

Lecture Notes in Computer Science 7581
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Robert Glück Tetsuo Yokoyama (Eds.)

Reversible
Computation
4th International Workshop, RC 2012
Copenhagen, Denmark, July 2-3, 2012
Revised Papers

13

Volume Editors

Robert Glück
University of Copenhagen
DIKU, Department of Computer Science
DK-2100 Copenhagen, Denmark
E-mail: glueck@acm.org

Tetsuo Yokoyama
Nanzan University
Department of Software Engineering
489-0863 Seto, Japan
E-mail: tyokoyama@acm.org

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-36314-6 e-ISBN 978-3-642-36315-3
DOI 10.1007/978-3-642-36315-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012956181

CR Subject Classification (1998): B.6.1, F.3.1-2, F.1.1-2, J.2, F.2.2, D.2.11-13, D.4.7

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Reversible computation has emerged as a very promising research area in re-
cent years. Applications include low-power design, decoding, program debugging,
testing, database recovery, discrete event simulation, reversible algorithms, re-
versible specification formalisms, reversible programming languages, process al-
gebras and the modeling of biochemical systems. The first reversible circuits have
recently been implemented and are seen as promising alternatives to conventional
technologies.

The International Workshop on Reversible Computation series provides a
platform for the presentation and discussion of new trends and recent work
within the area of reversible computation. We are proud to present a compre-
hensive collection of revised and selected papers covering various aspects of re-
versible computation originally accepted and presented at the fourth workshop
held in Copenhagen, Denmark, during July 2–3, 2012 (RC 2012). The papers in
this volume cover theoretical considerations, reversible software and reversible
hardware, as well as physical realizations and applications in quantum comput-
ing. In addition, the workshop program included an invited talk by Eric Lutz
entitled “The Physics of Information: from Maxwell’s Demon to Landauer.”

The call for papers attracted 46 submissions by 101 authors from 18 countries,
the largest number since the first workshop was held at the University of York,
UK, in 2009. All submissions were reviewed by at least three experts and selected
by a Program Committee. These proceedings include 16 full papers, three work-
in-progress reports, and a tutorial paper. We would like to thank all authors for
their submissions: their research is the justification for this volume.

Furthermore, this event would not have been possible without the dedica-
tion of many people who worked hard to make it successful and enjoyable. In
particular, we would like to thank the members of the Program Committee and
the external reviewers for their time and expertise in evaluating the submissions
and providing extensive feedback to the authors. Special thanks go to Holger
Bock Axelsen, Dina Riis Egholm, Susan Ibsen, Inge Hviid Jensen, Sarah Nøhr,
Martin Nyborg Thomsen, and Michael Kirkedal Thomsen from the University of
Copenhagen for their invaluable support prior to and during the workshop. We
would also like to thank Robert Wille and Lisa Jungmann from the University
of Bremen for their efforts in organizing the event.

Selected papers from previous workshops were published in Electronic Notes
in Theoretical Computer Science Volume 253, Issue 6, in the Journal of Multiple-
Valued Logic and Soft Computing Volume 18, Number 1, and in Lecture Notes
in Computer Science Volume 7165.

VI Preface

Finally, we would like to thank all authors, participants, and organizers for
making the fourth workshop in Copenhagen both successful and enjoyable.

September 2012 Robert Glück
Tetsuo Yokoyama

Organization

Program Committee Chairs

Robert Glück University of Copenhagen, Denmark
Tetsuo Yokoyama Nanzan University, Japan

Program Committee

Stéphane Burignat Ghent University, Belgium
Vincent Danos Université Paris Diderot, France
Gerhard W. Dueck University of New Brunswick, Canada
Nate Foster Cornell University, USA
Luca Gammaitoni University of Perugia, Italy
Simon Gay University of Glasgow, UK
Markus Grassl Centre for Quantum Technologies, Singapore
Jarkko J. Kari University of Turku, Finland
Martin Kutrib University of Giessen, Germany
Per Larsson-Edefors Chalmers University of Technology, Sweden
Kazutaka Matsuda University of Tokyo, Japan
D. Michael Miller University of Victoria, Canada
Shin-ichi Minato Hokkaido University, Japan
Kenichi Morita Hiroshima University, Japan
Ilia Polian University of Passau, Germany
Michel Schellekens University College Cork, Ireland
Irek Ulidowski University of Leicester, UK
Janis Voigtländer University of Bonn, Germany
Robert Wille University of Bremen, Germany
Paolo Zuliani Carnegie Mellon University, USA

Organizing Committee

Holger Bock Axelsen University of Copenhagen, Denmark
Dina Riis Egholm University of Copenhagen, Denmark
Lisa Jungmann University of Bremen, Germany
Robert Wille University of Bremen, Germany

VIII Organization

Additional Referees

Holger Bock Axelsen
David Feinstein
Mika Hirvensalo
Markus Holzer
Zhenjiang Hu
Katsunobu Imai
Chuzo Iwamoto
Sebastian Jakobi
Michael Johnson
Michitaka Kameyama
Pawel Kerntopf
Martin Lukac
Andreas Malcher
Katja Meckel
Torben Æ. Mogensen
Claudio Moraga
Hidenosuke Nishio

Iain Phillips
Md. Mazder Rahman
Jacqueline Rice
Tom Ridge
Ville Salo
Zahra Sasanian
Eleonora Schönborn
Julia Seiter
Mathias Soeken
Radomir Stankovic
Michael Kirkedal Thomsen
Ilkka Törmä
Dilip Vasudevan
Matthias Wendlandt
Shigeru Yamashita
Charalampos Zinoviadis

Sponsors

RC 2012 was sponsored by the MicroPower research project funded by The Dan-
ish Council for Strategic Research. Further, we gratefully acknowledge the local
support provided by the Department of Computer Science (DIKU), University
of Copenhagen.

Table of Contents

Theoretical Considerations

Tutorial: Graphical Calculus for Quantum Circuits 1
Bob Coecke and Ross Duncan

One-Way Reversible Multi-head Finite Automata . 14
Martin Kutrib and Andreas Malcher

A Deterministic Two-Way Multi-head Finite Automaton Can Be
Converted into a Reversible One with the Same Number of Heads 29

Kenichi Morita

Undecidability of the Surjectivity of the Subshift Associated to a
Turing Machine . 44

Rodrigo Torres, Nicolas Ollinger, and Anah́ı Gajardo

Reversible Software and Languages

Isomorphic Interpreters from Logically Reversible Abstract Machines . . . 57
Roshan P. James and Amr Sabry

Synthesizing Loops for Program Inversion . 72
Cong Hou, Daniel Quinlan, David Jefferson, Richard Fujimoto, and
Richard Vuduc

Frugal Encoding in Reversible MOQA: A Case Study for Quicksort 85
Diarmuid Early, Ang Gao, and Michel Schellekens

Towards a General-Purpose, Reversible Language for Controlling
Self-reconfigurable Robots . 97

Ulrik Pagh Schultz

Reversible and Quantum Circuits

Reversible and Quantum Circuit Optimization: A Functional
Approach . 112

Zahra Sasanian and D. Michael Miller

Properties of Quantum Templates . 125
Md. Mazder Rahman and Gerhard W. Dueck

Optimal 4-bit Reversible Mixed-Polarity Toffoli Circuits 138
Marek Szyprowski and Pawe�l Kerntopf

X Table of Contents

Design of an Online Testable Ternary Circuit from the Truth Table 152
Noor M. Nayeem and Jacqueline E. Rice

Physical Realizations and Design

Garbageless Reversible Implementation of Integer Linear
Transformations . 160

Stéphane Burignat, Kenneth Vermeirsch, Alexis De Vos, and
Michael Kirkedal Thomsen

Garbage-Free Reversible Integer Multiplication with Constants of the
Form 2k ± 2l ± 1 . 171

Holger Bock Axelsen and Michael Kirkedal Thomsen

Property Checking of Quantum Circuits Using Quantum Multiple-
Valued Decision Diagrams . 183

Julia Seiter, Mathias Soeken, Robert Wille, and Rolf Drechsler

Using πDDs in the Design of Reversible Circuits (Work-In-Progress) 197
Mathias Soeken, Robert Wille, Shin-ichi Minato, and Rolf Drechsler

Distributed Systems

A Verification Technique for Reversible Process Algebra 204
Jean Krivine

A Reversible Process Calculus and the Modelling of the ERK Signalling
Pathway . 218

Iain Phillips, Irek Ulidowski, and Shoji Yuen

Controlled Reversibility and Compensations . 233
Ivan Lanese, Claudio Antares Mezzina, and Jean-Bernard Stefani

Author Index . 241

Tutorial: Graphical Calculus

for Quantum Circuits

Bob Coecke and Ross Duncan

Oxford University and Université Libre de Bruxelles
{coecke,rwd}@comlab.ox.ac.uk

Abstract. We explain the graphical zx-calculus for reasoning about
qubits without any reference to the underlying categorical semantics,
and illustrate its use on quantum circuits.

The zx-calculus is a graphical language for describing quantum systems. It was
introduced in [2] and has been used by several authors in a variety of application
areas e.g. for reasoning about a variety of quantum computational models includ-
ing measurement-based quantum computation [3,7,8,11], quantum cryptography
[10,12], and quantum-non-locality [5,4].

The zx-calculus is an equational theory, based on rewriting the diagrams
which comprise its syntax. Re-writing can be automated by means of the quanto-
matic software1, developed (and still being improved) by L. Dixon, R. Duncan,
B. Frot, A. Kissinger, A. Merry, D. Quick and M. Soloviev. Each diagram has an
interpretation as a linear map, connecting the graphical language to the usual
Hilbert space formalism of quantum mechanics. Of course, this interpretation is
sound with respect to the equational rules.

The zx-calculus describes qubit behaviors Q := C2 in terms of a graphical
representation of the Z- andX-observables, with respective bases of eigenvectors:

{|0〉 , |1〉} and

{
|+〉 = 1√

2
(|0〉+ |1〉) , |−〉 = 1√

2
(|0〉 − |1〉)

}
.

A graphical representation of the phases relative to these observables results in a
language that is universal for representing arbitrary linear maps between tensor
powers of qubits, as we show in Section 4.

Recently, Miriam Backens showed that the ZX-calculus, augmented with the
Euler angle decomposition of the Hadamard gate, is complete for pure stabilizer
quantum mechanics [1]. This is the area of quantum mechanics concerned with
stabilizer states [9] and transformations between these, where stabilizer states
are those states that are stabilized by a subgroup of the Pauli group, which is
the closure of the Pauli operations under composition. For example, the qubit
has 6 stabilizer states, namely:

|0〉 , |1〉 , |+〉 , |−〉 , 1√
2
(|0〉+ i |1〉) and 1√

2
(|0〉 − i |1〉) .

1 http://sites.google.com/site/quantomatic/

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 1–13, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 B. Coecke and R. Duncan

1 The Graphical Language: Networks of Wires and Dots

The zx-calculus consists of components joined by wires, similar to electronic
circuit diagrams or flow charts. The simplest non-trivial diagram in the language
is simply a wire running from top to bottom:

1Q =

We think of diagrams as being enclosed in a box with a certain number of points
through which wires enter and leave; that is, each diagram has a fixed interface.
Exactly one wire must be present at each point of the interface, and we must
distinguish which wire is connected to which point. Indeed, this is the only
difference between the two diagrams below.

1Q⊗Q = σQ =

It is not important whether crossing wires pass over or under. Wires may bend,
linking two outputs to form a cap, or two inputs to form a cup.

ηQ = εQ =

From here on, the inputs and outputs will not be named, and are distinguished
simply by their ordering from left to right. We write D : m → n to indicate that
the diagram D has m inputs and n outputs.

Aside from wires, the zx-calculus contains four kinds of component:

– Z vertices (green dots), labelled by an angle α ∈ [0, 2π), called the phase.
These can have any number of inputs or outputs (including none).

– X vertices (red dots), labelled by a phase. These too can have any number
of inputs or outputs (including none).

– H vertices (yellow squares). These have one input and one output.
–

√
D vertices (black diamonds). These have no inputs nor outputs.

Zn
m(α) =

n︷ ︸︸ ︷
︸ ︷︷ ︸

m

Xn
m(α) =

n︷ ︸︸ ︷
︸ ︷︷ ︸

m

H =
√
D =

We refer to the Z and X vertices as “spiders”, and make the convention that if
α = 0 the angle is omitted.

Diagrams are built from these generators—straight, crossing, and bending
wires, and Z, X , H , and

√
D vertices—in two manners.

Tutorial: Graphical Calculus for Quantum Circuits 3

– Placing them side-by-side:

Notation: Given D : m → n andD′ : m′ → n′ their tensor product is denoted
D⊗D′ : m+m′ → n+ n′.

– Connecting outputs to inputs:

Notation: Given D1 : m → n and D2 : n → k their composition is denoted
D2 ◦D1 : m → k.

Therefore the terms of graphical language are networks of vertices of each type,
straight, crossing, and bent wires:

.

In such a network, there can be no “loose wires”: every wire must terminate at
a vertex, or else be an input or output.

Important examples are those spiders with 2 inputs and 1 output (cf. a binary
operation), with no input and 1 output (cf. initiation of a value) which we will
call a point, with 1 input and 2 outputs (cf. copying) and with 1 input and no
output (cf. erasing):

As we will see shortly, these unlabelled spiders play a special role in the calculus,
as do those labelled by π.

2 The Equational Rules

In addition to the rules for constructing diagrams, the calculus consists of a set
of equations which specify how one diagram may be transformed into another.
These rules are presented in Figure 1—it is not known whether zx-calculus
equality is decidable. We now expand on these rules and give some examples of
their use.

4 B. Coecke and R. Duncan

“Only the topology matters” (T)

(S1)

(S2)

(B1) (B2)

.

(K1) (K2)

= α (C)

= (D1) (D2)

Fig. 1. Rules for the zx-calculus

2.1 The T-Rule

The informally stated T-rule can be made more precise, but for practical pur-
poses, the intuitive reading of “only the topology matters” suffices: the wires
of the diagram may be arbitrarily stretched, bent, twisted, tied in knots, etc.,
without altering the meaning of the diagram, provided the connections are main-
tained. More precisely, after identifying (e.g. by enumerating) the inputs and the
outputs, any topological deformation of the internal structure of the network
yields a network that is equal to the given one.

Two important examples of such ‘homotopic rewrites’ are:

(T1) (T2) .

In fact, these two rules can also be seen as consequences of the S-rules, when
introducing a green dot on the caps and cups as in (S2); see Example 2 below.

Remark 1. Since wires can be stretched without consequence, adding a straight
length of wire to the input or output of diagram has strictly no effect. Hence
bundles of straight wires act as identity elements in the algebra of diagrams.

Tutorial: Graphical Calculus for Quantum Circuits 5

Remark 2. While the slogan says “only the topology matters”, this does not
imply that the topology is always preserved. The other rules may change the
topology of the diagram in various ways, for example to remove loops, or to
disconnect previously connected vertices.

2.2 The S-Rules

The “spider” rules govern how dots of the same colour interact. Rule (S1) states
that connected dots of the same color can be merged, summing the phases;
conversely, a dot can be ‘decomposed’ along one or more connecting wires. Notice
that the number of connecting wires is irrelevant.

The equations (S2) specify when spiders are trivial: dots of degree 2 with
phase α = 0 can be removed, or conversely, introduced.

Example 1. If we view the dot Z2
1 : 2 → 1 as a binary operation, (S1) tells us

that it is associative:

(S1)
=

(S1)
= .

Less obviously, (S1) implies that this operation is commutative:

(S1)
=

(T)
=

(S1)
= .

Example 2. The (T2) rule can be derived using the S-rules:

(S2)
=

(S1)
=

(S2)
=

2.3 The B-Rules

The B1-rule can be read loosely as “green copies red points” and “red copies
green points”, in both cases “up to a diamond”. The B2-rule is a powerful
commutation principle, and generates a whole family of equations, allowing al-
ternating cycles of red and green dots to be replaced with simpler graphs.

Example 3. An important equation derivable from the B-rules is the following:

= (B′)

6 B. Coecke and R. Duncan

This equation is obtained as follows:

(T)
=

(S)
=

(D2)
=

(B2)
=

(B1)
=

(S)
=

Note that the step labelled (B1) in fact applies a version of that rule deformed
by (T), without altering the topology. We could do this more explicitly using
the T1 and T2 examples as follows:

(T)
=

(B1)
=

(T)
=

2.4 The K-Rules

These rules are concerned with special properties of spiders with phase α = π.
Rule (K1) states that dots labelled by π commute with spiders of the other
colour; X1

1 (π) is a homomorphism of the comultiplication Z1
2 (0), and vice versa.

Example 4. Thanks to rule (K1), points with phase π can also be copied just
like points with phase zero:

(S1)
=

(K1)
=

(B1)
=

(S1)
=

Since the points labelled with π or 0 can be copied we call these classical
points ; then Z1

1 (π) and X1
1 (π) are called classical maps. (Of course, K stands for

“k lassical”.) In the next section, we will see that Z1
1(π) andX1

1 (π) are interpreted
by the familiar Z and X gates respectively.

Rule (K2) states that π-labelled dots invert phases of dots of the other colour.

Example 5. By rules (S1) and (S2), the degree 2 spiders Z1
1 (α) form an abelian

group, and by (K2), conjugation by X1
1 (π)— note here that X1

1 (π) is self-inverse
since π + π = 0 —sends each element to its inverse.

2.5 The C-Rule

This rule allows the H vertex to function as an explicit colour changing operation
which transforms “green structures” into “red structures” and vice versa. In
the next section, we will see that the H vertex is interpreted by the familiar
Hadamard gate, exchanging the X and Z bases.

Example 6. Some special cases of this rule are:

= (C1) = (C2) (C3).

Tutorial: Graphical Calculus for Quantum Circuits 7

2.6 The D-Rules

The (D2) rule states that two black diamonds are equal to a loop of wire, itself
the result of composing a cup and a cap. We will see in the next section that
the loop represents the dimension of the underlying Hilbert space, and spacial
juxtaposition is a form of multiplication, justifying the name

√
D.

The (D1) rule ‘almost follows’ from the other rules:

(S1)
=

(B1)
=

which would yield the desired result if could be cancelled.

3 Interpreting the zx-calculus in Hilbert Space

Given a diagram D with n inputs and m outputs, we construct a corresponding
linear mapD : Qn → Qm as follows. IfD consists of just a single generator—that
is, one of 1Q, σQ, ηQ, εQ, Zn

m(α), Xn
m(α), H , or

√
D2—then its corresponding

linear map is as shown below:

=

(
1 0
0 1

)
=

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎠

= |00〉+ |11〉

= 〈00|+ 〈11|

n︷ ︸︸ ︷
︸ ︷︷ ︸

m

::

⎧⎪⎪⎨
⎪⎪⎩

n︷ ︸︸ ︷
|0 . . . 0〉	→

m︷ ︸︸ ︷
|0 . . . 0〉

|1 . . . 1〉	→eiα |1 . . . 1〉
others 	→ 0

n︷ ︸︸ ︷
︸ ︷︷ ︸

m

::

⎧⎪⎪⎨
⎪⎪⎩

n︷ ︸︸ ︷
|+ . . .+〉	→

m︷ ︸︸ ︷
|+ . . .+〉

|− . . .−〉	→eiα |− . . .−〉
others 	→ 0

= 1√
2

(
1 1
1 −1

)
=

√
2

If D consists of several generators there are two cases:

– if D = D1 ⊗D2 then D = D1 ⊗D2;
– if D = D1 ◦D2, then D = D1 ◦D2.

Example 7. The generators Z1
1 (π) and X1

1 (π) are the Pauli Z and X matrices:

=

(
1 0
0 −1

)
=

(
0 1
1 0

)
.

The generator Z0
1 (α) represents the preparation of a fresh qubit in the state

|+α〉 = |0〉+ eiα |1〉, while Z0
1 (−α) is the projection onto that state.

=

(
1

eiα

)
=

(
1 e−iα

)
.

2 Recall these have been introduced in Section 1.

8 B. Coecke and R. Duncan

The order in which we divide the diagram into pieces does not matter to the final
result, so long as the “cuts” do not pass through any vertices, nor any points
where wires cross, nor any points of inflection of a wire.

Proposition 1 (Soundness). If diagrams D1 and D2 are equal according to
the equational rules of the zx-calculus then D1 = D2.

4 Universality of the zx-calculus

We claim that we now have enough expressive power to write down any arbitrary
linear map from n qubits to m qubits. The green and red phases, respectively:

= Z1
1 (α) =

(
1 0
0 eiα

)
= X1

1 (α) = e−iα/2

(
cos α

2 i sin α
2

i sin α
2 cos α

2

)

correspond with rotations of angle α respectively around the Z- and X-axis.
Combining both the ‘green’ and the ‘red’ phases allows us to write down any
arbitrary one-qubit unitary in terms of its Euler-angle decomposition:

= Z1
1 (γ) ◦X1

1 (β) ◦ Z1
1(α) (1)

The controlled-NOT gate is defined by

1T 1T
=

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ = ∧X . (2)

Standard results in quantum computing state that ∧X gates and arbitrary one-
qubit unitaries suffice to construct any n-qubit unitary map. As equations 1 and
2 show, the zx-calculus contains this universal gate set, and hence:

Proposition 2. Let A : Qn → Qm be a unitary map3; then there exists a
diagram A in the zx-calculus whose Hilbert space interpretation is A.

5 Completeness of the zx-calculus

If we augment the zx-calculus with the explicit decomposition of the Hadamard
gate in its Euler angles:

= (3)

then, given two diagrams that have the same interpretation in Hilbert space
within the stabilizer fragment of quantum theory—see introduction—, it is pos-
sible to show that these diagrams are equal using the zx-calculus [1].

Theorem 1 (Backens, 2012). The zx-calculus augmented with equation 3 is
complete for stabilizer quantum mechanics.

3 In fact, by exploiting map-state duality any linear map may be represented; see [3].

Tutorial: Graphical Calculus for Quantum Circuits 9

6 The zx-calculus in Use

Example 8 (Adjoints). Given the diagram D, we form its adjoint D† by flipping
the diagram vertically and negating the labelling angles, as shown:

D = D† =

We claim that D is unitary. Half of the required proof is shown below.

(S1)
=

(S2)
=

(S1)
=

(B′)
=

(S2)
=

The ‘horizontal application’ of the B′-rule can be decomposed as follows:

(T)
=

(S1)
=

(B′)
=

(S1)
=

(T)
=

from which it follows that pairs of wires between green and red dots can be
eliminated. It remains to show that D ◦D† = 1Q2 .

Example 9 (The ∧X gate). We have already seen the controlled-NOT gate:

∧X = .

It is manifestly self-adjoint. We can prove that it is also unitary:

∧X ◦ ∧X =
(S1)
=

(B′)
=

(S2)
= = 1⊗2

Q ,

An elementary exercise is to show that a sequence of three ∧X gates can be
used to swap to qubits. A graphical proof of this fact is given below.

(T)
=

(B2)
=

(S1)
=

(B′)
=

(S2)
=

We can describe ∧X by the following “behavioural specification”: when the con-
trol input is |0〉, the target qubit is left unchanged; when the control qubit is |1〉,
the target qubit is flipped. Letting represent one of the two red classical points,

10 B. Coecke and R. Duncan

that is, either = |0〉 or = |1〉, we can supply a qubit to the control input

(the left input, connected to the green dot), and obtain the following proof:

(K1)+(B1)
=

(S1)
= =

⎧⎪⎪⎨
⎪⎪⎩

iff =

iff =

Example 10 (The teleportation protocol). The teleportation protocol consists of
two main components: the preparation of the Bell state, and the Bell basis mea-
surement. As described in Section 3, the (unnormalised) Bell state is represented
by a cap, and its corresponding projection by a cup:

|00〉+ |11〉 = , 〈00|+ 〈11| = .

Combining these two elements, we obtain an almost trivial proof of the correct-
ness of teleportation, in the case where Alice observes |00〉+ |11〉.

=

The role of classical communication is hidden in this picture, but it is revealed by
a more detailed look at the Bell basis measurement. Let α, β ∈ {0, π}. Ranging
over the 4 possible (α, β) pairs in the diagram below gives the 4 possible outcomes
of a Bell basis measurement:

{ 〈Ψ+| , 〈Ψ−| , 〈Φ+| , 〈Φ−| } =

⎧⎨
⎩ | α, β ∈ {0, π}

⎫⎬
⎭

(Notice that the boxed part of the diagram is simply the circuit which rotates
the Bell basis onto the X-basis.) This description of the protocol displays the
Pauli errors that are introduced if Alice observes the other possible outcomes.

= =

From this we can derive a complete description of the protocol, and show, includ-
ing Bob’s corrections, which are classically correlated to Alice’s observations.

= = =

Tutorial: Graphical Calculus for Quantum Circuits 11

The first equation is the preceding derivation collapsed into one step, while the
last two equations use the spider rules and the fact that 2α = 2β = 0.

Example 11 (The ∧Z gate). Since Z = HXH we can obtain the ∧Z gate from
the ∧X gate by conjugating the target qubit with H gates, as shown below:

∧Z = = .

We can immediately read off two properties of this gate from its graphical rep-
resentation: it is self-adjoint, and it is symmetric in its inputs. It is also unitary:

(S1)
=

(C)
=

(B′)
=

(S2)
=

(C)
=

Example 12 (Cluster states). Cluster states, which are used in measurement-
based quantum computing, can be prepared in several ways and the zx-calculus
provides short proofs of their equivalence. For example, the original scheme de-
scribes a ∧Z interaction between qubits initially prepared in the state |+〉; in our
notation this is Z0

1 , or . Hence a one-dimensional cluster state can be presented
diagrammatically as:

. . . .

. . . .

where the boxes delineate the individual |+〉 preparations and ∧Z operations.
Alternatively, the cluster state can be prepared by applying a Hadamard gate
to one part of a Bell pair to obtain states of the form |Φ〉 = |0+〉 + |1−〉, and
then “fusing” these entangled pairs. The required fusion operation is exactly

: Q⊗Q → Q ::

⎧⎨
⎩

|00〉 	→ |0〉
|11〉 	→ |1〉

|01〉, |10〉 	→ 0
, (4)

and a 1D cluster prepared with this method looks like:

. . . .
. . . .

Again, dashed lines indicate the individual components. While conventional
methods require some calculation to show that these methods of preparation
produce the same state, using the spider theorem, the two diagrammatic forms
are immediately equivalent:

= = .

12 B. Coecke and R. Duncan

Example 13 (Measurement-based quantum computing). Consider a measurement-
based program involving 4 qubits, which computes a ∧X gate upon its inputs.
In the syntax of the measurement calculus [6] this pattern is written:

M0
2M

0
4E13E23E34N3N4.

Reading from right to left, this specifies that qubits 3 and 4 should be prepared
in a |+〉 state, then ∧Z operations should be applied pairwise between qubits 1
and 3, 2 and 3, and 3 and 4; finally X basis measurements should be performed
upon qubits 2 and 4. Qubits 1 and 2 are the inputs and qubits 1 and 4 are the
outputs. We represent this pattern diagrammatically as:

The spider theorem allows this one-way program to be rewritten to a ∧X gate
in three steps:

= = = .

Our next example is a one-way program implementing an arbitrary 1-qubit uni-
tary. Recall that any single qubit unitary map U has an Euler decomposition as
such that U = ZγXβZα. Such a unitary can be implemented by the following
5-qubit measurement pattern:

Mγ
3 M

β
2 M

α
1 E12E23E34E45N2N3N4N5 .

The graphical form of this pattern is shown below:

α β γ

.

A sequence of simple rewrites shows that the one-way program intended to com-
pute such a unitary does indeed produce the desired map.

(S1)
=

(C)
=

Tutorial: Graphical Calculus for Quantum Circuits 13

Notice that in this example, and in Example 10, measurement is represented via
post-selection—that is, by projection. To capture the non-determinism of quan-
tum measurements, the syntax and semantics of the calculus must be extended;
see [8,3].

References

1. Backens, M.: The ZX-calculus is complete for stabilizer quantum mechanics. In:
Proceedings of Quantum Physic and Logic IX (2012)

2. Coecke, B., Duncan, R.: Interacting QuantumObservables. In: Aceto, L., Damg̊ard,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.)
ICALP 2008, Part II. LNCS, vol. 5126, pp. 298–310. Springer, Heidelberg (2008)

3. Coecke, B., Duncan, R.: Interacting quantum observables: categorical algebra and
diagrammatics. New Journal of Physics 13, 043016 (2011), arXiv:0906.4725

4. Coecke, B., Duncan, R., Kissinger, A., Wang, Q.: Strong complementarity and
non-locality in categorical quantum mechanics. In: Chiribella, G., Spekkens, R.W.
(eds.) Proceedings of 27th IEEE Conference on Logic in Computer Science (LiCS).
Extended version to appear in: Quantum Theory: Informational Foundations and
Foils. Springer (2012)

5. Coecke, B., Edwards, B., Spekkens, R.W.: Phase groups and the origin of non-
locality for qubits. ENTCS 271(2), 15–36 (2011), arXiv:1003.5005

6. Danos, V., Kashefi, E., Panangaden, P.: The measurement calculus. Journal of the
ACM 54(2) (2007), arXiv:quant-ph/0412135

7. Duncan, R., Perdrix, S.: Graph States and the Necessity of Euler Decomposition.
In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp.
167–177. Springer, Heidelberg (2009)

8. Duncan, R., Perdrix, S.: Rewriting Measurement-Based Quantum Computations
with Generalised Flow. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf
der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 285–296.
Springer, Heidelberg (2010)

9. Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. Thesis, Cal-
tech (2007), arXiv:quant-ph/9705052

10. Hillebrand, A.: Quantum protocols involving multiparticle entanglement and their
representations in the ZX-calculus. MSc. thesis, University of Oxford (2011)

11. Horsman, C.: Quantum picturalism for topological cluster-state computing. New
Journal of Physics 13, 095011 (2011), arXiv:1101.4722

12. Zamdzhiev, V.N.: An abstract approach towards quantum secret sharing. MSc.
thesis, University of Oxford (2012)

One-Way Reversible Multi-head

Finite Automata

Martin Kutrib and Andreas Malcher

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

{kutrib,malcher}@informatik.uni-giessen.de

Abstract. One-way multi-head finite automata are considered towards
their ability to perform reversible computations. It is shown that, for
every number k ≥ 1 of heads, there are problems which can be solved
by one-way k-head finite automata, but not by any one-way reversible
k-head finite automaton. Additionally, a proper head hierarchy is ob-
tained for one-way reversible multi-head finite automata. Finally, de-
cidability problems are considered. It turns out that one-way reversible
finite automata with two heads are still a powerful model, since almost
all commonly studied problems are not even semidecidable.

1 Introduction

Reversible computations and reversible versions of computational devices have
gained much interest in the recent years. For a reversible computational device
it is essential that for every state which the device may enter there is both a
uniquely defined successor state and a uniquely defined predecessor state. Thus,
reversible devices show a forward and backward deterministic behavior. One
motivation for studying such devices is given by the physical observation that the
loss of information in irreversible computations results in heat dissipation [3,10].
On the other hand, it is also of great theoretical interest how information is
processed in computational devices and in which way, if possible, computations
can be made information preserving.

The first investigations of reversible computations date back to the early sev-
enties when reversible Turing machines have been introduced and studied [3].
The main result obtained in [3] is that every Turing machine can be simulated
by a reversible one. Thus, any problem solved by a Turing machine can also be
solved reversibly. Since Turing machines are a strong computational model, the
question of whether also computations in weaker devices can always be made
reversible suggests itself. The question has been answered negatively for finite
automata [1,15] and pushdown automata [8]. Hence, there exist problems solv-
able by finite or pushdown automata which are inherently irreversible for these
devices. Reversible versions of parallel models have been studied as well. For ex-
ample, the recent paper [12] summarizes results on reversible cellular automata,
logic gates, logic circuits, and logic elements with memory. Reversible cellular

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 14–28, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

One-Way Reversible Multi-head Finite Automata 15

automata in connection with language theory have been studied in [6,7]. Other
reversible computational devices and other perspectives on reversible computing
can be found in [14,18,19].

Recently, reversible multi-head finite automata, which are basically finite au-
tomata equipped with multiple reading heads that move on the input with
two-way motion, have been introduced in [13], where also several examples of
languages are given which can be accepted by reversible multi-head finite au-
tomata. These examples include the languages {w ∈ {a, b}∗ | w = wR } and
{ a2n | n ≥ 0 }. Multi-head finite automata are also interesting from a compu-
tational complexity point of view, since they characterize the complexity class
L of languages accepted by deterministic logarithmically space-bounded Turing
machines. The open problem of whether reversible multi-head finite automata
characterize reversible deterministic logarithmic space or, more general, charac-
terize deterministic logarithmic space has recently be solved in the affirmative
in [2].

In this paper, we continue the investigation of reversible multi-head finite
automata, but we restrict our interest to multi-head finite automata with one-
way head motion. In general, this restriction leads to strictly weaker devices,
which is true for the reversible case as well. Moreover, we show in Section 3
that for every number k ≥ 2 of heads there a languages which can be accepted
by irreversible k-head finite automata, but not by any reversible k-head finite
automaton. This shows that reversibility is in fact a restriction in the one-way
case. This is also in analogy to the results for (one-way) finite automata [15] and
pushdown automata [8].

For not necessarily reversible multi-head finite automata, the existence of a
proper head hierarchy is known [17]. This means that k + 1 heads are more
powerful than k heads. In Section 4, we obtain that this is also true for the
reversible case. In detail, it is shown that the languages used in [17] can be
accepted by reversible multi-head finite automata. Since we know by the results
of Section 3 that reversible k-head finite automata are less powerful than k-head
finite automata, it is an obvious question whether undecidable problems for k-
head finite automata become decidable for reversible k-head finite automata.
In Section 5 we will give a negative answer. All commonly studied decidability
problems turn out to be not even semidecidable for reversible two-head finite
automata. Finally, we show that the problem to determine, whether a given
multi-head finite automaton is reversible, is also non-semidecidable. This is in
contrast to the results for finite automata [15] and pushdown automata [8], but
in analogy to the results for cellular automata [6,7].

2 Preliminaries and Definitions

Let A∗ denote the set of all words over the finite alphabet A. The empty word
is denoted by λ, and A+ = A∗ \ {λ}. The reversal of a word w is denoted by wR

and for the length of w we write |w|. Set inclusion is denoted by ⊆, and strict
set inclusion by ⊂.

16 M. Kutrib and A. Malcher

Let k ≥ 1 be a natural number. A one-way k-head finite automaton is a
finite automaton having a single read-only input tape whose inscription is the
input word in between two endmarkers (we provide two endmarkers in order to
have a definition consistent with two-way finite automata). The k heads of the
automaton can move to the right or stay on the current tape square but not
beyond the endmarkers. A formal definition is:

Definition 1. A deterministic one-way k-head finite automaton (1DFA(k)) is
a system M = 〈S,A, k, δ,�,�, s0, F 〉, where

1. S is the finite set of internal states,
2. A is the finite set of input symbols,
3. k ≥ 1 is the number of heads,
4. � /∈ A is the left and � /∈ A is the right endmarker,
5. s0 ∈ S is the initial state,
6. F ⊆ S is the set of accepting states, and
7. δ : S×(A∪{�,�})k → S×{0, 1}k is the partial transition function, where 1

means to move the head one square to the right, and 0 means to keep the head
on the current square. Whenever (s′, (d1, d2, . . . , dk)) = δ(s, (a1, a2, . . . , ak))
is defined, then di = 0 if ai = �, for 1 ≤ i ≤ k.

A 1DFA(k) starts with all of its heads on the left endmarker. It halts when the
transition function is not defined for the current situation. A configuration of a
1DFA(k)M = 〈S,A, k, δ,�,�, s0, F 〉 at some time t ≥ 0 is a triple ct = (w, s, P),
where w ∈ A∗ is the input, s ∈ S is the current state, and P = (p1, p2, . . . , pk) ∈
{0, 1, . . . , |w| + 1}k gives the current head positions. If a position pi is 0, then
head i is scanning the symbol �, if it satisfies 1 ≤ pi ≤ |w|, then the head is
scanning the pith letter of w, and if it is |w| + 1, then the head is scanning
the symbol �. The initial configuration for input w is set to (w, s0, (0, . . . , 0)).
During its course of computation, M runs through a sequence of configurations.
One step from a configuration to its successor configuration is denoted by �. Let
w = a1a2 . . . an be the input, a0 = �, and an+1 = �, then we set

(w, s, (p1, p2, . . . , pk)) � (w, s′, (p1 + d1, p2 + d2, . . . , pk + dk))

if and only if (s′, (d1, d2, . . . , dk)) = δ(s, (ap1 , ap2 , . . . , apk
)). As usual we define

the reflexive, transitive closure of � by �∗. Note, that due to the restriction of
the transition function, the heads cannot move beyond the endmarkers.

The language accepted by a 1DFA(k) is precisely the set of words w such that
there is some computation beginning with �w� on the input tape and ending
with the 1DFA(k) halting in an accepting state:

L(M) = {w ∈ A∗ | (w, s0, (0, . . . , 0)) �∗ (w, s, (p1, p2, . . . , pk)), s ∈ F,

and M halts in (w, s, (p1, p2, . . . , pk)) }.

So, an input is accepted if and only if the computation halts in an accepting state.
In all other cases the input is rejected. That is, it is rejected if the computation

One-Way Reversible Multi-head Finite Automata 17

halts in an non-accepting state, or if the computation runs into an infinite loop.
In the latter case eventually all heads are stationary since the machines are one-
way. In general, the family of all languages that are accepted by some device X
is denoted by L (X).

Now we turn to one-way multi-head finite automata that are reversible for any
computation that starts from an initial configuration. Basically, reversibility is
meant with respect to the possibility of stepping the computation back and
forth. So, the automata have also to be backward deterministic. In particular,
the automata reread the input symbols which they have been read in a preceding
forward computation step. So, for reverse computation steps the heads of the
input tape are either moved to the left or stay stationary. Figurative one can
assume that in a forward step, first the current input symbols are read and then
the heads are moved. In a backward step the heads are first moved and then the
symbols are read.

Let M be a 1DFA(k) and C be the set of all reachable configurations that
occur in any computation of M beginning with an initial configuration, and
(w, s, (p1, p2, . . . , pk)) ∈ C with w = x1x2 · · ·xn ∈ An, x0 = �, and xn+1 = �.
Then M is said to be reversible (REV-1DFA(k)), if the following two conditions
are fulfilled.

1. For any two transitions

δ(s1, (a1, a2, . . . , ak)) = (s, (d1, d2, . . . , dk)) and
δ(s′1, (a

′
1, a

′
2, . . . , a

′
k)) = (s, (d′1, d

′
2, . . . , d

′
k))

it holds (d1, d2, . . . , dk) = (d′1, d′2, . . . , d′k).
2. There is at most one transition of the form

δ(s′, (xp1−d1 , xp2−d2 , . . . , xpk−dk
)) = (s, (d1, d2, . . . , dk)).

Condition (1) means that transitions yielding the same state have to move the
heads in the same way. In addition, Condition (2) says that for any reachable
configuration the predecessor state is uniquely determined by the state (which
implies the head movements) and the input symbols read. If the prerequisite to
consider reachable configurations only is relaxed, then this definition is essentially
the same as used in [13] for two-way reversible multi-head finite automata. It is
similar to that of a reversible Turing machine in quintuple form [12]. However,
here we stick with reachable configurations.

In order to clarify our notion we continue with an example.

Example 2. The non-context-free language { anbncn | n ≥ 1 } is accepted by the
REV-1DFA(2) M = 〈{s0, s1, s2, s3, sf}, {a, b, c}, 2, δ,�,�, s0, {sf}〉, where the
transition function δ is as follows.

(1) δ(s0,�,�) = (s0, 0, 1)
(2) δ(s0,�, a) = (s0, 0, 1)
(3) δ(s0,�, b) = (s1, 1, 1)
(4) δ(s1, a, b) = (s1, 1, 1)
(5) δ(s1, a, c) = (s2, 1, 1)

(6) δ(s2, b, c) = (s2, 1, 1)
(7) δ(s2, b,�) = (s3, 1, 0)
(8) δ(s3, c,�) = (s3, 1, 0)
(9) δ(s3,�,�) = (sf , 0, 0)

18 M. Kutrib and A. Malcher

Since no transition violates the definition of reversibility, a simple inspection
of the definition of δ shows that M cannot be irreversible.

The transitions (1) through (3) are used by M to move its second head to
the first input symbol b and to change to state s1. Then both heads are moved
simultaneously to the right by transition (4). If the first head reads the last a
when the second head sees the first c, the number of a’s is equal to the number
of b’s. In this case, by transition (5), M changes to state s2. Similarly as before,
now transitions (6) and (7) are used to move the heads simultaneously to the
right until the second head reads the right endmarker. If the first head sees the
last symbol b at the same time, the number of b’s is equal to the number of c’s
and, thus, the input is to be accepted. In exactly this situation, the second head
is moved to the right endmarker by transition (8). Finally, by transition (9), M
changes to state sf and accepts if both heads are on the right endmarker. ��

Example 3. Only slight modifications of the construction given in Example 2
show that, for all m ≥ 1, the language { an1an2 · · · anm | n ≥ 1 } over the alphabet
{a1, a2, . . . , am} is accepted by a REV-1DFA(2) as well. ��

3 Computational Capacity

In this section, the computational capacity of REV-1DFA(k)s is considered. In
particular, reversible classes are compared with ordinary ones and classical de-
vices. We start at the bottom of the hierarchy of language classes. It is well
known that any regular language is accepted by some deterministic one-way
one-head finite automaton. Reversible variants of these devices have been de-
fined and investigated in [1,15]. It turned out that there are regular languages
for which no reversible deterministic finite automaton exists.

Corollary 4. L (REV-1DFA(1)) ⊂ L (1DFA(1)).

In fact, the properness of the previous corollary can already be shown for unary
languages. For example, the witness language L = { ax | x ≥ 42 } can be used
to show the following lemma.

Lemma 5. There is a unary regular language which is not accepted by any
REV-1DFA(1).

Proof. We use L = { ax | x ≥ 42 } as witness language. Any 1DFA(1) M accept-
ing L has to ensure that no word shorter than 42 is accepted. To this end, at
least 43 states are necessary, where no loop may appear before M has read 42
input symbols. On the other hand, a loop has to appear in order to accept all of
the infinitely many words. Since L is unary, any accepting computation of M on
inputs long enough starts with at least 43 different states p0, p1, . . . , p42 possibly
followed by some different states p43, . . . , pi until the successor state pj of pi
is one of the states that appeared before, say state 42 ≤ j ≤ i. So, we have
δ(pi, a) = (pj , d) and δ(pj−1, a) = (pj , d

′). If M is reversible, we obtain d = d′

and pi = pj−1 and, thus, a contradiction. Therefore, M is not reversible. ��

One-Way Reversible Multi-head Finite Automata 19

In order to accept all unary regular languages reversibly one more head is
sufficient.

Theorem 6. Any unary regular language is accepted by some REV-1DFA(2).

Proof. Given a unary regular language L, we consider the deterministic finite
automaton M accepting it. By definition, M moves its head in every transition.
So, its transition function is such that it runs through an infinite loop after
processing an initial computation. In general, this means that it passes through
a sequence of different states as p0, p1, . . . , pi, where the successor of pi is a state
that appeared before, say pj with 0 ≤ j ≤ i.

If j = 0, the initial computation is empty. So, M runs through one loop from
the very beginning. Clearly, in this case it is reversible. If j ≥ 1, automaton M
cannot be reversible, since the predecessor state of pj is not unique. Here, we
can use the second head to determine the predecessor state as follows. The
second head keeps stationary on the left endmarker until state pj−1 appears.
Subsequently, it is moved together with the first head in every step. In this way,
the predecessor state of pj can be determined as pj−1 if the second head reads
the left endmarker, and as pi otherwise. ��

Now we turn to the comparison with language classes accepted by variants of
pushdown automata.

Theorem 7. For all k ≥ 2, the language class L (REV-1DFA(k)) is incompa-
rable with the (deterministic) (reversible) (linear) context-free languages.

Proof. It is well known that the deterministic context-free languages are a proper
sub-class of the context-free languages. In [8] it is shown that the reversible con-
text-free languages are, in turn, a proper sub-class of the deterministic context-
free ones. The mirror language {wcwR | w ∈ {a, b}∗ } is deterministic reversible
linear context free [8], but not accepted by any 1DFA(k). Conversely, Example 3
shows that the non-context-free language { anbncn | n ≥ 1 } is accepted by some
REV-1DFA(2). ��

At the other end of the hierarchy we inherit upper bounds from the ordinary
1DFA(k)s, as deterministic one-way k-head finite automata are strictly weaker
than deterministic two-way k-head finite automata that characterize the com-
plexity class L [4].

Corollary 8. For all k ≥ 1, the language class L (REV-1DFA(k)) is a proper
sub-class of L, that is, the languages accepted by deterministic log-space bounded
Turing machines.

Next we turn to compare the computational power of REV-1DFA(k) and
1DFA(k). By Corollary 4 we know already that, for one head, reversible de-
vices are strictly weaker than ordinary ones. In the following we generalize this
result to any number of heads, and continue with two heads. To this end, we use
L(2) = { (a+b+)n$bn | n ≥ 1 } as witness language.

20 M. Kutrib and A. Malcher

Lemma 9. The language L(2) is not accepted by any REV-1DFA(2).

Proof. In contrast to the assertion, assume L(2) is accepted by a REV-1DFA(2)
M = 〈S,A, k, δ,�,�, s0, F 〉 with m states. For some fixed � large enough, let
L(2,�) = { (a�b�)n$bn | n ≥ 1 } be a subset of L(2). We consider accepting compu-
tations of M on words w from L(2,�), in particular, the unique configurations cw
where one head is moved to the $ and the other head is still to the left of the $.
We safely can assume that M does not accept before one of its heads arrived
at the $. Dependent on the state and the position of the left head in the con-
figurations cw, the words from L(2,�) are partitioned into classes. Two words w
and w′ are in the same class if and only if the states in cw and cw′ are identical,
the left head reads the same input symbol x ∈ {a, b}, and the positions of the
left head in its current input x-block coincide. The latter means that in both
configurations the left head has the same number of adjacent symbols x to its
left (or right). Since the number of adjacent symbols x is at most �, and � is
fixed, we can choose one class, say C, containing infinitely many words with
different n.

Now we elaborate on the position of the left head. Let w,w′ ∈ C such that w
includes n subwords ab and w′ includes n′ > n subwords ab. If the distances of
the left head to the $ symbol are the same in cw and cw′ , then M would accept
the inputs (a�b�)n$bn

′
and (a�b�)n

′
$bn not belonging to L(2). We conclude that

for words in C the positions of the left head may be arbitrarily far from the $.
Next we turn to the continuations of the computations. If the head on the $

symbol is stationary until the other one has passed over more than m further
subwords ab, automatonM gets into a loop that cannot be left until the left head
has also arrived at the $. Since in this case we obtain immediately a contradiction,
we conclude that eventually the right head moves from the $ while the position
of the left head still may be arbitrarily far from the $. Moreover, for � large
enough, the right head has eventually to be stationary on some b while the left
head passes over an a- or a b-block. Clearly, the blocks are passed over in loops.
On the other hand, similarly as above, we obtain immediately a contradiction
when the right head is totally stationary while the left head gets closer and
closer to the $. Therefore, the right head has to move while the left head passes
from an a-block to a b-block or vice versa. More precisely, let q0 be the state
appearing when M moves the left head on the first symbol of the new block.
Moreover, let q1, q2, . . . , qi be the shortest sequence of states following q0 until M
runs again into a loop to pass over the new block. Then all states q0, q1, . . . , qi
are different, and the computation continues after one cycle of the loop with
some state qj , 0 ≤ j ≤ i. Since M may not move the right head in the loop,
but has to move the right head while running through these states, at least
one state does not belong to the loop. So we have j ≥ 1. However, if j = 1,
then δ(qi, b, b) = (q1, 1, 0) and δ(q0, b, b) = (q1, d1, 1). Therefore, M cannot be
reversible. If j ≥ 2, then δ(qi, b, b) = (qj , 1, 0) and δ(qj−1, b, b) = (qj , d1, d2). But
even if d1 = 1 and d2 = 0, the states qi and qj−1 are different though the input
symbols are identical in both transitions and, thus, M cannot be reversible in
this case, either. ��

One-Way Reversible Multi-head Finite Automata 21

In [17] the head hierarchy for one-way multi-head finite automata is shown.
The proof provides witness languages Lnk

⊆ {a, b, $}∗ which are accepted by
1DFA(k)s but which cannot be accepted by any 1DFA(k − 1). Moreover, the
proof that Lnk

is not accepted by any 1DFA(k − 1) relies on the fact that k− 1
heads are too few in order to compare certain subwords. In turn, a closer look
on the proof reveals that in accepting computations all k heads have to read
some inner symbol of the input simultaneously. Now we utilize this observation
for our purposes. Let L′

nk
be the language Lnk

over a disjoint copy of {a, b, $},
and define L(k) = { (a+b+)nvbn | n ≥ 1, v ∈ L′

nk−1
}.

Lemma 10. For all k ≥ 3, language L(k) is not accepted by any REV-1DFA(k).

Proof. The proof of Lemma 9 is generalized as follows. Basically, the $ in L(2) is
replaced by a word v from L′

nk−1
. Due to the necessity that k− 1 heads have to

read symbols of v simultaneously to check whether v belongs to L′
nk−1

, the first
part of the reasoning is as before with the right head replaced by the k−1 heads.
In particular, for the sub-language L(k,�) some arbitrary but fixed v0 ∈ L′

nk−1

can be chosen, and the configurations for the partitioning are those where the
last of the k − 1 heads is moved on the first symbol of v0. However, in addition
to the conditions of Lemma 9 now all positions of the remaining k − 2 heads
have to be the same for words in the same class. But since these positions are all
within v0, there are (|v0|)k−2 possibilities. So, for n and � large enough, class C
can still be chosen infinite.

For the continuations of the computations, an accepting REV-1DFA(k) M
has to move its left head over the a- and b-blocks in loops as before. During
these loops, again, the k− 1 heads eventually become stationary. The remaining
reasoning is exactly as in the proof of Lemma 9. ��

It is not hard to construct ordinary 1DFA(k)s that accept the languages L(k).
For example, a 1DFA(2) can accept L(2) by moving the first head to the $, and
subsequently, iterating to move the second head over a subword a+b+ and the
first head one position to the right. The input is accepted when the first head
reaches the endmarker and the second head the $ in the same iteration. So, the
next theorem is shown by Lemmas 9 and 10, and Corollary 4.

Theorem 11. For all k ≥ 1, L (REV-1DFA(k)) ⊂ L (1DFA(k)).

4 Head Hierarchy

The question of the existence of a proper head hierarchy for ordinary multi-
head finite automata has been raised in [16] and, finally, been answered in the
affirmative in [17]. Here we obtain that there is a proper head hierarchy for
reversible one-way multi-head finite automata as well. The witness languages
used in [17] have essentially the form

Ln = { $w1$w2$. . . $w2n | wi ∈ {a, b}∗ and wi = w2n+1−i, for 1 ≤ i ≤ n },

22 M. Kutrib and A. Malcher

and it is shown that, for any k ≥ 2, language L k(k−1)
2

can be accepted by some

1DFA(k), but not by any 1DFA(�) with � < k. In order to prove the hierarchy
one can construct a REV-1DFA(k) that accepts L k(k−1)

2

as well. The principal

idea is in essence already mentioned in [16]. It has slightly to be adapted to
obtain reversible computations. Basically, the algorithm from [16] is as follows

(see Example 12). For n = k(k−1)
2 , any word in Ln consists of 2n = k(k − 1)

blocks starting with $.

Step 1(a): Move head 1 to the beginning of block 2n − k + 2 and heads
i ∈ {2, 3, . . . , k} to the beginning of block i− 1.

Step 1(b): Use head 1 and head k to check the equality of the blocks
2n− (k − 1) + 1 and k − 1. Use head 1 and head k− 1 to check the equality
of blocks 2n− (k−2)+1 and k−2. Iterate this behavior. Finally, use head 1
and head 2 to check the equality of blocks 2n and 1.

Step 2(a): Move head 2 to the beginning of block 2n− 2(k− 1) + 2 and heads
i ∈ {3, 4, . . . , k} to the beginning of block k + i− 3.

Step 2(b): Use head 2 and head k to check the equality of the blocks
2n− 2(k − 1) + 2 and 2k−3. Use head 2 and head k−1 to check the equality
of blocks 2n − 2(k − 1) + 3 and 2k − 4. Iterate this behavior. Finally, use
head 2 and head 3 to check the equality of blocks 2n− k + 1 and k.

Step k − 2(a): Move head k− 2 to the beginning of block n+2, head k− 1 to
the beginning of block n− 2, and head k to the beginning of block n− 1.

Step k − 2(b): Use head k−2 and head k to check the equality of blocks n+2
and n−1. Use head k−2 and head k−1 to check the equality of blocks n+3
and n− 2.

Step k − 1(a): Move head k− 1 to the beginning of block n+1 and head k to
the beginning of block n.

Step k − 1(b): Use head k−1 and head k to check the equality of blocks n+1
and n.

Example 12. For k = 4 we obtain the language

L6 = { $w1$w2$ · · · $w12 | wi ∈ {a, b}∗ and wi = w13−i, for 1 ≤ i ≤ n }.

Thus, we have to test with four heads whether w1 = w12, w2 = w11, w3 = w10,
w4 = w9, w5 = w8, and w6 = w7. Applying the above construction, we can test
in Step 1 with the help of heads 1, 2, 3 and 4 whether w3 = w10, w2 = w11,
and w1 = w12. In Step 2 it is tested with the help of heads 2, 3 and 4 whether
w5 = w8 and w4 = w9. Finally, in Step 3 it is tested with heads 3 and 4 whether
w6 = w7. ��

We see that for any k ≥ 2 a fixed procedure is run, where phases of positioning
the heads alternate with phases of equality checking. Let us now sketch how the
algorithm can be implemented by reversible transitions.

To move the heads suitably, the number of symbols $ passed by the single
heads is stored as part of the states. If a head has reached its correct position, it

One-Way Reversible Multi-head Finite Automata 23

waits on the first symbol $ of the block. If all heads have reached their correct
position, the checking phase is entered. Thus, Step 1(a) leads to the following
transitions, where z ∈ {a, b}:

δ((s0, 0, . . . , 0),�, . . . ,�) = ((p1, 0, . . . , 0), 1, . . . , 1),

δ((p1, 0, . . . , 0), $, . . . , $) = ((p2, 1, . . . , 1), 1, 0, 1, . . . , 1),

δ((p2, 1, . . . , 1), z, $, z, . . . , z) = ((p2, 1, . . . , 1), 1, 0, 1, . . . , 1),

δ((p2, 1, . . . , 1), $, $, . . . , $) = ((p3, 2, 1, 2, . . . , 2), 1, 0, 0, 1, . . . , 1),

δ((p3, 2, 1, 2, . . . , 2), z, $, $, z, . . . , z) = ((p3, 2, 1, 2, . . . , 2), 1, 0, 0, 1, . . . , 1),

...

δ((pk, k − 1, 1, 2, . . . , k − 1), $, $, . . . , $) = ((pk+1, k, 1, 2, . . . , k − 1), 1, 0, . . . , 0),

δ((pk+1, k, 1, 2, . . . , k − 1), z, $, . . . , $) = ((pk+1, k, 1, 2, . . . , k − 1), 1, 0, . . . , 0).

With similar transitions the first head is driven to the correct position. Finally,
the following transition ends the positioning phase and starts the checking phase.

δ((p, 2n− k + 1, 1, 2, . . . , k − 1), $, . . . , $) =

((c1, 2n− k + 2, 1, 2, . . . , k − 1), 1, 0, . . . , 0, 1)

The checking phase starts after positioning the heads correctly. When the equal-
ity of all subwords involved has been checked, the next positioning phase is
entered. Thus, Step 1(b) leads to the following transitions, where z ∈ {a, b}.

δ((c1, 2n− k + 2, 1, 2, . . . , k − 1), z, $, . . . , $, z) =

((c1, 2n− k + 2, 1, 2, . . . , k − 1), 1, 0, . . . , 0, 1),

δ((c1, 2n− k + 2, 1, 2, . . . , k − 1), $, . . . , $) =

((c2, 2n− k + 3, 1, 2, . . . , k), 1, 0, . . . , 0, 1, 0),

δ((c2, 2n− k + 3, 1, 2, . . . , k − 2, k), z, $, . . . , $, z, $) =

((c2, 2n− k + 3, 1, 2, . . . , k − 2, k), 1, 0, . . . , 0, 1, 0),

δ((c2, 2n− k + 3, 1, 2, . . . , k − 2, k), $, . . . , $) =

((c3, 2n− k + 4, 1, 2, . . . , k − 1, k), 1, 0, . . . , 0, 1, 0, 0).

With similar transitions the first head checks all subwords involved. Finally,
the following transition ends the checking phase and starts the next positioning
phase.

δ((ck−1, 2n, 1, 3, . . . , k − 1, k),�, $, . . . , $,) =

((p′1, 2n, 2, 3, . . . , k − 1, k), 0, 1, . . . , 1)

The remaining steps can similarly be implemented into transitions. We can parti-
tion the state set into the initial state s0, states from a subset P for positioning
the heads suitably, and a subset C for checking equality. Furthermore, states

24 M. Kutrib and A. Malcher

from P and C alternate and no state is reentered after an alternation took
place. Moreover, the number of symbols $ passed together with the input sym-
bols seen by the heads uniquely define the next state and head moves. Since
all states correspond unambiguously to head movements, it is also possible to
reconstruct the predecessor state from the current state and the input symbols
seen. Therefore, the 1DFA(k) constructed is reversible. Thus, for any k ≥ 2,
L k(k−1)

2

belongs to L (REV-1DFA(k)). Since L k(k−1)
2

�∈ L (1DFA(k−1)) [17], we

obtain the following proper head hierarchy.

Theorem 13. For all k ≥ 1, L (REV-1DFA(k)) ⊂ L (REV-1DFA(k + 1)).

5 Decidability Problems

In this section, we study decidability questions for reversible one-way multi-
head finite automata. The undecidability results are obtained by reductions of
the emptiness problem for deterministic linearly space bounded one-tape, one-
head Turing machines, so-called linear bounded automata (LBA). The following
approach has recently be used in [9] to show the undecidability of emptiness
for 1DFA(2) with four states. Since the 1DFA(2)s constructed there are not
reversible, the construction has to be improved. For the sake of completeness,
we summarize the necessary definitions and notations.

For the reduction, we consider strings which record all configurations of an
accepting computation of a given LBA that gets its input in between two end-
markers. By standard techniques an arbitrary LBA can effectively be converted
into an equivalent one that makes no stationary moves, accepts by halting in
some unique state f on the leftmost input symbol, and is sweeping, that is,
the read-write head changes its direction at endmarkers only. For example, the
latter property can be achieved by marking the current head position in the in-
put, remembering the current state, and to update both during two consecutive
sweeps.

Let Q be the state set of some LBA M , where q0 is the initial state, T ∩Q = ∅
is the tape alphabet containing the endmarkers � and �, and Σ ⊂ T is the
input alphabet. Since M is sweeping, the set of states can be partitioned into
QR and QL of states appearing in right-to-left and in left-to-right moves. A
configuration of M can be written as a string of the form �T ∗QT ∗� such that,
�t1t2 · · · tisti+1 · · · tn� is used to express that �t1t2 · · · tn� is the tape inscrip-
tion, M is in state s, for s ∈ QR scans tape symbol ti+1, and for s ∈ QL scans
tape symbol ti. Let Σ

′ be a primed copy of the input alphabet Σ. Now we con-
sider words of the form $w0$w1$ · · · $wm, where $ /∈ T ∪ Q, wi ∈ T ∗QT ∗ are
configurations of M with endmarkers chopped off, w0 is an initial configuration
of the form q0Σ

+Σ′ with the last input symbol suitably marked, wm ∈ {f}T ∗ is
a halting, that is, accepting configuration, and wi+1 is the successor configura-
tion of wi. These configurations are now encoded so that every state symbol is
merged together with its both adjacent symbols into a metasymbol. We assume
that the length of the LBA input is at least two and rewrite every substring of

One-Way Reversible Multi-head Finite Automata 25

$w0$ · · ·$wm having the form tqt′ to [t, q, t′], where q ∈ Q, t, t′ ∈ T ∪ Σ′ ∪ {$}.
The set of these encodings is defined to be the set of valid computations of M .
We denote it by VALC(M).

Example 14 ([9]). We consider the following computation of an LBA on input
x1x2x3 where each configuration consists of the current tape inscription, the
current state, and the current position of the read-write head, q0, . . . , q3, f ∈ QR

and p0, . . . , p3 ∈ QL.

tape state position

�x1x2x3� q0 1
�y1x2x3� q1 2
�y1y2x3� q2 3
�y1y2y3� q3 4
�y1y2y3� p3 3
�y1y2z3� p2 2
�y1z2z3� p1 1
�z1z2z3� p0 0
�z1z2z3� f 1

The corresponding valid computation is:

[$, q0, x1]x2x
′
3$[y1, q1, x2]x3$y1[y2, q2, x3]$y1y2[y3, q3, $]y1y2[y3, p3, $]

y1[y2, p2, z3]$[y1, p1, z2]z3[$, p0, z1]z2z3[$, f, z1]z2z3

��

Lemma 15. Let M be an LBA. Then a REV-1DFA(2) accepting VALC(M)
can effectively be constructed.

Now, we have all prerequisites to show that emptiness is non-semidecidable for
REV-1DFA(2)s, where a problem is said to be semidecidable (see [5]) if the set
of all instances for which the answer is “yes” is recursively enumerable.

Theorem 16. Emptiness is not semidecidable for REV-1DFA(2)s.

Proof. Let M be an LBA accepting inputs over the alphabet Σ. According to
Lemma 15 we can effectively construct a REV-1DFA(2)M ′ accepting VALC(M).
Clearly, L(M ′) = VALC(M) is empty if and only if L(M) is either empty or
contains some words from the finite set {λ} ∪ Σ. Since the word problem is
decidable and emptiness is not semidecidable for LBAs, the theorem follows. ��

The following technical lemma is used to show further undecidability results.

Lemma 17. Let k ≥ 2 and M be a REV-1DFA(k) with input alphabet A not
containing a, b, c, and $. Then L′(M) = { anbncn$w | n ≥ 1 and w ∈ L(M) } is
accepted by some REV-1DFA(k).

26 M. Kutrib and A. Malcher

Proof. A reversible REV-1DFA(k) M ′ for L′(M) first checks similar to Exam-
ple 2 that the input starts with a prefix anbncn$ for some n ≥ 1. To this end,
we use the states of Example 2 which we choose to be different from the states
of M . The separating symbol $ acts as right endmarker for the first part of the
computation and as left endmarker for the simulation of M . A close inspection
of the construction in Example 2 shows that the prefix anbncn is accepted when
all heads are on the right endmarker and the state sf is entered. Thus, if a
prefix of the form anbncn$ has been detected in M ′, we know that state sf is
entered and all heads are on the symbol $. Then, we start the simulation of M
by adding a transition which simulates the first step of any computation of M .
Formally, we add the transition δ′(sf , $, . . . , $) = δ(s0,�, . . . ,�). Then, M ′ can
simulate M by using the states and transitions of M and by interpreting any $

as �. Altogether, the input is accepted whenever M accepts. ��

Theorem 18. For k ≥ 2, emptiness, finiteness, infiniteness, universality, in-
clusion, equivalence, regularity, and context-freeness are not semidecidable for
REV-1DFA(k).

Proof. The non-semidecidability of emptiness has been shown in Theorem 16.
Since a REV-1DFA(k) that accepts nothing can effectively be constructed, the
non-semidecidability of equivalence and inclusion follows immediately.

To show that finiteness is not semidecidable, we consider the language L′(M)
of Lemma 17 which can be constructed for an arbitrary REV-1DFA(k) M given.
Clearly, L′(M) is finite if and only if L(M) is empty. This implies the assertion
for finiteness.

For the next result we need that the language family L (REV-1DFA(k))
is closed under complementation. A REV-1DFA(k) can enter an infinite loop
only at the very beginning of the computation without moving the heads, that
is, the initial state maps to itself when all heads read the left endmarker.
In this case the empty language is accepted. Its complement is A∗ which is
clearly a REV-1DFA(k) language. In any other case it can be assumed that
a REV-1DFA(k) halts on every input, either in an accepting or non-accepting
state. Thus, closure under complementation is obtained by interchanging accept-
ing and non-accepting states. So, infiniteness and universality are not semide-
cidable, since finiteness and emptiness are not.

For regularity and context-freeness we consider again language L′(M) of
Lemma 17. Clearly, L′(M) is regular or context free if and only if L(M) is empty.
Thus, also non-semidecidability of regularity and context-freeness follows from
the non-semidecidability of emptiness. ��

It is shown in [11] that there cannot exist pumping lemmas or minimization
algorithms for the computational model of cellular automata. The proofs rely on
the fact that infiniteness and emptiness are not semidecidable for such automata.
Similarly, we obtain that, for all k ≥ 2, the family L (REV-1DFA(k)) and each
language family including L (REV-1DFA(k)) do not possess a pumping lemma.
Moreover, the following theorem can be shown as in [11].

One-Way Reversible Multi-head Finite Automata 27

Theorem 19. For all k ≥ 2, there is no minimization algorithm converting an
arbitrary REV-1DFA(k) to an equivalent REV-1DFA(k) which has a minimal
number of states.

Finally, we show that reversibility of a given 1DFA(k) cannot be determined by
inspecting its transitions. To this end, it is moreover necessary to have knowledge
about the reachable configurations. However, the next theorem shows that this
is impossible. We obtain that it is not semidecidable whether a given 1DFA(k)
is reversible. It is worth mentioning, that when the prerequisite for reversibility
to consider reachable configurations only is relaxed, then reversibility of a given
1DFA(k) is trivially decidable by inspecting the transitions.

Theorem 20. For k ≥ 2, it is not semidecidable whether a 1DFA(k) is
reversible.

Proof. Let M = 〈S,A, k, δ,�,�, s0, F 〉 be an arbitrary REV-1DFA(k). By defi-
nition, M accepts an input if and only if it halts in an accepting state from F . We
define the 1DFA(k) M ′ = 〈S,A, k, δ′,�,�, s0, F 〉 where δ′ simulates the transi-
tions of M , but has the following additional transitions. If δ(s, y1, y2, . . . , yk) is
undefined for s ∈ F and yi ∈ A ∪ {�}, 1 ≤ i ≤ k, then δ′(s, y1, y2, . . . , yk) =
(s, 0, . . . , 0) is added.

Clearly, M ′ is still reversible if L(M) is empty, since any halting accepting
state s ∈ F is never entered. On the other hand, if w ∈ L(M), then we know
that some halting accepting state s ∈ F and, by construction of M ′, an infinite
loop is entered on input w. This implies that M ′ is irreversible, except for the
case where M does nothing, that is, the transition function is totally undefined
and the initial state is accepting. In this case, M ′ runs into an infinite loop from
the very beginning. However, then M accepts A∗ and, moreover, this situation
can be detected by a simple inspection of the transition function. Thus, M ′ is
reversible if and only if L(M) is empty or M does nothing.

So, if reversibility is semidecidable for a 1DFA(k), then it is semidecidable
whether a REV-1DFA(k) accepts the empty language or does nothing. Since
doing nothing is decidable for a REV-1DFA(k), this implies that emptiness is
semidecidable for a REV-1DFA(k), a contradiction. ��

Acknowledgments. We like to thank the anonymous referees for their valuable
comments which significantly improved the presentation of the paper.

References

1. Angluin, D.: Inference of reversible languages. J. ACM 29, 741–765 (1982)
2. Axelsen, H.B.: Reversible Multi-head Finite Automata Characterize Reversible

Logarithmic Space. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS,
vol. 7183, pp. 95–105. Springer, Heidelberg (2012)

3. Bennet, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532
(1973)

28 M. Kutrib and A. Malcher

4. Hartmanis, J.: On non-determinancy in simple computing devices. Acta Inform. 1,
336–344 (1972)

5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

6. Kutrib, M., Malcher, A.: Fast reversible language recognition using cellular au-
tomata. Inform. Comput. 206, 1142–1151 (2008)

7. Kutrib, M., Malcher, A.: Real-time reversible iterative arrays. Theoret. Comput.
Sci. 411, 812–822 (2010)

8. Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. Syst. Sci. 78,
1814–1827 (2012)

9. Kutrib, M., Malcher, A., Wendlandt, M.: States and Heads Do Count for Unary
Multi-head Finite Automata. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS,
vol. 7410, pp. 214–225. Springer, Heidelberg (2012)

10. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5, 183–191 (1961)

11. Malcher, A.: Descriptional complexity of cellular automata and decidability ques-
tions. J. Autom., Lang. Comb. 7, 549–560 (2002)

12. Morita, K.: Reversible computing and cellular automata – A survey. Theoret. Com-
put. Sci. 395, 101–131 (2008)

13. Morita, K.: Two-way reversible multi-head finite automata. Fund. Inform. 110,
241–254 (2011)

14. Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr.
Program. 73, 70–96 (2007)

15. Pin, J.E.: On Reversible Automata. In: Simon, I. (ed.) LATIN 1992. LNCS,
vol. 583, pp. 401–416. Springer, Heidelberg (1992)

16. Rosenberg, A.L.: On multi-head finite automata. IBM J. Res. Dev. 10, 388–394
(1966)

17. Yao, A.C., Rivest, R.L.: k+1 heads are better than k. J. ACM 25, 337–340 (1978)
18. Yokoyama, T.: Reversible computation and reversible programming languages.

Electron. Notes Theor. Comput. Sci. 253, 71–81 (2010)
19. Yokoyama, T., Axelsen, H.B., Glück, R.: Reversible Flowchart Languages and the

Structured Reversible Program Theorem. In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008,
Part II. LNCS, vol. 5126, pp. 258–270. Springer, Heidelberg (2008)

A Deterministic Two-Way Multi-head

Finite Automaton Can Be Converted
into a Reversible One with the Same

Number of Heads

Kenichi Morita

Department of Information Engineering, Hiroshima University
Higashi-Hiroshima, 739-8527, Japan

Abstract. A two-way multi-head finite automaton (MFA) is a variant
of a finite automaton consisting of a finite-state control, a finite num-
ber of heads that can move in two directions, and a read-only input
tape. Here, we show that for any given deterministic MFA we can con-
struct a reversible MFA with the same number of heads that accepts the
same language as the former. We then apply this conversion method to
a Turing machine. By this, we can obtain, in a simple way, an equivalent
reversible Turing machine that is garbage-less, uses the same number of
tape symbols, and uses the same amount of the storage tape.

Keywords: multi-head finite automaton, reversible computing,
reversible Turing machine, garbage-less computation.

1 Introduction

A multi-head finite automaton is a classical model for language recognition,
and has relatively high recognition capability (see [4] for the survey). In [7], a
reversible two-way multi-head finite automaton is introduced, and its basic prop-
erties are investigated. It is well known that the class of two-way deterministic
multi-head finite automata is characterized by the complexity class of determin-
istic logarithmic space. Lange, McKenzie, and Tapp [6] showed that the class of
deterministic space S(n) is equal to the class of reversible space S(n). Hence,
the class of deterministic multi-head finite automata is characterized by the class
of reversible space logn. Later, Axelsen [1] showed that the class of reversible
multi-head finite automata is also characterized by this complexity class.

In [7] it is conjectured that a stronger result holds, i.e., a deterministic two-
way multi-head finite automaton can be simulated by a reversible one with the
same number of heads. In this paper, we prove it by giving a concrete conversion
method. The technique employed here is based on the method of Lange et al. [6]
where a computation tree of a deterministic space-bounded Turing machine is
traversed by a reversible one using the same amount of space. But, our method
is simpler, and does not assume a simulated automaton always halts, and hence
the converted reversible automaton traverses a computation graph that may not

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 29–43, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

30 K. Morita

be a tree. We then apply our method to Turing machines, which may or may not
be a space-bounded one, and does not necessarily halt. By this, we can obtain a
garbage-less reversible Turing machine that uses the same amount of space and
the same number of tape symbols as the simulated one.

2 A Two-Way Multi-Head Finite Automaton

Definition 1. A two-way multi-head finite automaton (MFA) consists of a
finite-state control, a finite number of heads that can move in two directions, and
a read-only input tape (Fig. 1). An MFA with k heads is denoted by MFA(k).

� b a a a b b a �

Input tape

Heads:

Finite-state controlq

▲
h1

▲
h2

▲
h3

Fig. 1. A two-way multi-head finite automaton (MFA)

It is formally defined by

M = (Q,Σ , k, δ,�,�, q0, A,R),

where Q is a nonempty finite set of states, Σ is a nonempty finite set of input
symbols, k (∈ {1, 2, . . . }) is a number of heads, � and � are left and right
endmarkers, respectively, which are not elements of Σ (i.e., {�,�} ∩ Σ = ∅),
q0 (∈ Q) is the initial state, A (⊂ Q) is a set of accepting states, and R (⊂ Q)
is a set of rejecting states such that A ∩ R = ∅. δ is a subset of (Q × ((Σ ∪
{�,�})k ∪ {−1, 0,+1}k) × Q) that determines the transition relation on M ’s
configurations (defined below). Note that −1, 0, and +1 stand for left-shift, no-
shift, and right-shift of each head, respectively. In what follows, we also use −
and + instead of −1 and +1 for simplicity. Each element r = [p,x, q] ∈ δ is
called a rule (in the triple form) of M , where x = [s1, . . . , sk] ∈ (Σ ∪{�,�})k or
x = [d1, . . . , dk] ∈ {−1, 0,+1}k. A rule of the form [p, [s1, . . . , sk], q] is called a
read-rule, and means if M is in the state p and reads symbols [s1, . . . , sk] by its
k heads, then enter the state q. A rule of the form [p, [d1, . . . , dk], q] is called a
shift-rule, and means if M is in the state p then shift the heads to the directions
[d1, . . . , dk] and enter the state q.

Suppose a word of the form �w� ∈ ({�}Σ∗{�}) is given to M . For any q ∈ Q
and for any h ∈ {0, . . . , |w| + 1}k, a triple [�w�, q,h] is called a configuration
of M on w. We now define a function sw : {0, . . . , |w|+ 1}k → (Σ ∪ {�,�})k as
follows. If �w� = a0a1 · · ·anan+1 (hence a0 = �, an+1 = �, and w = a1 · · ·an ∈

Reversible Multi-head Finite Automata 31

Σ∗), and h = [h1, . . . , hk] ∈ {0, . . . , |w| + 1}k, then sw(h) = [ah1 , . . . , ahk
]. The

function sw gives a k-tuple of symbols in �w� read by the k heads of M at
the position h. The transition relation |−−

M
between a pair of configurations

[�w�, q,h] and [�w�, q′,h′] is defined as follows.

[�w�, q,h] |−−
M

[�w�, q′,h′]
iff ([q, sw(h), q

′] ∈ δ ∧ h′ = h) ∨
∃ d ∈ {−1, 0,+1}k ([q,d, q′] ∈ δ ∧ h′ = h+ d)

The reflexive and transitive closure of the relation |−−
M

is denoted by |−−
M

∗ . Like-

wise, the m-step transition relation is denoted by |−−
M

m for each m ∈ {0, 1, . . .}.
When M is clear from the context, we use |−− instead of |−−

M
. A configuration c

is called a halting configuration if there is no configuration c′ such that c � c′.

Definition 2. Let M = (Q,Σ , k, δ,�,�, q0, A,R) be an MFA. M is called de-
terministic iff the following condition holds.

∀ r1 = [p,x, q] ∈ δ, ∀ r2 = [p′,x′, q′] ∈ δ
((r1 �= r2 ∧ p = p′) ⇒ (x �∈ {−1, 0,+1}k ∧ x′ �∈ {−1, 0,+1}k ∧ x �= x′))

It means that for any two distinct rules r1 and r2 in δ, if p = p′ then they are
both read-rules and the k-tuples of symbols x and x′ are different.

M is called reversible iff the following condition holds.

∀ r1 = [p,x, q] ∈ δ, ∀ r2 = [p′,x′, q′] ∈ δ
((r1 �= r2 ∧ q = q′) ⇒ (x �∈ {−1, 0,+1}k ∧ x′ �∈ {−1, 0,+1}k ∧ x �= x′))

It means that for any two distinct rules r1 and r2 in δ, if q = q′ then they are
both read-rules and the k-tuples of symbols x and x′ are different. The above is
called the reversibility condition.

We denote a deterministic MFA (or MFA(k)) by DMFA (or DMFA(k)), and
a reversible and deterministic MFA (or MFA(k)) by RDMFA (or RDMFA(k)).
Note that, here, we do not consider nondeterministic MFAs.

In [7], an MFA(k) is defined in the quadruple form, because the total number
of rules is generally smaller than the case of the triple form when designing an
MFA. However, here we use the triple form to simplify the construction of an
RDMFA that accepts the same language as that of a given DMFA, because the
triple form is convenient to design an RDMFA that simulates a DMFA both in
forward and backward directions, and switches from one direction to another
very often. It is also used in [1]. Note that conversion between the quadruple
form and the triple form is easy, and thus we omit to describe its method here.

Definition 3. Let M = (Q,Σ , k, δ,�,�, q0, A,R) be an MFA. We say an input
word w ∈ Σ∗ is accepted by M , if [�w�, q0,0] |−−

M

∗ [�w�, q,h] for some

q ∈ A and h ∈ {0, . . . , |w|+1}k, where 0 = [0, . . . , 0] ∈ {0}k. The configurations
[�w�, q0,0] and [�w�, q,h] such that q ∈ A are called an initial configuration
and an accepting configuration, respectively. The language accepted by M is the
set of all words accepted by M , and is denoted by L(M), i.e.,

L(M) = {w | ∃q ∈ A, ∃h ∈ {0, . . . , |w|+ 1}k([�w�, q0,0] |−−
M

∗ [�w�, q,h])}.

32 K. Morita

In the following, we assume, without loss of generality, each MFA M = (Q,Σ , k,
δ,�,�, q0, A,R) satisfies the following conditions (M1) – (M5). They are for the
later convenience of making RDMFAs.

(M1) The initial state q0 does not appear as the third component of any rule
in δ, i.e., in a backward computation q0 is a halting state:
∀[q,x, q′] ∈ δ (q′ �= q0).

(M2) All the accepting and rejecting states do not appear as the first component
of any rule, i.e., they are halting states:
∀[q,x, q′] ∈ δ (q �∈ A ∪R).

(M3) Every state other than the initial state appears as the third component
of some rule in δ (otherwise such a state can be removed):
∀q ∈ Q−{q0}, ∃q′ ∈ Q, ∃x ∈ (Σ ∪{�,�})k∪{−1, 0,+1}k ([q′,x, q] ∈ δ).

(M4) M performs read and shift operations alternately. Hence, Q is written as
Q = Qread ∪Qshift for some Qread and Qshift such that Qread ∩Qshift = ∅,
and δ satisfies the following condition:

∀ [p,x, q] ∈ δ (x ∈ (Σ ∪ {�,�})k ⇒ p ∈ Qread ∧ q ∈ Qshift) ∧
∀ [p,x, q] ∈ δ (x ∈ {−, 0,+}k ⇒ p ∈ Qshift ∧ q ∈ Qread).

It is easy to modify M so that it satisfies the above condition by adding
new states to it. Each element of Qread and Qshift is called a read-state
and a shift-state, respectively. We further assume q0 ∈ Qread, and A∪R ⊂
Qshift, though each state in A ∪R makes no further move.

(M5) The heads of M must not go beyond the left and right endmarkers in a
forward computation, and hence M does not go to an illegal configuration:

∀p, r ∈ Qread, ∀q ∈ Qshift,
∀[s1, . . . , sk] ∈ (Σ ∪ {�,�})k, ∀[d1, . . . , dk] ∈ {−, 0,+}k, ∀i ∈ {1, . . . , k}
([p, [s1, . . . , sk], q], [q, [d1, . . . , dk], r] ∈ δ

⇒ (si = � ⇒ di ∈ {0,+})∧ (si = � ⇒ di ∈ {−, 0})).
Likewise, M must satisfy a similar condition in a backward computation,
and hence M does not come from an illegal configuration:

∀p, r ∈ Qshift, ∀q ∈ Qread,
∀[s1, . . . , sk] ∈ (Σ ∪ {�,�})k, ∀[d1, . . . , dk] ∈ {−, 0,+}k, ∀i ∈ {1, . . . , k}
([r, [d1, . . . , dk], q], [q, [s1, . . . , sk], p] ∈ δ

⇒ (si = � ⇒ di ∈ {−, 0})∧ (si = � ⇒ di ∈ {0,+})).

Lemma 1. [7] Let M = (Q,Σ , k, δ,�,�, q0, A,R) be an RDMFA. If M satisfies
(M1), then it eventually halts for any input w ∈ Σ∗.

3 Converting a DMFA(k) into an RDMFA(k)

In this section, we show that for any given DMFA(k) M we can construct an
RDMFA(k) M † that simulates M . The idea is based on that of Lange et al. [6],
where a computation tree of a space-bounded Turing machine is traversed by a

Reversible Multi-head Finite Automata 33

reversible one. Here, we make M † so that it traverses a computation graph from
a leaf node that corresponds to the initial configuration. Note that, if M halts
on an input w, then the computation graph becomes a finite tree, since M is
deterministic. But, if it loops and does not halt, then the graph is not a tree. We
shall see that both cases are managed properly. If the graph is a tree, M † visits
all the nodes of the tree by the depth-first search, and finally halts when coming
back to the initial configuration. If M † finds an accepting configuration in the
traversal, it memorizes the fact in the finite-state control, and gives an answer
when it halts. On the other hand, if the graph is not a tree, M † may not visit all
the nodes, but we shall see it will always come back to the initial configuration,
and thus the input is rejected.

Theorem 1. ForanyDMFA(k)M = (Q,Σ , k, δ,�,�, q0, A,R),we can construct
anRDMFA(k)M † = (Q†,Σ , k, δ†,�,�, q0, {q̂10}, {q10}) that satisfies the following.

∀w ∈ Σ∗ (w ∈ L(M) ⇒ [�w�, q0,0] |−−
M†
∗ [�w�, q̂10 ,0])

∀w ∈ Σ∗ (w �∈ L(M) ⇒ [�w�, q0,0] |−−
M†
∗ [�w�, q10 ,0])

Proof. We first define the computation graph GM,w = (V,E) of M with an
input w ∈ Σ∗ as follows. Let C be the set of all configurations of M with w, i.e.,
C = {[�w�, q,h] | q ∈ Q∧ h ∈ {0, . . . , |w|+1}k}. The set V (⊂ C) of nodes is the
smallest set that contains the initial configuration [�w�, q0,0], and satisfies the
following condition: ∀c1, c2 ∈ C ((c1 ∈ V ∧ (c1 |−−M c2 ∨ c2 |−−M c1)) ⇒ c2 ∈ V).

The set E of directed edges is: E = {(c1, c2) | c1, c2 ∈ V ∧ c1 |−−M c2}. Apparently
GM,w is a finite connected graph. Since M is deterministic, outdegree of each
node in V is either 0 or 1, where a node of outdegree 0 corresponds to a halting
configuration. It is easy to see there is at most one node of outdegree 0 in GM,w,
and if there is one, then GM,w is a tree (Fig. 2 (a)). In this case, we identify the
node of outdegree 0 as its root. Therefore, all the nodes of indegree 0 are leaves.
On the other hand, if there is no node of outdegree 0, then the graph represents
the computation of M having a loop, and thus it is not a tree (Fig. 2 (b)).

To make M † traverse a computation graph of M , we need some preparations
for it. Let Qread and Qshift be the sets of states as described in (M4). First,

we define the following five functions: prev-read : Qread → 2Qshift×{−,0,+}k

,
prev-shift : Qshift × (Σ ∪ {�,�})k → 2Qread , degr : Qread → N, degs : Qshift ×
(Σ ∪ {�,�})k → N, and degmax : Q → N as follows.

prev-read(q) = {[p,d] | p ∈ Qshift ∧ d ∈ {−, 0,+}k ∧ [p,d, q] ∈ δ}
prev-shift(q, s) = {p | p ∈ Qread ∧ [p, s, q] ∈ δ}

degr(q) = |prev-read(q)|
degs(q, s) = |prev-shift(q, s)|

degmax(q) =

{
degr(q) if q ∈ Qread

max{degs(q, s) | s ∈ (Σ ∪ {�,�})k} if q ∈ Qshift

Assume M is in the configuration [�w�, q,h]. If q is a read-state (shift-state,
respectively), then degr(q) (degs(q, sw(h))) denotes the total number of previous
configurations of [�w�, q,h], and each element [p,d] ∈ prev-read(q)

34 K. Morita

(p ∈ prev-shift(q, sw(h))) gives a previous state and a shift direction (a previous
state). We further assume that the set Q and, of course, the set {−1, 0,+1} are
totally ordered, and thus the elements of the sets prev-read(q) and prev-shift(q, s)
are sorted based on these orders. So, in the following, we denote prev-read(q)
and prev-shift(q, s) by the ordered lists as below.

prev-read(q) = [[p1,d1], . . . , [pdegr(q),ddegr(q)]]
prev-shift(q, s) = [p1, . . . , pdegs(q,s)]

We now construct an RDMFA(k) M † that simulates the DMFA(k) M by travers-
ing GM,w for a given w. Q† and δ† of M † are as below, where S = (Σ ∪{�,�})k.

Q† = {q, q̂ | q ∈ Q} ∪ {qj, q̂j | q ∈ Q ∧ j ∈ ({1} ∪ {1, . . . , degmax(q)})}
δ† = δ1 ∪ · · · ∪ δ6 ∪ δ̂1 ∪ · · · ∪ δ̂5 ∪ δa ∪ δr
δ1 = { [p1,d1, q

2], . . . , [pdegr(q)−1,ddegr(q)−1, q
degr(q)], [pdegr(q),ddegr(q), q] |

q ∈ Qread ∧ degr(q) ≥ 1 ∧ prev-read(q) = [[p1,d1], . . . , [pdegr(q),ddegr(q)]] }
δ2 = { [p1, s, q2], . . . , [pdegs(q,s)−1, s, q

degs(q,s)], [pdegs(q,s), s, q] |
q ∈ Qshift ∧ s ∈ S ∧ degs(q, s) ≥ 1 ∧ prev-shift(q, s) = [p1, . . . , pdegs(q,s)] }

δ3 = { [q1,−d1, p
1
1], . . . , [q

degr(q),−ddegr(q), p
1
degr(q)

] |
q ∈ Qread ∧ degr(q) ≥ 1 ∧ prev-read(q) = [[p1,d1], . . . , [pdegr(q),ddegr(q)]] }

δ4 = { [q1, s, p11], . . . , [qdegs(q,s), s, p1degs(q,s)] |
q ∈ Qshift ∧ s ∈ S ∧ degs(q, s) ≥ 1 ∧ prev-shift(q, s) = [p1, . . . , pdegs(q,s)] }

δ5 = { [q1, s, q] | q ∈ Qshift − (A ∪R) ∧ s ∈ S ∧ degs(q, s) = 0 }
δ̂i = { [p̂,x, q̂] | [p,x, q] ∈ δi } (i = 1, . . . , 5)
δ6 = { [q, s, q1] | q ∈ Qread − {q0} ∧ s ∈ S ∧ ¬∃p ([q, s, p] ∈ δ) }
δa = { [q,0, q̂1] | q ∈ A }
δr = { [q,0, q1] | q ∈ R }

The set of states Q† has four types of states. They are of the forms q, q̂, qj and
q̂j . The states without a superscript (i.e., q and q̂) are for forward computation,
while those with a superscript (i.e., qj and q̂j) are for backward computation.
Note that Q† contains q1 and q̂1 even if degmax(q) = 0. The states with “ˆ” (i.e.,
q̂ and q̂j) are the ones indicating that an accepting configuration was found in
the process of traverse, while those without “ˆ” (i.e., q and qj) are for indicating
no accepting configuration has been found so far.

The set of rules δ1 (δ2, respectively) is for simulating forward computation of
M in GM,w for M ’s shift-states (read-states). δ3 (δ4, respectively) is for simulat-
ing backward computation of M in GM,w for M ’s read-states (shift-states). δ5 is
for turning the direction of computation from backward to forward in GM,w for

shift-states. δ̂i (i = 1, . . . , 5) is the set of rules for the states of the form q̂, and is
identical to δi except that each state has “ˆ”. δ6 is for turning the direction of
computation from forward to backward in GM,w for halting configurations with
a read-state. δa (δr, respectively) is for turning the direction of computation from
forward to backward for accepting (rejecting) states. In addition, each rule in δa
makes M † change the state from a one without “ˆ” to the corresponding one
with “ˆ”. We can verify that M † is deterministic and reversible by a careful
inspection of δ†. We can also see that M † satisfies the conditions (M1) – (M5).

Reversible Multi-head Finite Automata 35

qa

q6 q7

q1 q2 q3 q4 q5

q0

� �

� � �� �

�

q̂1
a

�
q6

�
q2
a

�
q7

�

q̂1
6

�
q̂1

�
q̂2
6

�q2
�q

3
6

�
q3

� q1
7

�q4
�q

2
7

�
q5

�

q̂1
2

�
q̂1
0 q0

�

qa�

q̂1
1 �

q1
3 �

q1
4 �

q1
5 �

q5 q6

q4

q2 q3

q0 q1

�
�

�

�

�

� �

q1
6

�
q5 	

q1
5

�q2

�

q2
5

�
q4

�

q6

�q2
3

�

q3�
q2
2

	
q1
2

�
q1
0

q0

� q1
3

�q1

�

q1
4 �

q1
1 �

(a) (b)

Fig. 2. Examples of computation graphs GM,w of a DMFA(k) M . Each node represents
a configuration of M , though only a state of the finite-state control is written in a circle.
Thick arrows are the edges of GM,w. The node labeled by q0 represents the initial
configuration of M . An RDMFA(k) M† traverses these graphs along thin arrows using
its configurations. (a) This is a case M halts in an accepting state qa. Here, the state
transition of M† in the traversal of the tree is as follows: q0 → q2 → q36 → q13 → q3 →
q6 → q2a → q17 → q14 → q4 → q27 → q15 → q5 → q7 → qa → q̂1a → q̂16 → q̂11 → q̂1 → q̂26 →
q̂12 → q̂10 . (b) This is a case M loops forever. Here, M† traverses the graph as follows:
q0 → q22 → q13 → q11 → q1 → q23 → q16 → q15 → q12 → q10 .

M † simulates M as follows. First, consider the case GM,w is a tree. If an
input w is given, M † traverses GM,w by the depth-first search (Fig. 2 (a)). Note
that the search starts not from the root of the tree but from the leaf node
[�w�, q0,0]. Since each node of GM,w is identified by the configuration of M of
the form [�w�, q,h], it is easy for M † to keep it by the configuration of M †.
But, if [�w�, q,h] is a non-leaf node, it may be visited degmax(q)+1 times (i.e.,
the number of its child nodes plus 1) in the process of depth-first search, and
thus M † should keep this information in the finite state control. To do so, M †

uses degmax(q) + 1 states q1, . . . , qdegmax(q), and q for each state q of M . Here,
the states q1, . . . , qdegmax(q) are used for visiting its child nodes, and q is used
for visiting its parent node. In other words, the states with a superscript are for
going downward in the tree (i.e., a backward simulation of M), and the state
without a superscript is for going upward in the tree (i.e., a forward simulation).
At a leaf node [�w�, q,h], which satisfies degs(q, sw(h)) = 0, M † turns the
direction of computing by the rule [q1, sw(h), q] ∈ δ5.

If M † enters an accepting state ofM , say qa, which is the root of the tree while
traversing the tree, then M † goes to the state q̂a, and continues the depth-first
search. After that, M † uses the states of the form q̂ and q̂j indicating that the
input w should be accepted. M † will eventually reach the initial configuration of
M by its configuration [�w�, q̂10 ,0]. Thus, M

† halts and accepts the input. Note
that we can assume there is no rule of the form [q0, s, q] such that s �∈ {�}k in

36 K. Morita

δ, because the initial configuration of M is [�w�, q0,0], and (M1) is assumed.
Therefore, M † never reaches a configuration [�w�, q0,h] of M such that h �= 0.

If M † enters a halting state of M other than the accepting states, then it
continues the depth-first search without entering a state of the form q̂. Also in
this case, M † will finally reach the initial configuration of M by its configuration
[�w�, q10 ,0]. Thus, M

† halts and rejects the input.
Second, consider the case GM,w is not a tree (Fig. 2 (b)). In this case, since

there is no accepting configuration in GM,w, M
† never enters an accepting state

of M no matter how M † visits the nodes of GM,w (it may not visit all the nodes
of GM,w). Thus, M

† uses only the states without “ˆ”. From δ† we can see q10
is the only halting state without “ˆ”. Since M satisfies the condition (M1), M †

halts with the configuration [�w�, q10 ,0] by Lemma 1, and rejects the input.
By above, we have the following relations.

∀w ∈ Σ∗(w ∈ L(M) ⇒ ([�w�, q0,0] |−−
M†
∗ [�w�, q̂10 ,0]))

∀w ∈ Σ∗(w �∈ L(M) ⇒ ([�w�, q0,0] |−−
M†
∗ [�w�, q10 ,0]))

Thus, L(M †) = L(M). We can also see M † is “garbage-less” in the sense it
always halts with all the heads at the left endmarker. �
Example 1. Let Lp = {w | the length of w ∈ {1}∗ is a prime number}. The fol-
lowing irreversible DMFA(3) Mp accepts Lp.

Mp = (Q, {1}, 3, δ,�,�, q0, {qa}, { })
Q = {q0, q1, . . . , q16, qa}
δ = { [q0, [�,�,�], q1], [q1, [0,+, 0], q2], [q2, [�, 1,�], q3], [q3, [0,+, 0], q4],

[q4, [�, 1,�], q5], [q5, [+,−,+], q6], [q6, [1, 1, 1], q5], [q6, [1,�, 1], q7],
[q6, [�, 1, 1], q9], [q6, [�,�, 1], q9], [q7, [0,+,−], q8], [q8, [1, 1, 1], q7],
[q8, [1, 1,�], q5], [q9, [0,+,−], q10], [q10, [�, 1,�], q14], [q10, [�, 1, 1], q11],
[q11,[−,+,−],q13], [q12, [−, 0, 0], q13], [q13, [1, 1, 1], q11], [q13, [1, 1,�], q12],
[q13, [�, 1,�], q3], [q14, [0,+, 0], q15], [q15, [�,�,�], qa], [q15, [�, 1,�], q16],
[q16, [0,−, 0], q10] }

If a word 1n ∈ {1}∗ (n = 2, 3, . . .) is given, Mp divides n by m = 2, 3, . . . , n
successively. If m = n is the least integer among them that divides n, then Mp

accepts 1n. If n is not a prime, Mp halts in a non-accepting state (if n = 0 or
n = 1), or loops forever (if n > 1). The first head is used as a counter for carrying
out a division of n by m. The second head is a counter for keeping the divisor
m. The third head is an auxiliary counter for restoring m. The states q0, q1,
and q2 are used for initializing the algorithm. q3, . . . , q8 are for dividing n by m.
q9, . . . , q13 are for checking if n is divisible by m. q14, . . . , q17 are for checking
if m = n. Note that Mp is irreversible, since e.g., the pair [q11, [−,+,−], q13]
and [q12, [−, 0, 0], q13] violates the reversibility condition. Examples of computing
processes of Mp are as below.

[�1111111�, q0, [0, 0, 0]] |−−
Mp

273 [�1111111�, qa, [8, 8, 0]]

[�111111�, q0, [0, 0, 0]] |−−
Mp

32 [�111111�, q10, [7, 2, 0]]

|−−
Mp

4 [�111111�, q10, [7, 2, 0]] |−−
Mp

· · ·

Reversible Multi-head Finite Automata 37

An RDMFA(3) M †
p that simulates Mp obtained by the method in Theorem 1 is:

M†
p = (Q†, {1}, 3, δ†,�,�, q0, {q̂10}, {q10})

Q† = {q, q̂, q1, q̂1 | q ∈ Q} ∪ { q23 , q
2
10, q

2
13, q̂

2
3 , q̂

2
10, q̂

2
13 }

δ† = δ1 ∪ · · · ∪ δ6 ∪ δ̂1 ∪ · · · ∪ δ̂5 ∪ δa ∪ δr
δ1 = { [q1, [0,+, 0], q2], [q3, [0,+, 0], q4], [q5, [+,−,+], q6], [q7, [0,+,−], q8],

[q9, [0,+,−], q210], [q11, [−,+,−], q213], [q12, [−, 0, 0], q13], [q14, [0,+, 0], q15],
[q16, [0,−, 0], q10] }

δ2 = { [q0, [�,�,�], q1], [q2, [�, 1,�], q23], [q4, [�, 1,�], q5], [q6, [1, 1, 1], q5],
[q6, [1,�, 1], q7], [q6, [�, 1, 1], q9], [q6, [�,�, 1], q9], [q8, [1, 1, 1], q7],
[q8, [1, 1,�], q5], [q10, [�, 1,�], q14], [q10, [�, 1, 1], q11], [q13, [1, 1, 1], q11],
[q13, [1, 1,�], q12], [q13, [�, 1,�], q3], [q15, [�,�,�], qa], [q15, [�, 1,�], q16] }

δ3 = { [q12 , [0,−, 0], q11], [q14 , [0,−, 0], q13], [q16 , [−,+,−], q15], [q18 , [0,−,+], q17],
[q110, [0,−,+], q19], [q

2
10, [0,+, 0], q116], [q

1
13, [+,−,+], q111], [q

2
13, [+, 0, 0], q112],

[q115, [0,−, 0], q114] }
δ4 = { [q11 , [�,�,�], q10], [q13 , [�, 1,�], q12], [q23 , [�, 1,�], q113], [q15 , [�, 1,�], q14],

[q15 , [1, 1, 1], q
1
6], [q15 , [1, 1,�], q18], [q17 , [1,�, 1], q16], [q17 , [1, 1, 1], q

1
8],

[q19 , [�, 1, 1], q16], [q19 , [�,�, 1], q16], [q111, [�, 1, 1], q110], [q111, [1, 1, 1], q
1
13],

[q112, [1, 1,�], q113], [q
1
14, [�, 1,�], q110], [q

1
16, [�, 1,�], q115], [q

1
a , [�,�,�], q115] }

δ5 = { [q11 , [�,�, 1], q1], [q
1
1 , [�,�,�], q1], . . . , [q116, [�,�,�], q16] }

δ̂i = { [p̂,x, q̂] | [p,x, q] ∈ δi } (i = 1, . . . , 5)
δ6 = { [q2, [�,�,�], q12], [q2, [�,�, 1], q12], . . . , [q15, [�,�,�], q115] }
δa = { [qa, [0, 0, 0], q̂1a] }
δr = { }

The details of δ5 and δ6 are omitted here since they have 228 and 174 rules,
respectively. Examples of computing processes of M †

p are as follows.

[�1111111�, q0, [0, 0, 0]] |−−
M†

p

2016 [�1111111�, q̂10 , [0, 0, 0]]

[�111111�, q0, [0, 0, 0]] |−−
M†

p

118 [�111111�, q10 , [0, 0, 0]]

�

Note that Theorem 1 generalizes the result by Kondacs and Watrous [5] that a
deterministic finite automaton can be simulated by a reversible two-way finite
automaton.

Sipser [8] showed that a deterministic space-bounded Turing machine and a
DMFA can be converted to equivalent deterministic machines that always halt.
In his method, the constructed machine traverses a computation graph of the
simulated machine from the node corresponding to its accepting configuration.
Therefore, the graph always becomes a tree, and by this the halting property is
guaranteed. The method of Lange et al. [6] is based on this idea. On the other
hand, in our method, the computation graph of a simulated DMFA is traversed
from the node corresponding to its initial configuration, and thus the graph may
not be a tree. However, since Lemma 1 holds, it is automatically guaranteed that
the constructed RDMFA halts even if it is not a tree. Thus, it is convenient to
use this method, because we only need the initial configuration of the simulated

38 K. Morita

machine, and there is no need to know how the accepting configuration is. This
is particularly useful for simplifying the method of converting a deterministic
Turing machine to an equivalent reversible one. It is shown in the next section.

4 Applying the Conversion Method to Turing Machines

Here we apply the method of the previous section for converting a deterministic
Turing machine to a reversible one. The resulting machine is garbage-less, uses
the same number of tape symbols, and also uses the same amount of a storage
tape under the assumption that the original machine does not rewrite a non-
blank symbol into a blank one. This shows another simple method of constructing
a garbage-less reversible Turing machine other than the method of Bennett [2].

Input tape (read-only)

� a b a a b c b a a b a �

q Finite-state control

Storage tape

� a b a a b # # # # # # # #

Fig. 3. A two-tape Turing machine

Definition 4. A two-tape Turing machine (TM) as an acceptor of a language
consists of a finite-state control with two heads, a read-only input tape, and a
storage tape (Fig. 3) . It is defined by

T = (Q,Σ ,Γ , δ,�,�, q0,#, A,R),

where Q is a nonempty finite set of states, Σ and Γ are nonempty finite sets of
input symbols and storage tape symbols. � and � are left and right endmarkers
such that {�,�}∩(Σ∪Γ) = ∅, where only � is used for the storage tape. q0 (∈ Q)
is the initial state, #(�∈ Γ) is a blank symbol of the storage tape, A (⊂ Q) and
R (⊂ Q) are sets of accepting and rejecting states such that A ∩ R = ∅. δ is a
subset of (Q×(((Σ∪{�,�})×(Γ∪{�,#})2)∪{−1, 0,+1}2)×Q) that determines
the transition relation on T ’s configurations. Each element r = [p, x, y, q] ∈ δ
is called a rule (in the quadruple form) of T , where (x, y) = (s1, [s2, s3]) ∈
((Σ ∪{�,�})× (Γ ∪{�,#})2) or (x, y) = (d1, d2) ∈ {−1, 0,+1}2. A rule of the
form [p, s1, [s2, s3], q] is called a read-write-rule, and means if T is in the state
p and reads an input symbol s1 and a storage tape symbol s2, then rewrites s2
to s3 and enters the state q. Note that the left endmarker � of the storage tape
should not be rewritten to any other symbol. A rule of the form [p, d1, d2, q] is
called a shift-rule, and means if T is in the state p then shift the two heads to
the directions d1 and d2, and enter the state q.

Reversible Multi-head Finite Automata 39

Suppose an input of the form �w� ∈ ({�}Σ∗{�}) is given to T . Let q ∈ Q,
v ∈ Γ ∗, hi ∈ {0, . . . , |w|+1}, and hs ∈ {0, 1, . . .}. A quintuple [�w�,�v, q, hi, hs]
is called a configuration of T overw, where�v is the non-blank part of the storage
tape, and hi and hs are the positions of the input and the storage tape heads.
The transition relation |−−

T
between a pair of configurations is defined similarly

to the case of MFA, and hence we omit its details here. We say an input w
is accepted by T if [�w�,�, q0, 0, 0] |−−

T

∗ [�w�,�v, q, hi, hs] for some v ∈ Γ ∗,
q ∈ A, hi ∈ {0, . . . , |w|+ 1}, and hs ∈ {0, 1, . . .}.

Determinism and reversibility of T are defined as follows. We denote a deter-
ministic TM by DTM, and a reversible and deterministic TM by RDTM. A TM
T is called deterministic iff the following condition holds.

∀ r1 = [p, x, y, q] ∈ δ, ∀ r2 = [p′, x′, y′, q′] ∈ δ
((r1 �= r2 ∧ p = p′) ⇒ ((x, y) �∈ {−, 0,+}2 ∧ (x′, y′) �∈ {−, 0,+}2∧
∀s2,s3,s′2,s′3 ∈ Γ ∪ {�,#}(y = (s2, s3) ∧ y′ = (s′2, s′3) ⇒ (x, s2) �=(x′, s′2))))

T is called reversible iff the following condition holds.

∀ r1 = [p, x, y, q] ∈ δ, ∀ r2 = [p′, x′, y′, q′] ∈ δ
((r1 �= r2 ∧ q = q′) ⇒ ((x, y) �∈ {−, 0,+}2 ∧ (x′, y′) �∈ {−, 0,+}2∧
∀s2,s3,s′2,s′3 ∈ Γ ∪ {�,#}(y = (s2, s3) ∧ y′ = (s′2, s′3) ⇒ (x, s3) �=(x′, s′3))))

Let (T1) – (T5) be the conditions for TMs corresponding to (M1) – (M5),
and we assume a given TM satisfies them. Here, we omit their details, but note
that Qrw (the set of states for read-write) and Qs (the set of states for shifting
heads) are defined similarly in (M4). Also note that (M5) should be modified so
that both input and storage tape heads do not go beyond the endmarkers. We
also assume, without loss of generality, a given DTM, which is to be converted
to an RDTM, satisfies the condition (T6) (but, the resulting RDTM will not).

(T6) Let T be a DTM. It does not erase a non-blank symbol on its storage
tape, and it does not read a blank symbol other than the leftmost one in
each configuration (if otherwise, it can be easily achieved by adding a new
non-blank symbol, say #′, to T , which plays a role of the blank symbol
#):

∀p, q ∈ Q, ∀s1 ∈ Σ ∪ {�,�}, ∀s2, s3 ∈ Γ ∪ {�,#}
([p, s1, [s2, s3], q] ∈ δ ⇒ (s2 �= # ⇒ s3 �= #)),

∀p, q, r ∈ Q, ∀s1 ∈ Σ ∪ {�,�}, ∀s2, s3 ∈ Γ ∪ {�,#}, ∀d1, d2 ∈ {−, 0,+}k
([p, s1, [s2, s3], q], [q, d1, d2, r] ∈ δ ⇒ (s2 = s3 = # ⇒ d2 ∈ {−, 0})).

We say a DTM T with w ∈ Σ∗ uses bounded amount of the storage tape if the
following holds.

∃m ∈ {0, 1, . . .}, ∀v ∈ Γ ∗, ∀hi ∈ {0, . . . , |w|+ 1}, ∀hs ∈ {0, . . . , |v|+ 1}
([�w�,�, 0, 0] |−−

T

∗ [�w�,�v, hi, hs] ⇒ |v| ≤ m)

Otherwise, we say T with w uses unbounded amount of the storage tape. If T
with w eventually halts, then it uses bounded amount of the storage tape.

40 K. Morita

Theorem 2. For any DTM T = (Q,Σ ,Γ , δ,�,�, q0,#, A,R), we can construct
an RDTM T †=(Q†,Σ ,Γ , δ†,�,�, q0,#, {q̂10}, {q10}) such that the following holds.

∀w ∈ Σ∗ (w ∈ L(T) ⇒ [�w�,�, q0, 0, 0] |−−
T †
∗ [�w�,�, q̂10 , 0, 0])

∀w ∈ Σ∗ (w �∈ L(T) ∧ T with w uses bounded amount of the storage tape
⇒ [�w�,�, q0, 0, 0] |−−

T †
∗ [�w�,�, q10, 0, 0])

∀w ∈ Σ∗ (w �∈ L(T) ∧ T with w uses unbounded amount of the storage tape
⇒ T †’s computation starting from [�w�,�, q0, 0, 0] does not halt)

Hence L(T) = L(T †). Furthermore, if T uses at most m squares of the storage
tape on an input w, then T † with w also uses at most m squares in any of its
configuration in its computing process.

Proof outline. The construction method is similar to the case of RDMFA in
Theorem 1. We first give the description of T † below.

The five functions prev-rw : Qrw → 2Qs×{−,0,+}2

, prev-s : Qs×(Σ ∪{�,�})×
(Γ ∪ {�,#}) → 2Qrw×(Γ∪{�,#}), degrw : Qrw → N, degs : Qs × (Σ ∪ {�,�})×
(Γ ∪ {�,#}) → N, and degmax : Q → N are defined as follows.

prev-rw(q) = {[p, d, d′] | p ∈ Qs ∧ d, d′ ∈ {−, 0,+} ∧ [p, d, d′, q] ∈ δ}
prev-s(q, s, u) = {[p, t] | p ∈ Qrw ∧ t ∈ (Γ ∪ {�,#}) ∧ [p, s, [t, u], q] ∈ δ}

degrw(q) = |prev-rw(q)|
degs(q, s, u) = |prev-s(q, s, u)|

degmax(q) =

⎧⎨
⎩

degrw(q) if q ∈ Qrw

max{degs(q, s, u) | s ∈ (Σ ∪ {�,�})
∧ u ∈ (Γ ∪ {�,#})} if q ∈ Qs

Also in this case, we assume that the sets Q and Γ ∪{�,#} are totally ordered,
and thus prev-rw(q) and prev-s(q, s, u) are expressed by the ordered lists below.

prev-rw(q) = [[p1, d1, d
′
1], . . . , [pdegrw(q), ddegrw(q), d

′
degrw(q)]]

prev-s(q, s, u) = [[p1, t1], . . . , [pdegs(q,s,u), tdegs(q,s,u)]]

Q† and δ† of T † are defined as below.

Q† = {q, q̂ | q ∈ Q} ∪ {qj , q̂j | q ∈ Q ∧ j ∈ ({1} ∪ {1, . . . , degmax(q)})}
δ† = δ1 ∪ · · · ∪ δ6 ∪ δ̂1 ∪ · · · ∪ δ̂5 ∪ δa ∪ δr
δ1 = { [p1, d1, d′1, q2], . . . , [pdegrw(q)−1, ddegrw(q)−1, d

′
degrw(q)−1, q

degrw(q)],

[pdegrw(q), ddegrw(q), d
′
degrw(q), q] | q ∈ Qrw ∧ degrw(q) ≥ 1

∧prev-rw(q) = [[p1, d1, d
′
1], . . . , [pdegrw(q), ddegrw(q), d

′
degrw(q)]] }

δ2 = { [p1,s,[t1,u],q2], . . . , [pdegs(q,s,u)−1,s,[tdegs(q,s,u)−1,u],q
degs(q,s,u)],

[pdegs(q,s,u),s,[tdegs(q,s,u),u],q] | q∈Qs ∧ s∈(Σ ∪{�,�})∧u ∈ (Γ∪{�,#})
∧degs(q, s, u) ≥ 1 ∧ prev-s(q, s, u) = [[p1, t1], . . . , [pdegs(q,s,u), tdegs(q,s,u)] }

δ3 = { [q1,−d1,−d′1, p
1
1], . . . , [q

degrw(q),−ddegrw(q),−d′degrw(q), p
1
degrw(q)] | q ∈ Qrw

∧degrw(q)≥1 ∧ prev-rw(q)=[[p1,d1,d
′
1], . . . ,[pdegrw(q),ddegrw(q),d

′
degrw(q)]] }

δ4 = { [q1, s, [u, t1], p11], . . . , [qdegs(q,s,u), s, [u, tdegs(q,s,u)], p1degs(q,s,u)] |
q ∈ Qs ∧ s ∈ (Σ∪{�,�}) ∧ u ∈ (Γ∪{�,#}) ∧ degs(q, s, u) ≥ 1
∧ prev-s(q, s, u) = [[p1, t1], . . . , [pdegs(q,s,u), tdegs(q,s,u)] }

Reversible Multi-head Finite Automata 41

δ5 ={ [q1, s, [u, u], q] | q ∈ Qs − (A ∪R) ∧ s ∈ (Σ∪{�,�}) ∧ u ∈ (Γ∪{�,#})
∧degs(q, s, u) = 0 }

δ̂i ={ [p̂, x, y, q̂] | [p, x, y, q] ∈ δi } (i = 1, . . . , 5)
δ6 ={ [q, s, [t, t], q1] | q ∈ Qrw − {q0} ∧ s ∈ (Σ∪{�,�}) ∧ t ∈ (Γ∪{�,#})

∧ ¬∃u∃p ([q, s, [t, u], p] ∈ δ) }
δa ={ [q, 0, 0, q̂1] | q ∈ A }
δr ={ [q, 0, 0, q1] | q ∈ R }

Assume an input w is given to T . The computation graph GT,w can be defined
similarly as in MFA. Let c = [�w�,�v, q, hi, hs] and c′ = [�w�,�v′, q′, h′

i, h
′
s]

be two configurations of T such that c |−−
T

∗ c′, where v, v′ ∈ Γ ∗, q, q′ ∈ Q,

hi, h
′
i ∈ {0, . . . , |w|+ 1}, hs ∈ {0, . . . , |v|+ 1}, and h′

s ∈ {0, . . . , |v′|+ 1}. Since T
does not erase a non-blank symbol by the assumption (T6), the relation |v| ≤ |v′|
holds. Therefore, for each c′, the set {c | c |−−

T

∗ c′} is finite.
First, consider the case where T with w uses bounded amount of the storage

tape. Assume T finally halts in a configuration ch. Then GT,w becomes a finite
tree with the root ch, since {c | c |−−

T

∗ ch} is finite. On the other hand, if T

eventually enters a loop of configurations c1 |−−
T

· · · |−−
T

ck |−−
T

c1 |−−
T

· · ·, then
GT,w is not a tree. But, it is a finite graph, since {c | ∃i ∈ {1, . . . , k}(c |−−

T

∗ ci)} is

again finite. In these cases, T † traverses GT,w in the same way as in Theorem 1,
and halts in the state q10 or q̂10 . This is because a lemma for RDTM analogous
to Lemma 1 holds, since the total number of its configurations is finite. Here,
there is a small problem: T † may halt in the configuration [�w�,�v, q̂10 , 0, 0]
or [�w�,�v, q10, 0, 0] such that v ∈ Γ+. However, such a case is excluded by
modifying T so that it confirms the storage tape square of the position 1 (i.e.,
the square immediately right of �) contains the symbol # just after it starts
from q0. It is done by adding a few states to Q. By this, T † gives a correct result.

Second, consider the case where T with w uses unbounded amount of the
storage tape. In this case, GT,w becomes an infinite graph. Thus, T † traverses
GT,w indefinitely without halting (its proof is omitted here).

It is easy to see that if T uses m squares of the storage tape, then T † also uses
m squares. This is because the head positions and the contents of the storage
tape of T is directly simulated by those of T †,

By above, we can conclude that the theorem holds. �

Example 2. Consider the the following language.

Leq = {w | w ∈ {a, b}∗ ∧ the number of a’s in w is the same as that of b’s}

The DTM Teq defined below accepts the language Leq.

Teq = (Q, {a, b}, {a, b}, δ,�,�, q0,#, {qa}, {qr})
Q = {q0, q1, . . . , q6, qa, qr}
δ = { [q0,�, [�,�], q1], [q1,+,+, q2],

[q2, a, [#, a], q1], [q2, b, [#,#], q3], [q2,�, [#,#], q4], [q3,+, 0, q2],
[q4,−,−, q5], [q5, a, [a, a], q6], [q5, a, [�,�], q6], [q5, b, [a, b], q4],
[q5, b, [�,�], qr], [q5,�, [a, a], qr], [q5,�, [�,�], qa], [q6,−, 0, q5] }

42 K. Morita

If an input word w ∈ {a, b}∗ is given, Teq scans it from left to right. Each time
Teq finds the symbol a in w, it writes a in the storage tape, and shift the head to
the right. It is performed by the states q1, q2 and q3. If the input head reaches
�, then Teq changes the direction of scanning. After that, each time Teq finds the
symbol b in w, it rewrites the storage tape symbol a into b, and shift the head to
the left using q4, q5 and q6. If both of the heads reads �, it accepts the input.
Otherwise it rejects. Teq is irreversible, since the pairs ([q1,+,+, q2], [q3,+, 0, q2])
and ([q4,−,−, q5], [q6,−, 0, q5]) violate the reversibility condition. Examples of
computing processes of Teq are as below.

[�aabbabba�, �, q0, 0, 0] |−−
Teq

37 [�aabbabba�, �bbbb, qa, 0, 0]

[�aabbabaa�, �, q0, 0, 0] |−−
Teq

37 [�aabbabaa�, �aabbb, qr, 0, 2]

An RDTM T †
eq that simulates Teq obtained by the method in Theorem 2 is:

T †
eq = (Q†, {a, b}, {a, b}, δ†,�,�, q0,#, {q̂10}, {q10})
Q† = {q, q̂, q1, q̂1 | q ∈ Q} ∪ { q22 , q

2
5 , q̂

2
2 , q̂

2
5 }

δ† = δ1 ∪ · · · ∪ δ6 ∪ δ̂1 ∪ · · · ∪ δ̂5 ∪ δa ∪ δr
δ1 = { [q1,+,+, q22], [q3,+, 0, q2], [q4,−,−, q25], [q6,−, 0, q5] }
δ2 = { [q0,�, [�,�], q1], [q2, a, [#, a], q1], [q2, b, [#,#], q3], [q2,�, [#,#], q4],

[q5, a, [a, a], q6], [q5, a, [�,�], q6], [q5, b, [a, b], q4], [q5, b, [�,�], qr],
[q5,�, [a, a], qr], [q5,�, [�,�], qa] }

δ3 = { [q12 ,−,−, q11], [q
2
2 ,−, 0, q13], [q

1
5 ,+,+, q14], [q

2
5 ,+, 0, q16] }

δ4 = { [q11 ,�, [�,�], q10], [q
1
1 , a, [a,#], q12], [q

1
3 , b, [#,#], q12], [q

1
4 ,�, [#,#], q12],

[q16 , a, [a, a], q
1
5], [q16 , a, [�,�], q15], [q

1
4 , b, [b, a], q

1
5], [q1r , b, [�,�], q15],

[q1r ,�, [a, a], q15], [q1a ,�, [�,�], q15] }
δ5 = { [q11 ,�, [#,#], q1], [q

1
1 ,�, [a, a], q1], . . . , [q16 ,�, [b, b], q6] }

δ̂i = { [p̂, x, y, q̂] | [p, x, y, q] ∈ δi } (i = 1, . . . , 5)
δ6 = { [q2,�, [�,�], q12], [q2,�, [#,#], q12], . . . , [q5,�, [b, b], q15] }
δa = { [qa, 0, 0, q̂1a] }
δr = { [qr, 0, 0, q1r] }

The details of δ5 and δ6 are omitted here since they have 57 and 23 rules,
respectively. Examples of computing processes of T †

eq are as follows.

[�aabbabba�, �, q0, 0, 0] |−−
T †
eq

129 [�aabbabba�, �, q̂10 , 0, 0]

[�aabbabaa�, �, q0, 0, 0] |−−
T †
eq

129 [�aabbabaa�, �, q10 , 0, 0]

�

5 Concluding Remarks

We showed that any DMFA can be converted to an equivalent RDMFA without
increasing the number of heads. The RDMFA is garbage-less in the sense it
always halts for any input putting its heads at the left endmarker. The method

Reversible Multi-head Finite Automata 43

is then applied for converting a DTM to an equivalent RDTM. The constructed
RDTM not only uses the same number of storage tape squares, but also it is
garbage-less, and uses the same number of storage symbols as the DTM. Thus it
gives a bit stronger result than that of Lange et al. [6]. In addition, the method
is applicable to a TM whose space-bound is not known.

In this paper, we formulated a TM as an acceptor. But, our method can also
be applied to a TM that computes a function, i.e., a TM as a transducer. An easy
way of doing it is to add an output tape to a simulating RDTM T † besides its
input and storage tapes. There, the traversing method of a computation graph
of a given DTM T is the same as in Theorem 2. The difference is as follows.
If the simulating RDTM T † enters an accepting configuration of T , it copies
the contents of the storage tape to the output tape. After that T † continues
to traverse the graph, and halts when it reaches the initial configuration of T .
Other methods that do not use an output tape, e.g., using another track of the
storage tape, are also possible. We can also apply our method to some of other
acceptors, e.g., a marker automaton [3], a model closely related to an MFA.

Acknowledgement. This work was supported by JSPS KAKENHI Grant
Number 21500015, 24500017.

References

1. Axelsen, H.: Reversible Multi-head Finite Automata Characterize Reversible Loga-
rithmic Space. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183,
pp. 95–105. Springer, Heidelberg (2012)

2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532
(1973)

3. Blum, M., Hewitt, C.: Automata on a two-dimensional tape. In: Proc. IEEE Symp.
on Switching and Automata Theory, pp. 155–160. IEEE (1967)

4. Holzer, M., Kutrib, M., Malcher, A.: Complexity of multi-head finite automata:
Origins and directions. Theoret. Comput. Sci. 412, 83–96 (2011)

5. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: Proc.
36th FOCS, pp. 66–75. IEEE (1997)

6. Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space.
J. Comput. Syst. Sci. 60, 354–367 (2000)

7. Morita, K.: Two-way reversible multi-head finite automata. Fundamenta Informat-
icae 110, 241–254 (2011)

8. Sipser, M.: Halting space-bounded computations. Theoret. Comput. Sci. 10, 335–338
(1980)

Undecidability of the Surjectivity of the Subshift
Associated to a Turing Machine

Rodrigo Torres1, Nicolas Ollinger2, and Anah́ı Gajardo1,�

1 Departamento de Ingenieŕıa Matemática, Centro de Investigación en Ingenieŕıa
Matemática, Centro de Modelamiento Matemático, Universidad de Concepción,

Casilla 160-C, Concepción, Chile
rtorres, anahi@ing-mat.udec.cl

2 LIFO, Université d’Orléans
BP 6759, F-45067 Orléans Cedex 2, France

Nicolas.Ollinger@univ-orleans.fr

Abstract. We consider Turing machines (TM) from a dynamical sys-
tem point of view, and in this context, we associate a subshift by taking
the sequence of symbols and states that the head has at each instant.
Taking a subshift that select only a part of the state of a system is a
classical technic in dynamical systems that plays a central role in their
analysis. Surjectivity of Turing machines is equivalent to their reversibil-
ity and it can be simply identified from the machine rule. Nevertheless,
the associated subshift can be surjective even if the machine is not, and
the property results to be undecidable in the symbolic system.

Keywords: Turing machines, discrete-time dynamical systems,
subshifts, formal languages.

Relations between dynamics and computation has been looked for in several
works [1,2,3,4]. In a first approach, these two concepts are very different things,
roughly speaking, one can say that computation consists in obtaining an output
starting from an input by means of a dynamics. The dynamics itself is not
relevant, several dynamics can produce the same result. On the other hand, a
complex computation cannot be obtained through a too simple dynamics. Some
–weak– relations exists.

A direct way to tackle this topic consists in looking at Turing machines with
the tools of dynamical systems theory. A first paper by Kürka has taken this
viewpoint [4] and several others have followed [5,6,1,3,2]. There, notions such as
equicontinuity, entropy and periodicity have been studied, and putted in relation
with more natural properties of the machines. Some of these properties were
proved to be undecidable, as is the case of periodicity of Turing machines in [3].

Here we continue in the line of [1,2] that focus on a particular symbolic system
(a subshift) associated with the Turing machine, that is called t-shift. It consists
in taking the linear sequence of states and symbols that the machine reads
� This work has been supported by CONICYT FONDECYT #1090568 and BASAL

project CMM, Universidad de Chile, and CI2MA, Universidad de Concepción.

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 44–56, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Undecidability of the Surjectivity of the t-Shift 45

during its evolution over a given initial configuration, and to consider afterwards
the set of infinite sequences produced by all the possible initial configurations.
Subshifts are key tools in the study of general dynamical systems, they give
crucial information about the system (see for example [7]). In this approach, the
complexity of the subshift has been related with the complexity of the machine.

In this paper, we study the surjectivity of the t-shift. A function T is surjective
if for every y, there exists an x such that T (x) = y. If T is the function that
defines the evolution of a Turing machine, it results to be equivalent to the
reversibility of the machine and it can be characterized in a very simple way from
the machine’s transition rule. If the machine is surjective, so it is its associated
t-shift, but the converse is not true. Thus we look for a characterization of the
surjectivity of the t-shift in terms of some property of the machine.

When a subshift is surjective, every sequence can be extended by the left, in
such a way that the subshift itself can be considered as a set of bi-infinite se-
quences, i.e., sequences running over Z. In this case, the shift action is reversible,
and other properties can be considered.

Another reason to study this property is that surjectivity is a necessary con-
dition for transitivity, which is a relevant property in the area of dynamical
systems.

The following section provides definitions and concepts about symbolic dy-
namics and Turing machines. Section 2 gives a characterization of the t-shift
surjectivity. In section 3, we establish the undecidability of some preliminary
problems, to conclude with the undecidability of the property in the last
section.

1 Definitions

1.1 Turing Machine

Turing Machine Written in Quadruples. Following Morita [8], a Turing
machine (TM) M is a tuple (Q, Σ, δ), where Q is a finite set of states, Σ is
a finite set of symbols and δ ⊆ Q × Σ × Σ × Q ∪ Q × {/} × {−1, 0, +1} × Q
is the writing/moving relation of the machine. The machine works on a tape,
usually bi-infinite, full of symbols from Σ. A configuration is an element (w, i, q)
of ΣZ ×Z×Q. A writing instruction is a quadruple (q, s, s′, q′); it can be applied
to a configuration (w, i, q′′) if wi = s and q = q′′, leading to the configuration
(w′, i, q′), where w′

i = s′ and w′
k = wk for all k �= i. A moving instruction is a

quadruple (q, /, d, q′); it can be applied to a configuration (w, i, q′′) if q = q′′,
leading to the configuration (w, i + d, q′).

Turing Machine Written in Quintuples. A Turing machine M can also
be written in quintuples by having the writing/moving relation δ considered as
δ ⊆ Q × Σ × Q × Σ × {−1, 0, +1}. A quintuple instruction (q, s, q′, s′, d) can
be applied to a configuration (w, i, q′′) if wi = s and q = q′′, leading to the
configuration (w′, i + d, q′), where w′

i = s′ and w′
k = wk for all k �= i.

46 R. Torres, N. Ollinger, and A. Gajardo

Turing machines, when viewed as computing model, have a particular start-
ing state q0, and a particular symbol called blank symbol; the computation is
intended to start over a configuration (w, 0, q0), where w represents the input,
a word with a finite number of non-blank symbols. The computation process
stops when the machine reaches another particular state: the halting state qF .
In this paper, we are omitting these three parameters, since we do not want the
machine to halt and we will study its dynamics for arbitrary initial configura-
tions. In any case, the halting problem can be translated to the present context
as the problem of deciding whether the machine reaches a particular state when
starting in another particular state with an homogeneous configuration except
for a finite number of cells.

We also remark that the quintuples model is the traditional one, while the
quadruples model is used for reversible Turing machines. One can translate any
machine written in quadruples into a machine written in quintuples in a simple
way because writing instructions are just quintuples instructions that do not
cause any movement, and moving instructions are those that do not modify the
tape. The converse transformation is also possible but a quintuple instruction
will need to be replaced by a writing instruction followed by a moving instruction,
thus the set of states needs to be duplicated and the time is also multiplied by
two. Therefore, both models are equivalent as computing system, but not as
dynamical system.

Deterministic Turing Machine. A Turing machine M is deterministic if,
for any configuration (w, i, q) ∈ X , at most one instruction can be applied (re-
gardless the machine is written in quadruples or quintuples). In terms of quin-
tuples, this is equivalent to give δ as a (possibly partial) function δ : Q × Σ →
Q × Σ × {−1, 0, +1}. This function δ can be projected into three components
δQ : Q × Σ → Q, δS : Q × Σ → Σ and δD : Q × Σ → {−1, 0, +1}.

Complete Turing Machine. In any of the two models, if no instruction can
be applied, the machine halts. A Turing machine M is complete if for each
configuration (w, i, q), at least one instruction can be applied, i.e., it never halts.

Analogous notions can be defined when going backward in time.

Backward Deterministic Turing Machine. A Turing machine M is back-
ward deterministic if each configuration comes from at most one previous con-
figuration.

A Turing machine written in quadruples is backward deterministic (as seen in
[8]) if and only if for any two different quadruples (q, s, s′, q′) and (q′′, s′′, s′′′, q′)
in δ, it holds:

s �= / ∧ s′′ �= / ∧ s′ �= s′′′. (1)

Backward Complete Turing Machine. A Turing machine M is backward
complete if each configuration comes from at least one preimage.

Undecidability of the Surjectivity of the t-Shift 47

Reversible Turing Machine. A Turing machine is reversible if it is deter-
ministic forward and backward. For a machine written in quadruples, reversing
the quadruples gives the reverse machine. The reverse instruction of a writing
instruction (q, s, s′, q′) is (q′, s′, s, q). The reverse instruction of a movement in-
struction (q, /, d, q′) is (q′, /, −d, q). It is not difficult to see that a reversible
Turing machine is complete if and only if its reverse is complete.

All of these last properties are local, and they can be checked in a finite
number of steps.

1.2 Dynamical System

A dynamical system is a pair (X, T), where X is called phase space and
T : X → X is called global transition function. In this paper, we consider
X = ΣZ × Z × Q. ΣZ is called the two-sided full shift and its elements are
called bi-infinite words, the symbol ′ will be used to mark the position 0; for
example, . . . 2333′233124 . . . indicates that 2 is set in the position 0. ΣN is the
one-sided full shif t and its elements are called infinite words.

Subshifts. The shift function σ, is defined both in ΣZ and ΣN either by
σ(. . . w−2w′

−1w0w1w2 . . .) = . . . w−1w′
0w1w2w3 . . . or σ(w1w2w3 . . .) = w2w3 . . .;

it is a bijective function in the first case. Σ∗ denotes the set of finite sequences
of elements of Σ, called finite words. Two words z = z0...zn and y = y0...ym can
be concatenated by just putting them one after the other: zy = z0...zny0...ym.
A word x can also be concatenated with a semi-infinite word w = w0w1w2...:
xw = x0...xnw0w1 . . . A finite word z is said to be a subword of another (finite
or infinite) word v, if there exists two indices i and j, such that z = vivi+1...vj .
In this case we write: z � v. Subsets of Σ∗ are called formal languages. Given a
subset of the full shift S, a formal language is defined:

L(S) = {z ∈ Σ∗ | (∃w ∈ S) z � w} . (2)

Reciprocally, given a formal language L, a set of infinite sequences can be defined:

SL = {w ∈ ΣM | (∀z � w) z ∈ L} . (3)

When S satisfies SL(S) = S, it is called a subshift.

The t-shift. A complete and deterministic Turing machine M = (Q, Σ, δ) can
be associated with a dynamical system (X, T), where X is the set of configu-
rations ΣZ × Z × Q, and the global transition function T : X → X consists
into apply one transition of the Turing machine. We define π : X → Q × Σ by
π(w, i, q) = (q, wi). The t-shift associated to T , denoted by ST ⊆ (Q × Σ)N, is
the set of orbits τ(x) = (π(T n(x)))n∈N

, for x ∈ X . It is not difficult to see that
ST is in fact a subshift [1].

48 R. Torres, N. Ollinger, and A. Gajardo

2 Surjectivity

As we have said, when M is deterministic and complete, T is a function. In this
context, backward determinism is equivalent to injectivity of T and backward
completeness corresponds to surjectivity. Through a cardinality argument, it is
possible to show that, when the machine is deterministic and complete, surjec-
tivity is equivalent to injectivity and both are easy to check from the machine’s
transition rule. From now on, we will work only with deterministic and complete
Turing machines.

Remark 1. A Turing machine M = (Q, Σ, δ) written in quintuples is surjective
if and only if, for every q′ ∈ Q and s′, r′, t′ ∈ Σ, there is at least one q ∈ Q and
s ∈ Σ such that δ(q, s) = (q′, s′, +1) or δ(q, s) = (q′, r′, −1) or δ(q, s) = (q′, t′, 0).

If for some q′, the condition of TM surjectivity is not satisfied, we say that q′ is
defective. Thus a machine is surjective if and only if it has no defective state.

Definition 1. A state q′ ∈ Q of a Turing machine M = (Q, Σ, δ) is said to be
defective if:
1. (Quintuple model) There exist symbols s′, r′, t′ ∈ Σ such that no instruction

gives: (q′, s′, +1), (q′, r′, −1) or (q′, t′, 0).
2. (Quadruple model) There exist s′ ∈ Σ such that there exist no instruction

(q, /, d, q′) nor (q, s, s′, q′), for no q ∈ Q, s ∈ Σ, and d ∈ {−1, 0, +1}.

Notice that an unreachable state is indeed defective, but we will assume that
every state is reachable. If not, the subshift ST will not be surjective in any case.

Surjectivity of T is inherited by the subshift ST , however, if T is not sur-
jective, the subshift can still be surjective. For example, let M be the Turing
machine that simply moves to the right by always writing a 0. This machine is
not surjective, but the associated subshift does.

Remark 2. A t-shift is surjective if and only if: (∀u ∈ ST)(∃a ∈ Q × Σ) au ∈ ST

If u = (q1 q2 ...
s1 s2 ...) ∈ ST and a = (q, s), condition au ∈ ST says that

δQ(q, s) = q1 and that the configuration that produces u has the symbol s
at position −δD(q, s). If the machine does not visit position −δD(q, s), s can be
any symbol, otherwise it is restricted to the constraint δS(q, s) = si+1, where
i = min{j | ∑j

k=1 δD(uk) = −δD(q, s)}.
In the example, the unique state of the machine is defective, it does not

admit the symbol ‘1’ at the left of the head, but position −1 is never revisited,
that is why any symbol can be appended at the beginnig of u. If the state q1
is defective and it does not admits the symbol si+1 at position −δ(q, s), then
au �∈ ST . Surjectivity will be possible when defective states avoid the head from
going in to the “conflictive” positions, we develop this in the next section.

It is important to note that in the quadruples model, the surjectivity of T
is held by the subshift ST and vice versa. If we have a defective state q1, then
there exist no moving instruction leading to q1. From the previous assertion, if
q1 is defective, then ST is not surjective. We are interested in surjectivity only
within the quintuples model.

Undecidability of the Surjectivity of the t-Shift 49

2.1 Blocking States

We say that a state q is a blocking state to the left (right) if:

(∀u ∈ ST)(∀s ∈ Σ) u1 = (s, q) ⇒
[

(∀j ∈ N)
j∑

k=1

δD(uk) �= −1(+1)

]

. (4)

We also say that q is an s-blocking state to the left (right) for a given s ∈ Σ, if:

(∀u ∈ ST) u1 = (s, q) ⇒
[

(∀j ∈ N)
j∑

k=1

δD(uk) �= −1(+1)

]

. (5)

Finally we say that q is just a blocking state, if for every s ∈ Σ, q is an s-blocking
state either to the left or right.

A state q is said to be reachable from the left (right) if there exists a state q′

and symbols s, s′ such that δ(s′, q′) = (s, q, +1) (resp. −1).
The surjectivity on ST can be characterized through these notions, in fact,

ST is surjective if and only if for each q′ ∈ Q at least one of the following holds:

1. q′ is not defective: If q′ is not defective, then, independently on the context,
it can be reached from some configuration.

2. q′ is blocking to the left (right) and it is reachable from the left (right):
If q′ happens to be a blocking state to the left (right), no configuration
producing u ∈ ST , with u1 = (q′, s1), is able to revisit the position −1 (+1)
(with respect to the initial head position), so any (q, s) ∈ Q × Σ, such that
δQ(q, s) = q′ and δD(q, s) = +1(−1), can be appended at the beginning of
u.

3. q′ is blocking and it is reachable from the left and from the right: If q′

happens to be a blocking state, u ∈ ST starts with u1 = (q′, s1) and q′ is
s1-blocking to the left (right), then no configuration producing u is able to
revisit the position −1 (+1) (with respect to the initial head position), so
any (q, s) ∈ Q × Σ, satisfying δQ(q, s) = q′ and δD(q, s) = +1(−1) can be
appended at the beginning of u.

If we could decide when a state is blocking, we could decide surjectivity. In the
next section, however, we see that checking the blocking property is not possible.

3 Undecidability of Preliminary Problems

In this section, we show the undecidability of several problems related with the
blocking property of a state, that will serve as intermediate to finally prove the
undecidability of the surjectivity on ST in section 4.

Let us remark that the following proofs are equivalent in quadruples and
quintuples model, one only has to use the usual transformation described in
the section 1. The last is possible because the following problems are related to
movement abilities of the head.

50 R. Torres, N. Ollinger, and A. Gajardo

3.1 Undecidability of the Blocking State Problem

Let us consider the next three problems.

(BSl) Given a Turing machine M and a state q, decide whether q is a blocking
state to the left.

(BSr) Given a Turing machine M and a state q, decide whether q is a blocking
state to the right.

(BS) Given a Turing machine M and a state q, decide whether q is a blocking
state.

Let us remark that (BSl) and (BSr) are Turing equivalent, i.e., (BSl) reduces to
(BSr) and vice versa. To see this it is enough to see that switching the movement
direction on every instruction of a given machine M produces a machine M ′

whose states are blocking to the left if and only if the respective states of M are
blocking to the right.

We prove the undecidability of these three problems by reduction from the
emptiness problem, which is known to be undecidable for machines written either
in quadruples or quintulples and also for machines restricted to work on a semi
infinite tape. The definition of the emptiness problem is adapted to the present
context as follows.

(E) Given a Turing machine M , and two states q0 and qF , decide whether there
is an input configuration (w, 0, q0) that makes the machine to reach the state
qF in finite time.

Lemma 1. (BSl) is undecidable.

Proof. We prove undecidability by reduction from the emptiness problem. Let
M = (Q, Σ, δ) be a Turing machine, and let q0, qF ∈ Q be two states. We will
assume, without loss of generality, that M is written in quintuples, and that
starting with q0 the head never goes to the left of position 0 (this is equivalent
to say that the machine works only on the right side of the tape). Let us define
M ′ just like M but with an additional state qaux, and some small differences in
its transition function δ:

δ(qF , s) = (qaux, s, −1), and δ(qaux, s) = (qaux, s, −1), for every s ∈ Σ . (6)

Thus, M reaches qF for some input (w, 0, q0) if and only if the state q0 is not a
blocking state to the left for M ′. �
Theorem 1. (BS) is undecidable.

Proof. Let M = (Q, Σ, δ) be a Turing machine, and let q0, qF ∈ Q be two states.
Let M ′ be a machine defined as in the last proof. Since M works only on the
right side, we have that δD(q0, s) = +1 for every s, thus q0 is not s-blocking to
the right for any symbol s. Therefore, q0 is blocking to the left for M ′ if and
only if q0 is a blocking state for M ′.

It results that the emptiness problem is satisfied for (M, q0, qF) if and only if
the blocking problem is satisfied for (M ′, q0). �

Undecidability of the Surjectivity of the t-Shift 51

3.2 Undecidability of the Blocking State Problem in Complete
RTMs

With the results of the last section, we discard the possibility of solving the
problem of surjectivity via blocking states. However, knowing about the surjec-
tivity of ST for a given machine M does not help to solve the blocking problem
for a particular state q of M . Thus surjectivity can still be decidable. We want
to reduce the blocking state problem to the surjectivity problem, but to do so
we need to produce a machine whose surjectivity depends only on the blocking
property of one of its states. This can be achieved by working with reversible
machines, which are modified to make one of its states defective. That is why
we introduce a new problem.

(BSLrtm) Given a complete and reversible Turing machine M and a state q
that is reachable from the left, decide whether q is a blocking state to the
left.

We prove the undecidability of this problem by reduction from the halting prob-
lem of reversible two counter machines, which is proved undecidable in [9].

Definition 2. A k-counter machine (k-CM) is a triple (S, k, R), where S is a
finite set, k ∈ N is the number of counters, and R ⊆ S × {0, +}k × {1, .., k} ×
{−1, 0, +1}×S is the transition relation. A configuration of the machine is a pair
(s, ν), where s is the current state and ν ∈ Nk is the content of the k counters.
By considering the function sign: Nk → {0, +}k defined by sign(ν)j = 0 if νj = 0
and + otherwise, an instruction (s, u, i, d, t) ∈ R can be applied to a configuration
(s, ν) if sign(ν) = u, and the new configuration is (t, ν′) where ν′

j = νj for every
j �= i and ν′

i = νi + d. R cannot contain the instruction (s, u, i, −1, t) if ui = 0.

Just like Turing machines, a k-counter machine is said to be deterministic (k-
DCM) if at most one instruction can be applied to each configuration. In addi-
tion, a k-CM C is said to be reversible (k-RCM) if it is forward and backward
deterministic.

The halting problem consists in determining, given an initial configuration
(s, ν), whether the machine reaches a given halting state t. It is undecidable for
k = 2, even if the initial configuration is fixed to (s0, (0, 0)).

Theorem 2. (BSLrtm) is undecidable.

Proof. We prove undecidability by reduction from the halting problem of
2-RCM.

Let C = (S, 2, R) be a 2-RCM, with initial configuration (s0, (0, 0)) and final
state t ∈ S. For this proof we need a Turing machine M and a state q = q0
meeting the following:

1. it simulates C on the right side of the tape,
2. it is reversible,
3. it reaches the position −1 starting at 0 from q0 if and only if C halts (reaches

t) starting from (s0, (0, 0)),

52 R. Torres, N. Ollinger, and A. Gajardo

4. it is complete, and
5. q0 is reachable from the left.

If the machine meets the above objectives, q0 will not be blocking to the left if
and only if, starting from (s0, (0, 0)), C halts.

The first 3 objectives can be viewed in detail in the appendix; however, here we
sketch them briefly. For simplicity, we define M in the quadruple form. For the
first objective, we make a traditional simulation. Let M = (Q, Σ, δ) be a Turing
machine. Starting with q0, the machine writes “< | >” into the tape, and goes to
state s0 (as seen in appendix, Part 1). This corresponds to the initial configura-
tion (s0, (0, 0)) of the counter machine. The simulation will correctly work if the
tape initially contains only 1s. In general, each configuration (s, (n, m)) of the
counter machine will be represented in the Turing machine by the configuration
(...′ < 1n|1m > ..., 0, s). This will be achieved by simulating each instructions of
C, as seen in the appendix, Part 2. In this way, M simulates C. It is noteworthy
that, throughout the simulation, the machine does not reach the left side of the
tape.

Providing simple safeguards, each counter machine instruction can be simu-
lated by M in a reversible way. However, when reaching a state s ∈ S, while the
counter machine knows whether each of its register is empty or not, the Turing
machine does not, thus it may not be reversible in such situations. In order to
solve this, the symbols of the form (d, d′) are added to Σ, for each d, d′ ∈ {0, +};
and we better represent C configurations by (...′(d, d′)1n|1m > ..., 0, s).

Now, for the third goal, when M reaches the halting state t of C, we add an
extra transition to move to the left: (t, /, −1, taux). Thus M is able to reach the
−1 starting from q0 if and only if C halts when it starts from (s, (0, 0)).

Next, for the fourth objective, we use an idea from [3]. Create a new machine
M ′ = (Q′, Σ, δ′), with Q′ = Q∪{+, −}. States of the form (q, +) act in the same
way that in the M machine, and states of the form (q, −) makes the reverse
transitions. Each transition not defined for M , switch + by −; analogously,
transitions not defined in the reverse makes − to become +. This makes M ′

complete.
The fifth goal is attained by modifying M ′ in only one instruction:
((q0, −), /, 0, (q0, +)) is switched by ((q0, −), /, +1, (q0, +)).
Thus, q0 is a blocking state to the left, reachable from the left, for the complete

reversible TM M ′, if and only if C does not halt (reaches the t state) from
(s0, (0, 0)). �

Remark 3. The same machine can be used to proof that the emptiness problem
for reversible and complete TM is undecidable, We simply make q = q0 and
q′ = t.:

(ERCT M) Given a reversible and complete TM M = (Q, Σ, δ) and two states
q, q′ ∈ Q, decide if there exists a configuration (w, 0, q) such that the state
q′ is attained in finite time.

Undecidability of the Surjectivity of the t-Shift 53

4 Undecidability of the Surjectivity of the Subshift
Associated to a Turing Machine

(Surj) Given a deterministic and complete Turing machine written in quintu-
ples, decide whether its t-shift is surjective.

Theorem 3. (Surj) is undecidable.

Proof. We prove the undecidability by reduction from (BSLrtm). Let M =
(Q, Σ, δ) be a complete and reversible Turing machine. Let q′ be a state that is
reachable from the left, and let q, s and s′ be such that δ(q, s) = (q′, s′, +1). We
know that this machine is surjective. We assume that δ is written as a function.

Now let us define M ′ as M , but with an additional state qaux and the following
new instructions:

(∀t ∈ Q) δ(qaux, t) = (q′, t, 0) . (7)

And changing

δ(q, s) = (q′, s′, +1) by δ(q, s) = (qaux, s′, +1). (8)

M ′ is not surjective, because the configuration (w, i, qaux) has not preimage if
wi−1 �= s′. So qaux is the unique defective state of M ′. In this way, if q′ is a
blocking state to the left for M , then so is qaux and since it is also reachable
from the left, the t-shift of M ′ is surjective. On the other hand, if this t-shift
is surjective, qaux must be blocking. As qaux is only reachable from the left, it
must be blocking to the left. This is possible only if q′ is blocking to the left. �

5 Conclusions

Surjectivity of the t-shift of a Turing machine resulted to be not equivalent to
the surjectivity of the machine it self. The last property was characterized in
terms of another property of the Turing machine, the blocking property of its
states: in the absence of the surjectivity of the Turing machine, some of its states
must be blocking.

But the blocking property resulted to be undecidable as well as the surjec-
tivity of the t-shift. A rather simple problem in Turing machines can not be
decided in t-shift, so we think that others more complicated problems (for ex-
ample, transitivity) can not be decided too, but this will require a more deep
investigation.

References

1. Gajardo, A., Mazoyer, J.: One head machines from a symbolic approach. Theor.
Comput. Sci. 370, 34–47 (2007)

2. Gajardo, A., Guillon, P.: Zigzags in Turing Machines. In: Ablayev, F., Mayr, E.W.
(eds.) CSR 2010. LNCS, vol. 6072, pp. 109–119. Springer, Heidelberg (2010)

54 R. Torres, N. Ollinger, and A. Gajardo

3. Kari, J., Ollinger, N.: Periodicity and Immortality in Reversible Computing. In:
Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 419–430.
Springer, Heidelberg (2008)

4. Kůrka, P.: On topological dynamics of Turing machines. Theoret. Comput.
Sci. 174(1-2), 203–216 (1997)

5. Blondel, V.D., Cassaigne, J., Nichitiu, C.: On the presence of periodic configurations
in Turing machines and in counter machines. Theoret. Comput. Sci. 289, 573–590
(2002)

6. Oprocha, P.: On entropy and turing machine with moving tape dynamical model.
Nonlinearity 19, 2475–2487 (2006)

7. Kůrka, P.: Topological and Symbolic Dynamics. Société Mathématique de France,
Paris, France (2003)

8. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine.
IEICE Transactions E72-E(3), 223–228 (1989)

9. Morita, K.: Universality of a reversible two-counter machine. Theor. Comput.
Sci. 168(2), 303–320 (1996)

Appendix

Construction of the Turing machine shown in the proof or Theorem 2.
We will construct a reversible Turing machine M = (Q, Σ, δ) to simulate a 2-
reversible counter machine C = (S, 2, R). Q = S ∪ Q0 ∪ S1 ∪ ... ∪ S|R|, where Q0
is the set of states required for writing “< | >” on the tape, including q0, and
Si the set of states needed to simulate the instruction i of R.

Σ = {<, |, >, 1} ∪ {0, +}2. The first set recreates the counters on the machine
and the second contains auxiliary symbols indicating the status of the counters
when reaching a new state.

The transition function is given by a graph, the notation is described in fig-
ure 1. It is noteworthy that this machine simulates arbitrary counter machine,
so we will describe only generic instructions.

In general, each configuration (s, (n, m)) of the counting machine will be rep-
resented in the Turing machine by the configuration (< 1n|1m >, 0, s). The
machine simulates C from configuration (s0, (0, 0)), by writing “< | >” on the
tape. Subsequently, the machine adds and removes 1’s from the tape, accordingly
to the instructions of C. The machine will work as long as the background is
full of 1’s (the new visited cells), if it encounter any other symbol, it stops. It is
important to note that, before reaching any state of C, the machine replaces the
symbol “<” by the pair (d, d′) ∈ {0, +}2, in order to indicate the sign of each
counter at the end of each instruction. In this way, the machine knows which of
the instructions of the counter machine is the next to be applied. And this makes
the reversibility of the counter machine to be inherited by the Turing machine.

Part 1: Initial configuration. The first action is to write “< | >” in the tape,
see figure 2.

Undecidability of the Surjectivity of the t-Shift 55

s t
+

s t
/a b

(a) (b) (c)

Fig. 1. (a): Instruction (s, /, +, t). (b): Instruction (s, a, b, t). (c): Subroutine.

q0

s0

/1 < + /1 | + /1 >

−

−/< (0, 0)

Fig. 2. The routine that writes the sequence “< | >” in the tape

Part 2: Executing instructions. Let us suppose that the following in-
structions are in R: (s, (0, 0), i, d, t), (s, (0, +), i′, d′, t′), (s, (+, 0), i′′, d′′, t′′) y
(s, (+, +), i′′′, d′′′, t′′′). They are simulated with the routine depicted in figure 3.

s

t t′ t′′ t′′′

(s, (0, 0), i, d, t) (s, (0,+), i′, d′, t′) (s, (+, 0), i′′, d′′, t′′) (s, (+,+), i′′′, d′′′, t′′′)

(0, 0)/ <
(0,+)/ < (+, 0)/ <

(+,+)/ <

0 0 0 0

Fig. 3. Depending on the sign of the counters, the machine performs the instruction
(s, (0, 0), i, d, t), (s, (0, +), i′, d′, t′), (s, (+, 0), i′′, d′′, t′′) or (s, (+, +), i′′′, d′′′, t′′′)

56 R. Torres, N. Ollinger, and A. Gajardo

Part 3: Addition/Subtraction. Each sub-routine uses an exclusive set of
states. There are several cases, depending on the sign of each counter, but they
are all similar, thus we present only two examples in figures 4 and 5.

+

/1 1

/| 1 + /1 | +

/1 1

/> 1

+/1 >−

/1 1

/< (+,+)

/| |

Fig. 4. Sub-routine corresponding to instruction (s, (+, +), 1, +, t′′′), it adds one unit
to counter 1, assuming counter 2 non empty

+ /| | +

/1 1

/> 1 − /1 >

−

/1 1−

/1 1

/| |−/< (0,+)

/| |

−/< (0, 0)

Fig. 5. Sub-routine corresponding to instruction (s, (0, +), 2, −, t′), it subtracts from
counter 2, assuming counter 1 empty

Isomorphic Interpreters from Logically

Reversible Abstract Machines

Roshan P. James and Amr Sabry

School of Informatics and Computing, Indiana University
{rpjames,sabry}@indiana.edu

Abstract. In our previous work, we developed a reversible program-
ming language and established that every computation in it is a (par-
tial) isomorphism that is reversible and that preserves information. The
language is founded on type isomorphisms that have a clear categor-
ical semantics but that are awkward as a notation for writing actual
programs, especially recursive ones. This paper remedies this aspect by
presenting a systematic technique for developing a large and expressive
class of reversible recursive programs, that of logically reversible small-
step abstract machines. In other words, this paper shows that once we
have a logically reversible machine in a notation of our choice, express-
ing the machine as an isomorphic interpreter can be done systematically
and does not present any significant conceptual difficulties. Concretely,
we develop several simple interpreters over numbers and addition, move
on to tree traversals, and finish with a meta-circular interpreter for our
reversible language. This gives us a means of developing large reversible
programs with the ease of reasoning at the level of a conventional small-
step semantics.

1 Introduction

In recent papers [3,7], we developed a pure reversible model of computation that
is obtained from the type isomorphisms and categorical structures that underlie
models of linear logic and quantum computing and that treats information as a
linear resource that can neither be erased nor duplicated. From a programming
perspective, our model gives rise to a pure (with no embedded computational
effects such as assignments) reversible programming language Πo based on par-
tial isomorphisms. In more detail, in the recursion-free fragment of Πo, every
program witnesses an isomorphism between two finite types; in the full language
with recursion, some of these isomorphisms may be partial, i.e., may diverge on
some inputs.

In this paper, we investigate the practicality of writing large recursive pro-
grams in Πo. Specifically, we assume that we are given some reversible recursive
algorithm expressed as a reversible abstract machine, and we show via a number
of systematic steps, how to develop a Πo program from that abstract machine.
Our choice of starting from reversible abstract machines is supported by the
following observations:

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 57–71, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

58 R.P. James and A. Sabry

– it is an interesting enough class of reversible programs: researchers have
invested the effort in manually designing such machines, e.g., the SE(M)CD
machine [8], and the SECD-H [6];

– every reversible interpreter can be realized as such a machine: this means
that our class of programs includes self-interpreters which are arguably a
measure of the strength of any reversible language [2,12,13];

– general recursive programs can be systematically transformed to abstract
machines: the technique is independent of reversible programs and consists
of transforming general recursion to tail recursion and then applying fission
to split the program into a driver and a small-step machine [5,9].

To summarize, we assume we are given some reversible abstract machine and
we show how to derive a Πo program that implements the semantics of the
machine. Our derivation is systematic and expressive. In particular, Πo can
handle machines with stuck states because it is based on partial isomorphisms.
We illustrate our techniques with simple machines that do bounded iteration on
numbers, tree traversals, and a meta-circular interpreter for Πo.

2 Review of the Reversible Language: Πo

We briefly review the reversible language Πo introduced in our previous work
[3,7]. The set of types includes the empty type 0, the unit type 1, sum types
b1 + b2, product types b1 × b2, and recursive types μx.b. The set of values v
includes () which is the only value of type 1, left v and right v which inject v
into a sum type, (v1, v2) which builds a value of product type, and 〈v〉 which is
used to construct recursive values. There are no values of type 0:

value types , b :: = 0 | 1 | b+ b | b× b | x | μx.b
values , v :: = () | left v | right v | (v, v) | 〈v〉

The expressions of Πo are witnesses to the following type isomorphisms:

zeroe : 0 + b ↔ b : zeroi
swap+ : b1 + b2 ↔ b2 + b1 : swap+

assocl+ : b1 + (b2 + b3) ↔ (b1 + b2) + b3 : assocr+

unite : 1× b ↔ b : uniti
swap× : b1 × b2 ↔ b2 × b1 : swap×

assocl× : b1 × (b2 × b3) ↔ (b1 × b2)× b3 : assocr×

distrib0 : 0× b ↔ 0 : factor 0
distrib : (b1 + b2)× b3 ↔ (b1 × b3) + (b2 × b3) : factor

fold : b[μx.b/x] ↔ μx.b : unfold

Each line of the above table introduces one or two combinators that witness
the isomorphism in the middle. Collectively the isomorphisms state that the
structure (b,+, 0,×, 1) is a commutative semiring, i.e., that each of (b,+, 0) and
(b,×, 1) is a commutative monoid and that multiplication distributes over addi-
tion. The last isomorphism witnesses the equivalence of a value of recursive type

On the Construction of Isomorphic Interpreters 59

with all its “unrollings.” The isomorphisms are extended to form a congruence
relation by adding the following constructors that witness equivalence and com-
patible closure. In addition, the language includes a trace operator to express
looping:

id : b ↔ b

c : b1 ↔ b2
sym c : b2 ↔ b1

c1 : b1 ↔ b2 c2 : b2 ↔ b3
c1 � c2 : b1 ↔ b3

c1 : b1 ↔ b3 c2 : b2 ↔ b4
c1 + c2 : b1 + b2 ↔ b3 + b4

c1 : b1 ↔ b3 c2 : b2 ↔ b4
c1 × c2 : b1 × b2 ↔ b3 × b4

c : b1 + b2 ↔ b1 + b3
trace c : b2 ↔ b3

Adjoint. An important property of the language is that every combinator c has
an adjoint c† that reverses the action of c. This is evident by construction for the
primitive isomorphisms. For the closure combinators, the adjoint is homomorphic
except for the case of sequencing in which the order is reversed, i.e., (c1 � c2)

† =
(c2

†) � (c1
†).

Graphical Language. Following the tradition for computations in monoidal cat-
egories [10], we present a graphical notation that conveys the semantics of Πo.
The general idea of the graphical notation is that combinators are modeled by
“wiring diagrams” or “circuits” and that values are modeled as “particles” or
“waves” that may appear on the wires. Evaluation therefore is modeled by the
flow of waves and particles along the wires.

– The simplest sort of diagram is the id : b ↔ b combinator which is simply
represented as a wire labeled by its type b, as shown below on the left. In
more complex diagrams, if the type of a wire is obvious from the context, it
may be omitted. When tracing a computation, one might imagine a value v
of type b on the wire, as shown below on the right:

– The product type b1 × b2 may be represented using either one wire labeled
b1 × b2 or two parallel wires labeled b1 and b2. In the case of products
represented by a pair of wires, when tracing execution using particles, one
should think of one particle on each wire or alternatively as in folklore in
the literature on monoidal categories as a “wave:”

– Sum types may similarly be represented by one wire or using parallel wires
with a + operator between them. When tracing the execution of two additive
wires, a value can reside on only one of the two wires:

60 R.P. James and A. Sabry

– Associativity is implicit in the graphical language. Thus, three parallel wires
may represent b1 × (b2 × b3) or (b1 × b2)× b3.

– Commutativity is represented by crisscrossing wires:

– The morphisms that witness that 0 and 1 are the additive and multiplicative
units are represented as shown below. Note that since there is no value of
type 0, there can be no particle on a wire of type 0. Also since the monoidal
units can be freely introduced and eliminated, in many diagrams they are
omitted and dealt with explicitly only when they are of special interest:

– Distributivity and factoring are interesting because they represent inter-
actions between sum and pair types. Distributivity should essentially be
thought of as a multiplexer that redirects the flow of v : b depending on
what value inhabits the type b1 + b2, as shown below. Factoring is the cor-
responding adjoint operation:

– Operations fold and unfold are specific to each recursive data type and are
drawn as triangular boxes. For instance, Sec. 2.2 shows fold/unfold isomor-
phisms for numbers, nat = μx.(1 + x).

– The trace operation is drawn as a looped circuit, where the traced type b1
is shown as flowing backwards:

On the Construction of Isomorphic Interpreters 61

2.1 Universality

As an example, consider the implementation of the Toffoli gate below, which
establishes that Πo is complete for combinational circuits. The Toffoli gate takes
three boolean inputs: if the first two inputs are true then the third is negated.
This encoding uses the type 1 + 1 as bool and values left () and right() as true
and false . Boolean negation, not : bool ↔ bool , is simply swap+.

Even though Πo lacks conditional expressions, they are expressible using the
distributivity laws. Given any combinator c : b ↔ b, we can construct a combina-
tor called if c : bool × b ↔ bool × b in terms of c, which behaves like a one-armed
if-expression. If the supplied boolean is true then the combinator c is used to
transform the value of type b. If the boolean is false then the value of type b
remains unchanged. We can write down the combinator for if c in terms of c as
distrib � ((id × c) + id) � factor .

Given if c, constructing the Toffoli gate is straightforward. If we choose c to
be not we get if not which is controlled-not, cnot : bool × bool ↔ bool × bool .
Further, if cnot is the required Toffoli gate, toffoli : bool × (bool × bool) ↔ bool ×
(bool × bool), and is drawn below.

Previous work [7, Sec. 5] establishes that Πo is Turing complete by showing
the compilation of a Turing complete language — a first-order language with
numbers and iteration — to Πo.

2.2 Numeric Operations

We encode numbers, nat = 0 | n+1, using the recursive Πo type μx.1+ x. The
fold/unfold isomorphisms for nat are unfold : nat ↔ 1 + nat : fold .

The combinator on the left denotes the unfold isomorphism, which works as
follows: If the number n is zero, the output is the top branch which has type 1.
If the number is non-zero, the output is on the bottom branch and has value
n− 1. The combinator in the middle is its dual fold isomorphism.

62 R.P. James and A. Sabry

As explained in previous work [7, Sec. 4.2], numeric addition and subtraction
can be expressed in Πo as partial isomorphisms: The combinator on the right,
add1 : nat ↔ nat , acts like the successor function returning n+ 1 for all inputs
n. Its adjoint, sub1, obtained by flipping the diagram right to left, is a partial
map that diverges on input 0 and returns n− 1 for all other inputs n.

3 Simple Bounded Number Iteration

We illustrate the main concepts and constructions using two simple examples
that essentially count n steps. The first machine does nothing else; the second
uses this counting ability to add two numbers.

3.1 Counting

The first machine is defined as follows:

Numbers, n,m = 0 | n+ 1
Machine states = 〈n, n〉

Start state = 〈n, 0〉
Stop State = 〈0, n〉

〈n+ 1,m〉 	→ 〈n,m+ 1〉

The machine is started with a number n in the first position and 0 in the second.
Each reduction step decrements the first number and increments the second. The
machine stops when the first number reaches 0, thereby taking exactly n steps.
For example, if the machine is started in the configuration 〈3, 0〉, it would take
exactly 3 steps to reach the final configuration: 〈3, 0〉 	→ 〈2, 1〉 	→ 〈1, 2〉 	→ 〈0, 3〉.
Dually, since the machine transition is clearly reversible, the machine can execute
backwards from the final configuration to reach the initial configuration in also 3
steps.

Our goal is to implement this abstract machine in Πo. We start by writing
a combinator c : nat × nat ↔ nat × nat that executes one step of the machine
transition. The combinator, when iterated, should map (n, 0) to (0, n) by pre-
cisely mimicking the steps of the abstract machine. Let us analyze this desired
combinator c in detail starting from its interface:

The reduction step of the machine examines the first nat and reconstructs
the second nat . In other words, the first nat is unfolded to examine its structure
and the second nat is folded to reconstruct it:

On the Construction of Isomorphic Interpreters 63

We now use distribution to isolate each possible machine state:

At this point, it is clear that the machine’s transition consists connecting the
n− 1 input wire to n′ on the output side and the m input wire to m′ − 1 on the
output side:

We are now close to the completion of the interpreter. The branch labeled
((),m) corresponds to the machine state 〈0,m〉 which is the stop state of the
machine. Similarly the branch labeled ((), n′) corresponds to the start state of the
machine. The last step in the construction involves introducing a trace operation
for iterating the small step realized so far:

Sliding sections A and B past each other while maintaining the connectivity of
the wires, exposes that the middle connections were really recursive calls to the
machine transition:

64 R.P. James and A. Sabry

The completed interpreter is given below:

3.2 Steps of the Construction

Although trivial, the previous example captures the fundamental aspects of our
construction. In general, our starting point is an abstract machine in which every
rewrite step is logically reversible. The formal criterion of logical reversibility in
this setting is captured by Abramsky’s bi-orthogonal automata [1, Sec. 2] which
is summarized as:

1. Machine states are described as tuples whose components are algebraic data
types. In the above example we used only the nat data type and tuples of
the form 〈n,m〉.

2. Machines must have distinguishable start and stop states. There may be
more than one valid start state and more than one valid stop state, however.

3. Each valid machine state must match a unique pattern on the left-hand side
and right-hand side of the ‘ 	→’ relation.

4. Every reduction step must be computable (in Πo), must not drop or du-
plicate pattern variables and must be logically reversible — i.e. it must be
possible to reduce from right to left.

Given such a machine the process of encoding the machine in Πo consists of the
following steps:

1. Expand the input to expose enough structure to distinguish the left-hand
side of each machine state;

On the Construction of Isomorphic Interpreters 65

2. Expand the output to expose enough structure to distinguish the right-hand
side of each machine state;

3. Shuffle matching input terms to output terms, inserting any appropriate
mediating computations.

4. Slide the two sections to expose the start and stop state and introduce a
trace to iterate the construction.

3.3 Adder

Let us apply these steps to the slightly more interesting example of an adder:

Numbers, n,m, p = 0 | n+ 1
Machine states = 〈n, n, n〉

Start state = 〈n, n, 0〉
Stop State = 〈0, n, n〉

〈n+ 1, p,m〉 �→ 〈n, p+ 1, m+ 1〉

The idea of the machine is to start with 3 numbers: the two numbers to
add and an accumulator initialized to 0. Each step of the machine, decrements
one of the numbers and increments the second number and the accumulator.
For example, 〈3, 4, 0〉 	→ 〈2, 5, 1〉 	→ 〈1, 6, 2〉 	→ 〈0, 7, 3〉. In general, the sum of
the two numbers will be in the second component, and the last component is
supposed to record enough information to make the machine reversible.

A closer look however reveals that the machine defines a partial isomorphism:
not all valid final states can be mapped to valid start states. Indeed consider the
configuration 〈0, 2, 3〉 which is a valid final state. Going backwards, the transi-
tions start as follows 〈0, 2, 3〉 	→ 〈1, 1, 2〉 	→ 〈2, 0, 1〉 at which point, the machine
gets stuck at a state that is not a valid start state. This is a general problem
that we discuss below in detail.

Stuck States. The type systems of most languages are not expressive enough to
encode the precise domain and range of a function. For example, in most typed
languages, division by zero is considered type-correct and the runtime system is
required to deal with such an error. A stuck state of an abstract machine is just
a manifestation of this general problem. The common solutions are:

– Use a more expressive type system. One could augment Πo with a richer
type system that distinguishes non-zero numbers from those that can be
zero, thereby eliminating the sub1 0 situation entirely. Similarly, in the meta-
circular interpreter in Sec. 4.3, one could use generalized abstract data types
(GADTs [4,11]) to eliminate the stuck states.

– Diverge. Another standard approach in dealing with stuck states is to make
the machine diverge or leave the output undefined or unobservable in some
way. If the specific case of the machine above, we can use the primitive add1

whose dual sub1 is undefined when applied to 0 (see Sec. 2.2).

66 R.P. James and A. Sabry

– Stop the machine. Alternatively, we can consider the stuck state as a valid
final state. In the case of the example above, we would treat states of the form
〈n, 0, n〉 as valid stop states for reverse execution. This gives us two valid start
states in the case of forward execution and makes the isomorphism total. If
we chose this approach, the machine would look as shown below by the end
of step 3:

Note that there are indeed two “start states” in the interpreter. As before,
we can slide the two sides of the diagram and tie the knot using trace to get the
desired interpreter:

4 Advanced Examples

We show the generality of our construction by applying it to three non-trivial
examples: a tree traversal, parity translation of numbers and a meta-circular
interpreter for Πo.

4.1 Tree Traversal

The type of binary trees we use is μx.(nat + x × x), i.e., binary trees with no
information at the nodes and with natural numbers at the leaves. To define the
abstract machine, we need a notion of tree contexts to track which subtree is
currently being explored. The definitions are shown on the left:

On the Construction of Isomorphic Interpreters 67

Tree, t = L n | N t t
Tree Contexts , c = � | Lft c t | Rgt t c

Machine states = 〈t, c〉 | {c, t}
Start state = 〈t,�〉
Stop State = {�, t}

〈L n, c〉 �→ {c, L (n+ 1)}
〈N t1 t2, c〉 �→ 〈t1,Lft c t2〉

{Lft c t2, t1} �→ 〈t2,Rgt t1 c〉
{Rgt t1 c, t2} �→ {N t1 t2, c}

The reduction rules on the right traverse a given tree and increment every leaf
value. The machine here is a little richer than the ones dealt with previously.
In particular, we have two types of machine states 〈t, c〉 and {t, c}. The first
of these corresponds to walking down a tree, building up the context in the
process. The second corresponds to reconstructing the tree from the context and
also switching focus to any unexplored subtrees in the process. There are also
two syntactic categories to deal with (trees and tree contexts) where previously
we only had numbers. The fold and unfold isomorphisms that we need for trees
and tree contexts are:

unfold t : t ↔ n+ t× t : fold t

unfoldc : c ↔ 1 + c× t+ t× c : foldc

New Notation. To make the diagrams easier to understand, we introduce a
syntactic convenience which combines the first steps of the construction that
consist of fold / unfold and distribute / factor . We collectively represent these
steps using thin vertical rectangle. Also we will introduce the convention that
the component that is being expanded (or constructed) will be marked by using
�� and the components that are being generated (or consumed) will be marked
by �	. For example, given a value of type tree×nat , the diagram below shows how
to first expand the tree component and then in one of the generated branches,
expand the nat component:

We can now apply our construction. The first step to developing the isomor-
phic interpreter is to recognize that the two possible kinds of machine states
simply hide an implicit bool . We make this explicit:

Machine states = 〈bool , t, c〉

Start state = 〈true , t,�〉
Stop state = 〈false, t,�〉

〈true , L n, c〉 �→ 〈false, L (n+ 1), c〉
〈true, N t1 t2, c〉 �→ 〈true , t1,Lft c t2〉

〈false, t1,Lft c t2〉 �→ 〈true , t2,Rgt t1 c〉
〈false, t2,Rgt t1 c〉 �→ 〈false, c,N t1 t2〉

68 R.P. James and A. Sabry

We start examining the machine components as before:

On the input side, for true states, we have expanded the tree component and
for false states we have expanded the tree contexts. We have done the opposite
on the output side exactly matching up what the abstract machine does. One
thing to note is that we dropped the 1 introduced by expanding the bool and
instead just labeled the true and false branches.

We are ready to start connecting the machine states corresponding to the
reductions that we would like:

1. When we encounter a leaf we would like to increment its value and move
to the corresponding false machine state. For the sake of simplicity, in this
interpreter we won’t be concerned with exposing stuck states: we simply use
add1 whose adjoint sub1 diverges when applied to 0.

2. For all the other reduction rules, it is a straightforward mapping of related
states following the reduction rules. For readability, we have annotated the
diagram below with the names of the reduction rules and we have included
subscripts on the various ts to indicate any implicit swaps that should be
inserted.

This essentially completes the construction of the (partially) isomorphic tree-
traversal interpreter, except for the final step which slides the input and output
sides.

4.2 Parity Translation

Deriving Πo combinators from abstract machines can sometimes be used as an
efficient indirect way to program in Πo. It is well known that every number n
can be represented as 2a+ 0 or 2a+ 1, depending on whether it is odd or even.
The later can be represented by the algebraic data type par = odd | even | A par

On the Construction of Isomorphic Interpreters 69

where the nesting of A constructor indicates the value of a. For example 0 =
even, 1 = odd , 2 = A even , 3 = A odd , 4 = A (A even) etc.

Say we wish to build aΠo combinator to map nat to its parity encoded version
par . While the type par is expressible as μx.(1 + 1) + x in Πo, it is not a fixed
unfolding of nat = μx.1 + x and hence it is not immediately apparent how such
a combinator can be constructed.

Instead of directly programming in Πo however, one can derive the required
nat ↔ par combinator by first constructing an abstract machine that maps nat
to par and then translating it to Πo. We first express nat and par algebraically
and then develop a logically reversible abstract machine:

Numbers, n,m = 0 | n+ 1
Parity , par = even | odd | A par

Machine States:

Machine states = 〈nat , nat〉 | {parity , nat}
Start state = 〈n, 0〉
Stop state = {par , 0}

Machine Reductions:

〈0,m〉 	→ {even,m}
〈1,m〉 	→ {odd ,m}

〈(n+ 1) + 1,m〉 	→ 〈n,m+ 1〉
{par ,m+ 1} 	→ {A par ,m}

The derivation of the Πo combinator is straightforward and proceeds as be-
fore. The partial combinator representing the wiring of machine reductions is
shown below.

We thank Fritz Henglein for the motivation underlying this example.

4.3 A Πo Interpreter

In the final construction we present a meta-circular interpreter for Πo writ-
ten in Πo. This is a a non-trivial abstract machine with several cases, but the
derivation follows in exactly the same way as before. Here is a logically reversible
small-step abstract machine for Πo and the derived isomorphic interpreter with
the reductions labeled.

70 R.P. James and A. Sabry

Combinators, c = iso | c � c | c × c | c + c | trace c
Combinator Contexts, cc = � | Fst cc c | Snd c cc

| LeftTimes cc c v | RightTimes c v cc
| LeftPlus cc c | RightPlus c cc | Trace cc

Values, v = () | (v, v) | L v | R v

Machine states = 〈c, v, cc〉 | {c, v, cc}
Start state = 〈c, v,�〉
Stop State = {c, v,�}
〈iso, v, cc〉
→ {iso, iso(v), cc} rule 1

〈c1 � c2, v, cc〉
→ 〈c1, v,Fst cc c2〉 rule 2
{c1, v,Fst cc c2}
→ 〈c2, v, Snd c1 cc〉 rule 3
{c2, v, Snd c1 cc}
→ {c1 � c2, v, cc} rule 4
〈c1 + c2, L v, cc〉
→ 〈c1, v,LeftPlus cc c2〉 rule 5

{c1, v,LeftPlus cc c2}
→ {c1 + c2, L v, cc} rule 6
〈c1 + c2, R v, cc〉
→ 〈c2, v,RightPlus c1 cc〉 rule 7

{c2, v,RightPlus c1 cc}
→ {c1 + c2, R v, cc} rule 8
〈c1 × c2, (v1, v2), cc〉
→ 〈c1, v1,LeftTimes cc c2 v2〉 rule 9

{c1, v1,LeftTimes cc c2 v2}
→ 〈c2, v2,RightTimes c1 v1 cc〉 rule 10
{c2, v2,RightTimes c1 v1 cc}
→ {c1 × c2, (v1, v2), cc} rule 11

〈trace c, v, cc〉
→ 〈c, R v,Trace cc〉 rule 12
{c, L v,Trace cc}
→ 〈c, L v,Trace cc〉 rule 13
{c, R v,Trace cc}
→ {trace c,R v, cc} rule 14

The derivation of the Πo interpreter, while tedious, is entirely straightforward.
A couple of points however need clarification:

1. The definition here shows only the handling of the composition combinators,
which are the interesting cases. All the primitive isomorphisms are hidden

On the Construction of Isomorphic Interpreters 71

in the iso(v) application in rule 1. This should be read as “transform v
according to the primitive isomorphism iso.”

2. Stuck states in this machine correspond to runtime values not matching their
expected types. They can be handled as described in Sec. 3.3 using GADTs
(which eliminates them entirely), divergence, or adding extra halting states.
We have abstracted from this choice and marked the relevant cases with
combinators labeled cast .

5 Conclusion

We have developed a technique for the systematic derivation of Πo programs
from logically reversible small-step abstract machines. Since techniques for de-
vising small-step interpreters are well known, this allows for the direct develop-
ment of a large class of Πo programs. We have demonstrated the effectiveness
of this approach by deriving a meta-circular interpreter for Πo.

Acknowledgments. This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1116725.

References

1. Abramsky, S.: A structural approach to reversible computation. Theor. Comput.
Sci. 347, 441–464 (2005)

2. Axelsen, H.B., Glück, R.: What Do Reversible Programs Compute? In: Hofmann,
M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 42–56. Springer, Heidelberg (2011)

3. Bowman, W.J., James, R.P., Sabry, A.: Dagger Traced Symmetric Monoidal Cat-
egories and Reversible Programming. In: Reversible Computation (2011)

4. Cheney, J., Hinze, R.: First-class phantom types. Tech. rep., Cornell Univ. (2003)
5. Danvy, O.: From Reduction-Based to Reduction-Free Normalization. In: Koopman,

P., Plasmeijer, R., Swierstra, D. (eds.) AFP 2008. LNCS, vol. 5832, pp. 66–164.
Springer, Heidelberg (2009)

6. Huelsbergen, L.: A logically reversible evaluator for the call-by-name lambda cal-
culus. InterJournal Complex Systems 46 (1996)

7. James, R.P., Sabry, A.: Information effects. In: POPL, pp. 73–84. ACM (2012)
8. Kluge, W.E.: A Reversible SE(M)CD Machine. In: Koopman, P., Clack, C. (eds.)

IFL 1999. LNCS, vol. 1868, pp. 95–113. Springer, Heidelberg (2000)
9. Rendel, T., Ostermann, K.: Invertible syntax descriptions: unifying parsing and

pretty printing. In: Symposium on Haskell, pp. 1–12. ACM (2010)
10. Selinger, P.: A survey of graphical languages for monoidal categories. In: New

Structures for Physics. Lecture Notes in Physics, pp. 289–355. Springer (2011)
11. Xi, H., Chen, C., Chen, G.: Guarded recursive datatype constructors. In: POPL,

pp. 224–235. ACM (2003)
12. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming

language. In: Conference on Computing Frontiers, pp. 43–54. ACM (2008)
13. Yokoyama, T., Glück, R.: A reversible programming language and its invertible

self-interpreter. In: PEPM, pp. 144–153. ACM (2007)

Synthesizing Loops for Program Inversion

Cong Hou1, Daniel Quinlan2, David Jefferson2,
Richard Fujimoto1, and Richard Vuduc1

1 Georgia Institute of Technology
2 Lawrence Livermore National Laboratory

hou cong@gatech.edu, {dquinlan,jefferson6}@llnl.gov,
{fujimoto,richie}@cc.gatech.edu

Abstract. We propose a new automatic program inversion method for
imperative programs that contain loops. In particular, given a loop that
produces an output state given a particular input state, our method
can synthesize an inverse loop that reconstructs the input state given
the original loop’s output state. The synthesis process consists of two
major components: (a) building the inverse loop’s body, and (b) building
the inverse loop’s predicate. Our method works for all natural loops,
including those that take early exits (e.g., via breaks, gotos, returns).
This work extends a program analysis and synthesis framework, called
Backstroke1, that we developed in prior work.

Keywords: Program Inversion, Program Synthesis, Compilers.

1 Introduction

We consider the problem of synthesizing program inverses. That is, given a pro-
gram P with input state I and output state O, its inverse or reverse program,
P−, produces I given O. Our primary motivation comes from optimistic parallel
discrete event simulation (OPDES). There, a simulator must process events while
respecting logical temporal event-ordering constraints; to extract parallelism, an
OPDES simulator may speculatively execute events and only rollback execution
when event-ordering violations occur [4]. In this context, the ability to perform
rollback by running time- and space-efficient P and P−, rather than saving and
restoring large amounts of state, can make OPDES more practical. Synthesiz-
ing inverses also appears in numerous other software engineering contexts, such
as debugging [1], synthesizing “undo” code, or even generating decompressors
automatically given only lossless compression code [10]. The challenge in any
of these contexts is that constructing program inverses manually is a tedious,
time-consuming, and error-prone task.

The program P will generally contain non-invertible statements, such as a
destructive assignment. However, in these cases it may still be possible to create
an inverse. In particular, we may create an instrumented version of P , called

1 As a sub-project of the ROSE compiler Backstroke can be downloaded here:
http://www.rosecompiler.org

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 72–84, 2013.
� Springer-Verlag Berlin Heidelberg 2013

http://www.rosecompiler.org

Synthesizing Loops for Program Inversion 73

the forward program, P+, with semantics-preserving changes so that it becomes
possible to construct P− from P+. We then replace executions of P with P+.
For instance, suppose P overwrites a variable v. We may construct P+ so that it
saves the value of v prior to overwriting it. Then, P− need only restore the saved
value to recover v’s prior value. In this case, P+ produces extra outputs, which we
denote by S. Indeed, even if P is theoretically reversible without requiring extra
output, we may nevertheless need to generate S due to fundamental technical
limits on program analysis.

This paper extends our prior compiler-based program inversion framework,
called Backstroke [3], to handle the case of programs with loops. As a concrete
introductory example, consider the following program on the left, which takes
as input an integer n ≥ 0 and produces the output, s ←

∑n
i=0 i:

s = 0; n = 0;

while (n > 0) { while (s > 0) {

s = s + n; n = n + 1;

n = n - 1; s = s - n;

} }

Our goal is to construct an inverse P− that recomputes n given s, as shown
above on the right. Our initial work on Backstroke proposed two new interme-
diate program representations, which we call the value search graph and route
graph representations. However, these representations could not represent loop
structure and hence could not generate the inverse shown above. The method of
this paper can; additionally, it can recognize certain special cases where synthesis
of an explicit forward program P+ can be avoided, as is the case in this example.
Such special cases are often a requirement in general software engineering (as
opposed to OPDES) contexts.

The above example is special in that the loop has single-entry and single-
exit points. Consequently, in the usual control-flow graph (CFG) analysis used
inside a compiler, the loop’s inputs and outputs are easy to identify and program
analysis becomes simpler, because the compiler may analyze the loop in relative
isolation from the rest of the program. To handle more complex loops, such as
those with multiple exits via break or return, we show how we can modify the
CFG to reduce it to the preceding simpler form (Section 3.2). Thus, our method
readily applies to the class of so-called natural loops.

Note that we use the terms, “program inverse” and “program inversion,”
even though strictly speaking an inverse for P (as opposed to the instrumented
forward program, P+) may not exist. Nevertheless, this terminology is standard
in our OPDES context, so we adhere to it in this paper [11].

2 Prior Foundations: Value Search and Route Graphs

Our work on program inversion for loops builds on a program analysis and
synthesis framework that we developed in our prior work. As noted previously,
the framework comprises two novel intermediate program representations, which
we refer to as value search graph and route graph [3]. This section summarizes the

74 C. Hou et al.

key ideas behind these representations, explaining how we use them to construct
both forward and reverse programs. (Please see our earlier paper for all the
formal details [3].) Section 3 describes our extensions for loops.

The basic program inversion workflow in our framework is as follows. Given
P , we first translate the program into a standard compiler intermediate program
representation known as single static assignment (SSA) form [2]. From the SSA
form, we construct a value search graph (VSG) [3]. The problem of finding a
forward or reverse program becomes a combinatorial search problem on the VSG.
The result of this search is a subgraph of the VSG, which we call a route graph
(RG) [3]. There may be many such search results, each of which is a particular
forward or reverse program. Lastly, from the RG we synthesize the actual code
that implements the forward or reverse program. The process is illustrated in
Figure 1. We elaborate on the process and discuss the example next.

The VSG essentially expresses equality relations between values in the pro-
gram. Given these relations, we can determine how values from the input I
eventually relate to the values produced during the execution of the forward
program P+, such as the values in the output O. To get the relations, we first
transform the program into SSA form. The SSA form is semantically equivalent
to the original program but has the special property that each variable is defined
only once. In the VSG, nodes represent constants, variables from the SSA, and
operators (e.g., “+” or “−” operations); directed edges represent either equality
or operand-operator relationships. Edges are also annotated with information
about the control-flow paths on which the particular equality relation exists,
allowing us to handle conditional branches. Lastly, if there is no way to retrieve
a desired value from computational operations alone, we will need to save that
value during the execution of P+ so we can later retrieve it in P−. Such a state
saving operation becomes an additional type of node in the VSG. Since state
saving may incur both time and space overheads to P+, we can add a suitable
cost to each edge incident to the state saving node.

Given the VSG, we locate target nodes, which contain all values we wish
to compute. For instance, if we want to build P− and reconstruct a particu-
lar value from the original input I, the corresponding node for that value in
the VSG becomes a target node. During the analysis of the VSG, some nodes
will be considered available. For example, when building P−, nodes containing
constants, the state saving node, and final outputs O of the original program
are available. Starting from the targets, we perform a path search through the
VSG looking for available nodes. The result of this search is a subgraph of the
VSG, which we call a route graph (RG). The search algorithm works in such a
way that it guarantees each value is retrieved only once for each control flow
graph (CFG) path. (The search for a RG that minimizes state-saving cost is
NP-Complete, which our prior paper both proves and provides heuristics to find
low-cost solutions [3].)

Finally, we generate P+ and P− from the RG. In the RG, for each edge
pointing to the state saving node, we will instrument P with a state saving
statement storing the corresponding value. Also, we use a bit vector to record

Synthesizing Loops for Program Inversion 75

the control flow paths in P . Then P+ is generated by instrumenting P with
statements performing state savings and CFG path recording. To generate the
reverse program P−, we build a CFG for the reverse function from the RG, and
P− is generated from the CFG.

(e)

Entry

if (a0 == 0)

b1 = a0 + 10;

a2 = 0;
a1 = 1;

a3 = Φ(a1, a2);
b2 = Φ(b0, b1);

FT

Exit a0

b0

10

b1

1

a1

0

a2

Φ

a3

Φ

b2

0

+-

SS

{T}

{T,F}

{F}

{T,F} {F}

{F}

{T}

{F}

(d)

a0

b0

10

b1

Φ

b2

0

-

SS

{T}

{F}

{F}

{T}

{F}

(f)

void foo_forward() {
 int trace = 0;
 if (a == 0) {
 trace |= 1;
 a = 1;
 }
 else {
 store(b);
 b = a + 10;
 a = 0;
 }
 store(trace);
}

void foo_reverse() {
 int trace;
 restore(trace);
 if ((trace & 1) == 1)
 a = 0;
 else {
 a = b - 10;
 restore(b);
 }
}

(b) (c)(a)

int a, b;
void foo() {
 if (a == 0)
 a = 1;
 else {
 b = a + 10;
 a = 0;
 }
}

Fig. 1. (a) The original program. (b) The forward program. (c) The reverse program.
(d) The CFG in SSA form. (e) The VSG. Nodes in bold are available nodes and all
outgoing edges are removed from them. (f) The RG.

Figure 1 illustrates the entire process in a loop-free example. The original
program is the function foo. The variables a and b are both inputs and outputs.
The CFG in SSA form is shown in Figure 1(d). In SSA form, the input of this
program are a0 and b0, and the output are a3 and b2; note that the original
variables have subscripts in SSA form, which are referred to as versions of the
original variables. Observe that versioned variables are in the static program
assigned only once. (Programs with loops will need special treatment and exten-
sion.) From the SSA CFG, we then build the VSG shown in Figure 1(e). The
“SS” node is a special state-saving node. All outgoing edges from each available
node shown in bold are removed since the search always ends at available nodes.

76 C. Hou et al.

Each equality relation (edge) is constrained by a set of CFG paths. Since there
are only two paths in the program, we use T and F to represent the path passing
through the true and false bodies, respectively. Our goal is to retrieve a0 and b0,
which is done by searching the VSG to find a way to get its value for each CFG
path. The search result, which is the RG, appears in Figure 1(f). We build the
forward and reverse programs, Figures 1(b) and (c), respectively, from the RG.
(For details on this process, refer to our prior paper [3].)

3 Handling Loops

Unmodified, our prior method as described in Section 2 cannot handle loops for
two key reasons. First, a loop results in cyclic paths in the CFG, whereas our prior
analysis relies on paths being acyclic. Acyclic paths make it easy to check that
the reverse program restores any desired input value no matter what path the
forward program takes. Secondly, our prior VSG and RG cannot represent loop
control structure. Therefore, it is simply not possible to synthesize, for example,
a loop in the reverse code from the RG. Nevertheless, we can reuse most of the
prior method by decomposing the problem suitably. In particular, we keep the
basic framework of “SSA to VSG to RG.” Our extension replaces SSA with a
loop-enabled variant, and then extends our VSG and RG representations and
algorithms to deal with cycles, thereby addressing the two aforementioned issues.

Let us first assume that each loop to be reversed is a single-entry, single-exit
while loop (we will explain what is a while loop later). We explain in Section 3.2
how to convert other kinds of loops into this form. We also assume that each
loop must terminates at run-time so that we can always get an output. Given
an input while loop, there are three steps to build a VSG.

1. We temporarily collapse each while loop into a single abstract node in the
CFG, thereby creating a logically loop-free CFG from which we can build
a VSG by directly applying our prior method. This “transformation” is for
program analysis purposes only. We denote this loop-collapsed VSG by GP .

2. Similarly, we directly apply our prior method to build a VSG for each loop
body, which may be treated as another loop-free program. (If the body con-
tains nested loops, these are similarly collapsed as in Step 1 above.) Note
that path information in these loop body VSGs are local to the loop body.
We denote this VSG for the loop body by GL.

3. At this point, GP and GL are disconnected. Therefore, we introduce new
special edges to connect them, thereby resulting in a single connected VSG.
These connecting edges are a new type of edge and constitute the main
extension to our prior VSG in order to support loops. The new edges connect
each input (or output) of a loop to the input (or output) of the loop’s body.
These new edges serve as markers: when we search the VSG and produce an
RG containing these edges, then we know we need to synthesize a loop.

Since Steps 1 and 2 use our prior VSG construction, we need not discuss them
further here. What changes is the third step, as detailed below, including new

Synthesizing Loops for Program Inversion 77

VSG searching rules and new procedures for synthesizing loops from the search
result (i.e., the RG).

vin

vI
in = µ(vin, vI

out);

while(...)
 vI

out =...;

vout= η(vI
in);

A

B

T

F T

F

µ vI
in

vin µ'
vI

out

η
vout

forward edge
reverse edge

Fig. 2. (a) The diagram of a while loop. (b) The CFG in loop-closed SSA form for a
variable v modified in the loop. (c) Forward and reverse edges.

3.1 Dealing with While Loops

We first consider a while loop with the diagram shown in Figure 2(a). We further
assume that A has no side-effects and that there are no escapes from B. Thus,
the loop only exits from its entry.

Given such a while loop, we transform it into the loop-closed SSA form [9], il-
lustrated in Figure 2(b). Loop-closed SSA differs from conventional loop-free SSA
as follows. In conventional SSA, a special marker called a φ function is placed in
the CFG at the first program point where two distinct versions (definitions) of a
variable, computed along different program paths, meet. In loop-closed SSA, if
a value is defined inside of a loop and used outside of it, we place a special single
entry φ function at the exit of the loop. To distinguish this type of loop-specific φ
function from a conventional φ function as used in loop-free programs, we denote
the loop-specific form by the term η function, by convention [7]. Additionally,
suppose a definition of a variable from outside the loop and a definition coming
from a back-edge of the loop meet at a program point. Again, we create a φ
function marker here, and to distinguish it, we refer to it as a μ function.

To see how these markers work, consider a variable v modified by a while loop;
we now describe the corresponding loop-closed SSA form, which Figure 2(b) il-
lustrates. Let vin denote the input value of v before the loop executes, and vout

the output value of v after the loop executes. Next, let the input to the loop
body be vIin and the output vIout. (The superscript I is intended to remind the
reader that these are values associated with an iteration of the loop, as opposed
to the values before and after the loop.) Then, vI

in
is defined by a μ function

as vIin = μ(vin, v
I
out), and vout is defined by a η function as vout = η(vIin). That

is, vI
in
= μ(vin, v

I
out) indicates the program point at which v has either the ini-

tial value before the loop executes or the value produced by some iteration of the

78 C. Hou et al.

loop; and vout = η(vIin) indicates the program point at which v has the final
value once the loop completes.

From this loop-closed SSA form, we wish to build a VSG that will express
equality relations among the four SSA values, vin, vout, v

I
in
, and vI

out
. This VSG

result is shown in Figure 2(c). Recall that nodes in the VSG represent values, and
edges the equality relations. There are four value nodes. The nodes vin and vout

are part of the loop-collapsed GP , and vI
in
and vI

out
belong to the loop body’s GL.

The μ and η functions indicate how to connect GP and GL. In particular, the
three solid bold edges are associated with the dependences induced by executing
the loop in the forward direction; we call these the forward edges, and a μ
node is incident to all three. The presence of these edges make it possible to
obtain vout by some path passing through GL, and simultaneously indicate that a
loop is present for subsequent code generation. Similarly, the three dashed edges
are reverse edges associated with dependences induced in the reverse direction.
These edges make it possible to obtain vin by some path through GL. Note that
the reverse edges form a symmetry to the forward edges. From this symmetry,
we define the node incident to all three reverse edges as a μ′ node. Later we will
show how the search traverses these edges.

Having built the CFG, the next step is to search it, producing the RG result.
Recall from Section 2 that we are given a set of target nodes whose values we
wish to eventually compute from a starting set of available nodes. We search for
a path from available nodes to target nodes; the subgraph representing paths
is the RG, which is not necessarily unique. Our algorithm is similar to the one
we have described previously [3], but for loops we need three additional search
rules:

– During a search for a value, once a forward/reverse edge is selected, all edges
in the other category cannot be chosen. This is because either a forward or
a reverse loop will be built to retrieve the value.

– When the search reaches a μ or μ′ node, it will be split into two sub-searches,
in GP and GL, respectively, through the two outgoing forward or reverse
edges. For example, in Figure 2(c), if the search reaches vIin, the algorithm
begins two sub-searches beginning with vin and vI

out
.

– During the search, the algorithm may form a directed cycle only in GL;
furthermore, such a cycle must contain a forward or reverse edge between a
μ and μ′ node. Once a cycle is formed, the search in GL is complete.

We build a while loop as either a forward or a reverse loop. Synthesizing such a
while loop consists of synthesizing its body and predicate.

Building the Loop Body. The loop body in the reverse program is generated
from the search result in GL. For each variable we remove the edge between the
μ and μ′ nodes and hence remove the cycles, so that we can generate the loop
body using our prior code generation algorithm [3].

Synthesizing Loops for Program Inversion 79

Building the Loop Predicate. To guarantee that the generated loop has the
same iterations at runtime as the original loop, we need to build a proper loop
predicate. We propose three approaches to building a correct loop predicate. To
illustrate those approaches, we temporarily introduce the following loop example.
We assume that the omitted statements modify neither A[] nor i.

i = 0;

while (A[i] > 0) {

/* ... */

i = i + 2;

}

– Approach 1: Building the same loop predicate as that in the original loop.
To build this predicate, we need to retrieve each value in the predicate. A
new search is needed to acquire those values, and the search result will be
combined into the RG generated above. For the example above, we can build
a loop below that has the same number of iterations as the original one. The
omitted statements will be substituted by the loop body built above.

i = 0;

while (A[i] > 0) {

/* ... */

i = i + 2;

}

– Approach 2: Building the loop predicate from a variable updated in the
loop. Given a variable v and its four definitions: vin, v

I
in, v

I
out, and vout, if

vI
in

�=vout in each iteration except the last definition of vI
in
(which is actually

vout), and if we can retrieve vin and vout before the loop (hence we cannot
retrieve them through the loop), and vIout in the loop, we can use them to
build a while loop as:

u := vin; while(u �= vout) { / ∗ update u ∗ / }

Similarly, if vI
out

�=vin in each iteration, and vin and vout can be retrieved
before the loop, and vIin can be retrieved in the loop, we can use them to
build a while loop as:

u := vout; while(u �= vin) { / ∗ update u ∗ / }

In general, it is difficult to detect all variables satisfying the properties above.
However, there are some special cases. One case is that of monotonic vari-
ables [12], which are monotonically strictly increasing or decreasing in each
iteration. Another is that of induction variables, which are special monotonic
variables that are relatively easier to recognize. In the above example, i is an
induction variable. Assume its final value after the loop is i1 that is known,
and then we can build the following loop with the predicate using i.

80 C. Hou et al.

i = 0;

while (i != i1) {

/* ... */

i = i + 2;

}

– Approach 3: Instrumenting the original loop with a counter counting the
number of iterations. The counter has the initial value zero and is incre-
mented by one on each back edge of the loop. The final value of the counter
is stored in the forward program and restored in the reverse program as the
maximum value of another loop counter. This approach generally works if
either of the above two approaches fail. However, it requires instrumenta-
tion (the counter), and therefore forces generation of a forward program.
Below we show the instrumented loop in the forward program (left) and the
generated loop in the reverse program (right) for the above example.

i = count = 0; restore(count);

while (A[i] > 0) { while (count > 0) {

/* ... */ /* ... */

i = i + 2; count = count - 1;

count = count + 1; }

}

store(count);

We prioritize these approaches as follows. Applicability and state-saving cost
are our main criteria. We prefer Approach 1 and 2 over 3. When either 1 or 2
apply, if no state-saving is required, we apply them. Otherwise, we try Approach
3 and choose the overall approach with the least cost.

As an example, suppose we apply this algorithm to the loop in Figure 3(a).
Figure 3(b) shows its CFG in loop-closed SSA. The input is n0 and the output s3.
Our goal is to generate a reverse program that takes s3 as input and produces
n0. We build the VSG shown in Figure 3(c), with forward and reverse edges
shown as bold and dashed edges, respectively. Note that the equality between
n3 and 0 is acquired from solving constraints, a standard compiler technique, as
discussed in Section 3.3.2 The search result for value n0 is shown in Figure 3(d),
from which we can build the loop body as { n = n + 1; }.

Next, we build the loop predicate. In our example, because we wish to retrieve
the initial value of n, we cannot use it to build the loop predicate. We can discover
that s is a monotonic variable, and that both the initial and final values of s,
which are 0 and s3, respectively, are available. To get s2, we search its value on
the VSG and the search result is shown in Figure 3(e). As a result, we build the
loop predicate from s and the reverse program is generated as below.

2 For clarify, we remove the equality n1 = s2 − s1, as this relation will not be used
during the search.

Synthesizing Loops for Program Inversion 81

s0 = 0;

s1 = µ(s0, s2);
n1 = µ(n0, n2);
while(n1 > 0)

 s2 = s1 + n1;

 n2 = n1 - 1;

s3 = η(s1);
n3 = η(n1);

T

F

µ'
n2

η
n3

µ
n1

n0

0

s0

µ
s1

µ'
s2

η
s3

0

µ'
n2

η
n3

µ
n1

n0

0

s0

µ
s1

µ'
s2

η
s3

0

µ'
n2

η
n3

µ
n1

n0

0

s0

µ
s1

µ'
s2

η
s3

0

// input: n (n >= 0)

s = 0;
while (n > 0) {
 s = s + n;
 n = n - 1;
}

// output: s

Available node Target node Forward edge Reverse edge

Fig. 3. (a) The program of our example. (b) The CFG in loop-closed SSA form. (c)
The VSG. (d) The RG for retrieving n3. (e) The RG for retrieving n0 and s2.

n = 0;

while (s != 0) {

n = n + 1;

s = s - n;

}

3.2 Dealing with Loops other than While Loops

In practice, the vast majority of loops have a single entry, which are called
natural loops [5]. Loops with more than one entry are quite rare and can in
fact be transformed into natural loops [5]. However, it is quite common that
a loop has several exits. For example, in C/C++ we may exit a loop early
through break, return, or goto statements. Nevertheless, given a non-while
natural loop, we can transform it to separate the last iteration from the loop;

82 C. Hou et al.

then, the remaining iterations form a new while loop, and the last iteration will
not belong to the loop and hence can considered with the control flows outside of
the loop. We then process the new while loop as previously described. Note that
this “transformation” is only applied to the CFG during the analysis, and not
to the original program. As such, in the forward program P+ the last iteration
and other iterations of each loop continue to share the same code.

Figure 4(a) shows a loop in a CFG, with a header (node 1) and two back edges
(4→1 and 5→1). There are two different exits from this loop, which are nodes 6
and 7. Figure 4(b) shows the CFG of the transformed loop. This transformation
is performed as follows.

In a natural loop, only the last iteration takes the exit, and any other iteration
goes back to the loop header. Therefore, if the last iteration is peeled off from
the loop, this loop will turn into a while loop. To implement this transformation,
we create a new branch node with an unknown predicate that returns true if
the next iteration is not the last one and false otherwise. Note that we will not
build this predicate in the forward program. The new branch node turns over
all in-edges of the loop header. Its true labeled out-edge will point to the loop
header of a copy of the loop (node 1′) with back edges but without exit edges,
and all back edges are redirected to this new branch node making it a new loop
header. Note that after removing exit edges it is possible that a previous branch
node becomes a non-branch node (node 3′, for example), which is fine because
the removed branch edge will not be taken. Then, we can remove the (side effect
free) predicates from those nodes. The edge labeled with false from the new
branch node will point to the original loop header (node 1) and all back edges in
the original loop are removed, since the last iteration won’t take the back edge.
The nodes from which the exit of the program is not reachable due to the back
edge removal are removed (node 4 and 5, for example). Again the predicate is
removed from a node once it is not a branch node anymore (node 2 and 3).

2

3 4

5

6

1

(a) (b)

2

3 4

5

6

1

2'

3' 4'

5'

1'

0

F T

7
7

TF

Fig. 4. (a) A loop in CFG with two back edges and two exits. (b) The CFG of the
transformed loop.

After the transformation, all loops in the program become while loops and
our method applies.

Synthesizing Loops for Program Inversion 83

3.3 Discussion

Equality from Solving Constraints. We use constraint solving to obtain any
needed equalities. For example, if a ≥ b and a ≤ b, then a = b. This method is
useful to get the final value of a loop counter. A typical example is shown below:

i = 0; while (i < N) { ...; i = i + 1; }

where i is a loop counter incremented by one in each iteration, and N ≥ 0. In
Floyd-Hoare logic [6], the partial correctness of a while loop is governed by the
following rule of inference [8]:

{C ∧ I} body {I}
{I} while (C) body {¬C ∧ I}

where C is the while condition, and I is a loop invariant, which is informally
defined as a statement of the conditions that should be true on entry into a
loop and are guaranteed to remain true on every iteration of the loop. In this
example, we choose i ≤ N as a loop invariant. After replacing C and I with
i < N and i ≤ N , the postcondition at the end of the loop {¬C ∧ I} becomes
¬(i < N) ∧ i ≤ N , from which we get i = N .

Rebuilding Control Flows for the Reverse Program. In our prior work [3],
we record the runtime control flow paths in the forward program using a bit
vector. Specifically, a bit is used to record which path is taken at each two-way
branch node. The bit vector is stored at the end of the forward program and
is used to rebuild the control flows in the reverse program. This method has
both low time and space overhead. However, for program with loops, recording
control flows in each iteration of a loop may bring considerable space overhead.

To avoid this overhead, we found that we could calculate the control flows
instead of storing and restoring them. Basically, there are two ways to do that.
First, for a predicate in the original program, we can recover all values used in
the predicate in the reverse program, then use those values to produce the result
of the predicate. Second, if there is a φ function defined at a join node in the
original program as v2 = φ(v0, v1), and v0 and v1 cannot have the same value,
then if we can get the value range of v0 or v1 and retrieve the value of v2 , we
can build a predicate by checking if the value of v2 is in the value range of v0 or
v1. More details will be introduced in our future publications.

4 Conclusion and Future Work

With our loop handling methods, Backstroke can now handle a variety of pro-
grams that operate on scalar variables. The next major direction for this work
are to handle array programs and programs that manipulate complex data struc-
tures, such as linked data structures. However, our work to date lays the critical
foundations for such extensions; for example, the index of an array is a scalar

84 C. Hou et al.

that can be retrieved in a loop using the method described in this paper. Our fu-
ture work will focus on synthesizing reverse programs that use arrays and object
accesses. We are particularly interested in whether our techniques can be used
to reverse programs known to be reversible by computation, such as lossless
compression and decompression, encryption and decryption, among numerous
others.

Acknowledgements. This work was supported in part by the National Sci-
ence Foundation (NSF), under CAREER award number 0953100, and grants
from the U.S. Department of Energy (DOE) through Lawrence Livermore Na-
tional Laboratory (LLNL) LDRD project 10-ERD-025. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect those of NSF, DOE, or LLNL.

References

1. Biswas, B., Mall, R.: Reverse execution of programs. ACM SIGPLAN No-
tices 34(4), 61–69 (1999)

2. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems 13(4), 451–490 (1991)

3. Hou, C., Vulov, G., Quinlan, D., Jefferson, D., Fujimoto, R., Vuduc, R.: A New
Method for Program Inversion. In: O’Boyle, M. (ed.) CC 2012. LNCS, vol. 7210,
pp. 81–100. Springer, Heidelberg (2012)

4. Jefferson, D.R.: Virtual time. ACM Transactions on Programming Languages and
Systems 7(3), 404–425 (1985)

5. Muchnick, S.S.: Advanced Compiler Design Implementation. Morgan Kaufmann
Publishers (1997)

6. Pratt, V.R.: Semantical consideration on floyo-hoare logic. In: 17th Annual Sym-
posium on Foundations of Computer Science (1976)

7. Ballance, R.A., Maccabe, A.B., Ottenstein, K.J.: The Program Dependence Web:
A Representation Supporting Control-, Data-, and Demand-Driven Interpretation
of Imperative Language. In: PLDI 1990 (1990)

8. Roşu, G., Ellison, C., Schulte, W.: Matching Logic: An Alternative to Hoare/Floyd
Logic. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp.
142–162. Springer, Heidelberg (2011)

9. Pop, S., Jouvelot, P., Silber, G.-A.: In and Out of SSA: A Denotational Specifica-
tion. In: Static Single-Assignment Form Seminar (2009)

10. Srivastava, S., Gulwani, S., Chaudhuri, S., Foster, J.S.: Path-based inductive syn-
thesis for program inversion. In: PLDI 2011. ACM Press (2011)

11. Vulov, G., Hou, C., Vuduc, R., Quinlan, D., Fujimoto, R., Jefferson, D.: The back-
stroke framework for source level reverse computation applied to parallel discrete
event simulation. In: Winter Simulation Conference (2011)

12. Wolfe, M.: Beyond Induction Variables. In: Proceedings of the ACM SIGPLAN
1992 Conference on Programming Language Design and Implementation, PLDI
(1992)

Frugal Encoding in Reversible MOQA:

A Case Study for Quicksort

Diarmuid Early, Ang Gao, and Michel Schellekens

Centre for Efficiency Oriented Languages
University College Cork

Ireland�

{a.gao,m.schellekens}@cs.ucc.ie

Abstract. MOQA is a high-level data structuring language, designed
to allow for modular static timing analysis. In essence, MOQA allows
the programmer to determine the average running time of a broad class
of programmes directly from the code in a (semi-)automated way. The
MOQA language has the property of randomness preservation which
means that applying any operation to a random structure, results in an
output isomorphic to one or more random structures, which is the key
to systematic timing. The language, its implementation and the associ-
ated timing tool have been reported on in the literature. Randomness
preservation is key in ensuring modular timing derivation. A degree of
reversibility in turn is a key aspect of ensuring randomness preservation.
All operations of the MOQA language can be made reversible with min-
imal additional bookkeeping. A challenge in achieving this encoding in
a frugal way is to ensure subsets of data can be stored without exces-
sive overheads. The paper focuses on illustrating such an encoding for
the case of the Quicksort algorithm. Similar encodings are explored to
ensure efficient reversibility of all MOQA operations. The paper is self
contained, i.e. no prior knowledge of the MOQA language is needed to
follow the encoding argument. We show how to efficiently encode the
information needed to reverse the split of a list into two sublists. The
code for reversible Quicksort is provided and an example illustrates the
algorithm’s reverse execution.

Keywords: Reversible computing, Encoding, Algorithms, Quicksort,
Sorting, Data structures, Partial orders, Random Structures, Time
analysis, MOQA language.

1 Introduction

[Sch08] introduces MOQA, a high-level data structuring language, designed to
allow for modular static timing analysis. In essence, MOQA allows the pro-
grammer to determine the average running time of a broad class of programs

� This work was supported by the Science Foundation Ireland (SFI) Grant under
Grant number: 07/IN.1/I977.

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 85–96, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

86 D. Early, A. Gao, and M. Schellekens

directly from the code in a (semi-)automated way. For further discussion of the
mechanics of the process, see [Sch08, Hic08, SHB04]. As pointed out in [Sch08],
the modularity property brings a strong advantage for the programmer. The
capacity to combine parts of code, where the average-time is simply the sum of
the times of the parts, is a very helpful advantage in static analysis, something
which is not available in current languages. Moreover, re-use is a key factor in
the MOQA approach: once the average time is determined for a piece of code,
then this time will hold in any context. Hence it can be re-used and the timing
impact is always the same. Modularity also improves precision of static average-
case analysis, supporting the determination of accurate estimates on the average
number of basic operations of MOQA programs. Reversible MOQA discussed
in [Sch10] and [Ear10] complements traditional applications of reversibility with
a new application domain, that of average-case cost analysis (where cost can be
running time or power usage) of reversible MOQA programs. We provide here
the frugal encoding for the reversible MOQA split operation and illustrate the
approach via a reversible version of the well-known Quicksort algorithm.

Reversibility traditionally plays a role in hardware design, with implications
for low power design [Lan61,Ben73,Tof80]. A few exceptions focus on high-level
reversible languages, including the language JANUS and the work discussed in
[YG07]. Most reversible approaches remained at hardware level. As observed,
the use of MOQA as a high level reversible language brings a new type of appli-
cation to the area of reversible computing. As pointed out in [Sch08] a sufficient
condition for algorithms to be analyzable in a modular way is that they are
random bag preserving. Not all algorithms are random bag preserving though,
a case in point being the traditional heapsort algorithm [Sch08]. As shown in
[Sch10], random bag preservation can typically be guaranteed by ensuring a
“locally” one-to-one mapping, e.g. a mapping guaranteed to be one-to-one on
each of the parts of a partition of the inputs1. MOQA’s random bag preserv-
ing programs are ensured to allow for a greatly simplified average-case analysis.
The key to understanding MOQA as a new application domain for reversible
computing is that its programs, with little additional book-keeping become fully
reversible [SEPV09, Sch10, Ear10]. Hence we establish a link between reversibil-
ity and the capacity for modular (i.e. semi-automated) average-case analysis.
Of course, general algorithms typically can be subjected to average-case anal-
ysis techniques. The key point is that some algorithms, like heapsort, are not
random bag preserving and hence either require complicated (non-automatable)
techniques or escape average-case analysis by current techniques. As a degree of
reversibility lies at the heart of random bag preservation [Sch10], reversibility has
the potential to play a fundamental role in the design of modularly predictable
algorithms. Since with a little more bookkeeping, MOQA becomes a fully re-
versible language, the exploration of its reversible properties is worthwhile, in
particular since the reversible programs in turn allow for an exact prediction of
average-case computation time. Hence we can predict in a static way, the cost
of computing forward and backward in the language.

1 For example, the MOQA product operation as discussed in [Sch08], Theorem 5.1.

Frugal Encoding in Reversible MOQA: A Case Study for Quicksort 87

The reversible aspects of MOQA open up possibilities to apply MOQA to
determine the average-case power usage but possibly also to use MOQA to
achieve power optimization based on traditional reversible approaches [TDJ10].
We continue with a self contained introduction to MOQA data structures.

The primary objects in MOQA are finite labelled partial orders, or LPOs,
and random structures.

Definition 1. A labelled partial order, or LPO, is a triple (A,�, l), where
A is a set, � is a partial order on A (that is, a binary relation which is reflexive,
anti-symmetric, and transitive), and l is a bijection from A to some totally or-
dered set C which is increasing with respect to the order �. If l is not increasing,
we call (A,�, l) a weakly labelled partial order, or WLPO.

Definition 2. Given a finite partial order (A,�) and a totally ordered set C
with |C| = |A|, the random structure RC(A,�) is the set of all LPOs (A,�, l)
with l(A) = C.

MOQA operations are comparison-based, and so the choice of the set C is
unimportant, and we will generally write a random structure as R(A,�), without
the subscript2.

The MOQA language has the property of ‘randomness preservation’, which
means that applying any operation to each LPO in a random structure results in
an output isomorphic to one or more random structures, which is the key to sys-
tematic timing. We will give a basic example below to illustrate these concepts.
Four of the main random bag preserving operations are the random product
operation, the random delete operation, the random projection operation and
the random split operation. We refer the reader to [Sch08] for further informa-
tion. The control flow of MOQA programs is governed by strict rules, given in
[Sch08], chapter 7. In essence MOQA programs involve tightly controlled higher
level operations that involve the basic operations listed above. Higher level op-
erations include conditional statements (with restricted conditional), recursion
(over so-called series-parallel data structures) and for-loops.

For the purpose of this paper, it suffices to introduce the MOQA split op-
eration, i.e. the key operation in the Quicksort algorithm. This is the topic of
Section 2.

2 Background

In this section, we focus on a simple ‘randomness preserving’ operation split.
For a complete description of the MOQA operations, designed to capture tradi-
tional data structuring operations in a randomness preserving fashion, we refer
the reader to [Sch10] or Springer book [Sch08] for the complete description of
MOQA.

2 More formally, we can consider the random structure to be the quotient of the set
of all LPOs on the partial order (A,
) with respect to a natural isomorphism. See
[Ear10] for a full discussion.

88 D. Early, A. Gao, and M. Schellekens

The classical algorithms Quicksort and Quickselect are both based on a split
operation, which takes a list and a pivot (which is an element of the list) as
arguments. We use a simpler version to reduce technicalities. The pivot for
split is chosen to be the first element of the list. This choice is again irrele-
vant. Other choices will result in similar random structures with minor technical
modifications.

Split proceeds on a list of size n by comparing, in left to right order and
starting at the second element, each label of the i-th element, i ∈ {2 . . . n}, with
the pivot label. In cases where the label of the i-th element is greater than the
pivot label, these elements and their labels are placed above the pivot. Otherwise
they are placed below the pivot. In fact, the classical split puts the i-the element
to the left or the right of the pivot. The MOQA split however puts it below or
above the pivot, a minor technical difference.

For example, if we have a random list a, b, c, d, one possible LPO for this list
is shown in Example 1. In this example a > b, a > d and a < c. In the follow
context, we will call upper part Y1, middle pivot Y2 and bottom part Y3. A more
complete example is shown in Example 2. We use the label set C = {1, 2, 3} to
simplify the example

Example 1. One example apply Split on random list [a, b, c, d].

Example 2. Split operation on random list size 3.

Frugal Encoding in Reversible MOQA: A Case Study for Quicksort 89

We shows the effect of Split acting on each of the six discrete LPOs of a
size 3 random list. It is easy to see that the first two outputs form a 3 ele-
ment V-shaped random structure, denoted by ∨3; the middle two outputs con-
sist of two copys of a linear order random structure of size 3, denoted by S3,
and the last two form a 3 element wedge-shaped random structure, denoted by
∧3. Thus we say that Split transforms the 3 element random list labelling into
{(R(∨3), 1), (R(S3), 2), (R(∧3), 1)}.

The result of the operation can be generalized to random list of size n, and we
refer the interested reader to [Sch08]. In the context of this paper, the resulting
random structures and their multiplicities are not crucial and the contents are
self contained.

3 Efficient Encoding

First, we show that how to efficiently encode the information needed to reverse
the split of a list into two sublists (upper part and bottom part). We assume
that all list are ordered.

Clearly, if we know the position of each item in the upper sub-list in the
original list, this is enough. For example, if the two sub-lists are (f, g, q, p, z) and
(m, s, b, t), and if we know that the elements of the upper list were initially in
position 1, 3, 4, 8 and 9, then the original list except pivot element must be:

(f, m, g, q, s, b, t, p, z)
1 3 4 8 9

So, given positive integers k < n, suppose we have two lists of length k and
n−k. To combine them in the original order, we need k distinct integers between
1 and n. We write these as {xi}ki=1, where the xi are in ascending order. Clearly
there are

(
n
k

)
different sets with these properties.

One way to encode a subset of size k from a set of size n is with a binary string
of length n, whose ith bit is 1 if and only if the ith element of the set is included
in the subset. However, if k is very small or very large (relative to n), this
encoding is very inefficient. For example, we can encode a one-element subset
with a number between 1 and n, or log2(n) bits, whereas this method would
require n bits. Using this method to reverse the split operation would give a
worst-case reversal overhead for Quicksort of n!2O(n2), while we will show that
a more frugal encoding can achieve the same result with a maximum overhead
of n!.

The following lemma shows how to encode position indices {xi}ki=1.

Lemma 1. Given a positive integer n and an integer k ∈ [0, n], the function

f({xi}ki=1) =
∑k

i=1

(
xi−1

i

)
is a one-to-one mapping from the k-element subsets

of the first n integers (in ascending order) to the set of integers from 0 to
(
n
k

)
−1.

Proof. First, we prove that no two subsets map to the same value(i.e. f is an
injection). Suppose that f({xi}ki=1) = f({yi}ki=1), and that xi �= yi for some

90 D. Early, A. Gao, and M. Schellekens

i ∈ [1, k]. Let j be the largest value of i for which xi �= yi. We can assume that
xj > yj . Now for all i ≤ j, yi ≤ xj − 1 − j + i(note: xj > yj , yj > yi, both xi

and yj are integers in range [1,n]) and so:

j∑
i=1

(
yi − 1

i

)
≤

j∑
i=1

(
xj − 2− j + i

i

)
= −1 +

j∑
i=0

(
xj − 2− j + i

i

)
(change of index)

= −1 +

(
xj − 1

j

)
<

(
xj − 1

j

)

Where the last equation follows from the hockeystick lemma [Zei99].
So:

f({yi}ki=1) =
k∑

i=1

(
yi − 1

i

)
=

j∑
i=1

(
yi − 1

i

)
+

k∑
i=j+1

(
xi − 1

i

)

<

k∑
i=j

(
xi − 1

i

)
≤ f({xi}ki=1)

Which contradicts the assumption. To avoid contradiction, f must be an
injection.

Now we prove upper and lower bounds on f . Clearly f({xi}ki=1) ≥ 0. To get
the upper bound, note that xi ≤ n− k + i, and thus:

f({xi}ki=1) ≤
k∑

i=1

(
n− k − 1 + i

i

)
= −1 +

k∑
i=0

(
n− k − 1 + i

i

)
(change of index)

= −1 +

(
n

k

)

And the last equation again follows from the hockeystick lemma [Zei99]. So the
range of f is [0,

(
n
k

)
− 1]. But now there are

(
n
k

)
distinct subsets,

(
n
k

)
possible

outputs and each input maps to a distinct output, so f must be one-to-one. ��

We provide a brief intuition for the indexing of the subsets:

– We define an order on the subsets whereby subset A is greater than subset
B if the largest element in one set but not the other is in subset A. Consider
the number of subsets less than a given subset, which contains the elements
of ranks x1, x2, · · · , xk in the full set.

– If the element of rank xp in the overall set is the largest that is not common
to both subsets, then all the larger elements are in common, and the smaller
subset can have any p elements from among the smallest xp − 1 in the set,
a total of

(
xp−1

p

)
possibilities.

Frugal Encoding in Reversible MOQA: A Case Study for Quicksort 91

– But now, for any pair of distinct subsets, there is only one largest element
in one but not the other, and so any subset smaller than the given one must
match this pattern for some p ∈ [1, k]. So the total number of smaller subsets

is
∑k

i=1

(
xi−1

i

)
.

– Now, assigning each subset an index which is the number of smaller subsets
gives each subset a unique index between 0 and

(
n
k

)
− 1.

We also brief outline an algorithm for extracting the sequence {xi}ki=1 given
f({xi}ki=1) (and also the value of n and k)

Algorithm 1. Extracting the sequence {xi}ki=1 given f({xi}ki=1)

Input: N -- f({xi}ki=1), n -- size of original list, k -- sublist size.
Output: S (a set {xi}ki=1)

Extract(N,n, k) :
j ← k
S ← ∅
for i ← n to 1 do

if N ≥ (i−1
j

)
then

S ← {i} ∪ S
N ← N − (i

j

)
j ← j − 1

end if
end for
return S

Example 3. Suppose we split (f,m, g, q, s, b, t, p, z) into (f, g, q, p, z) and (m, s,
b, t). Then (x1, x2, x3, x4, x5) = (1, 3, 4, 8, 9).

f({xi}5i=1) =

(
9− 1

5

)
+

(
8− 1

4

)
+

(
4− 1

3

)
+

(
3− 1

2

)
+

(
1− 1

1

)

= 56 + 35 + 1 + 1 + 0 = 93

Now, given N = 93, n = 9, k = 5, we set j = 5 and run the algorithm:
i = 9, j = 5, 93 >

(
9−1
5

)
so S = {9}, j = 4, N = 93−

(
9−1
5

)
= 37

i = 8, j = 4, 37 >
(
8−1
4

)
so S = {8, 9}, j = 3, N = 37−

(
8−1
4

)
= 2

i = 7, j = 3, 2 <
(
7−1
3

)
so skip

i = 6, j = 3, 2 <
(
6−1
3

)
so skip

i = 5, j = 3, 2 <
(
5−1
5

)
so skip

i = 4, j = 3, 2 >
(
4−1
3

)
so S = {4, 8, 9}, j = 2, N = 2−

(
4−1
3

)
= 1

i = 3, j = 2, 1 =
(
3−1
2

)
so S = {3, 4, 8, 9}, j = 1, N = 1−

(
3−1
2

)
= 0

i = 2, j = 1, 0 <
(
2−1
1

)
so skip

i = 1, j = 1, 0 =
(
1−1
1

)
so S = {1, 3, 4, 8, 9}, j = 0, N = 0−

(
1−1
1

)
= 0

92 D. Early, A. Gao, and M. Schellekens

Thus for a MOQA split operation we can keep track the encoding for the
upper elements in resulting LPO and restore their original position with the help
of Extract algorithm.

Algorithm 2. Reversible Split algorithm: Forward computing

Input: a discrete LPO L.
Output: a three-layered series LPO (Y1, Y2, Y3) and reversal index : RIndex.

RSplit F (L) : � Using the book notation, the top part is Y1,
(Y1, Y2, Y3) ← Split(L) � pos maps element yi to its position xi in L
RIndex ← f({pos(yi)− 1}yi∈Y1) � f defined in Lemma 1
return (Y1, Y2, Y3), RIndex

Algorithm 3. Reversible Split algorithm: Reverse computing

Input: a three-layered series LPO (Y1, Y2, Y3) and reversal index : RIndex.
Output: a discrete LPO L.

RSplit R((Y1, Y2, Y3), RIndex) :
n ← |Y1|+ |Y2|+ |Y3|
X = Extract(RIndex,n, |Y1|)
L ← [Y2]
for i ← 2 to n do

if i− 1 ∈ X then
L ← L+ Y1[1]
Del(Y1[1]) � Remove first element from Y1

else
L ← L+ Y3[1]
Del(Y3[1]) � Remove first element from Y3

end if
end for
return L

Example 4. Forward and reverse split on random list [x, f,m, g, q, s, b, t, p, z].

Frugal Encoding in Reversible MOQA: A Case Study for Quicksort 93

4 Quicksort

We define a reversible Quicksort algorithm, Q′, which takes a discrete LPO L as
an argument and returns a linear LPO L∗ and an integer between 1 and |L|! .
Given L∗ and the integer, we can recover L.

Algorithm 4. Reversible Quicksort algorithm: Forward computing

Input: a discrete LPO L
Output: a linear LPO L∗ and reversal index

Q′(L) :
if |L| ≤ 1 then

return (L, 1)
else

(Y1, Y2, Y3), C0 ← RSplit F (L) � Using the book notation, the top part is Y1,
� the pivot is Y2 and the bottom part is Y3.

(Y1, C1) ← Q′(Y1) � Let the code returned be C1

(Y3, C2) ← Q′(Y3) � Let the code returned be C2

return ([Y1 : Y2 : Y3], |Y3|(|L| − 1)! +C0|Y1|!|Y3|! + (C1 − 1)|Y3|! +C2)
end if

We note that C2 ∈ [1, |Y3|!] by assumption, C1 ∈ [1, |Y1|!] by assumption.

C0 ∈ [0,
(|L|−1

|Y1|
)
− 1] from lemma 1, and |Y3| ∈ [0, n − 1] from the definition of

Split, and so the min and max values of the code returned are 1 and

(|L| − 1)(|L| − 1)! + (

(
|L| − 1

|Y1|

)
− 1)|Y1|!|Y3|! + (|Y1|!− 1)|Y3|! + |Y3|!

= (|L| − 1)(|L| − 1)! + (
(|L| − 1)!

|Y1|!|Y3|!
− 1)|Y1|!|Y3|! + (|Y1|!− 1)|Y3|! + |Y3|!

= |L|!− (|L| − 1)! + (|L| − 1)!− |Y1|!|Y3|! + |Y1|!|Y3|!− |Y3|! + |Y3|! = |L|!

as expected.
Note that this encoding is the most efficient possible, since all n! different

unsorted lists are mapped to the same sorted output.
We briefly outline the intuition for the reversal index returned.
In order to reverse Quicksort, using the recursive structure of the algorithm,

we need three pieces of information: (i) the location of the pivot, which is encoded
by |Y3|, the number of elements placed below the pivot; (ii) the order in which
the nodes above and below the pivot originally appeared, which is encoded by
C0 as outlined in the previous section; and (iii) the information needed to reverse
each of the two recursive calls on the upper and lower parts, which are encoded
in C1 and C2 respectively. We would like to store these four numbers in a way
that allows us to recover each of them.

We could store them as a quadruple (a, b, c, d), but then the recursion would
mean that c and d were tuples themselves, and the final n-tuple could be very
large — so we need to combine them. The way we do this is similar to the

94 D. Early, A. Gao, and M. Schellekens

different digits in a number. To store 4 numbers a, b, c, and d between 0 and 9,
we can compute N = a∗ 103+ b∗ 102+ c∗ 10+d, and easily extract each one. In
the same way, if a, b, c, and d are non-negative and less than some different upper
bounds A, B, C, and D (where in the previous case A = B = C = D = 10),
then we can encode the combination as N = a∗BCD+b∗CD+c∗D+d. This is
the essence of how we have encoded the reversal index (with some adjustments
for codes that range between 1 and n instead of 0 and n− 1).

We can then extract the digits using floors and ceilings. For example, to
extract b from N above, we can use b = �N/CD� − B ∗ �N/BCD�. The first
floor expression gives a∗B+ b, because c/BC+d/BCD is the fractional part of
N/CD, and similarly the second one gives a. Again, the technique needs to be
adapted slightly for codes that range between 1 and n instead of 0 and n−1, but
the essential idea is the same. We now show how we can use this information to
construct a reverse Quicksort algorithm.

5 Reversing Quicksort

Given a sorted list L∗ and a reversal index N , we can reverse Q′ to get the input
LPO as follows:

Algorithm 5. Reversible Quicksort algorithm: Reverse computing

Input: a sorted list L∗ and a reversal index N
Output: a discrete LPO L

Q
′
(L∗, N) :

if |L∗| ≤ 1 then
return L∗

else
k ← � N

(|L∗|−1)!
� � kth smallest label in L∗ is the first pivot.

Y2 ← L∗[k] Y1 ← L∗[1 : k − 1] Y3 ← L∗[k + 1 : end]
� : L∗[a : b] means elements from a to b

C2 ← N − (k − 1)!� N−1
(k−1)!

� C1 ← 1 +
N−C2−(k−1)!(|L∗|−k)!� N−1

(k−1)!(|L∗|−k)!
�

k−1!

� compute reversal index for upper and bottom parts.

Y1 ← Q
′
(Y1, C1) � Reverse upper part

Y3 ← Q
′
(Y3, C2) � Reverse bottom part

C0 ← N−(|L∗|−1)!(k−1)−(C1−1)(k−1)!−C2
(k−1)!(|L∗|−k)!

L ← RSplit R((Y1, Y2, Y3), C0)
return L

end if

Example 5. Suppose we Quicksort this list [b, d, a, c] as follows:

Frugal Encoding in Reversible MOQA: A Case Study for Quicksort 95

5.1 Forward Computing

Let’s start with Q′ first. A split operation applied on the list [b, d, a, c] will
partition it into two sublists [d, c] and [a], and the according positions in the
original list for sublist [d, c] is [1, 3], thus C0 = f({xi}2i=1) =

(
3−1
2

)
+

(
1−1
1

)
= 1.

Recursively we look at the upper part, two sublists [c] and empty list. So C1 =
1× (2− 1)! +

(
1−1
1

)
× 0!× 1! + (1− 1)1! + 1 = 2. For the down part, because it

only has one element, so C2 = 1. Thus the final code returned for this sorting
is: 1× (4− 1)! + 1× 2!× 1! + (2− 1)1! + 1 = 6 + 2+ 1 + 1 = 10. So Q′ will give
us sorted list [d, c, b, a] and reversal index 10. Next let’s reverse the sorting.

5.2 Reverse Computing

First find the first pivot, k = N
(|L∗|−1)!! = 10

(4−1)!! = 2, thus the second smallest

label is the pivot, which is b. So Y1 contains [d, c], Y3 contains [a]. C2 = N − (k−
1)!� N−1

(k−1)!� = 10−(2−1)!� 10−1
(2−1)!� = 1 and C1 =

N−C2−(k−1)!(|L∗|−k)!� N−1
(k−1)!(|L∗|−k)!

k−1!

+1 =
10−1−(2−1)!(4−2)!� 10−1

(2−1)!∗(4−2)!

1! + 1 =
10−1−2� 9

2
1 + 1 = 2.

Recursively we reverse Y1 = [d, c] with reversal index 2: pivot k = N
(|L∗|−1)!! =

 2
(2−1)!! = 2, thus second smallest element d is the pivot in the sorted sublist

[d, c]. C2 = 2 − (2 − 1)!� 2−1
(2−1)!� = 1, C1 = 1 +

2−1−(2−1)!(2−2)!� 2−1
(2−1)!(2−2)!

(2−1)! = 1.

For its recursive cases, only containing a single element and the empty element,

we restore the sorted sublist[d, c] with C0 = 2−(2−1)!(2−1)−(1−1)(2−1)!−1
(2−1)!(2−2)! = 0.

The final reversed sublist places pivot d in first position, places upper elements
(empty) according to the extracted sequence from C0 (still empty), combined
with reversed bottom elements (the single element c). We obtain the reversed
unsorted sublist [d, c] for this recursive call.

Similarly, we restore Y3 with reversal index 1 and obtain the reversed sublist
[a].

Finally we combine the two reversed sublists [d, c] and [a] with

C0 = 10−(4−1)!(2−1)−(2−1)(2−1)!−1
2! = 1. According to Algorithm 1, we can obtain

original position indices for [d, c], which is [1, 3] as can be verified in section 5.1.
Thus finally we reversed Quicksort and restored the input sequence [b, d, a, c].

6 Conclusion and Future Work

We have shown the frugal encoding underpinning of the reversible MOQA split
operation, where the encoding can be achieved through the bookkeeping of a

96 D. Early, A. Gao, and M. Schellekens

single number. The applicability of the encoding has been demonstrated via
reversible Quicksort.

As mentioned in the introduction, the paper serves to illustrate the principles
underpinning the encoding, the generalization of which will be explored to en-
sure frugal encodings for all of MOQA’s operations, where reversibility of each
of the operations has been established in prior work ([SEPV09],[Sch10],[Ear10]).
The encoding lifts MOQA from a language underpinning static average-case
analysis to a reversible language, capable of exact average-cost predictions. Fu-
ture work will focus on extracting the benefits of both aspects, and, on exploring
the interesting novel connection between guaranteeing a modular derivation of
the average computation cost (a key requirement to develop static timing tools)
and reversibility of language operations.

References

[Ben73] Bennet, C.: Logical reversibility of computation. IBM Journal of Research
and Development 6, 525–532 (1973)

[Ear10] Early, D.: A Mathematical Analysis of the MOQA Language. Ph.D. thesis,
University College Cork (2010)

[Hic08] Hickey, D.: Tracking data structures for automated average time analysis.
Ph.D. thesis, University College Cork (2008)

[Lan61] Landauer, R.: Irreversibility and heat generation in the computing process.
IBM Journal of Research and Development 5, 183–191 (1961)

[Sch08] Schellekens, M.: A Modular Calculus for the Average Cost of Data Struc-
turing, 240 p. Springer (2008)

[Sch09] Schellekens, M.: A random bag preserving product operation. Electronic
Notes in Theoretical Computer Science 225 (2009)

[Sch10] Schellekens, M.: MOQA; Unlocking the Potential of Compositional Static
Average-Case Analysis. Journal of Logic and Algebraic Programming 79(1),
61–83 (2010)

[SEPV09] Schellekens, M., Early, D., Popovici, E., Vasudevan, D.: A high level re-
versible language for modular average-case analysis. Preliminary Proceed-
ings of the Reversible Computing Workshop-RC 2009, A Satellite Workshop
of ETAPS 2009 (2009)

[SHB04] Schellekens, M., Hickey, D., Bollella, G.: MOQA, a Linearly-Compositional
Programming Language for (semi-) automated Average-Case Analysis. In:
WIP Proceedings, 25th IEEE International Real-Time Systems Symposium,
Lisbon, Portugal (2004)

[Tof80] Toffoli, T.: Reversible Computing. In: Proceedings of the 7th Colloquium on
Automata, Languages and Programming, pp. 632–644 (1980)

[TDJ10] Ye, T., Vasudevan, D., Chen, J., Popovici, E., Schellekens, M.: Static Av-
erage Case Power Analysis for Block Ciphers. In: The 13th EUROMI-
CRO Conference on Digital System Design, EUROMICRO-DSD 2010, Lille,
France (2010)

[YG07] Yokoyama, T., Glueck, R.: A Reversible Programming Language and its
Invertible Self- Interpreter. In: Proc. ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation, PEPM, pp. 144–153 (2007)

[Zei99] Zeitz, P.: The Art and Craft of Problem Solving. John Wiley & Sons, Inc.
(1999)

Towards a General-Purpose,

Reversible Language for Controlling
Self-reconfigurable Robots

Ulrik Pagh Schultz

Modular Robotics Lab, University of Southern Denmark
ups@mmmi.sdu.dk

http://www.mmmi.sdu.dk/~ups

Abstract. Self-reconfigurable, modular robots are distributed mecha-
tronic devices that can autonomously change their physical shape. Self-
reconfiguration from one shape to another is typically achieved through a
specific sequence of actuation operations distributed across the modules
of the robot. Automatically reversing the sequence of operations brings
the robot back to its initial shape, as has been experimentally demon-
strated using the DynaRole reversible language. DynaRole however only
allows simple sequences of operations to be reversed, which is suitable for
reversing self-reconfiguration sequences but lacks the generality needed
to implement more complex behaviors.

In this paper we present initial ideas on generalizing the DynaRole lan-
guage to support a wider range of modular robot control scenarios, while
retaining the possibility of reversing distributed sequences. Reversibility
is investigated as a practical feature, reducing the programming task of
the programmer, and allowing error recovery by backing out of an error
state using reverse execution.

Keywords: modular robots, distributed control, reversible language.

1 Introduction

Modular robotics is an approach to the design, construction and operation of
robotic devices aiming to achieve flexibility and reliability by using a reconfig-
urable assembly of simple subsystems [1]. Robots built from modular compo-
nents can potentially overcome the limitations of traditional fixed-morphology
systems because they are able to rearrange modules automatically on a need ba-
sis, a process known as self-reconfiguration, and are able to replace unserviceable
modules without disrupting the system’s operations significantly. Programming
reconfigurable robots is however complicated by the need to adapt the behavior
of each of the individual modules to the overall physical shape of the robot and
the difficulty of handling partial hardware failures in a robust manner.

In earlier work, we have investigated the distributed execution of a pre-
specified self-reconfiguration sequence in a modular robot [2]. A sequence is
specified using a simple, centralized scripting language, which either could be

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 97–111, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.mmmi.sdu.dk/~ups

98 U.P. Schultz

Fig. 1. The ATRON modular robot used for various applications

the outcome of a planner or be hand-coded. The distributed controller gener-
ated from this language allows for parallel self-reconfiguration steps and is highly
robust to communication errors and loss of local state due to software failures.
Furthermore, the self-reconfiguration sequence can automatically be reversed:
any self-reconfiguration process described in the language is reversible, subject
to physical constraints. The distributed scripting facility is however limited to
specifying straightforward sequences of actions, there is no support for specify-
ing when sequences should execute, nor is there support for e.g. conditionals and
local state. These limitations prompt the development of an improved language
which provides a more general notion of robust, reversible execution.

This paper presents a work-in-progress on providing a generalized notion of
reversibility in a programming language for modular robots. The key focus is
on providing a robust, distributed execution model that facilitates programming
modular robots in the presence of partial hardware failures. Reversibility serves
both a practical role in terms of code reuse (the reverse sequence is automat-
ically derived from the forwards sequence) and as a potential improvement in
robustness since reverse execution presumably can be used to “back out of” an
execution sequence that cannot advance due to partial hardware failures. Con-
cretely, execution sequences are extended with simple pre- and post-conditions
over the module structure and context, and an extended representation of the
execution state is used to allow sequences to be robustly reversed at any point
in their execution. The overall utility of the approach is tested experimentally
using a prototype reversible language for modular robots, also described in this
paper.

The rest of the paper is organized as follows: we first provide background
material on modular robots and the DynaRole language (Sec. 2), then provide
a more in-depth discussion of how reversibility could be used more generally
in modular robots (Sec. 3), and afterwards present our proposal for general
principles for program reversal for modular robots (Sec. 4). Last, we present our
proposed language design, explained using simple obstacle avoidance experiment
(Sec. 5), and conclude with a discussion of perspectives and future work (Sec. 6).

2 Background: Modular Robots

There are numerous different kinds of modular robots [1]. The ATRON self-
reconfigurable modular robot (Fig. 1) is our primary experimental platform.

Towards a Reversible Language for Controlling Self-reconfigurable Robots 99

The ATRON is a 3D lattice-type system [3]. Each unit is composed of two
hemispheres, which rotate relative to each other, giving the module one degree
of freedom. Connection to neighboring modules is performed by using its four
actuated male and four passive female connectors, each positioned at 90 de-
gree intervals on each hemisphere. The likewise positioned eight infrared ports
are used to communicate among neighboring modules and to sense distance to
nearby objects. Each module is in principle an autonomous robot, but for the
robot as a whole to provide useful functionality the actions of the individual
modules must be coordinated.

2.1 Self-reconfiguration

Self-reconfiguration concerns the spatial transformation of the robot morphology
from one shape to another [1]. It is typically viewed as a sequence of operations
performed by the robot; in some cases self-reconfiguration could be the only
operation performed e.g. if performing locomotion based on self-reconfiguration.
Off-line planning of self-reconfiguration sequences robots has been studied for a
large number of different robotic systems [4–13], but is largely complementary to
the concerns addressed in this paper: we are interested in providing automatic
reversal of self-reconfiguration sequences for the dual purpose of code reuse and
increased robustness. On-line, distributed self-reconfiguration algorithms [14–
20] allow self-reconfiguration to be done automatically given a target shape.
Nevertheless, on-line algorithms are only feasible for modules with relatively few
motion constraints, making them less useful for a robot such as the ATRON [12].

As mentioned earlier, the ATRON robot consists of simple one-degree-of-
freedom modules. To compensate for the limited motion capabilities, control can
be based on metamodules composed of more than one module [21]. Metamodules
are a logical construct that emerge from other modules, move on the surface of
other modules through continuous self-reconfiguration, and stop at a new po-
sition. The flow of metamodules, from one place to another on the structure
of modules, realizes the desired self-reconfiguration. Programming metamodules
has been done using a combination of local actions executed by specific meta-
modules and gradient information propagated throughout the structure [22].

2.2 The DynaRole Language

DynaRole is a role-oriented language that allows the programmer to use roles
to declaratively specify how programs are deployed in the modular robot as a
function of its spatial layout and how each module responds to sensor inputs and
communication [23]. The use of roles allows behaviors to be organized into units
that again are organized into an inheritance hierarchy, providing both reuse and
behavioral specialization. To enable DynaRole to be used for self-reconfiguration,
we extended the language to support robust execution of distributed sequences
of operations [2]. Specifically, self-reconfiguration sequences are compiled to a ro-
bust and efficient implementation based on a distributed state machine that con-
tinuously shares the current execution state between the modules of the robot.

100 U.P. Schultz

Dependencies between operations are explicitly stated to allow independent op-
erations to be performed in parallel while enforcing sequential ordering between
actions that are physically dependent on each other. The language is reversible
meaning that for any self-reconfiguration sequence the reverse one is automati-
cally generated, reversal is however subject to physical constraints. As a concrete
example, consider a sequence of operations [2]:

M0.retract(0)& M3.retract(4); M3.rotate(0,324,0); M4.rotate(0,108,1);

Here, modules M0 and M3 retract their connectors in parallel, once both opera-
tions are complete, module M3 rotates counterclockwise (indicated by the third
argument) from position 0 to position 324 (note that the starting position is
not actually checked at runtime), and once this is complete module M4 rotates
clockwise to position 108. The reverse sequence is automatically generated by
the DynaRole compiler, as follows:

M4.rotate(108,0,0); M3.rotate(324,0,1); M3.extend(4)& M0.extend(0);

Now the rotation operations execute first, rotating to position 0 in the opposite
directions. Afterwards, the connectors are extended in parallel (extension is the
reverse of retraction). As is the case for reversible general-purpose languages,
reversibility is enabled using reversible operations [24], which is why the rotation
operation also includes the position the actuator is assumed to be starting in.1

The continuous diffusion of the state of each module to its neighboring mod-
ules provides a high degree of robustness towards partial failures: one-way com-
munication links still serve to propagate state throughout the ensemble, and
modules that are reset (e.g., due to hardware issues or by a watchdog-based
timer) are automatically restored from the neighboring modules. Nevertheless,
the distributed sequences are extremely simple, there are no conditionals, loops,
or propagation of any state except how far the sequence has executed.

3 The Role of Reversibility

In earlier work, our basic observation was that for a given scenario, even if a plan-
ner was available that could generate the initial self-reconfiguration sequence, it
can be useful to work with the sequence from a programming point of view to
perform parallelization or to adapt it to constraints in the physical environment.
A sequence serves to transform the robot from one configuration to another,
and it is usually also relevant to transform the robot back again to the original
configuration. This reverse transformation can be accomplished automatically
when the sequence language is reversible, as is the case for DynaRole.

1 As a generalization, in a language having only reversible operations, one could
also imagine an operation having only a target position and direction, but re-
turning the current position as determined by the encoder of the actuator, e.g.
p=rotate(108,0); which can be reversed using the value of p.

Towards a Reversible Language for Controlling Self-reconfigurable Robots 101

We hypothesize that reverse execution can also be used to back out of dis-
tributed execution sequences that have become blocked, due to unexpected
features of the environment, conflicting operations (one module blocking the
movements of another), or partial hardware failures. This approach is similar
to the notion of reversible computing from Zuliani [25] and Stoddart et al. [26],
in particular when conditionals are introduced in the language, as discussed in
Sec. 4. In general, reversibility could be used to physically search a state space
where one of many possible self-reconfiguration sequences lead to a specific, de-
sired result. We expect that the abstractions from Stoddart et al. will be a useful
starting point for such a generalization, this is however left as future work.

Not all physical operations performed by the modules are reversible: The sur-
rounding environment may have changed after a forwards operation, physically
blocking the reverse operation from taking place. A single module can only lift
two other modules against gravity, but could lower a larger number of modules
(although not in a controlled fashion). Completely disconnecting modules from
the rest of the robot can cause them to become misaligned, making it impossi-
ble to reconnect without a special procedure for actively realigning the modules.
Such irreversible operations raise the question of whether a pure reversible model
is appropriate. As an alternative, one could for example consider an approach
such as bidirectional programming, where state changes are an integral part of
the model [27]. A bidirectional transformation would then map one state of the
robot to another, and changes to the current state of the robot would implicitly
modify the corresponding reverse state reachable by the transformation. Such an
approach would work well for control of a mathematical model of the ATRON
robot in a known environment, but since the set of potential spurious failures in
general is open-ended, and the use of the aforementioned physically irreversible
operations is rare, there does not appear to be an obvious advantage to this
approach over the pure reversible model.

As a concrete example of using reverse execution, the “structural support”
scenario from Fig. 1 uses ATRON modules grouped as metamodules. To move
around in the structure, metamodules essentially perform short distributed se-
quences of operations, depending on their context and the attraction point they
are moving towards (a cylinder shape in this example). Collisions between meta-
modules are common in larger-scale scenarios, and are handled by reversing
the current operation sequence to bring the metamodule back to a known con-
figuration. For metamodules this reverse execution was implemented manually,
and DynaRole could not have been used since it only supports off-line reversal
of complete sequences, not on-line reversal in the middle of the execution of a
sequence, as would be required for error handling.

In terms of expressiveness, we are interested in generalizing the language
to support adapting the execution of distributed sequences to changes in the
environment (other modules in the robot or the surrounding physical environ-
ment). We believe this can be done conveniently by providing a mechanism for
conditional start of a sequence, conditional evaluation of operations during the
sequence, and shared state during sequence execution.

102 U.P. Schultz

(if (and (@LeftWheel (module-nearby 1)) ; pre-condition:

(@RightWheel (module-nearby 3))) ; modules nearby

(begin ; then: dock

(@LeftWheel (extend-connector 1))

(@RightWheel (extend-connector 3)))

’nop ; else: ignore

(and (@LeftWheel (is-connected 1)) ; post-assertion:

(@RightWheel (is-connected 3)))) ; modules connected

Fig. 2. Docking operation

4 General Principles

As a first step, we propose that a distributed sequence for an ensemble can be
written as a behavior with a precondition and a post-assertion. Specifically, a
distributed sequence is an ensemble behavior that activates when a precondition
on the state and spatial context are fulfilled, performs a sequence of operations
optionally prefixed by the name of the module that performs the operation, and
in the end in certain requirements being fulfilled, as specified by a post-assertion.
(This approach is similar to and inspired by conditionals in Janus [24].)

As a concrete example of requirements and results, consider the program in
Fig. 2, which is an (overly simplified) example of docking two ATRON cars (as
in “self-assembly” of Fig. 1). Here, the precondition is that the wheel modules
detect that a module has been placed between them, in which case they extend
their connectors, resulting in them both being in the connected state (as ex-
pressed by the fourth element in the if form). Logically, the reverse operation
(“undocking”) shown in Fig. 3 requires the modules to be in the connected state,
and is performed by retracting the same connectors, which results in the mod-
ules being nearby. (This is however not guaranteed, after undocking the other
vehicle could move away before the post-assertion can be checked, or the sensors
might simply report incorrect information.) This approach appears to work for
self-reconfiguration in general, and can be seen as a distributed generalization of
rule-based self-reconfiguration which has proven to be quite useful in practice,
albeit difficult to express concisely using simple rules [28].

We wish to support the execution of sequences that manipulate shared vari-
ables and that can be reversed at any point. DynaRole supports execution of a
single sequence (without variables) using a shared state tuple (i, p), where i is
an invocation counter incremented when a new sequence is started, and p is a
program counter for the currently executing sequence. Robust execution requires
that a set of modules that were temporarily cut off from the execution but that
reestablish contact can unambiguously merge their current execution state with
that of the remaining modules, which is ensured by the combination of invoca-
tion and program counter. Both counters are monotonic, this scheme however
obviously breaks if the sequence starts to execute in reverse. As a generalization,
we propose to represent the state of a given distributed sequence using a tuple

Towards a Reversible Language for Controlling Self-reconfigurable Robots 103

(if (and (@LeftWheel (is-connected 1)) ; pre-condition

(@RightWheel (is-connected 3))) ; modules connected

(begin ; then: undock

(@RightWheel (retract-connector 3))

(@LeftWheel (retract-connector 1)))

’nop ; else: ignore

(and (@LeftWheel (module-nearby 1)) ; post-assertion

(@RightWheel (module-nearby 3)))) ; modules nearby

Fig. 3. Hypothetical reversed docking (reverse of Fig. 2)

(i, s, p, d) where i is a per-module invocation counter for the sequence, s is a step
counter designating how many operations have been performed in the current
evaluation of the sequence, p is the program counter, and d is the execution
direction (forwards or backwards). The currently executing sequence can thus
be robustly merged even after on-line reversal in one part of the structure (e.g.,
due to a local error), since the state with the highest step count must be the
newest (barring arithmetic overflow, at which point this scheme will fail). The
implementation of shared variables is a significant challenge in distributed pro-
gramming; we refer to a companion paper for a proposed solution that provides
a useful notion of shared variables across modules, similar to global variables but
integrated with the concept of role-based control [29]. We expect that these vari-
ables will be compatible with reversal similarly to global variables in Janus [24].

The pre-condition on a sequence is simply a conditional that triggers a se-
quence of distributed steps. Generally, conditionals could be used at any point
in the sequence, prefixed with the name of the module evaluating the conditional.
Such conditionals however raise a philosophical question: what is the reverse be-
havior of a robot in a given environment? To provide a preliminary answer to
this question, we investigate a simple example of a reversible robot controller
written in a minimal, reversible distributed programming language for modular
robots.

5 Experiments in μrRoCE

The language μrRoCE (micro reversible robust collaborative ensembles) is in-
tended as a minimalistic, reversible language for programming modular robot
systems. The language is currently under development as an embedded DSL
in Scheme integrated with the USSR simulator for modular robots [30]; it is
based on the RoCE language also currently under development [29, 31], but can
nonetheless serve to study the idea of general-purpose reversible programs for
modular robots. Distributed control flow in μrRoCE can be based on the tuple-
based state representation presented in the previous section, and distributed
state sharing can be based on the continuous propagation of updated values from
module to module in the physical structure proposed for RoCE [29]. The im-
plementation presented in this paper however works only with simulated robots

104 U.P. Schultz

since it uses a simple, centralized representation of control flow and state that
merely simulates the proposed semantics.

5.1 Informal Language Description

The BNF for the μrRoCE language is shown in Fig. 4 (the implementation syntax
is more verbose, we use a cleaner syntax for readability). A program is a number
of entities: ensembles that represent distributed scope and distributed execution
across a number of modules, and roles that describe individual state and behavior
for single modules. Both kinds of entities have members: requirements, state
variables, and expressions. At a given point in time, all entities for which all
requirement expressions are satisfied on a given module are activated on that
module. State variables represent the state of the entity, and are always stored
locally on a module; for roles the variables are private to modules on which
they are active, for ensembles assigning a variable on one module will eventually
(over time and space) propagate that value to the other modules where the same
ensemble is active [29].

Program ::= Ensemble∗ Role∗
Ensemble ::= (define-ensemble E Member∗)
Role ::= (define-role R (E∗)Member∗)
Member ::= (require Exp)| (var V Value)| Exp
Exp ::= (F Exp∗)| Value | (@R Exp)| X.V

| (if Exp Exp Exp Exp?)| (timed Value Exp)
| (begin Exp∗)| (transition E.V Exp Exp)

Value ::= Number | ’Symbol
E∈Ensemble, R∈Role, X∈Ensemble∪Role, V ∈Variable, F∈Function

Fig. 4. BNF for reversible programming of modular robots (μrRoCE)

Expressions evaluate continuously on all modules where the corresponding
entity or role is active. An expression can be the application of a function, a
value, the restriction of an expression to only execute on a module of a given
role (the enclosing expression can only proceed by evaluating the expression
on a module playing the given role), access to a variable from an entity or
role (must be active on the module), a conditional with optional post-assertion,
timed execution of an expression (after evaluating the expression, execution of
the entity blocks for the designated amount of time), an expression sequence,
or the transition of a state variable from one value to another (an explicitly
reversible update to the state).

As a concrete example of a μrRoCE program, the docking code fragment
previously discussed in Sec. 4 is shown implemented2 in Fig. 5. The ensemble

2 The simulator currently does not have reliable support for docking, for which reason
this program has not been tested in simulation.

Towards a Reversible Language for Controlling Self-reconfigurable Robots 105

(define-ensemble DockingCar

(@Front (if (and (@LeftWheel (module-nearby 1))

(@RightWheel (module-nearby 3)))

(begin (@LeftWheel (connector-extend 1))

(@RightWheel (connector-extend 3)))

’nop

(and (@LeftWheel (is-connected 1))

(@RightWheel (is-connected 3))))))

Fig. 5. Docking of cars in μrRoCE

DockingCar has an expression that triggers on a module playing the role Front;
this expression tests if other modules are close to the wheel modules, and if so
extends the connectors (and otherwise does nothing). The post-assertion for the
conditional states that the wheels should be connected. As was argued in Sec. 4,
this program can be executed in reverse to achieve an undocking behavior: For
an ensemble, requirements on activation and state variables function in the same
way during reverse execution, but each of the expression are evaluated in reverse
using semantics similar to Janus [24].

5.2 Obstacle Avoidance Example

As a more elaborate example, consider obstacle evasion for the small two-wheeler
car, shown in Fig. 6. The program consists of an ensemble for the whole car,
controlling the overall coordination, and specific roles for each of the modules
of the robot. The ensemble Car defines the state variables obstacle and drive,
which are used to represent sensory information and the overall driving behavior
of the robot. The single expression in Car instructs the ensemble as a whole to
drive forwards if there are no obstacles, or to perform an evasion behavior for 5
seconds if there is an obstacle. The role Front is responsible for reading sensors
and updating the shared sensory information correspondingly, whereas the two
wheel roles actuate to achieve either forwards or backwards motion depending
on the desired overall driving behavior. The flow of information is from the role
Front (the center of the car) through the state variables obstacle and drive, that
propagate to the wheel modules. The Car ensemble executes on all the modules
and hence the transition of the drive state can happen on one module or on all
of the modules in parallel.

The dataflow and actuation during the execution is illustrated as a sequence
of steps in Fig. 7. Execution starts with the forward-moving initial state where
Car.obstacle = None, Car.drive = Forward, and both wheel modules are ro-
tating in their respective forward directions at full speed. Once an obstacle is
detected the value of obstacle changes, causing drive to be updated. This infor-
mation eventually propagates to the wheel modules, which then start backing up.
Once the timed block completes, evaluation continues and restores to normal,
forward movement.

106 U.P. Schultz

(define-ensemble Car

(var obstacle ’None)

(var drive ’Forward)

(if (eq? Car.obstacle ’None)

(transition Car.drive ’Evade ’Forward)

(timed 5 (transition Car.drive ’Forward ’Evade))))

(define-role Front (Car)

(require (eq? (connected COMPASS-ANY) 2))

(if (or (is-proximity FRONT-LEFT)

(is-proximity FRONT-RIGHT))

(transition Car.obstacle ’None ’Some)

(transition Car.obstacle ’Some ’None)))

(define-role LeftWheel (Car)

(require (and (eq? (connected COMPASS-ANY) 1)

(eq? (connected COMPASS-EAST) 1)))

(if (eq? Car.drive ’Forward)

(rotateContinuous 100)

(rotateContinuous -100)))

(define-role RightWheel (Car)

(require (and (eq? (connected COMPASS-ANY) 1)

(eq? (connected COMPASS-WEST) 1)))

(if (eq? Car.drive ’Forward)

(rotateContinuous -100)

(rotateContinuous 75)))

Fig. 6. Obstacle evasion in μrRoCE

None of the conditions have post-assertions. The semantics in this case is
that the condition is also used as post-assertion, meaning that both forwards
and reverse execution uses the same condition. In this specific program all these
conditions are essentially about responses to sensory information or other stim-
uli, which seems to result in such simplified conditionals. For example, for the
role Front, the condition essentially tests a sensor and updates a variable corre-
spondingly. The post-assertion could be on the value of the variable, but running
the program in reverse would in this case most likely not be meaningful, since it
would imply a causal connection between the value of a variable and what infor-
mation will be read from a sensor. Alternatively, the condition in the ensemble
Car could perhaps more naturally have taken the state of the variable drive into
account in a post-assertion, e.g.:

(if (and (eq? Car.obstacle ’None) (eq? Car.drive ’Evade))

(transition Car.drive ’Evade ’Forward)

(timed Car 5 (transition Car.drive ’Forward ’Evade))

(and (eq? Car.obstacle ’None) (eq? Car.drive ’Forward))))

Towards a Reversible Language for Controlling Self-reconfigurable Robots 107

Car forward/backward?
step obstacle drive LeftWheel RightWheel

1. normal None Forward fwd(100) fwd(100)
2. detect Some Forward fwd(100) fwd(100)
3. react Some Evade fwd(100) fwd(100)
4. propagate Some Evade bck(100) bck(75)
5. evading None Evade bck(100) bck(75)
6. continue None Forward bck(100) bck(75)
7. propagate None Forward fwd(100) fwd(100)

Fig. 7. Sequence of steps in forwards control of the car ensemble. The ordering of the
propagate step can differ between executions.

With this implementation, we however see a degenerate behavior during reverse
execution: When there are no obstacles, the initial value of drive is “forward”,
and thus changes to “evade”, but then immediately afterwards changes to “for-
ward” and suspends evaluation in that state for 5 seconds, after which it repeats
itself.

The lack of a test on the value of drive before the state transition however
causes the problem that a transition may be executed from “evade” to “forward”
even when drive was already in the “forward” state. For now we allow such
transitions to take place: we ignore a transition when the variable already holds
the value of the target state. (This is a pragmatic solution that allows simple,
reversible controller programs to be written; exploring the implications of this
design choice is left as future work.)

5.3 Reverse Obstacle Avoidance

Forwards execution of this controller program causes the robot car to drive
forwards until it encounters an obstacle, at which time it moves backwards while
turning for 5 seconds, and then resumes its behavior. A natural question is
whether executing this controller program in reverse makes sense. What should
be the meaning of reversing this program, such that we get a “reverse behavior”
for the robot as a whole? A robot uses sensors to observe the world, the controller
program decides what actions to perform, and the actuators to (attempt to)
perform those actions. Given a sequence of stimuli that cause the robot to take
a corresponding sequence of actions, when using reverse controller execution we
could naturally expect that presenting the same stimuli in reverse order would
cause the robot to reverse the actions.

Concretely, the reversed obstacle avoidance algorithm will cause the vehicle
to drive backwards while turning, except when it detects an object, in which
case it drives into the object. In more detail, the dataflow and actuation of this
reverse execution is shown in Fig. 8. Initially the state is the same as before, but
immediately switches to “evasion”, until an obstacle is detected at which time
the state switches to “forward” and the robot eventually moves forwards, until
there are no obstacles at which time it resumes the evasion behavior. Keeping

108 U.P. Schultz

Car forward/backward?
step obstacle drive LeftWheel RightWheel

0. initial None Forward fwd(100) fwd(100)
1. normal None Evade bck(100) bck(75)
2. detect Some Evade bck(100) bck(75)
3. react Some Forward bck(100) bck(75)
4. propagate Some Forward fwd(100) fwd(100)
5. attacking Some Forward fwd(100) fwd(100)
6. continue None Evade fwd(100) fwd(100)
7. propagate None Evade bck(100) bck(75)

Fig. 8. Sequence of steps in reverse control of the car ensemble. The ordering of the
propagate step can differ between executions.

in mind the conceptual framework of Braitenberg vehicles [32], the forwards
behavior could be said to be “exploring while evading obstacles”, whereas the
reverse behavior could be said to be “evading but attacking obstacles”.

Interestingly, at least in this specific example, there are two different yet sim-
ilar ways of achieving a simple reversed behavior: (1) reverse execution with
Janus-like semantics applied to each expression (as just described), and (2) for-
wards execution but with inverted physical operations (rotation in the opposite
direction). The resulting behaviors are almost identical: both exhibit the “evade
but attacking obstacles” behavior. Reverse execution goes backwards while turn-
ing but moves straight forward when sensing an object in front of it, whereas
the inverted operation version goes backwards straight and moves forwards while
turning when sensing an object. Both the forwards and the two different kinds
of reverse behaviors were tested in simulation, for forwards execution static ob-
stacles were used, whereas for reverse execution the “attacking” behavior was
triggered by obstacles that were interactively dropped in front of the robot while
it was moving backwards.

6 Conclusion and Future Work

Program reversal has previously been shown to be interesting for modular robots,
as a means of automatically deriving reverse self-reconfiguration sequences.
Moreover, there are obvious applications for error recovery, allowing a self-
reconfiguration sequence to back out of a halfway completed sequence. Given
that the sequence may be controlled by a general-purpose program, this raises
the issue of what it means to reverse general-purpose controllers for modular
robots specifically but to some extent also for robotics in general. This paper
provides general principles for reversible control of modular robots, namely the
use of conditions and post-assertions (as seen elsewhere in reversible comput-
ing), and the distributed execution support for general-purpose robust and re-
versible execution. In addition, based on a simple experiment implemented in
the μrRoCE language, we show how reversible execution can provide interesting
behaviors for a simple obstacle avoidance controller for a modular robot.

Towards a Reversible Language for Controlling Self-reconfigurable Robots 109

The principles and ideas presented in this paper merely provide initial di-
rections for research in reversible computation for modular robots and robot
controllers in general. The immediate future work is to experiment with differ-
ent controllers implemented in μrRoCE, to see if the same approach to writing
reversible controllers works for other robots in other scenarios. On the longer
term we are working on an implementation of the complete RoCE language; we
however expect that providing a formal semantics for μrRoCE will be a useful
step in this direction.

References

1. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E.,
Chirikjian, G.S.: Modular Self-Reconfigurable Robot Systems (Grand Challenges
of Robotics). IEEE Robot. Automat. Mag. (March 2007)

2. Schultz, U.P., Bordignon, M., Stoy, K.: Robust and reversible execution of self-
reconfiguration sequences. Robotica 29, 35–57 (2011),
http://modular.mmmi.sdu.dk, accompanying video available at
http://www.youtube.com/watch?v=SYizuooEs7s

3. Østergaard, E., Kassow, K., Beck, R., Lund, H.: Design of the ATRON lattice-
based self-reconfigurable robot. Autonomous Robots 21(2), 165–183 (2006)

4. Pamecha, A., Ebert-Uphoff, I., Chirikjian, G.S.: Useful metrics for modular robot
motion planning. IEEE Transactions on Robotics and Automation (13), 531–545
(1997)

5. Kotay, K., Rus, D.: Algorithms for self-reconfiguring molecule motion planning.
In: Proc. of the Int. Confe. on Intelligent Robots and Systems, IROS 2000 (2000)

6. Yoshida, E., Murata, S., Kamimura, A., Tomita, K., Kurokawa, H., Kokaji, S.:
Motion planning of self-reconfigurable modular robot. In: Proc. of the Int. Symp.
on Experimental Robotics (2000)

7. Brandt, D.: Comparison of A∗ and RRT-connect motion planning techniques for
self-reconfiguration planning. In: Proc. of the 2006 IEEE/RSJ Int. Conf. on In-
telligent Robots and Systems (IROS 2006), Beijing, China, pp. 892–897 (October
2006)

8. Asadpour, M., Sproewitz, A., Billard, A., Dillenbourg, P., Ijspeert, A.: Graph signa-
ture for self-reconfiguration planning. In: 2008 IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS 2008), pp. 863–869 (2008)

9. Asadpour, M., Ashtiani, M.H.Z., Sproewitz, A., Ijspeert, A.: Graph signature for
self-reconfiguration planning of modules with symmetry. In: The 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), St. Louis,
USA (October 2009)

10. Prevas, K., Unsal, C., Efe, M., Khosla, P.: A hierarchical motion planning strategy
for a uniform self-reconfigurable modular robotic system. In: Proceedings of the
IEEE International Conference on Robotics and Automation, Washington, DC,
vol. 1, pp. 787–792 (October 2002)

11. Ünsal, C., Khosla, P.: A multi-layered planner for self-reconfiguration of a uniform
group of I-cube modules. In: Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, Maoui, Hawaii, vol. 1, pp. 598–605 (2002)

http://modular.mmmi.sdu.dk
http://www.youtube.com/watch?v=SYizuooEs7s

110 U.P. Schultz

12. Brandt, D., Christensen, D.J.: A new meta-module for controlling large sheets of
atron modules. In: Proceedings of IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, San Diego, California (November 2007)

13. Yim, M., Goldberg, D., Casal, A.: Connectivity planning for closed-chain reconfig-
uration. In: Proceedings of Sensor Fusion and Decentralized Control in Robotics
Systems III, Bellingham, WA, vol. 4196, pp. 402–412. SPIE (2000)

14. Yoshida, E., Murata, S., Kurokawa, H., Tomita, K., Kokaji, S.: A distributed
method for reconfiguration of a three-dimensional homogeneous structure. Ad-
vanced Robotics (13), 363–379 (1999)

15. Ünsal, C., Kiliccöte, H., Khosla, P.K.: A modular self-reconfigurable bipartite
robotic system: Implementation and motion planning. Autonomous Robots (10),
23–40 (2001)

16. Butler, Z., Rus, D.: Distributed planning and control for modular robots with
unit-compressible modules. The International Journal of Robotics Research (22),
699–715 (2003)

17. Rosa, M.D., Goldstein, S., Lee, P., Campbell, J., Pillai, P.: Scalable shape sculpting
via hole motion: Motion planning in lattice-constrained modular robots. In: Proc.
of the 2006 IEEE Int. Conf. on Robotics and Automation, ICRA 2006 (2006)

18. Murata, S., Kurokawa, H., Kokaji, S.: Self-assembling machine, pp. 441–448 (1994)
19. Yim, M., Zhang, Y., Lamping, J., Mao, E.: Distributed control for 3d metamor-

phosis. Auton. Robots 10(1), 41–56 (2001)
20. Shen, W.M., Salemi, B., Will, P.: Hormone-inspired adaptive communication and

distributed control for conro self-reconfigurable robots. IEEE Transactions on
Robotics and Automation 18, 700–712 (2002)

21. Christensen, D., Støy, K.: Selecting a meta-module to shape-change the ATRON
self-reconfigurable robot. In: Proceedings of IEEE International Conference on
Robotics and Automations (ICRA), Orlando, USA, pp. 2532–2538 (May 2006)

22. Christensen, D.J.: Experiments on fault-tolerant self-reconfiguration and emergent
self-repair. In: Proceedings of Symposium on Artificial Life Part of the IEEE Sym-
posium Series on Computational Intelligence, Honolulu, Hawaii (April 2007)

23. Bordignon, M., Stoy, K., Schultz, U.P.: A Virtual Machine-based Approach for
Fast and Flexible Reprogramming of Modular Robots. In: Proc. IEEE Int. Conf.
on Robotics and Automation (ICRA 2009), Kobe, Japan, May 12-17, pp. 4273–
4280 (2009)

24. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming
language. In: CF 2008: Proc. of the 2008 Conference on Computing Frontiers, pp.
43–54. ACM, New York (2008)

25. Zuliani: Logical reversibility. IBM Journal of Research and Development (6),
807–818 (2001)

26. Stoddart, B., Lynas, R., Zeyda, F.: A virtual machine for supporting reversible
probabilistic guarded command languages. Electronic Notes in Theoretical Com-
puter Science 253(6), 33–56 (2010); Proceedings of the Workshop on Reversible
Computation (RC 2009)

27. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bi-directional tree transformations: A linguistic approach to the view update
problem. ACM Transactions on Programming Languages and Systems (3) (2007)

28. Brandt, D., Ostergaard, E.: Behaviour subdivision and generalization of rules in
rule based control of the ATRON self-reconfigurable robot. In: Proceeding of the
International Symposium on Robotics and Automation (ISRA), Queretaro, Mex-
ico, pp. 67–74 (September 2004)

Towards a Reversible Language for Controlling Self-reconfigurable Robots 111

29. Schultz, U.: Towards a robust spatial computing language for modular robots. In:
Proceedings of the 2012 Workshop on Spatial Computing, Spain (June 2012)

30. Christensen, D.J., Brandt, D., Stoy, K., Schultz, U.P.: A Unified Simulator for
Self-Reconfigurable Robots. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS 2008), France, pp. 870–876 (2008)

31. Schultz, U.: Programming language abstractions for self-reconfigurable robots
(poster). Accepted for publication in SPLASH Companion. ACM (October 2012)

32. Braitenberg, V.: Vehicles: Experiments in Synthetic Psychology. MIT Press (1986)

Reversible and Quantum Circuit Optimization:
A Functional Approach

Zahra Sasanian and D. Michael Miller

Department of Computer Science
University of Victoria

Victoria, BC
Canada V8W 3P6

{sasanian,mmiller}@uvic.ca

Abstract. The circuits produced by reversible and quantum synthesis
approaches are not often optimal and post synthesis optimizations are
beneficial. This paper introduces a functional approach for the optimiza-
tion of reversible and quantum circuits that uses a recently introduced
structure for semi-classical quantum circuits called Decision Diagram for
a Matrix Function (DDMF). Experimental results are given that show
that using DDMFs leads to more optimizations than are found using
existing approaches.

1 Introduction

The synthesis of reversible and quantum circuits has been studied extensively
over the last two decades [1,4–6,10,17,23]. Synthesis tools often generate circuits
that are not optimal and can be improved by post synthesis optimizations [2,
11, 22]. Optimization methods are usually based on gate rearrangement which
is restricted by gate moving rules. The conventional moving rule for reversible
and quantum gates was proposed by Maslov [8] and was further improved by
Sasanian et al [18]. The method in [18] uses labels to keep track of function
changes between gates to be used by the modified moving rule. Although this
approach is fast, effective and straightforward, it cannot find all the possible
reductions in a circuit.

In this paper, we improve the approach in [18] to use a functional description
instead of labels to represent functions on circuit line segments. The functional
representation that we use is a decision diagram structure called Decision Dia-
gram for a Matrix Function (DDMF) [27,28]. The limitation of this representa-
tion is that it is only applicable to Boolean reversible circuits and Semi-Classical
Quantum Circuits(SCQC). In this paper, we show that the proposed approach
can find more reductions than the approach in [18]. However, due to its limita-
tion, the approach can only be used for reversible circuits such as Mixed-Polarity
Multiple-Control Toffoli (MPMCT) circuits and non-entangled quantum circuits.
The qubits of a quantum circuit are in an entangled quantum state if it is im-
possible to separate the contributions of the states of the individual qubits from
the state of the whole system [7]. Non-entangled NCV (NOT, CNOT, V , V +,

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 112–124, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Reversible and Quantum Circuit Optimization: A Functional Approach 113

controlled-V , and controlled-V +) circuits are achieved by using non-entangled
quantum realizations of MPMCT gates in mapping MPMCT circuits to quan-
tum circuits. Removing the entanglement adds extra quantum costs that are
sometimes comparable to the improvements achieved by the new method.

The rest of the paper is organized as follows. Section 2 gives the necessary
background. Section 3 outlines the basic optimization method. The functional
approach to circuit optimization is introduced in section 4. Experimental results
are given in Section 5 and section 6 concludes the paper.

2 Background

A multiple-output Boolean function is called reversible if it maps each input
assignment to a unique output assignment. A reversible function is realized by
a cascade of reversible gates with no fan-out or feedback [16]. A completely or
incompletely-specified irreversible function can be embedded into a reversible
function, often requiring added constant inputs and/or garbage outputs, and
then realized by a reversible circuit [14].

A Mixed-Polarity Multiple-Control Toffoli (MPMCT) gate with
target line xt, positive controls {xi1 , xi2 · · ·xik} and negative controls
{xik+1

· · · xim} maps xt to (xi1xi2 · · ·xikxik+1
· · ·xim) ⊕ xt. The size of an

MPMCT gate is the number of controls plus one. An MPMCT gate with no
control is the well-known NOT gate. An MPMCT gate with a single positive
control is called aControlled-NOT (CNOT) gate. An MPMCT gate with two
positive controls is the original gate introduced by Toffoli [25] We use T (C; t)
to denote the MPMCT gate with C being the set of controls and t being the
target. If not specified, controls are positive. We use an over bar to indicate a
negative control. To draw an MPMCT gate, we use the conventional notation⊕

to indicate the target line, a • to show a positive control connection and a ◦
to indicate a negative control connection.

A controlled-V gate applies the transformation defined by the matrix in
Equation 1 (a) to the target line if its control line is set to 1. A controlled-V +

gate changes the target line using the transformation shown in Equation 1 (b)
if its control line is 1. Gates V and V + are referred to as controlled-square-
root-of-NOT gates since V2 = (V+)2 =

(
0 1
1 0

)
. Note that for this work, the

controls for V and V + gates are always positive. For drawing V and V + gates,
a box containing the appropriate symbol is placed on the target line.

V =
1 + i

2

(
1 − i

−i 1

)
(a) (1)

V+ =
1− i

2

(
1 i

i 1

)
(b)

The so-called NCV library contains the NOT, CNOT, V , V +, controlled-V ,
and controlled-V + gates with positive controls. All gates in the NCV library are
taken to have unit cost. The quantum cost of a circuit of NCV gates is thus
the number of gates in the circuit.

114 S. Sasanian and D.M. Miller

Property 1. MPMCT gates are self-inverse and two consecutive identical
MPMCT gates cancel each other and yield the identity mapping. V and V +

gates with the same target and the same control line are the inverse of each
other.

Property 2. Given a cascade of quantum gates G1G2 . . . Gk realizing the re-
versible function F , the cascade G−1

k . . . G−1
2 G−1

1 realizes the function F−1,
where G−1

i is the inverse gate for Gi.

Property 3. Since an MPMCT gate is self-inverse applying Property 2 to a re-
alization of the gate yields an alternate realization for the same gate which is
called the reverse realization.

A circuit line not used as the target or as a control of a gate is an ancillary line
for that gate. Such lines are used in realizing a MPMCT gate using quantum
gates, see [3, 13].

A Semi-Classical Quantum Circuit (SCQC) is a quantum circuit in
which if all the initial input quantum states of the circuit are in the base states
|1〉 or |0〉 (classical values), the quantum states at all gate controls in the circuit
are also in the base states |1〉 or |0〉 [27]. Entanglement does not occur in SCQCs
as long as their inputs are initialized to classical values.

A matrix function with n Boolean variables x1, . . . , xn is a mapping from
{0, 1}n to 2 × 2 unitary matrices. A matrix function mf(x1, . . . , xn) is called a
constant matrix function if mf(x1, . . . , xn) is the same matrix (M) for all
assignments to x1, . . . , xn and is denoted by CM(M) [27].

Let mf1, mf2 and mf3 be matrix functions with respect to x1, . . . , xn. Then
mf1 ⊕ mf2 is defined as a matrix function mf such that mf(x1, . . . , xn) =
mf1(x1, . . . , xn) · mf2(x1, . . . , xn) where · means normal matrix multiplication.
Also, let f be a Boolean function with respect to x1, . . . , xn. Then f ∗mf3 is a
matrix function which equalsmf3(x1, . . . , xn) when f(x1, . . . , xn) = I and equals
I when f(x1, . . . , xn) = 0. For more information regarding matrix functions
please refer to [27, 28].

3 Basic Optimization Approach

Most optimization methods use gate rearrangement to find possible reductions
in reversible and quantum circuits [2,9,12]. So far, the gate rearrangements have
been performed under the limitations imposed by the traditional moving rule [8]
according to which gate T (C1, t1) can be interchanged with gate T (C2, t2) in a
reversible circuit iff C1 ∩ t2 = # and C2 ∩ t1 = #. In [18, 21], gate rearrange-
ment constraints were modified to allow gate movements beyond the traditional
moving rule limits. The following property defines the new moving rule proposed
in [18, 21].

Property 4. Generalized Moving Rule: A gate can be moved from one end
of a cascade of gates to the other end if its controls are on lines that have the
same functionality at each end of the cascade and its target is on a line that has
no control connection within the cascade.

Reversible and Quantum Circuit Optimization: A Functional Approach 115

Using the Generalized Moving Rule requires knowing the functionality for each
segment of the circuit lines. In [18, 21], the functions at different spots on a
circuit are represented by labels that are assigned using a Line Labeling Procedure
(Procedure 1 in [18]). This labeling is such that if two segments on a circuit line
have the same label, those segments realize the same function. The procedure
uses stacks to keep track of identity structures. For more details please refer
to [18].

We here describe the optimization procedure used in [20, 22] to optimize a
given circuit using the generalized moving rule and Line Labeling Procedure for
gate rearrangement. In this procedure, the circuit is considered as a cascade of
gates G1, G2, ..., GN where N is the number of gates in the circuit.

Procedure 1 Basic Optimization

For p = 1 to N apply the following steps:

1. Label the circuit line segments after the gate Gp using the Line Labeling
Procedure.

2. Create an empty list called ReductionList and add Gp to it.
3. For q = p− 1 to 1, if Gp can be made adjacent to Gq using the generalized

moving rule (Property 4) and the labels from step 1:
(a) If Gp and Gq are identical MPMCT gates or both belong to the NCV

library, add Gq to the ReductionList.
(b) If Gp and Gq are both MPMCT gates and can be reduced using the

reduction rules 1 to 5 in [22], keep a record of Gq.
4. If len(ReductionList) > 1, remove the gates that are in the ReductionList

from the circuit and substitute the earliest gate with an equivalent optimal
cascade, set p = q and go to 1

5. Otherwise, if any MPMCT gate has been found in step 3.(b), removeGp from
the circuit, find its equivalent optimized sub-circuit using the reduction rules
1 to 5 in [22], and substitute Gq with the resulting sub-circuit. Set p = q
and go to 1.

The optimization method just described, uses labels to encode the functionality
for each line segment in a circuit. Despite being simple and fast, this approach
is able to find most of the possible reductions in a circuit as is shown in the
experimental results below. However, the procedure is not guaranteed to find all
possible reductions and there are cases where identities cannot be found using
this method. In the following, two examples are shown where using the Line
Labeling Procedure does not find all possible reductions.

Example 1. Consider the circuits shown in Fig. 1. Two consecutive identical
MPMCT gates are shown in Fig. 1 (a). They realize the identity according to
Property 1. In Fig. 1 (b), the first MPMCT gate is replaced by its five gate real-
ization from the NCV library and since controls can have any order in MPMCT
gates, the second MPMCT gate is replaced by the reverse realization (Property
3) with the controls interchanged. In the resulting circuit, V +(a; c) from the first
realization can be canceled with V (a; c) from the second realization and V +(b; c)

116 S. Sasanian and D.M. Miller

Fig. 1. Example 1: (a) Two MPMCT gates realizing the identity (b) After substituting
the NCV realizations (c) After removing the four redundant gates in the middle (d)
After applying the Line Labeling procedure

from the first realization can be canceled with V (b; c) from the second realiza-
tion. This yields the circuit shown in Fig. 1 (c). Since the circuit in Fig. 1 (c) is
equivalent to the circuit in Fig. 1 (a), it realizes the identity. Fig. 1 (d) shows
the result of applying the Line Labeling Procedure to the circuit of Fig. 1 (c).
Note that only changes on the line labels are shown. As is shown, the labels on
line c are not the same at the two ends of the circuit although they represent
the same function.

Example 2. Consider the two consecutive Swap gates shown in Fig. 2 (a) realiz-
ing the identity function. Fig. 2 (b) shows the circuit resulting from substituting
these gates with NCV realizations in two ways. As shown in Fig. 2 (c), apply-
ing the Line Labeling Procedure leads to different labels at the two ends of the
circuit while both ends represent the same function.

Fig. 2. Example 2: (a) Two Swap gates realizing the identity (b) After mapping to
NCV gates (c) After applying the Line Labeling procedure

These two examples show that the basic optimization method that uses the Line
Labeling Procedure to find the identities cannot find all the possible reductions
in a circuit. In the next section, we discuss an alternative approach that uses
functional representations instead of labels and allows more effective implemen-
tation of the generalized moving rule.

Reversible and Quantum Circuit Optimization: A Functional Approach 117

4 DDMF-Based Optimization Method

It was shown in the previous section that the basic optimization approach cannot
find all possible reductions in a circuit because labels do not uniquely represent
the functionality of line segments. One way to address this problem is to use a
full representation of the functionality for each line segment in the circuit. In
this section, an alternative to the basic optimization method is presented that
uses a decision diagram structure called Decision Diagram for a Matrix Function
(DDMFs) [27,28] for this purpose. DDMFs are compact structures and they are
well suited to represent functionality at each circuit line segment. The only issue
with this representation is that it only applies to SCQC circuits. However, it is
still a good choice since in our application, all of the reversible circuits and most
of the NCV circuits are SCQC.

4.1 DDMFs for Reversible and Quantum Circuits

Before discussing the new optimization approach, we briefly introduce DDMFs
and show how they are built for reversible and quantum gates and circuits.

A DDMF is a directed acyclic graph with three types of nodes: (1) A single
terminal node corresponding to the identity matrix I, (2) a root node with an
incoming edge having a weighted matrix M, and (3) a set of non-terminal (in-
ternal) nodes. Each internal and the root node are associated with a Boolean
variable xi, and have two outgoing edges which are called 1-edge (solid line)
leading to its 1-child node and 0-edge (dashed line) leading to its 0-child node.
Every edge has an associated matrix. A DDMF is ordered, i.e., variables appear
in the same order on each path from the root node to the terminal node.

The matrix function represented by a node is defined recursively by the fol-
lowing three rules:

(l) The matrix function represented by the terminal node is the constant
matrix function CM(I).

(2) The matrix function represented by an internal node (or the root node)
whose associated variable is xi is defined as xi∗(CM(M1)⊕mf1)⊕xi∗(CM(M0)⊕
mf0), where mfl and mf0 are the matrix functions represented by the 1-child
node and the 0-child node respectively, and M1 and M0 are the matrices of the
1-edge and the 0-edge, respectively.

(3) The root node has one incoming edge that has a matrix M . The matrix
function represented by the whole DDMF is CM(M)⊕mf , where mf is the ma-
trix function represented by the root node. (See an illustration of this structure
in Fig. 3)

Similar to conventional binary decision diagrams (BDD), a canonical form can
be defined for DDMFs. For more information on DDMFs refer to [27, 28].

We use DDMFs to represent matrix functions on all line segments in a circuit.
To this end, first, for each primary input xi a DDMF representing that variable is
built. Then, gates are considered one at a time from the primary inputs towards
the outputs, and DDMFs for the functions corresponding to the circuit lines on

118 S. Sasanian and D.M. Miller

Fig. 3. An internal DDMF node

the output side of the gate are constructed from DDMFs on the input side. Let
Dj

i be the DDMF for the i−th line after the j−th gate and F (D) be the matrix
function represented by a DDMF D. Then the DDMFs after the j−th gate are
built as follows:

1. If the i−th line is not the target bit of the j−th gate, assign Dj
i = Dj−1

i .

2. If the i−th line is the target of the j−th gate, assign Dj
i = Dj−1

i ⊕ Dgate

where Dgate is constructed by the following steps:
(a) Assume the j−th gate has positive controls p1, p2, . . . , pk and negative

controls n1, n2, . . . , nl. The matrix function for the controls (g) is con-

structed by g = F (Dj−1
p1

) · F (Dj−1
p2

) . . . F (Dj−1
pk

) · F (Dj−1
n1) · F (Dj−2

n2) . . .

F (Dj−1
nl). Because of the restriction of SCQCs, all the matrix functions

for the controls are classical Boolean functions and the above expression
is simply the logical AND.

(b) The Dgate is constructed by Dgate = (DDMF for g) ∗ (DDMF for
CM(U)), where U is a unitary matrix associated with the j−th gate.

For more information regarding the DDMFs for reversible and quantum circuits,
please refer to [27].

4.2 The Functional Optimization Method

The following procedure describes the DDMF-based optimization approach. In
this procedure, the circuit is considered as a cascade of gates G1, G2, ..., GN

where N is the number of gates in the circuit.

Procedure 2 DDMF-Based Optimization

For p = 1 to N apply the following steps:

1. Build the DDMFs for the circuit lines after the Gp using the method de-
scribed in the previous section.

2. If the DDMFs on the circuit lines after Gp match DDMFs on the primary
inputs, remove the cascade of gates G1 . . . Gp from the circuit, set p = 1 and
go to 1.

Reversible and Quantum Circuit Optimization: A Functional Approach 119

3. For q = 1 to p − 1, if the DDMFs on the circuit lines after Gq match the
DDMFs on the corresponding lines after Gp, remove the cascade of gates
Gq+1 . . . Gp from the circuit, set p = q + 1 and go to 1.

4. Create an empty list called ReductionList and add Gp to it.
5. For q = p − 1 to 1, if Gp can be made adjacent to Gq by applying the

generalized moving rule (Property 4) using DDMFs for comparing functions:
(a) If Gp and Gq are identical MPMCT gates or both belong to the NCV

library, add Gq to the ReductionList.
(b) If Gp and Gq are both MPMCT gates and can be reduced using the

reduction rules 1 to 5 in [22], keep a record of Gq.
6. If len(ReductionList) > 1, remove the gates that are in the ReductionList

from the circuit and substitute the earliest gate with an equivalent optimal
cascade, set p = q and go to 1

7. Otherwise, if any MPMCT gate has been found in step 5.(b), removeGp from
the circuit, find its equivalent optimized sub-circuit using the reduction rules
1 to 5 in [22], and substitute Gq with the resulting sub-circuit. Set p = q
and go to 1.

In Steps 2 and 3 of the procedure, identity blocks are removed from the circuit. As
a result, the circuits of Examples 1 and 2 are handled properly by this procedure.
In Steps 4 to 7 of the procedure, more reductions are searched by moving gates
using the generalized moving rule and DDMFs.

5 Experimental Results

Prototype implementations of the basic and the DDMF-based optimization pro-
cedures have been implemented using the Python and C++ programming lan-
guages respectively. The experiments were run on a system with a 3.2 GHz i5-650
CPU and 3.0 GB RAM. The programs use REVLIB [26] real circuit format.

Our first test suite consists of 22 MPMCT circuits that are produced by the
QMDD synthesis method in [23, 24] and optimized by the ESOP-based opti-
mization EXORCISM-4 [15] as reported in [22]. Our second test suite consists
of three unstructured reversible functions (urf) taken from the REVLIB web
site [26].

To compare the basic and DDMF-based optimization procedures, both opti-
mization methods were applied to the MPMCT circuits in the test suites. The
results are mapped to NCV circuits and the optimization procedures were again
applied to the NCV circuits. For mapping MPMCT to NCV circuits, we used
the mapping procedure introduced in [19] with an extension to generate non-
entangled NCV circuits to comply with the limitation of using DDMFs (i.e.
being applicable on the SCQCs only). To this end, the target of an MPMCT
gate is never used as an ancillary as it is mapped to an NCV circuit. The result-
ing realizations are somewhat more expensive than the entangled realizations
reported in [19]. Tables 1 and 2 show the non-entangled NCV costs of MPMCT
gates with 1 and n − 3 ancillaries respectively. Space does note allow showing
the tables for the case of 1 < a < n− 3 ancillaries but our approach makes full
use of those cases when applicable.

120 S. Sasanian and D.M. Miller

Table 1. Non-entangled NCV cost of MPMCT gates of size n = 4 . . . 16 with 1 ancillary

Controls Number of Negative Controls
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 14 14 16 18
4 20 20 20 22 24
5 42 42 42 44 46 48
6 54 54 54 54 56 58 60
7 72 72 72 72 76 78 80 82
8 84 84 84 84 84 86 88 90 92
9 108 108 108 108 108 110 112 114 116 118
10 132 132 132 132 132 132 134 136 138 140 142
11 156 156 156 156 156 156 158 160 162 164 166 168
12 180 180 180 180 180 180 180 182 184 186 188 190 192
13 204 204 204 204 204 204 204 206 208 210 214 216 218 220
14 228 228 228 228 228 228 228 228 230 232 234 238 240 242 244
15 252 252 252 252 252 252 252 252 254 256 258 260 264 268 270 272

Table 2. Non-entangled NCV cost of MPMCT gates of size n = 4 . . . 16 with n − 3
ancillary lines

Controls Number of Negative Controls
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 14 14 16 18
4 20 20 20 22 24
5 32 32 32 34 36 38
6 44 44 44 44 46 48 50
7 56 56 56 56 58 60 62 64
8 68 68 68 68 68 70 72 74 76
9 80 80 80 80 80 82 84 86 88 90
10 92 92 92 92 92 92 94 96 98 100 102
11 104 104 104 104 104 104 106 108 110 112 114 116
12 116 116 116 116 116 116 116 118 120 122 124 126 128
13 128 128 128 128 128 128 128 130 132 134 136 138 140 142
14 140 140 140 140 140 140 140 140 142 144 146 148 150 152 154
15 152 152 152 152 152 152 152 152 154 156 158 160 162 164 166 168

We here consider three different approaches: (1) the basic method for en-
tangled circuits, (2) the basic method for non-entangled circuits and (3) the
DDMF-based method for non-entangled circuits. The results of applying these
methodologies are summarized in Table 3. The first column of the table gives the
REVLIB circuit name and file identification number. The column labeled Initial
shows the non-Entangled NCV cost of the initial MPMCT circuits found by
summing the costs of the individual gates. The next 12 columns give the result
of applying the basic optimization on entangled circuits, the basic optimization
on non-entangled circuits and the DDMF-based optimization on non-entangled
circuits. For each method, the results are reported in four columns:

(a) The NCV cost of the circuits after applying the corresponding optimization
method on the initial MPMCT circuits again found by summing the NCV
costs of the individual gates.

(b) The NCV cost of the circuits after mapping MPMCT circuits to NCV cir-
cuits using the method in [19].

(c) The NCV costs after applying the corresponding optimization method on
the circuits of column (b).

(d) The total elapsed time in seconds for steps (a)-(c).

Reversible and Quantum Circuit Optimization: A Functional Approach 121

T
a
b
le

3
.
T
h
e
re
su
lt
s
o
f
a
p
p
ly
in
g
th
e
b
a
si
c
a
n
d
D
D
M
F
-b
a
se
d
o
p
ti
m
iz
a
ti
o
n
m
et
h
o
d
s
o
n
M
P
M
C
T

ci
rc
u
it
s

B
a
s
ic

E
n
ta

n
g
le
d

B
a
s
ic

N
o
n
-E

n
ta

n
g
le
d

D
D
M

F
C
ir
c
u
it
s

In
it
ia
l

(a
)

(b
)

(c
)

(d
)

(a
)

(b
)

(c
)

(d
)

(a
)

(b
)

(c
)

(d
)

Δ
1

Δ
2

a
d
r4

1
9
7

5
3
5

1
6
1

1
6
1

1
6
1

1
.3
5
1

1
6
1

1
6
1

1
6
1

1
.0
5
6

1
6
1

1
6
1

1
5
8

0
.9
2
3

3
3

c
li
p

2
0
6

4
0
6
1

2
6
4
0

2
4
8
5

2
4
6
5

1
2
.3
6
8

2
6
4
0

2
4
8
5

2
4
6
5

1
1
.9
8
3

2
6
4
0

2
4
8
5

2
4
4
9

1
6
.9
2
2

1
6

1
6

c
m
1
5
2
a
2
1
2

1
6
5

1
6
5

1
4
3

1
3
9

0
.3
3
0

1
6
5

1
4
3

1
3
9

0
.2
8
3

1
6
5

1
4
3

1
3
9

0
.4
5
4

0
0

c
m
4
2
a
2
0
7

2
2
6

2
2
6

2
0
0

1
9
4

0
.5
6
5

2
2
6

2
0
0

1
9
4

0
.5
3
4

2
2
6

2
0
0

1
9
4

0
.4
3
9

0
0

c
m
8
5
a
2
0
9

1
9
7
6

5
0
2

4
8
6

4
8
2

1
.4
4
1

5
0
2

4
8
6

4
8
2

1
.6
2
0

5
0
2

4
8
6

4
7
5

1
.5
1
7

7
7

c
y
c
le
1
0
2
1
1
0

1
3
9
8

8
5
2

8
5
0

8
1
8

0
.7
1
1

9
1
6

9
1
4

8
8
0

0
.7
4
4

9
1
6

9
1
4

8
7
7

1
.0
4
5

3
-5
9

d
c
1
2
2
0

2
3
9

2
3
9

2
0
6

2
0
0

0
.7
0
6

2
3
9

2
0
6

2
0
0

0
.6
2
9

2
3
9

2
0
6

2
0
0

0
.7
9
8

0
0

d
c
2
2
2
2

1
4
1
2

1
2
7
4

1
1
3
0

1
1
1
6

5
.2
7
4

1
2
7
4

1
1
3
0

1
1
1
6

5
.3
6
9

1
2
7
4

1
1
3
0

1
1
1
1

5
.3
2
8

5
5

m
a
x
4
6
2
4
0

2
8
7
4

2
1
8
2

1
9
9
4

1
9
8
7

5
.2
3
6

2
5
6
8

2
1
9
8

2
1
9
2

6
.3
9
7

2
5
6
8

2
1
9
8

2
1
8
2

7
.4
3
7

1
0

-1
9
5

m
is
e
x
1
2
4
1

6
3
8

6
2
5

5
3
9

5
3
1

2
.3
6
5

6
2
5

5
3
9

5
3
1

2
.2
2
4

6
2
5

5
3
9

5
2
6

2
.1
0
9

5
5

p
lu
s6

3
m
o
d
4
0
9
6

7
4
9

6
6
5

6
5
1

6
3
8

1
.2
5
2

7
4
9

7
0
5

7
0
1

1
.2
9
9

7
4
9

7
0
5

6
9
9

1
.2
9
8

2
-6
1

p
lu
s6

3
m
o
d
8
1
9
2

9
5
5

8
4
9

8
0
9

7
9
4

1
.2
5
2

9
5
5

8
8
4

8
6
6

1
.5
0
2

9
5
5

8
8
4

8
6
4

1
.6
4
2

2
-7
0

ra
d
d

2
5
0

5
3
6

2
2
6

2
0
8

2
0
8

0
.9
6
5

2
2
6

2
0
8

2
0
8

0
.9
6
5

2
2
6

2
0
8

2
0
4

1
.0
4
7

4
4

rd
7
3
2
5
2

8
2
3

7
8
8

6
9
2

6
7
4

6
.9
6
2

7
8
8

6
9
2

6
7
4

6
.6
7
1

7
8
8

6
9
2

6
6
1

6
.8
5
9

1
3

1
3

rd
8
4
2
5
3

1
6
9
3

1
5
7
7

1
4
4
0

1
4
1
7

9
.3
6
4

1
5
7
7

1
4
4
0

1
4
1
7

9
.2
9
4

1
5
7
7

1
4
4
0

1
4
0
5

1
0
.4
3
6

1
2

1
2

ro
o
t
2
5
5

2
2
4
8

1
8
6
6

1
7
1
9

1
6
8
9

5
.8
1
4

1
8
6
6

1
7
1
9

1
6
8
9

5
.5
3
3

1
8
6
6

1
7
1
9

1
6
7
7

6
.7
0
2

1
2

1
2

sq
n

2
5
8

1
1
2
8

9
4
0

8
7
6

8
6
2

2
.1
0
7

9
4
0

8
7
6

8
6
2

2
.2
6
2

9
4
0

8
7
6

8
5
8

2
.6
2
6

4
4

sq
rt
8
2
6
0

5
0
0

4
5
6

4
0
4

3
9
1

1
.3
4
8

4
5
6

4
0
4

3
9
1

1
.2
7
0

4
5
6

4
0
4

3
8
9

1
.3
9
1

2
2

sq
u
a
r5

2
6
1

3
0
1

2
9
2

2
6
3

2
6
3

1
.1
1
5

2
9
2

2
6
3

2
6
3

1
.2
6
9

2
9
2

2
6
3

2
6
3

2
.0
5
8

0
0

sy
m
9
1
9
3

3
8
5
9

3
1
5
9

2
9
2
8

2
9
0
4

1
8
.9
9
8

3
6
4
5

3
1
9
1

3
1
5
6

1
6
.1
7
7

3
6
4
5

3
1
9
1

3
1
4
1

2
2
.7
6
5

1
5

-2
3
7

w
im

2
6
6

1
8
6

1
7
1

1
5
9

1
5
7

0
.4
2
6

1
7
1

1
5
9

1
5
7

0
.3
0
0

1
7
1

1
5
9

1
5
7

0
.2
8
1

0
0

z
4
2
6
8

5
2
1

4
1
2

4
0
6

4
0
0

2
.4
3
3

4
1
2

4
0
6

4
0
0

2
.2
2
7

4
1
2

4
0
4

3
9
0

2
.3
5
9

1
0

1
0

u
rf
1
2
7
8

1
6
1
3
0

1
5
6
8
7
1
5
5
8
5
1
5
5
2
5
1
9
5
.0
4
2
1
5
7
9
1
1
5
6
8
9
1
5
6
2
9
1
9
6
.0
2
5
1
5
7
8
7
1
5
6
8
5
1
5
4
6
9
3
3
7
0
3
.4
8
5
1
6
0

5
6

u
rf
2
2
7
7

6
7
1
1

6
5
2
5

6
4
7
5

6
4
4
5

4
8
.1
4
7

6
5
5
5

6
5
0
5

6
4
7
5

4
6
.9
9
2

6
5
5
5

6
5
0
5

6
4
7
3

1
0
3
1
.9
0
6

2
-2
8

u
rf
5
2
8
0

1
3
6
1
3

1
3
2
9
5
1
3
2
1
3
1
3
1
6
5
1
1
2
.3
3
6
1
3
4
3
9
1
3
3
5
7
1
3
3
0
9
1
1
1
.6
2
4
1
3
4
3
5
1
3
3
5
3
1
3
2
1
2
1
3
0
2
0
.9
0
5

9
7

-4
7

122 S. Sasanian and D.M. Miller

The last two columns of Table 3 show the difference between the three approaches
in terms of the quantum cost. Δ1 is the difference between the ninth column (Ba-
sic Non-Entangled (c)) and the thirteenth column (DDMF (c)). In fact, Δ1 gives
the improvement that can be achieved by using the DDMF-based optimization
method rather than the basic optimization method for non-entangled circuits.
Δ2 gives the difference between the fifth column (Basic Entangled (c)) and the
thirteenth column (DDMF (c)). It compares the two options of using the basic
method on entangled circuits and the DDMF-based method on non-entangled
circuits.

The results are interesting in that they show that using a functional approach
does not in general add significant improvement to what is achieved by the ba-
sic method. However, in some cases (e.g. the clip 206 circuit) the DDMF-based
method outperforms the basic entangled method despite using the expensive
non-entangled cost function. The CPU time of the DDMF-based method is sig-
nificantly more than the basic method as expected.

6 Conclusion

We introduced an optimization approach that uses a functional description to im-
plement the generalized moving rule as opposed to the labels in [18]. The results
presented show that using a functional approach does not result in consider-
able cost savings while it is computationally expensive. However, the trade-offs
between the techniques presented can be considered depending on the target
circuits. For example, for small SCQCs, the DDMF-based approach is definitely
the best choice while for larger circuits the basic method is more practical.

Our experiments to date have been for MPMCT circuits mapped to NCV
circuits using a particular approach to the mapping of each MPMCT gate. It may
be that the DDMF method will yield more improvement for alternative mapping
approaches or for SCQC found by other approaches. This is a consideration for
ongoing research.

Acknowledgements. This work was partially supported by a Discovery Grant
from the Natural Sciences and Engineering Research Council of Canada. The
authors wish to thank S. Yamashita for providing the source code for his DDMF
package.

References

1. Alhagi, N., Hawash, M., Perkowski, M.: Synthesis of reversible circuits with no
ancilla bits for large reversible functions specified with bit equations. In: Proc.
Int’l Symp. on Multiple-valued Logic, pp. 39–45 (2010)

2. Arabzadeh, M., Saeedi, M., Zamani, M.S.: Rule-based optimization of reversible
circuits. In: Proc. ASP Design Automation Conf., pp. 849–854 (2010)

3. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, M., Shor, P.,
Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computa-
tion. Physical Review A 52(5), 3457–3467 (1995)

Reversible and Quantum Circuit Optimization: A Functional Approach 123

4. Golubitsky, O., Falconer, S.M., Maslov, D.: Synthesis of the optimal 4-bit reversible
circuits. In: Proc. Design Automation Conf., pp. 653–656 (2010)

5. Kerntopf, P., Perkowski, M., Podlaski, K.: Synthesis of reversible circuits: A view
on the state-of-the-art. In: Proc. IEEE Int’l Conf. on Nanotechnology (2012)

6. Lukac, M., Perkowski, M., Kameyama, M.: Evolutionary quantum logic synthe-
sis of Boolean reversible logic circuits embedded in ternary quantum space using
structural restrictions. In: Proc. Int’l Conf. on Evolutionary Computation, pp. 1–8
(2010)

7. Marinescu, D.C., Marinescu, G.M.: Approaching Quantum Computing. Pearson
Education (2004)

8. Maslov, D.: Reversible Logic Synthesis. Ph.D. thesis, University of New Brunswick
(2003)

9. Maslov, D., Dueck, G.W., Miller, D.M.: Simplification of Toffoli networks via tem-
plates. In: Symp. on Integrated Circuits and System Design, pp. 53–58 (2003)

10. Maslov, D., Dueck, G.W., Miller, D.M.: Synthesis of Fredkin-Toffoli reversible
networks. IEEE Trans. on VLSI Systems 13, 765–769 (2005)

11. Maslov, D., Saeedi, M.: Reversible circuit optimization via leaving the Boolean
domain. IEEE Trans. on CAD 30(6), 806–816 (2011)

12. Maslov, D., Young, C., Miller, D.M., Dueck, G.W.: Quantum circuit simplification
using templates. In: Proc. Design, Automation and Test in Europe, pp. 1208–1213
(2005)

13. Miller, D.M.: Lower cost quantum gate realizations of multiple-control Toffoli gates.
In: IEEE Pacific Rim Conference, pp. 308–313 (2009)

14. Miller, D.M., Wille, R., Dueck, G.W.: Synthesizing reversible circuits from irre-
versible specifications using Reed-Muller spectral techniques. In: Proc. Reed-Muller
Workshop, pp. 87–96 (2009)

15. Mishchenko, A., Perkowski, M.: Fast heuristic minimization of exclusive sum-of-
products. In: Proc. 5th Int’l Reed-Muller Workshop, pp. 242–250 (2001)

16. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge Univ. Press (2000)

17. Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest
neighbor architectures. Quantum Information Processing 10(3), 355–377 (2011)

18. Sasanian, Z., Miller, D.M.: Mapping a multiple-control Toffoli gate cascade to an
elementary quantum gate circuit. In: Proc. Workshop on Reversible Computation,
pp. 83–90 (2010)

19. Sasanian, Z., Miller, D.M.: NCV realization of MCT gates with mixed controls. In:
Proc. Pacific Rim Conf. on Communications, Computers and Signal Processing,
pp. 567–571 (2011)

20. Sasanian, Z., Miller, D.M.: Transforming MCT Circuits to NCVW Circuits. In: De
Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 77–88. Springer, Heidelberg
(2012)

21. Sasanian, Z., Miller, D.M.: A new methodology for optimizing quantum realizations
of reversible circuits (in preparation, 2012)

22. Soeken, M., Sasanian, Z., Wille, R., Miller, D.M., Drechsler, R.: Optimizing the
mapping of reversible circuits to four-valued quantum gate circuits. In: Proc. Int’l
Symp. on Multiple-valued Logic, pp. 173–178 (2012)

23. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of re-
versible circuits with minimal lines for large functions. In: Proc. Workshop on
Reversible Computation, pp. 59–70 (2011)

24. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of re-
versible circuits with minimal lines for large functions. In: Proc. ASP Design Au-
tomation Conf., pp. 85–92 (2012)

124 S. Sasanian and D.M. Miller

25. Toffoli, T.: Reversible computing. Tech. Memo LCS/TM-151, MIT Lab. for Comp.
Sci. (1980)

26. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: An online
resource for reversible functions and reversible circuits. In: Int’l Symp. on Multi-
Valued Logic, pp. 220–225 (2008), RevLib is available at www.revlib.org

27. Yamashita, S., Minato, S., Miller, D.M.: DDMF: An efficient decision diagram
structure for design verification of quantum circuits under a practical restriction.
IEICE Trans. on Fundamentals E91-A(12), 3793–3802 (2008)

28. Yamashita, S., Minato, S., Miller, D.M.: Synthesis of semi-classical quantum cir-
cuits. In: Proc. Workshop on Reversible Computation, pp. 93–99 (2010)

www.revlib.org

Properties of Quantum Templates

Md. Mazder Rahman and Gerhard W. Dueck

Faculty of Computer Science, University of New Brunswick, Canada

Abstract. Identity circuits are the basis for rewriting rules in the pro-
cess of optimizing reversible and quantum circuits. Rewriting rules are
also known as templates. It has been shown that templates can play an
important role in optimizing quantum circuits. This paper presents an
in-depth study of the properties of such templates. It is shown that all
optimal realizations, within certain limitations, are embedded in tem-
plates. The properties presented here, lead to a systematic method of
generating all templates with a given number of lines. It is proven that,
if the complete set of templates is available, template matching results
in optimal circuits.

Keywords: Logic Synthesis, Reversible Logic, Quantum Circuit,
Entangled State, Quantum Template.

1 Introduction

Synthesis of quantum logic has gained significance due to the potentials of quan-
tum computation. Logic operations in quantum circuits are inherently reversible
and an infinite state space can be found in quantum computation [1]. Direct
synthesis of binary reversible logic into quantum circuits is intractable and the
non-binary states of information in quantum circuits may result in entangled
states. Therefore, researchers are motivated to synthesize reversible logic into
classical reversible circuits [2–4] and then transform them into quantum cir-
cuits by using decompositions of Multiple-Control-Toffoli (MCT) gates [5] – for
example. However, quantum circuits obtained from decomposing MCT circuits
are most likely not optimal, even when the MCT circuits are realized with a
minimum number of gates. Therefore, the obtained quantum circuits can be op-
timized by post synthesis methods. In this paper, optimality is determined by
the number of gates in a circuit.

The optimization heuristic Template Matching was first introduced for MCT
circuits in [6] and later adapted to quantum circuits in [7]. Templates are based
on circuits that realize the identity function. If a sequence of gates in the circuit
to be optimized matches more than half the number of gates in a template, then
the matched sequence is replaced with the inverse of the unmatched part of the
template. Further, the reconfigured template approach proposed in [8] produces

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 125–137, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

126 M.M. Rahman and G.W. Dueck

improved results in quantum circuits. The set of quantum templates published
in [7] is incomplete and no algorithm for finding templates is given.

In this paper, we present a new definition of templates such that it is possible
to obtain optimal circuits if a complete set of templates is given. Several proper-
ties of templates are presented. Based on these properties a template generation
process is developed.

In the remainder of the paper, the proposed method and the significance of
quantum templates are described by the following structure: Section 2 provides
the basics of reversible logic, quantum logic, and quantum computations. Section
3 briefly describes the limitations of previous work on quantum templates as
well as the motivation for revisiting the template definition. In Section 4, a new
definition of quantum templates with some properties is given. The basic idea of
generating quantum templates is outlined. This section ends with a description
of the impact of reconfigured templates. Section 5 shows that all optimal binary
realizations can be obtained from templates. The paper is concludes in Section
6 by giving some directions for future work.

2 Preliminaries

To keep the paper self-contained, the background of reversible circuits and logic
operations in quantum circuits are briefly overviewed in this section.

A logic function f : Bn → Bn is said to be reversible if there is a one-to-
one and onto mapping between input and output vectors. A reversible function
can be realized by cascading reversible gates such as Multiple Control Toffoli
(MCT) [9], Peres [10], and Fredkin [11] gates. The synthesis of reversible logic
based on MCT gates is prevalent and the resulting circuits are referred to as
MCT circuits. The logic operations within the MCT circuits are performed with
binary values. However, the logic operations in quantum computation are quite
different from logic operations in classical computation. The fundamental unit
of information in quantum computation is the qubit – it can be represented by
a state vector. The states |0〉 or |1〉 are known as the computational basis states.
An arbitrary qubit is described by the following state vector

|ψ〉 = α|0〉+ β|1〉 =
(
α
β

)
(1)

where α and β are complex numbers that satisfy the constraint |α|2 + |β|2 = 1.
The measurement of a qubit results in either 0 with probability |α|2, that is, the

state |0〉 =
(
1
0

)
or in 1 with probability |β|2, that is, the state |1〉 =

(
0
1

)
. On

the other hand, a classical bit has a state either 0 or 1 which is analogous to
the measurement of a qubit state either |0〉 or |1〉 respectively. The fundamental
difference between bits and qubits is that a bit can be either in state 0 or 1
whereas a qubit can be in a superposition of both states |0〉 and |1〉.

Properties of Quantum Templates 127

Similarly a two qubit system has four basis states |00〉, |01〉, |10〉 and |11〉 can
be represented by the state vector

|ψ〉 = λ1|00〉+ λ2|01〉+ λ3|10〉+ λ4|11〉 =

⎛
⎜⎜⎝

λ1

λ2

λ3

λ4

⎞
⎟⎟⎠ (2)

where λ1λ4 = λ2λ3. If λ1λ4 �= λ2λ3 then the state |ψ〉 is referred to as an
entangled state that is not separable as the tensor product of two single qubits.
In addition to that, since it is possible to form linear combination of states – a
so called superposition, a two qubit state can be formed by the tensor product
of two single qubit states α1|0〉+ β1|1〉 and α2|0〉+ β2|1〉 represented as

(
α1

β1

)
⊗

(
α2

β2

)
=

⎛
⎜⎜⎝

α1α2

α1β2

β1α2

β1β2

⎞
⎟⎟⎠ (3)

where α1α2β1β2 = α1β2β1α2, otherwise the resulting state is entangled.
The NCV gate library includes the elementary quantum gates NOT , CNOT ,

Controlled-V , and Controlled-V † which have been prevalent for the synthesis
of binary reversible functions. The elementary quantum gates, also known as
quantum primitives, are represented by their unitary matrices that may include
complex elements. The logic operations in quantum gates are performed by ma-
trix vector multiplication that result in output state vectors, where the matrix
and the vector represent the quantum gate and the qubit state respectively. The
operation of a 2-qubit gate is said to have unit cost. However, when a sequence
of quantum gates are acting on the same two qubits, their operations can be
considered as unit cost in some technologies [12]. However, we will not use this
cost metric in this paper.

The single-qubit NOT and the two-qubits CNOT are self-inverse gates.
Controlled-V and Controlled-V † gates are also known as the Controlled-sqrt-of-
NOT gates and therefore, Controlled-V and Controlled-V † are inverse of each
other. The Controlled-V and the Controlled-V † gates can be formed as the cas-
cading of other two two-qubits primitives, as shown in Fig. 1. These are referred
to as splitting rules. Moreover, the Controlled-V gate and the Controlled-V †

gate can be replaced with each other in Fig. 1 (a) and (b) resulting in two
more splitting rules shown in Fig. 1 (c) and (d) respectively. The inverse of the
splitting rules are referred to as merge rules.

For the synthesis of binary reversible functions using quantum gates, four
different qubit states |0〉, |1〉, |v0〉 and |v1〉 are necessary [13] where the state

vectors are |v0〉 = (1+i)
2

(
1
−i

)
and |v1〉 = (1+i)

2

(
1
i

)
. If the state of a qubit is

|v0〉 or |v1〉 (also referred to as intermediate signals in the literature) and this
is applied to the control of a two-qubit gate, then the resulting output vector is

128 M.M. Rahman and G.W. Dueck

x0

x1 =

o0

o1V V

(a) S1

x0

x1 V =

o0

o1V†

(b) S2

x0

x1 =

o0

o1V† V†

(c) S3

x0

x1 V†
=

o0

o1V

(d) S4

Fig. 1. Splitting and merging of two-qubit quantum primitives

entangled. Therefore, some cascades of quantum gates may produce entangled
states. Such states are not permitted here. Note, this restriction only applies
to binary reversible circuits — not quantum circuits. Moreover, when a binary
two-qubit state either |10〉 or |11〉 is applied to a Controlled-V gate where control
input state is |1〉 then the output state either |v0〉 or |v1〉 is generated in the target
qubit, therefore, quantum circuits realizes not only binary reversible functions
but non-binary reversible functions as well. The reversible Toffoli-3 gate and its
optimal quantum realization are shown in Figure 2(a) and (b) respectively.

x0 o0

x1 o1

x2 o2

(a) Toffoli-3.

x0 o0

x1 o1

x2 o2V V† V

(b) Quantum realization of
Toffoli-3

x0 o0

x1 o1

x2 o2V

(c) Entangled circuit

Fig. 2. Cascades of reversible gates

A cascade of quantum primitives may result in an invalid circuit. If a cascades
of quantum primitives generates any output state that is not separable as the
tensor product of single qubit states then the circuit can no longer be used to
realize a binary reversible function. Note that, direct synthesis methods of quan-
tum circuits using quantum primitives must take into account this condition.
However, if a quantum circuit is obtained from the quantum decomposition of
a MCT circuit, the entangled state does not arise at any intermediate position
and the circuit realizes a binary function.

Definition 1. If a quantum circuit generates an entangled state for any given
binary input state is said to be an entangled circuit.

Example 1. The cascade of quantum primitives shown in Fig. 2(c) is an entan-
gled circuit because it generates an entangled state for input vector 〈1, 1, 1〉 and
the resulting outputs are not separable into 3 single-qubit state vectors.

Properties of Quantum Templates 129

3 Previous Work on Quantum Templates

A quantum template has been defined as a quantum identity circuit that can
not be reduced by other templates [7]. If a sequence of gates in a circuit to be
optimized matches a sequence of gates in a template, then it can be replaced
with the inverse of the unmatched sequence of the template. This process is
known as template matching. According to this template definition we have
a complete set of 3-qubits templates with up to 8 gates [14], shown in Fig. 3.
However, for a given set of all templates for 2l qubits, the template matching
algorithm does not give optimal results for any arbitrary circuit with l qubits,
due to the fact that some identities are not considered as templates, even though
they can be used to reduce the number of gates in circuits. This is illustrated
with the following example.

Example 2. Consider the circuit shown in Fig. 4(a). This circuit is to be opti-
mized. All sub-circuits of size 3 in the circuit are optimal. The circuit can not
be optimized with template matching, even though all templates of 2-qubits are
known (see T3, T4, T5, T7 and T9 in Fig. 3). However, the optimal realization
of the circuit is embedded in the template T7 in Fig. 4(a) but the sequence of
gates in circuit does not match with any 2-qubit template. Therefore, template
matching fails to optimize the circuit. Moreover, another post synthesis method
– window optimization [15] – does not consider the whole circuit as a sub-circuit
to be optimized. Therefore, this method fails to optimize this small circuit be-
cause for all windows of size w, where w < n and n is the size of the circuit,
all sub-circuits are optimal. However, the 2-qubits quantum identity shown in
Fig. 4(b) is not a template since it is reducible by the template T5 shown in
Fig. 4(a), but if it is used in template matching, results is an optimal circuit as
shown in Fig. 4(c).

Therefore, some identities that do not comply with the template definition given
in [7] have to be considered as templates. This is one motivation for our proposed
approach described in subsequent section.

4 Quantum Templates: Definition and Properties

Motivated by the discussion in Section 3, in particular by Example 2, in this
section we propose a new template definition and describe the properties of such
templates. The major objectives are to 1) construct templates and 2) prove that
optimal circuits can be obtained by template matching. A systematic method
for the generation of templates, based on the properties, is presented. We also
describe reconfigured templates that can be derived from other templates. A
template can be reconfigured dynamically during template matching. Details
are described in Section 4.2. Note that the concept of reconfigured templates
has already been proposed in [8].

Definition 2. The size of a circuit C is defined as the number of its gates and
denoted by |C|.

130 M.M. Rahman and G.W. Dueck

x0 o0

x1 o1V V

(a) T3

x0 o0

x1 o1V† V†

(b) T4

x0 o0

x1 o1

(c) T5

x0 o0

x1 o1

x2 o2

(d) T6

x0 o0

x1 o1

(e) T7

x0 o0

x1 o1

x2 o2V V†

(f) T8

x0 o0

x1 o1V V V† V†

(g) T9

x0 o0

x1 o1

x2 o2V V V† V†

(h) T10

x0 o0

x1 o1

x2 o2V V V† V†

(i) T11

x0 o0

x1 o1

x2 o2

(j) T12

x0 o0

x1 o1

x2 o2

(k) T13

x0 o0

x1 o1

x2 o2

(l) T14

x0 o0

x1 o1

x2 o2V V V† V†

(m) T15

x0 o0

x1 o1

x2 o2

V

V

V†

V†

(n) T16

Fig. 3. Quantum templates according to the definition in [7]

x2 o2

x1 o1

(a)

x0 o0

x1 o1

(b)

x2 o2

x1 o1

(c)

Fig. 4. Quantum circuits of 2-qubit: (a) quantum circuit,(b) Identity circuit and (c)
optimal circuit of (a)

Properties of Quantum Templates 131

Definition 3. If two circuits C and C′ realize the same function then they are
said to be functional equivalent. The functional equality of C and C′ is de-
noted by C = C′.

Definition 4. A circuit C is said to be optimal if no C′ exists such that C = C′

and |C| > |C′|.

In light of Example 2, we will use the following definition for templates.

Definition 5. A quantum template is an identity circuit with d gates, such
that at least one sequence of size �d

2�+ 1 can not be reduced by any other
template.

Theorem 1. All sub-circuits of an optimal circuit C are optimal.

Proof. Assume the sub-circuit A of C in not optimal. Since A is not optimal, it
is reducible. Therefore, C is reducible – by replacing the sub-circuit A with its
optimal – which is a contradiction. ��

Theorem 2. For a given template T there exists at least one sub-circuit of size

� |T |
2 � that is optimal.

Proof. If no sub-circuits of size � |T |
2 � is optimal, then all sub-circuits of size

� |T |
2 � in T can be optimized by other templates of size s < |T |. Therefore, all sub-

circuits of size � |T |
2 �+ 1 in T are reducible by other templates, a contradiction.

��

Theorem 3. Given the template T = S1S2, where |S1| = � |T |
2 � + 1 and S1 is

not reducible by any other template, then S1 has a sub-circuit of size � |T |
2 � that

is optimal.

Proof. If there is a sub-circuit S′
1 of size � |T |

2 � in S1 and S′
1 is not optimal then

it can be optimized by other templates. Therefore, S1 of size � |T |
2 �+1 is reducible

which is a contradiction. ��

Theorem 4. Given the template T = S1S2, where |S1| = � |T |
2 � + 1 and S1 is

not reducible by any other template, then S2 is optimal.

Proof. Assume that S2 is not optimal, then S2 = S3 where |S3| < |S2|. Therefore,
there is an identity realization I = S1S3 (note |I| < |T |) that can reduce the sub-
circuit S1, which is a contradiction. ��

Theorem 5. Given the template T = S1S2 and |T | is even, where |S1| = � |T |
2 �

and S1 is optimal (such an S1 exists according to Theorem 2), then S2 is optimal.

Proof. Suppose S2 is not optimal, then we have S2 = S3 where |S2| > |S3|. Since
S1 = S−1

2 we have S1 = S−1
3 (note that |S1| > |S3|), therefore S1 is not optimal,

which is a contradiction.
��

132 M.M. Rahman and G.W. Dueck

Theorem 6. Given the template T = S1S2 and |T | is odd, where |S1| = � |T |
2 �+

1 and |S1| is not reducible by any other template, then S2 is optimal.

Proof. The proof follows from Theorem 4. ��

Theorem 7. Let d be the size of the largest optimal circuit with l qubits, then
the largest template with l qubits has size no larger than 2d+ 1.

Proof. Assume there is a template T such that |T | > 2d+1. According to Theo-
rem 4 this template must have an optimal sub-circuit S1 such that |S1| ≥ d+ 1,
a contradiction. ��

Definition 6. A circuit is said to be k optimal if all sub-circuits of k gates are
optimal.

Theorem 8. Given a k optimal circuit C with l qubits, applying all templates
with l qubits of size up to 2(k + 1) + 1 will result in a k + 1 optimal circuit.

Proof. Assume a sub-circuit S1 in C, where |S| = k + 1 is not optimal. Let
S1 = S2 where |S1| > |S2|. This implies an identity realization I = S1S

−1
2 . I

must be a template (note |I| < 2(k+1)), since S1 is not reducible by any template
of size up to 2(k + 1) + 1, a contradiction.

��

Theorem 9. If all templates with l qubits of size up to d are known, then �d−1
2 �

optimality can be achieved for any circuit C with up to l qubits.

Proof. By applying the templates of size up to 5, 7, 9, . . . , d, �d−1
2 � optimality is

achieved according to Theorem 8. ��

Theorem 10. If all templates of l qubits are known, then an optimal realization
for any circuit C of l qubits can be achieved.

Proof. Let d be the size of the largest template. By Theorem 9 we can obtain C′

from C such that C′ is �d
2� optimal. If |C′| ≤ �d

2� then it is optimal. Assume

|C′| ≥ �d
2�. Let S be a sub-circuit of C′ such that |S| = �d

2� + 1. Let S = S1

where S1 is optimal. Then I = S1S
−1 must be template, a contradiction. ��

4.1 Generation of Quantum Templates from Identities

A template is an identity circuit, therefore, it is clear that ST ⊆ SI where ST the
set of templates of l qubits and SI is the set of identity realization of l-qubits.
However, according to the definition of templates it has to be ensured that all
templates of size up to s ≤ n are already generated while we are looking for
another template of size d ≥ n. Therefore, the generation of new templates is an
iterative process.

All quantum primitives are considered to be optimal. Therefore, the genera-
tion of identity realizations from optimal realizations can be considered by the
following two conditions:

Properties of Quantum Templates 133

1. If C and C′ are optimal quantum circuits where |C| = |C′| and C = C′ but
they have different arrangement of gates, then we have an identity realization
I = CC′−1 of even size that satisfies Theorem 5.

2. Suppose C and C′ are optimal quantum circuits where |C| = |C′| and C �=
C′. If C2 = Cg where g is a gate such that C2 = C′ and |C2| = |C| + 1
then we have an identity realization I = C2C

′−1 of odd size that satisfies
Theorem 6.

Since the optimal quantum realization for a given reversible function is not
unique, the general idea of finding all identities and templates is described in
the following. First find all optimal realizations of the function f as proposed
in [16], let this be the set Sf = {C1, C2, . . . , Cm} and |Ci| = n. Circuits from
the sets Sf and Sf−1 are concatenated to form identities. Note that circuits in
Sf−1 are obtained from the Sf by reversing the order of the gates in each circuit.
Template matching is used to determine if a given identity is a template. This
will only yield templates with an even number of gates. To find templates with
an odd number of gates f−1 must be realized with n+ 1 gates.

The basic quantum identity circuits are comprised of two gates whose controls
and targets are acting on the same qubit as shown in Fig. 5 – they can easily be
detected. If they can be moved in such a way that they are adjacent, they can be
deleted. At the beginning, the basic quantum identities are considered as the initial
set of templates. The same data structure used for generating identities based on
all 3-qubits optimal circuits proposed in [14] with the new definition of template
has been used to find new templates. According to the new definition of template,
the complete set of all 17 2-qubit quantum templates have been found.

x0 o0

(a) T0

x0 o0

x1 o1

(b) T1

x0 o0

x1 o1V V†

(c) T2

Fig. 5. Basic quantum identity circuits used as initial templates

Example 3. The circuits C and C′ shown in Fig. 6(a) and (b) realize the same
function f : {00, 01, 10, 11} → {10, 00, 11, 01}. According to the condition 1,
we have an identity realization CC′−1 as shown in Fig. 6(c). The sub-circuit
S of gate sequence {1, 2, 3, 4, 5}(count 0 from left) in Fig. 6(c) where |S| =

� |CC′−1|
2 �+ 1 cannot be reduced by other templates, therefore, this identity is a

template with even size.

Example 4. The circuits C and C′ shown in Fig. 7(a) and (b) are both optimal
but they realize two different reversible functions. However, the concatenation
C in Fig. 7(a) with a CNOT gate results in circuit C2 = Cg shown in Fig. 7(c)
of size 4. The circuits C2 and C′ are functional equivalent, that is, C2 = C′.
It is clear that |C′| �= |C2| and C2 is not optimal. Since C2 = C′, we have the
identity C2C

′−1 as shown in Fig. 7(d). According to the definition of template,

134 M.M. Rahman and G.W. Dueck

x0 o0
x1 o1

(a) C

x0 o0
x1 o1

(b) C′

x0 o0
x1 o1

(c) Identity circuit: CC′−1

Fig. 6. Quantum circuits

the sub-circuit of gate sequence {3, 4, 5, 6} (start from 0) in Fig. 7(d) can not
be optimized by other templates. Therefore, it is a new template. However, this
is a reconfigured template [8] since by applying gate merge rules, it can be
transformed to the circuit shown in Fig. 7(e) which is a template.

x0 o0

x1 o1

x2 o2V V

(a) C

x0 o0

x1 o1

x2 o2V† V†

(b) C′

x0 o0

x1 o1

x2 o2V V

(c) C2 = C.g

x0 o0

x1 o1

x2 o2V V V V

(d) Identity circuit: C2C
′−1

x0 o0

x1 o1

x2 o2

(e) Template

Fig. 7. Quantum circuits

4.2 Impact of Reconfigured Templates

A quantum template is said to be a reconfigured template [8], if it can be derived
from another template by using splitting rules shown in Fig. 1. For example, the
template in Fig. 8(a) can be reconfigured as Fig. 8(b) and (c).

x0 o0

x1 o1

(a)

x0 o0

x1 o1V V

(b)

x0 o0

x1 o1V† V†

(c)

Fig. 8. Template (a) is reconfigured as (b) and (c)

We predict that the number of templates will grow exponentially with respect
to the number of qubits. Hence, the number of templates in the set of all tem-
plates would be too large to be considered in a template matching procedure.
However, reconfigured templates can easily be detected. That is, if any of the
quantum gate merge rules as shown in Fig.1 can be applied, the template falls
into the reconfigured category. The deletion of reconfigured templates from the
set all templates results a reduced set of templates that is sufficient. Fig. 9 shows
all 2-qubit templates except reconfigured templates. The templates T2, T4 and
T5 in Fig. 9 can be reconfigured in 2, 4, and 2 ways respectively. How templates
can be reconfigured dynamically, is described in [8].

Properties of Quantum Templates 135

x0 o0

(a) T1

x0 o0

x1 o1

(b) T2

x0 o0

x1 o1V V†

(c) T3

x0 o0

x1 o1

(d) T4

x0 o0

x1 o1

(e) T5

x0 o0

x1 o1

(f) T6

x0 o0

x1 o1V V V† V†

(g) T7

x2 o2

x1 o1V V†

(h) T8

x0 o0

x1 o1

(i) T9

Fig. 9. 2-qubit templates

5 Completeness of Optimality of Binary Realizations
from Templates

From the properties of quantum templates it can be seen that all optimal real-
izations are embedded in the templates. Therefore, given the set of all templates
for n qubits, an optimal realization of any reversible function f with n qubits can
be found. Reconfigured templates are derived from other templates. Therefore,
if an optimal realization of a binary reversible function f is embedded into a
reconfigured template then there exists another template in which the optimal
realization of that binary reversible function f is also embedded. Table 1 shows
all 22! = 24 2-qubit binary functions, their realizations, and the corresponding
templates (as shown in Fig. 9) in which the functions are embedded.

Table 1. All optimal binary realizations of 2-qubits

Function Realization Template Function Realization Template

0,1,2,3 0,3,1,2 t2(a, b)t2(b, a) T5, T6, T9

2,3,0,1 t1(a) T1, T5, T7, T8, T9 0,2,3,1 t2(b, a)t2(a, b) T5, T6, T9

1,0,3,2 t1(b) T1, T5, T7, T8, T9 1,2,0,3 t1(a)t2(a, b)t2(b, a) T5, T9

3,2,1,0 t1(a)t1(b) T4 3,0,2,1 t1(b)t2(a, b)t2(b, a) T9

0,1,3,2 t2(a, b) T2, T4, T5, T6, T8, T9 0,2,1,3 t2(a, b)t2(b, a)t2(a, b) T6, T9

0,3,2,1 t2(b, a) T2, T4, T5, T6, T8, T9 1,3,0,2 t1(a)t2(a, b)t2(b, a)t2(a, b) T9

3,2,0,1 t1(a)t2(a, b) T4, T5, T8, T9 2,0,3,1 t1(b)t2(a, b)t2(b, a)t2(a, b) T9

2,3,1,0 t2(a, b)t1(a) T4, T5, T8, T9 3,1,2,0 t2(a, b)t2(b, a)t1(a)t2(a, b) T9

3,0,1,2 t1(b)t2(b, a) T4, T5, T8, T9 3,1,0,2 t1(a)(b, a)t2(a, b) T9

1,2,3,0 t2(b, a)t1(b) T4, T5, T8, T9 2,1,3,0 t2(a, b)t2(b, a)t1(b) T9

1,0,2,3 t2(a, b)t1(b) T4, T9 1,3,2,0 t2(b, a)t2(a, b)t1(b) T9

2,1,0,3 t1(a)t2(b, a) T4, T9 2,0,1,3 t1(a)t2(b, a)t2(a, b) T5, T9

Function {3, 2, 0, 1} stands for f : {00, 01, 10, 11} → {11, 10, 00, 01}

136 M.M. Rahman and G.W. Dueck

6 Conclusion and Future Work

An new definition of quantum template has been proposed. It has been shown
that a complete set of templates has some interesting properties. These prop-
erties can be used to generate a complete set for templates for a given number
of qubits. One conclusion that can be drawn from the properties, is that the
set of templates is very large, since all optimal circuits must be embedded in
them. We are currently in the process of generating all 3-qubit templates. Even
this task requires significant processing power and smart algorithms. We hope
to complete this task soon.

It is clear that the number of templates, even for 3 qubits, will be very large. In
fact, it is not expected that all templates could be efficiently considered in a tem-
plate matching procedure. However, empirical results show that some templates
are more often applied than others. This is particularly evident if the circuits
were obtained using Barenco’s decomposition [5]. The obvious next step (after
the complete set of 3-qubit templates has been obtained) is to see which tem-
plates are applied most frequently and how good the optimization results are, if
a reduced set of templates is applied. The goal is to obtain near-minimal results
using reasonable amount of computing time with a limited set of templates.

References

1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

2. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for
reversible logic synthesis. In: Design Automation Conference (2003)

3. Iwama, K., Kambayashi, Y., Yamashita, S.: Transformation rules for designing
CNOT-based quantum circuits. In: Design Automation Conference, New Orleans,
Louisiana, USA (2002)

4. Mishchenko, A., Perkowski, M.: Logic synthesis of reversible wave cascades. In:
International Workshop on Logic Synthesis (2002)

5. Barenco, A., Bennett, C.H., Cleve, R., DiVinchenzo, D., Margolus, N., Shor, P.,
Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation.
The American Physical Society 52, 3457–3467 (1995)

6. Maslov, D., Dueck, G.W., Miller, D.M.: Toffoli network synthesis with templates.
Transactions on Computer Aided Design 24, 807–817 (2005)

7. Maslov, D., Young, C., Dueck, G.W., Miller, D.M.: Quantum circuit simplifica-
tion using templates. In: DATE - Design, Automation and Test in Europe, pp.
1208–1213 (2005)

8. Rahman, M.M., Dueck, G.W., Banerjee, A.: Optimization of Reversible Circuits
Using Reconfigured Templates. In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS,
vol. 7165, pp. 43–53. Springer, Heidelberg (2012)

9. Toffoli, T.: Reversible computing. Tech. memo MIT/LCS/TM-151, MIT Lab. for
Comp. Sci. (1980)

10. Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32, 3266–3276
(1985)

11. Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical
Physics 21, 219–253 (1982)

Properties of Quantum Templates 137

12. Rahman, M.M., Banerjee, A., Dueck, G.W., Pathak, A.: Two-qubit quantum gates
to reduce the quantum cost of reversible circuit. In: Proceedings of the International
Symposium on Multiple-Valued Logic, pp. 86–92 (2011)

13. Hung, W., Song, X., Yang, G., Yang, J., Perkowski, M.: Optimal synthesis of multi-
ple output Boolean functions using a set of quantum gates by symbolic reachability
analysis. Transactions on Computer Aided Design 25, 1652–1663 (2006)

14. Rahman, M.M., Dueck, G.W.: An algorithm to find quantum templates. In: IEEE
Congress on Evolutionary Computation (accepted 2012)

15. Soeken, M., Wille, R., Dueck, G.W., Drechsler, R.: Window optimization of re-
versible and quantum circuits. In: International Symposium on Design and Diag-
nostics of Electronic Circuits and Systems (2010)

16. Rahman, M.M., Dueck, G.W.: Optimal quantum circuits of 3-qubits. In: Proceed-
ings of the International Symposium on Multiple-Valued Logic (accepted 2012)

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 138–151, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Optimal 4-bit Reversible Mixed-Polarity Toffoli Circuits

Marek Szyprowski1 and Paweł Kerntopf1,2

1 Institute of Computer Science, Department of Electronics and Information
Technology Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
2 Department of Theoretical Physics and Informatics, University of Łódź, Pomorska 149/153,

90-236 Łódź, Poland
{m.szyprowski,p.kerntopf}@ii.pw.edu.pl

Abstract. Optimal synthesis of reversible circuits is a very hard task. For ex-
ample, up to year 2009 this problem had not been solved even for 4-bit reversi-
ble functions, in spite of intensive research during previous decade. In 2010,
a method and a tool of practical usage for finding optimal circuits for any 4-bit
reversible specification were finally developed. Namely, with sophisticated op-
timizations it was possible to find gate count optimal circuits for any 4-bit re-
versible function built from multi-control Toffoli gates. Last year, we published
an extension to the algorithm, which allows to reduce the quantum cost of the
resulting circuits. In this paper we present another extension to this approach.
Namely, we have extended the reversible gate library to mixed-polarity multi-
control Toffoli gates (i.e. with both positive and negative controls). Our
experimental results for the known reversible benchmarks show that using
mixed-polarity Toffoli gates gives significant savings in gate count. The paper
presents results of different computational experiments including optimal 4-bit
circuits for the known reversible benchmarks with respect to both gate count
and quantum cost criteria.

Keywords: reversible circuits, synthesis, quantum cost.

1 Introduction

A gate (circuit) is called reversible if there is a one-to-one correspondence between its
inputs and outputs. Research on reversible logic circuits is motivated by possible ap-
plications in quantum computing, low-power design, nanotechnology, optical compu-
ting, bioinformatics and cryptography. Therefore, synthesis of reversible logic has
been intensively studied for the last decade [15]. The attention has been focused on
the synthesis of circuits built from the NCT library of gates consisting of NOT,
CNOT and Toffoli gates. Many reversible circuit synthesis algorithms for this library
have been proposed. However, they usually generate suboptimal circuits.

For many years few exact optimal circuits have been found for n-variable functions
with n > 3. For example, it was even not known what is the maximal gate count in
optimal circuits implementing 4-bit reversible functions. This problem is very hard
because there are 16! ≈ 2·1013 such functions so the search space is extremely large.

 Optimal 4-bit Reversible Mixed-Polarity Toffoli Circuits 139

In 2010 a very fast tool capable of synthesizing optimal circuits for any 4-bit reversi-
ble specification was finally developed [5]. With this tool it was possible to establish
that there are 144 4-bit functions requiring 15 gates in their optimal circuits and that
there exists none requiring 16 or more gates [5], [9].

Quality of a reversible circuit is usually estimated by gate count (GC) or by
a metric called quantum cost (QC). Much less effort has been devoted to minimiza-
tion of QC in reversible circuits. Usually, minimization of GC was the first step and
then an effort to reduce quantum cost was made with the fixed gate count [6].

However, as we showed in [20], finding exact minimal quantum cost circuits re-
quires considering circuits having greater number of gates than the minimal size ones.
Synthesis of reversible circuits with gates having mixed-polarity control (i.e. with
both positive and negative controls) has been considered in a number of papers [1],
[2], [7], [12-14], [16-17], [24-25]. However, exact optimal circuits have been reported
only for circuits with up to 7 gates [23].

Last year we developed a tool similar to the one reported earlier in [5] capable of
finding a circuit having a minimal number of gates for any 4-bit reversible function.
We also programmed and run a method capable of finding all circuits implementing
a given reversible function with a specified value of GC. Now we have extended this
tool to synthesis of circuits built with gates having mixed-polarity control. Our expe-
rimental results for the known reversible benchmarks show that using mixed-polarity
Toffoli gates gives significant savings in gate count. The paper presents results of
different computational experiments including optimal 4-bit circuits for the known
reversible benchmarks with respect to both gate count and quantum cost criteria.
These results have implications in testing synthesis algorithms for reversible mixed-
polarity circuits and quantum circuits.

The paper is organized as follows. Section 2 recalls basic concepts of reversible
logic. In Section 3 notions of cost functions and optimal reversible circuits are intro-
duced. Section 4 describes a tool [4], [5] for synthesis of 4-bit gate count optimal
reversible Boolean circuits. In Section 5 our extensions to this tool are briefly pre-
sented. In Section 6 our experimental results are collected and compared to known
circuits from benchmark webpages and from the literature. Section 7 summarizes the
paper with conclusions and suggestions for further research.

2 Preliminaries

Definition 1. A completely specified n-input n-output Boolean function (referred to
as n*n function) is called reversible if it maps each input assignment into a unique
output assignment.

There are 2n! reversible n*n Boolean functions. For n = 3 this number is equal to
40,320 and for n = 4 is greater than 2·1013.

Definition 2. An n-input n-output (n*n) gate (or circuit) is reversible if it realizes an
n*n reversible function.

140 M. Szyprowski and P. Kerntopf

In a reversible circuit fanout of each gate output is always equal to 1. As
a consequence n*n reversible circuits can be only built as a cascade of k*k reversible
gates (k ≤ n).

Definition 3. A set of reversible gates that can be used to build reversible circuits is
called a gate library.

Many gate libraries have been examined in the literature. The so called NCT li-
brary for n ≤ 4 consists of 1*1 NOT, 2*2 CNOT and 3*3 and 4*4 TOFFOLI gates.
Below definitions of generalized mixed polarity gates of those types are given.

Definition 4. Let ai ∈{0, 1} for i = 1, 2, 3, 4, and let ⊕ denote XOR operation.
1*1 NOT(x1) gate performs the operation

(x1) → (x1 ⊕ 1),
2*2 CNOT(x1, x2) gate performs the operation

(x1, x2) → (x1, (x1 ⊕ a1) ⊕ x2),
3*3 TOFFOLI(x1, x2, x3) gate performs the operation

(x1, x2, x3) → (x1, x2, (x1 ⊕ a1)(x2 ⊕ a2) ⊕ x3),
4*4 TOFFOLI4(x1, x2, x3, x4) gate performs the operation

(x1, x2, x3, x4) → (x1, x2, x3, (x1 ⊕ a1)(x2 ⊕ a2)(x3 ⊕ a3) ⊕ x4).

The above defined i*i gates, where i = 1, 2, 3, 4, (in short, denoted by N, C, T, T4,
respectively) invert input xi if and only if the values of inputs x1, x2, ..., xi-1 differ from
corresponding a1, a2, ..., ai-1 coefficients, passing these inputs unchanged to corres-
ponding outputs. Signals which are passed unchanged from input to output of the gate
are called control lines. The signal xi which can be modified by the gate is called tar-
get. Each of the N, C, T, T4 gates is invertible, i.e. equal to its own inverse.

Some commonly used names for describing control lines have been introduced. If
all a1, a2, ..., ai coefficients equals zero, the gate has positive-polarity control lines.
Alternatively, if all a1, a2, ..., ai coefficients equals one, the gate has negative-polarity
control lines. These names come from expanding the expressions for the functions
realized by the gate. Positive-polarity means that all variables which correspond to
control lines directly affects the target line. Negative-polarity means that the target
line is affected only if the values of control lines are equal 0. The term mixed-polarity
control lines is used if all values of a1, a2, ..., ai coefficients are allowed to be 0 or 1.

In the literature the term NCT gate library is commonly used as a synonym for the
library consisting of N, C, T gates with positive-polarity controls exclusively. We will
use the term mixed-NCT (m-NCT in short) for the generalized NCT library with all
gates having mixed-polarity control lines.

3 Cost Functions and Optimal Reversible Circuits

It can easily be noticed that for most of reversible functions there exist more that one
reversible circuit implementing it. Thus a cost function has to be defined to evaluate
the quality of a circuit. For this purpose additive cost functions are applied. The sim-
plest cost function of a reversible circuit is based on the total number of gates. It is
called gate count (GC in short).

 Optimal 4-bit Reversible Mixed-Polarity Toffoli Circuits 141

Other cost functions are also considered. The most widely used, called quantum
cost (QC), is based on the cost of elementary quantum gates required to build the
circuit using the best known quantum mapping procedure of the reversible gates. It is
assumed that the cost of each elementary quantum gate equals 1, so the cost of a re-
versible gate equals to the total number of elementary quantum gates used. The quan-
tum cost of positive-polarity N, C, T and T4 gates is assumed to be 1, 1, 5 and 13,
respectively (see for example [3], [10]). These values have been calculated in assump-
tion that the four types of elementary quantum gates are available: N, C, V/V+ (the
latter two implementing square roots of NOT gate) and W/W+ (implementing fourth
roots of NOT gate). Quantum cost of mixed-polarity NCT gates is generally assumed
the same as positive-polarity with the exception that the quantum cost of all negative-
polarity C, T and T4 gates is higher by 1 and equals 2, 6 and 14, respectively [8], [11],
[14], [18].

By an optimal circuit we mean an implementation having the minimal cost. The set
of optimal circuits implementing a reversible function depends on a gate library and a
cost function. One can easily notice that a cascade built from arbitrary types of gates
might realize more than one reversible function, because the final function is defined
by the order of variables and the possible inversion of the circuit [4-5].

Let us define an equivalence class in the set of reversible functions with respect to
the types of gates in optimal circuits implementing those functions.

Definition 5. Two reversible Boolean functions are called equivalent if they belong to
the same equivalence class (called a conjugacy class in [4-5]) under simultaneous
input/output relabeling and reversible function inversion.

It can be easily shown that two functions which belong to the same equivalent class
have the same cost. Such equivalence class can contain maximally 2·n! functions
(number of permutations of all variables doubled by the possibility of inversion). In
a set of 4-bit reversible functions one equivalence class contains up to 48 functions.

We will be using the following popular vector notation for an n-variable reversible
Boolean function f: [f(0), f(1), ... , f(2n-1)], where each binary vector f(i) will be ex-
pressed as a decimal.

Definition 6. The canonical representative of an equivalence class is the function
whose vector [f(0), f(1), ... , f(2n-1)] is lexicographically smallest.

4 Gate Count Optimal Synthesis

In 2010 Golubitsky, Falconer and Maslov [4] presented the implementation of an
algorithm for finding a gate count optimal reversible circuit for any 4*4 reversible
function. The algorithm is based on the fact that the set of all functions that have
a gate count optimal circuit up to 9 gates can be effectively stored in memory of no-
wadays computers. It also relied on the fact that for each equivalent class of reversible
functions it is sufficient to store only its canonical representative, so the amount of
required memory can be reduced almost 48 times. Reversible functions in such data-
base are stored in hash tables. Authors of [4] constructed a database with canonical

142 M. Szyprowski and P. Kerntopf

representatives of optimal circuits up to 9 gates. With such database, the GC of the
optimal circuit can be quickly checked for any reversible function f, requiring up to 9
gates by a simple lookup of a canonical representative. To find GC for the functions
that require more than 9 gates in an optimal circuit additional processing is needed.
Namely, the algorithm relies on the fact that any optimal circuit for the function f can
be partitioned into two circuits which realize functions g and r, such that f = g ○ r,
where symbol ○ denotes composition (cascading of the circuits). The above equation
can be transformed into the following: f ○ r -1 = g, where r -1 denotes the inverse of the
function r.

The algorithm (named FINDOPT in [4]) iterates over all functions in the database
that have optimal circuits of length i, for i < 9, computes their inversions and then
compose the function f with all of them. For the resulting function g it checks the
length of an optimal circuit by a lookup in the database. If such function g with op-
timal circuit of length j has been found in the database, the length of the optimal cir-
cuit for the function f equals to i+j [4].

The above procedure provides an effective and very fast method of finding the
length of a gate count optimal circuit for any 4*4 reversible function. It can also be
easily extended to a fast algorithm for finding a gate count optimal circuit [4]. One
just needs to store the last gate of the optimal circuit with each function in the data-
base and the complete circuit can be easily constructed with a recursive approach.

Using the computer system with 16 AMD Opteron 2300 MHz processors and
64GB RAM the authors of [4] managed to create a database for 9-gate optimal cir-
cuits and synthesize an optimal circuit for any given 4*4 reversible function in about
0.01s on average. However, they considered positive-polarity NCT gates exclusively.

5 Our Extension to the Synthesis Algorithm

In [20-21] we have extended the algorithm presented in [4-5] to an algorithm for find-
ing all reversible circuits with a specified gate count for the given reversible function.
Our approach is a combination of the original algorithm and depth-first search with
database for effective pruning the search tree. Such approach is similar to a generic
scheme of heuristic search based algorithms for reversible circuit synthesis described
earlier in the literature [19]. In each step a reversible gate is selected one by one. Each
such gate is added at the end of the previously analyzed gate cascade and the result is
checked if it gives a circuit for the specified reversible function with the selected
number of gates. This check is performed by calculating the reversible function for
the to-be-constructed part of the circuit and calculating the gate count of an optimal
circuit for it. Once the final circuit has been constructed, the algorithm backtracks and
tries other gates until all circuits for the specified reversible function will be found. If
adding the selected gate to the previously analyzed gate cascade results in a longer to-
be-constructed part of the circuit than in the previous step of the algorithm, the search
path is abandoned and the algorithm returns to the previous level of the depth-first
search procedure. Our approach results in developing an algorithm which is well

 Optimal 4-bit Reversible Mixed-Polarity Toffoli Circuits 143

balanced in both CPU power and memory usage complexity and allows to use the
resources of nowadays computer systems in the most efficient way.

Once all reversible circuits for an arbitrary circuit length have been constructed, the
second phase begins. Namely, for each of those circuits the quantum cost function is
calculated and a circuit with the lowest quantum cost is considered as the final result.
The proposed approach allowed us to find 4-bit circuits for the known reversible
benchmarks with significantly lower quantum cost (on average 44.7%) than the best
circuits published earlier in the literature [20-21].

6 Experimental Results

In our experiments we have focused on mixed-polarity NCT gate library and for such
gate library we have constructed a database of 4-bit optimal circuits. Our experiments
were performed on the IBM xSeries x3650 with 2x6-core Intel Xeon 6C X5650
2.66GHz CPUs and 92 GiB of RAM computer system and our tools were run on
KVM virtualized RedHat RHEL 6 64bit operating system with 8 logical CPUs and
72GiB of RAM. With such computer system we managed to construct a database of
gate count optimal mixed-polarity reversible circuits up to 7 gates and quantum cost
optimal circuits up to 23 units. The parameters for the gate count and quantum cost
optimal circuit databases for the mixed-polarity NCT gates are presented in Table 1
and Table 5, respectively. The first column shows the number of gates in an optimal
circuit, the second column shows the total number of functions requiring such number
of gates in an optimal circuit and the third one presents the number of canonical rep-
resentatives of the reversible functions actually stored in the database. The next group
of columns presents the parameters of the hash table used to store canonical repre-
sentatives for circuits of the respective gate count: 'Max Entries' means the total num-
ber of entries that can be stored in the hash table of that size, where 'Size' means the
amount of memory occupied by the hash table in the memory of the computer system,
'Max Chain Length' shows the length of the chained (conflicting) entries in the hash
table and the next column shows the load factor of the hash table. Relatively low val-
ues of the maximal chain length compared to the size of the table and high values of
the fill ratio show that the selected hash calculation algorithm is correctly selected for
this task and the hash tables can be used for very fast lookup operations.

Table 1. Parameters of the gate count optimal circuit database for reversible functions requiring
up to seven mixed-polarity NCT gates

GC # Functions
Canonical

Representatives
of Functions

Hash Table Parameters

Max Entries Size Max Chain
Length

Load
Factor

1 108 10 16 128B 1 62.5%

2 6,774 244 256 2KiB 51 95.3%

3 313,140 7,292 8,192 64KiB 615 89.0%

4 11,559,793 245,457 262,144 2MiB 1,202 93.6%

5 349,572,560 7,310,186 8,388,608 64MiB 823 87.1%

6 8,585,260,568 179,011,749 268,435,456 2GiB 148 66.7%

7 163,493,840,712 3,406,842,995 4,294,967,296 32GiB 483 79.3%

144 M. Szyprowski and P. Kerntopf

Using our database with gate count optimal circuits up to 7 gates we are able to
construct optimal circuits from m-NCT gates up to 14 gates. From [5] we know that
optimal circuits built from positive-polarity NCT gates require at most 15 gates. NCT
gate library is a subset of m-NCT gate library, so gate count m-NCT optimal circuits
cannot be larger than NCT based ones. We have constructed the m-NCT optimal cir-
cuits for all reversible functions requiring exactly 15 NCT gates in the optimal circuit.
The results are provided in Table 6. Optimal m-NCT circuits for these functions con-
sist of 10 or 11 gates, what proves that our database contains enough data to construct
an m-NCT optimal circuit for any 4-bit reversible function.

Table 2. Distribution of the number of gates in the optimal circuit for 10,000,000 randomly
generated reversible functions

GC # Functions
4 9

5 164

6 4070

7 77748

8 996225

9 5354699

10 3554656

11 12429

Our next experiment consists in finding m-NCT optimal circuit size for 10,000,000
random reversible functions. Results are available in Table 2. Basing on the distribu-
tion of the number of gates for the randomly generated functions with uniform distri-
bution we have extrapolated the distribution of gate count m-NCT optimal circuits for
all 4-bit reversible functions – see Table 3. For comparison we also provide a distribu-
tion of NCT optimal circuits calculated in [4-5]. It can be noticed that optimal circuits
built from m-NCT gates are significantly smaller than those built from NCT gates.

Table 3. Number of 4-bit permutations requiring prescribed number of gates for gate count
optimal circuits built from NCT and mixed-polarity NCT gate libraries

GC NCT [5] m-NCT

0 1 1
1 32 108
2 784 6,774
3 16,204 313,140
4 294,507 11,559,793
5 4,807,552 349,572,560
6 70,763,560 8,585,260,568
7 932,651,938 163,493,840,712
8 10,804,681,959 2.11 × 1012 ♣

9 105,984,823,653 1.14 × 1013 ♣

10 819,182,578,179 7.54 × 1012 ♣

11 4,298,462,792,398 2.64 × 1010 ♣

12 10,690,104,057,901 ? ♣

13 4,959,760,623,552 ? ♣

14 37,481,795,636 ?
15 144 0

♣ - estimation based on the distribution on 10,000,000 random reversible function

 Optimal 4-bit Reversible Mixed-Polarity Toffoli Circuits 145

This observation has been verified with the next experiments. The first one in-
cludes finding optimal circuits for the important class of 4-bit affine functions [4-5].
Results of this experiment are presented in Table 4. For this set of reversible functions
the average gate count of the m-NCT gate count optimal circuits is approximately one
gate lower than the average gate count of the NCT optimal circuits.

Table 4. Distribution of the number of gates in the gate count optimal circuit for 4-bit affine
reversible functions

GC NCT [5] m-NCT
0 1 1
1 16 28
2 162 438
3 1206 4340
4 6589 25761
5 26182 82680
6 72062 129016
7 118424 71096
8 84225 9104
9 13555 96

10 138
Average: 6,88 5,82

The last set of experiments have been performed on 4-bit reversible benchmarks.
We applied our extension to the synthesis algorithm and constructed all reversible
circuits for the specified functions. For all such circuits we have calculated their quan-
tum cost. We also constructed reversible circuits for the benchmark functions using
the database of quantum cost optimal circuits. Results are presented in Table 6. For
the obtained set of circuits we selected those having lowest quantum cost in case of
gate count synthesis and lowest gate count in case of quantum cost synthesis. The
table is organized in the following way. The rows which span across the whole table
contain the name of the benchmark and its specification as a list of output vectors (in
decimal numbers). The next rows (separated into columns) contain the experimental
data. The first column shows the number of gates of the obtained reversible circuits
for the specified reversible function. The value in the first row after the reversible
benchmark name contains data for gate count optimal circuits (there exist no circuits
with less gates). The second column shows the range of quantum cost of all generated
gate count optimal reversible circuits or quantum cost value (show in bold) for cir-
cuits constructed from database of the quantum cost optimal circuits. The third col-
umn shows the total number of the generated circuits. The fourth column contains the
information about the time (measured in CPU-seconds) required to generate all the
circuits. The last column contains an example of a circuit with the lowest quantum
cost which have been found for the specified number of gates.

To present circuits in a compact way we have shortened the names of gates. Nota-
tion for the positive-polarity controlled gates is as follows:

─ NOT(a) is denoted by Na,
─ CNOT(a, b) is denoted by Ca-b,

146 M. Szyprowski and P. Kerntopf

─ TOFFOLI(a, b, c) is denoted by Tab-c,
─ TOFFOLI(a, b, c, d) is denoted by Tabc-d.

Negative-polarity controls are marked with prime symbol. For example, negative-
polarity CNOT(a, b) gate implementing the function: (a, b) → (a, (a ⊕ 1) ⊕ b) is
denoted by Ca'-b.

Summary of this experiment and a comparison with earlier results for 4-bit optimal cir-
cuit synthesis constructed for NCT library are shown in Table 7. The first column contains
names of reversible benchmarks. Column II contains GC and QC parameters of the best
circuits under gate count cost taken from the reversible benchmark collections [9], [22]
and the literature. Column III contains GC and QC parameters for the circuits which had
the lowest quantum cost constructed in [20]. Similarly, column IV contains GC and QC
parameters for the gate count optimal circuits constructed in [20]. All these results were
achieved for positive-polarity NCT gates. The next column (V) contains GC and QC pa-
rameters for the gate count optimal circuits constructed using our database for m-NCT
gates. It can be noticed that optimal gate count circuits constructed from m-NCT gates are
smaller (on average by 25.7%) than optimal circuits built from NCT gates. The last col-
umn (VI) contains GC and QC for the circuits of lowest quantum cost constructed from
the quantum cost optimal database for m-NCT gates. Although the circuits presented in
this column have not been proven optimal, one can notice significant (about 5 units) quan-
tum cost reduction comparing to the gate count optimal circuits from the previous column.

Table 5. Parameters of the quantum cost optimal circuit database for reversible functions
requiring up to 23 units of quantum cost, constructed from mixed-polarity NCT gates

QC # Functions
Canonical

Representatives
of Functions

Hash Table Parameters

Max Entries Size
Max

Chain
Length

Load
Factor

Computa-
tion

Time [s]
1 16 2 8 64B 1 25.0% 0
2 162 9 16 128B 4 56.3% 0
3 1,206 40 64 512B 5 62.5% 0
4 6,589 176 256 2KiB 29 68.8% 0
5 26,218 623 1,024 8KiB 30 60.8% 0
6 72,794 1,656 2,048 16KiB 56 80.9% 0
7 127,202 2,838 4,096 32KiB 50 69.3% 0
8 159,969 3,567 4,096 32KiB 95 87.1% 0
9 496,839 10,775 16,384 128KiB 41 65.8% 1

10 2,250,392 47,953 65,536 512KiB 87 73.2% 1
11 7,191,293 152,065 262,144 2MiB 64 58.0% 6
12 13,584,693 286,272 524,288 4MiB 55 54.6% 18
13 12,054,088 254,237 262,144 2MiB 13,240 97.0% 40
14 19,177,368 402,503 524,288 4MiB 156 76.8% 52
15 96,053,736 2,008,029 2,097,152 16MiB 4,734 95.8% 93
16 344,816,754 7,199,623 8,388,608 64MiB 804 85.8% 422
17 732,152,368 15,275,671 16,777,216 128MiB 1,556 91.1% 1,686
18 756,302,010 15,774,290 16,777,216 128MiB 3,501 94.0% 4,113
19 641,829,725 13,386,936 16,777,216 128MiB 350 79.8% 5,692
20 2,555,342,563 53,270,576 67,108,864 512MiB 417 79.4% 6,528
21 10,000,899,175 208,426,279 268,435,456 2GiB 317 77.6% 19,289
22 23,856,350,699 497,120,368 536,870,912 4GiB 3,308 92.6% 72,212
23 31,985,693,970 666,494,297 1,073,741,824 8GiB 132 62.0% 186,322

 Optimal 4-bit Reversible Mixed-Polarity Toffoli Circuits 147

Table 6. Quantum cost optimal implementations with specified gate count for 4-bit benchmark
functions [9], [22], [20] constructed from m-NCT gates

GC QC #circuits time[s] example circuit for QCmin

4b15g_1 [1,5,0,8,9,11,2,15,3,12,4,6,10,14,13,7]
10 55-55 22 183 Ta'b'-c Tb'cd-a Ta'd-b Tb'c'-d Ca-d Tc'd'-a Tab'-c Ta'd'-c Tac'-b Cb'-a
13 41 1 - Tabc-d Tac'-b Nb Cb-d Cb-a Cc-b Tad-b Cd-c Tb'c-d Ca-c Tc'd-a Cb-c Cd-b

4b15g_2 [1,9,0,4,10,8,2,11,3,15,5,12,7,14,13,6]
11 37-82 146224 6371 Tad'-c Tb'c'-a Cb-c Cc-d Ta'd-c Tc'd-b Tbc'-d Tad-c Cc-a Ca'-d Cc-b

14 34 1 - Tb'd-a Ca-d Cb-c Cc-a Tad'-b Tbc-d Cd-c Cb-a Ca-c Na Tcd-a Ta'b-c Cc-b Cd-a

4b15g_3 [3,1,7,13,11,0,8,15,2,5,10,6,9,14,12,4]
11 37-91 308210 6600 Ca'-d Tcd'-b Cb-c Tcd-a Ta'd-b Ta'b-d Tbc'-a Ca'-b Tb'd-c Cc-d Cd-b
13 34 1 - Ca-c Cc-b Cd-a Tab-d Tc'd'-a Ca-b Cb-c Cc-d Tad'-c Tbc'-a Cd-c Tab-d Cc-b

4b15g_4 [3,1,11,7,8,0,9,5,2,6,15,13,14,4,10,12]
11 46-69 17296 3852 Tcd-a Tab'c-d Cd'-c Cb'-d Tcd-b Ca-c Tc'd'-a Ta'b-c Tbc'-d Ca-b Cb-a
13 38 1 - Ta'b'd-c Cd-b Cc-d Tb'd-c Cd-a Ca-d Nd Cd-c Cc-b Cc-a Ta'd-c Tbc-d Cd-b Cb-c

4b15g_5 [3,5,11,1,8,0,9,7,2,6,14,13,10,4,12,15]
10 37-67 600 96 Cd-a Ta'c-d Tb'd'-c Ca'-c Tb'c'-a Cd-b Ta'b-d Tac'-b Tbd-c Cd-a

13 34 1 - Ca-b Tb'c-d Tad'-c Tb'c-a Ca-b Tb'd-a Cb-c Cc-d Ta'd-c Cd-b Cb-d Cc-a Na Ca-b

4_49 [15,1,12,3,5,6,8,7,0,10,13,9,2,4,14,11]
9 30-78 490 1774 Cc-a Ta'b'-d Tcd-b Tad-c Tbc-a Cd-a Ta'b-d Cd-c Cd-b
9 30 1 - Cc-a Ta'b'-d Tcd-b Tad-c Tbc-a Cd-a Ta'b-d Cd-c Cd-b

decode42 [1,2,4,8,0,3,5,6,7,9,10,11,12,13,14,15]
6 39-42 10 2 Tc'd'-b Tb'd'-a Ta'b'c'-d Tb'd'-c Cd'-a Tad'-b
9 29 1 - Cd-a Ca-c Tcd'-b Tab'c-d Ca-b Tbd'-a Ca-c Ca-b Na

hwb4 [0,2,4,12,8,5,9,11,1,6,10,13,3,14,7,15]
10 22-50 11776 1798 Cc-a Tbd'-c Cb-d Ca-d Tc'd-b Tab'-c Cd-a Cb-d Ca-b Cc-a

10 22 1 - Cd-b Ta'c-d Cb-c Ca-c Tcd-a Tab-d Cc-b Ca-c Cb-a Cd-b

imark [4,5,2,14,0,3,6,10,11,8,15,1,12,13,7,9]
6 19-27 36 0 Tcd-a Tab-d Cd'-c Cb-c Cd-a Tac'-b
7 19 1 - Tcd-a Tab-d Cd-c Cb-c Cd-a Tac-b Nc

mperk [3,11,2,10,0,7,1,6,f,8,14,9,13,5,12,4]
8 17-35 2087 389 Tcd-b Cd'-c Tac-d Cd-a Cc-a Ca-c Cb-a Ca-b
9 17 1 - Tcd-b Cd-c Tac'-d Cd-a Cc-a Ca-c Cb-a Na Ca-b

oc5 [6,0,12,15,7,1,5,2,4,10,13,3,11,8,14,9]
9 38-63 2952 734 Cc'-a Tad-b Tbc'-d Ca-c Cc-b Ta'bd-c Cb-a Ta'd-b Tb'c-a

12 36 1 - Cc-b Tb'd-c Cc-a Cb-c Cc-d Na Ca-b Tb'd-a Tac-d Cb-c Cb-a Tabd-c

oc6 [9,0,2,15,11,6,7,8,14,3,4,13,5,1,12,10]
9 38-63 95 53 Ta'bc-d Cd-c Tbc-d Tb'd'-a Cc-b Tab'-c Tc'd-a Ca-d Ca-c
9 38 1 - Ta'bc-d Tb'd'-a Cd-c Cc-b Tb'c-d Tab'-c Tc'd-a Ca-d Ca-c

oc7 [6,15,9,5,13,12,3,7,2,10,1,11,0,14,4,8]
10 41-70 4097 90 Tad-c Cb-a Tacd-b Cb'-d Cc'-b Tbd-a Tac'-d Ta'd'-c Cb-c Cc-a
11 40 1 - Tad-c Cb-a Tacd-b Nb Cb-d Cc-b Tbd-a Tac'-d Ta'd'-c Cb-c Cc-a

148 M. Szyprowski and P. Kerntopf

Table 6. (continued)

GC QC #circuits time[s] example circuit for QCmin

oc8 [11,3,9,2,7,13,15,14,8,1,4,10,0,12,6,5]
9 43-81 12308 1517 Cc-a Ta'b'-d Ta'd-b Tbc-d Tcd-a Ta'b'd-c Cb-a Tad'-b Cb'-d

11 39 1 - Tcd-b Ca-b Cb-d Cb-c Nb Ta'bd'-c Tcd-a Ta'd-b Tbc-d Cb-a Ca-c

nth_prime4_inc [0,2,3,5,7,11,13,1,4,6,8,9,10,12,14,15]
8 56-56 16 408 Ta'cd'-b Tb'd-c Tb'c-d Tad'-b Tab'-c Tb'cd-a Tc'd-b Tbd'-a
12 32 1 - Cd-b Tbc'-d Cc-b Tad'-c Cc-a Cb-c Cd-a Ta'c-b Cd-a Tbd-a Tac-d Cb-c

primes4 [2,3,5,7,11,13,0,1,4,6,8,9,10,12,14,15]
8 33-55 512 7 Tc'd-b Cb-c Ta'c-d Tcd-a Cd'-b Tbc-d Tac-b Tbd-c
10 26 1 - Tcd'-b Cd-a Cb-d Tad-b Cb-a Nc Cc-b Tbd'-c Cc-d Tb'd-c

mini_alu [0,1,2,3,4,5,14,11,8,6,10,9,12,15,13,7]
6 30-78 36 0 Tbc-a Tad-c Tad-b Tbc-d Tbc-a Tad-c

8 24 1 - Tbc-a Cb-c Tad-b Cd-a Tbc'-d Ta'd-c Cb-c Cd-a

aj-e11 [1,2,4,8,0,3,5,6,7,9,10,11,12,13,14,15]
6 39-42 10 0 Tc'd'-b Tb'd'-a Ta'b'c'-d Tb'd'-c Cd'-a Tad'-b
9 29 1 - Cd-a Ca-c Tcd'-b Tab'c-d Ca-b Tbd'-a Ca-c Ca-b Na

mod10_171 [1,2,3,4,5,6,7,8,9,0,10,11,12,13,14,15]
5 46-49 28 0 Tabd'-c Tad'-b Tab'c'-d Tb'c'd-a Cd'-a
9 37 1 - Tad'-b Ca-c Tc'd-a Tab'-c Tcd-a Ca-c Cd-c Tab'c'-d Na

mod10_176 [1,2,3,4,5,6,7,8,9,0,11,12,13,14,15,10]
5 33-39 50 1 Tab-c Tac'd-b Tabc'-d Ca-b Na

8 24 1 - Cc-d Tab-c Tc'd-b Tab-d Tc'd-b Ca-b Cc-d Na

4_49+hwb4 [15,2,3,12,5,9,1,11,0,10,14,6,4,8,7,13]
9 34-34 12 153 Tbc'-d Tcd'-a Ca'-d Tc'd-b Tab-c Tb'd-a Tac'-b Cd-c Cb-a
13 29 1 - Cb-dTc'd-a Cc-b Ta'b-d Cd-a Nd Tc'd-b Ca-c Cc-d Tab-c Cc-b Cd-c Cb-a

msaee [11,3,9,2,7,13,15,14,8,1,4,10,0,12,6,5]
9 43-81 12308 20 Cc-a Ta'b'-d Ta'd-b Tbc-d Tcd-a Ta'b'd-c Cb-a Tad'-b Cb'-d
11 39 1 - Tcd-b Ca-b Cb-d Cb-c Nb Ta'bd'-c Tcd-a Ta'd-b Tbc-d Cb-a Ca-c

gyang [2,5,3,15,4,13,6,7,8,9,10,11,12,1,14,0]
5 50-50 4 0 Tabd'-c Tac-d Tad'-c Tbc'd'-a Ta'c'd'-b

11 39 1 - Tab'd'-c Cd-b Nc Cc-d Tad-c Cc-b Tbc-a Ta'd-b Tbc-a Cc-d Nc

dmasl [0,1,14,3,4,5,7,8,15,13,10,6,9,12,11,2]
7 31-47 24 22 Ta'd-b Cd-c Tbc-a Tc'd-a Ta'b-d Ta'd-c Tc'd-b
11 31 1 - Tad-b Cd-c Tbc'-a Cd-b Tab-d Cd-b Cb-a Ca-c Cd-a Tad'-c Tcd-b

App2.2 [7,14,9,6,11,0,13,2,5,15,10,12,1,4,3,8]
9 38-59 1067 46 Ca-b Tbc'd-a Ca'-d Tbd-c Ta'd-b Tbc'-d Tad'-b Nc Na
9 38 1 - Ca-b Tbc'd-a Na Ca-d Tbd-c Nc Tad-b Tbc-d Ta'd'-b

App2.11 [7,14,9,6,11,0,13,2,5,15,10,12,1,4,3,8]
7 32-52 113 1 Tac'-b Tb'c'-d Tbd-c Tad-b Tbd-a Tbc'-d Ca-b
8 29 1 - Ca-b Tb'c'-d Tad'-c Tac'-b Tbd-a Ca-c Tbc'-d Ca-b

 Optimal 4-bit Reversible Mixed-Polarity Toffoli Circuits 149

Table 7. Summary of the lowest gate count and the lowest quantum cost values for circuits
implementing 4-bit reversible benchmark functions built from NCT and m-NCT gates

I II III IV V VI

Benchmark

Best known
(NCT)

[5], [9], [20]

Best QC
(NCT) [20]

Optimal GC
(NCT) [20]

Optimal GC
(m-NCT)

Best QC
(m-NCT)

GC QC GC QC GC QC GC QC GC QC
4b15g_1 15 47 15 39 15 39 11 48 13 41
4b15g_2 15 61 15 31 15 31 11 37 14 34
4b15g_3 15 53 15 33 15 33 11 37 13 34
4b15g_4 15 47 15 35 15 35 11 46 14 38
4b15g_5 15 43 15 31 15 31 10 37 14 34
4_49 12 32 14 28 12 30 9 30 9 30
decode42 10 30 10 28 10 28 6 39 9 29
hwb4 11 21 13 19 11 21 10 22 10 22
imark 7 19 9 17 7 19 6 19 7 19
mperk 9 15 9 13 9 13 8 17 9 17
oc5 11 39 12 34 11 39 9 38 12 36
oc6 12 42 13 37 12 38 9 38 9 38
oc7 13 41 14 34 13 35 10 41 11 40
oc8 12 48 13 35 12 40 9 43 11 39
nth_prime4_inc 15 51 14 26 11 53 8 56 12 32
primes4 10 42 12 22 10 42 8 33 10 26
mini_alu 6 62 8 16 6 30 6 30 8 24
aj_e11 10 30 10 28 10 28 6 39 9 29
mod10_171 10 56 12 32 9 53 5 46 9 37
mod10_176 7 41 9 21 7 35 5 33 8 24
4_49+hwb4 12 30 14 26 12 28 9 34 13 29
msaee 16 72 14 34 12 40 9 43 11 39
gyang 19 103 14 36 10 52 5 50 11 39
dmasl 16 128 10 24 9 25 7 31 11 31
App2.2 18 102 13 35 11 39 9 38 9 38
App2.11 14 82 12 26 9 45 7 32 8 29
average: 12.50 51.42 12.46 28.46 11.08 34.69 8.23 36.81 10.53 31.85

7 Conclusions and Future Work

The main contribution of this paper are new results for circuits constructed from
mixed-polarity NCT gates obtained from optimal circuit databases for such gates. Our
results can be used for comparison with other reversible circuit synthesis algorithms
which use mixed-polarity NCT gates. It has also been shown that using m-NCT gates
reduces average gate count of the optimal circuits for the known benchmarks by
25.7% in comparison with gate count optimal circuits built from NCT gates. This
approach can be extended in a similar manner as described in [21] and applied to
resynthesis procedure for some parts of the circuits having more than 4 inputs/outputs.

We would like to find the maximum number of m-NCT gates required to construct
the largest 4-bit optimal circuit. In the experiments described in the paper the largest
optimal circuits required 11 m-NCT gates, but there might exist optimal circuits with
more than 11 m-NCT gates. We plan to perform a computational experiment which

150 M. Szyprowski and P. Kerntopf

would provide a complete distribution of reversible functions over the length of m-
NCT optimal circuits to replace extrapolated values from Table 3 with exact results.

Acknowledgements. This work was supported by the Polish Ministry of Science and
Higher Education under Grant 4180/B/T02/2010/38.

References

1. Arabzadeh, M., Saeedi, M., Zamani, M.S.: Rule-Based Optimization of Reversible Cir-
cuits. In: Proc. Asia-South Pacific Design Automation Conference, pp. 849–854. IEEE
(2010)

2. Ardestani, E.K., Zamani, M.S., Sedighi, M.: A Fast Transformation-Based Synthesis Algo-
rithm for Reversible Circuits. In: Proc. EUROMICRO Conference on Digital System De-
sign, pp. 803–806 (2008)

3. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D., Margolus, N., Shor, P., Sleator, T.,
Smolin, J., Weinfurter, H.: Elementary Gates for Quantum Computation. Phys. Rev. A 52,
3457–3467 (1995)

4. Golubitsky, O., Falconer, S.M., Maslov, D.: Synthesis of the Optimal 4-bit Reversible Cir-
cuits. In: Proc. Design Automation Conference, pp. 653–656. ACM (2010)

5. Golubitsky, O., Maslov, D.: A Study of Optimal 4-bit Reversible Toffoli Circuits and
Their Synthesis. IEEE Trans. on Computers 61, 1341–1353 (2012)

6. Grosse, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact Multiple Control Toffoli Net-
work Synthesis with SAT Techniques. IEEE Trans. on CAD 28, 703–715 (2009)

7. Li, M., Zheng, Y., Hsiao, M.S., Huang, C.: Reversible Logic Synthesis Through Ant Colo-
ny Optimization. In: Proc. Design and Test in Europe Conference, pp. 307–310 (2010)

8. Markov, I.L., Saeedi, M.: Constant-Optimized Quantum Circuits for Modular Multiplica-
tion and Exponentiation. Quantum Information and Computation 12, 361–394 (2012)

9. Maslov, D.: Reversible Logic Synthesis Benchmarks Page,
http://www.cs.uvic.ca/~dmaslov

10. Maslov, D., Dueck, G.W.: Improved Quantum Cost for n-bit Toffoli Gates. Electronics
Letters 39, 1790–1791 (2003)

11. Miller, D.M., Wille, R., Sasanian, Z.: Elementary Quantum Gate Realizations for Multiple-
Control Toffoli Gates. In: Proc. 41st IEEE International Symposium on Multiple-Valued
Logic, pp. 288–293. IEEE (2011)

12. Moraga, C.: Mixed Polarity Reed Muller Expressions for Quantum Computing Circuits.
In: Proc. 10th Reed-Muller Workshop, pp. 119–125 (2011)

13. Moraga, C.: Hybrid GF(2) – Boolean Expressions for Quantum Computing Circuits. In:
De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 54–63. Springer, Heidelberg
(2012)

14. Moraga, C.: Using Negated Control Signals in Quantum Computing Circuits. Facta Un-
iversitatis (Niš), Ser.: Elec. Energ. 24, 423–435 (2011)

15. Saeedi, M., Markov, I.L.: Synthesis and Optimization of Reversible Circuits – A Survey.
ACM Computing Surveys (accepted 2012), available at arXiv: 1110.2574v1 (2011)

16. Saeedi, M., Zamani, M.S., Sedighi, M.: Moving Forward: A Non-Search Based Synthesis
Method toward Efficient CNOT-based Quantum Circuit Synthesis Algorithms. In: Proc.
Asia-South Pacific Design Automation Conference, pp. 83–88. IEEE (2008)

 Optimal 4-bit Reversible Mixed-Polarity Toffoli Circuits 151

17. Saeedi, M., Sedighi, M., Zamani, M.S.: A Novel Synthesis Algorithm for Reversible Cir-
cuits. In: Proc. International Conference on Computer Aided Design, pp. 65–68 (2007)

18. Sasanian, Z., Miller, D.M.: Mapping a Multiple-Control Toffoli Gate Cascade to an Ele-
mentary Quantum Gate Circuit. Journal of Multiple-Valued Logic and Soft Computing 18,
83–98 (2012)

19. Szyprowski, M., Kerntopf, P.: Estimating the Quality of Complexity Measures in Heuris-
tics for Reversible Logic Synthesis. In: Proc. IEEE Congress on Computational Intelli-
gence, Congress on Evolutionary Computation (CD), 8 p. IEEE (2010)

20. Szyprowski, M., Kerntopf, P.: Reducing Quantum Cost in Reversible Toffoli Circuits. In:
Proc. 10th Reed-Muller Workshop, pp. 127–136 (2011), corrected version available at ar-
Xiv: 1105.5831v2

21. Szyprowski, M., Kerntopf, P.: An Approach to Quantum Cost Optimization in Reversible
Circuits. In: Proc. 11th IEEE Conference on Nanotechnology, pp. 1521–1526. IEEE
(2011)

22. Wille, R., Grosse, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: An Online Re-
sourse for Reversible Functions and Reversible Circuits, http://www.revlib.org

23. Wille, R., Soeken, M., Przigoda, N., Drechsler, R.: Exact Synthesis of Toffoli Gate Cir-
cuits with Negative Control Lines. In: Proc. 42nd IEEE International Symposium on Mul-
tiple-Valued Logic, pp. 69–74. IEEE (2012)

24. Zheng, Y., Huang, C.: A Novel Toffoli Network Synthesis Algorithm for Reversible Log-
ic. In: Proc. Asia-South Pacific Design Automation Conference, pp. 739–744. IEEE (2009)

25. Zhu, W., Guan, Z., Hang, Y.: Reversible Logic Synthesis of Networks of Posi-
tive/Negative Control Gates. In: Proc. 5th IEEE International Conference on Natural Com-
putation, pp. 538–542. IEEE (2009)

Design of an Online Testable Ternary Circuit

from the Truth Table

Noor M. Nayeem and Jacqueline E. Rice

Dept. of Math & Computer Science
University of Lethbridge, Lethbridge, Canada

{noor.nayeem,j.rice}@uleth.ca

Abstract. This paper presents a new approach for converting a ternary
reversible circuit implemented from a truth table into an online testable
circuit. Our approach adds three extra lines to the given circuit, inserts
Feynman gates and M-S gates, and replaces the ternary Toffoli gates
(KP-m gates) with TKP-(m+1) gates. Our approach works with only
2×2 gates and 1×1 gates and covers a higher number of detectable faults.
Preliminary work shows fault coverage of 84.89% when the approach is
applied to a testable ternary half adder.

Keywords: Reversible logic, ternary circuits, online testing.

1 Introduction

Circuits built using traditional logic lose information during computation, which
is dissipated as heat [1]. One solution to this loss of information is reversible
logic. In particular, Bennett showed that a circuit consisting of only reversible
gates dissipates zero energy [2]. There has, however, been little work on testa-
bility of reversible circuits, and even less in the area of multiple-valued testable
reversible circuits. There is motivation to develop research in multiple-valued
reversible logic, as this can provide a stepping stone to up-and-coming quantum
technologies since quantum computing is inherently multiple-valued [3]. Previ-
ous work in online testing for reversible circuits includes our own in [4] as well
as work in the Boolean domain such as [5] and [6].

In this work we introduce a new approach for converting a ternary reversible
circuit into an online testable circuit, with fault coverage improvements over
previous work reported in [4]. We emphasize that this work is ongoing, and
preliminary results are reported here.

2 Background

2.1 Online Testing

Those of us in the field of computing are aware that testing is required to en-
sure quality and reliability. This applies to reversible logic circuits as well as

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 152–159, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Design of an Online Testable Ternary Circuit from the Truth Table 153

to traditional logic circuits. According to [7], testing can be performed in the
following ways: online; that is, while the circuit is operating normally; offline;
or during a period while the circuit is not in use; or using some combination of
both online and offline testing. The work proposed here is for an online testing
approach, thus we would not require the circuit to be taken out of operation for
the fault-detection to take place.

2.2 Fault Models

There are several fault models in reversible logic some of which include the miss-
ing, repeated and reduced gate fault models [8]. An additional and technology-
independent fault model referred to as the bit fault model is used in various
works including [5] and [6]. In this model a fault, possibly in a gate, would
change the behavior of the gate’s outputs. A single-bit fault is reflected on ex-
actly one output of a gate, changing the correct value of the output to a faulty
value. This model is somewhat reminiscent of the stuck-at fault model. We use
this single-bit model in this work, although we note that the use of the term “bit”
is not entirely accurate for ternary logic. The original concept of this model is
still valid, however, as we are identifying the situation when a fault is reflected
on exactly one output of a gate.

2.3 Ternary Galois Field Logic

The Ternary Galois Field (TGF) consists of {0, 1, 2} and two operations, ad-
dition modulo 3 and multiplication modulo 3. We denote addition modulo 3 by
⊕ and multiplication modulo 3 by the absence of any operator. For a ternary
variable a, we have a = a ⊕ 3 and aaa = a. According to [9], a ternary variable
a has six basic literals: a, a+1 = a⊕ 1, a+2 = a⊕ 2, a12 = 2a, a01 = 2a⊕ 1, and
a02 = 2a⊕ 2.

2.4 Reversible Ternary Gates

We define here the ternary reversible gates which are required for this paper.
A 1-qutrit permutative gate [10] is defined as {a} → {b = aZ} where Z ∈
{+1,+2, 12, 01, 02} as shown in Fig. 1(a). For example, if Z = +1, then b =
a+1 = a⊕ 1.

The Feynman gate has the input vector [a1, a2] and output vector [b1 =
a1, b2 = a1 ⊕ a2]. The modified Feynman gate discussed in [11] is very simi-
lar to the Feynman gate with the exception that b2 = 2a1 ⊕ a2. The Feynman
gate and its modified version are shown in Fig. 1(b) and Fig. 1(c).

A 2-qutrit Muthukrishnan-Stroud (M-S) gate [10] is defined as mapping the
input vector [a1, a2] to the output vector [b1 = a1, b2 = r] where r = aZ2 if a1 = 2;
otherwise r = a2. Here a1 is the controlling input and a2 is the controlled input.
An M-S gate is shown in Fig. 1(d).

Khan and Perkowski proposed a ternary Toffoli gate [10]; however its be-
haviour is somewhat different from the commonly accepted behaviour for a

154 N.M. Nayeem and J.E. Rice

(a) (b) (c) (d)

a1
a2

c1=0
ap

c2=0
cp-1=0
ap+1 Z

cp-1
bp+1

c2

c1

bp

b2

b1

2

2

2

(e)

a1
a2

c1=0
ap

c2=0
cp-1=0
ap+1 Z

cp-1
bp+1

c2

c1

bp

b2

b1

yp

y1
y2

(f) (g) (h)

Fig. 1. (a) A permutative gate, (b) Feynman gate, (c) modified Feynman gate, (d) M-S
gate, (e) (p+ 1)-qutrit KP gate, (f) (p+ 1)-qutrit generalized KP gate, (g) equivalent
representation of a generalized KP gate, and (h) KP-m gate

Toffoli gate and so to avoid confusion we refer to this gate as a KP gate. A
(p + 1)-qutrit KP gate is shown in Fig. 1(e). This gate maps the input vector
[a1, a2, . . . , ap+1] to the output vector [b1 = a1, b2 = a2, . . . , bp = ap, bp+1 = r]
where r = aZp+1 if a1 = a2 = . . . = ap = 2; otherwise r = ap+1. Here a1, a2, . . . , ap
are controlling inputs and ap+1 is the controlled input. An implementation of
this gate requires p input lines, p− 1 constant lines, and an output line [10].

Khan and Perkowski also proposed a generalized KP gate [10] as shown in
Fig. 1(f), which is very similar to the KP gate. In this gate r = aZp+1 if a1 =
y1, a2 = y2, . . . , ap = yp; otherwise r = ap+1. An equivalent representation of this
gate is shown in Fig. 1(g). This version is built using the KP gate and 1-qutrit
permutative gates where dj = 2 − yj and dj + d′j = 0 for j = 1, 2, . . . , p. The
permutative gate +dj is used to change the controlling input of KP gate to 2,
and the permutative gate +d′j restores the controlling value.

We can extend the KP gate and the generalized KP gate for multiple con-
trolled inputs. For example, a (p + 1)-qutrit generalized KP gate with m + 1
controlled inputs, denoted as a KP-m gate, is shown in Fig. 1(h). The KP-m
gate has the input vector [a1, a2, . . . , ap, ap+1, . . . , kp+m+1] and the output vec-
tor [b1 = a1, b2 = a2, . . . , bp = ap, bp+1 = r1, bp+2 = r2, . . . , bp+m+1 = rm+1]

where rk = aZk

p+k if a1 = y1, a2 = y2, . . ., ap=yp and Zk ∈ {+1,+2, 12, 01, 02}
for k = 1, 2, . . . ,m+ 1; otherwise rk = ap+k. Here, a1, a2, . . . , ap are controlling
inputs and ap+1, ap+2, . . . , ap+m+1 are controlled inputs. Like the (p+ 1)-qutrit
KP gate and generalized KP gate, a (p+1)-qutrit KP-m gate also requires p− 1
constant lines.

Design of an Online Testable Ternary Circuit from the Truth Table 155

In order to design the testable ternary circuit we add the following constraints
to the KP-m gate: Zk ∈ {+1,+2} (k = 1, 2, . . . ,m) and Zm+1 = Z1 ⊕Z2 ⊕ . . .⊕
Zm. To distinguish this gate from the KP-m gate we call this gate a TKP-m
gate (testable KP-m). The symbol of a (p + 1)-qutrit TKP-m gate is shown in
Fig. 2.

2.5 Synthesis of Ternary Reversible Circuits

Several approaches such as [12], [13] and [14] have been proposed for synthesis
of ternary reversible circuits. In this section we briefly describe an approach [10]
to realize a ternary circuit from the truth table.

Consider a ternary function with p input variables x1, x2, . . . , xp and q output
variables f1, f2, . . . , fq. An empty cascade with p input lines (I1, I2, . . . , Ip), p−1
constant lines (Ip+1, Ip+2, . . . , I2p−1) and q output lines (I2p, I2p+1, . . . , I2p+q−1)
is generated. For each input combination x1x2 . . . xp (xi ∈ {0, 1, 2}, for i =
1, 2, . . . , p) with m + 1 outputs (0 ≤ m < q) having values 1 or 2 in the truth
table, a (p+1)-qutrit generalized KP-m gate with x1 = y1, x1 = y1, . . . , xp = yp
is added to the circuit. Each controlling input ai of the gate is connected to
the input line Ii. For each fj = 1 (or 2) j = 1, 2, . . . , q, a controlled input is
connected to the output line I2p+j−1 with Z = +1 (or +2). Although we have
described this approach using generalized KP-m gates the circuit can also be
generated using KP-m gates and permutative gates.

As an example, given the truth table of a ternary function with two input
variables (x1 and x2) and two output variables (f1 and f2) as shown in Table 1, a
ternary circuit is implemented as shown in Fig. 3. For the first input combination,
a 3-qutrit KP-1 gate is added. The controlling inputs of this gate are connected
to lines I1 and I2 and the controlled inputs are connected to lines I4 and I5.
Two 3-qutrit KP gates are added for the second and third input combinations.
No more gates are added since both f1 and f2 have values 0 for all other input
combinations.

Fig. 2. (p+ 1)-qutrit
TKP-m gate

Table 1. Truth table
of a ternary function

x1 x2 f1 f2
0 0 1 1
0 1 1 0
0 2 0 2
1 0 0 0
1 1 0 0
1 2 0 0
2 0 0 0
2 1 0 0
2 2 0 0

I1
I2

f1
f2

I4
I5

I3

x2

x1

0
0

0

0

+1

+1 +1

+2

000

0 1 2

Fig. 3. A ternary circuit

156 N.M. Nayeem and J.E. Rice

3 Our Approach

3.1 Design

Consider a reversible ternary circuit generated from the truth table as discussed
in Section 2.5. A circuit generated in this way consists of only permutative gates,
KP-m gates, and generalized KP-m gates. If the circuit has p input lines and q
output lines, then the circuit also has p− 1 constant lines. We refer to the input
lines as I1, I2, . . . , Ip, the constant lines as Ip+1, Ip+2, . . . , I2p−1, and the output
lines as I2p, I2p+1, . . . , I2p+q−1. If the initial values and final values of any input
line (or constant line) are not the same, then the permutative gates and M-S
gates are added to restore the initial value at the end of the corresponding line.
The following approach converts such circuit into an online testable circuit.

Our proposed approach requires three extra lines, L1, L2, and L3, each of
which is initialized with a zero. All permutative gates found in the given circuit
are retained. Each KP-m gate is replaced by a TKP-(m+1) gate. The connections
of the TKP-(m + 1) gate remain the same as that of KP-m gate with the last
controlled input connected to L1.

For each input line in the given circuit, this approach adds a Feynman gate
and a modified Feynman gate at the beginning and at the end of the circuit,
respectively. For each such gate, the controlling input is connected to Iu (for
u = 1, 2, . . . , p) and controlled input is connected to L2. At the end of each
constant line we first add a permutative (Z = +2) gate, then an M-S gate
(Z = +1) with controlling input connected to Iv (for v = p+1, p+2, . . . , 2p− 1)
and controlled input connected to L3. Another permutative gate (Z = +1) is
also added on the constant line to restore the value. Finally, at the end of each
output line a modified Feynman gate is added with controlling input connected
to Iw (for w = 2p, 2p+ 1, . . . , 2p+ q − 1) and controlled input connected to L1.
This approach requires the addition of p Feynman gates, p+q modified Feynman
gates, p− 1 M-S gates and 2p− 2 permutative gates.

If a single fault occurs in any gate other than the Feynman gate and the
modified Feynman gate, then L1 or L2 will be non-zero, or L3 will not be equal
to 1⊕2⊕ . . .⊕p−1. If no fault occurs in the circuit, then L1 and L2 will remain
0, and L3 will be equal to 1 ⊕ 2 ⊕ . . . ⊕ p− 1. Thus existence of a fault can be
detected by examining the values of L1, L2 and L3.

The following example describes this approach. For a ternary circuit as shown
in Fig. 3, our proposed approach generates an online testable circuit as shown in
Fig. 4. In the testable circuit three extra lines are added and the KP-m gates are
replaced by TKP-(m+ 1) gates. In addition, two Feynman gates, four modified
Feynman gates, one M-S gate and two permutative gates are added.

3.2 Fault Detection

Our proposed approach makes use of the TKP-(m + 1) gates and generalized
TKP-(m + 1) gates, which can be decomposed into M-S gates and permuta-
tive gates. In this section, we consider a low level design of our testable circuit

Design of an Online Testable Ternary Circuit from the Truth Table 157

Fig. 4. An online testable ternary circuit

consisting of 1×1 gates and 2×2 gates which are permutative gates, M-S gates,
Feynman gates, and the modified Feynman gates.

A single fault on a line can propagate to several lines via M-S gates. This
causes multiple faults in the circuit. Consider an M-S gate as shown in Fig. 1(d).
A fault in the controlling input a1 (or controlled input a2) of an M-S gate affects
this gate since it causes b1 (or b2) to have the faulty value. It is noted that a
fault in a2 cannot propagate to b1 since b1 is independent of a2. However, if a
fault changes the value of a1 to 2 (or changes the value from 2 to either 0 or 1),
then the fault also propagates to b2 since the value of b2 depends not only on a2
but also on a1.

Our approach ensures detection of a single fault in any M-S gate and per-
mutative gate even though the fault may propagate to multiple lines. Proofs
are omitted due to page limitations. However, this testable circuit is unable to
detect a fault in Feynman gates and modified Feynman gates, which are added
to make the circuit testable. Ongoing work is addressing this.

4 Discussion

We have implemented a non-testable ternary half adder from the truth table
using the method described in Section 2.5. The cost of the circuit when built
in this way is 50 (based on the cost metrics given in [10]). We have applied
our approach to convert this into a testable adder with a final cost of 85. The
overhead of adding the testability is in this case 70%. We calculate the fault
coverage of our circuit to be 84.89% based on the single-bit fault model from [5].

We point out that our approach adds exactly p Feynman gates, p+q modified
Feynman gates, p − 1 M-S gates, and 2p − 2 permutative gates regardless of
the number of gates in the given circuit. This results in a higher overhead cost
for a small circuit such as ternary half adder. For circuits with higher numbers
of gates the overhead costs will be reduced. In addition a larger circuit will
cover a higher number of detectable faults since the number of Feynman gates
and modified Feynman gates becomes smaller compared to other gates in a
large circuit. Future work includes computation of the overhead cost and fault
coverage for large benchmark circuits.

158 N.M. Nayeem and J.E. Rice

5 Comparison with Related Work

The authors in [15] proposed an approach to design a ternary circuit with online
testability. This approach proposes two blocks TR1 and TR2 which are cascaded
together to form a testable block (TB) that can perform a single operation such
as addition or multiplication. A number of TBs are used to design the circuit.
A checker circuit is also required to test the TBs. It is noted that this approach
can detect a single fault in a block (TR1 or TR2) if the fault reflects to only
one of the outputs of that block. Since the blocks TR1 and TR2 are very large,
consisting of many gates, it is very likely that a fault will be reflected to several
outputs of a faulty block. In this case, this approach will fail to detect such fault.

Another approach proposed in [4] provides a simple way to convert a non-
testable circuit into a testable one. This approach also fails to detect a fault in
a large gate if the fault reflects to multiple outputs of that gate.

In contrast the approach described here considers a low level design consisting
of only 1×1 gates and 2×2 gates, rather than considering a design with large
blocks or gates. Thus the fault coverage of this approach is much higher than
that of the previously mentioned approaches.

6 Conclusion

We have introduced a technique that takes a ternary reversible circuit generated
as described in [10] and transforms the circuit into an online testable circuit.
This is achieved through the addition of three additional lines and p Feynman
gates, p+ q modified Feynman gates, p− 1 M-S gates, and 2p− 2 permutative
gates where p is the number of input lines and q is the number of output lines.
Our preliminary work is showing similar overhead to that in [4]; that is, for
small circuits the overhead percentage is high, but as gate counts increase this is
reduced. The resulting fault coverage seems quite good, although further work on
larger benchmarks is continuing. Future work will also include further analysis
and comparisons to related work such as [6] and [5].

References

1. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
Journal of Research and Development 5, 183–191 (1961)

2. Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and
Development 17(6), 525–532 (1973)

3. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

4. Nayeem, N.M., Rice, J.E.: A new approach to online testing of TGFSOP-based
ternary Toffoli circuits. In: Proceedings of the 42nd International Symposium on
Multiple-Valued Logic (ISMVL), Victoria, BC, Canada, May 14-16 (to appear,
2012)

5. Vasudevan, D.P., Lala, P.K., Jia, D., Parkerson, J.P.: Reversible logic design with
online testability. IEEE Transactions on Instrumentation and Measurement 55(2),
406–414 (2006)

Design of an Online Testable Ternary Circuit from the Truth Table 159

6. Mahammad, S.N., Veezhinathan, K.: Constructing online testable circuits using
reversible logic. IEEE Transactions on Instrumentation and Measurement 59(1),
101–109 (2010)

7. Wang, L., Wu, C., Wen, X. (eds.): VLSI Test Principles and Architectures: Design
for Testability. Morgan Kaufmann (2006)

8. Hayes, J.P., Polian, I., Becker, B.: Testing for missing-gate faults in reversible
circuits. In: Proceedings of the 13th Asian Test Symposium, pp. 100–105 (2004)

9. Khan, M.H.A., Perkowski, M., Khan, M.R., Kerntopf, P.: Ternary GFSOP min-
imization using Kronecker decision diagrams and their synthesis with quantum
cascades. Journal of Multiple-Valued Logic and Soft Computing 11(5-6), 567–602
(2005)

10. Khan, M.H.A., Perkowski, M.A.: Quantum ternary parallel adder/subtractor with
partially-look-ahead carry. Journal of Systems Architecture 53(7), 453–464 (2007)

11. Rahman, M.R.: Online testing in ternary reversible logic. Master’s thesis, Univer-
sity of Lethbridge (2011)

12. Khan, M.H.A., Perkowski, M., Kerntopf, P.: Multi-output Galois field sum of prod-
ucts synthesis with new quantum cascades. In: Proceedings of the 33rd Interna-
tional Symposium on Multiple-Valued Logic, pp. 146–153 (2003)

13. Miller, D.M., Maslov, D., Dueck, G.W.: Synthesis of quantum multiple-valued
circuits. Journal of Multiple-Valued Logic and Soft Computing 12(5-6), 431–450
(2006)

14. Khan, M.H.A.: GFSOP-based ternary quantum logic synthesis. In: Proceedings
of SPIE 7797 (Optics and Photonics for Information Processing IV), San Diego,
California (2010)

15. Rahman, M.R., Rice, J.E.: On designing a ternary reversible circuit for online
testability. In: Proceedings of the IEEE Pacific Rim Conference on Communica-
tions, Computers and Signal Processing (PACRIM), Victoria, B.C., Canada, pp.
119–124 (August 2011)

Garbageless Reversible Implementation

of Integer Linear Transformations

Stéphane Burignat1, Kenneth Vermeirsch1,
Alexis De Vos1,2, and Michael Kirkedal Thomsen3

1 Department of Electronics and Information Systems
2 Imec v.z.w., Universiteit Gent, B - 9000 Gent, Belgium
{sburigna,Kenneth.Vermeirsch,alex}@elis.ugent.be

3 Department of Computer Science,
University of Copenhagen, DK - 2100 Copenhagen, Denmark

michael@kirkedal.dk

Abstract. Discrete linear transformations are important tools in in-
formation processing. Many such transforms are injective and therefore
prime candidates for a physically reversible implementation into hard-
ware. We present here reversible digital implementations of different in-
teger transformations on four inputs. The resulting reversible circuit is
able to perform both the forward transform and the inverse transform.
Which of the two computations that actually is performed, simply de-
pends on the orientation of the circuit when it is inserted in a computer
board (if one takes care to provide the encapsulation of symmetrical
power supplies). Our analysis indicates that the detailed structure of
such a reversible design strongly depends on the prime factors of the
determinant of the transform: a determinant equal to a power of 2 leads
to an efficient garbage-free design.

1 Introduction

Linear transforms are important in analysis and compression of audio signals,
images, video, and much more. A common property of most of these transforms
is the existence of an inverse transform, meaning that they, in theory, are lossless
reversible functions.

An important transform is the Fourier transform. Its fast discrete implemen-
tation is widely used in digital signal processing. For the Fourier transform there
exists an inverse transform and it has therefore been researched in a reversible
context [1]. A problem with the Fourier transform is the use of non-integer and
complex values, that in numerical computations result in rounding of fixed-point
or floating-point numbers and thus a lossy coding. To avoid complex-number
arithmetic, the Fourier transform is often replaced by a discrete cosine transform
(DCT), for which real-number arithmetic is sufficient. However, it still suffers
from rounding errors due to floating-point arithmetic. Integer transforms, which
are invertible integer approximations of a real-valued linear transform such as
the DCT, can solve this last problem.

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 160–170, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Garbageless Reversible Implementation of Integer Linear Transformations 161

For implementation in reversible computing the ‘lifting scheme’ [2] is a pow-
erful tool. The lifting scheme decomposes an injective computation into a series
of ‘reversible updates’ [3]. Designs throughout this paper are based on reversible
logic as described by Fredkin and Toffoli [4]. A key element in our designs is the
V-shaped reversible binary adder introduced by Vedral et al. [5] and improved by
Cuccaro et al. [6]. Detailed descriptions of these can be found in [7, 8]; detailed
tests and measurements of adiabatic calculations in a fabricated adder can be
found in [9]. The actual physical circuit is implemented using reversible dual-line
pass-transistor CMOS technology [8–10].

2 Approximating the Discrete Cosine Transform

The 4× 4 discrete cosine transform is defined by

C =

⎛
⎜⎝

a a a a
b c −c −b
d −d −d d
c −b b −c

⎞
⎟⎠ , (1)

where

a = 1
2 cos(0) = 1

2 = 0.500

b = 1√
2

cos(π/8) =

√
2+

√
2

2
√
2

≈ 0.653

c = 1√
2

cos(3π/8) =

√
2−√

2

2
√
2

≈ 0.271

d = 1√
2

cos(π/4) = 1
2 = 0.500 .

Its matrix determinant is

det(C) = 8ad(c2 + b2) = 1 . (2)

An integer transform is obtained by successively multiplying by a constant
scalar α and rounding [11]:

Hα = round(αC) .

We have det(Hα) ≈ det(αC) = α4 det(C) = α4.
Choosing α equal to unity, yields the matrix

H1 =

⎛
⎜⎝

1 1 1 1
1 0 0 −1
1 −1 −1 1
0 −1 1 0

⎞
⎟⎠ ,

with determinant equal to 8, i.e. a value deviating surprisingly much from α4 = 1.
We see how the rounding step strongly influences the value of the determinant.

162 S. Burignat et al.

Choosing α equal to 2, gives the transformation

H2 =

⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

⎞
⎟⎠ ,

with determinant equal to 16, i.e. exactly equal to α4. This is the well-known
Walsh–Hadamard matrix, applied in data encryption, signal processing and data
compression algorithms (such as MPEG-4) [12].

Given an invertible matrix (a matrix with non-zero determinant), it is possible
to automatically generate a lifting scheme using decomposition. One algorithm
for this is described in detail by De Vos and De Baerdemacker [13]. However,
for transformation matrices with built-in symmetries, like the cosine transform,
such standard decomposition is far from optimal. More efficient decompositions
into scaling, swapping, and lifting matrices are possible [14]. Figure 1 shows a
decomposition of the Walsh–Hadamard matrix, involving only four scalings (all
with scaling factor 2), eight liftings (all with lifting factor ±1) and four swaps.
The circuit generates no garbage and has an appealing modular structure: it is
built from four 2× 2 Hadamard matrices(

1 1
1 −1

)
.

A + • + • P

B • 2 − • 2 − Q

C + • + • R

D • 2 − • 2 − S

Fig. 1. Optimal lifting scheme for the Walsh–Hadamard 4× 4 matrix

The fact that the circuit does not generate garbage numbers is a most valuable
property. It means the circuit can be used in reverse direction (i.e. from right to
left in Fig. 1) in order to perform the inverse operation:

H−1
2 =

1

4
H2 .

3 The H.264 Transform

For many applications, the Walsh–Hadamard is considered as too ‘crude’ ap-
proximation of the cosine transform. Values of α larger than 2 yield increasingly

Garbageless Reversible Implementation of Integer Linear Transformations 163

more precise approximations to the real-valued DCT, but the resulting matrix
coefficients will contain more diverse prime factors. Therefore, often the com-
promise choice α = 2.5 is used. After multiplication by 2.5, matrix (1) becomes

⎛
⎜⎝

1.25 1.25 1.25 1.25
1.63 0.68 −0.68 −1.63
1.25 −1.25 −1.25 1.25
0.68 −1.63 1.63 −0.68

⎞
⎟⎠ . (3)

Subsequent rounding yields

H2.5 =

⎛
⎜⎝

1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1

⎞
⎟⎠ , (4)

with determinant 40, i.e. a value close to α4 =
(
5
2

)4
= 625

16 ≈ 39.063. The
choice of α is motivated by the absence of true multiplications in the resulting
transformation. Indeed, conventional implementation of the factors of 2 in (4) is
trivial both in hardware and in software, by merely using a bit shift operation.

The H.264 transform [11] is used in the MPEG-4/AVC video format. Figure 2
shows a decomposition with only four scalings, eight liftings and four swaps [14].

A + • + • P

B • 2 − • 2 − Q

C + • • 5 + R

2 2

D • 2 − − • S

Fig. 2. Optimal lifting scheme for the H.264 discrete cosine transformation

In contrast to the example of Sect. 2, we face here the problem of a scaling
factor 5, i.e. a scaling that is different from a power of 2, the so-called ‘perfect’ co-
efficients [15]. Whereas scaling factors equal to a power of 2 can be implemented
as a bit shift, other scaling factors cannot.

A lifting factor different from a power of 2 is no problem, because lifting
factors add up:

• • •
l1 l2 = l

+ + +

164 S. Burignat et al.

with l = l1 + l2. For example, the lifting factor 5 can be implemented with two
‘perfect’ liftings:

• • •
5 = 4

+ + + .

In contrast, a scaling factor different from a power of 2 is a problem, because
scaling factors multiply:

s1 s2 = s

with s = s1s2. If the prime factorization of a scaling factor s contains prime fac-
tors different from 2, we need to convert the scaling into a lifting, by introducing
a preset input and a garbage output:

X • 5X X • + 5X

X 5 5X ≈ 5 = 4

0 + X 0 + • X .

The extra (preset) input line and extra (garbage) output line in fact means that
we are embedding the 4× 4 matrix within a 5× 5 matrix. While the former has
a determinant with an odd prime factor, the latter has a determinant which is
a power of 2. Applying the above scaling-to-lifting transformation is embedding
matrix (4) in the matrix ⎛

⎜⎜⎜⎝
1 1 1 1 0
2 1 −1 −2 4
1 −1 −1 1 0
1 −2 2 −1 0
0 1 −1 0 0

⎞
⎟⎟⎟⎠ ,

with determinant equal to −8, i.e. a ‘perfect’ value.
Instead of replacing only the scaling factor 5 by a lift, it is advantageous to

replace the whole block consisting of the non-perfect scaling factor together with
both the preceding lift and the succeeding lift giving the embedding of matrix
(4) in ⎛

⎜⎜⎜⎝
1 1 1 1 0
2 1 −1 −2 0
1 −1 −1 1 0
1 −2 2 −1 −2
0 1 −1 0 1

⎞
⎟⎟⎟⎠ , (5)

with determinant equal to 8 and the lifting scheme shown in Fig. 3. Whereas the
former embedding yields intermediate results ranging from −5 to 5 times the
input data, the latter embedding restricts all intermediate and final data to the
range from −3 to 4 times the input data. Thus reducing the increase in dynamic
range of the signals is a valuable improvement.

Garbageless Reversible Implementation of Integer Linear Transformations 165

A + • + • P

B • 2 − • 2 − Q

C + • • + R

2

D • 2 − • − S

2

0 + • G

Fig. 3. Lifting scheme for the H.264 transform with simple multipliers but with garbage

We end this section by noting that the appearance of a scaling factor different
from 2k is a direct and inevitable consequence of the fact that the determinant
of the transform matrix does not have the form ±2k. Indeed, as the determinant
of any product of several matrices equals the product of the determinants of the
separate matrices, the determinant of the whole circuit equals the product of
the determinants of all the subcircuits. Because

– a swap has determinant −1,
– a lifting has determinant 1 (irrespective of its lifting factor l), and
– a scaling has determinant equal to its scaling factor s,

the full circuit has determinant (−1)m
∏

j sj , where m is the number of swaps
in the circuit and sj are the scaling factors of the circuit. For example, we can
immediately see from Fig. 2 that its determinant equals (−1)4×2×2×2×5 = 40,
in accordance with the determinant of (4).

4 Implementing H.264

Our H.264 prototype coder is designed using four 3-bit unsigned integer inputs
(A, B, C, and D) and four 6-bit signed integer outputs (P , Q, R, and S). The
schematic implementation of the linear transform, given in (5) and Fig. 3, is
designed in the Cadence computer-aided design environment, applying reversible
dual-line pass-transistor CMOS style [8].

The design consists of two 4-bit reversible binary adders, two 4-bit reversible
binary subtractors, one 5-bit adder, one 5-bit subtractor, one 6-bit adder, one
6-bit subtractor, and ten Feynman gates. Each reversible adder and subtractor
being composed of 48w − 32 transistors (where w is the bit width of the data:
either 4, 5, or 6) and each Feynman of 8 transistors; the whole circuit thus
contains 1648 transistors.

166 S. Burignat et al.

The prototype silicon chip contains a total of 1704 transistors (852 n-MOS
transistors and 852 p-MOS transistors): the 1648 transistors for the actual coder
plus 56 transistors for a small diagnostic circuits (that enables probing of in-
termediate results). It has been designed and fabricated in the standard CMOS
technology of the foundry ON Semiconductor. The length of the transistors is
0.35 μm; the width is either 0.5 μm (n-MOS) or 1.5 μm (p-MOS). The thresh-
old voltages are 0.6 volt (n-MOS) and −0.6 volt (p-MOS). The complete coder
circuit fits into a rectangle of 610 μm × 300 μm. Figure 4 shows the prototype.
One easily recognizes four 4-bit Cuccaro blocks (at the left-hand side), two 5-bit
Cuccaro blocks (at the right-bottom part), and two 6-bit Cuccaro blocks (at the
right-top part). The complete chip (bonding pads included) measures 2.2 mm ×
2.2 mm = 4.8 mm2 and is encapsulated in a 68-JLCC package.

Fig. 4. Microscope view of the integrated circuit (680 μm × 380 μm)

Figure 5 shows a measurement of the functioning of the circuit. Positive volt-
ages represent a logic 1; negative voltages represent a logic 0. Such so-called
adiabatic signals are provided to each one of the inputs. We here see the input
bit A0 = 1. The resulting output bit P4 turns out to be 0. In this example, the in-
put vector (A,B,C,D) = (111, 011, 000, 011) is used. Several other vectors have
been tested, yielding positive as well as negative (coded in two’s complement)
output numbers.

5 Avoiding Garbage

The implementation of the discrete matrix is optimal with respect to the number
of lifting steps and transistors. Unfortunately, as mentioned in Sect. 3, reversible
implementation of the H.264 transform is hampered by the fact that its determi-
nant equals 40 = 23×5, instead of a power of 2. The prime factor 5 is responsible

Garbageless Reversible Implementation of Integer Linear Transformations 167

Vertical scale = 500 mV/div.; horizontal scale = 5 ms/div.

Fig. 5. Oscilloscope view of input bit A0 = 1 and output bit P4 = 0, for the input
vector A = 7, B = 3, C = 0, and D = 3 (resulting in the output vector P = 13,
Q = 11, R = 7, and S = −2)

for the creation of the garbage output G. This garbage datum makes it difficult
to use of a same chip for both coding and decoding. In order to decode, i.e. to
apply the inverse coding

H−1
2.5 =

1

20

⎛
⎜⎝

5 4 5 2
5 2 −5 −4
5 −2 −5 4
5 −4 5 −2

⎞
⎟⎠ ,

knowledge of the numbers P , Q, R, and S is insufficient to recover the values of
A, B, C, and D. We need the extra knowledge of the value of G, an information
that is not necessarily available. Standard solutions for this problem exist [16],
uncomputing garbage, however at the expense of much extra hardware.

Therefore, it is worth investigating whether, especially for reversible hardware,
an appropriate choice of the factor α (instead of α = 5/2) would be advantageous.
According to det(Hα) ≈ α4, a choice α = 2n looks promising. We therefore try
the numbers 4 and 8. They result in the integer transforms

H4 =

⎛
⎜⎝

2 2 2 2
3 1 −1 −3
2 −2 −2 2
1 −3 3 −1

⎞
⎟⎠ and H8 =

⎛
⎜⎝

4 4 4 4
5 2 −2 −5
4 −4 −4 4
2 −5 5 −2

⎞
⎟⎠ ,

168 S. Burignat et al.

respectively. Unfortunately, because of the rounding of the matrix entries, the
former matrix has determinant 320 = 26 × 5 (instead of 256 = 28), whereas the
latter matrix has determinant 3712 = 27 × 29 (instead of 4096 = 212). Thus,
straightforward application of α = 2n is no improvement. According to (2), we
need a, d, and b2 + c2 each to be a power of 2. Well, unfortunately there exists
no primitive Pythagorean triple (b, c, 2m).

A possible solution, is sticking to the choice α = 2.5, but replacing the round-
ing step by a ‘rounding up’ step for the 1.63 entries of the matrix (3), but a
‘rounding down’ step for the 0.68 entries of the matrix, resulting in

⎛
⎜⎝

1 1 1 1
2 0 0 −2
1 −1 −1 1
0 −2 2 0

⎞
⎟⎠ , (6)

with determinant 32 = 25. This, of course, has the disadvantage of lacking any
international normalization. Nevertheless we give here its optimal reversible im-
plementation in Fig. 6. Because it generates no garbage, the same circuit can be
operated in both directions, without any garbage uncomputing circuitry.

A + • + • P

B • 2 − • 2 − Q

C + • 2 R

D • 2 − 2 S

Fig. 6. Optimal lifting scheme for linear transform (6)

Finally, combining α = 8 with ‘creative rounding’ suggests

⎛
⎜⎝

4 4 4 4
5 2 −2 −5
4 −4 −4 4
1 −6 6 −1

⎞
⎟⎠ , (7)

with determinant 4096 = 212. This solution has the following advantage com-
pared to (6): its four successive rows display the traditional 0, 1, 2, and 3 sign
changes. Matrix (7) also is a more accurate approximation of αC, if we use∑4

i=1

∑4
j=1 |Aij | as norm for a matrix A, according to [17]. Figure 7 shows the

corresponding circuit. All scaling factors (i.e. 2, 2, 4, 8, and 32) can be im-
plemented by appropriate bit shifts. All lifting factors (i.e. 5 and 6) can be
decomposed into powers of 2 (5 = 4 + 1 and 6 = 4 + 2, respectively) and thus

Garbageless Reversible Implementation of Integer Linear Transformations 169

can equally be implemented as bit shifts. From left to right, the circuit performs
the transformation (7); from right to left, this same circuit performs the inverse
transformation

1

64

⎛
⎜⎝

4 6 4 2
4 1 −4 −5
4 −1 −4 5
4 −6 4 −2

⎞
⎟⎠ .

A + • + 4 • P

B • 2 − • 8 − Q

C + • • 32 + R

6 5

D • 2 − − • S

Fig. 7. Optimal lifting scheme for linear transform (7)

6 Conclusion

We have demonstrated that a single digital circuit can both perform a coding
and a decoding operation. It suffices that the determinant of the coding matrix
is of the form ±2k. In analogy with the expression ‘perfect scaling coefficient’
introduced by Bruekers and van den Enden [15], we call such determinants ‘per-
fect determinants’. They allow the implementation of an integer linear transform
without creation of garbage numbers.

Acknowledgment. The authors would like to thank the Danish Council for
Strategic Research for the support of this work in the framework of the MicroP-
ower research project. They are also grateful to the Invomec division of Imec
v.z.w. (Leuven, Belgium) and the Europractice consortium for the help with the
prototyping of the chip.

References

1. Skoneczny, M., Van Rentergem, Y., De Vos, A.: Reversible Fourier transform chip.
In: Proceedings of the 15th International Conference on Mixed Design of Integrated
Circuits and Systems, Poznań, pp. 281–286 (2008)

2. Sweldens, W.: The lifting scheme: a custom-design construction of biorthogonal
wavelets. Applied and Computational Harmonic Analysis 3, 186–200 (1996)

170 S. Burignat et al.

3. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible Machine Code and Its Abstract
Processor Architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR
2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007)

4. Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical
Physics 21, 219–253 (1982)

5. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic
operations. Physical Review A 54, 147–153 (1996)

6. Cuccaro, S., Draper, T., Kutin, S., Moulton, D.: A new quantum ripple-carry
addition circuit, arXiv:quant-ph/0410184v1

7. Thomsen, M., Axelsen, H.: Parallelization of reversible ripple-carry adders. Parallel
Processing Letters 19, 205–222 (2009)

8. De Vos, A.: Reversible computing. Wiley–VCH, Weinheim (2010)
9. Burignat, S., De Vos, A.: Test of a majority-based reversible (quantum) 4 bit ripple-

adder in adiabatic calculation. In: Proceedings of the 18th International Conference
on Mixed Design of Integrated Circuits and Systems, Gliwice, pp. 368–373 (2011)

10. De Vos, A.: Reversible computer hardware. Electronic Notes in Theoretical Com-
puter Science 253, 17–22 (2010)

11. Malvar, H., Hallapuro, A., Karczewicz, M., Kerofsky, L.: Low-complexity transform
and quantization in H.264/AVC. IEEE Transactions on Circuits and Systems for
Video Technology 13, 598–603 (2003)

12. Hadamard transform. Wikipedia (2012)
13. De Vos, A., De Baerdemacker, S.: Decomposition of a linear reversible com-

puter: digital versus analog. International Journal of Unconventional Computing 6,
239–263 (2010)

14. De Vos, A., Burignat, S., Thomsen, M.: Reversible implementation of a discrete lin-
ear transformation. International Journal of Multiple-valued Logic and Soft Com-
puting 18, 25–35 (2012)

15. Bruekers, F., van den Enden, A.: New networks for perfect inversion and perfect
reconstruction. IEEE Journal on Selected Areas in Communications 10, 129–137
(1992)

16. Yokoyama, T., Axelsen, H., Glück, R.: Optimizing reversible simulation of injective
functions. International Journal of Multiple-valued Logic and Soft Computing 18,
5–24 (2012)

17. Baker, A.: Matrix Groups. Springer, London (2002)

Garbage-Free Reversible Integer Multiplication

with Constants of the Form 2k ± 2l ± 1

Holger Bock Axelsen and Michael Kirkedal Thomsen

DIKU, Department of Computer Science, University of Copenhagen
{funkstar,shapper}@diku.dk

Abstract. Multiplication of integers is non-injective and, thus, requires
garbage lines for any reversible logic implementation. However, multiply-
ing with a fixed constant is injective, and should therefore be
implementable in reversible logic without garbage. Despite this, the only
reported circuits for constant multiplication without garbage are re-
stricted to powers of 2, i.e., the multiplication is a simple bit-shift.

Here, we show how to generate a garbage-free linear-depth reversible
logic circuit for multiplying an input integer with a constant of the form
2k±1 or 2k±2l±1, by building on a simple strength reduction to addition.
Using several such circuits in sequence allows us to support a greater
variety of constants. This enables wider use of constant multiplication in
garbage-free reversible circuits than was previously possible.

Keywords: Reversible circuits, logic design, constant multipliers,
garbage-free.

1 Introduction

Efficient implementations of binary multiplication is important to perform fast
computations, and designs using conventional boolean logic have been widely
researched. This importance has also led to significant research into the design
of multiplication circuits using reversible logic. As examples, we mention the
reversible Karatsuba algorithm using Bennett’s method [7], and an implemen-
tation based on logic synthesis [9]. These, and other implementations, have the
drawback of producing significant amounts of garbage lines.

Multiplication of two integer variables is non-injective, and implementations
in reversible logic without additional garbage lines are in general not possible.
However, for many applications fully general multiplication is not needed and one
can instead rely on specialized constant multiplication circuits. Examples include
twiddle factor multiplications in the fast Fourier transform and other loss-less
transformations, such as the specific wavelet used for H.264 video encoding [2,5].

Now, constant multiplication is injective. This implies that garbage-free cir-
cuits for constant multiplication are possible (with an expanded bit-wise repre-
sentation of the result) but the known reversible logic circuits for multiplication
with constants either leave garbage, or are simple bit-shifts. This prohibits wider
use of constant multiplication in reversible circuits aiming for garbage-free im-
plementations of injective functions.

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 171–182, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

172 H.B. Axelsen and M.K. Thomsen

Here, we show the design of garbage-free circuits for multiplying with con-
stants of the form 2k ± 1 (Sec. 2). The proposed family of designs follows the
backbone structure of reversible V-shape ripple-carry adders, which are linear
depth in the size of the output. The circuits require relatively few ancillae, so it
is a ‘narrow’ design as well. Generalizing this idea to multioperand adders, we
show a näıve design for a three operand adder, and specialize it to multiplica-
tion with constants of form 2k ± 2l ± 1 (Sec. 3), again fully garbage-free. These
improvements enable much wider use of constant multiplication in garbage-free
reversible circuits than was previously possible: composition of these circuits,
their inverses, and the use of bit shifts, enables us to implement many constants
that are not of the form 2k ± 1 or 2k ± 2l ± 1 as well.

2 Garbage-Free Reversible Constant Multiplication

A main reason for the garbage generation of reversible multiplication circuits
seems to be that previous designs have not considered how the non-injective
problem of multiplication may be embedded in injective functions, and how those
might be realized without garbage. (See [1] for a theory of garbage-free reversible
computing.) One widely known class of circuit designs has already benefited from
looking at the problem in this manner: we refer to binary addition, where the
novel V-shaped adder approach by Vedral et al. [14] led the way to a garbage-
free implementation of the injective embedding +(A,B) = (A + B,A). In this
first step towards garbage-free multiplication we work towards multiplication of
an n-bit number with a (k + 1)-bit constant, giving an (n+ k + 1)-bit result.

Constant multiplication is simpler than general multiplication, but is still use-
ful in many applications. Our particular motivation for this work is a reversible
version of the H.264 wavelet [2,5]. This was implemented with a lifting scheme [4],
which leads to a scaling factor of 5 at a point in the circuit. In [5] this multiplica-
tion with 5 was implemented as a strength reduction, 5A = 4A+A = A << 2+A,
leaving a copy of the multiplicand A as garbage (figure adapted from [5]):

A • + 5A

A 5 5A ≈ 4

0 • A

That is, the scaling factor is converted to a lifting. Thus, even though the overall
algorithm is injective (the wavelet matrix is invertible), the scaling factors com-
plicated the design sufficiently such that garbage lines were deemed necessary.

2.1 The Idea

We initially restrict our scope of multiplication constants to those in range of
the strength reduction outlined above: the input A is copied, one copy shifted
some number of bits (multiplied by a power of 2) and added to the other copy.
We thus start by considering the case of multiplying A by 2k + 1. (As we shall

Garbage-Free Reversible Integer Multiplication with Constants 173

discuss in Sec. 2.4, this class of constants is more versatile than it may initially
appear.)

The addition on which the strength reduction is based has the following form.

0k . . . 01 An−1 . . . A1A0

+ An−1 . . . A1A0 0k . . . 01

= Mn+k M1M0

From this we can identify a number of dependencies between the bitwise repre-
sentation of the product M and the multiplicand A. Concretely,

– the k least significant bits of M and A are identical,
– the k + 1 most significant bits of M are the k most significant bits of A,

incremented with the nth carry bit (Cn),
– the remaining n− 2k middle bits of M are given by Mi = Ci ⊕Ai ⊕Ai−k.

The underlying idea of our reversible circuit design is to leverage these depen-
dencies to clear the extraneous copy of A left over by the reversible addition.

2.2 The Implementation

We base the implementation on the V-shaped ripple-carry adder introduced by
Vedral et al. [14], optimized first by Cuccaro et al. [3] (CDKM) and later by
Van Rentergem and De Vos [13]. We use the latter design, but our approach
can also be adapted to the CDKM adder. In the following we shall assume some
familiarity with these circuit designs. (See e.g. [11] for an in-depth exposition.)

The method we shall use is to clear the extraneous multiplicand A “on-the-fly”
while computing the sum M . This is mainly done by extending the unmajority-
and-sum (ums) part of the upwards ripple in the circuit, see Fig. 1.

The extension is based on the fact that the majority (maj) downwards ripple
generates Ai ⊕ Ai−k as an intermediate product. That is, for the ith bit-slice
(n > i ≥ k) we have that

maj (Ci, Ai−k, Ai) = (Ti, Ci+1, Ai ⊕Ai−k)

and

ums(Ti, Ci+1, Ai ⊕Ai−k) = (Ci, Ai−k,Mi)

giving the resultMi, but also leaving the value Ai−k that we need to clear.1 Now,
rather than leaving this as garbage, we instead propagate the Ai−k upwards in the
circuit to the (i−k)-th bit-slice, to be zero-cleared during the sum computation.
Thus, in the ith bit-slice (n − k > i ≥ k) we will have an extra line with the
value Ai propagated from the (i+ k)-th bit-slice below, which is zero-cleared as
follows.

1 The exact form of the intermediate product Ti is unimportant, and can be ignored.

174 H.B. Axelsen and M.K. Thomsen

Ai

Ti

Ai

Ci

0

maj extended ums

Ai−k

Ai ⊕Ai−k Mi

Ai−k

Ci

Ci+1

Fig. 1. The ith bit-slice of the ripple-down maj circuit and ripple-up extended ums
circuit used in the implementation. Ai is propagated from the (i+k)-th bit-slice below,
with the added gates to clear it marked with bold. Ai−k is propagated to the (i−k)-th
bit-slice above.

First, before we apply the ums circuit, we exclusive-or the intermediate prod-
uct Ai ⊕Ai−k onto the propagated Ai line using a Feynman gate,2

Feyn3,4(Ti, Ci+1, Ai ⊕Ai−k, Ai) = (Ti, Ci+1, Ai ⊕Ai−k, Ai−k) .

This leaves Ai−k on the propagated line. We then apply the ums circuit to get

ums1,2,3(Ti, Ci+1, Ai ⊕Ai−k, Ai−k) = (Ci, Ai−k,Mi, Ai−k) ,

whereupon we can clear one Ai−k line with a second Feyman gate,

Feyn2,4(Ci, Ai−k,Mi, Ai−k) = (Ci, Ai−k,Mi, 0) .

The total effect is thus to clear the line containing Ai that was propagated from
the (i+k)-th bit-slice, using just two Feynman gates. Similarly, the leftover copy
of Ai−k is propagated to the (i − k)-th bit-slice where it will be cleared using
the same procedure. The resulting extended ums circuit is shown in Fig. 1.

Using this extended ums circuit we can now implement a complete garbage-
free constant multiplier, exploiting the dependencies identified in Sec. 2.1. The
general structure of the 2k + 1 multiplier is shown in Fig. 2. First, we copy the
n − k most significant bits of A and shift them and the k least significant bits
of A (the uncopied part) k bits downward. Second, we perform an (n − k)-bit
downwards ripple of majority circuits (see Fig. 1), calculating the intermediate
exclusive-or products and the carry Cn. For the remaining k+1 most significant
bits of the result we need not calculate a sum, but instead have only to increment
the input if the carry Cn is set. After this conditional incrementation, we perform
an upwards ripple to calculate the sum using our extended unmajority-and-sum
circuit. Now, for the first k bits of the upwards ripple there are no propagated
values to clear and it suffices to use the standard ums circuit. Only for the next
(n−2k) bit-slices do we have to use the extended circuit. This leaves k propagated
lines that are not cleared, but these are exactly the k least significant bits of the
result. The total effect is to calculate the (n + k + 1)-bit product without any
garbage.

2 Here, the subscripts refer to the entries on which the gates are applied.

Garbage-Free Reversible Integer Multiplication with Constants 175

k

n− k

k + 1

k

k

k + 1

n− 2k

shift

um
s

increment

um
s

co
p
y
a
n
d
sh

ift

m
ajority

ex
te
nd
ed

sh
ift

Fig. 2. Overview of the (n+ k + 1)-bit multiplication circuit

As a full example, Fig. 8 shows the complete circuit for multiplying a 10-bit
value with the constant 9 (= 23 + 1) resulting in a 14-bit product. The circuit
uses 7 (= n− k + 1) ancilla bits.

2.3 Extending to Multiplication by 2k − 1

We can extend the class of multiplication constants to include those of form
2k − 1. As before, multiplication with such constants can be implemented by a
strength reduction (2k−1) ·A = 2k ·A−A = A << k−A, with the sole difference
being that we now have to perform a subtraction rather than an addition.

Fortunately, for two’s complement numbers we can implement subtraction by
addition. This allows us to use the 2k+1 multiplier design above almost directly
to implement multiplication by 2k − 1. Concretely, we make use of the fact that

B−A = B + A (where B denotes the bitwise negation of B), as previously used
in the design of subtraction in a reversible ALU [12]. For our 2k − 1 multiplier
circuit B = 2k · A.

How must we modify the multiplier circuit to support this? First, we note
that B, the bit-shifted copy of A, is bitwise negated. In particular, this means
that the k least significant bits of B are no longer 0, but 1. Therefore, we must
explicitly perform the addition on the k least significant bit-slices. Second, for
the intermediate (n − k) bit-slices, the only major changes are that the input
line of the bit-shifted copy is negated, and that the final sum must be negated
as well. Third, the incrementation circuit for the most significant k+1 bits does
not need modification, save for negating the result.

For the intermediate bits, the ith bit-slice is shown in Fig. 3 . Note that the
change compared to the 2k+1 multiplier (Fig. 1) is limited to just two negations,
and that these can be performed in parallel for all bit-slices.

For the k least significant bit-slices, the 2k − 1 multiplier circuit looks some-
what different to its 2k +1 counterpart. Instead of a simple shift, we here have a
ripple down and up, implementing addition. However, given that the k least bits
of B are all 1, we can specialize the maj and ums circuits to this particularly
simple addition. Furthermore, one of the intermediate products is exactly Ai,

176 H.B. Axelsen and M.K. Thomsen

Ci

Ci+1

Ti

Ai

Ci

maj extended ums

Mi

Ai−k

Ai ⊕Ai−k

Ai

Ai−k

0

Fig. 3. The ith bit-slice of the 2k − 1 multiplier, for an intermediate bit-slice. Just two
not-gates are added (bold) compared to the 2k + 1 multiplier.

maj

Ai

Ci+1

Ti Ci

Mi

0

ums
Ci

0

Ai

Fig. 4. The ith bit-slice of the 2k − 1 multiplier for the k least significant bits. The Ai

line is propagated to the (i+ k)-th bit-slice below and back.

which we then can propagate down to the (i + k)-th bit-slice for use as Bi+k.
Finally, in the upwards ripple this line is propagated back to the i-th bit-slice,
to be used for the final sum calculation. Fig. 4 shows the simple circuit that
implements this.

Thus, with only very limited changes to the design, we can support multipli-
cation with constants of form 2k ± 1.

2.4 Cascades and Limitations

This class of multiplication constants is more versatile than it may initially seem.
By using shifts (multiplications by 2) and repeated strength reductions, many
other constants can be implemented: multiplication by 21 (which is not of the
form 2k ± 1) can obviously be implemented by multiplication by 3 followed by
multiplication by 7, because scaling factors multiply.

Perhaps more surprisingly, multiplication by 11 can be implemented by mul-
tiplication by 33 followed by the inverse circuit of multiplication by 3. The
inverse circuit implements division by 3 for numbers exactly divisible by 3, such
as 33 ·A. This is possible only because the multiplication circuit is garbage-free,
and would not be possible if the circuit produced garbage. Thus, both division
and multiplication of constants of form 2k ± 1 are available for cascading.

Unfortunately, this is still not sufficient to support multiplication with all inte-
ger constants, as proven recently by Rotenberg [10]. As examples, multiplication
by 23 or 67 is not in range with this class of multiplication constants.

Garbage-Free Reversible Integer Multiplication with Constants 177

adder
Ai

Bi

Di
adder

C2
i

C1
i

Sum

Carry

Full Half

adder
C2

i+2

C1
i+1

Sum

Carry

Si

Carry

Sum

Full

Fig. 5. Bit-slice of a conventional 5:3 compressor

3 Multioperand Adders and Multiplication

As it was possible to show that the proposed multiplier design is not yet general
enough to implement multiplication with all constants, one might be tempted to
believe that our design approach is not strong enough. However, the idea of using
strength-reduction and clearing of the copied operand is fundamentally sound.
The problem is rather that our 2k+1 multiplier is based on a two-operand adder,
which means that it can only be used to multiply with constants whose binary
representation has exactly two bits set.

For conventional (irreversible) multipliers this does not pose a problem, in
that a cascade of two-operand adders can be used to implement any (constant)
multiplication. However, the same idea is not directly applicable in a garbage-
free reversible circuit, as it appears difficult to remove all the extraneous copies
of the multiplicand.

All is not lost: instead, our strategy shall be to design a (garbage-free) re-
versible multi-operand V-shape adder and use the same method to clear the
extra copies of the multiplicand as in the simple 2k+1 multiplier. In this section
we shall first describe the design of a binary three-operand adder. Afterwards,
we show how the adder can be extended to 2k+2l+1 multiplication, and finally
how to obtain all constants of form 2k ± 2l ± 1.

3.1 A Three-Operand V-Shape Adder

Each bit-slice of the three-operand adder will take three independent inputs (Ai,
Bi, and Di

3) and we therefore need two bits to represent the carry; three input
bits and (at least) one carry yields (at least) a sum of four bits, for which we
need two bits to represent the carry-outs. This means that each bit-slice has two
carry-ins as well. To ease the design, we shall use binary representation for the
two carry-outs, which means that one carry will have a weight of 2 (we call this
C1

i) as a normal carry and the other (called C2
i) will have a weight of 4. This

idea is not novel, and if we also include the calculation of the sum, it is simply
the definition of a 5:3 (lossy) compressor: encode the sum of 5 bits as a 3-bit
output. (Similarly, a full-adder is a 3:2 compressor.)

3 We use D to denote the third operand as C is already used for the carries.

178 H.B. Axelsen and M.K. Thomsen

C1
i

0

Ai

Bi

Di

0

Maj(Ai, Bi, Di)

C2
i+2

C1
i+1

Bi ⊕Di

Ai ⊕Di

Si ⊕ C1
i

C2
i C2

i

Bi

0

Di

0

Si

C1
iSum(Ai, Bi, Di)

Fig. 6. The ith bit-slice of the three-operand V-shape adder design

The conventional logic design of a 5:3 compressor consists of two full-adders
and one half-adder, connected as shown in Fig. 5. We can define the functionality
of this as follows:

Mabd = Maj(Ai, Bi, Di)

Sabd = Ai ⊕Bi ⊕Di

Si = Sabd ⊕ C1
i ⊕ C2

i

C1
i+1 = Mabd ⊕Maj(Sabd, C

1
i , C

2
i)

C2
i+2 = Mabd ∧Maj(Sabd, C

1
i , C

2
i)

where Maj() is the majority function. Obviously, the conventional compres-
sor design is not reversible. Therefore, we redesign the adder structure to fol-
low the design of the V-shape adder. Functionally, the adder must compute
+(A,B,D) 	→ (A+B +D,B,D), and must do so without generating garbage.

We first identify the number of lines we need for each bit-slice. With two
carry-ins and three operands there are many possibilities for there to be 2 or 3
bits set in the input:

(
5
2

)
+

(
5
3

)
= 20 lines out of the 52 = 32 in the truthtable for

the circuit. This means that the carry-out sequence “01” occurs 20 times as well,
but the remaining three lines in the circuit only allows for 23 = 8 possibilities if
the circuit is to be 5×5 and reversible. Thus, we cannot compute the carry-outs
without additional lines; in this case we need two extra.

The great fundamental insight of the V-shape adder design [14] is that the
sum and the carry should not be calculated simultaneously. We can use exactly
the same approach for our three-operand adder. First, we have a downwards
ripple that only calculates the carries and then we have an upwards ripple which
uncomputes these carries and calculates the final sum. By using the V-shape
adder design, the extra lines will not be problematic (i.e., they will not end up
with garbage values) because by design they will always be uncomputed as well.
Thus, the additional lines are ancillae, rather than garbage.

A bit-slice in a straightforward design of the adder is shown in Fig. 6. Start-
ing from the left, the first (red, dotted) box implements the first full-adder from
Fig. 5 using one of the ancillae lines. This sub-circuit can be performed in par-
allel in all bit-slices as it only involves the three operands and not the carries.

Garbage-Free Reversible Integer Multiplication with Constants 179

Ai ⊕Ai−l

0

0

0

0
Ai

Ai

Ai

C2
i+2

C1
i+1

Ai−k ⊕Ai−l

Mi ⊕ C1
i

Ai

Ai

Ai−l

C2
i

0

0

Mi

C1
i

0

0

Ai−l

Ai−k Ai−k

Ai−l

C1
i

C2
i

Fig. 7. The ith intermediate bit-slice of the 2k + 2l + 1 multiplier. In the downwards
ripple, one of the two copied Ai lines is propagated to the (i+ l)-th bit-slice, and the
other to the (i+ k)-th bit-slice, and return in the upwards ripple. Likewise, Ai−k and
Ai−l are propagated to this bit-slice from the (i − k)-th and (i − l)-th bit-slice, and
return there in the upwards ripple. New gates are shown in bold red.

The second (blue, dashed) box implements a majority circuit. The reason that
this is not a second full-adder (as in Fig. 5) is that we are not yet interested in
calculating the final sum and, thus, only a majority circuit is needed. The third
(green, lined) box implements the half-adder using the second ancilla bit. This
results in the two carry-bits where C1

i+1 is rippled down to the next bit-slice,
while C2

i+2 is rippled down two bit-slices. The second part of Fig. 6 shows the
uncomputation-and-sum circuit. This circuit has been optimized slightly for a
more compact representation, but is admittedly näıve. We will leave circuit op-
timization for future work – possibly for one of the many synthesis algorithms
for reversible logic, cf. [15].4

We remark that this three-operand adder circuit has worse characteristics than
two sequential two-operand adders, both in terms of delay and gates count. While
this does not come as a surprise, as the conventional 5:3 compressor is also larger
than two full-adders, it is not in itself a particularly satisfying implementation
of three-operand addition. However, unlike sequential two-operand adders, the
design allows for easy specialization to constant multipliers, as we shall now see.

3.2 Specializing to Multiplication by 2k + 2l + 1

Now that we have the three-operand adder, we can specialize it to a design that
can multiply with constants of the form 2k+2l+1, where k > l > 0. The method
used to extend the adder is the exact same as we used for the (2k+1)-multiplier,
and again, very little extra logic is needed.

4 Mogensen [8] has already proposed an improved bit-slice design.

180 H.B. Axelsen and M.K. Thomsen

Figure 7 shows a bit-slice of the resulting circuit. We first create two copies
of Ai. The first of these is propagated l bits downwards, while the second is
propagated k bits. In the upwards ripple these return, and must be zero-cleared.
One copy ofAi is easily removed by the other copy. Then, we use the intermediate
product Ai ⊕Ai−l to transform Ai to Ai−l. This Ai−l line can be cleared using
the copy of Ai−l that was earlier propagated to this bit-slice as an input operand.
In total, the only extension to the clearing method from the 2k + 1 multiplier
circuit is to add two Feynman gates that, respectively, create and remove an
extra copy of Ai.

This also means that we can now multiply with all constants of form 2k+2l+1.
These include 67 = 26 +21 +1, which was not possible with any combination of
2k ± 1 multipliers.

3.3 Extending to Multiplication by 2k ± 2l ± 1

Finally, as with the first multiplier, we shall now extend the design such that it
can multiply with any constant of the form 2k ± 2l ± 1. Again, we can employ
essentially the same method. However, in this case we now have three operands,
which gives more possibilities for the signs of the operands. The three remaining
possibilities are captured with the following formulas (where we use the fact that
for two’s complement numbers −A = A+ 1):

A+B −D = A+B +D + 1

A−B +D = A+B +D + 1

A−B −D = A+B +D

For the two first equations we can exploit that we have a carry-in line that we can
set to 1 at will. The third equation is very similar to the formula we had for mul-
tiplication with 2k − 1, and can be similarly implemented. We shall not show the
resulting circuits, but rather note that this extension makes it possible to multiply
by 23 = 25 − 23 − 1, yet another constant which was not previously in range.

4 Conclusion and Future Work

In this paper we have shown a garbage-free linear-depth reversible circuit family
for multiplying an n-bit number with any constant of the form 2k±1 or 2k±2l±1,
yielding an (n+ k + 1)-bit product.

This allows garbage-free multiplication with many more constants than have
previously been reported. As a direct application, the optimal lifting scheme for
the H.264 discrete cosine transform (previously complicated by a scaling factor
of 5) can now be implemented directly in reversible logic, without having to
resort to garbage or having to approximate the wavelet [2].

The 2k ± 1 design in particular compares favorably to the backbone V-shape
ripple-carry adder on which it is based: it uses roughly 3n− 5k Feynman gates
more, but is generally just 1 gate slower. However, the 2k + 2l + 1 design is

Garbage-Free Reversible Integer Multiplication with Constants 181

M
0

M
1

M
2

M
3

M
4

M
5

A
4

A
6

A
3

A
4

A
5

A
6

M
6

M
7

M
8

0 M
9

M
1
2

M
1
1

M
1
0

M
1
3

A
7

0 A
8

0 A
9

0 0

A
5

A
6

⊕
A

9

A
5

⊕
A

8

A
4

⊕
A

7

A
3

⊕
A

6

A
2

⊕
A

5

A
1

⊕
A

4

A
0

⊕
A

3

0

0

0

0

0

0 0 00 A
0

A
1

A
2

A
3

A
4

A
5

A
6

A
2

A
1

A
0

0 0 0

A
3

A
2

A
1

0

F
ig
.
8
.
M
u
lt
ip
ly
in
g
th
e
1
0
-b
it

in
p
u
t
A

b
y
th
e
co
n
st
a
n
t
9
,
y
ie
ld
in
g
1
4
-b
it

p
ro
d
u
ct

M

182 H.B. Axelsen and M.K. Thomsen

less efficient, and although the generalization to multi-operand adders suggests
a fairly straightforward route to multiplication with arbitrary constants, the
resulting circuits will likely not be a particularly elegant solution to this problem.

Instead, general constant multiplications may be possible using a nested V-
shape approach as in [12]. It is also open whether strength reduction can work
for sub-linear depth adders [6, 11]. Finally, it would be interesting to examine if
the approach can somehow be extended to fully general reversible multiplication.

References

1. Axelsen, H.B., Glück, R.: What Do Reversible Programs Compute? In: Hofmann,
M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 42–56. Springer, Heidelberg (2011)

2. Burignat, S., Vermeirsch, K., De Vos, A., Thomsen, M.K.: Garbageless Reversible
Implementation of Integer Linear Transformations. In: Glück, R., Yokoyama, T.
(eds.) RC 2012. LNCS, vol. 7581, pp. 160–170. Springer, Heidelberg (2013)

3. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-
carry addition circuit. arXiv:quant-ph/0410184v1 (2005)

4. Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. Jour-
nal of Fourier Analysis and Applications 4(3), 247–269 (1998)

5. De Vos, A., Burignat, S., Thomsen, M.K.: Reversible implementation of a discrete
integer linear transform. J. Mult.-Val. Log. S. 18(1), 25–35 (2012)

6. Draper, T.G., Kutin, S.A., Rains, E.M., Svore, K.M.: A logarithmic-depth quantum
carry-lookahead adder. arXiv:quant-ph/0406142v1 (2004)

7. Kowada, L.A.B., Portugal, R., de Figueiredo, C.M.H.: Reversible Karatsuba’s al-
gorithm. J. Universal Computer Science 12(5), 499–511 (2006)

8. Mogensen, T.Æ.: Private communication (2012)
9. Offermann, S., Wille, R., Dueck, G.W., Drechsler, R.: Synthesizing multiplier in

reversible logic. In: 13th IEEE Symposium on Design and Diagnostics of Electronic
Circuits and Systems, pp. 335–340. IEEE (2010)

10. Rotenberg, E.: Mersennary numbers, University of Copenhagen (report in prepa-
ration, 2012)

11. Thomsen, M.K., Axelsen, H.B.: Parallelization of reversible ripple-carry adders.
Parallel Processing Letters 19(1), 205–222 (2009)

12. Thomsen, M.K., Glück, R., Axelsen, H.B.: Reversible arithmetic logic unit for
quantum arithmetic. J. Phys. A: Math. Theor. 43(38), 382002 (2010)

13. Van Rentergem, Y., De Vos, A.: Optimal design of a reversible full adder. Interna-
tional Journal of Unconventional Computing 1(4), 339–355 (2005)

14. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic
operations. Physical Review A 54(1), 147–153 (1996)

15. Wille, R., Drechsler, R.: Towards a Design Flow for Reversible Logic. Springer
Science (2010)

Property Checking of Quantum Circuits
Using Quantum Multiple-Valued

Decision Diagrams

Julia Seiter1, Mathias Soeken1,2, Robert Wille1, and Rolf Drechsler1,2

1 Institute of Computer Science, University of Bremen
Group of Computer Architecture, D-28359 Bremen, Germany

{jseiter,msoeken,rwille,drechsle}@informatik.uni-bremen.de
2 Cyber-Physical Systems

DFKI GmbH, D-28359 Bremen, Germany
rolf.drechsler@dfki.de

Abstract. For the validation and verification of quantum circuits main-
ly techniques based on simulation are applied. Although lots of effort
has been put into the improvement of these techniques, ensuring the
correctness still requires an exhaustive consideration of all input vectors.
As a result, these techniques are particularly insufficient to prove a circuit
to be error free.

As an alternative, we present a symbolic formal verification method
that is based on Quantum Multiple-Valued Decision Diagrams (QMDDs),
a data-structure allowing for a compact representation of quantum cir-
cuits. As a result, using QMDDs it is possible to check the correctness
of a circuit without exhaustively considering all input patterns.

1 Introduction

Quantum computation [1] has received significant attention in recent years. Us-
ing quantum circuits many important problems such as factorization or database
search can be solved quadratically or even exponentially faster in comparison to
conventional technologies. As a result, much effort has been spent in the past
on how to design the corresponding circuit structures. In particular synthesis
received much attention (see e.g. [2–6]). But besides realizing quantum circuits
for a given problem, verification and validation is an essential step that ensures
whether obtained designs realize the desired functionality or not.

Considering conventional circuit design, verification has become one of the
most important steps in the design flow. As a result, very powerful approaches
have been developed in this domain, ranging from simulative verification (see
e.g. [7–10]) to formal equivalence checking (see e.g. [11, 12]) and property check-
ing (see e.g. [13, 14]).

For quantum computation, verification is still at the beginning. Even if first
approaches in this area exist (a brief outline is provided in Sect. 3.2), they
are mainly based on simulation, i.e. ensuring the correctness still requires an
exhaustive consideration of the input vectors. As a result, these techniques are
particularly insufficient to prove a circuit to be error-free.

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 183–196, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

184 J. Seiter et al.

In this work, we present an alternative solution to the property checking
problem of quantum circuits which makes use of symbolic formal verification.
More precisely, for this task we consider Quantum Multiple-Valued Decision Di-
agrams (QMDDs, [15]), which is a data-structure that allows for a compact
representation of quantum circuits. Using QMDDs both a given quantum circuit
and the property to be verified can be efficiently represented. Then, checking
whether the circuit satisfies the considered property or not can be conducted on
this data-structure. The properties themselves are thereby provided by means
of a combinatorial and LTL-like language.

Experiments show that, in comparison to state-of-the-art simulation methods,
the proposed approach is more robust. While simulation-based approaches work
faster for failing properties (where the simulation can immediately be termi-
nated once a counter-example is obtained), QMDDs clearly outperform simula-
tion for holding properties where all possible input patterns need to be traversed
exhaustively.

The remainder of this paper is structured as follows. The next section briefly
reviews the basics on quantum circuits and the QMDD data-structure. Section 3
formally defines the considered problem, discusses related work, and introduces
the general idea of the proposed solution. Afterwards, implementation details are
described in Sect. 4. A summary of the experimental evaluation and conclusions
are provided by means of Sect. 5 and Sect. 6, respectively.

2 Preliminaries

In order to keep the paper self-contained, this section reviews the basics on
quantum circuits and the QMDD data-structure applied in this work. Due to
page limitations the following descriptions are kept brief. We refer the reader
to [1] and [15] for a more detailed treatment of quantum circuits and QMDDs,
respectively.

2.1 Quantum Circuits

In quantum computation [1], qubits are the elementary information elements.
A qubit is usually denoted by its state |ϕ〉 = α|0〉 + β|1〉 which is a super-
position of the basis states |0〉 and |1〉 with α and β being amplitudes such
that |a|2 + |b|2 = 1. Qubits can be composed in terms of quantum registers
|ϕ1 . . . ϕn〉 =

∑2n−1
i=0 αi|i〉, where |i〉 denotes the conventional state on n bits.

Quantum registers are elements in the 2n-dimensional complex Hilbert space H.
Quantum computation can be performed using unitary matrices that are closed
under H.

Established quantum operations include e.g. σx =
[
0 1
1 0

]
(also known as

Pauli-X or NOT operation) and H = 1√
2

[
1 1
1 −1

]
(also known as Hadamard

operation). The first operation interchanges the amplitudes of a quantum state
whereas the latter operation can be used to bring a conventional state into a
superposition, e.g. H |0〉 = 1√

2
(|0〉 + |1〉). While these operations act on single

Property Checking of Quantum Circuits Using QMDDs 185

|0〉
⎡
⎢⎣

1
0
0
1

⎤
⎥⎦ = 1√

2
(|00〉 + |11〉)|0〉

H

Fig. 1. Circuit that entangles two qubits

qubits only, they can be extended to also act on quantum registers. This can
either be accomplished by the parallel composition using the Kronecker prod-
uct (⊗) or by controlling the single-qubit operation by one further qubit. As an
example, a Pauli-X operation controlled by another qubit can be represented by[1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0

]
. Such an operation is called controlled NOT (CNOT).

Quantum circuits allow for a graphical representation of the composition of
several quantum operations. To this end, a circuit line is drawn horizontally for
each qubit. The quantum gates that represent quantum operations are drawn as
a cascade from left to right. Control lines are denoted using while a quantum
operation U is drawn using a rectangle labeled U . An exception is the Pauli-X
operation that is denoted using .

Example 1. Figure 1 shows a circuit that entangles two qubits. The first gate is
a Hadamard operation on the first qubit while the second operation is a CNOT.
The overall quantum operation of the circuit is CNOT · (H ⊗ I) where I =

[
1 0
0 1

]
is the 2 × 2 identity matrix.

2.2 Quantum Multiple-Valued Decision Diagrams

A Quantum Multiple-valued Decision Diagram (QMDD, [15]) is a canonical rep-
resentation of a unitary matrix M and, thus, also of a quantum circuit. It is a
directed acyclic graph with one root node and two terminal nodes, labeled 0
and 1 .

Each node v in a QMDD represents a submatrix of M . In order to build a
QMDD, M is divided into four submatrices. The matrix M itself is represented
by the root node v1. Each submatrix is represented by a child of v1 so that
each node in the QMDD has four child nodes. This is repeated recursively for
each submatrix until they are reduced to size 1× 1. Submatrices of this size are
represented accordingly by one of the terminal nodes [15].

Figure 2(a) illustrates this principle by decomposing an arbitrary matrix M .
On top of the matrix M , the input patterns are denoted. The corresponding
output patterns are denoted to the left-hand side of M . As can be seen, each
of the submatrices of M represents an input/output assignment of the very
first variable x1. For example, the submatrix M1 represents the mapping of x1

from 0 to 0. Figure 2(b) shows the respective submatrices represented in terms
of successors of the root node. The submatrices of M are assigned to the child
nodes as follows.

186 J. Seiter et al.

0
0

..
.0

. . .

0
1

..
.1

1
0

..
.0

. . .

1
1

..
.1

00 . . . 0

M1 M2

01 . . . 1

10 . . . 0

M3 M4

11 . . . 1

Inputs

O
u
tp

u
ts ...

...

(a) Matrix

x1 �→ x′
1

x2 �→ x′
2 x2 �→ x′

2

M1

M2 M3

M4

(b) QMDD

Fig. 2. Matrix with input output mappings and QMDD

– The upper left submatrix M1 is the first child and represents the mapping
0 �→ 0 of the input x1 to the output x′

1.
– The upper right submatrix M2 is the second child and represents the mapping

1 �→ 0 of the input x1 to the output x′
1.

– The lower left submatrix M3 is the third child and represents the mapping
0 �→ 1 of the input x1 to the output x′

1.
– The lower right submatrix M4 is the fourth child and represents the mapping

1 �→ 1 of the input x1 to the output x′
1.

In a QMDD, each edge is labeled with a weight. If a submatrix consists of 0 or 1
entries, the respective edge is annotated with the weight 1. Submatrices consist-
ing only of 0-entries are represented by edges leading directly to 0 . In order to
keep the QMDD readable, these edges are drawn by a 0-stub. Also, the weight 1
is often omitted as 1 defines the default weight. In case of a submatrix containing
complex-valued entries, the respective edge is annotated with a complex-valued
weight. More precisely, if all entries have the value w or are a multiple of w, then
the edge is labeled with the weight w. The final value of an entry in the matrix is
then computed by multiplying all the weights from the root node to the terminal.

These concepts are illustrated in the following example:

Example 2. Figure 3 shows a QMDD representing the circuit from Fig. 1. The
corresponding matrix M is

⎡
⎢⎢⎢⎣

1√
2

0 1√
2

0
0 1√

2
0 1√

2

0 1√
2

0 − 1√
2

1√
2

0 − 1√
2

0

⎤
⎥⎥⎥⎦ .

By dividing M into four submatrices, the child nodes of the root node can
be determined. The first and second submatrix contain the same entries and,
thus, are represented by a single shared node. The third and fourth submatrix
contain entries of the same value but with different signs. Consequently, they

Property Checking of Quantum Circuits Using QMDDs 187

x1 �→ x′
1

x2 �→ x′
2 x2 �→ x′

2

1

1√
2

1√
2

1√
2

− 1√
2

0 0 0 0

Fig. 3. QMDD representing the circuit from Fig. 1

are represented by the same node, too, but the edges leading to this node are
annotated with different weights. The edges leading from the child nodes to the
terminals can be determined easily by division of the submatrices. As described
above, the edge weight 1 is omitted as well as the terminal 0 and the edges
leading to it. Instead, they lead to a 0-stub.

3 Property Checking of Quantum Circuits

This section formally defines the problem considered in this work and discusses
previously introduced approaches which address this issue. Afterwards, the gen-
eral idea of our solution is proposed.

3.1 Problem Formulation

In this work, we consider property checking of quantum circuits. Property check-
ing is applied during the hardware design phase in order to check whether a
designed circuit in fact satisfies the specification or not, i.e. whether the circuit
has been designed correctly or not. Since a specification may be very complex,
usually several properties are defined which the circuit has to satisfy. Then,
these properties are individually checked. The properties describe the intended
relation between the inputs and the outputs of the design or they describe re-
quirements which have to be satisfied. If the complete specification is covered
by means of properties and, additionally, a realized circuit satisfies all of them,
then it has been proven that the circuit was designed correctly. Otherwise, the
circuit contains design errors and has to be revised.

Formally a circuit G is considered which realizes the function fG : IBn → IBn

with inputs x1, . . . , xn and outputs x′
1, . . . , x

′
n. The function fP : (fG, X) �→ r

(where X is an input pattern of G and r ∈ IB is the result) evaluates the
property P , i.e. fP maps to 1 if, and only if, the circuit G with the input
pattern X satisfies P . Given that, the property checking problem is defined
by proving that ∀X.fP (fG, X) = 1 holds for a given circuit G and a given
property P .

188 J. Seiter et al.

If fP maps to 1 for all possible input patterns X of G, then the circuit G
satisfies the considered property. However, the evaluation of this formula would
require 2n computations of fG. Instead, it is often easier to determine a sin-
gle counter-example XCEX for which the property is not satisfied. This can be
expressed as ∃XCEX.fP (fG, XCEX) = 0. This requires the evaluation of all 2n

input patterns only in the worst case.
As a result, property checking can be considered as the problem of determining

an input pattern XCEX of G so that G does not satisfy P or to prove that no
such pattern exists.

3.2 Quantum Circuit Verification

The verification of conventional hardware is a well-considered field (see e.g. [13]).
The approaches developed in the last decades are highly optimized and have
been implemented in efficient tools. These accomplishments can be exploited
when reversible circuits are considered exclusively. Since here all operations only
act on Boolean values, it is sufficient to simply map these circuits to conventional
gate libraries and afterwards apply the existing methods such as bounded model
checking [16] or equivalence checking [17].

In contrast, quantum circuits contain non-Boolean values and often have non-
Boolean outputs. As a consequence, the approaches developed so far for Boolean
circuits are not applicable. Yet only few formal verification approaches for quan-
tum circuits exist. In [18], the quantum model checker QMC has been introduced.
This model checker has specifically been developed to check properties of quan-
tum protocols. However, it is uncertain whether this approach is applicable to
other more generic quantum algorithms or how the model checker behaves when
used for the verification of larger systems. To the best of our knowledge, no
studies in these fields have been published so far.

Instead, the majority of verification approaches for quantum circuits applies
simulation techniques [19–21]. In order to simulate a circuit, several stimuli,
i.e. input patterns, are generated and the respective output patterns are pro-
duced. Each of these output patterns needs to be checked against the specifi-
cation in order to determine the correctness of the design. On the one hand,
simulation is a very fast and inexpensive method, especially for determining a
circuit’s behavior when only a few cases are concerned. As a result, it can be
used to ensure the correctness for several critical or common input patterns.
However, a circuit with n variable inputs has 2n possible input patterns and,
thus, coverage of the entire behavior through simulation is intractable as all 2n

patterns need to be simulated resulting in an impracticably large run-time. Ad-
ditionally, the operations performed by quantum circuits are usually described
by complex-valued matrices. As many simulation approaches apply matrix mul-
tiplication, they have high memory requirements as well.

In order to especially address the latter problem, the simulator QuIDDPro
has been introduced in [21]. QuIDDPro employs a particular data-structure, so-
called Quantum Information Decision Diagrams (QuIDDs), to simulate quantum
circuits. QuIDDs have been explicitly developed in such a way that they allow

Property Checking of Quantum Circuits Using QMDDs 189

Circuit realizing
the function

Circuit realizing
the property

Realization

Property

p=1?

p=1? �→ p

0?
0?

Fig. 4. Proposed verification flow

efficient quantum circuit simulation. Existing evaluations show that QuIDDPro
outperforms all other known simulation approaches when only one simulation
run is considered. However, QuIDDPro is naturally bounded to the number
of qubits that correspond to the inputs which again leads to an exponentially
growing run-time for a complete simulation.

Since simulation of conventional circuits leads to similar problems, conven-
tional hardware is usually either entirely verified by means of formal methods
or just validated by means of partial simulation for certain crucial cases. In this
work, we aim for a verification of quantum circuits. That is, we introduce a for-
mal verification approach for quantum circuits in order to provide an alternative
to the existing simulation-based approaches.

3.3 General Idea

Figure 4 outlines the underlying idea of the verification flow proposed in this
paper. The input to the flow are the circuit under verification and the property
to be checked. The property is represented by means of the function fP realized
as a circuit.

Having this, a naïve property check could be done as follows. Each possible
input combination is assigned to the inputs of the original circuit which is used
to evaluate the corresponding output assignment. Then, both assignments are
given as input to the circuit realizing the property (see center of Fig. 4). If the
output signal fP is 1 for each input assignment, the property holds. Although
this process can be simplified by combining both circuits and connecting the
inputs and outputs of the original function to the property circuit, this will not
change the complexity of the verification procedure.

However, with certain modifications which are outlined in detail in the next
section, both circuits can be combined and represented by a QMDD. When
constructing the corresponding QMDD in a way such that the property signal fP

is located at the top-most line, possible input/output mappings of fP will be
represented by the root node of the QMDD. This easily allows to check whether
there exists an input assignment such that fP evaluates to 0, i.e. such that the
property is not satisfied. In fact, it just has to be checked whether the first two
successors from the root node lead to path to 1 (see right-hand-side of Fig. 4).
In this case a mapping to fP = 0 exists, i.e. there is a input assignment which
violates the property. Hence, checking whether the property holds can be done

190 J. Seiter et al.

0 y1

1 y2

f1 f1

f2 f2

H
H

H

(a) Given circuit G

0 p

0

1

f1

f2

y1

y2

f1

f2

0

In
p
u
ts

O
u
tp

u
ts H

(b) Property circuit GP

0 �→ p

0 �→ −

1 �→ − 1 �→ −

0
0

0

0
0

(c) QMDD

Fig. 5. Application of the proposed verification flow

with a constant number of look-ups after the QMDD has been determined. This
general idea is illustrated by the following example.

Example 3. Figure 5(a) shows a generalization of the quantum circuit realiz-
ing the Deutsch algorithm [22]. Usually the oracle is the input to the Deutsch
problem and the circuit solely consists of constant inputs. The generalization al-
lows for configuring all possible four oracles using two additional circuit lines f1

and f2 which combinations lead to all truth tables 00, 01, 10, and 11 representing
constant 0, identity, negation, and constant 1, respectively.

The property represented by the circuit in Fig. 5(b) will explicitly evaluate the
possible functions and afterwards compare the result gathered from the original
circuit on signal y1. A (partial) QMDD representing the combined circuit is
depicted in Fig. 5(c)1. Since the first two successors of the root node point to 0 ,
no input assignment exists which maps to fP = 0. Hence, the property has been
proven to be true, i.e. the circuit indeed realizes the Deutsch algorithm.

4 Implementation

This section describes the algorithm implementing the idea proposed above and
illustrates the resulting verification flow by means of an example. After a brief
overview of the main steps, these steps are discussed in detail.

Given are a quantum circuit G and a property P to be verified. The prop-
erty P is evaluated by fP (see Sect. 3.1) which is represented by a circuit GP

over the inputs and outputs of G. The property is satisfied if fP always evaluates
to 1, i.e. fP is tautologous. The aim of the procedure is to obtain a QMDD which
represents the result fP . Consequently, G and GP have to be altered in such a
way that a combined circuit of the two, in the following denoted by GC , can
1 Note that this QMDD has been modified to handle constant inputs. This is described

in detail in the next section.

Property Checking of Quantum Circuits Using QMDDs 191

be used as a basis for the QMDD Q. Since QMDDs can only represent unitary
functions, this particularly includes a transformation of GC into a unitary func-
tion realization. To this end, additional circuit lines (assuming constant inputs)
need to be added. Those lines have to be explicitly handled when obtaining the
result of the property check (i.e. fP from the QMDD).

Overall, the respective algorithm executes the following steps.

1. Combine G and GP to GC and make GC unitary
2. Build a QMDD Q for GC

3. Modify the QMDD Q such that additional circuit lines (assuming constant
inputs) are handled

4. Obtain the result of the property check from the root node of the QMDD Q

In the following sections, these steps are described in detail.

4.1 Combine the Circuits and Ensure Unitary

The goal of the first step is to alter both circuits G and GP in such a way that
they can be combined into one circuit GC by concatenating G and GP . Based
on GC , a QMDD is built in the next step.

First, G and GP have to be defined over the same set of variables and the
variables have to be in the same order, because they cannot be combined into
one circuit otherwise. Consequently, both circuits are checked for variables which
occur exclusively in the respective circuit. These variables are then added to the
other circuit in such a way that the variable ordering is the same for G and GP .

Since from the combined circuit GC a QMDD is supposed to be created,
GC has to represent a unitary circuit which therefore also applies for G and
GP . While it already holds for G, GP may be non-unitary and, thus, has to
be extended accordingly. Here, existing approaches for embedding (introduced
e.g. in [23]) can be exploited. Furthermore, in order to ensure that also the
combined circuit GC is unitary, the fan-outs have to be removed which are
caused by the fact that both G and GP use the same inputs. This is done by
adding additional circuit lines and gates that keep copies of the inputs. The
following example illustrates this step.

Example 4. Consider again the circuits in Figs. 5(a) and 5(b) representing a
given circuit G and a property circuit GP . As can be seen, three additional
lines (assuming constant values) are necessary in order to properly embed GP .
Afterwards, both circuits are combined to GC as shown in Fig. 6(a). For this
purpose, four gates are added replacing the non-unitary fan-outs, i.e. copying
the values of the inputs y1, y2, f1, and f2.

4.2 Build a QMDD from the Combined Circuit

Before building a QMDD from the combined circuit, the lines are reordered in
such a way that all lines assuming a constant input value are placed at the top of

192 J. Seiter et al.

0 p

0
0
0
0

y1

y2

0
f1

f2

H
H

H
H

(a) Combined circuit

0 �→ p

0 �→ − 0 �→ −

(b) QMDD represent-
ing the complete func-
tion

Fig. 6. Intermediate steps of the proposed verification flow

the circuit. Such a structure simplifies the succeeding steps. Afterwards, a QMDD
is built representing GC , i.e. the combined circuit of G and GP . However, the
resulting QMDD cannot be used to determine the result of the property check
as it does not explicitly handle constant inputs.

Example 5. Figure 6(b) shows the QMDD representing the combined circuit GC

from Fig. 6(a). As can be seen, constant input values have not been considered
yet. In fact, the root node has four outgoing edges leading to non-terminal nodes.
That is, all possible input/output mappings of the first line (including output fP)
are considered. The underlying circuit however assumes a constant input 0 at
this line, i.e. only the first and the third outgoing edge should be considered.
Hence, the QMDD needs to be modified as described in the following step.

4.3 Modify the QMDD

Obtaining a QMDD Q which also takes constant input values into consideration
requires altering the QMDD in order to avoid an incorrect result. As a con-
sequence, each node representing a line with a constant input value has to be
checked. If such a node has outgoing lines representing an input/output assign-
ment which does not occur in the circuit, then the respective edge is replaced
by an edge leading to 0 .

As a result from eliminating edges in the QMDD, it can occur that nodes
remain whose edges all point to 0 . Since these nodes never appear in paths from
the root node to 1 and thus do not contribute to valid input/output mappings,
they can be removed from the QMDD. The resulting QMDD represents the
combined circuit GC and additionally considers constant input values.

Example 6. Figure 5(c) shows the QMDD after edges and nodes have been elimi-
nated as described above. Now, the root node has only one outgoing edge leading
to a non-terminal node which corresponds to the defined constant input value.

Property Checking of Quantum Circuits Using QMDDs 193

The second and fourth edge have been eliminated through edge elimination,
while the first edge has been eliminated in the course of node elimination.

4.4 Determine the Result

After the steps described above, the resulting QMDD represents all input/output
mappings considering the given circuit G, the given property P , and the possibly
assumed constant inputs. Of particular interest is whether there exists a mapping
to fP = 0. If that is the case, it has been shown that the resulting circuit does not
hold the property. Since fP is the top-most variable and, thus, represented by the
root node of Q, the existence of such a mapping can be obtained by evaluating
the root node and its outgoing edges. An existing mapping is indicated by the
existence of the respective edge.

If the property check does not hold, then the first line maps from 0 to 0 and
a counter-example can be derived from the QMDD. Such a counter-example
is an input pattern for which the property is not satisfied. It can be obtained
by traversing a path from the top-most node to 1 which starts with the first
outgoing edge of the top-most node.

Example 7. The root node of the QMDD in Fig. 5(c) indicates the result of the
property check. Only the third edge leads to a non-terminal node. This edge
represents the mapping 0 �→ 1 for the top-most line in the combined circuit.
Hence, fP always maps to 1 and, thus, the property always holds.

5 Experimental Results

The verification flow introduced in the previous sections has been implemented
and evaluated by verifying several instances of the Grover search and the Deutsch
algorithm. The realizations for both algorithms have been generalized as de-
scribed in Sect. 3.3. The corresponding properties were automatically synthe-
sized. All operations concerning QMDDs, including the construction, were pro-
vided as a C-library [15]. The experiments have been conducted on a 2.3 GHz
Intel Core i5 with 2GB main memory running Linux as a virtual machine.

The results of the experiments are shown in Table 1. They were compared to
those obtained by the simulator QuIDDPro [21] which was applied to the same
circuits as the proposed verification procedure. In addition to that, we distin-
guished between holding and failing property checks. For satisfying properties,
the circuits have been completely simulated using QuIDDPro. For failing proper-
ties the simulation was only performed until a counter-example was determined.

The table is structured as follows. In the first column, the name of the circuit
which was verified is given. In the second and third column, the number of lines
and gates is denoted, split into the number of the combined and the original
circuits to be checked. The remaining columns show the run-times of QuIDDPro
and the QMDD-based verification flow for holding and failing properties.

In case of satisfying properties, the QMDD-based verification approach is
faster than QuIDDPro except for one test case. For the smaller circuits, the

194 J. Seiter et al.

Table 1. Results for passing property checks

Holding properties Failing properties
Circuit Lines Gates QuIDDPro QMDD QuIDDPro QMDD
Grover2 6 (5) 26 (19) 0.07 0.01 0.03 1.65
Grover3 8 (7) 111 (83) 0.72 0.03 0.11 1.67
Grover4 10 (9) 117 (107) 2.08 2.83 0.12 1.72
Grover5 12 (11) 144 (132) 5.60 4.48 0.16 1.94
Grover6 14 (13) 165 (151) 10.65 1.63 0.24 1.68
Grover7 16 (15) 263 (247) 33.27 1.70 0.36 1.66
Grover8 18 (17) 229 (211) 79.98 3.03 0.28 8.00
Grover9 20 (19) 182 (162) timeout 16.98 0.16 18.00
Grover10 22 (21) 201 (179) timeout 230.48 0.19 244.69
Deutsch 12 (6) 21 (8) 0.04 0.01 0.02 1.66
Deutsch-Josza 23 (22) 75 (22) 0.14 0.03 0.07 1.67

run-times are similar. However, as the number of lines and gates increases, the
QMDD-based approach becomes much faster than QuIDDPro. In particular,
the QMDD-based approach could still be applied for the circuits Grover9 and
Grover10, while the simulation with QuIDDPro does not finish. This occurs due
to the complete simulation which has to be performed by QuIDDPro.

For failing property checks, the results are reversed. Whereas QuIDDPro per-
forms very good, the run-time of the QMDD-based approach is nearly identical
to that of the holding property checks. Since QuIDDPro does not need to com-
pletely simulate the circuits, but terminates the simulation as soon as a counter-
example is determined, the run-time can be reduced significantly. In contrast,
the QMDD is built completely for all possible input/output mappings instead
of particular simulation patterns.

Although the simulation performs much faster for failing property checks, the
proposed verification flow is more robust. As a result, the run-time of the veri-
fication does not depend on the outcome of the verification whereas simulation
can lead to a timeout.

6 Conclusions

In this work, a new verification approach for quantum circuits has been pre-
sented. We described how QMDDs can be applied in order to prove correctness
of a design and evaluated our approach by verifying realizations of Grover’s algo-
rithm and Deutsch’s algorithm. In contrast to QuIDDPro, one of the best known
quantum circuit simulators, the run-time of our approach is not dependent on
the result of the property check and can prove correctness of a design much
faster than the simulator.

Acknowledgments. We would like to sincerely thank D. Michael Miller for
providing us with an implementation of the QMDD package introduced in [15]
and for many helpful discussions. This work was supported by the German Re-
search Foundation (DFG) (DR 287/20-1) and the German Academic Exchange
Service (DAAD).

Property Checking of Quantum Circuits Using QMDDs 195

References

1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, New York (2000)

2. Hung, W.N.N., Song, X., Yang, G., Yang, J., Perkowski, M.A.: Quantum logic
synthesis by symbolic reachability analysis. In: Malik, S., Fix, L., Kahng, A.B.
(eds.) Design Automation Conference, pp. 838–841. ACM (June 2004)

3. Shende, V.V., Bullock, S.S., Markov, I.L.: Synthesis of quantum logic circuits. In:
Tang, T. (ed.) Asia and South Pacific Design Automation Conference, pp. 272–275.
ACM Press (January 2005)

4. Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact Synthesis of Elementary
Quantum Gate Circuits for Reversible Functions with Don’t Cares. In: Int’l Symp.
on Multiple-Valued Logic, pp. 214–219 (May 2008)

5. Maslov, D., Dueck, G.W., Miller, D.M., Negrevergne, C.: Quantum Circuit Sim-
plification and Level Compaction. IEEE Trans. on CAD 27(3), 436–444 (2008)

6. Soeken, M., Wille, R., Dueck, G.W., Drechsler, R.: Window optimization of re-
versible and quantum circuits. In: Int’l Symp. on Design and Diagnostics of Elec-
tronic Circuits and Systems, pp. 341–345 (April 2010)

7. Yuan, J., Shultz, K., Pixley, C., Miller, H., Aziz, A.: Modeling design constraints
and biasing in simulation using BDDs. In: Int’l Conf. on Computer-Aided Design,
pp. 584–590 (November 1999)

8. Bergeron, J.: Writing Testbenches Using SystemVerilog. Springer (2006)
9. Yuan, J., Pixley, C., Aziz, A.: Constraint-Based Verification. Springer (January

2006)
10. Wille, R., Große, D., Haedicke, F., Drechsler, R.: SMT-based Stimuli Generation in

the SystemC Verification Library. In: Forum on Specification & Design Languages
(September 2009)

11. Brand, D.: Verification of large synthesized designs. In: Lightner, M.R., Jess, J.A.G.
(eds.) Int’l Conf. on Computer-Aided Design, pp. 534–537. IEEE Computer Society
(1993)

12. Disch, S., Scholl, C.: Combinational Equivalence Checking Using Incremental SAT
Solving, Output Ordering, and Resets. In: Asia and South Pacific Design Automa-
tion Conference, pp. 938–943 (2007)

13. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press,
Cambridge (1999)

14. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic Model Checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

15. Miller, D.M., Thornton, M.A.: QMDD: A Decision Diagram Structure for Re-
versible and Quantum Circuits. In: Int’l Symp. on Multiple-Valued Logic, p. 30.
IEEE Computer Society (May 2006)

16. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. Advances in Computers 58, 117–148 (2003)

17. Wille, R., Große, D., Miller, D.M., Drechsler, R.: Equivalence Checking of Re-
versible Circuits. In: Int’l Symp. on Multiple-Valued Logic, pp. 324–330. IEEE
Computer Society (May 2009)

18. Gay, S.J., Nagarajan, R., Papanikolaou, N.: QMC: A Model Checker for Quantum
Systems. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 543–547.
Springer, Heidelberg (2008)

196 J. Seiter et al.

19. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev.
A 70, 052328 (2004)

20. Vidal, G.: Efficient Classical Simulation of Slightly Entangled Quantum Compu-
tations. Phys. Rev. Letters 91, 147902 (2003)

21. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Quantum Circuit Simulation. Springer,
Heidelberg (2009)

22. Deutsch, D.: Quantum Theory, the Church-Turing Principle and the Universal
Quantum Computer. Royal Society London A 400(1818) (July 1985)

23. Miller, D.M., Wille, R., Dueck, G.: Synthesizing Reversible Circuits for Irreversible
Functions. In: EUROMICRO Symp. on Digital System Design, pp. 749–756 (2009)

Using πDDs in the Design of Reversible Circuits

(Work-In-Progress)

Mathias Soeken1,3, Robert Wille1, Shin-ichi Minato2, and Rolf Drechsler1,3

1 Institute of Computer Science, University of Bremen
Group of Computer Architecture, D-28359 Bremen, Germany
{msoeken,rwille,drechsle}@informatik.uni-bremen.de

2 Hokkaido University
Sapporo 060-0814, Japan

minato@ist.hokudai.ac.jp
3 Cyber-Physical Systems, DFKI GmbH

D-28359 Bremen, Germany
rolf.drechsler@dfki.de

Abstract. With πDDs a data structure has recently been introduced
that offers a compact representation for sets of permutations. Since re-
versible functions constitute permutations on the input assignments, they
can naturally be expressed using this data structure. However, its poten-
tial has not been exploited so far. In this work-in-progress report, we
present and discuss possible applications of πDDs within the design of
reversible circuits including techniques for synthesis, debugging, and an
efficient determination of the number of minimal circuits. We observed
that πDDs inhibit the same space complexities as truth tables and, hence,
do not superior existing design methods in many cases. However, they
are advantageous when dealing with several functions or gates at once.

1 Introduction

Decision diagrams offer a compact representation of Boolean functions and ma-
trices and, thus, have been widely applied in the design of reversible circuits.
As examples, Binary Decision Diagrams (BDDs) have been applied for exact,
heuristic, and hierarchical synthesis of both reversible and irreversible func-
tions [1–3]. As an alternative to BDDs, the application of Kronecker functional
decision diagrams, an extension of BDDs, has lead to further improvements [4].
Quantum Multiple-valued Decision Diagrams (QMDDs) [5], enabling a compact
representation for complex matrices, have been used for both equivalence check-
ing [6] and synthesis of large reversible functions ensuring a minimal number
of lines [7]. Similar data-structures have efficiently been applied for the simula-
tion and verification of quantum circuits [8, 9]. In fact, decision diagrams have
been the key methodology for breakthroughs in the design of reversible circuits.
For the first time, BDDs allowed synthesis of minimal circuits for a significant
amount of functions [1] and they enabled the synthesis of large Boolean functions
with more than 100 variables [2]. For the latter case, the main problem of the

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 197–203, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

198 M. Soeken et al.

algorithm is the huge amount of extraneous lines which impedes the practical
applicability of that approach. However, the problem of additional lines in the
synthesis of large functions has been solved again with decision diagrams, in
particular using QMDDs [7].

However, while BDDs and QMDDs offer a compact representation for func-
tions and matrices, the recently introduced πDDs [10] allow for a compact rep-
resentation for permutations. Hence, they are an interesting extension to the
set of considered decision diagrams in the design of reversible circuits. Since re-
versible functions constitute permutations on the input assignments, they can
naturally be expressed using this data structure. In fact, πDDs do not only allow
a compact representation for single permutations, but for a set of permutations.
Therefore, they can particularly be applied for many problems where the above
mentioned data structures are not advantageous.

In this work-in-progress report, we briefly review the underlying data-struc-
ture and afterwards discuss possible applications in different areas of the design
of reversible circuits. These applications include synthesis, debugging, and an
efficient determination of the number of minimal circuits. Our observations show
that, πDDs inhibit the same space complexities as truth tables (i.e. they are
exponential in space) and, hence, in many cases do not superior existing methods.
However, advantages can be gained when dealing with several functions or gates
at once.

2 Preliminaries

2.1 Reversible Functions and Circuits

A function f : IBn → IBn is called reversible if it represents a bijection, i.e. each
input maps uniquely to an output pattern. As a result, reversible functions repre-
sent permutations on the set {0, . . . , 2n − 1}. Reversible functions can be realized
using reversible circuits. The process of determining a reversible circuit for a given
function is called synthesis. The circuits are usually composed as a cascade of re-
versible gates where the Toffoli gate [11] constitutes their most prominent repre-
sentative. Given a set of variablesX = {x1, . . . , xn} a Toffoli gate is a tuple (C, t)
with C ⊂

⋃
x∈X{x, x} such that ∀x ∈ X : {x, x} �⊂ C being the set of control

lines and t ∈ X with {t, t} ∩ C = ∅ being the target line of the gate. A Toffoli
gate inverts the target line if, and only if, all control lines xi (xi) are set to 1 (0).
Positive (negative) literals in C are called positive (negative) control lines.

2.2 The πDD Data-Structure

The πDDs [10] allow for a compact representation of sets of permutations and
work similar to ZDDs [12] which allow for a compact representation of sets of
variables. πDDs exploit that permutations can be decomposed into elementary
transpositions swapping two elements, i.e. that a permutation can be seen as
a set of its transpositions. As an example the permutation (3, 5, 2, 1, 4) can be

Using πDDs in the Design of Reversible Circuits 199

represented by a sequence of transpositions τ(2,1)τ(3,2)τ(4,1)τ(5,4), i.e. first the
items 5 and 4 are interchanged, then 4 with 1 and so on until the identity
permutation πe = (1, 2, 3, 4, 5) results. When always swapping the elements with
the highest absolute value first, sequences of transpositions are canonical.

3,2

1

2,1{πe, (2, 1)}

{πe, (2, 1), (1, 3, 2)}
According to this principle, the vertices in πDDs

are labeled using the respective transposition (in
comparison, in ZDDs the vertices are labeled us-
ing the set element). The terminal vertices 1 and 0
represent the set containing the identity permuta-
tion {πe} and the empty set ∅, respectively. As an
example, on the left-hand side, a πDD is illustrated
representing the permutations {πe, (2, 1), (1, 3, 2)}.
Traversing this πDD from the top to the bottom
leads to the transpositions to be applied so that
eventually the identity permutation results.

Several operations can be carried out efficiently on πDDs, e.g. counting the
number of permutations which is equivalent to counting the number of 1-paths in
BDDs or ZDDs. Furthermore, calculating the Cartesian product P ∗Q = {αβ|α ∈
P, β ∈ Q} is efficient, which is the set of all possible composite permutations
chosen from P and Q. Due to page limitations, the reader is referred to [10] for
a comprehensive discussion on πDDs.

3 Applications in the Design of Reversible Circuits

3.1 Determination of the Number of Minimal Circuits

As discussed in the previous section, πDDs allow for a compact representation
of sets of permutations as well as efficient operations such as counting the per-
mutations and the Cartesian product. If gates in a circuit are considered as
permutations, the latter naturally expresses the gate composition in reversible
circuits. Combining both operations allows for an efficient determination of the
number of minimal circuits.

This is achieved by creating a set of all elementary gates that may occur in
a circuit. Afterwards, the Cartesian product on these gates is iteratively con-
structed. As a result, all reversible functions are enumerated and contained in
the resulting πDD. By extracting the transpositions from the paths in the πDD,
it can easily be obtained how many minimal circuits composed of a certain num-
ber of gates exist. This πDD represents a set of possible functions but does not
explicitly represent the structure of gates for each function. However, we can
extract the actual gates by using πDD-based operations, as shown in the next
section. Nevertheless, the information on the number of minimal circuits already
is interesting for statistical purposes.

Table 1 lists all permutations for positively controlled Toffoli gates acting
on 3 lines. For the sake of an improved readability transpositions τ(x,y) are

written as
(
x
y

)
. Each permutation is denoted Tt,μ where t is the target line of

the gate and μ is an index denoting the set of control lines. Given that, the

200 M. Soeken et al.

Table 1. Permutations for all positively controlled Toffoli gates on 3 lines

μ T0,μ T1,μ T2,μ

0
(
000
001

) (
010
011

) (
100
101

) (
110
111

) (
000
010

) (
001
011

) (
100
110

) (
101
111

) (
000
100

) (
001
101

) (
010
110

) (
011
111

)
1

(
010
011

) (
110
111

) (
001
011

) (
101
111

) (
001
101

) (
011
111

)
2

(
100
101

) (
110
111

) (
100
110

) (
101
111

) (
010
110

) (
011
111

)
3

(
110
111

) (
101
111

) (
011
111

)

set of all positively controlled Toffoli gates acting on n lines can be written

as Tn =
⋃n−1

t=0

⋃2n−1−1
μ=0 Tt,μ. Since reversible functions can also be represented

by permutations, we can count all functions realized by minimal circuits using Fk

where k denotes the number of gates with

F0 = {πe}, F1 = F0 ∪ Tn, and Fk = Fk−1 ∗ Tn for k > 1 . (1)

Table 2. Size of |Fk| − |Fk−1| for
four gate libraries

k T3 T±
3 T̂3 T̂±

3

0 1 1 1 1
1 12 27 3 12
2 102 369 6 90
3 625 2925 9 476
4 2780 13282 5 1903
5 8921 20480 0 5472
6 17049 3236 0 10388
7 10253 0 0 11756
8 577 0 0 7347
9 0 0 0 2408
10 0 0 0 430
11 0 0 0 36
12 0 0 0 1∑

40320 40320 24 40320

The approach can easily be adapted to sup-
port other gate libraries such as Toffoli gates
containing also negative control lines (de-
noted by T±

n) as well as libraries that only
consist of Toffoli gates that are fully con-
trolled, i.e. |C| = n−1 for each gate (denoted
by T̂n and T̂±

n). Table 2 shows the number of
circuits determined for k ranging from 0 to 12
for all these four gate libraries. In fact, only
the number of newly found functions is listed,
i.e. |Fk| − |Fk−1|. As can be seen, all gate li-
braries except for T̂3 are universal, since the
number of all reversible functions over 3 vari-
ables is 23! = 40320. In fact, only 24 func-
tions can be represented when using gates
exclusively from library T̂3. Furthermore, the
numbers for the gate library T̂±

3 are very in-
teresting as they are more balanced than the
other ones. Also, this gate library should be
more efficient when used with πDDs since all elementary gates can be represented
by permutations that are composed of only one transposition. The largest mini-
mal function consists of 12 gates when using this library and is described by the
permutation (7, 6, 4, 5, 1, 0, 2, 3).

All this information can easily be extracted using the operations supported on
πDDs within less than a second for all gate libraries. However, when performing
the same experiments for n = 4, the approach is not scalable anymore. Note that
increasing n by 1 doubles the number of elements in the respective permutations.
Further, the number of vertices in the πDD is the number of elements squared,
i.e. 22n.

Using πDDs in the Design of Reversible Circuits 201

3.2 Synthesis with Minimal Number of Gates

Based on the results and procedures of the previous section, a synthesis algo-
rithm realizing a function f with a minimal number of gates can be formulated.
For this purpose, the function f to be synthesized is represented as permuta-
tion πf . Then, all functions are enumerated as in Eq. (1). After each step k, it
is checked whether πf is contained in all functions Fk. In that case, the mini-
mal number of gates k is already determined. However, the actual circuit has
not been obtained yet. For this purpose, the algorithm moves backwards going
to F0 by applying gates from Tn. More precisely, an algorithm for the synthesis
of reversible functions ensuring minimal number of gates can be formulated as
follows.

Algorithm E (Exact Synthesis). The reversible function f to be synthesized
is given as permutation πf .

E1. [Initialize.] Set F0 ← {πe}, F1 ← F0 ∪ Tn, and k ← 1.

E2. [Found minimum?] If Fk ∩ {πf} �= ∅, i.e. πf ∈ Fk, go to step E4.

E3. [Increase k.] Set k ← k + 1, Fk ← Fk−1 ∗ F1 and return to step E2.

E4. [Extract gate.] Select π ∈ Tn such that πfπ ∈ Fk−1.

E5. [Next gate?] Set k ← k − 1 and πf ← πfπ. If k = 1, terminate, otherwise
return to step E4.

This algorithm faces similar problems as discussed in the end of Sect. 3.1, i.e. the
complexity raises significantly with increasing size of the function. One possibility
to address that is to use a different gate library such as T̂±

n which contains smaller
permutations. However, as for any other existing exact synthesis approach, the
size of all elements contained is still exponential, i.e. |Tn| = |T̂±

n | = n ·2n−1. This
will always cause scalability problems in step E4 in which all gates need to be
traversed in the worst case.

3.3 Heuristic Synthesis

Unlike the exact synthesis approach, where all functions are enumerated first
in order to check whether the function f to be synthesized is contained, the
starting point of the heuristic synthesis approach is the function f itself. Similar
to the QMDD-based synthesis procedure [7] gates (or permutations) should be
applied according to the structure of the πDD for the function in its current
state. However, the πDD-based approach allows for applying several gates at
once instead of only one at a time. The result can then be checked for the best
current solution and then proceed from there. The goal is to transform the πDD
representing πf by means of gate operations such that eventually the identity
function, i.e. πe is reached. Since the corresponding πDD consists only of one
terminal vertex, the aim during synthesis is to constantly reduce the number of
non-terminal vertices in the πDD.

202 M. Soeken et al.

3.4 Debugging

As discovered in the previous section, the πDDs for reversible functions grow
exponentially with respect to the number of lines. As a result, it is likely that
the above mentioned techniques are not applicable to circuits of a larger scale.
However, πDDs are advantageous when considering multiple functions at once
which should be illustrated in this section. Consider a simple debugging prob-
lem to be solved where a faulty circuit should be checked for a missing-gate
defect. Given a circuit C = g1 . . . gd consisting of n lines where each gate gi can
be described by its permutation πgi and a function f represented by πf , this
debugging problem can be solved using πDDs by checking if πf ∈ F , where

F =
d⋃

i=0

({πg1 . . . πgi} ∗ Tn ∗ {πgi+1 . . . πgd}) .

All operations can be carried out efficiently on the πDD data structure.

4 Conclusions and Future Work

The πDD for one function can be exponential in size, in fact the permutation for
a NOT gate (Toffoli gate without control lines) in a circuit with n lines consists
of 2n−1 transpositions which is equal to the number of non-terminal vertices in
the πDD. As a result, πDDs are not suitable for the synthesis of large functions
and thus probably not suitable for synthesis in general. Since determining the
minimal number of circuits for 4 circuit lines is already inefficient, it is not to
expect that the exact synthesis algorithm based on πDDs can keep up with the
results achieved using the exact synthesis approaches based on Boolean satisfi-
ability [13]. However, conceptual algorithms that have been discovered allow an
efficient counting and enumerating of reversible functions of small sizes. Inter-
esting statistics comparing different gate libraries have been observed.

Further, the πDDs are advantageous when several functions at once should be
considered at the same time, whereas no other graphical data-structure that has
been used in the design for reversible circuits so far possesses this property. As
a result, the efficient storing of multiple permutations can be exploited. Hence,
πDDs should be used in the context of algorithms for reversible functions and
circuits that inhibit these properties, e.g. within debugging where πDDs allow
to consider several solutions at once.

Algorithms of such kind should be considered in future work. Furthermore,
the performance of the πDD implementation should be enhanced such that the
determination of the minimal number of circuits can be performed for a larger
number of circuit lines. The size of the permutations that are represented through
reversible functions grows exponentially as the number of circuit lines grows
linearly. This affects the performance of the πDDs in a bad manner, since they
allow permutations of all sizes and not only the special cases represented by
reversible functions. As a result, also the decomposition technique that serves as

Using πDDs in the Design of Reversible Circuits 203

the base for current πDDs should be inspected for improvement in the special
case of reversible functions, e.g. by explicitly targeting reversible gates as atomic
unit instead of transpositions.

Nevertheless, we are convinced that πDDs fit well in the current zoo of graph-
ical data-structures. Although they do not allow an improvement of current
techniques they will serve as an efficient data-structure for problems that ex-
plicitly require the use of several gate operations or the consideration of several
functions in general.

Acknowledgments. This work was supported by the German Research Foun-
dation (DFG) (DR 287/20-1).

References

1. Wille, R., Le, H.M., Dueck, G.W., Große, D.: Quantified Synthesis of Reversible
Logic. In: Design, Automation and Test in Europe, pp. 1015–1020. IEEE (March
2008)

2. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions.
In: Design Automation Conference, pp. 270–275. ACM (July 2009)

3. Kerntopf, P.: A New Heuristic Algorithm for Reversible Logic Synthesis. In: Design
Automation Conference, pp. 834–837 (June 2004)

4. Soeken, M., Wille, R., Drechsler, R.: Hierarchical synthesis of reversible circuits
using positive and negative Davio decomposition. In: Int’l Design and Test Work-
shop, pp. 143–148 (December 2010)

5. Miller, D.M., Thornton, M.A.: QMDD: A Decision Diagram Structure for Re-
versible and Quantum Circuits. In: Int’l Symp. on Multiple-Valued Logic, p. 30.
IEEE Computer Society (May 2006)

6. Wille, R., Große, D., Miller, D.M., Drechsler, R.: Equivalence Checking of Re-
versible Circuits. In: Int’l Symp. on Multiple-Valued Logic, pp. 324–330. IEEE
Computer Society (May 2009)

7. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of Re-
versible Circuits with Minimal Lines for Large Functions. In: Asia and South Pa-
cific Design Automation Conference (January 2012)

8. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Quantum Circuit Simulation. Springer,
Heidelberg (2009)

9. Wang, S.A., Lu, C.Y., Tsai, I.M., Kuo, S.Y.: An XQDD-based verification method
for quantum circuits. IEICE Transactions 91-A(2), 584–594 (2008)

10. Minato, S.-I.: πDD: A New Decision Diagram for Efficient Problem Solving in Per-
mutation Space. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695,
pp. 90–104. Springer, Heidelberg (2011)

11. Toffoli, T.: Reversible Computing. In: de Bakker, J.W., van Leeuwen, J. (eds.)
ICALP 1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980)

12. Minato, S.: Zero-Supressed BDDs for Set Manipulation in Combinational Prob-
lems. In: Design Automation Conference, pp. 272–277 (June 1993)

13. Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact Multiple-Control Toffoli
Network Synthesis With SAT Techniques. IEEE Trans. on CAD 28(5), 703–715
(2009)

A Verification Technique

for Reversible Process Algebra

Jean Krivine�

Univ. Paris Diderot, Sorbonne Paris Cité,
Laboratoire PPS, UMR 7126, F-75205 Paris, France

Abstract. A verification method for distributed systems based on de-
coupling forward and backward behaviour is proposed. This method uses
an event structure based algorithm that, given a CCS process, constructs
its causal compression relative to a choice of observable actions. Ver-
ifying the original process equipped with distributed backtracking on
non-observable actions, is equivalent to verifying its relative compres-
sion which in general is much smaller. The method compares well with
direct bisimulation based methods. Benchmarks for the classic dining
philosophers problem show that causal compression is rather efficient
both time- and space-wise. State of the art verification tools can suc-
cessfully handle more than 15 agents, whereas they can handle no more
than 5 following the traditional direct method; an altogether spectacular
improvement, since in this example the specification size is exponential
in the number of agents.

1 Introduction

Backtracking is commonplace in transactional systems where different compo-
nents, such as processes accessing a distributed database, need to acquire a
resource simultaneously. To ensure unconditional correctness of the overall exe-
cution of the transaction, one usually provides a code that incorporates explicit
escapes from those cases where a global consensus cannot be met. Such an up-
front method generates a large and unstructured state space, which often means
verification based on proving that the code is bisimilar to a reference specifi-
cation becomes unfeasible. Based on earlier work, we propose here an indirect
verification method, and show on an example that it can handle larger speci-
fications. The idea is to break down the distributed implementation of a given
reference specification in two steps. First, one writes down a code which is only
required to meet a weaker condition of causal or forward correctness relative to
the specification. This condition is parameterized by a choice of observable ac-
tions corresponding to the actions of the specification. Second, the obtained code
is equipped with a generic form of distributed backtracking on non-observable ac-
tions. A general theorem reduces the correctness of the latter partially reversible

� This work has been partially supported by the French National Research Agency
(ANR), project REVER n◦ ANR 11 INSE 007.

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 204–217, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Verification Technique for Reversible Process Algebra 205

code to the causal correctness of the former [DK05]. In many transactional exam-
ples, this structured programming method works well, and obtains codes which
are smaller, and simpler to understand [DKT07]. It also seems interesting from a
correctness perspective, since one never has to deal with the full state space, and
it is enough to consider the much smaller state space of the forward code causal
compression relative to observable actions. Thus it obtains codes which are also
easier to prove correct. It is only natural then to ask whether and to which ex-
tent such indirect correctness proofs can be automated. This is the question we
address in this paper. Specifically we propose an algorithm, which, under certain
rather mild assumptions about the system of interest, will compute its causal
compression relative to a choice of observables. The true concurrency semantics
tradition of using event structures as an intrinsic process representation comes
to the rescue here. Besides event structures are uniquely suited to the handling
of causal relationships between various events triggered by a process [Win82].
For these reasons our procedure includes a translation of the process as a recur-
sive flow event structure, and computes the relative causal compression on this
intermediate representation. Benchmarks given for the classical example of the
dining philosophers show a significant state compression, and a relatively low
cost incurred by compression. Direct programming generates a state space that
is already too big for being constructed by bisimulation verifiers for 6 agents,
whereas our method can go well beyond 15. The language we use to formalize
concurrent systems is the Calculus of Communicating Systems (CCS) [Mil89].
This is a slightly more expressive language than basic models of communicat-
ing automata, in that processes can dynamically fork. On the other hand, this
communication model includes no name-passing, which is a severe limitation in
some applications.

Section 2 starts with a quick recall of CCS [Mil89]. Section 3 develops its
reversible variant RCCS, together with the central notion of causal correctness,
and the fundamental result connecting causal correctness of a CCS process and
full correctness of its lifting as a partially reversible process in RCCS [DK05].
The relative causal compression algorithm, and the accompanying verification
method are explained in Section 4. Section 5 compares this method with the
traditional direct method, using the dining philosphers problem as a benchmark.
The conclusion discusses related work and further directions.

2 CCS

2.1 Syntax

CCS processes interact through binary communications on named channels:
an output on channel x is written x̄, an input on the same channel is simply
written x.

Processes p, q ::= a.p | (p | q) | p+ q | D(x̃) := p | (x)p | 0

We write P for the set of processes, A for the set of actions, and A∗ for the free
monoid of action words. Restriction (x)p binds x in p and the set of free names

206 J. Krivine

of p is defined accordingly. In a recursive definition D(x̃) := p free names of p
have to be x̃.

2.2 Operational Semantics

A labelled transition system (LTS) is a tuple 〈S, s, L,→〉 where S is called the
state space, s the initial state, L the set of labels, and → ⊆ S×L×S the transi-
tion relation. One uses the common notation s →a t, and for m = a1 . . . an ∈ A∗,
s →∗

m t means s →a1 s1, . . . , sn−1 →an t for some states s1, . . . , sn−1. The oper-
ational semantics of a CCS term p is given by means of such an LTS (P, p,A,→),
written TS(p), where → is given inductively by the rules:

a.p+ q →a p
(act)

p →a p′ q →ā q′

p | q →τ p′ | q′ (synch)
p →a p′

p | q →a p′ | q (par)

p →a p′ a �∈ {x, x̄}
(x)p →a (x)p′

(res)
p ≡ p′ →a q′ ≡ q

p →a q
(equiv)

The equivalence relation ≡ is the classical structural congruence for choice and
parallel composition, together with the recursion unfolding rule D(ỹ) ≡ p {ỹ/x̃}
if D(x̃) := p.

2.3 Process Equivalence

Given a set of observable actions, a basic requirement is to decide whether two
processes have an equivalent interaction capacity with their environment. Several
variants of observational equivalence for CCS processes have been considered.
We use here a variant of weak bisimulation based on the choice of a countable
distinguished subset K of the set of actions A, which we fix here once and for
all. Actions in K are called observable actions. The complement A \ K of non-
observable actions is denoted by Kc and also taken to be countable.

Let S1 = (S1, s1, A,→) and S2 = (S2, s2, A,→) be LTSs both with labels in
A, a relation R over S1 × S2 is said to be a weak simulation between S1, S2, if
s1 R s2 and whenever p1 R p2:

— if p1 →a q1, a ∈ Kc, then p2 →∗
m q2 with m ∈ (Kc)∗, and q1 R q2;

— if p1 →a q1, a ∈ K, then p2 →∗
m q2 with m ∈ (Kc)∗a(Kc)∗, and q1 R q2.

The idea is that S2 has to simulate the behaviour of S1 regarding observable
actions, but is free to use any sequence of non observable ones in so doing. Such
a relation R is said to be a weak bisimulation if both R and its inverse R−1

are weak simulations. When there is such a relation, S1 and S2 are said to be
bisimilar, and one writes S1 ∼ S2. A CCS process p is said to be a correct
implementation of a specification LTS S, if TS(p) ∼ S. When the specification
is clear from the context, we may simply say p is correct. One thing to keep
in mind is that all these definitions are relative to a choice of K. Usually, K is
taken to be A \ {τ}, but this more flexible definition will prove convenient.

A Verification Technique for Reversible Process Algebra 207

3 Reversible CCS

We turn now to a quick intuitive introduction to RCCS. Consider the following
CCS process:

(x)
(
x | x | x̄.x̄.a.p | x̄.x̄.b.q

)
(1)

Both subprocesses a.p and b.q require two communications on x to execute, so
the whole process may reach a deadlocked state (x)

(
x̄.a.p | x̄.b.q

)
where neither

a nor b may be triggered. If the intention is that the system implements the
mutual exclusion process a.p+ b.q, a possible fix is to give both subprocesses the
possibility to release x:

(x)
(
x | x | Rp(x, a) | Rq(x, a)

)
(2)

with Rp(x, a) := x̄.
(
τ.(Rp(x, a) | x) + x̄.(τ.(Rp(x, a) | x | x) + a.p)

)
.

This example helps in realising two key things: first the original code (1)
although not correct, is partially correct in the sense that any successful action
a or b leads to a correct state p or q; second the proposed fix can be made an
instance of a generic distributed backtracking mechanism. The idea of RCCS is
to provide such a mechanism, in a way that partial or causal correctness (yet to
be defined formally) in CCS, can be proved to be equivalent to full correctness
of the same process once lifted to RCCS [DK04].

3.1 Syntax

RCCS forward actions are the same actions as CCS, namely A. Recall these
are split into K and its complement Kc. In the RCCS context actions in K are
also called irreversible, or sometimes commit actions (following the transaction
terminology); actions in Kc are also called reversible, since these are the ones
one wants to backtrack. RCCS therefore also has backward actions written a−,
with a ∈ Kc.

RCCS processes are composed of threads of the form m � p, where m is a
memory, and p is a plain CCS process:

r ::= m � p | (r | r) | (x)r

Memories are stacks used to record past interactions:

m ::= 〈θ, a, p〉 ·m | 〈〈θ〉〉 ·m | 〈↑〉 ·m | 〈〉

where θ is a thread identifier drawn from a countable set. Open memory elements
〈θ, a, p〉 are used for reversible actions and contain a thread identifier θ, the action
last taken, and the alternative process that was left over by a choice if any.
Closed memory elements 〈〈θ〉〉 are used for irreversible actions, and only contain an
identifier. Eventually the memory element 〈↑〉 keeps track of the forking structure
of processes (see congruence rules below)1. The prefix relation on memories is
defined as m � m′ if there is an m′′ such that m′′ ·m = m′.
1 The convention used here for keeping track of forking processes differs slightly from
Ref. [DK04].

208 J. Krivine

Processes are considered up to the usual congruence for parallel composition
together with the following specific rules:

m �D(ỹ) ≡ m � p {ỹ/x̃} if D(x̃) := p
m � (p | q) ≡ (〈↑〉 ·m � p) | (〈↑〉 ·m � q)
m � (x)p ≡ (x)(m � p) if x �∈ m

Any CCS process p can be lifted to RCCS with an empty memory �(p) := 〈〉 � p,
and conversely, there is a natural forgetful map ϕ erasing memories and mapping
back RCCS to CCS. Clearly ϕ(�(p)) = p. When we want to insist that the lift
operation is parameterised by the set K, we write �K(p).

3.2 Operational Semantics

The operational semantics of RCCS is also given as an LTS with transitions
given inductively by the rules:

a ∈ Kc θ �∈ m

m � a.p+ q →θ
a 〈θ, a, q〉 ·m � p

(act)
a ∈ Kc

〈θ, a, q〉 ·m � p →θ−
a m � a.p+ q

(act∗)

k ∈ K θ �∈ m

m � k.p+ q →θ
k 〈〈θ〉〉 ·m � p

(commit)

r →Θ
a r′ Θ �∈ s

r | s →Θ
a r′ | s (par)

r →Θ
a r′ s →Θ

ā s′

r | s →Θ
τ r′ | s′ (synch)

r →Θ
a r′ a �= x, x̄

(x)r →Θ
a r′

(res)
r ≡ r′ →Θ

a s′ ≡ s

r →Θ
a s

(equiv)

In the contextual rules Θ stands either for θ or θ−. The freshness of the thread
identifier θ is guaranteed by the side conditions θ �∈ m in the (act) and (commit)
rules, and θ �∈ s in the (par) rule. The use of such identifiers corresponds to
the notation introduced in Ref. [PU06] and equivalent to the one introduced
originally for RCCS [DK05], as shown in Ref. [Kri06]. Note that backtracking
as defined in the operational semantics is a binary communication mechanism
of exactly the same nature as usual forward communication. However, since
threads are required to backtrack with the exact same thread with which they
communicated earlier, backtrack can be shown to be confluent, at least for those
processes that are reachable from the lifting of a CCS process.

The (commit) rule uses a closed memory element 〈〈θ〉〉 · m indicating that the
information contained in m is no longer needed, since by definition actions in
K are not backtrackable. Supposing r is a process where any recursive process
definition is guarded by a commit, an assumption to which we will return later
on, this bounds the total size of open memory elements in any process reachable
from r.

A Verification Technique for Reversible Process Algebra 209

3.3 The Fundamental Property

The question is now to determine what are the possible (definitive) interactions
of �K(p) with the context. A first approach would be to find, for each p, a
specification that would be bisimilar to the LTS engendered by �K(p) (in which
we would not observe θ on transitions). But then RCCS would be mere progress
over CCS with explicit backtracking since one would need to consider every
transitions of �K(p) to check for bisimulation.

The question is now to see whether it is possible to obtain a characterisation
of the behaviour of a lifted process �K(p) solely in terms of p. Intuitively, �K(p)
being p enriched with a mechanism for escaping computations not leading to
any observable actions, one might think that �K(p) is bisimilar to the transition
system generated by those traces of p which lead to an observable action. This
is almost true.

To give a precise statement, we need first a few notations and definitions. An
RCCS transition as defined above is fully described by a tuple t = 〈r, a, Θ, r′〉
where r is the source of t, r′ its target, a its label and Θ its identifier. If a ∈ K we
say that t is a commit transition, otherwise it is a reversible transition. If Θ = θ
(Θ = θ−) we say t is forward (backward). A trace is a sequence of composable
transitions, and we write r →∗

σ s (p →∗
σ q) whenever σ is an RCCS (CCS) trace

with source r (p) and target s (q). A trace is said to be forward if it contains
only forward transitions.

A final and key ingredient is the notion of causality between transitions in
a given forward trace. For CCS this is usually defined using the so-called proof
terms [BC89], but one can also use RCCS memories.

The set of memories involved in a forward transition t = 〈r, a, θ, r′〉 is de-
fined as μ(t) := {m ∈ r | ∃a, q : 〈θ, a, q〉.m ∈ r′}; this is either a singleton, if no
communication happened, or a two elements set, if some did.

Definition 1 (Causality). Let σ : t1; . . . ; tn be a forward RCCS trace:
— ti and tj with i < j, are in direct causality relation, written ti <1 tj if there
is m ∈ μ(ti), m

′ ∈ μ(tj) such that m
 m′; one says that ti causes tj, written
ti < tj, if ti <

∗
1 tj.

— σ is said to be causal if for all transitions ti with i < n, ti < tn; it is said
to be k-causal if it is causal, its last transition tn is labelled with k ∈ K, and all
preceding transitions are labelled in Kc.

One extends this terminology to CCS traces by saying a CCS trace p →∗
σ p′ is

causal, if it lifts to a causal trace �K(p) →∗
σ′ r′ with ϕ(r′) = p′.

We are now ready to state the property that explicits the effects of a commit
transitions. Say a process r is initial if there is no possible backward transition
with source r.

Proposition 1 (Committed trace). Let σ be a RCCS trace with an initial
source. Then the target of σ is also initial if and only if σ is in k-causal form.

This property says that whenever a commit is taken, then any other process can
no longer cancel an action that played a role in the transaction; this expresses
the durability of the transaction.

210 J. Krivine

With the notion of causal trace in place, we can define the causal compression
of a process p relative to K.

Definition 2 (Relative causal compression). Let p be a CCS process, its
causal compression relative to K, written CTSK(p), is the LTS 〈P, p,K,�〉
where �k is defined as q �k q′ if q →∗

σ q′ for some k-causal trace σ.

We are now ready to state the theorem that characterizes the behaviour of �K(p)
in terms of the simpler process p.

Theorem 1 ([DK05]). Let TSK(p) := 〈R, �K(p), A,→〉 be the LTS associated
to the lift �K(p), TSK(p) ∼ CTSK(p).

As said above, it is not true that TSK(p) is bisimilar to the transition system
of traces of p leading to observable actions, one has to be careful to restrict to
causal traces. A trivial but useful rephrasing of this result is:

Corollary 1. Let p be a CCS process, and S be its specification, if CTSK(p) ∼ S
then �K(p) ∼ S.

In words, this says that to check the correctness of �K(p) with respect to S, it
is enough to check the correctness of CTSK(p).

If one goes back to the example at the beginning of this section, this says
that �{a,b}((x)

(
x | x | x̄.x̄.a.p | x̄.x̄.b.q

)
) is equivalent to a.p+ b.q, as long as the

causal compression of p = (x)
(
x | x | x̄.x̄.a.p | x̄.x̄.b.q

)
relative to {a, b} is. This

is easily seen in this example, and in fact, as often in practice, CTSK(p) and S
turn out to be equal.

The interest of this fundamental property lies in the fact that the causal
compression relative to K, CTSK(p), is significantly smaller than the partially
reversible process �K(p). A natural question is therefore, given a process p, to
compute CTSK(p). By finding an efficient way to do this, one would obtain an
efficient verification procedure. This is the object of the next section.

4 Causal Compression

A first idea to extract the causal transition system of a process p is to use the LTS
generated by �(p) and screen off non causal traces. One cannot know however
whether a trace can be extended into a k-causal form until a commit is effectively
taken, and such an approach would likely lead to both superfluous (because lots
of traces will not be causal) and redundant (because of trace equivalence) com-
putations. A more astute approach is to look only at traces that will eventually
be in a k-causal form. This requires a bottom up view of traces where one starts
from commits inside a term, and then reconstructs causal traces triggering this
commit by consuming its predecessors in every possible way.

However, there is no need to work directly in the syntax, and event struc-
tures [Win82] provide exactly what is needed here: a truly concurrent semantics
that abstracts from the interleaving of concurrent transitions, and more impor-
tantly an explicit notion of causality. Among the various types of event structures

A Verification Technique for Reversible Process Algebra 211

the most often considered are prime ones, because consistent runs can be sim-
ply characterized. Yet they lead to quite large data structures.2 Our algorithm
uses instead flow event structures (FES) [BC89, Bou90, vGG03]. On the one
hand, there is a simple inductive translation of CCS terms into FESs that incurs
no computational cost; on the other hand, FES are algorithmically convenient
compact forms of event structures.

We first explain how to extract the causal compression CTSK(p) from the
translation of p into an FES. Then we discuss computational issues such as how
to make this an algorithm, and how some of the apparent computational costs
can be circumvented at the level of the implementation.

4.1 Flow Event Structures

A (labelled) flow event structure is a tuple E = 〈E,≺,#, λ〉 where
— E is a set of events,
— ≺ ⊆ E × E is the flow relation which has to be irreflexive,
— # ⊆ E × E is the conflict relation which is symmetric,
— and λ : E → A a labelling function.

The idea is that the flow relation gives all immediate possible causes of an event,
while the conflict relation indicates a conflicting choice between two events.

Definition 3. Let E = 〈E,≺,#, λ〉 be an FES, a set X ⊆ E is a configuration
of E, written X ∈ C(E), if it is:
— conflict free: # ∩ (X ×X) = ∅,
— cycle free: ≺∗ /X is a partial order,
— and left-closed up to conflicts: if e ∈ X and there is d ∈ E such that d ≺ e
then either d ∈ X or there exists f ∈ X such that f ≺ e and f#d.

The last two conditions are the price to pay for working with FESs, and are not
needed for prime ones. The first one will require some optimised structuring of
the conflict relation, we’ll return to this point soon.

A configuration X in E with e ∈ X is e-minimal if ∀e′ ∈ X : e′ ≺∗ e. The set
of e-minimal configurations is denoted by C〈E , e〉.

There is an easy inductive translation u unfolding any CCS process into a
FES, where events correspond to communications, and configurations are those
subsets of events that a trace can trigger. We recall now this translation, defined
by induction on the structure of the CCS process, from [BC89].

— (Prefix) Let u(p)
def
= 〈E,≺,#, λ〉 be the FES corresponding to P and let

e �∈ E, then for any prefix action α we have u(α.p)
def
= 〈E ({e} ,≺′,#, λ′〉

where:

2 Specifically in prime event structure causes of an event must be uniquely determined,
and this forces duplication of the future of an event each time it is engaged in a
synchronization.

212 J. Krivine

– ≺′ /E × E
def
=≺ and ∀e′ ∈ E, e ≺′ e′

– λ′ /E × E
def
= λ and λ(e)

def
= α

— (Choice) Let u(p)
def
= 〈Ep,≺p,#p, λp〉 and u(q)

def
= 〈Eq ,≺q,#q, λq〉 with

Ep ∩ Eq = ∅, we have u(p+ q)
def
= 〈Ep (Eq,≺,#, λ〉 where:

– e#e′ if (e, e′) ∈ Ep × Eq or if either e#pe
′ or e#qe

′

– ≺ /Ep × Ep
def
=≺p and ≺ /Eq × Eq

def
=≺q

— (Parallel product) with use the notation e(e0,e1) to denote the event re-
sulting from the synchronization of events e0 and e1. We use the traditional

projection π0(e(e0,e1))
def
= e0 and π1(e(e0,e1))

def
= e1. In addition for every

event e that is not a synchronization we consider π0(e)
def
= π1(e)

def
= e. With

these conventions, we define the unfolding u(p | q) def
= 〈Eq (Eq (E,≺,#, λ〉

where:

– E
def
=

{
e(e′,e′′) | (e′, e′′) ∈ Ep × Eq & λp(e) = λq(e′)

}

– ∀e ∈ Ep (Eq (E, λ(e)
def
= λp(e) if e ∈ Ep, λ(e)

def
= λq(e) if e ∈ Eq and

λ(e)
def
= τ else.

– ∀(e, e′) ∈ (Ep (Eq (E)2, we have e ≺ e′ if either:

- π0(e) ≺p π0(e
′)

- π1(e) ≺q π1(e
′)

– e#e′ if:

- πi(e) = πi(e
′) for some i ∈ {1, 2}

- π0(e)#pπ0(e
′)

- π1(e)#qπ1(e
′)

Consider for instance the process p = a.b.0 | b̄.ā.0. Using the above unfolding
function one obtains the following FES, where arrows represent causality and
dotted edges represent conflict:

ea

��

��

eb̄

��

��
eb,b̄

��
ea,ā��

eb eā

A Verification Technique for Reversible Process Algebra 213

With the convention that λ(eα) = α and λ(eα,ᾱ) = τ , for all α ∈
{
a, ā, b, b̄

}
. It

follows from Definition 3, that maximal configurations3 of u(p) are:

X0
def
= {ea, eb, eb̄, eā} X1

def
=

{
ea, eb,b̄, eā

}
X2

def
= {eb̄, ea,ā, eb}

The correctness of the unfolding function u is given by the following representa-
tion theorem:

Theorem 2 ([Bou90]). Let p be a CCS process, and T�(p) stand for the traces
of p quotiented by trace equivalence, then (T�(p),≤) and (C(u(p)),⊆) are
isomorphic.

One can define a transition system out of an FES. To do this, we define E|X ,
the residual of E by a configuration X in C(E).

Definition 4 (Residual). Let E = 〈E,≺,#, λ〉 be an FES, X be a configura-
tion of E, and define X# := {e ∈ E | ∃e′ ∈ X : e′#e}. The residual of E by X
is E|X := 〈E′,≺′,#′〉 where:

E′ := E \ (X ∪X#) ≺′:=≺ ∩ (E′ × E′) #′ := # ∩ (E′ × E′)

The LTS associated to E = 〈E,≺,#, λ〉 has initial state E , and transition relation
given by E ′ →X E ′′ if X ∈ C(E ′) and E ′′ = E ′|X .

It is here that our reframing of the compression question in terms of event
structures pays off, since to obtain the causal compression of the transition
system above, all one has to do is to restrict labels to e-minimal configurations
such that λ(e) ∈ K. The causal LTS associated to E , written CTSK(E), has
initial state E , and transition relation given by E ′ �k E ′′ if there is an event
e ∈ E′ such that E ′ →X E ′′ with X ∈ C〈E ′, e〉 and λ(e) ∈ K. As a consequence
of the representation theorem one gets:

Lemma 1. Let p be a CCS process, then CTSK(p) and CTSK(u(p)) are
isomorphic.

At this point, we have an equivalent definition of CTSK(p) in terms of the FES
u(p), and it remains to see how one can turn this definition into an algorithm.
This is what we discuss now.

4.2 Algorithmic Discussion

First, the unfolding u(p) is in general an infinite object even if we restrict to
finite state processes. To keep with finite internal data structures, we require
each recursive process definition to be guarded by a commit action. This seems a
reasonable constraint, in that there is a priori no reason to model a transactional
mechanism with a process that allows infinite forward inconclusive traces.

3 A configuration X is maximal if there is no additional event e such that e �X is a
valid configuration.

214 J. Krivine

To compute CTSK(u(p)), we use instead of u, a partial unfolding ufin that
coincides with u except it does not unfold any recursive definition. The con-
straint above ensures that every commit k that is reachable by a single causal
transition can be seen by this partial unfolding. Only after triggering the event
corresponding to k, are the recursive calls guarded by k (if any) unfolded, and
their translations by ufin added to the residual of the obtained event structure.
One then checks whether the obtained residual event structure is isomorphic
with some obtained previously, and adds it to the state space if not. Given a
process p, the algorithm to compute CTSK(u(p)) proceeds as follows:

0. E = 〈E,≺,#, λ〉 := ufin(p)
1. For all e ∈ E such that λ(e) ∈ K, compute the e-minimal configurations

Xe ∈ C〈E , e〉.
2. For each such Xe build the residual E|Xe, with recursive definitions guarded

by e unfolded using ufin .
3. Add the transitions E �k E|Xe, where k = λ(e), to the CTS under con-

struction.
4. For each residual E|Xe not isomorphic to any previous one, set E := E|Xe

and goto step 1.

By the representation theorem, this algorithm will terminate as soon as CTSK(p)
is finite. In practice most of the isomorphism tests can be avoided by using a
quite discriminative equality test between FES signatures which is linear in the
number of events. Another efficiency problem one has to deal with is the internal
representation of the conflict relation (which is involved in step 1 because of the
conflict-free condition on configurations). In prime event structures conflict is
inherited by causality, that is to say if e#e′ and e′ ≺ e′′, then e#e′′. Hence a
rather compact way to represent conflict is to keep only (e, e′) ∈ # and deduce
when needed that e#e′′ by heredity.

We have found that a similar compact structure, which we
call a conflict tree can be used for FESs. Conflict trees are
built during process partial unfoldings, and result in a typi-
cally logarithmically compact representation of conflict, for
a low computational cost. An example of a conflict tree is
given on the right: conflicts are predicated of intervals, and
[n − m]#[n′ − m′] means that any pair of events indexed
within {n, . . . ,m} × {n′, . . . ,m′} is in conflict.

[0-4]

[0-3]

[4]

#

[1]

[2]

#

5 Benchmark

The relative compression algorithm was implemented as a prototype in Ocaml
in order to get a sense of how well our verification technique performs compared
with a straight bisimulation based verification. To do so we ran several tests4

4 Tests were made with an Intel Pentium 4 CPU 3.20GHz with 1GB of RAM.

A Verification Technique for Reversible Process Algebra 215

using encodings of the dining philosophers problem. This timeless example of
distributed consensus involves n philosophers eating together around a table.
Each of them needs two chopsticks to start eating, and has to share them with
his neighbours. When a philosopher has eaten, he releases his chopsticks after
a while and goes back to the initial state. In the partial implementation, say
ppart , once a philosopher takes a chopstick he never puts it back unless he has
successfully eaten. In the fully correct one, say pfull , he may release chopsticks
at any time (thus avoiding deadlocks). The CCS processes ppart and pfull for
n = 2 correspond roughly to the earlier examples (1) and (2). (See [DK05] for a
general definition and detailed study.)

There are two main reasons for taking the dining philosophers example. First
it is a paradigmatic example of distributed consensus, so the way to solve it
without access to the scheduler (by adding additional semaphores for instance)
has to involve backtracking. Second, it turns out that the number of possible
states of the specification is given by a Fibonacci sequence.

S(1) = 1 S(2) = 3 S(n+ 1) = S(n) + S(n− 1)

Direct bisimulation test for pfull :

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 2 3 4 5 6 7 8 9 10 11

Time (sec.) Number of states

Memory swap limit

fibonacci
Mob. workbench

Relative causal compression using our algorithm:

 0

 5000

 10000

 15000

 20000

 25000

 2 4 6 8 10 12 14 16 18 20 22

Number of statesTime (sec.)
Memory swap limit

Causal
fibonacci

Fig. 1. Benchmark results for the dining philosophers

216 J. Krivine

This is convenient in that it gives a simple means to compare the time of compu-
tation with the size of the specification state space. Verifying correctness of pfull
using the Mobility Workbench (MWB) [VM94] (see top curve, Fig. 1) proved to
be impossible beyond 5 philosophers (around 160 specification states) because of
memory limitations. By using first the our prototype (see bottom curve, Fig. 1)
to extract the causal transition system of ppart , we could verify up to 19 philoso-
phers (around 15, 000 specification states) within a time which stayed roughly
proportional to the number of states. Since CTS(ppart) is in this case equal to the
specification, the remaining part of the correctness proof takes negligible time
(MWB needs 0.4s for 10 philosophers).

6 Conclusion

We have proposed a method for the verification of distributed systems which uses
an algorithm of relative causal compression. The method does not always apply:
the process one wants to verify must use a generic backtracking mechanism.
This may seem a limitation, but it often obtains a much simpler code, and many
examples of distributed transactions lend themselves naturally to this constraint.
When the method does apply, however, it proves very effective as we have shown
in the dining philosophers example.

State space explosion in automated bisimulation proofs is a well known phe-
nomenon, and trace compression techniques have been proposed to avoid the
redundancy created by the interleaving of transitions [BC89, GW91], and used
in model-checking applications [BCDP95, AQR+04]. These compressions pre-
serve bisimilarity, whereas our does not, and is of a completely different nature.
Besides, and because our algorithm uses event structures, we also benefit from
this classical kind of compression.

There is no reason why this verification method should be limited to CCS.
Other concurrent models can be equipped with backtracking, and forward and
backward aspects of correctness can be split there as well. Recent work ex-
tends the concept of partially reversible computations to various process alge-
bras [PU06, PU07, LMS10, LMSS11], and it is possible to define an analogue
of RCCS for the π-calculus. New advances in event structure semantics for π-
calculus [VY10, CVY12] might allow to extend the causal compression algorithm,
so as to cover the important case of name-passing calculi.

References

[AQR+04] Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J., Xie, Y.: Zing: A Model
Checker for Concurrent Software. In: Alur, R., Peled, D.A. (eds.) CAV
2004. LNCS, vol. 3114, pp. 484–487. Springer, Heidelberg (2004)

[BC89] Boudol, G., Castellani, I.: Permutation of Transitions: An Event Structure
Semantics for CCS and SCCS. In: de Bakker, J.W., de Roever, W.-P.,
Rozenberg, G. (eds.) Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency. LNCS, vol. 354, pp. 411–427. Springer,
Heidelberg (1989)

A Verification Technique for Reversible Process Algebra 217

[BCDP95] Bianchi, A., Coluccini, S., Degano, P., Priami, C.: An Efficient Verifier of
Truly Concurrent Properties. In: Malyshkin, V.E. (ed.) PaCT 1995. LNCS,
vol. 964, pp. 36–50. Springer, Heidelberg (1995)

[Bou90] Boudol, G.: Flow Event Structures and Flow Nets. In: Guessarian, I. (ed.)
LITP 1990. LNCS, vol. 469, pp. 62–95. Springer, Heidelberg (1990)

[CVY12] Crafa, S., Varacca, D., Yoshida, N.: Event Structure Semantics of Parallel
Extrusion in the Pi-Calculus. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS,
vol. 7213, pp. 225–239. Springer, Heidelberg (2012)

[DK04] Danos, V., Krivine, J.: Reversible Communicating Systems. In: Gardner,
P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307.
Springer, Heidelberg (2004)

[DK05] Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L.
(eds.) CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg
(2005)

[DKT07] Danos, V., Krivine, J., Tarissan, F.: Self-assembling trees. Electr. Notes
Theor. Comput. Sci. 175(1), 19–32 (2007)

[GW91] Godefroid, P., Wolper, P.: Using Partial Orders for the Efficient Verification
of Deadlock Freedom and Safety Properties. In: Larsen, K.G., Skou, A.
(eds.) CAV 1991. LNCS, vol. 575, pp. 332–342. Springer, Heidelberg (1992)

[Kri06] Krivine, J.: Algèbres de Processus Réversibles. PhD thesis, Université Paris
6 & INRIA-Rocquencourt (2006)

[LMS10] Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing Higher-Order Pi. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp.
478–493. Springer, Heidelberg (2010)

[LMSS11] Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling Re-
versibility in Higher-Order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR
2011. LNCS, vol. 6901, pp. 297–311. Springer, Heidelberg (2011)

[Mil89] Milner, R.: Communication and Concurrency. International Series on Com-
puter Science. Prentice Hall (1989)

[PU06] Phillips, I., Ulidowski, I.: Reversing Algebraic Process Calculi. In: Aceto,
L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 246–260.
Springer, Heidelberg (2006)

[PU07] Phillips, I., Ulidowski, I.: Reversibility and models for concurrency. Electr.
Notes Theor. Comput. Sci. 192(1), 93–108 (2007)

[vGG03] van Glabeek, R., Goltz, U.: Well-behaved flow event structures for paral-
lel composition and action refinement. Theoretical Computer Science 311
(1-3), 463–478 (2003)

[VM94] Victor, B., Moller, F.: The Mobility Workbench — a Tool for the π-
Calculus. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 428–440.
Springer, Heidelberg (1994)

[VY10] Varacca, D., Yoshida, N.: Typed event structures and the linear pi-calculus.
Theor. Comput. Sci. 411(19), 1949–1973 (2010)

[Win82] Winskel, G.: Event Structure Semantics for CCS and Related Languages.
In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp.
561–576. Springer, Heidelberg (1982)

A Reversible Process Calculus and the Modelling

of the ERK Signalling Pathway

Iain Phillips1, Irek Ulidowski2, and Shoji Yuen3

1 Department of Computing, Imperial College London, England
2 Department of Computer Science, University of Leicester, England
3 Graduate School of Information Science, Nagoya University, Japan

Abstract. We introduce a reversible process calculus with a new fea-
ture of execution control that allows us to change the direction and pat-
tern of computation. This feature allows us to model a variety of modes
of reverse computation, ranging from strict backtracking to reversing
which respects causal ordering of events, and even reversing which vio-
lates causal ordering. The SOS rules that define the operators of the new
calculus employ communication keys to handle communication correctly
and key identifiers to control execution.

As an application of our calculus, we model the ERK signalling path-
way which delivers mitogenic and differentiation signals from the mem-
brane of a cell to its nucleus. The proteins participating in the pathway
are represented by reversible processes in such a way that the pathway’s
bio-chemical reactions are simply interactions between the processes.

1 Introduction

Reversing computation of a concurrent system poses a number of conceptual
and technical questions. How is the forward and reverse computation performed
and controlled? When reversing, in what order are computation steps undone?
We answer the last question first. Consider a computation where the event a
causes the event b, written a < b, and the event c occurs at another location
independently of a and b. The three traces of this computation that preserve
causality are abc, acb and cab: note that a always precedes b. There are several
conceptually different ways of undoing these events. Backtracking is undoing in
precisely the reverse order in which they happened. So, undo b undo c undo a is
a backtrack of acb.

Reversing is a more general form of undoing: here events can be undone in any
order as long as causality is preserved, meaning that causes cannot be undone
before effects. For example, undo c undo b undo a is a reversal of acb for a, b and
c as defined above. However, and quite surprisingly, there are situations where
events happen, or are undone, out of causal order. The creation and breaking of
molecular bonds between the proteins involved in the ERK signalling pathway
described in Section 3 is a good example. Simplifying, let us assume that the
creation of molecular bonds is represented by events a, b, c where, as above, a < b
and c is independent of a and b. In the ERK pathway, the molecular bonds are

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 218–232, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Reversible Process Calculus 219

broken in the following order: undo a undo b undo c, which seems to undo the
cause a before the effect b. Similarly, an execution of multi-threaded programs
under weak memory models or under the out-of-order regime may result in traces
which contradict program (thread) order; this is a result of well-known hardware
or compiler optimisations. In this paper we propose a reversible process calculus
in which we can model reversibility and out-of-order computation. To the best
of our knowledge this is the first such calculus.

We return to the question of how to control the direction of computation. Re-
versible process calculi RCCS [7] and CCS with communication Keys (CCSK)
[15,16] use a memory with a history of past computation and communication
keys, respectively, to reverse computation so that causality is preserved. Re-
versible systems modelled in RCCS and CCSK choose the direction of computa-
tion spontaneously. When an execution of a fault-tolerant system encounters an
error, the system recovers by undoing execution to a state where the error can
be eliminated. The instruction when and how far to reverse is a part of the sys-
tem’s software and such reversibility control mechanism can be modelled by the
rollback construct of the higher-order π-calculus [10]. In this paper we propose a
different and more expressive mechanism for controlling reversibility. Its opera-
tional formulation and usefulness compares favourably with that of the rollback
construct, and it allows us to model additionally out-of-order forward and re-
verse computation which we believe has not been done before in the process
calculi setting.

Our calculus is an extension of CCSK [15,16], a reversible process calculus
based on Milner’s CCS [13], with prefixing by multisets of actions and with
an execution control mechanism (controllers). The generalised prefixing gives
us the ability to represent a loose relationship between events of out-of-order
computation and, more specifically, it allows us to model more faithfully the
structure and reactions of bio-chemical molecules. This form of prefixing was
previously employed in [9]. Controllers permit us to manage the pattern and the
direction of computation and together with the multiset prefixing they are able
to model out-of-order computation (note that weaker forms of prefixing are not
sufficient). It is a different form of the rollback construct of the higher-order π
calculus [10].

Processes and controllers are quite strongly contrasted: processes (without
controllers) can compute freely either forwards or in reverse, whereas controllers
can only compute forwards (even when the process under control is reversing).
We envisage a wide variety of uses for controllers, ranging from handling error
recovery to providing the main focus of the computation, as in the bio-chemical
example we present later.

We give SOS rules for the operators of our calculus in Section 2. The rules
for reversing computation are simply symmetric versions of the forward rules. In
order to manage correctly both communication and the reversing of communica-
tion we employ communication keys [15,16]. The new notion of key identifiers is
introduced to mark the actions of processes that are to be performed or undone,
thus giving us the ability not only to reverse specific past actions, as achieved

220 I. Phillips, I. Ulidowski, and S. Yuen

by the rollback [10], but also to specify which forward action to compute and
when to compute them. In this way, we achieve a more general mechanism for
controlling computation. To illustrate this, consider a process that can perform
actions a and b in parallel. We can define a controller that forces b to execute
always after a, effectively setting a as the cause of b. In the standard setting, this
means that reversing a must be proceeded by undoing b. However, our control
mechanism gives the ability to reverse a and b ‘out of order’: first a and then
b. Such patterns of computation, seemingly breaking the causal relationships
between actions, are common in the bio-chemical setting as can be seen in our
model of the ERK signalling pathway.

The usefulness of the execution control mechanism in exhibited in several ex-
amples. In Section 2.2 we consider the modelling of long-running transactions
with compensations and we re-work the example from [10] of a system with com-
plex causal dependencies between executing and reversing communications. The
first example shows the need for the new key identifiers, whereas in the second
example communication keys alone suffice. The second part of the paper (Sec-
tion 3) is devoted solely to the modelling of the ERK signalling pathway [5,20],
which delivers mitogenic and differentiation signals from the membrane of a cell
to its nucleus, and how it is regulated by RKIP proteins. There, the execution
control mechanism and prefixing with multisets of actions play a vital rôle.

The research on reversing process calculi can be traced back perhaps to the
work by Berry and Boudol on the Chemical Abstract Machine [1]. We were in-
spired to look at reversible computation by, among others, the paper of Danos
and Krivine on reversing CCS [9] and the subsequent [7,8]. We then proposed
an alternative, more algebraic method for reversing CCS in [15,16], and recently
provided both bisimulation and modal logic semantics for reversible concur-
rency [17,18]. Lanese, Mezzina, Schmitt and Stefani proposed a reversible version
of a higher-order π calculus and equipped it with a rollback construct [11,10].
They also studied other forms of reversibility for defining programming abstrac-
tions for dependable distributed systems, and discussed the need for compensa-
tions [12]. Finally, reversible structures that compute forwards and backwards
in an asynchronous manner were proposed by Cardelli and Laneve [4].

2 A Reversible Process Calculus with Execution Control

In this section we extend CCSK with an execution control mechanism which
allows us to control the direction and the pattern of computation. The extended
calculus is given an operational semantics and its usefulness is illustrated in
several examples including long-running transactions with compensations.

2.1 CCSK

We define the (forward) actions of CCS as usual: let A be a set of actions a,
let a be the complement of a, and let A = {a : a ∈ A}. Also, let a = a for
a ∈ A. We assume that α, β range over A ∪ A, and μ, ν range over all actions,

A Reversible Process Calculus 221

std(X)

α[v].X
α[n,v]→ α[n, v].X

X
μ[n,v]→ X ′

α[m, u].X
μ[n,v]→ α[m,u].X ′

m �= n

X
μ[n,v]→ X ′ fsh[n](Y)

X |Y μ[n,v]→ X ′ |Y
X

α[n,v]→ X ′ Y
α[n,u]→ Y ′

X |Y τ [n]→ X ′ |Y ′

X
μ[n,v]→ X ′ std(Y)

X + Y
μ[n,v]→ X ′ + Y

X
μ[n,v]→ X ′

X\A μ[n,v]→ X ′\A
μ, μ /∈ A

X
μ[n,v]→ X ′

X[f]
f(μ)[n,v]→ X ′[f]

std(X)

α[n, v].X
α[n,v]� α[v].X

X
μ[n,v]� X ′

α[m, u].X
μ[n,v]� α[m,u].X ′

m �= n

X
μ[n,v]� X ′ fsh[n](Y)

X |Y μ[n,v]� X ′ |Y
X

α[n,v]� X ′ Y
α[n,u]� Y ′

X,Y
τ [n]� X ′ |Y ′

X
μ[n,v]� X ′ std(Y)

X + Y
μ[n,v]� X ′ + Y

X
μ[n,v]� X ′

X\A μ[n,v]� X ′\A
μ, μ /∈ A

X
μ[n,v]� X ′

X[f]
f(μ)[n,v]� X ′[f]

Fig. 1. Forward and reverse SOS rules

namely Act = A ∪ A ∪ {τ}, where τ /∈ A is the silent action and τ = τ . Let K
be an infinite set of communication keys (or just keys for short), ranged over by
k,m, n. And, let I be an infinite set of key identifiers, ranged over by v, u, w.
We also have a set of process identifiers PI , with typical elements S, T , and a
set of variables, ranged over by X,Y . PI contains the deadlocked process 0.

The syntax of CCSK is given below, where A ⊆ Act \ {τ} and f : Act → Act
with f(τ) = τ . The set of CCSK closed terms is P , and we shall refer to closed
terms as processes. We let P,Q to range over processes.

P ::= X | S | α[v].P | α[n, v].P | P +Q | P |Q | P \A | P [f]

The prefixing with forward actions operator is α[v].X where v is a key identifier
and is optional. Each {α, α} (and {α, α, α, α} in Section 2.2) has a set of key
identifiers associated with it, and we assume that all such sets are disjoint.
Prefixing with past actions has the form α[n, v].X where n is the specific key for
performing this α and v is drawn from the set of key identifiers for α, and may
be omitted if it plays no rôle (but the key n must occur). There is no prefixing
with τ . We often omit trailing 0s so, for example, a.0 is written as a.

X | Y represents two systems X and Y that can perform actions or reverse
actions on their own or they can interact with each other on complementary
actions, for example a and a. The choice, restriction and relabelling operators,
namely ‘· + ·’, ‘· \A’ and ‘·[f]’, are as in CCS except that + is now static in

process terms. Each process identifier S has a defining equation S
df
= P .

222 I. Phillips, I. Ulidowski, and S. Yuen

The SOS forward and reverse SOS rules for CCSK are given in Figure 1. Note
that the reverse rules are simply the reversals of the forward rules. We associate
with each term X the set of its keys, written as keys(X). A term X is standard,
written std(X), if it contains no prefixing with past actions. A key n is fresh in
Y , written fsh[n](Y), if n is not used in Y .

Structural congruence ≡ on terms is defined by X |Y ≡ Y |X , X | (Y |Z) ≡
(X |Y) |Z and X |0 ≡ X . Also, X + Y ≡ Y +X , X + (Y + Z) ≡ X + (Y + Z)

and X + 0 = X . And S ≡ P for all S and P such that S
df
= P . We also have the

Structural Congruence Rule:

X ≡ Y Y
μ[n,v]→ Y ′ Y ′ ≡ X ′

X
μ[n,v]→ X ′

Example 1. In CCSK we keep track of the identities of actions that communicate

so that when we reverse we undo the correct past actions. Consider P
df
= (a |a.c |

a | a.e)\a. Here the restriction of a prevents a and a being performed except
as part of a communication. Suppose that a communicates with a and then a.c
with a.e. In CCSK we write this as follows:

P ≡τ [m]→ (a[m] |a.c |a[m] |a.e)\a τ [n]→ (a[m] |a[n].c |a[m] |a[n].e)\a

Note that the process a[m] |a.c |a[m] |a.e cannot regress by reversing a[m] alone
because key m is not fresh in a.c |a[m] |a.e. The fact that m appears in a.c |a[m] |
a.e which is in parallel with a[m] proves that the processes communicated with
a and a rather than performed them independently.

Our notation does not allow us to backtrack by undoing a different pair of
actions, but clearly we can change the order of reversing τ [m] and τ [n]:

(a[m] |a[n].c |a[m] |a[n].e)\a τ [m]� (a |a[n].c |a |a[n].e)\a τ [n]�≡ P

CCSK processes are fully reversible because the reverse SOS rules in Figure 1
are obtained by simply reversing the forward SOS rules in Figure 1 [15,16]. We

have P
μ[n,v]→ Q iff Q

μ[n,v]� P for all processes P,Q and all μ ∈ Act, n ∈ K, v ∈ I.
Moreover, CCSK is a conservative extension of CCS [15,16].

2.2 Execution Control Operator

We add a new operator ‘·〈·〉’ to CCSK for controlling the execution of processes.
We shall need new actions that control the reversing of the forward actions: a
and a prompt reversing of the past versions of a and a respectively. Thus, we
have two further sets A and A. We let α, β range over A ∪ A, κ range over

A ∪ A ∪ A ∪ A and, from now on, we let μ, ν range over all actions, namely
Act = A ∪A ∪ A ∪A ∪ {τ}.

X〈Y 〉 is the process X controlled by Y . The behaviour of X〈Y 〉 is a subset of
the behaviour of X as prescribed by Y according to the rules in Figure 2 which

A Reversible Process Calculus 223

are in the Ordered SOS format [19,14]. Before we explain these rules and how
the control operator works, we define control terms and update the definition of
processes. The syntax for control terms is given below. Closed control terms, or
simply control terms or controllers, are ranged over by C,D.

C ::= X | c | κ[v].C | κ[n, v].C | C +D | C |D

Terms c are typical elements of a set of control identifiers. By abuse of notation
we shall often use C,D for control identifiers. Every control identifier has a

defining equation c
df
= C; we extend the definition of ≡ by c ≡ C for all c, C

such that c
df
= C. The SOS rules for the operators of control terms are the

standard SOS rules for CCS, except that we have prefixing with new actions and
prefixing carries keys or key identifiers. Note that the prefixing and + operators
are dynamic operators as in CCS. Thus, controllers compute forwards only so,

for example, κ[v].C
κ[k,v]→ C, for some k, and κ[v].C +D

κ[k,v]→ C.
The class of processes is extended to include terms P 〈C〉 for all P and C.

(cf1)
X

α[n,v]→ X ′ Y
α[n,v]→ Y ′

X〈Y 〉 α[n,v]→ X ′〈Y ′{n, v/v}〉
> (cf2)

X
β[m,u]→ X ′ Y

α′[k,w]→ Y ′

X〈Y 〉 β[m,u]→ X ′〈Y {m, u/u}〉

(cr1)
X

α[n,v]� X ′ Y
α[n,v]→ Y ′

X〈Y 〉 α[n,v]� X ′〈Y ′{v/n, v}〉
> (cr2)

X
β[m,u]� X ′ Y

α′[k,w]→ Y ′

X〈Y 〉 β[m,u]� X ′〈Y {u/m, u}〉

Fig. 2. SOS rules for the control operator

Returning to Figure 2, the notation (cf1) > (cf2) means that (cf2) can be
applied to derive a transition of P 〈C〉 if no rules higher in the ordering > can
be applied, namely the rules (cf1) are not applicable for all α, n, v. So, if C can
perform any forward α′[k, w] and P cannot perform any of the forward actions

α[n, v] of C, then (cf2) can be used to derive P 〈C〉 β[m,u]→ P ′〈C{m,u/u}〉 if

P ′ β[m,u]→ P ′. We note that C{m,u/u} means that every occurrence of u in C is
replaced with m,u. The controller keeps track of which actions to reverse or to
perform by recording keys and key identifiers shared with its process.

Actions α of the controller require X to reverse until α is undone. The rules
(cr1) and (cr2) play the dual rôle to (cf1) and (cf2). Here, we replace the key
and the key identifier in the controller with the key identifier alone, thus wiping
out the record of the keys of the reversed transitions.

Terms such as a[v].b[v] are not well formed as different actions cannot share
identifiers. Some well formed terms are not very useful, for example only the
first a can execute in a[v].a[v].

Example 2. Consider P
df
= a.a.b.b. If C′ df

= b.a.b then P 〈C′〉 computes until after
the first b of P , then reverses until the second a is undone and finally it computes

224 I. Phillips, I. Ulidowski, and S. Yuen

until after the first b. If we wish to compute or reverse other occurrences of actions
a and b in P , for example the first a and the second b, then we use key identifiers.

The controller C
df
= b[v].a[u].b[v] achieves this provided that the appropriate

actions a and b in P are marked with u respectively v. Let P
df
= a[u].a.b.b[v].

Then, using rule (cf2), we obtain P 〈C〉 a[1,u]→ a[1, u].a.b.b[v] 〈b[v].a[1, u].b[v]〉. Note
that prefixing with a[u] in the controller has been updated with the key 1. After
another forward a and a b, we use rule (cf1) to perform b[4, v] (b[v] with the key
4); note that the second b[v] in C is updated to b[4, v]:

a[2]→ b[3]→ b[4,v]→ a[1, u].a[2].b[3].b[4, v] 〈a[1, u].b[4, v]〉.

Then we reverse until we have undone the a[1, u] using (cr2) and (cr1):

b[4,v]� b[3]� a[2]� a[1,u]� a[u].a.b.b[v] 〈b[v]〉.

Note that this reversal wipes out all the keys. Finally, we can compute forwards.

The control operator is very expressive. Consider a process P . Process P 〈0〉
behaves as 0. If a is not in the sort of P (the set of actions that P can ever
perform), then P 〈a |a〉 and P 〈a+a〉 behave exactly as P . If we allowed prefixing

with τ in control terms, then C
df
= τ.C would force communications in P thus

acting as the restriction operator of CCS.
The control operator can be used to make the forward actions of processes

irreversible. Consider a.b and C
df
= b.b.C. Then (a.b)〈C〉 a[1]→ (a[1].b)〈C〉

a[1]

�� since

C insists on computing forwards with b. Also we can find examples where Q
μ[n,v]�

P holds but there is no Q′ such that P
μ[n,v]→ Q′. Consider (a | b)〈C〉 where

C
df
= a.b.a.b.C. We have (a | b)〈C〉 a[1]→ b[2]→ (a[1] | b[2])〈a.b.C〉 a[1]� (a | b[2])〈b.C〉 b[2]�

(a | b)〈C〉 but not (a | b)〈C〉 b[2]→ Q′ since C insists on performing a first. This is
an example of a computation that reaches a state after a reversal that cannot
be reached by computing forwards only.

Example 3. A long-running transaction consists of many atomic steps which are
represented here by a. A step may succeed, and then it is followed by the next
step (or success s; this action never fails), or fail which results in the action f .
When all steps are successfully completed the transaction succeeds and is ir-
reversible. When f takes place all steps a performed successfully need to be
undone. The transaction is modelled by T0 as follows:

Ti
df
= a[vi+1].Ti+1 + f [u] for 0 ≤ i < n, Tn

df
= s

The required controller is C
df
= a[v1].(a[vn]+f [u].a[v1].C)+f [u].f [u].C. Let us see

how T0〈C〉 computes. If the transaction fails immediately by performing f [1, u],
then this triggers the outermost action f in the controller:

T0〈C〉 f [1,u]→ (a[v1].T1 + f [1, u]) 〈f [1, u].C〉

A Reversible Process Calculus 225

The controller then requires undoing f :
f [1,u]� (a[v1].T1 + f [u].0)〈C〉 ≡ T0〈C〉.

If the transaction does not fail immediately, then a[1, v1] is performed (and is
matched by the controller):

T0〈C〉 a[1,v1]→ (a[1, v1].T1 + f [u]) 〈a[vn] + f [u].a[1, v1].C〉

The process then computes until the last step a[vn], or else it fails in the mean-
time by performing f [k, u], for some key k. This is matched by the controller
which becomes a[1, v1].C. Next, the execution is reversed until a[1, v1] is undone,

thus returning to the original configuration: · · · a[1,v1]� T0〈C〉.
In some transactions it may not be necessary to undo all successful steps a

in case of failure. If these steps can be grouped into sequences, then only the
steps of the most recently performed sequence need undoing. Let there be two
such sequences, the first finishing with ak with 2 ≤ k and k + 2 ≤ n. Then the
controller D is defined as follows:

D
df
= a[v1].(a[vk].D

′ + f [u].a[v1].D) + f [u].f [u].D

D′ df
= a[vk+1].(a[vn] + f [u].a[vk+1].D

′) + f [u].f [u].D′

We easily can check that T0〈D〉 works properly.

Example 4. Assume a long-running transaction has a compensation K which is
triggered by action c and which completes with s, where both c and s never fail.
We model this by adjusting the definition of T1 from Example 3 and leaving other

Tis unchanged: T1
df
= a[v1].T2 + f [u] + c.K. The controller is C

df
= a[v1].(a[vn] +

f [u].a[v1].c.s) + f [u].f [u].c.s. When a failure occurs the controller reverses all
actions a that took place so far (or just the initial f), triggers c and insists that
the compensation K computes forwards by demanding s.

Example 5. Consider the following system taken from [10], where (undo a) forces
reversing of computation until a is undone (similarly for (undo b)).

(a |a.d |c.(undo a) | b |b.c |d.(undo b))\{a, d, c, b}

Inspecting the causal dependencies between actions, we note that undoing a is
possible only after c, c have communicated, which requires b, b to communicate
first. And, of course, after a, a have happened. If in the meantime a communi-
cation on d, d takes place, it disables undoing a. This is because a causes d and
the cause a cannot be undone prior to undoing the effect d. Causal dependencies
between these communications are shown in the left-hand diagram in Figure 3,
where b → c means that a communication involving b must precede a communi-
cation involving c. The dashed line labelled ‘undo a’ indicates that reversing the
communication involving a is possible only after the communications involving
the actions that appear above the line (here a, b, c) have taken place.

In our calculus, the left component is a | (a.d | c)〈(c.a.e) | e〉. Since e cannot
happen, the controller (c.a.e) | e requires that ‘after a forward c reverse a and

226 I. Phillips, I. Ulidowski, and S. Yuen

a τa

τa

τa

τb

τb

τb

b

d

τd

τd

τd

c τc

τc

τc

undo b undo a

M M ′′

M1

M2

Fig. 3. Example 5

keep reversing, or independently compute forward’. Since all actions are distinct
there is no need here for key identifiers. The system is

M
df
= (a | (a.d |c)〈(c.a.e) |e〉 | b | (b.c |d)〈(d.b.e) |e〉)\{a, d, c, b}.

In order to make transitions representing communications more readable we shall
decorate labels τ with action labels: we shall write, for example, τb[1] instead of
τ [1] for the communication on b, b with key 1. We shall also omit restriction. A
communication on b, b leads to

M
τb[1]→ a | (a.d |c)〈(c.a.e) |e〉 | b[1] |(b[1].c |d)〈(d.b[1].e) |e〉 ≡ M1

Then we perform communications involving a and then c:

M1
τa[2]→ τc[3]→ a[2] | (a[2].d |c[3])〈(a[2].e) |e〉 | b[1] | (b[1].c[3] |d)〈(d.b[1].e) |e〉.

Next, a communication on d, d can take place or we can undo the communication
involving a. Note that although the communication on b took place, it cannot
be undone at this point since the communication on d has not taken place yet.

Consider a communication on d, d:

τd[4]→ a[2] | (a[2].d[4] |c[3])〈(a[2].e) |e〉 | b[1] | (b[1].c[3] |d[4])〈(b[1].e) |e〉) ≡ M ′′

The right-hand diagram in Figure 3 shows other sequences of communications
involving a, b, c, d from M to M ′′. Controllers of M ′′ ask to undo a and undo
b. But, since both d and c have now taken place, a and b can be reversed only
after reversing other actions. Overall, our mechanism for controlling execution
works well with this example and its operational formulation is simpler than the
formulation of the rollback construct [10].

We finish this section with a remark on suitable behavioural equivalences and
modal logics for our reversible calculus. A reverse interleaving bisimulation
[15,16,18], which extends the standard bisimulation [13] with reverse transi-
tions, seems a suitable behavioural equivalence. Also, a reverse pomset bisim-
ulation may be very useful [18] as it talks directly about forward and reverse
behaviour in terms of pomsets (partially ordered multisets) of actions. Event

A Reversible Process Calculus 227

Identifier Logic [17], a modal logic with both forward and reverse modalities, is
the appropriate logic for our calculus since it characterises the mentioned above
equivalences and many safety properties, such as precedence and exception, are
naturally expressible with reverse modalities.

3 The ERK Signalling Pathway

The ERK signalling pathway is a realistic example of computation that comprises
forward and reverse steps where some of the reverse steps violate the causal or-
dering established by the forward steps. We show how the new execution control
and prefixing with multisets of actions allow us to represent naturally this form
of out-of-order reversible computation. Signalling pathways were modelled more
fully by PEPA [3] and by rule-based languages BioNetGen [2] and Kappa [6].
We shall comment on the PEPA model below.

We shall now define prefixing with multisets of actions. The actions of a given
multiset of actions can execute in any order, and the computation progresses to
the next multiset of actions only if all of the actions from the first multiset have
taken place. Process terms are extended with (α[v], s).P and (α[n, v], s).P where
s is a sequence of any actions or past actions. s′ is a typical sequence consisting
entirely of past actions. For simplicity, we do not allow prefixing with multisets
of actions in control terms. The SOS rules are as follows:

std(X)

(α[v], s).X
α[n,v]→ (α[n, v], s).X

X
μ[n,v]→ X ′ fsh[n](s′)

(s′).X
μ[n,v]→ (s′).X ′

std(X)

(α[n, v], s).X
α[n,v]� (α[v], s).X

X
μ[n,v]� X ′ fsh[n](s′)

(s′).X
μ[n,v]� (s′).X ′

The Ras/Raf-1/MEK/ERK signalling pathway (ERK pathway for short) delivers
mitogenic and differentiation signals from the membrane of a cell to its nucleus.
This pathway is regulated by the protein RKIP. We borrow the description of
the pathway and its reactions from [5,20].

The ERK pathway is spatially organised in such a way that a signal that
arrives at the cell’s membrane can be transmitted to the cell’s nucleus via a
cascade of reactions that involve proteins Ras, Raf-1, MEK and ERK. Initially,
a G protein Ras is activated near a receptor on the cell’s membrane. Ras then
activates a kinase Raf-1 which becomes Raf*-1 (represented here by F). We shall
not model Ras and its reactions here. Raf*-1 can then activate the MEK protein
(M here) which gets phosphorylated to become pM . Or, this binding of Raf*-1
to MEK can be inhibited by RKIP, which binds to Raf*-1; we shall return to
this sequence of reactions below. The phosphorylated MEK (pM) then activates
ERK protein (E here) which, in turn becomes phosphorylated (represented by
pE). Finally, at the end this cascade pE can translocate to the nucleus and pass
the signal. Or, it binds to RKIP thus deactivating it temporarily (see below).

228 I. Phillips, I. Ulidowski, and S. Yuen

F |MF |RF |R MF

E

F |pM

E |pM

pE |M

pE

pM

R |pE

F |R |pE

pR

pR |E

R

Fig. 4. The ERK pathway

When RKIP binds Raf*-1 and thus inhibits the activation of MEK, the re-
sulting complex binds to a phosphorylated ERK (pE). Then the complex breaks
releasing F , which can get involved in the cascade, E and a phosphorylated R.

Figure 4 represents the described reactions. A black-headed arrow represents
a reaction that binds two molecules into a complex molecule, an open-headed
arrow represents a reaction that breaks a complex into its component molecules
and a bi-directional arrow represents a pair of forwards/reverse reactions: a
binding and unbinding. A two-headed arrow represents a reaction that involves
phosphorylation/de-phosphorylation of its reactants. The nodes in the diagram
are the molecules or complexes of molecules.

We note that the ERK pathway was previously modelled in the setting of the
stochastic process algebra PEPA in [3]. There, the states of the pathway as in
Figure 4 are represented as indivisible processes so, for example, F |R |pE is rep-
resented by a single process and not as a composition of three separate processes.
These processes perform forward actions that represent creation and breaking
of bonds, and the system evolves from one state to another via multi-way syn-
chronisation of these actions. The transitions are timed and their durations are
expressed as exponentially distributed random variables.

We represent the individual molecules of the ERK pathway as processes, for
example F,M,E and R, and the pathway is modelled by a composition of these
processes. The reactions between the molecules are represented by forward and
reverse synchronisations between processes. We define F,M,E and R as follows
using the new multiset prefixing operator (key identifiers are not necessary here):

A Reversible Process Calculus 229

F
df
= a.F ′ M

df
= (a, p, c).M ′ E

df
= (c, p, b, n).E′ R

df
= (a, b, p).R′

We also have molecules P
df
= p.P ′ which represent phosphate groups that bind

with M,E and R and phosphorylate them. These phosphorylated molecules are
denoted by pM, pE and pR respectively. The ERK pathway is

(F |M |E |P |R |pE) \ {a, b, c, p}

where we have a single copy of each molecule F,M,E, P,R and pE. Next, we
list those synchronisations between the processes of the pathway that represent
valid reactions; there are many other synchronisations that have no bio-chemical
meaning and we shall see later how controllers can be employed to prune them.

The molecule F can bind with M and start a signal cascade or it can bind with
a copy of inhibitor R. In order to show how F is released from the control of R
we have included a copy of a phosphorylated ERK (pE). (A more realistic model
would be a composition of a large numbers of copies of F,M,E,R, P, pM, pE
and pR). These reactions start two alternative sequences of reactions, which we
shall call the cascade and regulation sequences. We consider the cascade sequence
first. For simplicity we omit restriction from now on. The binding of F and M
is reversible; it is represented by blue arrows in Figure 4. The system evolves to

τa[1]→ a[1].F ′ |(a[1], p, c).M ′ |E |P |R |pE

where transition τa[1] indicates that a binding between a of F and a of M took
place and a and a were marked with 1. Note that this binding can be immediately
reversed.

τa[1]� a.F ′ |(a, p, c).M ′ |E |P |R ≡ F |M |E |P |R |pE

M gets phosphorylated and then releases F by reversing the binding on a:

τp[2]→ a[1].F ′ |(a[1], p[2], c).M ′ |p[2].P ′ |E |R |pE
τa[1]� a.F ′ |(a, p[2], c).M ′ |p[2].P ′ |E |R |pE ≡ F |(a, p[2], c).M ′ |p[2].P ′ |E |R |pE

Then, pM (which is (a, p[2], c).M ′ |p[2].P ′) binds with E and phosphorylates it;
M is released and pE is ready to convey the signal to the cell’s nucleus:

τc[3]→ F |(a, p[2], c[3]).M ′ |p[2].P ′ |(c[3], p, b, n).E′ |R |pE
τp[2]� F | (a, p, c[3]).M ′ |(c[3], p, b, n).E′ |P |R |pE
τp[4]→ F | (a, p, c[3]).M ′ |(c[3], p[4], b, n).E′ |p[4].P ′ |R |pE
τc[3]� F |(a, p, c).M ′ |(c, p[4], b, n).E′ |p[4].P ′ |R |pE

230 I. Phillips, I. Ulidowski, and S. Yuen

The last process is ≡ equivalent to F |M | (c, p[4], b, n).E′ |p[4].P ′ |R |pE which is
≡ equivalent to F |M |pE |R |pE. Now, the newly created pE can communicate
the signal with the nucleus via action n (we do not show this reaction). Note
that there is now an extra copy of pE created out of E and P .

We return to the regulation sequence. We assume the binding in pE has the
key 8. Instead of combining with M , the protein F can be inhibited by binding
with R; this reaction is immediately reversible. Then the R | F complex binds
with pE. The system F |M |E |P |R |pE ≡ R |F |pE |M |E |P evolves as follows:

τa[5]→ (a[5], b, p).R′ |a[5].F ′ |pE |M |E |P
τb[6]→ (a[5], b[6], p).R′ |a[5].F ′ |(c, p[8], b[6], n).E′ |p[8].P ′ |M |E |P

Next, F is released and then pE phosphorylates R:

τa[5]� ≡ F | (a, b[6], p).R′ |(c, p[8], b[6], n).E′ |p[8].P ′ |M |E |P
τp[8]� F | (a, b[6], p).R′ |(c, p, b[6], n).E′ |p.P ′ |M |E |P
τp[7]→ F | (a, b[6], p[7]).R′ |(c, p, b[6], n).E′ |p[7].P ′ |M |E |P

Finally, E and pR are disassociated and R is de-phosphorylated:

≡τb[6]→ F |(a, b, p[7]).R′ |p[7].P ′ |(c, p, b, n).E′ |M |E |P
τp[7]� F |(a, b, p).R′ |p.P ′ |(c, p, b, n).E′ |M |E |P ≡ F |M ||E |P |R |E |P

Note that this segment of the pathway deactivates pE into E and P .
A high level view of the behaviour of the ERK system F |M |E |P |R |pE is

represented abstractly by the cascade and regulation sequences:

F |M ||E |P |R |E |P ← reg ←
→ cas →F |M |E |P |R |pE→ cas →

← reg ←F |M |pE |R |pE

The cascade produces pE which can signal the nucleus and the regulation se-
quence consumes pE in order to stop R regulating F .

M,E and R exhibit the following patterns of behaviour (putting aside the
undoing of immediately reversible reactions on a and b, and n) which we write
with controller actions: M : a.p.a.c.p.c; E : c.p.c.b.p.b and R : a.b.a.p.b.p. We
note the common pattern (modulo action names) and also behaviours that break
causal dependencies: for example a happens before p in M although a causes p.

Finally, we define controller terms for the proteinsM,E and R that will ensure
that reactions follow the order of the cascade and regulation sequences.

CM
df
= a.C′

M C′
M

df
= a.CM + p.a.c.p.c.CM

CE
df
= c.p.c.C′

E C′
E

df
= n.N + b.C′′

E C′′
E

df
= b.C′

E + p.b.CE

CR
df
= a.C′

R C′
R

df
= a.CR + b.C′′

R C′′
R

df
= b.C′

R + a.p.b.p.CR

Claim. (F |M〈CM 〉 |E〈CE〉 | P |R〈CR〉 | pE〈C′
E〉)\{a, b, c, p} exhibits precisely

the cascade and regulation reactions of (F |M |E |P |R |pE)\{a, b, c, p}.

A Reversible Process Calculus 231

4 Conclusion

We have presented a reversible process calculus with a new execution control
operator and illustrated its usefulness and expressiveness with several examples,
including long-running transactions with simple compensations and the ERK
signalling pathway. The new operator allows us to model a variety of modes
of reverse computation, ranging from strict backtracking to reversing which re-
spects causal ordering of events, and even reversing which violates causal order-
ing. This last form of reversing has not been studied before and in our view it
deserves further investigation. The execution control operator can also be used
to encode irreversible actions, it can act as the restriction operator of CCS in
contexts involving communicating processes, and it allows us to construct terms
that reach a state after a reversal that cannot be reached by computing forwards
only.

Acknowledgements. We are grateful to the Reversible Computation 2012 ref-
erees and participants for their helpful comments and suggestions. The second
author acknowledges partial support by EPSRC grant EP/G039550/1 and the
Japan Society for the Promotion of Science (JSPS) grants S-09053 and FU-019.

References

1. Berry, G., Boudol, G.: The chemical abstract machine. Theoretical Computer Sci-
ence 96(1), 217–248 (1992)

2. Blinov, M.L., Yang, J., Faeder, J.R., Hlavacek, W.S.: Graph Theory for Rule-Based
Modeling of Biochemical Networks. In: Priami, C., Ingólfsdóttir, A., Mishra, B.,
Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS
(LNBI), vol. 4230, pp. 89–106. Springer, Heidelberg (2006)

3. Calder, M., Gilmore, S., Hillston, J.: Modelling the Influence of RKIP on the ERK
Signalling Pathway Using the Stochastic Process Algebra PEPA. In: Priami, C.,
Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational
Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 1–23. Springer, Heidelberg
(2006)

4. Cardelli, L., Laneve, C.: Reversible structures. In: 9th International Conference on
Computational Methods in Systems Biology, pp. 131–140. ACM (2011)

5. Cho, K.-H., Shin, S.-Y., Kim, H.-W., Wolkenhauer, O., McFerran, B., Kolch, W.:
Mathematical Modeling of the Influence of RKIP on the ERK Signaling Path-
way. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 127–141. Springer,
Heidelberg (2003)

6. Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-Based Modelling of
Cellular Signalling. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS,
vol. 4703, pp. 17–41. Springer, Heidelberg (2007)

7. Danos, V., Krivine, J.: Reversible Communicating Systems. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer,
Heidelberg (2004)

8. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005)

232 I. Phillips, I. Ulidowski, and S. Yuen

9. Danos, V., Krivine, J.: Formal molecular biology done in CCS-R. In: Proceedings
of the 1st Workshop on Concurrent Models in Molecular Biology BioConcur 2003.
ENTCS, vol. 180, pp. 31–49 (2007)

10. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling Reversibility
in Higher-Order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS,
vol. 6901, pp. 297–311. Springer, Heidelberg (2011)

11. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing Higher-Order Pi. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer,
Heidelberg (2010)

12. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Controlled Reversibility and Compensa-
tions. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 233–240.
Springer, Heidelberg (2013)

13. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
14. Mousavi, M., Phillips, I.C.C., Reniers, M.A., Ulidowski, I.: Semantics and expres-

siveness of Ordered SOS. Information and Computation 207(2), 85–119 (2009)
15. Phillips, I.C.C., Ulidowski, I.: Reversing Algebraic Process Calculi. In: Aceto, L.,

Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 246–260. Springer,
Heidelberg (2006)

16. Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. Journal of Logic
and Algebraic Programming 73, 70–96 (2007)

17. Phillips, I.C.C., Ulidowski, I.: A logic with reverse modalities for history-preserving
bisimulations. In: Proceedings 18th International Workshop on Expressiveness in
Concurrency. EPTCS, vol. 64, pp. 104–118 (2011)

18. Phillips, I.C.C., Ulidowski, I.: A hierarchy of reverse bisimulations on stable con-
figuration structures. Mathematical Structures in Computer Science 22, 333–372
(2012)

19. Ulidowski, I., Phillips, I.C.C.: Ordered SOS rules and process languages for branch-
ing and eager bisimulations. Information and Computation 178(1), 180–213 (2002)

20. Vera, J., Rath, O., Balsa-Canto, E., Banga, J.R., Kolch, W., Wolkenhauer, O.:
Investigating dynamics of inhibitory and feedback loops in ERK signalling using
power-law models. Molecular BioSystems 6, 2174–2191 (2010)

Controlled Reversibility and Compensations�

Ivan Lanese1, Claudio Antares Mezzina2, and Jean-Bernard Stefani3

1 Focus Team, University of Bologna/INRIA, Italy
lanese@cs.unibo.it

2 SOA Unit, FBK, Trento, Italy
mezzina@fbk.eu

3 INRIA Grenoble-Rhône-Alpes, France
jean-bernard.stefani@inria.fr

Abstract. In this paper we report the main ideas of an ongoing thread
of research that aims at exploiting reversibility mechanisms to define
programming abstractions for dependable distributed systems. In par-
ticular, we discuss the issues posed by concurrency in the definition of
controlled forms of reversibility. We also discuss the need of introducing
compensations to deal with irreversible actions and to avoid to repeat
past errors.

1 Motivation

In this paper we report the main ideas of an ongoing thread of research that aims
at exploiting reversibility mechanisms to define programming abstractions for
dependable distributed systems. Many such abstractions have been proposed in
the literature, concerning for instance exception handling, checkpointing, trans-
actions and the like [6,11,12], and made available to programmers as language
primitives, libraries or middleware functions. However these different propos-
als lack formal foundations and do not generally compose well. This raises the
question of whether some unifying framework can be found to shed light on the
relations among these apparently unrelated mechanisms. Clearly, a number of
these mechanisms are based on some form of undo, allowing to annul the effect
of actions that lead to an error. We thus ask the following question:

If we were able to undo every action in a distributed program execution, would
we be able to understand and integrate those different mechanisms?

We started our endeavor in the framework of concurrency theory and in partic-
ular using process calculi, developing small reversible languages and trying to
understand their properties and their expressive power.

Paper Outline. Section 2 recalls the main features of reversibility in a concur-
rency setting. Section 3 discusses and compares different mechanisms for con-
trolling reversibility. Section 4 outlines some ideas for combining reversibility
and compensations. Section 5 concludes the paper.

� This work has been partially supported by the French National Research Agency
(ANR), project REVER n. ANR 11 INSE 007.

R. Glück and T. Yokoyama (Eds.): RC 2012, LNCS 7581, pp. 233–240, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

234 I. Lanese, C.A. Mezzina, and J.-B. Stefani

2 Reversibility in a Concurrency Setting

The problem of understanding reversibility in a process calculus scenario had
already been considered in the seminal paper [8], with motivations coming from
computational biology, where systems are naturally reversible. In [8] a reversible
variant of CCS has been proposed. A main achievement of that paper is the
definition of causal consistency, a formal criterion for reversibility in concurrent
systems. In a concurrency setting (and even more in a distributed one) there
may be no clear understanding of which was the last action performed by the
system, or which was the previous state. With causally consistent reversibility
one moves back by undoing any action that could have been the last one, i.e.
any action on which no other action depends. Essentially, actions are undone
in reverse order with respect to forward execution, up to possible swaps in the
order of execution of concurrent actions.

To better understand this crucial concept, consider the example in Figure 1(a).
From state M there are two possible paths leading to state N , one executing
first a and then b (on the left), and the other executing first b and then a (on the
right). If the two actions a and b are concurrent, possibly executed by physically
remote components, it may be difficult to distinguish the two computations.
Thus one should be able to reverse any of the two executions by reversing the
other, i.e. if the forward computation proceeds by executing first a and then b
(double-pointed arrow in Figure 1(b)), not only undoing first b and then a, but
also undoing first a and then b (wave arrow in Figure 1(b)) is a valid reverse
computation.

M

a

��

b

��
M1

b ��

M2

a
��

N

(a)

M

�� ��

a

��

b

��
M1

b ��

M2

a
��

N

��

(b)

Fig. 1. Example of Causally Consistent Executions

To allow causally consistent reversibility one has to add history information
to the different threads in a computation. Choosing threads as the granularity
at which to store this information is suitable for causal consistency since actions
inside the same thread are causally dependent, while actions in different threads

Controlled Reversibility and Compensations 235

are mostly concurrent. Subsequent works have shown that such a framework
can be applied to different process calculi, in particular to a family of CCS-like
calculi [19], to the (higher-order) π-calculus [16], and to a subset of Oz [17].

3 Controlling Reversibility

In the works discussed above, reversibility is essentially non-deterministic, in
the sense that, when both forward and backward steps are possible, there is
no way of deciding whether to go forward or to go backward. This means that
those works specify how the system can reverse a forward computation and what
kind of information it should exploit, but they give no hint about when forward
execution should be preferred over backward one and vice-versa.

In the fault-tolerance setting, there is a general answer to this question: to
use reversibility for error recovery, the system should normally execute forward,
and backward execution should be exploited only when needed to recover from
errors. Such a general guideline, however, can be implemented using different
strategies. We describe below three main strategies, specifying scenarios where
they can be applied. This allows us to structure the design space of controlled
reversibility, and to categorize the approaches in the literature accordingly.

Internal Control: Specific commands inside processes specify whether the pro-
cess itself should go forward or backward. A possibility along this line has
been explored in [9], where irreversible actions, i.e. actions that once per-
formed cannot be undone, have been integrated in reversible CCS and shown
able to implement a simple form of transactions. In [9], however, it is not
clear how to relate irreversible actions and error recovery. To make this re-
lation more apparent, we proposed a dual approach [15] where an explicit
rollback primitive is used to trigger backward execution. The idea is that
when an error is spotted, the rollback primitive can be used to go back to a
consistent state. To specify how far back to go the rollback primitive takes as
parameter a label referring to a past action, and it undoes all (and only) the
actions causally dependent on it, that is all the actions generated because of
it. This choice is coherent with, and indeed forced by, causally consistent re-
versibility. In fact, in a concurrent scenario a specification such as “go back n
steps” (typical of sequential reversible debuggers such as in [3]) is not mean-
ingful, since there is no clear understanding of which the last n actions have
been. Irreversible actions and explicit rollback are dual, one specifying when
it is forbidden to go back, and the other one specifying when it is required to
go back. Their combination is not trivial, however, since one has to decide
what to do in case of conflicts, e.g. if a rollback requires to go back past an
irreversible action. We will outline a possible solution to this problem when
discussing compensations.

External Control: This approach follows the separation of concerns principle:
a process is potentially able to go both backward and forward, while another
process is in charge of controlling it by deciding when it has to go backward

236 I. Lanese, C.A. Mezzina, and J.-B. Stefani

and when it has to go forward. Such an approach is suitable, e.g., for hier-
archic component-based systems, where the father component may decide
when and how to rollback its child, and the children notify the father in case
of errors. Such a hierarchical structure for failure handling is typically the
one advocated for Erlang systems [1]. External control naturally emerges
in a reversible debugger: the user, through the debugger interface, decides
whether the program under debugging should execute forward or should get
back to a previous computation. Following the causally consistent approach,
when going backward the user should specify which past action to undo, and
the system should be in charge of finding its dependencies and undoing their
execution. This is in contrast, e.g., to [7] where the user has to decide which
actions to undo and in which order. External control has been applied also
to biological reversible systems in [20]. There a reversible CCS process P
is controlled by a controller process C, which is again a CCS process. The
controller C always computes forward, and it constrains the possible actions
of P , thus decreasing the non-determinism due to reversibility and to con-
currency. This allows, together with a generalized form of prefix, to model
different forms of reversibility, including reversibility that is not (always)
causally consistent.

Semantic Control: In this approach the semantics of the language is extended
with guidelines on whether to go forward or to go backward. Consider the
following scenario: a reversible program is used to perform a state-space
exploration looking for some solution of a given problem. In this case re-
versibility is needed to backtrack in case a branch with no solution has been
taken. One can imagine to add to the history information about whether and
how many times a particular path has been taken and favor paths (and direc-
tions of execution) leading to less explored areas. For instance one can label
each action with the number of times it has been tried, and choose among
the enabled actions (both forward and backward) one which has minimal
value. It is clear that in such a way a finite state space is completely ex-
plored, allowing to find a solution if at least one exists. Another approach
has recently been explored in [2], where computing steps are taken subject
to some probability, and the rate of forward and backward computing steps
are derived from a set of formal energy parameters. The contribution of the
paper is to show that there exists a lower bound on energy costs to guarantee
that a process commits a forward computation in finite average time.

4 Reversibility and Compensations

Using some forms of internal or external control, reversibility may lead to di-
vergence. In particular, the process itself is not aware of the fact that a specific
computation has already been executed, has failed, and has been rollbacked.
Thus the same computation could be performed again and again, possibly for-
ever. To avoid such a problem we put forward a solution based on compensations.
Compensations have been proposed as a main building block for long running

Controlled Reversibility and Compensations 237

transactions, first in the area of database theory [13] and then in service-oriented
computing [5,4,18,14]. A long running transaction is a computation that either
succeeds, or, in case of failure, it is compensated. A compensation is an ad hoc
piece of code which is in charge of leading the system back to a consistent state,
possibly different from the ones the execution went through. Compensations
seem antithetic to reversibility, since their aim is exactly to deal with situations
where rollback is not possible or not desired. However, the two concepts can be
fruitfully combined. Consider any form of controlled reversibility, e.g., one based
on internal control. Assume that for some of the statements of the program a
compensation is defined. One can consider for instance a statement of the form
A comp B. The idea is that during forward execution A comp B behaves as A.
However, if its execution has to be rollbacked (possibly as part of a larger roll-
back), the effect of A is annulled (that is A is actually rollbacked) and then the
restored A is replaced by B. Both the steps are important: rollback is needed to
undo some nasty effects of A on the state, while replacing A with B is needed
to avoid re-doing a try that already failed, and would probably fail again. Note
that the first aspect is completely missing from the compensation approaches in
the literature [5,4,18,14].

Consider a typical web service scenario. A is an invocation of a flight reser-
vation service of some airline. Possibilities for B are for instance to execute the
same booking using another airline, or to update the database of preferred air-
lines by adding the information that the invocation of A has failed. These two
possibilities are representatives of two classes of compensations with different
features. We call compensations in the first class replacing compensations, since
they aim at doing what action A was supposed to do, but in a different way. We
call compensations in the second class tracing compensations, since they give up
on what action A was trying to do, but they just aim at keeping trace of the
failure. This information will be used later on by the application. In the example
one may imagine that the application uses trust as a criterion to choose the
airline to be invoked, and the tracing compensation decreases the trust value of
the airline whose invocation failed. In the long running transactions field instead,
the main aim of compensations is to remedy the nasty effects of A, e.g. annulling
the previous booking to avoid to pay for it. In our case this is done automatically
by the reversibility mechanism. We call this last form of compensation repairing
compensation.

The replacing compensation example, trying again the booking with a dif-
ferent airline, makes it intuitive that compensations may have their own com-
pensations, recursively. A less evident issue is the following: as we have seen,
the reversibility machinery tracks causal dependencies, thus one has to specify
how the compensation is inserted in the causality relation. There are two main
possibilities, one suitable for replacing compensations, and the other for tracing
compensations. For replacing compensations, compensation B should take the
place of A in the causality relation, since it is an alternative to it. On the other
hand, a tracing compensation B is just used to update the state with informa-
tion obtained by the failed attempt, thus it is not causally related to A causes,

238 I. Lanese, C.A. Mezzina, and J.-B. Stefani

but it is independent. To better understand the difference let us analyze what
happens if a larger part of the execution has to be annulled, e.g. since, in the
airline booking scenario above, the user changed its mind and decided not to
travel any more. The replacing compensation ”book with another airline” has to
be reverted, since it is no more meaningful. This is exactly what happens since
the compensation is now causally dependent on A causes. Instead, the tracing
compensation ”remember that the chosen airline is not good” should be applied
anyway, since it can be used for further bookings later on, and thus should not
depend on A causes.

So far we considered the use of compensations to avoid repeating past errors.
However compensations can also be used in a way closer to their original purpose,
i.e. to deal with irreversible actions. Keep in mind that whatever the support
for reversibility is, there will always be actions which cannot be undone. This
is mainly related to two situations: the action may be inherently irreversible,
e.g. a side effect on the real world such as printing a document, or the action
is in principle reversible but it is out of the control of the considered system.
An example of this last possibility is a distributed application where some of
the components provide support for reversibility, while others do not. In both
the cases one may attach compensations to irreversible actions: reversible actions
are reverted, and irreversible actions are compensated. In this last case repairing
compensations are normally needed.

We can now clarify the issue of the combination of irreversible actions and
rollback: in case a rollback request is issued, and it requires to undo an irre-
versible action, actions are undone till the irreversible action is found, and its
(repairing) compensation is executed, instead of reversing it and all the actions
it depends on. Note that in this setting some actions are equipped with compen-
sations, while others are reversed, while in the previous setting each action was
both reversed and compensated.

5 Conclusion

In this paper we discussed three main issues related to defining and exploiting re-
versibility in a concurrent scenario. The first issue was how to define mechanisms
allowing to go backward and forward in a concurrent execution. The second is-
sue was how to control reversibility, i.e. how to specify whether to go forward
or backward, and up to where. The third issue was how to avoid repeating the
same errors, and how to deal with irreversible actions. The first such issue has
been discussed in the literature to some extent, relying on the main concept of
causally consistent reversibility. Related to the second issue, this is the first time,
as far as we know, that a taxonomy of the possible approaches has been defined.
Concerning the third issue, the only related work in the literature is [10], which
proposes a transactional mechanism with some reversibility features. This work
however comes from the opposite direction, since it starts from the problem of
how to define interacting transactions.

Many other issues remain to answer our original question. In particular, the
mechanisms we sketched above should be fully specified, and their expressive

Controlled Reversibility and Compensations 239

power has to be assessed against proposals in the literature. Our endeavor would
be fully successful only if we show that using a reversible framework allows to
recover, improve and combine existing techniques for dependable concurrent
systems, and possibly to define new ones. Also, practical issues must be solved
to make the approach usable in a real programming language. For instance, the
interplay between reversibility and language features such as the type system
or modules should be considered. Also, the space and time overhead due to
reversibility have to be measured and minimized. See [17] for a preliminary
analysis of this issue.

References

1. Armstrong, J.: Making Reliable Distributed Systems in the Presence of Software
Errors. PhD thesis, KTH, Stockholm, Sweden (2003)

2. Bacci, G., Danos, V., Kammar, O.: On the Statistical Thermodynamics of Re-
versible Communicating Processes. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.)
CALCO 2011. LNCS, vol. 6859, pp. 1–18. Springer, Heidelberg (2011)

3. Boothe, B.: Efficient Algorithms for Bidirectional Debugging. In: Proc. of PLDI
2000, pp. 299–310. ACM Press (2000)

4. Bruni, R., Melgratti, H., Montanari, U.: Theoretical Foundations for Compensa-
tions in Flow Composition Languages. In: Proc. of POPL 2005, pp. 209–220. ACM
Press (2005)

5. Butler, M., Hoare, S.T., Ferreira, C.: A Trace Semantics for Long-Running Trans-
actions. In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) Communicating Se-
quential Processes. LNCS, vol. 3525, pp. 133–150. Springer, Heidelberg (2005)

6. Collet, R., Van Roy, P.: Failure Handling in a Network-Transparent Distributed
Programming Language. In: Dony, C., Lindskov Knudsen, J., Romanovsky, A.,
Tripathi, A. (eds.) Exception Handling. LNCS, vol. 4119, pp. 121–140. Springer,
Heidelberg (2006)

7. Cook, J.J.: Reverse Execution of Java Bytecode. Comput. J. 45(6), 608–619 (2002)
8. Danos, V., Krivine, J.: Reversible Communicating Systems. In: Gardner, P.,

Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Hei-
delberg (2004)

9. Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 398–412. Springer, Heidelberg (2005)

10. de Vries, E., Koutavas, V., Hennessy, M.: Communicating Transactions. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 569–583. Springer,
Heidelberg (2010)

11. Elnozahy, E.N., Alvisi, L., Wang, Y.M., Johnson, D.B.: A Survey of Rollback-
Recovery Protocols in Message-Passing Systems. ACM Comput. Surv. 34(3) (2002)

12. Eppinger, J.L., Mummert, L.B., Spector, A.Z.: Camelot and Avalon: A Distributed
Transaction Facility. Morgan Kaufmann (1991)

13. Garcia-Molina, H., Gawlick, D., Klein, J., Kleissner, K., Salem, K.: Coordinating
Multi-Transaction Activities. Technical Report CS-TR-2412, University of Mary-
land, Dept. of Computer Science (1990)

14. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: On the Interplay Between Fault
Handling and Request-Response Service Invocations. In: Proc. of ACSD 2008, pp.
190–199. IEEE Computer Society Press (2008)

240 I. Lanese, C.A. Mezzina, and J.-B. Stefani

15. Lanese, I., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Controlling Reversibility
in Higher-Order Pi. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS,
vol. 6901, pp. 297–311. Springer, Heidelberg (2011)

16. Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing Higher-Order Pi. In: Gastin,
P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer,
Heidelberg (2010)

17. Lienhardt, M., Lanese, I., Mezzina, C.A., Stefani, J.-B.: A Reversible Abstract
Machine and Its Space Overhead. In: Giese, H., Rosu, G. (eds.) FORTE 2012 and
FMOODS 2012. LNCS, vol. 7273, pp. 1–17. Springer, Heidelberg (2012)

18. Oasis. Web Services Business Process Execution Language Version 2.0 (2007),
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

19. Phillips, I., Ulidowski, I.: Reversing Algebraic Process Calculi. J. Log. Algebr.
Program. 73(1-2) (2007)

20. Phillips, I., Ulidowski, I., Yuen, S.: A Reversible Process Calculus and the Mod-
elling of the ERK Signalling Pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012.
LNCS, pp. 218–232. Springer, Heidelberg (2012)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

Author Index

Axelsen, Holger Bock 171

Burignat, Stéphane 160

Coecke, Bob 1

De Vos, Alexis 160
Drechsler, Rolf 183, 197
Dueck, Gerhard W. 125
Duncan, Ross 1

Early, Diarmuid 85

Fujimoto, Richard 72

Gajardo, Anah́ı 44
Gao, Ang 85

Hou, Cong 72

James, Roshan P. 57
Jefferson, David 72

Kerntopf, Pawe�l 138
Krivine, Jean 204
Kutrib, Martin 14

Lanese, Ivan 233

Malcher, Andreas 14
Mezzina, Claudio Antares 233
Miller, D. Michael 112

Minato, Shin-ichi 197
Morita, Kenichi 29

Nayeem, Noor M. 152

Ollinger, Nicolas 44

Phillips, Iain 218

Quinlan, Daniel 72

Rahman, Md. Mazder 125
Rice, Jacqueline E. 152

Sabry, Amr 57
Sasanian, Zahra 112
Schellekens, Michel 85
Schultz, Ulrik Pagh 97
Seiter, Julia 183
Soeken, Mathias 183, 197
Stefani, Jean-Bernard 233
Szyprowski, Marek 138

Thomsen, Michael Kirkedal 160, 171
Torres, Rodrigo 44

Ulidowski, Irek 218

Vermeirsch, Kenneth 160
Vuduc, Richard 72

Wille, Robert 183, 197

Yuen, Shoji 218

	Title
	Preface
	Organization
	Table of Contents
	Theoretical Considerations
	Tutorial: Graphical Calculus for Quantum Circuits
	The Graphical Language: Networks of Wires and Dots
	The Equational Rules
	The T-Rule
	The S-Rules
	The B-Rules
	The K-Rules
	The C-Rule
	The D-Rules

	Interpreting the zx-calculus in Hilbert Space
	Universality of the zx-calculus
	Completeness of the zx-calculus
	The zx-calculus in Use
	References

	One-Way Reversible Multi-head Finite Automata
	Introduction
	Preliminaries and Definitions
	Computational Capacity
	Head Hierarchy
	Decidability Problems
	References

	A Deterministic Two-Way Multi-head Finite Automaton Can Be Converted into a Reversible One with the Same Number of Heads
	Introduction
	A Two-Way Multi-Head Finite Automaton
	Converting a DMFA(k) into an RDMFA(k)
	Applying the Conversion Method to Turing Machines
	Concluding Remarks
	References

	Undecidability of the Surjectivity of the Subshift Associated to a Turing Machine
	Definitions
	Turing Machine
	Dynamical System

	Surjectivity
	Blocking States

	Undecidability of Preliminary Problems
	Undecidability of the Blocking State Problem
	Undecidability of the Blocking State Problem in Complete RTMs

	Undecidability of the Surjectivity of the Subshift Associated to a Turing Machine
	Conclusions
	References

	Reversible Software and Languages
	Isomorphic Interpreters from Logically Reversible Abstract Machines
	Introduction
	Review of the Reversible Language: o
	Universality
	Numeric Operations

	Simple Bounded Number Iteration
	Counting
	Steps of the Construction
	Adder

	Advanced Examples
	Tree Traversal
	Parity Translation
	A Πo Interpreter

	Conclusion
	References

	Synthesizing Loops For Program Inversion
	Introduction
	Prior Foundations: Value Search and Route Graphs
	Handling Loops
	Dealing with While Loops
	Dealing with Loops other than While Loops
	Discussion

	Conclusion and Future Work
	References

	Frugal Encoding in Reversible MOQA: A Case Study for Quicksort
	Introduction
	Background
	Efficient Encoding
	Quicksort
	Reversing Quicksort
	Forward Computing
	Reverse Computing

	Conclusion and Future Work
	References

	Towards a General-Purpose,Reversible Language for Controlling Self-reconfigurable Robots
	Introduction
	Background: Modular Robots
	Self-reconfiguration
	The DynaRole Language

	The Role of Reversibility
	General Principles
	Experiments in rRoCE
	Informal Language Description
	Obstacle Avoidance Example
	Reverse Obstacle Avoidance

	Conclusion and Future Work
	References

	Reversible and Quantum Circuits
	Reversible and Quantum Circuit Optimization: A Functional Approach
	Introduction
	Background
	Basic Optimization Approach
	DDMF-Based Optimization Method
	DDMFs for Reversible and Quantum Circuits
	The Functional Optimization Method

	Experimental Results
	Conclusion
	References

	Properties of Quantum Templates
	Introduction
	Preliminaries
	Previous Work on Quantum Templates
	Quantum Templates: Definition and Properties
	Generation of Quantum Templates from Identities
	Impact of Reconfigured Templates

	Completeness of Optimality of Binary Realizations from Templates
	Conclusion and Future Work
	References

	Optimal 4-bit Reversible Mixed-Polarity Toffoli Circuits
	Introduction
	Preliminaries
	Cost Functions and Optimal Reversible Circuits
	Gate Count Optimal Synthesis
	Our Extension to the Synthesis Algorithm
	Experimental Results
	Conclusions and Future Work
	References

	Design of an Online Testable Ternary Circuit from the Truth Table
	Introduction
	Background
	Online Testing
	Fault Models
	Ternary Galois Field Logic
	Reversible Ternary Gates
	Synthesis of Ternary Reversible Circuits

	Our Approach
	Design
	Fault Detection

	Discussion
	Comparison with Related Work
	Conclusion
	References

	Physical Realizations and Design
	Garbageless Reversible Implementation of Integer Linear Transformations
	Introduction
	Approximating the Discrete Cosine Transform
	The H.264 Transform
	Implementing H.264
	Avoiding Garbage
	Conclusion
	References

	Garbage-Free Reversible Integer Multiplication with Constants of the Form 2k2l1
	Introduction
	Garbage-Free Reversible Constant Multiplication
	The Idea
	The Implementation
	Extending to Multiplication by 2k-1
	Cascades and Limitations

	Multioperand Adders and Multiplication
	A Three-Operand V-Shape Adder
	Specializing to Multiplication by 2k + 2l + 1
	Extending to Multiplication by 2k 2l 1

	Conclusion and Future Work
	References

	Property Checking of Quantum Circuits Using Quantum Multiple-Valued Decision Diagrams
	Introduction
	Preliminaries
	Quantum Circuits
	Quantum Multiple-Valued Decision Diagrams

	Property Checking of Quantum Circuits
	Problem Formulation
	Quantum Circuit Verification
	General Idea

	Implementation
	Combine the Circuits and Ensure Unitary
	Build a QMDD from the Combined Circuit
	Modify the QMDD
	Determine the Result

	Experimental Results
	Conclusions
	References

	Using πDDs in the Design of Reversible Circuits(Work-In-Progress)
	Introduction
	Preliminaries
	Reversible Functions and Circuits
	The DD Data-Structure

	Applications in the Design of Reversible Circuits
	Determination of the Number of Minimal Circuits
	Synthesis with Minimal Number of Gates
	Heuristic Synthesis
	Debugging

	Conclusions and Future Work
	References

	Distributed Systems
	A Verification Technique for Reversible Process Algebra
	Introduction
	CCS
	Syntax
	Operational Semantics
	Process Equivalence

	Reversible CCS
	Syntax
	Operational Semantics
	The Fundamental Property

	Causal Compression
	Flow Event Structures
	Algorithmic Discussion

	Benchmark
	Conclusion
	References

	A Reversible Process Calculus and the Modelling of the ERK Signalling Pathway
	Introduction
	A Reversible Process Calculus with Execution Control
	CCSK
	Execution Control Operator

	The ERK Signalling Pathway
	Conclusion
	References

	Controlled Reversibility and Compensations
	Motivation
	Reversibility in a Concurrency Setting
	Controlling Reversibility
	Reversibility and Compensations
	Conclusion
	References

	Author Index

