
A Reversible Process Calculus and the Modelling

of the ERK Signalling Pathway

Iain Phillips1, Irek Ulidowski2, and Shoji Yuen3

1 Department of Computing, Imperial College London, England
2 Department of Computer Science, University of Leicester, England
3 Graduate School of Information Science, Nagoya University, Japan

Abstract. We introduce a reversible process calculus with a new fea-
ture of execution control that allows us to change the direction and pat-
tern of computation. This feature allows us to model a variety of modes
of reverse computation, ranging from strict backtracking to reversing
which respects causal ordering of events, and even reversing which vio-
lates causal ordering. The SOS rules that define the operators of the new
calculus employ communication keys to handle communication correctly
and key identifiers to control execution.

As an application of our calculus, we model the ERK signalling path-
way which delivers mitogenic and differentiation signals from the mem-
brane of a cell to its nucleus. The proteins participating in the pathway
are represented by reversible processes in such a way that the pathway’s
bio-chemical reactions are simply interactions between the processes.

1 Introduction

Reversing computation of a concurrent system poses a number of conceptual
and technical questions. How is the forward and reverse computation performed
and controlled? When reversing, in what order are computation steps undone?
We answer the last question first. Consider a computation where the event a
causes the event b, written a < b, and the event c occurs at another location
independently of a and b. The three traces of this computation that preserve
causality are abc, acb and cab: note that a always precedes b. There are several
conceptually different ways of undoing these events. Backtracking is undoing in
precisely the reverse order in which they happened. So, undo b undo c undo a is
a backtrack of acb.

Reversing is a more general form of undoing: here events can be undone in any
order as long as causality is preserved, meaning that causes cannot be undone
before effects. For example, undo c undo b undo a is a reversal of acb for a, b and
c as defined above. However, and quite surprisingly, there are situations where
events happen, or are undone, out of causal order. The creation and breaking of
molecular bonds between the proteins involved in the ERK signalling pathway
described in Section 3 is a good example. Simplifying, let us assume that the
creation of molecular bonds is represented by events a, b, c where, as above, a < b
and c is independent of a and b. In the ERK pathway, the molecular bonds are

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 218–232, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Reversible Process Calculus 219

broken in the following order: undo a undo b undo c, which seems to undo the
cause a before the effect b. Similarly, an execution of multi-threaded programs
under weak memory models or under the out-of-order regime may result in traces
which contradict program (thread) order; this is a result of well-known hardware
or compiler optimisations. In this paper we propose a reversible process calculus
in which we can model reversibility and out-of-order computation. To the best
of our knowledge this is the first such calculus.

We return to the question of how to control the direction of computation. Re-
versible process calculi RCCS [7] and CCS with communication Keys (CCSK)
[15,16] use a memory with a history of past computation and communication
keys, respectively, to reverse computation so that causality is preserved. Re-
versible systems modelled in RCCS and CCSK choose the direction of computa-
tion spontaneously. When an execution of a fault-tolerant system encounters an
error, the system recovers by undoing execution to a state where the error can
be eliminated. The instruction when and how far to reverse is a part of the sys-
tem’s software and such reversibility control mechanism can be modelled by the
rollback construct of the higher-order π-calculus [10]. In this paper we propose a
different and more expressive mechanism for controlling reversibility. Its opera-
tional formulation and usefulness compares favourably with that of the rollback
construct, and it allows us to model additionally out-of-order forward and re-
verse computation which we believe has not been done before in the process
calculi setting.

Our calculus is an extension of CCSK [15,16], a reversible process calculus
based on Milner’s CCS [13], with prefixing by multisets of actions and with
an execution control mechanism (controllers). The generalised prefixing gives
us the ability to represent a loose relationship between events of out-of-order
computation and, more specifically, it allows us to model more faithfully the
structure and reactions of bio-chemical molecules. This form of prefixing was
previously employed in [9]. Controllers permit us to manage the pattern and the
direction of computation and together with the multiset prefixing they are able
to model out-of-order computation (note that weaker forms of prefixing are not
sufficient). It is a different form of the rollback construct of the higher-order π
calculus [10].

Processes and controllers are quite strongly contrasted: processes (without
controllers) can compute freely either forwards or in reverse, whereas controllers
can only compute forwards (even when the process under control is reversing).
We envisage a wide variety of uses for controllers, ranging from handling error
recovery to providing the main focus of the computation, as in the bio-chemical
example we present later.

We give SOS rules for the operators of our calculus in Section 2. The rules
for reversing computation are simply symmetric versions of the forward rules. In
order to manage correctly both communication and the reversing of communica-
tion we employ communication keys [15,16]. The new notion of key identifiers is
introduced to mark the actions of processes that are to be performed or undone,
thus giving us the ability not only to reverse specific past actions, as achieved

220 I. Phillips, I. Ulidowski, and S. Yuen

by the rollback [10], but also to specify which forward action to compute and
when to compute them. In this way, we achieve a more general mechanism for
controlling computation. To illustrate this, consider a process that can perform
actions a and b in parallel. We can define a controller that forces b to execute
always after a, effectively setting a as the cause of b. In the standard setting, this
means that reversing a must be proceeded by undoing b. However, our control
mechanism gives the ability to reverse a and b ‘out of order’: first a and then
b. Such patterns of computation, seemingly breaking the causal relationships
between actions, are common in the bio-chemical setting as can be seen in our
model of the ERK signalling pathway.

The usefulness of the execution control mechanism in exhibited in several ex-
amples. In Section 2.2 we consider the modelling of long-running transactions
with compensations and we re-work the example from [10] of a system with com-
plex causal dependencies between executing and reversing communications. The
first example shows the need for the new key identifiers, whereas in the second
example communication keys alone suffice. The second part of the paper (Sec-
tion 3) is devoted solely to the modelling of the ERK signalling pathway [5,20],
which delivers mitogenic and differentiation signals from the membrane of a cell
to its nucleus, and how it is regulated by RKIP proteins. There, the execution
control mechanism and prefixing with multisets of actions play a vital rôle.

The research on reversing process calculi can be traced back perhaps to the
work by Berry and Boudol on the Chemical Abstract Machine [1]. We were in-
spired to look at reversible computation by, among others, the paper of Danos
and Krivine on reversing CCS [9] and the subsequent [7,8]. We then proposed
an alternative, more algebraic method for reversing CCS in [15,16], and recently
provided both bisimulation and modal logic semantics for reversible concur-
rency [17,18]. Lanese, Mezzina, Schmitt and Stefani proposed a reversible version
of a higher-order π calculus and equipped it with a rollback construct [11,10].
They also studied other forms of reversibility for defining programming abstrac-
tions for dependable distributed systems, and discussed the need for compensa-
tions [12]. Finally, reversible structures that compute forwards and backwards
in an asynchronous manner were proposed by Cardelli and Laneve [4].

2 A Reversible Process Calculus with Execution Control

In this section we extend CCSK with an execution control mechanism which
allows us to control the direction and the pattern of computation. The extended
calculus is given an operational semantics and its usefulness is illustrated in
several examples including long-running transactions with compensations.

2.1 CCSK

We define the (forward) actions of CCS as usual: let A be a set of actions a,
let a be the complement of a, and let A = {a : a ∈ A}. Also, let a = a for
a ∈ A. We assume that α, β range over A ∪ A, and μ, ν range over all actions,

A Reversible Process Calculus 221

std(X)

α[v].X
α[n,v]→ α[n, v].X

X
μ[n,v]→ X ′

α[m, u].X
μ[n,v]→ α[m,u].X ′

m �= n

X
μ[n,v]→ X ′ fsh[n](Y)

X |Y μ[n,v]→ X ′ |Y
X

α[n,v]→ X ′ Y
α[n,u]→ Y ′

X |Y τ [n]→ X ′ |Y ′

X
μ[n,v]→ X ′ std(Y)

X + Y
μ[n,v]→ X ′ + Y

X
μ[n,v]→ X ′

X\A μ[n,v]→ X ′\A
μ, μ /∈ A

X
μ[n,v]→ X ′

X[f]
f(μ)[n,v]→ X ′[f]

std(X)

α[n, v].X
α[n,v]� α[v].X

X
μ[n,v]� X ′

α[m, u].X
μ[n,v]� α[m,u].X ′

m �= n

X
μ[n,v]� X ′ fsh[n](Y)

X |Y μ[n,v]� X ′ |Y
X

α[n,v]� X ′ Y
α[n,u]� Y ′

X,Y
τ [n]� X ′ |Y ′

X
μ[n,v]� X ′ std(Y)

X + Y
μ[n,v]� X ′ + Y

X
μ[n,v]� X ′

X\A μ[n,v]� X ′\A
μ, μ /∈ A

X
μ[n,v]� X ′

X[f]
f(μ)[n,v]� X ′[f]

Fig. 1. Forward and reverse SOS rules

namely Act = A ∪ A ∪ {τ}, where τ /∈ A is the silent action and τ = τ . Let K
be an infinite set of communication keys (or just keys for short), ranged over by
k,m, n. And, let I be an infinite set of key identifiers, ranged over by v, u, w.
We also have a set of process identifiers PI , with typical elements S, T , and a
set of variables, ranged over by X,Y . PI contains the deadlocked process 0.

The syntax of CCSK is given below, where A ⊆ Act \ {τ} and f : Act→ Act
with f(τ) = τ . The set of CCSK closed terms is P , and we shall refer to closed
terms as processes. We let P,Q to range over processes.

P ::= X | S | α[v].P | α[n, v].P | P +Q | P |Q | P \A | P [f]

The prefixing with forward actions operator is α[v].X where v is a key identifier
and is optional. Each {α, α} (and {α, α, α, α} in Section 2.2) has a set of key
identifiers associated with it, and we assume that all such sets are disjoint.
Prefixing with past actions has the form α[n, v].X where n is the specific key for
performing this α and v is drawn from the set of key identifiers for α, and may
be omitted if it plays no rôle (but the key n must occur). There is no prefixing
with τ . We often omit trailing 0s so, for example, a.0 is written as a.

X | Y represents two systems X and Y that can perform actions or reverse
actions on their own or they can interact with each other on complementary
actions, for example a and a. The choice, restriction and relabelling operators,
namely ‘· + ·’, ‘· \A’ and ‘·[f]’, are as in CCS except that + is now static in

process terms. Each process identifier S has a defining equation S
df
= P .

222 I. Phillips, I. Ulidowski, and S. Yuen

The SOS forward and reverse SOS rules for CCSK are given in Figure 1. Note
that the reverse rules are simply the reversals of the forward rules. We associate
with each term X the set of its keys, written as keys(X). A term X is standard,
written std(X), if it contains no prefixing with past actions. A key n is fresh in
Y , written fsh[n](Y), if n is not used in Y .

Structural congruence ≡ on terms is defined by X |Y ≡ Y |X , X | (Y |Z) ≡
(X |Y) |Z and X |0 ≡ X . Also, X + Y ≡ Y +X , X + (Y + Z) ≡ X + (Y + Z)

and X + 0 = X . And S ≡ P for all S and P such that S
df
= P . We also have the

Structural Congruence Rule:

X ≡ Y Y
μ[n,v]→ Y ′ Y ′ ≡ X ′

X
μ[n,v]→ X ′

Example 1. In CCSK we keep track of the identities of actions that communicate

so that when we reverse we undo the correct past actions. Consider P
df
= (a |a.c |

a | a.e)\a. Here the restriction of a prevents a and a being performed except
as part of a communication. Suppose that a communicates with a and then a.c
with a.e. In CCSK we write this as follows:

P ≡τ [m]→ (a[m] |a.c |a[m] |a.e)\a τ [n]→ (a[m] |a[n].c |a[m] |a[n].e)\a
Note that the process a[m] |a.c |a[m] |a.e cannot regress by reversing a[m] alone
because key m is not fresh in a.c |a[m] |a.e. The fact that m appears in a.c |a[m] |
a.e which is in parallel with a[m] proves that the processes communicated with
a and a rather than performed them independently.

Our notation does not allow us to backtrack by undoing a different pair of
actions, but clearly we can change the order of reversing τ [m] and τ [n]:

(a[m] |a[n].c |a[m] |a[n].e)\a τ [m]� (a |a[n].c |a |a[n].e)\a τ [n]�≡ P

CCSK processes are fully reversible because the reverse SOS rules in Figure 1
are obtained by simply reversing the forward SOS rules in Figure 1 [15,16]. We

have P
μ[n,v]→ Q iff Q

μ[n,v]� P for all processes P,Q and all μ ∈ Act, n ∈ K, v ∈ I.
Moreover, CCSK is a conservative extension of CCS [15,16].

2.2 Execution Control Operator

We add a new operator ‘·〈·〉’ to CCSK for controlling the execution of processes.
We shall need new actions that control the reversing of the forward actions: a
and a prompt reversing of the past versions of a and a respectively. Thus, we
have two further sets A and A. We let α, β range over A ∪ A, κ range over

A ∪ A ∪ A ∪ A and, from now on, we let μ, ν range over all actions, namely
Act = A ∪A ∪A ∪A ∪ {τ}.

X〈Y 〉 is the process X controlled by Y . The behaviour of X〈Y 〉 is a subset of
the behaviour of X as prescribed by Y according to the rules in Figure 2 which

A Reversible Process Calculus 223

are in the Ordered SOS format [19,14]. Before we explain these rules and how
the control operator works, we define control terms and update the definition of
processes. The syntax for control terms is given below. Closed control terms, or
simply control terms or controllers, are ranged over by C,D.

C ::= X | c | κ[v].C | κ[n, v].C | C +D | C |D

Terms c are typical elements of a set of control identifiers. By abuse of notation
we shall often use C,D for control identifiers. Every control identifier has a

defining equation c
df
= C; we extend the definition of ≡ by c ≡ C for all c, C

such that c
df
= C. The SOS rules for the operators of control terms are the

standard SOS rules for CCS, except that we have prefixing with new actions and
prefixing carries keys or key identifiers. Note that the prefixing and + operators
are dynamic operators as in CCS. Thus, controllers compute forwards only so,

for example, κ[v].C
κ[k,v]→ C, for some k, and κ[v].C +D

κ[k,v]→ C.
The class of processes is extended to include terms P 〈C〉 for all P and C.

(cf1)
X

α[n,v]→ X ′ Y
α[n,v]→ Y ′

X〈Y 〉 α[n,v]→ X ′〈Y ′{n, v/v}〉
> (cf2)

X
β[m,u]→ X ′ Y

α′[k,w]→ Y ′

X〈Y 〉 β[m,u]→ X ′〈Y {m, u/u}〉

(cr1)
X

α[n,v]� X ′ Y
α[n,v]→ Y ′

X〈Y 〉 α[n,v]� X ′〈Y ′{v/n, v}〉
> (cr2)

X
β[m,u]� X ′ Y

α′[k,w]→ Y ′

X〈Y 〉 β[m,u]� X ′〈Y {u/m, u}〉

Fig. 2. SOS rules for the control operator

Returning to Figure 2, the notation (cf1) > (cf2) means that (cf2) can be
applied to derive a transition of P 〈C〉 if no rules higher in the ordering > can
be applied, namely the rules (cf1) are not applicable for all α, n, v. So, if C can
perform any forward α′[k, w] and P cannot perform any of the forward actions

α[n, v] of C, then (cf2) can be used to derive P 〈C〉 β[m,u]→ P ′〈C{m,u/u}〉 if
P ′ β[m,u]→ P ′. We note that C{m,u/u} means that every occurrence of u in C is
replaced with m,u. The controller keeps track of which actions to reverse or to
perform by recording keys and key identifiers shared with its process.

Actions α of the controller require X to reverse until α is undone. The rules
(cr1) and (cr2) play the dual rôle to (cf1) and (cf2). Here, we replace the key
and the key identifier in the controller with the key identifier alone, thus wiping
out the record of the keys of the reversed transitions.

Terms such as a[v].b[v] are not well formed as different actions cannot share
identifiers. Some well formed terms are not very useful, for example only the
first a can execute in a[v].a[v].

Example 2. Consider P
df
= a.a.b.b. If C′ df

= b.a.b then P 〈C′〉 computes until after
the first b of P , then reverses until the second a is undone and finally it computes

224 I. Phillips, I. Ulidowski, and S. Yuen

until after the first b. If we wish to compute or reverse other occurrences of actions
a and b in P , for example the first a and the second b, then we use key identifiers.

The controller C
df
= b[v].a[u].b[v] achieves this provided that the appropriate

actions a and b in P are marked with u respectively v. Let P
df
= a[u].a.b.b[v].

Then, using rule (cf2), we obtain P 〈C〉 a[1,u]→ a[1, u].a.b.b[v] 〈b[v].a[1, u].b[v]〉. Note
that prefixing with a[u] in the controller has been updated with the key 1. After
another forward a and a b, we use rule (cf1) to perform b[4, v] (b[v] with the key
4); note that the second b[v] in C is updated to b[4, v]:

a[2]→ b[3]→ b[4,v]→ a[1, u].a[2].b[3].b[4, v] 〈a[1, u].b[4, v]〉.
Then we reverse until we have undone the a[1, u] using (cr2) and (cr1):

b[4,v]� b[3]� a[2]� a[1,u]� a[u].a.b.b[v] 〈b[v]〉.
Note that this reversal wipes out all the keys. Finally, we can compute forwards.

The control operator is very expressive. Consider a process P . Process P 〈0〉
behaves as 0. If a is not in the sort of P (the set of actions that P can ever
perform), then P 〈a |a〉 and P 〈a+a〉 behave exactly as P . If we allowed prefixing

with τ in control terms, then C
df
= τ.C would force communications in P thus

acting as the restriction operator of CCS.
The control operator can be used to make the forward actions of processes

irreversible. Consider a.b and C
df
= b.b.C. Then (a.b)〈C〉 a[1]→ (a[1].b)〈C〉

a[1]

	� since

C insists on computing forwards with b. Also we can find examples where Q
μ[n,v]�

P holds but there is no Q′ such that P
μ[n,v]→ Q′. Consider (a | b)〈C〉 where

C
df
= a.b.a.b.C. We have (a | b)〈C〉 a[1]→ b[2]→ (a[1] | b[2])〈a.b.C〉 a[1]� (a | b[2])〈b.C〉 b[2]�

(a | b)〈C〉 but not (a | b)〈C〉 b[2]→ Q′ since C insists on performing a first. This is
an example of a computation that reaches a state after a reversal that cannot
be reached by computing forwards only.

Example 3. A long-running transaction consists of many atomic steps which are
represented here by a. A step may succeed, and then it is followed by the next
step (or success s; this action never fails), or fail which results in the action f .
When all steps are successfully completed the transaction succeeds and is ir-
reversible. When f takes place all steps a performed successfully need to be
undone. The transaction is modelled by T0 as follows:

Ti
df
= a[vi+1].Ti+1 + f [u] for 0 ≤ i < n, Tn

df
= s

The required controller is C
df
= a[v1].(a[vn]+f [u].a[v1].C)+f [u].f [u].C. Let us see

how T0〈C〉 computes. If the transaction fails immediately by performing f [1, u],
then this triggers the outermost action f in the controller:

T0〈C〉 f [1,u]→ (a[v1].T1 + f [1, u]) 〈f [1, u].C〉

A Reversible Process Calculus 225

The controller then requires undoing f :
f [1,u]� (a[v1].T1 + f [u].0)〈C〉 ≡ T0〈C〉.

If the transaction does not fail immediately, then a[1, v1] is performed (and is
matched by the controller):

T0〈C〉 a[1,v1]→ (a[1, v1].T1 + f [u]) 〈a[vn] + f [u].a[1, v1].C〉
The process then computes until the last step a[vn], or else it fails in the mean-
time by performing f [k, u], for some key k. This is matched by the controller
which becomes a[1, v1].C. Next, the execution is reversed until a[1, v1] is undone,

thus returning to the original configuration: · · · a[1,v1]� T0〈C〉.
In some transactions it may not be necessary to undo all successful steps a

in case of failure. If these steps can be grouped into sequences, then only the
steps of the most recently performed sequence need undoing. Let there be two
such sequences, the first finishing with ak with 2 ≤ k and k + 2 ≤ n. Then the
controller D is defined as follows:

D
df
= a[v1].(a[vk].D

′ + f [u].a[v1].D) + f [u].f [u].D

D′ df
= a[vk+1].(a[vn] + f [u].a[vk+1].D

′) + f [u].f [u].D′

We easily can check that T0〈D〉 works properly.
Example 4. Assume a long-running transaction has a compensation K which is
triggered by action c and which completes with s, where both c and s never fail.
We model this by adjusting the definition of T1 from Example 3 and leaving other

Tis unchanged: T1
df
= a[v1].T2 + f [u] + c.K. The controller is C

df
= a[v1].(a[vn] +

f [u].a[v1].c.s) + f [u].f [u].c.s. When a failure occurs the controller reverses all
actions a that took place so far (or just the initial f), triggers c and insists that
the compensation K computes forwards by demanding s.

Example 5. Consider the following system taken from [10], where (undo a) forces
reversing of computation until a is undone (similarly for (undo b)).

(a |a.d |c.(undo a) | b |b.c |d.(undo b))\{a, d, c, b}
Inspecting the causal dependencies between actions, we note that undoing a is
possible only after c, c have communicated, which requires b, b to communicate
first. And, of course, after a, a have happened. If in the meantime a communi-
cation on d, d takes place, it disables undoing a. This is because a causes d and
the cause a cannot be undone prior to undoing the effect d. Causal dependencies
between these communications are shown in the left-hand diagram in Figure 3,
where b→ c means that a communication involving b must precede a communi-
cation involving c. The dashed line labelled ‘undo a’ indicates that reversing the
communication involving a is possible only after the communications involving
the actions that appear above the line (here a, b, c) have taken place.

In our calculus, the left component is a | (a.d | c)〈(c.a.e) | e〉. Since e cannot
happen, the controller (c.a.e) | e requires that ‘after a forward c reverse a and

226 I. Phillips, I. Ulidowski, and S. Yuen

a τa

τa

τa

τb

τb

τb

b

d

τd

τd

τd

c τc

τc

τc

undo b undo a

M M ′′

M1

M2

Fig. 3. Example 5

keep reversing, or independently compute forward’. Since all actions are distinct
there is no need here for key identifiers. The system is

M
df
= (a | (a.d |c)〈(c.a.e) |e〉 | b | (b.c |d)〈(d.b.e) |e〉)\{a, d, c, b}.

In order to make transitions representing communications more readable we shall
decorate labels τ with action labels: we shall write, for example, τb[1] instead of
τ [1] for the communication on b, b with key 1. We shall also omit restriction. A
communication on b, b leads to

M
τb[1]→ a | (a.d |c)〈(c.a.e) |e〉 | b[1] |(b[1].c |d)〈(d.b[1].e) |e〉 ≡M1

Then we perform communications involving a and then c:

M1
τa[2]→ τc[3]→ a[2] | (a[2].d |c[3])〈(a[2].e) |e〉 | b[1] | (b[1].c[3] |d)〈(d.b[1].e) |e〉.

Next, a communication on d, d can take place or we can undo the communication
involving a. Note that although the communication on b took place, it cannot
be undone at this point since the communication on d has not taken place yet.

Consider a communication on d, d:

τd[4]→ a[2] | (a[2].d[4] |c[3])〈(a[2].e) |e〉 | b[1] | (b[1].c[3] |d[4])〈(b[1].e) |e〉) ≡M ′′

The right-hand diagram in Figure 3 shows other sequences of communications
involving a, b, c, d from M to M ′′. Controllers of M ′′ ask to undo a and undo
b. But, since both d and c have now taken place, a and b can be reversed only
after reversing other actions. Overall, our mechanism for controlling execution
works well with this example and its operational formulation is simpler than the
formulation of the rollback construct [10].

We finish this section with a remark on suitable behavioural equivalences and
modal logics for our reversible calculus. A reverse interleaving bisimulation
[15,16,18], which extends the standard bisimulation [13] with reverse transi-
tions, seems a suitable behavioural equivalence. Also, a reverse pomset bisim-
ulation may be very useful [18] as it talks directly about forward and reverse
behaviour in terms of pomsets (partially ordered multisets) of actions. Event

A Reversible Process Calculus 227

Identifier Logic [17], a modal logic with both forward and reverse modalities, is
the appropriate logic for our calculus since it characterises the mentioned above
equivalences and many safety properties, such as precedence and exception, are
naturally expressible with reverse modalities.

3 The ERK Signalling Pathway

The ERK signalling pathway is a realistic example of computation that comprises
forward and reverse steps where some of the reverse steps violate the causal or-
dering established by the forward steps. We show how the new execution control
and prefixing with multisets of actions allow us to represent naturally this form
of out-of-order reversible computation. Signalling pathways were modelled more
fully by PEPA [3] and by rule-based languages BioNetGen [2] and Kappa [6].
We shall comment on the PEPA model below.

We shall now define prefixing with multisets of actions. The actions of a given
multiset of actions can execute in any order, and the computation progresses to
the next multiset of actions only if all of the actions from the first multiset have
taken place. Process terms are extended with (α[v], s).P and (α[n, v], s).P where
s is a sequence of any actions or past actions. s′ is a typical sequence consisting
entirely of past actions. For simplicity, we do not allow prefixing with multisets
of actions in control terms. The SOS rules are as follows:

std(X)

(α[v], s).X
α[n,v]→ (α[n, v], s).X

X
μ[n,v]→ X ′ fsh[n](s′)

(s′).X
μ[n,v]→ (s′).X ′

std(X)

(α[n, v], s).X
α[n,v]� (α[v], s).X

X
μ[n,v]� X ′ fsh[n](s′)

(s′).X
μ[n,v]� (s′).X ′

The Ras/Raf-1/MEK/ERK signalling pathway (ERK pathway for short) delivers
mitogenic and differentiation signals from the membrane of a cell to its nucleus.
This pathway is regulated by the protein RKIP. We borrow the description of
the pathway and its reactions from [5,20].

The ERK pathway is spatially organised in such a way that a signal that
arrives at the cell’s membrane can be transmitted to the cell’s nucleus via a
cascade of reactions that involve proteins Ras, Raf-1, MEK and ERK. Initially,
a G protein Ras is activated near a receptor on the cell’s membrane. Ras then
activates a kinase Raf-1 which becomes Raf*-1 (represented here by F). We shall
not model Ras and its reactions here. Raf*-1 can then activate the MEK protein
(M here) which gets phosphorylated to become pM . Or, this binding of Raf*-1
to MEK can be inhibited by RKIP, which binds to Raf*-1; we shall return to
this sequence of reactions below. The phosphorylated MEK (pM) then activates
ERK protein (E here) which, in turn becomes phosphorylated (represented by
pE). Finally, at the end this cascade pE can translocate to the nucleus and pass
the signal. Or, it binds to RKIP thus deactivating it temporarily (see below).

228 I. Phillips, I. Ulidowski, and S. Yuen

F |MF |RF |R MF

E

F |pM

E |pM

pE |M

pE

pM

R |pE

F |R |pE

pR

pR |E

R

Fig. 4. The ERK pathway

When RKIP binds Raf*-1 and thus inhibits the activation of MEK, the re-
sulting complex binds to a phosphorylated ERK (pE). Then the complex breaks
releasing F , which can get involved in the cascade, E and a phosphorylated R.

Figure 4 represents the described reactions. A black-headed arrow represents
a reaction that binds two molecules into a complex molecule, an open-headed
arrow represents a reaction that breaks a complex into its component molecules
and a bi-directional arrow represents a pair of forwards/reverse reactions: a
binding and unbinding. A two-headed arrow represents a reaction that involves
phosphorylation/de-phosphorylation of its reactants. The nodes in the diagram
are the molecules or complexes of molecules.

We note that the ERK pathway was previously modelled in the setting of the
stochastic process algebra PEPA in [3]. There, the states of the pathway as in
Figure 4 are represented as indivisible processes so, for example, F |R |pE is rep-
resented by a single process and not as a composition of three separate processes.
These processes perform forward actions that represent creation and breaking
of bonds, and the system evolves from one state to another via multi-way syn-
chronisation of these actions. The transitions are timed and their durations are
expressed as exponentially distributed random variables.

We represent the individual molecules of the ERK pathway as processes, for
example F,M,E and R, and the pathway is modelled by a composition of these
processes. The reactions between the molecules are represented by forward and
reverse synchronisations between processes. We define F,M,E and R as follows
using the new multiset prefixing operator (key identifiers are not necessary here):

A Reversible Process Calculus 229

F
df
= a.F ′ M

df
= (a, p, c).M ′ E

df
= (c, p, b, n).E′ R

df
= (a, b, p).R′

We also have molecules P
df
= p.P ′ which represent phosphate groups that bind

with M,E and R and phosphorylate them. These phosphorylated molecules are
denoted by pM, pE and pR respectively. The ERK pathway is

(F |M |E |P |R |pE) \ {a, b, c, p}

where we have a single copy of each molecule F,M,E, P,R and pE. Next, we
list those synchronisations between the processes of the pathway that represent
valid reactions; there are many other synchronisations that have no bio-chemical
meaning and we shall see later how controllers can be employed to prune them.

The molecule F can bind with M and start a signal cascade or it can bind with
a copy of inhibitor R. In order to show how F is released from the control of R
we have included a copy of a phosphorylated ERK (pE). (A more realistic model
would be a composition of a large numbers of copies of F,M,E,R, P, pM, pE
and pR). These reactions start two alternative sequences of reactions, which we
shall call the cascade and regulation sequences. We consider the cascade sequence
first. For simplicity we omit restriction from now on. The binding of F and M
is reversible; it is represented by blue arrows in Figure 4. The system evolves to

τa[1]→ a[1].F ′ |(a[1], p, c).M ′ |E |P |R |pE

where transition τa[1] indicates that a binding between a of F and a of M took
place and a and a were marked with 1. Note that this binding can be immediately
reversed.

τa[1]� a.F ′ |(a, p, c).M ′ |E |P |R ≡ F |M |E |P |R |pE

M gets phosphorylated and then releases F by reversing the binding on a:

τp[2]→ a[1].F ′ |(a[1], p[2], c).M ′ |p[2].P ′ |E |R |pE
τa[1]� a.F ′ |(a, p[2], c).M ′ |p[2].P ′ |E |R |pE ≡ F |(a, p[2], c).M ′ |p[2].P ′ |E |R |pE

Then, pM (which is (a, p[2], c).M ′ |p[2].P ′) binds with E and phosphorylates it;
M is released and pE is ready to convey the signal to the cell’s nucleus:

τc[3]→ F |(a, p[2], c[3]).M ′ |p[2].P ′ |(c[3], p, b, n).E′ |R |pE
τp[2]� F | (a, p, c[3]).M ′ |(c[3], p, b, n).E′ |P |R |pE
τp[4]→ F | (a, p, c[3]).M ′ |(c[3], p[4], b, n).E′ |p[4].P ′ |R |pE
τc[3]� F |(a, p, c).M ′ |(c, p[4], b, n).E′ |p[4].P ′ |R |pE

230 I. Phillips, I. Ulidowski, and S. Yuen

The last process is ≡ equivalent to F |M | (c, p[4], b, n).E′ |p[4].P ′ |R |pE which is
≡ equivalent to F |M |pE |R |pE. Now, the newly created pE can communicate
the signal with the nucleus via action n (we do not show this reaction). Note
that there is now an extra copy of pE created out of E and P .

We return to the regulation sequence. We assume the binding in pE has the
key 8. Instead of combining with M , the protein F can be inhibited by binding
with R; this reaction is immediately reversible. Then the R | F complex binds
with pE. The system F |M |E |P |R |pE ≡ R |F |pE |M |E |P evolves as follows:

τa[5]→ (a[5], b, p).R′ |a[5].F ′ |pE |M |E |P
τb[6]→ (a[5], b[6], p).R′ |a[5].F ′ |(c, p[8], b[6], n).E′ |p[8].P ′ |M |E |P

Next, F is released and then pE phosphorylates R:

τa[5]� ≡ F | (a, b[6], p).R′ |(c, p[8], b[6], n).E′ |p[8].P ′ |M |E |P
τp[8]� F | (a, b[6], p).R′ |(c, p, b[6], n).E′ |p.P ′ |M |E |P
τp[7]→ F | (a, b[6], p[7]).R′ |(c, p, b[6], n).E′ |p[7].P ′ |M |E |P

Finally, E and pR are disassociated and R is de-phosphorylated:

≡τb[6]→ F |(a, b, p[7]).R′ |p[7].P ′ |(c, p, b, n).E′ |M |E |P
τp[7]� F |(a, b, p).R′ |p.P ′ |(c, p, b, n).E′ |M |E |P ≡ F |M ||E |P |R |E |P

Note that this segment of the pathway deactivates pE into E and P .
A high level view of the behaviour of the ERK system F |M |E |P |R |pE is

represented abstractly by the cascade and regulation sequences:

F |M ||E |P |R |E |P ← reg←
→ cas→F |M |E |P |R |pE→ cas→

← reg←F |M |pE |R |pE

The cascade produces pE which can signal the nucleus and the regulation se-
quence consumes pE in order to stop R regulating F .

M,E and R exhibit the following patterns of behaviour (putting aside the
undoing of immediately reversible reactions on a and b, and n) which we write
with controller actions: M : a.p.a.c.p.c; E : c.p.c.b.p.b and R : a.b.a.p.b.p. We
note the common pattern (modulo action names) and also behaviours that break
causal dependencies: for example a happens before p in M although a causes p.

Finally, we define controller terms for the proteinsM,E and R that will ensure
that reactions follow the order of the cascade and regulation sequences.

CM
df
= a.C′

M C′
M

df
= a.CM + p.a.c.p.c.CM

CE
df
= c.p.c.C′

E C′
E

df
= n.N + b.C′′

E C′′
E

df
= b.C′

E + p.b.CE

CR
df
= a.C′

R C′
R

df
= a.CR + b.C′′

R C′′
R

df
= b.C′

R + a.p.b.p.CR

Claim. (F |M〈CM 〉 |E〈CE〉 | P |R〈CR〉 | pE〈C′
E〉)\{a, b, c, p} exhibits precisely

the cascade and regulation reactions of (F |M |E |P |R |pE)\{a, b, c, p}.

A Reversible Process Calculus 231

4 Conclusion

We have presented a reversible process calculus with a new execution control
operator and illustrated its usefulness and expressiveness with several examples,
including long-running transactions with simple compensations and the ERK
signalling pathway. The new operator allows us to model a variety of modes
of reverse computation, ranging from strict backtracking to reversing which re-
spects causal ordering of events, and even reversing which violates causal order-
ing. This last form of reversing has not been studied before and in our view it
deserves further investigation. The execution control operator can also be used
to encode irreversible actions, it can act as the restriction operator of CCS in
contexts involving communicating processes, and it allows us to construct terms
that reach a state after a reversal that cannot be reached by computing forwards
only.

Acknowledgements. We are grateful to the Reversible Computation 2012 ref-
erees and participants for their helpful comments and suggestions. The second
author acknowledges partial support by EPSRC grant EP/G039550/1 and the
Japan Society for the Promotion of Science (JSPS) grants S-09053 and FU-019.

References

1. Berry, G., Boudol, G.: The chemical abstract machine. Theoretical Computer Sci-
ence 96(1), 217–248 (1992)

2. Blinov, M.L., Yang, J., Faeder, J.R., Hlavacek, W.S.: Graph Theory for Rule-Based
Modeling of Biochemical Networks. In: Priami, C., Ingólfsdóttir, A., Mishra, B.,
Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS
(LNBI), vol. 4230, pp. 89–106. Springer, Heidelberg (2006)

3. Calder, M., Gilmore, S., Hillston, J.: Modelling the Influence of RKIP on the ERK
Signalling Pathway Using the Stochastic Process Algebra PEPA. In: Priami, C.,
Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational
Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg
(2006)

4. Cardelli, L., Laneve, C.: Reversible structures. In: 9th International Conference on
Computational Methods in Systems Biology, pp. 131–140. ACM (2011)

5. Cho, K.-H., Shin, S.-Y., Kim, H.-W., Wolkenhauer, O., McFerran, B., Kolch, W.:
Mathematical Modeling of the Influence of RKIP on the ERK Signaling Path-
way. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 127–141. Springer,
Heidelberg (2003)

6. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-Based Modelling of
Cellular Signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 17–41. Springer, Heidelberg (2007)

7. Danos, V., Krivine, J.: Reversible Communicating Systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer,
Heidelberg (2004)

8. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005)

232 I. Phillips, I. Ulidowski, and S. Yuen

9. Danos, V., Krivine, J.: Formal molecular biology done in CCS-R. In: Proceedings
of the 1st Workshop on Concurrent Models in Molecular Biology BioConcur 2003.
ENTCS, vol. 180, pp. 31–49 (2007)

10. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling Reversibility
in Higher-Order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS,
vol. 6901, pp. 297–311. Springer, Heidelberg (2011)

11. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing Higher-Order Pi. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer,
Heidelberg (2010)

12. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Controlled Reversibility and Compensa-
tions. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 233–240.
Springer, Heidelberg (2013)

13. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
14. Mousavi, M., Phillips, I.C.C., Reniers, M.A., Ulidowski, I.: Semantics and expres-

siveness of Ordered SOS. Information and Computation 207(2), 85–119 (2009)
15. Phillips, I.C.C., Ulidowski, I.: Reversing Algebraic Process Calculi. In: Aceto, L.,

Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 246–260. Springer,
Heidelberg (2006)

16. Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. Journal of Logic
and Algebraic Programming 73, 70–96 (2007)

17. Phillips, I.C.C., Ulidowski, I.: A logic with reverse modalities for history-preserving
bisimulations. In: Proceedings 18th International Workshop on Expressiveness in
Concurrency. EPTCS, vol. 64, pp. 104–118 (2011)

18. Phillips, I.C.C., Ulidowski, I.: A hierarchy of reverse bisimulations on stable con-
figuration structures. Mathematical Structures in Computer Science 22, 333–372
(2012)

19. Ulidowski, I., Phillips, I.C.C.: Ordered SOS rules and process languages for branch-
ing and eager bisimulations. Information and Computation 178(1), 180–213 (2002)

20. Vera, J., Rath, O., Balsa-Canto, E., Banga, J.R., Kolch, W., Wolkenhauer, O.:
Investigating dynamics of inhibitory and feedback loops in ERK signalling using
power-law models. Molecular BioSystems 6, 2174–2191 (2010)

	�A Reversible Process Calculus and the Modelling of the ERK Signalling Pathway
	Introduction
	A Reversible Process Calculus with Execution Control
	CCSK
	Execution Control Operator

	The ERK Signalling Pathway
	Conclusion
	References

