

Lecture Notes
in Business Information Processing 138

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, Qld, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Marie-Aude Aufaure
Esteban Zimányi (Eds.)

Business
Intelligence

Second European Summer School, eBISS 2012
Brussels, Belgium, July 15-21, 2012
Tutorial Lectures

13

Volume Editors

Marie-Aude Aufaure
Ecole Centrale Paris
MAS Laboratory
Châtenay-Malabry, France
E-mail: marie-aude.aufaure@ecp.fr

Esteban Zimányi
Université Libre de Bruxelles
Department of Computer and Decision Engineering (CoDE)
Brussels, Belgium
E-mail: ezimanyi@ulb.ac.be

ISSN 1865-1348 e-ISSN 1865-1356
ISBN 978-3-642-36317-7 e-ISBN 978-3-642-36318-4
DOI 10.1007/978-3-642-36318-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012956061

ACM Computing Classification (1998): J.1, H.2, H.3, D.1, G.3, G.2

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The Second European Business Intelligence Summer School (eBISS 2012) took
place in Brussels, Belgium, in July 2012. Tutorials were given by experts in
business intelligence and covered various hot topics. This volume contains the
lecture notes of the summer school.

The first chapter shows how to support multidimensional business intelligence
for complex application domains such as medical data, location-based services,
music data, web data, and text data. In particular, complex dimension hierar-
chies, complex measures, and integration of multidimensional data with complex
external data are detailed.

The second chapter introduces business process modeling. Business process
management can be seen as an extension of classical workflow management sys-
tems. This chapter discusses the similarities and differences between these two
notions, and then introduces the current OMG standard BPMN 2.0 (Business
Process Modeling and Notation) and discusses BPEL (Business Process Execu-
tion Language). Finally, hot research topics in this field such as business process
mining are depicted.

The third chapter provides an overview of machine learning techniques in
time series forecasting, and outlines the challenging issues related to predicting
the future in applied sciences. Three aspects are discussed in this chapter: the
formalization of one-step forecasting problems as supervised learning tasks, the
discussion of local learning techniques as an effective tool for dealing with tem-
poral data, and the role of the forecasting strategy when we move from one-step
to multiple-step forecasting.

The fourth chapter gives an overview of Markov logic networks from a theo-
retical and a practical viewpoint. Statistical relational learning approaches, more
specifically Bayesian logic networks, are then detailed. Inferencing and learning
processes are then explained together with the best scaling algorithms known
today. This chapter concludes with an overview of application areas.

The fifth chapter focuses on recent developments, challenges, and potential
solutions for mining large graphs. The main challenge of new tools and frame-
works lies in the development of new paradigms that are scalable, efficient, and
flexible. Distributed computing is depicted through the MapReduce paradigm.
Finally, a new field of research, graph data warehousing, which is deeply linked
with large graph mining, is introduced.

The sixth chapter addresses the challenges induced by big data analytics on
modern architectures. Massively parallel analysis systems and their program-
ming models are discussed, as well as the application of these modern architec-
tures on database processing.

VI Preface

The seventh chapter introduces decision aid, and more specifically multicri-
teria decision aid, with a focus on two methods: PROMETHEE and GAIA. An
illustrative example, highlighting the added value of using interactive and visual
tools in complex decision processes, is analyzed with the D-Sight software.

The eighth chapter explores the importance of semantic technologies (ontolo-
gies) and knowledge extraction techniques for knowledge management, search,
and capture in e-business processes. Semantic technologies and ontology learning
from web data are detailed, and the use of ontologies for business intelligence is
discussed through use cases described in several fields.

Finally, the ninth chapter presents the Business Semantics Management (BSM)
method, a fact-oriented approach to knowledge modeling grounded in natural
language. This method constitutes an interface between Enterprise Information
Management and the Web of Data. BSM was implemented in the Flemish Pub-
lic Administration for building the Flanders Research Information Space (FRIS)
program.

We would like to thank the attendants of the summer school for their active
participation, as well as the speakers and their co-authors for the high quality
of their contributions in a constantly evolving and highly competitive domain.
Finally, the lectures in this volume greatly benefited from the comments of the
external reviewers.

November 2012 Marie-Aude Aufaure
Esteban Zimányi

eBISS 2012 Co-chairs

Organization

The Second European Business Intelligence Summer School (eBISS 2012) was
organized by the MAS Laboratory of the Ecole Centrale de Paris and the De-
partment of Computer and Decision Engineering (CoDE) of the Université Libre
de Bruxelles.

Program Committee

Alberto Abelló Universitat Politècnica de Catalunya, Spain
Marie-Aude Aufaure Ecole Centrale de Paris, France
Patrick Marcel Université François Rabelais de Tours, France
Alexander Löser Technische Universität Berlin, Germany
Esteban Zimányi Université Libre de Bruxelles, Belgium

Local Organizers

Angélique Dufrasnes Université Libre de Bruxelles, Belgium
Alejandro Vaisman

(Organization Chair) Université Libre de Bruxelles, Belgium
Stijn Vansummeren Université Libre de Bruxelles, Belgium
Boris Verhaegen Université Libre de Bruxelles, Belgium
Gary Verhaegen Université Libre de Bruxelles, Belgium
Esteban Zimányi Université Libre de Bruxelles, Belgium

External Referees

Mohammad Al Hasan Indiana University-Purdue University
Indianapolis, USA

Omar Boussaid ERIC Laboratory, University of Lyon 2, France
Paola Cerchiello University of Pavia, Italy
Giorgio Corani IDSIA (Istituto Dalle Molle di Studi

sull’Intelligenza Artificiale), Manno,
Switzerland

Etienne Cuvelier Ecole Centrale Paris, France
Daniel Deutch Ben Gurion University, Israel
Luis Dias University of Coimbra, Portugal
Marlon Dumas University of Tartu, Estonia

VIII Organization

Bingsheng He Nanyang Technological University, Singapore
Mustafa Jarrar Birzeit University, Palestine
Gabriele Kern-Isberner Technische Universität Dortmund, Germany
Jens Lechtenbörger Westfäliche Wilhelms-Universität, Münster,

Germany
Fionn Murtagh Science Foundation, Ireland
Wim Peters University of Sheffield, UK
Hans Weigand Tilburg University, The Netherlands

Table of Contents

Managing Complex Multidimensional Data . 1
Torben Bach Pedersen

An Introduction to Business Process Modeling . 29
Alejandro Vaisman

Machine Learning Strategies for Time Series Forecasting 62
Gianluca Bontempi, Souhaib Ben Taieb, and Yann-Aël Le Borgne

Knowledge Discovery from Constrained Relational Data: A Tutorial
on Markov Logic Networks . 78

Marcus Spies

Large Graph Mining: Recent Developments, Challenges and Potential
Solutions . 103

Sabri Skhiri and Salim Jouili

Big Data Analytics on Modern Hardware Architectures: A Technology
Survey . 125

Michael Saecker and Volker Markl

An Introduction to Multicriteria Decision Aid: The PROMETHEE and
GAIA Methods . 150

Yves De Smet and Karim Lidouh

Knowledge Harvesting for Business Intelligence . 177
Nesrine Ben Mustapha and Marie-Aude Aufaure

Business Semantics as an Interface between Enterprise Information
Management and the Web of Data: A Case Study in the Flemish Public
Administration . 208

Christophe Debruyne and Pieter De Leenheer

Author Index . 235

Managing Complex Multidimensional Data

Torben Bach Pedersen

Aalborg University, 9220 Aalborg Ø, Denmark
tbp@cs.aau.dk

http://people.cs.aau.dk/~tbp

Abstract. Multidimensional database concepts such as cubes, dimen-
sions with hierarchies, and measures are a cornerstone of business intelli-
gence. However, the standard data models and system implementations
(OLAP) for multidimensional databases are sometimes not able to cap-
ture the complexities of advanced real-world application domains. This
lecture will focus on how to manage such complex multidimensional data,
including complex dimension hierarchies, complex measures, and integra-
tion of multidimensional data with complex external data. We will look
at how complex multidimensional data emerge in complex application
domains such as medical data, location-based services, music data, web
data, and text data, and present solutions for these domains that support
multidimensional business intelligence.

Keywords: multidimensional databases, dimensions, hierarchies, mea-
sures, complex data.

1 Introduction

This paper concerns the management of complex multidimensional data. Multi-
dimensional database concepts such as cubes, dimensions with hierarchies, and
measures have become essential concepts for the increasingly important area
of business intelligence. A wide range of standard data models and system im-
plementations (OLAP) for multidimensional databases have emerged, leading
to a multibillion dollar industry. However, these standard models and tools are
sometimes not able to capture the complexities of advanced real-world appli-
cation domains such as medical data, location-based services, music data, web
data, and text data. This lecture will focus on how to manage such complex mul-
tidimensional data, including complex dimension hierarchies, complex measures,
and integration of multidimensional data with complex external data. The lec-
ture complements an invited lecture by the author on his research at the eBISS
2012 summer school, and is thus primarily based on the work of the author and
not aimed to provide detailed coverage of all similar work, as this is not pos-
sible within the given limits. The lecture is structured as follows: First, it will
introduce related terminology and the history of multidimensional databases,
followed by a discussion of why wellknown concepts such as spreadsheets and
relational databases do not suffice in this setting. Second, to give readers new

M.-A. Aufaure and E. Zimányi (Eds.): eBISS 2012, LNBIP 138, pp. 1–28, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://people.cs.aau.dk/~tbp

2 T.B. Pedersen

to the area of multidimensional databases a foundation for the further read-
ing, the lecture briefly introduces standard multidimensional database concepts
such as data cubes, dimensions with hierarchies, facts, measures, and the associ-
ated multidimensional querying operators. Third, the lecture will introduce the
area of complex multidimensional data, giving examples of the complexities that
may occur. Fourth, the lecture provides a set of requirements for handling com-
plex multidimensional data and surveys existing multidimensional models with
respect to these requirements. Fifth, the lecture discusses how complex multi-
dimensional data emerge in complex application domains, and briefly present
solutions for handling the complex multidimensional data. Finally, the lecture
summarizes the paper and points to directions for future work.

2 Background and Motivation

2.1 Related Terminology

We start by introducing a few special terms that are useful when studying the
literature on issues related to multidimensional databases.

OLAP: OLAP abbreviates On-Line Analytical Processing. As opposed to the
well-known OLTP (On-Line Transaction Processing), focus is on data analy-
ses rather than transactions. Furthermore, the analyses occur “On-Line”, i.e.,
fast, “interactive” query response is required. OLAP systems always employ a
multidimensional view of data.

Data Warehouse: A data warehouse (DW) is a repository of integrated enter-
prise data that is used specifically for decision support, i.e., there is (typically, or
ideally) only one data warehouse in an enterprise. The data in a DW is typically
collected from a large number of sources within (and sometimes also outside)
the enterprise.

Data Mart: A data mart (DM) is a subset of a data warehouse that is special-
ized for the needs of a special user group, e.g., the marketing department.

ETL: ETL (Extract-Transform-Load) is the three-step process that puts data
into the DW. First, data is extracted from the operational source systems, e.g.,
ERP systems. Second, data is transformed from the source system formats into
the DW format. This includes combining data from several sources and per-
forming cleansing to correct errors such as missing or wrong data. Third, data is
loaded into the DW. ETL is at times also referred to as ETT (Extract-Transform-
Transport).

Business Intelligence: Business Intelligence (BI) is the process of making “in-
telligent” business decisions by analyzing available data. From a technological
point of view, BI covers the combined areas of data warehousing,
reporting, OLAP, data mining, some data visualization, what-if analysis, and
special-purpose analytical applications.

Managing Complex Multidimensional Data 3

2.2 Multidimensional History

Multidimensional databases do not have their origin in database technology, but
stem from multidimensional matrix algebra, which has been used for (manual)
data analyses since the late 19th century.

During the late 1960s, two companies, IRI and Comshare, independently be-
gan the development of systems that later turned into multidimensional database
systems. The IRI Express tool became very popular in the marketing analysis
area in the late 1970s and early 1980s; it later turned into a market-leading
OLAP tool and was acquired by Oracle. Concurrently, the Comshare system de-
veloped into System W, which was used heavily for financial planning, analysis,
and reporting during the 1980s.

In 1991, Arbor was formed with the specific purpose of creating “a multiuser,
multidimensional database server”, which resulted in the Essbase system. Arbor,
now Hyperion, later licensed a basic version of Essbase to IBM for integration
into DB2. It was Arbor and Codd who, in 1993, coined the term OLAP [5].

Another significant development in the early 1990s was the advent of large
data warehouses [22], which are typically based on relational star or snowflake
schemas, an approach to implementing multidimensional databases using rela-
tional database technology.

In 1998, Microsoft shipped its MS OLAP Server, the first multidimensional
system aimed at the mass market. This has lead to the current situation where
multidimensional systems are increasingly becoming commodity products that
are shipped at no extra cost together with leading relational database systems.
Since then, a number of open source BI tools have become available, for a survey
see [48].

A more in-depth coverage of the history of multidimensional databases is
available in the literature [49].

2.3 Spreadsheets and Relations

Let us assume that we want to analyze sales of products in a supermarket chain,
for which we capture what product was sold, when it was sold, and where (in
what store) it was sold, along with the number of items sold and the total sales
price for those. When deciding what technologies to use to analyze such data,
spreadsheets immediately come to mind as a possibility.

We can easily build a spreadsheet with the sales on individual days as rows,
and the columns covering the products. However, capturing both number of
items solds and sales price means we have to use two columns for every product.
Furthermore, the formulae for computing cell values and adding them up will
be duplicated for each cell. Immediately, the question that pops up is how to
capture the sales location, the store where the product was sold. We could have a
separate sheet for each store, but that is very cumbersome to handle, and it does
not generalize to more than three dimensions, i.e., adding a fourth dimension like
the customer buying the product would be infeasible. We thus miss the concept
of true multidimensionality.

4 T.B. Pedersen

A further complication comes from grouping the data. We could imagine
grouping products into product groups and days into weeks, but it will be very
hard to generalize this to several levels of products, each level having attributes,
and complex groupings of time, especially if we want several alternative ways of
grouping for each dimension. If we introduce such concepts the mix of data and
hierarchy definitions will often cause the latter to be duplicated. We thus miss
the concept of hierarchical dimensions.

On top of this, it is almost impossible to add new types of data to the struc-
ture, e.g., adding the profit of the individual sale, structuring the product di-
mension into hierarchical levels, etc. Being database people, we see that we need
to separate data and schema. Another aspect of this is that summing up data
along rows or columns is easy, but with more complex aggregation formulae it
becomes hard to manage, since the formulae have to be copied to a huge num-
ber of cells, making maintenance a nightmare. Also, computing subaggregates
for months, quarters, and years is not easy to do. We thus need the notion of
automatic aggregation.

With spreadsheets not meeting our requirements for managing multidimen-
sional data, we could consider using an SQL database. Relational systems offer
flexibility in the modeling and querying of data, separate schema and data,
etc. However, the problem is that many important computations, including cu-
mulative aggregates (sales in year to date), totals and subtotals together, and
rankings (top 10 selling products), are hard or impossible to formulate in stan-
dard SQL. This is because interrow computations are difficult to express in
SQL—only intercolumn computations are easy. Also, transpositions of rows and
columns require cumbersome manual specifications and combinations of multi-
ple views. Although extensions of SQL, such as the data cube operator [14] and
query windows [13] can solve some of the problems, the concepts of true multi-
dimensionality, hierarchical dimensions, and automatic aggregation are not well
supported.

In summary, neither spreadsheets nor relational databases fully support our
requirements for advanced data analyses, except in very restricted scenarios.
As we will see shortly, multidimensional databases with OLAP applications
offer all these features. Indeed, OLAP is often referred to as spreadsheets on
steroids.

3 Multidimensional Concepts

We first offer an overview of the concept of a multidimensional cube, then cover
dimensions, facts, and measures in turn.

3.1 Data Cubes

Data cubes provide true multidimensionality. They generalize spreadsheets to
any number of dimensions. In addition, hierarchies in dimensions and formulas

Managing Complex Multidimensional Data 5

are first-class, built-in concepts, meaning that these are supported without du-
plicating their definitions. A collection of related cubes is commonly referred to
as a multidimensional database or a multidimensional data warehouse.

We obtain a higher dimensional cube for our sales example by including ad-
ditional dimensions. The most pertinent example of an additional dimension is
a time dimension, but it is also possible to include other dimensions, e.g., an
artist dimension that describes the artists associated with albums. In a cube,
the combinations of a dimension value from each dimension define the cells of
the cube. The actual sales counts are stored in the corresponding cells.

In a cube, dimensions are first-class concepts with associated domains, mean-
ing that the addition of new dimension values is easily handled. Although the
term “cube” implies 3 dimensions, a cube can have any number of dimensions. It
turns out that most real-world cubes have 4–12 dimensions [22, 49]. Although,
there is no theoretical limit to the number of dimensions, current tools often
experience performance problems when the number of dimensions is more than
10–15. To better suggest the high number of dimensions, the term “hypercube”
is often used instead of “cube.”

Figure 1 illustrates a three-dimensional cube. Let us assumed that we have
sales data for the years 2010 and 2011 for the products milk and bread in the
cities of Aalborg and Copenhagen. We then have three dimensions: Time, Prod-
uct, and Location.

2010

2011

Aalborg

Copenhagen

BreadMilk

16 43765

2072 3984

1031 2543

Product

Lo
cation

Time

Fig. 1. Sales Data Cube

Depending on the specific application, a highly varying percentage of the
cells in a cube are non-empty, meaning that cubes range from sparse to dense.
Cubes tend to become increasingly sparse with increasing dimensionality and
with increasingly finer granularities of the dimension values.

A non-empty cell is called a fact. The example has a fact for each combination
of time, product, and city where at least one sale was made. A fact has associated
with it a number of measures. These are numerical values that “live” within the
cells. In the figure, we show just one measure, the total sales price, but we could
also put the number of items solds into the cells.

6 T.B. Pedersen

Generally, only 2 dimensions (or sometimes 3 with simulated 3D views) can
be viewed (and the correlations between them understood) at the same time,
although for low-cardinality dimensions, a few more dimensions can be viewed
by nesting one dimension within another on the axes. Thus, the dimensionality
of a cube must reduced at query time by projecting it down to fewer dimensions
via aggregation of the measure values across the projected-out dimensions. For
example, if we want to view just sales by City and Time, we aggregate over the
entire dimension that characterizes the sales by Product for each combination
of City and Time (in real-life, this will be many cells).

An important goal of multidimensional modeling is to “provide as much con-
text as possible for the facts” [22]. The concept of dimension is the central
means of providing this context. One consequence of this is a different view on
data redundancy than in relational databases. In multidimensional databases,
controlled redundancy is generally considered appropriate, as long as it consid-
erably increases the information value of the data. One reason to allow redun-
dancy is that multidimensional data is often derived from other data sources,
e.g., data from a transactional relational system, rather than being “born” as
multidimensional data, meaning that updates can more easily be handled [22].
However, there is usually no redundancy in the facts, only in the dimensions.

Having introduced the cube, we describe its principal elements, dimensions,
facts, and measures, in more detail.

3.2 Dimensions

The notion of a dimension is an essential and distinguishing concept for multi-
dimensional databases. Dimensions are used for two purposes: the selection of
data and the grouping of data at a desired level of detail.

A dimension is organized into a containment-like hierarchy composed of a
number of levels, each of which represents a level of detail that is of interest to
the analyses to be performed. The instances of the dimension are typically called
dimension values. Each such value belongs to a particular level.

In some cases, it is advantageous for a dimension to have multiple hierarchies
defined on it. For example, a Time dimension may have hierarchies for both
Fiscal Year and Calendar Year defined on it. Multiple hierarchies share one or
more common lowest level(s), e.g., Day and Month, and then group these into
multiple levels higher up, e.g., Fiscal Quarter and Calendar Quarter to allow
for easy reference to several ways of grouping. Most multidimensional models
allow multiple hierarchies. A dimension hierarchy is defined in the metadata of
the cube, or the metadata of the multidimensional database, if dimensions can
be shared. This means that the problem of duplicate hierarchy definitions as
discussed in Section 2.3 is avoided.

In Figure 2, the schema and instances of a sample Location dimension for our
cube data are shown. The Location dimension has three levels, the City level
being the lowest. City level values are grouped into Country level values, i.e.,
countries. For example, Aalborg is in Denmark. The � (“top”) level represents
all of the dimension, i.e., every dimension value is part of the � (“top”) value.

Managing Complex Multidimensional Data 7

Country

City

Denmark USA

Aalborg Copenhagen Seattle Chicago Washington DC

Fig. 2. Schema and Instance for the Location Dimension

In some multidimensional models, a level may have associated with it a num-
ber of level properties that are used to hold simple, non-hierarchical information.
For example, the weight of a product (specifically, a Stock Keeping Unit (SKU))
can be a level property in the SKU level of the Product dimension. This infor-
mation could also be captured using an extra Weight dimension. Using the level
property has the effect of not increasing the dimensionality of the cube.

Unlike the linear spaces used in matrix algebra, there is typically no order-
ing and/or distance metric on the dimension values in multidimensional models.
Rather, the only ordering is the containment of lower-level values in higher-level
values. However, for some dimensions, e.g., the Time dimension, an ordering of
the dimension values is available and is used for calculating cumulative informa-
tion such as “total sales in year to date”.

Most models require dimension hierarchies to form balanced trees. This means
that the dimension hierarchy must have uniform height everywhere, e.g., all de-
partments, even small ones, must be subdivided into project groups. Additionally,
direct links between dimension values can only go between immediate parent-child
levels, and not jump two or more levels. For example, if all cities are first grouped
into states and then into countries, cities cannot be grouped directly under coun-
tries (as is the case in Denmark, which has no states). Finally, each non-top value
has precisely one parent, e.g., a productmust belong to exactly one product group.
In Section 4, we discuss the relaxation of these constraints.

3.3 Facts

Facts are the objects that represent the subject of the desired analyses, i.e.,
the interesting “thing”, or event or process, that is to be analyzed to better
understand its behavior.

In most multidimensional data models, the facts are implicitly defined by their
combination of dimension values. If a non-empty cell exists for a particular com-
bination, a fact exists; otherwise, no fact exists. (Some other models treat facts
as first-class objects with a separate identity [38].) Next, most multidimensional
models require that each fact be mapped to precisely one dimension value at the
lowest level in each dimension. Other models relax this requirement [38].

A fact has a certain granularity, determined by the levels from which its
combination of dimension values are drawn. For example, the fact granularity
in our example cube is “Year by Product by City.” Granularities consisting of

8 T.B. Pedersen

higher-level or lower-level dimension levels than a given granularity, e.g., “Year
by Product Category by City” or “Day by Product by City” for our example,
are said to be coarser or finer than the given granularity, respectively.

It is commonplace to distinguish among three kinds of facts: event facts,
state facts, and cumulative snapshot facts [22]. Event facts (at least at the finest
granularity) typically model events in the real world. The events describe an
overall real-world process that is captured, e.g., sales for a supermarket chain.
A unique instance of the process, e.g., a particular sale of a given product in a
given store at a given time, is represented by one fact. Examples of event facts
include sales, clicks on web pages (for web usage mining [21]), and the flow of
goods in and out of (real) warehouses.

A snapshot fact models the state of a given process at a given point in time.
Typical examples of snapshot facts include the inventory levels in stores and
warehouses, and the number of users using a web site. For snapshot facts, the
same object, e.g., a specific can of beans on a shelf, with which the captured real-
world process, e.g., inventory management, is concerned, may occur in several
facts at different time points.

Cumulative snapshot facts are used to handle information about a process up
to a certain point in time. For example, we may consider the total sales in year
to date as a fact. Then the total sales up to and including the current month
this year can be easily compared to the figure for the corresponding month last
year.

Often, all three types of facts can be found in a given data warehouse, as they
support complementary classes of analyses. Indeed, the same base data, e.g., the
movement of goods in a (real) warehouse, may often find its way into three cubes
of different types, e.g., warehouse flow, warehouse inventory, and warehouse flow
in year-to-date.

3.4 Measures

A measure has two components: a numerical property of a fact, e.g., the sales
price or profit, and a formula (most often a simple aggregation function such
as SUM) that can be used to combine several measure values into one. In a
multidimensional database, measures generally represent the properties of the
chosen facts that the users want to study, e.g., with the purpose of optimizing
them.

Measures then take on different values for different combinations of dimension
values. The property and formula are chosen such that the value of a measure is
meaningful for all combinations of aggregation levels. The formula is defined in
the metadata and thus not replicated as in the spreadsheet example. Although
most multidimensional data models have measures, some do not. In these, dimen-
sion values are also used for computations, thus obviating the need for measures,
but at the expense of some user-friendliness [38].

It is important to distinguish among three classes of measures, namely addi-
tive, semi-additive, and non-additive measures, as these behave quite differently
in computations.

Managing Complex Multidimensional Data 9

Additive measure values can be combined meaningfully along any dimension.
For example, it makes sense to add the total sales over Product, Location, and
Time, as this causes no overlap among the real-world phenomena that caused
the individual values. Additive measures occur for any kind of fact.

Semi-additive measure values cannot be combined along one or more of the
dimensions, most often the Time dimension. Semi-additive measures generally
occur when the fact is of type snapshot or cumulative snapshot. For example, it
does not make sense to sum inventory levels across time, as the same inventory
item, e.g., a specific product, may be counted several times, but it is meaningful
to sum inventory levels across products and stores.

Non-additive measure values cannot be combined along any dimension, usu-
ally because of the chosen formula. For example, this occurs for an “average
sales price” measure. Here, the averages for lower-level values cannot be directly
combined into averages for higher-level values. Non-additive measures can occur
for any kind of fact.

3.5 Multidimensional Querying

We now briefly introduce multidimensional querying.
The most common query is slice which does a selection on a cube, thus re-

ducing the cube. A dice views the cube from a different viewpoint (rotates it),
e.g., by Year by City. The effects of these on a cube resemble preparing an onion
for cooking, thus the names.

The query types known as drill-down and roll-up use the dimension hierarchies
and measures to perform aggregations at given levels, and are the inverses of each
other. Please consider the Location dimension in Figure 2 together with the cube,
where the (additive) measure is the sales price together with the function SUM.
When we roll-up from the City level to the Country level, the measure values for
all cities in the same country are combined into one by the associated formula
(summed). When we drill-down from the Country level to the City level, a cell
for a given country is exploded into a number of cells, one for each city, i.e.,
dis-aggregating the data in the country cell.

These four operations may of course be combined and nested.
For a multidimensional database with several cubes that share one or more di-

mensions, the so-called drill-across operation combines the cubes via the shared
dimensions, the analogue of a relational join.

Queries on order, which are very important for data analysis, are well sup-
ported by multidimensional databases. Such queries order cells in results, return
only the top or bottom cells according to the specified order, and are often
referred to as ranking or TOP N/BOTTOM N queries [49].

4 Complex Multidimensional Data

The traditional multidimensional data models and implementation techniques
assume that the data being modeled conforms to a quite rigid regime. Specif-
ically, it is typically assumed that all facts map (directly) to dimension values

10 T.B. Pedersen

at the lowest levels of the dimensions and only to one value in each dimension.
Further, it is assumed that the dimension hierarchies are simply balanced trees.
In many cases, this is adequate to support the desired applications satisfactorily.
However, situations occur where these assumptions are too rigid for comfort.

In such situations, the support offered by “standard” multidimensional models
and systems is inadequate, and more advanced concepts and techniques are
called for. A more comprehensive treatment of complex multidimensional data
is available in the literature [11]. We proceed to consider the impact of irregular
hierarchies on pre-computation.

Complex multidimensional data is problematic as it is not summarizable
[25, 46, 16]. Intuitively, data is summarizable if the results of higher-level ag-
gregates can be derived from the results of lower-level aggregates. Without sum-
marizability, users will either get wrong query results, if they base them on
lower-level results, or computation may be prohibitively time consuming be-
cause we cannot use pre-computed lower-level results to compute higher-level
results. When it is no longer possible to pre-compute, store, and subsequently
reuse lower-level results for the computation of higher-level results, aggregates
must instead be calculated directly from base data, which is what leads to the
increased computational costs.

It has been shown that summarizability is preserved if the aggregate func-
tions are distributive and the hierarchies of dimension values are strict, onto,
and covering [25, 38]. Informally, a dimension hierarchy is strict if no dimension
value has more than one (direct) parent, onto if the hierarchy is balanced, and
covering if no containment path skips a level. Intuitively, this means that dimen-
sion hierarchies must be balanced trees. If this is not the case, some lower-level
values will be either double-counted or not counted when reusing intermediate
query results for the computation of other results.

Figures 3 and 4 contain two dimension hierarchies: a Location dimension hi-
erarchy that includes a State level, and a Product dimension hierarchy that
captures one possible categorization of products into categories. The hierar-
chy in Figure 3 is non-covering because Denmark has no states and because
Washington DC belongs to no state. If we pre-compute aggregates at the State
level, we will have no values for Aalborg, Copenhagen, and Washington DC,
which has the effect that facts mapped to these cities will not be taken into
account when computing country aggregates from pre-computed State level
aggregates.

The hierarchy in Figure 4 is non-onto because the Vegetables product category
has no further subdivision. If we materialize aggregates at the lowest level, facts
mapping directly to Vegetables will not be counted. The hierarchy is also non-
strict because the product Skimmed Milk is shared between categories Dairy
and Diet. If we materialize aggregates at the middle level, data for Skimmed
Milk will be used twice, for both Dairy and Diet, which is what we want at this
level. However, this means that the data will also be used twice if we combine
these aggregates into the grand total, i.e., if we reuse these aggregates for further
aggregation.

Managing Complex Multidimensional Data 11

Denmark USA

Washington Illinois

Aalborg Copenhagen Seattle Chicago Washington DC

Fig. 3. Irregular Location Dimension

Non-food Diet

Skimmed MilkShirts Diet Coke

Dairy Vegetables

Fig. 4. Irregular Product Dimension

Irregular dimension hierarchies occur in many contexts, including organization
hierarchies [56], medical diagnosis hierarchies [31], and concept hierarchies for
web portals such as that of Yahoo! [55].

A solution to the problems with irregular hierarchies is to normalize the
hierarchies, a process that pads non-onto and non-covering hierarchies with
“dummy” dimension values to make them onto and covering, and fuses sets
of parents in order to remedy the problems with non-strict hierarchies. This
transformation may be accomplished transparently to the user, rendering pre-
aggregation applicable to the more general types of dimension hierarchies dis-
cussed here [37]. An interesting proposal for studying the properties of irregular
dimensions in a very generic and flexible way is the dimension constraints frame-
work by Hurtado et al. [16].

5 Support for Complex Multidimensional Data

We proceed to present requirements for multidimensional data model support
of complex multidimensional data. This is followed by a characterization of how
existing models support these. The resulting survey is a condensed and updated
version of an existing survey [38]. The survey provides an overview of the levels
of complexity in the data that the different models support. Another survey of
multidimensional models can be found in [54].

5.1 Requirements for Complex Multidimensional Data

We first describe requirements that a multidimensional data model should satisfy
in order to support complex multidimensional data.

12 T.B. Pedersen

1. Explicit hierarchies in dimensions. The hierarchies in the dimensions should
be captured explicitly by the schema. This permits the user to drill-down
and roll-up, as discussed in Section 3.5.

2. Multiple hierarchies in each dimension. A single dimension can have several
paths for data aggregation. As an example, assume that we have a Time
dimension that captures both the Calendar Year and the Fiscal Year. To
model this, multiple hierarchies are needed.

3. Support for aggregation semantics. The data model should capture the ag-
gregation semantics of the data and use this to provide a “safety net” that
catches queries that might yield results that have no meaning to the user.
Aspects of this include built-in support for avoiding double-counting of data
and avoiding addition of non-additive data.

For example, when asking for the number of products sold in different cat-
egories, Skimmed Milk sales will be counted as both Dairy sales and Diet
Sales. However, if the user then adds up the category totals in an attempt to
obtain the total number of sales, the system should prevent this, as Skimmed
Milk sales will then be counted twice.

The user should also be able to specify which aggregations are considered
meaningful for the different kinds of data available, and the model should
provide a foundation for enforcing these specifications. As an illustration,
it may not be meaningful to sum up inventory levels across time, while
performing average calculations on them does make sense.

4. Non-strict hierarchies. As explained in Section 4 and illustrated in Figure 4,
dimension hierarchies may be non-strict, i.e., we can have many-to-many
relationships between the different levels in a dimension. Because such di-
mensions make sense to the users, they should be supported by the data
model.

5. Non-onto hierarchies. As also covered in the previous section, dimension
hierarchies may be unbalanced, i.e., the path from the root to a leaf may
have varying length for different leaves. This is illustrated in Figure 4.

6. Non-covering hierarchies. Another common feature of real-world hierarchies
is that links between two nodes in the hierarchy “skip” one or more levels,
as in Figure 3.

7. Symmetric treatment of dimensions and measures. The data model should
allow measures to be treated as dimensions and vice versa. In our case,
the Sales attribute would typically be treated as a measure, to allow for
computations such as total sales, etc., but we should also be able to define
a SalesVolume dimension which allows us to group sales into groups such as
small, medium, and large sales.

8. Many-to-many relationships between facts and dimensions. The relationship
between fact and dimension does not always have the classical many-to-one
cardinality. In a case for hospital patients, some patient may have more than
one diagnosis [38]. In a supermarket case, a product could belong to several
(partly overlapping) groups, e.g., Skimmed Milk belongs both to the Dairy
and Diet product groups.

Managing Complex Multidimensional Data 13

9. Handling change and time. Although data changes over time, it should be
possible to perform meaningful analyses across times when data changes.
For example, product hierarchies classifying products into categories change
over time. So do Location hierarchies, where store districts change. It should
be possible to easily combine data across changes. The problem of slowly
changing dimensions [22] is part of this problem.

10. Handling different levels of granularity. Fact data might be registered at
different granularities. For example, US sales might be reported per state,
while Danish sales might be reported per city. It should still be possible to
get correct analysis results when data is registered at different granularities.

11. Handling imprecision. Finally, it is very important to be able to capture
the imprecision in the data directly and allow queries to take this into ac-
count. For example, the mapping of patient to diagnoses could have varying
precision, as some diseases are easy to categorize exactly, while others are
not [38].

Many other requirements may be posed to multidimensional data models. We
have chosen the eleven requirements above for several reasons: First, they are
non-trivial and are not satisfied by all existing models. Second, they are “model”
requirements that affect the core of a multidimensional data model. This con-
trasts with less fundamental requirements that may be met by simply adding a
new facility to the data model’s query language. Third, they derive from pre-
vious studies of the types of data and desired analyses that may be found in
complex systems [34, 36].

5.2 Existing Multidimensional Models

We proceed to evaluate nineteen data models for data warehousing on the re-
quirements just presented. We consider the models of Rafanelli & Shoshani [46],
Agrawal et al. [2], Gray et al. [14], Dyreson [12], Kimball [22], Li & Wang [26],
Gyssens & Lakshmanan [15], Cabbibo and Torlone [4], Datta & Thomas [6],
Lehner [23], Vassiliadis [53], Jagadish et al. [17], Mendelzon & Vaisman [29], Ped-
ersen et al. [35, 38], Abelló et. al. [1], Boussaid et. al. [3], Trujillo et al. [51], and
Malinowski et. al. [28], and Microsoft’s Analysis Services data model [50, 47, 30].
These models are good representatives of the prominent models in both the re-
search community and commercial systems. The models can be divided into
simple cube models, structured cube models, complex cube models, and statistical
object models.

The simple cube models [6, 14, 15, 22] treat data as n-dimensional cubes.
Generally, the data is divided into facts or measures, e.g., Sale, on which calcu-
lations should be performed, and dimensions, e.g., Product, which characterize
the facts. Each dimension has a number of attributes, which can be used for selec-
tion and grouping. In our example, the Product dimension might have a Product
Name attribute and a Category attribute that would be used to characterize the
sales. The hierarchy between these attributes is not captured explicitly by the

14 T.B. Pedersen

schema of the simple cubes, so these models do not “know” that products roll
up to categories.

Kimball’s star schema model is the best example of the simple cube models.
His model is based on plain SQL and does not embody multidimensional concepts
per se. We include it here because it is the most widely used implementation
model for multidimensional databases. Additionally, most relational OLAP tools
assume a star schema structure of the database and cannot handle more complex
designs. Thus, the evaluation of the star schema model is based on what can be
achieved using a plain star schema design and the corresponding (simple) SQL
queries, not on what can be done using full-fledged SQL.

The structured cube models [2, 4, 12, 17, 23, 26, 29, 50, 47, 30, 53] capture the
hierarchies in the dimensions explicitly, providing better guidance for the user
navigating the cubes. This information may also be useful for query optimiza-
tion [24]. The hierarchies are captured using either grouping relations [26], di-
mension merging functions [2], measure graphs [12], roll-up functions [4, 29], level
lattices [53], hierarchy schemas and instances [17], or an explicit tree-structured
hierarchy as part of the cube [23, 30, 47, 50].

The complex cube models contain the models by Pedersen et al. [35, 38],
Abelló et. al. [1], Boussaid et. al. [3], Trujillo et al. [51], and Malinowski et.
al. [28]. The Pedersen model was designed to support the eleven requirements
presented above. The complex cube models generally contain constructs for han-
dling at least a good deal of the requirements. Specifically, the dimensions have
explicit schemas and levels (Req. 1 and 2), and the dimension instances allow
even complex hierarchical structures (at least partial support for one or more of
Req. 4, 5, and 6). With complex hiearchies, summarizability becomes an issue,
so most of them contain an (at least partial) aggregation semantics framework
to disallow erroneous computations (Req. 3). In the Pedersen model, dimensions
and measures are treated equal, since everything is a dimension (Req. 7). For
most of the models, the mappings between facts and dimensions allow facts to
map to several values in the same dimension (Req. 8), and for some of the models
also to map to dimension values in non-bottom levels (Req. 10). In the Pedersen
model, mapping to non-bottom levels lays the foundation for handling imprecise
data, which is further supported by the query algebra (Req. 11). Finally, in the
Pedersen model (and partly in the Abelló model), dimension hierarchies and
fact-dimensions relations are annotated with time validity information which is
further supported by the query algebra, thus supporting Req. 9.

The last group of models is the statistical object models [46]. For this group, a
structured classification hierarchy is coupled with an explicit aggregation func-
tion on a single measure to produce a “pre-cooked” object that will answer a
very specific set of queries. This approach is not as flexible as the others, but un-
like most of these, it provides some protection, by using aggregation semantics,
against getting query results that are incorrect or not meaningful to the user.

The results of evaluating the nineteen data models against the eleven require-
ments are shown in Table 1. If a model supports all aspects of a requirement, we
say that the model provides full support, denoted by “

√
”. If a model supports

Managing Complex Multidimensional Data 15

some, but not all, aspects of a requirement, we say that it provides partial sup-
port, denoted by “p”. When it has not been possible to determine how support
for a requirement should be accomplished in the model, we say that the model
provides no support, denoted by “-”.

Table 1. Evaluation of the Data Models

Requirement

Model 1 2 3 4 5 6 7 8 9 10 11

Rafanelli & Shoshani [46]
√

-
√

p p - - - - - -

Agrawal et al. [2] p
√

- p - -
√

- - - -

Dyreson [12]
√ √

p - - - - - - p p

Gray et al. [14] -
√

p - - -
√

- - - -

Kimball [22] -
√

p - - - - - p - -

Li & Wang [26] p
√

p - - - - - - - -

Gyssens & Lakshmanan [15] -
√

p - - -
√

- - - -

Cabbibo & Torlone [4]
√ √

p - - - - - - - -

Datta & Thomas [6] -
√

- p - -
√

- - - -

Lehner [23]
√

-
√

- - - - - - - -

Vassiliadis [53]
√ √ √

- - - - - - - -

Jagadish et al. [17]
√ √

- -
√ √

- - -
√

p

Mendelzon & Vaisman [29]
√ √

p - - - - -
√

- -

Abelló et. al. [1]
√ √ √ √ √ √

p
√

p

Boussaid et. al. [3]
√ √

- p p -
√ √

- p p

Trujillo et. al. [51]
√ √ √ √ √ √ √

p

Malinowski et. al. [28]
√ √

p
√ √ √

p

Pedersen et al. [35, 38]
√ √ √ √ √ √ √ √ √ √ √

MS Analysis Services [30, 50, 47]
√ √

p -
√ √

- - p - -

1. Explicit hierarchies in dimensions : The simple cubemodels [6, 14, 15, 22] do not
capture the hierarchies in the dimensions explicitly. Somemodels provide par-
tial support via a grouping relation [26] and a dimension merging function [2],
but do not capture the complete hierarchy together with the cube. This is done
by the remainingmodels [4, 12, 17, 23, 29, 50, 30, 47, 35, 38, 1, 51, 28, 46, 53, 3],
thus capturing the full cube navigation semantics in the schema.

2. Multiple hierarchies in each dimension: Some models [23, 46] require that
the schema of dimension hierarchies is tree-structured. To support multiple
hierarchies, a more general lattice structure is required. All the other models
[2, 4, 6, 12, 14, 15, 17, 22, 26, 29, 50, 30, 47, 35, 38, 1, 51, 28, 53, 3] allow
multiple hierarchies.

3. Support for aggregation semantics : Most of the models [4, 12, 14, 15, 22,
26, 29] support aggregation semantics partially, by implicitly requiring the
dimension hierarchies to be strict, onto, and covering, i.e., the hierarchies
should be balanced trees. This is one of the conditions of summarizability [25]
and means that data will not be counted twice. Three of the models allow for

16 T.B. Pedersen

non-strict hierarchies, while not addressing the issue of double-counting, thus
providing no support [2, 6, 3]. One model [17] allows non-onto and non-
covering hierarchies, but does not address the issue of data not being counted,
thus providing no support. One model [50, 30, 47] allows non-onto and non-
covering hierarchies and provides mechanisms to count data correctly in
these situations, thus providing partial support. Two models [23, 46] place
explicit conditions on both the hierarchies (strict, onto, and covering) and
the aggregation functions used (only additive data may be added, etc.), thus
providing full support for aggregation semantics. One model [53] provides
the support by always keeping a reference to the base data and computing
from that when the aggregation semantics indicate the need to do so. One
model allows non-strict hiearchies and provides aggregation semantics [1].
Finally, three models [35, 38, 51, 28] allows non-strict, non-onto, and non-
covering hierarchies, with two models [35, 38, 51] providing full aggregation
semantics, while one model [28] provides only partial aggregation semantics
as it has no associated query algebra/language.

4. Non-strict hierarchies: Most of the models [4, 12, 14, 15, 17, 22, 23, 26,
29, 30, 50, 47, 53] implicitly or explicitly require that hierarchies be strict.
Three models [2, 6, 3] either briefly mention that non-strict hierarchies are
allowed, or seem to allow such hierarchies, but do not explore the issues
raised by allowing this, e.g., the possibility of double-counting and the use of
pre-computed aggregates. One model [46] investigates the possible problems
with allowing non-strict hierarchies and advises against using this feature.
Finally, four models [35, 38, 1, 51, 28] allows non-strict hierarchies, and
prevents aggregation problems using (at least partial) aggregation semantics.

5. Non-onto hierarchies : One model [46] discusses the possibility of having non-
onto hierarchies, but advises against using this feature. Six models [17, 30, 47,
50, 35, 38, 51, 28, 3] allow non-onto hierarchies either explicitly or implicitly.
All the other models do not allow non-onto hierarchies.

6. Non-covering hierarchies : Only five models [17, 30, 47, 50, 35, 38, 51, 28]
allow hierarchies to be non-covering. All the other models disallow non-
covering hierarchies.

7. Symmetric treatment of dimensions and measures : Most of the models [4,
12, 17, 22, 23, 26, 29, 30, 50, 47, 46, 53, 28, 51] distinguish sharply between
measures and dimensions. An attribute designated as a measure cannot be
used as a dimensional attribute and vice versa. This restricts the flexibility
of the cube designs, e.g., if the Sales attribute of the example is a measure, it
cannot be used to group albums into sales groups. The other models [2, 6, 14,
15, 35, 38, 1, 3] do not impose this restriction. They either do not distinguish
between measures and dimensions [14, 15, 3], allow for the conversion of
measures to dimensions and vice versa [2, 6, 1], or treat all data as dimensions
on which aggregate computations can also be performed [35, 38].

8. Many-to-many relationships between facts and dimensions : Only four of the
models [35, 38, 1, 51, 3] allows many-to-many relationships between facts
and their associated dimensions.

Managing Complex Multidimensional Data 17

9. Handling change and time: Seven models [22, 29, 35, 38, 30, 47, 50, 1, 28, 51]
fully or partially support this issue, but only the models of Mendelzon &
Vaisman [29] and Pedersen et al. [35, 38] have built-in temporal support in
the associated query algebra, thus fully supporting analyses across temporal
changes in the dimensions. The other six models [22, 30, 47, 50, 1, 28, 51,
3] support slowly changing dimensions. None of the other models support
analysis across changes.

10. Handling different levels of granularity: Dyreson [12] specifies an incomplete
data cube to be a union of cubettes. Each cubette may have a different data
granularity, thus providing some support for different levels of granularity.
However, the granularity is fixed at the schema level, rather than at the
data level, so the support is only partial. Four models [17, 35, 38, 1, 3] allow
the granularity to vary at the data level. None of the other models handle
different levels of granularity in the data.

11. Handling imprecision: For the reasons mentioned above, three models
[12, 17, 1, 3] provide partial support for imprecision in the data, as varying
granularities can provide a basis for handling imprecision. However, these
models do not offer all the features necessary for handling the imprecision.
One model [35, 38] provides full support for handling imprecision in the data.
None of the other models provide explicit means for handling imprecise data.

To conclude, the models generally provide full or partial support for most of Re-
quirements 1–3. Requirement 4 (non-strict hierarchies) is partially supported by
three of the models and fully supported by four, while Requirement 5 (non-onto)
is supported, partially or fully, by only six models. Requirement 6 is supported
by five models, while Requirement 7 (symmetric treatment of dimensions and
measures) is supported by six models. Requirement 8 (many-to-many
fact-dimension relationships) is only supported by three models. Requirement 9
(handling change and time) is fully supported by two models and partially sup-
ported by another five. Requirement 10 (handling different levels of granularity)
is partially supported by one model and fully supported by three, while Require-
ment 11 (imprecision) is partially supported by three models and fully by one.

6 Complex Application Domains

We now turn to describing complex multidimensional data as it appears in vari-
ous application domains and what solutions can be applied to manage the com-
plex data. Although presented for a particular domain, the solutions can be
generalized to handle similar complexities in multidimensional data occuring in
other domains.

6.1 Medical Data

The first domain is medical, or clinical, data, i.e., data about patients, diagnoses,
symptoms, etc.

18 T.B. Pedersen

Day

Week Month

Quarter

Year

LL Diagnosis

Diagnosis
Family

Diagnosis
Group

Diagnosis Date of Birth Residence

Address

City

County

Patient

Decade

Name

Name HbA1c%

PreciseAge

Five year
group

Ten year
group

Age

Imprecise

T T T T T T

Fig. 5. Complex Multidimensional Schema (from [38])

Figure 5 shows the multidimensional schema of a patient case study. The users
want to analyze the number of patients with certain characteristics (factors), such
as diagnoses, age or date of birth, residence and long term bloos sugar levels,
in order to understand any correlations between these factors. Thus, the facts
are individual Patients. Choosing other parts of the data as the facts, e.g., the
individual diagnostications, would make this analysis akward and difficult. The
Date of birth dimension of the patient has the usual grouping of days, months,
etc. We see that days can be grouped into both weeks and month, where only
the latter can be grouped further into quarters, etc., i.e., there are multiple
hierarchies in the same dimension. Sometimes, the users prefer not to think in
terms of birthdates, but rather in terms of patient ages, thus a (derived) Age
dimension is needed. Ages are grouped first into five year groups and then into
ten year groups. The � symbol denotes the top (ALL) level. The next dimension
captures Diagnoses, the most precise being Lowlevel (LL) Diagnoses, which are
then grouped into Diagnosis Families and finally into Diagnosis Groups. The
Residence dimension captures the patient address, which can then be grouped
into cities and counties. Some rural addresses are not in cities, and are thus
directly part of a county, thus the hiearchy is non-covering. The Name dimension
is flat with no hierarchies. Finally, the HbA1c% dimension captures an indicator
for the long term blood sugar level of a patient. This dimension can be used both
for grouping and for aggregate computation, thus showing the need for symmetric
treatment of dimensions and measures. This value can be either a precise number
or a more imprecise range of values, showing the need of handling imprecision.

Figure 6 shows an instance of this schema, projected only on the Diagnosis
and Name dimensions. We see that one patient can have multiple diagnoses, thus
inducing a many-to-many relationship between facts and dimensions. We also see
that while some have low-level diagnoses, some also have (more imprecise) di-
agnoses at the diagnosis familiy and diagnosis group levels, i.e., the dimension
have different granularities. Diagnosis family 14 is not further subdivided into

Managing Complex Multidimensional Data 19

1 2

John
Doe

Jane
Doe

Name
dimension

7 8 4 9 10

3 5 6

12 11

Diagnosis
dimension

Diagnosis
Group

Diagnosis
Family

Low-level
Diagnosis

Name

Patient

13

14

Jim
Doe

0

T T

Fig. 6. Complex Multidimensional Instance (from [38])

low-level diagnoses (making the hierarchy non-onto) and low-level diagnosis 5
is a child of both 4 and 9 (making the hierarchy non-strict). The assignment of
diagnoses changes over time, meaning that change and time must be handled to
yield correct patient counts.

12 11

4 9 10

5 6 5 6

4,9 4,10

4 9 10

11,12

⊥ ⊥

12 11

⊥ ⊥

Diagnosis
Group

Diagnosis
Group

Diagnosis
Family

Diagnosis
Family

Low-level
Diagnosis

Low-level
Diagnosis

Set-of
Diagnosis

Family

Set-of
Diagnosis

Group

13

14

L14 L14

14

14

13

13

Fig. 7. Hierarchy Normalization (from [37])

The main problem with irregular hierarchies and many-to-many relationships
between facts and dimensions is that summarizability is not preserved, which
causes pre-aggregation not to work, as some parts will either be under-counted
(in case of non-onto or non-covering hierarchies) while others will be over-counted
(in case of non-strict hierarchies) The solution is to normalize the hierarchies to
make them summarizable. The hierarchies are padded with the missing parts due
to non-onto and non-covering hierarchies, e.g., hidden dummy low-level diagnoses
are introduced. Non-strictness and many-to-many relationships are handled by
fusing sets of parents into atomic set units and introduce a summarizable path
to the top. This is illustrated in Figure 7 where the fusing process is shown. The
transformation can be made transparent to the user by having separate navi-
gation (shown to the user) and aggregation (used for computation) hierarchies.
Further details can be found in [38, 37].

20 T.B. Pedersen

6.2 Spatio-temporal Data

Spatio-temporal data warehouses allowing the analysis of data related to both
space and time have become increasingly important with the explosion of such
data, e.g., from GPS devices. A characterization of the data and functionality
in spatio-temporal data warehouses can be found in [52].

A key characteristic of spatial and spatio-temporal data is that overlaps, miss-
ing coverage, and partial containment often occur in hierarchies dividing a cer-
tain area according to one or more criteria. Figure 8 shows the schema and an
instance of such a complex spatial hierarchy. Roadways are partially contained in
Districts, as indicated by the dotted line in the schema. For example, Roadway
is 40% contained in District3 (indicated by the weight 0.4. Districts are again
partially contained in cities. For example, District2 belongs 30% to City1 and
70% to City2. Facts A, B, C, E, and G map to any level in the hierarchy, e.g.,
the position of C is only known at the city level, while for A it is known at the
roadway level.

Roadway

District

City

Country

(a)

Roadway1

Distr

City1 City2

1 1

District1 District2

Roadway2 Roadway3 Roadw

1 0.3
0.7 1

0.5 1
1 0.4

(b)

0.6

All

Country1

1

0

1

A

B

C

E

G

Fig. 8. Complex Spatial Hierarchy (from [18])

In order to make such a hierarchy summarizable and be able to apply pre-
aggregation, a normalization procedure extended to handle partial containment,
can be performed, see [18] for details.

Managing Complex Multidimensional Data 21

6.3 Music Data

We now turn to the rather different application area of music data. Here, the aim
is to provide efficient retrieval of songs based on both a set of given metadata
criteria, e.g., artist, genre, year, etc., and retrieve songs that are similar to a
given so-called seed song. For the metadata part, creating a number of metadata
dimensions is a good fit. Figure 9 shows a complex Genre Dimension. We first di-
vide songs into two overall genres, Pop and Rock. However, a fusion subgenre like
PopRock then becomes a child of both of these, thus introducing non-strictness
in the dimension. A way of dealing with this is to introduce bitmap indices for
capturing which songs belong to which genres. These can efficiently be combined
(Boolean AND/OR/NOT) to answer queries on multiple criteria. We see that
songs 1 and 3 are Pop, while 2 and 3 are Rock, and 3 is PopRock. By storing
the bitmaps for all dimension values, the non-strictness can be handled without
problems. When the number of dimension values becomes large, i.e., many gen-
res, the bitmap indices must be compressed using techniques like Position List
Word Aligned Hybrid (PLWAH) [10].

Pop

Pop/Rock

dgenre

Rock[101]

[001]

T genred

[011]

Fig. 9. Complex Genre Dimension and Bitmap (adapted from [19])

Another complexity occurs when capturing the similarities between songs. We
need to capture the similarities between each of the n songs and all the other
songs, i.e., n2 distances. In many other applications, this can be done efficiently
using various tree structures, because the distance function is metric, e.g., Eu-
clidian distance. However, typical music similarity functions are non-metric as
the triangular inequality does not hold [20]. Thus, we need to somehow store all
the n2 distances. However, it is not needed to store the exact distance values,
instead only a partition into the most similar songs, the little less similar songs,
and so on until the least similar songs suffices. This leads to the development
of the so-called distance store bitmap index which uses compressed bitmaps to
store these [20]. Figure 10 shows such a distance store with three partitions (dis-
tance from 1–3, from 3–6, and greater than 6) and the bitmaps capturing which
songs belong to each. It is possible to use these to very efficiently search similar
songs, filter out songs recently listened to, and combine with metadata criteria,
all using very fast bitmap operations.

22 T.B. Pedersen

Fig. 10. Distance Store Bitmap Index (from [20])

6.4 XML Data

We now look at the problem of integrating an existing cube with external XML
data. For example, let us assume that we have a cube about our sales of electronic
components that we, due to a sudden need, want to extend with descriptions of
these components available in an XML document on the web. We do not have
time to go through the normal ETL procedure, but instead we want to bring
in the external data on demand. We can do this using a so-called OLAP-XML
Federation, as shown in Figure 11. The OLAP data is accessed using the OLAP
component, while access to the XML data is handled by the XML Component
which wraps the XML sources to allow for easy querying. The Federation Man-
ager uses its Metadata (sources, schemas, etc.) and Link Data (what dimension
values map to which XML values), along with data retrieved from the OLAP
and XML components to compute the query results, possible using Temp Data
for intermediate storage. This allows for effective integration of external XML
data for use as both dimensions and measures, see [41, 39] for details.

Temp. Data XML Data

User Interface

XML Comp.
Interface

OLAP Comp.
Interface

Federation
Manager

SQLM

SQLXM

SQL SQL

SQL
OLAP Query

Language
XML Query
Language

XPath

Meta-data Link Data

OLAP Data

Fig. 11. OLAP-XML Federation (from [41])

One of the most important operations of the OLAP-XML Federation is the
so-called decoration operator which “decorates” a cube with a new dimension.
Figure 12 shows the new dimension resulting from decorating our sales cube with
a new EC Description dimension. Since we use the so-called ALL semantics [40],
several parents are possible, introducing non-strictness. For example, EC1234 is

Managing Complex Multidimensional Data 23

both a D-type flip-flop and a 16-bit flip-flop. The operator is described in detail
in [40]. A similar operator is extension which adds a new measure to the cube,
based on external data [39].

T

D-type flip-flop 16-bit flip-flop

EC1234 EC1235EC2345

N/A

EC[ALL]/Description

T

EC'

Description

EC[ALL]/Description

Fig. 12. Decoration With ALL Semantics (from [40])

6.5 Semantic Web Data

In recent years, another type of web data has become very popular, namely
semantic web data which aims to add more semantics to data on the web us-
ing so-called ontologies. The most popular ontology language is called OWL
which has several levels, the simplest being OWL Lite. Semantic web data
has the form of (Subject,Predicate,Object) triples and are often stored in ded-
icated storage engines called triplestores. However, it is often desired to be
able to combine triple data with other types of data, typically stored in an
RDBMS, for advanced analytics purposes. Previous DBMS-based triplestores
have suffered from insufficient scalability, while file-based triplestores are scal-
able but unable to integrate with RDBMS data. The 3XL triplestore [27] provides
the best of both worlds by utilizing object-relational features, advanced buffer-
ing, and bulk-loading techniques to provide performance comparable to leading

Fig. 13. 3XL Specialized Schema (from [27])

24 T.B. Pedersen

Q, XPath

Document

Warehouse
Corporate

Warehouse

Document

Analysts

Contexts &

Facts

OLAP

Cube

Corp.

Facts

R-cube

Dimensions

Contextualized

Facts

Analysts

Contexts

&

Facts

Fact Extractor

Q, XPath

Document

Warehouse
Corporate

Warehouse

Document

Analysts

Contexts &

Facts

OLAP

Cube

Corp.

Facts

R-cube

Dimensions

Contextualized

Facts

Analysts

Contexts

&

Facts

Fact Extractor

Fig. 14. Contextualized Data Warehouse (from [43, 45])

file-based triplestores while still allowing easy integration with other RDBMS
data. 3XL uses the OWL Lite ontology for the triple data to create a specialized
schema, see Figure 13. Here, object-relational table inheritance is used to capture
that everything is an owl:Thing which is then specialized into Documents, which
are again specialized into HTMLDocuments. The arrows indicate inheritance and
the dotted lines indicate (soft) foreign keys. A special map table is maintained
externally in BerkeleyDB to efficiently map URIs to short internal IDs and their
associated class table (CT). Further details are found in [27].

6.6 Text Data

Finally, we will look at integration of multidimensional data with perhaps the
most common type of data, namely text. Here, the problem is how to combine
structured cube data like dimensions and measures with the unstructured world
of text. One solution is the so-called contextualized data warehouse [42, 43, 45].
The architecture is shown in Figure 14. Data is assumed to be stored in two
places, a structured corporate DW, and a semi-structured document warehouse
(allowing the documents to have some structure, like article, section, paragraph,
etc.). The multidimensional data is kept in a multidimensional cube. Using a user
keyword query and a possible document structure query, relevant text sentences
are extracted from the document warehouse. The Fact Extractor then tries to
extract facts from the text, e.g., about locations and markets, products, times,
etc. This is done by trying to find matches for the dimension values in the
cube. The more dimensions a fact matches, the better relevance, e.g., if the fact
matches both the Time, Product, and Location dimensions, the match is better
than if it just matches one of them. Facts that arise from a single sentence are
preferred to facts found in longer pieces of text. Matches can also be hierarchical,
e.g., a city name matching through a country to a region. The closer the match
is in the hiearchy (no. levels apart), the better. The so-called relevances of the
extracted fact for cube facts are then computed, resulting in a ranking of which

Managing Complex Multidimensional Data 25

documents are most closely linked to which facts. Thus, the documents have now
been used to provide a context for the facts, i.e., contextualizing the cube with
documents. The resulting cube structure is called a relevance cube (R-cube).

7 Conclusion and Future Work

Multidimensional database concepts such as cubes, dimensions with hierarchies,
and measures have become a cornerstone of business intelligence. However, as
this lecture has shown, the standard data models and system implementations
(OLAP) for multidimensional databases are sometimes not able to capture the
complexities of advanced real-world application domains. This lecture showed
how to manage such complex multidimensional data, including complex dimen-
sion hierarchies, complex measures, and integration of multidimensional data
with complex external data. The lecture looked at how complex multidimensional
data emerge in complex application domains such as medical data, location-
based services, music data, web data, and text data, and presented solutions for
these domains that support multidimensional business intelligence.

In future work, a number of important challenges must be addressed to sup-
port complex multidimensional data from emerging data sources and applica-
tions. These include warehousing data about the physical world, integrating
structured, semi-structured, and unstructured data in DWs, integrating the past,
the present, and the future, warehousing imperfect data, and ensuring privacy in
DWs. Further challenges arise from the emerging domain of cloud intelligence [33]
where support for massive scalability, data outsourcing, and collaborative BI be-
comes essential. The common base for addressing these challenges should be a
new kind of data model, inspired by multidimensional and semi-structured data
models, but capable of supporting a much wider range of data. Specifically,
support will be added for handling geo-related data (geo models, etc), sensor
data (high speed data streams, missing or incorrect values, etc), semi-structured
and unstructured data (enabling analysis across structured, semi-structured, and
unstructured data), and imperfect (imprecise, uncertain, etc.) data. Support for
privacy management will also be built into the framework. Details can be found
in [32, 33].

References

1. Abelló, A., Samos, J., Saltor, F.: YAM2: a multidimensional conceptual model
extending UML. Information Systems 31(6), 541–567 (2006)

2. Agrawal, R., Gupta, A., Sarawagi, S.: Modeling multidimensional databases. In:
ICDE, pp. 232–243 (1997)

3. Boussaid, O., Boukraa, D.: Multidimensional Modeling of Complex Data. In:
Wang, J. (ed.) Encyclopedia of Data Warehousing and Mining, 2nd edn. (2008)

4. Cabibbo, L., Torlone, R.: Querying Multidimensional Databases. In: Cluet, S.,
Hull, R. (eds.) DBPL 1997. LNCS, vol. 1369, pp. 319–335. Springer, Heidelberg
(1998)

26 T.B. Pedersen

5. Codd, E.F.: Providing OLAP (on-line analytical processing) to user-analysts: An
IT mandate. E.F. Codd and Assoc. (1993)

6. Datta, A., Thomas, H.: A conceptual model and algebra for on-line analytical
processing in decision support databases. In: WOITS, pp. 91–100 (1997)

7. Deliège, F., Chua, B.Y., Pedersen, T.B.: High-Level Audio Features: Distributed
Extraction and Similarity Search. In: ISMIR, pp. 565–570 (2008)

8. Deliège, F., Pedersen, T.B.: Fuzzy Song Sets for Music Warehouses. In: ISMIR,
pp. 21–26 (2007)

9. Deliège, F., Pedersen, T.B.: Using Fuzzy Lists for Playlist Management. In: Satoh,
S., Nack, F., Etoh, M. (eds.) MMM 2008. LNCS, vol. 4903, pp. 198–209. Springer,
Heidelberg (2008)

10. Deliège, F., Pedersen, T.B.: Position list word aligned hybrid: optimizing space
and performance for compressed bitmaps. In: EDBT, pp. 228–239 (2010)

11. Dyreson, C.E., Pedersen, T.B., Jensen, C.S.: Incomplete information in multidi-
mensional databases. In: Rafanelli, M. (ed.) Multidimensional Databases: Problems
and Solutions. Idea Group Publishing (2003)

12. Dyreson, C.E.: Information retrieval from an incomplete data cube. In: VLDB, pp.
532–543 (1996)

13. Eisenberg, A., Melton, J.: SQL standardization: The next steps. SIGMOD
Record 29(1), 63–67 (2000)

14. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Venkatrao, M., Reichart, D.,
Pellow, F., Pirahesh, H.: Data cube: A relational aggregation operator generalizing
group-by, cross-tab and sub-totals. DMKD 1(1), 29–54 (1997)

15. Gyssens, M., Lakshmanan, L.V.S.: A foundation for multi-dimensional databases.
In: VLDB, pp. 106–115 (1997)

16. Hurtado, C.A., Gutiérrez, C., Mendelzon, A.O.: Capturing summarizability with
integrity constraints in OLAP. TODS 30(3), 854–886 (2005)

17. Jagadish, H.V., Lakshmanan, L.V.S., Srivastava, D.: What can hierarchies do for
data warehouses? In: VLDB, pp. 503–541 (1999)

18. Jensen, C.S., Kligys, A., Pedersen, T.B., Timko, I.: Multidimensional data model-
ing for location-based services. VLDBJ 13(1), 1–21 (2004)

19. Jensen, C.A., Mungure, E.M., Pedersen, T.B., Sørensen, K.: A Data and Query
Model for Dynamic Playlist Generation. In: ICDE Workshops, pp. 65–74 (2007)

20. Jensen, C.A., Mungure, E.M., Pedersen, T.B., Sørensen, K., Deliège, F.: Effective
Bitmap Indexing for Non-metric Similarities. In: Bringas, P.G., Hameurlain, A.,
Quirchmayr, G. (eds.) DEXA 2010, Part I. LNCS, vol. 6261, pp. 137–151. Springer,
Heidelberg (2010)

21. Jespersen, S.E., Thorhauge, J., Pedersen, T.B.: A Hybrid Approach to Web Usage
Mining. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002.
LNCS, vol. 2454, pp. 73–82. Springer, Heidelberg (2002)

22. Kimball, R.: The Data Warehouse Toolkit. Wiley Computer Publishing (1996)
23. Lehner, W.: Modeling Large Scale OLAP Scenarios. In: Schek, H.-J., Saltor, F.,

Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 153–167. Springer,
Heidelberg (1998)

24. Lehner, W., Ruf, T.: A redundancy-based optimization approach for aggregation
in multidimensional scientific and statistical databases. In: DASFAA, pp. 253–262
(1997)

25. Lenz, H., Shoshani, A.: Summarizability in OLAP and statistical data bases. In:
SSDBM, pp. 39–48 (1997)

26. Li, C., Wang, X.S.: A data model for supporting on-line analytical processing. In:
CIKM, pp. 81–88 (1996)

Managing Complex Multidimensional Data 27

27. Liu, X., Thomsen, C., Pedersen, T.B.: 3XL: Supporting efficient operations on very
large OWL Lite triple-stores. Information Systems 36(4), 765–781 (2011)

28. Malinowski, E., Zimányi, E.: Hierarchies in a multidimensional model: From con-
ceptual modeling to logical representation. Data and Knowledge Engineering 59(2),
348–377 (2006)

29. Mendelzon, A.O., Vaismann, A.A.: Temporal queries in OLAP. In: VLDB, pp.
242–253 (2000)

30. Microsoft. Microsoft SQL server: Analysis services,
http://www.microsoft.com/sql/technologies/analysis/default.mspx

(Current as of March 26, 2012)
31. National Health Service. Read Codes version 3. NHS (1999)
32. Pedersen, T.B.: Warehousing The World: A Vision for Data Warehouse Research.

Annals of Information Systems, Special Issue: New Trends in Data Warehousing
and Data Analysis, 1–17 (2009)

33. Pedersen, T.B.: Research challenges for cloud intelligence: invited talk. In:
EDBT/ICDT Workshops (2010)

34. Pedersen, T.B., Jensen, C.S.: Clinical data warehousing—a survey. In: MEDICON,
p. 20.3 (1998)

35. Pedersen, T.B., Jensen, C.S.: Multidimensional data modeling for complex data.
In: ICDE, pp. 336–345 (1999)

36. Pedersen, T.B., Jensen, C.S.: Research issues in clinical data warehousing. In:
SSDBM, pp. 43–52 (1999)

37. Pedersen, T.B., Jensen, C.S., Dyreson, C.E.: Extending practical pre-aggregation
in on-line analytical processing. In: VLDB, pp. 663–674 (1999)

38. Pedersen, T.B., Jensen, C.S., Dyreson, C.E.: A foundation for capturing and query-
ing complex multidimensional data. Information Systems 26(5), 383–423 (2001)

39. Pedersen, D., Pedersen, J., Pedersen, T.B.: Integrating XML Data in the TARGIT
OLAP System. In: ICDE, pp. 778–781 (2004)

40. Pedersen, D., Pedersen, T.B., Riis, K.: The Decoration Operator: A Foundation
for On-Line Dimensional Data Integration. In: IDEAS, pp. 357–366 (2004)

41. Pedersen, D., Riis, K., Pedersen, T.B.: XML-Extended OLAP Querying. In: SS-
DBM, pp. 195–206 (2002)

42. Pérez, J.M., Berlanga Llavori, R., Aramburu Cabo, M.J., Pedersen, T.B.: A
Relevance-Extended Multi-dimensional Model for a Data Warehouse Contextu-
alized with Documents. In: DOLAP, pp. 19–28 (2005)

43. Pérez, J.M., Berlanga Llavori, R., Aramburu Cabo, M.J., Pedersen, T.B.: R-Cubes:
OLAP Cubes Contextualized with Documents. In: ICDE, pp. 1477–1478 (2007)

44. Pérez, J.M., Berlanga Llavori, R., Aramburu Cabo, M.J., Pedersen, T.B.: Inte-
grating Data Warehouses with Web Data: A Survey. IEEE TKDE 20(7), 940–955
(2008)

45. Pérez-Mart́ınez, J.M., Berlanga Llavori, R., Aramburu Cabo, M.J., Pedersen, T.B.:
Contextualizing data warehouses with documents. Decision Support Systems 45(1),
77–94 (2008)

46. Rafanelli, M., Shoshani, A.: Storm: A Statistical Object Representation Model. In:
Michalewicz, Z. (ed.) SSDBM 1990. LNCS, vol. 420, pp. 14–29. Springer, Heidel-
berg (1990)

47. Spofford, G., Harinath, S., Webb, C., Huang, D.H., Civardi, F.: MDX-Solutions:
With Microsoft SQL Server Analysis Services 2005 and Hyperion Essbase. Wiley
(2006)

48. Thomsen, C., Pedersen, T.B.: A Survey of Open Source Tools for Business Intelli-
gence. International Journal of Data Warehousing and Mining 5(3), 56–75 (2009)

http://www.microsoft.com/sql/technologies/analysis/default.mspx

28 T.B. Pedersen

49. Thomsen, E.: OLAP Solutions: Building Multidimensional Information Systems.
Wiley (1997)

50. Thomsen, E., Spofford, G., Chase, D.: Microsoft OLAP Solutions. Wiley (1999)
51. Trujillo, J., Palomar, M., Gómez, J., Song, I.-Y.: Designing Data Warehouses with

OO Conceptual Models. IEEE Computer 34(12), 66–75 (2001)
52. Vaisman, A., Zimányi, E.: What Is Spatio-Temporal Data Warehousing? In: Ped-

ersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp.
9–23. Springer, Heidelberg (2009)

53. Vassiliadis, P.: Modeling multidimensional databases, cubes, and cube operations.
In: SSDBM, pp. 53–62 (1998)

54. Vassiliadis, P., Sellis, T.K.: A survey of logical models for OLAPdatabases. SIGMOD
Record 28(4), 64–69 (1999)

55. Yahoo! Yahoo!, http://www.yahoo.com (Current as of March 27, 2012)
56. Zurek, T., Sinnwell, M.: Data warehousing has more colours than just black and

white. In: VLDB, pp. 726–729 (1999)

http://www.yahoo.com

An Introduction to Business Process Modeling

Alejandro Vaisman

Université Libre de Bruxelles
avaisman@ulb.ac.be

Abstract. Business Process Modeling (BPM) is the activity of repre-
senting the processes of an organization, so that they can be analyzed
and improved. Nowadays, with increased globalization, BPM techniques
are used, for example, to optimize the way in which organizations react
to business events, in order to enhance competitiveness. Starting from
the underlying notion of workflow modeling, this paper introduces the
basic concepts of modeling and implementing business processes using
current information technologies and standards, such as Business Process
Modeling Notation (BPMN) and Business Process Execution Language
(BPEL). We also address the novel, yet growing, topic of Business Pro-
cess Mining, and point out to open research challenges in the area.

1 Introduction

Business process management (BPM) comprises a collection of methods, tech-
niques, and tools to support the design, management, analysis and execution
of operational business processes [17]. BPM builds on classical workflow man-
agement (WFM) systems, although we can find its roots in office information
systems [6,9] which used variants of Petri nets [11] to model office procedures.
Although little advances were made in the eighties, the interest for workflow
technology increased again in the nineties. Further, a standardization process
led to the current BPMN 2.0 standard1, released by the Object Management
Group (OMG)2. In this paper we focus on business process modeling, provid-
ing a state-of-the-art in the topic, and showing the relationship between the
most common modeling tools and formal methods like Petri nets, including an
overview of scientific and practical issues.

Business process management systems (BPMS) follow current trends in soft-
ware development, namely: (a) assembling complex software systems rather than
coding from scratch, i.e., orchestrating pieces of software rather than coding indi-
vidual modules; (b) moving the focus from data to processes. On the other hand,
traditional software design was data-driven, i.e., data modeling was the starting
point for building an information system. BPMS can be used to support this shift
from programming to assembling, also supporting the notions of process orien-
tation and redesign. For example, today’s workflow management systems can be

1 http://www.omg.org/spec/BPMN/2.0/
2 http://www.omg.org

M.-A. Aufaure and E. Zimányi (Eds.): eBISS 2012, LNBIP 138, pp. 29–61, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org

30 A. Vaisman

used to integrate existing applications and support process change just by means
of changing the workflow diagram. This is also consistent with the development
of applications based on web services: web services composition languages such as
BPEL4WS3, WSCI4, and WSFL5 can be used to glue services defined using web
services definition language (WSDL). Summarizing, BPMS are generic software
systems driven by process design, used to manage operational business processes.
In this sense, we can say that they are similar to database management systems
(DBMS). Leading enterprise resource planning systems (ERP) (i.e., tailor-made
systems) also offer a workflow management module. The workflow engines of
SAP6 or PeopleSoft7 can be considered as integrated BPMS.

Fig. 1. BPM lifecycle

Figure 1 (adapted from [14]) depicts the BPM’s life-cycle. We choose this as
representative of many proposals found in the literature. In the figure we can
identify the following phases: (a) design, where the processes are designed or
re-designed; (b) configuration, where designs are turned into code; (c) execution,
where business processes are executed using the configured system; (d) diagnosis,
where the operational processes are analyzed to identify problems and to find
things that can be improved. Note that phases (a) and (c) have associated cyclic
tasks, namely analysis and adjustment, respectively.

This paper provides a general introduction to BPM, with focus in model-
ing, also providing the workflow notions that underlie business process (BP)
modeling. We start introducing basic notions on workflow management and BP
management and modeling (Section 2), discussing the similarities and differences
between them, also introducing the terminology that will be used in the remain-
der. After this, we study formal methods for defining workflows (basically, Petri
nets) (Section 3). In Section 4 we introduce the current OMG standard BPMN
2.0 (Business Process Modeling and Notation), and discuss its main constructs.
In Section 5 we study tools for executing business process models, namely BPEL

3 http://www.ibm.com/developerworks/webservices/library/ws-bpelcol1/
4 http://www.w3.org/TR/wsci/
5 http://www.ebpml.org/wsfl.htm
6 http://www.sap.com/ERP
7 http://www.oracle.com/us/products/applications/peoplesoft-enterprise

http://www.ibm.com/developerworks/webservices/library/ws-bpelcol1/
http://www.w3.org/TR/wsci/
http://www.ebpml.org/wsfl.htm
http://www.sap.com/ERP
http://www.oracle.com/us/products/applications/peoplesoft-enterprise

An Introduction to Business Process Modeling 31

(Business Process Execution Language), and the translation from BPMNmodels
to BPEL specifications. Section 6 briefly introduces other methods for specifying
BP (with focus on UML Activity diagrams), and compares them against each
other and against BPMN. Section 7 introduces the novel yet growing area of
process mining, and in Section 8 we present some research topics in the field.
We conclude in Section 9.

2 Workflow Management and Business Process
Management and Modeling

We start this study providing some definitions that will give a precise framework
for the remainder. We then discuss similarities and differences between workflows
and business processes. The next definitions correspond to the ones given by the
Workflow Management Coalition8 [3].

Definition 1 (Workflow). We denote by Workflow the automation of a busi-
ness process, in whole or part, during which documents, information or tasks are
passed from one participant to another for action, according to a set of procedu-
ral rules. ��
Definition 2 (Workflow Management System). A Workflow Management
System (WFMS) is a system that defines, creates and manages the execution
of workflows through the use of software, running on one or more workflow
engines, and is able to interpret the process definition, interact with workflow
participants and, when required, invoke the use of Information Technology tools
and applications. ��
Definition 3 (Workflow System). A Workflow System (WFS) is a system
based on a WFMS that supports an specific set of business processes through the
execution of computerized process definitions. ��
Note that the definitions above emphasize the focus on the use of software to
support the execution of operational processes, also called enactment in workflow
terminology. At the beginning of the twenty-first century, many researchers and
practitioners realized that the traditional focus on execution was too restrictive,
and terms like BPM were coined. There exist many definitions of BPM which,
in general, refer to workflow management.

Definition 4 (Process Model). A process model is a formalized view of a
business process, represented as a coordinate set of parallel and/or sequential set
of process activities that are connected to achieve a common goal. ��
Definition 5 (Business Process Modeling (cf. [17])). Business Process
Modeling is a modeling technique for supporting business processes using meth-
ods, techniques, and software to design, enact, control, and analyze operational
processes involving humans, organizations, applications, documents and other
sources of information. ��
8 WfMC, http://www.wfmc.org/

http://www.wfmc.org/

32 A. Vaisman

Definition 6 (Business Process Management System). A generic soft-
ware system designed to enact and manage operational business processes. This
system should be process-aware and generic in the sense that it could be possible
to modify the processes it supports. The process designs are often graphical and
the focus is on structured processes that need to handle many cases. ��
BPM can be considered a natural evolution of workflow management, that
enhances the latter with new BP technology, covering three process categories:
interactions between (i) people-to-people; (ii) systems-to-systems; and
(iii) systems-to-people, all from a process-centric perspective9. Workflow and
business re-engineering are at the basis of BPM.

Although the term BPM usually refers to large projects in also large corpo-
rations, and ‘workflow’ products target more limited projects, the overlapping
between both terms makes it impossible to draw a hard line between them.
However, it is worth mentioning that, from a commercial point of view, work-
flow vendors are calling their systems as BPMS, in particular since the OMG
adopted BPMN as the modeling standard language.

From a lifecycle point of view there are also overlaps and differences. Taking
into account the lifecycle of Figure 1, the focus of traditional WFMS is on the
first stages of such lifecycle, with little support for the diagnosis phase. Even
the support for the design phase is limited to provide an editor and analysis
tools, while real design support is missing. For example, few WFMS support
simulation, verification, and validation of process design, although formalisms
like Petri nets would allow this.

3 Using Workflows to Model Business Processes

Using graphical representations to allow a BP to be understood by the various
stakeholders involved, is a normal practice in software design and BPM. In addi-
tion, it provides a unified vocabulary to reduce the risk of misunderstanding the
problem at hand. In BPM, process models can be quite complex. Thus, using a
formal language for their specification is a possible way of avoiding the problems
above. Moreover, at the implementation level, the behavior of a BP can be ex-
plained in terms of the formal semantics of the specification language. The lack
of a formal semantics (only partially solved with the advent of the BPMN 2.0
specification) has resulted in different interpretations by vendors for even basic
control flow constructs. Further, definitions in natural language such as the ones
provided by the Workflow Management Coalition are not precise enough.

To reduce the risk of costly corrections due to errors found at the final stages
of a project, a thorough analysis of a BP must be carried out. For this kind of
analysis, formal languages may play a key role. One formalism used to specify
workflows are Petri nets [11]. The reasons for this are [19]: (a) Petri nets are
formal; (b) they have associated analysis techniques; (c) they are state-based

9 Jon Pyke, former CTO of Staffware, contributor of BPTrends;
http://www.bptrends.com

http://www.bptrends.com

An Introduction to Business Process Modeling 33

rather than event-based. The fact that Petri nets cannot specify certain control
flow dependencies led to the development of YAWL (standing for Yet Another
Workflow Language) [16], whose formal semantics is specified as a transition
system. We briefly discuss YAWL later in this paper. Although highly expressive,
both formalisms are not very suitable for high-level specification, since they are
not easy to understand to a typical user. Therefore, other techniques have been
adopted, leading to the BPMN 2.0 standard, which we also address later in
the paper. In the next section we introduce Petri nets, since they underlie BP
modeling theory and practice.

3.1 Workflows in Action

Basic Terminology. The basic element a workflow system deals with is a
so-called case. For example, an insurance claim (i.e., an instance of a process
that handles insurance claims), or issuing an air ticket (i.e., an instance of the
process of issuing air tickets) are cases. In this sense, this is analogous to a
database instance. Cases are classified in case types, i.e., cases that are handled
in a similar way. A case has an identity, e.g., handling a particular insurance claim
is a case that can be univocally identified. A process is a procedure followed to
handle a particular case type. Processes can be part of other ones, in which
case we denote them sub-processes. The central component of a workflow is the
task. A task is a logical, indivisible unit of work. If anything goes wrong when
performing a task, it must be rolled-back. This is somehow analogous to the
notion of atomicity in transactions in a DBMS.

The notion of routing refers to the way in which a process is carried out:
it defines the order of the tasks that compose a given process. Routing can
be sequential, parallel, selective, or iterative. Finally, tasks can be triggered in
different ways: by a resource initiative, by an external event or action (like a
message), or by time signals. This is denoted enactment. We next study all these
concepts in detail, basing ourselves in the classic work by van der Aalst [18].

3.2 Petri Nets

Petri nets, created in 1962 by Carl Adam Petri to model and analyze processes,
have been used to model complex processes (particularly in the operating sys-
tems field), given their main strength: they are graphic tools that have been fully
formalized. To be used in different areas, basic Petri nets have been extended in
many ways. We first present the basic formalism, and then we show how they
were extended to model BP. A classic Petri net is a directed bipartite graph
defined as follows.

Definition 7 (Petri net). A Petri net is a triple (P, T, F) where P is a finite
set of places, T is a finite set of Transitions, such that T ∩ P = ∅, and F ⊆
(P × T) ∪ (T × P) is a set of arcs. ��
A place p is called an input place of a transition t if and only if there is an
arc from p to t. Conversely, it is called an output place if and only if there is

34 A. Vaisman

an arc from t to p. Places are represented as circles, and transitions as squares.
Directed arcs link both kinds of figures. Each transition has exactly one input
place and one output place. Places may contain tokens (probably more than
one), indicated as black dots. If a transition takes a token from an input place
to put it in an output place, we say that the transition is fired. The state of a
Petri net is defined by the position of the tokens in it. A transition may only be
fired if it is enabled, meaning that there is a token in all of its input places.

Example 1 (Petri nets). In Figure 2a we depict a simple Petri net in its initial
state. There are three places (A, C, F), and three transitions (B, D, E). There
are three tokens in place A. Figure 2b shows that a token has been taken by
transition B from place A, and put in place C. Then, there is one process that
has been initiated, and two more waiting to be handled.

Graphs containing cycles can model cyclical (i.e., never ending) activities, like
traffic lights, for example. ��

(a) Initial state

(b) State after the first transition

Fig. 2. A Petri Net example

High-Level Petri Nets. Complex processes (like many BP) cannot be ex-
pressed in the basic simple Petri net formalism. There are many practical situa-
tions which the graph of Definition 7 cannot capture. Thus, this basic definition
has been extended in many ways. The three more relevant ones for workflow
representation are the color extension, the time extension, and the hierarchical
extension. Petri nets extended with color, time and hierarchy are called high
level Petri nets.

An Introduction to Business Process Modeling 35

The color extension uses colors to identify kinds of tokens. For example, if
we are modeling insurance claims, the basic Petri net formalism does not allow
to distinguish between a car policy claim and a fire policy claim, which are
represented just as tokens. A solution is to assign two different colors for tokens
representing each kind of claim. Of course, this is analogous to assigning a value
to a token. More interestingly, given that now tokens have values, we could fire
transitions based on conditions over these token values. For example “The token
to be consumed must correspond to a car insurance code.”

Classic Petri nets do not allow modeling time. Thus, the time extension has
been defined. In this extension, the token is associated with a timestamp. This
way, a token with timestamp ‘10’ can only be consumed from the time instant
‘10’. Before that, the transition is not enabled, even though there is a token in
each input place.

To adequately model hierarchical processes, the hierarchical extension has
been defined. This allows to define sub-processes, represented as a double square
indicating that this transition corresponds indeed to a subnet (i.e., another Petri
net).

3.3 Representing Workflows with Petri Nets

Now that we have defined the underlying formalism for representing a workflow,
let us show how this representation is achieved. For this, each element in a
workflow must me mapped to a collection of Petri net constructs. We use the
example below to illustrate the discussion.

Example 2 (Workflow10). An insurance company processes claims regarding car
accidents in which its customers are involved. The procedure for processing the
insurance claims is the following. Every claim reported by a customer is regis-
tered by an employee of the Car Damages (CD) department. After registration,
the insurance claim is classified by an employee within CD. There are two cat-
egories: simple and complex claims. For simple claims, two tasks (independent
from each other) need to be executed: check insurance and phone garage. Com-
plex claims require three tasks to be executed: check insurance, check damage
history, and phone garage. These tasks need to be executed sequentially in the
order specified. For both, the simple and complex claims, the tasks are performed
by employees of department CD. After executing the tasks (simple or complex)
a decision is taken, with two possible outcomes: OK (positive) or not OK (nega-
tive). If the decision is positive, the insurance company will pay. An employee of
the finance department handles the payment. In any event, the insurance com-
pany sends a letter to the customer who submitted the claim. Figure 3 depicts
the corresponding workflow diagram. Note that this workflow diagram resembles
a Petri net, with some additional notation that we will explain later in detail. ��

10 This example, and some of the figures in this section, have been taken and adapted
from http://wwwis.win.tue.nl/~wvdaalst/workflowcourse/

http://wwwis.win.tue.nl/~wvdaalst/workflowcourse/

36 A. Vaisman

Fig. 3. A workflow example

We next explain how the main elements in a workflow, namely cases, tasks,
processes, different case routing schemes, and the different ways of triggering (or
enactment) an event, can be represented using Petri nets.

Representing a Process. In Petri nets terminology, the starting point of a
process is an input place, and the ending point is an output place; conditions
are represented as places, and tasks as transitions. For example, in Figure 3,
the process of registering a claim is represented by the register transition. A
particular claim starts when this transition is fired, taking a token from the
begin place and moving it to the place denoted c1, where it waits to be classified.
The classify transition represents a condition; once the transition is fired (in the
simplest case, immediately after condition c1 is satisfied, which means that the
transition is enabled), it defines if the case is simple or complex. In the first case,
the AND-split transition generates two tokens, initiating two parallel tasks, as
we will explain when we address case routing. Figure 3 only shows one token,
meaning that at the time depicted by the figure no claims are being processed,
and only one case is waiting to be handled. However, in real situations we may
have many tokens representing different cases (claims) at different places. In
order to distinguish cases from each other, the color extension can be used,
assigning different values to tokens corresponding to each cases. Also, tasks in
a workflow can be combined in a single process. In this way, a process can be
composed of sub-processes which, as explained above, can also be represented
using the hierarchy extension of Petri nets. Figure 4 shows an example with two
tokens and a sub-process.

An Introduction to Business Process Modeling 37

Fig. 4. A process containing a sub-process and two tokens

Representing Routing. We mentioned that we can identify four cases of rout-
ing: (a) sequential; (b) parallel; (c) selective; (d) iterative; all of them can be
represented using Petri nets, as we explain next.

In case (a), sequential routing, tasks are carried out one after the other, and
modeled as two transitions linked by a place. In Figure 3, this is the case of
tasks register and classify. The latter is only triggered when the former has been
completed and condition c1 satisfied.

Fig. 5. Two parallel tasks

In case (b), parallel routing, two or more tasks can be carried out in parallel, in
any order, like it occurs in Figure 3 with tasks phone garage and check insurance.
Another example of this is given in Figure 5, where tasks A and B could be
performed in any order. In this figure, the transition called AND-split works as
follows: it fires when it takes the token in the place immediately before it, and
creates two new ones, that will be taken later by transitions (tasks) A and B.
When the conditions for A and B are fulfilled, these tasks will be performed in
the order defined by such conditions (i.e., one condition could be satisfied before
the other one). When both tasks have been performed, the transition AND-
join merges them, and the two tokens become a single one again. Note that
transitions AND-split and AND-join do not actually perform any task, they are
kinds of ‘dummy’ transitions. To distinguish them from transitions that actually
perform tasks, special symbols where defined (some of them are illustrated in
Figure 3).

In case (c), selective routing, only one route is followed depending on a con-
dition. That means, given the output of condition (a place), one out of two
transitions takes the token at the place, and passes it on to the following place.
This is depicted in Figure 6 in terms of Petri nets. This figure displays a so-called

38 A. Vaisman

Fig. 6. Non-deterministic implicit OR-split

Fig. 7. Non-deterministic explicit OR-split

implicit OR-split, that is, no task represents the decision. When the condition
is met, in a non-deterministic way, either task A or task B is executed, but no
both. For example, if both tasks are triggered by the occurrence of an event,
e.g., the arrival of a kind of document, the first one to get the document will be
executed. We can also represent this as an explicit OR-split, like in Figure 7. Here,
the same artifact as in case (b) is used, i.e., two fictitious tasks (indicated within
the dashed square) are added, representing the OR-split. When the condition
is satisfied, only one of the ‘fictitious’ tasks is triggered. In this case, although
the decision is also non-deterministic, it is taken immediately after the condition
is satisfied, which is slightly different than in the implicit case. That means, in
the first case, the decision is taken when the tasks must be performed. In the
second case, the decision is taken before that, and there is no way back, if the
tasks must be switched. Note that in both cases, at the other extreme of the
network, an OR-join occurs, and it is explained analogously. Finally, Figure 8
shows a third representation option, a deterministic one. That is, according with
the values of the tokens (e.g., using the color extension), a decision is taken. This
is also the case of the classify task in Figure 3. Note that even when in Figure 8
a special symbol is used, this can also be represented as a Petri net transition
that includes a decision rule (i.e., a single square).

Fig. 8. Deterministic OR-split

Given that AND and OR splits and merges are very frequent in workflows,
special symbols are used to represent them, with the meanings explained above.
These symbols are depicted in Figure 9.

An Introduction to Business Process Modeling 39

(a) AND-split (b) AND-join

(c) OR-split (d) OR-join

Fig. 9. Representation of split and merge transitions

Fig. 10. Iterative routing

Finally, in case (d), iterative routing occurs when a task or group of tasks,
is executed repeatedly. The typical example is the repetition of a test until the
desired outcome is achieved. Figure 10 depicts this situation. Once the task
(transition) A is executed (triggered), task B is executed or not, depending on
the condition in the OR-split. Note that this corresponds to a While...do kind
of loop. The Repeat...until case can also be represented analogously.

Representing Enactment. Figure 3 shows tasks (transitions) annotated by
symbols (e.g., an arrow upon task classify). Again, these are extensions to the
Petri net notation, which allow to represent a wider spectrum of situations in a
concise way.

(a) Condition (b) Resource (c) Event (d) Time

Fig. 11. Types of triggers

Transitions in Petri nets are triggered as soon as the conditions in the places
immediately behind them are satisfied. Transitions of this form are represented
as single squares (Figure 11a). However, since tasks are associated to cases, we
want to represent how, for each case, a task is activated or triggered. We have

40 A. Vaisman

(a) Concise notation for resource trigger (b) Petri net equivalent to (a)

Fig. 12. Equivalence between graphic notations for triggers

typically three choices of triggering: (a) through a resource initiative, like an
employee deciding to start the task (Figure 11b); (b) through an external event,
like the arrival of a document (Figure 11c); (c) through a time signal, like the
definition of an execution time for a task (Figure 11d). Note that this notation
is just a shorthand of different high-level Petri nets constructs. For example,
for the resource trigger of Figure 12a, Figure 12b shows the classic Petri net
equivalent, which requires a ‘trigger’ token. The other cases can be represented
analogously.

4 BPMN 2.0

BPMN (Business Process Modeling Notation) provides the tools for defining
and understanding the internal and external business procedures, allowing
organizations to communicate these procedures in a standard manner. Ideally
(we will see that this is not always possible) there should be a mapping from
one or more BPMN notation instances to an execution level instance. Thus,
BPMN is required to be unambiguous. In a nutshell, the rationale behind BPMN
was aimed at: (a) being acceptable and usable by the business community;
(b) being constrained to support only the concepts of modeling that are ap-
plicable to BP; (c) being useful in describing clearly a complex executable
process.

4.1 A Little Bit of History

Figure 1311 summarizes the evolution of workflow management tools, from the
early versions until BPMN 2.0 became an OMG standard. The Workflow Man-
agement Initiative (WfMI) developed the first process definition language, called
Workflow Process Definition Language (WPDL), published in 1998. WPDL con-
tained all the key concepts required to support workflow automation expressed
using URL Encoding. As an evolution of this language, the WfMC developed
the XML process Definition Language (XPDL). XPDL was extended to be able
to represent in XML all of the concepts present in a BPMN diagram. How-
ever, studies showed that the constructs in XPDL do not offer direct support to
many of the workflow patterns encountered in practice and present in mature

11 From http://www.column2.com/2009/05/robert-shapiro-on-bpmn-20/

http://www.column2.com/2009/05/robert-shapiro-on-bpmn-20/

An Introduction to Business Process Modeling 41

Fig. 13. The BPMN timeline

workflow products. To address this problem, XPDL vendors offer specific exten-
sions (see [13] for details).

Originally, BPMN was developed by the BPM Initiative (BPMI). In Novem-
ber, 2002, the BPMN 0.9 draft specification was released to the public, followed
by the BPMN 1.0 draft in August 2003. Finally, in May 2004, the BPMN 1.0
specification was released to the public. In 2006 BPMN 1.0 was accepted as an
OMG standard. Version 1.2 was accepted in 2008, containing changes in the
graphical representation. Actually, many of the constructs explained in Section
3 are present in BPMN, but while the BPMN 1.0 specification did not formally
define the semantics of the Business Process Diagram, BPMN 2.0 partially solves
this, and also contains significant changes, namely:

– New event types: parallel multiple events.
– Parallel event-based gateway.
– Intermediate events attached to activities.
– Event sub-processes only carried out when an event occurs.
– Updates on collaboration modeling.
– Two new diagram types: (a) Choreography diagram, modeling data exchange

between partners, where each data exchange is modeled as an activity; (b)
Conversation diagram, an overview of several partners and their links.

The most relevant changes refer to the way in which diagrams are specified.
Former versions only contain informal descriptions of the diagrams. BPMN 2.0
graphic tools are explained using UML. Therefore, a precise semantics is given.
An execution semantics is also defined, meaning that the interpretation and exe-
cution of BPMN models is precisely described, even including rules to transform
BPMN into BPEL format.

4.2 Elements

BPMN is aimed at providing a simple and understandable mechanism for cre-
ating BP models, and, at the same time, being able to handle the complexity

42 A. Vaisman

inherent to BP. The approach taken to handle these two conflicting require-
ments was to organize the graphical aspects of the notation into specific cate-
gories. This provides a small set of notation categories so that the reader of a
BPMN diagram can easily recognize the basic types of elements and understand
the diagram. Within the basic categories of elements, additional variation and
information can be added to support the requirements for complexity without
dramatically changing the basic look-and-feel of the diagram. These five basic
categories of elements are:

– Flow Objects. These are the main graphical elements for defining the behav-
ior of a BP. There are three kinds of flow objects; (1) Events; (2) Activities;
(3) Gateways. Their basic forms are depicted in Table 1, while more com-
plex forms are depicted in Table 2. These two tables partially reproduce the
OMG standard specification12. Note that the specification does not state how
conditions in gateways must be written. This is left to the modeler. Also, it
must be clear that gateways represent only logic, that means, if an activity
should take a decision, it should be modeled as a task followed by a gate-
way. Other modeling options exist, but studying them is out of this paper’s
scope.

– Data Objects. Data are represented with the following four elements: (1)
Data Objects; (2) Data Inputs; (3) Data Outputs; (4) Data Stores.

– Connecting Objects. There are four ways of connecting flow objects to each
other, or to other information objects: (1) Sequence Flows; (2) Message
Flows; (3) Associations; (4) Data Associations.

– Swimlanes. Used to group the primary modeling elements. Can be of two
forms: Pools and Lanes.

– Artifacts. Used to provide additional information about the process. There
are two standardized artifacts, but modelers or modeling tools are free to add
as many artifacts as necessary. The current set of artifacts includes Group
and Text Annotation.

The reader may recognize many of the features studied in Section 3 in Tables 1
and 2. Also the sequence flow semantics is similar, since it is based on tokens:
every time a process (a case) is started, a start event (Table 2, line 1) creates a
token. Then, the token is moved on to the first activity (Table 1, line 2, or any of
the complex activities/tasks in Table 2). When the task is performed, the activity
passes on the token (or tokens that could have been created). Figure 14 shows
a portion of the diagram in Figure 3 (corresponding to Example 2), written in
the BPMN formalism. The process starts with a start event (Table 2, line 1),
not shown in the figure. The register task is followed by a classify task. Then,
a condition checks if the claim is simple or complex. In the first case, a parallel
gateway (which replaces the AND-split) generates two parallel paths, conforming
tasks. In this case, connections are sequence flows.

12 http://www.bpmn.org/

http://www.bpmn.org/

An Introduction to Business Process Modeling 43

Table 1. Basic Elements

Element Description Notation
1 Event Something that happens during the

course of a process or a choreography.
There are three types of events: start,
intermediate, and end.

2 Activity A work performed during a process.
It can be atomic or non-atomic (com-
pound). There are two types of activ-
ities in a process model: sub-process
and task.

3 Gateway Used to control the divergence and
convergence of sequence flows in a pro-
cess and in a choreography.

4 Sequence
Flow

Shows the order in which activities
will be performed in a process and in
a choreography.

5 Message
Flow

Shows the flow of messages between
two participants that are prepared to
send and receive them.

6 Association Links information and artifacts with
BPMN graphical elements.

7 Pool A graphical representation of a partic-
ipant in a collaboration. It may con-
tain internal details, or it can be a
“black box.”

8 Lane A sub-partition within a process,
sometimes within a pool. Extends the
entire length of the process, either ver-
tically or horizontally.

9 Data Object Use to model data associated with
processes. Can represent a single ob-
ject or a collection of objects (see Ta-
ble 2).

10 Message Used to depict the contents of a com-
munication between two participants.

11 Text
Annotation

A mechanism to provide additional
text information for the reader of a
BPMN Diagram.

44 A. Vaisman

Table 2. Extended Elements

Element Description Notation
1 Events A start event indicates where a par-

ticular process or choreography starts.
Intermediate events occur between a
start event and an end event. The
end event indicates where a process or
choreography ends.

2 Task
(atomic)

An atomic activity in a process.

3 Choreo-
graphy

An atomic activity in a choreography.
It represents a set of one or more
message exchange. Each choreography
task involves two participants.

4 Collapsed
Sub-process

A ‘plus’ sign in the lower-center of the
icon indicates that the activity is a
sub-process and has a lower level of
detail.

5 Expanded
Sub-process

The boundary of the sub-process is
expanded and the details (a process)
are visible. Note that sequence flows
cannot cross the boundary of a sub-
process.

6 Collapsed
Sub-choreo-
graphy

The details of the sub-choreography
are not visible. A ‘plus’ sign in the
lower-center of the task name band
indicates that the activity is a sub-
process.

7 Expanded
Sub-choreo-
graphy

The details (a choreography) are vis-
ible within the boundary. Sequence
flows cannot cross the boundary of a
sub-choreography.

8 Gateway
types

The types of control include: (a) exclu-
sive decision and merging; (b) event-
based and parallel event-based gate-
ways can start a new instance of the
process; (c) inclusive gateway decision
and merging; (d) complex gateway –
complex conditions, e.g., 3 out of 5;
(e) parallel gateway forking and join-
ing. Each type of control affects both
the incoming and outgoing flow.

An Introduction to Business Process Modeling 45

Table 2. (continued)

Element Description Notation
9 Conditional

Flow
A sequence flow with a condition
evaluated at runtime, to determine
whether or not the sequence flow will
be used.

10 Exception
Flow

Occurs outside the normal flow of the
process and is based upon an interme-
diate event that occurs during the per-
formance of the process.

11 Data
Objects

Can be a singular object or a collec-
tion of objects. Besides, a data object
can be the input to or the output from
a process.

12 Fork Splits a path into two or more par-
allel ones (AND-Split). Two options:
(a) multiple outgoing sequence flows.
(b) parallel gateways (normally used
in combination with other gateways).

13 Join Combines two or more parallel paths
into one path (also denoted AND-Join
or synchronization).

14 Merging Combines two or more paths into one
path (also denoted OR-Join). If all the
incoming flow is alternative, then a
gateway is not needed.

15 Activity
Loop

Tasks and sub-processes performed re-
peatedly are indicated by a small loop-
ing icon at the bottom-center of the
activity.

16 Sequence
Flow Loop

Loops created by connecting a se-
quence flow to an upstream object.

Fig. 14. A portion of Example 2 expressed in BPMN

46 A. Vaisman

Fig. 15. Inclusive gateway example

We next comment on some BPMN constructs.
Gateways represent splits and merges as studied in Section 3. For example,

a parallel gateway (Table 2, line 8) could be used to represent an AND-split
(with the same semantics: a token is created for each output path). Analogously,
exclusive gateways can model an OR-split. Inclusive gateways allow selecting
or merging one or more paths, and are a little more involved. Figure 15 de-
picts a possible extension to our running example: instead of specifying the
phone garage kind of notification, assume that fax or email are now alternative
notification options: any possible combination of these three kinds of notifica-
tion will make the token move. However, in this example we have defined e-mail
as the default flow (indicated by the line that crosses the flow that goes from
the gateway to the activity), meaning that communication via e-mail cannot be
chosen in combination with any of the other two. That is, notification can be
done just by one of phone, fax, or email, by both phone and fax, but not via
email and fax.

Gateways are not the only way for representing splitting and merging. For
example, an exclusive gateway splitting into two paths could be replaced by
two conditional flows, (Table 2, line 9), if the conditions are mutually exclusive.
Inclusive gateways could be replaced by conditional flows, even when the former
constraint does not apply. Moreover, sequence flows could be used to represent
parallel gateways. However, BPMN modeling without gateways is not always
possible.

Fig. 16. Collaboration diagram for customer-employee information exchange

An Introduction to Business Process Modeling 47

Fig. 17. Choreography diagram for Figure 16

Fig. 18. Representing data objects in the running example

Collaboration is another feature originally present in BPMN, which has been
extended with the Orchestration feature. Figure 16 shows a collaboration dia-
gram that illustrates the information exchange between a customer sending a
claim, and an employee handling it. Flow messages are depicted in dashed lines.
The flows are shown in two pools (Table 1, line 7), one for the customer, and one
for the employee. This also illustrates that message flows (Table 1, line 5) can
only occur between two pools, and never within the same pool. Choreography
diagrams (Table 2, lines 3, 6, and 7) provide another way of representing col-
laboration. In these diagrams the focus is on the exchange messages themselves,
modeled as choreography activities. Figure 17 shows the choreography diagram
corresponding to Figure 16. The shadowed band of each exchange box indicates
the receiver of the message.

When a process uses data, files, or documents, a sequence flow from one
activity to another is accompanied by a data transfer. BPMN accounts for this
by means of data objects (Table 2, line 11). Figure 18 shows how claim documents
can be represented in a BPMN graph. A claim document is received, information
is stored in a database containing the claims, and this database is read to analyze
the type of claim.

5 BPEL: Executing BPM Diagrams

For BP implemented in a language such as Java, their representation as ab-
stract models like the ones commented above is not an easy task. This gap is

48 A. Vaisman

slowly being bridged by declarative standards that facilitate the design, deploy-
ment, and execution of BP. In particular, the BPEL standard (Business Process
Execution Language) [7], short for Web Services-BPEL (WS-BPEL) is an XML-
based language to describe the interface between the participants in a process,
as well as the full operational logic of the process and its execution flow. BPEL
is an OASIS13 standard executable language for specifying actions within BP
with web services. Processes in BPEL export and import information by us-
ing web service interfaces exclusively. Providing a language for the specification
of executable and abstract business processes, BPEL extends the web services
interaction model and enables it to support business transactions.

BPEL aims at enabling what is called programming in the large, a term that
refers to the high-level state transition interactions of a process. BPEL refers
to this concept as an abstract process. A BPEL abstract process represents a
set of publicly observable behaviors in a standardized fashion. It includes in-
formation such as when to wait for messages, when to send messages, when to
compensate for failed transactions, etc. Opposite to this, the term programming
in the small refers to short-lived programmatic behavior, often executed as a
single transaction involving access to local resources such as files, databases,
etc. BPEL’s development is built on the notion that both kinds of programming
require different types of languages. IBM and Microsoft had each defined their
own “programming in the large” languages: WSFL and XLANG, respectively.
Following the increasing popularity of BPEL, they decided to combine these lan-
guages into a new one, denoted BPEL4WS, which allows the formal specification
of BP and business interaction protocols by means of extending the web services
interaction model, enabling it to support business transactions.

We remark that BPEL is an orchestration language, rather than a choreogra-
phy language. An orchestration specifies an executable process that involves mes-
sage exchanges with other systems, such that the message exchange sequences
are controlled by the orchestration designer. Since BPEL adopts web services as
its external communication mechanism, its messaging facilities depend on the use
of the Web Services Description Language (WSDL) 1.1 to describe outgoing and
incoming messages. It should also be clear that BPEL is not a modeling language
but a programming language. This is somehow misunderstood due to the many
graphical graphical interfaces and editors that allow for a simple, intuitive design
of BPEL specifications associated to vendor products to facilitate code genera-
tion. Given that there is no standard graphical notation for BPEL, vendors had
created their own notations, taking advantage of the fact that most constructs in
BPEL are block-structured (e.g., sequence, while, pick, scope, etc.), enabling a
direct visual representation of BPEL process descriptions14. Some vendors have
even proposed to use BPMN as a graphical front-end to capture BPEL process
descriptions. As an illustration of the feasibility of this approach, the BPMN

13 Organization for the Advancement of Structured Information Standards
http://www.oasis-open.org/

14 See for example Oracle’s Jdeveloper interface at
http://www.oracle.com/technology/bpel/

http://www.oasis-open.org/
http://www.oracle.com/technology/bpel/

An Introduction to Business Process Modeling 49

specification includes an informal and partial mapping from BPMN to BPEL
1.1. A more detailed mapping of BPMN to BPEL has been implemented in a
number of tools, including the open-source BPMN2BPEL15. However, the devel-
opment of these tools has revealed fundamental differences between BPMN and
BPEL which make it very difficult, and in some cases impossible, to generate
readable BPEL code from BPMN models. Even more difficult is the problem
of generating BPEL code from BPMN diagrams and maintaining the original
BPMN model and the generated BPEL code synchronized, in the sense that any
modification to one gets propagated to the other.

In [10] the authors aim at answering the question: can every BPMN model
be translated into a BPEL model? They claim that, for a core subset of BPMN
which includes parallelism and event-driven choice, the answer is ‘yes’. However,
the resulting translation heavily uses a construct in BPEL known as “event
handler” which serves to encode event-action rules. Thus, the process model is
decomposed into a large number of event-action rules that trigger one another to
capture the process flow, and the resulting BPEL code turns out to be unreadable
and therefore unsuitable for refinement by developers. The paper also addresses
the following question: are there classes of BPMN models that can be translated
to BPEL models using the syntactically constrained control flow constructs of
BPEL? They identify subsets of BPMN for which this is possible. We refer the
interested reader to that paper for details.

5.1 A BPEL Example

In this section we give the flavor of BPEL. For this, we use an example taken
from [20]. The example refers to the process of making a reservation of a flight,
together with car rental and and hotel booking. The process also includes an ini-
tial verification of the customer’s credit card. Figure 19 depicts this process in
a BPEL4WS graphical representation provided by IBM’s Websphere BPEL edi-
tor16. Figure 20 shows the process expressed in BPMN. Note that there is a Data
Map activity in the BPMN diagram, which looks rather awkward. Actually, data
maps are needed in BPEL to assign variables passed through messages. In the
presence of loops, like the one following the Data Map activity, the mapping must
be explicit. This shows one of the reasons why direct translations from BPMN to
BPEL are not always possible: the diagram in Figure 20 was built with the BPEL
diagram of Figure 19 in mind, otherwise, the Data Map activity would have not
been present, since it involves details not needed at a conceptual level.

We now show the BPEL code for portions of this example. Since our goal
here is not to give a BPEL tutorial, we omit some language technical details.
Partner link elements are defined prior to the definition of the process. The
tasks of the process that are of type Service, define the participants of the web
service. Participants and their properties map to partner link elements. Below
we show two partner links: the process starter participant, with business role

15 http://code.google.com/p/bpmn2bpel/
16 http://publib.boulder.ibm.com/infocenter/adiehelp/v5r1m1/index.jsp?

http://code.google.com/p/bpmn2bpel/
http://publib.boulder.ibm.com/infocenter/adiehelp/v5r1m1/index.jsp?

50 A. Vaisman

Fig. 19. A BPEL example: a flight reservation process (from [20])

denoted TravelProcessRole, and the HotelReservationService participant,
with role denoted HotelReservationRole.

<partnerLinks>

<partnerLink myRole="travelProcessRole"

name="ProcessStarter"

partnerLinkType="wsdl5:travelProcess"/>

<partnerLink name="HotelReservationService"

partnerRole="HotelReservationRole"/>

partnerLinkType="wsdl5:HotelReservationPartnerPLT"

...

</partnerLinks>

Variables (and their parts) are declared in the BPEL document before defining
the process that uses them. They are associated with the properties of a process
in a BPMN diagram, and reference message elements defined in a WSDL doc-
ument that supports the BPEL document. Some of the variables and message
parts defined for the process of Figure 20 are displayed next.

<variables>

<variable messageType="wsdl0:input" name="input"/>

<variable

messageType="wsdl4:doCreditCardCheckingRequest"

name="checkCreditCardRequest"/>

...

</variables>

An Introduction to Business Process Modeling 51

Fig. 20. The BPMN translation of Figure 19

The variable parts of the message are defined in the WSDL document, and look
as follows.

<message name="input">

<part name="airline" type="xsd:string"/>

<part name="arrival" type="xsd:string"/>

<part name="departure" type="xsd:string"/>

...

</message>

Sequence flows in Figure 20 map to BPEL link elements. Actually, the BPEL
implementation of the BPMN diagram requires more links than the sequence
flows shown in Figure 20. This will become clear shortly. The BPEL code for
defining the links is:

<flow name="Flow" wpc:id="1"/>

<links>

<link name="link1"/>

<link name="link2"/>

...

</links>

</flow>

The process starts with a message request for booking a travel itinerary, through
a start event called receive (Figure 19). This maps to a BPEL receive element as
shown below. The start event in the BPMN diagram of Figure 20 is implemented
as a web service by the process starter participant, and receives the message with
name ‘input’. The source link link1 represents the sequence flow between the
receive event and the data map.

52 A. Vaisman

<receive createInstance="yes" operation="book"

name="Receive"

wpc:displayName="Receive"

portType="wsdl0:travelPort"

variable="input" wpc:id="2">

<source linkName="link1" />

</receive>

After the request has been received, the validity of the credit card information
submitted is checked. This is represented by the BPMN activity Check Credit
Card, and the BPEL task checkCreditCard. (Note the error intermediate event
-Table 2, line 1- in the BPMN diagram; this event is used for handling an incor-
rect credit card number). This task requires a data mapping (indicated by ‘=’ in
Figure 19), represented as a BPEL assign element. The data mapping imple-
ments the assignment of the data received from the input to the data structure
of the message that will handle the credit card checking service. Note that for
the Check Flight Reservation and Check Hotel Reservation activities, this data
assignment was considered as part of the activity, while for the Check Car Reser-
vation activity, involved in a loop, this is not possible, producing a mismatch
between the BPMN and BPEL representations. Even though the data mapping
as a group is mapped to a BPEL assign element, individual property mappings
are mapped to copy elements within the latter. The code below illustrates this
discussion.

<assign name="dataMap1" wpc:displayName="dataMap1"

wpc:id="20">

<target linkName="link1"/>

<source linkName="link2"/>

<copy>

<from part="cardNumber" variable="input"/>

<to part="cardNumber"

variable="checkCreditCardRequest"/>

</copy>

<copy>

<from part="cardType" variable="input"/>

<to part="cardType"

variable="checkCreditCardRequest"/>

</copy>

</assign>

The above code represents the data mapping dataMap1 in Figure 19. In
that figure, the flow between dataMap1 and checkCreditcard is mapped to
the link link2, represented by the source element within the assign el-
ement dataMap1. Data from the input variable, is copied to data in the
checkCreditCardRequest variable, which is the input variable in the next
task, namely, checkCreditCard. This task is implemented as a web service, and
represented, as we explained before, by an invoke element. (we recall that

An Introduction to Business Process Modeling 53

both, the data map - an assign element - and checkCreditCard - invoke

element - are represented by the single activity Check Credit Card in the
BPMN diagram. Here, the participant is the CreditCardCheckingService

parter link, through the wsdl4:creditCardCheckingServiceImpl interface
and the doCreditCardChecking operation. The output variable is denoted
checkCreditCardResponse. We show this task next.

<invoke inputVariable="checkCreditCardRequest"

name="checkCreditCard"

operation="doCreditCardChecking"

outputVariable="checkCreditCardResponse"

partnerLink="CreditCardCheckingService"

portType="wsdl4:CreditCardCheckingServiceImpl"

wpc:displayName="Check Credit Card" wpc:id="5">

<target linkName="link2"/>

<source linkName="link3"/>

<source linkName="link6"/>

<source linkName="link9"/>

</invoke>

After the Check Credit Card task, three main parallel activities occur, involving
the checking of car, hotel, and flight reservations (we do not show the checking of
the car reservation). There are also three data mappings before these three tasks.
Parallelism is indicated by the three outgoing sequence flow arcs from the Check
Credit Card task in the BPMN diagram. Each flow is represented by the three
BPEL link elements (link3, link6, and link9), outgoing from the previous task
(in the code above we can see that the three corresponding link elements are
included as source elements in the checkCreditCard invoke element. As be-
fore, the mapping of the Check Flight Reservation activity results in an assign

element that precedes an invoke element. A link element (link4) that does
not have a corresponding Sequence Flow in the BPMN diagram must be added
to create the sequential dependency between the assign and the invoke ele-
ments. The mapping of the Check Hotel Reservation task is similar, involving
the creation of a link element (link4). We show the BPEL code next.

<assign name="DataMap2" wpc:displayName="DataMap2"

wpc:id="21">

<target linkName="link3"/>

<source linkName="link4"/>

<copy>

<from part="airline" variable="input"/>

<to part="airline"

variable="flightReservationRequest"/>

</copy>

...

</assign>

54 A. Vaisman

<invoke inputVariable="flightReservationRequest"

name="checkFlightReservation"

operation="doFlightReservation"

outputVariable="flightReservationResponse"

partnerLink="FlightReservationService"

portType="wsdl3:FlightReservationServiceImpl"

wpc:displayName="Check Flight Reservation"

wpc:id="10">

<target linkName="link4"/>

<source linkName="link5"/>

</invoke>

Finally, we remark again that the Data Map activity in the BPMN diagram,
preceding the Check Car Reservation task, is made explicit (opposite to the
Check Flight Reservation and Check Hotel Reservation activities, where it was
included in the tasks’ code). This is because the Check Car Reservation task
is within a loop, although the data mapping is needed only once. Therefore, it
must be represented as a separate activity. Below, we show the data mapping in
BPEL.

<assign name="DataMap4" wpc:displayName="Data Map"

wpc:id="23">

<target linkName="link9"/>

<source linkName="link10"/>

<copy>

<from part="carCompany" variable="input"/>

<to part="company" variable="carReservationRequest"/>

</copy>

...

</assign>

We refer the interested reader to [20] for the complete example.
Finally, we remark that there is an increasing number of tools that generate

executable business processes generating code directly from BPMN, without
using BPEL17. Examples of this are jBPM518, Activiti19, and Roubroo20.

6 Other Workflow Modeling Tools: UML and YAWL

UML. The Unified Modeling Language (UML)21 is a standard for software
development. It has evolved from version 1.0 in 1997 to version 2.4 in 2011.

17 http://www.bpm.com/bpel-who-needs-it.html
18 http://www.jboss.org/jbpm/
19 http://activiti.org/
20 http://activiti.org/
21 http://www.omg.org/spec/UML/2.4.1/

http://www.bpm.com/bpel-who-needs-it.html
http://www.jboss.org/jbpm/
http://activiti.org/
http://activiti.org/
http://www.omg.org/spec/UML/2.4.1/

An Introduction to Business Process Modeling 55

During this period, formalization and semantics have been added. It currently de-
fines fourteen diagrams, seven devoted to structural characteristics, and seven to
behavioral ones. Dealing with workflows, our interest is on behavioral diagrams,
namely: Activity, Communication (Collaboration in versions 1.x), Interaction,
Sequence, State, Timing, and Use Case diagrams. In UML 2.x, the semantics
of Activity diagrams changed from being based on state-machine semantics to
Petri net semantics, expanding the number of cases they can capture. As a con-
sequence, Activity diagrams are now generally more used than state machine
diagrams. They are used to model the control flow between objects, being thus a
form of flowchart. Activity diagrams consist in a collection of shapes, connected
by arrows, which run from the start towards the end, representing the order in
which activities occur. The most used shapes are rounded rectangles represent-
ing activities, diamonds representing decisions, bars representing the starting
(split) or ending (join) of concurrent activities, a black circle representing the
starting state of the workflow, and an encircled black circle representing the end
state. Although aimed at expressing concurrency, the join and split symbols in
Activity diagrams only solve simple cases, since the meaning of the model is
not clear when they are arbitrarily combined with decisions or loops. Sequence
diagrams show the order of message exchange between actors in a system, but in
their more used form, they do not support choice, synchronization, or iteration.
Communication diagrams (a simplified version of Collaboration diagrams), de-
pict the organization of objects that participate in an interaction, and, in some
way, are similar to Communication diagrams. State diagrams are an extension
of state machines, being a collection of states and transitions from one state to
another.

UML and Petri Nets. From the description above, the relationship between UML
and the workflow definitions based on Petri nets, given in Section 3 appears
straightforward. A given Activity diagram could be translated into a Petri net
mapping activities to transitions, object flows to places, and synchronization bars
to transitions. Probably, additional places can be required to connect transitions.
Also, a subset of Petri nets, Workflow nets (Petri nets with a unique start place,
a unique end place, and where each place is in a path from start to end) can be,
in general, translated to an Activity diagram.

UML Activity Diagrams and BPMN. One difference between BPMN and UML
Activity diagrams resides in the fact that the latter are, from the start, an
execution-oriented language, while, on the other hand, BPMN has been designed
with the aim of being a notation for high-level modeling, and BPMNmodels were
not originally intended to be directly executed. Note however, that since BPMN
2.0 has a much more detailed semantics than its predecessors, executable pro-
cesses can now be built starting from a BPMN model (some examples were given
above). The Workflow Patterns framework22 provides a reference analysis frame-
work consisting in a number of patterns which provide a taxonomy of generic,
recurring concepts and constructs relevant for process representation and mod-
eling. A comparison between BPMN and UML Activity diagrams in terms of

22 http://www.workflowpatterns.com

http://www.workflowpatterns.com

56 A. Vaisman

Workflow Patterns can be found in [21]. The authors report that BPMN provides
support for the majority of the control-flow patterns, for nearly half of the data
patterns, and only very limited support for a resource perspective (e.g., resource
allocation, distribution, handling). They also observe that detailed knowledge of
the non-graphically represented attributes of the modelling constructs in BPMN
is required in order to solve some of the patterns. Providing a rich graphical
notation and support for an extensive set of non-graphical elements leads to
an increased complexity. The conclusion is that (in a similar fashion as what
we stated above), from a control-flow perspective (which is relevant to BPM),
BPMN and UML 2.0 Activity diagrams are almost equivalent, although BPMN
is slightly stronger when it comes to the representation of parallel routing and
synchronized merge patterns, because of the larger number of control-flow con-
structs offered by BPMN with respect to UML Activity diagrams, in particular
AND/OR-splits, AND/OR-joins, and complex gateways.

As a final comment, it is worth noting that Activity diagrams, although part of
the UML OMG standard, have not been widely adopted by the BP community,
and their use is basically limited to software development specification.

Yet Another Workflow Language (YAWL). YAWL [15] is a workflow lan-
guage based on workflow patterns. The language is supported by a software
system that includes an execution engine, a graphical editor and a worklist han-
dler. The system is available as open source software under the LGPL license23.
It has been used in many real-world implementations, and extensively for uni-
versity teaching. YAWL aims at being a workflow language for supporting most
of the workflow patterns, while having an underlying formal semantics. Petri
nets are the basis of YAWL, which extends them with three main constructs,
namely OR-join, cancellation sets, and multi-instance activities. Even though
Petri nets (including high level Petri nets) support a number of the identified
patterns, they do not provide direct support for the cancellation patterns (in
particular the cancellation of a whole case), the synchronizing merge pattern
(where all active threads need to be merged, and branches which cannot become
active need to be ignored), and patterns dealing with multiple active instances of
the same activity in the same case. This motivated the development of YAWL,
which combines the insights gained from the workflow patterns with the benefits
of Petri nets. In fact, the semantics of YAWL is not defined in terms of Petri
nets but rather in terms of a transition system. This was motivated by the fact
that some of the extensions to Petri nets were difficult or even impossible to
re-encode back into plain Petri nets. The fact that YAWL is based on a formal
semantics has enabled the implementation of several techniques for analyzing
YAWL processes. In particular, the YAWL system includes a static analysis tool
called WofYAWL. It is out of the scope of this work to review the constructs of
YAWL, since most of the functionalities have been studied in Section 3.

Regarding execution, YAWL is sometimes considered an alternative to BPEL.
A crucial advantage of BPEL is that it is driven by a standardization committee,

23 http://www.yawlfoundation.org

http://www.yawlfoundation.org

An Introduction to Business Process Modeling 57

and supported by several IT industry players. Thus, unlike YAWL, there are
numerous tools (proprietary and open-source) that support BPEL. Also, several
researchers have captured the formal semantics of subsets of BPEL in terms of
various formalisms, including Petri nets, process algebra and finite statemachines,
leading to the development of static analysis tools for BPEL that can compete with
the static analysis capabilities provided by the YAWL system.

7 Process Mining

Business intelligence (BI) tools use event data to support decision-making.Within
such machinery, data mining (a collection of techniques and algorithms aimed
at discovering interesting information in large databases [8]) has been steadily
gaining attention, and many BI tools today offer mature data mining capabil-
ities. However, these tools are data-centric rather than process-centric, since
they focus on data and local decision making and not in end-to-end processes.
In contrast, BPM tools use process models to analyze operational processes.
These models are often disconnected from actual event data. Therefore, results
tend to be unreliable because they are based on an idealized model of reality
and not on observed facts. Then, we are in a situation where business process
analysis tools are process-based and data mining tools used to analyze processes
are data-based, and almost ignore business processes that data support. Process
mining [12], a term recently coined, aims to bridge the gap between BI and BPM
by combining event data and process models. Unlike traditional approaches, its
goal is not to construct a single static model, but rather to dynamically map
processes using the most recent data to make predictions or answer particular
questions. Process mining joins ideas of process modeling and analysis on the
one hand and data mining and machine learning on the other. The industry and
academia interest in process mining led the IEEE to establish the Task Force
on Process Mining, within the context of the Data Mining Technical Committee
(DMTC) of the Computational Intelligence Society (CIS)24. The remainder is
based on the process mining manifesto25 issued by this task force, and on [14].

The idea of process mining is to discover, monitor and improve processes by
extracting knowledge from event logs available in information systems. Process
mining includes (automated) process discovery (i.e., extracting process models
from an event log), conformance checking (i.e., monitoring deviations by compar-
ing model and log), organizational mining, automated construction of simulation
models, model extension, model repair, case prediction, and history-based rec-
ommendations.

7.1 The Process

The starting point for process mining is an event log. Each event in such a log
refers to an activity and is related to a particular case. We have already studied

24 http://www.win.tue.nl/ieeetfpm/doku.php
25 http://www.win.tue.nl/ieeetfpm/

doku.php?id=shared:process mining manifesto

http://www.win.tue.nl/ieeetfpm/doku.php
http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_mining_manifesto
http://www.win.tue.nl/ieeetfpm/doku.php?id=shared:process_mining_manifesto

58 A. Vaisman

the meaning of these terms, and know that events belonging to a case are ordered
and describe one ‘run’ of the process. Event logs can store additional data about
events. In fact, whenever possible, process mining techniques use supplementary
information such as the resource (person or device) executing or initiating the
activity, the events timestamp, and other data attributes such as order size. The
mining process has, basically, three stages:

– Process Discovery. First, analysts use process discovery techniques to ex-
trapolate a model from an event log. They can also create this initial pro-
cess model manually. Basically, a discovery technique takes an event log and
produces a model without using any apriori information. Well-known data
mining techniques are applied to discover processes based on example exe-
cutions in event logs.

– Conformance Checking. After the discovery step, analysts apply conformance
checking techniques to diagnose deviations between the event log and the
initial process model. This task is carried out comparing an existing process
with an event log of the same process. Conformance checking can be used to
verify if the processes actually run, and recorded in the log, conform to the
model (and vice versa). Note that different types of models can be considered:
conformance checking can be applied to procedural models, organizational
models, etc.

– Model Enhancement. Finally, during model enhancement, analysts use infor-
mation from the log to repair or extend the model. For example, they can
use time stamps to add timing information (waiting times and service times)
to the model. The resulting enhanced process model can support decision
making. In other words, the idea is to extend or improve an existing process
model using information about the actual process recorded in some event log.
While conformance checking measures the alignment between model and re-
ality, this third type of process mining aims at changing or extending the
model. For instance, by using timestamps in the event log one can extend the
model to show bottlenecks, service levels, throughput times, and frequencies.

In summary: process discovery receives and event log and returns a model; con-
formance checking receives an event log and a model, and produces a diagnostics;
enhancement receives a model and an event log, and produces a new model.

Process mining covers different perspectives. The control-flow perspective fo-
cuses on control flow, i.e., the ordering of activities. Mining from this perspective
is aimed at finding a good characterization of all possible paths. The result is
typically expressed in terms of a Petri net or some other process notation (e.g.,
BPMN, or UML Activity diagrams). The organizational perspective focuses on
information about resources hidden in the log, i.e., which actors (e.g., people,
systems, roles, or departments) are involved and how are they related. The goal
is to either structure the organization by classifying people in terms of roles and
organizational units, or to show the social network. The case perspective focuses
on properties of cases. Obviously, a case can be characterized by its path in the
process or by the actors working on it. However, cases can also be characterized

An Introduction to Business Process Modeling 59

by the values of the corresponding data elements. For example, if a case repre-
sents a replenishment order, it may be interesting to know the supplier or the
number of products ordered. The time perspective is concerned with the timing
and frequency of events. When events bear timestamps it is possible to discover
bottlenecks, measure service levels, monitor the utilization of resources, and pre-
dict the remaining processing time of running cases. These perspectives can be
mined using classic data mining tools.

8 Open Research Problems

In recent years, research on database management attention has been increas-
ingly accounting for the context in which data are generated and manipulated,
namely the processes, the users, and the goals that these data serves [5]. Con-
sider the ticket reservation example of Section 5. Research that focuses only on
data storage and manipulation can tell us how to design the database, and how
to query it in an optimal way. However, in the perspective of the company that
runs the ticket and hotel bookings, the database is only a tool used in the com-
pany BP, which to the company, is probably as important as the data. Much of
the success of database systems is due to the elegance of the relational model
and its declarative query languages, combined with a rich spectrum of underly-
ing optimization techniques and efficient implementations. In the context of BP,
this is still an open issue. Elegant formal models and query languages are still to
be developed. We have studied in this paper many good models and techniques
for capturing and analyzing the BP flow, and for capturing and analyzing the
data they manipulate. But from our study it also comes clear that data are only
considered in a limited way. A comprehensive solution for the explicit modeling
and analyzing the processes flow and data, and their interactions is still to be
produced. In this context, many research problems appear in the field of BPM.
Below we summarize a few ones.

Modeling. One difficulty that arises when attempting an effective management
of BP is the typical complexity of their representations. BP usually operate in
a cross-organizational, distributed environment and the software implementing
them is fairly complex. Like in the case of data management, effective BP man-
agement needs to rely on an abstract model for the BP. To answer this need,
many different abstract representation models have been suggested, some of them
commented in this paper. These models combine, to some extent, flow models
with models that describe the underlying databases of the application and their
interaction with flow. The biggest research challenge in BPM is the combination
of these rich flow model with another rich model for underlying database manip-
ulation. High complexity or even undecidability of analysis is difficult to avoid
whenever such rich models are considered. Abiteboul et al. [1] have recently ad-
dressed this problem by designing an artifact model for Active XML with an
underlying, explicitly modeled, Finite State Machines. Cohn and Hull [4] state
that no model is likely to be the best for all needs, and consequently that there

60 A. Vaisman

is a need for the development of a theory (and practical implementations) of
views on BP and a practical mapping between them.

Process Mining. We addressed this topic in Section 7. Being a new field, it
abounds in open research challenges. Some of them are: (a) finding, merging, and
cleaning event data; (b) dealing with complex event logs of different characteris-
tics; (c) creating representative benchmarks; (d) cross-organizational mining; (e)
providing operational support; (i) combining process mining with other types of
analysis; (j) improving usability for non-experts.

Querying. BP are an important source of information for the process owners as
well as their users. At least two kinds of analysis are of interest in this context:
(a) the analysis of possible future executions of the process. This can be used to
pre-empt possible bugs or breach of policies in future executions; (b) querying
logs of past executions. To support these kinds of analysis, we need a formal
query language. Some proposals in this sense exist, like BPQL [2]. However,
further study of the trade-off between expressiveness and complexity of query
evaluation in this context is a possible research direction. Also, the development
of dedicated optimization techniques for the analysis of past, present and future
executions is an important challenge.

9 Conclusion

In this paper we have reviewed basic concepts on business process management,
mainly related to process modeling. We started from the notion of workflow
management and Petri nets. With this background, we discussed the BPMN
2.0 standard and compared it with other process modeling techniques, like UML
activity diagrams, and YAWL. We addressed business process execution, through
an overview of BPEL. We concluded with a brief account of the emerging area
of process mining, and an analysis of open research directions.

References

1. Abiteboul, S., Bourhis, P., Vianu, V.: Comparing workflow specification languages:
a matter of views. In: 14th International Conference on Database Theory-ICDT
2011, pp. 78–89 (2011)

2. Beeri, C., Eyal, A., Milo, T., Pilberg, A.: Monitoring business processes with
queries. In: Proceedings of the 33rd International Conference on Very Large Data
Bases, VLDB, pp. 603–614 (2007)

3. Workflow Management Coalition. Terminology and glossary. Document Number
WFMC-TC-1011 3.0 (February 1999)

4. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling busi-
ness operations and processes. IEEE Data Engineering Bulletin 32(3), 3–9 (2009)

5. Deutch, D., Milo, T.: A quest for beauty and wealth (or, business processes
for database researchers). In: Proceedings of the 30th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2011, pp. 1–12
(2011)

An Introduction to Business Process Modeling 61

6. Ellis, C.A.: Information control nets: A mathematical model of office information
flow. In: Proceedings of the Conference on Simulation, Measurement and Modeling
of Computer Systems, vol. 8(3), pp. 225–240. ACM (1979)

7. Organization for the Advancement of Structured Information Standards (OASIS).
WSPEL 2.0 (April 2007), http://www.oasis-open.org/standards#wsbpelv2.0

8. Han, J., Kamber, M.: Data mining: concepts and techniques. The Morgan Kauf-
mann series in data management systems. Elsevier (2006)

9. Holt, A.: Coordination Technology and Petri Nets. In: Rozenberg, G. (ed.) APN
1985. LNCS, vol. 222, pp. 278–296. Springer, Heidelberg (1986)

10. Ouyang, C., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: From busi-
ness process models to process-oriented software systems: The BPMN to BPEL
way (October 2006)

11. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall (1981)
12. van der Aalst, W.M.P.: Using process mining to bridge the gap between BI and

BPM. Computer 44(12), 77–80 (2011)
13. van der Aalst, W.M.P.: Patterns and XPDL: A critical evaluation of the XML pro-

cess definition language. Technical report FIT-TR-2003-06, Queensland University
of Technology, Brisbane, Australia (2003)

14. van der Aalst, W.M.P.: Process Mining. Springer (2011)
15. van der Aalst, W.M.P., Alred, L., Dumas, M., ter Hofstede, A.H.M.: Design and im-

plementation of the YAWL system. Technical report FIT-TR-2003-07, Queensland
University of Technology, Brisbane, Australia (2003)

16. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: yet another workflow lan-
guage. Information Systems 30(4), 245–275 (2005)

17. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business Process Man-
agement: A Survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.
(eds.) BPM 2003. LNCS, vol. 2678, pp. 1–12. Springer, Heidelberg (2003)

18. van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods,
and Systems. MIT Press (2002)

19. van der Aalst, W.M.P.: Three good reasons for using a Petri-net-based workflow
management system. In: Proceedings of the International Working Conference on
Information and Process Integration in Enterprises (IPIC 1996), Cambridge, MA,
pp. 179–201 (1996)

20. White, S.: Using BPMN to model a BPEL process. BPTrends 3(3), 1–18 (2005)
21. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M., Russell, N.:

Pattern-based analysis of BPMN (2005), http://eprints.qut.edu.au/2977/

http://www.oasis-open.org/standards#wsbpelv2.0
http://eprints.qut.edu.au/2977/

Machine Learning Strategies

for Time Series Forecasting

Gianluca Bontempi, Souhaib Ben Taieb, and Yann-Aël Le Borgne

Machine Learning Group
Computer Science Department, Faculty of Sciences

ULB, Université Libre de Bruxelles
Bd Triomphe, 1050, Brussels, Belgium

{gbonte,sbentaieb,yleborgn}@ulb.ac.be

http://mlg.ulb.ac.be

Abstract. The increasing availability of large amounts of historical data
and the need of performing accurate forecasting of future behavior in sev-
eral scientific and applied domains demands the definition of robust and
efficient techniques able to infer from observations the stochastic depen-
dency between past and future. The forecasting domain has been influ-
enced, from the 1960s on, by linear statistical methods such as ARIMA
models. More recently, machine learning models have drawn attention
and have established themselves as serious contenders to classical sta-
tistical models in the forecasting community. This chapter presents an
overview of machine learning techniques in time series forecasting by
focusing on three aspects: the formalization of one-step forecasting prob-
lems as supervised learning tasks, the discussion of local learning tech-
niques as an effective tool for dealing with temporal data and the role
of the forecasting strategy when we move from one-step to multiple-step
forecasting.

Keywords: Time series forecasting, machine learning, local learning,
lazy learning, MIMO.

1 Introduction

A time series is a sequence S of historical measurements yt of an observable
variable y at equal time intervals. Time series are studied for several purposes
such as the forecasting of the future based on knowledge of the past, the un-
derstanding of the phenomenon underlying the measures, or simply a succinct
description of the salient features of the series. In this chapter we shall confine
ourselves to the problem of forecasting. Forecasting future values of an observed
time series plays an important role in nearly all fields of science and engineering,
such as economics, finance, business intelligence, meteorology and telecommu-
nication [43]. An important aspect of the forecasting task is represented by the
size of the horizon. If the one-step forecasting of a time series is already a chal-
lenging task, performing multi-step forecasting is more difficult [53] because of

M.-A. Aufaure and E. Zimányi (Eds.): eBISS 2012, LNBIP 138, pp. 62–77, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://mlg.ulb.ac.be

Machine Learning Strategies for Time Series Forecasting 63

additional complications, like accumulation of errors, reduced accuracy, and in-
creased uncertainty [58,49].

The forecasting domain has been influenced, for a long time, by linear sta-
tistical methods such as ARIMA models. However, in the late 1970s and early
1980s, it became increasingly clear that linear models are not adapted to many
real applications [25]. In the same period, several useful nonlinear time series
models were proposed such as the bilinear model [44], the threshold autoregres-
sive model [56,54,55] and the autoregressive conditional heteroscedastic (ARCH)
model [22] (see [25] and [26] for a review). However, the analytical study of non-
linear time series analysis and forecasting is still in its infancy compared to linear
time series [25].

In the last two decades, machine learning models have drawn attention and
have established themselves as serious contenders to classical statistical models
in the forecasting community [1,43,61]. These models, also called black-box or
data-driven models [40], are examples of nonparametric nonlinear models which
use only historical data to learn the stochastic dependency between the past and
the future. For instance, Werbos found that Artificial Neural Networks (ANNs)
outperform the classical statistical methods such as linear regression and Box-
Jenkins approaches [59,60]. A similar study has been conducted by Lapedes and
Farber [33] who conclude that ANNs can be successfully used for modeling and
forecasting nonlinear time series. Later, other models appeared such as decision
trees, support vector machines and nearest neighbor regression [29,3]. Moreover,
the empirical accuracy of several machine learning models has been explored in a
number of forecasting competitions under different data conditions (e.g. the NN3,
NN5, and the annual ESTSP competitions [19,20,34,35]) creating interesting
scientific debates in the area of data mining and forecasting [28,45,21].

This chapter aims to present an overview of the role of machine learning tech-
niques in time series forecasting by focusing on three aspects: the formalization
of one-step forecasting problems as supervised learning tasks, the discussion of
local learning techniques as an effective tool for dealing with temporal data and
the role of the forecasting strategy when we move from one-step to multi-step
forecasting.

The outline of the chapter is as follows. Section 2 introduces some basic no-
tions of time series modeling and the formalization of the forecasting task as
an input-output problem. Section 3 discusses the role of machine learning tech-
niques in inferring accurate predictors from observed data and introduces the
local learning paradigm. Section 4 presents several strategies for multi-step fore-
casting which have been proposed so far in literature. Section 5 reviews how
local learning techniques have been integrated with multiple-step strategies to
perform accurate multi-step forecasts.

2 Forecasting and Modeling

Two main interpretations of the forecasting problem on the basis of historical
dataset exist. Statistical forecasting theory assumes that an observed sequence

64 G. Bontempi, S. Ben Taieb, and Y.-A. Le Borgne

is a specific realization of a random process, where the randomness arises from
many independent degrees of freedom interacting linearly [4]. However, the emer-
gent view in dynamical systems theory [23,17] is that apparently random behav-
ior may be generated by deterministic systems with only a small number of
degrees of freedom, interacting nonlinearly. This complicated and aperiodic be-
havior is also called deterministic chaos [48].

We adopt the working hypothesis that many classes of experimental time
series may be analyzed within the framework of a dynamical systems approach.
Therefore the time series is interpreted as the observable of a dynamical system
whose state s evolves in a state space Γ ⊂ �g, according to the law

s(t) = F t(s(0)) (1)

where F : Γ → Γ is the map representing the dynamics, F t is its iterated
versions and s(t) ∈ Γ denotes the value of the state at time t.

In the absence of noise the time series is related to the dynamical system by
the relation

yt = G(s(t)) (2)

where G : Γ → �D is called the measurement function and D is the dimension
of the series. In the following we will restrict to the case D = 1 (univariate time
series).

Both the function F and G are unknown, so in general we cannot hope to
reconstruct the state in its original form. However, we may be able to recreate
a state space that is in some sense equivalent to the original.

The state space reconstruction problem consists in reconstructing the state
when the only available information is contained in the sequence of observations
yt. State space reconstruction was introduced into dynamical systems theory
independently by Packard et al. [42] and Takens [52]. The Takens theorem implies
that for a wide class of deterministic systems, there exists a mapping (delay
reconstruction map) Φ : Γ → �n

Φ(s(t)) = {G(F−d(s(t))), . . . ,G(F−d−n+1(s(t)))} = {yt−d, . . . , yt−d−n+1} (3)

between a finite window of the time series {yt−d, . . . , yt−d−n+1} (embedding vec-
tor) and the state of the dynamic system underlying the series, where d is called
the lag time and n (order) is the number of past values taken into considera-
tion. Takens showed that generically Φ is an embedding when n ≥ 2g+1, where
embedding stays for a smooth one-to-one differential mapping with a smooth
inverse [17]. The main consequence is that, if Φ is an embedding then a smooth
dynamics f : �n → � is induced in the space of reconstructed vectors

yt = f(yt−d, yt−d−1, . . . , yt−d−n+1) (4)

This implies that the reconstructed states can be used to estimate f and con-
sequently f can be used in alternative to F and G, for any purpose concerning
time series analysis, qualitative description, forecasting, etc.

Machine Learning Strategies for Time Series Forecasting 65

The representation (4) does not take into account any noise component, since
it assumes that a deterministic process f can accurately describe the time se-
ries. Note, however, that this is simply one possible way of representing the time
series phenomenon and that any alternative representation should not be dis-
carded a priori. In fact, once we assume that we have not access to an accurate
model of the function f , it is perfectly reasonable to extend the deterministic
formulation (4) to a statistical Nonlinear Auto Regressive (NAR) formulation

yt = f (yt−d, yt−d−1, . . . , yt−d−n+1) + w(t) (5)

where the missing information is lumped into a noise term w. In the rest of the
chapter, we will then refer to the formulation (5) as a general representation of
the time series which includes as particular instance also the case (4).

The success of a reconstruction approach starting from a set of observed data
depends on the choice of the hypothesis that approximates f , the choice of the
order n and the lag time d.

In the following section we will address only the problem of the modeling of
f , assuming that the values of n and d are available a priori. A good reference
on the order selection is given in Casdagli et al. [17].

3 Machine Learning Approaches to Model Time
Dependencies

3.1 Supervised Learning Setting

The embedding formulation in (5) suggests that, once a historical record S is
available, the problem of one-step forecasting can be tackled as a problem of
supervised learning. Supervised learning consists in modeling, on the basis of
a finite set of observations, the relation between a set of input variables and
one or more output variables, which are considered somewhat dependent on
the inputs. Once a model of the mapping (5) is available, it can be used for
one-step forecasting. In one-step forecasting, the n previous values of the series
are available and the forecasting problem can be cast in the form of a generic
regression problem as shown in Fig. 1.

The general approach to model an input/output phenomenon, with a scalar
output and a vectorial input, relies on the availability of a collection of observed
pairs typically referred to as training set.

In the forecasting setting, the training set is derived by the historical series S
by creating the [(N − n− 1)× n] input data matrix

X =

⎡
⎢⎢⎢⎣
yN−1 yN−2 . . . yN−n−1

yN−2 yN−3 . . . yN−n−2

...
...

...
...

yn yn−1 . . . y1

⎤
⎥⎥⎥⎦ (6)

66 G. Bontempi, S. Ben Taieb, and Y.-A. Le Borgne

f

−1

z −1

z −1

z −1

y

y

y

y

y

t−n

t−3

t−2

t−1

z

t

Fig. 1. One-step forecasting. The approximator f̂ returns the prediction of the value
of the time series at time t+ 1 as a function of the n previous values (the rectangular
box containing z−1 represents a unit delay operator, i.e., yt−1 = z−1yt).

and the [(N − n− 1)× 1] output vector

Y =

⎡
⎢⎢⎢⎣

yN
yN−1

...
yn+1

⎤
⎥⎥⎥⎦ (7)

For the sake of simplicity, we assume here a d = 0 lag time. Henceforth, in this
chapter we will refer to the ith row of X , which is essentially a temporal pattern
of the series, as to the (reconstructed) state of the series at time t− i+ 1.

3.2 Instantiation with Local Learning

Forecasting one-step-ahead consists then in predicting the value of the output
when a subset of past observed values (also denoted as query) is given. Machine
learning provides a theoretical framework to estimate from observed data a suit-
able model of the time dependency f . Because of the impossibility of reviewing
here the entire state-of-the-art of machine learning in time series forecasting, we
will more specifically consider local learning techniques [12,31,29] in the following
section. This choice is motivated by the following reasons:

– Reduced number of assumptions: local learning assumes no a priori knowl-
edge on the process underlying the data. For example, it makes no

Machine Learning Strategies for Time Series Forecasting 67

assumption on the existence of a global function describing the data and
no assumptions on the properties of the noise. The only available informa-
tion is represented by a finite set of input/output observations. This feature
is particularly relevant in real datasets where problems of missing features,
non- stationarity and measurement errors make appealing a data-driven and
assumption-free approach.

– On-line learning capability: The local learning method can easily deal with
on-line learning tasks where the number of training samples increases with
time. In this case, local learning simply adds new points to the dataset and
does not need time-consuming re-training when new data become available.

– Modelling non-stationarity: The local learning method can deal with time-
varying configurations where the stochastic process underlying the data is
non-stationary. In this case, it is sufficient to interpret the notion of neigh-
bourhood not in a spatial way but both in a spatial and temporal sense. For
each query point, the neighbours are no more the samples that have similar
inputs but the ones that both have similar inputs and have been collected
recently in time. Therefore, the time variable becomes a further precious
feature to consider for accurate prediction.

We describe in the following two instances of local learning techniques, namely
Nearest Neighbor [36,29] and Lazy Learning [12,5].

Nearest Neighbor. The Nearest Neighbor method is the most trivial example
of local approximation applied to the problem of time series forecasting. This
method consists in looking through the data set for the nearest neighbor of the
current state and predicting that the current state will evolve in the same manner
as the neighbor did.

Figure 2 represents an example of nearest-neighbor one-step forecasting. Sup-
pose we have available a time series yt up to time t̄−1 and we want to predict the
next value of the series. Once selected a certain dimension n, for example n = 6,
the nearest neighbor approach searches for the pattern in the past which is the
most similar, in a given metric, to the pattern {yt̄−6, yt̄−5, . . . , yt̄−1} (the dashed
line). If the nearest pattern is, for instance, {yt̄−16, yt̄−15, . . . , yt̄−11}, then the
forecasts ŷt̄ returned by the NN method is the value yt̄−10 (black dot).

This approach was first proposed by Lorenz [36] to examine weather maps.
Imagine that we want to predict tomorrow’s weather in Bruxelles and that we
choose a dimension n = 1. The nearest neighbor approach suggests (i) to search
the historical database of the meteorological conditions in Bruxelles, (ii) to find
the weather pattern most similar to that of today (for example the weather
pattern on March 5th, 1999, by chance a rainy day!) and (iii) to predict that
tomorrow’s weather will be the same as March 6th, 1999 (just by chance another
rainy day!!).

Natural extensions of the Nearest Neighbor approach consider more neigh-
bors [31] or higher order approximations. Piecewise linear approximation in time
series analysis was introduced by Tong and Lim [56]. Priestley [46] suggested
the importance of higher order approximations. Farmer and Sidorowich [23,24]

68 G. Bontempi, S. Ben Taieb, and Y.-A. Le Borgne

t

−−

y

t−11t−16 t−1t−6
t

Fig. 2. Nearest-neighbor one-step-ahead forecasts. We want to predict at time t̄ − 1
the next value of the series y of order n = 6. The pattern yt̄−16, yt̄−15, . . . , yt̄−11 is the
most similar to the pattern {yt̄−6, yt̄−5, . . . , yt̂−1}. Then, the prediction ŷt̄ = yt̄−10 is
returned.

studied local approximation in time series and demonstrated its effectiveness
on several experiments and numerical time series analysis. In particular they
applied local learning techniques to predict the behavior of chaotic time series,
sequences which, although deterministic, are characterized by second-order per-
sistent statistics with random properties.

Lazy Learning. The Lazy Learning (LL) is a lazy and local learning machine
[12,11] which automatically adapts the size of the neighborhood on the basis
of a cross-validation criterion. The major appeal of Lazy Learning is its divide-
and-conquer nature: Lazy Learning reduces a complex and nonlinear modeling
problem into a sequence of easily manageable local linear problems, one for
each query. This allows to exploit, on a local basis, the whole range of linear
identification and validation techniques which are fast, reliable, and come with a
wealth of theoretical analyses, justifications, and guarantees. The Lazy Learning
procedure essentially consists of the following steps once the matrix X in (6)
and Y in (7) and a query point xq are given:

1. Sort increasingly the set of vectors in X with respect to the distance (e.g.
Euclidean) to xq.

2. Determine the optimal number of neighbors.
3. Calculate, given the number of neighbors, the prediction for the query point

by using a local model (e.g. constant or linear).

Let us consider a time series {y1, . . . , yt} composed of t observations for which
we intend to predict the next one.

The forecasting problem boils down to estimating the output ŷt+1 when the
latest window of observations is represented by the vector xq = {yt, . . . , yt−n+1}.
Algorithm 1 illustrates how constant local learning techniques return the output

Machine Learning Strategies for Time Series Forecasting 69

associated to a query point xq, for a given number of neighbors k. The notation
[j] is used to designate the index of the jth closest neighbor of xq. Note that also
the local linear version of the algorithm is commonly used, as discussed in [11].

Algorithm 1. LL

Input : D = {(xi, yi) ∈ (Rn × R)}, dataset.
Input : xq ∈ Rd, query point.
Input : k= the number of neighbors.
Output: ŷt+1, the estimation of the output of the query point xq

(obtained with k neighbors).

Sort increasingly the set of vectors {xi} with respect to the distance to xq.

ŷt+1 = 1
k

∑k
j=1 y[j].

return ŷt+1.

This algorithm requires the choice of a set of model parameters (e.g. the
number k of neighbors, the kernel function, the distance metric) [5]. We will
discuss here an automatic method based on a Leave-One-Out (LOO) criterion
to determine the number of neighbor [11,12]. The main idea is to assess the
quality of each local model by using a LOO measure and to select the best
neighborhood size according to such measure.

A computationally efficient way to perform LOO cross-validation and to assess
the performance in generalization of local linear models is the PRESS statistic,
proposed in 1974 by Allen [2]. By assessing the performance of each local model,
alternative configurations can be tested and compared in order to select the best
one in terms of expected prediction. The idea consists in associating an LOO
error eLOO(k) to the estimation

ŷ(k)q =
1

k

k∑
j=1

y[j], (8)

associated to the query point xq and returned by k neighbors. In case of a
constant model, the LOO term can be derived as follows [12]:

eLOO(k) =
1

k

k∑
j=1

(ej(k))
2, (9)

where

ej(k) = y[j] −
∑k

i=1(i�=j) y[i]

k − 1
= k

y[j] − ŷk

k − 1
. (10)

The best number of neighbors is then defined as the number

k∗ = arg mink∈{2,...,K} eLOO(k), (11)

which minimizes the LOO error.

70 G. Bontempi, S. Ben Taieb, and Y.-A. Le Borgne

f

−1

z −1

z −1

z −1

y

y

y

y

y
t−n

t−3

t−2

t−1

z

t

−1

z

Fig. 3. Iterated prediction. The approximator f̂ returns the prediction of the value
of the time series at time t + 1 by iterating the predictions obtained in the previous
steps (the rectangular box containing z−1 represents a unit delay operator, i.e., ŷt−1 =
z−1ŷt).

Lazy learning was applied with success to several regression and one-step
forecasting tasks [14]. More details on the LL technique and its applications can
be found in [11,12].

4 Strategies for Multi-step Time Series Forecasting

The previous section showed that one-step forecasting can be cast in a conven-
tional supervised learning framework by having recourse to conventional learning
techniques such as Local Learning. In this section, we extend the framework to
show how learning techniques can be used to tackle the multi-step forecasting
problem. Three strategies can be considered, namely recursive, direct and mul-
tiple output strategies.

A multi-step time series forecasting task consists of predicting the next H
values [yN+1, . . . , yN+H] of a historical time series [y1, . . . , yN] composed of N
observations, where H > 1 denotes the forecasting horizon.

This section will give a presentation of the three existing strategies to adopt
machine learning in multi-step forecasting. We will use a common notation where
f and F denote the functional dependency between past and future observations,

Machine Learning Strategies for Time Series Forecasting 71

n refers to the embedding dimension [17] of the time series, that is the number of
past values used to predict future values and w represents the term that includes
modeling error, disturbances and/or noise.

4.1 Recursive Strategy

The Recursive strategy [58,49,18] trains first a one-step model f

yt+1 = f(yt, . . . , yt−n+1) + wt+1, (12)

with t ∈ {n, . . . , N − 1} and then uses it recursively for returning a multi-
step prediction (Figure 3). A well-known drawback of the recursive method is
its sensitivity to the estimation error, since estimated values, instead of actual
ones, are more and more used when we get further in the future.

In spite of these limitations, the Recursive strategy has been successfully
used to forecast many real-world time series by using different machine learning
models, like recurrent neural networks [47] and nearest-neighbors [38,15].

4.2 Direct Strategy

The Direct strategy [58,49,18] learns independently H models fh

yt+h = fh(yt, . . . , yt−n+1) + wt+h, (13)

with t ∈ {n, . . . , N − H} and h ∈ {1, . . . , H} and returns a multi-step forecast
by concatenating the H predictions.

Since the Direct strategy does not use any approximated values to compute the
forecasts (Equation 13), it is not prone to any accumulation of errors. Notwith-
standing, it has some weaknesses. First, since the H models are learned inde-
pendently no statistical dependencies between the predictions ŷN+h[13,16,32]
is considered. Second direct methods often require higher functional complex-
ity [54] than iterated ones in order to model the stochastic dependency between
two series values at two distant instants [27]. Last but not least, this strategy
demands a large computational time since the number of models to learn is equal
to the size of the horizon.

Different machine learning models have been used to implement the Direct
strategy for multi-step forecasting tasks, for instance neural networks [32], near-
est neighbors [49] and decision trees [57].

4.3 DirRec Strategy

The DirRec strategy [50] combines the architectures and the principles under-
lying the Direct and the Recursive strategies. DirRec computes the forecasts
with different models for every horizon (like the Direct strategy) and, at each
time step, it enlarges the set of inputs by adding variables corresponding to the
forecasts of the previous step (like the Recursive strategy). However, note that
unlike the two previous strategies, the embedding size n is not the same for all

72 G. Bontempi, S. Ben Taieb, and Y.-A. Le Borgne

the horizons. In other terms, the DirRec strategy learns H models fh from the
time series [y1, . . . , yN] where

yt+h = fh(yt+h−1, . . . , yt−n+1) + wt+h, (14)

with t ∈ {n, . . . , N −H} and h ∈ {1, . . . , H}.

4.4 Multiple Output Strategies

In spite of their diversity, iterated and direct techniques for multiple-step fore-
casting share a common feature: they model from data a multi-input single-
output mapping whose output is the variable yt+1 in the iterated case and the
variable yt+k in the direct case, respectively. When a very long term prediction
is at stake and a stochastic setting is assumed, the modeling of a single-output
mapping neglects the existence of stochastic dependencies between future values,
(e.g. between yt+k and yt+k+1) and consequently biases the prediction accuracy.
A possible way to remedy to this shortcoming is to move from the modeling
of single-output mappings to the modeling of multi-output dependencies. This
requires the adoption of multi-output techniques where the predicted value is no
more a scalar quantity but a vector of future values of the time series.

The MIMO Strategy. The Multi-Input Multi-Output (MIMO) strat-
egy [13,16] (also known as Joint strategy [32]) avoids the simplistic assumption
of conditional independence between future values made by the Direct strat-
egy [13,16] by learning a single multiple-output model

[yt+H , . . . , yt+1] = F (yt, . . . , yt−n+1) +w, (15)

where t ∈ {n, . . . , N − H}, F : Rd → RH is a vector-valued function [39], and
w ∈ RH is a noise vector with a covariance that is not necessarily diagonal [37].

The forecasts are returned in one step by a multiple-output model F̂ where

[ŷt+H , . . . , ŷt+1] = F̂ (yN , . . . , yN−n+1). (16)

The rationale of the MIMO strategy is to model, between the predicted values,
the stochastic dependency characterizing the time series. This strategy avoids
the conditional independence assumption made by the Direct strategy as well
as the accumulation of errors which plagues the Recursive strategy. So far, this
strategy has been successfully applied to several real-world multi-step time series
forecasting tasks [13,16,10,9].

However, the wish to preserve the stochastic dependencies constrains all the
horizons to be forecasted with the same model structure. Since this constraint
could reduce the flexibility of the forecasting approach [10], a variant of the
MIMO strategy is discussed in the following section.

The DIRMO Strategy. The DIRMO strategy [10,9] aims to preserve the
most appealing aspects of DIRect and MIMO strategies by partitioning the
horizon H in several blocks, and using MIMO to forecast the values inside each

Machine Learning Strategies for Time Series Forecasting 73

block. This means that the H-step forecast requires m multiple-output forecast-
ing tasks (m = H

s), each having an output of size s (s ∈ {1, . . . , H}).
Note that for s = 1, the DIRMO coincides with the conventional Direct

strategy, while for s = H it corresponds to the MIMO strategy. The tuning
of the parameter s allows us to improve the flexibility of the MIMO strategy
by calibrating the dimensionality of the outputs (no dependency in the case
s = 1 and maximal dependency for s = H). This provides a beneficial trade
off between the preserving a larger degree of the stochastic dependency between
future values and having a greater flexibility of the predictor.

5 Local Learning for Multi-step Forecasting

Local learning appears to be an effective algorithm not only for one-step but also
for multi-step forecasting. This section discusses some works which used local
learning techniques to deal specifically with the long term forecasting problem.

In [38,15] the authors proposed a modification of the local learning technique
to take into account the temporal behavior of the multi-step forecasting problem
and consequently improve the results of the recursive strategies. In particular
[15] modified the PRESS criterion (10) by introducing an iterated version of the
leave-one-out statistic. They showed that the iterated PRESS outperforms a non-
iterated criterion by assessing the generalization performance of a local one-step
predictor on a horizon longer than a single step, yet preserving nice properties
of computational efficiency. It is worth noting that the two techniques proposed
by [38] and [15] ranked respectively first and second in the 1998 Leuven time
series prediction.

A recent improvement of the recursive strategy based again on local learning
is RECNOISY [6], which perturbs the initial dataset at each step of the forecast-
ing process to handle more properly the approximated values in the prediction
process. The rationale of the RECNOISY method is that the training examples
used by the recursive strategy, though observed, are not necessarily representa-
tive of the forecasting tasks which will be required later all along the forecasting
process. To remedy to this problem, this strategy exploits the particular nature
of the forecasting tasks induced by the recursive strategy and incorporates it in
the local learning phase in order to improve the results.

Two improvements of Lazy Learning to deal with long-term prediction of time
series are presented in [51]. The first method is based on an iterative pruning of
the inputs; the second one performs a brute force search in the possible set of
inputs using a k-NN approximator.

The use of local learning for multi-input multi-output prediction was proposed
in [13] where a multi-output extension of the algorithm 1 is discussed as well as
an averaging strategy of several long term predictors to improve the resulting
accuracy.

The use of the local learning approximator to implement a DIRMO strategy
is presented in [8,9]. The DIRMO strategy based on local learning has been suc-
cessfully applied to two forecasting competitions: ESTSP’07 [10] and NN3 [9].

74 G. Bontempi, S. Ben Taieb, and Y.-A. Le Borgne

A detailed review and comparison of strategies for multi-step time series fore-
casting based on the local learning algorithm is presented in [7].

6 Conclusion

Predicting the future is one of the most relevant and challenging tasks in ap-
plied sciences. Building effective predictors form historical data demands com-
putational and statistical methods for inferring dependencies between past and
short-term future values of observed values as well as appropriate strategies to
deal with longer horizons. This chapter discussed the role of machine learning
in adapting supervised learning techniques to deal with forecasting problems. In
particular we stressed the role played by local learning approximators in dealing
with important issued in forecasting, like nonlinearity, nonstationarity and error
accumulation. Future research should be concerned with the extension of these
techniques to some recent directions in business intelligence, like the parallel
mining of huge amount of data (big data) [41] and the application to spatio-
temporal tasks [30].

Acknowledgments. Gianluca Bontempi acknowledges the support of the ARC
project ”Discovery of the molecular pathways regulating pancreatic beta cell dys-
function and apoptosis in diabetes using functional genomics and bioinformatics”
funded by the Communauté Francaise de Belgique.

References

1. Ahmed, N.K., Atiya, A.F., El Gayar, N., El-Shishiny, H.: An empirical comparison
of machine learning models for time series forecasting. Econometric Reviews 29(5-
6) (2010)

2. Allen, D.M.: The relationship between variable selection and data agumentation
and a method for prediction. Technometrics 16(1), 125–127 (1974)

3. Alpaydin, E.: Introduction to Machine Learning, 2nd edn. Adaptive Computation
and Machine Learning. The MIT Press (February 2010)

4. Anderson, T.W.: The statistical analysis of time series. J. Wiley and Sons (1971)
5. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning. AIR 11(1-5),

11–73 (1997)
6. Ben Taieb, S., Bontempi, G.: Recursive multi-step time series forecasting by per-

turbing data. In: Proceedings of IEEE-ICDM 2011(2011)
7. Ben Taieb, S., Bontempi, G., Atiya, A., Sorjamaa, A.: A review and comparison of

strategies for multi-step ahead time series forecasting based on the NN5 forecasting
competition. ArXiv e-prints (August 2011)

8. Ben Taieb, S., Bontempi, G., Sorjamaa, A., Lendasse, A.: Long-term prediction of
time series by combining direct and mimo strategies. In: Proceedings of the 2009
IEEE International Joint Conference on Neural Networks, Atlanta, U.S.A., pp.
3054–3061 (June 2009)

9. Ben Taieb, S., Sorjamaa, A., Bontempi, G.: Multiple-output modelling for multi-
step-ahead forecasting. Neurocomputing 73, 1950–1957 (2010)

Machine Learning Strategies for Time Series Forecasting 75

10. Ben Taieb, S., Bontempi, G., Sorjamaa, A., Lendasse, A.: Long-term prediction
of time series by combining direct and mimo strategies. In: International Joint
Conference on Neural Networks (2009)

11. Birattari, M., Bontempi, G., Bersini, H.: Lazy learning meets the recursive least-
squares algorithm. In: Kearns, M.S., Solla, S.A., Cohn, D.A. (eds.) NIPS 11, pp.
375–381. MIT Press, Cambridge (1999)

12. Bontempi, G.: Local Learning Techniques for Modeling, Prediction and Control.
PhD thesis, IRIDIA- Université Libre de Bruxelles (1999)

13. Bontempi, G.: Long term time series prediction with multi-input multi-output
local learning. In: Proceedings of the 2nd European Symposium on Time Series
Prediction (TSP), ESTSP 2008, Helsinki, Finland, pp. 145–154 (February 2008)

14. Bontempi, G., Birattari, M., Bersini, H.: Lazy learners at work: the lazy learning
toolbox. In: Proceeding of the 7th European Congress on Intelligent Techniques
and Soft Computing, EUFIT 1999 (1999)

15. Bontempi, G., Birattari, M., Bersini, H.: Local learning for iterated time-series
prediction. In: Bratko, I., Dzeroski, S. (eds.) Machine Learning: Proceedings of the
Sixteenth International Conference, pp. 32–38. Morgan Kaufmann Publishers, San
Francisco (1999)

16. Bontempi, G., Ben Taieb, S.: Conditionally dependent strategies for multiple-step-
ahead prediction in local learning. International Journal of Forecasting (2011) (in
press, corrected proof)

17. Casdagli, M., Eubank, S., Farmer, J.D., Gibson, J.: State space reconstruction in
the presence of noise. PHYD 51, 52–98 (1991)

18. Cheng, H., Tan, P.-N., Gao, J., Scripps, J.: Multistep-Ahead Time Series Predic-
tion. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS
(LNAI), vol. 3918, pp. 765–774. Springer, Heidelberg (2006)

19. Crone, S.F.: NN3 Forecasting Competition,
http://www.neural-forecasting-competition.com/NN3/index.html (last up-
date May 26, 2009) (visited on July 05, 2010)

20. Crone, S.F.: NN5 Forecasting Competition,
http://www.neural-forecasting-competition.com/NN5/index.html (last up-
date May 27, 2009) (visited on July 05, 2010)

21. Crone, S.F.: Mining the past to determine the future: Comments. International
Journal of Forecasting 5(3), 456–460 (2009); Special Section: Time Series Monitor-
ing

22. Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the
variance of united kingdom inflation. Econometrica 50(4), 987–1007 (1982)

23. Farmer, J.D., Sidorowich, J.J.: Predicting chaotic time series. Physical Review
Letters 8(59), 845–848 (1987)

24. Farmer, J.D., Sidorowich, J.J.: Exploiting chaos to predict the future and reduce
noise. Technical report, Los Alamos National Laboratory (1988)

25. De Gooijer, J.G., Hyndman, R.J.: 25 years of time series forecasting. International
Journal of Forecasting 22(3), 443–473 (2006)

26. De Gooijer, J.G., Kumar, K.: Some recent developments in non-linear time series
modelling, testing, and forecasting. International Journal of Forecasting 8(2), 135–
156 (1992)

27. Guo, M., Bai, Z., An, H.Z.: Multi-step prediction for nonlinear autoregressive mod-
els based on empirical distributions. In: Statistica Sinica, pp. 559–570 (1999)

28. Hand, D.: Mining the past to determine the future: Problems and possibilities.
International Journal of Forecasting (October 2008)

http://www.neural-forecasting-competition.com/NN3/index.html
http://www.neural-forecasting-competition.com/NN5/index.html

76 G. Bontempi, S. Ben Taieb, and Y.-A. Le Borgne

29. Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data
mining, inference and prediction, 2nd edn. Springer (2009)

30. Hsu, W., Lee, M.L., Wang, J.: Temporal and spatio-temporal data mining. IGI
Pub. (2008)

31. Ikeguchi, T., Aihara, K.: Prediction of chaotic time series with noise. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sci-
ences E78-A(10) (1995)

32. Kline, D.M.: Methods for multi-step time series forecasting with neural networks.
In: Peter Zhang, G. (ed.) Neural Networks in Business Forecasting, pp. 226–250.
Information Science Publishing (2004)

33. Lapedes, A., Farber, R.: Nonlinear signal processing using neural networks: predic-
tion and system modelling. Technical Report LA-UR-87-2662, Los Alamos National
Laboratory, Los Alamos, NM (1987)

34. Lendasse, A. (ed.): ESTSP 2007: Proceedings (2007)
35. Lendasse, A. (ed.): ESTSP 2008: Proceedings. Multiprint Oy/Otamedia (2008)

ISBN: 978-951-22-9544-9
36. Lorenz, E.N.: Atmospheric predictability as revealed by naturally occurring ana-

logues. Journal of the Atmospheric Sciences 26, 636–646 (1969)
37. Mat́ıas, J.M.: Multi-output Nonparametric Regression. In: Bento, C., Cardoso,

A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808, pp. 288–292. Springer,
Heidelberg (2005)

38. McNames, J.: A nearest trajectory strategy for time series prediction. In: Pro-
ceedings of the International Workshop on Advanced Black-Box Techniques for
Nonlinear Modeling, pp. 112–128. K.U. Leuven, Belgium (1998)

39. Micchelli, C.A., Pontil, M.A.: On learning vector-valued functions. Neural Com-
put. 17(1), 177–204 (2005)

40. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
41. Owen, S.: Mahout in action. Manning (2012)
42. Packard, N.H., Crutchfeld, J.P., Farmer, J.D., Shaw, R.S.: Geometry from a time

series. Physical Review Letters 45(9), 712–716 (1980)
43. Palit, A.K., Popovic, D.: Computational Intelligence in Time Series Forecasting:

Theory and Engineering Applications. Advances in Industrial Control. Springer-
Verlag New York, Inc., Secaucus (2005)

44. Poskitt, D.S., Tremayne, A.R.: The selection and use of linear and bilinear time
series models. International Journal of Forecasting 2(1), 101–114 (1986)

45. Price, S.: Mining the past to determine the future: Comments. International Jour-
nal of Forecasting 25(3), 452–455 (2009)

46. Priestley, M.B.: Non-linear and Non-stationary time series analysis. Academic
Press (1988)

47. Saad, E., Prokhorov, D., Wunsch, D.: Comparative study of stock trend prediction
using time delay, recurrent and probabilistic neural networks. IEEE Transactions
on Neural Networks 9(6), 1456–1470 (1998)

48. Schuster, H.G.: Deterministic Chaos: An Introduction. Weinheim Physik (1988)
49. Sorjamaa, A., Hao, J., Reyhani, N., Ji, Y., Lendasse, A.: Methodology for long-term

prediction of time series. Neurocomputing 70(16-18), 2861–2869 (2007)
50. Sorjamaa, A., Lendasse, A.: Time series prediction using dirrec strategy. In: Verley-

sen, M. (ed.) European Symposium on Artificial Neural Networks, ESANN 2006,
Bruges, Belgium, April 26-28, pp. 143–148 (2006)

51. Sorjamaa, A., Lendasse, A., Verleysen, M.: Pruned lazy learning models for time
series prediction. In: European Symposium on Artificial Neural Networks, ESANN
2005, pp. 509–514 (2005)

Machine Learning Strategies for Time Series Forecasting 77

52. Takens, F.: Detecting strange attractors in fluid turbulence. In: Dynamical Systems
and Turbulence. Springer, Berlin (1981)

53. Tiao, G.C., Tsay, R.S.: Some advances in non-linear and adaptive modelling in
time-series. Journal of Forecasting 13(2), 109–131 (1994)

54. Tong, H.: Threshold models in Nonlinear Time Series Analysis. Springer, Berlin
(1983)

55. Tong, H.: Non-linear Time Series: A Dynamical System Approach. Oxford Univer-
sity Press (1990)

56. Tong, H., Lim, K.S.: Thresold autoregression, limit cycles and cyclical data.
JRSS B 42, 245–292 (1980)

57. Tran, T.V., Yang, B.-S., Tan, A.C.C.: Multi-step ahead direct prediction for the
machine condition prognosis using regression trees and neuro-fuzzy systems. Expert
Syst. Appl. 36(5), 9378–9387 (2009)

58. Weigend, A.S., Gershenfeld, N.A.: Time Series Prediction: forecasting the future
and understanding the past. Addison Wesley, Harlow (1994)

59. Werbos, P.J.: Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. PhD thesis, Harvard University, Cambridge, MA (1974)

60. Werbos, P.J.: Generalization of backpropagation with application to a recurrent
gas market model. Neural Networks 1(4), 339–356 (1988)

61. Zhang, G., Eddy Patuwo, B., Hu, M.Y.: Forecasting with artificial neural networks:
The state of the art. International Journal of Forecasting 14(1), 35–62 (1998)

Knowledge Discovery from Constrained

Relational Data: A Tutorial on Markov Logic
Networks

Marcus Spies

Knowledge Management
LMU University of Munich, Germany

marcus.spies@ieee.org

Abstract. This tutorial paper gives an overview of Markov logic net-
works (MLNs) in theory and in practice. The basic concepts of MLNs
are introduced in a semi-formal way and examined for their significance
in the broader context of statistical relational learning approaches in
general and Bayesian logic networks in particular. A sandbox example
is discussed in order to explain in detail the meanings of input theories
with weighted clauses for a MLN. Then, the setup needed for real-world
applications using a recent open source prototype is introduced. Process-
ing steps of inferencing and learning are explained in detail together with
the best scaling algorithms known today. An overview on existing and
upcoming application areas concludes the paper.

1 Introduction

We briefly recapitulate the history of both Bayesian and Markov logic networks.
Bayesian networks became popular in the eighties of the 20th century as a

powerful mechanism for integrating probabilistic models with plausible inference
[37]. In 1988, the scalable algorithm by Lauritzen and Spiegelhalter for flexible
inference processing in Bayesian networks, integrating concepts from Markov
random fields, became available [28]. In many subsequent medical and industrial
applications, Bayesian networks were used with expert provided probability ta-
bles and expert provided network structure. An early successful application of
Bayesian networks was causal analysis of production defects detection at mi-
crochip manufacturer Intel. In the following years, the methodology of Bayesian
networks was successively extended to cover, first, learning of conditional prob-
ability tables from data, and, later, extensions for learning structure of Bayesian
networks under various optimization heuristics, see [6] and [13].

In the past decade, the inherent limitation of Bayesian networks to single
entities or observation units was increasingly perceived as a barrier to further
applications in upcoming disciplines such as genome research and Web mining,
text mining etc. In two seminal papers, [14] and [27], the formalism of Bayesian
networks was extended to 1st order logic, implying the applicability of Bayesian
networks to models with several related entities, as they are common in, e.g.,

M.-A. Aufaure and E. Zimányi (Eds.): eBISS 2012, LNBIP 138, pp. 78–102, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Markov Logic Networks Tutorial 79

entity relationship models. These approaches became part of a greater stream
of innovative research on Statistical Relational Learning that included new ap-
proaches like conditional random fields (CRF). The reference book publication
in the SRL area was [11]. For an excellent recent overview of approaches to
probabilistic inference in knowledge-based information systems, see [20].

Bayesian logic networks (BLNs) draw from both these approaches. The the-
oretical rationale can be found in the chapter [21] which also provides a mod-
elling approach and a tool that integrates a Prolog engine for inferencing. [32]
contributes a domain specific modelling language that supports the definition of
multi-entity models with stochastic dependencies (see below section 4). Finally,
[18] provide a graphical modelling and processing tool that integrates Markov
logic network functionality, as well.

Markov random fields originate from statistical mechanics. The application
in the area of probabilistic inference in expert systems was initiated by research
on Boltzmann machines in the 80s and 90s of the last century [3]. Boltzmann
machines were successfully applied in several combinatorial optimization [2] and
cognitive modelling tasks [49]. A learning algorithm that would enable to es-
timate connectivity between processing units for Boltzmann machine became
available [4] and was extended to incomplete patterns in [50]. However, scalabil-
ity remained an issue for implementing both Boltzmann machine learning and
inference. Furthermore, the inherent limitation imposed by binary-state process-
ing units was equivalent to the limitation of Bayesian networks to single entities
(which could be equivalently described by a single binary vector for each obser-
vation unit in the case of dichotomous variables).

In an analogous way to Bayesian logic networks, Markov logic networks
(MLNs) were designed to enable the use of first order logic input theories defining
and / or constraining a multi-entity probabilistic graphical model. MLNs were
introduced in [40] and [10], a reference implementation was made available early
on by the Alchemy project [25]. Besides the extended expressivity allowed by
first order theories, an important key contribution in MLNs was related to scal-
ability addressed across all phases of processing. Recently, the Tuffy project
[36] has contributed further improvements in scalability and extensibility.

Common to both approaches is the idea of basing a model for a given do-
main on a general input theory definition that includes statements expressing
uncertainty as well as logical theorems and constraints. If a specific data set
becomes available, the model constants become interpreted and the statements
of the theory are compiled into a ground network, which is a standard Bayesian
network or Markov random field depending on the MLN or BLN approach be-
ing taken. Also common to both approaches is the capability of parameter and
structure learning. The key difference between the approaches lies in the nature
of uncertainty being expressed in the input theories and the resulting grounded
models. This will be explained and discussed in detail below.

In the present tutorial, we will focus on MLN. Some explanations will be given
in order to distinguish them more clearly from the BLN approach in section 3.

80 M. Spies

2 Markov Logic Network (MLN) Concepts

In this section we first explain the basic definition and processing steps in a
Markov Logic Network (MLN) in subsection 2.1. The key input to running an
MLN is a set of formulae in predicate logic attributed with weights which express
a degree of uncertainty. This input gives rise to a stochastic model of any specific
application domain on which the MLN processes various inference procedures.
The model and some procedures are illustrated by a few elementary examples
in subsection 2.2. Later, in section 5.3, we will address options for learning of
MLN inputs from data.

2.1 Basic Definition and Processing Steps of a Markov Logic
Network (MLN)

Input to a Markov Logic Network (MLN) is a first-order logic (FOL) theory Θ
expressed as a finite set of FOL formulae Fi, i ∈ {1, . . . ,m}. For definitions and
illustrative examples of FOL theories, the reader is invited to consult a textbook
like [31,44,45]. It is generally assumed that these formulae are preprocessed ac-
cording to the usual rules for generating conjunctive normal forms (CNF, see
[31,45]). As a result, all Fi are quantifier-free and contain only disjunctions of
literals. A literal is an atomic formula consisting of a predicate with a suitable
number of arguments. A literal may appear in positive or negated form in a
formula. An argument to a predicate in a literal is also called a term. The terms
in literals consist of individual variables or individual constants which may ap-
pear nested in function-symbols. Function symbols can be genuine elements of
a theory, but they may also be generated through the elimination of existential
quantifiers in the process of constructing a CNF [31,45].

Restrictions on the admissible structures of input formulae need to be chosen
depending on the specific application and computational paradigm the input
theory is related to. Generic FOL theories have well known decidability and
tractability issues. Therefore, in most applications, restricted subsets of FOL
are enforced. The best known such subsets are related to variants of description
logic DL [5]. DL is also the core of current web ontology languages like OWL2
[33]. Therefore, a critical issue in defining an FOL theory for an MLN is the
appropriate choice of an input theory definition language. We will review some
approaches to definition languages for MLN in section 4.

Each formula Fi, i ∈ {1, . . . ,m} is assigned either a weight w(Fi) ∈ R, or it
is assumed to hold with certainty.

It is assumed that there is a monotonically increasing relationship between
weights and probabilities of formula instances, such that a formula with heigher
weight should have a higher probability of verifying instances in all possible
interpretations of the input theory. It should be noted, however, that there is
no generic complementarity of a weight for a formula as compared to the weight
for its negation. This is one key distinction against the Bayesian logic network
approach, see below.

Markov Logic Networks Tutorial 81

In most implementations, a default weight of 0 is assumed to represent indif-
ference regarding the possible probability of instances of the formula. In many
cases, this translates to an apriori probability of .5 for the set of the formula
instances.

Let us now assume a specific interpretation of the theory defined by the Fi,
i ∈ {1, . . . ,m} to be given. For MLNs and BLNs, such an interpretation I
comprises a finite domain, i.e., a finite set of individuals D. For convenience,
constants in the theory are assumed to be mapped to different such individuals as
if they were uniquely named by the constants from the theory (this is the unique
name assumption in [40]). Moreover, function symbols are assumed to have
known interpretations for these named individuals, which implies that functions
are pointing to named individuals again (this is the known functions assumption
in [40]). Formally, however, these named individuals appearing as function values
need not be constants in the underlying theory Θ. An even more restrictive
assumption is to postulate that D is composed only of these named individuals
and their known functionally dependent counterparts (this is the domain closure
assumption in [40]). This assumption allows to avoid complexity issues resulting
from (possibly iterative) applications of functions to unknown individuals.

Taken together, these assumptions guarantee that the Herbrand universe of a
base theory Θ is finite and consists of symbols denoting named individuals and
known functional dependent individuals only. It should be noted here, that in the
process of learning a MLN from data the base universe may of course change and
that the parameters of the probability representation of the uncertainty model
(see below) are independent of the specific set of individuals being chosen in one
interpretation domain D.

Possible relaxations of these assumptions will be discussed in subsection 4.4.
Given a Herbrand universe constructed from I under these assumptions, for-

mula Fi may be true for some individuals and false for others. We call the set of
ground formulae derived from our theory Θ by applying all possible substitutions
of named domain individuals from D for variables the Herbrand interpretation
of Θ. Then, a Herbrand model of our theory Θ in I is a subset of its Herbrand
interpretation that is logically entailed by Θ. For brevity, we refer to elements
of the Herbrand interpretation of Θ as formula instances. In particular, the set
of ground instances of literals in the input theory is referred to as the Herbrand
base of Θ in I.

The purpose of the probability model corresponding to a MLN is to describe
probabilities of true ground instances of theorems of a given input theory in a
given interpretation. By the parameterization described below, these interpreta-
tion specific probabilities are generalized to interpretation independent probabil-
ities. The probability model for MLN rests on the assumption that each element
of the aforementioned Herbrand base may be independently set to true or to false
at random as long as the input theory does not imply a dependency between
the truth values of several such elements. Such a dependency corresponds to a
logical connective in one or more of the input theorems, and the input weights
correspond to strengths of such dependencies.

82 M. Spies

These assumptions lead to a Markov random field probability model for Θ in
I. This model can be conveniently derived starting from an undirected graph
with a node for each element of the Herbrand base of the given theory (i.e., a
node for each interpreted literal). The node represents a Boolean random variable
whose outcomes are truth (1) or falsity (0) of the respective interpreted literal.
Two nodes are connected if a formula being interpreted contains both literals.
The undirected graph constructed from Θ in I is commonly referred to as the
ground Markov network corresponding to the input theory and interpretation in
question.

In this representation, each ground instance of a formula from the input the-
ory Θ within interpretation I corresponds to a clique (complete subgraph) on
the corresponding ground atoms in the ground Markov network. – Another way
to define the ground Markov network is to use the notion of a hypergraph (hyper-
graphs are commonly used in database schema theory). In this approach, nodes
are defined as before, but hyperedges are constructed for all non-empty sub-
sets of nodes sharing a common ground clause. In this perspective, each ground
instance of a formula as described above is represented as a hyperedge in the
underlying Markov network.

Next, we introduce possible worlds. From the logical point of view, a possible
world is an assignment of truth values to the elements of the Herbrand base
of Θ within interpretation I. (It should be noted here that possible worlds are
defined w.r.t. to a specific interpretation of the input theory as described. This
is somewhat different from the tradition in formal logic, where possible worlds in
first order logic are defined as laws of existence or state descriptions [15] specified
without reference to a particular interpretation and its domain.)

In the Markov ground network representation, since there is a bijection be-
tween the elements of the Herbrand base and the nodes in this network, a possi-
ble world p is a state vector of the Boolean variables with a component for each
node. According to common terminology in Markov random fields, each value
of p uniquely represents a configuration of the network. In the sequel, we will
use the terminology configuration vector or simply configuration to denote the
representation of a possible world in the ground Markov network.

In order to express the satisfaction of a formula in p in a short way, it is usual
to introduce a so-called feature function fij(p) for each formula Fi, whose domain
is exactly the set of states of the j−th clique or hyperedge corresponding to the
j−th formula instance of Fi and whose range is Boolean, interpreted as integers
{0, 1}. This function assumes value 1 for a state of the clique or hyperedge j if
the truth values of the nodes in j make Fi true. In this case, we call the clique
active in the possible world or configuration in question. Intuitively, the feature
functions we use in MLNs are simply truth tables for formula ground instances
expressed with integers {0, 1}.

A feature function together with the formula weight wifij(p) is in fact a
clique potential since it provides a real-valued value depending on the states
of one clique in the network (corresponding to truth / falsehood of one ground
instance of formula Fi). Taking together all clique potentials, we obtain a nearest

Markov Logic Networks Tutorial 83

neighbour potential as the sum of clique potentials in one possible world p. Such
a function is often referred to as a Gibbs potential. However, please note that
in many references on MRF and MLN the term potential is actually used for
the exponentiated potential as it will appear in the possible world probability
below.

Finally, a ground Markov network constructed along these lines can carry a
probability representation in terms of a Markov random field (MRF). In order to
define the probability law for a ground Markov network, a distribution law must
be defined. This law specifies the probability of any particular possible world
p in which all ground atoms represented as nodes in the ground Markov logic
network are assigned a truth value.

Given that we assume truth and falsehood for each ground clause to be in-
dependently realizable by some stochastic process, the sum in a Gibbs potential
naturally corresponds to a product of exponentials contributing to the prob-
ability of a possible world. This gives rise to a Markov random field (MRF)
probability law for our ground Markov network. The overall probability of an
MRF configuration or, equivalently, a single possible world p can be written as

Pr(p) =
1

Z
exp(

n∑
Fi;i=1

∑
j∈I(Fi)

wifij(p))

where Z is the normalizing sum of all exponentiated potentials on active cliques
across all possible worlds (the name Z originates from the German word Zus-
tandssumme established in the original work introducing a special case of nearest
neighbour potentials by physicist Ising).

Z =
∑
p∈C

exp(

n∑
Fi;i=1

∑
j∈I(Fi)

wifij(p))

Here, C denotes the set of all configurations in our ground MRF. The subscript
j ∈ I(Fi) is a loose way to express iteration over cliques in the ground Markov
network corresponding to formula Fi.

It should be noted that fij(p) equals zero for all cliques or hyperedges in
which, for the given configuration vector p, formula Fi is false. This means that
all these cliques do not contribute probability mass to Pr(p).

Furthermore, in order to ensure Z �= 0.0, we excluded negative, and, by sym-
metry, also positive infinite weights from our definitions for MLN input theories.
This is the usual strict positivity restriction on Gibbs potentials. As we will
demonstrate in the example section below, cases of formulae known to hold or
te excluded with certainty can be dealt with in the construction phase of the
ground Markov network.

Together, these two formulas define a discrete probability measure Pr on the
set algebra of possible worlds in our interpreted theory, or, equivalently, con-
figurations in the resp. ground MRF. To verify this, consider the standard Kol-
mogorov axioms for a probability measure on a triple (Ω,A,Pr) with event setΩ,
σ-algebra A, and note that each configuration corresponds to an atomic event,

84 M. Spies

unions and intersections on finite event sets are defined as usually in set theory.
The empty configuration (all ground atoms false) as well as the full configura-
tion (all ground atoms true) are included in the set of configurations. Moreover,
our measure Pr is non-negative trivially, and it is additive over disjoint sets of
configurations. Finally, normalization is guaranteed by dividing all likelihoods
by the Zustandssumme Z.

Therefore, the Markov ground network together with a probability law as just
described is often referred to as ground Markov random field (MRF) in the MLN
literature.

Both formulas involved in the definition of the probability measure on our
ground MRF can be simplified if one takes into account that the same weight wi

is applied for each true ground instance of a formula. Counting these instances
to be ni(p) (note the count depends on the possible world we assume), we have

Pr(p) =
1

Z
exp(

n∑
Fi;i=1

ni(p)wi).

However, from the computational point of view, counting ni for any possible
world requires appropriate inference steps traversing the ground network. We
will discuss the complexity involved in section 5.2.

Given the probability of a possible world, we are ready to compute the prob-
ability of a particular ground formula gF for any specific F ∈ Θ. Any ground
formula can be true in several possible worlds. Since these correspond to disjoint
atomic events in our probabilistic event algebra, the probability of a ground for-
mula is given formally in a straightforward way by summing up the probabilities
of all possible worlds in which the ground formula gF is true. This condition
means, in usual terminology of mathematical logic, that p is a model of gF.
This will be written as p ∈ M(gF). Using this notation, we can write

Pr(gF) =
∑

p∈M(gF)

Pr(p)

Computing this probability in practice requires to find satisfying possible worlds
for a given ground formula. This is equivalent to the NP-complete SAT sat-
isfiability problem. Therefore, for MLNs of practically relevant sizes, specific
algorithms will be needed to compute this probability.

2.2 A Simple Example

As the present paper is mainly aiming at a tutorial introduction to MLNs, we
give a very simple example for illustrating the concepts and the computations
as introduced. Two versions of the example will be discussed in order to convey
a feeling of the kind of problems to which MLNs are suitably applied.

In this paragraph, all results reported were generated with Mathematica 8
scripts written by the author. These scripts are comparatively compact and
run very fast due to the built-in propositional logic syntax and corresponding
satisfiability checking algorithms in Mathematica.

Markov Logic Networks Tutorial 85

A(a) A(b) B(a) B(b) SumWts

T T T T 4.6

T F T T 4.3

T T F T 2.6

T F F T 2.3

T T T F 2.6

T F T F 4.3

T T F F 0.6

T F F F 2.3

Z = 681.322 Pr{A(a)} = 0.433836

(a) Case I

A(a) A(b) B(a) B(b) SumWts

T T T T 4.6

F T T T 4.3

T F T T 4.3

F F T T 4.

T T T F 2.6

F T T F 2.3

T F T F 4.3

F F T F 4.

Z = 681.322 Pr{B(a)} = 0.665203

(b) Case II

Fig. 1. Marginal probability results for ground network from Fig. 2 for two ground
atoms, A(a) in part 1a and B(a) in part 1b. In these and subsequent tables, we report
sums of weights for those possible worlds in which the ground atoms being examined
are true. As a result, some possible worlds appear in both tables, while others are not
mentioned in either table.

Let us first consider a very common problem in inference building on the
traditional modus ponens. We assume the following theory to be given, with
uncertainty on both the antecedent and the implication expressed by weights w

F1 w1 A(x)

F2 w2 A(x) ⇒ B(x)

Let us assume a domain consisting of two individuals a and b, D = {a, b}.
As a possible scenario, imagine A to mean “eats apple” and B to mean “loses
permission to stay in paradise”, and take a, b to represent the first two human
beings as described in the book of Genesis.

Then, the ground Markov network resulting from these assumptions is
still easy to construct by hand. We need four nodes for ground atoms
A(a), A(b), B(a), B(b). The connectivity between these nodes is easily seen to
look as depicted in Fig. 2.

Let us examine the marginal probabilities of atoms A(a) and B(a) for this
theory, assuming weights w1 = .3 and w2 = 2.0. Together with the applica-
ble possible worlds and the raw sum of weights of satisfied ground formulas
for each case, figures are reported in tables in Fig. 1. The reader should verify
how these sums can be explained from contributions of the single weights of
those ground formulas that are true in a given possible world. The bottom line
reports the “Zustandssumme” together with the marginal probability. The no-
tation Pr{A(a)} means – the probability of the “event” {A(a)} which is true in
all possible worlds listed in the table depicted in Fig. 1a. Similar remarks apply
to subsequent tables.

A variation of this problem can be constructed by allowing the influence of
the conditional to include not only the same but also other individuals. In our

86 M. Spies

A(a)

w1

B(a)
w2

A(b)

w1

B(b)
w2

Fig. 2. Ground network for an MLN example containing a predicate dependency within
individuals. For details see text.

scenario this would mean that the action of eating an apple by individual a can
cause, with some probability, the expulsion from paradise for individual b or vice
versa. This is reflected by a slightly amended version of our theory which looks
like this

w1 A(x)

w2 A(x) ⇒ B(y)

Note that this change does not alter the set of possible worlds, but it alters the
layout of the ground MRF as can be verified from Fig. 4. The key effect of this
change is on the marginal probability Pr{B(a)} that has substantially increased
(see results in table 3b compared to 1b). The obvious reason for this is that we
now have more paths with positive weight influencing the truth of B(a) in a
given possible world. As these paths have considerably heigher weight than the
loops weighted w1 connecting A(.) with itself, another overall effect is a decrease
of the marginal probability Pr{A(a)} (same of course for Pr{A(b)}) as can be
verified from tables 1a vs 3a.

Finally, to examine the influence of a theorem assumed to hold with certainty,
let us assume x �= y ⇒ (A(x) ⇒ ¬A(y)). In our domain D = {a, b}, this
translates to an exclusive-or (XOR) constraint (A(a)∧¬A(b))∨ (A(b)∧¬A(a)),
which in our scenario could correspond to only one apple being available (and
our first humans unwilling to share an apple they are eating, which is not what
happened according to the book of Genesis). This change in fact alters the set
of possible worlds without changing the layout of the MRF, because we are now
forbidding all possible worlds in which the hard XOR constraint as formulated
above does not hold. A visualization of the added constraint is provided as
connector with dotted head and tail in Fig. 6.

The effect of this change to the probability distribution on the ground MRF
can be conveniently described (and, in fact, coded) as conditioning on the set of

Markov Logic Networks Tutorial 87

A(a) A(b) B(a) B(b) SumWts

T T T T 8.6

T F T T 8.3

T T F T 4.6

T F F T 6.3

T T T F 4.6

T F T F 6.3

T T F F 0.6

T F F F 4.3

Z = 27929.7 Pr{A(a)} = 0.387371

(a) Case I

A(a) A(b) B(a) B(b) SumWts

T T T T 8.6

F T T T 8.3

T F T T 8.3

F F T T 8.

T T T F 4.6

F T T F 6.3

T F T F 6.3

F F T F 8.

Z = 27929.7 Pr{B(a)} = 0.738638

(b) Case II

Fig. 3. Marginal probability example results for ground network from Fig 4

possible worlds compatible with the hard XOR constraint. Looking at the tables
in Figure 5, it can be seen that we have only half as many satisfying possible
worlds for our ground formulas as in the earlier versions of the example. The
overall effect on the marginal probabilities for our test atoms is that we find
another increase of Pr{B(a)} (see results in table 5b). In addition, there is a
change of Pr{A(a)} to 0.5, which seems surprising at first glance. The simple
explanation is that our XOR constraint changes the overall σ-algebra on our con-
figuration space such that events {A(a)} and {A(b)} are now mutually exclusive
and together exhaustive. Moreover, as Pr{A(a)} == Pr{A(b)} must hold, the
result in table 5a is justified.

Summing up, this example demonstrates a few important observations. First,
there is no context-independent precise “meaning” of a weight in a MLN. Rather,
these weights can be seen as ordinal constraints on theorem probabilities with dif-
ferent numeric interpretations depending on the interpretation context (domain
data). Second, hard constraints can alter marginal probabilities in unexpected
ways as they influence the overall configuration space of the ground MRF. Fi-
nally, on the positive side, MLNs can very easily handle referential uncertainty.
Notice that our results were derived assuming trivial data only (no fixed assign-
ment of any domain member to any predicate was assumed). This flexibility is
of great importance in more complex problems (e.g. rules describing probable
relationships in a social network graph).

3 Bayesian Logic Network (BLN) Concepts

Markov logic networks use material implication, usually denoted ⇒, to express
dependencies between predicates. Note that a material implication is true for
any instance in which the antecedent (or IF part) is false, which differs some-
what from common intuition since an implication could seem to be simply not
applicable to a case in which the IF part is false. This leads to a slightly unex-
pected behaviour of material implication if applied to statements with relative

88 M. Spies

A(a)

w1

B(a)
w2

B(b)

w2

A(b)

w1 w2

w2

Fig. 4. Ground network for the modified example with a predicate dependency within
and across individuals.

A(a) A(b) B(a) B(b) SumWts

T F T T 8.3

T F F T 6.3

T F T F 6.3

T F F F 4.3

Z = 10373.4 Pr{A(a)} = 0.5

(a) Case I

A(a) A(b) B(a) B(b) SumWts

F T T T 8.3

T F T T 8.3

F T T F 6.3

T F T F 6.3

Z = 10373.4 Pr{B(a)} = 0.880797

(b) Case II

Fig. 5. Marginal probability example results for ground network from Fig 6

frequencies. E.g., the formula dog(X) ⇒ barks(X) is true in a grounding for
individuals comprising not only dogs, but also all other animals, evens humans
etc. Therefore, in practice, many irrelevant instances contribute to verifying a
material implication.

The alternative approach underlying Bayesian networks and their extensions,
e.g., Bayesian logic networks, is based on conditional probability. A conditional
probability table (CPT) fully specifies probabilities for all outcomes of a random
variable in the THEN part, given all possible combinations of values of the ran-
dom variables in the IF part. Thus, there are never irrelevant cases in grounding
variables being related in a CPT. E.g. the conditional dependency table for a de-
pendency of Pr(barks(X)) on dog(X) contains an entry Pr(barks(X)|¬dog(X))
which requires an estimate of the probability that non-dogs would ever bark – a
quantity that relates to the specificity of the dependency in question.

The obvious corrective action to take in specifying the input theory to a
MLN is to add a formula with negated IF part to the input theory and assign

Markov Logic Networks Tutorial 89

A(a)

w1

A(b)

B(a)

w2

B(b)

w2

w1 w2

w2

Fig. 6. Ground network for the modified example with an XOR constraint added for
predicate A(.)

it an appropriate weight. In the example above, it would make sense to add
¬dog(X) ⇒ barks(X) with a rather high negative weight.

A further advantage of using conditional probability can be seen in the easier
representation of dependencies involving discrete variables with multiple values.
In such cases, an MLN input theory would require an auxiliary predicate for
each such value and additional axioms asserting mutual exclusion and collective
exhaustiveness of the auxiliary predicates for one multi-valued variable.

Besides this impracticability there is another, theoretical reason for distin-
guished treatment of conditional probability and the underlying dependency
concept from the kind of dependence expressed in material implication. This
theoretical reason has been investigated thoroughly in an approach related to
so-called conditional objects. Here, it was proven that there is no object in a
Boolean algebra that would correspond to the computation rule underlying the
definition of conditional probability. Instead, it was shown that there is an entire
range of sets and a Boolean algebra among which one can be chosen as repre-
senting a conditional [35]. This result, which links probabilistic logic to some
theorems and fuzzy logic, has led to the concept of conditional events which has
seen some applications in probabilistic expert systems [12]. For an application
of this approach to evidential reasoning, see [48].

The Bayesian logic network is a framework for defining Bayesian networks
using predicates and connectives in 1st order logic, with the specific assumption
that material implication is to be replaced by probabilistic conditioning. Thus,
a Bayesian logic network defines some predicates with finite valued domains.
Allowed logical connectives between these predicates are negation, conjunction,
and disjunction. However, it should be noted that the usual material implication,
which can be written as a combination of disjunction and negation, will not be
interpreted in a Bayesian logic network in the same way as it would in the
Markov logic network. Rather, the conditioning operator, usually written as |,
is used to indicate value dependencies between domains of predicates.

Therefore, in a Bayesian logic network, we have a grounding algorithm that
is similar, but not equivalent to grounding in the Markov logic network. In the
Bayesian logic network case, the key purpose of the grounding algorithm is a
combination of 1st order logic entailment with proper grounding of the predicates
involved.

90 M. Spies

As a consequence, the entailment and grounding computation steps lead to
a standard Bayesian network. This includes the application of so-called combi-
nation rules to input theories that contain multiple dependency assertions with
identical consequent variables. As algorithms for these networks are available in
many implementations, the remainder of this paper will focus on Markov logic
networks. For more details on the BLN approach, the reader is referred to [18]
and [21] building on the ground breaking work [14].

4 Definition Languages and Inputs to a MLN Engine

In order to get an MLN engine to work for you, three kinds of input are needed.
First, there is the input theory as discussed in section 2.1. Second, the current
domain data are needed on the basis of which the MLN engine will compute pos-
terior probabilities of ground atoms or a maximally probable posterior possible
world (see section 5.2). Following the tradition of Bayesian networks, this input
data is commonly referred to as evidence. Finally, in order to enable a focussed
computation of posterior probabilities, the input to an MLN engine should spec-
ify queries relating to specific statements of interest. We will now summarize the
conventions used for each of these inputs.

4.1 Input Theories

At least two approaches to defining input theories for a Markov Logic Network
exist, namely a generalization in [18] building on the Bayesian Logic Language
[32], and the Tuffy input file definitions [8] extending the syntax proposed in
the Alchemy project [25]. For brevity, we dwell on the latter approach. Here,
all input is provided in a single MLN input file with several sections. The basic
inputs needed for constructing a MLN and for supporting the grounding process
based on incorporation of evidence, are provided in the following sections of the
MLN input file –

Predicate schemata – This section contains predicate names and arities de-
clared by variable lists. Example A(x), B(x), C(x, y), . . .

Range restrictions – This section contains range definitions for predicates as
far as desired by the knowledge engineer. Example C(x, y) := A(x), B(y).
constrains the first argument of predicate C() to be of type A() etc. Not
restricting a range leads to generating all possible ground atoms over the
cartesian product of predicate domains in the grounding phase.

Datalog rules – These rules are applied to the evidence files (see
next subsection) in order to generate inferred tuples. The no-
tation follows PROLOG language conventions (except for us-
ing predicate symbols starting with an uppercase letter, and
variable symbols beginning with a lowercase letter, example
PossibleFriends(x, y) :− Human(x), Human(y), SameSportsClub(x, y).
These rules are basically helpers in order to ease evidence file writing.

Markov Logic Networks Tutorial 91

MLN Inference rules – These are the proper input theory rules as discussed
in section 2.1. Rules are either prefixed with a weight to indicate a degree of
(positive or negative) prior certainty / confidence, or, alternatively, suffixed
with a dot to indicate certainty.

There are a few additional syntactic constructs allowed in [8]. The most impor-
tant such construct allows to add constraints to datalog and inference rules with
the effect of reducing the size of the ground Markov network as far as possible.
A example is the constraint (in angle brackets)

PossibleFriends(x, y) :−Human(x), Human(y), SameSportsClub(x, y), [x �= y]

This constraint excludes the reflexive part from the friendship relationship in
the given domain. A side remark regarding datalog rules – they could be stated
as formulas holding with certainty in the input theory instead. The reason for
allowing these rules is to move some straightforward inferencing out of the net-
work grounding procedure (see section 5.1). However, future implementations
of MLN might opt for an integrated inference procedure involving all possible
inferential rules.

4.2 Input Evidence

An input evidence file consists of ground atoms only which must use predicates
from the input theory. These evidential ground atoms usually are a proper subset
of the Herbrand base of the theory and interpretation in question, so they specify
a partial possible world. The MLN inference process will take the evidence to
compute either posterior probabilities of ground atoms or a maximally probable
posterior possible world using the inference process discussed in section 5.2.

4.3 Input Queries

Input queries are provided either as ground atoms only which use predicates
from the input theory, or as predicate schemata with one or more variables. The
meaning of the queries depends on the MLN inference mode – MAP or MPE,
as explained in section 5.2. We provide a few simple examples for the MPE
mode – query A(b) requires the MLN to compute a posterior probability for
atom A(b) while query C(a, x) assuming a to be a ground individual requests
computation of all posterior probabilities for individuals in relationship C(., .) to
a, as far as they are elements of the range of the second argument of C(., .). The
effective range is computed using the range restrictions stated in the input theory
file, the individuals explicitly assigned in the evidence file, and possible further
individuals obtained from evaluating the datalog rules in the input theory file.

4.4 Relaxations of the Interpretation Assumptions

The assumption of unique names of constants is, of course, not relevant if the
input theory has no constants which is true in most practical cases. Otherwise, a

92 M. Spies

good mechanism is to use scoped predicates in place of the constants and ensure
that as many candidate atoms relating to the scoped predicates are generated
as needed in the grounding process (by adding a suitable query relating to the
predicate to the query file). The assumption of known individuals of each (one-
place) predicate can be relaxed using a universal predicate (like Thing in the
web ontology language OWL) and assigning individuals to this predicate only.
As a result, all legitimate substitutions for variables in one-place predicates will
appear in atoms as part of the resulting ground MRF. Analogous constructions
can be applied using a universal n-place relation for predicates involving more
than one variable. The assumption of known functionally dependent individuals
can be relaxed using an equality-like predicate and allowing suitable atoms on
the candidate set for the domain of a functional relationship.

5 Computation Steps and Algorithms

The key computation steps in an MLN are

– the construction of a ground network given the input theory and interpreta-
tion data (domain, ground instances of some predicates as evidence),

– the processing of inference tasks on this ground network in order to generate
end user output,

– (optionally) training data driven learning of formula weights or even of for-
mula structure.

In the present section, we focus on ground network construction and inference
processing.

5.1 Computation of Ground Networks

The prerequisite to computing a ground network is the availability of a set of
named individuals corresponding or interpreting the variables and constants in
the formal theory. The main task for Markov logic networks is to build a ground
Markov network (Markov random field) from the given logical theory for the
given named individuals and their functionally dependent further counterparts.

The challenge in building this ground network is to avoid as far as possible the
exponential complexity involved in taking all possible combinations of predicates
and possible argument ground terms. This can be done, first, by restricting
grounding of formulas to individuals of proper types. Most available tools for
MLN offer type declaration capabilities in the theory definition language, see
section 4.

Second, the size of the ground network to be computed can be reduced signifi-
cantly by integrating the grounding operation with computation of logical entail-
ments using the clauses of the underlying theory Θ together with the evidence
E provided for the inference step (see next subsection). In a generic approach,
an inference engine could be used to implement the computation of logical en-
tailments, however, in both MLNs and BLNs the intention is to allow for a very

Markov Logic Networks Tutorial 93

broad theory definition that may not conform to the restrictions imposed by, say,
a PROLOG or ontology-based inference procedure. Therefore, the only restric-
tion on Θ is satisfiability, and the grounding computation integrates entailments
from the evidence in the course of the grounding process itself.

The Tuffy project [36] implements a grounding algorithm using an object-
oriented relational database (specifically, PostGreSQL). Basically, Tuffy gen-
erates a table for each predicate containing a primary key, a sub-array with a
field for each argument and a truth value in the range {T, F, U}, where U rep-
resents unknown values at the time of grounding. Using these tables, a table
with all ground clauses can be constructed efficiently by performing appropriate
join operations on these predicate tables and appending the weights from the
input theory. It should be noted that in these computations the datalog rules as
allowed in the Tuffy theory input files are taken into account, as well.

Additionally, the Tuffy project [36] exploits the fact that, in most cases,
ground MRFs have many disconnected components.

5.2 Inference

The prerequisite to computing inference is a set of assumed statements, which
correspond to ground atoms with truth values assigned. These statements are
usually referred to as evidence E or simply data. Usually, evidence does not fully
specify a possible world so that many possible worlds are compatible with E .

Inferencing Tasks. The main purpose of inference for Markov and Bayesian
logic networks is to derive ground atoms with high posterior probability given
the evidence. The computation of inference may be driven by queries that set
specific goals in terms of ground atoms to be supported or refuted.

The most common inferencing task over Markov logic networks is finding the
Most Probable Explanation (MPE), i.e. finding a configuration of the ground
Markov network with maximum probability. This task is of particular relevance
in absorbing evidence, since then an MPE solution provides the most probable
overall state of affairs (or, in logical terms, possible world). For a formal definition
of MPE, see [7], Def. 18.

While an MPE solution yields a full possible world, the other approach to
inferencing focusses on posterior probabilities of specific hypothesis nodes. The
term commonly used in Bayesian / Markov network literature for this kind
of inference is maximum a posteriori (MAP, which is slightly misleading since
MAP inference in the usual sense is defined in Bayesian statistics and presumes
an optimization procedure involving prior distributions of parameters). In our
setting, this kind of inference would correspond to weight learning, a subject we
will address in section 5.3. If parameter learning is not involved, computing a
MAP inference actually reduces to a marginalization operation performed for a
specific set of query nodes in the ground network. In the Tuffy software, MPE
inference is the default, which is referred to as MAP inference in the manual. On
the other hand, the marginalization inference as just introduced is appropriately
referred to as marginal mode and can be requested with a command line option.

94 M. Spies

Computational Approaches to Inferencing. There are two approaches to
computing inference –

exact methods – these methods allow for the exact computation of poste-
rior probabilities. Such methods are commonly subsumed under the term
belief propagation. The two common approaches for exact inference or belief
propagation are based on message passing or, alternatively, the join tree al-
gorithm. Message passing, in an early version suggested in [37] and extended
in the sum-product algorithm, [26], is an asynchronous scheme for weight
aggregation across network neighbours in a specially constructed network,
the factor graph. A factor graph for ground MLN is a bipartite graph with
atom nodes in one partition, the clause cliques (factors) in another partition
and an undirected link between each atom and the clauses it appears in. The
corresponding algorithm is guaranteed to converge to exact posterior proba-
bilities in two steps if acyclicity conditions are met on the factor graph. The
complexity of the message passing algorithm under this assumption is linear
in the size of the factor graph and the maximal number of states in a factor
(clique) node. – The join tree algorithm was proposed originally by [28] and
builds on a tree constructed by joining neighbouring cliques in the MRF
following a given node ordering. Inference through this join tree proceeds
in two steps by aggregating potentials upwards and then propagating nor-
malization vectors downwards. The node ordering is derived by maximum
cardinality search, where a root node / clique can be chosen depending on
the direction of evidence processing. The performance of the join tree algo-
rithm depends on the cut set sizes of adjacent nodes in the MRF. Ordering
the nodes such as to optimize the cut sets to be visited in the resulting com-
putation paths across the tree leads to significant improvements as proposed
in the bucket-elimination approach by [19]. This is an important enhance-
ment as the complexity of the entire join tree algorithm is exponential in the
size of these clique joins.

stochastic methods – these methods use Markov Chain Monte Carlo
(MCMC) approaches for stochastic relaxation in a network to derive ap-
proximate posterior probabilities or likelihoods. A very popular approach
for Markov random fields is Gibbs sampling, see, e.g., [30], section 29.5.
Gibbs sampling assumes that the MRF has a stationary distribution, which
presupposes strict positivity of the configuration distribution and aperiodic
reachability of each configuration from any other configuration [22]. Un-
der these assumptions, Gibbs sampling is a method for approximating the
marginal stationary distribution of node states. Procedurally, Gibbs sam-
pling in an MRF consists of sampling states of nodes given their immediate
network neighbours (commonly referred to as their Markov blanket). This
amounts to estimating the conditional distribution at nodes being sampled
which is proportional to the desired marginal distribution.

For MLN, as atom nodes may participate in many clauses, and as subclauses
may appear multiple times in more complex clauses, it is usually the case that
exact methods are not appropriate. The acyclicity of the factor graph cannot be

Markov Logic Networks Tutorial 95

guaranteed, which leads to possibly long convergence times of the factor graph
message passing algorithm. For the same reasons, the maximal size of the state
set of a clique join can become very high, which makes the join tree algorithm
hard to apply.

However, stochastic methods like Gibbs sampling cannot be applied to MLN
inference in a straightforward way, since the key assumptions guaranteeing the
existence of a stationary distribution in the ground MRF are not satisfied in
general (for a derivation, see [2]). First, not all possible worlds have strictly
positive probability. This is true since clauses assumed to be false with certainty
are allowed in an MLN definition (as we illustrated in the example section).
Second, not all possible worlds are reachable from any given one as some of
them usually are in the set of unsatisfiable worlds given some partially defined
possible world (either by evidence or in the course of sampling from the MRF).

These problems have been described in detail and addressed in the most
common MCMC approach to MLN inference called MC-SAT [38]. Basically,
MC-SAT builds on recent advances in stochastic satisfiability search (the SAT
part) and combines these with an extension of Gibbs sampling appropriate for
handling clear or approximate violations of strict positivity in the configuration
distributions (the MC part).

As for the SAT part, MC-SAT approach to performing inference on a ground
MRF builds on randomized algorithms for satisfiability solving (SAT-solvers).
While satisfiability search for clauses involving at least 3 predicates is a classical
NP-complete problem [17], the combination of a random walk with determinstic
steps of clause or atom addition is applicable in most cases and was published as
the original WalkSAT algorithm [41]. WalkSAT is a combinatorial optimization
heuristic which uses the number of overall satisfied clauses as objective function.
WalkSAT interleaves greedy steps adding compatible atoms to the possible world
being constructed with random walk steps – “flips” of randomly selected clause
– that enable exploring other possible worlds and escaping from local maxima
of the objective function. WalkSAT led to a breakthrough in many applications
that require SAT solving, eg in constraint processing and systems verification.
In [51] it was shown that WalkSAT samples in a highly non-uniform way and
repeatedly finds satisfying configurations with high similarity. This led to the
proposal of the SampleSAT algorithm, which adds simulated annealing steps to
WalkSAT in order to enable moves to highly uncorrelated partial possible worlds
during the search process. In many empirical demonstrations, the highly efficient
behaviour of SampleSAT was confirmed. Today, SampleSAT is usually combined
with additional heuristics like taboo search, for details and software, the reader
is invited to check [1].

As for the MC part, the approach in [38] implements an adapted version
of slice sampling [34]. This is a comparatively new method to sampling from
probability distributions in high dimensional spaces. Slice sampling uses an aux-
iliary variable taking values in the range of the probability density function (or
a function proportional to it). It then iterates over sampling the aux variable
and the original sample space in an alternating way such that samples from

96 M. Spies

the sample space must have a probability (or likelihood) at least equal to the
current sampled value of the aux variable. Both sampling steps use iteratively
re-parameterized uniform distributions. To adapt this approach to the needs of
ground MRF processing, several steps are proposed in [38] –

– First, the input clauses with negative weights are transformed such that all
weights are non-negative. Note that any clause that is part of a conjunc-
tive normal form is a disjunction, so that negating this clause amounts to
generating a set of conjunctions. The components of these conjunctions will
appear with equal weights in the transformed ground MRF. As a result
of this transformation, all potentials in the ground MRF are non-negative.
This, in turn, allows to sample potentials from a uniform distribution in an
interval [0, a], which is needed in the next step.

– The second step implements the sampling step from the distribution func-
tion similar to [34] to the transformed MRF. In [38], it is proposed to use
auxiliary variables added to each clique 1, ..., k, ... in the transformed ground
MRF. The values of these per-clique variables uk are sampled uniformly in
each MRF update step from the range of clique likelihoods. As a result, a
random subset of candidate next configurations is produced whose probabil-
ities lie close to the probability of a possible world with the ground formulas
as satisfied in the current configuration p. However, the candidate config-
urations may have only small overlaps with p in terms of ground clauses
satisfied.

– The third and last step is to to apply SampleSAT to the candidate set
established in the former step. This approximates a selection of the next
configuration with uniform distribution as required in slice sampling.

The overall strategy of the MC-SAT inference algorithm is to use the MC part for
establishing probable configurations and, alternating with it, the SAT part for
selecting a feasible configuration under the constraints of the input logical theory.
MC-SAT [38] has been demonstrated in many simulations and applications to be
highly efficient in comparison to any other approaches tested, and it is adopted
in both the Alchemy [25] and Tuffy [36] MLN engines.

An additional option for building more effective data structures in inference
computing on ground MRFs for MLNs exploits the underlying logical dependen-
cies across the network nodes. This is being investigated as lifted inference. One
recent approach [9] is based on pushing the propagation of logical constraints
into the construction of an AND-OR search graph. This graph is then simplified
in a second step by aggregating nodes with equal weights. An earlier approach
[43], implemented in the Alchemy system, builds on a message-passing imple-
mentation of belief propagation and uses an iterative approach to alternating
updates of the weights in ground clauses and in ground predicates (where the
weights here represent potentials).

5.3 Learning

In both Bayesian and Markov logic networks, learning builds on multi-relational
data. For Bayesian networks, we have a standard distinction between structure

Markov Logic Networks Tutorial 97

and parameter learning. Structure learning is known to be NP - hard. Param-
eter learning can be performed based on complete and incomplete data using
likelihood maximization.

The main purpose of learning for Markov and Bayesian logic networks is to
select or derive clauses with high posterior probability given the training data.
Selection of likely clauses in the light of training data is usually referred to as
weight learning, and in MLN it corresponds to adjusting the weights wi of a given
set of clauses Fi as defined in section 2.1. From a statistical point of view, weight
learning in a Markov random field is nothing but parameter estimation. Deriving
likely clauses given training data is usually referred to as structure learning.
Structure learning assumes an additional step of generating appropriate clause
candidates. This can be done, e.g., by combining inductive logical programming
(ILP) methods with a parameter estimation algorithm.

Weight Learning. The challenge of weight learning in Markov logic networks is
the complexity of the likelihood function, since computing this function usually
involves an exponential number of ground atoms to be considered. Therefore,
straightforward simulation approaches like the ones conventionally used in weight
learning for Boltzmann machines [4,50] are not scalable enough for the job.
The approach adopted in the Alchemy and Tuffy prototypes builds on [29].
This paper combines several advances beyond the state of the art in numerical
optimization and parameter estimation. Given the tutorial nature of this paper,
we only briefly summarize the two most important aspects –

Scalability of Objective Function– Standard MRF parameter estimation
proceeds by iteratively minimizing an objective function. The usual objective
function in MRF parameter estimation is the Kullback-Leibler divergence
measure that evaluates proximity (in a general sense, not equivalent to a
metric in the strict mathematical sense) of two probability distributions. In
the case of MRF, the proximity is computed for the vector of unconditional
local distributions of node states in the entire MRF versus the conditional
distribution vector given the data (imagined as “clamping” nodes in the
network whose states are fixed by the evidence). It has been shown that
minimizing Kullback-Leibler divergence is equivalent to maximizing the con-
ditional log-likelihood of the data under the MRF parameters [50]. The issue
with computing this function is that approximating the unconditional distri-
bution requires running the Markov chain for a sufficiently large number of
iterations which is usual exponential in the size of the network. Sampling the
conditional distributions is less complex, in the case of full evidence a single
inference step or belief propagation step suffices per data sample. A more
efficient standard of comparison summarizing the unconditional probability
was suggested in [16] under the term contrastive divergence. The approach
here is to compute just one update of the MRF configuration in the uncondi-
tional state, which implies calling a random sequence of node updates using
Gibbs sampling as described above once for each node. This gives an esti-
mated local probability vector for the unconditioned MRF. Computation of

98 M. Spies

the conditioned local probabilities remains unchanged. In [16] it was shown
that contrastive divergence is far more efficient and at least as effective as
the conventional Kullback-Leibler divergence based procedure.

Flexible and Efficent Weight Adaptation Scheme– The iterative adap-
tation of connectivity weights based on evaluating the objective function
needs defining step directions and step sizes for each connection weight
change. While, in principle, step directions are given for a divergence mea-
sure by its gradient, it has been shown that straight forward gradient descent
is not optimally performant and can be replaced by suitable variants of con-
jugate gradient descent. In its general form, a conjugate gradient descent
computation of a solution to an inhomogeneous system of linear equations
ensures orthogonality of each update vector with the earlier update vec-
tors under the mapping of the constraint matrix (for details, see [42]). This
principle has been suitably modified in [29] to be applied to MLN weight
learning.

The overall weight learning algorithm proposed in [29] also uses the inference al-
gorithm MC-SAT [38] as explained in section 5.2 for moving to probable succes-
sive configurations in the ground MRF state space. Compared to standard Gibbs
sampling, the two advantages gained by the intervening SampleSAT step are that
logical constraints are being taken into account preventing search from moving
through unfeasible regions and that successively visited states may have very low
correlation. For further aspects and details of the weight learning approach fol-
lowed in the Alchemy and Tuffy prototypes, the reader should consult [29].

Structure Learning. The currently most promising approach to structure
learning [24] builds on the hypergraph representation of a relational database
schema. In this representation, each attribute defined in the schema corresponds
to a node, and a hyperedge is introduced for the set of attributes of each table in
the database. Relational data corresponding to a given schema are assumed to
be available as learning data. The learning algorithm now picks attributes and
rearranges the hyperedges by a cluster-finding approach in order to establish
weighted implication rules combining these new hyperedges. Clustering and rule
mining are defined such as to maximize the likelihood of the given learning data.

6 Overview of Applications

Applications of MLNs are mostly attractive in areas where some degree of a
priori knowledge is available, and where multi-relational data in sufficient size
is available. In particular, knowledge expressible as rules including usual rules
and heuristic rules is of interest for a MLN application. One area with specific
appeal for the MLN approach is information management, since in almost all
areas here we have expert rules available that are not true in all cases. This holds
for tasks like topic identification, named-entity recognition, parsing in shallow
natural language processing etc. As an example application, we mention the so-
called machine reading prototype [39], which performs automated extraction of

Markov Logic Networks Tutorial 99

information from large bodies of textual data (as available from web informa-
tion resources including blogs, newsgroups, social networks). Here, information
extraction means entity recognition and resolution, relationship detection and
verification, and classification of entities or relationships. The broader perspec-
tive for solutions in machine reading is to enable automated problem oriented
text understanding, as it is currently demonstrated by the IBM Watson software
and its capabilities in answering jeopardy questions.

For BLN applications, multi-entity dependencies optionally involving con-
straints are important, as they appear in genomic studies [21].

An important field for applications is Operational Risk Management, see [46]
and foundations in [47]. The benefits of a predicate-logic approach are mainly
due to the complex domain models needed in this field, which usually require
representation of operational systems, operative processes, client or field systems,
and service deployments based on service contracts. In [46], based on the EU
FP6 MUSING integrated project, the domain model was expressed in a formal
ontology using the web ontology language OWL. Ground networks were gener-
ated on instantiated ontologies using the Jena rules language and appropriate
inferencing systems. A prototype was deployed at an IT operations center of a
MUSING industry partner.

Another highly promising field for MLNs and/or BLNs is Information Ex-
traction and Semantic Parsing, see [23] and [39]. The flexibility of MLNs in
representing relational data with very generic associations in combination with
a rigourous predicate logic approach is highly advantageous here.

7 Outlook and Conclusion

Overall, both MLN and BLN approaches are highly promising approaches for ad-
dressing predicate-logic based uncertainty in practical applications. Algorithms
addressing all key computational challenges are available. Practical examples are
available and are being tested on data sets of increasingly practically meaningful
sizes.

Technically, an open issue is the relationship of MLN definition languages to
ontologies based on the OWL 2 sub-languages. The strict limitations of expres-
sivity imposed in OWL 2 dialects might help to select input theories of known
inferential complexity, and this might benefit inference and learning processes.
– Another open issue is the possible use of other logic programming approaches
from answer set programming for the network grounding computations.

Tools for MLN are available as mentioned throughout the paper. We hope
that, as a result from this tutorial, students and researchers will explore further
applications and refinements of these promising approaches.

Acknowledgement. The author is indebted to three anonymous referees who
gave very specific and helpful comments. I would also like to thank the organizers
of the EBISS 2012 event in Brussels, my colleagues Marie-Aude Aufaure and
Esteban Zimanyi, for their support. Finally, the audience at theEBISS2012 helped
to improve some parts of the paper by discussions and interesting questions.

100 M. Spies

References

1. http://www.cs.rochester.edu/u/kautz/walksat/

2. Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines. Wiley (1988)

3. Aarts, E., Korst, J.: Computations in massively parallel networks based on the
boltzmann machine: A review. Parallel Computing 6, 129–145 (1989)

4. Ackley, D., Hinton, G., Sejnowski, T.: A learning algorithm for boltzmann ma-
chines. Cognitive Science 9, 147–169 (1985)

5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook - Theory, Implementation and Algorithms. Cambridge
University Press, Cambridge (2004)

6. Borgelt, C., Kruse, R.: Graphical Models: Methods for Data Analysis and Mining.
Wiley (2002)

7. Dechter, R., Mateescu, R.: And/or search spaces for graphical models. Artif. In-
tell. 171(2-3), 73–106 (2007),
http://dx.doi.org/10.1016/j.artint.2006.11.003

8. Doan, A., Niu, F., Ré, C., Shavlik, J.: User manual of tuffy 0.3. Tech. rep., Uni-
versity of Wisconsin-Madison (2011)

9. Domingos, P., Gogate, V.: Exploiting logical structure in lifted probabilistic infer-
ence (2010), http://ai.cs.washington.edu/pubs/204

10. Domingos, P., Richardson, M.: Markov Logic: A Unifying Framework for Statistical
Relational Learning. In: Getoor, Taskar (eds.) [11], ch. 12, pp. 339–372 (2007)

11. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT
Press, Cambridge (2007)

12. Goodman, I., Nguyen, H., Rogers, G., Gupta, M.: Conditional Logic in Expert
Systems. North Holland, Amsterdam (1990)

13. Heckerman, D.: A tutorial on learning with bayesian networks. Tech. rep., Microsoft
Research, Redmond, Washington (1995)

14. Heckerman, D., Meck, C., Koller, D.: Probabilistic Entity-Relationship Models,
PRMs, and Plate Models. In: Getoor, Taskar (eds.) [11], pp. 201–238 (2007)

15. Hintikka, J.: Knowledge and the Known. Synthese Historical Library. D. Reidel
Publishing Company, Dordrecht (1974)

16. Hinton, G.: Training products of experts by minimizing contrastive divergence.
Neural Computation 14, 2002 (2000)

17. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages and Computation. Pearson, Upper Saddle River (2003)

18. Jain, D., Waldherr, S., Beetz, M.: Bayesian logic networks (extended ver-
sion, included in probcog tool distribution). Tech. rep., TU München (2011),
http://wwwbeetz.informatik.tu-muenchen.de/probcog-wiki/index.php

19. Kask, K., Dechter, R., Larrosa, J., Dechter, A.: Unifying cluster-tree decomposi-
tions for reasoning in graphical models. Artificial Intelligence 166, 165–193 (2005)

20. Kern-Isberner, G., Beierle, C., Finthammer, M., Thimm, M.: Probabilistic Logics in
Expert Systems: Approaches, Implementations, and Applications. In: Hameurlain,
A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011, Part I. LNCS,
vol. 6860, pp. 27–46. Springer, Heidelberg (2011)

21. Kersting, K., De Raedt, L.: Bayesian Logic Programming: Theory and Tool. In:
Getoor, Taskar (eds.) [11], pp. 291–322 (2007)

22. Kindermann, R., Snell, J.L.: Markov Random Fields and their Applications. Amer-
ican Mathematical Society (1980)

http://www.cs.rochester.edu/u/kautz/walksat/
http://dx.doi.org/10.1016/j.artint.2006.11.003
http://ai.cs.washington.edu/pubs/204
http://wwwbeetz.informatik.tu-muenchen.de/probcog-wiki/index.php

Markov Logic Networks Tutorial 101

23. Kok, S., Domingos, P.: Extracting semantic networks from text via relational clus-
tering. Tech. rep., Department of Computer Science and Engineering, University
of Washington (2009)

24. Kok, S., Domingos, P.: Learning markov logic network structure via hypergraph
lifting. In: Proceedings of the 26th International Conference on Machine Learning
(2009)

25. Kok, S., Singla, P., Richardson, M., Domingos, P.: The alchemy system for statis-
tical relational AI (2005), http://www.cs.washington.edu/ai/alchemy

26. Kschischang, F., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory 47(2), 498–519 (2001)

27. Laskey, K.: Mebn: A logic for open-world probabilistic reasoning. Tech. rep., George
Mason University (2006)

28. Lauritzen, S., Spiegelhalter, D.: Local computations with probabilities on graphical
structures and their application to expert systems. J. R. Statistical Society B 50(2),
157–224 (1988)

29. Lowd, D., Domingos, P.: Efficient Weight Learning for Markov Logic Networks.
In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D.,
Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 200–211. Springer,
Heidelberg (2007)

30. McKay, D.: Information Theory, Inference, and Learning Algorithms. Cambridge
University Press (2003)

31. Mendelson, E.: Introduction to Mathematical Logic. Chapman Hall, London (1997)
32. Milch, B., Martha, B., Russsell, S., Sontag, D., Ong, D., Kolobov, A.: BLOG:

Probabilistic Models with Unknown Objects. In: Getoor, Taskar (eds.) [11], ch. 13,
pp. 373–398 (2007)

33. Motik, B., Patel-Schneider, P., Parsia, B.: Owl 2 web ontology language structural
specification and functional-style syntax (2009)

34. Neal, R.M.: Slice sampling source. Ann. Statist. 31(3), 705–767 (2003)
35. Nguyen, H., Rogers, G.: Conditioning Operators in a Logic of Conditionals. In:

Goodman (ed.) [12], pp. 159–180 (1990)
36. Niu, F., Ré, C., Doan, A., Shavlik, J.: Tuffy: Scaling up statistical inference in

markov logic networks using an rdbms. In: Proceedings of the VLDB Endowment,
vol. 4. VLDB Endowment (2011)

37. Pearl, J.: Probabilistic Reasoning in intelligent Systems: Networks of Plausible
Inference. Morgan Kaufman, San Mateo (1988)

38. Poon, H., Domingos, P.: Sound and efficient inference with probabilistic and de-
terministic dependencies (2006),
http://ai.cs.washington.edu/www/media/papers/poon06.pdf

39. Poon, H., Domingos, P.: Machine reading: A “killer app” for statistical relational
AI. In: Proc. AAAI Conference (2010)

40. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1-2), 107–
136 (2006)

41. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing.
In: Johnson, D.S., Trick, M.A. (eds.) Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, vol. 26. American Mathematical Society (1993)

42. Shewchuk, J.R.: An introduction to the conjugate gradient method without the
agonizing pain. Tech. rep., School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213 (1994),
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

http://www.cs.washington.edu/ai/alchemy
http://ai.cs.washington.edu/www/media/papers/poon06.pdf
http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

102 M. Spies

43. Singla, P., Domingos, P.: Lifted first-order belief propagation. In: Proc. AAAI
Conference, pp. 1094–1099. AAAI (2008)

44. Smullyan, R.: First Order Logic. Dover, New York (1995)
45. Spies, M.: Einführung in die Logik - Werkzeuge für Wissensrepräsentation und

Wissensmanagement. Spektrum Akademischer Verlag, Heidelberg (2004)
46. Spies, M.: Probabilistic Relational Models for Operational Risk: A New Application

Area and an Implementation Using Domain Ontologies. Studies in Theoretical and
Applied Statistics, pp. 385–395. Springer, Heidelberg (2011)

47. Spies, M., Schacher, M., Gubser, R.: Intelligent Regulatory Compliance, ch. 12, pp.
215–238. Wiley, New York (2010)

48. Spies, M.: Conditional events, conditioning and random sets. IEEE Transaction on
Systems, Man and Cybernetics 24(12), 1755–1763 (1994), beitr

49. Spies, M.: Das langzeitgedächtnis als boltzmann maschine – eine simulation men-
taler datenmodelle. Kognitionswissenschaft 8(2), 49–73 (1999)

50. Spies, M.: Contextual Learning and Retrieval in a stochastic Network, vol. 2, pp.
1943–1950. ESIA-Université de Savoie (2002)

51. Wei, W., Erenrich, J., Selman, B.: Towards efficient sampling: exploiting random
walk strategies. In: Proceedings of the 19th National Conference on Artifical Intel-
ligence, AAAI 2004, pp. 670–676. AAAI Press (2004),
http://dl.acm.org/citation.cfm?id=1597148.1597256

http://dl.acm.org/citation.cfm?id=1597148.1597256

Large Graph Mining: Recent Developments,

Challenges and Potential Solutions

Sabri Skhiri and Salim Jouili

Euranova R&D
Rue Emile Francqui. 4, 1435 Mont-St-Guibert, Belgium

{sabri.skhiri,salim.jouili}@euranova.eu

http://www.euranova.eu

Abstract. With the recent growth of the graph-based data, the large
graph processing becomes more and more important. In order to explore
and to extract knowledge from such data, graph mining methods, like
community detection, is a necessity. Although the graph mining is a rela-
tively recent development in the Data Mining domain, it has been studied
extensively in different areas (biology, social networks, telecommunica-
tions and Internet). The legacy graph processing tools mainly rely on
single machine computational capacity, which cannot process large graph
with billions of nodes. Therefore, the main challenge of new tools and
frameworks lies on the development of new paradigms that are scalable,
efficient and flexible. In this paper, we will review the new paradigms of
large graph processing and their applications to graph mining domain
using the distributed and shared nothing approach used for large data
by Internet players. The paper will be organized as a walk through dif-
ferent industrial needs in terms of graph mining passing by the existing
solutions. Finally, we will expose a set of open research questions linked
with several new business requirements as the graph data warehouse.

Keywords: Data Mining, Large graphs, Distributed Processing, Busi-
ness Intelligence.

1 Introduction

Data mining is defined variously in the literature of computer science but the
common use of the term corresponds to a process of discovering patterns or
models for data. The patterns, however, often consist of previously unknown
and implicit information and knowledge embedded within a data set [17]. That
is, data mining is the process of analyzing data from different perspectives and
summarizing it into useful information. In the literature, one can find a large
scope of different methods and algorithms that deal with data mining, each of
which has its own advantages and suitable application domains [24,31,44]. Those
techniques have been heavily developed these last years in Business intelligence
[41,50] especially for database and flat data in order to feed market analysis,
business management, and assisted-decision tools [17]. It is worth saying that

M.-A. Aufaure and E. Zimányi (Eds.): eBISS 2012, LNBIP 138, pp. 103–124, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.euranova.eu

104 S. Skhiri and S. Jouili

the data mining stands at the intersection of different disciplines such as statis-
tics, machine learning, information retrieval and pattern recognition. Almost all
mining algorithms can be divided into the following families: (1) the classifica-
tion for which we position data in predetermined groups, (2) clustering in which
data are grouped within partitions according to different criteria, (3) associa-
tions that enables to link data between each other, (4) pattern recognition in
which we mine data to retrieve predetermined pattern, (5) feature extraction
and (6) Summarization (Ranking such as PageRank).

Traditionally, the algorithms manage and process the data as a collection of
independent instances of a single relation. That is, the instances of data to be
mined are considered independent without relationships between them. For ex-
ample, in the case of the clustering algorithm in which the input data set is
divided into groups with similar objects, it is considered that there is no relation
between the objects. Hence almost all clustering algorithms compute the similar-
ity between all the pair of objects in the data set by means of a distance measure.
Indeed, the traditional data mining works are focused on multi-dimensional and
text data. However, nowadays new emergent industrial needs lead to deal with
structured, heterogeneous data instead of traditional multi-dimensional models.
This kind of structured dataset is well designed as graph that models a set of
objects that can be linked in a numerous ways. The greater expressive power of
the graph encourages their use in extremely diverse domains. For example, in bi-
ology, the biochemical networks such as the metabolic pathways and the genetic
regulation known as the transduction signal networks constitute a significant
graph of interactions. On the other hand, the graphs are used in chemical data
processing in a way that the molecule structure is described as a graph which
implies that the molecule catalogs are processed as graph set. In the Internet
area, the rise of social networks shown the need to model the social interactions
as graphs. We can find another example in credit card fraud detection in which
transactions are modeled as a bipartite graph of users and vendors.

This modeling change involves a paradigm shift in the way to apply the mining
algorithms. We need to ensure that the classical data mining techniques are still
equally applicable on graph models. The problem that arises here results from
the fact that almost all needed measures such as similarity and distance cannot
be easily defined for graph in as intuitive way as is the case for multidimensional
data. As a matter of fact, the mining algorithms for graph are more challenging
to implement because of the structural nature of the data. The second challenge
that arises in many applications of graph mining is that the graphs are usually
very large scale in nature. Indeed, in practice, those graphs can reach a significant
size, as in social networks or interaction graphs. This kind of graphs can typically
reach several hundred millions of nodes and billions of edges. However, most of
the graph mining algorithms deal with data already available in main memory
which is not accurate in large scale graph.

These last years we have seen new techniques emerging for facing this kind of
large graph processing: (1) high performance graph database such as DEX [55]
or Titan [64], (2) in-memory and HPC/MPI graph processing such as SNAP [5,6]

Large Graph Mining 105

and finally (3) the distributed approach based on Bulk Synchronous Processing
such as Pregel [51]. As a result graph miners will face three important issues:
(1) adapting the mining algorithms to make them graph-aware, (2) redesigning
the algorithms to be implemented by those new high performance techniques,
(3) storing and exploiting many different graphs and to be able to apply similar
processing as in traditional data warehouses.

In this paper we will focus on the distributed processing approach and we
will show how this new generation of distributed graph processing frameworks
can be used to implement typical graph mining algorithms. The second half of
the paper describes whether having a high performance data mining stack is a
sufficient condition to get a graph data warehouse stack.

Section 2 will present well-known data mining algorithms in clustering and
classification areas. Section 3 will introduce new emerging distributed graph
processing frameworks and will describe how the algorithms previously exposed
can be implemented on such frameworks. Finally, Section 4 extends the concept
of the graph mining to graph data warehouse processing and describes the new
challenges that must be tackled by the research communities in order to reach
the same level of performance as existing relational data warehouses.

2 Graph Mining Algorithms

The objective of this section is to introduce typical graph mining algorithms
that will be discussed in the next sections for their distributed implementations
on the Pregel paradigm. We first introduce a traditional graph mining algorithm
used for large graphs, PageRank, and then we present a typical example of an
existing mining algorithm for clustering that must be adapted to be graph-aware
and fully leverage the linkage information.

2.1 Ranking: PageRank

The world wide web structure can be seen as a graph in which the web pages
are the vertices and the (hyper-)links are the edges. However, in addition to
the web page contents, the graph structure of the web presents a very im-
portant additional source of information which can hold implicit knowledge
about the web pages. Since the nineties, some works have focalized their ef-
forts on how to exploit this topological structure of world wide web (see, e.g.,
[11,12,14,17,20,42,43,54,59]). One of the most famous works which exploits the
topological structure of the web is the PageRank algorithm [14,59]. This algo-
rithm has been stated as one of the key to success of the well-known Google
search engine1 [2].

The PageRank algorithm computes a ranking for every web page based only
on the linkage structure of the world wide web (graph of the web). The authors
of PageRank introduce the notion of page authority, which is independent of

1 www.google.com

www.google.com

106 S. Skhiri and S. Jouili

the page content. In PageRank algorithm, the authority is approximated from
the number and importance of the pages pointing to the involved page. This
algorithm considers a page as “important” if it has many incoming pages and/or
it has a few highly ranked incoming pages. That is, a page has high authority
(rank) if the sum of authorities (ranks) of its incoming pages is high.

The PageRank of pages is computed by following a random surfer which
browses the web from page to page. The random surfer is a random walk such
that the set of states is the set of Web graph vertices, and at each random step,
with some probabilities, (1) the surfer chooses an outgoing link of the current
vertex uniformly at random, and follow that link to the destination vertex, or
(2) it “teleports”2 to a completely random Web page, independent of the links
out of the current vertex. Intuitively, the random surfer traverses frequently
“important” vertices with many vertices pointing to it.

Let G = (V,E) be the web graph with vertex set V and edge set E. Let
dout(v) be the number of outgoing edges from the vertex v ∈ V . Let din(v) be
the number of incoming edges to the vertex v ∈ V , i.e., the in-degree of v. Let
p, (0 < p < 1), be the damping factor (usually set to 0.85) that represents the
probability with which the surfer follows with the random walk, while 1 − p is
the probability of teleporting to a random vertex among all |V | vertices. Thus,
the PageRank PR(v) of vertex (page) v is given by the following formula [59]:

PR(v) =
(1− p)

|V | + p×
∑

u∈din(v)

PR(u)

dout(u)

In a matrix form, Equation 2.1 can be rewritten as:

R = p× (AR +D) (1)

where the matrix A is a square matrix with the rows and columns corresponding
to graph vertices, Au,v = 1

dout(u)
if there is an edge from u to v and Au,v = 0 if

not, R is a column vector representing the ranks of pages, and D is a constant
vector (= (1− p)/|V |).

While we will not go deeper into the mathematical underpinnings of PageRank
here, it is shown that Equation 1 can be resolved with an iterative solution (see
Equation 2) that converges for 0 < p < 1:

Ri+1 = p× (ARi +D). (2)

2.2 Graph Clustering

Clustering data is a fundamental task and one of the most studied topics in
data mining [35,39]. Given a set of data instances, the goal is to group them
into groups that share common characteristics based on similarity. Intuitively,

2 Teleportation step: choose a vertex uniformly at random, and jump to it. This step is
needed because it exists some vertices that does not have outgoing links (non-ergodic
graph).

Large Graph Mining 107

instances within a cluster are more similar to each other than they are to
an instance belonging to different clusters. In the context of graph data, the
clustering task is usually referred to as communities detection within graph
[19,21,29,56,62,69]. In the case of a citation graph of the scientific literature,
the vertices correspond to the papers and the edges correspond to citation re-
lationships3. By clustering this graph, for a given paper one can identify the
community of surrounding relevant works, without traversing the cited works
nor the works they cite as well.

Here, we describe two graph clustering algorithms: the first algorithm is a
generalization of the well-known k-means [50] algorithm and the second is a
divisive algorithm which uses a structural-based index to gather information
about the separable communities in a graph.

k-Means Based Clustering. In multidimensional data context, the k-means
[50] algorithm is the simplest and one of the popular algorithms used for clus-
tering. It minimizes the sum of the distances between the data instances and the
corresponding centroids. The k-means [50] algorithm needs two parameters : (1)
k the number of groups to provide and (2) D : (oi, oj) → R a distance measure
that maps pairs of data instances to a real value, it works as follows:

1. Randomly selects k data instances as the initial cluster centers (“centroids”).

2. Each data instance in the dataset is assigned to the nearest cluster, based
on the distance (computed by D) between each one and each cluster center.

3. Each cluster center is recomputed as the average of the data instances in
that cluster.

4. Steps 2 and 3 are repeated until the clusters converge. Convergence may
be defined differently depending upon the implementation, but it normally
means that either no objects change clusters when Steps 2 and 3 are repeated
or that the changes do not make a material difference in the definition of the
clusters.

The k-means algorithm has been extended recently to allow its use in linkage
structure graph. In order to achieve reliable and efficient generalization of k-
means to graph domain, two key issues have been addressed. Firstly, the distance
measure D has been defined in such way it takes into account the relationship
between vertices. Intuitively, the distance between two vertices is considered as
the geodesic distance which is the number of edges (“hops”) in a shortest path
connecting the pair of vertices in question. Secondly, the computation of the
cluster centers (“centroids”) requires graph-aware procedures that can efficiently
select a vertex which is the most representative of a set of vertices. One possible
solution consists of using the notion of median vertex which is a vertex that
minimizes the sum of distances to all the other vertices. Formally, let C be a set
of vertices and D a distance measure for the graph, the median vertex v̂ of the
set C is defined as follows:

3 Two papers are connected by an edge if one cites the other.

108 S. Skhiri and S. Jouili

v̂ = argmin
v∈C

∑
u∈C

D(v, u). (3)

Besides the median vertex, Rattigan et al. [62] uses the closeness centrality [27,72]
to select the representative vertex of a cluster, i.e. they select the vertex with the
greatest closeness score. A vertex will be consider in a central position according
to his closeness score. This measure stresses that the quality (position in the
graph) is more prominent than quantity (number of incident edges). Formally,
the closeness centrality measure of a vertex v in a cluster C is computed as
follows:

CC(v) =
|V | − 1∑

v �=u,u∈C D(v, u)
(4)

where d(u, v) is a distance measure for the graph and |V | the size of the graph.
As it can be remarked, one of the most important and common task in the

graph clustering (and other graph algorithms) is the distance computation be-
tween vertex. As aforementioned, the shortest path computation forms the most
used way to compute such distance. Intuitively, the goal is to find the shortest
path from a source vertex v to a target vertex u, among all paths that satisfy
a certain criterion. The applications of the shortest path computation cover a
large scope of computer science fields, including network optimization [7,48],
scheduling [28], image processing [57], geographic information systems [73], so-
cial network [75]. In the literature, since the late 1950’s, shortest path problem
was very well studied and many solutions to this problem have been proposed
(i.e. see [68]). However, the earlier algorithms [9,22,26] are still used nowadays,
especially Dijkstra’s algorithm [22]. Dijkstra’s algorithm solves the single-source
shortest-path problem when all edges have nonnegative weights. It starts at a
source vertex and explores the entire graph in all directions until the distances
to all the other vertices (reachable from the source) are computed. Dijkstra’s
algorithm is considered as a greedy algorithm because it selects, in each step
of the traversal process, the local optimum, which is the edge that satisfies the
considered criterion.

Centrality Based Clustering. Before detailing this part, we provide a defini-
tion of one of the numerous centrality measures that is used for graph clustering.
Here, we focus on the edge betweenness centrality [27,72] which locates, struc-
turally (content-independent), the well-connected edges within a network. Here,
an edge is considered to be well-connected if it is located on many shortest
paths between pairs of vertices. That is, an edge with high betweenness central-
ity performs, in some sense, a control over the interactions between vertices. For
instance, if two non-adjacent vertices v and w seek to communicate (interact)
and their shortest path pass through an edge e, then e may have some control
over the communication between v and w. This betweenness centrality of an
edge e is calculated as follows:

BC(e) =
∑

v,w∈V

bvw(e)

bvw
(5)

Large Graph Mining 109

where bvw(e) is the number of shortest paths from v to w that pass through e
and bvw is the number of all shortest path between v and w.

Girvan and Newman [29] propose a divisive method that is well-suited for the
social context. The divisive method starts with the whole graph and iteratively
cuts specific edges. This divide the graph progressively into smaller and smaller
disjoint subgraphs (communities). The key problem for these methods is the
selection of the edges to be cut. Indeed, the edges to be cut should connect, as
much as possible, vertices in different communities and not those within the same
communities. Girvan and Newman [29] use edge betweenness centrality to select
edges to be cut, for connected graphs. The idea behind this is that the inter-
community edges have high betweenness centrality, while the intra-community
edges have low betweenness centrality. The proposed algorithm works iteratively
in two steps:

1. Compute the betweenness of all existing edges
2. Remove the edge with highest betweenness centrality
3. Repeat Steps 1 & 2 until the communities are suitably found

The stopping criteria can be designed by a “a priori” definition of “suitable
communities”, and at each iteration we test whether the resulting subgraphs
fulfill the definition. It is worth saying that this algorithm is very useful for web
graph and social graph because they are characterized by small-world structure
property [44,46].

Summarizing, it is clear that the graph clustering is a challenging topic. This
stems, firstly, from the fact that the clustering algorithms can be useful for some
graph types and not for others. Secondly, they are almost all computationally
expensive because they need to re-compute several measures in each step (e.g. the
betweenness for each edge). Nevertheless, nowadays, the real world applications
need to deal with very large-scale graphs such as social networks or web graphs
where the size grows exponentially (billions of vertices). For sake of scalability,
some works try to provide a faster clustering solution by considering only local
quantities, such as [61] but this is still not sufficient for real world applications.
Yet, a major part of graph clustering algorithms seems to discard the evolving
aspect of the real graphs. Indeed, the structure of graph in almost all domains
changes over time by adding/removing edges and/or vertices.

3 Distributed Graph Processing Framework

3.1 Distributed Computation Framework

Parallel and distributed computing have been strongly studied during last twenty
years and they have been tremendously popularized by new frameworks such as
MapReduce [13,25,45,47,77] (see Section 3.2) and Dryad [34,60]. The notion
of parallelism represents the ability to run simultaneously software in different
processors in order to increase its performance while the distributed concept em-
phasizes the notion of loose coupling between those processors. The distributed

110 S. Skhiri and S. Jouili

architectures can be described and classified according to the resources that the
machines or the processors share with each other. This classification is particu-
larly important if we speak about large graph storage and processing.

The main categories are shared-memory, shared-disk and share-nothing. The
shared-memory architecture describes distributed systems that share a com-
mon memory space. In the case of distributed machines, it can be a distributed
cache where the data is commonly available. In large-scale super-computer the
processors can share the data through non-uniform Memory Access (NUMA)
[36]. However, this kind of architectures is more suited for small parallel data
problem, as the shared memory must manage the data consistency and accesses
through the different clients. The second category is the shared-disk that enables
to connect distributed processors by Local Area Network (LAN). Even if they
are less costly in term of scalability when adding new storage nodes than the
shared-memory, they still suffer from the access contention and the data consis-
tency when number of processor clients dramatically increases. Finally the last
category is the shared-nothing architecture in which each machine has its own
independent storage. Therefore, a new important concept has been defined, the
partitioning. The data are partitioned over the cluster of machines according to
a partitioning policy. This policy defines the location of the data and then, the
distributed computing framework can send dedicated tasks where the data is
located. This represents the notion of data locality.

The parallel programming paradigm can be described as either explicit or
implicit parallel programming. In the explicit version, the developer will have to
explicitly create tasks, synchronization points, managing threads and processes
and ensuring that the parallel operations will be safe, etc. On the other hand,
in the implicit parallel programming, the developer does not need to care about
these details. The compiler or the distributed framework handles all aspects
related to the parallel execution such as the portion of the code that must run
in parallel, the task location routing, the creation of threads and processes, the
data access, etc. Although the explicit parallel programming is richer and let
the developer accurately drive the distributed processing, it represents a serious
complexity in term of design and implementation, and is error-prone. Most of
the distributed processing frameworks presented in this paper are shared-nothing
and expose an implicit programming model.

3.2 Large Graph Processing

The MapReduce technique, proposed by Google, is a famous paradigm in dis-
tributed computing on large data sets and can be used for computer programs
that need to process and generate large amounts of data. For instance, MapRe-
duce has been used by Google to create the index of all the crawled web pages.
Hadoop [10] is an open-source implementation of MapReduce. In addition to
the distributed computing, the three main strengths of Hadoop result in data
locality, fault tolerance and parallel processing. For the sake of completeness, we
define briefly the two major steps of the MapReduce paradigm:

Large Graph Mining 111

– Map: in this step, the problem is partitioned into a set of small sub-problems.
This set is then distributed over the machines available in the cluster and
each sub-problem is processed, independently, in a single machine, namely
worker node.

– Reduce: in this step, all the answers to all sub-problems are gathered from
the worker nodes and are then merged to form the output solution.

These two functions are written by the user and are applied to distributed data
over a cluster of machines as shown in Figure 1(a). This programming model
offers to developers an easy and simple way to deal with large data sets in a dis-
tributed computation environment. Indeed, by means of Hadoop, the developers
do not need to be experts on distributed computation, and they have just to fo-
cus on the design of their algorithms with MapReduce programming paradigm.
Nevertheless, this paradigm is not well suited for graph processing tasks and iter-
ative algorithms. In fact, a simple iterative algorithm needs a whole execution of
a MapReduce task in each iteration which forms a huge data migration and com-
putation over the algorithm execution, requiring lots of I/Os and unnecessary
computations. Figure 1(b) illustrates two iterations with a naive implementation
with MapReduce paradigm (in each iteration the data are partitioned, processed
and the intermediate results are stored).

(a) MapReduce programing model

iteration i+1

iteration i

(b) Naive iterations with Mapreduce

Fig. 1. MapReduce paradigm and a naive iteration implementation

In order to overcome this problem, some works [15,18,23,37,38,51,76] proposed
a set of techniques to improve classical MapReduce for iterative algorithms. For
instance, Twister [23] and Haloop [15] solutions reuse workers across iterations

112 S. Skhiri and S. Jouili

by changing only the input which minimizes the number of instantiated work-
ers. In addition, Haloop supports caching of input and output of iterations to
save I/Os and it uses a loop-aware scheduling of jobs which is a very interesting
extension of Hadoop. Despite the improvements, these solutions lack efficiency
for the graph-based algorithms since they deal essentially with multidimensional
data. In this respect, some methods have been developed to deal especially with
the distributed computation of linkage structural data [18,51]. In this context,
the most popular framework was introduced by Google and called Pregel [51].
The main purpose of Pregel is to provide a distributed computation framework
entirely dedicated to graph processing algorithms implementation. Google Pregel
was inspired from the Bulk Synchronous Parallel (BSP) programming paradigm
[71]. Roughly, in the BSP model an algorithm is executed as a sequence of su-
persteps separated by a global synchronization points until termination. Within
each superstep a processor (or a virtual processor) may perform the following
operations; (1) perform computations on a set of local data (only) and (2) send
or receive messages. Similarly, in Pregel, within a superstep the vertices of graph
execute the same user-defined function, in parallel. This function can include : a
modification of the state of a vertex or that of its outgoing edges, read messages
sent to the vertex in the previous superstep, send messages to other vertices that
will be received in the next superstep, or even a modification of the topology of
the graph (deleting or adding vertices and/or edges) [51]. Pregel uses a “vertex
voting to halt” technique to determine the algorithm termination. Each vertex
has two possible states: active or inactive. An algorithm is considered termi-
nated when all the vertices are in the inactive state. Practically, in the initial
superstep (Superstep 0), all vertices are in the active state, then in each sub-
sequent superstep each vertex can vote to halt and then, explicitly deactivate
itself. An inactive vertex do not participate on any superstep unless it receives
an non-empty message4.

There exists several open-source implementations of Pregel, but the two ma-
ture ones are Apache Hama and Apache Giraph. In the remaining of section, we
will address the implementation of two graph algorithms with Pregel paradigm:
single source shortest path (SSSP) and pageRank.

SSSP Implementation: Algorithm 1 shows a pseudo-code of the vertex func-
tion for a SSSP implementation within Pregel framework. Initially, each vertex
value (except the source), which corresponds to the distance to reach it from
the source, is initialized to an infinity constant (larger value than any possible
distance in the graph). In this algorithm, in each superstep, each vertex reads
messages from its neighbors. Each message contains the distance between the
source vertex and the current vertex (through a given adjacent vertex). For a
given vertex, if the minimum message value is less than the actual associated
value, the vertex updates its current value. Then, the vertex sends messages
through all its outgoing edges, such that each message contains the sum of the
weight of its outgoing edge and the new value associated to the vertex. Finally,

4 The fact of receiving a message activates the vertex state.

Large Graph Mining 113

Input : Messages: Set of received messages
if currentVertex is the source then

minimumDistance ← 0;
else

minimumDistance ← ∞;
end
foreach message m ∈ Messages do

minimumDistance ← minimum(minimumDistance, valueOf(m));
end
if minimumDistance ≤ valueOf(currentVertex) then

valueOf(currentVertex)← minimumDistance;
foreach outgoing edge e from currentVertex do

sendMessageTo(targetOf(e), (minimumDistance+ valueOf(e)));
end

end
VoteTohalt();

Algorithm 1. Pregel: Vertex function for Single source shortest path prob-
lem.

the vertex vote to halt. The algorithm terminates if there is no more updates
performed. As result of the algorithm, each vertex of the graph will be associated
to a value that denotes its minimum distance from the source vertex to it. In the
case of unreachable vertex from the source (unconnected graph), the associated
value to such vertex is set to the infinity constant.

For sake of more demystification, let us analyze an example of the execution
of the previous algorithm. For this purpose, Figure 2 provides a superstep by
superstep execution of the SSSP algorithm on a sample graph. Here, we consider
the vertex labeled by (1) as the source. The initial step consists on setting the
values associated to all the other vertices to infinity. In Superstep 1, the vertices
(2), (3) and (4) receive from the vertex (1) (in Superstep 0), respectively, the
messages containing their distances to (1). For instance, the vertex (2) receives
a message that contains 6 which is the sum of the value of vertex (1) and the
weight of outgoing edge ((1)→(2)). Moreover, in Superstep 1, the source vertex
is in inactive state because it does not receive any message in this superstep. The
next supersteps follow the same procedure until all the vertices are in inactive
state.

PageRank Implementation: Algorithm 2 shows a pseudo-code of the vertex
function for a PageRank implementation within Pregel framework. Initially, each
vertex value, which correspond to the PageRank estimation, is initialized to

1
SizeOfGraph . In this algorithm, in each superstep, each vertex read messages
from its neighbors. Each message contains tentative pageRank divided by the
number of outgoing edges of the involved vertex. For a given vertex, the received
message values are summed up into sum, then the vertex updates its current
PageRank value by 0.15

SizeOfGraph + 0.85 × sum (which follows Equation 2.1).
Then, the vertex sends messages through all its outgoing edges. Finally, after a

114 S. Skhiri and S. Jouili

Fig. 2. Single source shortest path supersteps. Dotted lines describe how the messages
are sent (from/to), the green labels are the message values. Yellow vertices have voted
to halt.

fixed number of supersteps (iterations) the vertex vote to halt. The algorithm
terminates if there is no more updates performed. As result of the algorithm,
each vertex of the graph will be associated to a value that denotes its PageRank.
As mentioned in [51], instead of fixing the number of iteration, one could find a
suitable setup of this algorithm to run until convergence of PageRank values.

4 Graph Data Warehouses: An Emerging Challenge

Since we can provide efficient methods for processing and mining large graph,
the next question to answer is how to store many of these large graphs and still
exploiting their informational potential. Nowadays, we end up with a significant
number of graphs in data warehouse, not because they are the easiest way to
analyze the data but because they are the most meaningful way to represent the
relationship concepts.

The concept of graph data warehouse is similar to the traditional data ware-
house: the warehouse is fed by a set of data sources that can be either databases
or existing graphs. Those data sources are extracted and transformed to be

Large Graph Mining 115

Input : Messages: Set of received messages
if NumberOfSuperstep ≥ 1 then

sum ← 0;
foreach message m ∈ Messages do

sum ← sum + valueOf(m);
end
valueOf(currentVertex)← 0.15 / SizeOfGraph + 0.85 × sum;

end
if NumberOfSuperstep < MaximumNumberOfIteration then

N = SizeOf({outgoing edges from currentVertex})
sendMessageToAllNeighbors(valueOf(currentVertex) / N);

else
VoteTohalt();

end

Algorithm 2. Pregel: Vertex function for PageRank.

loaded as a graph structure in order to facilitate the data mining. The problem
is then (1) how to merge different graphs from different data sources, (2) how
to define an efficient conceptual modeling on top of graph data and finally, (3)
how to express efficient queries. Let us take the example of a telecommunication
operator who owns (1) a network address book service, (2) a chat service, (3) a
social network, and (4) a set of call data records (CDRs). The objective of this
telecommunication operator is to merge that information within on single aggre-
gated graph in order to extract and infer information such as: influencers and
maven, potential churners and service usage pattern. Therefore the first ques-
tion is how to merge the different graphs from the address book, the chat service
contacts, the social network and the CDRs, knowing that there are different
services launched by different departments and using different ID for users. The
second question would be how to define a conceptual model enabling to define
roles in edges we can navigate, additivity for the time spent on each service, the
navigation path on edge for clustering algorithm that can be used for maven
identification, etc. Finally, we have the queries such as once the maven have
been identified, retrieve the closest users based on their location or retrieve the
average time spent on all services by influencers or potential churners. We can
also consider composite queries such as (1) extracting all male influencers living
in cities of more than 1M inhabitants, (2) extracting potential churners who are
in the neighborhood of those influencers and (3) extract last year churner in the
graph neighborhood of the current potential churner and evaluate their interac-
tion through the social network service and CDR, (4) according to the query (2)
and (3) defining the best influencers to propagate a promotional message.

This example leads to the key question of this section: if the graph modeling
enables to better leverage the relationship concept in mining algorithms and
if several execution engines and distributed frameworks enable to apply those
mining algorithms on significant graphs, what is still missing for a graph data

116 S. Skhiri and S. Jouili

warehouse? This section will answer to this question by first introducing basic
foundation of data warehouse approach, from there we will explain the existing
lack of methodologies, modeling approaches and analytic tools for an equally
efficient graph data warehouse.

4.1 Using Relational Data Warehouse for Storing Graphs?

The data mining algorithms are involved in each step of the traditional data
warehouse [33], we can use techniques for identifying key attributes or find-
ing related measures or dimensions, some other techniques enable to limit the
scope of the data extraction on specific clusters. Usually the OLAP framework
is integrated with a mining framework in order to use both in conjunction, this
integration is often named On-Line Analytic Mining (OLAM) and exploratory
multi-dimensional data mining [31]. According to [31], there is at least four ways
to use OLAM and OLAP in conjunction:

– using the multi-dimensional cube space for defining the data space for mining
– using OLAP queries for generating features and targets for mining
– using data mining as building blocs in a multi-step mining process
– using data cube computation for speeding-up repeated models construction

The graph model should be another way to represent the information and then
it should be stored as any other data sources in the data warehouse. However,
the graph model must be considered as a constraint. Indeed, if it is represented
as a graph it is because it leverages the relationship concept. Let us take the
example of a social network. We could represent it as traditional relational tables
on which we can represent the concept of user as a table pointing to a m-n table
defining all the relationship a user has. If we consider that, in average, in a
social network a user has 100 friends, a simple request retrieving the friends
of the friends will lead to 1002 join requests. A social network can be stored
without any issues on a relational data warehouse, but when comes the question
about how we can leverage the relationship concept through a set of mining
algorithms, we come to the conclusion that the graph model remains the most
appropriate format. In addition, most of the mining techniques must navigate
through the edge relations. As shown in Figure 3, this means that it (1) will
significantly cost in terms of join operations and (2) will almost transfer the
totality of the graph between the relational storage and the mining application,
which could potentially represents a huge amount of data in the case of the
graphs we consider in this paper.

We saw in the previous section how we can use new emerging distributed
frameworks in order to apply traditional mining algorithms on significant graphs.
This means that graph mining analysis such as classification, link-based analysis,
object or link-based recommendation, trust computation can be applied on graph
models. An interesting advantage of those frameworks is that they can both
leverage the data locality, e.g., the information about the location of sharded
data, and they can integrate mining algorithms within the distributed storage.
As a result they highly minimize the quantity of data exchanged between the
processing and the storage nodes during a mining operation.

Large Graph Mining 117

(a) (b)

Fig. 3. (a) The traditional relational DB approach involves that almost all the graph
content would be transferred between the mining application and the storage. (b)
While in a data application server concept the mining application is implemented as
an application in the distributed storage midlleware.

4.2 Traditional Data Warehouse Approaches

For many years the knowledge presents in the data accumulated by an enterprise
has always represented a key strategic element in its management, in term of
business KPI, behavioral analysis, strategic marketing and many other fields.
The traditional data warehouse aims at providing the software, the modeling
approaches and the tool to analyze the set of data present in a collection a
databases.

Fig. 4. A traditional process overview [52]

118 S. Skhiri and S. Jouili

Figure 4 shows the traditional process to extract knowledge from data. A
first step consists in extracting data from the collection of data sources that can
be relational, files, remote web sources, etc. The ETL (Extract, Transform and
Load) aims at structuring the extracted data in a more processable form, this is
the data warehouse tier. This phase is usually done manually by using an ETL
software, without specific modeling approach. However new emerging researches
try to adopt a complete modeling process aligned with the modeling techniques
used in the OLAP tier [3].

The data warehouse tier is then used for designing high level models that will
be used for executing specific requests. This is traditionally the area of On-Line
Analytical Processing (OLAP). The idea is to design a logical model suited for
regrouping the data that are needed for the OLAP queries and to generate a
related physical model. The OLAP queries take advantage of the physical model
and the query model to generate a physical execution plan. The development
of conceptual modeling of data warehouse has been an important research area
that is still highly active. Most of the research topics focus on the improvement
of the snowflake and star schema [53]. Some researches try to add a graphical
representation [63] based on the ER model [65,70] or based on UML [1,49], other
focus on models that enable to define different level of hierarchies [8,32,40,63],
while others provide models that take into account the role played by a measure
in different dimensions [41,49]. The model described in [53] tries to summarize
the main limitations of the snowflake and star model and proposes a new model
that includes most of the previous researches in this area.

The last phase of the processing is the OLAP tier in which the data processing
is led by the expression of the OLAP queries. An overview of OLAP techniques
has been described in [16]. The authors describe the main OLAP operations as
roll-up (increasing the level of aggregation) and drill-down (decreasing the level
of aggregation or increasing detail) along one or more dimension hierarchies, slice
and dice (selection and projection), and pivot (re-orienting the multidimensional
view of data). Usually the OLAP queries are expressed using standard SQL or
Multidimensional Expression language (MDX) from Microsoft [58].

In conclusion we can summarize the complete data warehouse process by (1)
the storage and (2) the process to extract, (3) to model and (4) to query the
data. In the next section we will show that graph data warehouse is far from the
maturity reached by the legacy warehouses.

4.3 Challenges in Graph Data Warehouses

In previous sections we have shown that distributed processing frameworks can
be used to implement graph mining algorithms. However, this area lacks dra-
matically an unified conceptual approach to mine graph as found in legacy data
warehouses. Figure 5 shows an equally functional data warehouse process when
dealing with graphs. Similarly the data sources can be existing databases, as it
is the case in fraud detection or call data records in telecommunication or even
existing graphs. After an ETL process, we end-up with a consolidated graph
that is the integration of different graphs. This graph must be queried and

Large Graph Mining 119

analyzed. Currently, there is no common approach that enables to model an
equally functional conceptual modeling approach such as the multi-dimensional
cube for graphs. We need to be able to model an intermediate structure keeping
the relationship as a central concept but enabling to represent different naviga-
tion paths, different roles in those paths while being able to represent hierarchies.
There is a real gap in the research community in this area although the need
for this kind of conceptual modeling approach will grow in the coming years.
However, existing conceptual modeling approaches such as the Multidimensional
model [53] should be independent from the underlying physical model, but it will
need to be extended for specific graph semantics such as navigation paths, role
in relationships and other properties such as the additivity in the navigation
path. In the same way, there is no graph query language giving the same level
of flexibility as the OLAP query language. Although few graph languages exist,
they have been designed with specific objectives in mind and do not really rep-
resent an equally functional OLAP query language. We can cite Gremlin [4] that
comes from the graph database area and SparQL [30,67] which defines standard
query language and data access protocol, mainly used for RDF meta-models.
Finally, the graph mining and data warehouses need to have an integrated ex-
ecution processing framework. As in legacy OLAP, we need to generate, from
the graph query, a logical execution plan and finally, a physical execution plan
taking advantage of the distributed aspects of the graph. Currently, there is no
way to express a graph query and to generate a distributed execution plan as
it can be found in Apache PigLatin. However, few works especially in the web
semantic field try to leverage existing distributed processing frameworks such as
MapReduce [66], but it is highly dependent to RDF and does not really leverage
the graph aspects. As for the conceptual modeling, this is clearly a gap in the
research community.

It is worth noting that, at the moment of writing this paper and at our level
of knowledge, the most complete research project on graph data warehouse is
GraphCube [74]. The authors defined the concept of multidimensional network
which is a graph on which each vertex is a tuple in a table. The attributes of

ETL

Data Warehouse

Aggregated Graph

Modeling Queries

DashboardSources

?? ??

Fig. 5. The graph data warehouse process

120 S. Skhiri and S. Jouili

this table represent the multidimensional space. The authors showed that we
can execute the same OLAP queries on a table and a corresponding graph.
This work enables to mine in the same time traditional relational sources and a
graph as an additional source of information. They also defined the algorithms to
obtain the different aggregated networks from queries. Finally they present the
materialization approach. Although this paper is the most advanced research
in graph data warehouse, there is still open questions. Indeed, (1) they only
consider a graph of vertex of the same type that let all the open questions we
introduced unanswered. (2) They consider only local centralized processing and
(3) the materialization policy is inspired by legacy data warehouse and does not
leverage the distributed graph processing aspects.

5 Conclusion

The large graph mining is becoming an important requirement coming from the
industry and the research community. The graph model leverages the relation-
ship between objects and enables to better structure linked data. In the other
hand this model is not well suited for traditional data mining algorithms and
processing framework. The mining algorithms need to be re-designed to take
into account the structural nature of graphs and to be adapted to distributed
programing paradigms to scale. In this paper we presented the PageRank, the
k-means algorithm and the centrality measure, we described them and explained
how they can be adapted for graph structures. Afterwards, we introduced new
emerging graph distributed frameworks and described how the previous mining
algorithms can be implemented within their programming models. Finally, we
introduced a new field of research, the graph data warehouse, which is deeply
linked with large graph mining. This field is still at early stage but dramati-
cally lacks conceptual modeling, unified query model and integration with new
distributed programing techniques.

This paper shown that if we consider to analyze significant graphs, distributed
programming techniques can be applied to efficiently speed-up the processing.
However, the implementation of those techniques and the frameworks is still at
early stage, the documentation and the support are clearly lacking. In addition,
the implicit distributed programming model can be difficult for porting legacy
graph mining algorithms.

References

1. Abelló, A., Samos, J., Saltor, F.: YAM2: a multidimensional conceptual model
extending UML. Inf. Syst. 31(6), 541–567 (2006)

2. Aggarwal, C.C., Wang, H. (eds.): Managing and Mining Graph Data. Advances in
Database Systems, vol. 40. Springer (2010)

3. Akkaoui, Z.E., Zimányi, E., Mazón, J.-N., Trujillo, J.: A model-driven framework
for ETL process development. In: Proceedings of the 14th ACM International
Workshop on Data Warehousing and OLAP, DOLAP 2011, pp. 45–52. ACM (2011)

Large Graph Mining 121

4. Avram, A.: Gremlin, a language for working with graphs. Technical report, InfoQ
(2010), http://www.infoq.com/news/2010/01/Gremlin

5. Bader, D.: Analyzing Massive Social Networks Using Multicore and Multithreaded
Architectures. In: Keller, R., Kramer, D., Weiss, J.-P. (eds.) Facing the Multicore-
Challenge. LNCS, vol. 6310, p. 1. Springer, Heidelberg (2010)

6. Bader, D.A., Madduri, K.: Snap, small-world network analysis and partitioning: An
open-source parallel graph framework for the exploration of large-scale networks.
In: Proceedings of the IEEE International Symposium on Parallel and Distributed
Processing, IPDPS 2008, pp. 1–12. IEEE (2008)

7. Balakrishnan, A., Magnanti, T.L., Wong, R.T.: A Dual-Ascent procedure for Large-
Scale uncapacitated network design. Operations Research 37(5), 716–740 (1989)

8. Bauer, A., Hümmer, W., Lehner, W.: An Alternative Relational OLAP Modeling
Approach. In: Kambayashi, Y., Mohania, M., Tjoa, A.M. (eds.) DaWaK 2000.
LNCS, vol. 1874, pp. 189–198. Springer, Heidelberg (2000)

9. Bellman, R.: On a routing problem. Quarterly of Applied Mathematics 16, 87–90
(1958)

10. Bialecki, A., Cafarella, M., Cutting, D., O’Malley, O.: Hadoop: A framework
for running applications on large clusters built of commodity hardware (2005),
http://lucene.apache.org/hadoop/

11. Borodin, A., Roberts, G.O., Rosenthal, J.S., Tsaparas, P.: Finding authorities and
hubs from link structures on the World Wide Web. In: Proceedings of the 10th
International Conference on World Wide Web, WWW 2001, pp. 415–429. ACM
(2001)

12. Botafogo, R.A., Rivlin, E., Shneiderman, B.: Structural analysis of hypertexts:
Identifying hierarchies and useful metrics. ACM Trans. Inf. Syst. 10(2), 142–180
(1992)

13. Brants, T., Popat, A.C., Xu, P., Och, F.J., Dean, J.: Large language models in
machine translation. In: Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language
Learning, EMNLP-CoNLL 2007, pp. 858–867. ACL (2007)

14. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer Networks 30(1-7), 107–117 (1998)

15. Bu, Y., Howe, B., Balazinska, M., Ernst, M.D.: Haloop: efficient iterative data
processing on large clusters. Proceedings of the VLDB Endowment 3, 285–296
(2010)

16. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
SIGMOD Record 26(1), 65–74 (1997)

17. Chen, M.-S., Han, J., Yu, P.S.: Data mining: An overview from a database per-
spective. IEEE Trans. Knowl. Data Eng. 8(6), 866–883 (1996)

18. Chen, R., Weng, X., He, B., Yang, M.: Large graph processing in the cloud. In: Pro-
ceedings of the 2010 International Conference on Management of Data, SIGMOD
2010, pp. 1123–1126. ACM (2010)

19. Chung, F.R.K.: A local graph partitioning algorithm using heat kernel pagerank.
Internet Mathematics 6(3), 315–330 (2009)

20. Cohn, D., Chang, H.: Learning to probabilistically identify authoritative docu-
ments. In: Proceedings of the Twenty-Fourth International Conference on Machine
Learning, ICML 2007, pp. 167–174. Morgan Kaufmann (2007)

21. Datta, D., Figueira, J.R.: Graph partitioning by multi-objective real-valued meta-
heuristics: A comparative study. Appl. Soft Comput. 11(5), 3976–3987 (2011)

22. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1(1), 269–271 (1959)

http://www.infoq.com/news/2010/01/Gremlin
http://lucene.apache.org/hadoop/

122 S. Skhiri and S. Jouili

23. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.-H., Qiu, J., Fox, G.:
Twister: a runtime for iterative mapreduce. In: Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing, HPDC
2010, pp. 810–818. ACM (2010)

24. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.): Advances
in Knowledge Discovery and Data Mining. AAAI/MIT Press (1996)

25. Fedak, G., Fox, G., Antoniu, G., He, H.: Future of mapreduce for scientific com-
puting. In: Proceedings of the Second International Workshop on MapReduce and
its Applications, MapReduce 2011, pp. 75–76. ACM (2011)

26. Floyd, R.W.: Algorithm 97: Shortest path. Commun. ACM 5, 345 (1962)
27. Freeman, L.: Centrality in social networks conceptual clarification. Social Net-

works 1(3), 215–239 (1979)
28. Gaujal, B., Navet, N., Walsh, C.: Shortest-path algorithms for real-time scheduling

of FIFO tasks with minimal energy use. ACM Trans. Embed. Comput. Syst. 4,
907–933 (2005)

29. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proceedings of the National Academy of Sciences 99(12), 7821–7826 (2002)

30. Gupta, R., Malik, S.K.: SPARQL semantics and execution analysis in semantic web
using various tools. In: Proceedings of the 2011 International Conference on Com-
munication Systems and Network Technologies, CSNT 2011, pp. 278–282. IEEE
Computer Society (2011)

31. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
(2000)

32. Husemann, B., Lechtenbörger, J., Vossen, G.: Conceptual data warehouse design.
In: Proceedings of the International Workshop on Design and Management of Data
Warehouses, DMDW 2000, pp. 3–9 (2000)

33. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Com-
mun. ACM 39(11), 58–64 (1996)

34. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-
parallel programs from sequential building blocks. In: Proceedings of the 2nd
ACM SIGOPS/EuroSys European Conference on Computer Systems 2007, Eu-
roSys 2007, pp. 59–72. ACM (2007)

35. Jain, A., Murty, M., Flynn, P.: Data clustering: a review. ACM Computing Surveys
(CSUR) 31(3), 264–323 (1999)

36. Kaeli, D.R., Fong, L.L., Booth, R.C., Imming, K.C., Weigel, J.P.: Performance
analysis on a cc-numa prototype. IBM J. Res. Dev. 41, 205–214 (1997)

37. Kang, U., Tsourakakis, C., Appel, A., Faloutsos, C., Leskovec, J.: Hadi: Fast di-
ameter estimation and mining in massive graphs with hadoop. CMU-ML-08-117
(2008)

38. Kang, U., Tsourakakis, C.E., Faloutsos, C.: PEGASUS: A peta-scale graph min-
ing system. In: Proceedings of the Ninth IEEE International Conference on Data
Mining, ICDM 2009, pp. 229–238. IEEE Computer Society (2009)

39. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley-Interscience (2005)

40. Khosrow-Pour, M. (ed.): Encyclopedia of Information Science and Technology, 5
volumes. Idea Group (2005)

41. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Di-
mensional Modeling, 2nd edn. John Wiley & Sons, Inc. (2002)

42. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. In: Proceed-
ings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
1998, pp. 668–677. ACM/SIAM (1998)

Large Graph Mining 123

43. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46,
604–632 (1999)

44. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social net-
works. In: Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2006, pp. 611–617. ACM (2006)

45. Lämmel, R.: Google’s mapreduce programming model revisited. Sci. Comput. Pro-
gram. 70, 1–30 (2008)

46. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of
community structure in large social and information networks. In: Proceedings of
the 17th International Conference on World Wide Web, WWW 2008, pp. 695–704.
ACM (2008)

47. Liu, C., Guo, F., Faloutsos, C.: Bbm: bayesian browsing model from petabyte-
scale data. In: Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD 2009, pp. 537–546. ACM (2009)

48. Lorenz, D.H., Orda, A.: Qos routing in networks with uncertain parameters.
IEEE/ACM Trans. Netw. 6, 768–778 (1998)

49. Luján-Mora, S., Trujillo, J., Song, I.-Y.: A uml profile for multidimensional mod-
eling in data warehouses. Data Knowl. Eng. 59(3), 725–769 (2006)

50. MacQueen, J.B.: Some methods for classification and analysis of multivariate ob-
servations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, pp. 281–297. University of California Press (1967)

51. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of
the ACM SIGMOD International Conference on Management of Data, SIGMOD
2010, pp. 135–146. ACM (2010)

52. Malinowski, E., Zimányi, E.: Advanced data warehouse design: From conventional
to spatial and temporal applications. Springer (2008)

53. Malinowski, E., Zimányi, E.: Multidimensional conceptual modeling. In: Wang, J.
(ed.) Encyclopedia of Data Warehousing and Mining, 2nd edn., pp. 293–300. IGI
Global (2008)

54. Marchiori, M.: The quest for correct information on the web: Hyper search engines.
Computer Networks 29(8-13), 1225–1236 (1997)

55. Mart́ınez-Bazan, N., Muntés-Mulero, V., Gómez-Villamor, S., Nin, J., Sánchez-
Mart́ınez, M.-A., Larriba-Pey, J.-L.: Dex: high-performance exploration on large
graphs for information retrieval. In: Proceedings of the Sixteenth ACM Confer-
ence on Information and Knowledge Management, CIKM 2007, pp. 573–582. ACM
(2007)

56. McSherry, F.: Spectral partitioning of random graphs. In: Proceedings of the 42nd
Annual Symposium on Foundations of Computer Science, FOCS 2001, pp. 529–537
(2001)

57. Mortensen, E.N., Barrett, W.A.: Interactive segmentation with intelligent scissors.
Graph. Models Image Process. 60, 349–384 (1998)

58. Nolan, C.: Manipulate and query OLAP data using ADOMD and multidimensional
expressions. Technical report, Microsoft Research (1999)

59. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Technical Report 1999-66, Stanford InfoLab. Previous
number = SIDL-WP-1999-0120 (November 1999)

60. Qiu, X., Ekanayake, J., Beason, S., Gunarathne, T., Fox, G., Barga, R., Gannon,
D.: Cloud technologies for bioinformatics applications. In: Proceedings of the 2nd
Workshop on Many-Task Computing on Grids and Supercomputers, MTAGS 2009,
pp. 6:1–6:10. ACM (2009)

124 S. Skhiri and S. Jouili

61. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and iden-
tifying communities in networks. Proceedings of the National Academy of Sciences
of the United States of America 101(9), 2658 (2004)

62. Rattigan, M.J., Maier, M.E., Jensen, D.: Graph clustering with network structure
indices. In: Proceedings of the Twenty-Fourth International Conference on Machine
Learning, ICML 2007, pp. 783–790. ACM (2007)

63. Rizzi, S.: Conceptual modeling solutions for the data warehouse. In: Erickson, J.
(ed.) Database Technologies: Concepts, Methodologies, Tools, and Applications,
pp. 86–104. IGI Global (2009)

64. Rodriguez, M.A., Neubauer, P.: A path algebra for multi-relational graphs. In:
Proceedings of the 2011 IEEE 27th International Conference on Data Engineering
Workshops, ICDEW 2011, pp. 128–131. IEEE Computer Society (2011)

65. Sapia, C., Blaschka, M., Höfling, G., Dinter, B.: Extending the E/R Model for the
Multidimensional Paradigm. In: Kambayashi, Y., Lee, D.-L., Lim, E.-P., Moha-
nia, M., Masunaga, Y. (eds.) ER 1998. LNCS, vol. 1552, pp. 105–116. Springer,
Heidelberg (1999)

66. Schätzle, A., Przyjaciel-Zablocki, M., Lausen, G.: PigSPARQL: mapping SPARQL
to Pig Latin. In: Proceedings of the International Workshop on Semantic Web
Information Management, SWIM 2011, pp. 4:1–4:8. ACM (2011)

67. Segaran, T., Evans, C., Taylor, J.: Programming the Semantic Web - Build Flexible
Applications with Graph Data. O’Reilly (2009)

68. Sommer, C.: Approximate Shortest Path and Distance Queries in Networks. PhD
thesis, University of Tokyo (2010)

69. Sui, X., Nguyen, D., Burtscher, M., Pingali, K.: Parallel Graph Partitioning on
Multicore Architectures. In: Cooper, K., Mellor-Crummey, J., Sarkar, V. (eds.)
LCPC 2010. LNCS, vol. 6548, pp. 246–260. Springer, Heidelberg (2011)

70. Tryfona, N., Busborg, F., Christiansen, J.G.B.: Starer: A conceptual model for data
warehouse design. In: Proceedings of the Second ACM International Workshop on
Data Warehousing and OLAP, DOLAP 1999, pp. 3–8. ACM (1999)

71. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33, 103–
111 (1990)

72. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications.
Structural analysis in the social sciences, vol. 8. Cambridge University Press (1994)

73. Zhan, F.B., Noon, C.E.: Shortest path algorithms: An evaluation using real road
networks. Transportation Science 32, 65–73 (1998)

74. Zhao, P., Li, X., Xin, D., Han, J.: Graph cube: on warehousing and OLAP mul-
tidimensional networks. In: Proceedings of the 2011 International Conference on
Management of Data, SIGMOD 2011, pp. 853–864. ACM (2011)

75. Zhao, X., Sala, A., Wilson, C., Zheng, H., Zhao, B.Y.: Orion: shortest path esti-
mation for large social graphs. In: Proceedings of the 3rd Conference on Online
Social Networks, WOSN 2010, p. 9. USENIX Association (2010)

76. Zhou, A., Qian, W., Tao, D., Ma, Q.: Disg: A distributed graph repository for web
infrastructure (invited paper). In: Proceedings of the Second International Sym-
posium on Universal Communication, ISUC 2008, pp. 141–145. IEEE Computer
Society (2008)

77. Zhuang, L., Dunagan, J., Simon, D.R., Wang, H.J., Tygar, J.D.: Characterizing
botnets from email spam records. In: Proceedings of the 1st Usenix Workshop
on Large-Scale Exploits and Emergent Threats, pp. 2:1–2:9. USENIX Association
(2008)

Big Data Analytics on Modern Hardware

Architectures: A Technology Survey

Michael Saecker and Volker Markl

Technische Universität Berlin
Berlin, Germany

firstname.lastname@tu-berlin.de

Abstract. Big Data Analytics has the goal to analyze massive datasets,
which increasingly occur in web-scale business intelligence problems. The
common strategy to handle these workloads is to distribute the process-
ing utilizing massive parallel analysis systems or to use big machines able
to handle the workload. We discuss massively parallel analysis systems
and their programming models. Furthermore, we discuss the applica-
tion of modern hardware architectures for database processing. Today,
many different hardware architectures apart from traditional CPUs can
be used to process data. GPUs or FPGAs, among other new hardware,
are usually employed as co-processors to accelerate query execution. The
common point of these architectures is their massive inherent parallelism
as well as a different programming model compared to the classical von
Neumann CPUs. Such hardware architectures offer the processing capa-
bility to distribute the workload among the CPU and other processors,
and enable systems to process bigger workloads.

Keywords: Modern Hardware Architectures, GPGPU, GPU, APU,
FPGA, DBMS, Big Data Analytics.

1 Introduction

The term ”Big Data” refers to the exceptional big size of data sets that are
collected nowadays. Today, we observe an exponential growth of data sets, e.g.,
an institute like CERN produces 15 PB of data each year running their Large
Hadron Collider [1].

Big Data Analytics describes the process of performing complex analytical
tasks on such data which usually includes grouping, aggregation, or iterative
processes. A report by McKinsey states that Big Data Analytics skills will ensure
employability of computer science students and data analysts. In the United
States alone, there is a need for 140,000 to 190,000 people with deep analytical
skills [2].

The range of applications for Big Data Analytics is wide and due to space rea-
sons, we will give only a few examples. The scenarios range from web logs, ETL
processes [3], and general statistics [4] to data cleansing, machine learning [5,6],

M.-A. Aufaure and E. Zimányi (Eds.): eBISS 2012, LNBIP 138, pp. 125–149, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

126 M. Saecker and V. Markl

or graph mining [7]. Other scenarios are sensor networks, spatial observations,
triangle enumeration1 [8], pairwise shortest path enumeration, or clustering [9].

The popularity of Big Data Analytic systems - which are often available as
open-source - has not remained unnoticed by big companies. Google uses MapRe-
duce - a parallel programming and execution model - for PageRank and inverted
indexes. Facebook uses Hadoop - a popular open-source massively parallel analy-
sis framework - to analyze their data and created Hive, a data warehouse system
for Hadoop. eBay uses Hadoop for search optimization and Twitter uses Hadoop
for log file analysis and other generated data [10,11]. This list is only a glimpse
of the manifold real world appliances of such systems and the common factor
among them is the huge amount of data they have to process.

In the future, the amount of data will increase even further with smart grids
monitoring energy traffic [12], audio and video analysis, and smart houses.

This poses several problems for analysis software [13]:

– The amount of data is steadily increasing at a high speed, yet data should
be up-to-date for analysis tasks.

– The response time of a query grows with the amount of data. At the same
time, latencies must be reduced to provide actionable intelligence at the right
time.

– Analysis tasks need to produce query results on large data sets in an adequate
amount of time.

Generally, there are two approaches in tackling the problem of big data sets: hor-
izontal scaling and vertical scaling. When scaling vertically, a server is equipped
with faster hardware, more central processing units (CPUs), and/or more mem-
ory. Therefore, scaling up can be handled transparently2 by the analysis software
but requires substantial financial investments at one point in time. Furthermore,
to cope with future workloads, the system needs to be adequately powerful, and
initially, the additional performance goes to waste. Scaling horizontally, on the
other hand, means distributing the work across many servers, often commodity
machines. This increases performance in smaller steps and the financial invest-
ment to upgrade is by far smaller. The drawback of this approach is that the
analysis software on top has to handle distribution by itself. Parallel program-
ming adapts a divide and conquer approach: The problem is split into inde-
pendently processable partitions (data parallelism). The resulting intermediate
results need to be merged into a final result at the end, which requires syn-
chronization between the parallel processors. Therefore, the speed-up of parallel
programs is limited by the sequential parts, as stated by Amdahl’s law [14] and
shown in Figure 1.

A different kind of scaling is scaling in. It is the integration of multiple smaller
sets of multiple tenants3 onto a single machine or process (multi-tenancy). Scal-

1 It is used as a preprocessing step for methods to identify highly connected subgraphs
or cliques in a graph.

2 Assuming that the system is able to use multiple cores.
3 A tenant is a customer, which has its own view, data, and schema.

Big Data Analytics on Modern Hardware Architectures 127

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 4 16 64 256 1024 4096 16384 65536

S
pe

ed
up

Number of Processors

Parallel Portion

50%
75%
90%
95%

Fig. 1. Amdahl’s law for varying number of cores and degrees of parallelism

ing in improves resource utilization, but introduces the problem of isolation
between different tenants.

1.1 Scope of the Article

This article gives an overview of existing approaches to address the problems
arising from Big Data Analytics when using modern hardware architectures.
Therefore, a presentation of analysis systems is mandatory. Due to the large
amount of existing systems and publications in this sector, we will focus on a
representative sample of massively parallel analysis systems. We do not cover
operational systems and their techniques like consensus protocols or distributed
hash tables (DHTs) [15].

We will discuss different hardware architectures on an abstract level to give
the reader insight to the possibilities and problems of the architectures. We
restrict the scope of this article to processing elements and do not cover storage
units, e.g., flash memory/solid-state drives (SSDs) or phase-change memory. We
cannot give detailed, low-level explanations of all hardware components, and
refer to the extensive references provided.

1.2 Outline

In Section 2, we will describe CPU architectures and discuss relational database
systems (RDBMSs) along with problems in the context of Big Data Analyt-
ics. Then, we will describe the two state-of-the-art approaches to address these
problems. In Section 3, we give an overview of massively parallel data analytic
platforms that employ horizontal scaling. In Section 4, we explain modern hard-
ware architectures in regard to vertical scaling. Finally, we will state our view
of future development in this area and conclude in Section 5.

128 M. Saecker and V. Markl

2 Background

This section gives a definition of relational database systems. We briefly describe
the architecture of CPUs to explain the shortcomings of current architectures
and how they impact DBMS performance.

2.1 CPU Architecture

Modern computer systems follow the von Neumann architecture and are de-
signed to execute arbitrary programs. According to Moore’s Law the number of
transistors doubles every two years4.

Transistor growth was translated into higher frequencies of processors, but
also used to implement techniques like out-of-order execution, branch predic-
tion and instruction-level parallelism (ILP) to further increase the performance
of CPUs. While CPUs evolved pretty fast, the improvement of random access
memory (RAM) advanced only slowly. The gap between CPU clock speed and
data transfer rate from RAM widened. To lighten the impact of slow RAM ac-
cess, CPU developers included a cache hierarchy consisting of a small and very
fast L1 cache up to a bigger and slower L3 cache. Figure 2(a) depicts the layout
of the cache hierarchy for a single core.

A request for data is checked in the smallest cache level and then propagates
through the levels. Therefore, a L2 cache miss automatically includes an L1
cache miss. If the data is not found in the last cache level - typically L3 cache
nowadays - another cache needs to be accessed, the Translation Lookaside Buffer
(TLB). The TLB stores address translations from virtual to physical addresses.
If the requested data is on a page that is not contained in the TLB5, the address
has to be calculated first. Hence, the worst case scenario is a TLB miss which
can account for several hundred CPU cycles.

Today, it is very hard to increase the performance of single cores further
because of the following problems:

– Power wall: To obtain higher clock frequencies, an increase in power would
be necessary, but heat dissipation rises too immensely for practical solutions.

– ILP wall: Extracting instructions out of a single stream of instructions that
can be issued in parallel gets harder and scales poorly.

– Memory wall: While the performance of CPUs steadily increases at a fast
pace, the memory only gained minor performance over the years resulting
in a gap between the processor processing speed and the speed to retrieve
data from memory. This results in data-intensive applications to become
bandwidth bound. Today, a high-end CPU is connected to RAM with a
theoretical bandwidth of about 25 GB/s [18] which forms the upper bound
of throughput for data-intensive applications.

4 In 1965, Moore initially stated that the number of transistors would double each
year. He revised his statement to double each two years in 1975 [16].

5 Today, the TLB may also be realized as a multi-level cache, e.g., in Intel’s Nephalem
architecture [17].

Big Data Analytics on Modern Hardware Architectures 129

L1 Cache

L2 Cache

CPU core

L3 Cache

TLB

TLB L2

(a) Memory hierarchy for a
single core including TLB.

L1 Cache

L2 Cache

L3 Cache

CPU core

... L1 Cache

L2 Cache

CPU core

System Bus

(b) Multi-core memory hierarchy.

Fig. 2. Abstract layout of a modern CPU cache hierarchy

With single core performance stagnating, hardware developers shifted to multi-
core CPUs to overcome this performance barrier. Recent generations of CPUs
already come with a double digit number of physical cores per CPU (e.g., Intel
E7-8870: 10 Cores [19], AMD Opteron 6282 SE: 16 Cores [20]). Typically, CPU
cores have a private L1 and L2 cache, and share the L3 cache. Figure 2(b) shows
the cache hierarchy for a multi-core CPU leaving out TLB caches for a better
overview.

2.2 RDBMSs

In 1970, Edgar F. Codd published his idea of a relational model [21] which laid
the foundation of today’s database systems and was first realized in System R [22]
and Ingres [23] in 1975/1976. Nowadays, relational databases are the de-facto
standard for data management. Classical DBMSs use an n-ary storage model
(NSM) to provide intra record locality. A relation consists of tuples with a defined
set of attributes. In the NSM, tuples are stored consecutively with all their
attributes. This performs nicely in a transactional system, yet for analysis only a
fraction of the record data is needed. An alternative to NSM is the Decomposition
Storage Model (DSM) [24], resulting in so called Column-Stores. In the DSM,
tuples are split into their attributes. The values of an attribute for all tuples are
stored consecutively. To reconstruct the original tuple, all attributes at a certain
index need to be recombined. The benefit of storing and accessing data column-
wise is that the bandwidth can be used more efficiently, compression ratio on
columns is higher, and cache lines6 are used more efficiently. Figure 3 depicts
the storage layout for both models.

With the development of ever faster hardware and increasing RAM sizes,
the first in-memory databases were developed. Among them, MonetDB [25] pio-
neered in-memory column-store technology with cost models for cache and TLB
misses. Boncz et al. [26] and Ailamaki et al. [27] identified cache and TLB misses
to be the bottleneck of modern systems.

6 A cache line is a sequence of bytes transferred for a memory request that usually
exceeds the amount of requested data to reduce the number of memory transactions
for sequentially accessed data.

130 M. Saecker and V. Markl

Tuples

a2a
(a) Two tuples stored in the NSM.

a2a1

(b) The same two tuples stored in the DSM.

Fig. 3. Two tuples consisting of two attributes a1 and a2 are stored in NSM and DSM.
In Figure 3(a) both tuples are stored consecutively in the page. In Figure 3(b) the
tuples are split into their attributes and stored in sub-relations.

Recent developments include SAP Hana [28], C-Store [29], Vertica [30], and
Vectorwise [31].

3 Horizontal Scaling

Horizontal scaling describes the process of distributing a task among many ma-
chines to speed up execution. In contrast to scaling vertically, the distribution
of data and workload has to be programmed explicitly into the analysis soft-
ware. Different approaches have evolved over the time: parallel systems using an
SQL-like interface and massive data analysis systems which can be divided into
categories of parallel data flow systems.

In this section, we will introduce these frameworks for data analysis tasks
to give a broad overview of available systems. Table 1 gives an overview of the
different components of the different software stacks.

3.1 Parallel DBMSs

GRACE, Gamma and Teradata are pioneers of parallel database systems.
GRACE [32] is a parallel relational database system adopting data stream ori-
ented processing. The system employs an architecture with two ring buses. The
first ring handles filtering, projection and data distribution. The other ring per-
forms processing.

Gamma [33] is a parallel relational database machine featuring a shared-
nothing architecture of processor/disk pairs connected by a token ring. Gamma
maximizes local data processing to achieve high I/O bandwidth and to reduce

Big Data Analytics on Modern Hardware Architectures 131

Table 1. Overview of the different software stacks

Component Hadoop Stratosphere Dryad Asterix

Higher-level
Language

Pig, Hive, Jaql Jaql DryadLINQ,
SCOPE

AQL

Programming
Model

MapReduce PACTs - -

Execution
Engine

Hadoop MR Nephele Dryad Hyracks

the communication overhead. To permit local processing and query optimiza-
tion, input data is partitioned among the processing/disk pairs, e.g., a selection
is performed only at sites holding relevant data.

Teradata [34], the only commercial system of the three, started building
a database management system for decision support using a parallel shared-
nothing architecture and multiple processors. Their first prototype was shipped
in 1983 and by 1996, a Teradata database was the world’s largest database with
eleven terabytes. Today, Teradata is one of the leading companies for data ware-
housing and analytical processing.

Other parallel DBMSs for Big Data Analytics include Greenplum, Aster Data
and ParStream.

The Greenplum Unified Analytics Platform [35] includes the Greenplum
database component for structured data, the Greenplum Hadoop integration for
unstructured data, and the Greenplum Chorus productivity layer. The Green-
plum Database was designed for Business Intelligence (BI) and analytical pro-
cessing and utilizes a shared-nothing massively parallel processing architecture.

Aster Data [36,37] employs a massively parallel processing (MPP) architecture
featuring a hybrid row and column store. Aster Data combines the MPP archi-
tecture with an implementation of a MapReduce processing framework resulting
in a fault-tolerant, massively parallel environment for analysts.

ParStream [38] is a parallel database system that offers fast online analysis
of structured data by incorporating GPUs for data processing. An important
feature of ParStream is its innovative index structure which enables efficient
parallel processing.

3.2 MapReduce

In 2004, Google published MapReduce, a programming and execution model to
process large data sets of key/value pairs. MapReduce programs consist of two
second-order functions, map and reduce, which originate from functional pro-
gramming. Users provide first-order functions as arguments for map and reduce.
Map passes each key/value pair to the first-order function separately to produce
an intermediate result which is passed to the reduce function. Reduce passes all

132 M. Saecker and V. Markl

key/value pairs sharing the same key to a single function call of its first-order ar-
gument function. Each function call emits zero, one or multiple key/value pairs.
It is important to note, that the first-order functions need to be completely in-
dependent, i.e., functional without side effects, of each other as the paradigm
depends on data parallelism.

The execution engine operates with a distributed file system - the Google
File System (GFS) [39] - which handles data replication and distribution. A
drawback of the execution engine is that both map and reduce take only one
input, therefore operations like joins can only be realized using hacks or detours
like concatenating two inputs and tagging them. The complete join logic must
be hard-wired in a user-defined function, hence, depending on the input, the
processing strategy may not be optimal. In contrast to RDBMS, there is no
query optimizer that would choose join orders or physical strategies like hash
join, merge join, or nested loop join. Also, the scheduling is fixed to a map step
followed by a reduce step. This fixed scheduling and the limitation to two second-
order functions removes most of the data-dependent optimization potential that
could arise from reordering or combining operations.

Writing efficient programs requires in-depth knowledge of the programming
model and the execution engine. Higher-level languages on top of MapReduce
have been created to ease access to the parallel execution engine and improve
processing efficiency. We will describe Pig, Hive and Jaql which build on Hadoop
[40] - an open-source implementation of MapReduce - as three examples.

Pig. Formerly Yahoo! Research’s, now Apache’s Pig project [41,42] consists of
the execution engine Pig and the data flow language PigLatin, which offers a
declarative, SQL-like approach with imperative elements. Pig features a data
model consisting of atoms, tuples, bags, and maps that allows for the nesting of
data structures. Bags in Pig not only allow for duplicates as in common bags
but also tuples in the bag do not have to share a structure or type.

A program in PigLatin consists of a sequence of commands which are executed
one after another and perform only a single data manipulation. Such a step is
fairly high-level, like grouping, joining, or filtering. These operators resemble re-
lational algebra and allow Pig to use traditional database optimizations. First,
the program is translated into a logical plan. This plan is optimized and en-
ables Pig to be used with alternative platforms other than Hadoop. In addition,
joins are automatically translated into MapReduce plans without the need to
manually define and hand-optimize them.

Finally, the logical plan is translated into a MapReduce plan and executed on
the underlying platform. With this design, the programmer can use an SQL-like
approach to design the application and still easily include and influence custom
functions.

Hive. Hive [43,44] organizes data in a structured, relational data model and
stores meta information about defined tables. In that aspect Hive closely follows
a parallel database approach, still tables and their partitions are stored in a

Big Data Analytics on Modern Hardware Architectures 133

distributed file system along with the meta information. Along with Hive comes
an SQL-like query language called HiveQL. Although HiveQL includes support
for equality joins, the language is not able to handle Cartesian products. The
programmer can circumvent this problem by extending the language with custom
scalar functions, aggregations, and table functions. The user may also include
custom mappers or reducers if the possibilities of HiveQL are still insufficient.

Jaql. Another high-level language designed by IBM Research is Jaql [45,46].
Its data model is based on JavaScript Object Notation (JSON). A JSON file
is organized as an array of JSON objects. Each object contains name/value
pairs where each value can again be a JSON object or an atomic type. Using
this data model, Jaql is able to handle (semi-)structured data. Provided schema
information is used for type checking and to improve performance. Jaql’s main
unique selling points are the support for higher-order functions and what they
call physical transparency. Physical transparency in this context means that
Jaql’s execution plan is completely expressed in Jaql. This gives the user a lot
of control as they are able to enhance the language without modifying the query
language and to influence or even pin the execution plan.

Jaql is used in IBM’s InfoSphere BigInsights product [47].

3.3 Dryad

Microsoft Research’s Dryad [48], released in 2007, is a parallel execution engine
for data flows designed to run on a large cluster of shared-nothing commodity
servers. A Dryad query is defined as a directed acyclic graph (DAG) where
vertices contain arbitrary, sequential user-code and edges define the data flow
through the graph. The programmer can design analysis tasks by wiring up
vertices with any number of edges. A nice feature of Dryad DAGs is the support
for merging which allows the programmer to create graphs for specific tasks and
link or merge them to create more complex tasks.

The Dryad execution engine handles the parallel execution transparently us-
ing data parallelism. Dryad uses a job manager process to orchestrate and dis-
tribute vertices among the worker machines. The vertices are cloned to multiple
machines and each vertex takes a subset of the input. By wiring the vertices in a
1:1, 1:N or M:N fashion using files, TCP pipes, or shared-memory channels any
semantics can be expressed. Serialization/deserialization of data for transport
is completely left to the programmer. Dryad only supplies her with a small set
of library item types such as tuples or newline-terminated strings. This gives
the programmer complete control but increases development time and effort.
Microsoft Research developed two approaches to ease the integration of Dryad
into applications, DryadLINQ and SCOPE.

Recently, Microsoft has decided to focus on Hadoop as opposed to Dryad [49].

DryadLINQ. DryadLINQ [50] is designed to hide the complexity of Dryad from
the programmer by integrating it into a programming language. DryadLINQ

134 M. Saecker and V. Markl

bridges .NET’s LINQ (Language INtegrated Queries) environment [51] and
Dryad. This tightly integrates the queries into one of the managed languages
of the .NET environment in contrast to writing MapReduce jobs or defining a
query in SQL. These LINQs are translated into Dryad DAGs and executed in
parallel.

Apart from the integrated operators, DryadLINQ offers the possibility to add
custom operators. The drawback of these operators is that if no information
about a possible parallelization is available - they can be supplied by user anno-
tations -, the custom operator will employ only one machine for data processing.

SCOPE. Structured Computations Optimized for Parallel Execution (SCOPE)
[52] is a declarative scripting language hiding parallelism from the programmer.
SCOPE’s design was heavily influenced by SQL and SCOPE adopts operators
like (inner / outer) joins, aggregations, selections, and projections. SCOPE can
be easily extended by user-defined functions and operators which are categorized
into four kinds: extractors to create rows from files, processors for row-wise pro-
cessing, reducers for processing of groups akin to MapReduce’s reduce operation,
and combiners to combine two inputs. Contrary to SQL, programmers can not
only use a declarative approach to design their programs, but also express them
as a series of data transformation steps, i.e., using an imperative approach.

3.4 Hyracks

The computer science group of the University of California, Irvine developed
their data parallel platform for data-intensive computations, Hyracks [53]. It
features a parallel data flow execution model. Jobs are specified as directed
acyclic graphs (DAGs) composed of operators, represented as nodes, and con-
nectors, represented as edges. Operators consist of one or more activities to
further distinguish between different operator steps, e.g., a hash join is split into
a build and a probe activity connected by a dependency. The probe step can
only be executed when the build phase has completed. This further distinction
of operators into activities provides Hyracks with more information about the
real execution of the overall application. Connectors partition the output for the
following operators.

Hyracks abstracts the MapReduce data model and uses tuples with fields of
arbitrary types. The design of Hyracks emphasizes extensibility. The library of
Hyracks provides a set of reusable operators and connectors but the programmer
can extend the operators, connectors, and types by providing implementations.

The execution engine of Hyracks is based on a master-worker scheme, where
each node controller registers at the cluster controller. The cluster controller
accepts jobs and then schedules the execution.

For the execution, the operators are decomposed into their activities. The
activities are split into stages. Each stage comprises the activities that can be
pipelined. The activities are multiplied between nodes and then executed stage
by stage using a lazy execution model.

Big Data Analytics on Modern Hardware Architectures 135

Hyracks features the Asterix Data Model (ADM) which supports nested data
types similar to JSON.

On top of Hyracks is the Asterix Query language (AQL) [54]. AQL is inspired
by XQuery [55] but eliminated the XML-specific and document-specific features.

3.5 Stratosphere

A research team comprised of TU Berlin, HU Berlin, and HPI Potsdam has
since 2008 been building the Stratosphere [56] system, consisting of the PACT
programming model and the massively parallel execution engine Nephele.

The PACT programming model is a generalization of the MapReduce pro-
gramming model and operates on a key/value data model. A Parallelization
Contract (PACT) consists of one input contract, optionally one output contract,
and a user-defined first-order function. An input contract is a second-order func-
tion defining how the data is passed to the user-defined function, e.g., a Map
input contract would simply pass each key/value pair to a different call of the
user-defined function while a Reduce input contract would pass all key/value
pairs sharing the same key to a call of the user-defined function. In contrast to
the MapReduce programming model, Stratosphere’s PACTs support multiple
inputs to facilitate operations such as joins.

Output contracts are annotations to a PACT data analysis program to de-
scribe properties of the user-defined function, e.g., the key of the input key/value
pairs is not modified. This provides the cost-based optimizer with additional in-
formation, e.g., the key/value pairs would need no repartitioning after the key,
if they were partitioned based on the requirements of a preceding PACT which
has an output contract that preserves the keys.

A program is created by chaining different PACTs together. Such a program
is then passed to the optimizer and translated into a Nephele DAG. These DAGs
are similar to Dryad DAGs, vertices contain user-code and the edges represent
channels for data transport. By multiplying vertices, scheduling them among
multiple nodes, and wiring them with channels, according to the required input
contract, the execution is parallelized.

In contrast to MapReduce, Nephele allows for communication via network
and memory channels in addition to disk channels, thus enabling better support
for low latency (streaming) queries and multi-core environments.

4 Vertical Scaling

Vertical scaling includes assembling machines with more memory and higher
performing CPUs as well as the application of specialized hardware like GPUs
as co-processors. The idea of incorporating co-processors to accelerate database
systems is not new, already in 1978 D.J. DeWitt proposed using multiprocessors
to accelerate query execution [57]. At that time, CPU development was still
incredibly fast so that using co-processors was quickly overtaken by newer CPU
generations. Today, with the ILP wall, the memory wall, and the power wall,
using co-processors looks more promising.

136 M. Saecker and V. Markl

In this section, we will introduce modern hardware architectures and discuss
their application for Big Data Analytics.

4.1 FPGA

Before the development of programmable logic, hardware designers were forced
to design logic circuits at the board level using standard components or appli-
cation specific integrated circuits (ASIC). In 1956, Wen Tsing Chow invented
programmable read-only memory (PROM), memory that could be programmed
after manufacturing by burning some of the fuses and effectively setting these bits
to zero [58]. The development of PROMs was the foundation of the first PLAs
(Programmable Logic Arrays) in 1978. These chips contain programmable AND-
planes wired to a programmable OR-plane which could implement functions in
the Sum of Products form. Later, PALs (Programmable Array Logics) were de-
veloped which only had a programmable AND-plane followed by a hard-wired
OR-plane. The advantages of PALSs were the cheaper production and the faster
logic due to the hard-wired OR-plane. PALs and PLAs are grouped together as
Simple Programmable Logic Devices (SPLDs). To answer the technological de-
mand, Complex Programmable Logic Devices (CPLDs) were developed. CPLDs
consist of SPLDs combined into a single chip with programmable interconnects.
To further increase capacity, Mask-programmable Gate Arrays (MPGAs) com-
bine arrays of transistors that can be freely wired in the factory. This introduced
high costs and a long development phase for hardware manufacturers but they
motivated the design of Field-Programmable Gate Arrays (FPGAs). The first
FGPA was patented in 1984 and one year later created by Ross Freeman and
Bernard Vonderschmitt. The development of FPGAs changed the way of de-
signing digital circuits. The ability to program the chips in the field as often as
needed allows hardware developers to do fast prototyping which also results in
shorter time to market. In addition, error correction no longer needs a redesign
of the board as it can be simply specified in the configuration [59,60,61].

One of the drawbacks of FPGAs is the lower frequency at which they operate
and the low-level design of applications. Today, FPGAs are programmed using
circuit schematics or by using a hardware description language like VHDL or
Verilog [62] but the task of programming is still fairly low-level.

Architecture. FPGAs are arrays of configurable logic blocks (CLBs) that
are connected through routing channels and surrounded by programmable In-
put/Output Blocks, i.e., interfaces between the FPGA and outside resources.
Multiple logic cells and a switch box form a CLB. Switch boxes connect the
logic cells to the interconnect fabric. A logic cell contains logic gates, carry logic
and a storage element. A logic gate is implemented as a Lookup Table (LUT), an
n-LUT encodes an n-input boolean function as truth table. As storage elements,
D flip flops or latches are being used. Nowadays, FPGAs may also contain hard
intellectual property (IP) cores - frequently used functionality as discrete chips -
such as block RAM (BRAM), multiplier units, or PowerPC cores [59,60,61,63,62].

Big Data Analytics on Modern Hardware Architectures 137

Applications. J. Teubner et al. showed that FPGAs can be used for data
processing with the use case of a median operator based on sorting networks
[63]. When processing multiple streams in parallel, FPGAs grant a performance
benefit over CPUs because of cache misses. In addition, FPGAs have a lower
power consumption than CPUs [63,62], which becomes increasingly important
today.

Another application is shown by Mitra et al. [64]. They use FGPAs to fil-
ter XPath queries in a publisher-subscriber system with an order of magnitude
performance gain.

Microsoft Research tried to hide the FPGA programming from the user with
their system Kiwi [65]. It uses C# parallel programming language constructs
and translates them into Verilog, thus making FPGAs more accessible to pro-
grammers of higher-level languages.

Apart from research, FPGAs are employed in several data analytics companies
to accelerate query execution. IBM’s Netezza [66] uses FPGAs for data filtering,
Kickfire [67] accelerates SQL operations in MySQL, and XtremeData with their
database analysis appliance (dbX) [68] uses FPGAs to accelerate SQL operators,
for data movement capabilities, and statistics gathering.

4.2 GPU

GPUs started out as graphics accelerators. In 2000, GPUs became more pro-
grammable and researchers started to use graphics adapters for non-graphics
applications. Shortly thereafter, the GPGPU7 (General-Purpose computation
on Graphics Processing Units) movement started [70]. At this time, the com-
putational power of GPUs was only available to those familiar with graphics
programming languages, e.g., OpenGL or Direct3D. Programming for the GPU
was complicated and required in-depth knowledge of the architecture. In 2004,
Ian Buck et al. from Stanford University published Brook, ”a system for general-
purpose computation on graphics hardware” [71]. Brook was designed as a C
extension and made GPU processing available for a wider audience. Ian Buck
joined NVIDIA and in 2006, they released the first version of CUDA (Compute
Unified Device Architecture), a parallel computing platform and programming
model for general-purpose algorithms [70].

Late 2008, the Khronos Group released OpenCL 1.0 (Open Computing Lan-
guage), an open, cross-platform parallel programming model [72] and therefore a
competitor to CUDA. In the same year, Microsoft introduced DirectCompute at
Gamefest 2008, an API for GPGPU on Microsoft Windows Vista and Windows
7 as part of DirectX 11 [73].

Today, clusters with GPUs are employed throughout the world and three
out of the top five supercomputers of the world integrate GPUs for increased
processing power [74].

7 In 2002, Mark Harris coined the term GPGPU [69].

138 M. Saecker and V. Markl

Architecture. Nowadays, graphics adapters are connected to RAM via PCIe
v2.x x16 bus featuring a theoretical bandwidth of 8 GB/s in each direction [75].
PCI-SIG released the PCIe 3.0 standard late 2010 [75], which will double the
available bandwidth. Currently (early 2012), only the newest graphics adapters
support PCIe 3.0. The architecture of devices differs between vendors but the
general abstract view can be easily transfered. For brevity, we will refer only
to NVIDIA’s Fermi architecture [76] and server-grade graphics adapters like
NVIDIA’s Tesla series [77].

A graphics adapter contains multiple streaming multiprocessors (SM). Each
SM consists of several8 scalar processors, each featuring a fully pipelined integer
arithmetic logic unit (ALU) and floating point unit (FPU) to serve both integer
and floating point performance.

On the device, NVIDIA employs a hierarchical memory model. The biggest
memory is the global device memory (up to 6 GB) which all SMs can access.
Global memory is also used to exchange data between RAM and device via
the PCIe bus. Between global memory and the processors is a L2 cache (768
kB). Next are 64 kB of configurable memory which can be split between shared
memory and L1 cache9. This memory is bound to a SM and accessible only by
the scalar processors within an SM. Additionally, each SM is equipped with a set
of registers (32,768 x 32-bit) which are distributed among the scalar processors
by need. Like in the CPU cache hierarchy, the closer the memory is located to
the processors, the smaller and faster they are.

The architectural problems of GPUs are the relatively small device memory of
up to 6 GBs in comparison to main memory systems with up to 2 TB of RAM, and
that graphics adapters can process only locally available data, i.e., all data needs
to be copied to the device over the comparably slow PCIe bus before processing.
Once the data is on the device, the device memory excels with a bandwidth of 144
GB/s [77]. When designing a GPGPU application, these bottlenecks have to be
taken into account as they may incur costs that make the implementation on a
GPU non-competitive in comparison to a CPU implementation.

Programming Model. A program for GPUs is divided into two parts: host
code and kernels. The host code allocates resources, sets parameters, and launches
kernels. A kernel is a program that is compiled and afterwards executed on the
GPU, and specifies the commands for a thread, i.e., all threads in a kernel per-
form the same task and only differentiate in which parts of data are processed.
These threads are grouped into blocks. Therefore, a kernel is a grid of blocks,
where each block consists of up to 1024 threads. A block is assigned to a SM
and each thread of a block is evaluated by a scalar processor in the SM. The ex-
ecution is split into warps, groups of 32 threads, that run at the same time. This
hierarchy is important, as it reflects the different synchronization possibilities:
Threads of a block may synchronize using a barrier and can share data stored
in shared memory. Threads of different blocks are completely isolated from each

8 32 to 48 processors in modern graphics adapters.
9 16 kB shared memory / L1 cache is the minimum assigned to each.

Big Data Analytics on Modern Hardware Architectures 139

other apart from access to global memory. Therefore, the programmer cannot
assume any order among the threads.

To write a good performing kernel, the programmer has to meet a few chal-
lenges:

– Graphics devices only offer limited synchronization possibilities.

– Dynamic memory allocation inside a kernel is not possible.
– Memory accesses should be coalesced10 to fully utilize the high bandwidth

of device memory.

– Divergence at warp level should be avoided.

Divergence in this context means that two threads take different paths when
evaluating a condition. The SM has only a single program counter, therefore all
threads on a SM must execute the same instruction per cycle. If threads take
different code paths, the execution is serialized and part of the processors idle.
As only one warp at a time is executed, inter-warp divergence poses no problem.
This execution is also called SIMT (Single Instruction, Multiple Threads) which
in contrast to SIMD (Single Instruction, Multiple Data) allows each thread to
branch or have it’s own register [78]. This is different from SIMD instructions
like on the CPU, e.g., on the CPU a SIMD instruction may take a 128 bit input
and process it using the same function as four 32 bit words, a single instruction
for multiple data.

Applications. GPUs yield a lot of computing power, however a lot of problems
in database systems and Big Data Analytics analyze massive amounts of data.
Therefore, the most required resources are available memory and bandwidth.
In that aspect, GPUs seem to have no place in this scenario, but there are
advantages to the usage of GPUs if we focus on smaller tasks. For the GPU
to provide any benefits, the data shipped to the device needs to be small, the
performed task must be computation intensive, or the shipped data has to be
reused multiple times to amortize the slow transfer over the PCIe bus.

Numerous algorithms for sorting have been published using different methods
like sorting networks [79], sample sort [80], merge sort [81], and radix sort [82,83].
The number of sorted keys per second on GPUs is generally higher than on CPUs,
but only if the data transfer over PCIe is excluded [84].

B. He et al. investigated relational database operators on GPUs in ”GDB”, a
hybrid CPU & GPU query processor embedded into their own small database
system [85,86]. They designed a co-processing scheme, in which the work is
distributed among CPU, GPU, or both, using cost models on a per operator
basis. They noted a 2x-7x speedup for complex queries like joins and are slower
by a factor of 2x-4x for simple operators like selections when using only the GPU
operations [85]. In addition, the operators are limited to device memory. If the

10 Coalesced memory accesses describe a pattern, where each thread reads data neigh-
boring to the data of its predecessor, i.e., the threads access a consecutive block of
memory without any gaps.

140 M. Saecker and V. Markl

input exceeds device memory and partitioning of the input becomes necessary,
the GPU would lose performance dramatically.

A different kind of application suitable for GPUs are index lookups. Creat-
ing an index and storing it on the GPU to answer requests avoids passing big
amounts of data continuously over the PCIe bus. The result of an index lookup
is usually highly selective and returns only a small number of result tuples.
There have been different suggestions for index structures like Cache-sensitive
search (CSS) trees [87,86], indexes applying hierarchical blocking calibrated to
the SIMD width of GPUs [88], or speculative evaluated prefix trees [89]. They
can leverage the power of GPUs by issuing multiple queries at once [88] or by
speculatively evaluating all parts of an index [89]. Which approach to choose
depends on the problem to be solved.

In effect, research puts a lot of effort into exploiting the computational power
of GPUs for database systems but the PCIe bottleneck and the small device
memory remain hard problems for data-intensive applications. Further gener-
ations of GPUs will probably increase the available device memory and with
the introduction of PCIe 3.0 the data transfer bottleneck will be revised. This
may lead to a re-evaluation of GPUs and might make them more attractive
to commercial systems. Up to now, only a single commercial database system,
ParStream [38], exploits GPUs for query processing.

4.3 APU

AMD released the first Accelerated Processing Units (APUs) named Fusion at
the Computex conference in 2010 [90]. One objective was to raise competition
for Intel, which dominated the netbook market with their low-power and at
the same time good performing Atom CPU. This was due to Intel’s architects
integrating controllers and graphics processors onto the same die [91]. A different
objective was the integration of GPU cores onto a CPU die [92].

The integration of GPU cores eliminates the two main issues of graphics
adapters - PCIe transfer and small memory size - as the GPUs or vector units di-
rectly access the main memory, albeit the memory is currently split into regions
for each core type. With such an architecture, applications can extract the com-
puting power of the GPU cores using DirectCompute or OpenCL. AMD regards
this development to merge heterogeneous processing cores onto the same die as
the future of hardware development where each task is handled by the hardware
best fitting the problem. Apparently, Sandia National Labs share this opinion
as they installed the first HPC Cluster with AMD Fusion chips to evaluate this
heterogeneous processor model [93]. At this point in time (2012), only notebook
or desktop APUs are available so that little work has been conducted on APUs
in the context of Big Data Analytics. AMD proclaims that server-grade APUs
will be delivered ”in the years ahead and when the time is right” [94]. It will
be interesting to see how AMD migrates the processing power from GPUs for
server-grade APUs as some parameters change: Main memory is bigger than
device memory but at the same time, RAM is slower by a factor of about five
compared to the currently used device memory. Will this starve the GPU cores or

Big Data Analytics on Modern Hardware Architectures 141

introduce memory latencies that cannot be hidden by the threading model? Un-
til AMD publishes information about a server-grade die, the evaluation of APUs
in the context of DBMSs or Big Data Analytics will remain a lab experiment to
analyze heterogeneous processing.

4.4 MIC

Intel’s Many Integrated Core (MIC11) architecture [95] builds upon the results
of three research projects: the many-core visual computing project Larrabee, the
80-core Tera-scale research chip program, and the Single-chip Cloud Computer
(SCC) initiative.

Larrabee is meant for visual computing as competitor to NVIDIA’s and
AMD’s GPUs. It consists of multiple in-order x86 CPUs augmented with 16-
wide vector processing units (VPU). Each core has a L1 cache and a subset of a
local coherent 2nd level cache. A bi-directional ring network connects the CPU
cores, memory & I/O controllers, and fixed function logic blocks with a 512-bits
per direction bus [96].

In the Tera-scale research program, Intel researches energy efficient designs
for multi-core chips. A research prototype chip comprised of 80 simple cores,
each containing two floating point engines, features one teraflop of computing
power [97].

Intel Labs Single-chip Cloud Computer consists of 24 tiles with two cores
each. Each tile is equipped with a router connecting the tile with other cores
and four DDR3 memory controllers. The tiles are organized into four regions.
One region of tiles is mapped to a specific memory controller. Each core has
an on-chip SRAM for message-passing and a private portion of the external
DRAM. By default, most of the DRAM is used for private memory and only a
small fraction is used as shared memory for all cores. The SCC has no hardware
cache coherence support among cores although each core has two levels of cache.
The intention is to encourage the use of distributed memory software models
using the hardware message-passing support [98,99].

One result of these three research programs is the MIC architecture called
Knights Corner which is aimed at High Performance Computing (HPC). Knights
Corner will integrate more than 50 cores onto a single chip [95]. The first pre-
sentation of Intels accelerator, the first silicon of the ”Knights Corner”, was at
the International Supercomputing Conference 2011 [100]. The accelerator deliv-
ers more than 1 TFLOPS of double precision floating point performance and will
be available for commercial use. Its predecessor, ”Knights Ferry”, was only avail-
able as software development platform for co-processors to selected development
partners.

An important benefit of Knights Corner is that it uses the same program-
ming environment as Intel Xeon CPUs. Therefore, applications can be easily
ported [95].

11 pronounced ”Mike”.

142 M. Saecker and V. Markl

CPU

Main MemoryI/O
Controller

Front-Side Bus (FSB)

GPU

Device
Memory

Memory
Bus

PC
Ie

 B
us

FPGA

IP
Cores

Disk

CPU core

GPU core
CLB
Interconnect

Legend:
APU

MIC

Coherent
Cache

Fig. 4. Overview of a highly heterogeneous system incorporating the presented archi-
tectures

Whether Knights Corner is suitable for database operations and how the exact
architecture specification is, cannot be said at this point as the Knights Corner
has not been released yet.

4.5 Summary

Figure 4 shows a heterogeneous system consisting of the discussed architectures.
On the top, the CPU features multiple cores designed to execute arbitrary se-
quential programs with limited parallelism. The APU to the right, consists of
CPU cores, too, but in addition, several GPU cores are added to increase the
computational power for parallel problems. To address the additional computing
resources, the programmer must fit the program design to a parallel program-
ming framework like OpenCL. Like CPUs, the APUs can directly access the
main memory without passing through a low-bandwidth bus like PCIe.

The other devices need to ship the data over the PCIe bus to start processing
and ship the results back to make them available to other components. On the

Big Data Analytics on Modern Hardware Architectures 143

left, the FPGA offers multiple CLBs and possibly hard IP cores to tailor the
execution to the problem at hand. Even with a lower frequency than CPUs or
GPUs, the fine-grained configuration allows FPGAs to process data efficiently.
The drawback is the comparatively low-level programming of FPGAs in circuit
designs or languages like Verilog or VHDL.

On the right, the GPU offers fast device memory once the data is on the device.
Along with the high amount of processing units, the GPUs can process parallel
problems with high computational and bandwidth requirements. The limitations
of GPUs are the reduced support for branching and the small amount of device
memory.

The MIC architecture offers a similar programming framework to CPUs and,
therefore, provides good portability of existing programs. The use of CPU cores
allows for more complex branching and control structures than in GPUs.

5 Conclusion

Today, a developer has a lot of systems available for Big Data Analytics and
a broad range of co-processors. The choice of system depends on the specific
scenario at hand. If the data set is extremely big, single machines may not be
able to handle the data load. Therefore, using one of the massive parallel analysis
systems may be mandatory. In the case of smaller data sets, the benefits of such
a system may not compensate for the overhead of managing a cluster.

Another important factor is the intended workload. While distributed systems
are good to analyze huge amounts of data with aggregations and big results, they
suffer in comparison to specialized systems in terms of efficiency. Lastly, it might
also depend on the existing knowledge of programming models and languages of
the developer if productivity is concerned.

The interesting point is how these systems will develop in the future apart from
gaining features or changing algorithms. If we take a look at the programming
models of distributed systems and modern hardware architectures, we see that
they both employ a parallel model. The combination of distributed systems with
co-processors on specific nodes may bring additional performance, but requires
the systems to be hardware-aware. The integration of accelerators benefits from
the application of parallel programming models to distribute tasks as they can
be easily translated to the parallel models of the hardware. An example for
this is Mars [101], a MapReduce framework, which integrates GPU processing
into Hadoop. Mars eases the GPU programming by focusing on the well-known
MapReduce programming model. Still, the map and reduce implementations
for the CPU and the GPU have to be provided. This highlights, that a system
addressing a heterogeneous cluster - combining horizontal and vertical scaling
- proves to be challenging. On the one hand, the system needs to be general
enough to allow for the handling of different architectures. On the other hand,
the burden on the user should be as low as possible. Ideally, the user should
maintain only a single operator implementation that can be ported to different
architectures. One possibility to achieve this would be to use a framework like
OpenCL and integrate it into a distributed system.

144 M. Saecker and V. Markl

In the future, CPUs will continue to gain more cores. CPUs will change into
more parallel systems in either of two ways: CPUs will integrate heterogeneous
cores - like in AMD’s APUs - and present one interface for sequential and control
structure heavy code parts and one for data-parallel operators, or they will follow
Intel’s SCC idea, integrating a lot of cores onto a single die. Whatever the future
holds, parallel programming - and especially parallel programming models - will
become more important because there is a huge difference between running a
sequential program in parallel as opposed to writing a parallel program.

References

1. CERN: Worldwide LHC Computing Grid (December 2011),
http://public.web.cern.ch/public/en/LHC/Computing-en.html

2. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Hung
Byers, A.: Big Data: The Next Frontier for Innovation, Competition, and Pro-
ductivity (June 2011), http://www.mckinsey.com/Insights/MGI/Research/
Technology and Innovation/Big data The next frontier for innovation

3. Liu, X., Thomsen, C., Bach Pedersen, T.: The ETLMR MapReduce-Based ETL
Framework. In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011.
LNCS, vol. 6809, pp. 586–588. Springer, Heidelberg (2011)

4. Alexandrov, A., Ewen, S., Heimel, M., Hueske, F., Kao, O., Markl, V., Nijkamp,
E., Warneke, D.: MapReduce and PACT - Comparing Data Parallel Programming
Models. In: Proceedings of the 14th Conference on Database Systems for Business,
Technology, and Web, BTW 2011, pp. 25–44. GI, Bonn (2011)

5. Gillick, D., Faria, A., Denero, J.: MapReduce: Distributed Computing for Machine
Learning (2006)

6. Ghoting, A., Krishnamurthy, R., Pednault, E., Reinwald, B., Sindhwani, V.,
Tatikonda, S., Tian, Y., Vaithyanathan, S.: SystemML: Declarative Machine
Learning on MapReduce. In: Proceedings of the 2011 IEEE 27th International
Conference on Data Engineering, ICDE 2011, pp. 231–242. IEEE Computer So-
ciety, Washington, DC (2011)

7. Kang, U., Tsourakakis, C.E., Faloutsos, C.: PEGASUS: Mining Peta-scale
Graphs. Knowl. Inf. Syst. 27(2), 303–325 (2011)

8. Cohen, J.: Graph Twiddling in a MapReduce World. Computing in Science En-
gineering 11(4), 29–41 (2009)

9. Zhao, W., Ma, H., He, Q.: Parallel K-Means Clustering Based on MapReduce. In:
Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol. 5931, pp.
674–679. Springer, Heidelberg (2009)

10. The Apache Software Foundation: Applications powered by Hadoop (December
2011), http://wiki.apache.org/hadoop/PoweredBy

11. Facebook: Hadoop (December 2011),
http://www.facebook.com/note.php?note_id=16121578919

12. Office of Electricity Delivery & Energy Reliability, U.S. Department of Energy:
Smart Grid (December 2011),
http://energy.gov/oe/technology-development/smart-grid

13. Henschen, D.: 12 Top Big Data Analytics Players (December 2011),
http://www.informationweek.com/news/galleries/software/bi/231900870

http://public.web.cern.ch/public/en/LHC/Computing-en.html
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://www.mckinsey.com/Insights/MGI/Research/Technology_and_Innovation/Big_data_The_next_frontier_for_innovation
http://wiki.apache.org/hadoop/PoweredBy
http://www.facebook.com/note.php?note_id=16121578919
http://energy.gov/oe/technology-development/smart-grid
http://www.informationweek.com/news/galleries/software/bi/231900870

Big Data Analytics on Modern Hardware Architectures 145

14. Amdahl, G.M.: Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities. In: Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, AFIPS 1967 (Spring), pp. 483–485. ACM, New York
(1967)

15. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M.F., Dabek, F.,
Balakrishnan, H.: Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications. IEEE Transactions on Networking 11 (February 2003)

16. Computer History Museum: 1965 - “Moore’s Law” Predicts the Future of
Integrated Circuits (December 2011),
http://www.computerhistory.org/semiconductor/timeline/1965-Moore.html

17. Intel Corporation: White Paper: Intel Next Generation Intel Microarchitecture
(Nehalem) (2008),
http://www.intel.com/pressroom/archive/reference/whitepaper_nehalem.pdf

18. Intel Corporation: Intel Xeon Processor 7500 Series: Product Brief (December
2011), http://www.intel.com/content/www/de/de/mission-critical/
mission-critical-computing-xeon-7500-brief.html

19. Intel Corporation: Intel Xeon Processor E7-8870 Specification (December 2011),
http://ark.intel.com/products/53580/Intel-Xeon-

Processor-E7-8870-%2830M-Cache-2 40-GHz-6 40-GTs-Intel-QPI%29

20. Advanced Micro Devices, Inc.: AMD Opteron 6282 SE Specification (December
2011), http://products.amd.com/en-us/OpteronCPUDetail.aspx?id=756

21. Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. Commun.
ACM 13, 377–387 (1970)

22. Astrahan, M.M., Blasgen, M.W., Chamberlin, D.D., Eswaran, K.P., Gray, J.N.,
Griffiths, P.P., King, W.F., Lorie, R.A., McJones, P.R., Mehl, J.W., Putzolu,
G.R., Traiger, I.L., Wade, B.W., Watson, V.: System R: Relational Approach to
Database Management. ACM Trans. Database Syst. 1, 97–137 (1976)

23. Held, G.D., Stonebraker, M.R., Wong, E.: INGRES: A Relational Data Base
System. In: Proceedings of the May 19-22, 1975, National Computer Conference
and Exposition, AFIPS 1975, pp. 409–416. ACM, New York (1975)

24. Copeland, G.P., Khoshafian, S.N.: A Decomposition Storage Model. In: Proceed-
ings of the 1985 ACM SIGMOD International Conference on Management of
Data, SIGMOD 1985, pp. 268–279. ACM, New York (1985)

25. Boncz, P.A., Kersten, M.L., Manegold, S.: Breaking the Memory Wall in Mon-
etDB. Communications of the ACM 51(12), 77–85 (2008)

26. Boncz, P.A., Manegold, S., Kersten, M.L.: Database Architecture Optimized for
the New Bottleneck: Memory Access. In: Proceedings of the 25th International
Conference on Very Large Data Bases, VLDB 1999, pp. 54–65. Morgan Kaufmann
Publishers Inc., San Francisco (1999)

27. Ailamaki, A., DeWitt, D.J., Hill, M.D., Wood, D.A.: DBMSs on a Modern Proces-
sor: Where Does Time Go? In: Proceedings of the 25th International Conference
on Very Large Data Bases, VLDB 1999, pp. 266–277. Morgan Kaufmann Pub-
lishers Inc., San Francisco (1999)

28. Plattner, H., Zeier, A.: In-Memory Data Management: An Inflection Point for
Enterprise Applications. Springer (2011)

29. Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M.,
Lau, E., Lin, A., Madden, S., O’Neil, E.J., O’Neil, P.E., Rasin, A., Tran, N.,
Zdonik, S.B.: C-Store: A Column-oriented DBMS. In: Böhm, K., Jensen, C.S.,
Haas, L.M., Kersten, M.L., Larson, P.K., Ooi, B.C. (eds.) VLDB, pp. 553–564.
ACM (2005)

http://www.computerhistory.org/semiconductor/timeline/1965-Moore.html
http://www.intel.com/pressroom/archive/reference/whitepaper_nehalem.pdf
http://www.intel.com/content/www/de/de/mission-critical/mission-critical-computing-xeon-7500-brief.html
http://www.intel.com/content/www/de/de/mission-critical/mission-critical-computing-xeon-7500-brief.html
http://ark.intel.com/products/53580/Intel-Xeon-Processor-E7-8870-%2830M-Cache-2_40-GHz-6_40-GTs-Intel-QPI%29
http://ark.intel.com/products/53580/Intel-Xeon-Processor-E7-8870-%2830M-Cache-2_40-GHz-6_40-GTs-Intel-QPI%29
http://products.amd.com/en-us/OpteronCPUDetail.aspx?id=756

146 M. Saecker and V. Markl

30. Vertica: Vertica (December 2011),
http://www.vertica.com/

31. Actian Corporation: Vectorwise (December 2011),
http://www.actian.com/products/vectorwise

32. Fushimi, S., Kitsuregawa, M., Tanaka, H.: An Overview of the System Software
of a Parallel Relational Database Machine GRACE. In: Proceedings of the 12th
International Conference on Very Large Data Bases, VLDB 1986, pp. 209–219.
Morgan Kaufmann Publishers Inc., San Francisco (1986)

33. DeWitt, D.J., Gerber, R.H., Graefe, G., Heytens, M.L., Kumar, K.B., Muralikr-
ishna, M.: GAMMA - A High Performance Dataflow Database Machine. In: Pro-
ceedings of the 12th International Conference on Very Large Data Bases, VLDB
1986, pp. 228–237. Morgan Kaufmann Publishers Inc., San Francisco (1986)

34. Teradata Corporation: Teradata (December 2011), http://www.teradata.com/
35. EMC Corporation: Greenplum (December 2011), http://www.greenplum.com
36. Teradata Corporation: Aster Data (December 2011),

http://www.asterdata.com/

37. Friedman, E., Pawlowski, P., Cieslewicz, J.: SQL/MapReduce: A Practical Ap-
proach to Self-describing, Polymorphic, and Parallelizable User-defined Functions.
Proc. VLDB Endow. 2, 1402–1413 (2009)

38. empulse GmbH: ParStream (December 2011), http://www.parstream.com
39. Ghemawat, S., Gobioff, H., Leung, S.T.: The Google File System. In: Proceedings

of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP 2003,
pp. 29–43. ACM, New York (2003)

40. The Apache Software Foundation: Welcome to Hadoop! (December 2011),
http://hadoop.apache.org

41. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: A Not-
So-Foreign Language for Data Processing. In: SIGMOD 2008: Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data, pp. 1099–
1110. ACM, New York (2008)

42. The Apache Software Foundation: Welcome to Apache Pig! (December 2011),
http://pig.apache.org

43. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H.,
Wyckoff, P., Murthy, R.: Hive: A Warehousing Solution Over a Map-Reduce
Framework. Proc. VLDB Endow. 2, 1626–1629 (2009)

44. The Apache Software Foundation: Welcome to Hive! (December 2011),
http://hive.apache.org

45. Jaql - Query Language for JavaScript Object Notation (JSON) (December 2011),
http://code.google.com/p/jaql/

46. Beyer, K.S., Ercegovac, V., Gemulla, R., Balmin, A., Eltabakh, M., Kanne, C.C.,
Ozcan, F., Shekita, E.J.: Jaql: A Scripting Language for Large Scale Semistruc-
tured Data Analysis. In: PVLDB 2011, pp. 1272–1283 (2011)

47. IBM: InfoSphere BigInsights (December 2011), http://www-01.ibm.com/
software/data/infosphere/biginsights/features.html

48. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributed Data-
Parallel Programs from Sequential Building Blocks. In: EuroSys 2007: Proceedings
of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems
2007, pp. 59–72. ACM, New York (2007)

49. Microsoft Corporation: The Windows HPC Team Blog (November 2011),
http://blogs.technet.com/b/windowshpc/archive/2011/11/11/

hpc-pack-2008-r2-sp3-and-windows-azure-hpc-scheduler-released.aspx

http://www.vertica.com/
http://www.actian.com/products/vectorwise
http://www.teradata.com/
http://www.greenplum.com
http://www.asterdata.com/
http://www.parstream.com
http://hadoop.apache.org
http://pig.apache.org
http://hive.apache.org
http://code.google.com/p/jaql/
http://www-01.ibm.com/software/data/infosphere/biginsights/features.html
http://www-01.ibm.com/software/data/infosphere/biginsights/features.html
http://blogs.technet.com/b/windowshpc/archive/2011/11/11/hpc-pack-2008-r2-sp3-and-windows-azure-hpc-scheduler-released.aspx
http://blogs.technet.com/b/windowshpc/archive/2011/11/11/hpc-pack-2008-r2-sp3-and-windows-azure-hpc-scheduler-released.aspx

Big Data Analytics on Modern Hardware Architectures 147

50. Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P.K., Currey, J.:
DryadLINQ: A System for General-Purpose Distributed Data-Parallel Computing
Using a High-Level Language. In: Draves, R., van Renesse, R. (eds.) OSDI, pp.
1–14. USENIX Association (2008)

51. Microsoft Research: The LINQ project (December 2011),
http://msdn.microsoft.com/en-us/library/bb397926.aspx

52. Chaiken, R., Jenkins, B., Larson, P.A., Ramsey, B., Shakib, D., Weaver, S., Zhou,
J.: SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets. Proc.
VLDB Endow. 1, 1265–1276 (2008)

53. Borkar, V.R., Carey, M.J., Grover, R., Onose, N., Vernica, R.: Hyracks: A Flexible
and Extensible Foundation for Data-intensive Computing. In: ICDE, pp. 1151–
1162 (2011)

54. Behm, A., Borkar, V.R., Carey, M.J., Grover, R., Li, C., Onose, N., Vernica, R.,
Deutsch, A., Papakonstantinou, Y., Tsotras, V.J.: ASTERIX: Towards a Scal-
able, Semistructured Data Platform for Evolving-world Models. Distrib. Parallel
Databases 29, 185–216 (2011)

55. XQuery 1.0: An XML Query Language (December 2011),
http://www.w3.org/TR/xquery/

56. Battré, D., Ewen, S., Hueske, F., Kao, O., Markl, V., Warneke, D.:
Nephele/PACTs: A Programming Model and Execution Framework for Web-Scale
Analytical Processing. In: Proceedings of the 1st ACM Symposium on Cloud Com-
puting, SoCC 2010, pp. 119–130. ACM, New York (2010)

57. DeWitt, D.J.: DIRECT - A Multiprocessor Organization for Supporting Rela-
tional Data Base Management Systems. In: Proceedings of the 5th Annual Sym-
posium on Computer Architecture, ISCA 1978, pp. 182–189. ACM, New York
(1978)

58. Downes-Powell, G.: What is a PROM Chip? (December 2011),
http://www.ehow.com/info_10005464_prom-chip.html

59. FPGA Central: History of the Programmable Logic (December 2011),
http://www.fpgacentral.com/docs/

fpga-tutorial/history-programmable-logic

60. Brown, S., Rose, J.: Architecture of FPGAs and CPLDs: A Tutorial. IEEE Design
and Test of Computers 13, 42–57 (1996)

61. EngineersGarage: Field Programmable Gate Array (FPGA) (December 2011),
http://www.engineersgarage.com/articles/fpga-tutorial-basics

62. Mueller, R., Teubner, J., Alonso, G.: Data Processing on FPGAs. Proc. VLDB
Endow. 2, 910–921 (2009)

63. Mueller, R., Teubner, J., Alonso, G.: Sorting Networks on FPGAs. The VLDB
Journal, 1–23, doi:10.1007/s00778-011-0232-z

64. Mitra, A., Vieira, M.R., Bakalov, P., Tsotras, V.J., Najjar, W.A.: Boosting XML
Filtering Through a Scalable FPGA-based Architecture. In: CIDR (2009)

65. Greaves, D., Singh, S.: Kiwi: Synthesis of FPGA Circuits from Parallel Programs.
In: 16th International Symposium on Field-Programmable Custom Computing
Machines, FCCM 2008, pp. 3–12 (April 2008)

66. Netezza (December 2011),
http://www.netezza.com/data-warehouse-appliance-products/index.aspx

67. Kickfire (December 2011), http://www.kickfire.com/
68. Scofield, T., Delmerico, J., Chaudhary, V., Valente, G.: XtremeData dbX:

An FPGA-Based Data Warehouse Appliance. Computing in Science Engineer-
ing 12(4), 66–73 (2010)

http://msdn.microsoft.com/en-us/library/bb397926.aspx
http://www.w3.org/TR/xquery/
http://www.ehow.com/info_10005464_prom-chip.html
http://www.fpgacentral.com/docs/fpga-tutorial/history-programmable-logic
http://www.fpgacentral.com/docs/fpga-tutorial/history-programmable-logic
http://www.engineersgarage.com/articles/fpga-tutorial-basics
http://www.netezza.com/data-warehouse-appliance-products/index.aspx
http://www.kickfire.com/

148 M. Saecker and V. Markl

69. GPGPU.org: About GPGPU (December 2011), http://gpgpu.org/about
70. NVIDIA: CUDA: Parallel Programming Made Easy (December 2011),

http://www.nvidia.com/object/cuda_home_new.html

71. Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Han-
rahan, P.: Brook for GPUs: Stream Computing on Graphics Hardware. ACM
Transactions on Graphics 23, 777–786 (2004)

72. Khronos Group: The Khronos Group Releases OpenCL 1.0 Specification (Decem-
ber 2011), http://www.khronos.org/news/press/
the khronos group releases opencl 1.0 specification

73. Microsoft: DirectX 11 DirectCompute: A Teraflop for Everyone (December 2011),
http://www.microsoft.com/download/en/

details.aspx?displaylang=en&id=16995

74. Top500.org: Top 500 Supercomputers (November 2011),
http://www.top500.org/list/2011/11/100

75. PCI-SIG: PCIe 3.0 FAQ (December 2011),
http://www.pcisig.com/news_room/faqs/pcie3.0_faq/#EQ2

76. NVIDIA: NVIDIAs Next Generation CUDA Compute Architecture: Fermi (De-
cember 2011), http://www.nvidia.com/content/PDF/
fermi white papers/NVIDIA Fermi Compute Architecture Whitepaper.pdf

77. NVIDIA: NVIDIA Tesla C2075 (December 2011),
http://www.nvidia.com/docs/IO/43395/NV-DS-Tesla-C2075.pdf

78. NVIDIA: NVIDIA CUDA C Programming Guide (2011)
79. Govindaraju, N., Gray, J., Kumar, R., Manocha, D.: GPUTeraSort: High Perfor-

mance Graphics Co-processor Sorting for Large Database Management. In: Pro-
ceedings of the 2006 ACM SIGMOD International Conference on Management of
Data, SIGMOD 2006, pp. 325–336. ACM, New York (2006)

80. Leischner, N., Osipov, V., Sanders, P.: GPU Sample Sort. In: 24th IEEE Inter-
national Symposium on Parallel and Distributed Processing (IPDPS), pp. 1–10
(2010)

81. Satish, N., Kim, C., Chhugani, J., Nguyen, A.D., Lee, V.W., Kim, D., Dubey,
P.: Fast Sort on CPUs and GPUs: A Case for Bandwidth Oblivious SIMD Sort.
In: Proceedings of the 2010 International Conference on Management of Data,
SIGMOD 2010, pp. 351–362. ACM, New York (2010)

82. Merrill, D.G., Grimshaw, A.S.: Revisiting Sorting for GPGPU Stream Architec-
tures. Technical Report CS2010-03, University of Virginia, Department of Com-
puter Science, Charlottesville, VA (2010)

83. Satish, N., Harris, M., Garland, M.: Designing Efficient Sorting Algorithms for
Manycore GPUs. In: Proceedings of the 2009 IEEE International Symposium
on Parallel & Distributed Processing, IPDPS 2009, pp. 1–10. IEEE Computer
Society, Washington, DC (2009)

84. Wassenberg, J., Sanders, P.: Faster Radix Sort via Virtual Memory and Write-
Combining. CoRR abs/1008.2849 (2010)

85. He, B., Lu, M., Yang, K., Fang, R., Govindaraju, N., Luo, Q., Sander, P.:
Relational Query Coprocessing on Graphics Processors. ACM Transactions on
Database Systems (TODS) 34(4), 21 (2009)

86. He, B., Yang, K., Fang, R., Lu, M., Govindaraju, N., Luo, Q., Sander, P.: Rela-
tional Joins on Graphics Processors. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pp. 511–524. ACM (2008)

87. Rao, J., Ross, K.A.: Cache Conscious Indexing for Decision-Support in Main
Memory. In: Proceedings of the 25th International Conference on Very Large Data

http://gpgpu.org/about
http://www.nvidia.com/object/cuda_home_new.html
http://www.khronos.org/news/press/the_khronos_group_releases_opencl_1.0_specification
http://www.khronos.org/news/press/the_khronos_group_releases_opencl_1.0_specification
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=16995
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=16995
http://www.top500.org/list/2011/11/100
http://www.pcisig.com/news_room/faqs/pcie3.0_faq/#EQ2
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/docs/IO/43395/NV-DS-Tesla-C2075.pdf

Big Data Analytics on Modern Hardware Architectures 149

Bases, VLDB 1999, pp. 78–89. Morgan Kaufmann Publishers Inc., San Francisco
(1999)

88. Kim, C., Chhugani, J., Satish, N., Sedlar, E., Nguyen, A.D., Kaldewey, T., Lee,
V.W., Brandt, S.A., Dubey, P.: FAST: Fast Architecture Sensitive Tree Search on
Modern CPUs and GPUs. In: Proceedings of the 2010 International Conference
on Management of Data, SIGMOD 2010, pp. 339–350. ACM, New York (2010)

89. Volk, P.B., Habich, D., Lehner, W.: GPU-Based Speculative Query Process-
ing for Database Operations. In: First International Workshop on Accelerating
Data Management Systems Using Modern Processor and Storage Architectures
(September 2010)

90. Advanced Micro Devices, Inc.: AMD Demonstrates World’s First Fusion APU at
Computex 2010 (December 2011),
http://www.amd.com/us/press-releases/Pages/

amd-demonstrates-2010june02.aspx

91. Intel Corporation: Intel Atom Embedded Processors (December 2011),
http://www.intel.com/content/www/us/en/processors/atom/

atom-processor.html

92. Advanced Micro Devices, Inc.: AMD Fusion Family of APUs: Enabling a Superior,
Immersive PC Experience (December 2011),
http://www.amd.com/us/Documents/48423_fusion_whitepaper_WEB.pdf

93. Feldman, M.: First HPC Cluster with AMD Fusion Chips Debuts at Sandia (De-
cember 2011), http://www.hpcwire.com/hpcwire/2011-11-02/
first hpc cluster with amd fusion chips debuts at sandia.html

94. Advanced Micro Devices, Inc.: Fusion for Servers (December 2011),
http://blogs.amd.com/work/2010/06/10/fusion-for-servers/

95. Intel Corporation: Intel Many Integrated Core Architecture (December 2011),
http://www.intel.com/content/www/us/en/architecture-and-technology/

many-integrated-core/intel-many-integrated-core-architecture.html

96. Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junkins,
S., Lake, A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T.,
Hanrahan, P.: Larrabee: A Many-core x86 Architecture for Visual Computing.
In: ACM SIGGRAPH 2008 Papers, SIGGRAPH 2008, pp. 18:1–18:15. ACM, New
York (2008)

97. Intel Corporation: Teraflops Research Chip (December 2011),
http://techresearch.intel.com/ProjectDetails.aspx?Id=151

98. Intel Corporation: Single-Chip Cloud Computer (December 2011),
http://techresearch.intel.com/ProjectDetails.aspx?Id=1

99. Intel Corporation: The SCC Platform Overview (December 2011),
http://techresearch.intel.com/spaw2/uploads/files/

SCC Platform Overview.pdf

100. Shilov, A.: Intel Shows Off ”Knights Corner” MIC Compute Accelerator (Decem-
ber 2011),
http://www.xbitlabs.com/news/cpu/display/20111115163857 Intel Shows

Off Knights Corner MIC Compute Accelerator.html

101. Fang, W., He, B., Luo, Q., Govindaraju, N.K.: Mars: Accelerating MapReduce
with Graphics Processors. IEEE Transactions on Parallel and Distributed Sys-
tems 22, 608–620 (2011)

http://www.amd.com/us/press-releases/Pages/amd-demonstrates-2010june02.aspx
http://www.amd.com/us/press-releases/Pages/amd-demonstrates-2010june02.aspx
http://www.intel.com/content/www/us/en/processors/atom/atom-processor.html
http://www.intel.com/content/www/us/en/processors/atom/atom-processor.html
http://www.amd.com/us/Documents/48423_fusion_whitepaper_WEB.pdf
http://www.hpcwire.com/hpcwire/2011-11-02/first_hpc_cluster_with_amd_fusion_chips_debuts_at_sandia.html
http://www.hpcwire.com/hpcwire/2011-11-02/first_hpc_cluster_with_amd_fusion_chips_debuts_at_sandia.html
http://blogs.amd.com/work/2010/06/10/fusion-for-servers/
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://techresearch.intel.com/ProjectDetails.aspx?Id=151
http://techresearch.intel.com/ProjectDetails.aspx?Id=1
http://techresearch.intel.com/spaw2/uploads/files/SCC_Platform_Overview.pdf
http://techresearch.intel.com/spaw2/uploads/files/SCC_Platform_Overview.pdf
http://www.xbitlabs.com/news/cpu/display/20111115163857_Intel_Shows_Off_Knights_Corner_MIC_Compute_Accelerator.html
http://www.xbitlabs.com/news/cpu/display/20111115163857_Intel_Shows_Off_Knights_Corner_MIC_Compute_Accelerator.html

An Introduction to Multicriteria Decision Aid:

The PROMETHEE and GAIA Methods

Yves De Smet and Karim Lidouh

Computer and Decision Engineering Departement CoDE-SMG, Ecole polytechnique
de Bruxelles, Université libre de Bruxelles, Belgium

yves.de.smet@ulb.ac.be

http://code.ulb.ac.be/∼yvdesmet

Abstract. Most strategic decision problems involve the evaluation of
potential solutions according to multiple conflicting criteria. The aim of
this chapter is to introduce some basic concepts of Multicriteria Decision
Aid (MCDA) with a special emphasis on the PROMETHEE and GAIA
methods. First, we will introduce the specific vocabulary of this research
area as well as traditional modelling issues. The main part of the pre-
sentation will be dedicated to explain in detail the PROMETHEE and
GAIA methods. Finally, an illustrative example will be analyzed with the
D-Sight software. This will highlight the added value of using interactive
and visual tools in complex decision processes.

Keywords: multicriteria decision aid, outranking methods,
PROMETHEE, GAIA.

1 Introduction

Multicriteria Decision Aid (MCDA) has been an active field of research for more
than 40 years. Summarizing it in a few pages is, of course, impossible. Conse-
quently, the only ambition of this chapter is to constitute a rough introduction
to the subject. Additionally, we have decided to detail a given methodology,
namely the PROMETHEE and GAIA methods, rather than to present an over-
simplified summary of different methods. As a consequence, the reader should
keep in mind that plenty of other approaches do exist and deserve attention (for
instance AHP [39], MAUT [20], ELECTRE [24], MACBETH [3], . . .).

As shown hereafter, a brief analysis of the terms ”multicriteria decision aid”
already allows the novice to understand the underlying motivations of this re-
search area [18]. It is, first of all, a decision aid activity (versus decisionmaking)
that has its root in the multicriteria paradigm. These statements will be fur-
ther commented in the next two subsections. We refer the interested reader to
[2,8,18,36,37,40,43,44] for detailed discussions.

1.1 What Is Decision Aid ?

Selecting an investment project, appointing a new employee, choosing a site to
establish a garbage dump, diagnosing a disease, etc. All these examples show

M.-A. Aufaure and E. Zimányi (Eds.): eBISS 2012, LNBIP 138, pp. 150–176, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

An Introduction to MCDA: The PROMETHEE and GAIA Methods 151

that deciding is a complex activity that, in many cases, can have important
consequences.

A decision is, first of all, the result of a more or less time consuming process
that is made of partial decisions, negotiations and learning phases, search for
(additional) information, etc. During this process, new potential solutions can
appear while others become not feasible anymore. The context of the problem can
be such that the evaluation of the potential solutions has to be made according
to several conflicting points of views (possibly integrating subjective elements).
The data are often imprecise, uncertain or simply not available. Social, economic
and political constraints further increase the complexity of the decision process.
Finally, most decisions involve several actors with different interests and goals.

Facing the complexity of this activity, one may try to build a model i.e. an
abstraction of the reality that will be used, during the decision process, as a
support for investigation and communication. The limited, approximate, and
imperfect nature of this model has to remind us of its modesty. This observation
has led Bernard Roy [37] to define decision aid as follows:

Definition 1. Decision aiding is the activity of the person who, through the use
of explicit but not necessary completely formalized models, helps obtain elements
of responses to the questions posed by a stakeholder1 in a decision process. These
elements work towards clarifying the decision and usually towards recommend-
ing, or simply favoring, a behavior that will increase the consistency between the
evolution of the process and this stakeholder’s objectives and value system.

1.2 What Is Multicriteria Decision Aid ?

In the fifties, the pioneers of Operational Research (O.R.) were convinced of
the natural and promising applicability of their models. Twenty years later, the
reality was somewhat different: some problems had been successfully treated by
using classic operational research tools while, in other cases, their application
had disappointed [35].

As noted by Schärlig [40], the success stories were essentially related to situa-
tions where the decision problem could have been isolated from its context: the
search for optimal mixtures, an optimal traveling salesman problem, an optimal
stock management, etc. In the other cases, the underlying assumptions of classic
OR models appeared to be too restrictive to constitute an adequate model of
the reality.

Indeed, most of unicriterion optimisation approaches rely on the following
(implicit) assumptions [40]:

– stable set of actions: the set of alternatives is assumed to be known prior
to the analysis and to remain unchanged during the decision process. On
contrary, in most decision problems, new alternatives can appear during the
analysis while others become not topical anymore.

1 Here, the term stakeholder refers to any individual or entity that may intervene in
the decision making process.

152 Y. De Smet and K. Lidouh

– exclusive actions: every alternative is assumed to perfectly reflect all the
facets of the problem.

– transitivity: the preferences of the Decision Maker (DM) are assumed to be
transitive. As a consequence it is possible to rank the alternatives from the
worst to the best one and thus to find a so-called optimal solution.

Among the critics listed above, the one related to the non-transitivity of pref-
erences is definitively the most crucial one. Indeed, in unicriterion optimisation
models, one assumes that the decision maker is able to determine admissible al-
ternatives i.e. those satisfying a given set of constraints. Then, these admissible
alternatives are ranked according to the unique criterion (that is assumed to per-
fectly represent the preferences of the decision maker). Therefore it is possible to
rank the alternatives from the worst to the best and to find a so-called “optimal”
solution2. As a consequence, in unicriterion optimisation models, the apparent
universality of the optimal solution concept leads the analyst3 to search for a
hidden truth [18,37,40,45].

”Where are you going on holidays next year?” This question has nothing to
do with a complex optimisation or strategical decision problem. Yet it allows to
illustrate the problem induced by multicriteria evaluations. Table 1 summarizes
a fictitious problem. If you only consider the price, you shoud go hiking in the
montains. If you only consider to party, Ibiza is the best alternative. Obviously,
there is no objective best ranking and therefore, no objective optimal solution
(due to the conflicting nature of the criteria). If one agrees with these evalua-
tions, the only objective information that could be stressed is that visiting the
Pyramids in Egypts is a better choice than selecting a cruise in the Bahamas
(since it is at least as good for all the criteria and strictly better for the price
and culture). Then, you cannot compare the three other alternatives without
adding subjective judgments such that the criterion party is more important
than culture, etc.

As stressed in the previous example, the notion of optimal solution no longer
exists in multicriteria contexts; researchers will rather look for compromise so-
lutions i.e. solutions that are “globally good” according to the different criteria
(without necessarily being the best for a given criterion) and that are not too
bad on any given criterion.

We end this section by giving a few examples inspired by real applications.
These will serve us through the chapter to illustrate the different concepts and
methods.

Example 1. The Portfolio Management Problem (PMP). Let us consider
a set of n equities and an investment capital K. The portfolio management

2 In most cases, an alternative that is optimal for a specific criterion will not be optimal
for another criterion (on the contrary, it is likely to be a bad solution according to
this second point of view). In fact, most of people interpret the term optimal solution
in an erroneous way because they assign it to a global meaning. On the contrary, in
practice, one should ask the question ”optimal with respect to which criteria?”

3 i.e. the person that helps the decision maker during the decision process.

An Introduction to MCDA: The PROMETHEE and GAIA Methods 153

Table 1. The holidays problem

Type Price Exostism Culture Sports Party
Cruise in the Bahamas Very expensive Very good Low Low Low
Pyramids in Egypt Medium Very good Very good Low Low

Hiking in the mountains Very low Very low Very low High Low
Party in Ibiza Low Medium Very low Good Outstanding

problem can be stated as follows: ”How much do we have to invest in the different
equities in order to maximize the expected return and to minimize the risk?”
This famous question was first addressed by Markowitz [34]. Of course, there
is not a unique portfolio that could be objectively considered as the best one
(since the two criteria are in conflict: increasing the expected return will also
increase the risk). In this problem, a crucial step is thus to compute the so-called
Pareto-optimal frontier i.e. the set of portfolios such that the expected return
cannot be increased without also increasing the risk (see Fig. 1; dots represent
potential portfolios - the continuous curve represent the Pareto-optimal frontier).
Once this set has been identified, the decision maker will have to select a given
combination that best fit his risk aversion (or in other words his preferences).
Let us stress that this bi-objective optimisation problem can easily be extended
to the optimisation of other criteria such as liquidity, robustness, etc.

Risk

Expected return

Fig. 1. Bi-objective portfolio problem

Example 2. The Criminality Assessment Problem (CAP). The Belgian po-
lice records statistics about criminal activities. These facts belong to predefined
crime types such as robbery, road accidents, murders, burglary, sex offenses, pros-
titution, fraud, vandalism, etc. The severity of each crime type can be assessed
according to different points of views: number of deaths, number of victims,
financial impacts, social impacts, evolution over the last 5 years, type of organi-
zations, etc. Every year, a ranking of these crime types is performed. This allows
to allocate human, financial and material resources to efficiently fight the most

154 Y. De Smet and K. Lidouh

severe activities. Of course, modelling the severity of these crime types is not
easy. If we consider the number of deaths, the worst crime type is related to
road accidents. On the other hand, this is not related to criminal organizations
and other related illegal activities such as in the case of prostitution. Vandalism
is not characterized by a high number of victims or deaths and is not directly
related to important criminal organizations however it has a high social impact,
etc.

Example 3. The Diagnosis of Alzheimer’s Disease (DAD). Being able to
detect Alzheimer’s disease is naturally of the uttermost importance. Any patient
can be characterized by a set of criteria that are related to it. These encompass
the age, heredity, etc. but also results to well-established memory tests. Given
the evaluation of a patient, the problem consists of verifying if he or she suffers
from this disease and assessing its severity. Once it is detected, one may consider
three different grades: mild, medium, or severe.

Example 4. The Academic Ranking of World Universities (ARWU). As-
sessing the academic quality of world universities has become a topical issue over
the last years. Based on criteria such as the number of articles published in top
quality scientific journals, the number of awards received by alumni, etc. one es-
tablishes a ranking of institutions. If the so-called Shanghai ranking was initially
developed to quantify the gap between Chinese and international universities, it
is nowadays considered as a reference ranking that has been integrated in pub-
lic life (see also section 3.3). Let us note that these rankings remain subject to
criticism and has recently initiated a lot of debates [7].

2 Main Concepts and Terminology

Facing the complexity of a decision problem, the decision maker (DM) tries to
rationalize it. Therefore, he has to identify the key elements that will intervene in
the decision process i.e. the object of the decision, the set of potential solutions, a
way to evaluate and compare them, the factors that can influence the decision(s),
etc. This structuring phase is at the core of any multicriteria decision aid activity.

In this section, we will introduce the basic terminology that is used within
the MCDA community and, consequently, increase the reader’s awareness of the
MCDA problem’s formulation.

2.1 The Alternatives

At first, let us introduce the notion of an action. Intuitively, actions are the set
of objects, alternatives, items, candidates, projects, potential decisions, etc. on
which the decision is based. More formally,

Definition 2. [38] An action is a generic term used to designate that which
constitutes the object of the decision, or that which decision aiding is directed
towards.

An Introduction to MCDA: The PROMETHEE and GAIA Methods 155

In what follows, we will denote the set of actions A = {a1, . . . , an}. As stressed
by Vincke [45], A can be:

– stable: if A can be defined a priori and is not likely to change during the
decision process;

– evolutive: if, on the contrary,A is likely to change during the decision process.
Indeed, the decision process being an dynamic activity, intermediary results
and/or the potential evolution of the decision context can lead to consider
new actions while others are not topical anymore.

Furthermore, let us stress that A is said to be globalized, if each element of A
excludes any others, and fragmented if it is not the case i.e. if combinations of
elements from A constitute possible outcomes of the decision process. Finally,
one generally distinguishes contexts where A can be defined by extension (the
cardinality of A is finite and relatively small. As a consequence, its elements
can be enumerated) and situations where it is defined by comprehension (the
cardinality of A is infinite or relatively high. The elements of A are identified as
those satisfying a set of specific constraints).

In the Criminality Assessment Problem, the alternatives are the different pre-
defined crime types. The set of alternatives is defined by extension (since its
elements can be easily enumerated) and stable (unless a new form of crime type
appears). In the Portfolio Management Problem, the set of alternatives is defined
by comprehension i.e. all the investment options that do not exceed the capital
limit.

2.2 The Criteria

Once the set A has been determined, one has to characterize the actions (accord-
ing to different points of views). This is formalized by the notion of criterion.

Definition 3. [45] A criterion is a function f , defined on A taking its value in
a totally ordered set and representing the decision maker’s preferences according
to some point of views.

f : A → E ,where E is a totally ordered set

Without loss of generality, we will assume that all criteria have to be minimized4.
Let fj(ai) denote the evaluation of action ai according to the criterion fj . Let
us assume that q distinct criteria are involved in the decision problem and let
F = {f1, . . . , fq} be the set of all criteria.

In the previous definition, we see that the only restriction about E is the fact
that it is a totally ordered set. In other words, given two elements e, e′ ∈ E
it is always possible to state if e � e′, e = e′ or e′ � e. The poorest scale
that respects this condition is the ordinal one. Of course, richer scales can be

4 We assume that any totally ordered set E can be represented by real numbers. If a
given criterion has to be maximized, taking the symmetric values of the evaluations
allows to consider it as a criterion to be minimized.

156 Y. De Smet and K. Lidouh

considered such interval or ratio scales (see [10]). These differ with respect to the
kind of mathematical operations that are allowed. In the Diagnosis of Alzheimer’s
Disease, one may consider the judgment of a physican about the severity of the
disease. Five values could be considered: very bad, bad, medium, good and very
good. Even if these values are coded using respectively the numbers 0,1,2,3,4,
one may only state that 1 is worst than 2 (bad is worst than medium). Saying
that medium is two times better than bad is not correct (since this depends on
the arbitrary nature of the coding). When modelling a multicriteria problem, the
decision maker should always keep in mind the nature of the scale characterizing
the different criteria since this will restrict the kind of mathematical operations
that are allowed.

At this point of the analysis, the only objective information that can be ex-
tracted from the decision problem is based on the Pareto dominance relation:

Definition 4. Let D denote the Pareto dominance relation i.e. aDb ⇔ fj(a) ≤
fj(b)∀j ∈ {1, . . . , q} and ∃k ∈ {1, . . . , q}|fk(a) < fk(b).

This relation leads to distinguish efficient and dominated actions from A.

Definition 5. An action a is said to be efficient if � b ∈ A : bDa

If the purpose of the Decision Maker is to select a single action, he would be
tempted to first remove all dominated actions fromA. Unfortunately, the number
of remaining efficient actions will still remain important (since generally there
is no action that is simultaneously the best for all the criteria). On the other
hand, one can explicitly build a virtual action, called observed ideal point, that
satisfies the aforementioned condition:

Definition 6. The observed ideal point, i(A), associated to A, is the point the
coordinates of which are (i(A)1, . . . , i(A)q) where:

i(A)j = min
a∈A

fj(a)

Since the ideal point (or assimilated actions i.e. that are the best for all criteria)
does not usually belong to A, the notion of optimal solution is not adapted to
multicriteria problems. On the contrary, in most cases, the presence of conflict-
ing criteria will lead the decision maker to rather focus on compromise solutions
among efficient alternatives. As a consequence, he will be forced to express sub-
jective judgements in order to make trade-offs between the different criteria,
to interpret the evaluation scales, etc. Naturally, this leads to the question of
formally modelling his preferences.

2.3 Preference Modelling

As already stressed, most multicriteria decision aid problems cannot be solved if
we simply rely on the dominance relation (since the cardinality of the efficient set
is too high). Therefore, additional information has to be asked to the decision

An Introduction to MCDA: The PROMETHEE and GAIA Methods 157

maker. This leads to the parametrization of a particular mathematical model
to represent in the best possible way the choice of given decision maker. As a
consequence, it is crucial to be able to represent his preferences in a formal way.
This section will introduce the basics of preference modelling.

When modelling the decision maker’s preferences, one usually distinguishes
the three following binary relations5: Preference (P), Indifference (I) and Incom-
parability (J), which result from the comparison between two actions ai and
aj ∈ A ⎧⎨

⎩
aiPaj if ai is preferred to aj
aiIaj if ai is indifferent to aj
aiJaj if ai is incomparable to aj

Indeed, these relations translate situations of preference, indifference and incom-
parability and it can be assumed that they satisfy the following requirements:

∀ai, aj ∈ A

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

aiPaj =⇒ ai¬Paj : P is asymmetric
aiIai : I is reflexive
aiIaj =⇒ ajIai : I is symmetric
ai¬Jai : J is irreflexive
aiJaj =⇒ ajJai : J is symmetric

Definition 7. [45] The three relations {P, I, J} make up a preference structure
on A if they satisfy the above conditions and if, given any two elements ai, aj of
A, one and only one of the following properties is true: aiPaj , ajPai, aiIaj, aiJaj.

Intuitively [37]:

– aPb corresponds to the existence of clear and positive reasons that justify
significant preference in favor of a;

– aIb corresponds to the existence of clear and positive reasons that justify
equivalence between the two actions;

– aJb corresponds to an absence of clear and positive reasons that justify any
of the two preceding relations.

In the classic unicriterion optimisation models, the pairwise comparisons of ac-
tions can only lead to two situations: preference or indifference. In the same
way, many multicriteria methods, such as multi-attribute utility functions for
instance, aggregate all the criteria into a unique (artificial) value and, therefore,
transform the multicriteria problem into a unicriterion optimisation problem. In
this context, both the indifference and preference relations are assumed to be
transitive. These assumptions have, nevertheless, been criticized by several au-
thors. For example, Luce [30] illustrates the non-transitivity of the indifference
relation with the following example: let us consider 401 cups of coffee, noted
C0, C1, . . . , C400. One assumes that the cup Ci contains exactly (1 + i

100) grams
of sugar. In this context, any normal person is unable to differentiate two succes-
sive cups. Therefore, we have: C0IC1, C1IC2, C2IC3, . . . , C399IC400. However, it
is obvious that nobody will state C0IC400.

5 R is a binary relation on A ⇔ R ⊆ {(ai, aj)|ai, aj ∈ A}

158 Y. De Smet and K. Lidouh

Let us note that some authors [37] further enrich the previous structure by a
relation Q which stands for a weak preference relation (versus the strict prefer-
ence relation P). In other words, if aiQaj , the decision maker knows that aj¬Pai
but cannot clearly choose between aiIaj or aiPaj. However this specific relation
will not be considered in the present work.

The potential presence of incomparability is a distinctive feature of the so-
called French school of multicriteria decision aid. As already stressed, aJb is
stated when the decision maker cannot clearly choose among the three possibili-
ties: aPb, bPa or aIb. This can happen, for instance, due to a lack of information,
to uncertainty or conflicting preferences (see [37] for illustrative examples).

Finally, let us define the relation S = (P ∪ I). Thus, aiSaj will stand for ai
is at least as good as aj . A direct consequence of this definition is:

∀ai, aj ∈ A

⎧⎨
⎩

aiPaj ⇔ aiSaj , aj¬Sai
aiIaj ⇔ aiSaj , ajSai
aiJaj ⇔ ai¬Saj , aj¬Sai

We refer the interested reader to [9] for a detailed introduction to binary relations
and preference modelling.

Until now, we have restricted ourselves to binary relations for preference mod-
elling. Let us note that another important trend relies on valued relations. This
will be illustrated in section 3.1 which presents the PROMETHEE methods.

2.4 Consistent Family of Criteria

A fundamental difficulty in multicriteria decision aid is to represent the decision
maker’s preferences on the basis of the evaluations of the actions according to
the different criteria. The selection of these criteria is thus a crucial first step of
the modelling activity. One way to formalize this selection is to require certain
properties such as exhaustivity, cohesion and non redundancy. Intuitively:

– exhaustivity: if ai and aj are two actions that are identical with respect to
all criteria, then one cannot have aiPaj , ajPai or aiJaj . Should one of these
relations hold, then at least one other differentiating criterion would have
been forgotten and would thus ought to be added to the set of considered
criteria.

– cohesion: let us assume that ai and aj are indifferent (aiIaj). Weakening ai
and reinforcing aj on one criterion (different or the same) lead to ai(P ∪I)aj .
This condition ensures some coherence between the criteria and the global
preferences.

– non redundancy: the family of criteria F = {f1, f2, . . . , fq} does not con-
tain any redundant criteria in the sense that the family obtained by removing
any single criterion fj from F would violate at least one of the two previous
conditions.

These three properties put together allows to define a consistent family of
criteria. We refer the interested reader to [5,26,29,37] for formal definitions.

An Introduction to MCDA: The PROMETHEE and GAIA Methods 159

2.5 The Different Multicriteria Problematics and Methods

Now that the basic multicriteria terminology and notions have been introduced,
we are ready to define a multicriteria decision problem is.

Definition 8. [45] A multicriteria decision problem can be defined as a situation
where given a set of actions A and a consistent family of criteria F over A, we
want to solve one of the following problems:

– determine a subset of actions considered as the best considering F (choice
problem),

– partition A in subsets with respect to pre-established norms (sorting prob-
lem), or

– rank order the set of actions A from best to worst (ranking problem).

Of course, many real problems involve a mixture of these three main issues.
Moreover, additional considerations may be cited:

– The description problem: helps to describe actions and their conse-
quences in a formalized and systematic manner to develop a cognitive pro-
cedure [37].

– Choosing k among m actions [2]: this problematic can be viewed as a
mixed of choice and ranking problematics.

– The design problem: to search for, identify or create new decision alterna-
tives to meet the goals and aspirations revealed through the MCDA process
[6].

– The porfolio problem: to choose a subset of alternatives from a larger
set of possibilities, taking into account not only the characteristics of the
individual alternatives, but also the manner in which they interact (their
positive and negatives synergies [6]).

– The clustering problem: to define homogeneous groups of alternatives
with respect to the preferences of the decision maker. These can be ordered
(see for instance [21]) or nominal (see for instance [19]).

Of course, the different problematics allow to clearly identify the final goal of
the decision. Obviously, in the Portfolio Management Problem, we are facing a
choice problematic since we are looking to select a given portfolio from the Pareto
Optimal frontier (α problematic). By definition, in the Criminality Assessment
Problem, we are trying to rank the different crime types (β problematic). In the
Diagnosis of Alzheimer’s Disease, we are sorting a given patient into one of the
following categories: healthy, mild, medium, severe (γ problematic).

Different methods have been developed in order to address these problematics.
Without being exhaustive, we can distinguish three main families [45]:

– Interactive methods: these techniques are based on strong interactions
with the Decision Maker. After a first computation step, an initial solution
is proposed. If the current solution is not satisfying, the DM reacts by pro-
viding additional information about his preferences (for instance; ”I would

160 Y. De Smet and K. Lidouh

like to improve the value of the current solution on a specific criterion and,
therefore, I do accept to deteriorate it on other criteria”). This information
is integrated in the optimization model and a new solution is computed. The
process is repeated until it converges towards a satisying solution (see [28]);

– Multiple attribute utility theory: these methods rely on the assumption
that all criteria can be aggregated into a single function that has to be
optimized. Therefore, the multicriteria problem is transformed into a single
optimization problem (see for instance UTA [41], AHP [39], MACBETH [3],
etc.);

– Outranking methods: these approaches are based on the construction and
the exploitation of an outranking relation [45]:

Definition 9. An outranking relation is a binary relation S defined in A
such that aSb if, given what is known about the decision-maker’s preferences
and given the quality of the evaluation of the actions and the nature of the
problem, there are enough arguments to decide that a is at least as good as
b, while there is no essential reason to refute the statement (Bernard Roy).

Major families of outranking methods are ELECTRE [24] and PROMETHEE
[17].

3 The PROMETHEE and GAIA Methods

3.1 PROMETHEE

PROMETHEE 6 I (partial ranking) and PROMETHEE II (complete ranking)
were developed by J.P. Brans and presented for the first time in 1982 at a
conference organized by R. Nadeau and M. Landry at the Université Laval,
Québec, Canada (L’Ingénierie de la Décision. Elaboration d’Instruments d’Aide
à la Décision). Since this seminal work, a lot of developments [11,13,16,17] have
been proposed including visual representations [33], tools for robustness and sen-
sitivity analysis [14,32], an extension to address the portfolio problematic, called
PROMETHEE V, etc. More recently, a literature review [4] listed more than
200 PROMETHEE-based papers published in 100 different journals. The appli-
cation fields cover finance, health care, logistics and transportation, hydrology
and water management, manufacturing and assembly, etc.

The PROMETHEE methods are based on pairwise comparisons. When com-
paring two actions ai and aj on criterion fk, the difference of evaluations between
these two actions should be taken into account. Assuming that criterion fk has
to be minimized, this difference can be stated as follows,

dk(ai, aj) = fk(aj)− fk(ai)

6 PROMETHEE is the acronym of Preference Ranking Organisation METHod for
Enrichment Evaluations.

An Introduction to MCDA: The PROMETHEE and GAIA Methods 161

When the difference dk(ai, aj) is small and the DM can neglect it, there is no
reason to say that ai is preferred to aj and consequently the actions are indif-
ferent (for the specific criterion fk). The higher the value of dk, the larger the
preference Pk(ai, aj) in favor of ai over aj, on criterion fk. This preference can
be defined through a preference function in the following way,

Pk(ai, aj) = Hk(dk(ai, aj)), ∀ ai, aj ∈ A
and we can assume that Pk(ai, aj) ∈ [0, 1] (if Pk(ai, aj) > 0, then Pk(aj , ai) = 0).

The pair (fk, Pk(ai, aj)) is called a generalized criterion associated with cri-
terion fk, for all k ∈ {1, . . . , q}. Generally, 6 types of generalized criteria are
considered. Generalized criterion of type 5 requires the definition of both qk and
pk (see Fig. 2). The value pk is called the preference threshold and is defined
as the smallest difference on criterion fk between actions for which the deci-
sion maker can say without a doubt that he prefers the better one. Similarly,
qk is called the indifference threshold and is defined as the biggest difference on
criterion fk for which the decision maker can say without a doubt that he is
indifferent between the two actions.

1

qk pk dk(ai,aj)

Pk(ai,aj)

Fig. 2. Generalized criterion of type 5

Once the preference degrees between two actions ai and aj have been com-
puted for every criterion, one needs to aggregate this marginal contribution to
obtain P (ai, aj) i.e. a global measure of the preference of ai over aj . This is per-
formed using a classical weighted sum (ωk is assumed to be the weight associated
to criterion fk):

P (ai, aj) =

q∑
k=1

ωk · Pk(ai, aj)

162 Y. De Smet and K. Lidouh

P (ai, aj) represents the valued preference of ai over aj (and not a binary pref-
erence as introduced in Section 2.3). Obviously, we have

P (ai, aj) ≥ 0

and
P (ai, aj) + P (aj , ai) ≤ 1.

The fundamental idea underlying the PROMETHEE methods is the quantifica-
tion of how an action a outranks all the remaining (n− 1) actions and how a is
outranked by the other (n − 1) actions. This idea leads to the definition of the
positive φ+(a) and negative φ−(a) outranking flows. More formally:

φ+(ai) =
1

n− 1

∑
aj∈A,i�=j

P (ai, aj)

φ−(ai) =
1

n− 1

∑
aj∈A,i�=j

P (aj , ai)

Given these two measures, two total pre-orders7 of A can be obtained (one
associated to the values of φ+ and another associated to the values of φ−).
The intersection of these two pre-orders leads to a partial pre-order called the
PROMETHEE I ranking. In this context, two actions ai and aj will be judged to
be incomparable if φ+(ai) > φ+(aj) and φ−(ai) > φ−(aj) or if φ+(ai) < φ+(aj)
and φ−(ai) < φ−(aj).

On the other hand, the complete pre-order obtained with the PROMETHEE
II method is based on the net flow φ(ai) assigned to each action ai ∈ A.

φ(ai) = φ+(ai)− φ−(aj)

Let us note that,

φ(ai) =
1

n− 1

q∑
k=1

∑
aj∈A

{Pk(ai, aj)− Pk(aj , ai)} · ωk =

q∑
k=1

φk(ai) · ωk

where φk(ai) is called the kth unicriterion net flow assigned to action ai. Intu-
itively, these values allow to better position action ai, according to criterion fk,
with respect to all the other actions in A.

In addition to these rankings, Mareschal and Brans [33] have proposed a ge-
ometrical tool that helps the decision maker both to interactively explore and
structure the decision problem, and to better understand the results provided
by the PROMETHEE rankings. This is referred to as the GAIA plane. The
underlying idea of this approach is to perform a principal components analysis
on the unicriterion net flows assigned to each action [16]. This will be further
developed in the next section.

7 A pre-order is a binary relation that is both transitive and reflexive.

An Introduction to MCDA: The PROMETHEE and GAIA Methods 163

3.2 GAIA and Its Interpretation

When we take our set of alternatives into account, it is often difficult to get a
visual representation of it because of the numerous criteria that we try to keep in
mind. Indeed, if we think of a multidimensional space defined by taking each of
those criteria into account, the alternatives could be represented as points that
each have specific coordinates depending on their evaluations. Such a space is
represented in Fig. 3 with a set of actions positioned with respect to five criteria.
Of course, it is impossible to represent a five dimensional space on paper and
the representation in Fig. 3 is merely a projection of the actual space on a two
dimensional plane. Furthermore, if the view point of such a projection is poorly
chosen, the representation will rarely teach us anything useful.

Cost

Quality

Delay

Performances

Risk

b

c
a

gi

o

fe

r

t
m

j
k

d

q

n

s
l

p

h

Fig. 3. Criteria space

The aim of GAIA8 will be to find the best view point for this multidimensional
space in order to extract as much information as possible from the representation.
In order to do that we are going to resort to a Principal Component Analysis
(PCA) applied on the unicriterion net flows φk(ai) computed by PROMETHEE.
This will ensure that the actions we represent will be defined as they are seen
by the decision maker. Indeed, the unicriterion net flows contain information on
how the decision maker perceives the different criteria and compares the actions
pair by pair.

Let us consider a matrix Φ that contains all the unicriterion net flows for our
problem. We have:

Φ = (φk(ai)) ∀ai ∈ A; k ∈ {1, 2, ...q}
We begin by calculating the variance-covariance matrix C of our problem.

nC = Φ′Φ
8 GAIA is the acronym of Graphical Analysis for Interactive Assistance.

164 Y. De Smet and K. Lidouh

We then compute the eigenvectors and eigenvalues of matrix C. All of these
eigenvectors are orthogonal because of the properties of matrix C and they each
indicate a direction towards which we have a certain dispersion of the alterna-
tives’ positioning. That dispersion is given to us by the respective eigenvalues of
each vector.

Finally, we select the two eigenvectors u and v with the highest associated
eigenvalues λ1 and λ2 and use those to define a two-dimensional plane in
the criteria space. This plane will be the canvas that will be used to repre-
sent the decision problem and all of its defined elements (i.e. the actions, the
criteria, the direction of the best compromise).

Since we have selected the vectors with the highest eigenvalues to define our
plane, it means the plane will capture the maximum dispersion of the alternatives
in two dimensions. It is also possible to evaluate the amount of information kept
that way. That amount is called the delta value of the plane and is denoted δ:

δ =
λ1 + λ2

q∑
k=1

λk

Once the plane for the projection has been defined, we project the actions de-
fined by their coordinates (i.e. the unicriterion net flows) on it. The actions’
coordinates in the criteria space can be written as:

αi : (φ1(ai), φ2(ai), ..., φk(ai), ..., φq(ai)), ∀ai ∈ A
The projection of the actions can thus be found as follows:{ |Opi| = α′

iu
|Oqi| = α′

iv.

We then add the projection of the axes ek representing each criterion on the
plane:

ek : (0, 0, . . . , 1, 0, . . . , 0) k ∈ {1, 2, ..., q}.
Those projections are denoted ck.

Finally, to give an idea of which actions are closest to the best compromise,
we add the projection of the weights vector.

w : (w1, w2, . . . , wk, . . . , wq).

That projection is often referred to as the decision stick and is computed as
follows:

π =

q∑
k=1

ck · wk,

where wk is the k-th coordinate of the normalised vector corresponding to w i.e.
w = w/|w|.

When all of the components have been added, we are able to display a projec-
tion similar to the one on Fig. 4. All of these elements and their relative positions
can now be interpreted.

An Introduction to MCDA: The PROMETHEE and GAIA Methods 165

Cost

Quality
Delay

Performances

Risk

b

c

a

g

i

o

f

e
r

t

m

j

k

d

q

n

s

l

p

h

π

δ = 78%

Fig. 4. GAIA plane

– Positions of the criteria: The orientation of the axes will indicate which
criteria are compatible and which ones are in conflict. We can see for example
that in the case of Fig. 4 the axes for “Quality” and “Performances” are very
close to each other and therefore compatible. That means that we can easily
find alternatives that excel in both quality and performance simultaneously,
or, on the contrary, that some alternatives have bad evaluations on both of
these criteria. Also, we can notice that “Cost” and “Delay” are in conflict
because they are pointing towards very different directions. The same can
be said for “Quality” and “Risk”. This means that it is very difficult to find
an action that presents good scores on both criteria for each pair. Usually,
when an action is good on one of those criteria, it is bad on the other.

Furthermore, the size of the criteria axes will point out the discriminant
criteria within the problem. Indeed, since the plane has been chosen to cap-
ture the maximum variation of the actions, the criteria that do not present a
high enough variation of the evaluations will likely end up being orthogonal
to the plane. In this last case we can see that all the criteria axes have a
relatively good size with the exception of “Risk”. We can therefore say that
the risk measured on the actions for this problem does not differentiate them
as well as the other criteria do.

– Position of the decision stick π: In this multivariate view, the indication
of an objective is of high importance. It will indicate us the importance
that the decision maker has given to each criterion. In the representation
on Fig. 4, the decision stick points slightly more towards “Quality” and

166 Y. De Smet and K. Lidouh

“Performances” than the other criteria. The weight associated to those two
criteria must therefore be bigger than for criteria such as “Risk” or “Delay”.
Of course, changing the weights i.e. the relative importances of the criteria,
will change the direction of the decision stick and make it point in a different
direction.

– Relative positions of the alternatives: Groups of alternatives on the
plane will represent solutions with similar profiles. Actions o, p, q, and s
seem to have the same characteristics. But also, alternatives b, n, and t have
very different profiles that ultimately give them projections very far from
each other.

– Positions of the alternatives (according to the criteria): The location
of an alternative on the plane will give us an indication on the type of profile
it has. It will point out the strongest and weakest features of a solution. By
taking a look at the actions in the direction of each criterion, we can see that
actions n and f have strong evaluation in quality and performances but low
ones on risk. Action t has a good evaluation on delay and a fairly good one
regarding risk. Actions a, b, c, and d are oriented towards costs and behave
poorly in terms of delay. Actions m and j are good on cost, quality, and
performance, but bad on delay and risk.

– Positions of the alternatives (according to the decision stick): When
projected on the decision stick, the alternatives take their positions from the
PROMETHEE II ranking. Even though the ranking inferred from a projec-
tion could present differences due to loss of data, it still is an interesting use
of the tool when more precise information is not available. In our example,
the inferred ranking we obtain would be, from best to worst: n, f , m, e, k,
j, b, l, d, o, p, q, s, h, a, c, r, g, i, t.

– Delta value δ: These results would not be complete without an indication
on their reliability. The delta value i.e. the amount of information preserved
by the plane, will give us a confidence level for the results and will have to
be indicated alongside them. In most software implementations, the delta
value is therefore given in one of the corners of the plane as a percentage.
In the given representation a value of 78% means that 22% of the variation
of the actions is lost and not represented on the plane. We can thus say
that the two dimensions that were chosen for this projection due to their
associated eigenvalues successfully represent 78% of the information from
the five criteria in this problem.

The results we extract from the GAIA plane are, of course, an approximation of
the reality. Because of the loss of data due to the projection on the plane, some
of the actions might not be well represented in two dimensions. For example,
alternatives that seem close on the plane, might actually be apart from each
other but have projections that are close. Every time we use the GAIA plane to
draw conclusions, we will need to pay attention to the delta value and compare
the inferred ranking to the complete ranking from PROMETHEE II.

An Introduction to MCDA: The PROMETHEE and GAIA Methods 167

3.3 A Pedagogical Example with D-Sight

During the recent years, we have witnessed the development of indexes allow-
ing to evaluate countries, cities, universities, companies, etc. Among them, we
may cite the Human Development Index (HDI), the Environmental Performance
Index (EPI), the Global Peace Index (GPI), the Academic Ranking of World
Universities (ARWU), the European Cities Monitor, etc. These evaluations are,
of course, typical multicriteria decision aid problems that are, most of the time,
solved by using a classical weighted sum (after a first normalization step). In
the end, all the alternatives are characterized by a global score allowing to rank
them from the best to the worst one. These results are often easily available on
the web.

In what follows, we do not claim that computing a net flow score (like in
the PROMETHEE II ranking) instead of a weighted value is more appropri-
ate. We let this methodological question to further investigations. However, we
assert that ”solving” a multicriteria decision aid problem cannot be limited to
the computation of a global score in order to rank the alternatives. In what
follows, we will illustrate different steps that could lead to a better understand-
ing of the problem and to more robust conclusions. In order to illustrate this,
we will consider the ten first ranked universities of the ARWU in the field of
computer sciences (see table 2): Stanford University (SU), Massachusetts Insti-
tute of Technology (MIT), University of California Berkeley (UCB), Princeton
University (PU), Carnegie Mellon University (CMU), Cornell University (CU),
University of Southern California (USC), The University of Texas at Austin
(UTA), Harvard University (HU) and University of Toronto (UT). The univer-
sities are evaluated according to 5 criteria [1] (their relative importance is given
between the parentheses):

– Alumni (10%): number of alumni from the institution winning Turing Awards
in Computer Science since 1951;

– Awards(15%): staff of an institution winning Turing Awards in Computer
Science since 1961;

– HiCi (25%): highly cited researchers in Computer Science category;
– PUB (25%): papers Indexes in Science Citation Index-Expanded in Com-

puter Science;
– TOP (25%): percentage of papers published in the top 20% journals on the

field of Computer Science compared to the papers published in all journals
of that subject field;

We refer the interested reader to [1] for a detailed description of these criteria
and their computation. Of course, we are aware of the fact that such kind of
rankings are subject to criticisms. However, this debate exceeds the illustrative
purpose of this section.

We propose to use the D-Sight software [25], that implements the PROME-
THEE and GAIA methods, in order to analyze the problem. For the sake of
simplicity, we have decided to use linear preference functions (with an indiffer-
ence threshold equal to 0 and a preference threshold equal to 100) for all the

168 Y. De Smet and K. Lidouh

Table 2. Evaluations of the 10 first Universities listed in the ARWU in Computer
Sciences for 2010

Name ARWU score Alumni Awards HiCi PUB TOP
SU 100 90,7 86,6 100 80,9 97,9
MIT 94,8 54,2 100 89,2 87,8 89,3
UCB 82,7 100 96,8 42,9 76,7 86,1
PU 78,7 68,6 71,8 60,6 63 94,7
CMU 76,4 42 79,1 55,3 85,4 75,4
CU 67,9 42 57,3 55,3 57,3 85,5
USC 66,6 0 39,5 65,5 68,4 86,8
UTA 66,3 42 39,5 55,3 70,4 77,2
HU 65,6 97 0 42,9 65,5 93,7
UT 65,5 24,3 53 49,5 71,1 78,3

Fig. 5. Promethee II ranking

criteria (one more time, the aim of this section is to demonstrate the useful-
ness of visual and interactive tools in MCDA rather than to justify modelling
choices). Additionally, this parametrization leads to the same ranking as the one
induced by the ARWU score (see Fig. 5). As already stressed, in most cases, the
analysis is stopped at this level i.e. the ranking of the alternatives according to

An Introduction to MCDA: The PROMETHEE and GAIA Methods 169

Fig. 6. GAIA plane

their scores. Let us now investigate how a software like D-Sight can help us to
deepen our understanding of the problem.

A look on the GAIA plane (see Fig. 6) already helps us drawing some inter-
esting conclusions:

– Delta value: the delta value is equal to 87%, which is a rather impor-
tant value; the information loss due to the projections seems to be lim-
ited;

– Relative positions of the criteria: two groups of criteria can be identi-
fied: {PUB,HiCI,Awards} and {Alumni, TOP}. These two sets seem to
be independent from each other. In other words, there are no strong conflicts
between the criteria;

– Relative postions of the alternatives: clearly the Harvard University
is distinguishing itself from the cloud of other universities. Additionally,
one may observe a similar effect for the group constituted by the Univer-
sity of California and Stanford University: these two institutions seem to

170 Y. De Smet and K. Lidouh

Fig. 7. Spider chart between SU and UCB

have close profiles. This is indeed confirmed by the spider chart shown on
Fig. 7;

– Relative position of the alternatives with respect to the criteria:
the Harvard University has a very particular evaluation; it is very good re-
garding Alumni and TOP and bad or average for the other criteria. Clearly,
the University of California and the Stanford University have average good
scores for both families of criteria. The Massachusetts Institute of Technol-
ogy, which is ranked at the second position in the PROMETHEE II ranking,
is very good on all criteria but has an average score on the Alumni crite-
rion;

– Decision Stick: the projection of the different alternatives on the decision
stick allows to find the total ranking (especially for the first ranked alterna-
tives, see Fig. 8).

An Introduction to MCDA: The PROMETHEE and GAIA Methods 171

Fig. 8. Projection on the Decision Stick

As already stressed, a number of authors have criticized the legitimacy of
such kind of rankings. Among others, the weight values can be discussed. If
we slightly change the relative importance of a given criterion, would we get
a totally different ranking ? An interactive tool called walking weights allows
the decision maker to perform a sensitivity analysis directly on the results while
changing the weight values. For instance, multiplying the relative importance
of the Alumni criterion by three (while the relative importance of other criteria
remains the same) does not have an impact on the first ranked alternative (see
Fig. 9). Finally, one could also address this question in a different way: For every
criterion, what are the interval values that will not affect the first or the two first
ranked alternatives (under the assumption that the relative importance of other
criteria remain the same)? Fig. 10 shows these values when we want to hold the
top ranking constituted by the two first alternatives. Clearly, we may observe
that the interval values are rather large. More particularly, we may notice that
even important modifications of the weight values of HiCi, PUB and TOP will
not affect the top of the ranking. This proves that the selection of the two first
alternatives seems to be rather robust.

172 Y. De Smet and K. Lidouh

Fig. 9. Walking Weights

An Introduction to MCDA: The PROMETHEE and GAIA Methods 173

Fig. 10. Stability Intervals

Fig. 11. How to improve?

174 Y. De Smet and K. Lidouh

Finally, a last strategical question could be: How does the Harvard Univer-
sity need to improve itself on a given criterion in order to gain some positions?
Fig. 11 shows that increasing the score of the criterion Awards to 20 (which re-
mains a relatively low value with respect to the evaluation table) allows Harvard
to pass from the 9th position to the 6th.

This section has shown that the success of a multicriteria analysis heavily
depends on the availability of user-friendly software. D-Sight is the third genera-
tion of PROMETHEE-based software (following PROMCALC [13] and Decision
Lab 2000). We may not conclude this section without citing other multicriteria
software such as Expert Choice (for the AHP method), Electre IS (for a general-
ization of the ELECTRE I method), M-Macbeth (as expected for the Macbeth
method), etc. Another interesting initiative that has to be mentioned is the Deci-
sion Deck project, which is an open source source software that is collaboratively
developed and which implements various methods. The reader is also referred to
[46] for a review on MCDA software.

4 Conclusion

Multicriteria decision aid is an exciting research field. The only ambition of
this chapter was to introduce the basics of this domain. We refer the interested
reader to [23] for a recent and complete state of the art of MCDA. Additionally,
interesting resources can be found on the websites of the EURO working group
on MCDA or of the MCDM international society.

As a demonstration of the growing interest in MCDA, we may point out that
it has been applied to other research areas such as Artificial Intelligence [22],
Geographic Information Systems [31], Classification and Pattern Recognition
[19,21], System Dynamics [15], Group Decision and Negotiation [27], Scheduling
[42], etc.

References

1. Academic Ranking of World Universities, http://www.arwu.org

2. Bana e Costa, C.A.: Convictions et Aide à la Décision. Newsletter of the Euro
Working Group Multicriteria Decision Aiding 2 (1993)

3. Bana e Costa, C.A., De Corte, J.M., Vansnick, J.C.: On the Mathematical Founda-
tions of MACBETH. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria
Decision Analysis: State of the Art Surveys, pp. 133–162. Springer, Boston (2005)

4. Behzadian, M., Kazemzadeh, R.K., Albadvi, A., Aghdasi, M.: PROMETHEE:
A comprehensive literature review on methodologies and applications. European
Journal of Operational Research 100(1), 198–215 (2010)

5. Belton, V., Ackerman, F., Shepherd, I.: Integrated support from problem struc-
turing through to alternative evaluation using COPE and VISA. Journal of Multi-
Criteria Decision Analysis 7, 115–130 (1997)

6. Belton, V., Steward, T.: Multiple Criteria Decision Analysis: An Integrated Ap-
proach. Kluwer Academic Publisher, Boston (2002)

http://www.arwu.org

An Introduction to MCDA: The PROMETHEE and GAIA Methods 175

7. Billaut, J.C., Bouyssou, D., Vincke, P.: Should you believe in the Shanghai ranking?
Scientometrics 84(1), 237–263 (2010)

8. Bouyssou, D.: Décision Multicritère ou Aide Multicritère? Newsletter of the Euro
Working Group Multicriteria Decision Aiding 3 (1993)

9. Bouyssou, D., Vincke, P.: Relations binaires et modélisation des préférences. Tech-
nical report SMG, IS-MG 2003/02 (2003)

10. Bouyssou, D., Marchant, T., Pirlot, M., Tsoukias, A., Vincke, V.: Evaluation and
decision models with multiple criteria: stepping stones for the analyst. International
Series in Operations Research and Management Science, vol. 86. Springer, Boston
(2006)

11. Brans, J.P., Vincke, P.: A preference ranking organization method. Management
Science 31(6), 647–656 (1985)

12. Brans, J.P., Mareschal, B.: PROMETHEE V: MCDM Problems with Segmentation
Constraints. INFOR 30(2), 85–96 (1992)

13. Brans, J.P., Mareschal, B.: PROMCALC and GAIA: A new decision support sys-
tem for Multicriteria Decision Aid. Decision Support Systems 12, 297–310 (1994)

14. Brans, J.P.: The space of freedom of the decision maker modelling the human brain.
European Journal of Operational Research 92(3), 593–602 (1996)

15. Brans, J.P., Macharis, C., Kunsch, P.L., Chevalier, A., Schwaninger, M.: Combin-
ing multicriteria decision aid and system dynamics for the control of socio-economic
processes. An iterative real-time procedure. European Journal of Operational Re-
search 109(2), 428–441 (1998)

16. Brans, J.P., Mareschal, B.: Prométhée - GAIA: une méthode d’aide à la décision en
présence de critères multiples. Statistiques et Mathématiques Appliquées. Ellipses,
Editions de l’Université Libre de Bruxelles, Paris (2002)

17. Brans, J.P., Mareschal, B.: PROMETHEE Methods. In: Figueira, J., Greco, S.,
Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys,
pp. 163–196. Springer, Boston (2005)

18. De Smet, Y., Vincke, P.: L’aide à la décision, IT-Scan 7 (2002)

19. De Smet, Y., Montano Guzman, L.: Towards multicriteria clustering: An extension
of the k-means algorithm. European Journal of Operational Research 158(2), 390–
398 (2004)

20. Dyer, J.S.: MAUT - Multiattribute Utility and Value Theories. In: Figueira, J.,
Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art
Surveys, pp. 133–162. Springer, Boston (2005)

21. De Smet, Y., Nemery, P., Selvaraj, R.: An exact algorithm for the multicriteria
ordered clustering problem. Omega 40(6), 861–896 (2006)

22. Doumpos, M., Grigoroudis, E. (eds.): Multicriteria decision aid and artificial intel-
ligence: Theory and applications. John Wiley and Sons (to appear)

23. Figueira, J., Greco, S., Ehrgott, M.: Multiple Criteria Decision Analysis: State of
the Art Survey. Springer, Boston (2005)

24. Figueira, J., Mousseau, V., Roy, B.: ELECTRE methods. In: Figueira, J., Greco,
S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys,
pp. 133–162. Springer, Boston (2005)

25. Hayez, Q., De Smet, Y., Bonney, J.: D-SIGHT: a new decision making software to
address multi-criteria problems. International Journal of Decision Support Systems
Technologies 4(4) (2012)

26. Keeney, R.L.: Value-Focused Thinking. Harvard University Press, Cambridge
(1992)

176 Y. De Smet and K. Lidouh

27. Kilgour, D.M., Chen, Y., Hipel, K.W.: Multiple Criteria Approaches to Group
Decision and Negotiation. In: Ehrgott, M., Figueira, J., Greco, S. (eds.) Trends in
Multiple Criteria Decision Analysis. International Series in Operations Research
and Management Science, vol. 142, pp. 317–338. Springer (2010)

28. Korhonen, P.: Interactive methods. In: Figueira, J., Greco, S., Ehrgott, M. (eds.)
Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 133–162.
Springer, Boston (2005)

29. Neves, L.P., Dias, L.C., Antunes, C.H., Martins, A.G.: Structuring a MCDA model
using SSM: A case study in Energy Efficiency. European Journal of Operational
Research 199(3), 834–845 (2009)

30. Luce, R.D.: Semiorders and a theory of utility discrimination. Econometrica 24,
178–191 (1956)

31. Malczewski, J., Rinner, C.: Multicriteria Decision Analysis in Geographic Informa-
tion Science. Springer (to appear)

32. Mareschal, B.: Weight stability intervals in multicriteria decision aid. European
Journal of Operational Research 33(1), 54–64 (1988)

33. Mareschal, B., Brans, J.P.: Geometrical representations for MCDA: the GAIA mod-
ule. European Journal of Operational Research 34, 69–77 (1988)

34. Markowitz, H.M.: Portfolio Selection. The Journal of Finance 7(1), 77–91 (1952)
35. Roy, B.: Il faut désoptimiser la Recherche Opérationelle. Bulletin de l’AFIRO 7

(1968)
36. Roy, B.: Decision-aid and decision-making. European Journal of Operational Re-

search 45, 324–331 (1990)
37. Roy, B.: Multicriteria Methodology for Decision Aiding. Kluwer Academic Pub-

lishers, Dordrecht (1996)
38. Roy, B.: A French-English Decision Aiding glossary. Newsletter of the Euro Work-

ing Group Multicriteria Decision Aiding 3 (2000)
39. Saaty, T.L.: The Analytic Hierarchy and Analytic Network Processes for the Mea-

surement of Intangible Criteria and for Decision-Making. In: Figueira, J., Greco, S.,
Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys,
pp. 133–162. Springer, Boston (2005)

40. Schärlig, A.: Décider sur plusieurs cirtères: Panorama de l’aide à la décision mul-
ticritère. Presses Polytechniques Universitaires Romandes, Lausanne (1985)

41. Siskos, Y., Grigoroudis, E., Matsatsinis, N.: UTA methods. In: Figueira, J., Greco,
S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys,
pp. 133–162. Springer, Boston (2005)

42. T’kindt, V., Billaut, C.: Multicriteria scheduling: Theory, Models and Algorithms.
Springer (2006)

43. Vansnick, J.C.: L’aide multicritère à la Décision: une Activité Profondément Ancrée
Dans Son Temps. Newsletter of the Euro Working Group Multicriteria Decision
Aiding 6 (1995)

44. Vincke, P.: L’aide multicritère à la décision, Statistiques et Mathématiques Ap-
pliquées, Ellipses, Editions de l’université Libre de Bruxelles, Paris (1989)

45. Vincke, P.: Multicriteria Decision-Aid. John Wiley and Sons, New York (1992)
46. Weistroffer, H.R., Smith, C.H., Narula, S.C.: Multiple Criteria Decision Support

Software. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision
Analysis: State of the Art Surveys, pp. 133–162. Springer, Boston (2005)

Knowledge Harvesting for Business Intelligence

Nesrine Ben Mustapha and Marie-Aude Aufaure

Ecole Centrale Paris, MAS Laboratory
{Nesrine.Ben-Mustapha,Marie-Aude.Aufaure}@ecp.fr

Abstract. With the growth rate of information volume, information ac-
cess and knowledge management in enterprises has become challenging.
This paper aims at describing the importance of semantic technologies
(ontologies) and knowledge extraction techniques for knowledge man-
agement, search and capture in e-business processes. We will present the
state of the art of ontology learning approaches from textual data and
web environment and their integration in enterprise systems to perform
personalized and incremental knowledge harvesting.

Keywords: ontology, semantics, ontology learning, knowledge engineer-
ing, business intelligence

1 Introduction

Over the past few years and with the continuous and rapid growth of information
volume, information access and knowledge management, in the enterprises and
on the web have become challenging. Besides, the growth rate of data reposito-
ries has been accelerated to the point that traditional Knowledge Management
System (KMS) no longer provides the necessary power to organize and search
knowledge in an efficient manner.

Business Intelligence(BI) solutions offer the means to transform data into in-
formation and capture knowledge through analytical tools for the purpose of
enhancing decision making. Analytical tools are quite dependent on knowledge
representation, capture and search. Despite the progress on these analytic tools,
there are many challenges related to knowledge management that should be tack-
led. We argue that these issues are due to the lack of integrating the engineering
of business’ semantics in the foundation of BI solutions. Therefore, the improve-
ments on knowledge engineering, search and capture offer new opportunity for
building enhanced semantic BI solutions.

In fact, if semantic content of resources is described by keywords or natural
language or metadata based on predefined features, it is hard to manage it
because of its diversity and the need for scalability. Thus, adding a semantic layer
that provides common vocabulary to represent semantic contents of resources
contributes to enhance knowledge management, update, sharing and retrieval
among different domains. In the emerging semantic web, Information search,
interpretation and aggregation can be addressed by ontology-based semantic
mark-up.

M.-A. Aufaure and E. Zimányi (Eds.): eBISS 2012, LNBIP 138, pp. 177–207, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

178 N. Ben Mustapha and M.-A. Aufaure

In this paper, we outline the need of semantic technologies for business in-
telligence in Section 2. After studying some motivating use case, we will detail
the evolution of correlated dimensions that have been od interests by academic
research groups and which include search technologies presented in Section 4,
Ontology learning approaches from textual data and web environment and the
machine learning techniques detailed in Section 5. In Section 6, we emphasize the
importance of ontology technology and search solution capabilities for semantic
revolution of the BI. Finally, we conclude with a brief synthesis.

2 Need of Semantic Technologies for Business Intelligence

We remind that the main goal of this lecture resides is explicitly transfer seman-
tic technologies from the field of academia to industry. In this section, we will
outline, the central role of knowledge in Business enterprises and the motivating
scenarios of integrating semantic technologies in BI processes.

2.1 Knowledge Groups in BI Environment

In business enterprises, we can distinguish five main knowledge groups:

– knowledge workers;
– knowledge exploiters;
– knowledge learners;
– knowledge explorers;
– knowledge innovators.

Knowledge workers have an important and internal role in business enterprises.
They should have great communication, learning, acting and resolving skills in
order to empower the strategy of planning, sharing and collaboration of the en-
terprise. This group focuses mainly on internal business process and knowledge.

The main priority of knowledge exploiters resides on external knowledge learn-
ing than internal one, since they focus on competition knowledge and the de-
velopment of new product. In order to achieve this purpose, this group should
search daily for the external knowledge about competitors strategies, client sat-
isfaction, etc.

The knowledge learners group aims to learn knowledge in certain areas and
is not able to integrate different streams of knowledge. So, it is considered slow
in learning new knowledge.

The knowledge explorers group has a central role in business enterprises, since
it should maintain a good balance between internal knowledge and external
knowledge group.

Knowledge innovators are qualified by ”aggressive learners” as they try to
combine external and external knowledge learning in order to research and dis-
seminate findings from enterprises resources.

In the next subsection, basing on real use cases that have been studied by
knowledge-Web network 1, the need of semantic technologies in business enter-
prise is explained.

1 http://www.knowledgenetworks.com/

http://www.knowledgenetworks.com/

Knowledge Harvesting for Business Intelligence 179

2.2 Motivating Use Cases: Need of Semantic Technologies

We distinguish three industrial fields for which the need of semantic technologies
were discussed in a survey [80], as follows:

– Service industry;
– Media field;
– Health services.

In the following subsections, we will detail problems faced in mentioned uses
cases and we will outline possible semantic architectures that can be set up.

Semantic Technologies for Service Industry. We have considered in service
industry two main use cases that have been studied in [80]:

– Recruitment use case;
– B2C market place for tourism.

The recruitment service of employees on the web is an emerging and important
practice in many business fields. While classic appliance ways remain available
(newspaper advertisements, human resource department, etc), the internet has
evolved into an open recruitment space. In Germany, 50% of recruitment are
expected to be made through online job posting.

Current recruitment systems (such as Monster 2, experteer 3 and jobpilot 4,
etc.) provide abilities to publish and search vacancies in addition to posting
applicant CVs. The search process on these systems is based on predefined cri-
teria (skills, job location, domain, etc.). So, the new challenge of these systems
is to improve facilities of efficiently filling open job vacancies with the suitable
candidates.

In other words, an automatic matching between job offers and job seekers
information can be a good solution to overcome this challenge. In this kind of
solution, an exact matching of words will not bring remarkable advantages. In-
tegrating semantic representation of filled data from job seeker and job provider
and semantic search solution can cover open issues by purposing the semantic
web as technological solution.

According to this use case, we can imagine a possible architecture that inte-
grates an ontology-based support for (Fig 1):

– expressing relationships between job characteristics and candidate qualifica-
tions (knowledge base);

– semantic querying of job offers or suitable candidates;
– learning knowledge from the web (metadata crawler);
– semantic matching.

2 http://www2.monster.fr/
3 http://www.experteer.fr/
4 http://www.fr.jobpilot.ch/

http://www2.monster.fr/
http://www.experteer.fr/
http://www.fr.jobpilot.ch/

180 N. Ben Mustapha and M.-A. Aufaure

Solution

Semantic querying

machmaker

Metadata crawler

Semantics
(ontologies)

Job offers Job seekers
profiles

chmmaak

Knowledge Base

Enriching Enriching

Fig. 1. Semantic solution for recruitment use case

Besides, in tourism domain which is a network business, business process relies on
a number of stakeholders to develop and deliver products and services. Networks
associated with Web 1.0 and Web 2.0 are confronted by serious challenges since
limited interpretability is provided. In fact, dedicated sites for regional tourism
have substitute the knowledge workers by content management capabilities. The
choice of research criteria on B2Cmarketplace for tourism is limited to predefined
suggestions. They are also based on pre-packaged offers.

Meantime, travel consumers are now asking for more complex packages in-
volving many itineraries and engaging extensively through online searches in
order to meet their information needs. With the current systems based on web
1.0, two main problems are inhibiting the achievement of these new challenges,
which are:

– static management of web site content;
– static search process with no personalization.

Therefore, to provide a personalized service including an integrated cost of the
involved services (hotels, restaurants, train, plane, geo-localization), new require-
ments should focus on providing:

– a web content aggregation platform;
– Dynamic exploitation of content, service providers and personalized data;
– Geo-localization;
– on-line personalized tourism packages.

Semantic Technologies for Media Field. With the continuous growing of
multimedia databases, it becomes crucial to manage and maintain this huge
data set. Classic solutions include faster hardware and sophisticated algorithms.

Knowledge Harvesting for Business Intelligence 181

Rather a deeper understanding of media data is needed to perform the multi-
media content organization, reuse and distribution.

Since the semantic web is based on machine-processable knowledge represen-
tation, there is growing interest on:

– semantic annotation of multimedia content;
– knowledge extraction from media data;
– semantic search, navigation and reasoning capabilities.

One one hand, some projects such as the aceMedia project 5 focuses on discover-
ing and exploiting knowledge inherent to the content in order to make searched
content more relevant to the user.

On other hand, others project of news aggregation such as Neofonie 6 are
focusing on integrating semantic technologies in order to perform automatic
integration and processing of news sources through a thematic clustering tech-
niques.

Semantic Technologies for Health Services. In the context of health care,
lack on data management capabilities might lead to a dramatic restructuring of
the service and cost model. Doctors may ask for remote diagnosis in order to
access to the accumulated knowledge of every known example of your symptoms,
and your entire medical history from the time you were born.

With the digitalization of medical and health information, the doctor will be
able to access to the records of all your prior treatments, including heterogenous
data: images, test results, drug reactions and practitioner opinions. Therefore,
he can act quickly in order to determine the suitable medications.

However, in the most occurring cases, health care organizations such as hos-
pitals may have several information completely dispersed and not easily reused
for other organizations. The main challenges are that:

– Data should be integrated independently from the data type (structured or
unstructured source);

– Large health insurance companies use a cognos data warehousing solution
to administrate its data;

– Business data are stored in various machines and don’t share the same data
formats.

Consequently, only manual search over data sources is available. For this reason,
introducing common terminology for health care data and solving problems of
updating data are requested. A semantic solution will involve three main actors:

– Data architect;
– Knowledge engineer;
– knowledge explorers.

The idea is to build ontologies that can be used for integrating heterogenous
data marts into a single consolidate datawarehouse, as shown by figure 2.

5 www.aceMedia.org
6 http://www.newsexpress.de

www.aceMedia.org
http://www.newsexpress.de

182 N. Ben Mustapha and M.-A. Aufaure

Knowledge
Explorers

Data Mart

Data Mart

Data Mart

ontology
Builder

p

BI Tools

Core
Inference

Engine

Fig. 2. Semantic solution for health use case

The overall challenge of these use cases resides in identifying where knowl-
edge is located, how to leverage it for business purpose by harvesting knowledge
from enterprise sources and from competitor events and how to manage it in
an optimal way. Therefore, semantic knowledge representation is the key for the
development of present intelligent systems. In the next subsection, correlated
dimensions to the evolution of semantic technology are discussed since it is im-
portant to understand how these technologies have appeared in order to be able
to choose the adequate technique for a given challenge faced by an industrial
organization.

2.3 Correlated Dimensions Affecting Semantic Technologies

As stated in Figure 3, the main dimensions that affect the evolution of Business
Intelligence Solutions are mainly:

– Semantic technologies;
– Structure of the web;
– Search methods;
– Knowledge engineering approaches.

These dimensions are quite correlated to each other and pave the way towards
Business Intelligence 2.0.

Search technologies have evolved from simple keyword searching to relevance
ranking (like Google). Text mining, also called text analysis, analyzes unstruc-
tured content to better determine the context and meaning of the information
in relation to the search terms while relevancy ranking looks at popularity and
linkages to other documents. For instance, IBM can search unstructured data
sources, use text mining to extract relevant information, and load appropriate
contents back into data warehouses.

Knowledge Harvesting for Business Intelligence 183

Web 1.0 (1990-2000)

Web 2.0 (2000-2010)
Semantic Web

Web 3.0 (2010)

PC-ERA (1980-1990)
Semantic
Representation

Se
ar

ch

Te
ch

no
lo

gy

Classic IR:
bag of words

Files and folders

Dictionary

Keyword
Search

Thesaurus Controlled
Vocabulary

Taxonomy Light-weight
ontologies

Heavy-weight
Ontologies

Web
Sites

PageRank

Concept
Search

Search for Semantic Web
Document

Semantic Search Engines
Semantic
Search

Tf-IDF Model

 Cf-IDF
Model

Knowledge Base

Semantic Portals

Semantic Analysis

Portals

Personal
Assistant

Intelligent
Agent

DBPedia

Linked Open
DATA

YAGO-NAGA

Manual Ontology
building from
scratch

Semi-automatic
Ontology Building from
corpora

Web Search Engines

Ontology Search Engines Ontology
Search

Socio-semantic Web
(2020)

Wordnet

Semi-automatic
Ontology Learning from
heterogeneous sources

Semi-automatic
Ontology learning
From web

Ontology learning by googling

Ontology Engineering

Fig. 3. Dimensions affecting Business Intelligence evolution

With the emergence of the semantic web, Knowledge Representation methods
have evolved from dealing with controlled vocabularies, dictionaries to managing
domain ontologies. Domain ontologies have become essential for managing in-
creasing resources (contents) and promoting their efficient use for many software
areas such as Bioinformatics [1], educational technology systems [2], E-learning
[3], ontologies for commerce and production organization (TOVE [4] and Enter-
prise [5]), museums and cultural heritage and physical systems, etc.

3 Evolution of Semantics: From Dictionaries to
Ontologies

As shown in Figure 3, The Knowledge Representation area has known several
levels of formalization before the incoming semantic web. This is having contin-
uously direct impact on the progress of Information Retrieval and Knowledge
Engineering areas.

3.1 Levels of Knowledge Specification

Several levels of knowledge formalization can be identified, from controlled vo-
cabularies to heavy ontologies [6], as represented in Figure 4:

184 N. Ben Mustapha and M.-A. Aufaure

Fig. 4. Evolution of knowledge formalization

– Controlled vocabularies: is a set of terms defined by domain experts.
The meaning of words is not necessarily defined and there is no logical or-
ganization between the terms. The vocabulary can be used in order to label
documents contents. Catalogs are examples of controlled vocabularies.

– Another potential specification is a glossary (a list of terms and meanings):
the meanings are specified by natural language statements. This provides
more information since humans can read the natural language statements.
Typically interpretations are not unambiguous and thus these specifications
are not adequate for computer agents.

– A thesaurus: provides additional semantic with a limited number of rela-
tions such as synonymy (preferred term, term to use instead), related terms
(a term more specific, more generic term, term related). These relationships
may be interpreted unambiguously by computer agents, but no explicit re-
lationships are specified, although with narrower and broader term specifi-
cations, a hierarchy can be deduced.

– Informal Taxonomy: provides explicit organizing categories from general
concepts to specific ones. They have appeared on the web such as the hier-
archy proposed by Yahoo for the categorization of domain topics. However,
these hierarchies are not formal because the hierarchy of categories does not
meet the strict notion of subsumption .

– Beyond informal “is-a” taxonomy, we move to formal “is-a” hierarchies.
These include strict subclass relationships. In these systems, if A is a super-
class of B, then if an object is a subclass of B, it is necessarily a subclass of
A too.

With the emergence of the semantic web, an important trend of ontology-based
application has appeared. Definitions and typology of ontological knowledge are
detailed in the following subsections.

Ontology Structure. In the context of computer and information sciences,
an ontology defines a set of representational primitives with which to model a

Knowledge Harvesting for Business Intelligence 185

domain of knowledge or discourse. The representational primitives are typically
classes (or concepts), attributes (or properties), and relationships (or relations
among class members). The definitions of these representational primitives in-
clude information about their meaning and constraints on their logically consis-
tent application.

The definition adopted by the community of knowledge engineering is the
one proposed by Gruber who defines an ontology as “an explicit specification,
a formal shared conceptualization” [8]. The conceptualization is the formulation
of knowledge about a world in term of entities (objects, relations between these
objects and the constraints of restrictions on these relations). The specification
is the representation of the conceptualization in a concrete form using a knowl-
edge representation language. In the literature, the definition and the structure
of ontologies depend on the type of knowledge, the domain of knowledge and
especially the usage of the ontology. In general, the structure of the ontology is
composed of:

– a set of concepts ;
– a set of taxonomic relationships between concepts;
– a set of non-taxonomic relationships ;
– a set of instances assigned to each concept or relation;
– a set of rules or axioms that represent inferred knowledge of the domain.

These elements are described in the following subsections.

Concept. A Concept is defined as a class of objects related to a well-defined
knowledge area such as the concept of “human being”, tree, home, etc. It is
characterized by its meaning referred by “Concept intension” and by its group
of entities referred by “Concept extensions”.

All the objects related to a concept build the set of its instances. For example,
the term “automobile” refers both to the concept “car” as an object of type
“car” and all objects of that type. A term can refer to several concepts related
to several domains. An example of the term “accommodation” which refers to
the concept of hosting web sites in the topic of “creation of web pages” and also
the concept of hotel accommodation in the field of “tourism”. Similarly, the same
concept can be referenced by multiple terms. This is the case of “morning star”
and “evening star”, which both refer to Venus planet [7].

Relations. Within an ontology, we distinguish two main categories of relations:
taxonomic relations and non-taxonomic relations. Taxonomic relations organize
concepts in a tree structure and include two types of taxonomic relationships:

– relations of hyponymy or specialization generally known as “is a relation”.
For example, an enzyme is a type of protein, which is a kind of macro-
molecule;

– partitive relations or meronymy that describe concepts which are part of
other concepts.

186 N. Ben Mustapha and M.-A. Aufaure

On the other hand, non-taxonomic relations include:

– locative relation that describes the location of a concept. Example: “bed
is located in bedroom”;

– associative relations that correspond to properties between concepts. Log-
ical properties are associated with these relations such as transitivity and
symmetry.

Defining the ontology only by concepts and relationships is not enough to en-
capsulate knowledge, since according to S. Staab and A. Maedche, the axioms
and rules are a fundamental component of any ontology [9].

Axioms and Rules. Ontology axioms provide semantics by allowing ontology
to infer additional statement. Ontological knowledge can be considered as facts,
rules, or constraints. A fact is a true statement, not implicative. For example, the
axiom “the company E has 200 employees” is a true statement. They are useful
for defining the meaning of the components, setting restrictions on attribute
values, specifying the arguments of a relationship and verifying the validity of
specified knowledge.

In recent projects, axioms have been extended with rules in order to infer
additional knowledge. For instance, the following rules “if a company sells X
products A and the price of each product is C then Sales revenue is C * X
euros” is used to calculate the revenue of daily sales.

Several languages have been developed to specify ontology rules. Among these
languages, we cite mainly RuleML [10] and SWRL [11].

Figure 5 illustrates the formalization of the following rule specifying family
relatedness using SWRL:

Rule: “hasParent (?x1,?x2) ∧ hasBrother (?x2,?x3) −→ hasUncle (?x1,?x3)”

Ontology Types. The literature defines four typologies according to the fol-
lowing dimensions:

– formalization degree of the ontology language (formal, informal, semi-formal);
– granularity degree of the ontology structure (light-weight ontology and heavy-

weight ontology);
– level of completeness;
– type of domain knowledge.

Typology according to the type of domain knowledge was the most discussed
one by several works. We distinguish the following ontology types:

– Representational ontology: includes primitives involved in the formal-
ization of knowledge representation. We cite for example, the Frame on-
tology where primitive representation of language-based Frame are classes,
instances, aspects, properties, relationships and restrictions;

Knowledge Harvesting for Business Intelligence 187

<ruleml:imp>
 <ruleml:_rlab ruleml:href="#example1"/>
 <ruleml:_body>
 <swrlx:individualPropertyAtom swrlx:property=“hasParent">
 <ruleml:var>x1</ruleml:var>
 <ruleml:var>x2</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom swrlx:property=“ has_brother">
 <ruleml:var>x2</ruleml:var>
 <ruleml:var>x3</ruleml:var>
 </swrlx:individualPropertyAtom>
 </ruleml:_body>
 <ruleml:_head>
 <swrlx:individualPropertyAtom swrlx:property=“has_uncle">
 <ruleml:var>x1</ruleml:var>
 <ruleml:var>x3</ruleml:var>
 </swrlx:individualPropertyAtom>
 </ruleml:_head>
</ruleml:imp>

Fig. 5. Rule specification

– Top-level ontology (also known as upper ontologies) specifies con-
cepts that are universal, generic, abstract and philosophical. It provides a
set of general concepts from which a domain ontology can be constructed. Ex-
amples of existing upper ontologies include SUMO (Suggested Upper Merged
Ontology)7, the CYC ontology8, and SUO 4D ontology9;

– Lexical ontology: is an ontology describing linguistic knowledge, which
models the meaning of words by using ontological structure. Examples of
lexical ontologies are WordNet[12] and HowNet [13];

– Domain Ontology is tied to a specific domain which can be extended
from upper ontology. Examples of domain ontologies include MENELAS in
the medical field, ENGMATH for mathematics and TOVE in the field of
enterprise management;

– Ontology of tasks [14]: used to conceptualize specific tasks such as diag-
nostic tasks, planning tasks, design tasks, configuration and solving problems
tasks;

– Application ontology defines the structure of knowledge necessary to ac-
complish a particular task.

7 http://suo.ieee.org/SUO/SUMO/index.html
8 http://ww.cyc.com
9 http://suo.ieee.org/SUO/SUO-4D/index.html

http://suo.ieee.org/SUO/SUMO/index.html
http://ww.cyc.com
http://suo.ieee.org/SUO/SUO-4D/index.html

188 N. Ben Mustapha and M.-A. Aufaure

4 New Trends of Search Paradigm

Information Retrieval (IR) research has moved from syntactic IR to semantic IR.
In syntactic IR, terms are represented as sequences of characters and IR process
is based on computation of string similarity. The progress made by knowledge
representation and the semantic web languages areas has contributed to the
development of semantic IR systems. Instead, terms are represented as concepts
and IR is performed through the computation of semantic relatedness between
concepts.

4.1 Semantic Web Search in Web 2.0

Several classifications of search engines for the semantic web have been proposed
in the literature. Indeed, in [15], the authors distinguish:

– Document oriented search engines;
– Entity oriented search engines;
– Multimedia search engines;
– Relation Oriented Search;
– Search Engine based on semantic analysis.

Based on semantic search survey presented in [16], we distinguish two types of
search engines for the semantic web (Figure 6):

– ontology search engines;
– semantic search engines: the use of contextual information (represented by

domain ontologies and metadata) is one of the key aspects for these engines.

Semantic Web search engines

Ontology search engines Semantic search engines

Crawler-based ontology
search:

Ontokhoj [C. Patel et al., 2003]
Swoogle [T. Finin et al., 2005]

Contextual semantic search
QuizRDF [J. Davies et al., 2005],

Corese [O. Corby],
Infofox [B. Sigrist et al., 2003],

SHOE [B. Aleman-Meza et al., 2003],
DOSE [D. Bonino 2003], SERSE [V. Tamma, 2004]

Evolutive
semantic search
W3C Semantic

Search [R. Guha et al.,
2005]

Semantic
association
discovery

SemDis [C. Rocha
et al., 2004]

Ontology Meta-search :
OntoSearch [Y. Zhang et al., 2004]

Swangler [T. Fini et al., 2005]

Fig. 6. Semantic web search Engine categories

The two classifications are quite complementary. Ontology search includes
entity oriented search and relation oriented search. Semantic search includes the
other categories.

Knowledge Harvesting for Business Intelligence 189

Ontology Search Engines. We distinguish two categories of ontology search
engines:

The first type corresponds to engines providing specific types of files (such as
RSS, RDF, Owl) and enabling to search only by the name of files or by using some
options like filtetype. For example, in [17], OntoSearch engine transmits the user
request to Google to search for a specific type of file and uses a visualization tool
that allows the user to run her research and to show results. In [18] a technique
called Swangling is used for this purpose. This technique offers the translation
of RDF triples into strings to be transmitted to a traditional search engine. The
main problem of these systems is that a lot of available semantic web documents
(ontologies) are ignored. In fact, it is not obvious to collect all ontologies in the
web just by using filetype command within existing commercial search engines.

The second type refers to crawler-based ontology search engines. The idea of
these system is to build a specific crawler which is used to find Semantic Web
Documents (SWD) on the web, index them and acquire some metadata about
them. Ontokhoj [19] and Swoogle [18] are two crawler-based ontology search
engines. By using these engines users can search for special class, property and
entities.

Semantic IR Engines. The following groups can be distinguished:

– Contextual search engines;

– Evolutionary Search engines;

– Semantic association discovery engines.

Contextual Search Engines. The ultimate goal of these engines is to increase the
performance of traditional search engines (especially in regard to measures of
precision and recall). The use of contextual information (represented by a domain
ontology and metadata) is one of the main aspects. Usually after a traditional
search process, matching RDF graphs is used to obtain better results.

We distinguish seven major components: crawler, documents annotator, in-
dexer, query formulation module, query annotation module, search module and
display module. Various approaches and solutions for each of these sub-problems
have been proposed [3]. It should be stressed that a very limited number of en-
gines include all the components listed above. The quality of the results depends
heavily on ontologies used. The main problem of these search engines relies with
the fact that their use is limited to specific domains (represented by domain
ontologies).

The best known examples are: OWLIR [20], QuizRDF [21], InWiss [22], Corese
[23], SHOE [24], DOSE[25], OntoWeb [26], SERSE [27].

Evolutionary search engines. In the second group employing semantic web tech-
niques, the objective is to accumulate information on a subject that we seek.
This type of search engines is a response to a well-known problem: the auto-
matic collection of information on a domain. The originality of these engines

190 N. Ben Mustapha and M.-A. Aufaure

is the use of external metadata (eg. CDnow, Amazon, IMDB). They are usu-
ally employed a conventional search engine and provide regular information in
addition to the original results: W3C Semantic Search [28] and ABC [29].

Semantic association discovery. Search engines in the third group try to find
semantic relationships between two or more terms: the aim is to find various
semantic relations between the terms of entries (usually two) and then rank the
results based on semantic distances. Compared to other categories, the engines
dedicated for discovering semantic associations are linked to higher layers of
semantic web architecture (logic and trust). SemDis [28] is an example of this
group.

5 Progress in Ontology Engineering Research

The methodologies proposing manual ontology building, also known as “from
scratch” were among the first works done in the field of ontology engineering. It
consists in conceiving a process of ontology building in the absence of a priori
knowledge (hence the meaning of the English term “from scratch”). Several
authors have proposed many approaches based on learning techniques in order
to improve the automation of this process.

The notion of learning reinforces the idea of ontology construction on the basis
of a priori knowledge. This allows the automation of the ontology enrichment
by using learning techniques. According to Maedche and Staab, there are as
many ontology learning approaches as types of data sources [30]. We distinguish
ontology learning approaches from texts, from dictionaries [31], from knowledge
bases [32], from semi-structured schema [33] and relational data [34]. In this
section, we are interested mainly in approaches related to ontology learning
from web (including texts).

5.1 Ontology Learning Approaches

Ontology learning (OL) is defined as an approach of ontology building from
knowledge sources using a set of machine learning techniques and knowledge
acquisition methods. OL from texts is a specific case of OL from web and has
been widely used in the community of knowledge engineering since texts are se-
mantically richer than other data sources. These approaches are generally based
on the use of textual corpora. This one should be a representative of the domain
for which we are trying to build ontology. By applying a set of text mining tech-
niques, a granular ontology is enriched with discovered concepts and relations
from textual data. In such approach, human intervention is required to validate
the relevance of learned concepts and relations.

In the last decade, with the enormous growth of online information, the web
has become as an important data source for knowledge acquisition due to its huge
size and heterogeneity. This led to mainly five categories of OL approaches:

Knowledge Harvesting for Business Intelligence 191

Ontology Learning from Web

Ontology Learning from Web
documents

Ontology Learning from Web
ontologies

Ontology Learning from
Web dictionary

Textual Content mining: Domain-
dependant approach

By Googling:

Domain- independant approach

Need of a priori domain knowledge
 User intervention for collection of

web documents

Agregating on line
ontology :

• searching ontology using
ontology search engine
• ranking ontologies
•Merging some parts

 problems of reliability on input
web ontology

 No availability for all domains
 complexity

Wikipedia mining

 terminological
ontology

 not scalable

arning from Web Ontology Learniinarning from Web Ontology Learninni

2

Web Structure Mining

Fig. 7. Ontology Learning Approaches from web

– Ontology learning based on web content mining (texts);
– Ontology learning based on web structure mining;
– Ontology learning from web dictionary;
– Ontology learning from web ontologies;
– Ontology learning by googling.

Ontology Learning Based on Web Content Mining (Texts). OL ap-
proaches from texts have widely interested the ontology engineering community.
These approaches are based on machine learning techniques applied to texts.
Ontology learning process from texts consists generally in enriching a small on-
tology called “minimal” or “granular” ontology with new discovered concepts
and relationships from input texts (corpora or web content document). This is
in particular the work of: [35] [36] [39] [40] [41] [42] [43] [44] [45] [46].

By using a set of text mining techniques, knowledge contained in texts is
projected to the ontology by extracting concepts and relations. We distinguish
mainly five categories of techniques:

– Linguistic techniques [39] and lexico-syntactic patterns [38];
– Clustering techniques and / or classification techniques [35] [36] [67];
– Statistical techniques [47] [49] ;
– Association rule-based techniques [9];
– Hybrid ones.

Sekiuchi98

192 N. Ben Mustapha and M.-A. Aufaure

Ontology Learning Based on Web Structure Mining. Furthermore, oth-
ers researchers were interested to study the structure of a growing number of
web pages. The underlying assumption behind web structure mining-based
is that the noun phrases appearing in the headings of a document as well as
the document’s hierarchical structure [50] can be used to discover taxonomic
relations between concepts.

Several systems supporting this approach analyze input documents’ heading
structure, extract concepts from headings and builds a taxonomical ontology.
[51] defines an approach for an automated migration of data-intensive web sites
into the semantic web. It is based on the extraction of light ontologies from
structured resources such as XML Schema or relational database schemata and
consists in building light ontologies from conceptual database schemas using a
mapping process. This process provides the conceptual metadata of annotations
that are automatically created from the database instances.

Besides, in [52] an approach called “Tango” uses the analysis of tables in
web pages for the generation of ontologies. In these works, the main difficulty
resides on the interpretation of the HTML structure that cannot reflect the
semantics of documents. Human intervention is still necessary to validate the
resulted ontologies.

Ontology Learning from Web Ontology. With the development of stan-
dards and tools supporting the semantic web vision, harvesting ontological files
on the web has been the first step towards achieving true ontology reuse for
ontology learning. The idea about online ontology building from web on-
tology has widely been explored by several works [51] [53] [54]. However, the
objective was mainly to enable users to reuse or import whole ontologies or on-
tology modules. They provided no support for ranking available ontologies, or
for extracting and merging the ontology parts of interest, or event for evaluating
the resulting ontology. In [53], a framework for integrating multiple ontologies
from structured documents into a common ontology is used. A universal similar-
ity paradigm reflecting the implicit cohesion among the ontologies is presented.
Ontology alignment and construction methods are applied.

Other approaches use ontology search engines or ontology meta-search engines
to build ontologies by aggregating many searched domain ontologies. There is
an increasing number of online libraries for searching and downloading ontolo-
gies. Examples of such libraries are Ontolingua, Protege, and DAML. Few search
engines have recently appeared that allow keyword-based search for online on-
tologies, such as Swoogle and OntoSearch.

In [54], the proposed approach consists in searching online ontologies for cer-
tain concepts, ranking the retrieved ontologies according to some criteria, then
extracting the relevant parts of the top ranked ontologies, and merging those
parts to acquire the richest domain representation as possible.

We don’t deny that these approaches can easily lead to obtain many domain
ontologies but some problems still remain. In fact, we still worry about many
issues:

Knowledge Harvesting for Business Intelligence 193

– Existing web ontology are not sufficiently consistent to be used;
– the availability of ontologies to be reused in terms of number and domain

variety;
– the quality of output ontology depends on the quality of input ontologies;
– the use of ontology searching, ontology ranking, ontology mapping, ontol-

ogy merging, and ontology segmentation methods makes this approach more
complex.

Ontology Building from Web Dictionary. “Wikipedia mining” is a research
area recently addressed. In [55], a construction method based on Wikipedia
mining is proposed. By analyzing 1.7 million concepts on Wikipedia, a very large
scale ontology (called “YAGO”) which has more than 78 million associations was
built. To avoid natural language processing (NLP) problems, structure mining
is applied to web-based dictionaries [55].

Other Hybrid Approaches. In [30], an approach combining heterogeneous
sources of information and various processing techniques associated with each
type of data source was proposed in order to improve the identification of poten-
tial useful knowledge. First, it extracts the core vocabulary to the domain using
a parsing process. The underlying idea of the method is that the combination of
all these additional sources of evidence improves the accuracy of the OL process.
Thus, the extracted terms are analyzed at five different levels: chunk, statisti-
cal, syntactical, visual and semantic level. The experimental results obtained by
processing a set of HTML documents belonging to two domains, Universities
and Economics, have shown the potential benefit of its use to learn or enrich
ontologies following an unsupervised learning approach.

5.2 Generic Ontology Learning Process from Texts

The extraction process starts from the raw text data (text document in natural
language) to obtain the final ontology knowledge representation. It includes the
following steps [56]:

– Term extraction;
– Synonym extraction;
– Concept discovery;
– Taxonomic relation learning;
– Non-taxonomic relation learning.

Term Extraction. A term is a semantic unit and can be simple or complex.
The terms are extracted using several techniques including statistical analysis
[57], use of patterns (regular expressions), linguistic analysis (identification of
nominal and prepositional groups), word disambiguation [58] and interpretation
of compound phrases (as in [59] using Wordnet).

194 N. Ben Mustapha and M.-A. Aufaure

Fig. 8. Ontology Learning Process [56]

Linguistic Techniques of Term Extraction. Linguistic analysis of texts also re-
quires the use of a grammar representing the sentence structure. We distinguish
two types of grammars that mainly allow to represent the structure of a sentence
in a given natural language:

– Constituency Grammar : this grammar is the basis of the formal theory of
language used in computational linguistics. The analysis using this type of
grammar is based on the position of words in the sentence and how they can
be grouped.

– Dependency Grammar : the analysis using this grammar provide binary gram-
matical links between words in a sentence. When two words are connected by
a dependency relationship, we say that one is the ruler or the head and the
other is a dependent. In general, the extracted relations are schematically
represented by an arc between the head and the dependent.

Statistical Techniques for Term Selection. Statistical techniques are mainly based
on the analysis of word co-occurrences and other parameters such as absolute
frequency of a term, frequency of a term on a given field, etc. Under the assump-
tion of Harris [60], these methods determine a score representing the relationship
between two terms and retain those with scores greater than or equal to a given
threshold. For example, the combination of TF∗ IDF measure with other meth-
ods such as latent semantic analysis can be used to select the domain concepts.
It should be noted that these methods ignore the statistically insignificant terms.

The measures used for selection of candidate terms according to their occur-
rences in the corpus are as follows:

– The TF-IDF measure [61];
– The entropy [62];
– The Relevance to the domain (PD) [63];
– The Consensus in domain [63];
– The pointwise mutual information (PMI) measure [64] (formula 1).

The information contents of the concept is defined by its occurrences in the
corpus as well as concepts that it subsumes. It aims to use the probability of

Knowledge Harvesting for Business Intelligence 195

a concept in a corpus of documents (formula 2). The information contents of a
concept c is calculated as following [47]:

PMI(c) = −log(p(c)) (1)

where:

p(c) =
freq(c)

N
and freq(c) =

∑
n∈word(c)

(2)

Synonyms Extraction. The second step aims to identify synonyms among
the extracted terms, in order to associate several words with the same concept
in the same language [74]. The extraction of synonyms is usually done in two
ways:

– Using lexical ontologies such as Wordnet [48];
– Classification techniques which are used to group terms occurring in the

same context (eg, co-occurrences of terms).

Concept Learning. Extracted terms are useful to represent the concepts of an
ontology. Concept can be discovered using two techniques:

– Construction of the Topic Signature;
– Classification of concepts based on contextual properties of words.

Construction of the Topic Signature. This technique defined in [35] aims to
overcome two main limits of lexical ontologies like Wordnet which are the lack
of updating links between concepts and the proliferation of different meanings
for each concept. This approach proceeds as follows. Firstly, information con-
tained in existing ontology like Wordnet (synonyms of the concepts, hyponyms,
antonyms, etc) is used to build requests which are used to search the relevant
documents relating to one sense of a given term. The documents related to the
same sense of this term are grouped together to form a collections. Secondly,
the documents in each collection are processed. Words and their frequencies are
extracted by using a statistical approach.

Extracted data from one collection is compared to data in other collections
corresponding to the other senses of the same term. The words having a distinc-
tive frequency for one of the collections are grouped in a list, which make up
for each sense of a term, the contextual signature (Topic signature) generally
used in the construction of summaries of texts. Thirdly, for a given word, the
concepts associated with their sense are hierarchically grouped. With this inten-
tion, various signatures are compared to discover shared words and to determine
intersection between the signatures. Many measures are used to calculate the se-
mantic distance. The contextual signatures were evaluated by their application
in the task of semantic disambiguation of words. These first contain considerably
useful information for this task. However, the evaluation of this method by using
Wordnet is not sufficient to conclude by its effectiveness in the case of domain
ontology construction.

196 N. Ben Mustapha and M.-A. Aufaure

Classification of Concepts Based on Contextual Properties of Words. This tech-
nique is based on the principles of the Distributive Semantics which admit that
“the meaning of a word is strongly correlated with the contexts in which it ap-
pears”. This assumption can be generalized to cover complex expressions instead
of words. The contexts can be formalized in the shape of words vectors, as in
the case of semantic signature of subject described in [65].

By using the Topic signatures, each concept is represented by a set of co-
occurring words and their frequencies. Within this framework, several metrics of
similarity, such as TF∗IDF ou Chi-Square, can be used to measure the distance
between various concepts. An algorithm of downward classification is described
in [36] in order to extend from existing ontologies (such as Wordnet) with the
new concepts. In fact, the quality of topics signatures construction described in
[35] can be improved by taking in account only concepts belonging to contexts of
existing ontology concepts (ie. which have syntactic relationships to the concepts
in ontology). For example, it is possible to consider only the list of the verbs
for which the concepts are subjects or a direct object, or to consider only the
adjectives which modify the concept.

Learning Taxonomic Relations. At this step, two categories of machine
learning techniques (linguistic and statistical techniques) can be used. Linguis-
tic techniques of taxonomic relations discovery are based on the definition of
lexical-syntactic patterns for extracting hyponymy relations [38]. Several statis-
tical techniques are based on the analysis of word distribution in the corpora.

Lexico-Syntactic Patterns Related to Taxonomic Relations. Lexico-syntactic pat-
terns are based on the study of syntactic regularities between two given concepts.
Indeed, it aims to schematize the lexical and syntactic context of taxonomic rela-
tions between concepts. This mapping is a lexico-syntactic pattern and permits
the retrieval of pairs of words which satisfy this relation from the corpus.

Hearst’s Patterns is the basis of several approaches. We illustrate the patterns
of hyponymy relations identified by Hearst in the English language in Table 1.

Table 1. Hearst’s Patterns

NP such as NP, NP, ... and NP data warehousing technologies such as re-
porting, ad-hoc querying, online analytical
processing (OLAP).

Such NP as NP, NP, ... or NP such supervised machine learning as data
pre-processing or feature selection.

NP, NP, ... and other NP screen real estate to financial charts, in-
dices and other news graphics.

NP, especially NP, NP,... and NP Accounting, especially financial accounting
gives mainly past information in that the
events are recorded.

NP is a NP SAS OLAP is a multidimensional data
store engine

Knowledge Harvesting for Business Intelligence 197

In [39], the experimental evaluation of a large number of patterns was done
using the Cameleon tool. The results obtained showed that the effectiveness of
these patterns and their meanings depend on the corpus. Indeed, the syntac-
tic regularities regarding the relations of hyponymy that were defined do not
necessary reflect the relevant relationships in the ontology.

Statistical Techniques for Learning Taxonomic Relations. Several statistical tech-
niques are described in the literature for extracting taxonomic relationships be-
tween terms. They are based on analysis of co-occurrences between words in
documents. The co-occurrence corresponds to the simultaneous occurrence of
two words in a text (or window of n words). The set of term co-occurrences is
represented by a matrix. This is then used for:

– an hierarchical grouping of words, using automatic classification methods;
– a grouping based on probability measures [66].

In this context, it is also possible to apply hierarchical clustering by using the
co-occurrence matrix of words extracted from documents. In the case of a hier-
archical cluster, initially, each class is composed of a term. In [66], a rule related
to taxonomic relation extraction stipulates that if two concepts were referred by
terms that appear in the same documents (in fact in 80 % of cases), then these
two concepts are hyponyms. In other words, if a concept X subsumes a concept
Y and the documents in which X appears are a subset of the documents includ-
ing the word Y, then X subsumes Y. Other rules can be discovered according to
the corpus. The conditional probabilities depend closely on the selected context
which can be a sentence, a web page, or a web site.

Extracting Non-taxonomic Relations. Another step of ontology learn-
ing consists in discovering non-taxonomic relations between concepts. A non-
taxonomic relation can be extracted using two main techniques:

– conceptual clustering using syntactic frames [67];
– statistical techniques.

Learning Syntactic Frames. Conceptual clustering requires a syntactic analysis
of the documents from which we estimate being able to build an ontology. Classes
are formed starting from the terms appearing after the same verb and the same
preposition. An algorithm of conceptual clustering is applied for this purpose.
One difficulty relies in labeling the relations after their discovery.

To solve this problem, two clustering algorithms: “Asium-Best” and “Asium-
Level” based on the extraction of the syntactic frames were proposed by ASIUM
approach in [67]. These techniques allow the discovery of non-taxonomic relations
between two classes of terms. These relations are labeled according to the verb
and the preposition concerned with the syntactic frame. A syntactic frame for
the verb “to travel” is illustrated as following: <To travel><subject:human>
<by:convey>.

Initially, the parser automatically provides noun expressions associated with
the verbs and the clauses. For example, starting from the following syntactic
frame, classes are created:

198 N. Ben Mustapha and M.-A. Aufaure

– <To travel> (<subject: Jean>) (<in: means of transport>);
– <To travel> (<subject: David>) (<in: train>);
– <To lead> (<subject: Helene>) (<object: means of transport> ;
– <To lead> (<subject: Roland>) (<object: plane>).

The classes are successively aggregated to form new concepts hierarchies. The
obtained classes are labeled by an expert to identify the concepts which they
represent. The classes make up the groupings of words having the same frame:
<verb><syntactic role—preposition: name>, such as for example “<travelling>
<subject: human> <by: convey>.

The couples<syntactic role: name> or<preposition: name> are called “heads
words”. Similarity measures permit to evaluate the distance between the classes,
and thus to gather their dependencies based on the proportion of common “heads
words” and their frequency of appearance in the documents. The method was
tested on a corpus related to kitchen recipes. When the system is involved to
find the couples verb-argument on 30% of the corpus, the hierarchy suggested is
valid to 30%.

Statistical Techniques For Learning Non-Taxonomic Relations. The main idea
of this technique is to extract noun phrases and proper names that appear fre-
quently. These terms are called the central terms. According to the approach
DOODLE II [49], co-occurring terms are proposed to be related in the ontology,
and the verbs that occur in the context are proposed to be the labels of the
relationship. These terms may be determined from one co-occurrence matrix in
a window of n words. The advantage of this approach is that preprocessing of
texts is avoided and the combination of association rules with the space of words
gives better results than each technique separately used.

Finally, recent approaches which propose the use of search engines to learn
ontology are described in the next section.

5.3 Ontology Capture by Googling

[68] proposes to construct an ontology by submitting the initial keywords to
Google in order to retrieve web pages containing these terms. A study of several
available types of search engines on the web has been carried out in order to be
used in the learning process (searches web resources and calculates a score based
on the number of hits) (figure 9).

The learning process proposed in this approach is based on four steps. The
first one is a taxonomic learning step where the user starts to specify a keyword
used as a seed for the learning process, using a web search engine. The output
of this step is a one-level taxonomy and a set of verbs appearing in the same
context as extracted concepts.

Secondly, non-taxonomic learning is carried out. Verb list and keywords are
used as a bootstrap for the construction of domain patterns in order to submit
reformulated queries to the search engine.

The third step is the recursive learning task where the two previous
learning tasks are recursively executed for each discovered concept. Finally, the

Knowledge Harvesting for Business Intelligence 199

gy g y g g

Fig. 9. Ontology leaning by googling

post-processing step consists in refining and evaluating the obtained ontology.
This approach is domain independent and incremental.

These approaches led to identify three main techniques that were adapted to
the web:

– statistical techniques based on term-distribution in the web;
– ontology population by Googling;
– label learning for non-taxonomic relations.

Considering the web as a massive source of knowledge, several statistic ap-
proaches have exploited the number of pages returned by a web search engine to
estimate the probabilities of co-occurrence of terms. We consider the following
notations:

– hit(a) is used to denote the number of web pages containing the query re-
turned by a search engine;

– totalWebs denotes the total number of pages indexed by the search engine.

From a unsupervised point of view, the statistical estimation of the semantic
link between concepts, as proposed in [69] [70] typically uses a measure derived
from the following co-occurrence function between two terms:

Ck(concept, candidat) =
prob(concept AND candidat)k
prob(concept)× prob(candidat)

(3)

The Symmetric Conditional Probability (SCP)) [69] can be defined as C2 and
the Pointwise Mutual Information (PMI) [70] as log2c1.

The probability “prob(a AND b)” is computed using the hit number pro-
vided by search engines, as stated by the following formula:

prob(a, b) =
hit(a AND b)

totalWebs
(4)

The score derived from this function was defined by Turney as follows:

score(concept, candidat) =
prob(conceptANDcandidat)k
prob(concept)× prob(candidat)

(5)

200 N. Ben Mustapha and M.-A. Aufaure

The measures proposed by Turney were applied and evaluated in [71]. How-
ever, since the semantic content and context of words is not taken into account
by these measures, limited performance is observed in [72].

Other approaches were interested in ontology population by googling. In fact,
Gijs Geleijnse and Jan Korst [73] propose the identification of concept instances
using the search engine Google. Queries are constructed based on lexico-syntactic
patterns defied by Hearst [38]. A term is accepted when the number of hits
(number of results returned by Google) exceeds a given threshold.

The same principle was also explored by [74] in order to extract taxonomic
relations and attributes of concepts.

Finally, reference work on learning non-taxonomic relation from web has been
well detailed in [74] and led to the development of the Pankow system. Pankow
also relies on the idea that lexico-syntactic patterns described above can be
applied not only to a text corpus, but also in the World Wide Web as in [75].

6 Ontologies for Business Intelligence

Business intelligence (BI) is defined as the process of searching, gathering, ag-
gregating, and analyzing information for decision making.

Nowadays, Business Intelligence actors intend to bring together researchers
in techniques related to conceptual modeling, ontology engineering, knowl-
edge representation, and Information Retrieval for helping business devel-
opers, managers, and analysts involved in the development of BI systems to take
benefits from heterogeneous data sources (unstructured and structured) and to
facilitate information search.

The aim is to perform discussions on integrating ontologies, modeling lan-
guages, and search methods for the engineering of BI systems with the purpose
of providing more precise information for the end-user, bridging the gap between
the dimensions that affect the evolution of Business Intelligence.

Besides, semantic technologies advocated by semantic web[77] have been
applied for BI in the context of the MUSING Project 10. The new trend aims
to develop a new generation of BI tools and modules based on semantic-based
knowledge and natural language processing (NLP) technology to make easier
gathering, merging, and analyzing information [76].

On the other hand, Ontology-based Information Extraction (OBIE) is a suit-
able technique for automatically extracting specific fragments from text or other
sources to create records in a database or populate knowledge bases. Without an
OBIE system, business analysts have to read hundreds of textual reports, web
sites, and tabular data to carry out BI activities and feed BI models and tools.

In this paper we stressed the existing relation between Ontology Learning
process (OL) and Ontology-based Information Extraction (OBIE) in academic
research areas. This relation can be applied to the context of Business Intelli-
gence.

10 http://www.musing-project.eu

http://www.musing-project.eu

Knowledge Harvesting for Business Intelligence 201

In [78], authors propose a Semantic Business Intelligence (SBI) architecture
that incorporates many features that distinguish it from the existing information
management solutions and research. Their work aims at enabling the integration
of business semantics, heterogeneous data sources, and knowledge engineering
tools in order to support a smarter decision making.

Besides, the CUBIST project 11 (Combining and Uniting Business Intelli-
gence and Semantic Technologies) aims to explore standard approaches known
from Formal Concept Analysis (FCA) in order to manage the complexity of the
visualizations of concepts (for example, by condensing/clustering the resulting
concepts, restrict visualizations by means of sub-dividing data, or filtering data
in combination on other semantic query forms like faceted search) in the context
of BI.

7 Conclusion

The improvement on knowledge engineering, capture and search have contributed
to tackle knowledge management in the context of BI. These research areas are
quite correlated and can affect positively the development of enhanced seman-
tic Business Intelligence Tools. This paper aims to make these correlation more
explicit. A state of the art about knowledge representation, recent ontology en-
gineering approaches and semantic search engine are detailed.

On the base of analyzing ontology-based search engines presented in Section
4, we have identified the following problems:

– the scalability of ontologies: which makes difficult of handling several
domain ontologies being used in semantic BI tools.

– the problem of query reformulation with the use of several domain
ontologies: this is due to the usual mapping problems between query terms,
ontological concepts and terms existing in documents. Indeed, identifying the
ontological fragment that can be relevant for query reformulation depends
strongly on the structure of the ontology. The use of the superclasses of
the key concepts or the attributes in the the query reformulation task does
not necessarily improve the relevance of search results. For this reason, the
context of ontology-based BI applications including data type , ontology
usage, users preferences is important to take into account in the ontology
building process.

These problems are quire related to the progress made by ontology engineering
approches which have been widely described in this paper.

Approaches for building ontologies from online ontologies described in sub-
section 5 are based on the use of ontology search engines, the classification and
the aggregation of the resulting ontologies. These approaches can be easily inte-
grated in the semantic BI architecture but several problems inhibit us to continue
exploring this idea, including:

11 www.cubist-project.eu/

www.cubist-project.eu/

202 N. Ben Mustapha and M.-A. Aufaure

– inconsistency of the existing ontologies in online libraries;
– absence of ontologies related to several domain on the web (especially busi-

ness domain)
– complexity of ontology classification, ontology alignment, merging and seg-

mentation.

In addition, works proposing the construction of ontologies from online dictio-
naries allowed obtaining very large terminological ontologies (YAGO). These
ontologies are quite useful but their update depends on the contents of these
dictionaries, and they can be enriched only if these dictionaries undergo the
updates.

For these reasons, we can consider the web as a complementary scalable source
that is rich of continuously updated texts, and is covering all areas of knowledge.
Using Ontology learning techniques based on googling, it will make it possible to
build an integrated BI solution for incremental ontology learning. On the other
side, ontology learning techniques can be applied to unstructured content, rep-
resenting 80% of enterprise data, to build specific knowledge bases and enhance
the search and decision processes. We were primarily interested, in this paper,
in studying approaches of ontology learning from web content, since the other
approaches are based on limited data sources and do not favor the evolution of
the ontologies.

References

1. Camon, E., Magrane, M., Barrell, D., Lee, V., Dimmer, E., Maslen, J., Binns,
D., Harte, N., Lopez, R., Apweiler, R.: The Gene Ontology Annotation (GOA)
Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids
Res. 32, 262–266 (2004)

2. Boyce, S., Pahl, C.: The development of subject domain ontologies for educa-
tional technology systems. Journal of Educational Technology and Society (ETS)
IEEE 10(3), 275–288 (2007)

3. Holohan, E., Melia, M., McMullen, D., Pahl, C.: Adaptive e-Learning Content
Generation Based on Semantic Web Technology. In: Workshop on Applications of
Semantic Web Technologies for e-Learning, AIED 2005, Amsterdam, The Nether-
lands, July 18 (2005)

4. Fox, M.S., Barbuceanu, M.: An Organisation Ontology for Enterprise Modeling.
In: Prietula, M., Carley, K., Gasser, L. (Hrsg.) Simulating Organizations: Compu-
tational Models of Institutions and Groups, pp. 131–152. AAAI/MIT Press, Menlo
Park, CA (1998)

5. Uschold, M., Grüninger, M.: ONTOLOGIES: Principles, Methods and 16 applica-
tions. Knowledge Engineering Review 11(2), 93–13 (1996)

6. Navigli, R., Velardi, P.: From Glossaries to Ontologies: Extracting Semantic Struc-
ture from Textual Definitions. Frontiers in Artificial Intelligence and Applica-
tions 167, 71–89 (2008)

7. Furst, F., Leclère, M., Trichet, F.: Construction d’une ontology opérationnelle:
un retour d’expérience. In: Hérin, D., Zighed, D.A. (eds.) EGC. Extraction des
Connaissances et Apprentissage, vol. 1, pp. 227–232. Hermes Science Publications
(2002)

Knowledge Harvesting for Business Intelligence 203

8. Gruber, T.: Toward principles for the design of ontologies used for knowledge shar-
ing. International Journal of Human-Computer Studies (1993); Guarino, N., Poli,
R. (eds.) Special Issue on Formal Ontology in Conceptual Analysis and Knowledge
Representation

9. Maedche, A., Staab, S.: Ontology Learning. In: Staab, S., Studer, R. (Hrsg.)
Handbook on Ontologies. International Handbooks on Information Systems, pp.
173–190. Springer (2004)

10. Harold, B.: Design Rationale of RuleML: A Markup Language for Semantic Web
Rules. In: Proceeding of SWWS 2001, pp. 381–401 (2001)

11. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web rule language combining OWL and RuleML, W3C Mem-
ber Submission (2004)

12. Miller, G.: Wordnet: A lexical database for English. CACM 38(11), 39–41 (1995)

13. Dong, Z., Dong, Q.: Hownet and the Computation of Meaning. World Scientific
(2006)

14. Chandrasekaran, B., Josephson, J.R., Benjamins, V.R.: Ontology of tasks and
methods. In: Proceedings of the 11th Workshop on Knowledge Acquisition Model-
ing and Management, Banff, Canada, pp. 20–26 (1998)

15. Wang, W., Payam, M., Barnaghi, A.B.: Search with meanings: An overview of
semantic search systems. Journal of Communications of SIWN 3, 76–82 (2008)

16. Esmaili, K.S., Abolhassani, H.: A categorization scheme for semantic web search
engines. In: 4th ACS/IEEE Int. Conf. on Computer Systems and Applications,
AICCSA 2006, pp. 171–178. IEEE (2006)

17. Zhang, Y., Vasconcelos, W., Sleeman, D.: OntoSearch: An ontology search en-
gine. In: Proceedings of the 24th SGAI International Conference on Innovative,
Techniques and Applications of Artifial Intelligence, Cambridge, UK, pp. 81–93
(2004)

18. Finin, T.W., Ding, L., Pan, R., Joshi, A., Kolari, P., Java, A., Peng, Y.: Swoogle:
Searching for knowledge on the semantic web. In: Veloso, M.M., Kambhampati, S.
(eds.), pp. 1682–1683. AAAI Press, The MIT Press (2005)

19. Patel, C., Supekar, K., Lee, Y., Park, E.K.: OntoKhoj: a semantic web portal
for ontology searching, ranking and classification. In: WIDM 2003, pp. 58–61
(2003)

20. Shah, U., Finin, T., Joshi, A., Cost, R.S., Mayfield, J.: Information Retrieval on the
Semantic Web. In: 10th International Conference on Information and Knowledge
Management, McLean, Virginia, USA, pp. 461–468 (2002)

21. Davies, J., Weeks, R., Krohn, U.: QuizRDF: Search technology for the Semantic
Web. In: WWW 2002 Workshop on RDF and Semantic Web Applications, Hawaii,
pp. 133–143 (2002)

22. Priebe, T.: INWISS - Integrative Enterprise Knowledge Portal. Demonstration at
the 3rd International Semantic Web Conference, ISWC 2004, Hiroshima, Japan,
pp. 33–36 (2004)

23. Corby, O., Dieng-Kuntz, R., Faron-Zucker, C.: Querying the semantic web with
corese search engine. In: Lopez de Mantaras, R., Saitta, L. (eds.) ECAI, pp. 705–
709. IOS Press (2004)

24. Heflin, J., Hendler, J.: Searching the web with shoe. In: AAAI 2000 Workshop on
AI for Web Search, pp. 35–40 (2000)

25. Bonino, D., Corno, F., Farinetti, L.: DOSE: A distributed open semantic elabora-
tion platform. In: ICTAI, pp. 580–588. IEEE Computer Society (2003)

204 N. Ben Mustapha and M.-A. Aufaure

26. Spyns, P., Oberle, D., Volz, R., Zheng, J., Jarrar, M., Sure, Y., Studer, R., Meers-
man, R.: OntoWeb - A Semantic Web Community Portal. In: Karagiannis, D.,
Reimer, U. (eds.) PAKM 2002. LNCS (LNAI), vol. 2569, pp. 189–200. Springer,
Heidelberg (2002)

27. Tamma, V., Blacoe, I., Lithgow-Smith, B., Wooldridge, M.: SERSE: Searching for
Semantic Web Content. In: Lopez de Mantaras, R., Saitta, L. (eds.) Proceedings
of the Sixteenth European Conference on Artificial Intelligence, ECAI 2004, pp.
63–67 (2004)

28. Rocha, C., Schwabe, D., de Aragao, M.P.: An hybrid approach for searching in the
semantic web. In: Proc. of 13th Intl. World Wide Web Conf., WWW 2004, pp.
374–383 (2004)

29. Halaschek-Wiener, C., Aleman-Meza, B., Arpinar, I.B., Sheth, A.P.: Discovering
and Ranking Semantic Associations over a Large RDF Metabase. In: 30th Inter-
national Conference on Very Large Data Bases, Toronto, Canada, pp. 1317–1320.
Morgan Kaufmann (2004)

30. Maedche, A., Staab, S.: Ontology Learning for the Semantic Web. IEEE Intelligent
Systems, Special Issue on the Semantic Web 6(2), 72–79 (2001)

31. Jannink, J.: Thesaurus Entry Extraction from an On-line Dictionary. In: Proceed-
ings of Fusion 1999, Sunnyvale, CA (1999)

32. Suryanto, H., Compton, P.: Discovery of Ontologies from Knowledge Bases. In:
Proceedings of the First International Conference on Knowledge Capture, pp. 171–
178. The Association for Computing Machinery, New York (2001)

33. Papatheodrou, C., Vassiliou, A., Simon, B.: Discovery of Ontologies for Learning
Resources UsingWord-based Clustering. In: EDMEDIA 2002, Copyright by AACE,
Reprinted, Denver, USA (2002)

34. Rubin, D.L., Hewett, M., Oliver, D.E., Klein, T.E., Altman, R.B.: Automatic data
acquisition into ontologies from pharmacogenetics relational data sources using
declarative object definitions and XML. In: Proceedings of the Pacific Symposium
on Biology, Lihue, HI, pp. 88–99 (2002)

35. Agirre, E., Ansa, O., Hovy, E., Martinez, D.: Enriching very large ontologies using
the WWW. In: Proceedings of ECAI Workshop on Ontology Learning, ECAI 2000
(2000)

36. Alfonseca, E., Manandhar, S.: An unsupervised method for general named entity
recognition and automated concept discovery. In: Proc. First International Confer-
ence on Genaral WordNet, India (2002)

37. Ben-Mustapha, N., Baazaoui-Zghal, H., Marie-Aude, A., Ben-Ghézala, H.: Survey
on ontology learning from web and open issues. In: Third International Sympo-
sium on Innovation in Information and Communication Technology, ISIICT 2009,
Amman, Jordan (2009)

38. Hearst, M.A.: Automated Discovery of WordNet Relations. In: Wordnet An Elec-
tronic Lexical Database, pp. 132–152. MIT Press, Cambridge (1998)

39. Aussenac-Gilles, N., Jacques, M.-P.: Designing and Evaluating Patterns for Ontol-
ogy Enrichment from Texts. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS
(LNAI), vol. 4248, pp. 158–165. Springer, Heidelberg (2006)

40. Bachimont, B.: Engagement sémantique et engagement ontologiqueconception et
réalisation d’ontologies en Ingénierie des connaissances. In: Ingénierie des Connais-
sances: Évolutions Récentes et Nouveaux Défis, ch. 19 (2000)

41. Faatz, A., Steinmetz, R.: Ontology enrichment with texts from the WWW. In:
Semantic Web Mining 2nd Workshop at ECML/PKDD 2002, Helsinki, Finland
(2002)

Knowledge Harvesting for Business Intelligence 205

42. Hahn, U., Mark, K.: Joint knowledge capture for grammars and ontologies. In: Gil,
Y., Musen, M., Shavlik, J. (eds.) Proceedings of the First International Conference
on Knowledge Capture, K-CAP 2001, Victoria, British Columbia, Canada, pp.
68–75. ACM Press (2001)

43. Hwang, C.H.: Incompletely and imprecisely speaking: using dynamic ontologies for
representing and retrieving information. In: Proceedings of the 6th International
Workshop on Knowledge Representation meets Databases, KRDB 1999, pp. 14–20
(1999)

44. Kietz, J.U., Maedche, A., Volz, R.: A Method for Semi-Automatic Ontology Ac-
quisition from a Corporate Intranet. In: Aussenac-Gilles, N., Biébow, B., Szulman,
S. (eds.) EKAW 2000 Workshop on Ontologies and Texts, Juan-Les-Pins, France,
Amsterdam, The Netherlands. CEUR Workshop Proceedings (2000)

45. Moldovan, D., Girju, R.: Domain-Specic Knowledge Acquisition and Classification
using WordNet. In: Proceedings of FLAIRS 2000 Conference, Orlando, pp. 224–228
(2000)

46. Karoui, L., Aufaure, M.-A., Bennacer, N.: Contextual Concept Discovery Algo-
rithm. In: FLAIRS-20, The 20th International FLAIRS Conference, in Cooperation
with the American Association for Artificial Intelligence, Key West, Florida, May
7-9, pp. 460–465 (2007), special track on Context in AI tools and Applications

47. Resnik, P.: Using information content to evaluate semantic similarity in a taxon-
omy. In: IJCAI, pp. 448–453 (1995)

48. WordNet: An Electronic Lexical Database. MIT Press (1989)
49. Sekiuchi, R., Aoki, C., Kurematsu, M., Yamaguchi, T.: DODDLE: A Domain On-

tology Rapid Development Environment. In: Lee, H.-Y. (ed.) PRICAI 1998. LNCS,
vol. 1531, pp. 194–204. Springer, Heidelberg (1998)

50. Karoui, L., Aufaure, M.-A., Bennacer, N.: Context-based Hierarchical Clustering
for the Ontology Learning. In: IEEE Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Web Intelligence (WI 2006) Jointly with the 2006
IEEE/WIC/ACM International Conference on Data Mining (ICDM 2006), Hong-
Kong, December 18-22, pp. 420–427 (2006)

51. Stojanovic, N., Stojanovic, L., Volz, R.: A Reverse Engineering Approach for Mi-
grating Data-intensive Web Sites to the Semantic Web. In: 17th World Computer
Congress, pp. 141–154. Kluwer Academic Publishers (2002)

52. Tijerino, Y.A., Embley, D.W., Lonsdale, D.W., Ding, Y., Nagy, G.: Towards on-
tology generation from tables. World Wide Web 8(3), 261–285 (2005)

53. Manzano-Macho, D., Gomez-Pérez, A., Borrajo, D.: Unsupervised and Domain
Independent Ontology Learning: Combining Heterogeneous Sources of Evidence.
In: Proceedings of the Sixth International Language Resources and Evaluation,
LREC 2008, pp. 28–30 (2008)

54. Allani, H.: Position paper: ontology construction from online ontologies. In: Inter-
national World Wide Web Conference, pp. 491–495 (2006)

55. Nakayama, K., Hara, T., Nishio, S.: A thesaurus construction method from large
scaleweb dictionaries. In: AINA, pp. 932–939. IEEE Computer Society (2007)

56. Christopher, B.: In: Buitelaar, P., Cimiano, P., Magnini, B. (eds.) Ontology Learn-
ing from Text: Methods, Evaluation and Applications (DFKI Saarbrücken, Univer-
sity of Karlsruhe, and ITC-irst). Frontiers in artificial intelligence and applications,
vol. 123, IOS Press, Amsterdam (2005); Breuker, J., et al (eds.)

57. Lin, D.: Automatic retrieval and clustering of similar words. In: Proceedings of the
17th International Conference on Computational Linguistics, Montreal, Quebec,
Canada, August 10-14, pp. 768–774 (1998)

206 N. Ben Mustapha and M.-A. Aufaure

58. Véronis, J.: Hyperlex: lexical cartography for information retrieval. Computer
Speech & Language 18(3), 223–252 (2004)

59. Navigli, R., Velardi, P.: Learning domain ontologies from document warehouses
and dedicated web sites. Computational Linguistics 30(2), 151–179 (2004)

60. Harris, Z.S.: Mathematical Structures of Language. John Wiley and Sons, New-
York (1968)

61. Robertson, S.E., Jones, K.S.: Relevance weighting of search terms. Journal of the
American Society for Information Science 27, 129–146 (1976)

62. Brini, A.H., Boughanem, M., Dubois, D.: A Model for Information Retrieval Based
on Possibilistic Networks. In: Consens, M.P., Navarro, G. (eds.) SPIRE 2005.
LNCS, vol. 3772, pp. 271–282. Springer, Heidelberg (2005)

63. Velardi, P., Fabriani, P., Missikoff, M.: Using text processing techniques to auto-
matically enrich a domain ontology. In: Proceedings of the ACM Conference on
Formal Ontologies and Information Systems, pp. 270–284 (2002)

64. Lebart, L., Salem, A., Berry, L.: Exploring Textual Data. Kluwer Academic Pub-
lishers (1998)

65. Lin, C.-Y., Hovy, E.H.: The automated acquisition of topic signatures for text
summarization. In: COLING, pp. 495–501. Morgan Kaufmann (2000)

66. Sanderson, M., Croft, W.B.: Deriving concept hierarchies from text. In: Proceed-
ings of the 22nd International ACM SIGIR Conference, pp. 206–213 (1999)

67. Faure, D., Nedellec, C.: A corpus-based conceptual clustering method for verb
frames and ontology acquisition. In: LREC Workshop on Adapting Lexical and
Corpus Resources to Sublanguages and Applications, Granada, Spain (1998)

68. Sanchez, D.: Domain ontology learning from the web. Knowledge Eng. Re-
view 24(4), 413 (2009)

69. Ferreira, J.: A local maxima method and a fair dispersion normalization for ex-
tracting multi-word units from corpora. World Trade, 369–381 (1999)

70. Turney, P.D.: Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL.
In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp.
491–499. Springer, Heidelberg (2001)

71. Downey, D., Broadhead, M., Etzioni, O.: Locating complex named entities in Web
text. In: Proceedings of the 20th International Joint Conference on Artificial Intel-
ligence, pp. 2733–2739 (2007)

72. Lemaire, B., Denhière, G.: Effects of High-Order Co-occurrences on Word Semantic
Similarities. Current Psychology Letters - Behaviour, Brain and Cognition 18(1)
(2006)

73. Geleijnse, G., Korst, J.H.M.: Automatic ontology population by googling. In: Pro-
ceedings of the Seventeenth Belgium-Netherlands Conference on Artificial Intelli-
gence, pp. 120–126 (2005)

74. Cimiano, P.: Ontology learning and population from text - algorithms, evaluation
and applications. Springer (2006)

75. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.-M., Shaked, T., Soder-
land, S., Weld, D.S., Yates, A.: Web Scale Information Extraction in KnowItAll
(Preliminary Results). In: Proceedings of the 13th International WWW Confer-
ence, New York, USA, pp. 100–111 (2004)

76. Kuchmann-Beauger, N., Aufaure, M.-A.: A Natural Language Interface for Data
Warehouse Question Answering. In: Muñoz, R., Montoyo, A., Métais, E. (eds.)
NLDB 2011. LNCS, vol. 6716, pp. 201–208. Springer, Heidelberg (2011)

77. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American,
34–43 (2001)

Knowledge Harvesting for Business Intelligence 207

78. Sell, D., da Silva, D., Beppler, F.D., Napoli, M., Ghisi, F.B., Pacheco, R.C., Tode-
sco, J.L.: SBI: a semantic framework to support business intelligence. In: Pro-
ceedings of the First International Workshop on Ontology-supported Business
Intelligence (OBI), p. 111. ACM, New York (2008)

79. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.-M., Shaked, T., Soder-
land, S., Weld, D.S., Yates, A.: Web Scale Information Extraction in KnowItAll
(Preliminary Results). In: Proceedings of the 13th International WWW Confer-
ence, New York, USA, pp. 100–111 (2004)

80. Nixon, L., Mochol, M., Jarrar, M., Dasiopoulou, S., Papastathis, V., Kompatsiaris,
Y.: Prototypical Business Use Cases. Deliverable D1.1.2 (WP1.1). The Knowledge
Web Network of Excellence (NoE) IST-2004-507482, Luxemburg (January 2005)

M.-A. Aufaure and E. Zimányi (Eds.): eBISS 2012, LNBIP 138, pp. 208–233, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Business Semantics as an Interface between Enterprise
Information Management and the Web of Data: A Case

Study in the Flemish Public Administration

Christophe Debruyne1 and Pieter De Leenheer2,3

1 Semantics Technology and Applications Research Lab,
Vrije Universiteit Brussel, Brussels, Belgium

chrdebru@vub.ac.be
2 VU University, Amsterdam, The Netherlands

3 Collibra nv/sa, Brussels, Belgium
pieterdeleenheer@acm.org

Abstract. Conceptual modeling captures descriptions of business entities in
terms of their attributes and relations with other business entities. When those
descriptions are needed for interoperability tasks between two or more autono-
mously developed information systems ranging from Web of Data with no a
priori known purposes for the data to Enterprise Information Management in
which organizations agree on (strict) rules to ensure proper business, those de-
scriptions are often captured in a shared formal specification called an ontology.
We present the method Business Semantics Management (BSM), a fact-
oriented approach to knowledge modeling grounded in natural language. We
first show how fact-oriented approaches differ from approaches in terms of,
amongst others, expressiveness, complexity, and decidability and how this for-
malism is easier for users to render their knowledge. We then explain the
different processes in BSM and how the tool suite supports those processes. Fi-
nally, we show how the ontologies can be transformed into other formalisms
suitable for particular interoperability tasks. All the processes and examples will
be taken from industry cases throughout the lecture.

Keywords: Conceptual Modeling, Knowledge Management, Ontology Engi-
neering, Business Semantics Management.

1 Introduction

The increasing need for reusing and sharing information across peers in global value
networks demands information systems to become Web-enabled and semantically
interoperable. Semantic interoperability is defined as “the ability of two or more au-
tonomously developed and maintained information systems or their (computerized)
components to communicate data (using Web-based standards) and to interpret the
information in the data that has been communicated in a meaningful manner” [6].
Most legacy information systems were developed in a time when these requirements
were non-existing. The lack of interoperability is basically due to the different under-
lying formal semantics. The formal semantics of a (computer-based) system is the

 Business Semantics as an Interface between Enterprise Information Management 209

correspondence between this system and some real world as perceived by humans and
usually given by a formal mapping of the system’s symbols. As the real world is not
accessible inside a computer, the world needs to be represented by an agreed concep-
tualization if we want to store and reason about semantics. Semantics are often stored
in the shape of a formal (mathematical) construct. E.g., consider a particular car that
is a real-world object and its license plate being a digitized reference in a database
system. The formal semantics is defined by the correspondence between the car and
it’s unique license plate.

In order for systems to semantically interoperate, one has to have a shared under-
standing about this formal semantics. This is usually known as an ontology [14]. On-
tologies constitute the key resources for realizing a Semantic Web [1]. While theoreti-
cally ontologies should be perfect renderings of a real world, in practice they evolve
as successive approximations of it [15]. The problem is not so much what ontologies
in computer science are, but how they come to be. The construction of ontologies is
guided by appropriate ontology engineering methods. Ontology engineering is an
advanced form of conceptual modeling. It requires the involvement of many parties,
and they should be defined such that they are useful but also reusable. Rooted in
knowledge management.

In this paper, we describe to develop and maintain ontologies for Web-based se-
mantic interoperability. We have to address approaches from two worlds here: Web of
Data and Enterprise Information Management. This article is organized as follows: in
Section 2 we introduce the case for mind setting. In Section 3, we provide a back-
ground in semantic interoperability, including some of the challenges. Section 4 in-
troduces the Business Semantic Management Method, describing the formalism,
framework and brief description of the two processes: semantic reconciliation and
semantic application. These two processes are then described in more detail using
examples from the case in Sections 5 and 6 respectively. We then conclude this paper
in Section 7.

2 The Flanders Research Information Space (FRIS) Case

For a country or region in the current knowledge economy, it is crucial to have a good
overview of its science and technology base to develop an appropriate policy mix of
measures to support and stimulate research and innovation. Also companies, research
institutions and individual researchers can profit from the information maintained in
such a portal. EWI1 thus decided to launch the Flanders Research Information Space
program (FRIS) to create a virtual research information space covering all Flemish
players in the field of economy, science and innovation. The current version of this
portal2 contains, for instance, mash-ups of data on key entities (such as person, organ-
ization, and project; and their relationships) on a geographical map. Fig. 1 contains a
screenshot of the current FRIS portal.

1 The Department of Economy, Science and Innovation (Economie, Wetenschap en Science in

dutch) of the Flemish Government http://www.ewi-vlaanderen.be/
2 http://www.researchportal.be/

210 C. Debruyne and P. De Leenheer

Fig. 1. FRIS already provides a European map visualizing data about international cooperation
between individuals, organizations and projects, e.g. in the context of the Large Hadron Collider

Another aim of FRIS is to reduce the current administrative burden for universities
as they are confronted with repeatedly reporting the same information in different
formats to various institutions. Universities receiving funding from the Flemish gov-
ernment are asked to regularly report the same information to different organizations
(local and international). As there is little alignment between those reports, universi-
ties are confronted with repeatedly sending the same information in other formats,
other structures or according to different classifications, not always compatible with
each other. This creates a heavy administrative burden on these knowledge institu-
tions. Universities furthermore store their information in autonomously developed
information systems, adding to the complexity of the problem. As the EU also wants
to track all research information in Europe, they ask all universities to report using the

 Business Semantics as an Interface between Enterprise Information Management 211

Common European Research Information Format (CERIF)3, a recommendation to
EU-members for the storage and exchange of current research information. If all in-
formation would be centralized and accessible in a uniform way, creating services for
such reports, would greatly facilitate the reporting process.

While the CERIF model, created with Entity-Relationship (ER) [3] diagrams, al-
lows for an almost unlimited flexibility on roles and classifications used with entities,
the actual approach has shown its limitations when it comes to communicating the
modeled domain knowledge to domain experts and end users. The learning curve for
the domain experts to understand the ER model and translate it back to the conceptual
level is quite steep [38]. For instance, the example in Fig. 2 (taken from [38]) shows
the complexity of adding (multilingual) attributes to relations between core entities
Person cfPerson and Project cfProject. This relation is represented by
cfPerson_Project (linked by the two identifiers of the linked entities). In the
same way, the example shows the CERIF entity cfProject and its relationship
with the entity cfClassification: cfProject_Classification. A CERIF
relationship is always semantically enriched by a time-stamped classification refer-
ence. The classification record as such is maintained in a separate entity (cfClas-
sification) and allows for multilingual features (cfClassificationTerm
and cfClassificationDescription). Additionally, each classification record
or instance requires an assignment to a classification scheme (cfClassifica-
tionSchemeIdentifier). The management of the classification terms and
classification schemes is organized in what is called the CERIF Semantic
Layer [23].

Fig. 2. The CERIF entity cfProject and its relationship with the entity cfPro-
ject_Classification (linked by the two identifiers of the linked entities). A CERIF
relationship is always semantically enriched by a time-stamped classification reference. The
classification record is maintained in a separate entity (cfClassification) and allows for
multilingual features. Additionally, each classification record or instance requires an assign-
ment to a classification scheme (cfClassificationSchemeIdentifier).

3 http://cordis.europa.eu/cerif/

212 C. Debruyne and P. De Leenheer

Semantic mismatches occur at different levels: 1) terminology, 2) relations and 3)
business rules. Due to this semantic layer, mismatches between stakeholders that need
to interoperate via the CERIF standard occur at the first two levels. An example of
these two mismatches on relation level is shown in Fig. 3. In this figure, two organi-
zations use a different relation to denote that a particular researcher is the leader of a
research project.

Thus, next to the conceptual complexity of the CERIF model aimed at flexibility,
this flexibility also give rise to interoperability problems as heterogeneous representa-
tions for concepts and relations can be modeled.

Fig. 3. Mismatch at “relation” level: two application refer to the relation between a researcher
and a research project; one referring to the person as a leader of this project, the other as the
promoter (“promotor” in Dutch).

To populate the FRIS portal with all information provided by the delivered CERIF
files and other heterogeneous sources, needed are: 1) Consensus amongst the involved
parties on a common conceptual model for CERIF and the different classifications
(inside that semantic layer); 2) An easy, repeatable process for validating and integrat-
ing the data from those sources; 3) Make available the information in a generic way
on the Web on which third parties can develop services as demonstrated by other
Linked Data initiatives.

We furthermore have to take into account the non-technical expertise of most of
the domain experts. From these requirements, it becomes clear that integrating all
information and reducing the administrative burden faces some problems for which
appropriate data governance methods and tools are needed. Before we present the
Business Semantics Management method and its tool support, we provide the reader a
background on system interoperability.

 Business Semantics as an Interface between Enterprise Information Management 213

3 Background

Information systems that satisfy at least one formally specified semantic interopera-
bility requirement are called open information systems. This is in contrast with closed
information systems, where a data model represents the structure and integrity specifi-
cation of the data of only the applications belonging to (often) a single enterprise. The
vocabulary inside that data model in general is not a priori intended to be shared with
other applications [31], i.e. the transitions caused by a closed information system are
only meaningful within this system. For open information systems, however, a com-
mon vocabulary needs to be developed – and agreed upon – to which the different
systems will commit to.

On the Semantic Web, a great deal of ontologies are developed in RDF(S) or OWL
[39]. Both are W3C recommendations for knowledge representation languages on the
Web. RDF(S) allows for the creation of simple vocabularies (concepts and relations).
However, the elements provided by RDF(S) are very basic, offering little possibilities
to model complex rules or constraints. The Web Ontology Language (OWL) is a fam-
ily of knowledge representation languages that are more expressive than RDF(S) tai-
lored to support some reasoning tasks such as consistency checking. Depending the
“flavor” used, a particular OWL language is more expressive than another. An in-
crease in expressiveness, however, is at the cost of efficiency or even decidability.

These ontologies are the result of knowledge management activities within a com-
munity (be it an organization, a group of organizations, etc.). Knowledge management
aims at using knowledge as a production factor and comprises a range of strategies
used in an organization to identify, create, represent, share, and adopt knowledge and
information. Knowledge can be either elicited from individual persons or are embed-
ded in organizations as processes or practices. Whenever two or more organizations
need their autonomously developed information systems to interoperate (i.e. exchange
and communicate information, do “business” together), knowledge management
activities help support the group of organizations in establishing consensus on a
common approximation of the real world to ensure a proper and smooth system-
interoperation. Knowledge management is an important activity for both Enterprise
Information Management (EIM) and the Web of Data. The first aims at satisfying the
information technology needs emerging from an organization’s requirements, e.g.
ensure proper business. EIM is thus a “top down” application of knowledge manage-
ment. The latter aims at structuring and providing existing data in such a way
(third party) services can be easily created on top of that structured information
(“bottom up”).

3.1 Reusability vs. Usability of Ontologies

In many cases, ontologies contain references to the instances used in the application
or application domain, and domain rules [35]. Those domain rules typically contain
constraints of identity, cardinality, mandatoriness, etc. and thus restrict the semantics
(i.e. interpretation) in a specific conceptualization of a particular application domain.
In other words, these rules must be satisfied by any application that wishes to commit

214 C. Debruyne and P. De Leenheer

to such an interpretation for an ontology in order for interoperability to work [14].
However, providing rules that are important for effective and meaningful interopera-
tion between applications may (and will) limit the generality of an ontology [35]; in
other word the increase of business rules decreases the generality of ontologies. This
renders ontology modeling turns out to be far from trivial. Lightweight ontologies that
hold none or few domain rules however are not very effective for communication
between autonomously developed and maintained software systems. A requirement
for different organizations in a certain domain to communicate is to have a common
understanding about a relevant part of that domain. In other words, the more an ontol-
ogy becomes intended for a particular application domain (more requirements, more
business rules), the less general the ontology becomes.

3.2 Context of the Ontology Application

The aforementioned challenge corresponds with the variation of requirements for the
Web of Data and Enterprise Information Management. The Web of Data needs mea-
ningful annotations of data sources to enable machines to access, process and apply
that information. Describing existing (legacy) data can be done with lightweight on-
tologies. However, as more business rules are needed to ensure proper business within
the community of stakeholder, EIM will be applied to capture the requirements on
how and under what conditions data will be exchanged, even up to the point how
certain things have to be encoded. The Web of Data and EIM are thus residing in two
different business domains and have different business drivers. The first annotates the
data bottom up for third parties to develop a priori unknown services. On the other
side you need top down planning with EIM to facilitate business.

The process of reaching that common understanding will involve dialogue; dialo-
gue based on the perspectives of (ideally all) involved stakeholders. A perspective
intends to capture the meaning within a given or assumed context on what the stake-
holder thinks is currently relevant to the community he is in.

This semantic gap is also noticed in the discrepancy between the need for intero-
perability within enterprises and the actual implementation of solutions [28]. Also in
the cloud computing community, the role of platform-agnostic semantic modeling is
coming back (see e.g., [32]).

3.3 Requirements for a Method

Community involvement is essential for semantic interoperability. Enabling commun-
ities to develop and maintain a representation of their (business) world needs a me-
thod since reaching a common agreement between many stakeholders proves to be
difficult [12]. Community involvement is crucial for facilitating the uptake and go-
vernance of, for instance, Linked Data, a set of practices for annotating and exposing
data sets on the Web for which the community ultimately needs to reach an agreement
on the meaning of such annotations. The Linked Data initiative relies on RDF and
URI mechanisms to represent these annotations, which cannot directly map on the
language of the human community. It turns out that appropriate methods for this can
learn from database modeling following the principles below.

 Business Semantics as an Interface between Enterprise Information Management 215

• Technology Matures. The non-involvement of non-tech savvy domain experts is
not longer an excuse. For instance, wiki technology has been put forward as a
mean to reach agreement and share knowledge about different subjects over the
past decade [20]. The advantage of such technology is that anyone can add con-
tent without much technical knowledge and have already been adapted in the
field of ontology engineering to enable non-technical users to create, visualize
and maintain ontologies.

• Analyzing Natural Language Discourse. Database design methods such as
NIAM [40] and ORM [18] already showed that the closer the link between hu-
man natural language communication and the system and/or business communi-
cation that results from it, the more likely such systems will work as intended by
their various stakeholders. This is particularly important for interfaces where hu-
mans, systems and businesses interact, as the human discourse needs to be
mapped meaningfully onto application symbols. Since people naturally commu-
nicate with words, pictures, and examples, the best way to arrive at a clear de-
scription of the domain is to use natural language, intuitive diagrams, and
examples. These techniques furthermore allow scalable solutions to ontology en-
gineering through a classical separation of concerns - as done in databases - by
separating the schema level from the instance level. As a consequence, applica-
tions become minimally sensitive to changes in data representation.

• Employing Legacy Data, output reports, and interviews with domain experts as
fulcrum for leveraging validation. The source (or context) of a certain fact needs
to be traceable for future reference. In the case of ontology engineering: lift data
models into ontologies by removing application specific context (e.g., non-
conceptual identifiers such as an automatically incrementing key).

One method for collaborative ontology engineering that complies with the three prin-
ciples above is Business Semantics Management.

4 Business Semantics Management

For the last twenty years, many methods have been put forward for how to develop
ontologies. It seems, however, that research on methods has diminished in recent
years [2]. Bergman (2010) noted that very few discrete methods exist and those that
do are often older in nature [2]. He furthermore noted that most methods shared a
number of logic steps from assessment to deployment, from testing to refinement.

Quite a few surveys on the state of the art on ontology engineering methods exist.
Recent surveys include [34], [33] and [13]. Corcho et al. (2003) observed that there is
often no correspondence between ontology building methods and tools [5]. For both
the DOGMA initiative [24, 22] and Business Semantics Management (BSM), suitable
tools for adequate support of these methods were developed.

BSM prescribes steps and processes for bringing a community of stakeholders to-
gether to realize the reconciliation of their heterogeneous metadata, and consequently
the application of the derived business semantics patterns in partial fulfillment of
well-established semantic interoperability requirements. We identify six principles of
Business Semantic Management [6]:

216 C. Debruyne and P. De Leenheer

1. ICT Democracy. An ontology should be defined by its owning community, and
not by a single developer. In the FRIS case, the community of stakeholders con-
tains - amongst others - the Flemish government, funding agencies, and know-
ledge institutions (universities).

2. Emergence. Semantic interoperability requirements emerge autonomously from
community evolution processes. By default, business semantics serve “open” in-
formation systems, and hence the requirements and limitations for semantic inte-
roperability cannot be entirely known before completion.

3. Co-evolution. Ontology evolution processes are driven by the changing semantic
interoperability requirements. In contrast to waterfall-like approaches that focus
on a broad design upfront, agile methods perform short milestone-driven revision
iterations in order to cope with dynamic environments.

4. Perspective Rendering. Ontology evolution processes must reflect the various
stakeholders’ perspectives. There is no generally applicable ontology, as each ap-
plication will generate a contextualized model to match local needs and functio-
nalities. Conflicts will arise from differences in how domains are perceived by
the stakeholders. The different knowledge institutions in Flanders, for instance,
use different classification schemes for scientific publications.

5. Perspective Unification. In building the common ontology, relevant parts of the
various stakeholder perspectives serve as input for the unified perspective [29].

6. Validation. The explicit rendering of stakeholders’ perspectives allows us to
capture the ontology evolution process completely, and validate the ontology
against these perspectives respectively.

Ultimately, co-evolving communities with their ontology will increase overall stake-
holder satisfaction.

Based on the above principles, we devised a teachable and repeatable method and
system for fact-oriented BSM. The representation of business semantics is based on
the DOGMA [25] ontology framework. BSM draws from DOGMA-MESS (a colla-
borative ontology engineering method developed on top of the DOGMA framework,
first introduced in [12], further formalized in [9, 30, 6] and implemented in [4, 10]),
and best practices in ontology management [19, 36] and ontology evolution [11].

4.1 Fact-Orientation

The fact-oriented paradigm that was introduced in the conceptual modeling approach
NIAM (pre Object-Role Modeling). NIAM simplifies the design process by using
natural language, as well as intuitive diagrams4, which can be populated with exam-
ples, and by examining the information in terms of simple or elementary fact types. In
other words, to simplify the modeling task, stakeholders examine the information
in the smallest units possible: one elementary fact at a time. By expressing the model
in terms of natural concepts, like objects and roles, it provides a conceptual approach
to modeling. NIAM was further refined into Object-Role Modeling, or ORM. ORM’s

4 In this paper, we will not go into details of ORM diagramming. More information on these

diagrams can be found in [18].

 Business Semantics as an Interface between Enterprise Information Management 217

rich graphic notation is capable of capturing many business rules that are typically
unsupported as graphic primitives in other popular data modeling notations (e.g., role
hierarchies).

Moreover, breaking down the domain into several elementary fact types reduces
the problem complexity into smaller and thus more easily manageable subproblems.
This leverages the potential of domain experts to effectively externalize conceptions
that were not revealed otherwise [16, 17, 41].

NIAM/ORM’s attribute-free approach, as opposed to frame-based techniques such
as UML or (E)ER, promotes semantic stability. Semantic stability is a measure of
how well models or queries expressed in the language retain their original intent in
the face of changes to the application [16]. The more changes one is forced to make to
a model (or query to cope with an application change), the less stable the model is. In
BSM, semantic interoperability is promoted by elementary fact types that are the
fundamental conceptual units of information, and are uniformly represented as rela-
tionships. How they are grouped into structures is not a conceptual issue. Given the
co-evolution principle, it is critical that the underlying ontology be crafted in a way
that minimizes the impact of these changes. Therefore regarding our objectives, fact-
oriented models are more stable under business changes than e.g., UML or (E)ER
models.

ORM models can be easily verbalized and populated for validation with domain
experts, they are more stable under changes to the business domain, and they typically
capture more business rules in diagram form. For instance, given the fact type:

Project, having, of, Acronym

The combination of following constraints state that a Project is totally and uniquely
identified by its Acronym:

• Each Project having at most 1 Acronym
• Each Project having at least 1 Acronym
• Each Project is identified by Acronym of Project

For conceptual modeling (of information systems), the ORM method has thus several
advantages over the (E)ER and UML approaches. (E)ER diagrams and UML class
diagrams are closer to the final implementation, so they also have value [18] by pro-
viding “implementable” summaries of the conceptual model. In doing so, (E)ER and
UML take into account constructs related to the implementation that are not relevant
to the conceptualization (e.g., the difference between an attribute and a relation). The
late aggregation principle - the act of postponing whether an object becomes an entity
or an attribute until the implementation of a database is done - is well known, and
fundamental, in database modeling [24] and improves the maintainability of the
schema. As fact-oriented modeling techniques do not make this distinction - every-
thing is a fact type – the modelers do not even have to consider these aspects, render-
ing the conceptual modeling easier.

218 C. Debruyne and P. De Leenheer

The Semantics of Business Vocabulary and Business Rules (SBVR) [27] is an
adopted standard of the Object Management Group (OMG) pushed by the business
rule community and the fact-oriented modeling community. SBVR provides a fact-
oriented framework for describing the semantics of terminology used in a business,
business facts and business rules. The advantage of SBVR is the fact that it is an
integral part of OMG’s model driven architecture. SBVR uses OMG's Meta-Object
Facility (MOF) [26] to provide interchange capabilities; transforming (parts) of a
model into other formalisms with a MOF model (e.g., UML). MOF is essentially a set
of concepts that can be used to define other modeling languages. SBVR models can
be structurally linked at the level of individual facts with other MDA models based on
MOF. Driven by its success in conceptual data modeling, the fact-oriented approach
of SBVR provides the basis for formal and detailed natural language declarative de-
scription of complex business entities.

The structure of SBVR (illustrated in Fig. 4) allows implementing a business se-
mantics system that takes into account the existence of multiple perspectives on how
to represent concepts (by means of vocabularies), and includes the modeling of a
governance model to reconcile these perspectives pragmatically (read: insofar practi-
cally necessary) in order to come to an ontology that is agreed and shared (by means
of communities and speech communities) [8].

• A semantic community is a group of stakeholders having a body of shared mean-
ings. Stakeholders are people representing an organization or a business unit.
They already informally share knowledge via social network functionality.

• A body of shared meanings is a unifying and shared understanding (perception)
of the business concepts in a particular domain. Concepts are identified by a URI.
The scope of this body emerges from breakdowns during informal knowledge
sharing.

• A speech community is a sub-community of a semantic community having a
shared set of vocabularies to refer to the body of shared meanings. A speech
community groups stakeholders and vocabularies from a particular natural lan-
guage in a multi-lingual community, or from a certain technical jargon.

• A vocabulary is a set of terms and fact types primarily drawn from a single lan-
guage to express concepts within a body of shared meanings.

The notion of vocabularies allows multi-linguality or within one language synonym-
ous terms may refer to the same set of concepts, or a polysemous term may refer to
different concept URIs depending on the vocabulary it is residing in. The following
function maps a term in a vocabulary to a concept URI:
concept:Vocabulary×Term→URI. For the full formalization, we refer to [9]. E.g.,
consider a term “student” in a Dutch vocabulary and a term “étudiant” in a French
vocabulary, both meaning the same thing. Both terms are equal if and only if con-
cept(Dutch, student) and concept(French, étudiant) refer to the same URI.

Fact-oriented models are not only suitable for modeling conceptual models for in-
formation systems. NIAM and ORM were successfully adopted for ontology engi-
neering in a method called DOGMA.

 Business Semantics as an

Fig. 4. The structure of busine
facts, and rules. Speech comm
shared set of vocabularies to re
those references. Applications
terms and rules agreed upon w

4.2 Development of On

In the previous section we b
the basic knowledge buildi
tered in the world. Initially
successfully applied for mo
engineering. The DOGMA
the fact-oriented paradigm.

Ontologies in DOGMA
world relying on the fact
language are easily obtain
ons [25] - only need in prin
community of stakeholders
containing large sets of su
γ, headterm, role, co-role,
to a resource such as a do
identify unambiguously (to
and role labels. For exampl

n Interface between Enterprise Information Management

ess semantics: communities, stakeholders, concepts, vocabular
munities are sub-communities of a semantic community havin
efer to the body of shared meanings. Meaning articulations rec
s and their symbols are then mapped onto the different fact ty

within the community.

ntology-Grounded Methods and Applications

briefly described fact-oriented modeling. In this formali
ing block is a fact-type; a generalization of facts enco
y used for developing closed information systems, it w
odeling ontologies in the DOGMA framework for ontolo
framework that we will present in this section thus follo

allow the application world to be associated with a lex
that the knowledge building blocks expressed in natu
ed and agreed upon. These building blocks - called
nciple to express “plausible” fact types (as perceived b
s) in order to be entered into the Lexon Base, a reposit
uch lexons. A lexon is formally described as a 5-tu
tailterm, where γ is an abstract context identifier point
cument on the Web. The context identifier is assumed

o human users at least) the concepts denoted by the te
le the lexon: γ, Person, with, of, First Name, can be r

219

ries,
ng a
cord

ypes,

ism,
oun-
was
ogy
ows

xical
ural
lex-

by a
tory
uple
ting
d to
erm
read

220 C. Debruyne and P. De Leenheer

as: in the context γ, Person plays the role of with First Name and First Name plays the
role of being of Person. The Lexon Base may contain redundant lexons, even appar-
ently “contradictory” ones, but lexons are meant to be highly reusable and so provide
semantic leverage.

The Commitment Layer contains ontological commitments that use a selection of
lexons to annotate applications and specify constraints defining the use of the con-
cepts in the ontology. DOGMA distinguishes two types of ontological commitments:
community commitments and application commitments. The first denotes a meaning-
ful selection of lexons, and constraints that capture the intended semantics of the data
that the stakeholders want to interchange for a particular application. The latter ex-
tends the community commitment mappings describing how application symbols of
one individual application commit to the ontology. The application commitment can
furthermore contain additional lexons and constraints that describe how the applica-
tion - as a whole - commits to the ontology [37]. Individual applications committing
to the same ontology can thus have different sets of constraints. The act of selecting
and constraining a meaningful selection of lexons for a particular application is called
the double articulation principle [35]. How the lexons are used in a specific applica-
tion, and the complexity associated with that use, are delegated to the ontological
commitment. The use or pragmatics of lexons are thus the responsibility of the
application.

Because of the resulting separation of concerns, DOGMA’s layered approach does
not map one-on-one with ontologies implemented in OWL. In OWL, instances can
reside next to their schema and properties are immediately constrained. DOGMA
keeps the instances out of the ontology and leaves (all) interpretation and constraining
of a fact type to the commitment layer. Ontologies in DOGMA are easily transformed
into RDF(S) or a similar formalism and allows reasoning over domain terminology,
by the late aggregation principle.

In this section, we presented the DOGMA framework to ontology engineering.
What is lacking is a method for collaboratively building ontologies on top of this
framework. One such method was DOGMA-MESS, in which MESS stood for Mean-
ing Evolution Support System. We will not provide details on DOGMA-MESS, but
note it was the basis for BSM. Thus in the next section, we will present the BSM me-
thod.

4.3 Business Semantics Management: Semantic Reconciliation and Application

BSM draws from best practices in ontology management [19] and ontology evolu-
tion [11]. The representation of business semantics was originally based on the
DOGMA approach and provides a method and tool that enable parties to (i) obtain
consensus on (the semantics of) key business terms, and (ii) evaluate this consensus
uniformly in various applications throughout the organization. Respectively, BSM
consists of two complementary cycles: semantic reconciliation and semantic applica-
tion (see Fig. 5) where each cycle groups a number of activities.

 Business Semantics as an Interface between Enterprise Information Management 221

Fig. 5. Business Semantics Management consists of two complementary cycles: semantic re-
conciliation and semantic application. Both cycles communicate via the unify-activity.

• Semantic Reconciliation is the first cycle of the method. In this phase, business
semantics are modeled by extracting, refining, articulating and consolidating fact
types from existing sources such as natural language descriptions, existing meta-
data, etc. Ultimately, this results in a number of consolidated language-neutral
semantic patterns that are articulated with informal meaning descriptions (e.g.,
WordNet5 word senses). These patterns are reusable for constructing various se-
mantic applications.

• Semantic Application is the second cycle. During this cycle, existing information
sources and services are committed to a selection of semantic patterns. This is
done by selecting the relevant patterns, constraining their interpretation and final-
ly mapping (or committing) the selection on the existing data sources. In other
words, a commitment creates a bidirectional link between the existing data
sources and services and the business semantics that describe the information as-
sets of an organization. The existing data itself is not moved nor touched.

As DOGMA’s lexons and constraints are fully compatible with SBVR (supported by
OMG), BSM recently adopted SBVR for representing the business domain and rules.
SBVR does provide constructs that were not available in the DOGMA framework,
such as support for unary fact types to represent characteristics of a business entity
(e.g., Project is terminated).

The derived formal vocabularies and rules can be interpreted and used by computer
systems to develop Web, software and business intelligence applications. This consti-
tutes the semantic application of business semantics. As mentioned in a previous sec-
tion, MOF provides bridges to link SBVR to OWL, RDF(S), UML, ER, etc. Via
MOF, business semantics in SBVR forms the basis for forward engineering of soft-
ware (i.e. UML diagrams), business intelligence (i.e. OMG common warehouse mod-
el), and Web applications (W3C RDF(S) and OWL) and vice versa: existing models
can be reverse engineered to feed the BSM process.

Rather than presenting more detail on the different steps in this section, we will
present the tool supporting the BSM method and work out the different steps whilst
describing the tool.

5 http://wordnet.princeton.edu/

222 C. Debruyne and P. De Leenheer

5 Semantic Reconciliation with Business Semantics Glossary

The Business Semantics Glossary (BSG) supports the semantic reconciliation
processes of BSM. BSG is a Web-based software application aimed at both business
as well as technical users. It lets people collaboratively manage their business seman-
tics according to the BSM method. BSG is based on the Wiki paradigm that is a prov-
en technique for stakeholder collaboration and is essential for evolving business se-
mantics.

Fig. 6 illustrates the concept page (identified by a URI) in BSG for term Project
in the BSG. The page consists of a gloss providing a natural language description; a
number of fact types (e.g., CFProject executed by CFOrganization); a
number of rules; examples; notes; and synonyms. Governance models are built-in and
user roles (e.g., steward, stakeholder, as shown in Fig. 6) can be applied to distribute
responsibilities and increase participation. The software takes care of the audit trails
who changed what, when and why. Fine-grained permission and rights management
decide which users or user groups can view/edit/monitor/ etc. different parts of the
business semantics.

In this case, the BSG aims to provide a single point of reference for Flemish Public
Administration’s business vocabulary and rules. The different processes of semantic
reconciliation are explained and exemplified with the use case in the Flemish Public
Administration.

The information shown in Fig. 6 is the result of the application of the BSM me-
thod. In this section, we will describe each of the semantic reconciliation phases with
examples from the FRIS case.

5.1 Scope

Scope sets out the scoped terms that are actually needed to establish semantic intero-
perability. Specific business drivers that want to resolve a weakness or threat in a
certain application context fuel this activity. Regarding the considerations made
above, a distinction between information technology or information system (IT/IS)
and business contexts is made.

In an IT/IS Context, a communication breakdown may be caused by an
inadequate transformation of incoming personnel data from the more than 1,500
educational institutions to the data semantics of the central salary system. The
breakdown here is caused by a lack of specification of terms such as “personnel”
and “salary”. The derived need for manual translation (e.g., using XSLT) introduc-
es a weakness, as defining the translation requires know-how about the respective
formats. Moreover, such a translation introduces even more legacy that is difficult
to interpret.

In a business context, the lack of a uniform and unambiguous meaning of the term
“study area” following externally imposed rules may form a legal threat. This obser-
vation initiates another semantic reconciliation cycle where metadata related to “study
area” are to be reconciled.

 Business Semantics as an

In any context, it is imp
and assign them with appro
that the scoping process in
scoping techniques.

In a previous section,
communities (semantic an
adopted in BSG and roles c
shows how these structures

Fig. 6. Screenshot of the defin
bulary taken from BSG that
though the concept definition
compliant SBVR meta-model,
from it that provides a formal
and roles can be applied to d
steward.

n Interface between Enterprise Information Management

portant to involve the relevant stakeholders in this proc
opriate roles and responsibilities within communities. N
n this paper was oversimplified; consult [7] for support

we showed how SBVR foresaw structure for model
nd speech) and their respective communities. This w
can be assigned to members within each community. Fig

can be navigated in BSG.

nition for term Project (a CERIF term) in the Project vo
currently deployed at the Flemish public administration. E

ns look like natural language, thanks to the underlying M
, one can automatically generate an enterprise information mo
l specification in UML, XSD or the like. Governance is buil
istribute responsibilities. Here, the user Pieter De Leenheer

223

cess
Note
ting

ling
was
g. 7

oca-
Even
OF-
odel
lt-in
is a

224 C. Debruyne and P. D

Fig. 7. Screenshot of the BSG
vocabularies. In this example
Training” in the first column a
column. This displays all the v
vocabulary can be seen.

5.2 Create

During this activity, every
terms and the roles they pla
inspiration can be drawn fr
example, in the FRIS case,

• CFProject executed by
• CFPerson having / of P
• CFPerson having / of C
• CFPersonAddress of / u
• CFPerson affiliated wit
• EACH CFPerson havin
• …

To each scoped term, the
steward” and a number of
know-how from the involve
existing metadata (see [7] fo

5.3 Refine

During this activity, fact ty
activity are refined so they
refined fact-types and cons
gant. During this activity, a
tion (regarding a fact type

De Leenheer

G navigator in which the user can browse through the diffe
the user first chooses the semantic community “Education

and then the speech community “School Indicators” in the sec
vocabularies used by that community, in this case the “Locati

y scoped term is syntactically defined and rules for th
ay in their fact types are created as well. During this pha
rom existing sources (manuals, users, standards, etc.).
terminology may be reused from the CERIF standard:

/ executes CFOrganization
Person_Name
CFPersonAddress
used in CFAddress
th / with affiliation CFOrganization_UNIT
ng EXACTLY ONE Person_Name

ere are also certain roles appointed such as a “conc
f relevant stakeholders. The definition is fed by impl
ed domain experts, or by automatic extraction of facts fr
for a review of ontology extraction techniques).

ypes (and constraints) that were created during the creat
y are understandable to both business and technology. T
straints are i) correct, ii) useful, iii) reusable, and iv) e

additional fact types can be created by means of objectifi
as a concept, playing a role with terms of the original f

erent
and

cond
ion”

hese
ase,
For

cept
licit
rom

tion
The
ele-

fica-
fact

 Business Semantics as an Interface between Enterprise Information Management 225

type) or capturing missing links and relation (e.g., transforming an attribute of an
entity into an attribute of a second entity related to the first entity).

In the FRIS case, the somewhat technical term CFProj becomes Project or
EmplAddr is decomposed into a fact type Employee is located at / lo-
cates Address. Coding conventions can be applied here to guide the process.
Below we find a set of refined fact types and constraints based on the list from the
previous section:

• Project executed by / executes Organization
• Person having / of Person_Name
• Person located at / locates Address
• Person with / of Affiliation
• Organization_Unit with / of Affiliation
• EACH Person having EXACTLY ONE Person_Name
• EACH Affiliation of EXACTLY ONE Person
• EACH Affiliation of EXACTLY ONE Organization_Unit
• EACH Affiliation a IS IDENTIFIED BY Person with a

AND Organization_Unit with a
• …

5.4 Articulate

Create informal meaning descriptions as extra documentation. These descriptions
include definitions and examples and can serve as anchoring points when stakeholders
have used different terms for the same concepts (i.e., detecting synonyms). Where
available, already existing descriptions can be used (e.g., the euroCRIS website on
CERIF) to speed up the process and facilitate reuse.

Since multiple users may render their perspective concurrently on a term, it may be
that after the refine activity some fact types and rules impose contradicting state-
ments. During this activity, conflicts and inconsistencies are removed. Specifically
designed algorithms may help here. E.g., in The Netherlands, an address is uniquely
identified by a combination of postcode and house number, while in Belgium a com-
bination of postcode, street name and street number is required. Articulating these
differences is crucial in order to be able to deal with different data integrity rules dur-
ing information exchanges. Fig. 8 depicts an example of a definition and example of
the term “Project” in the FRIS Case.

5.5 Unification

During unification a new version of the EIM is generated, which is a “flattened” ver-
sion of the BSG that is generated in a timely manner. The EIM is the product of se-
mantic reconciliation and serves as a uniform technical specification to implement
semantic applications.

226 C. Debruyne and P. De Leenheer

Fig. 8. Screenshot of the definition and an example for the PROJECT in the Project vocabulary
of the CERIF speech community

In order to optimally consolidate equivalent groups in vocabularies, one has to
check for each of these groups where redundant conceptual patterns could be com-
bined, and note any arithmetic derivations. For instance:

• Can the same concept be a member of two concept types? If so, combine the

concept types into one (unless such identities are not of interest).
• Can two objects instantiating two different concept types be meaningfully com-

pared? Do they have the same unit or dimension? If so, combine the concept
types into one.

• Is the same kind of information recorded for different entity types, and will you
sometimes need to list the entities together for this information? If so, combine
the entity types into one, and if necessary add another fact type to preserve the
original distinction.

• Is a fact type arithmetically derivable from others?

The consolidation is finished if you were able to remove all noteworthy redundancies.

6 Semantic Application

In the previous section, we elaborated on the BSM processes that lead to descriptions
of a domain, agreed upon by a community of stakeholders. These descriptions better
approximate reality over time (i.e. with each iteration). Once a new version of the
EIM is created, these can be applied to support the semantic interoperability require-
ments of that community. Through the underlying MOF framework, this EIM can be
represented in many formats, such as UML, OWL, or XSD, serving a wide variety of
applications.

 Business Semantics as an Interface between Enterprise Information Management 227

Conceptually, we distinguish two activities: select and commit.

• Select. Given an application context (such as a workflow or business artifact),
relevant concepts are selected from the EIM for a particular application. It may
be required to add additional application-specific constraints that could not be
agreed upon on the community level, or that are currently not supported by
SBVR.

• Commit. Information systems are improved using the selected concepts. De-
pending on the application context, this can be implemented in different ways.
Concretely, this boils down to data transformation, validation, and governance
services. For example, two or more XML structures can be virtually integrated by
defining XSLT transformations to a shared XSD-formatted EIM. The EIM may
also be used to convert relational databases into RDF triple stores (cf. RDB2RDF
initiative). Here, the application of an EIM to generate data transformation ser-
vices is illustrated.

Selection and commitment thus also involves choosing the appropriate formalism for
a particular task. These two activities also correspond with the creation of application
commitments in the DOGMA framework for ontology engineering. The Business
Semantics Studio (BSS)6 is a tool suite that supports these two processes. BSS pro-
vides mapping functionality to commit existing data sources and applications onto the
EIM with Ω-RIDL [37]. Below are two examples of such mappings: one committing
a field in a database to a concept in the EIM and another path in an XML-document.
These mappings can be used to automatically generate data transformations from one
format into another by generating the appropriate queries (SQL, XPath, etc.). The
examples are intentionally kept simple for didactic reasons.

A) map “DatabaseName.TBLSchool.Street” on

Street of (/ with) Address of (/ with) School.

B) map “/schools/school/street” on

Street of (/ with) Address of (/ with) School.

The Flemish Public Administration wishes to set up a Linked Data portal for the key
entities in their business-ecosystem: researchers, research projects, research organiza-
tions, etc. The Linked Data initiative aims at providing interlinked information in a
representation suitable for the type of requesting agent: human readable format for
users, structured data for software agents. For the latter, two simple technologies are
used: URIs to identify things on the Web, and the Resource Description Framework
(RDF) for describing things on the Web. To add semantics to these descriptions, on-
tologies materialized in RDF(S) or OWL are often used. The selection and commit-
ment phases for this particular goal will thus include the an implementation of
relevant parts of the EIM into RDF(S) or OWL. This will be described in the next
section.

6 http://www.collibra.com/products/business-semantics-studio

228 C. Debruyne and P. De Leenheer

6.1 Towards a Web of Data: Implementation in Other Formalisms

In this section, we briefly describe how (relevant parts) of the EIM is translated into
other formalisms. To this end, relevant parts of the EIM need to be translated into
formalisms adopted for these particular initiatives. Via MOF, parts of the EIM are
also translated into – for instance – UML for the development of applications that
need to be developed between stakeholders.

Even though UML is richer than SBVR for capturing some aspects of application
design such as operations and components packaging, SBVR has several advantages
over UML. The fact types and constraints are easily verbalized and populated (with
examples) for validation with domain experts. SBVR makes no use of attributes in its
base models. All fact types are represented in terms of objects playing roles. An
attribute-free approach has advantages for conceptual analysis, including simplicity,
stability, and ease of validation [18]. The UML specification recommends the Object
Constraint Language (OCL) for formal expression of business rules, but OCL is too
mathematical in nature to be used for validation by nontechnical domain experts. By
design, the translation of SBVR into UML via MOF can tackle some of these issues.
UML class diagrams’ are valuable as the structure of those diagrams is closer to the
implementation of a system. With this in mind, SBVR can be used for domain model-
ing and a UML diagram can be derived for the system’s implementation.

Translating SBVR into OWL DL is fairly straightforward [21]. Again, not all
transformation from one schema in a language into another language is lossless. Loss-
less means that both schemas are population equivalent. Fact types with arity n where
n > 2, for instance, cannot be modeled with OWL DL. As SBVR is grounded in first
order logic, it is not decidable whether a statement is provable (i.e., true under all
possible interpretation). Decidability is important when one was to do reasoning, e.g.,
find out whether a class can have any instances or subtype inference. Many descrip-
tion logics are decidable fragments of first order logic, more suitable for such tasks.
However, as those description logics are subsets of first order logic, translation from
one to the other are not guaranteed to be equivalent.

In a first instance, EWI aimed to publish the FRIS portal data as Linked Data on
the Web. In a second instance, they want to validate this data based on the business
rules modeled by the community of stakeholders. To achieve the first goal, the ontol-
ogy resulting from the BSM activities were translated into OWL and this OWL sche-
ma was published on the Web. The OWL schema was then used to structure, annotate
and publish the information as Linked Data on the Web. This process actually corres-
ponds with the semantic application of BSM; facts are selected to annotate the exist-
ing data source to achieve interoperability.

Fig. 9 shows a part of the generated OWL from the concept depicted in the pre-
vious figure. In this figure, we see that Organizational_Unit is a Class and
instances of that class can be characterized by keywords (a Literal). Furthermore,
an Organizational_Unit is composed of instances of Person (again a
Class) and through the Organizational_Unit_composed_of_Person property.
The inverse role is also specified.

 Business Semantics as an Interface between Enterprise Information Management 229

<owl:DatatypeProperty

rdf:about="#Organizational_Unit_characterised_by_Keyword">

 <rdfs:label>characterised by Keyword</rdfs:label>

 <rdfs:domain rdf:resource="#Organizational_Unit"/>

 <rdfs:range

 rdf:resource="http://www.w3.org/2000/01/rdf-

schema#Literal"/>

<owl:ObjectProperty

 rdf:about="#Organizational_Unit_composed_of_Person">

 <rdfs:label>composed of Person</rdfs:label>

 <rdfs:domain rdf:resource="#Organizational_Unit"/>

 <rdfs:range rdf:resource="#Person"/>

 <owl:inverseOf

 rdf:resource="#Person_member_of_Organizational_Unit"/>

</owl:ObjectProperty>

Fig. 9. Screenshot of the OWL around Project generated by BSG. In this picture, we see that
Person is a Class and Persons have roles in an organization.

The contents of the databases to be annotated can be published with off-the-shelf
solutions such as D2R Server7. D2R Server generates an RDF description containing
a mapping for transforming the content of a database into RDF triples. This mapping
– also described in RDF – contains a “skeleton” RDF(S) of classes and properties that
are based on the database schema. Fig. 10 below depicts a part of the generated map-
ping file around the table containing information around projects.

@prefix map: <file:///.../OSCB/d2r-server-0.7/map.n3#>.

@prefix vocab: <http://192.168.0.136:5432/vocab/resource/>.

@prefix d2rq: <http://www.wiwiss.fu-

berlin.de/suhl/bizer/D2RQ/0.1#>.

...

map:CFPROJ a d2rq:ClassMap;

 d2rq:dataStorage map:database;

 d2rq:uriPattern "CFPROJ/@@CFPROJ.CFPROJID|urlencode@@";

 d2rq:class vocab:CFPROJ;

 d2rq:classDefinitionLabel "EWI.CFPROJ";

...

Fig. 10. Part of the generated mapping file by D2R server, it maps the table CFProj to the
generated CFPROJ RDF(S) class. It uses the primary key to generate a unique ID and the class
definition label is taken from the table’s name.

Even though classes and properties are generated and populated with instances,
these RDF triples are not semantic as they stem from one particular information

7 http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/

230 C. Debruyne and P. De Leenheer

system (its database schema). The RDF(S) skeleton is thus complemented with the
generated RDF(S)/OWL classes and properties generated from the BSM ontology.
The commitments described in the previous section are used as a guideline to create
this alignment. Fig. 11 below shows the changes (highlighted) made on the generated
mapping file with the ontology. The ontology can then be used to access the data.

@prefix map: <file:///.../OSCB/d2r-server-0.7/map.n3#>.

@prefix vocab: <http://192.168.0.136:5432/vocab/resource/>.

@prefix d2rq:

http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/0.1#>.

@prefix ont: <file:///.../Project.rdf#> .

...

map:CFPROJ a d2rq:ClassMap;

 d2rq:dataStorage map:database;

 d2rq:uriPattern "CFPROJ/@@CFPROJ.CFPROJID|urlencode@@";

 d2rq:class ont:Project;

 d2rq:classDefinitionLabel "Project";

...

Fig. 11. Modified mapping file with the ontology exported from BSG. An extra namespace (for
the exported ontology) is added and the generated classes and properties are appropriately
annotated with that ontology.

To achieve the second goal, the resulting OWL file can be used for one of its popu-
lar decision problems: classification. Classification or instance checking corresponds
with the question: “is a particular instance a member of a given concept?” Whenever
we have an instance of one of EWI’s key entities (e.g., Project), it can be compared
against the business rules around that concept by asking a reasoner whether this par-
ticular instance fits this class.

6.2 Full-Cycle BSM: Validation and Feedback

Once semantic applications are running, it must be possible to monitor and feed un-
expected side effects or failures back, calling for a new iteration of BSM. We call this
full-cycle BSM: the scope of the next version of the EIM is fed by the validation of
the previous version in IT/IS contexts as well as business contexts. The BSG is the
vehicle that serves the reconciliation of the newly scoped concepts.

The BSM cycle is repeated until an acceptable balance of differences and agree-
ments is reached between the stakeholders that meets the requirements of the seman-
tic community. Gradually, closed divergent metadata sources are replaced with meta-
data sources that follow an open standard, and are kept coherent via BSG.

7 Conclusions

In this paper, we presented the Business Semantics Management (BSM) method
for knowledge modeling and ontology engineering. BSM was implemented in the

 Business Semantics as an Interface between Enterprise Information Management 231

Flemish Public Administration for the building in the context of the Flanders Re-
search Information Space (FRIS) program. The examples throughout this paper origi-
nate from this case.

Even though different formalisms exist for capturing certain parts of the domain,
BSM’s fact oriented nature, expressed in natural language enables stakeholders to
quickly participate in the knowledge modeling processes. Depending on the actual
goal of the community, translations or “implementations” of the fact-oriented ontolo-
gy into other formalisms can be generated. We have shown how the BSM ontology
was translated into OWL to publish the FRIS portal data as Linked Data on the Web.

From a high-level perspective, three different kinds of data exchange exist within
large organizations: 1) Exchange of knowledge between people; 2) Exchange of un-
derstanding between people and information systems; and 3) And exchange of data
between disparate information systems.

In this paper and given the requirements of the FRIS case, we focused on the third
aspect. All large enterprises, however, face a semantic gap that makes all three of
these exchanges extremely inefficient. The BSM method and supporting tools help in
capturing the necessary semantics for rendering these exchange processes more effi-
cient by providing a reference point for data governance questions such as: (1) what
does my data mean? (2) where and how is my data utilized? (3) who is responsible for
my data?

Acknowledgements. The authors would like to thank the Flemish government for the
case study. This work was partially funded by the Institute for Promotion of Research
and Innovation in the Brussels Capital Region and the European FP7 ACSI project.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5),
35–43 (2001)

2. Bergman, M.: A brief survey of ontology development methodologies (2010),
http://www.mkbergman.com/906/a-brief-survey-of-ontology-
development-methodologies/

3. Chen, P.: The enity-relationship model: Toward a unified view of data. In: Kerr, D. (ed.)
VLDB, p. 173. ACM (1975)

4. Christiaens, S., De Leenheer, P., de Moor, A., Meersman, R.: Business use case: Ontolo-
gising competencies in an interorganisational setting. In: Hepp, M., De Leenheer, P., de
Moor, A., Sure, Y. (eds.) Ontology Management for the Semantic Web, Semantic Web
Services, and Business Applications, from Semantic Web and Beyond: Computing for
Human Experience. Springer (2008)

5. Corcho, O., Fernandez-Lopez, M., Gomez-Perez, A.: Methdologies, tools and languages
for building ontologies, where is their meeting point? Data and Knowledge Engineer-
ing 46(11), 41–64 (2003)

6. De Leenheer, P.: On Community-based Ontology Evolution: Foundations for Business
Semantics Management. Phd thesis, Vrije Universiteit Brussel (2009)

7. De Leenheer, P.: Ontology elicitation. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Da-
tabase Systems, pp. 1966–1972. Springer, US (2009)

232 C. Debruyne and P. De Leenheer

8. De Leenheer, P., Christiaens, S., Meersman, R.: Business semantics management: A case
study for competency-centric HRM. Computers in Industry 61(8), 760–775 (2010)

9. De Leenheer, P., de Moor, A., Meersman, R.: Context Dependency Management in Ontol-
ogy Engineering: A Formal Approach. In: Spaccapietra, S., Atzeni, P., Fages, F., Hacid,
M.-S., Kifer, M., Mylopoulos, J., Pernici, B., Shvaiko, P., Trujillo, J., Zaihrayeu, I. (eds.)
Journal on Data Semantics VIII. LNCS, vol. 4380, pp. 26–56. Springer, Heidelberg
(2007)

10. De Leenheer, P., Debruyne, C.: DOGMA-MESS: A Tool for Fact-Oriented Collaborative
Ontology Evolution. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2008 Workshops.
LNCS, vol. 5333, pp. 797–806. Springer, Heidelberg (2008)

11. De Leenheer, P., Mens, T.: Ontology evolution: State of the art and future directions. In:
[19], pp. 131–176

12. de Moor, A., De Leenheer, P., Meersman, R.: DOGMA-MESS: A Meaning Evolution
Support System for Interorganizational Ontology Engineering. In: Schärfe, H., Hitzler, P.,
Øhrstrøm, P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 189–202. Springer, Heidel-
berg (2006)

13. Gomez-Perez, A., Fernandez-Lopez, M., Corcho, O.: Ontological Engineering with exam-
ples from the areas of Knowledge Management, e-Commerce and the Semantic Web.
Springer (2003)

14. Gruber, T.: Toward principles for the design of ontologies used for knowledge sharing. In-
ternational Journal of Human-Computer Studies 43, 907–928 (1993)

15. Guarino, N.: Formal ontology, conceptual analysis and knowledge representation. Interna-
tional Journal of Human and Computer Studies 43(5-6), 625–640 (1995)

16. Halpin, T.: Metaschemas for ER, ORM and UML data models: A comparison. J. Database
Manag. 13(2), 20–30 (2002)

17. Halpin, T.: Comparing metamodels for ER, ORM and UML data models. In: Siau, K. (ed.)
Advanced Topics in Database Research, vol. 3, pp. 23–44. Idea Group (2004)

18. Halpin, T.: Information Modeling and Relational Databases. Morgan Kaufmann, San
Francisco (2008)

19. Hepp, M., De Leenheer, P., de Moor, A., Sure, Y. (eds.): Ontology Management, Semantic
Web, Semantic Web Services, and Business Applications. Semantic Web and Beyond
Computing for Human Experience, vol. 7. Springer (2008)

20. Hepp, M., Siorpaes, K., Bachlechner, D.: Harvesting wiki consensus: Using wikipedia en-
tries as vocabulary for knowledge management. IEEE Internet Computing 11(5), 54–65
(2007)

21. Hodrob, R., Jarrar, M.: ORM To OWL 2 DL Mapping. In: Proceedings of the International
Conference on Intelligent Semantic Web – Applications and Services, pp. 131–137. ACM
(2010)

22. Jarrar, M., Meersman, R.: Ontology Engineering - The DOGMA Approach. In: Dillon,
T.S., Chang, E., Meersman, R., Sycara, K. (eds.) Advances in Web Semantics I. LNCS,
vol. 4891, pp. 7–34. Springer, Heidelberg (2008)

23. Jörg, B., Krast, O., Jeffery, K., van Grootel, G.: CERIF2008XML - 1.0 Data Exchange
Format Specification, euroCRIS (2009b)

24. Meersman, R.: Towards models for practical reasoning about conceptual database design.
In: Proc. of the 2nd IFIP 2.6 Working Conference on Database Semantics, “Data and
Knowledge” (DS-2) (1986)

25. Meersman, R.A.: Semantic Ontology Tools in IS Design. In: Raś, Z.W., Skowron, A.
(eds.) ISMIS 1999. LNCS, vol. 1609, pp. 30–45. Springer, Heidelberg (1999)

26. OMG: Meta object facility, v2.0 (2009), http://omg.org/spec/MOF/2.0/

 Business Semantics as an Interface between Enterprise Information Management 233

27. OMG: Semantics of business vocabulary and business rules, v1.0 (2009),
http://omg.org/spec/SBVR/1.0/

28. OVUM, INMARK: Value it (support action grant agreement no.: 216710): D3.2 final de-
mand driven mapping report (2010)

29. Petrie, C.: Pragmatic semantic unification. IEEE Internet Computing 9(5) (2005)
30. Schürr, A., Nagl, M., Zündorf, A. (eds.): AGTIVE 2007. LNCS, vol. 5088. Springer, Hei-

delberg (2008)
31. Sheth, A., Kashyap, V.: So far (schematically) yet so near (semantically). In: Hsiao, D.,

Neuhold, E., Sacks-Davis, R. (eds.) DS-5. IFIP Transactions, vol. A-25, pp. 283–312.
North-Holland (1992)

32. Sheth, A., Ranabahu, A.: Semantic modeling for cloud computing, part 2. IEEE Internet
Computing (4), 81–84 (2010)

33. Simperl, E.P.B., Tempich, C.: Ontology Engineering: A Reality Check. In: Meersman, R.,
Tari, Z. (eds.) OTM 2006, Part I. LNCS, vol. 4275, pp. 836–854. Springer, Heidelberg
(2006)

34. Siorpaes, K., Simperl, E.: Human intelligence in the process of semantic content creation.
World Wide Web 13(1-2), 33–59 (2010)

35. Spyns, P., Meersman, R., Jarrar, M.: Data modelling versus ontology engineering.
SIGMOD Record Special Issue 31(4), 12–17 (2002)

36. Spyns, P., Tang, Y., Meersman, R.: An ontology engineering methodology for DOGMA.
Applied Ontology 3(1-2), 13–39 (2008)

37. Trog, D., Tang, Y., Meersman, R.: Towards Ontological Commitments with Ω-RIDL
Markup Language. In: Paschke, A., Biletskiy, Y. (eds.) RuleML 2007. LNCS, vol. 4824,
pp. 92–106. Springer, Heidelberg (2007)

38. Van Grootel, G., Spyns, P., Christiaens, S., Jörg, B.: Business Semantics Management
Supports Government Innovation Information Portal. In: Meersman, R., Herrero, P., Dil-
lon, T. (eds.) OTM 2009 Workshops. LNCS, vol. 5872, pp. 757–766. Springer, Heidelberg
(2009)

39. Wang, T.D., Parsia, B., Hendler, J.: A Survey of the Web Ontology Landscape. In: Cruz,
I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M.
(eds.) ISWC 2006. LNCS, vol. 4273, pp. 682–694. Springer, Heidelberg (2006)

40. Wintraecken, J.: The NIAM Information Analysis Method, Theory and Practice. Kluwer
Academic Publishers (1990)

41. Zhao, G.: AKEM: an ontology engineering methodology in ff poirot. FF POIROT Project
Deliverable 6.8 (2005)

Author Index

Aufaure, Marie-Aude 177

Ben Mustapha, Nesrine 177
Ben Taieb, Souhaib 62
Bontempi, Gianluca 62

Debruyne, Christophe 208
De Leenheer, Pieter 208
De Smet, Yves 150

Jouili, Salim 103

Le Borgne, Yann-Aël 62
Lidouh, Karim 150

Markl, Volker 125

Pedersen, Torben Bach 1

Saecker, Michael 125
Skhiri, Sabri 103
Spies, Marcus 78

Vaisman, Alejandro 29

	Title
	Preface
	Organization
	Table of Contents
	Managing Complex Multidimensional Data
	Introduction
	Background and Motivation
	Related Terminology
	Multidimensional History
	Spreadsheets and Relations

	Multidimensional Concepts
	Data Cubes
	Dimensions
	Facts
	Measures
	Multidimensional Querying

	Complex Multidimensional Data
	Support for Complex Multidimensional Data
	Requirements for Complex Multidimensional Data
	Existing Multidimensional Models

	Complex Application Domains
	Medical Data
	Spatio-temporal Data
	Music Data
	XML Data
	Semantic Web Data
	Text Data

	Conclusion and Future Work
	References

	An Introduction to Business Process Modeling
	Introduction
	Workflow Management and Business Process Management and Modeling
	Using Workflows to Model Business Processes
	Workflows in Action
	Petri Nets
	Representing Workflows with Petri Nets

	BPMN 2.0
	A Little Bit of History
	Elements

	BPEL: Executing BPM Diagrams
	A BPEL Example

	Other Workflow Modeling Tools: UML and YAWL
	Process Mining
	The Process

	Open Research Problems
	Conclusion
	References

	Machine Learning Strategies for Time Series Forecasting
	Introduction
	Forecasting and Modeling
	Machine Learning Approaches to Model Time Dependencies
	Supervised Learning Setting
	Instantiation with Local Learning

	Strategies for Multi-step Time Series Forecasting
	Recursive Strategy
	Direct Strategy
	DirRec Strategy
	Multiple Output Strategies

	Local Learning for Multi-step Forecasting
	Conclusion
	References

	Knowledge Discovery from Constrained Relational Data: A Tutorial on Markov Logic Networks
	Introduction
	Markov Logic Network (MLN) Concepts
	Basic Definition and Processing Steps of a Markov Logic Network (MLN)
	A Simple Example

	Bayesian Logic Network (BLN) Concepts
	Definition Languages and Inputs to a MLN Engine
	Input Theories
	Input Evidence
	Input Queries
	Relaxations of the Interpretation Assumptions

	Computation Steps and Algorithms
	Computation of Ground Networks
	Inference
	Learning

	Overview of Applications
	Outlook and Conclusion
	References

	Large Graph Mining: Recent Developments, Challenges and Potential Solutions
	Introduction
	Graph Mining Algorithms
	Ranking: PageRank
	Graph Clustering

	Distributed Graph Processing Framework
	Distributed Computation Framework
	Large Graph Processing

	Graph Data Warehouses: An Emerging Challenge
	Using Relational Data Warehouse for Storing Graphs?
	Traditional Data Warehouse Approaches
	Challenges in Graph Data Warehouses

	Conclusion
	References

	Big Data Analytics on Modern Hardware Architectures: A Technology Survey
	Introduction
	Scope of the Article
	Outline

	Background
	CPU Architecture
	RDBMSs

	Horizontal Scaling
	Parallel DBMSs
	MapReduce
	Dryad
	Hyracks
	Stratosphere

	Vertical Scaling
	FPGA
	GPU
	APU
	MIC
	Summary

	Conclusion
	References

	An Introduction to Multicriteria Decision Aid: The PROMETHEE and GAIA Methods
	Introduction
	What Is Decision Aid ?
	What Is Multicriteria Decision Aid ?

	Main Concepts and Terminology
	The Alternatives
	The Criteria
	Preference Modelling
	Consistent Family of Criteria
	The Different Multicriteria Problematics and Methods

	The PROMETHEE and GAIA Methods
	PROMETHEE
	GAIA and Its Interpretation
	A Pedagogical Example with D-Sight

	Conclusion
	References

	Knowledge Harvesting For Business Intelligence
	Introduction
	Need of Semantic Technologies for Business Intelligence
	Knowledge Groups in BI Environment
	Motivating Use Cases: Need of Semantic Technologies
	Correlated Dimensions Affecting Semantic Technologies

	Evolution of Semantics: From Dictionaries to Ontologies
	Levels of Knowledge Specification

	New Trends of Search Paradigm
	Semantic Web Search in Web 2.0

	Progress in Ontology Engineering Research
	Ontology Learning Approaches
	Generic Ontology Learning Process from Texts
	Ontology Capture by Googling

	Ontologies for Business Intelligence
	Conclusion
	References

	Business Semantics as an Interface between Enterprise Information Management and the Web of Data: A Case Study in the Flemish Public Administration
	Introduction
	The Flanders Research Information Space (FRIS) Case
	Background
	Reusability vs. Usability of Ontologies
	Context of the Ontology Application
	Requirements for a Method

	Business Semantics Management
	Fact-Orientation
	Development of Ontology-Grounded Methods and Applications
	Business Semantics Management: Semantic Reconciliation and Application

	Semantic Reconciliation with Business Semantics Glossary
	Scope
	Create
	Refine
	Articulate
	Unification

	Semantic Application
	Towards a Web of Data: Implementation in Other Formalisms
	Full-Cycle BSM: Validation and Feedback

	Conclusions
	References

	Author Index

