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Chapter 7 
Analog Circuit Design Based on Robust POFs 
Using an Enhanced MOEA with SVM Models 

Nuno Lourenço, Ricardo Martins, Manuel Barros, and Nuno Horta   

Abstract. In this chapter, a multi-objective design methodology for automatic 
analog integrated circuits (IC) synthesis, which enhances the robustness of the 
solution by varying technological and environmental parameters, is presented. The 
automatic analog IC sizing tool GENOM-POF was implemented and used to 
demonstrate the methodology, and to verify the effect of corner cases on the 
Pareto optimal front (POF). To enhance the efficiency of the tool, a supervised 
learning strategy, which is based on Support Vector Machines (SVM), is used to 
create feasibility models that efficiently prune the design search space during the 
optimization process, thus, reducing the overall number of required evaluations. 
The GPOF-SVM optimization kernel consists of a modified version of the multi-
objective evolutionary algorithm (MOEA), NSGA-II, and uses HSPICE® as the 
evaluation engine. The usage of standard inputs and outputs eases the integration 
with other design automation tools, either at system level or at physical level, 
which is the case of LAYGEN, an in-house layout generation tool. Finally, the 
approach was validated using benchmark examples, which consist of circuits 
tested with similar tools, particularly, the former GENOM tool and other tools 
from literature. 

7.1   Introduction 

In the last decades, Very Large Scale Integration (VLSI) technologies have been 
widely improved, allowing the proliferation of consumer electronics and enabling 
the growth of IC market from $10 billion in 1980 to over than $300 billion in 2013 
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(according to IC Insights Inc) [1]. IC designers are building systems that are 
increasingly more complex and integrated. In the System on Chip (SoC) age is 
common to find devices where the whole system is integrated in a single chip [2]. 

The need of new functionalities, longer battery times, smaller (thinner) devices, 
more power efficiency, less production and integration costs and less design cost, 
makes the design of electronic systems a truly challenging task. The complexity of 
electronic systems design and the strict time-to-market impose the use of 
Computer Aided Design (CAD) tools to support the design process. In digital IC 
design, mature Electronic Design Automation (EDA) tools and design 
methodologies are available helping the designers to keep up with the new 
capabilities offered by the technology. Currently almost all low-level phases of the 
process are automated. The level of automation is far from the push-button stage, 
but is keeping up reasonably well with the complexity supported by the 
technology. On the other hand, analog IC design automation tools strive to keep 
up with the new challenges created by technological evolution [3,4]. Due to the 
lack of automation, designers keep exploring the solution space almost manually. 
This method causes long design times, and allied to the non-reusable nature of 
analog IC, makes analog IC design a cumbersome task. 

In this work a multi-objective design methodology and tool for automatic 
analog IC synthesis, GPOF-SVM, is presented. GPOF-SVM stems from GENOM 
[5-7] and GENOM-POF [8], the first is a former single objective optimizer 
enhanced by an SVM feasibility model and the second is a multi-objective circuit 
optimizer. This chapter is organized as follows: in section 7.2 an overview of 
related work in analog IC design automation at circuit/system-level sizing is 
presented; section 7.3 explains the architecture of GPOF-SVM; section 7.4 
presents case studies; and finally, in section 7.5 some conclusions are drawn and 
future work proposed. 

7.2   Related Work 

Historically, the tools for automated circuit sizing are classified as knowledge-
based or optimization based. This classification, illustrated in Fig. 7.1, is based on 
the fundamental techniques used to address the problem. 

Early strategies, like IDAC [9] and BLADES [10], tried to systematize the 
design by using a design plan derived from expert knowledge. In these methods, a 
pre-designed plan is built with design equations and a design strategy that produce 
component sizes that meet the performance requirements. The knowledge-based 
approach was applied with moderate success to automatic analog IC sizing. The 
main advantage of this approach is the short execution time. On the other hand, 
deriving the design plan is hard and time-consuming, the design plan requires 
constant maintenance in order to keep it up to date with technological evolution, 
and the results are not optimal, suitable only as a first-cut-design. 

 

Analog Circuit Design Based on Robust POFs  



7   Analog Circuit Design Based on Robust POFs 151
 

D
ES

IG
N

 P
LA

N
 

LI
B

R
A

R
Y

EV
A

LU
A

TI
O

N
 

EN
G

IN
E

 

Fig. 7.1 Automatic specification translation approaches: (a) knowledge-based and (b) 
optimization-based 

Aiming for optimality, the next generations of sizing tools apply optimization 
techniques to analog IC sizing. Based on the evaluation techniques employed, the 
optimization-based sizing tools can be further classified into three main sub-
classes: equation-based, electrical-simulation-based, and numerical-model-based. 

• Equation: These methods use analytic design equations to evaluate the circuit 
performance. The strong point of equation-based methods like GPCAD [11], 
Kuo-Hsuan et. al. [12] among others is the short evaluation time, making them, 
like the knowledge-based approaches, extremely suited to derive first-cut 
designs. The main drawbacks are: not all design characteristics can be easily 
mapped by analytic equations and the approximations introduced in the 
equations yield low accuracy designs. To reduce the long time dispended in 
model development, automatic techniques were proposed (Gielen et al. in [13] 
pro-vide a good overview on symbolic analysis applied to analog ICs). 

• Electrical Simulation: These sizing techniques use a circuit simulator to 
evaluate the circuit’s performance. The strong points of this approach are 
generality and easy-and-accurate model, however, typified by long execution 
time. To cope with this limitation Kuo-Hsuan et. al.[12] used equations to 
derive an approximate initial solution, Cheng et al. [14] solving the bias of the 
transistors first, the transistor sizes are then derived from the bias point using 
electric simulation. In MAELSTROM and ANACONDA [15] the evaluation is 
done using a parallel mechanism that shares the evaluation load among multiple 
computers. 

• Numerical Model: The numerical-model-based tools like Alpaydin et. al. [16] 
and Barros et. al. [6] use macro models, e.g., neural-networks or support vector 
machines, to speed up the evaluation of the circuit’s performance, reducing the 
high execution times caused by the exclusive use of electrical simulation inside 
the optimization loop, especially at system-level. A different approach is the 
usage of POF, where a suitable solution is selected from the pre-generated set 
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of optimal solutions, these models are then used hierarchically for system level 
sizing [17,18]. 

In MINLP [19], DARWIN [20], SEAS [21] and MOJITO [22,23] device sizing 
and topology selection are done simultaneously. These methods are more reliable 
than other topology selection techniques, as they treat the problem in a unified 
manner. The computation time, however, is extremely high. Koza [24], Lohn [25], 
Sripramong [26], Shoou-Jin [27] and more recently Hongying [28] presented a de-
sign methodology that creates new topologies. This approach is typified by high 
computation time, which limits the number of components in the circuit. Another 
issue with bottom-up generation is that designers are suspicious of the generated 
structures as they may differ “too much” from well-known trusted analog circuits 
[29]. Fig. 7.2 shows the panorama of analog circuit synthesis contributions. 

 

 

Fig. 7.2 Overview of analog design automation tools 

7.3   GPOF-SVM Architecture 

GPOF-SVM addresses the problem of automatic specification translation at circuit 
level, also known as circuit sizing, where from the set of specifications, the de-
signer finds out the sizes for the components (widths and lengths of the transistors, 
resistors, capacitors, etc.). To verify if the design is robust, i.e., the vast majority 
of the fabricated circuits will work according to specifications, corner analysis is 
employed. Corner analysis is among the most common techniques for analog IC 
design centering, and consists in a worst-case approach where the circuit is 
simulated over multiple combinations of process parameters variations (power 
supply, temperature, etc.). In Fig. 7.3 the 27 corners cases obtained by considering 
3 values for power supply, operating temperature and library models are shown. 
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Fig. 7.3 Corner cases example 

GPOF-SVM, whose architecture is shown in Fig. 7.4, is based on the elitist 
multi-objective evolutionary optimization kernel NSGA-II [30], and uses the 
industrial grade simulator HSPICE® [31] to evaluate the performance of the de-
sign. GPOF-SVM targets the design of robust circuits, by allowing the 
consideration of corner cases during optimization. In addition, an SVM [32], 
which models the functional feasibility of the circuit, is used to speed up the 
convergence to feasible areas on the design space. 
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Fig. 7.4 GPOF-SVM architecture 

In order to use GPOF-SVM, the designer inputs the circuit netlist and 
testbench, defines the optimization variables, design constraints and objectives, 
and the corners cases. Then, GPOF-SVM, models the circuit as an optimization 
problem, defined by the tuple {x,F,G}, where x is the vector of design variables, F 
is the vector objectives and G is the vector of inequality constraints, suitable to be 
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optimized by the NSGA-II kernel. The functional constraints, which are a sub-set 
of G, are used to define the functional feasibility regions used to train the 
feasibility model, where the training data is obtained using fractional Design of 
Experiments (DOE) to generate a set of circuits that are simulated to evaluate how 
well they met the functional constraints. The tools’ output is a family of Pareto 
optimal circuits that fulfill all the constraints and represent the feasible tradeoffs 
between the different optimization objectives. The next subsections provide the 
details of the architecture using a simple circuit to illustrate the descriptions. 

7.3.1   Inputs and Outputs 

The inputs from the designer are the circuit and testbench in the form of 
HSPICE® netlists. The netlist must have the optimization variables as parameters, 
and must include means to measure the circuit’s performance; the corner’s 
parameter variations are also included in the netlist. Fig. 7.5 shows a simple 
differential amplifier with the testbench schematic and parts of the corresponding 
netlist. 

 

 

Fig. 7.5 Example circuit: (a) schematic; (b) partial view of netlist 
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In addition, the designer defines ranges for the optimization variables, design 
constraints, and optimization objectives. Tables 7.1 and 7.2 illustrate these 
definitions for the circuit in Fig. 7.5. The output is a family of sized circuits 
representing the possible tradeoffs between the objectives being optimized. 

Table 7.1 Variable ranges for the example in Fig. 7.5 

Var. W1 W2 L1 L2 Ib 
Max. 500.0e-6 500.0e-6 15.0e-6 15.0e-6 400.0e-6 
Min. 1.0e-6 1.0e-6 0.35e-6 0.35e-6 30.0e-6 

Table 7.2 Objectives and design constraints for the example in Fig.7.5 

Constraint Measure Target Units Description 
Performance gbw ≥ 35 MHz Unit-gain frequency 
 pm 65 ≤ pm ≤ 90 Degree Phase margin 
Functional vov_m1 50 ≤ vov_m1 ≤ 200 mV Vgs –Vt 
 vov_m2 50 ≤ vov_m2 ≤ 200 mV Vgs –Vt 
 vov_m3 100 ≤ vov_m3 ≤ 300 mV Vgs –Vt 
 vov_m4 100 ≤ vov_m4 ≤ 300 mV Vgs –Vt 
 delta_m1 ≥ 50 mV Vds – Vdsat 
 delta_m2 ≥ 50 mV Vds – Vdsat 
 delta_m3 ≥ 50 mV Vds – Vdsat 
 delta_m4 ≥ 50 mV Vds – Vdsat 
Objective gain_dc maximize dB Gain DC 
 rms_power minimize W RMS power 

7.3.2   Optimization Kernel 

The optimization engine in GPOF-SVM is a modified NSGA-II to interface with 
HSPICE® and SVM, used to estimate feasibility and evaluate the individual 
objective and constraint functions. The NSGA-II was selected over SPEA and 
other multi-objective evolutionary algorithms because of the good characteristics 
of the output Pareto [30]. The option of using HSPICE® to evaluate the circuit’s 
performance was due to the accuracy of the results and the availability of models 
for the devices provided by the foundries. The multi-objective optimization kernel 
module was designed to solve the problem: 

( )
( )

,...N, i U
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ix
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where, x is a vector of N optimization variables, gj(x) one of the J constraints and 
fm(x) one of the M objective functions. Except for minor changes, it was 
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implemented as in [30], using simulated binary crossover and mutation operators 
[33], tournament selection, and constrained based dominance check.  

7.3.3   Design Strategies 

GENOM-POF supports three design strategies: Typical, Corners, and Typical plus 
Corners. The next subsections describe each of the strategies. 

7.3.3.1   Typical (T) 

As the name states, in this strategy the circuit is evaluated using only typical 
conditions, this strategy is faster, and despite the output does not consider the 
limitations imposed by the corners it is useful for design tradeoffs analysis. First 
the design problem is described as an optimization problem, and then the NSGA-
II optimization kernel can be executed. In order to satisfy the problem formulation 
in eq. (7.1), the design objectives being minimized are used directly as one of the 
fm(x), and the ones being maximized are multiplied by −1. The design constraints 
are normalized and multiplied by −1, if necessary, according to eq. (7.2). 
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where, pj is the measured circuit characteristic, and Pj is the correspondent 
acceptable limit. Table 7.3 illustrates the objective and constraint functions for the 
circuit in Fig. 7.5 using the design specifications in Table 7.2. 

Table 7.3 fm(x) and gj(x) for the example from Fig. 7.5 

Performance 

Constraints 
( ) 1

1035 60 −
×

=
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xg  ( )
90

12
pm

xg −=  

Functional  
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Objectives ( ) dcgainxf _0 −=  ( ) rmspowerxf =1  - 

7.3.3.2   Corners (C) 

In the Corners strategy, the design is optimized from the beginning using all the 
corners, i.e., for each evaluation the circuit is simulated once for each corner case, 
this makes it the slower strategy, but the output circuits are feasible in all tested 
corner conditions. To handle the multiple corners, the objective and constraint 
functions are modified using eq. (7.3). 
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where, C is the number of corners, and ( )xf c
m  and ( )xgc

j  are respectively the 

objective fm(x) and the constraint gj(x), as defined for the typical case evaluated in 
corner case c. In this worst case approach, each objective, which is being 
minimized, is evaluated using the maximum value obtained from the simulation of 
circuit in all the corner cases, and each constraint is evaluated as the sum of the 
normalized violation in all the corner cases where it is violated.  

7.3.3.3   Typical Plus Corners (TC) 

In this strategy, typical optimization is done until it stops evolving or the maxi-
mum number of generation is reached. Then, the typical POF is used as starting 
point for corner optimization. This strategy is a tradeoff between the execution 
time and robustness of the solution, and the reduction of the genetic information 
(localization of the search) imposed by the use of the typical POF as starting point 
for the corner optimization. 

7.3.4   Functional Feasibility Model 

In order to improve the convergence of the optimization kernel and reduce the 
time consumed in the evaluation using HSPICE® a functional feasibility model, 
which is reusable for different objectives and performance constraints, is used to 
avoid the simulation of infeasible solutions. 

The derivation of the functional and performance constraints depends of the 
circuit in question, and is up to the designer to define which constraints are 
functional constraints and which are performance constraints. For example, for the 
circuit in Fig. 7.5 the performance constraints impose limits to the DC gain and 
phase margin, while the functional constraints impose limits to the overdrives 
voltages and saturation of the devices.  

This separation has to do with the intrinsic behavior of the circuit, the 
functional constraints relates to the topology of the circuit and represent design 
strategies used to ensure proper behavior, whereas the performance constraints 
relate to some performance metric usually defined from the design specifications. 
Another way to view this separation is that to ensure the linearity of an amplifier it 
is recommended to have the transistors in saturation (functional requirement), and 
for a given design the DC gain must be greater than 30 dB (performance 
requirement), whereas in another design the unity frequency must be larger 40 
MHz (performance requirement). 

An important property of the functional constraints is that, for a given process 
and topology, they must be valid for a wide range of designs, otherwise the 
functional feasibility model is not reusable. The next sections describe how the 
functional feasibility model is derived and how it is used to enhance GPOF-SVM 
performance. 
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7.3.4.1   Building the Feasibility Model 

The feasibility model, which follows the approach taken by GENOM [7], now for 
the multi-objective case, uses a SVM classifier [32] to estimate the compliance 
with functional constraints. To train the classifier, a training set is obtained using a 
fractional DOE strategy, then those points are simulated and their functional 
feasibility evaluated. The overall functional feasibility is computed as shown in 
eq. (7.4). 
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where JF is the number of functional constraints and ( )xg F
j  the functional 

constraint j.  
The sampled points are then sorted into 3 classes, feasible, quasi-feasible, and 

infeasible, based on the value of ffeas(x). The limits are ffeas(x)=0, ffeas(x)≥-T, 
and ffeas(x)<-T respectively.  

As noticed on GENOM [7], the data sets are highly unbalanced with very few 
feasible points, and unbalanced data creates difficulties to the classifier. The main 
reason is that most classifiers, like SVM, tend to optimize the overall accuracy 
without considering the weight of relative distribution of each class and they are 
designed to generalize from sample data to avoid the noise, and in this case they 
would treat the feasible points as noise and would ignore then. To overcome this 
issue, strongly infeasible points, i.e., points where ffeas(x)<-T2 with T2<T, are 
discarded and not used to train the model.  

To select the values T and T2, first a fractional sampling [34] is performed (for 
small problems the full combinatory sampling can be used). At this point is likely 
to have few (or none) feasible points in the data set. Then, set the values T and T2 
in such way that the number of feasible plus quasi-feasible samples is 
approximately the same as the number of not-discarded-infeasible samples, and at 
least 5% of the total available samples. This last condition is to ensure that there 
are a reasonable number of points in each class. The SVM classifier is then trained 
using the grid search technique suggested in [35]. 

7.3.4.2   Evaluation with the Feasibility Model 

The integration of the feasibility model in the evaluation is done in the trivial way. 
First the model is used to classify the individuals being evaluated as feasible, 
quasi-feasible and infeasible, and then unfeasible ones are discarded, and not put 
for electrical simulation. Due to the nature of the analog IC design space, some 
precautions must be taken when using the feasibility model: first the model can 
consider infeasible areas of feasibility that were not sampled, second in the 
beginning of the optimization, is likely to have only infeasible points, and without 
electrical evaluation there is no way to tell which ones are better and to guide the 
evolution of the population properly. 

To accommodate these two factors, the functional feasibility pruning is enabled 
at each generation with 50% change. Moreover, when full feasibility is attained, 
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i.e., both performance and functional constraints are met; it was noticed that the 
evolution of the algorithm do not generate a significant amount of infeasible 
points, and therefore the classification despite being much faster that electrical 
simulation is not pruning and represents an extra cost, therefore after full 
feasibility is attained the feasibility model is no longer used. 

7.4   Case Study 

The GPOF-SVM tool is here demonstrated for typical and corner cases by 
designing a single ended folded cascode amplifier and a fully differential 
telescopic amplifier. The folded cascode circuit is described in section 7.4.1, and 
the telescopic amplifier in section 7.4.2.  

 
Fig. 7.6 Single-ended folded cascode amplifier (a) schematic (b) testbench 
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7.4.1   Single Ended Folded Cascade Amplifier 

The circuit schematic is shown in Fig. 7.6, and the ranges, objectives and 
constraints are listed in Tables 7.4 and 7.5. The problem has 15 optimization 
variables, 2 objectives and 19 constraints. In addition, 9 corner cases were defined 
using the combination of technology models (typical, fast and slow) and 
temperature values (-40ºC, 50ºC, 120ºC). All the presented results are for UMC 
0,13µm technology and include only feasible solutions. 

Table 7.4 Variable ranges 

Var. 1 l1, l4, l5, l7, l9, l11 w1, w4, w5, w7, w9, w11 Ib [µA] Vbcn [V]Vbcp [V] 

Max. 0.80 µm 400.0 µm 500 0.0 0.4 

Min. 0.12 µm 0.24 µm 30 -0.4 0.0 
1 The variables l1 and w1 are dimensions, in [µm], of M1 and M2; l4 and w4 of M4; l5 and 

w5 of M5 and M6; l7 and w7 of M7 and M8; l9 and w9 of M9 and M10; l11 and w11 of 
M11 and M12.  

Table 7.5 Objectives and design constraints 

Constraints Measure Target Units Description 

Performance gbw ≥ 24 MHz Unit-gain frequency 

 a0 ≥ 40 dB DC Gain 

 sr ≥ 10 V/µs Slew Rate 

 pm 55 ≤ pm ≤ 90 Degree Phase margin 

Functional ov1 ≥ 30 mV Vgs –Vt 

 d1 ≥ 1.2 V/V (Vds – Vdsat)/Vdsat 

 osp ≥ 0.3 V  

 osn ≤ -0.3 V  

Objectives area2 minimize µm Area 

 a0 maximize dB DC Gain 
1 The constraint applies to: M1, M4, M5, M7, M9 and M11. 
2 The area is the sum of all the devices gate area (WxL) excluding bias devices. 

7.4.1.1   Synthesis 

Figure 7.7 shows the Pareto fronts and execution time that were obtained by 
running the 3 strategies T, C and TC until the max generation limit. The algorithm 
parameters were: a population of 32 elements, crossover and mutation rate of 90% 
and 10%, respectively, and 400 generations for T and C, and 200/200 for TC (200 
for the first step and 200 for the second step). The functional feasibility model was 
not used because finding a feasible solution in this example is easy (less than 5 
generations), and after finding a feasible solution the optimizer tends to generate 
only feasible solutions rendering the feasibility model useless. 
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Fig. 7.7 POF obtained using the 3 design strategies T, TC and C 

The POF obtained using T was found faster (in 165 seconds), and dominates 
the others (because it has fewer constraints). TC strategy was faster than C and in 
a region of the POF provided circuits with smaller area for the same gain; however 
it does not dominate the one obtained with C completely. By starting the corner 
 

Table 7.6 Summary of the Corner and Typical plus Corner run illustrated in Fig. 7.7 

Strategy Corner (C) Typical plus Corner (TC) 

Smaller Middle Larger Smaller Middle Larger 

Time [s] 1372 769 

Area [µm2] 335.62 471.75 613.05 201.07 254.72 310.11 

Gain [dB] 50.27 53.05 54.16 50.08 51.47 51.84 
L1 [µm] 0.44 0.57 0.61 0.42 0.42 0.41 
W1 [µm] 27.59 52.01 52.04 16.45 16.44 16.44 
L4 [µm] 0.42 0.58 0.63 0.62 0.60 0.72 
W4 [µm] 19.88 31.53 54.07 22.36 35.31 50.96 
L5 [µm] 0.24 0.27 0.32 0.28 0.28 0.26 
W5 [µm] 225.74 187.58 344.72 100.83 104.66 156.58 
L7 [µm] 0.33 0.41 0.42 0.40 0.51 0.57 
W7 [µm] 188.92 265.16 259.84 126.70 145.28 145.35 
L9 [µm] 0.59 0.59 0.60 0.36 0.36 0.36 
W9 [µm] 55.30 59.76 60.12 15.59 15.59 15.59 
L11 [µm] 0.18 0.17 0.18 0.16 0.16 0.16 
W11 [µm] 13.26 14.51 12.93 5.34 5.34 5.34 
Ib [µA] 313.51 321.97 291.61 156.65 148.86 154.59 
Vbcn [V] -0.106 -0.1062 -0.1059 -0.0789 -0.0789 -0.0789 
Vbcp [V] 0.0862 0.0870 0.0870 0.0890 0.0912 0.0950 
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optimization from the already optimized typical POF, it is easier to fulfill the 
additional constraints imposed by the corners and leads to better and faster results, 
however there is some biasing that narrow the search range. Table 7.6 summarizes 
the output of C and TC strategies. 

In Fig. 7.8 the layout, which was generated using LAYGEN [36,37], is shown, 
for the extreme points from Table 7.6, i.e. the point with larger gain C larger, and 
the point with smaller area TC smaller. 

7.4.2   Fully Differential Telescopic Amplifier 

The fully differential telescopic amplifier circuit including bias schematic is 
shown in Fig. 7.9, and the variable ranges, objectives and constraints are listed in 
Table 7.7 and Table 7.8. The problem has 16 optimization variables, 3 objectives, 
6 performance constraints and 32 functional constraints. In addition, the same 9 
corner cases were defined using the combination of technology models (typical, 
fast and slow) and temperature values (-40ºC, 50ºC, 120ºC). All the presented 
results are for UMC 0,18µm technology and include only feasible solutions. 
 
 

 

Fig. 7.8 Layout for the extreme points of Table 1.6: (a) C larger, (b) TC smaller 

7.4.2.1   Synthesis 

The functional feasibility model was used in this example because the 
convergence of the algorithm to feasible solutions was not immediate. In the 
single objective case the SVM model reduced the time to obtain the first feasible 
solution in 15-20%, in the multi-objective case, after 100 runs, the drop was 
around 10%. The multi-objective optimization explores the solution space more 
efficiently, reducing the effects of pruning infeasible solutions. 

Two 2-D projections of the 3 objective POF, obtained using the TC strategy 
with parameters: population of 80 elements, crossover and mutation rate of 90% 
and 10% respectively and 300/200 generations, are shown in Fig. 7.10, and 
illustrate the effect of corners cases in decreasing the performance achieved by the 
circuit, Table 7.9 summarizes the synthesis results. 
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Fig. 7.9 Fully differential telescopic amplifier schematic: (a) amplifier, (b) bias 

Table 7.7 Variable ranges 

Var. L0, L2, L9, L12, L15, L18, L24, L34, L35, L40, L58  M0, M1, M2, M3, M4 

Max. 10.0 µm 110 

Min. 0.18 µm 1 
 
 
By having more than 2 objectives the 2-D projections are not monotonic like in 

the previous example. This is due to the fact that there are solutions that seem to 
be dominated but have better performance in the objectives not present in the 2-D 
projection. In Fig. 7.10, the projections of Gain vs. Power and GBW vs. Power are 
overlapped, each point in the Pareto front is represented by the 2 points in the 
graphic that have the same value of Power, one from each of the projections. 
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Table 7.8 Objectives and design constraints 

Constraints Measure Target Units Description 
Performance gain_dc ≥ 75 dB DC Gain 
 gbw ≥ 100 MHz Unity-gain frequency 
 fase 60 ≤ fase ≤ 90 DegreeºPhase margin 
 power ≤ 10 mW Power 
 iavdd ≤ 10 mA Vdd current 
Functional vov1 ≥100 mV Vgs –Vt 
 vov_m18, 

vov_m17 
≥45 mV Vgs –Vt 

 vov_m34, 
vov_m36 

≥50 mV Vgs –Vt 

 vov2 ≤200 mV Vgs –Vt 
 vov3 ≤300 mV Vgs –Vt 
 d4 50 ≤ d ≤ 200 mV Vds – Vdsat 
 d5 ≥ 50 mV Vds – Vdsat 
Objectives Power Minimize W Power 
 gbw Maximize Hz Unity-gain frequency 
 gain_dc Maximize dB DC Gain 
1 The constraint applies to: M19, M0, M40, M43 and M35. 
2 The constraint applies to: M19, M0, M18 and M17. 
3 The constraint applies to: M40, M43, M34, M36 and M35. 
4 The constraint applies to: M40, M43, M17, M18 and M35. 
5 The constraint applies to: M19, M0, M34, and M36. 
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Fig. 7.10 2-D Projections of the 3-D POF obtained using T and TC 
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Table 7.9 Summary of the synthesis results 

Strategy Typical step (637 [s]) Corner step (5363 [s]) 

Less Power Larger GBW Larger Gain Less Power Larger GBW Larger Gain 

Power[mW] 0.402 1.498 0.470 0.869 1.04 0.894 
GBW 
[MHz] 100.8 394.8 

100.8 170.1 224.6 172.0 

Gain[dB] 81.98 71.02 87.02 72.53 70.87 73.32 

7.5   Conclusion 

The proposed methodology and tool, GPOF-SVM, were used to successfully 
design well known analog circuits, taking into account robustness consideration 
by the inclusion of corner cases. Moreover, the multi-objective nature of the IC 
design synthesis makes it well suited for automatic design using multi-objective 
optimization strategies. In this approach, the output is not one solution, but a set of 
completely designed non-dominated solutions, all meeting the specifications. It is 
up to the designer to select the tradeoff between the concurrent objectives that is 
more interesting for the target project. The usefulness of GPOF-SVM to designers 
was shown using different design strategies. First, using the Typical (T) design 
strategy, the designer explores several design tradeoffs in a matter of minutes, 
which is useful for system level design. Then, using the Corners (C) or TC 
strategies the designer can obtain a family of optimum robust circuits that comply 
with the specification in all corner cases considered. Additionally, in order to 
enhance the efficiency of the NSGA-II based optimization kernel, a supervised 
learning strategy, which is based on a SVM approach, is used to create functional 
feasibility models. These models allow the efficient pruning of the design search 
space during the optimization process with absolute gains ranging from 10 to 20% 
in terms of the overall number of required evaluations and larger gains in terms of 
time consumption once electrical simulation, particularly for large circuits, is 
clearly more time expensive than the SVM model evaluation. Finally, the layout 
generation is demonstrated by linking the GPOF-SVM output with the entry of the 
in-house tool LAYGEN-II. 
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