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Abstract. The impact of abiotic stresses, such as drought, on plant growth and 
development severely hampers crop production worldwide. The development of 
stress-tolerant crops will greatly benefit agricultural systems in areas prone to 
abiotic stresses. Recent advances in molecular and genomic technologies have 
resulted in a greater understanding of the mechanisms underlying the genetic 
control of the abiotic stress response in plants. NAC (NAM, ATAF1/2 and 
CUC2) domain proteins are plant-specific transcriptional factors which has di-
versified roles in various plant developmental processes and stress responses. 
More than 100 NAC genes have been identified in rice. In the proposed method, 
NACPred, an attempt has been made in the direction of computational predic-
tion of NAC proteins. The well-known sequential minimum optimization 
(SMO) algorithm, which is most commonly used algorithm for numerical solu-
tions of the support vector learning problems, has been used for the develop-
ment of various modules in this tool. Modules were first developed using amino 
acid, traditional dipeptide (i+1), tripeptide (i+2) and an overall accuracy of 
76%, 90%, and 97% respectively was achieved. To gain further insight, a hybr-
id module (hybrid1 and hybrid2) was also developed based on amino acid com-
position and dipeptide composition, which achieved an overall accuracy of 90% 
and 97%. To evaluate the prediction performance of NACPred, cross validation, 
leave one out validation and independent data test validation were carried out. It 
was also compared with algorithms namely RBF and Random Forest. The dif-
ferent statistical analyses worked out revealed that the proposed algorithm is 
useful for rice genome annotation, specifically predicting NAC proteins. 
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1 Introduction 

Rice (Oryza sativa L.), a source of staple food, has a major influence on human nutri-
tion and food security. Billions of people world-wide depend on rice-based produc-
tion systems for their main source of employment and development. Rice production 
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continuously faces the challenge of keeping pace with rapid rise in human population 
and declining natural resource base, two of the critical resources being land and water. 
In addition, abiotic stresses, such as drought, adversely affect the growth and produc-
tivity of rice-based farming systems.  

The development of stress-tolerant crops will be of immense advantage in modern 
agriculture, especially in areas that are prone to such stresses. In recent years, several 
advances have been made towards identifying potential stress related genes which are 
capable of increasing the tolerance of plants to abiotic stress. NAC transcription fac-
tors have major functions in plant development as well as in abiotic stress responses. 
NAC (NAM, ATAF1/2 and CUC2) domain proteins comprise of one of the largest 
plant-specific transcriptional factors which is represented by approximately 140 genes 
in rice [1]. These transcription factors (TFs) regulate gene expression by binding to 
specific cis-acting promoter elements, thereby activating or repressing the transcrip-
tional rates of their target genes [2, 3]. Thus, for the reconstruction of transcriptional 
regulatory networks, the identification and functional characterization of these tran-
scription factors is essential [4].  

Computational prediction methods, compared with the experimental methods are 
fast, automatic and more accurate especially for high-throughput analysis of large-
scale genome sequences. Therefore, a fully automatic prediction system for NAC 
transcription factors in rice is a systematic attempt in this direction. The SMO module 
for the prediction of NAC proteins in genome of indica rice (Oryza sativa L. ssp. 
indica) was developed using various features of a protein sequence and the perfor-
mance of these models was evaluated using cross-validation techniques.   

2 Materials and Methods 

2.1 Datasets 

The selection of dataset is the most important concern during development of a pre-
diction method. The data set used in the present study, consisted of 95 NAC proteins 
of indica rice taken from Uniprot Knowledgebase. These 95 proteins were screened 
strictly in order to develop a high quality data set for the prediction tool. Fifteen NAC 
proteins were randomly selected from the main dataset for the creation of test set and 
remaining 80 proteins were used for positive dataset / training set. Non-NAC protein 
sequences were used as the negative data set. For training and testing, independent 
datasets were used which means training set and test set were entirely different. 

2.2 Performance Evaluation and Parameters 

Three methods often used for examining the effectiveness of a predictor, in statistical 
prediction are single independent dataset test, cross-validation test and jackknife test. 
Out of these, the jackknife test is considered to be most rigorous and objective one, as 
illustrated by a comprehensive review [5]. However, since the size of the dataset in 
the present study was large and jackknife test method takes much longer time to train 
a predictor based on SMO, cross-validation (5-fold, 8-fold) and independent dataset 
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test were adopted for performance measurement. In n-fold cross validation, all the 
positive and negative datasets were combined and then divided equally into n parts, 
keeping the same distribution of  positive and negative datasets in each part. Then n-1 
parts were merged into a training data set with the one part left out taken as a test data 
set and the average accuracy of n-fold cross validation was used to estimate the per-
formance. In the independent dataset test, although none of the data to be tested oc-
curs in the training dataset used to train the predictor, the selection of data for the 
testing dataset could be quite arbitrary. In "leave-one-out" cross-validation (LOO), 
each sample in the dataset is separated out in turn as an independent test sample, and 
all the remaining samples are used as training data. This process is repeated until 
every sample is used as test sample one time with no repetition. All models were im-
plemented in the WEKA software package [6]. 

2.3 The Machine Learning Algorithms 

Sequential Minimal Optimization(SMO) is a support vector machine learning algo-
rithm (SVM) that is conceptually simple, easy to implement, generally faster, and has 
better scaling properties for difficult SVM problems than the standard SVM training 
algorithm [7]. Training a support vector machine requires the solution of a very large 
quadratic programming (QP) optimization problem which is quite time consuming. In 
the case of SMO, it breaks this large QP problem into a series of smallest possible QP 
problems which are solved analytically and avoids using a time-consuming numerical 
QP optimization as an inner loop.  The amount of memory required for SMO is linear 
in the training set size allowing SMO to handle very large training sets.  Because 
matrix computation is avoided, SMO scales somewhere between linear and quadratic 
in the training set size for various test problems, where as SVM algorithm scales 
somewhere between linear and cubic in the training set size.  SMO’s computation 
time is dominated by SVM evaluation which makes SMO faster for linear SVMs and 
sparse data sets. 

The Radial Basis Function (RBF) network is as a variant of artificial neural net-
work [8]. An RBF is embedded in three layers, viz., the input layer, the hidden layer, 
and the output layer. The input layer broadcasts the coordinates of the input vector to 
each of the nodes in the hidden layer and contains one neuron in the input layer for 
each predictor variable. Each node in the hidden layer then produces an activation 
based on the associated radial basis function and this layer has a variable number of 
neurons based on the training process. Finally in the output layer each node computes 
a linear combination of the activations of the hidden nodes. The result of an RBF 
network to a given input stimulus is completely determined by the activation func-
tions associated with the hidden nodes and the weights associated with the links be-
tween the hidden layer and the output layer.  

Random Forests (RF) grows many classification (decision) trees. To classify a new 
object from an input vector, RF puts the input vector down into each of the trees in 
the forest. Each tree gives a classification, and it is said that the tree "votes" for that 
class. The forest chooses that classification which has the most votes (over all the 
trees in the forest).The forest error rate depends on the correlation between any two 
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trees in the forest and the strength of each individual tree in the forest. Decreasing 
forest error rate increases the strength of the individual trees.  

2.4 Features and Modules 

Amino-acid composition: Amino-acid composition is the fraction of each amino acid 
occurring in a protein sequence.  This representation completely misses the order of 
amino acids. To calculate the fraction of all 20 natural amino acids following equation 
was used: 

 Fraction of amino acid  T      T        (1) 

Traditional dipeptide composition: Traditional dipeptide composition gives informa-
tion about each protein sequence giving fixed pattern length of 400 (20x20). This 
composition encompasses the information of the amino-acid composition along with 
the local order of amino acids. The fraction of each dipeptide was calculated accord-
ing to the equation: 

 Fraction of dep i  1 T     T       (2) 

In addition, to observe the interaction of the ith residue with the 3rd residue in the 
sequence, tripeptide (i + 2) was generated using Equation 3, 

 Fraction of tripep i  2  T      T       (3) 

where tripep (i + 2) is one of 8000 tripeptides. 
 
Hybrid SMO module(s): The prediction accuracy was further enhanced with various 
hybrid approaches by combining different features of a protein sequence. 

 
Hybrid 1: In this approach, we developed a hybrid module by combining amino acid 
composition and dipeptide composition features of a protein sequence as calculated 
by using Eqs. (1) and (2), respectively. This module was provided with a WEKA 
input vector pattern of 420 (20 for amino acid and 400 for dipeptide composition). 

 
Hybrid 2: In the second approach we developed another hybrid module by combining 
amino acid composition and tripeptide composition as calculated using Eq. (1) and 
(3), respectively.  The WEKA input vector pattern thus formed was 8020-dimensional 
[20 for amino acid and 8000 for tripeptide)]. 

2.5 Sequence Similarity Search 

In this study, a query sequence was searched against the existing non-redundant  
database of NAC proteins (95 sequences used in training set) using PSI-BLAST  
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(Position-Specific Iterative Basic Local Alignment Search Tool). Here PSI-BLAST 
was used instead of normal BLAST because it has the capacity to detect remote ho-
mologies. Position-Specific Iterated BLAST (PSI-BLAST), a variant of BLAST is 
used for the discovery of weak but relevant protein sequence matches. This carries out 
an iterative search in which sequences found in one round was used to build score 
model for next round. Thus, PSI-BLAST provides a method of detecting distant rela-
tionships between proteins. 

2.6 Evaluation Parameters 

We adopted five frequently considered measurements for evaluation, viz., accuracy 
(Ac), sensitivity (Sn), specificity (Sp), precision (Pr) and Mathew’s Correlation Coef-
ficient (MCC). Accuracy (Ac) defines the correct ratio between both positive (+) and 
negative (-) data sets. The sensitivity (Sn) and specificity (Sp) represent the correct 
prediction ratios of positive (+) and negative data (-) sets of NAC proteins respective-
ly. Precision is the proportion of the predicted positive cases that were correct. How-
ever, when the number of positive data and negative data differ too much from each 
other, MCC should be included to evaluate the prediction performance of the devel-
oped tool. MCC is considered to be the most robust parameter of any class prediction 
method. The value of MCC ranges from -1 to 1, and a positive MCC value stands for 
better prediction performance. Among the data with positive hits by NACPred, the 
real positives are defined as true positives (TP), while the others are defined as false 
positives (FP).  

 Sensitivity      100                     (4) 

 Specificity      100 (5) 

   Accuracy     x 100 (6) 

 Precision   100              (7) 

 MCC      
 (8) 

where TP and TN are truly or correctly predicted positive NAC protein and negative 
(non- NAC protein), respectively. FP and FN are falsely or wrongly predicted NAC 
and non-NAC proteins, respectively. 

2.7 ROC Curves 

To compare the performance of different algorithms and performance of different com-
position methods on best algorithm in detail, ROC curves were used for intuitively  
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visualizing prediction performance. ROC curves plots the true positive rate (TPR) as 
function of the false positive rate (FPR) which is equal to 1-specificity. The area un-
der the ROC curve is the average sensitivity over all possible specificity values which 
can be used as a measure of prediction performance at different thresholds. ROC 
curves of random predictors will be around the diagonal line from bottom left to top 
right of the graph with scores of about 0.5, while a perfect predictor will produce a 
curve along the left and top boundary of the square and will receive a score of one. 

3 Results and Discussion 

The prediction accuracy was assessed by two different validation techniques namely 
cross-validation and independent data set tests. In order to achieve maximum accura-
cy, five different feature extraction techniques, including three composition-based and 
two hybrid-based, were used and models were developed with three different algo-
rithms namely SMO, RBF and RF. Performance accuracy of SMO algorithm was 
found to be the best compared to other algorithms. A graphical representation of the 
accuracy values of the different feature extraction methods using SMO is shown in 
Figure 1. 

 

Fig. 1. Comparison of overall accuracy of various SMO modules constructed using five com-
position methods 

3.1 Composition-Based Modules 

The amino-acid composition-based module, with RBF algorithm, achieved an accura-
cy of 76% with different validation techniques applied in this study. The module  
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implemented based on traditional dipeptide composition (i+1) gave more information 
about frequency and local order of residues. This module could achieve a maximum 
accuracy of 90% with RBF algorithm. Tripeptide (i+2) composition-based module 
was also developed to obtain more comprehensive information on the sequence order 
effects. This could achieve an accuracy of 97% with sequential minimum optimiza-
tion algorithm (SMO) with various validation techniques. It could be observed that 
traditional dipeptide composition-based modules achieved higher accuracy compared 
to other independent compositions (Tables 1 and 2). This may be because dipeptide 
composition uses the actual order of sequence while calculating the composition 
where as the tripeptide is based on the pseudo sequence order. The detailed perfor-
mance of amino acid, traditional dipeptide and tripeptide based modules with differ-
ent validation techniques are presented in Tables 1 and 2. 

3.2 Sequence Similarity Search 

PSI-BLAST was used to compare a protein sequence with a created database to gen-
erate the homology of the given sequence with other related sequences [9]. This pro-
vided a broad range of information about each functional encoded protein. A 10-fold 
cross-validation was conducted with no significant hits and an accuracy of only 50% 
was obtained. This result suggests that similarity-based search tools alone cannot be 
efficient and reliable as compared to different composition-based modules. 

Table 1. Validation of independent data test results of NAC proteins with SMO  

Approaches Algorithm 

  Sn(%) Sp(%) Acc(%) Pr(%) MCC 

Aminoacid RBF 100 79 90 83 0.81 

 SMO 93 57 76 70 0.55 

 RF 93 64 79 74 0.61 

Dipeptide RBF 93 93 93 93 0.86 

 SMO 93 86 90 88 0.79 

 RF 87 93 90 93 0.80 

Tripeptide RBF 33 86 59 71 0.22 

 SMO 100 93 97 94 0.93 

 RF 93 57 76 70 0.55 

Hybrid 1 RBF 100 86 93 88 0.87 

 SMO 93 86 90 88 0.79 

 RF 93 64 79 74 0.61 

Hybrid 2 RBF 33 86 59 71 0.22 

 SMO 100 93 97 94 0.93 

 RF 93 57 76 70 0.55 
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Table 2. Comparison of the prediction performance of three machine learning algorithms with 
different compositions 

Approach Algorithm 5-fold cross validation 8-fold cross validation Leave one out cross validation 

  Sn Sp Ac Pr MCC Sn Sp Ac Pr MCC Sn Sp Ac Pr MCC 

Amino acid RBF 100 79 90 83 0.81 100 79 90 83 0.81 100 79 90 83 0.81 

 SMO 93 57 76 70 0.55 93 57 76 70 0.55 93 57 76 70 0.55 

 RF 93 64 79 74 0.61 93 64 79 74 0.61 93 64 79 74 0.61 

Dipeptide RBF 93 93 93 93 0.86 93 93 93 93 0.86 93 93 93 93 0.86 

 SMO 93 86 90 88 0.79 93 86 90 88 0.79 93 86 90 88 0.79 

 RF 87 93 90 93 0.80 87 93 90 93 0.80 87 93 90 93 0.80 

Tripeptide RBF 33 86 59 71 0.22 33 86 59 71 0.22 33 86 59 71 0.22 

 SMO 100 93 97 94 0.93 100 93 97 94 0.93 100 93 97 94 0.93 

 RF 93 57 76 70 0.55 93 57 76 70 0.55 93 57 76 70 0.55 

Hybrid1 RBF 100 86 93 88 0.87 100 86 93 88 0.87 100 86 93 88 0.87 

 SMO 93 86 90 88 0.79 93 86 90 88 0.79 93 86 90 88 0.79 

 RF 93 64 79 74 0.61 93 64 79 74 0.61 93 64 79 74 0.61 

Hybrid 2 RBF 33 86 59 71 0.22 33 86 59 71 0.22 33 86 59 71 0.22 

 SMO 100 93 97 94 0.93 100 93 97 94 0.93 100 93 97 94 0.93 

 RF 93 57 76 70 0.55 93 57 76 70 0.55 93 57 76 70 0.55 

3.3 Hybrid Approach 

In addition to the different composition methods, hybrid methodologies were also 
developed and used by combining various features of a protein sequence. Firstly, 
hybrid 1 was developed by combining amino acid composition and dipeptide compo-
sition. This obtained an accuracy of 90% with SMO algorithm. Secondly, hybrid 2 
was developed by combining amino acid and tripeptide composition which also had a 
higher accuracy of 97% with SMO algorithm. Comparison of both of these hybrid 
approaches revealed that hybrid 2 composition method achieves an accuracy rate 
equivalent to tripeptide (i+2) composition method (Fig. 1).     

3.4 ROC Curves 

A ROC curve is a measure which shows the relationship between sensitivity and spe-
cificity of a given class. To evaluate the best classifier obtained, we plotted ROC 
curves based on the results of independent data test and cross validation (results ob-
tained were similar). Figure 2 shows the ROC curve for SMO algorithm for five dif-
ferent compositional methods and it can be observed from the figure that all the 
curves result in a straight horizontal line. This is a desirable property of ROC curves 
and such models have high probability of correct prediction, with a minor chance of 
negative prediction. This is also reflected by area under the curve values of all com-
positions of SMO models. Figure 3 shows the best results of each algorithm. 
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Fig. 2. ROC curve of SMO algorithm with various composition methods 

 

Fig. 3. ROC curve for the three algorithms for the best prediction results  

4 Conclusions 

Tools and resources are being developed to maximally construe the rice genome se-
quence. A major difficulty with rice annotation is the lack of accurate gene prediction 
programs. Rice has a substantial number of genes that are hypothetical in that they are 
predicted solely on the basis of gene prediction programs, making it vital that the quali-
ty of gene prediction programs for rice be improved further. Moreover rice, which is a 
model species, is the plant in which the function of most cereal genes will be discov-
ered. Thus, the availability of systems/tools that can predict characteristics from se-
quence is essential to the full characterization of expressed proteins. Computational 
tools provide faster and accurate access to predictions for any organism and plants.  
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Identification of NAC proteins from sequence databases is difficult due to poor se-
quence similarity. In this work, we present a new method for NAC prediction based 
on SMO implemented in WEKA. The performance was found to be highly satisfacto-
ry. Comparison between different machine learning algorithms viz. RBF Network and 
Random forest was also carried out. Very high prediction accuracies for the validation 
tests show that NACPred is a potentially useful tool for the prediction of NAC pro-
teins from genome of indica rice. 
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