
S. Unnikrishnan, S. Surve, and D. Bhoir (Eds.): ICAC3 2013, CCIS 361, pp. 131–146, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Quality Factor Assessment and Text Summarization
of Unambiguous Natural Language Requirements

R. Subha1 and S. Palaniswami2

1 Department of Computer Science and Engineering,
Sri Krishna College of Technology, Coimbatore – 641042, India

kris.subha@gmail.com
2 Government College of Engineering, Bargur -635104, India

Abstract. The software requirements are documented in natural language to
make it easy for the users to understand the document. This flexibility of natural
language comes with the risk of introducing unwanted ambiguities in the re-
quirements thus leading to poor quality. In this paper, we propose and evaluate
a framework that automatically analyses the ambiguities in a requirements
document, summarizes the document and assess its quality. We analyse the
ambiguities that can occur in natural language and present a method to auto-
mate ambiguity analysis and consistency and completeness verification that are
usually carried out by human reviewers which is time consuming and ineffec-
tive. The Open Text Summarizer based system summarizes the document and
provides an extract of it. We use a decision tree based quality evaluator that
identifies the quality indicators in the requirements document and evaluates it.

Keywords: Software Requirements Document, Natural language Processing,
Ambiguity, Text summarization, Quality factors.

1 Introduction

Requirements collection plays a significant role during the development of a project.
Requirements engineering is the process of discovering, by identifying stakeholders
and their needs, and documenting these in a form that is amenable to analysis, com-
munication and subsequent implementation. As a software development life cycle
progresses, if the requirements retrieved are not formally documented or analyzed or
updated, the quality of the software will degrade. Requirements consistency checking,
Requirements tracing etc are done to improve the quality of the software. Most of
these activities are done automatically and the rest are constituted by the human ana-
lyst. Therefore, to improve the quality of the software researchers are immensely
involved in discovering better solutions. Ambiguity is an essential feature to be consi-
dered as it affects the Natural language requirements document and thereby affects
the quality of the software. Many pre-processing activities are involved to carry out
the ambiguity detection and classification. Earlier, the requirements gathering team
was equipped with a handbook in order to remove ambiguity while preparing the
requirements documents. When it comes to reading the requirements documents, they

132 R. Subha and S. Palaniswami

are large in amount and time consuming. The Natural Language requirements docu-
ments are error-prone. Before analyzing the requirements documents for the levels of
ambiguity the evaluation of requirements documents needs to be considered as it in-
volves a significant role in analyzing the document characteristics. A Software Re-
quirements document (SRS) is unambiguous if, and only if, every requirement stated
therein has only one interpretation”, as stated in IEEE Recommended Practice for
Software Requirements Specifications. SRSs are usually written in natural language,
often augmented or enhanced by information in other notations, such as formulae, and
diagrams. Natural Language is preferred to write every initial conceptual document
and every request to proposal virtually. A recent online survey of businesses requiring
software, conducted at University of Trento in Italy shows that a majority of docu-
ments available for requirements analysis are provided by the user or are obtained by
interviews [2]. Moreover,

• 71.8% of these documents are written in common natural language,
• 15.9% of these documents are written in structured natural language, and
• Only 5.3% of these documents are written in formalized language.

1.1 Natural Language Processing

Natural Language Processing (NLP) is a theoretically motivated range of computa-
tional techniques for analyzing and representing naturally occurring texts at one or
more levels of linguistic analysis for the purpose of achieving human-like language
processing for a range of tasks or applications. Automatic summarization, Co refer-
ence resolution, Morphological segmentation, Named entity recognition, Natural lan-
guage generation, Natural language understanding, Part-of-speech tagging, Parsing,
Relationship extraction, Sentence breaking, Sentiment analysis, Word segmentation,
Word sense disambiguation are the tasks involved in NLP.

1.2 Text Summarization

A summary can be defined as a text that is produced from one or more texts, that
contain a significant portion of the information in the original text(s), and that is no
longer than half of the original text(s) [3][4]. Text summarization is the process of
distilling the most important information from a source (or sources) to produce an
abridged version for a particular user (or users) and task (or tasks).When the summary
replaces the original document; the output may be extract or abstract. A differentia-
tion can be made between the Generic summaries and user-focused summaries
(query-driven). Based on the output, a detailed differentiation is made between indica-
tive summaries that indicate what topics are addressed in the source text and the
details of what the original text is about, and the informative summaries, which are
intended to cover the topics in the source text.

1.3 Quality Indicators

Quality Indicators [5] are syntactic aspects of the requirements specifications that can
be automatically calculated and that provide information on a particular quality

 Quality Factor Assessment and Text Summarization 133

property of the requirements specifications themselves. The Quality indicators incor-
porated in the Quality model are classified into indicators related to Requirement
Sentences Quality (RSQ) and Requirement Document Quality (RDQ). Requirement
Sentences Quality (RSQ) related indicators are Implicit Subject Sentences, Multiple
Sentences, Optional Sentences, Subjective Sentences, Underspecified Sentences, Va-
gue Sentences and Weak Sentences. Requirements Document Quality (RDQ) related
indicators are Comment frequency, Readability Index, under referenced Sentences
and Unexplained Sentences.

2 Related Work

Wee Meng Soon et.al, proposed “A machine learning approach to co reference resolu-
tion of noun phrases” [12]. Here, a prerequisite for co reference resolution is to obtain
the majority, if not all, of the possible markables[11][12] in a raw input text. To deter-
mine the markables, a pipeline of natural language processing (NLP) modules is used.
It consists of tokenization, sentence segmentation, morphological processing, part-of-
speech tagging, and noun phrase identification, named entity recognition. As far as co
reference resolution is concerned, the goal of these NLP modules is to determine the
periphery of the markables, and to endow with the indispensable information about
each markable for subsequent generation of features in the training examples.

Chinatsu Aone and Scott William Bennett proposed “Applying Machine Learning
to Anaphora Resolution”[1].This system uses feature vectors for pairs of an ana-
phor[6][9] and its possible antecedent. A total of 66 features are used, and they in-
clude lexical (e.g. category), syntactic (e.g. grammatical role), semantic (e.g. semantic
class), and positional (e.g. distance between anaphor and antecedent) features. Those
features can be either unary features (i.e. features of either an anaphor or an antece-
dent such as syntactic number values) or binary features (i.e. features concerning
relations between the pairs such as the positional relation between an anaphor and an
antecedent).

Elena Lloret proposed “Text Summarization: An overview”[4] which gives an
overall idea about text summarization.Traditionally, summarization has been
decomposed into three main stages[3][8] .

According to the Sparck Jones[8] approach, the stages are:

• Interpretation of the source text to obtain a text representation,
• Transformation of the text representation into a summary representation, and,
• Finally, generation of the summary text from the summary representation

Sparck Jones[8] distinguishes three classes of context factors:

• Input factors. The features of the text to be summarized crucially determine the
way a summary can be obtained. These falls into three groups, which are: text form
(e.g. document structure); subject type (ordinary, specialized or restricted) and unit
(single or multiple) documents as input.

134 R. Subha and S. Palaniswami

• Purpose factors. These are the most important factors. They fall under three cate-
gories: situation refers to the context within the summary is to be used; audience
(i.e. summary readers) and use (what is the summary for?).

• Output factors. In this class, material (i.e. content), format and style, are grouped.

Hui Yang et.al, [6] developed an architecture of an automated system to support
requirements writing, by incorporating nocuous ambiguity detection into the require-
ments workflow. The core of such architecture comprises a classifier that automatical-
ly determines whether an instance of anaphoric ambiguity is nocuous or innocuous.
The classifier is developed using instances of anaphoric ambiguity extracted from a
collection of requirements documents. For each instance, a set of human judgments
are used to classify. A classifier is then trained on the linguistic features of the text
and the distribution of judgments to identify instances of nocuous ambiguity in new
cases. Several approaches can be followed to ensure a good quality requirements doc-
ument. Another approach is the linguistic analysis of a NL requirements document
intended to confiscate most of the issues related to readability and ambiguity. A lot of
studies dealing with the evaluation and the achievement of quality in NL requirement
documents can be found in the literature and Natural Language Processing (NLP)
tools have been recently applied to NL requirements documents for inspecting the
consistency and completeness.

3 Methodology

In this paper, we propose a method for summarizing quality requirements which
includes an open NLP based system using the MaxEnt models for the detection of
sentence end words, tokens, parts-of-speech, named entities, anaphors and co refer-
ring phrases. The ambiguity detection module of the system is built on the model
proposed by Hui Yang et.al [6] and is refined to reduce human intervention. The
detection of anaphoric ambiguity and identification of the co-referring noun phrases
based on the anaphors and their relationship with other words are done automatically
by the system. The unambiguous requirements are summarized to the number of
sentences specified by the user. The system has the quality evaluation module to eva-
luate the quality of the NL Requirements document. The proposed system takes re-
quirements document [15] as input and reads the content. The sentence boundaries are
detected by the sentence detector by reading the contents of the file. The tokenize
module gets the input which is in the form of sentences and identifies the tokens in
the sentences. These tokens are subsequently used by the POS tagger to mark the
Parts-of-Speech tags. The construction of parse tree is done by the parser by utilizing
the POS tag details. The parse tree is used by the ambiguity detection module which
uses a classifier both to identify the co referring Noun Phrases (NP) present in the
sentences as well as to classify the sentences as ambiguous. The significant sentences
are extracted by the text summarizer from the document. The contents of the require-
ments document are utilized in order to discover the quality indicators and evaluate
them by the quality evaluator.

 Quality Factor Assessment and Text Summarization 135

3.1 Text Preprocessing

The critical part of any NLP system is the Text pre-processing since the characters,
words, and sentences recognized at this stage constitute the elemental units passed to
all advanced processing stages, from analysis and tagging components, such as mor-
phological analyzers and part-of-speech taggers, through applications, such as infor-
mation retrieval and machine translation systems. A “pipeline” of text processing
components is used in order to provide value from text by the NLP applications, such
as customizable information extraction or question answering application. By means
of these systems, the performance of each successive system depends on the perfor-
mance of each of the components that preceded it in the pipeline. In this way, errors
made by an "upstream" component (like a part-of-speech tagging system) can cause a
negative impact on the performance of each "downstream" system (such as a named
entity recognizer or co reference resolution system).This is shown in Fig 1.

Fig. 1. Pipeline of Natural language processing modules

The modules of natural language processing can be described as follows.

Sentence Segmentation [14]. The documents are split into sentences by the Sentence
Segmentation system that are later processed and annotated by "downstream" compo-
nents. When scanned through the input text, one of these characters ('.', '!', '?') is en-
countered and a way for deciding whether or not it marks the end of a sentence is to
be decided. Here maximum entropy model (MaxEnt) is used. A set of predicates re-
lated to the possible end-of-sentence positions is generated. Various features, relating
to the characters before and after the possible end-of-sentence markers, are used to
generate this set of predicates. This set of predicates is then evaluated against the
MaxEnt model. The characters including the position of the end-of-sentence marker
are separated off into a new sentence if the best outcome indicates a sentence break.
The indication whether a punctuation character denotes the end of a sentence or not is
detected by the Sentence Detector. This shows that a sentence is defined as the long-
est white space trimmed character sequence between two punctuation marks. An
exception to this rule would be the first and last sentence. The first non whitespace
character is assumed to be the beginning of a sentence, and the last non whitespace
character is assumed to be an ending of a sentence. It is also possible to perform toke-
nization first and let the Sentence Detector process the already tokenized text but
usually Sentence Detection is done before the text is tokenized thereby using the
pre-trained models.

Tokenization [14]. Tokenization systems break sentences into sets of word-like ob-
jects which represent the smallest unit of linguistic meaning considered by a natural
language processing system. This tokenize module will split words that comprises of
contractions: for example, it will split "don't" into "do" and "n't", because it is de-
signed to pass these tokens on to the other NLP tools, where "do" is recognized as a
verb, and "n't" as a contraction of "not", an adverb modifying the preceding verb "do".

136 R. Subha and S. Palaniswami

The input character sequences are split into tokens by the Tokenize module. Tokens
are usually words, punctuation, numbers, etc. It is essential to ensure that tokenization
produces tokens of the type expected by later text processing components.

Various tokenizer implementations are

• Whitespace Tokenizer - A whitespace tokenizer, non whitespace sequences are
identified as tokens

• Simple Tokenizer - A character class tokenizer, sequences of the same character
class are tokens

• Learnable Tokenizer - A maximum entropy tokenizer, detects token boundaries
based on probability model

Parts-of-Speech tagging [14]. Part-of-speech tagging is the act of assigning a Part of
Speech (POS) to each word in a sentence. The POS tags consist of coded abbrevia-
tions conforming to the scheme of the Penn Treebank, the linguistic corpus developed
by the University of Pennsylvania. Based on the token itself and the context of the
token the Part of Speech Tagger marks tokens with its consequent word type. A token
can have multiple POS tags depending on the token and the context. The POS Tagger
uses a probability model to identify the correct POS tag out of the tag set. A tag dic-
tionary is used to increase the tagging and runtime performance of the tagger in order
to restrict the possible tags for a token.

Named Entity Recognition[14]. Named Entity Recognition systems categorize
phrases (referred to as entities) found in text with respect to a potentially large
number of semantic categories, such as person, organization, or geopolitical
location."Name finding" is the term used by the OpenNLP library to refer to the iden-
tification of classes of entities within the sentence - for example, people's names,
locations, dates, and so on. Seven different types of entities, symbolized by the seven
maximum entropy model files in the NameFind subfolder - date, location, money,
organization, percentage, person, and time are established by the name finder .Other
classes of entities are set up by utilizing the SharpEntropy library to train the new
models. The algorithm is far from foolproof as it is dependent on the use of training
data and there are many, many tokens that might come into a category such as "per-
son" or "location".

NLP Models. OpenNLP[14] models are trained models developed for use in the
NLP. The list of models used in the system is shown in Table 1.

Table 1. List of Models

Component Description
Tokenizer Trained on OPENNLP training data
Sentence Detector Trained on OPENNLP training data
POS Tagger MAXENT model with tag dictionary
Name Finder Date name finder model
Name Finder Location name finder model
Name Finder Money name finder model
Name Finder Organization name finder model
Name Finder Percentage name finder model
Name Finder Person name finder model
Name Finder Time name finder model
Chunker Trained on conll2000 shared task data

 Quality Factor Assessment and Text Summarization 137

3.2 Ambiguity Detection

The ambigituy detection module includes coreference resolution and ambiguity
classification.

Co Reference Resolution. Co reference Resolution is the process of identifying the
linguistic expressions which make reference to the same entity or individual within a
single document or across a collection of documents. Co reference occurs when mul-
tiple expressions in a sentence or document refer to the same entity in the world.
Initially all possible references need to be extracted from the document before deter-
mining the co reference for a document. Every reference is a possible anaphor, and
every reference before the anaphor in document order is a possible antecedent of the
anaphor, except when the anaphor is nested. If the anaphor is a child or nested refer-
ence, then the possible antecedents must not be any reference with the same root ref-
erence as the current anaphor [11][12]. Still, the possible antecedents can be other
root references and their children that are before the anaphor in document order. The
new ambiguous instance, potential pairs of co referring NPs are offered to the
classifier to resolve whether the two NPs co refer or not in order to estimate the co
reference relations among the possible NPs antecedent candidates. In this system,
heuristics-based methods are built-in to exploit the factors that influence co reference
determination. The heuristics are incorporated in terms of feature vectors and are
modeled based on the Table 2.

Table 2. Feature vector description for coreference resolution heuristics

Feature
type Feature Description

String
matching

Full string matching Y if both NPs contain the same string aftere the removal of
non-informative words,else N

Head word matching Y if both NPs contain the same Headword,else N

Modifier matching Y if both NPs share the same modifier substring, else N

Alias name Y if one NP is the alias name of the other NP, else N

Grammatical

NP type (NPi) Y if NPi is either definite NP or demonstrative NP, else N

NP type (NPj) Y if NPj is either definite NP or demonstrative NP, else N

Proper name Y if both NPs are proper names, else N

Number agreement Y if NPi and NPj agree in number, else N

Syntactic

PP attachment Y if one NP is the PP attachment of the other NP, else N

Appostive Y if one NP is in appostive to the other NP, else N

Syntactic role Y if both NPs have the same syntactic role in the sentence,
else N

138 R. Subha and S. Palaniswami

Each instance of an anaphor is associated with a set of candidate antecedents. A
pair wise comparison of the NPs is accomplished by the classifier to identify potential
co reference relations among the candidate antecedents. Likewise, each NP pair is
tested for co reference, and sets of co referent candidates are identified.

Ambiguity Classification. Anaphoric ambiguity [7] occurs when the text offers two
or more potential antecedent candidates either in the same sentence or in a preceding
one, as in, ‘The function shall build the parse tree, and then display it in a new win-
dow’. The expression to which an anaphor [9] refers is called its antecedent. Antece-
dents for personal pronoun [10] anaphora are nouns or noun phrases (NPs) found
elsewhere in the text, usually preceding the anaphor itself. Based on multiple human
judgments of the suitable NP antecedent candidate in terms of an anaphoric ambiguity
instance [6], the antecedent can be classified. A number of preference heuristics are
also included to model the factors that may favor a particular interpretation. A ma-
chine learning algorithm is implemented with a set of training instances to construct a
classifier. Given an anaphor and a set of possible NP antecedents, the classifier then
predicts how strong the preference for each NP is, and from there, whether the
ambiguity is nocuous or innocuous. The Naive Bayes classifier is used to classify the
antecedents.

Naive Bayes Classification
The Naive Bayes Classifier technique is based on the Bayesian theorem and is partic-
ularly suited when the dimensionality of the inputs is high.

Algorithm
D : Set of tuples
 Each Tuple is an ‘n’ dimensional attribute vector
 X : (x1,x2,x3,…. xn)
 Let there be ‘m’ Classes : C1,C2,C3…Cm
 Naive Bayes classifier predicts X belongs to Class Ci iff
 P (Ci/X) > P(Cj/X) for 1<= j <= m , j <> i
 Maximum Posteriori Hypothesis
 P(Ci/X) = P(X/Ci) P(Ci) / P(X)
 Maximize P(X/Ci) P(Ci) as P(X) is constant
with many attributes, it is computationally expensive to evaluate P(X/Ci).
 Naive’s Assumption of “class conditional independence”
 P(X/Ci) = P(x1/Ci) * P(x2/Ci) *…* P(xn/ Ci)

The Naive bayes classifier uses the feature vectors in Table 3 to classify the antece-
dent and the anaphoric ambiguity.

 Quality Factor Assessment and Text Summarization 139

Table 3. Feature vector description for Antecedent classification heuristics

Feature Type Feature Description

Linguistics

Number agreement

Y if NP agree in number; N_P if NP does not agree
in number but it has a person property; N if NP
doesn’t agree in number;UNKNOWN if the number
information cannot be determined

Definiteness Y if NP is a definite NP; else N Non-prepositional
NP Y if NP is a non-prepositional NP; else N

Syntactic constraint Y if NP satisfies syntactic constraint; else N

Syntactic parallelism Y if NP satisfies syntactic parallelism; else N

Coordination pattern Y if NP satisfies coordination pattern; else N

Non-associated NP Y if NP is a non-associated NP; else N

Indicating verb Y if NP follows one of the indicating verbs; else N

Semantic constraint Y if NP satisfies semantic constraint; else N

Semantic parallelism Y if NP satisfies semantic parallelism; else N

Domain-specific term Y if NP is contained in the domain-specific term list;
else N

Context

Centering Y if NP occurs in the paragraph more than twice;
else N

Section heading Y if NP occurs in the heading of the section; else N

Sentence recency INTRA_S if NP occurs in the same sentence as the
anaphor; else INTER_S

Proximal Integral value n, where n means that NP is the nth
NP to the anaphor in the right-to-left order

Statistics

Local-based
collocation frequency

Integral value n, where n refers to the occurrence
number of the matched co-occurrence pattern
containing NP in local requirements document

BNC-based
collocation frequency

Y if the matched co-occurrence pattern containing
NP appears in the word list returned by the sketch
engine; else N

The machine learning algorithm allots a weighted antecedent tag to the NP candi-

date while they are presented with a pronoun and a candidate. Likewise, the antece-
dent tag information is used by the system to predict whether the anaphora instance
displays nocuous ambiguity and then they are disambiguated.

3.3 Text Summarization

Summarization can be exemplified as approaching the problem at the surface, entity,
or discourse levels in the conventional system. In this paper, system surface level
approach is used. Surface level approach inclines to represent information taking
shallow features and then selectively combining them together in order to obtain a
salience function that can be used to extract information.Among these features, are:

Thematic features rely on word (significant words) occurence statistics, so that
sentences containing words that occur frequently in a text have higher weight than the

140 R. Subha and S. Palaniswami

rest which illustrates the fact that these sentences are the vital ones and they are hence
extracted. Before doing term frequency, altering task must be done using a stop-list
words which contains words such as pronouns, prepositions and articles. This is the
classical statistical approach. Nevertheless, from a point of view of a corpus-based
approach td*idf measure (commonly used in information retrieval) is extremely
useful to determine keywords in text.

Location refers to the position in text, paragraph or any other particular section which
exhibits the point that they contain the target sentences to be included in the summary.
This is usually genre-dependent, but there are two fundamental wide-ranging methods,
namely leadmethod and the title-based method with cue-word method .

Background assumes that the importance of meaning units is detemined by the
presence of terms from the title or headings, initial part of the text or a user's query.

Cue words and phrases, such as "in conclusion", "important", "in this paper",etc.
can be very useful to determine signals of relevance or irrelevance and such units are
detected both automatically and manually.The text summarization is implemented
based on Open Text Summarizer.

3.4 Quality Factor Assessment

Quality indicators are syntactic aspects of the requirements specifications that can be
automatically calculated and that provide information on a particular quality property
of the requirements specifications themselves. The system uses decision tree to
evaluate the quality of the NL requirement document.Table 4 shows the different
quality indicators and their description.

Table 4. Quality indicators and their description

Quality indicator Description Notes

Optionality An Optionality Indicator
reveals a requirement sentence
containing an optional part
(i.e. a part that can or cannot
considered)

Optionality- revealing
words: possibly,
eventually, if case,if
possible, if appropriate, if
needed

Subjectivity A Subjectivity Indicator is
pointed out if sentence refers
to personal opinions or feeling

Subjectivity-revealing
wordings: similar, better,
similarly, worse, having in
mind, take into account,
take into consideration,
as[adjective] as possible

Vagueness A Vagueness Indicator is
pointed out if the sentence
includes words holding
inherent vagueness, i.e. words
having a non uniquely
quantifiable meaning

Vagueness-revealing
words:clear, easy, strong,
good,bad, efficient,
useful,significant,
adequate, fast,recent, far,
close, in front

Weakness A Weakness Indicator is
pointed out in a sentence then
it contains a weak main verb

Weak verbs: can,
could,may.

 Quality Factor Assessment and Text Summarization 141

Table 4. (Continued)

Implicity An Implicity Indicator is
pointed out in a sentence when
the subject is generic rather
than specific.

Subject expressed by:
Demonstrative adjective
(this, these,that, those) or
Pronouns (it, they, ..).
Subject specified
by:Adjective
previous,next, following,
last,..)or Preposition

Readability It is the value of ARI
(Automated Readability Index)
[ARI=WS + 9*SW where WS
is the average words per
sentence, SW is the average
letters per word]

4 Experiment and Results

The system is implemented using C#,.Net as front end and SQLite as the back end.

4.1 Text Preprocessing

Text preprocessing involves steps to be performed before the original text is being
given as input to the next stage of the system. The requirements document written in
natural language is given as the input and parsed sentences are the output. The
Sentence Detector detects whether the punctuation character marks the end of a
sentence or not.(i.e) Given a chunk of text, find the sentence boundaries. The input
character sequence are broken into tokens.(i.e) Separate a chunk of continuous text
into separate words by the Tokenizer. Tokens are usually words, punctuation,
numbers, etc. Fig 2 shows the output of tokenizer.

Fig. 2. Tokenization

The Part of Speech Tagger in scripts tokens with their equivalent word type based
on the token itself and the context of the token. A token might have multiple POS tags
depending on the token and the context. A tag dictionary is employed to increase the
tagging and runtime performance of the tagger in order to restrict the possible tags for
a token. Parsing determines the parse tree (grammatical analysis) of a given sentence.
The output of parsing is shown in Fig 3.

142 R. Subha and S. Palaniswami

Fig. 3. Parser

4.2 Ambiguity Detection

The parsed sentences from requirements document are given as the input and Co re-
ferring NPs are the output. Based on multiple human judgments of the most likely NP
antecedent candidate in terms of an anaphoric ambiguity instance a classifier is
implemented. For every pronoun and associated NP antecedent candidates, the ante-
cedent classifier allots one of the antecedent preference labels, Positive (Y), Question-
able (Q), and Negative (N), to each candidate. Later the calculation is done to verify
whether the anaphoric ambiguity is nocuous or innocuous. This information is then
used to Fig 4 shows the output of the ambiguity detection module. The requirements
statements are classified based on the threshold value.

Fig. 4. Ambiguity Classification

4.3 Text Summarization

Text summarization involves reducing a text document or a larger corpus of multiple
documents into a short set of words or paragraph that conveys the main meaning of
the text. Sentence detection and tokenization,token ranking and finally prioritizing
sentences based on the accumulated ranking are performed in Text Summarization.

 Quality Factor Assessment and Text Summarization 143

4.4 Quality Factor Evaluation

The evaluation of the quality factors of the requirements document are carried out by
involving qualtiy indicators.The document is verified and the quality values are
assigned based on the quality indicators.This is shown in Fig 5.

Fig. 5. Quality Factor Evaluation

5 Performance Evaluation

The output of the Ambiguity detection module is compared with “ARKref NP
coreference system”[16]. The ARKref coreference resolution system is implemented in
java and is available in the web. The ARKref resolution system uses the BNC corpora,
web corpora and Wordnet to identify the NP coreferences among the NPs in the
sentences. The result of the comparison is shown in Table 5. The input for the evaluation
are taken from the requirements dataset collected from RE@UTS website [15].

Table 5. Results of Coreference resolution

S.No
Number of
input
sentences

Actual NP
coreference

NP Coreferences detected

Proposed system
ARKref
system

1 11 3 3 2
2 10 8 7 7
3 10 6 6 4

Table 6. Precision, Recall, F Measure values

S.No Proposed system ARKref system

Precision Recall F Measure Precision Recall F Measure

1 1 0.2727 0.4284 0.666 0.1818 0.2848

2 0.8757 0.7 0.777 0.8757 0.7 0.777

3 1 0.6 0.75 0.666 0.4 0.4998

144 R. Subha and S. Palaniswami

Fig. 6. Precision for co reference resolution

From the precision for co reference resolution graph (Fig 6) it is inferred that the
proposed system provides accurate result over ARKref system.

Fig. 7. Recall for co reference resolution

The Recall values in Fig 7 show that the proposed system provides false positives
less than that of the ARKref system.

Fig. 8. F Measure for coreference resolution

Table 7 shows ambiguity judgement variation based on the threshold value set by
the requirement analyst.

 Quality Factor Assessment and Text Summarization 145

Table 7. Results of Ambiguity detection

Threshold value Actual ambiguity
Detected nocuous

ambiguity

0.5 3 1

0.6 3 2

0.65 3 3

0.7 3 3

0.75 3 3

0.8 3 3

0.85 3 6

0.9 3 7

1 3 8

Fig. 9. Threshold vs Nocuous ambiguity detection

The graph in Fig 9 shows that the nocuity detection varies as the threshold value
increases. The accuracy of nocuity detection drops when the threshold value is set
above 0.8. Thus better accuracy is achieved in the proposed system when the
threshold is set between 0.65 and 0.8.

6 Conclusion

Thus a framework is proposed that can automatically analyse the ambiguities for a
given natural language requirement document. Initially the corefering NPs were
utilised to classify the pronouns and further the ambiguity detection module was used
to detect the nocuous statements from the requirments document by the antecedent
classifier.Based on the threshold value the nocuous anaphoric ambiguity was
differentiated from that of the innocuous ambiguities. The system used OpenNLP
models developed by OpenNLP Apache software foundation. The accuracy of the
proposed system was enhanced by Brown corpora and Wordnet dictionary. The Open
Text Summarizer based system summarized the document and provided an extract of
it. The decision tree based quality evaluator identified the quality indicators
effectively in the requirements document and evaluated the quality of the requirement
document provided for analysis.

146 R. Subha and S. Palaniswami

References

1. Aone, C., Bennett, S.W.: Applying machine learning to anaphora resolution. In: Connec-
tionist, Statistical and Symbolic Approaches to Learning for Natural Language Processing,
pp. 302–314 (1996)

2. Berry, D.M., Kamsties, E., Krieger, M.M.: From Contract Drafting to Software Specifica-
tion: Linguistic Sources of Ambiguity, University of Waterloo, Ontario, Canada (2003)

3. Hovy, E.: Automated Text Summarization. In: Mitkov, R. (ed.) The Oxford Handbook of
Computational Linguistics (2005)

4. Lloret, E., Palomar, M.: Text summarization in progress: a literature review. Artificial In-
telligence Review 37 (2012)

5. Lami, G.: QuARS: A Tool for Analyzing Requirement, CMU/SEI-2005-TR-014 (2005)
6. Yang, H., de Roeck, A., Gervasi, V., Willis, A., Nuseibeh, B.: Analyzing anaphoric ambi-

guity in natural language requirement. Requirements Engineering Journal 16, 163–189
(2011)

7. Dagan, I., Itai, A.: Automatic processing of large corpora for the resolution of anaphora
references. In: Proceedings of the 13th International Conference on Computational Lin-
guistics, pp. 1–3 (1990)

8. Jones, K.S.: Automatic summarizing: factors and directions. Advances in Automatic Text
Summarization. MIT Press (1999)

9. Denber, M.: Automatic resolution of anaphora in English. Technical report. Eastman Ko-
dak Co. (1998)

10. Brennan, S.E., Froedman, M.W., Pollard, C.J.: A centering approach to pronouns. In: Pro-
ceedings of the 25th Annual Meeting of the Association for Computational Linguistics
(ACL), pp. 155–162 (1987)

11. Ng, V., Cardie, C.: Improving machine learning approaches to co reference resolution. In:
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics,
pp. 104–111 (2002)

12. Soon, W.M., Ng, H.T., Lim, D.C.Y.: A machine learning approach to co reference resolu-
tion of noun phrases. Computational Linguistics - Special Issue on Computational Ana-
phora Resolution Archive 27, 521–544 (2001)

13. http://incubator.apache.org/opennlp/
14. http://research.it.uts.edu.au/re/
15. http://www.ark.cs.cmu.edu/ARKref/

	Quality Factor Assessment and Text Summarization of Unambiguous Natural Language Requirements
	Introduction
	Natural Language Processing
	Text Summarization
	Quality Indicators

	Related Work
	Methodology
	Text Preprocessing
	Ambiguity Detection
	Text Summarization
	Quality Factor Assessment

	Experiment and Results
	Text Preprocessing
	Ambiguity Detection
	Text Summarization
	Quality Factor Evaluation

	Performance Evaluation
	Conclusion
	References

