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Abstract. The increasing availability of large amounts of historical data
and the need of performing accurate forecasting of future behavior in sev-
eral scientific and applied domains demands the definition of robust and
efficient techniques able to infer from observations the stochastic depen-
dency between past and future. The forecasting domain has been influ-
enced, from the 1960s on, by linear statistical methods such as ARIMA
models. More recently, machine learning models have drawn attention
and have established themselves as serious contenders to classical sta-
tistical models in the forecasting community. This chapter presents an
overview of machine learning techniques in time series forecasting by
focusing on three aspects: the formalization of one-step forecasting prob-
lems as supervised learning tasks, the discussion of local learning tech-
niques as an effective tool for dealing with temporal data and the role
of the forecasting strategy when we move from one-step to multiple-step
forecasting.

Keywords: Time series forecasting, machine learning, local learning,
lazy learning, MIMO.

1 Introduction

A time series is a sequence S of historical measurements yt of an observable
variable y at equal time intervals. Time series are studied for several purposes
such as the forecasting of the future based on knowledge of the past, the un-
derstanding of the phenomenon underlying the measures, or simply a succinct
description of the salient features of the series. In this chapter we shall confine
ourselves to the problem of forecasting. Forecasting future values of an observed
time series plays an important role in nearly all fields of science and engineering,
such as economics, finance, business intelligence, meteorology and telecommu-
nication [43]. An important aspect of the forecasting task is represented by the
size of the horizon. If the one-step forecasting of a time series is already a chal-
lenging task, performing multi-step forecasting is more difficult [53] because of
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additional complications, like accumulation of errors, reduced accuracy, and in-
creased uncertainty [58,49].

The forecasting domain has been influenced, for a long time, by linear sta-
tistical methods such as ARIMA models. However, in the late 1970s and early
1980s, it became increasingly clear that linear models are not adapted to many
real applications [25]. In the same period, several useful nonlinear time series
models were proposed such as the bilinear model [44], the threshold autoregres-
sive model [56,54,55] and the autoregressive conditional heteroscedastic (ARCH)
model [22] (see [25] and [26] for a review). However, the analytical study of non-
linear time series analysis and forecasting is still in its infancy compared to linear
time series [25].

In the last two decades, machine learning models have drawn attention and
have established themselves as serious contenders to classical statistical models
in the forecasting community [1,43,61]. These models, also called black-box or
data-driven models [40], are examples of nonparametric nonlinear models which
use only historical data to learn the stochastic dependency between the past and
the future. For instance, Werbos found that Artificial Neural Networks (ANNs)
outperform the classical statistical methods such as linear regression and Box-
Jenkins approaches [59,60]. A similar study has been conducted by Lapedes and
Farber [33] who conclude that ANNs can be successfully used for modeling and
forecasting nonlinear time series. Later, other models appeared such as decision
trees, support vector machines and nearest neighbor regression [29,3]. Moreover,
the empirical accuracy of several machine learning models has been explored in a
number of forecasting competitions under different data conditions (e.g. the NN3,
NN5, and the annual ESTSP competitions [19,20,34,35]) creating interesting
scientific debates in the area of data mining and forecasting [28,45,21].

This chapter aims to present an overview of the role of machine learning tech-
niques in time series forecasting by focusing on three aspects: the formalization
of one-step forecasting problems as supervised learning tasks, the discussion of
local learning techniques as an effective tool for dealing with temporal data and
the role of the forecasting strategy when we move from one-step to multi-step
forecasting.

The outline of the chapter is as follows. Section 2 introduces some basic no-
tions of time series modeling and the formalization of the forecasting task as
an input-output problem. Section 3 discusses the role of machine learning tech-
niques in inferring accurate predictors from observed data and introduces the
local learning paradigm. Section 4 presents several strategies for multi-step fore-
casting which have been proposed so far in literature. Section 5 reviews how
local learning techniques have been integrated with multiple-step strategies to
perform accurate multi-step forecasts.

2 Forecasting and Modeling

Two main interpretations of the forecasting problem on the basis of historical
dataset exist. Statistical forecasting theory assumes that an observed sequence



64 G. Bontempi, S. Ben Taieb, and Y.-A. Le Borgne

is a specific realization of a random process, where the randomness arises from
many independent degrees of freedom interacting linearly [4]. However, the emer-
gent view in dynamical systems theory [23,17] is that apparently random behav-
ior may be generated by deterministic systems with only a small number of
degrees of freedom, interacting nonlinearly. This complicated and aperiodic be-
havior is also called deterministic chaos [48].

We adopt the working hypothesis that many classes of experimental time
series may be analyzed within the framework of a dynamical systems approach.
Therefore the time series is interpreted as the observable of a dynamical system
whose state s evolves in a state space Γ ⊂ �g, according to the law

s(t) = F t(s(0)) (1)

where F : Γ → Γ is the map representing the dynamics, F t is its iterated
versions and s(t) ∈ Γ denotes the value of the state at time t.

In the absence of noise the time series is related to the dynamical system by
the relation

yt = G(s(t)) (2)

where G : Γ → �D is called the measurement function and D is the dimension
of the series. In the following we will restrict to the case D = 1 (univariate time
series).

Both the function F and G are unknown, so in general we cannot hope to
reconstruct the state in its original form. However, we may be able to recreate
a state space that is in some sense equivalent to the original.

The state space reconstruction problem consists in reconstructing the state
when the only available information is contained in the sequence of observations
yt. State space reconstruction was introduced into dynamical systems theory
independently by Packard et al. [42] and Takens [52]. The Takens theorem implies
that for a wide class of deterministic systems, there exists a mapping (delay
reconstruction map) Φ : Γ → �n

Φ(s(t)) = {G(F−d(s(t))), . . . ,G(F−d−n+1(s(t)))} = {yt−d, . . . , yt−d−n+1} (3)

between a finite window of the time series {yt−d, . . . , yt−d−n+1} (embedding vec-
tor) and the state of the dynamic system underlying the series, where d is called
the lag time and n (order) is the number of past values taken into considera-
tion. Takens showed that generically Φ is an embedding when n ≥ 2g+1, where
embedding stays for a smooth one-to-one differential mapping with a smooth
inverse [17]. The main consequence is that, if Φ is an embedding then a smooth
dynamics f : �n → � is induced in the space of reconstructed vectors

yt = f(yt−d, yt−d−1, . . . , yt−d−n+1) (4)

This implies that the reconstructed states can be used to estimate f and con-
sequently f can be used in alternative to F and G, for any purpose concerning
time series analysis, qualitative description, forecasting, etc.
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The representation (4) does not take into account any noise component, since
it assumes that a deterministic process f can accurately describe the time se-
ries. Note, however, that this is simply one possible way of representing the time
series phenomenon and that any alternative representation should not be dis-
carded a priori. In fact, once we assume that we have not access to an accurate
model of the function f , it is perfectly reasonable to extend the deterministic
formulation (4) to a statistical Nonlinear Auto Regressive (NAR) formulation

yt = f (yt−d, yt−d−1, . . . , yt−d−n+1) + w(t) (5)

where the missing information is lumped into a noise term w. In the rest of the
chapter, we will then refer to the formulation (5) as a general representation of
the time series which includes as particular instance also the case (4).

The success of a reconstruction approach starting from a set of observed data
depends on the choice of the hypothesis that approximates f , the choice of the
order n and the lag time d.

In the following section we will address only the problem of the modeling of
f , assuming that the values of n and d are available a priori. A good reference
on the order selection is given in Casdagli et al. [17].

3 Machine Learning Approaches to Model Time
Dependencies

3.1 Supervised Learning Setting

The embedding formulation in (5) suggests that, once a historical record S is
available, the problem of one-step forecasting can be tackled as a problem of
supervised learning. Supervised learning consists in modeling, on the basis of
a finite set of observations, the relation between a set of input variables and
one or more output variables, which are considered somewhat dependent on
the inputs. Once a model of the mapping (5) is available, it can be used for
one-step forecasting. In one-step forecasting, the n previous values of the series
are available and the forecasting problem can be cast in the form of a generic
regression problem as shown in Fig. 1.

The general approach to model an input/output phenomenon, with a scalar
output and a vectorial input, relies on the availability of a collection of observed
pairs typically referred to as training set.

In the forecasting setting, the training set is derived by the historical series S
by creating the [(N − n− 1)× n] input data matrix

X =

⎡
⎢⎢⎢⎣

yN−1 yN−2 . . . yN−n−1

yN−2 yN−3 . . . yN−n−2

...
...

...
...

yn yn−1 . . . y1

⎤
⎥⎥⎥⎦ (6)
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Fig. 1. One-step forecasting. The approximator f̂ returns the prediction of the value
of the time series at time t+ 1 as a function of the n previous values (the rectangular
box containing z−1 represents a unit delay operator, i.e., yt−1 = z−1yt).

and the [(N − n− 1)× 1] output vector

Y =

⎡
⎢⎢⎢⎣

yN
yN−1

...
yn+1

⎤
⎥⎥⎥⎦ (7)

For the sake of simplicity, we assume here a d = 0 lag time. Henceforth, in this
chapter we will refer to the ith row of X , which is essentially a temporal pattern
of the series, as to the (reconstructed) state of the series at time t− i+ 1.

3.2 Instantiation with Local Learning

Forecasting one-step-ahead consists then in predicting the value of the output
when a subset of past observed values (also denoted as query) is given. Machine
learning provides a theoretical framework to estimate from observed data a suit-
able model of the time dependency f . Because of the impossibility of reviewing
here the entire state-of-the-art of machine learning in time series forecasting, we
will more specifically consider local learning techniques [12,31,29] in the following
section. This choice is motivated by the following reasons:

– Reduced number of assumptions: local learning assumes no a priori knowl-
edge on the process underlying the data. For example, it makes no
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assumption on the existence of a global function describing the data and
no assumptions on the properties of the noise. The only available informa-
tion is represented by a finite set of input/output observations. This feature
is particularly relevant in real datasets where problems of missing features,
non- stationarity and measurement errors make appealing a data-driven and
assumption-free approach.

– On-line learning capability: The local learning method can easily deal with
on-line learning tasks where the number of training samples increases with
time. In this case, local learning simply adds new points to the dataset and
does not need time-consuming re-training when new data become available.

– Modelling non-stationarity: The local learning method can deal with time-
varying configurations where the stochastic process underlying the data is
non-stationary. In this case, it is sufficient to interpret the notion of neigh-
bourhood not in a spatial way but both in a spatial and temporal sense. For
each query point, the neighbours are no more the samples that have similar
inputs but the ones that both have similar inputs and have been collected
recently in time. Therefore, the time variable becomes a further precious
feature to consider for accurate prediction.

We describe in the following two instances of local learning techniques, namely
Nearest Neighbor [36,29] and Lazy Learning [12,5].

Nearest Neighbor. The Nearest Neighbor method is the most trivial example
of local approximation applied to the problem of time series forecasting. This
method consists in looking through the data set for the nearest neighbor of the
current state and predicting that the current state will evolve in the same manner
as the neighbor did.

Figure 2 represents an example of nearest-neighbor one-step forecasting. Sup-
pose we have available a time series yt up to time t̄−1 and we want to predict the
next value of the series. Once selected a certain dimension n, for example n = 6,
the nearest neighbor approach searches for the pattern in the past which is the
most similar, in a given metric, to the pattern {yt̄−6, yt̄−5, . . . , yt̄−1} (the dashed
line). If the nearest pattern is, for instance, {yt̄−16, yt̄−15, . . . , yt̄−11}, then the
forecasts ŷt̄ returned by the NN method is the value yt̄−10 (black dot).

This approach was first proposed by Lorenz [36] to examine weather maps.
Imagine that we want to predict tomorrow’s weather in Bruxelles and that we
choose a dimension n = 1. The nearest neighbor approach suggests (i) to search
the historical database of the meteorological conditions in Bruxelles, (ii) to find
the weather pattern most similar to that of today (for example the weather
pattern on March 5th, 1999, by chance a rainy day!) and (iii) to predict that
tomorrow’s weather will be the same as March 6th, 1999 (just by chance another
rainy day!!).

Natural extensions of the Nearest Neighbor approach consider more neigh-
bors [31] or higher order approximations. Piecewise linear approximation in time
series analysis was introduced by Tong and Lim [56]. Priestley [46] suggested
the importance of higher order approximations. Farmer and Sidorowich [23,24]
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Fig. 2. Nearest-neighbor one-step-ahead forecasts. We want to predict at time t̄ − 1
the next value of the series y of order n = 6. The pattern yt̄−16, yt̄−15, . . . , yt̄−11 is the
most similar to the pattern {yt̄−6, yt̄−5, . . . , yt̂−1}. Then, the prediction ŷt̄ = yt̄−10 is
returned.

studied local approximation in time series and demonstrated its effectiveness
on several experiments and numerical time series analysis. In particular they
applied local learning techniques to predict the behavior of chaotic time series,
sequences which, although deterministic, are characterized by second-order per-
sistent statistics with random properties.

Lazy Learning. The Lazy Learning (LL) is a lazy and local learning machine
[12,11] which automatically adapts the size of the neighborhood on the basis
of a cross-validation criterion. The major appeal of Lazy Learning is its divide-
and-conquer nature: Lazy Learning reduces a complex and nonlinear modeling
problem into a sequence of easily manageable local linear problems, one for
each query. This allows to exploit, on a local basis, the whole range of linear
identification and validation techniques which are fast, reliable, and come with a
wealth of theoretical analyses, justifications, and guarantees. The Lazy Learning
procedure essentially consists of the following steps once the matrix X in (6)
and Y in (7) and a query point xq are given:

1. Sort increasingly the set of vectors in X with respect to the distance (e.g.
Euclidean) to xq.

2. Determine the optimal number of neighbors.
3. Calculate, given the number of neighbors, the prediction for the query point

by using a local model (e.g. constant or linear).

Let us consider a time series {y1, . . . , yt} composed of t observations for which
we intend to predict the next one.

The forecasting problem boils down to estimating the output ŷt+1 when the
latest window of observations is represented by the vector xq = {yt, . . . , yt−n+1}.
Algorithm 1 illustrates how constant local learning techniques return the output
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associated to a query point xq, for a given number of neighbors k. The notation
[j] is used to designate the index of the jth closest neighbor of xq. Note that also
the local linear version of the algorithm is commonly used, as discussed in [11].

Algorithm 1. LL

Input : D = {(xi, yi) ∈ (Rn × R)}, dataset.
Input : xq ∈ R

d, query point.
Input : k= the number of neighbors.
Output: ŷt+1, the estimation of the output of the query point xq

(obtained with k neighbors).

Sort increasingly the set of vectors {xi} with respect to the distance to xq.

ŷt+1 = 1
k

∑k
j=1 y[j].

return ŷt+1.

This algorithm requires the choice of a set of model parameters (e.g. the
number k of neighbors, the kernel function, the distance metric) [5]. We will
discuss here an automatic method based on a Leave-One-Out (LOO) criterion
to determine the number of neighbor [11,12]. The main idea is to assess the
quality of each local model by using a LOO measure and to select the best
neighborhood size according to such measure.

A computationally efficient way to perform LOO cross-validation and to assess
the performance in generalization of local linear models is the PRESS statistic,
proposed in 1974 by Allen [2]. By assessing the performance of each local model,
alternative configurations can be tested and compared in order to select the best
one in terms of expected prediction. The idea consists in associating an LOO
error eLOO(k) to the estimation

ŷ(k)q =
1

k

k∑
j=1

y[j], (8)

associated to the query point xq and returned by k neighbors. In case of a
constant model, the LOO term can be derived as follows [12]:

eLOO(k) =
1

k

k∑
j=1

(ej(k))
2, (9)

where

ej(k) = y[j] −
∑k

i=1(i�=j) y[i]

k − 1
= k

y[j] − ŷk

k − 1
. (10)

The best number of neighbors is then defined as the number

k∗ = arg mink∈{2,...,K} eLOO(k), (11)

which minimizes the LOO error.
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Fig. 3. Iterated prediction. The approximator f̂ returns the prediction of the value
of the time series at time t + 1 by iterating the predictions obtained in the previous
steps (the rectangular box containing z−1 represents a unit delay operator, i.e., ŷt−1 =
z−1ŷt).

Lazy learning was applied with success to several regression and one-step
forecasting tasks [14]. More details on the LL technique and its applications can
be found in [11,12].

4 Strategies for Multi-step Time Series Forecasting

The previous section showed that one-step forecasting can be cast in a conven-
tional supervised learning framework by having recourse to conventional learning
techniques such as Local Learning. In this section, we extend the framework to
show how learning techniques can be used to tackle the multi-step forecasting
problem. Three strategies can be considered, namely recursive, direct and mul-
tiple output strategies.

A multi-step time series forecasting task consists of predicting the next H
values [yN+1, . . . , yN+H ] of a historical time series [y1, . . . , yN ] composed of N
observations, where H > 1 denotes the forecasting horizon.

This section will give a presentation of the three existing strategies to adopt
machine learning in multi-step forecasting. We will use a common notation where
f and F denote the functional dependency between past and future observations,
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n refers to the embedding dimension [17] of the time series, that is the number of
past values used to predict future values and w represents the term that includes
modeling error, disturbances and/or noise.

4.1 Recursive Strategy

The Recursive strategy [58,49,18] trains first a one-step model f

yt+1 = f(yt, . . . , yt−n+1) + wt+1, (12)

with t ∈ {n, . . . , N − 1} and then uses it recursively for returning a multi-
step prediction (Figure 3). A well-known drawback of the recursive method is
its sensitivity to the estimation error, since estimated values, instead of actual
ones, are more and more used when we get further in the future.

In spite of these limitations, the Recursive strategy has been successfully
used to forecast many real-world time series by using different machine learning
models, like recurrent neural networks [47] and nearest-neighbors [38,15].

4.2 Direct Strategy

The Direct strategy [58,49,18] learns independently H models fh

yt+h = fh(yt, . . . , yt−n+1) + wt+h, (13)

with t ∈ {n, . . . , N − H} and h ∈ {1, . . . , H} and returns a multi-step forecast
by concatenating the H predictions.

Since the Direct strategy does not use any approximated values to compute the
forecasts (Equation 13), it is not prone to any accumulation of errors. Notwith-
standing, it has some weaknesses. First, since the H models are learned inde-
pendently no statistical dependencies between the predictions ŷN+h[13,16,32]
is considered. Second direct methods often require higher functional complex-
ity [54] than iterated ones in order to model the stochastic dependency between
two series values at two distant instants [27]. Last but not least, this strategy
demands a large computational time since the number of models to learn is equal
to the size of the horizon.

Different machine learning models have been used to implement the Direct
strategy for multi-step forecasting tasks, for instance neural networks [32], near-
est neighbors [49] and decision trees [57].

4.3 DirRec Strategy

The DirRec strategy [50] combines the architectures and the principles under-
lying the Direct and the Recursive strategies. DirRec computes the forecasts
with different models for every horizon (like the Direct strategy) and, at each
time step, it enlarges the set of inputs by adding variables corresponding to the
forecasts of the previous step (like the Recursive strategy). However, note that
unlike the two previous strategies, the embedding size n is not the same for all
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the horizons. In other terms, the DirRec strategy learns H models fh from the
time series [y1, . . . , yN ] where

yt+h = fh(yt+h−1, . . . , yt−n+1) + wt+h, (14)

with t ∈ {n, . . . , N −H} and h ∈ {1, . . . , H}.

4.4 Multiple Output Strategies

In spite of their diversity, iterated and direct techniques for multiple-step fore-
casting share a common feature: they model from data a multi-input single-
output mapping whose output is the variable yt+1 in the iterated case and the
variable yt+k in the direct case, respectively. When a very long term prediction
is at stake and a stochastic setting is assumed, the modeling of a single-output
mapping neglects the existence of stochastic dependencies between future values,
(e.g. between yt+k and yt+k+1) and consequently biases the prediction accuracy.
A possible way to remedy to this shortcoming is to move from the modeling
of single-output mappings to the modeling of multi-output dependencies. This
requires the adoption of multi-output techniques where the predicted value is no
more a scalar quantity but a vector of future values of the time series.

The MIMO Strategy. The Multi-Input Multi-Output (MIMO) strat-
egy [13,16] (also known as Joint strategy [32]) avoids the simplistic assumption
of conditional independence between future values made by the Direct strat-
egy [13,16] by learning a single multiple-output model

[yt+H , . . . , yt+1] = F (yt, . . . , yt−n+1) +w, (15)

where t ∈ {n, . . . , N − H}, F : Rd → R
H is a vector-valued function [39], and

w ∈ R
H is a noise vector with a covariance that is not necessarily diagonal [37].

The forecasts are returned in one step by a multiple-output model F̂ where

[ŷt+H , . . . , ŷt+1] = F̂ (yN , . . . , yN−n+1). (16)

The rationale of the MIMO strategy is to model, between the predicted values,
the stochastic dependency characterizing the time series. This strategy avoids
the conditional independence assumption made by the Direct strategy as well
as the accumulation of errors which plagues the Recursive strategy. So far, this
strategy has been successfully applied to several real-world multi-step time series
forecasting tasks [13,16,10,9].

However, the wish to preserve the stochastic dependencies constrains all the
horizons to be forecasted with the same model structure. Since this constraint
could reduce the flexibility of the forecasting approach [10], a variant of the
MIMO strategy is discussed in the following section.

The DIRMO Strategy. The DIRMO strategy [10,9] aims to preserve the
most appealing aspects of DIRect and MIMO strategies by partitioning the
horizon H in several blocks, and using MIMO to forecast the values inside each
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block. This means that the H-step forecast requires m multiple-output forecast-
ing tasks (m = H

s ), each having an output of size s (s ∈ {1, . . . , H}).
Note that for s = 1, the DIRMO coincides with the conventional Direct

strategy, while for s = H it corresponds to the MIMO strategy. The tuning
of the parameter s allows us to improve the flexibility of the MIMO strategy
by calibrating the dimensionality of the outputs (no dependency in the case
s = 1 and maximal dependency for s = H). This provides a beneficial trade
off between the preserving a larger degree of the stochastic dependency between
future values and having a greater flexibility of the predictor.

5 Local Learning for Multi-step Forecasting

Local learning appears to be an effective algorithm not only for one-step but also
for multi-step forecasting. This section discusses some works which used local
learning techniques to deal specifically with the long term forecasting problem.

In [38,15] the authors proposed a modification of the local learning technique
to take into account the temporal behavior of the multi-step forecasting problem
and consequently improve the results of the recursive strategies. In particular
[15] modified the PRESS criterion (10) by introducing an iterated version of the
leave-one-out statistic. They showed that the iterated PRESS outperforms a non-
iterated criterion by assessing the generalization performance of a local one-step
predictor on a horizon longer than a single step, yet preserving nice properties
of computational efficiency. It is worth noting that the two techniques proposed
by [38] and [15] ranked respectively first and second in the 1998 Leuven time
series prediction.

A recent improvement of the recursive strategy based again on local learning
is RECNOISY [6], which perturbs the initial dataset at each step of the forecast-
ing process to handle more properly the approximated values in the prediction
process. The rationale of the RECNOISY method is that the training examples
used by the recursive strategy, though observed, are not necessarily representa-
tive of the forecasting tasks which will be required later all along the forecasting
process. To remedy to this problem, this strategy exploits the particular nature
of the forecasting tasks induced by the recursive strategy and incorporates it in
the local learning phase in order to improve the results.

Two improvements of Lazy Learning to deal with long-term prediction of time
series are presented in [51]. The first method is based on an iterative pruning of
the inputs; the second one performs a brute force search in the possible set of
inputs using a k-NN approximator.

The use of local learning for multi-input multi-output prediction was proposed
in [13] where a multi-output extension of the algorithm 1 is discussed as well as
an averaging strategy of several long term predictors to improve the resulting
accuracy.

The use of the local learning approximator to implement a DIRMO strategy
is presented in [8,9]. The DIRMO strategy based on local learning has been suc-
cessfully applied to two forecasting competitions: ESTSP’07 [10] and NN3 [9].
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A detailed review and comparison of strategies for multi-step time series fore-
casting based on the local learning algorithm is presented in [7].

6 Conclusion

Predicting the future is one of the most relevant and challenging tasks in ap-
plied sciences. Building effective predictors form historical data demands com-
putational and statistical methods for inferring dependencies between past and
short-term future values of observed values as well as appropriate strategies to
deal with longer horizons. This chapter discussed the role of machine learning
in adapting supervised learning techniques to deal with forecasting problems. In
particular we stressed the role played by local learning approximators in dealing
with important issued in forecasting, like nonlinearity, nonstationarity and error
accumulation. Future research should be concerned with the extension of these
techniques to some recent directions in business intelligence, like the parallel
mining of huge amount of data (big data) [41] and the application to spatio-
temporal tasks [30].
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