
Controlled Reversibility and Compensations�

Ivan Lanese1, Claudio Antares Mezzina2, and Jean-Bernard Stefani3

1 Focus Team, University of Bologna/INRIA, Italy
lanese@cs.unibo.it

2 SOA Unit, FBK, Trento, Italy
mezzina@fbk.eu

3 INRIA Grenoble-Rhône-Alpes, France
jean-bernard.stefani@inria.fr

Abstract. In this paper we report the main ideas of an ongoing thread
of research that aims at exploiting reversibility mechanisms to define
programming abstractions for dependable distributed systems. In par-
ticular, we discuss the issues posed by concurrency in the definition of
controlled forms of reversibility. We also discuss the need of introducing
compensations to deal with irreversible actions and to avoid to repeat
past errors.

1 Motivation

In this paper we report the main ideas of an ongoing thread of research that aims
at exploiting reversibility mechanisms to define programming abstractions for
dependable distributed systems. Many such abstractions have been proposed in
the literature, concerning for instance exception handling, checkpointing, trans-
actions and the like [6,11,12], and made available to programmers as language
primitives, libraries or middleware functions. However these different propos-
als lack formal foundations and do not generally compose well. This raises the
question of whether some unifying framework can be found to shed light on the
relations among these apparently unrelated mechanisms. Clearly, a number of
these mechanisms are based on some form of undo, allowing to annul the effect
of actions that lead to an error. We thus ask the following question:

If we were able to undo every action in a distributed program execution, would
we be able to understand and integrate those different mechanisms?

We started our endeavor in the framework of concurrency theory and in partic-
ular using process calculi, developing small reversible languages and trying to
understand their properties and their expressive power.

Paper Outline. Section 2 recalls the main features of reversibility in a concur-
rency setting. Section 3 discusses and compares different mechanisms for con-
trolling reversibility. Section 4 outlines some ideas for combining reversibility
and compensations. Section 5 concludes the paper.

� This work has been partially supported by the French National Research Agency
(ANR), project REVER n. ANR 11 INSE 007.

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 233–240, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



234 I. Lanese, C.A. Mezzina, and J.-B. Stefani

2 Reversibility in a Concurrency Setting

The problem of understanding reversibility in a process calculus scenario had
already been considered in the seminal paper [8], with motivations coming from
computational biology, where systems are naturally reversible. In [8] a reversible
variant of CCS has been proposed. A main achievement of that paper is the
definition of causal consistency, a formal criterion for reversibility in concurrent
systems. In a concurrency setting (and even more in a distributed one) there
may be no clear understanding of which was the last action performed by the
system, or which was the previous state. With causally consistent reversibility
one moves back by undoing any action that could have been the last one, i.e.
any action on which no other action depends. Essentially, actions are undone
in reverse order with respect to forward execution, up to possible swaps in the
order of execution of concurrent actions.

To better understand this crucial concept, consider the example in Figure 1(a).
From state M there are two possible paths leading to state N , one executing
first a and then b (on the left), and the other executing first b and then a (on the
right). If the two actions a and b are concurrent, possibly executed by physically
remote components, it may be difficult to distinguish the two computations.
Thus one should be able to reverse any of the two executions by reversing the
other, i.e. if the forward computation proceeds by executing first a and then b
(double-pointed arrow in Figure 1(b)), not only undoing first b and then a, but
also undoing first a and then b (wave arrow in Figure 1(b)) is a valid reverse
computation.

M

a

��

b

��
M1

b ��

M2

a
��

N

(a)

M

�� ��

a

��

b

��
M1

b ��

M2

a
��

N

��

(b)

Fig. 1. Example of Causally Consistent Executions

To allow causally consistent reversibility one has to add history information
to the different threads in a computation. Choosing threads as the granularity
at which to store this information is suitable for causal consistency since actions
inside the same thread are causally dependent, while actions in different threads



Controlled Reversibility and Compensations 235

are mostly concurrent. Subsequent works have shown that such a framework
can be applied to different process calculi, in particular to a family of CCS-like
calculi [19], to the (higher-order) π-calculus [16], and to a subset of Oz [17].

3 Controlling Reversibility

In the works discussed above, reversibility is essentially non-deterministic, in
the sense that, when both forward and backward steps are possible, there is
no way of deciding whether to go forward or to go backward. This means that
those works specify how the system can reverse a forward computation and what
kind of information it should exploit, but they give no hint about when forward
execution should be preferred over backward one and vice-versa.

In the fault-tolerance setting, there is a general answer to this question: to
use reversibility for error recovery, the system should normally execute forward,
and backward execution should be exploited only when needed to recover from
errors. Such a general guideline, however, can be implemented using different
strategies. We describe below three main strategies, specifying scenarios where
they can be applied. This allows us to structure the design space of controlled
reversibility, and to categorize the approaches in the literature accordingly.

Internal Control: Specific commands inside processes specify whether the pro-
cess itself should go forward or backward. A possibility along this line has
been explored in [9], where irreversible actions, i.e. actions that once per-
formed cannot be undone, have been integrated in reversible CCS and shown
able to implement a simple form of transactions. In [9], however, it is not
clear how to relate irreversible actions and error recovery. To make this re-
lation more apparent, we proposed a dual approach [15] where an explicit
rollback primitive is used to trigger backward execution. The idea is that
when an error is spotted, the rollback primitive can be used to go back to a
consistent state. To specify how far back to go the rollback primitive takes as
parameter a label referring to a past action, and it undoes all (and only) the
actions causally dependent on it, that is all the actions generated because of
it. This choice is coherent with, and indeed forced by, causally consistent re-
versibility. In fact, in a concurrent scenario a specification such as “go back n
steps” (typical of sequential reversible debuggers such as in [3]) is not mean-
ingful, since there is no clear understanding of which the last n actions have
been. Irreversible actions and explicit rollback are dual, one specifying when
it is forbidden to go back, and the other one specifying when it is required to
go back. Their combination is not trivial, however, since one has to decide
what to do in case of conflicts, e.g. if a rollback requires to go back past an
irreversible action. We will outline a possible solution to this problem when
discussing compensations.

External Control: This approach follows the separation of concerns principle:
a process is potentially able to go both backward and forward, while another
process is in charge of controlling it by deciding when it has to go backward



236 I. Lanese, C.A. Mezzina, and J.-B. Stefani

and when it has to go forward. Such an approach is suitable, e.g., for hier-
archic component-based systems, where the father component may decide
when and how to rollback its child, and the children notify the father in case
of errors. Such a hierarchical structure for failure handling is typically the
one advocated for Erlang systems [1]. External control naturally emerges
in a reversible debugger: the user, through the debugger interface, decides
whether the program under debugging should execute forward or should get
back to a previous computation. Following the causally consistent approach,
when going backward the user should specify which past action to undo, and
the system should be in charge of finding its dependencies and undoing their
execution. This is in contrast, e.g., to [7] where the user has to decide which
actions to undo and in which order. External control has been applied also
to biological reversible systems in [20]. There a reversible CCS process P
is controlled by a controller process C, which is again a CCS process. The
controller C always computes forward, and it constrains the possible actions
of P , thus decreasing the non-determinism due to reversibility and to con-
currency. This allows, together with a generalized form of prefix, to model
different forms of reversibility, including reversibility that is not (always)
causally consistent.

Semantic Control: In this approach the semantics of the language is extended
with guidelines on whether to go forward or to go backward. Consider the
following scenario: a reversible program is used to perform a state-space
exploration looking for some solution of a given problem. In this case re-
versibility is needed to backtrack in case a branch with no solution has been
taken. One can imagine to add to the history information about whether and
how many times a particular path has been taken and favor paths (and direc-
tions of execution) leading to less explored areas. For instance one can label
each action with the number of times it has been tried, and choose among
the enabled actions (both forward and backward) one which has minimal
value. It is clear that in such a way a finite state space is completely ex-
plored, allowing to find a solution if at least one exists. Another approach
has recently been explored in [2], where computing steps are taken subject
to some probability, and the rate of forward and backward computing steps
are derived from a set of formal energy parameters. The contribution of the
paper is to show that there exists a lower bound on energy costs to guarantee
that a process commits a forward computation in finite average time.

4 Reversibility and Compensations

Using some forms of internal or external control, reversibility may lead to di-
vergence. In particular, the process itself is not aware of the fact that a specific
computation has already been executed, has failed, and has been rollbacked.
Thus the same computation could be performed again and again, possibly for-
ever. To avoid such a problem we put forward a solution based on compensations.
Compensations have been proposed as a main building block for long running



Controlled Reversibility and Compensations 237

transactions, first in the area of database theory [13] and then in service-oriented
computing [5,4,18,14]. A long running transaction is a computation that either
succeeds, or, in case of failure, it is compensated. A compensation is an ad hoc
piece of code which is in charge of leading the system back to a consistent state,
possibly different from the ones the execution went through. Compensations
seem antithetic to reversibility, since their aim is exactly to deal with situations
where rollback is not possible or not desired. However, the two concepts can be
fruitfully combined. Consider any form of controlled reversibility, e.g., one based
on internal control. Assume that for some of the statements of the program a
compensation is defined. One can consider for instance a statement of the form
A comp B. The idea is that during forward execution A comp B behaves as A.
However, if its execution has to be rollbacked (possibly as part of a larger roll-
back), the effect of A is annulled (that is A is actually rollbacked) and then the
restored A is replaced by B. Both the steps are important: rollback is needed to
undo some nasty effects of A on the state, while replacing A with B is needed
to avoid re-doing a try that already failed, and would probably fail again. Note
that the first aspect is completely missing from the compensation approaches in
the literature [5,4,18,14].

Consider a typical web service scenario. A is an invocation of a flight reser-
vation service of some airline. Possibilities for B are for instance to execute the
same booking using another airline, or to update the database of preferred air-
lines by adding the information that the invocation of A has failed. These two
possibilities are representatives of two classes of compensations with different
features. We call compensations in the first class replacing compensations, since
they aim at doing what action A was supposed to do, but in a different way. We
call compensations in the second class tracing compensations, since they give up
on what action A was trying to do, but they just aim at keeping trace of the
failure. This information will be used later on by the application. In the example
one may imagine that the application uses trust as a criterion to choose the
airline to be invoked, and the tracing compensation decreases the trust value of
the airline whose invocation failed. In the long running transactions field instead,
the main aim of compensations is to remedy the nasty effects of A, e.g. annulling
the previous booking to avoid to pay for it. In our case this is done automatically
by the reversibility mechanism. We call this last form of compensation repairing
compensation.

The replacing compensation example, trying again the booking with a dif-
ferent airline, makes it intuitive that compensations may have their own com-
pensations, recursively. A less evident issue is the following: as we have seen,
the reversibility machinery tracks causal dependencies, thus one has to specify
how the compensation is inserted in the causality relation. There are two main
possibilities, one suitable for replacing compensations, and the other for tracing
compensations. For replacing compensations, compensation B should take the
place of A in the causality relation, since it is an alternative to it. On the other
hand, a tracing compensation B is just used to update the state with informa-
tion obtained by the failed attempt, thus it is not causally related to A causes,



238 I. Lanese, C.A. Mezzina, and J.-B. Stefani

but it is independent. To better understand the difference let us analyze what
happens if a larger part of the execution has to be annulled, e.g. since, in the
airline booking scenario above, the user changed its mind and decided not to
travel any more. The replacing compensation ”book with another airline” has to
be reverted, since it is no more meaningful. This is exactly what happens since
the compensation is now causally dependent on A causes. Instead, the tracing
compensation ”remember that the chosen airline is not good” should be applied
anyway, since it can be used for further bookings later on, and thus should not
depend on A causes.

So far we considered the use of compensations to avoid repeating past errors.
However compensations can also be used in a way closer to their original purpose,
i.e. to deal with irreversible actions. Keep in mind that whatever the support
for reversibility is, there will always be actions which cannot be undone. This
is mainly related to two situations: the action may be inherently irreversible,
e.g. a side effect on the real world such as printing a document, or the action
is in principle reversible but it is out of the control of the considered system.
An example of this last possibility is a distributed application where some of
the components provide support for reversibility, while others do not. In both
the cases one may attach compensations to irreversible actions: reversible actions
are reverted, and irreversible actions are compensated. In this last case repairing
compensations are normally needed.

We can now clarify the issue of the combination of irreversible actions and
rollback: in case a rollback request is issued, and it requires to undo an irre-
versible action, actions are undone till the irreversible action is found, and its
(repairing) compensation is executed, instead of reversing it and all the actions
it depends on. Note that in this setting some actions are equipped with compen-
sations, while others are reversed, while in the previous setting each action was
both reversed and compensated.

5 Conclusion

In this paper we discussed three main issues related to defining and exploiting re-
versibility in a concurrent scenario. The first issue was how to define mechanisms
allowing to go backward and forward in a concurrent execution. The second is-
sue was how to control reversibility, i.e. how to specify whether to go forward
or backward, and up to where. The third issue was how to avoid repeating the
same errors, and how to deal with irreversible actions. The first such issue has
been discussed in the literature to some extent, relying on the main concept of
causally consistent reversibility. Related to the second issue, this is the first time,
as far as we know, that a taxonomy of the possible approaches has been defined.
Concerning the third issue, the only related work in the literature is [10], which
proposes a transactional mechanism with some reversibility features. This work
however comes from the opposite direction, since it starts from the problem of
how to define interacting transactions.

Many other issues remain to answer our original question. In particular, the
mechanisms we sketched above should be fully specified, and their expressive



Controlled Reversibility and Compensations 239

power has to be assessed against proposals in the literature. Our endeavor would
be fully successful only if we show that using a reversible framework allows to
recover, improve and combine existing techniques for dependable concurrent
systems, and possibly to define new ones. Also, practical issues must be solved
to make the approach usable in a real programming language. For instance, the
interplay between reversibility and language features such as the type system
or modules should be considered. Also, the space and time overhead due to
reversibility have to be measured and minimized. See [17] for a preliminary
analysis of this issue.

References

1. Armstrong, J.: Making Reliable Distributed Systems in the Presence of Software
Errors. PhD thesis, KTH, Stockholm, Sweden (2003)

2. Bacci, G., Danos, V., Kammar, O.: On the Statistical Thermodynamics of Re-
versible Communicating Processes. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.)
CALCO 2011. LNCS, vol. 6859, pp. 1–18. Springer, Heidelberg (2011)

3. Boothe, B.: Efficient Algorithms for Bidirectional Debugging. In: Proc. of PLDI
2000, pp. 299–310. ACM Press (2000)

4. Bruni, R., Melgratti, H., Montanari, U.: Theoretical Foundations for Compensa-
tions in Flow Composition Languages. In: Proc. of POPL 2005, pp. 209–220. ACM
Press (2005)

5. Butler, M., Hoare, S.T., Ferreira, C.: A Trace Semantics for Long-Running Trans-
actions. In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Se-
quential Processes. LNCS, vol. 3525, pp. 133–150. Springer, Heidelberg (2005)

6. Collet, R., Van Roy, P.: Failure Handling in a Network-Transparent Distributed
Programming Language. In: Dony, C., Lindskov Knudsen, J., Romanovsky, A.,
Tripathi, A. (eds.) Exception Handling. LNCS, vol. 4119, pp. 121–140. Springer,
Heidelberg (2006)

7. Cook, J.J.: Reverse Execution of Java Bytecode. Comput. J. 45(6), 608–619 (2002)
8. Danos, V., Krivine, J.: Reversible Communicating Systems. In: Gardner, P.,

Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004)

9. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005)

10. de Vries, E., Koutavas, V., Hennessy, M.: Communicating Transactions. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 569–583. Springer,
Heidelberg (2010)

11. Elnozahy, E.N., Alvisi, L., Wang, Y.M., Johnson, D.B.: A Survey of Rollback-
Recovery Protocols in Message-Passing Systems. ACM Comput. Surv. 34(3) (2002)

12. Eppinger, J.L., Mummert, L.B., Spector, A.Z.: Camelot and Avalon: A Distributed
Transaction Facility. Morgan Kaufmann (1991)

13. Garcia-Molina, H., Gawlick, D., Klein, J., Kleissner, K., Salem, K.: Coordinating
Multi-Transaction Activities. Technical Report CS-TR-2412, University of Mary-
land, Dept. of Computer Science (1990)

14. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: On the Interplay Between Fault
Handling and Request-Response Service Invocations. In: Proc. of ACSD 2008, pp.
190–199. IEEE Computer Society Press (2008)



240 I. Lanese, C.A. Mezzina, and J.-B. Stefani

15. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling Reversibility
in Higher-Order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS,
vol. 6901, pp. 297–311. Springer, Heidelberg (2011)

16. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing Higher-Order Pi. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer,
Heidelberg (2010)

17. Lienhardt, M., Lanese, I., Mezzina, C.A., Stefani, J.-B.: A Reversible Abstract
Machine and Its Space Overhead. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and
FMOODS 2012. LNCS, vol. 7273, pp. 1–17. Springer, Heidelberg (2012)

18. Oasis. Web Services Business Process Execution Language Version 2.0 (2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

19. Phillips, I., Ulidowski, I.: Reversing Algebraic Process Calculi. J. Log. Algebr.
Program. 73(1-2) (2007)

20. Phillips, I., Ulidowski, I., Yuen, S.: A Reversible Process Calculus and the Mod-
elling of the ERK Signalling Pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012.
LNCS, pp. 218–232. Springer, Heidelberg (2012)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

	Controlled Reversibility and Compensations
	Motivation
	Reversibility in a Concurrency Setting
	Controlling Reversibility
	Reversibility and Compensations
	Conclusion
	References




