
S. Unnikrishnan, S. Surve, and D. Bhoir (Eds.): ICAC3 2013, CCIS 361, pp. 119–130, 2013.
© Springer-Verlag Berlin Heidelberg 2013

MapReduce Frame Work: Investigating Suitability
for Faster Data Analytics

Monali Mavani1 and Leena Ragha2

1 SIES College of Management Studies
Navi Mumbai, India

monamavani@gmail.com
2 Ramrao Adik Institute of Technology

Navi Mumbai, India
leena.ragha@gmail.com

Abstract. Faster data analytics is the ability to generate the desired report in
near real time. Any application that looks at an aggregated view of a stream of
data can be considered as an analytic application. The demand to process vast
amounts of data to produce various market trends, user behavior, fraud behavior
etc. becomes not just useful, but critical to the success of the business. In the
past few years, fast data, i.e., high-speed data streams, has also exploded in vo-
lume and availability. Prime examples include sensor data streams, real-time
stock market data, and social-media feeds such as Twitter, Facebook etc. New
models for distributed stream processing have been evolved over a time. This
research investigates the suitability of Google’s MapReduce (MR) parallel
programming frame work for faster data processing. Originally MapReduce
systems are geared towards batch processing. This paper proposes some optimi-
zations to original MR framework for faster distributed data processing applica-
tions using distributed shared memory to store intermediate data and use of
Remote Direct Access (RDMA) technology for faster data transfer across
network.

Keywords: Map Reduce, faster data analytics, distributed shared memory,
Remote Direct Memory Access.

1 Introduction

Today, with the growing use of mobile devices constantly connected to the Internet,
the nature of User-generated data has changed, it has become more real-time. The
New York Stock Exchange generates about one terabyte of new trade date per day,
Facebook Hosts approximately 10 billion photos, taking up one petabyte of storage,
The Internet Archives stores Around 2 petabyte of data, and is growing at a rate of 20
terabytes per month [1]. Processing data in batches is too slow to produce faster re-
ports. Accumulated data can lose its importance in several hours or, even, minutes.
Faster data processing requires stream processing and online aggregation. The process
of mapping a request from the originator to the data source is called "Map"; and the

120 M. Mavani and L. Ragha

process of aggregating the results into a consolidated result is called "Reduce”. This
research investigates the suitability of Google’s MapReduce (MR) parallel program-
ming frame work for faster data processing. In the MR the user of the MR library
expresses the computation as two functions: Map and Reduce. Map, written by the
user, takes an input pair and produces a set of intermediate key/value pairs. The Map
Reduce library groups together all intermediate values associated with the same in-
termediate key and passes them to the Reduce function. The Reduce function, also
written by the user, accepts an intermediate key and a set of values for that key. It
merges together these values to form a possibly smaller set of values. Typically, just
zero or one output value is produced per Reduce invocation. The key benefits of this
model are that it harnesses compute and I/O parallelism on commodity hardware and
can easily scale as the datasets grow in size [2]. Hadoop[3] is an open source MR
framework used in distributed computing environment. This paper investigates the
suitability of MR framework to be used in faster data analytics and takes Hadoop as a
platform for study.

Apache is managing an open-source based Hadoop project, derived from the Nutch
project [4]. The Hadoop project releases the Hadoop Distributed File System (HDFS)
and Map Reduce framework. Following section explain the detail execution environ-
ment of Hadoop. Each map function is given a part of input data called input split
which is coming from HDFS. The map function buffers the output in memory. Map
output is intermediate output: it’s processed by reduce tasks to produce the final out-
put, and once the job is complete the map output can be thrown away. Before it writes
to disk, the thread first divides the data into partitions corresponding to the reducers
that they will ultimately be sent to. Within each partition, the background thread
performs an in-memory sort by key. Hadoop allows the user to specify a combiner
function to be run on the sorted map output—the combiner function’s output forms
the input to the reduce function. Running the combiner function makes for a more
compact map output, so there is less data to write to local disk and to transfer to the
reducer. Each time the memory buffer reaches the spill threshold, a new spill file is
created, so after the map task has written its last output record there could be several
spill files. Before the task is finished, the spill files are merged into a single parti-
tioned and sorted output file. The map output is compressed as it is written to disk.
The data flow between map and reduce tasks is colloquially known as “the shuffle,”
as each reduce task is fed by many map tasks. The output file’s partitions are made
available to the reducers over HTTP. So shuffle stage involves disk I/O and network
I/O. Hadoop uses the concept of barrier to synchronize map and reduce operations.
Map functions run in parallel, creating different intermediate values from different
input data sets. All worker processes executing map functions reach to a barrier and
then wait for reduce operation assignment to them by master process. So Bottleneck is
that reduce phase cannot start until map phase completes. The output of the reduce is
normally stored in HDFS for reliability. The map tasks may finish at different times,
so the reduce task starts copying their outputs as soon as each completes. This is
known as the copy phase of the reduce task. The map outputs are copied to the re-
duce task JVM’s memory if they are small enough otherwise, they are copied to disk.
When the in-memory buffer reaches a threshold size or reaches a threshold number of
map outputs, it is merged and spilled to disk. When all the map outputs have been

 MapReduce Frame Work: Investigating Suitability for Faster Data Analytics 121

copied, the reduce task moves into the sort phase which merges the map outputs,
maintaining their sort ordering and applies reduce function to sorted data. It finally
writes output to HDFS and informs the master about its location. In this execution
environment heavy disk I/O and network I/O is observed.

Basic MR programming model gives simple yet powerful model for distributed
data processing. MR model has got few limitations to be suitable for the execution
environment for performing faster data analytics. Following section highlights its
limitations.

The rest of the paper is organized as follows. Section 2 provides limitation of MR
to be used directly in faster analytics. Section 3 presents literature survey. Section 4
proposes the optimization to MR frame work and Section 5 concludes the paper.

2 Faster Data Analytics

Faster data Analytics is the process of manipulating raw data and the ability to gener-
ate the desired report in near real time. Any application can be categorized that looks
at an aggregated view of a stream of data, as an analytic application. Faster data Ana-
lytics involves stream processing and online aggregation. Many of the data intensive
applications must combine new data with data derived from previous batches or ite-
rate to produce results, and state is a fundamental requirement for doing so efficiently.
For example, incremental analytics re-use prior computations, allowing outputs to be
updated, not recomputed, when new data arrives [5]. To perform faster analytics,
query results should be outputted as soon as input to the query is available rather than
waiting for the whole input to get loaded. Reducers begin processing data as soon as it
is produced by mappers, they can generate and refine an approximation of their final
answer during the course of execution. This technique is known as online aggregation
[6]. Faster data analytics requires fast in-memory processing of a MapReduce query
program for all (or most) of the data. There are certain limitations of MR framework.
Following subsection illustrate the same.

2.1 Limitations of Map Reduce for Faster Analytics

Various authors have identified limitation of MapReduce model for faster analytics
following are some of the issues highlighted in various research.

• Group by implementation of SQL is implemented using sort-merge algorithm in
MapReduce model which is CPU intensive.

• For huge datasets lot of intermediate data is generated so merge phase of sort
merge step performs disk I/O due to memory overflow which is blocking.

• MapReduce systems wait until the entire data set is loaded to begin query
processing and further employ batch processing of query programs, they are ill-
suited for faster processing.

• Reduce phase cannot be started until map phase is over and all the data for the
reduce function is available before starting the execution of reduce function. This
further introduces latency.

122 M. Mavani and L. Ragha

• In shuffle phase a reduce task fetches data from each map task’s local file system
by issuing HTTP request. This involves network I/O as well as disk I/O which adds
to latency.

• Traditional MapReduce implementations provide a poor interface for interactive
data analysis, because they do not emit any output until the job has been executed
to completion [7].

• Non suitability of MR for stream processing as mentioned by Lam et al. [8] is as
follows. MapReduce runs on a static snapshot of a data set, while stream computa-
tions proceed over an evolving data stream. In MapReduce, the input data set does
not (and cannot) change between the start of the computation and its finish. In
stream computations, the data is changing all the time; there is no such thing as
working with a “snapshot” of a stream.

Various researchers have worked on different solutions. They have addressed the
possibility of faster and incremental data processing using MR framework in general
and Hadoop in particular. Following section presents work done by different authors
found in literature.

3 Literature Review

Faster data processing and online data aggregation is needed which becomes difficult
by traditional MR framework due to above mentioned reasons. Various authors have
suggested variant in MR framework to address above mentioned limitations.

• Condie et al. have proposed modified MR architecture -MapReduce Online, which
implements Hadoop Online Prototype (HOP) with pipelining of data where map
output is pushed eagerly to reducers [7]. Due to pipelining early returns on long-
running jobs via online aggregation and continuous query over streaming data be-
comes possible. HOP pushes map output in finer granularity and hence increases
network I/O cost and reduces CPU utilization. This moves some of the sorting work
to reducers but still due to merge-sort implementation incurs disk I/O and n/w I/O.

• Elteir et al. have proposed enhancement in MR via asynchronous data processing
namely incremental processing. They have tried to address drawback of synchro-
nized communication between map and reduce of existing Hadoop implementa-
tions using two different approaches. The first approach, hierarchical reduction,
starts a reduce task as soon as a predefined number of map tasks completes. The
second approach, incremental reduction, starts a predefined number of reduce tasks
from the beginning and has each reduce task incrementally reduce records col-
lected from map tasks [9]. So they have tried to change run time system of original
hadoop implementation for recursively reducible jobs. They evaluated different re-
ducing approaches with two real applications on a 32-node cluster and found that
incremental reduction can speed-up the original Hadoop implementation by up to
35.33% for the word count application and 57.98% for the grep application. But for
hierarchical reduction network I/O cost will be high.

• Mazur et al. have addressed the drawback due to sort-merge phase of MR Runtime
sequence which is CPU intensive affecting overall running time [2]. They have re-
implemented sort –merge implementation of group by with hash based technique
which can support fast in-memory processing whenever computation states of the

 MapReduce Frame Work: Investigating Suitability for Faster Data Analytics 123

reduce function for all groups fit in memory. They have experimented the overhead
due to sorting in the click stream analysis application and showed that up to 48%
of CPU cycles, and up to 53% of running time can be saved. They also have expe-
rimented change at architecture level by using separate fast and small storage de-
vice to hold intermediate data for reducing disk contention and separate storage
and computing nodes. Extra storage devices help reduces the total running time;
from 76 minutes to 43 minutes for sessionization. Distributed storage system re-
duces the running time of sessionization from 76 minutes to 55 minutes. But the is-
sues of blocking and intensive I/O remain unaffected.

• Bu et al. have proposed HaLoop, a runtime based on Hadoop which supports itera-
tive data analysis applications especially for large-scale data [10]. By caching the
related invariant data and reducers’ local outputs for one job, it can execute recur-
sively. It offers a programming interface to express iterative data analysis applica-
tions. HaLoop uses a new task scheduler for iterative applications that leverages
data locality in the applications. From the original hadoop task scheduler and task
tracker modules are modified, and the loop control, caching, and indexing modules
are newly added modules. They evaluated HaLoop on real queries and real data-
sets. Compared with Hadoop, on average, HaLoop reduces query runtimes by 1.85,
and shuffles only 4% of the data between mappers and reducers.

• Verma et al. [11] have presented techniques for supporting general purpose appli-
cations in a barrier-less MapReduce framework. They have modified Hadoop im-
plementation. They have bypass the sorting mechanism, modified the invocation of
the Reduce function so that it can be called with a single record. Reducer must
maintain partial results for every key it has received. They used the Java imple-
mentation of Red-Black trees called TreeMap. They experimented seven different
categories of MapReduce algorithms, and converted into barrier less version.
Their results showed an average improvement of 25% (and 87% in the best case) in
the job completion times, with minimal additional programmer effort. For large da-
tasets huge intermediate results are generated which causes memory overflow and
disk I/O. In order to address these memory overflow problems, they explored two
possible memory management solutions: a disk spill and merge scheme and an off-
the-shelf disk-spilling key-value store. In a disk spill and merge scheme when the
memory usage reaches a predefined memory threshold, the structure moves
the partial results to a newly created local spill file on the disk. Instead of flushing
the entire contents of the memory to a file on the disk, the partial results can be
maintained in a key/value store that has the capability of spilling to disk. They ex-
perimented BerkeleyDB (Java Edition) as key/value store. The disk spill and merge
approach performed better than original hadoop. And disk-spillable key/value store
has performed poorly on word count problem and they concluded that off-the-shelf
key/-value store may not be suitable option for map reduce workload.

• Yan et al. have proposed IncMR framework which incrementally processing new
data of a large data set, which takes state as implicit input and combines it with
new data [12]. They have added additional modules and extended existing hadoop
API. Map tasks are created according to new splits instead of entire splits while re-
duce tasks fetch their inputs including the state and the intermediate results of new
map tasks from designate nodes or local nodes. Their work stresses on job schedul-
ing based on data locality but lacks in state management issues like size and

124 M. Mavani and L. Ragha

location of state which incurs huge network I/O. In their work they highlighted the
main overhead of IncMR in the storage and transmission of many intermediate re-
sults. Job scheduler will try to allocate reduce tasks to the nodes that have per-
formed reduce tasks recently because they have cached related state.

• Lam et al. have describe Muppet - MapUpdate, a framework like MapReduce, but
specifically developed for fast data. MapUpdate operates on data streams, so map
and update functions must be defined with respect to streams [8]. Streams may
never end, so updaters use storage called slates to summarize the data they have
seen so far. In MapUpdate, slates are “memories” of updaters, distributed across
multiple map/update machines as well as persisted in a key value store for later
processing. It is continuously updated an in-memory data structure that stores all
important information that the update function U must keep about all the events
with key k that U has seen so far. Muppet uses Cassandra key-value store to store
slates. They have run Cassandra key-value store on solid-state flash-memory sto-
rage (SSDs). In further optimization the workers pass events directly to one anoth-
er without going through any master. The master in Muppet is used for handling
failures. Muppet uses hashing techniques in shuffle stage.

• Yocum et al. have implemented MapReduce over a distributed stream processor.
They have used in-network aggregate computation that avoids data reprocessing.
They have used window based stream processing input is in streams rather than
batches. Their system shows efficiency for huge unstructured data. They have
used the distributed stream processing platform, Mortar to create and manage the
physical MapReduce data flows. Mortar is a platform for instrumenting end hosts
with user-defined stream processing operators. The platform manages the creation
and removal of operators, and orchestrates the flow of data between them.

• Logothetis et al. have proposed a generalized architecture for continuous bulk
processing (CBP) where prior results are reused to incrementally incorporate the
changes in the input [5]. They have proposed group wise processing operator,
translate, and dataflow primitives to maintain state during continuous bulk data
processing. The translate operator is run repeatedly, allowing users to easily store
and retrieve state as new data inputs arrive. They have modified hadoop to support
full CBP model and optimize treatment of state. They have evaluated their CBP
model on incremental crawl queue, clustering coefficients and page rank. In Page
Rank application data movement is reduced by46 % and running time is cut by
53% reducing both network and CPU usage.

• Bhatotia et al. have proposed the architecture- Incoop based on incremental HDFS
(content based input splitting), incremental map (memorization aware scheduler),
incremental reduce (combiners for each reduce task) to maximize the reuse of re-
sults of previous computations [22]. Work and time speedups vary between 3-fold
and 1000-fold for incremental modifications ranging from 0% to 25% of data.
Higher speedups are observed for computation-intensive applications (K-Means,
KNN) than for data-intensive applications (Word Count, Co-Matrix, and BiCount).
Both work and time speedups decrease as the size of the incremental change in-
creases, because larger changes allow fewer computation results from previous
runs to be reused. Their evaluation shows that Incoop can improve efficiency in in-
cremental runs, at a modest cost in the initial, first run where no computations can
be reused.

 MapReduce Frame Work: Investigating Suitability for Faster Data Analytics 125

Various methods have been proposed for faster data processing which involves either
modifying the Hadoop API or extending the API by adding certain modules. Some of
them have proposed changes in the runtime system or suggested architectural level
changes. But disk I/O and network I/O still remains as the bottleneck. This paper
proposes optimizations in original framework which can help in reducing latency due
to disk I/O and network I/O.

4 Proposed Optimization

This research tries to address some of the limitations of MR model for fast data ana-
lytics. It proposes

• Use of distributed shared memory (shared tuple space) to store intermediate results.
• Use of Remote Direct Memory Access (RDMA) to address the latencies intro-

duced due to MR execution environment.

This work is also in favor of using stateful map reduce framework. Figure 1 shows
Architecture based on RDMA and tuple space.

Fig. 1. Architecture based on RDMA and tuple space

1. Use of stateful approach during the execution of one MR Job helps in reduce the
latency in producing results. Use of stateful approach in consecutive MR jobs helps
iterative algorithms to be processed faster and more efficient way with MR frame-
work. Stateful reducer allows partial results to be saved as state which can be
reused with the new input and emitted as intermediate results for interactive query
processing. In case of stream processing input continuously arrives. Mapper can
store partially produce results (key, value pair) as a state and with each new input
from the stream updates the state with corresponding key.

2. Mappers output can be written in shared tuple space. Reducer will start fetching
data from shared tuple space and starts early execution. Inputs are fetched by re-
ducer as it is emitted by mapper, so periodically slot in tuple space becomes avail-
able which can be reused to store another map output. Map outputs are deleted in
shared space as soon as it is taken by reducer, so to have fault tolerance; map

126 M. Mavani and L. Ragha

outputs are also written to local disk of mapper’s nodes. This induces disk I/O but
does not affect execution time. A tuple space is an implementation of the associa-
tive memory paradigm for parallel/distributed computing. Producers post their data
as tuples in the space, and the consumers then retrieve data from the space that
match a certain pattern.[14] Linda [15] language was the first implementation of
Tuple Spaces. Later on, the JavaSpaces specification was defined as part of Sun's
Jini specification. The JavaSpaces technology [16] is a simple and powerful high-
level tool for building distributed and collaborative applications based on the con-
cept of shared network-based space that serves as both object storage and exchange
area. The space has a built-in clustering model, which allows it to share data and
messages with other spaces on the network. [17]

3. Network I/O latency can be reduced with use of Remote Direct Memory Access
(RDMA), next generation network stack for high speed-high performance compu-
ting. Modern RDMA capable networks such as InfiniBand and Quadrics provide
low latency of a few microseconds and high bandwidth of up to 10 Gbps. This has
significantly reduced the latency gap between access to local memory and remote
memory in modern clusters. [18]. RDMA provides read and write services directly
to applications and enables data to be transferred directly into Upper Layer Proto-
col (ULP). It also enables a kernel bypass implementation. [19] InfiniBand [20]
is an I/O architecture designed to increase the communication speed between CPUs
and subsystems located throughout a network. One of the most important features
of IB is RDMA. It provides applications with an easy-to-use messaging service. In-
stead of making a request to the operating system for access to one of the server’s
communication resources, an application accesses the InfiniBand messaging ser-
vice directly. InfiniBand provides two transfer semantics; a channel semantic
sometimes called SEND/RECEIVE and a pair of memory semantics called RDMA
READ and RDMA WRITE. The “initiator” (mapper) places the block of data in a
buffer in its virtual address space and uses a SEND operation to send a storage re-
quest to the “target” (e.g. the storage device –shared tuple space). The target, in
turn, uses RDMA READ operations to fetch the block of data from the initiator’s
(mappers) virtual buffer. Once it has completed the operation, the target uses a
SEND operation to return ending status to the initiator. The initiator (mapper), hav-
ing requested service from the target, was free to go about its other business while
the target asynchronously completed the storage operation, notifying the initiator
(mapper) on completion. Similarly when reducer reads the data from shared space
it uses receive operation to send a fetch request to the target. The target, in turn,
uses RDMA write operation to write the data to reducer’s internal virtual buffer.
Once it has completed the operation, the target uses a SEND operation to return
ending status to the reducer. The reducer having requested service from the target
(shared space), was free to execute its code while the target asynchronously com-
pleted the storage operation, notifying the reducer on completion. This prefetch of
input overlapped with reducer execution improves the performance and reduces the
latency. The Sockets Direct Protocol (SDP) is a networking protocol developed to
support stream connections over InfiniBand fabric. It acts as an interface between
high-level application and IB fabric [21].

 MapReduce Frame Work: Investigating Suitability for Faster Data Analytics 127

So with the use of RDMA aware communication channel and distributed shared
memory to store intermediate data delay in execution can be reduced. These are few
optimizations suggested to improve MR model in order to be suitable execution envi-
ronment for faster data analytics. In this research we have tried to verify our proposal
using performance model developed by Krevat et al. Next section describes perfor-
mance modeling in terms of overall execution speed.

5 Performance Modeling

This section verifies the suggested optimization in improving speed of data analytics
operation using distributed shared memory unit tuple space. For the reference perfor-
mance model developed at Parallel Data Laboratory, Carnegie Mellon University is
taken [23].

5.1 Assumptions

• data-intensive workloads
• computation time is negligible in comparison to I/O speeds
• assumption holds for grep- and sort-like jobs
• pipelined parallelism can allow non-I/O operations to execute entirely in parallel

with I/O operations
• input data is evenly distributed across all participating nodes in the cluster
• nodes are homogeneous
• each node retrieves its initial input from local storage
• a single job has full access to the cluster at a time,with no competing jobs or other

activities

Table 1 identifies the I/O operations in each map-reduce phase for two variants of the
sort operator.

Table 1. Configuration parameters for performance modeling

Symbol Definition

n no.of nodes in the cluster

Dw The aggregate d disk write throughput of a single node

Dr The aggregate d disk read throughput of a single node

eM The ratio between Map operator's output and input

eR The ratio between reduce operator's output and input

N The network throughput of a node

r Replication factor used for the job's output data if no replication then r=1

I Total amount of I/p data for a given computation

128 M. Mavani and L. Ragha

When intermediate data does not fit in memory then in traditional map reduce op-
eration, an external sort is used where data is written on disk in multiple files and
sorting phase is applied i.e. in disk sorting is used. Overall execution time for external
sort bearing above assumptions can be calculated by following equation derived and
verified by Krevat et al.:

])})1(

,)max[(])1(),()1{max[(/

NrErEm

DwErEmrDrEmNnEmnDwEmDrni

÷−∗∗
÷∗∗+÷+∗÷∗−÷+÷∗

 (1)

Overall execution time is coming out to be 462.0288 seconds for 1TB of i/p data, 25
node clusters, disk throughput is 780 MB/s, Network throughput is 110MB/s and
replication factor for output is 1.

Now with the use of tuple space even with larger intermediate data that does not fit
into memory of the node, external sort can be avoided and in memory sorting can be
used where now memory is in the distributed form. Following equation for in memory
sorting is used:

])})1([,max()))1(,1{max(/ NrErEmDwErEmrNEmnnDrni ÷−∗∗÷∗∗+÷÷−÷∗

(2)

Overall execution time is reduced to 409.6 seconds for the same configuration. This
shows improvement due to bypassing disk operations.

Authors of this model have verified their developed model using Parallel Data Se-
ries (PDA) -data analysis tool. They have also used this model for modeling various
published benchmarks. Then they have demonstrated inefficiency of Hadoop for op-
timal configurations. Motivation to use this model to verify our suggested optimization
is that this model accurately takes different system parameters in to account. As second
equation calculates total execution time when disk operations are not needed and they
have used this when intermediate data are fitted in single node's memory . However
even if data is more than the capacity of single node's memory, it can be distributed
across different node's memory and can be managed by layer above it using tuple space
API. So second equation still holds true for distributed shared memory.

With the use of tuplespace disk I/O can be avoided but network I/O still remains as
the speed limiting factor. As proposed in the previous section next generation inter-
connection technology based on Remote Direct Memory Access can reduce latency
by bypassing Tcp stack which is totally controlled by kernel for network data transfer.

6 Conclusion

This paper investigates the suitability of MR frame work to use in faster data analytics
and suggests optimization in traditional MR framework. Use of stateful execution
engine helps mappers and reducers to execute faster by updating the state rather than
generating the output as inputs come in. Asynchronous communication between map-
per and reducer helps to start early execution of reduce function which lowers overall
the execution time and less intermediate data to be handled and stored by MR runtime

 MapReduce Frame Work: Investigating Suitability for Faster Data Analytics 129

engine. Due to this, shared tuple space, a distributed shared memory unit, can be used
to store intermediate data instead of mapper’s local disk. Further optimization can be
achieved through the use of Remote Direct Memory Access (RDMA) to reduce laten-
cy due to network I/O. As a part of future work, suggested optimizations can be eva-
luated in real experimental setup.

References

1. White, T.: Hadoop The Definitive Guide. Yahoo Press (January 2012)
2. Li, B., Mazur, E., Diao, Y., McGregor, A., Shenoy, P.: A Platform for Scalable One-Pass

Analytics using MapReduce. In: International Conference on Management of Data, pp.
985–996 (2011)

3. http://hadoop.apache.org
4. Khare, R., Sitaker, D.C.K., Rifkin, A.: Nutch: A Flexible and Scalable Open-Source Web

Search Engine, Oregon State University, Commerce Net Labs Technical Report, pp. 1–10
(2004)

5. Logothetis, D., Olston, C., Reed, B.: Stateful Bulk Processing for Incremental Analytics.
In: Proceedings of the 1st ACM Symposium on Cloud Computing, pp. 51–62 (2010)

6. Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online Aggregation. In: SIGMOD Conference,
pp. 171–182 (1997)

7. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Elmeleegy, K., Sears, R.: Map re-
duce online. In: Proceedings of the 7th USENIX Conference on Networked Systems De-
sign and Implementation, pp. 1–14 (2010)

8. Lam, W., Liu, L., Prasad, S.T.S., Rajaraman, A., Vacheri, Z., Doan, A.H.: Muppet: Ma-
pReduceStyle Processing of Fast Data. Proceedings of the VLDB Endowment 5(12),
1814–1825 (2012)

9. Elteir, M., Lin, H., Feng, W.-C.: Enhancing mapreduce via asynchronous data processing.
In: IEEE 16th International Conference on Parallel and Distributed Systems, pp. 397–405
(2010)

10. Bu, Y., Howe, B., Balazinska, M., Ernst, M.: Haloop: efficient iterative data processing on
large clusters. In: 34th International Conference on Very Large Data Bases, pp. 285–296
(2010)

11. Verma, A., Zea, N., Cho, B., Gupta, I., Campbell, R.H.: Breaking the MapReduce Stage
Barrier. Journal on Cluster Computing, 1–16 (2011)

12. Yan, C., Yang, X., Yu, Z., Li, M., Li, X.: IncMR: Incremental Data Processing based on
MapReduce. In: 5th IEEE International Conference on Cloud Computing, pp. 534–541
(2012)

13. Logothetis, D., Yocum, K.: AdHoc Data Processing in the Cloud. Proceedings of the
VLDB Endowment 1(2), 1472–1475 (2008)

14. http://en.wikipedia.org/wiki/Tuple_space
15. http://en.wikipedia.org/wiki/Linda_coordination_language
16. http://java.sun.com/developer/technicalArticles/

tools/JavaSpaces
17. http://wiki.gigaspaces.com/wiki
18. Liang, H., Noronha, R., Panda, D.K.: Swapping to Remote Memory over InfiniBand: An S

Approach using a High Performance Network Block Device. In: IEEE International Confe-
rence on Cluster Computing, pp. 1–10 (2005)

130 M. Mavani and L. Ragha

19. Recio, R., Metzler, B., Culley, P., Hilland, J., Garcia, D.: A Remote Direct Memory
Access Protocol Specification. RFC 5040

20. http://members.infinibandta.org/kwspub/Intro_to_IB_for_End_U
sers.pdf

21. http://docs.oracle.com/javase/tutorial/sdp
22. Bhatotia, P., Wieder, A., Rodrigues, R., Acar, U.A., Pasquini, R.: Incoop: MapReduce for

Incremental Computations. In: Proceedings of the 2nd ACM Symposium on Cloud Com-
puting, Article No. 7, pp. 1–14 (2011)

23. Krevat, E., Shiran, T., Anderson, E., Tucek, J., Wylie, J.J., Ganger, G.R.: Applying per-
formance models to understand data-intensive computing efficiency. Technical Report
Carnegie Mellon University, HP Labs, pp. 1–18 (2010)

	MapReduce Frame Work: Investigating Suitability for Faster Data Analytics

	Introduction
	Faster Data Analytics
	Limitations of Map Reduce for Faster Analytics

	Literature Review
	Proposed Optimization
	Performance Modeling
	Assumptions

	Conclusion
	References

