optimal a, j and
atwist have the loop length [logy(r)/¢(mk)]. We show that the optimal @ j and

s h
dg“;wt could be implemented more efficient than the optimal ate pairing and the

optimal twisted ate pairing when choosing suitable values of m and k in §2.3.

Precomputation vs. Storage. The calculation of pairings in Theorem Ml involves
the calculation of 7, (R) for R € E(F,m«) and 1 <1i < m. As far as we know,
there is no efficient method to calculate the dual Frobenius isogeny on the general
curves. Here we rewrite 7, (R) = mymi—i([p'|R) by using 7, o 7, = [p’] and
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mmi(R) = R. Thus the costly part of this calculation is the multiplication by
p". We introduce two skills to deal with it. One named the precomputation skill
(P) utilizes the fixed argument optimization first pointed out by Scott [31] and
recently analyzed in more detail (cf. [8132]); the other named the storage skill
(S) is proposed in this paper for computing our new pairings.

The first skill can be applied to many protocols in which the fixed argu-
ment optimization is feasible. With the fixed argument optimization, we can
precompute all calculations depending solely on the lift argument R including
the calculations of all {7,:(R)}1<i<m. Hence, in each Miller iteration, the op-
erations for the doubling step only involve the cost part 2 and the cost part 3
in Table [Il Besides, in this situation, there is no advantage of using a pairing-
friendly curve with the maximal twist, and calculating a pairing in the twisted
ate pairing family.

When the fixed argument optimization is infeasible, the precomputation is
useless. But we could still store these calculations depending solely on the lift
argument in each pairing computation, which are useful for the calculations of
Tpi (R), and then we do the other calculations depending on the right argument.
Taking the pairing a(Q, P) in Theorem 3] for example, we assume that 7, (Q) is
given for some 4 € [1,m — 2]. Then the calculation of the coefficients of fp,%pi(Q)
involves [p]7,i (Q) = mpmi—i([p"1]Q) = mp(Tpi+1(Q)). Thus we can compute
Tpit1(Q) easily by using mpmr—1([p]7pi (Q)) = Tpi+1(Q), which is essential to the
construction of fp7%\p7‘, +1(Q)- This process only increases a few costs for imple-
menting the Frobenius power, and needs the same additional memory compared
with the precomputation skill which may be feasible in modern devices. Hence,
we may omit the calculations of 7, (R) when using our storage skill, and then
give the comparisons below.

Table 2. The proportion of the runtime cost of the Miller loop of the optimal ate
pairing to the optimal as

k=8 k=12 k=16 k=18 k=24 k=32 k=236

Skl 4 4—6 d=4 d=6 d=6 d—=4 d—6

m=7 S 1:0801:0795 — 1:0.794 — — —

P 1:07011:0688 — 1:068 — —
m=8 S 1:0.7321:0.6751:0.7271:0.6731:0.671 1 :0.725 1 : 0.670

P 1:05931:05811:05831:0.5791:0.5751:0.576 1 : 0.574
m=9 S  — 1:0669 — 1:0.6681:0666 — 1:0.665

P 1:0574 — 1:05731:0.568 — 1:0.567
m=11 S 1:0.7931:0.7281:0.7891:0.7271:0.724 — —

P 1:06691:06211:06231:06191:0.614 —

Optimal Ate Pairing vs. Optimal G, p. In Table [2] we make a theoretical im-
plementation comparison between the optimal ate pairing and the optimal a,
for some suitable embedding degrees and extension degrees, when ignoring the
final exponentiation and using the precomputation skill or the storage skill.
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Table [2 shows that the implementation of the optimal @, , improves the runtime
cost of the Miller iterations by between 30% and 43% when using the precom-
putation skill, and between 14% and 34% when using the storage skill.

Optimal Twisted Ate Pairing vs. Optimal a“’”St Since the fixed argument tech-
nique is mainly used for pairings of the ate family in practice, we only compare
the theoretical implementation of the optimal twisted ate pairing with the opti-
mal at“’”t for some suitable embedding degrees and extension degrees, by using
the storage skill and ignoring the final exponentiation. Table B shows that the
implementation of the optimal a“’”St improves the runtime cost of the Miller
iterations by between 26% and 47%

Table 3. The proportion of the runtime cost of the Miller loop of the optimal twisted
ate pairing to the optimal at“’“t

k=8 k=12 k=16 k=18 k=24 k=32 k=236

Skl 4 4—6 d=4 d=6 d=6 d—=4 d—6
m=7 S 1:0.7361:0.693 — 1:0662 — -
m=8 S 1:0.6281:0.5901:0.5641:0.5641:0.5441:0.5331 :0.532
m=9 S  — 1:0587 — 1:05621:0543 — 1:0.531
m=11 S 1:0.6831:0.6411:0.6161:0.6151:0.594

5 Our Method for Supersingular Curve over Extension
Field

As the earliest pairing-friendly curves utilized in pairing-based cryptography,
supersingular curves have embedding degree £ = 2,3,4 and 6. However, for
the recommended supersingular pairing-friendly curves with k = 4 and 6, there
are two obstacles to applying our method: (1) their defining fields Fa» and Fgn
usually have large prime extension degrees; (2) the main advantage of applying
multi-pairing technique, namely saving squarings (using 2-basis) or cubings (us-
ing 3-basis) in each iteration, might be worthless for these supersingular curves,
since squaring or cubing can be implemented very fast.

But recently, Estibals [11] first considered the Tate pairing computation for su-
persingular curves over moderately-composite extension fields taking advantage
of a much easier tower field arithmetic. Our method can be applied to Estibals’s
curves over composite extension fields to define new pairings 7 5, which can be
implemented in an efficient and parallel way.

Theorem 5. Let E be a supersingular curve over a composite extension field
Fym with the embedding degree k. Let v be a large integer dividing |E(F¢m)| and
let ¢ be the distortion map. Let s be a primitive (mk)-th root of unity modulo
r? such that s = q (mod 7). Let h(t) € Z[t] such that h(s) = 0 (mod r). For
P,Q € E(Fym)[r], then
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(¢"F=1)/r

5,0 (P Q) = ( H fshP< i}Q))qi)

defines a pairing, which is non-degenerate if and only if h(s) Z 0 (mod r?).

Proof. Given in Appendix [Al O

Write £i(P. Q) = fonr (¢([a~1Q))" , then i (P, Q) = TI1"5" fi(P, Q)@ =1/,
When precomputing all [¢7*]@ for 1 < i < m — 1, we could compute these
fi(P,Q) in a natural parallel and efficient way, since they share the common
pairing function fs 5 p whose coefficients could be computed and stored first.

5.1 Estibals’s Supersingular Curve over Composite Extension Field

There are several supersingular curves of characteristic 2 and 3 on fields with
composite extension degree large enough for the 128-bit or 192-bit security level
given in [I1]. Here, we take two most important curves E; (Fzsxo7) (128-bit secu-
rity level) and Eo(Fairxer) (192-bit security level) for example to construct the
corresponding s p,.

— E1(Fgsxor) i > =23 —2—1, (@1 =3",m1 =5k=06)
r1 = 434A9TAF ECDEB84F16624099C436C A9D E0C E4526690A8 F0 524
09B61DACB97A4411F3ED1CD3F39A6647D45 (338 bits)

- EQ(IF317><67) : y2 = J,‘s — T+ 1, (C]Q = 367,m2 = 17, k= 6)
ro = 4A40F E5A48A1956 BEEEC98D0147445A190711.D0F C A4FCD5A65
598194911 D4D9F5D32156CAB3B4C9D53D02B3793E8AA2B1BAD8383
2815DABASSEE9A2CD28A38027TD2EB2F DOB6EABEFD03DA273C' D
DDC19A1507E36281BC212F28 T8 EA3T9AEE4A3353C8348 K13 F'5890D
AA8367040520F C04B2E073193BE13922C EA13F106C9D8ASF E546 D2 F
21FE2FBEE3T3FT9B198FCTF1A3F B5594F E97TB2D6 EE6ADAS4E6D
726 A709370D86F EEF AF D20300BF BDT72B4F162A26C70F9F1927AB6
6111B1FD5E7C1197TAAEDD817T76 BF E079449A11 A1 AC849 (1650 bits)

Using the method of [2I] (or [33]) to construct the p(mk) dimensional lattice
L =1 = {h(t)|h(s) = 0 (mod r)}, we find a approximative “short vector” of
the polynomlal form hi(t) = t° + c1t? + 1 with ¢; = 3% for E;(Fgsx07); and,
ho(t) = t17 + cot® + 1 with ¢o = 334 for Es(Fsi7xe7). Form the theory of pairing
lattice, it follows that

L N e

fsiha, P = fer Py )
v_p,
lag21Pas a2 et o, o

f‘iz,h%Pz = f02,P2 )
V-p,

where P; € E;(F m:)[r;] and s; = ¢; (mod ;) for i = 0,1. We note that the
calculations of [g "“]R and [—g;"" — 1]P; are very fast by using Frobenius map
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Ty and the trace equation. Thus, assuming that m; multiprocessors (i = 1, 2)
perform in parallel, the Miller’s loop length of 75, », for E;[r;] can reach an
small value logs(c;), although which is still a little worse than the theoretical
minimal length log(r)/¢(mk), when using 3-basis in Miller algorithm. Further,
with Estibals’s compact hardware implementation of these fields arithmetic, we
believe that our pairing 75 would be implemented at much higher speed in
parallel way.

6 Conclusion

We have shown that pairing-friendly curves over extension fields could be more
suitable for the pairing implementation not relying on a fast field arithmetic of
certain extension field. When assuming there exists a pairing-friendly curve de-
fined over an extension field, we have proposed new pairings and pairing lattices
on this curve making better use of the multi-pairing technique to obtain a fast
implementation. By the theoretical analysis in an ideal model, the performance
of the optimal ones of our pairings could offer a speed up of between 30% and
43% with the fixed argument optimization, or by up to 47% with our new storage
skill, compared to the performance of the optimal ate pairing and the optimal
twisted ate pairing, when m is greater than 6. In addition, we have extended the
similar method to supersingular curves over composite extension fields to con-
struct more efficient pairings in parallel implementation. To sum up, our work
has presented further important evidence of the advantage of pairing-friendly
curves over extension fields.

In future, there are needs for careful study of the generation of pairing-friendly
curves over suitably chosen extension fields, and further study of the paral-
lel implementation of 755 on Estibals’s supersingular curves FEj(Fssxor) and
FEs (IF317><67).
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A  Proof of Theorem

We do the similar reduction as Theorem [ for the modified Eta pairing to obtain
that

mk_1Y /pr m—1 gt (
D(P.Q) = fymp((Q) TV — ( TT fuiwir (4(Q)) )
=0

g -1)/r

Since the multiplication by ¢ on the supersingular curve is inseparable, it follows

that [¢']*div(fq,ig:1p) = div( 5,2;) and then fy 151p(¥(Q)) = fo,r(¥(la~1]Q))

24

Thus we have

g™ 1)/

N(P.Q) = (m[[ fq,p(w([qi]Q))Qi)
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Since ged(g,7) = 1, we can omit the power ¢™ ! to obtain the new pairin
g

i(P.Q) = ("i] fq,p@([q"']Q))qi)

Then, as with the proof of Theorem [l we can construct 7 as

5,0 (P, Q) = ( H fs.h P< i]Q))qi)(qTYLk_l)/r.

and demonstrate it defines a pairing using Theorem [I] similarly (omitted here).

(¢™F=1)/r
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Abstract. The security of pairing-based cryptosystems relies on the
hardness of the discrete logarithm problems in elliptic curves and in fi-
nite fields related to the curves, namely, their embedding fields. Public
keys and ciphertexts in the pairing-based cryptosystems are composed
of points on the curves or values of pairings. Although the values of the
pairings belong to the embedding fields, the representation of the field is
inefficient in size because the size of the embedding fields is usually larger
than the size of the elliptic curves. We show factor-4 and 6 compression
and decompression for the values of the pairings with the supersingular
elliptic curves of embedding degrees 4 and 6, respectively. For compres-
sion, we use the fact that the values of the pairings belong to algebraic
tori that are multiplicative subgroups of the embedding fields. The al-
gebraic tori can be expressed by the affine representation or the trace
representation. Although the affine representation allows decompression
maps, decompression maps for the trace representation has not been
known. In this paper, we propose a trace representation with decom-
pression maps for the characteristics 2 and 3. We first construct efficient
decompression maps for trace maps by adding extra information to the
trace representation. Our decompressible trace representation with ad-
ditional information is as efficient as the affine representation is in terms
of the costs of compression, decompression and exponentiation, and the
size.

Keywords: public-key cryptosystems, the discrete logarithm problem,
algebraic tori, compression, decompression.

1 Introduction

Practical public-key cryptography is fundamental technology in the field of net-
work security. Current security standards recommend the use of 2048-bit or
larger RSA keys [2] and history in these decades suggests that this figure may
increase with advances in computational power. Such key sizes are problem-
atic for devices with limited storage, computational power or network band-
width. One approach to overcome these limitations is a safe key compression
[LOI6ITATEITSIT2IT3], but these compression techniques are unsuited to RSA
keys. Therefore, we focus on cryptosystems based on the discrete logarithm

M. Abdalla and T. Lange (Eds.): Pairing 2012, LNCS 7708, pp. 19-B4] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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problem in a prime-order group. To compress the public-key size is to repre-
sent the prime-order group with fewer bits than the size of the embedding field.
For instance, the recommended size of the finite field is 2048 bits, and the cor-
responding size of the prime-order group is 224 bits [2], because the discrete
logarithm problem in the finite field is easier than in the general group, namely,
the elliptic curve.

The index calculus is a relatively efficient algorithm to solve the discrete loga-
rithm problem in finite fields. The time complexity of the index calculus is subex-
ponential L,[1/3,c] = exp((c+o0(1))(log q)*/3(loglog ¢)>/3) for the finite field F,,
and does not depend on the characteristic or the extension degree [TIITO/TT] ex-
cept the constant c. On the other hand, there are only exponential algorithms
for solving the discrete logarithm problem in the elliptic curves.

Pairings map a pair of elliptic curve points to an element of the multiplica-
tive group of a finite field, namely, the curve’s embedding field. Since pairings
are bilinear, the discrete logarithm problem in elliptic curves is also solved in
their embedding fields. The bilinearity is used to develop efficient cryptographic
schemes [I7/9/3]. In pairing-based cryptosystems, we deal with both rational
points of elliptic curves and values of pairings. Although the values of the pair-
ings belong to the embedding fields, the representation of the field is inefficient
in the size. We show factor-4 and 6 compression and decompression for the val-
ues of the pairings with the supersingular elliptic curves of embedding degrees
4 and 6, respectively. For compression, we use the fact that the values of the
pairings belong to also algebraic tori that are the multiplicative subgroups of
the embedding fields.

Related Work. Table [1l presents existing compression methods. There are two
kinds of compression methods: the affine representation and the trace repre-
sentation. Algebraic tori (Tq, Tg, LUC, XTR) and their subgroups (Karabina,
Shirase) have compact expressions.

In the affine representation, elements of algebraic tori are embedded in ex-
tension fields and identified by an element / elements from subfields. Elements

Table 1. compression methods:ECC, FFC and ATC mean the elliptic curve cryptosys-
tems, the finite field cryptosystems and the algebraic torus cryptosystems, respectively

system ECC FFC ATC
class - - the affine representation the trace representation
name - - T, T¢ Karabina Karabina LUC XTR Karabina Shirase
factor - 1 2 3 4 6 2 3 4 6
public-key 160 1024 512 341 256 170 512 341 256 170
size (bit) 224 2048 1024 683 512 341 1024 683 512 341
256 3072 1536 1024 768 512 1536 1024 768 512
reference - - [16] [16] [13] [13] 9 [ [I2] [18]
comp. - - available available

decomp. - - available no
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of subgroups of algebraic tori are identified by a tuple of an element from sub-
fields and additional information, namely, 1 bit for factor 4 or 1 trit (ternary
digit) for factor 6. Each affine representation has efficient inverse map allowing
multiplication and exponentiation in the embedding fields.

In the trace representation, elements of algebraic tori or these subgroups are
identified by a trace value. Because conjugates are mapped to a same trace
value, no inverse map exists. Therefore, multiplication could not be defined in
the trace representation. On the other hand, exponentiation can be calculated
without decompression or without distinction among conjugates. Although Kara-
bina discusses “decompression” without distinction among conjugates, no effi-
cient “decompression” maps are presented [12]. Most cryptosystems use not only
exponentiation but also multiplication. The existing trace representation is not
useful because of lack of multiplication.

Our Contributions. We propose factor-4 and 6 decompressible trace represen-
tation with additional information for characteristics 2 and 3, respectively. We
construct decompression maps for the trace representation by adding extra infor-
mation. Our decompression maps are efficient. Since our representation permits
decompression, we are able to introduce multiplication in the trace representa-
tion for the first time. All cryptographic protocols based on group law and the
discrete logarithm problem can be implemented on this representation. Why do
we focus not on the affine representation, but on the trace representation? One
of the reasons is the trace representation seems to be suited to improving the
compression factor.

There are two steps for the construction of our representation: Firstly, we
find easily solvable equations whose coefficients are written by the trace value
to obtain the elements of the algebraic tori in the embedding fields as solutions.
Secondly, we distinguish these solutions by additional information, namely, 2
bits for factor 4 or 1 bit and 1 trit for factor 6.

In order to improve the compression factor, it is required that the tuple of
a trace value and additional information have to achieve a better compression
factor than Bosma’s conjecture. Bosma’s conjecture on generalization of XTR
mentioned the tuple of a trace value and other fundamental symmetric polyno-
mials to improve the compression factor [4]. However, the additional information
is much smaller than the fundamental symmetric polynomials.

Structure of This Paper. In section 2 and 3, we present the necessary prelimi-
naries and literature review respectively. In section 4, we propose decompression
maps for the trace representation with additional information. In section 5, we
compare the efficiency of our representation with existing affine representation.

2 Preliminaries and Notation

Let p be a prime, and n, m and d be positive integers. Let Fm be a finite field of
order p™. I;, My, and Sy are costs of inversion, multiplication, and square in the
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field F(,mya. We ignore costs of Frobenius maps and addition in F(,mys that are
small compared with the above costs. Maps Ty ., /F, and N mn JE (yrmya
denote a trace map and a norm map from F,m)n to F,m)e, respectively, where,
d divides n. Maps T'r,,/q and N,, /4 are short for the above maps.

myd

Definition 1. An algebraic torus Ty, over Fpm is defined by

Ty, (Fpm) = N Ker [Nm(pm)n / F] . (1)
Fpm CECF (ymyn

Definition 2. Let pu be the Mobius function. The n-th cyclotomic polynomial
&, () is defined by &, (v) = Hdln(xd — 1)nn/d),

Theorem 1. (a) #T,(Fpm) = D, (p™).
(b) If h € Tp(Fpm) has a prime order not dividing n, then h ¢ F,mya for any
dln with d < n.

Proof. (a) Note that F' can be F(,mys for any d|n with d < n. See also [16].
(b) Let prime r be the order of h. Since r fn, X™ — 1 has no repeated roots in
the algebraic closure of IF,.. See also [4]. O

In the case of m > 1, #Tp,n, (Fp) = @ (p). If b € Ty (Fp) has a prime order
not dividing mn, then h ¢ F,q for any d|mn with d < mn. On the other hand,
the order of the finite field F(,mn is factored as in eq. () by using cyclotomic
polynomials.
(™ =1 = ] @alx) (2)
dlmn

X
(p'rn)n
subfield F,q¢. In other words, it is a subgroup of Ty, (F,), and is not a subgroup

of Ty4(F,). Therefore, public-key cryptosystems defined on prime-order subgroup
not dividing mn of the algebraic tori T, (F,) have the same security level as
the multiplicative group IF‘(Xp,,L),,L.

Let E be an elliptic curve defined over F,m, and let r be a positive integer
such that r|#E(F,m). A subgroup of E(F,m) with order r has the embedding
degree k, and k is the smallest integer such that r|{(p™)* — 1}. The Tate pairing
is a function

s ) 2 E(Fpr)[r] X E(F rye ) [TEF umye) = Fys A}

The secure subgroup of the multiplicative group F is not covered in proper

A value of the Tate pairing is an equivalence class in F(Xpm) v/ {]F(Xpm) .} For prac-

myk

tical purposes, we obtain the reduced Tate pairing e(P, Q) = (P, Q)q{n(p A
e C F(Xp,”)k as a unique representative of this class, where u, is a set of r-th
roots of unity. There is an important fact p, C T (Fpm) C ]F(Xpm) - By definition
of the embedding degree, r /{(p™)¢ — 1} with d < k. In other words, i, is a
subgroup of Ty (F,= ), and is not a subgroup of Tg(Fpm ).

The supersingular elliptic curves over F,m have the following order [15]. For
embedding degree k = 4,
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~-p=2and E;: y* +y =23+ 2+ a;, where a; =0 and a, = 1.
— #E;(Fpm) =p™ £ /2p™ + 1, where m is odd.

For embedding degree k = 6,

~p=3and E; : y*> = 2% — x + a;, where a; = 1 and ay = —1.
— #E;(Fpm) =p™ £ /3p™ + 1, where m is odd.

3 Literature Review

3.1 The Affine Representation

In this section, we recall the definition of Ty. We use the Ty affine representation
as the special case of the projective representation for the following construction
of decompression for trace maps. Because operations are more efficient in the
projective representation than the affine representation, operations are done in
the projective representation. Maps between the affine representation and the
projective representation are called a compression map and a decompression
map.

T,. This is the factor-2 compression and decompression method by Rubin and
Silverberg. An element of To(F,m) is identified by an element of F,m. Let an
element ai;;’g of Ty(Fpm) be corresponding to (a,b). Where a,b € F,m and
(a,b) # (0,0), Fipmy2 = Fpm(0), and o € ]F(Xpm)z,. This representation has a
natural projective equivalence relation. The element corresponding to (a,b) is
equivalent to the element corresponding to (ac, be) for any ¢ € ]F;m. So, this rep-
resentation can be called the projective representation. We obtain (a/b, 1) as the
representative point of (a,b) and it is the affine representation of To(Fpm)\{1}.

The compression map (from the projective representation to the affine repre-
sentation) C and the decompression map (from the affine representation to the
projective representation) D are as follows:

C: To(Fpn \{1} = Fp D : Fpm — To(Fpm)\{1}
b !

at Uml—nl/b7 a a+Um.

a + boP a’' + oP

3.2 The Trace Representation — Compression by Trace Maps

In this section, we explain Karabina and Shirase. We construct decompression
maps for the compression in the next section. Note that exponentiation in the
trace representation itself can be calculated, but multiplication is not done.

Karabina. This is the factor-4 compression method. Let p = 2 and m be odd.
An element of groups G, #G4 = p™ +/2p™ + 1, is identified by an element of
F,~ without distinction among conjugates. The compression map is as follows:

TT4/1 : ]:F(p'rn)4 — Fpm

m ) 3

g N g + gpm + g(pvn)2 + g(p
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Since #G+#G_ = P4(p™), The groups G+ are subgroups of Ty(Fpm ). Such
subgroups are related to supersingular elliptic curves of embedding degree 4.
Karabina also proposed some exponentiation formulas. Although there is “de-
compression” without distinction between conjugates, he didn’t give any efficient
decompression maps.

Shirase. This is the factor-6 compression method. Let p = 3 and m be odd. An
element of groups G4, #G4 = p™ £ /3p™ + 1, is identified by an element of
F,m without distinction among conjugates. The compression map is as follows:

TT6/1 : F(pm,)G — Fpm,
g N g + gpm, + g(pnz)Z + g(pnz)i} + g(pwz)4 + g(pwz)s.

Since #G1#G_ = Pg(p™), The groups G4 are subgroups of Tg(Fpm ). Such
subgroups are related to supersingular elliptic curves of embedding degree 6.

4 Construction of Decompression for Trace Maps

We propose the decompressible trace representation with additional informa-
tion. The trace representation is decompressed to the projective representation
for factor 4 and 6, and then multiplication can be calculated. Therefore, all cryp-
tographic protocols based on group law and the discrete logarithm problem can
be implemented on this representation.

4.1 Factor 4

We show decompression from (i,Trs/1(g9)) € {0,1}*> x Fpm to g € G- C
T4(Fpm) C F(pmya. Firstly, we find equations to obtain four possible solutions by
Try/1(g). Secondly, we distinguish the conjugates by the additional information
i. The finite field IF(,m)s is constructed as follows:

— primitive polynomial: @5(x) = o* + 23 + 22 + 2 + 1,
— basis: {x,xpm,x(pm)Q,x(pm)s} = {x, 22, 2% 2*}.

We use p"mod5 = 2, z = z+ 2 and y = z + 2®™)”. One can also use
p™ mod 5 = 3.

Theorem 2. Suppose p =2, m is odd, t = \/2p™ and G_ is a group of order
p™ —t+ 1, then there exist the compression map C described by eq. (3) and the
decompression map D described by eq. ({{]).

C:G_\{1} = {0,1}2 x Fpm

h : 3)
Bp™)2 = (’L, TT4/1 (g))



Factor-4 and 6 (De)Compression for Values of Pairings Using Trace Maps 25

D:{0,1}* x Fpm — G_\{1}

4
() 17 ”

Where, the projective representation of g is h<p}’1”>2 , h € Fpymys, and the Tz affine

representation of g is f+];;fn)z  f =01y + oy € F(pmy2 for some 01, 6o € Fpym.

Let i be a tuple of the least bits in the vector representation of §; and ds.

Proof. The decompression map D is calculated by solving eq. (B]) in Lemma
and eq. (@) in Lemma [Bl The following Lemma [ is condition for the element
in the subgroup of the algebraic torus, and leads to Lemma 2] and Bl Lemma [4]
shows why ¢ distinguishes the four solutions. O

Calculations of the compression map C and the decompression map D are shown
in Algorithm [l and

Algorithm 1. Factor-4 compression C

Input: the projective representation 7 , = Po¥Piz  for g

h(pvn)2 h0+h12(p"L)2
Output: (4,Try/1(g))

f = 51y+ 52ypm — ho/h1
i1 < the least bit of d; in the vector representation
i2 < the least bit of d2 in the vector representation
74 (il, i2)

62 +62+061+682+1
Traji(g) 5446252+ 63+85 45346185 +82+65+1

Algorithm 2. Factor-4 decompression D

Input: (4, 77r4/1(g))

Output: the T2 affine representation f+£(';fn)2 f =01y + 62y” for g

1: solve D* + D +1 = {Try,(g)}*" ! for D and obtain a solution D with the least
bit 71 + 42 in the vector representation

2: solve 62 + §, = D? + {Tr4/1(g)}pm7tDt for 2 and obtain d> with the least bit io
in the vector representation

3: 01 < 02+D

Lemma 1. Use the notation in Theorem[d Let g = f+’;j;fn,)2 € G_\{1}. When
t mod 5 =2, 61 and 02 satisfy

(61 + 52)t+1 =60+ 6y + 1.
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Proof. The condition ¢ € G_\{1} leads to g?" *' = g*. We substitute g =
f+z . in the above equation, and then

Frzem™?
{01 + 0105 + 0} + (67 + 6102 + 03 + 61 + 04) by
+ {5 4 610 4 Ga + L+ (57 + 6162 + 63 + 61 + 05)}y”" = 0.
We obtain the desired equation from the sum of coefficients for y and y*". O

Lemma 2. Use the notation in Theorem[2 D = 61 + 62 € Fpm satisfies

m

D*+D+1= {Tra(9)} . (5)

Proof. Lemma [l leads to

82 + 82 = (88 +65)(62 + 62 + 61 + 02 + 1),
81 +62=(8 +65+1)(624+62+61+d2+ 1)+ 1.

We substitute the above equations to the trace value

2 +03+6+6+1

Tr = ’
1/1(9) Of + 0705 + 03 + 03 + 05 + 6102 + 05 + 2 + 1

and then we obtain
(67 + 65+ 61+ 62+ 1) =Try ) (g) "

Where 2 = 2p™ and §, 0a, Try/1(g) € Fym, we obtain

m

67 +65 4061+ +1={Tryn(g)}
0

Note that the characteristic is 2, and square is calculated by the Frobenius map
involving rotation of elements in the normal basis. We obtain two solutions Dy
and D of eq. (B) immediately.

Lemma 3. Use the notation in Theorem[2. The element o satisfies
05 + 62 = D* + {Tryy(9)}7" ' D". (6)
Proof. Lemma [I]leads to
0% 4+ 0y = (0L + 0L) (62 + 02 + 01 + 52 + 1).

We show how to transform the equation of Lemma/[Il to the above equation later.
The left-hand side of the above equation is (D + d2)? + d2 = D? + 05 + d2, and
then we obtain eq.(d).
Where t2 = 2p™ and 81,02 € Fym, the equation of Lemma [] to the power of
(t—1)is
(01+82) = (8} + 62+ 1)1,
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and then we obtain
(61 + 62)(0% + 02 + 1) = 67 + 05 + 1.
We add 8% + 8% to the equation of Lemma [[l multiplied by &; + d2 + 1,
(6 4 05) (0% 4+ 62 + 01 + 09 4+ 1) = (01 + 02) (65 4 62 + 1) + 65 + 02 + 1.

We substitute (61 + 62)(0% + d2 + 1) = 67 + 8% + 1 to the above equation, and
then we obtain the first equation in this proof. a

We obtain two d2 by solving eq. (@) with fixed D. Therefore, we obtain four
solutions for (41, d2).

Lemma 4. Use the notation in Theorem [D. The least bits in the vector repre-
sentation of 81 and 62 identify g € G_\{1} from solutions of eq. () and (8).

Proof. The element g changes by p™ power: (d1,02) — (d2+1,81) — (01 +1,92+
1) = (62 +1,61). 0

4.2 Factor 6

We show decompression from (4,77(g)) € {0,1} x {0,1,2} x Fpm to g € G_ C
Te(Fpm) C Fpmys. Firstly, we find equations to obtain six possible solutions by
Trg/1(g). Secondly, we distinguish the conjugates by the additional information
i. The finite field IF(,mys is constructed as follows:

— primitive polynomial: &7 (z) = 2% + 2% + 2% + 23 + 2% + 2 + 1,
_ basis: {x’xp’”"x(p’”)"”x(p’"')3’x(p’"')4’x(p’"')5} = {z,25, 2%, 25,22, 23}

We use p"" mod 7=5,z=x+ 2®™? 12" and y=z+ 2®™? One can also
use p™ mod 7 = 3.

Theorem 3. Suppose p = 3, m is odd, t = \/3p™ and G_ is a group of order
p™ —t+ 1, then there exist the compression map C described by eq. (1) and the
decompression map D described by eq. (3).

C:G\{1} = {0,1} x {0,1,2} x Fp

h ‘ (7)
h(p'rn)S = (Zv TTG/l (g))

D:{0,1} x {0,1,2} x Fyp — G_\{1}

. f+z (8)
(4, Tre/1(9)) Ftzom
Where, the projective representation of g is h(p}}n)s , h € Fipmys, and the To affine

representation of g is f_{_;rpz L f =01y + 6ayP" + S5y € F(pmys for some o1,
82, 03 € Fpm. The bit {1,0} is transformed from {1,2} of a trit in A=1 for
A =061+ 63+ 63. The trit is in B’ calculated from ds.
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Proof. The decompression map D is calculated by solving eq. (@) in Lemma
and eq. (I0) in Lemma [7l The following Lemma [l is condition for the element
in the subgroup of the algebraic torus, and leads to Lemma [6l [ and Bl Lemma
shows why ¢ distinguishes the six solutions. a

Calculations of the compression map C and the decompression map D are shown
in Algorithm [} and [4

Algorithm 3. Factor-6 compression C

ho+hiz

. . . . . h _
Input: the projective representation W2 T hothyap™ for g

Output: (4, Trs/1(g))

F=61y+ 8" + 65y o/l
a — 51 -1
,3 — 02 —1
Y = 53 -1

A—a+B+(=01+ 062+ d3)

B« af® + By? + v’

C + afy

i1 < a; mod 2 for a; that is the smallest nonzero trit of A~' in the vector rep.

. Al A3 A2
9: B At+1(A2_1-AB)

10: 42 ¢ the least trit of 8’ in the vector representation
11: 72 + (il, i2)
12: Tr6/1(g) <~ B+C:4A3—A

Algorithm 4. Factor-6 decompression D
Input: (i, T7r6/1(g))

Output: the T2 affine representation fijpzm ,f =d1y+ 62ypm i 53y(pm)2 for g

1: solve A% = —[{Tre;1(g9)}* "%+ 1] for A" and obtain solutions Ay", A"
2: if 41 =1 then
3 select AT" with a; = 1 for the least nonzero trit a; in the vector representation
4: else if i1 = 0 then
5: select Ay' with a; = 2 for the least nonzero trit a; in the vector representation
6: end if
7: solve 8% — ' — (ﬁfi’; + 1) = 0 and obtain a solution 3 with the least trit io
8§ —A{(LH +1) 4 +1-47%)
9ty —(14+A7HATE—A7!
10: te A2 — Aty + A7y —t2 — A7

. (1-A=2)p2+t,B—tc
ey g a2)g
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my\3 m
Z . Note z(P™)" = 2™,

Lemma 5. Use the notation in Theorem[3 Let g = ffzrp

When m mod 12 = 5, 61, 02 and 3 satisfy
(5%((53 — (52) + (5%((51 + 09 + (53) + 20301 + 0109 + (5% =+ (5% — 03 = 2,
65(61 — 03) + 61 (81 + 02 + 03) + 26102 + 6203 + 05 + 05 — 61 = 2,
65(82 — 61) + 65(81 + 02 + 03) + 20265 + 0361 + 05 + 07 — 02 = 2.

Proof. g € G_\{1} leads to g?" *! = g*. We substitute g = f+’;;fn)

g, a121d then we obtain the desired equations from coefficients for y, y?" and
(™)
Y . O

, ingP 1=

Lemma 6. Use the notation in Theorem[d Let oo = §1—1, 8 = d2—1, v = d3—1,
A= a+B+7, B=af?+py2+va? and C = afy, where, o, 8,7, A, B,C € Fym.
A satisfies

A7 = —[{Trep(9)} 2 +1). 9)
Where B = ((—1 — A%?)/A") — A and C = A3 — B+ (AB — B? —1)/A3.

Proof. We substitute the equations of Lemma [bl to the trace value

_ A
- B4+C-A3-A
and then we obtain eq. (). O

Tre(g)

Two solutions Ay and A; of eq. ([@) are calculated by square root.
Lemma 7. Use the notation in Theorem[3. The element 8 satisfies
B3 — Ap? —(AQ -1Hp-C=0. (10)

Proof. g € Ty(F(yms) leads a®+ 3% +~? = 1. Eq. (0) is obtained from the above
equation, B = ((—1 — A?)/A') — Aand C = A> - B+ (AB—-B?-1)/A3. O

We obtain three 8 by solving eq. (I0).
Lemma 8. Use the notation in Theorem[3. The element v satisfies
(—AB% + (A2 = 1)B)y + (A% +1)8° — BB+ AC = 0. (11)
Proof. Eq. () is obtained from o2 + 8% +~2 = 1.
We obtain v by solving eq. ([[I]). Therefore we obtain six solutions for (d1, d2, d3).

Lemma 9. Use the notation in Theorem [ The additional information i =
(i1,12) identify g € G_\{1} from solutions of eq. () and eq. {I0). Let iy =
a; mod 2 for the least nonzero trit a; of A™Y, and iy be the least trit of 5’ =
Atf;?jjfffj‘ g) in the vector representation.

Proof. A trit of A;' and a trit of AT' in the same place are different unless
the trit is zero because of A;' = —Aj'. Solutions of the degree-3 equation are
{8}, BH+1, Bi—1}, and then trits of these solutions are different in all places. O
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5 Performance

In this section, we compare costs of compression, decompression and exponenti-
ation in our representation with existing schemes using the affine representation.
We summarize our findings first and then present the detailed calculations.

Table ] shows that compression and decompression costs are comparable.
Note that the cost of solving the equation X? + X 4+ C' = 0 is negligible, where
X,C € Fpm, C is constant. Exponentiation costs are the same, because we
can use the projective representation and store precomputed information in the
T, affine representation. In the future, there is hope to improve upon naive
exponentiation in the trace representation by using precomputation. The size of
the additional information is comparable. We consider the computations of our
representation with the compression factor of 4 and 6 in detail.

Factor 4. The compression map C described by eq. @) costs Iy + Iy + Ms +4M;
to calculate f for i and T'ry/;. Alternatively, we can also calculate T'ry/; using
h rather than f. In this case, C costs Io + My + Sy + 4Mo + 6My ~ I1 + 42M;.
The decompression map D described by eq. [{@]) costs I1 +2M; 4+ 51 to calculate
the coefficient of eq. (@) and eq. (@).

Because the image of the decompression map is in the projective representa-
tion in both cases of the affine representation and our representation, operations
are calculated similarly. There is an exponentiation formula for the trace repre-
sentation [12]. Its cost is estimated to be (4M; + 151)log, r, which is efficient
compared with cost of simple square and multiplying (M4 + S4)log, r. How-
ever, this is inefficient compared with cost of width-w NAF in the projective
representation.

Factor 6. The compression map C described by eq. () costs I3 + I + M3 +
18M; + 25, to calculate f and A~' for ¢ and also to calculate Tre/1. Where,
AL {AT (A2 —1 - AB)} L and (B +C — A% — A)~! can be calculated by one
inversion of the product A-{A*1 (42 —~1— AB)}-(B+C — A® — A) in Algorithm
Bl The decompression map D described by eq. [ costs 41 +SqRt+10M;+ 55
to perform the following calculations: to calculate the coefficient of eq. (@) and

Table 2. costs: let Mg = 18M71, My = 9M1, Ms = 6 M1, M> = 3M; (by Karatsuba’s
method), S¢ = Ms, S1 = M1 (for simplicity), Is = I1 + 3M3 and I» = I + 2M> (by
Itoh-Tsujii’s method [§]). SqRt = {log, "; " + HW (™, ")} M1 + S1 [12].

2

class the affine representation the trace representation
name Karabina Karabina this work this work

factor 4 6 4 6

comp. Il —|—9M1 11 +24M1 2[1+16M1 2]1 +44M1
decomp. 3M;y I1 +9M; I + 3M;y 41 +Sth+ 15M;4

exp. woy logo rMy 20 loggrMy 8 logo rMy , 20 logy m My

added info. 1 bit 1 trit 2 bits 1 bit and 1 trit
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the square root, to solve degree-3 equation, to transform the solution and to

calculate 7. We explain solving degree-3 equation in detail. Let 8 = —A{( ‘Ziigl +

1);, + Aigl}, then eq. ([I0) is written B3 — 3’ — (ftﬂ + 1) = 0 by using g’
Note that the characteristic is 3, cubing is calculated by the Frobenius map
involving rotation of elements in the normal basis. We obtain three solutions /5’
of the above equation immediately. One calculates the coefficient of the above
equation and the transformation from 3’ for 3.

The cost of an exponentiation formula for the trace representation [12] is
estimated to be (23M; + Si)logsr, which is efficient compared with cost of
simple cubing and multiplying (2Ms + Cg)logs 7. However, this is inefficient
compared with cost of width-w radix-3 NAF in the projective representation.

6 Conclusion

In this paper, we proposed the factor-4 and 6 decompressible trace representa-
tion with additional information for the characteristics 2 and 3, respectively. This
representation has an efficient decompression map for the trace representation
distinguishing conjugates by using the additional information. Since this rep-
resentation permits decompression, we succeed in introducing multiplication in
the trace representation for the first time. Practically, this representation is not
worse than the affine representation. Although compression and decompression
incur some extra field inversions in comparison with the affine representation,
this fact is not a serious disadvantage of the proposed representation because
the costs of compression and decompression is much smaller than the costs of
encryption and decryption. It is clear that the cost of inversion in the base field
is much smaller than the cost of exponentiation in the embedding field. In fu-
ture work, we intend to improve the compression factor and reduce costs for the
exponentiation, the compression and the decompression.
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A The Affine Representation

Compression and decompression costs of the affine representation [I3] are calcu-
lated as follows.

Factor 4. The point is that the condition for the element in the subgroup of
the algebraic torus T, (Fpm) is solved and n/2 solutions are distinguished by
using additional information in the Ty affine representation. The order of the
subgroups is #G4 = p™ &t + 1,t = /2p™, where, p = 2, m is odd.

The compression map C is described by eq. (I2]) and the decompression map

D is described by eq. (I3). Where, G € {G_,G4}.

C:G\{1} = {0,1} x Fpm
a+ fo , (12)
a+pB(1+0) = (,0)

D:{0,1} x Fpm — G\{1}

(a+bw)+o (13)

(i6) = (a+bw)+1+0
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Let ]F(pr)4 = F(pm)z(a), ]F(pr)2 = ]Fpm (w), (oS F(p'rn)4’ w € ]F(pr)Z. We obtain
a,b € Fpm by a/B = a+bw from a, B € Fmy2. We calculate roots of polynomial
Py(z,b) = x'+az+u(b) € Fpm[z] led by g?"++1 = 1 in order to obtain a from b. If
the above polynomial Pj(x) has two distinct roots ag and a1, then a; = ag + 1.
Note that if the characteristic is 2, solving P;(z) = 0 is easy. The additional
information 7 is a bit of @ in the vector representation.

The compression map C described by eq. [I2]) costs I2+ Ms to calculate a/5 =
a+bw,a,b € Fym from «, 8 € Fm)2. The decompression map D described by
eq. (I3) costs 3M; to calculate u(b). Because u(b) is

u(b) = b + (ug + ug)bt + (uo + usz + 1)b + (uous + ug + ug) for G_
u(b) = b + (ug + ua)b + (up + usz + 1)b + (uousz + uz + ug + 1) for G4

where ug, u2, us, u4, ug € Fpm are precomputable parameters.

We recall an estimation of exponentiation cost [I3]. We determine the width-w
NAF representation of the power r, and then it contains on average log, r/(w+1)
nonzero digits. After precomputing g; = ¢*,i € {£1,43,£5,--. , £2v~1 — 1},
it costs log, 1S4 + logy r/(w + 1) My to calculate g" on average. If we calculate
in the projective representation and store results of precomputation in the Ty
affine representation, then we can replace My with 2Ms = 6M;.

Factor 6. Let #G1 =p™ +t+1,t = /3p™,p =3 and m be odd.
The compression map C is described by eq. ([4]) and the decompression map
D is described by eq. (IT).

C:G_\{1} = {0,1,2} x Fym

R o
D:{0,1,2} x Fyn — G_\{1}
‘ (a+bw+ cw?) +o (15)
(i,¢) =

(a +bw+ cw?) —o
Let ]F(pnz)ﬁ = F(pm)s (o), ]F(pm)3 = Fpm(w), o € ]F(pm)ﬁ,w € F(pm)s. We obtain
a,b,c € Fym by o/ = a+ bw + cw? from o, B € [F(pmys. We calculate roots of
Ps(z,c) = 2® + 2¢%x + C(c) € Fym[z] led by g?" ~**1 = 1 in order to obtain
a,b from c. Where, C(c) = Z(CJHJCJQCMH). The above polynomial Ps(z) has roots
{c¢'R,ct(R+1),c(R—1)} as b'. R is a solution of 23 —x+ D(c) = 0. Note that if
the characteristic is 3, solving the above equation is easy. a’ is a root of degree-1
polynomial P (z) € Fpm[z]. Therefore, three solutions are {(a,b, c), (a—b+c, b+
¢, ¢),(a+b+c,b—c,c)}. The additional information i is a trit of b in the vector
representation. The place is the same for the least nonzero trit of c.

The compression map C described by eq. (4] costs I3 + M5 to calculate
a/B =a+bw+ cw? a,b,c € Fym from o, B € [F(ymys. The decompression map
D described by eq. ([IH) costs I1 + 7M; + 25; to calculate

2(63t+3+62t+1)

D(c) = B3t+3
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and to solve the following degree-1 polynomial
Py(x) = + 263 4 2020 c3 4 b3 4 23 L 2ct € Fym [2].

We recall an estimation of exponentiation cost [I3]. We determine the width-
w radix-3 NAF representation of the power r, and then it contains on aver-
age 2logs /(2w + 1) nonzero digits. After precomputation, it costs logs rCs +
2logs r/(2w+ 1) Mg to calculate g” on average. If we use the projective represen-
tation and the Ty affine representation, then we replace Mg with 2M3 = 12M;.
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Abstract. When implementing an efficient pairing calculation over KSS
curves with embedding degree 18 and order r, the lower bound of the
number of loop iterations of Miller’s algorithm is [log,7]. But the
twisted Ate pairing requires } |log, r] loop iterations, and thus is slower
than the optimal Ate pairing which achieves the lower bound. This paper
proposes an improved twisted Ate pairing and uses multi-pairing tech-
niques to compute it. Therefore, the number of loop iterations in Miller’s
algorithm for the new pairing achieves the lower bound and it becomes
faster than the original twisted Ate pairing by 30%.

Keywords: pairing-based cryptography, Miller’s algorithm, twisted Ate
pairing, multi-pairing, KSS curves.

1 Introduction

In the past years, pairing-based cryptographic applications have developed at
an extraordinary pace for bilinear pairings can be used in many “constructive”
ways, such as key agreement schemes [§], ID-based cryptography [5] and group
signature schemes [12]. Since the implementation of pairing-based cryptosystems
involves pairing evaluation, the development of efficient pairing calculations be-
comes a significant topic of research. The most common pairings used in applica-
tions are the Tate and Weil pairings on elliptic curves over finite fields. In general,
pairing calculation can be divided into two parts, the first one being Miller’s al-
gorithm [11] and the second one the final exponentiation. Miller’s algorithm is an
iterative algorithm that can evaluate rational functions from scalar multiplica-
tions of divisors, and compute bilinear pairings at a linear complexity cost with
respect to the size of the input. In practice, many methods have been designed to
optimize Miller’s algorithm, such as denominator elimination [3], the selection of
pairing-friendly groups [4] and the methods to shorten the Miller loop [2/T320].
During all these methods, shortening the Miller loop is regarded as one of the
most important methods. Following this idea, several efficient pairings have been
proposed, such as the Ate pairings [13], the twisted Ate pairings [13], the R-ate
pairings [10] and optimal pairings [20]. It is proved that all pairings are in a
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group from an abstract point of view [22]. Hess’s research [14] proves the lower
bound of loop iterations of Miller’s algorithm is log, /¢ (k). It means that any
non-degenerate pairing on an elliptic curve without extra efficiently computable
endomorphisms different from the Frobenius requires at least log, 7/ (k) basic
Miller operations. Optimal pairings attain this lower bound by their definition.

It is well known that the Ate pairing and the twisted Ate pairing are defined
on Go X Gy and G1 x Gg, respectively. Generally, the group G, is defined over a
prime field I, and the group G is defined over an extension of F,,. Their precise
definitions can be found in Section 2. Recently, many efficiency improvements
for the Ate pairing are proposed, such as Ate; pairings [21], the R-ate pairings
and optimal pairings. Comparing with them, the twisted Ate pairing is usually
slower for its large number of loop iterations. But the twisted Ate pairing is
defined by the points in G, so its calculation requires less operations in the
extended field than that of Ate-type pairings. From this view, it is meaningful
to accelerate the twisted Ate pairing by shortening its number of loop iterations.

Recently, Sakemi et al. [15] propose an improved twisted Ate pairing using
Frobenius maps and a small scalar multiplication over BN elliptic curves. The
proposal splits Miller’s algorithm into several independent parts, for which multi-
pairing techniques apply efficiently. So the proposed twisted Ate pairing with
multi-pairing techniques becomes faster than the original twisted Ate pairing.
However, as the authors of [I5] mention, the target pairing-friendly curves on
which the proposed twisted Ate pairing becomes more efficient than the original
twisted Ate pairing are restricted. And it is not always possible to combine an
efficient split together with an efficient multi-pairing techniques. Fortunately,
we find this method can also be applied to KSS curves with embedding degree
k = 18 [9] which have already been identified as a suitable candidate for secure
pairings at the 192-bit security level by Scott [I§]. Similarly, we propose an
improved twisted Ate pairing over this family of elliptic curves.

In this paper, we consider the family of KSS curves with embedding degree k =
18 [6], which is a class of ordinary pairing-friendly elliptic curves. For KSS curves
the number of loop iterations of the Ate pairing, the twisted Ate pairing, and
the optimal Ate pairing are about g[logz r, é[logg rl, éLlogQ r|, respectively.
So the twisted Ate pairing is often slower than the optimal Ate pairing. Here,
we use a special feature of this family to give an improved twisted Ate pairing,
whose loop iterations can achieve é |log, 7] when using multi-pairing techniques.
Therefore, the new pairing is faster than the original twisted Ate pairing by 30%.
Embedding degree 18 is useful and practical because many techniques promoting
the efficiency of pairings are available. And the proposed pairing is of twisted
type and optimal. So our proposal may provide efficient algorithms in many
protocols.

This paper is organized as follows. Section 2 and 3 recall the fundamentals
from [I5]. Section 4 gives new results of this paper. In Section 5, we compare
the proposed pairing and the original twisted Ate pairing.
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2 Twisted Ate Pairing for KSS Curves with k£ = 18

Let E/F, be an elliptic curve over a finite field F,, and p is a prime number.
Denote be E(F,) the set of rational points on the curve, which is an additive
Abelian group with the infinity point @ as the identity element. Let r be a
prime number that divides #FE(F,). The smallest positive integer k such that
r divides p* — 1 is called the embedding degree. Then we have the relationship
#E(F,) =p+1—1t, where t is the Frobenius trace of E(F,).

KSS curves with embedding degree k = 18 , constructed in paper [9], are a
class of ordinary pairing-friendly elliptic curves. They are defined over a prime
field F, and have the short Weierstrass equation E : y*> = 23 + b, b € F,,. The
related parameters of the KSS curves are given with an integer x as follows:

p(x) = ;} (X8 +5x7 4+ Tx® + 37x® + 188x* + 259x3 + 343\ % + 1763y + 2401),

r(X) = 543 (X® +37x3 4 343),

t(x) = 7 (x* + 16x + 7).

(1)
In order to keep p and r being primes, we just consider the case in which x = 14
mod 42. In the following of this paper, we will substitute x with 14 + 42y. Since
the explicit coefficients of the new parameters are too large, we won’t list them
here.

The general definition of the twisted Ate pairing on elliptic curves can be
found in paper [I3]. Here we give the twisted Ate pairing on KSS curves with
k = 18 according to the general definition. Let ¢ : E(F,s) — E(F,1s) be the
Frobenius endomorphism, E(FF,:s)[r] denote the subgroup of rational points of
order r in E(F,1s) and let (s be a primitive 6-th root of unity. Define

(Gl : E = E, (x,y) = ((6°x, (6°y).-
Let
G1 = (P) = B(Fye)[r] N Ker( — [1]),
Gz = (Q) = E(Fys)[r] N Ker([Ce]¢® — [1]) = E(Fyis)[r] N Ker(¢ — [p]).
Then the twisted Ate pairing is defined as
a(,) 1 G x G = Fpus[F3i, (P.Q) = fra,p(Q®" D/,

where P € G1, Q € Gy and T3 = p> mod r. When fT37P(Q)(p18_1)/T is calcu-
lated using Miller’s algorithm and the final exponentiation, the number of loop
iterations of Miller’s algorithm to compute the twisted Ate pairing is determined
by log, T2, and

T3 = p® = —74088Y> — 740882 — 24696 — 2762 mod 7. (2)

3 Review of Useful Tools

In this section, we cite some useful tools which are already known in the liter-
ature, concluding divisor theory, skew Frobenius maps and multi-pairing tech-
niques. In fact, all these objects have been explained carefully by Sakemi et al. in
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the section 2 of [I5] when they improve the twisted Ate pairing over BN elliptic
curves. But for the integrality of this article, we list them again.

3.1 Divisors

For a,b € Z and Q € E[r] , let fo.q, fo,¢ € F,x(E) be the uniquely determined
monic functions with

div(fa,@) = a(@) = ([a]Q) — (a = 1)(0),
div(fo,@) = b(Q) — ([t]Q) = (b = 1)(O).

Then there exist the following relations [15]:

fa+b,0 = f%,Q J5.Q " 9laj, Q>
fabo = fa,Q “fo e = fél,Q “Ja s

where g1410.510 = [a)0,51Q/V[a]0+[1Q> lla)0,bj@ denotes the line which passes
through [a]@ and [b]Q, and vjg4pj@ denotes the vertical line which passes
through the point [a]@ + [0]Q.

3.2 Skew Frobenius Maps

Let F be an ordinary elliptic curve over a finite field F,, and E’ be the twisted
elliptic curve of £ with degree d defined over the finite field Fpe, where e is a
positive integer. Then the embedding degree k = de and the twist isomorphism
is given as follows:

P E (Fpe) = E(Fpae), (z,y) — (va/d,yv‘g/d).

Corresponding to the twist degree d, v is chosen as a quadratic non residue, a
cubic non residue, or a quadratic and cubic non residue in IFp..

Since P’ = v (P) C E (F,r) for an arbitrary rational point P € G C
E(F,), the following relation [13] holds,

e

(¢ =[NP =0, 6(P) = (a¥,,4"),
where P' = (2p,yp'). Then the skew Frobenius map ¢, is defined as [16] :
P : G1 = G, (w,y) = (aP [u?W0 D/ P fp3@=0/),

And the following relation holds, ée(P) = [p°]P, which will be used in Algo-
rithm 2.

In the case of KSS curves considered in this paper, since k =18, d =6, e =
k/d = 3, the skew Frobenius map ég is

33 : G1 = Gy, (z,y) = (/0@ D)3y /@ -1)/2)

and ¢3(P) = [p*|P.
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3.3 Multi-pairing

In order to calculate the product of pairings efficiently, Granger et al. have
provided the multi-pairing algorithm in [7]. Let

Sp={Pi,P,,---,Py € Gy},
SQ = {QlaQQa"' aQN S GQ}a

then the product of N pairings My = Hfil fs.p, (Qi)(pkfl)/r can be calcu-
lated by Algorithm 1, called MM A(s, N, Sp,Sg), which is shown in Section 2.8
of [15].

Algorithm 1. Miller’s Algorithm for multi-pairing MM A(s, N, Sp, Sg)
Input: s, N € N, Sp = {Pl,PQ, -, Py € (Gq}, SQ = {Q],QQ, o QN E GQ}

Output: [TV, fo.r (Q:), Sk = {[s]P.,[s]Ps, -, [s]Py € Gy}
1: Write s = Zf:o s;27, with s; € {0,1} and s, =1
2: f+1

3: for ¢ from N downto 1 do

5: end for

6: for j from L — 1 downto 0 do

7 f 12

8: for 7 from N downto 1 do

9: [ [ 9r,r:(Qi); Ri < [2]R;

10: end for

11: if s, =1 then

12: for ¢ from N downto 1 do

13: [ f9r.p(Qi); Ri < Ri + P,

14: end for

15: end if

16: end for

17: return f,[Ry, Ro, -+, Ry]

4 New Results

In this section, we propose an improved twisted Ate pairing over KSS curves with
k = 18. The new pairing can be calculated efficiently when we use multi-pairing
techniques. In fact, this pairing is based on the relation given by an equation

p =220+ zop° mod r, (3)

which is from the example in [20] of an optimal pairing over KSS curves with
k = 18. First, we use the special equation to construct the new pairing. Then we
give the complete proof of the bi-linearity and non-degeneracy of the improved
twisted Ate pairing in the appendix. At last, we use the multi-pairing techniques
to calculate it and give the explicit algorithm.
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4.1 Construction

In this subsection, we will give the new pairing which is denoted by a,:(+,-). The
shortest vector V = [22,1,0, 2,0, 0] in [20] means that, there exists an integer m
such that
mr =2z +p+ zp°.

Set 29 = —z = —x/7, then an equation p = 2z¢ + zop® mod r can be obtained
easily. It is well known that, when the embedding degree k is an even number
such as in the case of KSS curves with k£ = 18 , all terms of vj, p43p(Q) lie in
a subfield of IF;IS and thus may be eliminated in the final exponentiation. So in
the following calculation, we use l[4)p,31p(Q) instead of gjq)p, 3P (Q)-

According to Section 3.1, the calculation of the pairing fp3’p(Q)(p18*1)/T over
KSS curves is given by

Fi P (@) = (F7p(Q) - £711p(Q) - g p(@) 70

Let P, = [p|P, Py = [p!|P, Qp = [p)Q, Q2 = [p?]Q. Since P € G4, Q € Go,
particularly, ¢(P) = P, ¢(Q) = [p]Q = @, then we can see

Ihp(Q) = fp.op)(9(Q)) = fp,P(Qp)-
It follows that

For (@0 = (@) - 21y p(Q) - Frggrp (@) /"
= (f0.p(Qp2)  Lp. 1P (Qp) - o P ()P =D/
= (fp.p(Qp2) - 1.5, (Qp) - fpp, (@) 7D/,

Let p = 220 + z0p® + cr, ¢ € Z, then we obtain

fp,P(Qp"’) = f2z0+20p‘3+67‘ P(Qp )

= ( fop U1 P20 P * U2z0) P zop?) P Jpo [z0P * [ p)(@p2),

fp’ (Qp) = f2z%+20p +cr,Pp(Qp)
2
= (2 b Uzl ozl Py U201 Py zop®1 Py~ o 20y ) (@),
fp’Pp'z (Q) = f220+20p3+07”,Pp2 (Q)

= (ffo,ﬁjz ol Pyo (201 Py~ U220 Pyo [z0p] Py~ Jo 2012 - [P, ) (@)

Define

(Uzo1P,[20] P - l[ZZO]P[zop P)(Qp2) - Uz Py 120] P, * L[220] Py [20p%1 P, ) (@)
’ l[zo]sz,[Zo]sz ) Z[QZO]P 2,[20p%] P, 2)
(4)

sz,P(Q) = [fZO,P(Qp ) fZD, (Qp) fZD,P z(Q)}p P2
(z
(@

then we can define the improved twisted Ate pairing ap(-,-) as

ape(-) 1 G1 X Gy = Fiue [File, (P, Q) = fop p(Q)P" D/, (5)

where P € G1, @ € G;. The bi-linearity and non-degeneracy of ay(, ) is shown
in the appendix.
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4.2 Calculation

In this subsection, we discuss how to use multi-pairing techniques to calcu-
late the new pairing au(-,-) and give the explicit algorithm which is shown in
Algorithm 2.

Algorithm 2. Miller’s Algorithm for f., p(Q)

Input: P € G1,Q € Go, z9,p
Output: f,, p(Q)

1: P1 «— [Z()]P

: P2 — [Q]Pl

: P3 < ¢3(P1)

Q3+ Q, Q2+ 0(Q), Q1 + *(Q)
: B+ lPl,Pl (Ql)

N OR lp27p3(Q1)

7. f+<B-C

82Pp — P2 + P3

9:P1 < [Zo}Pp

10:P2 «— [Q]Pl

11: P53 + ¢3(P1)

12:B < Ip, . p, (Qg)

13:C « lp2’p3(Q2)

4:f«— f-B-C

15:Pp2 — P+ P

16ZP1 (—P,Pg(—Pp,Pfg(—sz
17:A « MMA(Z(),?),SP,SQ)
18:P; + R3

19:P2 «— [Q]Pl

202P3 < ¢3(P1)

21:B + lplvpl(Qg)

22:C + lp27p3(Q3)

[\

S O W

23:f« f-B-C
24:f « AP°H2. f
25:return f

Set

A= fZOVP(Qp(") : fZ07Pp (QP) ) on7P,p2 (Q)’

L= (l[zo]P,[zo]P ' l[?zo]P,[zop?’]P)(Qp?)
(01 Py 201 Py * L2201 Py [20p%1 P ) (@)
'(Z[ZO]sz’[ZO]sz ) l[ZZo]P,,z J[z0p%] P2 )(Q),

then f., p(Q) = AP*+2. I, Tn order to use multi-pairing techniques to calculate
A, we set Sp = {P,P,,P,:},5 = {Qp2,Qp,Q},N = 3,5 = 2. Then A =
MM A(zy,3,Sp,Sq). When it comes to L, we can compute P, and P, by using
the equation p = 2z¢ + zop® mod r as follows:
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B, = [pIP = [220]P + [20p°] P = [220] P + [20]$3(P),
Pp = [p] Py = [220] P + [ZOPS]PP = [220] P + [20]03(Fp),

where 3 is the skew Frobenius map introduced in Section 3.2, thus [p?]P =
¢3(P). On the other hand, @, = [p|Q = ¢(Q) is easily computed by
the Frobenius map. Since [29]P,2 can be obtained for free as the output of
MM A(z0,3,S5p, Sq), the main part of computing L is [z]P and [z0]P,. But
they are just scalar multiplications over the base field and zp is usually very
short, so these calculations are much cheaper than the calculation of MM A. In
conclusion, L can be calculated efficiently and cheaply. The complete algorithm
is shown in Algorithm 2.

When it comes to the implementation of the improved twisted Ate pairing,
besides the multi-pairing techniques, there are many other general techniques
that can be used. Roughly speaking, the extension tower:

Fp C Fp3 C Fpls

can be used to construct the finite field F,1s by simple polynomials. Sextic twists
of KSS curves with embedding degree k = 18 can be used for pairing calculation
and rational point compression. The final exponentiation can be dealt with by
the Frobenius map in the finite field and the details about this techniques can
be found in [19]. But all these general techniques are not the important topics
in this paper. We just focus on the multi-pairing techniques, which is the point
why the proposed twisted Ate pairing is faster than the conventional twisted
pairing.

5 Efficiency Comparison

This section compares the calculation costs of the new pairing
apt(rs) = Foo,p(QPTTD/T = (4772 )0

with the conventional twisted Ate pairing

a(-,) = fTs’P(Q)(plg—l)/r.

Since both of them involve the same final powering step , L can be computed
almost for free and the small cost of AP’ *+2 can be ignored for Frobenius map in
the finite field is efficient, we need only focus on comparing the costs of A and
frs.p(Q).

Following [13], let My, Ss denote the cost of Multiplication and Squaring in the
finite field Fys. If we use the pairing-friendly fields with s = 2?37, then we have
Mg = 359 My, Ss = 3'57S1. We refer to the fy p(Q) as a Miller-Lite operation
and denote the cost of Miller-Lite algorithm by Cp ;.. Then for the elliptic curves
of the form

Y?=X3%+B,

the cost of fn p(Q) is
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Clrite = (551 + (26 + 6)M1 + Sk + Mk)l_logz NJ

In the case of KSS curves, s = 18, i = 1, j = 2, e = 3, k = 18, and in
order to compare the costs of two pairings explicitly, we assume S; = Mj.
Then Crite = 16751 [logy N |. Denote the costs of frs p(Q) and A by ¢; and ¢,
respectively. Considering equation (3) and zg, we have

c1 = 1675 |log, T3] ~ 5015, [log, x|,

co = 3515 |log, 20 ~ 35151 |log, x|,

where x is the curve parameter. So the new pairing with the multi-pairing tech-
niques becomes faster than the original twisted Ate pairing by 30%. For ex-
ample, set x = —262 — 1, then [log, 20| = 64, [log, T3| = 202, it follows that
c1 = 167 x 20251 = 3373451, ca = 351 x 6457 = 224645;.

6 Conclusion and Future Work

This paper uses the special equation p = 22y + zop® mod r to construct a new
pairing ap(-,-) defined over G; x Gy on KSS curves with embedding degree
k = 18. Following the multi-pairing techniques, the maximum of the length of
loop reaches the lower bound é |log, 7] . Thus the improved twisted Ate pairing
is faster than the original one by 30%.

Neither the new pairing nor the algorithms considered herein are exhaustive;
we thus hope that these are the first steps toward further improvement of the
twisted Ate pairing. We leave it as future work to find useful equations for other
pairing-friendly curve families to give more improved twisted Ate pairings and to
compute them using the multi-core parallelization approach proposed by Aranha
et al. in [1].
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A The Bi-linearity and Non-degeneracy

This part can be divided into two parts, one is about the bi-linearity of f,s p(Q),
the other is about the bi-linearity and non-degeneracy of o (-, ).

Let v = [(6] 0 ¢3, then v(P) = [p3]P,7(Q) = Q. Since v is purely inseparable
of degree p*, we obtain from Lemma 4 in [13]

p3
fp?’,'y(P) o = fps’p-
Then we have 5
foo 1P (Q) = fps4(p) 0 7(Q) = fgl;?’,P(Q)'
Since p'® =1 mod r, we can set mr = p'® — 1 = (p*)® — 1, thus
"5(Q) = fmr,p(Q)
= fplsfl,P(Q)

= fplS,P(Q)
= f(p3)6 r(Q)

=1 (@) L@+ Fp 2)1P(Q)
= [557(Q).

Then f3 p(Q) = fmlé(ﬁxp )(Q) = f"ﬁg/ﬁ(Q) is a bi-linear pairing for the Tate

T7 T7

pairing f, p(Q) is bi-linear.

Section 3.1 shows that
Foo p (@ D/ = Fo p(@)P D7 (£ o1 (Q2) - ﬁpl(stQ).fp”ZD]Pp(Qp)
fip, (Qp) - fpo, Zo]pQ(Qy SN (@)) L
— F @D [ Q) (@)D

Therefore
~ 18 _ 2 2 18 r
Foop (@)W =1/ = [FA752077(Q) - f28 (@) 1/,

Since fps p(Q) = J"7nl]§3/6(Q)7 then it follows that

r7

fzo,P(Q)(pls_l)/r = [fmp3(1*3zop2)/6*3cp2 (Q)}(Pls—l)/r.

r,P
Set
N = mp*(1 — 320p?)/6 — 3cp> mod r,
then NV and r are polynomials of integer y. Through calculation, it can be proved
that r{ N. So
~ 18
i () = fao,p (@)D

is a pairing with bi-linearity and non-degeneracy.
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Abstract. If a user encrypts data, stores them in a relational database
(RDB), and keeps the key for both encryption and decryption by himself,
then the risk of leaking data from the RDB directly can be mitigated.
Such a strategy can be considered as a natural solution for preventing
data leakage when the manager of the database cannot be entirely trusted
or the burden of managing the database needs to be lightened. However,
if the database cannot access to this key, it can execute only a few re-
lational algebraic operations by itself, which spoils the serviceability of
the database.

This paper first introduces the notion of an encryption for controlled
joining (ECJ), which enables RDB to execute “natural join” of tables
when and only when its user required it. This technique can directly
be applied for union, difference, and intersection of tables also. Then,
the paper proposes an instance under a novel but natural assumption on
asymmetric bilinear group. Combining an ECJ with a searchable encryp-
tion and an order-preserving encryption, one can construct an encrypted
database which can executes the major part of relational algebraic op-
erations. The proposed instance is efficient in a reasonable extent and
sacrifices its security only in a minimum extent. We consider such a
technique can bring an enhanced security into the database-as-service
environment.

Keywords: encrypted RDB, natural join, union, difference, intersec-
tion, asymmetric bilinear group, non-transitivity.

1 Introduction

1.1 Encryption of Relational Database

A database (DB) is a system in which a large amount of data is stored and
portions of it can be retrieved smoothly. It has been an indispensable platform
for providing variety of services through the network. Since many of DBs store
sensitive information such as customer information, private information, or trade
secrets, they are potentially vulnerable to abuse, leakage, and theft. Hence, it is
crucially important to unfailingly protect confidentiality of data in many DBs.
The primary method of protecting data in today’s DB systems is access con-
trol. Although this has been a fairly effective approach, it can no longer be highly
reliable if the DB can potentially be compromised. And DBs, indeed, may be
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compromised in diverse ways, e.g., physical theft of hard disks or other memo-
ries, data leakage by malicious or careless system managers, leakage by viruses
infected, via unpatched vulnerability of the system, design error, configuration
fault, etc. Hence, in addition to access control, it is desirable to enforce the con-
fidentiality of DBs by encryption. Such a succinct strategy is considered to be
especially effective for the database-as-service environment.

Encryption is already an accepted approach to data protection for DBs. For
example, PCI DSS (PCI Data Security Standard) [32] which is for to enforce
payment account data security requires stored card-holder data to be encrypted.
And several existing DB applications such as [I8129)31] actually support encryp-
tion of stored data. Since the outsourcing of data and services are getting more
common, as we can also recognize in the recent widespread of cloud comput-
ing services, the situation are getting worse and more complicated. Hence, it is
envisaged that encryption of DBs will become more common and vital.

In encryption mechanisms of DBs that are already in use [I8J29)31], the keys
used to encrypt data are kept within their systems. Hence, these keys may be
leaked with the data themselves when the DBs are compromised. In this sense,
such mechanisms are still not a satisfactory approach for high leakage resistant
DB systems. Improving these solutions, several systems such as [I5J2425/33]
encrypt sensitive data, store them in an outsourced DB, and keep the key for
the encryption under control of the user. The main challenge in this approach
is to avoid imposing users to retrieve all data in the DB, decrypt them, and
find necessary data among them when they use the DB. This is because the
most significant serviceability of DBs is spoiled if it imposes a large amount of
computation and communication on users.

A searchable encryption [35[21123] and an order preserving encryption [2J9JT0]
provide a way to salvage, in a decent extent, the serviceability of DBs when data are
encrypted by keys kept by users themselves. The searchable encryption enables a
DB to search necessary data among those encrypted by users without decrypting
them. The order preserving encryption enables a DB to compare numerical size
of data that are encrypted by users without decrypting them. Because of these
ability, a DB is able to return only ciphertexts of data that are required by users.
Hence, communication and computational complexity of users are substantially
reduced, and thus the serviceability of DB is salvaged.

However, searchable encryption alone is often insufficient for searching data in
a DB since the most used DB is relational database (RDB) [20]. An RDB system
decomposes each large table (relation) into smaller and well-formed (normalized)
tables so as to prevent data manipulation anomaly and data integrity loss. Then,
the DB often needs to partially reconstruct the original table from normalized
tables before searching data. This is done by “natural join” procedure in Struc-
tured Query Language (SQL) [20]. Therefore, without natural join, searchable
encryption is incapable of salvaging serviceability of encrypted RDBs. Moreover,
the natural join, union, difference, and intersection of tables are also indispens-
able to generate a wide variety of tables and views for variety of purposes. These
are issues we focus in this paper.
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More precisely, we consider the following concrete example to obtain clear
understanding of the problem. Suppose that a user specifies two tables I and II.
Table I has two columns, one is for attribute A and the other is for attribute B.
Table IT has two columns, one is for attribute C and the other is for attribute
D. Then the user requires a database to join Table I and IT with respect to
attributes A and C, and returns a row whose attribute B is X. If the columns for
attribute A of Table I and attribute C of Table II are encrypted by, for example,
with different key or different randomness, the DB is unable to join them by
himself. In such a case, the DB is only able to choose a row whose attribute B
is X from Table I. But it is unable to choose a row in Table II that is supposed
to be joined to the above chosen row in Table I. The only way that the DB can
do to meet the need of the user is to send whole Table II. Consequently such a
DB is not useful any more.

1.2 Encryption for Controlled Joining

As discussed in the Section [Tl an encrypted RDB needs measures to run
many SQL procedures such as a natural join without sacrificing efficiency
of the users. Such an issue has been considered also in previous works
[IUT5IT922124252634U35133]. Some works consider to bucketize encrypted
data, where rough join is executed in DB using special indices, but the de-
cryption and the final tuning of the join is executed by users themselves. This
approach has a trade-off between amount of data leaked to the DB and the
computation the users are required. Some works consider to fragment data
in several DBs so that none of them can recover confidential relations by itself.
This approach requires multiple DBs, which need to be trusted as a whole. Some
works consider to progressively decrypt data, encrypted in layer, until they
become comparable.

Another strategy is to encrypt every data deterministically as in the case
of searchable encryption but with the same key for all data in the DB. Then,
since values in different tables can be compared, the DB can join tables without
decrypting them. However, this strategy leads to security concerns by leaking
relations. Suppose that Table I contains names of card holders and encrypted
credit card numbers and that Table II contains encrypted credit card numbers
and invalidated dates. If the numbers in the both tables are encrypted determin-
istically, it is easy to recognize whose card is invalidated from the leaked tables.
This is because the relation is leaked from the encrypted tables. In contrast,
if the numbers in both tables are encrypted by different keys or with different
randomness, it is unlikely that leakage of these tables are serious privacy expo-
sure. Although the public-key encryption with keyword search [12] cannot solve
this problem, the works [I3I37], following [38], present interesting idea that key
words can be searched only by delegated entities.

In this paper, we choose a novel approach and propose such an encryption
scheme that the DB is able to check equivalence of encrypted values in two
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columns, without decrypting them completely. This check is possible only when
the user requested it to do so and only in the minimum extent. And, this
request is quite easy for the user. With this scheme, the DB manager is able
to execute natural join, union, difference, and intersection of tables once it
receives the request. We call such scheme “encryption for controlled joining
(ECJ)”.

Schemes with bucketization such as those in [I526)24] and schemes with frag-
mentation such as those in [I91J22] suffer the trade-off between user’s cost and
data confidentiality. That means users need additional computation to enhance
the confidentiality of the data. On the other hand, our scheme requires users no
additional computation except the decryption of received result. Schemes with
fragmentation such as those in [T9[TI22] also require servers to be trusted not
to collude, but our scheme does not. Although searchable encryption schemes
such as those in [5I21123], like our scheme, require users no additional computa-
tion except the decryption of received result, they leak relations to the DB as is
discussed above.

We note that our scheme does not succeed in preventing the DB from obtain-
ing relations (each data is still encrypted) between two columns when the user
required to join them. Such a prevention is out of our security goal since it is
likely to be impossible to prevent it unless we use such a heav cryptographic
primitive as “private information retrieval protocol” introduced in [IGI7I2E].
DB users usually do not accept such inefficiency. However, unlike deterministic
encryption approach, the leak of relations in our scheme is the minimum in the
sense that each relation is hidden unless the user requires to use it for relational
algebraic operations and also in the sense that the revealed relation does not
unnecessary reveal other relations.

We now roughly introduce the model of the novel encryption scheme “ECJ”
that satisfies the above properties:

1. Each data is encrypted with respect to some label.

2. The encryption is of symmetric key and probabilistic.

3. From any pair of two labels and the symmetric key, one can generate a pro-
jection key. With this key, the equivalence of two data which are encrypted
with respect to either of these two labels can be checked.

4. The projection key is short, its generation costs is small, and the cost for
checking equivalence of m encrypted values mutually is at most of order m.

We illustrate how this ECJ can be applied to an RDB system. We associate
each column of tables in the DB with a label, and encrypt data in the column
with respect to this associated label by using Property[Il Because of Property 2]
ciphertexts alone do not give knowledge (except the size of each table and length
of each data in tables) to the DB. Exploiting Property Bl the user can generate
a projection key from the symmetric key and the two labels for arbitrary pair
of two columns. By sending this key to the DB, the DB is able to check the

! Operations such as “join and select” requires a large amount of computation and
communication.
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equivalence of encrypted values in these two columns, each of which is related
to either of the two labels (This function can simulate the equivalence condition
in “WHERE a column name = another column name” clause for join in SQL).
Hence, the RDB is able to execute natural join, union, difference, and intersection
of tables without decrypting their data. As ECJ satisfies Property El the user
can generates a projection key and send it to the DB very easily. The cost for
the DB to join two tables at most order of the size of the relevant tables. After
the tables are joined, the user is able to request the DB to select necessary rows
from the joined table by using a searchable encryption or an order-preserving
encryption. Hence, the amount of data the DB sends to the user as the response
to the query is as small as that in ordinary DB systems.

The essentials of ECJ are that it enables RDBs to check equivalence of en-
crypted values in different tables when required but it allows the equivalence
check only in the minimum extent. Only when furnished with this ability, an
RDB is able to efficiently take a union, difference, intersection of tables as well
as take natural join of tables. These are indubitably major relational algebraic
operations in RDB. The major difficulty of the ECJ lies in avoiding values in
two tables, say, I and II being compared unlimitedly even when there exists a
table III such that values in Table I and IIT are comparable (by user’s request)
and values in Table II and IIT are comparable (by user’s request). Obviously a
value X in Table I and a value Y in Table II are comparable if there exists either
X or Y in Table III, but comparison should be possible only to that extent. In
other words, equivalence check needs to be non-transitive.

As a concrete scheme that realizes our ECJ, we also proposes a scheme by
using asymmetric bilinear group under a novel but natural assumption. The
use of bilinear groups imposes users a rather heavy pairing computation, but
is necessary to avoid the unlimited comparison. A proxy-reencryptions [SI27/4]
also depend on bilinear groups if they avoid unrestricted transitivity for a similar
reason. If unlimited comparison is allowed, a simple exponentiation serves welfd.
But we consider this privacy gain by the heavy pairing computation is beneficial
in some applications since it can avoid complex and fallible policy checking that
decides who (the user of the DB) joins the tables. We estimate its efficiency and
conclude that the scheme achieves practical efficiency for some applications. The
proof of its security is in the random oracle model.

1.3 Organization

SectionPlintroduces the formal model of ECJ, that is, its algorithms and security
requirements. Section [B] presents a concrete scheme of ECJ and consider its
efficiency. Section M analyses the security of the proposed scheme. Section
concludes the paper and poses an open problem.

2 Let value z in column A be encrypted as gHashakey) 5nq compare it with val-

ues in column B by giving pjkey = Hash(B, key)/Hash(A, key) and generating
gHash@key) _ ( Hashaken) pjkey,
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2 The Formal Model of ECJ

2.1 Algorithms

The algorithms for ECJ are given as in the following. Here, {lab, lab’} denotes the
set of lab and lab’. Since both notations {lab, Iab'} and {lab’, lab} indicate the
same set, they are encoded into the same code when they are given to algorithms
as an input.

KeyGen: An algorithm for DB users that, given a security parameter x €
N, generates a master key mkey and a system parameter param as
(mkey, param) < KeyGen(r). The system parameter defines the spaces of
labels, plaintexts, ciphertexts, etc.

Enc: An algorithm for users that, given param, mkey, a label lab, a plaintext
msg, outputs a ciphertext ciph as ciph « Enc(param, mkey, lab, msg).
Dec: An algorithm for users that, given param, mkey, and a ciphertext ciph,

outputs a plaintext msg as msg < Dec(param, mkey, ciph).

ProKeyGen: An algorithm for users that, given param, mkey, and a set of two
labels {laby, labs}, outputs projection key pjkey as
pjkey + ProKeyGen(param, mkey, {laby, laby}).

Project: An algorithm for the DB manager that, given param, pjkey,
a set of two labels {laby,labs}, a ciphertext ciph, and a la-
bel lab € {laby,labs}, outputs comparison value cv as cv <+
Project(param, pjkey, {laby, labs}, ciph, lab). (Here, ciph is supposed to be
encrypted with respect to Iab.)

2.2 Security Requirements
Definition 1. An ECJ is complete if the following two conditions are satisfied.
Condition 1: For every k, lab, msg, the followings hold;

(mkey, param) < KeyGen(k), ciph + Enc(param, mkey, lab, msg)
msg < Dec(param, mkey, ciph),

Condition 2: It is computationally difficult (with respect to the security param-
eter k) to find lab, lab’, msg, msg’ such the followings hold;

(mkey, param) < KeyGen(k), ciph + Enc(param, mkey, lab, msg)

ciph’ < Enc(param, mkey, lab’, msg’), pjkey <+ ProKeyGen(param, mkey, {lab, lab'})
cv + Project(param, pjkey, {lab, lab’}, ciph, lab),

¢V’ + Project(param, pjkey, {lab’, lab}, ciph’, lab’)

((ev # ev') A (msg = msg’)) V ((cv = cv') A (msg # msg'))

Since the completeness guarantees that the comparison values generated from
the two ciphertexts are the same if and only if the ciphertexts are of the same
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message, the DB manager is able to compare whether or not two ciphertexts are
of the same message.

We next define indistinguishability of ECJ. As a preliminary, we define a
distinguishing game and the validness.

Definition 2. The distinguishing game is played between challenger C and
adversary A as in the following. It begins when C is given k € N, runs

(mkey, param) < KeyGen(k), and gives param to A. C randomly chooses b €
{0,1} and responds to queries from A as in the following.

— When C receives (encrypt, lab, msg), it returns ciph = Enc(param, mkey, lab, msg)
to A.

— When C receives (prokey, {lab, lab'}), it returns

pjkey = ProKeyGen(param, mkey, {lab, lab'}) to A.

C' receives (target, msgp,, msgy) such that |msgh| = |msgi| only once in the game.

— When C receives (test, lab) after C' has received (target, msgg, msgy), it returns
ciph = Enc(param, mkey, lab, msg}) to A.

At the end of the game, A sends b' € {0,1} to C. The result of the game Expg: 4
is 1 if b="0'; otherwise 0.

A is allowed to query (test, lab) for multiple times for various lab’s. This is nat-
ural since the same value can be stored in many tables. The game considers
only of type “chosen plaintext attacks” but not “chosen ciphertext attacks”.
Consequently, the Definitions @ and [G presented below do not consider cho-
sen ciphertext attacks, which is stronger and commonly considered. However,
encrypt-then-MAC [6] generic construction can easily make the scheme resistant
for them.

The distinguishing game challenges the adversary’s ability to distinguish ci-
phertexts. However, if a certain set of queries is sent to the challenger, it is in-
evitable to prevent rational adversaries from distinguishing ciphertexts. Hence,
the cases and only the case when such queries are sent needs to be excluded to
measures the strength of ECJ scheme. For this purpose we introduce the notion
of validness.

Definition 3. Let L* denote the set of all lab’s such that a query (test, lab) ex-
ists. Let L be the set of all lab’s such that there exists a query (encrypt, lab, msg*ﬁ)
for some B € {0,1}. We say a distinguishing game is valid if, for every
query (prokey, {lab,lab*}) by the challenger, it holds that {lab,lab*} N L = 0
or {lab,lab"} N L* = ().

If the adversary asks (prokey, {lab, lab*}) such that Iab € £ and Iab* € L*, the
adversary is able to directly compare a known message msgge (0,1} (8 is known
also) encrypted with respect to lab and the unknown test message msg; en-
crypted with respect to lab®. If the adversary asks (prokey, {lab, lab*}) such that
lab € LN L* for an arbitrary lab*, the adversary is able to directly compare
a known message msg;k36 (0.1} encrypted with respect to lab and the unknown
test message msgy encrypted with respect to lab. These are cases in which the
adversary can trivially check the value of the test message msgy as long as the
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scheme is complete. That is, it does not make sense to require the indistinguisha-
bility in these cases. Excluding these cases from valid games yields our notion
of validness.

Definition 4. We say that an ECJ is indistinguishable if, for every polyno-
mial time adversary A*, Adv¢ 4. = | Pr[Expg 4« = 0] — Pr[Expg 4. = 1]| is
negligible with respect to k in valid games.

Definition 5. Selective distinguishing game is the exactly the same as the
game defined in Definition [2 except that A sends two sets of labels L*, L to C
before the game begins.

Definition 6. We say that an ECJ is selectively indistinguishable if it is
indistinguishable as Defined in [4] but with the selective distinguishing game

Definition [flassumes that two sets of labels are given to the challenger in advance,
which is not a realistic scenario for attacks. It is quite easy to construct a scheme
that is secure under such an assumption but is totally not secure without it. This
situation is very similar to that given in [14]. Here, it is shown that one can easily
construct a scheme which is proven to be secure in the random oracle model but
is totally vulnerable with any real hash function. In this sense, the security that
is guaranteed by Definition [0l is only heuristic just as that guaranteed by the
random oracle model.

2.3 Complement to Security Requirements

Since the encryption is probabilistic, neither the data themselves nor relations is
recognized by the DB unless projection keys are given. However, once a projec-
tion key is given, relevant ciphertexts are no longer probabilistic. Such property
seems to be a weakness of our model. However, we consider this model still has
a significance as justified in the following.

We suppose that honest managers of DB systems erase each query of ECJ
after responding to this query. Then, as long as intrusions of an adversary is
instantaneous, the chance for the adversary to obtain SQL queries may be little
while it may obtain a large portion of data in the DB. If the adversary obtains no
query, the data that the adversary obtained from the DB are only the ciphertexts
of semantically secure encryption scheme. Thus, in such a case, the confidentiality
of data in the DBs is strongly protected. The adversary may obtains several
queries during it is intruding into the DB. However, if what the adversary can
obtain from these queries and encrypted data are no more than what the DB
manager needs for required relational algebraic operation, we can consider the
leakage is the minimum. Here, we particularly concern whether the combination
of queries may leak more than the sum of leakage of each query.

Suppose that we want to join two tables of size n and m. Then, unless the
data in these tables are encrypted in deterministic way so as the data in them are
directly comparableﬁ, the required computational cost for their join is at least

3 We say two values are directly comparable if no operation other than comparison of
two numerical values is required for the comparison.
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O(nm). This cost is unacceptably high for the most of practical DB systems.
Hence, we allow the DB to directly check equivalence of the indices. At the cost
of introducing this functionality, some knowledge about data structure is leaked
to the DB. However, we require this direct comparison is limited to the minimum
in the sense that the comparison is possible only within the tables with respect
to which the query is generated. Therefore, we consider that the amount of this
knowledge leaked to the DB in our scheme is the minimum and acceptable for
the DB to maintain its serviceability.

In case such a minimum leakage is not allowed, users should not use ECJ in
its query. But they should simply retrieve the entire encrypted tables, decrypt
them, and join them with in their system. We also note that the DB is able to
join two tables A and B to obtain a table C, and is still able to join tables C and
D if it is requested to do so. This is possible by letting the column of table C,
with respect to which join is executed, to inherit label of either A or B. Hence,
any number of consecutive joins is possible.

3 Proposed ECJ Scheme

3.1 Asymmetric Bilinear Groups and Preliminary

Let G1,G2,Gr be cyclic groups of order prime p such that an efficiently com-
putable bilinear map e : G; X Go — Gr and homomorphism o : Go — G; exist
and that the decision Diffie-Hellman problems in G; and Gr are infeasible to
solve in polynomial time. Note that, in contrast, the decision Diffie-Hellman
problems in G5 is easy because of the map ¢ and e. Elliptic curves introduced in
[B0] (MNT curves) are considered to satisfy these properties.

Let k be a security parameter and ZV = {0,1}" be a space of initial vec-
tors. Initial vectors are used to label columns. Let (enc,dec) be a symmetric-
key cryptosystem. For each security parameter k, it specifies £ = {0,1}"* and
M’ =C = {0,1}* which are, respectively, its key space, message space, and ci-
phertext space. Functions are such that enc : Kx M’ — C and dec : KxC — M’.
Let M be such that M’ = TV x M. For a space R, let Hashz be a cryptographic
hash function Hashg : {0,1}* — R. We assume Hashr and Hashz: are indepen-
dent if R # R'.

The decryption algorithm Dec is trivial and is not necessary for joining pro-
cedure. Hence, we may omit to consider it. However, we do present it so as to
comfortably call our proposal an encryption scheme.

3.2 Scheme

KeyGen: Given a security parameter k € N, KeyGen specifies a prime ¢ of size
polynomial of k, order g cyclic groups Gy, G2, Gr, a generator g; of Gy, a
generator g of Ga, a symmetric-key encryption scheme (enc, dec), and hash
functions Hashz, , Hashx, Hashg,. Let param denotes the parameter that
specifies the above. KeyGen randomly chooses a master key mkey € {0,1}*
and outputs mkey and param.
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Enc: Given a system parameter param, a master key mkey, a label lab € 7V,
and a message msg € M, Enc randomly chooses r1,72 € ZV and generates

f = Hashz,_(1, param, mkey, msg), x = Hashz,_ (2, param, mkey, lab)
h=qg c= Hashg, (Hashi (1, param, mkey, lab),r1) - h
d = enc(Hashi (2, param, mkey), (ro, msg)).
Then, Enc outputs ciphertext ciph = (r1, ¢, d).
Dec: Given a master key mkey and a ciphertext ciph = (ry, ¢, d), Dec generates
(ro, msg) = dec(Hash (2, param, mkey), d) and outputs msg.

ProKeyGen: Given a system parameter param, a master key mkey, and a set of
two labels {laby, labs}, ProKeyGen generates

k1 = Hashy (1, param, mkey, laby ), ko = Hash (1, param, mkey, labs)
x1 = Hashg, (2, param, mkey, laby), x2 = Hashgz, (2, param, mkey, labs)
21 = g2"', 22 = 92", p = Hashy, (3, param, mkey, {labi, laby})

wy = 227, wo = 27

and outputs projection key pjkey = {(laby, k1, w1), (Iabg, k2, w2)}.

Project: Given a system parameter param, a set of two labels
{laby,labs}, a ciphertext ciph = (ri,¢,d), a projection key
pjkey = {(laby, k1, ws), (labg, ko, w2)}, and a label lab, for £ € {1,2},
Project generates h' = ¢ - Hashg, (k¢,m1) "1, cv = e(h', wy) and outputs cv.

3.3 Completeness

How and why the proposed scheme works is described in the proof of the following
theorem.

Theorem 1. The proposed scheme is complete

Proof. Condition 1 holds from the fact that (enc,dec) is a symmetric-key en-
cryption scheme. That means encrypted data can correctly be decrypted.
Condition 2 holds as shown below. Let

f = Hashz, (1, param, mkey, msg), f* = Hashz, (1, param, mkey, msg')
x = Hashz, (2, param, mkey, lab), h = g% 2 = Hashz, (2, param, mkey, lab’),
W=g®" 2=g°" 2 =¢p" p= Hashz, (3, param, mkey, {lab,lab’}), w=2"",w' = 2".
Then, it holds that
Project(param, pjkey, {lab’, lab}, ciph, lab) = e(h,w) = e(q1"', 2'?) = e(g:", 2')"?
=e(g”, 92" )" LT e g7 = e(gr” ) = e ) = (W )
= Project(param, pjkey, {lab, lab’}, ciph’, lab’).

With respect to 5th equation, it is computationally difficult find a pair of msg
and msg’ such that (f = f’') A (msg # msg’). Thus, the theorem follows.
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3.4 Efficiency

Pairing is considered to be a very heavy operation even among asymmetric key
cryptographic operations. In our scheme, this pairing is absolutely the domi-
nant time consuming operation. However, recent efforts have greatly enhanced
its efficiency. J. -L. Beuchat et al. [7] reported an implementation of pairing
(ate pairing) over a 254-bit prime field in just 2.33 million of clock cycles on a
single core of an Intel Core i7 2.8 GHz processor. This implies that the pairing
computation takes only 0.832msec. If we join two tables of size 100,000 rows, it
is estimated that it takes 10 seconds with 16 cores. This is not very fast though
a large resources are consumed, but we consider it acceptable time for handling
highly confidential data in many cases.

4 Security

The security of ours scheme depends on the new assumption that we introduce
below.

Assumption 1. (Chained Decision Bilinear Diffie-Hellman Assump-
tion)
Let x1,29,23,0,3,7,0 € Zq and y; = 1%, z; = g2™* fori=1,2,3. We also let

w1 w2 w3 Y1 Y2 Y3
5
W | waws R
T w - [e3 «
6 wr Z1 Z3
ws W 29 3P

For every polynomial time adversary A that is given W, the probability, that A
distinguishes whether x1, 2,23, ®,3,7,0 € Zq are randomly and independently
chosen or they are so except with the restriction § = -y, is negligible in k.

Roughly, Assumption [l is a stronger variant of decisional Diffie-Hellman as-
sumption. It claims that a deciding whether (w1, ws,ws,ws) € G1# is a Diffie-
Hellman tuple or not (y = § or not) is infeasible even if wg, w7, ws, and wg
are given. By contrast, deciding whether y1,y3, 417, y3¢ is a Diffie-Hellman tu-
ple or not (7 = € or not) is easy because of wg and wy. We only needs to check

e(y1”, wr) Z e(y3€, wg). Deciding whether vz, y3, ¥2°, y3¢ is a Diffie-Hellman tuple
or not (§ = € or not) is also easy because of wg and wy.

Note that deciding whether or not (wi,ws,ws,ws) is a Diffie-Hellman is
always easy if Gy,Go are supersingular curve. Hence, we need an ordinary el-
liptic curve with pairing that forms asymmetric bilinear groups such as MNT
curves [30].

Theorem 2. Assumption[d is valid in the generic asymmetric bilinear groups.

Proof. The proof is given in Appendix [Al
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Intuition for the indistinguishability of the proposed scheme is as follows. Sup-
pose that there are three labels laby, laby, and labs and that lab; corresponds
to y; and z; for each i = 1,2, 3. In our scheme, distinguishing ciphertexts with
respect to lab; and laby corresponds to deciding whether or not (y1, 42,417, y2°)
is a Diffie-Hellman tuple (6 = = or not). Similarly, distinguishing ciphertexts
with respect to lab; and labs corresponds to deciding whether y1,ys,y17, ys¢
is a Diffie-Hellman tuple or not (7 = € or not), and distinguishing ciphertexts
with respect to laby and labs corresponds to deciding whether ys, ys, y2°, y3© is
a Diffie-Hellman tuple or not (§ = € or not). The projection key with respect
to {laby,labs} and that with respect to {labe,labs}, respectively, correspond
to (we,wr) and (ws,wy). Now, given these projection keys, while distinguishing
ciphertexts with respect to lab; and labs and that with respect to labs and labs
are easy, that with respect to lab; and labs is difficult. And the adversary’s goal
is distinguishing ciphertexts with respect to lab; and labs.

Theorem 3. The proposed scheme is selectively indistinguishable under As-
sumption [ in the random oracle model.

Proof. The proof is by contraposition. Suppose that there exists an adversary A*
such that Adv¢ 4« := | Pr[Expg 4+ = 0] — Pr[Expg 4« = 1]| is non negligible in .
We shows that the existence of A* contradicts to the Assumption[l In particular,
the contradiction follows by the hybrid argument from the lemmas [II, 2, Bl 4 B
and [6] with respect to the sequence of games by challengers C1,Cs, Cs, Cy, and
Cs. Proofs of lemmas [, 2, B, @ and [ are given in Appendix [Bl

Definition 7. Challenger Cy is the same as the challenger C in Definition [2
except in the following:

— C1 prepares tables for the random oracles Hashx,Hashz, and use them to
simulate them. That is, when the input to the random oracles is not on the
tables, C1 chooses random number from IC or Zg, returns it as the output,
and writes the pair of the input and the output on the table. Otherwise, it
returns the corresponding output that exists on the table.

— If A* sends mkey to the random oracles Hashi or Hashyz_, aborts the game.

Lemma 1. For every polynomial time A*, |Adv, 4. — AdVE 4. is negligible
m K.

Definition 8. Challenger Csy is the same as the challenger Cy except in the
following:

— Let R3 be the set of all v} that Co used in encryption procedures such as
enc(Hashyc (2, param, mkey), (r3,msg;)) for responding queries (test,-). Let Ry be
the set of all ro that C2 used in encryption procedures such as
enc(Hashy (2, param, mkey), (72, msg)) for responding queries (encrypt,lab, msg). If
RN R #0, Co aborts the game.

Lemma 2. For every polynomial time A*, |Advé, 4« — Advé, a-| is negligible
mn K.
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Definition 9. Challenger Cs is the same as the challenger Co except in the
following:

— Suppose that the original answer to a query (test, lab) is ciph = (r}, c*,d*).
With appropriate K and 135, C3 replaces d* with d' := enc(K, (15, msg'))
where msg' is randomly chosen string such that |msg'| = |msgj| with appro-
priate K and r3.

— Suppose that the original answer to a query (encrypt,lab, msg) is ciph =
(ri, c*,d*). With appropriate K and 13, Cs replaces d* with
dt = enc(K, (5, msg")) where msg' is randomly chosen string such that
jmsg!| = [msg].

Lemma 3. For every polynomial time A*, |Adve, 4« — Adve, 4-| is negligible
m K.

Definition 10. Challenger Cy is the same as the challenger Cs except in the
following:

— When C4 receives (encrypt, lab', msg;;) for some B € {0,1} and lab' € £*NL,
Cy answers it as if Cy received (encrypt,]ab*,msgf) with randomly chosen
msg! such that |msg'| = |msg|.

Lemma 4. For every polynomial time A*, |Adve, 4« — Adve, 4-| is negligible
m K.

Definition 11. Challenger Cs is the same as the challenger Cy except in the
following:

— Let ciph = (r},c*,d") be the response to (test, lab). Suppose that part of this
response is generated as in the following.

1,15 €R ZLg, f* = Hashgz, (6, param, mkey), " = Hashz, (2, param, mkey, lab)
h* = g1" 1", ¢* = Hashg, (Hashy (1, param, mkey*, lab*), %) - h*

If lab is the first to appear, Cs randomly chooses h' € Gy and replaces h*
with it. If lab has appeared before, use the same h' to replace h* with.

Lemma 5. For every polynomial time A*, |Adve, 4« — AdvE, a-| is negligible
n k under Assumption [l

Proof. We prove that if |Adv¢, 4. — Adve, 4-| is non negligible, an adversary S
that breaks Assumption [Tl can be constructed from A*. Suppose that S is given

w1 w2 w3

W4 W5

We wr
wg Wy

W =

Then, S simulates the game and distinguishes from which distribution W is
chosen by using the guess of A* as follows. When A* sends (1, param, mkey, msg)
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to the random oracle Hashz, for some msg, S guess whether or not msg €
{msg}, msgi}. When A* sends (encrypt, lab, msg) to S for some msg, S guess
whether or not msg € {msg, msgj} also. When S receives (target, msg, msgy),
whether or not these guesses was correct becomes evident. And after that, the
S is able to guess them correctly. Since the number of messages, including those
in (target, msg}y, msgy), that appear in the game are of polynomial, S is able to
guess them correctly in some reasonable way with non negligible probability.

In what follows, we assume S succeeded in these guessing. We describe how
S responds to A* for randomly chosen b € {0, 1}.

— S first generates param appropriately and gives it to A*. S generates mkey
randomly.

— When S receives (encrypt, lab, msg), it generates ciph = (rq,c,d") and re-
turns it to A as follows. First, S generates

a = Hashgz,_ (4, param, mkey, lab),  f = Hashz, (1, param, mkey, msg),
11,72 €R Lq, Kp,p, = Hashg (1, param, mkey, lab),

K = Hashy(2, param, mkey),

msg' €r {msg'|msg’ € M A |msg| = |msg|}.

Here, hash functions are random oracles that S simulates.
e In case lab € L* N L, S generates

x = Hashgz, (2, param, mkey, lab), h=g®f
¢ = Hashg, (Kp,p,71) - I, d" = enc(K,ry, msgh).

e In case lab ¢ L* U L, where msg & {msg, msg;} by definition, S gener-
ates,

h=ws*!, = Hashg, c(Kp,p,71) - I, d" = enc(K,ry, msgh).

e In case labe L\ L*;
* If msg # msgy, S generates

h=wy*!,  ¢=Hashg, (Kjahs 1) = hy d" = enc(K,ry, msgh).
* If msg = msgf, S generates
h=ws*,  c¢=Hashg, (K,p,71) - I, d" = enc(K,ry, msg').
e In case lab € L\ L, where msg # msgj by definition, S generates
h=u®7, c = Hashg, (K41, 71) - h, d" = enc(K,ry, msg').

— When S receives (test, lab), it generates ciph = (r1,¢,d") and returns it to
A as follows.

msg' €p {msg'|msg’ € M A |msg| = |msg]|}
K.}, = Hashi (1, param, mkey, lab), K = Hashy(2, param, mkey)
a = Hashgz,_ (4, param, mkey, lab), h = ws®,

¢ = Hashg, (Kp,p,71) - b, d' = enc(K,ry, msg')
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— When S receives (prokey, {lab, lab'}), it generates pjkey and returns it to A
as follows. Since the case when lab and lab" are exchanged are clear, we only
gives one. If a set Q € IV, we letQ° denotes ZV \ Q.

First, S generates

a = Hashgz, (4, param, mkey, lab), o' = Hashgz,_ (4, param, mkey, lab)
p = Hashy, (3, param, mkey, {lab, lab'}), K.}, = Hashi (1, param, mkey, lab)
K = Hashy (2, param, mkey).

Next;
e In case (lab,lab’) € (L*\ L) x (L* UL)¢, S generates;

!’
w=w"?, w =ws*.

In case (lab, lab’) € (L \ L£*) x (L* U L)¢, S generates;

’
w=we*? , w = wg®.

In case (lab, lab’) € (L\ L£*) x (L \ L*), S generates;
w=ws*? , w = ws.

In case (lab, lab’) € (L*\ £) x (£*\ L), S generates;

!
w=we*? , w = wy®.

In case (lab, lab’) € (L* U L) x (L* U L)¢, S generates;
w=we?, w = we?.
S assigns pjkey = {(lab, k,w), (Iab’, k', w")}.

The distribution of the view of the simulated game by S is exactly the same
as that by C4 if W is such that zi,22,23,,53,7,0 € Z; are randomly and
independently chosen. On the other hand, the distribution is exactly the same
as that by Cs if W is such that z;,29,23,,5,7,0 € Z; are randomly and
independently chosen with the restriction § = ~y. Therefore, if the advantages
of A* in games C4 and C5 differ with non negligible probability, S is able to
distinguish from which distribution W is chosen. In particular, S outputs 1 if
the output of A* coincides with b but 0 otherwise. Hence, from Assumption [I]
the lemma follows.

Lemma 6. For every polynomial time A*, \Adv’éS’A*| is negligible in k.
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5 Conclusion and Open Problem

We proposed a novel notion of encryption for controlled joining (ECJ) and its
instance. The ECJ enables RDB to execute natural join of tables when and
only when required by user with reasonable efficiency. The natural join is most
frequently used relational algebraic operation in RDB. We instantiated a novel
ECJ scheme by using asymmetric pairing. The cost the proposed scheme requires
is at most linear to the size of joined tables. Our ECJ also enables RDB to
efficiently execute relational algebraic operations such as union, difference, and
intersection for tables.

It it an open problem to propose a scheme that is provably secure in non se-
lective model.We consider dedicated hardware accelerators are still necessary for
the state-of-the-art ECJ to be applied to practical RDB. More efficient schemes
are strongly desired.
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A Proof of Theorem

The generic group of asymmetric bilinear group is modeled as follows. Let ¢
be a prime, G1,Go,Gr be cyclic groups of order ¢ such that allowed operations
are additions in Gy, Go, Gr, bilinear map e : G; X Go — Gp, homomorphism
0 : Go — G1, and generations of random elements in Gy, Gr.

Let (p1,...,p5) = (1,21,22,23,217), (q1,-..,95) = (L, z10, 2300, 2203, x303)
where x1,z9, 23,0, 5,7 € Z, are randomly chosen. Note that these variables
represent the exponents of elements, excluding ws, in W.

Then consider polynomials D1 (ps) and Da(ps) with a set F of coefficients
{aiti=1, .6,{biti=1,...5, {cij}i=1, 6j=1,...5,{dij}i=1,. 5=1,..5,€1 in Zs as
follows.

6 5 5
Zazpz + Z bigi , D2(ps) Z > _cipigi + ) dijgig; + e
i=1 j=1 i,j=1

From the logic demonstrated in [T1], Assumption [] holds in the generic asym-
metric bilinear group model when the following conditions are satisfied.
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1. There exists no Set F such that Dy (z27y) = 0 but Dy (z2d) # 0.
2. There exists no Set F such that Da(z2v) = 0 but Da(x26) #Z 0.

Since only equality check can be used for distinction, distinguisher need to com-
putes that is 0 when § = = but is not when § is independently chosen. The
condition [I] comes from the equality check in G;. The condition Pl comes from
the equality check in Gp. Since the equality check in Go can be done in Gy, these
two conditions are sufficient.

Since Condition [I] holds clearly, we focus on proving that Condition [2] holds.

This is done if we show that for every set F of coefficients such that cg; = 0
for some ¢ =1,...,6, D(z27) = 0 does not hold.

Focusing on +, requiring D(z27) = 0 implies the following.

0 = c5121 + Cr2x1 710 + C53T1 T30 + C54T1 728 + C5571 2303
+c172 + CoaTaT1a + Ce3T2T3 + CoaTaT2 B + Co5T2T38
= csoax1 21 + 21 (T2(co2a + c548) + x3(cs3a + ¢558) + ¢51)

+cpafraza + xa(x3(cosa + c558) + co1)

Hence, all coefficients here needs to be 0. Therefore, the theorem follows.

B Proofs of Lemmas [, 2, 3], 4, and

Proof. (Lemmalll) mkey appears only as the input to the random oracles. Hence,
the game is aborted only when the random guess of mkey is successful, which
probability is negligible. From the fact that /—\dv’éh 4+ = AdVi 4. as long as the
game is not aborted and Lemma 1 (Difference Lemma) in [36], the lemma follows.

Proof. (Lemma ) R N R; # () only with negligible probability since their ele-
ments are randomly chosen. Hence, the lemma follows from Difference Lemma
in [36].

Proof. (Lemma [3) Since the employed encryption scheme is secure from the
premise, the lemma follows.

Note that the adversary never queries decryption queries since we are not
considering chosen ciphertext attacks here.

Proof. (Lemma [ Since the validness of the game guarantees that A*
never receives (prokey, {labT,lab}) for any lab' € L£* N L and any lab,
Hashi (1, param, mkey, labT) is never given to A*. Among the elements of
(r1,¢,d), which is the response to (encrypt,labT,msg*g) by C3, only c de-
pends on b. But, as Hash;g(l,param,mkey,]abf) is never given to A*,
Hashg, (Hashi (1, param, mkey, labT),rl) will never be generated. Hence, the in-
distinguishability is due to the random oracle. Therefore, the lemma follows.

Proof. (Lemmal6]) Since f for msg;_, is also chosen randomly, the output of Cj
does not depends on b. Hence the lemma follows.
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Abstract. In CT-RSA 2010, Yang et al. suggested a new category
of probabilistic public-key encryption (PKE) schemes, called public-
key encryption with equality test (PKET), which supports searching
on ciphertexts without decrypting them. Typical applications include
management of encrypted data in an outsourced database. They pre-
sented a construction in bilinear groups, and proved that it is one-way
against chosen ciphertext attack (OW-CCA) in the random oracle model.
We argue that OW-CCA security may be too weak for database appli-
cations, because partial information leakage from the ciphertext is not
considered in the model. In this paper, we revisit the security models
for PKET, and introduce a number of new security definitions. To re-
mark, the weakest of our definitions is still stronger than OW-CCA. We
then investigate relations among these security definitions. Finally, to
illustrate the usefulness of our definitions, we analyze the security of a
PKET scheme [24], showing the scheme actually provides much stronger
security than that was proven previously.

Keywords: Public-Key Encryption with Equality Test, Deterministic
Encryption, Searchable Encryption, Semantic Security.

1 Introduction

Background. Public-Key Encryption with Equality Test (PKET), proposed by
Yang et al. [24], allows anyone to test whether two ciphertexts contain the same
message. PKET has many important applications, e.g., a database can use it to
implement searchable encrypted databases to with enhanced privacy. Compared
with the previous public-key solutions [9)3], a remarkable property of PKET is
that it supports searching on ciphertexts produced under different public keys.
It is worth reminding that one has to assume the plaintext space of PKET must
be large, otherwise, an adversary can simply “guess” the correct content of the
message. Fortunately, this requirement is fulfilled by all interesting applications.

In [24], Yang et al. showed that no PKET scheme can achieve indistinguisha-
bility against even chosen plaintext attack (IND-CPA), and naturally, only one-
wayness was considered. However, one-wayness can merely guarantee the whole

M. Abdalla and T. Lange (Eds.): Pairing 2012, LNCS 7708, pp. 65-B2] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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plaintext is unrecoverable, and cannot capture any partial information leakage
of the plaintext (See detailed explanations in Lemma [I). For most interesting
applications of PKET, one-wayness is far from sufficient. In order to motivate
more applications and to understand this new primitive better, in the paper, we
investigate stronger security notions regarding PKET.

In particular, our goal is to have security definitions that are natural, conve-
nient to use and “properly” strong. We noticed that PKET and deterministic
encryption (DE) [3] are similar in functionalities. They can both be used as
searchable encryption, and neither of them can satisfy any meaningful notion
of security if the plaintext is distributed over a small space. DE was somehow
well-studied [BI7/52T] and a semantic security style definition of privacy, called
PRIV, was well-known [3] in the literature. Adapting PRIV security to PKET
will be an immediate solution to our problems, but this also introduces some
undesirable issues.

Let us take a closer look at PRIV security. Informally speaking, PRIV requires
that any polynomial-time adversary A = (A, Ay) should not win the following
game: In phase 1, A,, selects a plaintext m from a space of large min-entropy
and a partial information ¢t about m, and sets ¢ as the challenge. In phase 2,
Ay tries to find the exact value of ¢, given the target ciphertext ¢, where c
is the encryption of message m. We insist that (A, Ay) share no common
random tape and do not communicate. For a DE scheme, the ciphertext can be
computed efficiently using the public key, which leaks non-trivial information
about the plaintext. Thus in the formulation of PRIV security the public key is
not included in the input for A,,, and PRIV security is meaningful only if the
plaintext is independent from the public key.

However, for a PKET scheme, thanks to the probabilistic encryption algo-
rithm, every valid ciphertext is masked by additional randomness, the informa-
tion regarding the plaintext that the adversary tries to extract from a ciphertext
might be negligible. In this case, the above constraint disappears, we can pass
the public key to A,,, then get a stronger security notion. To summarize, we can
expect stronger security from PKET than DE.

Related Work. In [9], Boneh et al. introduced the notion of public-key en-
cryption with keyword search (PEKS) and several constructions that achieve
semantic security. Informally, PEKS provides a mechanism that allows senders
to store encrypted messages at a server, to each message one or more tags are
attached that are keywords encrypted with the receiver’s public key, the receiver
may send a trapdoor, generated based on the receiver’s private key, to the server
so that the latter can search the tags attached to each encrypted message, while
the server and other parties exclude receiver do not learn anything else about
the tags. Abdalla et al. [I] provided a transform from any anonymous Identity-
Based Encryption (IBE) scheme to a secure PEKS scheme. Crescenzo et al. [14]
proposed a PEKS construction based on Jacobi symbols.

In [3], Bellare et al. formally studied a notion of security for deterministic
public-key encryption that essentially guarantees semantic security for high-
entropy messages, and showed how to achieve it in the random oracle model.
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Boldyreva et al. [7] introduced a slightly weaker notion of security, which no
partial information about encrypted messages should be leaked as long as each
message is a-priori hard-to-guess given the others, and give general constructions
without random oracles. Subsequent works by Bellare et al. [5] provided alterna-
tive security definitions and proved definitional equivalences for DE. Recently a
similar formalization of security notions was presented in [II] for “plaintext-
checkable encryption” (PCE) which is a probabilistic public-key encryption
scheme with an additional functionality that anyone can test whether a cipher-
text ¢ is the encryption of a given plaintext m under a public encryption key pk.

Our Contributions. We establish various security definitions for PKET,
which fall in two flavors: semantic security style notions and sources
indistinguishability-based style notions. To distinguish our new definitions from
those for DE, we use “PRIV-P” to denote PRIV security in the setting of prob-
abilistic encryption, where “-P” stands for “probabilistic”. As mentioned above,
PRIV security assume that plaintexts are chosen independently from the public
key, thus only capture a weak security. We remove such assumptions, and obtain
a stronger security notion, called “S-PRIV-P” security, where “S-” stands for
“strong”. Note that a single-message actually results in weaker security than the
multi-message, so we additionally consider weaker notions such as “PRIV1-P”
and “S-PRIV1-P” where “1” stands for single-message.

Furthermore, we consider a sources indistinguishability-based notion for
PKET (called IND-P), which asks that a scheme hides the “source” from which
the data is drawn, meaning it is hard to distinguish ciphertext whose corre-
sponding plaintexts are drawn from one of two possible distributions. Similar to
semantic security style notion, we get notions: S-IND-P, IND1-P, and S-IND1-P.

The above discussions are within security goals, and one can further com-
bine attack models such as CPA or CCA to describe security requirements for
concrete systems. Similar results as [4] can be gained. However, we consider it
less important and omit it here. We analyze relations among the eight notions
discussed above, and our results are summarized in Fig.1. We can see that the
semantic security style notion and sources indistinguishability-based style no-
tion are equivalent. The weakest notion is PRIV1-P which equals to IND1-P,
however, it still stronger than OW security.

Finally we review the two schemes for PKET in [24]: for the first one, we
explain why it cannot be proved using general strategies; for the modified one
designed for encrypting long messages, we prove that it can actually achieve
S-PRIV-P security in the random oracle model.

Organization. The paper is organized as follows. In section 2 we give the pre-
liminary. In section 3 we establish our security models and analyze the relations
among them. In section 4 we review the schemes in [24] and prove that the
second one actually can achieve S-PRIV-P security.
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S-PRIV-P

I

S-IND-P

2N

PRIV-P <~ IND-P S-IND1-P - S-PRIV1-P

Z

IND1-P

I

PRIV1-P

An arrow X — Y means any scheme secure under definition X is also secure under
definition Y, and X - Y means a scheme secure under definition X may not be secure
under definition Y.

Fig. 1. The Relations Among the Security Notions for PKET

2 Preliminaries

In this section, we review the model of PKET and some mathematical assump-
tions.

Notations. 1% denotes the string of k ones. If x is a string || denotes its length.
If S is a set, x <— S denotes that x is sampled at random from S. We let z[1]
denote the most significance bit (MSB) of z, and let x[i] denote the i*" MSB
in x. Vectors are denoted in boldface, for example x. If x is a vector then |x|
denotes the number of components of x and x[i] denotes its i’ component for
1 < i < |x|. A function f(k): N — (0,1) is called negligible if it approaches
zero faster than k~¢, where ¢ € N is a constant. We use PtSp(k) to denote the
plaintext space.

2.1 Public-Key Encryption with Equality Test (PKET)

Syntax. A probabilistic public-key encryption with equality test scheme IT =
(K,E,D,T) consists of the following algorithms:

— K, a probabilistic key generation algorithm, takes a security parameter k € N
as input and outputs a public/private key pair (pk, sk).

— &, a probabilistic encryption algorithm, takes a message m and the public
key pk as input, and outputs a ciphertext c.
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— D, a deterministic decryption algorithm, takes sk and c as input, and outputs
m or L (which indicates decryption failure).

— 7T, a deterministic ciphertext comparison algorithm, takes two ciphertexts
c1 and cs which generated under public keys pk and pk/ as input, outputs 1
if and only if ¢; and ¢y are encrypting the same message, otherwise 0.

In [24], it was shown that IND-ATK cannot be satisfied by any PKET schemes
because of the equality test algorithm. Therefore only one-wayness for PKET
schemes was considered.

Definition 1. (OW-ATK) II = (K,&,D,T) is a PKET scheme. A is a
polynomial-time adversary. For atk € {cpa,cca} and k € N, let

’

m =m | (pk,sk) < K(1¥),m < PtSp(k)
Y

Ad ow-atk - p ,
VAT "Ly EQF, pkym),m’ — AC (1%, pk, y)

where
If atk=cpa then O(-)=¢€
If atk=cca then O(-) =D(")

In the case of cca, we insist that A does not query D on y. Il is OW-ATK secure
if Adv%’f;tk(k) is negligible for every polynomial-time adversary A.

2.2 Mathematical Assumptions

Let G1, G2 be two multiplicative cyclic groups of prime order p and g be a gen-
erator of Gi. A bilinear map é: G; x G; — G+ satisfies the following properties:

1. Bilinear : For any z,y € G1, and a,b € Z,, é(2%,y") = é(z,y)*;

2. Non-degenerate: é(g, g) # 1;

3. Computable: There is an efficient algorithm to compute é(x,y) for any x,
Yy € Gl.

Computational Diffie-Hellman (CDH) Problem : We say that CDH prob-
lem is (¢, T)-hard in G, if given 3-tuple (g, g%, ¢°) € (G)? as input, any random-
ized algorithm A with running time at most 7', computes g°® with advantage at
most €.

Advit = PriA(g,g".g") = g

We say that the CDH assumption holds if for any polynomial-time algorithm .4,
its advantage Advi{{% is negligible.

3 New Security Definitions for PKET

In this section we present two types of security definitions for PKET, i.e., se-
mantic security style definitions and sources indistinguishability-based style def-
initions, and investigate relations among these security definitions.
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3.1 Semantic Security Style Definitions

Loosely speaking, an encryption scheme is semantically secure if it is infeasible
to learn any information about the plaintext from the ciphertext. In the context
of DE, Bellare et al. [3] formalize a semantic security style notion PRIV that
captures the intuition. Due to the ciphertext comparability in PKET scheme,
the security notions we consider here have some connections with those for DE.
Similar to the notion PRIV for DE, we can define PRIV-P for PKET, where
“.P” stands for “probabilistic”. Furthermore, we extend the definition PRIV-P,
and obtain a stronger definition called S-PRIV-P, where “-S” stands for “strong”

A priv-p-adversary A = (A, Ay) is a 2-tuple algorithm. A,, takes 1% as
input, and returns a vector of challenge message x together with a test string
t that represents some partial information about x. A, takes 1%, pk, c (the
encryption of x under pk) as input, and tries to compute t. The adversary is
legitimate if it obeys the following rules. First, there must exist function v(-),
I(+) such that |x| = v(k) and |x[i]| = I(k) for all k, all (x,t) output by A,,(1%).
Second, all plaintext vectors must have the same equality pattern, meaning for
all 1 <i,5 <w(k) there is a symbol ¢ € {=, #} such that x[i]Ox[j] for all (x,1)
output by A, (1%).

We say that an adversary A has min-entropy u if

Prix[i] =z : (x,t) « A, (1F)] < 2710

forall 1 <i <w(k),all k, and all z € {0,1}*. Ais said to have high min-entropy
if it has min-entropy p with (k) € w(log(k)).

Definition 2. (PRIV-P) II = (K,£,D,T) is a PKET scheme. A= (A,,, Ag)
is a polynomial-time adversary. A, and A, share neither coins nor state. For
atk € {cpa,cca} and k € N, let

Advi{:"g'p'atk(k:) = 2Pr[Exp " (k) = true] — 1

where:

b =0b| b {0,1}, (pk, sk) « K1F),
(%0, t0) + Am(1F), (x1,t1) + A (1%),
c+ E(1% pk,xp), h + A?(lk,pk,c),
Ifh =ty then b < 1 Elseb + 0

PrExp? " (k) = true] = Pr

and
If atk=cpa then O(-)=¢
If atk=cca then O(-) =D(:)

In the case of cca, we insist that A, can query on any ciphertext not having
appeared in c. II is PRIV-P secure if Adv’lﬁ_p_atk(k:) is negligible for every
polynomial-time adversary A with high min-entropy.
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The above definition is for the multi-message case. We can define an another
notion PRIV1-P accordingly: IT is PRIV 1-P secure if Advi{:%_atk(k:) is negli-
gible for every polynomial-time privacy adversary A with Pr[|x| =1 : (x,t) +
Am(1%)] =1 for all k € N.

Lemma 1. For a PKET scheme, OW security is strictly weaker than PRIV1-P
security.

Proof. To prove this, we construct an encryption scheme I7 " which is OW secure
but not PRIV1-P secure. Let IT = (K,&,D,T) be a OW secure PKET scheme.
We define IT' = (K, &, D', T') as follows:

Algorithm &' (1%, pk,z) Algorithm D (1%, pk, sk,c) Algorithm T (1%, ¢y, ¢2)

y<—5(1k7pkj7:1,‘) de<_C Y1 H d1<—61
return y || z[1] z + D(1%, pk, sk,y) Y2 || da < c2
if z[1] = d then return x return
else return L T (y1,y2) A —(d1 & d2)

The assumption that IT is OW secure implies that II’ is OW secure. However,
the following attack shows 1’ is not PRIV1-P secure. Consider A,,(1*) outputs
(z,t) where t = z[1], then A, (1%, pk,c (¢ = y || d)) return d. Therefore, the

advantage of the privl-p adversary is Advi( igjp >1/2. O

Just like DE scheme [3], the single-message security definition and the multi-
message version have different security level for PKET scheme.

Lemma 2. For a PKET scheme, PRIV1-P security is strictly weaker than
PRIV-P security.

Proof. To prove this, we give an example of an encryption scheme IT " which is

PRIV1-P secure but not PRIV-P secure. Let IT = (K,&,D,T) be a PRIV-P
secure PKET scheme. We define IT' = (K,&, D', T') as follows:

Algorithm &' (1%, pk,z) Algorithm D (1%, pk, sk,c) Algorithm T (1%, ¢y, ¢2)

y <« E(1%, pk, x) yllz+c || 21+
z + (1% pk, ) x <+ D(1*, pk, sk, vy) ya || 22 ¢+ c2
return y || z z « DOF, pk, sk, z) return
if 2’ = % then return T(y1,y2) AT (21, 22)

else return L

Here T denotes the bitwise complement of a string s. The assumption that IT is
PRIV-P secure implies that IT" is PRIV1-P secure. However, the following attack
shows II’ is not PRIV-P secure. Consider A,,(1%) that picks 21,22 from {0, 1}*
and outputs (x1(x1 = (z1,71)),1), (x2(x2 = (z1,22)),0). Let Ay (1%, pk, (y1 ||
21,92 || 22) outputs T (z1,y2), and we have Advi{:zgjp >1/2. m]
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In the previous definitions for PRIV security [3], A,, cannot be given pk, oth-
erwise the ciphertext itself leaks partial information about the plaintext, as a
result, the PRIV security would be unachievable. However, for probabilistic en-
cryption schemes this restriction no longer exists, since ciphertext c is masked
by additional randomness used in the encryption algorithm. Therefore, we can
give a strong privacy regarding probabilistic definition, namely, S-PRIV-P.

Definition 3. IT = (K,€,D,T) is a PKET scheme. Compared with Definition

2, Ay, is additionally given pk, We say that II is S-PRIV-P secure if for any

polynomial-time attacker A, we have that Adv’";"" ™ (k) is negligible.

For the single-message scenario, we define S-PRIV1-P security accordingly.
We note that the above definition is strictly stronger than PRIV security, for

simplicity, we consider the single-message scenario. We can get similar result for

the multi-message scenario.

Lemma 3. For a PKET scheme, PRIV1-P security is strictly weaker than S-
PRIV1-P security.

Proof. To prove this, we construct an encryption scheme IT " which is PRIV1-P
secure but not S-PRIV1-P secure. Let IT = (K, &, D, T) be a S-PRIV1-P secure
PKET scheme. H : {0,1}* — {0,1}* be a collision resistant hash function
with the property that H(pk) € PtSp(k) for all pk € {0,1}*. We define IT =
(K,&', D', T as follows:

Algorithm &’ (1%, pk,z) Algorithm D (1%, pk, sk,c) Algorithm T (1%, ¢y, 2)

r«{0,1}* yllz+c || 21+
y  E(1%, pk, x) z < D(1%, pk, sk, y) Y2 || 22 2
if x = H(pk) then return z return 7 (y1, y2)

return y || =
else return y || r

We can see that II' is a PKET scheme with PRIV1-P security. However,
the following attack shows that IT' is not S-PRIV1-P secure. Consider that
A (1%, pk) outputs (zo, to), (z1,t1), where z1 = H (pk), t, = 25(b € {0,1}). Let
Ag(1% pk,c(c = y || 2)) outputs z, and Advjf}?”l_p > 1—¢(k) (since H is a
collision resistant hash function, e(k) is negligible). O

3.2 Sources Indistinguishability-Based Style Definitions

We consider sources indistinguishability-based definitions, which are easier to
deal with. It requires that the adversary is unable to distinguish encryp-
tion of plaintexts drawn from two adversary-specified, high-entropy message
spaces. Similar to the semantic security style definitions, we get four sources
indistinguishability-based definitions.

An ind-p-adversary Z = (Z,,,Z,) is a 2-tuple algorithm. Z,, takes 1%, a bit b
as input, and returns a vector of message x. 7, takes 1%, pk, c (the encryption
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of x under pk) as input, and tries to guess the bit b. The adversary is legitimate
if it obeys the following rules. First, there must exist function v(-), I(-) such that
|x| = v(k) and |x[i]| = I(k) for all k, all (x,t) output by Z,,(1¥,b) (b € {0,1}),
and all 1 < i < v. Second, all plaintext vectors must have the same equality
pattern, which was explained above.

We say that an adversary Z has min-entropy pu if

Prix[i] =z : (x,t) « L, (1F,b)] < 27#®)

forall 1 <i <w(k), all k, and all x € {0,1}*. Z is said to have high min-entropy
if it has min-entropy p with (k) € w(log(k)).

Definition 4. (IND-P) IT = (K,€,D,T) is « PKET scheme. T = (Z,,,,Z,) is
a polynomial-time adversary. Z,,Z, share neither coins nor state. For atk €
{epa,cca} and k € N, let

4 b =b|b« (0,1),
AdVT G (k) = 2Pr | (ph, sk) + K(1%),xp < T, (15,0), | -1
c « E(1F pk,xp), b Igo(lk,pk,c)

and
If atk=cpa then O(-)=¢€
If atk=cca then O(-) =D(")

In the case of cca, we insist that Z, can query on any ciphertext not having
appeared in c. II is IND-P secure if Advg}i{p_atk(k) is negligible for every
polynomial-time adversary T with high min-entropy.

The above definition is for the multi-message case. We can define an another
notion IND1-P accordingly: IT is IND1-P secure if Adv%;lj_p_atk(k:) is negligible
for every privacy adversary T with Pr[jx| = 1 : (x,t) < Z,,(1%,b)] = 1 for all
ke N.

Similar to Definition 3, if Z,, is given pk, we can get a stronger security
definition.

Definition 5. I = (K,&,D,T) is a PKET scheme. Compared with Definition
4, L is additionally given pk, we say that II is S-IND-P secure if for any
polynomial-time attacker T, we have that Adv%?{p(k) is negligible.

For the single-message scenario, we can define S-IND1-P similarly. Using similar
techniques in section 3.1, we get the following results.

Lemma 4. For a PKET scheme, IND1-P security is strictly weaker than IND-P
security.

Lemma 5. For a PKET scheme, INDI-P security is strictly weaker than S-
INDI1-P security.
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3.3 Equivalence of the Security Definitions

In this section we show the relations among the semantic security style definitions
and the sources indistinguishability-based security style definitions. In particular,
four pairs of the definitions: PRIV1-P and INDI1-P, PRIV-P and IND-P, S-
PRIV1-P and S-IND1-P, S-PRIV-P and S-IND-P are equivalent. We just need
to show that PRIV-P is equivalent to IND-P, other pairs follow the similar
technique, since the techniques we used are independent no matter whether pk
is given to A,,. Now we give the main theorem of the section.

Theorem 1. IT = (K,&,D,T) is a PKET scheme, let A be a PRIV-P adversary
against I1, then there is a IND-P adversary such that for all k € N

2k
3)

and the running-time of T is the time for at most that for k executions of A.

AdvS TP (k) < 6AAVE R (k) + (

Here we focus on the IND-P to PRIV-P implication, for the opposite direction is
straightforward. The proof is identical to [21] apart from a few minor differences.
We give the entire proof in appendix.

In the rest part of this paper, without loss of generality we limit the adversary
A as a 0-balanced boolean function, which means the probability the partial
information is 1 or 0 is 1/2.

4 Revisiting Security of Yang et al.’s Schemes

The description of Yang et al.’s scheme is given in Figure 2. We remark that
the scheme seems difficult to be proved PRIV1-P secure (the weakest notion
we define in the section 3). Because in the security proof, to show a meaningful
reduction, the simulator should generate a valid challenge cipertext, but it cannot
compute m”, thus fails.

In [24], the authors also present a modified scheme to encrypt long messages
and prove that it is OW-CCA secure. We review it here and show that it satisfies
S-PRIV1-P-CCA security. We give the description of the modified scheme in
Figure 3 (The different parts of the two schemes are labeled out with boxes).

Theorem 2. The PKET scheme in Figure 8 is S-PRIV-P-CCA secure in the
random oracle model assuming PRG is a secure pseudo-random bit generator
and CDH problem is intractable.

Proof. Let A is an algorithm that has advantage € in breaking the above PKET
scheme. Suppose that A runs in time ¢ and makes at most ¢ hash G function
queries, ¢y hash H function queries and ¢p decryption queries. Now we construct
an algorithm B that can solve CDH problem with probability at least GI, where

! ()5} qp v\ ¢
¢ 26(17 ok 72k+l> (1_2u>
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K(1F):
x < Zy;
y=9%
pk = (y);
sk = (z);
return (pk,sk);

E(pk,m):
r < ZLy;
Uyg'
V +m"(m € GY);
W« H(U,V,y") & ml|r;
C=(UV,W),
return(C);

D(sk,C):

c=UV,W)

mllr < H(U,V,U%) & W;
I(meGIAreZ;ANU=g"ANV =m");
return m;

otherwise, return L;

T(Ch,Co):

Chv = (U, Vi, Wh);

Co = (Uz, Vo, Wa);

if é(Ur, Vo) = é(U2, V1);
return 1;

otherwise, return 0;

H is a hash function: G} — {0,1}**!, where k and | are security parameters such that
elements of G can be represented with k bits and elements of Z; can be represented

with { bits.

Fig. 2. Yang et al.’s PKET Scheme

K(1%):
x < Zy;
y=9%
pk = (y);
sk = (z);
return (pk,sk);

E(pk,m):
r < Zy;
U<+g";
V+— G(m)";
K« HUV,y")
W + PRG(K) @ m||r;
C=UV,W);
return(C).

D(sk,C):

c=UV,W);

K+ H(U,V,U%)

m||r + PRG(K) & W;
If(reZ;ANU=g"NV=Gm)" ),
return m;

otherwise, return L;

T(Ch,Co):

Cy = (U1,V1, W1);

CQ = (UQ, VQ, Wz);

if é(Us, Va) = é(Uz, V1);
return 1;

otherwise, return 0;

G is a collision resistant hash function: {0,1}* — Gf. H is a hash function: G} —
{0,1}**! where k and I are security parameters such that elements of G1 can be
represented with k bits and elements of Z, can be represented with [ bits. PRG is a

pseudo-random bit generator.

Fig. 3. The Modified Scheme
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Let g be a generator of G;. Algorithm B is given a tuple (g, 9%, ¢¢) € G}. Its
goal is to compute g®¢. We describe algorithm B as follows:

SetUp. Algorithm B sets the public key pk = y which y = g%, the secret key
a which is unknown to B. Og, Oy are random oracles which are controlled
by B;

Challenge. First, (m*,t*) « An(g,y,1%), and (m’,t) «+ An(g,y,1%). Here
m* and m’ have the same equality pattern, we assume |m*| = v, |m*[i]| =
d(1 <i<wv,d > k), and m*[i] # m*[j] for all 1 < 4,5 < v (other message
patterns can be handled using similar technique). Then B sets the target
ciphertext C* = (U*, V*, W*) which U*[i] = ¢¢, V*[i] < {0, 1}*, W*[i] <
{0, 1}9+L for all i which 1 <4 < v.

Guess t + A?G’OH’OD (9,9, U*, V*,;W*). In the phase, the oracles for A, are
simulated as follows:

— Og: On input m € Gy, if m = m*[i] for any 1 < ¢ < v, the algorithm
B aborts with failure. If there is an entry (m, hy) in the hash table T}
maintained by B, hj is returned; otherwise, a random value h; is selected
from G7 and returned, and (m, hy) is added into T.

— Opg: On input (U,V, Z) € G}, if U = U*, B checks if é(g, Z) = é(y,U*),
if the equation holds, B outputs Z and aborts the algorithm. Or if there
is an entry (U,V,Z, ha) in the hash table T» maintained by B, ho is
returned; otherwise, a random value hsy is selected and returned, and
(U,V, Z, hg) is added into T».

— Op: On input a ciphertext C = (U, V, W), we deal with the messages

separately.
For each C[j] = (U[j], V[j], W[j]), if the input is U[j] = U*[i], V[j] =
V*[i] and W[j] # W*[4] for any 1 < ¢ < v, B returns L. Otherwise B
searches Ts for an entry of the form (U, V-, ). For each item (U, V, Z, h),
B computes m||r = PRG(h) & W and proceeds as follows:

1. B searches T; for m, if m is not in the list, B returns 1; when h;
is returned, check if U = g", V = h] and Z = y". If the equations
holds, B obtains m.

2. Otherwise, B continues to search T5 for the next entry of the form
(U, V,-,-).

If nothing is returned to B in the above loop for all entries (U, V,-,-) in
Ts, B returns L. Finally, combining all the messages, B returns m.

This completes the description of B. As O¢g is a random oracle, the challenge
ciphertext is always valid. Next we show that B correctly output g%¢ with prob-
ability at least € . First we define three events:

E In the simulation the adversary A queries O on input (g¢, -, g*°).
F In the simulation the adversary A queries O¢ on input m*[i].
I In the simulation a valid ciphertext is rejected.

Claim 1: Pr[E] = ¢
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This is straightforward, we don’t give further explanation.
Claim 2: Pr[I] < 12 + 2,

Proof. Algorithm B will simulate the decryption oracle perfectly except for the
following two cases.

e Case 1: (U,V,U?%) has never been queried to Oy before a decryption query
(U, V,W) is issued. In the case, L is returned by the decryption oracle. The
simulation fails if (U, V, W) is a valid ciphertext. Due to the idealness of the
random oracle, this happens with probability 1/2%+.

e Case 2: (U, V,U?) has been queried to Oy before a decryption query (U, V, W)
is issued, and m can be computed from W @ H(U,V,U%), but m has never
been queried to Og. In the case, L is returned by the decryption oracle. The
simulation fails if (U, V, W) is a valid ciphertext. Due to the idealness of the
random oracle, this happens with probability 1/2.

Combining the above two cases, we get the final result Pr[I] < 22 + 7, a

Claim 3: Pr[F] <1—(1- ), )%

2K
Proof. In the simulation, if event E occurs, the algorithm B aborts. So if event F
occurs before event E occurs, then the adversary .4 can not get any information

for m. We assume that the distribution of plaintext messages has min-entropy
1, then we get the result of Pr[F].

v

Pr[F] = Pr[F|-E] <1—(1- o )a¢e

a

Claim 4: Suppose that in a real attack A, is given the public key pk = g%, and
selects (my, to), (m*,t*), A, is given the target ciphertext C*, and guesses b at
last. Then in the real attack A, queries Of for (¢° -, g*°) with probability at
least €.

Proof. Denote E be the event that in the real attack Ay queries Op for
(9%, -, 9%). If E' does not occur, we have that the bit ¢ € {0,1} is indepen-
dent of Ay’s view, since f is a balanced boolean function, then A, outputs b
which satisfies b = b with probability at most 1/2. By the assumption of Ag,
we know that in the real attack 2Pr[b = b'] — 1 = e. Combining with the two
facts, we show that Pr[E | > e.

Prib=b] = Prib=b[E]Pr(E]+ Prlp = b |-E | Pr[-E ]
< PriE]+  Prl-B]

]. ]_ ’
<
< 2+2PT[E]



78 Y. Lu, R. Zhang, and D. Lin

In the end, we get the result:

PrE|>2Prb=0b]—-1>¢

At last, we get the probability that solving CDH problem:

! ()5} qp v\ ¢
¢ 26(17 ok 72k+l> (1_2u>

So we get a non-negligible advantage solving CDH problem, this is a contradic-
tion to the assumption. This completes the proof of Theorem 2. a
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A Proof of Theorem 1

We first show that is suffices to sonsider boolean PRIV adversaries (call a PRIV-
P adversary A boolean if it outputs test strings of length 1).
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Proposition 1. Let IT = (K,E,D,T) be a PKET scheme, and A be a PRIV-
P adversary that outputs test strings of length I. Then there exists a boolean
PRIV-P adversary B such that

Adv P (k) <2 Advh P (k)

B has same message space as A and its running time is the time to run A plus

o(l).

Proof. The proof is identical to the argument in [5I21]. To make sure the length
of the test strings is 1, we suppose two public parameters: (r, s)(r + {0,1},
s < {0,1}). Adversary B works as follows:

Algorithm B,, (1%) Algorithm B, (1%, pk, c)
(x,1) = A (1¥) g < Ag(1%,pk, c)
return (x, ({(r,t) @ s)) return (r,g)EPs

Then B is boolean, let A, denotes the event Exp%iﬁ*p*d(k:) = true and

similarly By denotes Exply s ?~(k) = true (d € {0,1}). Then
Advh3 7P (k) = Pr(By] — Pr[By]
= (Pr[Al] + ; 1- Pr[Al])) - <PT[A0] - ; (1- Pr[AO]))
=, - (PrlAi] — Pr{Ao])

. Adv’;{ij(p(k)

N =N =

In the next step, we show that it in fact suffices to consider PRIV-P adversaries
for which B is not just boolean but also balanced, meaning the probability the
partial information is 1 or 0 cannot be negligible. Namly, call a boolean PRIV-P
adversary B d-balanced if for all b € {0,1}

| Prit=b: (x,t) « Bm(15)] - ; <6

Proposition 2. Let I = (K,E,D,T) be a PKET scheme, and B be a boolean
1/2-balanced PRIV-P adversary. Then for any 0 < 6 < 1/2 there is a §-balanced
boolean PRIV-P adversary B such that

AdvhETP (k) < 25 - Adv’l’{ig,’p(k)

B has same message space as B and its running time is the time to run B plus

0(1/6).
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Proof. For simplicity we assume 1/2§ is odd. Adversary B works as follows:

Algorithm B, (1%) Algorithm B, (1*, pk, c)
(X t) — B"L(lk) g <~ By(lkvpkac)
i [1,---,1/26] return g

if i < 1/4(5 — 1/2 then return (x,0)
else if i < 1/26 — 1 then return (x,1)
else return (x,t)

After some calculations, we can get
C e 1
| Prit="5b: (x,t) < B,,(1%)] — 5 |<é

Let By denotes the event Expf;'s river=d(k) = true, similarly B, denotes

Exppm’ P=4(k) = true (d € {0, 1}) and E denotes that B,, picks i = 1/26.
Then

Adv?" P (k) = Pr|B)] — Pr[By)

1,B
= Pr[E]- (Pr|B:|E] — Pr|Bo|E]) + Pr[E] - (Pr|B1|E] — Pr|Bo|E])
= Pr[E] - (Pr[Bi1|E] — Pr[Bo|E]) + Pr[E]- (; _ ;)

1 Tiv—

The final component for the proof is as follows.

Proposition 3. Let II = (K,E,D,T) be a PKET scheme, and B’ be a §-
balanced boolean PRIV-P adversary (0 < § < 1/2). Then there is an IND-P
adversary I with min-entropy p — log(1 — 20) + 1 such that

riv— ind— 1
Advi P (k) < AdvipT (k) + (,,

+ 8)*
its running time is the time at most k executions of B.
Proof. Algorithm Z works as follows:

Algorithm Z,,(1%,b)  Algorithm Z,(1*, pk, c)
Fori=1,...,ndo geB:q(lk,pk,c)

(x,t) + Bm( k) return g
if ¢ = b then return x
return x

Let Fd denotes the event that d = b when the final return statement is exe-
cuted. B, denotes the event Expprw P=4k) = true (d € {0,1}), similarly I,

denotes Expmd P~ (k) = true. Then
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AdviFETP(k) = Pr(li] — Pr(l]

= PT'[El] . P?"[IllEl] - P?"[Eo] . PT‘[IolEo] + P?"[E] . P?"[Il‘E_‘] - P'I"[E] . PT‘[I()‘E_‘]

- ron prBl-a-( —o% . PrB)
2 2

riv— 1 .
> AdVPTTP (k) - + 6k

Next we explain that the min-entropy of Z is pu — log(1 — 20) + 1.

Let b € {0,1}, Denote Prlt = b : (x,t) < B, (1%)] by Py (b), Prx[i] =
(x,t) « B,,(1%)] by Py (2,i), and Prx[i] = 2 At = b: (x,t) < B, (1¥)] by
Py (z,4,b), According to the definition of min-entropy of B, we have

e

—1

Prix[i] =z : (x,t) < Zn(15,0)] =) Ppr () Py (2,4,b) + Py (b)* ' Py (,4,b)
=1
=P 'b)l_PB/(B)kJrP ()" P (z,i,b)
= B/ x,l, PB, (b) B/ B/ x,Z,
1 . . 5
< P () - (Pg/ (z,4,b) + Py (x,1, B))
B
1
T Py(b) P (2:9)
— 1 —H
T 1/2-9 2

Theorem 1 follows by combining Propositions 1, 2, and 3 with 6 = 1/6.
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Abstract. Secrecy of decryption keys is an important pre-requisite for
security of any encryption scheme. Forward Security (FS) reduces dam-
age from compromised keys by guaranteeing confidentiality of messages
that were encrypted prior to the compromise event. In this paper we in-
troduce FS to the powerful setting of Hierarchical Predicate Encryption
(HPE), proposed by Okamoto and Takashima (Asiacrypt 2009). Our FS-
HPE scheme guarantees forward security for plaintexts and for attributes
that are hidden in HPE ciphertexts. It further allows delegation of de-
crypting abilities at any point in time, independent of F'S time evolution.
It realizes zero-inner-product predicates and is proven adaptively secure
under standard assumptions. As the “cross-product” approach taken in
FS-HIBE is not directly applicable to the HPE setting, our construc-
tion resorts to techniques that are specific to existing HPE schemes and
extends them with what can be seen as a reminiscent of binary tree
encryption from FS-PKE.

Keywords: Forward Security, Predicate Encryption, Inner Product.

1 Introduction

PREDICATE ENCRYPTION. We focus on the notion of Predicate Encryption
(PE), formalized by Katz, Sahai, and Waters [21], building on Hidden Vector
Encryption (HVE) [6], and further studied in [22]24] 25,27, [28,[33,34]. In PE
schemes users’ decryption keys are associated with predicates f and ciphertexts
encode attributes a that are specified during the encryption procedure. A user
can successfully decrypt if and only if f(a) = 1. Otherwise, the decryption pro-
cess preserves plaintext hiding and thus leaks no information about the encrypted
message. Unlike Attribute-Based Encryption (ABE) [2LITL[15/29] that imposes
the same requirement, PE schemes have a distinguished privacy goal of attribute
hiding to prevent ciphertext leaking attributes. Existing PE schemes typically
realize concrete predicates f. For example, predicates based on the inner product
of vectors (over a field or ring) — Inner-Product Encryption (IPE) [2I] — are
particularly powerful since they can be used to evaluate a large class of predi-
cates, including conjunctions or disjunctions of equality tests, comparisons, and

M. Abdalla and T. Lange (Eds.): Pairing 2012, LNCS 7708, pp. 83-[[01] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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subset tests, or more generally, arbitrary CNF or DNF formulae. In IPE schemes,
attributes are represented by a vector 7 while the choice of another vector Z
defines the predicate fz such that fy(?) = 1 iff the inner product 2 - 7 = 0.
While the original scheme from [21I] was proven to be selectively secure under
non-standard assumptions, recent result of Lewko et al. [22] provided more so-
phisticated PE constructions achieving (stronger) adaptive security under non-
standard assumptions. Furthermore, Okamoto and Takashima [25] investigated
Functional Encryption that is adaptive security under standard assumptions.
In [22/[24] the authors also explored constructions of Hierarchical PE (HPE)
schemes providing their users with the ability to delegate their decryption keys
down the hierarchy by restricting predicates associated to the delegated keys and
by this restricting the abilities of lower-level users to decrypt. It should be noted
that existing PE (and ABE) schemes emerged from Identity-Based Encryption
(IBE) [BL32] and the majority of these schemes are pairing-based.

FORWARD SECURITY. Forward Security (FS) offers meaningful protection in
cryptographic applications with long-term (aka. static) private keys in the unfor-
tunate case when these keys become compromised. Being a standard requirement
in authenticated key exchange protocols, where it also takes its origin [12][16],
forward security has further been explored in digital signatures [IJ[I8] and in pub-
lic key encryption (PKE) [8]; see [I8] for a nice survey and strong motivation
of forward security. The concept of time evolution is central to forward security
since from the moment the private key is exposed the intended security goals
can no longer be guaranteed and the key must be changed. FS aims to tame
potential damage by offering protection with respect to earlier time periods. For
example, in forward secure digital signatures signing keys that are exposed in
one time period cannot be used to forge signatures related to prior time periods.
Similarly, in the case of forward secure encryption decryption keys used in one
time period cannot be used to decrypt ciphertexts generated in the past.

The first forward-secure PKE scheme, due to Canetti, Halevi, and Katz [§],
was built from the technical tool, called binary tree encryption [20], which in
turn is implied by Hierarchical IBE (HIBE) [I4L17] by considering identities as
nodes of the tree and restricting the intermediate nodes to have exactly two
descendants: a parent node with identity string id € {0,1} is split into two
child nodes with identities id0, idl € {0,1}**!. For each node id there exists a
secret key SKiq4, which can be used to derive secret keys SKiq9 and SKiq1 in a
one-way fashion. The intuition behind FS-PKE is to split the entire lifetime of
the scheme into IV time periods and construct a binary tree with depth log N,
where each node corresponds to a unique time period. In order to encrypt a
message for some time period i € [1, N] one uses the master public key of HIBE
and the identity string id; of the node i. At any period ¢ € [1, N] the private
decryption key of the user contains the secret key SKiq, as well as secret keys
for all right siblings of the nodes on the path from the root to node i. The latter
keys can be used to derive secret keys SKiq; for all subsequent periods j € [i, N].
The actual FS property is obtained by erasing SKiq4, (and all secret keys that
can be used to derive it) from the private key upon transition to period i + 1.
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These ideas were extended by Yao et al. [36] to obtain FS in the identity-based
setting. More precisely, they came up with a forward-secure HIBE (FS-HIBE)
constructed via a “cross-product” combination of two HIBE schemes, in the
random oracle model. Boneh, Boyen, and Goh [3] offered more efficient FS-HIBE
constructions, with selective security in the standard model and with adaptive
security in the random oracle model. The first adaptively secure FS-HIBE scheme
in the standard model is due to Lewko and Waters [23]. As mentioned by Boyen
and Waters [7] and also explored in [10,13[30,81,[34] FS is also achievable for
anonymous HIBE systems, whose ciphertexts hide the (hierarchy of) identities
for which messages were encrypted. Since HIBE generalizes IBE (anonymous)
FS-HIBE covers (anonymous) FS-IBE.

FORWARD SECURITY IN ABE/PE. A message encrypted with an ABE/PE
scheme can potentially be decrypted by many users. Exposure of some user’s
private key in these schemes is likely to cause more damage in comparison to
PKE or IBE schemes since the adversary could obtain messages that were en-
crypted for more than one user. Adding forward security to ABE/PE schemes
is thus desirable to alleviate this problem. A naive approach, i.e., to change all
keys (incl. public ones) for each new time period, has already been ruled out
as being impractical in PKE and IBE schemes, and it seems even more compli-
cated in the ABE/PE setting. In this work we formalize and construct the first
forward-secure hierarchical predicate encryption (FS-HPE). Since HPE includes
PE/ABE [22/[24], our FS-HPE scheme also implies constructions of first forward
secure ABE/PE schemes.

Although forward-secure HIBE constructions exist, formalizing and designing
FS-HPE is challenging due to a number of advanced properties that must be
considered. In HPE schemes predicates (and by this indirectly private keys) are
organized in a hierarchy — any ciphertext that can be decrypted by a low-level
predicate must also be decryptable by a high-level predicate but the converse
may not be true. In contrast to HIBE, where delegation is performed by extend-
ing the parent identity with a substring, predicates in HPE have more complex
structures and their delegation requires different techniques. Moreover, predi-
cates should be delegatable at any period in time, irrespective of time evolution
for FS. Another aspect is that encryption of messages in forward-secure HPE
must be possible only using the master public key, the set of attributes, and
the current time period, without having & priori knowledge of predicates at any
level of the hierarchy, whereas in FS-HIBE schemes encryption is performed
with respect to a given identity at one of the hierarchy levels. We note that ob-
taining forward security in HPE schemes by applying techniques from existing
FS-PKE [8] and FS-HIBE [36] results in a number of obstacles. For example, a
“cross-product” combination of two HPE schemes [22[24], akin to the case of
two HIBE schemes for FS-HIBE in [36], seems not feasible due to the unique
delegation and randomization mechanisms used in those HPE schemes. Finally,
an FS-HPE scheme should still provide attribute-hiding, which could be threat-
ened if (public) time periods for FS are mixed up with attributes during the
encryption.
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1.1 Owur Contributions

FS-HPE: MODEL AND SCHEME. We formalize and design the first forward-secure
hierarchical predicate encryption (FS-HPE) scheme, for zero-inner-product predi-
cates [21]. Our scheme is secure (adaptively attribute-hiding) in the standard model
under the well-known Decision Linear (DLIN) assumption [4] in bilinear groups of
prime order. We first present a new syntax and security definitions that are spe-
cific to FS-HPE;, in particular definition of attribute hiding had to be extended
in order to account for FS, in a more complex way than in FS-HIBE definitions
from [231[36], as explained in Section B3l Our FS-HPE scheme offers some desir-
able properties: time-independent delegation of predicates (to support dynamic
behavior for delegation of decrypting rights to new users), local update for users’
private keys (i.e., no master authority needs to be contacted), forward security,
and the scheme’s encryption process doesn’t require knowledge of predicates at
any level including when those predicates join the hierarchy. Considering the rela-
tionships amongst the encryption flavors, we can restrict our scheme to level-1 hi-
erarchy and obtain first adaptively-secure FS-PE/ABE construction, or we can set
the inner-product predicate to perform the equality test, in which case we would
obtain the first adaptively-secure anonymous FS-HIBE scheme under the basic
DLIN assumption (as an alternative to [10] that works in bilinear groups of com-
posite order and requires new hardness assumptions).

TECHNIQUES. Our FS-HPE scheme is built based on the dual system encryption
approach introduced by Waters [35] and uses the concept of dual pairing vector
spaces (DPVS) of Okamoto and Takashima [24]. Techniques underlying forward
security of the scheme can be seen as reminiscent of binary tree encryption [§]
that was invented for FS-PKE and doesn’t apply immediately to the more com-
plex HPE setting. We had to resort to those techniques and modify them for
integration with HPE since obtaining FS-HPE in a more direct way, e.g. by
adopting the “cross-product” idea from [36], seems not feasible with existing
HPE constructions [2224]. On a high level, we modify the existing HPE scheme
from [22] and combine two of its instances in a non-trivial way to achieve a
FS-HPE scheme. One of the HPE schemes handles predicate/attibute hierarchy
while another one is used for maintaining time periods using the concept behind
binary tree encryption [8]. The modification of the scheme in [22] is necessary to
prove security the stringent security definitions involving F'S. The combination of
two schemes is non-trivial due to the delegation and randomization components
inherited from HPE. Our scheme perfectly synchronizes all private key com-
ponents (decryption, delegation and randomization) from both HPE instances.
These components are updated at each new time period and they are also used
for time-independent delegation of predicates. We apply game-hopping proofs,
following the general proof strategy from [25], i.e. we first define several hard
problems and prove that security of our scheme relies on them, then we prove
that those hard problems can individually be used to solve the DLIN problem.
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2 Background on Dual Pairing Vector Spaces and
Complexity Assumption

GROUPS. Let Gppe be an algorithm that on input a security parameter 1* outputs
a description of the symmetric bilinear group setting (¢, G, Gr, G, e) where ¢ is
a prime, G and Gp are two cyclic groups of order ¢, G is the generator of G, e is
a non-degenerate bilinear map e : G x G — Gr, i.e., e(sG,tG) = (G, G)*" and
e(G,G) # 1. We also define cyclic additive group G and multiplicative group
G of order q.
N
~ -~ ~
VECTOR SPACES. Let V = G x --- x G be a wvector space and each element
in V be expressed by N-dimensional vector. x = (x1G,...,2nyG) (x; € Fy for
t = 1,...,N). The canonical base A of V is A = (ai,...,an), where a; =
(G,0,...,0), a2 = (0,G,0,...,0),...,any = (0,...,0,G). Given two vectors
xz = (21G,...,2nyG) = z1a1 + -+ zyany € Vand y = (y1G,...,ynG) =
y1a1 + -+ ynvany € V, where 7 = (1,...,2n) and 7 = (y1,-..,Yn), the
pairing operation is defined as e(x,y) = Hf\;l e(z;G,y:G) = e(G, G)Eilw”ﬁ =
EXS
gr ° € Gr.

Definition 1 (Dual Pairing Vector Space (DPVS) [24]). Let
(¢,G,Gr,G,e) be a symmetric bilinear pairing group. A Dual Pairing
Vector Space (q,V,Gr,A,e), generated by an algorithm denoted Gapys, is a
tuple containing a prime ¢, an N-dimensional vector space V over Fy, a cyclic
group Gr of order q, a canonical base A = (a1,...,an) of V, and a pairing
e:G x G — Gr that satisfy the following conditions:

1. NON-DEGENERATE BILINEAR PAIRING: There exists a polynomial-time com-
putable non-degenerate bilinear pairing e(x,y) = Hi\il e(Gi, H;) where x =
(Gi,....,GN) €V and y = (H,...,Hn) € V. This is non-degenerate bilin-
ear pairing i.e., e(sx,ty) = e(x,y)*" and if e(x,y) = 1 for ally € V, then
x =0.

2. DUAL ORTHONORMAL BASES: A and e satisfy that e(a;, a;) = g‘;f’j for all i
and j, where 6;; =1 ifi = j, and 0 otherwise, and gr # 1 € Gr.

3. DISTORTION MAPS: Linear transformations ¢; ; on'V s.t. ¢; j(a;) = a; and
¢ij(ar) = 0 if k # j are polynomial-time computable. We call ¢; ; “distor-
tion maps”.

ORTHONORMAL BaSES. Let B = (by,...,by) be a basis of vector space V
which is obtained from its canonical basis A using a uniformly chosen linear

transformation A = (A; ;) £ GL(N,F,). Note that GL(N,F,) creates a matrix
of size N x N in which each element is uniformly selected from F, such that b; =
Zj.vzl Aijaj, for i =1,..., N. Similarly, let B* = (b}, ..., b} ) be another basis

of V which is also obtained from A using p, ; = (/1T)_1 as bl = Z;\le i Qs

fori =1,...,N. It can be shown that e(b;, b}) = ggf’j, where 6, ; = 1if i = j,

and §; ; = 0 if ¢ # j. That is B and B* are dual orthonormal bases of V. In our
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scheme we will use the following probabilistic algorithm G, to generate group
and DPSV parameters and the two dual orthonormal bases:

Gon(1, T = (din1,...,nq)) : paramg = (¢, G, G, G, €) & Gopg(17),
& F No=5,N, =3n,+1fort=1,...,4d;
Fort=0,...,d:

paramy, = (q, Vs, Gr, A, e) & devs(l’\,Nt, paramg),

—1
A = M) & GL(N,F,), (1) =4 (40"

b = ZA“) D fori=1,...,N,BO = d",....60)),

j=1
b = ZM(%(” for i =1,..., N, B® = (7). p3"),
j=1

gr = e(G,G)¥, paramy; = ({paramy,, }1—0,...a: 97),
Output (param, {B", BV}, 4).

Note that gr = e(bi(t),b;k(t)) fort=0,...,d;i=1,...,N,.

Definition 2 (Decisional Linear Assumption (DLIN) [4]). The DLIN
problem is to decide on bit § € {0,1}, given the output (paramg, G, aG,bG,
acG,bdG,Yg) of the probabilistic algorithm

Q]BDLIN(l)‘) : paramg = (¢, G, G, G, e) & gbpg(l’\),a,b, c,d g Fq,
Yo=(c+d)G, Y1 <G, B&{0,1};
Output (paramg, G, aG,bG, acG, bdG,Y3).

The advantage /—\dvDLIN( ) of a probabilistic polynomial-time DLIN solver D is
defined as follows:

| P[P @) 1| = & GPHNY)] = PPN @) 1| = &GP |.

The DLIN assumption states that for any D this advantage is negligible in \.

3 Forward-Secure Hierarchical Predicate Encryption

In this section we present our model for forward secure hierarchical predicate
encryption (FS-HPE). First, we highlight the idea behind FS-HPE concept and
introduce some notations. In FS-HPE private keys are associated with predicate
vectors and evolve over the time. At any time period 7 a user may join the
hierarchy and receive delegated private keys. These keys are computed by the
parent user for time period i and together with further secret information that
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is necessary to derive private keys for later time periods is handed over to the
joined user. Once the user receives this secret information, at the end of each
period the user updates his private key locally and erases secrets that are no
longer needed. Additionally, at any time j > ¢ the user may delegate its private
key down the hierarchy without contacting its parent. In any time period i a
message can be encrypted using public parameters, the attribute vectors, and i.
In order to decrypt for time period i users must possess private keys satisfying
attributes from the ciphertext for that time.

3.1 Notations

Time Period. Let the total number of time periods N = 2%, where x € N.

Hierarchical Inner-Product Predicate Encryption. We borrow some no-
tations from [22] to describe our HPE with inner-product predicates. Let
W = (n;d,pu1, ..., puq) be a tuple of positive integers such that pg = 0 <
w1 < po < -0 < pg = n. We call ﬁ a format of hierarchy of depth d
attribute spaces. With X, [ = 1,...,d we denote attribute sets and each
X = Fy7M\ {0} A hierarchical attribute ¥ = UL (27 x ... x X))
is defined using the disjoint union. For o; € Fy' it \{ﬁ}, a hierar-
chical attribute (71, .. .,7h) € X is said to satisfy a hierarchical pred-
icate f(yh_“’?l) if | < hand 7, - 71 = 0 for 1 < i < I, which we

denote as f(?l’m’?l)(ﬁl,...,yh) = 1. The space of hierarchical predi-

cates is F = {f(yl,...z,)\?i € FymHi=t \{6)}} We call h (resp. I) the
level of (717 .. .,7h) (resp. (?1, . 71)) Throughout the paper we will
assume that an attribute vector 7/, = (Y1,-.-,Yu,) is normalized such
that y; = 1 (note that 7/ can be normalized via (1/y1) - J1, assum-

ing that y; is non-zero). By ?Ek) we denote the canonical basis vector
-~ z;‘l ~ rnKZ\
(0,....0,1,0,...,0) € F* for k= 1,2 and i = 1,...,mj.

Keys. We use two notations for secret keys: sk, (7, . 7, is the key associ-
ated with some prefix w of the bit representation of a time period 7 and a
hierarchical predicate (7’1, ..., '), whereas SK; (z,,.. 7, denotes the key
associated with time ¢ and a hierarchical predicate (71, ceey ?l) That is,

SK; (2,,.7) = {ski,(?hm,?”, Sku1,(7,,...7,) : w0 is a prefix of i}

3.2 Syntax

Definition 3 (FS-HPE). A forward secure hierarchical
predicate  encryption  scheme is a  tuple of  five  algorithms
(RootSetup, Delegate, Update, Encrypt, Decrypt) described in the following:

RootSetup(1*, N, ﬁ) This algorithm takes as input a security parameter 1*, the
total number of time periods N and the format of hierarchy ﬁ It outputs
public parameters of the system, incl. public key PK, and a root secret key
SKo,1, which is assumed to be known only to the master authority of the
hierarchy.
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Delegate(SK; i, 1, ?1-4-1) This algorithm takes as input a secret key SK;; asso-
ciated with time i on hierarchy level I and an (14 1)-th level predicate vector
?l—&-l- 1t outputs the delegated secret key SK; 1. This key is intended for
the direct descendant at level I + 1. It is assumed that predicate vector 7l+1
is added to the predicate hierarchy during the time period 1.

Update(SK;;,4) This algorithm takes as input a secret key SK; ; and the current
time period i. It outputs an updated secret key SK ;i1 for the following time
period i + 1 and erases SK; ;.

Encrypt(PK, (71, .. .,7h),i,M) This algorithm takes as input the public key
PK, hierarchical attribute vectors (71, ceey 7h), a time period i, and a mes-
sage M from the associated message space. It outputs a ciphertext C. We
assume that i is included in C.

Decrypt(C, SK; ;) This algorithm takes as input a ciphertext C and a secret key
SK; for the time period i and predicate vectors (71,...,71). It outputs
either a message M or the distinguished symbol L (to indicate a failure).

Correctness. For all correctly generated PK and SK;; associated with predicate

vectors (71, R ?l) and a time period i, let C ¥id Encrypt(PK, (71, R 7}1), i,
M) and M’ = Decrypt(C,SK;;). Then, if f(?l,...,?,)(717~-~a7h) = 1 then
M = M’; otherwise, M # M’ with all but negligible probability.

3.3 Security Definition

Definition 4. A FS-HPE scheme is adaptively attribute hiding against cho-
sen plaintext attacks if for all PPT adversaries A, the advantage of A in the
following game is negligible in the security parameter:

Setup. RootSetup algorithm is run by the challenger C to generate public key
PK and root secret key SKo.1. PK is given to A.

Queries I. A may adaptively make a polynomial number of delegation queries
by asking C to create a secret key for any given time period i and hierarchical
predicate vectors (71, ceey ?l) In response, C computes the secret key SK;
and reveals it to A. (Note that C computes SK; ; with the help of algorithms
Delegate and Update that it may need to execute several times, i.e. depending
on the input time period i and hierarchy level l.)

Challenge. A outputs its challenge: two attribute vectors (YO, Y1) =
((7§0), ce 75%) ), (751), ce 7§L1()1))), two plaintexts (M, MM), and
a time period I, such that either ¢ > I, or i < I and
f(?hm’?l)(ﬁgo), e 72%)) = f(?l,“"?l,)(?gl)’ . ,721()1)) = 0 for each re-
vealed key for fz, =, and time period i. C then flips a random coin b. If
b =0 then A is given C = Encrypt(PK,Y© I, M©) and if b = 1 then A
is given C = Encrypt(PK,Y (M) 1, MM),

Query phase 2. Repeat the Query phase 1 subject to the restrictions as in
the challenge phase.

Guess. A outputs a bit ', and succeeds if b’ = b.
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We define the advantage of A as a quantity AdvPHPE(X) = |Prb = b'] — 1/2|.

Remark 1. In Definition M adversary A is not allowed to ask a key query for
time period i and hierarchical predicate vectors (71, .. .,?l) such that ¢ <
I and f(?l,“‘,?z,)(?gb)’“-77;(;7()17)) = 1 for some b € {0,1}, i.e., the queried
key is not allowed to decrypt the challenge ciphertext. Recently, Okamoto and
Takashima [28] proposed a PE (HPE) which allow such key query, provided that
M© = M@ The technique of Okamoto and Takashima [28] can be applied in
our scheme to achieve strong security.

Remark 2. In Definition[d] A may ask delegation queries and obtain the resulting
keys. This contrasts slightly with the HPE security definition in [22], where A
may ask the challenger to create and delegate private keys but will not be given
any of them, unless it explicitly asks a separate reveal query. This is because
HPE in [22] has two algorithms for computing secret keys, either directly (using
the master secret key) or through delegation (using secret key of the parent
node). In our FS-HPE syntax we compute secret keys through delegation only
and in the security definition we are mainly concerned with maintaining time
evolution for delegated keys.

Remark 3. Definition [ can be easily extended to address chosen-ciphertext at-
tacks (CCA) by allowing decryption queries. The usual restriction is that de-
cryption queries cannot be used for the challenge ciphertext. Our CPA-secure
FS-HPE scheme from Section @ can be strengthened to resist CCA by applying
the well-known CHK transformation from [9] that uses one-time signatures to
authenticate the ciphertext.

4 Our Forward-Secure HPE Scheme

HiGH-LEVEL DESCRIPTION. For simplicity of presentation, our FS-HPE makes
use of a version of FS-PKE scheme by Katz [19]. In Katz’s scheme, time periods
are associated with the leaf nodes of a binary tree while in Canetti et al. scheme
[8], time periods correspond to all nodes of the tree. Our scheme can also be
realized based on the FS-PKE scheme by Canetti et al., which will give faster
key update time. We utilize a full binary tree of height x, whose root is labeled
€ and all other nodes are labeled recursively: if the label of a node is w, then its
left child is w0, and its right child is wl. Each time period i € {0,...,N — 1}
corresponds to a leaf identified via the binary representation of . We denote the
k-bit prefix of a d-length word w = wyws ... wyq by wlg, i.e. wlx = wiws ... wg
for k < d. Let w|p = € and w = wlg4.

We use two HPE schemes in parallel. Private keys in each scheme contain
three components: decryption, delegation and randomness. Private key of a user
contains private keys from both schemes that are linked together using secret
sharing. One HPE scheme is used to handle predicate/attribute hierarchy, while
the other one is used to handle time evolution. Each of the two HPE schemes is
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a modification of the scheme in [22], in a way that allows us to prove attribute-
hiding property under more sophisticated conditions involving time evolution.
The efficiency of the modified scheme is still comparable to the one in [22], i.e. it
increases the ciphertext by an additional component (master component) that
is used to combine both HPE schemes and is crucial for the security proof. This
change implies that the length of the orthonormal bases grows from (2n+3)- |G|
n [22] to (3n+ 1) - |G| in our scheme, where n is the dimension of the attribute
vectors, and |G| is the length of a group element from G.

At time period i, the entity at level [ with a hierarchical predicate
(Z'1,..., ;) holds a secret key SK; (#,,.. 2, denoted for simplicity as SK; .
It contains secret keys sk;; and {sky;}) for each label w corresponding to a
right sibling node (if one exists) on the path from ! to the root. We view sk;
as a decryption key, which is associated with current time ¢ and the predicate
(Z'1,..., ). The secret keys in {sky,} contain auxiliary information used to
update sk; ; for future time periods and to derive its lower-level predicates. The
initial keys sko,1 and sk; ; are computed in the RootSetup algorithm and are asso-
ciated with the predicate 7. In general, each sk,,; contains three secret com-

ponents: the decryption component (kg))l dec> ks)l dec> kff)l dec)> the randomness
e 1) (2) (2)
component (kw,l,ran,p ook tanis s Kt anas o kw,l,ran,|w|+1) and the del-
; 1) 1) (2) 2
egation component (kw’l’del’mﬂ, ok 1 del s kw,l,del,2|w|+1’ cee kw’l’del,L). All

above components are constructed using orthonormal bases B* specified in Sec-

tion[2l There are three different bases in the system. The superscript of each key
(0)

wl.dec 1S the mentioned master component that

component denotes its base. k

links kful)l dec and kfuz)l dec Using the secret sharing techniques. In turn, kful)l dec
and kff )l dec are used in respective HPE schemes. If w represents a leaf of the

k(o) k(l) k(2)

w,l,dec’ Vw,l,dec’ w,l,dec) is used for

binary tree then the decryption component (
decryption at time represented by w.

Delegation and randomization of private keys are processed similarly as in [22],
except that upon derivation of keys for lower level predicates, we also delegate
and randomize their time-dependent part. In particular, the delegation compo-
nent of the I-th level key is essential to compute the (I + 1)-th level child key,
and the randomness component of the [-th level key is used to re-randomize
the latter’s coefficients. To handle time hierarchy we deploy “dummy” nodes.
Similarly, we will compute the dummy child for predicate hierarchy when time
evolves. In this way, all derived keys are re-randomized.

We define a helper algorithm ComputeNext that will be called from RootSetup
and Update. Given a secret key sk, ; for node w and a hierarchical predicate
(717 . ?l) it outputs sk(yp),;, b € {0, 1} for the nodes w0 and w1 by updating
the three components of sk, ;. The algorithm Update computes secret keys for
the next time period through the internal call to ComputeNext and erases all
secret information that was used to derive the key for the current time period.
The update procedure involves all three components of the secret key. For exam-
ple, for a given secret key SK;; = (ski,{skw,}), forward security is achieved
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by deleting its component sk; ; and using all three components of {sk.,;}, where
w is now the label of an internal node, to derive SK;y;,; for the following time
period with the help of ComputeNext.

In algorithm Delegate, a secret key sk, ; for a string w is used to derive
sky o, for a lower hierarchy level u > [ and a hierarchical predicate (?1, e, 7u)
that has restricted capabilities in comparison to (?1, ey 71) As mentioned,
the delegation component for hierarchical predicates of sk, ; is essential for the
derivation of sk, ., whose coeflicients are re-randomized with the randomization
component.

The algorithm Encrypt requires only a time period ¢ and a hierarchical at-
tribute (71, ceey 7h) to encrypt the message. We note that during encryption
attributes (71, ceey 7;L) are extended with random elements from level h + 1
down to the leaf, i.e., the scheme encrypts attribute vectors on all levels in the
hierarchy instead of encrypting only the input vectors. In this way, parent keys
can directly decrypt ciphertexts produced for their children without taking effort
to derive child keys first.

The algorithm Decrypt uses the decryption key sk; ;, which is associated with
time period ¢ and hierarchical predicate (71, LT 1). The message is decrypted
iff the attributes in the ciphertext satisfy the predicates in the decryption com-
ponent of the key and the ciphertext is created at time 1.

DETAILED DESCRIPTION. The five algorithms of our FS-HPE scheme are de-

tailed in the following;:
RootSetup(lk, N=2 1 = (n;d, pyy- .-y ,ud)):
Let 7’1 be the root predicate and let L = 2x and 7 = (2;n, L). Compute

(paramy;, B®), B~ BO) B+ B®) B*@)) & G, (11, 7),
= 0) 1(0) 2(0)y = 1 D o1 - ) )
BO — 39,500, B0 = 3, 6D 50 ), B = 6?,... b2,

b(2) )
3L+1/)
B*0) — (b*{(O)’b;(O))’ B — (b*{(l), - _’b:(l)% B2 — (bT(Q), - _7bz(2))7
% *(1 *(1 ) *(2 *(2
B = (b25L-)-1""’b37(L))’ B+ = (bz(Lj-p-'-ab:sS:))

The master authority needs to generate not only the secret key associated with
the current time period 0 but also secret keys corresponding to the internal
nodes on the binary tree whose bit representations are all 0 except for the last
bit. The secret key for time 0 and predicate 71 is denoted as sk~ 1. Secret
keys that will be used to derive keys for future time periods are denoted as
{sk1,1,8k@01),1,- -, 8kox—11,1}. These values are generated recursively as follows,
starting with sko 1 and sk ;.

Computing sko 1: Pick ¥, ¢/, agec, aéz, aﬁl < I, such that agec = aéll + aéﬁl

. 0 1 .

Pick n(geLBdec 17Bdec 1’6r(ar3,j 1( =1 2) Br(ar?j 1(] =1 2) Bdelg 1(-7 = 1 )’
2 . 2 . 2

5<§el),j,1(j = 1"' FQ’ 7dec’ﬁfar2] -7 - 1 2 ﬁc(:lel)] -7 = 1 L) IF(??
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1 I 1) . U
Wgel,ﬁfar)]] (j=1,2) ﬁgel)] (j=1,...,n) < F;. Compute

0

k((),},dec (— adecvoalvﬁéez,o)mwon

K e = (el @17+ 84l 70,0 TG 0)

k) dee = (et Blad 1 072 TGl 0),

kS rang = (B T, 0771 37 00 10), s for = 1,2,

(()?i,ran,j (0, r(a2n),j,1702L 2 Wgr)ma IB*<2>’ for j = 1,2,

0 1 del,j = (Bdelg 171’0] g, 020 752;7 ]B*(l)’ forj=p +1,...,n,

kS ey = (0,850 51,0072 47,0277 7 &) 0) ), forj=3,...,L.

Let sko,1 = (k(()01) dec’ k(()11) dec k'(()zi dec? k(gg,ran,lv k((ff,ran,za k(()z} ran, 1> k(()? ran,2
k(()h),del,mﬂv P k(()z,del,n’ k(()?l,del,fi’ R kO?l,deI,L)'

Computing sk; ;: Pick w7’ 5dec,5dig,5§2 bl F, such that dgec = 5(52 +

Sger- Pick vdec,eéiipeéiiper:zu1<j = 1,2),00,,G = 1,2,08,.0 =
L. )9533]1(' = L....L) & Fy, Fe ViU = 1,2), 76,0
L) &, 78 78 (=1,2),75,G=1,...,L) & F- Compute
g(,)z,dec (= 5dec,071a7‘5e270)]1¥*(0)a
K dee = (04t @1 + 050, 1, 07", T 6L 0), s
K1) dee = Baed 0l 1 e 0 2 T 52l 00
K o = Gran g T 1,077, 7 1 5 0)gyy s for j = 1,2,
B o = O 51500 515 02272 T2 1 0) s for j = 1,2,
S%’del’j (Qdeljlﬁl,O] =l g2 7delj, Be () forj=p1+1,...,n
kg,dew ( del,g,lv del)j 170' 7,02 752);’ 15;*<2>’ for j=3,...,L.
Let 8k1,1:(kﬁ),dee’kﬂ,decakfi,deca ﬂ,ran,h 51% ran,2 52% ran, 1 g?i,ran,%
Sl),del,/“-&-l"' k’ﬁ delnakﬂ del,37 " " - k§21) del,L)-

Recursion: Use sk ; to recursively invoke algorithm ComputeNext, i.e. compute
(8kwoo,1, Skwo1,1) = ComputeNext(PK, skyo,1, w0), for all 1 < |w0| <k — 1.

Output: Output public key PK = (1)‘, param-, {@(k)}kzo,l’g,]@*(l),@*(2),bz(o))
and the root secret key SKo 1 = (skor 1, {sk1,1,sko1),1,- - -, Skor-11),1})-
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ComputeNext(PK, sky, i, w): This is a helper method and is called by the Root
Setup and Update algorithms. It takes a public key PK, a secret key sk, i, a
node w, and outputs keys skuo,1, Skwi,; for time nodes w0 and wl of predicate

vectors (?1,...,?) Parse w as wy,...,w,, where |w| = r. Parse sk, as
(0) (1) (2) (1) 1) (2) (2)
(kw l,dec’ kw l,dec? kw l,dec? kw l,ran, 10" "> kw,l,ran,lJrl’ kw l,ran,1° " * kw l,ran,r+1°
(1) (1) (2 (2)
w,l,del iy +17 " kw 1,del,n? kw Ldel,(2r4+1)7 " kw 1,del, L)

0 (1 1 . 1 .
Computmg skuyo,: Pick 9,1, éel, gezt, Eaz7jt(] =1,...,01+1), G(Sel)]t(j =1,

n) & F,fort=1,...,141. Pick egel’t, Odecs egr)]’j’t(j =1,...,742),00mn,;(j =
1,. r+2),e(2) (G=1,...,L),000;(j =1,....L) & Fyfor t =1,...,r + 1.

del,j,t
1 . . U *(1 *(1
réez,rr(ag](j = LU+ ) r‘gel)j(] = 1,...,n) < span<b27(1+)1,...,b37(1)>,
2 2 . U *(2 *(2
rtgeZ’ r(arzj(] _]' T+2) rcgel)](] _]' L)(—Span<b22i1,...,b32)>.
Compute
0 0 0
kz(u(;,l,dec = kw,)l,dec + Egezb
1) (1) — (1) 4.(1) (1)
1 1 1 1 1
ka,l,dec = kw,l,dec + Z 6dec,tkw,l,ran,t + rdec’
t=1
+1
TR - W) e (2)
wO0,l,dec — "Vw,l,dec + Z 6dec,t w,l,ran,t + Odec w,l,del,2(r+1) + rdec’
t=1
I+1
(1) N W R _
ka,l,ran,j - €ran Js tk JLrant + rran N for .7 1 l + 1>
t=1
r4+1
(2) _ (2) (2) (2) _
ka,l,ran,j - Z €ran Js tkw l,ran,t + Jfa"’ﬂkw l,del,2(r+1) +r ran ]a for j 1 T+ 2’
t=1
(1) - e (1) (1) (1)
1 1 1 1 1 .
ka,l,deI,j = €del,j, Rl rane T VKL del,j T Tdel 57 for j=pu+1,....n,
t=1
r+1

(2) (2) (2) (2) (2) (2)
ka,l,deI,j = Z €del,j, ik wirant T Udelv]kw,l,del,Z(r+1) + ,(//kw Ldel,j T Tdei,j>

for j=2(r+1)+1,...,L.

(0) (1) (2) (1) (1) (2)
Let SkUJO,l - (ka l,dec? ka l,dec? ka l,dec? ka lyran,17 "> ka,l,ran,l+1’ ka,l,ran,l’ Tt
(2) (1) (1) (2) (2)
ka,l,ran,r+2’ ka,l,deI,ul+1’ M ka,l,del,n’ ka,l,deI,(2(r+l)+1)’ et ka,l,deI,L)'
- P o (1 ) W
Computing sky1,: Pick 7,7/ + €decs Edec.t Eran g, L7 =1,...,14+ 1), Edel . (3 =1,

n) & Fofort=1,...,l+1. Pick €gez,t’ Gdec,ﬁg,z’j,t(j =1,...,742),Gam,;(j =

L.+ 250G = 1. L) el (G = 1, L) EF fort=1,...r+1.
AR (7 =1,...,1+ 1)t £l G =1,...,n) < span<b27(1+)1,...,b;(1)> A

dec’ “ran,j del,j n dec?
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2 . 2 . U *(2 *(2
tsaz GU=1..r+2), téel)](j =1,...,L) < span(bzé}rl, ce b3(L)>. Compute
(0) _ 1.(0) (0) £.%(0)
kwl l,dec kw l, dec ecb4
(1) (1) - (1) 4.1 (1)
1 1 1 1) 1
kwl,l,dec = kw l,dec Z dec tk ,lran,t + tdec’
t=1
@) @B LN @ Lo = e NE)
2 2 2 2 2 2
kwl l,dec — kw l,dec Z dec tkw l,ran,t + Sdec ( Z kw l,del z) dec’
= 1=2r+1
1 1 1 .
wllran,g ngarzjt Su)lrant+tsarzj’ fOI‘j:l?""l—i_l?
@) @ @ <~ @
2 2 2 (2) 2
wl,l,ran,j = 6ran,j',15k11),l,rzan,1f + Sran,j ( Z k w,l,del, z> tran 77
t=1 1=2r+1
forj=1,...,7r+2,

O] (1) () (1) (1) -
wlldel,j ngelgt wlrant kwlde|j+tdel,j7 fOI'j—/,(,l—Fl,...,n

2r+2
2 2 2 2 2
K = zegent KO, o+ o ( 5" k“) I

Let skui; = (k%
k(Q) k(l

wl,l,ran,r+27

(1) (2) (1)
wl,l, dec’kwl i, dec’kwl L, dec’kz

wl,l,del,pu; 417" *

1=2r+1
forj=2(r+1)+1,...,L.

(1) (2)
wl,l,ran,10 kwllranl+17kwllran 12>

k(2)

(1) (2)
kwl l,del,n’> ™wl,l,del,(2(r+1)+1)> """ kwl,l,del,L)‘

Output: Output (skwo,i, Skwi,i)-

Delegate(S K, i, T4 = (@1, s

Ty,,,)): Parse i as i1,...,i, where k =

log, N. Parse SK;; as (ski,l,{ski|k7117l}ik:0). For each sk, in SK;; compute

sky,1+1 as follows:
Parse w as wy, . ..

1 .
2) ’y(gel)jt(j = 1a

0 @ @)

s wr, where |w| = 1. Pick 1, ¥, Viee> Yaeet» Vran .t (G = Lo ooy I+
,n) & F, for ¢t =1,...

0+ 1. Pick “Yéez,tv‘fdecﬁrar?,j,t(j -

. . u
1), O (G =1, 142), %(,f_,)jt(J =1,...,0),00,;(j=1,...,n) < F

for t = 1,...,r + 1. r(glz,rr(agj(j = S+ )réel)](j = 1,...,n) &

* . U
span(ban, ...,b (1)> réig, r(fr?](j =1,...,r+1), réel)](j =1,...,L) < span
(b;g}rl,... b:L ). Compute
(0) _ 2.0 (0) *(0)
kw,l+1,dec kwldec + decb
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I+1 i1
1) (1) (1) 4.(1) (1) (1)
kw,l+1,dec = kw ldec T 'Ydec,tkw,z,ran,t + Odec Z xikw,l,del,i F Tgec
t=1 i=p+1
(2) _ 1.(2) (2) (2 (2)
kw,l+1,dec kw l,dec + Z Vdec t™w,lran,t + Tdecs
W L0 g e o
1 1 (1) 1 1
kw,l+1,ran,j = Z ’Yran,j t™w, l ran,t + Oran,j Z xikw,l,del,i + rran,j’
i=p+1
forj=1,...,1+2,
@ @ @)
2 2 2 2 .
kw,l+1,ran,j = Z ’yran,j,tkw,l,ran,t + rran,j’ for J= 17 co Tt 1a
t=1
W 1) S W o
1 1 1 1 1 1
kw 1+1,del,j = Z Vdel,j,tkw,l,ran,t + Odel,j Z kw l,del,? + ,l/}kw l,del,j + rdel,j’
t=1 1=p+1
for j = 41+ 1,...,n,
r+1

(2) _ 2 L@ (2) (2) -
kw,l+1,del,j - Z’ydel J,t "V w, l ran,t + ,(//kw l,del,j + 7adel,j’ for J= 2r + 1’ e 7L‘

_ (1.(0) (1) (2) (1) 1)
Let Skwsl+1 - (kw J+1,dec? kw,l+1,dec’ kw l4+1,dec? kw l4+1,ran, 10" > kw,l+1,ran,l+2’
(2) (2) (1) 1) (2)
kw l4+1,ran,17 " " kw I+1,ran,r+1> kw,l+1,del,ul+1+1’ o kw,l+1,de|,n’ kw,l+1,de|,2r+1’
(2)
kw J+1,del, L)

Output SKj 41 = (skii+1, {ski|,_ 1141}i,=0) and erase all other information.

Update(SKj; ;,i): This algorithm follows the concept from [8,19] to compute a
private key for the next time period ¢ + 1. Parse i as i1, ...,4, where |i| = k.
Parse SK;; as (sk;, {Ski\k_ll,l}ikzo)- Erase sk;;. If i, = 0, simply output the
remaining keys as the key SK(;;1); for the next period. Otherwise, let k be
the largest value such that i = 0. Let 4" = i|;_,1. Using sk;;, which is part
of SK;;, recursively apply algorithm ComputeNext to generate keys skyga1);
for 0 < d<1—k—1and sk(i,od_;ﬂ’l). (The key Sk(z"od—fc,l) will be used for
decryption in the next time period ¢ + 1, whereas other generated secret keys
will be used to compute private key of the next period.) Erase sk;; and output
the remaining keys as SK(; 1),

Encrypt(PK, (713"'v7h) = ((yla"'ayul)a"-v(yuh—1+1a"'ayuh))’i’M €
Gr):
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. . . . U Mh41—Hh n—fd—1
Parse i as 41,...,4,. Pick (7;1“,...,7(1) « Ty X ... x Fq ,

8,¢, 0,0, 03 & Fg, compute

c? = (6,0,¢,0, 9)po
=0T 1y Ta) 0%, 0W)py,
2= (0((1, i), (1, —ik)), 025, 0 ) oy,
M) — = g5 ¢ M.

Output ciphertext C' = (¢(?, e, ¢, M),

Decrypt(C, SK;;): Parse ciphertext C as (c(®,c™M),c®) M) and secret key
SK;; as (ski, {Ski\k_ll,l}ik=0)~ Use sk;,; to decrypt and output

(M)

M = .
0 1 2
e(e © kg l)dec) (C(l) kg l)dec) (c @ kz( l)dec)

Correctness. To see why the scheme is correct, let C' and SK;; be as above. If
717, =0forl <i <, and C' and SK;; are encoded with the same time period

. . 0
i then M can be recovered by computing ¢*) /e(c(®), k:( l)dec) (M, k:g’ll?dec)e(c(z),
k)

z,l,dec)7 simce

(e, ko)), B, ole® k), ) = gposttgnud g — g eotgar
Remark 4. Recently, Okamoto and Takashima [27] proposed a PE with short
secret keys. We note that their scheme can be easily applied to our system
to achieve better efficiency in key size. Moreover, in an updated version [26],
Okamoto and Takashima devised a payload-hiding HIPE with compact secret
keys. The technique [26] can also be applied in our system, specifically, for the
time period subtree.

Theorem 1. Our FS-HPE scheme is adaptively attribute-hiding against chosen
plaintext attacks under the DLIN assumption. For any adversary A, there exists
a PPT machine D such that for any security parameter X\,

AdvPHPEON) < (Qu(k + 1) (n + L + 1) + 1)AdvRN(N) + 15,

where v is the mazimum number of A’s key queries, k is the depth of the time
tree, and ¥ = (20v(k+ 1)(n+ L+1)+9)/q.

The proof of Theorem 1 is provided in the full version.

5 Conclusion

In this paper, we introduced the notion of forward security to the powerful set-
ting of hierarchical predicate encryption. The resulting FS-HPE scheme offers
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time-independent delegation of predicates, autonomous update for users’ pri-
vate keys, and its encryption process doesn’t require knowledge of time periods
at which particular predicates joined the predicate hierarchy. The scheme is
forward-secure and adaptively attribute-hiding under chosen plaintext attacks,
under the DLIN assumption in the standard model. Using level-1 hierarchy we
obtain first adaptively-secure FS-PE/ABE construction. By setting the inner-
product predicate to perform the equality test, we achieve the first adaptively-
secure anonymous FS-HIBE scheme under the DLIN assumption.

References

10.

11.

12.

13.

14.

. Bellare, M., Miner, S.K.: A Forward-Secure Digital Signature Scheme. In: Wiener,

M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431-448. Springer, Heidelberg (1999)
Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE Symposium on Security and Privacy, pp. 321-334. IEEE Computer
Society (2007)

Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical Identity Based Encryption with
Constant Size Ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 440-456. Springer, Heidelberg (2005)

Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41-55. Springer, Heidelberg (2004)

Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213-229. Springer, Heidelberg
(2001)

Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted
Data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535-554. Springer,
Heidelberg (2007)

Boyen, X., Waters, B.: Anonymous Hierarchical Identity-Based Encryption (With-
out Random Oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
290-307. Springer, Heidelberg (2006)

Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255-271. Springer,
Heidelberg (2003)

Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based
Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 207-222. Springer, Heidelberg (2004)

De Caro, A., Iovino, V., Persiano, G.: Fully Secure Anonymous HIBE and Secret-
Key Anonymous IBE with Short Ciphertexts. In: Joye, M., Miyaji, A., Otsuka, A.
(eds.) Pairing 2010. LNCS, vol. 6487, pp. 347-366. Springer, Heidelberg (2010)
Chase, M.: Multi-authority Attribute Based Encryption. In: Vadhan, S.P. (ed.)
TCC 2007. LNCS, vol. 4392, pp. 515-534. Springer, Heidelberg (2007)

Diffie, W., Van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Designs, Codes and Cryptography 2, 107-125 (1992)

Ducas, L.: Anonymity from Asymmetry: New Constructions for Anonymous HIBE.
In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 148-164. Springer,
Heidelberg (2010)

Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.)
ASTACRYPT 2002. LNCS, vol. 2501, pp. 548-566. Springer, Heidelberg (2002)



100

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

J.M. Gonzélez Nieto, M. Manulis, and D. Sun

Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: ACM CCS 2006, pp. 89-98. ACM
2006

éﬁnt})ler, C.G.: An Identity-Based Key-Exchange Protocol. In: Quisquater, J.-J.,
Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 29-37. Springer,
Heidelberg (1990)

Horwitz, J., Lynn, B.: Toward Hierarchical Identity-Based Encryption. In: Knud-
sen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466-481. Springer,
Heidelberg (2002)

Itkis, G., Reyzin, L.: Forward-Secure Signatures with Optimal Signing and Veri-
fying. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332-354. Springer,
Heidelberg (2001)

Katz, J.: A forward-secure public-key encryption scheme. Cryptology ePrint
Archive, Report 2002/060 (2002), http://eprint.iacr.org/

Katz, J.: Binary Tree Encryption: Constructions and Applications. In: Lim, J.-I.,
Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 1-11. Springer, Heidelberg
(2004)

Katz, J., Sahai, A., Waters, B.: Predicate Encryption Supporting Disjunctions,
Polynomial Equations, and Inner Products. In: Smart, N.P. (ed.) EUROCRYPT
2008. LNCS, vol. 4965, pp. 146-162. Springer, Heidelberg (2008)

Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Func-
tional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product
Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62-91.
Springer, Heidelberg (2010)

Lewko, A., Waters, B.: New Techniques for Dual System Encryption and Fully
Secure HIBE with Short Ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455-479. Springer, Heidelberg (2010)

Okamoto, T., Takashima, K.: Hierarchical Predicate Encryption for Inner-
Products. In: Matsui, M. (ed.) ASTACRYPT 2009. LNCS, vol. 5912, pp. 214-231.
Springer, Heidelberg (2009)

Okamoto, T., Takashima, K.: Fully Secure Functional Encryption with General
Relations from the Decisional Linear Assumption. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 191-208. Springer, Heidelberg (2010)

Okamoto, T., Takashima, K.: Fully secure functional encryption with general re-
lations from the decisional linear assumption. Cryptology ePrint Archive, Report
2010/563 (2010), http://eprint.iacr.org/

Okamoto, T., Takashima, K.: Achieving Short Ciphertexts or Short Secret-Keys
for Adaptively Secure General Inner-Product Encryption. In: Lin, D., Tsudik, G.,
Wang, X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 138-159. Springer, Heidelberg
2011)

E)kamoto, T., Takashima, K.: Adaptively Attribute-Hiding (Hierarchical) Inner
Product Encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 591-608. Springer, Heidelberg (2012)

Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457-473. Springer, Heidelberg (2005)
Seo, J.H., Cheon, J.H.: Fully secure anonymous hierarchical identity-based encryp-
tion with constant size ciphertexts. Cryptology ePrint Archive, Report 2011/021
(2011), http://eprint.iacr.org/

Seo, J.H., Kobayashi, T., Ohkubo, M., Suzuki, K.: Anonymous Hierarchical
Identity-Based Encryption with Constant Size Ciphertexts. In: Jarecki, S., Tsudik,
G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 215-234. Springer, Heidelberg (2009)


http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

32.

33.

34.

35.

36.

Forward-Secure Hierarchical Predicate Encryption 101

Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47-53. Springer,
Heidelberg (1985)

Shen, E., Shi, E., Waters, B.: Predicate Privacy in Encryption Systems. In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457-473. Springer, Heidelberg (2009)
Shi, E., Waters, B.: Delegating Capabilities in Predicate Encryption Systems.
In: Aceto, L., Damgard, 1., Goldberg, L.A., Halldérsson, M.M., Ingélfsdéttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 560-578. Springer,
Heidelberg (2008)

Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under
Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
619-636. Springer, Heidelberg (2009)

Yao, D., Fazio, N., Dodis, Y., Lysyanskaya, A.: Id-based encryption for complex
hierarchies with applications to forward security and broadcast encryption. In:
ACM CCS 2004, pp. 354-363. ACM (2004)



Fully Secure Hidden Vector Encryption

Angelo De Caro, Vincenzo Iovino, and Giuseppe Persiano

Dipartimento di Informatica ed Applicazioni,
Universita di Salerno, 84084 Fisciano (SA), Italy
{decaro,iovino,giuper}@dia.unisa.it

Abstract. Predicate encryption is an important cryptographic primi-
tive (see [3UBJOIT1]) that enables fine-grained control on the decryption
keys. Roughly speaking, in a predicate encryption scheme the owner of
the master secret key Msk can derive secret key Skp, for any predicate
P from a specified class of predicates P. In encrypting a message M,
the sender can specify an attribute vector & and the resulting cipher-
text X can be decrypted only by using keys Skp such that P(x) = 1.
Security is modeled by means of a game between a challenger C and a
PPT adversary A that sees the public key, is allowed to ask for keys of
predicates P of his choice and gives two challenge vectors o and x1. A
then receives a challenge ciphertext (an encryption of a randomly chosen
challenge vector) and has to guess which of the two challenge vectors
has been encrypted. The adversary A is allowed to ask queries even after
seeing the challenge ciphertext. In the unrestricted queries model, it is
required the adversary A to ask for keys of predicates P that do not dis-
criminate the two challenge vectors; that is, for which P(xo) = P(1).
It can be readily seen that this condition is necessary. In this paper,
we consider hidden vector encryption (HVE in short), a notable case of
predicate encryption introduced by Boneh and Waters [5] and further
developed in [T6/10/15]. In a HVE scheme, the ciphertext attributes are
vectors @ = (x1,...,z¢) of length £ over alphabet X, keys are associated
with vectors y = (y1,...,ye) of length £ over alphabet X' U {x} and we
consider the Match(z, y) predicate which is true if and only if, for all ¢,
yi # * implies z; = y;. In [5], it is shown that HVE implies predicate en-
cryption schemes for conjunctions, comparison, range queries and subset
queries. We describe also constructions of secure predicate encryption for
Boolean predicates that can be expressed as k-CNF and k-DNF (for any
constant k) over binary variables.

Our main contribution is a very simple, in terms of construction and
security proof, implementation of the HVE primitive that can be proved
fully secure against probabilistic polynomial-time adversaries in the un-
restricted queries model under non-interactive constant sized (that is
independent of £) hardness assumptions on bilinear groups of composite
order. Our proof employs the dual system methodology of Waters [18],
that gave one of the first fully secure construction in this area, blended
with a careful design of intermediate security games that keep into ac-
count the relationship between challenge ciphertext and key queries.

Keywords: predicate encryption, HVE, full security, pairing-based
cryptography.
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1 Introduction and Related Work

Predicate encryption is an important cryptographic primitive (see [BUBJ9ITI])
that enables fine-grained control on the decryption keys. Roughly speaking, in
a predicate encryption scheme for a class P of ¢-ary predicates, the owner of the
master secret key Msk can derive secret key Skp for any predicate P € P. In
encrypting a message M, the sender can specify an attribute vector x of length ¢
and the resulting ciphertext X can be decrypted only by using keys Skp such that
P(x) = 1. Thus a predicate encryption scheme enables the owner of the master
secret key to delegate the decryption of different types of ciphertexts to different
entities by releasing the appropriate key. In the context of predicate encryption,
security is modeled by means of a game between a challenger C and a PPT
adversary A that sees the public key, is allowed to ask for keys of predicates
P of his choice and gives two challenge vectors xy and x;. A then receives
a challenge ciphertext (an encryption of a randomly chosen challenge vector)
and has to guess which of the two challenge vectors has been encrypted. The
adversary A is allowed to ask queries even after seeing the challenge ciphertext.
In the unrestricted queries model, it is required the adversary A to ask for keys
of predicates P that do not discriminate the two challenge vectors; that is, for
which P(x¢) = P(x1). It can be readily seen that this condition is necessary.
Many previous works restricted the proof of security to adversaries that could
ask only non-satisfying queries (restricted queries model); that is, ask for keys
of predicates P such that P(xzg) = P(x1) = 0.

We consider hidden vector encryption (HVE in short), a notable case of pred-
icate encryption introduced by [5]. In a HVE scheme, the ciphertext attributes
are vectors @ = (x1,...,xs) of length ¢ over alphabet X' and predicates are de-
scribed by vectors y = (y1, ..., ye) of length ¢ over alphabet X' U {x}. The class
P of predicates for HVE consists of all predicates Match, defined as follows:
Matchy () is true if and only if, for all ¢, y; # * implies z; = y;. In the rest of
the paper we will adopt the writing Match(z, y) instead of Matchy(x). Besides
being one of the first predicates for which constructions have been given, HVE
can be used as building block for several other predicates. Specifically in [5], it
is shown that HVE implies predicate encryption schemes for conjunctions, com-
parison, range queries and subset queries. For completeness, in Appendix [B, we
describe also constructions of secure predicate encryption for Boolean predicates
that can be expressed as k-CNF and k-DNF (for any constant k).

Our main contribution is a very simple, in terms of construction and secu-
rity proof, implementation of the HVE primitive that can be proved fully se-
cure against probabilistic polynomial-time adversaries in the unrestricted queries
model under non-interactive constant sized (that is independent of ¢) hardness
assumptions on bilinear groups of composite order. Specifically, our two assump-
tions posit the difficulty of a subgroup decision problem and of a problem that
can be seen as the generalization of Decision Diffie-Hellman to groups of com-
posite order.
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Related Work. The first implementation of HVE is due to [5] that proved the
security of their construction under assumptions on bilinear groups of composite
order in the selective model. In this security model (introduced by [6] in the
context of IBE), the adversary must announce to its challenge vectors before
seeing the public key of the HVE scheme. In a recent series of papers Waters
[18] and Lewko and Waters [12] introduced the concept of a dual system encryp-
tion scheme that was used to construct efficient and fully secure Identity Based
Encryption (IBE) and Hierarchical IBE from simple assumptions. Previous fully
secure constructions of these primitives either used a partitioning strategy (see
[2],[T7]) or used complexity assumptions of non-constant size (see [7],[8]). Par-
titioning strategy and the approaches of [7] and [8] do not seem to be helpful
in proving full security of more complex primitives like HVE. Fully secure con-
structions of HVE in the unrestricted queries model can be already derived, via
the reduction given in [I1], from the fully secure constructions for inner-product
encryption given by [I3]. Anyway, we stress that the main goal of this paper is
to present a very simple, in terms of construction and security proof, and direct
implementation of the HVE primitive that can be still proved fully secure in the
unrestricted queries model.

Proof Technique. Our proof of security is based on the dual system encryption
methodology introduced by Waters [I8] and gives extra evidence of the power of
this proof technique. However, to overcome the difficulty of having to deal also
with the unrestricted queries model, we have to carefully look at the space of
matching queries and at how they relate to the challenge vectors. This enables
us to craft a new security game in which the challenge ciphertext is constructed
in a way that guarantees that keys obtained by the adversary give the expected
result when tested against the challenge ciphertext and, at the same time, the
challenge ciphertext is independent from the challenge vector used to construct
it. Then we show, by means of a sequence of intermediate security games, that
the real security game is computationally indistinguishable from this new game

2 Hidden Vector Encryption

In this section we give formal definitions for Hidden Vector Encryption (HVE)
and its security properties. For sake of simplicity, we present predicate-only
definitions and constructions for HVE instead of full-fledged ones. For the same
reason, we give our definitions and constructions for binary alphabets.

Following standard terminology, we call a function v(X\) negligible if for all
constants ¢ > 0 and sufficiently large A, v(\) < 1/A\° and denote by [n] the set
of integers {1,...,n}. Moreover the writing “a <— A”, for a finite set A, denotes
that a is randomly and uniformly selected from A.

Hidden Vector Encryption. Let x be a binary vector of length ¢ and y a
vector of the same length over {0,1,*}. We remind that predicate Match(x,y)
is defined to be true if and only if the two vectors agree in all positions ¢ where
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y; # *. A Hidden Vector Encryption scheme is a tuple of four efficient proba-
bilistic algorithms (Setup, Encrypt, KeyGen, Test) with the following semantics.

Setup(1*, 1): takes as input a security parameter A and a length parameter £
(given in unary), and outputs public parameters Pk and master secret key Msk.

KeyGen(Msk, y): takes as input the master secret key Msk and a vector y €
{0,1, %}, and outputs a secret key Sky.

Encrypt(Pk, x): takes as input the public parameters Pk and a vector x €
{0,1}¢ and outputs a ciphertext Ct.

Test(Pk, Ct, Sky): takes as input the public parameters Pk, a ciphertext Ct
encrypting « and a secret key Sk, and outputs Match(z, y).

For correctness we require that, for pairs (Pk, Msk) ¢ Setup(1*, 1¢), it holds
that for all vectors z € {0,1}* and y € {0,1,%}*, we have that Test(Pk,
Encrypt(Pk, x), KeyGen(Msk, y)) = Match(x, y) with very hight probability.

Security Definitions for HVE. In this section we formalize our security re-
quirement by means of a security game GReal between a probabilistic polynomial
time adversary A and a challenger C. GReal consists of a Setup phase and of a
Query Answering phase. In the Query Answering phase, the adversary can issue
a polynomial number of Key Queries and one Challenge Construction query and
at the end of this phase A outputs a guess. We stress that key queries can be is-
sued by A even after he has received the challenge from C. In GReal the adversary
is restricted to queries for vectors y such that Match(y, xo) = Match(y, z1).
More precisely, we define game GReal in the following way.

Setup. C runs the Setup algorithm on input the security parameter A and the
length parameter ¢ (given in unary) to generate public parameters Pk and master
secret key Msk. C starts the interaction with A on input Pk.

Key Query Answering(y). C returns KeyGen(Msk, y).

Challenge Query Answering(xg,x1). C picks random 7 € {0,1} and returns
the challenge ciphertext computed by executing Encrypt(Pk, ).

Winning Condition. Let ' be A’s output. A wins the game if n = n’ and for
all y for which A has issued a Key Query, it holds Match(xq, y) = Match(x1, y).

We define the advantage Advi},g(A) of A in GReal to be the probability of
winning minus 1/2.

Definition 1. An Hidden Vector Encryption scheme is secure if for all prob-
abilistic polynomial time adversaries A, we have that Advijg(\) is a negligible
function of \.

Larger Alphabet. One can easily observe that an HVE scheme for a general
alphabet X can be obtained with an expansion of log, | X|: the encryption simply
encrypts bit by bit by using the binary HVE, and the key generation procedure
proceeds analogously. We stress that this reduction is black-bor and does not
depend on our specific scheme.
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3 Complexity Assumptions

We work with symmetric bilinear groups of composite order. OQur construction
can be adapted to the asymmetric setting in a straightforward way. Composite
order bilinear groups were first used in Cryptography by [4] (see also [1]). We
suppose the existence of an efficient group generator algorithm G which takes as
input the security parameter A and outputs a description Z = (N, G, Gr,e) of a
bilinear setting, where G and Gr are cyclic groups of order N, and e : G2 — G
is a map with the following properties:

1. (Bilinearity) ¥ g,h € G and a,b € Zy it holds that e(g?, h®) = e(g, h)?®.
2. (Non-degeneracy) 3 g € G such that e(g, g) has order N in Gr.

We assume that the group descriptions of G and Gp include generators of the
respective cyclic subgroups. We require that the group operations in G and G
as well as the bilinear map e are computable in deterministic polynomial time in
A. In our construction we will make hardness assumptions for bilinear settings
whose order N is product of four distinct primes each of length @(\). For an
integer m dividing N, we let G,, denote the subgroup of G of order m. From
the fact that the group is cyclic, it is easy to verify that if g and h are group
elements of co-prime orders then e(g,h) = 1. This is called the orthogonality
property and is a crucial tool in our constructions. We are now ready to give our
complexity assumptions.

Assumption 1. The first assumption is a subgroup-decision type assumption for
bilinear settings. More formally, we have the following definition. First pick a
random bilinear setting Z = (N = pipopsps, G,Gr,e) + G(1*) and then pick
Az Gps’ A GPIPS’ A2 GP1P2’ Ay <€ va Ty Gmpsv Ty <+ szpsv
and set D = (Z, As, A4, A13, A12). We define the advantage of any A in breaking
Assumption 1 to be Advi'(\) = |Prob[A(D, T1) = 1] — Prob[A(D, Ty) = 1]|

Assumption 1. We say that Assumption 1 holds for generator G if for all prob-
abilistic polynomial-time algorithms A, /—\dvf‘()\) is a negligible function of A.

Assumption 2. Our second assumption can be seen as the Decision Diffie-Hellman
Assumption for composite order groups. More formally, we have the following
definition. First pick a random bilinear setting Z = (N = p1papsps, G, G, e)
G(1*) and then pick Ay <+ Gy, , As < Gp,, A3 < Gy, Ay, By, Cy, Dy < Gy, v, B
— Zp,, Ty + Gy p,, and set Ty = A% . Dy and D = (T, Ay, Ay, As, Ay, A -
By, Af - Cy). We define the advantage of any A in breaking Assumption 2 to be
Adv3'(\) = [ProblA(D,Ty) = 1] — Prob[A(D, T3) = 1]|

Assumption 2. We say that Assumption 2 holds for generator G if for all prob-
abilistic polynomial-time algorithms A, Advf‘()\) s a negligible function of \.
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4 Constructing HVE

In this section we describe our HVE scheme. To make our description and proofs
simpler, we add to all vectors  and y two dummy components and set both of
them equal to 0. We can thus assume that all vectors have at least two non-star
positions.

Setup(1*,1%): The setup algorithm chooses a description of a bilinear group
T = (N = p1p2psps, G,Gr,e) + G(1*) with known factorization, and random
g1 € Gy, 92 € Gp,, g3 € Gy, g2 € Gy, and, for i € [¢] and b € {0,1},
random ¢;;, € Zy and random R;;, € Gp, and sets T;, = g?”b - R;p. The
public parameters are Pk = [N, g3, (Ti5)ic[q,be{0,1}) and the master secret key is
Msk = [g12, 94, (tib)ic[g,pef0,1}]; Where g12 = g1 - ga.

KeyGen(Msk, y): Let Sy be the set of indices 7 such that y; # . The key
generation algorithm chooses random a; € Zy for ¢ € Sy under the constraint
that Zz’esy a; = 0. For ¢ € Sy, the algorithm chooses random W; € G,, and

ai/tiy,

sets Y = g1 - W;. The algorithm returns the tuple (}/i)iegy. Here we use
the fact that Sy has size at least 2.

Encrypt(Pk, x): The encryption algorithm chooses random s € Zy. For i € [{],
the algorithm chooses random Z; € Gy, and sets X; =T, - Z;, and returns the
tuple (X;)ie(q-

Test(Ct, Sky): The test algorithm computes T' = Hiesy e(X;,Y;). It returns
TRUE if T'= 1, FALSE otherwise.

Correctness. It easy to see that the scheme is correct.

Remark 1. In our construction the Match predicate is computed in the subgroup
of G of order p;, G,,. Notice that the other subgroups do not interfere during
the evaluation of the predicate due to the orthogonality property. The subgroup
of G of order pa, Gy,, represents the semi-functional space and it is used to prove
the security of the scheme. Notice that at this stage it can be removed from our
construction at the expense of introducing another game in the security proof.
To simplify the proof we have decide to include that subgroup directly. Finally,
the subgroups G,, and G,, are used to re-randomize the public key and the
ciphertexts, and the secret keys respectively. Their main role is to create enough
room to manipulate the semi-functional space.

Remark 2. Let Pk = [N,gs3,(Tip)icibeqo,13) and Msk = [g1g2, 94,
(tin)ici,pefo,13] be a pair of public parameter and master secret key out-
put by the Setup algorithm and consider Pk’ = [N, 935 (T} )icie beto.1y] and

. . At .
Msk’ = [G1 - 92, 9, (ti,b)ie[é],be{o,l}] with Tf’b =g," -R;’b for some §; € G,, and

R}, € Gp,. We make the following easy observations: (1) For every y € {0, 1, *}E
KeyGen(Msk, y) and KeyGen(Msk', y) are identical distributed. (2) Similarly, for
every « € {0,1}¢, Encrypt(Pk, ) and Encrypt(Pk’, x) are identical distributed.
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5 Security of Our HVE Scheme

We start by giving an informal description of the ideas behind our proof of
security and show how we overcome the main technical difficulty of having to
deal with adversaries that possess keys that match the challenge ciphertext.

The first step of our proof strategy consists in projecting the public key (and
thus the ciphertexts the adversary constructs by himself) into the semi functional
space and thus to a different subgroup from the one of the challenge ciphertext.
Specifically, we defined a new security game GPK in which the ¢; ;’s are encoded
in the Gy, part of the T; ;’s from the public key (instead of the the G,, part as in
normal public key in the real game). The challenge ciphertext and the answers
to the key queries are instead constructed as in the real security game GReal.
Thus, ciphertexts constructed by the adversary are completely independent from
the challenge ciphertext (as they encode information in two different subgroups).
We observe that since keys are constructed as in the real security game, they
carry information about y both in the G,, and G,, parts. Thus when the ad-
versary tests a ciphertext he has constructed by using the public key against
a key obtained by means of a query, he obtains the expected result because of
the information encoded in the G,, part of the key and of the ciphertext. The
challenge ciphertext instead interacts with the G,, part of the keys. The only
difference between the two games is in the public key but, under Assumption 1
(a natural subgroup decision hardness assumption), we can prove that the two
games are indistinguishable. Here a crucial role is played by G,, as it enables
the challenger of GPK to move the public key to the semi-functional space and
to create the challenge ciphertext with the respect to an independent public key.
Without G,,, a normal public key (as seen by the adversary in GReal) would
be in G,, whereas a semi-functional public key (as seen by the adversary in
GPK) would be in G,,. Moreover, in both games, the adversary will be given
a challenge ciphertext in G,, and thus, by orthogonality, it would be able to
distinguish the two games. The second step proves that the keys obtained
from queries do not help the adversary. Since the challenge ciphertext carries
information about the randomly selected challenge vector x, in its G,, part, in
this informal discussion when we refer to key we mean its G,, part. The G,
parts of the keys are always correctly computed. In our construction, testing a
ciphertext against a non-matching key gives a random value (from the target
group) whereas testing it against a matching key returns a specified value (the
identity of the target group). If we had to prove security against an adversary
that asked only non-matching queries we could consider the experiment in which
key queries were replied by returning a key with random G,, parts. Such a game
can be proved indistinguishable from GPK (under an appropriate complexity
assumption) and it is easy to prove that it gives no advantage to an adversary.
This approach fails for matching queries as such a key will return the wrong an-
swer with high probability when tested against the challenge ciphertext. Instead
we modify the construction of the challenge ciphertext in the following way:
the challenge ciphertext is well-formed in all the positions where the two chal-
lenge vectors are equal and random in all the other positions. We observe that
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testing such a challenge ciphertext against matching and non-matching keys al-
ways gives the correct answer and that no adversary (even an all powerful one)
can guess which of the two challenge vectors has been used to construct the
challenge ciphertext (see the discussion in Section [(.2).

5.1 The First Step of the Proof

We start by defining game GPK(\, ¢) (see Figure[l) that differs from GReal(}, ¢)
as in the Setup phase, C prepares two sets of public parameters, Pk and PK/,
and one master secret key Msk. Pk is given as input to A, Msk is used to answer
A’s key queries and Pk’ is used to construct the challenge ciphertext. The next

Game GPK(A, ¢)
Setup. C chooses a description of a bilinear group Z = (N = p1p2psp4, G,Gr, e)
G(1*) with known factorization and random g1 € Gp,, g2 € Gp,,93 € Gpy, g1 € Gy,
and sets gi2 = g1 - g2. For each ¢ € [{] and b € {0,1}, C chooses random
tiv € Zn and R;p € Gp, and sets Tz‘/,b = gii’b -Rip and T;p = g;i’b - Rip.
Then C sets Pk = [N, gs, (Tiyb)ié[ﬁ],bE{O,I}L Pk’ = [N, gs, (Ti/,b)ie[é],be{ﬂ,l}L and
Msk = [912,94, (ti,b)ie[é],be{o,l}]- Finally, C sends Pk to A.
Key Query Answering(y). C returns the output of KeyGen(Msk, y).
Challenge Query Answering(xo, x1). Upon receiving the pair (2o, 1) of challenge
vectors, C picks random 7 € {0,1} and returns the output of Encrypt(Pk’, ).
Winning Condition. Like in GReal(), ¢).

Fig. 1. A formal description of GPK

lemma shows that, the advantages of an adversary in GReal(\, ¢) and GPK(A, /)
are the same, up to a negligible factor.

Lemma 1. If Assumption 1 holds, GReal(\, £) . GPK(A, ¢)

Proor. We show a PPT algorithm B which receives (Z, As, A4, A13, A12) and
T and, depending on the nature of T', simulates GReal(\,¢) or GPK(\,¢) with
A. This suffices to prove the Lemma.

Setup. B starts by constructing public parameters Pk and Pk’ in the following
way. B sets g12 = Ai2,95 = A3, g4 = Ay and, for each i € [{] and b € {0,1},
B chooses random t;, € Zy and sets T;, = T and T, = Ai; Then B
sets Pk = [N, g3, (Tip)icie pefo,1}), Msk = [g12, 94, (tin)icipeqo,1}], and Pk =
[N, 93, (T} 4)icle,pe{o,1}] and starts the interaction with A on input Pk.

Answering Key Query for (y). B returns KeyGen(Msk, y).

Answering Challenge Query for (xzo,x;). The challenge is created by B by
picking random 71 € {0, 1} and running Encrypt(Pk’, ;).

This concludes the description of algorithm B. Now suppose T' € Gy, ,, and
thus it can be written as T' = h; -hs for by € G,, and hs € G,,. This implies that
Pk received in input by 4 in the interaction with B has the same distribution as
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Game GBadQ(f, k)

Setup. Like in GPK. That is, C chooses a description of a bilinear group Z = (N =
p1p2p3pa, G,Gr,e) < G(1*) with known factorization and random g1 € G,,, g2 €
Gpyy 93 € Gps,ga € Gy, and sets giz2 = g1 - g2. For each ¢ € [{] and b € {0,1}, C
chooses random t;, € Zny and R;p € Gp, and sets T{yb = gii’b - Rip and T;p =
95" - Rip. Then C sets Pk = [N, g3, (T.0)iciapet013)s PK = [N, g3, (T!y)iciavet01})s
and Msk = [g12,g47 (ti,b)ie[ﬁ],be{o,l}}- Finally, C sends Pk to A.

Answering Key-Query for y = (y1,...,y¢). C answers the first k queries in the
following way.

— Ifyy # %, C returns a key whose G, parts is random. More specifically, C chooses,
for each i € Sy, random W; € G,,, random C; € Gp, and random a; € Zy under
ai/tiy,;

the constraint that Ziesy a; =0 and sets ¥; = C; - g, - Wi.
— If y; = % then C returns the output of KeyGen(y, Msk).

The remaining ¢ — k queries are answered by running KeyGen(y, Msk).

Answering Challenge Query for (xo,x1). C chooses random s € Zy and 7 €
{0,1} and sets « = x,,. For each ¢ € [f — 1] such that xo,; # x1,;, C chooses random
X; € Gp,ps. Then, for each remaining 4, C chooses random Z; € Gp, and sets X; =
T;ﬁci - Z;. C returns the tuple (X;);c(q-

Winning Condition. Like in GReal.

Fig. 2. A formal description of game GBadQ(f, k)

in GReal. Moreover, by writing A3 as A13 = le . ng for le € Gp, and ng € Gp,
which is possible since by assumption A3 € G,,,,, we notice that that Pk and
Pk’ are as in the hypothesis of Remark Pl (with g; = hy and §; = ﬁl) Therefore
the answers to key queries and the challenge ciphertext given by B to A have
the same distribution as the answers and the challenge ciphertext received by
A in GReal(A, £). We can thus conclude that, when T' € G, p,, C has simulated
GReal(\, ¢) with A. Let us discuss now the case T € Gp,p,. In this case, Pk
provided by B has the same distribution as the public parameters produced by
C in GPK(A, £). Therefore, C is simulating GPK(\, £) for A. a

5.2 The Second Step of the Proof

We start the second step of the proof by describing in FigurePl for 1 < f </+1
and 0 < k < ¢, game GBadQ(f, k) between the challenger C and an adversary A
that asks ¢ queries. Not to overburden our notation, we omitted A and ¢ from
the name of the games. GBadQ(f, k) differs from GPK both in the way in which
key queries are answered and in the way in which the challenge ciphertext is
constructed. Specifically, in GBadQ(f, k) the first k key queries are answered by
distinguishing two cases. Queries for y such that y; = x are answered by running
KeyGen(Msk, y). Instead queries for y such that y; # * are answered by returning
keys whose G,, part is random for all components. Moreover, in GBadQ( f, k), the
Gp, part of the first f — 1 components of the challenge ciphertext corresponding
to positions in which the two challenges differ are random.
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In the proofs, we will use the shorthand GBadCh(f) to denote the game
GBadQ(f,0) in which only the challenge ciphertext is modified whereas all the
replies to the key queries are correctly computed. We define GBadQ2(f, k), for
1 < f</?and 0 < k < ¢, as a game in which the setup phase is like in
GBadQ(f, k), key queries are answered like in GBadQ(f, k) and the challenge
ciphertext is constructed like in GBadQ(f + 1, k).

Observation 1. GPK = GBadQ(1,0) = GBadCh(1). By definitions of the games.

Observation 2. GBadQ(f,q) = GBadQ2(f,q) for f = 1,...,£¢. From the def-
initions of the two games, it is clear that all key queries are answered in the
same way in both the games and all components X; for i # f of the challenge
ciphertext are computed in the same way. Let us now look at X and more pre-
cisely to its Gp, part. In GBadQ(f,q), the G,, part of X is computed as T}fmf
which is exactly how it is computed in GBadQ2(f,¢) when zo s = x1,7. On the
other hand, when zg s # x1,f, the G,, part of Xy is chosen at random. However,
observe that exponents t;o mod p; and tf; mod p; have not appeared in the
answers to key queries since every query has either a x in position f (in which
case position f of the answer is empty) or a non-* value in position f (in which
case the Gy, part of the position f of the answer is random since k = ¢). There-
fore, we can conclude that the G,, part of the component X of the answer to
the challenge query is also random in G, .

Observation 3. GBadQ2(f,0) = GBadQ(f + 1,0) for f =1,...,¢ — 1. Indeed,
in both games all key queries are answered correctly, and the challenge query in
GBadQ2(f,0) is by definition answered in the same way as in GBadQ(f + 1,0).

Observation 4. For f=1,...,0—1, ifxo ; = x1 5, GBadCh(f) = GBadCh(f+
1). By definition, in GBadCh(f) = GBadQ(f,0) the f-th component of the chal-
lenge ciphertext is well formed, namely X; = Tffmf - Zy. This is the same in

GBadCh(f + 1) = GBadQ(f + 1,0) under the condition that xo ; = x1, 5.

Observation 5. In GBadCh(¢ + 1) = GBadQ(¢ + 1,0) all adversaries have no
advantage. This follows from the fact that, for positions ¢ such that xg; # =14,
the G, part of X; is random. Thus the challenge ciphertext of GBadCh(¢ + 1)
is independent from 7.

Overview of the proof second step. Consider the sequence GPK = GBadCh(1),
GBadCh(2),...,GBadCh(¢), GBadCh(¢+1) of £+1 experiments. By Observation[d]
if an adversary A has a non negligible advantage in GPK then it must be the case
that there exists 1 < f < £ such that the difference between A’s advantages in
GBadCh(f) and GBadCh(f+1) is non-negligible. Moreover, by Observation] for
this to happen it must be the case that A has non-negligible probability to output
two challenges that differ in the f-th component. Then, if A makes ¢ key queries,
consider the following sequence GBadCh(f) = GBadQ(f,0)...GBadQ(f,q¢ — 1)

GBadQ(f,q) = GBadQ2(f,q) GBadQ2(f,q —1)...GBadQ2(f,0) = GBadCh(f +
1) of 2¢ + 1 games. If the difference in advantage between GBadCh(f) and
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GBadCh(f + 1) is non-negligible, then there must exist k such that the differ-
ence in advantage between either GBadQ(f, k) and GBadQ(f, k — 1) or between
GBadQ2(f, k) and GBadQ2(f, k — 1) is non-negligible.

Now it seems that we are stuck as, for all f and k, games GBadQ(f, k — 1)
and GBadQ(f,k) can be distinguished by an adversary A using the following
simple strategy. A prepares two challenges oy and @; that coincide in the f-th
component and asks as k-th key query the key Y for a vector y® such that
Yy = wos = x1,5 and Match(zo,y®) = Match(z1,y®) = 1. Let X be the
challenge ciphertext. Now, in GBadQ(f, k—1), the answer Y received by A to its
k-th query is well-formed and thus Test(X,Y) = 1. Instead in GBadQ(f, k), Y is
random and thus Test(X,Y) = 0 except with negligible probability. The above
strategy requires the two challenges to coincide in the f-th component. Indeed,
if zo,f # x1,5 then for y® to be matching it must the case that y; = x but then
in this case Y is well-formed in both games. This perfectly fits our strategy as we
have to prove that GBadQ(f, k) is indistinguishable from GBadQ(f,k — 1) only
for f for which A has a non-negligible probability of outputting two challenges
that differ in the f-th component. Exactly, the same reasoning holds for GBadQ2.

In the next section we describe a simulator S that takes as input the pair
of integers f and k and an instance of Assumption 2 and, provided that the
adversary does not output two challenges that coincide in the f-th component,
simulates with some non-negligible probability GBadQ(f, k) or GBadQ(f, k — 1)
depending on the nature of the challenge. A similar simulator can be constructed
for games GBadQ2(f, k) and GBadQ2(f,k — 1).

Description of simulator S Input to S. Integers 1 < f < /+ 1 and 0 <
k < g, and a randomly chosen instance (D,T) of Assumption 2; recall that
D = (T, A1, Ay, A3, Ay, AYBy, APCy) and T = A’ D, or random G, .

Setup. To simulate the Setup phase S executes the following steps.

1. S sets g1 = Al, go = AQ, g3 = 1437 g4 = A4 and g2 = A1 . AQ.

2. For each i € [(] and b € {0,1},
S chooses random v; , € Zy and R, € Gp,, and sets T;, = g;}i’b “Rip.

3. S sets Pk =[N, g3, (Ti,b)ie[i],be{o,l}]-

.S picks random j € [¢] and b € {0,1} and sets ¢ = 1 — b.

5. For each i € [¢]\ {j} and b € {0,1}, S chooses random r;;, € Zy and
R}, € Gy, and sets T/, = g,"" - R} .

6. S chooses random 15 € Zn and RJf’é € Gy,.
Ssets T) . = g,"" - R} ,, Tj/,l} =Llandr ;=1

7. S sets PK'=[N, g3, (T}, )ic(,be{0,13] and Msk=[g12, ga, (ri,b, Vib)ic(e] be{0,13)-

Notice that the values 5 and T j are unspecified and thus Pk’ and Msk are

=~

incomplete. As we shall see belovx;, in answering key queries, S will implicitly
set ;5 = 1//. Here f is the exponent of A; in A’f - Cy from instance D of
Assumption 2 and we stress that S does not have access to the actual value of
B. S starts the interaction with A on input Pk.
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Answering Key Query for y = (y1,...,ye).

— First k — 1 key queries. We have the following mutually exclusive cases.
Case A.1l: y; # . In this case, S outputs a key whose G,, part is random.
More precisely, S executes the following steps. For each i € S, S chooses
random a] such that ZieS al = 0, random C; € Gp,, and random W; €

Gp,- Then, for each i € Sy, S sets V; =C; - a i - Wi.

Case A.2: y; = *. In this case, S outputs a key that has the same distribu-

tion induced by algorithm KeyGen on input y and Msk. We observe that if

y; = ¢ then Msk includes all the r; ,,’s and v; ,,’s that are needed. If instead

Y = b then Msk is missing T5 b In this case S computes Y; by using A <Oy

from the challenge D of Assumptlon 2 received in input.

More precisely, for each i € Sy, S picks random W; € G,, and random
i»a; € Zy under the constraint that 3, ¢ aj = > ;e ai = 0. Then for

each i # j, S sets Y; = g;° /s gyl /vt - Wi. Moreover, if y; = ¢, S sets
Y, = g?’/rj‘é gy /e ‘W 0therw1se if y; = b, S sets Y; = (AY-Cy)% - a /v

W; = g1 a3 ggj /o (C4 - Wj). Notice that this settmg 1mp11(:1t1y deﬁnes
= 1/ which remains unknown to S.

J[).

T3
- k:ﬂ:th query. Let y® = (yi"”,...,y") be the k-th key query.

Case B.1: y“” = *. § performs the same steps of Case A.2.

Case B.2: y“” # % and y“” =+ b. In this case, S aborts.

Case B.3: y}k) # % and yj“” = b. Let S = Sy\{j, h}, where h is an index such

that y(k’ # x. Such an index h always exists since we assumed that each query

contains at least two non-x entries. Then, for each i € S, S chooses random

a’ /7‘ (k) a;'/vi y(k)
W; € Gp, and random a,a € Zn and sets V; =¢; " g, Wi
S then chooses random aj € Zn and W;, W, € G, and sets Y; = T-g;j /o5
L R AW B SIAANC
W;  and Y, = (A{By) MR gy Thgy “h Wy, where

s' =3 iesa; and 8" =3, sai.
This terminates the descrlptlon of how S handles the k-th key query.

— Remaining ¢ — k queries. S handles the remaining g — k queries as in Case
A.2, independently from whether y¢ = % or y # *.
More precisely, if y; = ¢ then S runs KeyGen on input y and Msk and all the
needed 7;,,’s and v; 4,’s are found in Msk. On the other hand, if y; = b, S

can use Af -Cy from D.

Answering Challenge Query for (xg,21). S picks random 7 € {0,1} and
sets © = x,. Then S tries to construct the challenge ciphertext by running
algorithm Encrypt on input the challenge vector x, public parameters Pk’ and
by randomizing the G, part of all components X; for ¢ < f such that xo; # 1.
However, Pk’ is incomplete since it is missing Tj’ 13 and thus S might have to abort.

More precisely, If z; = b, S aborts. Else (that is, if ; = ¢é) S chooses random
s € Zn. For each i € [f — 1] such that zo; # x14, S sets r; equal to a random
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element in Zy and r; = 1 for all remaining 4’s. Then, for each i € [¢], S picks
random Z; € Gy, and sets X; = T, - Z;, and returns the tuple (X))
This ends the description of S.

The simulator S described will be used to prove properties of games GBadQ.
We can modify the simulator S so that, on input f and k, the challenge ciphertext
is constructed by randomizing the G,,, part also of the f-th component. The so
modified simulator, that we call Sy, closely simulates the work of games GBadQ2
and will be used to prove properties of these games.

A Sanity Check. We verify that S cannot test the nature of T" and thus break
Assumption 2. Indeed to do so, § should use T to generate a key for y and
ciphertext for @ such that Match(x,y) = 1. Then, if T = T3 the Test procedure
will have success; otherwise, it will fail. In constructing the key, S would use T
to construct the j-th component (which forces y; = b) and then it would need
= 1/ to construct the matching ciphertext. However, S does not have access
to this value as part of the challenge. If we modify Assumption 2 to include such
a value as part of the challenge then the resulting assumption doesn’t hold.

Why We Need Aborts. The aim of S is to use the value T from the challenge
to simulate either GBadQ(f, k — 1) or GBadQ(f, k) and it does so by embedding
T in the j-th component of the reply to k-th key query. Suppose yy # x and
thus the two games are supposed to differ in the reply to the k-th key query. If
yj“” = x then the j-th component is empty. Moreover, if y* = & then the j-th
component can be computed using 1/7; . which is known to S but independent
from T. Thus in both case S’s plan fails and consequently S aborts (see Case

B.2). Moreover, if x5 = b then S should use Tj’ 8 which is missing from Pk’. Thus

)

in this case S aborts too.

Notation. We use NotAbort’fS(f, k) to denote the event that S does not abort
while computing the answer to the k-th query in an interaction with A on input f
and k. This is equivalent to the event that the k-th key query y® of adversary A
is such that y® = % or y® = b. In addition, we use NotAbortéS(f, k) to denote
the event that S does not abort while computing the challenge ciphertext in
an interaction with A4 on input f and k. This is equivalent to the event that
adversary A outputs challenge vectors &y and x; such that x,; = ¢.

For a game G between the challenger C and the adversary, we modify C so
that C picks j and b just like S does. This modification makes the definitions
of events Not/—\bortf}G and Not/—\bort;G meaningful. Notice however that, unlike
the simulator S, C never aborts its interaction with A and that this modification
does not affect A’s view. We write NotAborts' as a shorthand for NotAbortﬁGPK.

Lemma 2. For all f,k and A, Prob[NotAbort{'s(f, k)] > 1.

PRrROOF. The probability of NotAbortf}S(f, k) is at least the probability that
yj“” = b. Moreover, the view of A up to the k-th key query is independent from

b and j. Now observe that y® has at least two non-star entry and, provided that
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j is one of these (which happens with probability at least 2/¢), the probability
that y;" = bis 1/2. ]

Lemma 3. For all f,k and A, Prob[NotAbortéG(f,k:)] > 5, for G =
GBadQ(f, k).

PROOF. NotAbort;‘G(f, k) is the event that y(” # 2y in the game G played by
the challenger C with A. It is easy to see that the probability that C correctly
guesses j and b such that z,; = é=1—b is at least 1/(2¢), independently from
the view of A. |

Lemma 4. Suppose event NotAborth(f, k) occurs. If T = Ty then A’s view
up to the Challenge Query in the interaction with S running on input (f, k) is
the same as in GBadQ(f,k — 1). If instead T = Ty then A’s view up to the
Challenge Query in the interaction with S running on input (f, k) is the same
as in GBadQ(f, k).

Moreover, suppose events NotAbortﬁS(f, k) and NotAbortéS(f, k) occur. If
T =Ty then A’s total view in the interaction with S running on input (f, k) is
the same as in GBadQ(f, k — 1). If instead T = T then A’s total view in the
interaction with S running on input (f, k) is the same as in GBadQ(f, k).

PROOF. First observe that Pk has the same distribution as the public parameters
seen by A in both games. The same holds for the answers to the first (k—1) Key
Queries and to the last (¢ — k) Key Queries. Let us now focus on the answer to
the k-th Key Query. We have two cases:

Case 1: y}k’ = %. Then the view of A in the interaction with S is independent
from T (see Case B.1) and, on the other hand, by definition, the two games
coincide. Therefore the lemma holds in this case.

Case 2: y ) # k. Suppose T =T, = A’ . D, and that NotAborth(f7 k)

occurs. Therefore, yj = b and S’s answer to the k-th key query has the same
distributions as in GBadQ(f, k — 1). Indeed, we have that ¥; = gtfj/rj’a - gy ALY
—(ag+s")/r, e =i’ +s") /v, o

Dy-Wjwithaf =a andr,; =1/ and V), = g, - gy e

—1r,
(B, " - W) and thus the ajs and as are random and sum up to 0.

On the other hand if T is random in Gmm and NotAbort] $(f> k) occurs, the
Gp, parts of the Y;’s are random and thus the answer to the k-th query of A is
distributed as in GBadQ(f, k).

For the second part of the lemma, we observe that the challenge ciphertext
has the same distribution in both games and that, if NotAbortéS(f, k) occurs,
S properly constructs the challenge ciphertext. O

Next we define event E;ft as the event that in game GPK, the adversary A declares
two challenge vectors that differ in the f-th component. When the adversary A
is clear from the context we will simply write Ey.

Next we define event E}‘}G as the event that in game G the adversary A
declares two challenge vectors that differ in the f-th component. When the
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adversary A is clear from the context we will simply write Ef ¢. We extend the
definition of E ¢ to include the game played by A against the simulator S. Thus
we denote by E;f}s (f', k) the event that in the interaction between A and S on
input f” and k, S does not abort and A declares two challenge vectors that differ
in the f-th component. If A, f and k are clear from the context, we will simply
write Ef,g.

Lemma 5. If Assumption 2 holds, then fork =1,...,qand f =1,...,£+1, and
for all PPT adversaries A, Prob[EﬁG]fProb[EﬁH]’ and ‘Prob[NotAbortﬁG}

- Prob[NotAbort;}H]‘ are negligible functions of A, for games G = GBadQ(f, k —
1) and H = GBadQ(f, k).

Proor. We prove the lemma for Ey e and Eyy. A similar reasoning holds
for NotAbortéG and NotAbort;}H. For the sake of contradiction, suppose that
Prob[EJ’f}G] > Prob[EﬁH]—l—e for some non-negligible €. Then we can modify simu-
lator S into algorithm B with a non-negligible advantage in breaking Assumption
2. Algorithm B simply execute S’s code. By Lemma [2] event NotAbort; s occurs
with probability at least 1/¢ and in this case B can continue the execution of S’s
code and receive the challenge vectors from A. At this point, B checks whether
they differ in the f-th component. If they do, B outputs 1; else B outputs 0.
It is easy to see that, by Lemma [l the above algorithm has a non-negligible
advantage in breaking Assumption 2. O

The proof of the following corollary is straightforward from Lemma [5] and Ob-
servations [TH3l

Corollary 1. For all f = 1,....,4+1 and k = 0,...,q, and all PPT adver-
saries A, we have that, for H = GBadQ(f, k) ’Prob[E;f}H] - Prob[E}“]’ and

Prob[NotAbortéH} - Prob[NotAbortf]’ are negligible.

We define event Succ™(f, k) as
Succ(f, k) := NotAbort;'s(f, k) A NotAborty's(f,k) A EAs(f. k). (1)

We are now ready to prove Lemma

Lemma 6. Suppose there exists an adversary A and integers 1 < f < {+1 and
1 < k < q such that ’AdvA [G] — AdvA [H]’ > ¢, where G = GBadQ(f, k — 1),

H = GBadQ(f, k) and € > 0. Then, there exists a PPT algorithm B with Adv5 >
Prob[Ey] - €/(2- %) — v(\), for a negligible function v.

PROOF. Assume without loss of generality that Adv* [G] > Adv* [H] + € and
consider the following algorithm B. B uses simulator S as a subroutine and
interacts with A on input integers f and k for which the above inequality holds,
and an instance (D, T) of Assumption 2. If event Succ™(f, k) does not occur, B
outputs L. Otherwise, BB receives A’s output 1’ and checks if n = 7’ (recall that
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n is the random bit chosen by S in preparing the challenge ciphertext). If n = 7’
then B outputs 1; otherwise B outputs 0. Therefore we have

Prob[B outputs 1|/T" = Ty] = Prob[B outputs 1|T" = T} A Succ(f, k)] - (2)
Prob[Succa(f, k)|T = Ti]

By definition of Succ(f, k) we have Prob[Succ4(f, k)|T = Ti] = Prob[E}.s A
NotAbort; s A NotAborts s|T" = T3] = Prob[NotAborty s|T" = T3] - Prob[E}; s A
NotAborty s|NotAborty s AT = T1]. Now observe that event NotAbort; s is deter-
mined before S uses T and thus Prob[NotAbort; s|T' = T1] = Prob[NotAbort; s].
Moreover, by Lemma M if event NotAbort; s occurs and T = Tj, the view
of A up to Challenge Query is equal to the view of A in game G and thus
Prob[Ef s A NotAborta s|NotAbort; s AT = Ti] = Prob[E;c A NotAborts ¢]
whence Prob[Succ(f,k)|T = Ti] = Prob[NotAbort; s] - Prob[NotAborty ¢ A
E¢c] = Prob[NotAbort; s] - Prob[NotAbort, | - Prob[Ey o], where NotAborts ¢
and E ¢ are independent. Finally, if T'= T} and SuccA(f, k) occures, then, by
Lemma [, A’s view is exactly as in game G, and thus the probability that B out-
puts 1 is equal to the probability that A wins in game G. We can thus rewrite
Eq. [ as Prob[B outputs 1|T" = T;] = Prob[A wins in G] - Prob[NotAbort; s] -
Prob[NotAbort, ] - Prob[Ey ¢] A similar reasoning yields Prob[ outputs 1|T =
T5] = Prob[A wins in H] - Prob[NotAbort; s] - Prob[NotAborts g] - Prob[E} #]
By using Corollary [ Lemma Bl and Lemma Bl we can conclude that there
exists a negligible function v such that we have /—\dvég = Prob|NotAbort; s] -

Prob[NotAborts] - Prob[E/] - (Prob[A wins in G| — Prob[A wins in H}) —v(\)
> 452 - Prob[Es] — v(X). o

The following Lemma can be proved by referring to simulator Sy. We omit further
details since the proof is essentially the same as the one of Lemma

Lemma 7. Suppose there exists an adversary A and integers 1 < f <+ 1 and
1 < k < q such that |Adv* [G] — Adv* [H]’ > ¢, where G = GBadQ2(f, k — 1),

H = GBadQ2(f,k) and € > 0. Then, there exists a PPT algorithm B with
Adv5 > Prob[Ey] - €/(2- £2) — v()\), for a negligible function v.

The Advantage of A in GPK. We prove that, under Assumption 2, ev-
ery PPT adversary A has a negligible advantage in GPK = GBadCh(1) by
proving that it is computationally indistinguishable from GBadCh(¢ + 1) that,
by Observation Bl gives no advantage to any adversary. PROOF. Let E;f}f,
denote the event that during the execution of GBadCh(f’) adversary A out-
puts two challenge vectors that differ in the f-th component. For an event
E, we define the advantage Adv*[G|E] of A in G conditioned on event E as
AdvA[G|E] = Prob|A wins in game G|E] — 5

Observation 6. For all PPT adversaries A and all 1 < f < £, we have that
Adv*[GBadCh(f)|-Ey ;] = Adv*[GBadCh(f + 1)|=Ey.f41].



118 A. De Caro, V. Iovino, and G. Persiano

PrOOF. By definition of GBadCh, if the challenge vectors coincide in the f-th
component, then A’s view in GBadCh(f) and GBadCh(f + 1) are the same. O

Observation 7. For all PPT adversaries A and all 1 < f < £, we have that
Prob[E4;] = Prob[Ef;,].

PrROOF. The view of A in GBadCh(f) up to the Challenge Query is independent
from f. o

Therefore we can set Prob[E;f}f] = Prob[E}‘}l] = Prob[E;f‘]. O

Lemma 8. If Assumption 2 holds, then, for any PPT adversary A, /—\dvA[GPK]
is negligible. Specifically, if there is an adversary A with AdvA[GPK] = € then

there exists an adversary B against Assumption 2 such that Advg > 2224 —v(N),
for some negligible function v.

Let A be a PPT adversary such that Adv*[GPK] > e. Since GPK = GBadCh(1)
and Adv*[GBadCh(/ 4 1)] = 0 there must exist f € [¢] such that

AdvA[GBadCh(f)] — AdvA[GBadCh(f + 1)}‘ > ¢ = ¢/L. (3)

Now recall that GBadCh(f) = GBadQ(f,0) and GBadCh(f + 1) = GBadQ2(f,0).
Thus, there exists k, 1 < k < ¢ such that ’AdvA[G] - AdvA[H]‘ > €'/(2q) where
G = GBadQ(f, k) and H = GBadQ(f,k — 1) or where G = GBadQ2(f, k) and
H = GBadQ2(f,k —1). Then by Lemma @] in the former case, and by Lemma [1]

in the latter, we can construct an adversary B against Assumption 2, such that
AdvS > 4¢3+ PTOb[Ef] — v(A) Now it remains to estimate Prob[Ey]. Notice

that we can write Adv*[GBadCh(f)] = Prob[Ey ;] - Adv*[GBadCh(f)|E; ;] +
Prob[~E; ;]-Adv*[GBadCh(f)|~Ey.;]. and AdvA[GBadCh(f+1)] = Prob[E; s41]
- Adv*[GBadCh(f + 1)|Ef. ;1] + Prob[=Ef, ;1] - AdvA[GBadCh(f +1)]|~Ef. ;+1]-
and, by combining Equation [Bland Observations [ and [7 we obtain Prob[E{] -

AdvA[GBadCh(f)|Ey.;] — Adv*[GBadCh(f + 1)\Ef7f+1]’ > €. Since no advan-
tage is greater than 1/2, we can conclude that Prob[Ef] > 2 - ¢’ and thus B as
advantage Adv? > 2;24 —v(A)

5.3 Wrapping Up
By combining Lemma [I] and Lemma [8 we obtain our main result.

Theorem 8. If Assumption 1 and 2 hold, then the HVE scheme described in
Section[] is secure (in the sense of Definition[1).

6 Reductions

In this section we show how to construct an encryption scheme for the class of
Boolean predicates that can be expressed as a k-CNF or k-DNF formula and
disjunctions over binary variables from an HVE scheme.
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Reducing k-CNF to HVE. We consider formulae @ in k-CNF, for constant k,
over n variables in which each clause C' € ¢ contains exactly k distinct variables.
We call such a clause admissible and denote by C,, the set of all admissible clauses
over the n variables z1,...,z, and set M,, = |C|. Notice that M, = O(n*).
We also fix a canonical ordering C1,...,Cyy, of the clauses in C,,. Let H =
(Setupy,, KeyGeny,, Encrypty,, Testy;) be an HVE scheme and construct a k-CNF
scheme kCNF = (Setup,cnp, KeyGenyene, Encryptycne, Testkenr) as follows:

Setup,cne(1%, 17): The algorithm returns the output of Setupy, (1%, 137).

KeyGenycne(Msk, @): For a k-CNF formula @, the key generation algorithm
constructs vector y € {0,1,x}M» by setting, for each i € {1,...,M,}, y; = 1 if
C; € &; y; = » otherwise. We denote this transformation by y = FEncode(®).
Then the key generation algorithm returns Skg = KeyGeny, (Msk, y).

Encrypt,cne(Pk, 2): The algorithm constructs vector z € {0, 1} in the fol-
lowing way: For each i € {1,..., M, } the algorithms sets x; = 1 if C; is satisfied
by z; x; = 0 if C; is not satisfied by z. We denote this transformation by
« = AEncode(z). Then the encryption algorithm returns Ct = Encrypty, (Pk, x).

Testkenr(Skg, Ct): The algorithm returns the output of Testy (Skg, Ct).

Correctness. It follows from the observation that for tuple (&, z), we have that
Match(AEncode(z), FEncode(®)) = 1 if and only if Satisfy(®, z) = 1.
Security. Let A be an adversary for kCNF that tries to break the scheme for
n variables and consider the following adversary B for H that uses A as a sub-
routine and tries to break a H with ¢ = M, by interacting with challenger C. B
receives a Pk for H and passes it to A Whenever A asks for the key for formula
&, B constructs y = FEncode(®) and asks C for a key Sk, for y and returns it
to A. When A asks for a challenge by providing truth assignments z¢ and z1, B
simply computes &y = AEncode(z¢) and 1 = AEncode(z1) and gives the pair
(zo,x1) to C. B then returns the challenge ciphertext obtained from C to A.
Finally, B outputs .A’s guess.

First, B’s simulation is perfect. Indeed, we have that if for all A’s queries &
we have that Satisfy(®, zg) = Satisfy(®, z1), then all B’s queries y to C also have
the property Match(y, o) = Match(y,x1). Thus B’s advantage is the same as
A’s. By combining the above reduction with our constructions for HVE:

Theorem 9. For any constant k > 0, if Assumption 1 and 2 hold for generator
G then there exists a secure encryption scheme for the class of predicates that
can be represented by k-CNF formulae.

Reducing Disjunctions to HVE. In this section we consider the class of
Boolean predicates that can be expressed as a single disjunction. We assume
without loss of generality that a disjunction does not contain a variable and its
negated. Let H = (Setupy,, KeyGeny,, Encrypty,, Testy;) be an HVE scheme and
construct the predicate-only scheme V = (Setup,,, KeyGen,,, Encrypt,,, Testy) for
disjunctions in the following way:

Setup,, (1*,1™): the algorithm returns the output of Setupy, (1*,17).

KeyGen,,(Msk, C): For a clause C, the key generation algorithm constructs
vector y € {0,1,x}™ in the following way. Let w be a truth assignment to the n
variables that does not satisfy clause C. For each i € {1,...,n}, the algorithms
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sets y; = w; if the i-th variable appears in C; y; = x otherwise. We denote this

transformation by y = CEncode(C'). The output is Skc = KeyGen,, (Msk, y).
Encrypt,, (Pk, z): The encryption algorithm returns Ct = Encrypty, (Pk, 2).
Testy (Ske, Ct): The algorithm returns 1 — Testy (Ske, Ct).

Correctness. It follows from the observation that for a clause C' and assignment

z, Satisfy(C, z) = 1 if and only if Match(CEncode(C), z) = 0.

Security. If H is secure then V is secure. In particular, notice that if for A’s
query C' we have that Satisfy(C, z¢) = Satisfy(C, z1) = £ € {0,1}, then for B’s
query y = CEncode(C') to C we have that Match(y, zg) = Match(y, z1) =1 —¢.

Theorem 10. If Assumption 1 and 2 hold for generator G then there exists a
secure encryption scheme for disjunctions.

Reducing k-DNF to k-CNF. We observe that if @ is a predicate repre-
sented by a k-DNF formula over binary variables then its negation @ can be
represented by a k-CNF formula. Therefore let kCNF = (Setupycne, KeyGenyene,
Encryptycne, Testkenr) and consider the following scheme kDNF = (Setup,pnrs
KeyGenypnr, Encrypt,pne, Testkonr). The setup algorithm Setup,pye is the same
as Setup,cyp. The key generation algorithm Setup,pyp for predicate @ repre-
sented by a k-DNF simply invokes the key generation algorithm Setup,cyg for
& that can be represented by a k-CNF formula. The encryption algorithm
Encrypt,pne is the same as Encrypt,cyg. The test algorithm Testypne on input
ciphertext Ct and key for k-DNF formula & (that is actually a key for k-CNF
formula @) thus Testycne on Ct and the key and complements the result. Cor-
rectness and security can be easily argued as for Disjunctions. By combining the
above reduction with the construction given by Theorem O

Theorem 11. If Assumption 1 and 2 hold for generator G then there exists a
secure encryption scheme for k-DNF formulae.
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Abstract. We present efficient Identity-Based Encryption (IBE) and
signature schemes under the Symmetric External Diffie-Hellman (SXDH)
assumption in bilinear groups. In both the IBE and the signature schemes,
all parameters have constant numbers of group elements, and are shorter
than those of previous constructions based on Decisional Linear (DLIN)
assumption. Our constructions use both dual system encryption (Waters,
Crypto ’09) and dual pairing vector spaces (Okamoto and Takashima,
Pairing ’08, Asiacrypt ’09). Specifically, we show how to adapt the re-
cent DLIN-based instantiations of Lewko (Eurocrypt '12) to the SXDH
assumption. To our knowledge, this is the first work to instantiate either
dual system encryption or dual pairing vector spaces under the SXDH
assumption.

1 Introduction

Identity-Based Encryption. The idea of using a user’s identity as her public
encryption key, and thus eliminating the need for a public key certificate, was
conceived by Shamir [34]. Such a primitive is known as Identity-Based Encryp-
tion (IBE), which has been extensively studied particularly over the last decade.
We now have constructions of IBE schemes from a large class of assumptions,
namely pairings, quadratic residuosity and lattices, starting with the early con-
structions in the random oracle model [9, [16, 22], to more recent constructions
in the standard model [14, [7, I8, 15, 12].

Short IBE. Tt is desirable that an IBE scheme be as efficient as possible, if
it were to have any impact on practical applications. Ideally, we would like to
have constant-size public parameters, secret keys, and ciphertexts. Moreover, the
scheme should ideally achieve full security, namely to be resilient even against
an adversary that adaptively selects an identity to attack based on previous
secret keys. The first fully secure efficient IBE with constant-size public param-
eters and ciphertexts under standard assumptions was obtained by Waters [37]

M. Abdalla and T. Lange (Eds.): Pairing 2012, LNCS 7708, pp. 122-{[20] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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in 2009; this scheme relied on the Decisional Bilinear Diffie-Hellman (DBDH)
and Decisional Linear (DLIN) assumptions. Since then, Lewko and Waters [26]
and Lewko [25] gave additional fully secure efficient IBE schemes that achieve
incomparable guarantees. Prior to these works, all known IBEs (in the standard
model) were either selectively secure [14, [T, 15, 2], or require long parameters
I8, 136, [15, 2], or were based on less standard assumptions that depended on the
query complexity of the adversary [21]. From a practical stand-point, Waters’
fully secure IBE [37] is still not very efficient as it has relatively large cipher-
texts and secret keys, i.e., eleven and nine group elements respectively. Lewko’s
scheme [25] improved on both of these parameters at the cost of larger public
parameters and master key.

Shorter IBE? In his work, Waters also suggested obtaining even more efficient
IBE schemes by turning to asymmetric bilinear groups:

Using the SXDH assumption we might hope to shave off three group
elements from both ciphertexts and private keys.

In fact, improving the efficiency of a scheme using asymmetric pairings was first
observed by Boneh, Boyen and Shacham [10]. At a fixed security level, group
elements in the asymmetric setting are smaller and pairings can be computed
more efficiently [19]. (Estimated bit sizes of group elements for bilinear group
generators are given in Appendix [Al) Informally, the SXDH assumption states
that there are prime-order groups (G1,G2, Gr) that admits a bilinear map e :
G1 x G2 — G such that the Decisional Diffie-Hellman (DDH) assumption holds
in both G; and G3. The SXDH assumption was formally defined by Ballard et al.
[4] in their construction of a searchable encryption scheme, and has since been
used in a number of different contexts, including secret-handshake schemes [3],
anonymous IBE [17], continual leakage-resilience [12], and most notably, Groth-
Sahai proofs [24]. Evidence for the validity of this assumption were presented in
the works of Verheul [35] and Galbraith and Rotger [20)].

1.1 Owur Contributions

In this work, we present a more efficient IBE scheme under the SXDH assump-
tion; our scheme also achieves anonymityE The ciphertexts and secret keys con-
sist of only five and four group elements, respectively. That is, we shave off two
group elements from both ciphertexts and private keys in Lewko’s DLIN-based
IBE [25]. See Table [l for a summary of comparisons between existing and our
IBE schemes, where \ is the security parameter. Applying Naor’s transform
[9, [11] to our scheme, we also obtain an efficient signature scheme.

! Here, we do not separately consider group elements from target groups of pairings,
although a ciphertext typically has a group element that is from an associated target
group.

2 It follows from our analysis that Lewko’s IBE [23] is also anonymous, although this
was not pointed out in her paper.
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Table 1. Comparison between existing and our IBE schemes

Source # PP # MK # SK # CT # pairing anonymity assumptions
Waters [36] O(A\) 1 2 3 2 No DBDH

Waters [37] 13 5 9 11 9 No DLIN,DBDH
Lewko [25] 25 30 6 7 6 Yes DLIN

RCS [33] 9 7 7 9 7 No XDH, DLIN, DBDH
Ours 9 9 4 5 4 Yes SXDH

Our Approach. As with all known fully secure efficient IBEs, our construction
relies on Waters’ dual system encryption framework [37]. Following Lewko’s
DLIN-based IBE [25], we instantiate dual system encryption under the SXDH
assumption via dual pairing vector spaces [29,130], which is a technique to achieve
orthogonality in prime-order groups. This is the first work to instantiate either
dual system encryption or dual pairing vector spaces under the SXDH assump-
tion. We proceed to highlight several salient features of our IBE scheme in rela-
tion to Lewko’s IBE [25]:

— Our scheme has an extremely simple structure, similar to the selectively
secure IBE of Boneh and Boyen [7], as well as the fully secure analogues
given by Lewko and Waters [26] and Lewko [25].

— By shifting from the DLIN assumption to the simpler SXDH assumption,
we obtain IBE schemes that are syntactically simpler and achieve shorter
parameters. Specifically, Lewko’s IBE scheme [25] relies on 6 basis vectors
to simulate the subgroup structure in the Lewko-Waters IBE scheme [26],
whereas our construction uses only 4 basis vectors. This means that we can
use a 4-dimensional vector space instead of a 6-dimensional one. As a result,
we save two group elements in both the secret key and the ciphertext, that
is, by a factor of 1/3. The savings for the public parameters and master
key is even more substantial, because we use only two basis vectors for the
main scheme, as opposed to four basis vectors in Lewko’s scheme. In both
our scheme and in Lewko’s, the remaining two basis vectors are used for the
semi-functional components in the proof of security.

— The final step of the proof of security (after switching to semi-functional
secret keys and ciphertexts) is different from that of Lewko’s. We rely on an
information theoretic argument similar to that in [32] instead of computa-
tional arguments.

Finally, we believe that our SXDH instantiations constitute a simpler demon-
stration of the power of dual pairing vector spaces.

Independent Work of Ramanna et al. An independent work of Ramanna, Chat-
terjee and Sarkar [33] also demonstrated how to obtain more efficient fully secure
IBE via asymmetric pairings. Similar to our work, their constructions rely on
dual system encryption; however, they do not make use of dual pairing vector
spaces. Our constructions achieve shorter ciphertexts and secret keys than their
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work, while relying on a single assumption (whereas their construction relies on
a triplet of assumptions). Moreover, our scheme achieves anonymity; theirs does
not. Finally, they obtain their schemes via careful optimizations, whereas our
scheme is derived via a more general framework.

Outline. In Section[2] we present the preliminaries, including security definitions
for IBE, our security assumptions, and an overview of dual pairing vector spaces.
In Section B, we present the subspace assumptions based on SXDH. Finally, we
present our IBE and signature schemes in Sections [] and [l

2 Preliminaries

In this section, we first recall the definitions of security for IBE, and signatures.
We then present a few backgrounds related to groups with efficiently computable
bilinear maps and define the Symmetric External Diffie-Hellman assumption.

2.1 Identity-Based Encryption and Signatures

Identity-Based Encryption. An Identity-Based Encryption [9] scheme consists of
four algorithms: (Setup, KeyGen, Enc, Dec):

— Setup(A) — PP, MK The setup algorithm takes in the security parameter A,
and outputs the public parameters PP, and the master key M K.

— KeyGen(PP, MK, ID) — SK;p The key generation algorithm takes in the
master key MK, and an identity I D, and produces a secret key SK;p for
that identity.

— Enc(PP,ID, M) — CT;p The encryption algorithm takes in an identity I.D,
and a message M, and outputs a ciphertext CT;p encrypted under that
identity.

— Dec(PP,SK;p,CTrp) — M The decryption algorithm takes in a secret key
SK;p, and a ciphertext CT;p, and outputs the message M when the CT;p
is encrypted under the same ID.

Anonymous IBE. The security notion of anonymous IBE was formalized by
[1], which is defined by the following game, played by a challenger B and an
adversary A.

— Setup The challenger B runs the setup algorithm to generate PP and MK. It
gives PP to the adversary A.

— Phase 1 The challenger A adaptively requests keys for identities I D, and
is provided with corresponding secret keys SK;p, which the challenger B
generates by running the key generation algorithm.

— Challenge The adversary A gives the challenger B two challenge pairs
(Mo, ID§) and (My,ID7). The challenge identities must not have been
queried in Phase 1. The challenger sets § € {0,1} randomly, and encrypts
Mg under 1D} by running the encryption algorithm. It sends the ciphertext
to the adversary A.



126 J. Chen et al.

— Phase 2 This is the same as Phase 1, with the added restriction a secret key
for IDg, I D7 cannot be requested.
— Guess The adversary A must output a guess 8’ for S3.

The advantage Adv'3-(\) of an adversary A is defined to be Pr[s’ = ] — 1/2.

Definition 1. An Identity-Based Encryption scheme is secure and anonymous
if all PPT adversaries achieve at most a negligible advantage in the above security
game.

Remark: The security notion of non-anonymous IBE is defined as above with
restriction that IDg = IDj.

Signatures. A signature scheme is made wup of three algorithms,
(KeyGen, Sign, Verify) for generating keys, signing, and verifying signatures,
respectively.

— KeyGen(1*) — PK,SK The key generation algorithm takes in the security
parameter A, and outputs the public key PK, and the secret key SK.

— Sign(SK, M) — o The signing algorithm takes in the secret key SK, and a
message M, and produces a signature o for that message.

— Verify(PK, 0, M) — CT The verifying algorithm takes in the public key PK,
and a signature pair (o, M), and outputs valid or invalid.

The standard notion of security for a signature scheme is called existential un-
forgeability under a chosen message attack |23], which is defined using the fol-
lowing game between a challenger B and an adversary A.

— Setup The challenger B runs the setup algorithm to generate PK and SK. It
gives PK to the adversary A.

— Queries The adversary A adaptively requests for messages My,..., M, €
{0,1}*, and is provided with corresponding signatures o1, ..., 0, by running
the sign algorithm Sign.

— Output Eventually, the adversary A outputs a pair (M, o).

The advantage Advi{g()\) of an adversary A is defined to be the probability that
A wins in the above game, namely

(1) M is not any of My,...,M,;
(2) Verify(PK, o, M) outputs valid.

Definition 2. A signature scheme is existentially unforgeable under an adap-
tive chosen message attack if all PPT adversaries achieve at most a negligible
advantage in the above security game.

We assume that for any PPT algorithm A, the probability that A wins in the
above game is negligible in the security parameter A.
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2.2 Dual Pairing Vector Spaces

Our constructions are based on dual pairing vector spaces proposed by Okamoto
and Takashima [29,[30]. In this paper, we concentrate on the asymmetric version
[32]. We only briefly describe how to generate random dual orthonormal bases.
See [29, 130, 132] for a full definition of dual pairing vector spaces.

Definition 3. “Asymmetric bilinear pairing groups” (q, G1, G2, G, g1, g2, €) are
a tuple of a prime q, cyclic (multiplicative) groups G1,G2 and G of order g,
g1 #1 € Gy, go # 1 € Ga, and a polynomial-time computable nondegenerate
bilinear pairing e : G1 x Go — Gr i.e., e(g$, g5) = e(g1,92)% and e(g1,g2) # 1.

In addition to referring to individual elements of G1 or G2, we will also consider
“vectors” of group elements. For v = (vy,...,v,) € Zy and gg € Gg, we write
g§ to denote a n-tuple of elements of G for =1, 2:

95 = (95"---,95")-
For any a € Z, and v, w € Zy, we have:

avy avn) vtw ,__ ( v1twi vn+wn)
R = .

95° = (95",-- .95 95 95t

Then we define

n
e(gv,9%) = [ [ e(gt'. g5) = elg1. g2)"™.
i=1

Here, the dot product is taken modulo q.

Dual Pairing Vector Spaces. For a fixed (constant) dimension n, we will choose
two random bases B := (by, ..., b,) and B* := (b7, ...,b;,) of Z, subject to the
constraint that they are “dual orthonormal”, meaning that

b; - b; = 0 (mod q)

whenever i # j, and
b; - bj = ¢ (mod q)

for all 4, where ¢ is a random element of Z,. We denote such algorithm as Dual(-).
Then for generators g; € G and g2 € Go, we have

. b
e(gi)[aQZJ) =1

whenever i # j, where 1 here denotes the identity element in Gp.
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2.3 SXDH Assumptions

Definition 4. [DDHI: Decisional Diffie-Hellman Assumption in G1] Given a
group generator G, we define the following distribution:

G :=(¢,G1,G2,Gr, 91,92, €) e g,
a,b,c £ ZLq,
D :=(G; 91,92, 91 97)-
We assume that for any PPT algorithm A (with output in {0,1}),
AdVIP () = [Pr[A(D, gi°) — Pr[A(D, g7"*)]|.
s negligible in the security parameter .

The dual of above assumption is Decisional Diffie-Hellman assumption in Go
(denoted as DDH2), which is identical to Definitions l] with the roles of G; and
G2 reversed. We say that:

Definition 5. The Symmetric External Diffie-Hellman assumption holds if
DDH problems are intractable in both G1 and Gs.

2.4 Statistical Indistinguishability Lemma

We require the following lemma from [27] in our security proof.

Lemma 1. Let C := {(z,v)|x-v # 0,x,v € Z; }. For all (z,v) € C, (r,w) €
C, p,T < Zg, and A £ Zy<m,

1

Priz(pA~Y) = r Av(TAY) = w] = 4c
where #C = (¢" — 1)(¢" — ¢"~1).

In other words, (pzA~!) and (rvA!) are uniformly and independently dis-
tributed (i.e., equivalently distributed to (r,w) £ Zy x Zy where v - w # 0,
while Pr[r-w =0] = 1/¢) when x - v # 0.

3 Subspace Assumptions via SXDH

In this section, we present Subspace assumptions derived from the SXDH as-
sumption. We will rely on these assumptions later to instantiate our IBE scheme.
These are analogues of the DLIN-based Subspace assumptions given in [25, 131]].
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Definition 6. [DS1: Decisional Subspace Assumption in G1] Given a group gen-
erator G(+), define the following distribution:

G:= (q?GlaGQaGTaglag%e) & g(]-)\),
(B,B*) < Dual(Z),

R
T1y T2, 1, 2 — Zg,

. p1bl+p2bi . m1b3+pu2bi o . uibptuabiy,
U1.292 ,U2.292 ,...,...,Uk.:gz 2,

T1b T1b T1bk
‘/1 52911 1"/212911 27"'aVk ::gll ka

b 2b b 2b . ok
Wl — gIl 1+72 k+17W2 — gIl 2+T2bg 2 T1br+T2bsok

s W i=g ,

bl b} by by b, b by,
D= (G;92179227"'7g2k792 sy 9o ’glla"'vgl 5U17U27"'7Uk7/1'2)a

where k,n are fized positive integers that satisfy 2k < n. We assume that for
any PPT algorithm A (with output in {0,1}),

AdVEST () == | Pr[A(D, Vi,. .., Vi) = 1] — Pr[A(D, W1, ..., Wy,) = 1]]
1s megligible in the security parameter \.

For our construction, we only require the assumption for n = 4, k = 2. Further-
more, we do not need to provide po to the distinguisher. Informally, this means
that, given:

Ty, o, i1, 2 4 Zg; and Uy = gyt Uy o= ghtbatiebi
the distributions (Vi,V2) and (W1, Ws) are computationally indistinguishable,
where:

. ,7T1b ._ .71b
Vl .7911 1"/2.7911 2a

. T1bi+72b3 . ,T1ba+72by
Wi =g Wa =g .

Lemma 2. If the DDH assumption in G1 holds, then the Subspace assumption
in G1 stated in Definition [@ also holds. More precisely, for any adversary A
against the Subspace assumption in G1, there exist probabilistic algorithms B
whose running times are essentially the same as that of A, such that

AdvDPH(A) < AdvRPHE(N).

Proof. We assume there exists a PPT algorithm A4 breaking the Subspace as-
sumption with non-negligible advantage AdvaSI()\) (for some fixed positive in-
tegers k,n satisfying n > 2k). We create a PPT algorithm B which breaks the
DDH assumption in G; with non-negligible advantage AdelSl()\). B is given
g1, 92, 9%, g%, T, where T is either g{® or T is a uniformly random element of G;.

B first samples random dual orthonormal bases, denoted by f1,..., f, and
fi,..., fr. From the definition, B chooses vectors f1,..., fn, f1,..., f} ran-

domly, subject to the constraints that f; - f; = 0(mod q) when i # j, and
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fi- ff = ¢ (mod q) for all ¢ from 1 to n, where 9 is a random element of Z,.
Then, B implicitly sets:

bi:=fi1+afri1,b2:=fo+afria,..., bk = fr+afau,

bk+1 = .fk+1a"'ab’n = .fn

B also sets the dual basis as:

bl = f1,b5:=f5,..., b} = fy,
ki1 = Frp1 —afi, .. b5 = fop —afy,
;k+1 = .f;k+1a"-ab: = f:z

We observe that under these definitions, b; - b5 = 0 (mod ¢) when i # j, and
b, - b = ¢ (mod ¢) for all ¢ from 1 to n. We note that B can produce all of
gr's - gem (given g, gf) as Well as g 7--~7g;’ and g, 95" (given g2).

However, B cannot produce 92 Yo, 92 * (these require knowledge of g9). It is
not dlfﬁcult to check that bq,...,b, and b7,..., b} are properly distributed.
Now B creates Uy, ..., Uy by choosing random values u, uh € Z, and setting:

2k+1

’ * !’ * !’ ’ * !’ *
L pibTHpsfi  (Mitaps)bl+usby
Uy := g, =gy .

In other words, B has implicitly set g1 := pj + apb and po = uphH. We note
that these values are uniformly random, and ps is known to B. B can then form
Us,..., U as:

! * ! *
BRSNS JTEY o bl fa
UQ.—gQ ,...,Uk.—gzl 292k

B implicitly sets 71 := b, 75 := ¢ and computes:
Ty = THee (g9)Fr Ty = T2 (gi’)fk.
If T = g¢°, then these are distributed as V1, ..., V4, since
Tfk+i . (gb)fi, — g7'1b
IfT = b+c , then these are distributed as Wy, ..., Wy, since
TFk+i . (gi’)fi _ gflbﬁﬁbkw.

B then gives

by b3 br b3 b
D = (G;9213922>' . .’gzk’922k+1, e ,92",9?1, e ag?"aUla U2a .. -aUka/LQ)
to A, along with 71, ..., Ty. B can then leverage A’s advantage AdvDSl()\) in dis-
tinguishing between the distributions (V4, .. Vk) and (Wy,..., W) to achieve
an advantage Advp t()\) in distinguishing T @ from T = ¢%°*¢ hence
violating the DDH assumption in Gj.

The dual of the Subspace assumption in G is Subspace assumption in Go (de-
noted as DS2), which is identical to Definitions [@] with the roles of G; and Gs
reversed. Similarly, we can prove that the Subspace assumption holds in G if
the DDH assumption in G5 holds.
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4 Identity-Based Encryption

We now present our IBE construction along with our proof of its security under
the SXDH assumption.

Construction. We begin with our IBE scheme:

— Setup(1*) This algorithm takes in the security parameter A and generates
a bilinear pairing G := (¢, G1, G2, G, g1, g2, ¢) for sufficiently large prime

order ¢. The algorithm samples random dual orthonormal bases, (D, D*) £
Dual(Z3). Let dy, ..., dy denote the elements of D and dj, ..., d} denote the

elements of D*. It also picks « £ Z4 and outputs the public parameters as
PP := {G, 6(91, gQ)OCdl.dT 5 giil ) 9?2},

and the master key
dr d;
MK := {a7921a922}'

— KeyGen(PP, MK, ID) This algorithm picks r £ Zg4. The secret key is com-

puted as
SKID — géoHr'rID)d;‘ —rd; .

— Enc(PP,ID, M) This algorithm picks s £ Z4 and forms the ciphertext as
CTip:= {CO =M - (e(g, g2)*¥ ), Oy = gfd1+SIDd2}.
— Dec(PP,SK;p,CTrp) This algorithm computes the message as
M :=Cy/e(C1,SKip).
Correctness. Correctness is straight-forward:
Co/e(Cr,SK1p) = M - (e(g1, g2) " ) fe(gih t 1P g2 1P r%)

=M - (6(91,gz)o“il'ﬂq)s/(e(gh!J2)a$dl'dI
~€(g1 gz)erDdyd;‘—srlDdzd;)

= M - (e(g1, g2)*4¥1)* Je(gu, go) M % = M.

Proof of Security. We prove the following theorem by showing a series of lemmas.

Theorem 1. The IBE scheme is fully secure and anonymous under the Sym-
metric External Diffie-Hellman assumption. More precisely, for any adversary A
against the IBE scheme, there exist probabilistic algorithms By, B, ..., B, whose
running times are essentially the same as that of A, such that

Adv'BE(N) < AdVBPHL(A) + 3 AdVBPH2(\) + ’;
k=1

where v is the maximum number of A’s key queries.
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We adopt the dual system encryption methodology by Waters [37] to prove the
security of our IBE scheme. We use the concepts of semi-functional ciphertexts
and semi-functional keys in our proof and provide algorithms that generate them.
We note that these algorithms are only provided for definitional purposes, and
are not part of the IBE system. In particular, they do not need to be efficiently
computable from the public parameters and the master key.

KeyGenSF. The algorithm picks random values 7, t3,t4 € Z, and forms a semi-
functional secret key as

SK(SF) . géa+r1D)d;—rd;+t3d;+t4dz
ID = .

EncryptSF. The algorithm picks random values random values s, 23,24 € Zq4
and forms a semi-functional ciphertext as

CT%F) — {C'o — M. (e(gl’gz)adl.di‘)s, Cy = gid1+31Dd2+z3d3+Z4d4}.

We observe that if one applies the decryption procedure with a semi-functional
key and a normal ciphertext, decryption will succeed because dj, d} are orthogo-
nal to all of the vectors in exponent of C, and hence have no effect on decryption.
Similarly, decryption of a semi-functional ciphertext by a normal key will also
succeed because dg, ds are orthogonal to all of the vectors in the exponent of
the key. When both the ciphertext and key are semi-functional, the result of
e(C1,SK p) will have an additional term, namely

tzzzdy-ds+tazad)-ds _ 6( (tzzz+taza)y

6(91,92) 91,92)

Decryption will then fail unless t3z3 + 424 = 0 mod ¢. If this modular equation
holds, we say that the key and ciphertext pair is nominally semi-functional.

For a probabilistic polynomial-time adversary A which makes v key queries
IDq,...,ID,, our proof of security consists of the following sequence of games
between A and a challenger B.

— Gamegeq: is the real security game.

— Gamey: is the same as Gameg.,; except that the challenge ciphertext is semi-
functional.

— Game,: for k from 1 to v, Game, is the same as Gamey except that the first
k keys are semi-functional and the remaining keys are normal.

— Gamegpngqr: is the same as Game,, except that the challenge ciphertext is a
semi-functional encryption of a random message in G and under a random
identity in Z,. We denote the challenge ciphertext in Gamegipq; as CTg%)R.

We prove following lemmas to show the above games are indistinguishable by
following an analogous strategy of [25]. Our main arguments are computational
indistinguishability (guaranteed by the Subspace assumptions, which are implied
by the SXDH assumption) and statistical indistinguishability. The advantage
gap between Gamep., and Gameg is bounded by the advantage of the Subspace
assumption in GG;. Additionally, we require a statistical indistinguishability ar-
gument to show that the distribution of the challenge ciphertext remains the
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same from the adversary’s view. For k from 1 to v, the advantage gap between
Game,_1 and Game, is bounded by the advantage of Subspace assumption in
G2. Similarly, we require a statistical indistinguishability argument to show that
the distribution of the the k-th semi-functional key remains the same from the
adversary’s view. Finally, we statistically transform Game, to Gameg;,q; in one
step, i.e., we show the joint distributions of

(PP, CTyp: {SKTD, emt....) and (PP, CTYE {SKIE bemr,.o0)

are equivalent for the adversary’s view.
We let AdviameRm’ denote an adversary A’s advantage in the real game.

Lemma 3. Suppose that there exists an adversary A where |AdvG™ ! (\) —
AdvE™ (\)| = €. Then there exists an algorithm By such that AdvDSl()\) =
with k=2 and n = 4.

€,

Proof. By is given

b; b}
D := (G;9213922ag?1>- . -39?43U13U2nu’2)-

along with T7,T>. We require that By decides whether T, 75 are distributed as
T1b1 _T1b2 T1b1+T72b3 g7'1b2+7'2b4.

g1 01 OoT g1
By simulates Gamepgeq; or Gamey with A, depending on the distribution of

T1,T,. To compute the public parameters and master secret key, By first chooses
a random invertible matrix A € Zg“ (A is invertible with overwhelming proba-
bility if it is uniformly picked). We implicitly set dual orthonormal bases D, D*
to:

di:=bi, dy:=by, (d3,dg):=(bs,bs)A,
Ti=0b7, diy:=b5  (dj,d}) = (b5,b}) (A7)

We note that D, D* are properly distributed, and reveal no information about A.

Moreover, B cannot generate gg g,gg Z, but these will not be needed for creating
normal keys. By chooses random value o € Z, and computes e(g, go)ddi Tt
then gives A the public parameters

PP := {G; 6(91,92)°‘d1'di,9d1a91 }.

The master key
& dy
MK :={a, 95", 957 }

is known to By, which allows By to respond to all of A’s key queries by calling
the normal key generation algorithm.

A sends By two pairs (Mo, ID}) and (Mi,ID75). By chooses a random bit
B € {0,1} and encrypts Mg under 1D} as follows:

Co := Mg <6(T1,931)) = Mg <€(91792)ad1d;) , Oy =T (Ty)!P5,
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where By has implicitly set s := 7. It gives the ciphertext CT; Dy, to A.

T1b1  T1b2

Now, if T},T5 are equal to g;' ', g;' >, then this is a properly distributed
normal encryption of Mg. In this case, Bo has properly simulated Gamepgeq;. If
Ty, T are equal to g[tb1+72bs gmibatabs

has an additional term of

instead, then the ciphertext element Cy

Tobs + IDETQIM

in its exponent. The coefficients here in the basis bs, by form the vector 72, I Djs.
To compute the coefficients in the basis ds, ds, we multiply the matrix A~!
by the transpose of this vector, obtaining TQA_l(].,I.DZ)t. Since A is random
(everything else given to A has been distributed independently of A), these
coefficients are uniformly random from Lemma [Il Therefore, in this case, By has
properly simulated Gameg. This allows By to leverage A’s advantage ¢ between

Gamepge,; and Gameg to achieve an advantage € against the Subspace assumption
in G, namely AdvDSl()\) =e. O

Lemma 4. Suppose that there exists an adversary A where \AdvGame” YA —

Adv Game“( )| = €. Then there exists an algorithm B, such that AdvDS2()\) =
e—1/q, with k =2 and n = 4.

Proof. B, is given

b
(G gl 791 792 PRI 7924a U17 UZ?/’LZ)
along with T7,T>. We require that B, decides whether T, T, are distributed as
lel le2 le +T2b3 le2+7'2b4
9o 599 Oor gy » 92

B,. simulates Game,, or Gamen,l with A, depending on the distribution of
T1,T5. To compute the public parameters and master secret key, B, chooses a
random matrix A € Zg“ (with all but negligible probability, A is invertible).
We then implicitly set dual orthonormal bases D, D* to:

d1 = bl, d2 = bg, (d37 d4) = (b37 b4)A,
>1k = T? ; = bzv (d;,d:i) = (béﬁbZ)(A_l)t'
We note that D, D* are properly distributed, and reveal no information about

A. B, chooses random value a € Z, and compute e(g1, g2)*% % . B can gives A
the public parameters

PP := {G 6(91792)ad1 7g 791 }

The master key
MK := {a, 92 792 }

is known to B,;, which allows B, to respond to all of A’s key querles by calling

the normal key generation algorithm. Since B, also knows 92 and 92 , it can
easily produce semi-functional keys. To answer the first kK — 1 key queries that A



Shorter IBE and Signatures via Asymmetric Pairings 135

makes, B, runs the semi-functional key generation algorithm to produce semi-
functional keys and gives these to A. To answer the k-th key query for ID,, By
responds with:

SK;p, = (g5)*T{P=(T)~".

e br Tibl .
This implicitly sets r := 7. If T}, Ty are equal to g,' ', g, >, then this is a
ley{+7'2b§ T1b;+‘f'2bz

properly distributed normal key. If 77,75 are equal to g, , G
then this is a semi-functional key, whose exponent vector includes

9

1D, 2b% — b} (1)

as its component in the span of b3, b}. To respond to the remaining key queries,
B, simply runs the normal key generation algorithm.

At some point, A sends By, two pairs (My, ID§) and (My, ID?). B, chooses a
random bit 3 € {0,1} and encrypts Mg under 1D} as follows:

Co := Mg (6(U1aggi)) = Mpg (6(91792)“1‘1;) , Oy =Uy(Up)'P5,

where B, has implicitly set s := u;. The “semi-functional part” of the exponent
vector here is:

[Lgbg +ID*,U,2b4. (2)

We observe that if 1D} = I.D,; (which is not allowed), then vectors[Iand 2lwould
be orthogonal, resulting in a nominally semi-functional ciphertext and key pair.
It gives the ciphertext CTID; to A.

We now argue that since 1D} # 1Dy, in A’s view the vectors [l and 2 are
distributed as random vectors in the spans of dj,d}; and ds,ds respectively.
To see this, we take the coefficients of vectors [Il and 2 in terms of the bases
b3, b3 and bs, by respectively and translate them into coefficients in terms of the
bases d3, d} and ds, ds. Using the change of basis matrix A, we obtain the new
coefficients (in vector form) as:

1A' (ID,;, —1)", uo A™'(1,1D5).

Since the distribution of everything given to A except for the k-th key and the
challenge ciphertext is independent of the random matrix A and [ Dy % ID,,
we can conclude that these coefficients are uniformly random (except for 1/q
probability) from Lemma [II Thus, B, has properly simulated Game, in this
case.

In summary, B, has properly simulated either Game,_; or Game, for A,
depending on the distribution of T3, T5. It can therefore leverage A’s advantage
€ between these games to obtain an advantage ¢ — 1/¢ against the Subspace
assumption in Gg, namely Adlegfz()\) =e—1/q. O

Lemma 5. For any adversary A, Adv3@™ (\) = Adv@™erine! (A).
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Proof. To prove this lemma, we show the joint distributions of

in Game, and that of

R SF
(PP,CTY  {SKI D Yemt, )
in Gamep;nq are equivalent for the adversary’s view, where CTg%)R is a semi-
functional encryption of a random message in Gr and under a random identity
in Zg.
For this purpose, we pick A := (§; ;) £ ngz and define new dual orthonor-
mal bases F := (f1,..., f4), and F* := (f7,..., f}) as follows:

.fl 1 0 00 d1 fT 10 751,1 752,1 dT
f2 _| 0O 100 d; F5 1 10182 &0 d;
fa | | &a1&e2l0 ds |’ f5]1 oo 1 0 d;
fa §2,1 82,201 dy fi 00 O 1 d;

It is easy to verify that F and F* are also dual orthonormal, and are distributed
the same as D and D*.
Then the public parameters, challenge ciphertext, and queried secret keys

(PP, CT(I%?, {SK&%?}@ZLM,,) in Game, are expressed over bases D and D* as

— . ad:-d] . d d
PP :={G;e(g1,92)"" 1, 91", 91"},
Sd1+SID;d2+23d3+Z4d4}

CT&%FE) = {C() = M . (e(gl,gQ)le.dI)s, Cl = gl

{SK(SF) L g(a+ruD4)d;—md;+tg,3d;+tz,4d;}
ID, = Y92

b

(=1,...,v '
Then we can express them over bases F and F* as
PP .= {G;6(91,92)04.]"1-,]";’9{1’9{2},
CTiH) = {Co 1= M- (e(gr, o) T T1)7, - Cyim gf Pt fatssduinadil,

{SK(SF) — g(OHrwIDe)fi‘*T2f3+t2,3f§+t2,4f2}
1D, 2 K=1,...,y’

where

s =85 — 23811 — 24621, 8" = 8IDj — 23612 — 2422,

t/g,3 =1tp3+ 51,1(04 + T‘[ID@) — ’I“gfLQ,
tyq =tea+&a(a+relDy) —rifap

which are all uniformly distributed since &1,1,&1,2,62,1, 62,2, t1,3, 1,4, .- -, tu3, tua
are all uniformly picked from Z,.
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In other words, the coefficients (s,sID;;) of di,dy in the Cy term of the
challenge ciphertext is changed to random coefficients (s', s”) € ZyxZ, of f1, fa,
thus the challenge ciphertext can be viewed as a semi-functional encryption of
a random message in G and under a random identity in Z,. Moreover, all
coefficients {(t273,t274)}g:17_“7y of f1, f2 in the {SKgSDIZ)}g:L__W are all uniformly
distributed since {(t¢,3,t¢,4) }o=1,...., of d}, d} are all independent random values.
Thus

SF SF
(PP, CT&DE)v {SKgDZ)}sz...,u)

expressed over bases F and F* is properly distributed as

.....

in Gamerinai-

In the adversary’s view, both (D, D*) and (F,F*) are consistent with the same
public key. Therefore, the challenge ciphertext and queried secret keys above can
be expressed as keys and ciphertext in two ways, in Game, over bases (DD, D*)
and in Gamepjpq; over bases (F,F*). Thus, Game, and Gamep;nq; are statistically
indistinguishable. o

Lemma 6. For any adversary A, Advjame”"“’ (\) = 0.

Proof. The value of § is independent from the adversary’s view in Gamep;,q;-
Hence, AdvZ™ " () = 0. |

In Gamepinq, the challenge ciphertext is a semi-functional encryption of a ran-
dom message in Gt and under a random identity in Z,, independent of the two
messages and the challenge identities provided by A. Thus, our IBE scheme is
anonymous.

5 A Signature Scheme

In this section, we present the signature scheme derived from the preceding IBE
scheme via Naor’s transform. The security of the signature scheme follows from
the full security of our IBE scheme.

— KeyGen(1*) This algorithm takes in the security parameter A and generates
a bilinear pairing G := (¢, G1, G2, G, g1, g2, ¢) for sufficiently large prime

order ¢. The algorithm samples random dual orthonormal bases, (D, D*) £
DuaI(Z;l). Let dy,...,ds denote the elements of D and df, ..., d} denote the
elements of D*. It outputs the public key as

PK = {G;e(gr, 92)*™ %, g, g2},

and the signing key
& d
SK = {a, 95", 952}
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— Sign(PK, SK, M) This algorithm picks r L Z4 and computes the signature
as
- géaJrr]VI)d’{ 77‘d§.
— Verify(PK, 0, M) This algorithm verifies a signature o by testing whether
e(gf1+Md2,a) = e(gl,gg)o‘dl'dIE If the equality holds the signature is de-
clared valid; otherwise it is declared invalid.
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A Estimated Bit Sizes of Group Elements for Bilinear
Group Generators

The ordinary elliptic curves that give the best performance while providing dis-
crete log security comparable to three commonly proposed levels of AES security
are as follows. The group sizes follow the 2007 NIST recommendations [5], de-
scriptions of the elliptic curves are in |18].

80-bit security: A 170-bit MNT curve [28] with embedding degree k = 6.
128-bit security: A 256-bit Barreto-Nachrig curve [6] with k = 12.
256-bit security: A 640-bit Brezing-Weng curve [13] with k = 24.

Note that a symmetric pairing only exists on supersingular elliptic curves. The
restriction to supersingular elliptic curves means that at high security levels the
group G1 will be much larger than the group G on an equivalent ordinary curve.

Table 2. Estimated bit sizes of elements in bilinear groups

80-bit AES 128-bit AES  256-bit AES
Gl GQ GT Gl GQ GT Gl G2 GT
Asymmetric 170 340 1020 256 512 3072 640 2560 15360
Symmetric 176 176 1056 512 512 3072 2560 2560 15360
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Abstract. This paper presents an efficient implementation of optimal-
ate pairing over BN curves. It exploits the highly optimized IP cores avail-
able in modern FPGAs to speed up pairing computation. The pipelined
datapaths for Fp-operations and suitable memory cores help to reduce the
overall clock cycle count more than 50%. The final design, on a Virtex-6
FPGA, computes an optimal-ate pairing having 126-bit security in 0.375
ms which is a 32% speedup from state of the art result.

Keywords: Pairing, BN curves, prime fields, FPGA, Karatsuba, Mont-
gomery, Pipeline, IP core.

1 Introduction

The use of pairings in constructive cryptographic applications are running in
their second decade. During this period it has gained a lot of importance because
it enables practical realization of numerous protocols. At the same time it is also
important to implement pairings for using those protocols in practice. Different
alternatives have been derived from the original proposal of Tate pairing for
its efficient computation. Optimal-ate pairing [24] is to date the most efficient
one computed over elliptic curves (E) defined over a large prime field (F,).
On the other hand, several algebraic curves have been discovered for providing
better pairing computation technique as well as for achieving better security. We
call them pairing-friendly curves. Barreto-Naehrig curve [3] is the most popular
pairing-friendly curve in current days. It is well studied that the optimal-ate
pairing on BN curves is one of the best choices of selecting pairings in practice [2].

This paper aims to design an efficient hardware architecture for computing
optimal-ate pairing on BN curves. The architecture exploits highly optimized
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IP cores available for modern FPGAs. The in-built independencies of under-
lying operations of the pairing computation are fully utilized in order to run
an optimized pipeline datapath with reduced number of stall cycles. The mem-
ory architecture based on IP cores are efficiently used for generating pipeline
operands and storing intermediate results which reduces the use of registers in
the design too. The pipelined datapath together with said memory architecture
helps to reduce clock cycle count of the pairing computation. A dedicated inver-
sion unit is also incorporated into the design for reducing further cycle count. In
total, the final design achieves 32% speedup from the existing premier design [0]
for computing optimal-ate pairing.

We start with a brief overview of optimal-ate pairing and its computation
procedure over BN curves in § 2l The IP cores that are used in this design are
introduced in § Bl The design of the most important underlying Fp-arithmetic
block is described in § @ followed by the description of overall core-based archi-
tecture in § Bl The scheduling of operations in order to compute different steps
of the pairing algorithm is given in § [l In § [ we provide the performance study
of the new design with respect to existing results. The paper is concluded in §[8l

2 Optimal-Ate Pairing

Optimal-ate pairing [24] is a non-degenerative bilinear map from Go X G; to G
where G2 and G to be specific subgroups of E(F,.), and Gr to be a subgroup
of F. Let n is a large odd prime dividing #E(F,), and k corresponds to the
embedding degree that is the smallest positive integer such that n|(p* —1). This
paper focuses on the optimal-ate pairing on Barreto-Naehrig curve [3], which is
well-suited for 128-bit security level and has degree six twist.

A BN curve is an elliptic curve defined over IF,, by following equation.

E:y*=2a23+0,

where b # 0 such that #F = n, and k = 12. The BN parameters are defined
by a suitable z € Z such that p = 362* + 3622 + 2422 + 62 + 1 and n =
3624 43623 + 1822 4+ 62 + 1 are prime. This paper focuss on optimal-ate pairing
with r = 6z + 2 defined as [2]:

opt + E(Fpi2) N Ker(m, — p) x E(Fy[n]) — Fyu /(Fyi2)"”

®'2-1)/n
(@, P) = (f(r,Q)(P) "90@m(@)(P) '9(rQ+wp(Q),—wg(Q>>(P)>

where 7, is the Frobenius map on the curve (m,(z,y) = (27,9")), and g, ,q.)
is the line through @ and @-.

2.1 Computation Procedure

Algorithm [[] computes above optimal-ate pairing. We choose BN curve E : y? =
23 +2; 2= —(2%2 +2% 4+ 1) < 0. The algorithm consists of two major parts
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: namely, Miller’s loop executed in line 2 to line 7, and final exponentiation
executed in line 12 to line 13. In order to accommodate the negative r, line 8
computes a negation in Gz to make the final accumulator 7' the result of [—|r|]Q,
and the value of f(, )(P) is raised to the power p% which is equivalent to f~*
as shown in [2]. In line 10 to line 12, the algorithm computes g(,q.x,(@))(P) and
g(rQ_s_ﬂp(Q)’_ﬂg(Q))(P), which are multiplied with f too. With above parameters
the addition steps (line 5) invokes only four times throughout the Miller’s loop
which at the end helps to achieve higher speed of the pairing computation.

Algorithm [Il Optimal-ate pairing on BN curve (¢ < 0)

Input: P = (zp,yp) € EFn)), @ = (207,407°) € E(F12) 0 Ker(my — p)
with zg and yq € Fpe, 1 = |6t + 2| = X7 72"

Output: aopi(Q, P) € Fp1z.

L T = (Xrv*,Yry*, Zr) < (zo7v*, @™, 1), f 15

2. for ¢ = s — 2 downto 0 do

8. gt lon(P), T+ 2T, f+ 2 [+ fg;
4. if r; =1 then

5. g%l(T,Q)(P), T+T+Q, f«<f-g;
6. endif

7. endfor

8. T+« —T, f<—f1°6,

9. Q1+ m(Q), Q2 + —m(Q) ;

10. g%l(TQl)( ) T(—T+Q1, f(—f qg;
11. g« lir,gy (P ) T+—T4+Q2, f<f-9g;
12. fe(fp N

13. f« fO' -0/

14. return f ;

Algorithm [ employs arithmetic in Fj12. High-performance arithmetic over
extension fields is achieved through a tower of extensions using irreducible bi-
nomials [I8]. Accordingly, in our targeted setting we represent F,1> using the
towering scheme used in [2I22]:

Fpli]/(i® — B), where 8= —1.
pt = Fp?[s]/(SQ — &), where £ = 1+1.
w2 = Fplt]/(t® —s) = Fpe[r]/(7° = ¢).

Throughout the pairing computation we follow the towering Fp2 — Fpa — Fp12
as it is shown in [7] that the arithmetic (mainly squaring) in this extension during
final exponentiation is much cheaper than other towering extensions. The choice
p = 3 (mod 4) accelerates arithmetic in 2, since multiplications by f = —1
can be computed as simple subtractions [22].
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3 1IP Cores on Xilinx FPGA

Various soft cores, specifically for memory and arithmetic functions, are provided
by Xilinx which are easily configured into modern FPGAs like Virtex-6, Virtex-
5, or Virtex-4 devices. The Xilinx LogiCORE IP block memory generator [25]
core is an advanced memory constructor that generates area and performance-
optimized memories using embedded block-RAM (BRAM) resources in Xilinx
FPGAs. Available through the core generator software embedded with ISE tool,
users can quickly create optimized memories to amend the performance of a
design.

Two types of memory cores are used in the current design. Montgomery mul-
tiplication (Algorithm 2) uses P®) = a() x b further for computing the final
result (c(i)). The value of P is 512-bit long in the current cryptoprocessor.
Therefore, we generate a memory core having 512-bit data width. This is a
single port memory as its demand of read and write access are exclusive. The
current multiplier performs at most 10 Montgomery multiplications in parallel.
Thus we generate a memory core having nearest smallest size of 2* locations
each of which are 512 bits long which is shown in Fig.[Il On the other hand, the
top level design integrates two memory cores having 256-bit data width for ac-
commodating one [F-element in a single memory location. In the current design,
the datapath consists of several pipeline stages. Thus in order to avoid pipeline
stalls, we generate a 256-bit wide true-dual-port memory core, where both ports
are configured independently on the same shared memory space. The usage of
this memory core in current design is described in § B3]

Similarly, Xilinx LogiCORE IP multiplier [25] implements high-performance,
optimized multipliers. It allows the choice of LUTSs or dedicated multiplier prim-
itives to be selected for the core implementation. It further provides options
for area or speed optimized design. The current design opts for the speed op-
timization on XtremeDSP slice that consists of dedicated multipliers. Thanks
to LogiCORE for permitting a maximum of 64-bit unsigned operands which
makes our design more simpler. The maximum speed of the 64-bit IP core is
achieved through its 18 pipeline stages. However, the utilization of such pipeline
depth is inconvenient for one pairing computation and need to allow several
pipeline stalls. Its full utilization is only feasible through hyperthreading tech-
nology which in our design can be achieved by sharing the pipeline stages among
several pairing computations. At the same time this advanced parallelism makes
data-flow more complex and demands adequately large on-chip memory too. The
current design tries to make a trade-off among speed, area, and design complex-
ity. It finds that five stage pipeline of a 64-bit multiplier core provides the most
suitable design with respect to computing one optimal-ate pairing at a time.
With such design choices the IP core achieves a maximum operating clock fre-
quency of 166 MHz on a Virtex-6 FPGA. Throughout the whole design process
we preserve this operating frequency and always maintain the register to register
combinatorial critical path having lesser delay than the period of above clock.
The construction of such a critical-path constrained datapath makes rest of the
design more challenging.
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4 Base Field Multiplier

Multiplication in base field is the most important operation for computing a cryp-
tographic pairing. In our case it is called IF,-multiplication which can be executed
by several techniques. This paper uses a straight forward Montgomery multipli-
cation algorithm. The algorithm is executed by exploiting underlying Karatsuba
multiplication for integers and by employing an efficient architecture. For execut-
ing extension field operations we always invoke our only multiplier for generating
reduced result for each [F-multiplication. To speed up extension field arithmetic
sometimes a lazy reduction technique is used [6]. However, instead of lazy reduc-
tion, our new multiplier executes multiple simultaneous IFp-multiplications on
pipelined datapath which ultimately speed up the overall pairing computation.

4.1 Montgomery and Karatsuba Combination

Montgomery multiplication algorithm avoids the division by p. The finite field
multiplication is performed as modulo 2" having n = [log, p] instead of modulo
p. It is necessary to convert each operand from integer to its equivalent Mont-
gomery form which costs another Montgomery multiplication. However, for re-
peated multiplications used in a pairing computation it is sufficient to convert
the operands once at the beginning which is converted back at the end.

The Montgomery multiplication algorithm for large characteristic field is
shown in Algorithm 2. The parenthesized indices represent the variables associ-
ated with that instruction. The indices are mainly used to identify an instruction
and its associate variables inside our pipeline architecture. Algorithm 2 consists
of three n bit integer multiplications, which determines the overall efficiency of
the algorithm. Here we propose an efficient Montgomery multiplier architecture
for modern FPGAs. Highly optimized IP cores available for FPGA devices to-
gether with our careful datapath design help to achieve an efficient pipelined
architecture for Montgomery multiplication.

Algorithm [2l Montgomery multiplication
Input: M =p; n = [log, M]; R=2"; M =—-M"" mod R; a9 € Zy,.
Output: o - . R~ mod M.
PO g 00 .
UD « (P% mod R)- M mod R ;
D (PO 4+ UD . M)/R
if < > M then
DD M
return c(“;

A

Figure[Il depicts the proposed Montgomery multiplier architecture. It consists
of a 256 x 256 bit Karatsuba multiplier, which is constructed by nine 64 x 64 bit
multiplier cores. There is a small memory unit for holding intermediate result
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of Montgomery multiplication which are used in later steps. Main novelty of the
current design lies to efficient utilization of in-built multiplier and memory cores
to achieve an optimized design on a modern FPGA platform. The top level of the
architecture computes three integer multiplications in serial. The result of third
multiplication is added with the result of the first one followed by a optional
reduction (subtraction) to compute the result of a Montgomery multiplication.
Although, the proposed design consists of a pipeline structure which is able to
compute more than one multiplication in parallel. The detailed construction and
its functionality is described in following sections.

( N
b M ]
z “‘ |
1 P,
2 P,
3 Py
\—‘ 256 * 256 U—‘ ‘ Multlpller wea [3 b,
Karatsuba Multiplier controller 5 Ps
ddr 5
t ) |2ddrTg P,
di 7 P:
> din |8 P,
tdout[g p:
10 Py
Pipeline register %

512-bit wide RAM core

control lines

Pipeline register —— data lines

Fig. 1. The Montgomery multiplier

4.2 Delay Constrained Design

The proposed integer multiplier follows Karatsuba technique for performing
256-bit multiplications. Thus, three 128-bit multiplications, each of which is
computed by three 64-bit multiplier cores, are performed in parallel. The post-
multiplier operations are put into one additional pipeline stage for generating
an 128 x 128 multiplication result. However, we find that the delay of datapath
of post-multiplier operations is in between one and two clock periods for getting
a 256 x 256 bit multiplication results. Thus, it is broken into two parts — adds
two more pipeline stages. On the other hand, pre-multiplier datapath consists of
an input multiplexer, an 128-bit adder and a 64-bit adder circuits, which forms
two more pipeline stages. To sum up, the whole multiplier consists of 10 pipeline
stages on which 10 independent multiplications can be executed in parallel.
The Montgomery multiplication algorithm (Algorithm 2) consists of three
dependent integer multiplications. Therefore, we explore the parallelism at finite
field level for which 10 independent F,-multiplications are fetched and issued
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in parallel. The proposed design performs each Montgomery multiplication by
executing operations divided in following five steps.

compute P = ¢ x p(®)

store P(Y) in RAM, and compute U = (P®) mod R) x M
compute V@ = (U® mod R) x M

compute ¢V = (PO + V@O)/R

compute ¢V = ¢@ — M if ¢@ > M.

’

GU W=

We schedule the computation of P9, 1 < i < 10 first into the pipeline then
all UWs followed by 10 V(¥s. As soon as a P(Y) gets out from the pipeline it is
scheduled on-the-fly for computing U® as defined in step 2. The P(®s are also
stored into the 512-bit wide single-port-RAM (shown in Fig. ) to use it fur-
ther in step 4. Except P it is not necessary to store other intermediate results
(U@, V@), They are scheduled on-the-fly for further processing. The 31-st clock
onwards from the beginning we start to receive V), which are then processed by
two additional steps (step 4 and step 5) in two consecutive clock cycles. There-
fore, to sum up, the cost of 10 Montgomery multiplications is 42 clock cycles
in the current design. During these 42 clock cycles the multiplier communicates
with external memory only at the first 10 clock cycles (to read a(? and b(*))
and the last 10 clock cycles (to write c¢(?). In between these two 10 clock cycles
periods there are remaining 22 clock cycles when the external memory is free
to access for other operations. These free cycles are utilized to accumulate F),
multiplication results to produce results in extension fields, to perform constant
multiplications, and to perform other intermediate operations in pairing compu-
tation. This two levels of parallelism, namely, multiple F,-multiplications on a
single unit and several F,-operations on different units, help to speed up pairing
computation on the proposed design.

5 Architecture for Pairing

As shown in Algorithm 1, the pairing computation consists of following major
operations.

1. Doubling step: An elliptic curve point doubling operation together with the
computation of line function g.

2. Addition step: An elliptic curve point addition and the computation of g.

Squaring: Squaring of Miller variable f.

4. Sparse multiplication: A multiplication of Miller variable f with ¢ having
only half of the non-zero coefficients.

5. Frobenius and FEasy exponentiation: Intermediate operations of Miller loop
and hard exponentiation.

6. Hard exponentiation: Powering the intermediate result by ¢;(z)/n in cyclo-
tomic subgroup.

w
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In optimal-ate pairing on BN curve, first two steps are performed in F,2, and
most of the operations in other steps are performed in 2. Several advanced
techniques can compute these extended field operations with much lower costs
compared to their straight forward computation [8I16]. We choose the techniques
having lower number of multiplications and squarings. The underlying operations
in each techniques are computed in the base field. Therefore, we visualize the
whole pairing computation as a sequence of ), operations and try to execute
them as fast as possible on a target platform.

5.1 Overview of the Architecture

The cost of a pairing computation is normally represented by the number of
base field multiplications [I7]. However, it is observed that apart from multipli-
cations, a pairing computation consists of huge number of additions, subtractions
and constant-multiplications. In current days the costs of a multiplication and
an addition/subtraction with respect to time is almost same. Thus, the cost of
a pairing computation equivalently depends on the efficiency of the ”architec-
ture of all such operations. Moreover, this cost varies with the efficiency of the
”scheduling“ technique used on a specific implementation. Therefore, through-
out the implementation we give equal attention to both architecture design and
scheduling which in together maximizes the utilization of individual components
and finally speeds up the pairing computation with constrained resources.

n
moutb; moutb,
0 2
mouta; ::l mouta,
@ |@
RAM, RAM,
. ne n .
mina; B 0 1 (s9) Co 1 minb,
minb,; 1 1 mina,
Montgomery
multiplier

Fig. 2. The architecture for pairing computation

Figure 2] depicts the datapath of the architecture for pairing computation.
It consists of a multiplier, two adder/subtractors, a constant-multiplier, and an
inversion unit. All of them can independently perform respective operations in
F,. In order to maximize their utilization we incorporate two true-dual-port
RAM cores (call them RAM; and RAMy;) each of which contains identical data
during a pairing computation. The operations in extension fields need to execute
independent multiplications like a x b and (a=£b)(c%d). In order to support them
without any pipeline stall, each of the multiplier inputs is multiplexed between
an output port of RAM; and an output of adder/subtractor (+ block). The
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architecture facilitates the port configuration in such a way that the output of
each of functional units can be written in the same address of both RAMs in
parallel. This helps to keep the identical data in both memory cores throughout
the pairing computation which are exploited to improve the degree of parallelism.

5.2 Architecture Details

The architecture is developed with several pipeline stages in each of the func-
tional units. Number of pipeline stages are identified to meet the maximum
operating frequency provided by the 64 x 64 multiplier core as described in § Bl

Modular Adder Subtractor. The addition and subtraction in F, can be
realized by two consecutive n-bit adder circuits which produce final result in only
one clock cycle. However, the latency of such a circuit in Virtex-6 FPGA is 11ns,
which is 1.8 times of our target critical path. We therefore divide this datapath
into two pipeline stages which is illustrated in Fig. Bl The whole design now
demands 130 Virtex-6 FPGA slices on which it achieves a maximum operating
frequency of 183 MHz. Due to the pipeline structure its throughput is one F,
addition/subtraction per clock.

wlw]

-

Fig. 3. Two stage pipeline for F, addition and subtraction

Constant Multiplier. There are some operations in doubling and addition
steps where a finite field element (a € F,) is multiplied with small integers
(< 6). We develop an adder based five stage pipeline structure for constant-
multiplications which executes the target operations by following an addition
chain. The first pipeline stage performs 2a mod p, where doubling is simple
rewiring followed by a conditional subtraction. Second and third stages is formed
by following modular adder/subtractor (Fig. B]) unit. The only difference is that
it performs both 3a = (2a + a) mod p and 4a = 2 X 2a mod p in parallel. The
second stage performs addition and doubling whereas we use the third stage for
their reductions. The results of 3a and 4a are produced at the end of third stage.
Similarly, fourth and fifth stages are formed to execute 5a = (2a+3a) mod p and
6a = 2 x 3a mod p. The pipeline registers are designed with optimum storage
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space. For example, after second stage the value of @ is no longer being used,
so pipeline does not carry it beyond this point. Similarly, 4a is never used in
further pipeline stages and the values of 2a and 3a are last used in the fourth
stage. Through such observations, the pipelined constant-multiplier is designed,
which optimizes overall area as well as time. Respective life-time diagram is
shown in Fig. [l

0 1 2 3 4 5
Clock cycle t t t t {
a
2a L
3a o |
4a |
5a |
6a |

Fig. 4. Life time diagram of constant multiplication

Inversion Block. This block is developed as a dedicated unit for performing
inversion in Fp. It is based on the Extended Euclidean Algorithm. This unit
is rarely (only once) used for computing a pairing. The functionality of this is

described in § 6.4

5.3 True Dual Port RAM

At this design stage we have already customized the datapath for pairing com-
putation. So further speedup could be gained through the maximization of dat-
apath utilization. A basic requirement for computing any two-input, one-output
operation is to have two operands in parallel at the input ports of respective
unit and an output destination available. This motivates the use of true-dual-
port RAM for current design. It is called true-dual-port because both ports can
independently perform read/write operations on the same shared memory space.

This RAM core is generated through Xilinx LogiCORE IP block generator
tool (introduced in § ). In the current design it is configure in write first mode
having register at output port of the memory. Due to which we allow one clock
cycle delay between address generation and availability of data at respective
output port. At the same time, this register separates the datapath through
multiplexer inside the memory block from the datapath between memory ports
and the beginning of first pipeline stage of a functional unit. Otherwise, this
combined datapath becomes longer than our target critical path. Each of this
two memory cores contains 2° locations having 256-bit width that is sufficient
to hold local and global variables during a pairing computation.

5.4 Working Principle of the Architecture

The overall architecture is constructed by observing that the pairing compu-
tation has several sets of independent base field operations. We perform an in-
depth analysis on optimal-ate pairing algorithm to optimize such instruction sets
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in order to maximize the utilization of the customized datapath with minimum
storage space for temporary results. The analysis suggests that the formation of
such instruction sets each of which containing at most 10 base field multiplica-
tions can utilize the current multiplier with minimum stall cycles for computing
a single optimal-ate pairing. We call them opt set. It is already described in § 5.1
that our architecture generates the result of (a £ b) and (¢ & d) on-the-fly for
performing (a £ b)(c+ d). Thus multiplications in this form are also counting as
a simple F-multiplication during formation of the opt set.
The execution of such an i-th opt set on our architecture is as follows:

e It first schedules 10 multiplications on the pipelined multiplier in 10 consec-
utive clock cycles.

e From 11-th clock cycle, it schedules the additions, subtractions, and constant-
multiplications on two adder/subtractor units and the constant-multiplier
such that their results are written back to the memory within 31-st clock
cycle. We perform those operations in this phase such that all multiplication
results of (i — 1)-th set are properly utilized and they are no longer used in
future. The operations to prepare operands for multiplications of (i 4+ 1)-th
opt set are computed too in this phase.

e The results of the multiplications are available at multipliers output port
from 32-nd clocks. These results are written back to the specific 10 con-
jugative locations in both RAMs from which the multiplications results of
(¢ — 1)-th opt set are already utilized.

The execution of such a set takes 42 clock cycles, after which a new set is normally
scheduled immediately from the next clock. Remember that all memory write
operations in this implementation are performed in both RAMs (shown in Fig.
by minai/minaz and minb; /minby) in same address for achieving higher degree
of parallelism.

6 Scheduling and Pairing Computation

The execution control and the scheduling of operations on different functional
units are performed by a state machine and few small counter logics. Here we
present the instruction set formations for executing every step of the pairing
computation. In the current design, the addition costs are hidden to multiplier
cycles and therefore we use the techniques for internal operations especially, for
extension-field arithmetic, having lower multiplications and squarings.

6.1 Execution of Doubling Step and f2

There is no dependency between doubling step and f? computation which are
therefore scheduled together. The step-by-step computation of the doubling step
and f2 is provided in Algorithm 5 of The formula of doubling step is fol-
lowed from the state of the art existing pairing implementations [2I6/7]. We made
rearrangements of the computations for making it suitable for our design. On
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the other hand, it is shown in [16] that the representation of f in tower extension
[F((2)2)s helps to reduce the operation count of f? computation in final expo-
nentiation. Though this towering does not help to reduce the computation costs
of f2 within the Miller loop, but for simplicity, throughout the implementation
we use the same towering to represent f.

The operations in this steps as well as other parts of the pairing computation
described in this paper are performed either in F 2 or in Fgs. Various technique
for computing multiplication and squaring in such quadratic and cubic extension
fields are explained in [8]. In this paper, we follow Karatsuba technique for
computing both multiplication and squaring in F,s, whereas, in case of F» we
use Karatsuba technique for multiplication and complex method for squaring.
Formula for all such used techniques are provided in[A1l We represent the Miller
variable f as :

f=fo+ AT+ for® + f37° + fur* + for°
= (fo+ fas) + (f1 + fas)t + (f2 + f59)t7,

which is considered as: ag + a1t + ast? with aj € Fg,q = p*, 0 < j < 2. Com-
putation of f2 in this towering extension consists of 36 multiplications in Fp,
which all are independent — though some of them need a few prior additions.
On the other hand the computation of doubling step in Projective coordinate
requires 27 multiplications in IFj,, which are not free to schedule at any point of
time as they have several data dependencies. Thanks to our pipeline and mem-
ory architecture that we can manage all operations of this phase in 7 opt sets.
Among them first opt sets containing 10 multiplications, second one consists of 8
multiplications and each of the remaining five consist of 9 multiplications. After
receiving the multiplication results of final opt set a few additions are performed
for final accumulation.

6.2 The Addition Step

The addition step consists of 41 [Fp-multiplications which have several data de-
pendencies. We compute them by forming five opt sets with few intermediate
additions during which the multiplier pipeline runs with bubbles. That is, we do
not start (i + 1)-th opt set immediately after completing the execution of i-th
opt set. However, due to the dual adder/subtractor units these stall cycles are
small compared to overall execution cycles. The formula for computing this step
in Projective coordinates is provided in [2I6]7]. Algorithm 6 in provides the
same with little rearrangements of operations to fit our current scheduling.

6.3 Computation of f.g

The Karatsuba technique costs 54 [Fp-multiplications for computing a multipli-
cation in F((,2)2)s. However, in the f - g computations of steps 3, 5, 10, and 11
of Algorithm [ only half of the coefficients of g are non-zero. Due to the sparse
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valud] of g, f - g consists of 39 Fp-multiplications. The respective technique is
provided in Algorithm 3 of [A21 We accommodate them in four opt sets, where
except the last one each opt set contains 10 base field multiplications. A few ad-
ditions, which depend on the multiplication results of final opt set, are performed
and update the value of f at respective locations at the end.

6.4 Inversion in [,

For powering f by p® — 1 in step 12 of Algorithm 1 it is essential to compute an
inversion in 12, which is easily deduced as a single inversion in F, along with
several multiplications. The inverse of a € ), is in general computed by two
methods — Fermat’s Little Theorem or Extended Euclidean Algorithm (EEA).
The first one computes inversion through exponentiation a=! = a?~2 mod p. On
the other hand an efficient variant of EEA for [Fp-inversion is known as Binary
Inversion Algorithm, which is primarily based on ged computation. The expo-
nentiation is efficiently implemented through an iterated square-and-multiply
procedure for which an efficient implementation of the field multiplier is suffi-
cient. However in our pipelined multiplier, execution of a single exponentiation
is too costly as its i-th iteration cannot be started before completing (i — 1)-th
iteration. Thus, it will costs 33[log, p| clock cycles with right-to-left execution.

On the other hand, an efficient implementation of binary inversion algorithm,
as shown in [I3], takes 2[log, p] clock cycles. The stand alone implementation
of this inversion unit requires 1350 Virtex-6 slices. On the other hand without
this unit the current design takes 33[log, p|] number of clock cycles, which is 16.5
times more than the time taken by dedicated inversion unit. Thus we incorporate
it into our design especially for computing a single inversion in final exponentia-
tion. With our parameter settings without this unit the current design requires
7,874 additional clock cycles for computing an inversion.

6.5 Exponentiation by |z|

After executing step 12 of Algorithm 1, the value of f becomes an element of
the cyclotomic subgroup (Gg,,(p)) in Fpi2. An efficient technique used in this
design for computing step 13 of Algorithm [I] (hard part of final exponentiation)
is given in [23]. There are three exponentiations in Gg,,,) by |z| which are the
most costly operations in this step. With our towering representation this squar-
ing (Algorithm 4 in[A2)) is much cheaper than a squaring computed in Miller’s
loop [16]. This squaring is executed by two opt sets and few final additions and
constant multiplications by our design. The whole exponentiation is performed
by standard left-to-right square-and-multiply algorithm. Therefore, the multipli-
cation is performed only if the respective exponent bit is one. This multiplication
is a full multiplication (having no sparse operands) in F 12, which consists of 54

1 An operand in IF,12 is sparse when some of its coefficients are trivial (i.e., either zero
or one).
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independent Fj,-multiplications. We schedule them on the pipelined multiplier
by forming six opt sets.

In contrasts to pipelined design of [6] the current design uses MSB first
method. Due to the low Hamming weight of |z| the multiplications cost is vary
low compared to the costs of squarings, and the current pipeline is suitable to
execute one individual non-linear operation in F,i2. On the other hand, [2]
shows a compressed technique for exponentiation by |z| using Montgomery’s si-
multaneous inversion trick [20]. However, this technique does not help to speed
up pairing computation in our design as an inversion is 127 times slower than a
multiplication in the current design.

7 Results

The whole design has been done in Verilog (HDL). Implementation has been
performed on Xilinx ISE Design Suit 12.4. Table [ shows the implementation
results. On a Virtex-6 xc6v1x240t-3ff1759 FPGA the proposed design runs at a
maximum frequency of 166 M Hz. In total, with dedicated inversion unit, this
design uses 5163 logic slices, 144 DSP slices and 21 BRAMS. It finishes compu-
tation of one 126-bit secure optimal-ate pairing in 375us. Table 2l gives the clock
cycle counts required by the proposed design to computing different steps of an
optimal-ate pairing on 126-bit secure BN curve.

Table 1. Area utilization on Virtex-6 FPGA

. Frequency . 1. Logic Memory
Current design (MH:z] Multipliers Elements
with inversion 166 144 DSP4sE1s 0103 51C o1 R AMB36EL
without inversion 3813 slice

1 : One Virtex-6 slice consists of four LUTs and eight flip-flops.

Table 2. Cycle count for different steps of optimal-ate pairing on BNigs curve

Current 2T, gir.1)(P), T+ Q and Miller’s o~! mt Post

design and f? 9(r,0)(P) g Loop inF, in Gy, () M. Loop Total
with inv. 314 235 192 34,092 508 7,018 28,074 62,166
without inv. 314 235 192 34,092 8,448 7,018 36,014 70,106

7.1 Comparison with Recent Designs

Table B shows the comparative analysis of recent hardware and software results
of pairing. With respect to latency of a pairing computation over BN curves
with similar security level the present design achieves 32% speedup from the
existing premier design proposed in [6]. Its slice counts is also relatively less
with cost of more parallelism on higher number of DSP blocks. The clock cycle
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count of the current design is reduced drastically due to higher parallelism on
the pipelined datapath. In contrary the implementation of pairings over general
elliptic curves having 128-bit security is still slower than that over a supersingular
curves proposed in [I4]. This may be due to the easier binary field arithmetic.

Table 3. Performance of hardware and software results of pairings

Freq. Cycle Delay
[MH2] [x10°] [us]
This work (inv) BNz xc6vIx240t-3 5163 Slices, 144 DSP 166 62 375
(without inv) BNz  xcb6vIx240t-3 3813 Slices, 144 DSP 166 70 422
Cheung et al. [6] BNizs  xc6vIx240t-2 7032 Slices, 32 DSP 250 143 573
BNig2 Stratix-I11 9910 A, 171 DSP 131 790 6030

Designs Curve FPGA Area

Fan et al. [12] BNi2s  xc6vlx240t-3 4014 Slices, 42 DSP 210 245 1170
Ghosh et al. [15] BNi2g  xc4vIx200-12 52000 Slices 50 821 16400
Kammler et al. [I9] BNi2s 130nm CMOS 97000 Gates 338 5,340* 15800
Ghosh et al. [[4]  E/Fyizes  xc6vlx130t-3 15167 Slices 250 76" 190
Estibals [10] E/Fgs5.97 xc4vIx200-11 4755 Slices 192 429 2227
Aranha et al. [TI]  Co/Fgys6r  xc4vIx25-11 4518 Slices 220 774" 3518
Naehrig et al. [2I] BNi2s  core2 Q6600 — 2394 4,470 1860
Beuchat et al. [4] BNiss core i7 2.8GHz - 2800 2,330 830
Aranha et al. [2] BNi2s  Phenom II — 3000 1,562 520
Aranha et al. [I] genus-2 Core i5 — 2530 2,440 960

T Estimated by the authors. * Estimation provided in [6].

Till 2010, the software for pairing outperforms the hardware and it was a bit
uncomfortable to the hardware world. It was due to several unexplored in-built
features available in the hardware platforms, especially FPGA platforms for pair-
ing computation. However, at the end of last year it becomes true by the design
shown in [6/14] for pairing too that customized hardware always outperforms a
pure software. The current design in that respect not only gains the speedup
from existing design but also it shows a direction for further improvement of
pairing computations through exploitation of several highly optimized IP cores
in different platforms.

8 Conclusion

In this paper we have proposed a core based architecture for pairing computa-
tion on general elliptic curves defined over large prime fields. Due to intelligent
pipeline the proposed design has achieved a 32% speedup over existing designs.
Moreover, a dedicated field inversion unit has reduced the clock cycle count of
final exponentiation as well as a full pairing computation. The application of IP
cores with more pipeline-depth may be targeted in future for executing multiple
pairing computations at a time in order to handle several parallel client requests.
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A  Appendix

A.1 Multiplication and Squaring in Fy2 and Fgs

Let an element a € Fy2 be represented as ag + a1 X, where ag, a1 € Fy and X
is an indeterminate. The formula of Karatsuba multiplication ¢ = ab on F is :
vg = agbp, v1 = a1b1, co = vy + Cv1, ¢1 = (ag + a1)(bo + b1) — vo — v1, where
v, V1, €0, C1, Ao, &1, by, b1 € F,. Here ( is a quadratic non-residue in F,. The cost
of such a multiplication is (3m + 5a + 1¢,;,) in F,. Similarly, the squaring ¢ = a?
on F 2 using Complex method is computed by : vg = agar, co = (ag + a1)(ao +
Ca1) —vo — Cuo, ¢1 = 2vg. The cost of such a squaring is (2m + 5a + 2¢,,) in Fy.
The equation of ¢y is easily deduced to a3 + (a2, which eliminates additions but
needs two squaring instead of one multiplication. In the current design squaring
and multiplication is performed by same unit with same cost. On the other hand
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the addition costs are hidden to multiplication costs, thus we use above formula
to compute squaring in 2.

Similarly, let an element o € F s be represented as ap + a1 X + a1 X 2 where
a; € Fq and X is an indeterminate. The formula of Karatsuba multiplication ¢ =
abon Fys is : vg = agbo, v1 = aiby, v2 = agby, co = vo+Y((a1+az)(bi+b2)—
v1—v2), ¢1 = (ag+a1)(bo+b1)—vo—vi+Vv2, c2 = (ao+asz)(bo+b2) —vo+v1—v2,
where vy, ¢;, a4, b;, € Fy. Here ¥ is a cubic non-residue in Fy. The cost of such
a multiplication is (6m + 15a + 2¢,,) in F,. This multiplication formula is also
used for squaring ¢ = a? on Fs replacing b by a. Thus the cost estimation for
squaring replaces 6 multiplications by six squaring in .

A.2 Sub-Routines for Optimal-Ate Pairing

Algorithm 3. Computation of f - g

Input: f = (fo+ f3s) + (fi + fas)t + (fa + f55)t> and g = (g0 + g35)
+ag1t € F((p2)2)3 with fj,go,gl,gg e ]sz, 0< <5,

Output: f-g.

1. wo < (go + 935)(fo + f35), v1 < g1 - (f1 + fas),

2. uwo g1 ((fi+ fo) + (fa + f55),

ur < ((90 + g1) + g38)((fo + f1) + (f3 + f15)),

uz < (9o + g38)((fo + f2) + (f3 + f55));

co + v + &(up — 1), €1 + up — vy — V1, C2 < Uz — Vg + V1;

4. return cg + c1t + cot?;

w

Algorithm 4. Squaring of f in Gg,,(,) [16]
Input: [ = (fo + f38) + (f1 + f48)t + (fg + f58)t2 S F((pz)'z)s with fj
€F, 057 <5,
Output: f2.
L. v < fofs, vi < fifa, va < fofs, Ao < fo+ f3, A1 fo+Efs,
Bo < f1+ fa, B1 < fi +&f1, Co < fa+ f5, C1 < fa+ & fs55
2. Uy < A()Al, Uy < BoBl, U9 < C()Cl,
Ag <o + &g, By < vy + &uy, Cp < vg + Evo;
3. ¢o 3(’&0 — Ao) — 2f0, c1 < 6vgy + 2f1, Co 3(U1 — Bo) — 2f2,
c3  6vg + 2f3, Cq 3(’&2 — C()) — 2f4, cs  6v1 + 2f5;
4. return (co + c38) + (c1 + cas)t + (ca + c58)t?;
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Algorithm 5. Doubling step and f2
Input: f = ao + a1t + ast? with ag, a1, and as € Fpa; P = (zp,yp) € E(Fy);

T = (XTTZ,YTTS,ZT) € E(Fpm) with X, Y, and Zp € Fp2.

Output: 27, I(7.7)(P) and f2.

1.

B« ng, FE QYTZT, C + 3Z%, D + 2XTYT;

Ty < ap,0 + ao,1, T1 < ag,0 + Eao,1;

A X%, U() < a0,000,1, U1 < T()Tl;

g3+ B+iC, H+3C, F+ B+iH,G+ B—iH,

Ty < a0+ a1, Ti a0+ &arq ;

go < Eyp, J 4HC, g1 < 73A1’p, I+ GQ;

Vo,0 < U1 — Uy — &Uq, Vo1 + 2Up ;

ZQT — 4BE, XQT — DF, UO <= a1,001,1;5

Yor < I+ J, Ag + a1,0+ a2, A1 < a1,1 +az.1;

Ui < ToTh, Wy < ag,0a2,1, Zo < AoAx;

To < az0 + a1, T1 < az0 + &az1, Xo < Ao+ A1, Xi < Ao+ EAq;
Ag < ago +aig, A < ap1 +ai1;

Wi« ToTy, Zy < XoX1, Yy < AgAy;

Viop < Ui — Uy —E&Uy, Vi1 + 2Uy, Xo < Ag + A1, X1 < Ag +EAq;
Ag 4 ap,0 + a0, A1 < agn + a2, To < Ao+ Ay, Th < Ag + A
Y1 < XOX1, WO < 1401417 W1 < ToTl;

Voo Wy — Wy —EWy, Va1 « 2Wo, Va0 < Z1 — Zy — €20, V3,1 < 2Z0;
V3,0 < Vao—Vio— Voo, V31 V31— Vi1 — Vo

co,0 < Vo,0 +&Vs,1, cot Vo1 + Va0, V30 < Y1 — Yo — Y0, Va1 < 2Y0;
c1,0 < V3,0 = Voo —Vio+&Vo1, c11 < Va1 — Vo1 — Vi + Vo

TO — W1 — WO — fWO, T1 — QWO;

c20—To—Voo+Vio—Vap, o1 T1 —Vo1+Vii—Vag;
return (Xor72, Yor7®, Zar), go + 17 + 937>, o + 1t + cot?;

Algorithm 6. Addition step
Input: P = (zp,yp) € E(F,), Q = (z07%,ygm®) € E(Fp12) and

T = (XTTZ,YTTS,ZT) € E(Fp12) with zq, yg, X7, Y7, and Z7 € ]sz.

Output: T+ Q and [(p g (P).

S Cr 0N

E + .’L‘QZT — XT7 F + yQZT — YT;

E2 %EQ, F2 (*FQ,gg%l’QnyQE;

B + XTEQ, Eg — EEQ, A« ZTF2 — 2B 7E3 ;
Xryq + AE, Zryq + ZrE3, go < Eyp, g1 + —Fap;
Yriq < F(B—A) —yqEs ;

return (Xr4+Q7°, Y7107, Z1+q), g0 + 17 + gs7;
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Abstract. In this paper, we present a high-speed pairing coprocessor
using Residue Number System (RNS) which is intrinsically suitable for
parallel computation. This work improves the design of Cheung et al. [11]
using a carefully selected RNS base and an optimized pipeline design
of the modular multiplier. As a result, the cycle count for a modular
reduction has been halved. When combining with the lazy reduction,
Karatsuba-like formulas and optimal pipeline scheduling, a 128-bit op-
timal ate pairing computation can be completed in less than 100,000
cycles. We prototype the design on a Xilinx Virtex-6 FPGA using 5237
slices and 64 DSPs; a 128-bit pairing is computed in 0.358 ms running at
230MHz. To the best of our knowledge, this implementation outperforms
all reported hardware and software designs.

Keywords: Optimal pairing, Residue Number System (RNS), Field
Programmable Gate Array (FPGA).

1 Introduction

Pairing-Based Cryptography (PBC) has been applied to provide efficient solu-
tions to several long-standing problems in cryptography, such as three-way key
exchanges [22], identity-based encryptions [9], identity-based signatures [10], and
non-interactive zero-knowledge proof systems [I9]. As cryptographic schemes
based on pairings are introduced and investigated, the performance of pairing
computations also receives increasing interest [I}2][7, 1T}, 131141618, 20,23 30].

The pairing computation is relatively complex and slow compared with other
popular public-key primitives such as Rivest-Shamir-Adleman (RSA) [34] or El-
liptic Curve Cryptography (ECC) [25,[27]. For pairings over ordinary curves
defined over prime fields F,,, the computation can be broken down into modular
multiplications and additions in the underlying fields. For example, an optimal
ate pairing with 128-bit security consists of around ten thousand modular mul-
tiplications [2]. Thus, a faster pairing coprocessor is essential, and an efficient
modular multiplier is the key component to make this happen.

M. Abdalla and T. Lange (Eds.): Pairing 2012, LNCS 7708, pp. 160-[[76] 2013.
(© Springer-Verlag Berlin Heidelberg 2013
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Due to the suitability for parallel implementation and the low cost for mul-
tiplications [31], Residue Number Systems (RNSs) have been introduced and
studied for long integer modular multiplications [4]24,[33,86]. With area com-
plexity of O(n), the time complexity is O(1) for a multiplication and O(n) for
a modular reduction, where n is the number of machine-words to represent the
modulus p. Recently, [11] has proposed a novel parameter selection method to
ensure further complexity decrease for RNS modular reduction.

Moreover, lazy reduction and Karatsuba-like formulas are introduced to the
computation. These techniques were first deployed for pairing by Scott [35] and
then generalised by Aranha et al. [2]. In short, lazy reduction performs one
reduction for multiple multiplications, which is possible for expressions like >’ AB
in IF,; Karatsuba-like formulas save multiplications in extension fields. As such,
the number of modular reductions and multiplications decreases.

In this paper, we improve the design of Cheung et al. [I1] with a higher
throughput. We show that reducing the number of moduli in the RNS basis
leads to a faster RNS reduction. Although the size of multipliers in each channel
is much larger than that of [11I], the maximum frequency is only 8% lower due
to the increase of pipeline stages. We maximally explore parallelisms in RNS
arithmetic and the pairing algorithm to remove pipeline bubbles. As a result, our
implementation of 126-bit optimal ate pairing uses only 78x10? cycles, 45% less
than that of the design in [I1]. Our pairing processor, implemented on a Xilinx
Virtex-6 FPGA, requires 0.338 ms to finish one 126-bit optimal ate pairing and
0.358 ms for a 128-bit one. To the best of our knowledge, this implementation
outperforms all previous hardware and software designs.

The rest of the paper is organized as follows: Section 2l provides a recap on
mathematical background. Section [}l emphasizes on the optimal parameter selec-
tion. We illustrate the architectural design and the scheduling on the proposed
architecture in detail in Section @ and [l respectively. Section [f] gives the FPGA
implementation results of the proposed architecture, and compares them with
recent results from the literatures. Finally, Section [ concludes this paper.

2 Background

2.1 Bilinear Pairing

A bilinear pairing is a non-degenerate map e : G; X Go — G, where G; and G4
are additive groups and Gr is a subgroup of a multiplicative group. The core
property of map e is linearity in both components, which enables the construction
of novel cryptographic protocols. Popular pairings such as Tate pairing [5], ate
pairing [21], R-ate pairing [26], optimal pairing [37] choose G; and G2 to be
specific cyclic subgroups of E(F,x), and G to be a subgroup of IF;k.

The selection of parameters has an essential impact on the security and the
performance of a pairing computation, and not all elliptic curves are suitable.
We refer to Freeman et al. [I5] for a summary of known pairing-friendly curves.
Among them, Barreto and Naehrig (BN) described a parameterized family of
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elliptic curves [6], and it is well-suited for computing asymmetric pairings. BN-
curves are defined with F : y? = 23 4+ b,b # 0 over F,,, where p = 36u® + 36u> +
24u? 4+ 6u + 1 and g, the order of E, is 36u* + 36u3 + 18u? + 6u + 1. Note that
any u € Z that generates prime p and g will suffice. BN-curves have embedding
degree k = 12. Because of the limited space, we mainly focus on the discussion
of the optimal ate pairing on BN-curves.

Let E' : y? = 2% 4+ b/C be a sextic twist of E with ¢ not a cube nor a square
in IF,2, and E[g] be the subgroup of g-torsion points of E, then the optimal ate
pairing is defined as [2,[30]:

Aopt - G2 X (Gq - GT

p12 1

(@, P) = (froP) Inem@P) Ie+m@), =@ P))

where r = 6u + 2. The group G; = E[g](\Ker(m, [1]) = E(F,)[g] and G2 is
the preimage E'(F,2)[g] of E[g](\Ker(m, [p]) € E(F,12)[g] under the twisting
isomorphism v : B/ — E. The group Gr is the subgroup of g-th roots of unity
tg C ]F;u,. The map 7, : E — E is the Frobenius endomorphism m,(z,y) =
(zP,yP), and fr(P) is a normalized function with divisor (f,q) = 7(Q)
([r1Q) (r 1)(O). The line function, lg, g, (P), is the line arising in the addition
of Q1 and Q2 evaluated at point P.

Miller [28] proposed an algorithm that constructs f, o in stages by using
double-and-add method. When u is selected as a negative integer, the corre-
sponding Miller algorithm is shown in Algorithm [I [2].

Algorithm 1. Optimal ate pairing on BN curves for u < 0 [2]

Require: Pe G1,Q € Ga,7 = |6u+ 2| = zngz ™20 where u < 0
Ensure: aop:(Q, P)
T —Q,f <1
: for i = |log,r| 1 downto 0 do
fef* lrr(P),T « 2T
if 7, =1 then
fef lroP),T«T+Q
end if
end for
Q1 « m(Q), Q2 « 1, (Q)
Te T,fc f
: f «— f lT7Q1(P),T(—T+Q1
S foln @(P), T «T Q2
D f e f(pG DE*+1)(p* p*+1)/g

PN Dy

— = = =
Wy = o9

: return f
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2.2 Residue Number System

A Residue Number System (RNS) uses a set of smaller integers to represent
a large integer. An RNS is defined by a set of n coprime integer constants,
B = {by,ba,...,b,}. The set B is also known as a base, and the element b;,
1 < i < n,is called RNS modulus, and each modulus forms an RNS channel. Let
Mg =[]}, b;. Let |aly be a modulo b, then any integer X, 0 < X < Mg, can
be uniquely represented as a set of smaller integers: {X}y = {1,22,...,Zn},
where z; = | X|p,, 1 < i < n. Similar to the radix-2" representation, we also call
x; a digit of X. The original value of X can be restored from {X}y using the
Chinese Remainder Theorem (CRT):

n n
M.
1 B .
X = é x; B, . B; , where B; = b, = _7| | ‘bj, 1<ig<n. (1)
i=1 Mg Jj=1,g#1i

Using RNS, arithmetic operations in Z/MsZ can be efficiently performed. Con-
sider two integers X,Y and their RNS representations {X }o = {z1,x2,...,%n}
and {Y}% = {ylayZa cee ayn}a then

{1 XOY |mpts ={lz1 Oyiloys - |20 OYn

b}

for @ € {+, ,x,/}. The division is available only if Y is coprime with My, i.e.
the multiplicative inverse of Y exists and is calculated in B.

Note that for all the basic operations (+, ,x,/), computations between z;
and y; have no dependency on other digits, which largely simplifies the paral-
lelization of the operations. Besides, the complexity of a multiplication in RNS
is O(n), while it is O(n?) using textbook arithmetics.

For every operation, there is an implicit channel reduction to bring the re-
sult in the range [0,b;). In order to accelerate the channel reduction, pseudo-
Mersenne numbers of the form b; = 2%  d;, where d; < 2l J, are commonly
chosen as moduli. To compute z < 22* modulo b;, one first performs the follow-
ing step twice:

z — (z mod 2¥) +d; (z div 2") (2)

Then, z will be in the range of [0,2%*!), and after a conditional subtraction,
one finishes the residue calculation. If the Hamming weight of d; is small, mul-
tiplications by d; can also be replaced by a few additions.

2.3 RNS Montgomery Algorithm and Faster Base Extension

Most cryptographic applications, such as pairings, require the operations modulo
a prime, which prevents a direct utilization of RNS. This problem can be avoided
by combining RNS representation and the Montgomery reduction algorithm [29].

Algorithm 2 shows the Montgomery modular multiplication algorithm without
conditional subtraction in RNS context. A new base, € = {c1, ¢, ..., ¢y}, where
Me = |-, ¢i is coprime with My, is introduced to perform the division, and
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Algorithm 2. RNS Montgomery Modular Multiplication [24]
Require: RNS bases B and € with My, Mg > 2P
Require: P, My, M are pairwise coprime
Require: {X}un, {X}e, {Yia, {Yie with X, Y < 2P
Precompute: {P'}s —{| P '|uy}n
Precompute: {M'}¢c « {|My"'|r, }e and {P}e
Ensure: {U}ls, {U}e s.t. [U|p = | XY My'|p, U < 2P
in B in €
LAT}s « {X}s x {YV}m, {The < {X}e x {Y}e
2 {Qfw — {T}s x {P'}a
{Q}B Base E:ctensioni) {Q}Q
{Ue « ({The +{Q}e x {P}e) x {M'}e
{U}% (Ease Extension 2 {U}Q‘

return {U}s and {U}e¢

all the moduli from both B and € are pairwise coprime as Mg and M are
coprime. The overhead is two Base Extensions (BEs) required in Algorithm [21

BE is to compute {X }¢ = {2z, 25, ..., 20} given { X}y = {z1,22,...,2,}. We
choose CRT method, specifically, the parallelizable Posch-Posch Method [24132].
Given {X}s, for (1)), there must exist a certain integer A < n such that:

X=|Y|w BY B| =|>¢& B =& B XMy (3
i=1 bi M i=1 My i=1
where & = |z; B, Y 1<i<n,and X can be calculated by:

K3 Bz’J { & i
A= [Z =1 (4)
o Mz o0
In [24], &;/b; is further approximated by & /2% as b; is of the form 2% d;,d; > 0.

Once M\ is obtained, {X}¢ can be computed by a matrix multiplication and
channel reductions:

- |BI|C1 |Bn|61 51 |M%|C1
(af,... 2h) = - : A : (5)
|Bl|cn |Bn|cn &n |M‘B|cn
{X}Q'E{xllv'-'vx;} = {|xlll 017"'7|x;; Cn} (6)

Note that the elements in the matrix, |B|;, 1 <14,j < n, are constants and are

determined as |B;|.;, = ‘HZ=1 ki bk‘ = ‘H:zl pzi(bx  cj)| - In [II], it shows
9 CJ v v .

Cj
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that the complexity of base extension can be reduced if the moduli in the two
bases are close to each other. Define B@j = Z:Lk#(bk ¢j). | Bile, or Bi,j
makes no difference to the results but Bi’j can be much smaller when b, ¢;
and n are small. We denote v < w as the maximal bitlength of B%T Now the
w X w multiplications are substituted by the v x w multiplications.

Clearly, we need n wxw-bit multiplications to calculate & and n? vxw-bit
multiplications for all 7", & |Bilc;,1 < j < n. In total, each reduction uses 4n
digit multiplications and 2n? v xw-bit multiplications. Even though faster BE
reduces the complexity, RNS reductions cost more than multiplications. Recall
that a multiplication only takes 2n digit multiplications in Algorithm 2l Fortu-
nately, lazy reduction is commonly used to reduce the number of the expensive
modular reductions.

3 Parameter Selection

3.1 Pairing Parameter Selection

As stated in Section[2] we choose optimal ate pairing and BN-curve. Specifically,
in order to achieve 128-bit security level, we choose u = (263 +222 4218427 41)
(p is 258-bit) as that in [I1]. Also for comparison, we consider u = (2624255 4+1)
(p is 254-bit) which is used in [2L[IT] and achieve 126-bit security level. We also
deploy the same tower extension field as in [2]:

— Fp2 =F,[i]/(i* f), where 8= 1;
— Fi2 = Fe[W]/(W (), where ¢ = 1 +i.

3.2 RNS Parameter Selection

As p is 258-bit, n w should be greater than 258 to provide sufficient operating
range. In [I1], the authors have shown that it takes two cycles for a multiplica-
tion and 2 n/([w/v]) + 4 cycles for a modular reduction, where v is basically
determined by n. The authors choose n = 8 in [11], so that w = 33,v = 25. As
a result, a reduction takes 12 cycles, and 25x18-bit multipliers are in demand.
In this section, we show that if n = 4, w = 67, v will be < 18, hence a reduction
will only take six cycles; 18 x 18 multipliers are already competent.
The selected bases are chosen as follows: (w = 67)

B={2" 1,2¢ 7,2 9,2* 15},
¢={2" 0,2¢ 3,2% 52% 31}.

We use Lz and L to show the bit-length of all Bi’j and éza in the matrix form,
respectively.

10 8 7 6 87 6 4
9876 8 910 6
Le=1 7876 %= 101011 8
1414 14 14 11121211
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The selected bases have the following features:

— All B;; and C, ; are less than 18-bit. The largest element in B, j and C; ; is
14-bit excluding the sign bit.

— The Hamming weights of all elements are less than 3 in non-adjacent form
(NAF). Therefore, the channel reduction can be performed efficiently.

— b; and ¢; have the same NAF representation. For instance, b3, 2% 15, and
c3, 2% 31 have the representation 2 2% 4+ 1, where k = 4, 5 respectively.

— All elements are equal to or less than 257, hence, after an addition or sub-
traction, the absolute value of the operand is less than 258, and can be
represented by 69 bits including the sign bit.

The advantages of using the above features will be elaborated in the next section.

4 Architectural Design and Finite Field Arithmetics

4.1 The Controller and the Cox-Rower Architecture

The top level architecture is depicted by Fig. The coprocessor can be di-
vided into two major parts: the controller and the Arithmetic Logic Unit (ALU).
We use an efficient and flexible micro-coded sequencer as the controller. By doing
so, the controller maintains relatively small area, the ability to control accurately,
and the flexibility for different curve and pairing operation. In this paper, we
perform an optimal pairing computation on BN curves, however the proposed
hardware architecture is capable of performing other pairings when the charac-
teristic of the underlying field is less than 260 bits.

The ALU design is modified from that in [24]. We still call it the Cox-Rower
architecture. Each rower performs operations in one channel of 8 and one of
€. Therefore, we have four rowers as n = 4. As described in Section 2] most
operations are handled inside the channels independently, and the only step
which requires communication between rowers is the £ distribution in BE. We
use a shared memory to redistribute the £ values. Different from the original
design [24], all £ values for one BE are used at the same cycle, and hence, the
¢ registers turn into a FIFO. The adder in the cox computes the value of A for
BE operation ().

4.2 The Rower Design and Finite Field Arithmetics

We adjust the rower design to perform pairing computation more efficiently. The
j-th rower architecture is shown in Fig. [1(b)} For simplicity, we do not depict
the control signal for multiplexers in the figures.

Dual Mode Multiplier

Fig. depicts the dual mode multiplier in detail. It contains four 69x 18-bit
signed multipliers, and two different addition logics. One addition logic is for the
69 x 69-bit product, and the other is for the summation of four 69 x 18 products.
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(a) Top level architecture with Cox-Rower ALU (b) The j-th rower design in the Cox-
Rower architecture

Fig. 1. The Cox-Rower architecture

The sum of four 69x 18 products is to perform one row of the matrix multiplica-
tion (B, since & is at most 69-bit and B; ; or C; ; is at most 18-bit. Therefore, a
matrix multiplication only takes one cycle. Apart from the matrix multiplication,
all the other multiplications are using full-length 69x69-bit signed representa-
tion. The four partial products are added up after the corresponding shift.

Preadders and Accumulators

Since the operation in IF,12 can be broken down to IFj2, the operation in I,
is the fundamental arithmetic for pairing. The preadders and the accumulators
together provide fast F,» operation with Karatsuba-like formulas embedded. The
squaring and multiplication in [F> can be written as follows:

20 + 214« (w0 + 211)?

= a2 a2} +2wwyi

= (zo+z1)(x0 1) + 2m0 18 (7)
zo + 211 < (o + z14) (Yo + y14)

= zoyo x1Y1 + (Toy1 + T1Yo)i
= 2oy0 T1y1 + ((wo +21)(yo +y1) Toyo T1Y1)i (8)
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X; or Yjor
Bo|B4|B2|Bs, &oll&llElIE
MUL sQ sQ MUL
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X([68:51] X|[50:34] X[33:17] X{[16:0] Tiixa Ty
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MUL sSQ sQ MUL
Tz Xo T2 Xo Tai Xa T2l Yo
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Wi ZEB+AM, Ta: Xo+Xa Ta: Yo+ys

(a) Dual-mode multiplier design

(b) Preadder design in each rower

Fig. 2. Architectural design of the components in a rower

When performing multiplication or squaring in [Fj12, there are also operations
as follows involved:

2o+ 210 <« (a0 + xli)ZC

2

= x§ 2xor1 + (:Eg z? 4 2xox1 )i

x1)  2wox1 + ((xo + 1) (20

2
T

= (zo + x1) (20 1) + 2x0z1)i (9)

20 + 211« (w + 217) (yo + y19)C
= ZoYo ZTiy1 Toyr T1Yo + (Toyo T1y1 + Toyr + T1yo)i
= 2woyo (w0 +21)(yo +y1) + ((o +21)(wo +y1) 2x131)i (10)

The additions before multiplications are performed by the preadders and the
ones after are done by accumulators. Fig. shows the pipelined design of the
preadders. There are only 2 patterns for F,. preaddition operations: squaring
@ /@), and multiplication (§))/(I0). The input and output sequences for squar-
ing and multiplication are also provided in Fig. We employ 2 accumulators
in Fig. and compute both zg and z; at the same time, because the same
products are used for both zp and z; in (), @) and (I0). As there are small
constant multiplications in the algorithm, we also integrate a constant multiplier
in the pipeline.

Channel Reducer

When performing the channel reduction, the multiplication by b; or ¢; in ()
is achieved by shifts and additions, as b; and ¢; are of small Hamming weight.
Also as b; and ¢; are of the same NAF representations, the 2 channel reducers
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can be integrated into one with a signal to control the shift. Using Rower 3 as
an example, since d3 = 2 1,k = 4,5, @) is performed by one subtraction and
one addition. To reduce modulo 2 and 2% 1, the arithmetic is even simpler
and the design occupies less area.

After the first execution of (2l), the bit-length of x will be less than or equal
to [logy(d; + 1)] + w, and it is only a few bits more than w as the selected d; is
very small. We choose to put the accumulators here, because compared to ac-
cumulating immediately after multiplication, the bit-length of the accumulators
is shortened by almost a factor of 2. (Another choice is to put the accumulators
after the second execution of (2], which needs another channel reduction for
the accumulated results.) As long as the accumulated result z is smaller than
22w [logz(di+ ] (which is always the case), the second execution of (@) can bring
x less than 2@*+1. Therefore, the channel reduction is divided into Level 1, which
performs the first execution, and Level 2, which performs the second reduction
and result correction.

Other Components

Each rower also has a 3-port RAM, one write port and two read ports, so that
the RAM can provide two operands at the same cycle. There is an adder and
a secondary RAM (sncd RAM) involved. The secondary RAM stores the values
for addition and the initial values for accumulation. For instance, the second
RAM stores the value of {T}¢ generated in Step 1 of Algorithm [2] and this
value is sent to accumulators as initial value in Step 4. Therefore, the addition
and the multiplication are performed in parallel. The adder takes the operation
which cannot be integrated in accumulation efficiently. The BE operation module
computes A M; and adds it to the sum generated by the dual mode multiplier.

4.3 Cycle Count of Finite Field Operations

Since all the other operations (namely, preaddition, accumulation, channel re-
duction) are hidden in the pipeline, the cycle count for each operation is the cycle
used in the dual mode multiplier. For one modular reduction, there are one mul-
tiplication in B, three multiplications in € and two matrix multiplications. As
one matrix multiplication only takes 1 cycle, it takes 6 cycles to perform one
reduction. Essentially, at least k& reductions are required for a multiplication in
F,«, as the result has k coefficients. Excluding the reduction, one multiplication
or squaring in IF,, takes 2 cycles, one squaring and one multiplication in F,. take
4 and 6 cycles, respectively. One squaring in F,:2 is equivalent to 6 F,> squar-
ings, 15 IF,,» multiplications and 12 reductions, while one normal multiplication
in Fpi2 is equivalent to 36 multiplications and 12 reductions. The cycle count
provided in this section is under the condition that all the pipeline stages are
filled. For the latency and the pipeline bubbles, readers can refer to Section
for more information.
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5 Operation Scheduling

5.1 Optimal Pipeline Scheduling for RNS Montgomery Algorithm

While the pairing algorithm is more complex than ECC or RSA, it also contains
more parallelisms to be exploited. Utilizing these parallelisms, pipeline structure
is a popular technique to improve throughput with negligible latency overhead.
Typically, the pipeline depth is equal to or less than the level of parallelism,
otherwise, there will be pipeline bubbles introduced. On the other hand, adding
more pipeline stages can achieve a higher frequency. Hence, the throughput of the
implementation might still be higher even if new pipeline bubbles are introduced.

Before implementing Algorithm ] using the proposed ALU, we first apply the
following optimizations on the algorithm:

— The multiplication by {M'}¢ is distributed to {T}¢ and {QP}¢ in Step 4.

— We directly compute {£}¢ for BE2, and then compute {U}e by {}e x {Cle.

— We pre-compute the products of the constant multiplicands, i.e. {P'B 1},
{M'C 1}¢ and {PM’'C 1}¢, which reduces the number of operations.

— We use the computation of {T'}¢, {R}e = {T}e x {M'C '}¢, and {U}¢ to
fill in the idle state.

Let the pipeline depth of the rower be 7, and assume that there are p modular
multiplications which can be pipelined. Also, as the £ delivery is a shared oper-
ation between rowers, let it take e cycles. We generalize 7, the minimal number
of cycles to execute these p modular multiplications, as follows without detailed
elaboration due to paper length:

8p, TP

_ ) 27 +6p, p<T<20 € (11)
AT +2p4+2¢,2p e<T<L2p
ST + 2¢, T>2p

As each modular multiplication takes 8 cycles, the pipeline occupation rate is
given by i” x 100%, and the number of pipeline bubbles is 7 8p. Typically, € is
a very small number. Therefore, the pipeline occupation rate will be over 80% if
7 < 2p. In other words, if there are p concurrent reductions can be performed,
the number of pipeline stages can be up to 2p without introducing a lot of idle
cycles. Furthermore, if there is no dependency, one can use the multiplications
in the next pipeline round to fill in the idle states in the current round.

5.2 Scheduling of the Miller Loop

We examine the data dependency of Miller algorithm for the optimal ate pairing
on BN curve. The explict formulas, the pipeline grouping, and the cycle count
are provided by Table [II The number of pipelined inputs, p, is the number of
reductions at the same pipeline group. In fact, 7 = 18 for our FPGA prototype.
Using the scheduling shown in Table [ for a single pairing, it guarantees T < 2p,
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Table 1. Pipeline scheduling and operation counts of Miller loop

p for  Cycle Count

Cond- Step Pipeline group and Formulas Single 3 Pair- Single
ition Pairing ings/3 Pairing
1 A=y}, B=3V27, C=2ny 16 180 180

D =3z1, E=2y121, for2 = (f*)on12
=(A 3B)C,ys=A>4+6AB 3B? z3=4AE 16 186 190

ri=0 2 Is=A B,li=xpD, lo=ypE, fs.a5 = (f*)345
3 f=r1 12 180 180
T1 = X3,Y1 = Y3,21 = 23
1 A=y? B=3Vz} C =2z 12 116 116
D = 3at, E—2y1z1,fz = ()
z3=(A 3B)C,ys = A>+6AB 3B?% z3 =4AE 16 186 190
2 Iz3=A B, I —LEPD lo—yPEf345—(f)345
1 = X3,Y1 = Y3,21 = 23
A Y1 Yz, B = Tr1 TrQr1 16 224 228
ri=1 3
f=ri
4 C=A?> D=RB? 10 88 104
ls =yoB zgA,l1 =xpA,lo=ypB
5 E=BD,C=BD+ z1C 2x1D, 18 240 240
D =BD + z1€ 2x1D :171D, f = f l
6 =BC,ys= AD wy1E, z3=2z1F 10 122