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Abstract. Data mining is the process of extracting interesting and previously 
unknown patterns and correlations from data stored in Data Base Management 
Systems (DBMSs). Association Rule Mining is the process of discovering 
items, which tend to occur together in transactions. Efficient algorithms to mine 
frequent patterns are crucial to many tasks in data mining. The task of mining 
association rules consists of two main steps. The first involves finding the set of 
all frequent itemsets. The second step involves testing and generating all high 
confidence rules among itemsets. Our paper deals with obtaining both the fre-
quent itemsets as well as generating association rules among them.  

In this paper we implement the FORC (Fully Organized Candidate Genera-
tion) algorithm, which is a constituent of the Viper algorithm for generating our 
candidates and subsequently our frequent itemsets. Our implementation is an 
improvement over Apriori, the most common algorithm used for frequent item 
set mining. 

1 Introduction 

The quantity of data to be handled by the file systems and the databases is growing at 
an exponential rate. Thus, users who need to access them need sophisticated informa-
tion from them. The task of data mining satisfies them. To use a simple analogy, it's 
finding the proverbial needle in the haystack. In this case, the needle is that single 
piece of intelligence your business needs and the haystack is the large data warehouse 
you've built up over a long period of time. It is simply defined as finding the hidden 
information in a database. It can also be called exploratory data analysis or data  
driven analysis.  

In essence, data mining is distinguished by the fact that it is aimed at the discovery 
of information, without a previously formulated hypothesis. The information discov-
ered must be previously unknown. The new information has to be valid. Most critical, 
the information has to be actionable, that is, it must be possible to translate it into 
some business advantage and take action towards that advantage. It is "a decision 
support process in which we search for patterns of information in data". This search 
may be done just by the user, i.e. just by performing queries, or by sophisticated sta-
tistical analysis and modeling techniques, which uncover patterns and relationships 
hidden in organizational databases. Once found, the information needs to be presented 
in a suitable form, with graphs, reports, etc. 
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One of the reasons behind maintaining any database is to enable the user to find in-
teresting patterns and trends in the data. The goal of database mining is to automate 
this process of finding interesting patterns and trends. Once this information is availa-
ble, we can perhaps get rid of the original database. This goal is difficult to achieve 
due to the vagueness associated with the term `interesting'. The solution is to define 
various types of trends and to look for only those trends in the database. One such 
type constitutes the association rule.  

Association rules attempts to predict the class given a set of conditions on the LHS. 
The conditions are typically attribute value pairs, also referred to as item-sets. The 
prediction associated with the RHS of the rule is not confined to a single class 
attribute; instead it can be associated with one or more attribute combinations. 

Association rule induction is a powerful method for so-called market basket analy-
sis, which aims at finding regularities in the shopping behavior of customers of su-
permarkets, mail-order companies and the like. With the induction of association rules 
one tries to find sets of products that are frequently bought together, so that from the 
presence of certain products in a shopping cart one can infer (with a high probability) 
that certain other products present. Such information, expressed in the form of rules, 
can often be used to increase the number of items sold, for instance, by appropriately 
arranging the products in the shelves of a supermarket (they may, for example, be 
placed adjacent to each other in order to invite even more customers to buy them to-
gether) or by directly suggesting items to a customer, which may be of interest for 
him/her. 

1.1 Problem Statement 

Given a database D of T transactions and a minimum support ‘s’, the problem is to 
find all the frequent itemsets (i.e. those itemsets whose support is greater than ‘s’). 
Once the frequent itemsets are found, association rules can be derived from them 
using confidence ‘c’. 

2 Basic Concepts and Terminologies 

Association rules are extracted from the database, which can be viewed as a collection 
of transactions, keeping in mind the grocery store cash register. For example, a 
transaction could be {Pencil, Sharpener, Eraser}, each element in it is termed as an 
item. We are not interested in quantity or cost, but only in their purchase. A collection 
of items is called as the itemset. 

Here, we provide some basic concepts and terminologies used in the association 
rule mining.  

 
1. Given a set of items I = {I1, I2, … , Im} and a database of transactions D = {t1, t2, 

…, tn} where each ti contains different combinations of  I, an association rule is 
an implication of the form X=>Y where X, Y∈I are sets of items called itemsets 
and X∩Y=φ.  
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2. The support (s) for an association rule X=>Y is the percentage of transactions 
in the database that contain X ∪ Y. 

Let T be the set of all transactions under consideration, e.g., let T be the set of 
all "baskets" or "carts" of products bought by the customers of a supermarket - on 
a given day if you like. The support of an item set S is the percentage of those 
transactions in T which contain S. In the supermarket example this is the number 
of "baskets" that contain a given set S of products, for example S = {bread, wine, 
cheese}. If U is the set of all transactions that contain all items in S, then 

support(S) = (|U| / |T|) *100%, 

where |U| and |T| are the number of elements in U and T, respectively. For exam-
ple, if a customer buys the set X = {milk, bread, apples, wine, sausages, cheese, 
onions, potatoes } then S is obviously a subset of X, hence S is in U. If there are 
318 customers and 242 of them buy such a set U or a similar one that contains S, 
then support(S) = 76.1%. 

3. The confidence or strength for an association rule X=>Y is the ratio of the 
number of transactions that contain X∪Y to the number of transactions that con-
tain X.  

The confidence of a rule R="A and B->C" is the support of the set of all 
items that appear in the rule divided by the support of the antecedent of the rule, 
i.e. confidence(R) = (support({A, B, C})/support({A,B})) *100%. 

More intuitively, the confidence of a rule is the number of cases in which the 
rule is correct relative to the number of cases in which it is applicable. For ex-
ample, let R="wine and bread -> cheese". If a customer buys wine and bread, 
then the rule is applicable and it says that he/she can be expected to buy cheese. 
If he/she does not buy wine or does not buy bread or buys neither, than the rule 
is not applicable and thus (obviously) does not say anything about this customer. 

If the rule is applicable, it says that the customer can be expected to buy 
cheese. But he/she may or may not buy cheese, that is, the rule may or may not 
be correct. We are interested in how good the rule is, i.e., how often its predic-
tion that the customer buys cheese is correct. The rule confidence measures this: 
It states the percentage of cases in which the rule is correct. It computes the per-
centage relative to the number of cases in which the antecedent holds, since 
these are the cases in which the rule makes a prediction that can be true or false. 
If the antecedent does not hold, then the rule does not make a prediction, so 
these cases are excluded. 

With this measure a rule is selected if its confidence exceeds or is equal to a 
given lower limit. That is, we look for rules that have a high probability of being 
true, i.e., we look for "good" rules, which make correct (or very often correct) 
predictions. 

4. If the support of an itemset is greater than or equal to a given support threshold, 
then it is termed a frequent itemset, otherwise it is infrequent. 

5. Given a set of items I = {I1, I2, … , Im}and a database of transactions D = {t1, t2, 
…, tn} where each ti contains different combinations of  I, the association rule 
problem is to identify all association rules X => Y with a minimum support and 
confidence. These values are fed as inputs to the problem.  
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2.1 Data Layout Alternatives 

Conceptually, a market basket database is a two dimensional matrix where the rows 
represent individual customer purchase transactions and the columns represent the 
items on sale. The implementation of this   matrix is as shown in the Fig 1. 

Horizontal Item Vector(HIV). The database is organized as a set of rows with each 
row storing a transaction identifier (tid) and a bit vector of 1’s and 0’s to represent for 
each of the items on sale, its presence or absence, respectively in the transaction is as 
shown in Fig. 1 a [1]. 

 

Fig. 1. Comparison of Data Layouts [1] 

Horizontal Item List ( HIL ). This is similar to HIV, except that each row stores an 
ordered list of item identifiers(iid), representing only the items actually purchased in 
the transaction is as shown in  Fig.1 b [1]. 

Vertical Tid Vector ( VTV ). The database is organized as a set of columns with each 
column storing an IID and a bit vector of 1’s and 0’s to represent the presence or ab-
sence, respectively of the item in the customer transactions is as shown in Fig 1 c [1]. 

Vertical Tid List ( VTL ). This is similar to VTV, except that each column stores an 
ordered list of only the tid’s of the transactions in which the item was purchased is as 
shown in Fig 1 d  [1]. 

2.2 The Viper Algorithm 

VIPER (Vertical Itemset Partitioning for Efficient Rule Extraction) uses the vertical 
tid vector (VTV) format for representing an items’ occurrence in the tuples of the 
database. The bit vector is stored in a compressed form called the ‘snake’. It is a  
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multipass algorithm, wherein data in the form of snakes is read from and written to 
the disk in each pass [1]. It proceed in a bottom up manner and at the end of the data 
mining, the supports of all frequent itemsets are available. Each pass involves the 
simultaneous counting of several levels of candidates via intersections of the input 
snakes. To minimize the computational costs, VIPER implements a new candidate 
generation scheme called FORC (Fully organized candidate generation), partly based 
on the technique of equivalence class clustering. VIPER also incorporates a novel 
snake intersection and counting scheme called FANGS (Fast Anding Graph for 
Snakes). The FANGS scheme is based on a simple DAG structure that has a small 
footprint and efficiently supports concurrent intersection of multiple snake pairs by 
using a pipelined strategy [1]. 

Our implementation is a hybrid version wherein we generate the candidate itemsets 
using the FORC procedure of the VIPER algorithm, the frequent itemsets using the 
conventional Apriori algorithm and the association rules using the Association rule 
generation algorithm described before. 

3 Experiments and Results 

3.1 Data Generation and Formatting 

Here, we generate the sample data that would be used later for testing the execution of 
the algorithm. The data generated is stored in a file in the form of bit vectors, i.e. 0/1 
indicating the presence/absence respectively of an item in the given transaction. We 
have the columns depicting the items and the rows depict the transactions. This is 
called as a Transaction Vector, as specified earlier in the literature. If required, this 
data can be compressed with the help of Run Length Encoding. 

3.2 The FORC Candidate Generation Algorithm 

We use the algorithm called FORC (Fully Organized Candidate Generation) for effi-
ciently generating candidate itemsets. FORC is based on the powerful technique of 
equivalence class clustering, but adds important new optimizations of its own. 

The FORC algorithm operates as follows: Given a set Sk (which can be either a set 
of frequent itemsets or a set of candidate itemsets) from which to generate Ck+1, the 
itemsets in Sk are first grouped into clusters called “equivalence classes”. The group-
ing criterion is that all itemsets in an equivalence class should share a common prefix 
of length k-1. For each class, its prefix is stored in a hash table and the last element of 
every itemset in the class is stored in a lexicographically ordered list, called the extList. 
With this framework, the following is a straightforward method of generating candi-
dates: For each prefix in the hash table, take the union of the prefix with all ordered 
pairs of items from the extList of the class (the order ensures that duplicates are not 
generated). For each of the potential candidates, check whether all its k-subsets are 
present in Sk, the necessary condition for an itemset to be a candidate. This searching is 
simple since the k-1 prefix of the subset that is being searched for indicates which 
extlist is to be searched. Finally, include those, which survive the test in Ck+1 [1].  
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The FORC Algorithm under discussion is as listed below. 

SetOfItemsets FORC(Sk) { 
Input: Set of k-itemsets(Sk) 
Output: Set of candidate k+1-itemsets(Ck+1) 
for each itemset i in Sk do 

insert (i.prefix) into hashTable; 
insert(i.lastelement) into i.prefix→extList; 
Ck+1 = ø; 
for each prefix P in the hashTable do { 
E = P→extList; 
for each element t in E do { 

newP = P U t ; 
remList = {i|i U E and i > t }; 
for each (k -1) subset subP of newP do 
remList = remList ∩ (subP → extList); 

for each element q in remList do { 
newCand = newP U {q}; 
Ck+1 = Ck+1 U newCand; 
} 
} 

} 
return Ck+1; 

} 

Fig. 2. FORC Algorithm [1] 

3.3 Simultaneous Search Optimization 

We can optimize the above-mentioned process by recognizing the fact that since the 
unions are taken with ordered pairs, the prefix of the subsets of the candidates thus 
formed will not depend on the second extension item, which in turn means that all 
these subsets are shared and the same for each element in the extlist. Hence, repeated 
searches for the same subsets can be avoided and they can be searched for simulta-
neously, as shown in the following example. Consider a set S3 in which we have the 
items ABC, ABD, ABE with prefix AB. These are grouped into the same equivalence 
class g, with prefix AB. The associated extlist is C, D and E. We now need to find all 
the candidates associated with each of the itemsets in g. We can illustrate this process 
by showing it for ABC. We first find the items that are lexicographically greater than 
C in the extlist, namely D and E.  Now, the potential candidates are ABCD and ABCE 
and we need to check if all their 3-subsets are also present in S3. That means that we 
have to search for ABi, ACi, and BCi where i may be either D or E. We don’t have to 
search for ABC, as it is already present. To search for ABD, for example, we access 
its group, say h, with prefix AB and then check if in the extlist D is present, which 
mean that ABD is present in S3. The important point is that, having come so far to 
check if ABD is present, we can as well check if ABE is present, as it would also be 
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present in the same equivalence class with prefix AB. We can do this by going further 
down in the extlist to check if E is present in it. 

Generalizing the above example, we can overlap subset status determination of 
multiple candidates by ensuring that all subsets across these candidates that belong to 
a common group are checked for with only one access of the associated extlist. This is 
in marked contrast to the standard practice of subset status determination on a sequen-
tial basis, resulting in high computational cost. 

3.4 Calculating Support and Frequent Items 

Once the candidates are ready in the array “candidates”, we process each of them to 
find out their support in the database of transactions. As defined earlier, support(Item) 
is the following:  

support (item) = no occurrences (item)/ total no of transactions. 

So, for each item, which is a candidate, we count from the database the number of 
times it is present in the set of transactions. Many optimizations can be used in this 
method. Some methods like FP-Tree can be used to calculate and find support without 
even generating candidates. However, we do the simple method of counting the exis-
tence of 1’s in the transaction list. This turns out inefficient and time consuming for 
very large databases, of size greater than a few gigabytes. So, better methods can be 
used here. 

Once the support is calculated for each candidate item, it is checked against the 
threshold given by the user. If the threshold is crossed by the candidate, it becomes a 
“frequent item”.  

We repeat this process for each candidate at the given level. The items whose sup-
port crosses the threshold are stored in the frequent item set. These items are then 
made the candidates of the next level. This set of candidates is subject to similar 
process and this process is repeated till no frequent items are found at a given level. 
This means that we have reached the maximum possible combination of items; having 
support more than the threshold, and that we cannot proceed further to the next level 
to find more frequent items. This process of finding maximum possible frequent item-
set stops here.  

3.5 Rule Generation 

At the end of the previous step, we have a set of items that form the maximum possi-
ble frequent itemset. Now, we have to mine rules out of this frequent itemset. This 
proceeds as follows in our implementation: 

The user enters a minimum threshold confidence level. Confidence, as defined be-
fore is 

 

Confidence (a -> b) = 
(no of transactions having a and b)  
(no of transactions having a) 
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This provides the assurance required to publish a rule. We generate rules as follows: 

Generate_rules_algorithm() 
for (each item in frequent itemset) 
{ 
  find all subsets of the frequent itemset and store it; 
  for(each subset S of frequent itemset under consideration) 
 { 
   find out the support for subset S from the storage   structure; 
  find out the ratio of support(frequent item) : support(S); 
  if(ratio > threshold_confidence) 
  { 
    publish rule subset S  (frequent itemset – S) with confidence = ratio; 
   } 
} 

} 

As seen above, the algorithm takes each frequent itemset and generates all its subsets. 
This is stored and one by one, for each subset, we find the confidence as specified. If 
it crosses the threshold set, it qualifies as a strong association rule. This rule is pub-
lished and this process is repeated for all subsets of all frequent itemsets. 

This ends the program execution with strong association rules being published, 
along with their confidences. 

4 Results 

From the literature, we obtained the following performance statistics of Apriori Algo-
rithm. This is compared here under similar configurations with the execution of our 
algorithm, a hybrid between Apriori and VIPER algorithm. 

We noted the performance of our algorithm in terms of the execution time for a 
number of transactions as shown in Table 1. We executed the algorithm for the fol-
lowing configuration data. 

Total Number of Items = 5 
Minimum Confidence = 45% 

We have then varied the total number of transactions and found the total execution 
time for four different levels of minimum support. Fig. 3 shows the comparison of our 
implementation with Apriori. 

It can be seen from the above table and chart that our implementation clearly out 
performs the traditional Apriori implementation. Moreover, the difference in perfor-
mance is more clearly pronounced as the size of the database increases. 
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Table 1. No. of transactions V/S execution time 

 
 
 
 
 
 
 
 
 
 

Comparison Between Apriori and Our Implementation

0

200

400

600

800

1000

1200

10000
50000

100000
200000

500000

1000000

No. of Transactions 

E
xe

cu
ti

o
n

T
im

e
(s

)

Apriori Algorithm

Our Implementation

 

Fig. 3. Comparison of Apriori Algorithm and Our implementation 

5 Conclusions 

Our work “Association Rule Mining in Large Databases” has been successfully de-
veloped as a hybrid of the Viper and Apriori implementations. Based on the results of 
our development work, the execution time using our method is better compared to the 
Apriori algorithm. This is proved ever at higher number of transactions. This algo-
rithm scales well compared to the original Apriori implementation as expected. The 
performance scales well with the size of the input database. Moreover, it is designed 
for a stand-alone system, as we have not focused on optimizing CPU cycles, which 
also becomes a concern in distributed databases. Some of the inherent drawbacks in 
the algorithm developed by us are as follows: 

The algorithm reads directly from the database of transactions rather than storing it 
in a buffer and maintaining the buffer in main memory by periodically reading in  
 

No. of 
transactions 

Execution Time (sec)
Apriori Our Implementation 

10,000 11 2.2 

50,000 51 8.12 

1,00,000 103 14.57 

2,00,000 209 28.34 

5,00,000 512 95.05 

10,00,000 1046 137.9 
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blocks of data. This is not required though, if the database is not read repeatedly, as in 
the case of prefix tree methods of mining association rules. Here, the database is read 
only once and a prefix tree is constructed from it, which is used for further calcula-
tions of support and confidence. 

The other drawback is that we make use of a synthetic data generator for generat-
ing our test case inputs. This is a drawback of the random number generator not being 
“random enough” over long series of data. Data is generated by the default rand() 
function and as it is programmed to follow a specific probability distribution, the 
output also follows a trend. The data generated follows similar patterns at regular 
intervals, thus making the output i.e. the frequent itemsets, their support and also the 
association rules quite predictable when the database size is scaled. In other words, 
the rules obtained when the number of transactions is say 10,000 is very similar to the 
ones obtained when no. of transactions is say 1, 00,000, except for the scaled levels of 
support and confidence.  

The actual efficiency of our program will be better appreciated when our program 
is run on real time data.  

6 Future Extensions 

6.1 Minimizing I/O Costs 

Routines to read data in blocks from the disk into main memory have to be incorpo-
rated in our program. More efficient mechanisms to find the support and confidence 
from the given database should be explored into and incorporated to make the number 
of I/O’s lesser compared to the current implementation. 

6.2 Compression of Data Stored 

We can use compression techniques like “Run Length Encoding” to store data in the 
form of compressed bit vectors called snakes in the main memory thus gaining space. 
This requires conversion on-the-fly when data is required for counting etc. 

6.3 FANGS Implementation 

We can implement the FANGS (Fast Anding of Graphs) procedure of the VIPER 
algorithm to generate the frequent itemsets and subsequently the association rules as it 
involves fewer scans of the database. 

6.4 Prefix-Tree Methods 

Instead of generating candidates and then checking if they are frequent, we can direct-
ly use the method of prefix trees to mine rules. 
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